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ABSTRACT

This thesis investigates a decision process which is designed to

employ multiple observations in an optimal manner as a means of solving

a signal detection problem. The characteristic of this decision

process is that it permits the decision-maker to defer his detection

decision until new data is obtained from the next observation and

to weigh the new data with an opinion based on previous data. The

effect of adapting a decision to the results of previous observations

is seen to be similar to a learning process which is taking place

over a length of time. Since the decision process may involve

relatively lengthy periods of time an estimator of this time is

developed. Lastly, the decision model is seen to provide a model by

which human detection behavior may be evaluated.
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I. AN ADAPTIVE DECISION PROCESS

An integral part of a signal detection process is the application

of decision theory methods to the problem of determining whether or

not the signal of interest is present. The techniques of decision

theory assist the decision-maker in making a detection decision in

the presence of random noise, with minimum error.

Classical detection is concerned with deciding the presence or

absence of a useful signal in the presence of random noise after a

single observation of fixed length has been made in a signal environ-

ment. The detection process may be complicated by a requirement to

detect a signal with unknown parameters. This thesis will investigate

a procedure by which multiple observations of a signal environment

will assist in detecting such a signal.

The emphasis of this thesis will be on the discussion of a

decision process which is designed to make use of multiple observa-

tions and on the application of this decision process to the problem

of detecting an electromagnetic signal with known characteristics and

transmitted on an unknown frequency. The decision process by which

this is accomplished is shown to have optimum properties which may

be applied to other detection problems involving multiple observations

The decision process by which the detection of a signal with an

unknown parameter is accomplished will be referred to as an adaptive

decision process . The characteristic of this process is that it

permits the decision-maker to defer his decision until new data is

obtained and to weigh the new data with an opinion based on

previous data.



II. STATEMENT OF THE PROBLEM

The problem which is to be investigated in this thesis is the

application of an adaptive decision process to detect a useful signal

in the presence of random noise when a parameter of the signal is

unknown. The process employs a scanning procedure in which a detec-

tion device may take repeated "looks" at a set of locations in

which the useful signal is suspected to be present. The objective

of the scanning procedure is to arrive at a state in which the

unknown parameter is known and the useful signal is detected or

conversely be in a state in which it is known that the useful signal

is not present. Further, the decision process has the capability

to make use of information derived from the preceding k-1 scans

when the k scan has been completed.

The nature of the decision process will require that the useful

signal have certain minimal characteristics:

1. The useful signal must exist long enough so that a

minimal number of scans may be made. (The minimal

number of scans may be computed; this topic will be

discussed later.)

2. An a priori probability can be assigned to the event that

the signal of interest is present in the set of locations

being scanned.

3. Only one useful signal is present in the set of locations

being scanned.



III. BACKGROUND

Classical detection theory is concerned with deciding the presence

or absence of a useful signal in the presence of random noise after a

single observation of fixed length has been made in a signal environ-

ment. The goal of this procedure is to make a detection decision

with minimum error. The detection error is due to the noise which

tends to mask the useful signal in a random manner. As a result,

"guessing" is required to determine the presence of a useful signal;

thus one signal may be confused with another or may go entirely

undetected. The random nature of the background noise and the

dependence of the useful signal on random parameters suggests

decision theory methods should be employed in resolving the detec-

tion problem.

A. DECISION RULES

The decision theory approach to the detection problem begins

with the formulation of the input to the detection process as the

union of the useful signal m(t) and the noise n(t) , given

as functions of time,

f (t) = m(t) + n(t) .

Next, it is necessary to compute the a posteriori probability

that the signal m(t) is present in the received function

f(t) = m(t) + n(t).

The a posteriori probability P(m|f) that the useful signal m(t)

is present, given an input signal f(t), can be expressed as

I

. _ P(m)P(f |m)
P(m|f) - ¥m .



