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PREFACE

The treatment of the calculus that here follows is based on

the courses which I have given in this subject in Harvard Col-

lege for a number of years and corresponds in its main outlines

to the course as given by Professor B. 0. Peirce in the early

eighties. The introduction of the integral as the limit of a

sum at an early stage is due to Professor Byerly, who made

this important change more than a dozen years ago. Professor

Byerly, moreover, was a pioneer in this country in teaching the

calculus by means of problems, his work in this direction dat-

ing from the seventies.

The chief characteristics of the treatment are the close touch

between the calculus and those problems of physics, including

geometry, to which it owed its origin ;
and the simplicity and

directness with which the principles of the calculus are set

forth. It is important that the formal side of the calculus

should be thoroughly taught in a first course, and great stress

has been laid on this side. But nowhere do the ideas that

underlie the calculus come out more clearly than in its appli-

cations to curve tracing and the study of curves and surfaces,

in definite integrals with their varied applications to physics

and geometry, and in mechanics. For this reason these sub-

jects have been taken up at an early stage and illustrated by

many examples not usually found in American text-books*

It is exceedingly difficult to cover in a first course in the cal-

culus all the subjects that claim a place there. Some teachers

will wish to see a fuller treatment of the geometry of special

* Professor Campbell's book : The Elements of the Differential and

Integral Calculus, Macmillan, 1904, in its excellent treatment of the inte-

gral as the limit of a sum, is a notable exception.

v
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vi PREFACE

curves than I have found room for. But I beg to call attention

to the importance of the subject of functions of several vari-

ables and the elements of the geometry of surfaces and twisted

curves for all students of the calculus. This subject ought not

to be set completely aside, to be taken up in the second course

in the calculus, to which, unfortunately, too few of those who
take the first course proceed. Only a slight knowledge of par-
tial differentiation is here necessary. . It has been my practice
to take up in four or five lectures near the end of the first year
as much about the latter subject as is contained in §§ 3-9 of

Chap. XIV, omitting the proofs in §§ 7-9, but laying stress on

the theorems of these paragraphs and illustrating them by such

examples as those given in the text
;
and to proceed then to

the simpler applications of Chap. XV. Thus the way is pre-

pared for a thorough treatment of partial differentiation, a sub-

ject important alike for the student of pure and of applied
mathematics. This subject was given in the older English
text-books in such a manner that the student who worked

through their exercises was able to deal with the problems that

arise in practice. But modern text-books in the English lan-

guage are inferior to their predecessors in this respect.*

Multiple integrals are usually postponed for a second course,

and when they are taken up, some of the things that it is most

important to say about them are omitted in the text-books. It

is the conception of the double and triple integral in its relation

to the formulation of such physical ideas as the moment of iner-

tia and the area of a surface that needs to be set in the fore-

front of the course in the calculus. And the theorem that such

an integral can be computed by a succession of simple integra-

tions (the iterated integrals) should appear as a tool, as a de-

vice for accomplishing a material end. The conception, then,

of the double integral, its application to the formulation of

physical concepts, and its evaluation are the things with which

* I have here to except Goursat-Hedrick, A Course in Mathematical

Analysis, vol. I
;
Ginn & Co., Boston, 1904.
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Chap. XVIII deals. In Chap. XIX the triple integral is ex-

plained by analogy and computed, the analytical justification

being left for those who are going to specialize in analysis.

The solution of numerical equations by successive approxi-
mations and other methods, illustrated geometrically, and the

computation of areas by Simpson's Rule and Amsler's planim-
eter are taken up in Chap. XX. In an appendix the ordinary
definition of the logarithm is justified and it is shown that this

function and its inverse, the exponential function, are con-

tinuous.

The great majority of problems in the calculus have come

down to us from former generations, the Tripos Examinations

and the older English text-books having contributed an im-

portant share.* For the newer problems I am indebted in

great measure to old examination papers set by Professor

Byerly and by Professor B. 0. Peirce,f and to recent Ameri-

can text-books. It is not possible to acknowledge each time

the author, even in the case of the more recent problems, but

I wish to cite at least a few of the sources in detail. I am in-

debted to Campbell $ for Ex. 4, p. 181; to Granville § for Ex.

45, p. 108
;
to Greenhill

||
for Ex. 16, p. 188

;
and to Osborne IF

for Ex. 43 on p. 107.

* In particular, Williamson, An Elementary Treatise on the Differen-

tial Calculus, University Press, Dublin, and Todhunter, A Treatise on

the Integral Calculus, Macmillan.

t Many of these problems have been collected and published, with others,

by Professor Byerly in his Problems in Differential Calculus; Ginn & Co.,

Boston, 1895. With the kind permission of the author I have drawn

freely from this source.

I Campbell, I.e., Chaps. XXXVI and XXXVII.
§ Granville, Elements of the Differential and Integral Calculus, p. 129,

Ex. 47; Ginn & Co., Boston, 1904.

II Greenhill, A Treatise on Hydrostatics, p. 318
; Macmillan, 1894.

H Osborne, Differential and Integral Calculus, p. 129, Ex. 33
;
D. C.

Heath & Co., Boston, revised edition, 1906. This book contains an espe-

cially large collection of exercises.
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In choosing illustrative examples to be worked in the text I

have taken so far as possible the same examples that my prede-

cessors have used, in order not to reduce further the fund of

good examples for class-room purposes by publishing solutions

of the same. It is in the interest of good instruction that

writers of text-books observe this principle.

As regards the time required to cover the course here pre-

sented, I would say that without the aid of text-books which I

could follow at all closely, I have repeatedly taken up what is

here given in about one hundred and thirty-five lectures, ex-

tending over a year and a half, three lectures a week. The

time thus corresponds roughly to a five-hour course extending

throughout one year.

To Mr. H. D. Gaylord, who has given me much assistance

in reading the proof, and to Dr. W. H. Eoever and Mr. Dunham

Jackson, who have aided me with the figures, I wish to ex-

press my appreciation of their kindness.

Cambridge,
September 12, 1907.
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CALCULUS

CHAPTER I

INTRODUCTION

1. Functions. The student has already met the idea of the

function in the graphs he has plotted and used in Algebra and

Analytic Geometry. For example, if

the graph is a straight line
;

if

y
2 = 2 mx, y = ± V2mx,

it is a parabola, and if

?/
= sin x,

we get a succession of arches that recur periodically. Thus a

function was thought of originally as an expression involving

x and having a definite value when any special value is given

to x:

f(x)=2x + 3,

or f(x)
= ± V2ma?,

or f(x) = sin x.

Other letters used to denote a function are
<j>(x), \f/(x) } F(x),

etc. We read /(a;) as "/of xP
Further examples of functions are the following: (a) the

volume of a sphere, V, as a function of the length of the

radius, r :

r-.4«f«i
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(&) the distance s that a stone falls when dropped from rest, as

a function of the time t that it has been falling :

(c) the sum of the first n terms of a geometric progression :

sn= a + ar -f- ar
2
H -f ar

n~ l

,

as a function of n :

a — arn
s„ =

1-r

In higher mathematics the conception of the function is

enlarged so as to include not merely the case that y is actually

expressed in terms of x by a mathematical formula, but also

the case of any law whatever by which, when x is given, y
is determined. We will state this conception as a formal

definition.

Definition of a Function, y is said to be a function of x

if when x is given, y is determined.

As an example of this broader notion of the function con-

sider the curve traced out by the pen of a self-registering ther-

mometer. Here, a sheet of paper is wound round a drum
which turns slowly and at uniform speed, its axis being ver-

tical. A pen, pressing against this drum, is attached to a

thermometer and can move vertically up and down. The

height of the pen above the lower edge of the paper depends
on the temperature and is proportional to the height of the

temperature above a given degree, say the freezing point.

Thus if the drum makes one revolution a day, the curve will

show the temperature at any time of the day in question. The
sheet of paper, unwound and spread out flat, exhibits, then, the

temperature y as a function of the time x*

* Objection has been raised to such illustrations as the above on the

ground that the ink mark does not define y accurately for a given x, since

the material graph has appreciable breadth. True
;
but we may proceed

here as in geometry, when we idealize the right line. What we see with

our eyes is a taut string or a line drawn with a ruler or a portion of the
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Other examples of this broader conception of the function

are : the pressure per square inch of a gas enclosed in a vessel,

regarded as a function of the temperature ;
and the resistance

of the atmosphere to the motion of a rifle bullet, regarded as a

function of the velocity.

A function may involve one or more constants, as, for

example :

f(x)=ax-\-b, <f> (x)
= tan ax.

Here, a and b are any two numbers, which, however,- once

chosen, are held fast and do not vary with x.

If y is a function of x, y =f(x), then x is called the indepen-

dent variable and y the dependent variable. The independent
variable is the one which we think of as chosen arbitrarily,

i.e. we assign to it at pleasure any values which it can take

on under the conditions of the problem. The other variable

or variables are then determined. Thus when we write:

s=16f,

we think of t as the independent, s as the dependent variable.

But if we solve for t and write :

l ~
4'

then we think of s, which is here necessarily restricted to posi-

tive values, as the independent, t as the dependent variable.

In general, if two variables are connected by a single equation,

as for example ~
pv = C,

where C is a constant, either may be chosen as the indepen-

dent variable, the other thus becoming the function.

path of a stone thro ?n hard. These are not straight lines
;
but they sug-

gest a concept obtained by thinking of finer and ever finer threads and

narrower and ever narrower lines, and thus we get at the straight lines of

geometry. So here, we may think of the actual temperature at each

instant as having a single definite value and thus being a function of the

time, the ideal graph of this function, then, being a geometric curve that

lies within the material belt of ink traced out by the pen.
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A function may depend on more than one independent vari-

able. Thus the area of a rectangle is equal to the product of

two adjacent sides. Further examples:

/0,2/) = ilog
2 + 2/

2

)>

<f> (x, y, z)
= ax2 + by

2
-f- cz

2 — d.

Again, it may happen that to one value of x correspond

several values of y, as when

x2 + y
2 = a2

, y=z±va2 — x2
.

y is then said to be a multiple-valued function of x. But usually,

when this is the case, it is natural to group the values so as

to form a number of single-valued functions. In the above

example these will be*

y = Va2— x2 and V — — Va2 — x2
.

In this book a function will be understood to be single-

valued unless the contrary is explicitly stated.

A function is said to be continuous if a small change in the

variable gives rise to a small change in the function. Thus

the function
1

y = ->
X

whose graph is a hyperbola, is in general continuous
;

but

when x approaches 0, y increases numerically without limit,

and so at the point x— the function is discontinuous.

* The sign y/ means the positive square root of the radicand, not,

either the positive or the negative square root at pleasure. Thus, V4 is

2, and not — 2. This does not mean that 4 has only one square root.

It means that the notation VI calls for the positive, and not for the

negative, of these two roots. Again,

Vz2 = x, if a; is positive ;

VaJ2 = _ x, if x is negative.

A similar remark applies to the symbol
2
^/, which likewise is used to

mean the positive 2 wth root.
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It is frequently desirable to use merely the numerical or

absolute value of a quantity, and to have a notation for the

same. The notation is : \x\, read " the absolute value of

x." Thus, |

— 3
|

= 3
; 1

3
|

= 3. Again, whether a be posi-

tive or negative, we always have

Va2 =
| a\.

2. Slope of a Curve. We have learned in Analytic Geometry
how to find the slope of some of the simpler curves. The

method is of fundamental importance in the Calculus, and so

we begin by recalling it.

Consider, for example, the parabola :

(1) y X2
.

Let P, with the coordinates

(x , 2/ ),
be an arbitrary point

on this curve, and let

P': (x', y'), be a second point.

Pass a secant through P and

F. Let

x' = x + h, 2/o + &•

Then the slope of the secant

will be :

tanr' =

O
Fig. 1

.'/o

a%

When-Pf

approaches P as its limit, the secant rotates about P
and approaches the tangent as its limit, its slope approaching
the slope of the tangent :

*

lim taiiT'= taiiT.
p=p

We wish to evaluate this limit.

* The sign.= means that limit, without, how-

ever, ever being allowed to reach this limit. For, if i* were to coincide

with P, we should no longer have a determinate secant, one point not

to determine a straight line.
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Suppose the point Pis the point (1, 1). Let us compute k

and tan r' = k/h for a few values of h. Here, x = 1, yQ
= 1.

Ifh=.l, I
,

then x 1 — x + h = 1.1, y
1

=zy + k = 1.21

and k = y'-y = .21;

hence tanr' = - = 2.1.

The following table shows further sets of values of h, k, and

tan r' that belong together :

ft
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EXERCISES

1. If f(x) = x*-3x + 2,

show that /(l) ==
0, and compute /(0), /(- 1), /(1£).

find/(V2) correct to three significant figures. Ans. —.0204.

3. If F(x)= (x
— x3)smx,

find all the values of x for which F(x) = 0.

4. If a <K*) = 2
S

,

find *(<&+(- 3), *(*).

5. If /(a>)=»-Va*-a>",

find"/(a) and /(0).

5-7T
6. If in the preceding question a = cos —-, compute/(0) to

6
three' significant figures.

7. If ij/(x)
= x$ — x~%,

find if/(S).

8. If f(x)= x\og10 (12-x*),

find/(-2)and/(3i).

9. Solve the equation

Xs — xy -\- S = 5y

for y, thus expressing y as a function of x,

10. If A*) 838 *!

show that /(a?) /(?/)«A* + 2/)-

11. Continue the table of § 2 two lines further, using the

values h = .0001 and h = .00001.
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12. Find the slope of the curve

Sy = Sxs

at the point (2, 3), first preparing a table similar to that of § 2

and then proving that the apparent limit is actually the limit.

13. Find the slope of the curve

y = Xs — x2

at any point (x , yQ).

14. Find the slope of the curve

y = ax2 + bx + c

at the point (x , y ).

15. Find the slope of the curve

X
at Oo, 2/o).



CHAPTER II

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

GENERAL THEOREMS

1. Definition of the Derivative. The Calculus deals with

varying quantity. If y is a function of x, then x is thought

of, not as having one or another special value, but as flowing

or growing, just as we think of time or of the expanding cir-

cular ripples made by a stone dropped into a placid pond.

And y varies with x, sometimes increasing, sometimes de-

creasing. Now if we consider the change in x for a short

interval, say from x = x to x = x', the corresponding change
in y, as y goes from y to y\ will be in general almost pro-

portional to the change in x, as we see by looking at the

graph of the function
;
for

X O/Q

and tanr' approaches the limit tanr, i.e. comes nearer and

nearer to the fixed value tan t, the slope of the tangent.

The determination of this limit :

lim y^^ = ttmT,
z'±xo X — Xq

is a problem of first importance, and we shall devote the next

few chapters to solving it for the functions we are already

familiar with and to giving various applications of the

results.

9
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We will first formulate the idea we have just explained as a

definition. Let

(i) y=m
be a given function of x. Form the function for an arbitrary-

value x of x :

(2) 2/o =/(*«),

and then give to x an increment, Ax-, i.e. consider a second

value x' of x and denote the difference x' — x by the symbol
*

Ax:
x' — x = Ax

;
x' = x + Ax.

The function ?/ will thereby have changed from the value ya to

the value

(3) V' =/(*»)

and hence have received an increment

y'-y ==Ay; \j
= y + Ay.

From (3), written in the form :

(4) y + Ay=f(x + Ax),

and (2), we obtain by subtraction :

Ay =f(x + Ax) -f(x ),

L henceand hence
A.y =/Oo+ Aa -ZOO
Ax Ax

Definition of a Derivative. The limit which the ratio (5)

approaches ivhen Ax approaches :

* The student must not think of this symbol as meaning A times x.

We might have used a single letter, as h, to represent the difference in

question : x' = x + h
;
but h would not have reminded us that it is the

increment of #, and not of y, with which we are concerned. The nota-

tion is read " delta aj."
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(6) Km £* or lim /(*• + **)-/(*.)
Ax = 0A.X" Ax = AX

is called the derivative of y with respect to x and is denoted by
Dx y, (read: "Dxofy"):

(?)
As=o Ax

Dx y.

y
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Expanding the right-hand member by the Binomial Theorem,
we get :

(11) 2/0 + Ay = xf + nx^Ax +
n
^~

1
) x n- 2Ax2 + ••• 4- Aaf .

If we subtract (9) from (11) and divide through by Ax, we get :

^= nxf-
1 + n^~ 1

) x,
n~ 2Ax + • • • + Aa"" 1

.

Ax 1.2

We are now ready to allow A# to approach as its limit.

On the right-hand side the first term is constant. Each of the

succeeding terms approaches as its limit, and so their sum

approaches 0. Hence we have :

iim —- = nxQ
n~ l

.

Az=0 AX

The subscript of the x has now served its purpose of

reminding us that x is not to vary with Ax. In the final

result we may drop the subscript, for x is any value of x, and

thus we obtain the formula, or theorem :

(12) Dxx
n = nxn~\

In particular, if n = 1, we have

(13) Dxx = l.

EXERCISES
1. Show that

Dx (cx
n
)
= ncxn-\

where c is a constant.

2. Write down the derivatives of the following functions :

x2
, a?, x49

, 7x, -9x\

3. Differentiate the function :

V = i. Arts. -\-y
x2 a?

4. Differentiate: u — t
2 — t.
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3. Derivative of a Constant. If the function f(x) is a

constant :

the graph is a straight line parallel to the axis of x, and so the

slope is 0. Hence

(14) Dx c = 0.

It is instructive to obtain this result analytically from the

definition of § 1. We have:

y + Ay =/Oo+ Aa;)
=

c,

hence Av=0 and —^ = 0.a Ax

Allowing Ax now to approach as its limit, we see that the

value of the variable, Ay/Ax, is always 0, and hence its limit

isO:

lim ^/ = or Dx c = 0.
As=oAaj

4. General Formulas of Differentiation.

Theorem I. The derivative of the product of a constant and

a function is equal to the product of the constant into the deriva-

tive of the function :

(I)



14 CALCULUS

The limit of the left-hand side is Dx y. On the right. An/'Ax

approaches Dxu as its limit, hence the limit of the right-hand
side is* cDx u, and we have

Dx (cu)
— cDx u, q. e. d.

Theorem II. The derivative of the sum of two functions is

equal to the sum of their derivatives :

(II)
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Next, we can consider the snm of four functions, and so on.

Or we can extend the proof of Theorem II immediately to the

sum of n functions.

Polynomials. We are now in a position to differentiate any

polynomial. For example :

D„(7a?*-5<e»+a?+ 2)

= 7Dxx*-5Dx x* + 1 = 28^-15^ + 1.

EXERCISES

Differentiate the following functions :

1. 5^-8^ + 7^-^ + 1. 3. Trar
3 - 41^-^/2.

8 a7 -6a; + 5 . ax2 + 2hx+b
9 2c

5. Differentiate

(a) v t — 16 t
2 with respect to t.

(b) a + bs + cs
2 with respect to s.

(c) . 01 ly*
— 8.15my

2 —
. 9 Im with respect to y.

6. Find the slope of the curve

4:y = x*— Sx — 1

at the point (1,
—

2).

7. At what angles do the curves y=x* and y=x* intersect?

Ans. 0° and 8° V.

/ 5. Three Theorems about Limits.

Theorem A. TJie limit of the sum of two variables is equal

to the sum of their limits :

lim (X+ Y) = lim X+ lim T.
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Let limX=^4, lim Y=B,
and let c denote the difference between X and its limit, A :

X-A =
e, X=A + e.

Then lim e = 0.

(If X is less than A, c will be a negative quantity.)
In like manner let

Y-B =
7],

Y=B + V.

Then lim^ = 0.

Writing now
X+Y=A +B+ €+ n;

we see that the limit of the right-hand side is A -f B. Hence

lim (X+ Y)=A + B, q. e. d.

Corollary. TJie limit of the sum of n variables is equal to

the sum of the limits of these variables, n being any fixed number :

lim (Xx + X2 + ... + Xn)
= lim Xx + lim X> + • • • + lim Xn .

'

Theorem B. TJie limit of a product is equal to the product

of the limits:

lim (IF)=(lim X)(lim Y).
*

Here XY= (A + e) (B + v)

= AB + Arj + Be + erj.

By Theorem A, Corollary, the limit of the right-hand side is

AB + lim (Av) + lim (Be) + lim
(erj).

The last limit is obviously 0. As regards the first two, it is

easy to see that
*

if a variable (as rj) approaches 0, then the

product of any constant (as A) times this variable must also

approach 0. An unfavorable case would be that in which the

constant is very large, say 10,000,000. But even then the

variable, as it decreases, will finally become and remain

numerically less than 10"7 =
100J)(X)0

,
and so the product becomes
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less than 1. As the variable decreases still further, it becomes

and remains numerically less than 10~8
,
then less than 10~9

,

and so on
;
the product thus becoming and remaining numeri-

cally less than y
1

^, y-J-^,
and so on. Hence the limit of the

product is 0.

Thus each of the limits in the above expression is seen to be

0, and hence
lim(XY)=AB, q.e.d.

In particular, we see that the limit of a constant times a vari-

able is equal to the product of the constant into the limit of the

variable:
lim((7X) = Clim(X).

For, a constant is a special case of a variable.

Corollary. The limit of the product of n variables is equal
to the product of their limits, n being any fixed number :

lim (X,X2
• • • Xn)

= (limXx) (lim X2)
. .

(lim Xn ) .

Theorem C. The limit of the quotient of two variables is

equal to the quotient of their limits, provided that the limit of the

variable that forms the denominator is not :

Hffi?=-iE-|L if limF^O.Y lim Y

For
X A- A + * A = Be-Av
Y B B + n B B(B + V)'

X_A Be-Av 1

Y~B+ & £
B

The limit of the first fraction in the last term is 0, by Theo-

rems A and B. The second fraction ultimately becomes posi-

tive and remains less than 2, even if
rj

is negative. For, since

lim
77
= 0, /B will finally become and remain algebraically

greater than - 1 .

V ^-1 . V

1+J



18 CALCULUS

Hence the last term becomes and remains numerically less than

twice the first factor, and consequently its limit is 0.

•••limf
=
|, 1-e.d.

In particular, we see that, if a variable approaches unity as

its limit, its reciprocal also approaches unity :

If limX=l, then limi= l.

Remark. If the denominator Y approaches as its limit,

no general inference about the limit of the fraction can be

drawn, as the following examples show. Let Y have the

values :

Y= i_ j_ __i_ _i_
10' 100' 1000'

'

"'
10"'

"

(1) If the corresponding values of X are :

x= l_ _i L_ J_
102 '

1002 '

10002 ' '"'
102n '

'"
,

then lim — = lim— = 0.

(2) If X=

Y 10»111 1

Vio' yioo' yiooo'
'

1Q
«

then X/Y=10n/2
approaches no limit, but increases beyond

all limit.

/Q\ Tf Y"— c c c
. . .

G

V) ±-
1Q

>

100
>

1000
> .

1Qn
»

where c is any arbitrarily chosen fixed number, then

lim|= ft
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111 1
(4) If X=

10' 100' 1000' 10,000'

then X/Y assumes alternately the values +1 and —1, and

hence, although remaining finite, approaches no limit.

To sum up, then, we see that when X and Y both approach
as their limit, their ratio may approach any limit whatever,

or it may increase beyond all limit, or finally, although remain-

ing finite, i.e. always lying between two fixed numbers, no mat-

ter how widely the latter may differ from each other in value,— it may jump about and so fail to approach a limit.

Infinity. If lim X=A=f=0 and lim Y=0, then X/Y in-

creases beyond all limit, or becomes infinite. A variable Z is

said to become infinite when it ultimately becomes and remains

greater numerically than any preassigned quantity, however

large. If it takes on only positive values, it becomes positively

infinite; if only negative values, it becomes negatively infinite.

We express its behavior by the notation :

limZ=oo or limZ=-fco or \\mZ = — oo .

But this notation does not imply that infinity is a limit
;
the

variable in this case approaches no limit. And so the nota-

tion should not be read " Z approaches infinity
" or " Z equals

infinity ;

" but " Z becomes infinite."

Thus if the graph of a function has its tangent at a certain

point parallel to the axis of ordinates, we shall have for that

point :

lim —* = oo
;

Ax= AX

read: "
Ay/Ax becomes infinite when Ax approaches 0."

Some writers find it convenient to use the expression "a
variable approaches a limit" to include the case that the vari-

able becomes infinite. We shall not adopt this mode of ex-

pression, but shall understand the words "
approaches a limit "

in their strict sense.
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If a function f(x) becomes infinite when x approaches a cer-

tain value a, as for example

f(x)= - for a= 0,
x

we denote this by writing

/(a)=00

(or /(a)= -f- co or = — co
,

if this happens to be the case

and we wish to call attention to the fact).

Definition of a Continuous Function. We can now make more

explicit the definition given in Chapter I by saying : f(x) is

continuous at the point x = a if

limf(x)=f(a).

From Exercises 1-3 below it follows that the polynomials
are continuous for all values of x, and that the fractional

rational functions are continuous except when the denominator

vanishes.

EXERCISES

1. Show that, if n is any positive integer,

lim(X
w
)
= (limX)

rt
.

2. If O (x)
= c + cxx + c2x

2
H \- cnx

n
,

then lim O (x) = G(a) = c 4 c^a 4- c2 a? -f ••• 4- cna
n
:

x=a

3. If G (x) and F(x) are any two polynomials and if F(a) =£ 0,

then
lim^M =^M.
«*• F(x) F(a)

4. If X remains finite and Yapproaches as its limit, show
that

lim(XY)= 0.

5. Show that

,.
x2 + l 1

lim = - •

*=oo3x2 + 2a;-l 3
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Suggestion : Begin by dividing the numerator and the

denominator by x2
.

6. Evaluate the following limits :

/ \ v x + 1 /jn v ax -f- bx~
x

(a) lim-—— -; (d) hm——
-;

(b) hm—-——-— —-; (e) lim———— ;

(C) lim flag+6flr
) ;

(/) lim^=*w
x=:oo ex -f dec"

1 ^Vl + a4 *.

6. General Formulas of Differentiation, Concluded.

Theorem III. The derivative of a product is given by the

formula :

(III) Dx (uv) = uDx v + uDx ?*.

Let 2/
= uv.

Then y = «o%

y + Ay = (uq + Aw) O + Ay),

Ay = w Av -f- v Aw -f- Au Av,

Aw Av . Aw
, A Av^ = M + v + Am-—,

Ax Ax Ax Ax

and, by Theorem A, § 5 :

lim^= lira L*?) + lim (V-") + lim (Au^Ya*=oAx Ax=o\^ Aay Axio\^ A.ty ax^o \ Aay

By Theorem B, § 5, the last limit has the value 0, since

lim Au = and lim (Av/ Ax)=Dx v. The first two limits have

the values u Dx v and v Dxu respectively.* Hence, dropping
the subscripts, we have :

Dxy= uDxv + vDx u, q. e. d.

* More strictly, the notation should read here, before the subscripts are

dropped: [Dx v']x=x ,
etc. Similarly in the proofs of Theorems I, II,

and V.
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By a repeated application of this theorem the product of any
number of functions can be differentiated. When more than

two factors are present, the formula is conveniently written in

the form :

(15)
Dx (uvw) = Dx u

[

Dx v
j

Dxw
UVW U V w

For a reason that will appear later, this is called the loga-

rithmic derivative of uvw.

Theorem IV. The derivative of a quotient is given by the

formula:* ,. vD D
<ro

D
\v)

= -
*

'

Let y = - •

v

mi u
i) i a UQ + ^M

Then Vo= — f y + AM = - °^
A ,

_ ^o + Am _ Mo __ ^ Am — MqAv
V + Av v v (vo + Av)'

Am Av
Vo— - Mo-

AM _ &'x Aa;

A«~" VoOo + Av)

By Theorem C of § 5 we have :

ArtHmU— M,"0

Am_ Ax-°\ A#

Ax=oAx~~ lim [v (v + Av)]
Ax =

Applying Theorems A and B of § 5 and dropping the sub-

scripts we obtain :

D Saj^J&t, q.e.d.

* The student may find it convenient to remember this formula by-

putting it into words: "The denominator into the derivative of the

numerator, minus the numerator into the derivative of the denominator,

over the square of the denominator."
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Example. Let

y = !—•
cx + d

Then D — (ca? + d) a — {ax -f- 6) c _ ad— be
#

Xl/
~

(cx + d)
2

"(caj + d)
2

'

Theorem V. If u is expressed as a function of y and y in

turn as a function of x :

u=f(y), y = <t>(x),

then

(V) ft/(y) = ft/(y)ftjr
or

- (V) Dx u = Dy
u.Dx y.

Here y = <£ (x ),
uQ =/(y ),

y + Ay = <£ (xq + Ax), u + Au =/(y + Ay),

Att=/Gfo+ %)-/(y ),

A^ _ f(y + Ay)
—/(y )

<
Ay #

Ax Ay Ax

When Ax approaches 0, Ay also approaches 0, and hence the

limit of the right-hand side is

( lim
fbh+m)

-/<*)) (nm *i) = D f(y) DxV.

\a*=o Ay /\Ax=oAxy

The limit of the left-hand side is Dx u, and hence

Dxu = Dyu-Dx y, q. e. d.

The truth of the theorem does not depend on the particular

letters by which the variables are denoted. We may replace,

for example, x by t and y by x. Dividing through by the sec-

ond factor on the right, we thus obtain the formula :

tv<) ft.,, fis.
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Example. Let u = (ax -f- 6)
n
,

where n is a positive integer.

Set y = ax-\-b. Then u=f(y) = y
n

and Dx« = Dx 2/

n — D
yy

n
- Bx y — ny

n~ x
• a = wa(ax -f 6)"-

1
.

EXERCISES

Differentiate the following functions :

1. y=-^—- Ans. Dxy=
1 + a?2 -

.

1 t3

2 - IT-TTtr 4 - 2/
=

l + «2 1 — a?

„ 1-1 x2

3. s = - 5. y =
1 + t

"
(1
-

a)
2

6. ?/
=

aj(a + 6a?)\ ^4rcs. Dxy = [a + (n -f 1) to] (a + foe)*
-1

.

7. y =—,
where m is a positive integer.

xm

l-\-x-\-x
2

n S — x^ + Sx*
8 . y==

t -r— 9> x
a; ar

10. Show that Formula (12) holds when n is a negative

integer.

15. *±£?.
2 + a

16. (a + bx 4- ca2

)'

1

Dif



DIFFERENTIATION OF ALGEBRAIC FUNCTIONS 25

20. Find the slope of the curve

240?/ = (1
-

x) (2
-

x) (3
-

x) (4 -x)

at the point x = 0, y = fa. Ans. —-

-^.

7. Differentiation of Radicals. Let us differentiate

y = Va;.

Here, y = V# , y + Ay = V# 4- Aa;,

Ay __ V^o + Ax —V%n .

Ax Ax

We cannot as yet see what limit the right-hand side approaches
when Ax approaches 0, for both numerator and denominator

approach 0, and - has no meaning, cf. § 5. We can, however,

transform the fraction by multiplying numerator and denomi-

nator by the sum of the radicals and recalling the formula of

Elementary Algebra :

a2 - b
2 = (a

-
b) (a + b).

„ A?/ V# + Ax — '

V#„ V# + Ax -}- V#
Thus t~ r

* -—=== —
Aa Ax Va + Ax + V#

_. 1
,

(x + Ax)—x 1

A# ^/Xq _|_ Ax + V^ V# 4- A# 4-W
and hence lim —^= lim — — = — •

a*=o Ao; ax= o
-yJXo -|- Aa? 4- Va? 2V»

Dropping the subscript, we have :

(16) Dx^x =
1

2Vx

We can now differentiate a variety of functions.
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Example. To differentiate

y = Va2— x2
.

Introduce a new variable

z^a2-^
(I /

and then apply Theorem Y :
*

2/
= Va,

A2/ = AV^=AV^.Z>^=-^r-(-2a;
)

2Vz Va2— a2

Hence Z>xVa2 -a2 = ~" g

Va2 — x2

EXERCISES

Differentiate the following functions :

1. y = Va2 + x2
.

6. y = —-> Ans.
jVx 2x?

2. u = Va + x 4- Va — #. 7 —
.

Va2— a?
2

3. y = a?Vl— a?. 8. y = ^/'2mx.

x-\-\

v a?

5.
,

Ans. — •

vr^? (Vi-z
2

)

3 '

vi+ x

* The student should observe that Theorem V is not dependent on the

special letters used to designate the variables. Thus if, as here,

y=f(z) and z =
\J/ (x)

we have Dx y = Dz y
• Dz z.



DIFFERENTIATION OF ALGEBRAIC FUNCTIONS 27

8. Continuation : xn
,
n Fractional.

• The Laivs of Fractional Exponents. Let n=p/q, where p
and q are positive integers prime to each other, and consider

the function
p

(17) y = xn = x q

for positive values of x. If q is odd, the function is single-

valued
;
but if q is even, there are two ^th roots of x, and we

might define the function of (17) to be double-valued, namely,
as ±(-\/x)

p
. This is. however, inexpedient, and usage has

determined that the notation (17) shall be defined to mean the

positive root : p

x * = (yx)
p

.

If n is a negative fraction, n = — m, then

xn =— Moreover, a = 1.
xm

In Elementary Algebra the following laws of exponents are

established :

(A)

These laws hold without exception when a and b are both

positive and m and n are any positive or negative integers or

fractions, inclusive of 0.

Graph of the Function xn. When n is an integer, n = 1, 2,

3, •••, 10, •••, the graphs are as indicated in Fig. 3; for the

slope of the curve (17) :

tanr — Dxy — nxn~Y

is positive and increases steadily as x increases if n > 1.

I.
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Consider next the case that p = 1, q > 1. Here

(18) y = x< or <B = y
and so, when q = 2, 3,

•

•, 10,
•
••, we get the same graphs as

I

y=l

= 10
n-

nf\

.^i

x = l

Fig. 3

when n is an integer, only drawn with y as the axis of abscissas

and x as the ordinate, cf. Fig. 3. Thus any one of the latter
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curves, as y = a?
1/3

,
is obtained from the corresponding one of

the former curves, y = x3
, by reflecting this curve in the bisec-

tor of the angle made by the positive coordinate axes.

The general case, n = p/q, will be taken up at the close of

the paragraph.

Differentiation ofx
n

. Let us first find the slope of the curve

(18). If <r denotes the angle between its tangent and the

axis of y, then

tan a = Dy
x = qy*~\

Now <r is the complement of t, and so*

1
tanr =

tan<r

Hence Dxy =—— = -y
l~q

.

qy"'
1

q

* This is equivalent to the relation :

Dx y = -L-Dy x

It is easy to give a proof of this relation as follows. If

y =/(*)

is any continuous function of x whose inverse function :

x = t(y)

is single-valued near the point (zo, yd) at which we are considering the

derivatives, then

Ax Ax

Ay
and hence, if lira Ax/Ay 9^0,

lira *V = I or j)xy=J_ q#e.d.
***>Ax Hm Ax

y Dv x"
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Keplacing y by its value, a^/?
,
we have :

i
l

l- 9 1

y
l

~«=:(x
q
)

9 = x~=oc?
,

and thus
1

1 §-'
(19) Dx xq=-xq •

Q

This shows that Formula (12) holds even when n= 1/q.

Turning now to the general case :

p

y = x«,

i

let z = xq
; ?/

= zp.

Then by Theorem V, § 5, and (19) :

1 ~i
Dxy = Dx z

p = Dz z
p >Dx z = pz

p~x • -xq
,

zp
-i

=(x^y

Hence Dxy=*x q - xq =£-xq
,

or

(20) ZJ.afssnaj-
1

,

when n is any positive integer or fraction.

If n is a negative integer or fraction : n = — m,

then aj
w=—

,

and hence £c
w can be differentiated by the aid of Theorem IV,

a;
m

xr
m

or -Dx a?
n = waj

n-1
.

Consequently Formula (12) holds for all commensurable values

of n. We shall show later that it holds for incommensurable

values, too, and thus is true for any fixed value of n.
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i

If n = i, we have2>

X
2Vx '

which agrees with (16).

. Example. To differentiate

^ = Va2 — a^.

Let z = a2 — x2
.

Then 2/
= z%

Dxy = Dx z? = Dzz^Dx z = \z-*(-2x) =
3(Va

2

-^) 2

Inequalities for xn. If n is a positive integer, then

r xn > 1 when # > 1
;

1 xn <l when 0<a<l.

The same relations hold when n =p/q is a positive fraction.

For, suppose
i_

y = x q < 1 when x > 1.

Then, by I, 2/* < 1-

But y
q — x, and #<1 is contrary to hypothesis. Similarly

when x <1.

Finally, relations I. hold when n=p/q is any positive frac-

tion. For

xq =
(iC

9
) ,

and if a?>l, then

1
/ \p

xq >l and hence (x
9
) >1.

Similarly for a? < 1.

When, however, n < 0, the first inequality sign in each line

of I. must be reversed and the value x = excluded. The
function xn is nevertheless always positive when x > 0.
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Theorem. If n' > n, then

(a) xn
' > xn when x > 1

;

(b) xn' <xn when x<l.

Let n' = n + h. Then

a?
n' - xn = #n+A— cc

n = af(a*
—

1).

Since /i>0, we see from the relations I. that when a?>l, this

last expression is positive ;
when x <1, it is negative. Hence

the theorem.

Graph of the Function xn ; Conclusion. From the theorem

just established it follows that the graphs of xn for different

positive fractional values of n lie as suggested in Fig. 3,

namely : they all pass through the origin and the point (1, 1),

and they have no other point of intersection. Their slope is

always positive. Of two graphs corresponding to n and n' > n,

the latter lies below the former when x< 1
;
above it when

a?>l*
The student is requested to write out similar statements for

the case that n < 0, and to draw the graphs. It is better, how-

ever, not to complicate Fig. 3 with these latter graphs, but to

deduce them when needed from Fig. 3. Thus confusion will

be avoided. Fig. 3 should be permanently visualized. The
student should construct such a figure for himself accurately
on coordinate paper, using the tables of squares and cubes.

* These curves penetrate every part (a) of the square, the coordinates

of whose points (x, y) satisfy the relations :

0<s<l, 0<y<l,
and (6) of the interior of the right angle of Fig. 3 :

l<x, 1<».

When we include the curves for which n is positive and incommensurable,
the complete family y = xn thus obtained just fills these regions without

overlapping. For a proof of these statements see the Appendix.
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EXERCISES

Differentiate the following functions :

1. y = 10x% — 4af* — 1. 4. y= ^ax2
.

2. y=zx*-x-*+ w. 5 v = l-x~1/2

' y x^

Vic 6. y = x^/2x.

1 r, 2x

</a*-x* 3(a
2-a^

8. y = x(l-x*)*\ 9. 4^+JL---

io. (a^ + ijV^y. ^tns.
7 */

4 -V-i
.

2(f-y)?

11 JpL=*L. 13 ^H-**,'

\(l + z)
2

13 ' ^^
12. aa — ax + a. 14. aa+6 — af"6.

15. <*-*)' ^ SoV^-tf

16.
;

a~ a? - . 17. r = Va$.
V2 ax — a?

18
Vtt — # 4- Va + a? ^ a2 + aVa2 — ar*

V« — x — Va + aj x2s/a2 — a;
2

19. Find the slope of the curve y = a?* in the point whose
abscissa is 2, correct to three significant figures.

Ans. tan r = .115.

20. If jw"=xC; find Al>-

s-1
21. If y^x = l + x, ftnd Dx y.

-4w*.

2a;VaJ
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9. Differentiation of Algebraic Functions. When x and y
are connected by such a relation as

x2
-f- y

2 = a2

or Xs — xy -f y
5 =

or xysmy = x + ylogx,

i.e. if y is given as a function of x by the equation

or its equivalent, ®(x, y)
=

ty(x, y), where neither <l> nor ^ re-

duces to y, then y is said to be an implicit function of x. If we
solve the equation for y, thus obtaining :

y =/(«),

2/ thereby becomes an explicit function of a?. It is often difficult

or impossible to effect the solution
;
but even when it is possible,

it is usually easier to differentiate the function in the implicit

form. Thus in the case of the first example we have, on dif-

ferentiating the equation as it stands with respect to x:

Dxx
2 + Dxy

2 = Dx a
2

or 2x + 2yDxy = 0.

Hence Dxy = — - •

y

If we differentiate the second equation in a similar manner,
we get :

3 x2 — xDxy — y + 5 y
KDxy = 0.

Solving for Dx y, we obtain :

r, 3 x2 — y

by
4 — x
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When F(x, y) is a polynomial in x and y, the function y,

denned by the equation

F(x,y) =

is called an algebraic function. Thus all polynomials and

fractional rational functions are algebraic. Moreover, all

functions expressed by radicals, as

2/=Va2-x2 or y = ^ljz£?_^4-V*,* 1 -f-X

are algebraic, for the radicals can be eliminated and the result-

ing equation brought into the above form. But the converse

is not true: not all algebraic equations can be solved by means
of radicals.

It can be shown that an algebraic function in general is

continuous. In case the function is multiple-valued it can be

considered as made up of a number of branches, each of which

is single-valued and continuous. Assuming this theorem we
can find the derivative of an algebraic function in the manner

illustrated in the foregoing differentiations.

On the assumption just mentioned a short proof of Formula

(12), § 2, can be given for the case that n—p/q. Since

p

y = xq
,

we have: y
9 = xp.

Differentiate each side.with respect to x:

Dxy
q = Dxxp = pxr-\

Now Dm tf= Dy y*
• Dxy = <nT

l

D,y.

Hence Dmy-«^-«J^l .««?-.
qy

q
~ l

q |<«-i> q
X?

The proof of this formula which we gave in § 8 does not

depend on the above assumption, but is a complete proof.
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EXERCISES

1. Differentiate y in both, ways, where

xy + 4:y = 3x,

and show that the results agree.

2. The same for y
2 — 2mx.

3. Find the slope of the curve

x4
-2xy

2 + y
5 =13

at the point (2, 1). Ans. 10.

4. Show that the curves

Sy = 2x + x4

fy 2y + 3x + y
5 = x3

y

intersect at right angles at the origin.



CHAPTER III

APPLICATIONS

1. Tangents and Normals. The equation of a line passing

through a point (# , y ) and having the slope a is

y-yo =Hx ~ x
o),

and the equation 'of its perpendicular through the same point is

y-yo=-~(x-x ) or x — x + \(y
— y )

= 0.

A

Since the slope of a curve

y=f(x) or F(x,y)=0.

in the point (x , y )
is [Dx y~\x=x ,

the equation of the tangent
line in that point is

(1) 2/
—

2/o= [Dx y~]x=:XQ(x
- x

).

Similarly, the equation of the normal is seen to be :

(2) 2/-2/o=-jt—
—

(x-xo) or x- x + [2>»y],.s(y-3fii)-»0.

Example 1. To find the equation of the tangent to the

curve

y = x?

in the point x =
J, y = J. Here

Dx2/
= 3^ [Z>x2/]x=x =[3^]x = i

=
|.

Hence the equation of the tangent is

2/
—
|= f(cc

—
i) or 3a;— 4?/

— 1 = 0.

37
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Example 2. Let the curve be an ellipse :

a2 ^b2

Differentiating the equation as it stands, we get :

2x . 2y n a ^ b2x— + -rf
Dxy = 0, J),?/ - ~ -T-

*

a2 b
1

a-y

Hence the equation of the tangent is

Xt\ / \

«l/o

This can be transformed as follows :

a2
y y — a2

y
2 = — b

2x x + b
2x 2

,

b2x x + a2
y y = a2

y
2 + b2

x<? = a2
b2

,

®o% yo.V == i

"a2
62

EXERCISES

1. Find the equation of the tangent of the curve

y = x3— x

at the origin ;
at the point where it crosses the positive axis

of x. Ans. x + y — 0; 2x — y — 2 = 0.

2. Find the equation of the tangent and the normal of the

circle

x2
-f- y

2 = 4

at the point (1, V3) and check your answer.

3. Show that the equation of the tangent to the hyperbola

a2
b
2

at the point (x , y )
is

a2 b2

4. Find the equation of the tangent to the curve

x3
-f y

3= a2

(x
—

y)
at the origin. Ans. x = y.
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5. Show that the area of the triangle formed by the coordi-

nate axes and the tangent of the hyperbola

xy = a2

at any point is constant.

6. Find the equation of the tangent and the normal of the

curve
x6 = a?y

2

in the point distinct from the origin in which it is cut by the

bisector of the positive coordinate axes.

7. Show that the portion of the tangent of the curve

at any point, intercepted between the coordinate axes is

constant.

8. The parabola y
2 = 2ax cuts the curve

x3 —
3aa?2/ + 2/

3 =

at the origin and at one other point. Write down the equa-

tion of the tangent of each curve in the latter point.

9. Show that the curves of the preceding question intersect

in the second point at an angle of 32° 12'.

2. Maxima and Minima.

Problem. Find the most advantageous length for a lever,

by means of which to raise a weight of 100 lbs. (see Fig. 4), if

the distance of the weight from
<0|

the fulcrum is 2 ft. and the 0^
*

P]\
lever weighs 3 lbs. to the foot.

~

^w) [ Q
It is clear that, if we make 6x

the lever very long, the increased

weight of the lever will more than compensate for the gain in

the leverage, and so the force P required to raise the weight
will be large. On the other hand, if we make the lever very

short, say 3 ft. long, the force required to lift the lever is

slight, but there is little advantage from the leverage ;
and so,
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again, the force P will be large. Evidently, then, there is an

intermediate length that will give the best result, i.e. for

which P will be least.

Let x denote the half-length of the lever. Then P is a func-

tion of x. If we determine this function, i.e. express P as a

function of x, we can plot the graph and see where it comes

nearest to the axis of x. Now the moments of the forces that

tend to turn the lever about the fulcrum O in the clockwise

direction are :

(a) 100 x 2, due to the weight of 100 lbs.
;

(6) 3 x 2x x x, due to the weight of the lever.

Hence their sum must equal the moment of P in the opposite

direction, namely, Px 2x, and thus

200 + 6x2 = 2Px, P= 100 4- 3x2

Let us try a few

values of x and see

what the correspond-

ing values of P are :

X
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a sufficiently large number of values of x intermediate between

these two numbers, we could evidently approximate to the best

value as closely as we wished. Can we not, however, with the

aid of the Calculus, save ourselves the labor of these computa-
tions ? Looking at the graph of the function, we see that the

value of x we want to find is that one which corresponds to the

smallest ordinate. This point of the curve is characterized by
the fact that the tangent is here parallel to the axis of x and

hence the slope of the curve is :

tan T = Z>xP=0.

Let us compute, then, DXP and set it equal to 0:

DXP= -^ + 3 = 0,

^100 L^=5.77.
3

'

ys

Consequently the best length for the lever is 2x = 11.4 ft., the

corresponding value of P being 34.6 lbs.

Example. A box is to.be made out of a square piece of card-

board 4 in. on a side, by cutting out equal squares from the

corners and turning up the sides. Find the dimensions of the

largest box that can be made in this way.
First express the volume V oi the box in terms of the length

x of a side of one of the squares cut out, and plot the graph of

V, thus determining approximately the best value for x. Then

solve by the Calculus.

The foregoing examples suggest a simple test for a maximum
or a minimum.

Test for a Maximum. If the fmiction

is continuous ivithin the interval a<.x<b and has a larger value

at one of the intermediate points than it does at or near each of

the ends, then it has a maximum at some point x = x within the

interval.
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Under the above conditions we shall have :

Dxy = when x = x .

And if this equation has only one root in the above interval, then

this root must be: x = x *

The test for a minimum is similar, the words "larger"

and "maximum" being merely replaced by "smaller" and
" minimum."

EXERCISES

li. Find the least value of the function

y = x2
-f 6x -f- 10. Ans. 1.

2. What is the greatest value of the function

y — Sx — x*

for positive values of x ?

3. For what value of x does the function

12Va
l + 4a;

attain its largest value ? Ans. x = \.

* It is true that there are exceptions to the test as stated, for the graph

of a continuous function may have sharp corners, as shown in Fig. A.

At such a point, however, the function has no

derivative, since Ay/Ax approaches no limit,

as at x = xi, or it approaches one limit when

Ax approaches 0, passing only through positive

values, and another limit when Ax approachesx,

%— "^
/.

— from the negative side, as at x = x2 . If,

pIQ a then, we add the further condition to our test,

that f{x) shall have a derivative at each

point of the interval, no exception can possibly occur.

This condition is obviously fulfilled when, as is usually the case in prac-

tice, we are able to compute the derivative,
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4. At what point of the interval a< x <b, a being positive,

does the function

x

attain its least value ?

(x — a) (6
—

x)

Ans. x= Va6.

5. The legs of an isosceles triangle are each 6 in. long.

How long must the base be made in order that the area may
be a maximum ? Ans. 6V2 = 8\ in.

6. A two-acre pasture in the form of a rectangle is to be

fenced off along the bank of a straight river, no fence being
needed on the river side. What must be its shape in order

that the fence may cost as little as possible ?

Ans. It must be twice as long as it is broad.

3. Continuation; Auxiliary Variables. It frequently hap-

pens that in formulating a problem in maxima and minima it

is advisable to express the function which is to be made a

maximum or a minimum in terms of two variables, between

which a relation exists. The following example will illustrate

the method.

To find the largest rectangle that can be inscribed in a

circle.

It is evident that the area of the rectangle

will be small when its altitude is small and also

when its base is short. Hence the area will be

largest for some intermediate shape.
From the equations : .

u = kxy, x2
-\-y

2 = a2
,

we could eliminate y and thus express u as a function of x.

In practice, however, it is usually better not to eliminate, but

to differentiate the equations as they stand :

D.u = 4:(y + xDx y)
= 0, 2x + 2yDxy = 0.
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Substituting this value in the first equation, we get

x-
y = or y = x,

y

i.e., the maximum rectangle is a square.

EXERCISES

1.' A 100-gallon tank is to be built with a square base and
vertical sides, and is to be lined with copper. Find the most
economical proportions.

Ans. The length and breadth must each be double the height.

2. Find the greatest cylinder of revolution that can be

inscribed in a given cone of revolution.

3. What is the cylinder of greatest convex surface that can

be inscribed in the same cone ?

A
4. Find the volume of the greatest cone of revolution that

can be inscribed in a given sphere.

5. Find the most economical proportions for a cylindrical

tin dipper which is to hold a pint. Ans. h = r.

* 6. What ought to be the shape of a tomato can to hold a

quart and to require as little tin as possible for its manu-

facture ?

7. If the top and bottom of the can are cut from sheets of

tin in such a way that a regular hexagon is used up each time

and the waste is a total loss, what will then be the best

proportions ?

*
8. A Norman window consists of a rectangle surmounted by

a semicircle. If the perimeter of the window is given, what

must be its proportions in order to admit as much light as

possible ? Ans. Breadth and height equal.

9. Work the last two questions of the preceding Exercises

by the present method.
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^
10.' Assuming that the stiffness of a beam is proportional

to its breadth and to the cube of its depth, find the dimen-

sions of the stiffest beam that can be sawed from a log one foot

in diameter.

./
11. If the cost per hour of running a certain steamboat in

still water is proportional to the cube of the velocity, find the

most economical rate at which to run the steamer up stream

against a four-mile current. Ans. 6 m. per h.

12. The gate in front of a man's house is 20 yds. from the

car track. If the man walks at the rate of 4 miles an hour and

the car on which he is coming home is running at the rate of

12 miles an hour, where ought he to get off in order to reach

home as early as possible ?

13. If the cost per hour for the fuel required to run a given

steamer is proportional to the cube of her speed and is $ 20 an

hour for a speed of 10 knots, and if other expenses amount to

$135 an hour, find the most economical rate at which to run

her. Ans. 15 knots an hour.

v
14. A telegraph pole at a bend in the road is to be sup-

ported from tipping over by a stay 20 ft. long fastened to the

pole and to a stake in the ground. How far from the pole

ought the stake to be driven in ?

15. How much water should be poured into a cylindrical

tin dipper in order to bring the centre of gravity as low down
as possible ?

\/ 16.
* A man is in a row boat 3 miles from the nearest point

A of a straight beach. He wishes to reach a point of the

beach 5 miles from A in the shortest possible time. If he

can walk at the rate of 4 miles an hour, but can row only
3 miles an hour, what point of the beach ought he to row
for?
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4. Velocity. By the average velocity with which a point

moves for a given length of time t is meant the distance s

traversed divided by the time :

average velocity = —

Thus a railroad train which covers the distance between two

stations 15 miles -apart in half an hour has an average speed

of 15/-J-
= 30 miles an hour.

When, however, the point in question is moving sometimes

fast and sometimes slowly, we can describe its speed approxi-

mately at any given instant by considering a short interval

of time immediately succeeding the instant t in question, and

taking the average velocity for this short interval.

For example, a stone dropped from rest falls according to

the law :

s = 16Z2
.

To find how fast it is going after the lapse of t seconds. Here

(1)
s =16t 2

.

A little later, at the end of t' seconds from the beginning of

the fall,

(2) s' = 16t'2

and the average velocity for the interval of t
1 — t seconds is

(3) ^7=^ ft. per sec.W t'-t
*

Let us consider this average velocity, in particular, after the

lapse of 1 second :

t as 1, S = 16.

Let the interval of time, t' —t
,
be y

1
^ sec. Then

*' = 16 x l.l2 = 19.36,

9o = 3
1
36

==33 _6ft agea
t' - 1 .1

Next, let the interval of time be T^ sec. Then a similar

computation gives, to three significant figures :
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j,
—

7° = 32.2 ft. a sec.

And when the interval is taken as y^g- sec., the average

velocity is 32.0 ft. a sec.

Thus we can get at the speed of the stone at any desired

instant to any desired degree of accuracy by direct computa-

tion; we need only to reckon out the average velocity for a

sufficiently short interval of time succeeding the instant in

question.

We can proceed in a similar maimer when a point moves

according to any given law. Can we not, however, by the aid

of the Calculus avoid the labor of the computations and at the

same time make precise exactly what is meant by the velocity

of the point at a given instant ? If we regard the interval

of time t' — 1 as an increment of the variable t and write

V — t = At, then s' — s = As will represent the corresponding
increment in the function, and thus we have :

As
average velocity =—

Now allow At to approach as its limit. Then the average

velocity will in general approach a limit, and this limit we take

as the definition of the velocity v at the instant t :

lim (average velocity from t = t to t = t
1

)

= actual velocity at instant t = t
,

or v— lim— = D.s.
4(i0Ai

Hence it appears that the velocity of a point is the time deriva-

tive of the space it has travelled.

Similarly, the rate at which the distance between two points,

one or both of which are moving, is changing is the derivative

of their distance apart with respect to the time; see Ex. 4

below. And the rate at which any quantity is changing is its

time derivative, as in Ex. 3.
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EXERCISES

1. The height of a stone thrown vertically upward is given

by the formula:
s==48*-16*2

.

When it has been rising for one second, find (a) its average

velocity for the next T̂ - sec.
; (6) for the next y^- sec.

; (c) its

actual velocity at the end of the first second; (d) how high it

will rise.

Ans. (a) 14.4 ft. a sec.
; (b) 15.84 ft. a sec.

; (c) 16 ft. a

sec.
; (d) 36 ft.

2. A man 6 ft. tall walks directly away from a lamp-post
10 ft. high at the rate of 4 miles an hour. How fast is the

further end of his shadow moving along the pavement ?

Ans. 10 miles an hour.

3. Find the rate at which the shadow in the preceding

problem is lengthening.

^•0- The rays of the sun make an angle of 30° with the hori-

f'zon. A ball is thrown vertically upward to a height of 64 ft.

How fast is its shadow on the ground travelling just before

the ball strikes the ground ? Ans. Ill ft. a sec.

""—*Q. Two ships start from the same port at the same time.

One ship sails east at the rate of 9 knots an hour, the other

south at the rate of 1 2 knots. H6w fast are they separating

at the end of 2 hours ? Ans. 15 knots an hour.

6. If in the preceding question the first ship starts an hour

ahead of the second ship, how fast will they be separating an

hour after the second ship leaves port ?

7. One ship is 20 miles due north of another ship at noon,

and is sailing south at the rate of 10 knots an hour. The sec-

ond ship sails west at the rate of 12 knots an hour. How
long will the ships continue to approach each other?



APPLICATIONS 49

8. A stone is dropped into a placid pond and sends out a

series of concentric circular ripples. If the radius of the

outer ripple increases steadily at the rate of 6 ft. a sec, how

rapidly is the area of the water disturbed increasing at the

end of 2 sec. ? Ans. 452 sq. ft. a sec.

9. A man is walking over a bridge at the rate of 4 miles an

hour, and a boat passes under the bridge immediately below him

rowing 8 miles an hour. The bridge is 20 ft. above the boat.

How fast are the boat and the man separating 3 minutes later ?

5. Increasing and Decreasing Functions. The Calculus af-

fords a simple means of determining whether a function is

increasing or decreasing as the independent variable increases.

Since the slope of the graph is given by Dx y, we see that,

when Dxy is positive, y increases as x increases, but when Dxy
is negative, y decreases as x increases. Fig. 7 shows the graph
in general when Dxy is positive.

y

Fig. 7

Theorem : When x increases, then

(a) if Dx y>0, y increases ;

Qj) if Dxy < 0, y decreases.

As an application consider the condition that a curve y =f(x)
have its concave side turned upward, as in Fig. 8. The slope
of the curve is a function of a?: y

tanr = <f>(x).

sider the tangent line at a vari-

able point P. If w think of 7' as ^
tracing out the r tA

- ve and carrying FlG< 8
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the tangent along with it, the tangent will turn in the counter

clock-wise sense, the slope thus increasing algebraically as x

increases, whenever the curve is concave upward. And con-

versely, if the slope increases as x increases, the tangent will

turn in the counter clock-wise sense and the curve will be con-

cave upward. Now by the above theorem, when

Dx tan t > 0,

tanr increases as x increases. Hence the curve is concave

upward, when Dx tan t is positive.

The derivative Dx tan t is the derivative of the derivative

of y. This is called the second derivative of y :

(read :

" D x second of y ").
#

The^test for the curve's being concave downward is obtained

in a similar manner, and thus we are led to the following

important theorem.

Test for a Curve's being Concave Upward, etc. The

curve y =f(x)

is concave upward ivhen Dx
2y>0;

concave downward when Dx
2
y<0.

Fig. 9

* The derivative of the second derivative, Dx v /*
2
y) ,

is called the third

derivative and is written Dx
z
y, and so on.
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A point at which the curve changes from being concave up-
ward and becomes concave downward (or vice versa) is called

a point of inflection. Since D*y changes sign at such a point,

this function will necessarily, if continuous, vanish there.

Hence :

A necessary condition for a point of inflection is that

Dx
2
y = 0.

6. Curve Tracing. In the early work of plotting curves

from their equations the only way we had of finding out what

the graph of a function looked like was by computing a large

number of its points. We are now in possession of powerful
methods for determining the character of the graph with

scarcely any computation. For, first, we can find the slope of

the curve at any point ;
and secondly we can determine in

what intervals it is concave upward, in what concave down-

ward.

As an example let us plot the graph of the function :

(1)
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Hence the graph is, in character, for positive values of x as

shown in Fig. 10.

2»0 *

Fig. 10

To obtain the graph for negative values of x we need only
observe that the curve is symmetric with respect to the origin.

For, if (x, y) be any point of the curve, then x 1 — —
x,

y' = — y is also a point of the curve. When, therefore, we

have once plotted the curve for positive values of x, we need

only to rotate the graph through 180° about the origin in order

to get the remainder of the curve.

Finally we can get the graph of (1) from that of (2) by

merely shifting the axis of x to a parallel axis. The formulas

for this transformation are :

x = x', y = y'-q.
Thus (2) becomes :

y'
— q == x' s + px'.

Transposing q and dropping the accents, we get equation (1).

This curve is symmetric with respect to the point x = 0,y = $.

EXERCISES

Use coordinate paper in working these exercises.

1. Show that the curve

? = 3
V

3 + x2

is concave downward in the interval — 1 < x < 1 and concave

upward for all other values of x. Find its slope in its points of
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inflection and draw the tangent line in each of these points.

Hence plot the curve.

2. Plot the curve

4y = x* - 6x? + 8,

determining ^^*
(a) its intersections with the coordinate axes

;

(b) the intervals in which it is concave upward and those in

which it is concave downward
;

(c) its points of inflection
;

(d) the points where its tangent is parallel to the axis of x.

Plot the points (a), (c), (d) accurately, using a scale of 2 cm.

as the unit, and draw accurately the tangent in each of these

points. Hence construct the curve.

Plot the following curves :

3. 10y = x*-12x + 9.

Note that the curve cuts the axis of x in the point x = 3.

4. y = a? + 2x2 -13x + 10. 9. y
2 = x2 + x^.

5. y= x — x*. 10. y
2

=x(x — l)(x
—

2).

T 1
6. y= - ^11. y = z s'

• 1 -fiC
2 1 —x

1 „ T2

8. 2/
= -^-- 13. y

2 = ~
1-x ' l+x2

7. Relative Maxima and Minima. Points of Inflection. A
function

(i) y=f{x)

is said to have a maximum at a point x = x if its value at .^ is

larger than at any other point in the neighborhood of x . But

such a maximum need not represent the largest value of the
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function in the complete interval a<±x<b, as is shown by
Fig. 11, and for this reason it is called a relative maximum, in

distinction from a
V i

•

maximum maxi-

morum, or an ab-

solute maximum.
A similar defini-

tion holds for a

minim urn, the word
"
larger

"
being

5^- merely replaced by
" smaller."

It is obvious that

a characteristic feature of a maximum is that the tangent is

parallel to the axis of x, the curve being concave downward.

Similarly for a minimum, the curve here being concave upward.
Hence the following

Test for a Maximum or a Minimum. If

(a) WdflUk-^ [A'}],-t<0,

the function has a maximum for x = x
; if

(b) [A2/l«„ = 0, [A2

t/]I=lo>0,

it has a minimum.

This condition is sufficient, but not necessary. Thus the

function

(2) y = a?

evidently has a minimum at the point x = 0. But here Dx
2
y

is not positive, but = 0. Still, the above test is adequate for

the great majority of cases that arise in practice. We shall

obtain a more general test later.

Example. Let

y = o?-3a?+ l.
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Here Dx y = 6x* - 6x = 6x(x>
-

1) (x
2 + 1),

and hence Dxy = for a; = — 1, 0, 1.

Furthermore, Dx
2

y = 30 a!
4 - 6.

Thus

[A,
2

#]x=-i= 24 >0, .-. x = — 1 gives a minimum;

[Dx
2

y~\x=0
=—6<0, .*. a?= " " maximum;

\_Dx y~]x= x
= 24 >0, .-. & = 1 " " minimum.

As a further application of the test just found let us obtain

a sufficient condition for a point of inflection. We have seen

that a necessary condition is that Dx y = 0; but this is not

sufficient, as the example of the function (2) above shows. A

geometric feature characteristic of a point of inflection is that

the tangent ceases rotating in one direction and, turning back,

begins to rotate in the opposite direction. Hence the slope of

the curve, tanT, has either a maximum or a minimum at a

point of inflection.

