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We study a general multi-host model of visceral leishmaniasis
including both humans and animals, and where host and vector
characteristics are captured via host competence along with
vector biting preference. Additionally, the model accounts for
spatial heterogeneity in human population and heterogeneity in
biting behaviour of sandflies. We then use parameters for
visceral leishmaniasis in the Indian subcontinent as an example
and demonstrate that the model exhibits backward bifurcation,
i.e. it has a human infection and a sandfly population threshold,
characterized by a bi-stable region. These thresholds shift as a
function of host competence, host population size, vector feeding
preference, spatial heterogeneity, biting heterogeneity and control
efforts. In particular, if control is applied through human
treatment a new and lower human infection threshold is created,
making elimination difficult to achieve, before eventually the
human infection threshold no longer exists, making it impossible
to control the disease by only reducing the infection levels below
a certain threshold. A better strategy would be to reduce the
human infection below a certain threshold potentially by early
diagnosis, control animal population levels and keep the vector
population under check. Spatial heterogeneity in human
populations lowers the overall thresholds as a result of weak
migration between patches.
1. Introduction
The existence of a threshold behaviour in the spread of infectious
disease was first established by Kermack & McKendrick [1,2]. In
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most cases the threshold can be expressed in terms of a single parameter, namely, the basic reproduction

number, which has to be greater than unity for the disease to invade and/or persist in the population.
This threshold translates to having a threshold population of susceptible hosts. On the other hand, a
class of plant and animal infectious diseases (including human neglected tropical diseases, NTDs)
[1,3–6] exhibit multiple thresholds, namely, a threshold susceptible host density together with a
threshold initial infection level in the population [4–7]. Multiple thresholds are created via
mechanisms ranging from social differences in susceptibles [8], partially efficient vaccination
programmes [9,10], the structure of interaction multi-groups in HIV [11], density dependence in
parasite dynamics [12] and asymmetry in death of susceptibles and infectious [7,8]. For the vector-
borne disease visceral leishmaniasis (VL), which is primarily transmitted by bites of sandflies [13,14],
the frequency-dependent contact structure together with disease-induced death rate generates two
thresholds and it translates into a threshold sandfly population and an initial prevalence among
human hosts. It is further known that the threshold criterion for transmission and extinction of a
disease may show inter/intra-location variations [12].

The success of global efforts to control and eliminate infectious diseases such as VL, dengue, malaria,
lymphatic filariasis and other NTDs necessitates understanding their invasion, persistence and extinction
dynamics and thresholds. This becomes even more important as the implementation of the control
programmes reduce the prevalence of these diseases to the WHO-set respective end targets [15–18]. In
particular, the VL control programmes implemented in the Indian subcontinent are well into their
maturity and are becoming more aggressive, yet there is the continued transmission. This raises the
question as to how relevant is the WHO end target threshold of 1-in-10 000 cases at the sub-district
level [19,20]? This question is more pertinent given the possibility of transmission-related
heterogeneities at finer scales viz.: spatial heterogeneity and movement of humans, heterogeneity in
biting of sandflies, availability of additional reservoirs for sandflies, implementation of control
strategies such as vector control and treatment and finally post-kala-azar-dermal-leishmaniasis (PKDL)
cases acting as reservoirs of parasites in treated cases.

The presence of additional hosts for sandflies near human dwellings [21,22] and the human PKDL
cases act as persistent reservoir for VL parasites [21,23]. Host diversity affects the transmission
dynamics in many vector-borne infectious diseases including leishmaniasis [24], Chagas disease [25],
West Nile virus [26,27], malaria [28], yellow fever [29], Lyme diseases [30] among others. In the case
of VL, control measures such as indoor residual spraying (IRS) can lead to changes in vector biting
behaviours and a spillover to additional reservoirs. The concern of vector bites spilling over to other
hosts is strengthened due to reports of additional reservoirs in India [31]. A relatively extensive
understanding of transmission dynamics would inadvertently require deciphering the role of non-
human reservoirs, host competences, feeding preference of vectors for human and non-human
reservoirs and their relative abundances, along with human movement. On the other hand, although
treatment of VL cases eliminates the fatal stage of the disease, some treated cases lead to PKDL, a
known reservoir for parasites [13]. These factors add to the ecological complexity of the disease,
ultimately affecting disease elimination thresholds and its resilience—the ability of the disease to
persist under perturbation in epidemiological and ecological conditions [12,32,33]. As an example,
sensitive epidemiological and ecological parameters affecting the thresholds include the biting,
transmission, treatment, PKDL and spatial heterogeneity among others.

Mathematical models explored in the literature have considered human–sandfly interaction as well as
other animal reservoirs, such as dogs (in Brazil for example [14,20,34,35]), as part of the VL transmission
cycle. Most of these studies assumed that vectors were getting parasites from only one host [14,20,34,35];
however, in reality the VL disease system is made complex due to bites of multiple reservoirs [31] (goats
and cows) driven by host competence and vector feeding preferences. On the other hand, following the
abundance of 80/20 rule (Pareto principle) in biological systems [36], a heterogeneous sandfly biting
behaviour is conceivable although as yet unexplored. Furthermore, the behaviour of thresholds in a
multi-host setting driven by host competence and vector feeding preferences has also not been
investigated in detail [27] vis-à-vis the WHO end-goal infection threshold of 1-in-10 000 at district or
sub-district level.

In this paper, we consider a multi-host model of VL, where each host is relevant in the transmission
cycle, and incorporate vector feeding preferences, biting heterogeneity and host competences. We then
use the parameter estimates for the Indian subcontinent from the literature [14,20] as an example and
demonstrate that two thresholds are created via the backward bifurcation (BB) and study the impact
that vector feeding preference, host competence, relative host abundance, biting heterogeneity and
control efforts (such as treatment) have on the two thresholds. We also investigate the resilience of the
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disease-free and endemic states, i.e. their ability to persist under perturbation in epidemiological and

ecological conditions, to the changing threshold conditions. In the next section, we describe the
hierarchical multi-host model, followed by calculation of system thresholds, their resilience and
sensitivity to parameter variations.
ietypublishing.org/journal/rsos
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2. Material and methods
2.1. The model

2.1.1. Model outline

We assume that the VL transmission cycle consists of humans, two non-human reservoirs and sandflies.
This assumption encapsulates the generality of a multi-reservoir–human–sandfly transmission because it
captures the effects of competing reservoirs in terms of biting preferences, host competences, lifespan and
relative population levels, which is otherwise not possible when only one reservoir is present in addition
to humans. Further justification for considering two reservoirs follows from the fact that goats and cows
are the most probable reservoirs living near human dwellings especially in India [31]. Additionally, the
movement of humans and sandflies between cities/villages/towns (called patches) can also affect the
transmission dynamics [37].

