A
Marnual

For

SCALP

being a
Self Contained AlLgol Procsssor

for the

General Preeision

LGP=~30

CCM=TA

Computation Center
Dartmouth College
Hanover, New Hampshire

o 1 January 1964

4

-

N\ Preface

This manuzl contains programming and operating information
for the SCALP system, an squeeZing of ALGOL into a load=andego
system for the LGP=30, Many restrictions sbwvicusly had to be
made and these are listed in chapter 2, But & remarkable
achievement is the number of features of ALGOL that are includad,
Such things as mixed expressions, nested conditionals, multipl
agsignments, and full subscript freedem are included, We have
found that the only really troublesome restriction is not havinag
the step=until type of for statement,.

The planning, programming, coding, and debugging of the system
were entirely the work of two former Dartmouth undergraduatese=
Anthony W. Knapp and Stephen J. Gariand. A close study of the
system and the coding sheets (which together with the block diagrams
2f the compiler are available) will almest z=rtainly impress one
with the superb and elegant job these twe wms» 3id, Since SCALP. is
catgrowih of the earlier but net compistad 2L=30, we should
#1880 acknowlsdge the contribution of two ¢t former undere
graduates--Robert F., Hargraves and Jorge Liscure=%to that effort,

The»coding sheets for the full system {but not the swbroutine
1ibrary) together with the bleck diagrams sf the compiler are '
avallable as memoranda cem=8A and cem=8B, no% respectively,

~

This manual does not pretend to be an ALGOL primer, treating

L\/ that language only cursorily, The assumpticn is that ALGOL is

#ither known or can be easily learned from sny one of an inereasing
number of readable texts, For instance, ses McCracken, A Guide.
to ALGOL Programming, Wiley, New York, i962.

Thomas E. Kurtz
Hanover, New Hampshire
13 December 1963

e

1.

Ce.

3.

be

Se

6o

Te

LA L\ W
® & S @
o N

Tahle ¢ v snients

IS A PROGRAM

Introduction
What is a Program

A Program on an Elecronic Computer

RIEF LOOK AT ALGOL

SCALP LANGUAGE

The Exampie

How SCALP Differs from ALGOL
Adaptation of SCALP to the LGP=30

Another Example

HOW TO RUN A PROGRAM IN SGALP

EEEEE
U e o

=
S
O
B

]

i
W Ny -t

®

Intreduction

Icading the SCALP system
Compiling

Running a Problem

Key board Programming

STOPS

Compiling Errors
Run Time Errors
Other Error Stops

DEBUGGING

6.1
6.2
30
6.5

Introduction
Tracing

Stop and Continue
Execute

Patech

FOR EXPERTS ONLY

Tel
2

~ 3
~ OVULE W

®
®
®

~3-3
(-

With Reference to ALGOL
With Reference to FORTRAN
Compiling

Running

With Reference to ACT III

Subroutines and the Library Tape

Some Remarks on Efficiency

—-3i -

1=

=

e

)

WHAT IS A PROGRAM

1.1 Introcduetion

Computers are still considered by many people to be .ysterious
machines capable of almost supernatural powers in solving vast
and complex problems, Most of the references to computers in the
various mass media have done nothing to counter this attituds.
For instance, one is impressed with the almost human response of
a cowputer printing its predictive messages on election nights.

In point of faect, a computer is nothing more than a device
for very rapidly performing such slemsntary tasks as adding two

numbers, dividing twe numbers, cr ascertaning whether a given
number is negative cor not,

To put it ancther way, & computer can do little more than a
small child trained in only elementary logiec and arithmetic, except
that a computer is faster by 5 cr 6 orders of magnitude. {(An
order of magnitude is a power of tem,)

This huge speed ratio of 101,000 or a miliion to one is the
important factor that makes computers =s0 usefuls. They have no
immste intelligenze, but very complex "intelligent-1ike"™ behavior
can be simulated by performing millions of elemenitary logical
opergations in a short time, and this is where the computer's power
lies., They have been dubbed by a well~known computer expert as
nhigh speed idiots,

Referring to the election night performances, all the computer
is doing is making simple calculations of odds based on & selected
number of early returns, and printing out messages that have been
previously entered by human operators. The really difficult part
of election forecasting=-analysis of effects of local issues,
Asvelopment of statistical techniques for combining data, and
rapid collection of results-=are not done by the computer,

In fairness, it should be stated that computers do solve vast
and complex problems, but these problems are of a nature that is
both more important and less dramatie than the publie realizes,.
Election forecasting is dramatis, but automatic sontrol of pro--
duetim processes is a vastly moere important application whisch has

= e

irmmense ané far-reaching implication.
1.2 What is a ZFrogram

Let us imagine that we wish to attack the simple preblem of N
solving a quadratic equation. Except for cecasionsl errors, each of
us woulé arrive at essentially the same answers, though we might
employ quite different methods,

The steps that we go through aegording to our method constitute
& program. And that 1s what a program ig==a set of steps or in-
structions for going from data to answers. The notion of a program
:# more obvious if we utilize the services of our grade school pupil
s do the actual computation. Whereas we take for granted the
individual steps when we do our own computing, we must spell thew
¢ut in compiete detail 1f our pupil is tc arrive at answers.
Furthermore, this spelling out must be done in a way that the pupil

=n understand.

As an example, suppose we supply our pupil with a worksheet
contsining fourteen columns and as many rows as we have quadratic
equations to solve, Further, suppose that the coefficients a,

. and ¢ (ax2 + bx 4+ ¢ =0) are listeé in columns 1, 2, and 3,
+s8pectively. Then a program might go as follows: O~

"perform the following steps in order:

1. Take this worksheet containing three scliumns of numbers and go
tes your calieunlator.
2. Take the first row and mark it with a iittle check.
1, PTor steps i through 17 look only at the numbers and spaces in
the checked row.
e Multiply column 1 by column 3 and write the answer in column e
5. Multiply column L by the number "u” and write the answer in
column S.
6, Multiply column 2 by column 2 and write the answer in column 6.
7. Subtract column 5 from column 6 and write the answer in
201lvnm Te ”
8, TIf the number in colummn 7 is negative, skip the next few
instructions and proceed, starting with instruction 163 otherwise,
proceed with instruction 9.
Jeo Take the square root of column 7 and write the answer in
column 8. ~
10. Change the sign of column 2 and write the answer in column 9,
11, Subtract column 8 from column 9, and write the answer in

= P -

column 19,

12, Muitiply column 1 by the number *2% anl write the answsr
in column Lli,

13, Divids column 10 by eoviumn il ard wvite the answer in
column 12,

ilte Add column 8§ to column 9 and write the answer in coi mm 13,
15, Divide column 13 by column 11 and write the answer 7.
ecolumn 1l

16, FErase the check mark and mark the next lower row,.

17. TIf the check=-marked row has no coefficients in it, proceed
to step 183 otherwise, go back toc step 3.

18, Bring the worksheet toc me,."”

Gf course, the real roots, if sy, wil’ s found in cclumms 12
gnd il

If we are more fortunate, we migh% eell upon & more skilled
neracn who knows about gquadratic equasticons. We might then be
gble to supply him with the 1ist of coelTisients and verbally tell
him tos

Solve these quadratic equations.” A bit later we will get
back the desired answers, which, with a bit of lusk, will be
corract, |

Ecth of the above sets of directions are programs. The
resulting sets of answers will agree, up tc round off, even
though the "ecomputers" were different. Notice that both programs
were in English, Also notice that the first program was given
in terms of tasks that either person could perform, and the second
one in taéks that only the more advanced person could understand.

Thus, though programs for doing the same problem may differ
widely depending on the type of computer, two general characteristiecs
are common to all programsg
1. The program must be presernted to the computer in a language he
“gpesks." .
2. The program must be presented in tarms of the elementary
operations understood by the computer.

If the computer is electroniec rathser then humen, the
computation will be done more quickly 1%t the program will have the
game features as those above, It will bs a set of directions given

“3a

4

10 The Lhoousg® O vne woiipates cwd b ouerd ¢ opsr@vicuaid vhe

;.(

computer can performe
1.3 A Program on an Electronic Computer

Present day computers operate at roughiy the level of the ~r
first, longer program. That is, they can add, subtract, multiply,
gand divide, and they can test the sign of the number., Therefors,
a program for solving a guadratic equation might start something
like this:

o
©

BRG

1
MPY 3
STg L
BRT Iy
MPY 15
ST 5

-3
(-4
o

Thig porticn corresponds to steps lj and 5 in the program given
earlier, and assumes that column 15 contains the constant number
s The program woeuld vary considerably from somputer to computer,
but would remain similar in its essential characteristics,

How much fnicer it would be to have a computer equipped with
2 microphone and a photoereading machine. We might then simply 4
place our coefficeints in the reader and speak intc the microphone
"Solve these gquadratic equations,™ While such a system is not yet
availabie, work on soynd recogniticn and character recognition is
in progress, and shmld be available in five or ten years, The
striking faet, though, is that the computer used with these devices
will be the same as those in use todaye The trick used is to male
& standard computer act like0301c3=reeognizingvcomputer by supplying
it with a special complicated program. This special program makes
the computer act like a different computer capable of carrying out
. complex taskse ‘

Getting back to the example, the most reasonable type of
auman computer to expect is one who can understand standard algebra
{formuies but still doesn't know about quadratic equations. The
pregram to ths human eomputer might bes

"Perform the following steps in order,
1, Teke these sets of numbers, which we might call a, b, and e,
and go to your calculator, &

cﬁa

2, Take the first of these sets of numbers.

