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ABSTRACT 

Boolean bent functions have desirable cryptographic properties in that they have 

maximum nonlinearity, which hardens a cryptographic function against linear 

cryptanalysis attacks. Furthermore, bent functions are extremely rare and difficult to find. 

Consequently, little is known generally about the characteristics of bent functions. 

One method of representing Boolean functions is with a reduced ordered binary 

decision diagram. Binary decision diagrams (BDD) represent functions in a tree structure 

that can be traversed one variable at a time. Some functions show speed gains when 

represented in this form, and binary decision diagrams are useful in computer aided 

design and real-time applications. 

This thesis investigates the characteristics of bent functions represented as BDDs, 

with a focus on their complexity. In order to facilitate this, a computer program was 

designed capable of converting a function’s truth table into a minimally realized BDD. 

Disjoint quadratic functions (DQF), symmetric bent functions, and homogeneous 

bent functions of 6-variables were analyzed, and the complexities of the minimum binary 

decision diagrams of each were discovered. Specifically, DQFs were found to have size 

2n – 2 for functions of n-variables; symmetric bent functions have size 4n – 8, and all 

homogeneous bent functions of 6-variables were shown to be P-equivalent. 
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EXECUTIVE SUMMARY 

Bent functions are Boolean functions that have a maximum Hamming distance 

from the linear functions and their complements – otherwise known as the affine 

functions. That is, bent functions have maximum nonlinearity. High nonlinearity is a 

desirable property for functions used in cryptographic applications because it hardens the 

cryptographic system from linear cryptanalysis attacks. 

Another useful aspect of bent functions in terms of cryptography is that they are 

rare and difficult to find. While this increases their security, this is also frustrating 

because this makes them difficult to research. Many known sets of bent function families 

can be designed generally for a function of n-variables, but the vast majority must be 

found through enumeration of all Boolean functions. For this reason, identifying the 

characteristics of bent functions from a variety of perspectives may prove valuable in 

unlocking methods of more efficient discovery. 

One method for representing a Boolean function is with a Reduced Ordered 

Binary Decision Diagram (ROBDD, or BDD, for short). BDDs are tree-like graph 

structures that provide a condensed form of the function that can be traversed one 

variable at a time. Complex functions can be calculated fairly quickly with BDDs, which 

makes them desirable for real-time and computer aided design applications. 

It is known that for many human designed Boolean functions, BDDs tend to have 

simple shapes. This is likely because functions with simple characteristics are useful. 

Good examples of simple but useful functions are the AND, OR, and XOR functions, 

which have simple BDDs.  

On the other hand, no one has looked closely at the BDDs of known bent 

functions. Due to their nonlinearity, it is expected bent functions would have high 

complexity in relation to other human designed functions. Furthermore, little is known 

about how the shape of bent function BDDs or how the BDDs of different types of bent 

functions may be related. 
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This thesis explores the BDDs of bent functions. Since BDD construction can be 

quite time consuming by hand, the first step was to create a program capable of 

generating a BDD given the truth table of a Boolean function. Although many programs 

are available that can convert a function into a BDD data structure, there are none known 

that integrate a graphical display of the BDD. Creating a program to aid in the 

visualization necessary was the first order of business. 

BDD complexity can also be very sensitive to variable ordering. For instance, one 

variable ordering of an 8-variable Disjoint Quadratic Function results in a BDD with 14 

nodes, while another “diabolical” ordering results in a BDD with 37 nodes. Since in 

almost all cases, a minimized BDD is desirable, the program had to be able to implement 

a method for permuting variables in order to find trees of a minimum size. 

Designing this program, called BDDViewer, resulted in the realization that the 

BDD can be fully implemented by parsing the function’s truth table. Specifically, the 

edges of each node split the truth table in half, with each node representing a sub-

function. By viewing each node as a unique sub-function’s truth table, an ROBDD can be 

constructed with no redundant, or isomorphic sub-graphs.  

By implementing the BDD construction in this way, the variable order 

permutations also had to be properly reflected in the corresponding truth table. The 

Johnson-Trotter permutation algorithm was used to find all possible variable orderings. 

However, a new algorithm was developed to manipulate the truth table to reflect the 

movement of the variables. The details of this algorithm can be seen in Chapter IV. 

Once the program was complete, the BDDs of a sampling of known bent 

functions were investigated. Specifically, disjoint quadratic functions (DQFs), symmetric 

bent functions, and homogeneous functions of algebraic degree 3 on 6-variables were 

observed. XORing these functions with linear functions was also performed to identify 

bent functions’ relationship with their affine classes. 

The BDDs of the DQFs and the symmetric bent functions proved to be visually 

striking. In fact, they both demonstrated clearly recognizable patterns that allowed for the 

extrapolation of the complexity of such functions generally for n-variables. Specifically, 



 xix

the minimum BDDs of DQFs were found to have 2n – 2 non-terminal nodes, while the 

minimum BDDs of symmetric bent functions were found to have 4n – 8 non-terminal 

nodes. Furthermore, the simple observation of the BDDs of the symmetric bent function 

demonstrates the cyclic nature of symmetric functions. Specifically, the functions are 

dependent entirely on the number of variables set to 1, and not the order in which the 

variables are listed. 

The BDDs of the homogeneous functions of 6-variables, while not nearly as 

aesthetically pleasing as the DQFs and symmetric bent functions, were still quite 

revealing. All 30 functions were revealed to have identical BDD structures. That is, the 

total number of nodes per level in each BDD was identical. From this realization, it was 

discovered that P-equivalent functions will have identical BDDs for distinct variable 

orderings. 

Finally, the BDDs of functions in the same affine class were shown to have 

identical structures. Functions in the same affine class are not P-equivalent, so the BDDs 

themselves were not identical, but this discovery demonstrated that all functions in an 

affine class have BDDs of the same size. 

The research demonstrated that many bent functions, despite their nonlinearity, 

have predictable characteristics. However, only a small sample of bent functions was 

investigated. Further research may yield more comprehensive results. The creation of a 

program capable of finding the minimum BDD of any Boolean function may also prove 

broadly useful to others interested in BDD construction. 
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I. INTRODUCTION  

A. PROBLEM DEFINITION 

Most modern cryptographic systems rely on Boolean functions as a part of the 

cipher process. In order to be effective, these Boolean functions must exhibit certain 

properties that aid in the obfuscation of the cryptographic key to an attacker. Amongst 

other properties, such as balancedness or low autocorrelation, ciphers benefit from 

Boolean functions with a high nonlinearity. 

Boolean bent functions have the unique property of having the highest 

nonlinearity for any given function of n-variables [1]. Bent functions are also extremely 

rare and difficult to enumerate, making the discovery of unique bent functions for large n 

quite valuable. Despite their nonlinearity, bent functions alone do not make 

cryptographically sound Boolean functions, because they lack balancedness. However, 

bent functions make an excellent starting point for modification into a cryptographically 

sound Boolean function [2]. 

One method of representing a Boolean function is through a Reduced Ordered 

Binary Decision Diagram (ROBDD, or BDD for short). In a binary decision diagram, the 

function is represented graphically in a binary tree structure. Each level of the tree 

corresponds to a variable of the function, and each edge between vertices represents the 

decision of either a binary 0 or 1 for that variable. Thus, by setting each input variable to 

either a 0 or 1, the tree can be traversed, revealing the output of the function for that 

specific combination of input variables. BDDs can be useful because many human-

designed functions have simple BDDs. That is, they tend to have a relatively small 

number of vertices, or nodes. Representing a function in this manner can result in speedy 

computation of functions, or reveal interesting characteristics when viewed graphically 

[3]. 



 2

B. THESIS GOALS 

This thesis analyzes a subset of well-known bent functions with the intention of 

identifying their characteristics with regard to their respective binary decision diagrams. 

This approach is taken because bent functions are inherently complex, and it is believed 

that research of this nature has never been attempted. 

In particular, disjoint quadratic functions, homogeneous bent functions of 

algebraic degree three, and symmetric bent functions are analyzed in depth. Where 

applicable, patterns in these functions’ structures are commented upon, and observations 

on the minimum size and characteristics of these functions are discussed. 

 An additional goal of this thesis is to develop a graphical program that displays an 

easily readable binary decision diagram of any given function. This program will be 

useful for future research projects on the topic of binary decision diagrams. 

C. THESIS ORGANIZATION 

Chapter I focuses on the general overview of the problem and presents the goal of 

the thesis. Chapter II provides background on Boolean functions, as well as defining bent 

functions and introducing the difficulties in enumerating those functions. Chapter III 

discusses binary decision diagrams in greater detail, indicating their current and future 

applications. Chapter IV describes the program used in this thesis to model the binary 

decision diagrams, and touches on algorithms that may be relevant to future researchers. 

Chapter V analyzes the binary decision diagrams of a subset of the known bent functions. 

Chapter VI summarizes the findings of Chapter V and discusses improvements that can 

be implemented on the program designed for this thesis as well as future research that can 

be attempted on binary decision diagrams of bent functions and functions with other 

cryptographic properties. 
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II. BOOLEAN FUNCTIONS AND THEIR CRYPTOGRAPHIC 
PROPERTIES 

A. BOOLEAN FUNCTIONS 

A Boolean function f of n variables is defined as  

 f :2
n  2 ,2  0,1 ,   

where 2
n  represents the vectorspace of dimension n of the binary field 2  [2]. Boolean 

functions are commonly represented by a truth table, which represents the (0,1) value for 

each combination of n input variables, each also set to (0,1). In other words, the truth 

table is the (0,1) sequence defined by (f(v0), f(v1),…, f(v2^(n-1))) where v0 represents the n 

variables defined as (0,…0,0), v1 = (0,…0,1), and v2^(n-1) = (1,…1,1), ordered 

lexicographically [2]. This paper will often refer to a truth table simply as TT. 

 x1 x2 x3 f  

v0  0 0 0 0 f(v0) 

v1  0 0 1 1 f(v1) 

v2  0 1 0 1 f(v2) 

v3  0 1 1 0 f(v3) 

v4  1 0 0 1 f(v4) 

v5  1 0 1 0 f(v5) 

v6  1 1 0 0 f(v6) 

v7  1 1 1 1 f(v7) 

Table 1.   Truth table for the three variable exclusive-or function. The column underneath f 
represents the truth table of the Boolean function. 
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1. Algebraic Normal Form  

Boolean functions can also be represented in Algebraic Normal Form (ANF), a 

standardized method for representing Boolean functions. Functions represented in this 

form have the benefit of allowing one to identify its linear characteristics more readily 

than its truth table form. A Boolean function f of n variables can be represented in ANF 

as 



f (x1, x2 ,..., xn )  a0 
a1x1  a2x2  anxn 
a1,2x1x2  an1,nxn1xn 


a1,2,...,nx1x2xn ,

 

where the coefficients ai  0,1 . In the previous example of a three variable exclusive-or 

function, the coefficients a1=a2=a3=1, and all other coefficients ai = 0. Thus, the ANF of 

the exclusive-or function is  

f (x1, x2 , x3)  1  x1 1  x2 1  x3  x1  x2  x3 . 

2. Algebraic Degree 

The algebraic degree of a Boolean function is the number of variables in the 

highest order monomial of the ANF with a nonzero coefficient [2]. In the function 

f  x1x2  x3x4 x5  

the algebraic degree is 3 due to the monomial x3x4x5. 

3. Linear Functions 

A linear function is any function of algebraic degree one and for which a0=0. The 

notation for a linear function is commonly given as  

a (x)  ax  a1x1  a2x2  anxn ,  

where each coefficient ak {0,1}  for 1 ≤ k ≤ n. Note that the constant function 0 is 

considered a linear function [2]. 



 5

4. Affine Functions 

Affine functions are all of the linear functions and their complements. Affine 

functions can be written as 

a,c (x)  ax  c,  

where c  0,1  [2]. Note that the constant functions 0 and 1 are both considered affine 

functions. 

5. Hamming Weight 

The Hamming weight, denoted by wt(f), of a function f is the number of nonzero 

values in its truth table. For a Boolean function, the Hamming weight is simply the 

number of ones in the truth table. In the case of the exclusive-or function of three 

variables, the Hamming weight is 4, since there are four ones in the function, as shown in 

Table 1. 

6. Hamming Distance 

The Hamming distance between two functions is the number of truth table 

elements that differ from each other. Between two functions f and g, the Hamming 

distance can be defined as 

d( f ,g)  wt( f  g)  [2]. 

B. CIPHERS 

In order to stand up to a variety of cryptanalysis attacks, the Boolean functions 

used to generate a cryptographic key must satisfy several, often-conflicting properties. 

Properties that may help reduce vulnerability to one attack may not be useful against 

another. Before going on, a few definitions: 

1. Plaintext 

Plaintext in a cryptography scheme represents the raw information or data that a 

user intends to transmit. Plaintext has not yet been altered by an encryption process. 



 6

2. Cryptographic Key 

The cryptographic key is the parameter that modifies the plaintext to generate an 

encrypted ciphertext. Generally, keys should be large enough such that the key cannot be 

guessed by an attacker through enumeration, or brute force. An example of a 

cryptographic key is the 256-bit key assigned by a user of Wi-Fi Protected Access / Pre-

shared Key (WPA2/PSK) in many wireless networks. 

3. Ciphertext 

Ciphertext is the output of a cryptographic process after a cryptographic key has 

been used to modify the original plaintext data. 

4. Cipher Example 

In order to demonstrate the application of a key to generate ciphertext, a simple 

stream cipher will be discussed. 

 

Figure 1.   A simple cipher using a 12-bit key. 

Since linear feedback shift registers (LFSRs) are easy and cheap to implement, 

they are frequently used in pseudo-random key generators. In Figure 1, a 12-bit key is 

spread amongst three “x” bits, four “y” bits, and five “z” bits. The XOR functions shown 

allow each sequence of bits to generate a pseudo-random pattern. The leading bits of each 

LFSR (xi, yi, and zi) are then sent to f, which, in most cases, represents a Boolean 
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function applied to each of the incoming stream of bits. This function f could be as simple 

as an XOR operation, but generally a more cryptographically secure Boolean function is 

chosen. The output, ki, is then combined with a plaintext bit, typically via an XOR 

operation to generate one bit of ciphertext. The LFSRs compute the next series of bits in 

the keystream and the process is repeated until all plaintext has been encrypted. In order 

for the receiver to decrypt the ciphertext into a plaintext form, knowledge of the function 

f, the LFSR patterns, and the initial bits in the keystream must be known. These are the 

aspects of a cipher for which cryptographically secure properties are desirable. 

5. Cryptographic Properties 

When constructing a cryptographic system, the cipher’s primary characteristics 

should be to create diffusion and confusion. Diffusion helps to mask the key and the 

plaintext data by dissipating the statistical properties of the ciphertext. In other words, 

each bit of the cipher function should affect as many bits of the plaintext as possible to 

spread the statistical significance of each bit in the ciphertext over a wide range. Ideally, 

for every bit change in the plaintext, a good cipher would change exactly half of the bits 

in the final cipher text, making the structure of the plaintext more difficult to detect [4, 5]. 

Confusion, as described by Claude Shannon, is “the method to make the relation between 

the simple statistics of the ciphertext and the simple description of the key a very 

complex and involved one.” Ultimately, the goal of a confusing cipher is to make it 

difficult to identify the encryption key even if multiple ciphertext-plaintext pairs have 

been identified. 

In general, properties identified as useful for cryptographic purposes are 

balancedness, low autocorrelation, correlation immunity, algebraic immunity, and 

nonlinearity. The majority of these properties will not be defined here, as they are not 

particularly relevant to the research conducted for this thesis, which will focus on the 

very desirable property of nonlinearity, specifically in regard to the study of bent 

functions. However, extensive studies have been done on the other cryptographic 

properties mentioned by other researchers, and the reader is directed to [2] and the 

references therein for further information. 
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It is worth mentioning that tradeoffs are required for any cryptographic function, 

as no Boolean function can exemplify all of the cryptographic properties. For example, 

bent functions, which have maximum nonlinearity, are never balanced. Balanced 

functions are those that contain an equal number of 1s and 0s in their truth tables, and 

help satisfy the cryptographic property of diffusion. Since bent functions can never be 

balanced [1, 2], a bent function is rarely used in an encryption device. It is possible, 

instead, to modify a bent function such that it becomes balanced, at some cost to its 

nonlinearity. 