We model the transmission dynamics by assuming that humans, sandflies and other non-human
reservoirs live on n-patches and only humans can move between different patches. Sandfly
movement is ignored as their flight range is limited (approx. 300 m) [37]. Although human
movement happens on two levels (i) short-term commutes (affecting transmissibility based on
visitation to other patches) where their patch identity is preserved [38] and (ii) long-term movement
which includes migration to other patches (affecting population dynamics) [38–41], here we assume
only short-term movement between patches. The susceptible humans (SHi) of patch i get bitten by
infectious sandfly vectors (Ivj) while visiting a patch j, remain asympotomatic (EHi) for a period of
time before becoming infectious IHi). Untreated infectious humans die because of infection or
recover due to immunity, or get hospitalized (THi) and receive treatment. Treated humans either
recover or get PKDL (KHi) due to treatment failure. Humans with PKDL recover at a certain rate.
Recovered humans are classified into (RHi). Recovered humans can lose immunity and join the
susceptible class again. The two non-human reservoir populations are susceptible (SAi, SBi) and
become infectious (IAi, IBi) by bites of infectious sandflies (ignoring the asymptomatic compartments
due to lack of sufficient data) in patch i, lose immunity and join their respective susceptible classes
again (SIS). The susceptible sandfly vectors in patch i (Svi) bite an infectious/asymptomatic/PKDL
human (either resident or visiting patch i) or an infectious member of non-human reservoir, become
latent (Evi) and finally infectious (Ivi). The resulting sandfly–human–non-human interaction network
and its corresponding flow chart is shown in figure 1. The equations describing the full n-patch
spatial model are as follows:
Humans

dSHj

dt
¼ LHj � lHjSHj þ dHjRHj � mHjSHj,

dEHj

dt
¼ lHjSHj � mHj þ sHjEHj,

dIHj

dt
¼ fjsHjEHj � (tHj þ gHj þ dHj þ mHj)IHj,

dTHj

dt
¼ gHjIHj � (rTj þ mHj)THj,

dKHj

dt
¼ hjrHjTHj � (rKj þ mHj)KHj

dRHj

dt
¼ (1� fj)sjEHj þ tHjIHj þ (1� hj)rTjTHj þ rKlKHj � (mHj þ dHj)RHj,

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð2:1Þ
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Figure 1. (a) The network of interaction formed by the transmission dynamics in visceral leishmania in patch j. (b) Flow diagram of
the model in patch j as implied by equations (2.1)–(2.4).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200904
4

Reservoir A

dSAj
dt

¼ LAj � lAjSAj þ dAjIAj � mAjSAj

dIAj
dt

¼ lAjSAj � (dAj þ mAj)IAj,

8>><
>>:

9>>=
>>; ð2:2Þ
Reservoir B

dSBj
dt

¼ LBj � lBjSBj þ dBjIBj � mBjSBj

dIBj
dt

¼ lBjSBj � (dBj þ mBj)IBj,

8>><
>>:

9>>=
>>; ð2:3Þ
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Sandflies

dSvj
dt

¼ Lvj � lvjSvj � mvjSvj

dEvj

dt
¼ lvjSvj � (svj þ mvj)Evj

dIvj
dt

¼ svjEvj � mvjIvj

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð2:4Þ

and

llj ¼
Xn
i¼1

ki log 1þ bblalpij
ki
P

l alNli
Ivi

� �
, l ¼ H,

llj ¼
Xn
i¼1

ki log 1þ bblalDij

ki
P

l alNli
Ivi

� �
, l ¼ A,B,

lvj ¼
Xn
i¼1

ki log 1þ bbv[aHCHp ji(IHi þ r1iEHi þ r2iKHi)þ D jiaACAiIAi þ aBD jiCBIBi]
ki
P

l alNli

� �

Dij ¼
1 i ¼ j
0 i = j

�
,

and i, j ¼ 1, . . . , n:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2:5Þ

In equation (2.5) index l indicates human (denoted by H ), and non-human reservoirs (denoted by A
and B), indices i and j are used for space discretization indicating different patches, Δij is a notation used
for the elements of matrix ℙ used to denote residence times of non-human host in different patches (for
example, Δij= 0 indicates that non-human hosts do not move between different patches, pij are the
elements of residence times matrix ℙ capturing the strength of connectivity between patches i and j
due to human movement). The symbols LBj, mBj are used to represent recruitment and the natural
death rate, respectively, of human, non-human hosts and sandfly vectors in the patch j. The symbol b
is used to represent transmission probability in humans, non-humans and vectors. The symbols k▪
represent patch specific within host biting heterogeneity (more on this in subsections 2.1.2 and 2.1.3).
Additional human parameters in patch j are: 1/σHj is the latency period, τHj is the natural recovery
rate, dHj is the disease-induced death rate, γHj is the rate of seeking treatment/hospitalization in the
infectious stage, rTj is the rate of recovery/discharge following treatment/hospitalization, ηj is the
fraction of treated exhibiting PKDL, rKj is the rate of recovery from PKDL stage. The parameter δlj is
the loss of immunity for human and non-human hosts in patch j, 1/σvj is the latency period of
sandfly vectors in patch j, Nlj is the population of human and non-human hosts in patch j. The
symbols C▪ represent host competences, and α▪ represent vector biting preferences for each host.