3. Caliculate (-b=» b 2wL;ac:) (2a) and call the resulting number
rooti.

h. Calculate the same thing but with the second minus sign
changed to a plus sign and call the resulting number roetz,

5. Write down the value of rooti and root2 slongside the set of
a, b, and ¢ from which they were computedo

6. Take the next set of a, b, and & and repeat, starting from
step 3 above.. :

When done, bring me the worksheet.”

In the next section is presented a version of the program
suitsble for a certain eomputer that "understands® algebraic
expressions but not quadratie equations, Of ecourse, we arse
telking about a computer that has beem "programmed®™ to act like
a spesisl computer that cen "understend™ these expressioms., The
language used is a very specific ome eall ALGOL., It was invented
betwaen 1958 and 1960 by committee of computer experts from
several different countries., The idea of an "Algebraic®
language for a computer is not new, going back to FORTRAN on the
IBM=70l and MATH=-MATIC on the Univas I. Since the inception of
these languages in the middle 1950's, there has grown & plethora
of similar languages, at least one different one for each ma jor
type of computer. It was this "babel™ of languages that motivated
the development of ALGOL as a standard language.

There are certain differences between ALGOL as it is defined
and the language used with the SCALP system. These differences
are imposed by the limitations of the equipment, and would be different
for différent computers. Therefors we first give am exemple in the
ATGOL language, and then show how it would look as prepared for
SCGATLP.

13
A Brief Look At ALGOL

The basic features of ALGOL are perhaps best presented through
#n examples The problem discussed in the Introduction might be
ineompletely phrased in ALGOL as

for % = 1 step 1 wuntil n do
begin dise := Dbl[i]t2 = h*a{ijxe[i]
if disc = O then go to none glse go to néxts
nexts 2 = ag_z(dls@)/ﬁaﬂafi,;,
rooti(t1 = <bli]/{2%afi]) - =g
root2f[il := rooti[il] + 2%z}
none: end

“xemining this program, we see that it is composed of statements
sach one ending with a semi=colon (rather than a period).
Statements may be compounded, in which case the symbols "begin...
snd” ere vsed to denote the start and the finish of the compound
stetement or “paragraph®. (For clarity, we have indented the
sorzomente of a compound statement, but such indentation is not
a part of ALGOL)

The underlined words are part of the ALGOL vocabulary, as
are all the symbols such as ":™ and "#", The non-underlined words
refer to data or to labels in the program, For instance, "disc"
refers to the number produced when the discriminant of the
squation is computeds "next" serves to label a particular statement
in the program and does not refer to any data.

Statements may be of several types. The one in the second
tine is an assignment statement because it assigns to the data
location "disc® the value produced when the expression to the
right of the ":=" is evaluated, There are several other examples
of assignment statements in the program, and they all have the

- b =

sharacteristic that the variable appearing on the left c¢f the
We=® gymbol is assigned the value assccisted with the expression
to the right of the™:=%, Most parts of the right-hand sides are

Yo" for subtracts

gself-explanatory: "#" stands for multiplyg
"/% for divide by: and "+" for add., The up-arrow stands :.r
exponentiation or raising to a power. (The offieial ALGOL symbol
for multiplication is a}x, but because it is similar to & capital
X we have taken the liberty of using a % instead,)
Square brackets denote subscripts. In other words, b{il] is
the ALGOL way for writing by, the 1= Catue in a list of blse
The ats and ¢'s similarly refer t¢ lists of values with the
svbseript "pointing to™ the particular value desired. We assume,
of coursze, that these lists of values are in the "computer® whene
they can be used. 7rooti{i] and rooi{il also refer to lists in
which we will find our answers after the computation is completed.
As in algebra, parentheses are used when necessary to clarify
an expression. In the line labelled "next" we wish to divide
by the quantity 2a., so we enclose 2#a{11 in parenthsses., Another
example s

aftb+c stands for ab+e or {ab}+c
while

at (b+c) stands for g \0¥s! o

In the forth line we extract the sgquare root of the
quantity called "disc®" by enclosing it in parentheses and preceding

that by sqrte. Other standard functions are included in ALGOL== &
partial list follows:

sqrt(E) square rcot of the value of E

sin(E) gsine of the value of E

cos (E) cosine of the value of E

In(E) natural logarithm of the value of Ej
exp(E) exponential, base e, of the value of E,

where E stands for any expression that has a value.

e 7 =

The nen=-underlined words are caliied "identifiers™; they consist
of any letter followed by a string of letters or digits or a mixture
of the twe, Inm the sampie program, identifiers sre used in two
ways: the first as names of variables == n, disc, a, b, ¢, z, rucHl
roct2: the second as "lables™ for ststements == "next” and "ner 5"
are used tc 1labal the statements that fellow them. Notice that a
ztatement label is separated from its statement by a ":%*, A string
2f digits with no letters may alsc serve as a statement label. We
next see why we need statement labels in the example program.

The third line is & conditional statement whose meaning is
glmest self-explanatory: namely, if the discriminant of the equation
is negaiive, then next execute {go tc) the statement labelled
"none®s otherwise next execute{go Lo} the statsment labelled Ynext",
The lsbel iclliowing the ge to serves to identily the statement we
intend to be next obeyed. After all, if "disec™ is negative, the
equation has no real roots. The form of the conditional statements
may vary widely according to needs and tastes, but the grammar
+f ALGOL insists that the words if, them, snd eslse be used, and
be used in much the same form as in the example., The statements
constituting a program are normally executed in sequencej the
sequence is broken only by go to statements.

Another type of statement is the "empty" statement that is used
primarily to label an end: In the program example, each time dise
is negative we go directly to the epd of the compound statement that
constitutes the body of the computation, and so we must previde a
labal, Since no further computation, is necessary, the statement
so labelled is “empty".

This brings us to the for statemeént. An English translation
of the first statement of the example is: “Do the statement
immediately following the word do {it's a compound statement
oceupying lines two through seven), first with 1 set squal to i,
woxt with 1 set equal to 2, and so on, and finaily with i set
equal tc =n., After that execute the statement following."

S)

The varisble i is the subscript of the varisgbles apprearing
in the scmpound statement, The zomputation is done first with
2.5 Das Sap r@@%ﬁﬁ, and roctz,, and then with &,, b,y 8., wool

r@etzgg and sc on., The for statement is very powerful, allicwing
us o write in a very few siteps sompuiaitisnsl programs the: are
otherwise very long., The specificadiocn of the for statement
allows forms other than that one used in the example; for imstance,
an equivalent form is

bty

"for 1 z= 1,2,3,k step 1 until n do ...

or, if =n is egual to 10,
192535155565 79859510 de 000"

i

hid o

Even c¢ther forms are possible, &s a more complete study of ALGOL
would show.

You will note that there are no statements in the example
referring to imput or output, ALGOL itselfl does not somcerm
itself with such statements because they will vary from computer
to computer., 1In the example we have sssumed that the variable
11 has been assigned a value equal to the number of quadratic
eguations to be solved, and that the lists &, b, and ¢ have been
given values ®qual te the coefficients of the equations. We
elsc assume thet the 1lists rootf and root2 are available to the
user after the computation has been completed,

Notice that the variables i and =n take on only integer
values while dise, z, and the other variables can take on any
reel value. (In a computer the non-integers are represented as
floating point numbers,) This fact is declared to the program
by the declaration statement ®integer i,n3"™, The reason for
this declaration is that digital computers are frequently
sonstructed to handle integers or whole numbers differently from
general real numbers, |

