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ABSTRACT

The stimulus provided by the trend towards microminiaturization

has generated considerable interest in active RC filters utilizing

operational amplifiers. A comprehensive and unified presentation of

the many different techniques to synthesize such filters is made along

the lines of modern filter theory in this thesis.
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I. INTRODUCTION

Technological progress in the last two decades has brought about

the microminiaturization of many electrical components and systems.

The natural consequence of the transistor was the monolithic integrated

circuit (IC) . The future promises not only medium-scale circuit inte-

gration (MSI) but even large-scale integration (LSI) . To make electrical

filter networks compatible to this trend, the development of inductorless

filters, better known as active RC filters, came about.

A. DISADVANTAGES OF INDUCTORS

Inductance-capacitance (LC) filters were found reliable and easy

to design at high frequencies but at frequencies below 1000 Hertz, they

were found limited to a maximum quality factor, Q, of about 100.

Higher Q's were possible only with large and bulky inductors, Attempts

to reduce inductor size with high-permeability materials and ferrite

cores met with failure. Inductor quality deteriorated rapidly at lower

frequencies

.

There were other disadvantages that came with the use of in-

ductors . Because of their associated magnetic fields resulting in

mutual coupling effects and because of their nonlinear behavior, they

created complications in practical circuit applications. They gave the

circuit designer additional problems because of incidental dissipation

resulting from their core loss and winding resistance. Furthermore,
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inductors were found to be prone to noise pickup. Because of all these

reasons, the concept of inductorless filters became very attractive for

many applications.

B. DEFECTS OF PASSIVE RC FILTERS

Using resistors and capacitors to meet certain filter specifications

was found possible but such passive RC filters suffered from two

defects:

1. They introduced considerable loss in the passband.

2. For a given filter specification, they were more complex

than an equivalent RLC filter.

C. EVOLUTION OF THE ACTIVE RC FILTER

It seemed, then, that the answer to those difficulties mentioned

in the last section was not simply eliminating inductors but replacing

them with active elements. The basic ideas of associating active

elements like high- gain and phase-inverting amplifiers with passive

networks were developed from feedback-amplifier theory [Ref . 1] in

1945. Guillemin [Ref. 2] in 1949 suggested the use of vacuum tubes

in conjunction with passive RC elements in a circuit employing the

principles of feedback. Dietzold [Ref. 3] came up with a patent for

his RC filter employing a stabilized amplifier in 1951. In 1954 it was

Linvill [Ref. 4] who finally gave this type of circuit a name - RC

Active Filters .
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Since the publication of Linvill's article, many other synthesis

methods have appeared and the study of active RC filters has expanded

considerably. Four active elements have received the most attention:

1 . Controlled sources

2. The negative-immitance converter

3 . The gyrator

4 . The operational amplifier

D. ADVANTAGES OF THE OPERATIONAL AMPLIFIER

There are many reasons for the considerable attention given to

the operational amplifier. Its biggest advantage, perhaps, over the

other three active elements is its easy off-the-shelf availability at

prices that have gone down with the price of the transistor. Because

of its solid-state construction (transistor and FET differential-input

configurations) [Ref . 5], it lends itself perfectly to the current trend

toward microminiaturization. Because of its very high gain (ideally

infinite), the circuit using it as the active element has very low

sensitivity to changes in gain. Because of its very low (ideally zero)

output impedance, cascading low-order functions without the necessity

of isolating amplifiers is easily accomplished. And, finally, because

of its very high (ideally infinite) input impedance, resulting in virtual

ground at its input terminals, circuit analysis and synthesis are both

simplified

.
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E. PREVIEW AND PURPOSE

Chapter III will show the type of analysis involved when oper-

ational amplifiers are used. The subsequent chapters will show the

different synthesis techniques that have evolved over the years. These

techniques have been classified into distinct categories for the purpose

of unified development and easy comparison. A common starting point

for all these techniques, namely, the generation of an appropriate

transfer function to be synthesized, will be developed along the lines

of modern filter theory in the next chapter.

It is the purpose of this paper to present a unified and compre-

hensive study of active RC filters using operational amplifiers.





II. MODERN FILTER THEORY

This chapter will present the development of Modern Filter Theory

and provide a common starting point for the different synthesis methods -

the determination of the desired transfer function, H(s) .

A. HISTORY AND EVOLUTION

Since the discovery of the electric-wave filter by Campbell and

Wagner in 1915, filter theory has evolved along two different lines.

One is known by the name Classical Filter Theory and the other Modern

Filter Theory.

The classical theory is more commonly known as the Image-

Parameter Theory of Filter Design. Originated in the 1920's by Zobel,

this theory assumes that, in the design of a filter, its load impedance

is matched to its image impedance. In practice, however, this

assumption proves to be inaccurate because most loads are constant-

value resistances while the image impedance is frequency dependent.

Consequently, design methods based on this theory involve trial and

error and often, final adjustments are required to meet design specifi-

cations .

Modern filter theory, on the other hand, consists of techniques

which are more ideal in terms of meeting exact specifications .

Developed in the 1930
' s through the efforts of several individuals,

prominently Norton, Foster, Cauer, Bode, Brune, Guillemin and

Darlington, this theory has gained considerable acceptance. Essentially,
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it involves the approximation of given specifications with a rational

transfer function and the realization of this function through the use of

synthesis techniques. Since such synthesis procedures are analytical

and exact, no trial and error is involved in designing a filter from its

transfer function.

It is along the lines of modern filter theory that the synthesis

techniques in this paper follow.

B. TYPES OF FILTERS

Filters have numerous and varied applications but they all boil

down to the basic operation of passing through a desired signal and

rejecting other unwanted signals.

Every filter is characterized by a range of frequencies over which

the attenuation of a signal is negligible and a range of frequencies

over which the attenuation is severe. Such regions of frequency passage

are termed passbands and the regions of attenuation are called stop-

bands. In physically realizable filters, there is also a range of

frequencies between passband and stopband over which the attenuation

builds up from negligible to severe. Such bands are called transition

regions. Filters are classified commonly according to their passband

location in the frequency spectrum.

The four basic filter types based on this classification are:

1. Low-Pass Filter: A low-pass filter is a two-port which

passes all frequencies less than a certain cutoff frequency cO and

attenuates all frequencies greater than u> .
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2. High-Pass Filter: A high-pass filter is a two-port which

passes all frequencies greater than a certain cutoff frequency cj and

attenuates all frequencies less than cO
c

3. Bandpass Filter: A bandpass filter is a two-port which

passes all frequencies between certain lower and upper frequency

limits, £J, and AJ , and attenuates all frequencies outside these
1 u

limits .

4. Band-Reject Filter: A band-reject filter is a two-port which

attenuates all frequencies between certain lower and upper frequency

limits, cj and CO , and passes all frequencies outside these limits.

The effect of a filter on the passage of frequencies is presented

graphically in terms of gain or magnitude and phase characteristics.

In their ideal form, the magnitude and phase characteristics of the

four basic types are shown in Figure 2-1. H(s) is the filter transfer

function representing the ratio of filter output to input transforms,

where s is the complex frequency variable. In their more practical

form, the attenuation characteristic of the four basic types are shown

in Figure 2-2 .

C. THE FILTER DESIGN PROBLEM

The ideal filter is one which passes all frequencies without

attenuation within its passband, completely attenuates all frequencies

within its stopband and has a linear phase response in its passband.

Such ideal filter characteristics, however, are physically un-

realizable. No quotient of rational, finite-degree polynomials can
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represent exactly the ideal magnitude and phase characteristics. In

fact, the desirable abrupt transition from zero to infinite attenuation

with negligible change in frequency in the gain characteristic would

wreck havoc to a filter's transient response because of the infinite

phase shifts and infinite lags in frequencies within the passband, or

in effect, a drastic departure from the desired linear phase characteristic

On the other hand, a more gradual fall off of magnitude with frequency

change results in a more acceptable phase response. In general, then,

the fundamental problem in modern filter design is in finding the transfer

function H(s) that best approaches the ideal magnitude and phase

characteristics. For other particular filter applications, it can happen

that one characteristic's requirements are relaxed in favor of more

stringent requirements in the other. This process of finding the best

H(s) depending on the desir-ed filter application is known as the approx-

imation problem. Once this H(s) is known, the other half of the modern

filter theory problem is the exact realization of the filter network using

synthesis techniques.

D. FILTER CHARACTERISTICS

In this section, three approximations to the ideal low-pass filter

will be discussed briefly to give the reader an idea of the kind of

compromise involved in meeting both frequency- and time-response

specifications. These are the Butterworth, Chebyshev, and Bessel or

Thompson filters. Each approximates the characteristics of the ideal

filter in a different way and each has its area of application.
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There are other types of filters such as the Cauer or elliptic-

function filters , the monotonic Legendre filters and the filters with

parabolic pole distribution, more commonly known as the P filters.

Detailed information about their frequency and time responses as

compared with those of the types to be discussed in the following

paragraphs may be found in Refs. 6, 7, and 8.

Only the normalized low-pass version of each type will be shown

since the high-pass, bandpass and band-reject transfer functions

exhibiting the same characteristics of the low-pass prototype can be

easily derived using the appropriate frequency transformations . Such

transformations will be discussed in the next section.

1 . Butterworth Class

Butterworth filters are characterized by the normalized

magnitude-squared function:

H(j*>)
2

, ^ ,2n (2-1)

where n is the number of poles in the network , co is the frequency of

interest and CO is the cutoff frequency. &0 = 1 for the normalized

case. From equation (2-1) , it can be observed that regardless of the

number of poles, the output at the cutoff frequency is always 3 dB

below that at CO - . The derivative of this function shows that the

slope of the response curve is zero at CO - 0. For this reason the

Butterworth filter is called a maximally flat amplitude filter. At

cutoff {CO - U3 ), the slope of the response curve is (-n/2) , showing
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an increasing rate of attenuation with increasing number of poles.

Beyond cutoff the filter response falls at an approximately constant

20n dB / decade.

By using the stable poles of the magnitude-squared

function, it can be shown that the Butterworth low-pass transfer

function is of the form:

H(s) = K/Bn(s) (2-2)

where K is a constant multiplier and the polynomials Bn(s) are called

the Butterworth polynomials. They are given in Table 2-1 up to order 5,

Their roots, all of which lie on the unit circle, are listed in Table 2-2 .

The low-pass amplitude response for different values of n is shown in

Figure 2-3. It can be noted that the amplitude response flatness over

the entire passband increases with the number of poles.

The phase characteristic, however, is not very linear.

Consequently, the time delay changes with change in frequency. The

effect of this is an overshoot and some ringing in the filter's response

to a step function. The amount of overshoot increases with the number

of poles. The rise time of the output is satisfactory but increases

rather slowly with increasing n.

2 . Chebyshev Class

The Chebyshev filter is characterized by the magnitude-

squared function:

H(j^)|
2

= — (2-3)

1 +

2(

<&)e t
c J





Table 2-1. The Butterworth Polynomials

n

1 s + 1

2 s
2
+ ITs + 1

3 s
3
+ 2s

2
+ 2s + 1 = (s + l)(s

2
+ s + 1)

4 s + 2.613s
3
+3.414s

2
+2.613s+l = (s

2
+0.765s+l)(s

2
+1.848s+l)

5 4 3 2
5 s + 3.236s +5. 236s +5. 236s +3.236s+l

2 2
= (s+l)(s +0.618s+l)(s +1.618s+l)

Table 2-2. Roots of the Butterworth Polynomials

n=l n=2 n=3 n=4 n=5
1.0000000 -0.7071068 -1.0000000 -0.3826834 -1.0000000

+ j0. 7071068 +j0. 9238795

•* -0.5000000 -0.9238795 -0.3090170
+ j0. 8660254 +j0. 3826834 +j0. 9510565

-0.8090170
+ jO. 5877852
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Figure 2-3. Butterworth low-pass amplitude responses for

various values of n.
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where £ is the ripple parameter and Tn(u> / to ) is the Chebyshev

Polynomial of order (and degree) n.

The transfer function can be shown to be:

H(s) = K/Vn(s) (2-4)

where K again is a constant and Vn(s) is formed from the left half

plane zeros of the denominator of equation (2-3) . Each value of €

yields a different set of Vn polynomials. The coefficients of these

polynomials corresponding to two values of 6 up to n = 5 are given in

Table 2-3; their roots are given in Table 2-4.

The magnitude response of this class of filters is dis-

tinguished by an equal-magnitude ripple in the passband and a maximum

rate of fall off beyond cutoff . The ripple height, & , is given by:

<S =1- (2-5)

4\ + e
2

The sum of the number of maxima and minima in the passband is equal

to the order of the filter. A fifth-order Chebyshev low-pass filter

response is shown in Figure 2-4. The response at the cutoff frequency

is always that of a minimum. Thus, a Chebyshev filter with + 1-dB

ripples will be - 1 dB down at cutoff. For the + 3-dB ripple case, both

Butterworth and Chebyshev filters will have the same cutoff frequency.

In general, the 3-dB-down point will be at:

<^3dB~ COSh cosh l/£

n

29
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n

n

Table 2-3. Polynomials for Chebyshev Filters

(a) 1/2 dB Ripple

1 s +2.863

2 s
2
+ 1.425s + 1.516

3 s
3
+ 1.253s

2
+ 1.535s + 0.716 = (s+0 . 626) (s

2
+0 . 626s+l . 142)

4 s
4
+ 1.197s

3
+1.717s

2
+1.025s+0.379 = (s

2
+0 .351s+l . 064)

(s
2
+0.845s+0.356)

5 s
5
+ 1.172s

4
+1.937s

3
+1.309s

2
+0.753s+0.179

= (s+0 .362) (s
2
+0 . 224s+l . 03 6) (s

2
+0 . 586s+0 .477)

(b) 1 dB Ripple

1 s + 1.965

2 s
2
+ 1.098s + 1.103

3 s
3 + 0.988s

2
+ 1.238s + 0.491 = (s+0 .494) ( S

2
+0.494s+0 . 994)

4 s
4

+ 0.953s
3
+ 1.454s

2
+0.743s+0.276 = (s

2
+0 .279s+0 . 987)

(s
2
+0.674s+0.279)

s
5
+ 0.937s

4
+1.689s

3
+0.974s

2
+0.581s+0.123

= (s+0.289)(s
2
+0. 179s+0.988)(s

2
+0.468s+0.429)
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Table 2-4. Roots of Chebyshev-derived Polynomials

(a) 1/2 dB Ripple (C = 0.3493114)

•2.8627752 -0.7128122 -0.6264565 -0.1753531 -0.3623196
+ jl .0040425 + jl .0162529

-0.3132282 -0.4233398 -0.1119629
+ jl .0219275 +j0. 4209457 + jl .0115574

-0.2931227

+ jO. 6251768

(b) 1 dB Ripple (€ = 0.5088471)

-1.9652267 -0.5488672
+ jO .8951286

-0.4941706 -0.1395360
+ jO .9833792

-0.2894933

-0.2470853 -0.3368697 -0.0894584
+ jO. 9659987 + jO. 4073290 + jO. 9901071

-0.2342050
* + jO. 6119198
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The rate of attenuation beyond cutoff is initially greater than 20n dB/

decade and increases with the magnitude of the allowed ripple and the

number of poles

.

