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ABSTRACT

A method was developed where, by statistically analyzing

samples of aircraft fatigue data from a population, the

population's probability distribution function is

determined. The method uses plots of a sample's coefficient

of variation, and measures of skewness and kurtosis,

superimposed on templates of curves created from the moment

functions of Normal, Lognormal, Weibull and Exponential

distributions. The moment functions are derived for each

distribution. The plotting technique is combined with a

comparison of goodness of fit statistics to form the

complete distribution selection method. The method is first

tested on random numbers generated from known distributions

to see if the correct distributions are selected; then the

method is applied to helicopter loads data, fatigue life

characterization test data, and counting accelerometer data.
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I . INTRODUCTION

A. PURPOSE AND OBJECTIVE

The purpose of this thesis was to investigate a method

of moment comparisons to determine statistical descriptions

of aircraft structural fatigue characteristics through

appropriate selection of probability distribution functions.

Once the population distribution and it's parameters are

determined, they can be used to model fatigue parameters

such as applied loads that are damaging, static and fatigue

lives of material characterization samples, full scale

fatigue tests, air gust load intensity, sink speeds for

carrier landings, etc.

Realities are such that in many of these instances the

sample size may be rather small, statistically speaking.

The full scale fatigue test is a sample size of one because

of cost, and yet some estimates about other aircraft in the

population must be made from it. This represents the

extreme, but there are many instances in helicopter flight

substantiation tests where the number of load variations in

a maneuver will be on the order of 20. For this reason, a

second objective of this thesis was be to study sample size

influences on the methods of characterization.



B. BACKGROUND

Fatigue lives are based on two factors: stresses

endured by the aircraft, and the material fatigue

properties. Both of these factors must be studied through

statistical analysis due to random variations in their

values

.

1. Statistical Nature of Flight Loads

In aircraft fatigue work, fatigue damaging stresses

result from loads encountered by the aircraft being studied.

In the case of helicopters, these loads are measured during

the final design phase through substantiation flights.

Critical components and structural members are fitted with

strain gages, and a time-load history is recorded.

Typically 40 to 60 parameters are recorded in each of a

variety of flight regimes which reflect the expected or

potential usage and flight envelope of the aircraft. An

effort is made to have the same gross weight, center of

gravity, airspeed, rotor speed, load factor, density

altitude etc., for each flight to minimize variability in

the loads produced. However, items like pilot technique,

gusty air conditions, and instrument accuracy introduce

considerable variations. Because of the high cost of

substantiation flights, it is not feasible to gather large

amounts of data by flying hundreds of flights to

statistically establish the "true" loads encountered in each



flight regime. One method used to ensure conservatism is to

select the highest load encountered in a given regime, and

assume it occurs 100% of the time the aircraft flies that

regime. Another method used is to select the 95th

percentile load of those recorded in a given regime and

assume it occurs 100% of the time the aircraft flies that

regime. Both of these methods are likely to be

conservative, but they are also subject to "high envelope

growth". This occurs when subsequent flights produce higher

loads than the established highest load (or a higher 95th

percentile load). [Ref. 1] When this occurs it reduces the

validity of the fatigue life predictions which were based on

earlier substantiation flights. It would be useful to

determine the population distribution of the load samples

from each flight regime. Statistical models could then be

constructed to model the loads for situations not covered by

the substantiation flights, or for situations that were not

represented accurately during substantiation due to the

uncontrollable factors mentioned earlier.

Every Navy aircraft is monitored fatigue-wise. Many

are monitored by making load measurements using a variety of

instruments. Measured data is recorded in the fleet and

sent at regular intervals to designated ground facilities

for processing. As a result of missing data, the gaps are

filled via statistical representations of loads data from



all the other aircraft of that type. This statistical

application to the fatigue calculation is dependent upon the

size of the fleet of that particular aircraft, which is

sometimes small.

2. Statistical Nature of Material Behavior

Even if the stresses or loads to be encountered were

known exactly, fatigue life still could not be calculated

exactly due to the inherent variations in the strength of

the structures or components themselves. Manufacturing

processes like stamping, rolling, grinding, machining or

heat-treating can cause surface irregularities or residual

stresses. Assembly processes such as rivet placement and

bolt torque can produce variations in stress concentrations.

Even nondominant, microscopic, interstitial impurities or

dislocations have a strong effect on fatigue life.

Depending on the loads involved, these small irregularities

can cause a large scatter in fatigue lives for material

samples, subassemblies, and full scale tests, even when

subject to identical loading. "Coupon" testing is

relatively inexpensive, so sizable amounts of data can be

generated, which can be statistically analyzed to

characterize the variability. If the data can be fit to a

distribution and modeled, various "safe-lives" can be

developed to ensure an item will not fail before a certain

period of time. These lives are assigned confidence levels,



which indicate that a specified percentage of the items

would statistically survive the calculated safe-life a

specified percentage of the time. [Ref. 2]

Having motivated the broad need of statistical

characterization in fatigue analysis of aircraft, the moment

method fundamentals will now be developed.



II. DISTRIBUTION MOMENTS METHOD

A. MOMENTS DEFINED

The method of distribution identification developed in

this chapter is based on a group of statistics known as

moments of the probability distribution function. The first

moment of a distribution is more commonly referred to as the

mean fixl or the expected value of the random variable X.

The expected value is the centroid of the distribution.

H x
=E[X}= \xf{x)dx 2.1

E[X] is the expected value, or expectance. For a continuous

distribution, f(x) is the distribution's probability density

function, and x is the value of the random variable. The

mean is the first moment about zero. Higher order moments

can be calculated about any point in the distribution, but

are most commonly taken about zero (the raw moment), or

about the mean (the central moment). The second central

moment
fj,

(

x

2) is known as the variance, and is a measure of the

distribution's dispersion. It is akin to the moment of

inertia in dynamics or structures. The square-root of the

variance is the more commonly used standard deviation,

denoted by the symbol a. Equation 2.2 is the expression for

the second moment about the mean.



,(2) _
tf> = E

+00

(x-»xy]=j(x-tix )

2

Ax)dx 2.2

Equation 2.3 is the general form for the rth order, central

moment and is defined as expected:

ti
r) =E[(X-nj]=j(x-nJf(x)dx 2.3

It is important to note that the superscript on \x x
in

parentheses is not an exponent.

The expectance term for the variance is expanded as

shown below:

,(2) -
tf> = E {X-itS =E[x2

]-2nxE[X]+(jix )
: 2.4

where the expected value of a constant is that constant,

E[llx]=llx
and £[2] = 2.

The third central moment is called the skewness and

according to Equation 2.3, it specializes to Equation 2.5.

Equation 2.6 is the algebraic expansion of the third moment.

H?=E(X-nJ 2.5

H? = E[X> } - 3u xE[x
2

]
+m 2

xE[x] - nl 2.6



This will be used in derivations to follow. If a

distribution has a non zero third moment it is not symmetric

about it's mean. If it is negative it possesses a left

"tail" and is said to be skewed to the left, or negatively

skewed. Similarly, if the moment is positive, the tail is

to the right and the distribution is positively skewed.

The fourth, and final, moment used in this thesis is

called the kurtosis. This is a measure of the peakedness of

the distribution. If the tails are long, the kurtosis is

greater than if the tails are short. The expression for

kurtosis is given in Equation 2.7, the algebraic expansion

is provided in Equation 2.8. [Ref. 2 and Ref. 3]

^ = e[(x-»
x )

4

2.7

^=E[X 4
]-^^ XE[X'Y6^E[X

2 }-A^E[X} +
X̂

2.8

When comparing measures of the mean, standard deviation,

skewness and kurtosis, the above quantities are

standardized, or non-dimensionalized as follows:

a



- - nr-eSL- f"' -
4*-^"]'

" Of.") (£[x-Mf]
2

)

2.10

(4) (4) JlTv _ //"'I

^ =^-3=^-3=^-3 =—L-^-L-3 2.11

Notation and terminology vary widely depending on the

reference used. Here, y is the coefficient of variation, y,

is the measure of skewness, and 7
'i is the measure of

kurtosis. However/ Y\ and Yi can be referred to as the

third and forth cumulants, or shape factors as well. [Ref. 4

and Ref. 5] The -3 is a centralizing term used when

comparing measures of kurtosis. It comes from the fact that

the kurtosis for a Normal distribution is 3. Some

references use this correction, others do not. In this

thesis the correction was not used. Hence, y 2
= p2

= £1V=. • • •

The underlying approach of the distribution moments

method is that if moment values of sample data from an

unknown population match the moments of a standard

distribution, it would be the appropriate distribution with

which to characterize the data. This is done by plotting

the moments calculated from the data over a template of

moment functions calculated for various standard

distributions. If the sample moment values fall on, or



near, a known distribution curve, it could indicate that the

sample's population distribution corresponds. The

distributions treated in this moment method are the Normal,

Lognormal, Exponential, and Weibull. Each of these

distributions has a unique probability density function that

can be integrated and used to derive a function for each of

the moments defined above. Once the moment functions are

derived, they can be plotted versus one another, and a

template of curves can be formed.

B. DERIVATION OF MOMENT FUNCTIONS

1. Normal Distribution

Equation 2.12 is the probability density function

(pdf) for the Normal distribution.

1

fx
(x)= . exp

V2/rcr

-(.v-^)
:

2<r'

- DO < X < °° 2.12

The x subscript has been dropped from the mean and standard

deviation without creating any ambiguity. The pdf is

substituted into Equation 2.1 and a general expression for

the moments is developed.

(x-»y

L J iV27ra 2

-(x-»Y

2cr
dx 2.13

10



To simplify this integral a variable change is needed to the

standard Normal z. Let z = => x = zo + ji ; then Equation

2.13 becomes:

H
(r) =G r

) 4lK
exp

2
dz 2.14

For odd integer values of r the integral is zero, but for

even integer values of r , Equation 2.14 can be written as:

H
r =o r

j

2z
r

exp
2

dz 2.15

This is a variation of Euler's Second integral where:

2
5- ,

r(^) = Jz
25,

exp — z
2

dz 2.16

Letting s = —(r + \), and substituting into Equation 2.15

yields: [Ref. 3]

/T' = 2.17

Since odd integer values of r result in fi
{r)
=0, the

standardized measure for skewness, Equation 2.10 becomes:

11



_«?•_ p?r,=#:=
fr

=

(#r
=0

which indicates a symmetrical distribution. Using

properties of the gamma function, the values of fi
i2) and /z

(4)

are:

0-2 rf
3

a 4
2

2 r[-

/j
,4, = jJ^ = 3aA 2.20

Substituting these values into Equation 2.11 for the

standardized measure of kurtosis yields:

a nT nT 3or
4

_

Recall, the correction factor of -3 is not being used.

2. Lognormal Distribution

Using the random variable Z, where x=lnz is normal

and the constants £ and 5 as parameters, where H x =£ and

O x
=8, the Lognormal probability density function for Z

becomes

:

12



= 0, forz<0

-1

28
(lnz-| )

:

, forz>0
2.22

Substituting this equation into Equation 2.1 yields a

general form for the expected value of the rth moment of Z

.

E[Zr

] =
j

.'•-l

o v 2x8
exp

-1

28
(lnz-| )

:

rfz 2.23

By changing the variable to y = \nz-%; then z = e^ey
, and

dz = e^e
ydy, and -oo<y<oo [Ref. 3]. Substituting and

simplifying:

,i f(^rE[r}=\
V^?

exp
-1

2<5
2
(ln(«V)-{)

3

e
yerdy 2.24

-JV^1
exp

-v

25
2

4> 2.25

J^T*" vr + <f;r
- ^

28 2
dy 2.26

= J^
e^

42n8 :

exp

dy 2.27

=^l7^ eXfe (
-2^+/) rfy 2.28

13



At this point <5V 2
is added and subtracted to the

exponential to make \-25
2
ry+ y

2

) a perfect square.