Conversely, if tan t has a maximum or a minimum, the

curve will have a point of inflection. For, suppose tan r is at

a maximum when x = x . Then as x, starting with the value

x
, increases, tan t, i.e. the slope of the curve, decreases alge-

braically, and so the curve is concave downward to the right of

Xq. On the other hand, as x decreases, tanr also decreases,

and so the curve is concave upward to the left of x .

Now, by the above theorem, tan t will have a maximum or

a minimum if

Dx tanr = 0, Dx
2 tanr^ 0.

Hence, remembering that

t2LTLT = Dx yj

we obtain the following

Test for a Point of Inflection. If

[Z>x
2

2/],„=0, [D'yl^+0,
the curve has a point of inflection at x = x .



56 CALCULUS

This test, like the foregoing for a maximum or a minimum,
is sufficient, but not necessary.

Then

Example. Let

12y = x4 + 2xi -12x2 + Ux-l.

12Dxy = 4a3 + 6x2 - 24a + 14,

12D 2
y = 12 x2 + 12* - 24 = 12 (x

-
1) (a? + 2),

12Z)x
3
2/
= 12(2a + l).

Setting ZVy = 0, we get the points x = 1 and x= — 2. And
since

12[A3
2/],=.

= 36^0, l2[2>.'y]„_1 =a -36*0)

we see that both of these points are points of inflection.

The slope of the curve in these points is given by the

equations :

12[A2/]x,i = 0, 12[D„y]„_i
= 64.

Hence the curve is parallel to the axis of x at the first of these

points ;
at the second its slope is 4i.

EXERCISES

Test the following curves for maxima, minima, and points
of inflection, and determine the slope of the curve in each

point of inflection.

1. y = 4x? -15ar + 12a? + l. 4. y = (x- l)
3
(a + 2)

2
.

x
2. y = x3 + x4 + x5

.

3. 6y = x6 -3x4+ 3x2 -l.

5 ' y =
2 + 3x*

6. y = (l-x*)
s

.

7. Deduce a test for dis-

tinguishing between two

such points of inflection

as those indicated in Fig.

12.

Fig. 12



APPLICATIONS 57

8. On the Roots of Equations. The problem of solving the

equation

can be formulated geometrically as follows : To find the points
of intersection of the curve

with the axis of x :

2/
= 0.

Hence we see that we can approximate to the roots as closely
as we please by plotting the curve with greater and greater

accuracy near the points where it meets the axis of x.

It is often a matter of importance to know how many roots

there are in a given interval
;
for example, the number of posi-

tive roots that an equation possesses. One means of answer-

ing this question is by the methods of curve tracing above set

forth.

Consider, for example, the equation :

x6 - 3^ + 1 = 0.

The function

y=x«-3x2 + 1

is positive for values of x that are numerically large. For

(«-!+!>
Here the parenthesis apprr

Alt
hes a positive limit when x in-

creases without limit
;
the f~ % factor increases without limit,

and so the product increases *vithout limit.

Again, the function has a maximum when x = (see §7), its

value there being positive, namely 1
;
and at x — 1 it has a

minimum, its value there being negative. Consequently the

curve must have crossed the positive axis of x between x =
and x = 1, and again when x > 1, and so the above equation
has at least two positive real roots. Has it more ?
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In the interval < x < 1

Dx y = 6x(x*-I)(x> + 1)

is negative and hence the function is steadily decreasing. The

graph, therefore, can have crossed

the axis of x but once. Again, when

x > 1, Dxy is positive, and so the

function is always increasing. Hence

x the graph can have crossed the axis

h of x beyond this point but once.

Thus we see that the equation has

v!y just two positive roots, and since to

FlG 13
each root x = a corresponds a second

root x = — a, it has just two nega-

tive roots, and so in all just four real roots.

A general principle is illustrated in this example, which

may be stated as follows.

Theorem. If a continuous function f(x) changes sign in

an interval a<x < 6 and if its derivative is positive at all points

of the interval (or negative at all points of the interval), then

the function vanishes at just one point of the interval.

The cubic equation

(1) x3 +px + q =

can be treated in a similar manner. The graph of the function

(2) y = Xs
-\-px

studied in § 6 was especially s>
;

nple. The points in which

this curve is cut by the line

(3) 2/=-?

evidently have for their abscissas the roots of the cubic (1).*

Now if p ^> 0, the graph will correspond to the first of the two

* Another geometric formulation of the problem of finding the roots of

the cubic (1) is to consider the intersections of the curves

y = xs
, y--px-q.
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figures in Fig. 10. Thus the line (3) will cut the curve (2)

in just one point, and so equation (1) will have just one real

root.* But if p < 0, then the graph corresponds to the second

figure in Fig. 10, and we see that it depends on the relative

magnitudes of p and q as to whether there are three points

of intersection or fewer.

The maxima and minima of the function (2) are obtained by

setting ,

Dxy = 3a*+p = 0, x=±yJ-£,
and it turns out that a minimum occurs at the point f

f-V-f' y= 3\-!'
a maximum at

2 „ = _?I?J_£.
3'

y 3\ 3

Hence if q is numerically greater than these equal and oppo-
site values of y, i.e. if . s

y
Z 27'

the cubic (1) will have one real root. If q, however, is numeri-

cally smaller : - <,

*
27'

it will have three real roots
;
and if

q
2 =2 _ ±P

S

it will have two real roots, one of which counts twice, except in

the case above mentioned, p = q = 0, where it has one triple root.

The first is a special cubic, which can be plotted accurately from the

tables once for all
;
and then the straight line can be drawn as soon as

p and q are assigned special values. Thus we get a graphical solution

for any cubic of the above type.
* In the special case : p — 0, q = 0, the cubic (1) reduces to xz — 0. It

is customary to say that this equation has three coincident roots.

t Observe thatp<0, so that fpV—p/S is negative and, further down,
— 4p3

/27 is positive.
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We can collect all cases under the following

Theorem. The cubic equation

has
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6. Show that, by a suitable transformation of the coordinate

axes to parallel axes, the new origin being on the axis of x,

namely :

x = x' + h, y=y',
the equation :

y = x?+p1 x
2 +p2x+p3

can be carried over into the equation :

y = x*+px + q.

Hence obtain the condition that the cubic:

x3 +pxx
2 +pax +ps

=

have three real roots.



CHAPTER IV

DIFFERENTIATION OF TRANSCENDENTAL FUNCTIONS

1. Differentiation of sin a;. First Method. The graph of

the function

(1) y = sin x

can be constructed geometrically by drawing a circle of unit

radius and measuring the ordinates corresponding to different

angles ;
the angle itself, measured in radians, giving the abscissa

and being computed arithmetically.

y

In order to differentiate sin x we have to give to x an arbi-

trary value x and compute the corresponding value of y :

y = smx .

Then give x an increment, Ax, and compute again the corre-

sponding value of y :

y + Ay = sin (x -f Ax).
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Hence

(2)

Ay = sin (x + Aa;)
— sin #

,

Ay _ sin (# -f- Aa?)
— sin x

Ax Ax

Let us follow these steps geometrically by constructing the

successive magnitudes. Fig. 16 explains itself. The radius

of the circle is unity, and so

MP= sin xQ ,
M'F = sin (x + Ax).

QP'= sin (x -h Ax)
— sin x = Ay, PP'= Ax.

Hence

(3) ^=«Z\
Aa; ppi

Now it is easy to see

what limit this last ratio ap-

proaches when P' approaches
P. Suppose first we had in

the denominator the chord

PP'. Then

S^=sin<k
PP1

M' M
Fig. 16

and since

it follows that

lim
<f>
= ZQPT=?-x ,

pr=p 2

lim -3£— = cos x .

p'= ppp*

The chord of a small angle differs, however, from the arc

only by a small percentage of either. We readily see that

W r PP' 1lim —— = 1.
pf=pppt

The student is requested to draw an accurate figure represent-

ing the arc and the chord of an angle of 30° and also of 15°.
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Eeturning now to the ratio (3) and writing it in the form :

QP^^QT PP
PP PP' pp''

we have, when P' approaches P as its limit :

Ax=oAa? \p'=pppij\p'=pppij

or dropping the subscripts :

(5) Dx sin x = cos x.

EXERCISE

Prove in a similar manner that

(6) Dx cos x = — sin x.

Second Method. The foregoing method has the advantage
of being easily remembered. Each analytic step is mirrored

in a simple geometric construction. It has the disadvantage,

however, of incompleteness. For, first, we have allowed Ax,

in approaching 0, to pass through only positive values
;
and

secondly we have assumed x
{)
to lie between and ir/2. Hence

there are in all seven more cases to consider.

An analytic method that is simple and at the same time

general is the following. Recall the Addition Theorem for

the sine:

sin (a -j- b)
= sin a cos b + cos a sin b,

sin (a — b)
= sin a cos b — cos a sin b,

whence
sin (a + b)

— sin (a
—

b)
= 2 cos a sin b

}

and let a + b = xQ + A#, a — b = x* .

Solving these last equations for a and b, we get :

. Ax , A&
a = Xq H -, b =— •
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Thus sin (x -f Ax)
— sin x ^rVn ^>

Ax"

2;
and the difference-quotient (2) becomes :

Ay
Ax

cos

. Ax

( ^\ "2"

The limit of the first fac-

tor on the right is cos# .

The limit of the second is

of the form :

a= a

and here, again, we have to

do with the limit of the ratio of the arc to the chord.

Fig. 17: ^
PP' = 2sina, PP' = 2a.

For, in

We have seen that the limit (4) has the value 1 by direct

inspection of the figure. We can give a formal proof based on

the axioms of geometry as follows. First of all, a straight

line is the shortest distance between two points, and so

PP'<PP'.

Secondly, if we draw the tangents at P and P, meeting in N,
we have, by the axiom that a convex curved line is shorter

than a convex broken line that envelops it and has the same

extremities :

P̂P' < PN+NP = 2PN.

Hence PP<PP'<2 PN.

Dividing through by PP' = 2PM, and noticing that

PN= 1

PM cos a
'

we obtain

pp cos a
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When a approaches 0, 1/cosa approaches 1, and thus the

variable PP'/PP' is seen to lie between the fixed value 1

and a variable number which is approaching 1 as its limit.

Consequently ^p
lim

oPP'
1, q. e. d.

The reciprocal of this ratio, PP'/PP', must, as was pointed

out in Chap. II, § 5, under Theorem C, also approach unity as

its limit.

Another Proof of (4). The area of the sector OAP, Fig.

18, is \a, and it obviously lies

between the areas of the tri-

angles OMP and OAQ. Hence

^sinctcos a< Ja< Jtana
or

. a . 1
cos a < <

sin a cos a

When a approaches 0, each of the extreme terms approaches 1.

and so the middle term must also do so, q. e. d.

From Peirce's Tables, p. 130, we see that

sin 4° 40' = .0814,

and the same angle, measured in radians, also has the value

.0814, to three significant figures. Thus for values of a not

exceeding 4° 40', sin a differs from a by less than one part in

800, or one-eighth of one per cent.

Reason for the Radian. The reason for measuring angles in

terms of the radian as the unit now becomes clear. Had we
used the degree, the increment Ax would not have been equal

to PP'
;
we should have had :

Ax
360

PP'
or A 180 $<,Ax = PP'.

Hence (3) would have read Ay
Ax

7T

180
QP
PP'
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and thus the formula of differentiation would have become :

Dx sin x — -^- cos x.
180

The saving of labor and the gain in simplicity in not being

obliged to multiply by this constant each time we differentiate

is enormous.

2. Differentiation of cos x, tan x, etc. To differentiate cos x

we may set

Then cos x = sin y,

Dx cos x = Dx sin y

=D
J,smyDxy=—co8y,

(7) . \ Dx cos x= — sin x.

To differentiate tana;

write

sin a;
tan x =

Then
COSiC

Dr tan x

cos2x — sin x (
— sin x)

COS^iC

cos2
a;'

(8) D. tana;= sec2
x.

Fig
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EXERCISES

1. Show that

(a) Dx cot a; = — csc2#
;

(6) Dx secx — sin x sec2

x;

(c) Dx esc x = — cos a; esc2
a;

;
_-

(d)* Dx vers a?= sin x.

Differentiate the following functions :

• 6.1 — sin x. * 10. cos3#.

7. x — tana;. 11. sec2
a;.

8. x sin x. , 12. sin x cos x.

9. 1
. 13.

1 ~ cosx
.

a sin a; + b cos a; 1 + cos x

lim
l-CO8«= 0)

a= Ot

first, by considering the representation of numerator and

denominator by lines in Fig. 17
; secondly, by a trigonometric

reduction, expressing 1 — cos a in terms of the half-angle, a/ 2.

3. Inverse Functions. Let

be a given function of x and let us solve for a? as a function of

x = <f>(y).

Then <f>(y) is called the inverse of the function /(x) . The

graph of the former function serves as the graph of the latter,

provided in the latter case we take y as the independent, x as

the dependent variable. In order to obtain the graph of the

* The versed sine and the coversed sine are defined as follows :

vers x — 1 — cos x, covers x = 1 — sin x.

<2.
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inverse function with x as the independent variable, transform

the x, y plane, and with it the above graph, as follows : let

a = 2/', V = x'.

This is equivalent to rotat-

ing the plane through 180°

about the bisector of the

angle made by the positive

coordinate axes. In other

words, it amounts to a

reflection of the plane in

that bisector. We have

met an example of inverse

functions in the radical,

xl
'«, Chap. II, § 8.

If, as x increases, y

steadily increases (or if y

steadily decreases), the

inverse function will obviously be single-valued. In this case

the derivative of the inverse function is obtained from the

definition: ,

y = <f>(x) if x=f(y),
and the relation :

Ax Ax
1

Ay

Fig. 21

»*-&hence lim^/ = lim_,
Ax=oAa; Ay=oAa?

Ay
provided Dy

x =^0.

4. The Inverse Trigonometric Functions, (a) sin -1
a. The

inverse of the function

(1) y= sin x

is obtained as explained in § 3 by solving this equation for x

as a function of y, and is written :

(1') x = sin-1

y,
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read "the antisine of y." In order to obtain the graph of the

function

(2) y = sin-1 x

we have, then, to reflect the graph of (1) in the bisector of the

angle made by the positive coordinate axes. We are thus led

to a multiple-valued function, since the

line x = x'(—l<x'<l) cuts the graph
in more than one point,

— in fact, in an

infinite number of points. For most

purposes of the Calculus, however, it is

allowable and advisable to pick out just

one value of the function (2), most sim-

ply the value that lies between —
tt/2

and +7J-/2, and to understand by sin"1
a*

the single-valued function thus obtained.

Its graph is the portion of the curve in

Fig. 22 that is marked by a heavy line.

This shall be our convention, then, in

the future unless the contrary is ex-

plicitly stated, and thus

Fig. 22
(3) y = sm_I

a;

is equivalent to the relations :

(3')
x = sin y,

In particular,

sin-1 = 0, sin" 1 l =

<

Sill '(-!)= -f.

In order to differentiate the function (3) write it in the

implicit form (3') and differentiate :
*

Dxx = Dx sin y = Dy
sin yDxy

1
or 1 = cos yDx y, Dxy =

cosy

* It was shown in § 3 generally that, whenever a function has a deriv-

ative ^ 0, its inverse function also has a derivative, and hence we are



Now

'RANSCENDENTAL FUNCTIONS

or

71

sin2
?/ + cos2

y = 1 or cos 2
?/
= 1 — x2

,

and since, for values of y restricted as by (3') to lie between
—

tt/2 and -f tt/2, cos?/ > 0, we have

and so finally :

*

(4)

cos?/= Vl — X2
,

1Dx sm~ 1 x =
Vl-x2

(6) cos l
x. The treatment here is precisely similar. We

define :

(5) y — cos-1 x if # = cos?/,

and we make the inverse function single-valued

by choosing that value of y which satisfies the

relation :

(6) 0<?/<7r.

In particular

cos- xl = 0, cos -1 =
2'

COS"^— 1)=7T.

(7)

To differentiate cos -1
a? use the implicit form:

Dxx = Dx cos y = By cos ?/ Z^y,

1 = - sin y Dx y,

1Dr cos
-1 #

Vl-JB2

The functions sin-1 # and cos-1 ic, when restricted by (3') and

(6) to be single-valued, are connected by the relation :

(8) cos-1a = ?— sin -1
a?.

Hence we could have obtained (7) directly by differentiating (8).

not assuming the existence of a derivative and merely computing it. All

the conditions of Theorem V in Chap. II here employed are actually ful-

filled, and thus our proof is complete.
* Geometrically the slope of the portion of the graph in question is

always positive, and so we must use the positive square root of 1 — x2
.
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(c) tan-1 a;. Here

y = tan-1x if x = tan y,

and we make the inverse function single-valued by picking out

that value y for which

do) ~l<y<l-
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Corresponding to the addition theorems for the trigono-

metric functions there are functional relations for the inverse

trigonometric functions, such for example as, for tan -1
a; :

tan_1w + tan-1 ?; = tan-1
** + v

•

1 — uv

If these relations are used, the above definitions of sin-1#,

cos_1 #, tan
_1

#, by which these functions are made single-valued,

must be abandoned. For this reason it is better, for the

present, at least, to abandon these relations and to keep these

important functions single-valued.

EXERCISES

1. Show that
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5. Logarithms and Exponentials. In Chap. II, § 8, we have

studied the function

y = xn

for commensurable values of n, x being the independent vari-

able. Suppose we cut the family of curves of Fig. 3 by a

straight line parallel to the axis of ordinates :

x = a, a>l.

The ordinate of any one of the points of intersection :

(1) y = an
,

is determined as soon as the value of n has been assigned, and

is thus a function of n. From the theorem of p. 32 we know

that, when n increases, y increases. Moreover, y is always posi-

tive
;
it increases without limit when n = -f- oo ,

and it approaches
when n = — oo .

As yet the function (1) has been defined only for commen-

surable values of What value shall it have when, for ex-

ample, n = V2? If we allow n, passing through rational values,

to approach V2 as

V = e its limit, it turns out

that an approaches
a definite limit. We
define a^2 as this

limit :

lim an = a^2
.

n=V2

And similarly for

every other incom-

mensurable value of

the exponent. The
function thus ob-

tained:

(2) y=a-,

is continuous. Its

graph for the special
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value a = 2.72 is shown in Fig. 25. For a proof of the fore-

going statements cf. the Appendix.
The chief properties of the exponential function thus denned

are expressed by the equations

(I) au+v = au av
,

called the Addition TJieorem; and

(II) (a
u
)

v = a™.

The inverse of the exponential function is the logarithm :

(3) y = \oga x if x — ay
.

It is single-valued and continuous for all positive values of x.

Moreover,

loga l = 0, loga a = l, logaO = -oo, loga (+co) = + oo.

V y = \ogx

Fig. 26

The graph is obtained in the usual manner from

that of (2) by reflecting in the bisector of the

positive coordinate axes, and is shown in

Fig. 26.

The chief properties of logarithms follow from (I) and (II) :

(A)

(B) log„a;" = nloga a;.
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The proof of (A) is as follows. Let

u = loga x, whence x = au
-,

v = loga y,
"

y = av
.

Then (I) becomes:

au+v = xy, whence u-\-v = \oga xy,

or loga a; + log y = log8 ajy, q. e. d.

To prove (B) write (II) in the form

(a
uf = anw

and substitute for au its value a; :

xn = aWM
,

whence tiw = loga#
n
,

or loga a?" = n loga #, q. e. d.

A third relation is of importance when we have to change
from one base to another. It is :

(C) loga * =j^.
It is easily remembered because of its formal analogy with

the formula (V") of Chap. II, which, when the variables are

denoted by a, 6, and x, becomes :

A«

The proof is as follows. Let

(a) w = loga sc, whence x = au
;

(/?)
v = log6 a,

« x = b
v

;

(y) <7=log6 a,
" a = bG.

We wish to prove that

v

From (y) follows that

b = ad .
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Substituting this value of b in
(/?) we get :

x= ac .

Substituting this value of x in (a) we get :

au = ad.

And now it merely remains to take the logarithm of each side.

In particular, if we set x = b, (C) becomes :

(4) log^^-L..
log* a

The following identity, which is often useful, is obtained by

replacing y in the second equation of (3) by its value from the

first equation :

(5) x = a

Thus

(6) xn — a

We have assumed hitherto that a > 1. If < a < 1, the

graph of (2), Fig. 25, must be reflected in the axis of ordinates,

and the graph of (3), Fig. 26, in the axis of abscissas.

EXERCISES
1. Show that

(a) log.-=-log.aj.
x

(b) loga£= loga P-logo Q.

(c) lo&VT+a^lo&CL + a2

).

(d) loga (a?
- y

2
)
= loga (x + y) + loga (x-y).

(e) loga (x + h)- logax = logA +^
•

2. Simplify the following expressions :

vi, V,, {2>)>, vpz, i, £i;.
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3. Solve the equation :

ax — a~x

= V
a*

4. a
-x

for x in terms of y.

4. Show that

l0*-

<%+*>
- log, [(i +*)!].

5. Are (a)
xX and (a

x
)

x

the same thing ?

6. If bx = c,

show that

3log 6 = loga c.

6. Differentiation of log a. To differentiate the function

y = logax

we have to form the difference-quotient :

(7)
Ay = loga (x + Ax)-logax

== \ xj
Ax Ax A3.

and see what limit it approaches when Ax approaches 0. If

we set

Ax

we can write this last expression in the form :

3q A3 \ X J~XQ

fl \ flj" 3
Da

|_V fij J

When A3 approaches 0, fx becomes infinite, and the question
is : What is the value of the limit :

limfl+i^
IV.
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First, let /x become infinite passing through only positive

integral values :

fji
=

7l, ri = l, 2, 3, •••.

If we write

•M»)-(l+jjT>

we get by direct computation :

*(1) =2,

$(2) =2.25,

$(3) =2.37,

$(10) =2.59,

$(100) =2.70,

$(1000) =2.72,

$(10,000) =2.72.

Hence we see that, as n increases, <f>(ri) increases, but does

not appear to mount above a number somewhat less than 3.

We can show this to be the case no matter how large n. By
the Binomial Theorem :

(a + b)
n = an + nan

~ l b +
n (n ~ 1

) an
-2b2+ ... .

JL • £
we have :

n(n-l)(n-2) /lV

1-2.3 Uy

- Mf1
--)n \ 7iy \ 71/

H to n + 1 terms

1-
= 1 + 1+ T-| +

V

1^2. 3

'V +

These terms are all positive and each increases when n in-

creases. Moreover, when n increases, additional positive terms

present themselves. And so, for both reasons, $(71) increases:

$(tt + l)>$(7l).
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Secondly, <{>(n) is always less than 3. For, the above terms

after the first two are less than the terms of the series:

1 + 1 + 1 +1+ ... +_!_.^ T
2 22 2n

~x

Kecalling the formula for the sum of the first n terms of a

geometric progression, Chap. I, § 1, and setting a = 1, r = J,

we get:

1 +1+1+ ...+_L = lz^i)! =2—1,

and so: <f> (/i) <3— -—-< 3.r v ' 2n

Now if we have a function of the positive integer n which

always increases as n increases, but never exceeds a certain

-h 1

"i?r\ ml i

1 2
' 3

Fig. 27

fixed number, A, it must approach a limit not greater than A,
when n = oo (Fundamental Principle for the existence of a

limit, Chap. XII, § 2) . Hence
<f> (n) approaches a limit whose

value, e, is not greater than 3 :

(9) lin/l+iY=e.
„=» ^ nj

We shall see later that

e = 2.718.-..

/u.
irrational and negative. We can now show that, when fx

becomes positively infinite, varying continuously, i.e. passing

through all positive values, <£(/u.)
still approaches e as its limit.

Let
n</*<w + l,

where n is an integer ;
then

71 + 1
//,

W

fr^r<^i)'<('^y.
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We shall only strengthen this inequality if in the left-hand

member we replace ll by n, in the right-hand member, by n-fl.
Hence

n+1

As
ix,

and with it n, becomes infinite, each extreme member of

this double inequality approaches e as its limit, hence the

mean member must likewise approach e and

lim
<f> (ji)

= e.

M=+ «>

Finally, let p be negative, p = — r. Then

K)-=K)"H^)H-^H1+^J

When fi
= — oo

,
r= +00 ,

and

lim <£(/*)
= e.

/A = — 00

Returning now to equations (7) and (8) and remembering
that loga# is a continuous function, we see that

&ylim^= lim rilog/l + iYl = ilogriim fl + -Y'

= -loga e,

or, dropping the subscript, we have :

Dx\ogax =
1-^.
x
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The base a of the system of logarithms which we will use is

at our disposal. We may choose it so that the constant factor

log„e = 1,

namely, by taking e as the base : a = e. Thus (10) becomes :

(11) D.log>=i.

This base, e, is called the natural base, and logarithms taken

with e as the base are called natural or Napierian logarithms, in

distinction from denary or Briggs's logarithms, for which the

base is 10. Natural logarithms are used in the Calculus be-

cause of the gain in simplicity in the formulas of differentia-

tion and integration,
— a gain precisely analogous to that in

the differentiation of the trigonometric functions when the

angle is measured in radians.

It is customary in the Calculus not to write the subscript e

and to understand by log a; the natural logarithm of x, the

denary logarithm being expressed as log10 #.

7. The Compound Interest Law. The limit (9) of § 6 pre-

sents itself in a variety of problems, typical for which is that

of finding how much interest a given sum of money would bear

if the interest were compounded continuously, so that there is

no loss whatever. For example, $1000, put at interest at 6 %,
amounts in a year to $1060, if the interest is not com-

pounded at all. If it is compounded every six months, we

have

$1000
(
1 +

tt)

as the amount at the end of the first six months, and this must

be multiplied by (1 + '-—-
J

to yield the amount at the end of

the second six months, the final amount thus being

$1000
(>+3)f



TRANSCENDENTAL FUNCTIONS 83

It is readily seen that if the interest is compounded n times

in a year, the principal and interest at the end of the year will

amount to

1000(1 +^)*
dollars, and we wish to find the limit of this expression when

n = 00 . To do so, write it in the form :

1000

(i+n̂ J

and set n/.06 = fi.
The bracket thus becomes

w-(i +
iy:

and its limit is e. Hence the desired result is

1000 e
06= 1061.84*

EXERCISE

If $ 1000 is put at interest at 4 % compare the amounts of

principal and interest at the end of 10 years, (a) when the

interest is compounded semi-annually, and (&) when it is com-

pounded continuously. Ans. A difference of -$5.88.

8. Differentiation of e*, ax
. Since ax and loga x are inverse

functions, we have :

(12) y=ax
if x = \oga y.

In particular :

(13) y=e* if x = \ogy.

Differentiating this last equation with respect to x, we

obtain :

Dxx = Dx \ogy = DylogyDx y, 1 =
\
DxVy

(14) .-. Dx e
x = (f.

*The actual computation here is expeditiously done by means of

series
;
see the chapter on Taylor's Theorem.
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If we proceed with (12) in a similar manner, we get as our

first result :

y

By (4) in § 5 :

loga e =
loge a

(15) .*. Dxa
x = a* log a.

Differentiation ofx
n

,
n irrational. Formula (12) of Chap. II

can now be shown to hold when n is irrational. Since by

§5,(6):

if we set z — n\ogx,

we have Dxx
n = Dx e* = D*e" • Dxz=e'n- = nxn~1

, q. e. d.
x

We are now in a position to differentiate any of the elemen-

tary functions without evaluating new limits, for any such

differentiations can be reduced, by the aid of Theorems I-V of

Chap. II, to special formulas already in our possession. An

important aid, however, in the technique of differentiation is

furnished by the method of differentials, which we will con-

sider in the next chapter, and so we shall postpone the drill

work on this chapter till that method has been taken up.

EXERCISES

Differentiate the following functions :

1. y = log10 oj. Ans. Dxp =
x

2. y = 10
x

. Ans. Dxy = 2.303 x l(f

3. 2/
= log sin x. 4. y = e

C08x
.

5. 2/
= k)g tan (^+2^ Ans. D9y=—

\J2 4/- cos x



CHAPTER V

INFINITESIMALS AND DIFFERENTIALS

1. Infinitesimals. An infinitesimal is a variable which it is

usually desirable to consider only for values numerically small

and which, when the formulation of the problem in hand has

progressed to a certain stage, is allowed to approach as its

limit. Thus in the problem of differentiation Ax and Ay are

infinitesimals
;
for we allow Aa; to approach as its limit and

then Ay in general also approaches 0. Again, in Chap. IV, we

had to do with lim-—^- Here a and sin a are infinitesimals.
a=0 a

Further examples of infinitesimals are furnished by the fol-

lowing magnitudes of Fig. 28 :

(1) a = AP, ft=AQ = tsma, t

y = MA= l-cosa, 8 = AJST, ^< K

e=PQ, Z = AQ+QP, etc. Fig. 28.

That infinitesimal which is chosen as the independent vari-

able is called the principal infinitesimal.

Two infinitesimals, a and ft, are said to be of the same order

if their ratio approaches a limit not when the principal infini-

tesimal approaches :

lim£= K^O.
a

If their ratio approaches as its limit, ft is said to be of

higher order than a, and if it becomes infinite, ft is of lower

order.

85
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Thus if /3
= tana,

ft __ tan a _ 1
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Similarly, if ft and y are of the same order, or if y is of

lower order than /?, and if furthermore /? is of lower order

than «, then y is also of lower order than a.

An infinitesimal y3 is said to be of the n-th order if p/a
n

approaches a limit not 0, a being the principal infinitesimal :

lim £ =K^ 0.
a=oan

For example, if a is the principal infinitesimal, sin a and

tan a are of the first order, Va is of order
J-,

an is of order n,

and 1 — cos a can be shown to be of order 2. For

2 sin
2?

COSrt
sin-

and lim
a=b0

cos a

Theorem. If two infinitesimals a and fi differ from each other

by an infinitesimal ofhigher order than either, then

Plim tL

a
I

And conversely: If limp/a= 1, then a and /? differ from each

other by an infinitesimal of higher order than either :

/?-«= lim 0.

First, our hypothesis is that, if we write

^8
— a = c, then

Dividing through by a we have :

lim 1 = 0.
a

Hence lim |8_ limH-. q. e. d.
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To prove the converse, write

£=! + „.
a

Then
rj

is infinitesimal. Multiplying up we have :

P = a 4- ya>

The difference, ft— a = r)a = e, is evidently an infinitesimal of

higher order than a and hence also than
/?.

Definition. If a is the principal infinitesimal and if

lim fi _ jT-
a=0

so that, when we write

£=ir+£)
a

we have (3
= Ka + ea,

then the term Ka is called the principal part of p.

EXERCISES

^ 1. Show that a — 2 a2 and 3 a -f a? are infinitesimals of the

same order.

1 2. Show that ot— sin a is of higher order than a.

« 3. Show that asin« is an infinitesimal of the second order.

'

4. In Fig. 28 show that PQ and MA are infinitesimals of

the same order.

5. Determine the order of AR, referred to a.

)
6. Show that AN is of higher order than RQ.

7. Show that AQ and MP are of the same order.

8. Show that PQ is of the second order, referred to a.

9. Determine the order of each of the following infini-

tesimals :

(a) a + sin a; (b) Vsina; (c) VI — cos a-
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10. Show that the sum of two positive infinitesimals, each

of the first order, is always an infinitesimal of the first order,

and that the difference is never of lower order. Cite an example
to show that the difference may be of higher order.

11. Determine the principal part of each of the infinitesi-

mals in the text numbered (1).

12. If two infinitesimals have the same principal part, show

that they differ from each other by a small percentage of the

value of either, and that this percentage is infinitesimal, pro-

vided that their principal part is not 0.

#

2. Fundamental Theorem. There are two theorems that are

fundamental relating to the replacement of infinitesimals by
other infinitesimals that differ from them respectively by
infinitesimals of higher order. One is the theorem of this

paragraph ;
the other is Duhamel's Theorem of Chap. IX, § 6.

Theorem. In taking the limit of the ratio of tivo infinitesi-

mals, each infinitesimal may be replaced by another one which

differs from it by an infinitesimal of higher order :

lim£= lim£'
y 7

if lim^ = l and lim^= l.

P y

For, since

|'
= l + € or £' = 0(1 + c)

P

and -==1 + v or y'
= y(1 + >?)>

where c and
rj
are infinitesimals, we have :

y' y! + v
Hence

lim # =Aim £Ylim ±±±)= lim &, q. e. d.

y' \ yA i +W y
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3. Tangents in Polar Coordinates. Let

be the equation of a curve in polar coordinates. We wish to

find the direction of its tangent. The direction will be known
if we can determine the angle \jj

between the radius vector

produced and the tangent. Let P, with the coordinates

(r , ), be an arbitrary

point of the curve and

P':(r + Ar, + A0)
a neighboring point.

Draw the chord PP
and denotetheZOP'P

by«//. Then obviously

lim «//= xjjq.

Fig. 29 To determine
\f/0j

drop a perpendicular

PM from P on the radius vector OP and draw an arc PN of

a circle with as centre. The right triangle MP'P is a tri-

angle of reference for the angle if/'
and

tani//
MP
PM

Hence tan \pQ
= lim tan «//= lim

MP
p±pP'M

In the latter ratio we can, by virtue of the Fundamental

Theorem of § 2, replace MP and P'M by more convenient

infinitesimals. We observe that

MP=ro sinA0,

Furthermore,

PN= Ar,

hence

so that

,. MP
lim
A9=orf,A0

1.

lim
P'M

1.

A0=o Ar
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Hence we have : \ />

lim#£=lim^= [ri^_,,p±pPM m*o Ar L J<M,0,

or, dropping the subscripts :

(2) tani/r
= rDr 0.

Example. The curve

(3) r= ae™, a>0,

is a spiral, except when A. = 0, which coils round the origin

infinitely often. Here,

Der = a\eK
», Dr

= -?- =—-, tan^= ~, or cotxj/ = \.D9 r a\eK9 \

Hence the tangent always makes the same angle, cot-1 A., with

the radius vector produced. For this reason the curve is called

the equiangular spiral.

EXERCISES
1. Plot the curve

r= 6,

and determine the angle at which it crosses the prime vector

when r= 2tt. Ans.
\f/
= 81°, nearly.

2. The equation of a parabola referred to its focus as pole is

r (1 + cos 0)
= m.

Find the value of
if/
when = and when =

tt/2.

3. The equation of a cardioid is

r=a(l — cos0).
Determine

\f/.

4. Differentials. Let

be a function of a; and let Dxy be its derivative :

Km *H = Dx y.
Ax=oAa;

~)
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Then Ay
Ax

Dxy + t,

where c is infinitesimal, and

Ay = Dxy Ax + e Ax.

Since x is the independent variable, we may take Ax as the

principal infinitesimal, and this last relation represents Ay as

the sum of its principal part, DxyAx, and an infinitesimal of

higher order, e Ax,

Definition. The principal part of the increment Ay of the

function (1) is called the differential of y and is denoted by dy :

(2) dy = DxyAx.

We may, in particular, choose f(x) as the function x. Then

(2) becomes :

(3) dx=DxxAx = Ax.

Thus we see that the differential of the independent variable, x,

is equal to the increment of that variable. But this is not in

general true of the dependent variable, since e does not in

general vanish.

By means of (3) equation (2) can be written in the form :

dy = Dxydx.

D*y.

x'

Fig. 30

Geometrically, the in-

crement Ay of the func-

tion is represented by the

line MP' in Fig. 30, while

the differential, dy, is equal

to MQ. It is obvious

geometrically that the dif-

ference between Ay and

dy, namely the line QP1

,

is of higher order than
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Ax — PM. The triangle PMQ is a triangle of reference for t,

and
. dytan t = -^ •

dx

In the above definition x has been taken as the independent

variable, Ax as the principal infinitesimal. The following

theorem is fundamental in the theory of differentials.

Theorem. The relation (4) :

dy = Dxydx,

is true, even when x and y are both dependent on a third vari-

able, t.

Suppose, namely, that x and y come to us as functions of a

third variable, t :

(6) x =
<f>(t), y = t(t),

and that, when we eliminate t between these two equations, we
obtain the function (1). Then dx and dy have the following

values, in accordance with the above definition, since t, not x,

is now the independent variable, At the principal infinitesimal :

dy = Dt y At, dx = D
t
xAt.

We wish to prove that

dy = Dxydx.

Now by Theorem V of Chap. II :

D
t y = DxyDt x.

Hence, multiplying through by A£, we get :

D
tyAt = Dxy.DtxAt,

or dy = Dxydx, q. e. d.

With this theorem the explicit use of Theorem V in Chap.
II disappears, Formula V of that theorem now taking on the

form of an algebraic identity :

du _ du dy
dx dy dx

To this fact is due the chief advantage of differentials in the

technique of differentiation.
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Differentials of Higher Order. It is possible to introduce

differentials of higher order by a similar definition :

d2

y = DJyAx2
,

d3
y = D^yAx3

,
etc.

But inasmuch as a theorem analogous to the above for differen-

tials of the first order does not hold true here, the chief advan-

tage of the differentials of the first order is lost. We shall,

therefore, refrain from introducing differentials of higher order

and regard the expressions :

% % etc,
dor dx3

not as ratios, but merely as another notation for the deriva-

tives D 2
y, Dx

s
y, etc.*

Remark. The operator Dx is written in differential form as

dx
Thus

t-^t1- means ^Vr^-'dx*l — x * 1 — x

and similarly for higher derivatives.

5. Technique of Differentiation. Theorems I-IV of Chap.

II, written in terms of differentials, are as follows.

General Formulas of Differentiation

I. d (cu)
= c du.

II. d (u + v)
= du + dv.

III. d (uv) =udv+ v du.

v , /'a\ _vdu — udv

vj v2

* Differentials of higher order are still used in some branches of mathe-

matics, notably in differential geometry. For a treatment of such differ-

entials cf. Goursat-Hedrick, Mathematical Analysis, vol. I, § 14.
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Consider, for example, the first :

rw \ ,->
. d(cu) duDx (cu) = cDx u, i.e. —*—t- = c—

,

dx dx

and it remains only to multiply through by dx.— We have

already noted the disappearance of Theorem V.

To these are to be added the special formulas of Chapters II

and IV. Beside the derivatives that were there worked out

ab initio it is useful to include in this list a few others.

Special Formulas of Differentiation

1.
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All other functions that occur as combinations of the above,—
the so-called elementary functions,

— can be differentiated by
the aid of these two sets of formulas. We will illustrate the

use of differentials by some examples.

Example 1. To differentiate

y— Va^ — x2
.

Let
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du sb cos bt deat + eM dcos bt

= cos bt e°* d(at)
— e

M sin bt d(bt)

ss e
a
'(acos bt— b sin 6£) d£,

— = e
at
(a cos bt — b sin &£).

eft
y

When the student has had some practice in the use of differ-

entials he will have no difficulty in suppressing the first two

lines of this last differentiation.

Example 4. To differentiate y, where

Xs— 3 xy + y
4= 1.

dx3

-3d(xy)+dy
4 = dl

f

3x2dx — 3xdy — 3ydx + 4:y
s
dy = 0,

dy = 3x2 -3y
dx 3x — 4:y

s

The student will avoid errors by noting that when one term

of an equation is multiplied by a differential, every term must

be so multiplied. Thus such an equation as dy = x2 — 3 x is

impossible.

EXERCISES

Employ the method of differentials for performing the fol-

lowing differentiations.

du= (b + 2cx) dx .

2Va +•&#-[- ex2

x2— 1
dy =—i— dx-

XT

ds -3

1.
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5. r— aek6. 9. y = logcosx.

6. 7/
= e-'(2^4-6^

2

-3^-3). 10. y = log(e
x - e~x

).

7. u = ^¥=rfV^x~. 11. y^Bing+ooBs,

% 8. y = log
a "*~ g

12. w= log Vl— cos x.

a— x

13. # = Vl + sinv. ~ =—
dx V2-Z2
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Or, what amounts to the same thing, write

f(x)= elog/(x)
, \_fix)'V

>{x) = eWx)l0*'(x)
.

Thus, to differentiate y = xx
,
write

log y — x logic or y — exloex .

Hence -^=d(x log x)
— etc. or dy — e

x log xd (x log x) = etc.

y

g=af(l+log*).

Differentiate each of the following functions :

i

26. y = xx
. 28. 2/

= (cos#)
tan

*.

27. y = x*
[nx

. 29. ?/
= (sin x)'

inx
.

6. Differential of Arc. Let s denote the length of the arc

of the curve y =/(#), measured from a fixed point A, and let

As denote the length of the arc PP. Then (see Fig. 30)

PP' 2 = Aa2 + Ay
2
,

hence lim (*£)* = 1 + lim /^Y.
Ax=o \ A# / Ax=o\^.xJ

In taking the first limit we can replace the chord PP' by the

arc As, since *

lim—— = 1.
pf=pPP

* A formal proof of this statement can be given as follows. We have :

(A) PP'<PP'<PQ+QP',
since (a) a straight line is the shortest distance between two points and

(b) a convex curved line is less than a broken line that envelops it and

has the same extremities. From (A) follows :

pp, pp, pp,
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We thus obtain the relation :

(1) {D9 8)*
= l+(Dx y)* or ds2= dx2+ dy\

Geometrically we see that ds is represented* by the hypothe-
nuse PQ of the right triangle PMQ. Furthermore :

(2)

SlllT

COST:

dy
d* -y/oW+dy

dx dx

<&
~
Vdx2 + dy

2

dy
dx

v1 + df
tx~2

41 + dy
2

dx2

These formulas are written on the supposition that the tan-

gent FT is drawn in the direction in which s increases and that

x and s increase simultaneously. If x decreases as s increases,

we must place a minus sign before each radical.

Polar Coordinates. Similar considerations in the case of the

curve r=f(6) lead to the following formulas, cf. Fig. 29 :

PP"= PM>+ MP>, lim (&)*- lim(£*Y + ] im (ML\ '.

A/-=o\ Ar J Ar=o\ Ar J A/-=o^ Ar J

(3) (Dr s)
2 = 1 + i*(Dr ff)*

or ds2 = dr2 + rW.

As P' approaches P, the ratio

* dx*PQ _ Vdx* + dy
2

PP~ VAx* -f Ay2
^ L Ay2

Ax2V
obviously approaches 1. ^P', which is equal numerically to Ay — dy, is

an infinitesimal of higher order than Ax and hence than the chord PP
;

hence QP/PP approaches and thus the limit of the right-hand mem-
ber is 1. Hence the middle term approaches 1, q. e. d.
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Furthermore :

,a\ , rdO ,
dr

(4) sin*=^. cos
*=s?

the tangent PT being drawn in the direction of the increasing

s. Beside these there is the formula of § 2 :

(5) tan*=fr

7. Rates and Velocities. The principles of velocities and

rates were treated in Chap. II. We are now in a position to

deal with a larger class of problems.

Example 1. A railroad train is running at 30 miles an hour

along a curve in the form of a parabola :

(A) y
2 = 500x,

the axis of the parabola being east and west and the foot

being taken as the unit of length. The sun is just rising in

the east. Find how fast the shadow of the locomotive is mov-

ing along the wall of the station, which is north and south.

Since 30 m. an h. is equivalent to 44 ft. a sec, the problem

is :

Given ^ = 44; to find ft.
dt dt

From (A) : 2ydy = 500 dx, dx=^. V

O

*

Substituting this value of dx in (1), § 6, we FlG> 31

get:

ds* = da? + dtf =^ + dy>, dy-
2502

V2502
+2/

2

Hence, dividing through by dt and writing for ds/ dt its value,

we get :

dy_ 250x44
dt V2502 + 2/

2

'

In particular :
— = — ft. a sec, or 21.2 m. an h.

L^_u =250 v'2
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Example 2. A man standing on a wharf is drawing in the

painter of a boat at the rate of 2 ft. a sec. His hands are 6 ft.

above the bow of the boat. How fast is the boat moving

through the water when there are still 10 ft. of painter out ?

4 Let r be the number of feet of painter
out at any instant. Then

dr = -2.
dt

Fig. 32
j?or dr / dt gives the rate at which r is in-

creasing with the time, and since r is decreasing, the rate is

negative.

We wish to find the rate at which P is moving. Let s

denote the horizontal distance PB of P from the wharf. Then
ds /dt gives this rate numerically, but algebraically ds/dt is

negative. We desire, then, the value of —ds/dt.
Since s and r are connected by the relation :

we have 2 s ds = 2 r dr,

_ds _ _ r dr_ 2r

dt s dt yr2_36

Hence, finally : [-—'] =f 2r
1 =24 ft. a sec.

The student will note that the method of solution consists

in determining first the velocity at an arbitrary instant, and

then substituting the particular value r = 10 into the result

thus obtained.

EXERCISES

1. A lamp-post is distant 10 ft. from a street-crossing and

60 ft. from the houses on the opposite side of the street. A
man crosses the street, walking on the crossing at the rate of

4 m. an h. in the direction toward the lamp-post. How fast

is his shadow moving along the walls of the houses when he
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is two-thirds of the way over ? When he is 55 ft. from the

houses? Ans. 6 m. an h. and 96 m. an h., respectively.

2. A kite is 150 ft. high and there are 250 ft. of cord out. If

the kite moves horizontally at the rate of 4 m. an h. directly

away from the person who is flying it, how fast is the cord

being paid out ? Ans. 3^ m. an h.

3. A point describes a circle with constant velocity. Show
that the velocity with which its projection moves along a given
diameter is proportional to the distance of the point from this

diameter.

4. A revolving light sends out a bundle of rays that are

approximately parallel, its distance from the shore, which is a

straight beach, being half a mile, and it makes one revolution

in a minute. Find how fast the light is travelling along the

beach when at the distance of a mile from the nearest point of

the beach. Ans. 15.7 m. a m.

5. The sun is just setting as a base ball is thrown vertically

upward so that its shadow mounts to the highest point of the

dome of an observatory. The dome is 50 ft. in diameter.

Find how fast the shadow of the ball is moving along the

dome one second after it begins to fall, and also how fast it is

moving just after it begins to fall.
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EXERCISES

Determine the maxima and minima of the following
functions :

1.
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26. The number of ems (i.e. the number of sq. cms. of text)

on this page and the breadths of the margins being given,

what ought the length and breadth of the page to be that the

amount of paper used may be as small as possible ?

27. A statue 10 ft. high stands on a pedestal that is 50 ft.

high. How far ought a man whose eyes are 5 ft. above the

ground to stand from the pedestal in order that the statue may
subtend the greatest possible angle ?

28. A can-buoy in the form of a double cone is to be made

from two equal circular iron plates. If the radius of each

plate is a, find the radius of the base of the cone when the

buoy is as large as possible. Ans. aV-f.

29. At what point on the line joining the centres of two

spheres must a light be placed to illuminate the largest pos-

sible amount of spherical surface ?

@> A block of stone is to be drawn along the floor by a rope.

Find the angle which the rope should make with the horizontal

in order that the tension may be as small as possible.

Ans. The angle of friction.

31. Into a full conical wine-glass whose depth is a and

generating angle a there is carefully dropped a spherical ball

of such a size as to cause the greatest overflow. Show that the

radius of the ball is

a sin a

sin a -f- cos 2 a

32. The illumination of a small plane surface by a luminous

point is proportional to the cosine of the angle between the

rays of light and the normal to the surface, and inversely pro-

portional to the square of the distance of the luminous point
from the surface. At what height on the wall should a gas-

burner be placed in order to light most brightly a portion of

the floor a ft. distant from the wall ?

Ans. About
-J-^a

ft. above the floor.
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33. A gutter whose cross-section is an arc of a circle is to be

made by bending into shape a strip of copper. If the width

of the strip is a, find the radius of the cross-section when the

carrying capacity of the gutter is a maximum. Ans. a/ir.

34. If, in the preceding problem, the cross-section of the

gutter is to be a broken line made up of three pieces each

4 in. long, the middle piece being horizontal, how wide should

the gutter be at the top ?
' Ans. 8 in.

35. A wall 27 ft. high is 64 ft. from a house. Find the

length of the shortest ladder that will reach the house if

one end rests on the ground outside the wall.

36. A long strip of paper 8 in. wide is cut off square at one

end. A corner of this end is folded over onto the opposite

side, thus forming a triangle. Find the area of the smallest

triangle that can thus be formed.

37. In the preceding question, when will the length of the

crease be a minimum?

38. The captain of a man-of-war saw, one dark night, a

privateersman crossing his path at right angles and at a

distance ahead of c miles. The privateersman was making
a miles an hour, while the man-of-war could make only b miles

in the same time. The captain's only hope was to cross the

track of the privateersman at as short a distance as possible

under his stern, and to disable him by one or two well-directed

shots
;
so the ship's lights were put out and her course altered

in accordance with this plan. Show that the man-of-war

crossed the privateersman's track - V<x2 — b
2 miles astern of

the latter.

If a = b, this result is absurd. Explain.

39. Find the area of the smallest triangle cut off from the

first quadrant by a tangent to the ellipse

x'
H-^- = l. Ans. ab.

b
2
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40. Assuming that the values of diamonds are proportional,

other things being equal, to the squares of their weights, and

that a certain diamond which weighs one carat is worth $ m,

show that it is safe to pay at least $8m for two diamonds

which together weigh 4 carats, if they are of the same quality

as the one mentioned.

41. A man is out in a power-boat a miles from the nearest

point A of a straight beach. He wishes to reach a point inland

whose distance from the nearest point B of the beach is b miles.

The distance AB is c miles. If he can make v1 m. an h. in his

boat, but can walk only v2 m. an h., what point of the beach

ought he to head for in order to reach his destination in the

shortest possible time?

Ans. - - = •

-,
where &i and 2 are *ne angles that his

*i v2

paths make with a normal to the beach.

This problem is identical with that of finding the path of a

ray of light that traverses two media separated by a plane sur-

face, as for example when we look at an object submerged in

water.

42. Assuming the law of the refraction of light stated in

the last problem, show that a ray of light in passing through a

prism will experience the maximum deflection from its orig-

inal direction when the incident ray at one face and the re-

fracted ray at the other make equal angles with their respec-

tive faces.

0. A steel girder 25 ft. long is moved on rollers along a

passageway 12.8 ft. wide, and into a corridor at right angles

to the passageway. Neglecting the horizontal width of the

girder, find how wide the corridor must be in order that the

girder may go round the corner. Ans. 5.4 ft.

44. A town A situated on a straight river, and another town

B, a miles further down the river and b miles back from the

river are to be supplied with water from the river pumped
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by a single station. The main from the waterworks to A
will cost $m per mile and the main to B will cost $ n per mile.

Where on the river-bank ought the pumps to be placed?

45. When a voltaic battery of given electromotive force

(E volts) and given internal resistance (r ohms) is used to

send a steady current through an external circuit of R ohms

resistance, an amount of work ( W) equivalent to

E2R
(r + K?

X 107

ergs

is done each second in the outside circuit. Show that, if dif-

ferent values be given to R, W will be a maximum when
R = r.

46. Show that, if a point describe a curve y = f(x) with a

constant or variable velocity v, the rates at which its projec-

tions on the coordinate axes are moving will be respectively :

dx dy— = v cos t,
-£ = v sin t.

dt dt

If the velocities of its projections along the axes, namely

dx/dt and dy/dt, are known, then

*-JK +*, tanr =^/^.
dt *dt2 dt

2 '

dt I dt

47. If in the preceding problem the curve be given in polar

coordinates, r=f(0), and we consider two lines parallel and

perpendicular respectively to the radius vector at any instant,

the rates at which its projections on these lines are moving
will be :

dr
,

d6 .

,— = v cos \b, r—= v sin \b.

dt
Y

dt
r

48. A projectile, moving under the force of gravity, de-

scribes a parabola :

x = v cos a •

t, y = v sin a • t — 16 1
2
,
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provided that the resistance of the atmosphere has no appre-

ciable influence on the motion. Here, a denotes the initial

angle of elevation and v the initial velocity. Determine the

velocity of the projectile in its path.

Ans. W— 64 v sina • t + 1024 1
2

49. A ladder 25 ft. long rests against a house. A man
takes hold of the lower end and walks away, carrying it with

him, at the rate of 2 m. an h. How fast is the upper end

descending when the man is 8 ft. from the house ?

50. A conical filtering glass is nearly filled with water.

The water is running out of an opening in the vertex

at a constant rate. How fast is the surface of the water

falling ?

51. Let AB, Fig. 33, represent the rod that connects the

piston of a stationary engine with the

fly-wheel. If u denotes the velocity of A
in its rectilinear path, and v that of B in

its circular path, show that

u= (sin 6 -f cos 6 tan
<f>)

v.
Fig. 33

52. Find the velocity of the piston of a locomotive when

the speed of the axle of the drivers is given.

53. A draw-bridge 30 ft. long is being slowly raised by
chains passing over a windlass and being drawn in at the rate

of 8 ft. a minute. A distant

electric light sends out hori-

zontal rays and the bridge

thus casts a shadow on a

vertical wall, consisting of

the other half of the bridge,

which has been already raised.

Find how fast the shadow

is creeping up the wall when half the chain has been drawn

in.

Fig. 34
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54. The sun is just setting in the west as a horse is running
around an elliptical track at the rate of m miles an hour. The
axis of the ellipse lies in the meridian. Find the rate at

which the horse's shadow moves on a fence beyond the track

and parallel to the axis.

55. Differentiate y when

2x sin y = 3y sin x. Ans. gg = 3ycosa»-2siny.
dx 2x cosy — 3 sin x

56. Differentiate y when

y = x\og(x-y).

57. Plot the curve
r = acos30,

determining where the tangent is parallel to the axis of a lobe.

58. Plot the following curves :

(a) y = x-\-sinx. (c) r = asin30.

(b) y = xe~\
(d) r= i.

d

59. Locate the roots of the equation

x = cot x

and hence discuss completely the maxima and minima of the

function in Question 2.

60. The equation

0(l + cos0)=2sin0

has one root in the interval —
ir/2 < 6 < v/2, namely = 0.

Has it others ?

61. Find all the roots of the equation

(l+&
2

)tan-
1 6 = 6.



CHAPTER VI

INTEGRATION

1. The Area under a Curve. Let it be required to compute
the area bounded by the curve

(i) y=m,
the axis of x, and two ordinates whose abscissas are x = a

and x = b, (a< b). We can proceed as follows. Consider first

the variable area, A, bounded by the first three lines just

mentioned and an ordinate whose abscissa x is variable. Then
A is a function of x. For, when we assign to x any value

between the limits a and b in question, the corresponding
value of the area is thereby determined and could actually be

computed by plotting the figure on squared paper and counting

the squares, or by cutting the figure out of a sheet of paper
or tin and weighing the piece.

If, then, we can obtain an analytic expression for this

function of x, holding for all values of x from a to b, we can

then set x = b in this formula and thus solve the above

problem.
To do this, begin by giving to x an arbitrary value, x = x

,

and denoting the corre- y

sponding value of A by A .

Next, give to x an incre-

ment, Ax, and denote the

corresponding increment in

A by AA. We can ap-

proximate to the area AA
by means of two rectangles, as shown in the figure, and thus

we get:

y Ax < A^l < (y + Ay) Ax.

Ill

Fig. 35
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Hence y <—-< y + Ay.Ax

(Iif(x) decreases as x increases, the inequality signs will be

reversed.) Allowing now Ax to approach as its limit, we see

that the variable AA/Ax always lies between the fixed quan-

tity y and the variable y + Ay, whose limit is yQ . Hence

,. AA
Ax=0 AX

or, dropping the subscripts, we have :

(2) DxA = y.

For example, let the curve be

y = x*

and let a = 1, b = 4. Then

DxA = x2

and the question is : What function must we differentiate in

order to get x2
? We readily see that Xs

/3 is such a function.

But this is not the only one. For, if we add any constant,

a?/ 3 + C will also differentiate into x2
. We shall see later

that this is the most general function whose derivative is x2

,

and hence A must be of the form :

(3) A=
i+C-

This formula is not wholly definite, for C may be any con-

stant. On the other hand we have not as yet brought all our

data into play, for we have as yet said nothing about the fact

that the left-hand ordinate shall correspond to the abscissa x = l.

Now the variable area A will be small when x is only a little

greater than 1, and it will approach as its limit when x ap-

proaches 1. If, then, (3) is to be a true formula, it must give

as the value of A when x = 1, or

(4) .0 = i + C, 0=-J.
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(5) ,: ^=f-|.

Having thus found the variable area, we can now obtain the

area we set out to compute by putting x = 4 in (5) :

The process of finding the area under a curve is thus seen

to be as follows. First find a function which when differen-

tiated will give the ordinate y=f(x) of the curve (1) before

us
;
and add an undetermined constant to this function. Next,

determine this constant by requiring that A shall = when
x = a. Thus the variable area is completely expressed as a

function of x. Lastly, substitute x — b in this formula.

EXERCISES

1. Show that, if the area in the foregoing example had been

measured from the ordinate x = 2, the value of the constant C
would have been — 21 :

Xs

A = --2%:
3

3 '

and if it had been measured from the origin, then C would

have been = :

2. If, in (1), y=f(x) =x, the curve is a straight line; and

if a = 6, b = 20, the figure is a trapezoid. Compute its area

by the above method and check your result by elementary

geometry.

3. Find the area under the curve

V =A
lying between the ordinates whose abscissas are a= 10 and

a;= 20. Ans. 620,000.
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4. Find the area of one arch of the curve

y = sin x. Ans. 2

5. Find the area under that portion of the curve

2/
= l — JB

2

which lies above the axis of x.

6. A river bends around a meadow, making a curve that is

approximately a parabola :

y
— x — 4sc

2
,

referred to a straight road that crosses the river, as axis of x
;

the mile is taken as the unit. How many acres of meadow
are there between the road and the river? Ans. 6J, nearly.

2. The Integral. In the preceding chapters we have treated

the problem : Given a function
;
to find its derivative. The

examples of the last paragraph are typical for the inverse

problem: Given the derivative of a function; to find the

function. Stated in equations, the problem is this. If

DxU= u, or dXJ—u cfcc,

where u is given, to find U.

The function U is called the integral of u with respect to x

and is denoted as follows :

U= I u dx.

Thus we have the following

Definition op an Integral. The function U is said to be

the integral of u :

JJ= I udxy

if DxU=u, or dU=udx.

The given function u is called the integrand.
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More precisely, we should say that U is an integral of u\

for U-\- G is evidently an integral, too, C being any constant.

For example :

(6)
Cx*dx = -?^- + Ci n*-l.
J n + 1

For, if we differentiate the function:

/y.M+1U=^—+c
n + 1

with respect to x, we get :

DxU=xn
,

and xn is the integrand u of the integral in question.

The following theorem is fundamental in the theory of

integration.

Theorem A. If two functions have the same derivative :

(A) Dx f(x) = Dx <Mx),

they differ from each other only by a constant.

Since the derivative of their difference is :

the theorem is equivalent to the following : If the derivative

of a function is always :

(B) DMv)=0,
the function is a constant.

Geometrically, the truth of this last theorem is exceedingly

plausible. The graph of the function

is a straight line parallel to the axis of x, and its slope is 0.

If, now, conversely, the slope of a curve is always 0, what can

the curve be other than a straight line parallel to the axis of

x ? For an analytic proof of these theorems cf . the chapter

on the Law of the Mean.
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From Theorem A it follows that all the integrals of a given
function differ from one another only by additive constants.

For, if £7 and U' are any two integrals of /(#) :

D.U=m, Dx U'=f(x),

then U and U' have the same derivative.

Differentiation and integration are inverse processes, and so

we have :

Dx judx = u or d I u dx = u dx;

JDxUdx = U+ G or
fd(J= U+ C.

Theorem I. A constant factor can always be taken out from
under the sign of integration :

(I) / cudx — c I u dx.

Consider the two functions that enter in (I). We have :

Dx I cu dx = cu,

Dx \ c / u dx = c Dx I udx = cu,

i.e., the derivatives of these functions are identical. Hence

the functions themselves can differ at most by a constant:

/ cu dx = c I udx+k,

and so by choosing the constant of integration in the integral

on the left-hand side suitably, we can make k = 0.

Theorem II. The integral of the sum of two functions is

equal to the sum of their integrals :

(II) I (u-\-v)dx= I udx-\- I v dx.
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The proof is lire that of Theorem I :

Dz I (w -f v) dx= u -f v,

Da
J
udx+ I vdx\ = Dx f

udx +Dx I vdx— u-\- v.

Hence the functions on the two sides of (II) differ at most by
a constant, Jc. The constants in any two of the integrals may
be chosen at pleasure and then the constant in the third inte-

gral can be so taken that / • = 0.

Integration of Polynomials. By the aid of the above theorems

any polynomial can be integrated. For example :

I (a + hx -f ex
2

)
dx—' I adx+ I bxdx+ I ex2 dx

= a I dx +b I xdx+c
f
x2 dx

x2 Xs

= ax -f o-~ +C-+C.
Z o

»

Area under a Curve. We can now express the area discussed

in § 1 in the form :

(?) A— fydx or A=
jf(x)dx.

EXERCISES

Evaluate the following integrals.

1. ii3-±x-$x*)#x. Am. 3x-2xz ~-x9 +C.

2. / sfxdx. Ans. faj* + (7.

dx.
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e. m?* *
8 . ri+*+**,,J Vx J X

> 9i Find the area above the positive a,xis of x bounded by
the curve :

10. Find the area enclosed between the two parabolas :

y = x2
, y*=x.

3. Special Formulas of Integration. Corresponding to the

Special Formulas of Differentiation, of Chap. IV, we can write

down a list of special formulas of integration, by means o"f

which, together with the general methods discussed in this

chapter, all the simpler integrals can be evaluated. Each

formula can be proven by differentiating each side of the

equation.

Special Formulas of Integration

/
x-
n+l

1. I xndx = -, n^P—l.
n + l

I-
smxdx = —cos a;.

3. I cos xdx = sin x.

/dx
.

--log*-

5. iedx — e
x
.

6. T-^-o = tan" 1*
Jl + x*
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dx

Vl-x2

= sin_1 a;,

= — cos_1 a;

sec2xdx = tana.

9. I osc2xdx = —cot a;.

/•
To these may be added the formulas :

10. C dx = vers" 1
a;.

J ^2x-x>

11. Ca'dx = r-^--
J log a

We have omitted the constant of integration each time for

the sake of simplicity. But the student must not forget to

insert it in applying these formulas in a given example.

Moreover, we have not included the formula:

/•
Odx=C.

4. Integration by Substitution. Many integrals can be ob-

tained from the special formulas of § 3 by introducing a new-

variable of integration. The following examples will illus-

trate the method.

Example 1. To find I V« + bx dx.

Let a + bx= y. Then b dx — dy

and -y/a + bx dx — -y^dy^^\s

Integrating each side of this equation, we get :

C^a~+bxdx=:j- fy*dy
= *y*+C.
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Hence fvG+ta dx=2V <"+ te
)' + G.