The phase response is even more nonlinear than that of the

Butterworth class and this nonlinearity increases with the allowed

ripple and the number of poles

.

3 . Bessel Class

The Bessel filter exhibits maximally flat time delay

(linear phase) and subsequently its response to a step function shows

less than one percent overshoot.

The amplitude response, on the other hand, is not flat

but decreases monotonically in the passband. The cutoff frequency,

Ci> , is not the 3-dB-down point but is defined in terms of the zero-

frequency time delay, t , as:

€J = —I (2-7)
c t

o

The location of the half-power point, CO ~ ,R , is a function of the

order and for n > 3 is given approximately by:

UJ 3dB JS >/0.69315(2n-l) <^
c

(2-8)

The Bessel class of filters is represented by the low-pass

transfer function:

H(s) = K/Hn(s) (2-9)
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where K is a constant and Hn(s) are the Bessel Polynomials. Their

coefficients up to n = 5 are given in Table 2-5; their roots are given

in Table 2-6.

4 . Comparison of Classes

Figure 2-5 contrasts the magnitude characteristics of the

three filter classes. For a given pole order, magnitude flatness

changes drastically as one goes from Butterworth to Bessel to

Chebyshev. Sharpness of cutoff improves from Bessel to Butterworth

to Chebyshev. Linearity of phase deteriorates rapidly in the same

order. Consequently, percentage of overshoot of step input response

increases while rise time improves in this same order. A comparison

of these last two figures of merit is given in Table 2-7. From this

comparison of approximations, it can be seen dramatically how the

choice of filter type must depend on the relative importance of ampli-

tude and phase responses to the particular application desired.

E. FREQUENCY TRANSFORMATIONS

High-pass, bandpass and band-reject filters exhibiting the same

characteristics as their low-pass prototype may all be obtained by

making the following frequency transformations:

Low-pass to high-pass:

Sn= -^- (2-10a)
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Table 2-5. The Bessel Polynomials

P (s) = 1

o

P
x
(s) = s + 1

p (s) = s + 3s + 3

p (s) = s
3
+6s

2
+15s+15 = (s+2.322)(s

2
+3.678s+6.460)

p (s) = s
4
+10s

3
+45s

2
+ 105s + 105 = (s

2
+5. 792s+9 . 140) (s

2
+4 .208s+ll .488)

p (s) = s
5
+15s

4
+105s

3
+420s +945s+945

o

= (s+3.647)(s
2
+6.704s+14.272)(s

2
+4.649s+18.156)

p (s) = (2n - 1) p ,(s) + s p (s)
n n-l n-Z

Table 2-6. Roots of the Bessel Polynomials

n

1 - 1.0000000

2 - 1.5000000 + jO. 8660254

3 - 2.3221854; - 1.8389073 + jl. 7543810

4 -2.8962106 + jO. 8672341; - 2 . 1037894 +. j2 . 6574180

5 - 3.6467386; - 3.3519564 + jl . 7426614; - 2 .3246743 + j3 . 5710229
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Table 2-7

% Overshoot

n Butterworth Bessel Chebyshev 1/2 dB
Ripple

Chebyshev 1 dB
Ripple

1 0. 0. 0. 0.

2 4.3 0.43 10.5 14.6

3 8.15 0.75 9.2 6.6

4 10.9 0.83 17.8 22.2

5 12.8 0.77 13.1 10.2

Rise Time (10 to 90%)

n Butterworth Bessel Chebyshev 1/2 dB
Ripple

Ch ebyshev 1 dB

Ripple

1 2.2 2.2 2.2 2.2

2 2.15 2.73 1.85 2.0

3 2.29 3.07 1.81 1.97

4 2.43 3.36 2.0 2.03

5 2.56 3.58 1.98 1.97
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Low-pass to bandpass:

Sn= i^ (^7
+ —) (2 - 10b)

Low-pass to band-reject:

Sn = —ML 71—

~

(2-10c)

^o S

where S represents the normalized low-pass complex frequency

variable, CO the center frequency and BW the bandwidth of the

bandpass and band-reject filters. Center frequency is defined as:

W = 4<*>1 Vu
(2-11)

while bandwidth is

BW = U) -CO. (2-12)
u 1

where CO, is the lower frequency limit and oJ the upper frequency

limit of a bandpass or band -reject filter.

Strictly, bandwidth is defined for only the low-pass and band-

pass filters. For the low-pass one, the bandwidth is equal to CO •

For the bandpass case, it is represented by equation (2-12). Normally,

the half-power points in the amplitude response are used to indicate

these lower and upper frequency limits. In this case, the bandwidth

is called the half-power bandwidth

.

These transformations are performed on the normalized low-pass

transfer function H(s) . It can be noted that the center frequency is

the geometric mean of the upper and lower frequency limits and will
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not be necessarily in the center of the bandwidth, BW. Consequently,

final designs may be expected to be slightly asymmetric with respect

to the intended center frequency.

F . FREQUENCY SCALING

It can be noted that the low-pass transfer function, H(s), of the

different filter classes has been presented on a normalized frequency

basis (i.e . , £j =1 rad / sec) . One reason for this is the ease of

working with simple normalized coefficients. If it is desired to shift

the response of the filter up to a desired cutoff frequency, faj ,

frequency scaling is easily accomplished using the relation:

Sn = —§— (2-13)

^c

Another reason is flexibility. In frequency transformations, the equations

have already been conveniently scaled to operate on the normalized

low-pass transfer function. For these reasons, filter design hand-

books and tables [Ref s . 9, 10] publish only the poles and zeros of the

normalized low-pass transfer function of the different classes of

filters for different orders. A frequency transformation procedure

operating directly on poles and zeros given in Ref. 9 was shown by

J. Tow [Ref. 11] and is contained in Appendix A.

G. THE FILTER DESIGN PROCEDURE

At this point, a filter design procedure may now be outlined. It

will consist of two phases:
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1. Determining the transfer function, H(s), from the given

specifications

.

2. Realizing the transfer function by means of available

synthesis procedures

.

Given a set of specifications consisting of a desired amplitude

response and a desired phase response or a desired time response to a

step input, the best approximation from the different filter classes is

selected. If the filter desired is low-pass, then all that is involved

is frequency scaling to the desired cutoff frequency, ^j . If the

filter desired is high-pass, bandpass, or band-reject, then the

appropriate frequency transformation is done to come up with the re-

quired transfer function, H(s).

Once this transfer function has been decided upon and determined,

the active filter network ma'y be synthesized using any of the different

synthesis procedures that will be discussed in the following chapters.

It is useful, at this point, to observe that if the general second-

order transfer function

2
uas + a s + a

H(s) = -^- * 2 (2-14)

s + b
n
s + b

1 o

can be written as

H(s)=K .

s2 +
( ^n/Qn

)5 + ^n
2

, (2-15)

s + ( U)Q
/Q ) s + cJ

Q
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where K is an arbitrary gain factor, CO is the resonant frequency, Q

the selectivity factor, cj the "notch frequency," and Q the "notch

attenuation factor," then the four different filter types may be con-

veniently written as follows:

Low-pass:

H(s)

KUJ
Q (2-16)

s + ( CJQ
/Q) s + C<)o

2

High-pass:

H(s) = —
s + (cj /Q) s + (J

o o

2
K s (2-17)

Bandpass:

H(s) =

Band-reject:

KCJ
o
S

(2-18)

s
2
+ ( U) /Q) s + CO*

2 2
s +CO

H(s) = K .

—
2

~ (2-19)

s + ( tO
Q
/Q)$ + CO

Q

where, in each case, the numerator polynomial of equation (2-15) has

been modified to conform with the transfer function characteristics of

each filter type.

The second-order transfer function is emphasized because not

only does it serve as a simple model to realize using the different
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synthesis techniques but, more important, the current trend in realizing

filter transfer functions of any desired order is to break them up into

first- and second-order product terms, realize each of these terms

individually using first- and second-order building-block networks

and cascade these to produce the desired transfer function. This con-

cept will be treated in greater detail in Chapter VII of this paper.

H. EXAMPLES

Several examples to illustrate the first phase of the design pro-

cedure outlined in the preceding section follow.

Example 2-1. A second-order Butterworth filter operating at a

low-pass cutoff frequency of 10 Hz is to be realized. Specify its

transfer function.

The desired transfer function can be specified directly by using

equation (2-16):

TT/ . 3947.84 ,„ nn .

H(s) = — (2-20)

s + 88.84s + 3947.84

where K=1,<J = 2 TT (10) and 1/Q = 1.414.
o

Computer Program 1 contained in Appendix B was used to give a

magnitude-frequency plot of this low-pass filter. The plot is shown

in Figure 2-6

.

Example 2-2. Specify a transfer function for a low-pass filter

with a cutoff frequency of 10 Hz. Its magnitude response is to be

essentially flat in the passband. A fall-off rate of 100 dB / decade

beyond cutoff is desired. Linearity of phase is desirable but not necessary,
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A fifth-order Butterworth filter is chosen. Its normalized low-

pass transfer function from Table 2-1 is

H(s) = -= Z 3 (2 "21)

s + 3.236s + 5.236s + 5.236s + 3.236s + 1

or, in factored form,

H(s)=-^— '- '- - (2-22)

s+1 s + 0.618s + 1 s + 1.618s + 1

Frequency scaling is called for and the substitution

Sn = s/2 TT (10) (2-23)

is applied to equations (2-21) and (2-22) resulting in the desired

low-pass filter transfer function

TT/ . 979261972.65 ,„ ...
H(s)=-t (2-24)

s + 203.32s + 20670.89s + 1298790.11s
+ 50434489.00s + 979261972.65

or, in factored form,

TT/ . 62.83 . 3947.84 ... 3947.84 ,„ nr .

H(s) = — — (2-25)

s+62.83 s +38.83s+3947.84 s +101 . 66s+3947 . 84

Its magnitude response plot is shown in Figure 2-7.

Example 2-3. A high-pass filter with a 3-dB ripple in the pass-

band operating at a cutoff frequency of 10 Hz is desired. Phase response

is not critical. Specify its transfer function.

A 3-dB ripple Chebyshev filter would satisfy the requirements.

Its normalized low-pass transfer function [Ref . 10] is
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H 0,7079478 . ^
s + 0.6448996s + 0.7079478

The frequency transformation relation

Sn = 2 TT (10)/s (2-27)

is applied to equation (2-26). The resulting frequency-transformed

transfer function is

H(s) = -5
*-

•
<2 -28)

s + 57.24s + 5576.46

The magnitude-frequency plot using Computer Program 1 is shown in

Figure 2-8.

Example 2-4. Specify a second-order bandpass transfer function

with center frequency at 10 Hz and a Q of 50.

Application of equation (2-18) gives 1^^^
, too- f£>

62.83s
,

, l^

H(s) =

s
2
+ (62.83/50)s + (62. 83)

2

or

H(s)=-^ 62<83s *

(2-29)

s + 1.257s + 3947.84

The magnitude response plot is shown in Figure 2-9.

Example 2-5. A bandpass filter is desired with center frequency

at 10 Hz and Q of 100. Essentially linear phase is desired within the

passband. Specify its transfer function.
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The linear phase requirement calls for a Bessel response, so the

appropriate frequency transformation

Sn =
100 2 TT (10)

+
2 TT (10)

(2-30)

is applied to the normalized low-pass Bessel transfer function from

Table 2-5,

H(s) =

s + 3s + 3

(2-31)

A fourth-order bandpass transfer function results:

H(s) = 1.18s'

s +1.88s +7896. 86s +744 .50s+15585441 . 60

(2-32)

The fourth-order denominator of the transfer function in equation

(2-32) may be factored into two second -order polynomials to give

H(s) = 1.18s'

(s
2
+0.94s+3913.80) (s

2
+0 . 95s+3982 . 18)

(2-33)

The magnitude-frequency plot of equation (2-32) is shown in Figure

2-10.

Example 2-6. A filter to reject signals at frequencies between 9

to 11 Hz is desired. Second -order Chebyshev characteristics with 1/2 -dB

ripples are specified. Generate the transfer function to be synthesized.

Subroutine POLRT was used to determine the roots of the fourth-

order denominator polynomial.
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Using equation (2-11), the appropriate center frequency, cj , is

calculated: an>^K "" 1 *0 y **W<

CO = / 2 TT (9.11) = y 198TT . (2-34)

Bandwidth, BW, is determined by equation (2-12):

BW = 2 IT (11-9) = 4 TT . (2-35)

Low-pass-to-band-reject frequency transformation given by equation

(2-10c) is then applied to the normalized second-order low-pass

Chebyshev transfer function from Table 2 -3a:

H(s) = ~
2

l-^^
' (2-36)

s + 1.425s + 1.516

The resulting transfer function is

„, v s
4
+ 7816s

2
+ 15275291.31 . , ovv

H(s) = —

-

- (2-37)

s + 11.81s + 7920.89s + 46165.78s
+15275291.31

Factored for easy second-order realization, the transfer function

becomes:

2 2
TT , x s +3908.36 . s +3908.36 . ,_ oft >

H(s) - — —

-

(2-38)

s +5.51s+3420.98 s +6 . 30s+4465 . 19

The magnitude response plot of equation (2-37) is shown in Figure 2-11
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III. THE OPERATIONAL AMPLIFIER

Having established a common starting point for the different

synthesis techniques, it is now important to take a closer look at the

common active element that is used in all of these methods and the type

of analysis involved.

This chapter defines the operational amplifier and shows how its

distinctive characteristics simplify analysis of circuits using it. These

same characteristics will be used to justify some fundamental assumptions

in the synthesis techniques.

A. DEFINITION

The operational amplifier is a high-gain, DC-coupled amplifier

having either a differential or single-ended input. The output is usually

single-ended with respect to ground. For the differential-input type, a

circuit model is shown in Figure 3-1. Signals applied to the terminal

marked + In are amplified by a positive non-inverting gain, + A. Signals

applied to the terminal marked - In are amplified by a negative - A. The

output is given by E = A(E„ - E,) . The single-ended amplifier may be

treated as the special case where + In is grounded.

The idealized characteristics of the operational amplifier are:

1 . Gain = 00 (A _ CO
)

Courtesy of the Burr-Brown Research Corporation from the "Burr-

Brown Handbook and Catalog of Operational Amplifiers," 1969.
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Figure 3-1. Circuit model for the differential-input type of

operational amplifier
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A-^CO

Out

-o+

o

Figure 3-2. Idealized model of the differential-input type of

operational amplifier
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2. E = O when E, = E
o 12

3. Input Impedance = CO (Z. ^CO )

4. Output Impedance = O (Z * O)
o

5. Bandwidth = CD (response time = O)

When these idealized characteristics are incorporated, the circuit

model of the operational amplifier reduces to that of Figure 3-2 . This

idealized model will be used in developing equations for many of the

basic feedback circuits in later chapters.

The most common circuit symbols for the operational amplifier are

shown in Figure 3-3 .

B . ANALYSIS

To illustrate the kind of circuit analysis that follows from the

idealized model, a fundamental inverting circuit such as Figure 3-4

will be used as an example.