Finally:

E[r] = ri \ IS

_„V27T<5

exp
-1

25 2 (y
2 -28 2ry+8 4

r
2

)
dy 2.29

£[Z
r

] = exp r$+U 2
r
2

)
2 JiV2^

exp
25

(y-s^y dy 2.30

The integral factor is the same as the cumulative density

function for the Normal distribution, which is normalized to

one. Therefore, the general expression for the expectance

is

:

£[Z
r

] = exp ri+-S 2
r

2

2

and,

$+-5 2

2
H - E[Z] = exp

The coefficient of variation from Equation 2.9 is:

2.31

2.32

y = (exp<5
2
-l) 2.32a

However, unlike the Normal distribution where a general form

for /i
<r) was derived, here each moment must be expanded

algebraically and substituted into Equations 2.10 and 2.11.

For example, to calculate the measure of skewness (y,), fl
{ )

14



and /l
<3) must first be calculated. The necessary

substitutions with some examples of the algebra are shown

below. Equation 2.4, fi
i2) = E\x 2

]-2fiE[X] + (n)
2 becomes:

/i
(2) = exp[2^ + 25 2 ]-2exp[2^ + 5 2

]

+ exp[2^ + 5
2

]

= exp[2^+25 2 ]-exp[2^+5 2

]

2.33

With a similar substitution, Equation 2.6, for the third

moment fif = E[x
3

]-3nxE[X
2

]+ 3n
2

xE[X]- x̂l becomes:

(3) r, . 9 ,i „ r . 1,1 r . 1.2I r, . 3 ,1
= exp, 3 £+ —s 2

1
- 3exp, 4 + -s 2

iexp[2 t,* 2&
2
1 + 3exp[2 §+ s

2
]exp, £ + — <5

2
- exp, 3 £+ — <5

2

= exp 3S+-S2

2
-3 exp 3£+-<52

2
+ 3 exp 3£+-<52

„ 2
-exp 3£+-<52

2

= exp 3£+-<52

2
-3 exp 3£+-<52

2
+ 2 exp 3£+-<52

2

2.34

Note that £[A
,3

]*/i
3

.

The measure of skewness, Equation 2.10 simplifies to:

exp[3<5
2
]-3exp[<5

2

]
+ 2

(exp[5
2
]-l)

3/:
2.35

The measure of kurtosis y2 , can be derived once the

expression for /i
(4) is expanded and simplified. The algebra

is too extensive to show. Only the simplified function is

given.

15



72
=exp[4<5

2

]
+ 2exp[3(S

2

]
+ 3exp[2<5

2

]-3 2.36

The functions in Equations 2.32a, 2.35, and 2.36 show that

the coefficient of variation and the measures of skewness

and kurtosis depend only on the value of 5, the standard

deviation of the population.

3. Exponential Distribution

The probability density function for the exponential

distribution is:

fx
(x) = 0exp(-ex) , ifx>0 2.37

Substituting into Equation 2.1a yields the general

expression for the expectance:

E[X r

] = jx
r

(dexp(-dx))dx 2.38

v
Performing the variable substitution: v = 6x => x = — and dv- Odx ,

The expectance becomes:

4*1 =
J

e
vdv=-^jv r

e'
v
dv 2.39

e 6'
o\°J u

This integral has the same form as Euler's Second Integral,

called the gamma function [Ref. 3].

T(z) = jt
:l
e'dt 2.40

16



Substituting v for t, and letting r+\=z, the simplified

expression for the expectance is:

r(r + l)

2.41

Using Equation 2.41 and properties of the gamma function,

expressions for fi , ji
{1)

, /i
(3>

, and ji
(4) are shown below.

M =
r(2)

= j_

e e
2.42

^ =
r(3) 2r(2)

|

i

=
i

0' r 0' e'

2.43

0'

^r(3)^
+

^2
e j 6 6 6

2.44

,(4)

6
A

6

r\r(5) r4Yr(4)

^ 0-

r(3)l r 4 Yr(2)^
+ j_

9

K<>
2

J
6'

v » y
6

4
6

4
2.45

Constructing the numerators and denominators for Equations

2.10 and 2.11, using the results of Equations 2.42 through

2.45, produces a coefficient of variation of y=l, a measure

of skewness of y, = 2 , and a measure of kurtosis of Y2
= 9.

These will plot as points on the template.

17



4. Weibull Distribution

The parameters of the Weibull distribution are, /3

which determines the shape, 1/a which plays the same role as

6 did in the exponential distribution, and v which is the

smallest value the random variable can assume. The

probability density function for the Weibull distribution

is:

L = p(}
,0-i

a a
exp

x-v

\ a
, if x> v

2.46

= , if x<v

The Weibull and Exponential distributions are related by the

fact that if /3=1, v=0 , and 6=l/a the two are identical.

Therefore if X has a Weibull distribution with parameters

\x-y)
j8, a, and v; then Y =

a
has an Exponential

distribution with parameter 0=1. Or, X = aY^+v, where X

and aY^ +v have the same distributions, means, variances,

T(r-l) 1

and higher moments. Now, where E[X r

]
= — , and H = — for

d 8

the Exponential distribution,

E[X r

] = E
1

aY p +v 2.47a

IX = E[X] = E[(aY
ip + v)l = aE[Y

x

"]+ v =
e

2.47b

18



for the Weibull distribution. Since must equal one for

the similarity to work, /j = dT + 1

V

+v.
J

Letting v=0 , these expressions are used to construct

the moments used in Equations 2.10 and 2.11. The algebra is

too involved to show here, but the substitutions are made

just as they were for the Exponential case in Equations 2.42

through 2.45. After algebraically reducing the expressions,

functions for the coefficient of variation (y), measures of

skewness (/,) and kurtosis (y2 ) are shown below.

7 =

( i y ar l -r
v
-ll/2

r\
t

+i

2.48

72 =

2.49

2.50

19



These expressions show that the measures of skewness and

kurtosis for a Weibull distribution depend only on the value

of /3, the shape parameter of the distribution.

Once the moment functions were derived, they were

entered on a spread sheet in Microsoft Excel, where values

of the coefficient of variation, skewness, and kurtosis

could be calculated for several different values of the

distribution parameters. Three plots were constructed: (1)

skewness versus coefficient of variation, (2) kurtosis

versus skewness, and (3) kurtosis versus coefficient of

variation. Figures 2.1, 2.2, and 2.3 show the three plots

with the curves for each distribution. Notice that the

Normal and Exponential distributions appear as single points

on some of the plots.

Moment Functions

-*— Normal

Lognormal

-*- - Weibull

Exponential

-2 1

Coefficient of variation

Figure 2.1: Moment Functions

20



.52
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i

Normal

Lognormal

Weibull

Exponential

Skewness

Figure 2.2: Moment Functions

Normal

Lognormal

-— Weibull

Exponential

0.2 0.4 0.6 0.8 1

Coefficient of Variation

Figure 2.3: Moment Functions
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C. TESTING OF THE MOMENT PLOT METHOD

1 . Random Number Draw

a. A Graphical Statistical System (AGSS)

To test whether or not the method would

discriminate between sample population distributions, random

numbers drawn from known distributions were analyzed using

the moment plot method. A Graphical Statistical System

(AGSS), an APL based software package resident on the Naval

Postgraduate School's main-frame computer, was used to

generate the random numbers, and to calculate the

coefficients of variation, and the measures of skewness and

kurtosis of the samples analyzed. As part of the analysis

procedure, AGSS makes histograms, cumulative distribution

plots, and probability plots for each distribution it fits

to data. Figures 2.4a, b, and c are examples of these

plots

.

WEBULL DENSITY FUNCTION. N-68

Figure 2.4a: Histogram and Weibull Density Function

22



WEIBULL CUMULATIVE DISTRIBUTION FUNCTION. N-6B

°-t-

Figure 2.4b: EDF and Weibull CDF

WEJBUIL PROBABILrTY PLOT, NI-68

J9.9
99

S3
75

50

5 s

u.

1

0.1

—i— |—j—;____ -y/t.^c
1 1—*_.

I Jr : •

>? ; ;
• •

40 100

X

200 400

Figure 2.4c: Weibull Probability Plot

Figure 2.4a is a histogram of the sample values

with the Weibull density function. Comparing the two, shows

how the frequencies of sample values (represented by the

bars) differ from the expected frequencies of values from a

Weibull distribution density function. The empirical

cumulative distribution function (EDF) is shown in Figure

2.4b with the Weibull cumulative distribution function

(CDF). If this sample had a perfect Weibull distribution
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the empirical plot would lie on top of the Weibull function.

Figure 2.4c is a Weibull probability plot. It conveys the

same information as Figure 2.4b, but is used to more easily

judge the goodness of fit. If the sample had a perfect

Weibull distribution, the points plotted would lie on the

straight line. To achieve the straight line for

probability; y-axis has been plotted as y = ln(-ln(l-Fn (x))) , and

the x-axis becomes Ln(x) . Where F
n (x) is the Weibull

cumulative distribution function [Ref. 6].

b. Types of Data to be Fitted

To generate random numbers from a specific

population distribution, AGSS asks for certain input

parameters. For Normal, and Lognormal distributions, the

mean and standard deviation are required. For Weibull

distributions, the shape and scale parameters are required,

and for Exponential distributions the mean is required. The

range and variance of typical flight load data and fatigue

life data were used to determine the input parameters. Two

means were chosen to represent the loads data, 500 lbs., and

5000 lbs. Three means were chosen to represent the fatigue

life data, 100,000, 1,000,000, and 5,000,000 cycles.

Standard deviations typical of the data were chosen for

these means, which were 150, 1500, 30,000, 150,000, and

750,000, respectively. Five separate random number draws
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corresponding to these means and standard deviation pairs

were made from each of the four distributions.

c. Distribution Fitting

Once the 20 samples of random numbers were

generated, each sample was fit to each of the four

distributions. Figures 2.5a, b, c, d, e, f, g, and h show

the CDF/EDF plots and probability plots for a Weibull sample

fit to the four different distributions.

NORMAL CUMULATIVE DISTRIBUTION FUNCTION. N-10O0 NORMAL PROBABILITY PLOT, N-1000

M.8

n 1

ss i

BO 1

T —4

K
£23

10 .....i-——

.

s T

1 I-"^
1

^>
0.1 St?-

200 400 S00 BOO

SAMPLES FROM WEIBULL DISTRJBimON

200 400 800 BOO

SAMPLES FROM WBBULL BSTRIBimCN

Figure 2.5b: ProbabilityFigure 2.5a: EDF/CDF
Weibull Sample fit to Normal Distribution

LOCNORMAL CUMULATIVE DISTRIBUTION FUNCTION. N-1000 LOCNORMAL PROBABILITY PLOT. N-1000

200 400 BOO 800
SAMPLES FROM WE8UU. DCTRIBtmON

1000 100 200 400

SAMPLES FROM WDBULL OSTRIBUTXJN

1000

Figure 2.5c: EDF/CDF Figure 2.5d: Probability
Weibull Sample fit to Lognormal Distribution

25



waauu. cumulative distribution function, n-iooo WE8UU- PRCBASIUTY PLOT. N-IOOO

200 400 MM MO
SAMPLES FROM WBSULL OBTWBUnON

100 300 400

SAMPLES FROM WBBULL OSTOai/TWN
1000

Pigure 2.5e: EDF/CDF Figure 2.5f: Probability
Neibull Sample fit to Weibull Distribution

EXPONENTIAL CUMULATIVE 01STR18UT10N FUNCTION, N-1000 EXPONENTIAL PROBABILITY PLOT. N-1000

100 1000 1900 2000

SAMPLES frtCU WBBULL OSTRlBLmON

200

SAMPLES FROM
400

WBBULL

Figure 2.5g: EDF/CDF Figure 2.5h: Probability
Weibull Sample fit to Exponential Distribution

AGSS calculated the sample mean, standard

deviation, skewness, and kurtosis for each sample (20 sets

of values). It also calculated four goodness of fit

measures for each fit (80 sets of values).

d. Goodness of Fit Measures

AGSS calculates the Chi-square, Kolmogorov-

Smirnov, Cramer-von Mises, and Anderson-Darling goodness of
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fit statistics. The Chi-square goodness of fit test is

applicable to discrete or continuous, univariate or

multivariate data, and is the most widely used goodness of

fit test. There are several variations of the test, all

based on the following relation, which is a measure of the

difference between the observed and the expected frequency

of a value. A graphical representation of this difference

is Figure 2.4a.