C. BENT FUNCTIONS 

As previously mentioned, bent functions are those that have the highest possible 

nonlinearity for a function of n-variables. That is, bent functions have the highest 

possible Hamming distance from the affine functions of n-variables. This property of 

nonlinearity is important in generating confusion in a cryptographic process, since linear 

cryptanalysis attacks are capable of breaking most highly linear systems easily by using 

an affine function to approximate the actual function used [6]. For this reason, bent 

functions are useful in the generation of cryptographic ciphers. 

1. Definitions 

 a. Nonlinearity 

In a paper by Butler and Sasao [7], nonlinearity is succinctly defined as: 

The nonlinearity NLf of a function f is the minimum number of truth table 

entries that must be changed in order to convert f to an affine function. 

Nonlinearity can also be defined as the minimum Hamming distance 

between the truth tables of f and an affine function. 

NLf  min(wt( f  a1),wt( f  a2 ),...,wt( f  ak )),   

where ai is an affine function indexed by 1 ≤ i ≤ k = 2n+1. 
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The 3-variable function f =x1x2x3 has a nonlinearity of 1. The AND 

function f has a solitary 1 in its truth table, which has a Hamming distance of 1 from the 

linear function of constant 0, and of course, f is not itself affine [7]. 

b. Bent Functions 

Let f be a Boolean function on n-variables, where n is even. f is a bent 

function if its nonlinearity is 2n1  2
n

2
1

 [7].  

Bent functions can also be defined by their Walsh transform coefficients. 

Specifically, a Boolean function f in n variables is called bent if and only if the Walsh 

transform coefficients of f
^

 are all ±2n/2, that is, W ( f
^

)2  is constant. f
^

 represents the sign 

function of function f, and W() is the Walsh transform [2]. This definition is useful when 

using bent functions in spread spectrum applications. This definition in terms of Walsh 

transform coefficients is only offered here for completeness; for the sake of this thesis, 

nonlinearity is the primary concern. 

2. The Difficulty of Discovering Bent Functions 

Despite bent functions’ inherent usefulness in cryptographic applications, they are 

notoriously difficult to find. Although there are a few well-known classes of bent 

function that can be constructed for any number of n-variables, the majority of functions 

can only be found through computational enumeration. That is, the truth table of every 

function of n-variables must be sequentially checked against the known affine functions 

for nonlinearity. This process is time consuming, as there exist 22n

 functions to compare! 

Even for the relatively small set of Boolean functions of 6-variables, there 

exist1.84 1019  functions to enumerate in search for the entire set of bent functions! 

Complicating matters further, the number of bent functions of n-variables is 

unknown for general n. Upper and lower bounds have been identified, but the exact 

number of bent functions of n-variables is unknown. 
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a. Lower Bound 

It has been shown by [8, 2] that rows in the Sylvester-Hadamard matrix 

yield a bent function when concatenated. The definition of the Sylvester-Hadamard 

matrix and the derivation of the findings are beyond the scope of this thesis. 

Nevertheless, it has been shown that, for n = 2k, the concatenation of the 2k Sylvester-

Hadamard rows or their complements in arbitrary order results in (2k )!22k

 different bent 

functions of n-variables [8, 2]. Thus, there exist at least (2k )!22k

 bent functions for n = 2k 

variables. 

b. Upper Bound 

In [1] it was shown that the maximum algebraic degree of a bent function 

is n/2 for n > 2. This implies that the algebraic normal form has 

n
i






i0

n /2

  2n1 
1

2
n

n / 2







  coefficients, 

any of which can be either 0 or 1 [2], while all other coefficients must be 0. Thus, the 

number of functions that can be derived from these coefficients is  

2
2n1 

1

2
n

n /2






 , 

which represents the upper bound of total possible bent functions of n-variables. 

c. Enumerations 

Due to the difficulties described in identifying the truth table or even the 

total number of bent functions, the total set of bent functions is only known up to 8-

variables. Although bent functions are cryptographically desirable due to their 

nonlinearity, they have the added benefit of being rare and difficult to find. The lack of 

knowledge of higher order functions makes their employment particularly useful. Still, 

the following chart should illuminate the difficulties in discovering a bent function. 
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n Lower 
bound 

# of bent 
functions 

Upper 
Bound 

# of Boolean 
functions 

Fraction of 
bent 
functions 

2 8 8 8 16 2-1 

4 384 896 2048 65536 2-6.2 

6 223.3 232.3 238 [9] 264 2-31.7 

8 295.6[10] 2106.291[10] 2129.2[10] 2256 2-149.7 

Table 2.   Known bent function quantities (After [2]). 

Table 2 helps to illustrate the difficulties described above. For instance, 

there are 2256  1.158 1077  Boolean functions of 8-variables. Assuming that a 2.4GHz 

computer could identify a function as bent or not at the rate of one function per clock 

cycle, it would still take 1.531060  years to search the entire solution-space. It is for this 

reason that the bent functions are relatively unknown for n ≥ 10. Furthermore, it is 

significant to note that, as the number of variables increases, the proportion of bent 

functions as compared to the total number of Boolean functions decreases quite rapidly. 

This makes the short-term yield of sequential or random enumeration of Boolean 

functions in an effort to exhaustively search quite low. 

3. Known Bent Functions 

Even though bent functions are extraordinarily difficult to find within the total 

search space, there are many known classes that can be constructed for any order n-

variables. A few of those classes will be discussed here. 

a. Disjoint Quadratic Functions 

Disjoint Quadratic Functions (DQFs) are functions of the form 


f (x1, y1,..., xk , yk )  xi yi  x1y1  x2y2  xk yk

i1

k


 

and were shown in Rothaus’ original paper to be bent [1]. Rothaus called these functions 

members of FAMILY I, and are considered the simplest general form of bent functions 
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[11]. FAMILY I bent functions are also called the dot product, and can be written as 

f (x, y)  xy.  

FAMILY II bent functions are related in that they are a DQF concatenated 

with any function of half the variable set. That is, FAMILY II functions can be written as 

f (x, y)  xy g(x)  or f (x, y)  xy g(y) , 

where g is any arbitrary function. Note that g must be composed specifically of the 

variables associated with x or the variables associated with y and cannot be mixed [1, 11]. 

b. Symmetric Bent Functions 

A symmetric Boolean function is unchanged by any permutation of the 

input variables. An example of a symmetric function is the AND operation. Regardless of 

the ordering of the variables, the truth table will always be {0,0,0,1}. Due to dependence 

of symmetric functions on only the number of variables set to 1, symmetric functions can 

be represented in a condensed truth table. Tables 3 and 4 serve to illustrate this property. 

Note specifically how the number of variables column of Table 3 corresponds with the 

output value in both tables. 

 

# of Variables set to 1 f 

0 0 

1 1 

2 0 

3 1 

4 1 

Table 3.   Condensed Truth Table of an Arbitrary Four-Variable Symmetric Function 
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x1 x2 x3 x4 f 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 

 

Table 4.   Full Truth Table of the same Four-Variable Symmetric Function 

Bent functions that are also symmetric are interesting in that there are only 

four possible functions [12], regardless of the number of variables. All symmetric bent 

functions have the form 

f (x1, x2 ,..., xn )  xi x j  c xi  d
i1

n


1i jn
 ,

 

where c,d  0,1 . The four different functions result from the four assignments of 

values to c and d.  
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In the simplest case, both c and d are set to 0, resulting in the symmetric 

bent function of the form 


f (x1, x2 ,..., xn )  xi x j  x1x2  x1x3  x1xn  x2x3 

1i jn
 xn1xn . 

This form is the XOR operation on all possible pairs of variables. Since the XOR 

operation results in 1 only when there are an odd number of product terms of value 1, it 

has been proven previously that the condensed truth table of the function takes the form 

ck 
k
2







mod2 ,

 

where ck is the output of the condensed truth table for k variables set to 1 [2]. Table 5 

illustrates the pattern the condensed truth table follows, namely as the variables set to 1 

increases incrementally, the condensed truth table follows the repeating pattern {0, 0, 1, 

1}. Thus, a truth table can be constructed for a symmetric bent function of any size of n-

variables.  

 

# of Variables set to 1 f 

0 0 

1 0 

2 1 

3 1 

4 0 

5 0 

6 1 

7 1 

… … 

Table 5.   Condensed Truth Table of the Basic Form of a Symmetric Bent Function 
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c. Constructing Bent Functions 

In addition to general forms of bent functions that can be constructed for 

functions of any size, some methods exist for constructing new bent functions from 

known bent functions. 

(1) Concatenation. Given a function f(x) and g(y) that are both 

bent, the concatenation h(x, y)  f (x) g(y)  is also bent [2]. Note that x and y are 

disjoint sets of variables. Thus, if f(x) and g(y) are each 4-variable functions, the resulting 

function h(x,y) is an 8-variable function. 

(2) Affine Classes.  Given a bent function f, the XOR of f and 

any affine function on the same set of variables is also bent. That is, g(x)  f (x) (x)  

is bent if f is bent and   is affine [2]. It should be noted that g(x) is considered to be in 

the same affine class as f(x). 

D. SUMMARY 

In this chapter, Boolean bent functions were defined. Bent functions are valuable 

in cryptographic systems due to the protection they offer against linear cryptanalysis 

attacks. However, bent functions are rare and difficult to find. Since the binary decision 

diagrams (BDDs) of bent functions have never been specifically investigated, the next 

chapter will focus on the construction, characteristics, and applications of BDDs. 
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III. BINARY DECISION DIAGRAMS 

There are many methods for representing a Boolean function. The most common 

are truth tables, as discussed in Chapter II, and circuits. Circuit representation uses 

transistor gates to model the function in digital form. Truth tables are typically used in the 

design phase to identify characteristics of the function, and the circuit representation is 

used in the implementation of the function, such as in an integrated circuit or Field 

Programmable Gate Array (FPGA). 

Another practical method of representing a Boolean function is by a Binary 

Decision Diagram (BDD), which organizes the function into a tree structure that can be 

traversed one variable at a time. Representing functions in this form is currently popular 

in many Computer Aided Design (CAD) applications [15]. The remainder of this chapter 

will describe the construction of BDDs and their valuable properties. 

A. BINARY DECISION DIAGRAM CONSTRUCTION 

In a BDD, a Boolean function is represented as a rooted, directed, acyclic graph in 

which each vertex, or node, has two edges, or links. Each node represents a variable (i.e., 

x1, x2, etc) and each edge represents a decision for that variable. Specifically, the edge 

represents either a 0 or 1 decision in the tree. Thus, the 0 edge for a node representing x2 

symbolizes the sub-function for which input variable x2 is set to 0. 

Typically, operations are performed on the BDD to reduce its complexity while 

still maintaining its canonical representation of the originating Boolean function. For 

clarity, this thesis will first describe BDDs for which no reductions are performed. 

1. Binary Decision Tree 

Although technically not considered a BDD, decision trees represent the simplest 

method of converting a Boolean function to a tree structure. A decision tree is a full, 

complete binary tree, meaning that each level of the tree is filled, and each node has two 

children. In other words, every binary decision tree of n-variables will have 2n 1non-

terminal nodes, and 2n terminal nodes. Non-terminal nodes are non-leaf nodes, and 
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represent an input variable of the function. Terminal nodes are leaf nodes, and represent 

the output value of function for a specific combination of the input variables. Leaf nodes 

are those that have no children. 

 

 

Figure 2.   Binary Decision Tree of a 3-Variable Function 

Figure 2 provides an example of a Binary Decision tree for 3-variables. Note that 

the final level of nodes simply duplicates the original truth table. The tree is traversed by 

starting at the root node, here represented by x1, and choosing a path based on each 

variable’s value. A variable value of 0 indicates that the dashed edge should be traversed, 

and a variable value of 1 indicates that the solid edge should be traversed. If the input 

variables are x1x2x3 = 010, the tree is navigated by following the left edge from x1, the 

right edge from the corresponding x2 node, and left edge from the corresponding x3 node. 

This results in a terminal value of “1” which corresponds with the output value for that 

specific input of variables, just as in a truth table. 
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2. Quasi Reduced Ordered Binary Decision Diagrams 

A binary decision tree can be modified into a Quasi Reduced Ordered Binary 

Decision Diagram (QROBDD) by following a few simple rules. 

a. The Ordered Property 

An ordered BDD is one in which the variables in the tree are traversed in 

the same order regardless of the path chosen. That is, each level of tree can be said to 

represent one variable. Figure 2 is ordered in that the first level of the tree corresponds to 

x1, the second level of the tree corresponds to x2, and the third level corresponds to x3. If 

the left sub-graph of Figure 2 is left untouched, but the right sub-graph modified such that 

there is an x3 node in the second level and two x2 nodes in the third level, the tree is no 

longer ordered. That is, traversing the left sub-graph would result in a different variable 

ordering than the right sub-graph [13].  

The ordered property does not imply that the variables must be ordered 

numerically. A tree that traverses variables in the sequence x3x1x2 is still considered 

ordered provided that all paths result in the same variable ordering. 

b. The Quasi Reduced Property 

A binary decision diagram is considered quasi reduced if its isomorphic 

sub-graphs are merged such that there are no redundancies.  Isomorphic sub-graphs are 

those that are considered to be equivalent. That is, the portions of the graph that yield the 

same sub-function are isomorphic. This reduction is the simplest compression that can be 

applied to a BDD [14]. 

The binary decision tree in Figure 2 will now be quasi reduced to 

demonstrate this property. The first easily identifiable isomorphic sub-graphs are the 

terminal nodes: 0 and 1. Each individual 0 and 1 need not be repeated; one of each will 

suffice. Figure 3 reduces these sub-graphs: 
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Figure 3.   BDD with reduced terminal nodes. 

Reducing the terminal node sub-graphs had a significant impact on the 

size of the BDD, removing six nodes. Further inspection of Figure 3 reveals that amongst 

the level 3 sub-graphs (variable x3) the two nodes in the middle are isomorphic. Note that 

both nodes result in a 1 output when x3 is set to 0, and a 0 output when x3 is set to 1. 

Neither of the other nodes shares this specific property. Thus, the two middle x3 nodes are 

isomorphic with one another. Figure 4 will demonstrate the reduction: 



 21

 

Figure 4.   BDD with all isomorphic sub-graphs merged. 

Merging of the x3 isomorphic sub-graphs resulted in another node 

reduction. Note that the BDD in Figure 4 now has only eight nodes, whereas the original 

tree contained fifteen. Careful inspection of Figure 4 reveals that no more isomorphic 

sub-graphs remain. Each node is unique. Thus, Figure 4 represents a quasi-reduced 

ordered BDD. 

3. Reduced Ordered Binary Decision Diagrams 

Reduced Ordered BDDs (ROBDDs) remove further redundancies from a decision 

tree, but are somewhat more complex in that they can remove nodes that are isomorphic 

sub-graphs of themselves. That is, if both edges from a single node are directed to the 

same location, that node is redundant. The node in question is then removed, and its 

parent node is redirected to point to the removed node’s child. The difficulty in this 

method is that a child node can be located several levels below its parent. This requires 
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each node to have knowledge of its own level in the tree [13, 14]. Under the QROBDD 

rules, each variable would be traversed in every path to the terminal nodes. ROBDDs, on 

the other hand, are likely to skip variables on some paths from the root to the terminal 

nodes. 

