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ABSTRACT

Finescale temperature features in the oceanic mixed layer (OML) modify acoustic

propagation by perturbing the index of refraction. A thermistor chain measures temperature

from the surface to 250 m with 2 m vertical resolution and 1.85 m horizontal resolution.

Thermistor data is converted to high resolution sound velocity profiles for input to an im-

plicit finite difference parabolic equation (IFD-PE) model. The control case is a surface

duct with a horizontally averaged sound velocity profile. The IFD-PE model is run with

monofrequency sources from 500 Hz to 10 kHz. The acoustic fluctuations and average

acoustic pressure are computed each 20 km to a range of 100 km. Acoustic propagation

through the temperature varying OML is contrasted with acoustic propagation through the

temperature invariant OML. Finescale temperature randomly alters the average acoustic

pressure by up to a factor of two and the acoustic fluctuations by up to a factor of five.

in



TABLE OF CONTENTS

I. INTRODUCTION 1

A. SCALES OF MEDIA SOUND SPEED PERTURBATIONS 1

B. PREVIOUS WORK 2

II. THERMISTOR CHAIN DATA 5

A DESCRIPTION OF NEAT GIN DATA COLLECTION 5

B. DESCRIPTION OF THE MIXED LAYER IN GENERAL 5

C. THERMISTOR CHAIN DATA SET 6

1. Statistical Analysis of Thermistor Chain Data 8

a. Horizontally Averaged Temperature Profile 8

b. Standard Deviation of Temperature Versus Depth 9

c. Temperature Density Spectra at Selected Depths 10

III. ACOUSTIC PROPAGATION IN INHOMOGENEOUS WATER 12

A. WAVE EQUATION IN INHOMOGENEOUS OCEAN 12

B. PARABOLIC WAVE EQUATION 15

IV. ACOUSTIC SIMULATION 17

A. ASSUMPTIONS IN THE COMPUTER SIMULATION 18

1. Temporally Frozen 18

2. Artificial Absorbing Bottom 18

3. Gaussian Starting Field 19

4. Isohaline 19

5. Other Scatterers 20

B. STATISTICS OF ACOUSTIC PROPAGATION THROUGH OML 20

V. DISCUSSION OF RESULTS 36

A. Range Dependence of Acoustic Propagation in a Surface Duct 36

B. Frequency Dependence of Acoustic Propagation through a Surface Duct 38

C. Dependence of Acoustic Propagation on Finescale Temperature Perturbations 39

D. Dependence of Acoustic Propagation on Source Depth 40

VI. CONCLUSIONS 48

A. HIGHLIGHTS 48

B. SUGGESTIONS FOR FURTHER WORK 48

REFERENCES 49

INITIAL DISTRIBUTION LIST 50

IV



I. INTRODUCTION

Most acoustic predictions are based on strong assumptions about the oceanic mixed layer (OML) which

are accurate only to a first degree. One assumption is OML depth does not have horizontal variation. In fact,

internal waves propagate along the OML-thermocline interface and change its depth by typically 5-10m.

Another assumption is the OML is both isohaline and isothermal, leading to a deterministic sound speed

profile with variation in depth dependent only on pressure. In reality, as cool underlying water is mixed

upward and warm surface water is mixed downward, there is temperature variation throughout the OML. The

temperature variance causes corresponding variance in the sound speed profile. The objective of this work is

to determine how good these assumptions are for medium frequencies propagating long distances.

A thermistor chain data set collected in October 1989 in the Norwegian Current system is discussed and

analyzed in Chapter II. Thermistor chain data provides a two dimensional profile from the surface down to

250 m with 2 m resolution in the vertical and 1.85 m resolution in the horizontal. The data is converted to a

series of high resolution sound velocity profiles with spacing at every 1.85 m in the horizontal. These profiles

are the input for a computer simulation of acoustic transmission. Chapter III discusses acoustic transmission

through a temperature varying OML.

The Implicit Finite Difference Parabolic Equation (TFD-PE) acoustic model developed by Lee and

McDaniel (1987) is modified to allow horizontal variation at the same distances as the thermistor chain data

set was read. The IFD-PE acoustic model was run at several frequencies from 500 Hz to 10 kHz. Two

simulations were run at each frequency: one with a realistic OML and the other with an idealized OML. In

the realistic case the sound velocity profile is read into the acoustic model every 1.85 m. In the idealized case

the temperature is averaged horizontally, yielding a single sound velocity profile for the entire event. The

transmission loss with range for the two cases is computed at each frequency. Average acoustic pressure and

the spatial variance of acoustic pressure are shown in Chapter IV. The difference between sound propagation

through a real OML and through an idealized OML is discussed in Chapter V.

A. SCALES OF MEDIA SOUND SPEED PERTURBATIONS

The speed of sound in the ocean is a function of three parameters; temperature, salinity, and pressure.

An increase in any one of these three quantities causes a corresponding increase in the speed of sound. The

speed of sound in sea water used in this paper is that determined by Mackenzie (1981)



c(z) = 1448.96 + 4.591 T - 5.304 x 10"2 T2 + 2.374 x lfr* V

+1.340 (S-35) + 1.630 x 10"2 z +1.675 x 10"7 z
2

(1.1)

-1.025 x 10-2 T (S-35) - 7.139 x 10" T z*

where T is temperature in C, S is salinity in practical salinity units, and z is depth in meters. Pressure effect

depends almost exclusively on depth in the water column and pressure effects due to dynamic motions are

not considered.

The integral scale of convective mixing in the mixed layer is approximately the depth of the OML.

Overturning water is an unstable process which creates turbulence. There is a cascade of energy from the

integral scale down to 1 cycle per meter (cpm) as large vortices dissipate into increasingly smaller vortices.

Dissipation dominates at distances less than this, causing the cascade of temperature density spectra to decay

less rapidly (Flatte\ 1979, p. 15). The region between 1 m and 100 m is finestructure scale and is the regime

within the purview of this paper.