Example 2. To find I cos ax dx.

Let ax= y. Then adx = dy,

cos axdx = - cos ?/ cfa/,

a

and lcosaxdx = - I cosy dy = - sin y-f (7= -sin ax+ C.
J aj a a

Example 3. To find / x ^/tf + x2
etc.

Let x2 —
y. Then 2xdx = dy,

x-VaFTx^ dx = xVtf^f^=\^a
T
+~y dy,

and I x^/a2 + x2 dx = ± I Va2 + y dy.

This last integral is a special case of the integral of Ex-

ample 1. For, if the a of that formula is replaced by a2
,
the

b by 1, and the x by y, we have the present integral. Hence

jx VaFTx
2 dx = \{a

2 + x2

)
* + G.

We might have set a2
-{-x

2 = y.

Example 4. To find I tan x dx.

Here funxdx= /**"»*« f
~ ** cos *= - log cos s+ C.

J J COS X J COS£

In substance, we have introduced a new variable, cos x = #.

But in. practice it is often simpler, as here, to refrain from

actually writing a new letter.
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In the above examples we have tacitly assumed that if x

and y are functions one of the other, and if f(x) and
<j)(y) are

two functions such that

f(x)dx = <f>(y)dy,

then
jf(x)

dx =
j <j> (y) dy.

We can justify this assumption without difficulty. For

Dx ff(x)dx=f(x),

AJV (y) dy = Dy
j<j>

(y) dy -Dxy = <j> (y)Dxy ;

and since /(#) = <£ (y)
-%-

,

ctx

it follows that the above integrals differ from each other at

most by a constant, k. Hence, if the constant of integration

in one of these integrals is chosen at pleasure, the constant of

integration in the other can be so determined that k = 0.

This theorem in integration corresponds to Theorem V of

Chap. II in differentiation. And, as in the case of that

theorem, the use of differentials,
— and it is to this fact that

their importance is due,— reduces the theorem in form to an

algebraic identity :

/•*-/[*S]j

EXERCISES

Evaluate the following integrals :

1. / Vl - x dx. Ans. _
|(1 _«>)*•+ C.

2.
l^/l + 2xdx. Ans. f(l + 2aj)*+C.
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4 -

/ 4/
*

6. I sin ax dx. 8. / sin (ttx + v) dx.
J Va + bx J J 7J

J a2
-far* a a

== • J.ws. sin-1 -

x2 a
10. C dx

. ^n«. sin-^+O.
J Va2

ii. r gda?
. ^rcs. _v^=^+o.

12. I x2
y/a

3 + xidx. 14. / %-- 16. I a; sin x2 dx.

J J a + bx J

/'
, _ . _ (* xdx , _, f* dx

xe x dx. 15. I .
• 17. /- -•

18. I cot # cte. J.«s. log sin x -f- O.

5. Integration by Ingenious Devices.

Example 1. To find I cos 2Odd.

Set cos2 = i
(1 rhjcojL2 6).

Then /cos2 cW = } f(l
+ cos 2

ff)
dO = 10+ J sin 2 + C,

(8) .-.

j
cos2 dO = ±(0 + smO cos 0) + C.

We can now evaluate an important integral, namely :

,
/ Va2 — x2 dx.

Let x = a sin
;

c?sc = a cos d$,

^a2-x2 dx = a2cos2$d6}
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/ Va2-x2 dx = a2

J cos2

d0=^($ + sin ens 0) + C,

(9) .-. / Vo
2"^2

"

tte = i r*VS^a?+ a2 sin"1

^J+
G

Example 2. To find T-/
a

The integrand can be written in the form :

_j_=j_r^ L.T.
a2 —x2 2a \_x -f- a x — aj

Hence f-i*-. = 1- CJSL. _ J_ fj?L
Jas — x2 2aJ x-\-a 2aJ x — a

= ~riog(aJ + a)-log(«-a)l+C7;

Example 3. To find f-^
J s

First Method.
J sin 6 J ,

sini

c?0

#
2 sin - cos -

2 2

*In case — a<x<a, formula (10) involves the logarithm of a negative

quantity. We can avoid this difficulty by writing the second term in the

bracket as + l/(a — as), the corresponding integral thus becoming

f_*L= -tog («-*).J a —x
This leads to the formula :

(10') f dx = .liog«±g-K7.

It will be shown later in the Calculus that, in the domain of imaginaries,

the logarithms of (10) and (10') differ from each other only by an imagi-

nary constant, and since the latter may be included in the constant of

integration, (10) and (10') may be regarded as equivalent formulas.
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6
Let -

=<£. Th the last integral b<

d
<t> _ J*

sec2

<f>d$__ /Vtaj

C dQ . . #
/ x—7;= log tan- +(

Second Method.

f # f sec2

<t>d<l> Anan<£ i
. J _

J sin * cos S J tan<r"~e/la^
=1°gtan ^+a

(11)
;.:;

.

;./s^=logtan| + a

J sin (9 J
"
sin fl c?6>

sin2

r^cos^ = _l log
l + cos^

Jl-cos2 2
g
l-^o7^

+C#

The fraction

2

l + cosfl_
CQS

2 1

i-cos0~
•

2
e ~7~70sm2

^
tan2 -

(11) .'. f-^=logtan^+Gsin

EXERCISES

1.

Jsm
2
6d0. Ans. i(0-smOcosO)+ G.

2. C de
. 3 /"_*_

J 1 + cos
0_\^

'

J 1 - COS

4

'/cS' ^logtaag
+
g+C,

5.

or llog ^
+ Sm

^ +fi or log (sec 0-f tan 0)+ C.
-L sin u

r dx

J V¥+tf' log(^ +V^+a2

)-ha

Suggestion : Let x = a tan 0.

6 *

JV^=2

' ^ log^-fV^^H-a
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6. Integration by Parts. The formula of d "erentiation :

d (uv)= udv-\-v du,

leads to a formula of integration :

(III) I udv = uv — I v du.

Integration by means of this formula is known as integration

by parts.

Example 1. To find I xex dx.

Let u = x, dv =ex
dx;

then du = dx,

and

v= I e
xdxz=ex

,

I xex dx = xex — I e
xdx = (x

—
1) e

x + C.

/ /Example 2. To find I log x dx.

Let u = log x, dv — dx\

then du =—
, v=x,

x

and
j log x dx = x log a; — /#— = #(log#— 1)+ C.

Example 3. To find / Va2 + x?dx.

Let w = Va2 + x2
,

dv = dx;

xdx
then du = xdx

,
v = x

fVa
ir+tfdx = x^/a2 + x2 - f-^

J J Va2 4-x2

Again, Va2
4- x* =—

,

VV + iC
2
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dx
fVtf + ^dx = a2 C-**—± f-£
J J -Va2 + x? J Va2 + X2

Adding these two equations and recalling Ex. 5 in the preced-

ing Exercises, we have :

(12) / Va2 + x2dx = i[xVa2 + x2 + a2

log(x +^a2 + x2

)]+C.

EXERCISES

Evaluate the following integrals :

1. I xeax dx. 5. Ixcosaxdx. 9. I x tan"1x dx.

2. I xPe^dx. 6. I sin-lxdx. 10. I xlogxdx.

3. / x*eaxdx. 7. /tan-1x dx. 11. I eaxsmxdx.

4. Ixsmxdx. 8. I xsin^xdx. 12. I e
axcosxdx.

13.
I^a?

— a2 dx.

Ans. %[xVx2 — a2 — a2
log (# -f- V&*

2 — a2

)]+ O.

7. Use of the Tables. The integrals that ordinarily arise in

practice and which can be evaluated in terms of the elemen-

tary functions can be found in such a table of integrals as

Professor Peirce's,* and for this reason it is not necessary for

us to go further into the theory of integration in this course.

We have learned how to differentiate all the elementary

functions, but not all these functions can be integrated in

terms of the elementary functions. Thus the integral :

dx (* d(b
or 'f d4>

(0<&
2

<1),
J Vl-&2 sin2

<£

* B. O. Peirce, A Short Table of Integrals, Revised Edition, 1899 or

later, Ginn & Co., Boston.
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leads to a new class of transcendental functions, the Elliptic

Integrals, and cannot be evaluated in terms of algebraic

functions, sines and cosines, etc.

There are, however, large classes of functions that can be

integrated,* and the classes that are important in practice

have been tabulated. The student is requested to examine

with care the classification in the Tables above referred to.

Example 1. To find by aid of the Tables C ® dx
.

The integrand is a rational function of x, and so we look

under "II. Rational Algebraic Functions," p. 5. There we

find "A.— Expressions Involving a -\-bx." Formula 31 gives

us the integral we want :

/
Example 2. To find / -

xdx 1 . 1 . „
(l- xy~~ l-x 2(l-af)

2
*

dx

+ X + X2

Here the integrand involves rationally an expression of the

form X= a -f bx -f ex2
,
and so we look under C, p. 10. Two

formulas, 67 and 68, give this integral. But since # = 4ac

— b
2 = 3 is positive, the second formula would introduce imagi-

naries. The first gives :

/:
^_ = _l_tan-?£±l+ a

1 + x + x2 V3 V3

Example 3. To find / -

J VI + x + x2

Here the integrand involves VX, and so we look under
" III. Irrational Algebraic Functions," and find under D, p. 23,

Formulas 160, 161. Since c = 1 > 0, we choose No. 160 :

* When we say, a function can be integrated, we mean, can be inte-

grated in terms of the elementary functions. Every continuous function

has an integral, for the area under its graph is an integral.
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/
dx

log/Vl+a + ^ + a + ^Wo.
VI + x + x2

\

Example 4. To find / sin6
a; dx.

The integrand is a transcendental function. Turning to V,

p. 35, and looking down the list we come to No. 263 :

/\
• n , sinn-1 # cos x

,
n — 1 {* • n * jsmnx dx = -\

I smn 2x dx.
n n J

If we set here n = 6, we reduce the given integral to an . ex-

pression involving l sin4 sc dx, and this integral can in turn be

reduced by the same formula, written for n = 4. Thus we get

finally :

/sin6# dx

sin5
a; cos cc 5 sin3

a; cos x 5sin#cos x 5x ^
6~ ~W "16 16

"*

Example 5. To find f-—dx

4 cos x

Formula 300 gives :

r^^ =
|tan-[3tan|]+aJ 5— 4 cos x 3 2J

EXERCISES

Evaluate the following integrals with the aid of the Tables.

+ aAns - h log (4
—

5x) +/xdx(4,-Bxf

,

r ax
"

.Mi-*)

/ dx . f
* xdx

(ar-2)(a>-3)"
'

Ja-
2 -5z + 6

5x

Ans. h log h C.
x 1 — x
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j5 + 3^ V15 1^5;^

/
*

da?

J » + ^ + *»

^na. i log
^— L tan"1 ?^— + 0.

9. f^-=^dx. Ans. 2Vr^ + log
A/l ~ a; ~ 1

-K7.
«/ * VT^oJ+ 1

10. r-^=. 12 . /v^e?*

11. f—p=r 13. rvf+^^
t/ a;VlH-ar t/ a;

14. / V— 1-f 4a — a2
(to.

\2 7 2 V3

15. r *—r is. r d*
.

J (7 -9X + 2X2

)* J xVtf+px + q

17. f
dx

18 . fSm2Ocos2$dO.

J(l-^)Vl + ^ J

8. Length of the Arc of a Curve. We have seen in Chap. V,

§ 6, that the differential of the arc of a curve is given by the

formula :

ds= Veto2 + dy
2= \/l +^dx.* dx2

Hence the length of the arc can be obtained by integration,

and we have :

<13>
s=f\k+% dx-
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Example 1. Let us find the length of the arc of the

parabola :

y = x\

Here dy — 2x dx, -Vdx2
-f- dy

2= Vl 4- 4x2
dx,

s = I Vl + 4:X2
dx,

and this integral can be reduced at once to (12) in § 6, or to

Formula 124 of the Tables:

s =
2J Vi + x2 dx =WiT?+ ilog(>+ y/±+¥)+ a

If we measure the arc from the vertex, s = when x = 0, and

we have for the determination of C :

= ±log4+C, '(7=1 log 2.

Hence s = \x V1 + 4&2 + \ log (2x + V 1 + 4a;
2

).

In particular, the length of the arc to the point (1, 1) is

M*= i
= iV5 + ilog(2-fV5).

On p. Ill of the Tables we find a table of natural logarithms,

from which we see that

log (2 + V5) = log 4.24 = 1.45.

Hence [s] x=1 = 1.48.

As a check on this result we note that the length of the

chord is V2 = 1.41; on the other hand, the length of the

broken line consisting of the abscissa and the ordinate of

the point (1, 1) is 2. Consequently the length of the arc in

question must lie between 1.41 and 2.

Example 2. To find the length of the arc of the equiangular

spiral :

r = aeke < X = cot a.

Here ds = Vdr2 + rW, dr = aXe^dO,
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ds = VT+X2ae^ dO = ,

+ X
dr= dr sec a,

A

= sec a I dr= r sec a + k.

If we measure the arc from the point = 0, r= a, then s =
when r = a and

= a sec « 4- k. .-. s = (r
—

a) sec a.

When = — cc
,
the spiral coils round the pole r= infinitely

often, and r approaches as its limit. The value of s, taken

numerically, when r < a, is :

|

s
|

= — s = (a
—

r) sec a.

Thus we see that the length of the spiral does not increase

beyond all limit when = —
go, but

lim
|

s
|

= a sec a.
0=-co

EXERCISES

1. Find the length of the cardioid :

r= a (1
— cos 6). Ans. 8 a.

2. Find the length of the spiral r = from the pole to the

point where it crosses the prime vector for the first time,

= 2tt. Ans. 21.3.

3. Find the length of the arc of the curve 27 y
2 = a? included

between the origin and the point whose abscissa is 15.

Ans. 19.

"4. Find the length of the arc of the spiral r = 1/6, measured

from the point = 1, r = 1.

5. Prove that the length of the arc of the catenary -J

measured from the vertex, x = 0, is : s= -lea— e
a

J-
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6. Assuming the equation of a parabola, referred to the

focus as pole, in the form :

m
1 — cos<£'

find the perimeter of the segment cut off by the latus rectum.

Check your answer.

EXERCISES

Obtain the following integrals without the aid of the Tables.

sin x dx

+ b cos x

dx

e
x + e~x

'

'sin OdO

cos2
6

1. fV2^xdx. 9. A**"**. 17. C-™
J J x N J a +
r dx /v 4-1 r'

2. I 10. /
—HJi(tt. 18. I e

cosx sin a; do;.

3.
f(a-xfdx.

11. /*—— • 19. Csm3xdx.

4. frcfi-xtydx. *12.
C^p^ldx.

20. f-

5 -

JrS- i3 - J1™*- 2l -

/-

J l + a> J v ; Jl + sma

7. T^icte. 15. C^~~ 1^ dr. '23. fsetfxdx.

8. I 16. I xcosafdx. 24. I cos3xdx.
J a + bx* J J

25. Let J[ denote the area bounded by the curve

a fixed radius vector 6 = ,
and a variable radius vector = $,

see Fig. 29. Show that

and thus obtain the theorem :
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(14) i Cr*dO.

26. Find the area of the cardioid :

r= a (1
— cos

<f>)
. Ans. f ira?.

27. Determine the area cut out of the first quadrant by the

arc of the equiangular spiral r = aeKe corresponding to values

of 6 between and %tt.

28. Obtain the area of one lobe of the lemniscate :

r2 = a2 cos 2 0.

29. The same for r = a sin 36.

30. The same for r = a cos nO.

31. Find the area of the ellipse :

— + ^ = 1. Ans. nab.
a2

b
2

32. Prove that the length of the arc of the curve

a2

a2 — or

measured from the origin, is

t a-\-x
s = a log— x.

a — x

33. Prove that the length of the arc of the curve

Sa2
y
2=x2

(a
2 -x2

) is s = y +— sin" 1 - .

'34. Prove that the area of the curve

[y J
=a2 — x2

is ira2.

J

35. Determine the area of the loop of the curve

y
2 = x2 + x3

' Ans. T
8
7



CHAPTER VTT

CURVATURE. EVOLUTES

1. Curvature. We speak of a sharp curve on a railroad and

thus express a qualitative characteristic of the curve. Let us

see if we cannot get a quantitative determination of the degree
of sharpness or flatness of curves in general.

If we consider the angle <£ by which the tangent of a curve

has changed direction when a point that traces out the curve

has moved from P to P, then this angle will

depend, not only on the sharpness of the

curve, but also on the distance from P to P'.

We can nearly eliminate this latter element
Fig. 86 when P' is near P by taking the average

change of angle per unit of arc, <j>/PP\ This ratio we define

as the average curvature :

-£- = average curvature for arc PP.
PP'

The limit approached by this average curvature is what we
understand by the curvature at P; it is denoted by k :

(1) k = lim -^-— actual curvature at P.
p'=pPP

Thus for a circle of radius a,

PP'=od>, -£--., lim-i^l
PP> (i p'=p ppi a

134
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and the average curvature does not change with P. The

curvature of a circle is the same at all points and is equal to

the reciprocal of the radius. Again, the curvature of a straight

line is 0.

To evaluate the limit (1) for any curve, y =f(x), we observe

that, if we write

PP'=AS, <f>
= ±T,

then k = lim— = Ds r,
a«=o As

where t denotes as usual the angle which the tangent of thB

curve makes with the axis of x. More precisely, it is the

numerical value of Da r which we want, for k is an essentially

positive quantity (or 0). Hence

(2) k=±— ,
or better: K =

\

—w
ds Ids

From the foregoing definition we see that the curvature is

the rate at which the tangent turns when a point describes

the curve wifh unit velocity.

To compute dr/ds we have

(3) tanr =^ or r = tan"1 ^.
dx dx

It will be convenient to introduce a shorter notation for deriva-

tives and we shall adopt Lagrange's, which employs accents :

y *=/(?),

It follows, then, that

dy'=
(&dx= (

)̂
dx = y"dx

dx dx2

and ds = Vdx2
-f dy

2 = VI -\-y'
2
dx.

Returning to (3) and differentiating we have:
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r-taa-V, ^=«^= fJE

dr

ds

i+y'
2

i+y'
2)

.'/

(l+y
,2P

(4)
I y" I

(1+2/'
2

)

[ *r
The reciprocal of the curvature is called the radius of curva-

ture and is usually denoted by p :
*

l__ (l+y")
f

L dtf

\y"\

"(?) />
=

K
=

dx 2

; The radius of curvature of a circle is its radius. The curva-

ture of a curve at a point of inflection is in general ;
for

y" = at such a point if y" is continuous there.

Example. To find the curvature of the parabola

f 2mx.

Here 2ydy = 2mdx, y'
y

dy' = --2 dy,
y

__ ™?\y m" = (m
2+ y*)

?

(m
2 +

* The student can always recall which of these two ratios is the curva-

ture, which the radius of curvature, by the check of dimensions. If we re-

gard x and y each as of the first degree in length, then y' = dy/dx is of the

0-th and y"
—

dy'/dx of the — 1st degree. Hence the bracket is of the 0-th

degree and
| y" |

of the — 1st, and the ratio must therefore be written so

as to yield p of the 1st, k of the — 1st degree in length.
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EXERCISES

Find the curvature of each of the following curves.

1.

1
2.

L 3.

A.

5.

^6.
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2. The Osculating Circle. At an arbitrary point P of a curve

let the normal be drawn toward the concave side of the curve

and let a distance be laid off on this normal equal to the radius

of curvature, p. The point Q thus obtained is called the centre

of curvature. The circle constructed with Q as centre and with

radius p stands in an important relation to the curve. It is

called the osculating circle and has the property that it repre-

sents the curve more accurately near P than any other circle

does. Consider the family of circles drawn tangent to the

curve at P and with their centres on the concave side. Those

whose radii are very short are curved too sharply,
— more

sharply than the given curve. Now let the circles grow. If

we pass to the other extreme of circles with very large radii,

these will be too flat. Evidently, then, certain intermediate

circles come nearer to the shape of the curve at P than these

extreme ones do. It is not difficult to find a criterion by
means of which one circle is characterized as better than all

the others. Draw the tangent at P and drop a perpendicu-
lar from P' on it meeting it in M and cutting an arbitrary

one of the circles in R. Then, as we shall show

later, MP will in general be an infinitesimal

of the second order referred to the arc PP as

principal infinitesimal, and PR will also be of

the second order for a circle taken at random.

We can, however, in general find one circle for
Fig. 37

which PR will be an infinitesimal of the third

order, and it turns out that this circle is precisely the oscu-

lating circle. We shall give the proof later (Chap. XIII, § 9).

The osculating circle cuts the curve in general at the point

of tangency ;
but there may be certain exceptional points at

which this is not the case. Near such a point P'R is an infini-

tesimal of even higher order than the third, in general, of the

fourth.

EXERCISE

Construct carefully the parabola y = x2 for values of x :

—
| < x < f, taking 10 cm. as the unit. Draw the osculating
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circle at the point x= £, y= \, and also at the vertex. Ink in

the parabola in a fine black line, the first osculating circle in

red, and the second in a different colored ink or in pencil.

3. The Evolute. When a point P traces out a curve, the

centre of curvature Q traces out a second curve. This latter

curve— the locus of Q— is called the evolute of the given
curve. We proceed to deduce its equation and to discuss its

properties.

The point Q can be found analytically by writing down the

equation of the normal at P and determining the intersection

of this line with a circle of radius p, hav-

ing its centre at P. The equation of the

normal is

(6) X-x + y'(Y-y)= 0,

where (X, Y) are the running coordinates,

i.e. the coordinates of a variable point on

the normal, and
(a?, y) the coordinates of

P,— the latter being held fast during the FlG* 3b

following investigation. The equation of the circle is

(?) (x-xy+(Y- yy= P
* a+y,z

)

To find where (6) and (7) intersect, eliminate X :

(l+y>*)(Y-yy
a + y'

2
)

y"
2 ' Y-y i+y 2

y"

Which sign must we take? Notice that when the curve is

concave upward, as in the figure,

Y-y>0 and a _ <i
2

y
dx2

Hence in this case we must use the upper sign :
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On the other hand, when the curve is concave downward,

Y-y<0 and
2/"=g<0,

and again we have the upper sign. Hence (8) is always true

and

y
From (6) and (8) we get :

s= ,-y'(i+y").
y

The values of X and Fthus found are the coordinates (x1} y^
of the point Q, and so we have :

dx\ dxr) dxr

(9) «.=*—v~- »-»+-35-
do2 dx2

These formulas involve no radicals.

If we eliminate x and y between the two equations (9) and

the equation y =f(x) of the given curve, we shall obtain the

equation of the evolute in the form

F(x1,yl)
= 0.

But it is not necessary to eliminate. We can plot as many
points on the evolute as we like by substituting in (9) the

values of x, y, y', and y" corresponding to successive points on

the given curve.

Example 1. To find the evolute of the parabola

(10) y
2 = 2mx.

Here ^/ =™ 1 + df = m^±f ^l == _ m2
.

dx y' dx2

y
2 dx2

y
3

Hence tt1
= a; -m^ + ^) /-^= x+ ^±l,

y
3

I y
3 m
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y
2

I y
s m2

and it remains to eliminate x and y between these equations
and (10). Eliminating x we have :

m
2m
3

From the second equation :

y
2

,
ra2 -h y

2
. Sy2

2m m 2m

or
(xi-mj^y

2
.

m2
yl =f.

To eliminate ?/ between these last two equations, square each

side of the last and cube each side of the preceding one. Thus

we get :

4 2 8mV V
Vl

27~\
Xl
~ m

J'

Dropping the subscripts we have as the

equation of the evolute of the parabola : q

8
01) f ( x — m) .

27m\ J

This is a so-called semi-cubical parabola. FlG 3y

Example 2. To find the evolute of the ellipse

(12) S+*-l.9 • 7 9 *

We obtain without difficulty the equations :

dy _ b
2x

dx a2
y'

d?y = b4

dx2 a2
!/

3 '

Xl ~ X
tfb2 ; 2/i

=
2/

y(Va* + <*?) _

a2 b
4

To eliminate x and y between these equations and (12) requires

a little ingenuity. From (12) we have
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tfx2 + a2

y
2 = a2

b2
,

a4
y

2 = a?b2

(a
2 — x2

),

b'x2 + «y = 6
2

(tt
4 - aV + b2 x2

).

Hence s, = , -^"^ +^ =<^*
a4 6

2 a4

In a similar manner we get :

a2

y(b
4 -b2

y
2 + a2

y
2
) _ a2

3/i
=

2/
a2

/>
4

—
2Z

3
.

We can solve these equations respectively for x2 and y
2 and

substitute the values thus ob-

tained in (12) :

/ ax, \t / byY \

\a
2 —b 2

) ^{tf-b2

)

= 1.

Fig. 40

Dropping the accents we have as

the final equation of the evolute

of the ellipse :

(13) (ooj)* + (6y)* = (a
2 - 62

)l

EXERCISES

Find the equation of the evolute of each of the following
curves.

x2
?/
2

1. The hyperbola: = 1.

Ans. (as)*
-

(byy = (a
2 + b

2
) K

2. The hyperbola : 2xy
— a2

.

Ans. (x +y)%
— (x—y)% = 2c$.

3. The catenary : y = ^(e
x + e~x

).

Ans. xx
= x — \ (e

2x — e~2x
), yl

= 2y ;

2\4-*(i±v5
4. ic^ + y* = a*. Ans. (x + #)

$ + (a;
—

y)»
= 2cA
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Ans. x2 + ?/

2
5. a;= a (cos + # sin#),

y = a(sinO
— $ cos0).

6. x = acos3
0, y = asin3

6. Ans. (x + y)
1*

-\- (x
—

y)*

4. Properties of the Evolute. The property of the evolute

to which the curve owes its name is the following. Suppose a

material cylinder to be constructed on the concave side of the

evolute and a string to be wound on the cylinder, Fig. 41.

Let a pencil be fastened to the end of the string, the point

being placed at a point P of the given curve and the string

drawn taut and fastened at a point A of the evolute so that it

cannot slip. If now the pencil is moved along the paper so

that the string unwinds from the evolute or winds up, the

pencil will describe the given curve.

To prove this, let P be an arbitrary point of the given

curve, Q the corresponding point of the

evolute, and P' the position of the pencil \g^r
when the string leaves the evolute at Q.

We wish to prove that P' coincides with

P. To do this it is sufficient to show

(a) that QP is tangent to the evolute, so

that P' lies on QP; and (b) that QP' =
QP= P .

ad (a) Writing equations (9) in the

form :

y y

and differentiating with respect to x, we have
;

*

<tei- r ,-. y'(i+y'*)y'"
dx f

Sy'
2 y'0- + y'*)y'"-3y»y'

y"
2

-g
-

yi
i = 3 y

> _
(1 + y-) ^_

- _,

r //

* The student may find it more convenient in working out these differ-

entiations to retain the form (9). Lagrange's form is more compact.
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EXERCISES

1. If the equation of the curve is given in po ar coordinates,

r=/(0), then (see Fig. 29)

At = A^ + A0

, , dr d\b . d&
and hence — =— +— •

ds ds ds

Remembering that

d$ r
tan^ = r— = -,

dr r 1

where r'= dr/dd, obtain the formula,

drfl*

[_
dO2

}
(14) P=±

^ ^r9^
d02

^
d02

Find the radius of curvature of each of the following curves

at any point.

(r
2 + a2

)*
2. The spiral of Archimedes r= ad. Arts, p = v

_ . \ •

r
r2 + 2a2

I.
—

3. The cardioid r = 2 a (1
— cos <£).

Ans. p = fVar.

a2

4. The lemniscate 7^ = a2 cos 2 0. ^ws. p =— .

or

r3
5. The equilateral hyperbola r2 cos 2 = a2

. ^Lns.
f>
=

-j-

6. The equiangular spiral r = aeK0 .

7 . The trisectrix r= 2 a cos — a.

. a(5-4cos0)*
S

^ ' = 9-6cos0
'



CHAPTER VIII

THE CYCLOID

1. The Equations of the Cycloid. The cycloid is the path
traced out by a point in the riui of a wheel as it rolls, i.e. by a

point in the circumference of a circle which rolls without slip-

ping on a straight line, always remaining in the same plane.

Let the given line be taken as the axis of x and let 6 be the

angle through which the circle has turned since the point P
was last in contact with the line at 0. The coordinates of P,

Fig. 42

x = OM and y
— MP, can be expressed as follows in terms of

6. We notice that the arc NP=aO of the circle and the seg-

ment ON of the line are of equal length, since the circle rolls

without slipping. Hence

OM= ON-

Also,

and so we have:

(1)

MP=NS

{x =a(6
y = a(l

as the equations of the cycloid.
146

MN^aO — asmS.

LS = a — a cos
;

sin 0),

cos 0),
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It is possible to eliminate 6 between these equations and

thus obtain a single equation between x and y. But the func-

tions thus introduced are less simple than those of equations

(1) and it is more convenient to discuss the properties of the

curve directly by means of these equations.

EXERCISES

1. The equations of the cycloid referred to parallel axes

with the new origin at the vertex, i.e. the highest point, are :

J
x = ad + a sin 0,

^ ' \y=—a + a cos 0,

the angle 6 now being the angle through which the circle has

turned since the point P was at the vertex. Obtain these

equations geometrically, drawing first the requisite figure,

and verify the result analytically by transforming the equa-

tions (1) :

x = x' + -n-a, y = y'-\-2a, 6 = 0' -f ir.

2. Show that the equations of an inverted cycloid referred

to the vertex as origin can be written in the form :

x = aO -f a sin 6,

a — a cos 6.
x

Draw the figure and interpret $ geometrically.

2. Properties of the Cycloid. The slope of the curve is

dy _ a sin Odd sinfl _ 2 sin \B cos \0 _ ,

x
~

dx adO — acosOdO 1 — cos0 2sm2±0

or tanr = cot^0.

From this, result we infer that the tangent at P is perpen-
dicular to the chord PN, Fig. 43. For the latter makes an

angle of \6 with the negative axis of x and hence its slope is

— tani0, i.e. the negative reciprocal of the slope of the tan-

gent. Thus we see that the normal at P goes through the
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If we measure the arc from the origin,

0=-4a + C, C=4a,

(7) .-. s = 4<x(l-cos£<9) = 8asin2

i0.

The total length of one arch of the cycloid is, therefore, 8 a.

Area of an Arch. This area was first determined experimen-

tally by Galileo, who cut out an arch and weighed it. We can

find the area under the curve by integration :

A— I ydx = I [a
— a cos 0] [a dO

— acos 0a"0]

= a2

r(l-2cos<9 + cos2

0)a-0

(8)

a2

[0
- 2 sin $ + J (0 + sin cos 0)] + (7,

= 0+<7,

\ A = a2

(f
- 2sin + i- sin cos 0).

The area of the complete arch is, therefore, 3ira2
,
or three

times that of the generating circle.

3. The Epicycloid and the

Hypocycloid. When a circle

rolls without slipping on a

second circle that is fixed,

always remaining in the

plane of the latter, a point
P in the circumference of

the moving circle traces out

an epicycloid. From Fig. 45

it is clear that Fig. 45

x= OK+KM= (a + b) cos0 + b sin[<f> -(Z-o\\,

2/=iT^-i>S' = (a + 6)sin0-6cosr^-/'|-0^1.
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Furthermore, the arc AN= a0 and the arc NP=b<f> are equal

a0= b<j>. Hence we have as the equations of the epicycloid :

x = (a + b) cos - b cos ^±^0,

(9)

y = (a + b) sin 0—b sin

b

a + b,

If the variable circle rolls on the inside of the fixed circle,

the path of the point P is a hypocycloid. Its equations are

obtained in a similar manner and are:

(10)

x = (a
—

b) cos 6 -\-b cos 6,

y = (a — b) sin — & sin 6.

The following special cases are of interest.

(1) If a = 26, the hypocycloid reduces to a segment of a

straight line, namely, the diameter of the circle, y = 0. Thus

a journal on the rim of a toothed wheel which meshes inter-

nally with another wheel of twice the diameter describes a

right line, so that circular motion is thereby converted into

rectilinear motion.

(2) When a = 4&, the equations of the

hypocycloid reduce to the following (cf.

Tables, Formulas 580 and 585) :

r x = 3b cosO +bcos30 = acos3
0,

\ y = 36 sin 6 — b sin 3 = a sin3 6.

Hence x s + y
1

Fig 46 This is the equation of the four-cusped

hypocycloid.

The cycloids play an important part in Applied Mechanics,

in the theory of the shape in which the teeth of gears should

be cut.

For a more extensive discussion of the subject of this chap-

ter see Williamson, Differential Calculus, Chap. XIX, Roulettes.
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EXERCISES

1. Show by means of the equation of the normal of the

cycloid, (5), that the normal goes through the lowest point of

the generating circle.

2. Obtain the equations of the path of the journal of the

driver of a locomotive and plot the curve.

3. Obtain the equations of the path of a point on the outer

edge of the flange of a driver.

4. Obtain the equations of the path of the pedal of a bicycle.

5. Obtain the equation of the path of an arbitrary point in

the wheels of a sidewheel steamboat.

The curves of Exs. 2-5 are called trochoids.

6. Find the velocity, v, of the point that generates a cycloid.

Ans. v = 2awsin^0 = 2Fsini0, where wis the

angular velocity of the wheel and V the linear

velocity of the hub. At the vertex v= 2V, i.e.

the velocity of the highest point of the wheel is

twice that of the hub.

7. Find the area included between an arch of the cycloid
and its evolute. Ans. 4:ira

2
.

8. Show that the length of the arc of an inverted cycloid

(3), measured from the vertex is

s = 4asin t.

9. Obtain the equations of the evolute of the cycloid ana-

lytically, by means of equations (9) in Chap. VII.

10. At what points is the trochoid

x=a$ — b sin 6, y = a—bcos6, (b<a)

steepest ? Ans. When cos = - .

a

11. Find the area under one arch of the trochoid of ques-

tion 10. Ans. 2t:<£ -\- 7rb
2
.
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12. The epicycloid for which b — a is a cardioid :

r = 2a (1
— cos

<f>),

the cusp being taken as the pole. Obtain this result from

equations (9).

13. Obtain the result in question 12 directly geometrically.

14. Prove by elementary geometry that the hypocycloid for

which b — \a is a straight line.

15. Show that the equation of the normal of the hypocycloid
is:

(sin O + sin£ZL_ $ )(x
— x

)
= (cos O

— cos^=— O) (y
— y ).

16. Prove that the normal of the hypocycloid passes through
the point of contact of the rolling circle.

17. Work out questions 15 and 16 for the epicycloid.

18. Show that the hypocycloid for which b = \a and that

for which b = j a are the same curve.

19. Show that the length of the four-cusped hypocycloid is

three times the diameter of the fixed circle.

20. Find the area of the four-cusped hypocycloid.

Ans.
W
8

21. Find the area enclosed between one arch of a four-cusped

epicycloid and the fixed circle. Ans.

22. Obtain the equations of the epitrochoid.

23. Obtain the equations of the hypotrochoid.

24. How many revolutions does the rolling circle make
in tracing out a cardioid ? a four-cusped hypocycloid ? How
many revolutions does the moon make in a lunar month ?

25. How many cusps does an epicycloid have when a and
b are commensurable: a/b=p/q? What can you say about

this curve when a and b are incommensurable ?



CHAPTER IX

DEFINITE INTEGRALS

1. A New Expression for the Area under a Curve. In Chap.
VI we learned how to compute the area A under a continuous

curve, y=f(x), by integration. We found tnat

DxA = y

and hence finally :

A— lydx+C,

We will now consider a new method of computing the same

area. Let the interval (a, b) of the axis of x : a<x<b,be
divided into n equal parts and let ordinates be erected at each

of the points of division. Let rectangles be constructed on

these subintervals with altitudes equal to the ordinate that

forms their left-hand

boundary. Then it is

obvious that the sum
of the areas of these

rectangles will be ap-

proximately equal to

the area A in question,

and will approach A as

its limit when n is al-

lowed to increase without limit,

at the end of this chapter.
153

Fig. 47

A formal proof will be found
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We will next formulate analytically the above sum. The

area of the first rectangle is

f(a)Ax or f(x )Ax,

where Ax denotes the length of the base, x1
— x =

(b
—

a)/n.
The area of the second rectangle is f(x^) Ax, and so on. Hence
the sum of these areas is

(2) f(x )
Ax +/(»!> A*+ ...

+/(a>n-i) A*,

and thus, allowing n to increase without limit, we obtain the

result :

(3) A=* lim t/(a*,)Aa>+/(aJi) Aa> + ••• +/<X_1)Az].

Example. Let
'

2/ =/(«) = sin a?,

and let the interval (a, b) be the interval O^x^tt/2. Take

n = 10. Then Ax = 3.14/20 = .157, and we have to compute

sin 0° Ax + sin 9° Ax -\ + sin 81° Ax.

Here
sin 0°= .000 sin 45°= .707

sin 9°= .156 sin 54°= .809

sin 18°= .309 sin 63°= .891

sin 27°= .454 sin 72°= .951

sin 36°= .588 sin 81°= .988

1.507 4.346

and thus we obtain

5.853 x.157 = .92.

2. The Fundamental Theorem of the Integral Calculus.

Equating the two values of A found in § 1 to each other, we

obtain

(4) \im[f(x )Ax+f(x1)Ax+ ... +/(^_ 1

)Ax"]=| |/(aj)cteT

Although the formulas (1) and (3) were deduced from geomet-
rical considerations, the final result

(4)
is purely analytic in
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its character. We may liken the process to that of building a

masonry bridge. First a wooden arch is erected. On this are

placed the blocks of granite, and when the structure is com-

pleted the wooden arch is removed. The bridge is the essential

thing, the wood was incidental. And so here the geometrical

pictures are but a means to the end, which is an analytical

theorem,— the theorem on which the integral calculus rests.

Let us state the result in words.

Fundamental Theorem of the Integral Calculus. Let

f(x) be a continuous function of x throughout the interval

a l£ x =b. Divide this interval into n equal parts by the points

x = a, x
1} x2 , "', xn_ ly xn = bj and form the sum :

f(x )\x-{-f(x1)Ax-\ \-f(xn_1)Ax.

If n now be allowed to increase without limit, this sum will ap-

proach a limit; and this limit can be found by integrating the

function f(x) and taking the integral between the limits x = a and

x = b:

Expressed as aformula, the theorem is as follows :

lmf/(« )Aoj+/(ajl)Aaj+ •••
+/(«„_!) AafUl" (f(x)dx~X\

Instead of choosing the altitudes of the rectangles in § 1

as the left-hand ordinates, Ave might equally well have taken

the right-hand ordinates. We should then have in place of (3) :

(5) A =
\im\f(x

l)Ax+f(x2)Ax+ ... -f/CaQAaTL

and hence in place of (4) :

(6) limf/^Ax-f/^A^-h -• +/(»„)
A«"]

= r Cf{x)dx
1T.

In fact, we might even choose intermediate ordinates for these

altitudes if we wished.
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Again, it is not necessary to take the subintervals (x ,
xr ),

(#!, #2),
•••all equal. Their lengths Ax

, Aa?j,
••• are arbitrary.

But in that case the longest of these must converge toward

when n increases indefinitely.

Finally, a definition. The limit of the sum (3) or (5) is

called the definite integral of the function /(a), and is denoted

by

/f(x)dx.

In distinction from the definite integral, which is the limit of

a sum, that which we have hitherto called an integral, namely
the inverse of a derivative, is called an indefinite integral.

The integral sign had its origin in the old-fashioned long s,

the initial letter of summa, the integral being thus conceived

as a definite integral, the limit of a sum.

Such a sum as the one that enters in (2) or (5) is frequently
written in the form :

n—1 n

2} f(xk)
Ax resp. ]jP / (xk) Ax.

EXERCISES

1. Write out the sum (2) for the interval 0<^#^1 when

^—1+5 and Ax=1
>

and compute its value. Determine the limit of the sum (2)

for this function by means of the indefinite integral.

2. Taking as the interval <J x <^ J and letting

/(*}=—!=, A* = .05,

VI — ar

compute
Ax J2* Ax

SVl-^2 SVl-av2
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Determine the limit of the corresponding sums when Ax

approaches 0, and show by a figure that this limit Ires between

the two sums just computed.

3. Volume of a Solid of Revolution. If a plane curve rotates

about an axis lying in its plane, it generates the surface of a

solid of revolution. Let us determine the volume of such a

solid, its bases being planes perpendicular to the axis.

Take the axis of revolution as the axis of abscissas and

divide the portion of the axis that lies between the bases into

n equal parts by the points

Xq = a, xx ,
• • • #„_! ,

xn = b. Pass

planes through these points

of division perpendicular to

the axis, thus dividing the

solid up into slabs. We can

approximate to the volumes

of these slabs by means of

cylinders whose bases are the

successive cross-sections. The volume of the Zc-th cylinder is

and the volume of the solid in question is thus seen to be the

limit of the sum of the volumes of these cylinders :

F=lim iry
2Ax+ iryx *&x-\ + 7ryn_1

2Ax ,

i.e.

CO = 7T / y
2dxf

where yz=<j>(x) is the equation of the generating curve.

For example, let it be required to find the volume of a

segment of a sphere. Here the generating curve is a circle,

. at-hy^T*,

and, h denoting the altitude of the segment, the abscissas of

the bases are r — h and r. Hence
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F= tt ffr
2 -aAdx o x

irx
3

=
|M

If, in particular, /i——r, we have the complete sphere and

obtain the familiar result f tt?*
3

.

EXERCISES

1. Show that the volume of an ellipsoid of revolution is

|7ra6
2
,
where a denotes the half-length of the axis.

2. A spindle is formed by the rotation of an arch of the curve

y = sin x

about its base. Find its volume. Ans. 4.93480.

3. Show that the volume of a cone is ^irr
2
h, and that the vol-

ume of a frustum is

4. Show that the volume of a segment of a paraboloid of

revolution, of arbitrary altitude, is one-half that of the circum-

scribing cylinder.

.5. A cycloid revolves about its base. Show that the vol-

ume of the solid generated is 57r
2a3

.

6. The four-cusped hypocycloid

x% + y$ = a*

rotates about the axis of x. Find the volume of the solid

generated. 4 32-rra3
Ans. _.

7. Find the volume of a segment of the solid of revolution

generated by the catenary :

when it rotates about the axis of x, the plane x = forming

one of the bases. Am w(£ _ g
-» +a
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4. Other Volumes. We will begin with the following ex-

ample. A wood-cutter starts to fell a tree 4 ft. in diameter

and cuts half way through. One face of the cut is horizontal,

and the other face is inclined to the horizontal at an angle of

45°. How much of the wood is lost in chips ?

Since the solid whose volume we wish to compute is sym-
metric, we may confine ourselves to the portion OABC. Divide

the edge OA into n equal

parts and pass planes through
these points of division per-

pendicular to OA. The solid

is thus divided into slabs that

are nearly prisms ; only the

face QRB'Q' is not a plane.

Let us meet this difficulty

by constructing a right prism
on PQR as base and with

PP' as altitude. Then its

volume will be a little greater

than that of the actual slab.

The solid formed by the n prisms thus constructed differs in

volume but slightly from the actual solid.*

We will next formulate analytically the volume of the

prisms. The base PQR is a 45° right triangle. Let OP=xk

and PQ = yk . Then, by the Pythagorean Theorem,

Hence the volume of this prism is

i yi?Ax = ±(4-x*)Ax,

* Let the student not proceed further till this point is perfectly clear to

him. Let him make a model of the actual solid out of cardboard or a

piece of wood and draw neatly the lines in which the plane sections

through P and P' perpendicular to OA cut the solid. He will then be

able to visualize the auxiliary prisms without difficulty and to perceive

that the sum of their volumes approaches as its limit the volume to be

computed.

Fig. 49
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and the volume of the solid we wish to compute is

(8) lim [i (4
- V) *b + i (4

-
x*) A*+ . • . + J (4

- xn_ 1

2

) Ax].
n=oo

The problem before us is thus reduced to that of computing
the limit (8). Now inspection of this limit shows that it is of

the same type as the limit (3) of § 1
;
in fact, the two vari-

ables become identical if we put

Hence the limit (8) can be computed by integrating the

function J (4
— x2

)
and taking the integral between the limits

x = a = and x = b — 2 :

/ 4(4-^)fe = 2x-J,

The total volume is twice this amount, and thus it appears
that there were 5J cu. ft. of chips hewn out.

EXERCISES

1. A banister cap is bounded by two equal cylinders of

revolution whose axes intersect at right angles in the plane of

the base of the cap. Find the volume of the cap. Ans. -fa
3
.

2. A Rugby foot-ball is 16 in. long, and a plane section con-

taining a seam of the cover is an ellipse 8 in. broad. Find the

volume of the ball, assuming that the leather is so stiff that

every plane cross-section is a square. Ans. 341-J cu. in.

3. Do the preceding problem on the assumption that the

leather is so soft that every plane cross-section is a circle.

Ans. 536 cu. in.

4. A solid is generated by a variable hexagon which moves

so that its plane is always perpendicular to a given diameter

of a fixed circle, the centre of the hexagon lying in this diam-
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eter, and its size varying so that two of its vertices always

lie on the circle. Find the volume of the solid. Ans. 2V3a3
.

5. A conoid is a wedge-shaped
solid whose lateral surface is

generated by a straight line which

moves so as always to keep par-

allel to a fixed plane and to pass

through a fixed circle and a fixed

straight line; both the line and

the plane of the circle being per-

pendicular to the fixed plane.

Find the volume of the solid.

Ans. %ira
2
h. Fig. 50

6. Find the superficial area of two of the solids considered

above.

7. Show that the volume of an ellipsoid whose semi-axes are

of lengths a, b, c is ^-n-abc.

5. Fluid Pressure. We will next consider the problem of

finding the pressure of a liquid on a vertical wall. Let the

surface be bounded as indicated in the

figure and let it be divided into n strips

by ordinates that are equally spaced.
Denote the pressure on the ft-th strip by
APk . Then we can approximate to &Pk

as follows. Consider the rectangle cut

out of this strip by a parallel to the

axis of x through the point (xk , yk).

The pressure on this rectangle is less

than that on the given strip ;
but we do

not yet know how great it is. Still, if

we turn the rectangle through 90° about

its upper side, the ordinate yk ,
we shall

obviously have decreased the pressure
further. Now the pressure on the rectangle in this new posi-

Xk*l

Fig. 51
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tion is readily computed. It is precisely the weight of a col-

umn of the liquid standing on this rectangle as base. The

volume of such a column is (xk -\- c)yk Ax, and if we denote by
w the weight of a cubic unit of the liquid, then the weight of

the column in question is

w(xk + c)yk Ax.

This is less than APk .

In like manner we can find a major approximation by con-

sidering the rectangle that circumscribes the given strip and

whose altitude is yk+i, and then turning it over on its lower

base. The pressure on it in its new position is

and this is larger than APk . We thus obtain :

(9) w(xk + c)ykAx < APk <w(xk+l + c)yk+1 Ax.

If we write out the relations (9) for k = 0, 1,
•••

,
n — 1 :

w (x + c) yQ Ax < AP < iv (x1 + c) y1 Ax,

w (#j + c) yxAx< AP1 < w (x2 -f c) y2 Ax,

and add them together, we see that the pressure P we seek to

determine lies between

(10) w(x + c)y Ax + w(x1 + c)y1Ax + ••• +w(xn_ 1 + c)ynl Ax
and

(11) w(x1 + c)y1Ax + w(x2 -\-c)y2Ax^ \-w(xn + c)yn Ax.

Finally, allow n to become infinite. Each of the variables

(10) and (11) approaches as its limit the definite integral

i

w I (x + c)ydx.

a

But the pressure P always lies between these variables, and

hence it must coincide with their common limit. Thus we see

that
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(12) P= w I (x + c)y dx.

a

We have deduced our result under the assumption that the

ordinates of the bounding curve never decrease as x increases.

The formula is true, however, even if this condition is not ful-

filled, as we shall show in § 6.

Example 1. To find the pressure on the end of a tank that is

full of water.

Here it is convenient to take the axis of y in the surface of

the liquid, so that c = 0. The equation of the bounding curve

is _

y = k,

and thus h

_wh2k

2

r x2

P=w I xkdx=ivk
2

Now the area of the rectangle is hk, so that, if we write the

result in the form ,

P=w -hk •

^,

it appears that the total pressure is the same as what it would

be if the rectangle were turned through 90° about a horizontal

line through its centre of gravity and lying in its surface, and

thus supported a column of the liquid of height -J-/L

Example 2. A water main 6 ft. in diameter is half full of

water. Find the pressure on the gate that closes the main.

The pressure on half the gate is

3

'/'

xV9 — xr dx,

where w, the weight of a cubic foot of water, is 62J lbs. Turn-

ing to Peirce's Tables, Formula 135, we find *

1 The integral may be evaluated directly by introducing as a new vari-

abl i of integration, y = 9 — a2
.
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Hence
fxV9-x

i dx = --L(9-xt)k

3

a;V9 - x>dx = -|(9 - a2

)* |

= 9,

and the total pressure is 2 x 62J x 9 = 1120 lbs.

EXERCISES

1. A vertical masonry dam in the form of a trapezoid is 200

ft. long at the surface of the water, 150 ft. long at the bottom,

and is 60 ft. high. What pressure must it withstand ?

Ans. 9300 tons.

2. A cross-section of a trough is a parabola with vertex

downward, the latus rectum lying in the surface and being

4 ft. long. Find the pressure on the end of the trough when

it is full of water. Ans. 66 lbs.

3. One end of an unfinished watermain 4 ft. in diameter is

closed by a temporary bulkhead and the water is let in from

the reservoir. Find the pressure on the bulkhead if its centre

is 40 ft. below the surface of the water in the reservoir.

Ans. Nearly 16 tons.

6. Duhamel's Theorem. Let

«i + «2 + ... • + an

be a sum of positive infinitesimals which approaches a limit when

n becomes infinite; and let

Pi + P* + -+Pn
be a second sum such that fik differs from ak by an infinitesimal

of higher order :

where

lim^ = l,
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In accordance with the hypothesis of the theorem we have

4-<i«i+ «2«8+. hen an ,

and we wish to show that the last line of this equation ap-

proaches when n = cc. Let
r/

be numerically the largest of

the ^8. Then

—
V ^ ei ^ V>

—
V ^ €^ — Vf

y^tn^y.

—
yct1 <€l a l ^r]au

<—
7jan ^ eM« ;l ^ ry«.

<
Hence
—

(ai + «2+ h«w)^S £i ai+ hc»«B g(al +a2+ |-«n)i/-

But
17 approaches and ax + «2 + ••• + «„ remains finite. This

completes the proof.

Application. As a typical appli-

cation of Duhamel's Theorem we
will give the completion of the proof
of formula (12). Let y[ be the

minimum ordinate in the A:-th strip,

and let y'k
' be the maximum ordinate.

Then we have by like reasoning to

that of § 5 :

Vu

Fig. 52

w (xk + c)y'kAx< APk < w (xk+l + c) y'k
'

Ax,

and hence P lies between the two variables

(13) w (xq + c) yl Ax + w (xx + c) y[Ax -\ \-w (ajB_i + c)yi_i Aa?

and

(14) !«(#! + c)^'Aa? + w(a2 + c)2/i'A£H r-w(»»4-c)yi'_iAaj.

Neither of these variables is of the type to which the Funda-

mental Theorem of § 2 applies ;
but each suggests the variable

(15) w(pc + c)y Ax-{-w(x1 -{-c)y l Ax-\ \-w(xn_1 + c)yn.1 £iX9

whose limit is the definite integral (12), and each approaches
the value of this integral as its limit, as we will now show.
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Let ak
= w (xk + c) yk Aaj, Pk

= w (xk + c) y[ Az.

Then lim(a1 4-«2 + \-o=/<w(x-\-c)ydx.

Furthermore, &= t£&±£}#jA*= |J iim .^ = 1 .

a* wfe + c^Aa ?/A n=»2/,

Hence /?i-f- A> + ••• + /?«> i.e. the variable (13), approaches the

value of the above integral as its limit.

In like manner it is shown that (14) approaches this same

limit. Hence P is equal to this limit and (12) holds in all

cases.

7. Length of a Curve. In Chap. VI § 8 we found the length
of a curve by means of the indefinite integral,

=jV'+(i:
dx.

We can also evaluate the

required length by con-

sidering it as the limit of

a sum. Divide the inter-

val from x = a to x = b

into n equal parts, erect

ordinates at the points of division, and inscribe a broken line

in the arc to be measured. The length of this line is

Fig. 53

X VAa^ + Aft*

= VAx2 + A?/
2 + VAz2 + A?/f H f- vAz2+ A?/n_i

2

and the limit of its length is the length s to be determined.

Now this latter variable is not of a type whose limit is a

definite integral, but it suggests a new sum which is and
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whose limit, moreover, can be identified with the above limit

by DuhamePs Theorem
; namely, since lim Ayk / Ax =f'(xk):

VI +f(xQfAx + VTTfW2Ax+ • • • + Vl+/'K_1)
2
Aa;.

For, letting

«* = vr+T7^?ax, pk =yji +^a*,

we see that lim & = 1.
n=oo 0^

Hence 5

(16) #=
fvi+f(xydx,

a

and this agrees with the earlier result above referred to.

8. Area of a Surface of Revolution. To find the lateral area

of a surface of revolution we proceed in a manner similar to

that employed in finding the volume, § 3. Divide the interval

from x = a to x = b into n equal parts, erect ordinates, and

inscribe a broken line in the arc of the generating curve, as

in the preceding paragraph. This broken line, when it rotates

about the axis of revolution, generates the lateral surfaces of a

series of frusta of cones. Let us compute the lateral area of the

ft-th frustum. The lateral area of a cone is half the product of

its slant height by the perimeter of its base, -n-rl. The corre-

sponding formula for the frustum is the product of the slant

height by the circumference of the circular cross-section made

by a plane passed midway between the bases,

7r(r + M)l

Hence the lateral area in question is

(17) v (yk + Jfc+i)VAz
2 +Ayk%

and the area of the surface S that we wish to compute is thus

seen to be :

(18) 8 = limV * (yk + a*i)Va^+a^7-
n= oo -<W

*=0
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Now the general summand (17) :

ft = tt (yk+1 + yk)^1 + ^L As,Ax2

suggests the simpler expression :

%=27r2/AVl+/'(^)
2 Ax.

The sum c^+c^-h •••+«„ has for its limit I 2?r?/Vl+/'(»)
a
d.«.

And since R
a

lim^ = l,
«= oo Ctk

it follows from Duhamel's Theorem that the sum fSx + (32 + • • •

+ /?„, has the same limit. But the limit of this latter sum is,

by (18), S. Hence we obtain the result :

6
'

(i9) s=2,ryvi
+f-i<

to-

For example, we can now obtain with ease the theorem of

solid geometry that the area of a zone of a sphere is the prod-

uct of its altitude by the circumference of a great circle,

regardless of where the zone is situated. We have

x2 + y
2— r2

,

1 , <¥_-, ,

x2

_r*
dxr y y

2

a+h

/ r a+h

y-dx — 2vrx = 2 7T rh, q. e. d.

y
a

The area of the complete sphere is A-n-r
2
.

EXERCISES

1. Find the area of a segment of a paraboloid of revolution,

extending from the vertex. Ans. § it (Vm (ra + 2xf — m2

) .

/ 2. Find the area of an ellipsoid of revolution.

>f> Ans.
2tt(&

2 + ^sin^e
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3. The curve

#J
H- y — q>

rotates about the axis of x. Find the total superficial area of

the surface generated. . 12 -n-a
2

5

4. An arch of a cycloid rotates about its base. Determine

the superficial area of the surface generated. , 647rcr

o
* 5. Show that in polar coordinates

£

(20) ^2Wfritt^r»+ ££d§,
a

< 6. Find the area of the surface generated by the rotation of

the cardioid

r = 2a(l — cos0)

about its axis. Ans. +— •

5

7. Show that the area of a surface of revolution is given by
the formula

(21) 8 = 2tt I yds,

where the coordinates x, y of a point of the generating curve

are expressed as functions of the length of the arc, s.

9. Centre of Gravity. A Law of Statics. Let n particles, of

masses mlf m 2 , •••, rnin ,
be situated on a straight line, which we

will take as the axis of x, and let their coordinates be xl} x2 ,

-•-,xn . Then the coordinate x of their centre of gravity is given

by the formula :

*

(22) X — m i
,T

i ~f~ mzx2 4-
• • •

-f m<nxT>

m1 + m<i + ••- +mn

* A proof of this formula may be found in any work on Mechanics, for

example, Jeans, Theoretical Mechanics, Chap. VI.
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If the particles are situated in a plane at the points (x1 , y^,

•••, 0„, y„)_or
in space at the points (x1} yu z,), ..., (xn , yn ,

zn),
and if (x, y) or (x, y, z) is their centre of gravity, then x is

given by the same formula (22), and y and 2 are given by
similar formulas, in which the cc's are all replaced by 2/'s or z's.

Example. A granite column 6 ft. high and 1% ft. in diam-

eter is capped by a ball of the same substance 2 ft. in

diameter and stands on a cylindrical granite pedestal 9 in. high
and 2 ft. in diameter. How high above the ground is the

centre of gravity of the whole post ? Ans. 4.26 ft.

10. Centre of Gravity of Solids and Surfaces of Revolution.

By the aid of the Calculus we can compute the centre of

gravity of bodies not made up of a finite number of particles

or of bodies whose centres of gravity are known. We will

begin with homogeneous solids of revolution. Their centre

of gravity always lies somewhere in the axis of symmetry.
Divide the body into slabs as in § 3, Fig. 48, and denote the

abscissa of the centre of gravity of the k-th slab by x£. Then,
if p denote the density of the substance, the mass of the k-th

slab is pAVk ,
and

/3
AF + /3

AF1 +-"+ /0
AFn_1

Here

b

V—tt I y
2
dx,

and it remains to compute the value of the numerator. Since

this sum has the same value for all values of n, namely x V, we

may allow n to increase without limit, and we shall have

(23) Km [x' AF + x[AVx + • • • + a£_iAVn-{\ =xV.
n=oo

Now this bracket readily suggests a sum whose limit can be

computed by integration. Since
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and ^yl
2Ax^ A Vk ^ iry'k

' 2
Ax,

where y[ and yH are respectively the smallest and the largest
radii of any cross-section of the &-th slab, we see that

irxk y'h
2Ax <x'kAVk< 7rxk+1 y'k

,2 Ax.

Hence if we put

<*k
= 7r#*2/*

2
A#, ft = x'kAVk ,

we shall have

«& #* tryk AX n=oo aA

It follows, then, from Duhamel's Theorem that we can replace
the individual terms of the sum in (23), namely /3k

= x'kAVk ,

"by
ak = 7rxkyk

2 Ax. We thus obtain:

lim [irx y
2Ax + irxlyfAx+ \- nx^y^ Ax~]

= x"V.
n=oo

The left-hand side of this equation is a definite integral, and

so we are led to the result :

7r / xy
2dx

(24) x=.
V

For example, let us find the centre of gravity of a cone of

revolution. Here

b b

/* r2 /" r2 x4
1

* r2h2

J xy2dx =
v,J **>=* l!o

=
T-

and K =l^r^ = |A,

i.e. the centre of gravity is three-fourths of the distance from
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EXERCISES

1. How far is the centre of gravity of a hemisphere from

the centre of the sphere ? Ans. § r.

*
2. Find the centre of gravity of a segment of a paraboloid

of revolution.

3. Find the centre of gravity of a segment of a sphere.

*
4. Find the centre of gravity of a frustum of a cone.

Ans. Distance from smaller base,
- • _^

"*" _ — .

4 R2 + Rr + r2

'
5. The curve

y = sin x, ^ a?^ -
>

rotates about the axis of x. Find the centre of gravity of the

solid generated. ^ -
= * 1 = ua

4 7T

«> 6. Show that the centre of gravity of a surface of revolution

bounded by two planes perpendicular to the axis is giiien by
the formula

•w I xyds 2tt I ^2/A/l-f -^dx
H

7. Prove that the centre of gravity of any zone of a sphere
lies midway between the bases of the zone.

"
8. Find the centre of gravity of the lateral surface of a cone

of revolution. Ans. |7i.

9. Find the centre of gravity of the lateral surface of a

segment of a paraboloid.

11. Centre of Gravity of Plane Areas. To find the abscissa

of the centre of gravity of the area under a curve, y =f(x), § 1,

Fig. 47, divide the area into n >.*n-ips of equal breadth as there

. li I eonsid" i

'

., >-->. ,
:

' U strip be denotet ; ....;.. , t^e^uper-

i
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ficial density, supposed constant (i.e. the mass of one square

unit of the slab), by p, then the mass of the A:-th strip will be

pAAk . Let the abscissa of its centre of gravity be x'k . Then

we shall have

- = PAA a^ + pAA • x[+ ••• +pA^n_ 1
. x f

n_x

PAA + p&A1 + ••'+pAAn_1

_ x'AA + x
l
*A l + • • • + <-iAA-i

A
b

Here
jydx,

and it remains to compute the value of the numerator. The

reasoning is precisely similar to that of the preceding para-

graph. We allow n to become infinite and thus obtain

lim [4AAq + x[&AX { 4- a?i_jAAn_{\
= xA.

Now xk <x'k <xk+1 ,

y'kAx^AAk ^y'k'Ax,

and hence, if ak = xkyk Ax, fik =x'kAAk ,

lim& = l.
w=ao ak

It follows, then, from Duhamel's Theorem that

lim [x y Ax+xly1
Ax + ••• + xH_1yn_ l bx']=xAt

b

J-xydx
(25) ?~7Ti

EXERCISES

1. Find the centre of gravity of a semicircle.

Ans. x = —^ — .425 r.

07T
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2. Find the centre of gravity of a parabolic segment.

Ans. x—^h.
3. Find the centre of gravity of half an ellipse, bounded by

an axis. A a
- 4a , ~

Ans. x =— = .425a.
Sir

4. Show that the abscissa of the centre of gravity of an

arbitrary plane area whose boundary is cut by a parallel to the

axis of ordinates at most in two points is given by the formula :

f
x(y"-y')dx

* = °-

A '

where y' = <f> (x) is the equation of the lower boundary, and y"

=f(x) that of the upper one.

5. Show that the centre of gravity of a triangle lies at the

intersection of the medians.

6. Show that the centre of gravity of a uniform wire of

length I is given by the formula:

/ x ds
j
#-%/1+Xdx

dx2

x
I I

7. Find the centre of gravity of a uniform semi-circular

wire. A 2r nnrrAns. x —— = .637r.
7T

12. General Formulation. The foregoing examples may all

be brought under one general formulation, which applies
furthermore to bodies of variable density and wholly arbitrary

shape. Let the body be divided into small pieces, and denote

the mass of any piece by £±Mk ,
the abscissa of its centre of

gravity by x[. Then n-1

M
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and hence
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For example, to find the centre of pressure for the rectangle

considered in § 5. Here

b h

hs
7c

X = fA,

and the brace should be applied to the end of the tank two-

thirds of the way down.

