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ABSTRACT

The MUSTANG instrmnent was calibrated using standard techniques to determine the

s&nsitivity and wavelength calibrations and field of view. The instrument was launched

aboard a NASA sounding rocket on March 30, 1990. Post-flight tests indicated that the

calibration &d not change as a result of the rocket experiment. Ultraviolet dayglow spectra

of the Earth's ionosphere were obtained from approximately 100 km to 320 km in altitude

over a wavelength range of 1800 A to 3400 A. The spectra were divded into 512 pixels of

approximately 3.134 A per pixel. Analyses of the data from 2420 A to 2490 A and from

2920 A to 2972 A were conducted to obtain the intensity profiles of the OH 2470.4 A

multiplet and the 012972.3 A line emission, respectively. The intensity profile of the O

2470.4 A multiplet was found to have a broad peak of 1.6 kR centered at approximately

250 km. The intensity profile of the 012972.3 A line emission shows a general trend of

decreas;ng intensity with altitude. The maximum intensity of 3.6 kR was found at 05 km

and the mimimum of 137 R at 315 km. A partial layer, with an intensity of 4.1 kR, was

evident near i .
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I. INTRODUCTION

7 ie experiment presented in this paper is part of an ongoing effort to develop a

practical method of rncsuring the Earth's ionospheric electron density profile on a global

basis. The electromagnetic properties of the ionosphere are a result of the electron density,

which varies with time, q1titude, and geographic position. A plot of the electron density

versus altitude for a given :,xne and location is known as a density profile. Electron density

profiles are currently measured by about 20 ground-based ionosonde stations. While the

measurements are considered highly accurate, their geographic coverage is extremely

limited. Generating a global map of the ionospheric electron density from these twenty

sites has obvious difficulties and a large inherent uncertainty.

Beyond a purely scientific curiousity there are several defense applications which

require knowledge of the electron density profile. Among these are high frequency (HF)

radio communications, over-the-horizon (OTH) radar, Ballistic Missile Early Warning

Systems (BMEWS) and the Ground Wave Emergency Network (GWEN). Accordingly,

the Joint Chiefs of Staff prioritized the measurement of the Earth's ionospheric electron

density as number five of 50 critical global parameters for inclusion in a defense

environmental satehite (MJCS 154-86 dated March 21, 1986).

The solution for providing true global coverage would appear to lie with a satellite

system. However, at present satellite-based ionosondes are unfeasible due to their size and

power requirements. Development of a passive technique of measuring the electron density

is necessary to take advantage of the global coverage offered by a satellite system.

Measurement of the natural ultraviolet emissions from the Earth's ionosphere is a

passive technique which theoretically may be used to infer the electron density. Scientists

at the Naval Research Laboratory (NRL) are actively involved in developing a methodology

using observations of the 01834 A emission to measure the density of 0+ (Anderson and



Meier, 1985; McCoy et al., 1985; Cleary et al., 1987). Above approximately 200 km 0+

is the major positive ion in the atmosphere. If the concentration of positive ions is known

then it is possible to deduce the electron density from the fact that the ionosphere is

electrically neutral. Below 200 km 02 + and NO + become the major ions and the NRL

measurements cannot be relied on (Cleary et al., 1989).

Work at the Naval Postgraduate School (NPS) suggests that the 02 + and NO+

densities in the region from 100 km to 200 km in altitude may be deduced through

measurement of emissions from the neutral atmospheric constituents (Bosserman, 1989;

Danczyk, 1989). The electron density would then be inferred from the calculated ion

densities.

A joint NRLiNPS rocket experiment was flown aboard a NASA sounding rocket to

test these theoretical methods for inferring the ionospheric electron density. The Air Force

Geophysics Laboratory conducted a simultaneous ground-based Ionospheric DigiSonde

measurement for comparison with the experimental results.

The NRL instrument is based on a 0.5 meter Rowland Circle Spectrograph with an

Electrographic Detector. It is designated the High Resolution Airglow and Aurora

Spectrograph (HIRAAS). The NPS instrument is based on a 1/8th meter Ebert-Fastie

Spectrograph with a photodiode detector. It is designated the Middle Ultraviolet

Spectrograph (MUSTANG).

A. THESIS OBJECTIVES

The work outlined in this paper has two main goals; calibration of the MUSTANG

instrument and calculation cf the intensity profiles for the O 2470.4A multiplet and the 01

2972.3,A line emission from data collected during the rocket experiment. An accurate

calibration is required to permit analysis of experimental data in order to provide a context

for comparison with previous measurements and theoretical models. The intensity profiles
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for the 011 2470.4A multiplet and the 012972.3A line emission are obtained by an analysis

of 25 averaged spectra which were collected over an altitude range of 100 km to 320 km by

the MUSTANG instrument.

B. THESIS OUTLINE

The thesis is divided into six chapters and has one appendix. Chapter II gives some

general background information relevent to this work, including a brief description of the

Earth's atmosphere and atmospheric airglow, a review of atomic emissions and diatomic

molecular spectra, and the generation of sythetic spectra.

Chapter III describes the experiment and the MUSTANG instrument. The data

collection process is also explained.

Li Chapter IV the calibration of the MUSTANG instrument is presented. The

procedures followed in the process, and the results of the various calibration tests are

discussed.

Analysis of the data is performed in Chapter V. Each of the 25 spectra are broken-

down into two smaller wavelength regions for individual analysis of the 011 2470.4A

multiplet and the 012972.3A line emissions. A self-correlation is performed by comparing

the results obtained for the two wavelength regions. Finally, a comparison is made with

results obtained by Clayton (1990) for the column density profile of NO.

Chapter VI concludes this paper with a summary of the findings. In particular, the

significantly high (kinetic) temperatures deduced for 105 km and 115 kn are discussed.

Suggestions for further research are also made.

The data and the best fits produced with the synthetic spectra are presented in the

appendix.



II. BACKGROUND

A. THE ATMOSPHERE

1. General Description

The Earth's atmosphere is a dynamic system, driven by the solar flux and con-

strained by gravity. The balancing of these forces leads to a partial stratification, wherein

the pressure, temperature, density and chemical composition of the atmosphere vary with

altitude. This stratification is primarily described in two ways; by the temperature gradiant

or by the chemical compostion. The comparison of any one of these parameters with

altitude is known as a profile. Figure 2-1 shows the general temperature profile for the

Earth's atmosphere.

The temperature profile is used to divide the atmosphere into four major regions,

in which the dynamics of the system will vary. The troposphere is the lowest of these

regions, beginning at the Earth's surface and continuing up to an altitude of approximately

18 km at the equator and 8 km at the poles. This region acts as a heat engine, absorbing

visible sunlight and developing convective currents. It is characterized by a negative

temperature gradiant. Above the tropopause lies the second atmospheric region known as

the stratosphere. Trace amounts of 03 are formed in this region. Due to the ability of 03

to absorb both ultraviolet and infrared radiation this region is marked with a positive

temperature gradiant. The stratosphere extends up to approximately 50 km. Above the

stratopause there is a decline in 03 production. This factor, coupled with an increase in the

loss into space of infrared emission by C02, reestablishes the negative temperature gradiant

in the mesosphe:,e. Above the mesopause, at approximately 85 kin, begins the final region

of the atmosphere, the thermosphere. In this region the temperature again increases with

increasing altitude, to values above 1000 K. This is due to the absorption of ultraviolet

radiation and ionization of the consituent gases. A balance is again achieved as the
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concentration of gases falls off. The thermopause describes the altitude above which the

temperature is fairly constant. The altitude of the thermopause and the maximum

temperature varies with solar activity.

Division of the atmosphere by chemical composition leads to two major regions.

The homosphere encompasses that altitude region where the mean molecular composition

of the atmosphere does not change. This uniform composition is brought about by

convective mixing. The three lowest temperature regions generally lie within the

homosphere. The upper limit of the homosphere is defined by the turbopause, at

approximately 100 km. Above the turbopause is the heterosphere, which is marked by

molecular diffusion rather than convective mixing. In this region the distribution of

atmospheric constituents changes with altitude.

Since the overall density of the atmosphere falls off exponentially with altitude,

there is no clear division between the Earth's atmosphere and space. A region known as

the exosphere, marked by extremely low molecular densities (primarily of He and H),

describes the region from approximately 500 km and extending out to infinity.

2. The Ionosphere

The ionosphere is defined as that portion of the atmosphere where the density of

ions and electrons is sufficiently large to affect radiowave propogation. It is subdivided

into three layers, the D, E and F regions, based on the electron density profile. The

ionosphere is formed by the ionization of atmospheric constituents, primarily by solar

x-rays and ultraviolet radiation. The amount of solar activity in the 10.7 cm band has been

correlated to the intensity of the sun's emissions in the ultraviolet region, and is reported as

the F10.7 number.

As the ionosphere straddles several of the temperature regions described above, the

varying mechanisms of transport of the atmospheric constituents plays a key role in the

6



determination of which ions will dominate in the different ionospheric layers. Figure 2-2

shows the break down of the ionosphere, and the dominant ions in each region.