Because this general program may be used many times, we must
also declare the miximum number of equations that we will ever want
to solve., (This maximum number is not the same as n, which tells

e § =

the program how many equations there are this time, This declaration 65/
2llows us to determine shead of time whether or not the program can
be fit into the computer memorys if not, then some modifiecation
will be made, In ALGOL we may declare the maximum size of the iists
in the form "array a, b, ¢, rectl, reet2[l:100601", The array
declaration so=-salled, states that the liists (or arrays) a, b, sz,
rooti, and roct2 all have the same size, and each one provides a
rlace corresponding to subsceripts running from, for example, 1 te1000,
The user c¢an supply comments and instructions for his own
informaticn or the information of others by using the symbol comment,
Sach comments do not affect the computation.
With the addition of comments, array declarations, and variable
“ype declarstions, the example program appsars below, The program
itself is set off by a begin-end pair and the various declarations,

e

snch s "integer 1,n" appear immediately after the initial begim.
 pomment this algorithm finds the two real roots,

if they exist, of a series of quadratiec equationsg

begin integer i, ny array s, b, ¢, rocti, roct2[1:10001; (&
for 1 ¢= 1 step 1 until n do

begin disc ¢=b[1]12 = hxa[iT1%cli]sg

if disc < O then go to none else go to nexts
next: z:=sqrt (disc)/(2%afil}ls

root! [1] := =b[1]/(2%a[i]) =z}
root2[1]s=root11i] + 2¥zg

none: end end

For a more complete discussion of ALGOL the reader is referred.
to an excellent expository books by MeCracken [A Guide to ALGOL
grogrammihg, Wiley, New York, 1962] or the technical definition of
ALGOL [Peter Naur (ed.), "Revised Report on the Algorithmic
Language ALGOL 60," ACM Communications, V.6(1963), no 1, pp 1=17,]

“» will next consider how the above example would look in SCALPs

- 10 =

o

4
fd
4

The SCALP Languagse

3.1 The Exemple

. The SCALP language is basically a subset of ALGOL with certain
modifications necessitated by the nature of the LGP=30., The
language will be introduced first with an exgmple., The example'
used will be the quadratic=solving algorithm given eariier with
two imporitant changess input and outpus statemsnts will be added,
and the for statement will be eliminsted s¢ that the program will

solve wnly one equation at a tims.

comment! This algorithm finds the two real
roots, if they exist, of a guadratie
equation’y?
begintrealtal bt te?, tdisa?, trootill,,'root2?,, 12037
start?ocireadi{tar, tho Ttgt)tg?
disote=thiRr 1201t vh_': LR AR -SE NN R
ifvdisctit' 3 'thentgotononetelsefgoto'next?g?
next”zz“z?gﬁﬂsqrtf(vdiscﬁEV/?Qc?Zﬂﬂ%ﬂa“)ﬂgf
rootlle=teih? /1 (112115190 j1algr gt

2
root2! ¢=Vpootli4 T2 14tg 0t
printt (Tecarr.?, tat, s ht, 76t ,, rcotlh,, "root2t J1 "
gotolstartig?)) ’ '
none' s2tprintt (fcearr.t, tal , tHi 67 it g!
title'('c u.c.'n'c l.c.%0 reall roc’ts.?)vg?

gototstartiend!?

- ¥n addition to the inclusion of inpubeoutput statements and the

deletion of the for statement, several minor changes will be
noted. The most important is that the flegawriter stop code is
used as a symbol separator. Others inelude representation of

characters nct on the flexowriter keyboard, and a special way of (
designating numbers, These and others will be described in detail -
in the sections that follow.

3.2 How SCALP differs from ALGOL

In this section will be given the majer ways in which ALGOL
is restricted by 3CALP, The examples ililustrating the restriztion
will bes given in ALGOL to aveid eanfusion with the stop codes and
symbol representations in SCALP,

3.2.1 BRlocks and Procedures

SCAL? permits no blocks or procedures., The program itself,
héﬁaverﬁ is & bleck and all variables used must be declared, Since
hey
edy

ﬁa

[543
o

ares ne bloecks or procedures, the consepts of recursive proe
reg, cwn arrays, and dynamic arrays do not arise, All arrays

€@

I w1

in SCALP must be declared using numerical integer constants to
indicate the subseript bounds. The word own is not a part of
SCALP, and may be useéd as an identifier, as>may all other ALGOL
#words omitted from SCALP, (See section 3,3,1 and 3.3.3.)
While procedure. declarations are not allowed, provision has &~

veen made for the standard functiong e l1ist of whiech followse

o4

P

ain sqrt | » read
cos abs print
arctan sign title
in entier

exp - random

The definitions of most of these funetions are explained in the
ALGOL=60 Report [ACM Communications, May 1960 and January 1963)
and will not be included here, random is a no-argument function

which when called generates a floating point pseudo random number
in the interval [0, 1}, To obtain a pseudo random digit from the
83t {0, 1, v.ep 9), use entier (10%random). Read, print and
title are input-output functions explained im sections 3.3.6,
3:3s7, and 3.3.8: The last three as well as the sqrt function
eppear in the example program, ‘ Q:f_

- 12 =

30202 Conditional Expressions

Conditional expressions are nct permitted, However, son-
ditional statements wmay be used im fuil generality., Thus

Xe= + if a «b then 3 eliss %§
. D

Py

is not allewed, and might be replaced by
if a < b then w:= 3 else we= 23 xX3= y + W3

Along the same line, the arguments of a switch declaration mus &
be simple labels. Thus, an argument of a switech declaration may
not be another switech name or a cenditionsl designational ax-
pression. If it is desired to employ nested swiches, the second
switch must have a labelled call, the lacsel appearing as an
argument of the first switeh declarsticon, Thus in place of

switeh alpha:=goof, beta {n], stops
switeh betas=loop, exity

we might use something like
switeh alpha := goof, Li, stopsg
switch beta = loop, exitj
Il ¢ go to betalnls

3243 For Statement
Only a limited type of for statemsnt 1s allowed in SCALP.

Eoth the step=until and the general list are omitted. The only

type permitted is the while element, which must be of the form
for «<variable> = <expression> while <relation> do Sg

where S is the iterated statement, Admittedly, the step-until)
element is probably the most useful, It may be imitated as followss

instead of

for i:= 1 step 1 until n do S3

use
is =03
for i¢= i 4 1 while I < n do 53 o

Another form avoids the use of for altogether:

=13 =

5

g | (-

£ o
ol @

i

loops Sg
2= § 4+ 13
f i <« n then goto loops

P

e

e

This last form though & bit inconvenmient to use, is actualiy
axecuted in SCALP at about the same speed as the while form.

3e2.i Special Integer Divide

The special integer divide# is not ineciuded in SCALP., It
»ay be synthesized as followss for
& ¥ D
use
sign (a%b)%entier (abs (a/BY)

3.2:5 Boolean

Boolean varisbles and operators are not allowed., One of the
wost common constructions which call for their use is

If x <2 A x» 1 then goto A else goto Bj Ny

to see if x 1ies in the closed interval [$,21. Since the p (or
it8 translliierated form and) is not permitted in SCALP, one might

.
use instead:

if x <« 2 then goto L1 else goto Bg
T1¢ 4f = > 1 Then goto A else goto Bj

3.3 Adaptation of SCALP to the LGP=30

The restrictions presented in the previous section are very
gevare, but affect the majority of programs surprisingly little,
Many programs can be adopted to these restrictions., On the»ﬁther
hand; the use of stop codes and special symbol representations
pressnt no additional logical restriction, but are necessarily a
part of all programs prepared for SCALP. They are itemized below,
ot necessarily in order of importance,

3e3.1 SZEleS
Certain ALGOL symbols are absent from the flexowriter keyboard
and must be represented by other symbols, N,

'\[§ o = 11.], =

ALGOL SCALP
$ A
< 1ltve
> gte

P gt

mﬁg
£
~
[ud
"
~
i

9 o9
1% ten
H ge

i %

Th additionm, the following symbols are sxsluded fFom SCALP:
% = - v A | ¢ 2
step until own lsbel value
Boolean procedure string

Spaces have an effect in SCALP and should be avoided except in
comments and title statements., go to may be used with or without
the space,

3.3.2 TUpper and Lower Case

Upper and lower case shifts should be used to make the
typed copy more readable., They have no effect on the program
to be rune.