Individual finestructure features in the ocean are large enough to be accurately measured with modern

instruments, but too small and too brief to be included in ocean basin models and nowcasts. Rather than model

isolated features independently it is more practical to describe them by wavenumber spectra. Temperature

perturbations collected in this thermistor chain data set are for this reason converted to temperature variance

spectra. The wavenumber spectra of temperature variance for this analysis range between 0.27 m*;
(1 cycle

every 3.7 m) and 0.004 nr' (1 cycle every 237 m).

B. PREVIOUS WORK

Underwater sound propagation has been studied in earnest ever since World War II. The earliest

transmission loss models were horizontally homogeneous. They relied on a single sound velocity profile

(SVP) assumed to be the same at all locations. These models were unable to accurately predict transmission

loss across fronts and eddies. Models based on ray theory and (later) the parabolic equation approximation

enabled acousticians to model range dependent transmission loss. Range independent and range dependent

models have been relied upon to provide the general features of transmission loss predictions right up to the

present with excellent accuracy. Their drawback is xhey model a deterministic transmission path through a

very non-deterministic medium. Because of the effects of constructive and destructive interference from

multipath arrivals, slight variations in sound speed have a large influence on the actual ranges of the features

of transmission loss curves. For this reason acoustic propagation is best characterized statistically for most

applications.



An emphasis on the statistics of acoustic propagation has generated considerable theoretical and

experimental activity. Theoretical treatments have their roots in scattering theory first pioneered by Rytov

(1937). He addressed scattering by small perturbations of a media valid for electromagnetic propagation

through the atmosphere as well as for acoustic propagation. Chernov (1960) considered the case of isotropic

perturbations by using the method of small perturbations and applying an autocorrelation distance to the

inhomogeneities. His derivation relied on a single temperature correlation coefficient rather than on a

temperature spectra. Tatarskii (1961) included a spectrum of scales of processes. Neither he nor Chernov

specialized to ocean processes and they assumed media perturbations to be isotropic. In reality almost all

ocean features greater than 1 m in length are anisotropic, varying much more in the vertical than in the

horizontal (Flatte, 1979, p. 15).

Most of the recent work on acoustic scattering by random media has specialized to scattering by internal

waves in the deep sound channel. Highlights are Munk and Zachariason (1976) who used the Rytov method

(also called supereikonal method) with a gaussian distribution of sound speed perturbations to address this

problem. They assumed the internal wave spectrum presented by Garrett and Munk (1975) for the ocean

medium. FlattS, et al (1979) also started with the Garrett - Munk internal wave model and presented

alternative acoustic models to describe acoustic fluctuations statistically. Using ray theory, Ko (1981) passed

multiple rays through a time stepped internal wave model within a deep sound channel. He used the Monte

Carlo method to determine the statistics of acoustic wave propagation.

Although most of the effort in this field has been expended on propagation through the deep sound

channel, there has been an increased interest on scattering of acoustic energy by finestructure scale

perturbations. Wilson and Tappert (1979) model surface duct losses due to scattering by random fluctuations

and below duct ensonification by radiation transport (i.e. energy flux). Duda, et al (1988) used computed

spectra of sound speed fluctuations due to microstructure and fine structure to determine the variance and the

wave number spectra of acoustic intensity. They investigated only the region with small fresnel radius and

valid for the Rytov approximation which indicates that the frequency is less than 90 kHz and the range is less

than 1.1 km. Furthermore, they considered only a single direct path propagation mode.

Like many contributions to this field, this thesis research is based on a computer simulation of acoustic

propagation to determine the statistics of the propagation. It is unique, however, because it does not rely on

theoretical model spectra of ocean features. It uses real temperature data. The combination of an extremely

accurate acoustic model and high resolution real data provides a way to directly compare acoustic propagation

in a real world horizontally varying OML to that of an idealized horizontally homogeneous OML, albeit with



some simplifying assumptions. These assumptions are described in chapter IV. The qualitative results are

valid only for the particular temperature perturbation distribution and simplifying assumptions of this

simulation. However, they provide insight into the magnitude of the effects of weak scattering by

finestructure spectra within any surface ducL



D. THERMISTOR CHAIN DATA

A. DESCRIPTION OF NEAT GIN DATA COLLECTION

The thermistor chain data set that this computer simulation is based upon comes from the NEAT GEN

ocean measurement trial. NEAT GEN data was collected by Dr. John Scott of the United Kingdom Admiralty

Research Establishment in Fall of 1989. The data set selected was obtained in the Norwegian Current system

on 1 1 October. It was collected from 1200 to 1800 GMT. The ship steamed at a nominally constant 4 knots

and sampled thermistors every 1.9 seconds (1.852 m) for a total of 24,000 temperature soundings. The data

set traverses a 44.5 km straight track. Thermistors were mounted every 2 m from the surface down to 250 m.

This data set provides an extremely high resolution two dimensional temperature field.

B. DESCRIPTION OF THE MIXED LAYER IN GENERAL

Turbulent mixing forces the OML to be almost isothermal. Away from polar regions, temperature

below the OML typically decreases with depth. Sound speed has a maximum at the base of the OML.

Acoustic energy refracts away from the depth of the maximum sound speed. It is bent either upward into the

duct or downward into the deep ocean. The ray bundles that refract upward are reflected from the ocean

surface and continue to propagate within the OML. Since the OML traps sound, it is also called a surface duct.

The depth of the surface duct is almost always the same as the depth of the OML.

The OML depth and temperature vary both temporally and spatially. Figure 1 shows oscillatory

features in the thermocline right below the OML. These are caused by internal waves. Another characteristic

of the OML apparent from this figure is the size of the largest temperature features. They vary vertically from

10 m to the depth of the OML and vary horizontally from 1 km to 5 km. Figure 2 makes the anisotropy of

temperature features in the OML even more apparent. In this figure a small segment of the thermistor chain

data is enlarged to show details. Two kilometers of the thermistor chain data is displayed in Fig 2a). The first

180 m of the same 2 km segment is shown in Fig 2b). They exhibit the anisotropy of larger features and the

near isotropy of the near microstructure scale features. Contours greater than 40 m in depth traverse over 1

km horizontally. Those contours smaller than 5 m in depth traverse less than 10 m horizontally.

