

$$
{ }^{*} \mathrm{Fa} 6.14
$$

$R 363.11$

ELEMENTARY TEXT-B00K

OF

ZOOLOGY.

GENERAL PART AND SPECIAL PART: PROTOZOA TO INSECTA.

DR. C. CLAUS,

Professor of Zoology and Comparative Anatomy in the Uniceisity of Vierna, Divector of the Zoological Station at Trieste.

TRANSLATED AND EDITED BY

A D A M SEDGW TCK, M. A.,

Fellow and Lecturer of Trinity College, Cambridge,

WITH THE ASSISTANCE OF

LONDON:
W. SWAN SONNENSCHEIN it CO., paternoster square.
. .5

PREFACE TO THE ENGLISH TRANSLATION.

IUNDERTOOK the translation of Professor Claus' excellent "Lehrbuch der Zoologie" with a view of supplying the want, which has long been felt by teachers as well as students in this country, of a good elementary text-book of Zoology. Professor Claus' works on zoology are already well known in this country ; and I think it will be generally admitted that they take the first place amongst the zoological text-books of the present day.

It has been decided to publish the English translation in two volumes. The second volume, which begins with Mollusca, is in the press, and will, I trust, appear early in the autumn.

The German has been, with one or two unimportant exceptions, closely followed throughout. These exceptions, and the few additions which I have thought it necessary to make, have in all cases been indicated by enclosure within brackets.

I must ask the indulgence of the reader towards the error's and deficiencies of this translation. I trust that they will be found to be neither numerous nor important. I have to thank Mr. Heathcote for the assistance he has given me in the laborious work of translation. I am also indebted to Professor's Newton and Foster, Dr. Gadow, and Mr. W. Heape for advice : and assistance.

ADAM SEDGWICK.

[^0]
TABLE OF CONTENTS.

GENERAL PART.

CHAPTER I.
Page
Page $9-14$
CHAPTER II.
ANIMALS AND PLAN'IS $15-24$
CHAPTER III.
ORGANIZATION AND DEVELOPMENT OF ANIMALS IN GENERAL $24-131$
Individual, ORGAN, STOCK $2 t$
Repetition of urgans and parts of the body 2.5
Cells and Cell Tissues 29
Nucleus and Nucleolus 29
Cell-membrane 29
Reproduction of Cclls and division of Nucleus 30

1. Cells and Cell Aggregates 32
Isolated cells, e.g., blood corpuscles, ova, etc. 32
Epithelium 34 34
Epidermal exoskeleton 34
Glandular tissue 36
2. Tissues of the conncetive substance 37
Cellular or vesicular 37
Mncous or gelatinons 37
Reticular, adenoid 38
Fibrillar 38
Elastic 39
Cartilage. 39
Osseous tissue 40
3. Muscular tissue 4.3
t. Nervous tissue 45
Increase in Size and Progressive Differentiation, etc. 47
Unicellular stage 48
Multicellular stage 49
Correlation and Connection of Organs 50
Doctrine of Final Causcs 51 52
"Type"
"Type"
Scope of Morphology 52
Structure and Function of the Compound Organs 52
Digestive organs 万3
Salivary glands, liver, pancreas 58
Page
Orguns of circulation 59
Heart 61
Arteries and reins (i2 (i2
Heart and vessels of vertebrates 64 64
Organs of pespiration 67
Branehire 69
Lungs, traehere. 69
Traeheal gills 71 71
Renewal of extermal medium 72
Venous and arterial blood 73
Animal heat. 73
Organs of seeretion 74
Kidneys 75
Water-vaseular vessels and segmental organs 75 76
Vertebrate-kidneys
Vertebrate-kidneys
Cutaneous glands 77
Organs of Animal Life 78
Sketetal structure.: 79
Nervous system 79
Sense oryans. 83
Taetile organs 84
Auditory organs 85
Visual organs 85
Faeetted eye 88
Simple eye 89
Olfaetory organs 91
Intelligence and Instinct 93
Reproductive Organs 95
Biogenesis 96
Asexnal reproduction 96
Sexual reproduetion 97
Hermaphroditism 99
Separation of the sexes 100
Sexual differenees 101
Sexual dimorphism 104
Parthenogenesis 105
Development 107
Fertilisation of the ovum 108
Segmentation of the ovum 110
Food-volk 111
Blastosphere 113
Formation of gastrula 114
Primitive streak 115
Germinal layers 116
Theory of Gastrea 117
Direct Development and Metanorphosis 119
Effeet of food-yolk on development. 120
Explanation of Metamorphosis 121
Alternation of Generations, Polfmorphism and Heterogamy 123
Metagenesis 123
Explanation of Metagenesis 124
Polymorphism 126
Heterogamy 127
Predogenesis 128
Heterogamy of Trematoda 129
CHAPTER IV.
HISTORICAL REVIEW
Page
Aristotle 133
Pliny $1: 2$
Renaissance of Sciences in Sixtecnth eentury $13: 3$
Ray 134
hinneens 134
('uvier 135
st. Hilaire, Goetbe, Oken 137
('lassification of the present day 1.38
CHAPTER V.
MEANING OF THE SYSTEM 139-179
Speeies 110
Varieties 141
Sterility of hybrids 142
Fertility of hybrids 143
Sterility and fertility of mongrels 143
Lamark 144
Lyell's influence on Geology 144
Theory of Descent based on Natural Selection (Dartirism) 144
Darwin 145
Natural seleetion 145
Origin of valieties, raees and speeies 148
Progressing divergence of characters, and disappearance of inter- mediate forms $1+9$
species aceording to the theory of evolution 150
Natural system. 150
Evidence in favour of the Theory of Descent 151
Eridencr from Morpholoyy 151
from Dimurphism and Polymorphism. 152
Sexual selection 152
Sexual dimorphism of parasites 153
Polymorphism of animal communities 155
from mimicry 155
from rudimentary orguns. 151;
from Embryology 157
Retrogressive metamorphosis 158
from the facts of Gengrapleical Distribution 159
Zoologieal Provinees. 160
from Palantolony $16: 3$
Incompleteness of the geological record 167-168
Transitional forms between allied speeies 170
Relation of forsil forms to living speeies 170
Suecession of similar types 171
Extinet Mammalia, transitional between living groups 172
Extinet transitional Reptiles and Birds 175
Progressire prefection 177
Fauna of the various geolngieal periods 177
Incompleteness of the explanation 115

SPECIAL PART.

CHAP'TER VI.

CHAPTER VIII.

Page
ECHINODERMATA. 266
Crinoidea 286
Tesselata 289
Articulata 289
Asteroidea 290
Stelleridea 292
Ophiuridea 293
Echinordea 294
Cidaridea 296
Cypeastridea 296
Spatangidea 297
holothuroidea 297
Pedata 299
A poda 299
Enteropneusta 229
CHAPTER IX
VERMES 303
Platyhelainthes 309
Turbellaria 309
Rhabdoceela 313
Dendroccela 314
Trematoda 316
Distomea 321
Polystomea 322
Cestoda 326
Nemertini 339
Enopla 342
Auopla 342
Nemathelminthes 343
Nematoda 344
Chætngnatha 357
Acanthocephala 359
AnNELIDA 362
Clicetiporia 367
Polychecta 374
Errantia 378
Sellentaria 380
Oligochrta 382
Terricolæ 385
Limicolre 385
Fepleyrea 386
Chretifera 389
Achreta 392
Hirudinea 394
Rotatoria 400

ERRATA.

```
Page 23, last line-for "productr" "ead " products."
    35, line 9 from bottom-for "outgrowth" read "outgrowths."
    ", 3S, " 4 from bottom-for "possesses" read "possess."
    ", 46, ", 4 of explanation of fig. 38-for "commencing with" read
            "with commencing."
        " 4 S , " 6 from bottom, for "also bring" read "also must bring."
    ", 5 S , " 10 -for" "repulsion" reced "expulsion."
    ", 73, ", 14 from botton-for "ictual" recul "kinetic."
    ", 95, ", 5-omit "those forms."
    ", 156, ", 12-for" "spines" reud "stings."
    " 171, ", 9-for "Camivora" read "Marsıpials."
    " 173, ", 10-for" five toed" read "five-toed."
    " 205, " 20-for "Stylongchia" read "Stylonychia."
    " 205 , " 14 from bottom-for "style" read "stalk."
    ", 20S, "16-for " congregating" reed "conjugating."
    " 212, ", 14 from bottom-for " "urst" read "discharge."
    ", 327, ", 8-for "Tetrarliyncus" recad "Tetrarlynclus."
    ", 352, Explanation of fig. 2S4-for "Douchmins dudenalis" read "Doch-
    mins duodenalis," and for "vulna" read "vulva."
    ," 543, line 18-for "arrentokia" read "arrenotokia."
```


GENERAL PART.

CHAPTER I.

ORGANISED AND UNORGANISED SUBSTANCES.

In the world, which is perceptible to our senses, we distinguish between living organized and lifeless unorganised bodies. The former (i.e., animals and plants) are endowed with the power of movement, and they remain the same in spite of manifold changes both of themselves as a whole and of their parts, and in spite of continual change of the matter entering into their composition. Unorganised bodies, on the other hand, are found in a condition of constant rest ; and although this rest is not necessarily fixed and unchangeable, yet they are without that independence of movement which manifests itself in metabolism. In the former we recognize an organization, a composition of unlike parts (organs), in which the matter exhibits its activity in a fluid and dissolved form ; in the latter we meet with a mass which is .more uniform, though as far' as the position and arrangement of the molecules are concerned, not always homogeneous, and in which the various parts continue in a state of resting equilibrium so long as the unity of the body remains undisturbed. The matter of unorganised bodies (for instance, of crystals) is in a state of stable equilibrium, while through the organised being a stream of matter takes place.

The properties and changes of living bodies are strictly dependent on the physico-chemical laws of matter, and this is recognized more clearly as science advances; yet it must be admitted that we are entirely ignorant of the molecular arrangement of the material basis of a living organism, and it exists under conditions the nature of which is as yet unexplained. These conditions, which we may designate, as vital without thereby calling in question their dependence on material processes, distinguish organisms from all un-
organised bodies. Tliey relate (1) to the mode of origin, (2) to the morle of maintenance, (3) to the form and structure of the orranism.

Living bodies cannot be manufactured by physico-chemical means from it definite chemical mixtme under definite conditions of warmth, pressure, electricity, etc. ; their existence rather presupposes, acrorrling to our experience, the existence of like or at least very similar beings from which they have originated. It appears that, in the present state of our knowledge, there is no evidence to show that an independent abiogenetic generation (generatio requivoca, spontaneous generation) actually takes place, even in the simplest and lowest forms of life; although very recently some investigators (Pouchet) have been led by results of remarkable but equivocal experiments to the opposite view. The existence of the generatio cerfurocre would offer a very important service to our contention for the physico-chemical explanation; it oven appears to be a necessary postulate in order to -explain the first appearance of organisms.

The second and most important characteristic of organisms, and that on which the very maintenance of life depends, is their metabolic power, i.e., the power which they possess of continually using up and renewing the matter composing the body. Every phenomenon of growth presupposes the reception and change of material constituents; every movement, secretion, and manifestation of life depend on the exchange of matter, on the breaking down and building up of chemical compounds. On this alternating destruction and renewal of the combinations of the body substance two properties necessary to living things depend, viz., the reception of food and excretion of waste products.

It is the organic substances (so called on account of their occurrence in organisms), i.e., the ternary and quaternary carbon compounds (the former composed of carbon, hydrogen, and oxygen, the latter of these with the addition of nitrogen, and among the latter are included the albumins) which undergo the exchanges characterising metabolism ; they either (in animals) break up under the influence of oxidation into substances of simpler composition ; or (in plants) are built up by substitution from simpler inorganic substances. But just' as the general fundamental properties (elasticity, weight, porosity) of organisms a gree so closely with those of inorganic hodies, that it was possible to construct a general theory of the constitution of matter, so all the elements (fundamental substances which differ qualitatively, and are chemically incapable of further simplification) of organic matter are again found in inorganic nature. A rital
element, i.e., an element peculiar to organisms no more exists than does a vital force working independently of natural and material processes. Also with reference to the method of arrangement of the atoms, organic and inorganic substances have been erroneously put in sharp contrast; and the whole of the carbon compounds have been contemplated as the products of organisms only. Now, however, it has been shown for some time not only that the atomic arrangement and constitution of both are explained by the same laws, but also that a great many of the former (urea, alcohol, vinegar, sugar) can be artiticially built up by synthesis from their elements. These facts point to the probability that many other organic substances will be synthetically produced, and among them, albumin; and they also permit us to conclude that in the origination of organised bodies the same forces were in action which are sufficient for the formation of unorganised bodies. The functions peculiar to organisms, viz, metabolism, movement, growth, are accordingly to be referred to the properties of the chemical compounds composing them, and particularly to the complicated molecular arrangement of living matter.

Nevertheless, this important property of living things, viz., metiabolic action, may under certain conditions be temporarily suppressed, without thereby depriving the organism of the power of existence. By removal of water or of heat it is possible, in the case of many of the lower organisms and their germs, to suspend the vital processes for months and.even years ; and then to restore the apparently lifeless body to the full excercise of its vital properties by the simple addition of water or warmth (eggs of Apus, Ostracoda, Anguillula tritici, Rotifera-frogs, water insects, plant seeds).

Finally, the living body is distinguished by its entire form and by the manner in which its various parts are connected together ; in other words, by its organization. The form of a crystal, the inorganic individual, is unchangeable, and is bounded by straight lines meeting at determined angles, and by plane, rarely spherical surfaces, which are capable of mathematical expression. The shape of organisms,* on the other hand, in consequence of the semifluid consistency of the material composing them, is less sharply determinable and is within certain limits variable. Life manifests itself as a connected series of ever-changing states; and the movements of matter are accompanied by growth and change of form.

[^1]The organism commencing its a simple cell, the egg or gern, develops by a gradual process of difierentiation and change of its parts up to a definite point at which it has the power. of reproducing itself ; finally it dies, amd breaks up into its elements. The greater part of the substance composing organised bodies is more or less semifluid and liable to osmotic action,- a condition which appens to be necessary both for the carrying on of chemical changes (conpora non (ugrent nisi soluta), and for the modification of the entire form of the organism ; it is not however homogeneous and uniform, but is composed of solid, semifluid, and fluid parts which exist as combinations of elements of a peculiar form. Clystals do not possess heterogeneous units subordinated to one another; which, like the organs of living bodies, serve as instruments for the performance of different functions, but are composed of molecules of similar atomic constitution ; the absence of uniformity in their structure in different directions (planes of cleavage) being due to the arrangement of the molecules, and not to any difference in the molecules themselves. Organs again prove, on examination of their finer structure, to be
 built up of different parts or tissues (organs of a lower order), and these again are composed of the ultimate unit of cell, the cell. The cell, last of all, is to be traced back to the germ cell (ovum, spermoblast) (fig 1.)

The cell by its properties stands in direct contrast to the crystal, and potentially possesses the properties of the living organism. It consists of a small lump of a semifluid alluminous substance (protoplasm), containing, as a rule, a dense or vesicultar structure, the nucleus, and is frequently surrounded by a peripheral structureless membrane. If the latter is not developed, the presence of life is indicated by a more or less pronounced amoboid movement, the fluid protoplasm sending out and drawing in processes of a continually changing form.

In this organised fundamental structure, from which all tissues and organs of animals and plants are developed, lie latent all the characters of the organism. The cell is, therefore, in a certain sense the first form of the organism, and indeed the simplest organism. While its origin points to the pre-existence of cells of a similar kind, its maintenance is rendered possible by metabolism. The cell has its
nourishment and excretion, its growth, movement, change of form, and reproduction. With participation of the nucleus it begets by division or endogenous cell formation new units like itself, and furnishes the material for the construction of tissues, for the formation, growth and change of the body. With justice, therefore, is the cell recognised as the special embodiment of life, and life as the activity of the cell.

. Fig. 2.-Amœba (Protogenes) porrecta (after Max Schultze).
Nor is this conception of the significance of the cell as the criterion of organisation and as the simplest form of life contradicted by the facts that the nuclens also sometimes fails (so-called cytodes of Hreckel), and that bodies undoubtedly manifesting vital phenomena are known which are structureless under the highest power of the microscope. Many Schizomycetes (Micrococcus) are so small that it is difficult to distinguish them in some cases from the granules of precipitates, especially when they show only molecular motion [Brownean movements] (fig. 3). Consequently, the living protoplasm, with its unknown molecular arrangement, is the only robsolute test of the cell and oryanism in general.

While appreciating the essential differences which have been
expuessed in the above diselssion of the properties of living things and morgrmised bodies, we must not in our criticism of the relations betwen then lose sight of the fact, that in nunerous lower forms of life, metabolism, and all the

Fig. 3.-Schizomycetes (after F. Cohn). a, Micrococcus; b, Bacterium termo, Bacteria found in putrefying bodies both in motile and Zoogloea form. activities of life can be completely suppreased by the renoval of warmth and water, without thereby injuring the capacity of the organism for continuing to live; and further, that in the smallest organisms, which are proved to be such by their capacity of reproducing themselves by their metabolism, and it is impossible, by means of the very strongest powers of the microscope, to detect any organization. Since, moreover, the organic matter composing such forms consist of combinations which can be produced by synthesis, independently of organization, we natust allow that hypothesis a certain justification which asserts that the simplest forms of life have been developed from unorganised matter, in which the same chemical elements occur as are found in organisms.

Since no fundamental difference has been shown to hold between the matter and force of crystals and those of organized beings, we might look upon the first appearance of life as essentially only the solution of a difficult mechanical problem (with Du Bois Reymond), were we not obliged to conclude that there is present even in the simplest and most primitive organisms the germs of sensation and consciousness, attributes which we cannot regard as simply the results of the movement of matter.

CHAPTER II.

ANIMALS AND PLANTS.

The division of living bodies into animals and plants lests on a series of ideas early impressed on our minds. In animals we observe free movements and independent manifestations of life, arising from internal states of the organism, which point to the existence of consciousness and sensation. In the majority of plants, which pass their lives fixed in the earth, we miss locomotion and independent activities indicative of sensation. Therefore we ascribe to animals voluntary movement and sensation, and also a mind which is the seat of these.

Nevertheless these conception: apply only to a proportionately narrow circle of organisms, viz., to the highest animals and plants. With the progress of experience, the conviction is forced upon us that the traditional conception of animals and plants needs, so far as science is concerned, to be modified. For although we find no difficulty in distinguishing a vertebrate animal from a phanerogamous plant, still our conceptions do not suffice when we come to the simpler and lower forms of life. There are numerous instances amongst the lower animals in which power of locomotion and distinct signs of sensation and consciousness are absent; while, on the other hand, there are plants which possess irritability and the power of free movement. Accordingly the properties of animals and plants hare to be compared more closely, and at the same time the question has to be discussed, whether there are any absolute distinctive characters which sharply separate the one kingdom from the other.

1. In their entire form and organization there seems to be arı essential contrast between animals and plants. Animals possess a number of internal organs of complicated structure, lodged within a compact outline; while in plants the nutritive and excretory organs are spread out as external appendages, with a considerable superficial extension. In the one case there is found an inner, and in the other an outer position for the absorbent surface. Animals have a mouth for the entry of solid and fluid nutritive matters, which are digested and absorbed in the interior of an alimentary canal, into which open various glands, (salivary glands, liver, pancreas, etc). The useless solid remains of the food pass out through the anus as freces. The nitrogenous waste material is excreted by a special urinary
organl (kidney), mostly in it Hid form. For the movernent and circulation of the fluid carrying the absorbed nutrment, there is a pulsatory jump, (heart) and it system of blood vessels, while respiration is usually carried on in terrestrial animals by lungs, and in aquatic amimals by gills. Finally, animals possess internally placed generative orgins, and a nervous system, and sense organs for the production of sensation.

In plants, on the contrary, the regetative organs have a much simpler form. Roots serve to absorb fluid nutriment, while the leaves act as respiratory and assimilating organs, taking in and giving out gas. The complicated systems of organs found in animals are absent, and a more uniform parenchyma of cells and vessels, in which the sap moves, composes the body of plants. The generative organs also are placed in external appendages, and there are no nervous and sense organs.

Nevertheless, the above mentioned differences are not universally found, but rather hold only for the higher animals and plants, and gradually disappear with the simplification of the organization.

Even among vertebrates, and still more is it the case amongst mollusca, and the lower segmented animals, the respiratory and vascular organs are considerably simplified. 'The lungs or gills may fail as special organs, and be replaced by the whole outer surface of
the body. The blood vessels are

Fig. 4.-Branch of a Polyparium of Corallium rubrum (after Lacaze Duthiers). P, Polyp. simplified, and sometimes they and the heart are absent, the blood being moved in more irregular streams in the body cavity and in the wall-less spaces in the organs. Similarly, the digestive organs are simplified; salivary glands and liver may no longer be found as glandular appendages of the alimentary canal. The alimentary canal may become a blind, branched, or simple sac (Trematoda), or a cential cavity, the walls of which are in contact with the body wall (Coclenterata). The mouth and alimentary canal may also fail (Cestodes), nourishment being taken in by osmosis through the outer walls of the body as in plants. Finally, nerves
and sense organs are totally absent in many organisms, which are looked upon as animals, e.g., in the whole of the Protozoa.

With such reduction of the internal organs it is easy to understand that the simpler lower animals, such as colonies of polyps and the Siphonophora, should often in their, outer appearance and the manner of their growth resemble plants, with which they were formerly confounded, especially when they at the same time lacked the power of free locomotion (Polyps, Hydroids, figs. 4, 5). In these cases it is as difficult to apply the idea of "individuality" as it is in the vegetable kingdom.
2. Between animal and vegetable tissues there exists also generally an important difference. While in the vegetable tissues the cells preserve their original form and independence, in the animal tissues they undergo very various modifications at the expense of their independence. Accordingly vegetable tissues consist of uniform cell-aggregates, the individual cells of which have rctained sharply-marked boundaries; while in animal tissues the cells give rise to

Fig. 5. - Physophora hydrostatica. Pn, Pncumatophor ; S, Swimming-bells; T, Dactylozooid; P, polypite or stomach with the tentacles, $S f$.; $N /$, torminal swellings on the latter provided with thread-cells; G, Clusters of gonophores extremely different structures, in which the cells as such do not always remain recognisable. The reason for this unlike condition of the tissues must apparently be sought in the different structure of
the cell itself; the vegetable eell being surrounded ontside its primordial atricle by a thick non-nitrogenous cuticle, the cellulose eapsule; while the animal cell possesses a very delicate nitrogenous membrame, or instead of this only a more viscous boundiny layer of of its own semi-fluid contents. Nevertheless, there are also vegetable cells provided only with a simple naked primordial utricle; and, on the other hand, mimal tissues which resemble vegetable tissues in the fact that the cells remain independent and develop a caposule (Chordin dorsalis, cartilage, supporting cells in the tentacles of hydroids, fig. 6).

Fig. 6.-a, Vegctable parenchyma (after Sachs). b, Axial-cells from the tentacles of Campanularia.
Neither can we, as has been done by many investigators, regard the multicellular composition of the body as a necessary sign of animal life. For not only are there many unicellular alge and fungi, but also animal organisms which are composed of one simple or complexly differentiated cell (Protozoa). Finally, it is not possible to see any reason why unicellular animals should not exist, especially when we consider that the cell forms the starting-point for the development of the animal body.
3. Least, of all can a test be found in the reproductive processes. In plants indeed we find a predominance of the asexual method of increase by spores and buds, but similar methods of increase are widely present amongst the lower and more simply organised animals. Sexual reproduction is effected both in animals and plants by processes which are essentially similar; consisting in both of the fusion of the male element (spermatozoon) with the female element (ovum) ; and the form of these elements presents in both kingdoms a great agreement, at any rate they are in every case derived from cells. The structure and position of the generative organs inside the body, or as outer appendages of it, cannot be regarded as a distinguishing mark, inasmuch as in both kingdoms the greatest difference prevails in this respect.
4. The chemical constituents and the metabolic processes in animals and plants present, on the whole, important fcatures of difference. Formerly great importance was attached to the fact that plauts consist chiefly of ternary (non-nitrogenous) compounds, while animals consist of quaternary nitrogenous compounds ; and a greater importance was attached in the former to the carbon, in the latter to the nitrogen. But ternary compounds are found to be largely present in the animal body, e.g., fats, carbohydrates; while, on the other hand, quaternary proteids play an important part in those parts of a plant which are especially active in growth. Protoplasm found in the living vegetable cell is richly nitrogenous, and of an albuminous nature; and it agrees in its micro-chemical reactions with sarcode, the contractile substance of the lower animals. In addition, the modifications of egg albumen, known as fibrin, albumen, and casein, are also found in vegetable cells. Finally, it is not possible to mention any substance which is universally and exclusively found either in animals or iu plants. Chlorophyll (green colouring matter of leaves) occurs in the lower animals (Stentor, Hydra, Bonellia), while, on the other hand, it is totally absent in Fungi. Cellulose, a peculiar non-nitrogenous substance found in the outer membranes of vegetable cells, occurs in the mantle of Ascidians. Cholesterin, and certain substances especially characteristic of nervous tissues, are also found in plants (Leguminose).

Of far greater importance is the difference in the nourishment and metabolic processes. Plants take up with certain salts (phosphates and sulphates of the alkalies and earths) more especially water, carbonic dioxide (carbonic acid), and nitrates or ammonia compounds, and build up organic compounds of a higher grade from these binary inorganic substances. Animals, in addition to taking up water and salts, require organic food, especially carbon compounds (fat) and nitrogenous, albuminous substances; which, in the cycle of metabolism, break down to nitrogenous waste products (amides and acids), kreatin, tyrosin, lccucin, urea, etc.; uric acid, hippuricacid, etc. Plants exhale oxygen, whilst they are decomposing carbon dioxide by means of their chlorophyll under the influence of light, and are forming in their chlorophyll corpuscles organic substances from carbon dioxide and solutions containing combined nitrogen. Animals take up oxygen through their respiratory organs for the maintenance of their metabolism. The processes of metabolism and of respiration, therefore, in the two kingdoms are indecd mutually determinant, but have an exactly opposite result. The life of animals depends on the analysis
of complex compounds, and is essentially an oxidation process, by which potential energy is converted into kinetic (movement, production of heat, light). The vital activity of plants, on the contrary, is based, so fill is it relates to assimilation, on synthesis, and is essentially a process of reduction ;

Frg. 7.-Leaf of Drosera rotundifolia, with partially contracted tentacles (after Darwin). under the influence of which the energy of warmth and light is stored up, kinetic energy being converted into potential.

Nevertheless, this difference also is not applicable as a test in all cases. Recently the attention of investigator's has been turned, especially ly Hooker and Darwin, * to the remarkable nutritive and digestive processes in a group of plants which were first observed a hundred years ago (Ellis). The plants in question catch, after the manner of animals, small organisms, especially insects, and absorb from them through the glandular surface of their leaves the organic matter after a chemical process resembling animal digestion (leaves of the Sun-dew, Drosera rotundifolia, and the Hy-catcher, Dioncea muscipula. Figs. 7 \& 8). Many parasitic plants and

Fig. 8.-Lenf of Dionæa muscipula in cxpanded condition (after Darwin). almost all fungi have not, however, in general, the power of making organic substances from inorganic, but suck up organic juices; and in taking up oxygen and giving out carbonic acid, they present a respiratory process recembling that found in animals.

It was established by Siussure's observations that all plants require oxygen at certain intervals ; that in those parts of plants which are not green, not possessing chlorophyll, and also in the green parts in the absence of sunlight, i.e. at night, a consumption of oxygen and exhalation

* Compare especially Ch. Darwin, "Insectivorous Plants." London, 1875.
of carbonic acid goes on. In plants, therefore, together with the characteristic deoxidation process, there is always found it process of oxidation analogous to that occurring in animal metabolism; by which a part of the assimilated substances is again destroyed. The growth of plants is impossible without the consumption of oxygen and the production of carbonic acid. The more energetic the growth, the more oxygen is consumed, as indeed the germinating seed or the quickly unfolding leaf and flower buds rapidly consume oxygen and excrete carbonic acid. In this connection should be mentioned the fact that the movements of protoplasm depend upon the inspiration of oxygen. The production of heat (in germination), also of light (Agaricus olecurius) is accompanied by an active consumption of oxygen. Finally, there are organisms (yeast cells, Schizomycetes) which indeed manufacture both nitrogenous and albuminous compounds, but do not assimilate the carbon of carbonic acid, but rather derive the necessary carbon from prepared carbohydrates (Pasteur, Cohn).

5. Voluntary movement and sensation, according to the common view, is the chief characteristic of animal life. Formerly, the power of free locomotion was looked upon as a necessary property of animals ; and as a consequence of this the fixed colonies of Polyps were considered to be plants, until Peyssonnel brought forward proof of their animal nature, a view which by the influence of the great naturalists of the last century has gained general recognition. More recently, on the discovery of the existence of motile spores of algre, it was first recognised that plants also, especially at certain stages of their development (fig. 9), possessed the power of free locomotion, so that we are compelled to direct our attention to the signs by which the voluntary nature of the movement can be decided for a dis-

Fig. 9.-Zoospores, a, of Physarum ; b, of Monostroma; c, of Ulothrix; d, of Bedogonium; e, of Tauchuria (after Reinke). tinction between the respective movements of animals and plants. As such for a long time was regarded the contractile nature of the movement as opposed to the uniform movements of plants carried out with rigid bodies.

In the place of muscles, which as a special tissue are absent in the
lower animals, there is presont an undifferentiated albuminous substance known as surcorle, the contractile matrix of the borly. The

Fig. 10.-Zoospores of Aethalium septicum after de Bary. a, in condition of batching; b, as mastigopods ; c, in the amoboid stage; d, a piece of plasmodium. viscous contents of vegetahle cells, known is protoplasin, possesses likewise the powcr of contractility, and resembles sarcode in its inost essential properties. Both present the same chemical reactions and agree in the fresquent presence of cilia, vacuoles, and streams of granules. Pulsating spaces, the contractile vacuoles, are not exclusively a possession of sarcode, but may also occur in the protoplasm of vegetable cells (Gonium, Chlamydomonas, Chcetophora). The contractility of the protoplasm of vegetable cells is, as a rule, limited by the cellulose membrane, but in the naked cells of Tolvocina and Saprolegnia, and in the amocba-like forms occurring in the development of Myxomycetes, the contractile power is as intense as in the sarcode of Infusoria and Rhizopoda. The amoboid morements of the plasmodium of Myxomycetes (fig. 10) are not inferior in intensity to those of a genuine

Fig. 11.-Amœba Daclylosphara. polypodia. N, nucleus. P_{u}, contractile vacuole (after Fr E. Schultze). Amœba belonging to the Rhizopoda, e.g., Amaba polypodia (princeps), (fig. 11). Th these similar phenomena of movement of the lower animals and plants we seek in vain for any test of volition, the interpretation of which will depend upon the individual judgment of the observer.
The faculty of sensation, which is inconceivable as a function of matter and which must be always pre-supposed wherever we have to do with voluntary morement, can by no means be affirmed with certainty in all animal organisms. Many of the lower animals entirely lack a nervous system and sense organs, and, on stimulation, exhibit
but slight movements not more intense than those of plants. This irritability, however, appears widely present among the higher plants. The sensitive plants move their leaves on the application of mechanical stimuli (Mfimosece), or bend like the sundew (Drasera, fig. 7) small knobbed processes of the leaf surface which are comparable to the tentacles of polyps. The fly-catcher (Dioncea, fig. 8) brings the two halves of the leaf together in a valve-like manner when touched by insects. The stamens of the Centaurea contract along their whole length on mechanical and electrical stimulation, and according to the same laws as do the muscle of the higher animals. Many flowers open and shut under the influence of light at certain times of the day.

Accordingly irritability as well as contractility appears to be a property both of vegetable tissue and of the protoplasm of vegetable cells; and it is not possible to determine whether volition and sensation, which we exclude from these phenomena in plants, play a part in the similar sensory and motor phenomena of the lower animals.

In none of the above-mentioned characteristics of animal and vegetable life, then, do we find any absolute test, and we are not in a position to indicate the presence of a sharp line between the two kingdoms.

From the common starting-point of the contractile substance ${ }^{*}$ animals and plants are developed in different directions; at the beginning of their development they present many kinds of resemblance, and it is only on their attaining a more complete organization that the full opposition between them is apparent. In this sense, without wishing to draw a sharp line between the two series of organization, we can define our conception of an animal by putting together all the characteristics distinguishing the direction of animal development.

An animal, therefore, is to be defined as an organism provided with the power of free and voluntary movement, and with sensation; whose organs are internal, and are derived from a development of the internal surfaces of the body; which needs organic food, inspires oxygen, changes potential energy into kinetic under the influence of oxidation processes in metabolism, and excretes carbonic acid and nitrogenous waste productr.

[^2]Zoology is the seience which has amimals for its sulject, and which seeks to examine the phenomena of their structure and life, as well as their relations to one another and to the outer world.

CHAPTER III.

TIIE ORGANIZATION AND DEVELOPMENT OF ANIMALS IN GENERAL.
In the foregoing comparison of animals and plants for the establishment of a correct idea of the meaning of the word "animal," the great variety and the numerous grades of animal structure have been hinted at. Just as the complex organism is built up from the ovum by a process of gradual differentiation, and often during its free life passes through conditions which lead in ascending series to an ever higher development of the parts and to a more complete performance of functions; so, if the animal kingdom be examined as a whole, there is apparent a similar law of gradually progressing development, of an ascent from the simple to the complex, manifest both in the form of the body and in the composition of its parts as well as in the completeness of the phenomena of life.

It is true that the grades of animal structure do not, like those of the developing individual, follow the one upon the other in a single continuous series; and the parallel between the developmental gradation of types in the animal kingdom as a whole and the successive conditions of an individual animal breaks down in so far as we distinguish in the former, as opposed to the latter, a number of types of animal structure often overlapping, but still, in their higher development, essentially different from each other. These we regard as the highest divisions of the system.

INDIVIDUAL-ORGAN-STOCK.

The animal organism, when viewed from a physiological and morphological stand-point, presents itself as an independent and indivisible unit, as a "complete individual." Amputated limbs or excised parts of the body do not develop into new animals; in fact we cannot usually remove a single piece of the body without thereby endangering the life of the organism, for it is only as a complex of all its purts that the body can retain its full vital energy. With reference to the property of the indivisibility of the individual, we understand
by the term organ every part of the body which as a unit subordinate to the higher unit of the organism presents a definite form and structure, and performs a corresponding function ; that is to say, an organ is one of those numerous instruments on the combined working of which the life of the individual depends.
There are certainly among the simpler animals many instances in which the term individual in its usual sense cannot be rightly applied. In such cases we have to do with structures which from their development must be termed individuals, and represent individuals, accordingly, in a morphological sense. A great many of them are, however, fused to a common stock, forming what is known as a colony, and are related physiologically to this, as organs are to an organism. They are accordingly incomplete or morphological individuals, which are usually incapable of leading a separate existence; and, when they differ from each other in form and function, dividing amongst themselves the labours, the performance of which is necessary for the maintenance of the whole colony, they always perish if separated from it.
Such polymorphous* stocks of animals present the properties of individuals although they are morphologically aggregations of individuals which behave physiologically as organs (fig. 5). On the other hand, groups of organs can acquire individual independence.

In the animal body organs do not always remain single, but the same organ may be often repeated. The manner of the repetition is dependent on the kind of symmetry, which may be radiate or bilateral. In animals with radiate symmetry, the Radiata, it is possible to connect two opposite points of the body by an axis, which may be called the chief axis, and to divide the body by sections passing through this axis into a number of equivalent and symmetrical parts known as antimeres. The organs which are not repeated are situated in the chief axis of the body, while the other organs, which are uniformly repeated in each antimere, are situated peripherally. Each antimere contains, therefore, a definite group of organs and represents a secondary unit, which, together with its fellows and the central organs, constitutes the primary unit, i.e., the perfect animal.

In a radiate animal a number of lines can be drawn at right angles to the chief axis, corresponding in number to the antimeres, and cach passing along the middle of an antimere; such lines are known as radial. Similarly, a corresponding number of inter-radial lines

[^3]cin be drawn, passing between the antimeres. A vertical section through a radial line divides the correspouding antimere into two

Fig. 12a.-Sea-urchin (diagrammatic). J, inter-radius with the double row of interambulacral plates and the genital organs $G ; R$, radii with the double row of ambulacral-plates perforated by the ambulacral pores. A, anus.

Fig. 12b.-Shell of a Sea-urchin seen from above. R, radius with the perforated plates; J, inter-radius with the corresponding generative organs and their pores.
equal parts, while a similar section through an inter-radial line divides one antimere from its neighbour. Radiate animals may have two, three, etc., radii ; and in

Fig. 13.-Star-fish (diagrammatic). G, generative organ in inter-radius; $A f$, position of the ambulacral feet in the radii.
 animals which possess an uneven number of radii, one radius and one inter-radius always fall in the same vertical plane (fig. $12 a, b$, and fig. 13). In animals with an even number of radii, on the contrary, each vertical plane passes through two radii or two interradii. A vertical section passing through one radius would, if prolonged, pass through the radius of the opposite antimere (fig. 14a). For example, an animal with four radii possesses four antimeres, each of which will be divided into two, by two radial vertical sections passing at right angles to each other through the chief axis; while they will all be separated from each other by two similarly directed inter-radial sections.

Biradiate forms (the Ctenophora) possess, on the contrary, only tro radii, which lie in a common vertical plane. A second rertical plane crossing the first at right angles passes through the inter-radii, and
divides the antimeres from each other. The first, in which the greater number of organs are repeated, may be designated the transverse plane, while the second, corresponding to the median plane of bilateral animals, is known as the sagittal plane (fig. 14b).

Fig. 14a.-Acalepha larva (Ephyra). $R k$, marginal body ; $G f$, gastric filament. $R c$, radial-canal; O, mouth.

Fig. 14b. - Ctenopheran seen from above. S, sagittal plane ; T, trans verse plane; R, vibratile plates; Gf, gastric canals.

In the bilateral arrangement, which is found also in each individual antimere of the Radiata, only one plane, the median plane, can be imagined, which passes through the chief axis and divides the body into two exactly similar parts (right and left). These two halves, as opposed to antimeres, may be termed parameres. In bilateral animals we distinguish an anterior and posterior end, a right and a left side, and a dorsal and a ventral surface. The unpaired organs are placed in the middle line, on each side of which, in the two halves of the body, are placed the paired organs. The plane which is placed at right angles to the median plane (passing from right to left) and separates the unlike dorsal and ventral halves of the body, is known as the lateral plane. The antimeres of the Radiata also consist of two parameres, and are therefore bilateral, in that the vertical plane passing through the radius like the median plane divides them into two similar parts.

The same groups of organs or similar parts of

Fig. 15.-Segmenter worm (Polychrotc). $P h$, pharyux ; D, alimentary canal; C, cirrus; r, tentacle. the same organ may also be repeated in a longitudinal direction. This occurs especially frequently in bilateral, less frequently in radiate animals (strobila). The body thus obtains a segmentation, and is divisible into successive sections, the segments or metameres,

Which are placed one behind the other, and more or less eompletely resemble each other in strueture (Annelids, fig. 15). The successive segmonts may in structure and function appear completely equivalent, and represent, like the antimeres of the Radiata, individuals of a lower order, whieh on the severance of their mutual connection can acquire independence and remain alive for a shorter or longer period (proglottis of Cestodes).

In animals of higher organization the segments are much more intimately conneeted, and are mutually dependent, but they lose at the sume time their complete homonomy. In the same degree as the metameres acquire an unlike structure, and corresponding to this a

Fig. 16,---Portion of Diphyes fter R. Leuckart). D, hydropliyllium ; Gs, gonophore; P, Polyp with tentacle. The groups of individuals separate themselves as Eudoxia. varying importanee in the life of the organism, they lose their individual independence, and sink more and more to the value of organs.

The metameres in the polymorphous eolonies are quite analogous to the segments of the individual. In them there follow, one behind the other, similar groups of different individuals, eaeh of which fulfils singly the eonditions necessary for existenee, and therefore ean continue to live as a colony of a lower order when separated from the stoek (Eudoxia, Diphyes, fig. 16).

The distinetion into a higher and lower order also holds for organs. There are organs whieh are reducible to a single cell, or to an aggregation of equivalent eells (simple organs), and other's in the formation of whiel various cells and tissues (eompound organs) participate, and whieh frequently, in their turn, may be divided into parts different in structure and function. The compound organs of higher order are composed of different parts which function as organs of a lower order. These, again, are composed of various kinds of eells and eell derivates, which are organs of a still lower order. Finally, in the last analysis, we come to the cell or the area of protoplasm corresponding to it, which is the simplest and ultimate organ. On the other hand, we group together organs of different order, which are intimately commected so far as their chief funetion is concerned, under the name of system. (vascular system, nervous system) or apparatus (digestive apparatus), although we eannot clearly distinguish them from compound organs.

CELLS AND CELL TISSUES.

The constituent parts of which an organ is made up are known as tissues. They possess a definite structure, visible with the help of a microscope, and have either the form of cells or of structures derived from cells. Tissues have a function corresponding to their special structure, and this function determines the whole function of the organ. They may, therefore, be regarded as organs of a lower order. The ultimate unit, the organ of the lowest order, or elementary organ, " from which all tissues are derived, is the cell. The essential part of a cell is not, as we have already seen, the membrane or the nucleus, but the protoplasm, with its special molecular arrangement, in which reside the functions of independent movement, of metabolism and of reproduction (fig. 1).

The nucleus of a cell is either a solid mass of protoplasm or a more fluid structure enclosed by a firm membrane, and may contain one or more solid bodies (nucleolus). Different as are the forms which the nucleus may take, it always contains a fluid substance, the nuclear fluid, and a protoplasmic substance, the nucleur substance of a special importance for the functions of the nucleus (fig. 17).

An important and very general property of protoplasm is its power of contractility. The living mass presents, in connection with metabolism, phenomena of movement. These movements are not merely confined to the currents of solid particles suspended in the viscous contents of the cell, but

Fig 17.-Different forms of nuclei (after R. Hertwig). a, nucleus from a cell of a Malpighian tubule of a caterpillar. b, nucleus of a Heliozoon with a cortical layer and nucleolus in the nuclear fluid. c, nuciens from the egg of a Sea-urchin. Nucleolus imbedded in a protoplasmic fibrous network surrounded by nuclear fluid. are shown also in the change of form of the whole cell. If the outer part of the protoplasm has condensed so as to give rise to a cell membrane, i.e., if the cell has acquired a distinct wall, the changes in its form are very much restricted. In other cases the movement shows itself in a quick or slow change in the outer form. The cell in this case manifests

[^4]tho so-ealled amoboud motion; it sends out processes, draws thein in again, and is ahle by such means to change its position. This eapacity of change of form is especially possessed by young undifferentiated cells, which have not developed an outer membrame. Such cells in their later growth nsually develop a cell membratue, which accordingly is not, as wis formerly supposed, a necessiny constituent of the cell, but is merely an indication that the ecell has undergone a certain amount of differentiation from its carly indifferent condition.

It has been already pointed out that the fundamental properties whieh distinguish the life of organisms manifest thenselves also in the life of their constituent eells. According to our present knowledge, cells always originate from pre-existing cells; a process of free cell formation, as conceived by Schwann and Schleiden, indicated by the precedent origin of nuclei in a formative organic material, has never been proved.

Snch a process may, however, take place when the formative matter is the plasma of a cell, or of several cells fused together. (plasmodium). In such cases we have a process of free cell formation (e.g., spore formation in Myxomyeetes) which certainly is not elearly marked off from a process of new formation within the mother cell, and is to be looked upon as a modification of the so-called endogenous cell formation. This leads us to a consideration of the very widely distributed method of cell increase by division. When the cell has reached a certain size by the absorption and assimilation of nutrient matter, the protoplasm separates itself into two nearly equal portions, this process being usually preceded by the division of the nucleus. Each portion receives half of the original nucleus.

During its division the nucleus undergoes, as has been recently shown in many instances, peculiar differentiations and changes (fig, 18). It becomes spindle-shaped; its contents take on the form of longitudinally arranged strix, running from pole to pole of the spindle; the centre of each of the strire becomes thickened, giving rise to a cross equatorial zone of granular matter, the nuclear plate (thickened zone). The central thickenings constituting the nuclear plate divide. Each half travels towards the poles of the spindle, and becomes there enclosed in a clear fluid mass, which appears in the protoplasm. From these two structures the new nuclei are formed at the poles of the now dumb-bell shaped nuclear spindle, the striee of which vanish during the eonstriction of the protoplasm, which has already commenced and quickly progresses. The division
is completed when the young nuclei, proceeding from the two poles of the nuclear spindle and the surrounding clear protoplasm, have attained their definite size, and the remains of the fibres have been absorbed.

During these processes the protoplasm of the ccll has gradually become more and more constricted by a furrow which is directed transversely to the long axis of the nuclear spindle, and which afterthe completion of the division of the nucleus brings about a separation of the cell contents into two masses-the daughter cells (fig. 18).
If the products of the division are unequal, so that the smaller portion may be lonked upon as a production of the larger, we give the name "luddding" to this form of reproduction.

Fig. 18.-Proccsses of cell division in an embryonic blood corpuscle of a chick (after Bütschli). K, nuclear spindle. $K p$, nuclear plate or equatorial thickening.

Finally, the term endogenous cell formation is applied to that method of increase in which the cells originate within the mothercell. In this case the protoplasm does not divide by a progressive constriction and separation into two or more parts, but differentiates itself round the newly formed nuclei, with which the original nucleus may persist.

The ovum which we have to contemplate as the starting-point of the development of the organism produces by these various methods of cell multiplication the material of cells which serves for the for'mation of the tissues. Groups of originally indifferent and similar cells break up and assume severally a changed appearance. The constituent elements undergo various differentiations, and from them and their derivates is produced a definite form of tissue, endowed with a function corresponding to the peculiarity of its structure.

The scparation of groups of different cells leading to the establishment of various tissues prepares the way for the physiological division of labour between the organs, which, like the tissues composing them, can, according to the functions which they perform, be divided into organs of vegelative life and organs of animal life.

The former have to do with the nutrition and maintenance of
the body; the latter, on the contrary, serve for movement and sensition, functions which are exclusively the property of animals (as opposed to plants). For tho salke of clearness we will divide the vegetative tissues into two groups, -into cells and cell-iggregrates (epithelimm), and into tissues of connective substance. In the tissues of animal life we distinguish muscular and nervous tissues. This classification of the tissues hats no other aim than to facilitate a general review of the different forms of tissue, and to render possible a criticism of their relationships; it lays no clatin to establish an absolutely sharp line between the various groups.

1. Cells and cell-aggregates. Cells may either be free and isolated from each other, floating' in a fluid medium, or they may be placed near one another forming part of an aggregation of cells spread out superficially. To the former belong the cells of the blood, chyle, and lymph. The blood of invertebrates, which is generally colourless, and

Fig. 19.-Blood-corpuscles (after Ecker). a, colourless blood corpuscles from the heart of the fresh-water mussel (Anodonta). b, from the caterpillar of Sphinx. c, red corpuscles from Proteus. d, from the smooth adder. d^{\prime}, lymph corpuseles of the same. e, red corpinscles of the frog. f, of the pigeon. f^{\prime}, lymph corpuscles of the same. g, red blood corpuscles of man.
the blood of vertebrates, which is with few exceptions red, consists of a fluid albuminous plasma containing numerous blood-corpuscles in suspension. 'These cor'puscles are in invertebrates irregular often spindle-shaped cells, endowed with the capacity of amœboid movement. In the blood of vertebrates, in addition to such colourless amœeboid corpuscles there are found red corpuscles (discovered by Swammerdam in the frog) ; and these are so numerous as to give the blood a uniformly red appearance to the unaided eye. They are thin discs with an oval, nearly elliptical or circular (Mammalia Petromyzon) contour, with nuclei in the first case, and without nuclei in the second (except in the embryo) (fig 19). They contain
the red colouring matter of the blood, hemoglobin, which plays so important a part in respiration. They arise in all probability from the colourless corpuscles which are always far less numerous in normal blood. The colourless corpuscles are genuine cells of variable form, and have the power of amoeboid motion (migration into tissues, regeneration of tissues, etc.) ; they come from the lymphatic glands, in which they arise as lymph corpuscles, and eventually pass with the lymph stream into the blood. The ova and spermospores, after

Fig. 20. -Spermatozoa. a, cf Medusa. b, of a Nematode. c, of a Crab. d, of Torpedo. p, of Salamander (with undulating membrane). f, of Frog. g, of a Monkey (Ceropithecus).
they have separated from the epithelial layer in the wall of the ovary and testis, as well as the spermatozoa produced from the spermospores, respectively belong to the category of free cells. The form and size of the spermatozoa present great variations. They always consist of a modified cell, frequently of a very small cell with a long flagellum, nucleus, and remains of protoplasm. In many cases the head is elongated into a fibre-like structure, or is twisted like a corkscrew (Birls, Selachians). Sometimes a distinct head is absent, and the permatozonn is threadlike (Insects). In the Nematodes the sperm-
atozoon in hat-shaped ; while in Crustacea it has the form of a cell, with long radiating processes (fig. 20).

Epithelich tissues consist of aggregations of cells which as simple or stratified layers cover the external and internal surfaces of the body, and which line its closed spaces (E'ndothelizm). According to the different shape of the cells composing it, we distinguish cylindrical, ciliated, and pavement epithelium. In the first case the cells, in consequence of the elongation of the long axis, are cylindrical (fig. 21, c) ; in the second, the free surface of the cells is berot with vibratite cilia or flagella (fig. 21, d), which are continuous with the living protoplasm of the cell. If only one flagellum projects from the cell (sometimes a flat cell fig. 21, b) then the name Hagellate cell is applied (collared cell of sponges, fig. 21, e). Finally, in the case of pavement epithelium (fig. 21, a) the cells are flattened; and if there

Fig. 21.-Various kinds of epithelial cells. a, Flat cells. \quad, fiat cells with flagella (from a Medusa). c, cylindrical cells. d, ciliated cell. e, flagellate cell with collar (from sponge). f, cylindrical cell with porons border (intestinal epithelium).
is more than one layer the superficial cells are flat, while those in the deeper layers are more and more rounded.

While the cells of the lower layers retain their semi-fluid character, and are occupied in continual cell division and growth; those of the upper layers possess a firmer consistency, giadually become horny, and are thrown off as scales or continuons flakes, to be replaced by the continuous growth of the lower layers. Thick stratified layers of cornified cells, almost fused with one another, give rise to indurated or horny structures (nails, claws, hoofs), which may form a more or less complete coat for the body and function as protective exoskeleton (fig. 21, a to f).

There are also cells the free surface of which is distinguished by a
well-marked thickening. The protoplasm of the free surface of such cells becomes hardened so as to give rise to a thick superficial border, perforated at right angles to its surface by a number of fine canals
which give it a striated appearance (intestinal epithelium, fig. 21, f, epidermis cells of Petromyzon). If these thickened borders fuse together so as to form a continuous layer which obtains a certain independence, we obtain cuticular membranes, which, according to their origin, may be homogeneous or stratified (fig. 22, a, b, c), and

Fig. 22c.-Cu, cuticle with bristles in the condition of ecdysis. Cu', newly-formed cuticle (Branchipus).

Fig. 22.-a, Cuticle and hypodermis of the larva of Corethra. b, cuticle and hypodermis of a Gastropacha caterpillar; with tro poison glands beneath corresponding bristles.
may exhibit various patterns of different kinds. Very frequently the surfaces of the individual cells are indicated on the cuticle as polygonal figures: and, in addition to the very fine pores, there are also found larger passages produced by out-growth from the cells. These latter lead to the appearance of various cuticular appendages, such as hair's, bristles, scales, etc., which are placed on the cuticular pores, and contain as a matrix their special cell or a process of it. Cuticular membranes may obtain a very considerable thickness, and, by the deposition of calcareous salts, a high degree of firmmess (carapace of Crustacea) so that they acquire the value of skeletal tissues, which,
however, it is generally difficult to distinguish from certain connective tissues.

While cuticular struetures are solid secretions which we of use in supporting and giving in definite form to the orghnism, there are, ou the other hand, various fluid secretions proceeding from cells which give rise to no structures, and which are often of considerable importance from a chemical point of view. In this case the epithelium becomes glandular tissue. In the simple cases the gland is constituted of a single cell, the secretion of which either passes out through the free surface of the membrane, or a special opening in

Fig. 23.-Unicellular glands. a, goblet cells from the epithelium of the small intestiue of a vertebrate. b, unicellular cutaneous gland of Argulus whth loug duct. c, unicellular cutaneous gland of inscets with cuticular duct.

Fig. 24.-Gastric glands. u, their origin as invacrinations of the epithelium. b, perfect gastric glands.
it (fig. 23). If several cells enter into the formation of a gland, they are arranged in the simplest cases lound is central cavity, which receives the secretion. The gland then has the form of a sack or blind tube, derived from an invagination of the epithelium, either of the inner or the outer surface of the body, into the subjacent tissue.

From this fundamental form the larger and more complicated glands are to be derived, as the result of continued regular and irregular outgrowth. While their form presents great rariations. they are universally characterised by the tramsformation of their terminal portion into a duct; this differentiation may also appear in the simple glamhular tubes, and even in the unicellular glamds (figs. 23, 24).
2. The tissues of the connective substance. Under this term there are included a great number of different tissues which morphologically resemble each other in the presence of a greater or less amount of intercellular substance, intercalated between the cells (connective tissue corpuscles). They connect and surround other tissues, and serve as supporting and skeletal structures. The intercellular substance arises from the cells as a differentiation of the peripheral part of their protoplasm; it cannot accordingly be genetically clearly distinguished from the cell membrane and its differentiations, which we have considered in connection with epithelial tissue. The cell walls already produced by the protoplasm may also become fused with the intercellular substance, and so contribute to its increase. The intercellular substance is usually secreted by the whole periphery of the cell, and presents great rariations both in its morphological and chemical characters.

When the amount of intercellular substance is small, the tissue is called cellular or vesicular comnective tissue. This form is found especially in medusx, molluscs, and worms, and to a less extent in rertebrates (notochord, fig. 25), and is not sharply marked off from cartilaginous tissue. Embryonic connective tissue, which consists of closely aggregated embryonic cells, eridently cloe ely resembles it.

Wucous or gelatinous conuective tissue is characterised by possessing a watery hyaline and gelatinous matrix. The condition of the cells in each case is different. Frequently they send out delicate, often branched processes which anastomose with one another and form a network. In addition, however, parts of the intercellular

Fig. 25.-Vertebra of larva of a toad (after Götte). Ch, notochord cells; Ch S, notochord sheath ; $S k$, skeletogenous tissue ; N, spinal cord. substance may be differentiated into bundles of fibres (Wharton's gelatine in the umbilical cord). Such forms of tissue are found amongst the Invertebrata, e.g., in Heteropods and Meduse, whose gelatinous disc, in consequence of the reduction or complete absence of cells, is reduced to a layer of soft or hardened connective tissue but little different in its origin, as a unilateral cell excretion, from cuticular structures (Hydroid Meduse, swimming bells of Siphono-
phora). The so-cialled secreted tissue of young Cienophora, and the gelatinous tissue of Medusie and Echinorlerm larvar, into which cells eventually migrate, being at first albsent, has it similar relation (fig. 26).

FIg. 26.-Gelatinous tissue of Rhizostoma. F, fibrous network; Z, cells with processes; Z^{\prime}, the same in division.

Reticular connective tissue consists of a network of star-shaped and branched cells, the spaces of which contain another kind of tissue element. In the so-called adenoid tissue, which functions as the supporting tissue of the lymph glands, the contents of the intercellular spaces are lymph corpuscles.

Fig. 27.-Fibrillar connective tissue.

A form of connectire tissue very widely scattered amongst the Tertebrates is the so-called fibrillar connective tissue (fig. 27). This consists of a large proportion of spindle-shaped, or also branched cells, and of a solid intercellular substance, totally or partially broken up into bundles of fibres, which possesses the property of yielding gelatine on boiling. If the protoplasm of the cells is mostly or entirely used up in the formation of fibres, fibrous tissue is produced with nuclei in the position of the original cells. Very often the
fibres liave a wavy outline, and are auranged nearly parallel to one another (ligaments, tendons). In other cases they cross one another at an angle in different directions (dermis), or they present a net-like arrangement (mesentery). Fat tissue consists of ordinary connective tissue in which the cells are for the most part round and contain greater or smaller fat globules.

If the normal fibrille and bundles of fibrille be treated with acids and alkalies, they swell up, and a second form of fibre, which resists these re-agents, comes into view. These are the elastic fibres (fig. 28), so called because they preponderate in tissue which is especially elastic. They present a tendency to branch and to form networks, and often possess great strength (ligamentum muchue, arterial wall). They may also be spread out and connected together so as to form a perforated membrane (fenestrated membrane).

Cartilage is another form of connective tissue. It is characterized by the shape of its cells, which are u.stally spherical, and its firm intercellular substance. The latter contains chondrin, and determines

Fig. 28.-Elastic fibres, a; b, uetwork. the rigidity of the tissue. Externally, cartilage is covered by a vascular connective tissue-coat, known as the perichondrium. When the intercellular substance is very slightly developed, we get tissues which are transitional to the cellular connective tissue.

Fig. 20.-a, Hyaline cartilage with cells. b, Fibro-cartilage.
According to its special constitution, three kinds of cartilage may be distinguished, viz., hyaline (fig. 29, a), fibrous (fig. 29, b), and
elastice cartilage ; the latter containing a network of elastic fibses. There are also intermediate forms, approximating to the fibrillar commective tissue, in which cantilage cells may be sumounded by bundles of connective tissulu fibes. The cells are placed in spaces, which are nsually romed, in the intercellular sulstathee, and are surrombded by firm layers which are separated off from the latter, and have the appernance of capsules. These so-called cartilage capsules were formerly looked upon as the membranes of the cirtilage cells, amalogous to the cellulose capsules of plant cells: a view of them which is not in any way opposed by what is known as to their development as secretions of the protoplasm. Nevertheless, the capsules stand in closer relation to the earlier formed intercellular. substance which has been produced in the same way, in that they often fuse with it. The growth of the cartilage is accordingly in the main interstitial. We frequently see in the spaces in the cartilage sereral generations of cells

Fig. 30.-Incrusted cartilage, or cartilage bone. survounded by special capsules placed one within the other: In such cases the secreted capsules have remained separate from the intercellular substance. Certain kind. of cartilage, moreover, have spindleshaped cells, and sometimes the cells are prolonged into numerous radiating processes. Calcareous salts may also be deposited in the intercellular substance in a greater or less quantity. In this way arines the so-called incrusted cartilage, or the cartilage bone (fig. 30), which in the sharks is present as a persistent form of skeletal tissue, but in the higher rertebrates only as a transitional structure. Cartilage owes its special usefulness as a skeletal tissue to its rigidity. It is sometimes found in the Invertebrata (Cephalopoda, tubicolous worms such as Sabella, Colenterata), and rery generally in the Vertebrata, whose skeleton always contains a certain amount of cartilage, and in fishes maty be exclusively constituted of it (cartilaginous fishes).

Osscous tissue possesses a still higher degree of rigidity. The intercellular substance is strengthened and hardened by the deposition of carbonate and phosphate of lime, while the cells (the so-cilled bone corpuscles possess numerous fine processes which anastomose with each other (fig. $31 a, b, c$). The cells occupy spaces in the com-
pact intercellular substance，which is also traversed by numerous canals，known as Haversian canals．These contain the nutritive blood－vessels and correspond exactly in their course and branchings to the latter．The intercellular substance consists of lamellæ，which are arranged concentrically round the camals．The Haversian canals begin on the surface of the bone， which is covered by a vasculiur and nerrous connective tissue layer， known as periosteum，and open into larger spaces（marrow spaces）， which in the long bones occupy the axis of the bone，but in the spongy bones have an irregular

Fig．31r．－－Longitudinal section through a long bone（after Kölliker）．G，Haver－ sian canal． distribution．

In a second form of osseous tissue the cells themselves remain in the outer part of the excreted intercellular substance，and only their

Fig．31b．－Transverse section through a long bone（after Kölliker）．$⿸ 丆 口$ ，bone corpuscles ； G ，Haversian canals；L ，lamelle．

Fig． 31 к．－ $\boldsymbol{\mu}$, spances containing the bone corpuscles and their processes－they open into the Harersian canal，He （after Kölliker）．
numerous processes，which run parallel to one another and are of great length，are embedded in it．The intercellular substance， which is hardened by the deposition of calcareous salts，is therefore traversed by a great number of fine tubes．It is deposited on one side only of the cells，and in its origin recalls the hard campace of the Crustacea，which is similarly traversed by prolongations of cells．

This kind of osseous tissue，traversed by fine parallel tubes，is
foumd in osscous fishes, and guite miversally as the dentine of teeth (fig. 32).

Frg. 32.-Section through the ront of a tooth (after Kölliker). C, cement; J, interglobular spaces; D, dentine with dentinal tubes.
of bones ; and a primary was distinguished from a secondary method of bone development. In reality the two processes resemble each other closely. For in the latter case, in conjunction with a precedent deposition of lime, and partial destruction or reduction of the cartilage, there is a new formation of a soft connective tissue-substance (osteogenic substance) from the centre outwards, the cells (osteoblasts) of which give rise to bone corpuscles, and the intermediate tissue becomes the hard basis of bone (fig. 33). Moreover; cartilage bones grow in thickness at the expense of the
periosteum, the connective tissue of which is directly transformed into bony substance.
3. Muscular tissue. We ascribe the property of contractility to the protoplasm itself of the active cell; but we observe that, even in the protoplasmic body substance of the Infusoria, a striated arrangement obtains in those pairts in which the contractile function especially resides. By a similar differentiation of the protoplasm certain cells and aggregations of cells possess in a much higher degree the power of contractility, and give rise to the so-called muscular tissue which serves exclusively for movement. At the moment of their activity these cells undergo a change of shape ; they become

Fig. 3ta.- Myoblasts of a Medusa (Aurelia). shorter and broader than when at rest.

In many Coelenterata, cells are found in which a part only of the cell is developed into a contractile fibre. It is the deeper parts of such cells which give rise to

Fig. 34b.-Muscle-epithelium of a Medusa (Aurelia). delicate muscular fibres or networks of fibres, while the superficially placed body of the cell * (myoblast), the part which produces the above, performs other functions, and ustually bears a cilium. In consequence of their epitheliallike arrangement, the myoblasts receive the name of muscle-epithelium (fig. 34 a, b). In their further development the greatest part of the cell protoplasm appear's to give rise to contractile musclesubstance; and sometimes the whole cell becomes elongated into a muscle fibre.

Two kinds of muscles, which are morphologically and physiologically different, are to be distinguished, viz., the smooth muscles, or contractile fibre-cells; and the cross-striped muscle-substance.

[^5]In the finst case we have to do with that, mimile-shaperl, or handshaped elongated cells, amd with layer's of such cells. They leact slowly to nervous stimuli : they enter the condition of contanction gradually, and remain contracted for some time. The contatactile substance appears for the most part to be homogeneons, but it is sometimes longitudinally striated. The smooth muscles have the

Fig. 35. -u, smooth muscle fibres isolited. \langle, piece of an mrtery (after Frey) ; 1, nuter connective tissue layer ; 2, the middle J:!rer formed of smooth muscle fibres; 3, noz-nucleated inner lajer.
striped substance, consisting of special donbly refracting elements (sarcous elements) connected together by a simply lefracting intermediate substance (fig. $36,(a, b)$. wident distribution amongst the Invertehnata; but they are also found in vertehnates, in the walls of uumerous organs (ressels, ducts of glands, intestinal wall) (fig. 35).

Cross-striped muscle consists of cells, more frequently of multinucleated so-callerl primitive bundles. It is chanacterised by the partial or complete transformation of its protoplasm into a cross-

Fig. 36.-a, Primitive fibre. b, cross-striped muscle fibre (primitire muscle bundle) of Lacertin with nerre termination. Physiologically, this form of muscular tissue is characterised by the energetic and considerable contraction which immediately follows it excitation, a property which renders it especially suitable for the carrying out of powerful movements (muscles of rertebiate skeleton).

In the simplest cases the cross-striped fibrillix are produced br the deeper parts of the myoblasts, which form a contiuuous flat surface epithelium (muscle epithelinm) abore the layer of delicate fibres (Meduse and Siphonophoria) (fig. 3t b). In the higher animals they
arise from the tramsformation of a greater quantity of protoplasm, and almost the whole contents of the cell are concerned in their production. Rarely the cells remain single, and never acquire more than one nucleus, so that the muscle is composed of only a single cell (eye muscles of Daphna). Sometimes the cells become elongated into long fibres, the primitive bundles; the nuclei at the same time increase in number, and a membrane, the sarcolemma, becomes developed on the outer surface of each fibre. More frequently, however, the primitive bundles arise by the fusion of several cells placed in a row. Either the nuclei come to lie close to the sarcolemma in a peripherally-placed layer of finely granular protoplasm, or they are arranged in a row in the axis of the fibre in some finely granular non-contractile protoplasm. The finer and coarser muscular bundles are composed of many primitive bundles (fibres) placed close together and held together by connective tissue. The fibrillation of the muscular bundles corresponds to the direction of the primitive bundles (muscles of Vertebrata). Finally, both the simple cells, and the multi-nucleated muscles which arise from them, may be branched (heart of Vertebrata, intestine of Arthropods, etc).
4. Nervous tissue. As a rule, nervous tissue is found with muscular tissue, and is the means by which stimuli are conveyed to the latter: but above all, it is the seat of sensation and the will. With regard to this important function it would appear probable that in phylogeny the elements of nervous tissue have not arisen in connection with muscular tissue, but in connection with the sense cells found in the skin, i.e., differentiated Ectorlerm cells, and that then, still remaining connected with the sense-cells, they have travelled inwards into the subjacent tissue; while the connection with the muscle-cells, which at first possessed an independent irritability, is only secondary.

Nerve-tissue contains two distinct structural elements, nerve cells or ganglion cells, and nerve fibres; both possess a distinct minute structure and molecular arrangement, as well as chemical composition.

The ganglion cells act as centres for nerve-stimuli, and are found especially in the central organs which are known as brain, spinal cord, or simply ganglia. They ustadly possess a finely granular contents, with a large nucleus and nucleolus and one or more processes (unipolar, bipolar, multipolar, ganglion cells), one of which is the root of a nerve fibre (fig. $37,1, b$).

Frequently the ganglion cells are enclosed in connective tissue
sheaths, which are prolonged over their processes and so over the nerve fibres. Very genorally several ganglion cell, are enclosed in a common sheath.

Nerve fibres are either centrifugal, i.e., they carly nervous impulses from the central organ to the peripheral organs (motor, secretory

Fig. 37.-a bipolar ganglion cell. $\quad l$, nerve cell, from the human spinal cord (anterior cornu), (after Gerlach). $\quad P$, pigment bods.
quently enclosed in a nucleated sheath. The larger and smaller nerves are composed of a number of such fibres bound together. According to the minute structure of the nerrous substance we distinguish two kinds of nerves) : or they are centripetal, i.e., they carry them from the periphery to the central organs (sensory nerres). They are prolongations of ganglion cells, and, like them, are fre-

Fig. 38.-Nerve fibres (partly after M. Sclultze). a, non-meduilated sympathetic fibre. l, medullated fibres, one of them commencing with coagulation of the axis crlinder. ε, medullated nerve filure with the sheath of Schwann. nerve fibres-(1) the so-called medullated nerres, with a double contour: (2) the non-medullated or naked axis cylinders (fig. $38, a, b, c)$.

The former are distinguished by the fact that, on the death of the nerve and as the result of coagulation, a strongly refractile fatty substance which forms a sheath for the nerre fibre comes into riew. This sheath is known as the medullary sheath, and the central fibre as the axis cylinder. The medullary sheath disappears near the ganglion cell, the axis cylinder only entering the protoplasm
of the latter. They possess in addition an outer sheath, known as the sheath of Schwann (cerebro-spinal nerves of most vertebrates).

In the second form, i.e., in the non-medullated nerve fibres, the medullary sheath is absent, the axis cylinder being either naked or surrounded by a connective tissue sheath. The axis cylinder here also is comnected with a ganglion cell (sympathetic nerves, nerves of Cyclostomata and Invertebrates). Very often, however, and this is especially the case with sense nerves, we find that the axis cylindermay break up into very fine nerve fibrillze, and be, so to speak, resolved into its elements.

Finally, the nerves of Inrertebrates very of ten appear as finely striated bundles of fibrillæ; in which, on account of the absence of a sheath, it is not possible to recognise the limits of the individual axis cylinders.

Peripherally the sensory nerves become connected with accessory structures (end-organs), derived usually from epithelial cells and their cuticular products, or rarely from connective tissue substance (Tactile organs). The endorgans are therefore for the most part derived from modified epithelial cells (sensory epithelium). Ganglion cells are frequently found inserted in the course of the nerve fibres close to their termination (fig. 39, cu, b, c.)

Fig. 39.--Rod-shaped sense cells from the olfactory organ (after Max Schultze). a, from the frog; S_{z}, supporting cell between two ciliated rod-cells. b, from man. c, from pike. Probable ennmection between the nerve fibrilla and the sense cells.

TNCREASE IN SIZE AND PROGRESSIVE DIFFERENTIATION, DIVISION OF LABOUR AND PERFECTION.

The lowest organisms possess neither tissues nor organs formed from cells. The whole organism consists of a single cell. The body of such an animal is composed of protoplasm, and its skin of the
cell membrane. The latter is often withont an opening for the entrance of solid boolies ; the entrance of food being entirely effected by endosmosis. In such cusces, e.y., in the Gregraines and parasitic Opalines, the outcr borly-wall sutfices, like the membrane of the cell, for the performance of such vegretative functions ats the alssorption of food ind the removal of the excretory products. The protoplasin (Sircorle) constitutes the body parenchyma, and is the seat of the animal and vegetative vital activities.

Accordingly there results a definite connection between the functions of the peripheral layer and of the included mass, in which the processes of animal and vegetative life are carried on. This connection pre-supposes a definite relation between the superficial area of the surface and the size of the mass, and this relation changes as growth proceeds. For while the surface increases by squares, the mass increases by cubes; while the mass increases in three dimensions, the surface only increases in two, and therefore as growth proceeds the relation changes to the disadvantage of the latter. In other words, with increase of size the superficial area becomes relatively smaller. Finally it becomes relatively so sinall that the vegetative processes cannot be carried on, and it is necessary for the maintenance of life that for a given energy of life it should be increased by the production of new surfaces.

This holds not only for the simple unicellular organisms, which resemble cells in their nutritive processes, but also for cells themselves whose size never exceeds certain fixed limits. Further, as the organism increases in size, not only does it divide into several cells, but these cells arrange themselves in stuch a way as to give the largest possible extent of surface. The cellular organism accordingly acquires not only an outer but also an inner surface on which the cells are arranged in a regular layer. With the appearance of an inner surface, a division of labour is established. The outer layer carries on the anim.l functions and such vegetative processes as those of respiration and excretion, while the inner (digestive carity) serves for the reception and digestion of food.

We thus not only see that increase in size must be accompanied by an increase in the complexity of organization, but also bring out at the same time the essential characteristics of animal organization.

The numerous cells developed from the original simple organism were at first equivalent to one another, and all endeavoured to take up a peripheral position (colonies of Protozoa-Volrox-Blastosphare) (fig. 40, "1, b.) Then, in consequence of the neerls of the growing organism,
it became necessary that they should be divided, so as to bound two surfaces, into an external and an internal layer ; the one forming the outer wall of the body and known as ectoderm, and the other lining the central cavity (digestive cavity) known as endoderin ; these two layers being continuous with one another at the opening of the central digestive cavity, or mouth opening (fig. 40 c). The cells of the two layers, in correspondence with the difference in their function, possess a different structure. Those of the outer layer, which carry on the animal functions, are usually cylindrical ciliated cells containing a pale albuminous substance; those of the inner layer are more rounded and of a darkly granular aspect; they may also bear cilia for the morement of the contents of the cavity which they line. In actual fact we find this form, which from a physiological standpoint is the simplest organism with cellular differentiation that we can conceive of, realised in the two-layered " gastrula," whicl appears in the development of almost all groups of the animal kingdom as a freeswimming larva, and to which the adult sexually mature Colenterate closely approximates.

As the organism increases in size, additional complications ensue. These result partly from a still further increase of surface brought about by secondary invaginations and partly from the appearance of some intermediate tissue placed be-

Fig. 40.-a, Cell colony of young Volvo.: Globalor (after Stein). b, Blastosphere stage of an Acalepha larva (Aureliu Aurita). c, Gastrula stage of b; Eic, Ectoderm; En, Eudoderin; o, Blasto pore (mouth of Gastrula). tween the two primary layers. The secondary invaginations perform special functions and give rise to glands; while the intermediate
tissue, developed from one or both of the primary layers, primitively serves as a support for the body and forms the skeleton; and it also gives rise to muccles which increase the organism's power of movement and apply themselves, on the one hand, to the ectoderm (somatic muscles), and on the other, to the endoderm (splanchnic muscles). Between the primary layers of the body there is primitively present a space, the primary hody cavity.* Subsecquently a second space, developed as a split in the intermediate tissue may appear, giving rise to the secondary body civity. \uparrow From the latter the vascular system is developed.

Contemporaneously with the appearance of muscles a nervous system is usually differentiated from modified cells of the outcr layer. Outgrowths from the body also are developed, which may hare cither a radiate or a bilateral arrangement. They take the form either of organs of nutrition (gills) originating from the need for an increase of surface, or of organs of prehension and movement (tentacies, limbs).

The increasing complcxity of organization depends, thereforc, not only upon the extension of the surfaces endowed with regctative functions, and on the appearance of the organs of animal life, but also on a progressing process of division of labour ; which results in a clearer and more definite localization of the various functions, necessary for the maintenance of life, in special organs. The greater this specialization the more completely will each organ be able to discharge its special functions, and supposing a proper co-ordination between the working of all the organs, a great advantage nccrues to the organism, which is thereby rendered capable of a higher and more complete life. Therefore we find, as a general rule, that the larger the body and the more complex the organization, the higher and more perfect is the life. In this relation, however, the form and arrangement of the organs which characterize the various groups (types), as well as the special conditions of life which are limited by them, must be taken into account as compensating factors.

CORRELATION AND CONNECTION OF ORGANS.

The organs of the animal body stand in a mutually limiting relation to one another, not only in their form, size, and position, but also in their actions; for since the existence of an organism depends upon the blending of the individual performances of all its organs to a united manifestation, the various parts and organs must all, in

[^6]a definite and regrular manner, be adjusted and subordinated to one another. This relation of dependence, necessarily resulting from the conception of the organism, has been very suitably tcrmed "Correlation " of organs ; and many years ago served for the establishment of several principles, the cautions application of which has been of great service to the comparative method.

Each organ, in order that it may properly discharge the functions which are requisite for the maintenance of the entire machine, must comprise a certain number of working units, and consequently must have a certain size and possess a form dependent partly on its functions and partly on its relation with other organs. If an organ becomes abnormally enlarged it increases at the expense of the surrounding organs, and the form, size, and function of the latterbecome injuriously modified. It, in fact, led Geoffioy St. Hilaire to enunciate the "principe du balancement des organes,"-a principle which was not at first generally accepted, but which enabled that investigator to establish the doctrine of "Abnormalites " (Teratology).

The organs which are physiologically similar, i.e., organs which perform in general the same function, as, for instance, the teeth or the alimentary canal or the organs of movement, undergo great and various modifications; and the particular methods of nutrition and habits of life, as well as the external conditions which must be ful= filled if the life of any particular genus is to continue, depend upon the special arrangement and action of the individual organs. Given therefore the special form and arrangement of a particular organ or part of an organ, it is possible to arrive at conclusions concerning the special structure, not only of many other organs, but even of the entire organism, and to reconstruct to a certain extent the whole animal so far as its essential features are concerned. This was first done by Cuvier for many extinct Mammalia, with the aid of scanty fragments of fossil bones and teeth, in a masterly manner.

If we regard the life of the animal and its maintenance, not as the result, but as the end sought, as the aim of all the special arrange= ments and actions of the individual organs and parts, we are led to the "principe des causes fincules" (des conditions d'existence) of Cuvicr, and consequently to the so-called teleological doctrine by which we certainly do not attain to a mechanico-physical explanation. However that may be, this theory, if it be regarded merely as an expression of the reciprocal relations which necessarily exist between the form and function of the parts and of the whole, and not in the Cuvierian sense as implying the existence of design, renders important and
indispensable serviee to the understanding of the complicated correlations and the hamonious adjustments in the omanie work.

The sime plan of structure and armagement of the organs is not found, as Geoffroy St. Hilaire asserted in his theory of analogies, in the whole animal kingdom; but, on the contrary, there are, ins Cuvier stated, several plans of orgranization or types. The term "Type" was applied by Cuvier to the chiof, i.e., the most comprehensive and greneral divisions of his system; and each type was distinguished by the sum of the eharacters of its form and structure. In the essential charaeteristics of their structure, the higher and lower members of the same type agree, while in the unimportant details they present the most marked differences. The different types themselves do not represent absolutely isolated groups, nor groups whieh are exaetly equivalent to one another, but in a greater or less degree they are related to one another ; this is evident after an examination of the lower forms and a eareful comparison of the developmental histories.

To morphology belongs the task of pointing out the identity of plan under the most diverse conditions of organization and habits. of life, not only among animals of the same group but also between those of different groups. This seienee has for its objeet the determination of homologies, as opposed to analogies which eoncern the similarity of function, i.e., the physiologieal equivalence of organs found in different groups, e.g., the wing of a bird and that of a butterfly. That is to say, it has to traee back to the same primitive strueture parts of organisms belonging to the same or different groups, whieh with a different structure and under deviating conditions of life discharge different functions; as, for example, the wing of a bird and the fore-limb of a mammal ; and so to show their morphological equivalence. In the same way the organs of similar structure whieh are repeated in the body of the same animal, e.g., the fore and hind limbs, are designated as homologous.

THE STRUCTURE AND FUNCLION OF THE COMPOUND ORGANS.

The vegetative organs comprise the organs of nourishment which are neeessary for all living organisms, whether animal or vegetable.

In the former, however, they gradually and in the most intimate eonnection with the progressive development of the animal functions, attain a higher and more complicated structure. In animals, the reception of food is followed by its digestion. The substanees to be assimilated, whieh have been made soluble by digestion, enter a
nutrient fluid (blood) which permeates the body, and is carried in more or less definite thacts to all the organs. To the latter the blood yields its ingredients, and receives from them such decomposition products as have become useless, and carries them away to be excreted in definite organs. The organs which serve for the performance of the different functions of nutrition and excretion

Fig. 41, -Rotalia vencta (after M. Sehultze) with a diatom caught in the psendopodial network.
consist of the apparatus for the reception of food and for its digestion, and for blool formation; and of the organs of circulation, respiration, and of excretion.

Digestive organs. Even animals which have only the value of a single cell (Protozoa) swallow solid particles of food. This is effected
in the simplest cases, as in the Amobere and Rhizopoda, by prolongations of the sarcode (psendopodia) surrounding the foreign body (fig. 41). In tho Infusoria, which are covered by a firm cuticle, there is a central semi-fluid mass of surcorle (endoplasm), which is distinct from the more compact peripheral layer of sarcode (ectoplasm), and which receives the nutrient substances throngh the mouth and digests them. Rows of linger cilia are present, which erve the purpose of procuring food (adoral ciliated zone of the Ciliata) (fig. 42).

Fig. 42.-Stylonychia mytilus (after Stein) viewed from the ventral surfacc; Hz, adoral zone of cilia; C, contractile vacuole; N, nuclcus; N^{\prime}, nucleolus (parauncleus); A, anus.

Fig. 43.-Longitudinal scetion throngh the body of an Anthozooid (Octactinia). Mr, stomachic tube with the mouth opening in the centre of the feather-like tentacles; $I I f$, mesentcric folds; G, genital organs.

Among the animals with cellular differentiation (IMetazoa), the internal cavity of the body in the Colenterata (morphologically identical with the alimentary cavity and not with the body carity of other animals) functions as a digestive cavity, and its peripheral radially arranged portions as a system of vascular canals (gastro-
rascular canals). In the larger Polyps (Anthozoa) a tube derived from an invagination of the oral disc projects into the central part of the digestive cavity. This is known as the stomach of the polyp, althongh it serves entirely for the introduction of food, and should be called rather the buccal or cesophageal tube (fig. 43).

Organs for the prehension of food are found even with this simple digestive system. For near the mouth are placed radially or bilaterally arranged appendages or processes of the body, which set up

Fig. 44.- Aurelia aurita seen from the oral surface. MLA, the four oral tentacles with the mouth in the centre ; $G k$, genital folds; GH, opening of the genital ponches; $R h$, marginal bodies ; $K G$, radial canals ; T, tentacles at the margin of thn disc.
currents to convey small particles of food, or as tentacles seize foreign bodies and convey them to the mouth (Polyps, Medusæ) (fig. 44).

Such appendages serving for the capture of prey may also be placed further from the mouth (tentacles of Meduses, Siphonophora, Ctenophora).

When the digestive cavity acquires a wall distinct from the body wall, and usually separated from the latter by the body cavity (excepting the parenchymatous worms), it appears in the simplest cases as a blind tube, which may be either simple, bifurcated, or branched
(fig. 45), with sharply maked off pharyngeal structures (Trematorda, 'Turbellaria), or' ats a tube communicating with the exterior by an allus (fig. 46).

In the last case it becomes divided so as to lead to the distinction of three parts-(1) of the fore-gnt (cosophagus) for the recention of the food, (2) of the mid-gut for the digestion of the foorl, and (3) of the hind-gut for the expulsion of the undigested remains of the food. Sometimes the alimentary canal aborts; and, as in the mouthless Protozoa (Opalina), the mouth opening may be absent (Acanthocephala, Cestoda, Rhizocephala).

In the higher animals, usually, not only is the number. of the divisions greater, but their. shape and structure becomes more complicated. The organs for the seizure of food also become more complicated, and the appendages placed nearest the mouth of ten become modified to subserve this function. A special chamber, the buccal cavity, becomes marked off from the fore-gut, in front of or within which hard structures, such as jaws and teeth, for the seizure and mastication of the food are placed (Vertebrata, Gastropoda) ; and into which secretions (salivary) having a digestive function are poured. The masticatory organs are sometimes placed completely outside the body in front of the mouth, and consist of modified limbs (Arthropoda), which in the parasites are metamorphosed into structures for piercing and sucking ; or they may have shifted so as to lie entirely within the pharynx (Rotifera, errant Annelids) or in a muscular dilatation of the posterior end of this organ. At this place there is usually developed a widened chamber, the stomach, which by
repeated mechauicul action (masticatory stomach of Cray-fish) or by the secretion of digestive fluids (pepsin) furthers digestion ; or it may, as in birds, subserve both these functions. From the stomach the food passes into the mid-gut. Dilatations and out-growths of the buccal cavity give rise to clieek and
throat pouches, of the eoosplagus to the crop, of the stomach to blind sacs which serve as reservoirs for the food (stomach of Ruminants) (figs. 47 \& 48).

In the middle
 section of the alimentary canal,or intestine, the digestive processes, already commenced in the mouth by the action of the salivary secretion and continued in the stomach by the

Fig. 47.--Alimentary canal and accessory glands of a caterpillar. O, mouth; Oe, œsophagus ; $S p D$, salivary glands; $S e$, spinning glands; MD, intestine (mid-gnt); $A D$, rectum (hind gut) ; $M G$, Malpighian tules. action of the pepsin of the gastric juice (upon albumins in an acid solution), is completed. The food constituents which lave been so far unacted upon (chyme) are in the intestine submitted to the action of the secretions of the liver, pancreas, and intestinal glands, and by them converted into the chyle, which is absorbed by the intestinal walls; the albumins being converted, as in the stomach, into soluble Fre. 48. - Alimentary canal of modifications by the action of trypsin a butterfly. R, proboscis (maxill:e) ; $S p$, salivary glands: Oe, œesophagus; S, sucking stomach; Mg, Malpighian tubules; $A d$, rectum. (acting, however, only in alkaline solutions). The intestine often attains a great length, and becomes divided into regions possessing a different structure ; e.g., in the intestine of mammals three regions can be distinguished-duodenum, jejunum, and ileum. Its surface is, as a rule, increased by the development of folds and villi, and sometimes of outgrowths. Amongst
the Invertebratal it is often possible to distinguish an anterior speecially widened portion of the intestine, which receives the hepatic secretion and is called stomach from the posterior, narower, and longer section, which is known is intestinc.

The hindermost section of the

Fig. 49.-Alimentary canal of a bird. ©e, cesophagus; K, crop; $D m$, proventriculus ; Km, gizzard ; D, small intestine; P, pancreas placed in the loop of the duodenum; H, liver ; C, the two cæeca; U, ureter ; Ov, oviduct; $A d$, largc intestinc; $K l$, cloaca. atimentary canal or hind gut, which is not always sharply marked off from the intestine, is especially concerned with the collection and repulsion of the undigested remains of the foor, or freces. It may also possess crecal appendages attached to its anterior part, and possessing a digestive function. In the lower animals it is a small structure, but in the higher animals it attains a much more considerable length, and receives anteriorly one (Mammalia) or two (Birds) ceeca, and it may be sub-divided into two parts, known as large intestine and rectum; in the Vertebrata its hind end receives the ducts of various glands (kidney, generative organs, anal glands). It may in addition discharge other functions, e.g., a respiratory (larve of Libellulidæ) or a secretory function (larva of Ant Lion).

The salivary glands, liver, and pancreas are to be regarded as outgrowths of the alimentary canal which have become differentiated into glands.

The secretion of the salivary glands is poured iuto the buccal cavity, and there performs two functions-(1) it dilutes the foor. (2) it has a chemical action upon it, converting the starch into sugar : they are absent in many aquatic animals and are especially developed in herbivorous animals.

The liver, distingnisined in the higher grades of development by its great size, is an appendage of the first part of the small intestine (duodenmm). The first trace of it is met with in the lower animalin the form of a characteristically coloured part of the cellular corering of the gastric cavity or intestinal wall (Coelenterata, worms). In the higher animals it has at first the form of a small blind sac (small Crustacea) ; this, by a process of branching, is conrerted into a complicated structure composed of ducts and follicles, which may become comnected together in rery different ways so as to give rise to an apparently compact organ. Nevertheless, it must be remembered that, in the different groups of animals, glands, which differ both morphologically and physiologically, are included under this term, "liver." While in the Vertebrata the liver, as a bile-producing organ, possesses no known relation to digestion, in the Inrertebrata the secretions of many glands, which are generally called " liver," but which would be more appropriately termed hepato $=$ pancreas, exercise a digestive action upon starch and albmmen, and at the same time contain bye-products and colouring matters similar to those found in the bile of Vertebrates (Crustacea, Mollnsca).

The Organs of Circulation. The nutrient material or chyle resulting from digestion is distributed by a system of spaces to all parts of the body. Exclnding the Protozoa, in which the distribution of nutrient material is effected in the same manner as in the cell or tissne unit, the simplest form of vascular system in animals with cellular tissues, i.e., in the Metazon, is found in the Colenterata. In these animals the digestive cavity itself extends to the extreme periphery of the body, and serves to distribnte the nutritive flnids
(eristro-vascular system of Polyps, so-called vessels of Merlusie and (tenophorai). The so-called stomach of the Anthozos is simply an invagination of the body wall into the central cavity of the inimal, ind functions only as osophangus.

When a distinct alimentary canal is present, the chyle is alsorberl ly the walls of the grut, and passed through them into the colom on space developed between the gut and body walls (into the general

Fig. 51.-Daphnia with simple heart. C, the slit-like opening on one side is seen; D, alimentary eanal; L, liver; A, anus; G, brain; O, eye; $S d$, shell gland; $B r$, brood pouch placed dorsally beneath the carapace.
tissue of the body in the acclomate parenchymatous worms), and there gives rise to a fluid, the blood, in which (with some few exceptions) corpuscles (cellular structures produced in the organism) are found. In this space, or in a system of lacume derived from it, the blood circulates. Primitively its movements are quite irregular, taking place with each movement of the body (as in many worms), and are effected chiefly by the contractions of the somatic muscles
(Ascaris), but also by the movements of other organs, e.g., the alimentary canal (Cyclops). At a higher stage of development is rudiment of the central organ of the circulation appears, in that in special section of the blood path acquires a muscular investment, and as a pulsating heart, comparable to a force and suction-pump,

Fig. 52.-Male of Branchipus stagnalis with manychambered heart or dorsal vessel $R g$, the lateral openings in which are repeated in every segment. D, intestine; M, mandible; $S d$, shell gland; $B r$, branchial appendage of the 11 th pair of legs ; T ', testis.

Fig. 53.-Heart of a Copepod (Calanella) with an auterior artery, A. Os, ostia; V , valves at the arterial ostium ; M, muscle.
maintains a continuous circulation of the blood. The heart is either sac-shaped, with two lateral or one anterior slit-like opening (Daphnia, Calanus) (fig. 51), or elongated and divided into successive chambers and perforated by many pairs of slit-like openings (Insects, Apus) (fig. 52). As a rule, each chamber possesses a pair of laterally placed
ostia, provided with lip-like valves, which act so as to allow the bloorl only to enter the orgran.

From the heart, as central organ of the circulation, well defined canals, the blood vessels, we then developech, which in the Tnvertebrata may alternate with lacume not provided with walls. In the simplest cases it is only the tracts along which the hood travels from the heart which are provided with independent walls, and developed intr blood vessels (marine Copepoda, Calanella, fig. 5.3). At at higher stage of development not only do these efferent vessels acguire at more complicated structure, but it part of the lacuna-system, enpecially in the neighbourhood of the heart, acquires a membranous investment, and gives rise to vessels which carry the blood back to the

Fig. 54.-Heart and blood vessels and gills of the crayfish. C, heart, in a blood sinus; with Ps several pairs of ostia; $A c$, cephalie aorta ; $\mathcal{A} a b$, abdominal aorta; $A x$, sternal artery.
pericardial sinus, from which it passes through the renous ostia into the heart (Scorpions, Decapods) (fig. 54).

In other cases (Molluscs) the blood flows directly from the afferent vessels into the heart, the walls of the ressel being directly continuous with the walls of the heart. The heart in such cases consists of two chambers, the one known as auricle serves for the reception of the returning blood, the other known as ventricle for its propulsion (fig. 55).

The vessels passing from the ventricle and carrying the blood from the heart are called arteries ; those returning the blood to it are called veins, and, in the higher animals, are distinguished from the arteries by their thinner walls. Between the ends of the arteries and the beginning of the veins the body cavity intervenes either as
a blood sinus or as a system of blood-lacunie; or the arteries and veins are connected by a network of delicate vessels, the capillaries. If the connection between arteries and veins is effected by capillaries in all parts of the vascular system, and the body cavity, as in the Vertebrate, no longer functions as a blood sinus, the vascular system is spoken of as being completely closed.

In the Vertebrates and segmented worms the vascular system obtains a considerable development before a true heart is differentiated in it. At first rhythmically pulsating sections, very frequently the

Fig. 55. -Nervous system and circulatory organs of Paludina vivipara (after Leydug). F. tentacle; $O e$, esophagus; $C g$, cerebral ganglion with eye; $P g$, pedal ganglion with adjacent otocyst; $V g$, visceral ganglion; Ph, pharyngeal ganglion; A, auricle of heart; Fe, ventricle; $A u$, abdominal aorta; $A c$, cephalic aorta; V, vein; $\dot{V} c$, afferent vessel. $B r$, gill.
dorsal vessel, or the lateral vessels connecting this with the ventral vessel (fig. 56), serve for the propulsion of the blood.

Similarly amongst the Vertebrata, the lancelet (Amphioxus) possesses no distinctly differentiated muscular heart, the function of that organ being discharged by various parts of the vascular system which are contractile. The arrangement of the vessels supplying the pharyngeal section of the alimentary tract, which has a respiratory function and is known as the branchial sac, admits of a comparison with the vascular arrangement of the segmented worms, and represent the simplest form of the vertebrate vascular system. The longitudinal vessel which runs in the ventral wall of the branchial sac gives off numerous lateral branches, which ascend in the bronchial walls. These lateral vessels are contractile at their point of origin
from the ventral vessel. 'The anterior pair, placed behind the mouth, unite beneath the notochord to form the root of the median body artery (descending or dorsal aorta) which receives the hinder successive pairs of lateml vessels. 'Ihis dorsal artery gives off hranches to the muscles of the borly wall and the viscera, from which the venous hlood in part is returned to the ventral pharyn-

Fig. 56.-Anterior part of the vaseular system of an Oligochrete worm (Sænuris) (after Gegenbaur). In the dorsal vessel the blood moves from behind forward; in the ventral vessel from before backwards (see arrows). H, heart-like dilater transverse lateral vessels. geal vessel; part of it, however, before reaching the latter, traverses a capillary network in the liver.

From the hinder part of the ventral phat ryngeal vessel there is developed, in the higher Vertebrata, the heart, which at first has the shape of an S-shaped tube, but later acquires a conical form and becomes divided into auricle and ventricle. The former receives the blood returning from the body and passes it on into the more powerful ventricle, from which arises an anterior vessel, the ascending or cardiac aorta, presenting a swelling at its root, known as the aortic bulb. This vessel leads, by means of lateral vascular arches, the arterial arches, into the dorsal aorta, which passes backwards beneath the vertebral column, and supplies the body. Valves placed at the two ostia of the ventricles regulate the direction of the blood stream ; and they are so arranged as to prevent any lackward flow of blood from the cardiac aorta into the ventricle in diastole, and from the ventricle into the auricle in systole.

In consequence of the insertion of the respiratory organs on to the system of the arterial arches, the latter, and at the same time the structure of the heart, assumes various degrees of complication. In fishes (fig. 57), four or five pairs of gills are inserted in the course of the arterial arches, which break up into a respiratory capillary network in the branchial leaflets. From this network the arterialised blood is collected into efferent branchial arches, the branchial veins, corresponding each to a branchial artery; and these unite to form the dorsal aorta. In such cases the heart remains simple, and receives venous blood.

With the appearance of lungs as respiratory organs (Dipnoi, Peremnibrauchiate Amphibia, larve of Salamanders and Batrachians) (fig. 58), the heart obtains a more complicated structure,

Fig. 57. - Diagram of the circulatory organs of an osscous fish. V. ventricle ; $B u$, aortic bulb with tho arterial arches which carry the venous blood to the gills; $A 0$, dorsal aorta into which open tho vessels from the gills or branchial veins $A b$. N, kidncy; D, alimentary canal; $L k$, portal circulation. in that the auricle becomes divided into a right and left division, the latter of which receives the arterialised blood, returning from the lungs by the pulmonary veins. The septum between the two divisions of the auricle may, however, remain incomplete (Dipnoi, Proteus). The advehent pulmonary vessels, the pulmonary arteries, always proceed from the

Fig. 58.-Gills ($B r$) and pulmonary sacs (P) of a perenuibranchiate amphibian. Ap, pulmonary artery proceeding from the posterior of the four aortic arches. The other threc lead to the three pairs of gills; D, alimentary tract ; A, aorta.
posterior vascular arch, which, as a rule, loses its relation to the branchial respiration.

On the disappearance of the gills, which is completed during the metamorphosis in the Salamandrina and Batrachia, the pulmonary
arteries obtain a much more considerable size and become the direct continuation of the hindermost pair of vascular arches, while the remaining and primitively most inportant portions of the latter, i.e. the portions leading to the dorsal aorta, are reduced to rudimentary ducts (Ductus Botalli) or completely obliterated. Contemporaneously with these changes there appears a fold in the lumen of the ventral or cardiac aorta, leading to a separation of the postadior vascular arch (puluonaryartery),

Fig. 59.-Circulatory organs of the frog. P, leftlung, right lung is removed; $A p$, pulmonary artery; $V p$, pulmonary vein; F c, vena cava inferior ; Ao, dorsal aorta; N, kidney ; D, alimentary canal; Lh; portal circulation. which now receives through the ventricle venous blood from the right auricle, from the system of anterior arches which give origin to the cephalic vessels and dorsal aorta and receive arterial blood from the left auricle (nixixed, however, with venous blood in the ventricle) (fig. 59).

In Reptiles the separation of the arterial from the venous blood is more complete, in that there is an incomplete ventricular septum which foreshadows the later division of the ventricle into a right and a left half. From the left division arises the right aortic arch, which gives origin in its further course, to the arteries to the head (carotid arteries). A vessel to the lungs and a left aortic arch may also be distinguished. The left aortic arch and pulmonary artery receive only venous blood, while the right aortic arch, and therefore the carotids which proceed from it, receive principally arterial blood from the left side of the ventricle (fig. 60).

The ventricular septum, and consequently the separation of the right from the left ventricle, is found complete for the first time
in the Crocodilia, and in these animals the right aortic arch arises from the left ventricle. But the separation of the arterial and venous blood is even now not quite complete, for at the point where the two arortic arches cross one another there is a passage (foramen Panizzie) leading from one into the other, and through which a communication may take place.

It is only in Birds and Mammals, in which, as in the Crocodilia, the right and left ventricle are completely separated, that a separation between the two kinds of blood is completely effected (fig. 61). In Birds the right arortic arch persists, and the left entirely disappears ; while in Mammalia the opposite obtains, the left arch persisting and giving rise to the dorsal aorta. In these animals the blood is essentially different from the chyle both in colour and composition, and there is present a special system of chyle and lymph vessels. This system originates in simple tissue spaces, which are without walls, and its main trunks open into the vascular system. The contents are derived from the nutrient material absorbed from the intestine (chyle), and from the fluids which have transuded into the

Frg. 60.-Heart and great vessels of a Chelonian. $A d$, right auricle; A_{s}, left auricle ; $A 0 . d$, right aortic arch ; Aos, left aortic arch ; $A 0$, aorta; C, carotids ; $A p$, pulmonary arteries. tissues from the capillaries (lymph), and they serve to renovate the blood. In the actual course of the lymph and chyle, i.e., in the lymphatic vessels themselves, are placed peculiar glandular organs, known as lymphatic glands (blood glands), in which the lymph receives its form elements (lymph corpuscles = white blood corpuscles).

Organs of Respiration. The blood needs for the retention of its properties not only this continued renovation by the addition of nutrient fluids, but also the constant introduction of oxygen, with the reception of which is closely connected the excretion of carbonic
acid (and water). The exchange of these two gases between the blood and the extermal medime is the essential part of the respiratory process, and is effected throngh organs which are suited for carrying on this process either in air or

Fig. 61.-Diagram of the circulation in an animal with a completely separated right and left ventricle, and a double circulation (after Huxley). Ad, right auricle receiving the superior aud inferior venæ cavæ, $V_{c s,}$ and $V c i$; Dth, thoracic duct, the main trunk of tho lymphatic system; $A d$, right auricle; $V d$, right ventricle; $A p$, pulmonary artery; P, lung; V_{P}, pulmonary vein ; $A s$, left auricle; $T s$, left ventricle; $A o$, norta ; D, intestine; L, liver ; $V p^{\prime}$, portal vein; $L v$, hepatic vein. in water. In the simplest cases the exchange of these two gases takes place throngh the genemal surface of the body; and in all cases, even when special respiratory organs are present, the outer. skin also takes part in respiration.

Fig. 62.--Diagram of the great arteries of a mammal with reference to the fire embryonic arterial arches (after Rathke). c, common carotids ; c^{\prime}, external carotid ; $c^{\prime \prime}$, internal carotid; A, aorta. A_{p}, pulmonary artcry ; $A a$, a.ortic arch.

Inner surfaces also may be concerned in this exchange, especially those of the digestive cavity and intestine, or, as in the Echinoderms, in which a separate vascular system is developed, the surface of the whole body cavity.

Respiration in water obviously takes place under far more unfavourable conditions for the introduction of oxygen than does the direct respiration in air, because it is only the small quantity of
oxygen dissolved in water which is available. Hence this form of respiration is found in animals low in the scale of life in which the metabolic processes are less energetic (worms, molluses, and fishes).

Organs of aquatic respiration, or gills, have the form of external appendages possessing as large a surface extension as possible. They consist of simple or antlershaped or dendritically branched processes (fig. $63 a, b$), or of

Fig. 63a.-Head and anterior body segments of a Eunice, viewed from the dorsal surface. T, tentacles. $C t$, tentacular cirrus. C, parapodial cirrus. $B r$, parapodial gill.
lancet-shaped closely-packed leaves with a large surface extension (fig. 64).

Fig. 63b. -Transverse section through the body of Eunice. $B r$, gill; C, cirrus ; P, parapodium with a bundle of setæ; D, alimentary canal; N, mervous system

The organs of ac̈rial respiration, on the contrary, are internal. They present likewisa the condition favourable for an exchange of gases between the air and the blowi, viz., a large extent of surface. They have the form either of lungs or air-bearing tubes. In the first aase (Spiders, Vertebrates) they consist of spacious sacs with arveolar or spongy
walls, traversed by 1 umerous septat and folds which bear an extremely rich network of eapillaries. The air tubes or trachere (fig. 65) constitute a branched system of canals

Fig. 65.-Tracheæ with fine branehes (after Leydig). Z, eellular, outer wall; Sp, spiral thread. which extend thoughout the whole body, and carry the air to all the organs. Thus insteat of the respijatory process being localised, as it is in ani-mals with lungs, it is carrier on in all tissues and organs of the body, which are surrounded by a fine tracheal network. Nevertheless, the air tubes in the case of the modification known as fantrachece present an approximation in their structures to lungs, in that the main stems, without further branching, give rise to flat hollow leaves.

Fig. 66b. -Lateral view of head and body of an Aeridium. St, stigmata; T ', Tympanum.

Openings in the body wall are present, placing the organs of ac̈rial respiration in communication with the exteriol. These openings may

Fig. 66a. -Tracheal sis tem of a Dipterous Liva. Tr, Longitudinal stem of the right side with tufts of trachear ; $S t^{\prime}$, and $S t^{\prime \prime}$, anterior and posterior stigmata; Mh^{2} oral hooks. be numerous, and paired, placed symmetrically on the sides
of the body (fig. $66 a, b$) (stigmata of Insects, Spiders), or they nay be more restricted in number, and communicate also with cavities of complicated structure which are used for other functions (nasal cavities of Vertebrates). In the aquatic larve of certain

G. 67a.-Larva of an Ephemeral fly with seven pairs of tracheal gills Ǩt, slightly magnified; $T \%$, isolated trachcal gill strongly magnified.

Fig. 67b.-Tracheal sjstem at the sides of the alimentary canal of an Agrion larva (after L. Dufour). Tst, main tracheal trunk; Iit, tracheal gills; $N a$, the three simple eyes.

Insects (Ephemeridæ, Libellulidæ) the tracheæ may be without any external openings. In such cases processes of the body filled with a close network of trachex, which take up oxygen from the water, and are known as trucheal yills, are developed (fig. $67 a, b$). In rare instances tracheal gills are developed on the wall of the rectum, and
thus aequire a protected position (rectal respiration of Aeschna, Libellula.).

In other respeets the branchial and pulmonary respiratory processes are essentially the stume. In the pulmonate snails (Tymnaxus), the pulmonary eavity may be filled with water, and yet continue to function as a lespiratory organ (in the young state and also underspecial conditions in the adult, the animal remaining permanently in deep water). With this fact before us of an air-hreathing surface functioning as a gill, it will not surprise us to find that gills and branching folds of skin, which under normal circumstances serve for breathing in water, can, provided they be protected from shrivelling up and desiceation either by their position in a damp space or by their copious blood supply, function as lungs, and allow their possessors to live and breathe on land (Crabs, Birgus latro, labyrinthobranchiate Fishes).

A rapid renewal of the medium which earries the oxygen and surrounds the respiratory surfaces is of the greatest importance for the gaseous exchanges. We find, therefore, very often special arrangements, by which the removal of that part of the respiratory medium which has been deprived of oxygen and saturated with carbonic acid and the introduction of another portion containing oxygen and free of carbonic acid, is effected. In the simplest cases this renewal can, although not very efficiently, be brought about by the movements of the body, or by a continuous oscillation of the respiratory surfaces themselves; a method which is especially common when the gills are placed in the region of the mouth and function also as organs of food prehension, e.g., the tentacles of many attached animals (Polyzoa, Brachiopoda, tubicolous Worms, etc.) Very frequently the gills appear as appendages of the organs of locomotion, e.g., of the swimming or ambulatory feet (Crustacea, Annelids), the movement of which brings about a renewal of the respiratory medium around the gills. The movements become more complicated when the gills are enclosed in special chambers (Decapoda, Pisces), or when the respiratory organs are placed within the body, as happens in the case of trachere and lungs, in which case also a renewal of the air is effected either by a more or less regular movement of neighbouring parts, or by rhythmical contractions and dilatations of the air-chamber, constituting the so-called respiratory movements. The term respiration is now not only applied to these movements so obvious to the eye in airbreathing animals, but also to the osmotic processes, secondarily
dependent upon the entrance and exit of air, which effect the gaseous exchanges. Taken strictly in this sense it is an incorrect term, inasmuch as in the respiratory movements of animals provided with branchial cavities we have to do with the entrance and exit of waler:

In the ligher animals provided with red blood, the difference in the condition of the blood before and after its passage through the respiratory organs is so striking that it is possible to distinguish blood rich in oxygen from blood rich in carbonic acid, by the colour. The latter is dark red, and is known as venous blood; the former, i.e., blood which has just left the gills or lungs, on the contrary, has a bright red colour, and is known as arterial blood.

While the terms venous and arterial are used in an anatomical sense to express the nature of the blood-vessel,--those carrying the blood to the heart being called venons, and those carrying it from the heart arterial,-they are also used in a physiological sense as an expression for the two conditions of the blood before and after. its passage through the respiratory organs, i.e., to express the quality of the blood. Since, however, the respiratory organs may be inserted in the course of either the venous or arterial vessels, it is obvious that, in the first case, there must be venous vessels carrying arterial blood, (Molluscs and some Vertebrates), and, in the latter, arterial vessels carrying venous blood (Vertebrates).

Animal heat. The intensity of respiration stands in direct relation to the energy of the metabolism. Animals which breathe by gills and absorb but little oxygen are not in a position to oxidise a large quantity of organic constituents, and can only transform a small quantity of potential into actual energy. They perform, therefore, not only a proportionately smaller amount of muscular and nervous work, but also produce in only a small degree the peculiar molecular movements known as heat. The source of this heat is to be sought, not, as was formerly erroneously supposed, in the respiratory organs, but in the active tissues. Animals in which thermogenic activities are small have no power of keeping independently their own internal heat when exposed to the temperature influences of the surrounding medium. This is also true of those air-breathing animals in which the metabolic and thermogenic activities are great, but which, in consequence of their small size, offer a relatively very large surface for the loss of heat by radiation (Insects). On account of the exchanges of heat which are continually taking place between the animal body aud the surrounding medium, the temperature of the
former must in such animals be largely dependent on that of the latter, falling and rising with it. Hence, most of the lower animals aro poililothermic, ${ }^{\text {, }}$ or, as they have less appropriately been called, cold-bloodecl.

The higher animals, on the contrary, in which, on account of their highly developed respiratory organs and cnergetic metabolism, the thermogenic activity is great, and which are protected from a rapid loss of heat by radiation by the size of their bodies and by the possession of a covering of hairs or feathers, possess the power of maintaining a constant temperature, which is iudependent of the rising and falling of the temperature of the surrounding medium. Such animals are designated homothermic, or warm-blooded. Since they require a high internal temperature, varying only within small limits, as a neccssary condition for the normal course of the vital processes, or one may say for the maintenance of life itself, they must possess within themselves a series of regulators whose function is to keep the body temperature within its proper limits, when the temperature of the surrounding medium is high. This may be effected either by diminishing the production of internal heat (diminishing the metabolism) or by increasing the loss of heat from the surfaces of the body (by radiation, evaporation of secretions, cooling in water) ; and, on the contrary, when the temperature of the outer medium is too low, by increasing the production of internal heat (increasing the metabolic activity by more plentiful food supply, more vigorous movements), or by diminishing the loss of heat by the development of better protective coverings.

When the conditions necessary for the action of these regulators are absent (want of food, small and unprotected bodies), we find cither the phenomenon of winter sleep, in which life is preserved with a temporary lowering of the metabolic processes; or, when the metabolic processes of the organism do not enter into abeyance, the remarkable phenomena of migration (migration of birds).

Organs of Secretion. The respiratory organs stand to a certain extent intermediate between the organs of nutrition and those of excretion, in that they take in oxygen and excrete carbonic acid. In addition to this gas a number of excrementitious substances, mostly in a fluid form, which have entered the blood from the tissues, pass out by the lungs. The function, however, of excretion

* Col. Bergmann, "Ueber die Verhältnisse der Wärmeökonomic der Thiere 7u ihrer Grösse," Göttinger Studien, 1847; also Bergmann und Lenckart, .. Anatomiseh-physiologisehe Uebersicht des Thierreichs," Stuttgart, 1852.
is mainly discharged by the special secretory organs. These have the form of glands of a simple or complex structure which originate from invaginations of the outer skin or of the intestinal wall, and consist essentially of simple or branched tubes, or of racemose and lobulated glands.

Among the various substances which by the aid of the epithelial lining of the walls of glands are removed from the blood and sometimes utilised further for the performance of various functions, the nitrogenous excretory substances are especially important. The organs by which the excretion of these ultimate products of metabolism are effected are the kidneys. In the Protozoa they are represented by the contractile vacuoles ; in the Worms they appear as the so-called watervascular vessels, and are constituted of a system of branched canals which take their origin in delicate internal ciliated funnels, which open into the spaces in the parenchymatous tissues or the body cavity. In the latter case the ciliated funnels have a wide opening. In the Platyelminthes (flat worms) the efferent ducts of the system consist of two main lateral trunks (fig. 68, Ex.), which frequently open together at the hind end of the body by means of a medium terminal contractile vesicle (fig. 68, ep).

In the segmented worms the paired kidneys are repeated in every segment, and are known as segmental organs (figs. 69 and 70). The shell-glands of

Fig. 68.-Young Distomum (after La Valette). Ex, main stems of the excretory system; Ep, excretory pore; O, month with stucker; S, sucker in the middle of the ventral surface; P, pharynx; D, alimentary canal. Crustacea are in all probability to be traced back to these segmental organs: as are also the paired kidney (organ of Bojanus) of mussels, and the unpaired renal sac of Snails, both of which communicate by means of an internal opening with the pericardial division of the body cavity.

In the air-breathing Arthropods and some Crustacea (Orchestia.) the urinary organs are tubular appendages (Malpighian vessels) of the liind gut. In the Vertebrata the urinaly organs or kidneys obtain a greater independence, and open to the exterior by special
openings which are usually common to the gencrative organs; they consist essentially of a number of coiled tubes,

Fig. 69.-Longitudinal section through the medicinal Leech (after R. Leuckart). D, alimentary canal; G, brain; Gk, ventral chain of ganglia; Ex, excretory canals (segmental organs, watervascular system). which in the more primitive types of Vertebrates have a ciliated funnel-shaped opening into the body cavity (1)ogfish embryo, fig. 71).

The individual tubules of which the verte-

Fig. 70.-Diagrammatic representation of the segmental organs of a segmented worm (after C. Semper). D;, dissepiment; Wtr, ciliated funnels which lead into the coiled tubes.
brate kidney is composed do not open directly to the exterior, as do the segmental organs of Annelids, but there is present on each side of the body a duct, the kidney duct, which receives the tubules of its own side and opens posteriorly into the cloaca. They also possess am important structure peculiar to the kidney of the Vertebrata known as the "Malpighian body," which consists of a capsular widening of the lumen of each
tubule, into which projects a coil of arterial blood vessels known as the glomerulus (fig. 72).

Very generally the outer body

FIg. 71.-Diagrammatic representation of the kidney (segmental organs) of a dog-fish embryo (after C. Semper). $\mathbb{T} t r$, ciliated funnels; Ug, kidney duct.
its special covering soft and supple. The coccygeal glands of waterbirds are derived from an aggregation of sebaceous glands; their secretion by keeping the feathers oiled preserves them from becoming saturated with water during swimming.

The unicellular and multicellular integumentary glands, which are found so widely present in

Fig. 72.-Ciliated funnel and Malpighian body from the anterior part of the kidney of Protens (after Spengel). Nr, kidney tubule; $T r$, ciliated funnel ; Mk, Malpighian body.

Insects, belong, for the most part, to the category of oil and fat glands. Aggregations of cells whose function is to secrete calcareous matters and pigment are especially widely present in the integument of the Mollusca, and serve for the building up of the beautifully
coloured and variously shaped shells of these animals. Interguneritary glands and aggregations of glands may also acquire a retation to the accquisition of food (op innming grands

Fig. 73.-Alimentary canal with its accessory glands of a beetle (Carabus) (after Léon Dufour). Oe, œsophagus; $J_{n, ~ c r o p ; ~ P v, ~}^{\text {, }}$ proventriculus; Chd, chylific ventricle ; Mg, Malpighian tubules; R, rectum; $A d$, anal glands with bladder. of Spiders). Finally, mucous glands :are very widely present in the skin of animals which live in damp localities (Anp) Aibia, Snails) and in water (Fishes, Annelirls, Medusie).

ORGANS OF ANIMAL LIFE.

Of the so-called animal functions, tlat of locomotion is the most conspicuous. Animals perform movements for the purpose of procuring food and escaping from their enemies. The muscles used for locomotion are, as a rule, and especially in the simpler forms, intimately united with the skin, and give rise to a museular body wall (Worms), the alternate shortening and elongation of which brings about a movement of the body. The muscles may also be especially concentrated in parts of the body wall, e.g., in the subumbrellar surface of Meduse beneath the supporting gelatinous tissue, or in the ventral surface of the body giving rise to a foot-like organ (Molluscs), or they may be broken up into a series of suceessive and similar segments (Annelids, Arthropods, Vertebrates). The latter arrangement prepares the way for the rapid and more complete form of movement found in animals in which the hard parts also, whether exoskeletal (Arthropods) or endoskeletal (Vertebrata), have become divided into a series of longitudinally arranged segments or rings, which offer a firm attachment to and are moved by the segments of the muscular system. By this arrangement more powerful muscular actions are rendered possible.

Thus it beeomes indispensable that hard parts should be developed to act as a skeletal support for the soft parts, and also to protect them. The skeletal structures may be external, in which case they hare the form either of external shells, tubes or sueeessive rings, and are
usually products of the external skin (chitin), or they may be internal (curtilage, bone) and give rise to vertebrce (fig. $74 a, b$). In either case the body becomes divided at right angles to its long axis into a series of segments, which, in the simpler cases of locomotion, are homonomous (Annelids, Myriapods, Snakes). As development progresses some of the muscles required for locomotion gradually lose their relation to the long axis of the body, and acquire a relation to secondary axes; and in this way conditions are acquired for the accomplishment of more difficult and complete forms of locomotion. The hard parts in the long axis of the body then lose their primitive

Fig. 74 a-Diagram of the vertebral column of a Teleostean fish with vertebral constriction of the notochord. Ch, notochord; Wh; bony vertebral bodies; J, membranous intervertebral section.

Fig. 74 b-Vertebra of a fish. K, vertebral body, $O b$, neural arch (nemapophysis) ; $U b$, hæmal arch (hæmapophysis) ; D. neural spine; D^{\prime}, hæmal spine: R, rib.
uniform segmentation and partially fuse with one another to form several successive regions, the parts of which are capable of a greater or less amount of movement upon one another (head, neck, thorax, lumbar region, etc.) In this case, however, the parts of the skeleton of the chief axis are usually less movable upon one another, while, on the contrary, a much more perfect locomotion is effected by the extensive movements of the paired extremities or limbs. The limbs likewise possess a solid skeleton, to which the muscles are attached, and which is usually elongated and may be external or internal, and is attached more or less closely to the axial skeleton.

The most essential property of animals is that of sensation. This
moperty, like that of movement, resides in definite tissues and organs whicl constitute the nervous system. For those cases in which a nervous system has not separated from the common contraetile basis (sarcode) or fiom the uniform cell parenchyma of the body, we may suppose that the orgimisin possesses the first beginnings of an irritability serving for pereeption. This, however, can scarccly be called sensation, for sensation pre-supposes the presence of consciousness of the unity of the body, and this we can scarcely attribute to the simplest animals without a nervous system.

The appearance of museles is coincident with that of the nervous tissues, whieh are developed in eonnection with the sense epithelium of the surface (Polyps, Medusre, Echinoderms). In such cases the nerve fibres and ganglion eells

Fig. 75.-Diagram of the nerrous sfstem of a star-fish. N, nerve ring which connects together the five ambulacral centres. whieh all lie mingled together keep their ectodermal position and their eonnection with the sense epithelium. The view that the first differentiation of the nervous and museular tissues is to be sought in the so-called neuromuscular cells of the fresh-water polyps and Meduse has been shown by later researches to be untenable.

The arrangements of the nervous system can be traced back to three distinct types-(1) the radial arrangement found in the radiate animals; (2) the bilateral arrangement found in segmented Worms, Arthropods, and Molluses; (3) the bilateral arrangement of the Vertebrata. In the first case the eentral organs are radially repeated ; in the Eehinoderms as the socalled ambulacral brains or nerves, which are found in the arms and are eonnected together by a eireumoral nervous commissure eontaining ganglion cells (fig. 75).

In the second type the nervous system, in the simplest cases, consists of an unpaired or paired ganglionic mass placed in the anterior part of the body above the pharynx, and known as the supra-esophageal ganglion or brain. From this centre radiate in the simplest cases (Turbellaria) nerves which have a bilaterally symmetrieal distribution, and of which two are larger than the others, and take a lateral course (fig. 76).

At a higher stage of development a circum-pharyngeal nerve ring is developed. With the commencing segmentation of the body the number of ganglia increases, and in addition to the brain there is present it ventral nervous system consisting either of ventral cord

Fig. 76.-Alimentary canal and nervous system of Mesostomum Ehrenbergi (after Graff). G, the paired cerebral ganglia with two eye-spots; St, one of the two main lateral nerves ; D, alimentary canalwith mouth and pharynx.

Fig. 77.-Nervous system of the larra of Coccinella (after Ed. Braudt). G, su-pra-cosophageal ganglion or brain; Gfr, frontal ganglion; $S g$, suboesophageal ganglion ; $G^{\prime},-G^{\prime \prime}$, tho eleven ganglia of the ventral chain of thorax and abdomen.

Fig. 78.-Nervons system of adult Coccinella (after Ed. Brandt). Ag, optic ganglion. The other let: ters as in fig. 77.
(Gephyrea) or of a ventral chain of ganglia, which may have a homonomous (Annelids) or heteronomous (Arthropods) arrangement (figs. 77 and 78). The concentration of the nervous system begun
in the latter case may, by the fusion of the brain and ventral cord, be carried to a still further extent, so that in many cases (numerous Arthropods) only a sub-ossophageal ginglion is present. In Molluses, animals in which segments are not developed, the subsesophageal granglion is represented by the pedal ganglion, and there is in addition a third pair of ganglia constituting the visceral ganglia (fig. 55). In Vertebrates, the nervous centres are arranged as a cord, lying on the dorsal side of the skeletal axis, and known as the spinal cord, the segmentation of which is indicated by the regular repetition of the spinal nerves.

This cord, which is traversed by a central canal, is anteriorly widened and (except in Amphioxus) differentiated into a complicated ganglionic apparatus, the brain (fig. 79).

The so-called sympathetic or visceral nervous system appears in the higher animals (Vertebrata, Arthropoda, Hirudinea, etc.) as a comparatively independent part of the nervous system. It consists of ganglia and plexuses of nerves which stand in connection with the central nervous system, but are not under the direct control of the will of the animal. They innervate the organs of digestion, circulation, respiration, and generation, and they can carry on their functions for a longer or shorter time after destruction of the sensory and motor centres. In the Vertebrata (fig. 80), the system of visceral nerves consists of a double chain of ganglia, placed on each side of the vertebral column and connected with the spinal nerves and the spinal-like cranial nerves, by connecting branches, the rami communicuntes. The ganglia correspond in number with the abovementioned spinal and cranial nerves, and they send nerres to the
blood ressels and viscera, which there form a complicated network of nerrous fibres containing here and there ganglion cells.

The nervous system possesses further peripheral apparatus, the sense organs, the function of which is to bring about the perception of certain conditions of the outer world as impressions of a definite mode of sensation (specific energy of nerves* Joh. Müller).

These peripheral organs usually have the form of peculiarly arranged aggregations of hair-shaped or rod-shaped nerve terminations (haircells, rod-cells of sensory epithelium) connected by fibrille with ganglion cells, through which under the action of external influences a movement of the nervous substance is set up, which travels to the central organ and there affects con-

* In opposition to the differences in the qualities of the sensations produced by each individual sense organ (colour, tone).

Fig. 80.-Nervous system of the frog (after Ecker). Ol olfactory nerves ; O, eye ; Op, optic nerve; $V g$, Gasserimi ganglion ; Ag, ganglion of vagus ; Spn 1, first spinal nerve ; Br, brachial nerve; Sq1-10, the ten ganglia of the syin. pathetic system. Js, ischial nerve.
sciousness as a specific sensation. 'To these end-cells there are of ton added caticular structures, whose function is to communjeate the external movement to the nervous substance (retinal rods).

The special sensations have quite gradually been developed from the general sensations (comfort, discomfort, pleasure, pain), i.e, nerves of special sense have been derived from sensory nerves which have acquired a special form of peripheral termination, and so become accessible to a special stimulus with which the special sensation is always associated. But it is not till a ligher stage of development is reached that the sense-perceptions can be compared according to the nature of the sensations with those of our own body. We can estimate the sense energies of the lower animals exceedingly vaguely, and only by the

Fig. 81.-Nerves with ganglion cells (G) beneath a tactile bristle ($T b$) from the skin of Corethra larva. insufficient method of comparing them with our own sensations; and it is certain that among the lower animals there are many forms of sensation of which we, in consequence of the specialised nature of our own senses, can have no conception.

Probably of all the senses, that of touch is the most widely distributed, and with this we certainly often see a number of special sensations united. It is generally distributed over the whole surface of the body; frequently, however, it is concentrated on processes and appendages of it. Probably the tentacular appendages of the Coelenterata and Echinodermata have this significance. In the Bilateralia with a differentiated head there are contractile or stiff segmented processes on the head, the antennce or feelers which in the worms are repeated as paired cirri on every segment of the body. It is often possible to trace special nerves to the skin and to find touch organs containing their endings. In the Arthropoda the ganglionic end-swelling of a tactile nerve usually lies beneath a cuticular appendage, such as a bristle, which transmits the mechanical pressure on its point to the nerve (fig. 81).

In the Primates amongst the Mammalia there are present papillæ in the skin (especially on the volar surface) in which the structures kuown as touch-bodies, eoutaining the termination of taetile nerves, are plaeed (fig. 82).

In addition to the general sensibility and the taetile sensations, the higher animals possess, as a speeial form of sensibility, the capacity of distinguishing different temperatures.

The sensations of sound are produeed through an organ, the auditory organ, which is, in a certain measure, a special modification of a tactile organ. .The auditory organ in its simplest form appears as a closed vesicle filled with fluid (Endolymph) and one or more ealcareous eoncretions (otoliths); and eontaining in its walls rod or hair eells in which the nerve fibrillæ end (fig. 83). Sometimes the resicle lies on a ganglion of the eentral nerrous system (Worms), sometimes at the end of a shorter or longer nerve, the auditory nerve (Molluses, Decapoda). In many aquatie animals the vesiele may be open and its contents communicate direetly with the external medium, in which case the otoliths may be represented by small partieles sueh as sandgrains which have entered it from the exterior (Deeapod Crustaeeans). In Molluses a delicate sensory epithelium (macula acustiea, fig. $83 \mathrm{Cz}, \mathrm{Hz}$.), marks the pereipient portion of the inner wall of the vesiele; while in Crustaeea the fibres of the auditory nerve end in cuticular rods or hairs which projeet from the

Fig. 82. - Tactile papila from the volar surface with the touch corpuscle and its nerve N. wall of the vesiele, and, like the olfactory hairs of the antenna, bring about the nervous excitations. In the Vertebrata not only does the auditory vesicle obtain a more complicated form (membranous labyrinth), but there are also added to it apparatuses for eondueting and magnifying the sound (fig. 84). The tympanum of Açrideidæ and Loeustidæ, which is generally looked upon as an :uuditory organ, is built upon quite a different type, sinee here, instead of a vesicle filled with fluid, air cavities serve for the aetion of the sound waves on the nerve-endings.

The visual organs or eyes* are, after the taetile organs, the most widely distributed, and indeed are found in all possible stages

* Cf. R. Leuckart, "Organologie des Auges," Grasfe and Sämisch, Hanclhuch der Ophthalmologie, Bd. II.
of perfection. In the simplest calses they are known as eyp-spots, and consist of irritable protophasm, i.e., nervons substance, containing pigment gramules; and in this form they are perhaps scancely capable of distinguishing light from darkness, but are only rusceptible to the warm rays. It is hardly possible to conceive that pigment is indispensable for the sensation of light, because there are many eyes of complicated structure from which pigment may be altogether absent. The view, however, according to which the pigment itself is sensitive to light, i.c., is chemically changed by the light waves and transmits the excitation produced by these movements to the protoplasin or

Fig. 83--Auditory vesicle of a Heteropod (Pterotrachea). N, acoustic nerve; Ot, otolith the fluid of the vesicle; $W z$, ciliated cells on the inner wall of the vesicle; $H z$, auditory cells; Cz, central cell.
the adjacent nervous substance cannot in itself be contradicted, but it is by no means clear that such changes are produced by the light rays as opposed to the heat rays. Of greater importance in this relation appear's the special nature of the nerve endings, through which certain movements, progressing in regular waves, the so-called ether waves, are transmitted to the nerve fibres and give risc to a stimulus which travels to the central organ and is by it perceived as light. In all cases in which in the lower animals specific nerve endings cannot be made out, we have probably only to do with a forerunner of the eye, consisting marely of the pigmented termina-
tion of a cutaneous nerve which is sensitive ouly to gradations of temperature. Although the sensation of light is the function of the nerve centre, the rods and cones at the end of the optic nerve fibres are the elements which convert the external movement of the ether waves into an excitation of the optic nerve fibres adequate for the production of the sensition of light.

For the perception of an image refractile apparatuses in front of the terminal expansion of the optic nerve (retina) are necessary; and further, the elements of the latter must be sufficiently isolated to admit of the stimuli set up in them being carried as, separate movements to the nerve centre. Instead of a general sensation of light a complex sensation made up of many separate perceptions is produced, which correspond in position and quality with the parts of the exciting source. For the refraction of the light convex and often lensshaped thickenings of the body covering (cornea, corneal lens) through which the rays pass into the eye, are developed; refractile bodies are also found behind the cornea (lens, crystalline cone). The rays diverging from the various parts of

Fig. 84.-Diagram of the auditory labyrinth. I. of a fish. II. of a bird. III. of a mammal (after Waldejer). U, utricle with the three semicircular canals; S, saccule ; US, alveus communis ; C, cochlea; L, lagena; R, aqueductus vestibuli; $C r$, canalis reunièns. the source of the light are, by means of the refractile media, collected and brought to corresponding foci on the retina or peripheral expansion of the optic nerve, which consists of the rod-shaped ends of the nerve fibres and some more or less complicated ganglionic structures. Lately, in consequence of the discovery of the visual purple * in the outer segments of the rods, it has been attempted to reduce the excitation of the end apparatus of the optic nerve to a photo-chemical process taking place in the retina. The fact that the diffuse pigment (visual purple) of the outer segments of the rods is bleached by the

[^7]action of light is of the highest interest, but it cannot be taken as proving a direct participation of the visual purple in the visual process, inasmuch as the visual purple is not present in those parts of the eje in whieh alone a distinct innge is formed, viz, the maeula lutea innt, generally, the outer segments of the cones.

The pigment of the eye seems to be of importance for absorbing the superfuons rays of light which would be injurious to the perception of an inatge. It is distributed partly immediately outside the retina, forming the ehoroid eoat of the eye, which extends also inwards between the individual retinal elements; and partly in front of the lens, giving rise to a transversely placed curtain, the $i r i s$

Fig 85.-Diagrammatic representation of the compound ere of a Libcllula. C, eornea ; K, erystalline cone ; P, pigment ; R, nerve rods of retina; F b, layer of fibres: $G z$, layer of ganglion cells ; $R f$, retinal fibres; $F l$; crossing of fibres. whieh is piereed by an opening, the pupil, capable of contraeting and dilating. In the higher grades of development the whole eye is, as a rule, enelosed in a hard, connective tissue eoat, the sclerotic, and thins marked off as an eye bulb.

The arrangements by whieh the shining points of an object aet in regnlar arrangement on corresponding points of the optie nerve and so render possible the perception of an image vary, and are elosely dependent upon the whole strueture of the eye. Leaving out of eonsideration the simplest eyes, such as we find in Worms and the lower Crustaeea, two types of eye are to be distinguished.

1. The first form oeeurs in the so called facettecl eyes* (figs. 85 is 86) of Arthropods (Crustaeea and Inseets). The retina of sueh eyes has a hemispherical form, the convex surface being directed ontwards, and consists of large compound nerve rols, the retinula

[^8](figs. 85 is $86 R f \& R$), which are separated from one another by pigment sheaths. In front of these rods are placed the strongly refractile crystalline cones (k_{i}, and in front of these again the lensshaped corneal facets $(C \& F)$.

The eye is enclosed by a firm chitinous layer, which, following the sheath of the entering optic nerve, surrounds its soft parts and reaches as far as the cornea. That part of the eye which is known as optic nerve corresponds in a great measure to the retina itself, and contains a layer of ganglion cells and of nerve fibres.

A reversed and reduced picture of the object is thrown behind each convex corneal facet (lying far from the sensitive layer of nervous rods), and only the perpendicular rays can be perceived since all the others are absorbed by the pigment. Accordingly the light impressions caused by these axial rays, whose number corresponds with the separate nerve rods, form a mosaic on the retina which repeats the arrangement of the parts of the external object emitting light. The picture which is here formed lacks, however, brilliancy and distinctness.
2. The second form of eye, which is widely distributed in the animal kingdom (the simple eye, Annelids, Insects, Arachnida, Molluses, Vertebrates) corresponds to a globular camera obscura with collecting lenses (cornea, lens) on its exposed anterior wall on which the light falls and usually with additional dioptric media filling the optic chamber (vitreous humour.) The simple eye of Insects seems to have originated from the simple metamorphosis of part of the integument, beneath which are placed the end organs of the optic nerve (fig. 87). The cuticular covering ($C L$) projects as a lens-shaped thickening into the subjacent layer of transparent, elongated, hypodermis cells (G7), within which are placed elongated rod-like nerre-

Fig. 86.-Threc facets with retinula from the compound eje of a cockchafer (after Grenacher). The pigment has bcen dissolved away from two of them. F, corneal facet. π, crystalline cone. P, pigment sheath. P', chief pigment cell. $P^{\prime \prime}$, pigment cclls of the second order. R, retinulæ. cells with refractile cuticular portions, closely aggregated to form a retina (fig. 87 Rz). The hypodermis cells surrounding the edge of the lens are filled with pigment, and form an iris-like dark ring
throngh the opening in which the rays of light enter the eye to fall on the terminal segments of the retinal cells (fig. 87).

In the more highly developed forms of this type of eye, especially in the Vertebrate eye, the peripheral portion of the optic nerve spreads out so as to form it cup-shaped nervous membrane, the retina, placed immediately behind the refractile media and surounded by a vascular pigmented nembrane, the choroid. The choroid, again, is surrounded by a tough supporting membrane composed of fibrous connective tissue, and known as the sclerotie, which is contimed over the anterior part of the eye, i.e., that part through which the light passes, as a thinner transparent membrane. Of the refi"actile media which are placed behind the cornea and fill the cavity of the optic bulb, viz., the aque-

Fig. 87.-Transverse section through the simple eye of a beetle larva (nartly after Grenacher). CL, corneal lens; $G h$, the subjacent hypodermis cells, the vitreous humour of Authors : P, pigment in the peripheral cells of the latter ; Rz, retinal cells. St, cuticular rods of the latter. ous humour, the lens (fig. $88 L$), the vitreous humour (G'l), the lens is the most powerful. Grasped by the thickened muscular anterior part of the choroid (the ciliary body (Cc) and ciliary processes), the peripheral part of its anterior face is covered by a forward continuation of the ehoroid, the iris $\left(J_{r^{*}}\right)$, which, as a ring-like contractile border, forms a kind of diaphragm perforated by a central contraetile opening, the pupil, through which the light enters the eye (fig. 88). The reversed image which is formed in the hinder part of the Vertebrate eye on the cup-shaped retina has a very eonsiderable brilliancy and definition.

The eyes of many Cephalopods may be looked upon as a modifieation of this type of eye. In the eye of Nautilus the lens is absent, and the light enter's through a small opening. In this ease a reversed, but not brilliant, image is formed on the retina placed on the liinder wall of the eye.

To enable the eye to see clearly objeets in different directions and
at different distances, special apparatuses for its movement and accommodation are necessary. They are represented by muscles which can in the former case move the optic bulb and modify the direction of sight in obedience to the will of the animal, and in the latter act upon the refractile media, and vary their relation to the retina. In many compound eyes (Decapod Crustacea) that part of the head on which the eye is placed is prolonged so as to give rise to a movable stalk-like process, which bears the eye at its extremity. The eyes of Vertebrata possess in addition special protective arrangements, e.g., eyelids, lacrymal glands.
The position and number of the eyes present very great variations amongst the lower animals. The paired arrangement on the head appears to be the general rule among the higher animals; nevertheless visual organs sometimes occur on parts of the body far removed from the brain, as for instance, in Euphausia, Pecten, Spondylus, and certain Annelids (Sabellidæ). In the Radiata the eyes are repeated at the periphery of the body in each radius. In the star fishes they lie at the extreme end of the ambulacral furrow at the tip of the arms, in the Acalephre as the marginal bodies on the edge of the

Fig. 88.-Transverse section through the hmman eye (after Arlt). C, cornea; L, lens ; J_{i}, iris with pupil; $C e$, ciliary body; $G i$, vitreous humour ; R, retina; Se sclerotic ; Ch, choroid. Ml, macula lutea; Po, papilla optica; No, optic nerve. umbrella.

The sense of smell appears to be less widely distributed. Its function is to test the quality of gaseous matters and to produce in consciousness the special form of sensation known as "Smell." This sense in aquatic animals which breathe through gills cannot be sharply marked off from that of taste. The small pits, standing in connection with nerves and provided with an epithelial lining of hair-bearing sense cells are to be looked upon as the simplest form of olfactory organ (Medusæ, Heteropoda, Cephalopoda). Nevertheless seattered hair cells (Lamellibranchiata) may also have to do witl the same sensation. In the Arthropoda the cuticular appendages of the
antenna in which the grangliated swollen extremities of nerves occur are to be explained as olfactory fihres. In the Vertebrata the olfactory organ usually has the form of a paired pit or cavity placed on the under surface of the head (nawal cavity), on the walls of which the ends of the olfactory nerve are distributed. 'The higher airbreathing Vertebrata are distinguished by the fact that in them this alvity communicates with the pharynx, and by the great surface extension (in it confined area) of the much-folded olfactory mucous membrane. The fibres of the olfactory nerve terminate in delicate elongated cells, bearing

Fig. 89.- a. Transverse section through a circumvallate papilla of a ealf (after Th. W.Engelmana). N, nerve; Gh; tuste buds in the side-wall of the papila, Pc. $\quad b$, isolated taste bud from the lateral taste organs of a rabbit. c, isolated supporting cells ($D z$) and sense cells (S_{z}) from the same. rods or hairs and placed. between the epithelial cells of this uncous membrane.

The special sense of taste is confined to the mouth and pharynx. Its function, from what we know of the higher organisms, is to test the quality of fluid substances, and to bring about the special sensation of taste. The presence of this sense can be demonstrated with certainty in the Vertebrata, and it is connected with the distribution of a special nerve of taste, the glossopharyngeal, which in man supplies the tip, edger, and root of the tongue and also parts of the soft palate, making these parts capable of the taste sensation.
The so-called taste-buds found in special papillæ (papillæ circumvallata), with their central fibre-like cells, are explained as the percipient organs of this sense (fig. $89 a, b, c$). Taste is, as a rule, connected with the tactile and temperature sensations of the buccal cavity, and also with the olfactory sensations. Finally, special organs of taste appear to be present also in the Molluses and Arthropods as a specific sensory epithelium at the entrance to the buccal carity.

In the lower animals the taste and olfactory organs are still less
clearly distinguishable than in the higher, and there are numerous senses of an intermediate character for the purpose of testing the surrounding medium.

The sense-organs of the lateral line of Fishes and Salamanders, and the organs resembling taste-buds of the Hirudinea and Chretopoda have been described as organs of a sixth sense. They probably bring about certain sensations referring to the quality of the water.

PSYCHICAL LIFE* AND INSTINCT.

The higher animals are not only rendered conscious of the unity of their organization by their feelings of comfort and discomfort, pleasure and pain, butt also possess the power of retaining residua of the impressions of the outer world conveyed through the senses, and of combining them with simultaneously perceived conditions of their bodily state. In what manner the irritability of the lower protoplasmic organisms leads by gradual transitions and intermediate steps to the first affection of sensation and consciousness is as completely hidden from us as are the nature and essence of the psychical processes which we know are dependent on the movement of matter.

We are, however, justified in supposing that a nervous system is indispensable for the development of these internal conditions which may be compared with that condition of our own organization called consciousness. Again, as animals have sense-organs capable of receiving impressions of definite quality from external causes, together with a capacity for retaining in their memory residua of their perceptions, and the power of connecting them with present and with the recollection of past states of bodily sensation so as to form judgments and conclusions, they possess all the conditions essential for the operation of the intelligence; and, as a matter of fact, they do manifest in an elementary form nearly all the phenomena which distinguish human intelligence.

The actions of animals are not only voluntary, the result of experience and intellectual activity, but are also largely determined by interual impulses which work independently of consciousness, and cause numerous, often very complicated, actions useful to the organism. Such impulses tending to the preservation of the individual and the

[^9]species are called instinets;* and they are usually regarded as a special property of the lower animals, and contrasted with the conscious reason of Man. But just as the latter must be looked upon as a ligher form of the understanding and intellect, and not as something essentially distinct from them, so a closer examination shows that instinct and the conscious understanding do not stand in absolute contrast, but lather in a complex relation, and cannot be sharply marked off from one another. For if, according to the general view, we recognise the essence of instinct in the unconscious and the imnate, still we find that actions which were at first performed under the direction of conscious intelligence become, by constant practice, completely instinctive and are performed unconsciously: and that, in accordance with the theory of descent, which the whole connection of natural phenomena renders so probable, instincts have been developed from small beginnings, and have only been able to reach the high and complicated forms which we admire in many of the more highly organised animals (Hymenoptera), when assisted by a certain amount, however small, of intellectual activity.

Instinct accordingly may be rightly defined as a mechanism which works unconsciously, and is inherited with the organization, and which, when set in motion by external or internal stimuli, leads to the performance of appropriate actions, which apparently are directed by a conscious purpose. We must not, however, forget that while the intellectual activities are the direct means whereby higher and more complicated instincts arise from simple ones, they themselves depend upon mechanical processes. We may well suppose that the simplest form of instinct is identical with the definite reaction of living matter following a stimulus, or, in other words, with that special form of molecular change which is caused by an external action (as, for instance, the contraction of an Amoba when brought into contact with a foreign body).