303.3 Restricted Words

No SCALP word may be used as an identifier (variable name.
or statement label), These include: go to, goto, if then, else,
for, do, while, comment, begin, end, integer, real, array, switch,
sin, cos, arctan, sgrt, In, exp, abs, sign, entier, random, reed,
print, title. Otherwise, full freedom for variable names is per=
mittedteXGégt than only the last five characters are used. Thus
squareroct and cuberoot will look the same to SCALP, since the
lest frive letters are the same in e ach case, Furthermore, words

- 15 o

1ike witeh thet conflict in their last five ilstters with offisial Q~f

3CALP words, in this case switch, mev net pe wsed asg identifiers,
’ o D Iy

3.3t Symbsl Separator

All SCALP symbois, labels, and variable names are separated
by stop cedes, the key on the Plexowriter labelied

by

Dyads 1ike 2= are considered siﬁgiérsymbﬁlso 85 are all SCALP words

ilks bvegin, gotu, and ite, Stop codss must not be omitted or
misused, and great care in preparing the sourece tape muBt be

exereisade

se3.5 Number Representation im SCALP

Numbers may be ineluded in SCALP programs. Any legal ALGOL

number is permitted except that the foilowlng conventions must
ve Followeds :
_ 1, The nuwmber must be started and finished with anm O~
¢xtra stop code, so that a double stop code separates numbers
from adjacent symbols, ‘

2« There must be a stop code at least every five
charseters in the number, but complete freedom as to how much
more often they might be used is allowed, '

3.° The letter string fen is used in place of the ALGOL
subscript 40 o _
he The significant figure part must not exceed eight
digits, excluding sign and decimal point, (Since only about 7.5
gsignificant digits are available for computation, this restriction
causes no loss of accuracye.
| 5. The digit 1 is represented by an 1, a lower case-IL,

The foilowing examples are correct in SGALPe

x%gg?a+§22§gv
/ matn{veaﬂe39p3§9+31+39919
S GUET 09l 290 14040

xy2?,/11$,3571 5 an=151 0

3@306 Iﬁguﬁ

Numbers and data may be emtered when the problem is naing
run by using the read function, The fellowing format is used im
your programe

read?!{('vari?, tvar2? _tyarntjts?

There may be any number of arguments, and each may be a variable
name representing & simpls or subscripted variable of type sither
resl or integer, For exampls,

read?{tx?, 137 tTmatpie? (0147420000 0 hlat}tg?
rgad?(!n?}ﬂgv
At run time the read function will cause the system to call
for data input through whichever irmput device is connected (by

//—\ means of the toggle on the photorsader}, Small amounts of data
e may be entered via the flexowriter, but large amounts shculd be
entered through the photoreader for effisiency.
On the data tape numbers are typed exactly as cutlined in
section3.3.5 except the leading stop codes are not needed. Thus,
a data tape for reading the numbers
would be
211=101256112,79%ten?=23113,1417591 1 °
Notice that the double stop ccde is wsed to finish a number, just
a8 with numbers in your SCALP program, but there are no stop codes
at the beginning of each number.
, The number on the data tape need not agree in type with the
" corresponding argument of the read funeticm, Thus, if the program
_ is
N begintinteger'n?g?.
Y ‘ read? {tnt}dg?

-3

and the mumber =13.3°''is entered, n will be assigned the rounded
integer value =1i3,

.3@307 Outgi_st__g“z

Nunwbers are printed in SCALP by msang of the print function..
As with read, there may be any number of arguments and sach one
wmay be any type., Arithmetiec expressions may aiso appear as
arguments of the print function (which is no%t trae of the read
function). The following is a correct use of the print function:

print'(X',,“n9+”325ﬁ9,’917“?}?g“
fxpregsions of type real are printed in floating point in the form
+ s XXXXXXX +yy s
whiere ®.:xxxxxx stands for the seven digit fraction and +yy stands
#ar the power of ten. Integer expressions ars printed inthe form
+nnnnn
where nnnnn is an integer that may have leading spaces, In alil
cases, the plus signs are omitted, so that the constant pi would
zome oub '
.3141592 09
srid =17 would come out as
- 17 °
After each pumber is printed, SCALP executes a tab on the flexce=
writers,

10.3.8 Titles

Alphabetic information for labelling output data and for
other purposes may be printed at run time by the title funetion.
This function treats its argument as a letter string which it
prints out almost exactly as given., There are two exceptionss

1. There must be stop codes at least every five
characters, except as indicated in exception 2.

2 Typewriter controls are indicated by special code words
#1X characters long which must be preceded and followed by stop
¢cdea. Thess codes are:

)

carriage return BEATT !
upper ¢as8e & UoCo!
lower case S LoeBol
tab ¢ tab,!?
backspace ¢ bes8,e?
solor shift 3 CoS,!
stop code : ¢ stop!

*_?f(%he gingle space appearing in the last six codes is absolutely

essential.) The entire string is enclosed in parentheses. The
following shows a correct use of the titie function:

title'{'c w.c.'t'c le.c.this 1t'a a g'ood p'rogralme?)ts?
The printed result will be
This is a goed programe

The two typewriter controls eccarr, and ¢ tab, may also be
inserted as arguments in read and print statements., They must,
of course, be set off by commas, just as if they were variable
arguments, The following sxamples are sorrects

read! (Ycecarr.t,,'x1)37
printt (fecarr.?,,'x',,'y?,,'c taba.l,,'x?)?3?

Attempting to insert any of the other typewriter controls into
»&&d or print statements will cause an illegal variable error
stopoe '

3.3.9 Comments

The comment conventions of ALGOL are retained in full in
SCALP.

3.t Another Example

Te show more clearly how one adapts an ALGOL program to
SCALP, we leok at Algorithm 132 [ACM Communicatioms, V.5{1962),
August, p 43l.] The original algorithm as corrected, stripped of
i%ts explanatory comment and precedure heading, and with the
formal parameters included in ordinary declaraticns, follows:

- 19 =

begin integer i, n; real x0T, ¥v73 array x, yl1:10013 Q:f

Boolean b, answerj
xin+td ¢= x{1ly yinkl] = yi{1 3 b 3= true;

for 1¢=1_stsp 1 until n do
if 30 <y {1l =2 % > yii#ll) A
x0wx[$]={ Y=gl 10 x 441 1=x[1]) /{yli+1l=y[1])< O
then b ¢=bg ‘
answer:= "1b end

Notice that this algorithm contains (1) Boolean variables, (2)
Boolean operators, and (3) a step-until element. We must
eliminate all these features to be able to uss SCALP, which we

8o as follows:

{1) Declare b and answer %tc be type integer and let
+1 be trus and -1 be fulsse,

(2) Rewrite the long conditional statement into a
series of conditional statement tco eliminate the
Boolean operators. N

(3) Replace the step=until element by a while element.,

£11 these changes are made in the modified algorithm belows

begin integer i, n, b, answerj real x0, yO; array
x,y7 [1:100]3
x[{n+1] = x[1]; ylo+t] 3= y{1]; b= 15 1 3= O
for 1 =1 4+ 1 while 1 < n do
begin if y0 < y[i] then goteo Lij
if yO > y[i+41] the goto ncg
L2:if x0-x[i]={FC-y[1]) X (x[i+11-x[11)/(y[i+1]=y[11) <O
then goto okay else goto noj
I1s if yO> y[i+1] then goto L2 else goto nog

ckay: b ¢= =bg
nog ends
sanswer := =b end

Finally, we replace)(by #, < by 1%, < by lte, > by gt,
t by 2z, 1 by 1, comma by double-comma, and insert stop codes
to get a legal SCALP programe.

begintintegertit, ,'n',,'b?, ,Yanswer’;'realtx0?, ,y0ts?
arrayvxnpgwye[evlvvggsalgonn]v;t
xt{iptett]r] oe=tgt (0000008
y![nl+'!1!1]lgz¥y1[!tll!]13|
pra=11]tt g
jre=1108 g
fortite=tit+1t1vtyhiletitlte'n'do!
begintifty011ttyt [*iti'then'go to!Lit}!
1f'yC'gt‘y'[“i’+'°1"]’then’go to'noty!
L2|3g!if§x02axlili!]8,ﬂ(iy@ﬁ-!y![#iv]t)l
RGP RRERE AR RNERHUARAL RREDE
AKGR ARREAEIRSRARETAL AN R EANADEDEARIAN
then'go totokay'elselgo to'nol;?
N leggvifuyotgttyr[eiu+velvs]t
N thentgoto!L2'elselgo to'no'j!
okaytseibte=t-1h! st
not::tend?s?
angwer?! ;=t=1btend?
The above example, though péerhaps a bit hard te plow through,
$1lustrates how to adjust ALGOL programs for features of ALGOL
not included in SCALP, This example is a "bad" one since it
includes most features that SCALP excludes. You will find that
for most common problems the inconvenience will not be nearly
as great, '

)

IV (~
How to Run a Program in SCALP

itel Introduction

We will assume that the reader is able to use a flexowriter
off=line to prepare his sourece program tape. This preparation
is straightforward, but is is well to remember the input

~oheracteristics. of the LGP-30., Basically, all letters, digits,

and punciuation can be inputted, but typewriter controls cannot
{ezcept for TAB, which enters as a bimary 000000 when in 6=bit
node,) Thus, we have these rules:

ie There is no distinction between upper and lower case,

2. Spaces count as characters, so avoid their use except
in titles., Also, you may use "go to" in place of "goto®,

3 Do not use backspace to over=type certain characters,
since the resulting hard copy is very difficult to proofread, r
{Originally, it had been intended to use the backspace to have the
dovble comma ",," look like a single comma *," , a "::" like a
Mot g M=/M op M/=" 1ike a YA" and an "==" like an "=", However,
the siight imporvement in readabllity seems not worth the extra
effort,) n

4e 7You may use tabs to indemt portions of your program,
but bs sure the tab does not follow any non-blank character except
a ztop code,

You will also want to have your data tape prepared ahead of
times (For very small amounts of data, you may use the flexowriter
keyboard. See section l.5.)