Aside from horizontal currents, most of the kinetic energy in the world oceans is contained in waves.

This is true everywhere except very near the surface in the OML. Here turbulence dominates, and motions

are regular in neither time nor space. Figures 1 and 2 depict the randomness of turbulent kinetic energy (TKE)

in the OML.



C. THERMISTOR CHAIN DATA SET

Shown below is a contour plot of temperature from the 11 October 1989 thermistor chain data

collection. It shows only the top 80 m of the entire 44.5 km track. The tightly spaced contours at the bottom

20 25 30 35

range (km)

Fig 1. The upper ocean isotherms plotted from 7.9 C to 8.2 C with .05 C increments.

of the plot indicate internal wave motions. They vary the OML depth between 70 m and 83 m. Temperature

throughout the OML ranges 0.2 deg from 8.0 °C to 8.2 °C.

Selection of the 11 October 1989 data set was not based on significant features or characteristics

contained in the data. Rather, it is suitable because it is typical of mid and high latitude conditions through

much of the year. The OML depth remains relatively constant and temperature perturbations are mild.

Modification of acoustic propagation by temperature perturbations in this sound channel is indicative of

propagation through any surface duct.
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1. Statistical Analysis of Thermistor Chain Data

a. Horizontally A veraged Temperature Profile

Most acoustic transmission predictions assume an idealized sound velocity profile based on

a single temperature sounding. They assume horizontal homogeneity based on a bathythermograph or

climatological data. This thermistor chain data enables comparison of acoustic transmission through a real

OML and through an idealized OML. The control case is an idealized OML generated by averaging

thermistor chain values.

The horizontally averaged temperature profile for the thermistor chain data collected on

October 11, 1989 is shown in Fig 3. Temperature perturbations are averaged out, leaving a near isothermal

5

T3

temperature ( C)

Fig 3. Horizontally averaged thermistor chain data set. AU 24,000 profiles are averaged together at

each of the 74 depths sampled. Only the top 80 m is shown.



OML of 8.1 C. The kink defining the depth of the idealized OML is at 70 m. Below the OML is a

thermocline that continues past the 250 m sampled depth. The gradient at the top of the thermocline is -.05

T/m.

S
a.

~0

b. Standard Deviation ofTemperature Versus Depth

The standard deviation of temperature from a horizontal mean is shown in Fig 4. This figure

-200-

-250

temperature ( C)

Fig 4. Depth dependence of standard deviation of temperature.

shows the standard deviation of temperature in the OML to be about 0.05 C. It jumps dramatically below

the OML because of internal waves propagating along the OML-thermocline interface. The discontinuity at

70 m highlights the OML depth. Temperature perturbations above this depth are characterized by small

deviations generated by turbulent motions. The discontinuity at the depth of the OML is slightly misleading.



The large temperature variance occurs because the thermocline is lifted and lowered across this depth.

Horizontal temperature changes in this region are quite gradual because the thermocline is stratified.

c. Temperature Density Spectra at Selected Depths

Temperature in the OML acts as a passive contaminant which closely follows turbulent

velocity behavior (Medwin, 1973, p. 9). The Kolmogorov hypothesis states that fully developed turbulent

velocity spectra depend only on kinematic shear viscosity V and the rate of dissipation of energy £. The

velocity spectra and by inference the temperature spectra O (k) have been shown (Batchelor, 1956) to be

related to the wavenumber of perturbations by

<&(*) = c
x
k~

5/1

where Cj = Cj (V, £) is a constant at each depth. The Kolmogorov relationship is valid for the inertial

subregion. The temperature spectra computed at various depths for the thermistor chain data are shown in Fig

5. Samples are each 237 m long, making the lowest resolvable wavenumber 0.004 m . The Nyquist

wavenumber is 0.27 m . The temperature spectra fall within the inertial subregion for which the

Kolmogorov relationship is valid. A solid line shows the theoretical -- power law. At all three depths

temperature variance is weighted primarily to the large scales and decays by an inverse power law to smaller

scales. There are no statistically significant peaks within this data that would indicate regularly varying

phenomena. As expected, most of the temperature variance in internal waves is associated with the largest

scales. Temperature spectra in the OML mimic temperature spectra in the thermocline, but with much less

variance.

10
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m. ACOUSTIC PROPAGATION IN INHOMOGENEOUS WATER

2
Acoustic intensity \p \ decays in a surface duct by 1/r because of cylindrical spreading. The low

frequency cutoff is approximated by ^
OT£U

=4.7 X 10" h where ^max is the wavelength of the cutoff

frequency in feet and A is the depth of the OML in feet (Urick, 1983, p. 151). For this duct X is 5.0 m and

the cutoff frequency is 295 Hz.

A. WAVE EQUATION IN INHOMOGENEOUS OCEAN

Before we can determine the effects of temperature perturbations, it is necessary to show the validity of

the homogeneous wave equation in a temperature varying surface duct. First we compare the influence of

pressure perturbations on sound speed with the influence of temperature perturbations on the speed of sound.

Next comes a derivation of the wave equation in a temperature varying ocean. The governing wave equation

in this situation is not homogeneous. The term that makes the wave equation nonhomogeneous is caused by

density differences in the media. Then we show why the variance of the scattered pressure due to temperature

change is of greater importance than neglect of the inhomogeneous term.

In the OML, the influence of pressure perturbations on the index of refraction is much smaller than the

influence of temperature perturbations on the index of refraction. When AT = 0.1 C,

1 (dc) -4
(AT*) = 3.1 x 10 . The greatest influence on the refraction index is due to pressure

c dT

perturbations through surface gravity waves. When the composite sea surface peak to trough Az=3 m,

1 (Be) _5
^— Az is 3.3 x 10 . For this reason pressure perturbations are not considered, and pressure is

assumed a function of depth only.