Further, f(t) is a compound event so P(f) may be expressed as

P(f) = P(m)P(f |m) + P(n)P(f |n) , and

P(m) + P(n) = 1 , where

P(m) is the a priori probability that the useful signal is present

and P(n) is the a priori probability that the useful signal is

absent. After substituting for P(f) we have

v( i-v P(m)P(flm) L
UB| ; ' P(m)P(f |m) + P(n)P(f |n)

" L + [P(n)/P(m)]

The quantity L is the likelihood ratio and is defined as

L _ P(f i

P(f n) *

The a_ posteriori probability that the useful signal is absent may

be expressed as

r/«I« P(n)/P(m)
FU|t;

" L + [P(n)/P(m)]

Lastly, the ratio of the a_ posteriori probabilities equals

P(m f)_ = P(m)
L

P(n f) P(n)

Next, on the basis of the input signal received by the detector

and its likelihood ratio (L) , a signal detection decision may be made

according to a decision rule, such as the following rule,

If L ^ L , the signal is present;

If L. < L < L , no decision is made;

If L £ L^ , the signal is absent.

The terms L. and L are referred to as thresholds; their values

are determined by the detection error which is allowable in the detec-

tion process. This decision rule will be of interest in later

discussions. This decision process is called a sequential process

because of the manner in which input data is handled. For each



observation, of a signal environment for example, a likelihood ratio

(L) is computed in the manner described above; this L is compared

to L^ and L , if L^ < L < L no detection decision is made

and another observation is made. This process continues until L

exceeds L. or L It is well known that with probability 1

the sequential process will stop after a finite number of observations

at which time the threshold L. or L will have been reached.

In previous discussion of the detection process, it was noted

that the random effects of the noise portion of the input signal

could cause errors in the detection decision. Two kinds of errors

are possible:

1. The false alarm error which results from interpreting

noise to be the sum of signal and noise; the false alarm

probability is denoted by F.

2. The false dismissal error which results from interpreting

the sum of signal plus noise to be just noise; the false

dismissal probability is denoted by 1-D, where D is the

probability of a correct detection.

*
The values of the thresholds L. and L will be defined as

k

T* 1~D AL =
1=F '

and

L* = F/D .

Lastly, if the concept of costs of errors is considered, the

optimum decision rule is the rule with the smallest cost. Let C-i_n

be the cost of a false dismissal and C be the cost of a false
r

alarm; the costs of correct detection and correct dismissal may be

taken to be zero. If the observer pays the cost corresponding to



which of the two errors occurred his expected loss or risk is

Risk = P(m)(l-D)C. + P(n)FC_ .

B. ADAPTIVE DECISION PROCESS

A large number of detection problems exist in which the detection

decision process is complicated by the requirement to detect the

presence of a useful signal which has unknown parameters. Fralick

[1] proposes an adaptive decision process to handle this type of

detection problem.

The adaptive decision process employs a decision rule which

allows the decision maker to defer a detection decision in a manner

somewhat similar to that discussed in the sequential decision process.

The primary difference is that the adaptive decision process accumu-

lates information through a recursive process in which the detector

might be considered to learn the nature of the unknown parameter;

the sequential decision process merely takes another independent

observation then computes and compares a new likelihood ratio,

based on that observation, to the thresholds.

IV. ADAPTIVE DECISION PROCESS MODEL

For convenience, the input to the detector in this model will

be denoted by the symbol f, . (t) as a way of indicating this

particular input is being considered during the interval

kT <: t £ (k+l)T.

From development of a likelihood ratio in preceding discussion,

we may state that

P(f |m)

L(f^) -
fcfl' P(f

k+1
|n

10



Now let the useful signal have an unknown parameter T which is to be

measured; i.e.
?
m(t) = m(t,T) and T varies continuously. Then

from the following likelihood relations, where P(T) is the a. priori

probability that T is present,

L(£
k+1

|T) = P(T)
p(f^ |n)

, and L(£
k+1

) = jL(f
k+1

|T)dT ,

we get, after substituting where appropriate, that

fp(f, |T)P(T)dT
T (f ) = £!±

,

k+1 p ( fk+il
n)

When the input signal fi +1
is being examined by the detector, the

signals f .. , f
9

, •••, f, have already been examined. We desire to

make use of the results of those examinations and to do so in an opti-

mum manner. The Bayes optimum way to use the prior inputs f- ,f _, . . . ,£, -

is to compute a likelihood ratio based on these prior inputs,

L(£
kl

£r f 2'---' £
k-l ) " jL(f

k
|T)P(T|f

1
,£

2
,---,f

k_1
)dT

where any f.,i < k, may or may not have had a useful signal component

m(t,T). Fralick [1] shows that a recursive relationship may be derived

for P, (T) . In Appendix A it is shown that P i.( T ) is related to

P, _, (T) by the following recursive relationship,

P
k
(T) = *

k_l(
T) ;—^ +

-
, where a - -j^- ,

P(T) is the a priori probability that the parameter T is present.