‘1e£ Ipading the SCALP System

1If the SCALP system is in the memory, then you may ignore this
sention. Sometimes it is hard to tell whether it is or not, but
the best adviece is thisr 1if you are having trouble that you cannot

pinpoint, it may be that the system has been "damaged,” and you
shonld net hesitate te reload it., It goes without saying rthat
a photoreader is assumed, in whizh case the system may be
loaded in about four minutes without checksums or six minutes
with checksuma. TIf yeu don't have a photereader, you will need
& gpecisl lcader. (The loader that comes with the system uses
i000C orders only te inpub, and this works only with the
photoreader,)

The SCALP system tape is leaded by its own leader, which is
brought in with a 10000, ¢0003, 410000 short bootstrap., The
loader is & ome-track hex loader that goes into track 58, This
loading is done in l=bit, in the normal manmer., If the TRANSFER
CORTROL switeh is up (off), the loading is done with check. sums
&% the end of every track. If this switech is depressed {on},
the chsck summing is ignored and the reading speed increased,
After loading, the loader may be overwritten by matrix storage.

There are several ways to install the short bootstrap at the
bottom of memory. They are give below:

Lo If the SCALP system is in momery and relatively intact,
you may obtain the short bootstrap auvtomatieally,

8. 6=bit down, typewriter on, OCNS.

b, Type "boctstrap",

¢. Press START

d, Load system tape upside down in photoreader, set
input toggle to READER,

6o, Release 6=bit switch.

fo Press START

2. If P.I.R. 10} {or similar version} is intact in memory,
you may obtain the bootstrap by inputting this sequence:

g 0000000°% ,0000003710000t€000j?10000°

Placing the system tape upside down in the photoreader, turning
to READER, and executing OCNS will start the reading.

3, TIf there is nothing but junk in the memory, you use the
menual input mode as follows:

a. Typswriter on. :

bo MANUAL,"e000G", FILL, *10000", ONE 0P, EXECUTE.
c. MAWUAL, ®cCO0K¥, FILL, ®eCO00j", ONE OP, EXECUTE,
d., MANUAL, "cCO08%, FILL, "i54(0", ONE OP, EXECUIE,

{Locations 0O, 1, and 2 should now contain 10000, ¢0003,
10000, respectively.)

@, Place system tape upside down in reader, turn to
READER, and execute OCNS,

About the only comment to be made about this bootstrap is
that it is similar to the ¢ld 10.l bootstrap except (1) it goes
into. low memory where an OCNS can be used t¢ reach it, and (2)
the pCC00ts are missing,

4.3 Compiling

This desceription of compiling assumes the photoreader will
be used, If you prefer to use the mechanical reader, you may do
so without any mcdification te the compiler whatseever,

Make sure the system is in memeory, the itypewriter is Hurned
on and ready to go, and the photoreader is ¢m and ready.

&, Load the source program tape upside down in the
photoreader. ,

. Set the input teggie to TYPEWRITER.

ce Depress b=bit,

d. Perform OCHS,

ee Type "compile® and press START. (You are now at a
breakpoint stop.)

fe Set the input toggle to READER, press START,.

After about 8 seconds for resetting symbel tables, compilation
begins, If an error stop is printed, you will probably have teo
locate the error on the source tape, correct it, and recompile
from the start. Error stops are listed in = later section,

If there are no errors, the typewriter will type either
"Jone” or "lsad"., If it types done, you are ready to proceed
with the running of the problem, and should turn to section li.h.

Rl

" If it typew "load", your progrem has used cne or more of the

- 2 =

.

subpcutines on the LIBRARY tape., These ineliude the thrse power
operations, and the special functions in, exp, sin=cos, arctan,
sgrt, entier, and random, {The functions sign and abs, and the
input=output functions are ineinded within the main systbeio)
The 1ibrary tape is loaded as fellowss

g, Place the LIBRARY tape upside down in t he photo=
reader

he Set input toggle to READER (if not already thers.)

is Release 6-bit, press START

3o After "done" is typed, depress 6=bit and go on to
the running of your preblem.

A% step i the system gives you one extra chance to release
the &=bit button. If you had forgotton, it types "6=bith,
whereupon you should perform step i again. If you forget after
all this, you've had it} (Seriously, you may’ have to recompile

‘your program,)

The entire library tape is read, but only those subroutines
called for are actually placed in memory. Those not needed are
speeded through the reader by a series of dummy 10000 orders.

The library tape must bs loaded through the photoreader,
Unlike compiling, which ean be done through the flexowriter,
loading of the library tape through the flexowriter requires
a2 modification to the basic system tape. |

If something happens to interrupt the reading of the
library tape, you may recoup without. the necessity of re-
compiling by manually traﬁsferring to location 0037 (in hex,
0094). This is tricky, and if you aren't sure of yourself,

1% may be easier to recompile from the starte

One last remark. After any error message or other message
printed by the system, the breakpoint stop is followed by a
transfer to location 0000, Thus, pressing START willlgive you
loecativn 0000 more quickly than wiil OCKS.

- 25 -

holy Runnimg & Problem

Af'ter & program has bee
if necessary, the program is
tape, 1%t should be Llcaded in

this:

ob R

8. Turn input tog
be Depress b-bit

7 sompiliasd and

ready to rane.
the phetoread

“he 1ibrary tape loaded

&% o

you have a data
To get underway, de

gle to TYPEWRITEFR.,
{(if not alreadyl.

ce Perform OCNS (or press START if s message has just

been typed.)

¢. Type "start®, press START.

g, Depress RREAKPOINT 8 for scu

fo Turn toggle to

L)

READER if yoo

g+ Press START, and you are «ff

A1l of the data input may be through

opr kayboard without any modi
thaen give detailed instrueti
mechanical reader, we will a
input devices well encugh to
instructions by themselves,
through tne mechanical reade
It 2hovld be emphasized

5 Keyboard Programming

Sirwmous running.

ficatiorn %o the

gxd running.

‘ata ftape is thers,

ths Tlexowriter reader

system, But rathsr

ong for thoss whoe

prefer to use the

ssume thet +h&y understand the two

make the modily

The same zcume

To

nu

oy

%

cations to the above
applies to compiling

that all dats input is 6-bit, so that
the only time the 6-=bit butten should be 1ifted is when 10ading the
systew tape or when loading the library taps.

If you wish you may compose your program at the keyboard and

not prepare a source tape.

The same instrustions are followed
except that (1) the input toggle is kept at TYPEWRITER, and(2)
wherever there should be a stop=code you must press START, Be sure
that the MANUAL INPUT button on the typewriter is dépressedo Also,
be careful not to type anything or press START unless the input

light is one. Be especially careful on data input=-=wait for the

Inpat 1ight to come on before pressing the second START that

signals the end of a number,

Y

i
Erropr Stops

Error stops will be divided intoe three categories «= those
oecurring at compilie time, those geecurring at run time, and
others.

Tn all cases, & meaningful word o twe is printed eut, thus
giving the user an indieation of the trouble even befors he
consults these pagses. The error stops are listed as they might
seour, together with an interpretation and suggestions for
correcting the trouble. In what fellows, xxxxx 8tands for the
offending identifiers that is, "error var. x" may mean that
variable x has not been declarede.

5,1 Compiling Errors

These errors can occur during compiiing., In all cases, you
will have to correct your program tape and recompile., There is
ne provision in SCALP for reatarting=in=the-middle of a
compilation. (For the curious, this is because the double
push=down stack methed of compiling domsn't recognize a statement
as such., Consequently, when &n error SeiuUrs, there may be extra
or missing entries in the stacks with no way to backtrack to a

srevious semi=celon, for instance,)

error stop

meaning and remedy

ovflo const More than 30:different numerieal
constants used, not counting those
in array declarations. Treat some
constants as input data, or combine
them. {(¥1" and "1,0% are different
constants.)

ovflo expr Symbol stack has overflowed because
of too complicated an expression.
ook for deep nesting of parentheses.
Actually, it is the depth {of
nesting) rather than the length that
counts, Thus, xX:=a + & + ... + 23
(100 times)} will compile easily,
but Xgﬁ (‘{? oo {a) oo@)\) g (106
times will mnot.)

et o

- 27 =

error stops

ovflo store

ovilo symb

ovfle temp

array XXXXX

array bound

declr XXXXX

. label xxxXxX

meaning and remedy

Storage for program and array
data exceeded., Out down on
length of program, number or
size of arrays, or number of
size of switshes, Since only
74y locaticns are available for
program and arrays, you may .
havs tc segment your program
into several subprograms, or

go to a different computer,

Total number of different
labels and variable names
exceeds capacity of symbol
table (from 29 to 53, de-
pending on random way symbol
table fills out,) Eliminate
unneeded labels, plan multiple
use for working variables,
use constants directly, or(as
a last resort only) replace
several variables by a single
subscripted variable, -

Temporary storage exceeded,
Replace long assignment
statement by two shorter ones,

Array xxxxx appears as an
unsubscriped variable., Make
sure all arrays are subscripted,
check for a stop code between
the array identifier and the
-left brackst, viz., xxxxx'[? .