 

Figure 5.   An ROBDD 

Figure 5 modifies Figure 4 by removing the leftmost x3 node. This was due to 

both edges of that node pointing to terminal node “1.” The edge pointing to the removed 

node was then redirected to terminal node “1” instead. This has resulted in a completely 

irreducible ROBDD. Note that the x3 level is skipped in the event that x1x2 = 00. It is also 

significant to note that the ROBDD has a total of 7 terminal and non-terminal nodes, 

which is a savings of more than 50% as compared to the full binary decision tree 

representation of Figure 2. 
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B. BINARY DECISION DIAGRAM COMPLEXITY 

A Boolean function represented as a BDD has a relatively obvious complexity. 

Since most useful functions can be assumed to have both “0” and “1” terminal nodes, the 

complexity can be taken to simply be the number of non-terminal decision nodes in the 

graph.  

Truth tables tend to make poor practical representation of a function since all truth 

tables have size exponential in n, the number of variables. That is, a function represented 

by a truth table must have 2n  elements, regardless of function. As an example, a 4-

variable XOR function requires 24  16 elements, like all 4-variable functions. 

Boolean circuits, used in most digital applications, are statistically likely to be 

exponential as well [14]. In Boolean circuits, the number of gates necessary to fully 

realize the function represents the complexity. Gains are made in complexity compared to 

a truth table representation in that the switching nature of the logic gates tends to allow 

multiple outputs of the function to be determined by a single gate. Continuing the 

example of the 4-variable XOR function, it is well known that 4-NAND gates can 

represent a 2-variable XOR function. Three cascaded 2-variable XOR gates can make up 

a 4-variable XOR function. Thus, 12 NAND gates are required to represent a 4-variable 

XOR circuit. This is a 1/4 reduction in complexity as compared to a truth table 

representation. 

Binary decision diagrams, just like circuits, also statistically tend to have 

exponential complexity. Gains can still be made compared to the truth table or gate 

representation. In particular, human designed Boolean functions tend to result in 

relatively simple BDDs, likely due to the useful properties of such simple functions [15]. 

By way of a final example, a 4-variable XOR function represented as a BDD requires 

only seven non-terminal nodes, a significant reduction as compared to a truth table or a 

circuit (Figure 6). It should be noted that a BDD is not guaranteed to have lower 

complexity than its equivalent Boolean circuit. 
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Figure 6.   Side-by-side comparison of 4-variable XOR function as represented by 
Boolean circuit logic and a Binary Decision Diagram 
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1. Maximum Complexity of a Reduced Ordered Binary Decision 
Diagram 

Although the proof is beyond the scope of this thesis, Michon, Yunes, and 

Valarcher identify the maximal complexity of a ROBDD of n-variables as 

CROBDD (n)  2h  2nh 1,  

where h is the height of inflexion and is a unique integer ≤ n such that: 

2h1  2n (h1)  and 2h  22nh

 [14]. 

Since the complexity is represented as a nested formula, the maximum 

complexities of the BDDs for up to ten variables are provided: 

n h CROBDD 

2 2 5 
3 2 7 
4 3 11 
5 4 19 
6 4 31 
7 5 47 
8 6 79 
9 7 143 
10 8 271 

Table 6.   Maximum complexity (number of nodes) in a BDD representative of a Boolean 
function of n-variables. 

Although Table 6 describes the maximal complexity of any Boolean function, this 

thesis also concerns itself with symmetric Boolean functions. It has been shown that the 

number of nodes in the BDD of symmetric functions is asymptotic to 
n2

2
, as n increases. 

Furthermore, it has been shown that the average number of nodes in the BDD of a 

symmetric function is also 
n2

2  
[16]. The implication of this finding is that symmetric 

functions tend to have worst-case complexity within the bounds of the symmetric subset.  



 26

2. Variable Ordering 

Unlike the truth table and circuit representations of Boolean functions, the 

variable ordering of a BDD can have a significant impact on the size of the graph. A good 

example of this is the case of the disjoint quadratic function mentioned in Chapter II. 

When the variables are ordered numerically, i.e., x1, x2, x3, …, xn, in the BDD, a 

minimum realization of the function is constructed. Note that in Figure 7 red edges 

indicate “0” decisions and blue edges represent “1” decisions. This minimum realization 

of a DQF requires 14 non-terminal nodes. It can be shown that for all DQFs of n-

variables, the minimal BDD will have 2n-2 nodes [17]. 

Figure 8 reveals that when the variable ordering is altered to reflect a traversal 

order of x7 – x1 – x4 – x6 – x8 – x2 – x3 – x5, the size of the BDD balloons to 37 non-

terminal nodes. In this instance, the variable ordering is considered to be diabolical, or 

the worst possible case. It is worth noting that not all functions have a diabolical variable 

ordering. For instance, the BDD of the 4-variable XOR function mentioned previously 

will always have the same structure regardless of variable ordering. 

Since variable ordering is so significant in finding a minimal solution, it follows 

that testing all variable orderings would be desirable when constructing a BDD. Testing 

all variable orderings can quickly become impractical, since n! variable permutations 

exist. At n=10 – the maximum function size considered by this thesis - 3,628,800 

permutations must be tested to ensure a minimum BDD realization. For this reason, 

heuristic methods such as linear sifting are necessary for minimum approximation of 

large order functions [18]. 
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Figure 7.   Minimum realization of DQF x1x2  x3x4  x5x6  x7x8 . 
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Figure 8.   Maximum realization of DQF x1x2  x3x4  x5x6  x7x8 . 



 29

C. BINARY DECISION DIAGRAM APPLICATIONS 

Due to the typically compact size of BDDs and their characteristic of easily 

representing sub-functions of a given Boolean function, Binary Decision Diagrams are 

popular in the use of VLSI (Very Large Scale Integrated Circuit) CAD (Computer Aided 

Design) applications [3, 15]. Furthermore, BDD nodes are easily implemented in 

conventional hardware, whether as a 2-to-1 multiplexer in traditional circuit design, or as 

a single 4-LUT (Look-up Table) in an FPGA (Field Programmable Gate Array) 

implementation. 

Despite exponential complexity in the worst-case, BDDs are desirable in high-

speed applications due to their linear delay. That is, BDDs of n-variables have a 

maximum delay of n. As an added benefit, as has been discussed in Section B, human 

designed functions tend to have lower than average complexity. 

1. Binary Decision Machines 

Due to the speed of traversing a BDD, they are useful in control and real-time 

applications [3]. General-purpose microprocessors are a bit clunky with regard to these 

applications due to the nature of their machine language. For instance, the “if-then-else” 

scenario of a BDD node would require three lines of machine code: A load register 

instruction, test instruction, and branch instruction [15]. 

Binary decision machines, specifically constructed for the purpose of interpreting 

binary decision diagrams, are capable of interpreting an entire “if-then-else” case in one 

instruction [3]. The simplified instruction set of such a machine is demonstrated in Figure 

9. 

 

Figure 9.   Comparison of BD Machine Code and Microprocessor Machine Code [15] 
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It can also be shown that given a specific BDD, the minimum size of a BD 

Machine program is bounded. Specifically, the size of the program written in BD Code 

must have size N  PSIZE f 
3

2
N  where N is the total number of BDD nodes [15]. The 

bounds of programs written with BDDs are significant, since a microcontroller 

application may have only a few kilobytes of storage space available. This is one reason 

why finding a minimum BDD is desirable. 

2. Quaternary Decision Diagram Machine 

A natural extension of the Binary Decision Machine is the Quaternary Decision 

Diagram (QDD) Machine. A QDD is identical to a BDD, except that each node can have 

up to four children. QDDs are desirable since they are capable of storing more 

information in each node, and therefore require a smaller number of nodes than a BDD. 

Since fewer nodes are traversed, a QDD optimized machine can evaluate a function faster 

than a BDD machine. However, the storage requirements of each node increase 

exponentially with the number of decisions available to it, and it is shown in [3] that 

QDDs have the minimum storage footprint. 

In the QDD machine being developed by Renesas Technology Corporation, 

BDDs are still an essential element in the QDD design process. Specifically, the Boolean 

function in question is first characterized by a minimized BDD, and then variables are 

concatenated in order to construct the QDD [3]. Figure 10 illustrates this concept. 
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Figure 10.   Creation of a QDD (labeled as MDD) from a minimized BDD [From 3]. 

Although QDDs tend to have roughly half the number of nodes as their equivalent 

BDDs, this does not necessarily mean a QDD implementation will be twice as fast. For 

instance, a BDD node can be processed more rapidly than a QDD node, due to its 

simplicity. Despite this, the QD machine being developed by Renesas Technology has 

typically performed 1.28 – 2.02 times faster than an equivalent BD code implementation 

[3]. 

D. SUMMARY 

In this chapter, BDDs were introduced. Specifically, the method of construction 

was demonstrated, as well as their complexity. A brief discussion on current applications 

and research into BDD machines was also touched upon. The next chapter will describe 

the specific program designed for this thesis to rapidly generate BDDs. 
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IV.  BDDVIEWER 

Several computer programs exist capable of converting a Boolean function into its 

binary decision diagram form. The Colorado University Decision Diagram (CUDD) 

Program [19] is one example of a popular and powerful program capable of manipulating 

a variety of decision diagram types. It is also capable of outputting each diagram in a 

format that can be interpreted as a visual graph by the program “dot” now incorporated 

into the GraphViz package [20]. Furthermore, CUDD can output a BDD in blif format, 

which presents the binary decision diagram as a series of 2-to-1 multiplexers, each 

corresponding to a node in the BDD. 

Despite the availability of tools such as CUDD, it was decided that a new, self-

contained visualization tool should be developed that directly addresses the questions at 

hand in this thesis. For instance, a graphically consistent visualization with intuitive 

edges and variable labels was highly desired. Furthermore, it was desired that during the 

BDD minimization process, the exact permutation of the variables would be reflected in 

the visualization, allowing the user to recognize which variables had been swapped to 

result in the resulting graph. 

As a byproduct of starting a new program from scratch, the problem of 

representing a binary decision diagram in a conventional computer system imposed 

several challenges that resulted in some unique solutions. The specific algorithms used 

are discussed in the remainder of this chapter. 

The program—known as BDDViewer—was written for the MacOS X operating 

system using Objective-C++ under Xcode v3.1.3. Graphics were provided using OpenGL 

due to the widespread support of those libraries. At the time of this writing, BDDViewer 

is not functional on a Windows operating system, although a port is in progress. The 

program was run on a 2.6 GHz Intel Core 2 Duo processor with 4 GB of RAM. It is 

believed that any modern 32-bit processor should run BDDViewer adequately, as the 

footprint of each BDD in RAM is on the order of kilobytes, and the graphics processes 

are trivial. It should be noted, however, that in order to find the minimum BDD 
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realization of an n-variable function, the program must shift through every possible 

variable permutation, resulting in the construction of n! BDDs. This can be quite 

computationally expensive, resulting in long waiting times for results of functions of 

large n, regardless of the CPU capabilities. For instance, running BDDViewer on the 

specifications provided resulted in a run time of two-and-a-half days to process all 

permutations of a 14-variable function. Due to the factorial nature of the algorithm, a 15-

variable function would take 15 times as long, or over a month! Even computers running 

2, 4, or even 8 times faster will hit a point in which finding all permutations is no longer 

practical shortly after the mid-teens. 

A. REDUCTION PROCESS 

The construction of a BDD is generally performed by evaluating a function as a 

series of sub-functions. The tree formed by the root node and all child nodes represents 

the function in its entirety. Each decision corresponds to a unique sub-function of the 

original. Assuming the variables are ordered numerically, traversing the “0” decision of 

the root (x1) node results in a sub-tree that represents a sub-function for which x1 is set to 

0. Traversing the “1” edge results in a sub-tree that represents the sub-function for which 

x1 = 0 and x2 = 1. In this way, BDD construction can become quite tedious; since it 

requires a Boolean function to be evaluated 2n 1 times before isomorphic sub-graphs 

can be identified and merged. This also causes the speed of the construction of a BDD to 

be dependent on the complexity of a Boolean function. For instance, an 8-variable OR 

function will be much less computationally expensive than an 8-variable majority 

function on a general processor. 

1. A High Level View of the Problem 

Inspection of the Boolean function’s truth table reveals that the shape of its BDD 

is fully realized by the string of output values. Table 7 represents a sample truth table for 

an arbitrary 4-variable function. Notice that the upper half of the truth table represents the 

sub-function for which x1 = 0 and the lower half of the truth table represents x1 = 1. 

Dividing each half of the truth table further splits the function into smaller sub-functions. 

This process is continued until the truth table is fully parsed. 
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x1 x2 x3 x4 f 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 0 

1 1 1 0 1 

1 1 1 1 0 

Table 7.   Arbitrary 4-variable function split into sub-functions 

Each parsing of the truth table can be seen as a node in a tree. In particular, Table 

7 represents a complete, full, binary decision tree as defined in Chapter III. Column x1 

represents the root node, with the thick double line splitting the upper and lower half into 

its two edges. Since the root node represents the entire function, this node can be labeled 

symbolically as the entire truth table output string “0110100001111010.” Likewise, 

column x2 represents the two level 2 nodes. Each can be represented symbolically as the 

parsed truth table output “01101000” for the “0” edge and “01111010” for the “1” edge. 

Figure 11 demonstrates this explicitly with the first few levels of the binary decision tree. 
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Figure 11.   Partial binary decision tree constructed by parsing a truth table. 

Viewing each truth table as representative of a sub-function allows one to make 

rapid observations about the nature of each sub-graph. For instance, the lower right node 

of Figure 11, labeled as “1010” and representative of the path x1 = x2 = 1, will be further 

parsed into two more nodes at level four of the graph, each of which represents a sub-

function truth table of “10.” Since both of these nodes have identical truth tables, it can 

be concluded that they are isomorphic sub-graphs. Furthermore, node “1010” is an 

isomorphic sub-graph of itself, and is therefore redundant. Hence, the children are 

merged into one node, and node “1010” is removed from the tree entirely. 

In short, each node can be derived from its parent node. The “0” decision 

represents the first half of the parent’s truth table, and the “1” decision represents the 

second half of the parent’s truth table. Any nodes that have identical truth tables will be 

merged. Sibling nodes with identical truth tables will be merged and the parent will be 

skipped. In this way, parsing a function’s truth table allows one to quickly and accurately 

generate a ROBDD without having to evaluate a function multiple times. In a high-level 

language, such as C++, this can easily be accomplished by representing a function’s truth 

table as a string type. Since strings have no limit on length and can be easily split into 

substrings, the size of a function represented in this manner is limited only by available 

memory size. The ideas presented can also be implemented at a lower-level, such as 
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assembly language—with manipulations performed on bits, nibbles, bytes, half-words, 

and words— though the algorithms may be significantly more complex. 

 

Figure 12.   Partial BDD showing reduction of redundant node at level 3. 

Figures 12 and 13 complete the algorithm. Note that in Figure 12, nodes 

represented by the sub-function “01” occur twice, and nodes represented by “10” occur 

three times. Since these are isomorphic, they will be merged into one node. The “00” and 

“11” nodes are clearly isomorphic of themselves, and will also be skipped. The final 

results of the process are shown in Figure 13. 
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Figure 13.   ROBDD generated by parsing truth tables and merging identical sub-
functions. 

2. Pseudo Code 

createBDD(TT) 

 thisTT = TT 

 node = thisTT 

 node.level = log2(TT.size) – log2(thisTT.size) 

 if thisTT.size > 1 && left_side(thisTT) == right_side(thisTT) 

  node = createBDD(left_side(thisTT)) 
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 else if thisTT.size > 1 

  if left_side(thisTT) previously added 

   left_child = address of previously added node 

  else 

    left_child =createBDD( left_side(thisTT)) 

  if right_side(thisTT) previously added 

   right_child = address of previously added node 

  else 

   right_child = createBDD(right_side(thisTT))  

    

B. MINIMIZATION 

As mentioned in Chapter III, the size of a BDD is greatly affected by its variable 

ordering. Since minimized BDDs are of the greatest practical value in computing 

applications, a suitable minimization technique was required of the program. It was 

shown in Chapter III that an n-variable function has n! variable permutations, which 

hampers the ability to enumerate all orderings for large n. For instance, to find the 

minimum sized BDD of a 10-variable function would require the construction of 

3,628,800 trees. 