By the theory of partly instinctive, partly intellectual processes, we may explain the phenomena of association in societies so often found among the higher animals, \uparrow i.e., the association of numerous

[^10]individuals into communities-the so-called animal-polities-which may be complicated by the division of labour (Bees, Wasps, Ants, Termites).

In fact here the combined action appears to be mutually assisting or mutually limiting as we find in those forms the so-called animal stocks, the individuals of which are bound together by continuity of body. The advantages to be gained by this mutual rendering of service are not merely limited to the greater facilities for nourishment and defence, and therefore for the preservation of the individual ; but, above all, tend to the maintenance of the offspring, and hence to the preservation of the species. It is for this reason that the simplest and commonest associations, from which the more complicated communities, subdivided by partition of labour, are derived, are generally communities of both sexes of the same species.

REPRODUCTIVE ORGANS.

On account of the limit set to the duration of the life of every organism, it appears absolutely necessary for the preservation of the animal and vegetable kingdoms that new life should originate. The formation of new organisms might be due to spontaneous generation (generatio equivoca) ; and formerly this was supposed to take place, not only in the simpler and lower organisms, but also in the more complicated and higher. Aristotle thought that Frogs and Eels arose spontaneously from slime; and the appearance of maggots in putrefying meat was, till Redi's time, explained in the same manner. With the progress of science the limits within which this supposition could be applied became ever narrower, so that they soon came to include only the Entozoa and small animals found in infusions. Finally it has been shown by the researches of late years that these organisms also must, for the most part, be withdrawn from the region of the generatio equivoca; so that at present, when the question of spontaneous generation is discussed, it is only the lowest organisms, those found in putrefying infusions, that are considered. The greater number of investigators, * supported by the results of

[^11]numerous experiments, have rejected, even for the latter animals, the ilea of spontancous generation, which, however, still finds in Pouchet* a prominent and zealous supporter.

Biogenesis, as opposed to abiogenesis, or spontaneous generation, must be regarded as the usual and normal form of reproduction. Fundamentally it is nothing clse thim a growth of the organismı beyond the sphere of its own individuality, and can be always reduced to a separation of a part of the body, which develops into an individual resembling the parent organisin. Nevertheless the nature and method of this process differ extraordinarily ; and virious kinds of reproduction can be distinguished, viz., fission, ludding (sporeformation), sexual reproduction. \dagger

Reproduction by fission, which, with that by ludding and sporeformation, is included under the term monogenous asexual reproduction, is found widely seattered in the lowest animals, and is also of special importance for the reproduction of the cell. It consists simply of a division of the organism into two parts by means of a constriction which gradually becomes deeper, and eventually leads to the separation of the whole body of the organism into two individuals of the same kind. If the division remains permanently incomplete, and its products do not completely separate from each other, conpound colonies of animals arise. The number of individuals in such colonies increases by a continuation of the process of incomplete and often dichotomous division of the newly-formed individuals (Vorticella, Polyp stocks). The division may take place in various direc-tions-longitudinal, transverse, or diagonal.

Budding differs from fission by a precedent disproportionate and asymmetrical growth of the body, giving rise to a structure not absolutely necessary to the parent organism which is developed to a new individual, and by a process of constriction and division becomes independent. If the buds remain permanently attached to the parent, we have here also the conditions necessary for the formation of a colony (Polyp colonies). Sometimes the budding takes place at various parts of the outer surface of the body, irregularly or obeying definite laws (Ascidians, Polyps); sometimes it is localised to a definite part of the body, separated off as a Germstock (Salpa, stolo prolifer). The cell-layers distinguished as germinal

* Pouchet, "Nouvelles expériences su: la génération spontanée et la résistance vitale," Paris, 1864.
\dagger Cf. R. Leuekart's article, "Zeugung" in R. Wagner's "Handwörterbuch der Physiologic."
layers are repeated in the commencing buds, and from them the organs are differentiated.
The reproduction by spores is characterised by the production within the organism of cells, which develop into new individuals in situ or after leaving the organism. But this conception of spores, which is taken from the vegetable kingdom, can only be applied to the Protozoa and coincides with endogenous cell-division. The cases of so-called spore-formation amongst the Metazoa (germinal sacs of Trematodes) are probably identical with egg formation, and are to be reduced to a precocious maturation and spontaneous development of ova (Parthenogenesis, Paedogenesis).

The digenous or sexual reproduction depends upon the production of two kinds of germinal cells, the combined action of which is necessary for the development of a new organism. The one form of germ cells contains the material from which the new individual arises, and is known as the egg-cell, or merely egg (ovum). The second form, the sperm-cell (spermatozoon), contains the fertilising material, semen or sperm, which fuses with the contents of the eggcell, and in a way which is not understood gives

Fig. 90.-Generative organs of a Heteropod (Pterotrachea) after R. Leuckart. a, Male-organs; T, testis$V d$, vas deferens. b, female organs; Ov, ovary ; $E d$, albumen gland; $R s$, receptaculum seminis ; $V a$, vagina. the impetus to the development of the egg. The cell structures from which the eggs and sperm arise are called sexual organs, for reasons which will be evident in the sequel ; the eggs being produced in the female organ or ovary, and the semen in the male organ or testis. The egg is the female, and the semen the male product.

The structure of the sexual organs presents extraordinary differences and numerous grades of progressive complication. In the simplest cases, both products arise in the body wall, the cells of which give rise at determined places to ova or spermatozoa (Cœelenterata). Sometimes they arise in the ectoderm (Hydroid-Meduse), sometimes in the entoderm (Acalepha, Anthozoa). A similar arrangement
obtains in the marine Polychreta, in which the ova and spermatozoa are developed from the epithelium of the body-cavity (Inesoderin), and dehisced into the body cavity. Usually, however, special glands, the ovaries and testes, are developed, which perform no other function than that of secreting ova and spermatozoa (Echinoderms).

As a rule, however, there are found associated with the male and female generative glands accessory structures and a more or less complicate arrangement of ducts, which discharge definite functions in connection with the development of the generative products subsequant to their separation from the glands, and ensure a suitable meeting between the male and female elements (fig 90). The ovaries are provided with ducts, the oviducts, which are not rarely derived

Fig. 9], a.-The female organs of Puler (after Stein). Uv, ovarian tubes; Rs, receptaculum seminis; V, vagina; $G l$, accessory gland. b, The male generative organs of a water-bug (Nepa) (after Stein). T, testis; $V d$, vasa deferentia; $G l$, accessory glands; D, ductus ejaculatorius.
from structures serving quite another purpose (segmental organs). The oviducts, in their course, may receive glandular appendages of various kinds which furnish yolk for the nourishment of the ovum, or albumen to surround it, or material for the formation of a hard egg-shell (chorion). These functions may be sometimes discharged by the ovarian wall (Insects), so that the egg when it enters the oviduct has taken up its accessory yolk and acquired its firm eggshell. Very often the ducts also discharge these various functions, and are divided into corresponding regions; they are often dilated at part of their course to form a reservoir for the retention of the
eggs or of the developing embryos (uterus). Their terminal section presents differentiations subserving fertilization (receptaculum seminis, vagina, copulatory pouch, external generative organs). The efferent ducts of the testis, the vasa deferentia, likewise frequently give rise to reservoirs (vesiculæ seminales) and receive glands (prostate), the secretion of which mixes with the sperm fluid or surrounds aggregations of the spermatozoa with a firm sheath (spermatophors).

The terminal section of the vas deferens becomes exceedingly muscular, and gives rise to a ductus ejaculatorius, which, as a rule, is accompanied by an external organ of copulation to facilitate the conveyance of the semen into the female generative organs. The generative organs present either a radial (Colenterata, Echinodermata) or a bilaterally symmetrical arrangement (fig. 91), a contrast which is visible in the typical arrangement of all the systems of organs.

The simplest and most primitive condition of the generative organs is the hermaphrodite. Ova and spermatozoa are produced in the body of one and the same individual, which thus unites in itself all the conditions necessary for the preservation of the species, and alone

Fig. 92.-Sexual organs of a Pteropod (Cymbulia) (after Gegenbaur.) $a, Z d$, hermaphrodite gland with common duct; R_{s}, receptaculum seminis ; U, uterus. $\quad b$, Acinus of the hermaphrodite gland of the same. 0 , ova; S, spermatozoa. represents the species. Instances of hermaphroditism are found in every group of the animal kingdom. But they are especially numerous in the lower groups, and also in animals in which the movements are slow (Land-snails, Flat-worms, Hirudinea, Oligochœeta), or which live singly (Cestoda, Trematoda), or in attached animals which are without power of changing their position (Cirripedia, Tunicata, Bryozoa, Oysters). The hermaphrodite arrangement of the generative organs presents great variation, which, to a certain extent, forms a gradual series tending towards the separation of the sexes.

In the simplest cases, the points of origin of the two kinds of generative products lie close to one another, so that the spermatozon and ova meet directly in the parent body (Ctenophora, Chrysaora).

The elementis of both sexes arise in laycrs of eells whichs have a definite position heneath the entodermal lining of the gastro-vascular canals, and can be traced back to growths of the ectoderm. At a higher. stage the ovaries and testes are united in one gland, the hermaphoodite gland (Synapta, Pteropoda), provided with a single duct common to the ovil and spermatozon (fig. 92), but whieh, as in Helix (fig. 93), may partially separate into vas deferens and oviduct. In other cases the ovaries and testes appear as completely separated glands with separite duets, which may still open into a eommon cloaca (Cestorla, Trematoda, rhabdocaule

Frg. 93.- Sexual organs of the Roman Snail (Helix pomatia). $Z d$, hermaphrodite gland; $Z g$, its duct; $E d$, albumen glaud; Od, oviduct and seminal groove; $V d$, vas deferens; P, protrusible penis; $F l$, flagellum ; R_{B}, receptaculum seminis; D, finger-shoped glant; L, Spiculum amoris; GÖ, common genital opeuing. Turbellarians, fig. 94), or may possess separate openings (Hirudinea, fig. 95).

Two hermaphrodite individuals may, and this appears to be the rule, mutually fertilise each other at the same time, or eases may oceur in sueh hermaphrodites in which self-fertilization is sufficient for the production of offspring. But this original condition of self-fertilization appears to be the exeeption in almost all hermaphrodites. In those animals in which the ovary and testis are not completely separated from one another eross-fertilization is rendered necessary, and self-fertilization prevented by the fact that the male and female elements are matured at different times (Snails, Salps).

From this form of complete hermaphoditism the generative organs pass through a stage of incomplete hermaphroditism, in whieh, though the organs of both sexes are present, one of them is rudimentary, to reach the diocious eondition in which the sexes are c.mpletely separated (Distomum fillicolle and homutobium). Animals in which the sexes are distinct not unfrequently present traces of an
hermaphrodite arrangement; such, for instance, as may be seen in the arrangement of the generative ducts of the Vertebrata. In the Amphibia both male and female generative ducts, which are secondarily derived from the urinary ducts, are developed in each individual. The oviduct (Niillerian duct) in the male atrophies, and is only represented by a small rudiment (fig. $966, \mathrm{Mg}$) ; while, on the contrary, in the female, the vas deferens (Wolffian duct) is rudimentary, or, as in Amphibia, functions as the efferent duct for the kidney secretion (fig. 96a, hg).

With the separation of the male

Fig. 94.-Generative apparatus of a rhabdocce Turbellarian (vortex viridis) (after M. Schultze). T, testis; $V d$, vas deferens; $V s$, seminal vesicle; P, pro-
trusible penis; Ov, ovary; seminal v csicle ; P, pro-
trusible penis; Ov, ovary; $V a$, vagina; M, uterus;
D, yolk gland; R_{s}, recep$T a$, vagina; M, uterus;
D, yolk gland; $R s$, receptaculum seminis.
 and female generative organs in different individuals the most complete form of sexual reproduction, so far as concerns division of labour, is reached; but at the same time a progressing dimorphism of the male and female individuals becomes apparent. This is due to the fact that the organization in bisexual animals is more and more influenced by the deviating func-

Fig. 95.-Generative apparatus of the medicinal leech. T ', testis; Vd, vas deferens; $N h$, resicula seminalis; Pr , prostate; C, penis; Ov, ovaries with vagina and female generative opening. tions of the sexual organs, and with the increasing complication of sexual life becomes modified for the performance of special accessory functions connected with the production of ova and spermatozoa.

In the first place, the modification of the generative ducts of the two sexes in accordance with the function they have to perform determines the development of secondary sexmal characters and of sexual dimorphism. Other organs as well as the generative appa-
ratus 1 resent differences in tho two sexes, being modified for the

Fig. 96a.-Left urinary and generative organs of a female Salamander without the eloaea. Ov, ovary ; N, kidney ; $h g$, urinary duet eorresponding to the Wolffian duet; Mg, Müllerian duet as oviduet.

Fig. 96b, Left urinary and generative organs of a male Salamander, more diagrammatic. T, testis; $T e$, vasa efferentia; N, kidney with its eolleeting tubules; Mg, Müllerian duet as a rudiment; Wg , Wolftian duet or vas deferens; Kl, eloaca with aeeessory glands $D r$, of the left side.
performance of special functions in the sexual life. The female is
the passive agent in copulation, merely receiving the semen of the male; the female possesses material from which the offspring

Fig. 97 a. . Male of Aphis platanoides. oc, ocelli; $I T r$, honey tubes; P, copulatory organ.
develop, and accordingly takes care of the development of the fertilised egg and of the later fate of the offspring. Hence the female usually possesses a less active body and numerous arrangements for the protection and nowishment of her offspring, which develop either from eggs laid by the mother and sometimes carried about with her, or in the maternal body and are born alive. The function of the male is to seek, to excite, and to hold the female during copulation; hence, as a rule, he possesses greater vigour and power of movement, higher development of the senses, various means of exciting sexual feeling, such as brighter colouring, louder and richer voice, pre-

Fig. 97b, Apterous oviparous female of the same. hensile organs, and external organs for copulation (fig. 97, a, b).

In exceptional cases, the functions relating to the maintenance of
the offspring may be discharged by the male, e.f., Alytes and the Lophobranchia. Male birds also often share with the fernale the labour of building the nest, of bringing up and protecting the young. But it is a rare exception to find, as in Cottus and the Stickleback (Gasterostens), that the care and protection of the young fall exclusively upon the male, that he only bears the brood pouch and alone builds the nest,-an exception which bears strong witness to the fact that the sexual differences both in form and function were first acquired by adaptation.

In extreme cases, the sexual dimorphism may lead to so great a difference in the sexes that without a knowledge of their development

Fig. 98.-Chondracanthus gibbosus, magnified about 6 times. a, female from the side. b, female from the ventral surface with the male (F) attached. c, male isolated, uuder strong magnification. $A n^{\prime}$, anterior antenna; $A n^{\prime \prime}$, clasping antennæ; $F^{\prime \prime}$ and $F^{\prime \prime}$, the two pairs of feet ; A, eje ; $O v$, egg sacs ; $O e$, œsophagus ; D, iutestine ; M, mouth parts; T, testis ; $V d$, vas deferens ; $S p$, spermatophore.
and sexual relations, the one sex would be placed in a different family and genus to the other. Such extremes are found in the Rotifera and parasitic Copepoda (Chondracanthus, Lernæopoda, fig. 98, a, b, c), and are to be explained as the result of a parasitic mode of life.

The difference in the two kinds of individuals representing and maintaining the species, whose copulation and mutual action was known long before it was possible to give a correct account of the rail nature of reproduction, has led to the designation "sexes," from which the term sexual has been taken to apply to the organs and manner of reproduction.

In reality sexual reproduction is nothing else than a special form of growth. The ova and spermatoblasts represent the two forms of germinal cells which have become free, and which, after a mutual interaction in the process of fertilization, develop into a new organism. Nevertheless muder certain conditions the egg can, like the simple germ cell, undergo spontaneous development; numerous instances of this mode of development, which is known as parther:ogenesis, are found in Insects. The necessity of fertilization therefore

Fig. 90.-Viviparous form of Aphis platanoides. Oc, ocelli; Hr, honey tuhes.
no longer enters into our conception of the egg-cell, and no absolute physiological test is left to enable us to distinguish it from the germcell. It is usual to regard the place of origin in the sexual organ and in the female body as a feature distinguishing the ovum from a germ cell, but even with this morphological test we do not in each individual case arrive at the desired result (Bees, Bark-lice, Psychidce). We have already given prominence to the fact that ovaries and testes, in the simplest cases, consist of nothing more than groups of cells of the epithelium of the body cavity or of the outer skin. These, however, do not acquire the character of sexual organs until, at a higher stage of differentiation, the contrast between the two
sexual elements has made its appearance. When the male elements, and with them the necersily of fertilization, wre absent, and when, at the same time, the organ which produces the germ cells possesses, in its full development, a structure similar to that of an ovary, it becomes very difficult to distinguish whether we have to do with a pseudovary (gelin-gland), and with an animal which reproduces asexually; or with an ovary and a true female, whose eggs possess

Fig. 100.-Viviparous Cecidomyia (Miastor) larva (after Al. Pagenstecher). $T l$, Daughter larvæ developed from the rudimentary ovary. the capacity of developing spontaneously. It is only a comparison with the sexual form of the animal which makes the distinction possible. To take the case of the Plant-lice or Aphides; in these animals we find a generation of viviparous individuals, easily distinguishable from the true oviparous females, which copulate and lay eggs. They resemble the latter in the fact that they are provided with a similar reproductive gland, constructed upon the ovarian type; but they differ from them in this important peculiarity, that they are without organs for copulation and fertilization (in correspondence with the absence of the male animal) (fig. 99). The reproductive cells of the organs known as pseudovaries have an origin precisely similar to that of eggs in the ovaries, and only differ from ova in the very early commencement of the embryonic development. The viviparous individuals will therefore be more correctly regarded as agamic females peculiarly modified in the absence of organs for copulation and fertilization; and the reproductive cells are by no means to be relegated to the category of germ-cells (as formerly was done by Steenstrup). We must therefore speak of the reproductive processes in the Aphides as being sexual and parthenogenetic and not sexual and asexual. A comparison of the mode of reproduction of the Bark-lice with that of the Aphides, especially of the species Pemphigus terebinthi, puts the correctness of this supposition beyond the sphere of doubt.
A similar condition is found in the viviparous larva of Cecidomyia. Here the rudiment of the generative glands very early assumes a structure resembling that of the ovary, and produces a number of
reproductive cells which resemble ova in their method of origin, and at once develop into larvæ. The pseudovary is clearly derived from the rudiment of the sexual gland, but without ever reaching complete development (fig. 100). The ovary acquires to a certain extent the signification of an organ for producing germ-cells, and it is not improbable that many products (Redia, Sporocyst) regarded as spores or germ-cells correspond to embryonic ovaries which produce ova capable of spontaneous development.

Frg. 101.-Ovum of Nephelis (after O. Hertivig). $\quad a$, the ovum half-an-hour after deposition. a projection of the protoplasm indicates the commencing formation of the first polar body; the nuclear spindle is visible. b, The same an hour later, with polar body extruded, and after entrance of the spermatozoon. Sk, male pronucleus. c, The same another hour later without egg membrane, and with two polar bodies and male pronucleus ($S k$); d, the same an hour later with approximated female and male pronuclei; $R k$, polar bodies.

DEVELOPMENT.

It follows from the facts of sexual reproduction that the simple cell must be regarded as the starting-point for the development of the organism. The contents of the ovum spontaneously or under the influence of fertilization enter upon a series of changes, the final result of which is the rudiment of the body of the embryo. These changes consist essentially in a process of cell division which implicates the whole protoplasm of the ovum, and is known as segmentation.

For a long time the behaviour of the germinal vesicle at the commencement of segmentation and its relation to the nuclei of the finst formed segments were obscure, and the knowledge of the changes and fate of the spermatozoa which enter the ovum in the process of fertilization was, in like manner, in a very unsatisfactory state. Of late years, numerous investigations, especially those of Buitschli, O. Hertwig, Fol, etc., have thrown some light on these hitherto completely obscure processes. It was supposed that in a ripe ovum preparing itself for segmentation the germinal vesicle disippeared,

Fig. 102, a, b. -Parts of the ovum of Asterias glacialis with spermatozoa, embedded in the mucilaginous coat (after H. Fol.) c, upper part of the orum of Petromyzon (after Calberla). Am, micropyle; $S p$, spermatozoa; $J m$, path of the spermatozoon; $E k$, female pronucleus; $E h$, membrane of ovum ; $E h z$, prominences of the same.
and a new nucleus was formed quite independently of it ; and that the persistence and the participation of the germinal vesicle in the formation of the nuclei of the first segmentation spheres were exceptional (Siphonophora, Entoconcha, etc.) Thorough investigations carried out on the eggs of numerous animals have, however, shown that as a matter of fact the germinal vesicle of the ripe ovum only experiences changes in which the greater part of it, together with some of
the protoplasm of the ovum, is thrown out of the egg as the so-called directive bodies or polur cells (fig. 101). The part of it, horvever, which remains in the ovum retains its significance as a nucleus, and is known as the female pronucleus. This fuses with the single spermatozoon (male pronucleus) which has forced its way into the ovum (fig. 102) ; and the compound structure so formed constitutes the nucleus of the fertilized ovum, or as it is generally called, the first segmentation nucleus.

Fig. 103.-Development of a Star-fish, Asteracanthion berylinns (after Alex. Agass:z). 1, Commencing segmentation of the flattened egg-at one pole are seen the polar bodies; 2, stage mith two segments ; 3, with four; 4, with eight; 5 , with thirty-two segments; 6 , later stage; 7, blastosphere with commencing invagination; 8 and 9 , more advanced stages of invagination. The opening of the gastrula cavity becomes the anus.

This new nucleus, which divides to give rise to the nuclei of the first segmentation spheres, would appear therefore to be the product of the fusion or conjugation of the part of the germinal vesicle, which remains behind in the ovum, with the male pronucleus, which is a derivative of the spermatozoon which has entered the ovum. Fertilization would appear, therefore, to depend upon the addition
of a new element bringing about the reyeneration of the primary nucleus of the ovum or yerminal vesicle, and would have impressed its influence on the constitution of the conjugated nucleus. The regenerated ovum is therefore the starting-point of the subsequent generations of cells which build up the embryonic body.

Both the origin of the polar bodies which takes place in the ripe ovum independently of fertilization, and the division of the segmentation nucleus are accompanied by the appearance of the nuclear. spindle and star-shaped figures at the poles of the spindle which are so characteristic of the division of nuclei. The male pronucleus, before it fuses with the female pronucleus, also becomes surrounded by a layer of clear protoplasm, around which a star-shaped figure appears (fig. 101). In those cases in which segmentation takes place without a precedent fertilization (parthenogenesis), the female pronucleus appears to possess within itself the properties of the first segmentation nucleus.

The fertilization is followed by the process known as segmentation, in which the ovum gradually divides into a greater and greater number of smaller cells. Segmentation may be total, i.e., the whole ovum segments (fig. 103), or it may be partial, in which case only a portion segments (fig. 105).

Total segmentation may be regular and equal, the resulting segments being of equal size (fig. 103); or it may sooner or later become irregular, the resulting segments being of two kinds-the one smaller and containing a preponderating amount of protoplasm, the other larger and containing more fatty matter. In these cases the segmentation is said to be unequal. The process of clivision proceeds much more quickly in the smaller segments, while in the larger and more fatty segments it is much slower, and may erentually come to a complete standstill. The development of the frog's egg will serve as an example of unequal segmentation, of which there are various degrees (fig. 104). In this egg a dark pigmented and protoplasmic portion can be distinguished from a lighter portion containing much fatty matter or food yolk. The former is always turned uppermost in the water, and is therefore called the upper pole of the egg. The axis which connects the upper pole with the lower is known as the chief axis. The planes of the two first segmentation furrows pass through the chief axis and are at right angles to each other. They divide the egg into four equal parts. The third furrow (fig. 104, 4) is equatorial, taking place in a horizontal plane. and cutting the chief axis at right angles. It lies, however, nearer
the upper pole than the lower, and marks the line of division between the upper and smaller portion of the egg from the lower

Fig. 104.-Unequal segmentation of the Frog's egg (after Ecker) in ten successive stages.
and larger portion, in which the segmentation proceeds much more slowly than in the former.

In partial segmentation we find a sharply marked contrast between the formative and nutritive parts of the egg, inasmuch as the latter does not segment. The terms holoblastic and meroblustic therefore have been applied to total and partial segmentation respectively.

Nevertheless, in total segmentation also, either groups of segments of a definite quality, or, at any rate, a fluid yolk material may be used for the nourishment of the developing embryo. In fact, the

Fig. 105. Segmentation of the germinal disc of a Fowl's egg, surface view (after Kolliker). A, germinal disc with the first vertical furrow; B, the same with two vertical furrows crossing one another at right angles; C and D, more advanced stages with small ceutral segments. contents of every egg consists of two parts-(1) of a viscous albuminous protoplasm; and (2) of a fatty granular matter, the deutoplasm, or food yolk. The first is derived from the protoplasm
of the original germinal cell, while the yolk is only secondarily developed with the gradual growth of the first; and not unfieguently it is derived from the secretion of special glands (yolk glands, I'remutodes) ; it may even be added in the form of cells.

In the Ctenophora and other Coclenterata we see already in the first-formed segments the separation of the formative matter or peripheral ectoplasm from the nutritive matter or central endoplasm.

In eggs undergoing a partial segmentation the formative matter usually lies on one side of the large unsegmenting food yolk. In accordance with this, the segments of such eggs, known as telolecithal, arrange themselves in the form of a flat disc (germinal disc) ; hence this kind of segmentation has been called discoidal (eggs of Aves, Reptilia, Pisces) (fig. 105). The food yolk may, however, have a central position. In such centrolecithal eggs the segmentation is

Fig. 106.-Unequal segmentation of the centrolecithal egg of Gammarus locusta (in part after Ed. van Beneden). The central yolk mass does not appear till a late stage and undergoes later an "after-segmentation."
confined to the periphery, and is sometimes equal (Palæmon) and sometimes unequal (fig. 106). The central yolk mass may at first remain unsegmented, but later it may undergo a kind of aftersegmentation and break up into a number of cells (fig. 106). Again, in other cases the food yolk, at the commencement of segmentation, has a peripheral position, so that the cleavage process is at first confined to the inner parts of the egg, and only in later stages, when the food yolk has gradually shifted into the centre of the egs, appears as a peripheral layer on the surface. This is found especially in the eggs of Spiders (fig. 107). The first processes of segmentation in these at first ectolecithal ora are withdrawn from observation, since they take place in the centre of an egg covered by a superficial layer of food yolk, until the nuclei with their protoplasmic inrest-
ment reach the periphery, and the fatty and often darkly-granular food yolk comes to constitute the central mass of the egg (Insects).

As various as the forms of segmentation are the methods by which the segments are applied to the building up of the embryo. Frequently in cases of equal segmentation the segments arrange themselves in the form of a one-layered vesicle, the blastosphere, the central cavity of which not rarely contains fluid elements of the food yolk; or they are at once divided into two layers around a central cavity containing fluid; or they form a solid mass of cells without

Fig. 107.-Six stages in the segmentation of a spider's egg (Philodromns limbatus) after Hub. Ludwig. A, egg with two dentoplasmic rosette-like masses (segmentation spheres) ; B, the rosette-like masses with their centrally placed nucleatcd protoplasm without egg membrane; C, egg with a great number of rosette-like masses; D, the rosette-like inasses have the form of polyhedral deutoplasmic columns, each of which has a cell of the blastoderm lying immediately superficial to it; E, stage with blastoderm completely formed; F, optical section through the same. The yolk columns form within the blastoderm a closed investment to the central space.
any central cavity. In numerous cases, especially when the food yolk is relatively abundant (unequal and partial segmentation) or the food supply continuous, the embryonic development is longer and more complicated. The embryonic rudiment in such cases has at first the form of a disc of cells lying on the yolk; it soon divides into two layers, and then grows round the yolk.

The two-layered gastrula is, as a rule, developed from the blastosphere by invagination (embolic invagination). In this process the one half (sometimes distinguished by the larger size and more granular mature of its cells) of the cell wall of the blastospliere is pushed in upon the other half (fig. 108), and on the namowing of the

Fig. 108.- A, Blastosphere of Amphioxus ; B, invagination of the same; C, gastrula, invagination completed; O, blastopore (after B. Hatschek).
aperture of invagination (blastopore, mouth of gastrula) becomes the endodermal layer (hypoblast) lining the gastrula cavity. The outer layer of cells constitutes the ectoderm or epiblast. This mode of formation of the gastrula, which is very common, is found, e.g., in Ascidians, and amongst the Vertebrata in Amphioxus (fig. 108).

More rarely the gastrula arises by delamination. This process consists of a concentric splitting of the cells of the blastosphere into an outer layer (epiblast), and an inner (hypoblast) (fig. 109).

FIG. 109.-Transverse sections through three stages in the segmentation of Geryonia (after H. Fol.) A, stare with thirty-two segments, each segment is divided into an extermal finely grannlar protoplasm (ectoplasm) and an inner clearer lajer (endoplasm) ; B, later stage ; C, embryo after delamination; with ectoderm slightly separated from the endoderm, which is composed of large cells surrounding the segmentation cavity.

The central cavity of the gastrula in this case is derived from the original segmentation cavity, and the gastrula mouth is only secondarily formed by perforation. This method of development
of the gastrula has hitherto only been observed in some hydroid Meduse (Geryonia).

Finally, when the inequality of the segmentation is very pronomed, the gastrula is formed by a process known as epibole. In this process of development the epiblast cells, which are early distinguishable from the much larger hypoblast cells, spread themselves over the latter as a thin layer (fig. 110); and in this, as in the second method of development of the gastrula, the cavity of the gastrula is, as a rule, a secondary formation in the centre of the closely-packed mass of hypoblast cells. The blastopore is usually found at the point where the complete enclosure of the hypoblast is effected.

It sometimes happens that a part of the primary blastosphere is developed more rapidly than the remainder, and gives rise to a

Fig. 110. $-A$, Unequal segmentation of the egg of Bonellia; B, epibolic gastrula of the same (after Spengel).
bilaterally-symmetrical stripe-like thickening placed on the dorsal or ventral surface of the embryo. Frequently, however, such a germinal or primitive strerti is not developed, and the rudiment of the embryo continues to develop uniformly. Formerly great importance was attached to these differences, the one being distinguished as an evolutio ex una parte, and the other an evolutio ex omnibus partibus. It is not, however, possible to draw a sharp line between these two methods of development, nor have they the significance which was formerly ascribed to them, for closely allied forms may present great differences in this respect according to the amount of food yolk and the duration of the embryonic development.

The Cœlenterata, the Echinoderms, the lower Worms and Molluses, Annelids, and even Arthropods and Vertebrates (Amphioxus) present us with examples of regular development of all parts of the
body of the embryo which, if the yolk membrane fails, has no need of a special protective envelope. In this latter group, however, the formation of the germinal streak, which is in close relation with the formation of the nervous system, is accomplished later, during the post-embryonic development, when the larva is free-swimming and can procuro its own food. In like mamer many Polychetes and Arthropods (Branchipus) only acquire a germinal streak in the course of their later growth as larve.

In all cases in which the embryonic development begins by the formation of a germinal streak, the embryo only becomes definitely limited after the yolk has been gradually surrounded, as a result of processes whicl are connected with the complete entry of the yolk into the body cavity (Frogs, Insects), or with the origin of a yolk sac from which the yolk passes gradually into the body of the embryo (Birds, Mammals). The progressive organization of this latter, up to its exit from the egg membranes, presents in each group such extraordinary variations that it is not possible to give a general account of them.

Of primary importance is the fact that in the rudiment of the germ two cell layers first make their appearance-one the ectoderm, which gives rise to the outer integument; and the other the endoderm, from which arises the lining membrane of the digestive cavity and of the glands opening into it. Between these two layers there is formed, either from the outer or the inner layer, or from both layers, an intermediate layer, known as the mesoderm. From the mesoderm arise the muscular system and the connective tissues, the corpuscles of the lymph and blood, and the vascular system. The body cavity may either be derived from the persisting segmentation cavity, i.e., the primitive space between the ectoderm and endoderm (primary body cavity), or it may be developed secondarily as a split in the mesoderm (colom), or as outgrowths from the rudiment of the alimentary canal (archenteron), in which case it is known as an enterocole body cavity.

The nervous system and organs of sense are probably in all cases derived from the ectoderm, very frequently as pit- or groove-like invaginations which are subsequently constricted off. On the other hand, the urinary and generative organs arise both from the outer and inner layers as well as from the middle layer, which is itself derived from one of the primary layers or from the walls of the primary single-layered blastosphere.

Accordingly, as a rule the rudiments of the skin and glandular
lining of the alimentary canal are the first differentiations in the embryo ; and many embryos, the so-called Planule and Gastrulæ, on leaving the egg, have only these two layers and an internal cavity, the archenteron. Then follows the development of the nervous and muscular systems,- the latter taking place sometimes contemporaneously with or after the first appearance of the skeleton, especially in cases in which a germinal streak is developed. The urinary organs and various accessory glands, the blood-vessels and respiratory organs do not appear till later.

The degree of difference between the offspring on attaining the free condition (i.e., at birth or hatching) and the sexually mature adults, both as regards form and size as well as organization, varies considerably throughout the animal kingdom.

It is a very striking fact that an embryo provided with a central cavity and a body wall composed of only two layers of cells appears in different groups of animals as a freely moveable larva capable of leading an independent life. Having recognized this fact, it was not a great step, especially as Huxley* some time ago had compared the two membranes of the body wall of the Medusæ (called later by Allman ectoderm and endoderm) with the outer and inner layers of the vertebrate blastoderm (epiblast and hypoblast), to arrive at the conclusion that there was a similar phylogenetic origin for the similar larve of very different animal types, and to trace back the origin of organs functionally resembling each other to the same primitive structure.

It was A. Kowalewski† who, by the results of his numerous researches on the development of the lower animals, first gave this conception the groundwork of fact. He not only proved the occurrence of a two-layered larva in the development of the Coelenterate, Echinoderms, Worms, Ascidians, and in Amphioxus amongst Verttbrates, but also on the ground of the great agreement in the later developmental stages of the larvæ of Ascidians and Amphioxus and in the mode of origin of equivalent organs in the embryos of Worms, Insects, and Vertebrata, protested against the hitherto universally received view implied in Cuvier's conception of types, that the organs of different types could not be homologous with one another.

[^12]Inasmueh as Kowalewski,* from the results of liis embryological work, drew the conclusion that the nervons liyer and embryonic skin of Insects and Vertehrates are homologrous, and that the germinal layers of Amphioxus and Vertebrates correspond with those of Molluses ('Tunieata) or worms, he was in agreement with the long recognised faet that anatomical transitional forms and intermediate links between the different groups or types of animals exist, and that these latter do not represent absolutely isolated planes of organization, but the highest divisions in the system, and he only gave in reality an embryologieal expression to the clains of the deseent theory. In fact, the eonelusion which Kowalewski reached was completely correet-viz, that the homologies of the germinal layers in the different types afford a scientific basis for comparative anatomy and embryology, and must be reeognised as the starting-point for the proper understanding of the relationships of the types. For this position we find amongst the vertebrata proofs at every step.

But while his own eomprehensive embryological experiences inspired Kowalewski, the founder of the theory of the germinal layers, with a prudent reserve, other investigators, inclined to bold generalization, appeared at onee with ready theories, in which the results of embryologieal investigations were interpreted in aecordance with the theory of deseent. Among these E. Haeckel's gastrea theory is especially prominent, whieh raises no less a elaim "than to substitute, in the place of the classification hitherto reeeived, a new system based on phylogeny, of which the main prineiple is homology of the germinal layers and of the archenteron, and sceondarily on the differentiation of the axes (bilateral and radial symmetry) and of the eelom." E. Haeekel \dagger designated the larval form used as the point of departure the Gcastrula, and believed to have found in it the repetition in embryonic development of a common primitive form, to which the origin of all Metazoa may be traeed back. To this hypothetieal prototype, whieh is supposed to have lived in very early times during the Laurentian period, he gave the name of Gastrcea, and called the ancient group, supposed to be widely seattered and to consist of many families and genera, by the name Gastreade. From this supposition was dedueed the eomplete homology of the outer and inner

[^13]germinal layers throughout the whole Metazon; the one being traced back to the ectoderm and the other to the endoderm of the hypothetical Gastrea; while for the middle layer, which is only secondarily developed from one or both of the primary layers, only an incomplete homology was claimed. It cammot, however, be said that this theory, which is essentially an extension of the Baer-Remak theory of the germinal layers from the Vertebrata to the whole group of Metazoa, with its pretentious and hasty speculation has created a basis for comparative embryology ; such a basis can only be obtained as the result of comprehensive investigations.

DIRECT DEVELOPMENT AND METAMORPHOSIS.

The more complete the agreement between the just born young. and the adult sexual animal, so much the greater, especially in the higher animals, will be the duration of the embryonic development and the more complicated the developmental processes of the embryo. The post-embryonic development'will, in this case, be confined to simple processes of growth and perfection of the sexual organs. When, however, embryonic life has, relatively to the height of the organization, a quick and simple course ; when, in other words, the embryo is born in an immature condition and at a relatively low stage of organization,

Fig. 111.-Larval stages of the Frog (after Ecker). a, embryo some time before hatching, with wart-like gill papille on the visceral arches. b, Larva some time after hatching, with external branchio. c, Older larva, with horny beak and small branchial clefts beneath the integumentary operculum, with internal branchiæ; N, nasal pit; S, sucker ; K, branchiæ; A, суе; H_{\sim}, horny teeth. the post-embryonic development will be more complicated, and the young animal, in addition to its increase in size, will present various processes of transformation and change of form. In such cases, the just hatched young, as opposed to the adult, animal, is cilled a Larva, and develops gradually to the form of the adult
sexual animal. The development of larve, however, is by no means direct and uniform, but is complicated by the necessity for special contrivances to enable them to procure food and to protect themselves; sometimes taking place in an entirely different medium, under diflerent conditions of life. This kind of post-embryonic development is known as metamorphosis.

Well-known examples of metamorphosis are afforded by the developmental histories of the Insecta and Amphibia. From the eggs of Frogs and Toads proceed larva provided with tails, but without limbs, the so-called Tadpoles (fig 111). These, with their laterally compressed tails and their gills, remind one of fishes, and they possess organs of attachment in the form of two small cervical suckers by which they can anchor themselves to plants. The mouth is provided with horny plates; the spirally coiled intestine is surprisingly long; the heart is simple; and the vascular arches have the piscine relations. Later, as development proceeds, the external branchize abort, and are replaced by new branchiæ covered by folds of the integument, the caudal fin is enlarged, and the fore and hind limbs sprout out; the fore limbs remain for some time covered by the integument, and only subsequently break through it to appear on the surface. Meanwhile the lungs have developed as appendages of the anterior part of the alimentary canal, and supplant the gills as respiratory organs, a double circulation is developed, and the horny beak is cast off. Finally the tail gradually shrinks and atrophies; on the completion of which the metamorphosis of the aquatic tadpole into the frog or toad suited for life on land is accomplished (fig. 112).

We have then to consider two kinds of development, viz., development with a metamorphosis and direct development, which in extreme cases are distinctly opposed to each other, but are connected by intermediate methods. The size of the egg, or, in other words, the amount of food yolk available for the use of the embryo in proportion to the size of the adult animal appears to be a factor of primary importance in any explanation of these two distinct processes (R. Leuckart). Animals with a direct development require-generally in proportion to the height of their organization and the size of their bodies-that their eggs should be provided with a rich endowment of food yolk, or that the developing embryo should possess a special accessory source of nutriment; they arise therefore either from relatively large eggs (Birds), or they are developed inside, and in close connection with the maternal body, by which arrangement they have a continual supply of food material (Mammals). Animals,
on the contrary, which pass through a metamorphosis always arise from eggs of relatively small size, are hatched in an immature condition as larve, and obtain independently, by their own activity, the materials which have been withheld from them while in the egg, but which are necessary for their full development. The number of embryos produced in the case of a direct development is, in proportion to the total weight of the material applied by the mother for reproductive purposes, far smaller than in the case of a development with metamorphosis. The fertility of animals whose young

Fig. 112.-Later stages in the development of Pelobates fuscus. a, larva without limbs with well developed tail; b, older larva with hind limbs; c, larva with two pairs of limbs; d, young frog with caudal stump; e, young frog after complete atrophy of tail.
undergo a metamorphosis, or, in other words, the number of offspring produced from a given mass of formative material, is increased to an extraordinary degree, and has, in the complicated relations of organic life, a great physiological significance, though systematically it is of little importance.

Some time ago it was attempted to explain these indirect metamorphoses, in which both processes of reduction and new development take place, as the result of the necessity which the simply organized
lin'vit, hatched at an early stage of development, laboured under of acquiring special arrahgements for its protection and nourishment (R. Lenckart). The proof that such relations do exist between the special larval organs and the peculiar methods of nutrition and protection is an important factor for the full understanding of these remarkable processes, but still is by no means an explanation of them. It is only by aid of the Darwinian principles and the theory of descent that we can gret nearer to an explanation. According to this theory, the form and structure of larvie are to be considered in relation to the development of the race, i.e. phylogeny, and are to be derived from the various phases of structure through which the latter has passed in its evolution, and in such a way that the younger larval stages would correspond to the primitive, and the older, on the other hand, to the more advanced and more highly organized animals, which have appeared later in the listory of the race. In this sense the developmental processes of the individual constitute a more or less complete recapitulation of the developmental history of the species, complicated, however, by secondary variations due to adaptation, which have been acquired in the struggle for existence * (Fritz Müller's fundamental principle, called by Haeckel the fundamental law of biogenesis).

The greater the number of stages, therefore, through which the larva passes, the more completely is the ancestral history of the species preserved in the developmental history of the individual; and it is the more truly preserved the fewer the peculiarities of the larva, whether independently acquired, or shifted back from the later to the earlier periods of life (Copepoda.) On the other hand, there are certain larval forms without any phylogenetic meaning which are to be explained as having been secondarily acquired by adaptation (many Insect larvæ).

The historical record preserved in the developmental history becomes, however, gradually defaced by simplification and shortening of the free development; for the successive phases of development are gradually more and more shifted back in the life of the embryo, and run their course more rapidly and in an abbreviated form, under the protection of the egg membranes, and at the cost of a rich supply of nutrient material (yolk, albunen, placenta). In animals with a direct development, therefore, the complicated development within the egg membranes is a compressed and simplified

[^14]metamorphosis, and heuce the direct development, as opposed to the metamorphosis, is a secondary form of development.

ALTLRNAIION OF GENERATLONS, POLYMORPHISM AND HETEROGAMY.

Both in direct development and indirect development by means of a metamorphosis, the successive stages take place in the lifehistory of the same individual. There are, however, instances of free development, in which the individual only passes through a part of the developmental changes, while the offspring produced by it accomplishes the remaining part. In this case the life-history of the species is represented by two or more generations of individuals, which possess different forms and organization, exist under different conditions of life, and reproduce in different ways.
Such a manner of development is known as alternation of generations (metagenesis), and consists of the regular alternation of a sexually differentiated generation with one or more generations reproducing asexually. This phenomenon was first discovered by the poet Chamisso* in the Salpidæ; but the observation remained for more than twenty years unnoticed. It was rediscovered by J. Steenstrup, \uparrow and discussed in the reproduction of a series of animals (Medusæ, Trematoda) as a law of development. The essence of the process consists in this, that the sexual animals produce offspring, which through their whole life remain different from their parents, but can give rise by an asexual process of reproduction to a generation of animals which resemble in their organization and habits of life the sexual form, or again produce themselves asexually, their offspring assuming the characters of the original sexual animal. So that in the last case the life of the species is composed of three different generations proceeding from one another, viz., sexual form, first asexual form, and second asexual form. The development of the two, three, or more generations may be direct, or may take place by a more or less complicated metamorphosis; similarly the asexual and the sexual generations sometimes differ but little from each other (e.g. Salpa), and sometimes present relations analogous to those which exist between a larva and the adult animal (e.g.

[^15]Medusa). Accordingly we have to distingui-h different forms of alternations of generations, which have genetically a diflerent origin and explanation.

The latter form of alternations of generations resembles metamorphosis; and we have in most cases to explain it as having arisen in the following way:-The asexual form corresponds to a lower stage in the phylogenetic history, from which it has inherited the capacity of asexual reproduction, while the sexual reproduction belongs entirely to the higher form. To take as an example the alternation of generations of the Scyphomedusie. The animal is hatched as a free-swimming ciliated planula (gastrula with closed blastopore) (fig. 113 a). After a certain time it fixes itself by the pole of its body,

Fig. 113.-Development of the planula of Chrysaora to the Scyphistoma stage, with eight arms. a, Two lajered planula with a narrow gastric cavity; b, the same after its attachment with just-formed mouth (O), and commencing tentacles; c, four-armed Scrphistoma polyp; C\&k, excreted cuticular skeleton; d, eight-armed Scyphistoma polyp with wide mouth; M, longitudinal muscles of the gastric ridges; $C s h$, excreted cuticular skeleton.
which is directed forward in swimming, and acquires at its free extremity a new mouth, round which $1,2,4,8$, and finally 16 long tentacles soon make their appearance; while the broad oral region projects as a contractile cone (fig. $113 b, c, d$). Inside the gastric cavity there project four gastric ridges with longitudinal muscular bands extending from the foot or point of attachment to the base of the oral cone. When the polyp, which has now become a Scyplistoma, has under favourable conditions of nutrition reached a certain size (about 2 to 4 mm .), ring-like constrictions are formed at the
anterior part of the body, giving rise to a series of segment-like divisions. The anterior part of the body bearing the tentacles is first marked off ; and following this a greater or less number of sections, the new segments appearing continuously in the direction from before backward. The hindermost or basal swollen club-shaped end of the polyp's body remains undivided. The Scyphistoma has

Fig. 113.-e, Stage of Scyphistoma with sixteen arms (slightly magnified) ; Gvo. gastric ridges. f, Commencing strobilization.
now become the Strobila, which itself passes through various developmental phases. The tentacles abort ; the successive segments, separated from each other by constrictions and provided with lobelike continuations and marginal bodies, become transformed into small flat discs, which become separate, and, as Ephyree, represent the larve of the Scyphomeduse (fig. 113 b-h).

In the other cases in which the sexual and asexual forms morphologically resemble each other, as in Salpa, the origin of the alternation of generations may, as in the case of the origin of the diocious from the hermaphrodite state, be tracerl back to the tendency towards the establishment of a division of labour acting upon an animal which possessed the capacity of sexual and asexual reproduction. It was advantageous for the formation of the regular chain of buds (stolo prolifer) that the power of sexual reproduction should be suppressed, and that the generative organs should become rudimentary and finally vanish in the budding individuals; while, on the other hand, in the individuals united in the chain, the generative organs were early developed, and the stolo prolifer was aborted and completely vanished.

Special forms of alternation of generations may be distinguished in which colonies are formed as the result of the asexual reproduction by budding from a single animal, the buds remaining attached and developing into individuals which differ considerably in structure and appearance, and each of which performs special functions in maintaining the colony (nutritive, protective, sexual, etc.) Such a form of alternation of generations is known as polymorphism,* and reaches a great complication in the polymorphous colonies of the Siphonophora.

A form of reproduction which closely resembles metagenesis, but which genetically has quite a different explanation, is the lately

[^16]discorered process known as heterogamy. It is characterised by the succession of differently organized sexuch generations living underdifferent nutritive conditions.

Heterogamy, which was first discovered in certain small Nematodes (Rhabdonema nigrovenosum and Leptodera appendiculata), can scarcely be explained otherwise than as an adaptation to changed conditions. For when the embryo is developed as a parasite in conditions favourable for the acquisition of nutriment, it gives rise to a sexual form so different in size and structure from that which arises if the

Fig. 114.-A, Rhabdonema nigrovenosum of about 3.5 mm . in length at the stage when the male organs are ripe. G, genital gland; O, mouth ; D, alimentary canal ; A, anus ; N, nerve ring; $D r z$, gland cells; Z, isolated spermatozoa. B, Male and female Rbabditis, length from about 1.5 to 2 mm . ; Ov, ovary ; T, testis; V, female genital opening; S_{P}, spicula.
embryo leads a free existence in damp earth or dirty water (i.e., in conditions not so favourable for the acquisition of nutriment), that we should, from the difference in their structure, place the two forms in different genera. Rhabdonema nigrovenosum from the lungs of Batrachians and the free-living Rhabditis follow each other in a strictly alternating manner (fig. 114, A, B). Other cases of heterogamy are afforded by the Bark-lice (Chermes), and the Root-lice
(Phylloxera), in that one or more (winged and apterous) female generations are characterised by parthenogenetic reproduction, and consist only of oviparous females; while the generation of females, which lay fertilised eggs, appears with the males only at certain times of the year, and can be distinguished by their sinall size, and by the reduction of their mouth parts and digestive apparatus.

Such forms of heterogamy lead back apparently to alternations of generations, especially when the parthenogenetic generations present, in the structure of their generative apparatus, essential differences from the females which copulate.

The plant-lice and gall-flies aftord instances of this. The reproductive processes of these animals, on the authority of Steenstrup and V. Siebold, were regarded for a long time as instances of alternations of generations, until the view, which was supported by the reproductive processes of the allied bark-lice, that they came under the head of heterogamy, received general assent. Accordiug to this view, the viviparous forms of the plant-lice (Aphides) are merely modified females adapted for parthenogenetic reproduction, and their reproductive gland is nothing more than the modified ovary. There are also cases of heterogamy in which, in the parthenogenetic generations, the development of the egg commences in the ovary of the larva, reproduction being shifted back into larval life. This form of heterogamy, which resembles alternations of generations, was shown to occur in the larva of Cecidomyia (Miastor) by Nic. Wagner and by O. Grimm in the larva of a species of Chironomus, and is to be looked upon as a case of precocious development of the egg in the parthenogenetic generation. The morphologically undeveloped larva has acquired the power of reproducing itself by means of its rudimentary ovary, a phenomenon which, following the proposal of C. E. v. Baer, has been designated Pcedogenesis.

If the reproductive gland of the Cecidomyia larva be looked upon as a germ-gland, and the cells contained in it as germ cells or spores, the reproduction of the Cecidomyia falls into the category of alternations of generations. But the idea involved in the term "spore" is borrowed from the vegetable kingdom, and there is no reason for looking upon these or any other structures in the Metazoa as spores. The above explanation, therefore, is untenable. The reproductive cells in the Metazoa, which have been regarded in this light, have much more probably originater from masses of cells which represent the rudiment of the ovary. and which are usually visible in early stages of development.

Further it cannot be doubted that the development of the Distomer, which has hitherto been regarded as a case of alternation of generations really represents a form of heterogamy allied to predogenesis. After the completion of the segmentation and embryonic development, the ciliated embryos (fig $115, a, b$) pass from the egg into the water, where they swim about, and eventually make their way into the body of a Snail, in which they give rise to sac-like or branched Sporocysts (fig 115, c) or to Rediæ provided with an alimentary canal (fig. 115, d).

These stages in the development of Distomum which are apparently

Fig. 115.-Developmental history of Distomum (in part after R. Leuckart). a, Freeswimming ciliated embryo of the liver fluke.- b, the same contracted, with rudiment of alimentary canal D; and aggregations of cells; $O v$, rudiment of genital gland; Ex, ciliated apparatus of the excretory system.--c, Sporocyst, which has proceerled from a Distomum embryo, filled with Cercariæ $C ; B$, spine of a Cercaria.- l, Redia with pharynx $P h$; alimentary canal, $D ; E x$, excretory organs; C, contained Cercariæ.-e, free Cercaria; S, sucker ; D, gut.
comparable to larvæ, produce by means of the so-called germ granules or spoles a generation of offspring known as Cercariæ (fig. 115, e), which become free, and then make their way into the body of a new host, and, after the loss of the oral spine and caudal appendage, encyst (fig $115 f$). Hence they are carried into the body of the permanent host to develop into the sexual adult form.

It is, however, extremely probable that the masses of cells from which the Cercarie arise represent the rudiments of ovaries, the elements of which develop parthenogenetically without the addition of spermatozon. The so-called germ sacs (Sporocysts or Rediae) would in this ease be larve, which possess the power of reproduction ; ind the development of the Distomes would come under the head of heterogamy. The Cercarie, however, represent a seeond and more advanced larval phase. Provided with a motile tail, frequently with eyes and buceal spine, their organization, save in the absence of developed generative organs, presents great similarities to the sexually mature adults into which they develop. This development, however, takes place

Fig. 115. $f,-$ Young Distomum (afterLa Valette). Ex, main trunk of excretory system; Ep, excretory pore; O, mouth opening with sucker ; S, sucker on middle of ventral surface ; P, pharynx ; D, limb of alimentary canal. only in the body of another and usually more highly organized host after the loss of the larval organs.

If the conception of a spore as an asexual reproduetive produet be maintained, it becomes.impossible in practice to draw a sharp line between alternation of generations and heterogamy; since there is no test which enables us to distinguish between a spore and an ovum which develops parthenogenctieally. On the other hand, if we interpret, as we are justified in doing, the so-called spores as precociously developed ova, alternation of generations and heterogamy ean be clearly distinguished from one another, since in the former one generation is asexual, and inereases entirely by budding and division; while in the latter both generations are sexual, though in one of them the ova may possess the power of spontaneous development.

An essential characteristic both of heterogamy and alternation of generations depends upon the different form of the individuals appearing in the generations which usually occur in a regularly alternating manner in the life-history of the species. But there are cases in which two methods of reproduction may follow each other in the life-history of one individual. This form of the
reproductive process is of the greatest interest as throwing light upon the way in which the phenomena of alternation of generations and leterogamy may have arisen in that it appears in a certain degree as the precursor of the alternating sequence of two or more generations of individuals. The so-called alternation of generations in the stone-corals (Blastotrochus), which in early life reproduce themselves by budding, without thereby losing the power of acquiring sexual organs at a later period of life, forms an example of this method of reproduction.

In this category of incomplete heterogamy should be placed the reproductive processes of the Phyllopoda and Rotifera, in which the female produces summer eggs capable of parthenogenetic development, and later winter eggs requiring fertilization (Daphnidoe).
[In the above account the term alternation of generations, or metagenesis is applied to those cases in which sexual and asexual generations alternate ; while heterogamy is applied to those cases in which two sexual generations or a sexual and parthenogenetic generation alternate.]

CHAPTER IV.

HISTORICAL REVIEW.*

The origin of Zoology extends far back into antiquity. Aristotle (4th century в.c.), who scientifically and in a philosophic spirit worked up the experiences of his predecessors with his own extended observations, must be looked upon as the founder of this science. The most important of his zoological works \dagger treat of the "Reproduction of Animals," of the " Parts of Animals," and of the "History of Animals." The last and most important work is, unfortunately, only incompletely preserved.

We must not expect to find in Aristotle a descriptive zoologist, nor in his works a system of animals followed out into the smallest

* Vietor Carus, "Geschiehte der Zoologie." Miunchen, 1872.
\dagger Compare Juirgen Bona Meyer's "Aristoteles' Thicrkunde " (Berlin, 1855). -Frantzius, "Aristoteles' Theile der Thicre" (Leipzig. 1853).-Aubert und Wimmer, "Aristoteles' Fuinf Bücher von der Zeugung und Entwieklung der Thiere, übersetzt und erläutert" (Leipzig. 1860). - Aubert und Wimmer, "Aristotcles' Thierkunde." Band I. und II. (Leipzig, 1868).
details; a one-sided treatment of seience was not the objeet of this great thinker.

Aristotle eontemplated animals as living organisms in all their relations to the external world, according to their development, structure, and vital phenomena, and he ereated a comparative Zoology, which in several respeets constitutes the hasis of our seienee. The distinction of animals into animals wilh bloorl (Ëvoupa) and animals without blood (a̛valua), whieh he in no wise used as a strictly systematic eonception, certainly depends, according to the meaning of the word, upon an error, sinee all animals possess blond; and the red enlour ean by no means be taken, as Aristotle believed, to be a test of the presence of blood ; but as the possession of a bony vertebral eolumn was put forward as a eharaeter of the animals provided with blood, the two groups established by this distinetion eoineided in their limits with the two great divisions of Vertebrates and Invertebrates.

The eight animal groups of Aristotle are the following:-
Animals with blood, Vertebrates -
 which as a special $\gamma^{\prime} v o s$ was placed the whale.
(2) Birds (ö $\rho \nu \iota \theta \epsilon$).

(4) Fishes (ixӨ́́єs).

Animals without blood, Invertebrates-
(5) Soft animals ($\mu a \lambda \alpha ́ к \iota a, ~ C e p h a l o p o d a) . ~$
(6) Soft animals with shells ($\mu а \lambda \alpha к о ́ \sigma т р о к а) . ~$
(7) Inseets (${ }^{\prime \prime} V$ го $о \mu \alpha$).
(8) Shelled animals (o̊ $\sigma \tau \rho \alpha к о \delta ́ \epsilon ́ \rho \mu a \tau \alpha$, Eehini, Snails, and Mussels). After Aristotle, antiquity only possesses one zoological writer of note-Pliny the elder-to point to. He lived in the first eentury, and, as is well-known, was killed in the great Eruption of Vesuvius (79), while eaptain of the fleet. The natural history of Pliny deals with the whole of nature, from the stars to animals, plants, and minerals; it is, however, of no seientific value as an original work, but is merely a eompilation of faets colleeted from known sources, and is not by any means implicitly to be trusted. Pliny borrowed to a large extent from Aristotle, often understood him falsely, and also aecepted here and there as facts fables, which had been rejected by Aristotle. Without setting up a system of lis own, he divided animals aecording to the medium in which they lived-into Landanimals (Terrestria), Aquatie-animals (Aquatica), and Flying-
animals (Volatilia), -a division which was accepted till Gessner's time.

With the decline of the sciences, natural history also fell into oblivion. The mind of man, fettered by the belief in authority, felt in the middle ages no need for an independent contemplation of Nature. But the writings of Aristotle and Pliny found an asylum within the walls of the Christian cloisters, which preserved the germs of science developed in Heathendom from complete extinction.

In the course of the middle ages, first the Spanish bishop, Isidor of Seville (in the seventh century), and later Albertus Magnus (in the thirteenth century) wrote works on natural history; but it was not until the renaissance of the sciences of the sixteenth century that the works of Aristotle again came to the fore, and the desire for independent observation and research was also roused. Works like those of C. Gessner, Aldrovandus, Wotton, testified to the newly awakening life of our science, whose scope was continually being increased by the discovery of new worlds.

The next century, in which Harvey discovered the circulation of the blood, Keppler the revolution of the planets, and Newton's law of gravitation formed the beginning of a new era in physics, was also a fruitful epoch for Zoology. Aurelio Severino wrote his "Zootomia democritra" (1645), a work which contained anatomical drawings of various animals, more for the use and advancement of human anatomy and physiology. Swammerdam in Leyden dissected the bodies of Insects and Molluses, and described the metamorphosis of the Frog. Malpighi in Bologna and Leeuwenhoek in Delft applied the invention of the microscope to the examination of tissues and the smallest organisms (animals from infusions). The latter discovered the blood corpuscles, and first saw the transverse striations of muscular fibres. The spermatazoa also were discovered by a student, Hamm, and called, on account of their movements, sperm-animals. The Italian Redi opposed the spontaneous generation of animals in putrefying matter, proved the origin of Maggots from Flies' eggs, and supported Harvey's famous expression, "omne vivum ex ovo." In the eighteenth century the knowledge of the life-history of animals was enormously enriched. Investigators such as Réaumur, Rösel von Rosenhöf, De Geer, Bonnet, J. Chr. Schaeffer, Ledermïller, etc., discovered the metamorphosis and life-history of Insects and native aquatic animals, while at the same time, by expeditions into foreign lands, a great number of animals from other
continents became known. In consequence of these extended observations and a continually growing eagerness to collect curiosities from foreign countries, the zoological material increased so largely that, in the absence of precise distinctions, nomenclature and arrangement, the danger of error was great, and a general review of the facts almost impossible. Under such conditions, the appearance of the systematiser Cirl Linneus (1707-1778) must have been of the greatest importance for the further development of Zoology.

Ray, who is justly placed in the first rank of Linnæus' predecessors, had carlier endeavoured to acquire a basis for the systematic treatment, and with a certain amount of success, but he failed to organise a thoroughly methodical arrangement. He was the first to introduce the conception of "species" and to consider" anatomical character's as the basis of classification. In his work, entitled "Synopsis of Mammalia and Reptilia" (1693), he adopted Aristotle's division of the animal kingdom into animals with and animals without blood. With regard to the first he laid the basis of the definitions of Linnæus' first four classes; the latter he divided into a greater group, containing Cephalopods, Crustacea, and Testacea, and into a smaller containing the Insecta.

The importance of Linnæus' work to the development of science depended not on any far-reaching investigations or important discoveries, but on his acute sifting and exact division of the then existing facts, and on the introduction of a new method of more certain diagnosis, nomenclature, and arrangement.

By erecting for groups of different value a series of categories based on the ideas of species, genus, order, class, he obtained a means of creating a much more precise system of classification. On the other hand, by the introduction of the principle of binary nomenclature, he obtained a fixed and more certain method. Every animal received two names taken from the Latin language-the generic name, which was placed first, and the specific name, which together denote the fact that the animal in question belongs to a definite genus and species. In this way Linnæus not only arranged the facts then known, but also created a systematic framework in which later discoveries would easily find their proper place.

Linnæus's great work, the "Systema Naturæ," which in its thirteen editions received many changes, embraced the animal, regetable, and mineral kingdoms, and in its treatment can only be compared to an exhaustive catalogue, in which the contents of nature, like that of a library, are registered in a definite order with a statement of
their most remarkable characters. Every species of animal and plant obtained a place determined by its properties, and was with the specific name inserted under the genus. After the name followed a short Latin diagnosis, and a list of the synonyms of authors and statements concerning the habits of life, habitat, the native country, and any special characteristics.

Linnæus created for botany an artificial system of classification founded on the characters of flowers. Similarly his classification of animals was artificial, as it did not depend upon the distinction of natural groups, but took isolated features of internal and external structure as characters. Linneus completed the improvements in Aristotle's classification which had been already begun by Ray, by establishing the following six classes, founded on the structure of the heart, the condition of the blood, the manner of reproduction and respiration.
(1) Mammalict.-With red warm blood, and a heart composed of two auricles and two ventricles, viviparous. The following orders were distinguished-Primates (with the four genera Homo, Simia, Lemur, Vespertilio), Bruta, Feræ, Glires, Pecora, Belluæ, Cete.
(2) Aves.-With warm red blood, and a heart composed of two auricles and two ventricles, oviparous-Accipitres, Picæ, Anseres, Grallæ, Gallinæ, Passeres.
(3) Amphibia.-With cold red blood and a heart composed of simple auricle and ventricle, breathing by lungs-Reptilia (Testudo, Draco, Lacerta, Rana), Serpentes.
(4) Pisces.-With cold red blood, and a heart composed of simple auricle and ventricle, breathing by gills-Apodes, Jugulares, Thoracici, Abdominales, Branchiostegi, Chondropterygii.
(5) Insecta. With white blood, simple heart, and segmented an-tennæ-Coleoptera, Hemiptera, Lepidoptera, Neuroptera, Hymenoptera, Diptera, Aptera.
(6) Vermes.-With white blood, simple heart, and unsegmented antennæ-Mollusca, Intestina, Testacea, Zoophyta, Infusoria.

While the followers of Linnæus developed still further this barren and one-sided zoographical treatment and erroneously looked upon the framework of this system as an exact and complete expression of the whole of nature, Cuvier; by combining Comparative Anatomy with Zoology, laid the foundations of a natural system.

George Cuvier, born at Mömpelgard 1762, and educated at the Karlsakademie at Stuttgart, later Professor of Comparative Anatomy at the Jardin des Plantes in Paris, published his comprehensive in-
vestigations in numerous works, especially in his "Leçons d'Anatomie comparee " (1805).

In his celebrated treatise * published in 1812, on the arrangement of animals according to their orgmization, he established a new and essentially changed classification, which was the first serious attempt to buik up a natural system. Cuvier did not, as most zootomists had done, look upon anatomical discoveries and facts as in themselves the aim of his researches, but he contemplated them flom a comparative point of view, which led him to the establishment of general principles. By considering the peculiarities in the arrangements of the organs in relation with the life and unity of the organism, he recognised the reciprocal dependence of the individual organs, and appreciating fully the idea of the "correlation" of parts already discussed by Aristotle, he developed his principle of the conditions of existence without which an animal cannot live (principe des conditions d'existence ou causes fincules). "The organism consists of a single and complete whole, in which single parts cannot be changed without causing changes in all the other parts." By comparing the organizations of many different animals, he found that the important organs are the most constant, and that the less important vary most in their form and development, and even are not universally present.

He was thus led to the principle so important for the systematist of the subordination of characters (principe de la subordination des carcactères). Without being ruled by the pre-conceived idea of the unity of all animal organization, he became convinced, from a consideration of the differences in the nervous system and in the arrangement of the more important systems of organs, that there were in the animal kingdom four main types (embranchements), "general plans of structure on which the respective animals appear to be modelled, and whose individual subdivisions, as they may be called, are only slight modifications based on the development or the addition of some parts, without the plan of the organization being thereby essentially changed."

These four groups (embranchements Cuvier, Typen Blainville) were the Vertebrata, Mollusca, Articulata, and Radiata.

The views of Cuvier, who in knowledge of anatomical and zoological detail stood far above all his contemporaries, were, however, in opposition to the theories of men of note (the so-called School of

[^17]Natural Philosophy). In France, Étienne Geoffroy St. Hilaire preeminently defended the idea, which had been already expressed by Buffon, of the unity of the plan of animal structure, according to which the animal kiugdom consisted of an unbroken gradation of animals. Convinced that nature always worked with the same materials, he put forward his theory of analogies, according to which the same parts, though differing in their form and the degree of their development, should be found in all animals ; and, further, his theory of connections (principe des connexions), according to which the same parts always appear in the same mutual position. A third fund mental principle was that of the equivalence of organs, an increase in the size of one organ being accompanied by the diminution of another organ. The application of this principle had important results, and led to the scientific foundation of Teratology. His generalizations were, however, in the main hasty, in that they were founded on facts taken only from the Vertebrates; and if applied outside that group must lead to many rash conclusions, e.g., that Insects are Vertebrates turned on to their backs.

In Germany, Goethe and the natural philosophers Oken and Schelling pronounced in favour of the unity of animal organization, but it must be confessed without taking account in a comprehensive manner of the actual facts.

The result of this controversy which in France was carried on with considerable vehemence was, that Cuvier's view was victorious, and his principles met with the more undivided assent since it appeared that they were confirmed by C. E. v. Baer's embryological work. Many gaps and errors were certainly discovered by later investigators in Cuvier's classification, and in detail it was much changed, but the establishment of his animal types as the chief groups of the system was retained, and was supported by the results of the developing Science of Embryology.

The most essential of the modifications which it has become necessary to make in Cuvier's system relate chiefly to the increase in the number of types. The Infusoria were some time ago removed from the Radiata, and as Protozoa arranged by the side of the four other groups. Lately the number of groups has been increased by the division of the Radiata into Coelenterata and Echinodermata, and of the Articulata into Arthropoda and Vermes, and of the Mollusca into three groups.

In our times, however, Cuvier's view has experienced an essential modification in favour of the Natural Philosophers, and the idea of
the absolute independence and isolation of each group must be given up. With a more complete study it has been shown that intermediate forms exist connecting the various types, and that consequently no sharp line of demarcation can be drawn between them. But just as the transitional forms between animals and plants cannot abolish the distinction between these two most important conceptions of the organic lingdom, so the existence of such transitional forms does not in any way affect the value of the idea of groups and types as the chief divisions of the animal system, but only renders it probable that the different groups lave developed from a similar or common starting-point.

And to this corresponds the fact, which has become recognised with the progress of embryological knowledge, that similar larval stages and tissue-layers (germinal layers) are found in the developmental history of the different types. This fact points to a genetic connection.

Likewise the results of anatomical and embryological comparison have rendered it probable that the types are by no means absolutely independent, but are subordinated to one another in more or less close relation, that especially the higher groups are genetically to be derived from the Worms, a group which certainly includes extremely dissimilar forms, and eventually will, without doubt, be broken up into several types. We consider it, under such circumstances, convenient, in the present state of science, to distinguish nine types as the chief divisions, and to characterise them in the following manner:-
(1) Protozoct.-Of small size, with differentiations within the sarcode, without cellular organs, with predominating asexual reproduction.
(2) Ccelenterata.-Radiate animals segmented in terms of 2, 4, or 6 ; mesoderm of connective tissue, often gelatinous; and a central body cavity common to digestion and circulation (gastro-vascular space).
(3) Echinodermata.-Radiating animals, for the most part of pentamerous arrangement; with calcareous dermal skeleton, often bearing spines ; with separate alimentary and vascular systems ; and with nervous system and ambulacral feet.
(4) Vermes.-Bilateral animals with unsegmented or uniformly (homonomous) segmented body, without jointed appendages (limbs), with paired excretory canals sometimes called water-vascular system.
(5) Arthropoda.-Bilateral animals with heteronomously segmented
bodies and jointed appendages, with brain and ventral chain of gauglia.
(6) Molluscoidect.-Bilateral, unsegmented animals with ciliated circlet of tentacles or spirally rolled buccal arms ; either polyp-like and provided with a hard shell case, or mussel-like with a bivalve shell, the valves being anterior and posterior; with one or more ganglia connected together by a pericesophageal ring.
(i) Mollusca. Bilateral animals with soft, - unsegmented body, without a skeleton serving for purposes of locomotion; usually enclosed in a single or bivalve shell, which is excreted by a fold of the skin (mantle); with brain, pedal-ganglion and mantle-ganglion.
(8) Tunicata.-Bilateral unsegmented animals with sac-shaped or barrel-shaped bodies, and a large mantle cavity perforated by two openings; simple nervous ganglion, heart and gills.
(9) Vertebrata.-Bilateral animals with an internal cartilaginous or osseous segmented skeleton (vertebral column), which gives off dorsal processes (the neural arches) to surround a cavity for the reception of the spinal cord and brain; and ventral processes (the ribs) which bound a cavity for the reception of the vegetative organs; never with more than two pairs of limbs.

CHAPIER V.

MEANING OF THE SYSTEM.
Very different opinions have been held in different places and at different times as to the value of the system. In the last century the French Zoologist Buffon held the system to be a pure invention of the human mind; while more recently L. Agassiz thought that a real meaning could be attributed to all the divisions of the system. He explained the natural system founded on relationship of organization as a translation of the thoughts of the Creator into human language, by the investigation of which we become unconsciously interpreters of his ideas.

But it is clear that we cannot call that arrangement, which is derived from the relations of organization founded in nature, an invention of man. Similarly it is preposterous to deny the subjective participation of our intellectual activity, since in every system there is expressed a relation of the facts of nature to our comprehen-
sion and to the state of scientific knowledge. In this sense Goethe appropriately calls a natural system a contradictory expression.

In establishing systems, that which comes into contemplation consists of the individual forms which wre the objects of observation. Every systematic conception, from that of the spesies to that of the type, depends upon the bringing together of similiar properties, and is an abstraction of the human mind.

Species.-The great majority of investigators, till very recently, were agreed in looking upon the species as an independently created unit with special proper'ties which were retained in propagation, and were really contented with the fundamental idea in Linnæus' definition of species: Tot numeramus species quot ab initio crearit infinitum ens." This view also accorded with a dogma prevalent in Geology, according to which the flora and fauna of the successive periods of the earth's history were completely isolated, being created afresh at the beginning and destroyed by a vast catastrophe at the end of each period. It was supposed that no living thing could be preserved through one of these catastrophes from one period into the next; that every species of animal and plant was specially created with definite characters, which it retained unchanged until it was destroyed. This idea was confirmed by the difference between the fossil remains of Vertebrates (Cuvier) and Molluscs (Lamarck), and the living forms of these types.

As a matter of fact, however, neither in the animal nor in the vegetable kingdom do offspring resemble exactly the parent forms from which they have originated, but present differences more or less considerable, so that the idea of absolute identity must be removed from our definition of species, and agreement in the most essential particulars introduced in its place. The species would accordingly, in close agreement with Cuvier's definition, include all living forms which have the most essential properties in common, are descended from one another, and produce fruitful descendants.

All the facts of natural life, however, can by no means be arranged agreeably to this conception, which has for a fundamental principle that all essential peculiarities must be preserved unaltered by reproduction through all time. The great difficulties in defining species which occur in practice, and which prevent a sharp line being drawn between species and variety, indicate the insufficiency of the conception.

Varieties.-Individuals belonging to the same species do not resemble each other in all particulars, but present differences which,
on closer investigation, suffice to distinguish the individual forms. Combinations of modified characters are often present in the same species, and occasion important variations (varieties) which can be inherited by the descendants. The more important of such variations which are maintained by reproduction are called constant varieties or subspecies, or races, and are divided into natural races and artificial or domesticated races.
The former are found in free natural life, and are ustally confined to definite localities. They have arisen in course of time in consequence of conditions of climate, and under the influence of variations in manner of life and nourishment. The domesticated races, on the other hand, owe their origin to the care and cultivation of man. They comprise only domestic animals whose origin is still unknown.

Varieties, however, which have arisen from one species may differ very surprisingly from one another; in fact, they may present more important features of difference than do distinct natural species. An example of this is found in the domesticated race of pigeons, whose common descent from Columba livia (the rock pigeon) was shown by Darwin to be very probable. They are capable of such striking alterations, that their varieties, known as tumbler pigeons, fantail pigeons, etc., were held by ornithologists, who were without knowledge of their origin, to be real species, and were even divided into different genera.

In the natural state, too, it often happens that varieties cannot be distinguished from species by the quality of their characteristics. It is customary to consider that the essential of a character is to be found in the constancy of its occurrence, and to recognise varieties by the fact that their characteristics are more variable than those of species. If forms which are widely different can be connected by a continuous series of intermediate forms, they are held to be varieties of the same species. But if such intermediate forms are absent, they are held to be distinct species, even when the differences between them (solong as they are constant) are less.

Under such circumstances we can understand that in the absence of a positive test, the individual judgment and the natural tact of the observer decides between species and variety; * and how it is that the opinions of different observers have differed so widely in

[^18]practiee. This relation has been exeellently and thoroughly diseussed by Din'win and Hooker. As an example of the differenee of opinion on this subject, Niigeli * divided the Mieracie found in Germany into three hundred species, Fries into one hundred and six, Koeh into fifty-two, while other authors recognise hardly more than twenty. Niigeli indeed says, "'There is no genus of more than four speeies on which all botanists are agreed, and many examples may be eited in whieh, sinee Linnæus' time, the same species have been repeatedly divided up and re-united."

We are therefore driven, in order to determine the essential property distinguishing species and variety, to consider the most important eharaeteristie for the eonception of speeies,-a characteristic which has hardly ever been used in praetiee, i.e., the eommunity of deseent and the eapacity for fruitful interbreeding. This means of determination, however, is also insufficient.

It is a commonly known faet that animals which belong to different speeies pair with one another and produee hybrids, e.g., horse and ass, wolf and dog, fox and dog. Widely differing species, whieh are placed in different genera, have even been known to cross with one another, and to produee progeny, such as the he-goat and sheep, and the she-goat and ibex. The hybrids however are, as a rule, sterile. They are intermediate forms with imperfect generative system, without the power of propagation; and even in those eases where there is a power of reproduetion (sueh cases are most frequently met with amongst female hybrids), there is a tendency, to revert to the paternal or maternal speeies.

There are, however, exeeptions to the sterility of the hybrid whieh appear to afford weighty proof against immutability of species. The experiments in breeding between the hare and rabbit, made on a large scale in Angoulême by Roux, have shown that their progeny, the hare-rabbit, is perfectly fertile. Half-bred hybrids of the rabbit and hare have been bred, and have been reproductive through many generations of pure in-breeding. In like manner careful inquiries into the hybridism of plants, espeeially the investigations of W. Herbert, lead to the conclusion that many hybrids are as perfeetly productive among themselves as genuine species.

In a state of nature, too, hybrids of various kinds are found. Such hybrids have frequently been taken for independent speeies, and have been deseribed as such (T'etrao medius, hybrid of Tetrao

[^19]urogallus and T'etrcuo tetrix; Abramidopsis Leuckarti, Bliccopsus abromorutilus, and other's are, according to von Siebold, hybrids.) Sterility of hybrids is not the rule here, for a great number of wild plants have been recognised as hybrid species (Kölreuter, Gärtner, Nägeli-Cirsium, Cytisus, Rubus). This seems to render it the less doubtful that amongst animals which have been domesticated by man, persistent transitional forms can be obtained from originally different species, by gradual alteration brought about by cross breeding.

Pallas, adopting this view, gave it as his opinion that closely allied species, though at first they may refuse to breed together, or may produce sterile offspring, will, after long domestication, produce fertile progeny. And in fact, it has been shown to be probable that some of our domestic animals have originated in prehistoric times as the result of the unintentional crossing of different species. Rütimeyer especially endeavoured to prove this mode of origin for the domestic ox (Bos taurus), which he regarded as a new race resulting from the crossing of at least two ancestral forms (Bos primigenius, bruchyceros). It may be looked upon as certain that the domestic pig and cat, and the numerous breeds of dogs, have originated from several wild species.

In connection with the exceptional cases which have just been discussed, we may lay great stress upon the perfect reproductive capabilities of mongrels, that is, of the progeny produced by the crossing of different varieties of the same species; though here also we meet with exceptions. Disregarding those cases in which mechanical causes render the interbreeding of different varieties impossible, it seems, according to the observations of breeders whose word may be depended upon, that certain varieties have difficulty in crossing with one another ; and further that certain forms which have been bred by selection from a common stock are altogether incapable of fertile intercourse. The domestic cat introduced into Paraguay from Europe has, according to Rengger, become essentially altered in process of time, and has acquired a marked aversion to the European ancestral form. The European guinea pig does not breed with the Brazilian form, from which it is probably descended. The Porto-Santo rabbit, which was exported from Europe to PortcSanto near Madcira in the fifteenth century, is so much altered that it can no longer breed with the European race of rabbits.

The evident difficulty of precisely defining the conception of species, in presence of the existence of a gradual, almost uninterrupted series
of animal forms, and of the results of artificial selection, had already, in the beginning of this century, induced illustrious and highly esteemed naturilists to dispute the dominant views on the immutability of species. In the year 1809, Lamark, in lis "Plilosopliee Zoologique," broached the theory of the descent of species from one another. He referred the gridual alterations in some degree to changing conditions of life, but mainly to use and disuse of organs.

Geofliey St. Hilaire, too, the advocate of the idea of unity of organization of all animals and the opponent of Cuvier, expressed his conviction that species had not existed unaltered from the beginning. While agreeing essentially with Lamark's theory of the origin and transmutation of species, he ascribed a less influence to the inherent activity of the organism, and believed that he could explain the alterations through the direct operation of changes in the environment (monde ambiant).

The change in the fundamental views of Geology which took place at a later period must be ascribed to the opinions of these investigators. Lyell endeavoured (Principles of Geology) to explain geological alterations by means of the forces in operation at the present day, working gradually and without interruption through extended periods of time, and rejected the Cuvierian theory of mighty revolutions and catastrophes which destroyed all life. When the geologists with Lyell had given up the hypothesis of periodic disturbance of the course of natural events, they were obliged to assume the continuity of organic life during the successive periods of the formation of the earth, and to endeavour to account for the immense alterations of the organic world by slight influences operating gradually and without interruption throughout long periods of time. The variability of species, the origin of new species from previous ancestral forms in the course of ages, has become, accordingly, since the time of Lyell, a necessary postulate of geology in order to explain naturally the differences of animals and plants in successive periods without the supposition of repeated acts of creation.

TEE TRANSMUTATION THEORY, OR THEORY OF DESCENT, BASED ON THE PRINCIPLE OF NATURAL SELECTION (DARWINISM).

Nevertheless a more securely grounded theory based upon a firmer standpoint was needed in order to give more force to the Transmutation hypothesis which had remained disregarded; and this
service was effected by the English naturalist, Charles Darwin, who employed a mass of scientific material to found a theory of the origin and mutation of species. This theory, which is closely connected with the views of Lamark and Geoffioy and in harmony with Lyell's doctrines, has received an almost universal recognition, not only on account of the simplicity of its principle, but also because of the objective and convincing way in which his genius expounded it.

Darwin* starts from the principle of heredity, ascording to which the characteristics of parents are transmitted to their offspring. But side by side with this, there is an adaptation determined by the peculiar conditions of nourishment, a limited variability of form, without which individuals of like descent would be identical. While heredity tends to reproduce identical characteristics, individual variations appear in the descendants of the same species, and in this way modifications arise, which in their turn are submitted to the law of heredity. Cultivated plants and domestic animals, the individual forms of which vary far more than do those living in a state of nature, are especially disposed to alteration ; and capability of domestication is in reality nothing else than the capability of an organism to subordinate and adapt itself to altered conditions of nourishment and way of life.

The so-called artificial breeding, by which man succeeds by judicious choice in cultivating in plants and animals definite properties corresponding to his requirements, depends on the interaction of heredity and individual variation ; and it is probable that the numerous races. of domestic animals were in this way bred unconsciously by man, just as in our own days large numbers of new varieties are bred by judicious choice of the male and female parents. Similar processes are also at work in natural life, calling into existence new alterations. and varieties. Here also we find a selection which is occasioned by the str'uggle of organisms for existence, and may be called a natural selection. All plants and animals are engaged, as Decandolle and Lyell had asserted ten years previously, in a mutual struggle for existence among themselves and with external conditions.

A plant has to fight against circumstances of climate, season, and soil ; and has also to compete for existence with other plants which, by their superabundant increase, endanger the possibility of its. preservation. Plants serve as food for animals, which themselves are engaged in a mutual struggle with each other; the carnivorous

[^20]feeding very largely upon herbivorons imimals. Then again, all are struggling to multiply in great numbers. Each organism produces fir more descendiants than can in general be preserved. With is definite degree of fertility, is corresponding amount of destruction must take place; for in the absence of the latter the number of individuals would so increase in geometrical progression that no locality would suffice for the sustenance of their progeny. If, on the contrary, the protection afforded by fertility, size, special organizition, colour, ete., wele removed, the species would soon vanish from the earth. A mongst the complex conditions and interactions of life, even the most remotely connected organisms struggle with each other for existence (e.y., the clover and the mice); but the most violent strife is waged between individuals of the same species, which seek the same food and are exposed to the same dangers. In this strife it necessarily happens that those individuals which are placed in the most favourable situation, through their special properties, have the greatest chance of maintaining themselves and of multiplying, and, in consequence, of reproducing the modifications useful to the species and of preserving them in their descendants, or even sometimes of increasing them.

Just as in the breeding of domesticated animals, an artificial selection is made by man to perpetuate and increase advantageous variations; so in the natural breeding of wild animals, in consequence of the struggle for existence, a selection is made by nature which leads to the preservation of modifications useful to the species.

Since, however, the struggle for existence in closely related forms must be the more violent the more nearly they resemble one another, the most divergent types will have the greatest chance of enduring and of producing descendants. Hence a divergence of characters and an extinction of intermediate forms is the necessary consequence. Thus by the combination of useful properties and by the accumulation of hereditary peculiarities, which were primitively of little importance, varieties gradually arise which ever diverge more and more ; and this is what Darwin sought to prove by happily chosen examples. We can now comprehend why everything in the organism is directed towards one end, which is to ensure existence in the most perfect way. The great series of phenomena which could hitherto only receive a teleological explunation are thus brought into causal relation, and can be explained as the inevitable result of efficient couses, and their natural connection is thus rendered intelligible.

This principle of natural selection, which is the basis of the Darwinian theory, rests, on the one hand, on the interaction of adaptation and heredity, and on the other, on the struggle for existence which can be shown to occur everywhere in nature.

In its fundamental idea the natural selection theory is essentially an application of the doctrine of Malthus to plants and animals. Developed simultaneously by Darwin and Wallace,* it received from the former a most comprehensive scientific foundation.

We must certainly admit that Darwin's selection theory, although supported by what we know of biological processes and of the operation of the laws of nature, is very far from discovering the final causes and physical connection of the phenomena of adaptation and heredity, since it is unable to explain why such or such a variation should appear as the necessary consequence of a change in the vital conditions, and how it is that the manifold and wonderful phenomena of heredity are a function of organised matter.

It is clearly a great exaggeration when enthusiastic supporters of the Darwinian theory \dagger say that it ranks as equal to the gravitation theory of Newton, because "it is founded upon a single law, a single effective cause, namely, upon the interaction of adaptation and heredity." They overlook the fact that we have here only to do with the proof of a mechanical and causal connection between series of biological phenomena, and not in the remotest degree with a physical explanation. Even if we are justified in connecting the phenomena of adaptation with the processes of nourishment, and in conceiving heredity as a physiological function of the organism, we still stand and regard these phenomena as "the savage who sees a ship for the first time." While the complicated phenomena of heredity \ddagger remain completely unintelligible, we are only in a position to explain in general terms certain modifications of organs, on physical grounds, by the altered conditions of metabolism. It is only rarely-as in the case of the operation of use and disuse-that we are able more directly to relate the development or the atrophy of organs to the increase or decrease in their nutritive activity, i.e., to give a chemico-physical explanation.

Darwin has been unjustly reproached with having left chance to

[^21]play a considerable part in his attempt to account for the origin of viricties, with having accounted for everything by the struggle for existence, and with having given too little prominence to the direct influence of plysical action on the mutation of forms. This reproach seems to wise from a misapprehension. Darwin says limself that the expression "chance," which he often uses to explain the presence of any small alteration, is a totally incorrect expression, and is only used to express our complete ignorance of the physical reasons for such particular variation.

If Darwin has by a series of considerations arrived at the conclusion that the conditions of life, such as climate, nourishment, etc., exercise but a small direct influence upon variability, since, for instance, the same varieties have arisen under the most different conditions, and different varieties under the same conditions, and that the complex adaptation of organism to organism cannot be produced by such influences, still he recognises in the alteration of the vital conditions and the mode of nourishment the primary cause of slight modifications of structure. But it is only nutural selection which accumulates those alterations, so that they become appreciable to $u s$ and constitute a variation which is evident to our senses. It is exactly upon the intimate connection of direct physical action with the consequences of natural selection that the strength of the Darwinian theory rests.

The origin of varieties and races would appear, however, to constitute only the first stage in the processes of the continual changes of organisms. However slowly the process of selection may work, yet there is no limit to the extent and magnitude of the changes, or to the endless combinations of reciprocal adaptations of living beings if we allow a very long period of time for its operation. With the aid of this new factor of duration of time, which, according to geological facts, cannot be rejected, but stands to an unlimited extent at our service, the gap between variety and species disappears. Since the former are continually diverging with the lapse of time-and the more they do so and become differentiated in their organization so much the better will they be fitted to fill different places in the economy of nature and to increase in number-they at length attain the value of species, which in a state of nature do not interbreed, or, at any rate, only exceptionally produce progeny. Thus, according to Darwin, a variety is a species in process of formation. Variety and species are connected by continuons series of transitions, and are not absolutely distinct from one another; but are only relatively separated
by the amount of difference in their morphological and physiological characteristics.
This conclusion of Darwin's, which extends the result of natural selection from the production of variety to that of species, is obstinately and often bitterly opposed by those who subordinate the phenomena of nature to traditional ideas.

Even if they do not deny the facts of variability, and even admit the influence of natural selection on the formation of natural varieties, they yet continue true to the belief that there is an absolute separation between species and race-variety. As a matter of fact, however, we are not in a position to draw such a line of separation. Neither the quality of the distinctive characteristics nor the results of crossing afford us a distinctive criterion between species and variety. The fact, however, that we are not able to give any satisfactory definition of the conception of species, precisely becurse we are unable clearly to distinguish between species and variety, adds so much the more weight to Darwin's argument, since neither the variability of the organism and the struggle for existence nor the great antiquity of life upon the globe can be contested.

The variability of forms is a firmly established fact; so, too, is the struggle for existence. Now if we add the operations of natural selection to these two factors, we are able to understand the origin of varieties. If we imagine the same process which has led to the formation of varieties continued through a greater number of generations and effective through a longer period of time-and we are the more justified in making use of these long periods of time, since with their help astronomy and geology have been enabled to explain many phenomena-the diverging characteristics will become more and more marked, and will at last gain the value of distinctive speciescharacters.
In still greater periods of time the species will become so far separated from one another by the simultaneous disappearance of the intermediate forms that they will represent different genera. Accordingly the greater differences of organization which are expressed in the higher divisions of the system, such as orders and sub-orders, etc., require a longer interval of time for their accomplishment, and an extinction of a greater number of intermediate forms. Finally, the different ancestral forms of the classes of a group may be referred to a common starting-point ; and since the different groups of animals are connected by many intermediate forms, the number of the ancestral forms becomes much reduced.

The undifierentiated contractile substance, sarcode or protoplasin, was probably the starting-point of all organic life.

If these suppositions are correct, species no longer retain the signification of independent and immutable units, and appear, according to the great law of evolution, only as transient groups of forms, capable of change, and confined to longer or shorter periods of time, to definite conditions of life, aud preserving, as long as these conditions do not vary, a constancy in their essential characters. The different categries of the system show the closer or more remote degree of relationship; and the system is the expression of genealogical relationship founded upon descent. All systems, however, must be imperfect and full of gaps, since the extinct ancestors of organisms living at the present time can only be very imperfectly supplied by the geological record; numerous intermediate forms are wanting and finally no traces of organic remains from the most ancient periods are preserved.

Only the ultimate twigs of the enormously ramified ancestral tree are accessible to us in sufficient number. Only the extreme points of the twigs are completely preserved; while of the numerous ramifications of the branches only the existence of a stump here and there has been demonstrated. Hence it appears quite impossible, in the present state of our knowledge, to attain to a sufficiently sure representation of this natural genealogical tree of organisms ; and while we admire the bold speculations of E. Haeckel's genealogical attempts, it must be admitted that at present there is room for innumerable possibilities in detail, and that subjective judgment holds a more conspicuous place than objective certainty of fact. Hence we must be contented for the present with an incomplete and more or less artificial arrangement; although the conception of the natural system theoretically is established.

When the fundamental arguments of the Darwinian theory of selection and the transmutation theory founded upon it are submitted to criticism, it is soon apparent that direct proof by investigation is now, and perhaps always will be, impossible; for the theory is founded upon postulates which cannot be submitted to direct inquiry. Periods of time which cannot be brought within the limits of human observation are required for the alteration of forms under natural conditions of life ; and the extremely complicated interactions, which in the natural state under the form of natural selection are tending to change plants and animals, can only be grasped in a general sense, while in their details they are practically unknown to us.

Further, plants and animals which are under the influence of
natural selection are entirely inaccessible to the experiments of man, and the relatively few forms which man las, in a greater or less space of time, brought completely within his power, have been and are being altered and morified by the so-called artificial selection. The action of the natural selection, in Darwin's sense, is therefore in general incapable of direct proof, and even for the origin of varieties can only be illustrated and rendered probable by hypothetical examples. Against this we must, however, set the fact that there is a great probability in favour of the correctness of the theories of descent and transmutation of species, which have never received better support than from the natural selection theory of Darwin; and that this probability is supported, not only by the whole weight of morphological evidence, but also by the testimony of Palreontology and of geographical distribution.

EVIDENCE IN FAVOUR OF THE THEORY OF DESCENT.

If the transmutation of species is to be regarded as an hypothesis, because it is incapable of being demonstrated by direct observation, then its value depends upon its correspondence with the facts and phenomena of nature.

Evidence from Morphology.-The whole of Morphology tends to show the correctness of the theory of transmutation of species. The degrees of resemblance between species which was for a long time expressed by the metaphorical term " relationship," and which rested upon an agreement in more or less important characteristics, led to the establishment of systematic groups, of which the highest, the kingdom or type, was founded upon a similarity in the most general features of organization and development. The agreement of numerous animals in the general plan of their organization, e.g., the common possession by fishes, reptiles, birds, and mammals of a rigid column forming the axis of the body, and the dorsal position in regard to this of the central nervous system and the ventral position of the organs of nourishment and reproduction, are very well explained, according to the theories of selection and descent, by the derivation of all Vertebrates from a common ancestor possessing the characteristics of the type, while the supposition of a plan of the Creator renounces all explanation. In like manner is explained that similarity of characteristics by which the remaining groups and sub-groups, from class to genus, are distinguished, as well as the possibility of dividing all organized beings into groups subordinated the one to the other.

The impossibility of a shaply defined classification is also rendered comprehensible by the theory of descent. The theory requires the existence of forms transitional between intimately and remotely allied groups ; and explains, as a result of the disappearance, in comse of time, of numerous types which have been worsted in the struggle for existence, the fact that groups of equal value are of such various extent, and are often only represented by single forms.

It is not only systematic characters, but also the innumerable facts brouglit to light by the science of Comparative Anatomy which point to a nearer or more remote relationship between the different groups. For example, if we examine the structure of the extremities or the brain of Vertebrates, we find, in spite of considerable differences (sometimes bridged over by intermediate forms) in the various groups, that in all they are built upon a comnon type of structure. This type is found very variously modified and more or less differentiated in each secondary group, according to the different functions which the organ has to fulfil and according to the exigencies of the mode of life to which each species is subjected. In the fin of the whale, in the wing of the bird, in the anterior limb of the quadruped, and in the human arm it can be shown that there are present the same bones, here short and broad and immoveably connected, there elongated and jointed in different ways to allow of corresponding movements, sometimes with every part fully developed, sometimes simplified in one way or another, and partly or entirely rudimentary.

Evidence from the facts of Dimorphism and Polymorphism.The phenomena of dimorphism and polymorphism in the same species, and the sexual differences which have been developed in animals originally hermaphrodite, may be quoted as important evidence of the extensive influence of adaptation.

Male and female forms differ not only in the fact that the former produce spermatozoa and the latter ova, but they exhibit numerous secondary sextal characteristics connected with the different functions which the male and female respectively have to perform. The existence of these secondary characteristics can in all cases be satisfactorily explained by means of natural selection. We may therefore, in a certain sense, speak of a sexual selection * by means of which the two sexes have been, in course of time, gradually separated from one another, not only in peculiarities of form and organiza-

[^22]tion, but also in habits of life, in such a way as to favour the preservation of the race. Since the male sex generally has to take a more active part in the acts of copulation and fertilization it is comprehensible that the male form should differ more from the young than the female which supplies material for the formation and nourishment of the embryo and is charged with the care of the progeny. Very frequently the male sex is capable of quicker and more facile movements; in many Insects the male alone has the power of flight, while the female remains without wings (fig. 97). In the strife which the males of similar species have to wage for the possession of the females, those individuals which are most favoured by their organization (in respect of strength, capability for motion, prehensile organs, beauty, organs for production of sound, etc.) will prove the conquerors; while those females which possess properties especially favourable to the prosperity of the offspring will best fulfil their task.

At the same time variations in the duration of development, in the mode of growth and structure, may in a more passive way be favourable under the special conditions of life of the species. The secondary sexucul characters may sometimes acquire such importance as to lead to essential and deeply engrained modification of the organism, and to a true sexual dimorphism (males of Rotiferce with no digestive tube, dwarfed males of Bonellia, Trichosomum crassicauda).

It is a significant fact that dimorphism of sex reaches its highest extreme in parasites. In many parasitic Crustacea (Siphonostoma) such extreme cases, in which the large shapeless females have lost the organs of sense and locomotion, and even segmentation, while the males are small and dwarfed, are connected by numerous intermediate forms; and the circumstances which have operated as the cause of this sexual dimorphism are not far to seek. The influence of favourable conditions of nourishment which parasites enjoy does away with the necessity of rapid and frequent locomotion, increases in the female the capacity of producing reproductive material, and brings about such an alteration of form that the power of locomotion is diminished and the organs of movement atrophy and may completely vanish. The body acquires an unwieldy, shapeless character in consequence of the enormous size of the ovary which is filled with eggs, and throws out outgrowths and processes into which the ovaries project, or else acquires an unsymmetrical saclike form. The segmentation is lost and the limbs degenerate; the slender moveable abdomen which, when the animal was free-swimming, was an essen-
tial aid to locomotion, is reducerl more and more till it beeomes a short, unsegmented stump. The appearance of such a patasite is so strange that one can easily comprehend how it was that formenly one of these abormal groups, the Lermere, was placed among the endopanasitic Worms, or even mmong the Mollusca.

The more the fernale remains behind the type of its fully-developed, free-living allies, so much the more do the two sexes become morphologically remote from one another, for the form and organization of the male also are affecterl by the changed conditions of life, but in a different manner.* In the male sex the more farvourable and abundant nourishment may not affect the necessity of locomotion and the development of the locomotive organs in so direct a manmer, since the sexual activity of the male and the necessity for locomotion in order to select a female remain unaltered. Even when locomotion is reduced and rendered difficult, parasitism does not, in the case of the male, lead either to a complete loss of segmentation or to sucli unsymmetrical growths as we observe in many female parasitic Crustacea. The large quantity of generative material produced, which in the female is of the greatest importance for the preservation of the species, and which therefore favours the development of a large, shapeless, unwieldy body, is the less conspicuous in the male because a very small quantity of sperm serves for the fertilization of an enormous number of ova.

Thus, then, the extreme degree of parasitism in the male, even when accompanied by a confined and more creeping mode of locomotion, does not lead to an excessive increase in size nor produce an unsegmented and strange form of body, but, on the contrary, gives rise to the symmetrically formed, dwarfed pigmean males. This extreme state is, however, connected with the normal state by numerous intermediate steps. Thus we find in the Lernreopods that the size of the male Actheres is only slightly reduced, while the true dwarfed males of the Lemeoopoda and Chondracanthidee are attached, like small parasites (fig. 98), to the posterior end of the female body, which is relatively enormously large. The preparation of a large amount of sperm which implies the possession of a large body, would only be a useless expenditure of material and time in the life of the species, and this must have been aroided by the influence of natural selection.

In addition to this sexual dimorphism we find in various groups of animals-especially in the insects which live together in great

* Compare C. Claus, "D Die freilebenden Copepoden." 1363.
societies, the so-called animal communities-a third group of individuals (sometimes even divided into several series of forms) which are without generative organs and are incapable of reproduction, but which assmme the functions of protecting, of providing nourishment for the community, and of caring for the young. Adaptive peculiarities suitable for the discharge of these functions are apparent in their structure and organization. These sterile individuals are in the Hymenopterca aborted females. Among the ants they are divided into workers and soldiers. Amongst the Termites they are derived from both males and females, in which the generative organs are reduced. Sterile individuals are also found amongst animals (Fishes) which do not form communities, and were formerly taken for particular species and described as such. Polymorphism is most highly developed in the Hydroids which are united in stocksthe Siphonophora.

The numerous cases of dimorphism and polymorphism in either sex of the same species, should be regarded from the same point of view. Dimorphic females among insects have been observed, e.g., in the Malayan Papilionitce (P. Memnon, Pamnon, Ormenus), in certain species of Hydroporus and Dytiscus, as also in the Neurotemis, a genus of the Neuroptera. In these cases, as a rule, one of the female forms is more nearly related in form and colour to the male orm whose peculiarities it has assumed. In other cases the differences are more connected with climate and season (seasonal dimorphism of butterflies), and also affect the male animal. They may be connected with the different forms of reproduction (parthenogenesis), and lead to the phenomenon of heterogamy (Chermes Phylloxera, Aphis). Much more rarely we find two kinds of males with dissimilar secondary sexual characters connected with copulation, as in the case of the "smellers" and "claspers"* described by Fritz Müller in the Isopoda (Tanais dubius).

Evidence from Mimicry.-Another series of phenomena which may probably be referred to useful adaptation is the so-called mimicry. Certain animal forms come to resemble other widelydistributed species, which are protected by any peculiarity of form and colour, so closely that they seem to have copied them. The cases of mimicry which have been principally made known by Bates and Wallace are directly connected with the protective resemblances mentioned above; that is, the resemblance of many animals in colour and body shape to the objects amongst which they

[^23]live. For example, imongst the lonterdies certain Leptalidur resemble in outward appearance and in morle of thight a species of the family Jelicomius (fig. 116), which appears to be protected from the pursuit of birds and lizards by a yellow disatgreable-smelling fluid, and share tho same locality with the above-mentioned species. The most perfect instances of mimicry are found in the Tropics of the Old World, where the Danaide and Acraide are imitated by the Papilionidie (Danais niavius, Papilio hippocoon-Danais echeria, Papilio cenea-Acroa gea, Panopaca hioce). Cases of minicry fiequently occur between insects of different ordcrs; butterflics imitate the form of Hymenoptera, which are protected by the possession of spines (Sesic bombyliformis-Bombus hortorum, ctc.) In the same way certain bcctles rescmble bces

Fig. 116.- te, Leptalis Theonoë, var. Leuconoi (Pieris). b, Ithomia Ilerdina (the mimicked Heliconius). (After Bates.) and wasps (Charis melipona, Odontocera odyneroides), and the Orthopteran genus C'ondylodera tricondyloides from the Philippines is like a genus of Cicindelce (Tricondyla). Numerous Diptera have the form and colour of stinging Spleegidce and Wasps. Also among Vertebrates (Serpents and Birds) some examples of mimicry are known.

Evidence from Rudimentary Organs. - Rudimentary organs, too, which are so common, are satisfactorily explained by the theory of selection as the result of nonemployment of such organs. Organs which were formerly functional have gradually or even suddenly become functionless as a result of adaptation to special conditions of life, and, through want of exercise, have, after the lapse of generations, become weaker and finally aborted or degraded (Parasites). We cannot, however, assert that rudimentary organs are in all cases useless. They have, on the contrary, often gained secondary functions, though this may be difficult to demonstrate.

We find, for instance, in certain snakes (Pythonide) that there are small processes armed with claws at the sides of the anus (anal
claws). These are the hind limbs which have become rudimentary, and which do not subserve locomotion but, in the male at least, assist in copulation. The blind worms possess a rudimentary shoulder girdle and breast bone, although the anterior extremities are wanting: these bones may be connected with the need of protecting the heart, or may aid in respiration. When we see that the upper incisor teeth are developed in the foetus of many ruminants, and that these teeth are never cut, and that the embryos of the whalebone whales have the rudiments of teeth in their jaws, which they soon lose and never make use of in mastication, it is much more rational to ascribe to these structures a part in the growth of the jaw than to hold them for wholly useless. The rudimentary wings of the penguin are employed as oars, those of the ostrich as aids to running and as weapons for protection. The rudimentary stumps of the kiwi, on the contrary, appear valueless. In many cases we are not in a position to assign any function or value to rudimentary organs.

Evidence from Embryology.-The results of embryology too, i.e., the individucal development from the ovum to the fully developed form, are in complete agreement with the Darwinian theories of selection and descent. The fact that the animals belonging to one type have, as a rule, embryos which are much alike and undergo a similar developmental process, and that the closer the relationship between the adult forms the greater the similarity in their development (with some remarkable exceptions), supports the conception of a common ancestry and the hypothesis of differing gradations of bloodrelationship.

If the groups of different value which correspond to the divisions and subdivisions of our classification are genetically derived from more or less remote ancestral forms, then the individual development will present so many the more common features the closer the forms stand to their common ancestor.

The fact that animals which differ much from one another and exist under very different conditions of life show an unusual agreement in their post-embryonic development up to a more or less late period (the free Copepoda, parasitic Crustacea, Cirripedia), is in no wise opposed to the theory, but may be explained by the influence which adaptation has exerted not only during the period of sexual life, but also during each developmental period, causing changes which have been inherited in corresponding periods of life.

The phenomena of metamorphosis afford numerous proofs of the fact that the adaptation of the embryonic form is as complete as
that of the adult ; and we cun thas understand how larvie of many insects belonging to difierent orders can present great resemblances to one another and be unlike the larve of insects of the sune order. While is a general rule the development of the individual is an advance from a simpler and lower organization to one more complex which has become more perfect by it continued division of labour among its parts-and we shall later find a parallel to this law of perfection of the individual in the great law of progressive perfection in the development of groups-yet the course of development may, in particular cases, lead to numerous retrogressions, so that we may find the adult animal to be of lower organization than the larva. This phenomenon, which is known as retrogressive metamorplosis (Cirripedia and parasitic Crustacea), corresponds to the demands of the selection theory, since under more simple conditions of life, where nourishment is more easily obtained (parasitism), degradation and even the loss of parts may be of advantage to the organism.

Again, the facts of embryonic development, when considered in relation to the gradations expressed in the system are in complete accord with the theory of evolution. Numerous examples may be cited to prove that features, not only of the simple and more primitive, but also of the more perfectly organised groups of the same type, are reflected in the successive phases of fœotal life. In the case of a complicated free development by metamorphosis, which is usually correlated with an unusual simplification of the fœtal development within the egg-membranes, the relation of the successive larval stages to the allied smaller groups of the system, to the genera, families and orders, is more direct and striking. For example, in the early stages of the embryonic development of mammals certain structures occur, which in the lower fishes endure throughout life. Later stages show peculiarities which correspond to the characters of amphibia. The metamorphosis of the frog begins with a stage which in form and organization and mode of locomotion agrees with the fish type; and this stage is succeeded by numerous other larval stages in which the characters of the other orders of Amphibia (Perennibranchiata, Salamandrinidx) and of individual families and genera of the same are r'epeater.

This undeniable likeness between the successive stages of individual development and between allied groups of the system allows us to institute a parallel between the former and the evolution of the species. The evolution of the species finds, it is true, a most imperfect expression in the relationship of the systematic gromps, and can
only be inferred from the history of the past for which palzontology affords us but slight material.

This parallel, which naturally presents numerous greater or smaller variations in detail, is explained by the theory of evolution, according to which the developmental history of the individual appear's to be a short and simplified repetition, or in a certain sense a recapitulation, of the course of development of the species.*

The historical record preserved in the developmental history of the individual must often be more or less blurred and obscure on account of the many adaptations which have occurred during the embryonic development, or during larval life. Especially in those cases where the peculiar conditions of the struggle for existence demand a simplification, the development will take a more direct course from the ovum to the perfect animal, will be thrown back into an earlier period of life, and finally will be completed before the animal is hatched, until, in absence of a metamorphosis, the historical record is completely suppressed. On the contrary, in the cases of progressive transformation where the larval states are gradually modified and live under similar conditions of life, the history of the species will be less imperfectly reproduced in that of the individual.

Evidence from the Facts of Geographical Distribution.--Unlike the facts of morphology, those of geographical distribution laise great difficulties for the theory principally because the phenomena are very complicated and our experiences are still too limited to permit of our establishing general laws. The present distribution of plants and animals over the surface of the earth is clearly the combined result of the earlier distribution of their ancestors and of the geological changes which have since taken place, the modifications in the extent and position of land and water, which must have had an influence on the fauna and flora.

Accordingly the geographical distribution of plants and animals \dagger appears intimately connected with that part of geology which has for its aim the investigation of the most recent occurrences in the formation of the earth's crust and its contents. It cannot, therefore, be confined to an examination of the areas of distribution of the animals and plants of the present day, but must take cognizance of the distribution of the remains, enclosed in the most recent formations, of the nearest relations and ancestors of living forms, in

[^24]order to find an historical explamation of the known facts of distribution. Although in this sense the science of animal geography is still in its inlimey, yet numerous and important phenomena of geographical distribution reccive a satisfactory explanation according to the theory of transmutation of species on the supposition of migrations and giadual chinges brought about by natural selection.

It is a most important fact that neither the resemblance nor the want of resenblance of the animals inhabiting different locialitios cim be completcly explained as the result of climatic and physical conditions. Closely allicd species of plants and animals often appear under very different natural conditions, while a completely different fauna and flora can exist in a similar climate and on a similar soil. On the other hand, the extent of the difference between two faunt is closely connected with the limitations of spacc and the barriers and hindrances to free migration. The Old and New Worlds, which, leaving out of consideration the polar connection, are completely separated, have in part a very different fauna and flora, although with regard to the climatic and physical conditions of existence there are innumerable parallels which would equally favour the prosperityof the same species.

In particular if we compare the districts of South America with regions situated in the same latitude and possessing the same climate in South Africa and Australia, we find three fauna and flora which differ considerably, while the natural productions from different latitudes of South America with entirely different climates are closely allied. Here the northern animals are indeed specifically different from the southern, but belong to similar or nearly allied genera with the peculiar stamp characteristic of South America.

Zoological Provinces.-The surface of the earth can be divided into from six to eight regions according to the general features of the terrestrial and fresh-water fauna. These regions can indeed only be considered as a relative expression for large natural districts of distribution, since they camnot be applied to all groups of animals in the same manner, and it is impossible that they should differ in like degree and in the same direction. There must also be intermediate regions combining the characteristics of the neighbouring regions with peculiarities of their own ; and the question must arise whether these should not be taken as independent regions.

The merit of having finst established a natural division of the carth into zoological regions and sub-regions belongs to Sclater. This naturalist founded his system on the distribution of birds, and dis-
tinguished six regions, the limits of which agreed fairly well with the distribution of Mammalia and Reptilia. These regions are-
(1) The Pulucarctic Region-Europe, the temperate part of Asia, and North Africa as far as Mount Atlas.
(2) Necrotic Region-Greenland and North America as far as North Mexico.
(3) The Ethiopian Region-Africa, south of Atlas, Madagascar, and the Mascarenes with South Arabia.
(\pm) The Indian Region-India south of the Himalayas, to South China, Borneo and Java.
(5) The Australiun Region-Celebes and Lombok eastward to Australia, and the South Sea Islands.
(6) The Neotropical Region-South America, the Antilles, and South Mexico.

Other naturalists (Huxley) have since shown that the four first of these regions have a much greater resemblance to one another than any one of them has to the Australian or South American regions; that New Zealand is entitled by the peculiarities of its fauna to be considered as forming a region by itself; finally, that a circumpolar * province should be formed equal in value to the Palæarctic and Nearctic.

Wallace objects to the establishment either of a New Zealand or of a circumpoler region, and advocates the adoption of the six regions of Sclater on practical grounds, but suggests the modification that since the South American and Australian are much more isolated, the regions should not be of equal value.

These regions are bounded by extended seas, lofty mountain ranges, or vast simdy deserts, and obviously such boundaries do not constitute effective barriers to the migration of all animals, but allow certain groups to pass from one region to another.

The obstacles to immigration and emigration appear in certain places, at all events in the present time, to be insurmountable;

[^25]but in past ages, when the divisions of lind and water were different, they must have becu, for many forms of life, easily surmountable. 'The expression "centre of creation," which has long been used in the sense of a tolerably defined district of dis-tribution-or better still, Riitimeyer's word, "centre of distribution" -has as at fundamental idea the endemic appeatance of definite groups of typical species and their gradual extension * towards the boundaries of the said region, a conception which harmonizes well with the theory of the origin of species through gradual alterations.

The same laws apply also to the distribution of the inhabitants of the sea. Great seas studded with islands which serve to confine the land animals may favour the migration of marine species, while extended continents, which allow their inhabitants to wander freely over them, confine the sea animals within limits which cannot be passed. A great number of sea animals live only in the shallow water round the coast, and their distribution thus often coincides with that of the land animals; whereas the animals found on the opposite coasts of great continents are very different. For example, the sea animals of the east and west coasts of South and Central America differ to such a degree that, with the exception of a series of fishes, which, according to Guinther, are found on both sides of the Isthmus of Panama, only a few forms are common to the two coasts. In the same way we find that the marine inhabitants of the east insular district of the Pacific differ completely from those of the west coast of South America. If, however, we advance to the west of this part of the Pacific till we come to the coast of Africa in the other hemisphere, we find that the fanna of this extensive district cannot be so sharply distinguished. Many species of fish are found from the Pacific to the Indian Ocean. Numerous Mollusca of the South Sea Islands live also on the east coast of Africa, almost beneath the opposite meridian. In this case the limits of distribution are not impassable, as numerous islands and coasts afford a resting place to wandering inhabitants of the sea. In respect of the different haunts of the inhabitants of the sea, we must make a distinction between the littoral animals, which are distributed along the coasts, and live under different conditions and at different depths on the bottom of the sea, and the pelayic animals, which swim on the surface.

[^26]But there also exists, at considerable depths and on the bottom of the sea, a rich and varied animal life. This has only lately been brought to our knowledge principally by the deep-sea explorations from Nortlı America, Scandinavia, and England. In place of that want of animal life which we should on à priori grounds expect to find, we see that numerous lowly organised animals of the most different groups are able to exist even at the greatest depths. Besides the lowest sarcode animals of the Foraminifera (Globigerina ooze), we find especially silicious sponges, certain corals, Echinoderms, and Crustacec.* The representatives of the latterare in part of low type, but gigantic, and many of them blind. It is also a fact of more than ordinary interest, as showing the continuity of living creatures from successive geological formations up to the present time, that the deep sea animals are allied to ancient types which occur in Mesozoic formations, especially in chalk.

Evidence from Palæontology.-The results of geological and palceontological inquiry give us a third great series of facts in support of the theory of slow alterations of species and the gradual development of genera, families, orders, etc. The firm crust of our earth is formed of numerous and enormous rock strata, which have been deposited in a definite series by water in course of time, and also of the so-called volcanic or plutonic rocks, masses which have been forcibly ejected from the molten interior of the earth. The former or sedimentary deposits, which have undergone numerous alterations in the originally horizontal arrangement of their strata as well as in the petrographical condition of their rocks, contain a quantity of the fossilized remains of former plants and animals which have become buried in them, and thus afford an historical record of a rich fauna and flora which existed during the earlier periods of the earth's development. Although these so-called fossils have made us acquainted with a very considerable number of ancient organisms presenting great diversity of form, yet they only constitute a very small portion of the enormous quantity of living beings which have at all times existed upon the earth. They suffice, however, to teach us that a different fauna and flora existed at the time when each individual deposit was being formed, and that

[^27]the deeper a stratum comes in the series, that is, the earlier it appears in the history of the earth, so much the more its fatuna and flora difler from those of the present time. The more nearly one stratum follows :mother in the reries, the closer the relationship, between their respective fossils. Every sedimentary formation possesses characteristic fossils which appear very frequently ; and from these, taking into account the succession of strata and the petrographic characters of the rocks, the place occupicd by the stratum in the geological system can be definch with tolerable accuracy.

Without doubt the characters of the fossils and the relative positions of the strata are the most important aids to the determination of the geological age of the deposit; at any rate they furnish a more reliable criterion than does the structure of the rocks. The idea entertained in earlier times that rocks of the same period always possessed a similar, and rocks of a different period a dissimilar structure, has lately been given up as erroneous. Stratified or sedimentary deposits have arisen in every period under similar conditions. In past times, as at the present time, they were calused by the deposition of clay, of fine or coarse sand, of fine and coarse débris, by chemical precipitation of carbonates and sulphates of lime and magnesia, of silica and oxide of iron, and by accumulation of solid animal and vegetable remains. These have become transformed only in course of time into such hard rocks as argillaceous and calcareous schists, limestone, sandstone, dolomite, and conglomerates of many kinds; as the result of many causes, such as mechanical pressure of superincumbent masses, increase of temperature, internal chemical processes, and so forth.

Even though the peculiar structure of rocks may in many cases afford good ground for conjecture as to the relative age, yet it is certain that deposits of similar age may show an entirely different petrographical character ; and, on the other hand, that deposits of very different ages may have given rise to rock formations that can be scarcely or not at all distinguished from one another.

The old idea that deposits of the same age must everywhere contain the same fossils, could only be maintained as long as geological inrestigations were confined to small districts. Similarly the idea, closely connected with the former, that the various geological formations, characterised by a series of definite strata, are entirely independent of one another, no longer obtains credit. The various forma-
tions, * as the group of strata of one district of distribution and belonging to one period are named, cannot be divided petrographically or ${ }^{*}$

* The following table may scrve for a bird's-eye view of the geological periods and their most important formations :-
Qualrtiary period
(Diluviul und Illurial
Furmentions). $\left\{\begin{array}{l}\text { Recent Periodss (alluvium, marinc and fresh-water } \\ \text { formations). } \\ \text { Postpliocene or Diluvial Period (crratic boulders, } \\ \text { glacial period). }\end{array}\right.$ glacial period).
Pliocene Perior (subappenine formations, bonc sand of Eppelsheim, etc.)
tertlary period Minceme Period (Molasse, Tegel near Vienna, brown (Cuinuzuic Furmutions.).

	Cretaccous Periord	$\left\{\begin{array}{l} \text { Maestricht strata, white chalk, } \\ \text { uppcr green sand, Gault, } \\ \text { lower green sand, Weald. } \end{array}\right.$
SECONDARY PERIOD (Mesozoic Formation).	Surassio Periad	$\left\{\begin{array}{l} \text { Purbcek strata, Portland stonc, } \\ \text { Kimmeridge clay, Coral Rag, } \\ \text { Oxford clay, Great oolite, } \\ \text { Lower oolite, Lias (whitc, } \\ \text { brown, and black jura). } \end{array}\right.$
SECONDARY PERIOD (Mesoznic Firmations.).	Triassic Period Permian	$\begin{aligned} & \left\{\begin{array}{l} \text { Keupcr or upper new red sand- } \\ \text { stonc, Muschclkalk (upper } \\ \text { Muschelkalk, gypsum and } \\ \text { anhydrite, Wcllenkalk, Bun- } \\ \text { ter Sandstein). } \end{array}\right. \\ & \left\{\begin{array}{l} \text { Zechstcin, Rothliegendes. } \\ \text { lower new red sandstone. } \end{array}\right. \end{aligned}$
PALEOZOIC PERIOD (Palcenzoir Formations).	$\left\{\begin{array}{c}\text { Carbonifernoss } \\ \text { Periond } \\ \text { Dermian Periand } \\ \text { schiefer, Stryngoc } \\ \text { stone.) } \\ \text { Silurian Perimel (Lu } \\ \text { Cambrian Perienl (s }\end{array}\right.$	$\begin{aligned} & \left\{\begin{array}{l} \text { Coal Measures of England, } \\ \text { Germany, and North } \\ \text { America, Kulmformation, } \\ \text { Carboniferous limestone. } \end{array}\right. \\ & \text { (Spirifcrenschiefer, Cypridinen- } \\ & \text { cephalenkalk, etc.-old red sand- } \\ & \text { udlow, Wenlock, strata, etc.) } \\ & \text { latc, etc.) } \end{aligned}$

archean period $\left\{\begin{array}{c}\text { Thonschiefer, Laurentian formations. Mica schist, } \\ \text { Older Gnciss formations. }\end{array}\right.$
According to Professor Ramsay the groups of formations in England have a thickness of 72,584 fcet, i. e., about $13 \frac{3}{4}$ English miles; that is, formations of the-

Palredzoic period have a thickness of 57,154$\}$
$\begin{array}{lllr}\text { Seconclary } & , & , & 13,190 \\ \text { T'ertiary } & , & , & 2,240\end{array}$
pationtologically fiom each other in such at manner ats to lend support to the hypothesis of sudden and mighty revolutions and catinstrophes destroying the whole living world. We maty rather assert with certainty, that the extinction of old species and the appensance of new ones has not taken place at the sanc time at all points of the surface of the earth, for many spocies extend from one formation intr) another, and a number of organisms persist from the tertiary period to the present time, but little altered or even identical. Just as the commencement of the recent epoch is hard to define, and cannot be sharply separated from the diluvial period by the chatacter either of its deposits or of its fossils, so it is with the remoter periods of the earth's history, which wre founded, like periods of human history, upon great and important occurrences, and yet are in direct continuity.

Lyell has proved in a convincing way on geological grounds that there were not sudden revolutions extending over the whole surface of the earth, but that changes took place slowly, and were confined * to separate localities; in other words, that the past history of the earth consists essentially of a gradual process of development, in which the numerous forces which may be observed in action at the present day have, by their long continued operation, had an enormous total effect in transforming the earth's surface.

The reason for the irregular development of strata and for the limitations of formations is principally to be sought in the interruption of depositions, which, though widely distributed, were only of local importance. Were it possible that a single basin of the sea should have persisted during the whole period of sedimentary formation and under singularly favourable circunstances have formed new deposits in persistent continuity, then we should find a progressive series of strata interrupted by no gaps, which we should be unable to classify according to formations. Such an ideal basin would include only a single formation, in which we should find representatives of all the other formations of the surface of the earth.

[^28]In reality this ideal continuous series of strata is interrupted by numerous and often large gaps, which determine the petrographical and palieontological differences, often strongly marked, between successive strata, and correspond to periods of inactivity, or, as nay happen, to periods when the results of sedimentary action have been again destroyed. These interruptions of local deposits are explained by the constant alterations of level which the surface of the earth has undergone in every period in consequence of the reaction of the molten contents of the earth against its firm clust.

As we see in the present time that wide tracts of country are gradually sinking (west coast of Greenland, coral islands), while other's are being slowly elevated (west coast of South America, Sweden) ; that strips of coast line are suddenly submerged beneath the sea by subterranean forces, and that islands as suddenly appear; so it was in earlier periods. Elevation and depression were at work, perhaps uninterruptedly, causing a gradual, more rarely a sudden (and then locally confined) interchange between land and sea. Basins of the sea rising with gradual movement became dry land and rose up first as islands, and afterwards as connected continents, the different cleposits of which, with their included fossils, bear witness of the sea which once covered them. On the other hand, great continents sank beneath the sea, leaving perhaps their highest mountain peaks appearing as islands, and again became the seat of fresh deposition of strata. In the first case there would be an interruption of deposit, while in the latter there would result, after a longer or shorter period of inactivity, the beginning of a new formation. Since, however, elevations and depressions, even though affecting districts of great extent, must always be locally confined, the commencement and interruption of formations of equal age have not taken place everywhere at the same time. Deposits continued a long time on one tract after they had ceased on another; hence the upper and lower boundary of equivalent formations may show great want of uniformity, according to the different locality. This explains how it is that formations lying one above the other are composed of strata of very variable thickness, and why we can only in rare cases supply the gaps in the series of these strata from strata found in other countries. The whole succession of formations known to us up to the present time is not sufficiently complete to form an entire and uninterrupted series of the sedimentary formations. There are still numerons and importint gaps in the geological record which we may expect to
see filled in future days, when knowledge has increased, and per'haps only when formations now bunath the sai have become known to us.

Imperfection of the Geological Record. After the forergoing discussion we maty consider that the continuity of living organisms in the successive periods of the eath's development and their close relationship has been proved partly by geological and partly by palaontological faets. The theory of descent, however, according to which the natural system must be regraded as a genealogical tree, requires still further proof. It requires proof of the presence of numerons forms, transitional not only between the species now existing and those in the more recent formations, but also between the species in all those formations which have immediately succeeded one another in point of time. The theory also demands proof that forms eonnecting the different groups of plants and animals of the present day have existed. The establishment and limitation of these groups can, according to Darwin, only be explained by the extinction, in the course of the earth's history, of numerous and intimately eonnected species. Palæontology is only able imperfectly to comply with these demands ; for the numerous closely graduated series of varieties whieh, aceording to the theory of seleetion, must have existed, are, for the greater number of forms, entirely wanting in the geologieal reeord.

This want, however, which Darwin himself reeognised as an objection to his theory, lases its importanee when we consider the eircumstanees under whieh organic remains were generally deposited in mud, and preserved for sueceeding ages in a fossil form; when we reeognise the facts whieh indieate the extraordinary incompleteness of the geological record, and which show that the intermediate forms must have been in part described as species.

First of all we can only expect to find in deposits the remains of those organisms whieh possessed a firm skeleton supporting the softer. parts of the body, since it is only the harder struetures of the body, sueh as the bones and teeth of Vertebrates, the ealcareous and silieious shells of Molluses and Rhizopods, the shells and spines of Echinoderms, the chitinous skeleton of Arthropods, etc., which are able to resist rapid decay, and to undergo gradual petrifaction. Thus the geological record will fail to proride us with any account of the numerous and principally low organisms which are not provided with firm skeletal structures.

But also among those organisms which are eapable of beeoming
fossilized, there are large groups which have only exceptionally left traces of their existence: these are the animals which lived on land. Fossil remains of land animals can only have survived when, during great floods or inundations, or for some reason or other their carcasses have been curried away by the water, floated hither and thither, and been surrounded finally by hardening mud. This explains not only the relative scarcity of fossil Mammalia, but also the fact that of the most ancient Marsupials (Stonesfield slate), scarcely anything is preserved but the nuderjaw, which, as the body decayed, was easily detached, and, on account of its weight, offered most resistance to the current of the water, and was the first part to sink to the bottom. Although it has been shown by such remains that Mammalia existed in the Jurassic period, yet the Eocene forms are the first which give us an insight into the details of their structure.

Circumstances must have been more favourable to the preservation of fresh-water animals, and most of all to that of marine animals, since the marine deposits have a much greater extent than the locally confined fresh-water deposits. Thick formations seem in general to have arisen under one of two conditions: either in a very deep sea, protected from the operation of winds and waves, no matter whether the bottom was gradually rising or sinking-in this case, however, the strata would be relatively poor in fossils, since only the inhabitants of the deep sea, which is comparatively wanting in animal and vegetable life, would be preserved-or in a shallow sea, in which the bottom underwent a gradual and continued depression during long periods of time favourable to the development of a rich and varied fauna and flora. In this case the sea would have retained uninterruptedly its rich fauna so long as the gradual sinking of its bottom was counteracted by the continual supply of sediment deposited upon it. Thick formations, all or most of the strata of which are rich in fossils, must have been deposited on extended and very shallow regions of the sea, during a long period of gradual depression.

Thus the great gaps which occur in the series of paleontological remains are explained by a consideration of the mode of origin of deposits. These remains must necessarily be confined to the more recent formations. The lower, more ancient, and very thick successions of strata in which the remains of the oldest fauna and flora must have been buried, seem to have been so completely altered by the heat of the molten interior of the earth, that the organic
resichar which they contain have been completely destroyed, or su altered that they camot he recognised.

In any case it may be regarded as certain, that omly a small part of the extinct animal and vegetable world has been preserved in a forsil state, and that of this we only know a mall part. Therefore we camot conclude that, hecause the fossil remains of intermediate stages camnot be found, they have never existed.

If fossilized transitional forms are winting in the strata where they should have occurred, or if a species suddenly appeas's in the middle of a series of strata and suddenly disappears, or if whole groups of species make their appearance and quickly vanish, the value of these facts as arguments against the theory of selection is diminished by the circumstance that in certain cases series of tiansitional forms between more or less remotely related organisms lave been found, and that many species have been developed in course of time as links between other species and genera; and again, that species and groups of species not unfrequently increase very gradually till they attain an unusually wide distribution, extend into later formations, and then gradually disappear again. Such positive facts have a higher value when we consider the incompleteness of fossil remains.

It will sulfice here to refer to the Ammonites and Gasteropods, such as Valvatce multiformis, as examples supplied to us by Palæontology of transitional forms which can be arranged in a gradual series.

Relation of Fossil Forms with Living Species.-The close relationship of the plants and animals of the present time to the fossil remains of recent formations is a fact of great importance. In particular; we find in the diluvial period and in the different tertiary formations the ancestral forms from which numerous living species are directly descended ; and further the characteristic features of the fauna of any particular geographical province in the present epoch are foreshadowed by the fauna of the epoch immediately preceding in the same region; a fact which is proved by the fossil remains we find buried in the most recent strata.

Many fossil Mammalia from the diluvial period and the most recent (pliocene) tertiary formations of South America belong to types of the order of Edentata which are now distributed in that part of the world. Sloths and Armadillos of immense size (Megatherium, Megatony.e, Glyptodon, Toxodon, etc.) formerly inhabited the same continent, the mammalian fauna of which in the present day is so specially charac-
terised by its Sloths, Armadillos, and Anteaters. In addition to these gigantic forms, small and extinct species have been found in the bone caves of Brazil, and some of these are so nearly related to the living forms that we may assume them to have been their. ancestors.
This law of the "succession of similar types" in the same localities is also exemplified by the Mammalia of New Holland; for in the bone caves of that country are found many species nearly allied to its present Carnivora. The same law holds good for the gigantic birds of New Zealand, and, as Owen and others have shown, for the Mammalia of the Old World, which, indeed, is continuous by the circumpolar region with North America; and ancient types were able, in the tertiary period, to pass into North America, and vice versa by that way. The presence of Central American types (Didelphys) in the early and middle tertiary formations of Europe is to be explained in the same way. It is even more difficult to distinguish the regions of distribution of the animals of that time than of those of the later tertiary period.

The evolution of the ancient forms into those of the present time was effected in the case of lower, simply organised animals at a much earlier period than in the case of higher organisms. Rhizopods, indistinguishable from species living at the present time (globigerinca ooze) were already living in the Cretaceous period. The deep sea explorations * have accordingly yielded the interesting result, that certain Sponges, Corals, Molluscs, and Echinoderms now living in the deep sea existed in the Cretaceous period. We meet with a number of living species of Molluscs in the oldest tertiary period, though the mammalian fauna of this period differs completely from that of the present day. The greater number of species of Molluses found in the recent tertiary period resemble those of the present day, but the Insects of that formation differ considerably from living species.

On the other hand, the Mammalia, even in the post-pliocene (diluvial) deposits, differ in part both in genera and species from those of the present day, although a number of forms have been preserved through the glacial period. On this account, and on account of the relative completeness of the tertiary remains, it is

[^29]especially interesting to trace the recent mammalian fanna back through the pleistocene forms to the forms of the oldrest teretiary period. It is possible to trace the ancestry of a number of manmalian species. Riitimeyer wass the first to madertalke to trace out the ancestral line of the l'nqulatu, and especially of the Simminartio, so as to obtain a palxontological developmental history, and succeeded in obtaining results, by means of detaled geological and anmomical (deciduous teeth) comparison, which leave no roon to doubt that whole series of species of existing manmalia are collaterally or directly related with each other ind with fossil species. Riitimeyer's investigations have received corroboration in their essential points from the recent comprehensive works of W. Kowalerski, and hare resulted in the establishment of a natural classification of the ungulate animals founded on phylogeny.

Fig. 117.-Bones of the feet of the different genera of the Equida (after Marsh). a, Fout of Orohippus (Eocene). b, Foot of Anchitherium (Lower Miocene). c, Foot of Hipparion (Pleiocene). d, Foot of the recent genus Equus.

In addition to these works we have the recent researches of Marsh, who has completed to an extraordinary degree our knowledge of the genealogy of the genus Equus, by numerous discoreries (fig. 117) in America (ITyoming, Green River, White River). The eocene Orohippus, in which the small posterior toes were present as well as the three principal toes which rested on the ground, was succeeded in the Lower Miocene formation by Anchitherizm with three hoofs ; and the latter was followed by the Hipparion of the Pleiocene formations; and this is the ancestral form of the existing genus Equers.

The origin of most orders of Mammalia, such as Rodentiu, Cheiroptera, Proboscidea, Cetacea, etc., camnot be clearly traced out, but for certain orders, as the Prosimice, Cornivora, Ingulata, and Ro-
dentia, remarkable transitional forms have been discovered among the remains of extinct types. These also appear most prominently among the tertiary remains of North America. In the Eocene period here (Wyoming) lived the Tillodontia with the genus Tillotherium,** characterized by having a broad skull like a bear, two broad incisor teeth like a rodent, and molar teeth like Palcootherium, and feet having five toes armed with strong claws. It thus united in its skeletal structure peculiarities of Carnivora and Ungulata. The Dinocerata (Dinocercas laticeps mirabile) were powerful Ungulates with five toed feet with six horns on their heads, without incisors in the premaxillary bone, with strong sabre-like canine teeth in the upper jaw and with six molars.
A third type, that of the Brontotleridue attained elephantine proportions, and was provided with transversely placed horns in front of the eyes. In addition to the foregoing there are a number of other groups of Mammals now completely extinct, the remains of which extend back into far earlier strata. Amongst them are the South American Megatlieridue (Mylodon, Megatherium), which belong to the order Edentata, and the Toxodontia, whose skull and dentition show relations to the Ungulates, Rodents, and Edentates. Many other types, however, especially of the Ungulates, which during the tertiary period inhabited both hemispheres, are now extinct in America, but still exist in the East. Elephants, Mastodonta, Rhinoceridæ, and Equidæ existed in America in the diluvial but not in recent periods. Of the Perissodactyles the group of Tapirs alone is preserved in America. This group has also been preserved in the Eastern hemisphere in the East Indian species.

In the palearctic region also are found the remains of extinct intermediate groups of Mammals which existed during the tertiary period. In the Phosphorites of Quercy \dagger in the south of France are found the remains of the skulls of Prosimix (Aclapis), the dentition of which is intermerliate between the ancient Ungulates and the Lemuridæ (Pachylemuridce), so that the question may be raised whether the Prosimire had not a common ancestry with several

[^30]eocene Ungulates (Pachydermatu). In the same locality are formed the well preserved remains of the bones of pecular Carnivora which are well worthy of remark. These are the Hyamolonta. It was for a long time doubtful whether they were Marsupials or not, until Filhol showed from the reserve teeth of their permanent dentition that they were probably of the nature of placental Carnivora. The great agreement of the molars of these Hyanodonta with those of the carnivorous Mar-

Fig. 118.-Pterodactylus crassirostris (after Goldfuss) about one-third natural size. supials, as well as the small size of the skull cavity and the relatively slight development of the brain, support the view, which is also rendered probable by many other circumstances, that placental Mammalia have developed from the Marsupials of the mesozoic period.

In the oldest strata of the Eocene formations in both hemispheres, the higher placental Mammalia already appear in a rich variety of forms, which contrast markedly with one another (Avtiodactyla, Perissodactyla). There is, however, no ground for regarding the immeasurable period from the oldest Eocene to the Keuper, in which the oldest Mammalian remains (the teeth and bones of insectivorous Marsupials) have been found, as the period in which this higher development of the Mammalian organism has been effected.

In other cases also the science of palrontology has led to the discovery of intermediate forms between groups and even between
classes and orders. The Labyrinthodonta, the most ancient of the Amphibia, found as early as the carboniferous period, present many piscine character's (ventral exoskeleton), and have a cartilaginous skeleton. Many fossil orders and sub-order's of Saurians (Halosauride, Dinosauridce, Pterodactylidice (fig. 118), T'hecodontidce) have not left a single representative in the present day; others again are transitional between recent orders. Such a relation has, for example, been recently shown between the "Pythonomor phous" lizards (related to the genus Mosasaurus) from the chalk in America, and serpents so far as the structure of the skull and jaw is concerned.

Owen's researches on the fossil Reptiles of the Cape have shown that certain Reptiles (Theriodonta) once lived there which showed a close resemblance to carnivorous Mammalia with regard to their dentition and the structure of their feet. The teeth of these animals, though only furnished with one root, can be divided into incisors, canine teeth, and molars, a fact which induces us to believe it possible that the dentition of the most ancient Marsupials hitherto known (Keuper) may be derived from that of a Theriodon-like Reptile.

Even as regards birds, a class so uniform in structure and so sharply defined, a form (Archceopteryg lithographica) (fig. 119) transitional between them and Reptile has been discovered in the Sohlenhofen slate, although the impression was not perfect. In this form the short tail of the bird is replaced by a long reptilian tail composed of numerous (20) vertebræ and provided with two rows of feathers (Scururce). The articulation of the vertebral column and the structure of the pelvis indicated an affinity to the long-tailed Pterodactyls.

The discovery of a second and more perfect specimen of Archueopteryx has made known to us its dentition. It had sharp-pointed teeth wedged into the jaws. Other types of bircls have also been found in the American chalk, which diverge more widely among themseves and from the Saurians than do the bircls of any living order. These were defined as Odontomithes by Marsh,* and distinguished as a sub-class; they had teeth in the jaws, which latter were elongated to form a kind of beak. Some of them (Order Ichthyornithes) had bicolous vertebræ, a crista sterni, and well

[^31]developed wings (Ichthyomis). Others (Odontolce:) had teeth em-

Fig. 119.-Archcopteryx lithographicu.
bedded in pits, normal vertebræ, no keel to the breast-bone, and rudimentary wings. They were not capable of tlight (Ifesperornis,

Lestornis). Possibly in future days we shall be able by the discovery of new types to establish the connection with the Dinosarrians (Compsognathus), the formation of whose pelvis and feet offer a closer relationship to those parts in birds.
Advance towards perfection.-If we compare the animal and vegetable life of the most ancient formations with that of the suc ceeding periods of the earth's development, it becomes evident that there has been, on the whole, a continual progress from a lower to a higher condition. The oldest formations of the so-called archæan time, the rocks of which are for the most part in a metamorphic state, must from their enormous thickness have occupied immeasurable time in their origin. They contain no fossil remains which can be recognised with certainty as such; although the presence of bituminous gneiss in the old formations is a proof of the existence of organic bodies at that time. All the organisms of these most ancient periods, which were certainly numerous, have been destroyed without leaving any further traces than the Graphite deposits of the crystalline schist. In the most ancient and very extensive groups of strata we find exclusively cryptogamous plants, especially Fuci, which formed extensive forests beneath the sea.

The warm seas of the primary period were inhabited by numerous sea animals of very different groups, such as Zoophytes, Molluses (especially Brachioporla), Criustaceans (larva-like Hymenocaris, Trilobites), and Fishes whose peculiar armoured forms. (C'ephalaspidee) indicate a low stage of organization. In the coal formations we meet for the first time with the remains of land animals, Amphibia (Apathenn, Archegosaurus), with a notochord and a cartilaginous skeleton; we also find Insects and Spiders; and in the Permian formations we meet with large lizard-like reptilian forms (Proterosaurus); while fishes, exclusively Elasmobranchs and Ganoids with a notochord, and vascular cryptogamous plants (Tree-ferns, Lepidodendra, Calamites, Sigillaria, Stigmaria) still predominate.

In the carboniferous period isolated instinnces of the Lizards amongst Vertebrates and of Coniferre and Cycadire amongst plants had already made their appearance; but in the secondary period they obtained such a preponderance that the whole period has been named from them the period of Saurians and Gymnosperms. Amongst the first the colossal Dinosaurians living upon the land, the flying Lizards or Pterodactyls, the Halosanrians, with their best known genera Ichthyoscurus and Plesiosaurus, are entirely peculiar to the second.ury period.

Examples of Mammalit, although scatee, are found in the upper Triassic beds, and also in the Jurasic. Such Mammaliat belong without exception to the lowest grade of Marsupials. Elowering plants appear for the first time in the chalk, as do the oldest remains of distinctly bony fishes.

Flowering plants and Mammatia-and amongst the latter the highest order of Apes is represented-so preponderated in the tertiary period that it has been called the period of leafy forests and Mammalia. The plants and animals of the upper tertiary beds show a gradually increasing resemblance to those of the present time, the higher we ascend in the series. Numerous lower animats and plants are identical, not only generically but also specifically with those now living, and the genera and species of the higher animals have a greater resemblance to those of the present time. With the transition to the diluvial and recent epoch, the number and area of distribution of the higher types of flowering plants increase, and in every order of Mammalia we find forms whose structure is specinlized more and more in definite directions, and which therefore appear more perfect. In the diluvial age we find the first unmistakable traces of the existence of Man. His history and the development of his civilization has occupied only the last portion of the recent period which has been relatively so short.

Despite its great incompleteness the geological record affords sufficient material to prove the existence of a progressive development from simple and lower grades of organization to higher, and to confirm the law of a progress towards perfection in the succession of the groups. We are indeed unable to make use of more than a small period of the time that has been occupied in this progress towards perfection of organisms, since the organic world of the most ancient and extensive periods has completely disappeared from the record.