We assume density of the media to vary in space and to be frozen in time. This is called "quasi-static"

because density variations induce motion, but at a slower time scale than the duration of acoustic

transmissions. Using the method of small perturbations, we superimpose a sound field over the ambient

density and pressure

p = P (*> y» z ) + p5 (•*> y> z )

p = p (z) +ps (x,y,z)

12



We start with the equation of motion neglecting Coriolis and temporarily disregarding viscous effects

pd
t
v = - Vp - pgk (3.1)

which can be expanded as

(p + p5 ) [9,v + v.Vv] = -Vp -Vp
s
- (P +PS)S*

Since ps
« p 0> to the first order

Subtracting out the hydrostatic approximation leaves

poa,v
= -Vps (3.2)

The continuity equation states that

9,p + V« (pv) = (3.3)

Expanding this in terms of p and ps and retaining only first order terms leaves

9,ps + V. (p v) = (3.4)

Differentiating and combining (3.2) and (3.4) yields

3«P* = V2
PS (3-5)

In this case the speed of sound varies in space but not in time just as does density. Since pressure is related to

density by

dp = c(x,y,z) 2d
tp

which can be rewritten

d
t (Po+PS ) +v* V(p +p5 ) = c

2
[3,(p + p5 ) +v« V(p + p5 ) ]

Neglecting small terms leaves

d
(
(Ps ) = c

2
[3,(p5)+v.Vp ]

Differentiating with respect to time and rearranging gives

\ dt,lPs) =^(P5 ) + (^)*(Vp ) (3.6)

c

Equations (3.5) and (3.6) are now combined to give

13



-
2
*

tM) =v2
p5 +0,v).(VPo)

c

Using the relationship in (3.2) enables this to be rewritten

\*tl (Ps) = v2Ps~ I V/" (Po) ] * VPs (3?)

c

The first two terms are recognizable as the acoustic wave equation in the absence of temperature

variability. The additional term results from the media density varying spatially. This equation is solved by

acoustic pressure ps
= Pq + Pi where pQ

is a plane wave

p = Ae

and /7j is the scattered wave. Chernov (1960) shows that the scattered wave is solved by

where

A is the amplitude of the incident wave

k is the wavenumber of the acoustic transmission

r is the distance from a scattering element to the receiver (x,y,z) coordinate

£ is the distance from source to the scattering element, and

V is the scattering volume.

In this case V is the entire media between source and receiver. Acoustic fluctuations due to temperature

I—

I

2
perturbations are found from the variance of the scattered pressure \pA . This is

Pi = V
A(AT)k2

) r i ac i aPs . 2 e

_
c dT

Po Po dT
Po

22nr

2

JNCr)e
{Kr)

dVO.&)

Here, N (r) describes the correlation distance of inhomogeneities in the media. Both terms in brackets are

caused by temperature variance. The first term in the brackets is due to sound velocity perturbations and the

second term in the brackets is due to density perturbations. Relative size calculations for the 1 1 October data

14



show term 1 = 3.1 X 10 °C~ . If the scattering angle is less than 90 degrees, term 2 is less than

O 1

~ 9.8 X 10 C~ and can be disregarded. Neglect of the second term in the brackets of equation (3.8)

is equivalent to neglect of [ Vln (

p

Q ) ] • Vp
5 in (3.7) (Ibid, p. 50). This reduces the wave equation in a

quasi-static ocean with small temperature perturbations to the familiar homogeneous wave equation

\*tt (PS) = *2
PS (3.9)

c

B. PARABOLIC WAVE EQUATION

Separation of variables isolates the time dependence of equation (3.9). What is left is the Helmholtz

equation. Dropping the subscript s, this is written

V2
p + k

2
p =

Expressed in cylindrical coordinates, the Helmholtz equation is

d
rrp + -dj + d

zz
p + (k n)

2
p = (3.10)

where kQ
= (2izf) /c and n (r, z) = c / (c (r, z) ) is the local index of refraction. This is an

elliptic wave equation. Tappert (1974) introduced the parabolic equation approximation (PE) to underwater

acoustics. Again, using separation of variables, let the sound pressure field have the form

p(r,z) = ^jjlv(r) (3.11)

Here, 1/ (*]r) contains the decay due to cylindrical spreading. V (r) contains the rapidly varying

component of the pressure field. It is solved by the Hankel function, which is approximated in the far field by

A (r, z) is the slowly varying component of the pressure field. It contains all of the depth dependence.

A (r, z) is the envelope of sound pressure that the IFD-PE model solves. Applying the solution forp ( r, z)

to (3.11) and disregarding all terms that diminish more rapidly than 1 / ( Jr) gives

15



-£ (- k
2
A +dA + 2ik dA + dA + (k n)

2
A) =

dividing by r V yields

k
2

Q (n
2 - 1) A + 3

rr
A + 2^ a/ + d

zz
A =

If it holds that d A « 2/fcn9 A then
rr U r

kl (n
2 - 1) A + 2i* a

r
A + 9

zz
A - (3.12)

This is the most widely used parabolic wave equation in underwater acoustics. This approximation is

valid when the backscattered field is negligible and ray bundle travel is predominantly horizontal. This

condition is easily met in the OML. The PE accurately governs acoustic propagation in a surface duct.

16



IV. ACOUSTIC SIMULATION

The acoustic propagation model developed by Lee and McDaniel (1987) applies a finite difference

numerical scheme to the PE of Tappert Finite differencing enables the governing equation to be converted

from a boundary value problem to an initial value problem in which the solution marches horizontally. This

means that the pressure field at range r + Ar is determined entirely by the pressure field at range r. Because

the model solution marches, it is feasible to modify the sound velocity profile at the very short ranges of the

thermistor data collection. Lee and McDaniel apply an "implicit" finite difference algorithm. Implicit finite

difference schemes have the advantage of unconditional stability. The model is referred to in this paper as the

IFD-PE.