Fortunately for the sake of this thesis, bent functions are known for only relatively 

small values of n-variables. Since functions of 9-variables or fewer were the only 

functions considered, it was decided that full enumeration would be performed. 

1. Johnson-Trotter Adjacent Transposition Algorithm 

It was decided that an algorithm capable of performing all permutations without 

repetition based on swapping adjacent variable pairs would be the most beneficial in this 

case. First, the simplicity of the swap would consume minimal processing resources. 

Second, each permutation inherently has “memory” of the preceding swaps, since no 
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repetitions are permitted. Thus, the program can minimize its footprint in RAM as only 

two variable orderings are required to exist at any given time: the previous (or original) 

variable ordering, and the variable ordering generated from this previous ordering.  

A non-adjacent transposition algorithm would require the program to maintain 

explicit knowledge of previous permutations, and would quickly prove unmanageable: a 

10-variable function requires a truth table with 1024 entries. Assuming each truth table 

entry requires a byte of storage (as it does in BDDViewer), 3.7 Gigabytes of RAM would 

be required to hold the entire set of 3,628,800 permutations. This storage requirement 

increases factorially, making storage impractical on any system. On the other hand, use of 

adjacent transposition allows the program to scale up almost indefinitely even on a 

common personal computer. 

The algorithm known as the Johnson-Trotter algorithm [21, 22] met all 

requirements for this program, and so was adapted for use in BDDViewer. The algorithm 

assumes that the original permutation is ordered numerically (i.e., the original 

permutation is considered to be x1, x2, … , xn-1, xn). Each element in the permutation is 

weighted according to its numerical value; for instance, x5 > x2. Furthermore, each 

element is assigned a direction of mobility: either left or right. Initially all elements are 

set to move left. With these initial conditions set, permutation occurs by having the 

largest mobile element swap with its neighbor in the direction of mobility. Once an 

element passes all elements (finding itself on either the far left or far right), the element is 

no longer mobile. Then the next largest mobile element moves according to the same 

conditions. When a lower weighted element moves, the direction of mobility for all 

greater elements is reversed. In most cases, this results in a greater element becoming the 

mobile element in the next step. The algorithm continues until all permutations have been 

generated. Coincidentally, once all permutations have been generated, no element can be 

mobile. 
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2. Pseudo-Code for Johnson-Trotter 

for all elements 1 through n: mobility = left. 

while there exists a mobile element: 

 identify largest mobile element k 

 swap element k with neighbor in direction of mobility 

 for all elements l > k 

  reverse direction of  element l 

3. Example Permutation 

Var1 Var2 Var3 Var4 

< x1 < x2 < x3 < x4 

< x1 < x2 < x4 < x3 

< x1 < x4 < x2 < x3 

< x4 < x1 < x2 < x3 

x4 >  < x1 < x3 < x2 

< x1 x4 > < x3 < x2 

< x1 < x3 x4 > < x2 

< x1 < x3 < x2 x4 > 

< x3 < x1 < x2 < x4 

< x3 < x1 < x4 < x2 

< x3 < x4 < x1 < x2 

< x4 < x3 < x1 < x2 

x4 > x3 >  < x2 < x1 
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Var1 Var2 Var3 Var4 

x3 > x4 > < x2 < x1 

x3 > < x2 x4 > < x1 

x3 > < x2 < x1 x4 > 

< x2 x3 > < x1 < x4 

< x2 x3 > < x4 < x1 

< x2 < x4 x3 > < x1 

< x4 < x2 x3 > < x1 

x4 > < x2 < x1 x3 > 

< x2 x4 > < x1 x3 > 

< x2 < x1 x4 > x3 > 

< x2 < x1 x3 > x4 > 

Table 8.   Application of Johnson-Trotter Algorithm to generate all possible variable 
orderings of a 4-variable function. 

4. Truth Table Application of the Input Variable Permutation 
Algorithm 

Applying the Johnson-Trotter algorithm to the input variables was a trivial 

process. The algorithm assumes a set composed of ordered integers, which applies easily 

to the case of input variables. However, the BDDViewer program creates BDDs through 

the parsing and manipulation of truth tables. No knowledge of the original function or its 

input variables is used or maintained. In order for a permutation of input variable 

ordering to be useful, the permutation must correspond in some way to a swapping of 

truth table values. The nature of truth table manipulations is such that different variable 

swaps affect the truth table outputs in significantly different ways. Fortunately, the 

problem is somewhat simplified by the fact that all manipulations are done between 

adjacent variables. 
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x1 x2 x3 x4 f 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 0 

1 1 1 0 1 

1 1 1 1 0 

Table 9.   Swapping variables x1 and x2 will result in the manipulation of the highlighted 
truth table entries. 

In Table 9, a TT is given for an arbitrary 4-variable function. Swapping variables 

x1 and x2 will require the highlighted values of f to be swapped as well. Specifically f(v4) 

must swap with f(v8), f(v5) must swap with f(v9), f(v6) must swap with f(v10), and f(v7) 

must swap with f(v11). Regardless of which input variables are swapped, 2n2  truth table 

pairs must be swapped for an n-variable function. In other words, each variable swap 

results in the manipulation of half of the truth table. The following tables will 

demonstrate how the swapping of different input variable pairs will affect the truth table. 
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x1 x2 x3 x4 f 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 0 

1 1 1 0 1 

1 1 1 1 0 

Table 10.   Swapping variables x2 and x3 in an arbitrary 4-variable function. 
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x1 x2 x3 x4 f 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 0 

1 1 1 0 1 

1 1 1 1 0 

Table 11.   Swapping variables x3 and x4 in an arbitrary 4-variable function. 

From Tables 9 through 11, a few patterns become evident. Generally speaking, 

the farther to the “right” of the truth table that the variable swap takes place, the smaller 

the “sets” of swapped TT pairs. Specifically, the swap of variables x3 and x4 results in 

four evenly spaced sets of one pair each that must be swapped; swapping variables x2 and 

x3 results in two sets of two pairs each; swapping variables x1 and x2 results in one large 

set of four TT pairs that must be swapped. 

For the purpose of developing this algorithm, a variable swap between variables 

xn and xn-1 was considered swap “0.” A swap between variables xn-2 and xn-1 was swap 

“1.” A swap between variables x1 and x2 was considered swap “n-1.” By defining these 

swaps in terms of an integer “z” the truth table manipulations can be defined 

mathematically. 
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Generally, the following is true: 

 Each variable swap will require 2n2
 TT pair swaps. 

 Variable swap z will have 2z  TT pair swaps in each set, 
where 0  z  n.  

 The first set of TT pair swaps will occur at f(v2
z). 

 The spacing between sets of TT pair swaps will be 2z1 . 
 The spacing between TT pairs will be 2z . 

The above allows one to manipulate a truth table given the swapping of any two 

adjacent input variables. Since only adjacent input variables will ever be swapped in the 

Johnson-Trotter algorithm, the above definition is all that is necessary to produce all truth 

table permutations for a given Boolean function. 

5. Pseudo-Code for Truth Table Manipulation 

given variable swap number z for function of size n: 

 num_swaps = 2n2
 

 pair_index = pair_spacing = set_size = 2z 

 set_spacing = 2z+2 

 for i = 0; i < num_swaps 

  for j = 0; j < set_size 

   swap TT.index(first_pair_index + j) and    

     TT.index(first_pair_index + pair_spacing + j) 

  pair_index = pair_index + set_spacing 

C. SUMMARY 

In this chapter, the design of BDDViewer was discussed. BDDViewer 

automatically generates a minimum sized BDD when provided with a function’s truth 

table. Two novel algorithms on BDD generation and truth table manipulation were 

detailed. The next chapter will discuss the general findings of select samplings of the 

BDDs of known bent functions that were identified with the aid of this software. 
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V. DISCOVERIES 

With a custom-built, self-contained application capable of receiving a Boolean 

function, determining the minimum BDD realization, and outputting the results in a 

graphical format, it became possible to look at a variety of bent functions in a form that 

has likely never been previously considered. With such a large selection of bent functions 

to choose from, the difficulty lay in choosing the specific functions to be investigated. 

For instance, for 6-variables, there exist over five billion bent functions! 

To simplify the process somewhat, functions were chosen by their relative ease of 

construction. A primary reason for this was due to the fact that although all bent functions 

have been enumerated for n ≤ 8, very few resources exist that provide a large repository 

for the known functions.  

One benefit of choosing bent functions that are easily constructed is that these 

functions also tended to exhibit useful properties. This is likely a consequence of the 

general rule that human designed functions tend to have simple BDDs. Thus well-known 

bent function constructions also showed relatively simple BDDs. This helped make 

analysis particularly easy. The following sections will serve to summarize the useful 

properties discovered of the BDDs of these bent functions. 

A. DISJOINT QUADRATIC FUNCTIONS 

DQFs were defined in Chapter II, section C. They are easy to construct, since they 

consist of disjoint monomials and their BDDs are minimum when the variables of the tree 

have the same ordering as the algebraic normal form. The DQFs of 2-variables, 4-

variables, 6-variables, and 8-variables were all investigated, and their BDDs are compiled 

in Appendix B. Due to the large number of diagrams, the reader is directed to this 

appendix for all diagrams, so as not to overextend the size of this chapter. Note that red 

edges correspond with a “0” decision and blue edges correspond with a “1.” Likewise, a 

red terminal node represents 0 and a blue terminal node represents 1. 
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# of Variables # of Non-Terminal Nodes 

2 2 

4 6 

6 10 

8 14 

Table 12.   Number of Non-Terminal Nodes in the BDD of DQFs. 

From the BDDs in Appendix B, one finds that the number of non-terminal nodes 

in a DQF follows a distinct pattern. Specifically, each increment in function size results 

in 4 additional non-terminal nodes. Recall that both bent functions and DQFs must have 

an even number of variables. 

Theorem 1: The number of non-terminal nodes in a DQF is 2n-2 [17]. 

In the base case, n = 2. This is the basic AND operation on x1x2. For a 2-variable 

AND function, two nodes must exist, since the terminal node of “1” is dependent on the 

both variables also being 1. 

 

Figure 14.   DQF Order 2, AKA the AND Function of two variables. 
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In order to generate DQFs of higher order, a smaller DQF is simply concatenated 

by XOR with another AND function. For instance, a DQF of order 4 is x1x2 concatenated 

with x3x4, resulting in x1x2  x3x4 . This concatenation results in the addition of two 

additional AND BDDs as sub-graphs of the original DQF. The first sub-graph stems from 

the 0 terminal of the original graph, and the second sub-graph stems from the 1 terminal 

of the original graph.  

 

Figure 15.   DQF Order 4 generated from concatenation of two disjoint AND functions. 
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The use of two sets of “terminal nodes” in Figure 15 only serves to illustrate each 

sub-graph’s relation to the original AND function of Figure 14. Ignoring the intermediate 

“terminal nodes” in the mid section of the graph, note that none of the nodes associated 

with the x3 and x4 variables are isomorphic. Thus, Figure 15 represents a proper ROBDD. 

Note also that construction of a 6-variable DQF would occur in the same way: with 

complementary AND sub-graphs appended to each terminal node, or four additional 

nodes. Hence, the total number of non-terminal nodes in a DQF of order n is 2n -2. 

B. SYMMETRIC BENT FUNCTIONS 

Symmetric bent functions were first discussed in Chapter II, Section C. As a 

reminder, a bent function f is symmetric if 

f (x1, x2 ,..., xn )  xi x j  c xi  d
i1

n


1i jn
 .

 

This thesis focuses primarily on the general case of symmetric bent functions, for which 

coefficients c and d are 0. Note that coefficient d is relatively uninteresting, since it 

simply complements the function, which has no impact on the BDD with the exception of 

inverting each terminal node. Since a c coefficient of 1 serves to invert each input 

variable, it has the effect of simply inverting each edge. This also does not impact the 

general structure of the BDD. Thus, the general function is considered adequate for the 

analysis that follows.  

The condensed truth table of the general symmetric bent function is 

# of Variables Set to 1 f 
0 0 
1 0 
2 1 
3 1 
4 0 
5 0 
6 1 
7 1 
8 0 
… … 

Table 13.   Condensed Truth Table of a Symmetric Bent Function. 
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Note that the condensed truth table follows a specific pattern. That is, the as the 

number of variables set to 1 increases, the output follows the repeating pattern “0-0-1-1.” 

This is due to the structure of the function, which is composed of the XOR of all possible 

quadratic monomials. Thus, the number of monomials that are equivalent to 1 is the 

number of ways two objects can be chosen from k without repetition. This can be 

illustrated by the combination function 

k
2







, 

where k is the number of variables set to 1. When the combination function results in an 

even number, the output f must be 0, since an even number of monomials is set to 1. 

When the combination function results in an odd number, the output f must be 1, since an 

odd number of monomials are set to 1. The proof that incrementing n results in a pattern 

of even-even-odd-odd is left to the reader. 

Once again, the reader is directed to Appendix C for a comprehensive collection 

of BDDs of symmetric bent functions. 

# of Variables # of Non-Terminal Nodes 

2 2 

4 8 

6 16 

8 24 

Table 14.   The Number of Non-Terminal Nodes in the BDDs of Symmetric Bent Functions. 

With the exception of the difference between a 4-variable symmetric bent 

function and a 2-variable symmetric bent function, each increase in size of the symmetric 

bent functions results in 8 additional nodes to the size of the BDD. Like the DQF, a 

pattern quickly becomes evident, but in the case of symmetric bent functions, the pattern 

is somewhat more remarkable. 
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Theorem 2: The number of non-terminal nodes in a symmetric bent function 

is 4n-8 for n ≥ 4 [17]. 

The linear pattern in the number of nodes of the BDDs of symmetric bent 

functions is due to the nature of its condensed truth table. As discussed in the previous 

section, the condensed truth table is composed of a repeating set of four values. This 

memory causes the edges of the BDD to loop back on themselves as for every four 

variables set to 1. Because of this, the maximum width of the BDD at any given level 

must be four nodes. Since each increment in bent function size requires the addition of 

two variables, or two levels, this is responsible for the increase in 8 nodes shown in the 

previous section. 

To help illustrate this point, a modified, partial BDD of a symmetric function 

follows. Note that the tree in Figure 16 does not follow the conventions of ROBDD, nor 

does it represent a proper bent function because it represents an odd number of variables 

(though it is symmetric). 

 

Figure 16.   Partial Symmetric Bent Function Example. 
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In Figure 16, the four condensed truth table values are represented. Note that, just 

as in the condensed truth table, each value corresponds to the number of variables set to 

1. The leftmost terminal 0 represents the case for which no input variables are set to 1. 

The second terminal 0 represents the case for which one input variable is set to 1. The 

leftmost terminal 1 represents the case for which two input variables are set to 1, and the 

final terminal represents the case for which three input variables are set to 1. As shown in 

the previous section, this pattern repeats, and will be reflected in the BDD. 

 

Figure 17.   The mid-section of a symmetric bent BDD. 
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Figure 17 demonstrates that the mid-section of a symmetric bent BDD necessarily 

has four nodes per level, each node corresponding with its aligned condensed truth table 

value. Thus, the BDD of a symmetric bent function of n-variables has approximately 4n 

nodes. However, the structure of an ROBDD results in some reductions at the top and 

bottom of each graph. From Figure 16 it is evident that the root level can only have one 

node, the second level has only two nodes, and the third level has three. This reduces the 

size of the total BDD by 6 nodes. Furthermore, from Figure 17 it is evident that the 

leftmost node xn and the third node xn are isomorphic and will be skipped entirely, 

reducing the total size of the BDD by another two nodes. Thus, the ROBDD of a 

symmetric bent function has 4n – 8 non-terminal nodes for n ≥ 4. Once again, the reader 

is directed to Appendix C for examples of the structure of symmetric bent functions for 

up to 8-variables. 