EXERCISE

Find the depth of the centre of pressure in the case of the

dam described in § 5, Ex. 1.

14. Moment of Inertia. By the moment of inertia of a

system of particles about a straight line in space, called the

axis, is meant the quantity

n

(28) ^ mk rk
2 = mvr? + m2r2

2
-\ \- mn rn

2
,

where rk denotes the perpendicular distance of the k-th. particle,

whose mass is mk ,
from the axis.

If a body consists of a continuous distribution of matter,

like a wire or a plate or a solid body, its moment of inertia is

defined as follows. Let the body be divided up into small

pieces, of mass mk ,
and let the mass of each piece be concen-

trated at one of its points, whose distance from the axis shall

be denoted by rk . Form the sum (28) for all the pieces.

Then the limit of this sum as the pieces grow smaller and

smaller is the moment of inertia of the body :

(29) / = limV m
fc
r

fc

2
.

The physical meaning of the moment of inertia is the

measure of the resistance which the body opposes, through
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its inertia, to being rotated about the axis. The moment of

inertia also has an important application in the theory of the

strength of materials.

By means of the Calculus we can compute the moment of

inertia of any body.
Let us begin with a circular wire, of radius r and mass m,

the axis being perpendicular to the plane of the circle and

passing through its centre. Here every point in the matter

in question is at the same distance r from the axis, and so the

moment of inertia is

I=mr2
.

Next, consider a uniform circular disc. Divide its radius

into n equal parts: r = 0, ru r2 , •••, rn = a, and cut the disc up
into rings by concentric circles of radii rlf •••, rn_ x . The mo-

ment of inertia of the whole disc is equal to the sum of the

moments of inertia of these rings. Now the moment of

inertia of the Axth ring, A7"x., evidently is greater than what
it would be if its mass were concentrated along its inner

boundary, but less than if its mass were concentrated along
its outer boundary. Hence

(30) r,
2AJf, < AJ, < r,+1

2AMk .

Furthermore, AMk
= pAAk} where p denotes the density and

AAk the area :

A.4, = 7rr,+1
2 -

Trr,
2 = *(rk + Ar)

2 -
Trr,

2 = 2irr*Ar + tt Ar2
,

(31) AMk
= 2ttP rkAr + irp Ar

2
.

We are now in a position to apply Duhamel's Theorem. We
have

I=AJ -hAJi+... -f-Ak.,

= lim[A/e4-AJ1+- 4-Al^].
n=oo

On the other hand, formulas (30) and (31) suggest a simpler
infinitesimal by which to replace A/A., namely

ak =.27rprk
3Ar.
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In fact, if we divide (30) through by ak :

-
k
2AMk Alk ^WAJf,

2 irpfj?Ar 2
Trpr^.

3Ar 2 irprk
sAr

,we see that the limit of either extreme is 1, and so the limit of

the middle expression must also be 1. Putting, then, f$k
= AIk,

we get :

n=oc ak

Hence
a

I= lim V 2*prk**r = 2 vp fr>dr
=^ .— 3 ^ 2

The mass of the disc is M=
irpa

2

,
and consequently /may

be written in the form :

(32) I = M°L.

Definition. If the moment of inertia of a body be written in

the form:
I=Mk2

,

k is called the radius of gyration. The radius of gyration is

defined, then, as s/IJM. It may be interpreted as follows :

if all the mass were spread out uniformly along a circular wire

of radius k, the axis passing through the centre of the ring at

right angles to its plane, the moment of inertia would still be

the same : / = Mk2
. The radius of gyration of the above cir-

cular plate is a/ ^/2.

EXERCISES

Determine the following moments of inertia.

1. A uniform rod, of length 2 a, about a perpendicular

bisector. An^ Ma2

2. A square whose sides are of length 2 a, about a parallel

to a side through the centre. a Ma2

^

• o
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3. A uniform rod of length I about a perpendicular through
one end. * Ml2

3

njr 2
v
4. A circular disc about a diameter. Ans. —— •

4

/&. An isosceles triangle about the median through the vertex.

Ma2

Ans. —-
f
where a is half the length of the base.

6. A scalene triangle about a median.

Mh2

Ans.
,
where h is the distance of either vertex from

6

the median.

J
7. A circular wire about a diameter.

s 8. A cone of revolution about its axis.

9. A sphere about a diameter.

15. A General Theorem. When the moment of inertia of a

body about an axis is once known, its moment of inertia about

any parallel axis can be found without performing a new inte-

gration. The theorem is as follows.

Theorem. If the moment of inertia of a body about an

arbitrary axis be denoted by I
,

that about a parallel axis

through the centre of gravity by i, then

(33) I = I+Mh\
where h denotes the distance between the axes.

We will prove the theorem first for a system of particles.

Assume a set of cartesian coordinates (x, y, z),
the axis of z

being taken as the first axis of the theorem, and then take a

second set of cartesian coordinates (x', y', z') parallel to the

first, the origin being at the centre of gravity. Then we have :

Ans.
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•4=2) wfS =
2)
m (^

2 + 2/

2

)>

Furthermore,

x=x' + x, y = y' + y, z = z' + z,

where (x, y, z) is the centre of gravity referred to the (x, y, z)

axes. Hence

2) m(x* + y
2

)
=

2) m (x'
2 + 2/'

2

) +2x2) m*' + 2? 2) «?

Now 2) m^' = 0> 2) Wl^' = ^

For, recall formula (22) in § 9. Applying that formula to the

present system of particles, referred to the (V, y', 2')-axes, we
see that the abscissa of the centre of gravity, x\ is :

7 mx'

M
But the centre of gravity is at the new origin of coordinates,

and so x' = 0, hence 2) mx> = 0- Similarly, 2jm.

?/ = 0-

It remains only to interpret the terms that are left, and

thus the theorem is proven for a system of particles.

If we have a body consisting of a continuous distribution of

matter, we divide it up into small pieces, concentrate the mass

of each piece at its centre of gravity, form the above sums,

and take their limits. We shall have as before 2)mx'=0,
V my ] = 0, and hence

2) m(x
2+ 2/

2

)
=
2) m(aj'

2 + y'
2

) + Mli\

lim 2) m(x
2

+if)= lim ^m(x'
2 + y'

2

) + Mh2

, q. e. d.
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EXERCISES

Determine the following moments of inertia.

1. A circular disc about a point in its circumference.*

Ans.
SMa2

2. A uniform rod, of length 2 a, about a point in its perpen-

dicular bisector.
Ans.

Jlff^
+ h*

3. A rectangle, of sides 2 a and 26, about its centre of

gravity. A M^2

±^).

o
4. The following figures

about the axis through the

centre of gravity parallel

to the lines of the page : [^ in X D
Fig. 54

16. The Attraction of Gravitation. Sir Isaac Newton dis-

covered the law of universal gravitation. This law asserts

that any two particles in the universe attract each other with

a force proportional to their masses and inversely proportional

to the square of the distance between them:

(34) /*
mm'

/-.*
mm'

where K is a physical constant.f

By means of the Calculus we can compute the force with

which bodies consisting of a continuous distribution of matter

attract one another. Let us determine the force which a uni-

form rod of mass M exerts on a particle of mass m situated

* By the moment of inertia of any distribution of matter in a plane

about a point in that plane is meant the moment of inertia about an axis

through the point perpendicular to the plane.

t Called the gravitational constant. Its value is

6.5 x 10 8 cm3 sec~ 2
gr-

1
.
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in its own line. Divide the rod up into n equal parts and

denote the attraction of the k-th segment by AAk . The mass

6 of this segment is pAx,
;------— -

I '

"";.
' ' ' '

H*. .
where p denotes the den-

x* a
xo x \

xk «*+i xn r

sity of the rod. Now if
FlG * 55

this whole mass pAx were

concentrated at the nearer end, its attraction would be greater
than AAk ;

and similarly, if it were concentrated at the further

end, its attraction would be less. Hence

jr«e£f<.A4t<fSegs.
^k+1 Xk

It follows, then, from Duhamel's Theorem, if we set

that
-l

A^^AA^hmJ^AA,

Kmp
_a bj ab

Kmp (b — a)

This result may be written in the form

A=K^,
ab

and thus it appears that the rod attracts with the same force

as a particle of like mass situated at a distance from m equal
to the geometric mean of the distances a and b of the ends of

the rod.

Secondly, suppose the particle were situated in a perpendic-
ular bisector of the rod. Divide the rod as before and con-

sider the attraction of the k-th. segment. We must now,

however, resolve this force into two components, one perpen-

dicular, the other parallel to the rod. The latter components
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annul eacli other for reasons of symmetry, and it is only the

sum of the former,

that we need consider further. We may confine

ourselves, moreover, to half the rod and multiply
the final result by 2. It is clear that *

K^ cos
<f>k+1 < AFk <K^cos <f>k ,

and hence we infer by the usual method of rea-

soning that „

*»

Fig. 56

Here r2 = h2 + x2
,

cos
<f>
= —

,

Vh' + x2

and so we have

F=2KmPh f
dx

J V(ft
2 + ar>)

3

From Peirce's Tables, Formula 138,

dx x

f.V(^2

+^)
3 hWh2 + x2

and consequently

2Kmpa _ ^ mM
hVh2+a2 h^/h2 + a2

F= 2Emp
VW+x2

EXERCISES

Compute the following attractions.

1. A rod whose density varies as the distance from one of

its ends, on a particle in its own line.

An8 . ?^M"i0gi±^+7A_-.r
i
2 &

h i+h

* This relation holds for the part of the rod we are considering, namely,

when <fo> 0. For the other half a modification is necessary.
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t 2. A semicircular wire, on a particle at its centre.

Ans. iS^f.

^
3. The same wire, on a particle in the circumference situated

symmetrically as regards the wire. * KmM
^

. 3?r

'*(**• 8
'

^
4. A rod AB, on a particle situated at in a perpendicular

O-B at one end.

Ans. A force of
2KmM

sin \AOB, making an angle of
hi

\AOB with OB.

\l 5. A circular disc, on a particle in the perpendicular to the

disc at its centre. \ 2KmM 1-
2
4- a

2J

6. A rectangle, on a particle in a parallel to two of the sides

through the centre.

For further simple problems in attraction cf. Peirce, New-

tonian Potential Function.

17. Proof of Formula (3). We can give a proof of (3) as

follows. Suppose that y increases with x, as in Fig. 57.

Then the above rectangles are all inscribed in the curve and

their sum is less than the area A :

(35) /(a^Aaj+Z^Aa; + - +/(av_ I)Aa;<A

Consider now a second set of rectangles circumscribed about

the strips into which we have divided A. Their sum is

greater than A :

(36) A <f(x{) Ax + • • •

+/(«V-i) A* +/(0 Ax.

Thus A lies between the two variable sums (35) and (36).

These sums differ from each other only in the first term of

(35), /(a) Ax, and the last term of (36), / (b) Ax, i.e. they
differ by the quantity :

(37) [/(6)-/(a)]Ax,
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a quantity that approaches as its limit when 7i = cc. Hence

each of the sums (35) and (36) approaches A, and we have :

(38)

A=\im[f(x )Ax+f(x1)bx+ +f(x„_1)Ax]

= lim [/(aO Ax +f(x2)
Ax + • •• +/(*») Ax ].

A°)

cr:
~?en

"just

yw-A*)

OCn-l Xr?b

Fig. 57

Geometrically the difference between any inscribed rectangle

and its corresponding circumscribed rectangle is the area of

the little shaded rectangle. If we slide all these latter rectan-

gles over into the last

strip, they will form a

rectangle whose base is

Ax and whose altitude

isf(b)—f(a). Its area,

then, is precisely the.

difference (37).

It is not essential

that the lengths of the intervals x
l

— x = Ax
,
x2
— x

x
— Axl9

•••

be equal. Let the greatest of these lengths be denoted by h.

Then the difference between the sums

f(x )AxQ -j-f(xl )Axl + ••• +f(xn_ l )Axn_ 1 ,

and /(xL ) Ax{) +f(x2 )Axl + hf(xn )
Axn_i ,

as is seen from a figure similar to Fig. 57, will be less than

and so each sum approaches A as its limit.

If y decreases as x increases, the reasoning is similar, only

the sum of the inscribed rectangles is now given by (36), that

of the circumscribed rectangles by (35), and it remains to

reverse the inequality signs in (35) and (36) and change the

signs in (37).

Finally, if the curve has a finite number of maxima and

minima, it may be divided into segments such that, in each of

these, y steadily increases (or remains constant) or steadily
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decreases (or remains constant). That part of the total sum
which corresponds to strips lying wholly under any one of

these segments is shown as in the preceding discussion to

approach the area under that segment as its limit; and the

sum of the finite number of terms in (35) left over ap-

proaches 0. Hence (3), and likewise (5), is true, even when
the curve has a finite number of maxima and minima in the

interval (a, b).

Variable Limits of Integration. Let f(x) be continuous in

the interval a ^ x <^ b, and let x' be chosen arbitrarily in this

interval. Then the definite integral

x'

f(x)dx

is a function of x', <j>(x'). We may denote the variable of in-

tegration, x, by t, and at the same time change x' to x. Thus

we have :

(39) *(*) =J/(0
dt.

The integral on the right-hand side represents the area

under the curve, bounded by a variable ordinate whose abscissa

is x. Hence its derivative has the value (Chap. VI, § 1) f(x),

and thus we see that
X

(40) *'(*)=/(*) or
*.ff(f)dt=f(x).

a

Finally, the variable of integration, t, is often denoted by the

same letter as the variable upper limit, (40) thus being written :

X

(41)
<f>(x)=Jf(x)dx.
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EXERCISES

1. A cycloid revolves about the tangent at its vertex.

Show that the volume of the solid generated is 7r
2a3

.

2. Show that the volume of the solid generated by a curve

that revolves about the axis of y is given by the formula :

V= 7T I xPdy.

3. A cycloid revolves about its axis, i.e. the line through
the vertex perpendicular to the base. Show that the volume

of the solid generated is
iro?l-^ )•

4. If the curve

y
2

(x
— 4 a) = ax (x

— 3 a)

revolve about the axis of x, show that the volume of the solid

generated by the loop is ?r a3

(7|
— 8 log 2). Compute this vol-

ume correct to three significant figures when a — 1.

Ans. 6.12.

5. The curve y
2 — x (x — 1) (x

—
2) revolves about the axis

of x. Show that the volume of the solid generated by the oval

is \tt.

6. Find the volume of the solid generated by the catenary

y = i(e* + e-x
)

when it rotates about the axis of y.

Ans. £[(r
2 -2r + 2)e

r

+(?*
2 + 2r + 2)e-

r

-4], where r de-

notes the radius of the base.

7. Find the volume of a torus (anchor ring). Ans. 2irio 2
b.

8. Find the area of the surface of a torus.

9. Find the area of the loop of the curve

Xs — 3axy + y
s = 0. . Ans. fa

2
.
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10. Find the area of the loop of the curve

r cos = a cos 20. Ans. (2--)a2
.

11. Obtain the area of the surface of a segment of the solid

generated by the rotation of a catenary

(a) about the axis of x
; (b) about the axis of y.

Ans. (a) 7r(ys-\-ax)', (b) 2 7r(a
2
-\-xs — ay), where s denotes

the length of the arc measured from the origin.

12. The kinetic energy of a system of particles, moving in

any manner, is the sum of the kinetic energies of the individ-

ual particles, 2^^mkvk
2

.

Show that the kinetic energy of a uniform rod of length 2 a,

which is rotating about its perpendicular bisector with angular

velocity o>, is i Jfa2
o>

2
.

13. A pendulum consisting of a rectangular lamina oscillates

about an axis perpendicular to its plane and passing through

the middle point of one of its sides. Compute its kinetic

energy. .
Ans. M(±a? + \b

2

)oi
2

.

14. A homogeneous cylinder rotates about its axis. Find

its kinetic energy. Ans. \Md2
o>

2
.

15. Show that the kinetic energy of a rigid body, rotating

with angular velocity <o about any axis, is JIco
2
,
where I

denotes the moment of inertia about the axis.

16. The density of water under a pressure of p atmospheres

is given by the formula :

p = po (1 + .00004 p),
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where p denotes the pressure measured in atmospheres. Show
that the surface of an ocean six miles deep lies a little over

600 ft. deeper than it would if water were incompressible.

17. The perimeter of an ellipse whose major axis 2 a is twice

as long as the minor axis can be shown to be 4.84 a. {Infinite

Series, p. 30.) Find the centre of gravity of a uniform wire

in the form of half such an ellipse, the ends being at the

extremities of the minor axis.



CHAPTER X

MECHANICS

1. The Laws of Motion. Sir Isaac Newton discovered the

laws on which the science of Mechanics rests. They are as

follows :

First Law. A body at rest remains at rest and a body in

motion moves in a straight line with unchanging velocity, unless

some external force acts on it.

Second Law. The rate of change of the momentum of a

body is proportional to the resultant external force that acts on

the body.

Third Law. Action and reaction are equal and opposite.

The meaning of the First and Third Laws is obvious. In

the Second Law the momentum of the body is to be understood

as the product of its mass by its velocity, mv. And since, in

the vast majority of cases which we meet in practice, the mass

is constant, we have

d(mv) ==m dv

dt dt

Now the rate at which the velocity changes, dv /dt, is what we

commonly call acceleration,
— we will denote it by a;

— and

hence the Second Law may be expressed as follows :

The mass times the acceleration is proportional to the force :

(1) ma cc / or ma = Xf
190
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The factor A. is a physical constant. Its value depends on
the units we employ. If these are the English units: foot,

pound (mass), second, and pound (weight), X has the value 32 :

(2) ma = 32/.

Furthermore, since v= —, we have :

dt

__ dv _ d2s
a ~

dt~ dt2
'

In applying the Second Law we are to regard a force which
tends to increase s as positive, one that tends to decrease s as

negative.

If forces oblique to the line of motion * act on the body, each

one must be broken up into a component along the line of

motion and one perpendicular to this line. The latter compo-
nent has no influence on the motion

;
the former component

tends to produce motion. The force / of Newton's Second Law
is obtained, when several forces act simultaneously, as the al-

gebraic sum of all forces and components of forces along the line

of motion, taken positive when they tend to increase s, negative
in the dther case. The body is thought of as moving without

rotation and may, therefore, be conceived as a particle.

Finally, we will deduce a new expression for the accelera-

tion. If in the equation
dv dv ds

a =— =
,

dt ds dt

replace ds/dt by its value, v. Hence

/Q\ . dv
(p) a = v—v J

ds

Example 1. A freight train weighing 200 tons is drawn by
a locomotive that exerts a pull of 9 tons. 5 tons of this force

are expended in overcoming frictional resistances. How much

speed will the train have acquired at the end of a minute ?

* We are considering here only the case of rectilinear motion or con-

strained motion in a given curve. For a more general statement of the

law cf. § 9.
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p f=mo Here we have

m = 200 x 2000 = 400,000 lbs.,

/= 9 x 2000 - 5 x 2000 = 8000 lbs *

and hence (2) becomes

400,000— = 32x8000,
dt

dv 16
or — =—

dt 25

Integrating with respect to
t, we get :

v = i§t + a
Since v = when t = 0, we must have (7=0, and hence

At the end of a minute, t = 60, and so

v =if x 60 = 38.4 ft. per sec,

To reduce feet per second to miles per hour it is convenient

to notice that 30 miles an hour is equivalent to 44 ft. a second,

as the student can readily verify ; or, roughly, 2 miles an hour

corresponds to 3 ft. a second. Hence the speed in the present
case is two-thirds of 38.4, or 26 miles an hour.

Example 2. A stone is sent gliding over the ice with an

initial velocity of 30 ft. a sec. If the coefficient of friction

between the stone and the ice is T̂ , how far will the stone go?

f=-m Here, the only force that we take
—

'- ^
*

^— account of is the retarding force of

friction, and this amounts to one-tenth

of a pound of force for every pound
of mass there is in the stone. Hence, if there are m pounds of

mass in the stone the force will be -fern lbs.,t an(i since it

tends to decrease s, it is to be taken as negative :

* The student must distinguish carefully between the two meanings of

the word pound, namely (a) a mass, and (6) a, force;— two totally differ-

ent physical objects. Thus a pound of lead is a certain quantity of matter.

If it is hung up by a string, the tension in the string is a pound of force.

t The student should notice that m is neither a mass nor a force, but a

number, like all the other letters of Algebra, the Calculus, and Physics.

Fig. 59
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ma =32
(-fo)

«=-¥•
Now what we want is a relation between v and s, for the

question is : How far (s
=

?), when the stone stops (y = 0). So

we use the value (3) of a :

do 16

or vdv= —i^-ds.

XT D2 16
,

,
Hence — =—— s + C.

£ o

To determine O we have the data that, when s = 0, v= 30 :

^-

2

= + (7, (7= 450,

v2 = 900--\*s.

When the stone stops, v = 0, and we have

= 900-^*, s = 141ft.

EXERCISES*

1. An ice boat that weighs 1000 pounds is driven by a wind
which exerts a force of 35 pounds. Find how fast it is going
at the end of 30 seconds if it starts from rest.

Ans. About 22 miles an hour.

2. A small boy sees a slide on the ice ahead, and runs for it.

He reaches it with a speed of 8 miles an hour and slides 15

feet. How rough are his shoes, i.e. what is the coefficient of

friction between his shoes and the ice ? Ans. fi
= .15.

3. Show that, if the coefficient of friction between a sprin-

ter's shoes and the track is T̂ , his best possible record in a

hundred yard dash cannot be less than 15 seconds.

* The student is expected in these and in all the other exercises in me-
chanics to draw a figure for each exercise and to mark the forces distinctly

in it, preferably in red ink.
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4. An electric car weighing 12 tons gets up a speed of 15

miles an hour in 10 seconds. Find the average force that acts

on it, i.e. the constant force which would produce the same

velocity in the same time.

5. In the preceding problem, assume that the given speed is

acquired after running 200 feet. Find the time required and

the average force.

6. A train weighing 500 tons and running at the rate of 30

miles an hour is brought to rest by the brakes after running
600 feet. While it is being stopped it passes over a bridge.

Find the force with which the bridge pulls on its anchorage.

Arts. 25.2 tons.

7. An electric car is starting on an icy track. The wheels

skid and it takes the car 15 seconds to get up a speed of two

miles an hour. Compute the coefficient of friction between

the wheels and the track.

2. Absolute Units of Force. The units in terms of which

we measure mass, space, time, and force are arbitrary. If

we change one of them we thereby change the value of A. in

Newton's Second Law, (1). Consequently, by changing the

unit of force properly, the units of mass, space, and time

being held fast, we can make X = 1. Hence the

Definition. The absolute unit of force is that unit that

makes A.= l in Newton's Second Law of Motion, (1):*

(4) mo=/.

*We have already met a precisely similar question twice in the

Calculus. In differentiating the function sin x we obtain the formula

Dx sin x = cos x

only when we measure angles in radians. Otherwise the formula reads

Dx sin x = X cos x.

In particular, if the unit is a degree, X = 7r/180. We may, therefore,

define a radian as follows : The absolute unit of angle (the radian) is

that unit that makes X = 1 in the above equation.
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In order to determine experimentally the absolute unit of

force, we may allow a body to fall freely and observe how-

far it goes in a known time. Let the number g be the number
of absolute units of force with which gravity attracts the

unit of mass. Then the force, measured in absolute units,

with which gravity attracts a body of m units of mass will

be mg. Newton's Second Law (4) now becomes :

dv , dvm- = mg, hence - = g;

v=gt+C, (7=0;

ds
V =

dt= gt>

s = igt* + K, iT=0,

and we have the law for freely falling bodies deduced directly

from Newton's Second Law of Motion, the hypothesis being

merely that the force of gravity is constant. Substituting in

the last equation the observed values s = S, t= T, we get :

9 fit

if

jt2

If we use English units for mass, space, and time, g has,

to two significant figures, the value 32, i.e. the absolute unit

of force in this system, a pounded, is equal nearly to half an

ounce. If we use c.g.s. units, g ranges from 978 to 983 at

different parts of the earth, and has in Cambridge the value

980. The absolute unit of force in this system is called

the dyne.

Since g is equal to the acceleration with which a body falls

Again, in differentiating the logarithm, we found

Dx \ogax=(\oga e)-.
x

This multiplier reduces to unity when we take a = e. Hence the defini-

tion : The
'

absolute (natural) base of logarithms is that base which

makes the multiplier loga e in the above equation equal to unity.
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freely under the attraction of gravity, g is called the accelera-

tion of gravity. But this is not our definition of g ;
it is a

theorem about g that follows from Newton's Second Law of

Motion.

The student can now readily prove the following theorem,

which is often taken as the definition of the absolute unit

of force in elementary physics: The absolute unit of force

is that force which, acting on the unit of mass for the unit

of time, generates the unit of velocity.

Example 1. A body is projected down an inclined plane with

an initial velocity of v feet per second. Determine the motion

completely.

The forces which act are : the component of gravity, mg sin y
absolute units, down the plane, and the force of friction,

fj,R
= fxmg cos y up the plane. Hence

ma = mg sin y
—

/xmg cos y

dv
or — s= g sin y

—
fig cos y.

at

Integrating this equation, we get

V as g (sin y
—

fx COS y) t + C,

v = + C,

(A) v=
cti

= 9 ^sin y-iMG0S y) t + v
<>-

v t,

A second integration gives

(B) 8 = \ g (sin y
—

fi cos y) f

the constant of integration here being 0.

To find v in terms of s we may eliminate t between (A) and

(B). Or we can begin by using formula (3) for the acceleration :

dv . . v
'U
^" :=9,(^Siny

""
/xC0S ^'

|-'y
2 =

gf(siny
—

^,COSy)s + K,

W= +K,
v2= 2g (sin y

—
/x,
cos y) s -f v 2

.
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Example 2. An Atwood's machine has equal weights, M
and M

,
attached to the cord, and a rider of mass m is added

to one of the weights. Determine the motion.

We apply Newton's Second Law to each of the weights

M and M+m individually. The forces are indicated in the

diagram, the tension in the string, whose weight is negligible,

being the same at all points. Moreover, since the space

traversed by both weights is the same, s,

their velocities and accelerations are also

equal. Thus
Ma = T - Mg,

(M+ m)a= (M+ m)g-T,

mg
2M+m

T= (2M+27n)M
t

2M+m "

Fig. 61

From the last formula it appears that the tension is constant

and that it lies between the values Mg and (M+m)g. The

student can work out for himself the formulas that give v and s

in terms of t,
and v in terms of s.

EXERCISES*

1. A weightless cord passes over a smooth pulley and car-

ries weights of 8 and 9 pounds at its ends. The system starts

from rest. Find how far the 9 pound weight will descend

before it has acquired a velocity of one foot a second. What
is the tension in the cord ? Arts. \\ ft.

;
8.4 lbs.

2. Obtain the usual formulas for the motion of a body pro-

jected vertically :

or =-2gs+v 2
-,

= -gt + vQ \

= -igt
2 +v t.

3. On the surface of the moon a pound weighs only one sixth

as much as on the surface of the earth. If a mouse can jump

v2 = 2gs + v 2

gt + vQ or

or

See foot note on p. 193.
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up 1 foot on the surface of the earth, how high could it jump
on the surface of the moon ? Compare the time it is in the air

in the two cases.

4. A bullet fired from a revolver penetrates a block of wood
to a distance of 6 inches. How much greater would its velocity
have to be to make it go in 12 inches ? Assume the resistance

to be the same at all points, for all velocities.

Ans. About 40 percent.

5. Kegarding the big locomotive exhibited at the World's

Fair in 1904 by the Baltimore and Ohio Railroad the Scientific

American says :

" Previous to sending the engine to St. Louis,

the engine was tested at Schenectady, where she took a 63-car

train weighing 3,150 tons up a one-per-cent. grade."

Find how long it would take the engine to develop a speed
of 15 m. per h. in the same train on the level, starting from

rest, the draw-bar pull being assumed to be the same as on the

grade.

6. A block of iron weighing 100 pounds rests on a smooth

table. A cord, attached to the iron, runs over a smooth pulley

at the edge of the table and carries a weight of 15 pounds,
which hangs vertically. The system is released with the iron

10 feet from the pulley. How long will it be before the iron

reaches the pulley, and how fast will it be moving ?

Ans. 2.19 sec.
;

9.1 ft. a sec.

7. Solve the same problem on the assumption that the table

is rough, /a =2*0, an(^ tnat tne Pu^ey exerts a constant re-

tarding force of 4 ounces.

8. If Sir Isaac Newton registered 170 pounds on a spring

balance in an elevator at rest, and if, when the elevator was

moving, he weighed only 169 pounds, what inference would he

draw about the motion of the elevator ?

9. What does a man whose weight is 180 pounds weigh in

an elevator that is descending with an acceleration of 2 feet

per second per second ?



MECHANICS 199

(1

10. A chest-weight consists of a movable pulley

and a fixed pulley, as shown in the diagram. If a 16

pound weight is attached to the movable pulley and

if the cord carries a 9 pound weight at its free end,

how far will the 9 pound weight descend before it

has acquired a velocity of one foot a second ? What
is the tension in the cord ? Ans. J| ft.

;
8.3 lbs. Fl«- 62

11. In a system of pulleys like that of question 10 a 4 pound

weight is attached to the movable pulley, and to the free end

of the cord is fastened a weight of 1 pound and 15 ounces,

and in addition a rider weighing 2 ounces is laid on. The sys-

tem starts from rest, and after the rider has descended 8 feet

it is removed. Determine the motion.

12. A bucket of water, at the bottom of which there rests a

stone, forms one weight of an Atwood's machine. The bucket

with its contents weighs 16 pounds, and the other weight is 18

pounds. If the stone weighs 12 pounds and its specific gravity

is 3, find how hard it presses on the bottom of the bucket when

the system is released.

13. In the bucket described in the preceding question there

is a cork, of specific gravity \, submerged and held under by a

thread tied to the bottom of the bucket. Will the tension in

the thread be increased or diminished after the system is

released ?

14. What is the mechanical effect on one's stomach when

one is in an elevator which, starting from rest, is allowed

suddenly to descend?

15. A block of ice is resting on a sled, the coefficient of fric-

tion between the ice and the sled being £-$.
The sled is drawn

along, starting from rest. Find the shortest possible time in

which the ice can be moved 10 ft.

16. A man weighing 180 pounds is at the top of a building

60 feet above the ground. He has a rope which just reaches
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to the ground and which can bear a strain of only 170 pounds.
Can he slide down the rope to the ground in safety ?

Interpret the velocity with which he reaches the ground by

finding the height from which he would have to drop in order

to acquire the same velocity.

17. Find the shortest time in which a bale weighing 160

pounds can be raised from the ground to a window 25 feet high

(coming to rest at the window) by means of the rope of the

preceding question, if the rope passes over a fixed pulley just

above the window and is drawn in over the drum of a dummy
engine.

18. If the speed of a train is being uniformly retarded by
the brakes, prove that a plumb line will hang at rest relatively

to the train at a certain angle, and determine this angle.

19. In the train described in the preceding exercises, ques-

tion 6, there is a bucket of water. Find the angle which the

surface of the water makes with the plane of the tracks after

the water has ceased to surge.

20. At what angle ought a man to stand in a car that is

starting with an acceleration of 3 feet per second per second ?

21. The drivers of a locomotive are keyed to the axle and

are being transported on a platform car. The axle is perpen-

dicular to the track, the diameter of the wheels is 6 ft., and

they are blocked by pieces of joist 3 in. thick. The brakes

being put on hard, so that the train loses 3.
J-
miles an hour of

speed every second, find whether the drivers will jump the

cleats.

22. A body slides down a smooth inclined plane. Show
that the velocity with which it reaches the foot of the plane is

the same that the body would have acquired in falling freely

through the same difference in level.

23. Chords are drawn from the highest point O of a vertical

circle. Show that the time of descent of a bead from rest at
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0, down a smooth wire coinciding with any one of these chords,

is constant.

24. A point O is distant 10 feet from an inclined plane,

whose angle of inclination is a. Find the shortest time in

which a bead can reach the plane if it starts from rest at

and slides down a smooth straight wire.

25. The draw bar of the locomotive in Example 5 weighs
50 pounds. How much harder does the engine pull on the

draw bar than the draw bar pulls on the train ?

3. Simple Harmonic Motion. Problem. One end of an elas-

tic string is made fast at a point A and to the other end is

fastened a weight. The weight is carefully brought to rest

and then is given a slight vertical displacement. Determine

the motion.

Let AB be the natural length of the string, the

point of equilibrium of the weight, and let P be the
,

position of the weight at any instant after it is released;

C, the point from which it is released. The forces that

act on it are : the force of gravity, 7ng, downward and

the tension T of the string upward, — we neglect the

damping due to the atmosphere. Hence we have from

Newton's Second Law of Motion

(5) m -L = T-mg.

From Hooke's law, which says that the tension in a o

stretched elastic string is proportional to the stretch-

ing, it follows that p --

TIP
(6) t=^> d
where X is Young's modulus,* provided the cross-section of the

* The physical constant X is sometimes interpreted as that force which

would be required to double the length of the string, provided this could

be done without exceeding the elastic limit.
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string is unity. Since at the tension is just equal to the

force of gravity, we have furthermore

(7) mg= \22.

Hence from (6) and (7) :

and thus (5) becomes

(8) m M = xT
The variables s and x are connected by the relation :

s + x=OC=h,
where h denotes the original displacement. Thus

^£ . ^ _ a ds _ dx

~dt ~dt~
°r

dt" dt

and '^—*?•
dt

2
dt2

Substituting in (8) we get

d2x= X

dt2 ml

or, setting X/ml = n2
:

This differential equation is characteristic for Simple Harmonic

Motion.

To integrate (I) multiply through by 2dx/dt and note that*



MECHANICS 203

Integrating each side with respect to t we get

dx*

dt2
C-2n2x— dt = -2n2 Cxdx = -n2x>+C.

To determine C observe that initially x m h, while the velocity,

equal numerically to dx/dt, is :

= -n2h2 + C.

Hence

(ii) g.,*<»_rf).

From this result we infer (a) that the maximum velocity is

attained when x = and is ixh
; (6) that the height to which

the body rises, determined by putting dx/dt = in (II), corre-

sponds to x = — h. The latter inference, however, is legitimate

only on the assumption that the point C: x = — h, is not higher

than B, i.e. that

OC= OB.

For otherwise the body will rise above B, and since the string

cannot push, a new law of force becomes operative, the force

now being simply that of gravity, and so (I) is no longer true.

We return to equation (II) and write it in the form

dx^^-nVW-x2
,

dt

the minus sign holding so long as the body is rising, since x

decreases as t increases. To integrate this equation write it

as follows:

, dx

Hence

nt

J VV-x2 h

Initially t = and x = h, therefore

0=0 +
and we have
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(9) nt = cos" 1

-,

hence

(III) x = h cos nt.

We have deduced this result merely for the interval that the

body is rising. When the body begins to descend, dx/dt
becomes positive and we have

nt = + I _
•

J Vh2 -x2

This integral can, however, still be expressed by the formula

(10) w^cos-^+O,

provided that, contrary to our usual agreement, we choose that

determination of the multiple-valued function which lies be-

tween 7r and 2tt. To determine Owe have from (9) that when
x — —h, t = 7r/n. Substituting these values in (10) we get

7r = cos
- 1

(-l)+0, (7 = 0,

and thus (9) and (III) hold throughout the descent. From
this point on the motion repeats itself,

— a fact that is mirrored

analytically in equation (III) by the periodicity of the function

cos nt. Thus formula (III) holds without restriction.

Turning now to a detailed discussion of these results we see

that the time from C to is ^ = ir/2n. The same time is also

required from to C, then from C back to 0, and lastly from

to C. Thus the total time from C back to C is

T= —>
n

In descending, the velocity is the same in magnitude as when

the body was going up, only reversed in sense
;
and the time

required to descend from C to an arbitrary point P is the

same as that required to rise from P to C.
The time T is called the period of the oscillation. If we

consider the body at an arbitrary point P and time t,
then at
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the instant T seconds later, the body will be at the same point

and moving with the same velocity, both in magnitude and

sense,
— this fact is expressed by saying that the phase is the

same,— for

x = hcosn(H——
)

= h cos nt,

\ n J

— = -hnsmn(t+—^ = - hn sin nt.

dt \ n)

Finally, we observe that the amplitude 2 h of the oscillation

has no effect on the period.

EXERCISES

1. One end of an elastic string is fastened at a point A,
and to the other end is attached a weight that would just

double the length of the string. The weight being dropped
from A, find how far it will descend.

Assume the string to be 3 feet long and the mass of the

weight to be 2 pounds. Ana. 11.2 ft.

2. If the weight in the preceding question is brought to a

point 9 feet below A and released, how high will it rise ? How
long will it take for it to return to the starting point ?

3. A slender rod is clamped at one end so as to be horizontal

when not loaded. A ball of lead is then fastened to the free

end and brought carefully to the position of equilibrium,

the ball dropping by less than 3 % of the length of the rod.

The ball being given a slight vertical displacement, show that

the oscillation will be approximately simple harmonic motion

and determine the period.

Neglect the deviation of the path of the ball from a vertical

straight line, and assume that the force that the rod exerts is

proportional to the distance which the free end has been dis-

placed from equilibrium.

4. A steel wire of one square millimeter cross-section is

hung up in Bunker Hill Monument, and a weight of 25 kilo-
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grammes is fastened to its lower end and carefully brought to

rest. The weight is then given a slight vertical displacement.
Determine the period of the oscillation.

Given that the force required to double the length of the

wire is 21,000 kilogrammes, and that the length of the wire is

210 feet. Ans. A little over half a second.

4. Motion under the Attraction of Gravitation. Problem.

To find the velocity which a stone acquires in falling to the

earth from interstellar space.

Assume the earth to be at rest and consider only the force

which the earth exerts. Let r be the distance of the stone

from the centre O of the earth, and s, the distance it has

travelled from the starting point A. Then the force acting on

it is

and sincef—mg when r=R, the radius of the earth:

mg =— and /= —^-—
R2 T

Hence, from Newton's Second Law of Motion,

(11) m d2
s _ mgR2

dt
2 r2

Furthermore, s + r = l, where I denotes the initial

distance OA, and consequently

ds ,dr_r\ d2
s d2

r_Q
Fig^64 dt dt~ '

dt2 dt2

Equation (11) tnus becomes :

/ x d2r gR2

To integrate this equation, we employ the method of § 3 and

multiply by 2dr/dt:

2
dr<Pr = 2gR

2 dr
"
dt dt

2 r2 dt'
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Integrating with respect to t we get :

Initially dr/dt = and r= I :

Z

=^ + 0, C =

(5)

S^ffg-f
Since dr/dt is numerically equal to the velocity ds/dt, the

velocity V at the surface of the earth is given by the equation :

If l is very great, the last term in the parenthesis is small, and

so, no matter how great I is, Fcan never quite equal ^s/2gR.

Here g = 32, 72 = 4000 x 5280, and hence the velocity in ques-

tion is about 36,000 feet, or 7 miles, a second.

This solution neglects the retarding effect of the atmos-

phere ;
but as the atmosphere is very rare at a height of 50 miles

from the earth's surface, the result is reliable down to a point

comparatively near the earth.

In order to find the time it would take the stone to fall,

write (6) in the form

V/ rdrHence dt =
SB ^/ir-r*

and t=-^i(
r^

.

Turning to the Tables, No. 169, we find

JVfr-r2 V -Vlr-?
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= _ VF^72 + \ sin"
1^~1 +K

Thus i-
jj {vs=*-J*r^} +*.

Initially £ = and r = Z :

8Ri 22 J

Hence finally :

/•s * vTl /i ,, i _i2r-ZI
(c)

,»_jVF=?+j«o..»-f-J.

EXERCISES

1. A hole is bored through the centre of the earth and a

stone is dropped in. Find how long it will take the stone to

reach the centre and how fast it will be going when it gets

there.

Assume that the air has been exhausted from the hole and

that the attraction of the earth is proportional to the distance

from the centre.

2. Show that if the earth were without an atmosphere and

a stone were projected from the surface of the earth with a

velocity of ^2gB, or nearly seven miles a second, it would

never come back.

3. The moon's mass is about -^j and its radius about T
3
T that

of the earth. With what velocity would a body have to be

projected from the moon in order not to return ?

4. Taking the distance of the moon from the earth as

237,000 miles, find the velocity with which a stone would

reach the moon if it were placed at the point of no force

between these two bodies and then slightly displaced in the

direction of the moon.
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5. Find how long it would take Saturn to fall to the sun.

Given that the acceleration of gravity on the surface of the

sun is 905 feet per second per second, that the diameter of

the sun is 860,000 miles, and that the distance of Saturn from

the sun is 880,000,000 miles.

6. How long would it take the earth to fall to the sun?

Given that the distance from the earth to the sun is 92,000,000

miles.

7. How long would it take the moon to fall to the earth ?

5. Constrained Motion. If a particle is constrained to de-

scribe a given path, as in the case, for example, of a simple

pendulum, then the form which Newton's Second Law of

Motion assumes is that the product of the mass by the acceler-

ation along the path is equal to the component, along the path,
of the resultant of all the forces that act.

Consider the simple pendulum. Here

d2
sm — = -mgsmd,

and since s = 10,

(A) «-{**
This differential equation is characteristic for Sim-

ple Pendulum Motion. We can obtain a first integral

by the method of § 3 :

dt dt
2

I dt'

dl=-?l fSm0d6 = ^cos0 + C,
dtf I J I

= ?2cosa+ G,
i

where a is the initial angle ;
hence

(B) g=
^(0O8*-0O8«).
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The velocity in the path at the lowest point is I times the

angular velocity for = 0, or V2gl (1
— cos a), and is the same

that would have been acquired if the bob had fallen freely
under the force of gravity through the same difference in level.

If we attempt to obtain the time by integrating (B), we are

led to the equation :

»_JJ f
*»

*9j Vcos0 — cos a

This integral cannot be expressed in terms of the functions at

present at our disposal. It is an Elliptic Integral. When 6,

however, is small, sin# differs from by only a small per-

centage of either quantity, Chap. IV, § 1, and hence we may
expect to obtain a good approximation to the actual motion if

we replace sin 6 in (A) by 6 :

This latter equation is of the type of the differential equation
of Simple Harmonic Motion, § 3, (I), n2

having here the value

g/l. Hence when a simple pendulum swings through a small

amplitude, its motion is approximately harmonic and its period
is approximately

MwJ?
9

A question that interested the mathematicians of the

eighteenth century was this : In what curve should a pen-

dulum swing in order that the period of oscillation may be

absolutely independent of the amplitude ? It turns out that

the cycloid has this property. For the differential equation of

motion is

m~=-mgsmT,

where s is measured from the lowest point, and since, from

Ex. 8, p. 151,
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we have —- =

Fig. 66

5= 4a sin t,

d2s _ g_

~dX
2
~

4a
*'

This is the differential equation
of Simple Harmonic Motion, § 3,

(I), and hence the period of the

oscillation :

is independent of the amplitude.
A cycloid pendulum may be constructed by causing the cord

of the pendulum to wind on the evolute of the path. But the

resistances due to the stiffness of the cord as it winds up and

unwinds would be appreciable.

We will close this paragraph with a general theorem. Sup-

pose a bead slides on a smooth wire of any shape whatever.

Then its velocity at any point will be the same as what the

bead would have acquired in falling freely under the force of

gravity the same difference in level.

We have already met special cases of this theorem in the

inclined plane and the simple pendulum. We shall restrict

ourselves to plane curves, but the proof can be extended with-

out difficulty to twisted curves.

Newton's Second Law of Motion gives

d2
s dxm-— = mgcosT=mg— t

dfr ds

Hence 2*?**=2* ^* = 2<i^,
dt dt2 *

dsdt
y
dt

df-

= 2gx+C.

(x ,y )

Fig. 67

If we suppose the bead to start from rest at A, then

= 2gx +C,

(«) v* =— =:2g(x-x ).
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But the velocity that a body falling freely a distance of x — xQ

attains is expressed by precisely the same formula, and thus

the theorem is established.

In the more general case that the bead passes the point A
with a velocity v we have :

v 2 = 2gx +C,

(2T) v2 -v
(? = 2g(x-x ).

Thus it is seen that the velocity at P is the same that the bead

would have acquired at the second level if it had been projected

vertically from the first with velocity v .

The theorem also asserts that the sum of the kinetic and

potential energies of the bead is constant, or that the change
in kinetic energy is equal to the work done on the bead.

If the bead starts from rest at A, it will continue to slide

till it reaches the end of the wire or comes

^L J_4'.
to a point A' at the same level as A. In

the latter case it will in general just rise

to the point A f and then retrace its path
back to A. But if the tangent to the curve

at A' is horizontal, the bead may approach
A' as a limiting position without ever reaching it.

EXERCISES

1. A bead slides on a smooth vertical circle. It is projected
from the lowest point with a velocity equal to that which it

would acquire in falling from rest from the highest point.

Show that it will approach the highest point as a limit which

it will never reach.

2. From the general theorem (51) deduce the first integral

(B) of the differential equation (A).

6. Motion in a Resisting Medium. When a body moves

through the air or through the water, these media oppose re-

sistance, the magnitude of which depends on the velocity, but
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does not follow any simple mathematical law. For low veloci-

ties up to 5 or 10 miles per hour, the resistance R can be

expressed approximately by the formula :

(12) R = av,

where a is a constant depending both on the medium and on

the size and shape of the body, but not on its mass. For higher

velocities up to the velocity of sound (1082 ft. a sec.) the

formula

(13) R = cv2

gives a sufficient approximation for many of the cases that

arise in practice. We shall speak of other formulas at the

close of the paragraph.

Problem 1. A man is rowing in still water at the rate of

3 miles an hour, when he ships his oars. Determine the subse-

quent motion of the boat.

Here Newton's Second Law gives us:

(14) m
Tt
= ~ aV'

a v

(15) t= ™log%
where v is the initial velocity, nearly 4±- ft. a sec.

From (15) we get :

_at

(16) v=v e
m

.

Hence it might appear that the boat would never come to rest

but would move more and more slowly, since

_ at

lime m = 0.
t= oo

We warn the student strictly, however, against such a conclu-

sion. For the approximation we are using, R = av, holds only
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for a limited time and even for that time is at best an approxi-

mation. It will probably not be many minutes before the

boat is drifting sidewise, and the value of a for this aspect of

the boat would be quite different,
— if indeed the approxima-

tion E = av could be used at all.

To determine the distance travelled, we have from (14) :

and consequently:

(17)

dvmv— = — av,

a

m

Hence, even if the above law of resistance held up to the

limit, *the boat would not travel an infinite distance, but would

approach a point distant

a

feet from the starting point, the distance traversed thus being

proportional to the initial momentum.

Finally, to get a relation between s and t, integrate (16) :

as ~m

dt
=v° e >

(18) s=^°(l-e~™).

From this result is also evident that the boat will never cover

a distance of 8 ft. while the above approximation lasts.

EXERCISE

If the man and the boat together weigh 300 lbs. and if a steady
force of 3 lbs. is just sufficient to maintain a speed of 3 miles

an hour in still water, show that when the boat has gone 20 ft.,

the speed has fallen off by a little less than a mile an hour.

Problem 2. A drop of rain falls from a cloud with an initial

velocity of v ft. a sec. Determine the motion.

We assume that the drop is already of its final size,
— not
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gathering further moisture as it proceeds,
— and take as the

law of resistance :

R = cv2
.

Hence
dvm— =

dt
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from a balloon two miles high, the velocity will not be appre-

ciably greater.

2. Find the time in terms of the velocity and the velocity

in terms of the time in Problem 2.

3. Determine the height to which the shot will rise in Ex. 1,

and show that the time to the highest point is

£ = -J— tan-M v \— ],

where v is the initial velocity.

7. Graph of the Resistance. The resistance which the at-

mosphere or water opposes to a body of a given size and shape
can in many cases be determined experimentally with a reason-

able degree of precision and thus the graph of the resistance :

JB-/60
can be plotted. The mathematical problem then presents itself

of representing the curve with sufficient accuracy by means of

a simple function of v. In the problem of

vertical motion in the atmosphere,

dv
,

/./ N

according as the body is going up or com-

ing down, s being measured positively downward. Now if we

approximate tof(v) by means of a quadratic polynomial or a

fractional linear function,

a + ov + ckt or —'-£— ,

y+ ov

we can integrate the resulting equation readily. And it is

obvious that we can so approximate,
— at least, for a restricted

range of values for v.

Another case of interest is that in which the resistance of

the medium is the only force that acts :

dv j,/ N
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A convenient approximation for the purposes of integration is

f(v) = av b
.

Here a and b are merely arbitrary constants, enabling us to

impose two arbitrary conditions on the curve,
— for example,

to make it go through two given points,
— and are to be deter-

mined so as to yield a good approximation to the physical law.

Sometimes the simple values 6 = 1, 2, 3 can be used with

advantage. But we must not confuse these approximate for-

mulas with similarly appearing formulas that represent exact

physical laws. Thus, in geometry, the areas of similar surfaces

and the volumes of similar solids are proportional to the squares
or cubes of corresponding linear dimensions. This law ex-

presses a fact that holds to the finest degree of accuracy of

which physical measurements have shown themselves to be

capable and with no restriction whatever on the size of the

bodies. But the law R = av2 or R = cy3 ceases to hold, i.e.

to interpret nature within the limits of precision of physical

measurements, when v transcends certain restricted limits, and

the student must be careful to bear this fact in mind.

EXERCISES

1. Work out the formulas for the motion of the body in each

of the above cases.

2. A train weighing 300 tons, inclusive of the locomotive,

can just be kept in motion on a level track by a force of 3

pounds to the ton. The locomotive is able to maintain a speed
of 60 miles an hour, the horse power developed being reckoned

as 1300. Assuming that the frictional resistances are the

same at high speeds as at low ones and that the resistance of

the air is proportional to the square of the velocity, find by
how much the speed of the train will have dropped off in

running half a mile if the steam is cut off with the train at

full speed.
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8. Motion under an Attractive Force with Damping. Let us

begin with a concrete example and consider the motion of the

particle of § 3 when the resistance of the atmosphere is taken

into account. We will assume that this force is proportional
to the velocity, = — kv. Thus (5) is replaced by

(21) m^2 =T-kv-mg,

and this equation becomes, on introducing x :

where K = k/m, n2 = \/ml.
Differential equations of the type (21) are important in

physics. They occur in the problem of the damped vibrations

of a swinging magnet, but especially in the case of the sus-

pended coils of d'Arsonval galvanometers. One method, too,

of correcting for the influence of the atmosphere on the

motion of a pendulum is to assume (a) that the moment of

inertia is slightly increased, i.e. the length of the equivalent

simple pendulum slightly augmented, and (b) that the resist-

ance varies as the velocity. The resulting differential equa-
tion is then of the above type.

To solve a differential equation is to find a function which,
when substituted in, satisfies the equation. By the order of a

differential equation is meant the order of the highest deriv-

ative that enters. Thus (2t) is of the second order. As the

general solution of a differential equation of the first order

we expect to find a function containing one arbitrary con-

stant
;
as the general solution of a differential equation of the

second order, a function containing two arbitrary constants;

and so on.

In order to solve (2t) we make use of an artifice and inquire

whether, in the function

(22) x = e
mt

,

it may not be possible so to determine m that this function
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shall satisfy (31). (The present m has, of course, nothing to

do with the earlier m, the mass.) Here

G"K mt Of 33 2„mt— asme, —- = me
,

c& dt2

and thus the left hand side of (51) becomes, on substituting

e
mt f0p £,

.

e^fmH^+ w2

).

Hence we see that if m is chosen as either one of the roots

of the quadratic equation

(23) m2 + Km + n* = 0,

i.e. if m = — %k± Vj k
2 — w2

,

(51) will be satisfied by (22). Both of these roots are negative,

and we will denote them by —ml ,
— m2 ;

let m x < ra2 .

More generally, the function

(24) x = Ae-m
i
t + Be~m *

t

also satisfies (2D, as is shown directly by substituting in
;
and

since it contains two arbitrary constants, it is the general

solution of (51)
for the case that

IV— *?>o.

This last condition would not be fulfilled in the case of § 3

if the "
string

" were a steel wire and the weight a piece of

lead, for k would then be very small. It could be realized,

however, if the "string" is a spiral spring and the weight is

provided with a collar, to act like an inverted parachute and

increase the damping. To determine A and B in this case we
have that initially £ = 0, x=h-, hence

(25) h = A + B.

Furthermore, from (24),

— = - mxAe-^x* - m^Be-™*,
dt

2 ,

and initially dx/dt = ;
hence
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(26)
= m1A-{-m2 B.

From (25) and (26) A and B can at once be determined :

a __ m2h p _ — m
x
h

ra2
—-m/ m 2

— m1

and hence

(27)
— = -—-— (e "v — e

W
V).

dt m2
—

w*i

The motion is now completely determined. The particle

starts from rest and moves upward with increasing velocity

for a time, then slows up and approaches the point « = 0as its

limit, when t = oo
,
—

practically, of course, reaching this point

after a comparatively short time. All this we read off from

(24) and (27) :

lim x = lim (Ae-** + Be-™*'
)
=

;

lim^ = 0;
t=oo dt

0<t<oo,
Fig. 70

since m x < ra2 and consequently

The Case \k
2 — n2 < 0. If on the other hand

(28) iK
2 -n2

<0,

the solution (24) becomes illusory through the presence of

imaginaries in the exponents. Now in the algebra of im-

aginaries

e^~l = cos
<f> + V:rT sin

<j>.

Hence (24) becomes :

x=Ae 2

(cosVn
2 -iK2 i+ V-lsinvV-iK2

*)

+ J3e 2

(cos -Vn 2 -^ KH-V~1 sin Vn2-i/<2

0,

and this result can be written in the form
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(29) x = e 2

(a cos V^2 -
iV « + 6 sin Vn2 -

^ *2

*),

where a and 6 are constants, to which arbitrary real values

can be assigned.

The foregoing explanation, by means of imaginaries, is in

no wise essential to the validity of the final formula (29).

The student can prove directly that the function (29) really

is a solution, no matter what values a and b may have, by

actually substituting it in (51).

Another form in which the solution (29) may be written is

the following :

(30) x = Ce 2 sin (Vn
2-

\k* t + y),

where C and y are now the constants of integration. Instead

of the sine in the last formula the cosine may equally well be

written.

Keturning to the special problem before us, we have, for the

determination of C and y in (30), initially : x= h, t = 0:

(31) ft=<7siny.

Furthermore,

^= Ce"~s%V»*-J*1 cos (Vw*- ± #c» 1 4- y)

_!sin(Vn
2

-iK
2

* + y)],

and initially dx/dt = :

(32) = C\ Vri2 -i*2 cos y
-

^
sin y1

From (32) it follows that

COty:
2Vn2 -i*2

If we take the solution that lies in the first quadrant

0<y<^, then, from (31), C will be positive, and we shall

have:
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C=hcSGy =
7ih

-Jn2 -\ K2

The accompanying figure represents the curve

y=Ce-at

siii((3t+y),

for the value y = 7r/4, and is typical for the whole class of

curves (30). The curves cut the axis of abscissas in the points

. 7r — y + Tctt

vV-!k2
*=0, 1,2,...,

and hence the particle passes the point x = for the first time

(7r
~ y)/Vw

2 —
\k

2 seconds from the start, and continues to go

s'" Fig. 71

through this point periodically, but with reversed phase, i.e. in

opposite directions at intervals of 7r/VV — ^-*
2

seconds; with

the same phase, at intervals of

rrr 27T

^712

-\k
2

seconds. This latter quantity is called the period of the

oscillation. Since

2?r 2?r ttk* . f terms of still \

Vn2 — i-K
2 n ^n3

\higher order in *
2

/
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as will be shown in the chapter on Taylor's Theorem, it is

seen that, when k/u is small, the period differs bnt slightly

from the value

n

which it has for simple harmonic motion, k = 0. The effect

of the damping is in all cases to lengthen the period.

The amplitude, on the other hand, steadily falls off toward

as its limit when t = ao, and thus the particle practically

comes to rest after a longer or shorter time, according as k/u
is small or comparatively large. But so long as the oscillation

is perceptible, the period is the same.

The Case n2 — \k
2 = 0. Here the quadratic (23) has equal

roots, and thus the two solutions

e~m \
l

,
e
_m

2^

become coincident. 7n1
= m2

= lK. And similarly,

-**
e

2 cosVw2 —
\k

2
1 reduces to e 2

while e
2 sin Vn2 —

\ k? t

vanishes identically. Thus we fail to get a solution with two

arbitrary constants entering in such a way that we can impose
two independent conditions on the solution. It is found that

in this case the general solution takes the form

x = (D + Et)e~~
2\

Determining the constants D and E as in the cases discussed

above, we obtain :

(33)

(34)
^.= -^hte

~
2

dt 4

The character of the motion is the same as in the case
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Jk
2 — n2 >0. It can, however, also be regarded as a limiting

case under n2 — Jk
2
>0, the very first point of intersection of

the curve with the axis of abscissas having receded to infinity.

9. Motion of a Projectile. Problem. To find the path of a

projectile acted on only by the force of gravity.

The degree of accuracy of the approximation to the true

motion obtained in the following solution depends on the

projectile and on the velocity with which it moves. For a

cannon ball it is crude, whereas for the 16 lb. shot used in

putting the shot it is decidedly good.

Hitherto we have known the path of the body ;
here we do

not. We may state Newton's Second Law of Motion for a

plane path as follows :
*

d2x ^r

m^=Y,
dt 2

where X, Fare the components of the resultant force along
the axes.

In the present case X=0, Y= —mg,
and we have

d2 x A
dt 2 '

d?ym—£ = — mg.
dt 2 yFig. 72

If we suppose the body projected from with velocity v at

an angle a with the horizontal, the integration of these equa-
tions gives :

•— = G= v cos a, x= v t cos a
;

etc

* The form of Newton's Second Law that covers all cases, both in the

plane and in space, be the motion constrained or free, is that the product

of the mass by the vector acceleration is equal to the vector force.
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-1 = v sin a — gt, y= vQ t sin a— %gt*.
(XL

Eliminating t we get :

(35) y = x tana -
2v 2 cos2 a

The curve has a maximum at the point A :

vQ
2 sin a cos a v 2 sin2a

*>=^-l
—

> *=v-
Transforming to a set of parallel axes through A :

a; = aj' + aj1 , y = y' + ylf

we find: y<
= -—-i* — •

2V cos «

This curve is a parabola with its vertex at A. The height

of its directrix above A is v 2 cos2

a/2g, and hence the height

of the directrix of (35) above is

v 2 sm2 a v 2 cos2 a _v 2

2g
+

2g ~2g'

This result is independent of the angle of elevation a, and so

it appears that all the paths traced out by projectiles leaving

with the same velocity have their directrices at the same

level, the distance of this level above being the height to

which the projectile would rise if shot perpendicularly upward.

EXERCISES

1. Show that the range on the horizontal is

and that the maximum range R is attained when a = 45°:

9

The height of the directrix above is half this latter range.
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2. A projectile is launched with a velocity of v ft. a sec.

and is to hit a mark at the same level and within range. Show
that there are two possible angles of elevation and that one is

as much greater than 45° as the other is less.

3. Find the range on a plane inclined at an angle /? to the

horizon and show that the maximum range is

Ra =
g 1 + sin/3

4. A small boy can throw a stone 100 ft. on the level. He
is on top of a house 40 ft. high. Show that he can throw

the stone 134 ft. from the house. Neglect the height of his

hand above the levels in question.

5. The best collegiate record for putting the shot is 46 ft.

(F. Beck, Yale, 1903) ;
the amateur and world's record is 49 ft.

6 in. (W. W. Coe, Portland, Ore., 1905).
If a man puts the shot 46 ft. and the shot leaves his hand at

a height of 6 ft. 3 in. above the ground, find the velocity with

which he launches it, assuming that the angle of elevation a

is the most advantageous one. Ans. vQ = 35.87.

6. How much better record can the man of the preceding

question make than a shorter man of equal strength and skill,

the shot leaving the latter's hand at a height of 5 ft. 3 in. ?

7. Show that it is possible to hit a mark B : (xb,yb), provided

Vb 4- vV + yb
-

8. A revolver can give a bullet a muzzle velocity of 200 ft.

a sec. Is it possible to hit the vane on a church spire a quarter

of a mile away, the height of the spire being 100 ft. ?
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EXERCISES

1. A cylindrical spar buoy (specific gravity %) is anchored

so that it is just submerged at high water. If the cable should

break at high tide, show that the spar would jump entirely

out of the water.

2. A number of iron weights are attached to one end of a

long round wooden spar, so that, when left to itself, the spar

floats vertically in water. A ten-kilogramme weight having be-

come accidentally detached, the spar is seen to oscillate with

a period of 4 seconds. The radius of the spar is 10 centi-

metres. Find the sum of the weights of the spar and attached

iron. Through what distance does the spar oscillate ?

Ans. (a) About 125 kilogrammes ; (b) 0.64 metre.

3. A chain rests partly on a smooth table, a piece of the

chain hanging over the edge of the table. The chain being re-

leased, find the velocity with which it will leave the table.

4. Solve the same problem for a rough table, the chain

passing over a smooth pulley at the edge of the table.

5. A particle of mass 2 lbs. lies on a rough horizontal table,

and is fastened to a post by an elastic band whose unstretched

length is 10 inches. The coefficient of friction is \, and the

band is doubled in length by hanging it vertically with the

weight at its lower end. If the particle be drawn out to a

distance of 15 inches from the post and then projected directly

away from the post with an initial velocity of 5 ft. a sec, find

where it will stop for good.

6. Show that if two spheres, each one foot in diameter and

of density equal to the earth's mean density (specific gravity

5.6) were placed with their surfaces \ of an inch apart and

were acted on by no other forces than their mutual attractions,

they would come together in about five minutes and a half.

Given that the spheres attract as if all their mass were con-

centrated at their centres.
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7. A particle is projected horizontally along the mner sur-

face of a smooth vertical tube. Determine its motion.

8. A man and a parachute weigh 150 pounds. How large
must the parachute be that the man may trust himself to it

at any height, if 25 ft. a sec. is a safe velocity with which to

reach the ground ? Given that the resistance of the air is as

the square of the velocity and is equal to 2 pounds per square
foot of opposing surface for a velocity of 30 ft. a sec.

Ans. About 12 ft. in diameter.

9. A toboggan slide of constant slope is a quarter of a mile

long and has a fall of 200 ft. Assuming that the coefficient

of friction is Tf-$,
that the resistance of the air is proportional

to the square of the velocity and is equal to 2 pounds per

square foot of opposing surface for a velocity of 30 ft. a

sec, that a loaded toboggan weighs 300 pounds and presents
a surface of 3 sq. ft. to the resistance of the air; find the

velocity acquired during the descent and the time required to

reach the bottom.