This recursive relation may be considered to be the result of a

delay-feedback loop or learning loop in which the value P^i (T)

serves as a memory of past observations. A diagram of the informa-

tion flow which creates this loop is shown in Figure 1.

11
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The operation of the physical realization of the adaptive decision

process is straightforward.

1. The input to the process is obtained from a likelihood

ratio computer capable of providing L(f, |t) for each

possible value of T in the range being scanned.

2. The values of P (T) for each value of T are computed

in the learning loop. The learning loop is initialized

with a value P (T) , the a_ priori probability that a

signal with the parameter is present when the detection

process is started.

3. As the values of [L(f |T) + a] and P
k-1

(T) become

available, they are multiplied and the product then

integrated.

4. Once each T seconds P, (T) is sampled and compared

against the threshold to determine if the useful signal

is present or not.

Fralick [1] discusses the application of an adaptive decision

process to the design of a radio receiver for use in locating electro-

magnetic signals with known amplitude and phase characteristics which

are transmitted (for long periods of time) on an unknown frequency.

Typical results were that the signal was identified by the receiver

in ten sweeps across a frequency band in which the signal was known

to be located with a signal-to-noise ratio of -11 dB and 100 sweeps

when the signal-to-noise ratio was lowered to -17 dB. It is noted

that the unique signal of interest must be on the air for a length of

time sufficiently long to allow multiple looks throughout the frequency

band being investigated and further that the receiver model is respon-

sive to only one useful signal in the frequency band being scanned.

13



V. OPTIMUM CHARACTERISTICS OF THE ADAPTIVE PROCESS

Wainstein and Zubakov [2, sec. 57] discuss the problem of detecting

a signal with an unknown parameter and combining measurement of the

parameter with detection. They view the problem as one which is re-

solved by using multichannel receivers (detectors); i.e., the band of

frequencies containing the carrier frequency of an electromagnetic

signal in this case may be quantized and each channel tuned to a

separate portion of the frequency band. Multichannel receivers may

be divided into three catgories depending on how the detection and

measurement process is performed:

1. Type I receiver first carries out detection and then

measures the parameter.

2. Type II receiver carries out detection and measurement

in parallel.

3. Type III receiver first measures the parameter,

expressed as a likelihood ratio, and then uses the like-

lihood ratio to verify the presence of a signal with

the measured parameter.

The multichannel Type I receiver is claimed by Wainstein and

Zubakov [2] to be the optimum receiver for detection; it is optimum

in the sense that it has minimum risk associated with the cost of

decision errors. Fralick [1] shows that an adaptive (or learning)

process may be employed on the multichannel Type I receiver provided

the prior probabilities, that the parameter of interest is on a

particular channel, are independent. The learning process updates

these probabilities on each channel in the recursive fashion

14



previously described; i.e. the value of P, - (T) is modified. When

learning is completed, all the channel probabilities will have gone to

zero except for the channel that contains the parameter of interest;

that channel will have a value of P, _. (T) > 0. The effect of the

recursive updating is to adapt the multichannel Type I receiver to

what is effectively a single-channel receiver.

If the input to the detection system can be scanned serially,

one single-channel learning receiver may be used as a detection

receiver instead of the multichannel receiver which operates in a

parallel scanning mode. As has been noted previously, this restricts

the application of the learning process to a single event which occurs

frequently in the interval we can observe or which is present long

enough to be scanned.

VI. MEASURES. OF EFFECTIVENESS

The detector (receiver) which employs learning on serially

inputed data has, initially, a detection and measurement performance

capability equivalent to the Type I multichannel receiver as

described previously. As the detector adapts to the parameter of

interest through its recursive learning process, its performance is

approaching, and finally reaches, that of a single-channel narrow-

band receiver; which has the same effect in improving signal detection

capability as would an increase in the sensitivity of each channel of

the multichannel receiver. With an adaptive detector a lower signal-

to-noise ratio (p ) is thus required to achieve given values of correct

detection probability (D) and false alarm probability (F) than would

be required with a multichannel receiver with the same sensitivity.