C. HOMOGENEOUS BENT FUNCTIONS OF ORDER SIX AND 
ALGEBRAIC DEGREE THREE 

Homogeneous functions are those for which all monomials have the same number 

of variables. Disjoint Quadratic Functions and the general form of the symmetric bent 

functions are both homogeneous functions in that they are quadratic. Specifically, all 

monomials have exactly two variables. 

This next section analyzes homogeneous cubic bent functions of 6-variables. That 

is, all monomials have exactly three variables. This particular subset of bent functions 

was chosen for a few reasons: they are well known; there are only 30 of them, which 

makes for a naturally small sampling for analysis; and they are interesting in that they are 

the highest order bent functions of n-variables for which their algebraic degree is n/2 [1]. 

In order to analyze these homogeneous bent functions, each was run through the 

BDDViewer program. The shape and number of nodes of their minimum BDDs were 

recorded, as well as the number of nodes in the diabolical variable ordering. This process 

concluded in a surprising result.  
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Observation: All minimum sized BDDs of homogeneous functions on 6-

variables and degree 3 have the same general structure and number of nodes, and each 

diabolical BDD has the same maximum number of nodes. Specifically, each function has 

20 non-terminal nodes in the minimum case, and 24 non-terminal nodes in the maximum 

case. 

 

Figure 18.   
x1x2x3  x1x2x5  x1x2x6  x1x3x4  x1x3x5  x1x4 x5  x1x4 x6  x1x5x6 
x2x3x4  x2x3x6  x2x4 x5  x2x4 x6  x2x5x6  x3x4 x5  x3x4 x6  x3x5x6
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Figure 19.   
x1x2x3  x1x2x4  x1x2x5  x1x3x4  x1x3x6  x1x4 x5  x1x4 x6  x1x5x6 
x2x3x4  x2x3x5  x2x3x6  x2x4 x6  x2x5x6  x3x4 x5  x3x5x6  x4 x5x6
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Figures 18 and 19 are minimum BDDs of two different homogeneous bent 

functions. Note that Figure 18 has a variable ordering of x1-x2-x3-x4-x5-x6 and Figure 19 

has a variable ordering of x1-x2-x5-x3-x4-x6. Also, note that each BDD has the same 

structure. That is, in addition to having the same number of nodes, it also has the same 

number of nodes per level. However, nodes are not necessarily connected by the same 

edges. It is also important to remind the reader that a BDD does not necessarily have only 

one minimum variable ordering. As a specific example, the symmetric functions have the 

exact same BDD regardless of variable ordering. 

Although identical general structure of the BDDs was an interesting result, it was 

not particularly surprising. It was assumed that, much like the BDDs of the DQFs and the 

symmetric bent functions, the recurring structure was a result of the structure of the 

function itself. That is, DQFs show a similar pattern due to their homogeneous nature, so 

it appeared this was the case for homogeneous functions of degree 3 for 6-variable 

functions as well. 

However, one surprising result did occur. BDDs were discovered between two 

separate homogeneous functions that were identical, not only in structure but also in 

edges. Figures 20 and 21 reveal two functions for which this trait was discovered. Of 

course, the two BDDs have different variable orderings, with Figure 20 having ordering 

x1-x2-x5-x3-x4-x6 and Figure 21 having ordering x1-x4-x6-x2-x3-x5. 

Theorem 3: Two functions are P-equivalent iff those two functions have 

identical BDDs for distinct variable orderings. 

The proof of this is trivial. As shown in Chapter IV, the BDD of a function can be 

described entirely by its truth table, with no knowledge of the underlying ANF or 

variable ordering. Thus, if two functions have identical BDDs, they must have identical 

truth tables, and must therefore be identical functions. Likewise, changing the variable 

ordering of a BDD implies a permutation of the truth table. Thus, if changing the variable 

ordering of a BDD results in the truth table of another function, those two functions must 

be P-equivalent. Also, if two functions are P-equivalent, by definition that means they 

have identical truth tables after some permutation of the input variables. If they have 
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identical truth tables, they will have identical BDDs. Thus, two functions are P-

Equivalent iff those two functions have identical BDDs for distinct variable orderings. 

 

Figure 20.   
x1x2x3  x1x2x4  x1x2x5  x1x3x4  x1x3x5  x1x3x6  x1x4 x6  x1x5x6 
x2x3x4  x2x3x6  x2x4 x5  x2x4 x6  x2x5x6  x3x4 x5  x3x5x6  x4 x5x6
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Figure 21.   
x1x2x3  x1x2x4  x1x2x5  x1x2x6  x1x3x4  x1x3x5  x1x4 x6  x1x5x6 
x2x3x4  x2x3x6  x2x4 x5  x2x5x6  x3x4 x5  x3x4 x6  x3x5x6  x4 x5x6
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From Theorem 3, it was discovered that all 30 homogeneous cubic functions of 6-

variables are P-equivalent. Running each function through all possible BDD permutations 

revealed that all functions shared identical BDDs for some variable ordering. Though this 

was proved through enumeration, all 30 BDDs are not provided in this thesis due to the 

redundancy in the graphs. 

D. AFFINE CLASSES 

In Chapter II, affine classes were defined as being the set of bent functions 

derived from a root bent function XORed with any affine function. For some root 

function f and some affine function a,c , f  a,c  has the effect of complementing each 

sub-function under xai
for which ai  1  when c = 0, or for which ai  0 when c = 1. 

x1 x2 x3 f f  a,c    x2  

0 0 0 0 0 0 

0 0 1 0 0 0 

0 1 0 1 0 1 

0 1 1 0 1 1 

1 0 0 1 1 0 

1 0 1 0 0 0 

1 1 0 0 1 1 

1 1 1 1 0 1 

Table 15.   The effect of an affine function on an arbitrary 3-variable function. 

Table 15 demonstrates the effect of an affine function when XORed with a root 

function f. Note that, in this particular case, the affine function is x2. The truth table is 

complemented only for the values for which x2 = 1. The truth table is unaffected for the 

values for which x2 = 0. As described in Chapters III and IV, the truth table can be parsed 

to represent sub-functions, which are further used to generate the sub-graphs of the BDD. 
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The complement of a sub-function does not affect the number of isomorphic sub-graphs, 

so the number of nodes in the BDD remains unchanged. Instead, the edges between nodes 

must correspond to the complemented terminal nodes, as they represent the output of the 

sub-function. Thus the edges of the BDD are affected, but not the overall structure of the 

BDD, where the structure is considered to be the total number of non-terminal nodes and 

the number of nodes per level. 

Appendix B has many examples of the affect of affine functions on DQFs of 

various orders. Note that while the interconnection of edges is affected, the structure is 

not. Further examples of the affect of affine functions on some functions can be seen in 

Appendix D, which contains a general collection of BDDs of a variety of functions not 

analyzed in depth in this thesis. 

Conjecture: The minimum BDDs of all the functions in an affine class have 

the same structure. 

If XORing a root function and an affine function has the effect of complementing 

some of the sub-graphs of the root function, it follows that the number of nodes at each 

level of the BDD is unaffected. 

E. SUMMARY 

In this chapter, the BDDs of several bent functions were investigated. The BDDs 

of DQFs and symmetric bent functions were revealed to have predictable structures and 

complexities. Homogeneous bent functions of order 6 and degree 3 were shown to be P-

equivalent, which led to the realization that P-equivalent functions have identical BDDs 

for some distinct variable ordering. Finally, the functions in the affine class of a bent 

function were shown to share the same general structure and complexity of the root 

function. The next chapter summarizes the findings further, and offers suggestions for 

future research. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The purpose of this research was to investigate the unique characteristics of the 

binary decision diagrams of Boolean bent functions. In particular, the focus of analysis 

was on a small sampling of easily constructible functions in the form of disjoint quadratic 

functions, symmetric bent functions, and the homogeneous bent functions on 6-variables. 

Though these functions are well known, it is believed that they have not been observed 

from the perspective of their binary decision diagrams previously. 

From the research, it was found that both disjoint quadratic functions and 

symmetric bent functions have minimum BDDs with predictable sizes. Furthermore, the 

minimum BDD size is linear with n, the number of variables, which is a desirable 

characteristic for the implementation of these functions in either software or hardware. 

Although it was known previously that the homogeneous bent functions on 6-

variables were P-equivalent, the findings of this thesis helped identify that the P-

equivalency of functions can be identified from the structure of their BDDs. Furthermore, 

the research indicates that all of the functions within an affine class have BDDs of the 

same general structure and size. Since affine classes are quite large, a single structure can 

be implemented within strict limitations of hardware or software that may be 

reconfigured into a variety of unique functions. 

Though the research focused on the BDDs of particular bent functions and their 

characteristics, it should not be overlooked that doing so required the design of a software 

application capable of generating, permuting, and displaying these functions quickly. 

Although BDDViewer is not robust in terms of the number of operations that can be 

performed on a BDD, it does provide a simple and fast method of computing and 

displaying the minimum BDD of a known function. The program is not limited to bent 

functions, and can be used to describe any Boolean function. 
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B. FUTURE WORK 

1. On BDDs and Bent Functions 

The process of discovering bent functions for n ≥ 10 is still relatively unrefined. 

All bent functions are known for n ≤ 8 primarily due to enumeration. As has been 

discussed in earlier chapters, the exact number of bent functions for n-variables is not 

known, and the potential number of bent functions is broadly bounded. Because of the 

high degree of uncertainty, the discovery of bent functions for n ≥ 10 is usually 

accomplished by selecting a group of variables with high potential for high-nonlinearity 

and enumerating the sample. Use of genetic algorithms to identify new bent functions is 

also a possibility, though it is unlikely to aid in identification of anything but small 

fractions of the total solution space at a time, and without the benefit of allowing 

researchers to verify that the entire solution space has been exhausted. 

Constructing a BDD requires knowledge of a function’s truth table, and so 

research into bent functions is inherently limited by the known set of functions. 

Furthermore, research of the known functions is constricted by the fact that very few, if 

any, repositories of the known bent functions exist. However, researchers should not be 

discouraged. Only a few families of bent functions were analyzed for the purpose of this 

thesis, but unique properties were nonetheless identified. 

An obvious starting point for future research would be to investigate the 

relationships of the BDDs of homogeneous bent functions for n ≥ 8. These functions are 

not all P-Equivalent, as was the case for n = 6, but the properties of those functions may 

yet prove interesting. 

In Rothaus’ original paper [1], several families of bent functions were identified. 

Only the few deemed immediately relevant to this thesis were defined in Chapter II. 

Since the families of bent functions are grouped together because they share specific 

mathematical properties, the results may prove intriguing. 

Finally, in this thesis, it was shown that the affine classes shared BDD of the same 

general size and shape. Just as the function that results from XORing a bent function with 
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an affine function is known to be bent, it is also true that XORing a bent function with 

another bent function is also bent [2]. How would the BDD be affected by this operation? 

Would one BDD dominate the other? How might the size or shape be affected? 

Bent functions are not necessarily the only functions that merit investigation, 

though they are valuable because they are rare and they are highly non-linear. Most bent 

functions are modified to incorporate other cryptographically desirable properties before 

being implemented in a cryptographic system. For instance, the cryptographically 

desirable property of balancedness is in direct contention with bent functions because 

bent functions are not balanced. What are the properties of the BDDs of balanced and 

highly non-linear functions that are more likely to be implemented in a cryptographic 

system? 

2. BDDViewer 

Although BDDViewer’s functionality sufficed for the purposes of this thesis, a lot 

of work can still be put into the features and efficiency of the program. The BDDs were 

generated by representing the truth table as a “string” data type, which may not be the 

most efficient way of representing the data. Furthermore, the graphical output of each 

BDD was done with OpenGL, with which the author had no previous experience. 

Experienced programmers are likely to identify several flaws in the current code revision. 

It should be noted, however, that the current version of the program only draws one BDD 

at a time. Therefore, the amount of computation time devoted to drawing the BDD is 

minimal. 

Another area of focus could be the porting of code to a Windows operating 

system. BDDViewer currently works only on the Macintosh platform, although only 

standard C++ and OpenGL libraries were used. Porting the code would allow a much 

larger audience to have access to the application, and would likely not require much 

effort since no Mac-centric or Windows-centric libraries should be necessary. 

Finally, several features could be modified. Currently, the window size is fixed, 

since at the time of writing the program, it was known that only functions of 10-variables 
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or less would be investigated. However, even for 8 or 9-variables, the size of the current 

window becomes cramped and difficult to read. 

The method for minimizing BDDs could also be updated. The computation time 

required to check all possible BDD permutations for n ≤ 10 was low enough that total 

enumeration was viable, but doing so for n > 10 is impractical. An optional heuristic 

method could be implemented for larger n values, though doing so may prevent the 

program from finding the true minimum. The work of Gunther and Drechsler [18] may 

provide a good starting point for this modification. 

Finally, since functions generally have several variable orderings that result in 

minimum-sized BDDs, the program could be updated to capture several or all minimum 

BDDs and save the results to a file. In its current form, only the first minimum tree is 

displayed. 
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APPENDIX A: CODE 

A. TEXT-BASED TREE DATA STRUCTURE 

/* 
 *  Tree.h 
 *  BDD 
 * 
 *  Created by Neil Schafer on 2/13/09. 
 *  Last modified: 2/24/09. 
 *  Copyright 2009 Naval Postgraduate School. All rights reserved. 
 * 
 */ 
 
#include <string> 
#include <iostream> 
#include <math.h> 
using namespace std; 
 
struct node 
{ 
 string myValue;  // The TT element that corresponds to 
this node 
 
 int myLevel;   // The level in the tree that the node is 
located 
 
 bool traversed;  //Tells the print function if this node 
has already been seen 
 
 node * child0;  // The child node of this element for an 
input of 0 
 
 node * child1;  // The child node of this element for an 
input of 1 
 
 node * myParent;  // The parent of the node 
}; 
  
class BDDTree 
{ 
 string myTT;    // Truth Table of the entire tree 
 string list_of_sub[100];  // List of subfunctions 
 node * list_of_del[100];  // List of deleted functions 
 node myRoot;    // Root Nodes 
 node * currentNode;   // Used in tree traversal 
 int myOrder;  // The number of variables 
 int mySize;  // The number of nodes 
 int myWidth;  // The highest number of nodes in one level 
 int maxLevel; 
 int myDepth;  // The deepest level of the tree 
  
 public: 