500

400 F-REGION

300 He N"

" 200 H* NO*

E-REGION Re

100 METAL* -

D-REGION

H2O CLUSTER-
50 F I I - - I I

1 100 10000 1E+6

DENSITY (CM')

Figure 2-2: The electron density profile of the Earth's Ionosphere;
with contributions by positive ions

The D region, ranging from about 50 km to 90 km in altitude, is the lowest layer

of the ionosphere. Ionization is primarily due to absorption of solar Lyman-cc radiation

(1216 A) by NO, and of x-rays by the other atmospheric constituents. This layer generally

disappears at night due to ion/electron recombination.

The E region lies between 90 km and 140 km. Ionization is primarily due to the

absorption of extreme ultraviolet (MOV) and soft x-rays by 02 and 0 in the lower portion

of the layer, and absorption of far ultraviolet (FUV) by 02 and 0 in the upper portion. The
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dominant ions in this layer are NO+ and 02 + . NO + is primarily formed by ion/atom

exhange between O+ and N2 and by charge transfer between 02 + and NO. The density of

0 + increases rapidly near the top of this layer and is the dominant ion in the F region.

The F region is further divided into the Fl and F2 layers, with the F1 layer

ranging from 140 km to 200 kIn. The F1 and P2 layers are dominated by absorption of

EUV by 0. The FI layer disappears at night while the F2 layer, partially sustained by

energetic particle bombardment, persists.

Above the peak of the F2 layer, at approximately 400 km, is a region commonly

referred to as the topside ionosphere. As the altitude increases the dominant ion changes

from 0 + to He + and finally to H+ in this region.

The density of ions and electrons in the ionosphere, although sufficient to affect

radiowave propogation, is till less than one-tenth of one percent that of the neutral species.

A photochemical model of the ionosphere developed by Cleary (1985) shows how the

neutral species N2, 02, 0, NO, and N are chemically coupled with 02 + and NO+ . It is

this model which provides the framework wherein the electron density will be inferred by

the NPS experiment. The process involves measuring the densities of the neutral species

from the atmospheric airglow, allowing deduction of the 02+ and NO+ densities. These,

in turn, provide the basis to infer the electron density.

3. Atmospheric Airglow

The Earth's atmosphere emits radiation as a result of energy absorbed from the

solar flux and energetic particle bombardment. Emissions during the daylight hours,

dayglow, are produced from excited states acheived by chemical reactions as well as by

solar photons and energetic particle bombardment. Nightglow is primarily driven by stored

energy in the form of ion/electron recombination. In the absence of the solar flux the

8



electron concentrations in the ionosphere drops rapidly; so much so that the D and FI

layers effectively disappear.

Photo-excitation will follow the slection rules of quantum physics, leading to

allowed transitions from the ground state. Collisional excitation, by photo-electrons, and

the transfer of energy through chemical reactions may lead to any excited upper state being

acheived. The excitation energy will be reradiated at some rate determined by the lifetime

of the upper state. The lifetimes of states with allowed transitions to the ground state are

extemely short. If the upper state must undergo a forbidden transition to the ground state it

may persist for some time (several seconds in extreme cases) and is said to be metastable.

Knowledge of the emission rate from an excited state may be used to calculate the

density of a particular species if the excitation mechanism is understood. Due to the

geometry of atmospheric observations, a column emission rate is the natural quantity

measured. A number of techniques are available to convert column emission rates to

volume emission rates. The radiometric unit for a column emission rate is known as the

Rayleigh (R). It is defined as the rate of omnidirectional emission in a column of unit cross

section along the line of sight, with dimensions of 106 photons cm -2 sec- I , and describes

the number of photons emitted over an entire spectral feature. The column emission rate

for isotropic emissions is given by;

00

4nI= E (z) dz ;(2-1)

Zo

where 4n I is the column emission rate in Rayleighs and E is the volume emission rate at

altitude z in units of 106 ph cm-3 sec -1 . For continuum emission (and broad spectral

features) the spectral photon flux 4nI in units of R/A is used. A thorough discussion of the

derivation of the Rayleigh is given by Chamberlain (1978).
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B. ATOMIC AND DIATOMIC MOLECULAR SPECTRA

1. Introduction

The atmosphere consists predominantly of atoms and diatomic molecules with the

majority of its mass made up of N2, 02 and 0. Emissioi1s in the middle ultraviolet regime

from atoms and diatomic molecules are primarily the result of transitions of optically active

electrons from an upper excited state to the ground state. This section provides a brief

explanation of the differences between the spectra observed from these two types of

atmospheric constituents. Herzberg (1950) provides a very thorough discussion of atomic

and diatomic molecular spectra.

2. Atomic Emissions

The classic model of the atom is that of a postively charged nucleus surrounded

by electrons in concentric orbits or shells. This model, first postulated by Neils Bohr,

defines the energy state of the atom by the orbital levels of the electrons; with only specific

energy states allowable. These discrete energy states are known as stationary states,

which are determined by the quantum conditions of the electrons.

The derivation of the possible electron configurations of an atom is altered in

quantum mechanics, but still results in discrete stationary states. Quantum mechanics is

based on the theory that all matter has a wave nature as well as a particle nature. Thus, an

atomic system is defined by an equation combining the wave motions of all the particles

making up that system. This wave equation has only a finite number of solutions. These

solutions are known as eigenfunctions. Associated with these solutions are specific energy

values for the system, known as the eigenvalues. The terms which comprise a solvable

equation make up an eigenstate, which are the allowable stationary states of the atom. The

stationary states are described by the various quantum numbers of the electrons. An

additional postulate required for determining the possible eigenstates of an atom is the Pauli

10



exclusion principle which states that in the same atomic system no two electrons can have

the exact same quantum numbers.

An optically active electron, one in the outermost unfilled shell, may be excited

and move into a higher energy state under the influence of electromagnetic radiation (photo-

excitation) or by collision with a high energy particle. The process of excitation involves a

transfer of energy to the electron and a change in its quantum numbers. When the electron

returns to its ground state that energy will be emitted as a photon. Since eigenstates have

discrete energy values, the energy of the emitted photons will have discrete values equal to

the difference between the eigenvalues of the two eigenstates involved in the transition.

The frequency of the photon is determined by the relationship E=hv; where E is the energy

of the photon, h is Planck's constant and v is the frequency. The wave-length is found by

the relationship c = vA; where c is the phase speed of the radiation (speed f light) and X is

the wavelength.

The probability that an electron will undergo a transition from one state to another

under photo-excitation is determined by the eigenfunctions. This defines the relative

intensities of the various emission (or absorption) lines of the system. Only specific

changes in the quantum numbers are allowable. This results in a series of selection rules

for electron transitions. Interaction between an electromagnetic field and the magnetic

dipole or electric quadrupole of the electron may also result in a transition. The

probabilities of such transitions are much lower than electric dipole transition probabilities.

Therefore, transitions which cannot occur with dipole radiation are considered forbidden

transitions.

The probability of collisional excitation of an electron is determined by the flux of

the high energy particles and the effective cross section of the atom to particles at those

energies. This cross section is a function of the energy level of the particles. Collisional

11



excitation may result in an electron transition to a state for which the subsequent downward

transition is forbidden. As the probability of such a transition is low the electron may

remain in the excited state for a relatively long period of time. The atom is said to be in a

metastable state when this condition occurs.

A transition between two orbital levels involves a change to the primary quantum

number, n, of the electron. This results in a relatively large change in the energy of the

system. Fcy a given orbital transition, changes in the secondary quantum numbers, which

define the various angular momenta of the system, result in small differences in the emitted

energy. The number of possible discrete energy levels in which an electron can reside for a

given orbital is known as the multiplicity of the state. For a multiplicity of one, only a

single transition is possible from the upper excited state to the ground state of the electron.

This results in a line emission. When the multiplicity is greater than one the transition is

made up of a multiplet of discrete lines.

3. Diatomic Molecular Spectra

A diatomic molecule has two modes of motion which do not occur for an atom.

The first is a vibrational motion of the atoms relative to each other along the internuclear

axis. Secondly, the molecule can rotate about its center of mass on the internuclear axis.

The vibrational motion of a diatomic molecule may be modeled as a harmonic

oscillator. That is, the atoms move towards and away from each other along the

internuclear axis in simple harmonic motion. Quantum mechanics again imposes specific

vibrational eigenfunctions, with the result that only specific vibrational frequencies of the

molecule are allowed. These frequencies are proportional to. the energy of the vibrational

state. A transition from one vibrational state to another thus requires a transfer of energy

by absorption or emission of a photon or by collisional excitation/deexcitation. The

12



differences in energy between vibrational eigenstates are typically an order of magnitude

smaller than the differences between electronic states.

The rotational motion is described in a simple model of the molecule called the

rigid rotator. In this model the atomic masses are considered to be point-like and fastened

at a set distance apart on a weightless rigid rod. The rotational eigenstates allowed by

quantum mechanics have specific quantized values for the rotational energy and angular

momenta of the molecule. The results are rotational spectra consisting of series of equally

spaced line emissions. The energy of a photon emitted due to a change in rotational states

is an order of magnitude smaller than that of a photon emitted by a vibrational transition.

A given electronic transition involves several vibrational transitions. Each of

these vibrational transitions will, in turn, encompass a series of rotational transitions. The

collection of rotational spectra about a given vibrational transition is known as a vibrational

band. Figure 2-3 illustrates this relationship between the various components of a

molecular transition.