If, after the above discussion, we consider the hypothesis of Transmutation of Species and of Descent to have a firm foundation on fact, we must concede a high value to Darwin's theory of Selection as an explanation of the manner in which the transmutation of species has been effected.

There are yet natural historians who admit the great changes which the animal and vegetable world have undergone, and yet combat the Darwinian principle of Selection, without being able to give any other explanation. The phenomena of gradual progress towards perfection agree very well with the theory of Selection.

Natural Selection leads, on the whole, to a progiessive differentiation of organs (division of labour), since it preserves any peculiarities which are of use in the struggle for existence, and thus tends to the perfection of the organism. We can therefore connect the progress of simple types to higher ones with the principle of utility implied by Natural Selection, without being obliged, with Naigeli, to have recourse to the obscure notion of an inexplicable tendency towards perfection. It is the latter mystical supposition, and not Natural Selection, which is contradicted by the fact that we find a number of Rhizopods, Molluscs, and Crustacea (e.g., the genera Lingulc, Nautilus, Limulus) have existed almost without alteration from the earliest formations through all the geological periods to the present time, and by the observation of a retrogression of organization in the course of development (e.g., retrogressive metamorphosis of Parasites).

Nor again can it be objected that on the hypothesis of Natural Selection the lower types should have been long ago suppressed and have become extinct, while, as a matter of fact, there are higher and lower genera in every class, and the lowest organisms are numerous and widely distributed. It is precisely the great variety in the degrees of organization which brings about and is favourable to the greatest development of life, all the forms of which, both the higher and the lower, being best suited to their peculiar circumstances are able, more or less perfectly, to occupy a special place in nature, and in a certain sense to maintain it. Even the most simple organisms occupy a place in the economy of nature which can be filled by no other organisms, and are necessary to the existence of numerous higher grades.

However well grounded we admit the theory of Selection to be, we cannot accept it as in itself sufficient to explain the complicated and involved metamorphoses which have taken place in organisms in the course of immeasurable time. If the theory of repeated acts of creation be rejected and the process of natural development be established in its place, there is still the first appearances of organisms to be accounted for, and especially the definite course which the evolution of the complicated and more highly developed organisms has taken has to be explained. In the many wonderful phenomena of the organic world, amongst others in the origin of Man in the diluvial or tertiary period, we have a riddle the solution of which must remain for future investigators.

SPECIAL PART.

CHAPTER VI.

PROTOZOA.

Animals of simple constitution and small siae ; without tissues composed of definite cells. Sexual reproduction by means of ova and. spermatozoa unknown.

From a morphological point of view the Protozoa have remained at the stage of cells, in the protoplasm of which one or more nuclei may be present. The phenomena of segmentation of the egg and formation of the germinal layers are therefore absent from their development. The body is always composed of a contractile granular substance, filled with vacuoles; it may also contain a mulsuting vacuole, and present the phenomenon of granule currents. The pulsating vacuole consists of a space without walls filled with a clear fluid. This space apparently diminishes and disappears through the contraction of the surrounding plasma, and then re-appears.

There exists, however, in the varying differentiations in the interior of the sarcode body, and in the differences in the external boundary, and in the manner of nourishment, a number of modifications which we shall use for the foundation of groups. In the simplest cases, the entire body consists of a small lump of sarcode, the contractility of which is confined by no firm external membrane. This lump of sarcode is sometimes semi-fluid, and protrudes and retracts processes. It is sometimes of tougher consistence in parts, and protrudes hair-like rays and threads (Rhizopode). Nourishment takes place through the intussusception of extraneons bodies, which can be surrounded and enclosed by the protoplasmic substance at any portion whatsoever of the periphery of the body. In other cases the body which sends out slender processes (pseudopodic) secretes silicious or calcareous needles, lattice-work shells, or shells perforated
by holes, to shelter and protect the borly (Foraminiferca, Radiolaria). In the Infusoria the sarcode body is bounded by an external membrane, and is capable of quick and varied locomotion by means of the movements of the cilia, hairs, bristles, etc., which it possesses. The solid nourishing matter is taken in through a mouth, and the remainder, after digestion, passes out through an anal aper'ture.

CLASS I.-RHIZOPODA.*

Protozoa without external investing membrane, the parenchyma of which protrudes and retracts processes ; as a rule, a calcareous shell or silicious skeleton is secreted.

The body-substance of these animals, the shells of which were described as Foraminifera or Polythalamia, long before their living contents were known, consists of scurcode, and is without any boundary membrane.

The bodysubstance, which is richly granulated and contains pigment, contracts slowly and sends out at the same time fine thread-likerays
 (fig. 120), for the most part of a semi-fluid consistency

Fig. 120.-Optical section through portion of the sarcode body of Actinosphuerium Eichhornii (after Hertwig and Lesser). N, nuclei in the endosark, from which the vacuolated ectosark is clearly distinguishable. In the centre of the pseudopodia the axial thread is visible. (pserudopodia); and these serve not only as a means of movement but also for the reception of nourishment. The pseudopodia may, how-

[^32]ever, be broad, lobed, or tinger-like processes by means of which a quick and Howing motion cian he imparted to the body mass. A tougher, clemr homogeneous extermal layer (fiwoplasm) is usually to be distinguished as the peripheral houndary from a more fluirl and more gramular intermal mass (Eindoplusm). During motion the former is projected in processes into which the gromules of the latter. stream more or less quickly.

In the stiffer pseudopodia streams of granules are observable, slow but regular, passing fiom the base to the extremity and vice versa. The explination of these movements is to be sought in the contractility of the surrounding portions of sarcode (fig. 120).

A pulsating space, the contractile vacuole, is not unfreqently to be found in the sarcode, e.g., Difflugia, Actinophrys, Arcella (fig. 121). Nuclei are also usually present in the sarcode, by which the morphological value of the Rhizopod body as cell or as cell aggregate is placed beyond all doubt. There are

Fig. 121.-Amobu (Dactylosphara) polypodia (after Fr. E. Schultze). N, Nucleus. Po. pulsating vacuole. also forms in the protoplasm of which no trace of a cell nucleus has been found. In such either the protoplasm of the nucleus is not yet differentiated as a separate structure (the Monera of E. Haeckel), or we have to do with a transient, nonnucleated stage in the life-history.

The sarcode usually secretes silicious or calcareous structures, either as fine spicula and hollow spines which are directed from the centre to the periphery in regular order and number, or as lattice-work chambers (Radiolaria), which often bear points and spines, or finally as single and many chambered shells with finely perforated walls (Foraminifera) and one larger opening. Through this last (fig. 123), as well as through the countless pores of the small shells (fig. 122), the slender threads of sarcode pass out to the exterior as pseudopodia, changing without intermission in form, size, and number, and often joining themselves together in delicate networks (figs. 122, 123).

The pseudopodia, by their slow, creeping movements, afford a means of locomotion, while they also serve for the taking up of nourishment
by surrounding and transporting into the interior of the body small vegetable organisms as Bucilluric. Among the shell-bearing forms, the reception and digestion of food takes place outside the shell in the peripheral threads and networks of sarcode ; for each spot on the surface can for the time being assume the functions of mouth, and

FIg. 122.-Rotalia veneta (after M. Schultze), with a Diatom taken in the network of Pseudopodia.
also of anus, by rejecting the undigested remnants. The Rhizopod live for the most part in the sea, and contribute by the accumulation of their shells to the formation of the sea sand, and even to the deposition of thick strata. An innumerable quantity of fossil forms from various and very ancient formations are known.

Order 1.-Foraminifera.*

Mhizopork, either maker or with a shell, the shall almost invariably calcareous and usually pierced with fine pores for the exit of the pseuulopodia.

Only in rare cases, for instance Nonionine and Polymorplienc, is the shell substance of a silicious nature; in all other forms it is

Fig. 123.-Miliola tenera, with network of psendoporia (after M. Schultze).
membranous or consists of a calcareous deposit in a basis of organic matter. The shell is either a simple chamber, usually provided with a large opening, or is many chambered, that is, is composed of numerous chambers arranged upon one another according to definite laws. The spaces of these chambers communicate by means of narrow

[^33]passatges and large openings in the partition walls. In like manner those portions of the living sarcode body which are enclosed in the individual chambers are in direct communication with one another by means of processes which pass through the passages and openings in the septa, and connect one portion with another. The quality of the body-substance, the mode of movement and nourishment, agree closely with those which have been depicted as characteristic of the order. Our knowledge of the mode of reproduction is imperfect. Amongst the forms without a shell, fission has been observed as well as fusion, which may perhaps be referred to a species of sexual reproduction (conjugation). The reproduction of shell-bearing Foraminifera such as Miliola and Rotalia has also been observed. The former produces from the protoplasm of its body single chambered, the latter three chambered, young. Probably this mode of reproduction is preceded by an increase in the number of nuclei, and the animal divides into as many portions as there are nuclei, each of which becomes a young Foraminifer, and contains but one nucleus.

In spite of their small size, the shells of our simple organisms may lay clainu to no small consequence, since they not only accumulate in enormous quantity in the sea sand (M. Schultze calculated their number for an ounce of sea sand from Molo di Gaeta at about one and a half millions), but are also found as fossils in different formations (the cretaceous and tertiary), and have yielded an essential material to the construction of rocks. Silicious nodules of Polythalamia are even found in Silurian deposits. The most remarkable, on account of their considerable size, are the Nummulites (fig. 124) in the thick formation of the so-called Nummulite limestone (Pyrenees). A coarse chalk of the Paris basin, which makes an excellent building stone, contains the Triloculina trigonula (Miliolite chalk).

The greater number of Foraminifera are marine, and move by creeping on the bottom of the sea, but Globigerina and Orbulina have been met with on the surface. The bottom of the sea at very considerable depths is also covered with a rich abundance of forms, especially with Globigerina, the remains of the shells of which give rise to an enduring deposit.

1. Sub-order: Lobosa (Amœbiformes).-Amceba-like fresh-water Rhizopoda, usually with pulsating vacuole, sometimes naked, sometimes with a single-chambered firm shell. The sarcode body consists as a rule of a tougher exoplasm and a fluid granular endoplasm. The psendopodia are lobed or finger-shaped processes of considerable
size, occasionally tougher slender processes without granule streams (figs. 125 and 126).

Amable prinereps: Ehrbg., A. tervironte Gireef., Petalopus dithuairns: ('lap. Lachm. Here should also be placed the famous Buthyllin.: Jfurcheli Huxl., which is fomme in the deep sea mul of the Atlantic Oecan, if it is indeed a living organism (and not simply a depusit of (iypsum).
 Cart. have shells and tough, pointed, dichotomously branehing psendoporia (fig. 125).

Fig. 121.--Nummulitic Limestone, with horizontal section of N. distons (after Zittell).

Fig. 125. - Euglypha globose. (after Hertwig and Lesser).

Fig. 126. - Difflugia oblonga (after Stein).

Fig. 127. - Acervulina glolosa (after M. Schnltze).
2. Sub-order': Reticularia (Thalamophora). Principally marine Rhizopods with extremely slender anastomosing pseudopodia, with granule streams in the latter, rarely naked (Protogenes, Lieberkiiilnia), usually with membranous or calcareous shell, which is single-chambered (Monothatamic.) or many-chambered (Polythalamia) (fig. 127).

1. Imperforutu. With membranous or calcareous shell, which is without fine pores, but possesses, in one place, an opening, either simple or sicve-like, through which the pseudopodia project. To these belong the Gromilla, with a membranous chitinons shell: Gromia aviformis Duj., and Miliolidere, with a porcellanous shell : Cormuspira planorbis M. Sch., Miliola cyclostoma M. Sch., from the Miliolite chalk.
2. Perforute. The shell, which is usually calcareous, is invariably picreed with innumerable fine pores as well as by one larger opening, and has complicated passages in the partition walls of its chambers.

The Latenenle have a hard shell, with a large opening surrounded by a toothed lip: Lugena culgaris Williamson.

The Globigerinide on the contrary have a hyaline shell pierced by large pores, and a simple slit-like opening: Orbulina nentererse D'Orb., Globigrrina mutloilles D'Orb., Rotuliu D'Orb., Textularia D'Orb.

The greatest size is attained by the Nummulinida, which possess a firm shell and an internal sheleton, which last is pierced by a complicated canal system : Polystomella Lam., Nummulimu D'Orb.

Order 2.-Heliozoa.*

Fresh-water Rhizopods usucully with pulsating vacuole, and one or more nuclei. A radial silicious skeleton sometimes present.

The sarcode body sends out in all directions tough radiating pseudopodia (fig. 128). When a skeleton is secreted, it consists either of

Frg. 128.-Young Actinospharium, still with a single nucleus (after F. E. Schultze). N, Nucleus. radially arranged silicious spines (Acanthocystis) or of latticed silicious shells (Clathrulinca), and so closely resembles the skeleton of the Radiolaria that the Heliozoa have been actually described as fresh-water Radiolaria.

They differ from the Radiolaria in the absence of the complicated

[^34]differentiations of the surcorle, particularly of the central capsule. One or more muclei may be present in the cential mass. An inportant distinguishing mark is afforded by the presence of the pulsating vacuoles, which have not been observed in any marine Radiolarian.

The reproduction very frepuently takes place by fission, occasionally

Fig. 129.-Thalassicolla pelagica, with central capsule and single large nucleus, also numerous alveoli in the protoplasm (after E. Haeckel).
after previous conjugation of one or more individuals, also during encystment. Multiplication by spores has also been observed (Clathrulina).

In the Actinophryidce there is no skeleton scereted: Actinnsplatimun Eichlhornii Ehrbg. The eentral matter eontains numerous nuelei. Actinophrys. sol Ehrbg. of small size, with a single eentral nucleus.

In the Aranthorystide slender silicious spikes are found: Arantlooys.is Spinifern Greeff. with silieious spikes and needles.

In Clathrulina there is a lattieed silieions shell, and the body has a stalk: Cluthrutime clegans. Cienk.

Order 3.-Radiolaria.*

Marine Rlizopoda with complicated differentiation of the sarcode body, with central capsule and radial silicious sleleton.

The sarcode body contains a membranous porous capsule (the central cropsule), in which is contained a tough slimy protoplasm with vacuoles and granules (intracapsular sarcode), fat and oil globules, and albuminous bodies, and more rarely crystals and concretions. The intracapsular mass contains also a single large nucleus or several small nuclei. The sarcode which surrounds the capsule and which emits on all sides simple or anastomosing pseudopodia, contains numerous yellow cells, sometimes pigment masses ; and in some cases delicate transparent vesicles, or alveoli, are found in the peripheral layer between the radiating pseudopodia (Thalassicolle pelayica, fig. 129).

Many Radiolaria form colonies, and are composed of numerous individuals. In such colonies the alreoli are placed in the common protoplasm, which contains in itself, not as in the monozoic Radiolaria a single central capsule, but a number-

Fig. 130.-Acanthometra Mïlleri (after E. Haeckel). of capsules. Only a few species remain naked and without firm deposits ; as a rule, the soft body possesses a silicious skeleton, which either lies entirely outside the central capsule (Ectolithia) or is partially within it (Entolitlica). In the most simple cases the skeleton consists of small, simple, or toothed silicious needles (spicula) united together, which sometimes give rise to a fine sponge work round the periphery of the protoplasm, e.g., Ploysematium. In a higher grade we find stronger hollow silicious spicules, which radiate from the middle point of the body to the periphery in regular number and order, e.g., Acanthometra

[^35](fig. 130). A fine peripheral framework of spicules maty be added to these:. Tn other cases simple or compound lattice-works, and pièiced shells of various external form (like helmets, bird-cages, shells, etc.) are found, and on the periphery of these, spicules and needles, and even external concentric shells of similar shape may be formed, e.g., Polycystina (figs. 131 and 132).

Up to the present time but little has been made out about the reproduction of these animals. Besides fission (Polycyttaria), the formation of germs has been observed. These are formed from the contents of the central capsule, and, after the bursting of the latter, become free-swimming mastigopods. Radiolaria are inhabitants of the sea, and swim at the

Fig. 131.-Heliosphera echinoides (after E. Haeckel). surface, but are also able to sink to deeper levels.

Fossil remains of Radiolaria have been made known in great numbers by Ehrenberg, e.g. from the chalky marl and polishing slate found at certain parts of the coast of the Mediterranean (Caltanisetta in Sicily, Zante and Ægina in Greece), and in particular from the rocks of Barbados and Nikobar, where the Radiolaria have given rise to widely extended rock formations. Samples of sand also from very considerable depths have shown themselves rich in Radiolarian shells.
I. Radiolaria monozoa. Radiolaria which remain solitary.

1. Fam. Thalassicollidæ. Skeleton absent or consisting of single spicules not joined together. Thalassicolla (without skeleton) nuclrata Huxl., Phy.sematium. Mülleri Schn.
2. Fam. Polycystinidœ. The skeleton eonsists of a simple or divided latticed shell, the long axis of which is bounded by two poles of different strueture. Heliosphera. Eucyrtidium galea E. Hacek.
3. Fam. Acanthometridæ. The skeleton eonsists of several radial spieules whieh pass through the eentral capsule and unite in its eentre, without forming
a latticed shell. The extra-eapsular cells (yellow bodies) arc wanting. Acunthometra pellucidtu Jolı. Miill.
I1. Polycytturiu. Radiolaria which form colonies with several eentral eapsules Amongst the Sphrerozon a skelcton is wanting or consists of single pieees not joined together. Collozoum inerme E. Haeek. Spluerozoum punctutum Joh. Miill. In Collo.splucera the skeleton eonsists of simple latticed spheres, eaeh of which eneloses a central eapsule, Collosphara Hurleyi Joh. Müll.

Fig. 132.-Eucyrtidium cranoides (after E. Haeckel)

CLASS II.--INFUSORIA.*

Protozoa with a definite form and provicled with an external membrane, bearing either flagella or cilia. Mouth and anus usually, contractile vacuole and one or more nuclei always present.

Infusoria were discovered towards the end of the 1 th century

[^36]in a ressel of stagnant water by A. von Lecuwenhoek, who made use of a magnifying glatsis for the examination of small organisms. The name Infusoria, which was at first used to denote all animalcule which appenr in infusions and are only visible with the aid of a microscope, was first brought into use by Ledermiiller and Wrisberg in the last century. Later on the Dimish naturalist O. Fr. Mïller made valuable additions to our knowledge of Jnfusoria. He observed their conjugation and their reproduction by fission and gemmation, and wrote the first systematic work on the subject. O Fr. Miiller inchuded a much larger number of forms than we do now-a-days, for he placed among the Infusoria all invertebrate water animalculie without jointed organs of locomotion and of microscopical size.

The knowledge of Infusoria received a new impulse from the comprehensive researches of Ehrenberg. The principal work of this investigator, "Die Infusionsthierchen als vollkommene Organismen," discovered a kingdom of organisms lardly thought of. These were observed and portrayed under the highest microscopic powers. Many of Ehrenberg's drawings may even yet be taken as patterns, and are hardly surpassed by later representations, but the significance of the facts observed has been essentially corrected by more recent investigations. Ehrenberg also conceded too great an exteut to the group of Infusoria, including not only the lowest plants such as Diatomacee, Desmidiacere, under the name of Polygastrica anentera, but also the much more highly organised Rotifera. As he chose the organization of the last-named for the basis of his explanations, he was led into numerous errors. Ehrenberg ascribed to the Infusoria mouth and anus, stomach and intestines, testis and ovary, kidneys, sense-organs, and a vascular system, without being able to give reliable statement of the nature of these organs. There very soon came a reaction in the way of regarding the Infusorian structure; for the discoverer of the Rhizopodla, Dujardin, as well as Von Siebold and Kölliker (the latter taking into consideration the so-called Nucleus and Nucleolus), referred the Infusorian body to the simple cell. In the subsequent works of Stein, Claparède, Lachmann, and Balbiani numerous differentiations were certainly shown to exist, which, howerer, can all be referred to differentiation of the body of the cell. This view is supported by
Journ. de lu Phys., Tom. IV. Claparède und Lachmann. "Eitudes sur les Infusoires et les Rhizopodes," 2 vol. Génère, 1858-1861. E. Hacekel. "Zur Morphologie der Infusorien" Je'n Zritsehrift, Tom. VII.. 1873. O Bitsehli, "Studien uiber die ersten Entwiekelungrorginge des Eizelle, die Zelltheilung und die Conjugation des Infusorien," Frankfurt. 1876.
the more recent work of Buitsclnli, who has shown that the reproduction of these animals is essentially similar to that of the cell.
The outer boundary of the body is usually formed by a cuticle, a delicate, transparent membrane, the surface of which is beset with vibratile and moving appendages of various kinds arranged in regular order. In the smallest Infusoria, the Flugellatu, we find only one or two long whip-like cilia; while the more highly differentiated Cilicuta are usually richly provided with cilia. According to the varying thickness of the external membrane, which cannot in all cases be isolated, and according to the different condition of the peripheral parenchyma of the body, we get forms which change their shape, forms which have a fixed shape and armoured forms. If the simply organized Flagellata, which present numerous affinities and transitional forms to the Algæ and Fungi, are not entirely removed from the region of the Infusoria, the two principal groups to be distinguished are the Ciliuta and Flagellata.

> Orler 1.-Flagellata.*

Infusoria of small size, charcacterised by possessing one or more long whip-like cilia, usually placed at one end of the oval bodly. A row of cilia sometimes and a nucleus ctways present.

The. Flagellata are Infusoria the locomotive organs of which consist of one or more whip-like cilia, rarely with an accessory row of cilia. They pass through an inactive stage, and in their development as well as in their mode of nourishment are allied to certain Fungi.
The reasons for regarding the Fligellata as Protozoa are-the perfect contractility of the body, which is not surpassed by Myxomycetes in the mastigopod stage; also the contractility of the cilia, the apparently purposed and voluntary movements, the occurrence of contractile vacuoles, and, as has been established in many cases, the reception of solid substances into the body through an opening at the base of the flagellum. Nevertheless these phenomena are by no means a test of animal organization.
The Monudince are a large group of Flagellata, found for the most part in putrefying infusions, and are hard to distinguish from the monads usually regarded as fungi. They reproduce themselves by

[^37]transverse tission, und also by spore formation in an encysted condition; the latter method seems in many forms to be preceded by conjugation. The best known species are C'ercomonas Duj. and I'richomonas Donné, of which the first is chatacterised by the possession of a caudal filament, while 'richomonas has an undulating row of cilia close to the flagella, which are usually two in number (fig. 133). They live principally in the intestines of Vertebrates, but are also found in Invertebrates. Cercomonas intestinalis Lambl. and I'richornonas vaginalis Domé, are found in Man.

The Monads,* which cannot be sharply separated from the Monadince, are simple cells free from chlorophyll, the swarm spores of which usually pass into an amœboid stage, and after receiving nourishment enter upon a motionless stage characterised by the possession of a firm cell-membrane. A number of them (Monas, Pseudospora, Colpodella), the so-called Zoospores, are mastigopods resembling the

Fig. 133.-a, Cercomonas intestinalis. U, Trichomonas vaginalis after R. Leuckart). mastigopods (swarm spoles) of Myxomycetes, and, with the exception of Colpodella, grow up to creeping Amœbæ which protrude pointed pseudopodia. In this stage they may also be simply regarded as small plasmodia, especially when, as in Monas amyli, several mastigopods fuse together to form the amœba. They then take-in Colpodella without first entering the amœeba stage-a globular form, their surface develops a membrane, and in this cyst they break up by division of protoplasm into a number of segments which pass out as swarm spores and lepeat the course of development (Colpodella pugnax to Chlamydomonas, Pseudospora volvocis).

Other Monads, the so-called Tetraplasta (Vampyrella, Nuclearia), do not pass through the mastigopod (swarm spore) stage. Their protoplasm during the inactive encysted stage gives rise by division into two or four, to the same number of Actinophrys-like Amœbæ, of which some, like Colpodella, suck their nourishment from alga cells (Spirogyra, Oedogonia Diatomacea, etc.), and some envelope extraneous bodies.

In mode of nourishment and locomotion the monads are allied to the Rhizopods, but also to lower fungus forms like Chytridium.

[^38]In their whole developmental cycle they agree very closely with uni_ cellular algre and fungi; still the analogy to the developmental processes of many Infusoria, Amphileptus, is not to be passed over. S'pumella vulyaris (termo Ehrbg.) of Cienkowski shows a somewhat different development and cyst formation; it receives solid food (by aid of the food vacuoles) and is fixed by a fibre, as also Chromulina nebulosa Cnk., and Ochracea Ehrbg.

A second group nearly allied to the Algæ (Protococcacea) is that of the Volvocinidce. These organisms consist of colonies of cells united by a common gelatinous substance, and the following characteristics indicate their close relationship to the Algr:-(1) in the inactive stage they possess a cellulose membrane; (2) they exhale oxygen; (3) they possess an abundance of chlorophyll and of vegetable red or brown coloured oils.

Fig. 134.-Euglena viridis, a and b, free swimming, in different states of contraction. c, d, e, encysted and in process of division.

During the motile stage they possess the power of reproduction, since the individual cells give rise to daughter colonies inside the mother colony. A sexual reproduction (conjugation) has also been shown. Certain of the mother cells increase in size and divide into numerous microgonidia corresponding to spermatozoa; others grow to large ovicells, which are impregnated by the former, and then surround themselves with a capsule, and sink to the ground as large star-shaped cells. They also reproduce themselves during their period of inactivity by fission within the cellulose capsule, while at the same time a change of colour takes place. Amongst the best known of the Volvocina are Volvox globator, Gonium pectorale, Stephanospluera pluvialis.

The Astasiada are contractile unicellular Flagellata, which are allied to the Volvociniclee in their life phenomena, but they take up
solid nutriment. The best known genus is Eizulena, which, according to Stein, has a mouth and gullet.

In their inactive stage they recrete a capsule and divide up into parts which pass out as mastigopods. Eucglenue viridis (fig. 134), İ. sangrimolenta. Another genus, also with a mouth, is Astasia Ehrlog. A. trichophorce Ehrbg., with rounded posterior end, a very long flagellum, and in abruptly terminated anterior end.

The genera Sulpingoeca and Codosiga described by Clark were inchuded by Buitschli under the name C'ylicomastiges, on the ground that they possess a well-marked collar surrounding the basis of the Hagellum, and corresponding to the collar on the entoderm cells of the Sponges (hence Clark regarded the Sponges as most nearly related to the Flagellata); Codosiga Botrytis Ehrbg, forming colonies, possessing food vacuoles which contain the solid bodies taken up as nutriment, with nucleus and contractile vacuole.

Salpingoeca Clarkii Buitsch. (the individuals of this species possess a shell).

Another group, the Cilioflagellata,* is characterised by the posse:sion of a row of cilia, situated in a furrow of the hard cuticular exoskeleton (fig. 135), in addition to the flagellum. The Peridinice, some of which are of peculiar appearance, with large horned processes of the shell, belong to the group; and are allied, so far as their development is known, most nearly to the Euglence. The mouth lies in a depression; there is sometimes a kind of gullet, at the end of which the nourishing materials pass into a vacuole. In addition to the locomotive and armoured forms, there are also some without shell or organs of locomotion ; and again there are encysted stages in the interior of which a number of small young forms are said to take their origin (Ceratium cornutum Perhg., Peridinizom tabulatum Ehrbg).

Finally Noctiluca \dagger is included in this group. It is an inhabitant

[^39]of the sea, and possesses a peach-shaped body which is surrounded by a cuticular envelope, and bears a tentacle-like appendage. A furrowlike invagination is situate at the base of this appendage, at one end of which is the mouth close to a tooth-like prominence and a slender vibratile flagellum. The soft body consists of a central mass of contractile protoplasm, counected by fine and anastomosing threads with a layer of the same substance which lines the cuticular envelope of the body. In the central protoplasm lies a clear body, the nucleus, and the spaces between the radiating processes, which exhibit the phenomena of granule currents, are filled with fluid. The contractile substance extends into the appendage, and there assumes a crossstriped appearance (fig. 136).

The reproduction takes place by means of fission (Brightwell), preceded by division of the nucleus ; or by spore formation (Zoospores). In the latter case, the flagellum is absorbed or thrown off, and the Noctiluca assumes a spheroidal shape. After the disappearance of the nucleus, the sarcode contents accumulate on the inner side of one region of the cuticle, divide into from two to four masses which are not sharply separated from one another, and the cuticular envelope is thrust out into a corresponding number of protuberances. These buds increase and form numerous wart-like prominences, the future spores. They arise, therefore, at the expense of the protoplasmic contents of the disc, which is gradually exhausted in their for-
mation. The buds separate themselves from the membrane and become free as small spores, with nucleus and cylindrical appendage, to assmme the Noctilnca form under circunstances which have as yet not been closely observed. According to Cienkowski, conjugation may take place between normal forms as well as between encysted forms.

The Noctiluca owe their name to their power of producing light, -a power which they share with numerous sea amimals, such as Medusit, Pyrosoma, etc. The light proceeds

Fig. 137.-Stylonychia mytilus (after Stein), (seen from ventral side). Wz, Adoral zone of cilia; C, contractile vacuole; N, nucleus; N^{\prime}, paranucleus; A, anus. from the peripheral layer of protoplasm. Under certain conditions they rise from the depths of the sea to the surface in such enormous numbers as to cause wide tracts of the sea to give out a reddish light. It is after sunset, and especially in the evening, when the sky is overcast, that we get the beautiful phenomenon of the phosphorescent sea.

The species distributed in the North Sea and in the Atlantic Ocean is Noctiluca miliaris. Nearly allied is the Mediterranean Leptodiscus medusoides R. Hertwig.

Order 2.--Ciliata.*
Ciliated Infusoria with mouth and anus, sarcode body of complicated structure (with endoplasm and exoplasm), with nucleus and paranucleus (nucleolus).

The locomotive cuticular appendages that we most frequently meet with are slender cilia, which often cover the whole surface of the body in close rows, and give it a striped appearance. The cilia are usually stronger in the region of the mouth, and are here grouped so as to form an adoral zone of large cilia, which, during swimming, causes a whirlpool, and conducts the matter which serves as nourishment into the mouth (fig. 137). This adoral zone is more highly dereloped in fixed Infusoria such as the boll animalcule, the surface of which has no regular arrangement of cilia. In these animals there are

[^40]one or more rings of large cilia round the edge of a raised lidlike flap which is capable of being shut down. There is also an inferior row of cilia upon this flap running to the mouth. The free-swimming Infusoria often possess in addition to these delicate cilia and zones of cilia, thicker hairs and stiff bristles, and more or less bent hooks, which are employed in locomotion and for attachment.

Certain tixed Infusoria as Stentor (fig. 138) and Cothurnia secrete external coverings or shells, into which they retract themselves. Nourishment is taken in in a few cases by endosmosis through the whole surface of the body, e.g., the parasitic Opalina. The Acineta feed themselves by sucking the body of their prey. They are without a mouth, and are incapable of taking in solid food. But they possess a number of long, narrow, contractile tentacles, which radiate from the surface of their bodies, and have the form of delicate tubes, presenting a structureless external wall and a semi-fluid granular axis. The Acineta applies one or more of these organs to the body of an extraneous organism, when the substance of

Fig. 138.-Stentor Roselii Ehrlog. (after Stein). O, oral aperture with gullet; $P \Gamma$, pulsating vacuole ; N, nucleus. the latter travels down the interior of the granular axis of the tentacle into the body of the Acineta (fig. 139).

By far the greatest number of Infusoria possess an oral aperture, usually near the anterior pole of the body, and a second aperture which. acts as anus, and which can be seen in a definite part of the body as a slit during the exit of the excreta.

The body parenchyma, which is bounded by the external membrane, is

Fig. 139.-Acineta ferrumequinum Ehrbg., which is sucking the body of a small Infusorian (Enchelys) (after Lachmann). T, sucking tentacle; T^{r}, vacuole; N, nucleus.
divided into a viscid exoplasm and a more fluid endoplasm, into
which a slender asophagus, rarely supported by firm rods (Chilodon, Nassula), often projects (fig. 140). Throngh this the food stuff passes into the eudoplasm, in which it gives rise to food vacuoles. The latter undergo a slow rotating movement round the body in the endoplasm, which is carused by the contractility of the sarcode. During this process the food is digested, and finally the solid, useless remainder is ejected through the anal aperture. A digestive canal, bounded by distinct walls, exists no more than do the numerous stomachs which Ehrenberg, who was deceived by the food vacuoles, ascribed to his Infusoria polygastrica. In all cases where a digestive canal has been described, we have to do with peculiar strings and trabeculie of the internal parenchyma which enclose in their interstices spaces filled with a clear fluid.

The more viscid exoplasm is pre-eminently

Fig. 140.-Chilodon cucullus (after Stein), with gullet resembling a fish-basket. N, nucleus with nucleolus, excreta are passing out of the anus. to be regarded as the motor and sensory layer of the body. In it we find differentiations resembling muscles (Stentor, the stalk of Vorticolla). Sometimes small rod-shaped bodies are present (e.g., Bursaria leucas, Nassula), which are comparable to the thread cells of Turbellaria and Coelenterata. The contractile vacuoles appear as further differentiations of the external layer, structures which to the number of one or more are found in quite definite portions of the body. They are clear, mostly spherical spaces filled with a fluid; they diminish suddenly and then vanish, but gradually reappear and increase to their original size. These pulsating vacuoles are usually connected with one or more vessellike lacunæ, which swell considerably during the contraction of the vacuole. These structures have been compared to the water vascular system of Rotifera and Turbellaria, and have been explained as excretory-an interpretation which has in its favour the fact that the contractile vacuoles in certain cases open to the exterior through a fine pore at the surface, through which granules pass to the exterior.

The nucleus and nucleolus lie in the exoplasm of the infusorian body. The nucleus, which ten years ago was compared to the nucleus of the simple cell, is a structure of variable shape but with a definite position in the body. One, or more than one, may be present. It is sometimes round or oval, sometines elongated, being drawn out
to the shape of a horse-shoe or a band, and may be broken up into a number of fragments. It contains a grauular viscid substance, is bounded by a delicate membrane, and, according to the erroneous views of Stein and Balbiani, gives rise to ova or to germinal spores. The nucleolus or paranucleus also varies in form, position, and number in different species. It is always much smaller than the nucleus, and is strongly refractile; it usually lies close to the nucleus, or even sunk in a cavity of the latter. Both play an important part in the reproduction of the Infusoria.

Fig. 141.-a, Aspidisca lyneaster (after Stein). \quad, Aspidisca polysty$l a$, during fission (after Stein).

The most usual method of reproduction in the Infusoria is by fission. When the forms reproduced remain together and connected with the parent, a colony of Infusoria is formed, c.g., the stocks of Epistylis and Carchesium. Fission usually takes place by a transverse division (at right angles to the long axis), as in the Oxytrichidue,

Fig. 142.-Podophrya gemmipara (after R. Hertwig). u, with extended suction-tubes and prehensile tentacles, with two contractile vacuoles. b, the same with ripe buds, in which processes of the branched nucleus N euter. c, free young form.

Stentoridue, etc., and, obeying definite laws, follows conjugation and division on the one hand of the nuclei, and on the other of the nucleoli (fig. 141). Less frequently (Vorticella) the fission takes place through the long axis (fig. 143, a, b), and far more rarely in a diagonal direction. The asexual reproduction is often preceded by encystment, whicl appears to be of great importance for the
preservation of the Infusoria from desiccation. The animal retracts its cilia, contracts its body to a globular mass, and then secretes a tramsparent cyst, which hardens and protects the animal, thus enabling it to survive in (lamp) air. In the water, the contents of the cyst divide into a number of parts, which attain freedom by the bursting of the cyst, each one becoming a young animal.

Moreover, many Infusoria (Acinetce) produce with participation of the nucleus a number of buds asexually, which separate themselves from the walls of the parent body (fig. 142). The broods of Spherophrya make their way into the interior of other Infusoria,

Fig. 143.-Torticella microstoma (after Stein). a, In process of fission ; N, nucleus; the mouth apparatus in each portion is formed afresb, oe, gullet. $\quad b$, Fission is completed, the smaller product is set free after the formation of a posterior ring of cilia ; w, adoral zone of cilia. c, Vorticella in process of bud-like conjugation; K, the bud-like individuals attached.
as Paramaecium and Stylonychia, nourish themselves at the cost of the enlarged nucleus, and form embryos by fission. These embryos swarm out, and were for a long time taken by Stein for the embryo broods of Stylonychia (fig. $144,6)$.

The process of conjugation observed by Leeuwenhoek and O. Fr. Muiller is very general, and is connected with changes of the nucleus and nucleolus. These changes, which gave rise to the erroneous interpretation of the two structures as ovary and testis, are in reality simply preparatory to a process of regeneration of the nucleus by parts of the paranucleus, a process comparable to the phenomena of the fertilization of the ovum in sexual reproduction.

The conjugation of two Infusoria occurs in very different ways, and leads to a more or less complete fusion, which, after regeneration of the nucleus, is followed by an increase in the frequency of fission. Paramacium, Stentor, Spirostoma, during conjugation, become con-
nected by their ventral surfaces ; other Infusoria with a flat body like Oxytrichina, Chitodon, by their sides; while Enchelys, Halteria, Coleps, join together the anterior extremities of their bodies, giving the appearance of transverse fission. A lateral conjugation also takes place not unfrequently in Vorticella, Trichodina, etc., between individuals of unequal size, the smaller one having the appearance of a bud (bud-like conjugation) (fig. 143, c).

The alterations which the nucleus and paranucleus undergo during and

Fig. 144.-a, Stylonychia mytilus, in process of conjugation. The nucleus is depicted uring division (Balbiani's socalled ova); the nucleoli have divided into four spheres (sup)posed spermeapsules). b, Stylonychia filled with parasitic Spherophrya (after Balbiani). after conjugation have been especially worked out in Paramcecium and Stylonychia (fig $144 a, 145$). When several nuclei are present they

Fig. 145.-Stylonychia mytilus in process of conjugation, slightly magnified, (treated with acetic acid), (after Bütschli). a, Stage of conjugation with two nucleoli (paranuclei); $N b$, the four pieces into which the nucleus has divided in each individual. b, Stage of conjugation with four nuclcoli, of these $N^{\prime \prime}$ becomes the nucleus, and n^{\prime} the two nucleoli; $N b$, the four remaining pieces of the old nucleus. c, Stylonychia on the sixth day after conjugation with nucleus and two nucleoli.
fuse together to form a single oval body (Balbiani), the substance of which takes a finely fibrous structure previous to further fission,
like the substance of a true cell nuclens, when undergoing division.

Fig. 146. - Paramacium Bursaria about one hour after conjugation (after Bütschli). . n, nucleolus ; N, nucleus; $P V$, contractile vacuole. Two of the nucleoli have become clear spheres. Carchesium, for their prey, and swallow them down as far as the The paranucleus too increases in size and becomes striated, and divides into a number of bodies by a single or lepeated division. Some of these bodies produced by the division of the nucleus and paranucleus disappear or are cast out, and others are employed in the formation of the new nucleus and paranucleus. The processes of regeneration are for the most part not completed until the conjugating animals have separated. Conjugation is probably followed by a repeated division (fig. 146).

The mode of life of the Infusoria, which principally inlabit fresh water; is very various. Most of them lead an independent life, and take up larger. or smaller bodies, even Rotifera, as nourishment. Some, as Ampluileptus, select fixed Infusoria, as Epistylis and

Fig.147.-Balantidium coli with two pulsating vacuoles (after Stein). Under the nucleus lies a starch-granule that has been eaten, a ball of excrement is passing out of the anus at the posterior end. origin of the stalk; they then, while fixed on the stalk, secrete a capsule, and divide up into two or more individuals, which pass out. Certain Infusoria, as the mouthless Opalina, and many Bursaridx, are parasitic in the intestine and bladder of Vertebrates. To these belongs the Balantidium coli from the large intestine of Man (fig. 147).

1. Sub-order: Holotricha. - Body uniformly covered with cilia, which are arranged in longitudinal rows, and are shorter than the body. Longer cilia are sometimes found in the region of the mouth, but these do not form an adoral zone.

Besides the parasitic Opalinæ (Opalince runarum), without mouth or anus, the following families belong to this group :-
Fam. Trachelidæ. Body of changcable shape prooonged into an anterior neck-like process. Mouth ventral, without longer cilia. Trachelius ocum Elurbg., Amplitileptus fascicola Ehrbg.
Fam. Colpodidæ. Form of body definite. Mouth ventral, in a dcpression,
always furnished with long cilia or undulating membranes. Paramcerium Aurelia Fr. Miiller, P. Bursaria Fockc, Colpoda cucullus Ehrbg., Glaucoma scintillans Ehrbg.
2. Sub-order: Heterotricha.-Body uniformly covered with fine cilia, which are arranged in longitudinal rows, with a distinct adoral zone of cilia.

Fam. Bursaridæ. The adoral zone of ciliais on the edge usually of the left lalf of the body. Bursaria truncutella O. Fr. Mull., Balantidium coli Malmst., parasitic in the colon of man ; Spirostomum ambiguum Ehrbg.

Fam. Stentoridæ. At the anterior cnd of the borly is a peristomial space with a funnel-shaped depression, without any distinct gullet. Stentor polymorphes.s. O. Fr. Müll., St. curuleus, Ehrbg.
3. Sub-order: Hypotricha.-Body with sharply defined dorsal and rentral surface. The convex dorsal surface is usually naked, the rentral covered with cilia and beset with styles and processes, mouth on the ventral surface.

Fam. Oxytrichidæ. Budy clongated to an oral. On the left half of the ventral surface is a peristomial region, with an adoral zone of cilia. The rentral surface is beset at either edge by a marginal row of cilia, and also with bristles and hooks. Stylongchice pustulatu Ehrbg., with eight anterior styles. five ventral, and five anal cilia. Oxytrichu gibba O. Fr. Miiller.

Fam. Chilodontidæ. Body usually armoured, with gullet in the form of a fish-basket. Chilodon cucullus: Ehrbg.
4. Sub-order: Peritricha.-Infusoria with cylindrical or bell-shaped partially ciliated body. The cilia are placed on an adoral ciliated disc, and frequently on a ring-like zone.

Fam. Vorticellidæ. Peritricha with adoral spiral of cilia, without a shell. attached by a style, usually forms colonies. Vorticella microstoma Ehrbg., Epistylis plicatilis Ehrbg., Zoothamnium arbuscula Ehrbg., Carchesium polypinam Ehrbg.

Fam. Trichodinidæ. Peritricha with adoral spiral of cilia and circle of cilia as well as an apparatus for attachment at the posterior end. Triclundinu pediculus: Ehrbg.

Fam. Halteriidæ. Near the adoral spiral of cilia is an equatorial zone of longer cilia. Ifulteriu roltox Clap. Lachm.
5. Sub-order: Suctoria.-Body usually without cilia, with knobbed tentacle-like processes which serve as sucking tubes.

Fam. Acinetidæ. Acinctu mystucina Ehrbg.. Pudophrya rycloprom Clap. Lachm., Sppheropphrye Clap. Lachm.

As an appendix to the Protozoa we will now proceed to consider the Schizッ mycritide, which approach more nearly to the Fungi, and the Grefurinidu.

1. 'The Srhizomycetider* (Bacteria) are small globular or rod-shaped bodics which are found in decaying matter, and are especially numerous on the surface of putrefying fluids, where they give rise to a slimy film (fig. 148). They are most nearly allied to the fungus of yeast, with which they also agree in their manner of nourishment, in that they make use of ammonia and organic compounds containing carbon. Jike the yeast fungus they excite and maintain the fermentation or, as may happen, putrefaction of organic matter by withdrawing its oxygen or by attracting oxygen from the air (reduction or oxydation ferments). But they are clearly separated from the fungi by their development, for they increase by divilliny inter two hatres, while the yeast fungus (Sucrharomyces, Hormiseium) forms buds which separate off as spores. The transverse division takes place, after the cell has become elongated, by a constriction of the protoplasm and by the seerction of a cross partition wall. The daughter-cells cither divide at once, or remain united and produce chains of Bacteria (filiform Bacteria) by a fresh fission. Sometimes the successive generations of cells remain connected by a gelatinous substance, and so produce irregular shaped gelatinous masses (zoogluea). Sometimes they become free and are dispersed in swarms. They may also settle on the bottom in the form of a

Fig. 148.-Schizomycetes (after F. Cohn). a, Micrococcus. b, Bacterium termo, bacteria of putrefying fluids, both in the motile and zoogloea form.
granular precipitate, as soon as the nourishment in the fluid is exhausted. The greater number have a motile and a motionless stage ; in the first they rotate themselves about their long axis, but are also able to bend and extend, but never to serpentine. Their aetivity seems to be connected with the presence of coxygen.

Owing to the absence of sexual reprodnction, the division of Bacteria into genera and species is beset with such difficulty that we must content ourselves with establishing, in an artificial fashion, form species and physiological species and varieties without always being able to demonstratc their independence. F. Cohn distinguishes four groups:-(1) Globular Bacteria, Nicrococeus (Monas and Mycodermat) ; (2) Rod Bacteria (Bacterium); (3) Filiform Bacteria (Bacillus and Vibrio); (4) Spiral Bacteria (Spirillum and Spirnehceta).

The Globular Bacteria are the smallest forms, and only exbibit molecular movements. They cause various forms of decomposition, but not putrcfaction.

* F. Cohn, "Beiträge zur Biologie der Pflanzen." Heft 2 and 3, 1872 and 1875. "Untersuchungen iiber Baktcrien," 1, 2, and 3(Bacterium termo). Compare further the works of Eberth and Kicbs.

They can only be divided, according to their various methods of development, into chromogenous (pigment), zymogenous (furmentation), and pathogenous (contagion) divisions. The first appear in colourcd gelatinous masses and vegetate in the Zoogloeaform, r.y., M. pronliginsus Ehbrg. in potatocs, ctc., To the Zymogenous belong M. urce, urine ferment; to the Pathogenous 1.. vaccinc, the Pox Bacteria, M. septicus of pyemia, M. diphthericus of diphtheritis.
The Rod Bacteria form small chains or threads, and exhibit spontancous motions, cspecially in the presence of abundant nourishment and oxygen. Here belongs Bacterisom termo Ehrbg. distribnted in all animal and vegetable infusions and the ncecssary ferment in putrefaction, just as ycast is in alcohol fermentation ; also B. Lineolu Ehrbg. of considerable size, which exists in spring water and in standing water, in which there are no products of putrefaction, and, as well as the former, has a zoogloea jelly. Another Bacterium form acts as fcrment of lactic acid, according to Hoftman.

Of the Filiform Bacteria the motile Bacillus (vilurio) subtilis Ehrbg. occasions butyric acid fermentation, but is also found in infusions together with B. termo. Very nearly allied and hardly to be distinguished is the motionless Bucillus. anthracis of inflammation of the spleen. Vibrio mumilu and serpens are characterised by constant undulations of the chain. Finally these lead to the spiral forms of which Spiroehreta resembles a long and flexible but closely wound, and Spirillum, a thick, short, and coarse screw. Spirillum tenux, undula, rolutans, the last with a flagellum at each end.
2. The Gregarinide * are unicellular organisms which live as parasites in the

Fig. 149.-Gregurinu (after Stein and Kölliker). a, Stylorkynchus oligacanthus out of the intestine of Callopteryx. b, Gregarina (Clepsidrina) polymorpha from intestine of the meal beetle, during conjugation. c, The saine in process of encystment. d, Encysted Gregarina. e, Stage of formation of Pseudonavicellæ. f, Pseudonavicellacyst with ripe Pseudonavicellæ. intestine, and in the internal organs of the lower animals. The body is frequently elongated like that of a worm, and consists of a granular viscid central mass surrounded by a delicate external membrane (sometimes with a subcuticular layer of muscle stripes). The nucleus, a round ou oval clear body, is embedded in

[^41]the eentral mass. The strueture of the body may be complicated by the presence of a partition wall which parts off the anterior end from the main mass of the body. The anterior portion of the body gets in this way the appearance of a head, upon whieh there may be formed here aml there prominences in the form of hooks and processes for the purpose of attachment. Nourishment is effeeted by endosmosis, throngh the external walls. Motion is contined to slow gliding forward of the feebly contractile borly.
In their full-grown state the Gregarina are frequently seen fastened to one another two or more together. This comected state precedes reproduction (fig. 149). The two individuals lying with their long axes in the same straight line contract and surround themsel ves with a common cy:t, and after undergoing

Fig. 150.-Rainey's corpuscles from the flesh of a pig. a, An animal inside a muscle fibre. b, Posterior end of the same, strongly magnified; C, cuticular layer; B, spores. a proeess rescmbling segmentation. divide into a number of small sporelike balls, whicin beeome spintleslaped bodies (I'seudonavicellæ). The eyst secreted round the congregating individuals, or, as is often the ease, round a single individual, be. comes a Pseudonavicella cyst, and by its bursting the spindle-shaped bodies reach the exterior. The contents of each Psendonarieella sometimes gives rise to a small a moeboid body, as may be inferred from Lieberkuihn's observations on the Psorosperms of the pike. In other eases (Monocystis. Gonospora, ete.) siekle-shaped bodies arise in the spores, which, without passing through an amœboid stage. give rise to young Gregarines. Jonocystis agilis from the testis of the earth-worm. Greyarina L. Duf. (Clepsidrina Hammerseh.) Body with flat partition wall and wart like head at anterior.end. In the young stage the anterior end of G_{r}. blat. tarum r . Sieb. is fixed in the cells of the intestinal epithelium of Blatta. Gr. polymorpha Hammerseh. in the meal- worm.
[The Gregarines are found mainly in Invertebrata. They may be dirided into tivo main groups, the Polycystidea and the Monocystidca. In the former, which are found for the most part in Arthropods, there is a partition dividing the body into two parts ; in the latter, whieh are found ehiefly in Vermes, there is no such partition.]

The struetures long known as Psorosperms from the liver of the rabbit, the slime of the intestine, the gills of fishes, and the museles of many Mammalia, ete., present a great resemblance to the Pseudonavicellæ; but we are not yet fully enlightened as to their nature. The ease is the same with the struetures known as Rainey's or Mischer's corpuseles from the museles of, e.g., the pig ; and
the parasitic animals from varions wood-lice and Crustacea, which were assigned by Cienkowski to the fungi, under the name of Ameblidium parasiticum, remind us by their reproduction no less of the Gregarine and their cysts.

The Concidia which we meet with in the cells of the epithelium of the intestinc as well as in the bileducts of Mammalia should also be regarded as Gregarince (fig. 151). They transform themselves into eggshaped zoosperms by the formation of a capsule and

Fig. 151.-Coccidum oviforme from the liver of the rabbit, magnified 550 diam. (after R. Leuckar't). c, d, Stages of spore formation which have only been observed outside the cells. the production of several spores from their granular contents. In Coccidium oviforme from the liver of man and of the rabbit there are only four spores formed, which become sickleshaped rods.

CHAPTER VII.

COELENTERATA (Zoophytes).*

Radially symmetrical animals with a body composed of cells. They have a body-cavity which serves alike for circulction and digestion (gastrovascular space).

Amongst the Coelentercata we meet for the first time with organs and tissues composed of cells. In addition to the external and internal epithelium, cuticular, calcareous, and silicious structures, as well as muscles, nerves, and sense-organs are very generally present. On the other hand, the internal surface of the body is not differentiated into organs of circulation and digestion distinct from each other. The vegetative processes are performed by the internal surface of the gastric cavity, the gastrorascular space, of which the central part functions as stomach and intestine, the peripheral as vascular system.
R. Leuckart was the first to recognise the importance of these characters, and made use of them to separate the Polyps and the Medusce from the Echinoderms, thus resolving Cuvier's type of Radiata into the types of Ccelenterata and Echinodermata.

It is only in more recent year's that Naturalists have been convinced of the close relationship between the Poriferc and the Polyps:

[^42]and Medusce, and have included the former in the group of the Celenterata. The Poriferce were for a long time taken for plants, and more recently for Protozoon-stocks. While, however, the Polyps and Meduste are distinguished as Cnidarion and are characterised by the possession of nematocysts and by the higher differentiation of their tissues, the Porifera or S'pongiaria present nore simple forms of tissue in the spongy structure of their body, and are without nematocysts. The entire structure of the body may, generally speaking, be described as radial, although the radial symmetry does not appear in most sponges, and among the Cniduria transitions towards lateral

Fig. 152.-Young Sycon (after Fr. E. Schulze). O, Osculum or exhalent pore ; P, pore in the wall.
symmetry are apparent. Similar. organs are usually repeated round the body axis four or six times or in multiples of these numbers.

Four distinct types of body form are met with in the group Ccelenterata, viz., that of the Sponge; of the Polyp ; of the Medusu; and of the Ctenophora.

The sponge

 type.-The simplest form of Sponge is represented by a fixed cylindrical tube, with an exhalent opening, the Osculum, at the free end (fig. 152). The contractile wall is supported by skeletal spicules, and is pierced by numerous inhalent pores, through which water and small food particles pass into the ciliated internal space. By the fusion of separate individuals, and by reproduction by gemmation, the latter being the more frequent mode, widely different Sponge stocks with complicated canal systems are formed. The polyzooid nature of these is made apparent by the presence of many oscula.The Polyp type.-The Polyp has the form of a cylindrical or club-shaped tube, of which the posterior end is fixed and the opposed
free pole pierced by an oral opening situated on a flat or conical prominence, the oral cone. The mouth is surrounded by one or more circles of tentacles, and leads into a simple cylindrical body carity (Hydroidpolyps), or through an esophageal tube into a complicated gastrovascular cavity (Anthozoa, fig. 153). The disappearance of the tentacles gives rise to the so-called polypoid form, which consists of a simple hollow tube furnished with a mouth.

The Medusa type.-The free-swimming Medusa consists of a flattened disc or arched bell of gelatinous or cartilaginous consistence, from the under surface of which hangs a central stalk, the manubrium, bearing at its free end the mouth. This manubrium is

Fig. 153.-Sagartia nivea (after Gosse). frequently prolonged in the neighbourhood of the mouth into numerous lobes and tentacles, while from the edge of the disc arise a varying number of thread-like tentacles. The central cavity of the body, into which the hollow manubrium leads, is called the gastric cavity, and from it peripheral pouches or radial canals, the so-called vessels, run to the edge of the disc, where, as a rule, they are connected by a circular vessel.

The movements of the Medusa are effiected by the alternate contraction and dilatation of the muscular under surface of the bell, i.e. of the subumbrella.

Rudimentary Medusx, in which the manubrium and marginal tentacles are absent, are found. They are called Medusoids, and do not acquire individual independence, but

Frg. 15t.-Medusa of the Podocoryne camea with four tentacles at the edge of the disc, ovaries and manubrium, immediately after separation from the stock. remain attached to the body of the Medusa or Polyp from which they are budded.

The Medusie and Polyps, in spite of the important differences between them, are but modifications of the same plan of structure. A Medusa may be compared to a free, flattened Polyp, possessing a large gastric cavity and a muscular and enlarged oral disc.

The Ctenophor type has fundamentally the form of a sphere,
beset with eight meridional rows of vibratile plates, which, working like oat's, serve for locomotion (fig. 155).

The body parenchyma in the Sponges consists principally of :umbeba-like cells, which frequently bear flagella, but which neverproduce stinging threads. In the Cnidurice (Polyps and Medusie), in certain cells the peculiar struc-

Fig. 155.-Cydippe (Hormiphora) plumosa (after Chun). mouth. tures known as threed cells (fig. 156)are developed. They consist of small capsules filled with fluid, and containing a sharp-pointed, spirally coiled thread; they are developed in cells which may be called cnidoblasts. Under certain mechanical conditions, e.g. under influence of the pressure produced by contact with a foreign body, these capsules burst, and the thread is suddenly protruded, and either fastens on to the cause of disturbance or pierces it, carrying Fig. 156. - Nematocssts and into it a part of cnidoblasts of Siphonophora. a and b, with the cnidocil of the cell. c to c, Nematocysts with evaginated thread. the fluid contents of the capsule. In

The tissues (which are composed of cells) are generally arranged in two or three layers, of which the external layer is known as ectoderm and forms the outer skin, while the internal layer, the endoderm, line: the gastric cavity.

Between the two there is developed a delicate homogeneous supporting membrane or a stronger layer of connective tissue, in which the skeletal elements are developed. This intermediate layer is known as the mesoderm. The skeletal formations present great variations in structure and arrangement.

Muscles are formed in the deeper part of the ectoderm as cellprocesses (the so-called neuromuscular fibres), but often penetrate within the mesoblast as independent cell structures. Sense epithelium, nerve fibrillæ, and ganglion cells also appear as differentiations of the ectoderm. The endoderm cells, on the other hand, often bear cilia, and are principally concerned in the processes of digestion and secretion.

Where the tissues are upon the whole of homogeneous structure, we find a preponderance of asexual reproduction by fission and gemmation. If the individual forms so produced remain united, they give rise to the colonies which are so widely distributed amongst the Polyps and Sponges, and which, by the continual multiplication of their individuals, may in course of time attain a very considerable size. But we also meet everywhere with the sexual reproduction, in that ova or spermatozoa are produced in the tissues, usually in the region of the gastrovascular cavity, in a definite portion of the body. As a rule, the ova come in contact with the spermatozoa away from the place where they are produced; either within the body cavity or outside the parent body, in the sea-water. In a few cases only do both the sexual elements originate in the body of the same individual, as, for example, in many of the Spongiaria, some Anthozoa, and in the hermaphrodite Ctenophorcu. As a rule, in the colonies of Anthozoa the monœcious arrangement of sexes obtains, the individuals of the same stock being partly male, partly female. Some are diœcious, e.g. Teretillum, Diphyes, Apolemia.

The development of the Colenterata for the most part consists of a metamorphosis. The just hatched young differ from the sexual animal in the form and structure of the body, and pass through larval stages. The greater number of them leave the egg as ciliated larvæ, which resemble somewhat an Infusorian in external appearance. They acquire a mouth, bodly cavity, and organs for obtaining food, either during their existence as free larve, or after
attachment to solid surounding objects in the sea. If the young forms, which difler from the sexual anmal, gain the power of reproducing by budding, the development leads to various forms of alternation of generation.

Sub-Grours.-I. SPONGIARIA * = PORIFERA.

The body has a spongy consistence and is composed of mussses of cells capable of amuboid movements and supported by a solid, calcareous, silicious, or horny skeleton. There are external pores, an internal canal system, and one or many exhalent openings (oscula).

The sponges are at present universally regarded as Colenterata, and in this group they are distinguished from the Cnidaria (Polyps and Meduse). They are composed of a contractile tissue, which is usually supported by a framework composed of spicules and fibres; the whole being arranged in such a manner that there exists on the external wall of the body larger and smaller openings ; and in the interior a system of canals and spaces in which a continuous stream of water is maintained by the vibratile motion of cilia.

Amœba-like cells, net-like membranes of sarcode, flagellated cells,

Fig. 157. - Amœeba-like cell of Spongilla. spindle cells, ova, spermatozoa, and tissues derived as excretions from cells are present as the histological elements of the Sponge body. The chief mass of the contractile parenchyma is composed of the amobalike cells. These are granular cells, which, like Amœbæ, have no external membrane, can protrude and retract processes, and take into their interior foreign substances (fig. 157).

The framework or skeleton, which we find wanting only in the soft

[^43]gelatinous Sponges or Myxospongia, is composed of horny fibres or silicious or calcareous spicules.
The horny fibres form, without exception, anastomosing networks of varying degrees of thickness, and present a lamellated structure (fig. 158), which indicates that they are formed of a number of layers. They are formed by excretion as hardening portions of sarcode. The calcareous needles (fig. 159) are simple or three- and fourrayed spicules, and take their origin, as do the silicious structures, in the interior of cells. The silicious spicules present, however, an extraordinary variety of form: some of them constitute a connected framework of silicious fibres, and others are free silicious bodies with simple or branched central canals (fig. 160). The latter are found in the form of needles, spindles, cylinders, hooks, anchors, wheels, and crosses, and arise in nucleated cells, probably as deposits round a hardening of organic matter (central fibre).

In order to understand the morphology

Fig. 158.-Piece of network of horny fibres from Euspongia equina. of the Spongiaria we must begin by examining the structure of a young Sponge, which proceeds from the fixed larva. The young Sponge, after the formation of a ciliated gastric cavity and an exhalent opening or osculum, has the form of a simple hollow tube, the walls of which are pierced by pores for the passage of small food particles suspended in the water (fig. 152).

In this stage we can distinguish three layers - (1) an entoderm, formed of elongated flagellated cells; (2) a

Fig. 159.-Calcareous Spicules of Syeon. mesoderm, the skeletogenous cell layer, the structure of which recalls connective tissue; and (3) an ectoderm, which forms the outer layer of the Sponge, and consists of a flat epithelium. The cylindrical cells of the endoderm possess at their free ends surrounding the flagellum a delicate
hyaline marginal membrane, which, derived from a prolongation of the hyaline plasma, projects ass a hollow cylinder reeembling the protoplasmic collar of certain l'lagellate: (C'ylicomastiges). [This

Fig. 160.-Silex bodies from different silicions Sponges. a, Silex needle from Spongilla, inside the cell. b, Amphidisc of a gemmule of Spongilla. c, Anchor from Ancorina. d, Hook from Esperia. e, Star from Chondrilla. f, Anchor from Euplectella axpergillum. g, h, needle rays from the same. i, Six-rayed needle from the same, with central canal.
structure is commonly known as the collar, and the cells as the collared cells.]

Frg. 161.-Portion of the external layer of Spongilla with the pores, P (after Luberkühn).

The thick layer in which the skeletal spicules are produced consists of a hyaline matrix, in which irregularly branched or spindle-shaped amœboid cellsare embedded, and may be regarded, like the gelatinous substance of the Acalepha, as mesoderin, while the external, clearly defined, flat epithelium (also in the Asconia, Leucosolenia) is to be considered as ectoderm.

The pores or inhalent openings so characteristic of the Sponge body are in reality only intercellular spaces, and are able to close themselves, vanish and be replaced by new pores, which arise by the separation of one cell from another (fig. 161).

[^44]Amongst the calcareous Sponges, the simple Sponge with inhalent pores and terminal osculum (Olynthus-form) is represented by the stock-forming Leucosolenia (Grantic), which is composed of numerous hollow cylinders. The structure of this sponge has been described by Lieberkiilm.

In the Syconidce the body cavity has a more complicated form. The central space opens into secondary peripheral spaces or radial tubes, which are lined by ciliated cells, and open externally through the inhalent pores (fig. 162).

In other calcareous Sponges (Leuconidoc) the radial canals have the form of irregular parietal canals, giving off branches to the periphery and possessing dilated, ciliated chambers. This form of internal canal system is also found in most of the stock-forming, silicious Sponges (fig. 163).

Sponge forms may become more complicated by the formation of stocks ; the originally simple Sponge, which has developed from a single ciliated larva, gives rise by budding and incomplete fission to a polyzoid sponge body; or several

Fig. 163.-Section of Conticiun candelabrum (after Fr. E. Schulze). Gik, Ciliatect chamber of the parietal camal. originally separate individu als, each of which

Fig. 162.-Longitudinal section through Sycon raphanus, slightly magnified. O, Osculum with collar of spicules; $R t$, radial tubes which open into the central cavity. has originated from a single larva, fuse together to form a compound sponge stock. Both these methods of growth are repeated in a similar manner in the formation of the stocks of Polyps (fig. 164). In the same way that the fan-like nets of the Fan Coral (Rhipidogorgic f(abellum) are formed by the repeated fusion of its branches, the gastrovascular cavities of which anastomose, so also in the case of the branching sponges, as a result of the same process, reticulate, or coiled or even massive stocks are formed (fig. 165).

In this case the canal system, in which the modifications before described for eath individual Sponge are repeated, becomes more complex, partly through the formation of anastomoses, and partly because irregular gaps and winding passages make their appearance between the fused branches of the stock and form spaces which lead into the ciliated carvities.

Reproduction takes place mainly asexually by fission and the production of germs or yemmules, but also by the formation of ova and sperm ciapsules. The gemmules are in the fresh-water Sponyilla masses of cells which are surrounded by a firm shell composed of silicious structures (amphidiscs), ind, like encysted Protozoa, pass through a long period of rest and inactivity. After the expiration of the cold and sterile season of the year, the contents pass out of the opening of the capsule and generally surround the latter, and with increasing growth become differentiated into amœboid cells and all the essential parts of a new small sponge body. Multiplication by means of gemmules is also common among the marine Sponges. The gemmules take their origin under certain conditions as small globules surrounded by a membrane. The contents are essentially formed of sponge cells and spicules, and, after a longer or shorter period of inactivity, reach the exterior by the rupture of the membrane.

Sexual reproduction was first demonstrated with certainty by Lieberkiihn for Spongilla, but more recently has been shown to exist in almost every group of Sponges. In most cases the ova and spermatozoa seem to reach maturity at different times in the same Sponge.
The spermatozoa are needle-shaped, and lie in small spaces lined with cells. The ova, like the mother cells of the spermatozoa, are modified cells of the parenchyma, and are derived from cells of the same tissue layer (mesoderm) in which the needles and skeletal structures take their origin. The ova are naked ammboid cells, and pass into the canal system, while in the riviparous Sycons they
remain in the mesoderm, and there undergo their development. It is only later that the ciliated embryos or larve fall into the canal system, pass out, and attach themselves, to develop into a young sponge.

The embryonic derelopment among the calcareous sponges is most accurately

Fig. 165.-Euspongia officinalis adriatica, with a numver of oscula, O (after Fr. E. Sehnlze). known for the Syconidce from the investigations of Fr. Schulze and Barrois.

Fig. 166.--Development of Sycon rephanus (after Fr. E. Sehulze). a, Ripe ovum. b, Stage with four segmentation cells. c, Stage of segmentation with sixteen cells. d, Blastosphere witb large dark granular eells at the open pole. e, Free-swimming larva, one-half of the body (entodermal) being formed of long eiliated cells, the other (ectodermal) of large granular cells.

After the completion of the tolerably regular segmentation (fig. 166, a-c), S'ycon (Sycundra) rapherenues passes through in blastosphere stage, during which the greater half of the ovim consists of cleare cylindrical cells, and the smaller half at the still open pole of large dark gramular cells (fig. $166, d$). The cylindrical cells of the larger hatf develop cilia, and the embyro passes out of the body cavity and becomes a free-swimming larva, which attaches itself and alters its shape in such a mamer that the dark cells grow over the ciliated portion of the globe, which is meanwhile invaginating. The ectoderm and mesoderm are derived from the dark granular cells, and the ciliated cells

Fig. 167.-Young Sycon (after Fr. E. Schulze). O, Osculum or exhalcnt aperture; P, pores of the wall. give rise to the entoderm of the gastric cavity. Later on the body of the sponge becomes cylindrical, the osculum makes its appearance, and calcareous needles appear in the wall, which becomes pierced by pores (fig. 167).

With the exception of Spongilla, the sponges are marine, and are met with under very different conditions, and covering a wide area of distribution. The horny sponges live in shallow seas, as also the Myxospongice and Chalinea, or siliciceratous Sponges; while the Hexactinellide inhabit very considerable depths. Petrified remains of sponges are also found preserved in various formations, for instance in the chalk; and these remains differ much from the greater number of those living. On the other hand, the glassy sponges of the deep sea agree so fully with the ancient forms that they seem to be the direct descendants of the latter. Finally, many of the principal groups extend back into the palrozoic age, in which Lithistidee and Hexcactinellidee especially are met with in the most ancient Silurian
strata. Hence palæontology affords us no facts for determining the phylogenetic development of the Porifera.

CLASS I.-SPONGIA.

(With the charcucteristics of the Group).
Order 1.—Mrxospongia (gelatinous sponges). Soft, fleshy sponges, without any skeleton, with a hyaline gelatinous mesoderm, often containing fibrous cords. The ectoderm cells are fairly elongated, and bear flagella.

Fam. Halisarcidæ. ITuTisurca Duj. II. lobularis O. S., colour dark violet; enerusts stones; Sebenico. II. Dujurrlinii Johnst., forms a white encrustment on the Laminaria of the North Sea.

Order 2.-Ceraospongia (horny sponges). For the most part branched or massive sponge stocks, with a framework of horny fibres, in which grains of silex and sand are present as foreign bodies.

Fam. Spongiadæ. Eusponyia O. S., with very clastic fibrous framework, of equal strength throughout, mostly capable of being used for bath and washing sponges. E. atriatica O. S., cquina O. S., zimocea O. S., in the Greek Archipelago, molissimu O. S., Levantine sponge, cup-shaped. Spongelia elcyans Nardo.

Order 3.-Halichondrie (siliciceratous sponges). Sponges of very various shapes, with usually uniaxal silicious needles, simple silicious spicula, which are connected by delicate or firmer plasmatic structures, disposed in networks or enclosed in sponge fibres. Of the numerous families the following may be mentioned:-

Fam. Chrondrosidæ. (Gumminea), Coriaceous sponges. Chrondrosicu reniformis. Nardo.

Fam. Suberitidæ. Sponges of massive form, with knobbed silcx spicules, which, as a rule, arc arranged in network. Suberites Nardo. S' domuuculu Nardo, Adriatic, Mediterranean.

Fam. Spongillidæ. Massive or branched with simple spicules, connected by investments of sarcode. spongilla thuriatilis. Lk., Sp. lucustris Lk.

Order 4.-Hyalospongia. Sponges with a firm, often hyaline lattice-work of silex spicules, which present the most perfect form of six-rayed spicules (Hexcuctinellidce), and may be cemented together by a stratified silicious substance.

Fam. Hexactinellidæ (glassy sponges). With connected silicions framework and network of stratificd silicious fibres, which join the six-rayed silicious bodies, frequently with isolated spicules and tufts of silex hairs, which serve to attach the sponge. They live for the most part at considerable depths, and are allicd to the fossil Tentriculitide. Dactylecalyx Bbk. Euplectellu Owen
E. asperyillum Owen, Plilippines. In the borly cavity of the grassy sponge are found Argon spom!ifhiln, and a small Polremenn. Hyylonemen Sicholdia Giay, Japan. II. borrale Lovén, North Sea.

Order 5.-- Caldispongise, Calcareous sponges. Usually colourless, sometimes red-coloured sponges and sponge stocks, the skeletons of which consist of calcareous spicules. These are either simple needles (as they first appear in the embryonic form) or three or fourarmed cross spicules. Very often, however, we meet with two or all three forms of spicules in the same sponge.

Fam. Asconidæ (Leueosolemidre, Ascons). Caleareous sponges, the walls of which are pierect by simple canals. Grantia Lk. (Leucosolenia Bbk.), these are divided by E. Hacekel into seven genera, Aseyssa, A seettu, Ascilla, Ascortis, Asculmis, Ascaltis, Ascandro, aecording to the form of the ealearenus needles or spieula. Grr. botryoides Lk. (Ascasdra complicuta E. Hacck), Heligoland, nearly allied to Gr. Liebertiühni; O. S. from the Mediterranean and Adriatic.

Fam. Leuconidæ (Grontiilla, Leucons), ealearcous sponges, with thick wall, which is piereed by branched channels. Leuconia Grt., divided by E. Haeckel into seven genera, aecording to the form of the calcareons spicules-Leurys.su, Leucetta, Leucilla, Leucortis, Leweulmis, Lencaltis. Leucandra. L. (Lencetta) primigenia E. Haeck.

Fam. Sycondiæ (Sycons). Mostly solitary ealcareous sponges, with thick walls, which are pierced by straight radial tubes. The latter project on the surface as conical prominences of the wall. Sycon Risso, divided by E. Haeckel into seven genera—S'ycyssa, Sycetta, Sycilla. Sycortis, Syculmis, Sycaltis, Syrandra.

Sub-group II.-CNIDARIA (Celenterata, s. str.)

Colenteratc, with consistent tissues not pierced by a system of pores; the osculum is replaced by a mouth; with thread cells in the epithelial tissues.

The Cnidaria represent the Colenterata in a more restricted sense ; and in their structure the radial symmetry appears more strongly marked. In them the amoboid cell, as an independent tissue unit, loses its importance for the functions of locomotion and nourishment, although the entoderm cells of ten possess the power of absorbing solid particles, after the manner of the amœbæ. The gastrovascular apparatus, on the contrary, functions distinctly as a digestive and circulatory body cavity. Pore systems in the skin are not required for the introduction of nourishment, since the mouth, which corresponds to the osculum, provides for the reception of food. Nematocysts are very commonly found as productions of the epithelial cells,
principally of the ectoderm, but also of the entoderm. Each Cnidoblast, from the contents of which a nematocyst is developed, possesses a fine superficial plasmatic process (Cnidocil), which is probably very sensitive to mechanical stimuli, and occasions the bursting of the capsule.

Very frequently the Cnidoblasts are found thickly grouped together at certain places, and form wart-like swellings or batteries (fig. 168). The differentiation of tissues and organs also appears to have reached a higher stage in the Cnidaric, in comparison with

FIg. 168.-Group of nematocysts at the end of the tentacle of a Scyphistoma the Porifera, in which cnidoblasts have not hitherto been discovered. Sense cells, in particular, are found in the ectoderm, and these are not seldom grouped together as specific sense organs. Nerve cells and fibres are also present; the latter often form a deeper layer of fibrous tracts beneath the superficial layer of the ectoderm, with which they stand

Fig. 169.-Longitudinal section through the nervering of Charybdea. $S z$, Sense cells in the ectoderm; $G z$, ganglion cells ; Nf, nerve fibres; Stl, supporting lamella; E, entoderm cells. through processes of the sense cells. Amongst many Meduse (Crospedota and Charybdea) we find a single or double nerve ring near the edge of the disc, while in the Polyps (Actinia), the nerve fibres have a more irregular distribution (fig. 169).

$$
\text { CLASS I.-ANTHOZOA* }=\text { ACTINOZOA (Coral polyp.s). }
$$

Polyps with cesophageal tube and mesenteric folds, with internal generative organs (no medusoid sexual generation), usually with solid mesodermal calcareous skeleton.

The polyps of the Actinozoa are distinguished from the polyps

[^45]of the Mydromedusie by their larger size and the more complicated structure of their gastrovascular cavity (fig. 43). The latter is not a simple cavity in the body, but is divided by numerous vertical partitions, the mesenteric folds, into a system of vertical pouches which communicate with one another at the bottom of the grastric cavity. In addition a system of capillary passages is also frequently present in the body wall. At their upper extremity the pouches are continuous with the canals leading into the hollow tentacles, since the edges of the mesenteries bounding them unite with the wall of the olal tube which hangs from the mouth. An opening may however persist in each mesentery underneatl the oral disc, putting the neighbouring chambers in communication. The oral tube has the significance of an oesophagus, and possesses at its internal end, where the peripheral chanbers open into the central cavity, an opening capable of being closed, by means of which its cavity stands in communication with the gastrovascular system. The mouth is used not only for the reception of food, but also for the rejection of excreta. The secretions of the coiled and twisted filaments (mesenteric filaments) at the edge of the mesenteries must be regarded as aiding in digestion (fig. 43).

The body of the polyp consists of an external coating of cells, an internal layer lining the gastric cavity, and an interposed connective tissue layer of very various thickness and structure (mesoderm). The latter appears rarely as gelatinous tissue, and more frequently as a tough homogeneous connective tissue containing spindle and star-shaped cells (Alcyonido, Gorgonido). This tissue can also assume the form of fibrous connective tissue, and become the seat of calcareous deposits. Muscle fibres, which take their origin from the entoderm cells, can also appear in the mesoderm ; while the newly discovered ectodermal sense epithelium and nerve fibrillæ keep their superficial position in the region of the oral disc and on the tentacles. The generative products arise on the mesenteries near the mesenteric filaments as band-shaped or folded thickenings, and, according to Hertwig, are products of the entoderm. The sexes are for the most part separate, although hermaphrodite individuals
"The Strueture and Distribution of Coral Reefs," London, 1842. J. D. Dana, "United States Expl. Expedition. Zoophytes." Philadelphia, 1846, M. Edwards et J. Haime, "Histoire naturelle des Corailliares," 3 Jom, Paris, 1857-1860. Lacaze Duthiers. " Histoire naturelle du Corail.: Paris, 186t. Gosse, "Actinologia britanniea," London, 1860. Kölliker. "Anatomiseh-systematische Besehreibing der Aleyonarien," 18T2. Moseley, "T The Structure and Relations of the Alcyonarian Heliopora corulea, ete." Philosoph. Transactions of the Roy. Soc., 1876.
are met with. In rare cases all the individuals are hermaphrodite, e.g., Cerianthus.

The embryos produced from the fertilised ovum, which undergo a complete segmentation, are frequently born alive as cilated larvæ, and possess an internal gastric cavity, and an oral aperture situated at the pole, which is directed backwards during movement. They then fix themselves by the pole opposed to the oral aperture and protrude in the region of the mouth first two, then four, eight, twelve, etc., tentacles; in the Octactinia eight tentacles at once.

In the Polyactinia, the tentacles and mesenteric pouches of which are arranged in multiples of six, it was till recently erroneously believed with M. Edwards that six primary mesenteries were first developed, then six secondary between them; then twelve were formed, then twenty-four, etc., so that mesenteries of equal size were of equal age and belonged to a cycle formed at one time. Lacaze Duthiers however produced proofs that the increase of mesenteries and of tentacles follows an entirely different law of growth, and that these structures in the first phases of development show a bilateral symmetry; and it is only later that the six radial symmetry appears by the equalization of the alternating elements of unequal age. A remnant of the primitive bilateral symmetry is moreover ${ }^{-}$ often preserved in the elongated mouth slit, which falls in the plane of the two primary tentacles.

Amongst the Polyactinia the very young larve of the Actinia (A. mesembryanthemum, Sagartic, Bunodes) have been most accurately investigated. They are small ciliated planulæ, one pole of which is somewhat drawn out and bears is tuft of longer cilia. The opposite end of the body is flattened and pierced with a mouth. This leads by a short cosophageal tube, which arises by invagination, into the narrow gastric cavity. The first clifferentiation consists in the appearance of two folds placed opposite each other, which divide the gastric cavity into two unequal chambers. The mouth is drawn out in the form of a longitudinal slit symmetrical with and at right angles to these primary mesenteric folds: so that by means of them the position of the median plane can be determined. Two new folds soon arise in the larger chamber, which we will call the anterior ; these lie opposite to one another and symmetrically with the median plane; so that four chambers are now present, an anterior, a posterior, and two smaller lateral ones. A third pair of folds are then developed in the posterior space, and a fourth pair follow quickly in the lateral chambers: the fourth pair are slightly smaller*
than the preceding ones. After an interval four new folds appear, one on each side of the two prinary mesenteries (fig. 170). The twelve gastrovascular chambers thus formed gradually becone equal in size, and can be separated into two unpaired clambers situated in the median plane, and into five pairs placed symmetrically on either side of it.

Fig. 170.-From the history of the development of Actinia mesembryanthemum (after Lacaze Duthiers). ", Larva with eight mesenteries and two coiled bands; O, mouth. l, Shightly more advanced larva with the commencement of eight tentacles. c, d, Young detinia with twenty-four tentacles, two longitudinal sections at right angles to one another. e, Mouth ard tentacles seen from the oral surface.

The tentacles begin to develop before the appearance of the fifth and sixth pairs of mesenteries. They appear at the oral end of the gastrovascular chambers, and the tentacle of the anterior unpaired
chamber* appear's first, surpassing in size those which follow it. The opposite (posterior) unpaired tentacle and the other paired tentacles then make their first appearance as small wart-like prominences. When the twelve tentacles have been formed, they become alternately equalised, so that six larger tentacles, amongst which are reckoned the unpaired tentacles of the long axis, alternate with the same number of smaller ones, and we have two circles of six tentacles of the first and the same number of the second order.

The asexual reproduction by gemmation and fission is of great significance. Buds can be formed in various positions, even at the oral end, in which case a strobila-like form appears. In Blastotrochus the buds appear at right angles to the axis of the parent animal (fig. 171).

Fig. 171.-Blastotrochus nutrix (after C. Semper). $L K$, Lateral bud.

If the individuals so produced remain connected with one another, a polyp-stock is formed, which may attain very various forms and great size. As a rule the individuals are imbedded in a common body mass, the conenchym, and their gastric cavities communicate more or less directly, so that the juices acquired in the individual polyps penetrate into the collective stock. This stock affords us an excellent example of an animal community built up out of similar members. The formation of the generative products alone is distributed, as a rule, to different individuals, which, however, unite in discharging all animal and vegetative functions together (fig. 172).

The skeletal formations of the Fig. 172.-Branch of a Polyparium of Corallium polyps are specially worthy of rubrum (after Lacaze Duthiers). P, Polyp. remark (Polyparia). In almost every case, with the exception of $A c$ tinia, there is a deposit of solid calcareous matier in the mesoderm, and

[^46]according to the density of this deposit, there is produced a leathery, chalky, or even stony framework.

If isolated needles or toothed rods (fig. 173) of calcareous substance aro distributed beneath the epidermis and the conenchynu, the polyp-stock has a fleshy, leathery nature (Alcyonaria) ; but if, on the contrary, the calcareous structures are fused together or are cemented together in a larger mass, a solid, more or less firm, of ten stony cal careons skeleton is dereloped (Madreporaria). In the individual animals the formation of this sub-epidermic skeleton begins on the

Fig. 173.-Calcareous bodies (Sclerodermites) of Alcyonaria (after Kölliker). a, of Plexaurella. ℓ, of Gorgonia. c, of Alcyonir:m. foot surface, and advances thence in such a manner that near the calcareous foot-plate there is formed in the under part of the polyp body a more or less cup-shaped theca, from which numerous perpendicular plates, the septa, radiate inwards. In the cup-shaped calcareous framework of the individual polyp, the structure of the gastrovascular cavity is repeated, with the exception that the calcareous septa correspond to the interspaces of the mesenteries (fig 174). The number of the septa increases as does that of the mesenteries and tentacles with the age of the polyp according to the same laws. At the same time a great number. of systematically important modifications of the skeleton are effected by further differentiation. A column-like, calcareous mass sometimes arises in the axis of the cup (columella), and in its neighbourhood a circle of calcareous: rods (pali), which are separate from the septa (fig. 175). There may further be formed between the lateral surfaces of the septa processes of calcareous substance as interseptal rods or horizontal shelves (dissepimenta): also on the outer side of the wall of the theca ribs (costce) projecting beyond its external surface, and similar dissepiments may be produced between these.

The important diversities of form in the polyp stocks are not only occasioned by the differences of structure of the skeleton of the

Fig. 174.--Vertical section through a polyp of Astroides calycularis (after Lacaze Duthiers). The mouth open. ing and oesophageal tube are seen as well as the mesenteries fastened to the same; also the calcareous septa between the mesenteries, and the columella of the skeleton, $S k$.

Fig. 175.-Vertical section through the cup of Cyathina Cyathus (after Milne Edwards). S, Septa; P, pali; C, columella.
polyp, but are also the resultant of varying methods of growth by gemmation and imper-

Fig. 177.-Branch of Oculina speciosa (after Eत.
H).

Fig. 176.-Madrepora vermcose after Ed. H.
fect fission. According to the method, numerous modifications of branched stocks are distinguished, e.g., Madrepores (fig. 176), Oculinidce (fig. 177), and the lamellar and massive stocks as Astreea (fig. 178) and the M(eandrinidce (fig. 179).

The Anthozoca are all inhabitants of the sea, and live mostly in the warmer zones, but certain types of the fleshy

Octactinue and Actinire are distributed in all latitudes. The polyps which build banks and reefs are confined to a zone extending about 28 degrees on either side of the equator, and only here and there extend beyond these bounds. They live for the most part near the coast, and produce there in comse of time rocky masses of colossal extent by the accumulations of their stony calcareous frameworks. These masses may form corul reefs

Fig. 178.-Astrea (Goniastrea) prectinata Ehrbg. (after Kluuzinger). (atolls, bariver reef's, fringiny reefs), which are perilous to shipping, and may also become the foundations of islands. In both cases a gradual alteration of level, the raising of the bottom of the sea, assists the work of the coral animals. The presence of the coral banks in the deep sea is, on the other hand, due to a continual sinking of the sea-bottom.
The part which the Anthozon take in the alteration of the earth's surface is considerable. In the present time they protect the coast from the consequences

Fig. 179.-Mreandrina (Coloria) arabica Klz. (after Klunzinger). of the breaking of the waves and assist in the formation of islands and rocks by producing immense masses of calcareous matter. In earlier geological epochs they have played a still more important part judging from the great thickness of the coral formations of the Palæozoic period and of the Jurassic formation.

$$
\text { Order 1.-Rugosa }=\text { Tetracoralla. }
$$

Palcozoic Corals with numerous symmetrically arranged septe, grouped in multiples of four.

To these belong the families of the Cyathophyllida, Staurida, etc.

Order 2.-Alcyonaria $=$ Octactinia.

Polyps and polyp stocks with eight plumed tentacles and the same

 number of uncalcified mesenteric folds.The calcareous secretions of the so-called cutis lead to the formation of fleshy polyparia or of friable crusts surrounding an axial skeleton, which is sometimes horny, sometimes calcareous and stony, or of rigid calcareous tubes (Tubipora). In all cases definite calcareous bodies, the sclerodermites, form the foundation of the skeleton. The embryos are mostly born as ciliated larva, without mesenteries or tentacles. The separation of the sexes in different individuals is the rule (fig. 172).

1. Fam. Alcyonidæ. Fixed polyp stocks without axial skeleton, usually with a fleshy, leathery polyparium, with only a slight deposition of calcareous matter in the cutis. The colonies arise either through lateral gemmation, when they form lobed and ramified masses, e.g. Alcyonium palmatum, Pall., digitutum L., or the individual animals are connected by basal buds and rootlike processes, e.g., Corrnularia crassa Edw.
2. F'am. Pennatulidæ (Sea feathers). Polyp stocks, the naked free basis of which is embedded in sand and mud, usually with horny, easily bent axial skeleton. There are small sterile polyps as well as the sexual animals. The presence of an opening in the stem for the ejection and reception of water is worthy of remark. The animals sometimes are placed on the side twigs of the stem, and the polyparium is feather-like, c.g., Pennatula rubra Ellis; sometimes they are distributed on all sides of the simple stem, c.g., the diœcious Veretillum cymomorium Pall. In other cases the polyparium appears flat and shaped like a kidney, with a bulbous root without an axis, Renilla violacea Quoy. Gaim., or a kind of umbel is formed by the aggregation of the polyps at the upper end of a long stem, Unbellula Thomsonii Köll.
3. Fam. Gorgonidæ. The fixed colonies possess a homy or calcareous treelike branched axial skeleton, which is surrounded by a friable crust, or by a softer parenchyma containing calcareous particles. The body cavities of the individual animals communicate by branched vessel-like tubes which contain the common nutritive fluid. The axis is either horny, flexible, and unjointed, as, e.g., Gorgonia verrucosis Pall., (Rhipidogorgia) Aluellum L., or composed of alternating horny and calcareous segments, as, e.f., Isis hippuris Lam., Melitheer ochrucen Lam., or stony and formed of calcareous matter. The red coral, Corallium rubrum Lam., falls under the last head, and yields the coral stone which is used in jewellery. This spccies is found in the Meditcrianean, on the rocky coasts of Algiers and Tunis, and there forms an important object of industry.
4. Fam. Tubiporidæ, organ coral. The poliparia resembling the pipes of an organ. The animals arc placed in parallel calcareous tubes connected by horizontal plates. Tulripora Hemprichtii Ehrbg.

> Order 3.-Zoantharia = Hexactinia.

Polyps and polyp stocks, whose tentacles usually alternate in several circles, and are either six or some multiple of six in number.

I'Ine body is seldom quite soft, or with a leathery firamework; as a rule it has it calcareous stony polyparium with radial striations. Separated sexes are the rule, but hermaphrodite polyps (Actinia) are not seldom to be met with. The polyps very generally retain their embryos for a long time, so that they are born eight or twelve rayed, with rudimentary tentacles. Many give rise to coral reefs and islands (figs. 175-179).

1. Antipathamia. Mostly with only six tentacles, ind horny skeletal axis, F'am. Antipathidæ. Polyp stocks with soft non-calcareous body, but with simple or branched axial skeleton. Only six tentacles surround the mouth, ".I., Antipathes Pall.
2. Actiniaria, with no hard structure.

Fam. Actinidæ, with soft body; sometimes single animals with several altcrnating circles of tentacles, Aetinia L.; sometimes connected in stolons and aggregated to form stocks, Zounthus. Cuv. The former are able, by means of their contractile foot, to leave their place of attachment and to move freely. Many reach a relatively considerable size, and possess beautiful colours. Under the name of sea anemones they are the ormaments of salt watcr aquaria. Actinia mesembryanthemum L. The skin somctimes secretes a glutinous mass filled with nematocysts or a kind of membrane, Cerianthus: Delle Ch.
3. Madreporaria with continuous hard calcareous skeleton.
(a) Aperrosa.

Fam. Turbinolidæ. Mostly single polyps with compact calcarcous framcwork, imperforate thecæ, and well developed septa, the spaces between which are open to the bottom. Thrbinolia Lam., Flabellum Less., Caryophyllia Lam., C. ryathus. Lam., Blustotrochus Ed. H.

Fam. Oculinidæ. Polyp stocks with hard usually branched polyparium, with coenenchyma rich in calcareons matter, and but few septa in the cup of the individual. Oculina rirgineu Less., Indian Ocean. Amplihelia "culata L., white corals of the Mediterranean.
Fam. Astræïdæ, Star corals, Mostly massive polyp stocks with fuscd thecæ, and without coenenchyma. The septa have sometimes cutting edgcs. sometimes toothed edges. The interseptal spaces are filled with horizontal partition walls. Eusmilia Lidw. The single animals are produced by fission and remain connected only at their bases. They produce a cespitous polyparium, the septal edges of the cup being cutting. Galarca Oken. The single cups arise by gemmation, are free at the upper edge ; the septa have cutting edges. Astrcea Lam., single cups fused throughout the entire wall. The septal edges of the cup are jagged. Maculvina Lam., the ncighbouring cups fused to form long valleys. M. Crassa Edw. H.

Fam. Fungidæ. Mushroom corals. Usually with large flat single cups, sometimes polyp stocks ; without thecæ, with numerous strongly developed septa, toothed and connected by synapticulæ. Fungia riseus Dana., Halomitre Dana., Lophoseris Edw. H.
(b) Perforata.

Fram. Madreporidæ, Madrepores. Polyps and polyp stocks with porous coenenchyma and perforated thecæ. Gastric cavity open at the bottom and communicating with the central canal in the axis of the branched polyparium.

Septa but slightly developed. Mudrepora rervicornis Lam., Dendropleyllius rumech Edw., Mediterramean, Astroides colycularis Pall.

(LLASS 11.-POLYPOMEDUSA.* [HYDROZOA.]

Polyps without cesophageal tube, with simple gastrovascular cavity. The generative elements are developed in medusoid forms which may be either free-swimming, or permanently attuched to hydroid forms.

This class includes the small polyps and polyp stocks, and the Mechusce which form the sexual generation. The Polypomedusce have always a simpler structure than the Anthozoa to which they are also usually inferior in size. They lack œsophagus, septa, and gastrovascular pouches. Only the polyps of the asexual generation of the Scyphomeduse [Acraspeda], known as Scyphistoma, possess a remnant of the gastric folds as four gastric ridges from which filaments are developed. The polyp stocks develop in rare cases (Milleporidce) a compact calcareous framework comparable to the polyparium. When skeletal formations are present they consist as a rule of more or less horny secretions of the ectoderm,

Fig. 180 a.-Branch of an Obelia-stock (0 , gelatinosa.). O, Mouth of a nutritive polyp with extended tentacles. M, Medusa buds on the body of a proliferous polyp (blastostyle) ; Th, bell-shaped cup (theca) of is nutritive polyp. which as delicate tubes surround the stem and its ramifications, and sometimes form small cup-like structures surrounding the polyp, and known as

[^47]hydrothecre (fig. 180 a). A more or less stifl mesoderm lamella is also developed in the interior of the body wall, between the ectoderm and the endoderm. This serves to support the soft parts of the animal, and, in the Meduse, is in prit represented by the gelatinous comective tissue of the disc.

The Mednsa (fig. 180 b) is without doubt morphologically higher than the Polyp, since it represents the mature sexual individual, while the Polyp performs the nutritive and vegetative functions.

The Medusi, in correspondence witl its power of free locomotion, possesses an ectodermal nervous system and sense organs. The nervous system consists of nerve fibres and ganglion cells, and is usually specially concentrated round the edge of the disc, where it

Fig. 180 l.-Free Medusa of Obelia gelatinosa, as jet without generative organs; g, auditory vesicles. forms a double ling of fibres rumning parallel to the circular vessel. The sense organs are the so-called marginal bodies. The generative products of the Medusæ either have their origin in the ectoderm, in which case they may be developed on the under. surface of the disc (subumbrella) in the ectoderm immediately underlying the radial canals (Eucopidce), or in the ectoderm of the manubrium (Oceanido) ; or they may arise from the endoderm of the under surface of the umbrella (S'eyphomedusce).

Both Polyps and Meduse frequently remain at a lower grade of morphological differentiation, the former becoming polypoid appendages, the latter medusoid buds enclosing the generative products. In either case they are situated on the stem or on some part of the Polyp. The individuality of such appendages appears limited; the medusoid or polypoid animal sinks, physiologically speaking, to the value of a portion of the body or of an organ, while the entire stock
I. Agassiz, "Contribution to the Natural History of the United States, Aealephe," vol. iii., 1860 , vol. ir., $186 i 2$. E. Hacckel, "System der Medusen," Tom. I. and II., Jena, 1880 and 1881.
approaches more nearly to a single organism. The more completely polymorphism and division of labour are impressed upon the polypoid and medusoid appendages, so much higher becomes the unity of the whole which is morphologically a colony of animals. In these cases it is often difficult to distinguish between budding and simple growth.

For a long time it was considered as a remarkable circumstance, hardly admitting of a satisfactory explanation, that organisms which differed so widely as Polyps and Medusx-they had, indeed, been systematically separated as different classes-should only form dif ferent stages in the life-history of a single cycle of development and thus be united in the closest genetic connection. The theory of "Alternation of Generations" contained only a description of the matter, and offered no explanation. The discovery of the mode of origin of the Medusa as a bud on the body of the Polyp first clearly demonstrated the direct relation of the two forms, for it proved that the Medusa is a flattened, disc-shaped Polyp with a shallow but wide gastric cavity, the periphercal part of which has, by the fusion of its upper and lower walls along four, six, or eight radiating areas, become divided into the vascular pouches (gastric pouches), or, as they are called, radial canals, which correspond to the gastrovascular pouches of the Anthozơ. The differences consist, in connection with the discoidal form, mainly in the position of the gastric tube as an external appendage, the manubrium, and in the great reduction in height of the radially extended septa (mesenteries), which are traversed by a layer of endoderm cells, the vascular or endoderm lamella. This layer is derived from the fusion mentioned above of the aboral with the oral layer of the endoderm of the peripheral part of the gastro-vascular cavity. At the same time the oral disc becomes enlarged and concave to form the cavity of the bell, the ectodermal lining of which gives rise to the muscles of the subumbrella. The supporting substance of the arched (after it is freed from its attachment) aboral surface of the disc becomes very much thickened and gives rise to the gelatinous substance (mesodermic), which sometimes contains cells; while that of the oral surface keeps the character of a thin but firm lamella, and serves as a support for the muscles on the under surface of the disc. The tentacles accordingly arise near the edge of the disc, and become the marginal tentacles of the Medusa. In addition to these, four simple or branched oral appendages appear as outgrowths from the manubrium.

In addition to the sexual reproduction, asexual multiplication is
widely distributed, especially amongst the polypoid forms, in which it leads to the formation of polymorphous animal stocks. The two forms of reproduction alternate for the most part in regular order, so as to produce diflerent generations. There are, however, Medusce (Aeyinopsis, Pelagia) which proceed without alternation of generations and develop direetly from the ovim by continuous development with metamorphosis; but, as a general rule, the egg of the Medusu (phanero-codonic gronophore) or the medusoid generative bud (idelocodonic gonophore) produces a Polyp, and this Polyp either at once, by transverse fission (Scyphoncedusce), or later, after a longer period of growth, in which a sessile or free-swimming polyp stock is produced, gives rise to a generation of free-swimming Medusse, or of medusoid buds which never become separate from the polyp stock. The Hydromedusa feed entirely on animal substances, and for the most part are inhabitants of the warmer seas. The free-moving Medusce and Siphonophora are phosphorescent.

Order 1.-Hydronedus x.*

Colonial forms, the individual Polyps of which are without resophageal tube or mesenteric folds. The sexucal generction lus the form either of small free-swimming Medusce provided with a velum (Craspedote Medusce) or of medrsoid generative buds (rudimentary Medusce) which remain attcuched to the hydroid colony.

The Polyps and polypoid forms are the asexual individuals. They form small moss- or tree-like stocks which are frequently surrounded by chitinous or horny tubes (cuticular skeleton). These exoskeletal structures may becoune extended into cup-like hydrothecæ surrounding the individual Polyps. The stem and ramified branches [conosark] contain a central canal which communicates with the gastric space of each individual Polyp and polypoid appendage and contains the common nourishing fluid.

The Polyps have no osophageal tube, and the ciliated gastric cavity is undivided by mesenteries. As a rule, the ectoderm and entoderm remain simple, and are only separated by a thin interposed supporting lamella which does not contain cells. The presence of elongated muscle fibres as processes of the ectodermal epithelial cells is very general (Hydrcl,.Podocoryme). These muscles may, however,

[^48]be separated as an independent layer of nucleated fibre cells below the epithelimm.

The Polyps are not invariably alike, proliferous Polyps (or Blastostyles) being frequently found as well as the nutritive ones. The proliferous Polyps develop generative buds on their walls. The sterile Polyps may differ from one another in the number of tentacles and in their entire form, so that different kinds of individuals may be found on a single stock. Thus we find the polymorphism of the Siphonophora foreshadowed amongst the Hydroidec (Podocoryne, Plamularia).

The generative products are only exceptionally developed in the Polyp body itself, in which case they are produced in the ectoderm (Hydra). This exception is probably to be looked upon as an extreme case of degeneration of a medusoid bud. As a rule the generative products are developed in special medusoid buds [gonophores] formed from both cell-layers.

In the most simple cases the budding' individuals of the sexual generation contain a diverticulum of the

Fig. 181.-Podocoryne camea (after C. Grobben). P, Polyp; M, Medusa bud on the proliferating polyp; S, spiralzooid; Sk, skeleton Polyp (compare the free Medusa, fig. 154). gastric cavity of the polyp-shaped parent or of the axial cavity of the hydroid stock. The generative products become accumulated around this diverticulum (Hydractinia eclinata, Clava squamata). In a more advanced stage we find a mantle-like envelope enclosing the bud, and constituting the rudiment of the umbrella, with a continuous vascular lamella or with more or less developed radial vessels (Tubularica coronatu, Eudendrium ramosum, Van Ben.) Finally, at the highest stage, the buds develop into small Medusæ (Campanularicu gelutinosa van Ben., S'arsicı tubulosa), which become free, and sooner or later',
often only after a long period of free life, in which they become much larger and undergo a metamorphosis, reach sexual maturity.

The Medusar belongring to the order Mydromeduse are, with but few exceptions, distinguished fiom the Acaleplee (Scyphomedusie) by their smaller size-although certain forms, for example Aequorer, may attain such a size as to have a dianeter of more than a foot-and by their simpler organization. The number of their radial vessels is smaller (4,6 , or 8), their sense orgins (marginit bodies) are not covered hy folds of membrane (hence Gymnophthahuate Forbes), and they have a muscular velum (hence C'raspectola Gegenbaur) (fig. 182). The generative products are always formed from the ectoderim, and originate on the walls of the radial canals or of the manubrium, but

Fig. 182.-Phialadium variabile represented from the underside of the umbrella. I', Velum; O, mouth; $O v$, ovary ; Ol, auditnry vesicle; $R f$, tentacles on the margin of the disc ; $R w$, marginal swellings. never, as in the Acalepla, in diverticula of the gastric cavity.

The hyaline gelatinous substance of our Merluse is, as a rule, structureless, and contains no cellular elements ; there may, however, be tibres running perpendicularly through it (Liviope). These fibres are probably derived from cell processes of the ectoderm and entoderm, and have arisen contemporaneously with the gelatinous disc, which is itself to be looked upon as an excretion product of the adjoining
ectoderm and entodern epithelium.
The nerve-ring is placed at the edge of the disc at the point of insertion of the velum. It is covered by a sense epithelium composed of small cells bearing sense hairs, and has the form of a double fibrous cord containing ganglion cells. The larger upper nerve-ring runs above the velum, while the weaker nerve-ring, on the other hand, is placed below it. The lower nerve-ring is composed of larger fibres and larger ganglion cells; bundles of fibrille pass off from it to supply the muscles of the velum and subumbrella, where they form a sub-epithelial plexus interspersed with ganglion cells, between
the muscular epithelium and the fibrous layer. The ganglion cells in the upper nerve-ring are smaller, and the fibrille given off from it pass to the tentacles. The fibrillie of the sense nerves may be derived from both rings. The marginal bodies have long been recognised as sense organs, and are either eye spots (ocelli) or auditory vesicles; hence the IHydromedusce may be divided into two groups, the Ocellata or Vesiculata.
In the Vesiculata the auditory vesicles are situated at the edge of the under side of the umbrella, and contain one or more concretions (otolith) which are formed in the interior of cells. Peculiar sense cells surround each vesicle-like cell containing a concretion. The curved hairs of these sense cells (auditory hairs) are in contact with the concretion vesicle. A nerve fibrilla enters the basis of the auditory cells (fig. 183).

Fig. 183.-Sense organ on the nerve-ring and circular vessel of Octorchis (after O, and R. Hertwig). Rb, Sense organ; O, O^{\prime}, two otoliths; $H h$, auditory cilia ; $H z$, auditory cells; $N v$, upper nerve-ring ; $R g$, circular vessel. (Type of the anditory organ of the Tesiculata.)

The auditory organs of the Trachymedusce are placed above the velum, and are in connection with the upper nerve ring; they have the form of

Fig. 184.-Auditory vesicle of Geryonia (Carmarima), seen from the onia (Carmarima), seen from the
surface (after O. and R. Hertwig). \boldsymbol{N} and N^{\prime}, The auditory nerves; Ot, otolith; H_{z}, auditory cells; Ot, otolith; Hz, auditory cells;
$H h$, auditory cilia (type of the auditory organ of the Trachymedusce).
small projecting tentacles furnished with otoliths and auditory hairs. The tentacle may either project freely on the surface (Trachynemua), or, as in Geryonic, it may be placed in a vesicle
(fig. 184) which lies in the gelatinous substance of, the disc and close to the edge of the latter.

Separate sexes are almost invariably the rule, but it is rare to find that the colonies are diœcious, i.e., that male and female medusoids are developed in different colonies (Tubularia). Gemmation has occasionally been observed among the Medusce (Sarsica molifera) and division (Stomobrachium mirabile). The larvee of Cunina, which are parasitic on the Geryonidce, may also there give rise to a cluster of buds.

The development of the ovum, which is, as a rule, naked (i.e., without a vitelline membrane), has hitherto only heen completely followed out in a few cases. In every case the segmentation seems to be complete, and leads to the formation of a segmentation cavity and a single-layered bhastoderm [a single-hayered blastosphere]. The latter gives rise to a second endodermal layer of cells, which lines the segmentation cavity. The segmentation cavity thus becomes converted into the gastric cavity of the future polyp. The spherical or oval larva now either attaches itself and gives rise by budding to a small hydroid stock, or swims freely and develops directly into a small Medusi (Trachymedusce).

The Medust, after becoming free, usually undergoes a more or lens fundamental change of form, which concerms not only the alteration caused by the enlargement of the umbrella and manubrium, but also the increase, according to definite laws, of the marginal tentacler, sense organs (Tima), and the radial canals (Aequorea). We must remark, however, that the sexually complete Medusa exhibit very considerable variations in size, number of sense organs and tentacles (Phyalidium variabile, Clythia volubilis).

The difticulty of systematic arrangement is augmented by the fact that closely allied Polyp stocks can produce different sexual forms. Thus, for example, Monocautus gives rise to sessile generative buds and Corymorpha to free Medusce (Steenstrupia). Medusæ of identical structure also, which one would place in the same genus, may form the sexual generations of hydroid stocks belonging to different families (isogonism). There are also cases in which we find Meduse of closely allied genera, some developed from hydroid stocks by an alternation of generations, and others developed directly. Hience it appears just as little satisfactory to found a classification entirely upon the sexual generations as to pay attention to the asexual generation alone.
(1) Sub-order: Eleutheroblastece. Simple hydroid Polyps without medusoid buds ; both generative products are dereloped in the bodywall of the Polyp.

Fam. Hydroidæ. Hydru, the fresh-water Polyp. In. rividis. L.. H. fuseu L.. remarkable for great powers of reproduction.
(2) Sub-order: Hydrocorallice. Coral-like hydroid stocks with calcareous coenenchyma and tubular liydrothecæ opening to the exterior by pores. Some of these contain the larger nutritive animals, while others contain animals without a nouth and beset with tentacles.

The latter are arranged usually in the form of a circle round each of the nutritive animals. The polyparia are found in the fossil state.

Fam. Milleporidæ. Millepora L. M. uleicmnis L. Fam. Stylasteridæ.

(3) Sub-order: Tubularice (Ocellata). Polyp stocks which are either naked or clothed by a chitinous periderm without cup-shaped hydrothecie surrounding the polyp head. The generative buds arise on the body of the Polyp or on the stock. The Medusce which are set free belong to the genera Oceania, Sarsia, etc., and have ocelli.

Fam. Clavidæ. Polyp stocks with a chitinous pcriderm. Polyp club-shaped, with seattered, simple, filiform tentacles. The gencrative buds arise on the Polyp body and for the most part remain sessile. Cordyluphorra Allm. The stock is branehed ; therc are stolons which grow over external objects. Oval gonophores covered by the perisare. The animals are diœeious. In fresh water-C. lacustris Allm. Albicola Kirchp., Elbe, Schleswig. The following are marinc gencra-Clura O. Fr. Müller. Allied are the Eudendridle with Eudendrium rannsum. L.
Fam. Hydractinidæ. Polyp stoeks with flat extended eoenenchyma and firm encrusted skeletal exeretions. The Polyps are elub-shaped, with a eirele of simple tentacles. In addition to the latter there are large tentaele-shaped Polypoids (Spiralzooids). Hylractinia van. Bcn. The medusoid buds sessile on the proliferous animals. which are without tentacles. H. Echinata Flem. Perlnemyne Sars. (fig. 181). The generative buds are frecd as Oceanide. P. carned Sars.

Fam. Tubularidæ. Polyp stoeks clothed with a ehitinous pcriderm. The polyps possess a circle of filiform tentacles on the proboseis inside the external cirele of tentaeles. The generative buds arise between the two eireles of tentacles. Tubularia L. The hydroid stocks form ereeping root-like branehes at the bottom, from which arisc simple or branched twigs with the terminal polyp heads; the generative buds arc scssile. T. (Thamnnenillia Ag.) coromata Abilg. diœecious. ('or!ymorplece Sars. The stalk of the solitary polyp is elothed with a gelatinous periderm, attaches itself by root-like processes, and eontains radial canals which lead into the wide digestive cavity of the Polyphead. The freed Medlusu is bell-shaped, with one maryinal tentacle, and bulbous swellings at the end of the other radial canalls. C. mutans Sars.. C. namu Alder.
(4) Sub-order: Campanulcorice (Vesiculata). The chitinous skeletal tubes widen out round the Polyp-head to form cup-like hydrothecæ. The Polyp-head, the oral cone (proboscis), and tentacles can be in most cases completely retracted into these hydrothece.

The generative buds arise almost regularly on the walls of the proliferous inclividuals, which have neither mouth nor tentacles. The buds are sometimes sessile, and sometimes become separated off
as small vosiculate Meduser, with generative organs on the radial camals (Eucopidee, Geryonopside, Aequoridu).

Fram. Plumularidx. The hydrotheese of the hranched hydroid-stocks are arranged in single rows ; those of the mutritive lolyp have small accessory ealyees. filled with nematocysts (nematocalyces). Plumuluriu eristuta Lam., Antemnularia cultemninul Lame.

Fan. Sertularidæ. Branehed Polyp stocks, the Polyps of which project in flask-shaped hydrothce:e on opposite sides of the stem. D!fmииени pmиitu L. Sertularia ubirtimu, rumpessima J .

Fam. Campanularidæ - Eucopidæ. The eup-shaped hydrothecee are placed at the end of ringed stalks. The l'olyps possess a cirele of tentacles below their eonical proboseis. C'umpunuluriu Lam. The proliferous individuals are situated on the branehes and give rise to free Merdusce, bell-shaped, with a shor't manubrium with four lips, four radial eanals, the same number of marginal tentacles, and eight inter-radial marginal vesicles. After separation the inter-radial tentaeles are formed. C. (Chythiu) Jolenstomi=rulubilis Johnst., probably with Eurrope ruriabilis Cls. Obrlia Pér. Les., is distinguished from Camprenularia by its Meduse. These are flat, dise-shaped Medusce with numerous marginal tentaeles, but with eight inter-radial vesieles. O. dichotoma $\mathrm{L} .=($ Cimpmenurin gelatinosa van Ben.), C. geniculuta L., Laomedea Lamx. The generative buds remain sessile in the hydrotheea of the proliferous polyps. L. caliculuta Hineks.

Fam. Aequoridæ. Methuse with numerous radial vessels and marginal tentaeles. Aequorea Forsk. The Gerymopside are allied here. Octorchis E. Haeek. Tima.
(5) Sub-order: Trachymedusce. Medusce with firm, gelatinous umbrella, supported by cartilaginous ridges with stiff tentacles filled with solid rows of cells; these may be confined to the young stage (larvæ of Geryonidce). Development by metamorphosis without hydroid asexual individual.

Fam. Trachynemidæ, with stiff marginal tentaeles, whieh are seareely eapable of motion. The genital organs are developed on vesiele-like swellings of the eight radial eanals. Trachynema ciliatun Ggbr. Rhoprulonema relatum Ggbr., Messina.

Fam. Aeginidæ. The hard eartilaginous umbrella has a flat, discoid shape. The extended digestive eavity has poueh-like enlargements in place of the radial vessels. The eireular vessel is usually redueed to a row of eells. Cunina albescens. Ggbr., Naples. Aegincta flavcscons Ggbr.

F'am. Geryonidæ. Umbrella with eartilaginous mantle ridges and four or six hollow tube-haped marginal tentaeles. The manubrium is long, eylindrieal. or conieal, with a proboseis-like oral portion, and four or six eanals which lead into the radial eanal. The generative organs lie on the radial eanals; eight or twelve marginal vesieles. Liriope Less., with four radial eanals, four or eight tentaeles and eight vesicles. L. tetruphylla Cham., Indian Ocean. Gerymin Pér. Les., with six radial eanals without lingual eone. G. umbullu E. Haeek., Carmarinu E. Haeek., with six radial eanals and a lingual eone, E. Haeek. C'. hastata, Niee.

Order 2.-Siphonophora.*

Free-swimminy polymorphous hydroid-stocks with contractile stem, with polypoid nutivitive individuculs and medusoid bucds, usucully also with nectocalyces, hyrophyllica and dactylozooids.

Morphologically the Siphonophora are directly allied to the hy-droid-stocks; but they possess to a much greater extent than the latter the characters of individuals, in consequence of the highly developed polymorphism of their polypoid and medusoid appendages. The functions of the latter seem so intimately connected and are so essential for the preserva-

Fig. 185.-Diagram of a colony of Physophorida. St, Stem; Ek, ectoderm; En, entoclerm; Pn, Pneumatophor; $S k$, nectocal δx being budded off; S, nectocalyx; D, hyclrophyllium; G, gonophore ; T, dactylozooid ; Sf, tentacle ; P, polyp; O, mouth of the latter ; Nk, battery of nematocysts.
tion of the entire colony that we may regard each colony of Sipho-

[^49]nophora physiologically as an organism and its appendages as organs. In this connection we may mention that the sexual mednsoid generation is so little independent that it only exceptionally (I'elefliches) reaches the morphologicil grade of the free-swimming Medusia.

In place of the attached and ramified hydhoid-stocks we find in

Fig. 186.-A portion of the stem and appendages of Hulistemma tergestinum. St, Stem ; D, hydrophyllium ; T, dactylozooid; $S f$, tentacle of the latter ; $W g$, female, $M g$, male, gonophores. the Siphonopleora a free-swimming contractile mbrancherl sten (hydrosoma), which is rarely provided with simple lateral branches. The upper end of the hydrosoma is frequently dilated to the form of a flask (pnenmatophore), and contains an air chamber [pnemmatocyst] (fig. 185). In every case there is a central space in the axis of the stem in which the nutritive Huids are kept in constant motion by the contractility of the walls and by the movements of the cilia. The air sac or pneumatocyst at the apex of the hydrosoma is connected to the chamber which contains it by radial septa, and in many cases attains a considerable size (Plyssalia). It func tions as a hydrostatic apparatus, and in those forms, which have a long spiral hydrosoma (Physophoridce), serves to keep the body in an upright position. In some cases the gaseous contents can escape freely by one or more openings.

The appendages which are attached to the spirally twisted bilaterally symmetrical stem and whose cavities communicate with that of the stem are of at least two kinds -(1) The polypoid nutritive animals with their tentacles ; (2) the medusoid sexual buds. The nutritive Polyps (hydranths) are simple tubes provided with a mouth, and nerer

Gegenbaur, "Neue Beiträge zux Kenntniss der Siphonophoren." Nova Acta.. Tom. XXVII., 1859. R. Leuekart, "Zoologisehe Untersuchungen." I.. (iessen,: 1853. R. Leuekart. "Zur näheren Kenntniss der Siphonophoren von Nizza." Arekir. fïr Netur!grsh, 1854. C. Claus. "Ueber Halistemma tergestinum n. s. nehst Bemerkungen iiber den feineren Bau der Physophoriden." Le.tritron
 selmikoff, "Studien iiber die Entwiekelung der Medusen und Siphonophoren." Zritwrh. fïr niss. Zool., Tom. XXIV.: 187t.
possess a circle of tentacles. They always, however, have a long tentacle arising from their base. This tentacle can be extended to a considerable length, and be retracted into a spiral coil. It rarely has a simple form, but, as a rule, it bears a number of unbranched lateral twigs, which are also very contractile. These tentacles are invariably beset with a great number of nematocysts, which in many places are closely packed and have a regular arrangement. These aggregations of thread-cells are especially found

Fig. 187.-Group of buds of a Physophor at the bottom of the pneumatophore. C, Central cavity ; $S k$, nectocaljx bud with the ectodermal ingrowth. on the lateral branches of the tentacles, and give rise to large, brightly-coloured swellings, the batteries of nematocysts. The batteries show considerable variations

Fig. 188.-Development of Agalmopis Sarsii (after Metschnikofi). a, Ciliated larva. b, Stage with developing hydrophyllium (D). $\quad c$, Stage with cap-shaped hyclrophyllium (D) and reveloping pnenmatophore ($L^{\prime} f^{\prime}$), d, Stage with three hyduophyllia, ($D, D^{\prime}, D^{\prime \prime}$), polyp (P), and tentacle.
in form in the various species, genera, and families, and such variations afford valuable characters for systematic classification.

The second form of appendage, the gonophores, usually possess it bell-shaped mantle containing circular and radial vessels, and surrounding the central stalk or clapper (manubrimen), which is filled with ova or spermatozoa. They usually arise in clusters at the base of the teutacles, nore rarely from the nutritive Polyps themselves (e.g. in Velellu). The male and female generative products always arise separately in diflerently shaped buds, but are usually found closely

Fig. 189.-Small larval stock of Agalmopsis after the type of Athorybia. Lf, Pueumatophore; D, hydrophyllium ; $N k$, groups of nematocysts ; P, polyp. approximated on the same stock (fig. 186). There are, however, also dioccions S'iphonophora, or if the medusoid buds or gonophores be regarded as generative organs, Siphonophora of distinct sexer, e.y., Apolemia uvarica and Diphyes acumincta. The ripe sexual Medusoids frequently become separated from the stock, i.e. after the development of the generative products, and only rarely become liberated as small Medusce (Chrysomitra in the Velellidce), which produce generative products during their free life.

Besides the constant nutritive Polyps and medusoid gonophores, there are inconstant appendages, which are also modified Polypoids or Medusoids. These are the mouthless worm-like dactylozoids (fig. 186), which, like the Polyps, are provided with a tentacle, which is, however, shorter and simpler, and has no lateral branches or aggregations of nematocysts; also the leaf-shaped hard cartilaginous hydrophyllice, which serve to protect the polyps, dactylozoids, and gonophores; and finally the appendages known as nectocalyces, which are placed beneath the pneumatophore. The nectocalyces have a structure similar to that of the Medusæ, though their bilateral symmetry is apparent;
they are, however, without manubrium, mouth, tentacles, and sense organs.
The deeply concave sub-unbrella surface of the nectocalyx is largely developed and has a very powerful muscular covering in relation to its exclusively locomotive function. All the appendages are developed as buds formed of ectoderm, entoderm, and containing a central cavity which communicates with the central space of the stem. In the nectocalyces and gonophores an ectodermal ingrowth gives rise to the covering of the sub-umbrella and to the generative products respectively (fig. 187).

The ova, of which there is often only one in each female gonophore, are large, and have no vitelline membrane, and, after impregnation, undergo a complete and regular segmentation.
A nectocalyx (Diphyes) is the first structure formed in the free-swimming larva, or the upper part of the body of the larva gives rise to a capshaped protective cover or hydrophyllium as well as a pneumatophore, and the under part

Fig. 190.-Physophora hydrostatica. Pn, Pneumatophore; S, ncctocalyces arranged in double rows on the swimming column; T, dact,ylozoid; P, polyp (nutritive individual) with tentacles, $S f ; N k$, groups of nematocysts on the latter ; G, clusters of generative buds.
hecomes the primary nutritive polyp (Agalmopsis, fig. 188). Since new buds give rise to leaf-shaped hydrophyllia, a small stock with

Fig. 191.-Halistemmatergestinum. Pn, pneumatophore; S. Nectocalyx; P, polyp; D, hydrophyllium ; $N k$, groups of nematocysts.
provisional appendages is formed which allows us to regard the developnent of the Sightumophora:tsa metamorphosis (fig. 188 and 189).

The crown of hydrophyllia, which is completed hy the addition of fiesh hydrophylliat after. the appearance of a tentacle with provisional groups of nematocysts, persists only in Alhorybia, where a swimming column with nectocalyces is never formed.

In Agalmopsis and Physophora the primary hydrophyllia of the larva fall off as the stem becomes larger, and are replaced by nectocalyces.
(1) Sub-order: Physophorida. Stem shor't, extended in the form of a sac (fig. 190), or elongated spirally (fig. 191), with a pneumatophore, usually nectocalyces, which are arranged in two or more rows on a swimming column below the pneumatophore. Hydrophyllia and dactylozooids are usually present, and alternate with the polyps and gonophores in regular order. The body of the lauva usually derelops
first a polyp with pneumatophore and tentacle beneath an apical hydrophyllium. The female gonophore has only one egg.

Eam. Athorybiadæ. With a bunch of hydrophyllia in place of the swimming column ; rescmbling a persistent larval stage. Athoryluin rosusece Esch., Mediterrancan.

Fam. Physophoridæ. s. str. Stem shor't and eularged to a spiral sac bencath the swimming column with its double row of nectocalyecs. No hydrophyllia but instead two outer bunches of dactylozooids with gonoblastidia, nutritive polyps and tentacles lying bencath them. Physophora Forsk., Ph. hydrostatica Forsk., Mcditerranean (fig. 190).

Fam. Agalmidæ. Stem unusually elongated and spirally twisted. Swimming columu with two or morc rows of nectocalyces. There are both hydrophyllia and tentacles. Forskialia contorta M. Edw., IHalistemma. Dactylozooids and hydrophyllia directly connected with the stcm. In the ciliated larva a pneumatophore is first developed at the upper pole. H. rubrum Vogt, Mediterranean. H. teryestimum Cls. (fig. 191). - I! fulmupsis Sarsii Köll., Apolemia uraria Less., Mediterrancan. Diœcious.
(2) Sub-order: Physalidce.-Stem dilated to form a large chamber, the pneumatophore lying almost horizontally, containing a very large pneumatocyst opening to the exterior. Nectocalyces and hydrophyllia absent. On the ventral line of the sac are situated large and small nutritive polyps with strong and long tentacles. There are also clusters of gonophores attached to the tentacle-like polyps. The female buds seem to become free-swimming Medusce.

Fam. Physalidæ. With the characteristics of the group Plyssalia Lam., P. caratella Esch. (Arethusia Til.), pelayich, utricnlus. Esch., Atlantic Ocean.
(3) Sub-order: Calycophoridce. Stem long and without pneumatophore. Swimming column with double row of nectocalyces (Hippopodide) or with two large opposed nectocalyces, more rarely with only one nectocalyx. There are no

Fig. 192.-Dipìyes acuminata, magnified about 8 times. $S b$, Fluid reservoir in the upper mectocalyx (somatocyst). dactylozooids. The appendages arise in groups arranged regularly, and can be retracted into a cavity of the nectocalyx (fig. 192). Each group of individuals consists of a small nutritive polyp, a tentacle with naked kidney-shaped groups of nematocysts, and gonophores.

To these is usually added a fummel or umbrella-shaped hydrophyllium (fig. 192). These groups of individuals may in some Diphyids become fiee, mal assme a separate existence as Euloxia (fig. 193). The gonoplores contain numerous ova in the manubriun, which of ten projects as a cone fiom the aperture of the bell. In the larva the upper nectocalyx is the first formed.

Fam. Hippopodidæ. The swimming column has two rows of nectocalyces, and is situate on an upper lateral branch of the stem. The male ame female gonophores are grouped in clusters and are situate at the base of the nutritive polyp. Cildm Hipprypus Forsk., Mediterrancan.

Fam. Diphyidæ. With two very large nectocalyces at the upper end of the stem and opposite to each other. Diplyy's uruminent" Lakt., dicecious; with

Fig. 193.-Part of a D_{i-} phyid (after R, Leuckar't). D, Hydrophyllium ; GS, genital nectocalyx ; P, polyp with tentacles. The individual groups separate as Eudoxia. S'ullocia compmanalutu. Abylur prentaygoun Eisch., with Eudtoria ruboides, Mediterrancan. Sypherouerters Huxl. $=$ Mmuphiges; Cls., sp. !yrusilis ('ls. with Diplophys.n incrmis: Mcditerranean.
(4) Sub-order: Discoidece. Stem compressed to a flat dise, with a system of canal-like spaces (central cavity). Above lies the pneumatocyst in the form of a disc-shaped reservoir of cartilaginous consistence composed of concentric canals opening to the exterior. The polypoid and medusoid appendages are situate on the under side of the disc. In the centre is a large nutritive Polyp, around which are a number of smaller ones. To the base of these small Polyps are attached the gonophores. The dactylozooids are not far from the edge of the disc. The gonophores are set free as small Meduse (Chrysomitra), which do not produce the generative material till long after separation.

Fam. Velellidæ. Vruclu spirans: Esch., Mediterranean. Pmpita meditervanew Esch.

$$
\text { Order 3.-Scyphomedus.e }=\text { Acalepha.* }
$$

Medusce of considerchble size, with gastric filaments. The edge of the ambrella lobed. The sense organs covered. The embryonic stages are not hydroid stocks but Scyphistome and Strobita forms.

The Medusce of this order are distinguished from those of the hydroid group by their considerable size and the great thickness of

[^50]their umbrella, the gelatinous connective tissue of which is richly developed and contains is quantity of strong fibrilla and at network of elastic fibres, which structures confer upon it a greater firmmess and rigidity.

Another characteristic of the group is derived from the structure of the edge of the umbrellia. This is divided by a regular number

Fig. 191.-Anrelia curita, from the oral surface. MA, The four oral tentacles with the month in the centre; $G k$, generative organs; $G H$, aperture of genital pouch; $R k$, sense organ (marginal body) ; $I G$, radial vessel ; I, tentacle at edge of the disc.
of indentations usually into eight groups of lobes between which the sense organs are contained in special pits (fig. 194).

The marginal lobes of the Acalephre, like the continnous velum of the Hydromedusce, appear to be secondary formations at the edge of the disc. In the young stage known as Ephyra, which is common at least to all the Discophora, they are present as eight pairs of

[^51]relatively long tonguc-like procenses, and grow out from the disc-like segments of the Strolite as marginal cones. An undivided marginal membrane (the veloriam), differing from the velun of the Cirespedotce [in containing prolongations of the canals of the gastrovascular system], is present in the Ciforyluleider alone.

The Acculepha differ from the Mydromedusce in possessing, as a rule, large oral tentarles at the free end of the wide manubrium. These may be regarded as being derived from an mequal growth of the edges of the month. They grow as four arm-like processes of the manubrium from the angles of the mouth, and are placed radially,

FIG. 195.-Diagrammatic longitudimal section through a Rhizostoma. U, Umbrella; M, gastric cavity; S, sub-umbrella; G, genital bancl; $S h$, sub-genital pit; F, filament; $S M$, muscle system of the sub-umbrella; $R g f$, radial vessels; $R k$, sense organs; $R g$, olfactory pits; $A l$, ocular lobe; $S k$, shoulder tufts; $D k$, dorsal tutts; $V k$, ventral tufts of the eight arms; Z, terminal parts of the arms.
i.e. they alternate with the genital organs and gastric filaments. In some cases the arms become forked at an early period, and four pairs of arms are formed, the lobed tufted edges of which may again divide and sub-divide into many branches. In this case, the margins of the mouth and the opposed surfaces of each pair of arms fuse in early life in such a way that the original central mouth becomes obliterated, and in its place there are developed a number of small tufted orifices on the peripheral parts of the arms, through which nutriment is taken in (Rhizostomidæ, fig. 195).

The form of the gastrovascular apparatus exhibits considerable alifferences, which in the Discophora may be considered as modifications of the Ephyjo type. The flat disc of the Ephyra, which is split into eight pairs of lobes, contains a central gastric cavity into which the canal of the short, wide, four-cornered manuorium leads. From this central cavity there diverge eight canallike peripheral cliverticula (radial pouches), between which there are formed sooner or later in the vascular lamella the same number of shor't intermediate canals (intermediate pouches). The radial and intermediate canals sometimes become enlarged, as in Pelagic and

Fig. 196. Section through the olfactory pit, the sense-organ (marginal body) and its nerre centre, of Aureliu uuritu. R, Olfactory pit! L, lobe of the umbrella covering the sense organ ; P, eye spot; Ot, otolith of the auditory sac; Z, cells after solution of the otoliths; En, entoderm; $E c$, ectoderm with the underlying layer of nerve fibrilla, F.

Chrysuorch, so as to form unusually broad gastric pouches separated by thin septa and without any communication with each other at the periphery. Sometimes, however, they become transformed into narrow vessels, between which, in the broad intervening septa, there is secondarily developed during the subsequent growth by a separation of the two layers of the vascular-lamella, a rich network of anastomosing canals, and near the edge of the disc a circular canal (Aureliu, lihizostomu).

The gistrovatsenlad apparatus of the eup- on bell-hatped Calycozon and Chargbedecde differs from the types above described, and resembles that of the more primitive Scyphistoma stage, in that the gastric cavity presents only four peripheral vascular pouches, which are very wide, and separated by extremely thin septa.

The worm-like movable tentacles of the grastric cavity, the gastric filanents, which are not found in any /Iydromedusce, afford an important distinctive mark. They correspond to the so-called mesenteric filaments of the Anthozor, and afford the same aid to digestion through the sectetion of their glandular entodermal covering. In every case they are attached to the sub-umbrella wall of the stomach, and fall in the four radii of the generative organs (radii of the second order), which altermate with the radii of the angles of the mouth, or radii of the first order. They usually follow the inner. edge of the generative organs in a simple or convoluted curved line.

The existence of the nervous system of the Acalepluce has only recently been demonstrated with certainty. It has been proved that the centres of the nervous system are contained in the ectoderm of the stalk and base of the marginal bodies, and consist of a considerable layer of nerve fibrillæe deep in the ciliated ectodermal epithelium, the nerve cells of which are elongated in the form of a rod, and bend round at their basal extremities to be continued directly into the nerve fibrillæ (fig. 196). There is in addition a widely distributed and important peripheral nerve plexus in the muscles of the sub-umbrella.

Up to the present time no investigations have completely elucidated the manner in which this nerve plexus is related to the nerve centres of the marginal bodies, and how the latter are connected with one another. The existence of a nerve ring on the sub-umbrella surface has been proved only for the Charybdeidce, in which the edge of the disc is not notched (fig. 169). The antimeres of the Acalepha show in all cases a great degree of individuality, and, when cut off, are able to live for a considerable time.

The marginal bodies, as well as the pit-like depressions on the dorsal side of the excavations in which the marginal bodies are placed (olfactory pits), must be considered as sense-organs.

The marginal bodies are morphologically the remnants of reduced tentacles. They may be seen on the under side of the umbrella in the stage of the Ephoyra, and are overgrown by portions of the edge of the umbrella (Steganophthalmata). [They contain a central canal lined by endoderm and continuous with the gastro-vascular system of the disc, fig. 196]. They appear in all cases to unite the functions:
of ocular and auditory apparatus. The auditory function is provided for by a large sace containing crystals, which originates from the cells of the entoderm; while the eye consists of a mass of pigment lying on the clorsal or ventral face, and nearer the end of the stalk. In some exceptional cases (Nansithoë) it is provided with a refractile cuticular lens. But it is in the Charybdeidæ that the sense body reaches the highest development; for in them, in addition to the terminal sac of otoliths, there is also present, in the wall of the dilated vascular space of the papilla, an extremely complicated visual organ, formed of four small paired and two large unpaired eyes, in which lens, vitreous body, and retina can be distinguished.

The four generative organs of the Acalepha can be easily distinguished in consequence of their size and their bright colouring. In some cases, at any rate in the Discophora, they protrude as folded bands into special cavities in the umbrella, the so-called sub-genital pits (hence the term Phanerocarpce Esch.) In all cases these bands lie on the lower (sub-umbrella) wall of the digestive cavity (figs. 194, 195), from which they originate as leaf-like prominences. The upper surface is covered with gastric epithelium ; the under, which is turned towards the sub-umbrella, with germinal epithelium, the elements of which, in the process of development, pass into the gelatinous substance of the band.

The formation of the cavities in the sub-umbrella of the Discophorca is due to a local growth of the gelatinous substance of the sub-umbrella; in some cases, however, they may be completely absent (Discomedusc, Nausithoë). The mature generative products are dehisced into the gastric cavity, and pass out through the mouth; but in many cases the ova undergo their embryonic development either in the ovary (Chryscoora) or in the oral tentacles (Aurelicu). Separate sexes are the rule. Male and female individuals, however, apart from the colour of their generative organs, have only slight sexual differences, as, for instance, the form and length of the tentacles (Aucrelice). C'urysaora is hermaphrodite.

In the Discophora the development is generally accompanied by an alternation of generations ; the asexual generations being represented by the Scyphistoma and Strobila; but in exceptional cases it is direct (Pelagia). In all cases a complete segmentation leads to the formation of a ciliated larva, the so-called planulc, which attaches itself by the pole which is directed forwards in swimming. This pole is, however, opposite to the gastrula mouth, which in the meantine becomes closed, while round the mouth, whicl is
formed as a perforation at the free end, the tentacles arpear: As in the embryo sclinitu, two opposite tentacles first make their appearance; not, however, simultaneously, the one appening after. the other, so that the yomig larva about to develop, into the Seyphistoma presents a bilaterally symmtrical structure. Subsequently the second pair appens in a plane at right angles to the plane of the first tentacles. These four tentacles mark the radii of the first order. Then alternatingr with these, but in a less regular succession, the third and fourth pais's appear ; and soon after in the plane of these latter four longitudinal folds of the gastric cavity are developed (radii of the second order or of the gastric filanents and genital orgenns).

The eight-armed Scyphistoma soon produces eight fresh tentacles, which succeed one another in irregular succession, and alternate with the tentacles already present. Their position determines the intermediate radii of the future young Discophor or Eplyra. After the formation of the circle of tentacles and the secretion of a clear basal periderm (Chrysaora), the Scyplistoma is capable of reproduction by fission and gemmation. At first the Scyphistoma appears to multiply only by budding; the second mode of reproduction, the process of strobilization, begins later. This consists essentially in the fission and division of the anterior half of the body into a number of segments, thus changing the Scyphistoma to a Strobita. The separation of the segments progresses continuously from the anterior end to the base of the Strobila, so that after the disappearance of the tentacles, first the terminal segment, then the second, and so forth, attain independent existence. Each segment becomes an Ephyra, developing eight pairs of elongated marginal lobes, with a marginal body in the notch which separates the two lobes of the same pair. It is these marginal lobes which give to the edge of the umbrella of the Ephyra its characteristic appearance. The young Ephyra gradually acquires the special peculiarities of form and organization of the sexually mature animal (vide figs. $113 a-h$).

The number of nematocysts accumulated on the upper surface of the disc and on the tentacles of many Medusce enable them to cause a perceptible stinging sensation on contact. Many, e.g. Pelagia, are phosphorescent. According to Panceri, this phenomena originates in the fat-like contents of certain epithelial cells on the surface.

In spite of the delicacy of their tissues, certain large Medusa have left impressions in the litlographic slate of Sohlenhofen (Medusites circularis, etc.)
(1) Sub-order: Calycozoa (Cylicozoa).

Cup-shaped Acalepha attached by their aboral pole. They luwe four wide rascular pouches separated by narrow walls, and eight armlike processes beset with tentacles on the edge of the umbrella.

The Calycozou are best considered in their relation to the Scyhistoma. They may be looked upon as Scyphistoma deprived of their tentacles, which indeed are only transitory structures, and elongated so as to assume the form of a cup, and changed in several particulars which are characteristic of the medusa stage. The four septa arise by the fusion of the four gastric folds with the wide oral disc, which becomes drawn in and concave like a subumbrella. These four septa separate the same number of gas-

Fig. 197.-a, A Culycozoon (Lucernuriu) from the oral surface magnified about 8 diameters. S, Septa of the four gastric pouches ; L, longitudinal muscle fibres with the genital band; $R t$, marginal tentacles. b, The Calycozoon seen from the side; G, Genital organs; Gw, gastric fold in the stalk; at the base is the foot gland.
trovascular pouches ; while the margin of the cup is drawn out into eight arm-like processes, from which groups of short, knobbed tentacles arise (fig. 197).

The genital organs extend on the oral wall of the umbrella into the arms as eight band-shaped, plicated ridges. They run along in pairs at the lower part of each septum in the gastric cavity. The orum, according to Fol, undergoes a complete segmentation, which results in a single-layered blastosphere. This becomes an oval, twolayered larva, which becomes ciliated, swims freely about, and finally attaches itself. The further development probably takes place directly without alternation of generations.

Fam. Lucernaridæ. Luerrnarin O. Frr. Miiller, ('alycozoa with four radial chambers; without genital pouches, and without the accessory chambers of the digestive eavity altermating with these. L. Ifudrimminis O. Fr. Müler. componuluta Lamx. Cruterolophtus: Clark, with genital pouches and four

Fig. 198.-Charybdea marsnpialis, natural size. T, Tentacles; $R k$, marginal bodies (sense organs) ; Oe, ovaries. chambers of the gastric cavity alteruating with them. Cr. Lerucluart ' Tschb. =hrlyolumdicu Lke., Heligoland.
The Jumermuriuate without exception marine anmals, and are renarkable for their great reproduct ive power. According to A. Mcyer, if the stalk be cut off, the cup reproduces a new one, and injured individuals, and even excised pieces, can become perfect animals.
(2) Sub-order: Marsupialida (Lobophora).

Tetra-radiate Acalepha having a four-sided pouch-litie form. The velum has a smooth margin, and contains vessels [prolongations of the gastro-vascular system]. On the maryin of the disc there are four vertically placed lobe-like appendages. There are four corered sense organs, and the same number of vascular pouches separated by narrow partition walls.

The Charybodere are distinguished by the deep bell shape of their body, and were formerly reckoner! as "Craspedota" among the Hydromedusce, with which they certainly have some characteristics in common. Amongst these characteristics the most striking is the possession of a smooth-edged velum, which, however, contains vessels. On the other hand, the presence of the gastric filaments and of the large sense organs enclosed in niches points to a relationship with the Acalepha; and this view is supported by the character of their whole structure, in which the peculiarities of the Lucernaridee are perceptible, though greatly
modified. As in Lacernuriclue, the vascular spaces are wide pouches divided from each other by four narrow septa (figs. 198, 199).

The nervous system is allied to that of the Hydromeduse by the presence of it sharply defined nerve-ring. This nerve-ring is placed on the sub-umbrellia side of the bell, and, since at the bases of the four sense organs it lies further from the margin than it does at the corners of the bell, it has a sharply marked, zig-zag course. The nerve fibrilla given off from it mostly supply the muscular system of the sub-umbrella, and there give rise to numerous reticula of fibrille comnected with large ganglion cells. Large bundles of fibrille comparable to nerves have only been found in the four radii of the marginal bodies. The latter attain a high degree of development, since the knob-like swelling in which they terminate possesses, in addition to the lithocyst, a complicated visual apparatus consisting of two large unpaired median eyes and four small paired lateral eyes.

The generative organs have a very peculiar form. They are separated from the gastric filaments and as thin, rather broad plates attached in pairs to the four partition walls, reach the whole length of the vascular pouches. Unfortunately nothing is as yet known of the development.
Fam. Charybdeide. Chrerybdera marsupialis Pér. Les. (Mrarsup)ialis Planci Les.) Mediterranean.
(3) Sub-order : Discophora (Acraspeda), Eplayra-medusce.

Fig. 199.-The apicalhalf of a Cherybdea divided transversely, seen from the sub-umbrella side. The four oral arms are visible. Ov, Ovaries on the four septa, S; Ost, ostia of the gastric pouches ; $G f$, gastric filaments.

Disc-shaped Acalepha, the margin of whose disc is divided into eight lobes. THey lave at least eight sub-marginal sense organs contained in niches, and with the same number of oculdar lobes. As a rule there are forr great cavities in the umbrella for the generative organs.

The Discophora, which are generally known simply as Accalephuc, can at once be distinguished from the Calycozoa and the Clucrybdeidce by the disc-shaped lobed umbrella and usually by the large size of the oral tentacles. The lobes of the umbrella, however much they may differ in detail, can always be reduced to the eight pairs of lobes of the Ephyra, which, as the common starting-point of the Discophora, presents most clearly the eight-rayed symmetry char-
acteristic of the group. The striped muedes of the sub-mmberlat are strongly developed to con espond with the great size of the body; and beneatls them the supporting lamelat is ustally thrown into a number of closely aggregated cireular folds, thus catasing it considedable increase in the surface on which the maseular eppithelium with its circulaly arranged fibres are phaced.

The generative orgeths have the form of horse-shoe shaped frills which lroject into four widely open cutvities in the sub-unlnella, the sub-genital pits. These cavities are not developed in some exceptional cases (${ }^{\prime}$ 'unsithoë, J)iscomedusu). The germinal epitheliun,

Fig. 200.-Aurelia murita, seen from the oral surface. MA, The fow oral arms with the mouth in the centre ; $G h$, The genital frills; $G H$, Openings of the sub-genital carities; $R k$, Marginal bodies; $R G$, Radial vessels ; T, Tentacles on the margin of the disc.
which is always embedded in the gelatinous substance, is corered with an entodermal layer, and is probably itself an entodermal product (fig. 200). Development takes place by alternation of generations. In rare cases (Pelagia) the development is simplified, and the larva passes directly into the Ephlyrol, missing out the attached Scyphistoma and the Strobila stage (Krolm).