 68

 BDDTree(string TT); 
 bool addSub(string subF); 
 int size(); 
 bool deleted(node * child); 
 node * attachChild(string subF); 
 void initialize(); 
 void newChild(node * parent, int childNum, string value);   
 void printTree(); 
 void Destruct(); 
 ~BDDTree(); 
}; 
 
int BDDTree::size() 
{ 
 return mySize; 
} 
 
BDDTree::BDDTree(string TT) 
//Creates the first node of the tree 
{ 
 myTT = TT; 
 list_of_sub[0] = TT; 
  
 for(int i= 1; i <100; i++) 
 { 
  list_of_sub[i] = "-1"; 
  list_of_del[i] = NULL; 
 } 
  
 myRoot.myValue = TT; 
 myRoot.myLevel = 0; 
 myRoot.traversed = false; 
 myRoot.child0 = NULL; 
 myRoot.child1 = NULL; 
 myRoot.myParent = NULL; 
 myOrder = log(TT.size())/log(2); 
 currentNode = &myRoot; 
 mySize = 0; 
 myWidth = 0; 
 myDepth = 1; 
 maxLevel = 0; 
} 
 
bool BDDTree::deleted(node * child) 
{ 
 int i = 0; 
 while(list_of_del[i] != NULL) 
 { 
  if(child == list_of_del[i]) return true; 
  i++; 
 } 
  
 list_of_del[i] = child; 
 return false; 
} 



 69

 
bool BDDTree::addSub(string subF) 
{ 
 int i = 0; 
 while(list_of_sub[i] != "-1") 
 { 
  if(subF == list_of_sub[i]) break; 
  i++; 
 } 
  
 if(subF == list_of_sub[i]) return false; 
  
 list_of_sub[i] = subF; 
 return true; 
} 
 
node * BDDTree::attachChild(string subF) 
{ 
 node * temp = currentNode; 
 node * child; 
  
 if(temp->myValue == subF) 
 { 
  currentNode = &myRoot; 
  return temp; 
 } 
  
 if(temp->child0) 
 { 
  currentNode = temp->child0; 
  child = attachChild(subF); 
  if(child) return child; 
 } 
  
 if(temp->child1) 
 { 
  currentNode = temp->child1; 
  child = attachChild(subF); 
  if(child) return child; 
 } 
  
 return NULL; 
} 
  
  
 
void BDDTree::initialize() 
// Initializes a tree to the TT provided recursively. 
{ 
 node * temp = currentNode; 
 string TT_Low, TT_High, TT; 
 TT = currentNode->myValue; 
 mySize++; 
  
 if(currentNode->myValue.size() > 1) 



 70

 //if the node's TT is large enough to be broken in half again, 
 //make some new nodes 
 { 
  TT_Low = TT.substr(0, TT.size()/2); 
  TT_High = TT.substr(TT.size()/2, TT.size()/2); 
   
  if (currentNode == &myRoot) 
  { 
   while (TT_Low == TT_High && TT_Low.size() >0) 
   { 
    addSub(TT_Low); 
    myRoot.myLevel = log(this-
>myTT.size()/TT_Low.size())/log(2); 
    myRoot.myValue = TT_Low; 
    TT_Low = TT_Low.substr(0, TT_Low.size()/2); 
    TT_High = TT_High.substr(TT_High.size()/2, 
TT_High.size()/2); 
   } 
  // if(TT_Low.size() == 1) return; 
   if(myRoot.myValue.size()==1) return; 
  } 
   
  while(TT_Low.size()>1 && TT_Low.substr(0, TT_Low.size()/2) == 
TT_Low.substr(TT_Low.size()/2, TT_Low.size()/2)) 
  { 
   addSub(TT_Low); 
   TT_Low = TT_Low.substr(0, TT_Low.size()/2); 
  } 
  while(TT_High.size()>1 && TT_High.substr(0, TT_High.size()/2) == 
TT_High.substr(TT_High.size()/2, TT_High.size()/2)) 
  { 
   addSub(TT_High); 
   TT_High = TT_High.substr(0, TT_High.size()/2); 
  } 
   
   
  if(this->addSub(TT_Low)) 
  { 
   currentNode = temp; 
   newChild(currentNode, 0, TT_Low); 
   currentNode = temp->child0; 
   this->initialize(); 
  } 
  else  
  { 
   currentNode = &myRoot; 
   temp->child0 = attachChild(TT_Low); 
  } 
   
  if(this->addSub(TT_High)) 
  { 
   currentNode = temp; 
   newChild(currentNode, 1, TT_High);   
   currentNode=temp->child1; 
   this->initialize(); 
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  } 
  else  
  { 
   currentNode = &myRoot; 
   temp->child1 = attachChild(TT_High); 
  } 
    
 } 
  
 currentNode = &myRoot; //after initialization is complete 
        //reset currentNode to tree root. 
} 
 
void BDDTree::newChild(node * parent, int childNum, string value) 
// Creates a child node for a given parent. The node corresponds to the 
TT value given 
{ 
 node * temp; 
 if(childNum == 0) 
 { 
  temp = new(node); 
  temp->myValue = value; 
  temp->myLevel = log(this->myTT.size()/value.size())/log(2); 
  temp->traversed = false; 
  temp->child0 = NULL; 
  temp->child1 = NULL; 
  parent->child0 = temp; 
 } 
  
 else if(childNum == 1) 
 { 
  temp = new(node); 
  temp->myValue = value; 
  temp->myLevel = log(this->myTT.size()/value.size())/log(2); 
  temp->traversed = false; 
  temp->child0 = NULL; 
  temp->child1 = NULL; 
  parent->child1 = temp; 
 } 
  
 if (temp->myLevel > maxLevel)  
 { 
  maxLevel = temp->myLevel; 
  myDepth++; 
 } 
} 
 
 
 
 
void BDDTree::printTree() 
//Recursively lists all the nodes in the tree 
{ 
 node * temp = currentNode; 
 if(temp->traversed) return; 
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 else temp->traversed = true; 
 
 if (currentNode==&myRoot) 
 { 
  cout << "Tree Depth: " << myDepth << endl; 
 // cout << "Tree Width: " << myWidth << endl; 
  cout << "Tree Size:  " << mySize << endl; 
  cout << "Level " << '\t' << "Node Value " <<  '\t' << "0 Child" 
<< '\t' << "1 Child" << endl; 
 } 
 cout << temp->myLevel << "\t\t" << temp->myValue << '\t'; 
  
 if(temp->child0) cout << temp->child0->myValue << '\t'; 
 else cout << "NULL" << '\t'; 
  
 if(temp->child1) cout << temp->child1->myValue << endl; 
 else cout << "NULL" << endl; 
  
  
 if(temp->child0) 
 { 
  currentNode = temp->child0; 
  printTree(); 
 } 
  
 currentNode = temp; 
  
 if(temp->child1) 
 { 
  currentNode = temp->child1; 
  printTree(); 
 } 
 
 currentNode = &myRoot; 
} 
 
 
void BDDTree::Destruct() 
//Recursively frees the tree from memory. 
//This code is probably a bit sloppy. 
{ 
 node * temp = currentNode; 
 if(temp->child0) 
 { 
  if(!deleted(temp->child0)) 
  { 
   currentNode = temp->child0; 
   Destruct(); 
 //  temp->child0 = NULL; 
  } 
 } 
  
 if(temp->child1) 
 { 
  if(deleted(temp->child1)) 
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  { 
   currentNode = temp->child1; 
   Destruct(); 
 //  temp->child1 = NULL; 
  } 
 } 
  
 if(temp != &myRoot) 
 { 
  delete temp; 
  currentNode = NULL; 
  temp = NULL; 
 } 
} 
 
BDDTree::~BDDTree() 
{ 
 Destruct(); 
} 
  

B. GRAPHICS-BASED TREE DATA STRUCTURE 

/* 
 *  Tree.h 
 * 
 * Defines 1 Class and 2 structs: 
 * 
 * class BDDTree: 
 * Instantiated with a boolean Truth Table (input as a string). 
Creates a Reduced Order 
 * Binary Decision Diagram tree from the previously supplied Truth 
Table. 
 * To reveal the BDD, the printTree() function MUST be called. This 
prints 
 * a text version of the BDD to the console window, and is also 
necessary to 
 * generate the "coordinate system" for graphical display. 
 * 
 * 
 * struct node 
 * a general node structure that is typically used when creating 
trees. 
 * this does have a "traversed" boolean value, because I couldn't 
think of any 
 * better ways to avoid printing nodes that share multiple ancestors 
multiple times 
 * since the printTree() works recursively... 
 * Also includes "coordinates" for itself and its children. 
 * coordinates[0] is a unique identifier for the node. Coordinates[1] 
is its 
 *  level in the tree. It's up to the user to correlate that somehow to 
a graphical 
 * output. Since the tree is generated from "left to right", the 
coordinates[0] for a 
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 * given level will always be lower on the left and will alway 
increase (not necessarily  
 * linearly!) as you go to the right. That might help... 
 *  
 * struct CoordinateHolder 
 * a cheap hack that holds a two dimensional array so that it can be 
returned to 
 * the calling program. 
 * 
 * Notes:  
 * I should probably move all the functions declared in the Tree 
definition  
 * except for those described above to the private section... 
 * 
 * 
 * 
 * Sloppy stuff to work on: 
 * (1) Figure out a better coordinate system. 
 * (2) Get rid of the parent node. 
 * 
 *  Created by Neil Schafer on 2/13/09. 
 *  Last modified: 4/7/09. 
 *  Copyright 2009 Naval Postgraduate School. All rights reserved. 
 * 
 */ 
 
#include <string> 
#include <iostream> 
#include <math.h> 
using namespace std; 
 
struct node 
{ 
 string myValue;   // The TT subfunction that 
corresponds to this node 
 
 int myLevel;   // The level in the tree that the node is 
located 
 
 bool traversed;   // Tells the print function if this 
node has already been printed 
 
 int myCoord[2];   // This node's placement. Helps 
display graphically 
 int child0Coord[2];   // Helps link nodes graphically 
 int child1Coord[2];   // Helps link nodes graphically 
 node * child0;   // The child node of this element 
for an input of 0 
 
 node * child1;   // The child node of this element 
for an input of 1 
  
 node * myParent;  // The parent of the node (this is sloppy 
      // find a way to get rid of it. 
}; 
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struct CoordinateHolder 
// nasty 
{ 
 int myCoordinates[300][6]; 
}; 
  
class BDDTree 
{ 
 string myTT;    // Truth Table of the entire tree 
 string list_of_sub[300]; // List of subfunctions 
 node * list_of_del[300];  // List of deleted functions 
 CoordinateHolder treeCoordinates; //Lists of coordinates for 
graphical display 
 node myRoot;    // Root Nodes 
 int ZeroThenOne; 
 node * currentNode;   // Used in tree traversal 
 int myOrder;  // The number of variables (don't think I use 
this one either) 
 int mySize;   // The number of nodes 
 int myWidth;  // The highest number of nodes in one level 
(DOESN'T WORK) 
 int maxLevel;  // do I use this? 
 int myDepth;  // The deepest level of the tree (STUPID) 
 bool addSub(string subF); //adds a subfunction to the stored list 
of functions 
 bool deleted(node * child); 
 void initialize();     // The most important 
function 
 node * attachChild(string subF); // returns a pointer to the 
node with 
          // the provided 
subfunction value 
  
 void newChild(node * parent, int childNum, string value); // 
creates a new node 
  
 public: 
 CoordinateHolder returnCoordinates(); 
 BDDTree(string TT); 
 int size(); 
 int LeftRight();    
 void printTree(); 
 void Destruct(); 
 ~BDDTree(); 
}; 
 
CoordinateHolder BDDTree::returnCoordinates() 
// returns the two-dimensional array of coordinates to the user 
{ 
 return treeCoordinates; 
} 
  
 
int BDDTree::size() 
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// returns the size of the finished tree. Useful for minimization 
{ 
 return mySize; 
} 
 
BDDTree::BDDTree(string TT) 
//Sets up the Tree. 
{ 
 myTT = TT; 
 ZeroThenOne = -1; 
  
 for(int i= 0; i <300; i++) 
 { 
  list_of_sub[i] = "-1"; 
  list_of_del[i] = NULL; 
  treeCoordinates.myCoordinates[i][0] = 0; 
  treeCoordinates.myCoordinates[i][1] = 0; 
  treeCoordinates.myCoordinates[i][2] = 0; 
  treeCoordinates.myCoordinates[i][3] = 0; 
  treeCoordinates.myCoordinates[i][4] = 0; 
  treeCoordinates.myCoordinates[i][5] = 0; 
 } 
  
 list_of_sub[0] = TT; 
  
 myRoot.myValue = TT; 
 myRoot.myLevel = 0; 
 myRoot.myCoord[0] = 0; 
 myRoot.myCoord[1] = 0; 
 myRoot.child0Coord[0] = 0; 
 myRoot.child0Coord[1] = 0; 
 myRoot.child1Coord[0] = 0; 
 myRoot.child1Coord[1] = 0; 
 myRoot.traversed = false; 
 myRoot.child0 = NULL; 
 myRoot.child1 = NULL; 
 myRoot.myParent = NULL; 
 myOrder = log(TT.size())/log(2); 
 currentNode = &myRoot; 
 mySize = 0; 
 myWidth = 0; 
 myDepth = 1; 
 maxLevel = 0; 
  
 this->initialize(); 
} 
 
bool BDDTree::deleted(node * child) 
// Sloppy way to check if a shared node has already been 
// deleted so I don't delete it twice... 
// if the child has been previously deleted, returns "true" 
// if the child is free to be deleted, returns "false" 
{ 
 int i = 0; 
 while(list_of_del[i] != NULL) 
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 { 
  if(child == list_of_del[i]) return true; 
  i++; 
 } 
  
 list_of_del[i] = child; 
 return false; 
} 
 
bool BDDTree::addSub(string subF) 
// similar to the "deleted" function 
// stores a list of known nodes so that extra 
// versions of shared nodes aren't inadvertantly created 
// recursively. 
// returns false if node already exists 
// returns true if the node is safe to be added. 
{ 
 int i = 0; 
 while(list_of_sub[i] != "-1") 
 { 
  if(subF == list_of_sub[i]) return false; 
  i++; 
 } 
   
 list_of_sub[i] = subF; 
 return true; 
} 
 
node * BDDTree::attachChild(string subF) 
// recursively traverses the tree until a node is found that matches 
// the subfunction given. 
// returns the address of the node. 
{ 
 node * temp = currentNode; 
 node * child; 
  
 if(temp->myValue == subF) 
 // node found, returns address of that node 
 // resets the "current node" counter 
 { 
  currentNode = &myRoot; 
  return temp; 
 } 
  
 if(temp->child0) 
 // checks down the left side of the tree 
 // for the subfunction 
 { 
  currentNode = temp->child0; 
  child = attachChild(subF); 
  if(child) return child; 
 } 
  
 if(temp->child1) 
 // checks down the right side of the tree 
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 { 
  currentNode = temp->child1; 
  child = attachChild(subF); 
  if(child) return child; 
 } 
  