C. GENERATION OF SYNTHETIC SPECTRA

Synthetic spectra are generated based on the selection rules and probabilites governing

the various band emissions for diatomic molecules. The selection rules will determine

whether a specific transition is allowed, while the various transition probabiites governs

the relative intensities between the various emission bands, and the individual vibrational-

rotational lines within a band. The probability of a particular electronic transition occuring

is based on its oscillator strength. The probabilities of the various vibrational transitions

results in a branching ratio within each electronic state. These branching ratios are given by

the Franck-Condon factors. Finally, the probability for a specific change of rotational state

within a specific electronic and vibrational transition is determined by the Honr-London

factors.
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Figure 2-3: Molecular energy Curves for two electroniQ states, illustrating the
relationship between the electronic, vibrational and rotational levels.
The energy difference between the vibrational and rotational states
are not to scale. (Eisberg and Resnick, 1985)

14



All of these parameters are used to mathematically generate synthetic spectra. The

emission rates are determined for each rotational line in a vibrational band of an electronic

transition The spectral region is divided into wavelength bins, and as each line is

calculated its intensity is added to the appropriate bin. An algorithm of this type was

developed by Cleary (1986) and is used in the analysis of the data presented in Chapter V.
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III. THE EXPERIMENT

A. INTRODUCTION

The objective of the experiment was to measure the atmospheric dayglow of the lower

ionosphere. The payload consisted of the NRL spectrograph, designed to observe the

500A to 1500A wavelength region, and the NPS MUSTANG instrument, designed to

observe the 1800A to 3400A wavelength region. The instruments were flown aboard a

NASA Terrr;"r Black Brandt sounding rocket, launched at White Sands Missile Range,

New Mexico at 1700 GMT on 30 March, 1990. Observations are of mid-latitude

atmospheric dayglow. The solar zenith angle was 62.90 and the F10.7 was 186.9.

The payload contained an internal attitude control system (ACS) which provided

control of the instrument viewing direction. One minute after launch, at an altitude of

approximately 140 km, the payload was despun and maneuvered so that the observation

zenith angle (OZA) was 90* and the vi,-wing direction was perpendicular to the solar

direction. The payload maintained this orientation until it reached apogee at approximately

320 km. The payload was then rotated 270* along the transverse axis, until the OZA was

00. This attitude was maintained down to an altitude of 200 kin, at which time a final

manuever was performed resulting in an additional 90* transverse rotation. This resulted in

a total transverse rotation of 3600, so that from 200 km down to the conclusion of data

collection the payload was in the same orientation as during the ascent. Data collection was

continued down to an altitude of approximately 100 km.

The spectra measured by the MUSTANG instrument are broken-down into two sets,

the ascent (up leg) from 150 km to 320 km and the descent (down leg) from 200 km to

100 km.
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B. INSTRUMENT DESCRIPTION

The MUSTANG instrument consists of a 1/8th m off-axis telescope, a 1/8th m Ebert-

Fastie spectrograph with a photo-detector system located at the exit focal plane and an

electronics interface. The optical equipment was fabricated by Research Support

Instruments, Inc. The electronics interface was designed and constructed at NPS

(Campbell 1989). A diagram of the instrument is shown in Figure 3-1.

Figure 3-1 Schematic Diagram of MUSTANG Instrument. Major components
are: (1) 1/8th m Telescope mirror, (2) Spectrograph entrance slit,
(3) 1/8th m Ebert mirror, (4) Diffraction grating, (5) fl1' Image
intensifier, and (6) Hamanmatsu Image detector.

The photo-detector system is comprised of an I1T F4145 Proximity Focused, Channel

Intensifier Tube with Dual Microchannel Plates and a HAMAMATSU S2300-512Q

Plasma-Coupled Device (PCD) Linear Image Sensor mounted on a HAMAMATSU

evaluation board.
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The ITT device is an image intensifier consisting of a quartz input window, a cesium

telluride (CsTe) photo-cathode, two microchannel plates (MCP) in cascade, a phosphor

screen, and a fiberoptic output window. The HAMAMATSU device is a monolithic, self-

scanning linear array of 512 p-n junction photodiodes, with 50 pm center-to-center spacing

and 5.0 mm height. It has a fiberoptic input window. The evaluation board is a

driver/amplifier circuit for the image sensor. It provides a start pulse to initiate a scan of

the array, a three phase clock to drive the scan sequentially, and a charge-amplifier for the

photodiode output.

Incident light is collected by the telescope mirror and passed through the entrance slit

of the spectrograph located at the focal point of both the telescope mirror and of the Ebert

mirror. Collimated light from the Ebert mirror strikes a reflective diffraction grating and is

reflected back to the Ebert mirror. The resulting diffraction pattern is focused by the Ebert

mirror on the input window of the image intensifier, located at the exit focal plane of the

spectrograph.

The telescope has a 1/8th m focal length off-axis parabolic mirror coated with

aluminum with an overcoat of Magnesium Floride (MgF4). The Eber mirror is also MgF4

coated aluminum. The entrance slit of the spectrograph has an area measuring 140 pim by 5

nm. During the flight, the instrument was oriented with the 5 mm axis of the slit in the

vertical direction. The diffraction grating, provided by HYPERFINE, has a linespacing of

1200 lines/mm and is blazed to optimize output of 2400 A light in the first order. The

resulthig diffraction pattern has a bandwidth from 1800 A to 3400 A over the effective

detector length of 25 mm.

The spectrum produced from the spectrograph strikes th- - .oto-cathode at the exit

focal plane and generates photo-electrons. These electrons are accelerated down the MCP

by an accelerating voltage of approximately 1600 V. As the photo-electrons strike the walls
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of the MCP secondary electrons are created, which are accelerated in turn gererating still

more secondary electrons in a cascade fashion. The result is approximately 15,000

electrons produced for every one emitted by the photo-cathode. The electrons are

accelerated by an additional potential of approximately 5000V between the MCP and the

phosphor screen. The phosphor fluoresces in response to the electron shower. The

fluorescent light is transmitted by the fiberoptic window with the same spatial configuration

as the original spectrum incident on the photo-cathode. A block diagram of the image

intensifier is presented in Figure 3-2.
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Figure 3-2 Block Diagram of Tr F4145 Proximity Focused Channel Intensifier Tube
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The fiberoptic input window covering the photodiode surface of the image sensor is

abutted to the output window of the image intensifier. Each of the photodiodes integrates

charge over time as a function of the number of photons striking it. As the photodiode

array is scanned the detector outputs an analog signal with a maximum value of 7.7V.

The electronics interface consists of an analog-to-digital (A-to-D) converter, a first-in-

first-out data storage device (FIFO) and a buffer. The analog signal is sent to the A-to-I

converter and the resulting digital data word is stored in the FIFO until it is ready to be read

by telemetry. The data word is then sent to the buffer for acceptance into the data stream.

C. DATA COLLECTION

Data collection and readout are controlled by NASA timing signals. Telemetry is

broken down into frames of 1024 words, with 10 bits per word. At a bit rate of 200kHz

this generates approximately 19.5 frames per second. Frames are comprised of 32

subframes of 32 words each, with NASA using the first 16 words of each subframe for

command and control signals and general housekeeping. The remaining 16 words in each

subframe are dedicated to the MUSTANG data. Therefore, data is transmitted in spurts of

16 words (pixels) per subframe resulting in transmission of one complete spectrum every

51.2 ms.

In the laboratory the MUSTANG instrument is driven by a Macintosh II equipped with

NATIONAL INSTRUMENTS Direct Memory Access (DMA), Multi-function Input/Output

(MIO) and Digital Input/Output (DIO) expansion cards. Timing signals and data

acquisition are performed using the programming language 'LabVIEW' also by

NATIONAL INSTRUMENTS. Power is provided to the instrument using a HEWLITI-

PACKARD 6206B DC Power Supply. Data are acquired and saved on the computer with

50 individual spectra averaged together for each measurement.
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IV. CALIBRATION

A. INTRODUCTION

In order to evaluate the data collected during the rocket flight it is first necessary to

understand the following characteristics of the MUSTANG instrument:

1. The output from the detector resulting from a range of possible inputs;

2. The precise wavelength band striking each photodiode; and

3. The field of view for the instrument.

In the following sections the calibration steps followed to obtain these parameters are

described in detail.

B. CALIBRATION PROCESS

1. Sensitivity Calibration:

a. Overview

The sensitivity calibration of the instrument was conducted by illuminating a

diffusing screen with calibrated light sources and measuring the resulting response of the

instrument. Because the primary interest of this experiment is in wavelengths longwards of

2000A the calibration was performed in open air.

The sensitivity was determined by dividing the response of the detector by

the product of the reflectance of the screen and the output from a light source. This was

carried out by enclosing the calibrated source in a box with a controllable aperture and

having the instrument view the reflective screen at an angle of approximately 400 from the

normal of the screen. The normal of the screen was coincident with the optical axis of the

source and the instrument was placed so that it was level with this axis. The laboratory

was darkened and the aperture opened until the reflective screen was fully illuminated by

the source. The screen was assumed to be an ideal Lambertian surface.
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To effectively cover the bandwidth of the instrument two types of sources

were used; an EG&G GAMMA SCIENTIFIC GS-5150 Deuterium Light Source and a

tungsten filament quartz halogen lamp (FEL-IR) from OPTRONIC LABORATORIES.