1. Semcostomere. Discophora with large central mouth surrounded by four large often multi-lobed oral arms. The form of the
umbrella edge, the number of lobes and marginal tentacles present great variations.
Fam. Ephyropsidæ, Ephryopsis, C'gbr. (Vthsithuë Köll). Dise small and like that of $E_{j} p h y y^{\prime}$ e, with simple gastrie saes, without oral arms, but with eight marginal tentaeles. The genital organs (in four pairs) do not lic in umbrella cavitics. E. peluyicre Köll., Mcliterranean and Adriatie.
Fam. Pelagidæ. Pelugiu Pér. Les. With wide gastrie pouches and eight long marginal tentacles in the interradii. No alternation of generations. P. noctilucro Pér. Les., Mediterranean. Chrysatora Pér. Lcs., with twenty-four long marginal tentaeles. The radial and intermediate gastrie pouches are perceptibly different. Chr. hyssoserlla Eseh. Hermaphrodite, North Sea and Adriatic.
Form. Cyaneidæ. Cyunea Pér. Les. The tentacles are united in bundles on the under surface of the decply lobed thick disc. There are sixteen (eight radial and eight intermediate) more or less wide gastrie pouehes, whieh break up near the end of the marginal lobes into small ramified vessels. C. copillatu Esch.
Fan. Aurelidæ. Diseomedusit Cls. With large oral arms, with branched vessels and two marginal tentaeles. Subgenital pits present. D. lobutu Cls., Adriatic. Aureliu Pér. Les., with branched radial vessels and edge of disc fringed with small tentacles. A. auritu L. (Mfedusa anrita L.), Baltie, North Sea, Adriatie, etc. A. Aluridulu Ag., eoast of North America.
2. Rhizostomece. No central mouth, funnel-shaped slits in the eight oral arms and eight, rarely twelve, marginal bodies on the lobed margin of the disc. There are no marginal tentacles. The central mouth, which is at first present, becomes closed during the larval development by the fusion of the edges of the lips. Funnel-like splits are formed on the folded edges of the four pairs of arms, the socalled suctorial mouths, by means of which microscopic bodies are received into the canal system of the oral arms (fig. 195).

Rhiznstoma Cuv. The arms end in simple tubular prolongations, and bear acecssory tufts at their bases. Rh. Curieri Pér. Les., Cephear Pér. Les. The branched oral arms have groups of nematoeysts and long filaments between the terminal tufts. Cephea Pćr. Les. (Cassimpea) borbonica Delle Ch., Mediterranean and Adriatic.

CLASS III.-CTENOPHORA.*

Medusce of spherical or cylindrical, rarely band-shuped form ; with eight meridional rows of vibratile plates formed of fused cilia. They

[^52]possess an asophlayeal bube and a yustro-vascular comul system. I'vo lateral tentucles, which con be retracted into pouches, are often present.

The Citenophoru possess a slape which can in all cases lee reduced to a sphere. They are ratially symmetrical free-swimming C'redenterutre of gelatinons

Fig. 201.-Cydippe, seell from the apical pole. S, Sagittal plane; T, transverse plane; R, swimming plates; $G f$, gastro-vascular system. consistence. The borly is often bilaterally compressed, so that it is possible to distinguish two planes 1) assing through the long axis at right angles to one another': these are the sugittal planeand the transverse plane, and are analogous to the median (longitudinal vertical), and lateral (longitudinal horizontal) planes of bilaterally symmetrical animals (fig. 201). The arrangement of the internal organs bears a relation to these two planes. All parts of the body which occur in pairs, as the two tentacles, the gastric canals, the hepatic bands of the stomach, and the vessels which give origin to the eight lateral canals, all lie in the transverse plane, while the sagittal plane coincides with the longer axis of the œsophageal (gastric) tube (whence also called the gastric plane), the two socalled polar-fields, and the terminal vessels of the infundibulum.

The infundibulum is so compressed that its longest diameter falls in the lateral plane, which on this account is sometimes

Fig. 202.-Cydippe (Hormiphora) plumosa (after Chun). O, Mouth. called the infundibular plane. Since these two planes divide the body into halves, which correspond with one another, and since there is no division into dorsal and ventral surfaces, the arrangement of the body may be said to be bi-radially symmetrical, but camnot be called
bilaterally symmetrical, although each half possesses this property. The body is divided by these two perpendicular planes into four similar quadrants.

Locomotion is principally effected by the regular vibration of the lyaliue swimming plates, which are disposed over the surface of the body in eight meridional rows, in such a way that each quadrant possesses two rows of plates, a transverse and a sagittal (fig. 202). Locomotion is also assisted by the contractility of the muscle fibres; of the gelatinous tissue; this contractility in the band-shaped Cestidce causes an undulating motion of the whole body.
The mouth, which is sometimes surrounded by umbrella-shaped lobed processes of the gelatinous tissue, leads into a wide (Beroe) or narrow esophageal tube, which in the latter case soon becomes flattened and broad. The cesophageal tube is furnished with two hepatic bands, and communicates posteriorly, by an opening capable of being closed by muscles, with the gastric carity, or, as it is commonly called, the infundibulum. The long oesophageal tube projects and opens freely into the infundibulum, and is completely surrounded by the gelatinous substance, as far as the level

Fig. 203.-Aboral end of Callianira bialata (after R. Hertwig). x, The two polar spaces; w, the beginning of the eight rows of swimming plates, between which the otolith vesicle and the nerve plate we seen. of the two longitudinal vessels which accompany the two lateral surfaces in the transverse plane.
The infundibulum, which is in all cases compressed in a direction at right angles to the œsophageal tube, gives off eight ressels to the swimming-plates. These vessels have a bi-radial symmetry. It also gives off two vessels, which are dilated into two terminal sacs; the latter surround the sense-organ at the aboral pole, which is known as the otolith vesicle, and each of them opens to the exterior by an oritice which is placed in a diagonal plane and is capable of being closed. Two tentacular vessels may arise from the bottom of the infundibulum. The internal surface both of the œesophageal tube and of the infundibulum and its vessels seem to be completely clothed with cilia.

Up to the present time, the nervons system of the C'tenophoras (fig. 203) is hat impurfectly known. There is no doulst that the large vesicle foumd at the aboral pole, with its clean finid and vibutatile otoliths, is a sense-onginn ; it is also exceerlingly probathle, taking into consideration the organization of the Acalephat, that the centrat nervous system of the retemophome is contained in the thickened base of the vesicle, the Ololith plate, יjpeceally as the latteris also closely mited with a second sense-orgim, the siogital polur erers, which have aiready been described by Fol as olfactory organs, and is also directly sonmected with the swimming plates by eight ciliated grooves.

True nematocysts are but scldom found in the ectoderion of the renophora, hat they are represented by

Fig. 20\%. - Smooth muscle fibres, prehensile cells $(k f)$, and tactile cells (b), from the lateral filaments of the tentacle of Euplocumis stationis (after R. Hertrig). lif f^{\prime}, Prolongation of the contractile thread of a prehensile cell. peculiar fixing or prehensile cells, the base of which is prolonged into a spirally coiled thread, while the projecting and convex free end (fig. 204) is of a glutinous consistence, and becomes readily attached to any object which touches it.

The C'tenophora are hermaphrodite. Both kinds of generative products arise on the wall of the vessels of the swimming plates or of blind sac-like diverticula of the same. Sometimes their production is localised (Cestum) ; sometimes they originate along the whole length of the canals, one side of the latter being beset with egg-follicles, the other with sperm-sacs (Beröe). The germ layers, which arise from the ectoderm, are covered by entodermal epithelium, and are separated from one another by a projecting fold. Ova and spermatozoa pass into the gastrovascular cavity, and are ejected through the apertures of the same.

The fertilized ovum, which is enclosed by a loosely fitting membrane, consists, as in the case of many Meclusce, of a thin outer layer of finely granular protoplasm (exoplasm) and a central food yolk (endoplasm), containing vacuoles. The scgmentation, which is complete, leads to the formation of two, four, eight segmentation spheres, each of which, like the original ovum, consists of a central mass, surrounded by a thin layer of finely granular protoplasm. In
the stage with four segments, the segments are so disposed that two perpendicular plancs placed between them would corrcspond to the two principal planes of the fully developed animal. Each of the four spheres gives rise to one of the four quadrants of the adult amimal (Fol.) The whole mass of the finely granular exoplasm now becomes collected at the upper end of the segmentation spheres, where it is separated off and gives rise to eight new small spheres. These, by continued division, break up into a great number of small nucleated cells, which increase rapidly and grow round the eight large segmentation spheres or the cells produced from them.

The young Ctenophora sooner or later leave the egg membranes, and at this period differ more or less from the sexually mature animal in the simpler and usually more spherical form of the body, in the small size of the tentacles and swimming plates, and in the difference in the relative size of the esophageal tube, infundibulum, and vascular canals. The differences are most striking in the lobed C'tenophorca (with the exception of ('estum), the embryos of which have a great similarity to the young of C'ydippe, and have no traces of bi-radial structure. It is only after a longer period of larval life that the completely mature form is attained by the unequal growth of the swimming plates and their canals, the outgrowth of the tentacle-like processes, and the formation of two lobe-like projections round the mouth from those halves of the body which correspond to the longer rows

Fig. 205. - Beröe ovatus. Ot, Lithocyst, at its sides are the small tentacles of the polar areas ; $I r$, infundibulum. of swimming plates. The phenomenon remarked by Chun is worthy of notice, that the young of Euchoris, while still in the larval stage, become sexually mature during the hot period of the year.

The Ctenophorce live in the warmer seas, and, under favourable conditions, often appear in great quantities at the surface. They feed on marine animals of various size, which they capture with their tentacles. Many, as the Beroictue, which do not possess tentacles, are compensated for this deficiency by the possession of an unusually large mouth (fig. 205), by meins of which they are able
to receive relatively large bodies, even fishes, into the wide wophagent tube, and to digest them. Although the average size is small, some of them, as Cestum, Ehuchoris, reach the length of a foot.

Fam. Cydippidæ. Boxly slightly eompressect, spherical or cylindrical, with extremely regular development of the swimming plates. Their structure is therefore apparently octoradial. They pussees two tentacles ; the vesels of the stomaeh and swimming plates end blimdly. C'ydijppe hovimiphorve Ggbr: =
 Mediterrancan.
lim. Cestidæ. Borly elongater to the form of a band in the direetion of ale sagittal plane. Two tentacles. Ferillum parallelum Fol., C'ansry Isles. Crestum Ioncris Less., Venus' Girdle, Mediterrancan.

Finm. Lobate. The laterally eompressed botly possesses two umbrella-like lobes near the month, and has relatively small tentaeles. Durhamphacu rer.illigrora Ggbro, Mediterranean and Atlantie Ocean. Clhiaja jupillusa, M. EEdw. (Alcinör papilluske Delle Ch. = İrupnlitamu Less.), Mediterranean.

Fam. Beroidæ. Characterised by the laterally eompressed borly with fringelike appendages on the periphery of the polar spaces; without tentacles. Berör Fimskalii M. Edw. (nllosserns and rufrscerns Forsk.), Inlyinpsis (ilarki Ag., Pondorra lytemaniugii, Eseh.

CHAPTER VIII.

Echinoderdata.*

Animals with a radial, usually pentamerous arrangement. They possess a skin beariny spicules and indurated by calcareous deposits, a digestive conal, a water-vasculdar apparatus, and a true vascular system.

The radial arrangement of the Echinoderms was for a long time held to be a character of typical value, and was the principal reason why, since the time of Cuvier, the Echinoderms were included in one group, the Radicatc, with the Medusæ and Polyps. It is only in recent times that R. Leuckart has effected the separation of the Echinorlerms from the Colenterates.

The organization of the Echinoderms does in fact appear so different from that of the Ccelenterates, and seems to belong to a so much higher grade of development, that the combination of the two group:

* Frr. Tiedemann, "Anatomie der Röbrenholothurie, des pomeranzfarbenen Seesternes und des stein-Seeigels," Heidelberg, 1820. Joh. Miiller, "Uber den Pau der Eehinodermen," Abh. der Berl. Akad, 1853. Joh. Miuller, "'ieben Abhancllungen \ddot{i} ber clie Larven und die Entwickelung der Eehinodermen." Abl. der Berl. Akad, 1846, 1848, $18 \not$ d 2, 1850. 1851, 1852, 185t. A. Agnssiz. "Embryo$\log y$ of the Starfish." Contributions, etc., Tol., V. 186t. E. Metsehnikoff. "Studien über die Entwiekelungsgosehiehte der Echinodemen und Nemertinen," St. Petersburg. 1369 . H. Ludwig, "Morphologische Studien an Eehinodermen," Leipzig 1877 and 1878.
as Radiata is inadmissible, and so much the more so since the radial arrangement of the structure exhibits some transitions towards a bilateral symmetry. The Echinodermata are separated from the Colenteratce by the possession of a separate alimentary canal and vascular system, and also by a number of peculiar features both of organization and of development.

The arrangement of the parts round the axis of the body is usually pentamerous. Nevertheless when the rays are more numerous, irregularities in the repetition of the similar organs are met with. If we take as the fundamental form of the Echinoderm type a splieroid with the principal axis somewhat shortened and the poles flattened and dissimilar, the long axis of the radial body will be this chief axis, and the mouth and anus the two poles (oral and anal poles). We can imagine five planes passing through the long axis of this spheriod, each of which will divide the body into two symmetrical halves. The perfect correspondence of these halves is, in the body of Echinoderms, disturbed by the different forms and significance of the two poles, so that our representation is not an exact one. The ten meridians, which are separated from one another by equal intervals and fall in these five planes, are differently related to one another, inasmuch as five alternate ones, which are called the chief rays, or radii, contain the most important organs, the nerves,

Fig. 206.-The shell of a regular Seaurchin seen from above. R, Radius with double row of perforated plates; J, inter-radius with the genital organs and their pores. In the right auterior inter-radius is the madrejocric plate. the vascular trunks, the ambularral feet, etc., while the other five meridians constitute the intermediate rays or inter-radii, and also contain certain organs (fig. 206). It is only in cases of complete equivalence of the radii and inter-radii that the echinoderm body presents a pentamerous radial arrangement (regulcor Echinoderms). It is, however, easy to show that this regular radial symmetry never occurs in its perfect form. Since one organ or auother, e.g., the madreporic plate, the stone canal, heart, etc., always remains single, and does not fall in the axis of the body, it will be only those planes, in the radius or inter-radius of which the unpaired organs fall, which can fulfil the
conditions which irlmit of the body being divided into two exactly

Fig. 207.-Clypenster roxucenx, from the dorsal side. The madreporic plate is situate in the centre and is surrounded by five genital pores and by the five-leaved rosette. The umpaired radrus is directed forwards. At the side is the median portion of the ventral surface. O, mouth; A, anus. symmetrical halves. Even there planes do not exactly fulfil these conditions, since the remaining organs are not strictly symmetrical in regard to such a plane.

Very frequently one of the rays differs in size from the others, and then we have an ioregnlurity in the external form of the Echinoderm, which render:s the bilateral symmetry visible even from the exterior. The pentamerous body of the Echinoderm may become hilateral, the plane of the unpaired ray forming a median plane, on each side of which two pairs of equal rays are repeated. We can distinguish an upper surface (apical pole) and an under (oral pole), a right and left side (the two paired rays and their inter-radii), an anterior end (unpaired radius) and a posterior (unpaired inter-radius). In the irregular Sea-urchins, the bilaterally symmetrical form is still more strongly marked. Not only is the unpaired radius of abnormal size and form, and not only are the angles at which the principal ray and the accessory lays cut each other equal only in pairs, but also in the Clypeastridect (fig. 207),

Fig. 208.-Schizaster (Sputanyider), from the ventral side. O, month; A, anus ; P, pores of the ambulacral feet. the anus is removed from the dorsal pole to the ventral half of the body in the unpaired inter-1atdius,

While, in S'patanyidue, both poles, or only the oral pole, are shifted in the direction of the unpaired radius, and become eccentric (fig. 208).

Only a few of the regular Echinodermuta have the means of locomotion on all the five lays, and seldom then along the whole length of their meridians; far more frequently the ara surrounding the oral pole becomes with regard to the position during movement the ventral surface; it is flattened and mainly or entirely possesses the orgalles of locomotion (ambutucral surface). These relationsalways obtain among the irregular Echinodermate which do not move indifferently in the direction of all five rays, but principally in that of the unpaired one. In these animals the mouth, and therewith the oral pole, being pushed towards the anterior edge, the two posterior radii (birium) seem principally concerned in the formation of the ventral surface (Spottungid(e). It is otherwise in the case of the cylindrical IIolothuriuns. Their mouth and anus preserve the normat position at the poles of the elongated axis, and the body is not unfrequently compressed in the direction

Fig. 209. - Cucumaria with extended dendritically branched tentacles (T). Af, ambulacral feet. of the axis in such a manner that three radii (trivium) with their organs of locomotion are placed on the foot-like ventral surface. On the body of these Holothurians one impaired and two paired radii can be distinguished, only in this case the unpaired radius with its inter-radius marks, not the anterior and posterior, but the dorsal and ventral surfaces.

In many Echinoderms (Echinoidea) the oblate spheroidal form is the prevalent one. The principal axis appears shortened, the apical pole may be either pointed or flattened, and the ventral half is
flattened out to form at mone or lesis extended surface. The cylindrical form is obtained by an elongition of the axis (Ifolothuroiden) (fig. 209), the round form by a shortening of the same and the pentagonal dise by the latter process combined with it simultaneous elongittion of the radii. If the radii are elongater till they are two or more

Fig. 210.-Caleareous bodies from the integrment of Holothurians. a, ealeareous wheels of Chirodota; l, anehor with supporting plate of Synapta; c, clair-like bodies ; d, plates of Holothuria impatiens; e, hooks of Chirodota. times the length of the inter-radii, the form takers the shape of at star (Asteroidece), which may be either flat or arched. The arms: of the star may be simple processes of the dise, and enclose a part of the body cavity (Stellevidea, Star-fish), or they may be more independent moveable organs sharply marked off from the disc, and as a rule simple (Opliuridre), but sometimes branched (Euryalidee), or they may even bear simple jointed side twigs, the pinmulce (Crinoidea).

An important characteristic of the Echinodermata is the induration by calcareous deposits of the deeper layers of the integument (dermal connective tissue), so as to give rise to a solid more or less moveable or even immoveable armour. In the

Fig. 211.-Skeletal plates of Astropecten Hemprichtii (after J. Müller). $D R$, dorsal marginal ossicles ; $V R$, ventral marginal ossicles; $A p$, ambulacral ossicles ; J_{p}, intermediate interambulacral ossicles; $A d_{p}$, anterior adambulacral ossicles projecting into the mouth. leathery Holothuroidea (fig. 210) alone these skeletal structures are confined to isolated calcareous bodies, which are embedded in the integument, and have a definite form of latticed plates, wheels, or anchors. In these
cases the dermal muscular system is strongly developed, and has the form of five pairs of bundles of longitudinal muscles, external to which is a continuous layer of circular muscular fibres covering the internal surface of the integument. In the Star-fishes and Brittle-stars a moveable dermal skeleton is formed on the arms consisting of calcareous masses (ambulacral ossicles), connected together like vertebræ, while the integument of the dorsal surface is filled with calcareous plates, and bears projecting processes and spicules (fig. 211).

The exoskeleton in the Sea-urchins is immoveable. It consists of twenty meridional rows of solid calcareous plates immoveably connected together by their edges so as to form a firm shell, which is continuous except at the two poles, where it is interrupted by membranous structures. The rows of plates are arranged in two groups, each with five pairs; of which the one group is radial in position and consists of plates pierced by the pores for the exit of the

Fig. 213. -Pedicellaria of a Leiocidaris (after Perrier).

Fig. 212. - Third ambulacrum of a young Toxopneustes droobachensis of 3 mm (after Lovén). O_{p}, Ocular plate ; P, primary plates and tentacle pores. The sutures of the primary plates are visible on the plates; $S w$, the tubercles to which the spines are articulated. longs to the inter-radii, and the plates are unpierced (the intercombulucral plates, fig. 206, $R, J)$. Near the apical pole, which in the Crinoidea and the embryonic Echinoidec is occupied by a single plate (central plate), there is, in the Sea-urchins, a small area covered with minute calcareous plates and containing the anus. Around this area the five ambulacral and the five interambulacral rows terminate, each in a pentagonal plate; the former ending in the smaller radial ocular plates (fig. 206), the latter in the larger inter-radial genital plates. The Crinoidec, in addition to the dermal skeleton of the disc, possess a stalk, which is composed of pentagonal calcareous masses, arises from the dorsal side of the body, and becomes attached to firm surrounding objects.

Amongst the appendages of the dermal armour, the numerous and variously shaped spines and the pedicellariæ must be mentioned.

The former are moveably articulated to the knobberd tuberelen on the shell of the Sea-urchin, and are rased and moved laterally by special moseles developed in a soft superficial dermal layer. The perlicellaria (fig .213) we stalked, prehensile appendages furnished with two, three, or more rarely four jatw, which are continually shapping together. 'They are especially collected around the month of the Sea-urehin and on the dorsal surface of the Star-fish. Small transparent bodies, sphererdia, we found in the living Sea-urchins, and probably have the value of sense organs. In thr, Sputumide, knobbed and ciliated hristles (clarmlor) are found upon
the so-called

Fig. 214.-Diagram exhibiting the relations of the different systems of organs in an Echinus (after Huxlcy). O, mouth ; A, anus; Z, teeth ; L, lips; $A u r$, nuriculæ of the shell ; re, retractor and protractor muscles of lantern ; Rg, circuiar ambulacral vessel ; $P o$, polian vesicle ; R, radial vessel of the same, with side branches to the ambulacral feet ($A m$); $S c$, stone canal; M, madreporic plate ; $S t$, spine ; $P e$, perlicellarir. fuscioles.

The E'chinodermutu are especially chat racterised by the possession of the peculiar water- vaiscular system and of the distemsible umbulacial feet connected with it (figs. 21t, 215). This ambulacral rascular system consists of a circular ressel surrounding the œesophagu:, and of fire radial ressels
projecting into the rays. These vessels have ciliated internal walls: and contain a watery fluid. Very frequently a number of resicles, the Polian vesicles, are connected with the circular vessel, also a number of racemose appendages, the significance of which is not fully understoorl. In connection with the circular ressel there is also a stone canal (in rare cases more than one are present), which permits of communication between the sea water and the fluid contents of the water vascular system. This canal, which is so
called on account of the calcareous deposits in its walls, either hangs within the body cavity, whence it takes up fluid through the pores in its walls (Holothurians), or ends in a porous calcareous plate, the madreporic plate, which is inserted in the external covering of the body, and through the pores of which the sea water percolates into the lumen of the canal system. The position of the madreporic plate varies considerably. In the Clypeastridea it is at the apical pole; in the Cidaridea and Spatungidea it is interradial, and falls in the anterior right interradius near the apex ; in the Asteridea it is also interradial and dorsal ; in the Euryalidce and the Ophiveridee it lies on one of the five buccal plates. Some Echinoderms, e.g., species of Ophidiaster and Echinaster echinites, possess several stone canals and madreporic plates.

Fig. 215. - Diagramatic representation of the water-vascular system of a Star-fish. $R e$, Circular vessel ; $A p$, ampullæ or Polian vesicles ; Stc, stone canal ; $M T$, madreporic plate ; P, ambulacral feet connected with the side twigs of the radial canals ; $A p^{\prime}$, the ampullæ of the same.

On the lateral branches of the five or more radial trunks are found the appendages known as the ambulacral feet (fig. 216). These are extensible tubes or sacs, which pass through pores and openings in the dermal skeleton and project on the surface of the body. They are capable of being swollen out, and are frequently provided with a sucking disc at their free extremity. Contractile ampullæ are placed at the point of junction of the

Fig. 216.-Diagrammatic section through one of the arms of Asteracunthion (after W. Lange). N, Nervous system ; P, nmbulacralfect ; A, calcarcous portions of integument; T, dermal branchia.
 - tube feet with the side branch of the radial vessel ; they force the
fluid into the feet and canse them to swell, and hence to project. A number of feet so distented atfix themselves by means of their sucking discs; they then contract and draw the body slowly in the direction of the radii. The number and distribution of these appendages are subject to numerous modifications. Sometimes

Fig. 217.-Sea-urchin divided along the equatorial line (after Tiedemann). D, Digestive canal fixed to the shell by mesenter:y; G, generative organs; J, inter-radial plates.
they are arranged in rows along the whole length of the meridian from the oral region to the periproct (Cidaridea and Pentacta). Sometimes they are scattered irregularly over the whole surface of the body, or only over the foot-like ventral surface, as in the

Frg. 218.-Longitudinal section through the arm and disc of Soluster endeca (somewhat altered after G. O. Sars). O, mouth leading into the wide stomach; A, anus ; L, radia. hepatic diverticulum of the stomach; G, genital organs; $M d$, madreporic plate; $J *$, interraclial diverticulum of the rectum ; $A f$, ambulacral feet

Holothuricus. In some cases they are confined to the oral surface, as in all the Asteroidec. We are able therefore to distinguish an ambulacral and an antambulacral zone - the first coinciding with the oral and ventral surfaces, the latter with the dorsal surface. Nevertheless the ambulacral feet are variously constructed, and do not in
all cases serve for locomotion. In addition to the ambulacral feet, great tentacle-like tubes may be present as appendages of the watervascular system; the circle of tentacles round the mouth of Molothurians (fig. 209) is composed of such appendages. We also find leaf-like appendages arranged over four or five-leaved r'osetteshaped areas, forming the ambulacial gills of the Spatcongidea and Clypeastridea (figs. 207 and 208). The irregular Sea-urchins all possess in addition ambulacral feet upon the ventral surface. These are in the $C l y$ peastrider almost microscopic in size ; they are very numerous, and are arranged in branched rows or are irregularly distributed over the surface.

The Echinodermata possess an alimentary canal distinct from the body cavity; it can be divided into three parts-œsophagus, stomach, and rectum. The anus is placed usually at the centre of the apical pole, rarely in an interradius on the ventral side. The intestine may, however, end blindly, as for example

FIg. 219.-Holothuria tubulosa, npened longitudinaily (after M. Edwards). O, Mouth in the midst of the tentacles (T); D. digestive canal; $S c$, stone canal; P, Polian vesicle ; $R g$, circular vessel of the water-vascular system, Ov, ovaries; $A g$, ambulacral vessel; $J I$, longitudinal muscles; $G f$, vessel to the intestine; Cl , cloaca; Wl , respiratory trees.
in all the Ophiuridce and Euryalide, also in the genera Asteropecten, Ctenodiscus, and Luidic, which have no anus. The mouth
is often surrounded by projecting skeletal plates amerl with spicules. There may even be developed, ats in the Ciduridea and Clypecstridec, pointed teeth covered with enamel, constituting a powerful masticatory apparatus, which again is supported around the easophagus by a system of plates and rods. This apparatus is known as Aristotle's Lantern (fig. 214). In the Holothurians, on the other hamd, there is a calcarcous ring round the cesophagus. It is formed of ten pieces, and serves for the attachment of the longitudinal bundles of the dermal muscles.

In the Star-fishes the digestive canal is invariably short, sac-like, and beset with branched blind appendages, some of which lie in the disc, while some project a long way into the arms. In the Asteroidea we find five pairs of strongly developed multilobed diverticula of the middle division of the alimentary canal (fig. 218). The five diverticula of the short rectum which fall in the interradii are much shorter, and perhaps pcrform the function of kidneys, while the longer diverticula increase the digesting surface. In the other Echinoderms the narrow intestine is much increased in length, and is either, as in Comatula, coiled round a spindle in the axis of the disc, or, as in the Sea-urchins, describes some convolutions (fig. 217), and is attached to the inner surface of the shell by fibres and membranes. In the Holothuriuns also the intestine is, as a rule, much longer than the body, and is usually folded upon itself thrce times and attached by a sort of mesentery (fig. 219).

The true vascular system is very difficult to trace. It consists in most Echinoderms of a ring-like vascular plexus surrounding the œesophagus. From this circular vessel radial vessels pass off one to each ray, and these trunks again give off other branches. There is in addition on the dorsal surface a second circular vessel, which sends off branches to the stomach and generative organs. These two vascular rings are connected by a supposed heart, which, according to Ludwig, consists of a close plexus of contractile vessels. In the Holothurians, besides the vascular ring round the oesophagus, ouly two trunks with their branches to the intestine are known. The blood is a clear, slightly coloured fluid, in which numerous colourless blood corpuscles are suspended.

Special organs of respiration are by no means universally found. The entire surface of the external appendages, as well as the surface of the organs suspended in the body cavity, and especially of the intestine, appear to play a part in the exchange of the gases of the blood. The sea-water very likely enters by the pores in the madre-
poric plate into the body cavity, and is kept in active movement by the cilia which line the body cavity and the perihæmal canals; in this way the surface of the internal organs is continually bathed by water. The leaf-like and pinnate ambulacral appendages (ambulacral bronchice) of the irregular Sea-urchins are regruded as special organs of respiration, as also are the crecal tubes (dermal branchix), which project from the surface of the integument and conmmuncate with the body cavity in some regular Sea-urchins and in the Asteridea. These dermal branchir are distributed in the Asterider over the whole dorsal surface as simple tubes, and in the Echini they surround the mouth as five pairs of branched tubes. Lastly there are the so-called respiratory trees of Holotlourians; these are two large tree-like branched tubes which open by a common stem into the cloaca. The water which is takeu into these organs can be again

Fig. 220.-Diagram of the nervous system of a Star-fish. N, The nerve ring connecting the five ambulacral centres. ejected with great force (fig. 219).

The nervous system (fig. 220) consists of five principal nerves running down the five rays. These nerves in the Asteridea lie immediately beneath the epidermis of the ambulacral groove, external to the radial blood vessel and water vascular trunk: they send off

Fig. 221. - Astropecten aurantiacus, end of ray with the eye ($O c$ c) surrounded by spicules (after E. Haeckcl). numerous fibres to the ambulacral feet, the muscles of the spines, pedicellariæ, etc. These ectodermal bands may be looked upon as the central part of the nervous system ("cmbulacral brains" of J. Müller). Near the mouth they divide into two parts, which unite with corresponding branches from the other radial trunks to form a nervous ring containing ganglion cells.

The tentacle-like ambulacral feet which in the Asteridea and Ophiuridea are present in simple number at the end of the arms are supposed to have the value of tactile organs. The same significance has been attributed to the tentacles of the Holothurids and to the pencil-like tactile feet of the Sputangidce. Organs resembling eyes
have been found in the E'chinoidea and Asterider. In the former (Ciduridea) there are, on special plates (ocular plates), at the apical pole, five tentacle-like prominences, in each of which a nerve ends. The eyes of the Asteridea are most accurately known. According to Ehrenberg's discovery, thoy have the form of red pigment spots, and lie on the ventral side of the rays at the distal end of the ambulacral groove. They we spherical pedunculated prominences, and the convex surface is covered by a simple membrane, which hides a number of conical simple eyes (fig. 221). The simple eyes appenr to have their axes directed towards a common point. They each consist of a red mass of piginent surromding a reflactive body, and a

Fig. 222.-Genital organs of Echinus. Ad, Rectum ; G, genital glands lying on the interambulacral plates; a, rows of ampullæ. nervous apparatus.

Reproduction is mainly sexual, and separate sexes are the rule. Only Synapta and Ampliura are hermaphrodite. The organs of reproduction of the two sexes are extremely alike, so that if it were not that the colour of the generative products is different,-the seminal fluid is mostly white and the ova red or yellow,a microscopical examination of the contents of the generative glands would be the only means of distinguishing between them. Sexual differences of the external form or of definite parts of the body are only very rarely present, since as there is no copulation the sexual functions are usually confined to the secretion and preparation of the generative material. Ova and spermatozoa, with some rare exceptions, first come in contact in the sea water outside the body of the mother. Internal fertilization, which is very rare, occurs in several viviparous species of Ampliura and Phyllophorus. The number and position of the generative organs are generally in strict correspondence with the radial structure: nevertheless there are numerous exceptions to this. In the regular Eclinoidea, five-lobed ovaries or testes, which are composed of branched blind tubes, lie in the interradii on the internal surface of the dorsal part of the shell (fig. 222). The
ducts of these glands are five in number, and open to the exterior through five openings in the skeletal plates (genital plates) around the apical pole (figs. 206, 222). In the irregular Spatcongidee the generative organ of the posterior interradius is always absent, and the number of glands may be three or two. In the Asterideca the five pairs of genital glands have the same interradial arrangement: sometimes however, they project into the arms: the apertures for the exit of the generative products lie on the dorsal side, and in each internadius two places may be found, each of which is pierced in a sieve-like manner by a number of such openings (fig. 223). In the Ophiuridce ten lobed generative glands composed of a number of blind tubes are developed around the stomach; their products pass through special passages into pouches, and from thence to the exterior through paired slits on the ventral side between the arms. The generative glands of the Crinoidea are concealed in the arms and pinnules. In the Holothurians, the generative organs are reduced to one branched gland, the duct of which opens to the exterior not far from the anterior pole of the body on the dorsal side (fig. 219).

The development of the Echinodermata presents as a rule a complicated metamorphosis, and is characterised by the possession of bilateral larval stages. Many Holothuriuns are developed without passing through these larval stages, as also are certain Sea-urchins, as

Fig. 223.-Part of the inter-radius of a star-fish (Solaster) with the generative glands (G) and the groups of pores (sieve plates) on the dorsal skin (after J. Müller and Troschel). Anochanus, Hemicaster, and some Asteroidea, which are either viviparous (Amphiuria squamata) or lay only a small number of eggs, and protect them during their development in a brood pouch. In these cases also the first stage is a ciliated embryo, which is either developed directly or passes through a much simplified metamorphosis.

In the cases of a complicated metamorphosis, the ovum, after undergoing a nearly equal segmentation, gives rise to a spherical embryo, the cellular wall of which is ciliated and encloses a central gelatinous substance (fig. 103). A pitlike depression of the cellular wall gives rise to the first rudiment of the alimentary canal, and the opening of this depression (gastrula mouth) to the anus. The ciliated embryo becomes elongated and gradually takes the form of a long, oval, more
or less pear-shaped larva, in which a slightly arched dorsal, two symmetrical lateral, and a saddle-slatped ventral surface can be distinguished. The cilia which are concentrated upon the raised edge of the ventral depression give rise to a continuous ciliated band which serves as a locomotive apparatus. [This band first appears as two separate ciliated ridges placed transveraely, one in front of, and the other behind the mouth (fig. 224, 3). These soon becone connected laterally.] The alimentary canal, which has now acquired an anterior opening, the mouth, consists of three portions, -the wophagus, the stomach, and the intestine. The wide mouth leading into the asophagus is situated within the band of cilia on the ventral surface ; the anus is also ventral, but extermal to the ciliated band in the region of the posterior pole. Before the appearance

Fig. 221 .-Larval development of Asterucunthion \berylinus (after A. Agassiz) (for earlicr stages see fig. 103). 1, stage whele the mouth (O) has just appeared, represented in profile; A, blastopore (anus); D, intestine; Tp, vaso-peritoneal sac. 2, Somewhat older stage in surface view with two separated vaso-peritoneal sacs. 3 , Later stage, from the ventral side, with two transverse ciliated ridges (W); the sac on the left side has an excretory pore. 4 , Young Bipinnaria with double band of cilia (W).
of the mouth, another organ is separated from the alimentary canal: this is a sac-like ciliated tube, which opens to the exterior by a pore on the dorsal surface, and represents the first commencement of the ambulacral system. A second organ, which also has its origin from the rudimentary digestive canal, consists of the disc-shaped lateral sacs (fig. 224), from the walls of which the peritoneal lining of the body cavity is produced.

With their progressive development the larvæ of the Sea-urchin, the Starfish, and the Molothurian diverge more and more widely from one another. The raised edge of the depression just mentioned, with its band of cilia, becomes bent and prolonged into processes (fig.
225) of different form. These processes are arranged with a strict regard to bilateral symmetry, and their number, position, and size essentially determine the special shape of the body. An anterior and a posterior ventral region of the band of cilia can be distinguished from the lateral parts which form the dorsal portions ; the latter curve round and pass into the former at the anterior and posterior ends of the body (fig. 225, b). The dorso-lateral parts may, however, unite anteriorly with one another without passing into the anterior ventral band; in this case the anterior continuations of the latter pass directly into one another so as to form an independent preoral ring, while the dorso-lateral and posterior ventral portions of the originally continuous band form a longitudinally directed post-oral ring. This arrangement is characteristic of the larve of the Asterideca
(Bipinnaria, Brachiolaria).

In all other forms a single longitudinal band of cilia only is present. In the larve of Holothurians, the Auricularia (fig. 225), the processes remain short and soft; they are found on the dorsolateral edges and on the posterior dorso-ventral arch of the band of cilia; they also appear on the posterior ventral (umbrella) and the anterior ventral (oral slield) parts of the band. The processes have a similar disposition in Bipinnaria, where, however, they are often much longer, but are in this case also not provided with calcareous rods. The Brachiolaria are distinguished from the Bipinnaria by the possession of three anterior arms, which are placed between the anterior portions of the two rings of cilia, and serve as a fixing apparatus. The bilateral larve of the Ophiurids and Sea-Urechins, the so-called Pluteus forms, are distinguished by their large rodshaped processes, which are supported by a system of calcareous rods. ℓ, from the ventral side. 0 , mouth beneath the oral shield; $O c$, œsophagus ; M, stomach ; D, intestine with anus (A) ; P, peritoneal sac; V, Water-vascular rosette with pore ; R, calcareous wheel-like bodies.

The Pluteus lanvie of the Ophinvids possess long lateral arms on

Frg. 226. -Pluteus of a Spatangus with so-called apical rod (St) (after J. Müller). the anterior dorsoventral arch of the band, on the dorsolateral edge, and on the edge of the posterior ventral hood. The Pluteus larva of the Sea-urchin has no lateral arms, but processes are developed - on the edge of the anterior ventral hood (fig. 226). The larvas of the Spatcongidarare characterised by an unpaired apical rod, and those of Echinus and Echinociduris by the presence of ciliated epaulettes (fig. 227).
The transformation of the laterally symmetrical larra with its bilateral processes and complicated organization into the body of the adult Echinoderm is not in all cases effected in the same manner. In the Sea-urchins and Starfishes the young animal is developed by a process of new formation within the body of the larva, the stomach, intestine, and dorsal sac alone persisting; while the transformation of the Auricularia into Synapta takes place without the loss of so many parts of the larva, the young passing through a pupa-like intermediate stage. In the first case a mass of

Fig 227.-Pluteux larva of Echinus lividus with four ciliated epaulettes (W^{c}) (after E. Metschnikoff) from the ventral side. O, Mouth ; A, anns.
interstitial tissue filled with round cells is formed external to the lateral discs, and with participation of the thickening skin. This tissue becomes the seat of calcareous deposits, and forms the dermal skeleton of the adult Echinoderm (fig. 228 a, b). The canal of the dorsal pore has in the meantime changed its simple form and developed into the circular vessel with diverticula, which are destined to become the ambulacral trunks. As development progresses, the young animal appears as a more or less spherical or pentagonal body, or as a star with short arms, in propor-

Fig. 228.-Gipinnaria from Triest forming a stage in the development of the Star-fish (St) (after J. Müller). a, Earlier stage. M, stomach ; A, anus; T°, ambulacral rosette with ciliated tube opening by the dorsal pore; S, stone canal. b, Older stage.
tion as it predominates over the larva. Finally, after the sprouting out of the ambulacral feet, the young Echinoderm becomes separated from the larval body, which not unfrequently remains attached to the former, like the remnants of a broken-down framework. The stomach, which is taken into the interior of the body of the Echinoderm, is torn from the cesophagus of the larva (Bipinnaria), and acquires a new oesophagus and mouth. The dorsal pore becomes the pore of the madreporic plate.

The Synapticlee, on the contrary, are formed by the transformation of the entire body of the Auricularia. Five tentacles appear in front
of the stomatch and the circular vessel, which is formed from the dorsal tube. They are at first enclosed in a cavity, from which later

Fig. 229.-Auricularia pupa of Synapta seen in profile (after E. Metschnikoff). The mouth is already large, so that the tentacles (T) can be protruded. $W r$, Ring of cilia; $P e, P i$, somatic and visceral layers of the peritoneal sacs; Ob, auditory vesicle; Po, pore of the water-vascular system; R, calcareous wheel-shaped body. on they penctrate to the externor. 'The larva retracts its lateral lobes and transforms itself into a bancelslapped body with five transverse rows of cilia, and loses the mouth and dorsal pore (fig. 229). The ambulacial system gradually develops further, the intestine becomes longer, the first five tentacles break through to the exterior, the mouth appears at the anterior pole, and the first suctorial foot witl its ambulacral vessel is seen on the ventral surface (fig. 230). The animal gradually loses the bands of cilia, and as a young Holothurian creeps about by means of its tentacles and of the first ambulacral foot, which is soon followed by a second new one.

In the more direct development the bilateral larval form seems to be completely suppressed, and the time of free-swimming life shortened or altogether dispensed with. In these cases, protective arrangements, suchi as brood pouches, are always present in the mother. The brood pouch of Pteraster militaris is the most carefully protected. It lies above the anus and generative openings; its walls are highly charged with calcareous matter, and they are raised above the spicules on the

Fig. 230.-Young Holothurid with extended tentacles (T), swimming and creeping (after J. Müller). back. From eight to twenty ova (1 mm . in diameter) pass into the interior of the brood pouch, and are there developed into oval embryos, which acquire sereral sucking feet and assume later the form of a star with five rays.

The formation of the embryo takes place thus: four shicld-like thickenings are formed upon one seginent of the ovum, and beneath them several ambulacral fect makc their appearance. The star is doveloped by the increase in sizc and number of these discs and ambulacral feet. At this period of devclopment we can distinguish the circular ambulacral vessel surrounding a central hemispherical projection of the oral disc, also the five vascular trunks and 2--3 pairs of sucking feet in each ray. In other cases, the brood pouch is formed upon the ventral surface of the Star-fish, e.g., Echinaster Sarsii, and the embryo, which is completely ciliated, is provided at the anterior end with a knobbed process. The latter is divided into several structures (Haftzäpfchen), which serve as organs to attach the body of the embryo to the wall of the brood pouch. Suctorial feet are now formed in each ray, two paired and one unpaired, the latter lying nearest to the angle of the pentagon. The five angles become more and more projecting, and acquire eye spots and ambulacral grooves. Spicules appear, and the mouth perforation is formed, the fixing organ aborts, and the embryos escape from the maternal brood pouch; and being at this time capable of creeping and of nourishing themselves independently, they gradually develop into small star-fishes. The mode of development is the same in Asteracanthion Mïllerii, and some Ophiurids, as Amphiura squamata.

Amongst the Holothurids (H. tremula) the simple and more direct development was first observed by Danielssen and Koren, and later by Kowalevski, in Phyllophorus urna, and by Selenka, in Cucumaria doliolum. In the first case the embryo leaves the egg in the form of a ciliated larva, which soon assumes a pear shape, and develops the circular vessel of the water-vascular system, and five tentacles round the mouth. The alimentar'y canal and the dermal skeleton make their appearance before the five tentacles have assumed the function of locomotion in place of the cilia which have disappeared. Later on, with the progressive growth, the tentacles become branched, and two ventral fcet appear, which put the bilateral symmetry of the larva beyond all doubt. In all cases, even in the cases of a more direct development, the radial symmetry of the culult Echinoderm appears to be preceded by a bilateral symmetry of the larva.

All the Echinoderms are inhabitants of the sea; they are capable of a slow, creeping movement, and feed on marine animals, especially on Mollusca, but also on Fuci and sea-weeds. Some are found near the coast at the bottom of the sea, others occur at considerable
depths. Many possess a great reproductive power, and are able to replace lost parts, such as arms, with all their apparatus of nerves and sense organs.

Clatis I.-CRINOIDEA.*

Globular or cup-shaped lichinodermata with sergmented arms furnished with pinnulce. They are uswally attrecherd by a segmented

Fitg. 231.-Pentucrinus cuput Medusce (after J. Müller). O, mouth ; \mathcal{A}, anus, of the disc, which is represented from the oral side. culcareous stalk. I'le skin upon the aljoral side is provided with plates, the ambulacrol appendarges luve the form of tentacles, and are situated in the ambulacial furrows of the calyx and of the sermented arms.

The greater number of Crinoider are characterised by the presence of a segmenter stalk bearing cirri. This stalk arises from the apical (dorsal) pole of the calyx, and is attached at the inferior end to surrounding objects (fig. 231). In some few living genera, as Comatulu (fig. 232) and Actinometra, this stalk is only present in the young form. The body with the contained viscera appears, therefore, as the calyx at the upper end of the stalk, and only in exceptional cases is directly

[^53]attached by its dorsal apex. The segments of the stalk, which are mostly pentagonal, are connected by bands of tissue, and are pierced by a central canal, which serves for nutrition, and contains a central and five peripheral blood vessels; at certain distances they bear hollow and segmented cirri, which are arranged in whorls.

The dorsal surface of the calyx is covered externally by regularly arranged calcareous plates, while the upper (ventral) surface, on which the mouth and anus are situate, is clothed with a leathery

Fig. 232.-Comutula mediterranea represented from the ventral side. O, mouth; A, anus. The pinnulæ are filled with the generative products.
skin. At the margin of the cup there arise movable, simple or forked, and often branched arms, which are supported by a solid framework consisting of dorsally placed calcareous plates, which are movable upon one another by special muscles. In almost

Arch. fïur Jruturgesch, 18:1. W. Thompson, "On the Embryology of the Antedon rosaceus," Phil. Trans. Roy. Soc., Tom 155, 1865. W. B. Carpenter, "Rescarches on the Structure, Physiology and Devclopment of Antedon rosaccus," Jbirl., Tom 156. A. Götte, "Vergl. Entwickelungsgeschichte der Comatula Mediterranca," Arehiv. fü̈ mickrosk. Anatomie, Tom XII. H. Ludwig, "Morphol. Studien an Echinodermen," Leiprig, $187 \overline{7}$.
every case the arms hear, either on their main stems or on their branches, lateral appendages, the pinnules, which have an alternate arrangement on each side, one being attached to each segment of the arms. Essentially the pimmules represent the ultimate ramifications of the arms.

The mouth, as a rule, lies in the centre of the cup. From it certain funrows, the combulacral grooves, traverse the dise (fig. 231)

Fig. 233.-Developmental stages of Comatula (Antedon), much enlarged. a, free-swimming larva with tuft and rings of cilia ($W_{r} \cdot$, also with rudimentary calcareous plates. l, Attached Pentacrinoid form of the same animal. O, Oralia; R, Radialia; B, Basalia; $C d$, Centrodorsal plate. c, Older stage described as Pentacrinus europaeits with arms and cirri (after Thomson).
and pass on to the arms, and their branches and pinnules; they are lined by soft skin, and carry the tentacle-like ambulacral appendages. The anus, when it is present, lies excentrically on the ambulacral (ventral) surface of the disc. The development of the living genus Comatulc, which begins with a barrel-shaped larva with four bands of cilia and leads to the fixed stage of the Pen-
tacrinus. form (P. Europereus) (fig. 233), consists of a complicated metamorphosis.
The greater number of Crinoids belong to the oldest periods of the history of the earth (the Cambrian, Silurian, Devonian, and the Carbouliferous formations). Existing forms live mostly at considerable depths.

We distinguish two orders, the Tesseluta and the Articulata.

The latter is represented by numerous fossil forms, but by only a few living genera as Pentacrinus, Holopus, and Comatula (fig. 234). The cup is always less completely provided with plates than in the fossil Tesselata.

Articulata.

Fam. Pentacrinidæ. Crinoids with ten arms, several times bifurcated. There is a pentagonal stalk with whorled cirri. Pentacrinus caput Meduse, Mill. from the Antillcs. P. Mïlleri Ocrst., West Indian Ocean. The fossil forms are : Enerinus Liliiformis. Schl. (fig. 234) from the Muschelkalk; also Apiocrimus, allied to the existing Pluizocrinus lofotensis Sars, and to Batlyycrinus yracilis, and aldrichianus. W . Th., from the deep sea. Allied to this group is the third existing genus Holopus, from the West Indics, with calyx attached by a short unjointed prolongation of its apex. H. Rangii d'Orb.
Fam. Comatulidæ. Stalked only in the young state.

Fig. 234,-Encrinus Iiliiformis from the Muschelkalk. The adult animal is frce. There are usually ten arms at the margin of the flattencd bolly; mouth and anus are prescnt. The Comatulidce possess the power of striking their arms towards the ventral surface and so of propelling themsclves amidst the sea-weeds. The vermiform larva, with its four ciliated girdles, makes its appearance within the egg-membranes. It acquires a mouth and anus, also a tuft of cilia at the posterior cnd of the body, and swims about frecly. It passes later, by the formation of calcareous rings and rows of plates, into the stage of the stalked Pentacrinus, from which the Comatula is produced by the separation of the cup from the stalk. Cimatula mediterranea Lam., Antedon rosacea Link., known in the young attached stage as Pentaerinus Europacus. Actinometra J. Miull.

To the Crinoids are allied the fossil Cystidea and I3lastoidea. The Cystidea were provided with short stalks and slightly developed arms. Their generative organs were enclosed in the calyx, wheuce their products escaped through a genital opening capable of being closed by movable valves. They are found as fossils in the Cambrian, Silurian, and Devonian formations and the Carboniferous limestone. To this group belong the gencra s.phaeronites, Caryeerinuse, Apinoystites.
The Blastoidea have no arms, and only possess ambulacral areas on the calyx. which is attached by a segmented column. Pentatrematites.

CLASS H.-ASTEROHOEA (S'JARFISHES).*

Eichinoderms with dorso-ventrally compressed pentagomal or starslueped borly. The ambulacral, feet are confined to the wemtiol suifuce. Internal skeletal pieces in the rmbulacro artionlated toypther like vertebre.

The Star-fishes are chiefly chancterised by the predominating pentagonal or star-like discoidal shape of the borly, to the ventral

Fig. 235. Echinaster sentus, from the oral surface (after A. Agassiz). O, mouth; $A f$, ambulacral feet.
surface of which the ambulacral feet are confined (fig. 235). The radii are long in comparison with the inter-radii, which are very short in consequence of the divergence of the interambulacral rows of plates; they constitute more or less projecting movable arms, with movable skeletal structures. These latter consist of transversely arranged, paired calcareous plates (ambulacral ossicles),

* J. Miiller and Troschel. "System der Asteriden," Brunswick, 1841. Compare besides the numerous papers of Krohn, Sars, Liitken. L. Agassiz, ete.
which reach from the month to the end of the arms, and are articulated together like vertebre. The skeleton of the Asteroidea is distinguished from the globular or flattened shell of the Echinoidea by the fact that the ambulacral and interambulacral plates are contined to the ventral surface, and that on the outer side of the former there is a deep ambulacral groove, which contains, outside the ossicles and beneath the soft skin (which in Opluiurids possesses special calcareous plates), the nerve trunks, the perihremal canals with the blood-vessels and the ambulacral trunks. In the Ophiuridea the ambulacral groove is covered by the dermal plates so that the ambulacral feet project at the sides of the arms. Upon the dorsal surface the dermal skeleton appears leathery; it is, however, as a rule, filled with small calcareous plates, on which are placed spines, protuberances, and papillæ, constituting a covering of a most varied kind. At the margin in the dorsal integument there is usually a row of larger calcareous plates (superiormarginal plates) (fig. 236).

Upon the ventral surface we can distin-

Frg. 236.-8keletal plates of Astropecten Hemprichtii (after J. Müller). $D R$, Dorsal marginal plates; $V R$, ventral marginal plates, $A p$, ambulacral ossicles; Jp, intermediate interambulacral plates; $A d p$, anterior adambulacral plates forming an angle of the month.
guish, in addition to the internally placed ambulacral ossicles, inferior marginal ossicles (fig. 236,VR), also the culambulucral plates (Adp), and the intermediate interambulacral plates $\left(J_{p}\right)$. The two last correspond to the interambulacral plates of the Echinoidect, where they occur as two or more rows, which are united along the whole length of the inter-radius: in the Asteroidea, however, they separate from one another at an angle, and are disposed along the opposed sides of adjacent arms. The ambulacral ossicles are calcareous bodies articulated together like vertebre, with spaces between their lateral processes for the passage of the vessel connecting the ampulle with the radial vessel and the tube feet. The right and left pieces of each double row are either (Ophiurideca) immovably connected by a suture, or are
(Stelleridera) movably articulated by teeth, which fit into one another. at the bottom of the ambulacial groove ; the latter only (Stelleridea) possess transverse muscles on the anbulacral ossicles, and are able to bend their ams together towards the ventral surface. The Opliurider are provided with longitudinal muscles only, by means of which they are able to bend their arms to the right and left in a horizontal plane with a serpentine movement.

The mouth is always placed in the centre of the ventral surface in a pentagonal or star-shaped depression, the edges of which are usually beset with stiff papillæ. The inter-radial angles are inarked by the junction of two adambulacral plates, and frequently function as organs of mastication. The anus may be wanting; when present, it invariably lies at the apical pole. The nadreporic plate, of which there may be one or more, is situated inter-radially and dorsally (Stelleridea), or on the inner surface of one of the luccal plates (Ophiuridea), on the exterior of which a pore may be present. Development in certain cases takes place without the interposition of a bilateral larval phase with bands of cilia. When such larve are developed, they have the form of a Pluteus (Ophiurid) or Bipinnaria and Brachiolaria (Stellerid).

The great power of regeneration possessed by Starfishes is not confined to the reproduction of lost arms, but may lead to the new formation of portions of the disc, or even of the entire disc from a single separated arm. This process thus amounts to a species of asexual reproduction by fission, and has been especially observed in forms with six (Ophicuctis) or more than six (Iinckic) arms.

Fossil star-fishes are found as far back as the lower Silurian strata (Palcocster), where intermediate forms between Stelleridea and Ophiuridea (Protaster) make their appearance.

Sub-Class 1.-Stelleridea (Asterideci) Starfishes.

Asteroidea whose arms are prolongations of the disc, and contain the hepatic appendages of the alimentary canal, and also the generative organs. They possess a deep, uncovered ambulacral groove running along the ventral surface, in which groove the ambulacral feet are disposed in rows.

The Stelleridec usually possess broad arins, and are characterised by the fact that the ambulacral ossicles of the two sides are counected by transverse muscles and are movable upon one another. The anus lies at the aboral pole, but may be wanting in certain genera (Astropecten). The madreporic plate and the genital pores are
situate inter-radially and upon the dorsal surface. The multilobed branched diverticula of the stomach extend into the cavities of the arms (fig. 218). On the ventral surface of the latter, two or four rows of ambulacral feet project from the deep ambulacral groove, the edge of which is beset with papillae (fig. 235). Pedicellarice are also found, and dermal gills projecting through the tentacular pores of the dorsal surface.

They feed principally upon Mollusca, and, by means of their ambulacral feet, crawl slowly upon the bottom of the sea. Some few of them are developed by a very simple process of metamorphosis within the brood-pouch of the mother; but the greater number of them pass through the free larval stages of Bipinnaria and Brachiolaria (figs. 224 and 228).

Fam. Asteriadæ. The cylindrical ambulacral feet end in broad suctorial discs, and are usually arranged in four rows along each ambulacral groove. Asterias L. (Asteracanthion), A. glacialis O. F. Müller., Hcliaster helianthus Gray.

Fam. Solasteridæ. The cylindrical ambulacral feet are disposed in two rows. Rays long, often more than five Sollaster papposus Retz., Echinuster sepositus Retz., Ophirliaster Ag., Linckia Nardo.

Fam. Astropectinidæ. Am-

Fig. 237.-Asteriscus verruculatus, with the dorsal skin removed. Ld, Ra lial appendages or hepatic tubes of the stomach; G, generative glands. bulacral feet conical, and without suctorial disc, arranged in two rows. There is no anus. Astropecton aurantiacus Thil. Luidtin Forb., Ctenorliscus Müll. Tr.

Fam. Brisingidæ. Body shaped like an Ophiurid. Rays distinct from the disc with only a narrow internal cavity. Brisinga coronata Sars.

Sub-Class 2.-Ophiuridea (Brittle Stars).

Asteroidea characterised by the absence of an anuss, and by the possession of long cylindirical arms which are sharply distinct from the disc, and do not contain appendages of the alimentary canal. The ambulacral groove is covered by the dermal plates so that the ambulacral feet project at the sides of the arms.

The Ophiuridea can be at once distinguished by the flexible cylindrical arms, which are sharply distinct from the disc, and enclose
no diverticula of the alimentary canal. The movements of the ams are principally in the horizontal plane, and in many cases permit of a creoping locomotion amongst marine plants. The ambulacral groove is always covered by special dermal plates, and the ambulacial feet project laterally between the spicules and plates on the upper. surface (fig. 238). In a few cases the arms are branched, and can be rolled up in the direction of the mouth. Th such cases the ventral groove is closed by a soft skin (Astrophyton). The anus is always wanting, as are pedicellarice. The generative products pass into genital pouches (burse), and from these directly to the exterior

Fig. 238.-Ophiothrix fragilis. The ends of the rays have been removed. GS, Slits of the genital pouches; K, masticatory ossicles. through inter-radial paired slits. The madreporic plate lies upon the ventral surface in one of the buccal plates. Some few Ophiurids are viviparous, e.y., Amphiura squamata; these do not undergo metamorphosis. Most pass through the Pluteus larval stage, e.g., Opliioglyphe Lym., (Ophiolepis) ciliata with larval stage Pluteus paradoxus.

Fam. Ophiuridæ. With simple unbranched arms, and with ventral plates to the ambulacral groove. They are divided into speeial genera aceording to the peeuliar eharacter of the dermal eovering and of the buecal armature. Ophiothrix Miull. Tr. The baek is provided with granules, hairs, or spieules. The lateral plates of the arms bear spieules. Oph. frrugilis O. Fr. Miiller. Ophiura Lam. (Ophioderma). Two pairs of genital slits in each interbrachial space. O. lomyicuuda Link., Ophiolepis Lütk., Amphiuru Forb.

Fam. Euryalidæ. Mostly with branehed arms whieh can be eurved towards the mouth and are without plates; the ventral groove elosed with soft skin. Astrophyton verrucosum Lam., Indian Ocean. - . arborescens. Rond.. Mediterranean. Astronyx Loréni Mill. Tr.

CLASS III.-ECHINOIDEA,* SEA-URCHINS.

Spherical, heart-shaped, or disc-shaped Echinoderms with immorable skelcton composed of calcureous plates. The skeleton encloses the body

[^54]after the manner of a sleell, and carries movable spines. There is invariably a mouth and anus, and locomotive and often respiratory ambulacral appendages.
The dermal skeletal plates are connected together so as to form a firm immovable shell, which has no arm-like prolongations in the direction of the rays, and is sometimes regularly radial, sometimes irregular or symmetrical. With some rare exceptions among the fossil Perischucchinidee, as Lepidocentrus, the calcareous plates are firmly connected with one another by sutures, and are usually arranged in twenty meridional rows. These rows (fig. 206) are disposed in pairs, and correspond alternately with the radii and the inter-radii. The five radial pairs are the ambulacral plates, and are pierced by rows of fine pores for the exit of tube feet (fig. 212, P), and bear, as do the broad interambulacral plates, spherical prominences and tubercles to which the differently shaped spines are movably articulated. The body form of the Sea-urchins, as contrasted with that of the Star-fish, depends upon the meridional arrangement of the rows of plates, and, at the same time, on the continuity of the interambulacral rows.

The position of the nerves and ambulacral vascular trunks beneath the skeleton is the special characteristic of the internal organization. Pedicellarice are found between the spicules, and are especially numerous in the region of the mouth. Some Cidaridea are provided with branched respiratory tubes. The genital pores are disposed inter-radially on the genital plates near the apical pole. One of these genital plates is, as a rule, also the madreporic plate. The ocular plates, which are radial in position, are also pierced (figs. 206, 212). The regular Sea-urchins are often symmetrical, one radius being longer or shorter than the others, which are equal to each other: So we find long oval forms which are laterally symmetrical, having the mouth and anus central, and an anterior unpaired radius (Acrocladia, Echinometra). In the irregular Sea-urchins the anus is thrust away from the apical pole into the unpaired radius (Clypeastricle). The mouth also often has an eccentric position in front (Spatungiche, fig. 208), in which case the masticatory apparatus is always wanting.

In many regular forms all the ambulacral feet have the same shape, and are provided with a suctorial disc supported by calcareous bodies; in others the dorsal feet are unprovided with a disc, and are pointed and often have an indented edge. In addition to the ambulacral feet, the irregular Sea-urchins almost all possess ambu-
lacral branchia upon a rosetto formed of large pores on the dorsal surface (fig. 239). The locomotive feet are very small in Clypenstridu, and we distributed either over the whole surface of the ambulacra, or are confined to branching lows upon the ventral surface. In the stpatangide there are peculiar binds upon the upper surface, the fuscioles or semitre (fig. 239),

Fig. 239.-Brissopsis lyrufera with the fascioles or semites surrounding the rosette. A, anus. upon which, in place of the spicules, knobbed bristles with active cilia (clamules) we distributed. Development takes place with a Pluteus larval stage, in which the larva is provided with ciliated epaulettes or with an apical rod.

The Sea-urchins live, as a rule, near the coast, and feed on molluscs, small marine animals, and Fuci. Some species of Echinus have the power of boring holes in the rocks in which they live. We find many fossil shells, especially in the chalk.

Order 1.-Cidaridea $=$ Regular Sea-urchins.

Echinoidea with central mouth and equal band-like ambulacia; with teeth and masticatory apparatus; with sub-central anus in the apical space.

Fam. Cidaridæ. With very narrow ambulacral and broad interambulacral areas, on both of which are large perforated tubereles and club-shaped spines. There are no oral branchiæ. Cidaris metularia. Lam., Phyllacanthus imperialis Lam., East Indics.

Fam. Echinidæ. Sea-urchins. The porcs are grouped in transverse rows; there is a round, thin shell, broad ambulacral spaces bearing tubercles and spines. which are mostly short and pear-shaped. Oral branchiæ are present. Tincopneustes variegatus, Lam.. Echinus melo Lam., Strongylocontrotus lividus Brit. sa.xatilis Lin., Mediterranean.

Fam. Echinometridæ. With long oval shell, imperforate tubercles and oral branchir. Echinometra oblonga Blainv., Podophlara atruta Brdt.. Acrocladia trigmaria Ag., Pacific.

Order 2.-Clypeastridea.

Irregular Echinoidec compressed into the form of a shield. Mouth central and furnished with masticatory apparatus. Very broad ambulacra, five-leaved ambulacral rosette round the apical pole, and very
small tube feet. Five genital pores in the reaion of the madreporic plate.

Fam. Clypeastridæ. The edge of the dise without indentations. (7yppeaster roxacus. Lam. (fig. 207), brhinocyamus pusillus O. F. Mïller, Mediterranean.

Fam. Scutellidæ. Flattened Eohinoidra with a shell often lobed or perforated, with rows of pores for the ambulaeral feet. Lobophura lifiner Ag., Rotulu Rump)hii Klein, Afriea.

Order 3.-Spatangidea.

Irregular Echinoidea of a more or less heart-shaped form, with eccentric mouth and anus. There are no teeth or masticatory apparatus, and there is usually a four-leaved ambulacral rosette and four genital plates.

As a rule there are semitre and four genital pores, but the number of the latter may be reduced to three and two.

Fam. Spatangidæ. Spatanyus purpureus O. Fr. Müll., Mcditerranenn; Schizuster canaliferus Ag., Bris.sus Elein.

CLASS IV.-HOLOT'HUROIDEA.*

Wormlike elongated Echinoderms with a leathery body wall, with contractile tentacles surrounding the mouth ; anus terminal.

The Holothurice approach the worms in possessing an elongated cylindrical shape and a bilateral symmetry, which is expressed in many ways. In particular they possess so striking a resemblance, so far as their exterior is concerned, to many Gephyrrea that formerly they were included in the same group. The body-covering never consists of a firm calcareous shell like that which we find in other Echinoderms, but always remains soft and leathery, the calcareous matter being confined to a few isolated particles of definite form. In rare cases (Cuvieric), scales are present in the dorsal skin. These are arranged like the slates on a roof, and may even take the form of spicule-like appendages (Echinocucumis).

The bilateral symmetry results not only from the existence of unpaired organs, but from the contrast which is often very distinctly expressed between the dorsal and ventral surfaces. The ambulacral feet are not in all cases regularly arranged in the five meridional

[^55]rows from the oral to the anal pole, hat may be principally on altogether confined to the three rays of the so-called trivium. In this latter case the Holothurid moves upon a more or less foot-like ventral surface. The ambulacial feet may also be distributel uniformly over the surface of the body, especially on the ventral side. As a rule, the tube-feet have a cylindrical shape, and terminate with a suctorial disc: in other cases they are conical, and the suctorial disc is absent. The tentacles, which are in communication with the water-vascular system, and represent specially modified ambulacral appendages, are simple or pennate, or even dendritic (Dendrochirotu) or shield-shaped (Aspiclochirota), that is, provided with a disc, which

Fig. 240.-Synapta inherens (after Quatrefages). O, Mouth; A, anus : the intestine can be seen through the skin. is often divided into many parts. In certain genera (Symupta), the ambulacral feet are altogether wanting, and the tentacles remain as the sole appendages of the ambulacral system (fig. 240). Locomotion is effected by the strongly developed dermal muscular system, the longitudinal fibres of which are attached to the calcareous ring surrounding the cesophagus. It is characteristic of the water-vascular system that the stone canal, which is usually simple, hangs freely in the body cavity, ending in a calcareous framewrork comparable to the madreporic plate. The respiratory trees at the end of the intestine perform the function of respiration, while certain glandular appendages (organs of Cuvier), which open into the rectum, may be regarded as excretory organs: these, as well as the respiratory trees, may be wanting. The generative organs consist of a bundle of branched tubes, the duct of which opens on the dorsal surface in the region of the mouth. The genus Synapta is hermaphrodite. The development is in many Holothuricns direct (as e.g. in Holothurice tremulca according to Koren and Danielssen) ; where there is a complicated metamorphosis, the larve have the Auricularia form, and pass througla a barrel-shaped pupa stage.

The Holothurians are partly nocturnal in their habits, and live at the bottom of the sea, for the most part in shallow places near the coast, where they crawl slowly upon the bottom. The Stynaptidee, which lave no feet, burrow in the sand. They feed on the smaller narine auimals, which, in the Dendrochirota, are carried to the mouth by means of the branched, tree-like tentacles. The Aspidochirota fill their intestine with sand, which they eject from the anus by means of the current of water from the respiratory trees. It is worthy of notice that they (especially the Aspidochirota) can eject through the anal opening the intestine, which breaks off easily behind the vascular ring, and are able to renew it. The Symaptc, when irritated, are able to break their body into several pieces by violent muscular contractions.

> Order 1.-Pedata.

Numerous ambulacral feet, which are sometimes arranged regularly in the meridians, and sometimes distributed over the whole surface.

Fam. Aspidochirotæ. With shield-shaped tentacles. Iolothuria L. With scattered ambulacral fcet, which are conical on the dorsal side, and are without suckers. H. tubulosa Gmcl.. Adriatic and Mediterranean; HI. eduli.s Less., the edible Trepang of the East Indian seas.
Fam. Dendrochirotæ. With trec-like branched tentacles. Cueиmaria Blainv. Ambulacral feet arranged in regular rows. C. frondosa Gr. Psolus Oken. Ambulacral feet confined to the foot-like ventral surface of the trivium. Ps. phantapus. Gr.

Order 2.-Apoda.

No ambulacral feet; as a rule without respiratory trees; the tentacles are usually branched or pinnate.

Fam. Synaptidæ. Hermaphrodite and without respiratory trecs. In the skin therc are wheel-shaped calcareous bodies or projecting masses shaped like anchors, and affixed to calcarcous plates. Synupta digituta Mutg. with anchorshaped calcareons bodies. J. Miuller discovered in their bodies parasitic cylindrical animals with spermatozoa and ova, which latter develop into small shell-bearing Gastropods (Entoconchu mirabilis). Chirodota Esch. Skin beset with rows of small tubercles bcaring calcareous wheel-shaped bodics. The genus Molpadia Cuv. is furnished with respiratory trecs.

ENTEROPNEUSTA.

The remarkable genus Bulanoglossus must be placed here. It is the representative of a class, Enteropnerusta Gegenb.,* allied to the Echinodermata, but usually classed with the Vermes, and presenting

[^56]an aflinity to the Thmicate by the mode of respiration. 'This interesting worm was discovered by Delle Chiaje, and its organization and development have been lecently investigated by A]. Agassi\% and Kownlevski [more recently by Bateson, Q. J. Mic. Ści. 1884] (fig. 241).

The most inte-

Fig. 241.-Young Balemoglossus, strongly magnified. Pr;, Proboscis, the numerous branchial slits are visible. resting point about this form is the structure of its l:u'va, which renders its relationship to the Eichinodermata probable. The larva was described by J. Muiller as Tormaria, and was legarded by him as an Echinoderm larva. It does, in fact, possess a double band of cilia, like Bipinnaria. Of these two rows of cilia, one, the preoral, forms a ring round the prox-oral lobe, while the other is larger and runs in a more longitudinal direction so as almost to join the former near the

Fig. 242, a, b.-Tornuria larva (after E. Metschnikoff). a, Seen from the side; \langle. from the dorsal surface. O, mouth; A, anus; S, apex, W, rudiment of water vascular swstem; C, furnish the first heart; P, P^{\prime}, peritoneal sacs. apical pole. There is also a transverse prex-anal ring of cilia (fig. 242, a, b). Internally a diverticulum of the archenteron gives rise to an independent sac forming the water-vascular system, while two pairs of diverticula rudiments of the body cavity. A pulsating heart is developed from a thickening of

[^57]the ectoderm, and sinks into a depression of the water vascular vesicle. At the apical pole there is a thickening of the ectoderm resembling the apical plate of the larval Worms and containing two eye-spots.

The development of the larva into the adult Balunoylossus was first traced by E. Metschnikoft and then by A. Agassiz. The band of cilia gradually disappears, the pree-oral part of the larva becomes the proboscis, while the oral portion gives rise to the collar. The trunk is formed from the posterior elongated portion on which the posterior transverse ciliated band still persists. The

Fig. 243.-Stage in the conversion of Tornaria into Balanoglossus, with one pair of branshial slits (after E. Metschaikoff), seen from the side. Bo, external branchial opening; P, peritoneal sac; $V c$, circular vessel; O, mouth; C, heart. anterior portion of the alimentary canal becomes pierced by paired branchial slits (figs. 243, 244).

The body of the adult animal is worm-like and completely ciliated; it can be divided by the external features into a number of different regions. The anterior end of the body is indicated by a proboscis well marked off and projecting like a head. This is followed by a muscular collar. Posterior to the collar-

Fig. 241.-Stage in the conversion of Tornaria into Balanoglossus, with four pairs of branchial slits (after Al. Agassiz). Letters as in figs. 242, 243 . there is a longer portion of the body, the branchial region, which may be divided into a median distinctly ringed part (branchire) and two lobed lateral portions usually filled with yellow glands. At the boundary, between the median portion and the two lateral lobes, there are on either side rows of openings which serve for the exit of the water from the branchial chamber. Then follows a third division of the body, the gastric region, upon the upper side of which there are four rows of yellow glands (generative glands).

Between these, browmsh-green prominences are visible (the hepatic appendages of the intestine), which, towards the posterior extrenity where the yellow glands risarpear, are larger and more closely aggregated. Finally there follows a distinctly ringed caurlal region, at the hind end of which is the anns.

The contractile proboscis serves not only as a siphon to maintain respiration, but also as a locomotory organ. It projects above the level of the mud in which the animal is burien, and is said to talke in water by a terminal aperture (the existence of this opening has been recently disputed) [and to pass it out into the mouth through a pore at its base].

The mouth lies behind the anterior margin of the so-called collar; and leads into a buccal cavity, the walls of which contain a great number of unicellular mucous glands. The portion of the alimentary canal which follows the bnecal cavity bears the branchial framework, and is divided into a dorsal and ventral part by two longitudinal folds, so that it almost presents in transverse section the appearance of a figure of 8 . The intestine does not hang freely in the body cavity, but, except in the region of the tail, is fastened to the body wall by connective tissue; it is, however, always very closely attached in the two median lines. Beneath the dorsal and ventral median lines, where the two principal vascular trunks are visible through the skin, two grooves, beset with strong cilia, run along the whole length of the intestine. From these grooves secondary grooves are given off, and as it. were divide the whole surface of the intestme into islands. Some distance behind the branchial region, on the upper side of the intestine, the peculiar cell masses begin, which gradually assume the form of sac-like diverticula with ciliated internal walls. These " hepatic appendages " are either disposed in a simple row along each side (B. minutus Kow.), or densely aggregated together (B. clavigerus Delle Ch.)

The branchial basket-work which is placed at the commencement of the alimentary canal projects on the anterior flattened part of the body in the form of a transversely ringed longitudinal fold, and contains a system of chitinous plates, which constitute its framework and are connected in a peculiar manner by transverse rods. The water taken in through the mouth passes through special openings in the wall of the anterior portion of the alimentary canal into the ciliated branchial spaces, to issue thence through the two rows of lateral pores on the dorsal surface of the branchial region.

The vascular system consists of two median longitudinal trunks,
which give off numerous transverse branches to the walls of the intestine and body, and of two lateral tronks. The branchix receive their rich vascular supply entirely from the lower trunk. The upper trunk, in which the blood flows from behind forwards, divides at the posterior end of the branchie into four branches, of which the two lateral ones pass to the lateral portions of the anterior part of the body.

Certain fibrons cords, rumning directly beneath the epidermis in the dorsal and ventral median lives and branching into a net-work of fine fibrille, have lately been interpreted as nervous centres. These cords are described as being connected at the posterior end of the collar by a ring-like commissure.

The generative organs are arranged in single rows in the branchial region, but posterior to this in double rows. During the breeding season they are extraordinarily developed, and the male and female can be easily distinguished by the difference in their colour. Each orum is contained in a capsule, which is provided with nuclei, but is otherwise homogeneous. The eggs are probably laid in strings like those of Nemertines.

These animals live in fine sand. They saturate the sand in their immediate vicinity with mucous. They fill their alimentary canal with sand, and move themselves by means of their proboscis, which, alternately elongating and retracting, draws the body after it. Both the species named were found in the Gulf of Naples. A third northern species of Bulanoglossus was discovered by Willemoes-Suhm, and described as B. Kupfferi.

CHAPTER IX.

Vermes.

Bilatercal animals with unsegmented or uniformly (homonomous) segmented body. There are no segmented. lateral appendages. A dermal muscular system and paired excretory canals (water-vascular. system) are present.
Since the time of Cuvier, a number of groups of animals all characterised by the possession of an elongated laterally symmetrical body and by the absence of articulated limbs have been classed together as Vermes. This group includes such a variety of forms that attempts have already been made to break it up, and it will perhaps be necessary at some future time to separate the unseg-
inented from the segmented forms, under the respective heads of Vermes and Annelidu.
The form of the body, which is soft and adapted to live in damp, media, is usnally elongated, flat, or cylindrical, sometimes without rings, sometimes ringed, and sometimes divided into segments (metameres). Tn every case we can distinguish a ventral and a dorsal surface. It is on the first that the animal moves or attaches itself to foreign objects. The mouth is usually placed ventrally at the end of the body which is directed forward in locomotion. The contrast between the flat, shorter form of body and the cylindrical and elongated seems, especially in the case of the non-segmented worms (Vermes s. str.), to be of importance, so that on this ground we can establish the classes of Plutyhelninthes or flat worms, and of Nemathelminthes or round worms. The segmented worms (Anmelida)

Fig. 245. - Head and anterior segments of Eunice seen from the dorsal surface. T, Tentacles or antennæ of the præstomium; $C t$, tentacular cirri; C, cirri of the parapodia; $B r$, branchial appendages of the parapodia. possess a ventral chain of ganglia in addition to the brain, and a seginentation of the organs which corresponds more or less with the external segmentation. The portions of the body which are primitively alike and are known as segments or metameres do not by any means always remain homonomous. In the most highly developed segmented worms, the two anterior segments unite to form a division of the body which foreshadows the head of the Artleropoda, and, like the latter, is pierced by the mouth, contains the brain, and bears the sense organs (fig. 245). In the succeeding metameres there are also frequently variations of form which disturb the homonomy.

The skin of worms presents very different degrees of consistence, and covers a strongly developed muscular system. In the skin we. can distinguish a layer of cells (hypodermis) or: at any rate, a nucleated layer of protoplasm which functions as a matrix, and a superficial homogeneous cuticular layer which is secreted by the firstnamed layer or matrix and in the lower worms is extremely thin and delicate. In the Nemathelminthes it is often laminated, and can
even be separater into several layers. It is of considerable thickness in many Annelida (Chcetopoda), and may be perforated by pores. Cilia are found principally in the larval stages of Platyhelminthes and Amelida. Where there are no cilia, the superficial cuticular membrane, which may project in the form of tubercles or spines, consists of a substance allied to the chitin of the Arthropod skin, like which it may bear cuticular formations of many kinds, such as hairs, bristles, hooks, etc. In many Nemathelminthes, as well as in segmented worms, this thick cuticula gives rise to a kind of exo skeleton, which opposes the contractions of the dermal muscular envelope. In the Chretopoda among the Annelida, but also in the Rotifera, the tough integument is divided into a number of sections lying one behind the other. These, like the segments of Arthropoda, are connected by soft portions of skin and moved by the dermal muscles, which are divided into corresponding groups. The cutaneous segments of the Rotifera are not true metameres, since there is no segmentation of the internal organs.
Cutaneous glands are very widely distributed ; they are sometimes unicellular, sometimes polycellular, and are sometimes situated directly beneath the epidermis, sometimes in the deeper tissues of the body.
The tissue which lies beneath the hypodermis, and which we may call the cutis, contains in all cases longitudinal and in some cases also circular muscles, and so constitutes a muscular cutcineous envelope, the principal locomotory organ of worms. Taking into consideration the importance of this dermal muscular system in the locomotion of worms, we must attribute a certain systematic value to the special forms which it assumes, a value which, however, we must be careful not to exaggerate. The stratification and the direction of the fibres of this dermal muscular system is most complicated in the Platyhelminthes and in the Hirudinea amongst the Chetopoda, for here we find the circular and longitudinal muscles, which are embedded in a basis of connective tissue, crossed by muscle fibres, which run in a dorso-ventral direction (sometimes also by fibres running obliquely). To these may be added groups of muscular fibres, which serve to attach the internal organs to the integument. The suckers of the parasitic worms, the pits and the parapodia with their setre of C'heetopodu, mustbe looked upon as special differentiations of the dermomuscular envelope. These aids to locomotion are mostly developed upon the ventral surface. The suckers and their accessory hooks, ctc., are situated either near the two ends or in the middle of the
body; the parapodia we distributed is pairs on the individual sergments along the whole length of the body, and belong to the dorsal as well as to the ventral surface, so that eath segment beats a dorsal and a ventral parir of parapodia.

The internal organization of Worms is extraordinarily various. Th those flat and round worms which live in the chyme or the other oryanic juices of the higher animals, as, for instance, the C'estode and the Acanthocephala, the whole of the digestive apparatus, including the mouth and anus, may be wanting; the nutrition in such cases taking place by osmosis through the body-wall. When the alimentary canal is present, the mouth is usually situated ventrally in the anterior region of the body, while the anus is placed either terminally at the posterior end of the body, or near it on the dorsal surface. The alimentary canal is generally simple, and is only exceptionally divided into numerous portions corresponding to the special functions. A muscular pharynx can most often be distinguished, also a well developed stomach and a short rectum opening at the anus.

The nervous system appear's in its most simple form as an unpaired ganglion or, when the two parts of which it is composed are separated, as a pair of ganglia (fig. 76), which are placed near the anterior pole of the body above the cesophagus and genetically may be referred to the apical plate of Lovén's Chætopod larva. The nervous system has more rarely the form of a nerve ring surrounding the oesophagus and connected with groups of ganglion cells (Nematoda). The nerves given off from the supra-oesophageal ganglion are distributed symmetrically forwards and laterally; they supply the sense organs, and form two strong lateral nervous trunks, which run backwards. In still higher types two larger ganglia appear, which are connected by an inferior commissure (Nemertinea). In the Annelids with degenerated metameres (Gephyrea) there is in addition to the supraœesophageal ganglion (the brain) a ventral nerve cord connected with the supra-œsophageal ganglion by an oesophageal ring. This nerve cord is in all other Annelids divided into a series of paired ganglia, which, in most cases, correspond to the segmentation. The lateral nerve trunks approach each other in the middle line below the alimentary canal, and constitute, together with their ganglia, which are connected together by transverse commissures, a ventral chain of ganglia, which is connected with the brain by the circum-œsophageal commissures, and is continued to the hind end of the body, giving off in its course paired nerves to the right and left.

The sense organs are represented by eyes, auditory apparatus, and
tactile organs. 'The latter are joined to nervous expansions and rpecial integumentary appendages (tactile hairs), and are present even in the parasitic Worms as papille of the outer skin connected with nerves. In the free-living worms, these tactile organs frequently take the form of filiform, tentacle-like appendages on the head and segments (cirri). Auditory organs are not so generally present, and are represented by auditory vesicles (otocysts) either lying on the brain (some Turbellaria and Nemertineat), or on the csophageal ring (certain branchiate Worms among the Annelida). The organs of sight are simple pigment spots in comnection with nerves (eye-spots), and may be provided with refractive bodies. The ciliated pits of the Nemertinea have been regarded as organs of smell. The cup-shaped organs of the Hirudinea and Gephyrea are also sense organs.
A blood vascular system is wanting in the Nemathelminthes, the Rotifera, and the Platyhelminthes with the exception of the Vemertinea. In these cases, the nutritive fluid passes endosmotically into the body parenchyma or into the body cavi-

Fig. 246.-Section through a body segment of Eunice. Br, brarchial appendages; C, cirri; P, parapodia with tuft of bristles; D, intestine ; N, nervous system. ty, and penetrates the tissues as a clear chyle, sometimes containing cellular elements. In the Nemertinea a blood vascular system is present, as also in the Gephyrea and Annelida. In the latter it obtains the highest development, and may have the form of a completely closed vascular system provided with pulsating trunks. In most cases a dorsal contractile longitudinal trunk and a ventral vessel can be distinguished ; the two being connected in each segment by arched transverse vessels, which are sometimes pulsatile. Where a vascular system is present, the blood does not always appear clear and colourless like the fluids of the body cavity, but sometimes has a yellow, greenish, or more frequently red colour, which is in some cases connected with the presence of blood corpuscles.

The function of respiration is usually performed by the general external surface of the body. Among the Annelidu, however, we
find in the large marine ('hutoporla filiform or brancherl gills, which are usually appendages of the paraporlia (fig. 246). A respinatory function may also be attributed to the tentacles of the Gieplayrea.

The excretory aryans are represented by the so-called water-vatscular system, which consists of canals of differentsizes, symmetricully arranged and filled with a watery fluid in which granules are sus. pended; they communicate with the exterior through one or more openings. The canals hegin either as small passuges in the tissues of the body, or free funnel-shaped openings in the body cavity. In the last case, they may subserve other functions; for example, they may conduct the generative prorlucts out of the body cavity. In the segmented Vermes they are paired, and are repeated in each seginent as nepharidia or segmental oryans (fig. 70). A different arrangement is presented by the two lateral canals of the Nemutodu, which lie in the so-called lateral lines or areas, and open by a common excretory pore in the region of the pharynx.

In addition to sexual reproduction an asexual multiplication by means of gemmation and fission (rarely by formation of germinal cells) is widely distributed, especially among the lower forms. This asexual reproduction is, however, frequently confined to the larve, which differ from the sexually mature animal in form and habitation, and play the part of an asexual generation in the cycle of development. Almost all the Platyhelminthes and numerous Annelida are hermaphrodite ; the Nemathelminthes, the Gephyrea, and Rotiferc, and also the branchiate Annelids are of separate sexes. Many Worms pass through a metamorphosis; the larver are characterised by the possession of a præoral ring of cilia (Lovén's larva), or of several rings of cilia. In the Cestoda and Trematodu, which possess in their embryonic stage the capability of asexual reproduction, the metamorphosis assumes the form of a more or less complicated altermation of generations which is often characterised by the difference in the habitat of the two successive stages of development and by the alternation of a parasitic and free life.

The vital activity of the Worms is in general of a low order, corresponding with their habitat. Many of them (Entozoa) live as parasites in the interior of the organs of other animals, some as ectoparasites on the external surface of the body, and feed on the juices of their hosts. Others live free in diamp earth, or in mud; others, and these are the most highly organized forms, inhabit fiesh and salt water.

CLASA I.- PLATYHKLMINTHES

l'ermes with a flut, more or less elongated body, with cerebral gunylion. They are often provided with sucker's and hooks, and are usually hermaphrodite.
The series of forms included under this class are mostly Entozoa, or else live in the mud and beneath stones in the water. In their organization they occupy the lowest place among the worms. Their body is more or less flattened, and is either unsegmented or is divided by transverse constrictions into a number of successive divisions, which, although forming parts of one animal, yet have a strong tendency towards individualisation, and frequently attain to separation and lead an independent life. These segments are products of growth in the direction of the long axis of the body, and stand in a special relation to reproduction. They are by no means to be considered as necessarily indicating a high grade of organization, as does the segmentation of the Annelida. The alimentary canal may be altogether wanting (Cestoda), or, if present, may be without an anus (Trematodu, Turbellaria). The nervous system is usually composed of a double ganglion above the resophagus, giving off small nerves anteriorly and laterally, and two stems backwards. In many Platyhelminthes simple eye-spots occur, either with or without refractive bodies, and more rarely there is an auditory vesicle. Blood-vessels and organs of respiration are found only in the Nemertinea. The excretory (water vascular) system is everywhere developed. With the exception of the Microstomidce and Nemertinea, hermaphroditism is the rule. The female generative glands consist of distinct yolk-glands and ovaries. The development very frequently takes place by a very complicated process of metamorphosis connected with alternation of generations.

> Order 1.--Turbeldaria.*

Free living Platyhelminthes with oval or lecrf-sluaped body, with soft skin covered with cilia. They possess a mouth and aproctous

[^58]alimentary cancal. Moolis and suchers are absent. A cerelnol yranglione is present.

The T'urbellario usually possess :un oval flattenel body, and reach only a small size. The uniform ciliation of the body is comnected with their existence in fresh and salt water, beneath stones, in snud, and even in damp earth. Only in exceptional cases do we meet with apparatuses for adhering, viz., small hooks and suckers.

The skin consists of a single layer of cells, or of a finely granular layer containing nuclei, which is sup-

Fig. 247.-Alimentary canal and nervous system of Mesostomzm EhrenUergii (after Graff). G, the two cerebral ganglia with two eye spots; St, the two lateral nerve trunks; D, alimentary canal with mouth and pharynx. ported by a stratified basal merribrane, and covered extermally by a special homogeneous membrane bearing cilia and comparable to a cuticula. Peculiar integumentary structures, which have the form of rods or spindles, and, like the nematocysts in Colenterata, take their origin in cells, are not unfrequently present. Various pigments are also often found embedded in the epidermis, and of these pigments the greencoloured vesicles, in Fortex viridis for example, which are identical with chlorophyl corpuscles, are specially worthy of remark. Pear-shaped mucous glands are also present. Beneath the conspicuous basement membrane which supports. the epidermis lies the dermis. It contains the strongly developed dermal muscular system embedded in a connective tissue layer formed of round, often branched cells. A body carity between the body wall and the alimentary canal, is, as a rule, absent; it may, however, in many cases be recognised as a system of lacunre, or as a continuous carity surrounding the alimentary canal.
The nervous system consists of two ganglia connected by a commissure, and giving off nerve fibres in various directions ; of these. two especially large lateral trunks run backwards, one on either side (fig. 247). The latter are connected at regular intervals by delicate transverse trunks. In a number of dendrocselous Turbellarians a
diverticulum of the stomach runs forward above the transverse commissure in a groove between the two cerebral lobes (Leptoplanu). In some genera of Plancoricuns, a ring-shaped donble commissuref has been shown to exist in the brain (Polycelis), and gauglion-like swellings, from which nerves are given off, have been observed on the lateral nerve-trunks (Sphyrocephcclus, Polyclectus).

With regard to sense organs, eye spots are tolerably widely distributed among the T'urbellaricu. They either lie in pairs upon the cerebral ganglia or are connected with short nerves given off from the latter. More frequently two larger eyes with refractive structures are developed. Otocysts are but rarely present, e..g., in Monocelis among the Rhabdoccela a siugle one is present lying upon the cerebral ganglion. The integument is without doubt endowed with a highly developed tactile sense ; the large hairs and stiff bristles which project between the cilia may possibly be of importance in this relation. Lateral ciliated pits, which may also be explained as sense organs, are in rare cases present at the anterior end of the body (compare the Nemertinea).

Mouth and digestive apparatus are never wanting, but the former is frequently removed fróm the ventral surface of the anterior end of the body to the middle or, indeed, even to the posterior region. According to Metschnikoff and Ulianin, a stomach may in some cases be absent (Convolutu, Schizoprorat , and be replaced, as in Infusoric, by a soft internal parenchyma. The mouth leads into a muscular pharynx, which can usually be protruded after the manner of a proboscis. The alimentary canal, of which the internal wall is frequently ciliated, is either forked and then simple or branched (Dendrocolct), or rod-shaped (Rhabdo-

Fig. 248.-Microstomum lineare, after Graff. O, Chain produced by fission; O^{\prime}, mouth openings. cuelu). An anus is never present. A peculiar tube capable of being eraginated as a proboscis, and without connection with the pharynx is sometimes also present (Prostomum).

The excretory (water-vascular) system consists of two transparent lateral trunks and innumerable side branches, which begin with closed ciliated fumels, and are furnished with vibratile cilia, which
project here and there freely into the vessels. As it rule, several openings occur on the main trunk of this excretory apparatus.

Reproduction may take place asexnally by transverse fission, e.g., Derostomed (Cutenula) and Microstomera (fig. 248). With the exception ?of the Microstomea, the Thorlellarin are hermaphrodite; but steps intermediate between the hermaphodite and the dicecions condition seem by no means to be wanting, for, according to Metschnikofl; in Prostomum lineare the male gencrative organs are sometimes developed, while the female's remain rudimentary;

Fig. 249.-Generative apparatus of Mesostomum Ehrenbergii (combined fiom Craff and Schneider). S, Pharynx ; Go, sexual openings ; $O v$, ovary; Ut, uterus, with winter eggs; Do, yolk gland; $D g$, duct of yolk gland ; T, testis ; Id, vas deferens ; P, penss ; Rs, receptaculum seminis. and sometimes, on the other hand, the reverse holds. In Acmostomum diecom also the sexes are separate. In the hermaphrodite forms the male sexual organs consist of testes, which mostly lie as paired tubes at the sides of the body, also of vesicule seminales, and of a protrusible copulatory organ beset with hooks. The female organs consist of ovaries, yolk glands (vitellarium), a receptaculum seminis, a vagina, and a uterus (fig. 249). The male copulatory organ and the vagina open as a rule by a common oritice upon the ventral sturface. Sometimes, as in the Rhabdoccele genus Macrostomum, the vitellarium (yolk gland) and ovary are united; the ova being produced at the upper blind end of the ovary, and the yolk at the lower end of the same gland. In the marine Dendroceela, on the other hand, the vitellarium is generally absent. After fertilization, a hard, usually reddish-brown shell begins to be formed round the ovum. In such cases, the hard-shelled eggs are laid; but among the Rhabdocola, in Schizostomum and certain Mesestomert (IN. Ehrenbergii), transparent eggs furnished with thin, colourless capsules, and undergoing development in the body of the parent, are often produced. According to Schneider, the production of these thin-
shelled or summer egys invariably precedes that of the hard-shelled or winter egys, and the summer eggs are normally self-fertilized.

In rare cases the lemaphoodite generative organs present a segmentation recalling that of the Cestodu (Alaurina composita).
The freshwater Thurbellaria, as well as many of the marine forms, undergo a simple direct development, and in the young state are often difficult to distinguish from Infusoria. Other marine Dendrococla undergo a metamorphosis, the larve being characterised by the possession of finger-shaped ciliated lobes (fig. 251).
(1) Sub-order: Rhabdocœla. The body is round and more or less flat. The intestine is cylindrical, and there is usually a protrusible pharynx. They are usually hermaphrodite.
The Rhabdoceolous Turbellarians are the smallest and most simply organised forms. The intestine is cylindrical and elongated, and is sometimes provided with lateral diverticula. The position of the noouth varies exceedingly, and has been employed as a principal characteristic for distinguishing the various families. Sometimes salivary glands are present, opening into the pharynx. According to Ulianin's discovery, which has been several times confirmed, the alimentary canal may be wanting in many forms, and be replaced by a central cavity, filled with a substance containing numerous vacuoles and rich in oil globules (Convoluta, Schizoprora, Nudinu). In those Rhabdocela which possess an alimentary canal, interstices and spaces in the connective tissue parenclyma are often present: these must be related to a body cavity. In some cases (in Prostomum) the body cavity may be recognised as a continuous space filled with fluid and surrounding the alimentary canal. The Rhabdocola live on the juices of small worms and of the larve of Entomostract and Insecta, which they envelop with a cutaneors secretion containing small rods, and afterwards suck. They are mostly inhabitants of fresh water, and only a few of them are to be met with in the sea or upon the land (Geocentrophora sphyrocephala).

Fam. Opisthomidæ. The mouth is placed at the ponsterior end of the body and leads into a tubular pharyux, which can be protruded like a proboscis. Monocelis agilis M. Sch., Opisthomum pullidum O.s.
Fam. Derostomidæ. Mouth plaeed slightly behind the anterior margin ; pharynx barrel-shaped. Derostomum schmidtiunum M. Sch., Vortex viridis, M. Sch., Cutenula leinne Dug.

Fam. Mesostomidæ. Mouth placed nearly in the middle of the body, pharynx ringlike, cylindrical or resembling a sucker. Mesontomum Ehrenbergii Oerst., with two cyes.
Fam. Convolutidæ. (Acoelru). Without alimentary canal. The ovaries and
yolk glands are not separate. C'oneolutu Oerst. ('. puroduare Oerst., North

Fann. Prostomidæ. The moutle, which is situate on the rentral surface. learls into a muscular pharynx. At the anterior end there is a protrusible tactile proboseis fumished with papilis. Prostomum Oerst. (Ciymorur Ehrlg.). I'. linerere Oust. With pointed penial spine at the posterior end, imperfeetly hermaphrodite, living principally in fresh water. Br. helynlaudirom, Kef., completely hermaphrodite.

F'an. Microstomidæ. Ihutudnemla with separate sexes. The small but very extensible mouth lies near the anterior end of the body. There are laterally

Frg. 250.-Anatomy of Polycelis pallida (after Quatrefages). G, Cerebral ganglion with the nerves given off from it ; O, mouth; D, branches of intestine ; $O v$, ova; Od, oviduet; V, vagina; W.Goe, female generative opening; T, testes; \boldsymbol{M}.Goc, male generative opening. placed ciliated pits near the anterior end of the body. Formation of metameres and trinsverse fission fricquently occur. Mirorstomum linrare Ocrst. (fig. 248).
(2) Sub-order: Dendrocœla. The body is broad and flat, and the lateral margins are often plicated. There are ten-tacle-like processes at the anterior end. There is a branched alimentary canal and a muscular pharynx which is usually protrusible. They are, as a rule, hermaphıodite.

The Dendrocola are mostly marine, but also live in fresh water and on land. In their external appearance they resemble the Trematodes, and the branching of their straight or forked intestine is a character common to the larger species of the latter. Compared with the Rhabdocollc, they are distinguished by the greater derelopment of their bi-lobed cerebral ganglion, as well as by the greater number of their eyes (fig. 250). The rows of papill:?, or the tentacle-like processes at the anterior end of the body hare
probably the function of tactile organs. The mouth ustally lies in the middle of the body, and leads into a wide and protrusible pharyn. The skin is often provided with glands, the secretion of which in certain land Planarice (Bipoctium, Rhhynchodesmus) hardens to a fibrous web. They are almost always hermaphrodite. The fresh-water forms possess a common generative opening, while in the marine forms the generative openings are usually separate (fig. 250). In the latter case a separate vitellari!m is absent. In some marine forms development takes place with metamorphosis, as is shown by the larva discovered by J. Müller, which possessed six provisional finger-like ciliated lobes (fig. 251). In the fresh water Planarians development is direct. The cocoon, when laid, contains four to six small eggs. At the close of segmentation there is developed

Fig. 2anl.-Larva of Eurylepla auri culatr, after Hallez. a layer of cells, which is said to split into two layers, an upper or animal layer, from which are derived the body wall and muscular system, and a lower or vegetative, from which the alimentary canal is formed. The marine Dendrocolco frequently deposit their eggs in the form of broad bands.

1. Monogonopora Stimps. Den-

Fig. 252.-Planaria polychroa (a), lugubris (b), torva (c), àbout twice the natural size (after 0 . Schmidt). drocoelct with single sexual opening. The land and fresh-water Planaria belong to this group.

Fam. Planariadæ. The body is of a long, oval, flattened shape, and is often provided with lobed processes, more rarcly with tentacles, and, as a rule, with two eyes, which are provided with lenses. Planaria O. Fr. Mïller, two eyes, no tentaeles. Pl. torru. M. Sch. (divided by O. Schmidt into luyubris., polychrour and torru) (fig. 252). Pl. dioica Clap.. with separate sexes. Dendrocolum Oerst. Distinguished by the possession of lobed processes on the heal, also by the presence of a copulatory organ placed in a special sheath. D. lactrum Ocrst., l'olycelis nigra, bramneca O. Fr. Miill.

Fam. Geoplanidæ.* Land Planarians. They are characterised by their

[^59]elongated and flattened body, which is provided with a foot-like ventral surface.
 O. Vr. Miiller), Europe. Gcodesmus Jitinentus, Metselin., with threal cells in the integument, found in potter's earth.
2. Digonopora. Deudrocala with double sexual opening. Almost all are marine. The proboscis is often folded and lies within it special pouch. When protruded, it spreads out like a lobe.

Fram. Stylochidæ. The hody is flat and wather thick, and is provided with two short tentacles on the head. There are usually numerous eyes on the tentacles or on the head. The genital openings are posterior. Nylorhus muculatus Quatr.

F'an. Leptoplanidæ. Body flat and broad, usually very delieate. Cephalic region not distinct, withont tentacles. The eyes are more or less numerous. The mouth is usually placed in front of the iniddle of the body. The genital openings lie behind it. Leptıplann tremellaris O, Fr. Miill.. Mediterranean.

Fann. Euryleptidæ. Body broad, and cither smooth ol furnished with papill:e. There are two tentacle-like lobes on the anterior region of the hear. The mouth is plaeed in front of the middle of the body. Numerous eyes are disposed near the anterior margin. Marine. Thysanuzoun Diesingii Gr. Mediterrancan. Eurylrpta auriculutu O. Fr. Mïller, North Nea.

Order 2.-Trenatoda.*

Parasitic Platyhelminthes with unsegmented, usually leaf-shaperl, rarely cylindrical body. They possess a mouth and ventrally pluced organ for attachment: the intestine is forked and without an anus.

The Trematodes are with great probability to be derived from the Turbellaric, with which group, both in form and organization, they show a close relationship. In connection with their parasitic mode of life they develop special organs for adhering, such as suckers and hooks. Cilia are present only in larval life.

The mouth is invariably placed at the anterior end of the body, usually in the middle of a small sucker (fig. 253). It leads into a muscular pharynx with a more or less elougated œesophagus, which is prolonged into a forked intestine ending blindly.
Moselcy, " Notes on the Structure of Several Forms of Land Planarians." etc. Sournal of Mier: Sciener vol. xvii.

* A. v. Norlmann. "Mikrographische Beiträge zur Kenntniss der wirbellosen Thiere," Berlin. 1832. G. G. Carıus, "Beobachtung über Leucochloridium paradoxum, etc.." Nir. Aet., vol. xvii.. 1835. Wagener. " Ueber Gyrolactylus elegans," Müller's Archiv.. 1860. Van Beneden, "Mémoirc surr les vers intestinaux." Paris, 1861. E. Zeller., "Untersuchungen ibber dic Entwickelnng und den Bau von Polystoma integerrimum. Zuitwehr. f. wiss. Zonol., rol. xxii., 1872. E. Zeller, "Untersuchungen iiber dic Entwickelung von Diplozoum paradoxum," Ibid., vol. xxiii., 1873. E. Zeller: "Ueber Leucochloridimn paradoxnm und die weitere Entwickelung seiner Distomumbrut," 1bid.. Tom XXIV. E. Zeller, ". Weiterer Beitrag zur Keminniss der Polystomeen," Ilid., xxvii., 18 í6. Compare also the works of G. Wagencr and De Filippi.

The excretory apparatus consists of two large lateral trunks and a network of fine vessels permeating the tissues and beginning with small ciliated lobules. The two large trunks open into a common contractile vesicle, which opens to the exterior at the posterior end of the body (fig. 253, Ep). The excretory system contains a watery fluid with granular concretions. This fluid is probably an excretory product, corresponding to the urine of higher animals.

The nerrous system consists of a double ganglion lying above the csophagus, and from it several small nerves and two posteriorly directed lateral trunks are said to be given off. Eye spots with refractive bodies are sometimes present in the larve during their migrations. Locomotion is effected by the dermal muscular system and the organs of attachment, viz., the suckers and hooks, which present numerous modifications in number, form, and arrangement. In general, the size and development of these organs are related to the endoparasitic or ecto-parasitic mode of life. In the endo-parasitic Trematodes they are less developed, and usually consist of the oral sucker and a second larger sucker on the ventral surface, either near the mouth, as in Distomum, or at the opposite pole of the body (Amphistomum). This large sucker may, however, be absent (Monostomum). The ectoparasitic Polystomect, on the other hand, are distinguished by a much more powerful armature, for besides

Fig. 253.-Young Distomum (after La Valette). Ex x, trunk of the excretory (water vascular) system ; $E_{p} p$, excretors pore; O, mouth with sucker; S, sucker in the middle of the ventral surface; P, pharynx; D, forked intestine. two smaller suckers at the sides of the mouth, they possess one or more large suckers at the posterior end of the body (fig. 258), which, moreover, may be supported by rods of chitin. There are often in addition chitinous hooks, and very frequently two larger hooks among the posterior suckers in the middle line (II).

The Trematoda are mostly hermaphrodite. As a rule, the male and female generative openings lie side by side, or one behind the other, not far from the middle line of the ventral surface, near the anterior end of the body (fig. 254). The male opening leads into a sac, the
cirrus suc, which encloses the protrusihle terminal part (cirrus) of the vas deferens. The vas deferens soon divides into two, which lead back to the two large simple or multilobed testes. The supposed third vas deferens, which, according to v. Siebold, runs from one testis to the female sexmal apparatus, so as to permit of direet fertilization without copulation, has been recognized as a vagina opening to the exterior on the dorsal surface (canal of Laturer). The

FIG. 254.-Distomum heputicum (after Sommer). O, Mouth; D, limb of intestine; S, sucker; T, testes ; $D o$, vitellarium; Ov (uterus), oviduct ; $D ;$, accessory glands. female organs consist of a convoluterl uterus and of the glands concerred in the preparation of the egg, viz, an ovary and two yolk glands. There is sometines in addition a special shell gland. The true ovary which produces the primary ova is a round body, and is usually placed in front of the testes. The yolk glands which secrete the yolk are much ramified tubular glands, and fill the sides of the body (fig. 254). The yolk particles come in contact with the primary ova in the first portion of the uterus, and surround them in greater or less quantities. Subsequently each ovum, with its investment of yolk, is surrounded by a strong shell. The ova in their passage along the uterus become packed together, often in great numbers, and undergo the stages of embryonic development in the body of the parent. Most Trematodes lay their eggs; only a few are viviparous.

The just-hatched young either possess (in most Polystomea) the form and organization of the parent; or they present the phenomenon of a complicated alternation of generations (heterogamy) comnected with a metamorphosis (Distomea). In the first case, the large eggs become attached in the place where the mother lives; in the last case, the relatively small eggs are deposited in a damp place, usually in the water: After the completion of the segmentation and the em-
bryonic development, the contractile, usually ciliated embryos* (fig. 255, a , which already possess the first rudiments of an excretory system and more larely a sucker with a mouth and alimentary canal, leave the egg and wainder about independently in search of a new host. The latter is, as a rule, a snail, into the interior of which they penetrate and there become transformed into simple or branched Sporocysts (without mouth and alimentary canal, fig. $255, c$), or into Reclice (with mouth and alimentary canal, fig. 255, d). These give rise, by means of the so-called germs [cells lying in the body cavity of the

Fig. 250..-Developmental history of Distomum (partly after R. Leuckart). a, free swimming ciliated embryo of the liver fluke. l, the same in a state of contraction with rudimentary alimentary canal (D) and cell mass ($O v$) (rudiments of the genital glands). Ex, ciliated apparatus of the rudimentary excretory system. c, sporocyst developed from a Distomum embryo, filled with Cercarix (C) ; B. Boring spine of a Cercaria. d Redia with pharynx, $(P h)$, and alimentary canal (D) ; O, mouth ; Ex, Excretory organ; C, Cercaria inside Redia. e, Free Cercaria; S, sucker ; D, alimentary canal.
sporocyst or redia], which probably correspond to the germinal cells (primitive ova) of the rudimentary ovary, to the generation of the

* As R. Leuckart has rightly observed, the Dicyemide, which were regarded as Mesozoa by Ed. v. Beneden, as well as the Orthomectidr, whieh have recently been especially investigated by Giard and E. Metsebnikoff, and whieh in the reproductive stage do not rise above a form correspouding to the embryos of Trematodes, reeall these Distomum larve.
tailed C'evcuria, or to another generation of S'porocysts or Redia,*: which then produce the Cercariat.

The Cercarice are nothing else than Distomum larve, which eventually reach (often only after two migrations, an active and a passive one) the final host, where they hecome sexually mature. They are furnished with an exceedingly motile candal appendage, frequently with a buccal spine, and occasionally with eyes, and they present in the rest of their organization great resemblances to the adult Distomum, excepting that the generative organs are not developed. In this form they leave independently the body of the Redia or Sporocyst and of the host of the latter, and move about in the water, partly creeping and partly swimming. Here they soon find a new host (Snail, Worm, Insect larva, Crustacean, Fish, Batrachian), into which they penetrate, aided by the powerful vibrations of their tail; they then

Fig. 256.-a, Embryo of Diplodiscus subclavatus (after G. Wagener). D, Alimentary canal ; $E x$, excretory system. b, Embryo of Monostomum mutabile (after ∇. Siebold). P, Pigment spots; R, redia in the interior of the embryo. lose the latter and encyst.

The Cercarice from the interior of the snail thus become distributed amongst a number of hosts, and each of them gives rise to an encyste young Distomum without generative organs. This young Distomum migrates passively with the flesh of its host into the stomach of another animal, and thence, freed from its cyst, into the organ (intestine, bladder etc.), in which it becomes sexually mature.

There are, then, as a rule, three different hosts in the organs of which the different derelopmental stages (Redia or Sporocyst, encysted form, sexually mature animal) of the Distomum bury themselves. The transitions from one host to another are effected partly by independent migration (embryos, Cercariæ), partly by passive migration (encysted young Distomum).

Modifications of the ordinary course of development may, however; take place ; these may be either complications or simplifications. The embryo at hatching may contain a single Redia (as in Monostomum

* In Cercaria oystophera from Planorbis marginatus; aecording to (G. Wagener, the primary asexual individual is a Sporveyst, the secondary a Iiedin.

Alavom and mutabile), which it carries about until it enters the first host (fig. 256, b). In other cases the course of development is simplified by the omission of the second intermediate host, viz., that which contains the encysted immature Distomum (Cercaria macrocerca of Distomum cygroides, also Leucochloridium in the tentacles of Helix succinea).
(1) Sub-order: Distomea. Trematodes with at most two suckers, without hooks. They develop with a complicated alternation of generations. The asexual individuals and the larve live principally in Mollusca, the sexually mature animals in the alimentary canal of Vertebrates.

The sexes are completely separated in Distomum lucemutobirm (from the veins of man) ; individuals of the two sexes being united in pairs (fig. 257). Dimorphic forms are found in certain species of the genera Monostomum and Distomum in connection with the division of labour of the sexual functions; one individual develops only male sexual organs, and the other only female, the former producing spermatozoa and the latter ova. The rudiment of the functionless generative gland undergoes in these cases a more or less complete degeneration. Such Distomea are morphologically hermaphrodite, but practically of separate sexes.

The complete biology and developmental history is unfortunately only satisfactorily known for a few species which can be followed through all the stages of development.

Fig. 257-Distomum hematobium. Male and female, the latter being in the canalis gynæcophorus of the former. S, sucker.

Fam. Monostomidæ. Of an oval, clongated, more or less rounded form, with only one sucker, which surrounds the mouth. Monostomum Zeder. Sucker surrounding the mouth; pharynx powerful. Sexual openings but slightly removed from the anterior end. M. mutabile Zeder, in the body cavity and in the orbit of various water-birds ; viviparous. M. Hlavum Mehlis, in water-birds, develops from Cercaria ephcmera of Planorbis. M. lentis v. Nordm., the young form without generative organs is fornd in the lens of the human eye. M. hipartitum Wedl., living in pairs enclosed in a common cyst, the one individual surrounded by the lobed posterior end of the other ; brauchiæ of Tunnyfish.
Fam. Distomidæ. Body lancet-shaped, frequently spread out, more rarely elongated and rounded with a large median sucker ; in frout of which lie the genital openings, usually close together.

Distomum. Median sucker approached to the anterior onc. D. Wrputionm I_{4}. Eiver fluke. With conical anterior end, and numerous spine-like prominences On the surface of the broad leaf-shaped body, which is about 30 mm . long. Lives in the bile-ducts of sheep and other domestic animals, ancl produces the liver disease of the sheep. It is occasionally fouml in Man, and bores its way into the portal vein and into the system of the vena cava. Jhe elorgated embryo only develops after the egg has remained a loug time in water : it has a continnous ciliated envelope with an X-shaped eye-spot. R. Lenckart's re. searches have rendered it probable that the development is passerl through in the young Limncus poregr and tiunratulus, that here the embryo becomes a 'romocyst. and that this prodnces Redicr, in which it is supposed that tailless Distomere arisc.
['he life-history of the liver-ftuke has been completely worked out by A. l'. Thomas (Quart. Jonrmal of Miorosonpical Sci. 1883, 1p. 99-13.3). He bas shown that the ciliated embryo passes into Limmeus truncatulus, and there gives rise to a sporocyst which produces rediæ. The rrdia produce more redia or Cercarie. The Cercavio, which are provided with long tails, leare the host (Limnceus trumoatulus), swim about for a sbort time in the water, and encyst on foreign objects, c.f. blades of grass. In this condition they are eaten by the sheep.]
D. crassum Busk., in the alimentary canal of the Chinese, one to two inches in length, and half-inch broad, without spinous prominences, with a simple forked intestine. D. lanceolatum Mehlis. Body elongated into the form of a lancet, $8-9 \mathrm{~m} . \mathrm{m}$. long, lives in the same place with D. hepaticum. The embryo develops at first in water, is pear-shaped, and only ciliated on the antcrior half of the body, bears a styliform spine on the projecting apcx. D. ophthalmubium Dies. A doubtful species of which only four specimens have been observed in the leas capsule of a nine-months' child. D. heterophyes Bilh. ∇ Sieb. $1-15 \mathrm{~mm}$. long, in the alimentary canal of man in Egypt. D. goliath van Ben., 80 mm . long, in Pterobalaru. Numerous species live in the alimentary canal, lungs, and bladder of the frog. Distomun filicolle Rud. (D. Okeni Köll) in pairs in the mucous sacs in the branchial cavity of Brama Raji. The one individual is cylindrical and narrow, and produces spermatozoa ; the other is swollen in the middle and postcrior region of the body, and is filled with eggs. The dissimilar development of the two individuals is probably due to the fact that copulation only lcads to the fertilization of one of them, which alone is able to perform the female sexual functions. D. Tomatobinm. Bilh. v. Sieb. (Gyncocophorus Dies) (fig. 257). Body elongated; sexes scparate. The female is slender and cylindrical. The malc has powerful suckers. and the lateral margins of the body arc bent round so as to form a groove, the canalis gynæcophorus, for the reception of the female. They live in pairs in the portal vein, and in the reins of the intestine and of the bladder of man in Abyssinia. According to Cobbold, the embryos are ciliated, and possess a tolerably well developed excretory system. By the deposition of masscs of their eggs in the vessels of the mucous membrane of the uretcr, bladder, and great intestine, inflammation is set up, which may canse hrematuria.
(2) Sub-order: Polystomea.-Trematodes with two small lateral suckers at the anterior end, and one or more posterior suckers, to which two large chitinous hooks are often added. In exceptional
enses (Tristomum coccinerm) transverse rows of bristles are found. Paired eyes are frequently present. In some species the elongated hody presents a kind of external segmentation. They are for the most part ectoparasitic, to a certain extent like the Hirudinea, and they develop directly without alternation of generations from eggs which are usually hatched in the locality inhabited by the mother. Sometimes the development is a metamorphosis (Polystomum), and the young larve live in another place.

The development of Polystomum integervimum from the bladder of the frog is the best known, owing to the researches of E. Zeller (figs. 258, 259). The production of eggs begins in the spring, when the frog awakes from libernation and proceeds to pair. It lasts

a

Fig. 259.-Egg with embryo (a, and hatched larva (b) of Polystomum integerrimum ; Dk, operculum (after E. Zeller). from three
 being laid, the parasite forces the to four weeks. It is easy then to observe the Polystomea in the process of reciprocal copulation. When the eggs are e

H anterior end of the body with the genital opening through the mouth of the bladder nearly as far as the anus. The development of the embryo takes place in water and occupies a period of many weeks, so that the young larve are only hatched when the tadpoles have already acquired internal gills. The larve resemble Gyroductylus, and possess four eyes, a pharynx and alimentary canal, as well as a posterior disc (for attachment), which is surrounded by sixteen hooks. They possess five transverse rows of cilia; three are ventral and anterior, two dorsal and posterior. There is also a ciliated cell upon the anterior extremity. The larve now migrate
gerrimum (after E. Zeller). 0 , mouth; $G o$, genital opening ; D, intestine ; opening; D, intestine ;
$I V$, copulatory opening (lateral pads) ; $D g$, yolk
gland duct ; S,
sucker ; (lateral pads); $D g$, yolk
gland duct ; S, sucker ; Ov, ovary ; H, hooks.

Ftg
into the branchial cavity of the tadpole, lose their cilia, and are transformed into young Polystomer by the formation of the two median hooks and of the three pairs of suckers upon the posterior disc. The young Polystomum, eight weeks after the migration into the branchial cavity, at the time when the latter begins to abort, passes throngh the stomach and intestine into the bladder, and there

Fig. 260.-Young Diplozoon (after E. Zeller). a, Two young Diporpa beginning to attach themselves together. b, After both individuals have attaehed themselves. O, mouth; H, fixing apparatus; Z, papillæ; G, sueker.
only becomes sexually mature after three and more years. In some exceptional cases, and always when the larva has passed on to the gills of a very young tadpole, it becomes sexually mature in the branchial cavity of the latter. The forms then remain very small,

Fig. 261.-Egg (a) and larva (b) of Diplozoon (after E. Zeller). are without the copulatory canals and uterus, and die after the production of a single egg, without ever getting to the bladder.

Fam. Polystomidæ. With several posterior suckers, which are usually paired and arranged in two lateral rows, and arc reinforced by an armature of hooks. The genital openings are frequently surrounded by hooks. Many species have a length of only a fcw lines.
Polystomum Zed., with four eyes; with no lateral suckers at the anterior end, but with oral sucker; with six suckers, two large median hooks and sixteen small hooks at the posterior end. P. integerrimum Rud., in the bladder of Rana temporaria. P. acellatum in the pharyngeal cavity of Emys. In the formation of the testis and the abscnce of the uterus it resembles the adult form of P. integerrimum from the branchial cavity of the tadpole. Octobothriom lanceolatum Duj. Onchoeotyle appendiculata Kuhn, on the gills of Elasmobranchs.

Diplozoon v. Nordm. The animal is double, two individuals being fused to
form an X-shaped double animal, the posterior ends of which are provided with two large suckers divided into four pits. In the young state thcy live solitarily as Dipurpu; they then possess a ventral sueker and a dorsal papilla (260 a, G and Z). In the double animals the formation of ova is eonfined to a definite period of the year, usually the spring. The eggs are laid singly after the formation of the thread by which they are attached, and two wecks later the embryo (fig. 261, b), which only differs from Dipurpa in the possession of two eyespots and a ciliated apparatus upon the sides and on the posterior extremity of the body, is hatehed. When an opportunity of fixing itself on the gills of a fresh-water fish occurs, the young animal loses its eilia and bceomes a Diporpa, which possesses, besides the characteristic apparatus for attachment, the alimentary canal, and the two excretory eanals with their openings at the anterior part of the body (at the level of the pharynx), and sucks the branehial blood. The junetion of the two Diporpa soon follows; and this does not take plaee, as was formerly believed, by the fusion of the two ventral suekers, but in sueb a manner that the ventral sucker of each animal affixes itself to the dorsal papilla of the other, and fuses with it (fig. 260, ठ). D. paradoxum. v. Nordm., on the gills of many freshwater fish.
Fam. Gyrodactylidæ. Very small Trematodes with large terminal eaudal disc and powerful hooks. They are viviparous, producing a single young one (first generation) at a time, within whieh, whilc still in the body of the parent, another young onc (second generation) may be present, and in this yet another (third generation). V. Siebold believed that he had observed a young animal devcloping from a germ eell of Gyrodactylus: and that this became pregnant during its development. He regarded the Gyrodactylus as an asexual form, since hc failed to find organs for the production of sperm. G. Wagener, however, showed that the reproduetion is sexual, and

Fig.262.-Trenia xaginata (mediocanellata), natural size (after R. Leuckart). eonceived the idea that the germs from whieh the seeond and third generations are formed are derived from the remains of the fertilized ovum from whieh the first generation is formed. Metschnikoff, too, is of the opinion that the individuals of the first and seeond generations are formed at the same time from a common miass of similar embryonic eells. Gyyrodactylus v. Nordm., G. elegans ∇. Nordm., from the gills of Cyprinoids and fresh-water fish.

> Order 3.-Cestoda.*

Elongated and usuclly seymented I'latyhelminthes without mouth or alimentary canal, with organs for attachment at the anterior. extremity.

The tape-worms, which may easily be recognised by their bandshaped usually segmented bodies, are parasitic in the alimentary camal of Vertebrata, and were formerly taken for single animals. Steenstrupp was the first to introduce a different view, according to which the tape-worm is a colonial animal, a chain of single animals, each segment or proglotios being an individual. There are, however, Cestoda, like C'aryophylleus, which are destitute both of external segmentation and of segmentation of the generative organs; while in other cases the segments of the body are clearly differentiated, and each is provided with ia set of generative organs, but they do not attain individual independence. The proglottides, however, usually become separated off, and in some cases (Echineibothrium) after their separation from the body of the tape-worm continue to live for a long time independently, and even increase considerably in size ; so that although the individuality of the tape-worm may be justly insisted on, yet the subordinate and morphologically more restricted degree of individuality of the proglottis must also be admitted. This is the only satisfactory mode of regarding the Cestoda; especially as the entire tape-worm, and not the proglottis alone, corresponds to the Trematode, and is to be derived from the latter by a simplification of organization and loss of the alimentary canal.

The anterior part of the tape-worm is narrow, and presents a terminal swelling by which it attaches itself. This anterior swollen part is distinguished as the head of the tape-worm, but it is only its external form which entitles it to this name. In Caryophyllueus

[^60]the head armature is very weak, and consists of a lobed fringed expansion. The apex of the head often ends in a conical projection, the rostellum, which is armed with a double circle of hooks, while the lateral surfaces of the head are furnished with four suckers (T'ienic, fig. 263). In other cases only two suckers are present (Bothriocephahus) ; or we find suckers of more complicated structure and beset with hooks (Acanthobothrium), or four protrusible probosces beset with recurved hooks (Tetrarhyncus); while in other genera the head armature presents various special forms.

That portion of the animal which follows the head and is distinguished as the neck shows, as a rule, the first traces of commencing segmentation. The rings, which are at first faintly marked and very narrow, become more and more distinct and gradually larger the further they are removed from the head. At the posterior extremity the segments or proglottides are largest, and have the power of becoming detached. After separation they live independently for a long time, and sometimes even in the same medium.

The simplicity of the internal organization corresponds with the simple appearance of the external structure. Beneath the delicate external cuticle is a matrix consisting of small cells, in which are scattered glandular cells. Beneath the matrix there is a delicate superficial layer of longitudinal mus-

Fig. 263.-Head of Trenia solium, viewed from the front (apical surface), with rostellum and double circle of hooks. The four suckers are visible. cular fibres, and next a parenchyma of connective tissue, in which strongly-developed bundles of longitudinal muscular fibres, as well as an inner layer of circular muscles, are embedded; both these muscular layers are traversed, principally at the sides of the body, by groups of dorso-ventral muscular fibres. The power which the proglottis possesses of altering its form is due to the interaction of all these muscles. By means of them it is able to shorten itself considerably, at the same time becoming much broader and thicker, or to elongate to double its normal length, becoming much thinner. In the connective tissue parenchyma of the body, not only the muscles, but all the other organs are embedded. In its peripheral portion, especially in the neighbourhood of the head, we find small densely packed calcareous concrements, which are generally regarded as calcified connective tissue cells.

The nervous system consists of two lateral longitudinal cords passing externally to the main trunks of the excretory system. They are somewhat swollen in the head, where they are connected by a transverse commissure; these anterior swellings and the commissure may represent a cephalic ganglion. Distinct sense organs are wanting, but the tactile sense may be ascribed to the skin, especially to that of the head and the suckers. An alimentary canal is also wanting. The nutritive fluid, aheady prepared for absorption, passes endosmotically through the body wall into the parenchyna.

The excretory apparatus, on the contrary, attains a considerable development as a system of much ramified canals which are dis-

Fig. 264, - A portion of the excretory system of Caryophyllaus mutabilis (after Pintner). Wb, Ciliated funnels with the nucleus of the cell belonging to them. tribute throughout the whole body.* It consists primarily of two longitudinal canals (a dorsal and a ventral), running along each side of the body and connected in the head and in each segment by transverse trunks. According to the state of contraction of the muscular system, these longitudinal trunks and cross branches appear sometimes straight and sometimes bent in a wavy or zigzag manner: their breadth also presents considerable variation, so that the power of contraction has been ascribed to their walls. The longitudinal trunks only serve as the efferent ducts of a system of very fine vessels which ramify throughout the whole pareschyma and receive numerous long tubes: the latter begin in the parenchyma with closed funnels, which contain a vibratile ciliated lappet (fig. 264). In many cases, as in the Ligulidce and Coryophyllous, these longitudinal trunks are broken up into numerous longitudinal vessels, which are connected by transverse anastomoses. In other cases, on the other hand, the two ventral vessels are enlarged at the cost of the two dorsal, which may entirely atrophy. The external opening of the excretory system is, as a rule, placed at the

[^61]posterior end of the body, i.e., at the hind end of the last segment, in which a small vesicle with an external opening receives the longitudinal truuks. According to the observations of Leuckart on T'enia cucumerina, the posterior transverse canals in the segments immediately preceding the last become, by their gradual shortening and the approach of the longitudinal trunks, transformed into the vesicle, which acquires an external opening when the segment behind it is detached. In rare cases the excretory system possesses additional openings in the anterior part of the body behind the suckers.

The generative apparatus is also divided into segments which correspond to the proglottides. Each proglottis possesses its own

Fig. 265.-Proglottis of Tænia mediocanelluta, with male and female organs (after Sommer). Ov, ovary; DS, yolk gland (vitellarium); $S d$, shell gland ; Ut, uterus ; T, testes; $V d$, vas deferens ; $C b$, pouch of the cirrus ; K, generative cloaca; Va, vagina.
male and female generative organs, and can therefore, when separated, be considered as a sexual individual of a lower order. The male apparatus consists of numerous pear-shaped vesicles, the testes (fig. $265, T)$, which are situated upon the dorsal side, and their vasa efferentia open into a common efferent duct (vas deferens). The coiled end of this duct lies in a muscular pouch (cirrus sheuth), whence it can be protruded through the genital opening as the so-called cirrus. This cirrus is frequently beset with spines which are directed backwards, and serves as a copulatory organ. The female generative organs consist of ovary, yolk gland, shell glund, uterus, receptuculum, and vagina. The vagina and vas deferens usually open into a common
genital cloaca, which lies either on the ventral surface of the segment (Bothriocepolus), or on the lateral margin (Tcenia) (fig. 265). In
b

Fig. 266.-Ripe proglottides ready to separatc.
a, of Tenia solium ; b, of Tcnia mediocanellata; a, of Tenia solium; b, of Tcnia mediocanellata; Wc, watcrvascular (excretory) canal.
 the last case it is placed alternately on the right and on the left side. Nevertheless it may happen that the two geuital openings ire widely sepranate, the male opening being placed at the side, the female on the surface of the segment. As the segments increase in size and become further removed from the liead, the contained generative organs gradually reach maturity in such a way that the male generative organs arrive at maturity rather earlier than the female.
As soon as the male elements are mature, copulation takes place, and the receptaculum seminis is filled with sperm, and then only do the female generative organs reach maturity. The ova are fertilized and pass into the uterus, which then assumes its characteristic form and size. As the uterus becomes distended, the testes and then the ovaries and vitellaria are more or less completely absorbed (fig. 266). The posterior proglottides, viz., those which are ready for separation, have alone undergone full development, and the eggs in their uterus often contain completely developed embryos. Accordingly we can recognize in a continuous series of the segments the course of development passed through by the sexual

Frg.If267.-Egg with embryo (a) of Tenia solium; (b) of Microtania; (c), of Bothriocephalus latus (after R. Leuckart). organs and products in their origin and gradual progress towards maturity. The number of segments between that with the first trace of the generative organs
and the first proglottis with fully developed organs gives us an expression for the number of stages through which each segment has to pass. The tape-worms are oviparous; either the embryo develops within the egg-shell in the body of the mother, or the development tikes place outside the proglottis, for example in water (Bothriocephulus).
The eggs of the Cestoda are round or oval in shape and of small size. Their envelope is either simple or composed of numerous thin membranes, or else forms a thick and strong capsule, which in Tcenica is formed of densely packed rods united by a connecting substance, and presents in consequence a granular appearance. In many cases the development of the embryo coincides with that of the eggshell, so that the egg at the moment that it is laid contains a

Fig. 268.-Stages in the development of Tœnia solium to the Cysticercus stage (partly after R. Leuckart). a, Egg with embryo. b, Tree embryo. c, Rudiment of the head as a hollow papilla on the wall of the vesicle. d, Bladder-worm with retracted head. e, The same with protruded head, magnified about four times.
complete embryo with six, or more rarely, four hooks. In Bothrioceplacalus the development takes place outside the proglottis during the long period that the egg passes in water, and the embryo leaves the egg as a ciliated larva (fig. 267, c). The development of the embryo into the tape-worm probably never takes place directly in the same medium in the intestine of the original host. As a rule there is a complicated metamorphosis, which is sometimes (Echinococcus, C'enurus) connected with alternation of generations; the successive stages live in different localities, and usually find the conditions necessary to their development in different species of animals, between which they migrate, partly actively and partly passively. The eggs usually leave the intestine of the host with the proglottis, and are deposited on dunghills, on plants, or in the
water, and thence pasis in the food into the stomach usually of herbivorous or ommivorous athimals. As soon as the egg membranes are digested or burst by the action of the juices of the stomach of the new host, the embryos which have been thus set free bore theil way into the gastric or intestinal vessels by means of their six (rarely four) hooks, the points of which can be approached and removed from one another over the periphery of the small globulat. embryonic body. When they are once within the vascular system,

Frg. 269.-a, Brood-capsule of Echinococcus with developing heads (after R. Leuckart). \quad, Brood-capsulo of Echinococcus (after G. Wagener). c, Heads of Echinococcus still connected with the wall of the brood-capsule--one is evaginated; $\mathrm{T} c$, excretorr canals.
they are no doubt carried along passively by the current of blood, and transported by a longer or shorter route into the capillaries of the different organs, as the liver, lungs, muscles, brain, etc. After losing their hooks, they usually become enveloped by a cyst of connective tissue, and grow into large resicles with liquid contents and a contractile wall (fig. 268). The vesicle gradually becomes a cystic or bladder worm by the formation of one (Cysticercus*) or

[^62]several (Ccenurius) hollow buds, which are developed from the walls and project into the interior of the vesicle (fig. 268, c). The armature of the tape-worm head (suckers and double circle of hooks) is formed on the inside and at the bottom of this invagination of the wall of the vesicle (fig. $268, c l$). When these hollow buds are evaginated so as to form external appendages of the vesicle, they present the form and armature of the Cestode head, as well as a more or less developed neck, which presents even at this stage traces of segments (fig. 268, e). In some cases (Echinococcus) the irregularly shaped maternal vesicle produces from its internal walls one or two generations* of. secondary vesicles which project into it; and the Cestode heads originate in special small brood-capsules on these secondary vesicles (fig. 269, a). In such cases the number of tape-worms which arise from one embryo is naturally enormous, and the parent vesicle may reach a very considerable size, being sometimes as large as a man's head. In consequence of this enormous growth the vesicles frequently obtain an irregular shape ; while on the other hand, the tapeworms which are developed from them remain very small, and carry, as a rule, only one ripe proglottis (fig. 270).

So long as the tape-worm head (scolex) remains attached to the body of the bladder-worm and in the host of the latter, it never develops into a sexually mature tape-worm ; although in many cases it grows to a considerable length (Cysticercus fusciolaris of the house-mouse). The bladder-worm must enter the alimentary canal of another animal before the head (scolex) can, after separation from the body of the bladder-worm, develop into the sexually mature tape-

Fig.270.-Tenia Echin oc occus (after R. Leuckart), magnified 12 to 15 times. worm. This transportation is effected passively, the new host eating the flesh or organs of the animal infected with Cysticerci. The tapeworms, therefore, are principally found in the Carnivora, the Insectivora, and the Omnivora, which receive the bladder-worms in the flesh of the animals on which they feed. The vesicles are digested in the stomach, and the cestode head becomes free as a scolex. The latter is protected from the too intense action of the gastric juice by its calcareous concretions, and at once enters the small intestine, fastens

[^63]itself to the intestinal wall, and grows by gradual segmentation into a tape-worm. From the Scolex the chain of proglottides proceeds as the result of a growth in length accompanied by segmentation, a process which is to be looked upon as a form of asexual reproduction (loudding in the direction of the long axis). Since, however, it is the body of the Scolex which undergoes growth and segmentation, it seems most natural to assume the individuality of

Fig. 271.-Cysticercoid of Tenia cucumerina, magnified 60 times (after R. Leuckart). the entire chain, and to subordinate to this the individuality of the proglottides. The development of the tape-worm is then to be explained as a metamorphosis, characterised by the individualization of certain stages of the development. It is only in those cases in which the young form produces a number of heads that the development can be explained as a case of alternation of genera'tions.

The development of some tape-worms presents considerable simplifications. In the cysticercus stage the vesicle frequently diminishes to an excessively small appendage, and the Cysticercus becomes a cysticercoid form, in which one portion bearing the embryonic hooks is distinct from a larger part which represents the scolex (figs. 27l, 272). In other cases the embryo becomes a Scolex directly without passing through a cystic stage, so that the Scolex stage is merely a late stage of the embryo (Bothriocephalus). The segments produced from the Scolex also show very different degrees of individuality, and finally are sometimes not developed at all. In the latter case (Caryophyllceus) the head and body cannot be sharply distinguished from one another, and represent only one single individual comparable to a

Fig. 272.-Echinococcus-like Cysticercoid from the borly cavity of the Earthworm (after E. Metschnikoff). a, Brood-capsules with tbree Cysticercoids. b, Cysticercoid witb evaginated head. Trematode and characterised by its single generative apparatus. Its development is to be looked upon as a metamorphosis completing itself in one individual.

Fam. Tæniadæ. The armature of the head consists of four museular suckers, to whieh is frequently added a single or double eirele of hooks on the rostellum.

The proglottides have a marginal sexual opening. The vagina is usually long, separated from the uterus, and enlarged at the end to form a receptaculum scminis (fig. 265). The young stages are Cysticcrei or Cysticercoids, rarcly quite without caudal vesicle ; parasitic in warm and cold-blooded animals.

T'enia L. (Cystoternia R. Lkt). Development takes place with large vesieles. The heads arise from the embryonic vesicle itself.
T. solium. L. 2-3 metres long. The double circle of hooks is composed of 26 hooks. The ripe proglottides are $8-10 \mathrm{~mm}$. long and $6-7 \mathrm{~mm}$. broad ; the uterus has $7-10$ dendritic branches. It lives in the humau intestine. The Bladder-worms belonging to it (Cysticercus cellulasce) live principally in the dermal cellular tissuc and in the muscles of pigs, but also in the human hody (muscles, eyes, brain), in which self-infection with them is possible if a Tienia is present in the digestive canal ; more rarely in the muscles of the Rue-deer, the Dog, and the Cat. In the human brain the Cysticercus acquircs an elongated form, and sometimes does not produce a head.
T. saginata Goeze=mediocanellata Kuichenm., in the intestine of Man, distinguished by the older helminthologists as a variety of T. solinm. Head without circle of hooks or rostellum, but with four more powerful suckers. The 'Tapeworm reaches a length of four metres, and becomes much stronger and thicker. The mature proglottides are about 18 mm . long and $7-9 \mathrm{~mm}$. broad. The uterus forms 20-35 dichotomnus side branches. The Cysticercus lives in the muscles of the ox (fig. 273). It appears to be principally distributed in the warmer parts of the Old World, but is often found in great numbers in many places in the north.
T. serrata Goeze, in the intestinal canal of the dog. The Cysticercus is known as C'ysticcrcus pise iformis in the liver of the Hare and Rabbit. T. crassirollis Rud. in the Cat. with Cysticcreus fusciolaris of the common mouse. T. marginuta Batsch. of the Dog (butcher's dog) and Wolf with Cysticercus tenuicollis from Ruminants and Pigs, and occasionally in Man (Cyst. visceralis). T. crassicops Rud. in the

Fig. 273.-Cysticercus of Tenia mediocanellata, magnified about eight times. The head is protruded. Fox with Cysticercus longicollis from the thoracic cavity of the Fieldmousc. T. ecenurus v. Sieb. in the intestine of the sheep-dog, with Conurus cercbrulis in the brain of one ycar old sheep. The presence of Cemurus in other places las been stated, as for instance in the body cavity of the Rabbit. I' tcruicollis Rud. in the intestine of the Weasel and the Pole-cat, with a Cysticcrous which, according to Kïchenmeister, lives in the hepatic ducts of the Field-mouse.

Echinococeifer Weinl. The heads bud on special brood-capsules, in such a way that their invagination is turned towards the lumen of the vesicle (fig. 269). T. echinococcus v . Sieb. (fig. 270) in the intestine of the dog, $3-4 \mathrm{~mm}$. long, forming but few proglottides. The hooks on the head are numerous but small. Its Bladder-worm is distinguished by the great thickness of the stratified cuticula. It lives as Echinococens principally in the liver and the lungs of Man (E. hominis) and of domestic animais (E. veterinorum). The first form is also distinguished as E. altriciparnens on account of the frequent production of primary and scoondary vesicles ; it usually reaehcs a very considerable size and
has a very irregular shape; while that form which inhalits domestic animals, E. scoliriparions, more frequently retains the form of the simple vesicle. Finally these echinococcus cysts frequently remain sterile, in which case they are called Acephatocysts. Another and indecd pathological form is the soo called multilocular Echinotecens, which was for a long time taken for a colloid

Fig. 274 a.-Bothriocephalus latus (after R. Leuckart). cancer. It is also found in Mammalia (in cattle), and here presents a ronfusing resemblance to a mass of tubercles. The echinococcus discase (hyılutid plagus) was widely spread in Iccland. I'lis discase likewise scems endemic in many places in Austialia.
T. (Microtcnia). The Cystirrorouirl form is small, and has but little fluid in the small portion which corresponds to the vesicle. The head is small, but has a small clulsshaped or proboscis-like rostellum, and is furnished with weak hooks. The eggs arc provided with several membranes. The embryo is usually furnished with large hooks. The Cysticercoid stages live principally in Invertebrates (in Slugs, Inscets, etc.), and more rarely in cold-blooded Vertebrates (the Tench). T. cucumerina Bloch, in the intestinc of dogs (house dogs). The Cysticercoid is entirely without the caudal vesicle, and lives (according to Melnikoff and R. Leuckart) in the body cavity of the Dog-louse (Trichodectes canis). The infcction with the Cysticercoids takes place when the dog swallows the parasites which are annoying him, while the parasites swallow the cggs contained in fæees adherent to the hair of the dog. Nearly allied is T. elliptica Batsch. in the intestine of the Cat, occasionally in that of Man. T. nana Bilh. v. Sieb. in the intestine of the Abyssinians, hardly an inch long. T. Alaropunctata Weinl. in the haman intestine (North Amcrica). The Cysticercoids of the Meal-worm are probably developed into tape-worms in the intestines of Mice and Rats.

In other partially unarmed Trenias the gencrative organs and development arc as jet not aecurately known ; such are- T. perfoliata Goeze, and T. plicata Rud. in the horse; I. pectinata Goeze, in the hare; T. dispar Rud. in the frog; T. capansa Im . in the ox.

Fam. Bothriocephalidæ. With only two suckers, which are weak and flat. The generative organs, as a rulc, open upon the surface of the proglottis. The proglottides do not become detached singly. Hyclatid stage represented by mn encysted Scolex.

Bothriaceplualus: Brems. Scgmented body. Head with two pits, without hooks. The genital openings are on the middle of the ventral surface. The young stage usually in fishes. B. latu, Jrems., the largest of the tapc-worms parasitic in man, twenty-four to thirty fect in length, principally found in Russia, Poland, Switzerland, and South France. The scxually mature segments are broader than they are long (about $10-12 \mathrm{~mm}$. broad and $3-5 \mathrm{~mm}$. long). They do not become detached singly, but in groups (fig. 274). The segments of the hindermost portion of the body are, however, narrower and longer. The head is clubshaped, and is provided with two slit-like pits. The cortical parts of the lateral regions of the body contain a number of round masses of granules, the yolk-glands (fig. 275, Dst), the contents of which are pourcd into the shell glands (coiled glands) through the so-called yellow ducts.