15



Wainstein and Zubakov [2, p. 299] show that for given values of F

and D, where F is small, the threshold signal-to-noise ratio for

a multichannel receiver with M channels is

ln| + InM

m m 71 1
•

ln
5

For a single-channel narrow band receiver such as the learning

receiver working on serially inputed data, the threshold signal-to-

noise ratio required to achieve the same level of detection

probability and false alarm probability is,

The ratio \i M/y may be used as a measure of the improvement in

sensitivity which would be expected when a recursive learning device

is being considered as a substitute for a multichannel device with-

out the learning feature.

The time that is required for the adaptive detector to make the

transition from a device with a multichannel capability to a device

with single-channel characteristics is a second measure of effec-

tiveness. Fralick, e_t. al_» , [1] used simulation techniques to

determine the transition time for various signal-to-noise ratios;

the observation was made that closed-form expressions for the

transition times were not known.

Wainstein and Zubakov [2, p, 361] note that for the situation

when F and D are specified and the observation time is left as

a random variable, the optimum decision rule is the Wald sequential

probability ratio test (SPRT) with the thresholds L and L.

16



given by the formulas

t
* 1"D AL =

I=F '
and

L = IL
* D

Recall from previous discussion that

y
L
lnD = lr| ,

where u is the threshold signal-to-noise ratio for a given F
Li

and D, when F is small. In view of the relation of the ratio

F/D to both the lower threshold of the SPRT and to y , it is
Li

proposed that the characteristics of the expected number of

observations made in a SPRT, before a decision is reached, be used

to develop a measure of the transition time for an adaptive detector

to attain the level of performance of a single-channel receiver.

VII. DETERMINATION OF TRANSITION TIME

The proposed use of the expected number of observations made in

a SPRT as a means of estimating transition time is based on the

similarity between the SPRT and the adaptive decision process. First,

there is the relation of the ratio F/D to both the lower threshold

of the SPRT and to y . Second, there is the quantitative demon-
Li

stration in [1] that the adaptive decision process terminates in a

finite number of observations provided the threshold y is exceeded

by the useful signal; it is well known that the SPRT, with probabil-

ity 1, will yield a decision after a finite number of observations.

Based on this tenuous similarity between the thresholds and

observation characteristics of two decision processes, the expected

transition time which will be developed here is only a weak estimate

17



of the true expected transition time. It is strongly suspected,

though, that it will be a conservative estimate in that it will

overestimate the transition times.

Following Sverdrup [3], the derivation of the expected number

of observations in a SPRT is developed in Appendix B. From that

development we get the expected number of observations E(N) to be

F 1-D
Dln£ - (1-D)ln^|

E(N) = jjjr^T , where

Z = In&il
g(f ^f and Z i .

n)

VIII. COMPUTATION OF E(N)

As an example of the procedure for determining the expected

number of observations, E(N) in a signal detection problem, we

will apply the relation derived in Appendix B to the adaptive

receiver process described in [1] and compute the number of ob-

servations which would be expected for the receiver parameters

described in [1]

.

The adaptive receiver described in [1] operated with a false

-4
alarm probability F = 10 and a correct detection probability

D = 0.5. The adaptive receiver was used to determine the frequency

of a sinusoidal signal with known parameters of amplitude and phase,

Wainstein and Zubakov [2, p. 174] show that the likelihood ratio

relating to this set of conditions has the form,

2~

g(f

g(f

m) 1

nT
=

l+"y
exp

2(1+ u)

2
where y is the effective signal-to-noise ratio and Q is a

parameter which describes the envelope of the signal of interest,

18



After taking the natural logarithm of the likelihood ratio we get

2

-in Ail

which has an expected value,

n)
ln

1+u
+

2(1+ u)

E(z) =ln^ +E^__^_j .