The common feature of these circuits is that the non-inverting

input is connected to ground. Feedback and input networks are attached

to the inverting input terminal. In analyzing the circuit, a gain A is

assumed. This gain is subsequently allowed to approach infinity.

Since amplifier input impedance is infinite, zero current flows into the

amplifier; consequently R and R carry equal currents. This may be

stated as I = I or

E, - E E - E
1 s S O T /„ ,x

!i= -rt~
= ~^~ = v (3 - l »
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Figure 3-3. Common circuit symbols for the operational amplifier

(a) Differential-input (b) Single-ended

R
i

AWV
1

+ In

Summing Point

<>
Out

'+

-0

Figure 3-4. Fundamental inverting amplifier circuit
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The amplifier gain enforces the condition

E = -AE (3-2)
o s

Solving equation (3-2) for E and substituting into equation (3-1) yields
s

Eo
E
o - E—:— o

E
l

+ A ± . (3-3)

R
l

R
2

If the assumption A —»- 00 is now applied, equation (3-3) becomes

E
l = -^p_ . (3-4)

R
l " R

2

The overall (closed loop) gain, or transfer function, is

Eo - R
9

t =

t' (3 " 5)

Note that the gain includes a sign inversion . This sign inversion will

be appropriately indicated in the different transfer functions that were

generated in Chapter II when these are used as examples for realization

in the following chapters. Note also that its magnitude is determined

solely by the ratio of external resistors. Another important point is that

the summing point voltage, E , approaches zero as the gain, A, approaches
s

infinity.

E

E
s
= " A

2
* ° ;A~^^ * (3 ' 6)

This condition is described by referring to the summing point as a

"virtual ground" (since it is held at virtually zero or ground potential)

.
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With the summing point at ground potential, the current through R is I

E / R
1
and therefore entirely independent of R . Since no current

flows into the amplifier, the input circuit may be thought of as a source

of current which must flow through the feedback impedance, in this case

R . Since one end of R is at ground potential (the summing point) , the

other end must be at a voltage of - I, R_ = E .12 o

The feedback element need not be a resistor but can be any imped-

ance Z . This will be seen in the next chapter. In fact, it need not be

a linear element but can be any element, or set of elements, for which

there is a linear relation between short-circuit current and terminal

voltage. Similarly the input circuit is subject to equal freedom.

Figure 3-5 illustrates a complex network of this type.

If neither input to the operational amplifier is grounded, the same

analysis still holds. Consider the network in Figure 3-6. The output

voltage, E , is
o

E =A(E -E ). (3-7)
o g2 gl

As A approaches infinity,

E _ -E =0. (3-8)
g2 gl

Observe that the operational amplifier's infinite gain forces its two

inputs to be equal. It will also be noted that since no current flows

into the operational amplifier

E =E =E (3-9)
2 g2 gl
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Figure 3-5. Complex linear feedback circuit
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J
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R,

^Wv*V
- I.
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-o +

Figure 3-6. Feedback circuit with neither input to the operational

amplifier grounded
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and
~E

2
E
2

" E
o . (3-10)

1_ R
l

2 " R
2

Simplifying equation (3-10), the voltage transfer function of the network

is

E
o =

R
l
+R

2 (3-11)

E
2 " R

l

Regardless of the complexity allowed in the input and feedback

networks, the same summing point restraints will always be found to

hold:

1. The summing point is a virtual ground.

2. No current flows into the amplifier; current flowing into the

input circuit must flow into the feedback circuit.

C . NATHAN ' S MATRIX ANALYSIS

Since matrix analysis lends itself to more complicated circuits,

it would also be convenient to know a matrix analysis of circuits con-

strained by an operational amplifier proposed by Nathan [Ref . 12] . Such

analysis will be illustrated in later chapters and a brief discussion of it

is contained in Appendix C of this paper.
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IV. INFINITE -GAIN SINGLE-FEEDBACK REALIZATIONS

This chapter presents the first of five categories into which

synthesis techniques for active RC filters using operational amplifiers

have been classified. The synthesis procedures involve one infinite-gain

operational amplifier with a single feedback loop and consequently, the

significant contributions falling under this general category are presented

and are collectively known as Infinite-Gain Single-Feedback Realizations.

A. THEORETICAL DEVELOPMENT

The basic active filter configuration using one operational ampli-

fier is shown in Figure 4-1. It employs one RC feedback network, N ,

B

across the operational amplifier, an RC network, N , in series with the

inverting input source and another RC network, N , in series with the

non-inverting input source.

The following two-port equations may be written for this active

configuration:

+ v.._E (4-la)
l
=y

llA
E

l

3
==Y21A

E
1

+

y
12A

E
3

y22A
E
3

2
= yllC

E
2

y 12C
E
4

= v E + v E
4

y
21C 2

y22C 4

5
= y llB

E
5

y
21B

E
5

+ y 12B
E
6

y Ey
22B 6

(4-lb)

(4-2a)

(4-2b)

(4-3a)

(4-3b)
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Figure 4-1. Basic single-feedback active filter configuration
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Figure 4-2
. Differential-input operational amplifier using resistors

for input and feedback elements
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Application of one of the summing point restraints developed in

Chapter III, namely, that no current flows into the operational amplifier

because of its infinite input impedance, results in:

1=0, (4-4)
o

I
4
- . (4-5)

Because of equation (4-4), I = - I , so that from equations (4-lb) and

(4 -3a):

y21A
E

l
+y

22A
E
3
= - y llB

E5- yl2BV <4"6 >

As a consequence of equation (4-5), equation (4-2b) becomes:

E
4
= "Y21C

E
2 . (4-7)

y22C

Use of the other summing point restraint, namely, that the summing

point is a "virtual ground" yields:

E
3
= E

4
=E

5
. (4-8)

Applying equation (4-8) to equation (4-7) gives:

E
5
= " y21C

E
3 ' (4-9)

y22C

E
3
= H2!CV (4 " 10)

y22C

Substituting equations (4-9) and (4-10) into equation (4-6) gives an

expression for E :

D
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E
6
= E

o
=

I
Y21A

E
l V Y21C V y

ilB
+ y22A \ S .,< (4-11)

y 12B V22C A Yl2 B '

Note that E is expressed as a function of the two input voltages and

the admittance parameters of the three passive networks, N , N and

N . To verify this result, note that if the three passive networks were

each single resistors as shown in Figure 4-2, such that

y21A
= " 1/R

l
y22A

=1/R
l

y
12B

=
- 1/R

2
y llB

=1/R
2

(4 - 12)

y21C
= - 1/R

3
y22C

=l/V
application of equation (4-11) gives:

VlVl VVlV) E
2

' (4 - 13)

R
l

v R
l

'

Note that if the non-inverting input, E = 0, equation (4-13) corresponds

to equation (3-5) and if E =0, equation (4-13) corresponds to equation

(3-11).

The general expression given by equation (4-11) can now be

applied to a more restricted case where the non-inverting input voltage,

V= 0, giving:

E
o y21A

E
i

Y
12B

(4-14)

which is the open-circuit voltage transfer function of the more common

network configuration shown in Figure 4-3. This is the basic network
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Figure 4-3. Single-ended operational amplifier in basic single-

feedback configuration
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Figure 4-4. Active Network configuration of Bradley and McCoy
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configuration to produce second-order transfer functions. Its importance

lies in the fact that higher orders are achieved by simply cascading such

configurations

.

Equation (4-14) is the starting point for all the synthesis methods

that fall under this category. A more rigorous derivation of this equation

is contained in Ref. 22.

B. BRADLEY AND McCOY [1952]

Writing about driftless DC amplifiers for a Reeves model A-105

computer, Bradley and McCoy [Ref. 13] proposed the use of DC amplifiers

in combination with passive networks to generate complex transfer

functions as a generalization of summation or integration. Calling Z.

and Z the short-circuit transfer impedances of the input and feedback
o

networks respectively, as shown in Figure 4-4, they used as a basis

for their work the voltage transfer function,

V
o

Z
o , (4-15)

V
l

" Z
i

where Z = l/y, „ and Z. = l/y_ . _ in relation to equation (4-14).
o 12

B

l z 1A

They generated an extensive table of transfer impedance functions

with their corresponding RC networks and accompanying relations to

determine element values for the networks.

Synthesis of a desired transfer function involves choosing appro-

priate input and output networks such that their transfer impedances,

when applied to equation (4-15), produce the desired transfer function.
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Element values of each network may then be chosen by coefficient-

matching .

An example of this procedure follows.

Example 4-1. Realize the low-pass Butterworth filter transfer

function of Example 2-1, where the negative sign is introduced because

of operational amplifier inverting action:

„, .

V
o

(s)
3947.84 , ,. lc .

H(s) = rpr-r - - -r (4-16)

V '

s + 88.84 s + 3947.84

or, in a more convenient form for this procedure,

H(s) = -
I . (4-17)

1 + 88.84 s + 1 s
2

3947.84 3947.84

Two transfer impedance functions are now taken off the transfer

impedance table in Ref . 13:

A
x

(1 + sT) , (4-18a)

where

A
!
=R

1

T = R C , (4-18b)

and

A
2
f

l + ST
2 \ , (4-19a)

\ 1 + sT
1
+ s

2
T T
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where

A
2
" 2R

2

T
l

= 2R
2
C
2

T
2
= R

2
C

1
/2 * (4-19b)

The RC configuration corresponding to equation (4-18) is shown in

Figure 4-5a; that for equation (4-19) is shown in Figure 4-5b.

It can be observed that if Z. = A, (1 + sT) and Z = A (1 + sTj/
l 1 o 2 2

(1 +sT
1
+ s

2
T

1
T
2

) /

WM
A
2

(1 + ST
2
)/(1 + s Tl + s

2

TlT 2
)

(4 _20)
H(S) " A

2
(1 +sT)

Setting T = T gives

H(s) =
A
2
/A

l . (4-21)

2
1 + sT + s T T

Equating coefficients of equations (4-21) and (4-16) yields

A
2

A
i

= 88.84
L
l 3947.84 Kq LL)

T,T^ =
12 3947.84

Simplified, the relations in equation (4-22) become
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C
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2
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2

C
2

= TA

(b)

Figure 4-5. Transfer impedance networks from the table of Bradley
and McCoy
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Figure 4-6. Circuit realization of Example 4-1
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Figure 4-7. Active network configuration of Mathews and Seifert
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A
2
=A

1

T = 2.245 x 10" 2
(4-23)

T = 1.127 x 10" 2
= T .

Applying the relations in Figures 4-5a and 4-5b and arbitrarily choosing

R
1
= 10 K fl give the component values for the two networks:

R = R /2 = 5 KQ

O- 1 - 127
4

Xl °" 2

- 1.127 /cF
10

4X1.127X10" 2

= 4>5/ap
10

-2
2.245 x 10 = 2.245 >tF (4-24)

2
10

and the resulting circuit realization is shown in Figure 4-6.

C. MATHEWS AND SEIFERT [1955]

Mathews and Seifert presented a paper [Ref . 14] which described

three systematic synthesis methods for realizing complex transfer

functions. The first of these belongs to the single-feedback realization

category of this chapter.

Mathews and Seifert approached the synthesis problem in two ways

Using the basic feedback configuration shown in Figure 4-7, they

assumed an infinite-gain amplifier and initially treated Y (s) and YD (s)
A D

as two-terminal RC driving-point admittance networks to come up with

the open-circuit voltage transfer function:
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Vf! VI . (4-25)

E
1
(s) Y

B
(s)

Consequently, the poles and zeros of each Y (s) and Y (s) must alternate
A B

along the negative real axis of the complex-frequency plane and the lowest

critical frequency of each must be a zero. In effect, the poles and zeros

of the transfer function must all lie on the negative real axis. However,

since the transfer function poles are the poles of Y (s) and the zeros of

Y (s) and since the transfer function zeros are the zeros of Y (s) and the

poles of Y (s) , two transfer function poles or two zeros may occur to-
B

gether and the transfer function lowest critical frequency may be a pole.

This situation is shown in Figure 4-8. One has, in effect, a realizable

transfer function so long as all transfer function poles and zeros are

restricted to lie along the negative real axis including the origin. A

given transfer function can, therefore, be written as

E
Q

(S)

= N(s)/Q(s) , (4-26)

E
1
(s) D(s)/Q(s)

where N(s)/Q(s) = Y (s) and D(s)/Q(s) = Y (s) and where Q(s) is
A B

selected so that both Y (s) and Y (s) can be realized as two-terminal

RC driving-point admittance networks. The synthesis of Y (s) and Y (s)
A B

may now be carried out individually.

One method of synthesis is a partial-fraction expansion [Ref. 15]

of Y (s) and Y (s) as indicated by Y(s) below:
A B
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Figure 4-8. Location of poles and zeros for 2-terminal RC network

configuration

R

I-^W;

2

v\AA
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hV\AA
n

RC

Figure 4-9. Second Foster form realization of an RC admittance

function
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^ = — +
*

+ +Kqo . (4-27)
s s s + o

Subsequent multiplication by s of each term in the right-hand side of

equation (4-2 7) gives

n

V
-"

1 K.s

Y(s)=K + > * ^ + Kqo s ,
(4 -28a)

o / 1 s + iTt

i=l
1

or

n

YD ^(s) = K + \ 1 +Kqo s ,
(4 -2 8b)

RC
° L -JL. + Q

i=l K. K.s
1 1

where K = l/R , Kr© = C cp and each l/K. = R. and each K./ /r. = C.00^ 11 1 " i 1

in units of ohms for the R's and farads for the C's.

The resulting network for Y (s) and Y (s) is the configuration.A B

shown in Figure 4-9. Note that this is the second Foster form for an RC

admittance function.

To give this synthesis method a more general application, Mathews

and Seifert substituted three-terminal networks for the two-terminal

networks, as shown in Figure 4-3. The transfer function of such a con-

figuration was already developed in Section A of this chapter. The

relation, assuming reciprocal networks, is

1TT\ = "^ < (4-2 9)
E « y12B

(s)
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where y, OA (s) and y, OD (s) are transfer admittance functions. The trans

-

1 2A 1*£B

fer admittance of a three-terminal RC network can have only simple poles

[Ref . 16] which must lie on the negative real axis of the complex-

frequency plane excluding the origin but may have zeros which lie any-

where in the complex-frequency plane except on the positive real axis.

Since these zeros need not be simple, the transfer function in equation

(4-29) is perfectly general.

The realization of a desired transfer function using the configuration

in Figure 4-3 then boils down to synthesizing the transfer admittances in

equation (4-29)

.

Several procedures [Refs . 17-19] are available for synthesizing

such transfer admittances but for an example, the method of Guillemin

[Ref. 17] will be used.