The genital openings lie close together, one behind the other, in the midst of the segment

Fig. 274 b, -Larva of a Bothriocephalus from the Smelt (after R. Leuckart). (fig. 275, u). The anterior and larger belongs to the male generative apparatus, and leads into the muscular terminal portion of the vas deferens, which is enclosed in the cirrus sheath and can be evaginated as the cirrus (fig. 275, Cb). The vas deferens just before its entrance into the cirrus pouch is dilated (fig. 275 b) to form a large muscular swelling (the resicula seminalis !). It then becomes coilcd, and passes in the direction

Fig. 275.-Generative organs of a sexually mature proglottis of Bothriocephalus lutus (after Sommer and R. Leuckarl) ; a, from the ventral surface, b, from the dorsal surface. Ov and v, ovary; Ut, uterus; $S d$, shell gland; Dst, vitellarium (yolk gland); Ya, vagina with opening; T, testis ; $C b$, pouch of the cirrus ; $V d$, vas deferens.
of the long axis of the segment on the dorsal surface and divides into two side branches. These receive the efferent canals of the delicate testicular sacs, which occupy the lateral parts of the middle layer (T). The female genital opening (fig. 275 a.) lcads into a ragina ($F a$ a) situated behind the pouch of the cirrus, and frequently filled with scmen. This vagina runs as a tolerably
straight median eanal on the ventral surfaee, and opens by a short, narrow tube into the oviduct. The vagina also funetions as a recepturulum semimis. There is yet a third opening (ig. 275, "), situated at some distance behind the other two ; this is the opening of the tubular uterus ($U t$), the convolutions of which give rise to a peeuliar rosette-shaperl digure in the midst of the segment (Wappralilie Pallas). Close to the hind end of the segment the duets of the yolk-glands (1 sit) and of the ovaries ($O e$) mite with each other and opera ints the uterus; the eells of the shell-gland (x d) surround and open into the point of junction of these struetures. Behind the uterus, and partly amoner its posterior lateral homs, lie the so-called coiled glands; and at its sides are the so-called lateral glands (Eschrieht). The latter are, aeeording to Eschrieht. the ovaries or germaria (formerly held by Leuckart to be the vitellaria). The coiled glands (Leuckart's ovaries), an aggregation of pear-shapecl cells. were considered by Stieda, with whom Landois and Sommer are in accorrl, io be a shell gland (fig. 275).
The ova are for the most part developed in water, and escape from the upper pole of the egg-shell through a lid-like valve. The escaped embryo is covered with eilia, by means of which it swims about for a loug time. Hence it is probable that the later stages of development take place in an aquatic anmal. It is unknown how and in what host the embryo with six hooks becomes a Seolex ; and the question how this tape-worm gets into the human borly-in spite of the researches of Knoch, who maintained that they appeared there direetly and without the intervention of an intermediate host-is still undecided. B. cordatus Lkt. With large, heart-shapect head, without a filiform neek; with numerous deposits of caleareous bodies in the parenehyma. It attains a length of about three feet and lives in the intestines of man and of the dog in Greenland.

Sehistucephalus Crepl. Head split, with a sucker on each side. The body of the eestoid form is segmented. S., solidus Crepl. Lives in the body carity of the stieklebaek, eseapes into the water, and beeomes sexually adult in the intestine of water-birds. Iricnophorus Rud. Head not distinct, with two weak suekers and with two pairs of tridentate hooks. The body has no external segmentation. The generative openings are marginal. T' nodrlosus. Rud. In the intestine of the pike. Asexual encysted form in the liver of Cyprinus.

Fam. Ligulidæ (Pseudophyllide). Without real suekers. Hooks are either present or absent. The Cestoid has no segmentation, but the generative organs are repeated. They live in the body eavity of Teleosteans and in the intestine of birds. Ligula Bloch. Body band-shaped and unsegmented. L. simplicissima Rud., in the body eavity of fishes and in the intestine of aquatie birds. $L . t u b a \mathrm{v}$. Sieb., in the intestine of the Teneh.

The families of the Tetrarhynchidæ (Tctrarhynchus lingualis, Cur., passes its young stages in Soles, and is matured in the intestine of Rays and Dog-fish). and Tetraphyllidæ (Echineibothrium minimum van Ben.) are allied here.

Fam. Caryophyllæidæ. Body elongated and unsegmented. The anterior margin is plicated. There are no hooks, and there are eight sinuous longitudinal eanals of the excretory system. Generative organs single. The derelopment is a simplified metamorphosis. Caryoplyylleus mutabilis. Rud., in the intestine of Cyprinoids. The young form possibly lives in Tubife.r rivularum, if the Helminth observed by d'Udekem was the same. In this worm, however, there lives another parasite, which was observed by Ratzel and has recen!ly been more elosely investigated by R. Leuekart, who has shown that it is
a sexually mature Cestoid still fixed by an appendage bearing the embryonio hooks. Archigetes Sicboldii Lkt. With two weak suekers and a eaudal appendage.

Order 4.-Nemertini* $=$ Rhynchocela.

Elongatecl, firequently band-shaped Platyhelminthes, with straight alimentary canal opening by an anus, and with a separate protrusible proboscis. Usually with two ciliated pits in the cephalic region. The sexes are separate.

The Nemertines are distinguished not only by their elongated form, but also by their considerable size and high organization. Thick layers of muscles, traversed by connective tissue, are spread beneath the integument, which contains pigment as well as flask-shaped mucous glands. The external layer of longitudinal muscles, strongly developed in the Anopla, is wanting in the Enopla (Nemertines, the proboscis of which is armed with stylets), in which group there is only an outer layer of circular muscles and an inner layer of longitudinal muscles. A long tubular protrusible proboscis, which is sometimes armed with stylet-shaped rods, is always found at the anterior end of the body above the buccal cavity, and projects through a special preoral opening (fig. 276), and can be retracted into a special muscular sheath separate from the body cavity. At the bottom of the principal portion of the proboscis, there is in many Nemertines (Enopla) a large spine, which is directed forwards, and at its sides numerous small secondary spines in pouches. The posterior glandular portion of the proboscis, to which retractor muscles are attached, is, according to Claparède, to be regarded as a poison apparatus. When the proboscis is pro-

[^64]truded, it is inverted like the finger of a glove, so that the blind end at which the spines are placed becomes the extreme front end of the protruded proboscis.

The brain attains a considerable developinent. Its two halves are comected by a double commissure which embances the proboscis, and in then several lobes, usually a dorsal and ventral, may be distiuguished. The two ventral lobes are produced into the two lateral nerve trunks, which in certain cases (Oerstedtia) may approach each other on the ventral surface. The nerve trunks contain not only fibres but also in superficial layer of ganglion cells, which may give rise to granglion-like eulargements at the points of exit of the nerve branches. In the embryos of Prosorochmus Cluparèdii the nerve trunks are said to end in an enlargement. In the cephalic region there are two strongly ciliated depressions known as the cephalic slits, beneath which special lateral organs, supplied with nerves from the brain or it may be posterior lobes of the brain itself, are placed. These structures are probably sense organs. The cephalic slits were formerly erroneously taken for the openings of respiratory organs. Eyes are widely distributed, and usually consist of simple pigment spots which rarely contain refractive bodies. Exceptionally, as in Oerstedtica pallida, two otolithic vesicles are found on the brain.

The Nemertines, unlike all other Platyhelminthes, possess a bloodvascular system. This consists of two sinuous lateral vessels in which the blood flows from before backwards, and a straight dorsal vessel in which the blood flows in the reverse direction. This latter is connected with the ventral vessel at the posterior end of the body and in the region of the brain by wide loops, and in the rest of its course by numerous narrower transverse anastomoses. These vessels lie in the body cavity and have contractile walls. The blood is usually colourless, but in some species it is red. In Amphiporus splendens, Borlasia splendida, the red colour (hæmoglobin) is contained in the oval disc-shaped blood corpuscles.
The Nemertines are, with some few exceptions (Borlasia hermaphroditica), dioccions. The two kinds of generative organs have the same structure, and are sacs filled with ova or spermatozoa lying in the lateral portions of the body between the pouches of the intertine, and opening to the exterior by paired openings in the body wall. The ova, when laid, frequently remain connected by a gelatinous substance, and are deposited in irregular masses or in strings, from the middle of which the animal creeps out, like the leech out of its
cocoon. Some forms, as Prosorochmus Claparèdiii and Tetrastemma obscurum, are viviparous.
Some of the Anopla develop with a metamorphosis. The larva is ciliated and may pass through a free-swimming stage, in which case it is known as the Pilidium, or it may be without such a stage (Type of Desor). In both cases the perfect worm is developed within the skin of the ciliated larva.

Fig. 277.-Pilidium (after E. Metschnikoff). a, free swimming larva with invaginated cavity; b, later stage, helmet-shaped; E, E^{\prime} the two pairs of ectodermal invaginations; D, alimentary canal.

The Pilidium larva is helmet-shaped, and was formerly described as the species of a supposed independent genus, Pilidium, and presents

Fig. 278. - Later stage of Pilidium, with tuft of cilia and enclosed Nemertine (after Bütschli); Oe, œesophagus; D, alimentary canal ; $A m$, amnion; R, rudimentary proboscis of the Nemertine ; So, lateral pit. many analogies to the Echinoderm larva. In the case of the Pilidium, the segmentation is regular, and results in the formation of a spherical ciliated embryo, which is hatched and becomes a free-swimming larva; the archenteron is then formed by invagination; and at the side of the embryo, opposite the blastopore, a long flagellum is developed (fig. 277, a). On each side of the mouth a broad lobe grows out, the edges of which are fringed with cilia (fig. 277, b). Two pairs of invaginations of the ectoderm now make their appear-
rnce, forming the first rudiment of the Nemertine body. The four dises so formed fuse together and give rise to a ventral germinal plate, which gradually grows round the alimentary canal of the Pilidium to form the skin of the future Nemertine. The proboscis arises as an invagination of the anterior end of the germinal plate (fig. 278). The young Nemertine subsequently breaks through the larval skin.

The Nemertines live principally in the sea, under stones in the mud, but the smaller species swim about freely. 'There wre also forms which live on the land, as well as pelagic forms. Certain species form tubes and passages, which are lined with a slimy secietion. The food of the larger species principally consists of tubicolons worms, which they extract from their labitations by means of the proboscis. There are, however', parasitic Nemertines which infest Crustacea or live on the mantle and gills of Mollusca. In this case they are, like the Hirudinea, furnished with a posterior sucker (Mctacobdella). The Nemertines are distinguished by their reproductive capacity and by their tenacity of life. Mutilated parts are quickly regenerated, and the parts into which certain species readily break are said to have the capacity, under favourable conditions, of developing into new animals.

1. Sub-order : Enopla.-The proboscis is armed with stylets. The short, often funnel-shaped cephalic slits are connected with lateral organs, which correspond to the posterior cerebral lobes of the Anopla. In the brain the upper lobes are slightly elongated posteriorly leaving the ventral lobes, from which the lateral nerves arise, quite free. Development takes place without metamorphosis.

Fam. Amphiporidæ. The ganglia are more rounded, the lateral nerve trunks are plaeed inside the dermal muscles. The month is on the ventral surface near the anterior end of the body. in front of the eommissures between the ganglia. The lateral organs are separated from the brain and eonneeted with it by fibres ; they contain a narrow water eanal. Amphiporus lactifforeus. Johnst. Lives under stones, and is distributed from the North seas to the Mediterranean, 3-4 in. long. A. spectaliti. Quatr. Borlusia splendida Kef., Mediterranean, and Adriatic. Tetrustemmu "Escurum M. Seh. Viviparous: Baltie. T.agricola Will. Suhm., terrestrial. Temertes grucilis Johnst.
2. Sub-order: Anopla.-The proboscis is marmed. The long cephalic slits occupy the whole side, or the anterior part of the head, and lead into the lateral organs, which are direct processes of the upper lobes of the brain. Development frequently by means of ciliated larvæ.

Fam. Lineidæ. Ganglion clongated. The head has deep slits on either side. Lineus: murinus Mont., L. Irngissimus. Sim. (sea long-worm, Borlasia anglu:a Ocrst.. Aemertes Borlasii Cuv.), grows to a length of 15 feet and more. English coast. Cerebratulus marginatus = Mockelia somatotomus. F.S. Lkt., Adriatic and Mediterranean. Micrurl faseiolata Ehrbg., North Seas to the Adriatic.
Fan. Cephalotrichidæ. Cephalic slits and lateral organs are wanting. Head not distinet, very long and pointed. Cephalothrin bioculata Oerst. Sund.

Malacobdella grossie O. Fr. Miill. Body broad and flat, with posterior sucker. Is parasitic in the mantle eavity of varions Mollusca, as Mya, Cyprina, etc.

CLASS II.-NEMATHELMINTHES.

Round worms with tubular or filiform bodies. The cuticle is frequently ringed. The anterior pole is eitluer armed with loooks or provided with papillce. The sexes are separate.

The unsegmented body is rounded, more or less elongated, tubular' or filiform, and both ends are, as a rule, tapered off. Appendages are always wanting, as are, with few exceptions, movable bristles. On the other hand, specinl organs for attack and attachment, such as teeth and hooks, are not unfrequently present on the anterior end of the body; and in some cases small suckers, which serve for attachment during copulation, may be developed on the ventral surface. As a rule, the integument possesses a cuticular layer of relatively considerable thickness, and a well developed muscular layer, which permits not only of the body being knotted, curved, and bent, but, in the thin filiform Nematoda, of undulatory movements. The body cavity is enclosed by the muscular body wall, and contains the blood fluid and the digestive and generative organs. Blood vessels and respiratory organs are wanting. A nervous system is, however, always present. Of sense organs simple eyes are not unfrequently present in the free living forms. The sense of touch is probably distributed all over the surface of the body, particularly on the anterior end, especially when papillre and lip-like prominences or bristles are found on it. While in the Acconthoceplualce mouth and alimentary canal are completely absent, the Vematoclu possess a mouth placed at the anterior pole of the body, an œesophagus, and an elongated straight digestive canal, which usually opens by the anus on the ventral surface near the pos. terior end of the body. The excretory organs have various forms, and always differ considerably from those of the Plutodes. In the Nematoda they consist of paired canals, which open by a common pore and lie in the so-called lateral lines. In the Acconthoce-
phale they are branching subcutancous canals. With a few exceptions the Nemathelminthes have separated sexes, and develop directly without metamorphosis. The larva and sexual animals ar'e not unfrequently distributed in two different hosts.

Fig. 279.-Oxyuris vermicularis (after R. Lenckart), a, female; 0 , mouth; A, anus; V, genital opening; l, male with curved posterior end; c, the latter enlarged; S_{p}, spiculum; d, cgg with enclosed embryo.

The majority of the Nemathelminthes are parasites either during the whole period of their life or at different stages. There are, however, also free living forms which often show the closest relationship to the parasitic members of the group.

Order 1.-Nematoda (Thread-worms).*
Nemathelminthes, with mouth and atimentary canal. They are principally parasites.

The Nematodes possess an extremely elongated thread-like body, which nay be provided with papillæ at the anterior pole in the region of the mouth, or with hooks and spines within the oral cavity. The mouth leads into a narrow œesophagus, which usually has thick muscular walls, a chitinous lining, and a triangular lumen, and is frequently dilated behind to a muscular bulb (pharynx). In certain genera (Rhabditis, Oxyuris), the chitinous lining of the pharynx is raised into lidges: or tooth-like prominences, to which the

[^65] Zeitぇschr. für Wiss. Zool., Tom. XXI., 1871. And "Beitrage zur Kenntnis* des Nervensystems der Nematoden:" Arckic. für Mikr Anatomie, Tom X .
radial muscles converge in the form of conical bundles. According to its function, the cesophagns is essentially a suctorial tube, which pumps in fluids, and by peristaltic action passes them on to the intestine. The intestine follows the pharynx, and opens by the anus not far from the hind end of the body on the ventral surface (fig. 279). Its walls are formed of cells and are non-muscular, except behind, where they have a special investment of muscular. fibres which render the terminal portion contractile. Muscular fibres passing from the body wall to the wall of the rectum are also frequently present. In certain Nematodes the anus may be wanting (Nermis) ; and in Gordius even the alimentary canal undergoes degeneration.

Beneath the stiff cuticle, which is often tiansversely ringed, and is composed of several layers, lies a soft granular nucleated sub-cuticular layer (hypoderimis), which is to be regarded as the matrix of the former. Beneath this lies the highly developed muscular layer, in which band-shaped or fusiform longitudiual muscles predominate. The surface of the body may present markings, as for instance polyhedric spaces and longitudinal ribs, also processes in the form of tubercles, spines,* and hairs. Eedyses, i.e., shedding the cuticular layer, seem only to occur in the young forms. The muscles are each composed of a single cell, in which two parts are distinguishable,--a clear, sometimes a granular protoplasmic portion (medullary substance), which projects into the body cavity and is often prolonged into processes ; and an external fibrillated layer (fig. 280). The Nematodes may

Fig. 280. - Musclecell of a Nematode. be distingnished as Meromyaria or Polymyaria, according to the arrangement of their muscular system. In the Meromyaria the number of muscle cells (which are arranged according to definite laws) in the cross section is small (eight), while in the Polymyaria their number is considerable. In the latter the muscle cells are often comnected together by transverse processes of the medullary substance, which unite on the so-called median lines to form a longitudinal cord.

[^66]In almost every case, with the exception of Ciordius, two lateral regions remain firee from muscle and form the so-called lateral lines or regions, which may equal in breath the neighbouring maseulitl regions. These lateral regions are formed of a finely granulat nucleated substance, and enclose a clear vessel containing gramules. This vessel is comnected with that of the opposite side in the anterion part of the body, and the two open by a common transverse slit, the vascular pore, on the ventral surface in the median line. The lateral lines have the value, both as regards position and structure, of excretory orguns. Median lines (dorsal and ventral), accessory median lines (sub-median lines), the latter being placed between the principal median line and the lateral line, are akso to be distinguished. The so-called ventral cord of Gordius, which may be compared to the median line and has perliaps the significance of an elastic rod, is very large. Cutaneous glands, in the form of unicellular glands, have been observed principally in the region of the œsophagus and in the tail.

The nervous system, owing to the difficulty which its investigation offers, has only been satisfactorily recognised in a few forms. It consists of a nerve ring surrounding the œesophagus, and sending off posteriorly two and anteriorly six nerve trunks (Ascaris megulocephala). The posterior trunks run in the dorsal and ventral lines (N. dorsalis, ventralis), to the extremity of the tail; while of the six anterior nerves, two run in the lateral lines (N. laterales), four in the interspaces between the lateral and median lines (V. submediani), and supply the papille around the mouth. The ganglion cells lie partly near, in front of and behind the nerve ling, partly on the fibrous cords themselves, and are arranged in groups which can be distinguished as ventral, dorsal, and lateral ganglia. There are in addition groups of ganglion cells in the median lines and in the lateral lines in the caudal region.

As sense organs we must mention the eyes found in the freeliving Nematoda, and the papillr and tactile hairs found principally in the neighbourhood of the mouth. Each papilla is supplied by one nerve fibre, which is swollen to a knob and forms the axis of the papilla.
[The Nematoda possess a body cavity, but are without any trace of a rascular system.]

Generative organs. The Nematodes are diœcious (with exception of the hermaphorlrite Pelodytes, and of the Rhabdonema
(Ascaris) miyrovenosum, which produces first spermatozon and later ova). The males are characterised by their smaller size, and by the posterior end of the body being generally curved. Both kinds of generative organs consist of single or paired and often much coiled tubes, at the upper end of which the generative products are developed, the lower ends representing the efferent ducts and receptacula of the generative products. The usually paired ovarian tubes, at the upper ends of which the ova arise, terminate in a shor't vagina, which opens on the ventral surface, rarely near the posterior end of the body. The male generative apparatus, which contains hat-shaped spermatozoa, is almost invariably represented by an unpaired tube, and usually opens on the ventral surface near the posterior end of the body in a common opening with the intestine. As a rule, the common cloacal portion contains two pointed chitinous rods, the so-called spiculc, in a pouch-like invagination. These spicula can be protruded and retracted by a special muscular apparatus, and serve to fasten the male body to the female during copulation. In many cases (Strongylidce) an umbrella-like bursa is added, or the terminal portion of the cloaca can be protruded like a penis (Trichince) ; in this case the cloacal aperture lies almost at the extreme end but is still ventral (Acrophalli). In the male papilla are almost always present in the region of the posterior end of the body, and their number and arrangement afford important specific characters.

Development. The Nematodla for the most part lays eggs ; it is only in rare cases that they bear living young. The eggs usually possess a hard shell and may be laid at different stages of the embryonic development or before it has begun. In the viviparous Nematodes the eggs lose their delicate membranes in the uterus of the mother (Trichina, Filaria). Fertilization takes place by the entry of a spermatozoon into the ovum, which is still without a membrane. The segmentation is equal, and leads to the formation of a kind of invaginate gastrula. From the two cell layers are developed the body wall and the alimentary canal. The embryo gradually assumes an elongated cylindrical form, and comes to lie rolled up in several coils within the shell. The excretory pore and the rudiments of generative organs, as well as a nerve ring, are present in the embryo, which is also provided with mouth and anus. The free development is a metamorphosis, usually complicated by the circumstance that it is not undergone in the habitat of the mother. The young stages or larvae, probably of most Nema-
todes, have a different habitat to that of the sexual amimal; the young and the adult Nematode being contaned in different organs of the same or even of different anmals. The larve live for the most part in parenchymatous organs, either free or encysted in a commective tissue capsule; the adults, on the contrary, live principally in the alimentary canal.

The embryo is almost invariably characterised by the special form of the oral and catudal extremities, but sometimes also by the possession of a boring tooth, or of a circle of spines (Gordius). Sooner or later the skin is shed, and the animal enters its second stage, which may often still be considered as a larval stage; repeated ecdyses precede the sexually adult stage.

The post-embryonic development of the Nematodes presents numerous modifications. In the simplest cases the embryo, while still enveloped in the egg mem-

Fig. 281.-Sclerostomum tetrucanthum, encysted (after R. Leuckart). branes, is transported passively in the food (Oxyuris vermicularis and Trichocephalus). In many Ascaricla-to judge by the species parasitic in the Cat-the embryos, which are provided with a boring tooth, first make their way into an intermediate host, by which they are transported into the intestine of the second host with the food or water.
More frequently the young forms encyst within the intermediate host, and, enclosed in the cyst, are transferred into the stomach and intestine of the permanent host (fig. 281). For example, the embryos of Spiropterce obtusa of the Mouse, while still in the egg membranes, are taken with the food by the Meal-worm, in the body carity of which they encyst. In the viviparous Trichina spiralis there is a modification of this mode of development inasmuch as the migration of the embryos and their development to the encysted form found in the muscles (muscle-trichina) take place in the same animal which contains the sexually mature intestinal Trichinus.

The development of the Nematode larvæ often makes a considerable advance within the intermediate host into which they have migrated. Thus, for instance, in Cucullanus elegans, the embryos migrate into the Cyclops, and in the body cavity of these small Crustacea undergo two ecdyses and essential alterations of form, obtaining at this early
stage the characteristic oral capsule of the sexually adult stage, to which they only develop in the intestine of the Perch. According to Fedschenko,* a similar mode of development occurs in Filarica medinensis. The embryos pass;into puddles of water, and migrate thence into the body cavity of the Cyclopicter ; and after casting their skin assume a form which, except for the absence of the oral capsule, resembles that of the larva of Cucullamus. After the expiration of two weeks there is another eclysis, with which is connected the loss of the long tail. The later history is unknown. It has not yet

Fig. 282.-a, Rhabdonema. (Ascaris) nigrovenosum of about 3.5 mm . in length in the stage of maturity of the male produets ; G, genital glands ; 0 , mouth; D, intestine ; A, anus ; N, nerve-ring; Drz, glandular cells; Z, isolated spermatozon. b, Male and female Rhabditis forms from about 1.5 mm . to 2 mm . long ; Ov, ovary ; T, testis; Γ, female genital opening; Sp, spicula.
been discovered whether the migration of the Filarian larva into the permanent host (Man, see p. 356) takes place with the body of the Cyclops, or independently after copulating in the free state.

The embryos of some Nematoda develop in damp muddy earth, after casting their skin, to small so-called Rluabditis forms with a double

[^67]enkargement of the resophagus and with a pharynx armed with three teeth. They lead an independent life in this habitat, and finally migrate to lead a parasitic life within the permanent host, where, after several ecrlyses and alterations of form, they attain the sexuall! mature condition. This mode of development occur's in Dochmius trigonocephalus from the intestine of the dog, and very probably in the nearly allied D. (Ancylostomum) duodencalis of man, and also in Sclerostomum.

The offspring of parasitic Nematodes may, however, attain sexual maturity in damp earth, as free Iflubditis forms, and represent a special generation of forms whose offspring again migrate and hecome parasites. Such a life history is a case of heterogamy. It occurn in Rhabdonema nigrovenosum, a parasite in the lungs of Batrachians. These parasites, which are about half to three-quarters of an inch long, all have the structure of females, but contain spermatozoa, which are produced (as in the viviparous Pelodytes) in the ovarian tubes, but earlier than the ova. They are viviparous. The embryos make their way into the intestine of their host, and accumulate in the rectum, but finally pass to the exterior in the freces, and so reach the damp earth or muddy water, where they develop in a short time into the Rhabditis-like forms, which have separate sexes and are barely 1 mm . in length (fig. 282, a and b). The impregnated females of the latter produce only from two to four embryos, which become fiee inside the body of the mother, pass into her body cavitr, and there feed on her organs, which disintegrate to form a granular detritus. They finally migrate as slender, already tolerably large Nematodes into the lungs of the Batruchira, passing through the buccal cavity and glottis. The Leptodera appendiculatc, which lives in the slug Arion empiricorum, also presents in its development a like alternation of heteromorphic generations, which, however, are not strictly alternating, inasmuch as numerous generations of the Rhabditis form may succeed one another.

The Leptoderce are peculiar in that the form parasitic in the snail is a larva characterised by the absence of a mouth, and by the possession of two long band-shaped caudal appendages; it quickly attains maturity, but only after a migration into damp earth and after losing the caudal appendages and casting the skin.

The Nemctoda feed on organic juices, some of them also on blood, and are enabled by their armed mouth to inflict wounds and to gnaw tissues. They move by bending their body with a rapid undulatory movement towards the ventral and dorsal surfaces, which thus seem
to be the lateral surfaces of the moving animal. Most Nemutodea are parasitic, but lead an independent life in certain stages of their life history. Numerous small λ^{\top} ematoda, however, are never parasitic, but live freely in fresh and salt water and in the earth. Some Nematodes are parasitic in plants, for example, Anguillula tritici, dipsaci, etc.; some live in decaying vegetable matter, e.g., the rinegar worm in fermenting vinegar and paste. Nevertheless very similar forms occur in the contents of the intestine and in the freces of different animals and of man (A. intestinalis, stercoralis). The power possessed by small Nematoda of resisting the effects of prolonged desiccation and of coming to life again on being moistened is very remarkable.

Fam. Ascaridæ. Body tolerably stout. With three lips furnished with papille. One of these lips is direeted towards the dorsal surfaee. while the two others meet together in the ventral line. The posterior end of the male is ventrally eurved, and usually furnished with two horny spieula.

Fig. 283.-Axcuris lumbricoides (after R. Leuckart). u, Posterior end of a male with the two spicula (S_{p}). b, dnterior end from the dorsal side, with the dorsal lip furnished with two papillæ. c, The same from the ventral side with the two lateral ventral lips and the excretory pore $(P) . \quad d$, Egg with the external membrane formed of small clear spherules.

Ascaris L. Polymyarian, with three strongly developed lips, the edges of which are in the larger speeies provided with teeth. The pharyns is not separated as a distinet bulb. The eaudal extremity is usually short and eonieal, and in the male sex invariably provided with tro spieula (fig. 283, a). A. lumbricoides Cloquet, the human round worm, a smaller variety in the pig (A. suilla Duj.) The eggs pass into water or damp earth and remain there some months, until the embryonie development is completed; they are probably earried into the alimentary eanal of their later host by means of an intermediate host. A. meyalocephalu Cloquet (horse and ox): A. mystax: Zed. (eat and dog), sometimes parasitie in man.
O.ryuris Rud. Meromyarian; usually with three lips, which bear small papillæ. The posterior end of the œsophagus is enlarged to a spherieal bulb provided with a mastientory apparatus. The posterior end of the body of the female is thin and pointed. while that of the male has only two præanal and few postanal papillæ, and a single spieulum (fig. 279). O vermicularis. L., in the large intestine of man, distributed in all eountrics. The female is about ten mm . long. O. curvula Rud., in the creum of the Horse.

F'am. Strongylidæ. The male genital opening is plaeed at the hinder end of the body, at the bottom of an umbrella- or bell-shaped bursa, the margin of whiel is finmished with a varying mmber of papilles.

L'ustromy!lus Dies. With six projecting oral papill:e, and a row of papillæ on either lateral line. The bursa is bell-shapeed and eompletely elosed, with regular muscular walls and numerous marginal papille. There is only one spieulum. The female genital opening is far forwarcl. The larve live encysted in fishes. (rilaria "'ystica from Symbraurhus.). E. gigus: Rud., the borly of the female is three feet in length, and only twelve mm. thick. It lives singly in the pelvis of the kiduey of the Seal and Otter, and very rarely in Man.

Strongylus Rud. With six oral papillæ and small mouth. Two conieal eervieal papille upon the lateral lines. The fos-

Frg. 284.-Douchmius dodenulis (after R. Leuckart). a, male; O, mouth ; B, bursa. b, Female; O, mouth; A, anus; V, vulna. terior end of the male has an umbrella-like incompletely closed bursa. Two equal spicula, usually with unpaired supporting organ. The female sexual opening is sometimes approaehed to the posterior end of the body. They live for the most part in the lungs and bronehial tubes. St. longovayinatus Dies. Body 26 mm . long, 5 to 7 mm . thick. The female sexual opening lies direetly in front of the anus, and leads into a simple ovarian tube. Only once found in the lung of a six-year old boy, in Klausenburg. St. paradoorus. Mehlis, in the bronehial tubes of the pig. St. filaria Rud., in the bronehial tubes of the sheep. St. rommutatus Dies., in the trachea and bronchial tubes of the hare and rabbit. itt. auriculuris Rud., in the small intestine of Batraehia.

Duchmius Drij. With wide mouth and horny oral eapsule, the edge of whieh is strongly toothed. Two ventrally plaeed teeth projeet at the bottom of the oral eapsule, while on the dorsal wall a conieal spine projects obliquely forwards. D. duodenali.s Dub. (Ancylustomun duoderale Dub.), 10 to 18 mm . long, in the small intestine of Man, diseovered in Italy : very widely distributed in the eountries of the Nile (Bilharz and Griesinger). By aid of its strongly armed mouth it wounds the intestinal mueons membrane, and sucks the blood from the vessels. The frequent hæmorrhages oeeasioned by these Dochmia are the eause of the illness known by the name of Egyptian ehlorosis (fig. 28t). It has lately been established that this worm oeeurs in Brazil, and that, like D. trigonocephalus, it develops in pucders of water (Wucherer). D. trigonocephalus. Rud.; in the Dog. Selerostamum Rud. With eharaeters of Doehmius, but with a different oral eapsule, into whieh two long glanular sacs open. sc. equinum. Duj. = urmatum Dies. In the intestine and the mesenterie arteries of the horse. Bollinger* has shown that the phenomena of eolie in the horse may be referred to embolie processes procealing from aneurism of the intestinal artery. Each aneurism eontains about nine worms.

* Bollinger, "Die Kolik der Pferde und das Wurmaneurysma der Einge. weidearterien," Muinehen, 1870.

Sc. tetrucanthum Mehlis, also in the intestine of the horse. The embryos, after migrating into the intestine, become eneysted in the walls of the reetum and cecum, assume within the cyst their definite form, break out from the cyst, and escape again into the intestine. Cumulanus clegans: Zed., in the Perch.
Fam. Trichotrachelidæ, with long neck-like thin anterior portion of the body. Month small, without papillie. (Esophagus very long, traversing a peculiar cord of cells.
Trichocephealu* Goeze. Anterior part (fig. 285) of the body elongated and whip-shaped: posterior part cylindrical and sharply distinct; enelosing the generative organs, in the male it is coiled up. Lateral lines absent. Main median lines present. The penis is slender and furnished with a sheath, which is turned inside out when the former is protruded. The hard-shelled, citron-shaped eggs undergo the first part of their development in water. Th. disprur Rud. In the human colon : these worms do not live free in the intestine, but bury their filiform anterior extremity in the mucous membrane (fig. 285). The eggs pass out of the host with the freces, as yet without a sign of beginning devclopment, which only takes place after a prolonged sojourn in the water or in a damp place. According to the experiments of Leuckart performed with TT. affinis of the sheep and Tr. crecuutus of the pig, cmbryos with the cgg membranes, if introduced into the intestine, develop into the adnlt Tricocephulus; and we may therefore conclude that the human Tr. Mispar is introduced directly, and without an intermediate host either in the drinking water or in uncleaned food. The young Tir Aispur is at first hair-like, and resembles a Trichina, and only

Fig. 285. -Trichocephalus dispar (after R. Lenckart). a, Egg ; l, female ; c, male with the anterior part of the body buried in the mucous membrane; S_{p}, spiculum. gradually acquires the considerable thickness of the hind end of the body.

Trichosomum Rud. Body thin, hair-like, but the posterior end of the body in the female is swollen. Lateral lines and the principal median lines are present. The male caudal extremity has a cutaneous fold and a simple penis (spiculum) and sheath. Tr. muris Creplin., in the large intestine of the honse-mouse. Tr. crussicaudla Bellingh., in the bladder of the rat. According to Lenckart, the dwarfed male lives in the uterns of the female. There are usually two or three, more rarely four or five males in a single female. There is also a second species of Trichosomm found in the bladder of the rat. Tr. Schmidtii v. Linst., the larger male of which was formerly taken for that of Ti. crassicauda.

Trichina Owen.* Body thin, hair-like. Principal median lines and lateral

[^68]lines are present. The female gencrative opening well forward. The posterior end of the body of the male has 1 wo temminl cones between which the eloaca is

Fig. 286.- Trichina spivalis. a, Mature female Trichina from the alimentary canal; \mathcal{G}, genital opening; E, embryos; Ov, ovary. b, Male; T, testis. c, Embryo. d, Embrro which has migrated into a muscle fibre, alreadr considcrably enlarged. e, The same developed into a coiled Muscle Trichina, and encyster?
projected. Ir. spiralis Owen, in the alimentary canal of Man and numerous, principally carnivorons, Mammalia; hardly two lines in length. The viviparous females begin to bring forth embryos about eight days after their migration into the alimentary canal. These embryos traverse the intestinal walls and body cavity of the host, and migrate, partly by their own movements in the hundles of connective tissue, partly with the aid of the currents of blood into the striped museles of the body. They pierce the sarcolemma and penetrate into the primitive bundles, the substance of which degenerates, the degencration being accompanied by an active multiplication of the melei. In a space of fourteen days they develop, within a sac-like swelling of the muscle fibres, into spirally coiled worms, around which and within the sarcolemma and its connective tissue investment a clear citron-shaped eapsule is exercted from the degenerated muscle substance. The young Muscle-Trichina can remain living for years within this capsule, which at first very delicate, gradually becomes thickened and hard by the formation of other layers and by the gradual deposition of calcareons matter. If the eneysted animal is transferred into the intestine of some warmblooded animal in the flesh of its first host, it is freed from its cyst by the action of the gastric juice. and the rudimentary generative organs, which are already tolerably far developed, quickly attain maturity. In from three to four days after their introdnetion the asexual Muselc-Trichinas become sexual Trichinas. These copulate and produce a brood of embryos which migrate into the tissues of

Fig. 287.-Filaria medinensis (after Bastian and Leuckart). a, Anterior end seen from the oral sur-
Leuckart). a, Anterior end seen from the oral sur-
face; O, mouth; P, papilla. b, Pregnant female
(size reduced more than half). c, Embryos
Leuckart). a, Anterior end seen from the oral sur-
face; O, mouth; P, papilla. b, Pregnant female
(size reduced more than half). c, Embryos strongly magnified.
 the host (one female may produce
as many as 1000 embryos) (fig. 256). The house rat is especially to be mentioned as the natural host of the Trichinu. This
animal does not hesitate to eat the carcase of its own species, and so the Trichina infection is passed on from generation to generation. Carcases infected with Trichinas are sometimes eaten by the omnivorous pig, in whose flesh the eneysted Trichinas are introduced into the intestine of man, and oceasion the well-known disease, Trichinosis, which when the migration takes place in number, often has a fatal result.

Fam. Filariidæ. Body filiform, clongated, often with six oral papillæ, some-
times with a horny oral capsule, with fom praanal paids of papille, to which an unpaiped papilla may be adred, with two unequal spicula or with simple spiculum.

F'ilariat O. Fr. Miill. With small mouth and marrow wesophagres. This spocies. which is sometimes destilute of papillie, lives outside the visecra. usnally in connective tissue, frequently beneath the skin (divided by Diesing jnto numerous gencra). $X_{\text {. }}$. (Ihorrmoulus) modinensis** Gmel. the Guinea worm, in the subentancous cellnlar tissue of Man in the 'Propies of the old World, reaches a lengtle of two feet or more. The hearl is provided with two small and fwo larger papille. The female is viviparous, and without sexual opening. 'The male form is unknown. The worm lives in the connective tissuc between the museles and bencath the skin, and after reaching sexual maturity, occasions the formation of an abscess, with the eontents of which the cmbryos escape to the exterior (fig. 287). It has lately been proved (Fedschenko) that the embryos of frituriu migrate into a Cyclops and there undergo an eedysis. Whether they are then (in the body of the Cyelops) introduced into man in his drinking water, or whether they first escape anrl copulate in a fiec state, is not known. Fr. immitis lives in the right ventricle of the dog, and is very abundant in East Asia. It is viviparous. The embryos pass direetly into the blood, where, however, they do not madergo their further development. Similar young Hæmatozoa are also found in the bloort of man in the lropies of the New and Old Worlds (H^{\prime}. sanguinis hominix, F. Buncrofti). Sinee these animals are also found in the urinc. their appenranee scems to have an retiological conneetion with hæmaturia. In the East Indies, young Filaria also live in the blood of the street dog, and would seem to be related to the brood of Filariu sauyuinolenta, since, according to Lewis, knotty swellings on the aorta and cesophagus are invariably fonnd with these Filaria. Fr. papillosa Rud. in the peritonenm of the horse. Fr. 7oa Guyot.. in the eonjuntiva of negroes on the Congo. F. lubialis Pane. Only once observed at Naples. An immature Filaria deseribed as Filaria lentis (nculi humani) has been found in the human eapsula lentis.

Fam. Mermithidæ. Aproetous Nernatodes, with very long filiform body, and six oral papillx. The male caudal region is broad, and is provided with two spicula and three rows of mumerous papillæ. They live in the body cavity of inseets, and escape into the damp earth, where they attain sexual maturity and copulate. Murmis nifrescens Duj., was the occasion of the fable of the rain worm. M. albicans v. Sieb. v. Siebold established by experiment the migration of the embryos into the caterpillars of Tinea cronymella. Splecerularia bombi Léon Duf.

Fam. Gordiidæ. Body elongated and filiform. Without oral pauillæ and lateral lines, with a ventral cord. The mouth and anterior region of the alimentary canal is obliterated in the adult state. The testes and ovarics are paired and open to the exterior with the anus near the hind end of the body. Uterus umpaired, with reeeptaeulum seminis. The male caudal regiou is forked. and is destitute of spicula. In the young stage they lire in the body cavity of predatory inseets, and are provided with a mouth. At the pairing time they pass into the water, where they become sexually mature. The embryos, which are provided with a circle of spines, bore throngh the egg-membranes and migrate into Inseet larvæ (Chironomus-larva, Epluemorida). and there eneyst. Water

* Compare H. C. Bastian, "On the Structure and Nature of the Dracunculns," Trans. Linn. society, vol. xxiv., 1863. Fedschenko l. c.
beetles and other aquatic predatory inseets ent with the flesh of the Ephemevid larver the eneysted young forms, which then develop in the body eavity of their new and larger host to young Gordiade. Gordius aquaticus Duj.
Fanl. Anguillulidæ.* Free living Nematodes of small size. Caudal glands are sometimes present. The lateral eanals are often replaced by the so-called ventral glands. Some speeies either live on or are parasitie in plants ; others live in fermenting or deeaying matter. The greater number, however, live free in earth or water. Tylenchus Bast. Bueeal eavity small, and eontaining a small spine. The female genital opening lies far baek. T. scandens Seln. $=$ tritici Needham, in mildewed wheat grains. When the grains of wheat fall the dried embryos grow in the damp earth, bore through the softened membranes, and make their way on to the growing whent plant. Here they remain some time, perhaps a whole winter without a!teration, until the ears begin to be formed. They then pass into the latter, grow, and become sexually mature, while the ear is ripening. They eopulate and deposit their eggs, from which the embryos ercep out, and at length constitute the sole eontents of the wheat grains. T. dipsuci Kuhn, in heads of thistles (Cardius) I!. Darainii Bast, on roots of moss and grass. Hetcrodera Sehuchtii Sehmidt., roots of the beet-root, alsu of the eabbage, of wheat, barley, etc. Rhabditis Duj., divided by Sehneider into Leptodera Duj. and Pelodera Sehn. Rh. He.rilis Duj., head very sharply pointed, month with two lips, in the salivary glands of Limax cinereus. Rh. angiostoma Duj. Rh. appendiculata Schn., in damp earth, 3 mm . long. The larva, whieh is without a mouth: and has two caudal bands, is found in Arion cmpirienrum. Anguillula aceti=glutinis O. Fr. Mill. known as the vinegar worm and pasteworm, 1 to 2 mm . long.

Of the many marine Anguillulide (Eurplidoc), we must mention Doryluimus maximus Biitsehli, D. stugnalis Duj., found in mud everywhere in Europe. Enchelidium mariunm Ehrbg.. Enoplus tridentatus Duj.

The abberant families Desmoscolecider and Cheotosomide are allied to the Nematoda.

The Chetognatha.

The Chcetognatha, \dagger containing only the genus Sagitta, are allied to the Nematorles. . They are elongated round worms, with a peculiarly armed mouth and laterally placed horizontal fins, the membranous edges of which are supported by rays. The anterior portion of the body is sharply separated off as a head, and bears in

* Davainc, " Reeherehes sur l'Anguillule du blé niellé," Paris, 1857. Kühn. "Ueber das Vorkommen von Anguillulen in erkrankten Bliithenköpfen von Dipsacus fullonum," Zeitschr. für wiss Zool., Tom IX.. 1859. Bastian, " Monograph of the Anguillulidæ or free Nematoids, marine, land, and fresh water," London, 186t. O. Biitsehli, "Beiträge zur Kentniss der freilebenden Nematoden," Tor. Actu, 'Tom XXXV1., 1873. Lad. Oerley, "Monographic der Anguilluliden," Buda-Pest., 18s0.
\dagger Compare A. Krohn, "Anatomiseh-physiologisehe Beobachtungen über die Sagitta bipmetata," Hamburg. 18t4. R. Wilms, "De Sagitta mare germanieum circa insulam Helgoland ineolente," Berolini, 1846. Kowalevski, "Embryologisehe studien an Wiirmern und Arthropoden," Mcm. de l'Acad. St. Pétersbourg, Tom XVI. O. Hertwig, " Die Chretognatha, cine Monographie," Jeıa, 1880.
the region of the month two lateral groups of hooks which function

Fig. 288.-Surgitta (Spadella) cephatopteru, magnified 30 times, viewed from the dorsal side (after O. Hertwig). F, posterior fin; G, supraœsophageal ganglion; Te, tentacles; R, olfactory organs; Ov, ovary; Od, oviduct; T, testis; I'l, vas deferens; $S b$, vesicula seminalis. as jaws.

The nervous system consists, according to Kiohn, of a cerebral granglion on which the eyes are situated, and a ventral ganglion placed in about the middle of the hody length. There are in addition two ganglia neur the mouth, which may be considered is the subosophageal gangha, and are comected with each other. and with the cephalic ganglion by cesophageal commissures.
[The enmmon view now is that the large ventral ganglion of the middle of the body. which is eomneeted with the cerebral by commissures, is homologous with the suboesophageal ganglia of other types.]

The straight alimentary canal is attached to the body wall by a dorsal and ventral mesentery from the cosophagus backwards, and opens to the exterior at the base of the long tail, which terminates in a horizontal fin (fig. 288).
[The body cavity is well dereloped, and divided by the dorsal and ventral mesenteries into two parts, and again by two transverse rertical septa into a cephalic section, a section in the body, and finally a caudal section. Vaseular and exeretory organs are absent.]

Reproduction. The Cheitognutha are hermaphrodite, and possess paired ovaries, which open by two apertures at the base of the tail and are connected with seminal pouches. The testes also are paired, and situated posteriorly to the ovaries in the tail; their products pass to the exterior by openings at the sides of the tail. Segmentation is complete, and leads to the formation of a blastosphere. One side of this becomes inraginated so that the segmentation cavity is obliterated and a grastrula is formed, in the entoderm
of which two cells may already be recognised as primitive generative cells. As soon as these make their appearance in the entoderm, the latter becomes folded in such il way that the archenteron is divided into a median and two lateral cavities. The layer of cells lining the lateral cavities becomes the mesoderm, mind the contained cavities the two lateral compartments of the body cavity, while that of the middle carity gives rise to the wall of the mesenteron or alimentary canal. The permanent moutl is formed at the end opposite to that at which the blastopore, which is now closed, was situated.

There is but one genus, Sagittcu Slab., of which several species, e.g., Sagitta bipunctata Krohn, S. germanica Lkt. Pag. from the European seas have been more accurately described.

Oider 2.-Acanthocephala.*

Elonyated round worms with protrusible proboscis furnished with hooks; without mouth and alimentary cancal.
'The saccular, often transversely wrinkled body begins with a proboscis, which is furnished with recurved hooks and can be retracted into a tube projecting into the body cavity (sheath of the proboscis) (fig. 289, R and $R s)$. The posterior end of this sheath is fastened to the body wall by a ligament, and by retractor muscles. The nervous system (fig. 289, $G)$ is placed at the base of the proboscis, and consists of a simple ganglion formed of large cells. Nerves are given off from the ganglion anteriorly to the proboscis, and through the lateral retractors (retinucula) to the body wall (fig. 289, R). The latter supply partly the muscular system of the body, and partly the genital apparatus, in which there are, principally in the male animal, special nerve centres consisting of ganglionic enlargements.

Sense organs are entirely wanting, as also are mouth, alimentary canal, and anus.

The nutritive juices are taken in through the

Fig. 289-Anterior part. of an Echinorhynchus. R, Proboscis; Rs, sheath of proboscis; G, ganglion; $L e$, lem. nisci; R, retinacula. whole outer surface of the body. In the soft granular subcuticular

[^69]layer of the integrment lies a complicated system of cannals, filled with a clear fluid contaning granules. Bencath the intermal layer of the integroment, which layer is often very extensive and of a yellow colour, is plased the powerfal mmsenlar thnic ; it is composed of external transwerse and internal longitudinal fibres, and homeds the borly eavity. The complicated ramified system of dermal canals, of which two principal longitn-

Fig. 290.- Male of Echinorhyncus angustatus (after R. Lenckart). R, proboscis ; $R s$, sheath of the proboscis; Li, ligament; G, ganglion; Le, lemnisci; T, testes; $T d$, vasa deferentia; P_{r}, prostatic sacs; $D e$, ductus ejaculatorius; P, penis; B, retracted bursa. dinal trimks may be recognised, is filled with juices, and probalbly functions as a nutritive apparatus. The portion of this system which extends into two bodies (the lemnisci, fig. 289, Le) projecting behind the proboscis through the muscular tunic into the body cavity, probably acts as an excretory organ, since the contents of the frequently anastomising canals of these lemnisci is usually of a brown colour, and consists of a cellular mass rich in concretions. According to Schneider, the vessels of the lemnisci open into a circular vessel in the integument, and only communicate with the network of canals in the cephalic region, while the other dermal vessels (nutritive apparatus), the contents of which differs from that of the vessels of the lemnisci, are completely shut off from the latter.

Generative organs. The body cavity through which fluids circulate encloses the greatly developed generative organs, which are attached

Fig. 291. - Generative ducts of a female Echinorliynchus gigas (after A. Andres). Li, ligament; Y, discshaped flocculi; $F^{\prime}, F^{\prime \prime \prime}$, appendages of the same; U, uterus; r^{\prime}, vagina; B, lateral ponches of the bell; $G d$, dorsal ceils at the base of the bell; Gl, lateral cells.
to the end of the sheath of the proboscis by a ligament (figs. 290
and $291, L i$). The sexes are separate. The male (fig. 290) has two testes (T), and the same number of efferent ducts ($V d$). The latter unite behind to form a ductus ejaculatorius ($D e$), which is often fur nished with six or eight glandular sacs $\left(P_{r}\right)$, and a conical penis (P), at the bottom of a bell-shaped protiusible bursa (B), situated at the posterior pole of the body (fig. 290). The generative organs of the larger females (fig. 291) consist of the ovary dereloped in the ligament ; of a complicated uterine bell, beginning with a free opening into the body cavity; of the oviduct and the short vagina, which is divided into several portions and opens at the posterior end of the body (fig. 291). It is only in the young stage that the orary is a simple body enclosed by the membrane of the above-mentioned ligament. As the animal increases in size, the ovary grows, and becomes divided

Fig. 292.-Embryo of Echinorhynchus gigas enclosed in the egg membranes (after Leuckart). into numerous spherical masses of eggs, the pressure of which bursts the membrane of the ligament; the masses of ora as well as the ripe elliptical eggs, which gradually become free from them, fall into the body carity. The egg membranes are not formed till

Fitg. 293.-Larvæ of Echinowhnchus proteus from Gummarus (after Leuckart). a, Free embryo ; Ek, embryonic nucleus. b, Older stage, with more differentiaterl embryonic uncleus. c, Young female worm ; Ov, ovary. d, A young male worm ; T, testes; Le, lemnisci. after segmentation, and ought perhapsto be interpreted as embryonic membranes. The eggs, which already contain einbryos, pass out of the body cavity into the uterine bell, which is continually
dilating and contracting, thence into the oviduct, and through the genital opening to the exterior.

Development. Segmentation is irregrlar and complete, and results in the formation of an embryo, which is encloser in theeregg-memhianes. The embryo has a small, somewhat long looly, armed with small spines at the anterior pole, and containing a central granular mass (embryonic nucleus) (fig. 292). It passes into the intestine of Amphipads (E'ch. proteus, polymorphuss), or of Isopods (E'ch. conyustatus), and there hecomes free, bores through the wall of the intestine, and after losing the embryonic spines, develops to a small elongated larva, which, like in pupa, lies in the body cavity of the small Crustacean with its proboscis retracted and surounder by its firm external skin as by a cyst (fig. 293). The skin of the larva gives rise only to the integument, the vessels and the lemnisci of the adult; while all the other organs enclosed within the dermal muscular envelope, viz., the nervous system, the sheath of the proboscis, and the gene rative organs, are developed from the so-called embryonic mucleus. It is only after their introduction into the intestine of fishes (Ech. moteus) or of aquatic birds (Ech. polymorpluss), which feed on these Crustaceu, that the larvee attain to sexual matmity, copulate, and reach their full size.

The numerous speeies of the genus Echinorlyyncus O. F. Miiller live principally in the alimentary eanal of different Vertebrata; the gut wall may be as it were sowu with these animals. Eeh. polymurphus. Brems., in the intestine of the duek and other birds, alzo in the erayfish. Ech. protous Westrumb., Ech. angustatus Rud,, in fresh-water fish. Ech. gigas Goeze, as large as an Ascaris lumbricnides, in the small intestine of the pig. Aecording to A. Sehneider, the embryo eompletes its development in the maggot. Lambl found a small sexually immature Eehinorhynehus in the small intestine of a child whieh died of leukæmia.

CLASS III.-ANNEIIIDA.

Segmented Vermes with brain, circam-asophageal ring, ventral nerve corcl, and vascular system.

The larva of Lovén and its development seems to throw light upon the organization of the Annelida and their relations to the lower worms and to the Rotiferc ; and further makes evident the relationship of the Ammelida to the Gephyrea, a group of worms. which possess an elongated body devoid alike of external and internal segmentation, and, as an equivalent of the ganglionic chain, a ventral nerve trunk, which is usually mniformly covered with ganglion cells.

The body of Loven's larva, from which we must derive the body of Annelids, is unsegmented, and represents mainly the Annelid head.

Behind it is continued into an indifferent terminal portion equivalent to the whole borly of the adult.

At the apical region of the larva (fig. 294, $S p$) there is a thickening of the ectorerm, which is called the apical plate. This represents the rudiment of the cerebral ganglion (apical ganglion), and gives off nerves to either side. The wide mouth (O) has a

Fig. 291.-Development of Polygordius (after B. Hatschek). a, Young larva; Sp, apical plate with pigment spot; Prw, præ-oral circle of cilia; O, month; Pow, post-oral circle of cilia; A, anus; $M s$ s, mesoderm ; $K N$, head kidney. b, Older larva with commencing segmentation of the body, a sccond limb is developed in the head kidney. c, Older stage. The body is olongated to the form of a worm, and divided into a number of metameres; $H W k$, posterior circle of cilia; $A f$, eye spot; F, tentacle.
ventral position, and leads into an alimentary camal, which opens at the posterior end of the body (α). In front of the mouth there is a strongly developed circle (preoral) of cilia (Prw) ; and behind
the mouth a weaker (postoral) circle ('Oow) ; to the right and left there is an excretory canal (head kidney), which begins with a ciliated fumme. By the differentiation of the cephatic region of the linva into prastomial lobe and onal segment, and by the gradual growth in length of the posterior part of the hody and the

Fig. 294, d. - The young Polygordius ; G, cerebral ganglion; W_{g}, ciliated pit; D, alimentary canal. segmentation of the latter into a number. of successive metameres, the originally unsegmented lirvit is transformed into an Annelid (fig. 294, $a-l$). 'There is, therefore, between the segmented adult and the larva a morphological relation similar to that between the cestoid and the simple scolex, fion the posterior end of which the proghottides are cleveloped.

The body of the Annelida is sometimes flattened, sometimes completely rounded and cylindrical. It is composed of a number of successive segments, which are usually sepalated from each other extermally by tionsverse constrictions. The segmentation is generally homonomous, in that the segments following the head resemble each other not only in external appearance, but also in internal structure, i.e., they repeat similar sections of the internal organization. The terminal segment with the anus, however, has a special structure inasmuch as it retains the primitive, more indifferent character of the posterior end of the body of the larva, and during the development of the worm gives origin to new segments anterior to itself. The homonomy of the preceding segments of the body is, however, never complete, since certain organs are confined to definite segments. The internal segments, which are separated by dissepiments, either correspond with the external segmentation as marked by the ammular constrictions of the integument (Chcetopocla), or each intermal segment corresponds to a definite number ($3,4,5$, etc.) of the external rings (IIirudinea).

Organs of locomotion. Special organs of locomotion may either have the form of bristle-bearing unjointed appendages (paraporlia) on each ring of the body (Chuetoporla), or of terminal suckers (Hirudinea). In the first case each segment may possess a dorsal and ventral pair of appendages (the nerropodia and notopodia), which, however, are sometimes replaced by simple setre embedded in dermal pits.

Alimentary canal. The mouth is placed on the ventral surface at the anterior end of the body, and leads into a muscular pharynx, which is often provided with a powerful armature and can be protruded like a proboscis. This is followed by the gastric region of the gut, which occupies the greatest portion of the length of the body, and is either regularly constricted in correspondence with the segments, or possesses lateral diverticula; it is only coiled in exceptional cases. The anus is usually dorsal at the hinder end of the body.
The nervous system consists of a cerebral or supra- oesophageal ganglion, which is derived from the apical plate of the larval pre-oral lobe, of an œesophageal ring, and of a ventral cord or ganglionic chain, the two halves of which lie more or less approached to each other in the median line. The ventral cord arises from two lateral nerve cords, which probably correspond to the

Fig. 295.-Transverse section through the body of Protodrilus (after B. Hatschek). $S S$, The two lateral trunks of the nervous system; G, ganglionic layer of the same: D, alimentary canal; N, nephridium ; \boldsymbol{M}, muscles; Ov, ova. lateral nerve trunks of the Nemertines. These two cords are continuous with the cesophageal commissures, and, like the latter, are uniformly covered with ganglionic cells. This form of the nervous system may persist, as may also its ectodermal position (Archiannelida, Protodrilus) (fig. 295). In most Aronelidu, however, this is only a transitory condition; for at a later stage the lateral cords become separater from the ectoderm, come together in the median line, and acquire a segmentation corresponding to the metameres of the body. The nerves of the sense organs arise from the cerebral ganglion; the other nerves pass out from the parts of the ventral cord or, as the case may be, from the ganglia of the ventral clain and from the longitudinal commissures between the latter. There is in
ahmost all eases a visceral nervous system (symunathetic). "ihes following sense oryans are found : paired eye spots with refiactive structures, or larger more complicated eyes; also auditory vesicles upon the asophageal ring (branchate worms), and lactile organs. The latter have, in the Chrelopodu, the form of tentacles and tentacnlar. cirri on the head and of cirri on the paraporlia. When tentacles and cirri are absent, the anterior end of the body and the region of the mouth seem to function as tatile organs.

Vascular system. A blood vascular system is very commonly present; in many cases, however, it seems not to be completely closed, but to communicate with the body cavity, which contains blood. 'I'wo main vascular trunks, a dorsial and a ventral, connected with one another by mumerous tiansverse anastomoses, are generally present. The blood is usually coloured (green or red), and its circulation is effected by the contractility of the walls of certain vessels; sometimes the dorsal vessel, sometimes the vential, and sometimes the transverse connecting vessels are contractile. Lateral longitudinal vessels are often present in addition to the above. In the Hirudinea these, as well as the median contractile blood sinus, are probably to be regarded as isolated parts of the body cavity.

Special respiratory organs are found amongst the Chretopoda in the branchiate worms.

The excretory organs, corresponding to the water-vascular or excretory system of the Platyhelminthes, have the form of coiled canals (segmental organs or nephridia), which are repeated in pairs in each segment. Each nephridium usually begins with a ciliated, funnel-shaped opening into the body cavity, and opens to the exterior by a lateral pore (fig. 70). These may assume in certain segments the function of generative ducts, e.g., the nephridia of the Gephyyrea, which, however, are much reduced in number. In the cephalic segment or head there is also a segmental organ (head kidner), which in the larva functions as a kidney and later disappears.

Reproduction.-Considering the independence of the segments, to which we ascribe the value of a subordinate (morphological) individuality, the occurrence of asexual reproduction by fission and gemmation in the long axis (Chetopoda) is not surprising. Numerous Annetidce (Oligochata, Hirudinea) are hermaphrodite; the marine Chcetopoda, on the contrary, are for the most part of separate sexes. Many lay their eggs in special sacs and cocoons, in which case development is direct, without metamorphosis. The marine worms, on the contrary, undergo a more or less complicated
metamorphosis. The Annelida comprise terrestrial and aquatic animals, and they eat, for the most part, animal food. Many of them (Hirudinea) are occasionally parasitic.

In the group of the Annelida three principal divisions may be distinguished,--the Chertopoda, the unsegmented Gephyyrea, and the Hirudinea which are adapted for parasitism. The IIirudinea are not in any degree to be regarded as Annelida of a lower grade of organization, but they rather present, at least in the case of some organs, as alimentary canal, circulatory and generative organs, a more complicated structure, and agree most closely with the Oligochæta, from which they may be derived.

Sub-class 1.-CнæтородA.*

Free living Annelida, with paived tufts of setce on the segments, frequently with distinct head, also with tentacles, cirri, and branchice.

The Chretopoda are divided externally into segments, which correspond with the metameres of the internal organs, and are, with the exception of the anterior region, which is distinguished

Fig. 296.-Grubea fusifera (after Quatrefages). Ph. pharyux D, alimentary canal; C, cirri ; F, tentacles. as the head, usually tolerably alike (fig. 296). Parapodia provided with setæ are very frequently present on the segments; their prin-

Frg. 297.-Dorsal (DP) and ventral (VrP) Parapodium with bundles of sete of Nereis (after Quatrefages). Ac, Aciculum; $R c$, dors: cirlus; $B c$, ventral cirrus. cipal function is that of locomotion, but their various appendages, the bronchice and cirri, also discharge tactile and respiratory functions (fig. 297).

[^70]plement, 1870, and "Recherches sur la structure des Amnélides sédentaires." Genèvc, 1873. Fr. Leydig, l. c., also "T'afelı zur rergl. Anatomic," 1864.

The form of the movable setie varies extremely, and affords a groal character for the classification of families and genera. According to the strength, form, :mid morle of ending (fig. 298), the following

Fig 298.-Setie of different Polychetu (after Malmgren and Claparède). a, Hooked seta of Salclla crassicornis; b, of Terelclla Danielsseni; c, scta witly piral ridge from Sthenelais; d, lanee-shaped seta of Phyllochatopterus; e, of Sabella crassicomis; f, of Sabella paconix; g, Composite sickle-shaped seta of Nercis cultrifercu.
forms can be distinguished : hair-setæ, hooked-setæ, flat-setre (pulece), lance-setre, sickle-shaped setre, etc. When the parapodia and their appendages are com-

Fig. 299.-Anterior end of Polynoë extemuta, the first elytron on the left hand being removed (after Claparètle). The two setæ of the oral segment are visible; E7, Elytra. pletely wanting, the setre are embedded in pits in the integument, and are arranged either in one or two rows on either side, that is, in a lateral ventral row on either side, or in a ventral row and a dorsal row on either side. In such cases the number of setie is small (Oligochocta). The setæ may, on the contrary, be present in great number, so that the integument on either side seems to be covered with long hairs and sete, and a thick felt of hairs shining with ar metallic lustre is distributed over the whale dorsal
surface (Aphrodite). The appendages of the paraporlia present anl equally great variety of form and not unfrequently vary in the different parts of the body. They are either simple or ringed tenta-cle-like processes, the cirri, which are distinguishable into dorsal and rentral cirri. The cirri are for the most part filiform, and sometimes jointed or conical, and then are often provided with a special basal joint. In some cases the dorsal cirri are flattened out as broad scales and leaves, the elytro, which constitute a protective covering (Aphrodite) (fig. 299). In addition to the cirri, branchie which may be filiform or branched and antler-like, combshaped or in the form of tufts, are frequently present; sometimes they are confined to the middle region of the body, or are extended over almost the whole dorsal sturface; sometimes they are confined to the head or to the anterior segments immediately following the oral segment (cephalic branchire).

The two anterior segments may be regarded as forming the head; they are fused together, and are, with regard to their appendages, different from the following segments (fig. 245). The anterior segment projects beyond the mouth as the frontal lobe, and bears the tentacles and palps [palps are tentacular structures arising from the rentro-lateral sides of the head, vide p. 379] and also the eyes ; the posterior. cephalic segment or oral segment bears the tentacular ciri. The last segment (anal segment) bears the cuncul cirri.

The alimentary canal is msually stiaight, and extends fiom the month

Fig. 300. - Alimentary canal of Aphrodite aculeata (after M. Edwards). $P h$, pharynx ; D, intestine; L, hepatic appendages. to the anus, which is terminal and rarely dorsal; it is divided into œesophagus, intestine, and rectium (fig. 300). There is in most cases a dilated muscular pharyngeal bulb which is armed with papilla or with movable teeth and can be protruded as a proboscis. The intestine usually preserves the same structure in its entire length and is divided by regular constrictions into a number of
divisions or chambers, which correspond whe segments and dilate again into lateral diverticula and cacat. The constrietions are due wo filamentous or membranous septar (dissepimenta). which divide the borly cavity into the same number of chambers lying one behind mother.
The vascular system appears to be closed, so that the clear nutritive fluid foumd in the borly cavity, which, like the blood, contains. amoeboid corpuscles, does not communicate with the usually coloured contents of the vessels. The dorsal and ventral vessels are not only comnected at each end by lateral loops, bat also in each segment; and from these comecting vessels proceed peripheral networks, which extend into the integument, the wall of the alimentary canal, and the branchice.

Special organs of respiration are wanting in almost all the Oligocheta. In the marine Worms, on the contrary, branchire are very generally present, ustually as appendages of the parapodia. These branchire are either simple cirri which have delicate ciliated walls and contain blood-vessels, or are branched (Amphinome) or in some cases are pectinate structures (Eunice) which co-exist with special cirri on the notopodia (fig. 246). The branchiæ are sometimes confined to the middle segments (Arenicolu), and are sometimes dereloped on almost all the segments on the dorsal surface, being simplified towards the posterior end of the body (Dorsibranchiata). In the Tubicole the branchire are confined to the two (Pectinarica Sabellide) or three (Terebella) anterior segments. The respiratory function is, however, also shared (Capitibrunchictu) by a number of elongated tentacles which are grouped in tufts on the head. These are, in the Subelliclue, supported by a special cartilaginous skeleton, and may have secondary twigs developed upon them. They are either simply arranged in a circle round the mouth, or in two fan-like lateral groups (Serpulidce), the base of which is not unfrequently drawn out into a ṣpiral plate. Such branchial structures, howerer, also function as organs of touch, as organs for procuring nutriment, and even for building the tubes and shells.

Excretory organs.-There are usually in all the segments paired segmental organs, which serve as excretory organs. They hegin, as a rule, with a ciliated funnel in the body cavity; they possess a glandular wall, are several times coiled upon themselves, and open to the exterior in each segment by a lateral pore. These glandular passages serve in general for the removal of matters from the body cavity, and in the marine Chetopoda are used during the
breeding season us oviducts. or vasa deferentic, and permit of the passage outwards of the generative products, which have been set free in the body cavity.
Amongst the special glands in the body of the Chuctopoda, those cutaneous glands of the Oligochaete which give rise to the thickening (extending over several segments) known as the clitellus or girdle, are especially worthy of remark. The secretion of these glands perhaps assists the intimate connection of the Worms during copuladion. In the Serpulidue there are present two large glands, which open upon the dorsal surface of the anterior portion of the body and furnish a secretion used in the formation of the tubes in which the animals live.

Fig. 301.- Brain aurl anterior portion of the ganglionic chain, a, of Serprte; 1 , of Nereis, (after Quatrefages) ; O, eyes; G, cerebral ganglion ; c, esophageal commissure ; Vg, subcesophageal ganglion; $e \dot{e}$, nerves to the tentacular cirri and the mouth segment.

Nervous system. -The longitudinal trunks of the ventral cord are often so closely approached that they seem to form a single cord (Oligochreta). In the Trubicolce (fig. 301), on the contrary, they are very widely separated from one another, especially in the anterior part of the ganglionic chain (S'erpula). The visceral nervous system consists of paired and unpaired ganglia, which supply the oral region and especially the protrusible proboscis.

Sense organs. -Paired eyes upon the surface of the frontal (ie.
preoma or cephalic) lobe are widely distributer. Eye-spots may aho be present upon the posterior end of the borly (fichnicire), or naty he regularly repeated upon the sides of each segment (Jolyophthatmus). In species of S'abella, pignent-spots with reflactive bodies are fomnd even upon the banchial tilaments. The large cephatic eyes of the genus Alciope * are the most highly developed, heing provided with a large lens and a complicated retina. The puesence of anditory organs seems less frequent. They appear as paired otolithic renicles ${ }^{1}$ pon the asophageal ring of Aremicola, líalnicia, some biabellicle and young Terebellicle, etc. Besides the tentacles, cirm and elytan, other

Fig. 302.-Autolytus cornutus, with the male animal Polybostrichus (after A. Agassiz). F, Tentacles ; $C T$, tentacular cirri: f, tentacles; ct, tentacular cirri of the male. portions of the surface of the loody may be sensitive to tactile sensations. On such parts there are cither stiff hairs and tactile seta, or, as in Spherodorum, special tactile warts with nerve terminations.

Reproduction.-In the smaller Cheretoporla asexual generation by fission and gemmation may occur. Either (fissiparous reproduction) a large number of segments of the parent become separate and give rise to the body of the new worm, as for example in Syllis moliferr, where a series of the posterior segments, which are filled with ora, become separated by a simple transrerse fission, after the formation of a head provided with eyes; or (gemmiparous reproduction) a single segment only, usually the last, becomes the starting-point for the formation of a new individual. In this way Autolytus prolifer, one of the Syllitce, asexually reproduces itself, giving rise to a male and female sexual form, known respectively as Polybostrichus Mülleri \dagger (male) and Sacconereis helgolandica (female). This is a case of alternation of generations, for the asexual form, Autolytus, gives rise by budding in the long axis to the sexual forms (fig. 302). In this case a whole series of segments are dereloped

[^71]in front of the last segment of the asexual form, and these segments, after the formation of it head, constitute a new individual. As this process is repeated, a chain of comeeted individuals is formed, and these, as soon as they are separated, represent the sexual individuals. Among the freshwater ${ }^{\prime}$ 'aidce, in Chuetogaster, a regular and continued budding in the long axis leads to the formation of chains, consisting of not less than 12 to 16 zooids, each having only four segments, while the sexual individuals consist of a greater number of segments. A similar process occurs in the mode of reproduction observed by 0 . Fr. Mïller in Ncies proboscidecu, from the last segment of which a new zooid is produced. Both generations of Nuis, however, become sextally mature.
[For a more complete account of the asexual reproduction of Chætopoda, ride Balfour: "Comparative Embryology," vol. i., pp. 283, 28t.]

The Cluctopodu are, with the exception of the hermaphrodite Oligochectco and certain S'erpulidce (e.g., Spirorbis spirillum, Protula Dysteri) of separate sexes. Hale and female individuals seem occasionally so strikingly different in the structure of their organs of sense and lo-

Fig. 303.-A parapodium of Tomopteris with a mass of ova and one free ovum (after C. Gegenbaur). comotion that they have even been taken for species of distinct genera. Besides the abovementioned S'uconereis and Polybostrichus, the asexual generation of which is Autolytus, a similar sexual dimorphism has been shown by Malmgren for Heteronereis, a genus of the Lycoridu, in which the males and females differ both in external form and in the number of their segments. A remarkable case of heterogamy is also afforded by this genus, in that a generation of smaller animals swimming upon the surface alternates with a generation of larger forms living upon the bottom.

The generative apparatus of the Oligochetco is very highly developed. The ovaries and testes lie in definite segments, and empty their contents by dehiscence of their walls into the body cavity. Special generative ducts often co-exist with segmental organs in the same segment (O. terricolce), while in other cases the segmental organs are wanting in the generative segments (O. limicolce). In
the marine Chatopocla, the ova or spermatozoa originate on the borly wall (fig. 303) from cells of the peritoneal membrane, either in the anterior segments alone or along the whole length of the borly. The generative products then liecome fiee in the borly cavity, attain maturity, and pass through the segmental organs to the exterior. Only a few Chetoporla, as Éunice and S'yllis vivipara, are viviparous, all the rest are oviparous; many lay their eggs in comected groups, and carry them about with them, while the Oligochatre lay theins in eocoons.

Development.-The regmentation is unequal. A primitive streak is very generally developerl, though sometimes not until the embryo has left the egg. It arises on the ventral side in eonsequence of the development of a middle layer and from neutral plates of the upper layer.

Exeepting in the Oligochreta, the young forms undergo a metamorphosis and after leaving the egg apperr as eiliated larve, which are provided with mouth and alimentary cinal, and essentially resemble, with some modifieations, Lovén's larva.

The capability of renewing lost portions of the body, more cspeeially the posterior part of the body and different appendages, seems to be generally distributed. The Lumbricince and certain marine Worms (Diopatra, Lycaretus) are even able to replaee the head and the anterior segments, with the brain, œesophageal ring, and sense apparatus.

Fossil remains of Chcetopode are found from the Silurian onwards: in the most different formations.

> Order 1.-Polycheta.*

Marine Chcetopoda, with numerous setce embedded in the parapodia, usually with distinct head, tentacles, cirri, and branchice. They are for the most part diocious, and develop with metamorphosis.

The marine Chcetopoda must be considered as belonging to a higher grade of life, on aceount of the sharp distinetion of the head whieh is eomposed of the præstomium (præoral lobe) and oral segment (in the Amphinomidce several sueceeding segments are also ineluded), and of the presence of the tentaeles, tentacular cirri and

[^72]gills, and also of the seta embedded in prominent parapodia, which serve as aids to swimming. The internal organization, however, is in no way more complicated than that of the Oligochecta. Nevertheless all these distinctive characters may be less and less marked, and, indeed, so completely vanish that it is difficult to draw a sharp line between the Oligochceta and the Polychceta. The parapodia (Capitellidee) and also the seta (Tomopteridce) may be wanting.

In rale cases, bundles of setre are present on all the segments behind the head ; they are however arranged in a single row and embedded in a single pair of ventral retractile parapodia in each segment.

Fig. 301. - Head and anterior body segments of Nereis Dumerilii (after E. Claparéde). O, Eyes ; P, palps ; $C t$, tentacular cirri ; K, pharyngeal jaws.

This arrangement, which is found in S'accocirrus and its allies, probably represents the primitive state, especially as in these animals the character of the nervous system, which lies in the ectoderm external to the dermal muscular envelope, and of the sense organs, which are reduced to two simple tentacles upon the cephalic lobe and to ciliated pits, indicates lower and more primitive conditions.

In another and very remarkable type, Polygordius Schn. and Protodrilus Hatsch., not only parapodia and setre but also the external segmentation are wanting. The segmentation of this achrotous and externally unsegmented worm is entirely confined
to the internal organization and is, ats compared with that of all other Anmelida, to a certain extent completely homonomons, incsinuch as the asophagras is confined to the cephalic segment and does not extend into the anterior segments of the borly. Further, the nervous system is connected with the ectoderm along its whole length, and the cerebral ganglion maintains its primitive position at the anterior. end, corresponding to the apical plate of the larva; and the ventral cord is without ganglionic swellings. In all the above points these forms seem to

Fig. 305.-Terebella nebulose, opener from the dorsal side (after M. Edwards). T, Tentacles; K, Branchia; $D g$, clorsal vessel or heart. have preserved the primitive Annelidan structure, and they have therefore been united by Hatschek into a special class, the Archirunnelda.

In the Polyclucetce the vascular system is complicater by the appearance of branchirr, which are provided with blood-ressels. In the forms with dorsal branchiae the bronchial blood is derived from the dorsal trunk and returned to the remtrad by special vessels. When, on the other hand, as in the tubicolous capito-branchiate forms, the respiratory apparatus is concentrated on a few segments, the vascular system of that part undergoes greater modifications. In the Werebellidee (fig. 305), the dorsal trunk dilates above the pharynx to a branchial heart from which lateral branches are given off to the branchiae. In the same region the transverse loops connecting the
dorsal and ventral trunks may perform the function of hearts, as is also frequently the case in the Oligochetctu. Finally the vascular system is in many cases considerably reduced, and, according to Claparède, is entirely wanting in Glycerca and Capitella, in which the blood is represented by the perivisceral fluid.
The generative organs, unlike those of the hermaphrodite Oligochecte, are usually placed in different individuals; and the males and females are sometimes of very different forms. A number of hermaphrodite Polychcetce are, however, known; such principally belong to generu of the Serputidue, e.g., Spirorbis, Protula.

The development, unlike that of the Oligochoeta, is invariably connected with a metamorphosis. Segmentation is, as in the Hirudinea, usually unequal, and even the first two segmentation spheres are of unequal size. The smaller(animal) half, which segments more quickly, gives rise to smaller segments, which grow round and envelope the larger segments proceeding from

Fig. 306.-Larvæ of Polycheta (after Busch). a, Larva of Neret* F, tentacle; Oc, eyes ; PrW, preoral circle of cilia: O, mouth; A, anus. b, Mesotrochal, larva of Chætopterus; IF ${ }_{P}$, circle of cilia. of the larger half. In the subsequent development a primitive streak makes its appearance in all embryos of Polychcetr, sometimes, however, not until the embryo has begun to lead a free life as larva. The ganglia become differentiated later into the rentral chain.

In the free-swimming larve the cilia are rarely distributed overthe whole surface of the body (Atrochic*). They are usually confined to special rows (ciliated rings) ; sometimes, as in Lovén's larva, there is one row placed in front of the mouth at some distance from the

[^73]anterior end of the body (Cepplatotrocha, e.g., larva of I'olynoee). Sometimes there are two rows, one at each end of the body, constitnting a pramal and perianal ring ('Telutrocha, e.g., S'pio- N'ephthyslarra). In addition to these two rings of cilia, incomplete rings may also be present on the ventral surface (Giastrotrochat), or looth ventrally and donsially (Ampheitrocha). In other cases one or more rows of cilia surround the middle of the body (Mesotroclua), while the terminal rings (preoral and perianal) are absent (T'elepscoves-l'lutop)terus larva) (fig. 306). Many larve are provided with long provisional setae, which are later replaced by the permanent structuren (Metacheeta). In spite of their great diversity of form the Chatropor laree can in their later development also he reduced to the type of the larva of Loren.

Relatively few forms, as for instance the transparent Alciopider, live at the surface (pelagic animals) ; most

Fig. 307.-Nereis murgaritacea. Head with protruded jaw apparatus of the pharynx, from the dorsal surface (after M. Edwards). K, Jaws ; F, tentacles; P, palps; Fc, tentacular cirri. of them live near the coast. Numerons forms descend into the deep sea. Many have the power of emitting an intense light, especially species of the genus C'hetopterus which emit light from their antennæ and appendages. The elytra of Polynoë, the tentacles of Polycirms, and the integument of certain Syllidce, are also phosphorescent. Panceri* has shown that the seat of the phosphorescence is in unicellular cutaneous glands, which, in Polynoë, were proved to be in communication with nerves.

Sub-order 1. Errantia. Free-swimming, predacious Polychceta. The preestomium always remains independent and forms, with the oral segment, a well-marked heard which bears eyes, tentacles, and usually tentacular ciri. The parapodia are much more dereloped than in the Tubicolce, and, together with their rery variously shaped setr, serre as oars. The anterior portion of the pharynx can be protruded as a proboscis and is divided into sereral portions ; it is either beset with papille or contains a powerful masticatory apparatus, which appear's at its extremity when protruded (fig. 307). Branchice may be wanting: when present, they usually appear as comb-shaped or dendritic

[^74]tubes on the parapodia (Dorsibranchicta). The Efrantica are predatory in their habits (Rapacia) and swim freely in the sea; but they may also inhabit temporarily thin membranous tubes.

Fanl. Aphroditidæ. Broad seales (alytra) on the notopodia. These are usually placed on alternate segments, often only on the anterior part of the body. Prestominm, with eyes, with one unpaired and usually two lateral tentacles, to whieh may be added two stronger lateral ventrally plaeed tentaeles (palps). l'roboseis eylindrieal, protrusible, with two upper and two under
 felt of hairs. Eyes sessile. Numerous sctie on the neuroporia. Polynoü scolopendrina Sar. Ocean and Mediterranean.

Fam. Eunicidæ. Body very long, eomposed of numerous segments. Præstomium with several tentaeles. Paraporia usually uniramous, rarely biramons, usually with ventral and dorsal eirri as well as branehir. One upper jaw eomposed of several pieees, and a lower consisting of two plates; both lie in a sae, the jarv-saek, on the dorsal surface of which runs the pharyngeal tube. Staurocephullus rittatus. G1., Inulla (Jysidice) parthonopeia Delle Ch., Naples. Diopatra neapolitana Delle Ch., Naples. Eunice Harussii Aud. Edw.

Fram. Nereidæ = Lycurida.* The elongated body is composed of numerous segments. The prestomium has two tentaeles, two palps, and four eyes. The parapodia are either uni- or bi-ramous, and are furnished with dorsal and ventral cirri and with eomposite sete. Proboscis usually possesses spines, and always two jaws. Nereis Dumerilii Aud. Edw., French and English eoasts, to which belongs Heteronereis fueicolu Oerst. N. cultrifera Gr.. Mediterranean N. fucata Sav., North Sea. The form formerly distinguished as Heteronereis Oerst. differs from Nereis in the great size of the prestomium and of the eyes, also in the extraordinary devclopment of the parapodia, and in the abnormal formation of the hindcr and of the borly. It belongs. however, to the same cycle of development as liereis and Nereilepas.

Fam. Glyceridæ. Body slender, composed of numerous ringed segments. The prestominm is conieal and. ringed, with four small tentacles at its point and two palps at its base. The proboseis ean be protruded to a great length, and is provided with four strong tectll. The hæmal fluid, eoloured by red eorpuseles, is contained in the body cavity and the branehial siuuses. There is no special vascular'system. Glycer'u curipitata Oerst., North Sea.

F'am. Syllidæ. Body elongated and flattened, head usually witli three tentacles and two to fonr tentacular cirri. The protrusible proboseis consists of a short proboscis tube, a pharyngeal tube lined by stiff eutieular formations, and a portion characterised by anuular rows of points. Sexual and asexual individuals, differing in form, are sometimes found in the same speeies. Many earry their cgess about with them until the young are hatched. S'yllis rittata Gr., Mediterranean. Orlontossllis gillou Clap., Normandy, Autolytus molifer. O. Fr. Müll., asexual form. The male has been described as Polybostrichus Mülleri Kef., the female as saeconerris helgolandica Müll. Spherorborum periputus: Gr., Mediterranean.

Fam. Alciopidæ (Alciopen). With two large hemispherieal projecting eyes. Ventral and dorsal eirri leaf-like. The proboseis is protrusible, the tube of the proboscis being thin walled and its terminal portion thick walled. At

* Compare E. Grube, "Die Familie der Lyeorideen," Juhuenber. der Schlesischen Gesel7sehaft, 1873.
its aperture are two hook-shaped papillie. The larve are in part parasitic in the「'ydippider. Alciopu Centrainii belle Ch., Naples.
Fam. Tomopteridæ (Giymnnerpmet). Head well marked, two eyess, lififl prestomiam, and four tentacles, of which two in many species are only present in the young. The mouth segment has two long tentacnlar cirri which are supported ly a strong internal seta. The month is withont probosej and juws. The segments are provided with large bi-lohed paraportia without sete. Tomoptoriss seolopendre Kíf., Mediterrancun. I' oniseiformis Esch., northems seas, Heligoland.

The genus Myzostoma F. S. Lkt, a small group of hermaphroxite worms whose aflinitios are doubiful and disputer, may be placed herc. They are

Fig. 308.-Spirorlis laris (after Claparède). a, The animal removed from its tube, strongly magnified; b, tulue ; T, tentacles; $B \varepsilon$, brood-ponch with operculum ; $D r$, glands, Ov, ova; Oe, œsophagus; $M r$, stomach; D, intestine. small, disc-shaped animals, parasitic on rionutula. They possess a soft and ciliaterl skin, four pairs of laterally placed suckers on the ventral surface, and a protrusible proborcis furnished with papillæ at their anterior end, also a branched alimentary cainal which opens at the posterion end of the body. On the sides of the body are five pairs of short parapodia, of which eaeh onc bears a hork (with one to three supplementary hooks) as well as supporting setie. As a rule, double as many cirri or short wart-like protulerances are found on the margin of the body. M. glabrum, cirviferum F. S. Lkt.

Sub-order 2. Seden-

 taria $=$ Tubicolæ. ${ }^{\text {. }}$ With indistinctly separated head and short, usually not protrusible proboscis, without jaws.The branchire may be entirely absent and in many cases are confined to the two or three anterior segments following the head. In exceptional cases they are placed on the dorsal part of the middle of the body (Arenicolidee). As a iule, howerer, they are represented by numerous filiform tentacles and ten-

* E. Claparède, "Reeherehes sur la strueture des Annélides sćlentaires," Genève, 1873.
tacular cirri upon the head (Capiibranchiutn), of which one or more may bear an operculum at it:s apex to close the tube (fig. 308). The parapodia are short, and are never used in swimming; the notopolia usually carry hair-like setas ; the neuropodia are transrelse ridges with hooked setic or plates. Eyes are very frequently absent ; in other cases they are present in pairs upon the head or on the terminal segment, sometimes even on the branchial tentacles; in the latter case they are very numerous. The body is often dirided into two (thorax and abdomen) or three regions, the segments of which are distinguished by their unequal size. The Trubicolce live in more or less firm tubes which they construct for themselres, and feed on regetable matter which they procure by means of their tentacular apparatus. In the construction of their tubes the animals are assisted in various ways by the long tentacles or branchial filaments of the head; thus, for example, the Sabellidce are said to accumulate fine ooze at the funnel-shaped base of the branchial apparatus by means of the cilia of their tentacles, to mix it with a cement secreted by large glands, and then to transfer it to the edge of the tube; while the Terebellidce procure the grains of sand for the construction of their tubes by their long and very extensible tentacles. There are also boring Annelids, which pierce limestone and mussel shells, like the horny Molluscs ; e.g., Sabella saxicola, etc.

The development is simplest when the mother possesses a kind of brood-pouch for the development of the young, e.y., Spirorbis sprivillum Pag., the eggs and larva of vhich remain within a dilatation of the opercular stalk until the young animals are able to construct a tube for themselves. The free-swimming larve of most Trubicolce, on assuming the form of the worm, lose the ciliary apparatus, while tentacles and parapodia make their appearance. In this condition and sometimes surrounded by delicate membranes, they swim about for some time longer, and, having lost their eyes and auditory vesicles, gradually assume the structure and mode of life of the sexual animal (Terebella).

Fam. Saccocirridæ. With two tentacles on the prestomium. two eyes and the same number of ciliated pits. A single row of retractile parapordia, furnished with simple setre, on either side of the segments of the body. Sueceocirmus papillorerous Bobr.. Black Sca and Mediterrancan (Marseilles).

Fam. Arenicolidæ. Præstomium small and without tentacles. The proboseis is beset with papillæ. There are branched gills on the median and posterior segments. The animals burrow in sand. Arenicola marina Lin. (A. piseatmrum Lam.), North Sea and Mediterranean.

Fran. Spionidæ (Spionderr). The small prestomium sometimes with tentacn-
fin processes, nsmally with small eyes. The oral segment montly with two lomg terutacular cirri, which are nsually mrooved. Cimiform branchise are present.

Fann. Chætopteridæ. Bocly clongated and separaterd into several dinsimilar regions. Usially two or four very long tentacular cirri. Jorsal ajpentages of the middle segments have the shatpe of winges and are often lobed. They
 prot! ammuturrus Cuv., West Turlies.

Fam. Terebellidx. Bocly vermiform and thicker anteriorly. The thinner posterior portion is sometimes distinctly marked off as an appendage destitnte of setre. The prostomium is indistinctly separate from the mouth segment. There is frequently a lip above the month. Numerous filiform tentaeles. usually afranged in two tults. There are peetinate or branehet, rarely filamentous, gills on a few of the anterior segments. Dorsal prominenees (notopodia) furnisled with simple setæ, and ventral transverse ridges (neuroporlia) with liooked setic. Jerobellu ronchileyr Pall., English coast, Mediterrancan. Anphurete Grubei Malmgr., Greenland and Spitzbergen. Pertinuriue anricome O. Fr. Mïll., North Seas, Mediterranean. Salucllaria (Ifrmella) spinulose R, Lkt, Heligoland.

Fam. Serpulidæ. Body usually distinctly divided into two regions (thorax: abdomen). Prestomium fused with the mouth segment, which as a rule is provided with a collar. The mouth is situated between two semicireular or spirally eoiled plates, from the anterior margin of which spring the branehial filaments. These have seeondary filaments arranged in single or double rows, and may be supported by a cartilaginous skeleton. and have their bases eonneeted by a membrane. Spirographis Spullunzanii, Naples. Sabclla penivillus Lin.: North Seas. S. Köllikevi Clap., Mediterrancan. Protule Rudolphi Risso, Mediterranean. Filigrana implexa Berk., Norwegian and English coasts. Serpula norregicu Gunn., North Sca and Mediter'anean. Spirorbis spirillum Lin., Oeean.

Order 2.--Oligocifeta.*

Hermaphrodite Chcetopodu without pharyngeal armature and parapodia. There are no tentacles, cirri, or branchice. Thie development is direct.

The cephalic region is composed of the prestomium, which projects as an upper lip, and the mouth segment. It does not essentially differ from the folluwing segments so as to form a special region (fig. 309). Teutacles, palps, and tentacular cirri are never found on it, but tactile papillæ are present in great number, as are also peculiar sense organs which resemble taste buds. Eyes either fail or are present as simple pigment spots. Besides the small gland cells of the

* Besides the works of W. Hoffmeister. D'Udekem, and others, compare: E. Claparède, " Reeherches anatomiques sur les Ammélides, ete.. obrervés clans les Hébrides," Genėve, 1860. E. Claparède," Reeherehes anatomiques sur les Oliguehrtes," Genère, 1862. A. Кowalerski. ". Embryologisehe Studien an Wiirmern und Arthropoden (Jumbricus, Eumars)." Petersburg. 1sti. 1 . Hatschek, "Studient iiber Entwicklungsgesehiehte der Anneliden." Tien, 1878. Fr. Vejdorsky, "Beitrïge zur vergleiehcuden Morphologie der Ameliden. 1. Monographie der Enchytrieiden," 1879.
hypodermis there is present in the clitellus it deeper glandular layer (Sïulenschicht Clap.), which consists of finely gramular cells embedded in a framework of pigmented and vascular connective tissue and situated between the hypodermis and the external muscular layer. There are but few seta present, and they are never disposed on special parapodia, but always in simple pits in the integument, by the cells of which they are secreted. There are small secondary bristles which serve ats a reserve. The blood is usually red, as in the Hirudiner.

The alimentary canal is often divided into several regions, the relations of which are most complicated in the Lumbricidce. In Lumbricus, the buccal cavity leads into a muscular pharynx, which is probably used for sucking. This is followed by a long œesophagus extending to the 13 th segment, and furnished with a thick layer of glandular cells and several glandular dilated appendages (calcareous sacs). The œesophagius is succeeded by a crop, a mnscular gizzard, and finally by the intestine itself, the clorsal wall of which is pushed inwards so as to form a longitudinal fold, the typhlosole (comparable to a spiral valve). In the Limicolce the alimentary canal is simpler by the absence of a muscular stomach; a pharynx and eesophagus are, however, always present.

Reproduction.--The Oligochceta are hermaphrodite; they lay their eggs either singly or united in greater number in a capsule; and they develop without a metamorphosis. The testes and ovaries are paired and placed in definite segments, usually near the an-

Fig. 309.-Lumbricus rubellus (after G: Eisen). a, The whole worm; Cl, Clitellus. b, Anterior end of the body from the veutral side. c, Isolated seta. terior end of the body; they dehisce their products into the body cavity. The generative ducts possess funnel-shapled openings into the hody cavity through which the generative products pass, and may
co-exist in the same segment with segmental organs (Lumbericider). In the earth-worn, whose generative orgens were first accurately described by E. Hering, the female apparatus consists of two ovaries in the 13 th segment,* and two ovilucts, which begin with trompetshaped openings into the body cavity, contain several eggo in a dilatation and open to the exterior on either side on the ventral surface of the 14 th segment. There are in addition in the 9 th and loth segments two pairs of receptacula seminis, which open at the junction of the 9 th and 10 tha and loth and 11 th segment jespectively. They are filled with sperm in copulation (fig. 310).

Fig. 310.-Generative organs of Lumbricus in segments VIII. to XV. (after E. Hering). T, Testes; St, the two funnels of the vas deferens on either side ; Id, vas deferens ; Ov, ovary; Od, oviduct; Rc, reeeptacula seminis.

The male genital organs consist of two pairs of testes in the 10 th and llth segments, and two rasa deferentia, each of which opens internally by two funnels and to the exterior in the 15 th segment. Copulation takes place in June and July on the surface of the earth at night. The worms apply their rentral surfaces to one another and lie in opposite directions, in such a manner that the openings of the receptacula seminis of one worm are opposite the clitellus of the other. During copulation sperm flows out from the openings of the sperm duct and passes backwards in a longitudinal groove to the clitellus, and thence into the receptaculum seminis of the other worm. In Tubifex and Enchytrous the ovaries may break up into groups of ova which float free in the body cavity. Special albumen glands and also glands which secrete the substance of the shell of the cocoon are often present. In the breeding season the above-mentioned

[^75]girdle or clitellus, which is formed of a thick glandular layer, is almost always present.
The embryonic development of the Oligochueta presents many relations to that of the IIirudinecu. The unequal segmentation, which is very much alike in the two groups, and the similarity in the method of origin of the mesoderm, from two large cells near the blastopore at the posterior end of the embryo, point to a close relationship between these two groups of Annelids.
A few Oligocheta, as for example Chetoguster, are parasitic on aquatic animals; the rest of them live, some free in the earth, some in fresh water, and some in the sea.

Sub-order 1. Terricolæ. Oligochreta which live principally in the earth. They have segmental organs in the genital segments.

Fam. Lumbricidæ. Large earthworms with compact skin and red blood. Without eyes. Tufts of vessels surround the segmental organs. Their activity in boring into the earth is of the greatest importance, loosening and exposing the soil to the action of the weather. Lumbrieus L., Earthworm. Præstomium distinct from the mouth scgment. The clitellus includes a series of segments, and is situated nearly at the end of the anterior quarter of the body far behind. the genitul openings. Setre elongated, hook-shaped, arranged in four groups in each segment, each group containing two sctr. The earthworm lays its eggs in capsulcs, into each of which several small ova, with sperm from the rcceptacula seminis, are cmpticd ; as a rule, however, only one or but a few embryos are developed. The devcloping embryo takes up with its large ciliatcd moutb not only the common mass of albumen, but also the other eggs. L. aypricolu Hoffm. = terrestris Lin., L. facticu: Sav., L. americanns E. Perr. Criodrilus lacmum Hoffm.

Sub-order 2. Limicolæ. Oligochætia which live principally in water. Without segmental organs in the genital segments.

Fam. Phreoryctidæ. Long filiform worms, with thick skin and two rows of slightly curved sctr on each side. Phreoryetes Menkeanus: Hoffm. Found in decp springs and wells ; they scem to fced on the roots of plants.

Fam. Tabificidæ. Aquatic worms, provided with four rows of simple or divided, hooked setre. Hair-like setæ may also be present. The receptacula are in the 9 th, 10 th, or 11 th segment. They live in mud tubes, from which they protrude the posterior and of the borly. Tubifer rivulurum Lam. The heart is in the 7th, the receptacula in the 9th segment. T. Bonucti Clap. (Sœenuris variegate Hoffm.) The heart in the Sth, reccptacula in the 10th segment; both species live in fresh water. Limmorlilhs. Hofmeisteri Clap.. L. D'Udekemicnus: Clap. Is distinguished from Tubifex by the presence of hair-like sctex in the upper row of setre. Lumbriculus rariegatu.s O. Fr. Müll. Every segment is provided with a contractile vascular loop and saccular contractile appendages of the clorsal vessel.

Fam. Naideæ. Small Limicole with delicatc thin skin and clear, almosi colourless, blood. The prestomium is oftcn elongated like a proboscis and
fused with the month segment. Kiais (Ntylaria) proluswidea O. Fr. Miill. N. puravita Selmm. Both species have filiform preestomium. Chatomaster remmiculuris O. Fr. Miill.

> Sul-cluss 2.-Gephyrea.*

Horms with cylimelrical body, without external segmentation, with terminal or ventral mouth; with cerebral ganglion, wsoplayeal riny. and ventral cord. Setre are sometimes present.

The Giephyrece possess an elongated cylindrical body and live, as do the Kolothuria, in sand and ooze in the sea. The characters which distinguish them as Aunelids are the possession of an cesophageal ring connected with a cerebral ginglion and of a ventral cord jar-

Fig. 311.-Young Echiurus frome thentral side (after Hatschek). O, Mouth at the base of the proboscis; SC, œesophageal commissure ; $B S$, ventral cord; A, anus; H, hooks. tially surrounded by ganglion cells. The larvar of the C Cherstiferce present traces of segmentation (see below, p. 391), while in the Achata the body cavity remains simple. Of sense organs, eye spots have been observed; these in certain Sipunculidce lie directly upon the brain ; there are also dermal papillæ, into which nerves enter.

The structure of the integument is similar to that of the Annelida; the thick upper cuticular layer rests upon a cellular matrix, and is not unfrequently wrinkled. There is no external segmentation. The connective tissue dermis is of considerable thickness and encloses numerous glandular tubes, which open to the exterior by pores in the epidermis. Below this is the strongly developed dermal muscular tunic, which is regularly composed of an outer layer of circular fibres

[^76]and an inner layer of longitudinal fibres. The latter are connected with the former and also amongst themselves by net-like anastomoses. These dermal muscles cause the folds of the cuticle. Intermally to the longitudinal muscles there is another layer of circular muscles. In the Chcetiferca two hooked seta are present neur the genital opening (fig. 311); these assist locomotion. There may also be present one or two circles of setæ at the posterior end of the body (Echiurus).

In the Chuetiferce (fig. 311), the anterior par't of the body is elongated to form a kind of proboscis, which projects immquably and corresponds to the preoral lobe (prestomium) of the Annelida. The mouth is placed ventrally at the base of the proboscis. In the Acheta (Sipunculidce) this proboscis is wanting; the mouth is placed at the extremity of the anterior region of the body, which is surrounded with ciliated tentacles, and can be retracted by means of retractor

Fig. 312.-Sipunculus mudus, laid open from the side (after W. Keferstein). Te. Tentacles; G, cerebral ganglion; $F^{\circ} G$, ventral nerve cord; D, intestine; A, anus; $B D$ brown tubes (ventral glands). muscles (fig. 312).

Alimentary canal.-The mouth opens into a pharynx, which is sometimes furnished with teeth; this is followed by a ciliated intestinal canal, which is usually longer than the body and disposed in coils in the borly cavity. The terminal portion of the intestine is
maseutar and opens to the exterior hy a terminal or dorsally placed antis (fig. Ble $)$.

The vascular system is probably in commmationtion with the borly cavity; it consists of a dorsal versel, which, as in the Anvelide, accompanies the alimentary canal, and of a ventral versel rimningr along the body wall. There are also branches on the alimentary canal and in the tentacles. The blood is either colourless or red, and moven in the same direction as in the Anmelids, the current being inaintained both by the contraction of certain parts of the ressels and by the cilia which line the walls of the vessels. The corpusenlated fluid of the body cavity differs fiom this vascular blood.

Excretory organs.-There are two sets of organs, both of which may be interpreted as segmental organs. One kind, the anal resicles (fig. $314 c, \Delta b$), are only present in the Chutifera; they lave the form of a pair of tufted tubes, which open, on the one hand, into the body cavity by nunerous ciliated fumnels and, on the other, into the rectum. The other kind, known as the brown tubes (fig. 312, B(l) or ventral glands, are placed (one or more pairs) in the anterior part of the body; they also open into the body cavity by a ciliated funnel, and to the exterior on the ventral surface. The latter, like the segmental organs of Annelids, assume the function of seminal resicles and of oviducts.

Generative organs.-The Gephlyrea are of separate sexes. There are, however, remarkable variations both in the generative glands and their ducts. In Phascolosoma amongst the Acheeta (according to Théel) the generative glands lie at the root of the ventral retractor muscles of the proboscis, and form a ridge from which the generative products are set free. Spermatozoa or ova in various stages of development are found in the body cavity, and thence are carried to the exterior through the two brown tubes (segmental organs) which open on the ventral side.

In Bonellia among the Chatiferce the ovary, which has the form of a thin cord (fold of the body wall) in the posterior half of the bodr, is attached by a shor't mesentery to the nerve cord. From the orary the ova fall into the body cavity, and thence pass into the neighbouring single uterus (fig. 314, b, U), which is provided at its bave with a trumpet-shaped opening $\left(T_{\gamma^{\circ}}\right)$ and opens to the exterior oul the ventral surface behind the mouth. This uterus ought probahly to be considered morphologically as a segmental organ, which has only been developed on one side. The generative organs of the small Turbellarian-like males which are met with in the uterus of
the female of Bonellia have the same relations (fig. 313). These rudimentary males are furnished (in many species) with two ventral hooks, in front of which in the anterior region is placed the extermal opening of the vas deferen:. The vas deferens corresponds to the uterus of the female, and is in like manner provided with on internal opening into the body cavity. In Eichiurus there are two pairs of brown tubes, which function as generative ducts and reservoirs. In Thalassema there are, according to Kowalevski, three pairs of such tubes.

The development shows many points of similarity with that of the Annelicla. Between the Achceta and Chcetifera, however, there are considerable differences. In both cases a metamorphosis follows the embryonic development. The larva resemble Lovén's larva (larva of Polygordius) ; but in the Achceta they are characterised by a great degeneration of the apical region (preoral lobe) and the absence of a preoral band of cilia.

The remarkable larva known as Actinotroclu, which is the young stage of the tubicolous genus Phoronis,* is distinguished by the possession of a contractile preoral lobe, behind which there is a circle of ciliated tentacles forming a collar.

The Gephlyrea are all marine. Some of them live in sand and ooze at considerable depths, also in holes in the rocks and in crevices between stones and corals, and in the shells of snails. Their food is similar to that of Holothurians and many tubicolous Annelids.

Order 1.-Chetifera $=$ Echiuroidea.

Fig 313.-Planarian - like male of Bonelliu (after Spengel). D. Intestine; $W T$, ciliated funnel of the vas deferens ($V d$), which is filled with sperm.

Gephyrea characterised by the presence of two strong hooked setce on the ventral side and by a terminal anus. The mouth is placed at the base of the prooral lobe, which is developed into a proboscis.

The Echiuroidea or chrtiferous Gephyrea present no external segmentation of their elongated and contractile body; they have, however, in the young state the rudiments of 15 metameres. This

[^77]fact, as well as the formation of the praboral lobe and the development of the ventral hooked retar, points to a close relationship with the Chutoporlu. In the adult animal, however, the intermal segmentation is very little marked. The dissepiments, with the exception of the finst, which forms it partition between the lead and the borly, we lost, and the segmentation of the ventral cord is only indicated by the ristribntion of the nerves. The supra-asophageal ganglion remains at the apical region of the preoral lobe (proboscis); hence the resophageal commissures are extraordinarily long.

The strongly developed preoral lobe forms it proboscis-like

Fif. 314.-a, female of Bonellir viridis (after Lacaze-Dnthiers). b, Integument and generative organs after the intestine has bcen removed. Hd, Cutaneous glands ; $A b$, anal resicle; Ad, rectum ; Ov, ovary; $T r$, ciliated funnel of the uterus (U). c, Auatoms of Bonellia virilis (after Lacaze-Duthiers). D, alimentary canal with anal vesicles ($A b$) ; N, mesentery; \mathbb{U}, uteras; R, moboscis.
appendage which may develop to a considerable length and become forked (Bonellia) (fig. 314 a).

A pair of hooked seta (with reserve sete in the sheath of each seta) are always present on the first segment of the body. In Echiurus there are also one or two circles of sete at the posterior end of the body. There are from one to three pairs of anterior segmental organs (so-called brown tubes or ventral glands), which open on the ventral smface and are used for the passage ontwards of the generative products. Besides these there is also a pair of
posterior segmental organs (anal vesicles, fig. 314, $A b$) in the terminal segment, each of which has a number of peritoneal funnels and opens into the rectum. In Bonellic the segmental organ which performs the finction of uterus is, like the ovary, single (fig. 314 b).

Development.-The development of the orum begins with an mequal segmentation. In Bonellic the small cells of the animal pole grow round the four large yolk spheres, which give rise to the entoderm, leaving a small aperture, the blastopore (fig. 110). The Echiurus larve (fig. 315) are the most accurately known. They present the type of Lovén's larva and possess a strongly developed

Fig. 315.-a, Larva of Echiurus from the rentral side (after Hatschek). SP, apical plate; Pru, preoral circle of cilia; Pow, postoral circle of cilia; 反"n, head-kidney; 「"g, ventral ganglionic cord comnected with the apical plate by the long œesophageal commissures ; $A S$, anal vesicle. b, Ventral region of the Echiurus larva with segmented mesodermal hands; SC, œesophayeal commissure ; $D s p$, dissepiments of the anterior body segments; MSS, mesodermal bands ; \mathcal{A}, amus.
preoral circle of cilia (Prw), in addition to which there is also a delicate post-oral circle of cilia (Pow). Early in larval life a segmental organ, the head kidney or pronephos (K, Y), is developed, one on either side ; and behind it a pair of mesoblastic bands makes its appearance and gives rise in the subsequent development to the rudiments of 15 segments (fig. 315 b). In the terminal segment, which is surromnded by a circle of cilia, there appear segmental
organs, which give rise to the anal vesicles (fig. 315 u, A, S). The rudiments both of the cerebral ganglion and of the ventral cord are derived from growths of the ectoderm, - the former from the apical plate, the latter as a paired thickening of the ventral ectorlerm. The two are connected by the osophageal ring, which is also provided with granghon cells. In older stages, after the disappearance of the segments, the ciliary apparatus begins to degenerate and finally vanishes; after which two strong hooked setie make their appearance at the sides of the nerve cord not far from the mouth, and

Fig. 316.-Older Echiurus larva seen from the side. The head kidney is atrophied. O, mouth ; M, stomach ; A, anus; $B K$, circles of setæ; $S C$, œsophagcal eommissure; $A S$, anal vesicles; G, cerebral ganglion, developed from the apical platc; 「"!, ventral nerse cord; H, ventral hooks. two circles of shorter setse are formed at the hind end of the body (fig. 316). The preoral lobe of the larva becomes the proboscis of the young Echiurus (fig. 311).

Fam. Echiuridæ. The anterior end of the body above the mouth is elongated into a proboseis, the under surface of which is grooved. The long œesophageal eommissures lie in the proboseis, and meet in front without any eerebral enlargement. Anteriorly and on the ventral side are two setæ for attachment, and on the postirior end of the body there are sometimes eircles of setre. The anus is terminal. Echinros PalIusii Guérin (Gaurtneri Quatref., St. Vaast). eoast of Belgium and England. Thalussemro gigus M. Müll., Italian coast. Bumellia riridi, Rolando, Mediterranean. The males are small and rudimentary, and resemble Planarians. They live in the efferent duets of the female gencrative organs.

Order 2.-Acineta=Siputculoidea.

Gephyrea with terminal mouth, dorsally placed anus, and without setce. The anterior region of the body is retractule.

The Sipmonculoider differ from the chatiferous Gephyrea in their entire want of all traces of metameric segmentation, in the degeneration of the praoral lobe and in the position of the mouth and amus. The elongated body is destitute of a projecting preoral lobe, so that the mouth, which is frequently surounded by a circle of tentacles,

The cerebral ganglion, esophageal ring and ventral cord run inside the dermal muscular tunic. Only one pair of segmental organs, known as brown tubes or ventral glands, is present. The blood vascular system is well developed.

Development.- The segmentation is complete and is followed by the formation of a gastrula by invagination. The blastopore marks the ventral side. The two posterior marginal cells* of the entoderm move inwards as primitive mesoderm cells, and give rise to the mesoblastic bands which do not undergo segmentation. Invaginations of the ectoderm of the animal pole and ventral sur-
face of

Fig. 318.-Larva of Sipunculus (after Hats. chek). 0 , Mouth ; S_{p}, apical plate ; A, anus;
the embryo give rise to cephalic and ventral plates respectively, while the remainrler of the ectod e 1 m cells

Fig. 317.-Quite Joung Sipunculus still without tentacles (after B. Hatschek). O, mouth ; A, anus; $B S$, ventral cord; N, nephridium (brown tube) ; G, cesebral ganglion; $B g$, bloor vessel.
grow round there and form an external envelope for the embryo of the nature of a serous membrane (serosit). Cilia project from the latter through the pores of the vitelline membrane and are ermployed by the embryo in swimming.
splanelmic layers, and give rise to the rudiments of the two segmental organs: while the cusophagus arises as an invagination of the ectoderm, and a postoral circle of cilia is formed around its opening (fig. 318). The serous membrane is cast off with the egg membrane, and the larva then eontains all the essential organs of the adult Simonculus exeept the ventrial cord and the blood-vessels. At, a later stage, during the growth of the larva, the ventral cord is developed from the cetoderm, the circle of cilia disappears, the first tentaeles sprout out at the edge of the mouth, and the metamorphosis of the free-swimming larva into the creeping young Sipunculus is completed.

Fam. Sipunculidæ. Body elongated and eylindrical, the anterior part retractife. The mouth is surrounded with tentacles, and the anus is clorsal. The intestine is eniled spirally. Sipunculus nutus. L., Mediterranean. Phascolosoma leve Kef., Mefiterranean. Ph. clnngntum Kef. St. Vaast.

Fam. Priapulidæ. Auterior part of the body without cirele of tentacles. Pharynx armed with papillie and rows of teeth. Anus at the posterior end of the body and slightly dorsal, above it there usually projeets a caudal appendage whieh bears papilla-like tubes (branchi:e). The intestine is straight. Priapmlus cuudutus O. Fr. Müller. Malieryptus spimulosus v. Sieb., Baltic, Spitzbergen.

Sub-cluss 3.--Hirudinea* $=$ Discophora, Leeches.

Body either with short rings or not ringed, without parapodia, with. terminal ventral sucker, hermaphrodite.

The body of the Hirudinec, so far as its external form is eoneerned, recalls that of the Trematoda, with which group the Hirudinea have often been ineorrectly connected.

Externally the body is marked by a number of transverse rings, which are short and may be more or less indistinct or even entirely absent. These rings correspond in no way with the internal segments, whieh ure separated by transverse partitions or dissepiments ; but they constitute much shorter portions of the body, four or five of them eorresponding to one internal segment. The large sucker at the posterior end of the body serves as an organ of adhesion ; and there may be in addition a second smaller sucker, either in front of or

[^78]surrounding the mouth. There are no parapodia; and setre, with a few exceptions, are absent. A sharply distinct head is never developerl, since the first rings are not essentially different from those following and are never furnished with tentacles or cirri.

Alimentary canal.--The mouth is situated near the anterior end of the body, sometimes at the bottom of a small anterior sucker (Rhynchobdellidce), sometimes at the base of a projecting spoon-shaped hood, which resembles a sucker (Gnathobdellidte) (fig. 319). The mouth leads into a muscular pharynx provided with glands. The anterior part of the pharynx, which may be distinguished as the buccal

a

乙

Fig. 319.-u Cephalic region of the Medicinal Leech. The three jaws are visible. b, One of the jaws isolatent with the finely serrated free cige. cavity, is armed (Gnathobdellidee) with three serrated chitinous plates (fig. $319,(a, b)$, or more rarely with a dorsal and ventral plate (Branchiobdellidee), orit is provided with a protrinsible probowis, which lies free in its anterior part (Rhynchobdellicde). The pharynx leads into a stomach, which forms a straight tube in the axis of the boly and sometimes shows constrictions, which correspond with the segments: sometimes it is produced into a larger or smaller number of lateral caca. From the stomach a short rectum, which is sometimes also provided with ceeca, leads to the anns. The anus is placed at the posterior pole of the body, clorsal to the sucker.

Excretory organs.-Segmental organs are present, one pair to each segment in the middle region of the body. Their number, however,

Frg. 320 .-Longitudima. section through the Medicina! Leech (aftel R. Leuckart), D, intestimal camal; G, cercbial ganglion; $G k$, ganglionic chain ; Ex, excretory caunls or scemental organs (watcr vascular sys. tem).
varies very considerahly, since, for instance, Branchiobrtellu restraci, parasitic on the gills of the cray-fish, has but two pratr, while the G'nathobdellidee usually possess seventeen pairs.

Unicellular glands are present in the Hirudinea in great numbers in the skin and in the deeper layers of the connective tissuc. The former secrete a finely granular mucous fluid, which covers the skin ; while the nore deeply situated glands, which lie beneath the dermal muscular tunic, secrete a clear viscid substance, which quickly

Fifi, 321.-Anterior encl of Hirudo (after Leyrlig). (f, Cerebral ganglion with suboesophayeal ganglionic mass; $S p$, sympathetic; A, eyes; $S b$, sense organs. hardens outside the body and is userl to form the cocoons when the eggs are laid. These glands are especially numerous in the region of the genital openings.

A blood-vascular system is always present, but in different degrees of development. Portions of the body cavity are transformed into vessellike trunks, and as a result of this organs which lie in the body cavity seem to be enclosed in blood sinuse:. The two lateral ressels and the median blood sinus, which always encloses the ventral ganglionic chain and sometimes also the alimentary canal (Clepsine, Piscicola), may be interpreted in this manner. In most of the Gnatlobdellidee the blood is red, the colour being due to the fluid part of the blood and not to the corpuscles.

Special respiratory organs are wanting, excepting in Branchellion and some allied leeches, which possess leaf-like branchial appendages.

The nervous system * in all cases is highly developed. The cerebral ganglia are characterized by a peculiar arrangement of the nerve cells which give rise to swellings on the surface of the ganglia (described by Leydig as a follicular arrangement) (fig. 3:1).

[^79]This is also the case with the ganglia of the vential cord, and especially with the sub-œesophageal ganglia, on which there are often four longitudinal series of such ganglionic swellings, two median and ventral, and two lateral projecting dorsally. The two longitudinal trunks of the ventral ganglionic chain are invariably closely approached to one mother in the middle line, and their ganglia are connected together in pairs by transverse commissures. In the Gnathobdellidce two nerve trunks are given off to the right and left from each pair of ganglia, while from the brain and the last ganglion, which may be called the caudal ganglion and is formed of several ganglia fused together, a much greater numberof nerves pass off. The nerves passing off from the brain supply the sense organs and the muscles and skin of the cephalic dise (anterior sucker); the nerves of the ventral chain are distributed in their proper segments, and those of the terminal ganglion supply the ventral sucker. An unpaired median longitudinal cord (Fuivre, Leydig), which passes from ganglion to ganglion between the two halves of the ven. tral cord, most probably corresponds to the mupaired nerve which Newport discovered in insects. A system of viscerct nerves was discovered by Brandt. It consists of an intestinal nerre, which arises from the brain and runs close to and above the ganglionic chain and sends branches to supply the ceeca of the intestine. Three ganglia, which in the common leech lie in front of the brain and send their nerve plexuses to the jaws and pharynx, are considered by Leydig as enlargements of cerebral nerves and very likely control the movements which occur in swallowing.

Almost all- leeches possess simple eyes on the

Fig. 322. - Generative apparatus of the Medicinal Leech. T, Testis; $\mathrm{T} d$, vas deferens ; Nh, epididymis ; P_{r}, prostate ; C, cirrus; Ov,ovaries with vagina and female genital opeuing. dorsal surface of the anterior ring. In addition there are cup-shaped orgins (in Mirudo medicinulis about sixty) on the cephalic rings. Thene probably give rise to a sense perception comparable to the sensation of taste.

Generative organs.- The TFirulineer are hermaphrodite. As in many marine Plunuria, the openings of the male and female generative organs are placed one behind the other in the middle
line of the interior region of the borly. The male renerative opening lies in front of the female and is usmally provided with it protrusible cirros. The testes lie in pairs in several successive segments and are usmally present in considerable numbers (fig. 322). In Hirmulo there are nine or ten pairs of testicular vesicles, which are commected with a simous vas deferens on either side. Each vas deferens is coiled in front to form a kind of epdirlymis (fig. $322, N h)$ and is then prolonged into a muscular portion, the ductus ejaculatorius, which unites with that of the other side to form :an unpaired copulatory apparatus. This is in comnection with a welldeveloped prostatic gland $(P r)$, and can be protruderl either as a two-hormed sac (Rhyncobrlellides) or as a long filament (Ginutholsdellidce). The female generative apparatus consists either of two long tubular ovaries with a common opening to the exterior (Rhyncoldelliclee), or of two shor't

Fig. 323.- a, Cocoon, b, female generntive apparatus of Hirulo medicinulis (after R. Leuckart). saccular ovaries, two oviducts, a common duct surrounded by an albumin gland, and a dilated vagina with the genital opening (Ginathobellidce) (fig. 323). In copulation a spermatophore passes out of the male genital organs, and is either received into the vagina of the other animal or at least becomes attached within the generative opening. In any case the fertilization of the orum takes place within the body of the mother. The egg' is laid soon after. For this purpose the animals seek suitalle places on stones or plants, or leave the water and, as Hirudo medicinalis, burrow in damp earth. At this period the genital rings are swollen out into the form of a saddle, partly by the turgescence of the generative organs and partly by the great development of the cutaneous glands, the secretion of which is of special importance to the fate of the eggs which are about to be laid. When the eggs are about to be laid, the leech attaches itself firmly by its vential sucker and, twisting itself abont, envelops the antericr part of its body with a viscid mass, which covers especially the genital rings like a girdle and gradually lardens to form a firmer membrane. A number of small eggs and a considerable (fuantity of albuminous matter then pass out, and the ammal with-
draws it, anterior end from this barrel-shaped membrane, which is now filled and which, after the animal has left it, becomes in consequence of the narrowing of the terminal openings a tolerably completely closed cocoon. The number of eggs contained in a cocoon varies but is never large. The eggs are small, yet the young leeches when hatched are of considerable size, those of the Hirudo medicinalis, for example, are about 17 mm . long, and, excepting the fact that they are not sexually mature, have essentially the organization of the adult animal. The young of Clepsine alone are hatched at a very early stage, and differ essentially from the sexual animal both as regards the shape of the body and the internal organisation. They have a simple intestine, are without the posterior sucker, and live a long time attached to the ventral surface of the mother ; and it is not until they have received a considerable quantity of newly secreted albuminous matter that they obtain an organization which fits them to lead a free life.

The development of the embyro of Clepsine among the Rhyncobdellidce and Nephelis and Hirudo amongst the Gnathobdellidce is better known. The segmentation is always unequal. The mouth is formed early, and through it, after the formation of the pharynx and intestinal canal, the albumen contained in the cocoon is taken into the intestine of the growing embryo by means of swallowing movements of the pharynx.

The Leeches live for the most part in water or temporarily in damp earth. They move partly by "looping" with the help of their suckers, and partly by swimming with active undulations of the usually flattened body. Many of them are parasitic on the skin or the gills of aquatic animals, e.g., on fishes and the cray-fish ; most of them, however, are only occasional parasites on the outer skin of warm-blooded animals. Certain forms are predaceons and, as for example Aulustomum gulo, eat snails and earthworms, or, like Clepsine, suck snails. They do not feed exclusively on any special genns of animals, and their diet is not always the same in the different periods of their existence. Hirudo medicinalis in its young stage lives on the blood of insects, then on that of frogs, and only when it has attained sexual maturity is a diet of warm blood necessary to it.

Fam. Rhyncobdellidæ. Leeches with proboscis. Body elongated, cylindrical, or broad and flat: with an anterior and posterior sucker, and a powerful protrusible proboscis in the buccal cavity ; with paired eyes on the anterior sucker. Organs concerned in the formation of blood corpuseles occur (so-called valves) in the chorsal coutractile vessel. Piscirola Blainv. (Ichthynludellide). P. !feometra L.: on fresh water fish. P. respirines Tr., with lateral vesieles which dilate as
the blood enters. Ponfuludella murioutu L.. on liays. Braus:helliom torpertinis
 margimuta O. Fr. Miill. Hermontaria mratiranu de Fil., Il. afficimalix de Fiil.. both in the Lagunes of Mexico, the later used lor inedicinal purposes. $\quad I$. (ihilumij de Fil., in the river Amazon.

Fiam. Gnathobdellidæ. Jecehes with jaws. Pharynx armed with three frequently serated jaws, and folded longitudinally. In front of the mouth there is a ringed, spoon-shaped process, which forms a kind of oral sueker. The (neoon lats a spongy shell. Hirudul. Usually with !) distinct rings, of which four are upon the spoon-shaped upper lip. The three anterior rings, the fifth and the eighth, bear the five pains of eyes. The male genital opening lies between the 24 th and 25 th, the female between the 29 th and 30 th rings. The three jaws are finely serrated and ean be moved like a cireular saw in a manner well adapted to infliet a wound. which readily heals, in the external skin of man. The stomach has eleren pairs of lateral erea, of whiel the last parr is very long. The cocoons are deposited in damp earth. H. merlicinatis L., with the variety distinguished as ottic imalis. possesses 80 to 90 fine teeth on the free edge of the jaws ard attaius a length of about six inches. They were formerly eommon in Germany and are still freqnently to be found in Hungary and Franes. They are cultivated in special ponds and take three years to attain sexual maturity. Hermupsis vor u, Moq. Tand, the horse-leech. 30 coarse teeth on the edge of the jaws, which enable it to infliet wounds on soft mueous membranes. The horse-leech is indigenous in Europe, and enpecially North Afriea. It attaches itself to the interior of the pharynx of horses, eattle and men. Anlustrmum gulo Moq. Tand. Also known as the horseleech, feeds on Mollusea. Nepherlis Sav:, I. enlyuris Moq. Tand.

Fam. Branchiobdellidæ. The body in the extended condition is nearly cylindical and is composed of few unequally ringed segments. There is a bilobed cephalie lobe without eyes, with a well-developed sueker at the posterior end of the body. Pharynx without proboscis, with two flat jaws lying one abore the other. Branchioludella parositu Henle, B. astaci Odier.

$$
\text { CLASS IV.-ROTATORIA }=\text { ROTIFERA. }
$$

Hith a vetractile ciliated apparatus at the anterior end of the body, with cerebral ganglion and excretory canals; without heart or true vascular system. The sexes are separate.

The Rotiferct are Worms which can be derived from Lovén's larva and have nothing to do with the Arthropoda, since they are without limbs and do not develop metameres. The body of the Rotifera is certainly externally segmented and divided into more or less sharply

* Ehrenberg, " Die Infusionsthicrehen als vollkommenc Organismen," Leipzig. 1838. Dujardin, "Histoire naturelle des lnfusoires," l'aris. 1841. Dalrymple, Phil. Truns. Rany, Sorc. 184 t. Fr. Leydig, "Ueber den Bau und die srstematische Stellung der hä̈lerthiere," Zritserm. fïr wiss. Zonl.. Bत, VI.. 18.j. F. Cohn, "Ueber" hä̈dertliere," Zetsechr, fïr wiss. Zool.. Bd. V11.. 180̈6. Bel. 1X., 185s. Bu. XII., 186:2. Gosse, " On the Structure. Fmetions amt Homologies of the Manducatory Organs of the elass Rotifera." Phil. Irum..., 1856. W. salenskr, "Beitriige zur Entwickehngspeschichte des Brachionns urccolaris." Zitsitlir". für wiss. Zuml., Tom. XXII.. 1872.
defined and very dissimilar regions, but the internal organs show no trace of any corresponding segmentation. There is therefore no true segmentation, i.e., division of the body into metameres. It is usually possible to distinguish an anterior region of the body, in which the whole of the viscera are situated, and a posterior movable foot-like region, which terminates in two opposed pincer-like styles and is used both in locomotion and for attachment. The broad anterior portion of the body, as well as the narrow posterior region, is often divided by transverse constrictions into several rings, which can be drawn into one another like the rings of a telescope and can be bent more or less freely upon one another.
The anterior ciliated and usually retractile apparatus which projects at the anterior end, and is termed the trochal disc, or from its likeness to a rotating wheel, the wheel organ, is an important characteristic of the Rotiferc. Very frequently, especially in the parasitic forms, this trochal disc is reduced, and in certain cases entirely aborted (Apsilus). In Notommata tardigrada the trochal disc is reduced to a small ciliated

Fig 324.-Hydatina sentu (after F. Cohn). a, Female; b, malc. Ror, Trochal disc ; CBl ; contractile resicle; Wtr, ciliated funnel of the excretory apparatus $(E x) ; K$, jaws ; $D r$, salvary glands ; Mal, stomach, Oe, ovary ; T, testis; P, penis.
lip round the mouth; in IIydatina (fig. 324) to the margin of the head, the whole circumference of which is ciliated. In other cases the ciliated edge projects over the head and forms the socallerl double wheel, e.g., Philodina, Brachionus, or becomes a ciliated cephalic shield, e.g., Megalotrochu, Thebicoleria. Finally, it may be produced into ciliated processes of varions form (Flosculariu, Stephanoceros). As a rule, the cilia form a continuous border, starting from the mouth and retmrning to it. The cilia are chiefly
concerned in locomotion, hat in addition they play am important part in attracting small particles of foorl. There is also a second row of delicate vibratile cilia, extending on either side from the dorsal edge of the trochal dise to the month [parts of the continuous border of cilia just mentioned as starting from the mouth], which is placerl on the ventral side of the trochal disc. 'Ihese cilia scrve to gruide the small food particles which are captured by the trochal dise into the mouth.

Alimentary canal.-The mouth leads into a dilated platrynx (fig. 324), provided with a special armature. The parts of the armature are in continual movement, and serve for mastication. Following the pharynx there is a short cosophageal tube; this leads into the digestive sac, which is lined with large ciliated cells. The anterior or gastric part of this cavity is wide, and receives two large glandular tubes, which may sometimes be resolved into unicellular glands. They may be explained from their function as salivary or pancreatic glands. The posterior narrow intestinal part usually opens into a cloacal chamber, which is likewise ciliated and opens on the dorsal surface at the point where the foot-like posterior region joins the anterior part of the body. In some Rotifera, as for example Ascomorpplea, Asplanchnce, the intestine ends blindly.

A blood-vascular system is always wanting, and the body carity is filled with a clear rascular fluid. The structures, erronenusly described by Ehrenberg as vessels, are in reality the transversely striped muscles and muscular networks beneath the integument.

Respiration is carried on by the general surface of the body; special organs of respiration are wanting.

Excretory organs. - The so-called respiratory canals are excretory, and correspond to segmental organs. They consist of two simuous longitudinal canals with cellular walls and with fluid contents, and they communicate with the body cavity by ciliated funnel-shaped openings placed at the end of short ciliated lateral branches (vibratile organs). They open into the cloaca cither directly or by means of a contractile vesicle (respiratory vesicle).

The nervous system is allicd to that of the Platyhelminthes. The central part of it consists of a simple or bi-lobed cercbral ganglion placed above the osophagus, and giving off nerves to peculiar cutaneous sense organs and to the muscles. Eyes are often present, and lie upon the brain either as an X-shaped umpaired pigment bod! or as paired pigment spots provided with refractile spheres. The aborementioned cutancous scuse organs, which are probably tactile, have
the form of prominences beset with hairs and setr, or even of tubular elongated processes of the skin (respiratory organs of the neck), beneath which the sensory nerves end in ganglionic swellings.

Generative organs.-The sexes are separate, and are distinguished by a strongly marked dimorphism. The very small males have neither œesophagus nor intestinal canal, which are reduced to a stringlike rudiment; and they leave the egg completely developed. Their generative organs are reduced to a testicular sac filled with spermatozna, the muscular duct of which opens at the hinder end of the body, sometimes on a papilliform protuberance. The generative organs of the females, which are far larger than the males, consist of a roundish ovary filled with developing ova, and of a short oviduct which contains one or but few ripe ova, and usually opens into the cloaca. Almost all Rotifera are oviparous; and their eggs are distinguishable into thin-shelled summer eggs and thick-shelled winter eggs. They carry both kinds of eggs about on their body, but the summer eggs not unfrequently undergo their embryonic development in the oviduct. The summer eggs probably develop parthogenetically, since at the season of the year when they appear the males are not to be found. The thick-shelled winter eggs, which are often dark coloured, are produced in the autumn and fertilized.

Development.-As far as the embryonic development is known, it shows a great agreement with that of many Gusteropode (Calyptreaca). The ova undergo an irregular segmentation. The cells proceeding from the smaller segmentation spheres become accumulated at one pole, and finally enclose the darker coloured yolk cells completely, so that a two-layered embryo is formed. The cells of the outer layer are much poorer in granules than are those of the central entoderm layer, and form the ectoderm. A depression of the ectoderm is formed on the (later) ventral surface, from the side walls of which the two lobes of the trochal dise grow out (like the oral lobes of molluse embryos). The hinder portion of the depression becomes the posterior part of the body, at the base of which a pit forming. the first rudiment of the cloaca makes its appearance. The mouth and the anterior part of the alimentary canal are developed anteriorly at the bottom of the depression. The ganglion arises from the ectoderm in the cephalic region. There are no reliable obscrvations on the formation of the mesoblast. In the malc embryo the development takes a different course, the alimentary canal not being completely developed. The free development takes place either
without or with an inconsiderable and sometines retrogressive metamorphosis. This latter is most striking in the flosculurider, which are fixed in the adult state.

The Rotifare principally inhabit fiesh water, in which they swinn about by means of the trochal dise, and sometimes they attach themselves to foreign objects by means of the forked glandular foot. When thus attached, they extend the anterior part of the body, and the cilia begin to move. The currents set up by the latter convey to the mouth food material, such as small Infusoria, Alge, Diatoms. Some species live in gelatinous sheaths and delicate tubes, others (Conochitus) are fixed by their foot in a common gelatinous mass, and are united to form a free-swimming colony. A relatively small number are parasitic. It seems that many species are able to endure drying, if it be not too prolonged.

Fam. Floscularidæ. Fixed Rut ffert with a long transversely ringed foot, usually surrounded by gelatinous coverings and tubes. The margin of the head has a lobed or deeply eleft wheel-organ. Fllusemlaria pronnowidea Ehrbg., Strphanoereros Eichhurnii Ehrbg., Tinbicolaria najas Ehrbg., Alclicrrta ringens L., Conochilus rolvox, Ehrbg.

Fam. Philodinidæ. Free, often ereeping (in a looping manner) Rutiferu; with double-wheeled rotatory organ, and jointed, telescopieally retratile foot, without gelatinous investment. Callidina rlegans Ehrbg.. Rotifor vmlgaris Oken (R. redicivus Cav.), Philndima erythrophthalma Ehrbg.

Fam. Brachionidæ. Rotiferu with bifid or multific wheel-organ: with broad, shield-shaped armoured body; and foot ringed, or with short segments. Brarlionus Bukeri O. Fr. Mïll.. 13. militaris Ehrbg.. Euchlanis triquetra Ehrbg.

Fam. Hydatinidæ. Edge of wheel-organ prolonged into numerous proeesses (multifid) or only sinuous; skin delieate, often ringed ; foot short. usually forked, with two setæ or pincer-shaped. Iyydutina Ehrhg.. II. senta O. Fr. Miill. with Enteroplere hydutiner Ebrbg., as male. Totommata tardigfruda Ldg., -1. Brachinnus Ehrbg., I. parusitu Ehrbg.

Fam. Asplanchnidæ. The sae-like marmoured body is destitute of rectum and anus. Asplanchena Sieboldii Ldg., A. myrmelen Ehrlbg., Ascomenpha germanica Ldg.

Two groups of small animals are allied to the Rotifera:-(1) the Echinoderidæ whieh Dujardin and Greef regarded as commeeting links between Termes and Arthropordu (Echinoderes Dujardinii Clap), E. srtigrra Greef); and (2) the Gastrotricha * or Ichthydina (r'hetonntus.).

[^80]
CHAPTER X.

AR'THROPODA.

Laterally symmetrical animals with heteronomously segmented body and jointed segmental appendages; with brain (suproaesophageal ganglia) and ventral nerve cord (ganglionic chain).

The most important characteristic which distinguishes the Arthropode from the closely allied segmented worms, and is an essential condition of a higher organization and grade of life, is the possession of jointed segmental appendages which serve as organs of locomotion. In place of the unjointed parapodia of the Chectopoda, jointed appendages more adapted for locomotion and confined to the ventral surface, are present. Every segment may possess a ventral pair of appendages which, in the simplest case, are short and consist of only a few joints (Peripatus) (fig. 325). While in the Annelida loco-

Fig. 325.--Pcrıputus cupensis (aiter Moseley).
motion is effected by the movements of the segments and undulatory movements of the whole body, in the Arthropoda the function of locomotion is remored from the chief axis of the body to the secondary axes, $i . e$., to the paired appendages, with the result of the possibility of a much more eflicient discharge of the function. The appendages enable the Arthropoda not only to swim and creep with much greater ease and speed, but also to execute rarious kinds of more complicated movement, e.g., running, climbing, springing, and flying. The Arthropoda are, therefore, true terrestrial and aërial animals.

The high development of the organs of locomotion as paired appendages leads of necessity to a second essential property, viz., to the leteronomy of the segmentation, and in connection with this to the hardening of the outer layer of the skin to form a firm exo-skeleton. If the function of the limbs is to be perfectly discharged, there will be need of a considerable mass of muscle, the points of attachment of which can only be furnished by the integument of the body. The insertions of the appendages and their muscles, therefore, require
rigid surfaces, which are obtained partly by the development of internal chitinous tendons and plates, and partly by the hardening of the intergment and the fusion of several segments $t 0$ form larger armoured regions. It is only when the movenents are simpler and resemble those of Amnclids, that all the segments remain independent and bear similar appendages along the whole length of the body

Fig. 326.-Head, thorax and abdomen of an Acridium, seen from the side. St, Stigmata; T, tympanum. (larve, Myriapoda). In general, three regions of the body can be distingrished, the liead, the thorax, and the abdomen, the appendages of which possess respectively a different structure and function(fig. 326).
The head constitutes the short and compact anterior region of the body, is covered by a hard integument, encloses the brain and bears the sense organs and mouth-parts (jaws). The appendages of this region are modified to form the antennce and juws. The head of Arthropods, as compared with that of Annelids, contains, besides the frontal (preoral) or antennal segment and the oral segment, in

Fig. 327.-Squilla mantis. $A^{\prime}, A^{\prime \prime}$ Antennæ; πf^{\prime}, $\pi f^{\prime \prime}$ the anterior maxillipeds on the cephalo-thorax ; $B^{\prime}, B^{\prime \prime}, B^{\prime \prime \prime}$, the three pairs of biramous fect.
addition at least one jaw segment, the appendages of which may, in larval life (Nouplius), still function as legs. Usually, howerer, several of the succeeding segments whose appendages function as jaws form part of the head.

The middle portion of the body, or thorax, is likewise distinguished by a relatively intimate fusion of some or all of its segments, as well as by the hardness of its integument. It is sometines sharply marked off from the head, sometimes fused with the head to form it
region of the borly called the cephlctlothorax (fig. 327). The thorax bears the appendages which are of most importance in locomotion.

The posterior portion of the body, or abdomen, is composed of distinctly separate rings, and is, as a rule, without appendages. When the latter are present, they serve partly as aids to locomotion (abdominal feet), partly for respiration, or for carrying the eggs and for copulation. More rarely, as for example in the scorpions, the abdomen is divided into a broad anterior region, the prceabdomen, and a narrow movable posterior region, the postabclomen.
The skin, as in the Annelida, consists of two differen: layers,-an external firm, usually homogeneous chitinous layer, and an internal soft layer, which is composed of polygonal cells (matrix, hypodermis) and secretes in layers the at first soft chitinous cuticle (fig. 22). The latter usually becomes hardened by the deposition of calcareous salts in the chitinous basis, so as to form the firm exoskeletal armour, which, however, is interrupted between each segment by thin connecting membranes. The various cuticular appendages of the skin (fig. 22, a, b, c), which may have the form of simple or pennate hairs, of filaments, setæ, spines and hooks, originate as processes and outgrowths of the cellular matrix. The chitinous cuticle together with its appendages is from time to time, principally in the young stage during the period of growth, renewed, the old cuticle being cast off as a continuous membrane (ecdysis, or moult).

The muscular system never constitutes a continuous envelope but the muscles are usually broken up into segments which correspond with the segmentation of the animal. The muscles of the body are arranged in longitudinal and transverse bundles in the different. segmeuts, and are frequently interrupted. There are in addition large groups of muscles, which move the appendages. The muscular fibres are always cross-striped.

The internal organization is allied to that of the Annelida, but does not present such a well-marked internal segmentation.

The nervous system consists of brain, esophageal commissures and a ventral cord. The latter usually has the form of a ganglionic chain (fig. 328), and is placed beneath the alimentary canal. Sometimes, however, it exhibits great concentration, and may have the form of an unsegmented gangliouic mass beneath the esophagus. The segmentation of the ventral granglionic chain presents in details the greatest variations ; in general, however, it corresponds to the heteronomous segmentation of the animal, in that in the larger regions of the body, which have arisen by fusion of several segments,

141 approximation or fusion of the corresponding ganglia has taken place. In one case only, viz., in the I'entastomidu', which in form and grade of life resemble the intestinal worms, the domsal pithe of the asophageal commissure is not swollen out to form at cerebral ganglion, and the central parts of the nervous system are compressed together into a common gangli-

Fig. 328.-Nervous system of the larva of Coccinella (after Ed. Bran(it), Gfir, Frontal ganglion; G, buain; $S g$, sub)œsophageal ganglion; G^{\prime} to $G^{\prime \prime \prime}$, ganglia of the ventral chnin in the thorax and abdomen.
onic mass beneath the asophagus. In all other cases the brain is a large ganglionic nass lying above the opsophagus, and connected by means of the resoplrageal ring with the anterior ganglion of the vential chain, which is usually placed in the head and is known as the subcesophageal ganglion (fig. 328). The sense nerves arise from the brain, while the ganglia of the ventral chain serd nerves to the muscles, orgains of locomotion and the body covering.

Visceral nervous system.--In addition to the brain and ventral ganglionic chain, which are comparable to the cerebro-spinal system of Vertebrata, we can distinguish in the larger and more highly organised Arthropoda a visceral nervous system (symputhetic), which consists of special ganglia and plexuses comected with the other system and specially distributed to the alimentary canal. In the higher $A 0^{\circ}-$ thropoda, pained and unpaired risceral nerves are very generally present, both of which have their origin in the brain.

Sense organs.-Eyes are most generally distributed, and are only absent in a few parasitic forms. In their simplest form they are paired or unpaired structures placed upon the brain, provided with refractive bodies, and with or without a simple lens (stemmata, or simple eves). The compound eyes, which are always paired, are much more complicated. They are distinguished by the presence of nerrous rods and crystalline cones, and may be divided into faceted eyes
and eyes with smooth cornea (Cladocera). The former possess numerous lenses, and are sometimes placed on movable stalks (Decapoda). Occasionally accessory eyes are found on other parts of the body, on the jaws and between the legs of the abdomen (Euphausia).
Auditory orguns are found most frequently in the Crustacea as auditory vesicles with otoliths in the basal joint of the anterior antenne, or rarely in the appendage of the abdomen known as the fan (tail of Myssis). In Insecta, auditory organs of a very different structure have been discovered.

Olfactory organs are also widely distributed. They are situated on the surface of the antennre, and consist of delicate tubes or peculiar conical projections, beneath which the sense nerves end in ganglionic swellings.

Tactile organs. The antenne and palps of the oral appendages and the ends of the limbs have a tactile function. These parts are provided with peculiar hairs and setæ, beneath which nerves end in ganglionic swellings.

Alimentary canal.-An independent digestive apparatus is always present, but its structure and degree of development are very various. The alimentary canal is only exceptionally degenerated and absent (Rhizocephala). The mouth is placed on the ventral surface of the head. It is furnished with a projecting upper lip, and usually with paired appendages, which are used either for masticating or for piercing and sucking. A narrow or wide cesophagus leads into the intestine, which either simply traverses the axis of the body or is disposed in several coils. The cesophagus and midgut (chyle stomach) may even be divided into several regions, and may possess salivary glands and hepatic appendages of various size.

Excretory organs.-Urinary organs are widely distributed. In the simplest form they appear as cells on the surface of the intestine (lower Crustacea), in a more highly developed state as tubular filiform diverticula of the hindgut (Malpiyhian tubes) (fig. 329). In the Crustucel, glands are present in the shell (shell glands) and in the base of the posterior antenne; they are regarded as the morphological equivalents of segmental organs.