These sources are both traceable to the National Institute of Science and Technology

(NIST). The sensitivity curves produced for the two sources match very closely from

2300 A to 3100 A. The response of the instrument to the FEL-IR source is considered

most reliable for wavelengths from 2300 A to 3400 A, while the response to the Deuterium

source is reliable for wavelengths from 2000 A to 3100 A. An overall sensitivity curve

constructed from those regions of the two sensitivity curves is shown in Figure 4-1. The

large dip in sensitivity at approximately 2370 A, distinctly illustrated in Figure 4-1, is

believed to be due to a blemish on the image intensifier.

b. Calibration Geometry

The theory may be reviewed in a few simple steps. The following

definitions will be used in this discussion:

EX - spectral irradiance ph striking the screen;
(-Cm2 s A)

LX(0)- spectral radiance (-m--h tr leaving the screen;
( cm2 s A str)

PX - photon flux received over a one-A wide wavelength bin

At - area (cm 2) of the telescope aperture;

As - area (cm2 ) of the spectrograph entrance slit;

Av - area (cm2 ) of the screen viewed by the instrument;

f - focal length (cm) of the off-axis telescope collecting mirror;

d - distance (cm) from the mirror to the screen;

p - relectance of the screen.
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For simplicity the %-subscripts will be left off; spectral irradiance/radiance and photon flux

will be implied unless otherwise stated.

The geometry of the calibration setup is shown in Figure 4-2. Geometric

optics allows for the calculation of Av, in the limit where the slit is narrow and d > f. The

solid angle viewed by the telescope is: Q = (As/f2), with the area of the screen viewed by
Av cos0

the slit given by: d2  -= Q. Therefore:

d2

Av =As (d2", 1(41
(f2 (Co-0s9 (41

Source

telescope diffusing
mirror -------------- ---------------

entrance
slit

Figure 4-2: Schematic drawing of the calibration geometry; showing the
area of the diffusive screen observed by the spectrograph.

Lamibert's Law states that for an ideal diffuse reflector, or Lambertian

surface, the radiance at an angle 0 from the normal of the screen is equal to the product of

the irradiance at 0 =0* times the cosine of 0:

L(O) = LocosO. (4-2)

24



The solid angle subtended by the telescope aperture at each element of area (da) on the

screen is: 0) = (At/d2). Thus, the number of photons per second per Angstrom received at

the telescope mirror due to an element of area is: dP = L(O) da wo. Substituting for (o

yields: dP = L(E) (At/d2) da. The total number of photons received at the entrance slit of

the spectrograph from the reflecting screen may be calculated by integrating over the

projected area of tht slit on the screen. Ignoring reflective losses from the mirror, and

assuming that L(O) is constant over the area in question:

P = L(O) -fda. (4-3)

Using the definition of the area viewed by the entrance slit this becomes;

P= L(O) Av. (4-4)

Substituting for Av yields:

P=L(O) At-(As (4-5)d2 f2 COSO'

Rearranging the terins and simplifying leaves:

P = (--t As (L(SO ) "(4-6)

For a Lambertian surface, where L(O) = Lo cosO;

s=Lo ). (4-7)
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Thus, the number of photons per second per Angstrom passing through the entrance slit of

the spectrograph is a product of constants (for constant radiance) and is independent of 0.

The spectral radiance of the screen is determined by equating the spectral

irradiance striking the screen to the total spectral radiance leaving the screen divided by the

reflectivity of the screen:

JL(O) dQ

E ;(4-8)P

where d = sinO dO d, 0 ranges from 0 to x/2, and ranges from 0 to 2n. Assuming

that the reflectance is independent of 0, Equation 4-8 becomes;

2x 7/2

E=- f J(Lo cosO) sine dO d4. (4-9)
P *=o 0.oo

The solution of this integral is: E = 7rLo/p. Therefore; the radiance normal to the screen is:

Lo = pE. (4-10)

and the directional spectral radiance is written as:

L(O) = pE cos0. (4-11)

Substituting Equation 4-10 into Equation 4-7 gives;

P = (At As) pE. (4-12)
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c. Calibration Theory

The output from the MUSTANG instrument is an array of 512 voltages

which have undergone an A-toD conversion. These raw data have dimensions of decimal

units per pixel. It is necessary to convert these values to a standard unit such as R/A. This

is done by equating the flux entering the spectrograph, P (see discussion in Section b

above), to the instrument output, D, in decimal units per pixel. This relationship is;

D = PI"Bw; (4-13)

where F is the instrument gain in decimal units per photon per second, and Bw is the

bandwidth of each pixel in Angstoms per pixel. The gain is the product of the various

efficiencies and transfer functions of the individual components of the instrument. While it

is not the objective of this thesis to determine the numerical value of F, it is helpful to

demonstrate how it is derived. The following definitions will be used in this discussion:

-quantum efficiency (o-) of the photo-cathode;

Fmcp " gain ( ) of the microchannel plates;

12- efficiency F(h) of the phosphor screen;

3- quantum efficiency i~--e of the photodiode;

, - integration time (sec);

g1- transfer function (V of the image detector amplifier;

g2 - transfer function (decimal units) of the analog to digital conversion.
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Over one integration time, the output from a photodiode (Wpd) will be;

Wpd = P (1 IrmcO 2 l13r); (4-14)

in electrons per Angstrom. During this same time period, the instrument output will be;

D = Wpd (gg 2) Bw. (4-15)

Recombining the terms, and separating out the flux entering the spectrograph leaves;

D = P (g1g2TI1rmc1 2TI113) Bw. (4-16)

Therefore, the overall MUSTANG instrument gain, 1, may be defined as;

r " (gig2Tl"mcpll 2 l 3'r), and (4-17)

Substituting for the flux, P, gives;

D = rBw (AtAs) pE. (4-18)

The constants in Equation 4-18 are gathered together to define a constant;

K = 7Bw (At As (4-19)
i nf 2) P

which allows the output of the instrument to be written as;

D = KE. (4-20)
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Given an omnidirectional emission rate from the atmosphere of 47l R A, (see

Equation 2-1) the spectral radiance received by the MUSTANG instrument is;

(1061~L= , 4n )' (4-21)

where L is in units of ph The spectral radiance may also be written in terms

of the spectral iradiance of the atmosphere. For normal incidence this is;

L = E/n. (4-22)

With omnidirectional emissions the instrument is at normal incidence to the atmospheric

airglow. Therefore, the output of the instrument due to the spectral radiance received from

the atmosphere is;

('At As)D= rBw A-f2 ) L. (4-23)

This is rewritten in terms of the omindirectional emission rate;

D= I9Bw(AS) (4-24)

Solving for the emission rate of the atmosphere gives;

_I\( 47rf 2  D
I BwrAt AS)D (4-25)

where I is in units of R/A.
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A new constant is defined;

=( 4nf2 As) (4-26)--(106BwrAt A

This is simplified by using the definition for K from Equation 4-19, which yields;

(0K 
(4-27)

Substituting this constant into Equation 4-20, where E is the spectral irradiance from a

calibration source, gives;

r6(4p E (4-28)

The constant 1; may then be defined in terms of the spectral irradiance and the response of

the instrument as;

(0 1 E; (4-29)

under the assumption that the screen is an ideal Lambertian surface.

This results in a calibration parameter (1;) for the MUSTANG instrument;

I = C D; (4-30)

where the spectral emission rate from the atmosphere is equal to the calibration parameter

times the detector response.

Because the calibration below -2000 A is affected by absorption due to

oxygen, no sensitivity is calculated in this region. The spectral calibration parameter, in

(R/A) per (Decimal unit/pixel), is presented in Figure 4-3.
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d. Output of calibration sources as a function of wavelength

The calibration data provided by the manufacturers of the Deuterium Lamp

and FEL-IR sources are in terms of spectral irradiance [ItW/(cm 2 nm)], provided at specific

wavelengths. For the calibration the output was required as a continuous function of

wavelength. The manufacturer's data are shown in Tables 4-1 and 4-2.

TABLE 4-1 TABLE 4-2
IRRADIANCE FROM DEUTERIUM IRRADIANCE FROM FEL-IR

SOURCE AT 50 cm SOURCE AT 50 cm

Wavelength(A) Irradianecm2 Wnm) Wavelength (A) IrradianCe cm2Wnm)

2000 5.2698x10-2

2100 4.7427
2200 4.4895 ---
2300 4.3975
2 4 0 0 4 .2 2 1 4 ---
2500 3.5706 2600 3.15x10-2

2600 3.0351 2600 3.15
2700 2.5182 2700 5.22
2800 2.1528 2800 8.17
2900 1.8548 2900 1.23x10 "1

3000 1.5673 3000 1.78
3100 1.3508 3100 2.50
3200 1.1693 3200 3.43
3300 1.0341 3300 4.58
3400 9.1718x10-3  3400 5.99
3500 8.0237 3500 7.69

The calibration procedure described above requires an irradian,.e for each

wavelength bin of the detector. Therefore, the manufacturer's data were fitted with curves

to produce a continuous function of output versus wavelength. Three separate curves were

required for the Deuterium lamp; a gaussian distribution for the wavelength range from

1800 A to 2100 A, an exponential from 2100 A to 2400 A and a second exponential for

wavelengths above 2400 A. The equations for these curves are:

32



EX(1800 - 2100 A) = 0.046 + 0.0092xe'[-1929)/115.0] 2; (4-31a)

EX(2100 - 2400 A) = 0.041 + 103.3xe- 4 1 7.2) ; and (4-31b)

E%(% > 2400 A) = 0.003 + 3.542xe-(/ 533.3) ; (4-31c)

in [gjW/(cm 2 nm)]xlo- 3. The calibration data and the three curve fits for the Deuterium

source are shown in Figure 4-4.