Here, N is the observed frequency of the i th cell. The

expected frequency is np
t

based on the probability density.

The other three goodness of fit statistics are "EDF

statistics", based on measuring the vertical difference

between the empirical distribution function of the sample,

F
n
(x) , and the cumulative distribution function of the

distribution being tested, F(x) . Figure 2.4b shows the

difference between F
n
(x) and F(x) . These vertical

differences are divided into two classes, the supremum class

and the quadratic class.

The supremum statistics are shown in Figure

2.4b, where D +
is the largest vertical difference when F

n
(x)

is greater than F(x) , and D~ is the largest vertical
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difference when F
n
(x) is smaller than F(x) . The most well-

known EDF statistic is the Kolmogorov statistic D . It is

defined as: D = sup x \Fn (x) - F(x)\ , and measures the maximum

difference between F
n
(x) , and F(x) . [Ref. 5 and Ref. 6]

The quadratic class is given by:

Q = n]{FH(x)-F(x)}
2

yf{x)dF(x) 2.52

where y{x) is a weighting function for the squared

difference \Fn (x)-F(x)\ . The Cramer-von Mises statistic W 2

,

is a special case of the quadratic class where i//(jc) = 1. For

the Cramer-von Mises statistic, Equation 2.52 specializes

to:

W 2
=n]{F„(x)-F(x)YdF(x) 2.53

The Anderson-Darling statistic A 2

, is another special case

of the quadratic statistic where \y{x) = \{f(x)}{(\- F(x))\ . For

the Anderson-Darling statistic, Equation 2.53 specializes

to:

1
{F

n
(x)-F(x)}

2

dF(x)^
(A =n\ r , , i dF{x) 2.54

1 {f{x)}{{\- F{x))\
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The quadratic statistics are more powerful than the supreraum

class of EDF statistics, since better use is made of the

information contained in the whole sample rather than by

using only the maximum discrepancy [Ref. 6]. Smaller values

of the four goodness of fit statistics indicate a better fit

to the tested distribution.

2. Results of the Study

a. Moment Plots

The following three figures show moments of the

random samples plotted on the moment function templates.

There are 20 points in each figure representing the five

random draws from each of the four distributions.
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Figure 2.6: Coefficient of Variation vs. Skewness
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The values of skewness and the coefficients of

variation for the random samples plotted in Figure 2.6 fall

close to their correct distribution curves. Where the

Normal and Weibull functions intersect at (.25,0) there are

three points from the Normal random sample and three points

from the Weibull random sample. This intersection is the

only area of ambiguity for this particular plot. Aside from

this area, the plot indicates the correct distributions of

the random samples. The random sample values of skewness

and kurtosis (Figure 2.7) all fall near the curve for a

Weibull distribution, but the kurtosis is consistently

underestimated for Lognormal. This plot may not be as

useful an indicator of the distribution as Figure 2.6.

Figure 2.8 has three intersection points that could result

in ambiguous distribution indications. By using all three

plots, it was hoped that the areas of ambiguity could be

resolved.

b. Goodness of Fit Tables

Goodness of fit statistics were calculated for

each fit of the random samples and entered in the following
>

tables. Significance levels are also listed under their

respective goodness of fit statistic. AGSS specifies a

significance level a =0.01 for the goodness of fit

statistics. It uses as the null hypothesis, H : "The

goodness of fit statistic is small enough to indicate a good
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fit". For each goodness of fit statistic, AGSS calculates

the corresponding /7-value from the sample data. If p<a,

the null hypothesis must be rejected [Ref. 7]. Therefore,

p<0.01 indicates a lack of fit. Tables 2.1 through 2.5 are

goodness of fit statistics for samples drawn from a Normal

distribution, then fit to all four distributions. Tables

2.6 through 2.10 are for samples drawn from a Lognormal

distribution. Tables 2.11 through 2.15 are for samples from

a Weibull distribution, and Tables 2.16 through 2.20 are for

samples drawn from an Exponential distribution.

TABLE 2.1: NORMAL SAMPLE 1

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 12.508 114.04 7.9631 1674.2
Significance 0.12993 0.33585
Kolm-Smirn 0.02433 0.077617 0.016414 0.37174
Significance 0.59467 0.000011701 0.95044
Cramer-V M 0.067764 2.3193 0.035885 47.941
Significance >0.15 <0.01 >0.15 <0.01
Ander-Darl 0.42392 infinite 0.34355 233.6
Significance >0.15 >0.15 <0.01

TABLE :2.2: NORMAL £JAMPLE 2

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 5.8328 111 6.0472 1611
Significance 0.66595 0.64194
Kolm-Smirn 0.013458 0.080474 0.022106 0.36275
Significance 0.99351 0.0000047422 0.7128
Cramer-V M 0.022671 1.8381 0.062938 46.724
Significance >0.15 <0.01 >0.15 <0.01
Ander-Darl 0.16054 11.45 0.35882 228.21
Significance >0.15 <0.01 >0. 15 <0.01
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TABLE 2!.3: NORMAL SAMPLE 3

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 2.7318 103.09 5.4523 1654.6
Significance 0.95004 0.60494
Kolm-Smirn 0.018078 0.070662 0.01623 0.3677
Significance 0.89943 0.000092067 0.95485
Cramer-V M 0.031066 1.8326 0.047165 46.978
Significance >0.15 <0.01 >0.15 <0.01
Ander-Darl 0.19491 11.707 0.3155 229.1
Significance >0.15 <0.01 >0.15 <0.01

TABLE 2.4: NORMAL SAMPLE 4

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 7.6794 40.694 32.709 4144
Significance 0.36171 9.267E-7 0.000069474
Kolm-Smirn 0.017169 0.046771 0.04403 0.48245
Significance 0.92973 0.025173 0.041417
Cramer-V M 0.046794 0.58789 0.49186 71.241
Significance >0.15 <0.025 <0.05 <0.01
Ander-Darl 0.37196 4.0338 3.1213 333.17
Significance >0.15 <0.01 <0.025 <0.01

TABLE 2.5: NORMA L SAMPLE 5

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 8.1368 23.493 38.053 3885
Significance 0.32068 0.0013981 0.0000029604
Kolm-Smirn 0.020689 0.033402 0.04478 0.48708
Significance 0.78541 0.2145 0.036249
Cramer-V M 0.0471 0.27747 0.54246 70.769
Significance >0.15 >0.15 <0.05 <0.01
Ander-Darl 0.32459 1.8754 4.0146 331.03
Significance >0.15 <0.15 <0.01 <0.01

TABLE 2.6: LOGNORMAL SAMPLE 1

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 129.25 5.1854 127.1 1538.6
Significance 0.63735
Kolm-Smirn 0.078013 0.021541 0.083086 0.3987
Significance 0.74231
Cramer-V M 1.8897 0.06254 2.175 47.983
Significance <0.01 >0.15 <0.01 <0.01
Ander-Darl 11.906 0.47427 14.545 232.17
Significance <0.01 >0.15 <0.01 <0.01
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TABLE 2.7: LOGNORMAL SAMPLE 2

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 93.243 3.8938 104.78 1690.6
Significance 0.79192
Kolm-Smirn 0.076753 0.020737 0.07986 0.40182
Significance 0.78304
Cramer-V M 1.3541 0.059057 1.7924 49.96
Significance <0.01 >0.15 <0.01 <0.01
Ander-Darl 8.2654 0.31629 11.959 241
Significance <0.01 >0.15 <0.01 <0.01

TABLE 2.8 LOGNORMAL SAMPLE 3

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 159.15 9.989 153.32 1654.4
Significance 0.12512
Kolm-Smirn 0.087918 0.029511 0.089763 0.40361
Significance 3.8656E-7 0.34853 2.0068E-7
Cramer-V M 2.2149 0.13525 2.8142 49.108
Significance <0.01 >0.15 <0.01 <0.01
Ander-Darl 13.612 0.80713 18.485 236.68
Significance <0.01 >0.15 <0.01 <0.01

TABLE 2.9: LOGNORMAL SAMPLE 4

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 33.105 4.4023 121.07 4021
Significance 0.6224
Kolm-Smirn 0.051168 0.021552 0.076314 0.49442
Significance 0.010641 0.74173
Cramer-V M 0.64474 0.076439 2.4009 71.333
Significance <0.025 >0.15 <0.01 <0.01
Ander-Darl 3.8662 0.50689 15.696 332.8
Significance <0.01 >0.15 <0.01 <0.01

TABLE 2.10 : LOGNORMAL SAMPLE 5

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 32.089 4.5198 130.89 4311.2
Significance 0.71832
Kolm-Smirn 0.047072 0.023323 0.080214 0.49845
Significance 0.023791 0.64815
Cramer-V M 0.43642 0.076196 2.0429 72.724
Significance <0.01 >0.15 <0.01 <0.01
Ander-Darl 2.5507 0.38184 13.3 338.83
Significance <0.05 >0.15 <0.01 <0.01
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TABLE 2.11: WEIBULL SAMPLE 1

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 11.129 111.45 7.9309 1667.7
Significance 0.26697 0.44025
Kolm-Smirn 0.026625 0.065715 0.022782 0.37167
Significance 0.47761 0.00035486 0.67701
Cramer-V M 0.10739 1.502 0.068919 47.135
Significance >0.15 <0.01 >0.15 <0.01
Ander-Darl 0.58359 9.7349 0.39178 230.33
Significance >0.15 <0.01 >0.15 <0.01

TABLE 2.12: WEIBULL 2

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 13.324 95.08 9.1728 1490.8
Significance 0.1485 4.1633E-17 0.32793
Kolm-Smirn 0.02736 0.056852 0.025149 0.36073
Significance 0.44251 0.0031162 0.55185
Cramer-V M 0.13878 1.2526 0.09691 44.762
Significance >0.15 <0.01 >0.15 <0.01
Ander-Darl 0.81389 8.2763 0.56915 219.82
Significance >0.15 <0.01 >0.15 <0.01

TABLE 2.13: WEIBULL SAMPLE 3

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 15.197 128.99 8.3147 1474.9
Significance 0.085657 0.50276
Kolm-Smirn 0.025063 0.072904 0.019056 0.35731
Significance 0.55628 0.000048364 0.86081
Cramer-V M 0.13297 1.7007 0.065984 44.207
Significance >0.15 <0.01 >0.15 <0.01
Ander-Darl 0.88182 10.695 0.43388 217.8
Significance >0.15 <0.01 >0.15 <0.01

TABLE 2.14: WEIBULL SAMPLE 4

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 4123.7 3.8461 173.08 66.461
Significance 0.87073 2.4798E-11
Kolm-Smirn 0.46119 0.017421 0.086403 0.054543
Significance 0.92191 6.5556E-7 0.0052128
Cramer-V M 69.88 0.038804 2.4168 0.78342
Significance <0.01 >0.15 <0.01 <0.01
Ander-Darl 328.09 0.26589 14.804 4.8264
Significance <0.01 >0.15 <0.01 <0.01
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TABLE 2.15: WEIBULL SAMPLE 5

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 4336.9 3.3931 116.44 57.413
Significance 0.75813 1.5068E-10
Kolm-Smirn 0.47111 0.021057 0.089704 0.052975
Significance 0.767 2.0498E-7 0.0073019
Cramer-V M 71.261 0.057894 2.7003 0.88649
Significance <0.01 >0.15 <0.01 <0.01
Ander-Darl 333.82 0.35343 15.907 5.2765
Significance <0.01 >0.15 <0.01 <0.01

TABLE 16: EXPONENTIAL SAMPLE 1

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 109.61 88.212 6.2758 6.3374
Significance 6.9389E-17 0.17947 0.27476
Kolm-Smirn 0.16819 0.08944 0.02144 0.022324
Significance 5.3839E-25 2.2525E-7 0.74747 0.70129
Cramer-V M 8.2089 2.3331 0.059895 0.065358
Significance <0.01 <0.01 >0.15 >0.15
Ander-Darl 48.045 13.812 0.39738 0.42406
Significance <0.01 <0.01 >0.15 >0.15