The IFD-PE acoustic transmission model was run at several frequencies between 500 Hz and 10 kHz in

both a horizontally temperature varying and temperature invariant ocean medium. Since the IFD-PE model

algorithm marches horizontally it is especially well suited to accepting horizontal changes in sound speed.

The accuracy of finite difference techniques is tied to range step size. Lee and McDaniel (1987, pp. 341-349)

devote an entire chapter to range step size analysis. They show an optimum choice for range step in the IFD-

PE is 1/2 of the wavelength of the acoustic frequency. This is the range step used for all simulations of

acoustic propagation in this thesis. For 500 Hz it is 1.48 m and for 10 kHz it is 7 cm. The range step is

modified every 1.852 m to make the marched acoustic pressure field coincident with the input of each SVP.

An example of range stepping for a 500 Hz source is sketched below.

1.852 m 1.852 m

t
1.480 m .372 m 1.480 m .372 m

steprO rl r2 r3 r4

Fig 6. Step size of the IFD-PE model for a 500 Hz sound source.

The same range step size is used for both the varying and non varying cases so that the only difference in the

sound field is due entirely to perturbations in sound speed caused by temperature variations.
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A. ASSUMPTIONS IN THE COMPUTER SIMULATION

1. Temporally Frozen

There are two separate assumptions about the time variance of this simulation. The first is in the

thermistor chain data collection. An actual two dimensional temperature field must be measured at all grid

points simultaneously. This data set is assumed to represent a typical instantaneous snapshot of an OML with

45 km in length. The precise deterministic paths of ray bundles are different, but the statistics of acoustic

propagation are as if all temperature readings had been taken simultaneously.

A separate assumption is that the water is static for the duration of the sound propagation event.

To understand this assumption it is useful to separate water motions into two categories. Large scale motions

like currents and tides advect the entire transmission path and therefore do not affect acoustic propagation.

Small scale motions have a couple of effects. They advect patches of water of varying temperature, thus

continuously modifying the sound speed at each location. They also impart relative speed to acoustic

transmissions. The sound speed in the ocean is about 1500 m/s and the speed of small scale motions is

typically less than 10 cm/s. Although they are five orders of magnitude smaller than the speed of sound, they

impart enough velocity to the acoustic energy to create a doppler shift. Material velocity variations usually

have a smaller effect on acoustic transmission than do temperature variations, but they are not altogether

negligible (Neubert, 1970; Flatte\ 1979, p. 86). The assumption of static water motion is called "Taylor's

hypothesis" (Flatte\ 1979, p. 101). It is consistent with work done by Chernov (1960, p. 36) among others.

2. Artificial Absorbing Bottom

In ocean acoustics there are several deterministic paths ray bundles may follow between source

and receiver. In a typical ocean environment sound energy that refracts out of the surface duct at sufficiently

small angles relative to the horizontal plane is refracted downward by the underlying thermocline. Below the

thermocline the vertical temperature gradient becomes small. Furthermore, the sound speed increases with

pressure, and therefore, the sound speed increases with depth. The combination of deep near-isothermal water

and increasing pressure refracts rays toward the horizontal. If there is sufficient depth, sound energy is

refracted past horizontal and continues up to the surface. This mode of propagation is called convergence

zone (CZ). Sound energy that leaves the surface duct at steeper grazing angles interact with the bottom. There

they are partially reflected, partially absorbed, and partially refracted through the ocean floor. Energy

reflected from and refracted through the ocean bottom returns to the surface. This is called the bottom bounce

(BB) mode of propagation. Both BB and CZ energy exit and then reenter the surface duct. The remaining
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propagation paths are surface reflected at shallow angles and direct path (DP). These modes remain

continuously in the surface duct

CZ and BB propagation is excluded from the solution by introducing an artificial absorbing

bottom. This is accomplished in the IFD-PE model with an algorithm that extends the bottom by 4/3 of the

depth of the sound field with a large attenuation coefficient. Acoustic energy refracted or diffracted from the

surface duct continues downward because of the thermocline. It interacts with and is attenuated by this

bottom. This algorithm eliminates all but surface duct propagation from the solution.

Introduction of an artificially absorbing bottom has one drawback and three overriding positive

aspects. The drawback is the artificiality introduced. This is only a minor difficulty. Surface duct propagation

is easily resolvable from BB/CZ in the real world. The primary advantage is that BB and CZ propagation do

not clutter the results. Since they contribute to the ensonification of the surface duct at intermittent intervals,

they would be a source of noise for this simulation. Another advantage is the reduction in computer time

attained by modeling only the upper 250 m. A 16 fold increase in depth would result in a 16 fold increase in

computer time. The other advantage to a completely absorbing bottom is the difficulty it eliminates by

determining how to most realistically model the bottom. The coefficient of reflection is highly dependent on

bottom type and density.

3. Gaussian Starting Field

X
The PE model is valid only in the far field (r » — ) . It needs a starting field well removed from

271

the source. A starting field can be generated by a ray tracing model or a normal mode solution to the

nonhomogeneous wave equation. A much simpler initial field suitable for our purposes, however, is derived

by Tappert (1977). The starting field consists of a Gaussian distribution of pressure in the vertical. The

Gaussian distribution is constrained by an asymptotic approximation to the solution of the nonhomogeneous

wave equation for a point source. The error induced by this approximation to a point source is negligible at

distances far from the source.

4. Isohaline

As previously stated the speed of sound in water is controlled by temperature, salinity, and

pressure. Thermistor chain data provides the temperature field Chernov (1960) shows that the effect of
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salinity perturbations on sound speed is typically one order of magnitude less than that of temperature

perturbations. Therefore we neglect the influence of the salinity field.

