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1. Summary

Predictive assessment of the risk of developing cardiovascular
diseases is usually provided by computational approaches
centred on Cox models. The complex interdependence structure
underlying clinical data patterns can limit the performance of Cox
analysis and complicate the interpretation of results, thus calling
for complementary and integrative methods. Prognostic models
are proposed for studying the risk associated with patients with
known or suspected coronary artery disease (CAD) undergoing
vasodilator stress echocardiography, an established technique for
CAD detection and prognostication. In order to complement
standard Cox models, network inference is considered a
possible solution to quantify the complex relationships between
heterogeneous data categories. In particular, a mutual information
network is designed to explore the paths linking patient-
associated variables to endpoint events, to reveal prognostic
factors and to identify the best possible predictors of death.
Data from a prospective, multicentre, observational study are
available from a previous study, based on 4313 patients (2532
men; 64 & 11 years) with known (n = 1547) or suspected (n = 2766)
CAD, who underwent high-dose dipyridamole (0.84mgkg™!
over 6 min) stress echocardiography with coronary flow reserve
(CFR) evaluation of left anterior descending (LAD) artery by
Doppler. The overall mortality was the only endpoint analysed
by Cox models. The estimated connectivity between clinical
variables assigns a complementary value to the proposed
network approach in relation to the established Cox model, for
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instance revealing connectivity paths. Depending on the use of multiple metrics, the constraints of
regression analysis in measuring the association strength among clinical variables can be relaxed, and
identification of communities and prognostic paths can be provided. On the basis of evidence from
various model comparisons, we show in this CAD study that there may be characteristic factors involved
in prognostic stratification whose complexity suggests an exploration beyond the analysis provided by
the still fundamental Cox approach.

2. Background

In order to assess the risk of developing cardiovascular diseases, computational approaches are routinely
applied and validated on several patient cohorts, providing a variety of predictive models. Cox
models [1] represent the standard methodology used to estimate the effects of tests or treatments
on patients’ survival, after adjustment for explanatory variables and given a set of prognostic
factors. Cox models present as the dependent variable a given hazard function measured at a
certain time, or equivalently the probability that an individual will experience an event, such
as death, within a time interval. Because the magnitude of the coefficient in correspondence to
each explanatory variable would imply higher/lower associated risk, and therefore a differentiated
prognosis, the complexity underlying the interdependent patterns between the variables establishes an
approximate bound for their predictive power, thus justifying the search for data-adaptive rather than
exact solutions.

As a measure of dependence among random variables, mutual information (MI) [2] is simple and
effective, thus universally accepted. While Spearman’s correlation measures a monotonic relationship
(and Pearson’s correlation measures a linear relationship), MI can measure non-monotonic and nonlinear
relationships. That makes MI a preferred choice in most network reverse engineering approaches,
and corresponding software tools. Being only based on joint and marginal data distributions, MI
quantifies the dependence between two discrete variables non-parametrically, i.e. without assuming a
specified distribution of the variables, and differentiating between their linear /nonlinear relationships.
MI meets the zero bound under statistical independence, otherwise, its value increases when the
assumption is relaxed. In general, the complexity characterizing the interactions among clinical variables
is difficult to decipher, and can be managed in different ways depending on the computational
model of choice. In the presence of heterogeneous clinical variables, MI allows for a quantification
of their distances (in a range 0-1) within the reference space. In such regards, MI-based approaches
diverge from Cox models, and in particular: (i) there is no need of optimal statistical conditions for
achieving consistency of estimates, which translates into significance of the estimated coefficients; and
(ii) there is no risk of multi-collinear relationships, which are detrimental to a correct interpretation
of findings. As both correlative and causal forms of dependence in data can be considered valuable
information, wide-spectrum computational inference is needed to assess criteria of: (i) significance,
like in Cox or regression models, indicating whether an association exists and can be estimated
by a coefficient; and (ii) connectivity, like in networks, indicating that some paths can be detected
by measuring the strength of links between nodes. In short, networks provide data summaries at
various scales, from minimally local (single node) to global (entire configuration), across several
modules or communities, which are densely associated subnetworks assembled by interconnected
elements [3-7].

We aim to show the relevance of both criteria, and correspondingly both approaches, with reference
to a sequence of studies [8,9] involving a prognostic dataset of 4313 patients (2532 men; 64 + 11
years) with known or suspected coronary artery disease (CAD), analysed with stress echocardiography
with wall motion and coronary flow reserve (CFR) assessment of left anterior descending (LAD) by
transthoracic Doppler ultrasound, followed up for a median of 19 months, and considering mortality as
the only endpoint. The data were obtained from a prospective, multicentre, observational study based on
patients with known (n = 1547) or suspected (1 =2766) CAD, and undergoing high-dose dipyridamole
(0.84 mg kg~! over 6 min). Clinical characteristics are summarized in table 1 [8], and concerning the stress
echocardiographic, no particular complications were reported.