In an isolated patch, biting heterogeneity in sandfly vectors on hosts may arise due to a limited flight
range within the patch. Uniform homogeneous biting is recovered in equation (2.5) (also see electronic
supplementary material, Document) for large values of kj, the biting heterogeneity parameter in patch
j. However, as kj gets closer to zero, the degree of heterogeneity in biting increases [42,43]. On the
other hand, sandfly vectors may have different feeding preferences for humans and reservoirs A and
B. The ‘vector feeding index’ αlj assesses the proportion of blood meals from host-l in relation to the
proportional abundance of host-l in the host community [27], in general, it could be a complicated
function of host population proportions [44]; however, here we take them as constant parameters.
Additionally how competent are humans and reservoirs in transmitting the infection to susceptible
sandflies is governed by host competence parameter, Clj, defined as the ability of host-l to successfully
transmit the virus/parasite to the biting vector [45]. For simplicity, we assume host competency and
vector biting preference do not change from patch to patch, i.e. αlj= αl and Clj=Cl for all patches j.
Note, in our model we allow for hosts to be dead-end (Cl= 0) as well as competitive hosts (0 <Cl≤ 1).
A detailed list of parameters and their interpretation is given in table 1. A brief summary and
description of the different types of heterogeneity and the force of infection terms in equation (2.5) are
provided in subsections 2.1.2 and 2.1.3, respectively, and also summarized in table 2.



Table 1. Parameters and their interpretation in the human, two reservoirs and vector model equations (2.1)–(2.4).

parameter interpretation units numerical values

LS sandfly birth rate day−1 variable

LH human birth rate day−1 4 801 062/(68.1 × 365)

(Muzaffarpur human population

4 801 062)

LA reservoir A birth rate day−1 12 000/(10 × 365) (variable)

LB reservoir B birth rate day−1 315 656/(12 × 365) (variable)

µS sandfly death rate day−1 1/14.0 (variable)

µH human death rate day−1 1/(68.1 × 365) (68 years life

expectancy in Muzaffarpur

µA reservoir A death rate day−1 1/(10 × 365) (life of goats: 10 years)

µB reservoir B death rate day−1 1/(12 × 365) (life of dogs/

cows: 12 years)

1/σv sandfly incubation period day 5 days

1/σH human incubation period day 166 days

τH human recovery rate if left untreated day−1 0.00476

δH human rate of loss of immunity day−1 0.000913 (3 years)

δA reservoir A rate of loss of immunity day−1 assumed to be equal to humans

δB reservoir B rate of loss of immunity day−1 assumed to be equal to humans

f fraction of asymptomatic humans moving to

infectious state

unitless 0.14 (one in seven asymptomatics

become infectious)

γH rate of reporting for treatment in humans day−1 0.001 (variable)

rT human recovery rate after reporting for treatment day−1 1/30.0 (one month recovery period)

η fraction of humans moving to PKDL state after

treatment

unitless 0.2 (one in 20 VL treated people

proceed to have PKDL)

rK human recovery rate from PKDL day−1 1/547.5 (18 months treatment

for PKDL)

αH vector biting preference for humans unitless variable

αA vector biting preference for reservoir A unitless variable

αB vector biting preference for reservoir B unitless variable

CH human competence unitless [0,1]

CA reservoir A competence unitless [0,1]

CB reservoir B competence unitless [0,1]

βS transmission probability from all reservoirs including

humans to vector

unitless 0.158

βH transmission probability from sandfly to human unitless 0.74

βA transmission probability from sandfly to reservoir A unitless 0.74

βB transmission probability from sandfly to reservoir B unitless 0.74

b biting rate of sandflies on hosts day−1 0.25

ρ1 fraction of asymptomatic humans contributing to

infection in sandflies

unitless 0.01 (variable)

ρ2 fraction of humans with PKDL contributing to

infection in sandflies

unitless 0.01 (variable)

(Continued.)
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Table 1. (Continued.)

parameter interpretation units numerical values

dH disease-induced death rate in humans day−1 0.009 (variable)

dA disease-induced death rate in reservoir A day−1 0 (assumed)

dB disease-induced death rate in reservoir B day−1 0 (assumed)

kj sandfly biting heterogeneity in patch j unitless variable

pij elements of residence times matrix for humans

between patch i and j

unitless variable

Dij elements of residence times matrix for non-human

reservoirs between patch i and j

unitless 0 i≠ j

1 i = j

Nlj population of human (l = H), reservoir A (l = A)

and reservoir B (l = B)

unitless

Table 2. Heterogeneities in the model.

heterogeneity implementation

host and vector separate dynamical equations for hosts and vectors

vector biting

heterogeneity

negative binomial (see electronic supplementary material, Document)

human and reservoir hosts are further classified into humans and reservoirs

reservoir heterogeneity reservoirs A and B account of multiplicity of reservoirs

vector biting preference biting preference for hosts and reservoirs; host and reservoir competence in transmitting

infection to sandfly vectors

spatial heterogeneity spatial heterogeneity is introduced by residence times matrix ℙ

royalsocietypublishing.org/journal/rsos
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2.1.2. Heterogeneities in the model

As mentioned in the previous section, the model (equation (2.1) to equation (2.5)) incorporates different
types of heterogeneities and they are listed below:

1. different types of hosts (e.g. human, vector and animal reservoirs),
2. distinct reservoirs based on host competence,
3. spatial population distribution and structure, and
4. sandfly differential biting preferences.

Apart from human and sandfly vectors, we have considered two types of host reservoirs potentially
representing animals. The efficiency of reservoirs to successfully transfer pathogens during a bite may
vary depending on host competence. We assume that vector may have differential biting preference
towards different host species and individuals in the population. The model captures discrete space
via distinct population structure and movement patterns.

Many mathematical models in the literature primarily assume homogeneous biting patterns between
hosts. In our model, we consider differential biting preferences towards different hosts, hence,
capturing heterogeneity in biting rates.
2.1.3. The force of infection (λ▪) in the model

The force of infection in equation (2.5), is defined as the per capita rate at which susceptible hosts/vectors
contract the infection [46]. The force of infection on humans, reservoirs and sandfly vectors is derived by
combining the short-term movement (Lagrangian movement [38]), within host sandfly biting
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heterogeneity (kj) [42,43], vector feeding indices {αlj} [27] and host competences {Clj}. Feeding preference

assess the proportion of blood meals sandfly vectors have from host-l, whereas the biting heterogeneity kj
indicates that all sandflies do not bite individuals in the host population equally and also that within
similar host types all members may not receive the same number of sandfly bites.