Find the limit of the velocity that could be acquired by a

toboggan under the given conditions if the hill were of infinite

length.
Ans. (a) 68 ft. a sec.

; (6) 30 sees.
; (c) 74 ft. a sec.

10. The ropes of an elevator break and the elevator falls

without obstruction till it enters an air chamber at the bottom

of the shaft. The elevator weighs 2 tons and it falls from a

height of 50 ft. The cross section of the well is 6 x 6 ft. and

its depth is 12 ft. If no air escaped from the well, how far

would the elevator sink in? What would be the maximum

weight of a man of 170 pounds ? Given that the pressure and

the volume of air when compressed without gain or loss of heat

follow the law :

pv
1A1 = const.,

and that the atmospheric pressure is 14 pounds to the square
inch.



CHAPTER XI

THE LAW OF THE MEAN. INDETERMINATE FORMS

1. Rolle's Theorem. A theorem which lies at the founda-

tion of the theoretical development of the Calculus is that of

Rolle, from which follows the Law of the Mean.

Rolle's Theorem. If <f>(x)
is a function of x, continuous

throughout the interval a^x*£.b and vanishing at its extremities :

4>(a) = 0, <K&)=0,

and if it has a derivative, —^r
=

<f>'(x),
at every interior point

ax

of the interval, then
<f>' (x) must vanish for at least one point

within the interval :

<£'(X)=0, a<X<b.

For, the function must be either positive or negative in some

parts of the interval if we exclude the special case that
<f> (x)

is always = 0, for which case the
y

theorem is obviously true. Sup-

pose, then, that <f>(x) is positive

in a part of the interval. Then

<f>(x)
will have a maximum at

some point x = X within the in-

terval, and at this point the derivative, <f>'(x)
= tan t, will van-

ish, cf. Chap. Ill, §7:

<£'(X)=0, a<X<b.

Similarly, if <f>(x) is negative, it will have a minimum, and

thus the theorem is proven.
229

a X *\
Fig. 73
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2. The Law of the Mean. Let the function/(x) be contin-

uous throughout the interval a ^ x <^ b and let it have a deriv-

ative, df(x)/dx=f
,

(x) }
at every interior point of the interval.

Draw the graph and let LM be the secant connecting its ex-

tremities. Then there will be at least one point X within the

interval at which the tangent is parallel to the secant LM.

For, consider the distance from a point P of the curve to

the secant, measured along an ordinate, PQ. This distance

(taken algebraically) will have a maximum or a minimum

value, and at such a point the tangent is evidently parallel to

the secant. Now the slope of the secant is

tan ZJg£Jf=A6
} -/<«>,
b — a

A )-Ka ) an(j ^ si pe f the curve at

x=X is /'(X). Hence

b—a

(A) /(&)-/<<*) = Q>
-

a) f(X), a<X<b.
This is the Law of the Mean. Another form in which it is

often useful to write the theorem is obtained by setting

b — a = h, b = a-\-h.

Then X can be written as a -f- Oh, where 6 is a proper frac-

tion, or at least a positive quantity less than 1,* and we have :

(A') f(a + h) -/(a) = hf (a + 6h), 0<6<1.

In (A), a and b can be interchanged and in (A') h can be

negative.

An analytical proof of the Law of the Mean is as follows.

Form the function

+ {x)
/(&)

b — a
m

(x -a)~lf(x)-f(a)}.

* We may think of the second term, dh, as representing that portion of

the interval b — a — h which must be added to the segment a to take us

toX
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This function satisfies all the conditions of Rolle's Theorem

and hence its derivative,

o — a

must vanish for a value x = X between a and b:

/(*>)-/(<») _/(X)=0, a<X<b.
b — a

Thus the theorem is proven.

This proof merely puts into analytic form the geometric

proof first given, for the function <f>(x) here employed is pre-

cisely the distance PQ.

3. Application. As a first application of the Law of the

Mean we will give the proof of Theorem A in Chap. VI, § 2. In

that theorem 3>' (x)
= by hypothesis for all values of x, or

at least for all in a certain interval. If, then, a and b = x
1 are

two points of this interval, we have from the Law of the

Mean (A) :

<!>(x1)-&(a) = 0,

i.e. ®(x1)
= $(a) for all points xx in question. Hence &(x) is

a constant.

Exercise. Show that, if f(x) satisfies the conditions of § 2

and if furthermore /' (x)
> at all points within the interval,

then

4. Indeterminate Forms. The Limit
J.

If both the numer-

ator and the denominator of a fraction

(i)
/M

vanish for a particular value of x, x = a:

/(a)=0, 2P(a)=0,
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the fraction takes on the form # and thus ceases to have any
meaning. The fraction will, however, in general approach a

limit when x approaches a, and we proceed to determine

this limit.

Sometimes this can be done by a simple transformation.

Thus if

f(x) _ x — a

F(x)~ x2-a2 '

we need only divide numerator and denominator by x— a and

we have :

v x — a v 1 1
lim — = lim sd — .

x=ax2 — a2 x±ax + a 2a

Again, if /M = *anx

F(x) x
and a = 0, we have

lim
tanf= Hm J__ sinx= 1 _

x=o x x=o cos a; x

When, however', such simple devices as the foregoing are

not available, we can apply the Law of the Mean. Let b=x
be any point near a. Then, remembering that f(a) = and
F (a)

= 0, we have :

f(x) = (x-a)f'(X), F{x) = (x-a)F'(X'),

where X and X both lie between a and x, and hence

f(*y= r(X)
F(x) F'(X)

When x approaches a, X and X both approach a, too, and so,

if f'(x) and F' (x) are continuous, as is usually the case in

practice,

lim/'(X) =/'(a), lim F' (X) = F'(o).

If, then, F* (a) ^ 0, we have :

(2) iim/©=/M
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The limit of such a fraction as the one above considered is

referred to for brevity as the limit $.*

t?„„™^i„ rp„ i±„ ri
•!• logo;

Here

ue. J.
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Obtain the following limits by differentiation.

3=0 X TV

15. lim- = loga.

•< —4

21. Hm 1- V2sip,ra; = -1,

16. lim^^!= log«.
-il-V2oos^x

«*o x b 5 3

22 . lim^-l+(x-l^= _3,

o« t Va; — Va 3 1
-.« r e* — e~ x

n 23. lira- — = -a?.

18. km—
;

= 2. ***</x--Va 2
x=o sin a;

va v«

19. lim ^-Z^ = _ ,. 24. lim^ = _-.
x=-il + x x=i2x — 1 2

oc ,.
a4 + 3a,-

3 -7a;2 -27 a; -18
25 *

IS a4 - 3** - 7s*+ 27a. - 18 ".

^ y<Wr """"*•

5. A More General Form of the Law of the Mean. The
method of evaluating lim. f(x)/F(x) set forth in § 4 is inap-

plicable when /' (a) and F' (a) both vanish, for then /' (a)/F'(a)
ceases to have a meaning. Moreover, since we do not know
how X and X' vary,

— it is not at present clear that they can

be taken equal to each other,
— we cannot see what limit

f'(X)/F'(X') approaches. We can deal with this and other

cases that arise by the aid of the following

Generalized Law of the Mean. Iff(x) and F(x) are con-

tinuous throughout the interval a < x < b and each has a deriva-

tive at all interior points of the interval, and if, moreover, the

derivative F' (x) does not vanish within the interval; then, for

some value x == X within this interval,

K >

F(b)-F(a) F'(X)'
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The proof is as follows. Form the function :

This function satisfies all the conditions of Rolle's Theorem,
and hence its derivative,

must vanish for a value of x within the interval. Hence

F^F% F,(
-X) -f{X) = ' a<X<b-

By hypothesis, F' (x) is never in the interval. Consequently
we are justified in dividing through by it, and thus we obtain

Formula (B), q.e.d.

6. The Limit -
,
Concluded. We can now state a more gen-

eral rule for determining the limit considered in § 4. Suppose

f(a) =0 and F(a) = 0. Let a; be a point near a and set b = x

in (B). Then

F(x) F'(X)'

where now we have the same X in both numerator and denomi-

nator, and X lies between x and a. When x approaches a, X
will also approach a. Hence, if f'(x)/F'(x) approaches a

limit, f (X) /F' (X) will approach the same limit, and so will

its equal, f(x)/F{x). Thus we have :

(i) iim ./M = iim^.V '

x±aF(x) x±aF'(x)

If, then, it turns out on differentiating thatf (a)
= and

F' (a)
= 0, we can differentiate again, and so on.

Example. To find lim ^—^—
~sm «

*=o 1 — cos x
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Here /(*) = <?* - cos a

F'(x) sin a;

and the new ratio is still indeterminate when x= 0. Differ-

entiating again we have

lim!l±smx= 1 _

x=o cos a;

Hence the value of the original limit is 1.

7. The Limit §-. The rule for finding the limit of the ratio

(I) when both the numerator and the denominator become

infinite for x = a :

/(a)= oo, F(a) = oo,

is the same as when both the numerator and the denominator

vanish, namely : Differentiate the numerator for a new numera-

tor, the denominator for a new denominator, and take the limit

of the new ratio :

(II) lim-^)=limm.7

x=aF{x) x= a F'(x)

To prove this theorem let us first take the case that a = oo
,

i.e. that the independent variable x increases without limit.

In the Generalized Law of the Mean (B), replace a by x' and b

(L* /(*)-/&) f(X) x'<X<x(tJ)

F(x)-F(x')-FVT)'
*<X<*,

and write the left-hand side in the form :

a) fV). l~f(x')/f(x)
v J

Fix) 1-F(x')/ F(x)

It is easily seen that the second factor, which we will denote

by A:

l-f(x')/f(x) _
1-F(x')/F{*)'~*

can be made to approach 1 as its limit. For, as x and x' in-

crease without limit, both f(x) and f(x'), and also F(x) and

F(x'), become infinite. Now x and x' are independent of each
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other. We may, therefore, choose x' so that, while still becom-

ing infinite as x becomes infinite, it increases so much more

slowly than x that

f(x) F(x)

On the other hand, X always lying between x' and x and there-

fore becoming infinite with them, it is clear that, if /' (x) /F' (x)

approaches a limit when x = ao, then f'(X)/F'(X) will ap-

proach the same limit. Hence, writing (3) by the aid of (4)

in the form :

f(x) _l f'(X)

F(x) \F'(Xy

we see that the right-hand side approaches as its limit the

same limit that f'(x) /F'(x) approaches. The left-hand side

*must, therefore, also approach this limit, and the theorem is

proveohr when a — oo .

If x approaches a limit a, we need only to introduce a new
variable :

1
,

1

x — a y

Setting f(x)=f(a + ^J
=

<t>(y), F(x) =F(a +^
=

<P(y),

we have from the foregoing result :

But *'(y) =/(*)z£ f(y) = F'(x)rl,
y y

4>'(y) = f(*)
*'(y) F'{x)

If', then, f'(x)/F'(x) approaches a limit when x approaches

a, <f>' (y) / ^' (y) will approach the same limit when y=cc.
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Hence <f>(y)/& (y) will approach this limit, too. But <£ (y) /<£ (y)

=f(x)/F(x). This completes the proof.
*

Example. To find lim—.
*=« e

x

We have : lim- == lim - = 0.

8. The Limit • oo . If we have the product of two func-

tions :

f(x) .<£(>),

one of which approaches as x approaches a, while the other

becomes infinite, we can determine the limit of this product

by throwing the latter into one of the forms :

m or m,

i.e. the form 0/0 or oo/oo, and then applying the foregoing
methods.

Example. To find lim x logic.

Here it is better to choose the form

1/x

for then the logarithm will disappear on differentiation :

limlES* lim-l^L m iim (_ x) = o.
x=o x~ L x=o — 1/ar x±o

* The theorem contained in (2) goes back to 1' Hospital, 1696. The
theorem of this paragraph is due to Cauchy, 1823 and 1829, who proved

it, however, only on the assumption that f(x) / F(x) approaches a limit.

Stolz extended it in 1879 as in the text, showing that, if /' (x) / F' (x)

approaches a limit, then /(a:) / F(x) will also approach a limit, and this

will be the same limit.
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EXERCISES

Determine the following limits.

2

1. lim-- Ans. 0. 6. lim x log sin x. Ans. 0.
*=« e

x *=°

2. lim?". Ans. 0. 7. lim-^iL ^tw. 3.

3=00 e
x i=o cot 3x

3. lim a; cot trx. Ans.— 8. lim£ca logx, a>0. ^4ws. 0.
x= 7T x=0

4. iim ?2gi?. ^4rts. 0. 9. lim-^-. .4ws. oo.
i = oo X 2 = oo

l0gi(7

B. lim l°££,»>0. Aw. 0. 10. iim
log sin2a;

. J,*.!
x=oo aw x=o log sin a

9. The Limits 0°, l
00

,
go

,
and oo — oo. The expression

(5) /(s)*<*>

ceases to have a meaning when/(#) and <£(#) take on certain

pairs of values. If we write (cf. Formula (5) on p. 77)

f(x) = elog/ ( x) fix)^^ = e* (x) los/(-
x

^>

we see that the expression (5) becomes indeterminate when the

exponent of e takes on the form 0-oo. We are thus led to

consider new limits of the types :

(a) /(a) = 0, *(a)=0; 0°.

(b) /(a) = l, *(o) = oo; 1".

(c) /(a) = », *(a)=0; oo .

The limiting value of the exponent of e. can be obtained by
the method of § 8, and hence the limit of (5) determined.

Example. To find lim (cos x)*
3

.

I log COS X

(cos x)
x3 = e *

,

lim log Cosx = lim -sinx.
x=o a? x=o3arcosa?
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This last limit can be obtained immediately by a simple trans-

formation :

— sin x _ 1 sin x

o x2 cos x 3x cos x x

Hence we see that the exponent of c becomes negatively

infinite if x approaches from the positive side, and so

1

3 = V '

If, however, x approaches from the negative side, the ex-

ponent of e becomes positively infinite, and

j_

lim (cos#)*
3=oo.

z=0

A convenient notation for distinguishing between these two

cases is the following :

_L J_

lim (cos x)
x3= 0, lim (cos x)

x3— oo.

x=0+ » = 0-

TJie Limit co — oo . If we have the difference of two functions,

each of which is becoming infinite, as

log (x + 1)
—

log x

when x = oc, it is sometimes possible to evaluate the limit by a

simple transformation. For example :

log (x + 1)
- log x = log (l + 1\ lim log

(*
+ -Y= 0.

More often, however, the simplest method is that of infinite

series, cf. Chap. XIII.

EXERCISES

Determine the following limits.

-i- 1
1. lim of . Arts. 1. 3. lim#1-a:

#
Ans. -

x = x=l 6

2. lim(l + sina;)
cotz

. Ans. e. 4. lim(Vl + X2—
a;).

^4ns. 0.
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5. Km (cot x)
x

. Ans. 1. ft ,. / ,

fa V •*f^
6. limf

- + 1
]

• Ans. e
a

.

*=«\x J
JL 1

7. lim (cos a;)*
2
.

Ans. — .

1Q H

^4?is. — 1.

8. iiai[2-.-Y"«-

log a? log a?
y

^4ns. — 1.

EXERCISES

Determine the following limits.

1. lim
2-3x + 4: x5

* = * Ix + tf+lx5

o r 3 4-" a?
2. lim — -•

x =* 4 — 9 a? 4- a;
2

3 . Iim V9W,

11. lim

12. lim

13. lim sin a; (log a;)

2
.

x=« (x — a)''

14. lim"

5. lim
I

, . 15. lim csc 2

/3x log cos aa;.

a — x a 4- a?J
*-°

6. limvY?^2 cot^J^. 16. lim
**'" 1

'

7. lim
cos -1

a;

»*» Vl-a;2

7ra;

a?sina?

8. lim

17. lim (1
—

a?)
tan

z= l ii

18. lima~x
loga?.

cos a;

x
19. lim

a?
2 — a?

9. lim n sin -
n = » 71

10. lim—.
x = « x3

*=»1 — a; 4- log a;

»/3——
20. lim

l_a + 2Vl4-a-2
4-a;

4
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2i. lim}*—
* -J*-

22. lim csc # sin (tan as).

CALCULUS

23. lim xa(logxy, a>0, £>0.

24. lira Qog^y m > 0, n > 0.

25. lim G(x)e~
x
,
where G(x) is a polynomial.

26. Show that

p X*

lim— = 0,

n being any constant whatever.



CHAPTER XII

CONVERGENCE OF INFINITE SERIES*

1. The Geometric Series. We have met in Algebra the

Geometric Progression :

a-t-ar + ar2
-\ ,

the snm of the first n terms of which is given by the formula:

a —arn

i 1 — r

Suppose, for example, that a = 1, r= 1. Then

Sl = l =1

etc.

If we plot on a line the points which represent sr ,
s2,

s3, •••,

it is easy to see how to obtain sn from its predecessor, sn_u

Si Sn So

. —\ 1

—
I ^-A4

Fig. 75

namely : sn lies half way between sn_j and the point 2. Hence

it appears that, when n grows larger and larger without limit,

sn approaches 2 as its limit.

* This chapter is in substance a reproduction of Chapter I of the

author's Introduction to Infinite Series, published by Harvard University.

^ 243
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In general, if r is numerically less than 1,

|'r|<l, i.e. -l<r<l,
r
n will approach as its limit when n — oo, and we shall have :

lim sn = •
.

We have here an example of an infinite series, whose value

is a/(l
—

r) :

(1) ^L_ = -far4-<w*+-, |r|<l,
1 — r

and we turn now to the general definition of such series.

2. Definition of an Infinite Series. Let w
,
u

lf
u2,

••• be any
set of values, positive or negative at pleasure. Form the sum :

(2) sn = u + ux + • • • 4- un_ x .

When n increases without limit, sn may approach a limit, U:

lim sn = U.

In this, case the series which stands on the right-hand side of

(2) is said to converge and to have the value U* It is cus-

tomary to express both of these facts by the equation :

(3) U=u + Ul + . • -.

But if sn approaches no limit, the series is said to diverge.

Such a series is called an infinite series. An infinite series,

then, is a variable consisting of the sum of n terms. f It is

said to be convergent if the value of this sum, sn , approaches
a limit when n = oo

;
otherwise to be divergent. And in the

case of convergence its value is defined as lim sn. No value

is assigned to a divergent series.

* £7 is often called the "sum" of the series. But the student must

not forget that IT is not a sum, but is the limit of a sum. Similarly, the

expression, "the sum of an infinite number of terms" means the limit

of the sum of n of these terms, as n increases without limit.

t Each, term of the series, however, as w or u\ or w*, is independent
of the number of terms n involved in the above sum.
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Examples of divergent series are :

1 + 2 + 3 + 4+ •-,

1-1 + 1-1+ ....

A notation commonly employed for the series (3) is

Y?{B or, more explicitly : Vv
n=0

Thus the geometric series (1) would be written :

oo

X:
= o

3. Tests for Convergence. Consider the infinite series

where n\ means l«2-3---w and is read "factorial n" Dis-

regarding for the moment the first term, compare the sum of

the next n terms,

°"n
= 1 + t-£ + 7-ir-H f-

1-2 L2-3 ' '

1-2-3...W

with the corresponding sum of the geometric series,

= 2--3-<2.

The terms of <rn after the first two are less than those of Sn and
hence

<rn <Sn< 2.

Inserting the discarded term and denoting the sum of the first

n terms of (4) by sn we have :

no matter how large n be taken. That is to say, sn is a varia-

ble that always increases as n increases, but that never attains
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so large a value as 3. We can make these relations clear to

the eye by plotting the successive values of n as points on a

line.

Sl = l = 1

s2= l + l =2

^=1+1+1 =2.5

^1 + 1 + ^ + ^ = 2.667

s5 = 2.708, s6 = 2.717, s
7
= 2.718, s8 = 2.718.

Thus we see that, when n increases by 1, the point represent-

ing sn always moves to the right, but never advances so far as

the point 3. Hence sn approaches a limit e which is not greater

than 3, and the series is convergent. To judge from the com-

puted values of sn,
the value of e to four significant figures is

2.718, a fact that will be established later.

The reasoning by which we have inferred the existence of a

limit in the above example is of prime importance in the theory
of infinite series as well as in other branches of analysis. AVe

will formulate it as follows.

Fundamental Principle. Ifsn is a variable which (1) always
increases (or remains unchanged) when n increases :

sn,^isn , n'>n;

but which (2) never exceeds some definite fixed number, A:

no matter what value n has, then sn approaches a limit, U:

lim *„ = U.
M= 00,

The limit U is not greater than A : U^ A.

u a
Si So Sa
ii r i in

Fig. 76
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EXERCISE

State the Principle for a variable which is always decreasing,

but which remains greater than a certain fixed quantity, and

draw the corresponding diagram.

By means of the foregoing principle we can state a simple
test for the convergence of an infinite series of positive terms.

Direct Comparison Test. Let

u + ul -\-
•••

be a series of positive terms which is to be tested for conver-

gence. If a seco?id series of positive terms already known to be

convergent :

can be found whose terms are greater than or at most equal to the

corresponding terms of the series to be tested :

un<an ,

then the first series converges and its value does not exceed the

value of the test-series.

For let sn = u + uY + \- un_ l}

Sn = a +a1 -\ ha„_i,

lim Sn = A.

Then since Sn<A and sn ^.Sn ,

it follows that sn < A.

Hence sn approaches a limit U^ A, q. e. d.

It is frequently convenient in studying the convergence of a

series to discard a few terms at the beginning and to consider

the new series thus arising. That the convergence of the

latter series is necessary and sufficient for the convergence of

the former is evident, since

*» = (tto + «M hVi) + («J hVi)
= u + sn_m .
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Here u is constant and sn will converge toward a limit if sn_t

does, and conversely.

EXERCISES

Prove the following series to be convergent.

1. 1 + - + -+-H .

2. r + r4 + r9 +rm + •

•-, 0^r<l.

3 -I + A + 1+...3 *

3!
+

5!
+

7!
+

;

1.2
T 2.3

T
3-4 T

Suggestion : Write sn in the form :

^(i-8+g-i)+-+e- B
-i

Ijm n + l

5 -S-+JL+JL +5 '

l-2
+ 3.4

+
5.6 +

6 - ^ + 3i
+ P + '"-

4. Divergent Series. If a series is to converge, then evi-

dently its terms must approach as their limit. For other-

wise the points sn could not cluster about a single point as

their limit. Hence we get the following exceedingly simple
test for divergence. It holds for series whose terms are

positive and negative at pleasure.

If the terms of a series do not approach as their limit, the

series diverges.

* It can be shown that this series converges when p > 1
;

cf. Infinite

Series, § 6.
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This condition, however, is only sufficient, not necessary, as

the following example shows :

^2^3^4^

If we strike in anywhere in this series and add as many more

terms as the number that have preceded :

1 +-k+- *

n + 1 n-\-2 n + n

we get a sum >^. For each term just written down is

> l/2w, and there are n of them. If, then, we can get a sum

greater than \ out of the series as often as we like, we can get

a sum that exceeds a billion, or any other number you choose

to name, by adding a sufficient number of terms together.

Hence the series diverges in spite of the fact that its terms are

growing smaller and smaller. This series is known as the

harmonic series.

A further test for divergence corresponding to the test of

§ 3 for convergence is as follows.

Direct Comparison Test. Let

«o+ «H

be a series of positive terms which is to be tested for divergence.

If a second series ofpositive terms already known to be divergent :

a<> + aH

can be found whose terms are less than or at most equal to the

corresponding terms of the series to be tested :

then that series diverges.

The proof is similar to that of the test of § 3 for conver-

gence and is left to the student as an exercise.
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EXERCISES

Prove the following series to be divergent.

i. i+Jt+A:+J=+ .. %
V2 V3 V4

5. The Test-Ratio Test. The most useful test for the conver-

gence or the divergence of a series is the following, which
holds regardless of whether the terms are positive or negative.
It makes use of the ratio of the general term to its predecessor,

^n+i/wn>
— the test-ratio, as we shall call it.

The Test-Ratio Test. Let

tto+ «i+ •'•

be an infinite series and let the limit approached by its test-ratio

be denoted
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ultimately,
— i.e. from a definite value of n on: ft^m,— lie

to the left of the point y :

^<y, n>m.
un

t y
H 1 1

1

Fig. 77

Now give to n successively the values m, m + 1, etc. :

— <y> Wm+1 <^ro y;

ft = m + l, -=±*<y, *W«<«Wiy<«*/;
''TO+l

n= m + 2, -=±*<y, Wm+3<Wm+2y<Wmy
3

;

u»»+2

Hence we see that the terms of the given series, from the

term um on, do not exceed the terms of the convergent geo-
metric series

wOT + wwy + wrny
2 + ...

f

and therefore the given series converges.*

Secondly, let
1

1
1

> 1, the terms now being either positive or

negative. Then, when n ^ m,

K±lJ>l or K+1 |>|«n |,

I

Un
|

i.e. all later terms are numerically greater than the constant

ftm ,
and so they do not approach as their limit. Hence the

series diverges.

* The student should notice that it is not enough, in order to insure

convergence, that the test-ratio remain less than unity when n^m.
Thus for the harmonic series un+\/un = n/{n + 1)<1 for all values of n,

and yet the series diverges. But the limit of the test-ratio is not less

than 1. What is needed for the proof is that the test-ratio should ulti-

mately become and remain less than some constant quantity, y, itself less

than 1.
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Lastly, if
1

1
1

= 1, we can draw no inference about the con-

vergence of the series, for both convergent and divergent series

may have the limit of their test-ratio equal to unity. Thus

for the harmonic series, known to be divergent :

g»±? =—?L^ =
1

, lim^l^l;

n

while for the convergent series of § 3, Ex. 6 :

^^/-JL-V, and lim^±i = l.
un w + iy »=» un

EXERCISES

Test the following series for convergence or divergence.

1^34
1.

2
+

f2
+

2~3

+
24+

"" AUS ' Convergent

1.2 1.2.3 1.2.3-4 A ~.
2 4- 4- -I . Ans. Divergent.

1.1-2 L2.3 2^ 3100 4100
'

3 3-5 3-5-7
'

2 22 23

4. *+* + *+.;<, 6. ^ + -^ + ^4-....
25

r
2 10 215 53 103 153

For what values of x are the following series convergent,
for what values divergent ?

7. 1 + ^4^+.'.., 9. 1 +- + - +-+ ....

8. .T
3 + a5 + a:

7
+.... 10. l-fz2 +— +— +....

2! 3!

6. Alternating Series. Theorem. Let the terms of an in-

finite series be alternately positive and negative :

u — ux -\- a2
— ••'.
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If (1) each u is less than or equal to its predecessor : un+1 <un ,

and (2) lim un = 0,

the series converges.

For example :

1 _ 1 4- i _ 1 -I- . . .

Denote as usual the sum of the first n terms by sn . Then,
when n is even, n = 2m, we have :

S2>n = (««
—

«*l) + (
U2
~ U3) H h (Wom-2

—
MjJm-l)-

Thus s2/« always increases or remains unchanged when m
increases.

If n is odd, n =2m+ l,

and we see that s2m+1 steadily decreases or remains unchanged
when m increases.

Furthermore, s2m does not exceed the fixed value 8V For

S2m = ,S
2»i+l U2m = S2m+1 = S

l

Hence, by the Fundamental Principle of § 3, s
2l)l approaches a

limit.

In like manner it is shown that s2m+1 is never less than s2 .

For
S2m+l =z S2m ~f" U2m^ S2m ^ S2

Hence s2m+l also approaches a limit.

Finally, these limits are equal. For, since

s2m+i
= s2m +«**, lim s2w+1 = lim s2m + lim w2m ,

and, by hypothesis, lim un = 0. Hence sn approaches a limit

when n becomes infinite passing through both odd and even

values, and the series converges, q. e. d.

It is easily seen that the error made by breaking an alter-

nating series off at any given term does not exceed numeri-

cally the value of the last term retained.
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7. Series of Positive and Negative Terms
;
General Case. Let

<rm = v + vl -] \-vm_x

be the sum of the first m positive terms of the series (2),

— Tp = — W — W1 W
p_Y

the sum of the first p negative terms. Then sn can, by a suit-

able choice of m and p, be written in the form :
#

,
Sn =am — rp .

For example, if the w-series isW +W+-,
the ^-series will be

and the — w-series :

__ i _ i _ i __ ...

When n = oo, m and p will in general both increase without

limit, and two cases can arise.

Case 1. Both <rm and rp approach limits :

lim arm = V, lim Tp
= TF;

m=co p=oo

i.e. both the v-series and the w-series converge. In this case

the ^series converges,

lim sn = U, and U= V- W.
n—co

Case 2. At least one of the variables <rm ,
rp diverges when

n = oo. In this case the w-series may still converge, as the

above example shows. But if one of the auxiliary series con-

verges and the other diverges, it is evident that sn can approach
no limit. Example :

l-r-hi-r2 + i-r3 + --, 0<r<l.

Absolutely Convergent Series. Let us form the series of the

absolute values of the terms of the ^-series :

*
If, for a given value of w, no positive terms have as yet appeared, we

will understand by a the value 0. Similarly, t = 0.
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KI + KI + -.
.

Here
|

un \

will be a certain v if un is positive, a certain w if un
is negative. If we set

s«=KI + l

wil+ ••• +
l

w»-i|>

then s'n
= (Tm +V

Hence the series of absolute values converges if both the

v-series and the ly-series converge.

Conversely, if the series of absolute values converges, then

both the v-series and the w-series converge and we have Case 1.

For both of the latter series are series of positive terms, and

no matter how many terms be added in either series, the sum
cannot exceed the value U' of the series of absolute values.

Hence by the Principle of § 3 each of these series converges.

Series whose absolute value series converge are said to be

absolutely or unconditionally convergent; other convergent series

are conditionally convergent.

We can now complete the proof of the theorem of § 5,

namely, for the case that

lim^±!=*, |*|<1.
«=*> un

Here the series of absolute values converges, for

and hence lim \^n±ll = \t
I < 1.

... \un \

Consequently the w-series converges absolutely.

Example 1. To test the convergence of the series

x2
. x3

x
2 3

Here ^»±i= —x, lim£s±!=-^
un n + 1 n=w un

and hence the series converges when — 1 < x < 1 and diverges

outside of this interval.

Divergent — 1 1 Divergent

Convergen t
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At the extremities of the interval the test fails. But we see

directly that for x = l the series is a convergent alternating

series; for x = — 1, the negative of the harmonic series, and
hence divergent.

Example 2. The series

^1-2 T 1-2.3 ^

has for its general term, uk :

_ n(w-l) •••
(n -fc-f 1) „*

If n is a positive integer, the later terms are all and the

series reduces to a polynomial, namely the binomial expansion
of (1 + x)

H
. When n is not a positive integer, the value of the

test-ratio is

1h±l = rLnl
X) and \\m

v^=-x.
Uk

K + 1
fc = Q0 Uk

Hence the series converges when — 1 < x < 1 and diverges

when
|

x
|

> 1. For the determination of whether the series

is convergent or divergent at the extremities of the interval

of convergence more elaborate tests are necessary.

EXERCISES

Eor what values of x are the following series convergent ?

Indicate the interval of convergence each time by a figure.

/
1. l + a: + 2<ri + 3ai3 +—. Ans. — 1<z<1.

Ans. — oo < x < oo, i.e. for all values of x.

3. tt_^ + ^_^_j-.... Ans. -l<a<L
3 5 7

4. l_^ + ^_^+....
2! 3! 4!



CONVERGENCE OF INFINITE SERIES 257

5. 2.1a + 3.2arJ + 4.3arJ+— .

v?
,

a*
5

7. »+-— H—-+ •*••

V3 V5

8. 10 x+ 100 ^-f 1000a3 + ....

9. a; + 2»a? + 48B
a!

4 + 699
a?+....

10. l + a + 2!a2
f 3!a3

+....

12 . .+J+i + ....

13. l t^ +^|#+j-^|aC+....

,
Ice3

,

L3x5
,

15. i _________....

8. Power Series. A series proceeding according to mono-

mials in x of positive and steadily increasing degree :

«o + «i» + a2x
2 + -..,

is called a power series. Such a series may converge for all

values of x or for no value of x except ;
or it may converge

for some values of x different from and diverge for others.

In the latter case the interval of convergence always reaches

out to equal distances on each side of the point x = 0.

This latter statement is easily proven for such power series

as ordinarily arise in practice. If we assume, namely, that
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the ratio of two successive coefficients, an+1/anf approaches a

limit :

lim^±l = £,
n= =o an

then the test-ratio test gives :

lim &+1 = lim^s±i x = Lx.
n=oo Un n=oo (Xn

Hence if L = 0, the series converges for all values of x
;
but

if L ^= 0, the series converges when

\Lx\<l, i.e. -|i|<aj<|i|,

and diverges outside this interval.

9. Operations with Infinite Series. Since the value of an

infinite series is not that of a fixed polynomial, but is the limit

of a variable polynomial, we cannot expect that the ordinary

algebraic processes that leave the value of a polynomial un-

changed, such as rearranging the order of its terms, will always
leave the value of the series unchanged. Nevertheless it can

be shown that the terms in an absolutely convergent series can

be rearranged at pleasure without changing the value of the

series. Moreover, any two convergent series can be added

term by term :

17=110 + 11!+ •••,

V=v + v l H ,

ZT+V=:uQ + v + ul + v1 + u2 H .

And two absolutely convergent series can be multiplied to-

gether like polynomials :

jJV=u vo + uo v1 + u l vo + w ^;2 4-^*1 'u1 ^-^*2'yo^ •

Hence, in particular, for power series, if

f(x) = a + axx + a2x
2+ •••,

<£ (x)= b + b x x + b2x
2 + .-.,

then

f(x)<f>(x)
= a b + (a b 1 + a1 b )x + (a b2 + aA + a2 b )x

2 + ....
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The resulting series thus obtained will converge at least for

all values of x lying within the smaller of the two intervals of

convergence of the given series.

It is even possible to divide one power series by another as

if they were both polynomials. We shall make use of this

property in the next chapter when we come to develop tan x.

An especially important operation with power series is that

of differentiating or integrating the series term by term, i.e. as

if it were a polynomial. For example, take the geometric

progression : —= l + «+ ^ + ^+ •-.
1 — x

Differentiating each side with respect to x, we have

(1
— xy

a result that can easily be verified by multiplying the first

series by itself as explained above.

Again, integrating each side of the equation

—— = l-x + x2 -x*+ ...

1 + x

between the limits and h, we get, since

dx

!
%

1 + x
= log (l + X

)
= log(l + A),

the important series :

log(l + 70
=
A-|+|--.

By means of this series and others immediately deduced

from it natural and denary logarithms are computed.
In like manner we get from the series

= l-x2 + 3t
i

1 + x*

a series for tan-1 ft:
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h1-f-z
2 3 5

By means of this series the value of ir can be expeditiously

computed with great accuracy.

It is of value for the student at this stage, before proceeding
to the further study of series, to see how the simpler series are

actually used in practice as a means of computation. He is

referred for a treatment of this subject to the Infinite Series,

Chap. II :
" Series as a Means of Computation," see the foot-

note at the beginning of this chapter.

The processes with infinite series, of which we have given a

brief account in this paragraph, are also taken up and estab-

lished in the Infinite /Series, Chap. IV :

"
Algebraic Transforma-

tions of Series," and Chap. V :
"
Continuity, Integration, and

Differentiation of Series." In the latter chapter will also be

found a proof of the theorem that a power series always repre-

sents a continuous function throughout its whole interval of

convergence.

EXERCISES

1. If ao+ Oi + ---

is any absolutely convergent series and p > Pi>**' any set of

numbers, positive or negative, that merely remain finite as n
increases: \pn\<G, where G is a constant, show that the

series

«opo+ «iPiH
converges absolutely.

2. Prove that the series

. _ sin Sx . sin5ajSmX
3^+^

converges absolutely for all values of x.
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3. If a -+- «! H and 6j + b2 H are any two absolutely

convergent series, the series

a -|-a1 cosic+ a2cos2a;4- •••

and 61 sinic4-62 sin2ajH

converge absolutely.

^ 4. Show that the series

e~zcos x + e~2a5cos 2x-\

converges absolutely for all positive values of x.

5. What can you say about the convergence of the series

lH-rcos0+r 2
cos20+.-- ?

6. If «o + «iH

is an absolutely convergent series and if

Wo + WxH

is a series such that un/a„ approaches a limit when n = oo
,

show that the latter series converges absolutely.

7. State and prove an analogous theorem for divergent series.

8. Show that the series

2x 2x
,

2x
,

7,-r z o + K 9+ ••-

1 - aj*
'

4— **
'

9— a*

converges for all values of x for which its terms all have a

meaning.

9. Show that the series

a a a

5 + c 5 + 2c 6+3c
+ '"'

where a and c are =£ 0, diverges.

10. Is the series

convergent or divergent?



CHAPTER XIII

TAYLOR'S THEOREM

1. Maclaurin's Series. The examples to which the student

has
v
been referred in the preceding paragraph show how useful

it is for the purposes of computation to be able to represent a

function by means of a series. Such a representation is also

important as an aid in studying properties of the function.

We turD now to a general method for representing any one

of a large class of functions by power series,
— for developing

the function in a power series, to use the ordinary expres-

sion.

Suppose that it is possible to develop a function in a power
series :

f(x) = c -f cx x + c2 x
2
-f • ••

.

What values will the coefficients have? If we set # = we
see that

/(0) = c
,

and thus the first coefficient c is determined.

To get the next coefficient, differentiate:

f'(x) = c1 + 2c2 x + 3c3x
2
-\- •••,

and again let x = :

/'(0) = Cl .

Thus q is found. Proceeding in this manner we obtain :

f"(x) = 2-lc2 + 3-2csx + 4:-3ci x
2 + ...,

/"(0) = 2.1c2 ,
c2=«,

262
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and so on
;
the general coefficient having the value

C"~
nl

Hence we see that, if f(x) can be developed in powers of x,.

the series will have the form :

(1) /(a;) ==/ (0) + /'(0)x + ^|p^ + ....

This series is known as Maclaurin's Series.

For example, let
y./^

_ ^
Here /

r

(*)
=

e*, f"tp)= f, ••• /«(»)«*,
and /(0)=1, /'(0)=1, /"(0) = 1, etc.

Hence the development will be as follows :

(2) e
* = l+ x +± + t. + ....

This series converges^for all values of x.

EXERCISES

Assuming that the function can be developed in a Mac-

laurin's Series, obtain the following developments.

1. sina =x-- + --....

2. «•!__+_-....

4. (
i +8).

B i.HM+"^|D^+
»("-

j

1

)(;-
i>W ....

Obtain three terms in each of the following developments.

5. tan# = #-f Ja5
3 + T

?
5«

5 + ••••

6. secx = l+%x2 + -%\x
4
'-.

7. c
§iHX= l-f a + ^o

2— £a
4 + •-•.
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2. Taylor's Series. It may, however, happen that no devel-

opment according to powers of x is possible. Thus if

/(aj)=loga>,

/(0) = — oo. But a power series represents a continuous func-

tion and so no power series in x can be expected to represent

log x. It is evident generally that, whenever the function or

any one of its derivatives becomes discontinuous for x = 0, the

function cannot be developed in a Maclaurin's Series.

A power series is most useful for computation if the values

we have to assign to its argument (i.e. the independent vari-

able) are small. Now it may happen that we know the value

of the function and of all its derivatives at a single point,

x = x
,
or at least can easily compute them. In such a case

we can find the value of the function at points x=x + h near

by if we develop /(a?), not according to powers of x, but

according to powers of h. Setting, then,

x = x + h, h = x — x
,

we shall have, if a development be possible :

fix) =f(x + h) = c +Ci/i + c2h
2
H .

We can determine the coefficients here as in the case of Mac-

laurin's Series. Thus, setting h = 0, we find,

f(x )
= c .

Differentiating with respect to h and remembering that x is

a constant, we obtain :

df(x) r== df(x) dx = ,„. =
dh dx dh

K J

f'(x + h)=:cl + 2c2 h + 3c3h
2+ -.,

/'
f

(aj +7i) = 2.1c2 + 3.2c3/i4-4.3c4^
2
H- ••.,

/"(a )=2.1c2, c2=^f^
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A /(n)
0<>)and so on : cn = J-—^-yz

n\

If, then, f(x) can be developed in powers of h, the series will

have the form :

(3) fix, + h) =/O ) +/'(z ) h+f-^£
tf + . ...

When h is replaced by x, (3) becomes :

(3') /(») =/Oo) +/,

(%)(*-ab) +-^f)(*-*„)
2+ •-

These series are known as Taylor's Series.

For example, let

/(a?)
= logo?, x = l.

Then

™-1
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EXERCISES

Assuming that the function can be developed in a Taylor's

Series, obtain the following developments.

1. ea+h =ea + e
ah + —Ji2 + ....

21

2. sin (x + h) = sin x -f h cos x — — sin x — —- cos x + • • ..

& • o !

V* ; V2L 2!^3!^ J

4. xn = (a + fc>" = a!' + j*a*-
l
ft + ^^f^— an 2h2

^ 1.2-3
a fl "^ *

^6 7 2
T

2 22! 2 3!

6. log*= log2 +^_ife^ + ^fc^)-
3

--.
2 2 22 3 23

Obtain three terms in the development of each of the fol-

lowing functions.

7. logCl+z
2

),
x = 3.

Ans. 2.303 + .6 (x
-

3)
- .08 (a

-
3)

2 + • . -.

8. tanx, x = -' 10.
,

x = — 1.
4 ic

9. log(e
x + e"x

),
a = 0. 11. 10x

,
x = 0.

3. Proof of Taylor's Theorem. Let the function f(x) be

continuous throughout the interval a < x < b and let it have

continuous derivatives of all orders throughout this interval.

Let x be an arbitrary point of the interval, which, once

chosen, shall be held fast, and let x -f h be any second point

of the interval. We will see if we can approximate to the

value of the function by means of the first n + 1 terms of the

corresponding Taylor's Series :
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(4) / (3% + h) =/O ) +f(x )*+'-+ "CifiSJ *"+ 5,
n

where R denotes the error, i.e. the difference between the

value of the function and the value of the approximation.
In order to see how good this approximation is, we must have

an expression for R that will throw light on the numerical

value of this quantity. Such an expression can be found as

follows.

Let us write R in the form :

7»«+l 7,n+lR =— P, i.e. let P=R+
+ 1)! + 1)!

Then (4) becomes, on transposing terms :

(5) f(x, + h) -/(*„)
- hf (*) £/">(*.)

- j^-P=0.n\ (ti+1)!

We now proceed to form arbitrarily the following function

of z :

* (s) =/(X) _/<i)
- (X- z)f (z)

-
^ff^f" (,)--..

Here X= x -j-h, and X and P are constants. This function

satisfies all the conditions of Rolle's Theorem in the interval

®oS z^X. For <f>(X) is obviously =0, and if we compare
<f> (a? ) with the left-hand side of (5), we see that

<f> (x ) vanishes,
too. Hence the derivative of

<f> (z) must vanish at some point
within the interval. Now, on computing the derivative we
find that the terms cancel each other to a large extent :

*

<*>' (?)
= ~f (*) + /' (•)

- (X- z)f" (z) + (X- z)f» (z)
-

(-
X

' — g)
n

f(n+l)/g\ _|_
(X—Z)

n

p^

so that there remain finally only two terms :

* The student is requested to write out the terms in this differentiation

for n = 1, 2, and 3.



268 CALCULUS

n\ n\

Consequently the conclusion of Rolle's Theorem:

4>'(Z) = 0, x <Z<X or Z^xo+dh, 0<0<1,
leads to the result,

(6) P= /<-+»fo + M), E^-^-f^ixo + Oh).
{n+ 1) !

Thus we obtain one of the most important theorems of the

Calculus, Taylor's Theorem with the Remainder :
*

(7) f(x + h)=f(x ) +/(*o)/*+^^
2+-- +^A"

~_' ft •

If we set w = 0, thus stopping with the second term, we get

the Law of the Mean :

f(x + h) =f(x ) + hf (x + Oh).

If n = 1, we have :

/O + 70 =/(* ) + hf (x ) +
|^/''(a%

+ Oh).

If we allow n to increase without limit, the first n + 1 terms

of (7) become an infinite series, the Taylor's Series corre-

sponding to the function f(x). In order that this series should

converge and represent the function it is necessary and sufficient

that

(8) limJK = 0.
n=oo

When the condition (8) is satisfied, we say that the function

can be developed or expanded by Taylor's Theorem about the

point x = x .

* In the foregoing proof we have made no use of that part of the

assumption regarding f(x) which relates to derivatives of higher order

than n + 1, and consequently our theorem is somewhat more general than

would appear in the text.
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4. A Second Form for the Remainder. A form of the re-

mainder which is obtained by setting

R = hP,

and proceeding as in § 3, is sometimes useful. Thus we have

/(3b + h) -f(x )
-

hf> (x ) *L-f»\ (x ) -hP=0,
ni

and we form the function of z,

$ (z) =/(X) -/(*) - (X- z)f (z)
-
(X^f"(z)

-

where X—x -{-h. This function satisfies the conditions of

Rolle's Theorem in the interval x fj z < X, and so its deriva-

tive, *' (z)
- - (X~ Z)V(W+1)

(*) + P,

must vanish at some point Z= x + 0h within the interval.

Hence,

(9) B = 0--°y hn+1
f(n

+»
(^ + ehy

5. Development of e
x
,
sin x, cos x. The function e* can be

developed by Taylor's Theorem about the point x = 0. Here

/(V)=6*, /'<*)»«",
• • • /»(»)-*,

/(0) = 1, /'(0) = 1,
• • • /™(0) = 1,

and the remainder R as given by (6) has the form :

fcn+l

i£=— e°\

(n + 1)!

If h<0, e0h <l, and R< \h\»
+1

+ 1)!

If h>0, e0h <e\ and R< 7*"+1
e\

(n + 1)!

Now lim
h*+1 = 0.

For we can write
(«+i)
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hn+1 = h
#

h
t

h
m

h h

(w + 1)! 1
'

2
'

3
' '

n
'

n + 1

No matter how large h may be numerically, since it is fixed

and n is variable, these factors ultimately become small, and

hence from a definite point n = m on

1—L <-, n>m.
n 2

If we denote, then, the product of the first m factors, taken

numerically, by C, and replace each of the subsequent factors

by !-,
we shall have :

7,71+1 I /1\n-m+l

(n + 1) !
J \2,

The limit of this last expression is when n = <x>,
and conse-

quently
* lim hn+1 / (n + 1) ! = 0.

We have, then, lim R = and hence, replacing h by x :

n=oo

(io) ,-i+.+j£+!;+....

The series converges and represents the function for all values

of x.

To develop sin x we observe that

f(x)=smx, ,/(0)=0,

/' (a^cosz, /(0)= 1,

f"(x) = -smx, /"(0)=0,

/>"(X)=-C08X, /'"(0)=-l,

and from this point on these values repeat themselves.

It is not difficult to get a general expression for the n-th.

derivative, namely :

* We might have given a short proof of this relation by observing that

fe
n+1 / (n + 1) 1 is the general term of a convergent series :

1 + 7* + — +£-+....
21 3!
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/(«>(*)=
sin^

+^\

This formula obviously holds for n = 1, 2, 3, 4, and from that

point on the right-hand member repeats itself, as it should.

Thus we find :

R= hn+
]

Sm(Oh
+ 1)! V

+ W7r\

2/

The second factor is never greater than 1 numerically, and
the first factor, as we have just seen, approaches as its limit.

Hence lim R = and we have, on replacing h by x :

n=xo

(11) sino^-^ + fl-....

In a similar manner it is shown that

(12) cosa = l-^ +— .V J 2r 4!

EXERCISES

1. Compute the value of e 06
(cf. Chap. IV, § 7) to six signifi-

cant figures.

2. Show that e
x can be developed by Taylor's Theorem about

any point x .

3. Obtain a general expression for the n-th derivative of cos x

and hence prove the development (12).

4. Show that sin x and cos x can be developed by Taylor's
Theorem about any point x .

5. Remembering that 1° is equal to tt/180 radians, compute
sin 1° correct to six significant figures. By about what percent-

age of either does sin 1° differ from its arc in the unit circle ?
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6. The Binomial Theorem. Let

f(x)=x»,

where n is any constant, integral, fractional, or incommensur-

able, positive or negative ;
and let xQ

= 1.

Then /(1) = land

f(x)= nx*-\ /'(l)= n,

/'
'

(a?)
= n (n

-
1) x

n
~\ f" (1)

= n (n - 1),

fW(x)= n(n - 1)
... (n - k + l)x

n~ k
,

f»(l)= n(n-l).>.(n-k + l).

For the remainder R it is better here to employ the second

form, (9). Thus

B = 0--°y hk+1
. »(n- 1)

...
(n - k)(l + ^)"~*-

1

1 k !

The last factor remains finite, whatever the value of 0, pro-

vided
|

h
|
< 1. For, since < 6< 1,

i-|ft|<i + M<i + IH

and by Chap. II, § 8 :

(l+tf^n-l <(! + !/* I)-!, n> lj

(i + ehy-*<(i-\h\y-\ n<i.

The next to the last factor is always positive and less than

unity, since k > and

D<i-=ii<l.
1 + fl*

Finally, the remaining expression is the general term of a

series already shown to be convergent, namely (cf . Chap. XII,

§7):
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i + w&+a^|ay+ »(»-
-

1X*- 8
? »+..., _!<*<!,

and hence it approaches as its limit. It follows, then, that

R approaches and we have on replacing h by x :

(13) (l + xr = l + nx + n

-(f^J +
n (n-y

n

3

- 2
'> «* + :...

This is the Binomial Theorem for negative and fractional

exponents. When n is or a positive integer, the series

breaks off of itself with a finite number of terms and we have

a polynomial, namely : (1 + x)
n

. In all other cases the series

converges when x is numerically less than 1 and represents the

function (1 -f- x)
n

;
and it diverges when x is numerically greater

than 1.

The following developments obtained from

especially useful.

VI -x9

1 * L3
(15) yi-^ =i-^-^-^*«

EXERCISES

1. Show that, when |

a
|

>
|

b
|

:

1 • 2i 1 • £ > o

^2. Compute V3 correct to seven significant figures by means

of the series (13).

Suggestion: Eegin by 'writing 3 =(f) 2
(ff). Here £ is one of the

convergents in the development of V3 by continued fractions.

3. Compute V30 to five significant figures.

4. Obtain from (13) the development :

l_^_2z + 3^-4*3 +-".
(1 + x)

2
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5. Obtain the development :

log(l + A)=A-|+|--
by the method of this paragraph.

7. Development of sin-1 a?. We can now obtain the develop-

ment of sin -1
a; in a manner similar to that employed for tan-1

x.

Integrating each side of (14) gives :

'

, lh* , l-.SVvr dx

J vr=

The value of the left-hand side is sin
-1

ft.

h by x, we have :

1 a3
,
1 • 3 ar

5

Hence, replacing

(16) sin *o? X + 23+f^L 5
+

The series converges and represents the function when
|

x
|

< 1.

8. Development of tan x. We have :

, sin a; x — 4-a^4- -A-naP— •••

tan x = =
o \ , •

cos a? 1 — -g-ar-f ^ar — ...

Now it can be shown that one power series can be divided by
another just as if both were polynomials, the resulting series

converging throughout a certain interval, cf. Infinite Series,

§ 36. Hence

1 ^2 l 1 /»4 . _ _ <\

1'
A*+A )x

a;— lx? + J- ar*

^--^ +
* ^+

"3

i*
3

We can obtain in this way as many terms in the development
of tana; as we wish, although the law of the series does not

become obvions.

(17) tdLnx = x + ^x
3+ -&x

5
-i
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9. Applications. We shall consider here only two or three

applications of Taylor's Theorem, referring the student for

further applications to the Infinite Series, Chaps. II, III, and

IV.

(1) Test for Maxima, Minima, and Points of Inflection. We
can now state wider sufficient conditions for maxima, minima,
and points of inflection than those given in Chap. III.

Suppose that the function f(x), together with its first n de-

rivatives, is continuous in the neighborhood of the point x= x

and that

/'(*o)
= 0, /"(z )

= 0,
. . .

/(.-i) (a; )=0,

but that fn
\x )=t=0.

Then we shall have, by Taylor's Theorem with the Remainder,
Formula (7) :

(18) / (a* + h) -f(x )
= h«f^ (xo + Oh)/n !.

If n is even, hn will be positive on both sides of the point
h = 0, x = x

;
and since f(n)

(x) is continuous, it will preserve
the sign it has at x throughout a certain interval about this

point :

x — a < a; <# -f a,
— a<h <a.

Hence the right-hand side of (18) is positive, or else it is nega-

tive, when <
|

h
|

< a and thus we are led to the following

Test for a Maximum or a Minimum. If

/'(z )=0, f"(x )
= 0,

• • • /^-i>(z )
= 0, f^(x )^0,

the function f(x) will have

a maximum at x = x if /(2m)
(x ) < ;

a minimum " " " /(2m)
(x ) > 0.

If, on the other hand, n is odd, the right-hand side of (18)
will change sign with h and we shall have a point of inflection

parallel to the axis of x. More generally, since the condition

for a point of inflection, be it parallel to the axis of x or not, is

that tan t =/'(#) be at a maximum or a minimum, we deduce
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from the test just obtained, applied, not to/(#), but to /'(#)=
tanr, the following

Test for a Point of Inflection. If

/"O*o)=0, f"'(x )=0, . . . /»(ai) a 0, /(2OT+1)
^o)^0,

the curve y=f(x) has a point of infection in the point (xQ, yQ).

(2) Order of Contact of Two Curves. Let two curves, Cl and

(72 ,
be tangent to each other at an ordinary point P of either

curve, and draw their common tangent PT. At a point M of

PT infinitely near to P (by this is meant that M is taken con-

veniently near to P and is later going to be made to approach
P as its limit) erect a perpendicular cutting CY in Px and C2 in

P2 . PM and the arcs PPj ,
PP2 are obviously all infinitesimals

of the same order. It will be convenient to take PM as the

principal infinitesimal. Denote by n the order of the infini-

tesimal PiP2 . Then the curves Cx and C2 are said to have

contact of the n — lst order.

For example, the parabola
c»

ft: y = x>

has contact of the first order with its tan-

gent at its vertex :

2 :
2/
= 0.

But the curve y —x^ has contact of the second order with its

tangent at the origin ;
this point being a point of inflection for

the latter curve. And the curves

y = xs
f y = Xs — x*

have contact of the third order.

Since we can always transform our coordinate axes so that

the tangent PT will be parallel to the axis of x— such a trans-

formation evidently has no influence on the order of contact of

the curves— we may without loss of generality assume the

equations of the curves in the form *

C,: y =/(*),

2 : y = <j>(x),
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where y =/(«b) =<£ 0»o) and f'(x )=0, <f>'(x )
= 0.

Hence, by Taylor's Theorem with the Remainder, (7) :

ci: y-y.=^/"K)+- +^f
l" ) (*o+M),

On y-y^
^<t>"

(^)+- +^n)
(^ + e'h).

The infinitesimal P XP2 on which the order of contact of

these curves depends is numerically equal to the difference

between the ordinate y of C x and the ordinate y of C2 ,
ie. to

(i9)
fr/'^o)-<n^)]+-

• •

+
j?f*»

(*o + Oh)
-

+<»> (a* + M)~L

Now the curvature of these curves at the point (xQ , y ) is,

since /' (x )
= and

</>' (x )
= :

*i=|/"te>) |,
«s =|+"0*>)|.

Hence the curves will have contact of the first order if theyl
have different curvatures at P, or if they have the same curva-

ture (#=()), one curve being concave upward and the other con-

cave downward. But if they have the same curvature and (in

case the curvature of both is =#= 0) if they both present their

concave side in the same direction, then they will have contact

of at least the second order. Thus at an ordinary point a

curve has contact of the first order with its tangent.

In particular, let C2 be the osculating circle of Cx at P.

Then C2 has the same curvature as Cx and is concave toward

the same side of the tangent. Hence it has in general contact

of the second order with d ;
but at special points it may have

contact of higher order.

At an ordinary point of inflection the tangent line has con-

tact of the second order with the curve. For here, if we take

C2 as the tangent line, <f> (x) = for all values of x, and hence

the derivatives <£"(a\,), <t>'"(xo), etc. all vanish. On the other

hand, /" (x )
= 0, /'" (x ) =£ 0. Consequently (19) becomes
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||/»'(ai + «) and lim££= $/»' (**,)*<).

(3) Evaluation of the Limits -, oo — oo, etc. The limit of

the fraction

lim^M,
x=«

jF(a!)

when /(a) = and F(a) =0, can be obtained without the labor

of differentiating whenever the numerator and the denomina-

tor can be expressed as power series in terms of x — a= h.

For example, to find

v x - sin x
lim
x±ox— tana;

By the aid of the series for sin x and tan x, we have

x — sin x _ ^ x
3 + higher powers of x

x — tan x —
^ x

3 + higher powers of x

Hence, cancelling x3 from the numerator and the denominator,

we see that the value of the limit is — |.

The method of series is often of service in evaluating the

limit oo — oo . For example, to find

lim (Vl + v? — x).

Here we can take out # as a factor :

(aK->
and then express the radical, since x > 1, as a series in 1/x by

means of the Binomial Theorem :

v .1-1+1. 1+3.I+

Hence
x(^l

+
J-l)-|

•

£
+
f

•

J +
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When x = <x>, the terms of this power series in 1 /x approach
as their limit, and since a power series represents a continuous

function, the value of the limit in question is seen to be 0.

EXERCISES

1. Show that the function

y = 2 cos x + x sin x

has a maximum when x — 0.

2. Have the following functions maxima, minima, or points

of inflection when x = ?

(a) 5 sin x — 4 sin 2 x 4- sin 3 #.

(6) 2ar5-3e* + 6sina + -
x

.

(c) locosx — 6 cos 2 a; + cos 3 a;.

3. Determine all the maxima, minima, and points of inflec-

tion of the function

y
—
\x — \ sin x + y

1
^ sin 2x,

and hence plot the graph.

£..
Show that the curve y — cos x has contact of the fifth

order at the point (0, 1) with the curve

y = l-$x? + ^x\
5. Show that the curve y = sinx has contact of the sixth

order at the origin with the curve

y = x-lx3 + T%-ux
5
.

6. Determine the parabola

y = a + bx-\-cx
2

so that it shall have contact of the second order with the curve

y = e
x

,
when x = 0.

7. The same when x = 1. Ans. y = %e + ^ex
2
.
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8. Show that, when the function f(x) is represented by a

Taylor's Series, the n-th. approximation curve :

y= sn(x)=f(x ) +f(xo) (x-x ) + ... +f^^ (x-x y,

has contact of at least the n-th. order with the curve y =f(x)
at the point (x , y ).

When will it have contact of higher

order ?

9. Show that the curve
ax + P

y
yx + 8

can in general be so determined as to have contact of the

second order with the curve y=f(x) at the point (x , y ). For

simplicity, assume x = and y = 0.

What cases are exceptions ?

10. Show that

o

i

(M f^!-dx = ~ L-+ -JL (a>0).W J 1 + x* a a + b^a + 2b
' V ;

(0j
e~**dx — x—-

-f-

3 5 21 73!

11. Evaluate to three significant figures

IT

!
since ,

dx.

Evaluate the following limits :

12. limfcota; )•
Ans. 0. 13. lim(Vl +x— x). Ans. — oo.

as=
\^ XJ * = oo
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i 1

14 . limfcY. Ans. 1. 16. lim fcY. Ans. 0.
x=Q \ X J *= \ X J

15. limf-
1—

^)
• Ans. -^. 17. lim(cosx)-. 1

*±o\ x J ye x^o ^ng> J_
#

Ve

18. Show that, when two curves have contact of even order,

they cross each other
;
when they have contact of odd order,

they do not cross.

19. If f(x)<<j>(x)

is .^/(s) <!_*(*) ?
dx dx

20. If -^rJ->-^-L

dx dx

and f(x )
= tj>(x ) i

is f(x + h)^<j>(x + h), h>0 ?

21. Show that sin a — a

is an iufinitesimal of the third order, referred to a as principal

infinitesimal.

_a2

22. Determine the order of the infinitesimal cos a — e
2 *

23. Show that the equation

<j>
sin

cf>
= 1

has one and only one root lying between and 7r/2.

r



CHAPTER XIV

PARTIAL DIFFERENTIATION

1. Functions of Several Variables. Limits and Continuity.

We shall consider in this chapter functions that depend on

more than one variable. Thus the area z of a rectangle is the

product of its two sides, x and y :

z = xy;

and the volume u of a rectangular parallelopiped is the product
of its three edges x, y, and z :

u — xyz.

If the number of independent variables is two, we can rep-

resent the function

(1) *=/(*, V)

geometrically as a surface.

Such a function is said to be continuous at the point (x , y ,
z )

if a small change in the values of x and y gives rise only to a

small change in the value of the function. And the function

is said to approach a limit, z
,
when the point (x, y) approaches

(x , y ),
if the point (x, y, z) of the surface (1) approaches a

limiting point (x , y ,
zQ) in space, no matter how the point

(x, y) in the plane may approach the point (a? , y ) as its

limit.

To formulate this latter definition in a more precise manner

and at the same time in a way that is applicable to functions

of more than two variables, let c be an arbitrarily small positive

quantity. If a positive 8 can be found such that

282
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\f(x,y)-z \<e

for all points (*, y),
—

except, of course, (x , y ),
— which lie in

the neighborhood of (sc , yQ)
:

x-x \<$, \y
—
yo\<&,

then/(sc, y) i^
said to approach z as its limit, and we write:

lim f(x,y)= z .

*** y-y

This conception once being made precise, we can now render

the former one accurate by saying: f(x,y) is continuous at the

point (xq, y )
if

lim f(x,y)=f(x ,y ).
*=* , y=y

2. Formulas of Solid Analytic Geometry. In what follows

we shall need only the simplest formulas of solid analytic

geometry, and we set them down here, referring the student

for the proofs to any of the current texts. *

Direction Cosines. If a, /?, y denote the angles that a line

makes respectively with the axes of x, y, and z, its direction

cosines satisfy the relation :

(2) cos2 a + cos2

/? + cos2

y = 1.

The angle 6 between two lines is

given by the equation :

(3) cos 6 =
cos a cos a' + cos (3 cos ft' + cos y cos y'.

If I, m, n and V, ra', n' are the direc-

tion cosines of two lines, or quantities

proportional to them :

I = p cos a, m=p cos ft n = p cos y ;

then the necessary and sufficient condition that the lines be

perpendicular to each other is that

etc.,

* Cf . for example Bailey and Woods, Analytic Geometry, p. 273 et seq.
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(4)
IV + mm 1 + nn' = 0.

The condition for their being parallel is that

(5) l:l' = m:m' = n: n'.

Distance Between Two Points :

(6) V(aj!
- x

)
2 + (yx

-
2/ )

2 + (zx
- z

)
2
.