The circulatory and respiratory organs present the greatest differences in the various groups of the Arthropoda. In the simplest case the clear, more rarely coloured blood fluid, which is often corpusculated, fills the body cavity and the interstices of all
the organs, and is circulated in an irregular manner by the movements of the different parts of the body. Not unfiequently (Achureres and C'yclops) the circulation is eflected by the regularly repeated movements of certain organs (intestine, vibratile plates, etc.) ; in other cases, a short saccular heart is luesent donsally above the intestine; or a long vascular tube (the dorsul vessel), divided into chambers, serves as a propelling organ. From this, vessels (arteries)

Fig. 329.-Alimentary canal of Pontia brassice (after Newport). R, Proboscis(Maxillæ); $S p$, salivary glands; Oe, œesophagus; S, sucking stomach; MIy, Malpighian tubes; All, rectum. may arise, which conduct the blood in definite directions. Vessels for returning the blood (veins) may also be present. These either begin in the body cavity, or are connected with the ends of the arteries by capillary vessels. The vascular system seems never to be completely closed, since even when the circulation is most complete, lacunar spaces of the body cavity are found inserted in the course of the vessels.

Respiration is very frequently effected, especially in the smaller and more delicate species of Artliropocla, by means of the entire surface of the body. In the larger aquatic forms, the function of respiration is assumed by special tubular, usually branched appendages of the limbs (branchice): while in the air-breathing Insects, Centipedes, Scorpions, and S'piders, respiration is performed by means of intermal bianched tubes filled with air (trachece) or by pulmonary sacs (fan trachece).

The reproduction of the Arthropoda is usually sexual, but sometimes takes place by the development of unfertilized ora (parthenogenesis). Ovaries and testes are in their origin paired, as are also the generative ducts, which often have a common terminal portion and open by a merlian generative aperture (Insecta, Arachnoidea). With a few exceptions (Cirripedict, Tardigruda), the sexes are separate. Males and females frequently differ essentially in their entire form and organization. In lare cases, for example in the parasitic

Crustucen, there is such a marked sexual dimorphism that the males remain small and dwarfed, and are attached like parasites to the body of the female. During the act of copulation, which is often limited to the external union of the two sexes, the spermatophores are fastened to the female genital segment or thrust into the vagina by the organ of copulation, whence they sometimes pass into a sperial receptaculum seminis. Most Arthropoda are oviparous, but in almost every group there are viviparous forms. The eggs are frequently carried about by the mother, or deposited in protected places where food may easily be obtained. The embryonic development (i.e., development within the egg) is characterised, except in the case of the small stout embryos of the Cyclopidce, Pentastomidce and Acarina, by the presence of a ventrally placed primitive streak, fiom which especially the ganglionic chain and the ventral parts of the segments proceed. The more or less complex embryonic development is usually followed by a complicated metamorphosis, during which the young form as larva undergoes several ecdyses. Numerous segments and parts present in the adult are not unfrequently wanting in the just-hatched larva ; in other cases, all the segments of the adult are indeed present, but are not as yet fused together to form regions. In such cases, the larvæ resemble the Annelide in their homonomous segmentation, and in their locomotion and mode of life. The metamorphosis may however be retrogressive ; the larva are hatched with sense organs and appendages, but in the further course of development they become parasitic, lose their eyes and organs of locomotion, and develop into strange unsegmented (Lerncece) or entozoon-like (Pentastomidce) forms.

The Arthropoda are no exception to the general rule that the aquatic forms which breathe by gills are lower and, from a genetic point of view, older than the air-breathing members of the same group, inasmuch as the Branchicata or Crustacea are the older, the Tracheata the younger types.

CLASS I. - CRUSTACEA.*

Aquatic Arthropodu, which breathe by means of gills. They have two pairs of antenne; mumerous paired legs on the thorax, and usually also on the abdomen.

[^81]The lioustacen, whose name is derived from the borly covering (which is often hardened), are principally arpatic animals. Some forms, however, can live on land, and possess respiratory organs adipped for breathing air. An important chanacter of the group is the great number of paired appendages. The appendages of all the segments, even those of the head, may he used in loconotion (fig. 330). As a rule, the heal fuses with the thorax, or at any rate with one or more of the thoracic segments, to form a cepphethorca; ; which is followed by the remaining free thoracic segments. Sometimes, however, these two regions of the body remain distinct. The head and thorax are seldom so sharply marked off from one another as, for example, in the Insecta: usually certain appendages, the so-called maxillipeds, occupy an intermediate position between legs and jaws, and being placed at the boundary between the two

Fig. 330.-Gammarus neglectus (after G. O. Sars). $A^{\prime}, A^{\prime \prime}$, The two antennæ ; $K f$, maxilliped; $F^{*} F^{7}$, first to seventh thoracic feet; $S f$, anterior swimming feet. regions may be reckoned either as belonging to the head or the thorax. The fusion of the segments may be rery extensive; not only may the head and thorax be united, but the boundary between thorax and abdomen may ranish, and the segmentation may even disappear. As a general rule, the form of the body presents extraordinary differences in the various groups. A reduplicature of the skin arching over the thorax and corering the body is a shell is frequently present. This fold of the integument constitntes, in extreme cases, a mantle-like investment, which may develop calcareous plates and occasion a certain resemblance to Lamellibranchs (Cirripedia). In other cases the body has quite lost its segmentation, and the amimal resembles a worm (Lernoce, Succulinu).

On the head there are usually two pairs of antenna, which function as sense organs and sometimes also as organs of locomotion or of prehension. There is a pair of large jaws (the mamdilles), one on each side of the mouth, over which a small plate, known as the upper lip, often projects. The mandibles are simple but rery rigid and hard masticating plates, which are usually toothed and correspond
morphologically to the coxal joint of a limb, the following joints developing into a palp-like appendage (mundibutur palp). Then follow one or more pairs of weaker jaws (maxillce), and one or more pairs of maxillipeds, which more or less resemble the legs and, in parasitic forms, are often used for adhering (fig. 331). In parasitic forms, the upper and under lips not unfrequently give rise to a suctorial proboscis, in which the styliform mandibles are placed. The appendages of the thorax, of which at least three pairs are present (Ostrecooda), present an extremely various structure, in accordance with the mode of life and the use made of them. They are either broad leaf - shaped swimming feet (Phyllopoda), or biramous appendages (Copepodu) ; they may serve to produce currents in the water like the feet of the Cirripedic, or they may be used for crawling, walking, and running (Isopoda, Decctpodic). In the latter case, some of them end with hooks or chele. Finally the appendages of the abdomen, which frequently itself moves in toto and assists in locomotion, are either exclusively locomotory as jumping or swimming feet (Amphipoda),

Fig. 331.-Young stage (larva) of the Lobster (after GO. Sars). a, The lirva seen from the side; R, rostrum ; $A^{\prime}, A^{\prime \prime}$, antennæ; $\bar{K} f^{\prime \prime \prime}$ third maxilliped; $F^{\prime \prime}$, anterior ambulatory leg. b, mandible with palp; c. anterior maxilla with two blades and palp; d, posterior maxilla with vibiatile plate (scaphognathite); e, first, f, secoud maxilliped.
in which case they usually differ from the appendages of the thorax; or they serve with their appendages for respiration, as well as for carrying the eggs, and for copulation (Decopodu).

The internal organization is not less varied than is the external form.
In the lower forms, the nervous system often consists of a ganglionic mass, which surrounds the essophagus and is not further
segmented. This ganglionic mass corresponds to the lmain and ventral cord and gives off all the nerves. In the higher. Cirustucea, a distinct brain and ventral ganglionic chain, which is usually elongated and of very varied form, as well as a 1 ich plexus of visceral nerves and granglia of the sympathetic system are always present.

Of sense organs, eyes are the most widely distributed. They may have the form either of simple eyes (paired or unpaired), or compound eyes with smooth or faceted cornen ; in the latter case they are often placed on movable stalks, which are attached to the lateral regions of the head. Auditory organs are also present usually in the basal joint of the anterior antenna, rarely in the caudal plate at the posterior end of the body (Mysis). The delicate lairs and filaments of the anterior antenna are probably olfactory orguns.

The digestive canal is, as a rule, straight, extending from the mouth to the anus at the posterior end of the body. In the higher forms the resophagus is usually dilated in front of the mesenteron (midgut) into a stomach or crop, which is armed with chitinous plates. The mesenteron is provided with simple or ramified hepatic cæса.

Excretory organs.-The so-called shell glands of the lower. Crustacea are regarded as urinary organs, as are also the glands opening at the base of the posterior antenna in the Malacostraca. In the Entomostracu the latter are only preserved during larval life. Short tubes, which correspond to the Malpighian tubes of the Tracheata, may also be present on the rectum (Amphipoda).

The circulatory organs present every possible degree of perfection, from the greatest simplicity to the highest complication of an almost closed system of arterial and venous vessels. The blood is usually colourless, but is sometimes green or even red, and as a rule contains cellular blood corpuscles.

Respiratory organs are either entirely wanting, or are represented by branchial tubes on the thoracic or abdominal appendages. In the first case they are often contained in a special branchial cavity at the sides of the cephalothorax.

Generative organs.-With the exception of the Cirripedia and certain Isopodu, all Crustacea are of separate sexes. The male and female generative organs usually open on the houndary of the thorax and abdomen, either on the last or the antepennltimate thoracic ring, or on the first abdominal segment. The two sexes are very often distinguished ly a rumber of external characteristics.

The males are smaller, sometimes even dwarfed, and then attached to the females like parasites. They almost always possess apparatuses for holding the females and for transferring the spermatophores during copulation. The larger females, on the other hand, frequently carry the eggs about with them in sacs, the membranes of which are secreted by the so-called cement glands.

Development takes place either directly or by metamorphosis. The metamophosis is sometimes retrogressive. When the development is direct, the young animals, on leaving the egg, already have the body form of the adult. The larva known as the Nauplius (fig. 332) is of great importance as a point of departure. This larva possesses an oval body, on the ventral side of which are present three pairs of appendages for the sense of taste, the prehension of food, and for locomotion. These appendages correspond to the two pairs of antenne and mandibles respectively. . Parthenogenesis is said to occur in certain groups (Phylloporlct.

Almost all Crustacea are carnivorous. Some of them suck the juices of living animals on which they are parasitic.

For the systematic review of this heterogeneous group, it is convenient to divide the numerous orders into two series.

1. The small simply organized Crustacea, the number and form of whose appendages is very various, will be included as Entomostraca (O. Fr. Miiller). To this group belong the orders Phyllopoda, Ostracoda, Copepoda, and Cirripedia.

Fig. 332.-Nauplins larva of Baltuncs, seen from the side. A^{\prime} First appendage (first antenna); $A^{\prime \prime}$, second appendage (second anteuna) ; Mdf, third appendage (maudible); Ob , npper lip; D, intestine.
2. The higher Crustacea, characterised by a definite number of segments and appendages, may be grouped together as Malacostraca (Aristotle). In this group are included the orders of Arthrostraca (Amplipoda and Isopoda), and Thoracostraca (Cumacea Stomatopoda, Schizopoda, and Decapoda).

In addition there is the genus Nebctica, which has been hitherto erroneously placed with the Phyllopoda, but which is to be regarded as the representative of an ancient group connecting the Phyllopoda with the Mfelucostructe, and may be opposed to the latter as Lept-

ostraca.

Finally, in addition to these chief divisions, there is a number
of Crustacean orders, for the most part fossil and belonging to the oldest formations, which present in their development no eertain trace of the Namplins form so chamacteristic of the wue Crustacea, tmit are in all probability related to the Aruchmider. These orders, which may be grouped together as the Gigantostraca, are the Merostomuta and Xiphosmra, to which the Trilolita are possibly allied.

1.-ENTOMOSTRACA.

Order 1.-Phyllopoda.*
Crustacea with elongated and often distinctly seymented body; usually with a flat, slield-like carapace, or laterally compresserd lizalve shell, formed by a reduplicature of the skin. There are, at least, four pairs of leaf-like lobed swimming feet.

The animals belonging to this order differ very considerably in form and size, in the number of their segments and appendages, as well as in their intermal structure. They all, however, agree in the structure of their lobed, leaf-like feet. In their form, internal organization and development they appear to be the most primitive of Crustacea, and may be regarded as the least modified descendants of ancient types.

The body is either cylindrical, elongated and clearly segmented, without free reduplicature of the skin, e.g. Branchipus (fig. 333), or it may be covered by a broad and flattened shield, which only allows the posterior part of the body to project uncovered, e.g. Apus. In other cases the body is laterally compressed and is enclosed hy a bivalve shell, from which the anterior part of the head projects (Cladocera) ; or finally the laterally compressed body is completely covered by a bivalve shell (Estherida). Sometimes the head is more sharply distinct, while the thorax and abdomen are not so clearly distinguishable from each other. As a rule, the posterior segments only are withont appendages. The hind end of the abdomen is very often curved ventralwards and forwards, and bears two rows of posteriorly directed claws, the two last of which arise at the point of the caudal appendage, and are by far the

[^82]strongest. In other cases a pair of fin-like appendages are present constituting the caudal fork (Branchipus).

Appendages.--On the head there are two pairs of antenne, which however, in the adult animal, may be rudimentary or peculiarly modified. The anterior antennæ are small, and bear the delicate olfactory hairs. The posterior antenne frequently have the form of large biramous swimming appendages, but in the male may also hare a prehensile function, e.g., Branchipus. In other cases (Apus) they are rudimentary and may even be entirely absent.

Two large mandibles are always present beneath the well developed upper lip; they possess a toothed, biting edge, and in the fully developed condition are invariably destitute of palps. The mandibles are followed by one or two pairs of slightly developed maxillæ. A kind of underlip is in many cases present, in the form of two prominences behind the mandibles.

The legs, which are placed on the thorax, are usmally very numerous, and are smaller towards the posterior end of the body. They are loberd, leaf-like, biramous structures, and function as swimming feet; they also assist in procuring

Fig. 333.-Male of Branchipus stugnalis. Rg, Heart or dorsal vessel with a pair of slit-like openings in each segment ; D, intestine ; M, mandible; $S d$, shell gland; $B r$, branchial appendages of the cleven pairs of legs ; T, testis. fool. They consist of the following parts: a short basal portion, which is usually prorided with a masticatory process and is followed by a long foliaceous stem with setre on its inner edge ; this is continued into the multilobed internal branch [endopodite] of the biramons limb, while it bears on its outer. side the external rumus [exopodite] with marginal sete, and nearer
its base a vesicnlar Inanchial appendage. The anterion, or even all the legre (Leptodora) may have the fom of prehensile feet, and be destitute of branchinl appendages.

The Phyllopods possess a large pair of eyes, which are sometimes fused together in the median line. Tn addition it small median simple eye (Entomostuacan eye) may persist. 'They have a saccular' or chambered heart, which controls the regular circulation. Coilerl excretory organs, known as shell glands, we sometimes present; they open to the exterior by a special aperture on the posterior maxilla. The function of respiration is performed hy the entire surface of the body, the area of which is much increased by the reduplicature of the skin forming the carapace; also by the foliaceous swimming feet, and especially by the surface of the branchial appendages.

Reproduction.-The Phyllopoda are of separate sexes. The males are distinguished from the females by the structure of the first pair of antenne, which are larger and more richly prorided with olfactory hairs, and also by their anterior swimming feet which are armed with prehensile hooks. In general the males are less fiequently met with than are the females, and, as a rule, only at definite seasons of the year. The females of the smaller Phyllopoda (Cladocerca) are able to produce eggs without copulation and fertilization; and these eggs, the so-called summer eggs, develop spontaneously and produce generations containing no males. In certain genera of the Branchiopoda, e.g., Artemicu and Apus, parthenogenesis is the rule; the males, indeed, have only been known a few years. The females usually carry the eggs about with them on special appendages, or in a brood pouch beneath the shell on the dorsal surface. The just hatched young either possess the form of the sexually mature animal (Cludocercu), or undergo a complicated metamorphosis, leaving the egg membranes as a nauplius larva with three pairs of appendages (Branchioporla).

A few of the Phyllopoda live in the sea, the greater number inhabit stagnant freshwater ; some of them are found in brine pools.

Sub-order 1. Branchiopoda.* Phyllopoda, with clearly segmented body, often enclosed in a flat, shield-shaped, or laterally compressed bivalved shell, with from ten to about thirty or more pair's of foliaceous swimming fect.

* Schäffer, "Der krebsartige Kieferfuss," etc. Regensburg. 1756. A. Kozubrwski, "Ueber den männlichen Apus cancriformis." Arehie für Vaturqewel. Tom XXIIl., 1857. C. Claus," Zur Kenntniss des Baues und der Entwiekelung von Branchipus und Apus," ctc., Göttingen, 1873.

The alimentary canal is provided with two lateral hepatic appendages, which are, as a rule, branched and racemose and only exceptionally short and simple. The heart appears as an extended dorsal vessel with numerous paired lateral slits, and may extend throughout the whole length of the thorax and abdomen (Branchipus). The genital organs, which are always paired, are placed by the side of the alimentary canal, and open at the boundary between the thorax and abdomen. In the females the genital openings are small slits; in the male there may be protrusible copulatory organs at the openings (Branchipus).

The males are distinguished from the females principally by the fact that the anterior, or two anterior pairs of legs, are armed with hooks (Estheridce), or by the modification of the posterior antennre to form a prehensile apparatus (Branchipus). Remarkable is the rare occurrence of the males ; they seem only to appear under certain conditions and in definite generations, which alternate with parthenogenetic generations. The eggs during development are generally protected within the body of the mother; and are carried about either in a saccular brood-pouch of the abdomen or between the valves of the shell on filiform (Estheria, Branchipus), or in vesicular (Apus) appendages of different pairs of legs (9th to 11 th). The eggs, so far as is known, undergo a complete segmentation. When hatched, the young animal has the form of a Nauplius larva with three pairs of appendages, of which the anterior (which become the anterior antenne) are in the Estheridce only represented by slightly developed setigerous prominences. On the other hand, in Apus the third pair is small and rudimentary.
Almost all the Branchiopoda belong to inland waters, and principally inhabit shallow fresh-water pools. When the latter dry up, the eggs, preserved in dry mud, remain capable of development. Some species, as ditemia salinct, are found in brine pools.

Sub-order 2. Cladocera.* Water-fleas. Small laterally com-

pressed Phyllopodu, whose borly, with the exception of the head, which projects freely, is usually enclosed in a hivalve shell. They have two large antenme, which are used in swimming, and four to six pairs of swimming fect.

The Cladocerce are small simply organized Phyllopods; whose resemblance to the larvec of the shelled Branchiopodi, particularly to the larva of Estherice with its six paiss of legs, gives the best indication of the probable origin of the group. Unlike the anterior antenne, which are short, the posterior are modified to form biramous swimming appendages beset with numerons long setit. The four to six pairs of legs are not always foliaceous swimming feet, but in many cases have the form of cylindrical ambulatory or prehensile appendages. The abdomen, which is ventrally flexed, develops on its dorsal side several prominences, which serve to close the brood pouch. It usually consists of three free segments, as well as the terminal anal portion, which is beset with lows of hooks. The anal portion begins with two dorsal tactile setæ and ends with two hooks or styles, representing the caudal fork (tig. 334).

The internal organization is simple in correspondence with the small size of the body. The compound eyes fuse together in the middle line to form a large, continually trembling, frontal eye, beneath which the unpaired simple eye usually remains. A special sense apparatus, whose function is not quite clear, appears in the region of the neck, in the form of an aggregation of ganglion cells.

The heart has the form of an oral sac, with two transrerse lateral venous ostia and an anterior arterial opening. Its pulsations are rhythmic, and succeed one another quickly. In spite of the want of arteries and veins, the circulation of the blood, which contains amoboid cells, is completed in definite tracts marked out by lacume and spaces in the body. The looped and coiled shell gland is always present. The cervical gland, which"functions as an organ of attachment, is less widely distributed. The sexual glands lie in the thorax as paired VI, 1819 and 1820. Leydig. ". Naturgeschichte der Daplniden." Tiibingen. 1860. P. E. Miiller. \because Bidrag til Cladoccremes Fortplantings historic." Ejölonhavn. 1868. G. O. Sars, "Om ch dimorph Udvikling samt Gencrationsvexel hos Leptodom." Fidensk. Seqwh. Fork.. 18i3. A Wcismann. "Beitrïge zur Kicnntiss der Daphlnoiden." I-IV.. Leipzig. 1876 and 18it. C. Claus. ." Zur Kenntiss der Organisation und des feineren Baues der Daphniden. Zuit. for wiss. zool. Tom XXVII. 1876., C. ('laus, "Zur Kemitniss des Banes mud der Organisaton der Polyphemiden." Wien. 1877. C. Grobben," Die Embreonalentwickclung von Moina rectirostris." Arpriten "uls dem zmol, reryl. amitom. Institut. If Band. Wien, 1879.
tubes by the side of the alimentary canal. In the ovaries groups of four cells are separated ; one cell of each group becomes an ovum, while the rest are employed as nutritive cells for the nourishment of the ovim, which increases in size and absorbs fat globules. The ovary is directly continuous with the oviduct, which opens dorsally beneath the shell into the broocl-pouch. The testes, like the ovaries, lie at the sides of the intestine and are continuous with the vasa deferentia,

Fig. 334.-Daphnia. C, Heart-the slit-like opening of one side is visible; D, alimentary canal; L, hcpatic diverticulum ; A, anus ; G, cerebral ganglion ; O, eye ; $S l$, shell gland ; $B r$, brood-pouch beneath the dorsal reduplicature of the shell.
which open to the exterior ventrally behind the last pair of appendages or at the extreme end of the body, the openings being sometimes situated on small slightly protrusible prominences.
'The smaller males usuallyappear in the autumn ; they may, however, also be present at any other time of the year, and, as recent investigations have proved in a tolerably satisfactory manner, always when
the conditions of life and nombishment are mafaromalle. Before the appeamace of the males, hermaphorlite forms * sometimes make their appearance with an organzation which is half male and half female.

At the season when males me not present, normally in the spring and summer; the femtles produce the so-called summer eggs, which contain a large quantity of oil globules and are surrounded by a delicate vitelline membrane. They develop rapidly within the broodpouch between the shell and the dorsal smeface of the mother, and after the space of only a few days give rise to a fresh gencration of young Cludocera, which escape from the brood-ponch. The embryonic development takes place accordingly under extremely farourable conditions, which depend upon the rich supply of food yolk in the large eggs, and are sometimes favoured by the secretion of additional food material within the brood-pouch.

At the season when the males appear, the females, under the like influence of unfavourable nourishment and independently of copulation, begin to produce so-called winter eggs, which are incapable of developing without fertilization. The number of these hard-shelled winter eggs is always relatively small. They are, therefore, distinguished from the summer eggs by their larger size and the greater quantity of food yolk ; and their origin in the orary is accompanied by much more extensive processes of absorption.

The Daphnidce live for the most part in fresh water. Certain species inhabit deep inland lakes, brackish water, and the sea. Ther swim quickly, and usually with a jumping movement. Some of them attach themselves to solid surrounding objects by means of a dorsally placed organ of attachment, the cervical gland. When the body is thus fixed, the swimming feet seem to be able by their ribrations to set up currents in which small food particles are swept towards the animal.

Sida crystallina O. Fr. Müller. The six pairs of lamellar legs beset with long swimming seta. The rami of the swimming antenne 1 wo- to three-jointed. Daphuia pule.r De Geer. D. sima Lier. Five pairs of legs. of which the anterior are more or less aclapted for prehension. One ramus of the swimming antennæ is three-jointed, the other four-jointed. Polyphemus prdirulu: De Geer. In the lakes of Switzerland, Anstria, and Seandinaria. Sradne Limdmamni Lovén, North Sen aml Mediterranean. Leptodora hyalina Lilli., in lakes.

[^83]
Order 2.-Ostracoda.**

Small, usually laterally compressed Entomostruca, with a bivalve shell and seven pairs of appendages, which function as antennce, jaws, creeping and swimming legs. There is a pediform mandibular palp, and a sloort abdomen.

The body of these small Crustacea is unsegmented and is completely enclosed in a bivalve shell, which gives the animal a resemblance to a mussel. The two valves of the shell join together in the middle line, and are fastened together by an elastic ligament along the middle third of the back. The action of this ligament is opposed by a twoheaded adductor muscle, which passes from one valve of the shell to the other and causes impressions discernible from without. The common tendon of the two heads of this muscle lies nearly in the

Fig. 335.-Female Cypris before sexual maturity ; the right valve of the shell has been removed, $A^{\prime}, A^{\prime \prime}$, first and second pair of antennæ ; Ob, upper lip; Md, mandible with pocliform palp; G, cerebral ganglion with unpaired eye ; $S M$, adductor muscle; $M x^{\prime}$, $M x^{\prime \prime}$, first and second pair of maxillæ ; $F^{\prime \prime}$, $F^{\prime \prime}$, first and second pair of feet; $F u$, caudal fork ; M, stomach ; D, intestine ; L, hepatic tube ; Ge, rudimentary genital organs.
middle of the body. The edges of the valves are free at both ends and along the rentral side. In the marine Cypridinidee there is a deep indentation in the edges of the valves, to allow the antennæ to pass out. When the valves of the shell are open, several pediform appendages can be protruded on the rentral side, which enable the animal to move in the water either by crawling or by swimming.

[^84]The abdonmen (an also be potruderl; it either ends in a candal fork (Cypris and (inhlere), or has the form of a plate amed with spines and hooks on its posterior margin (C'ypridina).

Appendages.- The two pains of antemse are placed on the anterior regrion of the body (fig. $336, \mathrm{~A}^{\prime}, \mathrm{A}^{\prime \prime}$), and are used ats creeping and swimming legs. In Cymidina, however, the anterior pair. is provided with olfactory hairs. The antemme of the second pair in Cypris and C'ythere resemble legrs, and end with strong hooked bristles, by lielp of which the animal can attach itself to smromeding objects. In the exclusively marine Cypridinide and Malocypride this pair of appendages has the form of biramous swimming feet, which consist of a broad triangular basal plate, a many-jointed endopodite beset with long swimming seta, and a rudimentary exopodite, which, however, is stronger in the male and furnished with hooks of a considerable size.

In the region of the mouth beneath and to the side of a tolerably large upper lip there are two powerful mandibles with a broad and strongly toothed biting edge. The mandibular palps, which are leg-like and elongated, are usually three-jointed and can be used as legs ($M d f$). In exceptional caces (Purudoxostoma), the mandibles are styliform and are enclosed in a suctorial proboscis formed from the upper and under lips.

The mandibles are followed by the first pair of maxilla, which are in all cases distinguished by the great development of theirbasal portion and by the reduction of the palp. In the Cypridee and Cytheride the basal joint of the first maxilla bears a large comb-like setose plate, which by its swinging movements aids the function of respiration, but does not itself function as a gill. A similar branchial plate may also occur on the two following appendages (the 5th and 6th pair), which sometimes have the form of jaws, sometimes of legs. The anterior of these appendages (maxilla of the second pair or better maxilliped, tig. 336 , $M x^{\prime \prime}$) functions, in Cypris, chiefly as a jaw, lut bears, besides the rudimentary branchial appendage, a short, backwardly directerl, usually two jointed palp, which, however, in certain genera and in Mulocypris becomes a short, three-jointed or even four-jointed leg. In Cythere it acts exclusively as a leg, and represents the first of the three pairs of legs present in this animal. In the Cypridina, howerer, it has completely the form of a jaw, and is provided with an enormonsly dereloped branchial plate (fig. $336 \mathrm{a}, \mathrm{M} \mathrm{x}^{\prime \prime}$). The appendage of the sixth pair is usually modified to an elongated, many-jointed, creeping and ad-
hering foot. The appendage of the seventh pair is always elongated to the form of a leg; in Cythera it is formed like the preceding one,

Fig. 336.-Cypridinu mediterranea. a, Female; b, male. Mr, Stomach; H. heart; $S M$, adductor musele; O, eyc; O^{\prime}, unpaired cye; G, brain; Stz, frontal organ; T, testis; P, copulatory organ ; Mdf, mandibular palp; Mx', first maxilla; Mx', second maxilla ; Fu, caudal fork.
but in Cypris it is curved upwards, and is furnished with a short claw and terminal setre. It has probably the same function (Putzfuss)
as the long cylindrical appentage of Cyprithure, which arisen in place of the serenth pair of legr, almost on the back of this anmal.

The nervous system consists of a bilobed cerebral granglion and a rentral chain with closely approximated pairs of ginglia, which may unite to form a single ganglionic mass.

Sense organs.-Tn addition to the already mentioned olfactory hair:there is a median eye (C'ypris, Cythere), composed of two (often separated) halves; or there are, in addition to a small mupared eye, two larger compound and movable lateral eyes (Cypridina). In Malocypris and C'ypridina there is a frontal appendage, which probably functions as a sense organ.

Alimentary canal.-The mouth, which is frequently (Cypris) armed with toothed lateral bands, leads through a narrow cesophagus into a dilated crop-like portion of the alimentary canal. This is followed by a broad and long stomach, provided with two long

Fig. 337.-Alimentary canal and generative organs of a female Cymis (after W. Zenker). Oe, œsophagus ; $P r$, crop ; r^{r}, stomach; D, intestine ; L, liver ; Ov, ovary; $S M$, adductor muscle; R receptaculum; l'u, vulva; $F u$, caudal fork. lateral hepatic tubes, which project into the lamella of the shell. The anus opens at the base of the abdomen (fig. 337). Of special glands a club-shaped, dilated glandular tube (poison-glands?) found in Cythere must be mentioned, the duct of which opens to the exterior through a spinous appendage of the posterior antennæ.

A heart is present in Cypridina and Halocypmis on the dorsal surface, where the shell is connected to the animal. The function of respiration is performed by the whole surface of the body, orer which an uninterrupted current of water is maintained by the swinging morements of the leaf-shaped setose branchial appendages. In many Cypridinidue (Asterope) there is a double row of branchial tubes on the back, near the last pair of appendages.

Generative organs.-The sexes are always separate and are distinguished by well marked differences in their entire structure. The males, in addition to the greater development of the organs of sense. possess apparatuses on different appendages-in C!pmidina on the second antennie, in Cypris on the maxilliped-for holding the females; or a parr of legs may be completely modified for this pur-
pose. In addition a large copulatory organ, which may be derived from a modified pair of appendages and often possesses a very complicated structure, is always present. The male genital organs consist on either side of several elongated or globular testes, of a vas deferens and the copulatory organ ; the presence in Cypris of a very peculiar paired mucous gland and the size and form of the spermatozoa seem to be worthy of notice (Zenker). The female of Cypris possesses two orarian tubes which project into the reduplicature of the carapace, two receptacula seminis, and the same number of genital openings at the base of the abdomen.

Development.-The greater number of Ostracoda lays eggs, which they either attach to water-plants (Cypris), or, as in Cypridina, carry about with them between the shell valves until the young are hatched. The free development of Cypris consists of a complicated metamorphosis. The larve, when hatched, possess, like the Nauplius form, only three pairs of appendages, but are strongly compressed laterally, and are already enclosed in a thin bivalve shell (fig. 338). In the marine Ostracoda the development is simplified, so that the metamorphosis is entirely absent.

The Ostracoda feed altogether on animal matter, as it seems especially on the carcasses of different aquatic animals.

Numerous fossil forms are known from almost all formations, but, unfortunately, ouly the remains of their shells are preserved.

Fig, 338.-Very joung larva of Cypris. Nauplius stage, with three pairs of appendages. M, stomach; D, intestine; $S M$, shell muscle; $A^{\prime}, A^{\prime \prime}$, first and second antennæ; MIff, mandible.

C'ypridina. With heart and large movable paired eye. With deep excavation in the edges of the shcll for the passage of the antennæ. The anterior antemæ are bent, furnished with strong setre, and have olfaetory hairs at their extremity. The posterior antennæ are biramous swimming feet. The biting part of the mandible is weak or entircly aborted ; palp is five-jointed, peciiform, and of considerable length. The seventh pair of appendages is represented by a cylindrieal ringed appendage (Putzfuss). Cypridinu mediterranea Costa. Astcrope ohlonga Gir., Trieste. Hulocyppris Dana.
('ysthere O. Fr. Mïll. Without heart. The anterior antenure are bent at their base and beset with short setr. The posterior antenne are strongly developerl, with hooks on the terminal joint. Three pairs of legs, of which the last is the most strongly developed. The ablomen has only the caudal fork, of which the two branches are small and lobe-like. The testes and ovaries do not project between the lamelle of the carapace. The male genital apparatus has no mucous gland. They are all marine animals. The females often carry the
eges amd embryos about between the valves of the shell. Ciythror lutere O. Fir. Miiller, North Seas and Mceliterrancan. (!viridis O. Fr. Miill, North Sus.
('ypmis O. V'r. Miill. With median cye, but no heart. The shell valves are light but strong, the anterior antenne have usually seven joints and are bese with long setre. The antenn of the second pair is simple and pediform, with usmally six joints. There are two pairs of lese of which the posterior smaller pair is bent upwards towarls the dorsal surface. 'The caudal fork is very narrow and elongated, and is provided with hooked setas at the point. The testes ank ovaries project between the lamella of the shell. The male genital aplalatus has a peculiar mucons glanc. Most of them inlabit fresh water.
 munarlhus O. Fr. Miill.

Order 3.-Coperoda. **

Entomostracc with elongated, usually well segmented body, without shell-forming reduplicature of the sline, with livamous swimming feet; the abdomen is without appendages.

The gioup of the Copepoda includes a number of very different forms. The non-parasitic members of the groups are distinguished by a constant number of segments and paired appendages. The numerous parasitic forms differ in various degrees from those which lead an independent life; in extreme cases some of them are so modified, that without a knowledge of their development and the peculiarities of their structure, they would rather be taken for parasitic Worms than for Arthropods. The characteristic swimming feet are, however, usually retained, though often recluced in number, as ludinentary or modified appendages. When they are absent, the developmental history gives a certain indication of the Copepol nature.

Appendages.-The hearl seems as at rule to fuse with the first thoracic segment ; and the cephalothorax so formed bears two pairs of antennr, a pair of mandibles, the same number of maxillae, and four maxillipeds, which last are only the external and internal branches of a single pair of appendages (fig. 341) ; and finally the first pair of swimming feet, which are not unfrequently modified in form. 'Ihen come four free thoracic segments, each with a pair of swimming feet, of which the last pair is frequently reduced and in the male may be morlified to assist in copulation. Finally, the fifth pair of feet and

* O. Fr. Miiller, "Entomostraca sen Insceta testacea. quar in aquis Maniae et Norvegiae reperit. (lescripsit," Lipsise, 178i). Jurinc. "Histoire des Monocles." Gonève, 1820. W. Lilljeborg, "Crustacea ex ortinihns tribus: Clatocera. Dstracoda et Copepota, in Scania occurrentibus." Luncl.. 1853. C. Claus. " Zur Iorphologie der Copepoden," Ẅ̈r~h. nuturniss. Zuitwrhr.. 1860. C. Claus., "Dic freilebenden Copepoden," Leipzig, 1 sis3.
the corresponding thoracic segment may be entirely absent. The abdomen as well ats the thorax consists of five segments, but is without appendages and ends in a caudal fork, the branches of which are furnished at their points with several long caudal seta (fig. 339). In the female, the two first abdominal segments usually unite to form a double genital segment, on which the genital openings are placed. The abdomen, especially in the parasitic forms, very frequently undergoes a considerable reduction.

Fig. 339.-Female of Cyclops coronatus, seen from the dorsal surface. D, intestine; OUS, ovisacs ; $A^{\prime}, A^{\prime \prime}$, antennæ.

Fig. 340.-An anteuna of the male of Cyclops servulatus. Sp, olfactory hairs; M, muscles.

The anterior antenne, which are usually many-jointed, bear olfactory hairs, but serve in the free-swimming forms for locomotion, and in the nale as prehensile arms for catching and holding the female during copulation (fig. 340). The posterior antemne are always shorter, and not unfrequently bifureated and adapted for clinging to surrounding objectr. With regard to the oral appendages
(fig. 3.1), two toothed, usually palperd mathdibles are placed beneath the upper lip. These function in the free-living (opeperla ats masticatory organs, but in the parasitic forms are msually transformed into pointed styliform rods, which are used for piercing. In this case they are frequently placed in a suctorial tube formerl by the junction of the upper and muder lips. The two jaws which follow the mandibles are weaker biting plates, and in the parasitic Copepoda are reduced to small palp-like protuberances. The maxil-

Fig. 341. - Month parts of Cyclopı. M, Mandibles ; $M x$, maxilla; $K f^{\prime}$, internal; $K f^{\prime \prime}$, external maxilliped. lipeds, on the contrary, are much longer; they are used to procure food and, especially in the parasitic forms, to attach the body. The thoracic swimming feet consist of a two-jointed basal portion, and two threejointed setigerous swimming rami, which are comparable to broad swimming plates. In the Argulidre these rami are muchs elongated, and by their numerous joints approximate to the legs of the Cimipedia.

Nervous System.-In all cases there is a brain giving off sensory nerves, and also a ventral cord, which either derelops some ganglia in its conuse or is concentrated to a common subeesophageal ganglionic mass. Of sense organs the median frontal eye, divided into three parts ($C_{y}^{\prime} y$ clops eye), is pretty generally present. The tactile sense is specially localized in the setre of the anterior antennæ, but is probably also present in many other parts of the body. Olfactory hairs are present as delicate appendages of the anterior antenne, principally in the male sex.

The alimentary canal is divided into a shor't narrow esophagus, a wide stomach which often has two blind divertionla near its commencement, and a narrow rectum which opens on the dorsal surface of the last abdominal segment. The surface of the intestine often seems to perform the function of a urinary organ. We find, however, at the same time a shell gland in the cephalo-thorax at the sides of the maxillipeds. In all cases the whole surface of the body performs
the respiratory function. Circulatory organs are either replaced by the regular oscillations of the intestinal canal (Cyclops, Achtheres), or there is present in the anterior part of the thorax above the intestine (Calcuidee) a short saccular heart, which may even be continued into a cephalic artery (Calanella) (fig. 53).

Generative organs.-The Copepodla are of separate sexes. Both kinds of genital organs lie in the cephalothorax and in the thoracic segments, and open right and left on the basal segment of the abdomen. Sexual differences in the form and structure of the different parts of the body are almost uniformly found. These lead

Fig. 342.-Mctamorphosis of Cyclops. a, Nauplius larva of Cyclops sevrulatus after hatching. b, Older stage strongly magnified. c, Very young Cyclops form. $A D$, antennal glands; Ot, upper lip; Mf, mandibular foot ; MC, mandible ; $M x$, maxilla, Mxf, maxilliped; $F^{\prime}, F^{\prime \prime}$, first and second swimming feet; He, urinary concretions; D, intestine ; $A d$, rectum; A, anus; G, rudimentary genital organs.
in certain parasitic Copepod (Chondracanthidce, Lernaopodidce) to an extremely striking dimorphism. The males are smaller and move with greater facility ; the anterior antenna and the last pairof feet become accessory copulatory organs, the former serving to hold the female, the latter to affix the spermatophores. The spermatophores are formed in the vas deferens by a mucous secretion which surrounds the seminal mass and hardens to a tough membrand. The females are larger than the males and often move
more chmmsily; they carry the egges about with them in saces, placed to the right and left on the abromen. Many of them posisess a cement gland at the end of the oviluct; the secretion of this gland passes out with the egges and gives rise to the stiff covering of the orisacs. During copulation, which is only in extemal approximation of the two sexes, the male fintens one or more spermatophores on to the genital segment of the female, and, indeed, on to special openings through which the spermatozoa pass into the receptaculum scminis, and fertilize the oval either within

Fig. 343.-Metanauplins of Cyclopsine. O, eje; G, rudimentury genital organs; $S D$, antennal gland; $A^{\prime}, A^{\prime \prime}$, antennæ; $M L l$, mandilsle ; $M x$, maxilla; MIf, maxilliped. the body of the mother, or as they pass out into the developing ovisaci.

Development takes place by means of a complicated metanorphosis, which, in many parasitic forms, is a retrograde one. The larve, when hatched, have the Nauplius form, with an umpaired frontal eye and three pairs of appendages. Hooked setre on the second and third pairs of appendages serve to conduct the fond into the mouth, which is covered by a large upper lip (fig. 342 , a). The posterior region of the body is destitute of appendages, and terminates with two seter at the sides of the anus; it corresponds to the thorax and abdomen, which are as yet undifferentiated.

The alterations undergone by the young larre in the course of their further growth are comnected with a number of successive moults, and consist principally in an elongation of the body and the appear:ance of fresh appendages. Even in the next larval stage (fig 342, b), a fourth pair of appendages, the futnre maxilla, makes its appearance behind the three original pairs, which derelop into the anteme and mandibles. In a later stage three fresh pairs of appendages are formed. Of these the first corresponds to the maxillipeds, white the two last pairs represent the first rudiment: of the anterior swimming feet. In this stage (Metanauplins) (ficy.

343), the larva still resembles a Nauplius, and it is only after anothermoult that it is transformed into the first Cyclops-like form. It then resembles the adult animal in the structure of the antenne and mouth parts, although the number of the appendages and the body rings is smaller (fig. 342, c). The two last pairs of appendages already have the form of short biramous swimming feet, and the rudiments of the third and fouth pairs of swimming feet have made their appearance as projections beset with setæ. The body consists in this stage of the oval cephalothorax ; the second, third and fourth thoracic segments ; and an elongated terminal portion, which gives rise to the last thoracic segment, and to all the abdominal segments by a progressive segmentation, and already terminates in the caudal fork.

Fic. 344.-Actheres percarum.-a, Nauplius form. b, Larva in the joungest Cyclops stage; $K f^{\prime}, K f^{\prime \prime}$, maxillipeds. c, Female seen from the ventral side. Ov, Ovaries ; $K D$, cement glands. d, The smaller male seen from the side ; $M x f^{\prime}, M x f^{\prime \prime}$, maxillipeds.
Many forms of parasitic Copepodc, for example Lernanthropus and Chondrucanthus, do not get beyond this stage of body segmentation, and obtain neither the swimming feet of the third and fourth pairs, nor a fifth thoracic segment separate from the stump-like abdomen; other's, for example Achtheres, by the loss of the two anterior pairs of swimming feet, sink back to a still lower stage (fig. 344).

All the non-parasitic and many of the parasitic Copepoda pass in the successive moults through a larger or smatler number of developinental stages, in which the still undeveloped segments and appendages inake their appearance, and the appendages ahearly
present undergo further segmentation. Many paranitic C'opeporda, however, pass over the series of Namplins forms, amb the larva, an soon as hatched, undergoes a monlt, and appeas's at oncer in the youngest Cyclops form, with antemie alapted for arthering and month parts for piercing (fig. 344). From this stage they undergo

Fig. 345. -The two sexnal animals of chondra. canthus giblowus magnified about six diameters. a, Female seen from the side; b, from the ventral surface with adhering male; c, malo strongly magnified. An', Anterior antennar; $A n^{\prime \prime}$, antennat for attachment; $F^{\prime \prime}, F^{\prime \prime}$, the two pairs of feet; A, eye; $O v$, egg-tubes; De, resophagus; D, intestine; M, month parts; T, testis; $T^{\prime} d$, vias deferens; S_{p}, spermatophore. a retrogressive metamorphosis, in which they become attacherl to a host, lose more or lesis completely the segmentation of the body which grows irregnlarin shape, cast off their swimming fect, and even lose the eye, which was originally present (Lernceopoda). The males, however, in such cases often remain small and dwarfed, and adhere (frequently more than one) firmly to the body of the female in the region of the genital opening (fig. 345).

In the Lernaea (fig. 346) such pigmy males were tor a long time vainly sought for upon the rery peculiarly shaped borly of the large female (fig. 346, c, d) which carries egg tubes. At last it was discorered that the small eyclops-like males (fig. 346, a), lead an independent life, and swim about freely by means of their four pairs of swimming feet; and that the females (fig. $436, b$), in the copulatory stage resemble the males, and that it is only after copulation that they (the females) heome parasitic amd undergo the considerable increase in size and modifiation of form which chanacterises the fermale with egg-tubes.

1. Sub-order: Eucopepoda.

Copepoda with swimming feet, the rami of which are two or three jointed. They have biting or piercing and sucking mouth parts.

1. Gnathostomata. For the most part non-parasitic; oral apparatus adapted for mastication ; fully segmented body.

Fam. Cyclopidæ. Mostly fresh-water animals, without a heart, and with a simple eye. The seeond pair of antennæ are four-jointed and never biramous. The feet of the fifth pair are rudimentary in both sexes. The male employs the anterior antennæ for prehension. Cyelops corrinatus Cls., Cunthocumptus mimutus Cls., Harpucticus chelifer O. Fr. Müll., North Sea.
Fam. Calanidx. The anterior antenne are very long, only one of them is modified for prehension. The posterior antennæ are biramous. Heart always present. The feet of the fifth pair are, in the male, modified to assist in eopulation. Cetochitus seppen trionatis Goods., Liuptomus custor Jur. Irencens Patersonnii Templ.
Fam: Notodelphyidæ. Structure of body like that of the Cyclopidce. The posterior antemne modificel for attachment. The two last thoraeie segments are fused in the female and form a brood eavity for the reception of the eggs. They live in the branchial eavity of Ascidians. Votodelphys ugilis Thor.

2. Parasita* (Siphonosto-

 mata). Mouth parts adapted for piercing and sucking, usually with incomplete segmentation of the body and reduced abdomen.The posterior antenne and maxillipeds end with hooks for attachment. Some of

Fig. 346.-Lornaa branchialis. $\quad a$, Male (about 2 to 3 mm . long). Oc, Eye; G, brain ; T, tostis ; M, stomach ; F^{\prime} to $F^{1 v}$, the four pairs of swimming fect; S_{p}, spermatophore sac. b, Female (5 to 6 mm . long at the time of copulation). A', $A^{\prime \prime}$, the two pairs of anteuиx ; D, intestiue; R, proboscis ; $M x f$, maxilliped. c, Female of Lernca branchialis after copulation undergoing metamorjhosis; d, the samo with cogg saes, natural size.

[^85]them still swim freely, but most of them live on the gills, in the pharynx, and on the outer skin of fishes. Some live within the tissues of their host (Penellu), and nourish themselves on the blood and juices of the latter.

Frm. Corycæidæ. Anterior antennæ short, few jointed, and similar in both sexes. The posterior antenne unbranehed, with clasping hooks, usually different aecording to the sex. Mouth parts often arranged for piercing. Median eye and lateral eycs often present. They live partly as temporary parasites. Coryereus elongatus Cls., Supphirina fulgens 'Thomps.

Fain. Chondracanthidæ. Body elongated, often without distinet segmentation, and furnished with pointed outgrowths. Abdomen stump-like. The two anterior pair of swimming feet are represented by bifid lobes, the others are wanting. There is no suetorial proboseis, the mandibles are siekle-shaped. The pear-shaped males are small aud dwarfed, and attaehed, often in pairs, to the body of the female. Chondracanthus giblowss Kr. (on Lophius). Ch. cornutus O. Fr. Mïll, on flat fish (Pleuroncetida) (fig. 345).

Fam. Caligidæ. Body flat, with shield-like cephulothorax, and very large genital segment whieh in the female is espeeially swollen. Abdomen, on the eontrary, is small and more or less redueed. There is a suetorial tube and styliform mandibles. Four paired biramous swimming fect enable the animal to swim rapidly. They live on the gills and the skin of marine fish, and the females have long string-like egg tubes. Caliyus rapaw Jidw., Cecrops Latreillii Leaeh.

Fam. Lernæidæ. The body of the female vermiform or rod-shaped; unsegmented, with outgrowths and proeesses on the head. Mouth parts piereing with suetorial tube. There are four pairs of small swimming feet. The females beeome attaehed to fishes, in whieh the anterior part of their body is buried. Lerneocera eyprinarea L., Penella sagitta L., Lernaa Inrumehialis L. (fig. 3t6).

Fám. Lernæopodidæ. Body separated into head and thorax, abdomen rudimentary. Mouth parts piereing with suetorial tube. The external maxillipeds attain a considerable size, and in the female unite at their points so as to form a single organ of attachment, by means of which the animal adheres permanently. Swimming feet eompletely absent. The males, whieh are more or less dwarfed, have large free clasping feet, and are, like the females, without swimming feet. Achtheres percarum Nordm. (fig. 34t). Anchorella uncinata O. Fr. Miill. (on speeics of Gudus).

2. Sub-order: Branchiura.*

Carp-lice. With large compound eyes, and long protrusible spine in front of the suctorial tube of the mouth; with four pairs of elongated biramous swimming feet.
zerkrelse." Vorra arte Ac. Cas. Leup.. Tom XVII., 1835. C. Claus. "Ueber den Bau und die Entwiekelung von Aehtheres percarnm," Zeit.sr/hr fïr wiss. Zonl.. 1861. C. Clans, "Beobaehtungen iiber Lernæoeera, etc.. Marburg. 1868.

* Jurine. "Mèmoire sur l'Argule foliaeé," Amales dy" Aluscum d'hist. nat., Tom. VII., 1806. Fr. Leydig, "Ueber Argulus foiiaceus," Zeitschr fïr niss. Zonl., Tom 1I., 1850. E. Cornalia. "Sopra una nuova specie di crostrece sifonostomi," Milano, 1860. C. Claus, "Ueber die Entwickelung, Organization und systematisehe Stellung der Arguliden," Zeitsehr fïr wiss. Zonl.. 'Tom AIV., 1875.

The Branchiura are often placed near the Caligida, but they differ from them and from the true Copepoda in several essential particulars. In the general body form they certainly resemble the Caligidee except in the abdomen, which is split into two plates (caudal fins). Their internal structure, however; and the structure of the appendages distinguish them from the above-mentioned parasitic Crustacea. A large suctorial tube projects above the mouth, and in it are concealed finely serrated mandibles and styliform maxille. A little above this proboscis there is inserted a long cylindrical tube, which terminates in a retractile styliform spine, and contains the ducts of a pair of glandular tubes said to be poison glands. Powerful organs of attachment are placed on each side of and beneath the mouth ; they consist of two parts-(1) of an anterior pair of appendages which correspond to the anterior maxillipeds and are in Argulus modified into large sucking discs, the hook-bearing terminal portion being reduced ; and (2) of a posterior pair, which corresponds to the second pair of maxillipeds, and is provided with numerous spines on its broad basal portion, a tactile protuberance and two curved terminal claws at its extremity.

Fic. 347.- Young male of Argutus foliaceus. A^{\prime}, Anterior antennæ; $S g$, sucker (anterior maxilliperl); Kf $f^{\prime \prime}$, maxilliped; Sf, swimming feet, R, rostrum ; St, spine ; D, intestine; T, testes. Next to these come the four paired swimming feet of the thoracic region, which, with the exception of the last, are, as a rule, covered by the sides of the cephalo-thoracic shield. Each of these consists of a large many-jointed hasal portion, and two mech narrower rami, which are beset witly long swimming setre and in their form and setigerous investment are not unlike the biramous appendages of the Cirripedia, being like them derived from the Copepod-like feet of the larva (fig. 347).

The intermal organization recalls that of the I'hyllopoch. The nervous system is distinguished by the great size of the cerelnal gatnglion, and by the vental chain composed of six closely approximated ganglia. In addition to two large compomed lateral eyes, there is present an mumired tri-lobed median eye. The alimentary canal consists of a short arched iscending (esophagus, a wide stonnach with two lateral ramified appendager, and a lectum which rums directly backwards and opens to the exterior in the median indentation of the caudal fin above the two plater, which correspond to the caudal fork. There are two lateral slit-like apertures in the heart, and a long aorta. The entire surface of the cephalothorax functions as a respiratory organ. There seems, however, always to be a specially strong current of blood in the caudal fin, so that this part of the body may be regarderl as a sort of gill.

Reproduction.-The small, more agile male possesses peculiar copulatory appendages on the posterior swimming feet. The females do not carry their eggs about in sacs in the typical Copepod manner, but fasten them to surrounding objects. The vitelline membrane of the deposited eggs acquires a resicular consistence. The young are hatched as larve, and undergo a metamorphosis.

Fam. Argulidæ, Carp-lice. Aryulus O. Fr. Miull. The anterior pair of maxillipeds modified into large suckers. There is a styliform spine apparatus. 1. foliucrus. L. (Pou de poissons, Baldner) parasitie on Carps and Siticklebacks. A. coregoni Thor., A giganteus Late., Gyropeltis Hell. The maxillipeds end in a claw ; styliform spine absent. G. Kinlari Hell, parasitic on the branchiz of Hydrocymn, Brazil. Gi. Doradis Corn.

Order 4.--Cirripedia.*

Fixed, and for the most part hermaphrodite Crustacea with indistinctly segmented body enclosed ly areduplication of the skin, and a calcareous valved shell. As a rule, there are six pairs of biramons thoracic appendages.

On account of the resemblance of their shell to that of the mussels, the Cirripedins were held to be Molluses until Thompson and Burmeister, by the discovery of their larve, satisfactorily proved that they belong to the Entomostraca. They are enclosed in a mussel-

* Compare S. V. Thompson, " Zoologieal rescarches." Tom. I., 1829. H. Burmeister, "Beitriage zur Naturgesehichte der Rankenfiissler." 1832. Ch. Darwin, "A monograph of the Sub-Class Cimipedia," 2 vol., London, 1851-185t. A Krohn, "Beolachtungen iiber die Entwiekelung der Cirripedien". Am hir fiü Nuturyesch 1860. U. Clans. "Die Cypris-ithmliehe Lave der Cinizedien, ctc," Marburg, 1869. R. Kossmann, "Sinctoria mad Lepadina," Würzburg, 1873.
like shell composed of several (4,5 or more) pieces. These pieces, which originate by the deposition of calcareous matter in the chitinous covering of a large reduplicature of the skin (mantle), are distinguished as souta, terga, and carina. The animal is invariably fixed by the anterior end of the head, which in the Lepardicte (fig. 348 , a) may be drawn out into a long stalk projecting freely from the shell. In the Bulanidce, which are without the stalk (fig. 348, b), the body is surrounded by an external calcareous tube, usually composed of six pieces; the aperture of the tube is closed by a sort of operculum formed of calcareous plates lying inside (fig. 348, b). In

Fig. $34 \mathrm{~s}-a$, Lepar after removal.of the right shell. $A A^{\prime}$, Anterior antennæ at the end of the stalk ; C, carina; $T e$, tergum ; $S c$, scutum ; $M k$, oral cone ; F, caudal fork; P, cirrus or penis; M, muscle. b, Bulanus tintimubulum (after Ch. Darwin), one-half of the sbell has been removed; Tu, Section of the outer shell ; Ov, ovary; Od, oviduct; Oe, opening of oviduct ; $A d$, adductor muscle ; $S c$, scutum ; $T e$, tergum ; A^{\prime}, anterior antennæ.
both cases the attachment is effected principally by the hardening of the secretion of the so-called cement gland, which opens on the penultimate joint of the small and delicate anterior antenne; this joint being dilated to form a sort of sucker. The body, which is surrounded by the mantle and its shell-plates, lies with its hinder region stretched upwards so that the appendages, which are used to cause currents in the water, may be protruded from the slit-like space left on the ventral side between the paired scuta and terga.

Appendages and external features.-A head with antennæ and
jaws can be distinguished from the region of the hody (thonax) bearing the binmons appendages, but there is no distinct bomedary between these two regions. The anns is situated at the extrennty of the suall stump-like abdomen, which succeerls the thorax and is often only indicated by two caudal appendages. Posterior anteuna are invariably absent, while the auterior pair persists, even in the adult, as small organs of attachment. The oral apparatus is situated on a ventral prominence of the cephalic region, and consists of an upper lip with palps, two mandibles and four maxilla, of which the two last unite to form a sort of under lip. On the thorax there are

Fic. 349.-The organization of Lepas, after removal of the integument. cid, Cement gland and duct; L, liver ; T, testis ; V, d, vas defereus ; $O v$, ovary; Od, oviduct; $C f$, thoracic appendages. Other letters as in fig. 318. usually six pairs of many-jointed binamous appendages, the elongated cirriform rami of which are richly beset with hairs and setæ and serve to set up currents in the water in which the particles of food are brought to the animal. The stump-shaped abdomen bears an elongated cirrus, which is bent towards the ventral surface between the thoracic appendages, and constitutes the male copulatory organ. There are numerous and rery peculiar variations in the shape of the whole body. Not only may the deposition of calcareous matter in the mantle be wanting, and the biramous thoracic appendages be reduced in number or eren absent, but the mouth parts and the appendages may also be lost (Peltogastridu), and the body may be reduced to the form of an unsegmented tube, sace, or lobed disc.

Nervous system and sense
organs. The Cirripedia possess a paired cerebral ganglion and a ventral chain of ganglia, of which there are usually five pairs, hut which are sometimes fused to a common ganglion mass (Bulanidee). There is a double eye, which, although rudimentary, corresponds to the unpaired Nauplius eye.

An alimentary canal is absent only in the Rhizocephalde. In the

Lepadiclee and the Balanidce, the alimentary canal consists of a narrow eesophagus, a saccular dilated stomach provided with several cecal (hepatic) diverticula, an elongated chyle-forming intestine, and a shor't rectum, which is only sometimes clearly marked off from the intestine (fig. 349). The Rhizocephalcu (fig. 354, a), which are without an alimentary canal, possess root-like processes of the parenchyma, which ramify in the viscera, especially the liver of Decapods, and absorb from them endosmotically the nutritive juices (as in Anelasma).

Special glandular organs, the so-called cement glands (peculiar to the Cimipedia), open on the sucker of the persistent (anterior) antennæ; the animal is fixed by their secretion, and the Rhizocephala alone seem to be entirely without them.

A heart and vascular system seem to

 be wanting in all cases. The tubes which are present on several thoracic appendages of many Lepudidce are regarded as branchiæ, as are also two plicated lamella on the interior of the

FiG. 350,-Alcippe lampas (after Ch. Darwin.) a, Male, very strongly magnified ; A^{\prime}, antennæ ; T, testis ; T_{8}, seminal vesicle ; D, rednplicature of the skin; O, eye; P, penis. U, Longitudinal section through female ; F, maxilliped; $C f$, the three pairs of legs; Ov, orary. mantle of the Bulanidce.

Generative organs.-The Cirripedia are, with a few exceptions, hermaphrodite. The testes are branched glandular tubes, and lie at the sides of the alimentary canal (fig. $349, T$). The vasa deferentia which dilate into vesicule seminales reach to the base of the cirriform penis, in which they unite to form a common ductus ejaculatorius opening at the point of the penis ($\left.V_{d} d\right)$. The oraries in the Balunidce lie in the basal part of the body cavity (fig. 348, $O v$) ; in the Lepadidue (fig. 349) they are moved into the prolongation of the head, which is known as the stalk. The oviducts, according to

Fig. 351.-a Later Nauplius larva. A, anus; O1, proboscis with mouth ; II, frontal loons ; D, intestine ; $A^{\prime}, A^{\prime \prime}$, 1st and end antenna; Maf, mandibular foot (third pair of appendages). b, Metananplius larva of Balanus before tho monit. Benenth the skin are the rudiments of the lateral eyes (O) and all the appendages F^{1} to $F^{i v}$ of the Cypris stage ; Fy, froutal filament; O^{\prime}, unpaired eyo ; $D r$, gland cells of the anterior horns ; A^{\prime}, the antenme with suctorial dise ; Mx rudiment of maxilia.

Krohn, ojen on at prominence on the hasistl joint of the anterior pair of thoracic appendages. The exgss accumulate in the avity between the mantle and the body in large thin-walled flattened sacs, which, in the Lepadide, are attached to a fold of the mantle and are packed together on the dorwal surface of the animal.

In spite of the hermaphroditism, there are, according to Darwir, in certain genera (Illa, Scalpellum) very simply organised dwarfed males of peculiar form, the so-called complemental males, which are attached like parasites to the body of the hermaphrodite. There are also diecions Cirripedes with a strongly mirked dimorphism of the sexes. This is the case with Scalpuct-
lum ornatum and Ibla C'umingii; also with the remarkable genera Ciryptoplialus and Alcippe (fig. 350). The males of these forms are not only small and dwarfed, but also, according to Darwin, have neither mouth, digestive canal, nor thoracic appendages. As a rule, two or sometimes more attach themselves to the body of the female.
Development.-The eggs, while still within the brood-pouch, undergo an irregular segmentation. The clear cells arrange themselves around the food yolk in the form of a blastoderm, the ventral side of which soon becomes considerably thickened in consequence of the appearance of the mesodermic layer. The larva leave the egg as N:urplii (fig. 351, a, b), of oval or pear-shaped form, with unpaired frontal eye, lateral frontal horns, and three pairs of appendages, of which the anterior is simple, the two next biramous and closely beset with swimming setæ.

After several moults, the larva, which has grown to a considerable size, enters on a new stage of development, the so-called Cypris stage (pupa) (fig. 352). The reduplicature of the skin has the form of a bivalve mussel-like shell, through the gaping ventral edges of which the appendages can be protruded. While the form of the shell recalls that of the Ostracodu, the structure of the borly, so far as the segmentation and form of the appendages are concerned, approximates to that of the Copepocla. The anterior appendage of the Nauplius larva has given rise to a four-jointed antenna, the penultimate joint of which

Fig. 35\%.-Median section through a pupa of $L^{\circ} p a s . ~ A \prime$ Attaching antenna; C, carinat ; Te, tergimm; Sc, scutum; Ov, ovary; G, cerebral ganglion; $G g$, ganglionic chain; D, alimentary canal; $C d$, cement gland; N / k; oral cone ; $A l$, ablomen ; P, rudiment of the penis; M, muscle. has become large and disc-shaped and contains the opening of the cement gland, while the terminal joint bears in addition to tactile setse one or two delicate lancet-shaped olfactory hairs. The frontal horns are transformed into two conical prominences near the anterior margin. Of the two pairs of biramons appendages, those which correspond to the second pair of antenne are calst off, while
the posterior pair becomes the rucliment of the anterior jaws (mandibles) of the oral cone, which is still closerl and on which the first rudiments of the maxilla and moder lip are alrearly visible. The oral cone is followed by the thonacic regrion with six pairs of biramons Copepol-like swimming feet, and a minute three-jointed abdomen, which terminates in two candal appendages and candal setre. The pupa has a large pair of compound eyes at the sides of the unpaired eye-spot, and swims abont by means of its swimming feet. It appears not to take in food. The material necessary for its further changes is stored up principally in the cephalic and dorsal regions in the form of a largely-developed fat body.

After swimming abont for a longer or

Fit. 353.-Young Lepes after disappearance of the two homy valves of the shell and the straightening of the anterior part of the head (stalk), which in the pupa stage is bent. shorter time, the pupa fixes itself by the suctorial dise of its bent antennæ to some foreign body. The parts of the adult Cirripede are now visible beneath the skin, and the cement gland begins to secrete a cement, which hardens and so brings about the permanent attachment of the young animal. In the Lepodidce the region of the head abore and between the antennre grows so much that it projects from the pupal integument, beneath which the calcareous pieces of the shell of the Cirripede can be seen, and after the moulting of the chitinous skin of the pupa constitutes the fleshy peduncle by which the animal is attached, and into which the rudiments of the ovaries project (fig. 353). The paired eyes of the free-swimming Cypris larra disappear, while the umpared pigment spot remains. The mouth parts become fully differentiated, and the biramous swimming feet become short, many-jointed cirriform appendages.

The Cirripedia are marine animals. They attach themselves to various foreign objects. They are found fixed, usually in groups, to logs of wood, rocks, mussel shells, Crustacea, the skin of whales, etc. Some, as Litholrya, Alcippe, and the Cryptopialida, are able to bore into Lammellibianch shells and Corals, while the Rhizocephata are panasitic on Crustacea. In the Rhizocephala the hody is saccular,
and the animal loses all its appendages and its, alimentary canal, and extracts the juices of its host (Decapoda) by means of root-like processes (fig. 354).

1. Pedunculata. There is a peluncle and six pairs of biramous feet ; the mantle has usually carina, scuta, and terga.

Fam. Lepadidæ. Peduncle well marked, and not provided with calcarcous plates. There is a membranous mantle, which, as a rule, is provided with five shell plates, of which the scuta and terga lie behind one another (fig. 348, u). Lepas L. (Anatifa Brug.), L. fascimularis Ellis. (ritrera Lam.) Fuand from the Northern Seas to the South Sea. L. anatiferra L., cosmopolitan. Conehoderma

1:co. 354.-a, Sacoulimu purpurea (after Fr. Müller). Oe, Aperture of the mantle sac; W, root-like processes; K, genital aperture. b, Nauplius larva of Sacculina. $A^{\prime}, A^{\prime \prime}$, Mdf, appendagcs. e, Pupa of Lerncodiscus porcellance (after Fr. Müller). F, The six pairs of legs ; $A b$, abdomen ; A^{\prime}, attaching antennæ; O, eye.

Olf. (Otion, Cimeras Leach.), C. viryata Spengl., frequently attached to ships. C. aurita L., Anelusma Darwin. The stalk is provided with root-like processes. which grow into the skin of Stupalitia. -1. squaticola Lovén.
Fam. Pollicipedidæ. Peduncle not sharply distinct, sealy or hairy. The shell plates very strong, numerous. The seuta and terga lic elose to one another. There are sometimes complemental males. Pollicipe's cormucopia Leach., Ocean and Mediterranean. Sculpellum vulgare Leach., North sea and Mediterrancan. Sc. arnutum Gray, South Afriea. Illou quudrivalris Cuv., South Australia. .J. Cumingii Darw., Philippines.
2. Operculata. The perluncle is absent or rudimentary. The body is surrounded by an external ring of phates at the extrenity of which the sental and terga form an operculum, which is usally freely movable and provided with depressor miscles (fig. 348, b).

Fam. Balanidæ. Sicuta and terga freely movable and articulating with one another. The gills are formed each of a fold. Bulauns: tintinumbulum L. Widely distributed aud found in a fossil form. B. inforotisus Darw. Found in brackish water.

Fram. Coronulidæ. Scuta and terga freely movable, but not articulating with one another. The two gills formed each of two folds. Tubicinella trachentis shaw., South Siea. Coromulu bulenuris. L., Antarctic Ocean. (': diudema L., Aretic Oceau.
3. Abdominalia. The irregularly segmented body is enclosed in a flask-shaped mantle, and bears on its terminal portion three pairs of ciriform feet. Mouth parts and alimentary canal completely developed. The sexes are separate. They live as parasites buried in the calcareous shell of Cirripedia and Mollusca.

Fam. Alcippidæ. With four pairs of feet, of which the first pair is palpiform, and the two last are uniramous and composed of few elongated joints. The sexes are separate. The female bores into Molluse shells. The male is dwarfed, and is without mouth, stomach, or feet. Alcippe lumpus Hanc., bores into the columella of the shells of Fusus and Buccinum. Found on the coast of England.

Fain. Cryptophialidæ. They have three pairs of feet at the posterior end of the body. Croyptophinhus Darw., sexes separate. ('r. mimutus Darw., in the shell of Concholepas Peruciunu, found on the west coast of south America. Kochlorine hamata Noll, lives in excavations in the shell of Maliotis.
4. Apoda. The body is segmented, and is composed of eleren rings. There is no special reduplicature of the mantle. The shape resembles that of a maggot. The attaching antenna are elongated to the form of a band. The mouth is adapted for sucking, and has mandibles and maxillæ. Feet absent. The digestive canal is rudimentary. They live parasitically in the mantle of other Cirripedia. They are hermaphrodite.

Fam. Proteolepadidæ with the single gemus Proteolepus. Darw.: Pr. Jiveincta Darw., West Indies.
5. Rhizocephala* (Suctoria). Body tubular or saccular, without segmentation or appendages; with narrow, short peduncle for attachment, from which branched, root-like filaments arise. The

* W. Lilljeborg, "Les genres Liriope et Peltogaster,", louta actu rey. sur". scirn. Tpsai.. Ser, 3, vol. iii., 1860. F'r. Mitller, "Die Rhizucephalen." Arehie fur -luturgesch., 1862 and 1863.3. R. Kossmam, ." Beitraige zur Anatomie der
 Neue Folge, 'Tom. IT.
latter pierce the body of the host, and carry nowishment to the parasite. Mantle saccular, and without calcareous plates, with nalrow aperture which can be closed. Mouth and alimentary canal absent. The testes are usually paired, lie between the ovaries, and open into the brood-pouch. The Rhizocephala live principally as parasites on the abdomen of the Decapoda, and wind their root-like filaments around the viscera of the latter.

Fam. Peltogastridæ. Peltogaster puguri Rathke. Surculina carrini Thomps., Lerncodiscus: porrellunce. Fx. Mïll., Brazil.

II.-MALACOSTRACA.

The Malucostrace differ from the Entomostraca in possessing a constant number of segments and paired appendages. The boundary between the head and thorax cannot be absolutely fixed on account of the varying number of anterior pairs of legs which are modified to form jaws. These regions are composed of thirteen segments altogether, and bear the same number of pairs of appendages, while the abdomen, which is always distinct, includes six segments and the same number of paired limbs and terminates with an anal plate (telson) derived from the terminal portion of the body.

Amongst the living Malacostraca there is, however, a single group of forms (Nebalia) (fig. 355, a, b), which differ in having a larger number of abdominal segments. They have, in addition to the six abdominal segments with appendages, two segments without appendages, and an elongated Plyllopod-like caudal fork. This remarkable form was for a long time regarded as a Phyllopod, and in many of its characters represents a connecting link between the Phyllopoda and the Malacostraca. The structure and segmentation of the head and thorax resembles that of the Malacostraca, but the terminal region of the abdomen does not present the special form of a caudal plate or telson. In Nebalia we probably have to do with an offshoot of the Phyllopot-like ancestors of the Malacostraca, which has persisted to the present time.

The head includes in all cases, behind the mandibular segment on which two paragnathi form a kind of underlip, the segments of two pairs of maxille. The latter preserve more or less the characters of Phyllopod feet. The head, therefore, consists of five segments, each with its pair of appendages, viz, two pairs of antenne, one pair of mandibles, and two pairs of maxille. It is followed by the thorax,
which is composed of eight segments. The cight pains of thonacie appendages may have an exactly similar shape, and possess two separate and many-jointed 1ami. This form of thoracic appendage is chameteristic of the Schizopoda: in Nebalia* the thomacic:appen-

Fig. 355.-Nebalia Geoffroyi, strongly magnified. a, Female; b, male; R, rostrum ; O, stalked eyc ; M, crop; D, intestine ; S, shell G, vas deferens.

[^86]dages closely resemble the typical Phyllopod limb. As a rule, however, some of the anterior thoracic legs take part in preparing the food and have a form intermediate between maxille and thoracic legs. Such are called foot-jazs or maxillipeds. In the Arthrostraca the anterior pair of thoracic appendages only are so modified, and the segment bearing them joins the head ; the thorax is, therefore, in this group composed of seven segments, each with its pair of appendages. In other groups of Malacostracca the next or two next pain's of thoracic legs have the form of maxillipeds, so that there is no sharp division between the head and thorax. The latter is, at least partially, covered by a shield-like reduplicature of the skin, which morphologically corresponds to the Phyllopod shell and forms a more or less extensive carapace, which fuses with the back of the thorax, and under which the posterior, rarely all the thoracic segments may remain separate as free rings.

Order 1.-Arthrostraca.*

Malacostraca with lateral sessile eyes, usually with seven, more rarely with six or fewer separate thoracic segments, and the same number of pairs of leys. Without a reduplicature of the skin.

The head bears four antennæ, the two mandibles, four maxillæ, and a pair of maxillipeds; in all six pairs of appendages. A small bilobed plate, distinguished as the under-lip, behind the pair of mandibles, marks the boundary of the mimury region of the head. The two pairs of maxillæ as well as the maxillipeds are secondary cephalic appendages derived from the thoracic region of the body.

Behind the head there are usually seven free thoracic rings with the same number of pairs of appendages, which are adapted for creeping or swimming. The number of distinct thoracic segments is in rare cases reduced to six (Tanais) or five (Anceus), the anterior or the two anterior segments of the thorax becoming intimately connected with the head. In the latter case a more or less extensive cephalothoracic carapace is formed. The abdomen which follows the thorax includes, as a rule, six segments bearing limbs, and a simple or split plate without appendages and representing the terminal segment. The number of the abdominal segments and appendages may, however, be reduced (Isopodit), and the entire abdomen may

[^87]even be reduced to an mimegmented stmmp-shaped ippendage (Lamodipodra).

The nervous system consists of a cerehal ganglion and a sentaal ginnghomie chain, which is most distinctly composed of two lateral hatres. In the Isopode there is also :m mpaned visceral nerve. The two eyes are always sessile, compound eyes, with smooth or facetted cornea; they are never stalked. Delicate olfactory fibres are often present on the anterior antenna, and are especially numerons in the mate sex.

The alimentary canal begins with a shor't resophagris, which prases upwards to open into a wide crop, supported by firm horny hands and often armed with strong chitmous plates. The crop learls into a long intestine provided with two or three pairs of tubular hepatic glands. The rectum, which may possess one or two tubular appendages (probably urinary), opens at the posterior end of the body.

The antennal gland opens on the basal segment of the posterior antenna, of ten upon a conical protuberance.

Vascular system.-A heart is always present as the central organ of the circulation. It may either have the form of a tube extending along the whole length of the thorax (Amphipoda); or it may be saccular and placed in the abdomen (Isopodu). In the first case the gills are placed on the thoracic feet as tubular appendages: in the latter, on the other hand, they are placed on the abdomen. From the heart the blood passes through an anterior and posterior aorta, and usually through lateral arteries. The vessels conduct the blood into the body cavity, whence it returns in regular streams to the lateral paired slits of the heart.

Generative organs.-The Arthrostraca are of separate sexes. The males are frequently distinguished from the females by the modificition of certain parts of the appendages to form prehensile organs, hy a greater development of olfactory hairs on the anterior antenna, and by the position of the sextal and copulatory organs. It is rare to find a strongly marked dimorphism of the sexes (Bopyrus, Praniza). The generative organs open either at the posterior part of the thorix or at the base of the abdomen ; the female always on the antepenultimate pair, the male on the last pair of the thomacic appendages or between the first of the abdomen (Isopoda). The or:uries are two simple or branched tubes with the same number of oriducts. The testes similaly seem to be composerl of one (I mphipoda) or more (3) pairs of tubes (Isopoda), the efferent ducts of which (rasia doferentia) either remain separate or mite to form a copmatory
organ. Appendages of the legs may also be present as additional aids to copulation. The mature ova are, as a rule, carried about by the female in brood pouches formed by the lamellar appendages of the thoracic feet (oostegites). Development as a rule takes place without metamorphosis, but the form and appendages of the young animal not unfrequently differ from those of the adult animal (Phronima). The segments and the appendages may even be incomplete in number after birth (Isopocla).

Fossil Arthrostract are found in the Oolite (Archcooniscus). Prosoponiscus occurs in the Permian, Amphipeltis in the Devonian.

1. Sub-order:-Amphipoda.*

Arthrostraca with laterally compressed body, with gills on the thoracic feet and an elongated abdomen, of which the three anterior. segments bear the swimming feet, while the three posterior bear posteriorly directed feet cudapted for springing (fig. 356).

The Amphipoda are small animals, being only in rare cases several inches long (Lysianassa magellanica). They move in the water principally by springing and by swim-

Fig. 356. - Gemmarıus neglectus (after G. O. Sars), with eggs between the brood lamellæ (oostegites) on the thorax. $A^{\prime}, A^{\prime \prime}$, the two antennæ; $K f$, maxilliped; F^{\prime} to F^{7}, the seven pairs of thoracic appendages ; $S f^{\prime \prime}$, the first swim- '
ming foot of the abdomen. ming. The head, which is sometimes small (Crevettina, fig. 356), sometimes large and then much swollen (Hyperina, fig. 35T), is sharply distinct from the thorax and is fused with the first of the sever thoracic segments only in the aberrant group of the Lcemodipoda.

The two pairs of antenne usually consist of a short strong shaft

* Besides the older works of De Geer, Rösel. M. Edwards, ete.. eompare C. Spence Bate, "On the Morphology of some Amphipoda of the Division Hyperina," Ann. of Sat. Hist., Scr. 2. vol. xix., 1857. C. Spence Bate. "On the nidification of Crimstacen," Aum. of Nut. IIist., Nor. 3. rol. i. C. Spence Bate, \because Catalogue of the specimens of Amphipodous Crustacea in the ecilleetion of the British Mascum," Loudon. 1862. E. van Bencden et Em Bessels. "Mémoire sur la formation du Blastorlerme chez les Amphiporles, etc," Bruxelles. 886 . C. Clans, ". Der Organismus der Phronimiden, Arlefitron "uzz ilem Zoul. Institut. der Vhicervitiat Wirn. 'Tom II.. Isig.
and it long multiartienlate flagellm, which, however, may be more or less rudimentary. The anterior antemae, which are always longer in the male, often bear a short accessory flagellum and present nunerous moditications in their special form. In the Myperina they are very short in the female; while in the male they are of consirlerable length and are closely beset with olfactory hairs. The posterior antenme are frequently longer than the anterior: in the male T'yphide they are folded in a zigzag fashion, and in the Coropheirde

G. 357.-Pleronimut sedentaria, a, female ; b, male. O, eyes ; $A^{\prime}, A^{\prime \prime}$, the two pairs of an tennæ ; $K f$, jaws ; D, intestine ; H, heart and aorta; K, gills; Ov, ovary ; N, nervous system ; Dr, glands in the chela of the fifth pair of legs; G, genital opening.
are modified to form strong pediform appendages. In the female, on the contrary, they may be degencrated and representerl only by the basal joint (Pleronima) (fig. 357, a and b).

The mandibles are powerful biting plates with a sharp, usually toothed erlge and a lower masticating process. They usually possess a three-jointerl palp, which is occasionally reduced. The anterior bi-
lobed maxillie also have as a rule a short, two-jointed palp, while the maxille of the second pair are reduced to two lamelle of considerable size attached to a common base. The maxillipeds fuse to form a sort of underlip, which is either tri-lobed (Hyperina) or bears upon a common basal portion an internal and external pair of lamellie, of which the latter may be considered as the basal joint of a large multiarticulate and frequently pediform palp (Crevettina and Lcemodipoda).

Delicate lamellæ or tubes, which are attached to the coxal joints of the thoracic legs, function as gills; the active movements of the abdominal swimming feet cause a constant renewal of the water around them. In the female there are in addition to the gills lamellar plates (oostegites), which are applied together under the thorax to form a brood-pouch.

The males are distinguished from the females not only by the absence of the oostegites, but chiefly by the stronger development of the prehensile hooks on the anterior thoracic feet and the different formation of the antenne.

The eggs pass into the brood-pouch and there derelop. The yolk sometimes (G. locusta and other marine species) undergoes a complete segmentation. Sometimes (G. pulex), after a superficial seg mentation, a peripheral cell layer is separated, which derelops into a delicate blastoderm beneath the egg membrane. A rentral primitive streak is then formed, and on the dorsal side, beneath a differentiation which has been erroneously taken for a micropyle, a peculiar globular organ makes its appearance ; this is the first rudiment of the cerrical gland (dorsal organ), which is confined to embryonic life. The appendages are dereloped from before backwards on the ventrally flexed body of the embryo. The young animals usually possess at hatehing all their appendages and in all essential points have the structure of the adult amimal, but the number of joints of the antenme and the special form of the legs still present differences. In the Hyperina alone the just hatched young may be without abdominal feet and differ so much in their form from the adult that they may be said to undergo a metamorphosis.
The Amphipoda for the most part live in fresh and salt water and lead au independent life (the presence of Arctic species in the Swedish and Norwegian seas is very interesting). Some, howerer, live in tubes (Cerapus), others in holes gnawed in wood (Cheluna). The large size of the deep-sea forms is of special interest; : amongst these a Giammarid, allied to the genus. Iphimediu, and Cystosoma Neptuni (HIyperithe) become several inches in length. The Myperina
live principally in transparent mandine ammals, especially in Medusen, and may, as the fomale I'homima seclentarien, take up their aborle with their entire hool in tramsparent I'yrosome, whose internal parts they eat up. The Cignamille among the Lamoriporla are panasitic on the skin of whales.

Tribe 1.-Læmodipoda.

Amphipodu with cervically placed anterior legs and rudimentary apodel abdomen.

The anterior thoracic segment is more or less closely fused with the head and the anterior pair of legs shifted on to the neck. The maxillipeds are modified to form a quadripartite under-lip with long palps. The branchise are usually confined to the third and fourth thoracic segmentrs, the legs of which are often rudimentary or are altogether wanting. The feet end with hooks for attachment. The abdomen is small and reduced to a short protuberance destitute of appendages.

Cramella Tinearie L. Body elongated and thin. They are parasitie on Hydroids and colonies of Bryozon. ('yamus ceti L. Borly broad and flat ; abdomen quite rudimentary; parasitic on the skin of Cetacca.

Tribe 2.-Crevettina.

Amphipodn with small head, small eyes, and multicarticulate pedifor"n maxillipeds.

Both pairs of antemmare long and multiarticulate; in the male they are larger than in the female. The upper or anterior antemse are usually, as in Gammarus, the longer ; their shaft is composed of several joints and bears a small accessory flagellum as well as the principal one. The contrary may, however; occur, as in Corophiom, where the posterior antemre are elongated and pediform. The maxillipeds in all cases fuse together at their base and form a lirge under-lip, usually with four lamella and two jointed pediform palps. The coral joints of the thoracic legs have the form of broard and large epimeral plates. The abdomen has always the full number of segments. The three posterior pairs of abiominal feet (uroporla) are well developed and often much elongated. This group, which includes an astonishing variety of forms, is principally distributed in the colder seas.

Fam. Corophiidæ. The looly is not laterally compressect. The posterior antenne are more or less pediform. The coxal joints of the legs are frequently very small. They move rather by walking. Complium longicorne liabr.. dier
passages in mud. Cerapmsitulularis Say., lives in tubes. Podocerus cariegutus Leach., English coast. Clechura terebrans Plil. is allied here, gnaws, with Limnorin lignorm, wood-work in the sea. North Sea and Mediterranean.
Fam. Orchestiidæ. Anterior antennæ usually short, always without accessory ramus. The posterior pair of uropoda are unbrauched and are shorter than the preceding pairs. They live on the shore, especially on sandy beaches, and move by springing. Tulitrus saltator Mont. $=$ T: laousta Latr. On the sandy coasts of Europe. Orchestia littoret Mont., North Sea.

Fam. Gammaridæ. The anterior antennæ often have a second ramus, which is always louger than the shaft of the posterior. The coxal plates of the four anterior pairs of legs are very broad. They move more by swimming than by springing. G'ammurus pule, L., G'. furiatilis. Rös., G. mariuи." Leach. In the blind Niphargus Schiödte the crystalline cones and cyc pigment are wanting. I. puteanus Koch., in deep springs and lakes (Lake of Geneva). Lysiunassa Costre Edw., Mediterrancan. L. atlantica Edw. L. magellaniea Lillj.

Tribe 3.-Hyperina.

Amphipoda with large swollen head und large eyes, usually divided into frontal and lateral eyes. They have a pair of rudimentary muxillipeds functioning as underlip.

The antenne are sometimes short and rudimentary, sometimes of considerable size, and in the male are elongated into a multiarticulate flagellum (Hyperidce). The posterior antenna may in the female be reduced to the basal joint enclosing the glandular tube (Phromina); in the male, on the contrary, they are folded in a zigzag, after the manner of a carpenter's rule (Platyscelince). A paired auditory vesicle may be present above the brain (Oxycephalus, Rhabdosoma). The maxillipeds form a small bi- or tri-lobed under-lip. The paired legs end in some cases in a powerful chela. The caudal styles are sometimes lamellar and fin-like, sometimes styliform. Development takes place by metamorphosis. They live principally in jelly-fish, and swim very rapidly.

F'am. Hyperidæ. Head globular, almost entirely occupied by the eyes. The two pairs of antennæ have a multiarticulate shaft; the flagellum longer in the male. The mandible has a three-jointed palp. The fifth pair of feet is generally formed like the sixth and seventh, with claw-like terminal joint. Hyperia (Lestrigonus Edw.) medusurum O. Fr. Mïll. (Fr. galba Mont. = H. Latreilli Elw.) with Lestrigonus cxuluns Kr. as male, North Seas.

Fam. Phronimidæ. Head large, with projecting rostrum and large divided eyc. The anterior antenme are short in the female, with only two or three joints, in the male with long multiarticulate flageilum and a shatt closely beset with olfactory hairs. The thoracic limbs have in some cases powerful chelæ. Phrosina nicaensis Jidw., Phronima sedentaria Forsk. The female lives with its offspring in PYyrosemer and Diphyidce, Mediterranean.

Fam. Platyscelidæ. Both pairs of antenno hidden beneath the head; the anterior are small ; in the male with much swollen bushy shaft, and short,
slender flagellum composed of few joints. The posterior antemas are in the male very long and folded three to four times together in a zigzag fashion ; in the female they are short and straight, sometimes quite reduced. The basal joints of the fifth and sixth pairs of legs are usually enlarged into great lamelle, which cover the thorax. The seventh pair is gencrally rudimentary. E'utyphis (T!yphis Risso) mevides Risso (Platysedus servatus Sip. Bate), Mediterranean. Oreycephalus piscator Edw., Indian Ocean.

2. Sub-order:-Isopoda.*

His. 358.- Ascllus aquaticus (after G. (). Sars). Female with brood pouch, seen from the ventral side.

Arthrostraca with usually broad, more or less arched body, with seven free thoracic rings, with lamellar leys functioniny as branchice on the short-ringed, often reduced abdomen.

The structure of the body, which is flat in shape and covered by a hard, usually encrusted integument, presents a great agreement with that of the Amphipoda, to which the in many respects peculiar Tanaide are most nearly allied. The abdomen of the Isopods is, however, usually much shortened and composed of six short segments, which are often fused with one another ; it terminates with a large caudal lamella. The abdominal legs are only exceptionally (Tanaidce) swimming feet; as a rule they have the form of branchial lamellæ. The sixth pair may be fin-like or styliform. The anterior antenne are, with a few exceptions, shorter than the posterior and external antenne ; in lure cases (Oniscidce) ther become so much reduced that they are hidden beneath the cephalic carapace. In exceptional cases only (I pserules)

* H. Rathke, "Untersuchungen iiber dic Bildung und Entwickelung der Wasscrassel," Leiprig, 1832. Lereboullet, "Sur les Crustacés de la famille des Cloportides, etce", Mém. du. Musemm d'hist. nat. de Strasbourg, Tom. IV.. 1850. N. Wagner, "Recherches sur le système cireulatoire et les organes de la respiration chez le Porcellion élargi," Ann. dess se. nat., Ser. 5, Tom. IN... Ierin. A. Dohrn, "Dic Jmbryonalentwickelung des Asellus aquaticus," Zeitschr fiir" riss. Zanl., Tom. XVIl., 1867. N. Bohretzky, "Zur Embryologie des Oniscus murarius," Z/it.schr. für wiss, Zonl., Tom, XX1V., 1874.
they bear two flagella. As in the Amphipoclu, pale, plumous setx and olfactory cones are present on the antennw. The mouth parts are in some parasitic Isopode modified for piercing and sucking. The mandibles (except in Bopmpide and Oniscidce) often bear a threejointed palp. On the other hand, the two pairs of maxillæ, which are usually bi- or tri-lobed, are in general without the palpiform appendage. The maxillipeds form a sort of underlip, but present great differences in the arrangement of their parts (fig. 358).

As a rule the seven pairs of thoracic legs are adapted for walking or attachment, and in the female some of them are provided with delicate membranous plates (oostegites) which form a brood pouch. They never bear gills. The branchial function is discharged by the delicate internal rami or endopodites of the abdominal limbs (pleopods), the anterior pair of which is frequently modified to form a large operculum orerlying the following pairs. In certain of the terrestrial Isopods (Porcellio and Armadillo) the opercular plates of the tro anterior pairs of abdominal limbs contain a system of air spaces whicl appear to assist respiration. The heart, unlike that in Amphipods; lies (except in Tcuäiclue) in the posterior thoracic segments or in the abdomen.

Fig. 359.-Gyge Uranchialis (after Cornalia and Panceri). a, Female seen from the ventral side ; $B r \cdot$, oostegite ; K; branchiæ. U, Abrlomen of the same strongly magnified, with adhering male.

The sexes are (except in Cymothoidce) separate, and the position and arrangement of the generative organs correspond in general with those of the Amphipoda. The sexes are distinguished by external sexual churacters, which in some cases (Bopypitce) may lead to a strongly-marked dimorphism (fig. 359, a, b). Tn the male three tubular testes unite on either side to form a dilated seminal vesicle, from which the rasa deferentia are given off. The latter are frequently separate along their whole length and, at the end of the last thoracic segment, each of them enters a cylindrical appendage
(Asellus) or they mite together into it common median penis which lies at the base of the abdomen (Oniscider). A pair of styliform or complicated, hook-bearing appendages of the anterion abcominal fert are to be looked upon as accessory copmlatory organs; in addition to these a parir of ontwardly turned chitinons rods on the immer :ide of the second pair of feet may also be present (Oniscitcher). The Cymothoide are hermaphrodite * (Bullar), but the sexual orgrans become ripe at different times. In the young stage these animals function as males, and possess three pairs of testes, two rudimentary ovaries internal to the testes, and a paired copulatory organ into

Fig. 360.-Female of Cymothoa Banksi (after 11. Edwards). Brl, oostegite. U, Sexual organs from a Cymuthoa cestrides, 13 mm . in length (after P. Mayer). T, The three testes; Oc, ovary; Ocl, oviduct; $F l$, vas deferens ; P, penis. which the two vasa deferentia open (fig. 360). After a sulbsequent ecdysis and after the female glands have dereloped at the expense of the gradually diminishing male glands, the oostegites, which in the meantime have been developer, become free on the thoracic legs and the copulatory organs are thrown off: Henceforward the animal functions only as a female.

The embryonic development begins after the entry of the eggs into the brood pouch and is introduced by a centro-lecithal segmentation, the central part of the egg (food yolk) remaining it first unsegmenterl. The blastoderm soon consist:s of a peripheral layer of naked nucleated cells and produces by a rapid growth of its constituent cells the ventrally placed germinal bands, at the anterior end of which the cephalic lobes are first marked off. The rudiments of the trifoliate apperidages (dorsal organ) of the Isopod embryos are next formed as two prominences on the cephatic lohes. The physiological and morphological meaning of these structures has not yet been explained. Of the appendages the two pains of antemma

[^88]are the first formed. After these have made their appearance, a new cuticle, the larval skin corresponding to the Nauplius stage, is formed (as also is the case in Ligia according to Fr. Miiller). While the other appendages are successively developed, the caudal region of the embryo becomes bent towards the dorsal surface. Of the embryonic membranes the chorion is the first to disappear, then the cuticle of the blastoderm, and finally, when the embryo is fully developed, the Namplius skin.

The young animals, when they become free in the brood-chamber (fig. 361), are still without the last pair of thoracic legs ; in the Tancïclee the abdominal feet are also wanting. They undergo not inconsiderable changes in the form of the appendages until the attainment of sexual maturity. The Isopoda may therefore be said to undergo a metamorphosis which is most complete in T_{u} nais, Praniza (Anceus) and the Bopyridce.

The Isopoda live some in the ser, some in fresh waters, and some on land (Oniscidce). They nourish themselves on animal matters ; many of them are parasitic (seldom complete endoparasites, Entoniscus) principally on the skin and in the buccal and branchial cavities of fishes ($C y$ mothoidce) or in the branchial carity of prawns (Bopyridce).

Fig. 361. - Larva of Bopyrus virbii, with six pairs of thoracic logs (after R. Walz)UTV, Under lip; Als, first abdominal segment; $\Lambda^{\prime},-\boldsymbol{-}^{\prime \prime}$, two pairs of antennæ; Mrdu. mandible.

Tribe 1.-Anisopoda.*

Body more or less resembling that of an itmphipod. The abdomen with biramous swimming feet (Tanais), which do not function as gills, or with fin-like feet (Anceus).

Fam. Tanaidæ. Tunais dultius Kr., Brazil. Two kinds of males, "smellers and claspers." T. gracilis Kr., Spitzbergen.

Fam. Pranizidæ, Anceidr. Anceus maxilleris Mont. (Pr. cceruleata Desm.), North and West coasts of Europe.

[^89]
Tribe 2.-Euispoda.

Body with seven free thoracic segments and as many pairs of "pppendages. Abdomen relatively short and broad, with abdomiual feet morlified to form brenchial lamellere.

Faun. Cymothoidæ. With biting and sucking mouth parts, broad abdomen with short segments and slield-like caudal plate. The last maxillipeds in the form of an operculum. They live partly as parasites on fisl, and partly as free-living animals. Cymmothou astrum Leach., C. asstroiles Risso, Mcditerranean. Auilocrut meditorranea Leach., Jigu licarainata Leach.., Serolis parado.rı Fabr.

Fum. Sphæromidæ. Free-living Isopertu with broad head and short, very convex body, which ean often be rolled up, in a ball towards the ventral side. Spheroma fossarum Mont., in the l'ontine marshes; nearly allied is the S. granulutum of the Mediterranean. S. setratum Fabr., Ocean and Mediterrancan. It also lives in brackish water.

Fam. Idoteidæ. Free-living Isopoolda with elongated body, biting mouth parts, and a long caudal shield formed of several segments fused together. The last pair of abdominal feet is modificel to form a wing-shaped operculum for the protection of the preceding branchial feet. Inotea entomon L., Baltie.
Fam. Asellidæ. Body flattened; the last pair of abdominal feet (pleopods) are styliform (not shaped like an opereulum). Jara albifrons. Mont., British seas. Asellus aquaticus. L.. fresh water form. A. cavaticu: Seliödte, in deep springs. Limuarria terybrutus. Leael. L. lignornun, gnaws wood-work in the sea.
Fam. Bopyridæ. Parasitie in the branehial ehamber of prawns ; the body of the female is dise-shaped, unsymmetrieal, and without eyes. The males are very small and elongated, with distinetly separated segments and eyes. Bopyrus squillarium Batr., on Palommou squilla.
Here are allied the Entoniscidlo, which are parasitie in the body eavity of other Crustuecu (Cirripelliu, Payuride, and Crabs), Crypptomiscus planarioides Fr. Müll., parasitic on s'ueculinu purpurec of a Pagurus, Brazil. Cr. p!ggmeus. Rathke, parasitie on Peltognster. Entoniscus Porecellance Fr. Miill., lives between the heart and the intestiue of a speeies of Percerluna in Brazil.
Fam. Oniscidæ. Land Isopods. Only the internal lamellæ (endopodites) of the abdominal feet are modified to form delicate branchir. the exopodites eonstituting firm opercula. The two anterior abdominal feet are sometimes provided with air ehambers. The mandibles are without palps. They live mostly in danp places on land. Ligiut sceanica L., on stones and rocks on the sea coast. Oniscus murarius. Cuv., Porcellio seuber Leaeh., A rmadilln vulyaris Latr., A. otficinurum Brdt.

Order 2.-Thoracostraca.*

Malacostrace with compound eyes which are usually placed on movable stalks, with a dorsal shield which connects all or at least the anterior thoracic segments with the head.

[^90]The Thoracostraca, like the Arthrostraca, posisess a cephalo-thorax composed of thirteen segments and an abdomen composed of six segments, as well as a caudal plate (telson) ; but the body is stouter and adapted to a more perfect locomotion and a higher grade of life. The thorax, instead of being composed of seven distinctly separate segments, is covered by a dorsal carrapace which effects a firm and intimate fusion between the head and thorax. The degrees of development of this dorsal carapace are various. When most highly developed, it forms the dorsal integument of the anterior or of almost all the thoracic segments ; and its lateral portions only, which have the form of wings and are bent towards the vential surface, consist of a free reduplicature.

The application of the appendages differs from that in the Arthrostraca, and, indeed, varies in the different groups of the Thoracostraca. The cephalothorax has thirteen pairs, and the abdomen seven. The facetted eyes are born on two movably separated stalks. These were for a long time considered as the anterior pair of appendages, while in fact they are merely lateral portions of the head which have become jointed. Both pairs of antenne belong to the anterior region of the head. The anterior antenna or antennules as a rule bear on a common shaft two or three flagella-as the peripheral multiarticulate filaments are called-and are pre-eminently sense organs. In the Decapooda the auditory vesicles are placed in the basal joint, and on one of the flagella there are delicate hairs and fibres, which are in comection with nerves and are to be looked on as olfactory organs. The second antemne are attached externally to and somewhat beneath the antennules. They bear a long flagellum and in the macrurous Decapoda are often provided with a more or less considerable seale. A gland (the green or antemal gland) usually opens on a conical process of their basal joint.

The following three pairs of appendages function as jaws; the powerful mandibles, which are furnished with palps, lie at the side of the upper lip; further backwards are the two pairs of lobed maxillæ, in front of which and behind the mouth is the small bilobed underlip. The following eight pairs of appendages present a very

[^91]diflerent form and adiphtation in the varioun gromps. As a rule, the anterior pains are motified to assist in taking up food and are moved nearer the month; these are the maxilliperls, which, with regard to their structure, hold an intermediate position between jaws and feet. In the Decurodu (fig. $3(62)$ thee pains of appendages have the form

Fig. 362.-Male aurd female of Astacu* fluviatilis seen from the ventral side. In the male the ambulatory and abdominal fect of the left side have been removed; in the female the ambulatory feet of the right side and the maxillipeds of both sides. A^{\prime} intennules: $A^{\prime \prime}$, antenue; P^{\prime}, seale of antenua ; MLl, mandible with paip; $M x^{\prime}, M x^{\prime \prime}$, first and scoud maxille $M_{x} f^{\prime}$ to $M x y f^{\prime \prime}$, the three pairs of maxillipers; Goe, genital openiug; Doe, openius of the green glaul; $F^{\prime \prime}, F^{\prime \prime}$, first ancl second abdominal foot; Or, egiss; A, anns.
of maxillipeds, so that there are only five pairs of legs left on the thorax. In the Stometopodu the first five pains of thonacie appendages are modified to form maxillipers and there are only thee pair:-
of biramous swimming feet, which arise from the three posterior free segments of the thorax. The thoracic legs are either, at least in part, biramous (with swimming lamns), or as in the Decapods the exopodite is absent and the legs have the form of ambulatory appendages. They then terminate with simple claws; the anterior frequently with large chele. The terminal joints may however be broad plates, in which case they can be used as swimming feet. The biramous legs of the sixth abdominal segment are, as a rule, broad and fin-like and form, together with the last abdominal segment which is transformed into a large plate (telson), the caudal fin. The feet of the five anterior abdominal segments, on the other hand, are sometimes swimming feet (Stomutopoda), sometimes serve to carry the eggs, or the anterior maly assist in copulation (in the male). They may however be more or less rudimentary and some of them absent.

With rare exceptions (Mysidle) all the Thoracostraca possess gills, which are either tufted or composed of regular lancet-shaped leaves. The gills are appenrlages of the limbs: in the Stomatopoda they are attached to the abdominal feet, in the Schizopoda and

Fic. 363.-C'ephalothorax of Astucus fleviatilix, after removal of the branchiostegite (after_Huxley). K_{n}, Gills; R, ras trum ; O, stalked eye; $M p$, scaphognathite (of the second maxilla) ; $M x f^{\prime \prime \prime}$, third mixilliped.

Decapoda to the maxillipeds and ambulatory feet. The Cumacea are without gills, except for a single pair on the second pair of maxillipeds. In the Decapods they are contained in a special branchial chamber beneath lateral expansions of the carapace (branchiostegite) (fig. 363).

The organs of circulation also attain a high clegree of clevelopment, the highest not only among the Crustucea, but in general amongst all Arthropods. A heart and ressels are always present. In the Stomatopoda the heart has the form of an elongated tube, which extends throngh the thorax and abiomen, possesses numerous paired slits, and in arldition to an anterior and a posterior aorta gives off to the right and left several branching arterial tronks. In the Crmacea, Schizopoda and Decapoda the heart has a sacenlar form and lies in the posterior region of the cephalo-thorax. More rarely,
as in the youngest lanvie of the Decoporce, only one pail of slits is present and the arterial systen has but few branches. In the fiallydeveloped Decapolce the number of paired slits is increanerl by the addition of a dorsal and a ventral pair, and the vascular system is considerably perfected. An anterior rephalic aorta supplies the brain, the antenne and eyes. Two lateral pairs of ateries semd branches to the stomach, liver and generative organs. The posterior. abdominal aorta usually divides into a dorsal and a ventral artery, of which the first supplies the muscles of the tail, the latter (known as sternal (artery) sends branches to the appendages of the thorax and abrlomen (fig. 364). From the ramifications (often capillary-like) the blood flows into larger or smaller canals with connective tissue walls which may be regarded as veins, and from thence into a wirle blood space situaterl at the base of the gills. It thence passes through

Fis. 364. - Longitudinal section through Astacus fuciatilis (after Huxley). C, Heart; Ac, cephalic norta; Aa, abdominal norta, the sternal artery (Sta) is given off close to its origin; $K m$, masticatory stomach; D, intestine; L, liver; T, testis; V J , vas defcrens; $G \ddot{O}$, genital opening; G, brain ; N, ganglionic cord; $S f$, lateral plate of the caudal fin.
the gills and, having become arterial, passes into other vascular tracts (branchial veins containing arterial bloorl), which conduct it to a receptacle surrounding the heart, the pericardial sinus: from the latter the bloorl enter's the hear't through the slits which are proriderl with valves.

The alimentary canal consists of a short asophagus, a wide saccular crop and an elongated intestine which opens by the anus beneatl the merlian plate (telson) of the caudal fin. The wirle crop or masticatory stomach is supporter by a firm chitinous framework, to which are affixed several pairs of masticatory plates (derived from thickenings of the chitinous lining). In the Decapode two romnd concretions of cardonate of lime (Cray-fish) may be deposited in the walls of the masticatoly stomach beneath the chitinons lining ; these are the so-called "eyes," and are found in the spring and summer.

The ducts of the very numerous, multilobed hepatic caeca open into the anterior part of the elongated intestine.

A simple or looped glandular tube (the green gland) opens on the basal joint of the posterior antema. A shell gland is not cleveloper.

The nervous system is distinguished by the size of the brain, which is placed far forwards and gives off nerves to the eyes and antenure. The vential cord, which is connected with the supracesophageal ganglion (brain) by very long commissures, presents very different degrees of concentration. In the brachymrous Decapods this concentration reaclies its highest point, all the ganglia being fused together to form one great thoracic ganglionic mass. The system of visceral nerves is also very highly developed.

Sense organs.-The eyes are large and facetted. Except in the

Fig. 365.-Generative organs of Astacus. a, Female ; b, male. Oc. ovaries; Od, oviduct; $V^{\prime} a$, vulva on the basal joint of the thixd pair of ambulatory legs $\left(r^{\prime \prime \prime}\right) ; T$, testis ; $V^{\prime} d$, vas deferens; Oe, genital openings on the basal joint of the fifth pair of ambulatory legs ($F^{\prime v}$).
Cumacea, in which the eyes are sessile, they are borne on movable stalks, which morphologically are to be regarded as the lateral parts of the anterior region of the head which have been segmented off. In the larva a median simple eye, equivalent to the mpaired Entomostracan eye, may appear luetween the stalked facetted eyes. In exceptional cases the arlult animal may have pained eyes at the sides of the thoracic appendages, and mpaired eyes between the abrlominal feet (E'uplucusicu). Auditory organs are wanting in the Cumaceru and S'tomatopoda. In the Decapoda they are present as vesicles containing otoliths in the basal joint of the anterior anterma, and in many Sichiaporica in the lamellie of the caudal fin. The delicate
filaments and hains on the surface of the anterior antemas have the value of olfactory wryans; the antenne finction as tuctile orgares, as do also the palpse of the jaws, the maxillipeds and the lego.

The generative organs we paired and lie in the thorax or in the abrlomen (Stomatopoda), and, as a rule, are comected acrosis the middle line by a median portion. The female organs consist of two ovanies and two oviducts, which open on the basal joint of the antepenultimate pair of ambulatory legs or on the sternal region betreen these appendagen (fig. 365, a). The testes (fig. 365, b) we composed of numerous sacs and blind tubes, and, like the ovaries, are connected by a median portion; there are two vasa deferentia, often much coiled, which open on the basal joint of the last pair of ambulatory legs, more rarely on the sternum, and occasionally on a special copulatory organ (Schizopodle). The first, or the first and second, pair of abdominal feet act as intromittent organs. The eggs either pass into a brood-pouch formed by lamellar appendages of the thoracic legs (Cumacert, Sćiizoporla), or become attached by means of the cementing secretion of special glands to the hairy abdominal feet of the female, where they remain until they are hatched (Decapoclu).

Development.--Most of the Thoracostraca undergo a metamorphosis which may be more or less complicater. The Crumacea, some Schizopodu (Mysidea) and the fresh-water Decapodu (Astacus) leare the egg membranes with the full number of segments and appendages. All the Stomatopodu, on the contrary, as well as most of the Decopocla, are hatched as larve; the latter in the so-called Zocea form with only seren pairs of appendages in the anterior regrion of the borly (there are two pairs of antema, mandibles, two pairs of maxilla, and two pairs of maxillipeds), without the last six thomac segments and with a long abdomen destitute of appendages (fig. 366). The two pairs of antenne of the Zorra are short and destitute of flagella. The mandibles are without a palp; the maxillar are ahealy
lobed and used as jaws ; the four anterior maxilliped are biramous and act as biramous swimming feet ; and behind them, in the macrurout Decapods, the maxilliped of the third pair also appears as a biramous swimming foot. Gills are as yet wanting, being repre-

Fig. 367. -Larva of Penaeus (after Fr. Müller). a, Nauplius form seen from the dorsal surface. b, Metanauplius stage seen from the left side; $M x^{\prime}$, anterior maxilla; MIx ${ }^{\prime \prime}$, posterior maxilla; Gl, sixth and seventh pairs of appendages or first and second
maxillipeds. c, Zoa stage; 0 , eyes. maxillipeds. c, Zoa stage; 0 , eyes.
sented by the thin surfaces of the sides of the cephalo-thoracic shield, beneath which a continual current of water flowing from behind forwards is kept up. A short heart with one or two pairs
of slits is present. The faceted eyes are of consilerathle size, but are not stalked. Between the fincetted eyes there is in addition an matier simple eye, the Entomostracan eye. The Zoa laver of the short-tailed Decapoda (Crabs) are, as a rule, armed with spinous processes. They usually have one frontal spine, it long, curved dorsal spine, and two lateral spinous processes of the cephalo-thomacic shield.

The Zoan, however, is not by any means always the earliest larval stage. Passing over those cases in which the larva has the Korea form but is without the middle maxillipeds, there are Podophthalmat (Peneus), which leave the egg as Nauplii (figs. 367). Thus
a

Fig. 368. - Korea of Inachus in advanced stage with rudiments of the third maxilliped ($\mathrm{K} \mathrm{f}^{\prime \prime}$) and the five pairs of ambulatory feet $\left(5 B_{p}\right) ; C$, heart; L, liver. b, Megalopa stage of Portunus; $A b$, abdomen. F^{\prime} to F^{v} first to fifth ambulatory legs.
the developmental history proves that the series of forms of Untomostraca and Malacostraca are continuous.

During the growth of the Zoa, the subsequent metamorphosis of which is quite gradual and always different, the six (five) pairs of thoracic legs, which are as yet absent, sprout out beneath the cephalo-thoracic shield. The abdominal feet also make their appearance on the abdomen, and the lave finally enter the Schizopod-like stage, from which the adult form proceeds. The Crab Zoa, however, after a later ecdysis, enters upon a new larval stage, that of the Megalopa (fig. 368, b) ; in this stage it already presents the charaters of the Brachyura, but still possesses a large abdomen, which is indeed ventrally flexed, but provided with a caudal fin.

The Thorucostruct are for the most part marine, and feed on dead animal matter or capture living prey. Most of them are good swimmers ; others, e.g. numerous species of crabs, walk and run and sometimes move sideways or backwards with great agility. The chelre of the first pair of ambulatory legs (fourth thoracic appendages) constitute powerful weapons of defence. Besides the fiequent ecdyses of the larral stages, the sexually adult animals cast their shell once or several times in the year (Decapoda). They then live with the new and still soft skin for some time in protected hiding-places. Some Brachyurcu are able to live for a long time in holes in the earth away from the sea. These land crabs undertake, usually at the breeding season, common migrations to the sea and return later to the land with their fully developed offspring (Gecarcinus ruricola). The most ancient fossil Podophthalmic hitherto known are the macrurous Decapoda and Schizopoda, from the carboniferous formations (Patreocrangon, Paloocarabus, Pygocephalus).
(1) Sub-order: Cumacea.*

Thoracostraca with a small cephalo-thoracic slield, (foror to) five free thoracic seyments, two pairs of maxillipeds, and six pairs of legs, of which at least the two anterior pairs have the biramous Schizopod form. The abdomen is elongated and composed of six segments, and bear's, in the male, two, three or five pairs of swimming feet in addition to the carudal appendages.

The Crmacea, the systematic position of which was formerly very differently estimated, have a superficial resemblance to Decapod larvæ, which they also recall in the simplicity of their organization; while in many of their characters, such as the formation of the brood-pouch and.their embyronic development, they approach the Artlurostraca. A cephalo-thoracic shield is always present and includes, besides the segments of the head, the anterior thoracic segments and their appendages; the four or five posterior thoracic segments, howerer, remain free.
The anterior antemme are small and consist of a three-jointed basal portion, to the end of which, especially in the male, tufts of olfactory Lairs are attached, and of a short flagellum and secondary flagellum.

[^92]In the female the posterior antemate are short and rudimentary, while in the adult male they, together with their multiarticulate Hagellum, may be as long as the borly (as in Nebatia). The mper-lip is usually small, while the deeply eleft under-lip is of considerable size. I'he mandibles are without palps, and possess a comb of hristles and a powerful masticatory process below their strongly tonthed extremity. The antcrior maxille consist of two tootherd blarles and a cylindrical, flagellate appendage directed backwards. The unpalperd maxilla of the second pair is composed of several pairs of masticatory plates lying one above anothcr. The two following pains of appendages may be distinguished as maxillipeds. The anterior, which corresponds to the palped under-lip of the Isopoda, is fivejointed and may be recognised by the process of the basil joint ; the posterior, which is also usually five-jointed, is of considerable length and the basal joint is cylindrical and elongated. They also bear the large pinnate gill and a peculiar plate. Of the remaining six pairs of thoracic appendages, the two anterior are always formed like the feet of the Schizopoda; they consist of a six-jointed leg, the basal joint being strongly developed and lamellar, and of a multiarticulate accessory ramus (exopodite) beset with long swimming setæ. The four last pair's of appendages are also six-jointed, but are shorter; they bear in many cases, with the invariable exception of the last pair, a larger or smaller swimming appendage as exoporlite. The very narrow and elongated abdomen is, in the female, entirely without swimming feet, but bear's on the large sixth segment at the sides of the caudal plate long-stalked biramous caudal styles; while in the male two, three or five pairs of swimming feet may in addition be present on the preceding segments.

Fam. Diastylidæ. Dinstylis İuthkii Kr., North Sea. D. Ellưlorlwii Kir. Leucem masicus Kr., Norway.

(2) Sub-orcler : Stomatopoda. *

Elongated Thoracostracu with short cephato-thorucic shield which does not cover the thorucic segments. There are five pair of marillipeds and three puir of biramous thoracic feet. The swimminy feet on the strongly developed abdomen bear branchical tufts.

[^93]The suborder Stomutopoctu, with which formerly the Schizopod, the genus Leacifer and the Phyllosomata (which are now known to be the larvae of Scyllarus and Patinurus) were united, is confined at the present day to the small and well-defined group of forms included in the Squillidtre.

They are Thoracostruca of considerable size and of elongated shape, with a broad, well-developed abdomen, which is much more extensive than the anterior part of the body and terminates in an extraordinarily large caudal fin. The cephalo-thoracic shield, which is formed of comparatively soft integument, is shoa $2^{\circ} \dot{\circ}$ and leaves at least the three large posterior thoracic segments to which the biramous swimming feet belong quite uncovered. The short segments of the maxilliped also are not fused with the carapace.

Appendages. -The anterior part of the head with the eyes and antenna is movable, and the ventral portions of the following segments covered by the cephalo-thoracic shield are capable of limited movements upon one another (fig. 369). The anterior

Fig. 369.-Squillu mantis. $A^{\prime}, A^{\prime \prime}$, antenna; $K f^{\prime \prime}, K f^{\prime \prime \prime}$, the anterior maxilliped on the cephalothorax ; $B^{\prime \prime}, B^{\prime \prime}, B^{\prime \prime \prime}$, the three pairs of biramous legs.
internal antennae consist of a long three-jointed shaft, bearing three multiarticulate Hagella. The second pair of antenme has a large scale on the outer side of the multiarticulate flagellum (fig. 369). The mandibles, which are placed far back, are provided with a slender three-jointed palp. The maxilla are relatively small and weak. The five following pairs of pediform appendages are crowded together close to the mouth, and on this account have been appropriately described as oral feet. They all bear at their base a discoidal plate, which, in the case of the two anterior pairs, attains a considerable size. The anterior pair alone (first maxilliped) is slender and palpiform ; it ends, however, in a small chela, which serves to seize the prey. The chela in this and all the other maxillipeds of the Stomatopoda is formed by the terminal joint turning back and biting on the penultimate joint. The maxilliped
of the second pair are by fire the largent ; they are moved more or less outwirds and are provided with a very large chela. Thes three following pairs resemble cach other in size and structure, each ending in a smaller romuled chela. Accordingly there remain for locomotion only the three pairs of legs of the last thee uncorererl thoracic segments; they have the form of binmons swimming feet. The abdominal swimming feet, however, are much more developed and bear the branchial tufts on their extermal lamellae.

The two sexes are only slightly different. The male is, howerer, easily to be recognised by the possession of the pair of rools at the base of the last pair of thoracic feet, and also by the slighty modified form of the first pair of abdominal feet.

Metamorphosis.-The

Fig. 370.-Young Alima larva. Af. Abrlominal feet (pleopods) ; M.xf', anterior maxillipeds ; $M x f^{\prime \prime}$, the large maxillipeds (second pair). post-embryonic development consists of a complicated metamorphosis, which, unfortunately, is as yet not completely known to us. The youngest larve observed (about 2 mm . long) already possess all the segments of the thorax ; but the abdomen, except the caudal plate, is still undeveloped. They are thus very different from the Zora of the Decapoda. Later larval stages are described as Alima and Erichthus (fig. 370).

The Stomatopoda are found exclusively in the warmer. seas. They are excellent stvimmers and live by preying on other marine animals.

Fom. Squillidæ. Squilla mantis Rond., Sq. Desmarrstii Risso, Adriatic and Mediterrancan.

(3) Sul)-ordel: Schizopoda.*

S'mall Thoracostruca with large, usually soft cepheclo-thoracio sliceld. and eight pairs of biramous thoracic feet, which wre similarly formed amil frequently berer fiecely-projecting gills.

* G. O. Sars, "Hist. nat. des Crustacés d'ean douce de Norvège," Christiania,

In their outward appearance the Schizopoda resemble the longtailed Decapodr, inasmuch as they possess an elongated and usually compressel body, a large cephalo-thoracic shield covering the thoracic segments more or less completely and a well-developed abdomen. In the structure of their maxillipeds and thoracic legs, however, they differ essentially from the Decapods and approach the more advanced larre of the prawns, which they also resemble in their simpler internal organization. Further, in all the deep sea forms the cephalothoracic shield leares a greater number of the thoracic segments free (Siriella), and in the early larral stages all the thoracic segments are free as in Nebaliu. A larger or smaller number of these free segments subsequently fuse on the dorsal side with the carapace (Gnathophausic).

Appendages.-The first three pairs of thoracic appendages (the homologues of the maxillipeds of the Decapoda) are biramous ambulatory legs and resemble in structure the following thoracic legs, which, by the possession of a multiarticulate setigerous exopodite, are adapted both for swimming and for producing currents in the water: The two anterior pairs, however, show a closer relation to the oral appendages by their shorter and stouter form and by the presence of processes on the basal joint (Mysis, Siriella). The principal ramus (endopodite) of the leg is always relatively slender. and ends with a simple weak claw or with a multiarticulate tarsal flagellum. Rarely (Euphousice) the two last pairs of thoracic legs are entirely rudimentary, except as regards the largely dereloped branchial appendages. The abdominal legs are usually small and delicate in the female, but are strongly dereloped in the male. Sometimes they are of abnormal size and form (to assist in copulation), but only exceptionally (male of Siriella) bear gills. The appendages of the sixth segment, which is usually very much elongated, are always lamellar, biramous structures and form with the telson a powerful caurdal fin (fig. 371). The inner lamella or endopodite of this pair of limbs frequently contains an auditory vesicle.

The differences between the males and females are so great that formerly they were placel in distinct genera. The former possess, on the anterior antemax, a comb shapel prominence bearing a great number of olfactory hairs; and, owing to the larger size of the
1867. G. O. Sars, "Carcinologiske Bidrag til Norges Fauna. Mysider," Christiania, 1870 and 1872. R. V. Willemoes-Suhm, "On some Atlant. Crustacca," cf. Trans. Lin. S'oc., 1875.
abiominal feet, of which the anterior may, moreover, be providerl with copulatory appendages, they are capable of a more rapid and perfect locomotion thin the females, to which fact comesponds again the greater respiratory requirements and the possession of lnanchial appendages in stiviella.

Development.-The females bear on the two posterior (Mysis) or at the same time also on the median and anterior (Loplooyaster) pairs of thoracic linbss lamellae,

Fig. 371.-Mysis oculutu. Female with brood lamellar (after G. O. Sin:). GU, Anditory vesicle. which form a brood pouch, in which, as in the Artherostraca, the large eggs undergo their embryonic development. In other cases (Euplecusia), the development proceeds by met: morphosis. The young Euphousia is hatched as a Nauplius larva, on which the three following pairs of appendages (maxillie and first maxillipeds) soon appear as small prominences. The large carapace of the Nauplius, which is curved forwards round the base of the antenne where it has a serrated edge, is the tirst rudiment of the cephalo-thoracic shield, and beneath it, at the sides of the unpaired eye, the rudiments of the lateral eyes are visible. The larva then, haring moulted, assumes first the form of the Protozowa and then of the Zoara (described by Dana as Culyptopis), which is howerer prorided with only six pairs of appendages and a long, aheady fully segmented, apodal abdomen. In the numerous succeeding larval stages (Furcilia, C'yotopia) the remaining appendages are successively developed.

Fam Mysidm. Mysis ent!uris Thomps., M. tervusu O. Fr. Miill.. Mr. inermis Racthl, Northern seas Siriclla Litheardsii Cls.

Fam. Euphausidæ. E'rpluensia splender. Dana, Atl. Oecan. Thysantoporta noruergicu Sars.

Fam. Lophogastridæ. Lophugguster typricus: Sars, Norway.

(4) Sub-order : Decapoda.*

Podophtthalmia with large dorsal cephalo-thoracic slield, which is usually fiused with all the segments of the liead and thorax. They have three (two) pairs of maxillipeds and ten (twelve) ambulatory limbs, some of which are armed with chelce.

The head and thorax are completely covered by the dorsal carapace, the lateral expansions of which cover the basal joints of the maxillipeds and legs, forming a branchial chamber on either side, in which the gills are concealed. Only the last thoracic segment may retain its independence and be more or less moviable. The shell is prolonged into a frontal spine (the rostrum) between the eyes. The firm, calcified integument of the dorsal carapace presents, especially in the larger forms, symmetrical prominences caused by the subjacent internal organs: these may be distinguished as regions and named in accordance with the internal organs.

The abdomen presents considerable differences both of size and form throughout the sub-order. In the Macrura it is of considerable size, possesses a hard exoskeleton, aud, in addition to the five pails of feet of which the anterior are often aborted in the female, is provided with a large swimming fin (the telson and the pair of large swimming feet of the sixth segment). In the Brachyura the abdomen is without a caudal fin and is reduced to a broad (female) or' a narrow triangular (male) plate, which is bent up against the concave sternal surface of the thorax. The abdominal feet also are slender and styliform, and in the male are only developed on the two anterior segments.

Appendages.-The anterior antenne in the Brachyura are often concealed in lateral pits; they usually arise beneath the movably articulated eye-stalks, and consist of a three-jointed basal portion bearing two or three multiarticulate flagella. The posterior antenne

[^94]We msually inserted externally and somewhat ventrally to the finst pair on a lhat plate placed in front of the mouth (eppistom or oral shield) : they frequently possess a scale-like lamellar appendage. At their base there is always a protuberance with a pore at its end, through which the duct of the antemal gland (green gland) opens.
'The mandibles vary considerably in shape in the different forms, but have, as a rule, a two or three-jointed palp, which, however, is absent in many prawns (Caridide). They are either straight and strongly toothed on their thickened anterior edge (Brocclyura), or are slender and much bent (Cr rangon), or else forked at the ends (Palcemonidce and Alpheidce). The anterior maxillæ always consist of two lamellæ and a palp, which is usually simple. The posterior maxilla, on which there are usually four lamellae (two double lamellie) as well as palps, bear a large respiratory plate with setose edges (scaphognathite). These are followed by three pairs of maxillipeds, which, as a rule, have a flagellate appendage. There remain, therefore, only

Fig. 372. - Young form (larva) of the lobster (after G. O. Sars). R, rostrum ; $A^{\prime}, A^{\prime \prime}$, antemma ; $K^{\prime \prime \prime}$. thircl maxilliped; F^{\prime} anterior ambulatory leg. five pairs of thoracic appendages for use as legs; of these the two last are sometimes reduced or may eren be entirely absent (Leucifer) as the result of retrogressive changes. The thoracic segments to which the ambulatory
legs belong are, as a rule, all or all but the last fused together and form on the ventral side a continuous plate, which in all the Brachyurce is broad. The legs consist of seven joints, which correspond to those of the Arthrostraca, and frequently end with a chela or prehensile hand.

Development.-The greater number of marine Decupodu leave the egg membranes in the zoar form ; in Homarus, amongst the Macrura, the metamorphosis is much reduced and the just-hatehed young possesses all the thoracic legs, which are, however, provided with external swimming rami, but it is still without the abdominal feet (fig. 372).

Embryonic development.- In addition to the classical researches of Rathke * on the crayfish, more recent works, especially those of

[^95]Bobretzky (prawns and cray-fish) and Reichenbach (cray fish) have yielded important results. The segmentation seems (in all cases?) to be superficial (centrolecithal), that is, to be confined to the peripheral yolk (formative yolk). This livides successively into two, four, eight, and an increasing number of segmentation cells, while the central granular foorl yolk, which is rich in oil globules, remains unsegmented. The young of Astucus, when hatched, resemble the adult animal, excepting that the caudal fin is still rudimentary.

I.-Macrura.

The abdomen is strongly developed and is at least as long as the anterior part of the body; there are four or five pairs of abdominal feet and a broad, well-developed caudal fin. The antennules bear two or three flagella, the antennre have one simple flagellum and frequently bear a scale at the base. The maxillipeds of the third pair are long and pediform and do not completely cover the preceding ones. The Zocea larva, when hatcherl, is elongated and has usually three pair of biramous feet.

Fam. Carididæ. Prawns. Body laterally compressed, with a thin shell, which is often provided with a median ridge and prolonged into a saw-like frontal proeess. The posterior (external) antenna are inserted beneath the anterior (internal) and have a large scale projecting over the stalk. The long and slender anterior pairs of ambulatory legs frequently end in elelæ. They live in shoals near the coast. Some genera (Prncus) possess a rudimentary swimming ramus. Palcemnn squilla L., Crangon vulyaris Fabr., Pontonia tyrrhena Risso: lives between the shells of bivalves. Seryistr's attanticus Edw.

Fam. Astacidæ. Tolerably large, usually with a hard shell. The cephalothorax is slightly compressed, the abdomen flattened. The antenne are attached near the antennules, and bear a small or quite redueed scale at their base. The first pair of ambulatory feet cnds with large chelr, as do in many cases the weaker and smaller second and third pairs. Some soft-skinned forms bury thenselves in the mud or sand. Avtueus. fluviatilis Rond., Cray fish. Homurus eulgaris Bel., Lobster: Nephrops: nurwerficus L., Gebia Leaeh., Thalussina Latr., Culliunasssu subterranea Mont., buries itself in sand on the sea-shore.

Fam. Loricata. With very hard, rough armour, and large broad abdomen. The antennules eud with two short flagella ; all five pairs of ambulatory feet with simple claws. The larve are deseribed as speeies of Phyllusomu. Palimurus: quadricornis Latr. Soyllarus latus Latr.

Fam. Galatheidæ. With broad, rather large abdomen, and well-developed caudal fin. The first pair of legs is chelate, the last is weak and rechueed. Galuthera strigosa L.

Fam. Hippidæ. Cephalo-thoracic shield long ; end of the abdomen eurved. The finst pair of legs usually with a finger-shaper terminal joint ; the last is Kiew, 1873, eompare H. Reichenbach, "Die Embryonalanlage uncl erste Entwickslung des Flusskrebses," Zcitselhe. fïr Wiss. Zool., Tom XXIX., 1877.
weak. Jlippre momita la, lives buried in the rea sand, Brazil. Albuman x゙ymmista liabr., Mcditerrancan.

Fann. Paguridæ. Hemuit crabs. Abdomen long, nsually covered with a soft skin and distortcl, with nimow anal fin and rudimentary ablominal feet. I'he first pir of leet ends with powerful chelae, the two last are redured. Some of then seek shelter in empty suail shells. to protect their soft-skinned abolo.
 Herbst, satid to climb pallu-trecs.

II.--Braciyura.

With pits for the reception of the short internal (anterior) antennet and so-called orbits, i.e., cavities for the reception of the stalked eyes. Abdomen short and reduced, without caudal fin, curved round against the excavated ventral surface of the thorax ; in the male narrow and pointed, with only one, more rarely two pairs of abdominal feet; in the female broad, with four pairs of abdominal feet. In the female each oriduct dilates to form a bursa copulatrix. The third pair of maxillipeds have broad flat joints and completely cover the anterior mouth parts. The just-hatched Zorea larve of stout shape, with only two pairs of biramous feet and a dorsal spine ; later they assume the Megalopa form. Many Brachyura live on land.

Fam. Notopoda. Transitional between the Brachyura and Mucrura. The two or fonr posterior thoraeie feet are articulated higher up than the four or three posterior pairs, and shifted on to the baek. The first pair of feet has large ehelæ, the last is often modified to swimming feet. Porcellana plutychrles Penn, Drom in tulguris. Edw., Lithudes. Latr.

Fam. Oxystomata. With rounded eephalo-thorax. The frontal region does not project. The buceal frame is triangular. The male genital openings are on the basal joint of the last pair of thoraeie legs. Caīapmu gromuluta L., Ilin nuclrus Herbst, Mediterranean.

Fam. Oxyrhyncha. Cephalo-thorax usually triangular, with projeeting pointed rostrum. There are nine gills on either side. The male genital opening is on the basal joint of the last pair of thoraeie legs. The thoracie ganglia are united into one mass. They do not swim but erawl. Inarlun: sconpinin Fabr.: Maja squinadn Rond.. Pisa armata Latr., Stenorlhynchuns Lam.

Fam. Cyclometopa. With broad, short eephalo-thorax, rounded anteriorly: Without $\mathrm{n}^{\text {rojecting frontal rostrum. There are nine gills on either side. The }}$ male genital opening is on the basal joint of the last pair of thoraeie legs. Some of them are good swimmers. Cancer pagurus. L., - Tantlen rivulusus Risso, Mediterranenn. Carcinus murnas L., Pentumus puler L.

Fam. Catometopa, Quadrilatera. Cephalo-thorax quadrilateral. Frontal region is curved downwards. There are fewer than nine gills. The male genital openings usually lie on the sternum. Some of them live for a long time away from the water. Nome live in holes in the earth, as land crabs. Pimutheres pisum. L., in the shells of Mytilus. P. reterum Bosc., in the strells of Pinn": known to the ancients, who thought that there was a relation of mutual assistance between the cral) and the mollusk. Ocypmin cursur Bel.,

Gelasimus forreps Latr., Gropsus varius Latr., Gecurcinus ruricola L., Land Crabs. Water is retained for a long time in the branchial cavities, owing to the presenee of scondary spaces around the branehial plates, which arc thus prerented from sticking together. They live in holes in the earth in the Antilles.

III.-GIGANTOSTRACA.

The Xiphosura or Pœcilopoda, represented by the living genus Limutus and the orders of the fossil Merostomata, may be united under this head, as opposed to the Entomostraca and Malacostraca.

They are principally characterised by the possession of a single pair of appendages placed in front of the mouth and innervated from the cerebral ganglion, also by the presence of four or five pairs of legs, which are placed round the mouth and whose basal joints are modified to form large mandible-like masticatory organs. Behind the last pair of legs there is a simple or cleft prominence, forming a sort of underlip. The region of the body which bears these appendages is to be considered as an unsegmented cephalo-thorax ; it is shield-shaped and may be drawn out into projecting wing-shaped lateral portions. On its upper surface two small median frontal eyes as well as two large lateral eyes can be distinguished. Following the ceplialo-thorax there is an abdomen, which is usually elongated and composed of a greater number of segments. The abdomen tapers posteriorly and terminates in a telson, which may be flat or drawn out into the form of a spine.

Order 1.-Merostomata.*

Gigantostraca with five pairs of appendages on the cephalo-thoras which is relatively short; with an elongated apodal abdomen, usually composed of twelve seyments and ending in a flat or styliform telson.

The powerful body of the Eiurypteridee (included with the Precilopoda by Woodward), as the most important family of the Merostomata is named after the genus Eurypterus, consists of a cephalo-thoracic shield with median ocelli as well as large projecting marginal eyes, also of an abdomen with numerous (usually twelve) segments which become longer posteriorly, and of a caudal shield, which is prolonged into a spine. Round the month on the underside of the cephalo-thorax

[^96]there are five pains of long spiny legrs, of which the lint is much the largest and ends in a boad swimming-fin. Some of the miterior appendages may be amed with a chela. The resemblance of the true Liurypteritce: (in the general shape of their borly) to the scorpionidre is very striking, while the genus //emiraspuis presents affinities to the Pecilopoda. The most inportant forms wre: E'urgpterus pygmurns Salt., Devonian sitrata, Pterygotus cenglicus Ag., four feet long, from the upper Silurian (fig. 373).

Fig. 373.-Eurypterus remipes after Nieszkowski. a, Dorsal view ; b, ventral view; O, eyes; St. eaudal spine ; H, hypostome.
Order 2.-Xiphosura.*

Gigantostraca whose body is divided into three parts, which are movably articulated toyether; a large shield-shaped ceplualo-thorax, an abdomen with five pairs of lamellar. feet and a long movable cardal spine.

The large borly of these Crustacea is covered with a strong chiti-

* C. Gegenbaur, "Anatomische Untersuchung eines Limulus, mit besonderer Periicksichtigung der Gewebe," Ibhumll. der natwforweh. Cewellschaft zu Tralle, IV., 18:58. Packard. "The Develomment of Limulus Polrphemus." Noc. of Niut. Mist., 1870. A. M. Echwirth." Recherches sur l'anatomie des Timmles." drn. se. nut. Ve Sér. Tom. YYTI., 1872-1873. [E. R. Lankester, " Limulus an Arachnid," quart. Jourll. Mic. S゙uc.. vol. xxi.]
nous armour and is divided into an arched cephalo-thorax and a flat, almost hexagonal abdomen, which ends in a movable sword-like caudal spine. The cephalo-thorax (fig. 374) forms by far the larger part of the body; it bears on its arched dorsal surface two large compound eyes, and further forwards, nearer the middle line, two smaller simple eyes; while on its ventral surface there are six pairs of appendages, of which the anterior pair is slender and may, on account of its position in front of the mouth, be regarded as a pair of antennæ, although it ends, like the others, with a chela. The latter are placed to the right and left of the mouth, and their coxal joints serve as organs for the mastication of the food. At the end of the cephalo-thorax there is a pair of lamellar appendages, which are conmected in the middle line and form a kind of operculum for the branchial appendages of the abdomen. It seems of interest that the form of this branchial operculum in the Asiatic and American species presents constant differences, in that the median portion in the former is undivided, and in the latter consists of two joints. The shield-shaped abdomen which, by means of a transverse joint, is movable on the cephalic shield in a dorsoventral direction, is armed on either side with movable spines, and bears on its ventral surface five pairs of lamellar feet, which are almost completely covered by the operculum. These abdominal feet assist both in swimming and in respiration, since the respiratory lamellie are placed on them (fig. 374, a, b).

The internal organization attains a relatively high developmentin correspondence with the large size of the body. In the

Fig. 374.-a Limulus moluccanus, seen from the dorsal side (after Huxley). O, çes; St, caudal spine. b, L. roturdicauda (after M. Edwards), seen from the ventral side. At Antennæ; B, the feet with thoir coxal jaws; K, gills; $O p$, operculum. nervous system the following parts can he distinguished :-a broadd msophageal ring, the anterior part of which constitntes the brain and gives off the optic nerves, while from the lateral parts the
six pairs of nerven to the antemat and lege take their origin; a subresophageal ginglionic mass with three transperse commisumes: and a double ginglionic cord, which giver off hranches to the ventabl feet and ends with a double ganglion in the ubdomen. The alimentary canal consists of (esophagrts, masticatory stomach, and at straight intestine commmicating with a liver and opening hy the ams, which is placed immediately in fiont of the base of the caludal spine.

The heart is clongated and tubular, and is pierced by eight pairs of slits, which can be closed with valves; it is also providerl with arteries, which, after a short comse, pass into lacumar bloorl paths. Flom the base of the gills, two spaces, returning the blood, extend to the pericardial sinus.

Five pairs of appendages of the abdominal feet function as gills. These are composed of a very large

Fig. 375.-Embryo of Limulus in the Trilobite stage (after A. Dohrn). number of delicate lamellaw, lying one on another like the leaves of a book.

Generative organs. -The branched ovaries unite to form two oriducts, which open by separate openings on the under side of the operculum (first pair of abdominal limbs) ; in the male the openings of the two seminal clucts are placed in the same position. In the male, the anterior thoracic feet end in simple claws.
Development.-It is known that the young leave the egg without the caudal spine and often without the three posterior pains of gillbearing feet. This stage has been suitably named the Trilohite stage, on account of the resemblance which the larra presents to a Trilobite (fig. 375). On the cephalic shield there is a median keellike ridge, which is also found on the abdominal segments. The last abdominal segment includes between its lateral portions the short rudiment of the caudal spine. In the next stage the segmentation of the ablomen becomes less ohvious (the caudal shield becomes consolidated) and the caudal spine dereloped.

The adult animals reach a length of seremal feet, and live exclusively in the warm seas, in the Indian Archipelago and on the east coast of America. They exist at a depth of two to six fathomsi and move about in the mud by the alternating hending and straightening of the cephatic and abdominal shields and the caudal spine. Their food consists chiefly of Nereids. Ther are found in :1
fossil state, especially in the Solleuhofen lithographic slate, but also in older formations as far back as the Uebergangsgebirge (Cambrian, Silurian, etc.) formation.

Limulus: molucermu.: Latr.. East Inclies. L. polyphhemurs L.: East Coast of North America.

TRILOBITA.*

In comnection with the Merostomata and the Xiphosura, the Trilobites may be considered. Their systematic position cannot as yet be defined with certainty. They lived only in the most ancient periods of the earth's history, and their fossil remains are found in great numbers and are excellently preserved; but, unfortunately, the conditions under which they were fossilised were such that the under side of the body, and, consequently, the structure of the appendages, that is the rery characters which would enable us to decide theiraffinities, remain unknown to us. We may probably infer from this absence of any trace of appendages * in the fossils, that the legs were soft and delicate: but Burmeister's conclusion that they resembled the legs of the Phyllopoda is not justified.

The borly, which is frequently found rolled up, is covered with

Fig. 376.-Diagram of Dalmatites (after Pictet). Gl, Glabellum ; $S f$, great suture (ocular suture); 0 , eyes; $G e$, separable gena (cheeks) ; $R h$, rhachis (tergum) ; Pl, pleuron ; Pg, pygidium. a thick shell, which is divided by two parallel longitudinal furrows into an elevated median portion (rhachis) and two lateral portions (pleura): it rarely attains any considerable size. There is an

[^97]anterior arched, semicircular regrion, which may be regitrlerl as head or perhaps as ecphato-thorax, and a number of sharply distinct segments, which belong partly to the thorax and partly to the abdomen and are terminated by a larger shield-shaped candal portion, the pygidium (fig. 376).

At the edge of the pygidium, the amour of the upper surface is folded round on to the ventral side and leaves only the middle part of the latter uncovered. The lateral regions of the head, the median part of which especially projects as the "glabellum," hear usually upon two protuberances large compound facetted eyes, and are often prolonged into two very long backwardly directed spines; they are also folded inwards on to the ventral surface. With the exception of a plate (hypostoma) comparable to the under-lip of Apus, no trace of mouth parts has been observed for certain on the rentral surface of the head. The number of thoracic (trunk) segments varies considerably, but is tolerably definite for the adults of each species. Their lateral portions are likewise folded inwards on to the ventral surface, and present variously shaped wing-like processes and long pointed spines.

The Trilobites lived in the sea, probably in shoals in shallow water near the coast. Their fossils are amongst the most ancient remains of animal life, and are found principally in Bohemia, Russia, Sweden etc., in the lowest strata of the Uebergangsgebirge (Cambrian, Silurian, etc.) They have been divided into numerous families according to the structure of the head (especially of the glabellum), the form of the pygidium and the number of segments. The most important genera are Calymene Blumenbachii Brogn ; Olenus gibbosus Wahlb., Ellipsocephalus Hoffii Schlotth.

Class II.-ARACHNIDA.*

Air-breathing Arthropoda with fused head and thorax, with two pairs of jaws, four pairs of ambulatory legs and apodal abdomen.

The Arachnida include animals of extraordinarily different form. The head and thorax are almost invariably fused to form a short cepholo-thorax ; but the condition of the abdomen presents very great variations.

* C. A. Walekenaer et P. Gervais." Histoire naturelle des Insectes λ pteires." 3 Vols.. Paris, 1837-18.4. Hahn und Koch, "Dic Arachniden, getreu nach der Natur abgebildet und besehrieben." Niimberg, 1831-1849. E. Blancharr, "Organisation du règne animal. Arachmides," l’aris, 1860.

In the Spiders (Araneida) the abdomen is swollen and is joined to the cephalo-thorax by a short stalk. In the Scorpionidre, on the contrary, the long abdomen is joined to the cephalo-thorax by its whole breadth, and is divided into a broad segmented prex-abdomen and a narrow, very movable post-abdomen, which is also segmented. In the Mites (Acavina) the abdomen is unsegmented and fused with the cephalo-thorax. In the Pentastomida the entire body is elongated, ringed and vermiform, with four (two pairs of) hooks in place of the appendages; these animals are known as Linguatulicla, and might be placed, on account of their parasitism, amongst the intestinal worms.

The marked reduction of the cephalic region, which is without true antennre and possesses only two pair of oral appendages, is characteristic of the Arachnida. The anterior pair of cephalic appendages (cheliceræ), which are used as jaws, have been regarded as modified antennæ; but it is perhaps more natural to regard them as morphologically equivalent to the mandibles of Cr rustaceans and Insects. These anterior jaws or cheliceræ are either chelate, in which case the claw-like terminal joint can be moved against a process of the preceding joint (Scorpions, many Acarina), or subchelate, when the last joint is folded down upon the next like the blade of a pocket-knife upon the handle (Spider's).