First, consider a modelling scenario with an isolated patch. Sandfly biting heterogeneity in a patch has
two components: first, biting preferences for reservoirs and humans vary (because of sandfly feeding
behaviour). Second, the members of the same host (humans or each of the two reservoirs) get varying
number of bites (because of host individual’s characteristics). Most models in the literature assume that
the sandfly–host encounters are well mixed, i.e. any given host (human or non-human reservoir)
receives the same number of sandfly bites. In general, this assumption is unrealistic, as a given sandfly
may only have the opportunity to bite a limited number of hosts (e.g. some humans may receive more
bites than others) in the population. Following the formalism developed for dengue [42,43,47], we
assume that the number of VL transmission causing bites on mth host are Poisson distributed with
mean θm. If all host members receive the same bites on average, then θm is the same for all the hosts in
the population, implying the standard homogeneous transmission model. However, the biting means
themselves may have a probability distribution over the population and under the assumption that the
means θm follow a Gamma distribution (as mean bites are greater than zero and can take a large range
of values) with shape parameter kj and a rate parameter sc (scale parameter 1/sc). Consequently, the
marginal probability distribution of effective risky bites follows a negative binomial with
mean kj=sc ¼ ðbblal=

P
l alNljÞIvi (using composition of functions formula, Gamma distribution of

Poisson distribution). With a few steps of calculation using the negative binomial [42,43,47], the risk
of susceptibles becoming infectious is 1� 1þ ðbblal=kj

P
l alNljÞIvi

� �kj (details are given in the electronic
supplementary material, Document). Using the relationship between risk and rate [48] we obtain the
rate of infection of susceptible hosts as llj ¼ ki log 1þ ðbblal=kj

P
l alNljÞIvi

� �
. Through a similar

argument, the rate of infection for susceptible sandflies after biting infectious humans/reservoirs
is lvj ¼ kj log 1þ ðbbv½aHCHðIHj þ r1jEHj þ r2jKHjÞ þ aACAIAj þ aBCBIBj�=kj

P
l alNlj0Þ

� �
. In these

expressions kj characterizes the level of heterogeneity of bites (susceptible humans/reservoirs by
infectious sandfly vectors and infectious humans/reservoirs by susceptible vectors) [42,43]. Finally,
incorporating the movement of humans between n-patches, equation (2.5) is obtained.

In this study, we study a one-patch model in relative detail and present preliminary results for a two-
patch model separately. In the one-patch model, we increase its complexity as follows: first, switching off
the parameters related to treatment and PKDL and other reservoirs we obtain a base model (BM;
considered as our first model); second, including human treatment, we get the treatment model (BMT);
third, with both treatment and PKDL parameters, the BMT-PKDL model is obtained. Finally, we include
reservoirs in the transmission cycle. We will work our way upwards systematically adding complexity
as described and later we will study a two-patch model with only humans and sandflies in the
transmission cycle. In the subsequent sections, we will assume homogeneous biting and obtain system
thresholds for simplicity of algebraic calculations. We come back to discussing the implications of
heterogeneous biting on system thresholds in the Results and Discussion and conclusion sections.

2.2. Analysis
In this section, we assume homogeneous biting (kj is large so that the logarithmic term in equation (2.5)
reduces to the standard mass action force of infection [46]) and obtain threshold conditions for the model.

2.2.1. Thresholds and multiple equilibria in one-patch model

In our model R0 acts as one of the thresholds and it can be translated to a threshold biting or threshold
sandfly population. This means that VL will invade the population only if R0 > 1 [49]; however, if the
disease-induced death rate is sufficiently strong then it can invade and persist even at a lower value
of R0, i.e. R0≥Rc≤ 1, provided that the initial proportion of the infectious population is above the
infection threshold. The infection threshold serves as an additional threshold and occurs due to a
phenomenon known as BB. That this phenomenon is possible in VL is highlighted from the broad
spectrum of parameter values estimated in previous studies on VL in the Indian subcontinent. In
particular, one such study reported extra deaths caused by VL [14,20] which we find responsible to
generate multiple equilibria and therefore multiple thresholds via BB.

The system of equations (2.1)–(2.4) exhibit two stable and one unstable infectious state under a
restrictive parameter regime if the disease-induced death is sufficiently strong. The unstable infectious



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200904
9
states act as a threshold infection prevalence, above (below) which the VL invades (goes extinct in) the

population. Another threshold arises out of a minimum sandfly population: below this sandfly number
VL cannot persist in the population regardless of the initial prevalence of VL. Next we obtain expressions
for these thresholds and discuss the regimes of their validity.

Assuming homogeneous biting, the model equations (2.1)–(2.4) have a disease-free equilibrium (DFE)
given by

X0j ¼
LHj

m1j
, 0, 0, 0, 0, 0,

LAj

mAj
, 0,

LBj

mBj
, 0,

Lvj

mvj
, 0, 0

 !
: ð2:6Þ

The basic reproduction ratio R0 evaluated at the DFE using the next generation matrix approach is

R2
0 ¼

b2bvsvN0
v

mvQvN0
tot

� � X
l¼{1,A,B}

blalmlN0
l

N0
tot

,

m1 ¼ aHCH(Q3Q4( fsH þ r1Q2)þ r2hrTgHfsH)
Q1Q2Q3Q4

,

mA ¼ aACA

Q6
,

m3 ¼ aBCB

Q7

and N0
tot ¼

X
l¼{H,A,B}

alN0
l ,

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2:7Þ

where Q1j = μHj + σHj, Q2j = τHj + γHj + dHj + μHj, Q3j = rTj + μHj, Q4j = rKj + μHj, Q5j = μHj + δHj, Q6j = δAj + μAj,
Q7j = δBj + μBj, Qvj = σvj + μvj. The above expression for R0 is true for the general one-patch model. The
corresponding expression for the BM is recovered by setting gH ¼ h ¼ rT ¼ rK ¼ r2 ¼ N0

A,B ¼ 0, R0 for
BMT is recovered by setting h ¼ rK ¼ r2 ¼ N0

A,B ¼ 0 and R0 for BMT-PKDL is recovered by setting
N0

A,B ¼ 0. In this VL system, a threshold R0 is translatable to a sandfly population threshold. In
general, the VL will invade the population only if R0 > 1 [49]; however, if the disease-induced death
rate dH is sufficiently strong then it can invade and persist even at a lower threshold, i.e. R0≥Rc≤ 1,
provided that initial infection prevalence is above the infection threshold due to BB [50]. This
invariably generates two thresholds in the system giving rise to a characteristic bi-stable region Rc≤
R0≤ 1 so that the DFE coexists with a stable and an unstable endemic equilibrium: the value of Rc

gives the threshold vector population (NSc) while the unstable endemic equilibrium forms the human
infection prevalence threshold (IHc).