  
 //node not found on this path 
 return NULL; 
} 
  
  
 
void BDDTree::initialize() 
// Generates the ROBDD recursively 
{ 
 node * temp = currentNode; 
 string TT_Low, TT_High, TT; 
 TT = currentNode->myValue; 
 mySize++; 
  
 if(currentNode->myValue.size() > 1) 
 // if the node's TT is large enough to be broken in half again, 
 // make some new nodes 
 // otherwise, this must be a terminal node 
 { 
  TT_Low = TT.substr(0, TT.size()/2); // generates the "0" decision 
sub function 
  TT_High = TT.substr(TT.size()/2, TT.size()/2); //generates the 
"1" decision subf 
   
  if (currentNode == &myRoot) 
  // the root is a special case, as it might not necessarily be at 
level 0 (x1). 
  // it might need to move down the tree if nodes are found to  
  // be redundant. 
  { 
  // myRoot.myCoord[0] = mySize; 
  // myRoot.myCoord[1] = myRoot.myLevel+1; 
   while (TT_Low == TT_High && TT_Low.size() >0) 
   { 
    addSub(TT_Low); 
    myRoot.myLevel = log(this-
>myTT.size()/TT_Low.size())/log(2); 
    myRoot.myValue = TT_Low; 
    TT_Low = TT_Low.substr(0, TT_Low.size()/2); 
    TT_High = TT_High.substr(TT_High.size()/2, 
TT_High.size()/2); 
   } 
   myRoot.myCoord[0] = mySize; 
   myRoot.myCoord[1] = myRoot.myLevel+1; 
   if(myRoot.myValue.size()==1) return; 
  } 
   
  while(TT_Low.size()>1 && TT_Low.substr(0, TT_Low.size()/2) == 
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TT_Low.substr(TT_Low.size()/2, TT_Low.size()/2)) 
  { 
   addSub(TT_Low); 
   TT_Low = TT_Low.substr(0, TT_Low.size()/2); 
  } 
  while(TT_High.size()>1 && TT_High.substr(0, TT_High.size()/2) == 
TT_High.substr(TT_High.size()/2, TT_High.size()/2)) 
  { 
   addSub(TT_High); 
   TT_High = TT_High.substr(0, TT_High.size()/2); 
  } 
   
   
  if(this->addSub(TT_Low)) 
  { 
   currentNode = temp; 
   newChild(currentNode, 0, TT_Low); 
   temp->child0Coord[0]=mySize+1; 
   temp->child0Coord[1] = log(this-
>myTT.size()/TT_Low.size())/log(2)+1; 
   currentNode = temp->child0; 
   currentNode->myCoord[0] = mySize+1; 
   currentNode->myCoord[1] = currentNode->myLevel+1; 
   currentNode->child0Coord[0] = 0; 
   currentNode->child0Coord[1] = 0; 
   currentNode->child1Coord[0] = 0; 
   currentNode->child1Coord[1] = 0; 
    
   this->initialize(); 
  } 
  else  
  { 
   currentNode = &myRoot; 
   temp->child0 = attachChild(TT_Low); 
   temp->child0Coord[0] = temp->child0->myCoord[0]; 
   temp->child0Coord[1] = temp->child0->myCoord[1]; 
  } 
   
  if(this->addSub(TT_High)) 
  { 
   currentNode = temp; 
   newChild(currentNode, 1, TT_High); 
   temp->child1Coord[0]=mySize+1; 
   temp->child1Coord[1] = log(this-
>myTT.size()/TT_High.size())/log(2)+1;   
   currentNode=temp->child1; 
   currentNode->myCoord[0] = mySize+1; 
   currentNode->myCoord[1] = currentNode->myLevel+1; 
   currentNode->child0Coord[0] = 0; 
   currentNode->child0Coord[1] = 0; 
   currentNode->child1Coord[0] = 0; 
   currentNode->child1Coord[1] = 0; 
   this->initialize(); 
  } 
  else  
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  { 
   currentNode = &myRoot; 
   temp->child1 = attachChild(TT_High); 
   temp->child1Coord[0] = temp->child1->myCoord[0]; 
   temp->child1Coord[1] = temp->child1->myCoord[1]; 
  } 
    
 } 
  
 currentNode = &myRoot; //after initialization is complete 
         //reset currentNode to tree root. 
} 
 
void BDDTree::newChild(node * parent, int childNum, string value) 
// Creates a child node for a given parent. The node corresponds to the 
TT value given 
{ 
 node * temp; 
 if(childNum == 0) 
 { 
  temp = new(node); 
  temp->myValue = value; 
  temp->myLevel = log(this->myTT.size()/value.size())/log(2); 
  temp->traversed = false; 
  temp->child0 = NULL; 
  temp->child1 = NULL; 
  parent->child0 = temp; 
 } 
  
 else if(childNum == 1) 
 { 
  temp = new(node); 
  temp->myValue = value; 
  temp->myLevel = log(this->myTT.size()/value.size())/log(2); 
  temp->traversed = false; 
  temp->child0 = NULL; 
  temp->child1 = NULL; 
  parent->child1 = temp; 
 } 
  
 if (temp->myLevel > maxLevel)  
 { 
  maxLevel = temp->myLevel; 
  myDepth++; 
 } 
} 
 
 
 
 
void BDDTree::printTree() 
//Recursively lists all the nodes in the tree 
{ 
 int i=0; 
 node * temp = currentNode; 
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 if(temp->traversed) return; 
 else temp->traversed = true; 
 
 if (currentNode==&myRoot) 
 { 
  cout << "Tree Size:  " << mySize << endl; 
  cout << "Level " << '\t' << "Node Value " <<  '\t' << "0 Child" 
<< '\t' << "1 Child" << endl; 
 } 
 cout << temp->myLevel << "\t\t" << temp->myValue << '\t'; 
 while(treeCoordinates.myCoordinates[i][0]!=0) 
 { 
  i++; 
 } 
 treeCoordinates.myCoordinates[i][0] = temp->myCoord[0]; 
 treeCoordinates.myCoordinates[i][1] = temp->myCoord[1]; 
 treeCoordinates.myCoordinates[i][2] = temp->child0Coord[0]; 
 treeCoordinates.myCoordinates[i][3] = temp->child0Coord[1]; 
 treeCoordinates.myCoordinates[i][4] = temp->child1Coord[0]; 
 treeCoordinates.myCoordinates[i][5] = temp->child1Coord[1]; 
  
  
  
 if(temp->child0) cout << temp->child0->myValue << '\t'; 
 else cout << "NULL" << '\t'; 
  
 if(temp->child1) cout << temp->child1->myValue << endl; 
 else cout << "NULL" << endl; 
  
  
 if(temp->child0) 
 { 
  currentNode = temp->child0; 
  if((temp->child0->myValue == "0") && (ZeroThenOne == -1)) 
ZeroThenOne = 1; 
  else if ((temp->child0->myValue == "1") && (ZeroThenOne == -1)) 
ZeroThenOne = 0; 
  printTree(); 
 } 
  
 currentNode = temp; 
  
 if(temp->child1) 
 { 
  currentNode = temp->child1; 
  printTree(); 
 } 
 
 currentNode = &myRoot; 
} 
 
 
void BDDTree::Destruct() 
//Recursively frees the tree from memory. 
//This code is probably a bit sloppy. 
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{ 
 node * temp = currentNode; 
 if(temp->child0) 
 { 
  if(!deleted(temp->child0)) 
  { 
   currentNode = temp->child0; 
   Destruct(); 
 //  temp->child0 = NULL; 
  } 
 } 
  
 if(temp->child1) 
 { 
  if(!deleted(temp->child1)) 
  { 
   currentNode = temp->child1; 
   Destruct(); 
 //  temp->child1 = NULL; 
  } 
 } 
  
 if(temp != &myRoot) 
 { 
  delete temp; 
  currentNode = NULL; 
  temp = NULL; 
 } 
} 
 
int BDDTree::LeftRight() 
{ 
 return ZeroThenOne; 
} 
 
BDDTree::~BDDTree() 
{ 
 Destruct(); 
} 
 

C. MAIN: OPENGL AND CONSOLE APPLICATION 

 
#include <cstdlib> 
#include <GLUT/glut.h> 
#include "Tree.h" 
 
using namespace std; 
 
string TT = "0110"; //Global variable so can be reused 
CoordinateHolder treeCoords; 
int LeftRight; 
int order=0; 
string minPerm; 
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//Functions for tree manipulation 
long long factorial(int size); 
void permutations(string input, int order, string * key, string * 
perms); 
string TT_swap(string input, int order, int count); 
string keys_swap(string input, int order, int count); 
void swap(char & a, char &b); 
void createModel(void); 
 
 
string hex2bin(string hex) 
{ 
 string bin = ""; 
 for(int i = 0; i<hex.size(); i++) 
 { 
  switch (hex[i]) 
  { 
   case '0': 
   { 
    bin += "0000"; 
    break; 
   } 
   case '1': 
   { 
    bin += "0001"; 
    break; 
   } 
   case '2': 
   { 
    bin += "0010"; 
    break; 
   } 
   case '3': 
   { 
    bin += "0011"; 
    break; 
   } 
   case '4': 
   { 
    bin += "0100"; 
    break; 
   } 
   case '5': 
   { 
    bin += "0101"; 
    break; 
   } 
   case '6': 
   { 
    bin += "0110"; 
    break; 
   } 
   case '7': 
   { 
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    bin += "0111"; 
    break; 
   } 
   case '8': 
   { 
    bin += "1000"; 
    break; 
   } 
   case '9': 
   { 
    bin += "1001"; 
    break; 
   } 
   case 'A': 
   case 'a': 
   { 
    bin += "1010"; 
    break; 
   } 
   case 'B': 
   case 'b': 
   { 
    bin += "1011"; 
    break; 
   } 
   case 'C': 
   case 'c': 
   { 
    bin += "1100"; 
    break; 
   } 
   case 'D': 
   case 'd': 
   { 
    bin += "1101"; 
    break; 
   } 
   case 'E': 
   case 'e': 
   { 
    bin += "1110"; 
    break; 
   } 
   case 'F': 
   case 'f': 
   { 
    bin += "1111"; 
    break; 
   } 
  } 
 } 
  
 return bin; 
} 
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void printText(string text) 
{ 
 for(int i = 0; i<text.size(); i++) 
 { 
  glutBitmapCharacter(GLUT_BITMAP_9_BY_15, text[i]); 
 } 
} 
 
 
void RenderScene(void) 
{ 
 
 
 glClear(GL_COLOR_BUFFER_BIT); 
   
  int widthCount, width0, width1, level0, level1, index0, index1, 
myIndex, value0, value1; 
  float xAdjustment; 
  float yAdjustment; 
  int minPermPosition; 
  string level; 
  for(int j = 0; j < order+1; j++) 
  // finds the number of nodes in each level (there are order+1 
levels) 
  { 
   widthCount = 0; 
   for(int m = 0; m < 300; m++) 
   //finds the number of nodes at each level 
   { 
    if (treeCoords.myCoordinates[m][1] == (j+1)) 
widthCount++; 
    if (treeCoords.myCoordinates[m][0] == 0) break; 
   } 
    
   xAdjustment = 640.0f/(widthCount+1); 
   yAdjustment = 750.0f/order; 
   minPermPosition = 3*j; 
    
    glColor3f(0.0f, 0.0f, 0.0f); 
    glRasterPos2f(620.0f, (j)*yAdjustment + 35); 
    level = minPerm.substr(minPermPosition, 2); 
    printText(level); 
    
    
   for(int n = 0; n < widthCount; n++) 
   //prints out those nodes 
   { 
    if(j < order) 
    { 
     glColor3f(0.0f, 0.0f, 0.0f); 
     glRectf((n+1)*xAdjustment, 25.0f + 
(j)*yAdjustment, (n+1)*xAdjustment+10.0f, 35.0f + (j)*yAdjustment); 
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    } 
    else 
    { 
     if(LeftRight && (n == 0)) 
     { 
      glColor3f(1.0f, 0.0f, 0.0f); 
      glRectf((n+1)*xAdjustment, 25.0f + 
(j)*yAdjustment, (n+1)*xAdjustment+10.0f, 35.0f + (j)*yAdjustment); 
     } 
     else if (LeftRight && (n == 1)) 
     { 
      glColor3f(0.0f, 0.0f, 1.0f); 
      glRectf((n+1)*xAdjustment, 25.0f + 
(j)*yAdjustment, (n+1)*xAdjustment+10.0f, 35.0f + (j)*yAdjustment); 
     } 
     else if (!LeftRight && (n == 0)) 
     { 
      glColor3f(0.0f, 0.0f, 1.0f); 
      glRectf((n+1)*xAdjustment, 25.0f + 
(j)*yAdjustment, (n+1)*xAdjustment+10.0f, 35.0f + (j)*yAdjustment); 
     } 
     else 
     { 
      glColor3f(1.0f, 0.0f, 0.0f); 
      glRectf((n+1)*xAdjustment, 25.0f + 
(j)*yAdjustment, (n+1)*xAdjustment+10.0f, 35.0f + (j)*yAdjustment); 
     } 
    } 
       
    myIndex = 0; 
    width0 = 0; 
    width1 = 0; 
    if(j != order) 
    { 
     for(int p = 0; p < 300; p++) 
     { 
      if(treeCoords.myCoordinates[p][1] == 
(j+1)) myIndex++; 
      if(myIndex == n+1) 
      { 
       level0 = 
treeCoords.myCoordinates[p][3]; 
       value0 = 
treeCoords.myCoordinates[p][2]; 
       level1 = 
treeCoords.myCoordinates[p][5]; 
       value1 = 
treeCoords.myCoordinates[p][4]; 
       
       index0 = 0; 
       index1 = 0; 
       for(int q = 0; q <300; q++) 
       { 
       
 if(treeCoords.myCoordinates[q][1] == level0) 
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        { 
        
 if(treeCoords.myCoordinates[q][0] <= value0) index0++; 
         width0++; 
        } 
       
 if(treeCoords.myCoordinates[q][1] == level1) 
        { 
        
 if(treeCoords.myCoordinates[q][0] <= value1) index1++; 
         width1++; 
        } 
       } 
        
        
       //0 Child 
       glBegin(GL_LINES); 
        glColor3f(1.0f, 0.0f, 0.0f); 
//red 
       
 glVertex2f(myIndex*xAdjustment, 35.0f + j*yAdjustment); 
       
 glVertex2f(index0*640.0f/(width0+1)+5.0f, 25.0f + (level0-
1)*yAdjustment); 
       glEnd(); 
       
       //1 Child 
       glBegin(GL_LINES); 
        glColor3f(0.0f, 0.0f, 1.0f); 
//blue 
       
 glVertex2f(myIndex*xAdjustment+10.0f, 35.0f + j*yAdjustment); 
       
 glVertex2f(index1*640.0f/(width1+1)+5.0f, 25.0f + (level1-
1)*yAdjustment); 
       glEnd(); 
       
       break; 
      } 
     } 
    }    
      
   } 
  } 
   
  glFlush(); 
 
} 
 
void SetupRC(void) 
{ 
  
 glClearColor(1.0f, 1.0f, 1.0f, 1.0f); 
} 
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void ChangeSize(GLsizei w, GLsizei h) 
{ 
 GLfloat nRange = 100.0f; 
 GLfloat fAspect; 
  
 if(h==0) h= 1; 
  
 fAspect = (GLfloat) w / (GLfloat) h; 
  
 glViewport(0, 0, w, h); 
  
 glMatrixMode(GL_PROJECTION); 
 glLoadIdentity(); 
  
 gluOrtho2D(0, 640, 800, 0); 
  
 glMatrixMode(GL_MODELVIEW); 
 glLoadIdentity(); 
} 
 
void idle(void) 
{ 
 createModel(); 
    glutPostRedisplay(); 
} 
 
void createModel(void) 
{ 
 string mode;  
 char previous; 
 long long fact; 
 int minSize; 
 int maxSize; 
  
  
 BDDTree * thisTree;  
 BDDTree * minTree; 
 BDDTree * maxTree; 
  
 cout << "Use previously entered TT? (If no previous entry, default 
is 0110) [y/n]: "; 
 cin >> previous; 
 if(previous == 'n') 
 { 
  cout << "Enter Truth Table (hex): " ; 
  cin >> TT; 
  TT = hex2bin(TT); 
 } 
  
 
  cout << "Output mode [raw/max/min]: "; 
  cin >> mode; 
  
  order = log(TT.size())/log(2); 
  fact = factorial(order); 



 89

  string myPerms[fact]; 
  string myKeys[fact]; 
  string minimumTT; 
   
  if(mode == "min") //look for minimum value 
  { 
   cout << "Creating permutations" << endl; // debugging 
   permutations(TT, order, myKeys, myPerms); 
   
   //Print out the permutations 
  /* for(int i = 0; i< fact; i++) 
   cout << myPerms[i] << " " << myKeys[i] << endl;*/ 
    
   cout << "Creating trees" << endl; // debugging 
   minTree = new BDDTree(myPerms[0]); 
   maxSize = minTree->size(); 
   minSize = minTree->size(); 
   delete minTree; 
   
   minPerm = myKeys[0]; 
   minimumTT = myPerms[0]; 
   
   int percentage = 0.01*fact; 
   