The chelicerre may also have the form of stylets, which are enclosed in a tube formed by the second pair of jaws (Mites). The latter, which constitute the second pair of appendages of the head or the pedipalpi, consist of a stout basal joint and a palp, which has frequently the form and segmentation of a leg. This either ends with or without a claw or with a chela (Scorpions). In the true Spiders there is an mpaired plate, the lower lip, between the basal joints of the two pedipalpi and belonging to the same segment as the latter. The four following pains of appendages of the thorax are ambulatory leg's. The first of them is sometimes modified in form and elongated like a palp; its basal joint may function as a jaw. The legs consist of six or seren joints, which, in the higher forms, have been called by the same names as the analogous regions of the Insect leg.

The intermal organization of the Arachmida shows hardly fewer differences than does that of the Crustacea. The nervous system may have the form of a common ganglionic mass around the asophagus (Mites), and may even possess only a simple commissure above the resophagus (Pentastomidu). As a rule, however, there is a distinct separation between brain and ventral cord, the latter showing
very different grades of development. Viscemal nerves have heen shown to exist in the Spiders and Sconpions. The sense organs are, as a rule, not so highly developed as in the C'rustaceu, and, putting on one side the tactile function of the extremities, are confined to eyes. The eyes are simple and immovable, and never possess a facetted cornea; they are from two to twelve in number, and are symmetrically arranged on the anterior surface of the cephalo-thoracic shield. Auditory orgims have not yet been discovered, but there are tactile and olfactory organs.

The alimentary canal runs straight fiom the month to the hind end of the body, and is divided into a narow cesoplagus and a wite intestine, which is, as a rule, provided with lateral ciecid. The intestine is, in the Spiders and Scorpions, divided into an anterior dilated portion-the so-called stomach-and the intestine proper. The glandular appendages of the digestive canal are salivary glands; in Spider's and Scorpions, a liver, composed of a number of branched canals ; and, with a few exceptions, Malpighian tubes, which function as urinary organs and open into the hind end of the intestine.

The organs of circulation and respiration also show wery different degrees of development and are only absent in the lowest Mites. The heart lies in the abdomen, and is a long, many-chambered dor:al vessel with lateral slits through which the blood enters. It is fiequently continued into an anterior and posterior aorta, and in Scorpions gives off in addition lateral branching arteries. The organs of respiration are internal air chambers, which have the form eitherof ramified tubes (trachece), or of hollow lamellæ (fan-trucheer, lungs) placed upon one another in great number like the leaves of a book and connected together by trabecula so as to have the form of a sac. The air chambers are always kept open by a firm internal chitinous membrane, so that the air can enter by the paired openings (stiymata) of the trachere or lungs at the beginning of the abdomen, and be distributed to the finest ramifications. The chitinous lining may become thickened so as to give rise to a spiral fibre.

Generative organs. - With the exception of the hermaphrorlite Tardigrada, all the Arachnida are of separate sexes. The males are fiequently distinguished by external chanacteristics, as for example by their smaller size, by the possession of organs of attachment (Mites), or by the modification of certain appendages. Their generative organs consist of paired testicular tubes, and the vasia deferentia often receive the contents of accessory glands before opening to the exterior by a single or double aperture at the base (anterior end) of
the abilomen. Special copulatory organs in the region of the genital openings are, as a rule, wanting, lut appendages far removed from the genital openings (e.g., pedipalpi of Spiders) often serve to transferthe sperim from the male to the female. The female sexual organs are also paired, usually racemose glands, with two oviducts, which usually dilate to a receptaculum seminis before their single or double opening at the beginning of the abdomen. They are also connected with accessory glands. Rarely (Pluctangium) there is a long protrusible ovipositor.

Only a few of the Arachnida are viviparous (Scorpions and some Nites) ; the greater number lay egg's, which they sometimes car'ry about with them in sacs till the young are hatched. As a rule, the just-hatched young have the form of the adult; lut in most Mites two or more rarely four leg's are wanting, and appear only with the succeeding moults. The development of the Pygnogonida Pentastomidu and Hydrachnea (water-mites) (which latter pass through a pupa-like inactive stage) consists of a complicated metamorphosis.

Almost all Arachinida live on animals, a few on vegetable juices. The lowest forms are parasitic. The larger and more highly organised forms prey on living animals, principally on Insects and Spiders, and are usually furmished with poison weapons, with which they kill their prey. Many of them, by means of the secretion of spinning glands, spin webs, in which their prey becomes entangled. Most of them remain during the daytime beneath stones and in hiding-places, and come out to catch their prey only in the evening and at night.

Order 1.-Linguatulida,* Pentastomida.

Parasitic Arachnida with ringed, elongated, vermiform body, with two pairs of hooks in the neighbourlhood of the jauless mouth.

The vermiform ringed body of these parasites, which were for a long time taken for intestinal worms, is to be regarded as being principally formed of the extremely enlarged and elongated abdomen, the ceplato-thorax being much reduced; an interpretation which the form of the body of the Dermatophili seems to support. In the adult, jaws are completely wanting, but there are four curved hook: (two on each side of the mouth, fig. 377), which can be protruded from pouches in the skin and are attached to special chitinous rods. These may correspond to the terininal claws of the two posterior pairs of legs, since the two pairs of legs of the larva, which are to * I. Lenckart, " Bau und Entwiekelungsgeschichte der Pentastomiden," Leipzig und He:delberg, 1860.
be reganded as the anterior appendages, wre lost in the course of

Fig. 377.- Pentaxtomum denticulatum. Young form of P. ternioides. O, Mouth ; $H f$, the four hooks; D, intestine; A, anus. development. The nervous system is confinerl to a simple subasophageal nervous mass, with asophageal ring and giving off numerons nervous trunks. Eyes ancl organs of respiration and circulation are wanting. 'The alimentary tract is a simple canal in the middle of the horly, which opens by an anus at the posterior. end. Special cutaneons glands are present in great numbers and strongly developed. Male and female are distinguished by considerable differences in size and by the different position of the genital openings. While the genital opening of the surprisingly small male lies not far behind the mouth, that of the female is situated near the anus, at the hinder end of the body.

The Linguatulida, when sexually adult, inhabit the air chambers of warm-blooded animals and Amphibia. The developmental history of Pentastomum tcenioides, which lives in the nasal cavities and in the frontal sinuses of dogs and wolves, is known from the researches of Leuckart. The embryos of this species, while still enveloped in the egg-membranes, pass out with the nasal mucus on to plants, and thence into the stomach of Rabbits and Hares, more rarely into that of Man. When freed from the eggmembranes, they pierce the walls of the in-

Fig. 378.- Young forms of Pentastomum tenioides (after R. Leuckart). a, Egg with embryo. b, Embryo with two pairs of hooked fect, $M f^{\prime}$ and $I I f^{\prime \prime}$. c, Larva from liver of rabbit. G, Ganglion ; D, intestine ; $I l d$, skin glands. d, Older larwi. O, mouth; A, ams ; $G d$, genital glands.
testine and reach the liver. There they surround themselves with a cyst, in which they pass through a series of changes of form, accompanied, as in insect larve, by repeated ecdyses (fig. 378). When six months have elapsed, they have attained a considerable size and have acquired the four oral hooks, as well as a number of finely serrated superficial rings. They hare now reached the stage formerly described as P. denticulctum (fig. 377), in which they break through their capsules and begin a fresh migration. They traverse the liver; and if present in great numbers, occasion the death of their host. In other cases, on the other hand, they soon become enveloped in

${ }^{F I}$ g. 379.-Ripe male of Atax Bonzi, seen from the dorsal surface (after E. Claparède). Kit, Pedipalpus; G, brain; $O c$, eyes ; T. testis; N, Y-shaped gland; D, intestine ; A, anus; $H d$, cutaneons glands.
another cyst. If they now pass with the flesh of the Hare or Rabbit into the buccal cavity of the Dog, they penetrate into the neighbouring air-chambers, and in two or three months become sexually mature.

Pentastomum terninides Rud., $80-85 \mathrm{~mm} .$. Male only $18-20 \mathrm{~mm}$. long. P. multirinctum Harl., in the liver of Naju haje. P. constrictum v. Sieb. Encysted in the liver of negroes in Egypt.
Order 2.-Acarina,* Mites.

Arachnida with stout body. The abdomen is unsegmented and * O. Fr. Miiller, "Hydrachnæ," ctc., 1781. A. Dugès, " Recherches sur
fiesed with the thonreic. The oral repparatus is relapted for litiniy or pierciny und srectiouy,. Respioration, wes re rule, liy werens of tracherv.

The body of the Icrerime is genemally small and ponsesses it stout ind unsegmented form. The hear, thorax, and abromen are finsed into a common mass (fig. 379). The form of the oral appanatus varies exceedingly, and may be adapted either for hiting or for piercing and sucking. The chelicerat are accordingly sometimes retractile styles, and are sometimes furnished with claws or chelae. In the first case, the bases of the perdipalpi form a sheath which surrounds the styliform chelicera and serves as a suctorial rostrom, while the peripheral part of the pedipalpus or palp flequently projects laterally, and ends

Fig. 380-Anatomy of Ixolles Ricinus (after Al. Pagenstecher). G, Brain ; $S p D$, salivary gland; $D g$, ducts of salivary gland; D, diverticula of intestine ; A, anus; N, urinary organ; $T r$, bundles of tracher ; St. stigma. with a claw or chela. The structure of the four pairs of leg.s is not less various, inasmuch as they may serve for crawling, attachment, lumning and swimming. They usually end with two claws, sometimes in parasitic forms with stalked suctorial dises.

The nervous system is reduced to a common ganglionic mass representing the hain and ventral cord. Eyes may be absent or may be present, as one or two pairs of simple eyes.

The alimentary canal is frequently provided with salivary glands, and gires off on either side a number of blind saccular diverticula which may be forked (fig. 380).

Heart and blood vessels are invariably absent, but respiratory organs are frequently present in the form of tracheie, which arise
l'ordre des Acariens en général et les familles des Trombidies, Hydrachnés en part," Ann. des s'r: -Iat., I I. Ner.. Tom. I. and II. H. Nicolet. "Histoire naturelle des Acariens, etc. Orihatides." drehires du musire dhist. mut.: Tom VII. O. Fírstenherg. "Die Krätzmilhen des Menseben und der Thiere." Leipzig, 1861. 11. Pagenstceher, " Beiträige zur Anatomic der Millom," I. and II., Leipzig, 18Gi0-1861. E. Claparede, "Studien an Acariden," Zritscher. fiiir wiss. Zonl., Thon XVIII., 1868. P. Méguin, "Les parasites et les maladies parasitaires, 1880.
in tufts from a pair of stigmata, placed, as a rule, before or behind the last pair of legs (fig. 380, St).

The common generative opening is placed as a rule far away from the anus, and may be situated anteriorly between the last pair of legrs (fig. 381, a, b). There may be a special copulatory opening, as in

$$
b
$$

Fig. 381.- u, Nale ; b, female genital organs of Argas (after A1. Pagenstecher). I', Testcs ; $V d$, seminal duct; $D r$, prostate gland; Go, genital opening; Or, ovaries; Od, oviduct; U, uterus ; D_{i}, glandular appendages.
the itch-mites (S'arcoptidce), through which the sperm passes into the receptaculum. The males are often distinguished not only by their

Fig. 382.-Larva of a Ifydrachna. b, Its pupa. $K f$, chelicera; Kl, pedipalpus; Oc, eycs; B, legs.
appendages, which are more powerful and of a slightly different form, but also by the possession of posterior suctorial pits, and sometimes also by the mamer of nourishment and mode of life. The Acarina are, with the exception of the viviparous

Oribctidce, oviparous. 'The young are usually hatched with only three pairs of legs, and undergo a metamophlosis, which in the Ifydruchnidue is distinguished by several larval :und pupal stages (fig. 382 (a, b). Very many Mites are parasitic on animals and plants, others are predacions and live some on land and others in water.

Fam. Dermatophili. Small clongated mites with long vermiform, transversely ringed abdomen, with suctorial proboseis, styliform jaws, and four pairs of short, two-jointed stump-like feet. The only known genus, Jemment a (Simenca), lives in the hair follicles of domestie animals (Dog, Catt, Shecp, Cow, Horse), and as D. folliculumm Sim. in the hair follieles of Man, where they may give rise to comedones (fig. 384).
Fam. Sarcoptidæ. Itch mites. Body mieroseopie in size, stout, and with a a oft skin, with chitinous rods for the support of the appendages. There are no eyes. The oral apparatus consists of a suetorial eone with ehelate chelieerre and short laterally-placed

Fig. 383.-Female of Phytoppus vitis, from the leaf of the vine (after H. Landois). Ov, Ovaries; A, anus; Go, genital opening ; $B^{u \prime}, B^{\prime v}$, third and fourth pair of legs. pedipalpi. The legs are short and stump-shaped, and some or all of them have stalked suetorial dises. The males often have suekers and processes at the posterior end of the body. The females have a speecial vulva and reeeptaeulum seminis. They live upon or in the skin of Vertebrates, and oeeasion the iteh and mange. Sarcoptes stathiei Dug. (fig. 385), iteh mite. With numerous pointed tubercles, spines and hairs on the dorsal surface. Legs five-jointed, the two anterior terminate with stalked sneker; the last pair of legs in the male ends not, as in the female, in a bristle, but in a stalked sueker (fig. 385̄). The females only bore deep passages in the epidernis, at the end of whiel they live, and protuce by their pricking the skin disease

Fig. 384 - Demodex folliculorum (after Mégnin), strongly magnified; 反̄t, pedipalpus. known as the itch. The young, when hatched, possess only three pairs of legs and undergo several moults. The domestie animals are infected by different speeies of sarcoptider. which may be temporarily transferred to man. Dermatedectes communis Fiirst. Siymbintes equi Girl. (fig. 386).
Fam. Tyroglyphidæ. Chcese-mites. Of more elongated form. with conieal proboseis, chelate chelieere, and threc-jointed pedipalpi. The five-jointed legs are tolerably long, and have lobes for attaehment and claws. Large suckers. espeeially in the male, are often present at the sides of the anus. They live on animal and vegetable matters. Tyroglyphus siro Gerv. Khizoglyphus

Robini Clap., on roots. Glycipluagus fecularum Guér., on potatoes. Irypupus Dug., according to Mégnin and Robin, contains larval forms, which attach themselves to insects by their suckers.

Fam. Ixodidæ. Ticks. Larger usually blood-sucking mites, with strong dorsal shield and large, protrusible toothed cheliceræ. The pedipalpi are threeor four-jointed and club-shaped; their bases are joined together to form a

Fig. 385. - Surcoples scubici (after Gudden). a, Male from the ventral side. b, Female from the ventral side. c, Female from the dorsal surface. d, Larvin. $K f$, Cheliceræ; $B^{\prime \prime \prime}$, third pair of legs.
proboseis, bearing recurved hooks (fig. 387). The slender legs end witli two claws. Two simple eyes are often present. Respiration by tracher. The Ticks live on the underwood in forests. The females crawl on to Mammalia and Man, suck hlood, and beeome much swollen out. The young, when hatched, lave three pairs of legs. In tropieal countries the Ticks are of consideralle size, and are amongst the most troublesome parasites. Irmedes ricinus L. I. reducius,

Fio. 386. -Symbiotes equi $=$ Chorioptes spathiferus, from vontral side (after Mégnin). a, Male; $I G$, sucker ; b, young female in copulatory stage ; e, female realy to lay.

Fig. 387.-Ornl apparatus of Troies (after AI, Pagenstecher). R, Proboseis; Kff, chelicera; Kt, pedipalpus; \mathcal{B}^{\prime} first pair of legs.

Deg., Aryus. refterus, Latr., on Pigeons, occasionally on Man. A. persicus, Fisch. Notorions for its bite.

Fam. Gamasidæ. Bectle-mites. Chcliceræ chelatc. l'edipalpi five-jointed. The legs end with two claws and a sucker. Tracheæ are present. Some of them lead a free life and are predacions, some are parasitic on Beetles and on the skin of Birds and Mammals. Gumasus coleoptratorum L., Dermonyssu.: urium, Dng., Pteropitu. tespuretilionis Herm.

Fam. Hydrachnidæ. Watcr-mites. Body globular, often brightly-coloured. Cheliccre usually with a claw-like terminal joint. They have swimming legs, and two or four simple eyes. There are tracher. The larve, when hatched, adhere with their large suctorial cone to aquatic Insects, on the blood of which ther live. Hydrachna oruentu, O. Fr. Miil.1. Atar. Bonzi Clap., in the mantle cavity of the Unins. Limnnchares holosericens Latr.

Fam. Trombidiidæ (fig. 388). Body brightly coloured and covered with hairs; the pedipalpus has a claw and a lobe-like appendage. Eyes present. Respiration by tracheæ. The hexapodous young lire as parasites on Iusecta

Fig. 388.-Trombidiun holoserice九m (after Mégnin).

Fig. 389.-Pygnoyonum littorale, (regne animal) $A B$, paur of legs usel for carryiug the eggs.
and Arachenida. sometimes on Mammalia, and on Man, in whom they (as Leptus autumnalis) produce a transitory affection of the skin. Trombidium holusericenn L. Erythrerus parictinus Herm. Tetranyehus telearius L. Spinning mite.

F'am. Oribatidæ. Cheliceræ retractile and chclatc. Pedipalpus five-jointed, with toothed biting plate on its basal joint. Occlli absent. Oribates ulatus Herm., under moss.

Fam. Bdellidæ. The cephalic region is elougated to form a proboscis, and is distinct from the rest of the body. The chelicera are chelate. The pedipalpi are long and thin. The animals crecp about on damp ground. Bdella langicornis. L.

PYGNOGONIDA.*

Milne Edwards and Kiöyer placed the Pyynogonida among the Corstuceu; latterly, however, they have been generally placed between

[^98]the Mites and Spiders amongist the Arachenida, althongh they possess a greater number of appendages than either, inasmuch as the males have an accessory pain of legs, used in carrying the eggs (fig. 389, A B). They are small ammals with a conical suctorial polsoscis and rudimentary abdomen (reduced to a tubercle) ; and they live in the sea, and crawl slowly about amongst the sea-weeds. There are four pitis's of very loug, many-jointed legs, which contain tubular diverticula of the stomach and the sexual glands. There we no trachere. On the other hand, there is a well-developed heart with an aorta

Fig. 300.-Ammother pygnogunoides (règne animal). Da, prolongations of alimentary canal into the legs.
and several lateral ostia. Above the brain lie four small simple eyes. There is a considerable ventral chain, composed of several ganglia. Thereggs are carried about on the accessory pair of legs on the thorax of the male (fig. 389) till the larve are hatched.

Py!mnegonum littorale O. Fr. Miiller, North Sca, Phorichiliatium Edw., Ammethere Tcach, A. 17ggnoffmnides Quntr. (fig. 390).

TARDIGRADA.*

The Trardigrada constitute a second group, which is often separated as a distinct order. They are small mite-like Arachonida, and may - * Doyère, "Mémoire sur les Tardigrades." Aun. des, sic: Viut., 11^{2} Sér... Tom. 1834., C. A., XV11. C. A. S. Schultze, "Macrohiotus Hutclandii. ctc," Berolini, 1834. C. A. S. Schultze, "Echiniscus Bellermanni," Berolini, 1840. Dujardin.
be defined as hermaphrodite Arachnida with suctorial mouth parts, and short stumpy legs, without heart or respiratory organs.

The body of these small, slowly-creeping aquatic animals is elongated and vermiform, and prolonged at the anterior extremity into a suctorial tube, from which two styliform jaws can be protruded. The four pairs of legs are short tubercles terminated by several claws (fig. 391) ; the last pair is placed at the extreme end of the body. The nervous system consists of four ganglia connected by long commissures. The first of these gauglia corresponds to the brain and gives off nerves to two simple eyes and to two sensory papille. Circulatory and respiratory organs are entirely absent. The alimentary canal consists of a muscular pharynux and a stomach beset with short cæcal diverticula. The ducts of two salivary glands of considerable size open into the suctorial proboscis (fig. 391). The Tardiyrada are hermaphrodite, and possess a pair of testes and an unpaired ovarian sac which open together into the cloacal termination of the intestine. They usually lay large eggs at the time of moulting, which remain enclosed in the old cast-off skin till the young animals are hatched. Development takes place without metamorphosis. The animals live in moss and alge in the gutters of roofs, and

Fig. 391.- Macrobiotus Schultzei (after Greeff), O, Mouth; I'm, pharynx ; Md, stomach; Spd, salivary glands; Ov, ovary ; T, testes ; I s, vesicula seminalis.
also on the sea-beach, and it is specially worthy of remark that, like the Rotifera, they can, by the addition of moisture, be called back to life after a long period of desiccation.

[^99]Order 3.-Araneida * (Spriders).

Arechnidu with poison glends in the subchelute cheticeror ; with pediform pedipalpi and stallied unsegmented rebdomen. IVtey hreve four or six sprinniny mammillee, and two or forr melmonary stecs.

The peculial shape of the true spiders is due to the swollen arnd unsegmented abdomen, the base of which is constricted to form the stalk by which it is mited to the rest of the hody (fig. 392). The large subchelate chelicerx, which project beyond the front of the lead, consist of a powerful basal portion grooved on the inner side, and a cläw-shaped terminal joint at the point of which the duct of a poison gland opens (fig. 393). At the moment of the bite the secretion of this gland flows into the wound, and in the

Fig. 392.-Dysdera evgthrina from the ventral side (règne animal). $K f$,chelicera; \bar{K}, pedipalpus ; \bar{K}, basuljoint (jaw) of pecipalpus; P, lungs ; St, stigma of lungs; $S t^{\prime}$. posterior stigma leading into the tracher ; G, genital opening ; S_{l}, Spinning mammillæ. case of small animals causes an almost instantaneous death. The pedipalpus bears on its broad coxal joint, which constitutes a kind of hitingblade (fig. $392 K$), a manyjointed palp, the terminal region of which is peculiarly modified in the male and functions as a copulatory organ. The mouth is bounder on the under side by an unpaired plate, forming a sort of lower. lip. The four pairs of usurlly long legs, whose form and size vary according to the manner

Fig. 393.- Poison gland and terminal joint of chelicera of Mygule (règne animal). π, claw; Gd, poison. gland; B, poison vesicle. of life, end with two toothed claws, to which a small claw $(T k)$ and several accessory claws may be added (fig. 394). The abdomen in the female is always larger and more swollen than in the male; at the base (anterior part) of its ventral surface is placed the mpaired sexual opening, at the sides of which are the two slit-like apertures of the lung siacs. There is often a second pair of stigmata behind these openings leading either in to the

[^100]posterior lung sacs (Mygulidce) or into a system of trachees (Argyroneta, Dysclera). The anus is placed ventrally at the end of the

Fig. 394.- , Leg of the fourth pair of Amaurobius ferox. Cu, Calamistrum. b, End of foot of Philcus chrysops with two claws and pencil consisting of spatulate hairs (S). c, End of foot of Epeira diadema; K, web-claws; $T k$; ambulatory claw; $G b$, toothed bristles (accessory claws) (after 0 . Hermann).
of these protuberances there often lies a peculiar structure called the cribrellum, with a covering of very fine hairs (fig. 395, Cr). The spinning glands (fig. 396) are tubes of various shapes; they open by fine pores on the surface of the spiming papillie, and secrete a viscid material, which in the air hardens to a fine thread and is woven by the aid of the claws on the feet into the well-known spider's web.

Nervous system (fig. 367).-Besides the brain, with the nerves to the eyes and cheliceræ, there is a single, usually star-shaped ganglionic mass in the thorax, from which nerves pass to the pedipalpi and legs, and also to the abdomen. Visceral nerves have also been observed on the alimentary canal. abdomen, and is surrounded by four or six wart-like protuberances (fig. 395, Spwo), the spinning or arachnidial mammillæ, from which the secretion of the spinning glands passes out. In front

Frg. 395.-Spinning organ of Amatrobius ferox (after 0 . Hermann). $C r$, Cribiellum ; Slux, spinning mammillæ.

Fia. 396.-Lungs (P), spinning glands ($S p d$) and generative organs (V d) of a male Pholcus phalangista (règne animal). n, Rectum with Malpighian vessels opening into it. As a rule there are eight, or more rarely six simple eyes, which are disposed in two curved lines or more in a quadrate on the
doisal surface of the cephatie region behind the foontal margins. 'Their armagement is very regman', and is chameteristic for the diflerent genera (figs. 398 and 399).

Fig. 397.-Mygule from the ventral side, part of the skin is turned aside (règne animal). K, Chelicera : $B g$, thoracic ganglionic mass; P, P^{\prime}, lungs; F, lamellw of the lungs; $S t, S t^{\prime}$, stigmata; Ov, ovary ; Su, spinning papillæ.

Fig. 398.-Antcrior part of the ccpha-lo-thorax of Mygale with the eycs (O) (règne animal).

Fig. 399. - Arrangement of the eyes in different spiders (after Lebert). a, Epeira; U, Tegenaria; c, Dolomeder ; d, Salticur.

The alimentary canal (fig. 400) begins beneath the upper lip with an ascending pharyngeal portion of the eesophagus, into which a saccular pharyngeal gland opens (salivary gland). The narrow esophagus, hefore passing into the midgut or intestine, is dilated to form a suctorial stomach, which is furnished with powerful muscles arising from the dorsal part of the cephatothorax. The midgut is divided into an anterior part, lying within the cephato thomacic region and provided with two anterior and four lateral pains of ceeca, and into a narrower abolominal small intextine, into which the ducts of the branched hepatic tubes pour their secretion. The latter
appears to have a digestive function similar to that of the pancreatic secretion, inasmuch as it dissolves albumens and transforms amyloid substances into sngar. The short rectum receives two branched mrinary (Malpighian) canals, and dilates in front of the anal opening to the form of a vesicle (fig. 400).

Fic. 401.-Heart and vascular trunks of Lycora, in lateral and dorsal view (after Claparède). P, Lungs ; C, heart; Ao, aorta; O, eyes.

Fig. 402.-Sexual organs of a Tegenaria (Philoica) domestica, with the abdomen in outline (after Bertkau). T, Testis ; Td vas deferens ; St. stigma.

The vascular system is not less highly developed (fig. 401). The blood flows from the pulsating dorsal vessel placed in the abdomen, through an anterior aorta into the ce-phalo-thorax, and thence into lateral arteries, supplying the legs, jaws, brain, and eyes. The blood returns from these organs into the abdomen, bathes the socalled lungs, which are composed of numerous flattened tubes, and then returns to the dorsal vessel throngh three pairs of lateral slits.

The ovaries (fig. 397) are two racemose glands surrounded by the liver' ; the short oviducts unite to form a single vagina, which is ustaally connected with two long receptacula seminis and opens on the ventral surface of the anterior part of the abdomen between the anterior stigmata. The testes consist of two long coiled

Fir. 403.-Terminal part of the perlipalpus of Segestria (δ) with the receptacle of the spermatophores (after Bertkanu). canals with a common terminal duct, which likewise opens at the base of the abromen (fig. 402).

The males are distingnished from the females by the smaller size of the abolomen. The females are always oviparous, and fiequently carry their egges about in special wehs (Theridium, Jolomedes). Th the male the perlipalpus is modified to form a copulatory organ ; the thickened and exarated terminal joint is spoon-shaped, and possesses a vesicular copulatory appendage with it spinally-twisted fibre (fig. 403). Before copulation the male fills this appendage with sperm, and at the moment of coitus introduces the terminal fibre into the female genital opening (fig. 404). Sometimes the two sexes live peacefully near each other on neighbouring webs, or even for a time on the same web; in other cases the female, which is the stronger animal, lies in wait for the male in the same way as she does for all animals weaker than herself, and does not spare him even during or aftercopulation ; the male, therefore, only approaches her with the greatest caution.

Fig. 404.-Male and female of Linyphia, during copulation (after O. Herman).

Development.

- The segmentation of the ovum is centrolecithal (fig. 107). The embryos possess, in addition to the thoracic appendages, the rudiments of abdomi nal feet, which subsequentlyabor't

Fig. 405.-Spider embryo (after Balfour). $A F$, Rudiments of abdominal feet.
(fig. 405). The young, when hatched, already possess the form and appendages of the adult. They are not, however, sufficiently developed before the first moult to spin or to capture prey. It is only after the moult that they become capable of performing these functions, leave the web of the egg membranes, and begin to spin threads and to capture small insects. The threads which we find Hoating in the air in great numbers in autumn and are known as gossamer threads are the work of young Spiders, which mise themselves in the air by their means, and pass the winter in sheltered places.

The habits of spiders are so remarkable that they have for a long time excited the interest of observers. All spiders are predacions, and suck the juices of other insects; nevertheless, the mamer in which they get possession of their prey varies much, and often
indicates the possession of lighly-developed instincts. The so-called vagrant spiders do not, as a rule, form nets to catch their prey, but use the secretion of the spimning glands only to line their hidingplaces and to make their ovistes. They catch their prey either by ruming after it (fig. 406, a), or by springing on it (fig. 406, b). Other Spiders (fig. 406, c) are indeed able to 1 mn quickly, but they render the task of catching prey easier by making webs and nets, on which they move about with great dexterity, while other animals, especially insects, become very easily entangled. The webs themselves are of various kinds, and constructed with more or less skill;
 they are either delicate and thin and formed of irregularly arranged threads, or they are of a felt-like quality and extended horizontaily ; or again, they may have the form of vertically placed wheel-shaped nets ; in this case they consist of concentric and radial threads, which are arranged with wonderful regularity, the radial threads meeting in a central point. Tubular or funnel-shaped hiding-places for the spider are often found neir the webs. Most spiders rest in the daytime, and go out for prey in the dusk or in the night-time. Miny vagrant spiders, however, hunt in the day-time, even when the sun is shining.

1. Tetrapneumones. With four lungs and usnally with four Apiming mammillie.

F'am. Mygalidæ. Large spiders thickly covered with hairs, with four lungs and four spimning mammille, of which two are very small. They do not construct trine webs, but prepare long tubes in the earth, or line their hidingplaces (in clefts in trees or in holes in the carth) with a thick wob; they lic in wait for their prey (at the entrance of their homes), or they may catch it in the open by springing. The claw joints of the chelicere are bent downwards. Mygale "virularia L.. the large Bird Spider of South America, lives in a tubular web between stones and in creviecs in the bark of trees. Cteniza cermenturia Latr. The trap-cloor spider in South Europe, lives in tubular holes in the earth, the cutrance to which is closed with an operculum, as with a sort of trap-door. Atypms Sulzeri Latr., in Central Gcrmany, with six spinuing mammillæ.

2. Dipneumones. With two lungs and six spinning mammille.

Fam. Saltigradæ. Springing spiders (fig. 406, b) with a large arched cephalo-thorax and eight eycs of unequal size, which are grouped almost in a square. The anterior legs with stout femoral joints serve with the following legs for making the leaps by which these animals catch their prey. They do not construct webs, but spin fine saccular structures in which they remain at night, and later on keep guard over their cgg-sacs. Shlticus cupreus, firmicurius Koch. Myrmeciu Latr., in Brazil, resemble ants in form.

Fam. Citigradæ=Lycosidæ. Wolf-spiders. With long oval cephalo-thorax, which is narrow anteriorly, but is strongly arched. There are eight eres, which are usually arranged in three transverse rows. They run about with their long strong legs in pursuit of their prey. By day they are usually concealed beneath stones, in hiding-places, which they line with their webs. The females frequently sit on their egg-sacs, or carry them about on the abdomen, and usually protect the young for some time after they are hatched. Dolomedes mirabilis Walk. (fig. ${ }^{4} 06$, (1). Lycosa succuta L., taruntulu L., the Tarantula Spider of Spain and Italy. It lives in holes in the ground, and its bite, according to the erroneous popular belief, occasions the dancing madness.
Fam. Laterigradæ $=$ Thomisidæ. Crab-spiders. With rounded cephalo-thorax and flattened abdomen. The two anterior pairs of legs are longer than the following legs. They only spin isolated threads. They hunt insects beneath leaves running sideways and backwards. Micrommata smaragdina Fabr., Thomisu: citreus Geoffr. (fig. 406, d).

Fam. Tubitelæ. Tube spinners. With six or eight eyes arranged in two transverse rows, which are usually curved. The two middle pairs of legs.are the shortest, the hindermost pair often the longest. They spin for the capture of their prey horizontal webs with tubes in which they lie in wait. Tefenaria donnesticu. L. (tig. 406, c) (Winkelspinne). Others, as A!yelena lathyrintlica L., construct funnel-shaped webs or, as ('lubiona holosericeu L.. saccular receptacles. Lrgyroncta nquatica L., water spiders, with longer antcrior pair of legs. The body has a silvery appearance, owing to the numerons air-bubbles which alhere to the hairs with which it is covered. It spins a hell-shaped watertight web, which it fills with air like a diving-bell and attaches to waterplants.

Fam. Inæquitelæ. Web spinners. With eight unequally large eves arranged
in two transverse rows, and long antcrior legs. They construct irrcgular webs, the threads of which cross onc another in all directions, and live on their webs. Theridium sisyphlium. Clerck., Pholrus phalangioides Walck.

Fam. Orbitelæ. Wheel spinners. Head and thorax scparated by a furrow ; abdomen swollen to a globular form. The cight eyes arc arranged rather irregularly in two rows, and the anterior legs are longer than the following legs. The legs of the third pair are the shortcst. They spin perpendicularly hanging wheel-shaped webs with concentric and radial threads, and lie in wait in the middle point or in a remote hiding-place, which they surround with a wcb. Epueira diadema L., cross spiders.

Fig. 407.-Phalungitm opilio ठ' (cormutum) (règne animal).

Fig. 408.-Male and female generative organs of Phalangizm opilio (after Krohn). T, Testis; $V d$, vasa deferentia ; P, penis with accessory glands ; R, retractor muscles; $O v$, ovary ; U, uterus; $O p$, ovipositor.

Order 4.-Pfilangiida. *

Arachnida with four pairs of lony, slender leys, with chelate chelicerce and sergmented abdomen joined by its whole breadth to the cephalo-thorax. They have no spinninay glands, and breathe by trachece.

* Mcade, "Monnoraph of the British specics of Phalangiidr," Ann. of nat. list. 2". Scr. XV. 1845. A. Tulk, "Upon the anatomy of Phalangium opilio," Ann. of nat. hist., XII. A. Krohn, "Zur näheren Kenntniss der män nlichen Zeugungsorganc von Phalangium," Archiv. fïr Niturgesch. 1865.

The Phalantioda (fig. 407) resemble the true spider's in their general apperrance, but differ from them by possessing chelate chelicera which are bent downwards, ly the form of the abrlomen, the tracheal respiration, and the absence of spinning glands. The Pedipalpi are either filiform or pediform, and are armed with claws. The abdomen consists, as a rule, of six or more rarely eight or nime seginents, and is joined to the cephalo-thorax by its whole breadth.

The nervous system is divided into a brain and a thoracic ganglionic mass, whence arise two visceral nerves which form ganglia in their course on either side. There are two or four simple eyes. The organs of respiration, which in all cases consist of trachex branching within the body, open by a single pair of stigmata, usually beneath the coza of the last pair of legs. The heart consists of a long dorsal vessel divided into three chambers. The stomach is provided with a number of ceca, of which the last extend as far as the anus. The male as well as the female genital opening lies between the posterior pair of legs. In the male a long tubular copulatory organ, and in the female a long ovipositor can be protruded from the opening (fig. 408). The production of ova as well of spermatozoa in the testis, as was observed by Krohn and Treviranus in almost all males, is remarkable.

The Phalangiidce usually conceal themselves during the day and go out at night to capture prey. The South American species are very numerous, and of very strange form.

Fam. Phalangiidæ. With characters of the order. Phutangium onilin L. (fig. 407). Gonyleptus horridus Kirb. To this group also belongs ('yplophtthalmus duricorin. Jos., and the genus Gibocellum Steck.

Order 5.-Pedipalpi * (Scorpion-Spiders).

Arachnida of considerable size; jaus movided with claws, and the anterior pair of the legs elongated, resembling antennce. The abdomen has eleven or twelve segments, and is clearly marked off from the rest of the bodly.

The Scorpion-spiders (fig. 409) are allied both to the Spiders and the Scorpions. The abdomen, which is always separated from the cephalo-thorax by a constricted portion, is divided into a considerable number of segments, but presents no distinction into a hroad preabdomen and a thin styliform post-abdomen as in the Scorpions.

[^101]In the genus Thelyphonus, however, which is most closely allied to the Scorpions, the three last segments of the abdomen are narrowed to the form of a short tube, the end of which is prolonged into a long-jointed appendage. The chelicei:e are always provided with claws, and probably, as in the spiders, contain a poison gland, since the bite of these animals is much feared. The Pedipalpi, on the other hand, are sometimes of considerable strength and armed with a claw and several spines (Phrymus). Sometimes (Thelyphonus) they are, as in the Scorpions, chelate. The legs of the anterior pair are always very long and thin, and end with a flagelliform ringed portion. There are eight eyes, of which the two largest are placed

Fig. 409.-Phrynus reniformis (règne animal). Kt, Pedipalpi; Gl, flagelliform anterior leg.
in the middle of the cephalo-thoracic shield, while the three smaller pairs are situated on each side behind the frontal margin. They breathe by means of four lung sacs, composed of a very large number of lamellar tribes. The slit-like openings of the lung sacs lie on either side of the posterior margin of the second and thind abdominal segments. In the stricture of the alimentary canal they resemble the Scorpions, in that of the nervous system the Spiders. The genus Plorynus is viviparous. All the Pedipalpi live in the tropics of the Old and New World.

Fam. Phrynidæ. With the characters of the order. Plirynus. Oliv. The large broad pedipalpi are armed with a number of spines and end with a claw. The masticating blades are free. The abdomen is flat and relatively short, and has
eleven segments and no jointed anal filament. I Ph. renifurmis Latr., in Brazil, Thelyphonus Latr. The chelicerae are short and end in a chela, their mastieating blades fuse in the middle line. The elongated twelve-ringed abrlomen with segmented anal filament. I' cerndutus l'abr, in dava.

Order 6.-Scompionidea* (Scorpions).

Arachnide with chelate chelicerce, and elongated, pediforin chelate pedipalpi, with a pra-abdomen composed of seven segments, and an elongated post-abdomen of six sergments, with poison spine at the liond, end; with four pairs of lunys.

Fig. 410.-Cephalo-thorax and præ-abdomen of Scorpio africanus (règne animal). Kf, Cheliceræ; $K t$, pedipalpi; K, pectines; $s t$, stigmata.

The Scorpions have a certain resemblance to the Decapod Crustacea in their powerful chelate pedipalpi and firm armour (fig. 410). The stout cephalo-thoum is joined to an elongated abdomen, which is divided into a crlindrical præ-abdomen, composed of seven segments, and a very narrow six-segmented postabdomen, which is curved dorsalwards. The post-abdomen ends with a curved poison spine, which is provided with two poison glands. The cheliceræ are three-jointed and chelate: the pedipalpi end with a swollen terminal chela, while the basal joint serves with its broad grinding surface as a jaw. The four pairs of legs are strongly dereloped and end with double claws.
In their internal organization the Scorpions reach the highest

[^102]grade of all the Arachencda. The nervous system is composed of a bilobed brain, a large oval ganglionic mass in the thorax, and seven to eight smaller genglionic swellings in the abdomen, of which the last four belong to the post-abdomen. The visceral nervous system is represented by a small ganglion, which is placed at the beginning of the asophagus, connected with the brain by fibres and gives off nerves to the alimentary canal. The principal organs of sense are the simple eyes. Of these there are from three to six pairs, which are so distributed that the largest pair is sitnated on the middle of the cephalo-thorax, and the others right and left at the sides of the frontal region.

The alimentary canal is a narrow straight tube, which is surrounded in the prex-abdomen by the large multilobed liver, and opens on the penultimate ring of the abdomen. Two Malpighian vessels function as excretory organs.

The circulation is the most complicated in the whole class, but, as in the Decapoda, special blood sinuses of the body cavity are inserted into the vascular system. The elongated dorsal-vessel, which is divided into eight chambers and is attached by alary muscles, is surrounded by a pericardial sinus, from which it receives the blood through eight pairs of slit-like openings, which are capable of being closed. From the heart the blood

Fig. 411.-Embryo of a Scorpion (after E. Metschnikoff). $K f$, Cheliceræ; $K t$, pedipalpi ; B^{1} to $B^{\text {4 }}$, the four pairs of thoracic legs. There are rudimentary limbs on the abdomen. is driven through an anterior and posterior artery, and through lateral arteries to the organs. The finer ends of the arteries seem to be comnected with the commencing veins by capillaries. From the veins the blood is collected in a receptacle on the ventral surface. Thence the blood passes to the respiratory organs, whence it passes by special veins into the pericardial sinus, and so back to the heart. Respiration is effected by means of four pairs of lung sacs, which open to the exterior by fonr pairs of stigmata on the third to the sixth abdominal segments and are composed of a relatively small number of flat tubes.

The male and female generative organs open on the ventral face of the first abdominal segment [the median opening being covered
by a small valve-like flap, the genital operculum]; on the second abdonimal segment are attached two pecaliar comb)-shaped structures, known as pectines. The latter are probably the remains of the appendages of the segment, and sorve as tactile orgins. The mates are distinguished from the females by their broader chelar and longer post-itbdomen.

The females are viviparous. The development of the ovum takes place in the ovary, and the embryos have the rudiments of appendages, on the plie-abdomen (fig. 411).

The Scorpions live in warm countries, and leave their hiding-places at dusk. When they run, the post-abdomen is bent upwards orer the back. They seize their prey, i.e., principally spiders and large insects, with their large chelate pedipalps, and sting them to reath with their caudal poison-spine. Some species attain a very considerable size, and their sting may even prove fatal to man.

Fig, 412.-Obisizm trombidioides (règne animal). Ǩt, Pedipalpus.

Fam. Scorpionidæ. Scrmpin curopreus Schr., of small size and with only six eyes, in Italy. Andrectonus ocritanus. Am., Buthus ufer L.

Order 7.--Pseudoscorpionidea.*

Arachnidu of small size and resembting scorpions, but without caudal spine or poison glanc. They breathe by means of trachere.

The Pseudoscorpions are far smaller and more simply organised than the scorpions. They bear much the same relation to the true scorpions that the mites do to the spiders. In their form and the structure of their cheliceræ and chelate pedipalpi they resemble the scorpions. On the other hand, the hind end of the segmented abdomen does not become narrow so as to form a post-abdomen, and is without a caudal spine and poison gland (fig. 412). They all possess spinning glands, the openings of which lie near the genital openings on the second abdominal ring. They possess only two or four ocelli, and respire by means of tracher, which open by two pairs of stigmata on the two finst abdominal rings. They live beneath the bark of trees, in moss, between the leaves of old books,

* W. E. Leach, "On the chameters of Scorpionidea with description of the British specics of Chelifer and Obisium," Zoml. Miscrll. III. A. Mcnge. " Veher
 V.. 185\%. L., Koch. "Uebersichtliche Darstelling der europ. Chernetilen." Nüruberg, 1873.
etc. ; they run rapidly laterally and backwards, and live on mites aud small insects.

Fam. Chernetidæ. Chelifer cancroiles L. Book-scorpion with two eyes. Obisium ischnosceles Herm., with tour eyes. Chthomins trombidivides Latr. (fig. 412).

Order 8.--Solifuge.*

Spider-like animals with separated head and tharax, with elongated, segmeented abdomen: sub-chelate chelicerce and pediform pedipalpi. Respiration is effected by means of trachece.

The Solifugce approach insects in the segmentation of the body. The cephalo-thorax is divided into two regions of which the anterior is comparable to the insect head, the posterior (composed of three segments) to the insect thorax. The long eylindrical abdominal region, which is composed of nine to ten segments, is quite distinct (fig. 413). The body is closely covered with hairs. The oral apparatus consists of powerful cheliceræ, which end in a large vertically placed chela,

Fig. 413.- Galcodes araneoides (règne animal). the lower arm of which can be moved perpendicularly against the upper. The pedipalpi serve as ambulatory legs, but are without claws, which are found only on the three posterior pairs of leg.. The latter arise from the three free thoracic rings, and bear peculiar cutaneous lamellæ at their base. The anterior pair of legs belongs to the head and may be considered as a second pair of pedipalpi (maxillary palps). The Solifugce possess two large projecting simple eyes, and respire like insects by

[^103]means of trachea, which open to the exterior hy four slit-like openings between the first and second pair of thoracic appendages and on the ventral sufface of the abolomen. 'They live in wam, sandy loculities, especially of the Old World. They are nocturnal in their habits, and are feared on account of their bite.

Fam. Solpugidæ. Sulpugu (falcondes) arunewides Pall., found on the steppes of the Volga and in South Russia. Other larger species are found in Afrien, and some forms are known in Ameriea.

Class III.-ONYCHOPHORA * (PROTOTRACHEATA).

Tracheata with elongated veriniform body, two antennce, and short paired imperfectly-jointed legs armed with claws.

FIG. 414.-Periputus capensis (after Moseley).
The Onychophora, which are represented by the single genus Peripatus, have a moderately elongated body, which is provided with paired legs (from fourleen to more than thirty pains), each armed with two small claws (fig. 414). The head is distinct, and bears a

Fic. 415.-Head of a Peripatus embryo (after Moseley). An, Antenna; K. jaws, anterior to which are the ectoderm thickenings, which will form the brain. pair of antennæ and two simple eyes. On its under surface the month is placed beneath a large projecting suctorial lip, and is furnished with a pair of jaws armed with chitinons claws. On each side of the mouth short, indistinctly jointed oral papilla are attached to the sides of the head. The nervous system is distinguished by the remarkable separation of its two halves. The paired cerebral ganglion gives off two nerve trunks, which indeed approach each other closely

[^104]beneath the esophagus, but, soon diverging, remain widely separate for the rest of their course. They are without ganglionic swellings ; are connected together in their whole length by fine transverse commissures, and finally unite with each other over the rectum at the end of the body (fig. 416). The alimentary canal begins with a muscular pharynx, and runs in a straight course. The anus is terminal. A dorsal longitudinal vessel probably functions as heart. [A pair of elongated unbranched glandular tubes, the salivary glands, open into the buccal carity.] Moseley discovered a well-developed tracheal system, the stigmata of which are distributed over the whole surface of the body. The tracheal trunks are delicate tubes, which are distributed upon the viscera in fine tufts. Long slime glands (considered as testes by Grube) open on the oral papillie; they produce an exceedingly sticky fluid, which the animal ejects when irritated. The Onychophora are, according to Moseley, of separate sexes. The ovaries are united to form one structure placed in the middle line on the dorsal side of the intestine, near the hind end of the body. There are two long oviducts, which function as uterus and open by a common aperture on the

Fig. 416.-Anatomy of a female Peripatus (after Moseley). F, Antennæ; G, brain with the ventral nerve cords (V_{c}°) ; $P h$, pharynx ; D, intestine; A, anus; $S d$, slime gland; $O v$, ovaries; Od, oviduct; U, uterus.
ventral surface close to the hind end of the body (fig. 416). The testes are paired and egg-shaped, and lie towards the hind end of the body. The vasa deferentia are coiled and unite to form a common duct, which opens at the same place as do the female organs (fig 417). The eggs develop in the uterus.
[Segmental organs or nephridia, resembling those of Annelids, are found one pair in each segment. They open externally at the base of the legss and internally into the body cavity. The body cavity is divided into four parts by three septa-(1) into a dorsal section containing the dorsal vessel, (2) a main central division containing the alimentary canal, slime glands and generative organs ; and (3) two lateral compartments, which are continued into the legss and contain the salivary glands, segmental organs and ventral nerve cords.]

The animals live in damp places beneath decaying wood. [They

Fig. 417.-Hind end of a male Peripatus (after Moseley). T, Testes; Pr, prostate gland ; Vd, vasa deferentia; $D c$, ductus ejaculatorius; D, rectum; Ve, ventral nerve trunks. are viviparous; in Peripatus C'apensis the period of gestation is eleven or twelve months, the young being borm in April and May.]

Fam. Peripatidæ. Peripatus Ednardsii Blanch., P. capensis Gr.

Class IV.-MYRIAPODA.*

Trachecter with separated head and numerous fairly similar seyments. They lave one pair of antennce, three pairs of jaws, and numerous puirs of leys.

The Myriapoda of all the Arthropoda present the greatest resemblance to the Annelids, in the serial similarity of the segments, in the possession of an elongated, sometimes cylindrical, sometines flattened body, and in the mode of locomotion. In fact, they bear much the same relation to the Annelids that the Snakes do to the vermiform fishes amongst the Vertebrata.

* J. F. Brandt, "Recucil des mémoires relatifs à l'ordre des Insectes Mrriapodes," St. Petersbourg, 1841. G. Newport. "On the organs of reproduction and the development of the Myriapoda," Phil. Trans., 1841. Koch. "System der Myriapoden, Regensburg, 1847. M. Fabre. " Recherehes sur l'anatomie des organs reproducteurs et sur développment des Myriapodes," Anu. des. Sc. Vat.. IV. Sér., Tom. III. Fr. Meinert, "Danmarks Chilognather," Naturh. Tilsshrift, 3 R., Tom, V.; and "Seolopendrer og Lithobier," Mbid., Tom. V. 1868. Latzel, " Die Myriopoden der österrecehisch-ungarisehen Monarchie" I.. "Dic Chilopoden," Wien, 1880. Erieh Haase, "Schlesiens Chilopoden," Breslau, 1880, 1881.

The head of the Myriapods corresponds closely with that of the Insects, and, like the latter, bears a pair of antennre, the eyes, and two or in the Chilopocke three pains of jaws. The antenne are placed on the frontal region, and are usually filiform or setiform. The strongly-toothed mandibles resemble those of Insects., and, like the latter, are without palps. The maxille in the Chilognatha have the form of a complicated lobed oral valve (fig. 427 b), the parts of which were formerly supposed to represent two pairs of maxillie fused together; while in the Chilopoda they consist of a single blade bearing is short palp (fig. 425). In rare cases the mouth parts are transformed into a suctorial apparatus (Polyzonium).

The body is composed of similar and distinctly separated segments, the number of which varies considerably in different species, but is usually constant for the same species. The segments bear paired appendages, and a strong dorsal and ventral plate (tergum and sternum) may often be distinguished. Although the segments of the body are so much alike that it is impossible to fix a limit between thorax and abdomen, still certain features of the internal organisation,

Fig. 418. - Scolopendra morsitans. especially the fusion of the three first ganglia of the ventral chain, show that we must regard the three anterior body segments at least of the Chilognatho as constituting a thorax. In the Chilognatha a single pair of legs is attached to each of the first three to five body segments; each of the following segments, on the other hand, bears

Fig. 419.-Tulus terrestris (after C. L. Koch).
almost invariably two pairs, so that they may be regarded as double segments, formed by the fusion of two somites. The legs may be attached to the sides of the somites (Chilopodcu), or nearer the middle line of the ventral surface (Chilognatha), and are ustually short with from six to seven joints, and terminate with claws (figs. 418 and 419).

In their intermal structure the Myriapods closely resemble the

Tnsects. The nervous system is distingrished lyy the great elongation of the ventral ghanglionic cord, which runs along the whole length of the body and is swollen in each segment to form a ganglion. Aeeording to Newport, there is a system of paired and unpaired viseeral nerves, like those of Inseets. Eyes are only rarely wanting, and are usually present as oeelli which are sometimes closely packerl together, or rarely (Scutigera) as peeuliarly-formed facetterl eyes.

The alimentary canal, with rare exceptions (Crlomeris), takes a straight eourse through the entire length of the body, and opens by the anus in the last segment. The following parts can be distin-

Fig. 420.-Head and anterior segments of Scolopendra (after Newport). G. brain ; 0 , eyes ; A, antennæ; $K f$, maxilliped (poison-claw) ; C, heart; M, alary muscles of the heart; $A r$, arteries.
guished:-a narrow esophagus beginning with the buccal cavity and, as in Tnsects, receiving the eontents of two to six tubular salivary glands; a wide, rery long mesenteron, the surface of which is closely beset with short hepatic tubes projecting into the body eavity; a hind, gut, which reeeives two or four Malpighian tubules, the latter being coiled round the intestine ; and finally a short and wide rectum.

The central organ of the cireulation is a long pulsating dorsal vessel, which extends through all the segments of the body (fig. 420). It is divided into a great number of chambers, which correspond to the segmentation and, in Scolopendro, are attached to the dorsal wall by alary muscles to the right and left (fig. $420, \mathrm{M}$). The blood passes from the body cavity through lateral paired slits into the chambers of the heart, and is thence driven, partly through paired lateral arteries and partly through an anterior cephalic aorta which divides into three branches, to the organs of the body carity, from which a blood sinus, embracing the rentral ganglionic chain, is separated off.

All Myriapods breathe by means of tracheæ. These, as in Tnsects, receive the air from the exterior throngh paired slits, which are found in almost every segment (sometimes heneath the lasil joints
of the limbs, sometumes in tho connecting membranes between the sterna and terga) ; and they give off bunches of trachere, which branch and are distributed to all the organs.

Generative organs.-The Myritupoda are diocions. The ovaries and testes usually have the form of long unpaired tubes, while their ducts are often paired and are always connected with accessory glands, and in the female are sometimes provided with a double receptaculum seminis (fig. 421). The genital openings lie on either side on the coxal joints of the second pair of legs, or behind this pair of appendages (Chilognatha), or, as in the Chilopoda, there is an unpaired genital opening at the posterior end of the body (fig. 422).

In the male sex amongst the Clitognatha there are often external copulatory organs* on the 7 th segment, remote from the genital openings. These become full of sperm before copulation, and during the coitus introduce it into the female genital opening.

Development.-The femates are usually larger than the males, and lay

[^105]

Frg. 421. - Generative organs of Glomeris marginata (after Fabre). T, Testis; Ov, ovaries; Od, Oviduct.

FIG. 422.-Generative organs of Scolopendra complanata (after Fabre). T, Testis; Vd, vas deferens ; Dr, acoessory glands; Sb, loop of the vesicula seminalis; Oc, ovary.
their eggs in earth. The just-hatehed young often pass through a metamorphosis, having at first only three or seven pains of legs in addition to the antemme, and a few somites without limbsis (fig. 423). The young animals undergo mmerous moults, and gradually increase in size; the

Fig. 423.-Embryo of Strongylosoma (after E. Metschnikoff). extremities spront out on the somites, which are already present. New somites are constricted off from the terminal one until the full numberis completed; the number of ocelli and of the joints of the antennre is increased, and the resemblance to the sexual animal is gradually perfected. In other cases (Scolopendra, Geophitidce) the embryo already possesses the full number of appendages.

> Order 1.-Chilopoda.*

Myriapoda of usually flattened form, with long many-jointed antennce, and mouth parts adaptecl for prectatory habits, with only one pair of appendages to each segment.

Fig. 42t, Litholins forficatus (after C. L. Koch). Kif, Poison claws.

The body is long and usually flattened. The chitinous exoskeleton is hardened on the dorsal and rentral surface of each somite, constituting the tergal and sternal plater, while on the sides of the somites it remains soft. In certain forms some of the terga derelop to large shields, which over-lap the smaller terga of the intermediate somites (fig. 424). The number of legs is never greater than that of the separate segments, at single pair only being developed on each segment. The antenna are long and manyjointed, and are inserted beneath the frontal margin. The eyes are simple or aggregated ocelli, except in the genus: Scutigerce which has facetted

[^106]eyes. There are always two pairs of jaws (fig. 425) ; the mandibles ($M(d)$ and one pair of maxille ($M x^{\prime}$), the latter bearing a short palp. In addition, the first pair of (thoracic) legs ($M x^{\prime \prime}$) forms a kind of underlip which often bears two long palps. The next pair of legs always approaches the head as a kind of maxilliped, and forms by the growing together of its basal parts a considerable median plate, on the right and left of which great four-jointed poison claws (Mf) project. The remaining appendages arise from the sides of the body segments, the last pair being frequently elongated so as to project backwards far behind the last segment.

The generative organs open by a single aperture at the hind end of the body. There is no male copulatory apparatus. The young, when hatched, have seven pairs (Lithobius) or the entire number of appendages (Scolopendra). The Chilopoda feed entirely on animals, which they bite with the poison claws and kill by the secretion of the poison gland which flows into the wound. Certain tropical species of large size are able to inflict wounds which are dangerous even to man.

Fif. 426. - Mouth parts of Geophilus (Carus, Icones). κ, Maxillæ; Mf, maxilliped.

Fam. Scolopendridæ. Antennæ long and thin with a relatively small number of joints, only a few ocelli. The segments of the body are sometimes equal, sometimes uncqual. Scolopendra (with ninc pairs of stigmata) gigantea L., found in the East Indies. Sc. morritan.: from South Erurope. Geophitus subterraners, electrious L.

Fam. Lithobiidæ. With long, manyjointed antenne and numerous ocelli. Some of the terga are greatly developed, and partially over-lap those of
the intermediate segment. Litherlines forficatus L.. with fifteen pairs of
leos. legs.

Fam. Scutigeridæ. The antenne are at least as long as the borly. The legs are long, their length inereasing from before backwards. Facetted eyes instead of ocelli. With a small number of free terga. Sratigera colleoptrala $\mathrm{L}_{\text {., }}$, South Germany and Italy.

Order 2.-C'hilognatia.

The shape of the body is cylindrical or subcylindrical. There is a four-lobed plate behind the mandibles, and two pairs of leys on each segment (the anterior seyments excepted). The genital openings are on the coxal joint of the second pair of leys.

The body of the Chiloynutha is, as a rule, cylindrical or subcylindrical. The segments have the form of complete rings, or are provided with special dorsal plates. In many cases (Julidec) the body is much elongated ; in others (Glomeris) it is short, like that of a. wood-louse (fig. 427). The antennre are short, and consist only

Fig. 427. -a, Glomeris marginata (after C. L. Koch). $\quad b$, Maxillæ (inferior bnccal plate) of Julus terrestris. of seven joints, of which the last may abort. The mandibles are provided with broad masticating surfaces, which serve to crush the vegetable matters on which the animals feed, and with an upper. movably articulated pointed tooth. The maxille are united so as to form an inferior buccal plate, the sides of which bear two rudimentary hook-shaped blades (fig. 427, b), while the middle portion appears to represent the underlip. The eyes, which as a rule consist of aggregated simple eyes, are situated above and external to the antenne. The anterior thoracic legs are as a rule directed forwards towards the mouth. The three thoracic segments, and sometimes the next two or three segments, bear a single pair of legs. All the others, except the seventh in the male, bear two pairs. Stigmata are present in all the segments, and are more or less hidden beneath the coxal joints of the limbs. The rows of pores (foramina repuynatoria) on either side of the back, which are often taken for rows of stigmata, are the openings of cutaneous glands, and secrete a corroding fluid for the protection of the animal. The generative organs open on the coxal joint of the second pair of legs, and in the male sex there is also a paired copulatory organ present on the serenth
segment of the body, at some distance from the genital openings. In Glomeris, this copulatory organ seems to be replaced by two accessory pairs of appendages on the anal segment. The young pasess at first only three pairs of legs, and the metamorphosis would therefore seem to be more complete than in the Chilopods.

The Chilognatha live in damp places, beneath stones on the ground, and feed on vegetable and dead animal matters. Many of them roll themselves up into a ball like the woodlice or into a spira].

Fam. Polyzonidæ. With small head and subeylindrical body which can be rolled up into a spiral, and suctorial mouth parts. Polyzonium gormanicum Brdt.

Fam. Julidæ. The head is large and frce. The eyes are mostly aggregated together ; with cylindrical body, which can be rolled up in a spiral ; without broad dorsal plates. The limbs meet together in the middle ventral line. Jielus samiosus L .

Fam. Polydesmidæ. With large free head and laterally extended dorsal plates. The number of somites is small. Pulydrsmus. complanatus Deg., Polyirenus lagurus L., with twelve pairs of legs. Pauropus. Huxleyi Jubb.

Fam. Glomeridæ. The body is short and broad, and can be rolled up into a ball. There are only twelve to thirteen segments, which possess dorsal plates. The last ring of the body is shield-like. They remind one of the genus Armadillo. Crlomeris marginata Leach.. with seventeen pairs of legs; in the male there are in addition two pairs of genital appendages at the hinder end of the body. Syphicrootherium clungutum Brdt.

Class V.-HEXAPODA *=INSECTA.

Trachecta with two

 antennce on the head, and with three pairs of legs and usually two pairs of wings on the thorax, which latter is composed of three segments; the reldomen lus nine or. ten seryments.

Fig. 428.-Head, thorax and abdomen of an Acridium seen from the side. St, Stigmata ; T, tympanic organ.

[^107]The separation of the body into the thee regions known as head, thorax and abdomen is more distinctly marked in Insects thinn in any other of the Articulata. The number of somites and appendages appear's to be constant; the head, with its four pair's of appendages, being composed of four segments, the thorax of three, the abdomen usually of nine or ten (eleven) (Orthoptera) (fig. 428). The anterior abdominal segment, however; not unfrequently takes part in the formation of the thorax.

Frg. 429.-Different forms of antennæ (after Burmeister). a, Bristle-like antenna of Locusta ; b, filiform antenna of Carabus; c, moniliform antenna of Tenebrio; d, dentate of Elater: e, pectinate antenna of Ctenicera; f, crooked antenna of Apis; g, elub-shaped of Silphr; h, knobbed of Necrophorus; i, lamellated of Melolontha; k, antenna with bristle from Sargus.

The head, which is almost always sharply marked off from the thorax, is formed of an unsegmented capsule, in which different regions may be distinguished. These regions have been named, face, forehead, cheeks, throat, skull, etc. after the parts of the Vertebrate head. The upper side of the head bears the eyes laterally, and the antennr, while on the under part the three pairs of oral appendages are inserted round the mouth. The anterior appendages, the antenne, are in Insects formed of a simple row of segments, but vary much in form and size. They usually arise from the frontal region, and serve not only as tactile organs, but also as organs of smell. We call distinguish between regular antennæ (where all the joints are alike) and irregular antenne (fig. 429). The first may be bristle-like, filiform, moniliform, dentate, or pectinate ; the irregular antenna, in which the second joint and terminal joints are especially liable to modification, are most frequently club-shaped, knobbed,
lobed, or crooked. In the last case the first or second joint is elongated forming the shaft, to which the distal and shorter joints are attached at an angle as the flagellum (Apis).

The following structures enter into the formation of the mouth parts:-the upper lip (labrum), the upper jaws (mandibles), the first pair of maxillæ or lower jaws, the second pair of maxillæ or lower lip (labium). The upper lip is a plate, which is usually movably articulated to the cephalic shield and covers the mouth from above. Beneath the upper lip to the right and left are the mandibles or upper* jaws, in the form of two palpless biting plates; they are unjointed, and therefore more powerful ths masticatory organs. The first pair of maxille or lower jaws have a more complicated structure. They are composed of several joints, and are, therefore, adapted for less powerful but more varied movements in aid of the masticatory process.

The maxillæ of the first pair (fig. 430) are made up of the following parts : - a short basal joint (cardo, $C)$, a longer second joint or shaft (stipes, St)

Fig. 430.-Mouth parts of a Blattu (after Savigny). a, Head seen fiom the front: Oc, ocelli; N rxt, maxillary palp ; $L t$, labial palp. $\quad b$, Upper lip (labrum, $L r$). c, Mandible ($M d$). d, Ist maxilla : C, Cardo ; St, stipes; L. in, lobus internus; L. ex, Lobus externus. e, 2nd maxillæ or labium (lower lip), clearly composed of two halves.
with an external scale (squama palpigerca), to which is attached a many-jointed palp (palpus maxillaris, Mxt.). Two blades, an internal and external, are attached to the distal end of the second joint [and known respectively as lucinic and goleca] (lobus externus, internues, L. in, L. ex). The maxille of the second pair arise from the throat, and are partially fused together across the middle line so as to form the unpaired lower lip or labium. It is rarely the case that all the parts of the first maxilla are discernible in the labium, the fusion being generally accompanied by the reduction and disappearance of certain parts. There are, howerer, cases in which all the elements of the finst maxillæ can be shown to exist (Orthop-
tera, fig. 430). While the labium is usually reduced to a simple plate with two lateral palps (palpi labicales), in the Orthoptera we can distinguish a proximal pieco (submentum), fixerl to the throat, from a second piece, bearing the two palps (mentum), at the point of which there is a piece, the tongue (glossra) (fig. 430, e, L. in), and sometimes secondary pieces, the paraglosse (L. ex $)$. The submentun evidently corresponds to the fused basial joints (cardo), the mentum to the fused shafts (stipes), the simple or bifid glossit to the lobus internus, and the paraglosse to the lobus externus of the first maxille. Median projections on the internal surface of the upper and lower lips are distinguished as epiplearynx and hypo-

Fig. 431. - Mouth parts of Anthophora relusa (after Newport) 4 , Antennæ; Oc, ocelli; Md, mandibles; Mx, maxillæ; Mxt, maxillary palp; $L t$, labial palp; Gl, glossa; Pg, paraglossæ. pharynx respectively.

The above description refers to insects which gnaw or bite their food. When the food is fluid, the mouth parts, either in whole or part, become so remarkably modified that it required the penetration of Savigny to establish their morphological relations. The biting mouth parts found in the order's of the Coleoptera, the Neuroptera and the Orthoptera are most nearly allied to the mouth parts of the Hymenoptera, which may be described as a licking apparatus (fig. 431). The upper lip and mandibles agree with those of the biting apparatus, but the maxilla and labium are more or less elongated and modified, to admit of licking and sucking up fluids.

Mouth parts adapted for sucking are found in the Lepidoptera, where the first maxillæ are united to form a sucking tube, while the other parts are more or less aborted (fig. 432). Finally the piercing mouth parts of the Diptera and Rhynchota also possess a sucking apparatus, which is usually formed of the labium ; but there are also styliform weat pons, by means of which access is gained to the nourishing fluid, which is to be sucked up (figs. 433, 434). These weapons may be formed by the mandibles, and also by the maxilla, and even the hypopharynx and epipharynx may be used, undergoing numerous modifications. Since the piercing part of the apparatus may be
totally aborted, or, at any rate, become functionless, it is obvious

that no sharp line can be drawn between the piercing and sucking forms of oral apparatus (fig. 434).

The next principal region of the body
in Insects is the thorax, which is connected with the head by a slender neck. It consists of three segments, and bears three pairs of legs and usually two pairs of wings on the dorsal surface. These three segments, the prothorax, the mesothorax and the metathorax are rarely simple horny rings, but are usually composed of several parts united by sutures. In each segment a dorsal plate, lateral regions and a ventral plate can be distinguisherl. These may be termed notum, pleura and sternum respectively, and they may further be described, according to the segments in which they occur, as pro-, meso- and metc-notum, and pro-, meso-, and meta-sternum. The lateral regions are divider into an anterior piece (episternum) and a posterior (epimerum), three ag the m thor, the -s,

Fig. 433.- Mouth parts of Nepu cinerea (after Sa-
vigny). Ul, Lower lip $\begin{array}{lll}\text { Nepu cinerea } & \text { (after Sa- } \\ \text { vigny). Ul, Lower lip }\end{array}$ (labium) or rostrum ; Lr, npper lip; Md, mandible; $M x$, maxilla (first).
 ax, maxilla (first).

Fig. 432.-Oral apparatus of Butterflies (after Savigny). a, Of Zygenu; b, of Noctua. A, Antennæ; Oc, eyes; Lr, upper lip; Md, manđ̂ble; Mxt, maxillary palp; $M x$, maxilla (Girst) ; Lt, labial palp, cut away.

Fici. 434. - Mouth parts of Culex memorosus of (after Becher). $L b r$, Upper lip ; Lb, lower lip (proboscis) ; Lt, labial palp; $M d$, mandibles; $M x$, maxillæ (first) ; II. hypopharynx (piercing wenpon).
while on the mesonotum there is a median triangular plate (the scutellum), and on the metanotum there is not ararely a similar lont smaller shield (the postscutellum). The manner in which the three regions of the thonax are connected with one another varies in the different orders. In the C'oleopterce, Veuroptera, Orthoptera and in many Rhynchota, the pro-thorax is freely movable, while in all other cases it is a relatively small ring and is fused with the following segments.

The three pairs of legs are articulated in excavations of the chitinous integument of the ventral surface between the sterna and pleura. The number and size of the joints of the legs seem

Fig. 435.-Different form of legs (règne animal). a, Mantis with predatory leg; b, leg of Carabus used in running; c, of Acridium used in springing; d, of Gryllotalpa used in digging; e, swimming leg of Dytiscus.
more constant in the Insecta than in any other gronp of the Arthropoda, so that it is possible to clistinguish five regions (fig. 435). The basal joint (coxca), which is either spherical or cylindrical, is articulated to the thorax and permits of free movement of the limb. The coxa is followed by a second very short ring, constituting the trochenter, which is sometines divided into two parts or in other cases is fused with the next joint. The thirl joint, which is conspicuous on account of its size and strength, is the long femur. The next joint is the likewise long but slender tibia, which is armed at
the point with movable spines. Finally the last joint, or tarsus, is less movably articulated. It is simple only in rare cases ; generally it is composed of a number of joints (usually five), of which the last is terminated by movable claws, and sometimes also by lobed appendages.

Of course the special form of the legs varies according to the mode of locomotion and the special needs of each insect. Legs adapted for running, walking, burrowing, leaping, prehension can be distinguished (fig. 435). The anterior pair only is used for predatory purposes, and in such a leg the tibia and tarsus are bent backward against the femur in the same way that the blade of a pocket-knife folds back against its handle (Mantis, Nepa). The legs used in springing are the posterior pair (Acridium), and they are characterised by the powerful femur. Those used in digging are usually the anterior pair, and they may be recognised by the broad, shovellike tibia (Gryllotalpa). In the swimming legs all the parts are flat, and closely beset with long swimming hairs (Nurcoris). The legs used in walking may be distinguished from the ordinary running legs by the broad hairy lower surface of the tarsus (Lamia).

Wings are only found in the fully developed, sexually adult animals, which are relatively rarely without them. They are attached

Fig. 436.-Wing of Tipula (after Fr. Braner). H, Subcosta; 1, first longitudinal nervure (costa mediana); 2, radial rib (radius or sector) ; 3, cubital \times ib; 4, discoidal rib (or cubitus anticus); 5 , submedian (or cubitus posticus) ; 6 , anal rib) (or postcosta) ; 7, axillar rib ; R, marginal cell; U, submarginal cell. D, discoidal cell; $I-V$, posterior marginal cells; $V B$, anterior basal cell ; $H B$, posterior basal cell ; $A Z$, anal cell. to the dorsal surface of the meso- and meta-thorax, being articulated between the notum and pleura. The anterior wings are attached to the meso-thorax, and the posterior wings to the meta-thorax. As regards their form and structure they are thin, superficially expanded plates, consisting of two membranes firmly adhering to one another and continuously connected at the edges. They are usually delicate and transparent, and are traversed by various strongly chitinised bands, the nervures or veins or ribs (fig. 436).

These nervures, which have a very definite and systematically important course, consist of canals, placed between the two layers of the wing, surrounded by chitin and containing blood, nerves and especially truchece, the distribution of which corresponds with the
course of the norvuren. The nervures, therefore, alwaynstart from the root of the wing as two or three principal stems, and distribute their branches more especially to the upper half. 'The first (fig. 4305) of the man trunks which runs beneath the upper margin of the wing is called the costa, and of en ends in a horny dilatation. Beneath the costa there is a second main stem, the rodius, and behind this a third, the cubitus, which rarely remains simple, but usually bifurcates before the middle of its course into branches, which are often further divided so that a more or less complicated network is formed in the upper half of the wing. The spaces of this network may be distinguished as marginal spaces or radial cells, and as submarginal spaces or cubital cells. Not rarely there may also be present one or more lower nervures (anal, axillar nervures).

The form and structure of the wings present various modifications. The anterior wings may become coriaceous by the stronger chitinivation of their substance, as for instance in the Orthoptera and Rhynchota: or, as in the Coleopterc, they may have a firm horny structure (terymina or elytra), and be used less for flight than as a protection of the back, the skin of which is soft. The anterior wings in the Rhynchota group of the Hemiptera are mostly horny and only membranous at the tip, while the posterior wings are membranous. When both pairs of wings are of a membranous structure, their surface is either thickly covered with scales, Lepidoptera and Phryganide (group of Neuroptera), or remains naked and is marked out into a number of rery conspicuous spaces, which may not unfrequently have the form of a close net-like mesh-work, as in the Neuropterc. In general the two pairs of wings differ in size. Those insects which have coriaceous anterior wings and half or whole wing covers, have much larger posterior wings, while in the insects with membranous wings the anterior wings are, as a rule, the largest. In many of the Λ^{r} europtera, the wings are pretty nearly the same size, while in the Diptera the posterior wings are aborted and reduced to small knobs (halteres). Finally we find in all the orders of insects examples of a complete absence of wings either in both sexes, or in the female sex alone.

The third region of the body, which contains most of the regetative organs, as well as the organs of reproduction, is the elongated and well-segmented abdomen. In the adult insect this region is destitute of appendages, although very often in larval life, and as an exception in the sexually adult animal (Japy.x), short appendages are present. The abdominal segments are very definitely separated
from one another by soft connecting membranes. They are composed of simple dorsal and ventral plates, which are also connected laterally by soft membranes. This structure of the abdomen, which contains the respiratory and genital organs, permits of its being dilated and contracted (respiratory movements, distension of the ovary). Very often the posterior segments have a special structure, owing to the various appendages which are connected with the processes of copulation and of deposition of the eggs. The anus is usually placed on the last abdominal ring, while the generative opening which is separate from the anal aperture opens on the ventral surface of

Fig. 437.- Posterior eud of body of a Beetle. (Pteroxtichus ठ) (after Stein). 8, 9, Dorsal plates $8^{\prime} 9^{\prime}$, ventral plates; St, stigma; A, anus; G, genital opening.
the preceding segment (fig. 437). Terminal appendages, such as jointed filaments, etc., are present on the anal segment. The appendices yenitales, forming the genital armature, are, on the con-

Fig. 438.- a, Hiad end of abdomen of a young female Locusta with the protuberances of the ovipositor and the anal styles; $C^{\prime \prime}$ and $C^{\prime \prime}$, the internal and external protuberances of the penultimate; $C^{\prime \prime \prime \prime}$, the same of the antepenultimate segment. b, slightly olcler stage. c, Nsmpha; A, anus with anal styles (after Dewitz). trary, placed on the ventral sidearound the genital opening. Developed in the male as valves and in the female in the form of ovipositors, stings, etc., they arise from the imaginal discs (growths of the hyporlermis), in the Hymenopterca and Orthoptera on the eighth (first pair) and ninth (second pair) segments of the abdomen (fig. 438). The ovipositors of the Dipterct, on the other hand, are to be derived from the retracted posterior segments.

> Alimentary canal (figs. 439, 440). -The mouth, which is covered by the upper lip, usually leads into a narrow nesophaglus, into the anterior portion of which, distinguished as the buccal
cavity, open one or more pairn of tubular or macemone sativary whats $\left(S^{\prime} p\right)$. In many of the suctorial insects, the end of the rasophagres in dilated into a sack with thin membranous walls and a short stalk, the suctorial stomach; in others into a more miform dilatation, known as the crop (iig. 439, Oe). The intestine which follows the asophagus is sometimes straight and sometimes coiled; it raries exceedingly in accordance with the mode of life. It is always at least divisible

Fig. 439.-Digestive apparatus of Apis mellifica (after Léon Dufour). Sp, Salivary glands ; Oe, œesophagus with crop-like dilatation; M, chylifie ventricle; Re, Milpighian vessels; R, rectum with so-called rectal glands; (${ }^{(r} . \mathrm{Dr}$, poison glauds. into a longer portion, which is concerned in di gestion, the mesenteron or chylific ventricle (M, ('lul), and a terminal portion, which is concerned with the ejection of the freces (fiǧ. 439, 440).

The number of regions may, howerer, he larger. In predaceous Insects, especially in the orders of Coleopterce and Jeuropterce, a masticatory stomach or prorentriculus (fig. 440, $P v)^{\prime}$ is inserted between the crop and chylific rentricle ; this is of globular form, and has powerful muscular walls. It is lined by a specially thick chitinous cuticle, which is beset with strong bands, teeth, and bristles. The chylific rentricle also, on which especially the digestive glandulat layer is developer at the expense of the muscular layer, is sometimes divided into seremal regions. as for example in some Beetles the anterior part has a shagg appearance from the mumerous creat which project from it (fig. 440 Chel), and is sharply marked off from
the simple narrower portion which follows it. Larger ceca, too, after the manner of hepatic ylunds, may be inserted at the commencement of the chylific rentricle (Orthoptera).

The commencement of the hind gut or posterior portion of the alimentary canal is indicated by the opening of filiform ceecal tubes, the ITalpiytian vessels. It is divided into two or more rarely three regions, which are distinguished as the small intestine, the large intestine and the rectum. The last region is provided with a strong layer of muscles, and contains in its walls four, six or more longitudinal ridges, the so-called rectal glands (fig. 439, R). Sometimes two glands, the so-called anal glands (G.Dr, $A(d)$, open into the rectum immediately in front of the anus. Their secretion, on account of its irritating qualities and disagreeable smell, seems to serve as a protection to the animal. In exceptional cases the larva alone takes up nutriment, the sexually mature apterous form being without a mouth (Eiphemer(t). Finally the stomach of the larva in a few cases ends blindly, and does not communicate with the hind gut (larve of Hymenoptera, Pupipara, Ant-lion).
The Malpighian vessels already mentioned, which were formerly elroneously lield to be bile organs, undoubtedly function as urinary organs. Their coutents, secreted by the large nucleated cells of their walls, are usually of a brownish yellow or white colour, and consist of an aggregation of small granules and concretions, which, for the most part, consist of uric acid. Crystals of oxalute of lime and taurin have also been found. The numbers and grouping of these filiform

Fig. 440.-Alimentary canal and glandular appendages of a Beetle (Carabus) (after L. Dufour). Oe, œesophagus; Ju, crop; $P v$, proventriculus; Chd, chylific ventricle; $M g$, Malpighian tubes; R, rectum ; Ad, anal glands with vesicle. tubes, which are ustually very long and wound round about the chylific ventricle, varies very much. As a rule there are four or six, or more rarely eight of them opening into the intestine, but in the Ifymenopterci and Orthopterce the number is much larger; in the latter there may even be a common duct into which the tubes are united (Giryllotalpa).

Amongist the secretory glands of insects the glamluler whififore, the
 Of these, the first, to which helong the amal grands which we have already mentioned (fig. 440), lie beneath the covering of the borly and sectete, nsmally between the antimlations, strongly smelling flnids. In the lmys there is an mpained pirifonm grand in the metathorax, which pours out its secretion by an opening between the hind legs and gives rise to the notorions smell. Unicellular cutaneous glands have been shewn to exist in different parts of the borly of insects, and, like the sebacions glands of vertebrates, seem to secrete an oily liguid, which serves to lnbricate the joints. Similar glandular tubes of the integument, which may he called rux-ylands, secrete white threads and flakes, which cover the borly as with a kind of powder or wool (Plant lice, etc., fig. 441). S'pinning-ylend.s occur. exclusively in

Fig. 44.-The wax glauds and the prominences on which they open of an Aphide (Schizoneuru Lonicerue). u, Pupa seen from dorsal surface; Wh, prominences on which the wax glands open; b, the unicellular wax glands ($W D$) beneath the cuticular facets (Cf) of the skin. larve and serve for the production of websand cases. When these glands have the form of two ol more lessswollen and elongated tuhes (sericteria) opening behind the mouth, they may be compared to a special form of salivary gland, which they also resemble in their structure. The larva of the antlion has its spinning organs at the opposite end of the borly ; the wall of the rectum, which is shat off from the chylitic ventricle, taking the place of the sericteric.

The poison glands, which are present in the female $H_{y m e n o p t o r e, ~}^{\text {gme }}$, consist of two simple or branched tubes, the common dnct of which is dilated to form a vesicular reservoir for the secreted fluid, which consists of formic acid. The end of this reservoir is comected with the poison spine.

Vascular system.-The blool, which is nsinally colourless hut not
unfrequently has a green tinge, always contains amoboid blood cells and travels along detinite tracts of the body cavity. The simplification of the circulatory apparatus, which is confined to a dorsal vessel, is correlated with the richly branched respiratory apparatus, the airconducting truchere, which are distributed to all the organs and carry oxygen to the blood. The heart, which has the form of a dorsal vessel (fig. 442), runs in the middle line of the abdomen, and is divided by transverse constrictions into numerous (up to eight) chambers corresponding to the segments. These chamber's are attached to the integument of the dorsal surface by triangular muscles (alary muscles;). During the diastole of the chambers the blood streams through as many paired lateral slits into the heart, which contracts gradually from before backwards and drives the blood in the same direction. The anterior chamber is prolonged into a median aorta, which runs forward to the head. From this aorta the blood flows freely into the body carity and returns to the heart in four principal streams, two lateral, one dorsal beneath the dorsal ressel, and one rentral above the ganglionic chain, giving off numerous branches to the extremities, etc. It is only in exceptional cases (e.g., in the caudal filaments of the larva of Ephemera) that arterial ressels are found passing out from the heart.

Respiration is effected by branched truchece, which take in their supply of air through paired slit-like opening.s, the stiymuta. The latter are

Fig. 442.-Longitudinal section through the body of Syhinx liqustri (after. Newport). Mrx, maxilla forming the proboscis; t, palp; $A t$, antenna; $G s$, brain; Gi, suluesophageal ganglion; N, thoracic and abdominal ganglia; I^{r}, œesophagus; $I^{\prime \prime}$, suctorial stomach; $M r$, mesenteron ; $T m$, Malpighian tubes; I, heart; G, testes; E, rectum; A, amus. nsually sitnated in the membranes connecting the sterna and terga (fig. $4 \because 8$), and the exchange of air is determined by the distinct respiratory movements of the abdomen. The number of stignata is rery various, but there are rarely more than nine or fewer
tham two pairs present. 'They are never present on the hearl or on the last albominal segment. They are least mumerons in the anplatic larve of beetles and Diptera, which have but two stigmata placed at the hind end of the ablomen on a simple or forked tule. There are, however, often two openings on the thomax in addition. Some water-bugss (e.y., Nepa Ranatra, etc.) have at the end of the abdomen two long grooved filanents which lead at their bave into two air eavities. Sueh water-buggican by this arrangement take up air like the Dipteran larva, by protruding the respiratory tube on the surfaee of the water.

The trachece (fig. 443), which are kept open by the apiral thickening of the ehitinous membrane lining them, are always more or less perfeetly filled with air, and on

Fig. 43.-Tracheal branch with finer twigs (after Leydig). Z, Cellular external wall; S_{l}, cuticular lining (spiral fibre). that account have usually a silvery shining appearance. Their internal chitinous membrane is produced by an outer delicate and nucleated cell layer, and is thrown off with the external cuticle and renewer at each moult during larral life. The dilatations which are not unfrequently present in the course of the trachere, and which, in strong flying insect.s, as Hymenopterc, Dipter", etc., wre enlarged to form air sacs of rery considerable size, may with justice be compared to the air sacs of hirds. They posisess a delicate chitinous membrane, which exhibits no trace of the spiral fibre. They therefore collapse with great ease, and require for their filling special respiatory movements. These are especially noticeable in the relatively clumsy Lamellicorns before their tlight. The arrangement and distribution of the tracheal system may easily be described by starting with the origin of the principal trunks from the stigmata. Each stigma leads into one (or more) tracheal trunk, which sends out connecting branches to the neighbouring trunks and gives off a tuft of much branched tubes to the viscem. As it rule, there are formed in this way two independent lateral trunks, which communicate by transverse tubes and give off numerous secondary trunks to the internal organs. The finer branehes of the secondary tuhes are not
only applied extermally to the viscera, but partially traverse them and serve at the same time to support them.

Tracheal gills are present in the form of leaf-like or filiform appendages on the borly of the larvee of Phrygronidce, Ephemerides (tig. 444), and in the rectum of the larvee of Aschno and Libelluch.

Fig. H4.-a, Larva of Ephemera with seven pairs of tracheal gills $K t$, slightly magnified. $T k$, An isolated tracheal gill, strongly magnifiel. U, Tracheal system of an Agrion larva (after L. Dufour); Tst, tracheal trunk; Nu, accessory eyes.

In the last case the walls of the rectum are very muscular, and are capable of regularly pumping in and out water, thus giving rise to a kind of respinatory movement.

The so-called fat bodies stand in the closest relation to respination and the nutritive processes. They are fat-like shining aml usually coloned, lobed and ghobular boties, which are distributed beneath the skin and between the organs, and are especially abmodant dmring larval life. The chief importance of these organs depends on the prate they play with regarl to metabolism. They consist essentially of an accumulation of superfluous nutritive material, and seen to be used for nourishment and for the production of heat, and especially during the development into the perfect insect for the formation of new parts of the body and for the growth of the generative organs. The rich distribution of the trachere to the fat cells points to the consumption of a large amount of oxygen, and consequently to an active metabolism, which is further demonstrated by the frequent deposition of nitrogenous waste material, especially of uric acid.

The phosphorescent organs of the Lampyricta and rarioun Elatericle show a certain resemblance to fat bodies. These organs are delicate plates, which in Lampyris are present on the rentral surface of several of the abdominal segments and consist partly of pale albuminous cells, and partly of granular cells, containing uric acid; richly branched tracher and nerves are distributed amongst these cells. The pale cells compose the lower rentral layer of the plates, and it is this layer alone which is phosphorescent. These cells, together with the terminal cells of the tracher, which are always very numerous, are to be regarded as the active elements, the chemical changes of which, under the influence of oxygen, and to a certain extent of the nervous system, give rise to the phenomenon of phosphorescence. The cells of the upper non-luminous layer of the plates contain a great number of refractile granules, which, according to Kölliker, consist of uric acid compounds, the final products of the metabolism which causes the phenomenon of phosphorescence.

The nervous system of insects presents a very high development, and a great amount of rariation in arrangement; all transitions between a long ventral ganglionic chain, consisting of about twelre pairs of ganglia, and a common thoracic ganglionic mass are found (figs. 77 and 78). The brain (supra-asophageal ganglion), which is placed in the hearl, attains a considerable size. It presents sereral groups of swellings; these are especially marked in the I_{y} menopterch, which have the highest psychical development. It gives origin to the sense nerves, and seems to be the seat of the will and of the psochical activity. The small subæsophageal ganglion supplies the month parts, and corresponds to several pairs of ganglia fised together.

The ventral chain, which with its lateral nerves may be compared to the spinal cord and the spinal nerves, preserves the primitive uniform segmentation in most larra, and is the least modified in insects with a free prothorax and long abdomen. In such insects, not only do the three large thoracic ganglia, which supply the wings and legs with nerves, remain separate, though certainly they are often strengthened by the anterior abdominal ganglia, but also a larger number of abdominal ganglia. Of the latter, the last, which is formed by the fusion of several ganglia and gives off numerous nerves to the ducts of the generative apparatus and to the rectum, is always distinguished by its considerable size. The gradnally progressing concentration of the ventral cord, which may be followed out in the larral and pupal development,* is explained by the crowding together of the abdominal ganglia, as well as by the fusion of the thoracic ganglia. Of the latter, those of the meso- and meta-thorax first fuse to a large posterior thoracic mass, which then fuses with that of the prothoras to form a common thoracic mass. When the latter is finally united to the fused mass of the abdominal ganglia, the highest grade of concentration, which is found in the Diptera and Hemip)tera, is reached.

The viscercl nervous system is divided into the system of the eesophageal nerres and the true sympathetic. In the former we can distinguish unpaired

Fig. 415.-Cerebıal ganglion and œsophageal nerve ganglia of $S_{p h i n x}$ ligustri (after Newport). Gfi., Frontal ganglion; g^{\prime}, g^{\prime}, ganglia of the paired œsophageal nerves. and paired resophageal nerves. The unpaired system springs from the anterior surface of the brain by two roots, which unite in front to form the so-called frontal ganglion (fig. 445 Gfi :) In its further course on the dorsal surface of the cesophagus it forms a number of fine plexuses in the muscular layer of that organ (fig. 445). The paired resophageal nerves spring on either side from the posterior surface of the brain, and swell out at the sides of the resophagus to form larger ganglia, which also supply nerves to the wall of the resophagus. A system of pale nerves, first described by Newport

[^108]as mervi respiratorii or tionsuersi, is to he regarded as at trace sympathetic. 'These nerves are given off near' one of the ganglia of the ventral chan fiom a median nerve which rmas between the two ventral nerve cords, has a root in the ganglion, and sometimes forms a small sympathetic ganglion. After their separation they agran form lateral granglia, the nerves of which pass into the lateral nerves, but afterwards separate again from the latter, and after forming plexuses supply the taacheal trunks and muscles of the stigmata.

Of the Sense organs, the eyes* attain the highest grade of perfection. The unicorneal ocelli are principally present in lanval life, bnt two or three of them are often present on the top of the head of fully-developed insects (fig. 87). The facetted eyes are placerl at

Fig. 446. - Iibia of the anterior leg of Locusta viridixsima (after V. Graber). Ty, tympanic mem. br'иne with operculum. the sides of the hearl, and are fond in the fullydeveloped insect (fig. 85).

Auditory vesicles with otoliths have not heen discovered in insects. Since, however, the capacity of perceiving sound can scarcely be doubted for mumerous insects, and especially for those which are capable of producing sound, we are forced to presuppose the existence of some organ for the perception of sound. In fact, in the springing Orthoptera apparatuses can be pointed to which probably serve as acoustic organs for the perception of sound waves. In the Acrictice these are placed at the sides of the first abdominal segment close behind the metathorax (fig. 66, b), in the Gryllodece and Locustidce in the tibie of the anterior legs, just beneath the articulation of the femora (fig. 446). In this region a tracheal tronk dilates between two lateral membranes so as to form a vesicle, on which are spread out the end cells, provided with so-called nerve rodi, of a nerve springing from the first thoracic gianglion (fig. 447). Peculiar sense organs have also been discovered in the posterior wings of beetles and in the halteres of flies.

Shining nerve rorls have been found by Leydig in the nerves of

[^109]the antenne, the palps, and legr, under conditions which render it possible that these nerves have the value of tactile nerves, and this is the more probable since the sense of touch is principally discharged by the antenne and the palps of the oral apparatus, as well as by the tarsal joints of the legs.

Olfactory organs are very generally distributed, as might have been expected from the developed capability of tracking which many insects possess. It may be regarded as fairly certain that the surface of the antenne is the seat of the olfactory sense. Formerly, in accordance with the views of Erichson, the numerous pits which are found, for instance, on the leaf-shaped antenne of the Lamelli-
cormia, were interpreted as olfactory pits; but it is more correct to regard with Leydig the peculiar cones and knobs of the antemre which are connected with gangliated nerre endings as olfactory organs.

The reproduction of insects is principally sexual. The male and female generative organs are always placed in different individuals; but they correspond in their position and parts, and in their opening on the ventral surface of the hind end of the body. The testes and ovaries are provided with paired ducts ending in an unpaired portion (fig. 91). The first rudiments of the genital organs may be tracel back to a very early stage of the embryonic development. Their development, however, is only completed in the

Fig, 47.-A portion of the nerve termina. tion in the anterior leg of Locustu viridissimu (after V. Graher). N, nerve; $G z$, ganglion cells; $S t$, rods in the terminal cells. latest period of larval life, or in insects with complete metamorphosis during the pupal stage. In rare cases the full development and maturity of the sexual organs is never completed, as in the so-called sexless IIymenopterca (working bees, ants) and termites, which are incapable of reproduction.
The males and females are distinguished by more or less important extermal differences in varions parts of the body; sometimes these differences lead to a marked sexual dimorphism. The males are almost always more slenderly formed, and are capable of quicker and
easier movement. 'They have larger eyen and antennat, and their colonss are brighter and more striking. When there in a pronounced dimorphism the females are apterous, and their form approximates to that of the hara (C'ncciclu, I'sychiche, Strepsipiterch, Lumpyoi is), while the males are provided with wings.

The female generative organs are composed of paired ovaries and oriducts, the mpaired oviduct, the ragina and the extermal genital apparatus. The ovaries are elongated tubes, in which the eggs originate. The ora lie one behind another in a single row like a string of pearls, increasing in size from the blind end to the opening

Fig. 448. - Female sexual organs of Janersa urficce (after Stein). Ov, The ovarian tubes cut off; $R c$, receptaculum seminis and accessory glands; T'a, vagina; Bc, bursn copulatrix with duct learling to the oviduct; $D r$, glandular appendage; $D י^{\prime}$, glandula selsacere ; R, rectum. in to the oridncts (fig. 91, a). The arangement of these orarian tuhes presents extraordinary variations, and there thus originates a great number of different forms of orary, which have been described principally in the beetles by Stein. The number of the orarian tubes also raries exceedingly, being least in some Rliynchota. and then in the butterflies, the latter having on each side only four very long ovarian tubes, which are many times folded (fig. 448). At their lower ends the orarian tubes on either side open into the dilated commencement of the oriduct, which joins with that of the other side to form a median oviduct. The lower end of the latter represents the vagina, and often receires, near the genital apertme, the ducts of special cement and sebaceons glands (glandula sebacece), the secretion of which is used to surround and fasten the eggs which are about to be laid. In addition to these glands, the mpaired efterent duct of the genital apparatus is very commonly furmished with one or seveml manally stalked receptacula seminis (fig. 449), in which the semen, often introduced in the form of spermatophores, retains its fertilizing properties for a long time, sometimes for years, under the in-

Huence of the secretion of an accessory gland. Beneath the receptaculum seminis, a large pouch-like diverticulum, the lurisa copulatrix, which assumes the function of the ragina, is sometimes separated from the ragina. In the butterflies (fig. 448) a narrow duct serves to convey the sperm from this bursa, which opens separately, to the receptaculum.

The male generative organs consist of paired testes and their vasa deferentia, of a common ductus ejaculatorius and of the external copulatory organ (fig. 450). The testes are long blind tubes, which are present either singly or in number on either side, and are often coiled together so as to form a seemingly compact brightly-coloured body. They may also be united to form an unpaired organ in the middle line. The testicular tubes are prolonged on either side into a usually coiled efferent duct or vas deferens, the lower end of which dilates considerably, and may even swell out to the form of a vesicle (vesicula seminalis). At the point

Fig. 44.-Terminal region of the female generative organs of Mraca domestica (after Stein). Od, Oviduct, Re, the three receptacula seminis; Dr, glandular appendages of the vagina; Bl. blind sac-like appendage. where the two vasa deferentia join to form the muscular ductus ejaculatorius, one or more glandular tubes often pour their coagulable secretion into the latter; the secretion serving to form a case round the balls of spermatozoa. The transference of the spermato-

FIf. 450.- Male generativo organs of the Cockchafer; (after Gegenbaur). T, TesLes; Id, dilated portion of the seminal duet; Dr coiled accessory gland. phores into the body of the female is effected by a horny tube or groove which surrounds the end of the ductus ejaculatorius. This tube, when not in use, usually lies retracted in the abdomen, and when protruded is surrounded by external organs for attachment (valves or pincers), as by a sheath. In exceptional cases (Libellulca) the copulatory apparatus which serves to trunsfer the sperm is remote from the generative opening, as in the male spiders, being placed on the ventral side of the enlarged second abdominal segment.

Almost all insects are oviparous, and only a few, as the Tuchinue,
some of the U'strider and of the P'upipurre, we viviparous. As at rule, the egges are lail shortly after fertilization, and before the commencement of the development of the ennmo. In rare castos the embryo is allealy formed when the eger is laik. In the last ease the segmentation and formation of the embryo take place in the vagina (fig. 451). The fertilization of the eggo ustally takes plate during its phssage through the oviduct, at the place where the receptuculum seminis opens. Since the eggs become investerl with their resistant chorion in the ovarian tubes, from the epithelial cells of which they originate for the most part during the larval life, it is necessury that there should be special armagements which render possible the entry of the spermatozoa and the fertilization of the ormm. For this object there exist on the upper pole of the egg (the pole turned towards the egg-tubes during the passage of the egg) one or more

Fig. 451.-Female generative organs of the viviparous Melophngus ovimu» (Pupipara) (after R. Lenckart). $O v$, Eg's in the ovarian tube of nue side; $\quad \tau t$, nterus; $D r$, the glands opening into the nterus; $\mathrm{T}^{-} a$, vagina. pores known as micropyles,* which pierce the chorion and present a characteristic form and arrangement (fig. 452).

The ora originate in the narrow terminal portion of the egg-tubes, which is often prolonged into a thin thread. Here the growth of the egg-tule takes place, as well as the differentiation of its contents into egg cells and ovarian epithelium. The ovarian tubes increase continuously in diameter towards the oviduct, in correspoudence with the gradual increase of size undergone br the eggs, which are arranged one behind another in its lumen. Each egg occupies a chamber; and obtains an external resistant membrane (choriont), which is secreted by the epithelium which lines the chamber. The chorion shows in its external markings the peculiarities of the epithelium from which it was formed.

Besides this type, which is found in Pulex: and in many of the Nemoptera and Orthoptera. there is a second type of ovarian tube, distinguished from the first by a more complicated structure of the ovarian chambers. The lumen of such egg-tubes encloses above the

[^110]orum a single (Fonficula), or a number of yolk-forming cells (mutritive cells), so that we can distinguish in the egg-tube alternate yolk and germ compartments (fig. 453, a and b). In rare cases (Aphicles) there is at the end of each egg-tube a common larger chamber of yolk cells, which are connected with the egg-chambers by means of " yolkcords" (fig. 453 c).

Parthenogenesis and Heterogamy.-In certain insects, parthenogenesis, i.e., spontaneous development of unfertilized ova, has been shown to obtain; this occurs in the Psychidce (Psyche), Tineidce (Solenobia), Coccidce (Lecconium, Aspidiotus) and Chermes; also in numerous Hymenoptera, especially in Bees, Wasps, Cynipidce, and Tenthredinidce (Nematus). In the Hymenoptera which live together in the so-called animal communities, male forms only are produced from the unfertilized ova (arrentokia). Chermes affords an example of Heterogamy, in that two different oviparous generations follow one another ; a slender and winged summer generation, and an apterous; generation which is found in autumn and spring and lives through the winter: the males are, in most cases, not yet known. The closely-allied Aphides (plantlice), which were formerly supposed to present the phenomenon of ann alternation of generations, behare in a similar manner. In them the summer generations are very numerous, and are succeeded by a sexually-developed autumn generation, which includes winged males as well as the oriparous and often apterous females (fig. $97, a, b$). In the spring, viviparous Aphides are developed

a

b
Fic. t5.2.-Micropyles (Mk) of insect eggs (after R. Leuckart). a, upper part of the egg-shell of Anthomyia; b, egrg of Drosophila celluris ; c, stalked egg of Paniscus textaceus. from the fertilizerl eggs. These are mostly winged (fig. 99), and in their organisation closely resemble true females. Their reproductive organs are, however, differently constructed, and are without the receptaculum seminis. Since they never copulate, they have often been regarded as asexual forms provided with germ tubes.

The gem appanatus, however, of the so-called Aphide asexmal generation not only has a very great resemblance to the fermale genemative appanatus of insects, hat the structure and morle of origin of the germ seems to agree so closely with that of the ovim that the viviparous Aphides must he comsidered as a peculianly organised generation of females, the genital appanatus of which has undergone some simplifications adapted to parthenogenesis. However that may be, it will be convenient in this case to call the ovary the pseurlomery, and the ova which originate in it and are incapable of fertilization, the pseudova. From this point of view the reproduction of some

Fig. 453.-a, Egg tube of Forficula. Nz, Nutritive cells; $E z$, ovum; $O E$, epithelium of the wall of the egg tube. b, Median part of the egg tube of a Moth. N_{z}, nutritive cells of the yolk-chamber ; $E z$, orum in the germ-chamber; H, connective tissue investmont, so-called serosa. c, Eqg-tube of Aphis plutanoides with three ovarian chambers ($E z-E z^{\prime \prime}$) and the terminal nutritive chamber with its cells $N z$. Ds, yolk cord.

Diptera (Cecidomyia, Miastor, fig. 100), which can reproduce themselves while still in the larval stage, may be explained.

The development of the embryo takes place as a rule outsitle the body of the mother, and occupies a longer or shorter period of time, according to the temperature and the time of the year. The centrolecithal segmentation learls to the formation of a superficial blastorlerm, which surrounds the ovmm, and always consists of a single layer of cells. A pan't of this blastoderm, on that side of the ovum which the later history shows to be ventral, becomes thickened and sharply
marked oft from the rest, and forms the structure known as the rentral plate, which constitutes the first rudiment of the head and ventral half of the embryo.

In many cases (Rhynchotc Libellulc) the ventral plate grows out fiom a hill-like thickening of the blastoderm (fig. 454) into the interior of the yolk, so that an internal ventral plate arises, in the formation of which a portion, though a small one, of the external blastoderm participates. The ventral thickening, which gives rise to the ventral plate, is caused by long colmmnar cells, and is at first confined to a small portion of the egg ; in Hydrophilus the posterior end (fig. 455 , a). Inasmuch as its lateral edges become elevated

Fig. 454.-Fmbryonic development of Calopteryx virgo (after Al. Brandt). a, Commencing involution of the ventral plate. The blastoderm was at first one-layered and thickened at the poles. G, edge of ventral plate. b, Later stage of the involution. c, The embryonic membranes are develoned ; $L p$, parietal (serosa); $L v$, visceral (amnion) layer of the latter. d, The appendages have sprouted out on the ventral plate. A, Antenna; $M d$, mandible ; $M x^{\prime}$, first maxilla; $M x$, second maxilla (labium or lower lip). Then follow thee pairs of legs. e, Evcrsion of the embryo which is protruded from the sheath of the visceral layer. d, Completion of the inversion; the hind end of the body is free; the yolk sac is on the
dorsal surface.
and grow towards one another (fig. $455, b, c$), the thickened ventral plate first assumes the form of a groove, and then, after the fusion of the lateral edges, becomes a canal, the lumen of which is soon obliterated. The roof only of this canal corresponds to the epiblast, while the cells of its floor and its sides give rise to the first rudiment of the mesoblast. At the erlge of the so-called ventral plate, fresh
folds we then formerl ; these lead to the formation of the embryonic membranes, which are so chatacteristic of insect development. In

Fig. 455.-Development of the embryo of Hydrophitus piceus (after Kowalevski). a, Shieldlike ventral plate with raised eclges. b, The edges are aheady growing together in the middle. c, The groove is almost entirely closed. d, The tail fold of the cmbrronic membranes has grown over the posterior end of the closed groove and is gradually extending forward; A m, Amnion. e, The embryonic membranes have almost entirely grown over the embryo. f, The embryonic rudiment beneath the completely closed membranes; with seventeen primitive segments: $K 7$ l, Procephalic lobes; A, anteunæ. g, The ventral plate extends along the whole length of the ventral surface. The bi-lobed upper lip is present, also the antenure, (A) the jaws, and the first rudinents of the legs; rudimentary appendages are present on the seventh segment as promineuces. On the abdominal segments there are round invaginations, the first rudinents of tracheæ; there is a longitudinal groove from mouth to anus. h, The ventral phate covers the whole ventral surface of the ovum ; the openings of the invaginations (stigmata) have become small; rudimentary extremities are still present on the first abdominal segment. The ganglia of the ventral chain lave appenced. i, Viewed from the dorsul surface the so-called dorsal plate has closet mi to a tube; Oe is its opening. k, 'lle embryo just hefore hatehing seen from the ventral side.

Ifydrophitus these folds grow together over the rentral plate from behind forwards, and fuse with one another, so as to give rise to an
external and internal membrane, the former being called the serous membrane, and the latter the amnion (fig. $455, d, e$).

Simultaneously with the above-mentioned appearance of the membranes (in other cases at an earlier stage of development) the ventral plate becomes divided into two symmetrical halves, the germinal bands, which become divided by transverse constrictions into segments (up to 17). First of all three cephalic segments, on which the oral appendages are subsequently developed, make their appearance behind the procephalic lobes, which bear the first rudiments of the antenna. Behind these the rest of the primitive segments (mesoblustic somites) are successively marked off.

Inasmuch as the germinal bands become strongly contracted, their dorsally bent round, terminal portion becomes drawn more and more towards the lower part of the egg, while their lateral parts gradually grow round the yolk to form the dorsal surface of the embryo (fig. $455, f, y, h$). With these changes the body of the embryo has assumed a closed form ; it now possesses mouth and anus, the first rudiments of the internal organs and the external appendaces of the segments, and is soon really to escape from the egg and begin its independent life.

In Hydrophitus and the Ploygander, peculiar differentiations

Figs. 456.-Eschnu larva with madimentary wings and rask. appear on the dorsal surface, giving rise to a dorsal plate, which lateron becomes folded, so as to form a dorsal canal (fig. 455, i).

The post-embryonic development takes place, as a rule, by means of metamorphosis, the form, organization and mode of life of the young animal, after hatching, being different from that of the sexually adult animal. It is only in the lowest forms, the partly parasitic Apteral, both sexes of which are without wings, that the young leave the egg as perfect animals (Insect umetabola).

In those insects which pass through a metamorphosis, the mannerand degree of the transformation differs greatly, so that the distinction of a complete and an incomplete metamorphosis, which was formerly employed, seems .s to be in a certain degree justified.
In the case of the incomplete metamorphosis (Rhynohota, Orthopter) the development of the larva into the perfect winged insect presents a number of stages, during which the larva is capable of free locomotimon and of nomishing itself. During these stages, which are marked by successive ecdyses, it gradually acquires wings and increases in size,
the rudiments of the gencrative organs are further developerl, and it becomes more and more like the winged insect. In the simplest case the mode of life and the organization of the young larvae closely resemble those of the sexmally adult animal, as for instatuce in the Memiptera and Orthoptera genuina, hut in other cases the adult and larvit may differ considerably, although not so much so as in insects with complete metamorphosis; for instance, the larvie of the Ephemeride and the Libellulide live in another merlium and increase in size under different conditions of nourishment (fig. 456).

The metamorphosis is only said to be complete in those forms in which the larva passes through a quiescent stage, in which it is known as a pupa and does not take nourishment. With this stage

Fig. 457.-Metamorphosis of Situris humerulix (after Falre). a, First larval form. b, Second larval form. e, Pseurlo-pupa. d, Thirt larval form. e, Pupa.
the larval life ends and the life of the winged insect (Imago) begins. The larve of insects with complete metamorphosis differ from the sexual animal to such an extent in mode of life and nourishment, in the form of the body and in the whole organization, that though the parts of the body peculiar to the winged insect are prepared and established in larval life, yet a longer or shorter period of quiescence, in a certain sense a second embryonic period, scems necessary, during which the essential alterations of the internal organs, as well as the consolidation of the newly-established external parts. are effecterd (happermetamorphosis, Meloidæ, fig. 457).

In the form of their body and the homonomous segmentation, the larve recall Annelich, with which they also often have in
common the uniform segmentation of the ganglionic chain. Nevertheless, it is probable that only a proportionately few of the larral forms have preserved the primitive form, and have a phylogenetic significance (Oithoptera). In most cases the insect larræ owe their special peculiarities to secondary adaptations. In exceptional cases, the metamorphosis may be distinguished by quite special larval forms, as for instance in the Pteromalina (Platygaster, Teleas), the eggs of which are laid in other insect larva (fig. 458).

The lowest, usually parasitic larva are quite rermiform, and are without limbs or a separate head, the latter being represented by the anterior rings of the body (mayyots of Diptera and of numerous

Fig. 158.-Larval forms of three species of Platyynster (after Ganin). $\quad a, b, c$, Cyclops-like larval stages with clatr-like jaws, cephalothoracic shield and abdomen. d, Secoud larval stage. e, Third larval stage.

Hymenoptercl, fig. 66, a). In other cases there is indeed a separate cephalic region, but the following thoracic and abdominal segments are entirely without appendages. The larve of the Neuroptera, of many beetles, of the T'enthredinidce and butterflies (caterpillars), have, on the contrary, jointed appendages on their three free thoracic segments, and frequently also a greater or less number of rudimentary appendages, the so-called prolegs, on their abdomen. There are two rudimentary antenne on the heads of these larve, and a rarying number of simple eyes. The mouth parts are, as a rule, adapted for biting, even when the adult animal has a suctorial tube, but, with the exception of the mandibles, they are usually rudimentary. The
mode of nourishment of the larvae varies very greatly ; hut then diet is for the most part vegetable, which stands in great abundance at the disposial of the quickly-growing borly. The larva usually undergoes four or five, rarely a greater mmber of monlts, and in the course of its girowth gradually assumes the form of the winged insect, not in all cases by the direct transformation of parts alneady present, but sometimes only after essiential processes of new formation.

In this respect, however, there are considerable differences, the extremes of which are represented in the Jiptera by the genera Corethra and Musca. In the case of Coretlera, the larval segments and the appendages of the head are transformed directly into the corresponding parts of the perfect insect, while after the last larval ecdysis the limbs and wings are formed from the imayinal discs. The imaginal dises are derived from the hypodermis of the larva.

Fig. t5̄. f^{\prime}-Imago of Platygaxter (after Ganin). The muscles of the abdomen and the other systems of organs pass unaltered, or with but little alteration, into those of the adult animal. The thoracic muscles, on the contrary, originate as fresh formations from rows of cells already established in the egg. With these slight changes, the active life of the pupa and the small rerelopment of the fat body are in necessary correlation. In Musca, on the contrary, the pupa of which is quiescent and enclosed in a firm barrel-shaped membrane and contains a large fat borly, the body of the adult animal, with the exception of the abdomen, arises by extensive transformations of the larva. The head and thoma are developed from imaginal dises, which, already established in the egg, become developed in the larva on the investing membrane of the nerves or tracher. It is not until the pupal stage that these discs grow together, and give rise to the head and thoras. Erery thoracic segenent is composer of two pains of dises (a dorsal and a rentral), the appendiges of which represent the later wings and legs. All the systems of organs of the lanre are said to undergo a disruption during the protracted pupal stage as a result of the (recently, however, contested) process of so-called histolysis, and are replaced by new formations by aid of the fat body and the granular spheres arising from the latter.

When the larva has attained a certain size and degree of development, i.e., when it is fully grown and provided with the food
material required for its future changes, in the form of the enormonsly developed fat body, it is ready to enter on the pupal stage. The larve of many insects prepare ahove or below the ground, by means of their spinning glands, a protective web, in which, after casting their skin, they enter the pupal stage (Chrysalis). The external parts of the body of the winged insect either lie against the common horny skin of the pupa, so that they are recognizable as such (Lepidoptera, pupa obtecta), oi they already stand out freely from the body (Coleoptera, pupa libera). This distinction is, however, an unimportant one, since in the first case the limbs are free just after the ecdysis, and are only cemented afterwards by the hardening cuticular layer. If the pupa remains enclosed by the last larval skin (Muscidet it is termed pupa coarctata.

In all cases the body of the winged insect lies with its external parts sharply marked in the pupa, and the special object of the pupal life is to complete the changes of the internal organisation and the maturity of the sexual organs. When this is accomplished the winged insect bursts the pupal skin, forces its way out by means of antennr, wings and legs, and expands those parts which have been folded together, under the influence of violent inspirations, by which the trachere become filled with air. The chitinous covering becomes harder and harder; the urinary secretion which has accumulated during the pupal sleep is ejected from the rectum. and the insect is capable of performing all the functions of the sexually adult animal.

The mode of life of insects is so varied that it is hardly possible to give a general account of it. The diet is both animal and regetable, and is taken in the most varied forms, either solid or fluid, and fresh or decaying. Plants are especially subject to the attacks of insects and their larvae, and there exists, perhaps, no Phaneroyam which does not afford nomishment to one or more species of insects. On the other hand, insects seem useful or even necessany to the wellbeing of the vegetable world, for in many cases-e.g., many flies, bees, and butterflies - they bring about fertilization by carrying the pollen to the stigmata of flowers.

The complex, often marvellous, and apparently intelligent actions performed by insects correspond to the perfection with which the vegetative organs discharge their functions. Such actions are largely carried out instinctively by the mechanism of the organisation, but they certainly in part depend upon psychical processes, since they presuppose memory and judgment, in connection with
the highly-dereloped perceptive powern of the sense organs. The animal enters the work with instinct, but, in order to perform acts depending on memory and juigment, it must first acquire the necesiany psychical conditions by sense perceptions and experience (bees). In the inherited organimation are latent all thowe calabilities which have been acquired in the gradual processes of phylogenetic morlifications and at the expense of psychical forces, and hare, at lans, as the result of frequent use, become automatic and a pure mechanical property of the organism.

The instinctive and psychical manifestations tend directly to the preservation of the individual by providing ways and means for the acquisition of food and for protection, but there is a special instinct tending to the preservation of the species and the care of the romg. The most simple example of the latter is to be found in the judicious deposition of the egg's in protected localities, and on plants suitable for the nourishment of the just-hatched animal. The actions of the mother become more complicated in those cases in which the larree develop in specially prepared places, and have, as soon as hatched, to meet with the requisite amount of suitable nutritive material (Sp)lex: subulosa). But most wonderful are the instincts of some of the Orthopterch and Hymenoptera, which concern themselves about the fate of their young after they are hatched and carry nourishment to them during their growth. In such cases a great number of indiriduals become associated together for the common welfare in the so-called animal communities, in which there is a marked division of labour among the different members; males, females and sexually aborted forms or neuters (termites, ants, wasps, bees).

Some insects are capable of producing sounds,* which we must in part regard as the expression of an internal disposition. We cannot, however, thus regard the buzzing sounds produced during flight by Hymenopterce and Dipterce (vibration of wings and of the foliaceous appendages within the tracher), or the sounds like those of a rattle which are produced in numerous beetles by the friction of certain body segments against one another (pronotum and mesonotum of the Lamellicornia) or with the inner sides of the wing-corer:although it is possible that such sounds are of some use for defence against hostile attacks. Peculiar vocal organs, which produce somds for the purpose of attracting the females, are found in the male Cicula on the abdomen, and in the males of the Grymllide and

[^111]Locustidce, at the base of the anterior wing. Both sexes of the Acridtcte also produce similar though feebler chirping sounds, by rubbing the femora of the posterior legs against the edge of the wingcorers.

Insects are almost universally distributed, from the equator to the extreme limits of regetation ; certainly with a considerable diminution in the number of species, and in their size and beauty of colou: Some forms are truly cosmopolitan, e.y., V conessa carlui. Fossil insects are found in increasing numbers of species, from the carboniferous formation to the tertiary period. The best preserved are those enclosed in amber and the impressions in the lithographic slate.

Order 1.-Thisanura* (including Collembola).

Wingless insects, with huiry or scaly body coreriny; with rudimentury musticating morth parts und setiform conal filuments, which may serve as a springing apparatus, at the enul of the ten-segmented abdomen. Development without metcmorphosis.

Fig. 459.- a, Campodea staphylinus (after J. Lubbock). b, Anterior half of the body of C. Frugilis (after Palmén). Tr, Trachea; S, stigmata; P, legs; P^{\prime}, rudimentar: abdominal feet.

The Thystmurch seem to have preserved most completely the primitive character of the oldest insect forms. The elongated Compodide particularly recall certain Myriapods, especially since they may have rudimentary feet on the abdomen (fig. 459, a, b). On this account the C'ampooditce have been regarded as ancestral

[^112]forms of the insects. The head bears tolerably long setiform antemme, and, as a rule, aggregated ocelli, in place of the facetted eyes. 'The mouth-pants consist of mandibles and maxillate, which can be retracted into a sort of atrium. In this case an apparatus for attachment with gland is often present on the ventral sirle of the first abdominal segment. Tracheat are completely absent in many Collembola (Podura), while in Compoder they present very simple relations. There are only three pairs of stigmata, and the trunks which spring from them do not anastomose. On
 the penultimate abdominal segment there are often setiform filaments, which when forcibly bent ventralwards serve as a springing apparatus (springing fork fig. 460, a).

Fam. Campodidæ (fiy. +5!). The body is elongater, and the abdomen lias ton segments and ends with two filaments. Jup!y.r gigas Br., Cyprus. J. solifugu: Hal., Compodea stapleylinus Westw.

Fam. Poduridæ, spring-tails (fig. 460. "). The body is stout. globular, or elongated. The abdomen is usually reduced to a few segments. and has a ventral organ for attachment. and ends with a long, ventrally-bent fork. used in springing. Smynthurus signutus Latr., Podura "IIuиtica Deg.

Fam. : Lepismidæ (fig. 460,3). Body arched, elongated, and thiekly eovered with metallic shining scales. The abdomen has ten segments, and terminates with a long median seta and two weaker latcral setere. Lepisma surcturina I... Machilis polypodu L.

Order 2.-Orthoptera.*

Insects with on incomplete metamomphosis, with two reswally menequal pairs of wings.
-Jows adcopted for biting.
The name of this order, which was borrowed from the wings, is by no means suitable for all the forms included, and a very great variety prevails, hoth in the extemal appearance and in the internal

[^113]organisation. The head usually bears long, multiarticulate antemme, facetted eyes of considerable size, and also simple eyes. The oral apparatus is adapted for masticating and biting. On the under-lip (labium) the four lobes, and sometimes also their supports (stipites), remain separate from one another. The prothorax, the size of which is very variable, is always freely moveable, and separated from the mesothorax by an articulation. The form and structure of the wings is extraordinarily variable. The anterior wings frequently have the form of coriaceous wing covers, or, at any rate, are stronger and thicker than the larger posterior wings, which can be folded together: In other cases, both pairs of wings are similarly formed and have a net-like appearance, like those of the Neuroptera. The legs also vary in their form, the tarsus consisting rarely of two, usually of three, four or five joints.

The abdomen usually preserves the full number of segments, and ends with caudal appendages having the form of pincers, stylets, filaments or setre; ten segments usually take part in its construction, the genital opening being on the ninth, and the anns on the tenth. On the abdomen of the female there is sometimes an ovipositor (Sultatoria). This springs from the penultimate and antepenultimate segment, and consists on either side of an upper. and a lower valve, and an imer spinous rod lying on the upper valve and passing along a groove on the upper edge of the lower valve.

Many Oithopterce have a dilatation of the resophagus which may be called a crop, and a gizzard ; this is followed by the chylific ventricle, which often has some crecal appenclages at its anterior end. The salivary glands are often extraordinaril! large, and are provided with a vesicular reservoir: The number of the Malpighian vessels is, with a few exceptions, very considerable. The rentral ganglionic cord presents three larger thoracic ganglia, and five, six, or seven smatler abdominal ganglia. Some Orthoptera possess tympanic auditory organs. The generative organs consist, as a rule, of numerous egg tubes and testicular sacs. Large glands open into their efferent ducts. A bursil copulatrix is absent.

All Orthoptera undergo an incomplete metamorphosis. The two sexes are distinguished, not only by the differences of the external copnlatory organs and by the size of the abdomen, but sometimes by the size of the wings (Periplaneta), or by the alsence of the wings in the female (Heteroycmia, Pneumora) ; and in the jumping Orthoptera (Sultatoriu) by the rlevelopment of a voice organ on the borly of
the male. The chinping sommds produced by this organ probatbly serve to call the fomale to the place, and to excite her to coppulation. The female also, in rure cases, has the voice apparatus perfectly developed (Eiphipmiyerce among the Locustider). The eggs are laid under very rimions conditions-sometimes in the earth, sometimes on external objects in air in damp places, or in water: The embryonic development has been most accurately traced out in the Libelladide, in which an internal ventral plate is formed. The larvae of the winged forms leave the egg without any trace of wings, and either agree with the sexual animal in mode of life and form of body, excepting in the number of joints on the antenne and of the comeal facets, or differ from it considerably in these relations (Ejphemerirdr, Libelluclide) in that they live in quite mother medium. Most of

Fig. 461.-a, Forficulu (muricularia. b, Blattu orientalis ठ (règue animal). them, in the fully dereloped state, feed on fruits and leares, and a few on animal substances.

Sub-order 1.-Orthoptera genuina.

Front wing's small and hard, sometimes coriaceous for the protection of the hind wings and the back. The hind wings are membranous and broad, and can be folded together longitudinally. The maxillæ with horny internal lobe toothed at the point and covered by the helmet-shaped membranous outer lobe (yalea), with five-jointed palp. The appendages of the last abdominal segment are developed ; the inferior stylets are sometimes wanting. The females often have an oripositor. The larve always feed on solid substances and always live on land.

Tribe 1. Cursoria. With running legs.

Fam: Forficulidæ, Earwigs (Dermatoptera). Elongated body. with four unequal wings, of whieh the anterior are short horny wing-eorers, which lie horizontally on the body and eover the thin membranous hind wings. which can be folded by means of joints (fig. t61. a). The abdomen has nine segments and ends with a pineer, the arms of whieh are strongly eurved in the male. Ther feed on vegetable matters, especially on fruit. and eonceal themsclese by day in their haunts, from which they emerge at dusk. Forficula auricularia L... Labidura gigutatca Fabr.

Fam. Blattidæ. The body flat, elongated oval, with a broad shield-like prothorax, long multiarticulate antennæ and powerful loeomotory legs, with spiny tibix and five-jointed tarsi. The head is covered by the large prothoraeic shield and is as a rule without ocelli. External lobe twice as large as the internal. The front wings are large wing-eovers whieh overlap one another, but these, together with the hind wings, may be absent in the female (Heterogamin) or in both sexes. They live on solid animal matter and avoid the light in the day, living in darls hiding-places. Many species are distributed over all the world, and in great numbers eause mueh damage in bakeries and storehouses. The tropieal forms are espeeially large. The females lay their eggs in eases a short time before the hatching of the young. These eapsules in Periplaneta orientalis enelose about forty eggs, arranged in two rows. In this animal the metamorphosis is said to last four years. Periplaneta orientalis L., common coekroach, said to have been introduced into Europe from the East (fig. 461, b). P. americana Fabr,, Blatta laponica L., B. germanica Fabr.

Tribe 2. Gressoria. With ambulatory legs.

Fam. Mantidæ (Fangheuschreeken). Anterior predatory legs, the jagged tibir of whieh ean be folded against the toothed femora. They prey on other insects, and inhabit warm and hot countries; only the smaller species extend

Fig. 162.-Gryllotalpa vulgaris (règne animal).
to South Europe. The females lay their eggs in elumps on plants, and surround them with a tongh secretion, whieh hardens so as to form a capsule. This secretion is produced by the filiform appendages of the oviduct. Mantis religiosa L., praying insect, in South Europe.

Fam. Phasmidæ (Gespenstheuschrecken). The body elongated, as a rule linear, with long ambulatory legs. The tarsi have five joints, and bear a large lobe for attachment between the terminal claws. Wing-covers and wings are often rurlimentary or altogether wanting. The anal processes are not jointed. They live in the tropies and feed on leaves. The wingless forms resemble dried twigs, the winged dried leaves. Barteria calamus Fabr.. Surinam. Phusma fusciatum Gray, Brasil. Phyllium siccifolium L., East Indies.

Tribe 3. Saltatoria. With jumping legs.

Fam. Acridiidæ (Grasshoppers). With short filiform antenme. The anterior wings are stiff and only a little broader than the anterior division of the hind wings, whieh during quieseence are folded up like a fan and eompletely eovered by the front wings. The auditory organs lie on either side on the metathorax. The female has no projecting ovipositor, but has an upper and lower genital valve, eaeh eomposed of two horny stylets. The males can produce a chirping sound by rubbing the toothed internal edge of the posterior femora against the projecting nervures of the wing-covers. In the female, also, this stridulating apparatus is present, though in a rudimentary form, and not more developed than in the male larve. The females of many speeies are able
to produce weak ehirping sounds. They live principally in fields. meadows and mountans. the larve being present in spring and summer, and the sexual animals in late summer and in autumn. They fly with a rattling somul, and as a rule, only for short distances. They feed on plants. Teftixs sululutu J., T: bipunctatu (harp., CEdipurda migratoria l., Sonth and East liurope. Enormons swarms migrate together, and distribute themsclves in corn-fields, cansing much damage. Acridinm taturicum L., south Europe.

F'an. Locustidæ (Laubhensehrecken). The body is clongated and usually coloured grass green or brown. The antenna are very slender, anrl the wing covers usually lie vertically on the body. The auditory organs are in the tibia of the front legs. The females have a projeeting sabre-shaped ovipositor, which eonsists of a right and left double valve on the eighth and ninth segments; between the valves there is, on either sida, a style which arises on the niuth segment. The eggs are deposited in the earth in late summer or in autumn, and there pass the winter. The larve are hatched in the spring, and after

Fig. 163.-Gryllus campestris す๋ (règue animal). many months develop into the winged sexual animal late in the summer. The Locustide live in forests and bushes, or in fields on the tops of grass stalks and shrubs. Locustu ciriNissima L.. L. cuntuns Charp.: Switzerland. İphippigera perforata Ross., Italy and South Germany.

Fam. Gryllidæ (Grabhellsehreeken). Of thick eylindrical body form, with thiek free head. Antennæ usually long and setiform ; wing corers (anterior wings) short, placed horizontally, and the hind wings. when rolled up, project far beyond them. The anterior legs are sometimes digging feet.
The male gives rise to shrill chirping sounds by rubbing his two wing-eovers, which present the same structure, against cach other, and these sounds probably attraet the femalc. During eopulation the male attaches to the female genital opening a spermatophore, which, as in the crustucera, is earried about till it is empty. The females have a straight eylindrical oripositor, which is spindle-shaped at the end; more rarely they are without an ovipositor. The Gryllicle mostly live beneath the earth in holes and passages, and feed on roots and animal matters. The larve are hatehed in summer and pass the winter in the earth: Gryllotulpu vulgaris Latro, mole cricket (fig. tfi2). In gardens and fields; very harmful. They lay two hund to three hundred eggs, which they place, enelosed in a mass of plastered earth, at the end of their subterranean passages. frimllu.s cumpestris. L., field-cricket (fig. +63). G. domesticus L... house-ericket. Gi. sylvestrin. Fabrs.

Sub-order 2.-Orthoptera Pseudo-Neuroptera.

The wings thin and membrmous, both pairs being similary
constructed. They usually cannot be folded together, and possess a network of nervures more or less close.

Tribe 1. Physopoda. The body small, narrow and flat, with tolembly similar wings, covered with delicate hairs. The mandibles are setiform, and the mouth parts are suctorial.

Fam. Thripsidce, Thrip." physupms L., found in the flowers of chickory.
Tribe 2. Corrodentia. Wings with few nervures, and sometimes quite without transverse nervures. The head has strong mandibles with toothed internal edges. The first maxillæ with hooked masticatory portion, the point of which is furnished with two teeth, and with membranous external lobe. The Corrodentia feed on dried regetable and animal substances.

Fam. Psocidæ, booklice. Troctes pulsatorius L.. found in collections of insects and betweer papers. Psocus domestious Burm., Ps. strigosus Curt.

Fam. Termitidæ,* white ants. The antennæ have from eighteen to twenty joints. with two ocelli in front of the eyes and strong mandibles. The delicate wings, which are of equal sizc, lie in rest parallel to the body.

The Termites (fig. 464) live together in communities, composed of individuals of different kinds. The winged forms are the sexual in-

Fig. 46t.-a, Male of Termes lucifugus (règne animal). dividuals; the apterous forms are partly the larve and pupre of the sexual forms, and partly fully developed (in species of Calotermes and Termes Tucifugus) sexually aborted males and females (nenters). The latter are divided again into soldiers, which look after the protection of the community and are provided with large quadrangular head and very strong mandibles, and workers with small rounded heads and less projecting mandibles. These individuals undertake the other work of the community. In species of Eutermes, every trace of sexual organs may be wanting in the neuters. Some species live in South Furope, but the greater number are found in the hot parts of Africa and America, where they are notorions for their ravages and their nests. The Termites make their dwellings either in the trunks of trees, often only leneath the bark. or on the surface of the carth in the form of hills, in which they excarate passages and eavities. The nests of species of Culntermes are the most incomplete; they only gnaw passages in wood, which mainly run in the

[^114]direction of the axis of the tree. There is no sperial place for the gutem. The walls of the passarges are usmally coated with a thin layer of exerement. In species of Eutermes, in which the soldiers latve pointed heads, the passages are so close to one another that the wood partition between them disappears, and the wall of exerement alone seprates them. When the nests projert outside

Fig. 46. - b, Pregnant female (queen) of Termes lucifugus. c, Pupa. d, Pupa of the sceond form. e, Soldicr. f, Worker. g, Larva. (After Ch. Lespès).
the tree, they form the so-ealled spherical tree-nests. There are also nests which are attached to trees from outside, and are built of earth or clay: Otber species of Eutermes make their nests in boles in the eartl beneath the roots of Palms. Some. as Anoplotermes pratifus. build liths of earth. In this speeies. soldiers are absent; the males and females leave the commmity slortly after
they have cast their pupal skin, probably copnlate after they return from their flight to the nest, and then lose their wings, retaining only the basal stump.
The males remain behind in the eommunity, as aecording to the works of Smeathman, Lespès, Bates, ete., a king is said to remain always in the company of the queen. After eopulation the queen, whieb remains in the eommunity, swells up to an enormons size on aceount of the enlargement of her orary, and begins to lay the eggs frequently in special plaees in the nest. They are at once earried away by the workers. Termes lucifugus Ross., South Europe. T. fatale L., in tropieal Afriea, builds hills from 10 to 12 feet high. Calotermes tlavicollis Fabr., South Europe.

Tribe 3: Amphibiotica. The larva live in water and possess tracheal gills.

Fam. Perlidæ. Body elongated and flat, with laterally plaeed eyes, three oeelli and setiform antennæ. The wings are nnequal, and the posterior region of the broad hind wings ean be folded downwards. The abdomen has ten segments and two long segmented filaments. The wings are often redueed in the males. The female earries the eggs for a time in a depression of the ninth abdominal segment, and finally deposits them in water. The larve live beneath stones. Ther usually have tracheal gills on the thorax, and feed prineipally on the larva of Ephemeridca. Nemura nebu7wsa L., Perla bieaudata L., P. (Ptcronaroys) reticulata Burm., with tufted gills. Found in Siberia.

Fam. Ephemeridæ. May flies. Body slender, and soft-skinned, with hemispherieal eyes, three oeelli and short setiform antennæ. The front wings are large, the posterior small and ronnded, sometimes fused with the anterior or altogether absent. The month parts are rudimentary. The males have very long front legs. The abdomen has ten segments and terminates with three long anal filaments, of Which the median one may be absent. The penultimate abdominal segment of the inale has two jointed eopnlatory foreeps. The May

Fig. 165.-Ephemera vulgata (règue animal); Δf, Anal filaments. flies live only a short time in the winged stage, taking no nomrishment and devoting themselves entirely to the business of reproduetion. We often find swarms of them in the air on warm summer evening's and the next morning see their dead bodies lying in quantities on the ground. The larrac live at the bottom of elear water and feed on other insects. Ther have a large head with powerful mandibles and toothed maxillæ. On the abdomen they hear six to seven pairs of swinging plates, whieh fnnetion as tracheal gills, and at the end of the abriomen they have three long feather-like eaudal setæ. The larvæ moult freqnently (in Chluërn more than twenty times) and, aeeording to Swammerdam, require three years for the passage into the winged insect. After the ecdysis of the pupal skin, whieh is provided with the rudiments of wings, the
winged insect, which is now in the smbimago stage, nndergoes another cedynin and hecomes an imago. Ephemroru rulgata L. (fig. 4(iñ). Patinyfaiu longicralldu Oliv.

Fam, Libellulidæ. Dragon flics, Large slenderly-built insects with freely moveable, transversely cylindrical head, short six- to seven-jointed thin and pointed antenne, and four large net-like latticed wings. The mouth parts are powerfully (leveloped, and are covered by the large upper lip. The maxille have fused horny lobe, and single-jointed sickle-shaperl palp. The labium has a simple or divided internal lobe and separate outer lobes fused with the bi-jointed palp. The abrlomen has ten joints, and on the last segment two unjointed anal styles opposed to one another, so as to form a sort of forcers. They live near water, and feed on other insects. The two sexes are usually of different colours, and their flight is rapid and prolongerl. During eopulation the male clasps the prothorax of the female with his abdominal forceje, while she bends her abdomen towards the base of his abdomen. Here is placed the copulatory organ, which is remote from the genital opening, and is fillerl with sperm prior to copulation. The larver live in water and are predaccous. The lower lip is modified to form a special predatory apparatus (the mask) (fig. +.5f). Many of them breathe by means of tracheal gills, which are placed at the end of the abdomen or in the rectum. Caluptery, rivign L... Agrion puclla L., Esehna grundis L., Libellula rulgata, flacenla L.

Fig. 466.-Panorpa commzenis (règne animal).

Order 3.-Neuroptera.*

Insects with biting (sometimes also suctorial) mouth parts, with firee prothmax and membranous wings, the nervures of which form a net-work. The metamorplesis is complete.

Most Neuropterce have an outward resemblance to the Libellulidce and Ephemeride, while other's resemble the Lepidoptera in their scaly wings. The two pairs of wings are usually similar and membranous, and their size is almost equal. Thev are traversed by a close network of nervures which, however, differs essentially from the nervation of the Neuroptera-like Orthoptera. The front wings never have the form of wing-covers, but the hind-wings can sometimes be folded together and sometimes not. They may be covered with scales and hairs (Phryganidu). The mouth parts present a greater approximation to the Beetles, in that the labimm only rarely shows any trace of a median slit, the two pairs of lobes being fused to a single plate. In one group (Phryganider) we find suctorial mouth parts. The mandibles in this case are aborted, and the labium and maxille fuse to form a tube. As a rule the antenne are many-

* J. Pictet, "Histoire naturelle des Neuropterès." (renf 18334.
\dagger E. Brauer und Fr. Liew, "Neuroptera Austriaca." Wien, 185.
Brater. "Beiträge zm Kínntniss der Verwandlung der Nemropteren. Verhand. fer zoml.-lint. Ciesellachuft zo Wien. Tom IV. und V.
jointed, filiform or setiform, the eyes of medium size, and the tarsuses fire-jointed. The prothorax is always freely moveable, and the abdomen is composed of eight or nine segments. The nervous system is similar to that of the Orthoptera, and consists of clearly distinct thoracic and abdominal ganglia. There is always a muscular gizzard on the digestive canal (Myrmeleontidee, Panorpide). A sucking stomach is found only in the Hemerobidce. Six to eight long Malpighian tubes arise from the hindgut. The metamorphosis is always complete. The larve prey on other animals, and are provided with biting or sucking forceps (formed from the mandibles and maxillie). They pass into a quiescent pupal stage, in which the parts of the winged insect can already be made out. The pupa is often surrounded with a cocoon, but possesses the power of locomotion to a certain degree, since before the animal passes out of the pupal stage it ceases to be quiescent and seeks out a place suitable for development. Fossil remains are found in tertiary formations and in amber.

Sub-order 1. Planipennia. Front and hind wings similar, never capable of being folded. The mouth parts are powerful and adapted for mastication.
Fam. Sialidæ. With large head
bent obliquely forwards, and pro-
Fam. Sialidæ. With large head
bent obliquely forwards, and pro-
 never capable of bings similar, jecting hemispherieal facetted eyes.

Fig. 467.-a, Larva of Mantispa styriaca after hatching. b, The same before the pupal stage (after F. Brauer). c, Mantispa pagana (règue amimal).

The wings, when at rest, overlap one another like the slates on a roof. The larve have biting mouth-parts, with four-jointed maxillary palps and three-jointed labial palps. Sialis. lutariu L., Corydalis cornuta L., Raphirlia ophiopsis Sehum. camel-neek flies.

Fam. Panorpidæ (Sehnabelfliegen). The head is small and placed vertieally ; the multiartieulate antenne are placed in the frontal region beneath the ocelli. The oral region is prolonged in the form of a beak. The wings are long and narrow, and similar to each other. The larve are like eaterpillars. They have thirteen segments and a heart-shaped head, and biting mouth-parts. They live in damp earth, where they dig horseshoe-shaped passages, and are transformed into pupæ in oval cavities. Panorpa communis I. (fig. toic). Bittucus
tipularius Fabr.

Fim. Hemerobidæ (Flortlicgen), Head vertical ; antennat filiform. The two pairs of wings are transparent like glass and are nearly equal in size. The larvee suck insects and spiders. Mantispa pagana Fabr. Anterior legs predatory; prothorax men clongated (fig. $41 ; 7,11, l, r$). The larvie, after cight months' fasting, bore their way by means of their sucking forceps into the ovisace of spiders, and suck out the eggs and the young. After the first moult, the legs are reducel to short stumps, and the body becones like a Hymenopteran maggot. When abont to enter the pupal stage, they spin a cocoon in the ovisac, aud strip off the larval skin in the middle of Junc. The pupa hreaks through the cocoon and moves frecly about till it casts its skin and is trausformed into the winged insect. Cheysiphe perla L. The eggs have long stalks. The larve have sickle-shaped suctorial forceps, feed ou Aphides and spin globular cocoons. Memerobius lutescens Fabr. The larre feerl on Aphides. Osmylus.s sucuculatus Fabr., Nemoptera (Nematnptera Burm.) coa L.., Asia Minor and Turkey.

Fiam. Myrmeleontidæ (Ant-lions). With large vertically-placed head: antemix knobbed at the ends; prothorax short and narrow; mesothorax rery large. Wings of equal sizc. The larva with toothed sucking pincers composed of mandibles and maxillæ, and short broad abdomen, lise in light

Fig. 468.- , Myrmeleon formicarius (règne animal). l, Its larva.
saudy soil, in which they hollow out fumels. Before entering the pupal stage they spin a globular cuvelope for themselves (fig. 468). Myrmelcon fiomirarius L., M. furmicalyn.r Fabr., Palpares libelluloides L., South Europe. Ascalaphus italicus Fabr.

Sub-order 2. Trichoptera.*-Wings covered with hairs or scales; the hind wings can as a rule be folded. The mouth parts with aborted mandibles; the maxillæ and the labium fuse to form a kind of suctorial proboscis. In many cases (Oestropsicle Braner) the maxillæ and labium as well as the mandibles become ahorted during the pupal stage.

Fam, Phryganidæ (spring-flies). The small vertically-placed head with long setiform antennæ and hemispherical projecting cyes. The wings are covered with neales, and have but few transverse veins. They lie on the back in a tectiform manner. The larve live in water in tubular cases, which, in

* J. Fietet, : Recherches pour servir il lhistoire et lianatomic dee Phryanides." Gúnéve, 1834.
II. Hagen. "synopsis of the British Phryganidax," Entomel. Innual for 18.59, 1864, 1861.

Hydropsyche and Rhyacophila, are fastened to stones. In the walls of these eases there are sand grains, bits of plants and empty snail shells. The larve have biting mouth parts and filiform traeheal gills on the body segments. They projeet their horny head and thoracie segments, with their three pairs of legs, from these tubes and erawl about. The pupa leaves the ease, whieh serves also as a pupal skin, and develops into the winged inseet ont of the water. The perfeet inseet resembles the Lepidopteru in many respects, and lives near water on leares, and the stems of trees. The female lays her eggs in elumps enelosed in a gelatinous ease on stones and leaves near water. Plryganea striata L. (fig. +69). Mystacides quadrifascintus Fabr., Hylropsyche voriabilis Piet.

Order 4.-Strepsiptera.*

Insects with rudimentary anterior wings rolled up at the points and large hind winys which can be folded longitudinally. The mouth parts are rudimentary. In the female there are neither wings nor legs. The larve are parasitic in the body of Hymenoptera.