The endemic equilibria, and hence the human infection prevalence threshold (IHc), are easily obtained
in terms of the force of infection on humans λH which satisfies a sextic polynomial equation

A6l
6
H þ A5l

5
H þ A4l

4
H þ A3l

3
H þ A2l

2
H þ A1l

1
H þ A0 ¼ 0: ð2:8Þ

The steps to obtain the coefficients {Ai} are given in the electronic supplementary material, Document.
The endemic equilibria X1 ¼ (S�H , E

�
H , I

�
H , T

�
H , K

�
H , R

�
H , S

�
A, I

�
A, S

�
B, I

�
B, S

�
v, E

�
v, I

�
v ), force of infection on

reservoir A and reservoir B are related to the force of infection on humans as

lA ¼ aA

aH
lH , lB ¼ aB

aH
lH , ð2:9Þ

Humans

S�H ¼ LH

(lH(1� dHFH1 )þ m1)
, E�

H ¼ lHS�H
Q1

,

I�H ¼ fsHlHS�H
Q1Q2

, T�
H ¼ FH1 lHS

�
H ,

K�
H ¼ fsHlHS�H

Q1Q2
, R�

H ¼ FH1 lHS
�
H :

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð2:10Þ

Res A,B

S�A ¼ LA

(lA(1� dAFA1 )þ mA)
, I�A ¼ FA1 lAS

�
A

S�B ¼ L3

(lB(1� dBFB1 )þ mB)
, I�B ¼ FB1lBS

�
B

8>>><
>>>:

9>>>=
>>>;

ð2:11Þ
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and

Sandflies
S�v ¼

Lv

(lv þ mv)
, E�

v ¼
lvS�v
Qv

I�v ¼ svlvS�v
mvQv

,

8>><
>>:

9>>=
>>; ð2:12Þ

where

FH1 ¼ (1� f)sH

Q1
þ tHsHf

Q1Q2
þ (1� h)rTgHfsH

Q1Q2Q3
þ rKhrTgHfsH

Q1Q2Q3Q4

	 

1
Q5

,

FA
1 ¼ 1

Q6

and

FB
1 ¼ 1

Q7
:

In our model, the multiple thresholds are created (due to BB) if the disease-induced death rate
parameter dH exceeds a certain value such that @l1=@R0jR0¼1 , 0 in equation (2.8) [46], assuming dA=
dB= 0. Note that the condition for BB is never satisfied if dH= 0 as well. Given the multi-host nature
of our model (and equation (2.8)) a closed-form relationship between the disease-induced death rate
and other parameters for the existence of multiple thresholds to occur is cumbersome, therefore, we
numerically confirmed that this criterion is satisfied for our choice of dH.
2.2.2. System resilience and integral stability (dIS)

We quantify the resilience of disease-free/endemic equilibria in the system using the integral stability
index. Integral stability (IS) [33], 0≤ dIS≤ 1, is a measure of the resilience of individual equilibria/
attractors in a multi-states-stable dynamical system. Resilience is defined as the capacity of a system to
recover in the face of perturbations. Since in BB the endemic state coexists with a DFE, we
characterize their resilience using the integral stability. For a detailed mathematical definition of IS see
electronic supplementary material, Document.
2.2.3. Sensitivity of system thresholds

The system thresholds are sensitive to variations in parameters of the system. We use the formalism of
partial rank correlation coefficient (PRCC) [51–53] to characterize the sensitivity of thresholds to
variations in systems parameters. To calculate sensitivity to model parameters each parameter is
assigned a Gaussian distribution with their respective mean as in table 1 and standard deviation to be
1/30 of the mean (so that neither of the thresholds are eliminated and therefore facilitating their
sensitivity analysis). A more realistic assumption on the distribution of parameters will require the
distribution of parameters to be calibrated against field data (which we do not attempt here).
2.2.4. Thresholds in two-patch model

To study the effect of spatial heterogeneity we consider the BM in two spatially isolated locations.
Coupling between the patches is assumed to be only via human movement between them, making
the simplifying assumption that sandflies do not move between patches. The threshold R0S for the
two-patch system is given by

R0S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
(R2

01 þ R2
02 þ R2

0h21 þ R2
0h12 þ Rsqrt)

r
, ð2:13Þ

where R0h21, R0h12 and Rsqrt are described in the electronic supplementary material, Document, R2
01 and

R2
02 are thresholds for isolated patches. The expression for R0S shows that system can be above the global

threshold even if threshold condition in isolated patch may not be satisfied. The threshold infection
prevalence (discussed in the Results section) is obtained numerically using Newton–Raphson root
finding method.
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Figure 2. (a) Bifurcation diagrams showing the effects of treatment and subsequent PKDL on the system thresholds: when
treatment is applied in the base model the system exhibits a new set of thresholds. Compared with the base model, when
treatment is applied a higher sandfly threshold is obtained whereas the infection threshold is lowered. However, at the
threshold sandfly population in the base model the disease is eliminated under treatment. PKDL occurs due to treatment
failure, therefore, the thresholds lie in between the treatment and base models. (b) Bifurcation diagrams for different values of
biting heterogeneity in the base model (BM) indicating that heterogeneity increases the sandfly threshold and lowers the
infection threshold. (c) and (d ) trace the threshold human infection prevalence and sandfly threshold as a function of biting
heterogeneity for base model (BM) and with treatment and PKDL.
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3. Results
In the one-patch BM with homogeneous biting (large k), i.e. no reservoir A and reservoir B (and no
treatment in humans) the sextic polynomial, equation (2.8), reduces to the quadratic equation