5. Other Scatterers

There are several other scatterers of acoustic energy within the OML not addressed in this

simulation. Surface gravity waves and chop reflect sound energy out of the OML and smear the frequency

transmitted. Bubbles attenuate sound and modify the local speed of sound. Material movement of the medium

creates a doppler shift that also blurs the frequency. Even biologies scatter sound. These scatterers probably

have a greater influence on sound speed fluctuations than do temperature perturbations for medium

frequencies. Medwin (1973) found that the predominant cause of acoustic phase fluctuations at 24.4 kHz and

95.6 kHz is bubble activity rather than temperature perturbations. In measurements at sea, Nichols and Young

(1968) found that at 270 Hz there were peak fluctuations at the short range (2 nm) and the long range (700

nm) probably corresponding to surface waves. They also found that for long range only there were peak

fluctuations of 0.1 hr;
to 0.01 hr; probably corresponding to internal waves. Urick and Tulko (1969)

transmitted frequencies between 750 Hz and 1500 Hz over 24 nm in the deep sea to determine the spatial

correlation for bottom mounted receiver separations up to 300 ft, and they found that the correlation was

unaffected by wind speed and sea roughness, even though the transmission path was surface reflected. Urick

(1 973) concluded that the major factors causing decorrelation of vertical coherence from a near surface source

are i) interference of the direct path with the reflected path, ii) temperature and salinity perturbations, and iii)

the effect of multiple surface and bottom reflections.

B. STATISTICS OF ACOUSTIC PROPAGATION THROUGH OML

There are many different ways to characterize the sound field. Units of decibels (db), acoustic intensity,

or absolute acoustic pressure are all equivalent. Because transmission loss generally vacillates several orders

of magnitude, acousticians often translate absolute acoustic pressure Pa to a logarithmic scale and use db. The

transmission loss in db experienced at any (range, depth) coordinate is thereby computed as TL=201og(Pa).

In this discussion acoustic energy is everywhere referenced to a source of 1 sound pressure unit. Absolute

acoustic pressure, therefore, is dimensionless.Transmission loss curves are generally plotted at a single

receiver depth as a function of range. They display the slowly varying component of the solution to the wave

_, ... i(kr — (Ot) . , .
, ... _.

equauon. The rapidly varying component e is separated from the transmission loss curve. Figure
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7 is a curve of this type. It shows the decay of sound energy due to cylindrical spreading in the surface duct.

The sound pressure fluctuates about a mean value that is a function of range. In this case the source and

receiver depths are both 35 m. The curve has limited value because it fails to describe what the acoustic

pressure is at any other receiver depth. Also, it describes acoustic fluctuations inadequately.

A more elaborate representation of the acoustic pressure field is given by statistical analysis. We need

both average acoustic pressure and the spatial variation of acoustic pressure. Acoustic pressure was recorded

at each 2 m by 2 m gridpoint for 400 m at each sample range (20 km, 40 km, 60 km, 80 km, and 100 km).

Acoustic pressure samples are only taken at isolated ranges rather than averaged together over the whole

range of the transmission because acoustic pressure depends on range. That is, acoustic propagation is not a

Fig 7. Normalized sound pressure as a function of range for a 500 Hz source. In both cases the

acoustic pressure is determined for a 35 m source and receivers at 35 m. The first order decay of

acoustic intensity with range is due to cylindrical spreading.
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stationary process. For purposes of comparison, however, it is assumed to be stationary for a 400 m stretch

of ocean.

The horizontally averaged acoustic pressure as a function of depth is shown in Fig 8 through Fig 13.

Each figure corresponds to a monofrequency source from 500 Hz to 10 kHz. The source was located at 35 m

depth. The plots display average absolute acoustic pressure at range 20 km and 100 km. Average acoustic

pressure in the idealized surface duct is shown with a solid line, and in the temperature varying surface duct

is shown as a dashed line. The figures show the strong depth dependence of acoustic pressure. The maxima

and minima demonstrate the depth dependent normal modes. Higher frequencies have more modes. At some

frequency-depth-range combinations, sound pressure is higher in a temperature invariant OML. At other

frequency-depth-range combinations, the situation is reversed.
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Fig 8. Depth dependence of average acoustic pressure for a 500 Hz source at

range a) 20 km and b) 100 km. The source is at 35 m depth in the surface duct.

Solid lines show average acoustic pressure in a temperature invariant OML.
Dashed lines show average acoustic pressure in a temperature varying OML.
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Fig 9. Depth dependence of average acoustic pressure for a 1 kHz source at

range a) 20 km and b) 100 km. The source is at 35 m depth in the surface duct.

Solid lines show average acoustic pressure in a temperature invariant OML.
Dashed lines show average acoustic pressure in a temperature varying OML.

24



xlO-«

a)

b)

xlO"5

1.8

1.6

1.4-

1.2

1
-

% 0.8

Si

0.6 h

0.4-

0.2
10 20 30 40 50 60 70

depth (m)

Fig 10. Depth dependence of average acoustic pressure for a 2 kHz source at

range a) 20 km and b) 100 km. The source is at 35 m depth in the surface duct.

Solid lines show average acoustic pressure in a temperature invariant OML.
Dashed lines show average acoustic pressure in a temperature varying OML.
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Fig 11. Depth dependence of average acoustic pressure for a 3.5 kHz source at

range a) 20 km and b) 100 km. The source is at 35 m depth in the surface duct.

Solid lines show average acoustic pressure in a temperature invariant OML.
Dashed lines show average acoustic pressure in a temperature varying OML.
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Fig 12. Depth dependence or average acoustic pressure for a 5 kHz source at

range a) 20 km and b) 100 km. The source is at 35 m depth in the surface duct.

Solid lines show average acoustic pressure in a temperature invariant OML.
Dashed lines show average acoustic pressure in a temperature varying OML.
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Fig 13. Depth dependence of average acoustic pressure for a 10 kHz source at

range a) 20 km and b) 100 km. The source is at 35 m depth in the surface duct.