Example 4-2. Realize the high-pass transfer function derived in

Example 2-3:

H(s)=- —. *-
•

(4 -30)

s + 57.24 s + 5576.46

The transfer function, H(s) , in equation (4-2 9) may now be expressed

as

H(s) _ _ N(s)/Q(s) , ,

H(S)
D(s)/Q(s)

' (4 31)

where

y12A
(s) = - N(s)/Q(s) (4-32a)

y
12B

(s) = - D(s)/Q(s) . (4-32b)
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For y (s) and y (s) to be realizable, the roots of Q(s) must be
12A 12B

restricted to the negative real axis. Hence, Q(s) is judiciously

chosen to be

0(s) = (s + 50) (s + 150) ,
(4-33)

such that

2

y 12A
(s) =

" (S + 50MS + 150)
' (4 "34a)

v (s) = - (5576.46 + 57.24 s + S
2

)
( }Y

12B
lSJ

(s + 50) (s + 150)
* {q 6qb)

By Guillemin's procedure, driving-point admittance functions are then

chosen with the same poles as the transfer admittances, y (s) and

y (s) . These driving-point admittances are then expanded into RC
1ZB

ladder networks in such a manner as to realize the zeros of the transfer

admittances. For convenience, let

, , , (s + 10) (s + 97.5)
, , ,

y llA
(s)=y

llB
(s) -

(s + 50)(s + 150)
• (4 "35)

For reasons that will become apparent, y, or)
(s) is then decomposed

1 2B

as follows:

2
, . (5576.46 + 57.24 s) s .. .

y
12B

lS) "" "
(s + 50) (s + 150) (s + 50) (s + 150) '

K ]

such that

The choice is arbitrary but it can happen that for a particular

choice, the spread in the calculated element values becomes too wide

to be practical

.
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i \
(5576.46 + 57.24 s) .

'

y12Bl
lSJ

" " (s + 50) (s + 150)
' 14-3/aj

2

y
i2B2

(s)=
" (s + 50

S

) (s + 150)
' (4 "37b)

y.
n

(s) is now expanded [Ref. 20] to realize the zeros of y, ot,-,(s) at
1 IB 1 z B

1

s = - 97.5 and at s = - CD :

y llB
(s)=y

llBl
(s)

2A^_ +1+ 1

s + 97.5 0.0156 s + 1

(4-38)

6.4

The resulting network, N . , is shown in Figure 4-10.
Bl

Again y,, D (s) is expanded to realize the two zeros of y, or>0 (s)
1 IB IzBZ

at s = 0:

y llB
(s)=y

llB2
(s)

= _1_ 1 . (4-39)

7.7 1 + 1

0.0109 s

1.47 1 + 6.3

0.00158 s

The resulting network, N , is shown in Figure 4-11.
B2

Before these two networks, N and N , can be connected in
Bl B2

parallel to realize y lot3 (s) , it is first necessary to adjust their individual
l^B

admittance levels. From Figure 4-10, y, OD , (s) = - 1/7.693 = - 0.13

at s = and equation (4-37a) gives y (s) = - . 746 at s = . A
lZol

multiplier K for the network, N is therefore
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Figure 4-10. Circuit realization of y . (s) and y (s)
1 Z Bl 11B1

0.0109 0.00158 6.3

f
—.—)(

AAA<>

7.7 > 1.47

O—

N
B2

Figure 4-11 . Circuit realization of y ODO (s) and y 1DO (s)
1 A dA 1 1 bZ
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K
B1

=
(K746

= °' 174
•

(4 "40)

For N__, y lono (s) = - 1/.63 = - 0.159 at s = - CO from Figure 4-11.
dZ LZdZ

From equation (4-37b), y, ODO (s) =-lats = -00. Consequently,
1 Z BZ

K
B2

=
^^P

1 =0.159 . (4-41)

K is then determined from the relation

+ =r~ (4-42)
K
B

K
B1 'KB2

to be K = 0.0832.

The admittance level of N is now multiplied by

h_ = 0^0832. =
K 0.174

U * q/ ° ' K* q6)

Bl

and that of N is multiplied by
B2

S_ = 0.0832 =
KDO 0.159

U#b^
*

{q ^
dZ

The realization of y 19a ( s ) can be observed to be exactly the network,

N , except that the admittance level is multiplied by
B2

K
A
= K

B2
= 0.159 . (4-45)

The complete network realization is shown in Figure 4-12. Note that

the transfer function, H(s), in equation (4-30) is realized within the

constant multiplier:
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B

D. PAUL [1963]

Paul [Ref . 21] sought to correct two limitations of the synthesis

method of Mathews and Seifert:

1. No capability for independent adjustment of each transfer

function coefficient, or, alternatively, of each pole and zero.

2. Wide spread of element values.

Using as a starting point the basic network configuration of Figure

4-3 and its corresponding voltage transfer function, H(s) = - Y91A (S)/

y (s) , he proposed the adjustable network configuration shown in
1 2B

Figure 4-13.

It can be noted that the three basic T-networks, shown in Figure

4-14 and governed by the relations in Table 4-2, are all integrated in

both the input and the feedback networks. The configuration in Figure

4-13 is a special case where

N
!

= R
C
/2R

A
= l

N
2
" 2R

C
/R

B
= 1

T = C
A
R
C

= 2C
B
R
C

= 1/2 C
C
R
C •

(4 "47)
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Figure 4-14. Type 1 T-Networks for Paul's configuration
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Table 4-1. Some Transfer Functions Realizable by Figure 4-13

Network Conditions

V (s)

II(S) " V^s)

All switches closed
1 + k^T +k

3
s
2
T

2

1 + k.sT +k c s
2
r

2

4 6

Switches 1,2,4,5,6 closed

Switch 3 open

1 +k lS r

1 +k.sT +k c s
2
T

2

4 6

Switches 1,2,4,5 closed

Switches 3 , 6 open

1 + kjST

1+LsT
4

Table 4-2 . Transfer Admittance Relationship of the

Three Type 1 T-Networks

Network y21
(s)= - y

l2
(s)

(a)

2 2
S C A R AA A .

l+s2C R R,A A
2R. 2R

A

2 ^ 2

1 + sT 2R.

N s

1 + s

(b)

sC, 2R, s r
1+S C

B
R
B

2R
C

R
B

i + s r 2R.

N
2
ST

1 + sT

(c)

2R
c

(1 + sC
c
R
c

R. 1 + sT

where T - 20^ = C^ = 1/2C
C
R
C

= CR
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If

C
A
=2C

B
=1/2C

C
= C

R
C

= 1/2 R
B
= 2R

A
= R

'

(4 "48)

then

T = CR . (4-49)

Some transfer function forms possible for the configuration in

Figure 4-13 are given in Table 4-1.

Another special variation for the configuration shown in Figure 4-13

is the case where

Nl = R
c
/2R

A
=l

N
2
* 2R

C
/R

B
= 2

f
" C

A
R
C = C

B
R
C

= 1/2 C
C
R
C •

(4 -50)

If

C
A
=C

B
=1/2C

C
= C

R
C

= R
B
= 2R

A
= R ' (4 "51)

then

T = CR . (4-52)

In this case, the transfer function forms tabulated in Table 4-1

result with every sT term in both numerator and denominator replaced

by 2sT.
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If, instead of three standard T -networks, an RC configuration, such

as the one shown in Figure 4-15, is used as both the input and feedback

networks, the transfer admittance of each network can be shown to be

y2
- (s) = (1 + sCiy (1 + sCR

4
)

(4 _53)

[2 + sC(R
1
+ R

2
)]CR

3
+ R

4
+ sCR

3
R
4

]

+ [2 + sC (R
3
+ R

4
)][Rj + R

2
+ sCR

1
R
2

]

and the resulting voltage transfer function is

(1 + sCRj (1 + sCR_) (1 + s f ) (1 + s TJ
H(s) = - — = - — (4-54)ms;

(i + scr
b

) (i + scr
c ) (i + s r

B
) (i + s rc )

'

where, in relation to the network in Figure 4-15, for the input network,

R
1
=R

A

R
2
= R

B

R
3

= R
C

R
4
= R

D ,
(4-55)

and for the feedback network,

R
l
" R

B

R
2
= R

A

R
3

= R
D

.

R
4
= R

c
• (4-56)
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Figure 4-15. Type 2 T-Network for Paul's configuration
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Figure 4-16. Type 3 Network for Paul's configuration
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Note that independent adjustment of the time-constants, I , is possible

by adjusting the relevant set of resistors and capacitors.

If the network configuration, shown in Figure 4-16, is used as

both the input and the feedback networks, the transfer admittance can

be shown to be

1 + sCR

y21
(s) =

Rl + R
2
+ sCR^ ' (4 " 57)

and the overall active voltage transfer function is

1 + sCR 1+sT,
H(s) = - TT^iT " " ITTr^ •

(4 -58)

B l B

In relation to Figure 4-16, for the input network, R = R and R = R ;

1 A L B

for the feedback network, R, = R_ and R = R_ .IB 2 A

The transfer function forms generated by the network configurations

of Paul would ideally be used for realizing higher-order filter transfer

functions, broken up into biquadratic polynomials and cascaded to form

the desired transfer function.

Two networks that would be especially useful for such realizations

are shown in Figures 4-17 and 4-18. The network in Figure 4-17 is

designed to simulate transfer functions of the form

H(s) = -
l + l r . (4-59)

where T = RC . That in Figure 4-18 simulates transfer functions of the

form
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Figure 4-17. Paul's circuit to simulate V (s)/V. (s) = - 1/(1 + s T )

o 1

k £ 1

i

I = RC

R
+0—VsAA-

R
-W/SA-O

C R _^ 1

_| £i wa-
R R

AW \W-
2C

R/2
|l

n

I,, Q2C

-o-

+

k.V
1 o

o+

v

2 ~2;

Figure 4-18. Paul's circuit to simulate V (s)/V. (s) = - l/(l+k.2sT+s f )oil
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H(S) = - ! -— -
W-60)

1 + 2k. s T + s T
i

where k £ I. These two networks will be used in the example to follow.
i

Example 4-3. Realize the fifth-order Butterworth transfer function

of Example 2-2 .

Reduced to a form suitable for simulation by Figures 4-17 and 4-18,

the transfer function is

H(s) = 1 . 1

1 + s
2

1 + 0.618 s + s

62.83 62 * 83
(62. 83)

2

1

1 + 1.618 s + s
2

62 - 83
(62. 83)

2

(4-61)

Comparison of the first product term with equation (4-59) yields

the relation

T = 1/62.83 (4-62)

For C = 1 UF , the corresponding value of R is determined to be

6

R=
62 q 3

= 15.9 K PL. (4-63)

Comparing the second and third product terms with equation (4-60)

gives the following potentiometer settings:

k = 0.618/2 = 0.309 (4-64)

k
2
= 1.618/2 =0.809 . (4-65)

The final circuit realization is shown in Figure 4-19.
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E. HAKIM [1964]

Hakim [Ref . 22] considered the realization of minimum phase

transfer functions. His method essentially follows the same line of

approach as that of Mathews and Seifert. His method of development,

however, is more detailed and gives a clearer picture of the synthesis

procedure

.

If the general transfer function is

H(s) = - N(s)/D(s)

m m-1as +a ,s + ....+ a,s + am m-1 1 o_

n , n-1bs +b ,s + ...,+b.s+b
n n-1 1 o

a
m

(s + qI ) (s + ^ ) ... (s + oC )

1 l m
b
n

(s + ^)(s +/2
) ....(s +/2n) '

(4-66)

where a to a and b to b are all positive real coefficients and where
o m on

the negative sign has been introduced in anticipation of the phase in-

version caused by operational amplifier action, for the transfer function

to be physically realizable, the order m of the numerator polynomial N(s)

must be less than or equal to the order n of the denominator polynomial

D(s) . Stability considerations restrict all the poles - $ to -A to the

left half of the complex-frequency plane. If all the zeros - q/L^ to

- ^ are also restricted to the left half of the plane, then the transfer

function is said to be minimum phase.
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For the feedback network configuration in Figure 4-3, the open-

circuit voltage transfer function has been shown to be

e (s) y91 A
(s >

H<s) =

v^
=

• w^ •

.

If the transfer admittance functions, y (s) and y, OD (s) are to be
2 1A 1 2B

realized by RC networks, an auxiliary polynomial Q(s) has to be chosen

with roots restricted to the negative real axis such that Q(s) =

(s + ^T*) (s + ^r"_) .... (s + tf~ ) where tf~ to ^f are real positive

numbers

.

Equation (4-66) may be written as

H(s) = . N(s)/Q(s)
H(S) " D(s)/Q(s)

(4 68)

and, equating equations (4-67) and (4-68),

y21A
(s) = - N(s)/Q(s)

y12B
(s) = - D(s)/Q(s) . (4-69)

Assuming the transfer function, H(s) , has a pair of complex conjugate

poles or zeros, y (s) and y, OTD
(s) can be realized using Guillemin's

2 1

A

12 B

procedure [Ref. 17]. Equation (4-69) may now be written as

m m-1as +a , s +....+ a. s + a
, x m m-i i o ,. „_ v

yols (s) = - : 7 - : ,
- - : , ^_

— . (4-70a)
21A (s + cr.) (s + trJ .... (s + cr)12 n
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b s
n
+ b js"

-1
+ + b s + b

yi2B
(s) = "

(". + crj\* + ir
2

) • • • • (s * <r] (4 -70b)

Following Guillemin's procedure, short-circuit driving -point admittances

are arbitrarily chosen. For convenience, let

(s + 6 X
) (s + 6 2

) •• (s + O
22A 11B (s + {T-x) (s + ^TL) ... (s + {T )

l z n

where k , to X are all positive numbers. Since N, and N are to beu
1 u n A B

RC networks, the poles and zeros of equation (4-71) must alternate and

the lowest critical frequency must be a zero.

Synthesis of each network may now follow. For y91A (s)/ N(s) is

first decomposed such that

N(s) = n (s) + n (s) = ... + n (s) , (4-72a)

where

n, (s) = a + a, s
1 o 1

n
2
(s)=a

2
s
2
+ a

3
s
3

n (s) = a
n
s
n 1

+ a s
11

. (4-72b)
r n-1 n

The last polynomial n (s) contains one or two terms depending on whether

the order n of N(s) is odd or even.
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, .

K
A y21Al

(s)+K
A y21A2

(s) + ----

V21A
' S

' - r
Al

r
A2

K
A y21Ar

(s)

.... + j^"
1 1Af

, (4-75)

Ar

and if the resulting scaled ladder realizations of each of these components

are connected in parallel at their input and output ports, the resulting

two-port network will realize the short-circuit admittance y99a (s) and

the required zeros of Y91A (S )-

The transfer admittance y lon (s) is realized in a similar manner.

The resulting network is shown in Figure 4-20.

Although basically the same method has been used in Section C to

realize a high-pass transfer function, another example using Hakim's

method to realize a low-pass filter will be given for purposes of com-

parison with other low-pass realizations.

Example 4-4. Realize the Butterworth low-pass transfer function

of Example 2-1

.