2
Evaluation of E(Q /2(1+m)) could be quite difficult if the

exact nature of the envelope (Q) were not known; substitution

eliminates this problem. Wainstein and Zubakov [2, p. 176] discuss

2
the use of the parameter Q in a simple detection decision rule:

2 2
If Q :> Q^ , decide that f (t) = m(t) + nt;

If Q
2

< Q
2
. , decide that f(t) = n(t),

2
where Q^ is the decision threshold. This threshold 3 shown in [2.

to be related to the probability of detection (D) in the following

manner

,

/ -Q*
D = expl

%
2ud+u)y

After taking the natural logarithm of this expression we have the

2
following relation between D and Q. ,

- \i InD -
2(1+ u)

2 2
Now, Q must be at least equal to Q^ , if not greater than

2
Q^ , in order to make the decision that f(t) = m(t) + n(t) . We

2 2
may therefore substitute Q^ for Q in the expression for E(Z)

on the assumption that the signal of interest, m(t), is present.

After this substitution, we then have

E(Z) = In y^ u InD.

1.9



With this result, the expected number of observations to be made

by the adaptive receiver in order to detect the signal of interest

is seen to be

Din
I

- (l-D)ln £§
E(N) = ^ _ LI .

In -7-; m InD1+ y

-4
If the operating parameters, D = 0.5 and F = 10 , are

substituted into the formula for E(N), we find that approximately

180 observations are expected at a signal-to-noise level of -11 dB

(p = 0.08) and approximately 600 observations are expected at a

signal-to noise level of -17 dB ( y = 0.02). As was anticipated,

these numbers are significantly greater than the actual numbers of

observations needed to detect the signal of interest as reported by

Fralick et. al. [1]. The disparity between the computed number of

expected observations and the actual results reported in [1] is

assumed to be influenced by two characteristics of the adaptive

decision process:

1. A strong a priori opinion that the signal of interest

will in fact be scanned (i.e. a value of P (T) = 0.75
o

for example) would be a factor in reducing the number

of scans. Loosely speaking, the recursive effect of the

likelihood ratios would bring the value of P, (T) to

the acceptance threshold with fewer scans with a larger

starting value of P (T) than with a small value of
o

P (T) ; provided, of course, the signal is in fact there.

If the signal is not present, a strong a priori opinion

that it is present would be expected to require more

scans to determine that it, in fact, is not present.

20



In the results described in [1] the signal of interest

was always present; the value of P (T) used in the

receiver was not reported. The SPRT is not influenced

by any a_ priori opinion regarding the state of the set

of signals being scanned; the same number of scans would

be expected whether the signal was present or not.

2. The adaptive decision process is designed to take

advantage of the accumulation of knowledge about the

presence, or absence, of the signal of interest. The

SPRT, on the other hand, is not designed to take advan-

tage of trends and one contrary observation is sufficient

to totally disrupt a trend towards one or the other of

the decision thresholds.

IX. APPLICATIONS

In the preceding discussion of the development and application

of an adaptive decision process, the emphasis has been on the appli-

cation of an adaptive procedure employing multiple observations to

the special problem of optimizing electromagnetic signal detection.

In addition to that useful application, the adaptive decision model,

which relies heavily on a learning process, may be used to study

other, more general, situations in which multiple observations are

employed in formulating a detection decision.

Multiple observations are typically encounterered in two types

of situations:

1. The first is the generalization of the situation discussed

in this thesis; the situation in which observations are

21



accumulated and the total weight of the evidence is used

as the basis for a decision regarding the presence or

absence of a useful signal.

2. The second is the situation in which a decision is made

based on multiple, independent observations. The

detection decision rule usually employed is that a useful

signal is present if any one of the multiple observations

indicates the presence of a useful signal.

As an example of the application of the adaptive decision process

developed in this thesis we will consider two situations in which

humans act as signal detectors. The first situation is a straight-

forward comparison of multiple, independent observers to a multi-

channel receiver; the second is an example of the recursive learning

process acting against detection.

A. MULTIPLE OBSERVERS

A, common practice in practical detection problems is to use a

team of observers who are to act independently and attempt to detect

some signal of interest. The rationale for this practice is that

the group effort is expected to improve the chances of detecting the

signal of interest. For example, if two independent observers have

an individual probability of detection D = 0.5, then the probability

that one or the other or both will detect the signal is 0.75.