TABLE 2.17: EXPONENTIAL SAMPLE 2

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 132.13 114.3 7.7534 11.213
Significance 0.25674 0.12958
Kolm-Smirn 0.1451 0.095011 0.023862 0.034432
Significance 1.0345E-18 2.8853E-8 0.61946 0.1866
Cramer-V M 6.3655 2.7706 0.086885 0.21045
Significance <0.01 <0.01 >0.15 >0.15
Ander-Darl 38.399 16.461 0.51685 0.98136
Significance <0.01 <0.01 >0.15 >0.15

TABLE 2.18: EXPONENTIAL SAMPLE 3

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 160.06 84.917 7.1068 6.9939
Significance 1.6945E-14 0.52516 0.63775
Kolm-Smirn 0.15239 0.072042 0.017363 0.01737
Significance 1.3516E-20 0.00006209 0.92377 0.92353
Cramer-V M 7.6478 1.7625 0.037868 0.032433
Significance <0.01 <0.01 >0.15 >0.15
Ander-Darl 44.703 11.143 0.27649 0.2461
Significance <0.01 <0.01 >0.15 >0.15
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TABLE 2.19: EXPONENTIAL SAMPLE 4

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 210.62 72.891 6.9723 8.9638
Significance 1.3032E-12 0.43176 0.34536
Kolm-Smirn 0.14068 0.070094 0.017358 0.044678
Significance 1.2879E-17 0.00010801 0.9239 0.036919
Cramer-V M 7.1875 1.4596 0.058719 0.30073
Significance <0.01 <0.01 >0.15 <0.15
Ander-Darl 41.998 9.5516 0.33573 2.1475
Significance <0.01 <0.01 >0.15 <0.1

•CABLE 2.20: EXPONENTIAL SAMPLE 5

Test\Fit Normal Lognormal Weibull Exponential
Chi-Square 151.03 70.603 9.1229 9.5086
Significance 3.0756E-13 0.10427 0.14692
Kolm-Smirn 0.16368 0.069234 0.017212 0.017594
Significance 1.076E-23 0.00013727 0.92842 0.91629
Cramer-V M 9.0392 1.8096 0.061076 0.063071
Significance <0.01 <0.01 >0.15 >0.15
Ander-Darl 53.275 11.557 0.4929 0.49039
Significance <0.01 <0.01 >0.15 >0.15

c. Vote Counting Method

The moment plots provide a method of visual

comparison of the candidate population distribution moments

with the sample moments, while the goodness of fit

statistics provide an analytical comparison that is more

abstract. The following vote count method combines the two

procedures to produce a quantitative indication of the

likely population distribution.

From the three moment plots (Figures 2.6, 2.7,

2.8), each of the 60 points provided a "vote" for a

distribution, based on which distribution moment function

the point was closest to. If the point fell equidistant

between two functions, both corresponding distributions
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would receive a vote. The goodness of fit statistics

"voted" for the distribution fit that produced the smallest

statistic value; i.e., each table above produced four votes.

The four tables below show the results of this vote counting

method for each of the known distributions. The first three

rows are the votes of the moment plots: the next four rows

are the votes of the goodness of fit statistics.

TABLE 2.21: RANDOM SAMPLES FROM NORMAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
S. vs. C. of V. 5 3

Kurt. vs. Skew. 3 5

Kurt. vs. C. of V. 3 4

Chi-Square 4 1

Kolm. -Smirn. 3 2

Cramer-V.M. 4 1

Ander.-Dar. 4 1

Vote Totals: 26 17

TABLE 2.22: RANDOM SAMPLES FROM LOGNORMAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
S. vs. C. of V. 5

Kurt. vs. Skew. 5

Kurt. vs. C. of V. 3 2

Chi-Square 5

Kolm. -Smirn. 5

Cramer-V.M. 5

Ander.-Dar. 5

Vote Totals: 28 7

TABLE 2.23: RANDOM SAMPLES FROM WEIBULL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
S. vs. C. of V. 3 5

Kurt. vs. Skew. 5

Kurt. vs. C. of V. 5

Chi-Square 5

Kolm. -Smirn. 5

Cramer-V.M. 5

Ander.-Dar. 5

Vote Totals: 3 35
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TABLE 2.24: RANDOM SAMPLES FROM EXPONENTIAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
S. vs. C. of V. 3 2

Kurt. vs. Skew. 4 1

Kurt. vs. C. of V. 4 1

Chi-Square 4 1

Kolm. -Smirn. 5

Cramer-V.M. 4 1

Ander.-Dar. 3 2

Vote Totals: 27 8

This distribution selection method selected the

correct distribution in every case but the Exponential.

This is due to the fact that the moment curves for the

Weibull distribution intersect the point for the Exponential

distribution. The Exponential distribution is actually a

sub-set with specific parameters of the more general Weibull

distribution. Therefore, Exponential samples scattered

about the Exponential point have a tendency to be closer to

the Weibull curve than the Exponential point. The selection

method correctly selected the Normal distribution by a small

margin over the Weibull distribution. Here, the goodness of

fit statistics provided more accurate votes than the moment

plots

.

d. Varying the Sample Size

The test just described was based on drawing

sample sizes of 1000 from a known distribution. The actual

flight loads and fatigue life data to be analyzed with the

method have sample sizes around 20. To determine how
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accurate this distribution selection method is with smaller

sample sizes, the entire test was performed two more times.

First, random samples of 100 were drawn from known

distributions, analyzed with AGSS, the moments were plotted,

goodness of fit statistics calculated, and the votes

tallied. Then random samples of 20 were drawn, and the

process was repeated. Figures 2.9a, b, c, and d show

EDF/CDF plots and probability plots for Weibull samples fit

to a Weibull distribution. Comparing these four Figures to

Figures 2.5e and 2.5f gives a preliminary indication of how

sample size affects the goodness of fit.
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Figure 2.9a: EDF/CDF Figure 2.9b: Probability
Random Weibull Sample of 100 fit to Weibull Distribution
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Figure 2.9c: EDF/CDF Figure 2.9d: Probability
Random Weibull Sample of 20 fit to Weibull Distribution

Only the total vote count tables for each distribution are

shown below. Tables 2.25 through 2.28 are for sample sizes

of 100, Tables 2.29 trough 2.32 are for sample sizes of 20.

TABLE 2.25: SAMPLE SIZE OF 100 FROM NORMAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 11 2 7

Goodness of fit 7 3 6

Vote Totals: 18 5 13

TABLE 2.26: SAMPLE SIZE OF 100 FROM LOGNORMAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 5 4 6

Goodness of fit 16 4

Vote Totals: 5 20 10

TABLE 2.27: SAMPLE SIZE OF 100 FROM WEIBULL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 4 1 10
Goodness of fit 9 11

Vote Totals: 13 1 21
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TABLE 2.28: SAMPLE SIZE OF 100 FROM EXPONENTIAL
DISTRIBUTION

TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 14 7

Goodness of fit 16 4

Vote Totals: 30 11

TABLE 2.29: SAMPLE SIZE OF 20 FROM NORMAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 5 2 10
Goodness of fit 5 11 4

Vote Totals: 10 13 14

TABLE 2.30: SAMPLE SIZE OF 20 FROM LOGNORMAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 3 6 8

Goodness of fit 2 11 4

Vote Totals: 5 17 12

TABLE 2.31: SAMPLE SIZE OF 20 FROM WEIBULL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 5 3 13
Goodness of fit 5 3 9

Vote Totals: 10 6 22

TABLE 2.32: SAMPLE SIZE OF 20 FROM EXPONENTIAL DISTRIBUTION
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 15 2

Goodness of fit 3 7 5

Vote Totals: 3 22 7

The vote count method was just as effective with

sample sizes of 100 as with 1000. Lognormal and Weibull

distributions were correctly selected by a wide margin.

Again, the Normal distribution was correctly selected by a
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small margin over the Weibull distribution with the moment

plots indicating with greater accuracy, while Lognormal was

also correctly selected, the goodness of fit tests were more

accurate. Weibull was correctly selected with the moment

plots indicating most accurately, but both methods missed on

the Exponential. With sample sizes of 20 the method loses

considerable accuracy. For the known Normal samples, moment

plots indicated Weibull, goodness of fit statistics

indicated Lognormal. However, the total votes for Normal

was close to the totals for Lognormal and Weibull.

Lognormal was correctly selected by a 3:2 margin, with the

goodness of fit statistics providing the most accurate

votes. Weibull was correctly selected by both components of

the method, with a 2:1 margin. Based on the three test

results of varying sample sizes, sometimes the moment plot

is better, sometimes the goodness of fit tests are better.

Combining the two, the distribution selection method is able

to correctly determine whether a sample is from a Weibull or

Lognormal distribution in most cases. When a sample has a

coefficient of variation between 0.2 and 0.5, the moment

plots method cannot differentiate between Normal and

Weibull. The reason for this is that intersections occur

for the Weibull and Normal distribution moment functions

within this range (see Figure 2.4 and Figure 2.6). It would

be reasonable to assume that if two distributions receive
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similar vote counts for a sample being analyzed, either

distribution could be used to model the sample's population.

Another alternative in case of a tie would be to tally the

votes again, allowing each moment point and goodness of fit

statistic to vote for one of the tied distributions only,

after eliminating the others.
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III. APPLICATIONS OF THE MOMENT METHOD

A. HELICOPTER FLIGHT LOADS DATA

The first application of the moment/goodness of fit vote

count method was to flight loads measured on the main rotor

forward longitudinal stationary star (MRFLSS) of the SH-60

Sikorsky helicopter. This is a fatigue critical component.

Data was provided from two separate substantiation flights

flown by United Technologies Corporation, Sikorsky Aircraft

Division. Load measurements were recorded for a variety of

maneuvers at a variety of airspeeds, collective settings,

and "g" loadings. The maneuver that caused the most fatigue

damaging loads was the symmetric pull-out. Table 3.1 lists

the two flights at two different gross weights, and the runs

made during each flight. Essential parameters of each run

are also listed. Parameter abbreviations are: SP is

symmetric pullout, 155K or 124K is the airspeed in knots, FC

is fixed collective, TC is top collective, -25% is the

collective set at 75% of TC, and G's are the accelerations

the maneuver produced in terms of the acceleration of

gravity.
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TABLE 3.1: FLIGHT/RUN PARAMETERS
Flight 37:

16,500 gross wt.
Flight 43:

20,800 gross wt.
RUN MANEUVER RUN MANEUVER
14 SYM PULL (SP), 124K

FIX COLL (FC) , 2.6G
69 SP, 124K, 100%

TORQUE (100%), 1.5G
15 SP, 124K, FC, 2.8G 70 SP, 124K, 100%, 1.75G
16 SP, 124K, FC, 2.8G 71 SP, 124K, 100%, 2.0G
17 SP, 124, FC, 3.0G 72 SP, 124K, 100%, 2.0G
19 SP, 124K -25%, 2.9G 73 SP, 124K, 100%, 2.1G
21 SP, 124K -25%, 2.8G 74 SP, 124K, 100%, 2.1G
22 SP, 124K, -25%, 3.0G 75 SP, 124K, 100%, 1.75G
23 SP, 124K, -25%, 2.9G 76 SP, 124K, 100%, 2.1G
24 SP, 124K, -25%, 2.9G 77 SP, 124K, 100%, 2.3G
25 SP, 124K, TOP COLL

(TC), 2.8G
81 SP, 155K, 100%, 1.5G

28 SP, 155K, -25%, 2.5G 82 SP, 155K, 100%, 1.75G
29 SP, 155K, -25%, 3.4G 83 SP, 155K, 100%, 2.1G
30 SP, 155K, -25%, 3.1G 84 SP, 155K, 105%, 1.75G
31 SP, 155K, -25%, 3.1G 85 SP, 155K, 105%, 2.1G

86 SP, 155K, 100%, 1.5G
87 SP, 155K, 100%, 1.85G
88 SP, 155K, 100%, 2.3G

1. Loads Data Processing

From a statistical standpoint, it would be ideal to

have several runs made for each set of parameters; rather

than a different set of parameters for each run. However,

this is not deemed economically feasible with substantiation

flights at the present time; therefore, the flight loads

data had to be pooled prior to any statistical analysis.

a. Sorting and Pooling Data

Load versus time plots were made of each run.