   //find minimum variation 
   for(int i = 1; i < fact; i++) 
   { 
     
    if(i == percentage) 
    { 
     cout << "."; 
     percentage += 0.01*fact; 
    } 
    thisTree = new BDDTree(myPerms[i]); 
     
    if (thisTree->size() > maxSize) maxSize = thisTree-
>size(); 
    
    if (thisTree->size() < minSize) 
    { 
     minSize = thisTree->size(); 
      
     minPerm = myKeys[i]; 
     minimumTT = myPerms[i]; 
    } 
     
    //edit out the following if you don't want to display 
the permutations 
    if (thisTree->size() == minSize) 
    { 
     cout << myPerms[i] << " " << minSize << " " << 
myKeys[i] << endl; 
    } 
    
    delete thisTree;  
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   } 
    
  // cout << "Finished creating trees" << endl; //debugging 
   minTree = new BDDTree(minimumTT); 
   
   minTree->printTree(); 
   treeCoords = minTree->returnCoordinates(); 
   LeftRight = minTree->LeftRight(); 
    
   delete minTree; 
   
   cout << "Minimum permutation is: " << minPerm << endl; 
   cout << "Maximum permutation is of size: " << maxSize << 
endl; 
  } 
  else if(mode == "max") //look for maximum value 
  { 
   cout << "Creating permutations" << endl; 
   permutations(TT, order, myKeys, myPerms); 
   
   //Print out the permutations 
  /* for(int i = 0; i< fact; i++) 
   cout << myPerms[i] << " " << myKeys[i] << endl;*/ 
   cout << "Creating trees" << endl; 
 
   maxTree = new BDDTree(myPerms[0]); 
   minSize = maxTree->size(); 
   maxSize = maxTree->size(); 
   delete maxTree; 
   
   minPerm = myKeys[0]; 
   minimumTT = myPerms[0]; 
   
   int percentage = 0.01*fact; 
   //find minimum variation 
   for(int i = 1; i < fact; i++) 
   { 
    if(i==percentage) 
    { 
     cout << "."; 
     percentage += 0.01*fact; 
    } 
 
    thisTree = new BDDTree(myPerms[i]); 
     
    if (thisTree->size() < minSize) minSize = thisTree-
>size(); 
    
    if (thisTree->size() > maxSize) 
    { 
     minPerm = myKeys[i]; 
     maxSize = thisTree->size(); 
     minimumTT = myPerms[i]; 
    } 
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    delete thisTree;  
   } 
   
   maxTree = new BDDTree(minimumTT); 
   maxTree->printTree(); 
   treeCoords = maxTree->returnCoordinates(); 
   LeftRight = maxTree->LeftRight(); 
    
   delete maxTree; 
   
   cout << "Maximum permutation is: " << minPerm << endl; 
   cout << "Minimum permutation is of size: " << minSize << 
endl; 
  } 
  else 
  { 
  //first create non string of variable orderings 
   minPerm = ""; 
    for(int z = 1; z <= order; z++) 
    { 
     if(z<10) 
     { 
      minPerm += 'x'; 
      minPerm += '0'+z; 
      minPerm += ' '; 
     } 
     else 
     { 
      minPerm += "x1"; 
      minPerm += '0'+z-10; 
      minPerm += ' '; 
     } 
    } 
   thisTree = new BDDTree(TT); 
   thisTree->printTree(); 
    
   treeCoords = thisTree->returnCoordinates(); 
   LeftRight = thisTree->LeftRight(); 
 
   delete thisTree; 
  } 
} 
  
 
 
int main(int argc, char** argv) 
{ 
 glutInit(&argc, argv); 
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA); 
 glutInitWindowSize(640, 800); 
 glutCreateWindow("BDD Viewer"); 
 glutDisplayFunc(RenderScene); 
 glutReshapeFunc(ChangeSize); 
 glutIdleFunc(idle); 
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 SetupRC();  
  
 glutMainLoop(); 
  
 return 0; 
} 
 
long long factorial(int size) 
{ 
 long value = 1; 
 for(int i = size; i > 1; i--) 
 { 
  value = (long)i*value; 
 } 
  
 return value; 
} 
 
void permutations(string input, int order, string * keys, string * 
perms) 
{ 
//Uses the Johnson-Trotter Algorithm 
 
 int swapCount; 
 int pair[order+1]; 
 int direction[order+1]; 
 long long j, s, q; 
 long long counter; 
 counter = 0; 
  
 for (int k = 0; k <= order; k++)  
 { 
  pair[k] = 0; 
  direction[k] = 1; 
 } 
  
  
 for(int i = 1; i <= order; i++) 
 { 
  if(i<10) 
  { 
   keys[0] += 'x'; 
   keys[0] += '0'+i; 
   keys[0] += ' '; 
  } 
  else 
  { 
   keys[0] += "x1"; 
   keys[0] += '0'+i-10; 
   keys[0] += ' '; 
  } 
 } 
   
 perms[0] = input; 
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 j = order; 
 s = 0; 
 counter++; 
    
 do 
 { 
  q = pair[j] + direction[j]; 
  if(q < 0) 
  { 
   direction[j] *= -1; 
   j--; 
  } 
  else if (q == j)  
  { 
   s++; 
   direction[j] *= -1; 
   j--; 
  } 
  else 
  { 
   if(pair[j] < q) swapCount =order-j + pair[j] - s; 
   else swapCount = order - j + q - s; 
   perms[counter] = TT_swap(perms[counter-1], order, 
swapCount); 
   keys[counter] = keys_swap(keys[counter-1], order, 
swapCount); 
   counter++; 
   pair[j] = q; 
   j = order; 
   s = 0; 
  } 
 } 
 while(j != 1); 
} 
 
string TT_swap(string input, int order, int count) 
{ 
 int num_pairs = pow((double)2, (double)order-2); 
 int adj_pairs = pow((double)2, (double)count); 
 int small_jump = pow((double)2, (double)count); 
 int large_jump = pow((double)2, (double)count+2); 
 int index = pow((double)2, (double)count); 
 int i = 0; 
  
 while(i < num_pairs) 
 { 
  for(int j = 0; j < adj_pairs; j++) 
  { 
   swap(input[index+j], input[index+small_jump+j]); 
   i++; 
  } 
  index += large_jump; 
 } 
  
 return input; 
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} 
 
void swap(char & a, char &b) 
{ 
 char temp = a; 
 a = b; 
 b = temp; 
} 
 
string keys_swap(string input, int order, int count) 
{ 
 int indexA = input.size()-2-3*count; 
 int indexB = indexA - 3; 
 if(order < 10) 
 { 
  swap(input[indexA], input[indexB]); 
 }  
 return input; 
} 
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APPENDIX B: DISJOINT QUADRATIC FUNCTIONS 

A. DISJOINT QUADRATIC AFFINE CLASS OF ORDER 2 

 

Figure 22.   DQF of order 2 ( x1x2 ). 

 

Figure 23.   Complement of DQF ( x1x2 1). 
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Figure 24.   x1x2  x1  

 

Figure 25.   x1x2  x2  
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Figure 26.   x1x2  x1  x2  
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B. DISJOINT QUADRATIC AFFINE CLASS OF ORDER 4 

 

Figure 27.   DQF of Order 4 ( x1x2  x3x4 ). 

 

Figure 28.   Complement of DQF ( x1x2  x3x4 1). 
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Figure 29.   x1x2  x3x4  x1  

 

Figure 30.   x1x2  x3x4  x2  
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Figure 31.   x1x2  x3x4  x3  

 

Figure 32.   x1x2  x3x4  x4  
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Figure 33.   x1x2  x3x4  x1  x2  

 

Figure 34.   x1x2  x3x4  x1  x3  
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Figure 35.   x1x2  x3x4  x1  x4  

 

Figure 36.   x1x2  x3x4  x2  x3  
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Figure 37.   x1x2  x3x4  x2  x4  

 

Figure 38.   x1x2  x3x4  x3  x4  
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Figure 39.   x1x2  x3x4  x1  x2  x3  

 

Figure 40.   x1x2  x3x4  x1  x2  x4  
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Figure 41.   x1x2  x3x4  x1  x3  x4  

 

Figure 42.   x1x2  x3x4  x2  x3  x4  
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Figure 43.   x1x2  x3x4  x1  x2  x3  x4  
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C. PARTIAL DISJOINT AFFINE CLASS OF ORDER 6 

 

Figure 44.   DQF of Order 6 ( x1x2  x3x4  x5x6 ). 
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Figure 45.   Complement of DQF ( x1x2  x3x4  x5x6 1 ). 
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Figure 46.   x1x2  x3x4  x5x6  x1  
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Figure 47.   x1x2  x3x4  x5x6  x2  
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Figure 48.   x1x2  x3x4  x5x6  x3  
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Figure 49.   x1x2  x3x4  x5x6  x4  
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Figure 50.   x1x2  x3x4  x5x6  x5  
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Figure 51.   x1x2  x3x4  x5x6  x6  
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Figure 52.   x1x2  x3x4  x5x6  x1  x2  
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Figure 53.   x1x2  x3x4  x5x6  x1  x3  
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Figure 54.   x1x2  x3x4  x5x6  x1  x4  
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Figure 55.   x1x2  x3x4  x5x6  x1  x6  
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Figure 56.   x1x2  x3x4  x5x6  x2  x4  
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Figure 57.   x1x2  x3x4  x5x6  x3  x6  



 121

 

Figure 58.   x1x2  x3x4  x5x6  x1  x2  x3  
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Figure 59.   x1x2  x3x4  x5x6  x2  x3  x4  
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Figure 60.   x1x2  x3x4  x5x6  x3  x4  x5  
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Figure 61.   x1x2  x3x4  x5x6  x2  x3  x4  x5  
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Figure 62.   x1x2  x3x4  x5x6  x1  x2  x3  x4  x5  
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Figure 63.   x1x2  x3x4  x5x6  x2  x3  x4  x5  x6  
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Figure 64.   x1x2  x3x4  x5x6  x1  x2  x3  x4  x5  x6  
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D. PARTIAL DISJOINT QUADRATIC AFFINE CLASS OF ORDER 8 

 

Figure 65.   Order 8 DQF ( x1x2  x3x4  x5x6  x7x8 ). 
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Figure 66.   x1x2  x3x4  x5x6  x7x8  x1  
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Figure 67.   x1x2  x3x4  x5x6  x7x8  x2  
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Figure 68.   x1x2  x3x4  x5x6  x7x8  x3  
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Figure 69.   x1x2  x3x4  x5x6  x7x8  x4  
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Figure 70.   x1x2  x3x4  x5x6  x7x8  x1  x2  x3  x4  x5  x6  x7  x8  
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APPENDIX C:  SYMMETRIC BENT FUNCTIONS 

A. SYMMETRIC BENT FUNCTION OF ORDER 2 

 

 

Figure 71.   Symmetric Bent Function of Order 2 ( x1x2 ). 
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B. SYMMETRIC BENT FUNCTION OF ORDER 4 

 

Figure 72.   Symmetric Bent Function of Order 4. 
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C. SYMMETRIC BENT FUNCTION OF ORDER 6 

 

Figure 73.   Symmetric Bent Function of Order 6 
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D. SYMMETRIC BENT FUNCTION OF ORDER 8 

 

Figure 74.   Symmetric Bent Function of Order 8 
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APPENDIX D: MISCELLANEOUS BDDS 

A. PARTIAL SELECTION OF HOMOGENEOUS FUNCTIONS ON 8-
VARIABLES OF DEGREE 3 (MINIMUMS BDDS) 

 

Figure 75.   

x1x2x3  x1x2x5  x1x2x7  x1x2x8  x1x3x8  x1x4 x6  x1x4 x8  x1x5x6 
x1x7x8  x2x3x5  x2x3x6  x2x3x7  x2x5x6  x2x5x8  x3x4 x7  x3x4 x8 
x3x5x7  x3x6x7  x4 x5x6  x4 x5x7  x4 x6x7  x4 x6x8  x4 x7x8  x5x6x8
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Figure 76.   

x1x2x6  x1x2x8  x1x3x4  x1x3x8  x1x4 x5  x1x4 x7  x1x4 x8  x1x5x6 
x1x7x8  x2x3x7  x2x3x8  x2x5x6  x2x5x7  x2x6x7  x2x6x8  x2x7x8 
x3x4 x5  x3x4 x6  x3x4 x7  x3x5x7  x3x6x7  x4 x5x6  x4 x5x8  x5x6x8
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Figure 77.   

x1x2x3  x1x2x5  x1x2x6  x1x2x8  x1x3x5  x1x3x6  x1x3x7  x1x4 x7 
x1x4 x8  x1x5x7  x1x5x8  x1x6x7  x1x6x8  x2x3x5  x2x3x7  x2x3x8 
x2x5x6  x2x5x7  x3x4 x6  x3x4 x7  x3x5x6  x3x5x8  x3x6x8  x3x7x8 
x4 x5x6  x4 x5x8  x4 x6x7  x4 x6x8  x4 x7x8  x5x6x7  x5x7x8  x6x7x8
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Figure 78.   

x1x2x3  x1x2x5  x1x2x6  x1x2x8  x1x3x7  x1x4 x7  x1x4 x8  x1x5x8 
x1x6x8  x2x3x5  x2x3x7  x2x3x8  x2x5x6  x2x5x7  x3x4 x6  x3x4 x7 
x3x5x6  x3x7x8  x4 x5x6  x4 x5x8  x4 x6x7  x4 x6x8  x4 x7x8  x5x6x7
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Figure 79.   

x1x2x7  x1x2x8  x1x3x4  x1x3x7  x1x4 x5  x1x4 x6  x1x4 x8  x1x5x8 
x1x6x8  x2x3x6  x2x3x7  x2x5x6  x2x5x8  x2x6x7  x2x6x8  x2x7x8 
x3x4 x5  x3x4 x7  x3x4 x8  x3x5x6  x3x7x8  x4 x5x6  x4 x5x7  x5x6x7
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Figure 80.   

x1x2x7  x1x2x8  x1x3x4  x1x3x5  x1x3x6  x1x3x7  x1x4 x5  x1x4 x6 
x1x4 x8  x1x5x7  x1x5x8  x1x6x7  x1x6x8  x2x3x6  x2x3x7  x2x5x6 
x2x5x8  x2x6x7  x2x6x8  x2x7x8  x3x4 x5  x3x4 x7  x3x4 x8  x3x5x6 
x3x5x8  x3x6x8  x3x7x8  x4 x5x6  x4 x5x7  x5x6x7  x5x7x8  x6x7x8
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Figure 81.   

x1x2x6  x1x2x8  x1x3x4  x1x3x5  x1x3x6  x1x3x8  x1x4 x5  x1x4 x7 
x1x4 x8  x1x5x6  x1x5x7  x1x6x7  x1x7x8  x2x3x7  x2x3x8  x2x5x6 
x2x5x7  x2x6x7  x2x6x8  x2x7x8  x3x4 x5  x3x4 x6  x3x4 x7  x3x5x7 
x3x5x8  x3x6x7  x3x6x8  x4 x5x6  x4 x5x8  x5x6x8  x5x7x8  x6x7x8
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Figure 82.   

x1x2x3  x1x2x5  x1x2x7  x1x2x8  x1x3x5  x1x3x6  x1x3x8  x1x4 x6 
x1x4 x8  x1x5x6  x1x5x7  x1x6x7  x1x7x8  x2x3x5  x2x3x6  x2x3x7 
x2x5x6  x2x5x8  x3x4 x7  x3x4 x8  x3x5x7  x3x5x8  x3x6x7  x3x6x8 
x4 x5x6  x4 x5x7  x4 x6x7  x4 x6x8  x4 x7x8  x5x6x8  x5x7x8  x6x7x8
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B. MISCELLANEOUS 8-VARIABLE BENT FUNCTIONS (MINIMUM 
BDDS) 

 

Figure 83.   Hex Truth Table: 00110572175C476A 032E357E1B6C7869 
00775F4E173AE2A9 3F74AC81D8C9E196 



 148

 

Figure 84.   Hex Truth Table: 01041576134C526B 023B257A1F7C6D68 
15760E0B526BE3BC 2A75FDC49D98E083 
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Figure 85.   Hex Truth Table: 01150713105E703E 071C68737F3E89C8 
077A68157F5889AE 67EA61EC76A116C1 
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Figure 86.   Hex Truth Table: 0017051212367E5A 170F746C5F74AA9 
1173C476C5FB8668 133E8FA21DEC98196 
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