Green and Swets [4, p. 248] discuss psychometric studies conducted

to test whether or not teams of observers would show this degree of

improvement in detection capabilities. The typical finding in the

studies was that if a gain in detection capability was made it was

22



not significant and further that an increase in the proportion of

false alarms was experienced when the size of the team increased.

Recalling the relation for the threshold signal-to-noise ratio

for a multichannel receiver and rearranging terms, we have a rela-

tion between detection parameters which is seen to apply to the

team situation; i.e.,

In
l

ln
F . InM

ln
5

ln
5

where M is the number of observers on the team. We see that the

larger the team gets, the larger the value of F which must be ac-

cepted if the threshold signal-to-noise ratio is fixed and the

detection probability (D) remains constant. If it were possible

to hold F at a fixed value while M is increased, the model

predicts that D would decrease if the signal-to-noise ratio is

fixed.

A possible solution to the false alarm problem is to replace

a team of observers by a single observer with the capability of

employing the adaptive decision process. This action would have

the benefits shown for the adaptive receiver when it replaced the

multichannel receiver, if the human observer is at least as pre-

dictably "optimum" as he is predictabley "faulty". Alternatively

the team could report to a decision maker who would be guided by the

adaptive decision procedures.

B. VIGILANCE

The adaptive decision process model may also be applied to the

detection problem characterized by extended periods of observation

23



during which signals can occur at any time without warning and with

no predictive spacing between signals. This problem is referred to

as the "vigilance" problem. In this type of signal detection environ-

ment there is a known deterioration in detection capability as the

observation period proceeds.

The effect in these situations is as if the recursive learning

process were being reversed. That is, the span (channels) of

attention widens and the learning process may be considered to be

strengthening an a_ priori opinion that no signal will be encountered.

Green and Swets [4, p. 332] discuss the vigilance problem and it is

again interesting to note that human performance seems to be follow-

ing the characteristics of an adaptive receiver model.

Limited studies on the vigilance problem indicate that the

probability of detection decreases over time; interestingly, the

false alarm probability has also been observed to decrease. Looking

again at the relation for y , we see that as the span of attention

widens, the value of the term lnM/lnr- tends to increase. If a

fixed value of u w is assumed, the model predicts that D must
M

decrease to maintain the equality of the relationship; further, the

term ln-/lnj- suggests that if some directly proportional relation-

ship were to exist between F and D then F would also decrease.

A possible solution to the vigilance problem is suggested by the

recursive learning feature of the adaptive receiver. To apply this

solution it must be assumed that the probability of detection (D)

by a human observer is maintained at an acceptable level by focusing

the observer's attention. Then, since the recursive learning process

is strongly influenced by the likelihood that a useful signal is
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present during the scan across the signal environment, it may be

possible to focus attention by introducing dummy useful signals

into the detection process.

X. CONCLUSION

When multiple observations are available, or are required, for

use in the solution of a detection problem, the optimum utilization

of these observations is through an adaptive decision process. In

comparison to a simple detection process based on single independent

observations, the adaptive decision process enables the observer

to make a detection decision with the same level of detection error

at a smaller signal-to-noise ratio (p ) or conversely for a fixed u

and fixed false alarm probability a higher probability of correct

detection is possible through the adaptive process.

The adaptive decision process is limited to signals of long

duration due to the nature of the learning process used in this

decision process. A procedure for computing the expected length

of the decision process is developed. Based on this expected

length of time to complete the decision process, the observer may

evaluate the suitability of employing a relatively lengthy decision

process with optimum properties to solve a detection problem.

Lastly, the learning cycle used in the adaptive decision process

suggests that the model of an adaptive decision process may be used

to predict the behavior of human observers performing signal detec-

tion functions. Two such situations were discussed and it was

shown that the adaptive decision process model does in fact lend

itself to analyzing the behavior of human observers.
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APPENDIX A: DERIVATION OF RECURSIVE FORM

When the input signal f, . (t) is being examined by the detector,

the signals f
1

, f„, ••*, f, have already been examined. The Bayes

optimum use of the prior inputs f .. , f_, •••, f,
1

is

L(f
k
|f

1
,f

2
,...,f

k_1
) = |L(F

k
|T)P(T|f

1
,f

2
,...,f

k_1
)dT

where

f(t) - m(t,a,T,9) + n(t); and

the useful portion m(t,a,T,8) consists of a counting parameter,

such as time, _t; known parameters a_; unknown parameters T_ which are

measured upon detection; and unknown parameters 8_ which are not

measured. The purpose of examining f(t) is to learn the nature

of T_ , for example to find the frequency on which a radio signal

of known characteristics is being transmitted.