In short, mean CFR on LAD was 2.35+0.68; 1419 (33%) subjects had CFR<2 and 2894
(67%) had CFR > 2; stress echocardiography was positive for ischemia in 765 (18%) individuals;
ischemia was assessed in 516 patients with CFR<2 and in 249 patients with CFR>2
(36% versus 9%; p < 0.0001).
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Table 1. Clinical variables listed by patient. (Full name of the variables involved in the study, then binarized in order to compute the MI. n
The third column introduces the number of positives (1), whereas the fourth column details the criteria used to define a positive.)

variable ID variable full name no. positives definition of a positive value

age age 2301 age > median age (66)
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Known_CAD known coronary artery disease (the rest, 1547 yes
suspected)
T 310yes .........................................
fam||y ............................ fam||yh|storyofCAD .................................................... : 108yes .........................................
e b 979yes ...........................................
hypert ............................ arterlalhypertensmn ................................................... . 891yes ........................................
hypercholhypercholesterolemla ..................................................... , 364yes ...........................................
e smok|nghab|t ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : 311yes ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
therapypresenceorabsence0fcard|0act|ve ............................... : 798yes ...........................................
medical therapy at stress test time
T : 353yes ...........................................
«w cldum antagonists (calcium channel By
blockers)
s P yes ........................................
T G R
RWMA  restingwall motionabnormality - By
e comnaryﬂow s T g
T numberofd|seasedvesselsatangmgraphy .................. oy o eIs:120r3 ...........
Rest_vel_LADres’u 5 g v veloatyon LAD(|n cms“) ................................ e T
IschSE|schem|aowmgtostressechotest ............................... 765yes .........................................
Rest_WMSI ..................... gIo Nmee reg|0na| T e 216 ......................................
ventricle
Peak_WMSI ..................... o reg|onal o speakstress ......................... g P
Delta_ T — T G W e
ECG_SE presenceorabsenceofECGchangesdurmg ................... 613yes .........................................
stress echo test
Angor_SEpresenceofangmadunngstresse(hotest ...................... 448yes ...........................................
e o 146yes .........................................

3. Methods

The original analysis, following stress echo methodology, was carried by Cox survival models according
to specified selection criteria for the clinical variables. The network analysis here proposed is aimed to
complement the previous analyses on the data for which permission of use was allowed.

3.1. Cox models

Cox model computations are available in several software tools, including the R environment from which
we used the ‘survival” package [10,11] with the goal of obtaining hazard ratios (HRs), and associated



confidence intervals. Univariate and multivariate models have been tested, and different algorithms
have been employed for the latter category. Comparative evaluations are presented in order to rank
the variables under different model types.

3.2. Network structure

We generated networks containing a number of nodes and edges based on the variables under
examination. The initial variables that we considered in the network were those selected as significant
in the reference study [8], thus forming a configuration with 17 nodes and 22 edges. The entire set
of given variables was then considered in the network, forming this time an extended configuration
with 29 nodes and 36 edges. The rationale for this translated analysis is that in one case the
significance of variables established by a model determines the network configuration, whereas in
the other case, the connectivity between all variables is taken into consideration, once MI estimates
are obtained.

The two configurations are shown in figure 1. The width of the edges is related to the strength of
the association (MI value or edge weight). A quick visualization of associations of various types has
been made available by edge colours to distinguish the association strength between variables: red
edges denote associations in the top 20% of higher MI; purple edges denote the second strongest group
(60-80% bin); blue edges denote the third strongest group (40-60% bin); and grey edges correspond to
the still significant but least strong associations (less than 40%).

3.3. Network construction

The networks were assembled with every edge representing a statistically significant association
measured by MI. In particular, two estimation methods were employed: the MM estimator [12] and
the ARACNE algorithm [13], implemented in the ‘minet’ R package [14]. The MM refers to the Miller—
Madow asymptotic bias-corrected empirical estimator, which computes the entropy of the empirical
probability distribution and generates a matrix of MI values between each pair of variables. The p-values
for the MI were computed following a Monte Carlo procedure based on 5000 random permutations for
each pair of variables [15].