Upper bound < lower bound,
Check array bounds. Make
sure all array bounds are
given as integer constants,

Illegal symbol xxxxx in a
declaration, or the symbol
following a switch identifier

is not a 2=, Check declarations.

Symbol following a go to is not
a label, or a label is defined
twice. Check for using a
variable or ALGOL word following
a go to, or a multiply-defined
label,

- 28 -

error stop

N\ TVEBP o XXXXX

var. adj.

var. 77777

XXERX EXEXX

. digit
input
type

N

meaning and remedy

Symb@ﬂ being used as a variabls
is not a variable.,. Chesck for
undeslared variables, misaing
variables, or pessibly labels
being used as variables.

Variable or conshant adjacent to
a variabie 2r sonstant. Loz fér
missing opsrvation symbols,
especially® signs. May indicate
lack of double stop eocds !
following a numeriecal constant
earlier in the program, or misuse
of comment convention.

A variabiz is wmissing scomewhere in
the soures program. Lock for

ad jacent operators like %%,
Actual = = may be far removed
from symbol sausing the error stop.

A syntsctizal error of some sort
recognized in the double stack
compilaticn as an impossible
combinatiocn, The sesond symbol
is the ons just read in.
Rembesmber that all upper case
symbols will print in lower casej
thus, G insted of), Chesk use
of parentheses, use of begins and
ends, missing themn, incorrect
subseript formation, and incorrect
for statement format (@nly the
while types is allowed,)

The significant figure part of a
number has more than 8 digits, or
the exponent has more than 2 digits.
Round off to 8 or fewer figures,

or scale so as to avoid extreme
exponents,

Overflow on input; real number too
large to represent in fleating point,
¥umber should be smaller than

2128424 1%38.“n absolute size.
Variable preceding-a [has not

been declared as an array. Gheck to
see if all arrays have besen declared.

error stop meaning and remedy

(S/
title The symbol .
is not a (¢
gtetement,

fellowing title?
« Gheek title

It should be noted that there are some not unliksely errow
sonditions that do not have error stops and can isad te trouble,
The know ones are listed here:

l. In an array declaration, the constants must be integers,
If they ars real, or if you inadvertently imeclude & decimal point,

the array bounds will be ridiculous and ng wriming will be

flasghede This error couldbe detested at the asxpense of asome
vaiughle memOTrYe

2e TUndeclered leftepart variables are not dstected, Thus,
if you use an undeclared variable, or a 1ab319 on the left side
»f the assigmnment symbol := , there will be mnc warning. Again, o
this eouldb e detected at a slight cost in memory.

™e ahove two were the ones know at the time of this writing--

there may be others,

5«2 Run Time Errors

Even if a program 1s grammatically correct, it need not
produce the answers desired, The ways in which a program may
be logically incorrect are legion, but there are a few conditions
that can be detected and that may indicate trouble., For instance,
trying to take the square root of a negative number or coming
vp with & number larger than 1038 suggest errcrs in programminge
In all cases, the remedy is to reprogram, or to use the execute
or patch features (see chapter 6) and continue,

o

error stop

div ©

avilo

swich

power

ptype

meanipg and remedy

Division by zero has been
attempted in a divids apsration
or & powser operaticwr o the form
r! ALY whers v = (.0 i3 real
and § < 0 is8 an imbege~,

7

A real [ficating poin’'.

number is larger than 27

in absolute valus, This

ean cccur only on a temporary

or assigned held. Thus,

% gm?&ﬂ:ﬂ'ﬂ‘bﬁcﬂgﬂgﬂcvoo with a=

bm=e=2% =1 will n
9 I8

4 4 e
(SN

p
nENSE an
¢ replace
nuwbsr ©F Zerd,

The argument o¢f a switeh call

23 not in renge. If there are

rn praitions in the switeh
dselayatidén, then the argument
must renge from 1 %o 1, inclusive.

Erespr in & power expression.
Ieok for 0L T whers zeros may
be of any type, CAL where is

& negative integer and the zere
is a type inmteger, or al\b
where a < C, or & = 0 and b <
O fop veal a and bo

Occurs in iAj if 1 and J are

of type integer, but § is
nggative and the next term is
noet ¢f type real., Reprogramg
arranging for the 1AjJ to be
next to a real quantity,.
Actually, this error should not
be possible sinece ALGOL permits
full mixed expressions. However,
in SCALP, the mode of the
eomputation is determined at
complle tims while the type of
1/\3 is not known until run time.
Thus, if no fleat instruetion

has bpesn compiled fallowing thad

error stop

peint

input

digit

ovflo intgr

cvflo exp

ain
cos

- Inbegsr qus

meaning arcd rewedy

insgtraction, 3zn srror stop may
oceur, Delsw sre examples whers
this can hz PPen, where m and =
are integer and x is reals

"'ﬂu oﬂ

mﬂ emlonl, Ak
xt o“‘ﬂmﬂw? YJUAU =0,

x? 2m“m“A‘1m“ fff:n.%.vxu ot

The error ste p cannot oceur in any
of the following casess

b ANE AN ETANR RN &

m?omt xoE oy o 'M nga
X!gf."aiﬂg uﬂ;n +q Q‘rﬁ?oﬁ
mt ooem=ly;t 3"»‘3:{;“"“0’_‘*"9;3

nti4y=95999 in absolute
size tHoo e to print, Secaling
integer apritimetie is diffieult in
SCALP, In paprilicular, it is easily
possible to generate an integer
number thet overflows the uGP”BO
accumulatar without a warning being
flashed, (o> those with overflow ~
logis boards, there is no warning in
eny caseg for whose with a standard
machine, an osverflow on add or
subtract will cause an overllow
stop at lescticn 02h6,.)

See correspsuding srror stop in

section S5.1.

See corresponding error stop
in section 5.l.

"An integer = 32,768 has resulted

from an iA7J uperationQ or is
trying to besome floated,

The argument of the exponent function
is larger than In, 212 ~ 88,720

Number too large to allw wmomputing
the sins, or cosins, to even ome
significant figure.

erroy sStop meaning and remedy

sqrt Argument of the squars roct
funetion is negatives

entr Number too 1ar%e in absocliute
value {> 32,768) as arg nent
of the entier function.

in Argumenit of the 1n function < O,

About the only additional comment is that integer quantities
can become meaningless without a warning having been given., For
instance, work with factorials is severely limited in SCALP, I
you have a problem requiring integer arithmentic with large numbers
ef figures, you may have to program im machine language on a
variables word length computer.

503 Other Error Stops

serroy stop meaning and remedy

order : An illegal sommand to the
.. system has been typed, or
6=bit is not down. (Commands
to the system mean words typed
after performing OCNS.)
Check 5-bit. The onlg legal
commands are "compile 2 ¥start®,
"pootstrap™, “"continue”,
"execute", and patech", The
first three have been discussedg
the last three will be discussed
in ehapter 6, Debugging.

h=bit Forgot to 1ift the 6-bit

button before leading the library
tape. Lift 6=bit and press START,

w 33 =

Vi
Debugging

6.1 Introduction

An important,and oftem the most time-sonsuming, part ¢f =uy
programming task is debugging. This is the process of detesting
and removing logical errers in the program., {(Grammatical errcrs
are removed at compile time.) Even if ne run=time errors are
detected by the computer, the answers produced need mot be correct,
in general it is very difficult to say fer sure whether or not
the answers are correcty but often we zan d+«%set bad answers by
thelr inconsistency with each ¢ther or with vwevious caleulations.
fne canses of the errors (programming ervorz) are sometimes
eagily detscted, often not so easily, or mey e caused by round-
off errors, In the last case, fundamental and theoretical queastions
are invelved, and a complete rethinking of tha problem may be
neededs

Debugging has two phases == finding ths syrer (the hardest
part), and eliminating it., SCALP ineludes ths features now
discussed vo help locate the error and to change the program
witheout repragramming or recompiling,.

6.2 Tracing

flormally, only the print and title functions can cause a
wrintout. Tracing offers a way to inspect the intermediate
zaleulations as well. Tracing in SCALP is carried on as long as
the - TRANSFER CONTROL switch is on (depressed,) Printed under
these conditions are:

1, All statement labels as they czcur,
2 The name of each variable appearing on the left
aide »f an agsignment statement together with its numerical value,

A8 an sxample, consider the fellowing program segment where
x 18 reel and n is integer::

.