A2l
2
H þ A1l

1
H þ A0 ¼ 0: ð3:1Þ

For a sufficiently large disease-induced death rate in humans [14,20] BB, with the characteristic two
system thresholds, is observed: the first threshold is the human infection prevalence threshold
(calculated using equations (2.10)–(2.12)) and the second threshold is the threshold vector population
related to Rc as obtained from the condition when A2

1 � 4A2A0 ¼ 0:

Rc ¼ f(Ll,ml,dl,Lv,mv, . . .), l ¼ {H,A,B} ð3:2Þ

here the function f (Λl, μl, dl, Λv, μv ,…) on the right-hand side of equation (3.2) depends on all the
parameters of the system, see electronic supplementary material, Document for details. For the values
of the parameters considered (table 1) human infection prevalence threshold for the BM is 0.2% at the
threshold sandfly population (approx. 4.7 × 106) as shown in the bifurcation diagram for the BM as a
function of vector population density NS in figure 2a.

When all the reservoir hosts (goats and cows) are also present then the sextic polynomial equation
(2.8) is solved numerically to obtain the threshold vector population numbers NSc (Rc). The presence of
reservoirs comes with two possibilities:

1. non-human reservoirs are dead-end hosts, i.e. CA=CB= 0
2. at least one or all non-human reservoirs are competitive, i.e. CA or CB= 0, CA=CB= 1.
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Figure 3. Bifurcation diagram showing how thresholds of the system change in presence of animal reservoirs (goats and cows) in
addition to humans. (a) As a function of sandfly population (b) as a function of R0. The bifurcation diagrams are obtained for various
scenarios capturing host competence (CA, CB) and vector biting preference for goats and cows. The curves to the left of
‘BM’ correspond to cases of (i) only goats are competitive hosts (CH= 1, CA= 1, CB= 0) with biting preferences of (αH= 1,
αA= 0.6, αB= 0.1) (ii) goats and cows both are competitive hosts (CH= 1, CA= 1, CB= 1) with biting preferences of (αH= 1,
αA= 0.6, αB= 0.1) (iii) goats and cows both are competitive hosts (CH= 1, CA= 1, CB= 1), however, with equal biting
preferences (αH= 1, αA= 1, αB= 1). The curves to the right of ‘BM’ show the case when goats and cows are dead-end hosts
with equal biting preferences (αH= 1, αA= 1, αB= 1). These curves show the dilution and amplification effects on the
thresholds in presence of additional reservoirs with respect to the base model (when only humans are present).
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To investigate the effects of biting preference, we consider the following cases: (i) when all hosts are
equally competitive, i.e. CH= CA= CB= 1, and sandflies prefer to bite them equally αH= αA= αB= 1, (ii)
all hosts are equally competitive, i.e. CH=CA=CB= 1 but αH= 1, αA= 0.6, αB= 0.1, (iii) cows are dead-
end hosts, i.e. CH=CA= 1, CB= 0 but sandflies prefer to bite humans and goats more as compared
with cows αH = 1, αA= 0.6, αB= 0.1, and (iv) cows and goats are dead ends and biting preference is the
same as in case (iii). In cases (i)–(iii) presence of reservoirs increases the bi-stable region, by first
reducing the sandfly threshold (NSc) and increasing the human infection prevalence threshold, while
in case (iv) the threshold (NSc) is larger and the human infection prevalence threshold is smaller
relative to the BM, thereby reducing the bi-stable region, see figure 3a.

Another interesting feature that multiple hosts highlight is the changing resilience of the DFE/
endemic state as the reservoirs are added to the system. The integral stability (IS) dIS shows that if bi-
stable region increases (decreases) then the resilience of the endemic state increases (decreases). The
increased (decreased) resilience can be explained by the observation that when bi-stable region is large
(small) a smaller (larger) number of sandflies are needed to stabilize the endemic state. In addition, a
smaller number of initial human infections can push the system to the endemic state for a given
number of sandflies (above the sandfly threshold for the BM). In the case where other reservoirs are
dead-end hosts, these two factors combine to show an increase in resilience (dIS) of DFE, as shown in
figure 4.

Controlling the spread of infection requires looking for mechanisms to stabilize the DFE, and when
BB is present the traditional way of ensuring R0 < 1 for stabilization of DFE does not work, as control in
such circumstances requires keeping track of the two thresholds:

1. the minimum vector population threshold NSc

2. the threshold infection prevalence level in humans as defined by the unstable endemic equilibrium.

If either of these two thresholds are crossed from above, i.e. decreasing sandflies population to below NSc

and reduce human infection prevalence than the infection threshold, DFE is stabilized. When humans are
subjected to treatment at a constant rate, both these thresholds shift such that the human infection
threshold is reduced while increasing the threshold vector population NSc for the disease to emerge.
Humans with PKDL also transmit the disease resulting in an endemic state intermediate to BM and
the model with a completely efficient treatment, as shown in figure 2a.
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Although having less efficient treatment is better than no treatment at all. This implies that, assuming
the vector population does not increase, treatment can eliminate the disease; however, if the vector
population is allowed to grow then the disease can remain endemic. Thereby the goal of reaching the
human infection threshold (or the threshold prevalence) via treatment alone would become ineffective
as it cascades to zero with increasing treatment rates, as shown in figure 5. Similar shifts in thresholds
are observed when treatment of human hosts or vector control is applied in presence of other
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reservoirs; however, the multi-host system relatively amplifies (dilutes) the effect of control strategies

when dead-end (competitive) reservoirs are present, making VL control either easier or more difficult
relative to when humans are the only hosts.

To study the effects of biting heterogeneity on system thresholds we take the BM, and allow an
increasingly heterogeneous sandfly biting behaviour by changing the parameter k. As heterogeneity
increases in the system the sandfly threshold increases, implying that large number of flies are
required for infection to emerge; however, the relatively large sandfly threshold also lowers the
threshold human infection prevalence. The behaviour of thresholds follow similar trend when host
complexity is increased by adding more disease stages as discussed above for the homogeneous
mixing case; however, in comparison the prevalence level is reduced. The thresholds shift in two
ways. First, the sandfly threshold is increased and the infection threshold is larger as compared with
the BM. Second, at the new sandfly threshold the infection threshold is lower in comparison with the
BM. A bifurcation diagram indicating these trends is shown in figure 2b.