Equation of Sphere. Let the centre be at (a, b, c) and the

radius be r :

(7) (a; -a)
8

+(y-6)
2

+(2-c)
2 = r

8
.

77ie Plane. Let OP be the perpendicular dropped from the

origin on the plane, let OP=p, and let a, (3, y be the angles OP
makes with the axes. Then the equation of the plane is

x cos a + y cos p+ z cos y— p.

The equation of a plane
whose intercepts on the axes

are a, b, and c is :

(9) a b c
1.

Fig. 80

The general equation of

the first degree :

(10) Ax + By+Cz + D =
can be thrown into the form

(8) as follows :

C -D—X+ — V + —Z
A A* A A '

where A= (A
2 + B2 + C2

)*.
If D was originally positive,

change the signs of all the coefficients, so that D become

negative:
— DgrO. Then

(12) cosa = —
, cos/8

A'
h

B C
COS y— — .7

A"
p

D

For most purposes it is sufficient to note that



PARTIAL DIFFERENTIATION 285

(13) cos a : cos /? : cos y = A : B : C.

The angle between two planes :

Ax + By+Cz + D = 0,

A'x + B'y+C'z + D' = 0,

is given by the formula :

(14) q08 9 = AA
' + BB ' + GC

'.
V ; AA'
The planes are perpendicular if

(15) AA' + BB'+CC' = 0,

and conversely. They are parallel if

(16) A:A' = B:B' = C:C'.

The distance d of the point P: (x 1} ylt z^) from the plane (8) is

(17) d — ± {xx cos a + yx cos /? + zx cos y —p),

where the lower sign is to be used if and P are on the same

side of the plane, and the upper sign in case they are on oppo-

site sides.

The Straight Line. A straight line may be determined (a)

as the intersection of two planes :

/18n f Ax + By + Cz + D = 0,
K }

\A'x+B'y + C'z + D' = 0'
y

(b) by its direction and one of its points :

(19)
«— «fe .- y-yo_*—%.

cos a cos /? cos y
'

(19a)

°r

x-^^y-y.^zj-z,^
I m n

where l:m:n = cos a : cos (3 : cos y ;

(c) by two of its points :

^-xo yx -y zx
- z

In the latter case

(20)
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(21) cos a : cos /? : cos y = Xj
— x : y1

— y : zx
— z .

If (x , y ,
z ) is a point of the line (18), the equations may

be expressed in the form (19) as follows :

/29\
x — x = y — y = z— z

V "
;

\

B G
\

"
\

C A
\

"
\

A B
\

'

I

B' C
| I

C A'
| I

A' B'
I

The direction cosines of (18) are thus given by the relations :

(23) cos«:cos0:eosy =
|
f, g,

|

:

|

g, ^
|

:

|

^ f,
|

•

If the line is given as the intersection of two planes perpen-
dicular respectively to the x, y and the x, z planes :

*

(24) y =px + 6, z = qx + c,

its equations can be brought into the form (19) as follows :

x — _y — b _z — c
(25)

Hence

(26)

1 p q

1
cos a =

VI -i-p
2 + q

2

cos /?
= p

,

Vi+^ + g
8

COSy
Vi+^ + g

2

.Line Normal to a Plane. The equations of a straight line

passing through any point (x , y ,
zQ) of space and perpendicular

to the plane (18) are :

/97\ x— xq _ y-y _ z-z

Plane Normal to a Line. The equation of a plane passing

through any point (xQ , y ,
z

)
of space and perpendicular to the

line (19 a) is :

(28) i(x — x
) + m(y — yQ) + n(z

— z
)
= 0.

*The p that figures here has, of course, nothing to do with the former

p, the length of the perpendicular.
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Variable Plane through a Line. The equation of a variable

plane through the line (18) is :

(29) (Ax + By + Cz + D)+k(A'x + B'y + C'z + iy) = 0,

where A; may have any value whatever.

Three Planes through a Line. The condition that the three

planes
Ax + By + Cz + D = 0,

A'x + B'y+C'z + D' = 0,

A"x + B"y+C"z + D" = 0,

all intersect in one and the same straight line is that

(30)
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EXERCISES

1.
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z — z = A (x
— x

)

be dz/dx, formed for the

point (sc , 2/ ),
— we will

denote this quantity by

(dz/dx)Q ,

— and similarly

that the slope of the line in

which the plane is cut by
the plane x == x :

z-z = B(y-y ),

be (dz/dy)Q . Hence

dxja

and we obtain as the equation of the tangent plane :

(31) Z - 2» =
(l)

(a;-^ +
(|)

^-^
From (28) it follows that the equations of the normal line

(or simply the normal) to the surface (1) at the point P:

0»o> Vo, 3o) are:

(32)

(-) (-)
\dxj \dyj

The direction cosines of the normal are given by the relations

(33) cos«:cos0:cos 7 =
(!)o:(!);

-l.

EXERCISES

Find the equations of the tangent plane and the normal to

the following surfaces :

1. z = tan-1 ?.
x

Ans. y x — x y + (x
2+ y

2
)(z

— zQ )
= 0;

Vo

~

—Xq «o
2 + 2/o

2
'
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2. z = ax2
-f by

2
.

Ans. For the tangent plane : z = 2ax x+ 2 6^^— 2o»

3. «2
4- y

2 + a;
2 = a2

.

4. Show that the surface

z = xy

is tangent to the x, y plane at the origin.

, 5. The sphere: ^y+>.ii
and the ellipsoid: 3^ +^ + ^ = 2

intersect in the point (—1, — 2, 3). Find the angle at which

they cut each other there. Ans. 23° 33'.

6. What angle does the tangent plane of the ellipsoid in the

preceding question make with the x, y plane ? Ans. 59° 2'.

7. At what angle is the surface

z as Sxy
2 — 5x2

y — 7x + 3y

cut by the axis of x at the origin ? Ans. 65° 41 '.

'

5. Derivatives of Higher Order. The first partial deriva-

tives of the function

are themselves functions of sc and #, and can in turn be

differentiated :

d2u * , n /. / \ /dw\ d2
it ^ / N ,

It can be shown that the order of differentiation does not

matter, provided merely that the derivatives concerned are

continuous functions :

d2u d2u
(34)

cxdy dydx
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The theorem holds for functions of any number of variables.*

Let us verify the theorem in some special cases.

(a)
u — e

xcos y ;

du r • d fdu= -e*smy,
dy

(P) u

d fdu\ „ •

Hfe)—"-»
a? log 2

#

y
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1
' 5. If u =

Vx2
-j- y

2
-\-z

2

then ^ +^ +^ = 0.
dx2

^
dy

2
T

dz2

1 6 If — = *tH and — = ——
0sb. % dy dx

then ^ +^= 0.

v
6. The Total Differential. Let us form the increment of the

function „, N

Au =f(x + A#, y + Ay) -/(# , 2/ )-

If we subtract and add the quantity f(x , y 4- Ay), we shall

have:
Aw =f(x + Ax, y + Ay) -f(x , y + Ay)

+/Oo, 2/o+ Ay) -/(«<,, 2/ ).

Applying the law of the mean to these two differences gives :

(35) Au = Axfx (x + 6Ax, y + Ay) + Ayfy (x ,y + 0' Ay).

Now if fx (x, y) and
i/y(a;, y) are continuous functions of x, y,

fx (x + 6Ax, y + Ay) will approach fx (x , y )
as its limit when

Ax and Ay both approach zero, and hence will differ but slightly

fromXC^o? 2/o)
when Ax and Ay are numerically small:

/x (z + OAx, y + Ay) =fx (z , y ) + e,

where c is infinitesimal :

lim e = 0.
Ax= 0, Ay=0

Similarly, the limit of/y (# , yo+ 0'Ay) isfy (x , y )
and

/y 0»o , 2/o + 0'Ay) =/y Oo, y ) + iy,

where
rj

is infinitesimal.

Hence (35) may be written in the form :
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(36) Aw =^Az +
|*

Ay + eAz + ,7 Ay,

where we have dropped the subscripts and replaced fx (x, y),

fy (x, y) by the alternative notation.

Formula (36) is analogous to the second formula on p. 92,

and so it is natural to describe the linear terms :

du .
,
du A— &x + —Ay

ex cy

as the principal part of An. The remaining terms form an

infinitesimal of higher order.*

Definition. We define the total differential of u as the

principal part of Aw :

(37) *-gA.+gA*

Since this definition holds for all functions u, we may in

particular set u = x. From (37) follows then that

(38) dx = Ax.

Similarly, setting u = y, we get :

(39) dy = Ay.

Substituting these values in (37) gives

* If £ is an infinitesimal depending on several, let us say two, inde-

pendent variables, a and |8, and if we take these variables as the princi-

pal infinitesimals, then f is said to be an infinitesimal of higher order than

a and /3 if

lim f = 0.

£ is said to be of the same order if

K<—L—<G,
where J5T and # are constants, both positive or both negative. Instead of

the above ratio we might equally well have used

r
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(A) . fcTg*+g*
The definition (37) and the theorems (38) and (39) can be

extended to functions of any number of variables. Thus if

u =/(%, y, z) we have by definition

, du A . du A . du Adw=— A# + 7- Ay + 5- A«,
d# dy ^

and we conclude as above that

, du , . du , . du ,
aw = 7— ax +— ay + tt cfe.

It is sometimes convenient to use the partial differentials of

u obtained by allowing only one of the variables to change :

We have then:
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The difference :

Az — dz = MQ = eAx + r} Ay,

is an infinitesimal of higher order than Ax and Ay.

7. Continuation. Change of Variable. In the foregoing

paragraph we have assumed that x and y are the independent
variables. If each depends on a third variable, t :

(41) * = <Kt), y =+(t),

then u becomes a function of a single variable, t, and the differ-

ential of such a function has already been defined, Chap. V, § 4 :

(42) du = D
t
uAt = D

t
udt.

Also:

(43) dx = D
t
x dt, dy = Dt y dt.

Here dt = At
;
but da? and dy are not in general equal to Ax

and Ay respectively. The question therefore arises : Will the

theorem (A) still hold ? Wo proceed to show that it will.

Let Ax and Ay be the increments that x and y receive by
virtue of (41) when t has the increment At. Then, substituting

these values in (36), we get the increment of u. Now divide

through by At and take the limit of each sidd:

At=o\AtJ cxAt=o\AtJ dy*t±o\AtJ ^t=o\ At AtJ

The last limit has the value 0, and hence

(44) D
t
u = d

^Dtx+
d

-^Dtyy

ex dy

and du = -^ dx + -^ dy. q. e. d.
ex dy

Thus (A) is seen to hold even when t is the independent
variable.

Finally, let x and y depend on r and 8 :

(45) x =
cf>(r, s), y= ^(r, s).
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If we hold s fast and allow r alone to vary, we have the case

just treated, the independent variable now being r instead of t.

Hence (44) is still valid, the derivatives with respect to r now

being partial :

/to du _dudx du dy

dr dx dr dy dr

In like manner :

du _dudx du dy

ds dx ds dy ds
'

Let us state this result in the form of a theorem. It is ap-

plicable to functions of any number of variables.

Theorem 1. If

and if each of the arguments x, y z,
• • • is made to depend, on

r, 8,
• • • ;

x=
cf>(r, s,

• •

•), y = «/'(r, «,•••)> z = <o(r, s,
. .

•),

then, if all the derivatives involved are continuous :

x-px
du _dudx du dy dudz

dr dx dr dy dr dz dr

with similar formulas for — , etc., obtained from (B) by replacing

r by s, etc.

The number of variables in each class, (x, yf z, •••) and (r, s, •••),

is arbitrary. If, in particular, there is only one variable, x, in

the first class, but several in the second, we have

du _ du dx^

dr dxdr'

and if there is only one variable, t,
in the second class, but sev- s

eral in the first, then we have formula (44) :

da _ du dx du dy . du dz

dt dx dt dy dt dz dt
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Example. Let
u = exy

,

x= log Vr2 + s2
, y = tan"1

-.
r

Thpn — — w«v —- —xpw
dx~ V '

dy
'

dx __ r dy _ — s

and hence |=fef^#r rl + s2

from which expression x and ?/ can be eliminated if desired.
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x= ax' 4- by' -f cz
f

,

2/= «'#'+ 6y+ c'z',

z = a"rf + b"y'+c"z'i J

show that

and find —- and

du

dx1
du

dx
tl
du

dy

,,du

dy
1

'6. If

show that

dz'

x = r cos <£, y= r sin<£,

WW W A^A
Suggestion. Compute first —- and — in terms of —- and—.

8. Conclusion. We are now in a position to show that

the theorem (A) is true no matter what the independent
variables are. If

and ' x — 4> (r, s), y=t(r>
s
)>

then, by the definition (37),

du
du .

,
du .

Also

Hence

dx=i Ar+8iAs >

dy=i Ar+di As-

du 7 ,
du ,

0a> ty

(dud* ,dudy\ *
r ,(?ufo + dJ:M\±s

\fo dr dy drj [dx^ds B^ds)

du .
,
du . ,

q. e. d.
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We will state the result as

Theorem 2. If

u=f(?,y,z, • •
•),

and if each of the arguments x, y, z,
• • • is made to depend on

r, s,
• • • :

*= $(?>*>
• •

•)> y—^(rt
s

>
• -

•)>
* = w (*j s

>
• •

•)>

then, if all the first partial derivatives are continuous, we shall

have :

tfa; (72/ ^
no matter whether the independent variables are x, y, z,

• • • or

r, s,
• • -.

The number of variables in each class, (x, y, z,
• •

•) and

(r, s,
• '

•), is arbitrary.

It is readily shown that the general theorems relating to

the differentials of functions of a single variable :

d(cu) = cdu,

d (u + v)
= du + dv,

d(uv) = udv + vdu,

'u\ vdu—udv
d

V V

hold for functions of several variables. Moreover, the differ-

ential of a constant, considered as a function of several

variables, is 0:

dc = 0.

Example. Let us work the example of § 7 by means of

the above theorem.
du = ye

xydx + xexv
dy,

r &
dx =

.

dr +
r2 + s

2 ^ + ^ >

g y
*

r2 -f s
2 r -f s

2
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Hence du = ry
~ 8

f e>*dr + sy + ™e**ds
r2 + s

2
r^ + s

2

du 7 , du,= —dr-\-—-ds.
dr ds

Now dr= Ar and ds = As are independent variables, and

consequently we can equate their coefficients on the two sides

of the last equation :
*

du _ ry — sx xy du _ sy + rx

dr
~
? + s

2 ' ds" r* + s2

EXERCISES

1. Work the first four exercises at the end of § 7 by the

method just explained.

2. If u=f(x + a,y + b),

, .* du du , du du
show that —- =— and —-= —-.

dx da 7

dy db

3. If u=f(x) and x = 3r + 2s + 7t,

show that — = 2— .

cs dx

9. Euler's Theorem for Homogeneous Functions. A function

u is said to be homogeneous if, when each of the arguments
is multiplied by one and the same quantity, the function is

merely multiplied by a power of this quantity. For definite-

ness we will assume three arguments :

u=f(®, y, z),

(46) /O, Xy, Xz) m \»f (x, y, z).

* The reasoning here, given at greater length, is as follows. Since dr

and ds are both arbitrary, we may set ds = 0, dr =£ 0, and then cancel dr.

Thus the coefficients of dr on both sides of the equation are seen to be

equal. Similarly, setting dr = 0, ds ^t 0, we infer the equality of, the

coefficients of ds.
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The exponent n of A. is called the order of the function.

Thus the functions

u = aa?+bxy + cy
2
,

u = J log (ar
2

-f- #
2

)
-

log a,

ax -{-by z , _,w

ca + cty -^2 _j_ y
2 x

are homogeneous of order 2, 0, 0, \, 1, resoectively.

If in particular we set A. = -, we have
x

(47) /<ftft«H#/fl.'. -\
\ X xj

Let the student verify this last formula for each of the

functions above given.

Euler's Theorem. If u is homogeneous and has continuous

first partial derivatives, then

/n s du
,

du
,

du
(C) xyx +y Yy

+z
Tz
=nu -

We have by (46)

(48) 'f&ffi^-Vfto**
x f = \x, y'

= \y, z' = Xz.

Differentiate (48) partially with respect to A. :

(49) fx(x\ y\ *>+/,(*', y', z')y+f(x', y', z')z
= n\^f(x,yy %%

where fx (x', y', z
f

) denotes as usual the partial derivative of

f(x, y, z) with respect to x, the arguments being subsequently

replaced by x', y', z' respectively. If we now put A = l,

(49) assumes the form (C), and the theorem is proven.
We have stated and proved the theorem for a function of

three variables. But theorem and proof hold for a function

of any number of variables.
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EXERCISE

Verify Euler's Theorem for each of the above examples.

10. Differentiation of Implicit Functions. Let y be defined

implicitly as a function of x by the equation (cf. Chap. II, § 9) :

(50) F(x,y)=0.

To differentiate y we begin by setting

u = F(x,y)

and forming the total differential of u :

du = ?fdx +
d

-fdy.Cx Cy

This relation is true, no matter what the independent variables

are, § 8, Theorem 2. We may, therefore, in particular choose

y so that the equation (50) is satisfied. Then du = 0, and we
have:

dF

(51) ^+M:^= o or 4-_*LK }
dx^dydx dx dF

dy

In like manner, if z is defined by the equation :

(52) F(x,y,z) = 0,

we can differentiate z partially by setting

u = F(x, y, z)

and taking the total differential of each side :

, dF , . dF,
,
dF,

du =—- dx -f —- dy 4- —- dz.
cx cy cz

This equation is true, no matter what the independent variables

are.

If in particular z be so chosen that the equation (52) is

satisfied, then du = 0, and
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<7a? 02/ (72

But dz now has the value :

dz = — d» + —-
cfa/.

da; dy

Hence, eliminating dz, we have

{W+ W^fa,{£FdFdz\ d =Q
\0a? dzdx) \dy dzdy)

Here cto = A# and dy = Ay are independent variables. We
may, therefore, set dy = 0, dx =£ 0, and divide through by cfcc :

^qx dF.dFdz
ft

(53)
to
+ &fcT°'
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Example. Differentiate z partially, where

a2 ^62
c
2

'

Here

and we have:

a2 ^~&Yx~ *

dx
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of (56), we see that the coefficients of dx and dy are equal to

0, and hence we get the two equations :

dFBu M^+^-aO
du dx dv dx dx

'

f^^ +^^ +^-0
du dy dv dy dy

and two similar equations, in which F is replaced by S>.

These latter equations the student should write out for him-

self. From the first and third of these four equations we can

solve for du/dx and dv/dx, and from the second and fourth,

for du/dy and dv/dy. Thus

(57)
du

dx'

F.
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is called the Jacobian of the functions F, <$, or F, 3>, #. In

the foregoing it has been tacitly assumed that all the partial

derivatives are continuous and that the Jacobian does not

vanish.

11. A Question of Notation. Problem. Suppose

u=f(x,y), y = cf>(x,z),

to find f*.
ex

Before beginning a partial differentiation the first question

which we must ask ourselves is: Wliat are the independent

variables f Hitherto the notation has always been such as to

suggest readily what the independent variables are. In the

present case they may be :

(a) x and y ;
or (b) x and z

;
or (c) y and z.

We can indicate which case is meant by writing the independ-

ent variables as subscripts, thus :

In case (c)
— has no meaning.
ex :

'

Another notation sometimes employed is to mark the vari-

able or variables that are held fast, thus :

dx \:
w dx

Let the student compute -— in cases (a) and (b).
ox

12. Small Errors. In the case of functions of a single vari-

able we have seen that the linear term in the expansion of

Taylor's Theorem :

fix) =f(x ) +f'(x )(x -x ) + • •
.,

can frequently be used to express with sufficient accuracy the

effect of a small error of observation on the final result, cf.
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Infinite Series, § 27. This term, /' (x ) (x
— x

),
is precisely the

differential of the function, df, for x = xQ .

The differential of a function of several variables can be

used for a similar purpose. If x, y,
• • • are the observed quan-

tities and u the magnitude to be computed, then the precise

error in u due to errors of observation Ax = dx, Ay = dy, etc.

is Au. But

*,„!**+£*+. ..
ex cy

will frequently differ from Au by a quantity so small that

either is as accurate as the observations will warrant,— and

du is more easily computed.

Example. The period of a simple pendulum is

4T=2^!-.
9

To find the error caused by errors in measuring I and g, or in

the variation of I due to temperature and of g due to the loca-

tion on the earth's surface.
#

Here dT=-±=dl- £\fl dg
sllg 9^9

or

<W= l(tt_ldg
T 2 1 2 g

9

and hence a small positive error of & per cent in observing I

will increase the computed time by ^k per cent, and a small

positive error of 7c' per cent in the value of g will decrease the

computed time by £&' per cent.

EXERCISES

1. A side c of a triangle is determined in terms of the other

two sides and the included angle by means of the formula :

c
2 = a2 + b

2 — 2ab cos w.
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Find approximately the error in c due to slight errors in measur-

ing a, b, and o>.

Ans. The percentage error is given by the formula :

dc_ (a
— b cos <o) da + (b — a cos <p) db + ab sin w dw

c a2
-\-b

2 — 2ab cos <d

2. Find approximately the error in the computed area of the

triangle in the preceding question.

3. The acceleration of gravity as determined by an Atwood's

machine is given by the formula :

2*

Find approximately the error due to small errors in observing
s and t.

4. Describe an experiment you have performed to determine

the focal length of a lens, or the horizontal component of the

earth's magnetic force
;
recall the relative degrees of accuracy

you attained in the successive observations, and discuss the

effects of the errors of observation on the final result.

13. Directional Derivatives. Let a function

w =/(«, y)

be given at each point of a region 8 of the x, y plane and let a

curve C be given passing through a point P: (x , y )
of the

^___^ region. Let P' be a second point of C

f s \ and form the quotient:

/ J^ I
uP , -up

PP'

Fig. 82

We set Up,
— uP= Au, PP' = A£ and write

, An _ du

The limit of this quotient, when P f

approaches P, is denned as the direc-

tional derivative of u along the curve C.
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If, in particular, C is a ray parallel to the axis of x and

having the same sense, the directional derivative has the value
3u

of the partial derivative, — ;
if the ray has the opposite sense,

the directional derivative is equal to — —-. A similar remark
dx

applies to the axis of y.

To compute the directional derivative in the general case we
make use of (36) or (37) ;

hence

af=0 A£ cx\Ai=oA$J dy\^=oA$J
or

//;ix du du
,
du .

(61) = Cos a -f-
—- sin a.

d$ dx dy

The extension of the definition to space of three dimensions

is immediate. We have :

//;o\ du du
,
du r> ,

du
(62) gi=^

cos " +^
co^+fe co^'

where a, /?, y are the angles that C makes at P with the axes.

EXERCISES

1. If a normal be drawn to a curve at any point P and if r

denote the distance of a variable point of the plane from a

fixed point 0; y, the angle between PO and the direction

of the normal, show that

(63)

'

£= -<*>sy.

2. Explain the meaning of -^ and show that
or

(64) dn^dr
K J

dr dn

14. Exact Differentials. If in the expression

(65) Pdx+Qdy
P and Q are functions of x and y subject to no restriction ex-
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cept that, along with whatever derivatives we wish to use, they
be continuous, there may or may not be a function u =f(x, y)

whose total differential :

, du , . du ,

du = —dx + —dy
ex cy

coincides with
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Comparing this last expression with

Q = bx + 2 ct/ -f- m,

we see that <f>'(y)
= 2cy-\-m,

<f>(y)
= cy

2 + my+C.

Hence w= ax2 + &#?/ + cy
2 + Ix + m?/ + O.

If we have three independent variables and the expression

Pdx+Qdy + Rdz,

the necessary and sufficient condition that it be an exact differ-

ential is that

(67)
dX= d3 dQ = dR dR = dP

dy dx' dz dy
'

dx dz
'

It is assumed that the partial derivatives are continuous.

EXERCISES

Determine which of the following expressions are exact dif-

ferentials and integrate such as are :

1.
(
ex cos y .

)

dx — (e
x sin y -f 7 sec2

y) dy.
\ VI — x2

/

2. (x + y)dx + (x-y)dy.

3 . yz exyzdx + zx exy
*
dy •+- xyeyz dz.
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EXERCISES

1. If pv
1Al =C, find ^.

dp

2. If u = ^l,
X

or

x = ri

-s, ,<1/
= e'>

3. If u = e* amv + xlog(x-\-y),

x = pqr, y — r sin -1
(qr) ;

findf^.
dq

4. If u = 2xy

and 2# + 32/-t-5z = l,

explain all the meanings which •— may have, and evaluate
ex

this derivative in each case.

5. If

find*?.
ox

{u
5 + v5

4- x
5 = 3#,

W3 + v3_
|

_
2/
3 = _3 a.

>

6. If F=2mv

dV

and j
*+*+*- %>
US + VS + yS == _ Sx>

dx

ue v
-\-vx= ysinu 9

u cos u = a?
2
-+- y%

find-
ax

findf^
dy
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8. From the equations

it follows that

I _ dx du dx dv

du dx dv dx
'

q__ dy du
, dydv

du dx dv dx

Explain the meaning of each of the partial derivatives. Com-

{x
SB u 4- vu

v
,

y = v — uvu,

du j du
pute _ and —

dx dy

/9. If

find §*.dx

'

10. If u = x2
-f y

2 + z
2 and z = xyt,

explain all the meanings of — •

dx

I <l>(x,y)
= 0,

dz d<f> dz d(f>

show that
* = ^"frfe .

dx
d<f>

dy

12. If u=f(x + at,y + pt) y

show that h.= a *L+B^ 9

dt dx^ P
dy

f

and obtain the general formula for -^ •

dt
n
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20. If

f(x, y)=0 and
<j> (a?, z)

= 0,

show that *A%<ML = %*±.ex dy dz ox dz

21. If 4>(P>V, = °>

show that -£
— _H -s _. 1.

<7£ 0V
(7/)

Explain the meaning of each of the partial derivatives.

22. Under the hypotheses of question 19, show that

d2 u ldu 1 d2 u _ ~

dt2, r dr r2
dcf>

2

23. If u=f(x, y) is homogeneous of order n, show that

<>d
2 u . o d2u

,
9 d

2u t -, x
ar—-

-f- 2 xy 7
—-~ -f V tt-s = n (n — 1 ) w.

&»2 J
dxdy

*
dy

2 y J

24. If w is a function of x, y, z and x, y, z are connected by
a single relation, is it true that

dy dz dy
25. If

dU=6dS-pdv
is an exact differential, and if S and v can be expressed as

functions of the independent variables 6, p, show that

<W = _dp • M = _^
^ as' ap 20'

State what the independent variables are in each differentiation.



CHAPTER XV

APPLICATIONS TO THE GEOMETRY OF SPACE

1. Tangent Plane and Normal Line to a Surface. We have

already obtained the equation of the tangent plane to the

surface

(1) z=f(x,y)

at the point (xQ , yQ ,
z

)
in Chap. XIV, § 4:

(2) .-^.g^-^ +g^-^.
Also of the normal :

/q\
x — x _ y-y _ z — z

{ }

(
dj\

~
f^\

~~ - 1
'

\dxj \dy)

If the equation of the surface is given in the implicit form :

(4) F(x,y,z)=0,

then (2) and (3) become by virtue of (53) in Chap. XIV :

/its
x-x y-y z-z,

(6)
(dF\

~~

(W\ fd_F\

\dx) \dyj [dzjo

For the direction cosines of the normal at
(a?, y, z) we have,

on dropping the subscript :

(7) cos a : cos B : cos y= —-
:
——

:
— •

' ex dy dz

316
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Example. Consider the ellipsoid :

Here

t+t+tvel

^(x-x ) +
2

^(y-y ) +
2

f(z-z )
= O

a2
+

62
c
2

for the tangent plane ;
and for the normal :

x Vo *o

EXERCISES

1. Find the equation of the tangent plane and the normal

of the cone :

z
2 = 2x2 + 1/,

at the point (2, 1, 3).

Ans. ±x + y-3z = 0; *^ = y-l = ^zl.

2. How far distant from the origin is the tangent plane to

the ellipsoid :

a? + 3y
2 + 2z2 = 9

at the point (2,
-

1, 1) ? Ans. 2.182.

3. Determine the angle between the normal to the ellipsoid

in the preceding question at the point (2,
—

1, 1) and the line

joining the origin with this point.

2. Tangent Line and Normal Plane of a Space Curve. A
curve in space may be given analytically

(a) by expressing its coordinates as functions of a parameter:

(8) *»/(*), y = <f>(t), z=«K0;

(6) as the intersection of two cylinders :

(9) y = *(«), * = <AO);
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(c) as the intersection of two arbitrary surfaces :

(10) F(x,y,z) = 0, *(x,y,z) = 0.

A familiar example of (a) in the case of plane curves is the

cycloid ;
also the circle. In the case of space curves we have

the helix :

(11) x = a cos 0, y = a sin 0, z = bO.

This curve winds round the cylinder x2 + y
2 = a2

,
its steepness

always keeping the same. It is the curve of the thread of a

screw that does not taper. Again, if a body is moving under

a given law of force the coordinates of its centre of gravity

are functions of the time, and we may think of these as

expressed in the form (a). But the student must not regard
it as essential that we find a simple geometrical or mechanical

interpretation for t in (a). Thus if we write arbitrarily :

(12) x — log t, y — sin
t,

z =
<fl+t2

we get a definite curve, t entering purely analytically.

In particular, we can always choose as the parameter t in

(a) the length of the arc of the curve, measured from an

arbitrary point:

(13) x = f(s), y= f(s), •= *(«>

The form (b) may be regarded as a special case under (a),

namely that in which
x= t.

On the other hand, it is a special case under (c).

The Direction Cosines. To find the direction cosines of the

tangent to a space curve at a point P: (xQ , y ,
z

), pass a secant

through P and a neighboring pointP : (x -f Ax, y +Ay, z + Az).

The direction cosines of the secant are :

cosa' = -^:, cos£' = -^-, cosy' = =,PP PP> PP
and hence, for the tangent,
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v Ax ,. (Ax
cos a — lim = hm

with similar formulas for cos /?, cos y. Hence

PP'J

(14) cos a
dx

cos /»
= &, COSy

dz

ds ds'
,

'

ds

Here the tangent is thought of as drawn in the direction in

which s is increasing. If it is drawn in the opposite direction,

the minus sign must precede
each derivative.

From (14) it follows at once

that

(15) ds2= dx2 + dy
2 +dz2

.

This important formula can be

proven directly from the rela-

tion

ppi
2 = Ax2

-f Ay
2 + Az2

.

If we assume the form (a),

ds2 = [f(t)
2

-hcf>'(ty + ^(t)
2

^dt
2

Fig. 83

and

(16)

(17)

cos a = f(t)

VfW+fffl+rW

=
Jy/f (}f+ <t>' (ff+V (ty at.

cos/}=

COSv=

(18)

Applying these results to (9), we get

1
cos a

Af ^dx'^dx2

etc.,
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(19) -/^s+s*
The Equations of the Tangent Line and the Normal Plane.

For the tangent line we have, in case (a) :

(20)

and in (6) :

(21) y-yo =

«z-_#o = y — yo = « - «o .

f(t ) *'(f ) ffr)'

(x-x ) 9

- z

^(fX {x
~

xo) -

\dxj

The normal plane is given by

(22) f (?.) (x
- x

) + *' (t ) (y
- y ) + ^ ft) (i -z )

=

in (a) ;
and in (6) by

f

dy
y

(23) a-#o +
c?rc ,^-*>-

+
(S>-*>-

a

On the other hand, the tangent line in case (c) may be

obtained most simply as the intersection of the tangent planes
to the surfaces at the point in question :

(24)

1 ©.<-*>(&<»-*>+
These equations may be thrown into the equivalent form

x — ^o _ y — .Vo _ g — zq
.

F
y
Fz
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EXERCISES

Find the equations of the tangent line and the normal plane

to the following space curves :

1. The helix (11) and the curve (12).

2. The curve : y
2 = 2 mx, z

2= m — x.

3. The curve: 2x2 + 3y
2 + z

2 = 9, ^ = 3^ + ^,
at the point (1,

—
1, 2).

4. Find the angle that the tangent line in the preceding

question makes with the axis of x.

5. Compute the length of the arc of the helix :

a? = cos0, y = sir\0, 5z = 0,

when it has made one complete turn around the cylinder.

6. How steep is the helix in the preceding question ?

7. Show that the condition that the surfaces (10) cut

orthogonally is that i

(27)
dFd<j? ,dFd&

, ^5$ =
dx dx dy dy dz dz

8. Show that the condition that the three surfaces :

F(x,y,z)=0, *(a>,y,2)=0, *(x,y,z)=0,

intersecting at the point (x , y ,
z

),
be tangent to one and the

same line there is that, in this point,

dF dF dF
dx dy dz

d® d® d®

dx dy dz

d* d* ?W

dx dy dz

It is assumed that in no row do all the elements vanish.

(28) = 0.
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9. The surfaces

a?+ y
2 + z2= 3, xyz = l, z — xy,

all go through the point (1, 1, 1). Find the angles at which

they intersect there.

10. Obtain the condition that the surface (4) and the curve

(8) meet at right angles.

11. Find the direction of the curve

x= t
2
, y

—
f, z = t*

in the point (1, 1, 1).

12. Find the direction of the curve

xyz = 1, y
2 = x

in the point (1, 1, 1).

13. Find all the points in which the curve

x = t
2
, y = P, z = t*

meets the surface

z
2 = x + 2y-2,

and show that, when it meets the surface, it is tangent to it.

14. Show that the surfaces

cr b* &

in general never cut orthogonally ;
but that, if

i+i-i-o
a2 + 6

2
c*

- >

they cut orthogonally along their whole line of intersection.

15. When will the spheres

^ + ^ + ^ = 1, (x-a)
2 + {y-bf+(z-cy = l

cut orthogonally ?

16. Two space curves have their equations written in the

form (13). They intersect at a point P. Show that the angle

e between them at P is given by the equation :
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cos c = x[x[ + y[y'2 + afjaj,

where as{=^p, etc.

17. The ellipsoid: cc
2

-|- 3 2/

2
-+- 2z

2 = 9 and the sphere:

252 _|_ y2 _|_ ^ _ g mtersect in the point (2, 1, 1). Find the angle

between their tangent planes at this point.

3. The Osculating Plane. Let P : (x ,y ,
z ) be an arbitrary-

point of a space curve (8), and pass a plane

(29) A(x-x ) + B(y- y ) + C(z-z )
=

through P. Then the distance D of a point

P'l x = f(t + h), y = cf>(t + h), z =
if;(t + h)

of the curve from this plane will be in general an infinitesimal

of the first order with reference to PP' as principal infini-

tesimal. For

±D = A(x-x ) + B(y-y()) + C(z-z )

^A2 + B2+C2

where x, y, z are the coordinates of P'.

Hence

±D = A^& + *> ~/ft)1 + * C*ft> + *)
~ *W1 + etc '

.

V^ + Jff+C*

Applying Taylor's Theorem with the Eemainder to each

bracket :

f(to+ h)-f(t )
= hf>(t )+

1

£f<'(t(i + eh),

etc.,

and setting V-42
4- 52 + O2 = A, we obtain

± D = A r^/'ft) + B +' (O + «A

'

(<b)]/A

Hence

lim ±J?= Af'W + ^'to + CyW
,
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and this will not = if A, B, C are chosen at random, unless

P happens to be a point at which /' (t ), <f>' (t ) if/' (/ )
all vanish.

"We exclude this case. On the other hand, PP' = As and h =M
are infinitesimals of the same order, since

As
lim^= D

t
s= V/' (t y+ <t>' (t y + ^ (t y* o.

Thus the above statement is proven.

If, however, A, B, and C are so chosen that

(30) Af'(t ) + B<f>'(t ) + Of ft) - 0,

then lim ± D/h = and

,. ±D Af"(t ) + B<f>"(t ) + C<f,"(t )

2E* h*
"

2A

Now (30) is precisely the condition that the tangent line to (8)

be perpendicular to the normal to the plane (29), and hence

the tangent will lie in this plane ;
i.e. the plane (29) is here

tangent to the curve, and D becomes now in general an

infinitesimal of the second order. But if A, B, and C are

furthermore subject to the restriction that

(31) Af" (to) +B<t>"(t ) + Cy'fo) = 0,

then even lim ± D/h
2 = and D becomes an infinitesimal of

still higher order
;

— of the third order, as is readily shown, if

Equations (30) and (31) serve in general to define the

ratios of the coefficients A, B, C uniquely. The latter may,

therefore, be eliminated from (29), (30), and (31), and thus

we obtain the equation of the osculating plane :

x-x y-y z—z

(32) f'(t ) 4>'(to) «A'(*o) =0.

f"(t ) 4>»(t ) f(to)

The osculating plane as thus defined is a tangent plane

having contact of higher order than one of the tangent planes
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taken at random. There is in general only one osculating

plane at a given point. But in the case of a straight line all

tangent planes osculate. Again, if f"(t )
=

<f>"(t )
=

<A"ft>)
= ^>

the same is true. The osculating plane cuts the curve in

general at the point of tangency; for the numerator of the

expression for ± D changes sign when h passes through
the value 0.

It is easy to make a simple model that will show the oscu-

lating plane approximately. Wind a piece of soft iron wire

round a broom handle, thus making a helix, and then cut out

an inch of the wire and lay it down on a table. The piece will

look almost like a plane curve in the plane of the table, and

the latter will be approximately the osculating plane.

The normal line to a space curve, drawn in the osculating

plane, is called the principal normal. The centre of curvature

lies on this line, the radius of curvature being obtained by pro-

jecting the curve orthogonally on the osculating plane and

taking the radius of curvature of this projection.

If a body move under the action of any forces, the vector

acceleration of its centre of gravity always lies in the osculat-

ing plane of the path.

When the equation of the curve is given in the form (9), the

equation (32) becomes:

EXERCISES

1. Find the equation of the osculating plane of the curve

(12) at the point t = w.

2. Find the equation of the osculating plane of the curve of

intersection of the cylinders :

sc
2 + y

2 = a2
,

x* 4- z2 = a2
,

and interpret the result.
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Suggestion. Express x, y, z in terms of t :

x = a cos t, y = a sin £, 2= a sin £.

3. Show that the centre of curvature of a helix lies on the

radius of the cylinder produced.

4. Show that the osculating plane of the curve

V =A z2 = l-y
at the point (0, 0, 1) has contact of higher order than the

second.

4. Confocal Quadrics. * Consider the family of surfaces :

where X is a parameter taking on different values. Each sur-

face of the family is symmetric with regard to each of the co-

ordinate planes. We may, therefore, confine ourselves to the

first octant.

If A. > — c
2
,
we have an ellipsoid, which for large positive

values of X resembles a huge sphere. As X decreases, the sur-

face contracts, and as X approaches — c
2
,
the ellipsoid, whose

equation can be thrown into the form :

v T \ a2 + X b
2 + X/

* No further knowledge of quadric surfaces is here involved than their

mere classification when their equation is written in the normal form

a2
X

b2
X

C2

See Bailey and Woods, Analytic Geometry, p. 316. It is desirable that

the student have access to models of the three types here involved.

The student should work out for himself, after a first reading of this

paragraph, the corresponding treatment of the confocal conies in the

plane :

r'2

+ =^-=1
a2 + X 62 + X



APPLICATIONS TO THE GEOMETRY OF SPACE 327

flattens down toward the plane z = as its limit,
— more pre-

cisely, toward the surface of the ellipse

In so doing, it sweeps out the whole first octant just once, as

we shall presently show analytically.

Let A continue to decrease. We then get the family :

(35) ~iT- + ^T 7JV-\
= 1

>
-&20<-c2

.

These are hyperboloids of one nappe, and they rise from coin-

cidence with the plane z = for values of /a just under — c
2
,

sweep out the whole octant, and flatten out again toward the

plane y = as their limit when /a approaches
— b

2
.

Finally, let A trace out the interval from — 62 to — a2
. We

then get the hyperboloids of two nappes :

(36) S- 7^ r A r-i -a2<v<-b2
.

V ) a2 + v -02+ v) -(c'+ v)

These start from coincidence with the plane y — when v

is near — 62
, sweep out the octant, and approach the plane

x — as v approaches — a2
.

Theorem 1. Through each point of the first octant passes one

surface of each family, and only one.

Let P : (x, y, z), be an arbitrary point of this octant. Then

x > 0, y > 0, z > 0. Hold x, y, z fast and consider the function

of A:

The function is continuous except when A = — c
2
,
— b2, or —a*.

In the interval — c
2 < A < -f- oo we have *

/(+»)= -1, lim /(A) =+oo.
A=-c*+

* The notation lim /(x), lim f(x) is explained in Chap. XI, § 9.

x=a+ x=a—
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Hence the curve

crosses the axis of abscissas at least once in this interval.

On the other hand

ft
m ^ V z ^ qJ K J

(a
2 + A)

2

(&
2 + A)

2

C^ + A)
2

*

Hence /(A.) always increases as X decreases, and so the curve

cuts the axis only once in this interval. We see, therefore,

that one and only one ellipsoid passes through the point P.

Similar reasoning applied to the intervals (— b
2
,
— c

2

) and

(—a
2
,
— b2

)
shows that one and only one hyperbola of one

nappe, and one and only one hyperbola of two nappes pass

through P.

Theorem 2. The three quadrics through P intersect at right

angles there.

The condition that two surfaces intersect at right angles is

given by (27). Applying this theorem to (34), and (35) we

wish to show that

2x 2x 2y 2y 2z 2z =Q
a? + ka2+ (j.

b
2 + \b2 + f*.

c
2 +kc2 + n

Now subtract (35) from (34) :

( A *
.

y
2

i

^
2 L q^ ;

L(a
2 + A)(a

2 + /x)"
h
(6

2

+A)(6
2 + /.)"

1

"(c
2+ A)(c

2 + /A)J
'

and since /*
— A =£ 0, this proves the theorem.

The three systems of surfaces that we have here investigated

are analogous to the three families of planes in cartesian coor-

dinates, to the spheres, planes, and cones in spherical polar

coordinates, and to the planes, cylinders, and planes in cylindri-

cal polar coordinates. They form what is called an orthogonal

system of surfaces, and enable us to assign to the points of the

first octant the coordinates (A, /*, v), where

-c2<A<+oo, _&2 </jt< _ c2j _a2<v<-62
.
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5. Curves on the Sphere, Cylinder, and Cone. In order to

study the properties of curves drawn on the surface of a sphere,

we introduce as coordinates of the points of the surface the

longitude and the latitude <£. Any curve can then be repre-

sented by the equation

(37) F(0, <l>)
= 0.

To determine the angle w between this curve and a parallel

of latitude, draw the meridians and the parallels of latitude

through an arbitrary point P : (0O > <£o) and a neighboring point

P* > (#o+ A0, <£ + A<£) of this curve. We thus obtain a small

curvilinear rectangle, of which the arc PP' is the diagonal.

We wish to determine the angle

<o = Z.MPP'.

Now consider, alongside of the

curvilinear right triangle MPP' a

rectilinear right triangle whose

hypothenuse is the chord PP' and

one of whose legs is the perpen-

dicular PM1 let fall from P on

the meridian plane through P'.

The angle
<1>' =ZM1PP'

of this triangle evidently approaches w as its limit when P
approaches P.

Fig. 84

We have tan
MXP
PMi

Now PMl differs from PM= a cos <£ A0 by an infinitesimal of

higher order and likewise MXP differs from MP' = aA<f> by
an infinitesimal of higher order. Hence, by the theorem of

Chap. V, § 2, we obtain :

lim tan w' = lim —J— = hm £—
-,

P'±f p'±p PMX A0=o a cos
<t>
A0

tan
cos<£(

De<t>,
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or, dropping the subscript :

(38) tano> = -J—^.
\

" '
cos

<\>
dO

In order to obtain the differential of the arc of the curve

(37) we write down the Pythagorean Theorem for the triangle

PM^:
PP'

2 =PMl

2
-{-M1P'\

divide through by A0 2 and then let A0 approach as its

limit. Since the chord PP' differs from the arc As by an

infinitesimal of higher order, we have :

lim f^]
2

= lim f—Y= a2cos2
4> + a2 lim f^Y

p>±p\&0J p'±p\A0j
^

p>±p\A0J ,

(Dd sy = a2 cos 2

<f> + a2

(De <t>)

2

,

(39) ds* = a2

[cos
2
<£d0

2 + d<j>
2

].

Rhumb Lines. A rhumb line or loxodrome is the path of a

ship that sails without altering her course, i.e. a curve that

cuts the meridians always at one and the same angle. If we
denote the complement of this angle by o>, then we have from

(38) for the determination of the curve :

—£- = c!0tanG>,
cos<f>

(40) <9tano>= fJ±- = \ogten(± + Z) + av ' J cos<£ \2 4y

This is the equation of an equiangular spiral on the sphere,

which winds round each of the poles an infinite number of

times.

EXERCISES

1. Show that the total length of a rhumb line on the sphere

is finite.
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2. The cartesian coordinates of a point on the surface of a

sphere are given by the equations :

x = a cos <£ cos 0, y = a cos
<f>
sin 0, z = a sin <£ .

Deduce (39) from these relations and the equation :

ds2 = dx> + dy
2 + dz2

.

3. Taking as the coordinates of a point on the surface of a

cone (p,0), where p is the distance from the vertex and is

the longitude, show that

(41) tan-- 3&— .

pdOsina

4. Obtain the equation and the length of a rhumb line on

the cone.

5. The preceding two questions for a cylinder.

6. Mercator's Chart. In mapping the earth on a sheet of

paper it is not possible to preserve the shapes of the countries

and the islands, the lakes and the peninsulas represented.

Some distortion is inevitable, and the problem of cartography
is to render its disturbing effect as slight as possible. This

demand will be met satisfactorily if we can make the angle

at which two curves intersect on the earth's surface go over

into the same angle on the map. For then a small triangle

on the surface of the earth, made by arcs of great circles, will

appear in the map as a small curvilinear triangle having the

same angles and almost straight sides, and so it will look very
similar to the original triangle. What is true of triangles

is true of other small figures, and thus we should get a map
hi which Cuba will look like Cuba and Iceland like Iceland,

though the scale for Cuba and the scale for Iceland may be

quite different.

A map meeting the above requirement may be made as fol-

lows. Regarding the earth as a perfect sphere, construct a

cylinder tangent to the earth along the equator. Then the
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meridians shall go over into the elements of the cylinder and
the parallels of latitude into its circular cross-sections as fol-

lows : Let P be an arbitrary point on the earth, Q> its image
on the cylinder.

(a) Q shall have the same longitude, 0, as P.

(b) To the latitude
<f>

of P shall correspond a distance z of Q
from the equator such that the angle w which an arbitrary
curve C through P makes with the parallel of latitude through
Pand the angle <o1 which the image C1 of C makes with the

circular section of the cylinder through Q shall be the same.

Now from (38)

tanco = —^-.
dO cos

<j>

On the other hand,
dz

tan (Dl
=

adO

Fia. 85

Hence, setting a for convenience

= 1, we get

d* =^ or dz =M-
dO cos

cf>
dO cos $'

J cos
<f>

4> +
1).t

l0S
""\2

the constant of integration vanishing because z = corresponds

to<£ = 0.

Thus a point in latitude 60° N. goes over into a point distant

1.32 units from the equator.

The cylinder can now be cut along an element, rolled out on

a plane, and the map thus obtained reduced to the desired scale.

This map is known as Mercator's Chart.* It has the

property that the meridians and the parallels of latitude go

over into two orthogonal families of parallel straight lines.

Furthermore, a rhumb line on the earth is represented by a

straight line on the map.

*G. Kremer, the latinized form of whose name was Mercator, com-

pleted a map of the world on the plan here set forth in 1569.
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We call attention to the fact that the above map cannot be

obtained by projecting the points of the sphere on the cylinder

along a bundle of rays from the centre.

EXERCISE

Turn to an atlas and test the Mercator's charts there found

by actual measurement and computation.



CHAPTER XVI

TAYLOR'S THEOREM FOR FUNCTIONS OF SEVERAL

VARIABLES

1. The Law of the Mean. Let f(x, y) be a continuous func*

tion of the two independent variables x and y, having continuous

first partial derivatives. We wish to obtain an expression for

f(x + h,y + k)

analogous to the Law of the Mean for functions of a single

variable, Chap. XI, § 2. One such expression has been found

in Chap. XIV, § 6; but there is a simpler one. Form the

function :

*(*) =/(**> + th, 2/0 + tic),
< * < 1,

where x
, y , h, k are constants and t alone varies. Notice that

<D (1)=/O + h, 2/ + k), ® (0) -/(«Vi 2/o).

If we apply the Law of the Mean, p. 230, Formula (A
f

),
to

<i>
(t), setting a = 0, 6 = 1, we get :

*(l)=fc(O)+l.*'(0), O<0<1.

Now *'(*)
= hfx (x + th, 2/ + th)+ kfy (x + th, y + th).

Hence f(%o + h, y + k)=

(1) /(%* Sfe)+ hfx (x + M, 2/o + Oh)+ A;/, (a*, + 6h, y + 0fc)>

where < < 1, and this is the form we sought for the Law of

the Mean for functions of two independent variables.

The extension to functions of n > 2 variables is obvious.

334
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2. Taylor's Theorem. We obtain Taylor's Theorem with the

Remainder if we write the corresponding theorem for $(£):

*(i)=*(0)+*'(<>) + ... +^(w) (0)+
1

lv
*ln+1)

(0),

and then substitute for <£ and its derivatives their values. Thus
when w = lwe get

(2) f(x + h, 2/0 + &) =f(x , 2/ )+ hfm (a%, 2/o) 4- &/„ (a*>, 2/o)

+|[tf/>(X, F) + 2M-/xy (X, F)+*«/>(X, F)],

where X= # + 07*, F= y -+ 0&, and < 6 < 1.

The student should write out the formula for the next ease,

71 = 2.

The general term, 3> (n)
(0)/w !,

can be expressed symbolically as

nl\_ dx
dy_\

x=x
iy=v

and the remainder as

(W + 1)!| £# 0v] x = z + *A
|y = yo + 0*

The extension to functions of n > 2 variables is immediate.

If the remainder converges toward zero when n becomes

infinite, we obtain an infinite series whose terms are homo-

geneous polynomials and which converges toward the value of

the function. If furthermore the series whose terms consist of

the monomials that make up the terms of the latter series con-

verges for all values of h and k within certain limits : \h\<H9

\k\<K, we say that the function can be developed in a power
series in h = x — x and k = y — y :

(3) f(x, y)= 2 cmn (x
- x )

m
(y
-

2/o)

n
,

or that it can be developed by Taylor's Theorem. A series of

the form (3) is often called a Taylor's Series. But it is not in

general feasible to show that the remainder converges toward

zero, and so other methods of analysis have to be employed to

establish a Taylor's development.
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3. Maxima and Minima. The function f(x, y) will have a

maximum at the point (x , y )
if the tangent plane of the

surface

at (x , y ) is parallel to the x, y plane and the surface lies

below this plane at all other points of the neighborhood of

(x0> y ,
u ). Hence we see that at

(a? , y )

A similar statement holds for a minimum.

The necessary condition contained in (4) can -be extended

at once to functions of n > 2 variables. For, if any one of the

first partial derivatives, du/dx, for example, were ^0 at

(# , y ,
z

, •••),
then the function f(x, y ,

z
, •••),

a function of

x alone, would be increasing as x passes through the value x
,

or else it would be decreasing, according to the sign of du/dx.
The conditions (4) are frequently sufficient to determine a

maximum or a minimum.

Example 1. Given three particles of masses mlf m2 ,
ra3 ,

situated at the points (xl} y^, (x29 y2 ), («3 , 2/3 ). To find the

point about which the moment of inertia of these particles will

be a minimum.

Here it is clear that for all distant points of the plane the

moment of inertia is large, becoming infinite in the infinite

region of the plane. Furthermore, the moment of inertia is a

positive continuous function. Hence the surface

u = I=m1 [(«-xiy + (y-yiy]+m2 [(x- x2)
2 + (y

- y2)
2

~\

+ ra3 [(a
- x3)

2 + (y
-

2/3)
2

]

must have at least one minimum, and at such a point

Y = 2 [>! (oj
— xY) + ra2 (x— x2) + m3 (x

—
a$] = 0,

y = 2[m1 (y-y1)+m2 (y--y2) + m;i (y-y3)']
= 0.
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But these equations determine the centre of gravity of the

particles and are satisfied by no other point. Hence the centre

of gravity is the point about which the moment of inertia is

least.

The result is in accordance with the general theorem of

Chap. IX, § 15, and it holds for any system of particles

whatever.

Auxiliary Variables. As in the case of functions of a single

variable, so here it frequently happens that it is best to express

the quantity to be made a maximum or a minimum in terms

of more variables than are necessary, one or more relations

existing between these variables. The student must, therefore,

in all cases begin by considering how many independent varia-

bles there are, and then write down all the relations between

the letters that enter; and he must make up his mind as to

what letters he will take as independent variables before he

begins to differentiate.

Example 2. What is the volume of the greatest rectangular

parallelopiped that can be inscribed in the ellipsoid :

We assume that the faces are to be parallel to the coordinate

planes and thus obtain for the volume :

V= 8 xyz.

But x, y, z cannot all be chosen at pleasure. They are con-

nected by the relation (5). So the number of independent
variables is here two, and we may take them as x and y. We
have, then :

£-«»(+©-*•

From (5) we obtai n :
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dz __ _ c
2x dz _ c

2
y

dx a?z' dy b2
z

Now neither x = nor y = can lead to a solution, and the

only remaining possibility is that

^ _ y
2 _ z

2

a2 ~62 ~c2
'

Thus the parallelopiped whose vertices lie at the intersections

of these lines with the ellipsoid, i.e. on the diagonals of the

circumscribed parallelopiped x = ± a, y—±b, z = ± c, is the

one required,* and its volume is

pr_ Sabc^_
3V3*

EXERCISES

1. Required the parallelopiped of given volume and mini-

mum surface. Ans. A cube.

2. Required the parallelopiped of given surface and maxi-

mum volume. A?is. A cube.

3. A tank in the form of a rectangular parallelopiped, open
at the top, is to be built, and it is to hold a given amount of

water. Find what proportions it should have, in order that

the cost of lining it may be as small as possible. How many
independent variables are there in this problem ?

Ans. Length and breadth each double the depth.

* The reasoning, given at length, is as follows. V is a continuous

positive function of x and y at all such points of the quadrant of the ellipse

«2
x

ft*
'

for which x> 0, y> 0, and it vanishes on the boundary of this region.

Hence it must have at least one maximum inside. But we find only one

point, as = a/V3, y = b/y/B at which V can possibly be a maximum.

Hence, etc.
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4. Find the shortest distance between the lines

y = 2x,
|

y = 3x + 7
f

z=5x, |
z — x.

5. Show without using the calculus that the function

x4 + y* + 4:X — 32 2/
— 7

has a minimum.

Suggestion. Use polar coordinates.

6. Find the minimum in the preceding problem.

7. A hundred tenement houses of given cubical content are

to be built in a factory town. They are to have a rectangular

ground plan and a gable roof. Find the dimensions for which

the area of walls and roof will be least.*

8. A torpedo in the form of a cylinder with equal conical

ends is to be made out of boiler plates and is just to float

when loaded. The displacement of the torpedo being given,

what must be its proportions, that it may carry the greatest

weight of dynamite ?

Ans. The length of the torpedo must be three times the

length of the cylindrical portion, and the diameter must be V5
times the length of the cylindrical portion.

9. Find the point so situated that the sum of its distances

from the three vertices of an acute-angled triangle is a mini-

mum.
Ans. The lines joining the point with the vertices make

angles of 120° with one another,f

10. Find the most economical dimensions for a powder
house of given cubical content, if it is built in the form of a

cylinder and the roof is a cone.

* The problem is identical with that of finding the best shape for a

wall-tent.

t For a complete discussion of the problem for any triangle see Goursat-

Hedrick, Mathematical Analysis, vol. 1, § 62.
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11. Find approximately the most economical dimensions for

a two-gallon milk can. Assume the upper part of the can to

be a complete cone.

4. Test by the Derivatives of the Second Order. We proceed
to deduce a sufficient condition for a maximum or a minimum
in terms of the derivatives of the second order. Suppose the

necessary conditions (4) are fulfilled at (x , y ).
Then from

(2) we get :

(6) f(x + h, y -f- k) -f(x , y )
= i (Ah

2 + 2Bhk + Ck2

),

where A =fx* (x + Oh, y + Bk), B =fxy (x + Oh, y + $k),

C=fy*(x + 6h,y + dk),

and for a minimum the difference (6) must be positive for all

points x=.x + h, y = y -{-k near (x , y ) except for this one

point, where it vanishes.

Definite Quadratic Forms. A homogeneous polynomial of

the second degree in any number of variables is called a quad-
ratic form,* and is said to be definite if it vanishes only when
all the variables vanish. Thus

7i
2+ fc

2
,

2h2 + 3k2 + 5l2

are examples of definite quadratic forms in two and three

variables respectively ;

h2
,

Sh2 + Ihk + 2k2= (3h + k)(h + 2k),

regarded as quadratic forms in two variables, are not definite.

A definite quadratic form never changes sign.

Theorem. In order that

U=Ah2 + 2Bhk+Clci

,

*For some purposes it is desirable to define an algebraic form merely

as a polynomial. But we are concerned here only with homogeneous poly-

nomials. Moreover, we exclude the case that all the coefficients vanish.
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where A, B, C are independent of h and k, be a definite form, it

is necessary and sufficient that

(7) B2-AC<0.

That this condition is sufficient is at once evident. For, if

it is fulfilled, surely neither A nor C can vanish, and we can

write :

U= -[(Ah + Bk)
2+(AC- £2

)&
2

].
A.

Hence U can vanish only when

Ah + Bk=0 and fc= 0,

i.e. only when h = k = 0, q. e. d.

We leave the proof that the condition is necessary to the

student.

When the condition (7) is fulfilled, A and C necessarily have

the same sign, and this is the sign of U.

Corollary. If A, B, C depend on h and k in any manner

whatever, and if, for a pair of values (h, k) not both zero, the con-

dition (7) is fulfilled, then for these values U has the same sign as

A and C.

Application to Maxima and Minima. Returning now to equa-

tions (6), let us suppose that

^8)
\dx~d^)~dx^df

<0

at (x , y ) and that these derivatives are continuous in the

vicinity of this point. Then the relation (8) will hold for all

points near (x , y ) and furthermore, for such points, both

— and —
-^ will preserve the sign they have at (# , y )-

Hence
dx2

dy
2

the right-hand side of (6) will vanish only at (x , y ),
and at

other points in the neighborhood will have the sign common
to these latter derivatives. We are thus led to the following :
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Sufficient Condition for a Maximum or a Minimum.

If at the point (x , y )

-v tiu A du
(a)

— = — =

(&>

dx

d2u\
dy

/j^Y-—— <0
\dxdy) dx2

dy
2

and if the derivatives of the second order are continuous near

(x , y ),
then u will have a maximum at (x , y ) if

d2u

and a minimum there if

dx2 <o,

g#5

Conditions (6) and (c) are not necessary, but only sufficient.

u may have a maximum or a minimum even when the sign of

inequality in (6) is replaced by the sign of equality. But if, in

(6), the sign of inequality is reversed, u has neither a maximum
nor a minimum.

When / depends onw>2 variables, the method of procedure

is similar. First, the algebraic theorem about quadratic forms

has to be generalized. Thus for three variables,

(9) U— au x^ + a22 x2
2 + a^xz

2 + 2a12 x1 x2 + 2a13xxx3 + 2a 23x2x3 ,

and the necessary and sufficient condition that U be a positive

definite quadratic form is that

an a12 a13

(10) On>0,
an a^
a21 a22

>o, G&21 ^22 ^23

a31 a32 a.33

>o,

where av= a
jt

. This form of statement suggests the general-

ization for n = n.

If U is to be a negative definite quadratic form, the first,

third, fifth, etc. inequality signs in (10) must be reversed. For

a proof by Gibbs, arranged by Saurel, cf . the Annals of Mathe-

matics, ser. 2, vol. 4 (1902-03), p. 62.
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The case of implicit functions, treated by Lagrange's multi-

pliers, is given in Goursat-Hedrick, Mathematical Analysis,

vol. 1, § 61.

EXERCISES

1. Show that the surface

z = xy

has neither a maximum nor a minimum at the origin.

2. Test the function

x? + 3^ _ 2xy -f 5y
2 - 4^

for maxima and minima.

3. Determine the maxima and minima of the surface

x? + 2y
2 + 3 z

2 - 2xy - 2yz = 2.



CHAPTER XVII

ENVELOPES

1. Envelope of a Family of Curves. Consider a family of

circles, of equal radii, whose centres all lie on a right line :

(1) (x-ay + tf^l,

where the parameter a runs through all values. The lines

(2) 2/
= l and y — ~ 1

are touched by all the curves of this family.

Again, let a rod slide with one end on the

floor and the other touching a vertical wall,

the rod always remaining in the same vertical

plane. It is clear that the rod in its successive

positions is always tangent to a certain curve.

This curve, like the lines (2) in the preceding

Fig. 86 example, is called the envelope of the family of

curves.

Turning now to the general case, we see that the family of

curves

(3) f(x,y, a) =

may have one or more curves to which, as a varies, the succes-

sive members of the family are tangent. When this is so, two

curves of the family corresponding to values of a differing but

slightly from each other :

(4) fix, y, «
)
= 0, fix, y, a + A«) = 0,

344
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will usually intersect near the points of contact of these curves

with the envelope, as is illustrated in the above examples. So

if we determine the limiting position of this point P of inter-

section of the curves (4), we shall obtain a point of the enve-

lope. Now a third curve through P is the following :

(5) =f(x, y,ao + Aa) —f(x, y, «b)
= Aa/a (x9 y> Oq + 0Aa).

For, the coordinates of P satisfy the equation of this curve.

Hence, allowing Aa to approach 0, we get*

(6) /* 0,2/, 0=0.
Thus the coordinates of a point of the envelope, when one

exists, are seen to satisfy the simultaneous equations :

f /(®>y>a)=o,

Conversely, the locus (7) will be tangent to each curve (3)

provided that df/dx, df/dy do not both vanish along this locus.

To prove this, observe that the slope of a curve of the family

(3) is given by the equation :

(8)
^+^ = .

dx dy dx

In order to find the slope of the envelope, we may think of

equations (7) as solved for x and y :

(9) x=<j>(a), 2/
= <K«).

* The reasoning, in detail, is as follows. We assume that the coordi-

nates x, y of the point P vary continuously as Aa approaches 0, and

approach a definite limiting point. The coordinates of P satisfy (5) and

hence

fa (x, y, ao + OAa) = 0.