Solid lines show average acoustic pressure in a temperature invariant OML.
Dashed lines show average acoustic pressure in a temperature varying OML.
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The average acoustic pressure characterizes the sound field incompletely. The spatial deviation of

acoustic pressure is also of interest Figure 7 is an example of how the slowly varying component of the

solution to the wave equation does not vary very slowly. It is therefore necessary to perform a fast fourier

transform on the acoustic pressure at each sample depth (2m to 70m). As seen from Fig 8 through Fig 13,

acoustic propagation is modified by depth as well as range. However, for purposes of comparison, the spectra

of acoustic fluctuations is assumed to be stationary in depth throughout the OML at each range. Averaging

the spectra over depth increases the statistical reliability of the resultant acoustic fluctuation density curves.

Any error induced by vertically averaging acoustic fluctuation spectra is the same for each case. An

assumption of ergodicity at isolated ranges and through the depth of the OML enables comparison of sound

fluctuations in an OML as a function of range, frequency, and temperature variance. They can be compared

with a single parameter-the acoustic fluctuation density.

Figure 14 through Fig 19 show the acoustic fluctuation density for the six acoustic frequencies of this

simulation. Spectra of acoustic fluctuations are displayed at ranges of 20 km and 100 km. Again, solid lines

show computed results through an idealized OML, and dashed lines show computed results through a realistic

OML. The spectra describe how, for a fixed instant, the slowly varying component of an acoustic

transmission varies horizontally.

Comparison of the acoustic fluctuation density shows how acoustic propagation is impacted by

horizontal temperature variation. At frequencies below 2 kHz, spectra of acoustic fluctuations in a

temperature varying OML approximate the spectra of acoustic fluctuations in a temperature invariant OML.

At frequencies above 2 kHz, the same peaks are apparent in the spectra, but with much different amplitudes.
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Fig 14. Energy density spectra of acoustic fluctuations due to 500 Hz source at

range a) 20 km, b) 100 km.
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Fig 15. Energy density spectra of acoustic fluctuations due to 1 kHz source at

range a) 20 km, b) 100 km.

31



a) 10-8 ^

10-9

o
lO-io .

0.1 0.15

wavenumber (m"0

0.25

b)

o

10-9

lO-io

10-n .

10-12 .

10-1 3

0.05 0.1 0.15

wavenumber (nv7

)

0.2 0.25

Fig 16. Energy density spectra of acoustic fluctuations due to 2 kHz source at

range a) 20 km, b) 100 km.
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Fig 17. Energy density spectra of acoustic fluctuations due to 3.5 kHz source at

range a) 20 km, b)100 km.

33



a) 1(H

M
o

0.1 0.15

wavenumber (m')

0.25

10-io

b) io-»

10-12 .

10 13 :

10 I 4
:

10 15

0.1 0.15

wavenumber (m')

0.25

Fig 18. Energy density spectra of acoustic fluctuations due to 5 kHz source at

range a) 20 km, b) 100 km.
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Fig 19. Energy density spectra of acoustic fluctuations due to 10 kHz source at

range a) 20 km, b) 100 km.
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V. DISCUSSION OF RESULTS

The sound field in this computer simulation is a function of several parameters. It depends on acoustic

frequency, range, and finescale structure, and source depth. To compare the relative importance of each

parameter, it is necessary to compute the overall average acoustic pressure and variance of acoustic pressure

at each frequency and range. The average sound pressure is simply the mean of the depth dependent average

acoustic pressure. The variance of acoustic fluctuations is found by integrating the spectra of acoustic

fluctuations over all wavenumbers. This is analogous to integrating the transform of a time series to obtain a

total variance. The variance of acoustic fluctuations is therefore depth averaged and wavenumber integrated.

It represents a total spatial deviation from the mean acoustic transmission loss through the OML.

A. Range Dependence of Acoustic Propagation in a Surface Duct

Range dependence and frequency dependence of acoustic propagation through a surface duct are well

understood. To a first approximation, acoustic transmissions decay with range due to cylindrical spreading in

a surface duct by 1 / ( Jr) where r is the range. The average acoustic pressure at 5 ranges are plotted in Fig

20. They are compared with a solid line showing decay with range of 1 / ( Jr) . More rapid decay is due to

attenuation, scattering, and leakage out of the surface duct.

lO "3

K io 4 -

lO'

I

io 20 30 40 50 60 70 80 90 ioo

range (km)
Fig 20. Average acoustic pressure versus range in a temperature varying OML for a 1 kHz source at

35 m depth, 'x' data points show computed average acoustic pressure. The solid line shows the

theoretical rate of decay of acoustic energy with range due to cylindrical spreading in a surface duct.
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Fig 21. a) Variance of acoustic fluctuations with range for a 1 kHz source in a temperature
varying OML at 35 m depth. In b) the standard deviation of acoustic fluctuations is compared to

a solid line showing the rate of decay of average acoustic energy due to geometrical spreading in a

surface duct.
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Acoustic fluctuations appear to decay with range similar to the cylindrical spreading of average

transmission loss. Figure 21a) has the acoustic fluctuation variance plotted for a 1 kHz source at 35 m depth

in a temperature varying OML. Variance is computed every 20 km from 20 km to 100 km. Because it has the

same units, a better parameter to compare with average transmission loss is the standard deviation of acoustic

fluctuations. Figure 21b) shows the standard deviation of acoustic fluctuations. It is compared to a solid line

showing decay of 1 / ( Jr) . The solid line passes through the first value of standard deviation at 20 km. This

figure demonstrates that acoustic fluctuations diminish less with range than average transmission loss does.

Similar comparisons show that the ratio of standard deviation of sound pressure to average sound pressure

increases with range at all frequencies.