Flight 43, which had the higher gross weight, produced

higher loads, even though the "g" loading was slightly less
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than flight 37. Within the two flights, the runs at 155

kts. produced slightly higher loads than those at 124 kts.

Figures 3.1 and 3.2 are examples of the load versus time

plots. Figure 3.1 is at 124 kts.: Figure 3.2 is at 155

kts.
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Figure 3.1: 124 kts. Load vs. Time
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Figure 3.2: 155 kts. Load vs. Time

Initially four pools were established, one for each flight

speed within the two flights.

b. Selecting Peak Loads

Fatigue life calculations only consider the

maximum and minimum loads in a given load cycle. Because

these loads were sampled every 0.17 seconds, many of the

loads recorded were intermediate loads en route to a maximum

or minimum. The loads of each run were processed through a

computer algorithm to pick out only the maximum loads, or

"peaks", which are the loads of principal interest. If

needed, the same analysis could be carried out to find the

minimum loads in each excursion, or what are called the

"valleys"

.
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c. Selecting Cut-off Loads

In addition to helping pool the data, the load

versus time plots indicated that the recording instruments

were turned on just before the maneuver was initiated, and

turned off just after the maneuver was completed. Loads

encountered in straight and level flight are not fatigue

damaging, and are not necessarily from the same population

as the fatigue damaging loads produced during the maneuver.

A minimum cut-off load was determined for each pool of data.

Loads less than the cut-off load were not considered in the

analysis. The cut-off load was determined by plotting the

empirical cumulative distribution function for the loads of

each run. Each of these plots produced a significant cusp,

which indicated the possibility of two populations. One for

the straight and level flight loads and one for the maneuver

loads. The peak of the cusp is taken as the cut-off load.

[Ref. 8] Figures 3.3 and 3.4 are typical empirical

cumulative distribution function plots. Figure 3.3 is a

plot of all the recorded loads. Figure 3.4 is a plot of

only the maximum loads.
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Figure 3.3: ECDF for all Loads of Flight 43 Run 88
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Figure 3.4: ECDF for Peak Loads of Flight 43 Run 88
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The ECDF's for the flight 43 runs indicated a cut-off load

of 750 lbs. for both flight speeds. The ECDF's for the

flight 37 runs indicated cut-off loads of 500 lbs. for runs

flown at 124 kts. and 1400 lbs. for runs flown at 155 kts.

2. Selecting the Best Distribution

Once the peak loads above the cut-off were selected

from each run, all the runs were analyzed with AGSS to

obtain the moment values and goodness of fit statistics.

a. Moment Plots

Three moment plots were made for each of the two

flights. Figures 3.5, 3.6, and 3.7 are for Flight 37, and

Figures 3.8, 3.9, and 3.10 are for Flight 43. Each data

point on the plots represents a run from that particular

flight.
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Figure 3 . 5
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Flight 37 Coefficient of Variation vs. Skewness
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Jb. Goodness of Fit Results

Tables 3.2 through 3.15 contain the goodness of

fit statistics for flight 37. Tables 3.16 through 3.32 are

for flight 43. Just as each run was represented by a point

on the moment plots, each goodness of fit table represents

the indicated run.
Table 3.2: Flight 37, Run 14

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.0311 0.86079 1.1023 4.0513
Significance 0.30991 0.35352 0.29376 0.044135
Kolm-Smirn 0.16464 0.21922 0.17009 0.31026
Significance 0.81084 0.4668 0.77833 0.11137
Cramer-V M 0.086368 0.16891 0.094401 0.54041
Significance >0.15 >0.15 >0.15 <0.05
Ander-Darl 0.58934 1.0447 0.70305 2.775
Significance >0.15 >0.15 >0.15 <0.05
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TABLE 3. 3: FLIGHT 37 , RUN 15
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 4.2821 2.8581 2.6263 4.4395
Significance 0.23257 0.23953 0.26897 0.21775
Kolm-Smirn 0.13109 0.12072 0.13138 0.22027
Significance 0.78353 0.85947 0.78121 0.17667
Cramer-V M 0.077271 0.11034 0.067144 0.33098
Significance >0.15 >0.15 >0.15 <0.15
Ander-Darl 0.6294 0.71922 0.53855 1.9935
Significance >0.15 >0.15 >0.15 <0.1

TABLE 3. 4 : FLIGHT 37, RUN 16

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 4.1774 2.1253 1.9751 1.1703
Significance 0.040967 0.14489 0.15991 0.27933
Kolm-Smirn 0.15847 0.1805 0.16679 0.24436
Significance 0.78675 0.63688 0.73159 0.26203
Cramer-V M 0.097685 0.11795 0.097936 0.26596
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.65443 0.75211 0.66145 1.591
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3. 5 : FLIGHT 37, RUN 17

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 5.1403 3.4622 3.5367 2.7349
Significance 0.076518 0.062793 0.060023 0.25475
Kolm-Smirn 0.17202 0.20693 0.17289 0.19776
Significance 0.62749 0.39001 0.62112 0.44727
Cramer-V M 0.14312 0.16876 0.1522 0.19064
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.91033 1.0027 0.94135 1.2287
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3. 6: FLIGHT 37, RUN 19

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.4927 0.64682 1.008 10.414
Significance 0.2218 0.42125 0.31538 0.0054792
Kolm-Smirn 0.18772 0.13814 0.16516 0.35386
Significance 0.51475 0.86144 0.67786 0.017161
Cramer-V M 0.13295 0.055689 0.097098 0.56387
Significance >0.15 >0.15 >0.15 <0.05
Ander-Darl 0.79197 0.38517 0.58641 2.9177
Significance >0.15 >0.15 >0.15 <0.05
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TABLE 3. 7 : FLIGHT 37, RUN 21
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 5.6639
Significance 0.017319
Kolm-Smirn 0.2569 0.20094 0.23811 0.34982
Significance 0.35751 0.67018 0.45247 0.083028
Cramer-V M 0.10595 0.081631 0.08887 0.33535
Significance >0.15 >0.15 >0.15 <0.15
Ander-Darl 0.60164 0.45498 0.49567 1.7993
Significance >0.15 >0.15 >0.15 <0.15

TABLE 3. 8: FLIGHT 37, RUN 22

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.349
Significance 0.12537
Kolm-Smirn 0.23947 0.21857 0.20339 0.26797
Significance 0.20155 0.29493 0.37962 0.11311
Cramer-V M 0.2258 0.12369 0.16535 0.27805
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 1.219 0.8353 0.94491 1.7075
Significance >0.15 >0.15 >0.15 <0.15

TABLE 3 .9: FLIGHT 37, RUN 21J

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 12.017
Significance 0.00052727
Kolm-Smirn 0.15202 0.15757 0.13444 0.31143
Significance 0.85343 0.82181 0.93457 0.089768
Cramer-V M 0.0468 0.062458 0.042465 0.49174
Significance >0.15 >0.15 >0.15 <0.1
Ander-Darl 0.3444 0.35505 0.28503 2.5083
Significance >0.15 >0.15 >0.15 <0.05

TABLE 3.10: FLIGHT 37, RUN 24

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.9906 2.1593 2.0009
Significance 0.08375 0.14171 0.1572
Kolm-Smirn 0.25282 0.17622 0.21791 0.33561
Significance 0.29301 0.74016 0.47452 0.068152
Cramer-V M 0.19108 0.07813 0.12792 0.32381
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 1.0945 0.52289 0.75556 1.7684
Significance >0. 15 >0. 15 >0. 15 <0.15
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TABLE 3.11 : FLIGHT 37, RUN 25
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 17.463 12.977 11.923 8.783
Significance 0.00056746 0.0015209 0.0025762 0.066747
Kolm-Smirn 0.27965 0.15802 0.19394 0.20625
Significance 0.006133 0.31394 0.12362 0.085889
Cramer-V M 0.65966 0.2949 0.37128 0.2822
Significance <0.025 >0.15 <0.1 >0.15
Ander-Darl 3.7005 2.0119 2.2815 1.9219
Significance <0.025 <0.1 <0.1 <0.15

TABLE 3.]L2 : FLIGHT 37, RUN 28
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.6221 2.6723 2.1401 65.469
Significance 0.20279 0.10211 0.14349 6.0646E-15
Kolm-Smirn 0.095733 0.13483 0.10274 0.46219
Significance 0.98432 0.79721 0.96842 0.00010801
Cramer-V M 0.034765 0.077259 0.038166 1.4453
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.27671 0.56491 0.29527 6.8511
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.13: FLIGHT 37, RUN 29

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 4.9526 5.6867 4.9137 37.814
Significance 0.08405 0.058235 0.0857 6.1479E-9
Kolm-Smirn 0.11839 0.15903 0.11882 0.4307
Significance 0.77771 0.41313 0.7739 0.000020235
Cramer-V M 0.058111 0.086874 0.065165 1.6955
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.38266 0.54826 0.41088 8.1674
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.14: FLIGHT 37, RUN 30
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.5032 2.473 1.1959 51.488
Significance 0.22018 0.2904 0.27415 6.5988E-12
Kolm-Smirn 0.21677 0.25182 0.18506 0.43686
Significance 0.25248 0.12279 0.4384 0.00045089
Cramer-V M 0.10192 0.16881 0.070557 1.417
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.50851 0.88421 0.35795 6.7205
Significance >0.15 >0.15 >0.15 <0.01

57



TABLE 3.15: FLIGHT 37, RUN 31
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 6.5109 7.2702 6.6146 31.556
Significance 0.038556 0.02638 0.036616 1.4052E-7
Kolm-Smirn 0.22611 0.22167 0.22609 0.41391
Significance 0.15511 0.1713 0.1552 0.00038099
Cramer-V M 0.16211 0.15717 0.17622 1.3739
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.9437 0.98698 1.0007 6.6571
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.16: FLIGHT 13, RUN 69
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.39305 0.40496 0.34178 0.55623
Significance 0.42254 0.38516 0.60325 0.090641
Cramer-V M 0.13641 0.14756 0.098794 0.42054
Significance >0.15 >0. 15 >0.15 <0.15
Ander-Darl 0.75036 0.8066 0.63501 1.9441
Significance >0.15 >0.15 >0.15 <0.1

TABLE 3.1 7 : FLIGHT 43, RUN 70
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.20637 0.17578 0.21794 0.49659
Significance 0.88508 0.96573 0.84181 0.038679
Cramer-V M 0.052787 0.049248 0.052623 0.47269
Significance >0.15 >0.15 >0.15 <0.1
Ander-Darl 0.32153 0.30119 0.323 2.2578
Significance >0.15 >0.15 >0.15 <0.1

TABLE 3.1 B: FLIGHT 43, RUN 71
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.16832 0.20853 0.15926 0.44298
Significance 0.98881 0.92108 0.99429 0.12817
Cramer-V M 0.035676 0.050996 0.032421 0.36011
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.23232 0.31736 0.22218 1.7605
Significance >0.15 >0.15 >0.15 <0.15
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TABLE 3.19: FLIGHT <13, RUN 72 i