The FEL-IR source is advertised as a 'black-body' radiator with a color

temperature of approximately 3000 K. A Planckian distribution was successfully fitted to

the data with a calculated color temperature of 3081 K:

EX =(2.4 9 x1O 27  1 (4-32)

in [jxW/(cm 2 nm)]. The data and calculated Planckian distribution for the FEL-IR source is

presented in Figure 4-5.

The calibration data for the sources were established for a radial distance of

50 cm. Due to the sensitivity of the detector the Deuterium lamp was normally set at a

distance of 200 cm from the screen while the FEL-IR source was set at 300 cm. The

output curves were modified by the ratios (50/distance) 2. In addition, the output of the

detector is determined by the number of photons which strike each photodiode over the data

integration time, not by the energy flux. Therefore, the output of the two calibration

sources was converted to a photon flux by dividing the fitting curves by the photon energy

at each wavelength. This resulted in values of the irradiance in units of h
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e. Refectivity of Screen as a Function of Wavelength

During flight, the atmosphere appears to the instrument as an extended

source. In order to mimic this situation a diffuse reflective screen is illuminated by a source

while the MUSTANG instrument measures the flux over a small solid angle projected upon

a portion of the screen.

The screen is constructed of a one-quarter inch thick sheet of aluminum,

measuring one foot square, painted with KODAK Model 6080 White Reflectance Coating;

a solution of Barium Sulfate (BaSO4) suspended in ethanol. The solution was applied

using a KODAK Model 13270 Laboratory Sprayer (for high viscosity use). Ten coats

were applied allowing the screen to air dry between coats.

To determine the reflectivity of the screen as a function of wavelength, the

intensity measured by reflecting a source off the screen is compard to the intensity

measured for direct illumination of the instrument. The ratio of these two measurements is

calculated and normalized to a known value of the absolute reflectance of the BaSO4

coating. This provides a continuous curve of the reflectance as a function of wavelength.

Due to the sensitivity of the detector an extremely small aperture was required

to reduce the irradiance sufficiently to allow the instrument to "look" directly at the sources.

Even a small pinhole in a sheet of aluminum foil allowed too much light to reach the

instrument. A suitable aperture was finally constructed by pricking a small hole in a strip

of black tape placed over the controllable aperture in front of the source. The "self-healing"

property of the tape caused the pinhole to shrink until useable data could be taken. (The

hole would continue to shrink, until it was fully sealed and had to be reopened.) Five

measurements were taken in this manner for each source. These measurements varied in

intensity and were normalized prior to being averaged together.
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Five measurements were also made with the instrument viewing the

illuminated screen and the aperture fully open. These measurements were averaged

together and the ratios of the reflected to direct measurements were calculated fcr each

source. The resultant curve from the FEL-IR source was normalized to the curve produced

by the Deuterium lamp using the ratio of their values at 2700 A.

An overall reflectance curve for the screen was produced by combining the

1950 A to 2700 A section of the curve produced by the Deuterium lamp with the 2700 A

to 3200 A section of the FEL-IR curve. It was normalized to the absolute reflectance of

BaSO4 at 3'500 A reported by Grum and Luckey (1968). An exponential funtion was fitted

to this curve to produce a continuous function relating the reflectance and wavelength;

p = 0.989 - 21.29xe -( /448.5); (4-33)

where X and the decay constants are in A.

Figure 4-6 displays the actual reflectivity curve obtained for the screen, the

exponential fit and the published values for the absolute reflectance of BaSO4 (Grum and

Luckey, 1968). The divergence of the data from the published values is probably due to

the method of application. Spraying reportedly does not permit a sufficient thickness of

BaSO4 to be produced to achieve the reflectance values obtained with a 1.0 mm coating

(Grum and Luckey 1968).

f. Lambertian Properties of the Screen

To test the Lambertian properties of the screen, the MUSTANG instrument

was placed at several angles, ranging from 60 to 650, from the normal to the screen. The

ratios of the detector output for each angle 0 to that at 6* were plotted versus 0. The 60

angle was the smallest which could be measured without the instrument interfering with the

illumination of the screen and was assumed to be close enough to 00 for this purpose. For
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an ideal Lambertian surface this ratio will always be one. The actual data showed a

decrease in the ratios with increasing 0.

Angular dependence of the spectral radiance for a non-Lambertian screen will

involve some function of 0 other than cosO. Lambert's Law is modified to read;

L(O) = LO f()). (4-34)

Equating this to the spectral irradiance from the source gives;

E= 1_fL(0) dQ; (4-35)
p

where the reflectance, p, is again assumed to be independent of 0. This equation is written

in terms of 0 and ;

E ! 29 n/2

E=- j (Lo f(0)) sine dO d ). (4-36)
P 0=0 0=0

Solving for leaves;

n/2

E =2i p Lof(0) sinO dO. (4-37)

Equation 4-37 may not be solved analytically without knowing f(0). It may be solved in

general terms by using the definition;

n/2

T' = f(0) sinO dO; (4-38)
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which leads to the solution;

E=Lo 2-. (4-39)
P

Thus, the spectral radiance normal to the screen is;

L pE (4-40)

and the directional spectral radiance is;

L(O) =_Ef(O). (441)2nr

Substituting this into Equation 4-6 yields:

P = (At AspE ( R0 (442)
(n f2  JMsO

Assuming that the reflectance is only slightly different from that for an ideal Lambertian

surface, and changes slowly, f(O) is approximated as f(e)cosO. A plot of the data,

presented in Figure 4-7, indicates that f(O) is a linear function of e. Substituting (me + b)

cosO for f(O) in Equation 4-36 yields:

x/2

E = 2'o J(mO + b) cosO sine dO. (4-43)
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This is solved by parts:

bc o /2 X/2 '

E P-(lbcosO sine de + Jm cose sinO de); (4-44)

E2 Lo b sin2e
E =- + m sin2 dO ; (4-45)

P 0

2XLo b m
E - + (4.46)

E= o + b .(4-47)

P (M

Solving for Lo:

Lo = pE 1 (4-48)

Therefore, L(O) may be written as:

pE (m0 + b) cos. (449)
() =- -+ b)

The terms may be gathered to indicate that the directional spectral radiance

from the screen is equal to that for an ideal Lambertian screen plus a "correction factor."
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L(O)= cos 1 +. (4-50)

This leads to a solution for the total number of photons per second per Angstrom transiting

the entrance slit as:

1pE + +(J.

At 0 = n/4 this solution is identical to that for an ideal Lambertian surface.

Inasmuchas the calibration data were taken at 40* no correction is deemed necessary due to

the angular dependence of the reflectivity of the screen.

g. Linearity of Instrument Response

The experiment was designed to measure the atmospheric airglow spectra

over an altitude range of 100 km to approximately 320 km. Consequently, the data was

expected to have a large dynamic range. It was, therefore, necessary to measure the change

in response of the I USTANG instrument to changes in irradiance.

The irradiance was controlled by varying the distance between the Deuterium

lamp and the reflective screen. The irradiance at the screen corresponds to the inverse of

the square of the distance. The instrument response to the varying irradiance was recorded

and the relative intensity at 2500 A for each distance was plotted versus the square of the

ratio of 200 cm to the actual distance between the source and the screen. (These values

were selected because the response to the Deuterium' lamp peaks at about 2500 A and this

source was normally set at 200 cm from the screen during the other calibration tests.) For

simplicity, the square of the ratio of 200 cm to the different distances used in this test will
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be called the "distance ratio". A plot of the relative intensity versus the distance ratio is

shown in Figure 4-8. The results of this test are also tabulated in Table 4-3.

TABLE 4-3
MUSTANG INSTRUMENT RESPONSE AT 2500 A

TO VARIOUS VALUES OF IRRADIANCE

Data Relative Distance (cm) Distance
Point Intensity Source to Screen Ratio

0 994 140 2.04
1 986 150 1.78
2 813 170 1.38
3 722 180 1.23
4 709 180 1.23
5 640 200 1.00
6 581 200 1.00
7 496 220 0.83
8 476 220 0.83
9 410 240 0.69
10 401 240 0.69
11 350 260 0.59
12 298 282 0.50
13 241 311 0.41
14 206 339 0.35

Figure 4-8 indicates a strong linear relationship between the instrument

response and the irradiance up to a relative intensity of approximately 800 decimal units per

pixel. (This corresponds to an output of 6.2 V from the image sensor.) A check of the

instrument response at other wavelengths confirmed this linearity.