The thresholds obtained for the BM are sensitive to changes in parameters. We evaluate the
sensitivity to model parameters corresponding to the BM such as sandfly biting rate on humans,
PKDL and other parameters using PRCC. Detailed tornado plots showing PRCC for threshold sandfly
population (NSc) and human infection prevalence threshold (IHc) are shown in figure 6a,b. The PRCC
was obtained by assuming Gaussian distribution for varied parameters, giving rise to a distribution of
threshold (NSc, IHc) as shown in figure 6c–e. A positive/negative PRCC for a parameter means that the
threshold increases/decreases with increasing/decreasing the parameter. The behaviour of PRCC
shows that sandfly threshold (NSc) is strongly but negatively sensitive to biting rate (b), biting
heterogeneity parameter (k), the factor of asymptomatic/latent moving to infectious class ( f ),
transmission parameters from fly to human (vice versa) (βH, βv), natural mortality rate of humans (μH)
and proportion of infectious bites from PKDL cases (ρ2). On the other hand it is strongly but
positively sensitive to sandfly mortality (μv), human birth rate (ΛH) and disease-induced death rate
(dH). Similarly, the human infection prevalence threshold is positively sensitive to the factor of
asymptomatic/latent moving to infectious class ( f ) and loss of immunity (δH). The biting parameter
(b) has a strong negative effect on this threshold as expected (if more bites, then infection can emerge
at a lower infection prevalence). To control VL it is, therefore, desirable to enhance the parameters
increasing the sandfly population threshold as well as increasing the human infection threshold for an
optimal control of visceral leishmaniasis: as an example, PRCC indicates that the number of bites have
to be decreased (so that a large number of sandflies are required for disease to emerge).

The movement of humans between neighbouring villages/towns can also affect the local thresholds.
To study the effect of human movement between otherwise isolated locations we assume the BM in two
patches. The coupling between the patches is due to short-term human movements, where humans stay
for most time pii in their home patch and spend a fraction pij in the other patch, thus the fraction of time
spent is the coupling strength (see equations (2.2)–(2.6) and their description). The spatial effect is
revealed as soon as asymmetry in parameters of the models in two locations are introduced, as an
example we chose the sandfly birth rate and human birth rate as asymmetric parameters and
considered two different values of the coupling ( pii, pij). Following this scheme, a bifurcation diagram
demonstrating (2.3) effects of spatial coupling and parameter heterogeneity is shown in figure 7. In
the first instance, we assume that birth rate of sandflies in patch one is same as that in a one-patch
model discussed above, while in patch two it is 0.081 times that in patch one. We find that in
presence of human movement, patch one exhibits higher sandfly threshold and higher infection
prevalence threshold, whereas patch two has a lower sandfly threshold and lower infection prevalence
threshold as compared with the isolated one-patch model. As coupling strength is increased the
dynamics in the two patches is as follows: the sandfly threshold in patch one increases while infection
threshold decreases, and in patch two the sandfly threshold decreases and so does the threshold
infection prevalence (figure 7b). However, the effect of spatial coupling is to lower the sandfly
threshold and infection prevalence threshold in the two patches when compared with an isolated
patch. Similar effects are observed when asymmetry in human birth rate (and hence population) is
also considered, as shown in figure 7c.
4. Discussion and conclusion
In this paper, we investigated the dynamics of visceral leishmaniasis via a dynamical system model that
may exhibit multiple thresholds due to BB phenomenon in a certain parameter regime. BBs belong to a
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class of disease systems where, in addition to the basic reproduction number, R0 (equivalently the
threshold levels of vector bites/vector population), initial size of infected individuals in hosts act as a
threshold. Such systems have been observed in both micro- and macro-parasitic systems such as,
tuberculosis (TB), dengue, lymphatic filariasis and onchocerciasis [1,4–6,12,54,55]. Although the multi-
threshold systems have been explored both in the field [55] as well as in theoretical literature [6], the
theme which it has demonstrated consistently is that control is not trivial in systems exhibiting
multiple thresholds. Our current study investigates dynamical regimes where VL might exhibit
multiple thresholds; thus, a potential cause for presenting challenges in control of VL in the Indian
subcontinent. This model exhibits multiple thresholds due to BB phenomenon driven by nonlinear
relationship between human mortality (disease-induced and natural mortality rates) and sandfly
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Figure 7. Bifurcation diagrams showing backward bifurcation in a two-patch model. Each patch assumes a base model (no
treatment, no PKDL, no biting heterogeneity, no non-human reservoirs) with coupling between the two patches represented by
the time humans spend in their home and neighbouring patch (see equations (2.1)–(2.4)). (a) Bifurcation diagram is the same
as base model in isolated patches when each patch has identical demographic parameters for humans and sandflies, regardless
of coupling strength. (b) Bifurcation diagram for different coupling strengths (0.8 and 0.9 as indicated by arrows) when sandfly
birth rate (and subsequently sandfly population) is higher in patch one than patch two. (c) Bifurcation diagrams in the two
patches when human birth rate is higher in patch one than patch two. (d ) Bifurcation diagram for different coupling strengths
(0.8 and 0.9 as indicated by arrows) in the two patches when human and sandfly birth rates are greater in patch one than
patch two. These diagrams show that spatial heterogeneity in combination with parameter asymmetry can lower the thresholds
as compared with an isolated system and the degree to which this happens depends on coupling strength.
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transmission and demographic parameters (see electronic supplementary material, Document). Human
infection prevalence spontaneously increases when the initial prevalence crosses a threshold level;
however, there are two points to note: (i) new infections are generated by transmission from other
population (sandfly population) even though disease-induced death in humans acts like a leakage in
the system and (ii) increment in infection does not occur in human but in sandfly population, which
then feeds back into human population. On the other hand, several reports have indicated the
continued persistence of VL despite low death rates and no reported incidence in neighbouring
regions [56,57], potentially as a result of higher number of initial infected arrivals in the region as
compared with its neighbours. The initial infection prevalence has been recently understood to be a
driving factor behind the emergence of chikungunya in South America [58,59], where despite
international travel of people from affected regions for decades, the disease could not become
endemic until a threshold of imported infections was reached in 2013. Importantly, the imported
infection could not be accounted for in calculations of R0, which would have been less than one
because the disease was not present in the region in the first place. This draws similarities with BBs
vis-à-vis the threshold prevalence and highlights the importance of investigating initial infection
prevalence among other factors.