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.28054 0.30179 0.29341 0.34571
Significance 0.73248 0.6453 0.67992 0.47017
Cramer-V M 0.099269 0.11644 0.10509 0.25719
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.5858 0.69256 0.66857 1.3046
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.20: FLIGHT 43, RUN 73
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.18184 0.27709 0.21084 0.29977
Significance 0.92724 0.49422 0.81853 0.3937
Cramer-V M 0.072424 0.13919 0.099237 0.19355
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.46144 1.81086 0.65584 1.0421
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.21: FLIGHT 43, RUN 74
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.34549 0.36696 0.35708 0.33555
Significance 0.58938 0.51109 0.54665 0.62663
Cramer-V M 0.1193 0.1332 0.13177 0.13708
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.70424 0.77962 0.79783 0.76411
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.22: FLIGHT 43, RUN 75
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.27956 0.3189 0.29116 0.3067
Significance 0.82939 0.68937 0.79039 0.73472
Cramer-V M 0.062058 0.073795 0.067721 0.13893
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.34847 0.4262 0.39047 0.75233
Significance >0.15 >0.15 >0.15 >0.15
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TABLE 3.23: FLIGHT 43, Rim 76
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.26591 0.22184 0.24307 0.25398
Significance 0.62363 0.82599 0.73192 0.68047
Cramer-V M 0.099124 0.088163 0.094024 0.12594
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.57631 0.50416 0.53411 0.76299
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.2 1: FLIGHT 43 , RUN 77
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.19214 0.27876 0.23158 0.27585
Significance 0.85407 0.41875 0.65698 0.43207
Cramer-V M 0.067287 0.10489 0.08097 1.1563
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.41626 0.58914 0.48493 0.9025
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.2 5: FLIGHT 43, RUN 81
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.881 1.7643 3.0368 10.49
Significance 0.089624 0.41388 0.081397 0.0052747
Kolm-Smirn 0.15405 0.17616 0.1558 0.37964
Significance 0.67343 0.50203 0.65958 0.0035231
Cramer-V M 0.12011 0.15818 0.12284 0.88056
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.69319 1.1092 0.74368 4.374
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.2 6: FLIGHT 43, RUN 82
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.4177 8.319 2.0645 36.881
Significance 0.11997 0.015614 0.15077 9.806E-9
Kolm-Smirn 0.10457 0. 1879 0.099637 0.39428
Significance 0.95555 0.36505 0.97104 0.001149
Cramer-V M 0.051201 0.21903 0.045627 1.0905
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.3638 1.3328 0.37743 5.3304
Significance >0.15 >0.15 >0.15 <0.01
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TABLE 3.27; FLIGHT 43, RUN 83
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.7166 1.1838 1.974 14.553
Significance 0.25709 0.27659 0.3727 0.00069182
Kolm-Smirn 0.20433 0.13358 0.18294 0.38072
Significance 0.37397 0.8677 0.51494 0.0060678
Cramer-V M 0.15565 0.073333 0.11576 0.60754
Significance >0.15 >0.15 >0.15 <0.05
Ander-Darl 0.88484 0.49288 0.67285 3.1335
Significance >0.15 >0.15 >0.15 <0.025

TABLE 3.2 B: FLIGHT -13, RUN 84
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.39403 0.40034 0.39173 0.52289
Significance 0.74018 0.72218 0.74666 0.38495
Cramer-V M 0.089017 0.092442 0.090408 0.20654
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.51373 0.53189 0.55786 0.97866
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.29: FLIGHT 43, RUN 85
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.25698 0.38104 0.27928 0.43714
Significance 0.82303 0.34834 0.73753 0.20169
Cramer-V M 0.11961 0.20696 0.13945 0.2601
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.74355 1.1421 0.98897 1.2522
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.30: FLIGHT 43, RUN 86
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 6.0039
Significance 0.014274
Kolm-Smirn 0.20364 0.27296 0.1564 0.5081
Significance 0.60712 0.24786 0.88324 0.001451
Cramer-V M 0.098102 0.22316 0.049068 0.94515
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.71749 1.4096 0.45213 4.4551
Significance >0.15 >0.15 >0.15 <0.01
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TABLE 3.31: FLIGHT 43, RUN 81 i

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 4.4538 3.4026 4.8436 19.373
Significance 0.034825 0.065098 0.027749 0.000062117
Kolm-Smirn 0.20776 0.24073 0.2065 0.37559
Significance 0.38507 0.22085 0.39257 0.0093973
Cramer-V M 0.15245 0.20253 0.15922 0.78203
Significance >0.15 >0.15 >0.15 <0.025
Ander-Darl 0.83895 1.1936 0.90796 3.9292
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.32: FLIGHT 43, RUN 88

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square
Significance
Kolm-Smirn 0.14148 0.23012 0.15441 0.33498
Significance 0.96992 0.54874 0.93718 0.13531
Cramer-V M 0.037687 0.096706 0.044418 0.38201
Significance >0.15 >0.15 >0.15 <0.15
Ander-Darl 0.24575 0.60483 0.30691 1.9562
Significance >0.15 >0.15 >0.15 <0.1

c. Vote Tally

Tables 3.33 and 3.34 contain the vote counts for

flights 37 and 43 respectively.

TABLE 3.33: FLIGHT 37 VOTE COUNTS
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 13 30
Goodness of fit 18 16 12 6

Vote Totals: 31 16 42 6

TABLE 3.34: FLIGHT 43 VOTE COUNTS
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 15 30

Goodness of fit 28 12 13 1

Vote Totals: 43 12 33 1
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The goodness of fit statistics chose a Normal

distribution for both flights by a small margin, while the

moment plotting method chose Weibull for both flights by a

large margin. The total votes indicate that the flight 37

load samples are from a Weibull distribution, while the load

samples from flight 47 are from a Normal distribution. The

methods having eliminated all but Normal and Weibull, the

votes were tallied again, allowing the points and goodness

of fit statistics to vote solely for Normal or Weibull

distributions. The following tables show the resulting vote

totals

.

TABLE 3.35: FLIGHT 37 VOTE COUNTS
TEST\DISTRIBUTION
Moment Plots
Goodness of fit
Vote Totals:

Normal
13
21

34

Weibull
30
32
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TABLE 3.36: FLIGHT 43 VOTE COUNTS
TEST\DISTRIBUTION
Moment Plots
Goodness of fit
Vote Totals:

Normal
15

33

48

Weibull
30

22
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These tables strengthen the case for a Weibull distribution

for flight 37, and raise doubts about flight 43 having a

Normal Distribution. It seems unlikely that simply changing

the gross weight of the aircraft would change the load

distribution. If curve fits were made of the data, it is

clear that plots on Figure 3.5 would indicate Weibull-like
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behavior with a positive slope. On Figure 3.6 a curve fit

indicates Weibull-like rather than Lognormal; thus the

moment method strongly indicates Weibull for flight 37.

Similar arguments point to Weibull for flight 43 also; thus

a curve fit approach would confirm the moment methods vote

results

.

C. A-6 COUNTING ACCELEROMETER DATA

1. Explanation of Data

The third application of the moment plot/goodness of

fit vote counting method was to counting accelerometer

measurements from a pool of 103, A-6 aircraft. The

accelerometers count the number of exceedences of 4, 5, 6,

and 7 "g" accelerations. They are used to track the fatigue

lives of each aircraft by recording the fatigue damaging

loads each aircraft experiences. The recorded loads are

then converted, through methods of fatigue analysis, into a

percentage of fatigue life expended (FLE). Once an aircraft

reaches an FLE of 0.67, it has consumed 67% of its fatigue

life and is restricted to lower flight accelerations. [Ref.

9] The pool of 103 were extracted from a population of 351

A-6 aircraft in the Navy's inventory that possessed usable

data. The 103 selected were all the flight unrestricted

aircraft in the population. The values of the random

variable were the number of exceedences of a given g load

per aircraft per 1000 flight hours. The data were converted
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from exceedence data to occurrences, where 7 g's do not also

count as occurrences of 4, 5, and 6 g's.

2 . Moment Plots

AGSS was used to compute sample values of the

coefficient of variation, skewness, and kurtosis for each g

loading. This application of the moment plot method used a

different region of the template. The number of g

occurrences varied greatly between aircraft, particularly at

the 7 g level, where only a few aircraft had any occurrences

at all. This produced large standard deviations. Sample

coefficients of variation ranged from 0.6 to 2.47, compared

to coefficients of variation for the helicopter flight loads

which ranged from 0.1 to 0.9.

Figures 3.11 through 3.13 are the moment plots.

Each plot has four points representing the four different g

loads. Each point is calculated from the data of all 103

aircraft.
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3. Goodness of Fit Results

The goodness of fit statistics AGSS calculated are

shown in tables 3.37 through 3.40. Each g loading has a set

of values. This data was only fit to the three

distributions indicated.

TABLE 3.37: 46 OCCURRENCES
Test \ Fit Normal Lognormal Weibull
Chi-Square 11.441 2.8789 5.5232
Significance 0.0032783 0.23704 0.083194
Kolm-Smirn 0.15585 0.067953 0.10747
Significance 0.013431 0.72839 0.18511
Cramer-V M 0.69635 0.060641 0.33424
Significance <0.025 >0.15 <0.15
Ander-Darl 4.3708 0.38485 2.4349
Significance <0.01 >0.15 <0.1
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TABLE 3.38: 56 OCCURRENCES
Test \ Fit Normal Lognormal Weibull
Chi-Square 12.764 5.401 8.5829
Significance 0.00035342 0.020126 0.0033935
Kolm-Smirn 0.17077 0.11513 0.11894
Significance 0.0049197 0.13035 0.10849
Craxner-V M 0.93956 0.26536 0.40923
Significance <0.01 >0.15 <0.1
Ander-Darl 5.6594 1.7551 2.5187
Significance <0.01 <0.15 <0.05

TABLE 3.39: 6G OCCURRENCES
Test \ Fit Normal Lognormal Weibull
Chi-Square 13.826 33.864 2.6483
Significance 0.00020048 2.1163E-7 0.26602
Kolm-Smirn 0.21682 0.28995 0.15505
Significance 0.0001245 6.0187E-8 0.014131
Cramer-V M 1.7849 2.555 0.45009
Significance <0.01 <0.01 <0.1
Ander-Darl 9.732 14.603 3.5336
Significance <0.01 <0.01 <0.025

TABLE 3.40: 7G OCCURRENCES
Test \ Fit Normal Lognormal Weibull
Chi-Square 39.264
Significance 3.7018E-10
Kolm-Smirn 0.34419 0.43237 0.41699
Significance 5.0384E-11 3.7696E-17 5.56E-16
Cramer-V M 4.6253 3.6886 3.4309
Significance <0.01 <0.01 <0.01
Ander-Darl 22.925 19.768 17.989
Significance <0.01 <0.01 <0.01

4. Vote Tally

Tables 3.41 through 3.44 contain the vote count

results from the accelerometer data.
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TABLE 3.41 4G VOTES COUNTS
TEST\DISTRIBUTION Normal Lognormal Weibull
Moment Plots 2 1

Goodness of fit 4

Vote Totals: 6 1

TABLE 3.42: 56 VOTE COUNTS
TEST\DISTRIBUTION Normal Lognormal Weibull
Moment Plots 2 1

Goodness of fit 4

Vote Totals: 6 1

TABLE 3.43: 6G VOTE COUNTS
TEST\DISTRIBUTION Normal Lognormal Weibull
Moment Plots 3

Goodness of fit 4

Vote Totals: 7

TABLE 3.4'\: 7G VOTE COUNTS
TEST\DISTRIBUTION Normal Lognormal Weibull
Moment Plots 2 2

Goodness of fit 1 2

Vote Totals: 3 4

The distribution selection method chose a Lognormal

distribution for the 4g and 5 g occurrences, and a Weibull

distribution for the 6 g and 7 g occurrences. From the

earlier random number tests of the method, it was determined

that the method was most accurate at selecting Lognormal and

Weibull distributions. That does not mean that the method

is biased toward those distributions, but rather, when the

random sample was from a Lognormal distribution, it chose
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that distribution by a wide margin. The same was true for a

random sample from a Weibull distribution.

D. AGARD A- 7 COUNTING ACCELEROMETER DATA

1. Explanation of data

The following analysis was performed on data taken

from AGARD Conference Proceedings 506 [Ref. 10]. It was

chosen because it contained more data for the high g loads,

than the A-6 application above. Data was available on 40

aircraft. It was in terms of exceedences and had been

standardized to exceedences per 1000 hours. The moment

plot/goodness of fit statistics vote count method was

performed on the data twice. Once on the exceedence data,

and again on the data after it had been converted to

occurrences. The object was to see if the distributions

were affected by the form of the counts, i.e., exceedences

or occurrences

.