The transfer function

HW- 1 22*2J* (4-76)

s + 88.84 s + 3947.84

is first divided in both numerator and denominator by a judiciously

chosen Q(s) = (s + 30) (s + 60) so that

/ x
3947.84 .. „ .

y
2 1A

(S) =
" (s+30) (s + 60)

(4 "77a)
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and

, v 3947.84 + 88.84 s s , .

y12B
lSi "

(s + 30)(s + 60) (s + 30)(s + 60) '

^~ //}D >

where

/ n
3947.84 + 99.84 s .. nQ .

y l2Bl
(s) =

" (s+30) (s+60)
(4 '78a)

and

2

y l2B2
(s) =

-
(s + 30) (s + 60) '

(4 "78b)

Driving-point admittances are then chosen. For convenience, let

i \ - i \ - (s + 10) (s +44.5) .. 7Q ,

Y22A
(S) " y llB

(s) - (s + 30) (s + 60)
* (4 '79)

y , D (s) is first expanded into a ladder network in such a manner as to
1 IB

realize the zeros of y lor) ,(s) at s = - 44.5 and at s = - CO :

y ilB
(s)=y

ilBl
(s)

'

. (4-80)
6.51 + 1 + 1

s + 44.5 s + 1

28.99 2.899

The network realization, N , , is shown in Figure 4-21.
Bi

y (s) is next expanded to realize the two zeros of y, 0D0 ^s ^

1 1

B

12 D i.

at s = 0:
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0.1465

O-
1 2.899

0.1536

-O

0.0345

N
Bl

Figure 4-21. Circuit realization of y (s) and y (s)

0.0?795 0.001686
12.35

4.04 > 1.49

O
N

-O

B2

Figure 4-22. Circui« realization of y (s) and y (s)
12B2 1 1B2
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y ilB
(s)=y

llB2
(s)

+
;

: '(4-81)
4.04 1 +

0.01795s 1 + 1

1.49 1 + 12.35

1.686s

The network realization, N _ , is shown in Figure 4-22 .

Scaling factors are determined to be

**
-

fi -°471 = 0.418 (4-82a)K 0.1127
B

1

and

= 0.582 (4-82b)
K
B2

0.081

y (s) is then expanded to realize the double zeros of y (s) at

s = - 00
:

YnnM = 1 • (4-83)
ZZA

1 + 1

0.0282s + 1

2.18+ 1

0.0423s + 1

0.865

The scaling factor for the input network, N , is calculated to be
X"*

KA=S " °- 1125
•

(4 -84)

The final circuit realization is shown in Figure 4-23.

The transfer function in equation (4-76) is realized within a

constant multiplier

_A_ = 0.1125 = 2.39 . (4-85)

K
B

0.0471

100





o
en

CO

en
CO

CM

i°H

CM

CO
enoo
o

LO
CO

^r
CM ^r
^r o
to —

i

o o

CO
LO

^W^n

o-

CD
CO

CO

n
CO

^roo

COoo

6
I

I

"a,

£

Xw
o
c
o
-.-1

+->

fD

N
•i-i—i

fD

CD

O
•r-

1

u

CO
CM

I

^r

CD

-i-H

101





F. MUIR AND ROBINSON [1968]

One method proposed by Muir and Robinson [Ref . 23] utilizes

three operational amplifiers to realize a second-order transfer function.

A three-amplifier realization of a low-pass filter is shown in Figure 4-24.

The basic building block for this configuration is a single operational

amplifier feedback, circuit, shown in Figure 4-25 , with the familair

voltage transfer function, H(s) = - Y./Y_ .

If the currents at the input of each operational amplifier of

Figure 4-24 are added, assuming A -CO , the resulting equations are

V
i 9c + V^ 9 + V g = (4-86a)16 O 6 A 4

V
A g. +VD (g +sCj = (4 -86b)
A 1 B 2 2

V
B
g
5
+V

o
SC

1

=
° *

(4 -86c)

Solving the above equations simultaneously yields the following

voltage transfer function:

f = - -5 X 5 6 4 l 2
. (4-87)

v
i s + (g

2
/c

2
) s + (g

1
g
3
g
5
/g

4
c

i
c
2

)

If equation (4-87) is identified with the prototype low-pass filter trans-

fer function in equation (2-16),

V H u>
2

t =
-
-—2—r» '

<4 ~88)

1 s+a^s + o^
o o

102





9
3

A A »
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2
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g
4
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C
l

I
fV V

1 I 1 I

g
6

9
1

g
5

o—
+

L^A-—

C

x>
-W-6—/- TN ' r\

+ c>—\^+ <j4^>
v

l
V
A

V
B

V
o

n r\
\j

Figure 4-24. Active network configuration of Muir and Robinson

Figure 4-25. Basic circuit block used in triple ampli Ler realization

of transfer functions

103





it can be seen that

2
H K) = 9

1
g
5
g
6
/g

4
C

1
C

2
(4-89a)

a u)
Q

= 9
2
/C

2
(4-89b)

^o =g
i
g
3
g
5
/g

4
C

l
C

2 *

{4 "89c)

To realize a desired low-pass transfer function, it is only necessary to

make the following steps:

1 . Select C. , C„ and g .

2. Determine g from equation (4 -89b).

3. Let g = g .

4 . Employ the relation 15
,— - — = C0

Q
to obtain g and g

5. Finally compute g from equation (4-89a).
b

High-pass, bandpass and band-reject configurations, similar to Figure

4-24 may be obtained from Ref. 23.

Note that in the realization of higher-order transfer functions,

the configuration of Figure 4-24 reverts to the status of a second-order

building block

.

Example 4-5. Realize the low-pass Butterworth filter transfer

function of Example 2-1

.

Following the design procedure steps laid out in this section,

let

C
l

= C
2
= 1A F (4-90a)

R = R = 100 K-fl. . (4-90b)
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From the relation, q /C = 88.84, R is calculated to be

R
2
= 11.27 K.Q. . (4-91)

Knowing aj =62.83 rad/sec, R. and R,_ are determined to be
"^o 1 5

10
6

R
1
=R

5
=
^83

= 15 ' 9 Kil • (4 "92)

Finally, Rc is calculated from equation (4-89a) to be
b

1
g

i
g ^ 1 ^

R
r
= TT ' 7^ '

?
= R

d
= 100Ka (4-93)

6 g
4

C
1
C
2 H CO

2 4

^o
since H = 1

.

The final circuit realization is shown in Figure 4-26.

G. ADVANTAGES AND DISADVANTAGES

Compared to comparable realizations falling under the other

categories in this paper, single-feedback realizations will be observed

to require considerably more elements. This can be noted especially

in the method of Hakim, where the number of ladder networks increases

with the order of the transfer function. This disadvantage is due to

having to realize the input and the feedback networks separately, each

network with its own set of natural frequencies. Because of this same

reason, however, such realizations determine transfer function pole

locations by the zeros of the two passive networks, rather than by the

gain of the operational amplifier, and hence, are quite stable.
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V. INFINITE-GAIN MULTIPLE -FEEDBACK REALIZATIONS

This chapter contains the significant contributions falling under

the general category of Infinite-Gain Multiple-Feedback Realizations.

The difference between this category and that in Chapter IV is that,

as the classification implies, the feedback connections are made to

more than one point in the input network from the output of the operational

amplifier. Realizations falling under this category will thus be of the

general network configuration shown in Figure 5-1.

A. THEORETICAL DEVELOPMENT

Consider the network configuration shown in Figure 5-2. This is

the second -order prototype of the general multiple-feedback configuration

in Figure 5-1. Consisting of five two-terminal admittances and one

infinite-gain operational amplifier, this network would be an ideal choice

for illustrating Nathan's method [Ref . 12] for analyzing networks con-

strained by an operational amplifier.

The Y matrix for the network without the operational amplifier is

H -

-Y.

-Y (Y +Y +Y +Y )

1
V

1 2 3 V
-Y„

-Y

-Y,

(VY
s>

-Y„

-Y

-Y.

(Y4+Y
5

)

(5-1)
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Y. Y,

+O
Y.

+

E^s) E
2

(s)

Y, -<>

O—

O
Y
2

E
3
(S)

o
E (8)

-O

Figure 5-2. Second -order prototype of multiple-feedback configuration

Figure 5-3. Second-order low-pass filter network of Rauch and Nichols

10:





In accordance with Nathan's procedure, the desired matrix, [Y'] , for

the network with the operational amplifier is obtained by deleting the

fourth row and the third column from the Y matrix in equation (5-1):

[rj

1

Y
,

-Y.

-Y.

(Y +Y +Y +Y )v

1 2 3 V

4

-Y
i

-Y.

(5-2)

To obtain the voltage transfer function, E (s)/E (s) , equation (C-7) in

Appendix C is applied:

or

ys)

E
x
(s)

,14

H(s) =

-Y. (Y +Y +Y +Y )v

1 2 3 A
}

-Y,

(Y -+Y +Y +Y )K

1 2 3 4
;

-Y,

-Y Y13
Y (Y +Y +Y +Y ) + Y Y
5 1 2 3 4' 3 4

-Y

-Y.

(5-3a)

(5-3b)

B. RAUCH AND NICHOLS [1956]

Using equation (5-3) as the basic equation, Rauch and Nichols

[Ref . 24] developed what was to be referred to as the "Rauch" filter.

The filter network, shown in Figure 5-3, is the low-pass version of the

general second-order prototype in Figure 5-2.
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The transfer function corresponding to the network in Figure 5-3

is

G
1
G

3
H(s) = - -= —

(5-4a)

sCC +sC (G + G +G) +GG
2 5 5 1 3 4 3 4

or, in a more convenient form,

H(s) = -
R

1
R
3
C

2
C

5 (5-4b)

s
2
+ R

3
R4+R

1
R4+R

1
R
3

s +
l

C
2
R

1
R
3
R
4

C
2
C

5
R
3
R
4

The synthesis procedure then becomes a matter of equating the

coefficients of the desired second-order low-pass transfer function

of the form of equation (2-16) to the element coefficients of equation

(5-4b) .

An example of this procedure is given in Example 5-1.

Example 5-1. Realize the low-pass transfer function in Example

2-1 using a second-order Rauch filter.

The transfer function, repeated here for convenience, is

HW- 1 ^^
• (5-5)

s + 88.84 s + 3947.84

Equating coefficients of equations (5-4b) and (5-5) yields

R R + R R + R R

r r r R
= 88 - 84 <5

"6a )C
2
R

1
R
3
R
4

and

1/C
2
CR R

4
= 3947.84 . (5-6b)
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Figure 5-4. Circuit realization of Example 5-1

F; .e 5-5. High-pass active network configuration of Bridgman

an.. Brennan
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s C C R R
H(s) = -5

l 3 2 5
, (5-10)

SR
2
R
5
C

3
C
4
+SR

2
(C

1
+C

3
+C

4
)
+ 1

and the two bandpass arrangements shown in Figure 5-6. If Z and Z
J. D

are capacitors as shown in Figure 5-6a, the transfer function is

s C R
H(s) = —

2

—
. (5-11)

sC
1
C
5
R
3
R
4
+ sC

5
(R3+ R4+ R

3
R
4
/R

2
) + l

If Z and Z are capacitors as shown in Figure 5-6b, the corresponding

transfer function is

s C R R
H(s) = — — (5-12)

s2r
!
R
3
R
4
C
2
C
5
+ SR

1
R
2

(C
3
+ C

4)
+ (R

1

+V
Again element values for a desired second-order transfer function are

determined using the coefficient-matching approach.

Example 5-2. Realize the Chebyshev high-pass transfer function

of Example 2-3 .

The transfer function is converted to the form

H(s)= -
2

s2/5576 - 46
. (5-13)

(s /5576.46) + (57.24/5576.46) s + 1

Equating coefficients of equations (5-10) and (5-13) gives

C.CRR = 1/5576.46 (5-14a)
X O Ls O

C C R R = 1/5576.46 (5-14b)
O fi z o

R (C + C +C) = 57.24/5576.46 . (5-14c)
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Figure 5-6a. Bandpass configuration No. 1 of Bridgman and Brennan

Figure 5-6b. Bandpass configuration No. 2 of Bridgman and Brennan
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2as + a s + a , .

H(s)=- -2- 4—2 ' (5 " 18)

b s + b s + b s + 1

where all numerator and denominator polynomial coefficients are positive

and real

.

Wadhwa investigated the realization of three separate cases of

equation (5-18). The first of these [Ref. 26] is the realization of the

case where a = a =0 such that

a

H(s) = - = 1 " (5-19)

b s + b s + b s + 1

Three possible arrangements of resistors and capacitors to realize

equation (5-19) are shown in Ref. 26 with their corresponding relations

between transfer function coefficients and network elements. One such

arrangement with its corresponding coefficient-component relations is

shown in Figure 5-8. This particular arrangement is an extension of the

second-order Rauch filter.

For the realization of the special case where

H(s)--
3

V
2

' (5 -20)

b s + b s + b s + 1

3 2 1

three possible combinations of resistors and capacitors are shown in

Ref. 27.

One combination which is an extension of the network in Figure

5-6a is shown in Figure 5-9. Its coefficient-component relations have
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l

O VvV
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c.

R
3

R.

R,

R
5

Z- c.

-6

C
4

o
O

+

o

-O

a
o
= b

o
/3

b
l

= 1/3 [(5b
Q
+l)RC

6
+ (b

Q
+l)RC

8
]

b
2
= 1/3 RC

6
[3b

Q
RC

4
+ (2b + l)RC

8
J

b
3
=b RC

4
C

6
C

8

R
1
=R

2
=R

3
=R

5
=R

R
y
= b

Q
R

b
l > ^3_

(b +1)

b„

Figure 5-8. Wadhwa's configuration to simulate

H(s) = - a
Q
/(b

3
s
3
+ b

2
s
2
+ b lS + I]
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Figure 5-9. Wadhwa's active network configuration to simulate

H(s) = - a lS/(b
3
s
3
+ b

2
s
2
+ b s + 1)

Figure 5-10. Wadhwa's active network configuration to simulate

H(s) = - a
2
s /(b

3
s
3
+ b

2
s + b s + 1)
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been intentionally omitted because the realization conditions become

too complicated to be of any illustrative value.

Finally, Ref . 2 8 treats the realization of the special case where

H (s) = -
—r^4 ' <5 "21)

b s + b s + b s + 1

One of the three possible combinations discussed is shown in Figure

5-10.

Realizations of still higher-order transfer functions generalized

by

, n-1 n-2
,

,.
a ~ <a„ i

s + a
r, 9

s + - .. + a.s + 1) . .

TT/ . o n-1 n-l 1 (5-22)

b s + b .s + ... + b s + b.s + 1
n n-1 2 1

following the same approach of coefficient-matching subject to certain

realization conditions have been described in Ref. 29. The details of

these, however, will not be included in this paper.

E. FOSTER [1965]

Foster [Ref. 30] developed a method of realizing low-pass filter

transfer functions of orders higher than the third by using Rauch's two-

and three-pole filter configurations .

Basically, if a fourth-order low-pass filter is desired, the cor-

responding transfer function is realized by cascading two two-pole

Rauch filters. If a fifth -order filter is desired, a three-pole and a two-

pole filters are cascaded.
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In general, if an odd-order low-pass filter is desired, a three-

pole Rauch filter followed by as many two-pole filters as necessary

effects the realization. If an even-order filter is required, the necessary

number of two-pole Rauch filters is used.

The two-pole or the second -order Rauch filter has already been

developed in Section B of this chapter. The third-order Rauch filter is

shown in Figure 5-11. Its transfer function is

Vf! .
- 1/R

!
R
3
R
5
C

2
C
4
C

6 . (5-23)

E
1
(S)

s
3 V R

3
R
7
+ R

3
R
5
+ R

5
R
7

+ R1+ R
3
Ns

2

R
3
R
5
R
7
C
4

R
!
R
3
C
2

+ / R rK + RnR ,
+ Ro R r

+ R
,
R n

+ R, R r
+

57 3 7 35 17 15
R

1
R
3
R
5
R
7
C
2
C
4

R
5
R
7
C
4
C
6

R
l
+R

3

R
1
R
3
R
5
R
7
C
2
C
4
C
6

A third-order low-pass filter may then be realized by equating the

coefficients of its transfer function to the coefficients of equation (5-17)

It is normally convenient in this kind of procedure to make all resistors

of the same value, choosing the resistor value to come up with practical

capacitor values .