ARACNE stands for ‘algorithm for the reconstruction of accurate cellular networks’, and starts by
assigning to each edge a weight equal to the MI between the nodes (variables), then removes the weakest
of the edges forming each triangle depending on a certain threshold condition, say T. For instance, a
useful threshold imposes removal of the edge with the weakest MI. In general, it is recommended to
remove an edge if the difference between the two smallest MI in a triangle is above a certain p-value. In
our study, we have used as our T a standard 0.05 p-value, followed by a Bonferroni correction for the
number of tests. Additionally, all edges with an MI below another threshold, say D, can also be removed,
(we fixed D to zero, in our application). Because the outcomes can be affected by data normalization, we
used a non-normalized vector based on the inverse of the MI as the distance vector between the nodes
of the network.

3.4. Network analysis

The mutual information network (MIN) was applied to a sample of patients with known or
suspected CAD. Indications for stress echocardiography were associated with suspected CAD in 2766
(64%) subjects, and risk stratification of known CAD (i.e. history of myocardial infarction, coronary
revascularization and/or angiographic evidence of >50% diameter coronary stenosis) involved the
remaining 1547 (36%). Patients’ characteristics are reported in table 1. Overall, 16 clinical variables
in the first network, and 28 clinical variables in the second network were considered, once binarized
to allow their inclusion. The ‘igraph” R package [16] was used for network computations. The MIN
was plotted as an undirected and weighted graph, with MI values as edge weights. For shortest path
computations (the shortest.paths function was used with the Dijkstra’s algorithm option), the distance
between two nodes was defined as the MI inverse. The Kamada-Kawai layout was chosen to plot
this network.

In order to determine the relative importance of the variables in the network, three different metrics
were computed: (i) degree; (ii) betweenness centrality (BC); and (iii) Google’s PageRank Centrality (PRC).
The degree measures the number of edges adjacent to a node (number of significant associations of a
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Figure 1. MIN. (a) MIN with 16 variables considered significant by Cortigiani et al. [8], (b) extended MIN with 28 variables involved in CAD.

variable). The BC measures the number of shortest paths between any pair of nodes that crosses through
a given node (the number of associations between any pair of variables that involve an association with
the variable under scrutiny). The PRC weights the importance of a node by assigning a higher value if
the node links to other nodes which are also central to the network.
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Table 2. HRs (multivariate Cox) versus MIs. (Sixteen variables scenario. Shaded regions indicate not significant evidence.)

variable HR and p-value MIand p-value shortest distance in MIN
Rest_ WMSI 3484(p=143 x 1079 0.01005 (p = 0) 99.46

4, Results

4.. Evidence from 16-variable mutual information network

We report in table 2 a comparison between ‘Death” and every other variable, using the HR score, the
MI and the distance in the MIN. Basically, high values for HR and MI, as well as a short path distance,
identify good statistical association (i.e. association meaning that for MI and HR, we observe only if
they rank the variables in a similar way or not). All three methods agree that Rest. WMSI, CFR, LBBB
and Isch_SE, are the best predictors of Death. The MIN also suggests a role for Prev_IM and Prev_PCI
which are not present in the two other methods. Regarding the worse predictors, all three methods agree
on Hyperchol, Hypert and Smoke, whereas HR and MIN agree on Family History, and only the MIN
introduces Diabetes, which is considered acceptable for the other two. Note that all the variables with
a p-value below the significance threshold for HR are also detected by MI (Rest WMSI, CFR, LBBB,
Isch_SE, Sex, Age and Diabetes). In addition, MI shows other variables with a low p-value (Rest_vel LAD
and Family History).

The central nodes are the most important nodes to explain the network as a whole, even if they are
not necessarily the best predictors. We obtained measurements according to the three selected metrics,
degree, BC and PRC, for all MIN nodes. In terms of degree, CFR and Prev_IM are the most important
nodes of the network, followed by Rest. WMSI, Age and hypertension. In terms of BC, CFR is the most
important variable, followed by Prev_IM, Rest_ WMSI, Age and Isch_SE. In terms of PRC, CFR is again
the most important node, followed by Prev_IM, Hyperchol and Rest. WMSI. All metrics agree that CFR
and Prev_IM are the most central nodes to this work.