Prior to launch the decision was made to reduce the sensitivity of the

instrument. To do this the gain voltage supplied to the image intensifier was lowered from

9.77 V to 9.41 V, resulting in a calculated drop of the potential across the MCP to

approximately 58% of its original value. The ratio of the instrument response prior to and

after this modification was calculated for the Deuterium source and applied uniformly

across the wavelength band. This "sensitivity-reduction" coefficient had a measured value

of 0.600 ± 0.005. A post-flight check showed that the MCP gain voltage stayed constant.
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h. Time Dependency of Instrument Response

The total flight time of the experiment was approximately 14 minutes, with

power to the image sensor turned on at +85 seconds followed by power to the high voltage

system for the image intensifier at +96 seconds. Data were collected, at a rate of one full

spetrum every -50 ms, from +96 seconds until the high voltage system was turned off at

+517 seconds. This sequence was simulated in the laboratory, with measurements of the

instrument response to the FEL-IR source taken every minute over a span of 10 minutes.

The ratio of each measurement to the initial reading at time "zero" were calculated and are

presented in Table 4-4.

TABLE 4-4
TIME DEPENDENCE OF MUSTANG INSTRUMENT RESPONSE

Data Elapsed
Point Time (sec) Ratio

0 00 1.000
1 60 0.976
2 120 0.959
3 180 0.944
4 240 0.939
5 300 0.929
6 360 0.923
7 420 0.919
8 480 0.916
9 540 0.913
10 600 0.908

The results were fitted with an exponential curve with a lower limit of 0.904

and a decay constant of 224 seconds. This indicates that the instrument response will not

stabilize over the 421 seconds that data is collected. The measured response at 420 seconds

of elapsed time was 92% that at high voltage turn on. This establishes an uncertainty in the

data of ±8%. The data and curve fit are presented in Figure 4-9.
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During various post-flight tests the instrument response to the Deuterium

lamp was 9% lower than the pre-flight measurements while the response to the FEL-IR

source ranged from 4 to 18% higher than expected. (The expected response of the

instrument to the FEL-IR source in post-flight tests is based on the uniform application of

the sensitivity reduction coefficient over the entire data bandwidth.) Although a lamp-log

for the Deuterium lamp was not maintained it was determined that the drop in response is

probably due to a decrease in source output and not detector sensitivity. The discrepancy in

the FEL-IR readings are more difficult to assess.

The tests in question were made after the detector had been on for 10

minutes, by which time the instrument response should have reached its lower limit based

on the initial time dependence test. After the instrument was on for about 2 hours the

response to the FEL-IR source was almost identical to the reduced pre-flight

measurements. Due to the difficulty in reproducing a specific time dependency function

from day to day it was decided not to apply a time dependency correction to the data set for

the initial analysis.

2. Wavelength Calibration

The design of the MUSTANG instrument is optimized for a bandwidth from

1800 A to 3400 A. Shorter wavelengths arm attenuated by the quartz input window of the

image intensifier, while the quantum efficiency of the CsTe photo-cathode drops rapidly for

wavelengths above 3200 A. The precise limits of the wavelength region striking the photo-

detector are controlled by varying the angle of the diffraction grating relative to the Ebert

mirror. To accurately determine the setting of the grating a wavelength calibration was

performed using a FISHER SCIENTIFIC platinum hollow cathode lamp. The platinum

lamp provides a wide range of spectral emissions in the wavelength region of interest.
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The pixel positions on which 23 selected line emissions fell were determined by a

rough approximation of the centroid of the emission profiles. The wavelengths of the 23

emissions were plotted versus the pixel position and a line fit was determined;

X = [(1798.0 + 3.134N) ± 0.5] A; (4-52)

where N is the pixel number. The standard deviation of the slope for this fit is ± 0.002.

This also determines the numerical value of 3.134 ± 0.002 for Bw-

A plot of the instrument response to the platinum source is shown in Figure 4-10,

with the 23 line emissions used in the wavelength calibration tagged. Figure 4-11 is a plot

of the 23 emissions versus their respective pixel positions with the line fit overlayed.

The actual position a given wavelength will strike the detector is a function of the

diffraction angle and the focal length of the Ebert mirror [(N-256) = f tanO]. Therefore, a

line fit is only valid in the small angle approximation where tanO - 0. A second order

approximation requires a third order polynomial (with the coefficient for the second order

term equal to zero). With the exception of a single data point, however, the best

polynomial fit obtaiined did not significantly improve the match between the actual and

calculated wavelengths for the 23 data points.

Table 4-5 lists the 23 identified emissions and their respective pixel positions, and

compares these data points to the wavelengths calculated by the line fit and the best

polynomial fit obtained.
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TABLE 4-5
SELECTED EMISSIONS OF PLATINUM HOLLOW CATHODE LAMP

Data Pixel Selected Calculated Wavelengths (A)
Point Position Emissions (A) Line-fit Polynomial

0 38.6 Neil 1916.08 1918.9 1916.3
1 106.0 PtII 2128.61 2130.2 2130.2
2 110.8 Pt/LI 2144.23 2145.2 2145.3
3 120.5 PtI 2174.67 2175.6 2175.9
4 128.5 PtI 2202.22 2200.7 2201.1
5 143.0 PtIl 2245.52 2246.1 2246.7
6 157.0 PtI 2289.27 2290.0 2290.6
7 178.0 PtI 2357.10 2355.8 2356.5
8 205.0 PtI 2440.06 2440.4 2441.0
9 213.2 PtI 2467.44 2466.1 2466.6
10 219.4 PtI 2487.17 2485.5 2486.0
11 228.0 PtI 2515.58 2512.5 2512.9
12 236.0 PtI 2539.20 2537.6 2537.9
13 264.4 PtI 2628.03 2626.6 2626.6
14 288.4 PtI 2702.40 2701.8 2701.5
15 298.3 PtI 2733.96 2732.8 2732.5
16 329.4 PtI 2830.30 2830.2 2829.8
17 344.0 PtI 2877.52 2876.0 2875.5
18 350.2 PtI 2893.86 2895.4 2895.0
19 361.4 PtI 2929.79 2930.5 2930.1
20 383.7 PtI 2997.97 3000.4 3000.2
21 397.0 PtI 3042.64 3042.1 3042.1
22 405.3 PtI 3064.71 3068.1 3068.3

For simplicity, the line fit was used in calibration and data analysis. An

evaluation of the platinum spectrum after the flight indicated that there was no change in the

wavelength calibratior.

3. Field of View (FOV) Calibration

From the geometry of the MUSTANG instrument the field of view was calculated

to be approximately 2.30 by 0.060. Following the flight this parameter was examined by

direct measurement. The instrument was placed on a rotation stage which has an angular

resolution of 5 minutes of arc. The stage was set-up in a long corridor. A mercury (Hg)

pen-ray source was placed at a distance of approximately 150 feet from the opening of the
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instrument's telescope and aligned with the optical axis of the instrument. A system of

baffles was erected to prevent off-axis scattering. The detector response to the Hg 2357A

emission was recorded as the instrument was rotated through the field of view.

During flight the instrument was oriented so that the long dimension of the slit

was in the vertical direction. Thus, the vertical FOV was expected to be 2.30. A plot of the

instrument response to the vertical FOV, found in Figure 4-12, shows a full width at half

maximum (FWHM) of 2.00.

The horizontal FOV was checked and found to be less than with the angular

resolution of the rotation stage (0.080). This is consistent with the estimated FOV of 0.060.

Based on the vertical FOV of 2.00 a bin size of 10 km was selected for the data.
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V. DATA ANALYSIS

A. INTRODUCTION

The data were collected from 100 km to approximately 320 km in altitude during the

rocket experiment. The spectra are binned in 10 km intervals, starting at 140 km and

continuing to 320 km on the up leg, and covering 180 km down to 100 km on the down

leg. The bins are labeled according to the median altitude (eg., the 155 km bin corresponds

to spectra collected from 150 km to 160 kin). The number of spectra averaged together

ranged from 81 in the 105 km bin to 330 in the 315 km bin. The spectrum from the 155

km bin (down leg) is shown in Figure 5-1. It is dominated by emissions of molecular NO

from 1800 A to 2500 A and of molecular N2 from 2500 A to 3400 A. In addition,

relatively strong atomic emissions of 0 and 0+ are found at 2972 A and 2470 A,

respectively. The objective of the analysis was to obtain absolute intensity profiles for the

OI 2470.4 A multiplet and the 01 2972.3 A line emission. In addition, the NO column

densities were compared to the values obtained by Clayton (1990) in his analysis of the

2000 A to 2500 A wavelength region of this data set. The data were analyzed by

comparison with synthetically generated spectra over two regions; from 2420 A to 2490 A

and from 2920 A to 2972 A. The averaged spectra were separated into the two wavelength

regions for independent analysis.