Using equal resistors for both two- and three-pole Rauch config-

urations, Foster simplified the realization of higher-order low-pass

filters by tabulating normalized capacitor values for Butterworth, Bessel,

and Chebyshev filters up to order 10. A portion of the capacitor table
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Figure 5-11. Third-order Rauch active filter

Figure 5-12. Circuit realization of Example 5-3
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for Butterworth filters is shown in Table 5-1 . The values in the tables

are expressed in farads. To denormalize, each capacitor value is

divided by R (A , where R is the chosen resistor value and UJ is the
o o

angular cutoff frequency. A good practice in choosing R is to check if

dividing the largest and the smallest capacitor values by R cO results
o

in practical values.

To illustrate this method, an example follows.

Example 5-3. Realize the fifth-order Butterworth filter transfer

function in Example 2-2.

The angular cutoff frequency of the desired filter is CO = 62 .83

rad/sec. From Table 5-1, it is noted that the largest capacitor value

is 4.31481 farads and the smallest is 0.21386 farad. An appropriate

value for R is therefore 10 k£1 so that R aj> =6.2 83x10 . The required

capacitor values are therefore:

2.16471
C

l

=
6.283 x 10

5 = 3 - 45 /* F

4.31481 = p

6.283 x 10

0-21386 = 0#340//tF (5 _24)

6.283 x 10

1.85410
2 p

6.283 x 10
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Table 5-1. Normalized Capacitor Values for Butterworth Filter

n C
l

C
2

C
3

C
4

C
5

1 1.00000

2 2.12132 0.47140

3 2.37484 2.59100 0.32503

4 3.91969 0.25512 1.62359 0.61592

5 2.16741 4.31481 0.21386 1.85410 0.53935
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c
0.53935 = .859^iF

6.283 x 10

The resulting filter network is shown in Figure 5-12 .

F. HOLT AND SEWELL [1965]

The method of design proposed by Holt and Sewell [Ref. 31]

differs somewhat from the basic multiple-feedback configuration shown

in Figure 5-1 in that it involves two cascaded sections shown in Figure

5-13. However, the active section includes an infinite-gain operational

amplifier and^a multiloop feedback circuit, as shown in Figure 5-14, and

hence, belongs under the multiple-feedback classification.

The method is limited to the realization of biquadratic functions

having transmission zeros on the imaginary axis of the s-plane. Such

functions are known as Cauer or elliptic functions, having low-pass

transfer functions of the form:

s
2
+a

H(s) = — 2 • (5_25)

s + b, s + b
1 o

The active circuit of Figure 5-14 is used to produce the transfer function

2
s + A,s + A ,_

H.W- -
?

l ^— ' (5 "26)

1
s + b,s + b

1 o

and the passive section is used to produce the transfer function
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o-

s + A s + A

s + b s + b
1

2
s + a,

s + A s + A
O

Fig. re 5-13. Configuration of Holt and Sewell

Figure 5-14. Active section of Holt and Sewell

Figure 5-15. Active network of Holt and Sewell to realize

H^s) = s + A
r

<; + A
Q__

s + b s + b
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H
2

(S) = ;
2+a

°
•

«5
-27 '

s + A n
s + A

1 o

The active and passive sections are then cascaded to yield the required

transfer function in equation (5-2 5).

Analysis of the operational amplifier section yields the transfer

function

YY +Y (Y +Y +Y)
M .

12 *5 Zl 2 3
;

. (5-28)

1
" YY +Y (Y +Y +Y)

2 3 4 1 2 3

One possible combination of elements that would give the desired form

of equation (5-26) is for Y and Y to be resistors, Y and Y capacitors

and Y to be a resistor and a capacitor in parallel, as shown in Figure
o

5-15. The transfer function in terms of the elements is

1 +f
C

2
+C

S
+ C

2
+ C3V + C

5
(C

2
+C

3
)s2

H(s)=- "I"* V 1
R
5 I <*-29)

_L
+
(
C

2
+C

Z \
S + C

2
C
3
s2

R
1
R
4 V R

4 /

Equating coefficients of equations (5-26) and (5-29) gives:

b
o
= 1/R

1
R
4

b
l
= (C

2
+ C

3
)A

4

1 = C
2
C

3
. (5-30)

If

C
2
= C

3
=C

5
= C=1 ,

(5-31)
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the resulting resistor values are

R = b /2b
1 1 o

R
4
= 2/bl (5-32)

If R = 1 , equation (5-2 9) becomes

H^s) =

b +
o

2b + 1 \ s + s

(5-33)

b + b, s + s
o 1

The passive network following the active section has to produce the

following transfer function:

2
s + a

H
2

(s)
2 + / 2b + 1 \ s + b

s I o 1 o

(5-34)

1

Equation (5-34) may be synthesized following Guillemin's parallel-

ladder method [Ref. 20] provided it has only real poles, or expressed

in terms of its denominator coefficients, provided that

2b 4b

>
o (5-35)

If the desired transfer function of the form of equation (5-25) satisfies

this realization condition, the cascaded sections of Holt and Sewell

may be used.
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Example 5-4. Realize the first product term of the transfer function

in Example 2-6.

The product term

„, , _ s
2

+ 3908.36 (5-36)
2

s + 5.51 s + 3420.98

is first checked to determine if it satisfies the realization condition of

equation (5-35) . With b = 3420 .98 and b.. = 5 . 51 , it can be seen that
o 1

equation (5-3 6) does satisfy the realization condition.

From equation (5-33), the active section transfer function is

2

tt i \ - 2( s + 1243 s + 621) . (5-37)

s + 5.51 s + 3420.98

The passive section transfer function, from equation (5-34), is

tt / * _ s
2

+ 3908.35 , (5-38)

9 ~ ~ 2
s + 1243 s + 621

where a = 3908.36.
o

Equations (5-33) and (5-34) were determined by setting C
9
= C„

= C = 1 and R = 1 in the active section, so that all that remains to
O

specify the active section completely is to determine R. and R, as

follows:

R = 2/b =0.363 (5-39a)

R
n
= b,/2b = 0.805 xlO

-3
, (5-39b)

1 1 o
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where C's are in farads and R's in ohms.

The synthesis of the passive transfer function, H (s) , involves

choosing an appropriate Q(s) . In this case, one choice is

Q(s) = (s + 2) (s + 1500) , (5-40)

such that

h
2
w = -

2
s + 3908.36
(s + 2) (s + 1500)

2
s + 1243 s + 621

(5-41)

(s +2) (s + 1500)

where
2

s + 3908 .36

(S4 2) (s + 1500)

2
s + 1243 s + 621

y 12P
(8) =

y22P
(s) =

(s + 2) (s - 1500)

(5-42a)

(5 -4 2 b)

12P1

y (s) can now be expanded so as to realize the double zeros of

(s) = - s
2
/(s + 2) (s + 1500) at s = 0:

y22Pl
(s)= "

4.83

0.310s 1 +

1.61 1 + 5.81

0.000115s

y (s) can then be expanded to realize the double zeros of

y 12p2
(s) = - 3908.36/(s + 2) (s + 1500) at s = - CO :
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Y99p9 (s)= 1 . (5-44)
LLVL

1 + 1

s + 1

259 0.21 +

0.55s +

3.62

To be able to connect the two ladder-network components of y (s)

,

J. Cd L

shown in Figure 5-16, their admittance levels have to be individually-

adjusted by the following scaling factors:

K
P 0.0276 n ,„„„ ,_ AC .

K^ " u~70T~ "
°' 1333 (5 "45a)

The complete normalized circuit realization is shown in Figure 5-17.

Both the active and the passive sections may be independently de-

normalized to give practical element values.

G. ADVANTAGES AND DISADVANTAGES

For second-order functions, this category of realizations has the

distinct advantage of usually requiring a minimum number of elements.

For instance, in the realization of the low-pass transfer function of

Example 2-1, Hakim's method of realization, belonging to the single-

feedback category, required one operational amplifier, nine resistors

and six capacitors. The Rauch filter, belonging to this category, re-

quired one operational amplifier, three resistors and two capacitors.

For higher-order cases, Wadhwa and Aggarwal have shown that realization
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0.000115 0.310
5.81

O Ws/V -o

1.61 < 4.83

-O

Figure 5-16a . Network realization of y (s) and y ?9pl
(s)

O
3.62 0.21 1

A//vV—i—VM—i—WW o

0.55 0.00386

-O

Figure 5-16b. Network realization of y (s) and y (s]
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of such functions is possible by simply extending the basic second-order

prototype configuration but the determination of the element values

becomes increasingly complicated with increasing order because of the

nonlinear nature of the relating equations. Such higher-order cases can

easily be realized by factoring them into first- and second-order product

terms and cascading the realizations of these terms. Cascading terms

is possible without appreciable interaction because the output impedance

of each realization is that of the operational amplifier.

135





VI. INFINITE-GAIN GENERAL REALIZATION TECHNIQUES

Two general realization procedures using infinite-gain operational

amplifiers are presented in this chapter. They are general in the sense

that they can realize any rational function of any order. As opposed to

the realization techniques of the last two chapters, these two procedures

are not limited by the restrictions on the passive RC configurations that

make up their input and feedback networks.

A. LOVERING [1965]

The general circuit proposed by Lovering [Ref . 32] is shown in

Figure 6-1. Since the two operational amplifiers are assumed to have

gain approaching infinity, the current summation at each of their summing

points may be written directly as:

V.Y. + VY + V Y. = (6-1)11 3 O 4

V,Y„ +VY+VY =0 . (6-2)
12 5 o 6

If Y = Y , subtracting equation (6-2) from equation (6-1) yields

V. (Y. - YJ + V (Y. - Yj = 0. (6-3)112 o 4 6

Putting equation (6-3) in transfer function form gives

Vo Y
i " Y

9

f = ~-TT~ " H(s) . (6-4)

1 6 4

Since the general transfer function may be expressed in the form
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H(s) = Ni§) , (6-5)

D(s)

if both numerator and denominator are divided by a polynomial, 0(s)

,

having simple roots restricted to the negative real axis and whose degree

is one less than that of N(s) or D(s), whichever is greater, the transfer

function may then be written as

nM _ N(s)/Q(s) . (6-6)
H(S)

D(s)/Q(s)

If N(s)/Q(s) is expanded [Ref . 15] in the partial-fraction form

n

S/4" = K + /
*

+ K ms , (6-7a)
D(s) o / i

s +cr. oos

i=l
x

or, expressed in terms of R's and C's,

n

Y
RC

(s) = ±- + \
x k i

+ Ccoos . (6-7b)

L-i ~r" c7
i=l ! 1

the result is a string of positive and negative terms because the

vatious K's are all real but may be positive or negative. If Y - Y

in equation (6-4) is now equated to N(s)/Q(s), Y can directly be

associated with all the positive terms in equation (6-7) and Y„ with all

the negative terms.

A similar expansion of D(s)/Q(s) can then be carried out and all

the positive terms of the resulting expansion can be equated to Y_ and
b

all the negative terms to Y.

.
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An example of this procedure will clarify the steps indicated.

Example 6-1. Realize the low-pass Butterworth transfer function

of Example 2-1:

„, , _ 3947.84 ' N(s) . (6-8)

s + 88.84 s + 3947.84
KS}

If the dividing polynomial is chosen to be Q(s) = s + 100, the resulting

numerator rational polynomial can be expanded as

H(s)
4ft

39.48s . (6-9)

Q(s) * ' ° " s + 100

Similarly, the denominator rational polynomial can be expanded to

produce

2M = 39.48 + s - ^7S • (6 " 10>

Q(s) s + 100

Equating equation (6-9) to Y. - Yn and equation (6-10) to Yc - Y„ the

following relations can be made:

Y =39.48
.

(6-lla)

Y
2
- TTlFo •

•

«6-llb>

Y_ = 39.48 + s (6-1 lc)
6

50.64s . (6-1 Id)

4
"

s + 100

The following element values can then be calculated:

R = 0.0253 ohm

R = 0.0253 ohm
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C = 0.3948 farad

R_ = 0.0253 ohm
b

C = 1 farad
b

R„ = 0.01971 ohm
4

C = 0.5064 farad . (6-12)

If a scaling factor of 10 is applied to the values in equation (6-12),

the following component values result:

R = 2.53 Kil

R = 2.53 Kil

C
2
= 3.948 yWF

R c
= 2.53 K_Q

b

C
6
=10/<F

R„ = 1.971 K£l
4

C = 5.064^? . (6-13)

R and R may conveniently be chosen to be 1 K 11 .

The complete realization is shown in Figure 6-2 .

To illustrate the property that this procedure can indeed realize

any transfer function, even with poles and zeros in the right half of

the complex -frequency plane, consider the next example.

Example 6-2 . Realize the transfer function
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R
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R.
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C
2
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v
o
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Figure 6-2 . Circuit realization of Example 6-1

1

1

^W

—

1—U

—

1/9 2/9
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J
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—V7V-

Q

o +

v

-o

Figure 6-3. Circuit realization of FxampJe 6-2
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HM _ s - s +4 N(sl_ . (6-14)
1

'
"

2 D ( s )

s + 12s + 2
uvs;

If Q(s) = s + 2 is chosen,

N(§) = 2+c- 5s
. (6-15a)

Q(s) s + 2

and

Dis) = 1+s+ 9s . (6-15b)

Q(s) s + 2

If R and R are chosen to be 1 ohm, the normalized circuit realization

is shown in Figure 6-3.

B. BRUGLER [1966]

Brugler [Ref . 33] used a differential-input operational amplifier

to develop his general realization technique. The configuration he used

is shown in Figure 6-4.

A current summation at the two input nodes of the operational

amplifier gives:

(V
1

"VY
1

- V
A
Y
2

" (V
A " VY

3
= ° ' (6 - 16)

and

<V
1

" VY
4

" V
B
Y
5

" (V
B

' V
o
)Y

6
=

°
•

(6 - 17)

Solving equations (6-16) and (6-17) in terms of V and V results in:
A B

„ .
V

1
Y

1

+ V
o
Y
3 , (6-18)

A Y1+ Y2+ Y
3
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and

V
!
Y „ + V Yc

v = l 4 2_i . (6-19)
B Y4+ Y5+ Y

6

But since an infinite-gain operational amplifier forces its two inputs to

be equal,

v
A
= v

B
. (6 .20)

So, equating equations (6-18) and (6-19) gives the transfer function of

the circuit in Figure 6-4:

!o _
Y

l
(Y
4
+ Y

5
+ Y

6» - Y
4 <Y

1

+ Y
?
+V (6-21)

V
l

Y
6

(Y
1

+ Y
2
+ Y

3> ' Y
3

(Y
4
+ Y

5
+V

If a simplifying condition is now applied,

Y
1
+Y

2
+Y

3
=Y

4
+Y

5
+Y

6
' <6 -22 >

the transfer function in equation (6-9) becomes

V Y - Y
_° = _J 1 • (6-23)
V Y - Y

1 6 3

Equation (6-23) is exactly the form of the transfer function of

Lovering's general circuit and exactly the same realization techniques

can be applied to generate the required elements.