2 . Moment Plots

Figures 3.14 through 3.16 are the moment plots for

the data in exceedence form. Figures 3.17 through 3.19 are

the moment plots for the data in occurrence form.
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These six figures show that the moment plots are very

similar between the exceedence and occurrence data. Curve

fits of the data in Figures 3.14 and 3.17 would indicate non

Normal and non Exponential.

3. Goodness of Fit Results

Goodness of fit statistics were calculated for the

data both in exceedence form and in occurrence form. Tables

3.45 through 3.48 are for the exceedence data. Tables 3.49

through 3.52 are for the occurrence data.

TABLE 3.45: 5G EXCEEDENCES
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 7.7646 22.31 10.582 54.425
Significance 0.0053284 1.4318E-5 5.035E-3 9.1051E-12
Kolm-Smirn 0.13688 0.20086 0.14666 0.41431
Significance 0.42607 0.073158 0.34111 1.542E-6
Cramer-V M 0.18033 0.43461 0.19676 2.3822
Significance >0.15 <0.1 >0.15 <0.01
Ander-Darl 1.151 2.3974 1.2571 11.361
Significance >0.15 <0.1 >0.15 <0.01

TABLE 3.-16: 6G EXCEEDENCES
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 12.211 15.685 15.611 54.609
Significance 4.75E-4 7.48E-5 4.07E-4 8.318E-12
Kolm-Smirn 0.23798 0.19924 0.19867 0.32351
Significance 0.019235 0.077149 0.078594 0.00037489
Cramer-V M 0.58176 0.41149 0.49451 1.4046
Significance <0.05 <0.1 <0.05 <0.01
Ander-Darl 3.361 2.1508 2.6901 6.8894
Significance <0.025 <0.1 <0.05 <0.01
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TABLE 3.47: 7G EXCEEDENCES
Test \ Fit Normal Lognormal Wei bull Exponential
Chi-Square 11.832 3.914
Significance 5.82E-4 0.047884
Kolm-Smirn 0.31918 0.34494 0.24798 0.24517
Significance 4.71E-4 1.158E-4 0.012914 0.014468
Cramer-V M 1.2139 1.537 0.74737 0.73626
Significance <0.01 <0.01 <0.025 <0.025
Ander-Darl 6.4017 7.9169 3.8882 3.8443
Significance <0.01 <0.01 <0.01 <0.025

TABLE 3.48: 86 EXCEEDENCES
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 4.0212
Significance 0.044928
Kolm-Smirn 0.33601 0.42957 0.31342 0.20804
Significance 1.907E-4 5.3639E-7 6.35E-4 0.057504
Cramer-V M 1.2263 1.9683 1.0871 0.5623
Significance <0.01 <0.01 <0.01 <0.05
Ander-Darl 6.572 10.06 6.3739 5.1045
Significance <0.01 <0.01 <0.01 <0.01

TABLE 3.49: 56 OCCURRENCES
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 5.2029 15.153 2.2213 43.361
Significance 0.074158 5.1235E-4 0.32934 3.8388E-10
Kolm-Smirn 0.12891 0.1793 0.094377 0.44802
Significance 0.50335 0.14323 0.85853 1.4221E-7
Cramer-V M 0.17213 0.43073 0.087123 2.5873
Significance >0.15 <0.1 >0.15 <0.01
Ander-Darl 1.0794 2.5194 0.61744 12.272
Significance >0.15 <0.05 >0.15 <0.01

TABLE 3.50: 66 OCCURRENCES
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 11.499 10.298 13.126 53.55
Significance 0.0031843 0.0013314 0.0014114 1.3996E-11
Kolm-Smirn 0.20694 0.16739 0.17695 0.30846
Significance 0.059689 0.20079 0.1534 8.18E-4
Cramer-V M 0.39932 0.33598 0.36305 1.3617
Significance <0.1 <0.15 <0.15 <0.01
Ander-Darl 2.5144 1.798 2.0962 6.7483
Significance <0.05 <0.15 <0.1 <0.01
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TABLE 3 .51: 7G OCCURRENCES
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 36.482 5.3093 3.0649
Significance 1.5407E-9 0.021213 0.080001
Kolm-Smirn 0.32772 0.3547 0.28895 0.24264
Significance 2.994E-4 6.6169E-5 0.0021269 0.016009
Cramer-V M 1.0626 1.7709 0.88734 0.65679
Significance <0.01 <0.01 <0.01 <0.025
Ander-Darl 5.7381 9.1614 4.9233 4.1693
Significance <0.01 <0.01 <0.01 <0.01

TABLE 3.52: 8G OCCURRENCES
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 4.0212
Significance 0.044928
Kolm-Smirn 0.33601 0.42327 0.30545 0.20804
Significance 1.91E-4 8.3351E-7 9.516E-4 0.057504
Cramer-V M 1.2263 1.9222 1.038 0.5623
Significance <0.01 <0.01 <0.01 <0.05
Ander-Darl 6.572 9.7395 6.0296 4.8237
Significance <0.01 <0.01 <0.01 <0.01

4. Vote Tally

Tables 3.53, 54, 55, and 56 show the distributions

selected for the exceedence data. Tables 3.57, 58, 59, and

60 show the distributions selected for the occurrence data.

Both have eliminated Normal and Exponential distributions

based on curve fits of the data in Figures 3.14 and 3.17

TABLE 3.53: VOTES FOR 5G EXCEEDENCE
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 1 2

Goodness of fit 4

Vote Totals: 1 6
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TABLE 3.54: VOTES FOR 6G EXCEEDENCE
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 2 1

Goodness of fit 2 2

Vote Totals: 4 3

TABLE 3.55: VOTES FOR 7G EXCEEDENCE
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 1 2

Goodness of fit 3

Vote Totals: 1 5 3

TABLE 3.56: VOTES FOR 8G EXCEEDENCE
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 1 2

Goodness of fit 3

Vote Totals: 1 5

TABLE 21.57: VOTES FOR 5G OCCURRENCES
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 1 2

Goodness of fit 4

Vote Totals: 1 6

TABLE 21.58: VOTES FOR 6G OCCURRENCES
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 2 1

Goodness of fit 4

Vote Totals: 6 1

TABLE 2t.59: VOTES FOR 7G OCCURRENCES
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 1 2

Goodness of fit 3

Vote Totals: 1 5

77



TABLE 3.60: VOTES FOR 86 OCCURRENCES
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 1 2

Goodness of fit 3

Vote Totals: 1 5

The 5g, 7g, and 8g data are consistently Weibull

regardless of whether the data is in exceedence or

occurrence form. The 6g data are Lognormal in both cases,

which is intuitively disconcerting. It was expected that

all the loads would be described by the same distribution

type. There was some consistency in behavior among g levels

in A-6 and A-7 data. The A-6 data was Lognormal for the two

lower g levels, 4g and 5g; and Weibull for the two higher g

levels, 6g and 7g. The A-7 data was also Weibull for the

two higher g levels, 7g and 8g; but the two lower g levels,

5g and 6g, were split between Weibull and Lognormal

respectively.

B. SPECIMEN FATIGUE LIFE TESTS

The second application of the moment plot/goodness of

fit vote count method was on data generated by fatigue life

testing of Aluminum 7075-T6 samples.

1. Explanation of Data

The fatigue testing was originally performed to

investigate the affects of mean strain on fatigue lives.

Twenty samples were first tested at zero mean strain with an

oscillating strain amplitude of 0.007 in/in. The fatigue
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lives of each sample were recorded in cycles to failure.

The strain amplitude was reduced to 0.005 in/in and 20 more

samples were tested and their cycles to failure recorded.

This process was repeated two more times for strain

amplitudes of 0.003 in/in, and 0.0025 in/in. At this point

80 lives had been recorded in terms of cycles to failure.

Next, the mean strain was increased to 0.03 in/in and the

testing at the four strain amplitudes described above was

repeated producing 80 more fatigue lives. Two more mean

strains were tested in this manner: 0.063 in/in and 0.100

in/in. A total of 16 combinations of mean strain and strain

amplitude were tested, with 20 samples for each combination

producing 320 fatigue lives. [Ref. 11]

2 . Moment Plots

The AGSS analysis was made on each of the 16 sets of

lives, producing values for the coefficient of variation,

skewness, kurtosis, and goodness of fit statistics. All 16

tests are shown together on Figures 3.20, 3.21, and 3.22.

Each point represents 20 samples tested at a given

combination of mean strain and strain amplitude. The trend

in Figure 3.20 is too close to differentiate Weibull from

Normal, but the negative values of skewness in Figure 3.21

and the trend in Figure 3.22 eliminate Lognormal as a

candidate.
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Moment plots were also made for two different sub

poolings of this data to see if mean strain or strain

amplitude had an affect on the distribution of lives. Four

pools, each consisting of tests at the same mean strain and

varying strain amplitudes were plotted first. Then four

pools, each consisting of tests at the same strain amplitude

and varying mean strains were plotted. No noticeable trends

or groupings resulted from sub pooling the data; therefore,

the plots resulting from a single pool of all the data were

used in the vote counting.

3. Goodness of Fit Results

Tables 3.60, through 3.75 contain the goodness of

fit statistics. Each table represents a test of 20 samples.

81



Table names correspond to variable names assigned in the

fatigue tests.

TABLE 3.60: MEAN STRAIN =0.0, STRAIN AMPLITUDE = .007
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 3.5466 3.5887 20.827
Significance 0.059668 0.058173 0.000030036
Kolm-Smirn 0.14705 0.18669 0.15221 0.34879
Significance 0.78012 0.48855 0.74309 0.015404
Cramer-V M 0.053836 0.17885 0.061525 0.7073
Significance >0.15 >0.15 >0.15 <0.025
Ander-Darl 0.38297 1.1713 0.49698 3.5822
Significance >0.15 >0.15 >0.15 <0.025

TABLE 3.61: MEAN STRAIN = 0,0, STRAIN AMPLITUDE = .005
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 4.6521 6.0559 4.3013 15.034
Significance 0.097689 0.048413 0.11641 0.00010556
Kolm-Smirn 0.13975 0.18006 0.13348 0.43865
Significance 0.82959 0.53561 0.86829 0.0009087
Cramer-V M 0.074173 0.091191 0.065225 0.93137
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.45714 0.48564 0.41985 4.5702
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.62: MEAN STRAIN =0.0, STRAIN AMPLITUDE = .003
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 3.8739 4.6416 3.3067 4.0283
Significance 0.14414 0.098203 0.19142 0.044739
Kolm-Smirn 0.19126 0.16504 0.18408 0.43859
Significance 0.45727 0.64729 0.50683 0.0009107
Cramer-V M 0.14625 0.10164 0.12839 0.80802
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.89393 0.68521 0.78966 4.0295
Significance >0.15 >0.15 >0.15 <0.01
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TABLE 3.63; MEAN STRAIN = 0.0, STRAIN AMPLITUDE .0025
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 7.2084 6.93
Significance 0.0072559 0.0084761
Kolm-Smirn 0.18522 0.1823 0.18653 0.54473
Significance 0.4988 0.5195 0.48968 0.000014006
Cramer-V M 0.13963 0.15234 0.12818 1.3708
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.95282 1.008 0.90021 6.4406
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.64: MEAN STRAI M = 0.03, STRAIN AMPLITUDE = .007
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 0.31305 0.46384 0.18183 18.029
Significance 0.57582 0.49584 0.66981 0.000021744
Kolm-Smirn 0.083576 0.090969 0.074902 0.42999
Significance 0.99902 0.99643 0.99987 0.0012279
Cramer-V M 0.020875 0.034031 0.017834 1.0366
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.15737 0.23051 0.14231 5.0263
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.65: MEAN STRAIN = 0.03, STRAIN AMPLITUDE = .005
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 0.73182 1.6243 0.6278 19.722
Significance 0.69356 0.4439 0.73059 0.0000089624
Kolm-Smirn 0.097971 0.10881 0.11788 0.43353
Significance 0.99074 0.97186 0.94385 0.0010867
Cramer-V M 0.024398 0.042895 0.032707 1.1066
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.21596 0.27841 0.26395 5.3126
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.66: MEAN STRAIN = 0.03, STRAIN AMPLITUDE = .003