Finally, we assume fa (x, y, a) to be ^continuous function of x, y, and a,

and so

Urn fa (x, y, uo + db>a) =fa (x, y, «o) = 0.
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Then the slope of the envelope is

dy = ^'(a)
i

dx <j>\a)

Now take the total differential of / (x, y, a) :

df=
d
J-dx +

d
4-dy +

d
if-da.

ox cy Ca

If x and y satisfy (9), then df=0, dx =
<f>' (a) da, dy= if/' (a) daf

and -^= 0. Hence
da

(10) 0= dl dx + lf
dy

ox cy
or

dx cy <f>'(a)

0.

Thns (10) gives the same slope that (8) does, and the envelope
is tangent to the family.

Example 1. Applying the formulas (7) to the family of circles

(1) we get :

|£
== _2(.t-«) = 0.

ca

The elimination of a between this equation and (1) gives

f or 2/
= l and y

— — l.

Example 2. To find the envelope of the family of ellipses

whose axes coincide and whose areas are constant.

Here,

Fig. 87

(a)

(P)

"1 "t" Ti
~"

>

a2 6
2

Trab = k.

It is more convenient to retain both param-

eters, rather than to eliminate, but we must

be careful to remember that only one is inde-

pendent. If we choose a as that one, a = a, and differentiate

with respect to a, we have ;
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a3 b3 da \ da)
and hence

Between (a), (6), and (c) we can eliminate a and 6 and thus get

a single equation in # and y, which will be the equation of the

envelope. To do this, solve (a) and (c) for a2 and 62
,
thus

getting
a2 =

2aj*, &2= 22/
2

,

and then substitute the values of a and 6 from these equations

in (6):
± 2-rrXy = K,

a pair of equilateral hyperbolas.

The equations
x= ± a^/2, y = ± bV2,

combined with (b), give the coordinates of the points of the

envelope in which the particular ellipse corresponding to that

pair of values of a and b is tangent to it. This remark applies

generally whenever the coordinates x and y of a point of the

envelope are obtained as functions of a.

EXERCISES

In each of the following questions draw a rough figure to indi-

cate the curves of the family and the envelope.

1. Find the envelope of the family of parabolas :

y
2 = Sax — a3

.

2. Circles are drawn on the double ordinates of a pa-

rabola as diameters. Show that their envelope is an equal

parabola.

3. Show that the envelope of all ellipses having coincident

axes, the straight line joining the extremities of the axes being
of constant length, is a square.
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4. Find the envelope of straight lines drawn perpendicular

to the normals of a parabola at the points where they cut the

axis.

5. Show that the envelope of the lines in the second exam-

ple of § 1, p. 344, is an arc of a four-cusped hypocycloid.

6. The legs of a variable right triangle lie along two fixed

lines. If the area of the triangle remains constant, find the

envelope of the hypothenuse.

7. Find the envelope of a circle which is always tangent to

the axis of x and always has its centre on the parabola y = x2
.

8. What is the envelope of all the chords of a circle which

are of a given length ?

9. Find the envelope of the family of circles which pass

through the origin and have their centres on the hyperbola

xy = l.

10. A straight line moves in such a way that the sum of

its intercepts on two rectangular axes is constant. Find its

envelope. Draw an accurate figure.

11. The streams of water in a fountain issue from the

nozzle, which is small, in all directions, but with the same

velocity, vQ . Show that the form of the fountain is approxi-

mately a paraboloid of revolution.

2. Envelope of Tangents and Normals. Any curve may be

regarded as the envelope of its tangents. Thus the equation

of the tangent to the parabola

(ii)

at the point (x , y ) is

y-yo="-(?-x )

or

(12)

y
2 — 2ma
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Hence the envelope of the lines (12), where y is regarded as a

parameter, must be the parabola (11), and the student can

readily assure himself that this is the case.

The evolute of a curve was defined as the locus of the

centres of curvature, and it was shown that the normal to

the curve is tangent to the evolute. Hence the evolute is the

envelope of the normals, and thus we have a new method for

determining the evolute.

For example, the equation of the normal to the parabola

at the point (x , y ) is

x-x + 2x (y-y )=0
or x-\-2x y — x — 2# 3 = 0,

and we get at once as the envelope of this family of lines :

y = SxQ
2 + J, x = — 4a? 3

,

or &-«?-«*-

EXERCISES

1. Obtain the equation of the evolute of the ellipse :

x == a cos <£, y = b sin
<f>,

as the envelope of its normals.

2. Obtain the evolute of the cycloid :

x= a(0 — sin 0), y = a(l — cos0).

3. Obtain the coordinates (a^, ?/i)
of any point on the en-

velope of the normals to the curve y =f(x):

v— a*,+f («b) (y
— y )

= 0,

and show that the result agrees with the formulas of Chap.

VII, § 3.



350 CALCULUS

Fig. 88

3. Caustics. When rays of light that are nearly parallel

fall on the concave side of a napkin ring or a water glass, a

portion of the table cloth is illuminated. Let us

determine the equation of the boundary.

Suppose we have a narrow semicircular band,
on the polished concave side of which a bundle

of parallel rays fall. The rays are reflected at the

same angle with the normal as the angle of inci-

dence, and so we wish to find the envelope of the reflected rays.

Take the radius of the band as 1. Then the equa-
tion of the reflected ray is

(13) y - sin = tan 2 (x
- cos 0).

To get the envelope of the family, we differentiate

with respect to :

— cos = 2sec22 (x
— cos 0) + tan 2 sin 0,

2<c == 2cos — cos220 cos — cos 20 sin 20 sin

= 2cos - cos 20 (cos 20 cos + sin 20 sin 0)

= 2cos — cos 20 cos 0,

or : x = i(3cos - 2cos3

0).

Substituting this value of x in (13) we get :

y = sin3
0.

But these are the equations of an epicycloid of two cusps, i.e.

the one in which a = 2 b, b — J, p. 150, (9).

Fig. 89

EXERCISE

If the band is a complete circle and a point-source of light

is situated on the circumference, draw accurately a figure

showing the reflected rays and prove that their envelope is a

cardioid.



CHAPTER XVIII

DOUBLE INTEGRALS

1. Volume of Any Solid. In Chap. IX we have computed
the volumes of a number of solids more or less irregular in

shape. It is not difficult to generalize and obtain a method
for computing the volume of any solid whatsoever by integra-

tion. A suggestive example is given by a problem of naval

architecture,— that of determining the displacement of a ship.

Here, the plans of the ship, drawn on paper to scale, furnish

the areas of cross-sections which are near enough together so

that a good approximation for the volume of the ship between

two successive cross-sections may be obtained by considering
this part of the ship as a cylinder whose base is one of the

cross-sections and whose altitude is the distance to the next

one.*

Let us now conceive a solid of arbitrary shape. Assume a

line in space, whose direction is taken at pleasure, and cut the

solid by a variable plane perpendicular to this line
;
see Fig. 90.

Denote the distance of an arbitrary point on the line from a

fixed point of the line by x. The area of the cross-section made

by the above plane is a function of x, which we will denote by
A (x), or simply A. Let the minimum x corresponding to one

of the above planes be x = a, the maximum, x = b. Divide the

interval from a to b into n equal parts by the points

* It is possible to approximate to the volume still better by means of

more elaborate formulas (Simpson's Rule), but this simplest approxima-
tion is more suggestive for our present purposes.

351
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x = a, xlf •••, xn = b and pass planes through these points

perpendicular to the line. Then the volume in question is

given approximately by the sum :

A (xq) Ax -j- A .(ajj)
Ax -\ \-A(xn _ 1) Ax,

and the limit of this sum, when n becomes infinite, is exactly

the volume sought :

a)

b

= CAte.

Fig. 90

Example. To compute the vol-

ume of the ellipsoid :

a2 ^b2
c
2

'

Here, the cross-section made by
an arbitrary plane x = x' is the ellipse

b2
c
2 a2 '

ir +

Its semiaxes have respectively the lengths

^F5

= i.

•v-^
and hence its area is, the accents being suppressed :

The volume Fis, therefore,

—a

, / X3 \\ a

\ 3aV|_
*
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2. Two Expressions for the Volume under a Surface
;
First

Method. We turn now to the problem of computing the

volume under any surface,

(2) *=/0, 2/)-

Fig. 91

Given, namely, a region S of the

(x, y)-plane and a function f(x, y),

single valued and continuous

throughout S
;

for the present
we will assume, furthermore, that

/ is positive. Erect a cylindrical

column on S as base and consider

the volume of the part of this column capped by the surface

(2). It is this volume Fthat we wish to compute.
Our first method is that of § 1. We cut

the solid by a plane x = x' and compute the

area A of this cross-section. Now A is

merely the area under the curve

y=r,
Fig.

V=T
92

z = <f>(y) =f(x', y) (x'} constant)

between the ordinates corresponding to

the abscissas y=Y and y = Yx . Hence

-/f(x', y) dy.

Dropping the accent, which has now
served its purpose, we have :

(3)
A(x)=Jf(x,y)dy,

where we must remember that x is constant, y being the vari-

able of integration, and that F and Yx are functions of x.

It remains only to integrate A with respect to x between
the limits x = a and x = b, where a is the smallest abscissa
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that any point in S has, and b is the largest. We thus

obtain : h

-J
A (x) dx.

This last integral is commonly written in either of the forms :
*

b Yi b Yt

I dx I f(x, y) dy or / / f(x, y) dy dx.

a to a Yq

It is called the iterated integral of f(x, y) (not the double

integral; the latter will be explained later), since it is the

result of two ordinary integrations performed in succession.

Instead of integrating first with regard to y and then with

regard to x, we might have reversed the order, integrating first

with regard to x. We should thus obtain the formula :

X
t

V=
fdyjf(x,

y)dx.

For example, let us compute the volume cut off from the

paraboloid :

^ x2
y
2

z = l 2-

4 9

by the (x, 2/)-plane. Since the surface is obviously symmetric
with respect both to the (x, z) and the (y, z) planes, it is suffi-

cient to compute the part of the volume that lies in the first

octant, and then multiply the result by 4. To get A we have

* Another form sometimes employed is to be avoided, namely :

b Yt

§{[f(x,y)dxdy.

viationThe second form given in the text is to be thought of as an abbre

for
b r,

J|j/(z, 2/)#}<fc.
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to hold x fast, i.e. to cut the solid by the plane x = x', and

compute the area of the section. This is the area under the

curve

the limits of integration being determined as follows. The

(x, y) plane, whose equation is z = 0, cuts the surface in .the

ellipse

= 1
x2

y
2

and the region S is the part of this

ellipse lying in the first quadrant.
The segment of the line x = x' which

lies within S has for its minimum
ordinate F = 0, for its maximum Ylf

where
Fig. 94

~'2 XT2
= 1- — -4l Yi=4V4- x'

2
.

Thus

^/(1-t-!M1

-t>-!!>{'-t"--S}>-.

= i(4-z'
2

)V4-o;'
2
.

Hence, dropping the accent, we get :

A= $(±-x
2

)i

Finally, integrating A from the smallest x in S to the

largest, we have (see Tables, No. 137) :

2

1 C(±-x2

)§dx =

iL(4-^ + 6«V4=^+24sin-1

|~|

2

= ^,
16|_ 2J 4

and so the total volume is 37r = 9.42.
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EXERCISES

1. A round hole of radius unity is bored through the solid

just considered, the axis of the hole being the axis of z. Find
the volume removed.

2. Compute the volume of a cylindrical column standing on

the area common to the two parabolas

x = y
2
, y = x>

as base and cut off by the surface

z = 12 + y-x2
.

3. Work each of the foregoing examples, integrating first

with regard to x and then with regard to y.

3. Continuation. Second Method. Another way of finding
the above volume is as follows. Divide the region S up into

small pieces, called elements of area, of arbitrary shape, and
denote the area of any one of them by b.Sk . Let (xk , yk )

be an

arbitrary point of the kth. element. Construct a cylinder
on this element as base and of height f(xk, yk) ;

see Fig. 102.

The volume of this column is

Consider now the totality of such columns. They form a

solid whose volume,

(4) 2/(*»y,)AS„

differs only slightly from the volume T^we wish to compute.
As n grows larger and larger, the maximum diameter of each

of the elementary areas approaching as its limit, it is clear

that the limit of (4) is V:

(5) V=limV f(xk,yk)ASk .

This is the second expression for the volume we set out to

obtain.
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Z

I

Fig. 95

We remark that it is not important that the elementary-

areas just fill out the region S. Thus we might divide the

plane by parallels to the coordinate

axes into rectangles whose sides are

of length Ax and Ay, and then take

as the elementary areas (a) all the

rectangles that lie wholly within S
j

or (6) all those just mentioned and

in addition such as contain at least

one point of the boundary of S in

their interior or on their boundary ;
or (c) any set intermediate

between (a) and (&). In each case the sum (4) would clearly

have as its limit the volume V.

4. The Fundamental Theorem of the Integral Calculus. Just

as in Chap. IX, § 2, we equated the two expressions for the

area under a curve to each other and thus obtained an analyti-

cal theorem regarding limits, so here we equate the two expres-

sions just found for the volume under a surface and thereby
deduce a corresponding theorem for functions of two inde-

pendent variables.

Fundamental Theorem of the Integral Calculus. Let

f(x, y) be a continuous function of x and y throughout a region S

of the (x, y)-plane. Divide this region up into n pieces of area

ASq, ASu •••, A$n_! and form the sum:

f(x„ y ) ASo+ZO-!, ft) A£i+ '•• +/<X-i, *-4)AflU,

where (xk , yk ) is any point of the k-th elementary area. If n now

be allowed to increase without limit, the maximum diameter of

each of the elements of area approaching as its limit, this sum

will approach a limit which is given by the formula :

by" & x"

J
dx

f f(x, y) dy or / dy
J
f (x, y) dx,

where the limits of s Uegration are determined as described in § 2.
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Expressed as a formula the theorem is as follows :

b y" p x"

(6) Km ^ f(x k , yk ) ±Sk =fdxff(x, y)dy =
Jdy f*f(x,

y) dx.

*= ay' ax'
Definition of the Double Integral. The limit that

stands in the first member of (6) is called the double integral of

the function / taken over the region S, and is written as

follows :

(7) lim ^ f(xk , yk )ASk

=JffdS.

It is independent of the particular system of coordinates used,

and applies equally well, whether cartesian or polar coordinates

are employed. The iterated integral, on the other hand, has

been obtained at present only for cartesian coordinates.

The double integral is also written in the form :

I jfdxdy or / IfrdrdO,

the latter form referring to polar coordinates (cf. § 7).

The Fundamental Theorem can now be written as follows :

& y"

(6') JJfdS=JdxJf(x, y)dy,

with a similar formula when the first integration is performed
with respect to x.

We have hitherto assumed that the boundary of S is cut by
a parallel to the axis of y at most in two

points. If this is not the case, there is

still no difficulty in the definition of the

double integral. For the purpose of

evaluating the same, however, by means

Fia. 96 of the iterated integral, S may be di-

vided up into regions, for each of which

the above is true (see Fig. 96), and then, inasmuch as the double

integral extended over all S is evidently equal to the sum of
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the double integrals of the same function extended over the

different divisions of S, it is sufficient to compute the double

integral for each of these divisions by means of (6).

We have further assumed that the function / is positive in

JS. If it were negative, the same reasoning would still hold,

only both expressions for V would yield

the negative value of the volume. They
would, therefore, still be equal to each

other. If, finally, / changes sign in S,

divide S up into regions in which S is
Fig. 97

positive and those in which it is nega-

tive. The Fundamental Theorem holds for each region by
itself, and so it holds for the combined region.

EXERCISE

Show that the abscissa of the centre of gravity of a homo-

geneous plane area is given by the formula :

IJxdS

5. Moments of Inertia. Consider the moment of inertia of

a plane lamina of variable density p about a point in its

plane. In accordance with Chap. IX,
'

§ 14, we divide the

lamina up into small pieces, of area ASk and of mass AMk ,
and

form the sum:

*=o

where rk is the distance of a point (xk , yk) of the fcth elemen-

tary area from 0. We can write the mass AMk as the product
of the corresponding area &Sk by the average density of this

n-1

Hence I— lim x p*?*
2 A£

fc
.
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If the first factor, pki in each term is the value of p in the par-

ticular point (xk , yk),
then the limit of this sum is by defini-

tion the double integral

If, however, this is not the case, we need only to apply Du-

hamel's Theorem, setting

where pk is the value of p in (xk , yk).

Then lim& = l,

and hence in all cases

(8) I=JJPT*dS.

S

Example 1. The density of a "rectangle is proportional to

the square of the distance from one corner. Find its moment
of inertia about that corner.

Here, p = Xr2
,

and hence I=X I I r4dS;

s
a b

J J7
AdS=

fdx l(x
4 + 2x2

y
2 + if)dy = la 5 b + %a

3 b3 + iab
5

;

I=^-(9a4 + 10a2
b
2 + 9b*).

4o

The mass of any lamina is easily seen to be

(9) M=ffPdS.

s

In the present case, therefore,
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Hence Ja8 ^rf + lOaW+W
15(a

2 + 62

)

It is sometimes more convenient to use the formulation of

the moment of inertia as a double integral, even when the den-

sity of the lamina is constant, e.g. :

Example 2. To find the moment of inertia of a triangular
lamina of constant density about a vertex.

Here,

'"

S

, f fr*dS; ^-H x

J J 01 x = h
3

h y
» Fig. 98

C Cr*dS = fdm /V + y
2

) dy,

S y'

<f wm I'm, y" = l"x.

h* Mh 2

.'. I= P il"-V + \(r*-V z

)]j
=
^(2> +

V 2 + VV' +1"*).

EXERCISES

1. Determine by double integration the moment of inertia of

a right triangle of constant density about the vertex of the

right angle. A M(a? + b2
)

6

2. Compute the moment of inertia about the focus of the

segment of a parabola cut off by the latus rectum.

3. Show that the moment of inertia of a lamina about the

axis of y is „ „

1=
J

I p x
2 dS.

4. Find the moment of inertia about the axis of y of a

uniform lamina bounded by the parabola y
2 = 4ax, the line

x + y =Sa, and the axis of x. Work the problem both ways,

integrating first with regard to x, then with regard to y\ and

then in the opposite order. . » 46pa
4
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6. Theorems of Pappus. Theorem I. If a closed curve rotate

about an external axis lying in its plane, the volume of the ring

thus generated is the same as that of a cylinder whose base is the

region S enclosed by the curve and whose altitude is the distance

through which the centre of gravity of S has travelled:

(10) . V=27rh-A,

where h denotes the distance of the centre of gravity of S from
the axis, and A, the area of S.

We will confine ourselves to the case that the boundary
curve is met at most in two points by a parallel to the axis

of rotation, which we will take as the axis of ordinates.

Divide the area into strips of breadth Ax by parallels to the

axis of y, and approximate to the volume generated by the fcth

strip by means of the volume generated by a rectangle with

the left-hand boundary of this strip for one of its sides and

with base Ax* This latter volume can be computed at once

as the difference between two cylinders of revolution, and is

*4+ i(y'!e-y
f

k)
- WW-y'k) =27rxM-yd^ +»(j£-i©^%

y'z=<f>(x) being the equation of the lower boundary, and

y" =f(x) that of the upper one. Hence

F=limV \27rxk (y:-y'k)Ax + 'n'(y:-y'k)Ax
i

l

This last expression can be simplified by DuhameFs Theorem,
and thus

n-l
h

F=lim y\2 7rxk(yZ-yk)Ax = 2TT fx(y"-y')dx.
a

Recalling the result of Ex. 4, p. 174, we see that the value

of this integral is xA = hA, and this completes the proof.

If the curve rotates only through an angle © instead of

completely round the axis, we have merely to replace 2ir by ©.

* The student should draw the requisite figure.
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Finally, the form of the proof is somewhat simplified by-

means of double integrals, the above restriction on the boundary,
as well as the use of Duhamel's Theorem, being then unneces-

sary. We have at once :

C CxdS.

F=lim^27rxA^=27r
C CxdS, ^ = ~§

~A

Theorem II. If a plane curve, closed or not closed, rotate

about an axis not cutting it and lying in its plane, the area of the

surface thus generated is the same as that part of the cylindrical

surface having the given curve as generatrix, which lies between

two parallel planes whose distance apart is the distance traversed

by the centre of gravity of the given curve :

S = 2tt7i'1 or ®h-L

The proof is similar to that of the first theorem, and is left

as an exercise for the student.

7. Polar Coordinates. We have computed the volume V
under the surface z=f(x, y) by iterated integration, using

cartesian coordinates. Let us now compute the same volume,

using polar coordinates. To do this we ^
divide the solid up into thin wedge-

shaped slabs (the slab not extending in

general clear to the edge of the wedge)

by means of n equally spaced planes

through the axis of z : 6 = = a, Bx , •••,

n = /?,
and approximate to the volume

of the A;-th slab, AVk ,
as follows. Let Ak be the area of the

section of the plane ==
k with the solid, and let this section

rotate about the axis of z through the angle A0. Then, by the

first theorem of Pappus, § 6, the volume generated is A0 • hkAk ,

and the sum of such volumes,

k=0
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is a good approximation for V. In fact, when we visualize the

totality of these pieces, we see that the volume of the solid

thus obtained approaches Fas its limit, when 71 = 00. Hence

8

(11) V= Hm V hkAk A0= ChAdB.— JTo s
7

Furthermore, let us consider the product hA corresponding
to the cross-section made by an arbitrary plane 6 = 6'. Writing
the equation of the surface in the form

z=f(;x,y) = F(r,B)

and recalling the general formula for the centre of gravity :

b

I xydx

we have here to set

x—r, x — h, y = z = F (r, &), a = r'
}

b = r",

and we thus obtain :

r"

hA=
frF(r, 6') dr.

r'

Substituting this last expression in (11), we get the final

formula :

i

F= d6 rF(r, 6)dr,

and hence the

Theorem :

6 r"

(12) C Cf(t, 6)dS= jd$ frF(r, 6) dr.
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The first integration is performed on

the supposition that 6 is held fast and

that r varies from the smallest value

r', which it has in JS corresponding to

the given value of to the largest

value, r". Fig. 100

TJie Inverse Order of Integration. If instead of using the

planes $ = , $lt --,0n we had divided the solid up by the cylin-

ders r-.

result :

r« = a, r.
*

n= b, we should have been led to the

U V

(13) f fF(r,8)dS= fdr frF(r, 0)d$.

\&*~-._ /

Here, the first integration is performed
on the supposition that r is held fast

and that varies from the smallest

value, $', which it has in S correspond-

ing to the given value of r to the largest

value, 0".
Fig. 101

'

Example. To find the moment of inertia of a uniform circu-

lar disc about its centre. Here

2ir a

= P f fr'dS^p fdO fr
3 dr = P

-

and hence /= Ma2

/2.

This problem we have solved before by single integration.

The solution by double integration is simpler in form, though

in substance the two solutions are closely related.

EXERCISES

1. The density of a circular disc is proportional to the dis-

tance from the centre. Find the radius of gyration of the disc

about its centre. Ans. aV|.
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2. Determine the moment of inertia about the focus of the

segment of the parabola :

r= w
1 — cos

bounded by the latus rectum.

3. The density of a square lamina is proportional to the

distance from one corner. Find its moment of inertia about

this corner.

4. Find the moment of inertia about the origin of the part

of the first quadrant bounded by two successive coils of the

equiangular spiral
r — e9

,

the inner boundary going through the point 6 = 0, r= 1.

5. Find the moment of inertia of the lemniscate :

r2 = a2 cos 2 6,

about the point r = 0.

6. Show that the abscissa of the centre or* gravity of any

plane area is given by the formula:

SJ>pxdS

M
7. Find the centre of gravity of the lemniscate of question 5.

8. Show that the area of any plane region S is expressed by
the integrals :

A= I fdxdy= f
IrdrdB.

s s

9. Find the area bounded by the curve

= sin r

and the portion of the axis of x between the origin and the

point x= 7r. Ans. it.
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8. Areas of Surfaces. We have determined the area under

a plane curve and the lateral area of a surface of revolution by
means of simple integrals. The general problem of finding the

area of any curved surface is solved by double integration.

Let the equation of the surface be

***/(*, y)

and let the projection on the x, y plane of the part @ of this

surface whose area A is to be computed, be the region S.

Divide 8 up into elementary areas and erect on the perimeter
of each as generatrix a cylindrical surface. By means of these

cylinders the surface @ is divided into elementary pieces, of area

&Ak , (k = 0, 1, •••, Ti — 1), and we next consider how we may
approximate to these partial areas. Evidently this may be

done by constructing the tangent plane at a point (xk , yk ,
zk) of

the Avfch elementary area and computing the area cut out of this

plane by the cylinder in question. Now the orthogonal cross-

section of this cylinder is of area b£ki and hence the oblique

section will have the area

A/^secy,,

where yk is the angle between the

planes, or between their normals.

The desired approximation is

thus seen to be

n— i

^ &Sk sec yk ,

Fig. 102

and consequently A is equal to the limit of this sum, or

* It is a fundamental principle of elementary geometry to refer all geo-

metrical truth back directly to the definitions and axioms. What are the

axioms on which this formula depends ? The answer is : The formula

itself is an axiom. The justification for this axiom is the same as for any

other physical law, namely, that the physical science, here geometry, built

on it is in accord with experience.
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(14) A = I
j
sec y dS.

The angle y is the angle between the normal to the surface

and the axis of z. Hence by Chap. XV, § 1 :

(15) dx2
dy

2

If the equation of the surface is written in the form

F(x,y,z)= 0,

we have

(16) sec ^IH!)*+©
dF
cz

Example. Two equal cylinders of revolution are tangent to

each other externally along a diameter of a sphere, whose radius

is double that of the cylinders. Find the area of the surface

of the sphere interior to the cylinders.

It is sufficient to compute the area in the first octant and

multiply the result by 8. We have to extend the integral (14)

over the region S indicated in Fig. 104. Here,

x2
-+- y

2 + z
2 — a2

,

and by (16)

sec v = - =
Va2 — r2

r2 = x2 + y
2
.

Fig. 103

Since the integrand, sec y, depends in

£
* a simple way on r, it will probably be

well to use polar coordinates in the

iterated integral. We have, then:

M-I/1-'--
/-/^S
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J

a cos 9
* ardr = — aVa2 — r2

^/cf — r2

a cos &

= a2

(l-sin0),

2

'• I ^ = a"

T(l - sin 0) d£ = a2

(|
-1V

yl = 4 7ra
2 -8a2

.
Fia. 104

Objection may be raised to the foregoing solution on the

ground that the integrand, sec y = a/Va
2 — r2

,
does not remain

finite throughout S, but becomes infinite at the point = 0,

r = a. We may avoid this difficulty by computing first only so

much of the area as lies over the angle a ;<
<i

-rr/2, where the

positive quantity a is chosen arbitrarily smalL The value of

this area is

«./(!-
sin0)<20 = a2 a — cos>

and its limit, when a approaches 0, is

EXERCISES

1. A cylinder is constructed on a single loop of the curve

r = a cos n6 as generatrix, its elements being perpendicular to

the plane of this curve. Determine the area of the portion of

the surface of the sphere a? + y
2 + z

2= 2 az which the cylinder

intercepts. j 2 (tt
—

2) a
2

2. Compute the moment of inertia about the axis of z of the

surface whose area was determined above in the text.

3. A square hole is cut through a sphere, the axis of the hole

2b
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coinciding with a diameter of the sphere. Find the area of the

.surface removed. . Aa , . _* b Q 2
. . b2

Ans. loaosm l— — 8 or sin 1— -.

Va2 -62 a - &2

4. Determine the area of the surface

z = xy

included within the cylinder

X2
-f- y

2 = a2
.

5. M cylindrical surface is erected on the curve r = as

generatrix, the elements being perpendicular to the plane of

this curv«. Find the area of the portion of the surface

z — xy

which is bounded by the y, z plane and so much of the cylindri-

cal surface as corresponds to ^ 6 <^ tt/2.

9. Cylindrical Surfaces. If the surface @ is a cylinder, the

area can be expressed explicitly as a simple integral. Let the

elements of the cylinder be parallel to the axis of y. The equa-

tion of the surface then becomes :

Hence A =
f f secydS = I dx I VI +f(x)

2
dy,

S ay 1

b

(i7) a = fvr+TW (y"
-

y') dx -

EXERCISES

1. Two cylinders of revolution, of equal radii, intersect, their

axes cutting each other at right angles. Show that the total

area of the surface of the solid included within these cylinders

is 16 a2
.

2. Obtain formula (17) directly, without the use of double

integrals.
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3. Write out formula (17) when the elements of the cylinder

are perpendicular (a) to the x, y plane ; (b) to the y, z plane.

4. Show that the lateral area of that part of either of the

cylinders discussed in the example of § 8 which is contained

In the sphere is 4 a2
.

5. The area of a region S of the x, y plane may be written

in the form :

A= f CdS = f(y"-y')dx = f(x"-x')dy.
S a a

By means of the last formula compute the area of the region

common to the circle and the parabola :

ar
J + 2/

2 = 16a2

, 2/

2 = 6 ax.

6. Deduce from formula (14) the formula of Chap. IX, § 8,

for the area of a surface of revolution :

A = 2tt Cy^/l+f'ixydx.

10. Analytical Proof of the Fundamental Theorem. Carte-

sian Coordinates. In the sum :

(is) SJ/to.y-)^*,
*=0

whose limit is the double integral

(19) fffd8>

:g:

xt xin
Fig. 105

we may choose as elementary areas rectangles with sides Ax,

Ay, thus making ASk = AxAy, and then add all those terms

together which correspond to rectangles lying in a column

parallel to the axis of y. This partial sum can be represented

as follows :
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where we have assigned new indices, i and j, to the coordinates

of the point (xk} yk), and where furthermore we have chosen

the points (xk , yk)
of this column so that they all have the

same abscissa, x( .

If, now, holding x
i
and Ax fast, we allow q to increase with-

out limit, Ay approaching as its limit, we have

n
H

(20) Ax lim§ f(xt> y3) Ay = Ax Cf(xi9 y)dy.
?=oo i=b J,

Next, we add all the limits of these columns together:

-i ^

^Ax J
f(xi ,y)dy,

y'i

and allow p to increase without limit, Aaj approaching 0. This

gives
y'i b >/"

lim^
Ax

j f(xi,y)dy= f
dx

jf(x,y)dy,Pmm i= °

y'i

a y
'

i.e. the iterated integral of the Fundamental Theorem.

This method of deduction is less rigorous than the former

one, for we have not proven that we get the same result when

we take the limit by columns and then take the limit of the

sum of the columns, as when we allow all the ASk s to approach

simultaneously in the manner prescribed in the definition of

the double integral.* It is nevertheless useful as giving us

* For a complete analytical treatment of the subject of this paragraph

along the lines here indicated, which in point of elegance and rigor leaves

nothing to be desired, see Goursat-Hedrick, Mathematical Analysis,

Chap. VI.
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additional insight into the structure of the iterated integral,

for it enables us to think of the first integration as correspond-

ing to a summation of the elements in (18) by columns, and of

^che second integration as corresponding to the summation of
these columns. Moreover, when we come to polar coordinates

in the next paragraph, it helps to explain and make evident

the limits of integration.

11. Continuation; Polar Coordinates. Let the region S
be divided up into elementary areas by the circles r = r

if

r»+i
—

?*»
= Ar, and the straight lines =

j} 6j+1
—

i
= A0. Then

ASk
= rkkr A0 + \ Ar

2
A0,

and hence, in taking the limit of the sum (18), &Sk may, by
DuhamePs Theorem, be replaced by r*ArA0. Writing

f(x,y) = F(r,0)
we have, therefore,

f ffdS
= lim V F(rk , k )

rk Ar Ad.

In order to evaluate this latter limit, we may replace (rk ,
6k)

by (rt , Oj) and, holding 6
i fast, add together those terms that

correspond to elementary areas lying in the angle between the

rays 9 =0j and =
J+1 ,

thus getting :

AO^Ffa, Oj)r{ Ar.

The limit of this sum, as p = oo, is

Ad I F(r, 6j)rdr.

5

Next, add all the limits thus obtained for the successive

elementary angles together and take the limit of this sum.

We thus get

Fig. 106
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lim ^ AS Cf(v, 6j)rdr= CdO /V(r, 0)rdr,

i.e. the first iterated integral, (12), of § 7.

If on the other hand we hold r
t fast and add the terms

that correspond to elementary areas lying in the circular ring
bounded by the radii r — r< and r = ri+1) we get

and the limit of this sum, when q = oo, is

Ar /V(r 0) r<d0 = r{ Ar |F(f 0) d0.

Fig. 107
'

e
'

t e '.

Adding all these latter limits together and taking the limit

of this sum, we have :

Oi b 6"

lim]T r
t
-Ar

f F(r{ , 0)d6= f
rdr

f F(r, 0)d$i

P ~°° i=0
e'i

« r

t.e. the second iterated integral, (13), of § 7.

12. Surface Integrals. The extension of the conception of

the double integral from a plane region JS to a curved surface

@ is immediate. Let a function / be given, defined at each

point of @, and let it be continuous over @. Let @ be divided

up into a large number of small areas,
—

elementary areas,—
A®k ,

and let fk be the value of / at an arbitrary point of A@A .

Form the sum :

X /**«*•
*=

The limit of this sum when n grows larger and larger is the

surface integral off over the region © :

\im^f
k A®k

=JJfd®.



DOUBLE INTEGRALS 375

EXERCISE

Show that the volume of a closed surface is given by the

surface integral :

V=-
f

I r cos (j>d<5,

where r denotes the distance of a variable point P of the sur-

face from a fixed point of space and
<f>

is the angle that the

outer normal of the surface at P makes with the line OP
produced.

EXERCISES

1. Find the volume cut out of the first octant by the

cylinders
z = 1 — x2

,
x = l — y

2
.

2. Compute the value of the integral :

ex2+**'dS,

Ans. |f.

//•
s

extended over the interior of the circle

x* + y
2 = l. Ans. 5.40.

3. Evaluate

//'(x*-3ay)dS,

where S is a square with its vertices on the coordinate axes,

the length of its diagonal being 2a. Ans. \a
A
.

4. Express as an iterated integral in polar coordinates the

double integral
' r

fdS,>

extended over a right triangle having an acute angle in the

pole. Give both orders of integration.
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5. Express the iterated integral

2 2a cos 9

fdd ifrdr

~
2

as a double integral, and state over what region the latter is

extended.

6. The same for
n
2 b esc 9

(a) jdoCfrdr;

2a V^ay

(P) idy
jfdx.

7. Change the order of integration in the following in-

tegrals :

i i

(a) jdx Jf(x,y)dy,

a y+a

(b) Idy
jf(x,y)dx.

8. The density of a square lamina is proportional io the

distance from one corner. Determine the mass of the lamina.

Arts. .765 Aa3
.

9. Find the centre of gravity of the lamina in the pre-

ceding question. A^ -_-_ ar7V2-2+31og(l+_V2)l
8[V2 + log(l + V2)]

10. Two circles are tangent to each other internally. De-

termine the moment of inertia of the region between them

about the point of tangency.
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li. Find the attraction of a uniform circular diso on a

particle situated in a line perpendicular to the plane of the

disc at its centre.

12. Solve the same problem for a rectangular disc.

Ans. K^tan-i ab
.

13. Determine the attraction of a uniform rectangle on an

exterior particle situated in a parallel to two of its sides, pass-

ing through its centre.

Ans. K^loglab
'h±a t

b + Vjli - a)
2 + b2

h-a & + V(7i + a)
2 +b2

-

14. The intensity of light issuing from a point source is

inversely proportional to the square of the distance from the

source. Formulate as an integral the total illumination of a

plane region by an arc light exterior to the plane.

15. Compute the illumination in the foregoing question on

the interior of the curve
r2 = l-0\

the light being situated in the perpendicular to the plane of

the curve at r= 0. Ans. 2\(l — h cot-1 h).

16. One loop of the curve

r^ a3 cos 30

is immersed in a liquid, the pole being at the surface and the

initial line vertical and directed downward. Find the pressure

on the surface. * wa3V3
8

'

17. One loop of the lemniscate

r2 = a2cos20

is immersed as the loop of the curve in the preceding question.

Find the centre of pressure.

Ans. Distance below the surface = a V2
( h -V
\37r 4y
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x18. Formulate the volume of a solid of revolution as a

double integral.

19. The curve

cos0 = 3-3r+ r2

rotates about the initial line. Find the volume of the solid

generated. . 23x
~30"

20. Find the volume cut from a circular cylinder whose axis

is parallel to the axis of z
9 by the x, y plane and the surface

xy an az.

Assume that the cylinder does not cut the coordinate axes.

Ans. =**£.
a

21. A cone of revolution has its vertex in the surface of a

sphere, its axis coinciding with a diameter. Find the volume

common to the two surfaces. Ans. f 7ra3 (l
— cos4

a).

22. Determine the volume of an anchor ring.

23. Determine the area of the surface of an anchor ring.

24. Find the moment of inertia of an anchor ring about its

axis -

Ans. M@£+»\

25. Find the area of that part of the surface

v
2 a* tann-

ic

which lies in the first octant below the plane z = ir/2 and

within the cylinder x2
4- y

1 — 1.

26. Obtain a formula for the centre of gravity of a curved

surface of variable density.

27. Obtain a formula for the components of the attraction

which a surface of constant or of variable density exerts on a

particle of matter not lying in the surface.
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Hence show that the force with which a homogeneous piece

of the surface of a sphere lying wholly in one hemisphere and

symmetrical with reference to the diameter perpendicular to

the base of the hemisphere attracts a particle situated at the

centre of the sphere is proportional to the projection of the

piece on the base.

28. Find the moment of inertia about the origin of the

portion of the first quadrant bounded by the curve

(x + l)(2/ + l)=4,

correct to three significant figures.

29. Find the volume of a column capped by the surface

z = xy,

the base of the column being the portion of the first quadrant
in the x, y plane which lies between two successive coils of the

logarithmic spiral :

r = ae .

Ans. ~(e^-l) (e
2

M-l).

30. Find the abscissa of the centre of gravity of the above

.column.

31. A square hole 2b on a side is bored through a cylinder
of radius a, the axis of the hole intersecting the axis of the

cylinder at right angles. Find the volume of the chips cut out.

Ans. 4 b2V a2 — ¥ -f 4 a
2b sin"1--

Of-

32. A square hole 26 on a side is bored through a sphere of

radius a, the axis of the hole going through the centre of the

sphere. Find the volume of the chips cut out.

Ans. 2-, a2 - Sa^sm-1 a -* tan-1

,

b
-1

L V2(a
2 -62

)
« Va2 -2&2J



CHAPTER XIX

TRIPLE INTEGRALS

1. Definition of the Triple Integral. Let a function of three

independent variables,/ (x,y, z), be given, continuous throughout
a region V of three dimensional space. Let this region be

divided in any manner into small pieces, of vohrYne AVk,
and

let (xkf yk ,
zk) be an arbitrary point of the ft-th piece. Form

the productf(xk , yk ,zk) AVk and add all these products together:

(1) §/(*,*, %)AF*
fcsmO

When n is made to grow larger and larger without limit,

the greatest diameter of each of the elementary volumes

approaching as its limit, the sum (1) approaches a limit,

and this limit is defined as the triple or volume integral of the

function /throughout the region V:

(2)
lim^f(x

k , yk ,
zk)AVk =JJJfdV.

It is not essential that the totality of the elementary volumes

should just fill out the region V. We might, for example,
divide space up into small rectangular parallelopipeds, the

lengths of whose edges are A#, Ay, Az, and consider such as

are interior to V, or such as have at least one point of Fin
their interior or on their boundary.
The integral is also written as follows :

380
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/ / //0> y,z)dxdydz.
V

The proof involved in the above definition, that the sum (1)

actually approaches a limit, has to be given along different

lines for triple integrals, from what was possible in the case

of double integrals. There, we were able to represent the sum

n— 1

A =

by a variable volume which obviously approached a fixed

volume as its limit. Here, we should need a four dimensional

space in which to represent geometrically the sum (1). It

is necessary, therefore, to fall back on an analytical proof.

Such a proof will be found in Goursat-Hedrick, Mathematical

Analysis, Vol. 1, Chap. VII. The proofs of this and the later

theorems of this chapter belong properly to a later stage of

analysis. The theorems themselves, however, are easily in-

telligible from their analogy with the corresponding theorems

for double integrals, and it is our purpose here to state them

and to explain their uses.

EXERCISES

1. Show that the mass of a body, of variable density p, is

PdV,

and that
f-///'

,JIIpXdV fffpXdV

Jjfav
m

I=ffPdV>

where r denotes the distance of a variable point from the axis.
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2. Formulate as a triple integral the attraction of a body-

on a particle exterior to it.

2. The Iterated Integral. In order to compute the value of

the volume integral denned in § 1 we introduce an iterated

integral The method is that of Chap. XVIII, §§ 10, 11. Let

the region V be divided up by planes parallel to the coordinate

planes into rectangular parallelopipeds whose edges are of

lengths Ax, Ay, Az, and let us take as our elements of volume

these little solids. Then AVk
= Ax Ay Az, and the sum (1)

becomes
n— 1

We will select from this sum the terms that correspond to

elements situated in a column parallel to the axis of z and add

them together, see Fig. 108 :

AxAy^f(x{,yJ9 z
{)Az9

1=0

where we have assigned new indices, i, j, and
I, to the co-

ordinates of the point (xk , yk ,
zk) and where furthermore we

have chosen the points (xk , yk ,
zk) of this column so thSt they

all lie in the line x = xi9 y = yj . If, now, still holding xt9 yj9 Ax,
and A.v fast, we allow s to increase without limit, Az approach-

ing 0, we have
z"

«—i /»

Ax Aylim Vf(xif yjf zt) Az = AxAy I /(«„ ys , z)dz,

z

where z' is the smallest ordinate of the points of V on the line

a5= a7»> y = Vj) and z" is the largest,
— we assume for simplicity

that the surface of V is met by a parallel to any one of the

coordinate axes which traverses the interior of V in two points.

Next, we add all the limits of these columns together :
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where we have set

s>
f(*,y>*)dz = Q(x,y),

and take the limit of this

sum. The region JS of the

x, y plane over which this

summation is extended con-

sists of the projections of V/

the points of V on that Fig. 108

plane, and hence the limit of this sum is the double integral

of <J> (x, y), extended over S :

b y"

lim V $ (xi > Vj) &x&y= I I <&dS = l dx I ®(x, y) dy.

S ay'
We are thus led to the final result :

Fundamental Theorem of the Integral Calculus:

w ffffdV=1ffdSff(x' y' z)dz

V 8 z'

b y" z"

=
jdx

\dy
jf(x,y,z)dz.

Another notation for the iterated integral is as follows :

f f lf(x,y,z)dzdydx.
a y' z'

Any other choice of the orders of integration is equally-

allowable.

An example or two will serve to illustrate the process.

Example. Find the moment of inertia of a tetrahedron

whose face angles at a vertex O are all right angles, about an

edge adjacent to 0.
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Take as the origin of coordinates and the three adjacent

edges as the axes. Then

/= p fff(*?
+ f)dV= pfdxfdyf(x> + y*) dz,

where the limits of integration are as follows. First, the limit

z' = and the limit z" = Z is the maximum ordinate in V cor-

responding to an arbitrary pair of values x, y ;
i.e. the ordinate

of a point in the oblique face of the

tetrahedron :

a b c

F». 109
Hen0e Z=C '

and the result of the first integration is :

a by

<$> (x, y)
= /V + f) dz = (x

2 + 2/

2

) 8

[*H y+ i

Next, this latter function must be integrated over the sur-

face S consisting of a triangle bounded by the positive axes of

x and y, and the line

a o

This double integral may be computed by iterated integration,

the limits of integration for y being y' = and

and those for x, and a. The remainder of the computation

is, therefore, as follows :
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a r z

J
dxH{ + y*)dz =

c

^(a* + b2);

M(a2 + b2
)

10

The student can verify the answer by slicing the tetrahe-

dron up by planes parallel to the x, y plane and employing the

result of Ex. 1 at the end of § 5 in Chap. XVIII.

EXERCISES

1. Find the centre of gravity of the above tetrahedron.

2. Determine the moment of inertia of a rectangular paral-

lelopiped about an axis passing through its centre and parallel

to four of its edges.

3. A square column has for its upper base a plane inclined

to the horizon at an angle of 45° and cutting off equal inter-

cepts on two opposite edges. How far is the centre of gravity

of the column from the axis ? *
a?_

3h'

3. Continuation ;
Polar Coordinates. In space there are two

systems of polar coordinates in common use, namely, spherical

coordinates and cylindrical coordinates.

Spherical Coordinates. Let P, with the cartesian coordinates

x, y, z, be any point of space. Its spherical coordinates are

defined as indicated in the figure. If we think of P as a point

of a sphere with its centre at and of radius r, then is the

longitude and
<f>

is the colatitude of P. z

We have
ic = rsin <£cos#, .

y — rsin<f> sin0,

z — r cos <£. Fig. 110

We propose the problem of computing the volume integral

(5)
|*£<|

/(**< «m **) ^Vk =jJJfdV
2c
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by means of iterated integration in spherical coordinates. For

this purpose we will divide the region Tup into elementary
volumes as follows. Construct (a) a set of spheres with as

their common centre, r = rii their radii increasing by Ar;

(b) a set of half-planes =
jf

the angle between two successive

planes being A0; and lastly (c) a set of cones <f>=<f>iy their

semi-vertical angle increasing by A<£ :
<f>l+1

—
<f>t

—
A<£. The

element of volume thus obtained is indicated in Fig. 111. The

lengths of the three edges that meet at right angles at P are

Ar, rA<f>, r sin <£A0, and hence this volume AV differs from

the volume of a rectangular parallel-

opiped with the edges just named :

(6) r2

sin<£ArA0A<£

by an infinitesimal of higher order :

AF
lim = 1.

r2 sin
<j>
Ar A0 A<£

It follows, then, from DuhamePs
Theorem that in the limit of the

sum (5) we may replace AT* by the infinitesimal (6). If we set

Fig. ill

f(x,y,z) = F(r,6,<t>),

we have
J Jj fdV= lim

2J F(r„ 6k , <f>k)rk
2 sin

<f>k Ar A0 A<£.

Can we evaluate this last limit by iterated integration ?

It is easy to see that we can. For the sum is of the type of

the sum (3), and hence the method of § 2 is applicable. Fol-

lowing that method, let us select, for example, those terms for

which 6 and <£ have a constant value, and add them together :

p-i

A0A*2JF(ro $
J> *i)tf simfcAr,

where
$j
and <£, are constant. They correspond to elementary

volumes lying in a row bounded by the planes =
8j and
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= $j+lf and by the cones
cf>
= fa and <f>

=
<f>l+1 . Now allow p to

increase without limit, Ar approaching 0. This gives, as the

limit of the above sum,

A0A<£sin<fo / r2
F(r, j} <f>t)dr,

where r '

is the distance of the nearest point of V to on the

line =
0j, <f>

=
<f>l ,

and r", that of the farthest. We assume

for simplicity that the surface of V is met by any one of the

lines :

6 = const., <f>
= const., r = const.,

<f>
= const., r — const.,

—
const.,

which traverses the interior of V, in two points.

Next, we add all the limits thus obtained together

where we have set

r'

and take the limit of this sum. If we interpret 8 and
<f>

as the

coordinates of a point on the surface of a sphere r = const,

(say, r = 1), then the region S over which the above sum is to

be extended consists of those points in which radii vectores

drawn to points of V pierce the surface of this sphere. Hence
the limit of this sum is the double integral of ^> (6, <f>),

extended

over S :

lim2j*(^,^)AdA*= f f*(6> <t>)
dS

s

/5 <t>" r"

= I dO
f
sin <f>d<t> f F(r, 6, <f>)r>dr.

We are thus led to the following result:
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:: :lf ::rf-

to#; (6) with respect

I7«r ili

JJJp*fim+drmd+
and /"/'/*--

w
* <m A

m Cd$ fd+ fr* *in*+ cos $dr = ir(^
4~

<
.

Check. When a = .4, x = J .4 ;
when a = 0, £= fa.

The student may solve the same problem, taking the axis of

symmetry as the axis of z and computing z.

ndrical Coordinates. The cylindrical

coordinates of a point are defined as in the

x accompanying figure. They are a combi-

/ nation of polar coordinates in the a, y plane
and the cartesian z.
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x = r cos $j y=r sin 0, z = z.

The element of volume is shown in Fig. 113. The lengths of

the edges adjacent to P,— they meet at right angles there,—
are : Ar, r A0, Az. Hence the volume AF of the element

differs from rAr A0 Az by an infinitesimal

of higher order, and we have :

rArA0Az °J^» t=-r>

From Duhamel's Theorem it follows,
'

"J

then, that in taking the limit of the

sum (1), A7i may be replaced by rtAr A0Az, and so, setting

S (x,y,z) = F(r,0,z),

we obtain: / / IfdV= lim^ F(rk , k , zk)rkArA$\z.

This last limit can be computed by iterated integration in

a manner precisely similar to that set forth in the case of

spherical coordinates. We thus obtain :

(8) fff/dV=fd2fd6f/rdr>

together with similar formulas yielded by adopting a different

order of integration.

The above volume integral and the iterated integral are

also written in the forms:

J J ffrdrdOdz
and C

j ffrdrdBdz.
r

Example. To find the attraction of a cylindrical bar on a

particle of unit mass situated in its axis.

The magnitude of the attraction is evidently*

* The unit of force is here taken as the gravitational unit.
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SSf^r-
Here

r
2 = r2 + ^

2

,

Hence

cos^=- =

2tt h+l

o ;* o

a

^ vV + z2 o

Fig. 114 = 1-
h+l a h+l

fdzf
*** =i- r * d*

Va2 + z2
'

-
/ _ Va2 + (ft+ If + Va2 + ft

5
;

.'. A = 2ttP [1 + VaF+W - Va2 + (ft + r)
2

] .

EXERCISES

1. Determine the attraction of a straight pipe on a particle

situated in its axis.

2. Find the force with which a cone of revolution attracts a

particle at its vertex. Ans. 2irph (1
— cos a).

3. Show that the force with which a piece of a spherical

shell cut out by a cone of revolution with its vertex at the

centre attracts a particle at depends, for a given cone,

only on the thickness of the shell.

4. Prove the preceding theorem for any cone.

4. Line Integrals. Line integrals present themselves in

such physical problems as that of finding the work done by a

variable force when the point of application describes a curve.
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Let a plane curve C:

y=f(x) or F(x,y) = 0,

be given. Its coordinates can always be expressed as func-

tions of the arc s, measured from an arbitrary point. Thus in

the case of the circle

x2 + y
2 = a2

we can write

s . s
x = a cos - , y = a sin-,

a'
9

a'

where s is measured from the point (a, 0). We will think of

the equation of the carve C, therefore, as expressed in the

form :

(1) x=<f>(s), y = $(8).

Consider next a function F(s) defined at each point of the

curve. It may be given as a function both of the coordinates

x, y of a variable point P of the plane and of the arc s:

f(x, y, s).
But in the latter case P is to lie on C, and so

x and y have the values given by (1), / (x, y, s) thus becoming
a function of s alone :

fix, y, s)=f[<f>(s), $(8), s]
= F(s).

We will now divide the arc up into n equal parts by the points
s = 0, slf

• •
•,

sn_1} sn = I and form the sum :

fc =

The limit of this sum as n becomes infinite is

i

/F(s)ds,

and is called the line integral of the function F(s) or f(x, y, s)

taken along C. Other notations for this integral are

I fix, y, s) ds and / f(x, y, s) ds,
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where (xQ , y ) and (xl} yx) are the coordinates of the extremities

of the arc C.

Geometrically the line integral admits of a simple interpreta-

tion. Let a cylinder be constructed on C as generatrix, its

elements being perpendicular to the x, y plane, and let the

values of the function F(s) be laid off along the elements of

this cylinder. Then the area of the cylinder bounded by this

curve and the generatrix represents the line integral in question.

As an example of a line integral, suppose a point moves in a

field of force. Let the magnitude of the force be g and let the

force make an angle 6 with the tangent to C drawn in the direc-

tion of the motion. Then the compo-
nent of the force along the curve is

gcos#, and the work done by the

force is /

(2) W= I g cos dds
Fig. 115 /f

A Second Form of the Line Integral. A second form in which

line integrals appear is the following :

I Pdx+Qdy,

the meaning of the integral being this. Two functions P(x, y),

Q (x, y) of the independent variables x, y are given, the curve is

divided as before, and the sum

n-l

(3) . 2 lp (
x*> 2/*)

Aa* + Q (xk, Vk) A^.]
fc =

is formed, Axk denoting the difference x
k
.+1
— xk ,

and similarly
for Ay*. The limit of this sum is the limit in question.

To evaluate the limit, we may write the summand in the

form:

(P(x>, y.)^+ Q(x„, yk)
£»W
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Now v Ax
lim —= cost,
a«=o As

lim —* = sin t,
As=0 AS

and hence by Duhamel's Theorem the limit of (3) and the limit

of the sum
n— 1

2} [P(a?*, yk)co8Tk +-Q(xk , yk)sm Tk ']
As

4=0

are the same. But the limit of the latter sum is

f[P(a>, y) cost + Q(x9 y) sin r] ds =
/Ti^ + ^ffW

where the x and 2/
in the integrands are given by (1).

As an example of the second form of line integral consider

again a field of force, the components of the force along the

axes being denoted at each point by X, Y. Then the work

done by the force when the point of application describes the

curve C is

(4) W= fxdx+Ydy.

The relation between formulas (2) and (4) for the work be-

comes clear when we consider the special case that the point
of application P moves in a right line, the force not changing
in magnitude or direction. One expression for the work,—
that corresponding to (2),

— is

W=(gcos0)Z.

On the other hand, the work

done by the component X is

(Xcos t) I = X (xj
— x

),

and that done by Yf
Fig. 116

(Fsinr) J =^-2/0).
Hence we ought to have :

$lcos6=X(x1 -x )+ Y(yl -y ).
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That this is in fact a true relation is readily seen. For the

component of gf along the line P describes, namely

PM=% cos e,

is equal to the sum of the components of X and Y, namely,

PN=Xcosr and NM= Fsinr.

But cost =^—^2, sinr =^^.
( i

Hence gcos0 =X^^+F 2l=-&,
i I

and thus the above relation is seen to be true.

When the force changes and the path is a curve, we still

have

gcos0 = XcosT+rsinT=X— + F^,
ds ds

and hence g cos Qds = Xdx 4- Fdy.

&pace Curves. Both line integrals admit of immediate ex-

tension to space curves C :

X=<f>(s), y = $(s), « = «(*),

the first integral giving

i 1 1

//(*> y> *$ s)ds= //[>(«), if,(s) y »(«), s]ds = I F(s)ds,

and the second,

Prite + Qdy + Rdz.

Thus in the case of a field of force we should have for the

work :

TT= jXdx+Ydy + Zdz.
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Example. Let a particle move along a given path in inter-

planetary space. To find the work done on it by the earth,

supposed stationary.

Assume a system of cartesian axes with the origin at the

centre of the earth. Then the magnitude of the attraction

will be
\

*=v
and we shall have

X= gcos« = ^
\ x

r2 r

Z = gc0Sy=A.? ;r r

J r8 J r2 \r rj

Thus we see that the work done depends only on the

positions of the extremities of O, not on the particular path

joining the points, i.e. we have a conservative field offorce.
In connection with this subject we will mention the follow-

ing definition. Hitherto we have defined the definite integral :

j f{x) dx

only for the case that a < b. If a > b, the definition is, how-

ever, still valid, Ax=(b — a)/n now being negative. Hence
in all cases

Jf(x)dx
=
-Jjf(x)

dx.

Furthermore we agree that
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a

ff(x)dx
= 0.

From these relations we infer that

b c b

Cf(x)dx =
Jf(x)dx

+
jf(x)dx,

a a c

no matter how a, b, and c are related to each other. We can

also write :

b c a

Cf(x)dx+ lf(x)dx +
ff(x)dx

= 0.

a b c

EXERCISES

1. The density of a rectangular parallelopiped is propor-

tional to the square of the distance from one vertex. Find

its mass. Am Xabc^ + &2+^ >

o

2. Determine accurately the volume of the element in

spherical polar coordinates, Fig. 111.

3. Find the centre of gravity of the volume in the preceding

question.

4. Express the iterated integral

-Va2-x* 2+4X+&U

dx I dy I fdz

x+y

as a volume integral, and state throughout what region of

space the latter is to be extended.

5. The same for

a

4 2 a cos (f>

I cos 6 dO
j
sin <f>d<f> I dr.

_v 2 b cob <f>
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6. Write down the five equivalent forms of the integral

;, y, z) dz,
jdy jdx jf(x,

obtained by changing the order of the integrations.

7. Two spheres are tangent to each other internally, and

also to the x, y plane at the origin. Denoting the space
included between the spheres by V, express the volume integral

///'fdV

by means of iterated integrals in cartesian coordinates.

8. The temperature within a spherical shell is inversely

proportional to the distance from the centre, and has the

value T on the inner surface. Given that the quantity of

heat required to raise any piece of the shell from one uniform

temperature to another is proportional jointly to the volume

of the piece and the rise in temperature, and that C units of

heat are required to raise the temperature of a cubic unit of

the shell by one degree, find how much heat the shell will give

out in cooling to the temperature 0°. Ans. 2irCT a(b
2 — a2

).

9. The interior of an iron pipe is kept at 100° C. and the

exterior at 15°. The length of the inner radius of the pipe is

2 cm., that of the outer radius, 3 cm. The temperature at any
interior point is given by the formula :

!T=alogr+A
where r is the distance from the axis and the constants a, fi

are to be determined from the above data. Taking the specific

heat of iron as .11, and its specific gravity as 7.8, how much

heat will a segment of the pipe 30 cm. long give out in cooling

to 0° ? Ans. 21,000 calories.

10. Determine the attraction of a bar, of rectangular cross-

section, on an exterior particle situated in its axis.



CHAPTER XX

APPROXIMATE COMPUTATIONS. HYPERBOLIC FUNCTIONS

1. The Problem of Numerical Computation. It frequently

happens in practice that we wish to know the value of a func-

tion for a special value of the independent variable or that we
wish to compute a definite integral. In all such cases only a

limited number of decimal places or of significant figures,

as the case may be, are of interest in the result, for the data

of the problem are accompanied by errors of observation or are

otherwise inexact, and as soon as these errors begin to make
themselves felt, we have obviously reached the limit of accu-

racy for the result in hand. Hence any method that will

enable us to obtain the result with the degree of accuracy
above indicated yields a solution of our problem.
On the other hand, rough approximate solutions of the kind

we are about to take up serve as useful checks for solutions

obtained by other methods.

2. Solution of Equations. Known Graphs.

Example* Let it be required to solve the equation

(1) cos x + \x = 0, 0<X<ir.

The student has constructed the graph of the curve

(2) y == cos x

* This example and the exercise present themselves in the following

problem of Mechanics. A heavy uniform circular disc can turn freely

398
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accurately to scale. Since equation (1) is equivalent to the

equation

(3)
—

Ja;
= cosic,

we can obviously formulate our problem as follows. To find

the intersection of the curves :

y— —
\x, y = cosx.

Graphically, then, it will be sufficient to draw a straight line

through the origin and the point x = 4, y ss— 1, and observe

the abscissa of the point of intersection with the cosine curve.

EXERCISE

Find the largest value of P for which the equation :

cosx + Px =

admits a solution in the interval 0< x<ir.

3. Newton's Method. Let it be required to solve the equation

(4) /(z) = 0.

In practice we usually know that the equation has a solution

within a restricted interval. Moreover, f(x) will be a continu-

ous function in this interval, and its derivative will not vanish

there. We can frequently make a good guess at the solution

to begin with. Take this value, x = al9 as a first approxima-
tion. Then we shall get a second approximation if we draw

the tangent at the point x =al} y =f(a 1)
and take the point

x = a2 in which the tangent cuts the axis of x, y — 0, Fig. 117.

The equation of the tangent in question is

about a horizontal axis through its centre, perpendicular to its plane.

There is a weight W fastened to the rim of the disc and a fine thread is

wound round the rim and hangs down, carrying a weight Q at its end.

W being at the lowest point of the disc and the free end of the string

being vertical, the system is released. Find how high W will rise and

determine the least value of IF for which W will not be pulled over.
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y _/(a1)=/'(a1) (x-a,).

For its point of intersection with, the axis

of x:

^2 «i -/(ax) =/ («!)(»-%).
Fig. 117

f(
.

Hence a, =^-4^.

To get a third approximation, proceed with a2 as above with

a x ,
and so on.

If fix) is a polynomial with numerical coefficients, the actual

computation of /(«i) and /' (ax)
would be laborious. To meet

this difficulty Horner's Method has been devised, cf. any of the

standard text-books on Higher Algebra.

Example. It is shown that the equation of the curve in

which a chain hangs,— the Catenary,
— is

(5) y =
\\f

+e

where a is a constant. The length of the ai c, measured from

the vertex, is

(6) s <{°"- e

~
l

)
Let it be required to compute the dip in a chain 32 feet long,

its ends being supported at the same level, 30 feet apart.

We can determine the dip from (5) if we know a, and we
can get the value of a from (6) by setting s = 16, x = 15 :

16

1 ^
Letz= — • Then

15 15

f(x) = e
x - e~x - ffa = 0,

and we wish to know where the curve
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(7) y =f(x) = e*-e-*-iix
crosses the axis of x.

This curve starts from the origin and, since

^ = f'(x)=:e* + e-*-i%

is negative for small values of x, the curve enters the fourth

quadrant. Moreover,

g = e*- e-*>0, x>0,

and hence the graph is always concave upward. Finally,

/(l) = e-e-'-2T% = .2ir>0,

and so the equation has one and only one positive root and

this root lies between and 1.

It will probably be better to locate the root with somewhat

greater accuracy before beginning to apply the above method.

Let us compute, therefore, /(J). By the aid of the Tables,

p. 121, we find :

/(.5) = 1.6487 - .6065 - 1.0667 = - .0245 <0.

Comparing these two values of the function :

/(.5)=-.02, /(1)=.22,

and remembering that the curve is concave upward, so that

the root is somewhat larger than the value obtained by direct

interpolation (this value corresponding to the intersection of

the chord with the axis of x) we are led to choose as our first

approximation ax
= .6 :

/(.6) = 1.8221 - .5488 - 1.2800 = - .0067,

/(.6) =r 1.8221 + .5488 - 2.1333 = .2376,

a2
= .6-

~
-0067 = .6 + .0282 = .628.2

.2376

To get the next approximation, a3, we compute

/(.628) = 1.8739 - .5337 - 1.3397 = .0005.

2d
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Hence the value of the root to three significant figures is .628

with a possible error of a unit or two in the last place, and the

value of a we set out to compute is, therefore, 15/.628 = 23.9.

4. Direct Use of the Tables. While explaining methods of

solution more or less obvious geometrically, we must not over-

look an immediate solution of the problem in certain cases by
mere inspection of the tables.