With Y
1

, Y , Y , and Y known, equation (6-22) can now be used

to determine Y and Y by setting

Y
2
= Y

4
+ Y

6
' (6-24a)

Y
5
= Y

1
+ Y

3
. (6-24b)
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Common terms in Y, + Y,. and Y, + Y„ can be subtracted out without
4 6 13

violating equation (6-22), thereby simplifying the resulting realizations

of Y and Y .

An example will illustrate this procedure.

Example 6-3. Realize the Butterworth low-pass transfer function

of Example 2-1

.

This same transfer function has already been realized using

Lovering's method in the previous section and if the same partial-

fraction expansion is used for a chosen Q(s) = s + 100, the following

relations can be made:

Y = 39.48 (6-25a)

39.48s
,Y4~ s + 100
(6 "25b)

Yc
= 39.48 + s (6-25c)

6

50.64s . (6-25d)

3 s + 100

If equations (6-24) are now applied, Y_ and Y are determined to be

Y2= friFo
+ 39 - 48 + s • (6 "26a)

Y - 39.48 + 52^ • (6-26W
5 s + 100

Note that 39.48 is a common term in equations (6-26a) and (6-26b) and

may be subtracted out.

If a scaling factor of 10 is now used, the final realization of

the desired transfer function is shown in Figure 6-5.
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Figure 6-5. Circuit realization of Example 6-3

O-
+

V.

15.9KH 0.6283 m F
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Figure 6-6. Circuit realization of Example 6-4
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Example 6-4. Realize the bandpass transfer function of Example

2-4:

H(s) = 62.83 s = N(sl_ . (6-27)

s
2
+ 1.257 s + 3947.84

D(s)

If Q(s) = s + 100 is chosen, the expanded terms are

N(s) = 62.83s
, (6-28a)

Q(s) s + 100

and

Pis) = 39 48 + _ 138.22s . (6-28b)

Q(s)
'

s + 100

By association,

Y
l

= 62 .83s

s + 100

Y
4
=

(6-29a)

(6-29b)

Y. = 39.48 + s (6-29c)
b

138.22s . (6-2 9d)

3
"

s + 100

Use of equation (6-24) gives

Y
2
= 39.48 + s (6-30a)

62.83s + 138.22s = 211.05s . (6-30b)

5 s + 100 s + 100 s + 100

From equations (6-2 9) and (6-30), the following element values are

determined:
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R = 1/62.83 = 0.0159

C = 62.83/100 = 0.6283

R = 1/39.48 = 0.0253

R = 1/138.22 = 0.00723
o

C = 138.22/100 = 1.3822
o

R = 1/211.05 = 0.00474
o

C = 211.05/100 = 2.1105
o

R c
= 1/39.48 = 0.0253

D

C
6
= 1 , (6-31)

where R's are in ohms and C's in farads.

If a scaling factor of 10 is applied to equation (6-31), the

resulting circuit realization is shown in Figure 6-6.

C. ADVANTAGES AND DISADVANTAGES

The two procedures discussed in this chapter retain all the

advantages associated with techniques using infinite-gain operational

amplifiers. The realized circuits are relatively less sensitive to the

variations in gain of the active element. Cascading of low-order

realizations can be accomplished without appreciable interaction between

them because of the operational amplifier's very low output impedance.
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And, in addition, these two procedures are capable of realizing any

transfer function that a designer might feel is desired. It must be

appreciated, however, that the realizations are not necessarily optimum

as far as number of required elements is concerned.
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VII. INFINITE -GAIN STATE -SPACE REALIZATIONS

Although the idea of realizing high-order transfer functions by

factoring them into first- and second-order product terms and realizing

these using first- and second-order building-block, networks has been

mentioned in the previous chapters, it is in this chapter that the

practicality and the advantages of such an idea are shown in detail.

The realization methods in this chapter make use of state-space

concepts to develop the basic second-order building block made up of

integrators and summers, both of which use infinite-gain operational

amplifiers. Consequently, such realization methods are classified

under the category of Infinite-Gain Infinite-Gain Realizations.

A. THEORETICAL DEVELOPMENT

Consider the general open-circuit voltage transfer function

Vs) „
a
o +y + ---- + yi s

"~1+V n

. (7-1)

Vs)
b +b,s+ .... +b ,s

n- 1
+ s

n

o 1 n-1

A state representation of this transfer function is possible by breaking

up equation (7-1) [Ref. 34] as follows:

V (s) W_(s) V (s) ,

9
v

o F . o , \l-£)

V
x
(s) V

x
(s) W

F
(s)

where
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W (s)

V
x
(s)

b + b, s +....+ b ,s + s
o 1 n-1

(7-3a)

and

V (s)
o

W (s)

n-1 n
a + a. s +....+ a , s +as
o 1 n-1 n

(7-3b)

where W (s) is the Laplace transform, with initial conditions set equal

to zero, of a dummy variable, w(t) . Expanding equations (7-3a) and (7-3b)

and getting the inverse Laplace transforms of the expanded equations

give

d w

dt
n

= - b
d w

n-1 n-1
. . - b.. — - b w + v.

1 dt o 1
(7 -4a)

and

dw
v = a w + a, ~- +
o o 1 dt

. + a
d w

n-1 -.n-1
dt

+ a
d w

dt
n

(7-4b)

where all variables are functions of time.

If x = w, x = dw , „ . . . , and u = v, and y = v , two matrix
1 2

dt
1 o

equations result:

•

x
l

*2

=

•

X
1n-1

•

X
n

_

1 ...

... 1

-b -b. -b. -b .

o 1 3 n-1

x
l

X
2

• + •

X
n-1

X
n

1

_ _

(7-5a)

M
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and

[y]
= [aoai ...a

n . 1
]rx

1
"]+ ["o . . . ajx

l

X
2

X
n-1

X

L

n

where x = dx
# x

?
J. _ u

dt

dx

dT
2 ,

Equation (7-5a) may be written as

x = A x + B u

x.

X
n-1

x
n

(7-5b)

(7-6)

where x is the state vector, x is the derivative of the state vector, A

is the matrix determined by the properties of the system and B u represents

the inputs to the network

.

Equation (7-5b) may be expressed as

y = C x + D u . {7-7)

A signal flow graph can be drawn to represent equations (7-5a) and

(7-5b) . This is shown in Figure 7-1 . Each element of the graph can be

realized by an integrator or a summer (inverter) , both of which are made

up of operational amplifiers, resistors and capacitors, as shown in

Figure 7-2

.

If a high-order transfer function is to be realized by directly

converting its signal flow graph as indicated above, the roots of such
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high-degree polynomials can become very sensitive to the coefficients,

so that very high accuracy is required in the resistive components that

determine these coefficients.

For this reason the most practical procedure is to factor the

transfer function into first- and second-order product terms. For such

terms, the high accuracy is not required and cascading the realizations

of these product terms gives the transfer function in insensitive form.

B. KERWIN, HUELSMAN, AND NEWCOMB [1967]

Kerwin, Huelsman, and Newcomb [Ref . 35] recognized the value of

the state-space approach and subsequently used its concepts to generate

one of the first second-order building blocks.

The general second-order transfer function in equation (2-14) is

now considered:

V
2

(S)
_

a
o
+a

l
S+a

2
g2

. (7-8)

VS) ' b +bl s + s
2

o 1

If equation (7-8) is expanded as in Section A of this chapter using

equation (7-2), the two resulting equations are:

w = - b w - bw + v, , (7-9a)
o 1 1

v„ = a w + a,w + a^w . (7-9b)
2 o 1 2

If w = x , w = x , v. = u and v = y, Laplace transforming equations

(7-9) produces the following state equations:
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sX^s) = X
2

(s) (7-10a)

sX_(s) = -bX.(s)-bX (s) + U(s) (7-10b)
2 o 1 12

Y(s) = aX.(s) + a.X.(s) + a.sX.(s) . (7-10c)
o 1 12 2 2

The signal flow graph corresponding to equations (7-10) is shown

in Figure 7-3

.

If each element of this second-order signal flow graph were re-

placed by integrators and summers where appropriate, the resulting

circuit would be the second-order building-block network of Kerwin,

Huelsman and Newcomb. This is shown in Figure 7-4.

Although four operational amplifiers, ten resistors and two capa-

citors are required, this network can realize not only the general

second-order transfer function in equation (7-8) by taking V as the
o

output voltage, but high-pass, bandpass and low-pass transfer functions

as well, using as output V , V_ and V. respectively.

By using the output equation of an integrator, which is

V = - 1 V. , (7-lla)

~WT l

and that of a summer,

m r< m

V =
o

1=1

V I21 1 +R.G V .1 - V RG V . ,AG fnpi / f n ni

i=l p L J £i

(7-llb)

with Figures 7-2a and 7-2b used as reference figures, where G and

G represent the sum of the input conductances of the positive and
n
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negative voltage inputs respectively, the different transfer functions

for Figure 7-4 may be written in terms of the component elements as

follows:

General Second-Order Transfer Function

V
5 „

R
5
(R

6
+R

7
)

V
l

" VR
4
+R

5
}

. R
8
C

1
R
9
C

2
s
2
+ R

6
(R4+R

5
) R

9
C

2
s + R

4 {7 _ Ua)
R
5
(R

6
+R

7
} R

5

D(s)

High-Pass Transfer Function

2

^2
R
8
C

1
R
9
C

2
S

(7-12b)

V
x

K *

D(s)

Bandpass Transfer Function

^3
R
9
C

2
S

(7-12c)

V
l

' D(s)

Low-pass Transfer Function

Ll v 1 ,
(7-12d)

V
x

*

D(s)

where

R
2

(R + R
3

)
(7. 13)

K =
R
3

(R
t
+ R

2
)
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and

R (R+R ) R C s + R
D(s) - RgC^^S + g- ; g- R

3

(7-14)

At the resonant frequency, Co ,

o

o

R

R
8
C

1
R
9
C
2
s

(7-15)

for which R C.RnC s + R/R o
= 0,

o i y 2 6

V
3 i 1

R,

R.

(7-16)

Use of Figure 7-4 and equation (7-12) is simplified if

R
1
=R

3
=R

5
=R

6
=R

8
C

1
=R

9
C

2

= 1
'

(7-17)

such that the transfer functions in equation (7-12) become

V,

V.
= K.

1 + R.

R
?

(1 + R
4

)

s + 1 + R
4

s + R
4

1 +R„

s + 1+Rs+R
1 +R.

(7-18a)

V, Kl s

s +1+RS+R
1 +R,

(7-18b)
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V
3

" K
1

S

V
l

2
s + 1 + R s + R

1+R
2

V
4

K
l

V
l

2
s +1+R s+R

1+R
2

(7-18c)

(7-18d)

where
*

_ R
2
(l + R)

_ (?_ 19)

(1 + R
2
)

In this normalized case, u) = v R and

\ (iW
o>

= " R
2 . (7-20)

V
l

At this point, an example illustrating the realization of a desired

transfer function using the second-order building-block network in

Figure 7-4 is appropriate.

Example 7-1. Realize the bandpass filter transfer function of

Example 2-4:

TT/ ,
- 62.83 s . (7-21)

H(s) = —z

s + 1.257 s + 3947.84

Since equation (7-21) was derived directly from the second-order

bandpass transfer function form

H (s)=
2

~ K ^° S
< 7

-22 >

s + ( Lu o
/Q) s + LO

Q
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the two variable element values can be determined from equations (7-17)

and (7-20) as

R = 3947.84 ohms (7-23a)

R
2
=

^257
= 50 ohms ' (7-23b)

In the case where the realization of an odd-order transfer function

is involved, the necessity for a first-order network becomes apparent.

Such first-order sections can be realized to within a gain constant by

lag-lead networks .

The lag network shown in Figure 7-5a is described by the transfer

function

!o
R
2
CS + 1

, (7-24)

V
x

(R
x
+R

2
)Cs + 1

while the transfer function of the lead network shown in Figure 7-5b is

!o
R

1
R
2
CS + R

2 . (7-25)

V RlR2
Cs + R + R

2

C. HOLLENBECK [1969]

It is interesting to note that a simplified version of what is

essentially the building-block network of Kerwin, Huelsman and Newcomb

has already been put into production. Such a circuit, shown in Figure

7-6, was discussed by Hollenbeck [Ref. 36].

The different transfer functions can be derived in a manner

analogous to those in equations (7-12). They are as follows:
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Figure 7-5a . First-order lag network

Figure 7-5b. First-order lead network
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For the high-pass output:

VHP
(S)

=
F

l
(1+F

2
)s2

(7-2 6a)

V,(s) 2

'I* 1
v *

' *2' °
' *~l UU

2
X

2
1 s + ^F, (1 +FJ s + £c>, ujj.

For the bandpass output:

V
BP

(S)
.

F
! «V1+F

2
> S

(7.26b,

VS)
s
2
+ W^a+PgjB* W, uJ2

F
2

For the low-pass output:

V
Lp

(s) F
x ^ ^

2
d + F

2
)

(7-26c)

s + u>
l
^

1
(1 +F

2
) s +

^i ^r 1

The parameters in equations (7-2 6) are defined in relation to circuit

components as follows:

R.

F
l

= 6
a>

1
=

1

2RC +R
b

R
7
C

7

F
2
= R

2

R
l

R == R
3

= R
5

W
2
= 1

R
8
C

8

If the denominator coefficients of equations (7-22) and (7-2 6b) are

compared, the following relations can be made:

V~ J6J, 6J 9
F
9

(7 "28 )

o U
w

l ^2 2
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R
8

= A = 92 - 5Ka

10
4

R r = J~- = 1.125 KQ. . (7-33)
6 o

D. SALERNO [1969]

Using a slightly different approach, Salerno [Ref . 3 7] expanded

the general voltage transfer function

n n-1
V a s + a ,s + . . . + a^ (n 0/n_ __n n-1 o_ (7-34)

1 s+b,s +...+b
n-1 o

as follows:

.. / n , n-1 , . ., , n n-1
V (s +b . s + . . . + b ) = V. (a s +a . s
o n-1 o In n-1

+ . . . + a ) . (7-35)

By rearranging the terms of equation (7-3 5), the following general

relation is arrived at:

V = V,/a +a . + . . . + a \ - V/b , + ...+b\ (7-36)
o If n n-1 o ] o n-1 o *

\ s
s
n j \ s

s
n

The general second-order transfer function

2
V a s + a,s + a^ n in\o 2 1 o_ (7-37)

V
l s + b

n
s + b

1 o

can be similarly expressed as
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V = - V. ( a + a. + a V - V / b. + b \ . (7-38)
o 1

I
2 _1_ _o_ \ o 1 o \

\ s 2 s 2/
s ' S '

Again using inverters whose gain is - 1 and integrators whose gain is

- l/s , a schematic representation of equation (7-3 8) can be made, as

shown in Figure 7-7. The circuit corresponding to this schematic is

shown in Figure 7-8. The coefficients of the desired transfer function

can be related directly to the components of the circuit by the following

equations

= 1
a
o R

1
C

1

a
i

=
R
4

R
5

a
2

=
R
7

R
8

b
°

=
R
3
C

1

b
l

= R

R
4 (7-39)

6

The other components are governed by the following relations:

R
2
= 1/C

2

R
7
= R

9

R
1Q

= 1/C
2

. (7-40)

A similar procedure would realize a first-order transfer function

if cascaded realizations of first- and second-order product terms are

desired. An example of Salerno's procedure will clarify this point.