(

ntg=tni+t11171
ifin'ite?*3''shentgototlioopty?
next?ige?

o
(4
[}

If TRANSFER CONTROL is down while this segment is runm,

the following trace print out will resulit:

- X4

n i
x o 10G0000 ol

locop X « 1000000 0l
‘B 2

loop X 02000000 0l
n 3

loop X 6006000 01
B 13

next

L 2-%-]

It should be noted that only the variable name of a subscripted
variable is printedy the subscpipts themselves are not traced
and must be inferred,

7

Though tracing cen be time consuming on a long problem,
it is the simplest and often the most effeztive debugging tool,

6.3 Stop and Continue

At any point during the rumning of your program you may
stop it by 1lifting BREAKPOINT 8., Performing OCNS will then
permit you to use the execute and patch features given in
sections 6.l and 6,5, Or, if you change yur mind before
performing OCNS, you c¢an to on with your program by depressing
BREAKPOINT 8 and pressing START., Or you can step through your
program one insruction at a time by leaving BREAKPOINT 8 eoff
(up) and préssing START for each imstrustion,

If you wish to continue your program, whether or not you
have used the sxecute cor patch featurss, do this:
&, Perform OCNS,
be Type "coniinue®,
to DPress START,
d. Depress BREAKPOINT 8 for comtinucus running,
-8, Press START.
The program then continues from where it left off,

boly Exscute
At any point during the running of your o

ogram yew may stop

ite mwning and execute any SCALP statemen’ von wish, You mey

- #Xecute &s wany statements as you like befors zontinuing with
your problem a&s described in the previous ssciion., The procedure
is this:s

a. Lift BREAKPOINT 8.

be Perform OCNS3,

¢c. Type "execute”, press START twice,

d. When the light comes on, type amy legal SCALP
statement. Be careful to press START for every stop=code
sncountered ¢ the stop=codes need not be typzd at all, but it
may be easier to do so tham to change a habit,)

2e When you type a 3' indicating the end of the
statement, it will be compiled, executed, and forgotten, After
the breakpeint stop, pressing START will give you location 0000
{the same as thing that OCNS achieves) and you can then give
another command (such as "econtinue" or "execute™) to the system.

Some ways in which the execute feature may prove useful
are: |

1o Dumping: After the light goes on, typing print (:mi)tg?
#iil' caul% the value oflx to be printed. (Remembexy on the
teyboard press START in addition te orin place of each stop-code,)
More complicated expressions, including subscripted variables, may
be printed,

Changing values: A goes on, typing x°e=t!
17,.53429, xtg=tt200%ixtgt

whieh double the current valuve %, [Agesin, press START for sach

will changs the

stop-vede ensountersd,)

4, Jumpings You may transfer e & labelled state .2nt in

youy program. For instance, begintzle=it35,2173goto Iocplend? s’
wi1l change the value of x %o 15,2 and then transfer control to the
statement labelled leop. WNotice that sinze we wanted to execute

two simple statements, we grouped them with a begin=-end pair.

Some Turther comments about wusing sxescubes

i, Don't forget the semi-szul
5, Tf the statement tec be exesubed ezlls for a function or
ions from the iibrary tape, 1% wugd be loaded., The system
doea mot remember that certain of these subroutines may already

be in memory. Furthermore, the mnew copy of a duplicated
subroutine will, in effect, replace ths 51d cepy. Since a second
exscute wiil wips out the program ieft by the first, a crucial
subroutine may be leost. To &vaid thiz unfortunate situationy
2ither {a} da not use construstions that call for the 1library
tape, on)} make sure the last exscuted statement utilizes all
subroutines used in both the main program and in at least one

of the previous executed statements. [This is an unfortunate

trap that could be remedied with another track or two of

memory to be taken from program and data,)

3, The original symbol table is kept intact, s0 do not use
as. labels any identifier used as a iabel in the main program. You
may declare new variables, but do not make any declarations in
sonfiiet with the original deelarations., If you declare new
variablésg you must also enclose the statement in a Dbegin=--
end pelre.

o T4 is entirely possible for awm sxesuted statement to
require more memory tham is left over. However, after each
executicn is completed, the availiablie memory reverts to its

state at the end of compilation, excep®t ®thet “he symbel tables aund
matrix storage assigrnments retain their rew asatus, There is also
the problem ¢f the subroutines mentioned I1x item 2 above.

5. For moest purposes, the possibis probliems mentioned in
items 2 and i occur only rarely, and execubte provides a simple way
of performing many debugging tasks in the acurce program language.,

6. It is pussible to use execute tc imitate the operation of
a desk calculator, but such operation is not recommended,

&e5 Pateh

Your program may be permanently modifisd by patehing,.
Patehing will actually insert the inputted pilece of program,
*hysically, it goes at the end ¢f your existing program, but is
tied %c it with transfers. TYou specify whers the patch is to go
by giving a statement label; if you have no labels in your program,
you cannct patch, A sequence ¢f patches adds permanently to the
rrogram in memory, and may exhaust memory.

A pateh is a compound statement that iz inserted between a
statement label and the statement thus labelisd, It must begin
with & begin and end with an end, whether a single statement or
not, and doss not need 8 final semi=colon &s does execube, New
variables may be declared, but they should wnet conflict with
previcus declarations nor should defined lables be redefined.,

The procedure for patehing:

a, Lift BREAKPOINT 8,

be. Perform OCNS.

c. Type "pathe", press START twice,

d. Type the desired label, press START

es Type the patech, starting with a begin

Fs At the end of the pateh, after typing end, control
returus to jocation 0000 after a breakpoint stop,

As an example, suppose in a shile type for statement, you forgot

3 - -

to initialize the running variable:

N

o
-4
o

loopisetfortit+! 11t 'whileti’ltetntdotl3r g

where S 13 the iterated statement. You may correet by typiag,
starting with step d. above,
loopioegintite=t1Gi1tend?

The net logical result will be
©
©
‘ ..
loople:tgotoipatehl? g loopli g tfaptite=tjigeio]re,
. :

-]
patehli e it e=110 st gotatioopltiy?

Thus, insertions can be easily made, but they must always be tied
to labelled statements,

Correcting an erroneous statement can alsc be done, but not
as simply as can 1insertions. If we think of the program between
two labels as a program segment, we must replace the entire segment
containing the erroneous statement or statements with a rateh
that ineludes the corrected segment. As an example, suppose &
guadratie solving routine appears in part thus:

. :
xy1=:3|r00t1!g:tnbl/112€|%!al—la?g!
root2f i®=trootli4t 121 tRtet 3t

heret st tprint' (Yoeces

We quickly recognize that we should be dividing by 2a, not dividing
by 2 and multiplying by a as shown. That is, we have forgotten
the parentheses, To correct the error without recompiling, we
eall for pateh, After typing "patch"™ and pressing START twice,
we Type
'xyztbeginsrootlvgztbt/:guuZwv%fa:):-w&zgt

root2t e=Trootlt+it21i%lglgs

go to'here'endt
Notice that the last statement in the pateh is a goto,

= 30 =

Obviosusly, patching would be easier LU ¢ur program were
liberaily sprinkled with labels, ;
If the labei that identifies the palsn Lz ililegal, au errver
pateh will be printed, Perform OCNS and atsrt againe
Two points should be emphasizeds
1, Do not type a ::? after the idsntifying label.
2. Pateh requires a begin === end but no semi=colon,
whereas execute requires a simi-cclon even if it has a begine--end.

(s

ViT

For Experts Only

This short chapter contains some Tacts that are not
necessary to the running of the SCALP systembut that may be
interesting to some readers. The title of the chapter permits
us giving only the briefest of explanations for these facts,

7.1 With Referemce to ALGOL

Twven though chapter 3 illustrates snly very simple ALGOL
constructions, SCALP has all of ALGOL except those features
14sted in chapter 2, and certain minor restrictions mentioned
in chapters l and 5 {integer constants aust be used in array
declarations, and the problem coumectsd with error ptyp&.)

Even a ¢ b, where a and b are integers and b<0, is performed

by 1/{8e800.8) (=b times), so that a can be <C as well.
Mizxed real and integer expressiors, nested conditlonals, and
complete subscript freedom are alilowed, Labels can be numericét
or otherwise, Full freedom with the ecmment convention is
silowed (eRcept be careful to not set off an end, else, or; by
stop~codes unless you mean tol) Nested arrays are allowed,

such as aft[rar[rir ,v41]¢, tkt]?, Tterated assignment statements
are permitted 'to any depth. ‘

7.2 With Reference to FORTRAN

Some users may be familiar with FORTRAN rather than ALGOL.
For them, these comments apply:
1. Decglare all variasbles in SCALPg in FORTRAN those
beginning with I, J, K, L,M, or N are assumed integers
2, Mixed expressions are not allowed in FORTRAN, but
are in SCALP and ALGOL. For Instance, AVE=SUM/N is not allowed
in FORTRAN, but average's='sum!/n'3? is okay in SCALP.