In general, modules include nodes which are significantly interconnected, i.e. their association
strength is higher than that measured with external nodes or simply due by chance, and thus can
establish functional associations among variables, providing testable hypotheses to be subjected to
validation (in silico, experimental, clinical). Exploration of modularity was performed according to
the Infomap method [17]. The MIN is partitioned in four modules, as it can be seen in figure 2. Red
edges represent intercommunity links, whereas black edges represent intracommunity links. The purple
module groups the variables most closely related to Death. The second module of interest is the green
module. Here, we can find tightly related disease conditions such as hypertension, hypercholesterolemia
and diabetes, together with age and smoking habits. The red module, on the other hand, seems to group
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Figure 2. Modular map of the MIN with 16 variables.

all the collected previous information of the patient. For a fair quantitative comparison, we computed
the z-score of the HR, MI and MIN-distance for all the variables and represent them in the dot chart
of figure 3.

4.2. Evidence from 28-variable mutual information network

We report in table 3 a comparison between Death and every other variable in terms of association
strength, using the HR score, the MI score and the shortest-path distance in the MIN.

All three methods agree placing variables such as Smoke, Hypert and Hyperchol at the bottom of the
rank (least prognostic value). The two MI-based methods agree regarding Angor_SE, Peak_WMI and
Rest_WMI as the best predictors, whereas HR suggests CFR and LBBB. The associations with prognostic
value are revealed by path analysis, showing that the best predictor of Death is Angor_SE (MI = 0.012).
We therefore furthermore explored the issue. In order to analyse the association between distant
variables, we find their minimum distance in the network, i.e. the shortest prognostic path (see Methods).
For example, the five best predictors for Death, in terms of MI, are Angor_SE (0.012), Peak_WMSI (0.011),
Rest_WMSI (0.010), CFR (0.008) and RWMA (0.008). In the MIN, it can be observed that the two best
predictors (Angor_SE and Peak_WMSI) are Death’s neighbours, whereas Rest. WMSI and RWMA are
part of the same prognostic path (note that ARACNE has removed the indirect connections, and the
connections in the path have been considered as the direct association). A second path links Death to
CFR through Peak_ WMSI.
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Figure 3. Inter-approach comparison using the MIN with 16 variables. HR_multi corresponds to the hazard ratio for the multivariate Cox
model including all 16 variables. M corresponds to the MM estimator. dist_MIN corresponds to the shortest distance between the node
and Death, with distance defined as the sum of the inverse of the MI between each pair of nodes.
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Table 3. HRs (multivariate Cox) versus MIs. (Twenty eight variables scenario. Shaded regions indicate not significant evidence.)

variable HR and p-value Ml and p-value shortest distance in MIN
Angor_SE 1.179 (p = 0.607) 0.01249 (p = 0.004) 80.09

In terms of degree, Angor_SE, RWMA, Therapy and N.vessels are the most important nodes of the
network. In terms of BC, RWMA is the most important variable, followed by Isch_SE, N.vessels and
Prev_IM. For PRC, Angor_SE is again the most important node, followed by Hypert, Hyperchol, Age
and N.vessels. The results indicate that Angor_SE is an important variable due to the fact that is highly
associated with a greater number of variables (Death, Ischemia, Hypercholesterolemia, Family History
and ECG_SE), and because is closely associated with other central variables (such as Ischemia). From
a different point of view, RWMA and Ischemia are important for being crossed by paths to Death; in
other words, the apparent relationship of many variables to Death is due to a relationship to RWMA or
Ischemia, which are related to Death. The variables CFR and Prev_IM are less important in this extended
network than in the previous one, but Prev_IM is still the fourth most important variable regarding BC,
after RWMA, Ischemia and N.vessels.

The MIN is partitioned in six modules, as can be seen in figure 4. The pink module groups the
variables most closely related to Death. The second module of interest is the blue module, where we
find hypertension, hypercholesterolemia and diabetes, together with age and smoking habits. The red
module, again, seems to group all the collected previous information of the patient. The light blue
module shows all therapies, which appear far from the main prognostic paths. All these variables
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Figure 4. Modular map of the MIN with 28 variables.

have predictive power and they are very tightly associated among them, but their prognostic paths are
mediated by the above-mentioned variables, closely associated with the output. For a more quantitative
comparison, we computed the z-score of the HR, MI and MIN-distance for all the variables and represent
them in the dot chart of figure 5.

5. Discussion

Cox models work by selecting a number of variables as significant, and by discarding the rest. This is
done in the spirit of all regression models, and the same problem is thus occurring: when the complexity
of the relationships between variables is unknown, it is hard to discriminate between variables in
terms of predictive power without considering ways to regularize the model (i.e. explicitly discounting
the complexity).

While regularization techniques deserve attention, we consider how to complement Cox analysis
with network inference. Initially, we showed a configuration obtained with a restricted set of variables,
i.e. those identified by the Cox analysis conducted by Cortigiani ef al. [8]. Then, we considered the
entire set of given clinical variables, and found a different configuration with some interesting elements.
In particular, the MIN approach highlighted the role of angina during dipyridamole stress echo in
Death prediction.