For example, the equation

cos x = x

has one and only one root, as we see by inspection of the

graphs of

y = cos x and y = x.

To find this root, turn to the Tables, p. 134. There we find :

RADIANS
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X
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The successive steps of the process are shown geometrically

by the broken lines of the figures.

The success of the method depends on the ease with which

y can be determined when x is given in the case of Glt while

for C2 x must be easily attainable from y. If the curves hap-

pened to have slopes numerically equal but opposite in sign,

the process would converge slowly or not at all.

The method has the advantage that each computation is

independent of its predecessor. An error, therefore, while it

may delay the computation, will not vitiate the result.

Example. A beam 1 ft. thick is to be inserted in a panel
10 x 15 ft. as shown in the figure. How long must the beam
be made ?

We have :

sin
<j> + 1 cos

<f>
= 15,

cos <£ -f- 1 sin
<f>
= 10.

Hence cos2
<£
— sin2

<£=10 cos <£
— 15 sin

<f>.

Now an expression of the form

a cos
cji
— b sin

<j>

Fig. 119

can always be written as

VaT+tf( cos
<j>

-

Wa2 + &2

where cos a — —
Va2+62

sin <£
)

= Va2+ b'
2 cos (<£ -h a),

sma=
Va2 + &2 Va2 + 62

In the present case, then :

cos 2
<f>
= V325 cos (<£ -f a),

where cos a — 10 sma = 15

V325 V325

Thus a is an angle of the first quadrant and

tan a = 4, a = 56° 16'.
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Our problem may be formulated, then, as follows : To find

the abscissa of the point of intersection of the curves :

y — cos 2
<f>, y = V325 cos

(<j> 4- a).

We know a good approximation to start with, namely :

tan <£
=

£, <£
= 33°44'.

For this value of
<f>

the slopes are given by the equations :

^.^ = -2sin2d>=-2sin67°28 f

=-1.8,
k d<l>

'

1??.-^=- V325sin(d,-f a) =- V325 = -18.
ir d<j>

Hence we have :

Cx : y — cos 2
<f> ;

(L : y = V325 cos (d> + a) or
<f>
= cos * —%== — a.

V325

Beginning with the approximation

<fo
= 33°44',

we compute y1
— cos 67° 28'.

Passing now to the curve C2 ,
we compute its

<f>
when its

2/
=

2/i:

yx
= V325 cos (<£2 + a), <f>2

= 32° 31'.

We now repeat the process, beginning with <£2
= 32° 31' and

find:

2/2
= cos 65° 02',

y2
= V325 cos (fc + a), <f>3

= 32° 23'.

A further repetition gives <£4
= 32° 22', and this is the value

of the root we set out to determine.
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EXERCISES

1. Solve the same problem for a beam 2 ft. thick.

2. A cord 1 ft. long has one end fastened at a point 2 ft.

above a rough table, and the other end is tied to a rod 2 ft.

long. How far can the rod be displaced from the vertical

through and still remain in equilibrium when released ?

The equations on which the solution de-

pends are :

2cot0 + - = cot<fc
P

FlG ' 120
[ 2cos0 + cos4> = 2.

If the coefficient of friction /x
=

^, find the value of
cf>.

3. A heavy ring can slide on a smooth vertical rod. To
the ring is fastened a weightless cord of length 2 a, carrying an

equal ring knotted at its middle point and having its further

end made fast at a distance a from the rod. Find the position

of equilibrium of the system.

4. Solve the example worked out in § 3 by the method of

successive approximations.

5. In the example worked in the text replace cos
<j> by its

value in terms of sin<£, reduce the resulting equation to the

form of an algebraic equation in sin
<j>
and solve the latter by

Horner's Method.

6. Definite Integrals. Simpson's Rule. If we wish actually
to compute the area under a curve numerically, we can make
an obvious improvement on the method of inscribed rectangles

by using trapezoids, as shown in Fig. 53. We begin as before

by dividing the interval (a, b) into n equal parts, and we denote

the length of each part by h. The area of the k-th trapezoid is

i(y*+-y»+i)*

and hence the approximation thus obtained is
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This formula is known as the Trapezoidal Rule. If the curve

is concave downward, as in Fig. 53, Ax is too small.

Again, if we take n as an even integer and draw tangents at

the points (xu yx ), (x3 , ys ),
•••

(#„_! y«_i), we get some trapezoids

as shown in the figure, the area of any one being 2yk h, where

k is odd. Hence ^r^r
A2
= 2h[yl + y3 -\ hy—i]

'vlx i Vm
is an approximation which is too large, and

AX <A<A2 .

^ FlQ 121

If the curve is concave upward, the inequalities must be

reversed.

Finally, a still closer approximation may be obtained by

using arcs of parabolas instead of straight lines. If we make
the parabola

y = a + b (x — xk ) + c(x
— xk )

2

go through three successive points, (%._ yk-i), (xkt yk),

(xk+l , yk+i), it will follow the arc of the curve more closely in

between than the broken lines or the tangents of the preceding

approximations do. Now the area under the parabolic arc is

xk+h

I'
[a + b (x

— xk ) + c (x
— xk )

2

] dx=

and it remains to determine a and c from the above conditions :

x = xk j IJk
— a

'•>

x = xk + h, yk+1 = a + bh + ch?',

x = xk
—

h, yk_ x
= a — bh + ch?.

Hence a = yk ,
2ch2 = yk_ 1

-2 yk -f yk+1 .

Thus the area under the parabolic arc is seen to have the

value
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iftfot-i + ^t+ ft+i).

Adding these areas for k = l
9 3,

••• n — 1, we get a new ap-

proximation :

^3= P[2/o + 2/n + 2G/2 + 2/4+ •••2/„-2) + 4(2/1 + 2/3 + — +|f«-i)].

This formula is known as Simpson's Rule.

If we set u = y + yn ,

v = yi + Vs+ — 4-2/n-i, ™ =
2/2 + 2/H by—s,

we have: A1
= ^h(u + 2v + 2w), A2

— 2hv
f

A3
= ±h(u+4:V + 2w).

It turns out that A3
= %A1 + ±A2.

2

Example.* Consider /
—

,
and let n = 10. Then h = .land

it = 1.5, v = 3.459 539 4, to = 2.728 174 6.

Hence ^ = .693 771, A2
= .691 908, A3

= .693 150.

The value of the integral is ( Tables, p. 109) :

log 2 = .693 147.

Thus Ax differs from the true value by less than 7 parts in

about 7000, or one tenth of one percent. A2 differs by about

12 parts in 7000
; while A3 is in error by less than 3 parts in

600,000, or 1 part in 200,000.

l

EXERCISES

1. Compute I e
x
dx; taking w = 10, and compare the result

with that obtained by integration. Note the tables on pp. 120,

121 of the Tables.

* These figures are taken from Gibson's Elementary Treatise on the

Calculus, p. 331, to which the student is referred for further examples.

A more extended treatment of the subject of this paragraph will be found

in Goursat-Hedrick, Mathematical Analysis, vol. 1, § 100.
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/ dx '

1

3. Obtain an approximate formula for the content of a cask

whose bung diameter is a, head diameter, b, and length, I.

Ans. ^[8a
2 + 4a&+.3&

2

].

4. If in the preceding question a is only slightly greater

than b, the formula may be replaced by the simpler one :

iral(a + 2b).

7. Amsler's Planimeter. A curve may be given graphically,

as in naval architecture, when the plans of a ship are made by

drawing to scale successive cross-sections. Again, take the

indicator diagrams of a steam engine. A pencil or stylus is

carried over a sheet of paper, tracing a curve as shown in

Fig. 122. The height of the pencil above the axis of abscissas

represents the pressure p of the steam on the piston, and the

abscissa is proportional to the distance the

piston has travelled. Hence the work done p ( \*
in the direct stroke is proportional to *

pdx,f>

the ordinate p being given by the upper part of the curve.

When the piston returns, negative work is done, and the

amount is

- I pdx or I pdx,

Since x is proportional to the volume of steam behind the piston, we

may also write the work as

pdv.
J



410 CALCULUS

the ordinate now being given by the lower part of the curve.

Hence the total work done is proportional to the algebraic sum
of these two integrals, namely, the line integral

I pdx or I pdv,

taken round the complete boundary, i.e. the work is propor-
tional to the area enclosed by the curve.

In order to compute such areas one method is that of § 6,

and this is the one employed in naval architecture. Another

method is by means of integrating machines, integraphs, or

planimeters, as they are called, and this is the one employed
for measuring indicator diagrams. There are several such

machines in use, one of which, Amsler's Planimeter, we will

now describe. It consists of two arms, OP and PQ, jointed at

P. One arm is pivoted at
;
the other has a point at its end

Q, and Q is made to trace out the curve whose area is sought.

The theory is as follows. Consider the area swept out by
the arm PQ> Give to this arm an infinitesimal displacement,

its new position being P'Q'. The corresponding infinitesimal

z-^ ,
increment of area, AA, is seen to

( yt s differ from the area PQSQ'P'P,

sC^s® where SQ is congruent to the arc

y^^h\C J
PP' &&& makes the same angle with

jjj* ays PQ, by an infinitesimal of higher

•/^\/($L order. But this latter area is ob-

^^cP viously equal to

FlGl23
Ih + ± I

2
Acf>,

where h denotes the perpendicular distance from P'S to PQ
and I is the length of PQ. Hence

AA = lh + %l
2

A<f> + c,

where c is an infinitesimal of higher order.

In order to measure h, a disc is attached to the arm PQ at R,
the axis of the disc coinciding with that arm.* The disc can

* As a matter of fact, B lies in the line QP produced. This alters

nothing in the theory, the distance PR = a merely being taken negative.
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turn freely on its axis and the rim of the disc rests on the

paper. Now suppose that the arm PQ were brought into its

new position P'Q' as follows:

(a) PQ is moved in its own line till P reaches the foot of

the perpendicular dropped from P on its line
;

(b) PQ is moved perpendicular to itself till it comes into the

position PS ;

(c) PQ is rotated about P' as a pivot till it comes into the

final position P'Q'.

It is now easy to compute the angle through which the disc

has turned. During the movement (a) it does not turn at all.

During (b) it turns through an angle proportional to h, h/r,

where r is the radius of the disc
;
and during (c) through an

angle aA<f>/r, where a denotes the length PP. The total angle

thus obtained, (/i + aA</>)/r, will differ from the angle Aw due

to the actual displacement at most by an infinitesimal of higher

order, rj
: «

A h-\-aAd> .

Aa> sx —£ £
-f- ri.

r

This assumption is an axiom or physical law, borne out by

experience, on which the whole theory of this machine rests.

If we eliminate h between the equation for AA and that for

Aw, we get :

AA = ZrAw + (1Z
2 -

al) A<£
- lrv + c.

Dividing by A<£ and allowing A<£ to approach as its limit, we

obtain :

D^A^lrD^+^-al)

and hence dA = Ir d<o + (i I
2—

al) d<f>.

The simplest case is that in which, as Q describes the closed

curve in question, <£ steadily increases for one arc from <£ to

<£i and steadily decreases for the remaining arc from fa to <£ .

The total area swept out for the first arc is

Ax
= ^-(wj

— w
) -h (-J-Z

2 —
al) (fa

—
<t> ).
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For the second arc, <£ is decreasing, and the area will be

negative :

A2
= lr(Q

-
cuO + (il

2 -
oZ)(^o- ^)-

The area of the curve is the algebraic sum of these two

areas :

A = AX + A2
= Ir (O — o>o)

and hence is proportional to the angle O — o> through which

the disc has turned. This angle is read off on the vernier, and

the constant multiplier is known or determined for the par-

ticular machine that is being used.

It can be shown generally that the area of any closed curve

is given by the same formula, provided <f>
comes back to its

initial value, the method being merely to divide the area

enclosed by the curve up into pieces, for each of which the

above determination is applicable. But if the bar PQ makes

a complete rotation, so that
cj> changes by 2-rr, the integral of

the last term in the expression for dA will not vanish, but will

contribute
(-J-

I
2 —

at)
• 2 it to the result.

8. The Hyperbolic Functions. Certain functions analogous

to the trigonometric functions, called the hyperbolic functions,

have recently come into general use. They go back, however,
to Riccati (1757) and are defined as follows :

. , e
x -e~ x

sinn x =
2

e
* + e

-*

cosh x =—l-—
m

sinha;
tanh x

coshx'

etc. (read
"
hyperbolic sine of x," etc.). An abbreviated nota-

tion for sinh x, cosh x, tanh x, is sh x, ch #, th x. The graphs of

these functions are shown in Fig. 124. The functions satisfy

the following functional relations, sh# and tho; being odd

functions, ch x an even function :
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sh(— x)= — sh^, ch(— x)
= ch#, th(— £)= — th#.

Moreover: shO = 0, chO = l, thO = 0.

Also : ch2 x — sh2 x — 1,

1 — th2x = sech2
#, coth2

a;— 1 = csch2
a;.

?/
= th.r

ttL

Fig. 124

The Addition Theorems are as follows :

sh
(cc + ?/)

= sh ic ch ?/ -f- ch ^ sh y ;

ch (x + y)
= ch x ch ?/ + sh x sh # ;

1 1 / , x th x 4- th yth (x + w) = —f— •

/
V ;

1 + thajthy

From these relations follow at once :

sh2# = 2sh£chx,

ch 2x = ch2x + sh2a= 2 ch2a -1 = 1 + 2sh2
a,\

Derivatives of the Hyperbolic Functions. The derivatives

have the values:
d sh x , d ch x ,= ch #, = sh x,
dx

dthx
dx

= sech2
aj,

dx

d coth x

dx
= — csch2

#,

etc.

Tlie Inverse Functions. The inverse of the hyperbolic sine

is called the antihyperbolic sine :

y = ah~ 1 x if x = shy.

Hence ««-.}(*
—

*-*).
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Solving for ep
,
we get :

ev = x ± vT+a?.

Since ey > for all values of y, the upper sign alone is possible,

and y=sh-1x = \og(x-\-^/l-{-x
2

).

The antihyperbolic cosine, however, is multiple-valued, as

appears from a glance at its graph, obtained as usual in the

case of an inverse function by rotating the graph of the direct

function about the bisector of the angle made by the positive

coordinate axes :

ch_1 a; = log (a; ± s/x2—
1), x^l.

The upper sign corresponds to positive values of ch" 1
**;.

Also: th"1
a;= -ilogi±^, -l<a;<l.

1 — x

The derivatives have the values:

d sh_1 a; 1

dx Vl + x2 '

d ch-1 a;

dx Va^-l'

dth-1^ 1

dx 1—x2

We thus obtain a close analogy between certain formulas of

integration :

/dx
. ,a> C dx , _,x— =:sin 1-. f

— =sh l
-;

Vtf-x2 a JVa2 + «2 a

/*
dx 1 , _,x C dx 1 .v_i»—— ^-tan"1

-, I-—3 = -th »-.

cr + ar a a J a2 — or a a

A collection of formulas relating to the hyperbolic functions

will be found in Peirce's Tables, pp. 81-83, and tables for

shx and ch# are given there on pp. 119-123.
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Relation to the Equilateral Hyperbola. The formula:

Vl — 3?dx == \ x Vl — x2 + 1 sin"1

expresses the area OQPA under a circle in terms of the function

sin-1# and enables us, on subtracting the area of the triangle

OQP from each side of the equation, to interpret sin-1 a; as

twice the area of the circular sector OPA.

y

y \ \ x

Q
Fig. 125

There is a similar interpretation for sh_1 a; with reference to

the equilateral hyperbola

y
2 = l + x?.

JVl + x2 dx = %xVT+aT
2 + i log (x + VT+xV

i^Vl+^ + Jsh-
1
^.

Thus we see that sh_1 # is represented by twice the area of the

hyperbolic sector, OPA.
To the formulas for the circle :

& + y
2 = l,

x = sin u, y = cos u,

correspond the following formulas for the hyperbola:

x — sh u, y = ch u,

the parameter u being represented geometrically in each case

by twice the area of one of the above sectors.
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The analogy of the hyperbolic functions to the trigonometric

functions is but one phase of the fact that in the domain

of complex quantities the trigonometric and the exponential

functions and their inverse functions, the antitrigonometrie

functions and the logarithms are closely related. We have

already had occasion to mention the formula:

e*' = cos
<f> + i sin

<f>,
i= V —• 1.

Thus sin z =
2i

zi i_ a—zi

cos z = —

sin-1 z = -
log (zi ± Vl — z

2

),
i

tan i*=_log— ,

where 2! = # + y£ is any complex quantity .

2%e Gudermannian. Let <£ be defined as a function of x by
the relation :

sh# = tan<£, <£
= tan-1 sh#, —-<<t><Z-

Then
<f>

is called the Gudermannian of # and is denoted as

follows :

*

<£=gdx.
We have :



APPENDIX

A.— THE EXPONENTIAL FUNCTION

In Chap. II, § 8, it was shown that, when x = a > 1,

(1) an'>an
if ri>n,

where n and n' are two positive or negative rational numbers.

Moreover

(2) a">0

for all rational values of n
;
and

(3) lim aM = + oo
,

lim an = 0.
n=+» n=—oo

One further relation, which we will now prove, is important,

namely:

(4) lim an == 1.
M=

When 0< n < 1, the curve

y = xn

is concave downward, for Dx
2
y = n(n — l)af~

2
<0, and so it

lies below its tangent. The equation of the latter in the

point (1, 1) is :

y = n(x-l)+l.
Hence for such values of n, the ordinate of the curve, an

,
is

less than the ordinate of the tangent, n (a — 1) -f 1 :

1 < an < n (a
-

1) + 1, < n< 1.

2e 417
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Thus (4) is seen, at least, to be true whe« n approaches
from the positive side.

Similarly it is shown that, when n<0, the curve is concave

upward, and
l>an >n(a — 1)4-1, n<0.

Hence (4) is true when n approaches from the negative side,

too, and the relation is thus established generally.

We can now prove the following theorem.

Theorem 1. Ifvbe any irrational number and n be allowed to

approach v, passing only through rational values, then an approaches
a limit.

First, let n approach v from below, n<v. Then, by (1),

an steadily increases as n increases, but never becomes so great

as a1

',
where V is any rational number greater than v. Hence,

by the Fundamental Principle for the existence of a limit,

Chap. XII, § 3, an approaches a limit not greater than a 1

',
and

in fact here less. For, if I" be chosen between v and V, then

lim an is not greater than a1

", and a1
" <a1

'. Denote the limit

by A. Then

(5) lim an= A < a1

',
V > v.

n=v—

Here, V is any rational number greater than v.

Again, let n approach v from above, n = n' > v. Then, by
similar reasoning, anf

approaches a limit A 1 > a1

,
where I is any

rational number less than v.

(6) lim an
' = A' > a1

, l<v.
n'=v+

Finally, to show that A' = A. It is clear that A' is not

less than A, for (5) gives, when V = oo :

A<A'.

Since a1
' > A' and a1< A, we infer that

av -al >A'-A.

Setting V = 1 4- h, we get :

Q^A'-A<a\ah
-1).
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Now let I and V both approach v. Then h approaches and

the right-hand member, therefore, approaches 0. But A and

A' do not change with I and V, and so the value of their differ-

ence, being constant, must be :

0=A'-A.

This completes the proof.

Definition. For an irrational value of the exponent, n = v,

we will define av as

lim an
,

n passing through only rational values.

Relations (l)-(4) are readily shown to hold when n and n'

are one or both irrational.

Theorem 2. The function

thus defined is continuous.

We wish to prove that, if xQ is an arbitrary value of x, then

lim of sa ax
°.

x±x

The proof is similar to that of Theorem 1
;
but the present

theorem differs from that one in that x is any number, rational

or irrational, and furthermore x, in approaching x
, passes

through all values, irrational as well as rational.

First let x approach x from below, x< x . Then it follows

as in the proof of Theorem 1 that ax
approaches a limit A :

lim of = A< a1

',
V > x .

No-

where now V is any number >x .

Similarly,
lim a* = A' > a1

, J<O t ,,

And A<A'.



420 CALCULUS

Hence as before:

0^,A'-A<al'-aK

If we choose I and V both as rational numbers and set V = 1+ h

we have :

0^' -A<al

(a
h
-1),

and we now can infer as in the earlier proof that A' = A.

It remains, therefore, only to show that ax° = A. Now by (1)

ax < ax°< ax'

if x<x < x\

Hence lim ax ^ ax
o ;g lim a*'

*=x - x'=x +

or ^4 ^ a*og J..

Thus ax
o is seen to = ^4, and this completes the proof.

We have hitherto assumed that a > 1. It is shown without

difficulty that Theorems 1 and 2 hold when < a ?g 1.

Theorem 3. 27ie relations (A) q/* (7/iap. II, § 8, ^o/d w/ien m
awe? w are one or both irrational.

Consider, for example, the second relation :

(a
m
)

n = amn .

Let m approach an irrational value,, fi,
as its limit. Then,

since xn is a continuous function of x when n is rational, we
have:

lim (a
w
)

w=
(lim am

)

tt=
(a*)

n
.

»»==/* m= /x
'

On the right-hand side,

limamn = a'An
,

m= jA

and hence

(a»)

n = a»n .

If here we allow n to approach an irrational number v as its

limit, we see by Theorems 1 and 2 that

(«")"
a^v

.
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The proof that

(a™)"
= amv

depends on Theorem 1 alone.

The other relations of (A) are proven in a similar manner.

We have now established rigorously all that was assumed

in Chap. IV for the purpose of defining the logarithm and of

differentiating the logarithm and the exponential functions.

Hence we are entitled to the conclusion of that chapter that

xn
is continuous and has a derivative when n is irrational.

We have also the material for proving the final statements of

Chap. II, § 8, respecting the graph of xn. If x = a, (0 < a < 1

or a > 1) and y = b>0 are chosen arbitrarily, one and only one

value of n can be found for which the curve

y = xn

will go through the point (a, 6), namely :

b = a% w = loga 6 =^.
log a

The whole subject of logarithms, exponentials, and fractional

exponents can be treated with great simplicity by basing all

of these functions on the logarithm, defined as the definite

integral :

X

dx

x

x

/
Cf . a paper by Bradshaw, Annals of Mathematics, ser. 2, vol. 4

(1903), p. 51
;
or Osgood, Lehrbuch der Funktionentheorie, vol. 1,

p. 487.
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B.- FUNCTIONS WITHOUT DERIVATIVES

In recent years much attention has been paid to discontinu-

ous functions and to functions which, though continuous, still

do not have a derivative. Consider, for example, the function

. 1
y = sm - •

x

When x approaches as its limit, y oscillates between the

values + 1 and —
1, and thus the function, while remaining

finite, approaches no limit. It does not even approach one

limit when x approaches from the positive side and another

limit when x approaches from the negative side. The reader

can easily plot the graph roughly.
Let us now form the following function :

f(x)= x sin-, x^O;
x

/(0) = 0.

This function is continuous for all values of x, and its graph
is comprised between the lines y = x and y = — x. At the

point x — Oj however, it has no derivative. For, form, the

difference-quotient :

/(0+A*)-/(0) _ dn l

Ax Ax

This variable— the slope of a secant through the origin and a

variable point P with the coordinates Ax and Ay = Ax sin--
Ax

oscillates between + 1 and — 1, i.e. the secant OP turns to and

fro, and approaches no limit whatever.

Again, a function may have a first derivative, but no second

derivative, as for example:

<f>(x)
= x2

sm-, a?=£0;
x

*(<))
= o.
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The foregoing functions have a derivative, to be sure, in

general ; only for a single point is there trouble. But exam-

ples can be adduced of functions that, though continuous for

all values of x, do not for one single value of x have a deriva-

tive.

In the light of these facts it might seem as if a thorough-

going revision of all we have said in the early chapters were

necessary. The revision, however, is simple. So far as our

theorems about derivatives are applied to special functions we
have fortified ourselves by showing that the elementary func-

tions actually possess derivatives unless possibly at exceptional

points easily recognized. In the statement of the general
theorems of Chap. II, § 4, however, it is true that we need to

add the requirement that the functions u and v shall possess
a derivative. With this supplementary condition Theorems

I-V are true in all cases. The proof of Theorem V, however,

requires a modification, of which we will speak presently.

Curves. A further restriction on the functions we have

treated, which is essential for some of the proofs, is this, that

the curve y —f{x) shall have at most a finite number of max-

ima and minima in a finite interval. The functionsf(x) and

<f> (ic)
of the above examples do not have this property. In the

neighborhood of the point x = 0, they both have an infinite

number of maxima and minima. We can impose this restric-

tion, however, throughout the Calculus and still the functions

will be general enough for most purposes.
With this restriction the proof of Theorem V is valid.

Without it, the theorem can still be proven by the aid of the

Law of the Mean.

The proof of convergence required to justify the definition

of the definite integral, Chap. IX, § 17, rests on this assumption.



SUPPLEMENTARY EXERCISES

A.— Introduction

Find the slope of each of the following curves.

1. y = x — x2
,

x = l. Ans. — 1.

2. y = 4 -+- x
2
,

x = 0. Ans. 0.

x = i. ^4ns. — 9.

Xq — Xq .

2aJ

3.
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2x
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Differentiate the following functions.

25. 2o2 -8a + 3. 26. Sx4 -Sx2
-^-x-tt.

27. 5«7 -13^-9a;4
-a;-f-l. 28. a^-7a3a;-5a4

.

29. (a + 10) (5 -a)
2

. 30. px
2 -(p + q)x-q.

31. 0(2m — n$). 32. (a + bx)(ax
—

b).

33. i£c3 -2(a-6)»
2 + 36a;-a + &.

34.
|-2(3a-5)+z-l-^=^-

35. (3 -2a)
7 36. (p + g»)

w
.

37. a(2-3a)-4(l-a)
2

.

38. (2a + l)(l-2a)-3a(a + 3) + l.

39. 6 (5 -4a)
3
-2(1 -2a)

4
. 40. r4 -4ar + a2

.

41. 3*2

-(a -b)t + 4a -36. 42. aw2 - (2a+ (3)w- afi.

43. 3a~4 — a^ + a" 1
. 44. 4a 5 —

\x~
12 — x~\

1_
7 a7

45.
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as2 -2bs + c aH t
2 -l
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89 .
_A£±£_. 90 .

« + ft*

Va — /to -V2ax — x2

91. arVA-ua;2
.

92. (/3
2 - x2

)Va - fix.

93. V4-5a;+arJ

.
94. V^6-5a;-a;2

.

95. V-a;. 96. aV4-5a?2
.

97. rs V-l+3r-2r». 98. *V^I

99.
t-ti_ . 100.

Sx

V^T? (* + l)V4-3s»

101. a?—Vl+7a£ 102. Va2-^-Va2
-t-£

103.
*

104.
VI-*-*

.

Va - a-— Va + a; Vl — a + a

105.
. p + ^ + 1. 106 _

J
a;2_ a._|_^

\ 2 7- cos a

107. (2a-36a;)V(a + 6a;)
3
. ^4n«. — -•

108. (8a
2 -12a^ + 15

6V)VFT^.^ iQSWV^+ to

:

'

2
109. (2 a — 6a;)Va + 6a;.

110. (8 a
2- 4 a&x + 3 6W) Va + 6oj.

111. VC^-s2

)
3
. 112. V(a

2 + ^)
3
.

113.
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120 .

* + 1

(
n + iX+2^ - Ans. 2

121.
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148. [V^=^-Vo+^]n
.

149 [pii + x^-sxy.

150.
xn — x~n

151. — xn

n m
2

152. af+i + af-K !53. (x
a + x

«)
2

.

154.
X1

1 KK *
155.

i + yi-a2 x-Vi+x2

157.
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du
8. dsin-1 w

VI -u2

9. a*tan_1w =
1 + u2

To these may be added, if desired :

du
10. dcos~xu =

11. c?vers_1w = du

V2u-u2

12. daM = aM logadw.

The student should note further the trigonometrical for-

mulas :
*

(A) cos-1u = - — sin-1 u.

(B) cot^u = tan~ x 1= - - tan" 1
!*.w u 2

(C) csc-1w = sin-1 -.
u

(D) sec-1 m = cos-1 - •

u

Differentiate the following functions.f

174. sin ax. 175. 1 — cos irx. 176. sin5
a;.

177. cos-- 178. csc2
x. 179. ^?-

a x

180. I
+ sme

181 . Sec(0-a). 182. cotf.l-sm0 v } 2

183. tan-^-. ' 184. cos ^^ "^ - 185. csc^-
1 — x 2 n

*For further formulas relating to the trigonometric functions, cf.

Peirce's Tables, pp. 73-80.

f Cf . also the examples on pp. 96-99.
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186 .

siD<^ 187.
1 -°0S ^. 188.

1 + C0S ^
1 — cos

<j> <f>
sin <£

189. cosn 0. 190. sinw irx. 191. sinaxcos&x.

192. sin(n
—

m)6, 193. cos (n+ ra) <£. 194. x2 cos ax. s

. (2n + l)x . f2n-l)x
sin V

! 1— COS x-

sin mx 2 o

195. »"*•'"*. 196. = 197. -
a? x • x

•

X
sin- sm-

198. vers ax. 199. xversx. 200. vers2 ax.

201. Vl-A^sin^. 202. xH -»' 203.-45
204.

sin + vers
0. 2Q5 J versa;

sin d — revs * 2 — rers

COS _™„ X

cos y1 -J- cos X

206.

sin — vers * 2 — vers x Vvers

. 207.
tang

-
1\

208. cot
(Z
-
g.

% 209. • + COtT*. V

.210. cot a; — csc a. 211. cot-- .212. cot x + esc x.

£

«„„ o cos3x
,

• o A«j r i
sin7x — cos9x

213. sm2x hsm3x. 214. cos5xH
3 63

215. sin2x = 2sinxcosx. 216. cos2x= cos2x — sin2
x.

» 217. sin"1^^. 218. cos" 1 -- 219. tan-ll
~ 2x

.

2 n 3

220. tan-1 (2 tan x).

L

221. cos-1 (n sin x). 222. sin_1 ax.

223. cot" 1^—-•
224. tan-^sinJ—a + x V ^2a

ii)
(
—

)• 226. vers-1 **

a

227. sin-1

^/-*
228. vers"1 a

6 a
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229.

232.

tan"

sin"

,1 l-2a;
5a;

x b + a cos x

a + b cos x

230. sin-1^^ 231. cos -il

An$.

233. sin

235.

,236.

239.

_, fVa2 — b2 sin x~\

a + b cos a;

^-.rva'-ysing-i
6 + a- cos a;

log (2
—

3a). 237. log (a— a),

log (1 + x2

).
« 240. log

^—^- •

234. tan
-

- Va2 -&2

a -f & cos a?

'[>te>*"}

^4ns.
Va2 -62

.242. log VI + cos 6. 243. log

a + b cos x

238. logo
2
.

241. log (a + 2a2

).

Va — Va — x

Va
244.

246.

248.

251.

254.

257.

260.

263.

266.

268.

270.

272.

273.

log (a -a;)
2
.

»+&

.245. e~x
.

^247. el~x\

e*.

log

249. e
xl°ea

.

252. Va^.

255. e
mx — e~

258. cP"*.

e
_nt cos (at

—
/3). 261. e

_x
logaa.

ax — q~*

az

sin log a?.

log(a + VoM^)-
^ein

-1 x

264. alog<
*».

250. a-x
.

253. -Z/&.

256. log log a;.

259. (10
1+

')

2
.

262. e
z8ina:

.

265. lO"*
3
.

267. logcos
n
a.

269. ax
log a.

271. VHK

J_ log
Va + ^-Va

t a>a
Va Va -f 6a + Va

-**e*J*±Et a<0.
V-a * -«

2f

-4ws.

^4ns.

a;Va + 6a;

1

a;Va -f- bx



434 CALCULUS

27 4. log
<* + Vtt2 ±*2

275. togy
V# + a 4- V # — a

V# + a — V& — a

276. log(V21-8x+ x2 + a -4).
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(x

= a -f- bt + ct*
308.

y = a ' + b't + c't
2
.

309. i

1-A2

x = -a.

1+A2

310.
2a

v = a.*
1 + A2

1 + *
3

x=- -,

2/
=

311. Find the slopes of the curves in Exs. 308-310 where

these curves cross the axis of x.

312. Remembering that
i r«+i

l + r + r2+ ... +rw = r
,

1 — r

show that

l + 2r+ 3r2 + ... +nr^ = 1 ~ (w +^+< "

(1-r)
2

313. Using the result of the preceding question, obtain a

formula for the sum :

l+2 2r + 3V+ — 4-nV-1
.

314. In the formula

^ w-a T(> + &)
2 '

i2, a, 6, and c are constants and p, v, and T denote pressure,

volume, and temperature, respectively.

(a) Considering T as constant, find the derivative of p with

respect to v.

(b) Considering v as constant, find the derivative of p with

respect to T.

(c) Considering p as constant, find the derivative of T with

respect to v.

D.— Applications

Find the value of x for which y is a maximum or a minimum
in each of the following cases.

315. 12y = xs -6x\ x>0. 316. ay = x7 - 35 x5
,
x< 0.
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317. y = xB - 15a3 + 25, x >0. 318. y = a? - 2a?- %x, x>l.

319. 2/
= r

-^— • 320. y =
3 + a;

2 *
4 + 7(2-z)

2

321. ,-*+!. 322. r-£±*
x x

323. J.-
13 -**+ *

, ->3. 324. » = |±*£, *>3.
cc — 2 lx — 6

325. Divide 12 into two such parts that the product of one

of these parts by the square of the other is as large as possible.

326. Divide a into two such parts that the product of one

of them by the cube of the other is as large as possible.

327. Divide 30 into two such parts that twice the cube of

one of them increased by three times the square of the other

may be as large as possible.

328. If the strength of a beam is proportional to its breadth

and the square of its depth, find the dimensions of the strongest

beam that can be cut from a log of circular cross-section.

329. What is the shortest distance from the point x = 12,

y = to the curve y
2 = 4:X?

330. What point of the curve y = x% is nearest to the point

08= 1, y = 0?

331. Tangents are drawn to the parabola

y
2= a2 — 2 ax.

What one of them cuts off the smallest triangle from the first

quadrant ?

332. In the foregoing problem, what tangent has the short-

est segment in the first quadrant ?

333. A trough is to be made of a long rectangular-shaped

piece of copper by bending up the edges so as to give a rect-

angular cross-section. How deep should it be made, in order

that its carrying capacity may be as great as possible ?
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334. A block of stone is to be drawn up an inclined plane

by a rope. Find the angle that the rope should make with the

plane in order that the tension may be as small as possible.

335. Show that the abscissa of that point of the curve

y = log x which is nearest to the origin is given by the equa-

tion:

iogi=*>.
X

336. Find the value of x from the foregoing equation correct

to two significant figures.

Suggestion. Tabulate for some trial values of x the values

of x2
, 1/x, log 1/x, read off directly from convenient tables,

such as Huntington's Four Place Tables.

337. Assuming the density of water to be given from 0° to

30° C. by the formula

p= Po (l + at + l3t
2 + yt

3

),

where pQ denotes the density at freezing, t the temperature, and

a = 5.30 x 10-5
, y8

= - 6.53 x 10"6
, y = 1.4 x 10"8

,

show that the maximum density occurs at t = 4.08°.

Determine by inspection whether the following functions

are increasing algebraically or decreasing as the independent
variable increases.

338. a — x. 339. t(t
—

c), t> c.

340. -i-, x>-\. 341. -1—, o?>0.
1 + x at + x2

342. x(x-l)(x-2),x>2. 343. x(l
- x2

), x> 1.

344. _L-, *<0. 345. l±i, 0<*<1.

2 2

346.
a ~ X

. 0<x<a. 347. -^—
, 0<x<a.

as + x* a — x

348. Xs —
bx, 6<0. 349. t(l+t

2

).

350. (x^2)(x-7)(x-20), x<2. 351. a4 + 5 a2*2 + 7 .-c
4

.
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387. y = x\ogx. 388. y = xe~x
.

389. y = ™%£. 390. y = xx
.

x

391. y = e~x\ 392. y = logcosx.

393. Plot the curves which represent the functions in Exs.

384-392.

394. A point moves along the hyperbola xy = 100 and its

ordinate increases uniformly at the rate of 20 ft. a sec. Find

how fast the abscissa is decreasing when y = 15.

395. A point moves along the curve r=l/0 at the rate of

6 ft. a sec. How fast is radius vector turning when = 2tt ?

396. If a drop of rain, as it moves through moist air, receives

accretions so that its radius is increasing at the rate of c cm. a

sec, at what rate is its volume increasing when its radius is

a cm.?

397. A point describes the cardioid r= 2a(l — cos#) with

uniform velocity c. How fast is its distance from the pole

r = changing when 9 = \-k ?

398. A man in a train that is running at full speed looks

out of the window in a direction perpendicular to the track.

If he fixes his attention successively for short intervals of

time on objects at different distances from the train, show that

the rate at which he has to turn his eyes to follow a given

object is inversely proportional to its distance from him.

399. A point describes the circle x2
-f- y

2 = 25 with a velocity

of 12 ft. a sec. Find the component velocity along the axis of

x when x = 4.

400. At what rate is the ordinate of the curve y
— x—x^

changing when x= 1, if the abscissa is increasing at the rate of

10 metres a second ? Is the ordinate increasing or decreasing?

401. A man walks across the floor of a semicircular rotunda

100 ft. in diameter, his speed being 4 ft. a sec, and his path
the radius perpendicular to the diameter joining the extremi-
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ties of the semicircle. There is a light at one of the latter

points. Find how fast the man's shadow is moving along the

wall of the rotunda when he is half way across.

402. Water is flowing out of a hemispherical bowl from an

opening at the lowest point. If the rate of efflux is c cu. cm. a

sec. when the level of the water is half way between the hole

and the centre of the bowl, how fast is the level falling ?

Suggestion. Compare the volume of water that flows out

in At seconds with the fall in level, Ax, and thus compute

directly lim Ax/ At.

E.— Errors of Observation*

Let x be an observed quantity and y a second quantity,

dependent on x, to be computed:

y =/(*)•

An error of Ax in observing x, the true value being x
,
will

give rise to an error Ay in the computed value, where

ty =/(^o + A^) —f(x ).

Now we are concerned only with an approximate value of Ay
and hence any other quantity that differs from Ay by less than

the error in Ay which we are willing to admit is an equally
faithful representative of the error in y. Such a representative
is found for most of the cases that arise in practice in dy,

since, if the derivative f'(x) is finite for x = x and =£0, Ay
and dy will differ from each other only by a small percentage
of either, when Ax is small, that is :

lim Ay-<fr = .

A*=o dy

Definition.— By the absolute error in y is meant

dy=f'(x )dx,

*I am indebted to Dr. Harvey N. Davis for the problems in this

section.
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the error in x being denoted by dx. The relative error is

defined as dy

J'
Since the relative error is d log y, it is often better to take

the logarithm of each side of the equation y=f(x) before

differentiating.

If y depends on several variables, x, t, •••, it is frequently-

desirable to consider the errors in y arising separately from

the errors in x, t, •••; i.e. to hold all but one of the letters

x, t,
"- fast and allow that one alone to vary.

By the coefficient of propagation is meant the multiplier A.

when the error equation is written in one of the four standard

du dx dx dii

dy = \x dx. — = A.2
—

, dy — k3
—

,
— = \4dx.*

y x * x y
M

Thus, when both errors are absolute errors, A.=A.1 =/'(a? );

when both errors are relative errors, A. = A2
= a, / f

(# )//(a,' );

and so on.

Example. The length and the diameter of a cylindrical bar

are nearly 25 cm. and 2 cm., respectively. Find the absolute

and the relative errors in the volume due to an error of 8 = .02

cm. in measuring the diameter.

Here, V=±ir&H.
Hence the absolute error is

dV= i-rrDHS = 1.6 cu. cm.

The relative error may be found by dividing each side of

the equation by F=^7rZ)
2
^Z";

— -2--.02,

or 2 per cent. Had the relative error been the only thing to be

computed, we should have proceeded more simply as follows :

logF=logi,r#+21ogZ),

dV = 2
dD = 28

V D D'
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403. In the case of a sphere find the absolute error in the

volume produced by an error of .01 cm. in the radius, r,

(a) when r = 1 cm.
j (6) when r = 50 cm.

Ans. (a) .126 cu. cm.
; (b) 314 cu. cm.

404. In the two cases of the preceding problem, find the

relative error in the volume due to an error of 2 per cent in

determining r. Ans. 6 per cent in both cases.

405. What is the allowable absolute error (a) in the meas-

urement of the longest, and (b) in the measurement of the

shortest dimension of a rectangular block 10 cm. by 5 cm. by
2 cm., if its volume is to be determined within one-fifth of one

per cent ? Assume in each case that the other measurements

are correct. Ans. (a) .02 cm.
; (6) .004 cm.

406. What is the allowable relative error in measuring

(a) the diameter of the base (5 cm.) and (b) the height (10 cm.)

of a right circular cone, if its volume is to be determined within

a fifth of one per cent ? Assume in each case that the other

measurement is correct.

407. What conditions must the dimensions of a right cylin-

der satisfy if, for a given error in the volume, the allowable

absolute errors in the length are equal ?

408. A desired quantity, S, is the sum (or difference) of two

measured quantities, a and b. Show that the coefficients of

propagation for relative errors are numerically as the quantities

a and 6, and that the allowable relative errors are inversely as

a and b.

409. What is the relation between the allowable absolute

errors in the last question ?

410. If y=a — b and 3a = 4&, .what relative error in y is

caused by an error of one per cent in a ?

411. A flag pole subtends, at a point 40 ft. from its base, an

angle of 60°. What relative error in the computed height is

caused by an error of 1° in the observed angle ?
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412. What relative error is caused by an error of one per
cent in the distance ?

413. Would the computed height in Ex. 411 be more or less

sensitive to the error in the observed angle if the observer

moved farther away from the pole ?

414. At what distance from the pole is the computed height
least sensitive to errors in the observed angle ?

415. If, in Ex. 411, a minute of arc in the angle and a tenth

of one per cent in the distance from the foot of the pole are

degrees of accuracy in the measurement about equally easy to

obtain, where should the observer stand ?

416. Discuss the accuracy of the determination of the ordi-

nate of a point on a given circle centred at the origin when the

abscissa is measured.

417. A surveyor has a measured base line of 100 miles and

finds that the angles between it and a distant mark are 60° and

45°. With what absolute accuracy must each of the three

measurements be made if no one of the resulting errors in the

shorter of the unknown distances is to exceed one hundredth of

one per cent ?

418. A steel cylinder is 8 cm. long and 6 cm. in diameter,

and it weighs 20 gr. The moment of inertia of such a cylinder
about its geometric axis being

what is the allowable absolute error in the measured diameter

if / is desired within one hundredth of one per cent ?

419. The moment of inertia of a right cylinder about a line

through its centre perpendicular to the axis of figure is

where I is the whole length. If the diameter of the cylinder
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in Ex. 418 is known to one part in 600, with what relative ac-

curacy should I and M be known, to give equally small errors

in J?

420. A certain magnetic measurement (in Gauss's " B posi-

tion ") leads to the formula

and in a certain case s was 35 cm., I was 4 cm., and a was 4°.

If M/H is to be determined within a fifth of one per cent,

what is the allowable absolute error (a) in s, and (b) in I ?

421. A similar magnetic measurement (in Gauss's " A posi-

tion ") leads to the formula

^(^i^tana,H 2s

and in a certain case s was 35 cm., I was 4 cm., and a was 8°.

What relative error in M/H would be caused by an error of

three hundredths of one per cent in s? What is the cor-

responding relative error in I ?

422. When a magnet or pendulum is swinging through a

viscous medium, like air, it is found that the successive ampli-

tudes form a geometric series : that is, if any amplitude be

called a
,
those following are

a1
= a /k, a2=a /k

2
,

• • •

,
am = a /lc

m
,

where k > 1 is a constant of the apparatus. If log k (called the
"
logarithmic decrement ") be denoted by A., then

A = log op
- log am

s

m
Assuming that a is correct, but that every subsequent ampli-

tude am is subject to an absolute error 8 independent of m, find

the absolute error in X in terms of a
, k, and m, and show that

it is a minimum when m satisfies the equation km — e = 2.718,

so that under the conditions of this problem one should use,

in determining X, that am which is nearest a /2.718 to get the

best results.
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423. Assuming that in the preceding problem both a and

am are subject to the absolute error 8, and that the resulting

error in A is the sum of the absolute values of the errors which

would be produced by the errors in a and am acting separately,

show that the best value of m is given by the equation

424. Solve the foregoing equation by approximate methods

and show that km or a /am should have the value 3.59.

425. In Ex. 423 assume that the error in A has its "most

probable value," which is the square root of the sum of the

squares of the errors which would be produced by the errors

in a and in am acting separately. Show that the best value

for aQ/am is now 3.03.

426. The period of a pendulum varies inversely as the

square root of the force of gravity, g, at the place of observa-

tion. With what percentage accuracy must the period be

observed if g is to be determined to one part in ten thousand ?

427.* If the period of such a pendulum is very nearly one

second, the period can be compared with that of the pendulum
of a clock beating seconds. Suppose that the two are beating

exactly together at the time tlf that the unknown pendulum
gains on the other, and that they beat together again at the

time t2 . Then in exactly n = t2
— tx sec. the unknown pendulum

has made exactly n -\- 1 swings, and its period is n/(n + 1) sec.

How large must n be to make an error of 1 sec. in determining
n allowable under the conditions of the preceding question ?

428. If the n of the last question is 45, what percentage
error in the period would result from an error of 2 sec. in

determining n?

429. If the allowable error in the period is a tenth of one

per cent, how great must n be to make an error in it of 10 sec.

allowable under the conditions of Ex. 427 ?

* The solutions of Exs. 427-429 belong in a course in physics, for the

mathematical processes involved are exceedingly simple. They are inserted

merely to indicate more clearly the bearing of such work as is here given
in errors of observation, on the actual problems that arise in practice.
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F.— Integration

Integrate each of the following functions with respect to x.

430. 12x5 -10xi -16x? + 2x. 431. a/-5a>6 + a? + l.

M

432. axh — bxa + ab. 433. (m + n)x
n + m — n.

434. 1- 4a -or5 + H #10
. 435. - 3 + x + £«*- \x*.

436. 4a?9 -13x6 -5ar3 -l. 437. 1^-1^ + 2^ + 1.

438.
9 - 3 " + "2

. 439.
*-g* + *-l.

12 3x

440. ic
2 +--l. 441. 3-- + 3

.

a? a;

442. a£ + af£ + l. 443. a^ + af* — 2.

444. VaJ — -— + -• 445. af* — a"1 + x~K
y/x x

446. -* ?-- i+a 447. £L±^±£^.

448. 9** -4 -4" 449. iri£.

450.
1 + ^g

-(l + a?)Vg.
451. x(a+&V2a?).

a?

452. (5
—

VaJ)(a> + 3Va>). 453. (a + bx)^/cx-.

454. (Vc-V2x) 2
. 455.

[-{/a5
—

-g-.
\ wax.

456. (a
2 - x 2

) VTax. 457. (Va-V3to)
3
.

Evaluate the following integrals.

458 -

J(r^-ir->-
459 -

fiihi-^*-
460 . /•-*_. 461. rj^p i=L

J Vl-ay J \ Va L + £
* a.
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462. f**L. 463. ffjLL ?«_U
J a-x J \a + t a-3tj

464. /*±-?fe 465 . fr-W-«-l fc

7466.
f (aam2x-bcos3x)dx.

467.
j

e
-a2x dx.

4e8-

/(^I-
1
)^-

469 -

f(j=i—J*
470. rfetC0Sa-~\dt. 471. i*—^—dx.

Jtf2. Ccot-dx.
S

^473. Csm— dx.

474. I sec ax dx. 475.
fcsc^dx.

476.
fsec

22xdx. 477. /7l + cot2

|^d
«.

478.
j
cos (nt-e)dt. 479. /V*~

/'
o o i /iai (*CSC

2xdx
tansxsec2xdx. M 45i *

I
—

,

*

J Vcota?

"tan"

a2
-}-^

2

r -i da 48^/ /482. I cos J
aj— « /

J vr^2
" ^

484.
v7ex

cose*cta. J 485.
J
e~ x

(l- e~x
)
3 dx.

486.1JVF+2**
48V^ J^pT

488. Pt{$F* -*"*)&. V^89 ' f
^a

*J

r ^
dx.



448 CALCULUS

490.
f(a

- 3 bx)%dx.
491. / V"^ dx, {x< 0).

492. C ^ads
. 493. f(k-r)

m~n dr.

J Vc + 3as J

494. C(Z±^dr.
495. C(a

2

-2ax)^dx.

[(axy^-iaxy^dx. 497.
j ^7='

r^tan— da?. 499. AinS^Sdft
J 3 3 J Va

498.

500. I a cos

502

504

ra cos _2g-3a ote. 501 . T-Va sin (Va *)
dt.

/kao /"2 cos aa;— sin flsc,

(2 e
- - c^«) dr. 503 -

J g + /8

daj-

. C(a + b-axfdx. 505. C(a + t)*to.

•

J
v
(ife.-

4
)^

507 -

/(rf-«-
4 cto.

V
508.

fx(a
2
-x>)*dx.

509.
j?V~a

+ b-afidt.

510 . /•_**=. 511. A^* •

512.
fx(l+aa?)idx.

513. ix(a + bx2

)

514. A** 515. /"
*

Jl+ ct
6 J 3«-

dic.

516

46a-5
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518. Ilosx— ' V619. / x tan irx
2 dx.

520

522

524

526.

•

Jlogx^'
Uld.

J
a

.

jxe-^dx.
Vfel.

flog^/1—xdx.

.

jx\ogVa
2 -x2 dx. 523.

Cxf—^-^-b^dx.

. C **+* *>. 525. r (b-^ dx
.

J x2 +px + q J (a + 3bx- Xs

)
2

fap\pl _{]-%. 527. f
2atdt

r_l^_. 529. f-3*
J5-2*2 J5 + 2

540

542

2 a;
2

'

530. f J* -• 531. f_*-
J (x + a)* + (x-a)* Jl + 7i

532. f-*L. 533. f-
J ?-i>

2 J 63 + 27 s2

534. /*- -^ -. 535. f
J (x + a)

2-(x-af J i

2ds

+ 2

dq
m2

-j- n
2
q
2

dx

'x
536. A™*^. 537. A1^

,/ sin2
a; ^z cos5

:

538. f-^-v 539. f *
J p + qu

2 J b + (x
—

a)
2

f cfa
541 f (34-5^)0

5V*

. f-***-• 543. f-^JL.J 1 + x* J m-y*

544. f
X'dx

. 545. fj^*.
J5 + 13*16 J 1-x2

2g
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546 . f
*x ldx

547<
jtB,n(nx-2)dx.J Vlog* J

548 . /V-^dr. 549. JV~-(n+ 2*),

cos a?VI — &2 sin2
a? dec. 551. I -«

^ cos2-
i/C sin OdO

e-»in9 cos Odd. 553.
/ ,- ='

J V4 — costf

e?as

as
554. f'sin (9 log cos OdO. 555. /cos log a;

^

556. n + cosj^ 557# fC0S2esindde .

J 1-COS0 J

558. fsmxco$L2xdx.
559. / cos * sin 2 * da*.

560. /sin2* cos a- d*. 561. I sin2
a; cos2 * d*.

562. / sinw*cos*d*. 563. I cosn*sin*d*.

564. I cos2mxdx. 565. I sm2mxdx.

V

566.

/*
d* ^ 1 * _i/&tan*

^4?is. — tan'

cos2
*-f-&

2 sin
2 * ct&

567 f sinftcosftda;
. ^s .

1 log (a cos2* + 6 sin2

*).

J a cos2* + 5 sin2* 2(&-a)

C cos*d*
568. /

J Vl — ft
2
sin* a;/, sin (m — w) * sin (m + fl)

*
smm*smn*d*. <4n*.

2 \m _ J
!
)

2(m + w)
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„_-. C .
1 a cos (m — n)x cos (m-f n)x

570. I smmxcosnxax. Ans. —? f —
)
—!—

f--
J 2(m — ri)

2 (m -f n)

.».. C j a sin(m — n)x , sin(m-fw)a;
571. I cos mx cos na; dx. ins. ——) f- -\

—
)

'—
f- .

J 2 (ra
—

ti) 2(m + %)

Evaluate the following
;

grals by the aid of the Tables.

572. C ^
. 573. T———

J3~7x+ 2xi j3-2z + 7(*

/* _
7
_ /

*
asdar

"

J 3s f-Saj
8

" '

j3-2x + 7a*'

576 C——^—~ 577 C——^——
'

Jl3-7x + 2x2
y J 3aj

9 -2ar ,+ 7q!*

578 . r ^
579. r— *»—

J V3-7a> + 2a* J V3-2a; + 7arJ

580. f-
' =- 581. /^ *

J xV8-7o; + 2it*
2 J #V3-2o; + 7arJ

582. f **
583. f

*»
-•

J (3_7^ + 2.t 2

)^
J (3- 2a; + 7^*

f—^ 585. f-
J 4 — 5 cos a; ^7 5

584.

586.

588.

590.

592.

5--4cosa;

dxr Mx r

J 3 + Ttanx'
'

J 11 +

f *
589. f

J (5
— 4 cos

a;)

2

^7 <

r *
59i. r

J sin x (5
— 4 cos a?) j 1

f fe 593. f-J^
J 10 — cos a; + 2 sin a; J1 + cc

13 sin x

dx

cos #(5
—
4cos#)

dx

9 — 7 cos2
ic

dx

COSiC
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G.— Definite Integrals

594. The hyperbola xy — lOOl rotates about the axis of x.

Find the volume of that part of the solid thus generated which

is contained between the planes ^rpendicular to the axis and

corresponding to x = 5 and x = 2

595. The curve y = sec x revolvt '"out the axis of x. Find

the volume of the solid whose bases ; ,rrespond to a?= \v and

596. The curve y = x — xA rotates about the axis of x. Find

the volume of the solid generated bytthat part of it which lies

above the axis of x.

597. The hyperbola ^_?f
«2

i>
2
= 1

revolves about the axis of x. Find the volume cut off from

one of the two
#
solids thus obtained by a plane perpendicular

to the axis and distant h from the vertex.

Ans>?¥¥(3a+ h).3d2 J

598. So much of that arc of the curve y = eosx — icos2#
which cuts the axis of ordinates and lies above the axis of x

rotates about the latter axis. Find the volume of the solid

generated.

599. The curve y = cos_1 ic rotates about the axis of x. Find

the volume generated by that part of the curve for which

<^ y < ir, the base being a plane perpendicular to the a:

|= -1.

600. The parabola x 1 + y
1 = a'£ rotates about the axis of x.

Find the volume of the solid bounded by the arc which is tan-

gent to the coordinate axes at its extremities, the base being

formed by a plane through the origin perpendicular to the axis.

601. Determine the volume of the following solid. Think

of the axis of y as vertical and consider the cylinder whose
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elements are perpendicular to the curve y = 12 — 12 a£ Next,
turn this cylinder about the axis of y through 90°. The two

cylinders and a horizontal plane through the origin bound the

solid in question.

602. If the base of the conoid of Ex. 5, p. 161, is an ellipse

whose plane is parallel to the fixed line, show that the volume

is ^irabh, where h denotes the distance from the line to the

plane.

603. The solid of p. 159, Fig. 49, is cut by a plane through

O, perpendicular to the plane of the base AOB and making an

angle of 45° with OA. Determine the volume of the part
with the vertex A.

604. A horn is generated by a variable circle whose plane
turns about a fixed line. The point of the circle nearest the

line describes a quadrant AB of a circle of radius a, and the

radius of the variable circle is cO, where denotes the angle
between the variable plane and its initial position, when it

passes through A. Show that the volume of the horn is

j^v^iSa+ Sirc).

605. Find the area of the lateral surface of the solid

described in Ex. 603.

606. Find the area of the lateral surface of the solid

described in Ex. 601. Ans. 64, nearly.

607. An arbitrary closed curve is drawn on the surface of a

sphere, catting out a region S from that surface. Show that

the volume of the cone whose vertex is at the centre of the

sphere and whose base is S is

where A denotes the area of S and R the radius of the sphere.

608. The curve r=f($) rotates about the axis = 0. As-

suming f(6) to be single-valued and continuous for a _ _ /3,

where _ a < /3^v, obtain a formula for the volume of the

solid generated by the rotation of the plane region bounded

by the curve and the two radii vectores drawn to its extremities.
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609. Hence determine the volume of the solid generated by
the rotation

(a) of the curve r = a cos 20;

(b) of the lemniscate ?*
2 = a2 cos 2 6

j

(c) of the curve r = 1 — 6
2

.

610. Show that, if two solids are so related to each other

that, when cut by any plane parallel to a certain fixed plane,

the areas of the two cross-sections are equal, then the volumes

of the solids are equal. (Cavalieri's Theorem.)

611. Find the areas of the surfaces in (a) Ex. 594; (b) Ex.

597.

612. Find the fluid pressure on the vertical plane area

bounded by the curve a-,

a4 + ar

and the double ordinate x = h, the axis of y lying in the sur-

face of the liquid.

613. Assuming that the density of water at a distance of

x ft. below the surface is

p = p (l + .000 001 3 x),

find how much greater the pressure is on a vertical rectangle
10 ft. broad and a mile deep, with one side in the surface, than

what it would be if water were incompressible.

614. Find the pressure on the end of the trough described

in Ex. 2, p. 164, if the density is a linear function of the dis-

tance below the surface.

615. If the density p of any curve is variable, show that the

mass of the curve is t

M— I pds.

/<
616. The density of a rod is proportional to the distance

from one end. Find its mass.
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617. The density of a semicircular wire is proportional to

the perpendicular distance from the diameter joining its ends.

Find its mass.

618. If in the preceding problem the density is proportional

to the square of the perpendicular distance from the radius

drawn perpendicular to the above diameter, what is the mass ?

619. Find the centre of gravity of the rod in Ex. 616.

620. Find the centre of gravity of a quadrant of the wire in

Ex. 617 and in Ex. 618.

621. The density of a spherical surface at any point is pro-

portional to the distance of the point from a fixed diameter.

Eequired the mass.

622. The same problem for a cone of revolution, the density

being proportional to the distance from the axis.

623. The density at each point of a sphere is proportional to

the distance of the point from the centre. Find its mass.

624. If the density is a -f 6r, where r denotes the distance

from the centre, required the mass.

Determine the following moments of inertia and radii of

gyration :

625. A rod whose density is proportional to the distance

from one end, about a perpendicular at that end.

626. The same rod, about a perpendicular bisector.

627. The circular wire of Ex. 617 about the diameter.

628. The same, about the radius perpendicular to the

diameter.

629. The circular wire of Ex. 618 about the diameter.

630. The same, about the radius perpendicular to the

diameter.

631. A circular disk whose density is proportional to the

distance from the centre, about the centre.
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632. The same, about a diameter.

633. A circular disk whose density is proportional to the dis-

tance from the circumference, about the centre.

634. The same, about a diameter.

635. A circular disk whose density at any point is \vb 2— r2

,

r denoting the distance from the centre, about the centre.

636. The same, about a diameter.

637. A conical surface of revolution, about the axis of the

cone.

638. A spherical surface, about a diameter.

639. A conical surface of revolution whose density is pro-

portional to the distance from the axis, about the axis.

640. A spherical surface whose density is proportional to

the distance from a diameter, about that diameter.

641. A sphere whose density is proportional to the distance

from the centre, about a diameter.

642. A sphere whose density is proportional to the distance

from a diameter, about that diameter.

643. A sphere whose density is any linear function of the

distance from the centre, about a diameter.

644. A triangle whose density is proportional to the dis-

tance from one side, about that side.

645. A semicircle whose density is proportional to the dis-

tance from the bounding diameter, about that diameter.

Determine the following centres of gravity :

646. A uniform circular segment.

647. A uniform circular sector. Check your answer.

648. A segment of the equilateral hyperbola

x2 — y
2 — a2

,

cut off by the double ordinate x = a + h.
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649. The corresponding segment for any hyperbola.

650. A triangle whose density is proportional to the dis-

tance from one side.

651. A uniform parabolic wire, extending equal distances to

each side of the vertex.

652. A semicircular wire whose density is proportional to

the length of the arc measured from its middle point.

653. The same, when the density is proportional to the dis-

tance from the diameter through its extremities.

654. A semicircle whose density is proportional to the dis-

tance from the bounding diameter.

655. A semicircle whose density is proportional to the dis-

tance from the centre. (Suggestion. First obtain a formula

for the centre of gravity of a semicircle whose density is an

arbitrary function of the distance from the centre.)

656. Show that the ordinate of the centre of gravity of the

uniform plane area of § 1, p. 153, is given by the formula :
*

6

I y
2dx

657. Find the attraction of a quadrant of a circle on a

particle at the centre of the circle.

658. Find the attraction of so much of a cylindrical surface

of revolution as lies between two planes normal to the axis, on

a particle situated in the axis.

659. The same, when the density of the surface is pro-

portional to the distance from one of the planes.

660. Find the attraction of a homogeneous hemispherical sur-

face on a particle situated at the centre of the sphere.

* This formula was given to me by Mr. Rogers Sherman Hoar, at that

time a student in the first course in the Calculus.
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661. The same question, only that the density of the surface

is proportional to the distance from the axis.

662. The same, when the density is proportional to the

distance from the base measured along the arc of a great circle

meeting the base at right angles.

663. Find the attraction of the semicircular wire (a) in Ex.

617
; (6) in Ex. 618, on a particle at the centre of the circle.

664. The same for a particle on the circumference extended,

at the point situated symmetrically with respect to the wire.

665. Find the attraction of a homogeneous surface in the

form of a right cone of revolution on a particle at the centre

of the base.

666. Find the attraction of the surface of a frustum of a

cone of revolution on a particle at the centre of the smaller

base.

667. Evaluate the double integral

//xydS,

where S is the rectangle whose vertices lie at the points (1, 2),

(1, 5), (3, 2), (3, 5). Ans. 42.

668. The same integral, extended over the triangle cut off

from the first quadrant by the line joining the points (0, 3)

and (3, 0). Ans. 3f .

669. Compute C C(±o+ x +f)ds,

the region S being the piece of the plane bounded by the

parabola y = x2— x and the right line y — x. Ans. 55^.

670. Extend the integral

//WHO"
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over the same region, and check your answer by inverting the

order of integration.

671. Compute the value of

//<x?ydS,

the region S consisting of a triangle whose vertices are at the

origin and the points (1, 2) and (2, 1).

672. Check your result in the last question by using polar

coordinates skilfully.

673. Find the centre of gravity of the solid consisting of

the part cut out of a homogeneous sphere by two planes

through the centre.

674. Show that the moment of inertia of a homogeneous

right cylinder about an axis through its centre perpendicular
to its axis of figure is /n£ n \

/=Jf
(i
+
l2>

675. Find the moment of inertia of a homogeneous right

cone of revolution about an axis through the vertex perpen-
dicular to the axis of figure.
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