\a

o SCALP and ALGOL use the semi-»-lor ag a statement
geparator., Thus, there is ne need for the FURTRAN eontinuation
convention,

' lte Alphabetic labels are permitted /and encouraged!
in SCALP? and ALGOL.

5. ALGOL permits a much more genevsl conditional ox
if statement. Despité the simplicity and usefulness of the
FORTRAN if statement, occasional programmers scmetimes find it
hard to remember where to put the commas, and whether it is
LTyt OP " I,

6. ALGOL has a different form for the for statement,
ﬁ@r@bg@ﬁ%al then the FORTRAN DO statement, {SCALP permits only
¢ limited type of for statement, which is probably less comvenient
than the FORTRAN DO.) _ _

Te Arrays and subscripts are iimited in FORTRAN to
thres=-dimensions and integer expressionz of *hs form cl¥v + 82,
where the c¢'s are constants and the v is &n integer variable, Ne
such restrictions in ALGOL-SCALP,

Compiling is done with a double stack ZLasi=in, firstecut
algorithm adapted from Samelson and Bauer., The symbol table
folicws the suggestion of E., J. Williams, The details are too
rumerous to ineclude here, although the ceding sheets and bloack
diagrams might give some information.

The compiler writes the object program direstly into memory,
and entirely in an interpretive language, Even integer operations
sre interpreted. (This means that the simplest subscripted
variable requires about 0.5 second per subscript positiom at run
timee) Divide~into and subtract-from instructions are used, as
well as float, round, and a series of arithmetic operations that
iloat an integer quantity as it comes form memory. There are two
kinds of holds for sach type of variable, one that ¢an be traced
{used for assignments), and one that can't be traced (used for
temporary holds.)

)

This remark should go inte cheptsr 53 If you interrupt am
execute %o start another exscuts, you will end up in an execute
leop whem you type "econtinue?,

7 o;'.‘. R'&lm@‘i

The interpreter recognizes 52 different instructions.
Besides the integer and floating point instruetions, each special
function has a corresponding instruction. All integer arithmetle
is interpretive, but no precautions for cverflows are taken. All
floating poiut is unnormalized gxcept before holds and when
entering subroutines; this speeds things up with no less in
sceuracy in virtuwally all eases.

No extensive timing ealeulations have been rum, but some
sstimates have been made. These must be considered as accurate
to about 1.5 significant figuresc

floating add 390 seconds
floating multiply o230 W
subseripts, each{min,}.5i0 "
integer add 020 ¥
integer miltiply 0190 "

%5 estimates have yet been made of the subroutine running times
for the special functions,

7.5 With Referesnce to ACT IIT

Although it was not the intention to have this ALGOL
system compete speed-wise with existing systems, the urge to
compare it with ACT IIT is irresistable,

For ease of use, SCALP should be comrared with AGT III,
mode 24, a stripped-down load=and=go version. SCALP can handle
larger programs in some cases than can ACT III-24, and is
eagier to use. On the other hand, ACT III is very fast at run=
time, beating SCALP by 20 percent or 8o, depending on the
particular mix of operations,

=h_3='

o

One big difference is that ACT IIT compiles subroutine jumps
in machine language for floating peint, rather tham interpretive cede,
Typically these subroutine jumps are six instrustions long, Consider
twWo exampleste

ACT TI1 SCALP
FExample 1: af#iprgigte Gl g=Tgietblg!t
b a bf a
h addtemp af b
b b hf ¢
r add , 3
ot
h c
6
Example 2: a'+ibt+ici+idstet? el s=lglgiptgTgiplgls?
b & ... Pf a
h- éddf"é%’]p af b
b b af]
r add af d
a K hf e
h $1 g
b 1
h add temp
b]
r Xadd
u .
h t2
b t2
h addtemp
b d
r add
.]
h e
18

:_/'/

These examples show how (1) ACT ITI uses up memory more quickly
than does SCALP, and (2) in so doing achieves faster run times
by jumping to special subroutines only when needed. The integer,
svbseript, and looping arithmetic in ACT III is a2ll done in
machine language,

On the compile side, SCALP wins out by a factor of aimost
2 to 1. The double stack compiling scheme is extremely fast,
but the chief reason is that SCALP uses & symbol table based on
threaded lists, Briefly, each incoming symbol is placed in one
of the 6k equivalence classes, and then the search is made within
the class. Most of the time the search has to go only 2 or 3
elements down the sublist, Practically all the SCALP symbols are
found irmediately at the first level of the sublist. Another
festurs is that the symbol table reset procedure is part of the
system in SCALP, but must be separately loaded in ACT TIII (tape
T‘ﬁ')o

Tn the area of debugging, SCALP both wins and loses. SCALP
has very simple and effective trace, execute, . and patech options
that are unmatched: 3m other systems, On the debit side, an
error at compile time means recutting the source tape and starting
over., In ACT ITI one can easily switeh to typewriter and insert
the correct statement by hand, then ad just the source tape in
the photoreader and continue the compilationg

Tn the area of subroutines, SCALP easily and automatically
loads only those subroutines needed, but give no flexibility for
ineluding new subroutines. AGT IIT requires that all subroutines
that are a part of a given systembe loaded, whether they are
needed or not, However, ACT III does permit the user to prepare
with SPAR his own special system ineluding only those subroutines
desired, though this process is very complicated.

7.6 Subroutines and the Library Tape

The library tape contains ten subroutines

- 45 -

integer A integer

in

real /) veal lor integer Lﬁraal
exp

real A integer

sin-gos

arctan

sqrt

entier

random,

All swbroutines contain a multiple of s3ix insiructions. A code
@ord at the start of the subroutine gives ths nmumber of imstructions.
and the address in the interpreter threugh which the subroutine
is rsached, The loader checks a ten bit ecds word. TIf the
subroutine is needed, it is loaded intc the first availabile space
in memory. If it is not needed, it is bypassed by a series of
six 10000 orders, repeated until the next subroutine is reached.,

The realZ&real uses both 1n and exp, and all three are
loaded if needed. Or exp or 1ln may be loaded separately if they
alone are nseded, Sin and cos use the same subroutine, with a
flag word on entry telling the difference. S8qrt operates by
Follewing a good starting approximation withtwo iterations in
fixed point. ramdom uses an untested junk ecalculation that Sesms
to give numbers having a resemblance to. pseudc: random.mumbers in
the range O< x<l. Subroutines ln, exp, 8in=scos, and arctan use
Hastings approximations.

7.7 Some Remarks on Efficiency

The running time for equivalent programs can differ widely,
and in ways that depend onthe particular computer or system,
Two features of SCALP, permitting mixed expressions and fulil
subseript freedom, should be considered if running time is crusiai,

& third feature common to practically all campllers should also
be considered,

a

=

@

C)

1, The SCALP ecompiier imserts float operations as

needed to permit mixed expressions, Thus, if x is real, o
xie=t1]11t41xt¢e! 15 compiled intesbi integer constant 1

float

ef X

hf x
A more efficient construction is to make constants real if they
sre used in real expressions. Thus, PARARNIPARE A 48 &
would be c ompiled &as:

bf real constant 1.0
af b 4
hf x

{Incidsntally, ''l.'! is a legal representation of 1.0 in SCALP,.)
1% is poussible to have & compiler perform such floating of
constants at compile time, and this should be recommended for the
future.

2., The long time needed to compute subscripts dictates
that the number of subscripted variables encountered at run time
should be minimized, Thus, instead of

k!:m!!{)llgﬂel[iiﬂgy!j!]!gﬂ!!(}ogﬂ?gt
fortkte=tk!+3111yhilefk!ite'ntdo!

el [ti!,,ljv]Sg:ﬂc! {1119’ejv‘§e+«1@s {913993}{0]4%9139[aku’mzjx]v;v
g3 the familiar inner loop of a matrix multiply, one might use

kte=110ttgtgum ' :=1 10,0 " 3?
fortk!:=tk!'+111''whiletk'ltenldo!
sjm?t:zy!sum_vl.pvat[ti!B’Ikv]ﬁ%!b[iktgsﬂjilﬂgt
ot [tit”Vjt]ig=vsm;I;1
3, As is true in most present day compilers including

SCALP, the compiler does not evaluate constant subexpressions at
gompile time. Thsrefore, if you do all your constant caleculations
in & preamble to your progran, the running time will b e lowered.
For instanece, instead of using

o?

IA-ARL ARV T A RETRR

in the body of your program, replace thisby

ttwopit

which 1s evaluated by: twopi?s=?12115%903 4715921120

at the start of the program,

sxpressionby hand,

Or you could calculate such a sinple
It should be recommended that future compilers

perform the constant arithmetic at compile time is such obviocus

saseg,

- 18 =

L ¥

(ot

&7/