Furthermore, variables were organized within the network, pointing out different types of
relationships: (i) classification: this is the case observed with therapies; (ii) redundancy: for instance,
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Figure 5. Inter-approach comparison using the MIN with 28 variables. HR_multi corresponds to the hazard ratio for the multivariate Cox
model including all 16 variables. MI corresponds to the MM estimator. dist_MIN corresponds to the shortest distance between the node
and Death, with distance defined as the sum of the inverse of the MI between each pair of nodes.
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between Delta_WMSI and Ischemia, as the former is an indicator of the severity, which is an extension of
the latter; (iii) prognostic: for the paths conducing to Death, the shortest paths means a higher association
(for example, Peak_WMSI, Rest_ WMSI and RWMA, in Death prediction); and (iv) modularity: specific
conditions emerge through modules, for instance grouping hypertension, hypercholesterolemia, diabetes
and smoking habits. These are examples of associations and information not available in traditional Cox
methods, and instead naturally delivered by network approaches.

Overall, Cox analysis makes available only selectively the dependence between variables, and under
specific model assumptions, whereas the examination of connectivity patterns through MI allows us to
extend the estimates to all possible relationships between variables. Because in Cox models the presence
of collinearity may influence the significance for some of the variables, networks suggest potential
associations otherwise left unexplored. We performed extensive comparison between the identified
prognostic variables for the MIN prognostic paths, the pairwise MI score among the variables, and the
HRs. Some variation between the methods appeared related to the most relevant variables. Pairwise
MI and the distance in the MIN show a better agreement, by construction. In the case of Death, previous
work with Cox analyses and the same dataset of 4313 patients has postulated that Death is best predicted
by Rest WMSI, CFR and Ischemia.

The MIN approach suggests as a testable hypothesis that the angina during stress echocardiography
plays a very important role which remained undetected from the other analysis because discarded as not
significant. Then, MIN also places Rest_WMSI and CFR in the context of two prognostic paths leading
to Death. In both approaches the evidence is justified, as in Cox models, the final selection excludes
angina based on significance, and in MIN, its relevance depends on the estimated MI value and the
computed distance from the endpoint. While this differential analysis offers elements of discussion, from
a clinical point of view and in terms of model assessment, we show that networks put forth the surprising
clinical dividends offered by observational evidence, namely notable symptoms, in agreement with
previous evidence showing that chest pain during dipyridamole stress is a strong predictor of subsequent
cardiac events, including death, with additive prognostic value over stress-induced wall motion
abnormalities [18,19].

The MIN approach has strengths (for example, it can work with any type and number of variables)
and limitations (we choose one of the many possible inference procedures in order to assess the
connectivity among the included variables, but other procedures could be available too, and we also
know that MI can be computed in different ways). In addition, our model frame is reproducible in
the chosen prognostic context, i.e. CAD, and generalizable to other contexts in which similar aims are
pursued. We benchmarked our proposed model to Cox models, knowing the approaches are inherently
different. The principal consideration is the following: can we trust evidence of association between
variables under non-optimal hypotheses? In Cox modelling, a selection for significance of associations is
performed, but the price we seem to pay is that some interesting associations can be missed. In networks,
we use connectivity patterns to recover some of these associations, in support of Cox evidences.
Therefore, depending on the datasets which is variable, we can verify whether some forms of dependence
imposed by the model of choice determine a level of detection to be considered computationally coherent
(i.e. comparable across methods) and clinically relevant.

In conclusion, the recognized low diagnostic specificity and sensitivity of anginal pain during stress
[20] also suggests that clinical integration is mandatory prior to any patient-oriented use of this analysis.
The present data highlight the different, potentially complementary perspectives offered by the two
approaches, but also the ontological difference between statistical and clinical significance. The former
type of significance requires consistent estimation form the model, i.e. as the sample size increases, the
estimator converges to the true value of any parameter being estimated. Instead, to achieve clinical
significance, a variable must fit into the existing pathophysiological and clinical framework in order
to be readily used by the clinician. Yet, the main message of the present work is that there may be more
intricate relationships in prognostic stratification than those contemplated in the time-honoured and still
fundamental Cox approach, and they call for supplemental investigations.

Data accessibility. We refer the reader to published work [8] for all the data details, and linked to doi:10.1016/j.jcmg.2012.
08.007. We also refer the reader to the electronic supplementary material file.
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