B. Frequency Dependence of Acoustic Propagation through a Surface Duct

Variance of acoustic fluctuations in this surface duct shows a predictable dependence on frequency. It

has a maximum value that is a function of range as well as frequency. Figure 22 shows frequency dependence

at 20 km and at 100 km. The source is at 35 m depth and sound propagates through a temperature varying

OML. At 20 km, variance of acoustic fluctuations is the highest at 3.5 kHz. It is less at frequencies both higher

and lower. The greatest variance at 100 km is at 1 kHz. This trend is predictable because it is very similar to

the dependence of average transmission loss on frequency in a surface duct. Acoustic energy is leaked out of

the duct at relatively low frequencies near die duct cutoff frequency. Acoustic energy at higher frequencies is

lost by attenuation. Since acoustic fluctuations are driven by average acoustic energy, it is anticipated that

variance of sound transmission adhere to similar frequency dependence.
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Fig 22. Variance of acoustic fluctuations versus frequency at range a) 20 km and b)

100 km. The sound source is at 35 m and sound transmits through a temperature
varying OML.

C. Dependence of Acoustic Propagation on Finescale Temperature Perturbations

The stated objective of this computer simulation has been to isolate all parameters affecting sound

transmission to compare propagation through a real, temperature varying OML with propagation through a

temperature invariant, idealized OML. Figure 8 through Fig 19 in Chapter IV indicate that acoustic

transmission is markedly different through the two mixed layers. The spectra of acoustic fluctuations are

impacted the most at frequencies above 2 kHz. The overall variance between the two cases at certain

frequencies differs by as much as a factor of 5. However, temperature spectra do not modify either the average
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acoustic pressure or the acoustic fluctuation spectra in a predictable pattern. Figure 23 shows average

acoustic pressure, and Figure 24 shows variance of acoustic fluctuations plotted against frequency at each

range analyzed. The data points marked V are variance caused by propagation of a source at 35 m depth

through a temperature varying environment. The data points marked 'o' are the same except transmission is

through a temperature invariant OML. There is no clear trend. The probable cause of this is the strong

dependence of sound on OML depth.

D. Dependence of Acoustic Propagation on Source Depth

To investigate depth dependence, the source depth of 35 m was modified at 3.5 kHz and at 5 kHz. The

IFD-PE model simulated acoustic transmission through an idealized OML and a realistic OML at 3.5 kHz

with source located at 5 m. Simulations were also run for a 5 kHz source located at 5 m, 30 m, and 45 m. The

depth dependence of average acoustic pressure is shown in Fig 25, and the depth dependence of acoustic

fluctuation variance is shown in Fig 26. Holding all parameters constant except depth can alter the variance

of acoustic fluctuations by a factor of 5. Translating the sound source just 5 m from 35 m to 30 m increases

acoustic fluctuations at 60 km in a temperature invariant OML three fold. This is evidence that the precise

combination of source depth, frequency, and OML depth have a greater influence on acoustic transmission

than does temperature perturbations. The source depth, frequency, and OML depth combination activate

particular normal modes, which in turn raise and lower the average acoustic transmission and acoustic

fluctuation density. This explains why temperature spectra do not modify the sound field in a predictable

pattern. The realistic OML depth varies with range, changing which modes are activated. The change in

geometry of the frequency wavelength compared to the source depth and OML depth with range is a

stochastic process.
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Fig 23. Depth averaged acoustic pressure as a function of frequency at range a)

20 km, b) 40 km. Source depth is 35 m. 'o' data points indicate results for the

idealized OML. 'x' data points are for the temperature varying OML.
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Fig 23. (cont) Depth averaged acoustic pressure as a function of frequency at

range c) 60 km and d) 80 km. Source depth is 35 m. V data points indicate

results for the idealized OML. 'x' data points are for the temperature varying
OML.
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Fig 23. (cont) Depth averaged acoustic pressure as a function of frequency at

range e) 100 km. Source depth is 35 m. '<>' data points indicate results for the
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Fig 24. (cont) Variance or acoustic fluctuations as a function of frequency at

range c) 60 km and d) 80 km. Source depth is 35 m. 'o' data points indicate
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OML.
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Fig 24. (cont) Variance of acoustic fluctuations as a function of frequency at

range c) 60 km and d) 80 km. Source depth is 35 m. 'o' data points indicate

results for the idealized OML. 'x' data points are for the temperature varying
OML.
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through a temperature varying OML. V indicates propagation through a

temperature invariant OML.
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VL CONCLUSIONS

A. HIGHLIGHTS

The IFD-PE model is a valuable tool to contrast acoustic transmission through a temperature varying

OML with acoustic propagation through a temperature invariant OML. A computer experiment was designed

using the transmission model that isolated all parameters capable of influencing sound propagation. A

statistical analysis of the sound field enabled a direct comparison of the impact of temperature perturbations

on acoustic propagation. Depth dependent average acoustic pressure was found to vary by up to a factor of

two when contrasted for the two cases. Spatial variance of acoustic fluctuations was found to vary by up to a

factor of five. Acoustic fluctuations are closely related to average sound pressure. The standard deviation of

spatial fluctuations was found to be on the order of 10 percent of the depth averaged acoustic pressure. It is

lower for low frequencies and much higher for high frequencies. Additional simulations with changes in

source depth suggest that the impact of real temperature profiles on the sound field is indirect. It randomly

modifies the normal modes that can propagate. This thesis proves that for medium acoustic frequencies

propagating through a typical OML, an assumption of isothermal water and constant depth are valid.

B. SUGGESTIONS FOR FURTHER WORK

Additional effort is needed to verify the statistics of an ensonified surface duct The approximate values

of a factor of two for average acoustic pressure and ratio of one to ten for standard deviation to average

acoustic pressure may be OML dependent Also, no consideration was given to the horizontal dependence of

temperature fluctuations. Each simulation started with the same sound velocity profile. If sound propagation

is not modified by horizontal changes in source location, then temperature spectra alone are responsible for

altering the sound field. If horizontal changes in source location alter the sound field, then precise temperature

features are responsible.
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