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.6331 1.568 1.3487
Significance 0.44194 0.45656 0.50948
Kolm-Smirn 0.095384 0.097991 0.10933 0.56545
Significance 0.99332 0.99072 0.97058 0.0000055803
Cramer-V M 0.035669 0.030705 0.054553 1.5594
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.30757 0.27732 0.40755 7.2249
Significance >0.15 >0.15 >0.15 <0.01
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TABLE 3.67: MEAN STRAIN = 0.03, STRAIN AMPLITUDE = .0025
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.2513 1.8817 2.3697 1.1522
Significance 0.32445 0.17014 0.3058 0.56208
Kolm-Smirn 0.12538 0.15957 0.15015 0.1687
Significance 0.91166 0.68846 0.75805 0.61969
Cramer-V M 0.063161 0.12833 0.070748 0.14263
Significance >0.15 >0.15 >0.15 >0.15
Ander-Darl 0.4721 0.82801 0.5317 0.88894
Significance >0.15 >0.15 >0.15 >0.15

TABLE 3.68: MEAN STRAIN = 0.063, STRAIN AMPLITUDE = .007
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.1943 1.2046 1.0757 12.375
Significance 0.55037 0.54754 0.58401 0.00043518
Kolm-Smirn 0.10062 0.12585 0.098234 0.41914
Significance 0.98742 0.90937 0.99045 0.0017748
Cramer-V M 0.04696 0.056594 0.045363 0.93811
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.33797 0.39549 0.32437 4.6227
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.69: MEAN STRAIN = 0.063, STRAIN AMPLITUDE = .005
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.1926 1.5325 1.0206 11.518
Significance 0.27482 0.21574 0.31239 0.0031554
Kolm-Smirn 0.15906 0.10905 0.13886 0.34888
Significance 0.69232 0.97128 0.83532 0.015365
Cramer-V M 0.07052 0.030827 0.052772 0.66747
Significance >0.15 >0.15 >0.15 <0.025
Ander-Darl 0.47108 0.21421 0.34744 3.3756
Significance >0.15 >0.15 >0.15 <0.025

TABLE 3.70: MEAN STRAIN = 0.063, STRAIN AMPLITUDE = .003

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.2688 2.3519 2.2559 2.7812
Significance 0.32162 0.30854 0.32371 0.24892
Kolm-Smirn 0.1289 0.16171 0.11951 0.24021
Significance 0.89383 0.67234 0.93755 0.19872
Cramer-V M 0.043051 0.11781 0.048927 0.33541
Significance >0.15 >0.15 >0.15 <0.15
Ander-Darl 0.37518 0.74441 0.41593 1.8466
Significance >0.15 >0.15 >0.15 <0.15
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TABLE 3.71: MEAN STRAIN = 0.063, STRAIN AMPLITUDE = .0025
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 0.41296 0.79929 0.39988 6.4534
Significance 0.52047 0.37131 0.52715 0.039684
Kolm-Smirn 0.069334 0.14717 0.074689 0.3133
Significance 0.99998 0.77927 0.99988 0.039431
Cramer-V M 0.01504 0.10795 0.01976 0.61633
Significance >0.15 >0.15 >0.15 <0.05
Ander-Darl 0.11644 0.74452 0.17638 3.1074
Significance >0.15 >0.15 >0.15 <0.025

TABLE 3.72: MEAN STRAIN = 0.100, STRAIN AMPLITUDE = .007
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.1205 0.075459 1.0053 12.223
Significance 0.57106 0.78355 0.60493 0.0022174
Kolm-Smirn 0.10926 0.12072 0.10602 0.37787
Significance 0.97075 0.93264 0.97814 0.0066163
Cramer-V M 0.052007 0.03839 0.047708 0.78804
Significance >0.15 >0.15 >0.15 <0.025
Ander-Darl 0.36605 0.3184 0.3333 3.9635
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.73: MEAN STRAIN = 0.100, STRAIN AMPLITUDE = .005
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 1.2459 0.056647 1.3579 35.226
Significance 0.53636 0.81188 0.50716 2.9362E-9
Kolm-Smirn 0.11135 0.10215 0.1156 0.4644
Significance 0.96524 0.98514 0.95204 0.00035855
Cramer-V M 0.053202 0.021513 0.06938 1.1512
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.40301 0.20646 0.48192 5.4859
Significance >0.15 >0.15 >0.15 <0.01

TABLE 3.74: MEAN STRAIN = 0.100, STRAIN AMPLITUDE = .003

Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.2149 3.0192 1.9065 2.4968
Significance 0.33041 0.082286 0.38549 0.11408
Kolm-Smirn 0.19364 0.18398 0.17357 0.34374
Significance 0.44134 0.50758 0.58327 0.017719
Cramer-V M 0.17651 0.083651 0.11783 0.49407
Significance >0.15 >0.15 >0.15 <0.1
Ander-Darl 1.1856 0.54737 0.80575 2.5956
Significance >0.15 >0.15 >0.15 <0.05
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TABLE 3.75: MEAN STRAIftf = 0.100, STRAIN AMPLITUDE = .0025
Test \ Fit Normal Lognormal Weibull Exponential
Chi-Square 2.1391 3.146 2.2706 11.338
Significance 0.34316 0.20743 0.32133 0.00075919
Kolm-Srairn 0.13182 0.13776 0.12351 0.44985
Significance 0.87784 0.84229 0.92045 0.00061036
Cramer-V M 0.059801 0.070682 0.060708 1.0615
Significance >0.15 >0.15 >0.15 <0.01
Ander-Darl 0.46153 0.50914 0.46891 5.152
Significance >0.15 >0.15 >0.15 <0.01

4. Vote Tally

Table 3.76 contains the vote count results for the

fatigue life data. Since all the parameters were pooled,

there is just one table. Data trends from the moment plots

have eliminated Lognormal and Exponential; therefore, these

distributions were eliminated in tallying the goodness of

fit results.

TABLE 3.76: FATIGUE LIFE VOTES
TEST\DISTRIBUTION Normal Lognormal Weibull Exponential
Moment Plots 14 35
Goodness of fit 26 37

Vote Totals: 40 72

Based on the results of the random number testing of

this method, a nearly 2:1 margin of Weibull votes over

Normal votes is a strong indication that the samples come

from a population with a Weibull distribution.
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5. Weibull Zero-Shift

Probability plots from the Weibull fit of each of

the 16 sets of 20 samples are shown in Figures 3.77a through

3.77p. The plots are in the same order as the preceeding

tables, so the mean strain and strain amplitude can be

referenced. When AGSS fits a sample to a Weibull

distribution, it calculates the parameters of the Weibull

distribution as well. To develop a model for the lives,

these parameters are used. However, the fit for some of

these samples can be improved by shifting the x-axis.

Samples that have points dropping below the line at the

lower tail indicate that a "zero shift" would improve their

fit.
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The plot of Figure 3.77g will be used as an example of how

the zero-shift is accomplished. The curve of the left tail

is extrapolated down to the x-axis as is done on Figure

3.77g. The x-intercept is the amount that should be

subtracted from the x-values, effectively shifting the zero

to the intercept. Figures 3.78a, b, c, d, e, and f, show

how the Weibull probability plots are affected by zero-

shifts of -40,000, -42,000, -44,000, -46,000, -48,000, and -

50,000 respectively.
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Table 3.77 contains the goodness of fit statistics

for the various zero-shifts.

TABLE 3. 77: GOODNESS OF FIT VALUES FOR ZERO-SHIFTS
SHIFT\TEST Chi-Square Kolm-

Smirn
Cramer-V.M. Ander-Darl

None 1.3487 0.10933 0.054553 0.40755
-40,000 1.2295 0.090134 0.031382 0.27399
-42,000 1.2805 0.091916 0.029391 0.26238
-44,000 1.2616 0.09371 0.027817 0.25322
-46,000 1.7745 0.09503 0.027611 0.25214
-48,000 0.52033 0.093812 0.031944 0.27793
-50,000 1.3023 0.12578 0.062855 0.45714

From the table it appears that the shift that would produce

the lowest values of the goodness of fit statistics is

approximately -46,000. Figure 3.79 is a graphical

representation of Table 3.77.
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AGSS calculates shape and scale parameters of 2.2377

and 16206 respectively when it fits the X7 data set to a

Weibull distribution that is shifted to the left 46,000. To

model the population of lives this data set is drawn from,

these parameters would be used to generate lives from a

Weibull distribution.
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IV. SUMMARY AND CONCLUSIONS

A. SUMMARY

The moment plotting method of distribution

characterization was developed by first deriving expressions

for the coefficient of variation, measure of skewness, and

measure of kurtosis, for the Normal, Lognormal, Weibull, and

Exponential distributions. The derived expressions were

plotted three ways as templates: (1) skewness versus

coefficient of variation; (2) kurtosis versus skewness; and

(3) kurtosis versus coefficient of variation. This produced

three templates of moment curves. Before applying the

method to fatigue data, the moment method was tested on

random samples drawn from known distributions to determine

whether or not it would correctly characterize the samples

as being from the distribution they were drawn from.

The first test used sample sizes of 1,000 and plotted

sample moments on the templates. Points for the sample

moments did not fall directly on any of the template curves,

but trends were evident what were helpful in selecting the

correct distribution. Template (1) exhibited horizontal

trends in the data distribution for normal samples, while

Lognormal and Weibull exhibited data trends with a

significant positive slope. Templates (2) and (3) were

useful in distinguishing between Lognormal and Weibull

distributions. Template (2) was distinguishing on the
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negative skewness axis and template (3) possessed the

largest spatial distance between Lognormal and Weibull.

A vote counting method was also devised, where each

plotted point voted for the distribution curve the point lay

closest to on the template. Using this technique, the

moment method correctly identified most of the sample

distributions correctly; however, sometimes it did not and

sometimes it was by a very narrow margin. When the sample

size was reduced to 100 and then to 20, the method grew more

and more unreliable. A weakness of the moment plotting

method was the fact that the moment functions forming the

template were very near one another, and when the sample

moments were plotted, they often spilled into the domain of

more than one moment.

The moment plots were useful, however, in eliminating

distributions from consideration by observing the trends of

the data and how they compared to the random samples

initially tested. In most of the applications there was at

least one distribution, and often times there were two, that

could be ruled out as having trends unlike the data. This

was the case in every one of the applications considered

here. For instance, in the case of the helicopter loads

data the Lognormal and Exponential distributions were

dropped, reducing the task to choosing between the remaining

two.

95



To improve the selection accuracy, goodness of fit

statistics were coupled with the moment plotting method.

Each sample was fit to a trial distribution using AGSS. For

each fit, AGSS calculated the Chi-square, Kolmogorov-

Smirnov, Cramer-von Mises, and Anderson-Darling goodness of

fit statistics. The goodness of fit measures did not always

agree among themselves, since they are measures of quite

different things, and they were often times at odds with

results from the locations on the moment plots, so the vote

counting method was incorporated to make the final

determination of the best distribution from the group

remaining after the moment plotting method was used to make

the first elimination( s )

.

Applications were successfully made of the method to

characterize the probability distribution functions of

helicopter loads data, two different sets of tactical

aircraft maneuver data, and a large set of experimental

measurements of fatigue lives using uniaxial specimens.

B. CONCLUSIONS

Neither goodness of fit statistics nor the moment

plotting method by themselves could consistently pick the

correct distribution for a sample drawn from a known

population. On the other hand when both were used together,

employing the method outlined in the thesis, the success

rate was 100%.
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The method was applied to a broad range of fatigue data

and found to be applicable.

Applying the method to the several varied fatigue

applications, there was considerable confidence in the

distribution selected because of the preponderance of votes

for that distribution by all the measures used in the final

steps after the initial distributions were weeded out using

the moment plotting method.

This method, which employs both the trends that can be

observed from the moment plotting method and the voting

approach of the moments and the goodness of fit measures,

seems to be considerably better than any of the measures

used alone in a classical manner.
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