The 2420 A to 2490 A region has three major constituents; N2 Vegard-Kaplan (VK)

bands, NO y bands, and the 01 2470.4 A multiplet. The 2920 A to 2972 A region has

only two major components; the VK (0-7) band and the 01 2972.3 A line emission. In

addition, the background contribution varies with altitude and wavelength.
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B. APPLICATION OF SYNTHETIC SPECTRA

Synthetic spectra for the various N2 VK bands and the NO y bands were generated

using algorithms developed by Cleary (1986). The temperature profile obtained by Clayton

(1990) was used in this process. Before being fitted to the data, the synthetic spectra must

be modified to model the wavelength resolution of the detector. This is accomplished by

convolving the synthetic spectra with the instrument slit function, which is a measure of the

instrument's response to an infinitely narrow emission line or deita function.

The instrument slit function for the MUSTANG instrument was determined from the

emission profile of spectral lines of atomic mercury. Two different slit functions were

found; a "symmetric" function when an emission falls near the center of a photodiode and

a "squared" slit function when an emission line falls between two photodiodes. The

wavelength resolution of the instrument, defined as the FWHM of the slit function, was

determined to be 10.6 A.

The shape of the 2470 A feature indicates that the OH multiplet fell on or near the

center of one of the image detector's photodiodes. Thus, the symmetric instrument slit

function was selected for convolution with the synthesized spectra in this wavelength

region. A discrepancy with the data (see Paragraph F below) makes it difficult to confirm,

but the short wavelength edge of the 2972 A feature suggests that the 01 2972.3 A line

emission fell at or near the boundary between two photodiodes. The squared slit function

was used in the fitting procedure over tis region.

The OII 2470.4 A multiplet and 01 2972.3 A line emissions were modeled by

convolving delta functions with the appropriate slit function. The 01 multiplet has lines at

2470.4 A and 2470.3 A with a relative strength ratio of 5:1 (Wiese, et. al. 1966). The line

separation is too fine to be noticed with a wavelength resolution of 10.6 A, thus a single

delta function modeling the stronger of the two lines is used.
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The NO y bands are produced predominately by photo-excitation of the molecule. The

rate at which the excitation occurs, and consequently the emission rate, for a given

molecular density are known. Therefore, the synthetic spectra generated have specific

dimensions of photons per second per molecule per wavelength bin. The N2 VK bands

and the two atomic emissions of interest are forbidden transitions, which are produced

exclusively by collisional excitation of the ground states. The production rates for these

transitions will depend strongly on solar activity. Only the relative intensities between

differing vibrational and rotational transitions are known. Therefore, the synthetic spectra

for the N2 VK bands and atomic transitions are normalized so that the area under their

respective curves has a value of one.

Fitting the data with synthesized spectra generates scaling factors; which are converted

to column densities for NO and to intensity profiles for the N2 VK bands, OIl 2470.4 .

multiplet and 01 2972.3 A emission. The NO y band column densities are obtained by

multiplying the s(.,de factors by Bw x 106 (Bw = 3.134 A/pixel). The intensity pro- -s for

the remaining features are generated by multiplying the scale factors by Bw.

C. THE 01 2972 A LINE EMISSION

The 2920 A to 2972 A region was examined first. -,its were performed using a

parameter-space grid search adapted by Clayton (1990) from Bevington (1969). The data

and associated fits are presented in the appendix. A representative fit to the data in the 195

km bin is presented in Figure 5-2, showing the overall fit and the relative contribution of

each constituent. The background component has been subtracted out for clarity. The

background component was assumed to be independent of wavelength and was an

independent parameter of the grid search.
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The scale factors for the 01 2972.3 A emission and the N2 VK (0-7) band are

converted to intensity profil'. They are presented in Figures 5-3 and 54, respectively.

The values obtained for the 155 km and 165 km bins (up leg) of the N2 VK (0-7) band are

clearly not in agreement with the rest of the fit. The scale factors obtained for the 155 km

and 165 km bins (up leg) of the 0 2972.3 A emission, however, are in close agreement

with the corresponding altitude bins on the down leg. The reason for this discrepancy is

undetermined at this time.

The fits displayed an increasing divergence from the data over the down leg, especially

below 145 kin. The temperature profile was modified and an improvement in fit was

obtained to the data at and below 145 km. The original temperature profile was determined

by comparison of the NO y (1,0) feature to a synthesis of this feature at various

temperatures (Clayton, 1990). Below 145 km this band saturated the detector and the

profile was extrapolated to predictions from the mass spectrometer incoherent scatter

(MSIS-83) model atmosphere (Hedin, 1983).

Above 145 km the temperature inferred from the observations diverges rapidly from

the MSIS predictions. The actual temperature was probably greater than the MSIS

predictions because the geomagnetic activity occuring prior to launch was significantly

high. The XKp value, an indicator of geomagnetic activity over a 24 hour period, was 40

for the day of launch, with severe geomagnetic activity recorded from 0601 GMT to 1200

GMT, and intense activity recorded from 1201 GMT to 1800 GMT (Bullett, 1990).

The modified profile has a temperature of 400 K at both 105 km and 115 kin, which is

significantly higher than predicted. Tle original and modified temperature profiles, along

with the MSIS prediction, are presented in Figure 5-5.
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The contributions by the background component were found to follow an exponential

curve with respect to altitude:

h

B(h) = 6.62 + 9440e-(28.33); (5-1)

where B(h) is the background in R/A as a function of altitude, h, in km. This appears

reasonable, as the expected minimum value of the background due to instrument dark count

is approximately 10 R/A. Additional contributions are primarily due to Rayleigh scattering

which, for a given frequency and flux, is proportional to the atmospheric density.

The calculated values for the background contribution were used to generate

background data curves in R/A over the entire 1800 A to 3400 A wavelength region for

each altitude bin. The final fitting routine was pe"ormed using the calculated values for the

background contribution.

D. THE O11 2470 A MULTIPLET

A grid search of the parameter space for the 2420 A to 2490 A region was performed

using the two temperature profiles described above. The process was not as sensitive to

changes in temperature as it was in the prior analysis, but there is a general reduction in X

squared when using the modified temperature profile. The data and associated fits are

found in the appendix. Intensity profiles for the two atomic emissions and the column

density profile for NO are generated using the fits obtained with the modifed temperature

profile. A representative fit to the data at 165 km is presented in Figure 5-6. For clarity the

background contribution has been subtracted out.

The intensity profile for the OI1 2470.4 A multiplet is presented in Figure 5-7. It

shows a broad profile with a maximum intensity at approximately 250 kin.
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An intensity profile for the N2 VK (0-4) band was generated by multiplying the scale

factors for the VK bands by the ratio of the area under the (0-4) band to the area under all

the VK bands in this wavelength region. The ratio of these areas is approximately 47%.

The intensity profile of the N2 VK (0-4) band is shown in Figure 5-8.

A plot of the NO column densities versus altitude is found in Figure 5-9. The values

obtained in this analysis are compared with those determined by Clayton (1990) in Figure

5-10, and are presented in Table 5-1.

TABLE 5-1
COMPARISON OF COLUMN DENSITIES FOR NO

Altitude Column Dersity (molecules/cm2)
Bin (kin) Leg Andersen Clayton

155 up 2.8x1015  2.5x10 15

165 2.3 2.0
175 " 2.3 1.9
185 " 1.7 1.5
195 " 1.4 1.2
205 " 1.2 ---
215 t 9.6x1014 ---
225 t 7.6 ---
235 " 6.4 ---
245 5.3 ---
255 4.1 ---
265 3.5 ---
275 2.9 ---
285 2.5
295 2.1 ---
305 1.9
315 1.7 ---
175 down 2.4xI01 5  1.9x10 15

165 3.2 2.7
155 4.8 4.1
145 7.3 7.8
135 8.4 1.1x10 16

125 1.1x10 16  1.4
115 1.6 2.0
105 2.0 2.3
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The NO column densities are in relative agreement, with the differences between the two

fits on the order of 20%. The values for the 135 kin, 125 km and 115 km altitude bins

have differences of 28%, 24% and 22% respectively. An examination of the fits for those

altitudes indicates a greater variance from the data compared to the other fits.

The scale factors obtained from the 155 km and 165 km altitude bins (up leg) are not in

agreement with the remainder of the fits for all three constituents. In the intensity profile

for the OR 2470.4 A multiplet these values are as much as 90% greater than the

corresponding values obtained on the down leg, while the fit obtained for the NO y band

has the up leg valucs approximately 40% lower than the down leg values. Clayton (1990)

found similar discrepancies with these data bins in his analysis of the data set.

The background used for this region was identical to that used in the fitting routine for

the 2920 A to 2972A region except that the intensity was reduced by 40% at all altitudes.

This 40% reduction is not unreasonable consiek-ring the difference in solar flux and the

Rayleigh scattering cross sections.

E. DISCUSSION

The MUSTANG instrument electronics interface relied on a number of timing signals

provided by the NASA telemetry system. Two of these signals, the word clock and the

data request were logically anded to enable the transfer of data from the FIFO to the buffer

in preparation for transmission to ground. Due to an approximately 3 [ts lag in the drop of

the data request clock (which was low for 16 words then switched high for the last 16

words of each subframe) a seventeenth word was transferred to the buffer during each

subframe and was subsequently lost when it was overwritten by the following word during

the next subframe. This error was corrected during the data reduction by inserting an

averaged value for each dropped word.
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An additional discrepancy in the data was noted by Clayton (1990) when he was fitting

the 2000 A to 2500 A region with synthesized spectra for the NO y, 8 and e bands. The

data appeared to be shifted progressively with increasing wavelength. Several prominent

emissions were used as fiducials to generate a correction for this undetermined

discrepancy. As noted in Chapter IV, a comparison of the pre-flight and post-flight

calibration data suggests that the wavelength calibration did not change as a result of the

flight. Therefore, it is probable that this second discrepancy is also a result of problems

with the NASA telemetry timing signals.