Example 7-3. Realize the fifth-order Butterworth low-pass transfer
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function of Example 2-2:

J2. = _ J , (7-41)
V

l fl+s \ A +0.618 s + s \ / 1+ 1. 618s + sf.

\ CJ \ CJo uP}\ U) (j2
jo ' o o

where /,) = 2 IT (10).^o
Equation (7-41) can be expressed as three cascaded transfer

ions:

V
2 - 1

V
l

" 1 + s

^o

(7-42a)

^3_ = 1 (7-42b)

V
2 1 + 0.618s + s

2

^o °°o
2

o 1

r

3 1 + 1.618s + s
2

^o ^o
2

(7-42c)

Expanding equation (7-42a) gives

V
2

= - ^o V
x

- ^o V
2

, (7-43)

s s

the schematic and circuit realization of which are shown in Figure 7-9.

V = U)p v - V (j±>o +
°- 618 0J

o \ (7-44)

s

V = OJp
2

V, - V (j±l_ + j^iif^o "\
. (7-45)

2~ 3
°V
_~2~~

s /
s \ s
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Figure 7-9a. Schematic representation of a first-order transfer

function

Figure 7-9b. Circuit realization of a first-order transfer function
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Figure 7-10. Schematic representation of a second-order low-pass

transfer function

R
1
=R

6
= l/^;

o
C

1

R
2

= l/ ^oC 2

R
Q
= 1/a cjC 9

%
1

+ VA

—

V.
in

_9_
6

;

U

+

R
4
= R

5

R,

R
3

C
2

R
5 —

R

+

-o+

V
out

9 '

Figure 7-11. Circuit realization of a second-order low-pass

transfer function

174





CO
I

CD
• 1

£

Xw

o
•-(
+->

(0

N

(0

CD

3
O

-i-i

o

I

CD

-«-h

175





x = - ax
i

" k
i
f^ x

2
" k

:

ma - c v, (7-48a)

X
2

= (7-4 8b)

V - 1 sgn (ma -c) x, +
o ; 1

1 mb - d

ma - c JT
x
2
+mv

1/
(7-48c)

where k and k are arbitrary positive real numbers and where
J. Zi

sgn (K) = + if K is positive

= - if K is negative (7-49)

In relation to the notation in Ref. 34, x = w and x = w. The circuit

configuration realizing equation (7-47) and the set of state equations in

equation (7-48) is shown in Figure 7-13. The element -coefficient

relations for this configuration are a:: follows:

R.
1

aC

R 9
=

k
ll

2
fFc

2

Rn = 1

kjfb" Cj

R
4 "

ma - c C.

RS~ R
3

R
6
= R

3

R
7

=

R.

k
2

R
10

|ma - c / b R
1

|mb - d|

R = _1 R for Cases A, B, C
9 10

m

= b R for Case D (7-50
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To minimize change in pole locations due to finite gain of the

operational amplifiers, k and k are generally chosen to be unity but

in cases where it is desired to minimize the spread in element values,

other convenient values may be chosen.

For cascaded realizations, Tow also specified a method for realizing

the first-order product term of the form

^o K . (7-54)

V s + a

Direct coefficient-matching of equation (7-54) with

V
o RC

V, s + R + R. . 1
1 in

RR.
in

C

(7-55)

gives the values of R and C, where R, C, and R. are as indicated in
in

Figure 7-16.

Example 7-4. Realize the fourth-order bandpass transfer function

of Example 2-4:

„, . 1.18 s
2

(7-56)
H(s) = —

;

(s + 0.94 s + 3913.80) (s + . 95s + 3982 . 18)

For a cascaded realization, equation (7-56) can be factored into

two product terms as follows:

H (s) =(- ^ Y- -2 §
^ "

<7 " 57)

\ s+0. 94s + 3913. 80/V s+ 0.95s + 3982 . 18 /
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The first product term is first realized using the coefficient-element

relations in equation (7-50) and noting that the required second-order

section is bandpass and hence, does not require the summing amplifier,

A , as in Figure 7-14 . Arbitrarily choosing C = C = 1 JU- F and
TC X La

k = k = 1, the other element values are found to be:

R
l

= 10
6

- 1.063 MH
1

0.94

R
2

= 10
6

= 15.99 KlI

J3913.80'

R
3

= 10
6

= 15.99 k£1
/3913.80 1

R
,,

= 10
6

- 847.0 KH
4

1.18

R
5

= R„ = R =
6 3

15.99 KQ (7-58)

Cimilarly, for the same choice of C. , C , k , and k , the element

values of the second-product term section are calculated to be:

R, = io
6

= 1.052 MQ
0.95

R
2

= 10
6

= 15.86 kH
/3982.18

R^ = 10
6

= 15.86 KQ
3

/3982.18

R, 10
6 = 1 MO.

4

R r
= R r

= R = 15.86 KQ . (7-59)
5 6 3
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F . ADVANTAGES AND DISADVANTAGES

The state-space approach used in the filter transfer function

realizations in this chapter has the distinct advantage of using well-

developed theories from system and control applications. It takes

advantage of direct analog computer simulation. In addition, the concept

of using first- and second-order building-block networks significantly

increases the stability and insensitivity of such realizations to fluctua-

tions in the values of the passive RC components and in the gains of

the operational amplifiers used. These sensitivity considerations are

well discussed in Refs . 3 5 and 40. The building-block networks them-

selves are versatile (low-pass, bandpass and high-pass outputs) and

readily adaptable to cascade realization because of their low-output

impedance. And most important from economic considerations, such

building-block networks are compatible to the microminiaturization and

mass production concepts of present-day technology.
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VIII. CONCLUSION

The synthesis techniques presented in the last four chapters are

by no means the only ones that are possible with the use of operational

amplifiers. It has been shown [Ref. 41] that the operational amplifier

can be used to realize the three other classes of active devices -

controlled sources, the negative-immittance converter and the gyrator -

and consequently all the realization procedures which are applicable

using these active devices are possible using operational amplifiers.

Reference 42 gives an excellent treatment of such realization procedures.

Operational amplifiers may even be used to take advantage of highly-

developed passive filter synthesis procedures by direct inductance

simulation [Refs. 43 - 45].

The use of operational amplifiers, therefore, offers a filter

designer many advantages, among which is a wide choice of realization

techniques. The particular method chosen is, of course, still highly

dependent on the specifications of the particular filter desired. It has

been pointed out, however, that the realization techniques using the

state-space approach in Chapter VII of this paper offer much in the way

of doing away with the expensive process of custom-building filters.

One limitation of all realization techniques using operational

amplifiers should be stressed at this time. Operational amplifiers

typically have gain-bandwidth products of the order 1 MHz. Consequently,

at frequencies much above a few kilohertz, the infinite-gain approximations,
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on which feedback synthesis is based, break down. It should be

emphasized, then, that realization techniques using operational

amplifiers are limited to frequencies within and below the audio range

However, the fact that inductors become unwieldy at these very same

frequencies brought the development of active RC filters in the first

place.

In conclusion, it is hoped that this paper has served to provide

an orderly transition from the concepts of modern filter theory to a

better understanding of the synthesis techniques involved in the real-

ization of active RC filters using operational amplifiers.
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APPENDIX A

TOW'S FREQUENCY TRANSFORMATION PROCEDURE

Reference 9 contains the normalized low-pass poles and zeros up

to n = 9 of four different characteristic types - Butterworth, Chebyshev,

Inverted Chebyshev and Cauer Parameter. Tow's transformation pro-

cedure converts these poles and zeros into the poles and zeros of a

desired bandpass or band-reject transfer function.

Let the normalized low-pass complex pole or zero from Ref . 9 be

S
no

=
" (Tn

+
i ^n " ^»

For a desired bandpass or band-reject filter, either the resonant

or center frequency, f , or the lower and upper frequency limits, f and

f , are normally specified. The following relations can consequently be

determined:

UJo
= 2TTf

o
or uJ q

= 2M(/7^T) (A-2)

BW = f - f (A-3)
u 1

x = BW/f = 1/Q . (A-4)
o

Equations (A-l) to (A-4) may now be used in the following low-pass-

to-bandpass root transformation:

n^n nn^n n

* *
(s - s^Hs - s )(s - s )(s - s ) (A- 5)

2 2
K s
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where s is the complex frequency variable of the frequency-transformed

transfer function and where

s = - 1/2 ( tf- + v) CJQ
+ J 1/2 ( U) + u) u)

{

s
2
= - 1/2 ( <T - v) CO + j 1/2 ( LJ - u) u)

q

(A-6)

(A-7)

2 2 2
k =4 rr (f - f.)

u 1
(A-8)

and

(f= cT*

CO = uj x
n

u = 1/2 (4 - ^ 2
+ Q0

1
)

(A- 9)

(A- 10)

•( _2 ,2 \2 ^.2 ,2 1/2
(A-ll)

V = 0~ 6J/u (A-12)

* *
s and s are the complex conjugates of s and s respectively. The

normalized-low-pass-to-band -reject root transformation is:

n^n nn^n n

* *

(s - s^s - s
l

)(s - s
2
)(s - s

2
)

~T~2
,
2.2

(s + (J )

o

(A- 13)

where s , s , u, and v are as given by equations (A-6), (A-7), (A-ll)

and (A-12) respectively and
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<T =
u n

( ^n +
^n }

(A-14)

U) =
Ou> x
"-^ n

t s-
2 + V (A- 15)
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APPENDIX B

COMPUTER PROGRAM l

SUBROUTINE FREQR ( NCN, NCD , A, B

,

FMI N , FM AX, X , Y

)

PURPOSE - TO PLOT THE FPFQUENCY RESPONSE OF ANY GIVEN
TRANSFER FUNCTION WITHOUT POLES ON . THE JW-AXIS,

NCN - THE NUMBER OF NUMERATOR COEFFICIENTS.,
NCD - THE NUMBER OF DENOMINATOR COEFFICIENTS,
A - THE ARRAY OF NUMERATOR COEFFICIENTS STARTING FROM THE

THE LOWEST-DEGREE tfrm
B - THE ARRAY OF DENOMINATOR COEFFICIENTS STARTING FROM THE

THE LOWEST-DEGREE TERM,
FMIN - THE LOWER FREQUENCY LIMIT IN HERTZ TO BE PLOTTED
FMAX - THE UPPER FREQUENCY LIMIT IN HERTZ TO BE PLOTTED,
X - THE AFRAY OF FREQUENCY POINTS IN HERTZ TQ BE PLOTTED,
Y - THE ARRAY OF MAGNITUDE POINTS TO BE PLOTTED,

ADDITIONAL SUBROUTINE REQUIRED

SUBROUTINE DRAW FROM THE NPS WoRo CHURCH COMPU TER
CENTER LIBRARY

SUBR
DIME
COMP
REAL

o SE
REAL
WRIT
WRIT
WRIT
WRIT
WMIN
WMAX
DELW
DO 1

W = WM
S=CM
H=(0
D=(0
DO 1
AI = A
BI=C
H = H*

1 CONT
DO 2
AI = B
BI=C
D=D*

2 CONT
H =H/
X(M)
X(M)
Y(M)

roco CONT
CALL

*LAST
FORM

*,///
FORM

10 5

10 3

OUTINE
NSICN
LEX H,
*8 ITI
COND L
LABEL

E(6,10
E(6,1C
E(6,10
E<6,10
=FMIN*
=FMAX*
=(WMAX
OOC M=
IN+DEL
PLX(Oo
oO,OoO
oOt OoO

1 = 1,

N

(NCN+1
MPLX(A
S + BI
INUE
1=1,

N

(NCD+1
MPLX(A
S + BI
INUE
D
=AIMAG
=X(M)-
=CABS(
INUE
DRAW(

)

ATdHl
)

AT(///

QR(NCN,NCD,A,B,FMIN,FMAX,X,Y)
),B(30) ,X(201) ,Y(201 )

BI
12)/' FIRST LINE OF DESIPED TITLE
OF DESIRED TITLE FOP PLOT 3 •

/

/

FRE
A(30
S,D,
TLE(
INE
/AH
5)
4) ( A( J) , J=l ,NCN)
3)
4) (

6,28
6o28
-WMI
1,20
W*(M
0,W)
)

)

CN
-I)
I ,OoO)

CD
-I )

I ,OoO)

B( J) ,J = 1 ,NCD)
3184
3184
NJ/200,
1
-1)

(S)/6 2831«4
WMIN/6o283184
H)

2C0, X, Y, 0, 0, LABEL, IT ITLE,C, 0,0, 0,0, 0,5, 8,1,

,10X,»THE COEFFICIENTS OF THE NUMERATOR APE'

,10X,'THE COEFFICIENTS OF THE DENOMINATCP
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ARE 1 *///) ^ 0rt
104 FORMAT(10X,F20o5»5X,F20o

RETURN
END

/)
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APPENDIX C

NATHAN'S METHOD OF MATRIX ANALYSIS

Consider the n-terminal network with an operational amplifier

connected between its i th and j th terminals as shown below:

r o-

lo-

]

n - terminal

network

±0
n

If the network is considered by itself, without the operational

amplifier, it can be described by the following matrix equation:

[I] = [Y] [E] , (C-l)

where [I] is the column matrix of terminal currents , [E] is the column

matrix of terminal voltages, and [Y] is the admittance matrix for the n-

terminal network.

If the network is now considered taking the presence of the opera-

tional amplifier into consideration, several simplifying operations can be

performed.

Since E, = by the concept of virtual earth, E. may be removed

from [E] , cancelling effectively the i th column of [Y]

.

Also, since I will always be of such value to satisfy the con-
3

straint that E =0,1 may be eliminated, again effectively cancelling
i )

the j th row of [Y]

.
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These operations yield a new matrix equation:

[I'] [Y'] [E'] , (C-2)

where [I'] is [I] with I, deleted, [E'] is [E] with E deleted, and [Y'] is
3 i

[Y] with the j th row and the i th column deleted

.

If the voltage transfer function between two terminals, p and q, of

the n-termLial network is desired, matrix algebra yields:

[E'] = [Y'] - 1
[I'] . (C-3)

The voltage at terminal p can be written as

n
nr

(C-4)E = 1

r=l

Y
Pr

I

P
|Y'|

r

where the Y terms are cofactors associated with corresponding terms

in [Y
1

].

If all terminals except p, i, and j are left open-circuited and if

terminal p is excited by a voltage source, the only non-zero terminal

currents will be I and I.. I. = because of the operational amplifier's
P J i

infinite input impedance. Application of these conditions into equation

(C-4) gives

E = YPP I .. (C-5)

Y'

Under these same conditions,

E = YPq I . (C-6)
q

I Y'
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Therefore, provided p is not driven and q is not driving,

f Ypq

E YPP
P
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