Consider the probability density P (T | f ,f ,
• •

•
,f ) . By the

Bayes formula, it may be expressed as

i

PCTl^.fj,-".^) =
^ (1)

p < fkl
T - fr f

2
f
k-i

)F <- T
\
f
i>

1 2'---- t
*-i'

>
.

P <£
lJ

f
l'

£ 2> •••' £
k-l )

Under the assumption that each f„ is independent of all other f.,

we may further state that

F(\|T,fr f
2
,— ^.f) =P(f

k
|T) .

Expressing P (f , | T) as a compound event gives

P(f
k
|T) =

PlP(fk
|T,m(t,T)) + (l-Pl )P(fk

|n(t))

where p is the a priori probability that
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f (t) = m(t) + n(t)

and l~P-i > is the a_ priori probability that

f(t) = n(t) .

Next, after factoring p P(f |n(t)) we have

P(f
k
|T) = P] P(fk

|n(t)) L(f
k
|T ) +

'1 J'
(2)

Next, by integrating equation (1) over all possible values of T

we get

K«kl*i'«r"*'Vi) ;p<£
k
lT)p(T|f

1
,f

2
,---,f

k. 1
)dT ,

which may be factored to give

P(f
k

|f
1
,f

2
,...,£

k.1
) =

r ^i i
PlP(fk

]n(t)) jL(f
k
|T)P(T|f

1
,£ 2> ---,f

k_ 1
)dT + -j± .

After dividing (2) by (3) and cancelling common terms, we get

(3)

P(T|f
1
,f

2
,--.,f

k
) =

w|fr fr—.v^

i-Pi
L(f

k
|T)P(T|f

1
,f

2
,...,f

k_ 1
) + -

7
-i

|L(f
k
|T)P(T|f

1
,f

2
,---,f

k_ 1
)dT + —

—

The recursive nature of this relation is more readily seen by de-

fining two new quantities,

P
k
(T) = P(T|f

1
,f

2
,---,f

k
) and

WV = lL(fk
|T)P

k_l(
T)dT

Now the expression for P, (T) may be rewritten as
&

L (£ JT) + a

V T
> " \-l<T

> L .(f,)+a •

k-l v
k'

1-P-
a =
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APPENDIX B: EXPECTED NUMBER OF OBSERVATIONS

In the sequential probability ratio test, the expected number of

observations (N) is

E(N) =
I mP(m|T) , where

m=l

T is the unknown parameter of interest. It is convenient to

introduce a variable Z. which is defined as
J

f(X.|T )

Z
j

= ln fgT")
J

1 o'

, where

T, is the state in which the unknown parameter is present, T
1 o

the state in which it is absent and to make use of the result,

proved in [4], that

N

1 Z
3

J-l
J

= E(N)E(Z)

Then provided E(Z) j* 0, we can find E(N). For this purpose we

may write

"N 1N

J-l J

= E

N

y Z. Id

j-l J °
P(d ) + E

o I z -l d i

J-l J
1

P(d
x

)

where d is the decision made in the event T is not present
o

and d.. is the decision made in the event T is present. If the

decision d is made, this implies
o

N-l N

J Z. > In -
, and T Z . £ ln -

j-l J D
J-l ^

D

Now assuming that no single Z. is likely to dominate in the sum

we may say
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and similarly

EC^z.lV-m^ •

E( I Z |d
1

)
~ ln^| .

After substituting, we then obtain

N
1-F

E( I Z ) = P(d
Q

) Ing + P(d
1

) lngl ,

from which the expected number of observations is seen to be

P(d
o
|T) Ing + PCljT) lnj|

E(N) = wm
since the probability is 1 that a decision is reached regarding

the state of the unknown parameter T .