The 2920 A to 2972 A range is affected by these two discrepancies. The 2972 A

feature falls where one of the data words was calculated to have been dropped by telemetry.

After correcting for this, it was found that this feature appeared narrower than the

instrument slit function. Based on this it was concluded that this feature was affected by an

additional data dropout. Without a means to reconstruct the missing data the fitting

procedure was cut-off at the last valid data point for this feature, which is at approximately

2971 A. Because of this there is a systematic uncertainty of 20% for the intensities

calculated for this feature. Figure 5-11 compares the data, as received, with the squared

instrument slit function. In Figure 5-12 the correction for the known data dropout is made

and the results are again compared with the slit function. Finally, in Figure 5-13 a

correction for an additional data dropout is made and the results are again compared with

the slit function.

In addition to the data dropouts, the spectra for altitudes above 200 km in the 29 2 r A

to 2972 A wavelength region exhibit features which appear to be atomic emission lines at

approximately 2942 A and 2952 A (see appendix). These features can be seen for all

spectra above 200 kin, and their relative intensities increase with increasing altitude.

Because of their persistence, these features are believed to be real, independent emissions.
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The synthetic spectra generated for this region did not include emissions at these

wavelengths. As a result the fitting program may have overestimated the intensities of the

constituent parameters, especially that of the N2 VK (0-7) band. Em "sions at 2942 A and

2952 A broaden the data curve relative to the synthetic VK band, especially at lower

temperatures. The contamination appears to be altitude dependent and is not readily

apparent below 200 kin. However, the high temperatures calculated for 115 km and 105

km may be due to contamination of the VK band by the unidentified emissions.

Comparison of the intensity profile of the N2 VK (0-4) band at 2463 A with the profile

of the N2 VK (0-7) band at 2937 A serves as a self-correlation of the fitting programs. In

Table 5-2 the intensities for the N2 VK (0-4) and (0-7) bands are presented, along with the

ratio of the two values. The wide variance in the ratio of the intensities for the two bands

indicates that the fits are not consistent. Furthermore, the calculated ratio for these two

bands using the synthetic spectra algorithm is approximately 0.49. This value was

confirmed using a rough calculation of the ratio of the emission rate factors for the two

transitions by taking the square of the wavelengths times their respective Franck-Condon

factors (Barth, 1965).

The inconsistency between the two fitting routines indicates that one, or both, of the

sets of fits are in error. Based on the general agreement between the NO column density

profile obtained in the analysis of the 2420 A to 2490 A wavelength range with the profile

obtained by Clayton (1990) and the apparent contamination of the 2920 A to 2972 A range,

the fits for the latter range are suspect.
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TABLE 5-2
COMPARISON OF INTENSITIES FOR N2 VK (0-4) AND (0-7) BANDS

Altitude Band Intensity (R) Ratio
Bin (kin) Leg (0-4) (0-7) (0-4)/(0-7)

155 up 4.9x10 3  5.7xi0 4  8.6xi0 2

165 " 4.9 7.3 5.5
175 " 5.8 8.6 6.7
185 " 5.3 8.2 6.5
195 " 4.5 7.5 6.0
205 " 3.8 6.8 5.6
215 " 3.2 5.6 5.7
225 " 2.8 4.8 5.8
235 " 2.1 4.0 5.3
245 " 1.9 3.5 5.4
255 " 1.5 2.7 5.6
265 " 1.0 2.3 4.3
275 " 7.8x10 2  1.9 4.1
285 " 5.4 1.6 3.4
295 " 4.1 1.2 - 4
305 0.0 1.0 0.0
315 0.0 8.2x10 3  0.0
175 down 5.2x10 3  8.6x10 4  6.0
165 " 6.2 9.4 6.6
155 6.2 9.3 6.7
145 " 9.3 8.7 10.9
135 " 1.8xl0 4  8.6 20.9
125 " 2.5 9.2 27.2
115 " 3.3 1.1x10 5  30.0
105 " 2.7 1.2 22.5

77



VI. CONCLUSION

A. INTRODUCTION

The MUSTANG instrument was calibrated using standard techniques to determine the

sensitivity and wavelength calibrations and field of view. The instrument was launched

aboard a NASA sounding rocket on March 30, 1990. Post-flight tests indicated that the

calibration did not change as a result of the rocket experiment. Ultraviolet dayglow spectra

of the Earth's ionosphere were obtained from approximately 100 km to 320 km in altitude

over a wavelength range of 1800 A to 3400 A. The spectra were divided into 512 pixels of

approximately 3.134 A per pixel. Analyses of the data from 2420 A to 2490 A and from

2920 A to 2972 A were conducted to obtain the intensity profiles of the OI 2470.4 A

multiplet and the 012972.3 A line emission, respectively.

B. SUMMARY OF FINDINGS

The intensity profile of the O 2470.4 A multiplet was found to have a broad peak of

1.6 kR centered at approximately 250 km. The intensity drops off rapidly below 150 km

and is not apparent at altitudes below 140 kin.

The intensity profile of the 01 2972.3 A line emission shows a general trend of

decreasing intensity with altitude. The maximum intensity of 3.6 kR was found at 105 km

and the mimimum of 137 R at 315 km. A partial layer, with an intensity of 4.1 kR, was

evident near 150 km. Data dropouts in the wavelength region containing this feature

introduce a systematic uncertainty of 20% in the profile.

The average column densities of NO were found to be within 20% of the values

obtained by Clayton (1990). This is considered a good correlation due to the limited

number of NO emissions in the wavelength regions analyzed. The column densities

presented here were derived from a single feature encompassing three NO y bands. The
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synthetic spectra generated to model this feature was only one of three independent

variables being fitted to the 2420 A to 2490 A wavelength region. The bands included are

the (1,3) at 2438.6 A, the (0,2) at 2470.1 A and the (3,6) at 2481.2 A. [Clayton (1990)

produced synthetic fits to 11 features, several of which were strictly due to NO emissions.

The other features he analyzed were dominated by NO y, 8 and . emissions.]

An atmospheric temperature profile for altitudes below 145 In was inferred from the

fit of the N2 VK (0-7) band. Significantly higher temperatures than those predicted by the

MSIS-83 model were inferred for altitudes of 105 km and 115 kin. The value of 400 K

obtained for these altitudes may be artificially high due to possible contamination of the N2

VK (0-7) band by atomic emissions at 2942 A and 2952 A.

C. RECOMMENDATIONS FOR FURTHER RESEARCH

The time/temperatue dependence of the sensitivity calibration needs to be more fully

explored. Placing a thenr.ocouple on the driver/amplifier card of the detector system and

monitoring the temperature and instrument response as a function of time may provide a

clearer understanding of the dynamics of this relationship. The calibration tests should

include the use of heat guns and coolants to vary the temperature of the instrument.

Incorporation of the time dependence of the instrument response should significantly

reduce the uncertainty in the data.

Positive identification of the emission features at about 2942 A and 2952 A will allow

inclusion of these features in the synthetic spectra fitted to the data. This should produce an

improvement to the uncertainty of the fits in the 2920 A to 2972 A wavelength region, and

provide an indication of whether the high temperatures calculated for 105 km and 115 km

are real or are caused by contamination of the N2 VK (0-7) band.

Prior to launching the MUSTANG instrument on future rocket experiments, the

e!ectronics interface should be modified to account for possible lags in the NASA telemetry
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timing signals. A plausible method of doing this is by using a 16-bit shift register to "count

out" the data words to be sent to the buffer.

80



APPENDIX

The appendix is broken down into two sections. Pages 82 through 94 show the data

curves and best fits obtained with the synthetic spectra for the 2920 A to 2972 A

wavelength region. The plots are presented sequentially, starting with the 155 km (up leg)

altitude bin to the 315 km (up leg) bin and continuing with the 175 km (down leg) bin to

the 105 km (down leg) bin. The solid curves display the data and the fits are represented

with the dashed curves. The data curve is shown with the correction for both data word

dropouts. The fits were produced using the data to the short wavelength side of the break,

from approximately 2920 A to about 2971 A. The contamination to the N2 VK (0-7) band

is noticable above 200 km, and is quite pronounced above 270 km. Note how the long

wavelength side of the modeled 012972.3 A line emission is pushed above the data in the

fits above 250 km. This is indicative of the parameter-space grid search program

overestimating the intensity of the VK band due to the contamination. There is a similar

mismatch between the data and the curve fit for this feature at 115 km and 105 km. This is

probably the result of the background component being too large at these altitude bins.

The data and synthetic spectra fits for the 2420 A to 2490 A wavelength range are

displayed in pages 95 through 107. The format of presentation is the same as for the prior

section of the appendix.
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2920 to 2972 A range at 175 km (up leg)
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1010
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200 2920 to 2972 A range at 215 km (up leg)
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80 2920 to 2972 A range at 255 km (up leg)
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WI1.)
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