We began with a BM wherein only humans interact with sandflies without the influence of any
control measures. Using the parameters from literature for India, where a sufficient amount of
disease-induced death rate for humans was reported [14,20], we find that this BM exhibits BB. This
presents a scenario where the system exhibits two thresholds: (i) human infection and (ii) sandfly
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population density thresholds. Introducing treatment of infection in humans can help cross the human

infection threshold, beyond which the disease is eventually eliminated; however, if sandfly population
is left unchecked and continues to grow then human infection threshold presents itself as a cascading
function of treatment, before eventually becoming zero, thereby making only a complete elimination
of infection, as a rather impractical and only treatment goal. On the other hand, if the sandfly
population remains the same, then the disease-free equilibrium can be stabilized when a sufficient rate
of treating humans is employed. The scenario of increasing sandfly thresholds in conjunction with
decreasing infection prevalence threshold can be equated to cascading thresholds [60], which is defined
as the ‘tendency of the crossing of one threshold to induce the crossing of other thresholds’ [60]; here
the changing human infection threshold also changes the sandfly population threshold with
increasing treatment. The cascading thresholds are known to increase the resilience of one of the states
[60]; here the resilience of the DFE is increased.

When more reservoirs, such as goats and cows, are available for sandflies to bite then scenarios for
amplification (dilution) and subsequent increase (decrease) of the thresholds are possible; however, in all
the possible scenarios, a shift in thresholds alters the region of stability of the endemic state. This also
implies that multiple hosts either increase or decrease the resilience/persistence of DFE and endemic
equilibria. For example, adding dead-end reservoirs to the BM, assuming equal biting preference for
humans/reservoirs, lowers the equilibrium endemic state and in tandem the human infection
threshold. Simultaneously, since some bites from sandflies are taken up by the dead-end hosts, a
higher number of sandflies are required for the endemic state to emerge. Similarly, if the additional
reservoirs are competitive for disease transmission, then a higher equilibrium endemic state–human
infection prevalence threshold emerges, while requiring a lower number of sandflies. This follows
from the fact that the competitive reservoirs act as a buffer for the disease, therefore, a smaller
number of sandflies are required for endemic state to emerge. Additionally, the increasing and
decreasing stability region of endemic state also follows if biting preferences are increased/decreased.
Amplification/dilution of infection in different parameter regimes have also been studied in the
context of host diversity although with density-dependent biting preference and fixed total population
of all hosts [61]; this is the first time that an amplification and dilution phenomenon has been studied
in the context of thresholds due to species diversity (here we assume population of individual
reservoirs is a constant which is more realistic for visceral leishmaniasis).

Heterogeneity in sandfly biting behaviour implies that most bites come from a limited number of
individuals. The interplay between sandfly population and host infection generates qualitative
changes in respective thresholds: first, the force of infection is lowered, therefore, higher number of
infectious hosts are required for sandflies to pick up sufficient infection, thereby increasing the
infection invasion threshold for a given number of sandflies. Second, a new sandfly threshold is
created which is higher than the corresponding homogeneous case. The higher sandfly threshold
requires less infectious hosts for the endemic state to emerge.

The shifting thresholds indicate that control measures, such as treatment in humans and vector
control used in combination with a control over reservoir population, easily stabilize the DFE. Thus,
having multiple reservoirs can be beneficial if their population relative to humans can be managed
given that the additional reservoirs are dead end. On the other hand, control will be much more
difficult if the reservoirs are competitive and readily available for sandflies to bite.

Spatial heterogeneity and connectivity via human movement change thresholds in non-trivial ways.
Our simple model shows that infection can persist for a lower sandfly population and human infection
prevalence threshold as compared with the geographically isolated case due to weak migration. Thus,
control efforts focused to bring down infection cases to less than 1 in 10 000 at the block level (in
Bihar, India) will have to take into account of the fact that human movement lowers the local thresholds.

Sensitivity analysis using PRCC is able to identify parameters affecting the sandfly population
threshold and human infection prevalence threshold. In particular, our results on PRCC show that
sandfly threshold (NSc) decreases with an increase in biting rate and homogeneous mixing, the factor
of asymptomatic/latent moving to infectious class, transmission parameters from sandfly to human
(vice versa), natural mortality rate of humans, and proportion of infectious bites from PKDL cases
(ρ2). On the other hand, it is strongly but positively sensitive to sandfly mortality, human birth rate
and disease-induced death rate. Similarly, the human infection prevalence threshold increases with the
factor of asymptomatic/latent moving to infectious class, loss of immunity and heterogeneous biting
pattern of sandflies, and it decreases with increasing disease-induced death rate, biting rate and
treatment. Therefore, for control purposes it is desirable to reduce the contribution of PKDL cases by
increasing the efficiency of treatment, decreasing the biting rates by covering the exposed skin and
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reducing disease-induced deaths in addition to vector control. Our results also show that an optimal

combination of treatment and vector control will need to be evaluated as the control programmes
move forward.

This work highlights that despite control efforts, importation of cases can keep the VL transmission
going due to feedback coming from continued movement from high endemic regions to low endemic
regions. This is particularly relevant in areas like Muzaffarpur in Bihar India, where recently spatial
patterns in VL transmission were studied [56,57]. Our results are based on simplistic assumptions on
host competence and vector biting behaviour in the transmission cycle when multiple hosts are
present. However, host competence is governed by the biology of the animals involved, while biting
preference in general could be a nonlinear function of reservoir availability/population [44]. In these
later circumstances analysing the equations with the corresponding functional dependencies will be
complicated, we propose that the amplification and dilution behaviour presented in this work will be
relevant. Consideration of a general vector-feeding-function based on host availability could be a
project for future investigations. Although our two-patch model considered here captures the intuitive
idea that lower thresholds can arise due to spatial heterogeneity, investigating a more realistic model
by combining short-term [38] and long-term migration will be the goal for our future investigation.
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