As an example of the computation technique for E(N) consider

a success or failure situation. Let T be the unknown fraction

of failures in a sample of size N. Some action is considered

worthwhile (d ) if T <; T and not worthwhile (d, ) if T ^ T. .

o o 11
If T < T < T. it is not important which decision is reached,

o 1
r

The expression for E(Z) is gotten from

f(x|T ) T
X

(1 -T )

1_X

Z = ln„,„
i
A = In

f(XlV T
X

(1 -T )
1"X '

o o

where X is the result of an inspection. Expanding the expression

for Z gives

1-T T (1-T )

Z = In
^

+ Xln y Q-T )
'
which yields

o o 1

1-T T (1-T )

E(Z) = In T—i + In
1-T T (1-T

n )
'

o o 1
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when X is a defective. We now have

,- p(d
ol

T > i»5 + p <dil T
>

lnM
E(N) =

1-T. T , (1-T )

In =—^— + ln-
1-T ""' T (1-T.

)

o o 1

If 1 - T~ 1 and noting that P(d |T) = D and P(d |T) = 1 - D,

E(N) may abe simplified as follows,

Din
|

- (l-D) in j=&
E(N) = t—

1
1

ln
I^T~

o

30



LIST OF REFERENCES

1. Fralick. S.C. , Slenkovick, F.L., and Wilson, D.L., "An Adaptive
Receiver for Signals of Unknown Frequency", IEEE Trans . Communi-
cation Technology , Vol. COM-16, No. 5, pp. 648-656, October 1968,

2. Wainstein, L.A. and Zubakov, V.D., Extraction of Signals from
Noise , R.A. Silverman, Transl., Prentice-Hall, 1962.

3. Sverdrup, E., Laws and Chance Variations , Vol II, Rand McNally,
1967.

4. Green, D.M. and Swets, J.A., Signal Detection Theory and Psycho-
physics , Wiley, 1966.

31



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 20
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School
Monterey, California 93940

3. Naval Security Group Command 1

3801 Nebraska Avenue, N.W.

Washington, D. C. 20390

4. Assoc. Prof. J. B. Tysver, Code 55Ty 1

Department of Operations Analysis
Naval Postgraduate School
Monterey, California 93940

5. Lt. Joseph Maris Moroney, USN 1

22684 Coleta Drive
Salinas, California 93901

32



Secvirity Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classified)

I. ORIGINATING ACTIVITY (Corporate author)

Naval Postgraduate School

Monterey, California 93940

2J. REPORT SECURITY CLASSIFICATION

Unclassified
26. GROUP

3 REPORT Tl TLE

An Adaptive Decision Process

4. DESCRIPTIVE NO T ES (Type of report and. inclusive dates)

Master's Thesis; December 1969
5. AU THORISI (First name, middle initial, last name)

Joseph Maris Moroney

6. REPORT DATE

December 1969

7a. TOTAL NO. OF PAGES

33

7b. NO. OF REFS

8a. CONTRACT OR GRANT NO.

6. PROJECT NO.

9a. ORIGINATOR'S REPORT NUMBER(S)

96. OTHER REPORT NOISI (Any other numbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution
is unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School
Monterey, California 93940

13. ABSTRACT

This thesis investigates a decision process which is designed to

employ multiple observations in an optimal manner as a means of solving
a signal detection problem. The characteristic of this decision process
is that it permits the decision-maker to defer his detection decision
until new data is obtained from the next observation and to weigh the
new data with an opinion based on previous data. The effect of adapting
a decision to the results of previous observations is seen to be similar
to a learning process which is taking place over a length of time. Since
the decision process may involve relatively lengthy periods of time an
estimator of this time is developed. Lastly, the decision model is

seen to provide a model by which human detection behavior may be evaluated,

DD FORM
1 NOV 65

S/N 0101 -807-681

1

1473 (PAGE n
33

Security Classification
1-31408



Security Classification

key wo RDS

adaptive decision process

adaptive receiver

multichannel adaptive receiver

multiple observers

sequential decision process

DD ££.1473 back

S/N 0101-807-6821
34

Security Classification A- 3 I 409













thesM82277

An adaptive decision process.

3 2768 000 99177 2

DUDLEY KNOX LIBRARY