The mouth parts are reduced in the adult sexual animal, and

Fig. 469.- a, Phryganea striata. b, The larva freed from its case (règne animal).
consist of two pointed mandibles which overlap one another; and small maxille, which are fused with the lower lip and are provided with two-jointed palps. The prothorax and mesothorax are two very short rings, but the metathorax is unusually elongated, and covers the base of the abdomen, which consists of nine segments. The males possess sinall rolled-up wing covers, and very large hind wings, which can be folded longitudinally like a fan. The females have no eyes, and remain through life without wings or legs like maggots; they never leave their pupal skin nor their parasitic

[^115]habitat in the abdomen of wasps and hamble bees (bomblyliader) from which they only protrude the anterior part of their body. In copulation the males are said to open by means of their copulatory organ the dorsal tube of the female, which is at first closed. The ovaries have no oviduct, and continue as it seems at an earlier stage of development, since they-probably like those of the viviparous: Cecidomyia larvie-produce eggs. The eggs fall freely into the body cavity, are fertilized and develop (perhaps sometimes parthenogenetically) into larvae, which pass out through the above-mentioned dorsal canal and become attached to larve of bees and wasps (fig. 470). In this larval state they are able to move about and possess, like the young larve of Canthericlce, three well-dereloped pairs of legs, and two caudal sete on the abdomen. They bore thein way into the body of their new host. About

Fig. 470.-Stylops Childreni(after Kirloy), a, Larva. l, Female. c, Male. eight days later they undergo an ecdysis, and change to an apodal cylindrical maggot, which becomes a pupa within the Hymenopteran pupa, and as such bores its way out with its head from the abdomen of the latter. The male.s leare the pupal skin and seek the females. They seem to live only a short time.

Fam. Stylopidæ. Xéno.s Russii Kirb. (I. vesparum Ross.) parasitic in Polistes gallica. Stylops melittce Kirb.

Order 5.-Rhynchota* $=$ Hemiptera.

Insects with jointed rostrum, pierciny (exceptionully biting) mouth parts. With usually free prothorax and incomplete metamorphosis.

The mouth parts are almost withont exception arranged for taking up fluid nourishment, and are usually represented by a rostrum, in which the mandibles and maxillæ, as four rigid styler, are moved backwards and forwards. The rostrum, which is formed

* Burmeister, "Handbueh der Entomologie." II. Bet., Berlin 183.3.
J. Hahn, "Dic wanzenartigen Inseeten." Niirnberg. 18:31-18t!. Continued by H. Schäffer.
F. X. Ficher, "Dic europäisehen Hemipteren nath der analytischen Methode." Wien, 1860.
by the labium, is a three- or four-jointed almost closed tube, which is narrowed towards the point, and is covered at the larger open base by the elongated three-cornered upper lip. The antennæ are either short and three-jointed with a setiform terminal joint, or are many-jointed and often elongated. The eyes are small and nsually facetted, but they are sometimes ocelli with a simple cornea. Frequently two ocelli are fornd between the facetted eyes. The prothorax is usually large and freely moveable, but all the thoracic segments may be fused together. Wings are sometimes quite absent; usually four, larely two, are present. In the first case the front wings are horny at the base and membranous at the tip (Hemiptera), or the front and hind wings are similarly formed and are membranous (Homoptera), though the anterior are often stiffer and coriaceous. The legs are, as a rule, adapted for walking, but sometimes they serve for clinging or swimming. In other cases the front legs are used to capture prey, or the posterior for springing. The alimentary canal is distinguished by the numerous salivary glands, and by the complicated chylific ventricle, which is often divided into three regions ; behind the chylific ventricle usually four Malpighian tubes open into the hindgnt. The ventral cord is concentrated into three, usually into two thoracic ganglia. With exception of the Cicacla, the female genital organs have only four to eight egg-tubes, a simple receptaculum seminis and no bursa copulatrix. The testes are composed of two or more tubes, the ducts of which are usually dilated at the lower end. Many (buys) emit an offensive smell, which proceeds from the secretion of a gland placed in the mesothorax or metathorax, in the latter case opening between the hind limbs. Others (Homoptera) secrete by means of numerous cutaneous glands a white waxy film which covers the surface of their body. They all live on vegetable or animal juices, to which they obtain access by means of the piercing styles of their rostrum. Many of them, by their appearance in great numbers on young plants, are harmful, and sometimes cause gall-like outgrowths; others are parasitic on animals. The young, when hatched, possess the form and habits of the sexnally mature animal. They hare, however', no wings, which make their appearance as small stmmps after one of the first moults. The trine Cicudu need several year's to effect their metamorphosis. The male Coccide change inside a cocoon to quiescent pupr, and undergo accordingly a complete metamorplosis.

Sub-order 1. Aptera = Parasitica. Wingless Rhynchota, with short fleshy rostrum and broad cutting styles. Sometimes they have
rudimentary biting mouth parts, an indistinctly segmenter thoras, and an albomen which usually consists of nine segments.

Fram. Pediculidæ. Liec. With fleshy proboscis-sheath armed with recurved hooks, protrusible suctorial tube, and two protrusible knife-like stylets. The antenne have five joints. The fect, which are adapted for clinging, have hooked terminal ioints. The eyes are small and not facetterl. The animals live on the skin of Mammatia, and suck their blood, and lay their pear-shaped eggs in the roots of the hair. The young, when hatchecl, do not undergo a metamorphosis, and the louse which infects the human head, is fully developerl and capable of reproduction in eighteen days. Perdiculus capitis Deg. Headllouse of mans. P. restimenti Burm. (larger and of pale colour). Dhthirius pubis L. (fig. 471).

Fam. Mallophaga (Anoplura) (Pclzfresser). Licc-like in form, with threcto five-jointed antcmux, and biting mouth parts, no fleshy proboscis, but a sort of suctorial tubc. They live on the skin of Mammalia and Birds, and feed on yomng hairs and feathers, but also on blond. Trichodectes canis. Deg. Philopterus. cersicolor Burm., Liothrum

Fig. 471.-Phthirius pubis (after Landois) St, Stigma; Tr, Trachea. anseris Sulz. Menaporn Nitsch, M. pallidum Nitsch, on fowls.

> Sub-order 2. Phytophthires. * Rhynchote with two pairs of membranous wings. The female is usually apterous. The surface of the skin is very often corered with a dense waxy deposit, the product of cutaneous glands which are placed in groups beneath warty prominences of the segments.

Fam. Coccidæ (Šchildlänse). The large females hare a shield-shaped bedy: and are wingless. The males are much smaller, and have large front wings, and sometimes also rudimentary hind wings. The fully-dercloped males have no proboscis or piercing weapons, and do not take in nourishment, while the unwieldy, often musymmetrical fcmales, which may even have lost the scgmentation, inscrt their long rostrum into the parenchyma of plants and remain motionless. The eggs are deposited beneath the shicld-shaped body

[^116]and develop, protected by the drying-up body of the mother. They are generally fertilized (Cuccus), but sometimes develop) parthenogenetically (Lecanium, Aspidiotus). Unlike the female (and forming a single cxception to what otherwise obtains in the order), the males undergo a complete metamorphosis; the apterous lar've surround themselves with a cocoon, and are transformed into quiescent pupre. Many Cocridec cause great damage in conservatories. Others are useful in industry, in that they produce a colouring matter (cochineal), while others are useful in causing, by their puncture, an outflow of vegetable juices which when dried, are used by man (luc, manna). Aspidiotus ruerii. Bouché, found on the Oleander, Leconium hesperidum L., L. persicee Bouché. Kermes ilicis L., on Quercus coccifera, also K, ? (Coccus) lacca Kerr., on Ficus religiosa in the East Indies. Coceus. cacti L., (fig. 472) lives on Opuntia coccinellifera, Mexien, gives cochineal. C. adomidum L., C. (?) manniparus. Ehbg., on Tamarix (manna).

Fam. Aphidæ,* plant-lice. As a rule, therc are four transparent wings, with a scanty renation. The wings may, however, be absent in the female, and rarely in the male. The Aphidec live on vegetable juices, and are found on roots, leaves and buds of quite dcfinite plants. They frequently live in the spaces of gall-like swellings or deformities of leaves, which are produced by the punctures of the plant-lice. Many of them possess, on the dorsal surface of the antepenultimate segment, two "honey tubes," from which is secreted a sweet fluid -the honeydew-which is eagerly sought for by ants. In addition to the usually apterous females, which, as a rule, only appear in autumn with the winged males and lay fertilized eggs after copulation, there arc also viviparnus, usually winged generations, which appear principally in the spring and in summer, and which produce their living brood without the assistance of males. Bonnet observed nine generations of viviparous aphides succeed one another. They are distin-

Fig. 472.-Coccus cacti. a, Female. l, Male (after Burmeister). guished from the true oviparous fcmales, not only by their form and colour, and, in many cases, by the possession of wings, but also by essential peculiarities in the generative apparatus and the eggs (pseudora, germs). The receptaculum seminis is absent, and the eggs undergo their embryonic development in the very long egg-tubes. Viviparous and oviparous aphides usually succeed one another in regular alternation, since the females lay fertilized eggs in the autumn, which survive the winter and in the spring give birth to riviparous aphides, the desecudants of which are also viviparous, and produce viviparous forms through a nlimber of gencrations. It is only in the autumn that the males and the oriparous females are born which copulatc. Viviparous individuals of many forms seem to pass the winter in ant-hills. Sexual forms (at time of birth already mature, wingless and without proboscis) are sometimes found in the spring; they are in all probability produced by such viviparous forms which have persisted throngh the winter. This has been shown to be the ease for

[^117]Pemphitgrs: terebinthi by Derbes. Here the sexual animals are succeeded by apterous asexual animals, which produce the galls, and the desecendants of which are the winged asexual gencrations which are dispersed and pass through the winter. The reproduction of Chermes and Phyllorera is different, in that in place of the viviparous generations there is a speecial oviparons sexual form, which also produces eqgs capable of developing parthenogenetically. The apterous females of the fir-tree lice pass the winter at the base of the young buds. increase in size in spring in the same place, undergo several moulte, and lay a number of eggs. The young, when hatched, pieree the swollen pointed leaves of the young shoots and produce galls. They develop later into winged female.. In Phyllorera quereus. besides the two generations, there is another generation, which appears in autumn and consists of very small movable males and females (without suctorial proboscis or alimentary canal). These animals arise from two kinds of eggs which are laid on the roots. The female, after copulation, lays only a single egg. It is the same with the famous vine-lice ($P h$. vastutrix), the larvæ of which pass the winter on the roots of the vine

Fig.473.-Phylloxera vastutrix. a, Wiagless root-louse seen from the back, b, from the ventral surface. c. Winged form. (fig. 473). The principal enemies of the Aphides are the larme of the Ishmeumonide (Apliitlins). Syrphidec, Cuccinellaand Hemerobide.
a. Leaf-lice, s.st. Schizuncura lanigera Hartg., on apple trees. Lachnus pini L., L. juglandis L., L. fagi L.. Aphis brassice L., A. rosca L.
l. Bark-lice. C'hermes uluirtis L.: Ch. luricis Hartg.. Pllyglorera qucrcus v. Heyd., on onkleaves. Pl. rastatrir, rinelice, with winged and apterous generations.

Fam. Psyllidæ ($P_{\text {sylludes }}$, leaf-fleas. Antennæ long, with teujoints. In the fully-dereloped stage always winged. The hind legs serve for springing. Their puncture often occasions deformities of flowers and leaves. Psylla alni L.. Licia juncorum Latr.

Sub-order 3. Homoptera-Cicadaria. Both pairs of wings are, as a rule, membranous. Sometimes the front pair is coriaceous, not transparent and coloured. They lie, when at rest, obliquely on the body. The head is relatively large, and often prolonged into processes. The rostrum always arises low down, and apparently between the front legs; it has three joints. In many species the hind legs are springing legs, with which the animal jumps before tlight. The females have an ovipositor, and often lay the eggs beneath the hark and in the twigs of plants. The larve of larger species may live several years (fig. 474).

F'am. Cicadellidæ (Klcinzirpen). Jussus: biguttatus: Fabr., Ledra aurita L., Tettigonia rittata L. Apherophora. The prothorax is trapezoidal (sevencornered). The larva eject a bubbly fonm out of the anus (cuckoo-spittle), and euvelop themselves in it. The wing covers arc coriaceous. Postcrior tibie have three strong spincs. A. spumaria L.

Fam. Membracidæ (Buckelzirpen). Centrotus eornutus L., Membraeis laterulis Fabr.

Fam. Fulgoridæ (Lcuchtzirpen). In many species the abdomen is thickly corered with long strings and flakes of wax, which in onc species (flata limbata) is so richly secreted that it is collected and sold as Chinese wax.

Fulgora laternaria L., the lantern carrier of Surinam, is erroncously said by Merian to emit light from its lantern-shaped frontal process. F. candelaria L., Chinese lantcrn-carrier. Lystril lanata L., and other American species. Flata limbata Fabr., China.

Fam. Cicadidæ $=$ Stridulantia (Singcicaden). The thick abdomen of the male is provided with a voice organ, which produces loud, shrill, chirping sounds (fig. $47 t$). They are rery shy: and remain concealcd between leaves in the day time. They feed on the juices of young shoots, and their puncture causes a flow of sweet plant juiccs, which harden and become manna (Cicada urni L., Sicily). The females hare a saw-like ovipositor placed between two jointed valves. The larræ, when hatched, crawl on the earth, into which they burrow with their shovel-like front legs, and suck the juice of roots.

Fig. 47t.-Cicuda orni (after Packard). a, Larva. b, Pupa. c, Male, Ty, Singing apparatus.

Cicudra orni L., South Europe. C'.srptemdeeim Fabri., Brazil. C. hermatodes L., South Germany.

Sub-order 4. Hemiptera (Bugs). The wings of the front pair are half horny and half membranous (hemielytra), and lie horizontally on the body. Many species are apterous, as are the females of some species of which the males have wings. The first thoracic segment is large, and freely moveable. The proboscis arises from the frontal region, and when at rest usually lies folded beneath the thorax. Some species of the Redruvide produce a shrill sound, as Pirates strichidus, by the movement of the neck on the prothorax.

Tribe 1. Hydrocores = Hydrocorisæ (Water-bugs). The antennæ are shorter than the head, having only three or four joints, and are
more or lesis hidden from view. The rostrom is short. They feed on amimal juices.

Fam. Notonectidæ (Riiekenschwimmer). C'orises striata L., Notanecta ylanca L., water-bug.

Fam. Nepidæ, watcr-scorpions (fig. 475). Naneroris rimicointrs L., Vrjpa cincreal. L., water-scorpion. Ranutru linearis. L .

Tribe 2. Geocores (Land-bugsi). Antenne directed forwards, and of medium length, having four or five joints. The rostrum is usually long.

Fam. Hydrometridæ (I'loteres) (Wasscrläufcr). Hydrometrul larustris L., Limnobates stagnorrm L., Velia rirnlorum Latr.
Fam. Reduvidæ (hedurini) (Schreitwanzen). Redurius persmuatus L., Pirates stridulus F'abr., South Europe.
Fam. Acanthiadæ (Membranacei), skin-bugs. Acanthia lectuluria L., bedbug. Arudus deprensus Fabr. (corticalis L.).

Fam. Capsidæ (Blindwanzen), Capsus.s trifasciutus L..,

Fig. 175.-Nepa cinerea (règne animal). Miris crraticus. L.

Fam. Lygæidæ (Lyg๙odes) (Langwanzen). Lygreus equestris L., Pyrrhucoris apterus L. (Feuerwanze).

Fam. Coreidæ (Cureondes) (Randwanzen). Cinterus marginatus L., Alydus calcarutus L.

Fam. Pentatomidæ (Schildwanzen). Pentatoma junipera L., P. rufipes L., P. oleracea.

Order 6.-Diptera * (Antliata).

Insects with piercing end sucking mouth purts, with membranous front wings. The hind wings reduced to small linobs (halteres). The metamor. phosis is complete.

The designation of this order, which is derived from the apparent number of the wings, does not correspond accurately to the actual state of matters. Two pair's of wings are present, the front pair always as large glassy and tumsparent plates, the hind pair in a rudimentary condition as stalked knobs (halteres). On the imner margin of the front wings two lobes are marked off by indentations; an outer lobe (culula), and an inner one (squama) which may cover

[^118]the hind wings. The latter are composed of a spherical head at the end of a thin stalk. Leydig described at the base of the halteres a ginglion with nervous rods, which he concluded was an auditory apparatus. The head is freely moveable, and usually spherical in form. It is articulated to a short and narrow neck, and is distinguished by the large facetted eyes, which in the male sex may meet in the median line of the face and frontal region. There are as a rule three ocelli. The antennæ are constructed on two different types; they may either be very short and composed of three joints, frequently bearing a tactile hair at the extremity (aristcu), or they may be filiform and of considerable length and composed of a great number of joints. But since in the first case the terminal joint is again divided into a number of smaller joints, and the tactile hair may be also jointed. it is impossible to draw a sharp distinction between the two types. The mouth parts form the kind of suctorial tube known as a proboscis (harustellum), in which the jaws (mandibles and maxilla) and an unpaired rod (epipharynx). attached to the upper lip may appear as horns, setiform or knifeshaped piercing organs. When the maxillæ only are present as paired rods, the unpaired piercing stylet seems to correspond to the fused mandibles. The proboscis, which is principally formed by the labium, ends with a swollen spongy tongue, and is without labial palps, while the maxillæ are provided with palps, which, in cases of fusion with the labium, are situated on the proboscis. The abdomen is frequently stalked, and consists of five to nine segments. The legs have five-jointed tarsuses, which end with claws and usually with sole-like lobes for attachment.

The nervous system presents rery different degrees of concentration according to the length of the body. While in flies of very stout build, the ganglia of the abdomen and thorax fuse together to form a common thoracic ganglion: in the Diptera with longer bodies, not only are the three thoracic ganglia distinct, but several, eren fire or six, separate abdominal ganglia are present. With regard to the alimentary canal, the presence of a stalked suctorial stomach as an appendage of the nesophagus and the number--fourof the Malpighian tubes may be mentioned. The two tracheal trunks are dilated to two great resicular sacs at the base of the abdomen. This is correlated with the power of active flight possessed by these insects.

The male genital organs consist of two oral testes with short rasa deferentia, to which are added firm copulatory appendages. The
ovalies are not connected with any special busa copulatrix, but have three receptacula seminis in comection with the vagina (fig. 449), and often end with a retractile ovipositor.

There is rarely a striking difference between the two sexes. The males have as a rule larger cyes, which in some cases meet cach other in the middle line; their abdomen also is frequently differently shaped to that of the female, and in exceptional cases the colouring is different (Bibio). The mouth-parts, too, may differ; for example, the male gad-flies (T'abonidce) are without the knife-shaped mandibles, which form the principal part of the female armature. The males of the Culicidce also are without the piercing weapons, and have multiarticulate hairy antennæ, while the antennæ of the female are filiform, and are composed of fewer joints.

The metamorphosis is complete, and

Fig. 476.-Melophagus ovinus. $\left.b, H i_{i}\right)$ pobosca equina (after Packard). the larve, which are usually apodal, have either a clearly separate head with antenna and ocelli (most Jemocerca), or a short, usually retracted, cephalic region, without antennæ or eyes (at most with an X -shaped pigment spot), with quite rudimentary mouth parts, sometimes with two oral hooks, serving for attachment.

In the first case the larve have masticating mouth-parts and feed on other animals ; in the latter case they are known as maggots and suck up Huids or semi-liquid substances. After several moults the larve either change within the hardened larval skin to pupre (P. coarctutcu), or casting the larval skin are transformed into moving pupæ (P. obtecta), which of ten swim freely in water, and may be provided with tracheal gills. The differences which the development of the winged insect from the larval organism presents in the two groups have been already mentioned (p. 550).

Many Diptera when flying give rise to buzzing sounds. This is caused by the vibrations of various parts of the body: partly of the wings and partly of the segments of the abdomen, with participation of the voice apparatus on the four stigmata of the thorax. Here, bencath the margins of the stigmata, the tracheal trunk forms a vesicle with two delicately folded leatlets, which
are set in vibration beneath two external valves by the expiration of air.

Sub-order 1. Pupipara* (fig. 476). Lice flies. The body is stout; the three thoracic segments are fused together, the abdomen is broad and often flattened. The antenne are short, and often consist of but two joints. The suctorial proboscis is formed by the upper lip (labrum) and the maxillæ. The legs are provided with toothed clasping claws, and the wings may be rudimentary or absent. The development of the embryo and of the larva takes place in the uterus-like vagina. The maggot which issues from the egg (without pharyngeal framework or buccal hooks) swallows the secretion of large glandular appendages of the uterus (fig. 451) ; it undergoes several moults, and is completely developed when it is born, which occurs just before it enters the pupal stage. They are parasitic, like lice, on the skin of warm-blooded animals, rarely of insects.

Braula ccera, Nitzseh., Bee louse. Nycteribiu Latreillei Curt., without eyes and is parasitic on specics of Vespertilio. Melophagus ocinus L., Sheeptick. Anapera pallida Meig.: parasitie on Swallows. Hippobosea equina L., horse-louse.

Sub-order 2. Brachycera (Flies). Borly of very various

Fig. 477.-Gastrophilus equi (after F. Brauer). a, Larva. $\quad b$, Male. shape, frequently thick and stout, with an abdomen composed of from five to eight segments. Antennæ sloort, and usually composed of three joints with large, usually secondarily ringed terminal joint, to which is attached a simple or ringed bristle. Wings are almost always present. The larve live in decaying matter in earth and water, partly also as parasites ; they are, in great part, maggots with hooked jaws, aud pass into the pupal stage within the moulted cask-shaped larval skin (fig. 477). Many of them have the form of a pupa obtecta.

Tribe 1. Muscaria. With frontal vesicle; proboscis usually with fleshy terminal lobe; maxillæ as a rule aborted; larvæ without jaw

[^119]eapsule and ats a rule with lwo or four oral hooks. The pupat are always barrel-shaped.

F'am. Phoridæ. Phora inurassatu Mcig. Live as larve in Bee hives.
Fimm. Acalyptera. Iriynctu Cardui L., Trr, signata Meig., in cherries. Chloropss linruta Fabr. (Weizenfliege), Larve in l, lades of grass. Scutnphuga stecrorraria I... dung-flies, on clung heap)s. Piophila rassi L., cheese-fices.

Fam. Muscidæ. Mused domestica I., house-fly. .M. ('risar I. (Goldiliege). M. romitorian L., the abdomen is of a shining blue eobour. IV. cadturerimu $1 .$. (Aasfliege). Šurcophagu '"trnaria L. (Fleisehfliege), viviparous. Tarhinu f'uparum l'abr., T. (Chrysosuma) tividi., Fall, I', grossa L., T: larvarum L. The larve are parasitie, principally in caterpillars.

Fan. Conopidæ. Comops Alavipes L., the larve live in the alofomen of Hymenoptera. Co rufipes Fabr. (in (Edipodu).

Fam. Stomoxyidæ. Stomoxys calcitrans L. (Steehfliege), resembles the house-fly.

Fam. Estridæ* (Biesfliegen). The proboseis is aborted. The females have an ovipositor and lay their eggs or their living larvæ (in whieh ease the ovipositor is absent) on eertain plaees on Mammalia, e.!., in the nostrils of stags, or on the breast of the Hurse. The larva with dentated boly rings, and frequently with oral hooks, live in the frontal sinuses, beneath the skin: and even in the stomaeh of eertain Mammalia. Under the skin they produee boils. Hypoderma boris L. II. Acteem Br., on the Stag. II. tarandi L. Dermutnlia hominis Goudot, on Ruminants, Frlidee (Jaguar) and Men in South Ameriea. Estrus auribarbis. Wied. The larvæ are brought by the flies into the nasal eavities of the Stag. Gastrus (Gastroplhilus) equi Fabr. (fig. 477). The egg is deposited on the brcast of the Horse, and lieked off by the latter. The larva, when hatched, attaehes itself to the walls of the stomaeh by its oral hooks, undergoes several moults, and is passed with the exerenents before the pupal stage.

F'an. Syrphidæ (Sehwebfliegen). Syrphus pirastri L., Eristulis tenax L., E. curlus Fabr. Larvæ with respiratory tube, in sewers and stagnant water.

Fam. Platypezidæ (Pilzfliegen). Pl. bulitina Fall.
Tribe 2. Tanystomata. The proboscis is usually long and has styliform predatory jaws. Larve with jaw sheath and hooked jaws.

Fam. Dolichopodidæ. Dolichopus. prnnatus. Meig. D. nobilitatus L.
Fam. Empidæ (Tanzfliegen). Empis tessclata Fabr.
Fam. Asilidæ (Raubfliegen). Asilus" !етәиипснs L., A. craluroniformis L.: Laplevia gilboen Fabr. L. Har"l Fabr.

Fam. Bombyliidæ (Hummelflicgen). Inthrux morin Fabr. (sinuatus: Fall.). The larve live in the nests of Negnchile maratia and Osmia tricornis. Bombytius majur L., B. medius L.

Fan. Henopiidæ. Henaps gilbows.s L. (Mundhornfliege). Lasia .Haritarsis: Wied.

Fam. Therevidæ (Nylntomur), (Stilettfliegen). Therera anmulatu Fabr. Th. plebrya L.. vicenopimus. fenestralis. L.

Fam, Tabanidæ (Gadflies). Jroboscis short, horizontally projeeting. and provided with six or four (male) stylets and two-jointed palp. In the mate

[^120]the knife-shaped mandibles are wanting. Their puneture is severe, and they suck blood. Chrysop.s coeruticns L., Tubanus bucinus L. (Rinderburemse). IIcrmutnpotu plucial is L. (Regenbrense).

Fam. Leptidæ (Sehnepfenfliegen). Lepti.s soolupacca L.. L. vermileo L., South Europe. The larva digs holes in the sand, and there, like the Ant-lion, captures insects.

Fam. Xylophagidæ (Holzfliegen). Iyluphayzs maculutus Fabr. The larvre live in beceh wood. Beris cluripes L.

Fam. Stratiomyidæ (Waffemfliegen). Strutimmys chamalcon L., St. Odrn tomyia hydrolecm L., sargus cuprarius t.

Sub-order 3. Nemocera (Tipulariæ). Longhorns (fig. 478). Diptera of elongated form, with many-jointed, usually filiform, antennr, which in the males are sometimes tufted. They have long slender legs, and large, maked or hairy wings. The palps are usually of considerable length, and with four or five joint.s. The probosicis is short and fleshy, and often armed with piercing setre. The halteres are free. The larve have usually a perfectly differentiated head (Eucephalat), more rarely a retractile jaw capsule (T'ipulidte, Ceci(domyia) ; they live in water, in earth, and in vegetable matter

Fig. 178.-Cecidomyia tritici (after Wagner). ", Female with protruded ovipositor. b, Larva. c, Pupa. (galls and fungi), and some of them have a respiratory tube. After moulting the larval skin the eucephalous larve become quiescent or freely moveable pupe; the latter are provided with tracheal gills on the neck and tail. The insect when hatched swims, till the wings are hard, on the burst pupal skin as on a boat. The females of many species suck blood (gnats), and become a veritable pest in certain districts where they appear in swarms.

Fam. Bibionidæ (Nuseiformes. Borly fly-like ; antemax six- to elevenjointed. The abdomen has seven segments. Bihion marci L.. B. hortulanus. L. The males are black, the females brick red with a blaek head. Simulia reptuns: L... S. columbacschensis Fahr. (Kolumbaiczer Miicke). Suck blood. In Hungary they attack the herrls of cattle in swarms.

F'am. Fungicolæ (lilzmieken). The larva, which are without rudimentary feet on the second segment, live in fungi. Sciara 'inmer l. The larvar before entering the pupal stage come together in great numbers, and wander about in long sinnous chains. Myretmphila fuscu Meig., (likmiicke), S'cimphita maculuta tulur: (Schatiemmiteke).
 rontrminuta I. (Faltemmiicke).

Fam. Culiciformes. The larrae live in water, in rotten wood, or in earth. C'hirmomus plumusus L.., C'orethrus plumicornis, Fabs: The larva have four tracheal vesicles and a circle of sete on the anal segment; live in water.

Fam. Culicidæ (gnats). The larve live in water and have respiratory tube and appendages at the posterior end of the body. Culex pipirns L. (Singmieke). The palp of the male is tufted and longer than the proboseis. The females sting.

Fam. Gallicolæ (gall-flics). The larvæ live in galls. ('ecidnmyiu destructor*

Fig. $479 .-a$, Pulex нvium δ (after Taschenberg). A Auteuna ; MLt. Maxillary palp. b, Larva of Pulex irrituns.

Say, Hessian fly. Notorions in the United States as a destroyer of erops since the year 1778. Imported (!) into the country in straw ly the Hessian troops. C. tritici Kirb., in wheat. C. scealina Loew. C. saliris Schrk. etc. The viviparous larve belong to the genus. Miastor.

Fam. Limnobiidæ (Schnaken). The larve are found in earth or rotten wood. Tipula olerucea L., (Kollsehmaken). Ctenophora atruta L. (Kammmiicke).

Sub-orter 4. Aphaniptera (Fleas). Dipterc, with laterally compressed body and distinctly separated thoracic rings. Wings are absent, but there are two lateral plate-like appendages on the mesoand meta-thorax. The antemate are rery short and arise in a depression behind the simple ocelli. The mandibles have the form of toothed saw-like stylets, the maxille are broad plates with fourjointed palps. The under lip. (labium) is three-jointed and forms
the proboscis sheath. The larree have a distinct head and jaws (fig. 479).

Fam. Pulicidæ. Pulte. irritans L.. flea of man. The dorsal surface of the male is coneave and serves for the reception of the larger female. The large apodal larvie have a distinetly separated head, and live in sawdust and between boards, where the elongated oval eggs are deposited. Sarcopsylla penetrans. L., sand-flea (Chigoe), lives free in South Ameriea in the sand (fig. 480). The female however bores into the skin of the human foot and of rarious Mammalia, and there deposits the eggs. The escaping larvæ give rise to ulecrs.

Order 7.-Lepidoptera* (Butterflies).

Insects with suctorial mouth parts, which form a spirally rollecd proboscis, with four similar wings which are completely covered with scales, with fused prothorax and complete metamorphosis.

The head is moveably articulated and thickly corered with hairs. It bears semicircular facetted eyes and sometimes two ocelli. The antenne are always straight and manyjointed, but vary

much in form, Fris. 480.-a, Gravid female of Sarcopxylla penetrans. b, Foot of a being often setifield mouse with Rhynchoprion attached (after H. Karsten). form or filiform, or even club-shaped, and not rarely denticulate or pectinate. The mouth parts are modified for sucking up fluid nourishment, especially the nectar of flowers, but are occasionally very short and hardly capable of being used. The upper lip and mandibles are reduced to rudiments, but the maxille are elongated and closely jointed, and their inuer sides are grooved, so that when applied together they form a tube-the spirally rolled proboscis (fig. 481). The proboscis is furnished with small spines used for tearing the nectaries of flowers; while the nectar ascends throngh it into the mouth, being sucked up by pumping movements of the

[^121]resophaglts. The maxillary palph are ats a mble radimentary (except in the Timeider). When at rest the proboscis lies rolled up beneath the month, and on either side of it are placed the large three-jointed labial palps, which are often tufted with hairs and are situated on the rudinentary triangular lower lip.

The three thonacic ringes are intimately fused with one another, and like allnost all external parts of the body are thickly covered with hairs. The wings are in most cases very large, but in rare cases are quite rudimentary (fenale Geometricle); the anterior are the largest, and are distinguished by their partial or complete covering of scale-like hairs which overlap one another in a tectiform namer, and cause the extremely various colouring, tracing, and iridescence of the wings. These scales consist of small, ustatly finely ribbed ancl

Fig. 481.-Mouth-parts of butterflies, (after Savigny) ; ", of Zygana; b, of Noctua. A, Antenuæ; Oc eyes; $\boldsymbol{M d}$, mandibles; Mxt maxillary palp; $M x$, maxilla; $L t$, labial palp; Lr, labrum. toothed plates, which are attached by styliform roots in pores of the integument of the wings, and are comparable to flattenerl out hains. They arise during the pupal period. The arrangement of the nervures is of systematic value. The essential arrangement is a large median cell near the root of the wing, from which six to eight radial nervures pass to the external lateral edges, while above and below the middle cell single independent nervures run parallel to the upper or lower fringed margin. The two pairs of wings are frequently comected with one another by retinacula, the upper edge of the hind wings being covered by spines or setre, which catch in a band of the anterior wings. The legs are delicate and weak, their tibiz are armed with spurs of considerable size. The tarsuses are in general fire-jointed. The abdomen has six or seven segments and is thickly covered with hairs: and ends not unfrequently with a strongly projecting tuft of hains.

Nervous system.-The lianin is bi-lobed, and is provided with large
optic lobes, and special swellings for the origin of the antemal nerves. The rentral ganglionic chain is reduced, leaving the subcesoplageal ganglion out of consideration, to two thoracic ganglia (of which the larger second ganglion shows traces of constrictions and arises from the fusion of four ganglia) and four or five ganglia in the abdomen. In the larval condition, on the other hand, there are eleven pairs of ventral ganglia.

The alimentary canal possesses a long cesophagus, which is comnected with a stalked suctorial stomach, and usually six much coiled Malpighian tubes, of which the three on either side open by a common duct (figs. 47 and 48).

Generative organs.-The ovaries consist on either side of four very long many-chambered egg-tubes, which contain a great quantity of eggs, and have, in consequence, a moniliform appearance. The duct apparatus always possesses a long-stalked receptaculum seminis with glandular appendages, and a large bursa copulatrix which opens independently beneath the genital opening. The two long testicular canals are packed together so as to form an unpaired, usually brightly coloured body, from which pass off the two vasa deferentia, which are much convoluted and receive the contents of two accessory glandular tubes before uniting to form a ductus ejaculatorius. The two sexes are often so different in size, colour, and the struc-

Fig. 432.-a, Female of Psyche helix. b, Male. c, Case of the male ; d, of the female caterpillar. ture of the wings, that there is a sexual dimorphism. The males are often more brightly and beantifully coloured (a means of exciting the females). The dimorphism, or even polymorphism (seasonal dimorphism), found in the female sex of many butterflies, is worthy of remark. Parthenogenesis occur's exceptionally in silkworms (Bombyx mori), in many Psychidce, and some moths (Solenobia), the larva-like females of which have no wings (fig. 482).

Development.-The larra when hatched (caterpillars) possess masticating mouth parts and feed principally on plants, leaves and wood. On the head, which is large and covered with hard skin, there are a pair of three-jointed antenna and six ocelli, each of which is divided into three parts. In all cases there are abdominal feet behind the three pairs of conical five-jointed thoracic legs. There may be only two pains of such legs, ats in the caterpillans of the

Geometridue, or five pairs, which then belong to the third to the rixth and the last aldominal segments. The caterpillars establish themselves before passing into the pupal stage in some protected place, on they spin cocoons and become transformed into paper obtectu", from which the winged insects issue either in a few weeks or in the following year. The winger insects, as a rule, live only for a short time, and die after copulating and laying their eggs. Some of them, however, pass the winter in sheltered localities (Rhopulocerc(). Some very widely distributed species of caterpillars cause great damage to forests and cultivated plants, a damage which is, however, limiter by the persecution which they suffer from certain Ichneumonides and T'uchinaria. Fossil remains of butterflies have been found in tertitry formations and in amber. Linnreus' classification of the Lepidopterre into diurnal, twilight, and nocturnal butterflies has been superseded by the establishment of several groups and a number of families.

Tribe 1. Microlepidoptera. Very small and delicately formed Lepidopterc, usually with long setiform antenne. The caterpillars have as a rule sixteen legs, of which the abdominal feet are provided with a circle of hooks round the sole. Many of them bore passages in the parenchyma of leaves, others live in leaves folded together, and others in buds. Some ferv are found in water, e.g., A'ymphula and other Pyralide. The greater number remain hidden during the day.
Fam. Pterophoridæ (Fcdergeistchen). Plume-moths. Pteriphtherlus pentadartylus L., Pt. ptreodactylus L., Alucita hexuductylu L.
Fam. Tineidæ Yponomenta evonymella L., spindle-tree moth. The caterpillars live together in cocoons; several species live on fruit trces. Solennlia pineti=lichenella L.. s. triquetrella, Fisch.. R., the female is apterous. The caterpillars (sac-bearers) live in short sacs. some of them reproduce parthenogenetically. Tinea granellu L., (Kormmotte). Lays its eggs in grain. The caterpillars (known as grain worms) cat the grain. T. peclionella L.., (Pelzuotte) T. tapeeella L. (Tapetemmotte). Clothes-moth,

Fam. Tortricidæ (Wickler). Tertrix, rividana L., int the oak. (iruphlelithe funebruna Tr., in plums. (ir. (Ciurpacap)sa) pomanalla L.. in apples.

Fam. Pyralidæ (Ziinsler). ('rambuns puscurlluas L., Butys urticalis L... Giatleria mellionellu L., in bee-hives. Pyratis pinguinatis L. (Fettschate). Tabby-moth. Scripmla frumentalis L. (Saatmotte).
Tribe 2. Geometrina. Loopers. For the most part of slender build and with large wings, which in repose are tectiform. The antemme are setiform and the basal joint is thickened. The caterpillars have ten to twelve feet; they move in a looping mamer: When at rest

* Comparc M. Herold, "Entwickelungegeschichte ier Achmetterlinge." Cassel und Marbmg. 1815.
they cling with the posterior feet. Many species are hurtful to fruit trees.

Fam. Phytometridæ. Larentia populuta L., Cheimutobia brumata L., frost butterflies. The females, which have rudimentary wings, lay their eggs on the trunks of fruit trees in late autumn.

Fam. Dendrometridæ. Aciduliu ucheratu Seop., Geomatra papilimuria L., Alrioctus (Zevene) ! Irowsishuriutu L., harlequin, Magpic Moth.

Tribe 3. Noctuina (Eulen). Nocturnal Lepidopterco with broad body which is narrower behind, and dull coloured wings. The antennse are long and setiform, in the male sometimes pectinate. The wings when at rest are tectiform. The legs are long and have strong spurs on the tibire. The caterpillars, which are sometimes naked, sometimes covered with hairs, have usually sixteen, more rarely, in consequence of the reduction or absence of the anterior legs, fourteen or twelve legs. The greater number pass the pupal stage in the earth.

Fam. Ophiusidæ (Ordensbänder). Catocala paranympha L. (gelbes Ordensband). C. frarini L. (blaucs Ordensband). C. mupta L., C spornsie L., C. promissa Esp. (rothe Ordensbänder).

Fam. Plusiadæ (Goldeulen). Plusia gamma L., Pl. chrysitis. L.
Fam. Agrotidæ. Llyrutis segetum tr. A. tritici L.. Tripheana pronuba L.
Fam. Orthosiadæ. Orthusiun jota L.
Fam. Cuculliadæ. C'ucullia cerbusci L., C. absyythii L.
Fam. Acronyctidæ. Acronycta psi L., A. rumicis L.. Dilotu cerrulcocephala L. The eaterpillar is harmful to fruit trees.

Tribe 4. Bombycina (Spinner). Nocturnal Lepidoptirct of clumsy build, with body thickly covered with hairs so as often to have a woolly appearance. The antenne are setiform, and in the male pectinate. The wings are tolerably broad and tectiform when at rest. The larger and clumsier females fly but little ; but the males, which are often brightly coloured, move with greater rapidity. In some cases the wings are reduced (Orgyia) or are absent (Psyche) in the female sex. The eggs, which are often laid in groups and are covered with a woolly mass, give origin to caterpillars with sixteen legs and a thick covering of hairs; the caterpillars spin complete cocoons in which they become pupre above ground. The caterpillars of some species live together in common cocoons; some (Psychicles) prepare a sac in which they conceal their borlies. Parthenogenesis occurs.

Fam. Euprepiadæ (Bärenspinner). The catcrpillars with very long hairs, are known as loar eaterpillars. Euprepiu caja L., E pluntaginis, ctc.

Fam. Liparidæ. Lipuris monuchu L., the eaterpillar is very harmful to leafy trees and Conifcre. I. dispurer L., Orgyin untiqua I. The female is apterous. O. (Dasyohira) pudibumda L.

Fian. Notodontidæ. Notudmetu zilizac L., N. Arpomerluriux L. ('urtlencumpua promersionen L ., the eaterpillars live on oaks. Hurp!!in rimuln L. (fiabelschwanz). The caterpillar has pharyngeal glame and two protrusible anal filaments.

Fam. Bombycidæ. Giustropuachu querrifoliu L. (Kupferghecke). G. potatwria
 spinner originally from Sontli Asia, but now bred in Sonth Europe and China on account of the silk oltained from its cocoons. The caterpillar (silkwom) lives on the leaven of the mulbery: (The disease of silkworms, the muscardine: is produced by Butrytis Buassiana).

Fam. Saturnidæ. Suturni" pyri Borkh. S. c'urpini, spini Borklı, Attucu.s eynthia, F"cmamui, cecrmpia cultivated for silk. A!glia tau L.

Fam. Psychidæ. The eaterpillars carry about sacks in which they are transformed into pupze. Psyche utru I... Ps. lutix L. The sace are spirally coiled and have a seeond lateral opening, and are different in the two sexes. Funcer nitidella Hb .

Fam. Zygænidæ. Zyy!cenu filipeudule L.

Fam. Cossidæ. The eaterpillars live mostly in the mednlla of plants. (ins:uss ligniperda Fabri., cessuli L., Mepiolus humuli L. The eaterpillar lives in hop roots.

Tribe 5. Sphingina (Sclıärmer). Lepidoptera with elongated body, pointed at the end, and usually a rery long rolled proboscis. The anterior wings are long and narrow. The hind wings are short. The antennæ are short, and, as a rule, taper at the points. The wings lie when at rest lorizontally on the body and always lare a retinaculum. The caterpillars are flat, and provided with an anal horn and sixteen legs. They pass their pupal stage in the earth. The adult insects fly about in the twilight, some species also in the day (Macroylossa).

Fam. Sesiadæ. Sesia apifurmis L., S. bembrciformis Hb.
Fam. Sphingidæ. Hawk-moths. Murroglossa strllaturum L. (Taubensehwanz), Humming-bird Hawk-moths. Sphinx rlperum L., S. porcellus L. (Weinsehwärmer), S. Nerii (Oleandersehwärmer). S. concolvali L.. Atelcerntiu utropos. L., death-head. The caterpillar lives on potatoes. Smerinthus pupuli L. (Yappelschwärmer), s. tiliac L. (Lindenschwärmer), s. ocrllutus L. (Nacht. pfantenauge), Eyed Hawk-moth.

Tribe 6. Rhopalocera. Day butterflies. Lepidopteru of slender build, usually with brightly coloured wings. The anteme are clubshaped, or knobbed at the end. The legs are slender. The tibiar of the froint legs are short, and sometimes reduced. The Mhopulocera fly by day, and when at rest hold the wings upright, often applied together. The caterpillars have sixteen feet, and are either naked or thickly covered with hains and spines. They develop, for the most part without cocoons and attached to extraneons objects by fibres, into the pupa, which is often of ashining metallic colour.

Fam. Hesperidæ. Hesperia commu L., II. sylecuns Schn.
Fam. Lycænidæ (Polyommatides). (Bläulinge). Polyommatus Arion L.e. P. Damon Fabr. P. cirgaurea L., Therla rubri L.. green hairstreak. T. quereus L., purple hair streak. T. betule L.

Fam. Satyridæ. Sutyrus Briscis L., S. Herminze L., Chrebia Bsdv. (Hipparchiu Fabr.), J. Janiru L., ete.

Fam. Nymphalidæ. The caterpillars have spiny outgrowths, rarely eovered with finc hairs. The pula is attaehed by its posterior extremity. Apatur'a iris L. (purple emperor). Limenitis pupuli L. (Eisvogel). Vancssa prorsa L. (I. levana is the spring generation). V. cardui L., painted lady. V. atalanta L., Admiral. V. antiopn L. (Camberwell beauty). F. io L., peacoek. V. u'tica L..(Kleiner F'uchs), small tortoiseshell. Aryymuis puphia L., silver-washed Fritillary, A. uglaia L. (dark green Fritillary), Melitce cinstiu L. .

F'am. Pieridæ (Weisslinge). Pieris cratergi L. Blackveined white. P. brassica L., large white (Kohlweissling). P. napi L., greenreined white. P. supa L., small white. Colias hyale L., C. rhamni L. (Citronenvogel).

Fam. Equitidæ. Papilio Porlalirius L.. P. Mrechame L. (Swallowtail). Doritis Apollo L. The females have a pouch-like appendage at the posterior end of the body.

Order 8.-Coleoptera.*

Insects with musticating mouth-purts and horny fiont wings (teymina). Prothorax
 fireely moveable. The meta- Fig. 483,-Hydrophilus picens (règne animal). ", morphosis is complete.

Beetle. \quad, Larva. c, Pupa.
The chief characters of this large, but tolerably well-defined, group of insects depend upon the structure of the wings. In the state of rest the anterior wing's, as wing-cover's (elytra), cover the posterior" membranous wings which are transversely and longitudinally folded, and lie horizontally on the abdomen (fig. 483). The hind wings alone are used in flight, while the front wings are modified toperform a protective function, and usually correspond in size and form to the soft-skinned dorsal surface of the abdominal region, of

[^122]which, however, they leave in some cases the last -egment (pyyidium), or in other cases (stomplylimu) several segments, exposerl. As a rule, when the insects are at rest, the straight internal edges of both wing-covers ire shut closely together, while the outer edges are bent round the sides of the abdomen. Sometimes the inner edges of the wings are fused together, so that the power of flight is abohished. Tn rare cases the wings are altogether absent. The head is seldom free, but as a rule is sunk into the freely moveable prothorax, and bears very variously shaperl, usually eleven-jointed, antenne. In the male the latter are of considerable size and have

Fig. 181.-a, Ciciadela campestris. b, c, Its larva with the two dorsal hooks on the fifth abdominal segment (règne animal). a considerable extent of surface. Ocelli are with few exceptions absent, but the facetted eyes are only absent in certain blind species, which live in caves. The mouth parts are adapter for masticating and biting, and sometimes show transitional forms to those of the Hymenoptera. The maxillary palps are usually fourjointed and the labial palps three-jointed. In the predatory beetles, the external lobe of the maxilla has a palp-like form and articulation. The labium, which is simplified by the reduction of its parts, is in rare cases elongated to form a divided tongue. The large prothorax (cervical shield) is moveably articulated with the mesothorax, which is usually weakly dereloped ; and on it, as well as on the other thoracic segments, the pleura extend on to the sternal surface. The legs vary very much in shape, but usually end with a five-, rarely with a four-jointed tarsus. The tarsus is rarely composed of a smaller number (from one to three) of joints. The abdomen is attached to the metathorax by its broad base, and always possesses a greater number of dorsal than of ventral plates, of which some may fuse with one another. The smaller terminal segments are usually retracted and concealed by the preceding.

The nervous system of the Culenptere varies in the greater or less concentration of the ventral ganglionic corrl. The subresophageal ganglion is followed by two or three thoracic ganglia, with the posterior of which one or two abdominal ganglia mary he fused. In
the abdomen there are usually a series of separate ganglia (2 to 7). The latter may, however, fuse together to form a long mass or be drawn into the thoracic ganglia.

The long coiled alimentary canal dilates in the carnivorous beetles to form a gizzard, which is followed by a shaggy chylific ventricle. The number of Malpighian tubes is, as in Lepidoptera, confined to four or six.

The males and females are easily distinguished by the form and size of the antenna, the structure of the tarsal joints, and by special relations of size, form and colour. In the female the numerous eggtubes unite in very various arrangements, and a bursa copulatrix is often present. The males possess a large horny penis, which, when at rest, is retracted into the abdomen and is protruded by means of a powerful muscular apparatus.

Almost all the larve have month parts adapted for biting, rarely suctorial pincers. They feed under the most different conditions, as a rule concealed and removed from the light, and usually in the same way as the perfect insect. They are either grub-like and apodal, but with a distinctly developed head (Curculionidce), or they posisess, in addition to the three pairs of legs on the thoras, also stumps on the last abdominal segments.

Many larve, as those of the Cicindelce, have a peculiar apparatus for capturing their prey (fig. 48t). In place of the facetted eyes, which have not yet appeared, ocelli are present in

Fig. 485.- a, Melöe violaceus. b, Situris humeralis (xègne animal). varying number and position. Some beetle larvæ, like the larve of the Dipterca and Hymenoptera, live as parasites and feed inside bees nests on the eggs and honey (Meloë, Sitaris) (fig. 485). The pupæ of beetles, which are either suspended and attached to objects or lie on the earth or in holes, have their limbs freely projecting.

Fossil Coleopterce are found in coal formations and are specially numerous in amber.

Tribe 1. Cryptotetramera $=$ Pseudotrimera. The tarsuses are composed of four joints, of which one joint is ridimentary. Latreille considered them to be three-jointed.

Fun. Coccinellidæ (Lady Birds). Coccinellw septempunctata L. The larva feerl on Aphides. Chilororvis bipmstulatus L.

Fimi. Endomychidai (likkiifer). Eindomy, succimetu L .

Tribe 2. Cryptopentamera $=$ Pseudotetramera. One joint of the fire-jointed tansus is rerluceal and conceated.

Fiam. Chrysomelidæ (Blattkiifer). The adult insects are mostly of a bright colour and feed on leaves. Their larve have a cylindrieal thick-set booly; which is rery generally covered with wats and spiny prominences; they alway: have well-developed legs ; they likewise feed on leaves, into the parenehyma of which some of them (Hispu) burrow, and present the peculiarity of using their excrements to prepare cases which they earry about with them ($(7 y+t h r a$, (rypterephutus). Before entering the pupal stage they attach themsclve- to leares by the hind cond of their hody. IFaltira oldraceal labr. Harmful to eabbage leares. Lima popmli L. ('hrysommila rarianss Fals:

Fam. Cerambycidæ (Langirumin) (Boekkäfer). Sonc species (Lamiu) produce a peculiar sound by rubbing the head against the prothorax. The elongated grub-like larva have a horny head with powerful mandibles, short antemæ, and usially mo legs or occlli. They live in wood. in which they bore passages and sometimes eause great damage. Lamia textır L., Ceramby,r herees Scop., e? cerdn Fabr., Prionus coriarius F'abr.

Fam. Bostrychidæ (Borkenkäfer). Colefptera of small size and cylindrical body shape. The larve are of stout eylindrical shape and without legs, the plaee of which is taken by ridges eovered with hairs like those of the Curculionitle. The adult inseets and larra bore passages in wood, on whieh they feed. They live in eompanies, and belong to the most dreaded destroycrs of forests of eonifers. The way in which they eat into the bark is very peeuliar, being charaeteristie of the individual species and indieative of their mode of life. The two sexes meet in the superfieial passages, whieh the female, after eopulation, eontinues and lengthens in order to lay her eggs in pits, whicli she hollows out for that purpose at the end of them. The larva when hatehed eat out lateral passages, which, as the larve inerease in size and get further from the main passage, become larger and give rise to the elaraeteristic markings on the inside of the bark. Bustrychus chutcogruphus L., B. typmographus. L.: under the bark of pine-trees. B3. stemompraphus Duft.

F'am. Curculionidæ (Riisselkäfer). W'eerils. Head prolonged into a proboscis in front. Larve eylindrieal, without or with very rudimentary legs and oeelli ; they are almost entirely phytophagons : and indeed they live under the most various eonditions, some inside buds and fruit, others under bark. or on leaves, or in wood. Culendra granuria L., in grain known as black grainworms. Baluninus murum L., Nut-wceril. Hylubirs: abirtis Fabr., -1pion fromentarium L .

Tribe 3. Heteromera. The tinsuses of the two anterior pairs of legs are five-jointed, of the ponterior pair four-jointed.

Fam. Oedemeridæ. Ordemera circiscrm. L.

Fram. Meloidæ (Cantharidæ). They furnish a substance nised in the preparation of vesiconts. The larro live partly parasitically on insects, partly free moder the bark of trees, and some of them pass through ia complicated inetamorphosis ealled by Fabre hypermetamorphosis: they posiscsis at first three pairs of legs: in later stages they lose these, and the body aequires a cerlindrieal
form (fig. 45i). Melue L. The beetles live in grass, and when tonched they give out an acrid pungent fluid between the joints of the legs. The larvæ creep on the stalks of plants, penetrate into the Howers of Asclepiadæ, Primulaeeæ, ete., and attach themselves fast to the body of bees (Pediculus: melittce Kirby), in order to be carried to the bees' nest, in which they nourish themselves chiefly on honey. M. proscarabaus L., M. vinlacous Marsh. Lytta vesicatoria L., Spanish fly. Situris humeralis Fabr., South Europe (fig. 485).

Fam. Rhipiphoridæ. The larvæ live in wasp nests (Metnecus), or in the abdomen of cockroaches (Rhipidius). Rhipiphorus bimaculutus Fabr.

Fam. Cistelidæ. Cistelu fuleipes Fabr.. C' murinu L.
Fam. Tenebrionidæ. Lencbriomolitur L., Larva known as meal-worm. Blaps: mortiselya L .

Tribe 4. Pentamera. Tarsus usually five-jointed.

Fam. Xylophaga. Tarsus sometimes only four-jointed. The larvæ sometimes feed on dead animal matters, sometimes bore eylindrical horizontal passages in wood, and are therefore destructive to furniture and wooden material as well as to living trees. Lymereylon nurale L., on docks in oak. Ancoinm pertinux L., death watch, produces a ticking noise in wood. Ptinus fur L., Pt, rufipes Fabr.

Fam. Cleridæ. The variegated larvæ live under bark and for the most part on other insects. Clemse formicarius L., Trichodes ajiarius L. The larva is parasitic in bee-hives.

Fam. Malacodermata. Mularluius ancus Fiabr: Cintharis (Telephomes) vinlacea Payk., C: fuser L. Lampyris. Gcoffr., Glow-worm. Female apterous, or only with two small seales. Light organs in the abdomen L. noctiluca L., L. splendiduta L. Female with two small scales instead of wing-covers.

Fam. Elateridæ (Springkäfer). The elongated body is distinguished by the very free articulation between the prothorax and mesothorax ; and by the possession of a spine mpon the prothorax which fits into a pit on the mesothorax. These two arrangements enable the beetle to jump up when lying oul its back. The larve live under the bark of trees on the wood, sometimes in the loots of grain and turnips, and may be very destructive. A!friotess lineatus L., Lacon murinus L., Elater sanguinens L., Pyrophorus noctilucus L., in Cuba, prothorax dilated to the form of a vesicle and phosphorescent.

Fam. Buprestidæ (Prachtkäfer). Body elongated, pointed behind, often brightly coloured, with a metallic lustre. The elongaterd vermiform larvæ are without ocelli and, as a rule, legs ; and possess a rery broadened prothorax. They live like the larve of the cercumbyeince, to which they present a general resemblance, in wood, and bore flat ellipsoidal passages. Trachys mimuta L., Agrilus biguttatus Fabr., Buprestis mustica Frabri. B. Hucomuculuta Fabr.

Fam. Lamellicornia (Blatihornkäfer). The antema are seven- to elevenjointed; the basal joint is large, and the terminal joints (three to seven) are widencd to a fan shape. In many the anterior legs are adapted for digging. The soft-skimed larve possess a horny head, moderately long legs, and a curved abdomen, which is dilated behind to the form of a sac ; they feed sometimes on leaves and roots, sometimes on putrefying vegetable and animal substances, and enter into the pupal stage after two or three years sojourn in a cocoon beneath the earth. Lисииия rervus. L., stag beetle. Larve in rotten wood of old oaks. The bectle feeds on the sap whieh eomes from the oak. L. paralleripiperlus L.,

 chafer. 'The larvie at first live together and feed on fresh vegetable substances, $l_{\text {ater (}}$ (in the seeond and third years) on roots, which they destroy, doing er reat danaye. Towards the end of the fourth smmmer the beetle is usually developed from the pup, which liesin a smooth round hole, but it remains in the carth till the next spring. M. hippnotustani Fiabr., (ithnia anruta L., Atwn-hus surror I., Oryeters nusicarnis L .
Fam. Dermestidæ (Speckkiifer). Ittu!!funs prllia L. (Pelzkiafer). Jeromerstres lurellarius: L., (speckkäfer).
Fim. Histeridæ (Stutzkiifer). Hister muculatus L., Ontmphitu* strinutus Fabr. Fam. Silphidæ (Aaskäfer). Beetles and larvæ live on and lay their eggs in, decomposing animal and vegetable matters; some of them even attack living insects and larve. When attaeked many clefend themselves by the ejection of a stinking anal cxeretion. Silpha tharacica Fabr., S. obseura Fabr. Neeruphorus vespillo Fabr., N. !ןromanieus Fabr. (Todtengräber).

F'am. Pselaphidæ. Live in the dark under stones and in eolonics of ants. Pselaphus Heisei Herbst. C'laviger testnerus Pr.
Fam. Staphylinidæ (Kurzdeekflügler). Mypmedoniu ranaliculuta Fabr. Live among ants. Staplyylinus. muxillows. L., Omalium. rivulare Payk.

Fam. Hydrophilidæ (Palpicornia). Swimming beetles with short club-shaped antennæ and loug maxillary palps, whieh often projeet beyond the antennæ. Feed on plants. IHydrophilus pireus L., Hydrolius fuscipes L.

Fam. Dytiscidæ. Swimming-beetles, with filiform, ten- or cleven-jointed antennee and broad swimming legs beset with setre the hind legs projeet back and are especially adapted for swimming by the possession of a close covering of swimming-hairs. Colymbetes fuseus. L., Dytiscus marginalis, sturm.

Fam. Carabidæ.* Running beetles, with cleven-jointed filiform antennæ, powerful pincer-shaped mandibles, and running legs. The elongated larre possess four-jointed antennæ, four to five oeelli on each side, sickle-shaped projecting pincers, and fairly long five-jointed legs Harpalus oneru* Fabr., Brachinu.: cropituns K. (Bombardirkäfer). C'urubus auratus L., Procrustes coriaceus. L.

Fam. Cicindelidæ. Tiger-bectles. Mandibles with three teeth. The larvæ form subterranean passages, possess a broad head, very large sicklc-shaped eurved jaws, and bear on the dorsal surface of the cighth segment of the body two horny hooks for attachment in the passage, at the opening of whieh they lie in wait for prey. Cicindela cmmpestris. L. (fig. +8t).

Order 9.-Hymenoptera. \dagger

Insects with bitiny and licking mouth parts, fused prothorax, four membranous winys with only few nervures. Metamorphosis complete.

The body has as a rule an elongated form, and possesses a freely

[^123]moreable head with large facetted eyes which in the mate are almost in contact, and three oeelli (tig. 486).

In the antennex a large basal joint (shaft) and eleven to twelve shorter joints can usually be distinguished, or they are not crooked, in which case they eonsist of a greater number of joints.

The mouth parts are biting and licking; the upper lip and mandibles are constructed as in beetles and Orthoptera; the maxillæ and labium, on the other hand, are elongated and adapted for licking, and when at rest are frequently bent round. In bees the tongue ean be considerably elongated and assume the form of a proboscis; in this ease the lobes of the jaws also become considerably extended, and form a kind of sheath around the tongue. The maxillary palps are usually six-jointed; the labial palps on the other hand only four-jointed, but the number of joints may be reduced.

As in the Lepidoptera and Diptera, the prothorax is firmly eonneeted with the following thoracic segments, inasmuch as the

Fig. 486.-Apis mellifica. a, Queen. ひ, Wrorker. c, Drone.
pronotum at least (excepting in the leaf- and wood-wasps) is fused with the mesonotum, while the rudimentary prosternum remains freely moreable. On the mesothonax two small moreable scales (tegulce) are found orer the base of the forewing, and behind the seutellum the anterior part of the metanotum is dereloped into the posterior shield (postscutellum). Both pairs of wings are membranous, transparent, and traversed by but few nervures; the anterior are considerably larger than the posterior. From the outer edge of the latter small hooks arise, which are attached to the inferior edge of the anterior pair, thas bringing about the connection between the two pairs of wings. Sometimes the wings are alsent in one of the two sexes, or in the workers amongst many social IIymenoptercu. The legs possess five-jointed, usually hroadened tarsuses with long first tarsal joint. The abdomen is rarely attached to the thorax by its whole breadth (sessile); as a rule the first or the two first segments of the ablomen are narrowerl to a thin stalk, bringing about the comnection with the
thonax (stalked). In the female sex the abrlomen pards with an ovipositor (terelorct), which as a rmle is retracterl, or with a polison spine (rculeus). 'The latter develops from six warts, of which fons belong to the ventral side of the penultinate, two to that of the antepemltinate segment. The sting (fig. 487) (onnsists of the grooved piece (sting-groove), two piercing stylets and two stingwheaths (with oblong plates) and is retracted when at rest. The grooved piece, the furrow of which is directed downwards, arises from the inner pair of warts of the pennltimate segment, while the

Fig. 487.-Stinging apparatus of the honey bee from the dorsal side (after Kraepelin). GD, poison gland; $G b$, poison reservoir ; I, gland; Str, grooved piece with the two stylets; Ba, swollen base of the grooved picce; B, eurved root of the same; Π, angular piece; $S h$, sheath of spine; O, oblong plate; Q, quadratic plate; $S t b^{\prime}$, Stb", the two picreing spines on the ventral side of the grooved piece. piercing stylets on the edge of the groovel piece correspond to the pair of warts of the antepenultimate segment. Finally the segments also take part in the formation of this apparatus, inasmuch as they fumish powerful supporting plates for the sting (quadratic plate and angular piece).

The nervous system consists of a large complicated brain, an in-fra-œsophageal ganglion, two thoracic ganglia (the ganglia of the mesothorax and metathorax are fused with the anterior abdominal g:anglion), and five to six ganghia in the abdomen.
The alimentary canal frequently attains to a considerable length, especially in those Hymenoptera which with a longer life cumber themselves with the care and nombishment of the roung. Large salivary glands are present. The namow resophagus usually dilates to a suctorial stomach, more rarely to a spherical gizzard (ants). A considerable number of short Malpighian tubules open into the intestine (hindgut).

In comnection with the great power of Hight, the longitudinal tracheal trunks give rise to vesicular dilatations, of which two at the base of the abdomen ara conspicnous by their size.

The female sexual organs usizlly poisess very numerous (up to one hundred) many-chambered egg tubes, and a large receptaculum seminis with accessory glands. A special bursa copulatrix is absent (fig. 488). When a sting is developed, filiform or branched poison glands with a common reservoir and a duct opening into the sheath of the sting, are present. In the male sex the ducts of the two testes are connected with two accessory glands, while the cominon ductus ejaculatorius ends with a large protrusible penis.
With the exception of the leaf-wasps (Tenthredinidce), and woodwasps (Uroceridce), the larvæ are apodal and live either parasitically in the body of insects (the Pteromalince pass through various larval stages, undergoing a kind of hypermetamorphosis) or in plants, or in brood spaces (cells) formed of animal and vegetable substances. The former, like the caterpillaris of the butterflies, possess, besides the six thoracic

Fig. 488. -The viscera in the abdomen of the queen bee (after R. Leuckart). D, alimentary canal ; R, rectum with rectal glands and anus; Glc, chain of ganglia; Ov, ovary; Rc, receptaculum seminis; $G b$, reservoir of poison gland; St, sting. legs, six to eight pairs of abdominal legs, and live free on leaves; the latter are grub-like, find the nutritive material in their cells, and are in part fed during their growth. Almost all-e.g., the larve of bees and wasps-possess a small retractile head with short mandibles and pointed pieces (maxillæ and labium). The anus is not developed, for the stomach is blind and does not communicate with the lindgut, which receives the Malpighian tubules. Most of the larve, when they enter the pupal stage, spin an irregular investment or a firmer cocoon of silk-like fibres. The larve of bees and wasps then soon undergo a moult (when they get rid of their excrementitious matters), and enter upon a stage which precedes that of the pupa and is called by v . Siebold the psendoрири (fig. 489).

Sul-order 1.-Terebrantia.

Female with ovipositor as tube or borer (terebru), which projects freely at the end of the abdomen, and is sometimes retractile.

Tribe 1. Phytophaga. Abrlomen sessile. 'Trochanter composed of two rings. Larvae phytophagons, resemble caterpillars.

Fam. Tenthredinidæ (Leaf-wasps). Saw-flies. Abdomen sessile with short borer. The larve have rarcly threc, usually nine to cleven pairs of legs, and resemble eaterpillars. The fcmales lay their eggs in the epidermis of leaves, the puncture eauses the flow of sap, whieh the egg imbibes and thereby increases in size. The young larvo feed on leaves, often in early stages live in socictics, and become pupæ in a cocoon. They are distinguished from the eaterpillars by the greater number of legs, and by the two ocelli on the horny head. Lyda betulce L.. Tenthredo (Athutia) spinarum Fabr., larve sometimes on roses. Nematus ventriensus Klg., larvæ on goosebcrries. Cimbex femorata L.

Fam. Uroceridæ (Wood-wasps). Abdomen with first tergum split, and usually

Fig. 489. - a, Larva of the bumble bee about to become a pupa. b, Pseudo-pupa (Semi-pupa). c, pupa (after Packard). long, freely projecting ovipositor (egg-borer). The females bore holes in wood and deposit their eggs therein. The larvæ bore further into the wood and live a long time. Sire.e ! igas L.

Tribe 2. Gallicola. Abdomen stalked. Larve apodal and aproctous, usually living in vegetable cells.

Fam. Cynipidæ (Gall-wasps). Thorax humped. Abdomen usually short, laterally compressed. The ovipositor (egg-borer) arises on the ventral side, and is as a rulc retracted. The females bore into plant tissues and cause, by the irritation of an aerid fluid, an abnormal flow of vegetable fluids, thus giving rise to the outgrowths known as galls, on which either one or several apodal larve feed. Certain galls, especially those of the oaks of Asia Minor (Aleppo), contain tannie acid, and are on this account used in industry. In many species the females only are at present known; the eggs in such eases devclop parthenogenetically. Many larre are parasitic in Diptera and Aphides. Cynips quercus folii L., Phudites rosce L., produces the bedeguar of roses. Figites scutellaris Latr., parasitic on the grubs of Sareophaga.

Tribe 3. Entomophaga. Abdomen stalked. Female with freely projecting ovipositor (spine). Larve apodal and without amus, usually parasitic in the larve of other insects.

Fram. Pteromalidæ. The larva are parasitic in all possible insect larva, frequently in parasites, and pass through a complicated metamorphosis, cxtremely remarkable for the succession of very different stages. Pteromalus puparum. L., Teleas clavicornis Latr., Platygaster Latr., (fig. 45s).

Fam. Braconidæ. They principally persecute caterpillars, as well as bcetle larve living in dead wood. Microgaster glommeratus L., in caterpillars. Bracon impositor Scop., Br. palpebrator Ratzbg.

Fam. Ichneumonidæ. Ichneumon incubitor. L. I. (Trogus) luturius: Ratzbg., Pimpla (Ephialtes) manifestator L., Ophion luteus L.

Fam. Evaniadæ. Exaniu appendiguster L., Focnus jaculator L.

Sub-order 2.-Aculeata.

With retractile perforated sting and poison gland in the female sex. Abdomen always stalked ; the antennæ of male usual thirteenjointed, of the female twelve-jointed. The larvæ are apodal and without anus.

Fam. Formicidæ* (Ants) (fig. 490). They live together in communitics, which contain, besides the winged males and females, a great excess of small apterous workers with stronger prothorax. The latter are sometimes of two kinds: known as soldiers and true workers, distinguished by the size of the head and jaws. The workers arc aborted females and resemble the true females in possessing a poison gland, the acid secretion (formic acid) of which they either pour out with the help of the sting or, in the abscnce of the latter, eject into the wound made by the mandibles.

The dwollings of the ants consist of passages and cavitics, which are placed in rotten wood, in the earth, or in hilllike heaps which thes throw up. Winter provisions are not carried into these spaces, since

Fig. 490.-Formica (C'amponotus) herculanea. a, Female. b, Male. c, Worker. d, Larva of Formica rufa. e, pupa with' case, socalled ant egg. f, g, Pupa liberated from the case. the ant-workers, which with the queens alone survive the winter, fall into a kind of winter sleep.

In the-spring queens are found in addition to the workers. From the eggs of the quecns larver proceed, which arc carefully reared and protected by the workers. The larvæ in egg-shaped cocoons become pupre (ants' eggs) and develop, some of them to workers and some to winged sexual animals, which appear with us sooner or later in the course of the summer, and copulate in the flight. After copulation the males die, the females lose their wings and are carried baek by

[^124]the workers into their dwellings, to deposit their eggs, or found with some of the workers new societies.
ln the tropics the ants undertake migrations in great numbers, and may become a regular plague when they enter houses and destroy all catables. Many forms (Oecodoma species) are especially destructive to young trees and plants, which they strip of foliage. Some species, however, render service in atlacking T'ermites and in destroying other pernicious insects, such as the cookroaches, even in the dwellings of man. Many species, especially of the genus Eciton, are predatory ants and destroy other ant colonies. Certain species are said to make war with foreign ant states and to carry off their young, which they bring up for service in their own colony (Amazon colonies. r. rufa, rufesecns). The relatively ligh psychical activity of these insects is undeniable ; many instances of it have been disclosed by the thorough observations of P. Huber. They keep Aphides as we do milch cows ; they carry provisions into their dwellings; they go out to battle in regular eolumns, and offer up their lives bravely for the community. In contrast to the war-like features of the slave-states are the friendly relations of the ants to other insects, which, as Myrmecophila, live in the ant dwellings (larva of Cetonia, Myrmecoplita, etc.). Formica herculanea L.. F. rufa L., Myrmica ucervorum Fabr., with sting.

Fam. Chrysididæ (Gold wasps). The females lay their eggs in the nests of other Hymenoptera, espccially of the digging wasps (Fossoria), with which they have on this occasion to carry on war. Chrysis ignita L.

Fam. Heterogyna (Mutillida, Scoliada). Males and femaleș very different in form, size and structure of antemæ. The females, with shortened wings or apterous, live solitarily and lay their eggs on ather insects or in bees' nests, and do not trouble themselves with the nourishment and care of their young. Mutille enropaea L., Scolia (Scoliadce) hortorum Fabr. The larra lives parasitically on that of the nasicorn beetle.

Fam. Fossoria.* (Digging wasps). Solitary Hymenoptcra, with unbent antenne and elongated legs; the tibite are armed with long spines. The females, which live on honey and pollen, dig passages and tubes usually in sand and in earth and in d'y wood, and deposit at the end of them their cells. each of which contains an egg and animal nutritive matter for the future larra. Some (B cmbex) carry fresh food daily to their growing larvæ, contained in open cells ; others place in the elosed cell as many insects as the larva requires for its development. In the last cases the introduced insects are not completely killed, but merely crippled by a sting in the ventral nerve cord. The individual species usually capture quite definite insects (catcrpillurs. Curculionida, Buprestilce, Acridice, ctc.), which they overpower and paralyse in a rery remarkable manner. For example, Cerceri.s loupresticind attacks Buprest is. while C. Dufinurii chooses (leomus ophthalmicus. The digging wasp scizes the head of the beetle with its mandibles and inserts its sting into the thoracic ganglia between the articulation of the prothorax. Sphere flacipennis, which constructs three cells at the end of a horizontal passage, two or three inches long, attacks Grylla, and Sphex ulbisecta species of Cidipuda. Ammophila holowericea supplies each of its brood cells with four or five caterpillars; -1 . subulusa and argentata only with one very large caterpillar. which is paralysed

* Fabre, "Observations sur les mœurs des Cerceris;" also "Études sur l'instinct et les métamorphoses des Sphégicns," Inn. des síc. Ǎat.. ser. A. Tom IV. and V .
by a sting in a median apodal body segment. Pompilus viaticus L., Ammoptita sabulusia L., C'ratro cribarius L.

Fam. Vespidæ* (Wasps). Body slendcr, smooth. Anterior wings are narrow and can be folded together longitudinally. They are sometimes solitary, sometimes they live in societies; in the last case the workers also are winged. The females of the solitary wasps build their brood-cells in sand or on the stalks of plants with sand and clay, and fill them rarely with honey, usually with insects, especially caterpillars and spiders ; they thus approach the Fossoria in their mode of life. The social wasps approximate to bees in the organization of their socicty. They construct their nests of gnawed wood, which they manufacture into lamcllæ resembling paper, and fasten together into regularly hexagonal cells. The combs, which are composed of a simple layer of cells attached to one another, are either suspended freely on the branches of trees, or in holes in the earth and in hollow trees, or surrounded by a common leafy investment. on the under surface of which the holes for exit are placed. In the latter case the internal structure frequently consists of several horizon-tally-suspended combs which are placed one above the other, like the floors of a house, and are connected by buttresses. The openings of the hexagonal vertically placed cells look downwards. The foundation of each wasp nest is laid in the spring by a single female, which was fertilized in the preceding autumn and has survived the winter. She begets, in the course of the spring and summer, workers, which help to increase the size of the nest and to rear the offspring, and of which the larger forms produced in the summer not rarely lay eggs, which develop parthenogenetically into males. The larvæ are fcd with insects which have been well chewed, and are transformed in a delicate case into pupæ in the closed cells. The perfect insects feed as a rule on sweet substances and honey juices, which they are said occasionally to gather in (Polistes). Males and females first appear in late summer and copulate in the flight high up in the air. The males soon die and the whole colony is generally dissolved in the autunn ; the fertilized females, on the other hand, survive the winter under stones and moss in order to found new societies in the following year. Odynerus parictum L., Polistes galliea L. Nests are without investment of leaves and consist of a stalked comb. The fertilized females, which have survived the winter, produce according to v . Siebold at first only female offspring, whose eggs remain unfertilized and develop parthenogenetically into malcs. Vespa crabro. L., hornets. V. vulyaris L.

Fam. Apidæ \dagger (Bees). Tibia and tarsus, especially of the hind legs, broadened ; the first tarsal joint, especially of the hinder legs, covered with hairs like a brush. Anterior wings cannot be folded together. Body hairy. The hairs on the hind legs or on the belly serve as a collecting apparatus for the pollen. The labium and maxillæ often reach a very considerable length. The latter are applied as a sheath to the tonguc, and bear only rudimentary palps. The bees are solitary and social, and place their nests in walls, under earth and in hollow trees, and feed their larvæ with honey and pollen. Some do not build nests, but lay their eggs in the filled cells of other bees (parasitic bees). Andrena cincraria L., Dasypoda hirtipes Fabr., Nomada ruficornds Kirb.,

[^125]Meyuchile (Chalicodonar) muraria Fials... Osmia bicomins L., Anthophara pritipes. l'abre, J'yloemmen rinlucen Fabr. Wood-bees construct perpendicular passages in wood, and divide them ly transverse walls into cells.

Bumbus: Latr. Bumble loce. Body heavy; hairy like fur. The nests are usually placed in holes under the earth, and include only a small number, about fifty to two hundred, rarely as many as five lumdred workers, in addition to the fertilized femalc. They do not construct combs, but pilc up irregular masses of pollen, in which the eggs are deposited, and which serve as food for the hatching grubs. The latter eat out cellular cavities in the pollen masses and form oval coeoons, which arc frce but irregularly placed by the side of one another. The nest is founded by a single female which has survived the winter. She at first alone has the burden of rearing the brood: sulsequently, however, this is shared by the hatched workers of different sizc, which themsclves lay unfertilized cggs. B. lapidarius Fabr., muscorum Ill., tervestris, Ill., hypnatum. Ill.

Apis L.. honcy-bee. The workers with lateral separated eyces, with onc-jointed maxillary palps. The external surface of the hinder tibix is pressed into the form of a pit, and is surrounded by simple marginal setæ (basket, fig. 491, K^{\prime}); the inner surface of the tarsus is beset with regular

Frg. 491.- a, Hind leg of a worker of Apis mellifica. K, basket on the tibia; B, enlarged tarsal joint with brush on the under side. b, brush, more strongly magnified. rows of setæ (brush, fig. $491 \mathrm{~B}, \mathrm{Z}$). The fomale (quecn) with shorter tongue, longer abdomen, witlout brush. The male (drone), with large eyes in contact, broad abdomen, and short mouth parts, without basket and brush. A. mellificica L., honey bce, distributed over Europe and Asia as far as Africa.

The workers build perpendicular combs in hollow trecs, or in other protected places; under the influence of human cultivation, in suitably arranged baskets or hives. The wax used in the construction of the comb is produced in the organism as a result of metabolism (honey being the source), and is exuded in the form of small tablets between the segments of the abdomen. The combs consist of two layers of horizontal hexagonal cells, the bases of which are formed of three rhomboidal plates. The smaller cells scrve for the reception of provisions (honey and pollen) and for the brood of workers, the larger for the rcception of honey and the drone brood. Outside, at the edge of the comb, there are at definite times a small number of large irregular qucen cells, in which the female larvæ are brought up. When the cells are filled with honey, or the larvæ contained in them have reached the stage of pupæ, they are closed up. A small opening at the bottom of the hive serves for cutry and exit ; all other clefts and fissures are closed with wax, and no light euters the interior of the nest. In no other Hymenopteran society is the division of labour so strictly carricd out as in that of the bees. There is only one fertilized quecn, and she alone lays the eggs (she may lay more than threc thousand eggs in one day). The working bees divide amongst themselves the business of collecting boncy, preparing wax, and fecding the brood, and the completion of the nest. The drones, which exist only at the swarming time, and then only in proportionately small numbers (two hundred to threc hundred in a socicty of twenty
thousand to thirty thousand workers) have the privilege of enjoying themselves and of doing no kind of work in the hive ; they arise from unfertilised eggs and are killed in the autumn (slaughter of drones). The queen and the workers live through the winter consuming the stored-up provisions, and kept warm by the heat produced by the dense population of the hive. In the first days of spring the queen deposits eggs, first in the workers' eells and later in the drone cells. Some royal eells are then constructed, and at intervals she deposits a fertilised egg in each of them. The larvæ in the royal eells reeeive a rieher nourishment and royal food, and become sexually mature females (queens), eapable of eopulating. Before the oldest of the young queens is hatehedsixteen days from the deposition of the egg is required for this, while the workers develop in twenty days, the drones in twenty-four-the queen-mother leaves the hive with a part of the inhabitants (first swarm). The young queen either kills all the other royal larre and remains in the old hive, or if she is prevented from doing this by the workers, and the population is still large enough, she also leaves the old hive with a part of the workers before the appearanee of a seeond queen (seeond swarm). Soon after her metamorphosis the young queen makes her marriage flight, and returns after impregnation to the hive. The queen is only impreguated once in the course of her life, whieh lasts four or five years; she is heneeforward able to produce male and female offspring. If the wings of the queen are paralysed and she is unable to eopulate, she lays eggs whieh only give rise to drones; the same is the ease with the fertilised queen in her old age, when the eontents of the reeeptaeu. lum seminis is exhausted. Workers also may lay eggs which develop into drones : the larvæ destined to develop into workers may; if the food supply at any early stage be abundant, beeome queens. As parasites in bee-nests may be mentioned the death's head moth, the wax moth, the larva of the bee-wolf, (Trichodes apiarius), and the bee-louse (Braula creca).

The genera Melipona Ill., Trigona Jur., eomprise small American speeies of bees; they appear, however, to be less elosely related to the genus A_{p} is than has been hitherto believed. With regard to the eeonomy of the society, one of the most striking deviations they present, is that the brood-eells are filled with honey before the deposition of the eggs and afterwards elosed, so that the justhatehed grub is provided beforehand with all the food material (Fr. Müller). The workers also prepare large reservoirs for the storage of the honey. Among the former there are forms as in Bombus, that do not build nests, but lay their eggs in the nests of other speeies.

I N DEX.

Aasfliege, 576.
Aaskäfer, 590.
Abctominatia, $4+6$.
Abiogenesis, 96.
Abraras, 583.
Abyla, 250.
Acalepha, 250.
dealyptera, 576.
Acanthia, 572.
Acanthobothrium, 327.
Acanthocephala,359,343.
Acanthometra, 191.
Acarina, 489.
Accphalocysts, 336.
Achreta, 392.
Acherontia, 584.
Achtheres, 436 .
Acidalia, 583 .
Acineta, 205.
Acmostomum, 312.
Accela, 313.
Acraspeda, 233.
Acriclium, 527,558.
Acrocladia, 295, 296.
Acronycta, 083 .
Acrophalli, 347.
Actinaria, 232.
Actinia, 230, 232.
Actinometra, 286, 289.
Actinophrys, 188.
Actin osphærium, 188.
Actinot roclia, 389.
Actinozoa, 223.
Aculcata, 595.
Aculeus, 592.
Aclambulacral plates, 291.

Aclapis, 173.
Adaptation, 145.
Adaptions of embryos and larver, 157.
Adclo-codonic gonophorc, 236.
Arlenoid connective tissuc, 38.
Admiral, 585.

Aga, 222, 460.
Egineta, 242.
Eginopsis, 236.
Aquorea, 238, 242.
Eschna, 562.
Aschna rectal, Respiration of, 72.
Agalmidæ, 249.
Agalmopsis, 247, 248,249.
Agassiz, L, 139.
Agelena, 504.
Aglia, 584.
Agrilus, 589.
Agrion, 562.
Agriotes, 589.
Agrotis, 583.
Alary muscles, 533.
Alaurina composita, 313.
Albertus Magnus, 133.
Albunea, 478.
Alcino $\ddot{c}, 266$.
Alciopa, 380.
Alciopca, 379.
Alcippe, 446.
Alcyonaria, 228, 231.
Alcyonium, 231.
Aldrovaudius, 133.
Alima, 472.
Alpheidæ, 476 .
Altcrination of generations, 123.
Alucita, 58.2.
Alula, 572.
Alydus, 572.
Ambulacral brains, 277.
Ambulacral branchix, 277.

Ambulacral feet, 273.
Ambulacial Gills. 275.
Ambulacial groove, 291.
Ambulacial ossicles, 271, 290.

Ambulacial plates, 271.
Ambulacral surface, 269 .
Ambulacral vascular
system, 272.

Ametabola, 5 ± 7.
Ammophila, 596.
Ammothea, 496.
Amœba, 186.
Amœebidium, 209.
Ampharete, 382.
Amphibia, Vascular system of, 65.
Amphibiotica, 561.
Amphidises, 218.
Amphihelia, 232.
Amphileptus, 195, 204.
Amphinomidæ. 374 .
Amphioxus, Vascular system of, 63.
Amphipeltis, to l.
Amphipoda, t51.
Amphiporls, Parasites of, 362.

Amphiporus, 342,340 .
Amphistomum, 317.
Amphitrocha, 378.
Amphiura, 278, 279, 285, 294.
Anal, vesicles of Chætifera, 388.
Avalogy, 52.
Anapcra, 575.
Anatifa, 445.
Anceus, 459.
Auchitherium, 172.
Anchorella, t36.
Ancylostomum, 352.
Andoctonus, 510 .
Andrena, 597.
Anclasma, 445.
Anguilla, $3 \overline{1} 1$.
Angritlula, $3 \overline{5} 7$.
Auilocra, 460 .
Animals and plants, 15.
Anisopoda, t59.
Annclicla, 362.
Anobium, 589.
Anochanus, 279.
Anopla, $3 \pm 2,339,3 \pm 1$.
Anoplotermes, $\vdots 60$.

Anoplura, ris.
Anterlon, 289.
Antenne, st.
Antennal Gland of Thoriveostricer, firl
Antenmularia, 242.
Anthophoriz, 598.
Anthozoa, 223, 229, 230.
Antlirax. 576 .
Antimere, 25.
Antipatharia, 2:32.
Antipathes, 232.
Antliata, 572.
Ant.lion, 56\%.
Ants, 595.
Apathenin, 177.
Apatura, 585.
Aplialaspidx, 177.
Aplaniptera, 578.
Aphides, Reproduction of, $106,128$.
Aplis, 569, 570.
Aphodius, 590.
Aphrodite, 379.
Aphrophora, 571.
Apical plate of Annelids, 363.

Apical polc of Echindermata, 268.
Apiocrinus, 289.
Apiocystites, 289.
A pion, 58.
Apis, 598.
Apoda, 299, 446 .
Apolemia, 246, 249.
Aporosa, 232.
Apseudes, 456.
Apsilus, 401.
Aptera, 567.
Apus, 419.
Arachnida, 484.
Aradus, 572.
Araneida, 498.
Arcclla, 186.
Archæoniscus, 451.
Archæopteryx, 175.
Archegosaurus, 177.
Archentcron, 116, 117.
Archiannelida, 365, 376.
Archigetcs, 339.
Arenicola, 381.
Arethusa, 249.
Argas. 495.
Argulus, 438.
Argynmis, 585.
Argyroneta, 499, 504.
Arista, 573.
Aristotlc, classification of, 132.
Aristotle's lantern, 276.
Armadillo, 457, 460 .

Arrenotokia, 513.
Artemial, 11 !
Arterial, 73.
Artery, tiz.
Arthropoda, 40\%.
Arthrostraca, $44!$.
Articulata, 28!).
Ascalaphus, 564.
Ascaltis, 222.
Ascandra, 222.
Ascaris, 347, 346, 351.
Ascctta, 222.
Ascilla. 222.
Ascomorpha, 404 .
Asconl, 222.
Ascortis, 222.
Asculmis, 222.
Ascyssa, 222.
Asellus, 460.
Asilus, 576.
Aspidochinotre, 298, 299.
Aspidiotus, 543, 569.
Asplanchna, 404.
Astacus. 477.
Astasia, 169.
Asteracanthion, 285, 293.

Astcriadæ, 293, 279.
Astcrias, 293.
Asteridca, 279, 292.
Asteroidea, 279, 290.
Asterope, 427.
Astræa, 22y, 232.
Astræidæ, 232.
Astroides, 233.
Astronyx, 294.
Astropecten. 275, 292, 293.

Astrophyton, 294.
Atax, 495.
Atenchus. 590.
Athalia, 594.
Athorybia, $248,249$.
Atolls, 230.
Atrocha, 377.
Attacus, 584.
Attagenus, 590.
Atypus, $50 t$.
Auditory organs, 85.
Aulastomum: 400.
Aurelia, 261.
Aurelio Severino, 133.
Aurictlaria, 281, 282, 283, 298.
Autolytus, 372, 379.
Aves, vascular system of, 67 .

Bacillus, 206.
Bactcria, 206 , 5.s7.
Bacr, C. E. von, 137.

Balaninus, 588.
Baianoglossus, 299, 302.
Balantidium, 2().s.
Balamus, 146 .
Bark lice, 127, 5) (1).
Barrier recfs, 230.
Bathylious, 18%.
Bathycrinus, 28!).
Bdella, 4!5.
Bear-caterpillarss, 583.
Bed-bug, 572.
Bedcguar of roses, 594.
Bec-louse, 575, 599.
Bees, 097.
Bectic-mites, 495.
Bee-wolf, 599.
Bell Animalcule, 198.
Hembex, 596.
Bcris, 577.
Beroc, 264, 266.
Bibio, $574,577$.
Bicstliegen, 57%.
Biogenesis, 96.
Bipalium, 315.
Bipinnaria, 281,283, 292, 293.

Bird spider, $50 t$.
Birgus, 478.
Bittacus, 563.
Bivium, 269.
Bladder-W orm, 332.
Blaps, 589.
Blastoidca, 289.
Blastopore, 114 .
Blastosphere, 113.
Blastostyle, 236.
Blastotrochus, 227, 232.
Blatta, 557.
Blatthornkäfer, 589.
Blattkäfer, 588.
Bläulinge, 585.
Blendwanzen, 572.
Blood-corpuscles, 32.
Bockkäfer, 588.
Body cavity, 50.
Body cavity, primary, 50, 116.
Bombardirkäfer, 540.
Bombus, 598.
Bombycina, 583 .
Bombylius, 576.
Bombrx, 581, 5st.
Bone, derclopment of, $40,42$.
Bonellia, 392.
Bonuet, 133.
Book-lice, 5.59 .
Bopyrus, 460.
Borkenkäfer. 58.
Borlasia, 340. 342, 343.
Bos taurus, origin of, $1+3$.

Bostrychus, 58 s .
Bothriocephalictr, 336 .
Bothriocephalus. 330 , $331,337,334,327$.
Botrytis, 584.
Botys, 582.
Brachinus, 590.
Brachiolaria, 281, 292, 293.

Brachionus, 404.
Brachycera, 575.
Brachyura. 478.
Bracon, 59 aั.
Brain, 80, 82.
Branchellion, 400.
Branchiæ, 69.
Branchir of Chretopods, 367.

Branchiobdella, 400.
Branchiopoda, 418 .
Branchiostegite, $\ddagger 63$.
Branchipus, 41!.
Branchiura, 436.
Braula, $575,599$.
Brisinga, 293.
Brissus, 297.
Brittle stars, 293.
Brontotheridæ, 173.
Brown tubes of Gephyrea, 388.
Buckelzirpen, 571.
Budding, 96.
Buffon, 139.
Bugs, 571, 567.
Bunodes, 225.
Buprestis, 589.
Bursx of Ophiuridea, 294.

Bursaria, 205.
Butterflies, 579.
Calandræ. 588.
Calanidx, 435.
Calappa, 478.
Calcareous sacs of Lum. bricus, 383.
Calcareous sponges, 222.
Caleispongiæ, 222.
Callidina, 404.
Caligus, 436 .
Callianassa, 477.
Calopteryx, 5 (i2.
Calotermes, 5ถั9, 561.
Calycophoride, 249.
Calycozoa, 254, 257.
Calymene, $\mathbf{4 8 1}$.
Calyptopis, 474.
Camberwell beauty, 58 .
Camel-ncek flies, ő 63.
Campanularia, 242.
Campanularix, 241.

Campodea, 5.54.
Cancer, 478 .
Cantharidæ, 588.
Cantharis, 58!).
Canthocamptus, 435.
Capillary. 63.
Capitella, 377.
Capitellidæ, 375.
Capitibranchiata, 381.
Caprclla, 454.
Capsus, 572.
Carabus, 590.
Carchesium, 205.
Carcinus, 478 .
Cardo, 523.
Carididx, 477
Carina of Cirripedia, 439 .
Carmarina, 242
Carotid arteries, 66.
Carp-lice, 438 .
Cartilage, 39.
Cartilage calcified, 40 .
Caryocrinus, 289.
Caryophyllæus, 326, 328, 334, 338.
Caryophyllia, 232.
Catenula, 312. 313.
Caterpillar. 549, 581.
Catocala, 583.
Catometopa, 478 .
Cccidomvia, 578.
Cecidomyia, reproduction of, $106,128,544$.
Cecrops, 436.
Cell, 12, 29.
Cellular tissue, 37.
Central plate, 271.
Centrolccithal, 112.
Centrotus, 571.
Cephalic branchix of chætopoda, 369.
Cephalopoda, eye of, 90 .
Cephalothorax of Arth. ropoda, 407.
Cephalotrichidæ, 343.
Cephalothrix. 343.
Cephalotrocha, 378.
Cephea, 261.
Cerambyx, 588.
Ccraospongia, 221.
Ccrapus, $453,455$.
Ceratium, 196.
Ccrearia, 129, 320.
Cercaria macrocerca, 321.

Cerccris, 596.
Cercomonas, 194.
Cerebratulus, 343 .
Ccrianthus, 225, 232.
Cestidıe, 263.
Cestoda, 326.

Cestum, 264, 265, 266.
Cetochilus, 435.
Cetonia, 590. 596.
Chætifera, 389.
Chætogaster, 386.
Chretognatha, 357.
Chætonotus, 404 .
Chæetopoda, 367.
Chætoptcrus, 382.
Chætosomidæ, 357.
Chalicodoma, $\overline{0} 98$.
Chalineæ. 220.
Charybdea, 259.
Charybdeidx, 252, 254,
Cheesc-flies, 576.
Cheese-mites, 492.
Cheimatobia, 583.
Cheiracanthus, 345 .
Cheliceræ, 484.
Chelifer, 511.
Chelura, $453,455$.
Chermes, 543, 570.
Chermes, r'cproduction. of. 127.
Chernetidx, 511.
Chiaja, 266.
Chigoe, 579.
Chilocorus, :587.
Chilodon, 205.
Chilognatha, 520.
Chilopoda, $\overline{5} 18$.
Chirodota, 299.
Chironomus, 578.
Chitin, 79.
Chlamydomonas, 194.
Chloëon, 561.
Chlorophyll, 20, 21.
Chlorops, 576 .
Chondracanthus, 436 .
Chorion, $98,5 \pm 2$.
Choroid of eyc, 88.
Chromulina, 195.
Chrondrosia, 221.
Chresaora, 261.
Chrysididæ, 596.
Chr'ysis, 596.
Chrysomcla, 288.
Chrysomitra, 246, 250.
Chrysopa, 564.
Chrysops, 577.
Chrysosoma, 576.
Clithonius, 511.
Chyle, 57, 67.
Chylific ventricle, 530.
Chyme,.$\overline{0} 7$.
Cicada, 567, 571.
Cicadcllidæ, 571.
Cicadide, 571.
Cidaridea, 273. 27t, 295, 296.

Ciclaris, 296.

Ciliary body, 90.
Ciliata, I!
Cilioflagellata, 196.
Cimbex, 59\%.
Cincindela, 590.
Cincras, +45.
Cirri of Clietopoods, 367.
Cirri of Vermes, 307.
Cirripedin, 438.
Cirrus, sac of Trematodes. 318.
Cirrus, sheath of Cestoda, 329.

Cinves of Trematodes, 318.

Cistela, 589.
Citigradæ, 504.
Citronvogel, 585.
Cladocera, 419 .
Claspers of Tanäidæ, 459
Clathrulina, 188.
Clava. 241.
Clavidx, 241.
Claviger, 590.
Clavulæ, 272.
Clavulæ of Echinoidea, 296.

Claw, 34 .
Clepsidrina, 208.
Clepsine, $4(10$.
Cleius, J 89.
Climate, influence of, 148.

Climate in relation to fauna, 160.
Clisiocampa, 584.
Clitellus of Lumbricus, $323,385$.
Clothes moth, 582.
Clubiona, 504 .
Clypeaster, 297.
Clypenstridæ, 295, 296.
Clypeastridea, 268, 273 . 296.

Clytbia, $2+2$.
Clytlira, 58.
Cnethocampa, 584.
Cuidaria, 222.
Cnidoblast, 212, 223.
Cnidocil, 223.
Coceide, 567, 568.
Coccidia, 209.
Coccinella, 587.
Coccus, $\boldsymbol{\text { a }} 9$.
Coceygeal glands, 77.
Cochincal, 569.
Cockehafer, 590.
Cockroach, 557.
Corlesiga, 196.
Colenterata, 209.
Cœelom, 50.

Crenenchym, 227.
Comolsita, 178.
Coenurus, 33 !, 3:33,
Colid-blonded. 74.
Coleoptera, 585.
Colias, 585.
Collembola, 5\%3.
Collosphara, 191.
Collozoum, 191.
Colpodella, 194.
Colpoda, 205.
Columella of Actinozoa, 228.

Colymbetes, 590 .
Comatula, 276, 286, 288, 289.

Complemental males of Cirripectia, 442 .
Compsognathus, 177.
Conchoderma, 445 .
Conjugation, 202.
Connective tissues, 37 .
Conochilus, 404.
Conops. 576 .
Contractile Vacuole, 180.
Convoluta, 311, 314. 313.
Convolutidæ, 313 .
Copepoda, 428.
Copris, 590.
Coral, mushroom, 232.
Coral organ, 231.
Coral Polyps, 223.
Coral, reci, 231.
Coral reels, 230.
Coral, star, 232.
Coral, white, 232.
Corallium, 231.
Cordylophora, 241.
Corethra, 57 S .
Coreus, 572.
Corixa, 572.
Cornea, 87.
Cornularia, 231.
Cornuspira, 187.
Coronula, 446 .
Corophium, 454.
Correlation, jl .
Corrodentia. 559.).
Coryereus, 436.
Corydalis, 563.
Corymorpha, 240,241 .
Cossus, 584.
Costa, 528.
Costa of Actinozoa, 228.
Coxa, 526.
Crabro, 5! 7.
Crab-spiders, 504.
Crambus. 582.
Crangon, 477.
Craspedota, 238.
Craspedota. 25s.

Craterolophus. 258.
('rayfish, 177.
(revettina, fít.
Cribrellum, 499.
Crickets. 5 \% 8.
Crinoidea, 279. 286.
Crinoids, 28!).
Crioulrilus, 38\%.
Crocodilia, heart of, $1 ; 7$.
Crop, 57, 530.
Crustacea. 411.
Cryptocephalus, öss.
Cryptoniscus, trio.
Cryptopentamera, 588.
Cryptophialus, $4+6$.
Crystalline cone, 87 .
Cteniza, 504.
Ctenodiscus, 275, 293.
Ctenophora. 261, 578.
Ctenophor type, 211.
Cubitus, 528.
Cuckoo-spittle, 571.
Cueullanus, $348,353$.
Cucullia, 583.
Cucumaria. 299.
Culex, 578.
Culicidæ, 574.
Culiciformes. 578.
Cumacea, 469.
Cunina, 239. 242.
Curculionidæ, 585.
Cursoria, 5 ธ̄6.
Cutaneous gland, 77.
Cuticle, 35.
Cuvicr, 135.
Cuvieria, 297.
Cuvier, organs of, in Holothuroidea, 298.
Cyamus, 454.
Cyanca, 261.
Oyathophyllidæ, 230.
Cyclometopa, 478.
Cyclops: 435.
Cydippe, 265. 266.
Cylicomastiges, 19.
Cylicozon, 2.7.
Cymothon. thio.
Cynipidæ. 594.
Cymips, 594.
Cyphophthalmus, 506.
Cypridina. $42 \overline{7}$.
Cypris, 12 s .
Cypris-stage of Cirripedia. t43.
Cyrtopia, 174.
Cysticercus. 33:. 335.
Cystic-worm. 332.
Cystidea. 2st!.
Cystosonia, 4.3.
Cystot:eni:l. 335.
Cytheres 427.

Dactylocalyx, 221.
Dactylozooids, 246 .
Daphnia, 422 .
Darwill, 145.
Dasychita, 583.
Dasypoda, 597.
Death-head moth, 584 .
Death-watch, 589.
Decapoda, 475.
Deep sca Fauna, 163.
Dc Geer, 133.
Degradation. 158.
Delamination, 114 .
Demodex, 492.
Dendrochirota, 299.
Dendrocoela, $311,314$.
Dendrocceltm, 315 .
Dendiometricla, 583.
Dendrophyllia, 233.
Dentine, 41.
Dermal branchice, 277.
Dermanyssus, 495.
Dermatobia, 576.
Dermatodectes, 492.
Dermatophili, 492
Dermatoptera, ฮัว 6
Dermestes, 590
Derostomea, 312.
Derostomum, 313.
Descent, evidence in f_{x} vour of theory of, 151.
Desmoscolecidæ, 357.
Desor, 'Type of, 341
Deutoplasm, 111.
Development, 107.
Diaptomus. 435.
Diastylis, 470 .
Diffugia, 186.
Digenous reproduction, 97.

Digging-wasps, 596.
Digonopora, 316.
Diloba, 583.
Dimorphism, facts of, in farour of theory of descent 152 , sexual 101, 153.
Dinoccras, 173.
Dinosauridre. 175.
Díecious, 100.
Diopatia, 37t, 379 .
Diphyes, 246,250 .
Diplophysa, 250.
Diplozoon, 324.
Dipneumones, 50.4.
Diporpa, 325.
Diptera, 572.
Direct devclopment, 120.
Directive hody, 109.
Discoidal segmentation, 112.

Discoidere, 250.
Discomedusa, 260, 261 .
Discophora (Colenterate), 25.9, 394.
Discophora, see Hirudinea.
Dissepimenta of Actinozoa, 228.
Dissepiments of Annelida, 364.
Distomea, 318, 321.
Distumum, 317, 322.
Distomum cygnoides, 321.

Distomum hrmatobium, 321.

Dochmius, $350,352$.
Dolichopus, 576 .
Dolomedes, 502, 504 .
Doritis, 585.
Dorsibranchiata, 370,379
Dorylaimus, 357.
Dracunculus, 356
Dragon-fly, 562.
Dromia, 478.
Drone, 598.
Ductus Botalli, 66,
Dung-4ies, 576.
Duodenum, 57.
Dynamena, 242.
Dysdera, 499.
Dytiscus, 590.
Earwigs. 556.
Ecdysis of Arthropoda, 407.

Echinaster, 273, 293.
Echineibothrium, 338, 326.

Echiniscus, 497.
Eclinococcifer. 335 .
Echinococcus, 336, 331, 333.

Echinocucumis, 297.
Echinocyamus, 297.
Echinodcridæ, 404.
Echinodermata, 266.
Echinoidca, 294.
Echinometra, 295, 296.
Echinorhynchus, 362 .
Echinus, 296.
Echiuroidea, 389.
Echiurus, 387, 392.
Eeiton: 596.
Ectoderm, 213, 49, 116.
lictolecithal, 112.
Ectolithia, 189.
Ectoplasm, 54.
Tisvogel, 585.
Elastic fibres, 39.
Flater, 58!

Eleuthcroblastex, 240 .
Ellipsocephalus, 484.
Elytron, 369,528.
Embolic invagination, 114.

Embryology in relation to descent theory, 157.
Embryonicdevelopment, 119.

Empidæ, 576.
Enchelidium, 357.
Enchytræus, 384.
Encrinus, 289.
Endoderm, 116. 49, 213.
Endogenous cell formation, 30, 31.
Endomychidai, 588.
Endoplasm, 54 .
End-organs, 47 .
Endoskeleton, 79
Endothelium, 34.
Enopla, 339, 342.
Enoplus, 357.
Enteroccele, 116.
Enteroplca, 404.
Enteropneusta, 299.
Entoconcha, 299.
Entolithia, 189.
Entomophaga, 594.
Entomostraca, 416.
Entouiscus, 459, 460.
Entozoa, 308.
Epeira, 505.
Ephemera, 531, 562.
Ephemeridæ, 561.
Ephialtes, 595.
Ephippigera, 5 5.8.
Ephryopsis, 261.
Ephyra, 125, 253, 251.
Ephyra-Mcdusz, 259.
Epiblast, 114.
Epibole, 11 õ.
Epinierum, 525.
Epipharynx, 524.
Episternum. 525.
Epistom of Decapoda. 476.

Epistylis, 20у.
Epithelium, 34.
Equitidx, 585.
Equus,phylogens of, 172.
Erebia. 585.
Erichthus, 472.
Eristalis, 576.
Errantia, 378.
Erythreus, 495.
Eschscholtzia, 266.
Esthcria, 419.
Eucephala, 577.
Eucharis, $26 i 6$.
Euchlanis, 404

Sucope, $2+2$.
Encopeporla, 1335.
lucopicla, 231, 224, 242.
Encyrtidium, 190.
Emicudrium, 241.
Endoxia, 250.
Luglena, 191.
Euglypha, 186.
Euisopoda, 160.
Eunice, 379.
Euphausia, 475.
Euphausia, eyes of, 409 .
Empleetella, 221.
Euprepia, 583.
Eurhamphra, 266.
Euryalicłe, 273, 275, 294.
Eurylepta, 316.
Eurypterus, 480.
Eusmilia, 932.
Euspongia, 221.
Eustrongylus, 352.
Eutermes, 559.
Eutyphis, 456.
Eradne, 422.
Evania, 595.
Exoskeleton, 78.
Eyes, 85.
Fabrieia, 372.
Faeetted eye, 88.
Faltenmuicke, 578.
Fan of Arthropoda, 409.
Fan-traeheæ. 70, 410.
Faseiola, 316.
Fascioles 272, 296.
Fat, 39.
Fauna of deep sea, 163.
Fauna, relation of to recent fossil forms, 170.
Feathers, Sea. 231.
Federgeistehen, 582.
Femur, 526.
Fertilisation of ovum, 109.

Fettsehabe, 582.
Feuerwanze, 572.
Fibrillar tissue, 38.
Field erieket, 558.
Figites, 594.
Filaria, $3 \pm 7,3 \pm 9,352,356$. host of, 356 .
Filariidæ, 35\%.
Filigrana, 38:.
Final eauses. doetrine of. 51.
Fir-trce liee, 570.
Fission, 96.
Flabellım, 232.
Flagellata, 193.
Flata, 571.
Flea, 579.

Hleischtticere, o76.
Flics, 575.
14loscularia 404.
Floscularide, tot.
Founs, 595.
Foramen l'anizzac, 67.
Foraminifera, 184.
Fore-gut, \boldsymbol{j} f.
Forficula, 556.
Formiea, 596.
Formieidæ, 595.
Forskalia, 249.
Fossils, Conditions of formation of, 168 ; Relation of, to living species, 170 .
Fossoria, 596.
Free eell formation, 30.
Fringing reefs, 230.
Fritillary, 585.
Frost-butterflies, 583.
Fulgora, 571.
Fumea, 584.
Fungia, 232.
Fungicolæ, 578 .
Fungidx 232.
Fureilia, 474.
Gabelsehwanz, 584.
Gadflies, 576.
Galathea, 477.
Galaxea, 232.
Galea, 523.
Galeodes, 512.
Galleria, 582.
Gall flies, 578.
Gall-flies, Reproduetion of. 128.
Gallieola, 594.
Gallicolæ, 578.
Galls, 594.
Gall-wasps, 594.
Gamasus, 495.
Gammarus, 455.
Ganglion cells, 45.
Gastræa theory, 118 .
Gastropaeha, 584.
Gastrophilus, 576 .
Gastrotricha, 404.
Gastsotroeha, 378.
Gastrovaseular spaec of Colenterala, 209.
Gastro-vaseular system, 60.

Gastrmla, 49, 114, 118.
Gastrins, 576.
Gebia, 477.
Geeareinns, 469, 479.
Gelasimns, 479 .
Gelatinons sponges, 221.
Gemmules, 218.

Genera, Origin of, 149.
Gencratio equivoca, 10.
Geocentrophorn, 313.
Geocores $\overline{1} 72$.
Geodesmus, 31i.
Geogiaphical distribution, 15\%.
Geological jeriods, Characteristics of 177.
Geological record. 1 m perfection of, 168.
Geological table, 16).
Geometra, 583.
Geumetridæ, 580.
Geometrina, 582.
Geophilus, 519.
Geopiana, 316 .
Geoplauidx, 31\%.
Geotrupes, 590.
Gephyrea, 386.
Germ-eell, 105.
Germinal bands, 547.
Germinal dise, 112.
Germinal streak, 115.
Germinal vesiele, 110.
Germs of Trematodes, 319.

Germ-stoek, 96 .
Geryouia, 239, 242.
Geryonopsiclæ, 242.
Gessuer 133.
Giboeellum, 506.
Gigantostraea, 479.
Gills 69. Traeheal, 70.
Glabellum, 484.
Gland, 36.
Glands, eutaneous, 77 .
Glassy sponges, 221.
Glaueoma, 205.
Gleba, 250.
Globigerina, 187.
Glomeris, 516.521.
Glomerulus, 77.
Glossa, 524.
Glow-worm, 589.
Glycera, 377, 379.
Glyeiphagus, 493.
crlyptodon. 170.
Gnat, 578.
Gnathobdellidæ, ± 00.
Gnathostoma, 345.
Gnathostomata, 43\%).
Goethe, 137.
Goldfliege, isf(
Gold-wasps, 596.
Gouium, 19\%.
Gonuphore, 2:37.
Gonopliores of Sipliono-
phora, 2 ± 6.
Gonospora, 20 s .
Gonyleptus, 506.

Gordiidse, 356 .
Gordius, $346,345,348$, 357.

Gorgonia, 231.
Gorgonidas, 224.
Grain-worms, 582.
Grantia, 217, 222.
Grapholitha, 582.
Grapsus, 479.
Grasshoppers, 557.
Gregarinidæ, 207.
Gressoria, 5 ธ̃.
Gromia, 187.
Gryllotalpa, 527, 558.
Gryllus, 558.
Gymnocopa, 380.
Gymnophthalmata, 238.
Gyuæcophorus, 322.
Gyrator, 314.
Gyrodactylus, 325.
Gyropeltis, 438.
Hæmatopota, 577.
Hæmatozoa, 356.
Hæmentaria, 400 .
Hæmoglobin, 33.
Hæmopsis, 400.
Hairstreak butterflies, 585.

Halichondriæ, 221.
Halicryptus, 394.
Halisarca, 221.
Halistemma, 249.
Halla, 379.
Halocypris, 427.
Halomitra, 232.
Halosauridæ, 17 万.
Halteres, 528, 572.
Halteria, 20ŋ̀.
Haltica, 588.
Hamm, 133
Harlequin, 583.
Harpacticus, 435
Harpalus, 590.
Harpyia, $58 t$.
Harvey, 133.
Haustellum, 573.
Havcrsian canals, 41.
Hawk-moths, õ 4 .
Heart of vertebrata,
Evolution of, 6 t.
Heat, animal, 73.
Heliaster, 293.
Heliosphæra, 190.
Hcliozoa, 187.
Hemerobidæ, 5 ft.
Hemerobius, 564.
Hemiaspis, 480
Hemiastcr, 279.
Hemielytra, 571.
Hemiptcra, 566: 571.

Henops. 576
Hcpato-pancreas, 59.
Hepiolus, $\check{8}$ t.
Herbert on fertility of Hybrids, 142.
Hercdity, 145.
Hermaphroditism 99, incompletc, 100.
Hermella, 382.
Hermit Crabs, ± 78.
Hesperia, 58 ธ̃.
Hesperornis, 176 .
Hessian fly, 578.
Heterodera, 357.
Heterogamia, 5 5̃5, 557.
Heterogamy, 127, 130, 131, 543.
Heterogamy, incomplete, 131.
Heterogyna, 596 .
Heteromera, 588.
Heteronereis, 373, 379.
Heterotricha, 205.
Heuschrecken, 5 57.
Hexactinellidæ, 220.
Hexactinia, 231.
Hexapoda, 521.
Hibernation, 74 .
Hilaire, E. G. St., 137.
, \quad on mutability of species, 144 .
Hindgut, 56 .
Hippa, 478 .
Hipparchia, 585.
Hipparion, 172.
Hippidæ, 477.
Hippobosca, 575.
Hippodidæ, 249.
Hirudinea, 394.
Hirudo, 400.
Hispa, 588.
Hister, 590.
Histolysis, 550.
History of Zoology, 131.
Holoblastic, 111.
Holopus, 289.
Holothuria, 299.
Holothurians, 279.
Holothuroidea, 297.
Holotricha, 204.
Holzflicgen, 577.
Homarus, 477.
Homology, 52.
Homoptera, 570 .
Homothermic, 74.
HoncJ-dcw, 569.
Hoof, 34 .
Hormiphora, 266.
Hormiscium, 206.
Hornets, 597.
Horny sponges, 221.

Horse-louse, 575.
House-fly, 576 .
Humble bce, 598.
Hummolfliegen, 576.
Humming-bird Hawkmoth, $58 t$.
Hyalonema, 222.
Hyalospongia, 221.
Hybrid 142, Fertility of, 142.

Hydatid plague, 336 .
Hydatina, 104
Hydra, 240.
Hydrachna, 495.
Hydractinia, 241.
Hydranth, $24 t$.
Hydrobius, 590.
Hydrocoralliæ, 240.
Hydrocores, 571.
Hydromedusæ, 236,
Hydrometra, 572.
Hydrophilus, 590.
Hydrophilus, develop ment of, 545.
Hydrophyllia, 246.
Hydropsyche, 565.
Hydrosoma, 24 .
Hydrotheca, 241, 234.
Hydrozoa, 233.
Hylobius, 588.
Hymenocaris, 448 .
Hymenoptera, 590.
Hyperia, 455.
Hyperidæ, 45 .
Hyperina, 455.
Hypermetamorphosis, 548, 588.
Hypoblast, 114 .
Hypoderma. 576.
Hypodermis Arthropoda, 407.

Hypodermis of Vermes, 303.

Hypodermis or Nematoda, 345.
Hypopharynx, 524.
Hypopus, 493 .
Hypotricha, 205.
Hystrix, 379.
Ibla, 445 .
Ichneumon, 595
Ichthydina, 104.
Ichthy obdcllidæ, 399.
Ichthyornithes, 175.
ldotea, 460 .
Idyopsis, 266.
1lia, 478.
Ileum, 57.
lmaginal disc, $ั$ ก̃0.
Imago, 548 .

Imperfonati, 187.
Inachus, 475.
Inarquitele, 501.
Individual, 2.4, 25.
Infutlibulum of Ctenophom, 2li3.
Infusoria. 191.
Insecta. 521.
Instinet, it.
Iphimedia. 4.53.
lrenters, 435.
Iris, $8 s$
Irregular Sea-urchins, 268.

Isidor of seville, 133
Isis, 231
Isogonism, 240.
Isopoda, 45 ti.
lsopods, Parasites of, 362.

Itch-mites, 492.
Txodes, 493.
Japyx, 528, 554.
Jassus, 571.
Jejunum: 57.
Jera, +60 .
Julus, 521.
Kammmiicke, 578.
Kermes, 569.
Kidneys, 75.
Kleinzirpen, 571.
Kochlorine, $4+6$.
Kohlschnaken, 578.
Kolumbaczer, 577.
Korumotte, 582.
Kupferglucke, 584.
Kurzdeckfliigler, 590.
Labidura, 556.
Labium, 523.
Labrum. 523.
Lac, 569.
Lachnus, 570.
Lacinia, 523.
Lacon, 589.
Lady-bird, ES7.
Lemodipoda, 454.
Lagena, 187.
Lamark, 144.
Lamellicornia, 589.
Lamia, 527, ns8.
Lampyris, 536, 589
Land-bugs, 572.
Land (l'abs. 479 .
Lang wanzen, 572.
Lantern-cirrier, 571
Lameden, 2.42.
Laphria, i.76.
Larentia, 583.

Larva, 11!
Larva of tovén, 362.
Lasia, 576.
Lateral lines of Nematorla, 34ti.
Laterigratie, 504.
Laurer's canal, 318.
Leaf-flea, 770 .
Leaf-lice, 570 .
Leaf-wasps, 594.
Lec:aniun, 543, 569.
Ledermiiller, 133.
Ledra, 571.
Leech, 394.
Leeuwenhoek, 133.
Lemnisci of Acanthocephala, $31 ; 0$.
Lens, 87 .
Lepadidæ, $4+5$.
Lepas. $44 \overline{5}$.
Lepidoeentrus, 295.
Lepidoptera, 579.
Lepisma, 5 ั 4.
Leptidre, 577.
Leptodera, 350, 357.
Leptodiscus, 198.
Leptodora, 422.
Leptoplana, 311, 316.
Leptostraca, 448 .
Leptus. 495
Lernæa, 436.
Lernrocera, 436.
Lernzodiscus, 477 .
Lernæopodidæ, 436.
Lestornis. 177.
Lestrigonus. 455.
Leucaltis, 222.
Leucandra, 222.
Leucetta, 222.
Leuchtzirper, 571.
Leucifer, 471,476 .
Leucilla, 222.
Leueochloridium, 321.
Leueon, 770 .
Leuconia, 222 .
Leueonidæ, 217.
Leucons. 222.
Leueortis. 222.
Leucosolemia, 217, 222.
Leuculmis. 222.
Leucyssa, 222.
Levantine sponges, 221
Libellula, 541, 562.
Libellula, Devclopment of, 545 .
Libellula. Rectal respiration of, 72 .
Lice. 568.
Lice-flies, oin.
Ligia, 459, $4(\mathrm{ju}$.
Ligula, 338.

Ligulidat. 328.
Limenitis, 58.5.
Limexylon, 584
Limicole, 38.5
dimnobates, 5i\%.
Limnobiide, 57%.
Limnochares, 495.
Limnodrilus. 385.
Limnoria, 4is, 460.
Limulus, $48: 3$.
Lina, 588.
Linckia, 292, 293.
Lineus. 343.
Linguatulida, 487.
Linnæus. 134.
Liotheum. 5iss.
Liparis, ǫ 83.
Liriope, $2+2$.
Lithistidec. 220.
Litholius, 520.
Lithodes, 478 .
Lithotrya, 44.
Liver, 59.
Liver Fluke, 317, 322.
Livia. 570.
Lobophora, 255, 297.
Lobosa. 185.
Lobster, 477 .
Locusta, 5 ă .
Longhorns, 577.
Longicornia, 588.
Loopers, 582.
Lophogaster. 475.
Lophoseris, 232.
Loricata, 477.
Loven's larra, 308, 362.
Lucanus, 589.
Lucernaria, 2.58.
Luidia, 275, 293.
Lumbrieulus, 385.
Lumbricus, 38 .
Lungs, 69.
Lungs. Effeet of appearanee of, on rascular system, 65.
Lycrnidx. 585.
Lycaretus, 374.
Lycoride. 379.
Lyeosa, 504.
Lyda, 594.
Lyell, 14 .
Lyell's doctrine of gradual changes, 166.
Lygrus. 572.
Lymnæus. Pulmonary cavity of. 72.
Lymph. 67.
Lymphatic srstem, 67.
Lysianassa, tis1. 455.
Lissidice. 379.
Lystra, 571.

Lytta, 589.
Machilis, int.
Macrobiotus, 497.
Macroglossa, 584.
Macrostomum, 312.
Macrura, 477.
Macula acustica, 85.
Madrepora, 233.
Madreporaria, 22S, 232.
Madrepores, 229.
Madreporic platc, 273.
Madreporidæ, 233.
Mæandrina, 232.
Mæandrinidæ, 229.
Maggot, 549.
Magpiemoth, 583.
Maja, 478.
Malachius, 589.
Malacobdella, 342, 343.
Malacodermata, 589.
Malacostraca, $4+7$.
Mallophaga, 568.
Malpighi, 133.
Malpighian body, 76 .
Malpighian tubes, Arthropoda, 409.
Malpighian tubules, 75.
Mammalia, Vascular system of, 67.
Man, First traces of, 178
Mandibles of Crustacea, 412.

Manna, 569.
Mantis, 527, 557.
Mantispa, 564.
Manubrium, 211.
Marginal bodies, 234, 239, 254.
Marinc Fauna, 162.
Marrow, 41.
Marsupialida, 258.
Marsupialis, 252.
Mask, 562.
Masticatory organs, in6.
Maxilla of Crustacea, 413.

May Flies, 561.
Meal-worm, is89.
Mcckelia, 343.
Mcdusa aurita, 261.
Medusæ, 236.
Medusit, Relation of to Polyp, 236.
Mcalusa type, 211
Medusites circularis, 2 2th.
Mcdusoids, 211.
Megachile, 598.
Megalonyx, 170.
Megalotrocha, 401.
Mcgatherium, 170, 173.

Melicerta, 404.
Melipona, 599.
Mclitren, 585.
Melithæa, 231.
Mcloe, 589
Mclolontha, 590.
Melophagus, 57 б.
Mcmbracis, 571.
Membranacei, 572.
Membranous labyrinth, 85.

Menopon, 568.
Mentum, 524.
Mermis, $345,356$.
Mermithidæ, 356.
Mcroblastic, 111.
Mcromyaria, 345.
Merostomata, 479.
Mcsenteric filaments, 224.

Mesoderm, 116. 213.
Mesostomea, 313.
Mesostomum, 313.
Mesothorax, 525.
Mesotrocha, 378.
Metabolism, 10.
Mctachreta, 378.
Metagenesis, 123, 130, 131.

Metamere, 27, 30 ๖.
Metamorphosis, 126.
Metamorphosis retrogressive, 158.
Metanauplius, 432.
Metathorax, 525.
Metazoa, 54 .
Metæcus, 589.
Miastor, 578.
Minstor, Pædogencsis of. 544.

Micrococcus, 206.
Microgaster, 595.
Microlepidoptera, 582.
Micrommata, 504.
Microstomea, 312.
Microstomidæ, 309.
Microstomum, 314.
Microtænia, 336.
Micrura, 343.
Midgut. 56.
Migration, 74.
Miliola, 187.
Millepora, 241.
Milleporidæ, 233.
Milnesium, 497.
Mimicry, 155.
Miris, 572.
Mites, 489.
Mole cricket, 558.
Molpadia, 299.
Monadinæ, 193.

Monads, 194.
Monas, 194, 296.
Monera, 182.
Mongrels, Sterility of, 143.

Monocaulus, 240 .
Monocelis, 311, 313.
Monocystidea, 208.
Monocystis, 208.
Monogenous reproduction, 97.
Monogonopora, 315.
Monophyes, 250.
Monostomum, 317. 321.
Monothalamia, 186.
Morphology, 52.
Morphology, Evidence of, for descent theory 151.

Mososaurus, 175.
Mucous connective tissue, 37.
Miillerian duct, 101.
Mundhorn-fliege, 576.
Musca, 576.
Muscardine, 584.
Muscaria, 575.
Musciformes, 577.
Muscle-cpithelium. 43.
Muscular tissue, 43 .
Mushroom coral, $2: 32$.
Mutilla, 596.
Mycetophila, 578.
Mygale, 504.
Mygalidæ, 499, 504.
Mylodon, 173.
Myoblast, 43.
Myriapoda, 514.
Myrmecia, 50 .
Myrmecophila, 196.
Myrmedonia, 590.
Myrmeleon, 564.
Myrmica, 596.
Mysis, 474.
Mysis, Auditory organ of, 414.
Mystacides, 565.
Myxospongia, 221.
Myxospongiex, 220.
Myzostoma, 380.
Nadina, 313.
Naideæ, 385.
Nail, 34.
Nais, 386.
Natural sclection, 145.
Natural system, 150.
Naucoris, 527, 572.
Nauplius, $406,415$.
Nausithoë, 260, 261.
Nausithoë, Eyc of, 25\%).

Nantilns, Hye of, 90.
Nebalir, \$18.
Neerophorms, 5 (9).
Nectocalyces, 2.46,
Nemathelminthes, 34:3.
Nematoealyces, 2.42.
Nematocysts, 212.
Nematus, $543,594$.
Nemertes, $3+2,: 343$.
Nemertini, 339.
Nemocera, 577.
Nemoptera, 564.
Nemura, 561.
Nep:i, 527, 534, 57\%.
Nephelis, 400.
Nephridia, 308.
Nephrops, 477.
Nereilepas, 379.
Nereis, 379.
Nerve fibre, 46 .
Nerve tissue, 45..
Nervous system, Giadations of, 80 .
Nervures, 528.
Nenromuscular cells, S0.
Neuropodia of Ammelids, 36%.
Neuroptera, 562.
Niplatgus. 455.
Noctiluca, 196.
Noctuiformes, 578.
Noctuina 583.
Nomada, 597.
Nonionina, 184.
Notodelplys, 435.
Notodonta, $58 t$.
Notodromis, 428.
Notommata, 401, 404.
Notonecta, 572.
Notopoda. 478.
Notopodia of Ammelids, 3(i.).
Notum, 52\%
Nuelear fluid, 29.
Nuclearia, 194.
Nuclear plate, 30.
Nuclear sulbstance, $2 ?$.
Nucleolus, 29.
Nueleus, 12, 13, 29.
Nucleus, Division of, 30 .
Nummulina. 187.
Nutritive polyp, 236.
Nut-weevil, 588.
Nycteribia, 575
Nymphaliade, is8.
Nymphula, 582.
Obelia, 242
Obisimm, 511.
Oceanide, 234.
Ocellata, 23!), 211.

Ochatacea, 19\%.
Oct:letinia, 2:30, 2:31.
Octobothrium, 32 \&.
Octorchis, $2+2$.
Ocular plates, 278.
Oculina, 232.
Oculinidae, 229.
Ocyporla, 478.
Oclontolcere, 176.
Odontornithes, 175
Odontosyllis, 379.
Odymerus, 597.
(Ecodoma, 5 ! 6 .
(Edemera, 588.
(Edipoda, 558.
Cirstedtia, 340.
OEsophagus of Anthozoa, 60.

Estridxe, 542, 576.
Estropsidæ, 564.
Oken, 137.
Olenus, 484.
Olfactory organs, 91.
Oligochæta, 382.
Olynthus, 217.
Omalium, 590.
Onchocotyle, 324.
Oniscus, 460.
Ontophilus, 590.
Onychophora, 512.
Oostegites of Arthrostraca, 451.
Opalinæ, 204.
Operculata, 446.
Ophiactis, 292.
Ophidiaster, 273, 293.
Ophioderma, 294.
Oplioglypla, 294.
Ophiolepis, 294.
Ophion, 595.
Ophiothrix, 294.
Ophiura, 294.
Ophiuridxe, 273, 275. 279.
Ophiuridea, 291, 293.
Ophiusidx, :583.
Opisthomum, 313.
Oral pole of Eehinodermati, 268.
Orbitelie, 50\%.
Orbulina, 187.
Orchestia, 45.5.
Ordensbäıder; 583.
Orgall, 25.
Organ coral, 231.
Oribates, 49.5.
Orohippus, 172.
Orthopter:\%, 5! t.
Orthosia, 583.
Oryctes, $5!10$.
Orygia, 1833.
Osculum. 210.

Ommia, 598.
Osinylus, 5xit.
Osteoblasts, $!2$.
Ostracoda, 423.
Otioni, 445.
Otolith, 85, 23! .
Otolith plate of Ctenophora, $26!$
Ov:u'y, 97.
Ovipositors, 529.
Ovuin, 33, !7.
Ovum, fertilization of 109.

Oxycephalus, 456.
Oxyihynela, 478.
Oxystomata, 478.
Oxytrieha, 20.5.
Oxyuris, $344,348,351$.
Pædogenesis, 128
Pagurus, 478 .
Painted Lady, 585.
Palæaster, 292.
Palæmon, 220, 477.
Palæoearabns, 469.
Palæoerangon, 469.
Palæontology, Evidence in farour of descent theory, 163
Paleæ of Annelids, 368
Palingenia, 562.
Palinurus, 477.
Pali of Actinozon, 228
Pallas on domestic hybrids, 143
Palp, 413, 523.
Palpares, 564.
Palpicornia, 590 .
Palps of Chætopoda, 369.
Pandora, 266.
Panorpidæ, 56:3.
Papilio, 585.
Paraglossa, 224.
Parameccimm, 20\%.
Paramerc, 27.
l'arautuclens. 201.
Parapodia, 30.5, 36\%.
Parasita, 435.
Parasitica. ió
Parthenogenesis, $10 \overline{3}$: 110, $5+3$.
Parthenogenesis of Plyylopuda, 418.
Paste-wom
Pauropus, $\check{2} 21$.
Peacock butterfly, i85.
Pectinaria, 382.
Pedal ganglion, 82.
Pedata, 29!.
Pedicellarite, 271.
Pediculns, $.68, ~ 58!$.

Pedipalpi, 506.
Pedipalpus, 48.1.
Pedunculata, 44 .
Pelacria, 236, 260, 261
Pclodera, 357.
Pelodytes, 346,350 .
Peltoearis, 448 .
Peltogaster, 447,460
Pelzfresser, 565.
Pelzkïfer', 590.
Pelzmotte, 582.
Pemphigus, 570.
Pènæus, 477.
Penella, 436.
Pennatula, 231.
Pennatulidæ, 2:31.
Pentacrinus, 289.
Pentacta, 274.
Pentamera, 589.
Pentastomidæ, 408.
Pentastomum, 488.
Pentatoma, 572.
Pentatrematites, 289.
Perforata, 181, 232.
Periehondrium, 39
Peridinium, 196.
Periosteum, 41.
Peripatus, 514.
Periplaneta, 557.
Perischæehinidæ, 295.
Peritrieha, 205.
Perla, 561.
Perlidre, 561.
Petalopus, 180.
Phalangiida, 50 .
Phancrocarpre, 255.
Phanero-eodonic gonophore, 236.
Phascolosoma, 39 t.
Phasma, 557.
Philodiua, $40 t$.
Philoptcrus, 568.
Pholeus, 50 .
Phora, 576.
Phoronis, 389.
Phosphorescent orgius of inscet, 536 .
Phoxichilidium, 496.
Phreoryctes, 385.
Phrouima, 455.
Phrosina, 455.
Phryganca, 565.
Phryganida, 564.
Phrynus, 507.
Phthirius, 568.
Phyllacanthus, 296.
Phyllium, 557.
Phyllophorus, 278.
Phyllopodic, 416.
Phyllosomata, 471.
Phylloxera, 570.

Phylloxera, Reproduetion of, 128.
Phylogeny, 122. •
Physalia, 24t, 249.
Physematium, 194.
Physometridæ. 583.
Physophora. 248, 249.
Physophoridre, 244, 248.
Physopoda, 5in9.
Phytophaga, 594.
Phytophthires, 568.
Pieris, 585.
Pigment of eye, 86,88 .
Pilidium, 3tl.
Pilzfliegen, 576.
Pilzkäfer, 588.
Pilzmücken, 578.
Pimpla, 595.
Pinnotheres, 478 .
Pinnulæ, 270, 288.
Piophila, 576.
Pirates, 572.
Pisa, 478.
Pisces, vascular system of, $6 t$.
Piscicola, 399.
Planaria, 315.
Plane, median, 27 ; Sagittal, 27 ; transverse, 27.

Planipennia, 563.
Plant-lice, 569.
Plants and animals, 15
Planula, 117. 124, 255.
Plasmodium, 30.
Platygaster, 594.
Platygaster, larvæ of,549.
Platyhelminthes, 309.
Platypezidæ, 576 .
Platyseelus, 456.
Pleopods of Isopoda, 457 .
Pleuron, 483, 525.
Pliny, system of, 132.
Ploteres, 572.
Plume-moths, 582.
Plumularia, 237, 242.
Plusiadæ, 583.
Pluteus, 281, 282, 292, $294,296$.
Pneumatocyst, 244.
Pneunatophore, 24.
Pheumora, 555.
Podocerus, 455.
Podocoryne, 2:37, 241.
Podophorit, 296.
Podophrya, 205.
Podura, 554.
Poikilothermic, 74.
Poison glands, 532.
Polius areas of Cteno. phora, 264.

Polar body, 10t.
lolian vesicles, 272.
Polistes, 566,597.
Pollieipes, 445.
Polyactinia, 225,
Polybostrichus, 372,379.
Polycelis, 311, 315.
Polychæta, $37 t$.
Polyeirrus, 378.
Polycladus, 311.
Polycystidca, 208.
Polycystinidæ, 190.
Polyeyttaria, 196.
Polyclesmus, 221.
Polydora, 382.
Polygastrica, 192.
Polygordius, 375.
Polymorphina, 180.
Polymorphism, 23, 126.
Polymorphism, Facts of, in favour of Theory of Descent, 152.
Polymorphism of social inscets, 155.
Polymyaria, 345.
Polynoe, 379.
Polyommatiriæ, 585.
Polyophthalmus, 372.
Polyparia, 227.
Polyphemus, 422 .
Polypoid, 211.
Polypomedusæ, 233.
Polyp type, 210.
Polystomea, 317,318,322
Polystomella, 187.
Polystomum, 323, 324.
Polythalamia, 186.
Polyxenus, 521.
Polyzonium, 515, 521.
Pompilus, 597.
Pontobdella, 400.
Pontonia, 477 .
Porecllana, 460, 478.
Porcellio, 457, 460.
Porifera, 214.
Porpita, 250.
Portumus, 478.
Postabdomen of Arthro poda, 407.
Postseutellum, 526, 691.
Pou de poissons, 438 .
Prachtkäler, 589.
Preabdomen of Arthropoda, 407.
Præstomium of Chretifera, 387.
Praniza, 459.
Prawns, 477.
Praying inseet, 557.
Priapulus, 394.
Primitive streak, 115.

Priontis, 588.
P'rocrustes, 590.
P'roglottis of cestoda,326.
l'roleg, 5.19.
Pronueleus, 109.
Prosoponiseus, t5l.
Prosorochinus, 340, 341.
Prostate, 99.
Prostomum,311,312,314.
Protaster, 292.
Proterosaurus, 177.
Prothornx, 525.
Protodrilus, 365, 375.
Protolepas, 446.
Protoplasm, 12.
Prototineheata, 512.
Protozon, 182.
Protula, 372, 382.
Proventriculus, 530.
Pselaphus, 590.
Psendonavicellæ, 208.
Pseudophyllidæ, 338.
Pseudopodia, 5t. 186.
Pseudopupa, 593.
Pseudoscorpionidea, 510.
Pseudospora, 19 t.
Pseudotetramera, 588.
Pseudova, 514.
Pseudovaries of Aphicles, 106.

Psoeus, 559.
Psolus, 299.
Psorosperms, 208.
Psyehe, 54:3, 584.
Psychidæ, :S1.
Psyehoda, 578.
Psylla, 570.
Psyllidæ, 570.
Psyllodes, 570.
Pteraster militaris, 284.
Pterodaetylidæ, 175.
Pteromalus, 594.
P'teronarcys, 561.
Pterophoris, 582.
Pteroptus, 495.
Pterygotus, 480.
Ptimus, 1589.
Ptyehoptera, 578.
Pulex, 579.
Pupa, 5ts.
Pupra coaretata, 551,574.
Pupa libera, 551.
Pupa obtectr, 5.51 , 57t, 575.

Pupa of Cirrpedia, 443.
Pupil, 88.
Pupipara, $512,575$.
Purple, visual, 87.
Pygidiom, 4 st .
I'ygidium of ('oleoptera, ist.

P'ygnogonida, 495.
l'ygoecphalus, 469.
Р'yı":lis, 582.
Pyrophoriss, 589.
l'ywhocoris, 572.
Quadrilatera, 478.
Riadial vessels, $2 \bar{i} 2$.
Radiata, 266.
Radii of Eehinodermata, 267.

Radiolaria, 189.
Radius, 528.
Rami communieantes, 82.

Ranatra, 534, 572.
Randwanzen, 572.
Rapacia, 379.
Raphidia, 563.
Raubfliegen, 576.
Ray, 13 t.
Réaumur, 133.
Reeeptaeulum seminis, 99.

Redi, 133.
Redia, 129, 319.
Reduvidæ, 572.
Regenbremse, 577.
Renilla, 231.
Reptiles, Vaseular system of, 66 .
Respiration, Renewal of exterual medium, 72.
Respiratory organs, 67.
Respiratory trees, 277.
Retieular eonneetive tissue, 38.
Retieularia, 186.
Retina, 87.
Retinacula of Aeanthoecphala, 359.
Retinula, 88.
Rhabditis, $34 t, 349,357$.
Rhabloecela, 311, 313.
Rhabdonema, $3+6,350$.
Rhabdusoma, 455.
Rhachis, 483.
Rhipidius, 589.
Rhipidogorgia, 231.
Rhipiphorus, 589.
Rhizocephala, ti6.
Rhizocrinus, 289.
Rhizoglyphus, 492.
Rhizopoda, 181.
Rhizostoma, 261.
Rhizostome:c, 261.
lihizostumide, 252.
Rhizotrogus, 590.
Rhodites, 594.
Rhopalocera, 582, 58.

Rhopalonema, 242.
Rhyacophila, 565.
Hhynchocuela, 334 .
lihynchodesmus, 315, 316.

Rhynchota, 5if(6.
Rhyneobdellidx, 399.
Rilss, 528.
Rinderbremse, 577.
Root-lice, 127.
Rösel von Rosenhof, 1333.
Rosette of Echinoidea, 296.

Rostellum of Cestoda, 327.

Rotalia, 187.
Rotatoria, 400.
Rotifer, 404.
Rotifera, 400.
Rotula, 297.
Roux, Breeding experiments, 142.
Ruiekensehwimmer, 572.
Rudimentary organs, Meaning of, 156 .
Rugosa, 230.
Riitimeyer, on origin of ox, $1+3$.

Sabella, 382.
Sabellaria, 382.
Sae-bearers, ¿82.
Sacehar'omyees, 206.
Saeeoeirrus, 381.
saceonereis, $372,379$.
Sreeulina, 477 .
sænurus, 38\%.
Ningartia, 225.
Sagitta, 357.
Sagittal plane of Ctenophora, 262.
Salivary gland, is.
Salpingœea, 196.
Saltaturia, 507.
Salticus, 504.
saltigradx, 504.
Sapphirina, 436.
Sareode, 19, 22.
Sareolemma, 45.
Sareophaga, 576.
Sarcopsylla, 579.
sarcoptidre, 492.
Sargus. 577.
Sarsia prolifera, 23:.
Satumia, 58.
Satyrus, 58%
Saw-flies, i94.
Sealpellum, +45.
Surphognathite of Decar podia, 176.
ricatophagile $n 76$.

Secnopius, 576.
schactfer, 133.
Schattenmiuckc, 578.
Schelling, 137.
Schildläuse, 568.
Schildwanzen, 572.
Schistoceplaalus, 338.
Schizaster, 297.
Schizomycetes, 206.
Schizoneur'a, 570.
Schizopoda, 472.
Schizoprora, 311, 313, 314.

Schizostomum, 312.
Schuabelfliegen, 563.
Schnaken, 578.
Schnepfenfliegen, 577.
S'chreitwanzer, 572.
Schwarmer, 584.
Schwebfliegen, 576.
Sciara, 578.
Sciophila, 578.
Sclater on Zoological
Plovinces, 160.
Sclerodermites, 231.
Sclerostomum, 350, 352.
Sclerotic, 88.
Scolex, 333.
S'colia, 596.
S'colopendra, 519.
Scopula, 582.
Scorpion, 510.
Scorpionidea, 508.
Scorpion-spiclers, 506 .
Seuta of Cirripedia, 439.
Scutellidæ, 297.
Scutellum, 526.
Scutigera, 518, 520 .
scyllarus, 477.
Scypbistoma, 125, 233 2 วัว.
Scyphomedusæ, 231, 236, 250.

S'ea feathers, 231.
Sea long-worm, 343 .
sea-urehins, 294 ; Regular, 296.
scbaceous glands, 77.
secretory organs, 74.
sedentaria, 380.
Sedimentary forma-
tions:-
Conditions of formation of, $166,169$.
Determination of age of, 164 .
Table of, 165.
Segment, 27.
Segmental organs,75,308. Segmentation ravity, 116.

Segmentation of ovum, 110.

Selection, Artificial, 145.
Selection, Sexual, 152.
Semæostomeæ, 260.
Semell, 97.
Semita of Echinoidea, 296.

Sense organs, 83.
Septa of Actinozoa, 228.
Scrgestes, 477.
Scrictcria, 532.
Scrolis, 460.
Serpula, 382.
Sertularia, 242.
Sesia, 584.
Sex, 104.
Sexual reproduction, 97.
Sexual selection, 152.
Shceptick, 575.
Shell glands, 75.
Shell glands, Crustacea, 410.

Sialis, 563.
Sida, 422.
Silkworm, 584.
Silpha, 590.
Simonea, 492.
Simple eye, 89.
Simulia, 577.
Singeicaden, 571.
Singmückc, 578 .
Siphonophora, 236, 243.
Siphonostomata, 435.
Sipunenloidea, 392.
Sipunculus, 394.
Sirex, 594.
Siriclla, 474.
Sitaris, 589.
Skeleton, 78.
Smellers of T'anäidæ, 459.

Smerinthus, 584.
Smynthuris, 504.
Solaster, 293.
Solenobia, 543, 581, 582.
Solifugæ, 511 .
Solpuga, 512.
Spanish fly, 589.
Spatangidx, 296, 279, 295.

Spatangidea, 273. 297.
Spatangus, 297.
Species, 140.
Species :-Cuvier's definition of, 149 ; Mutability of, 144 ; Origin of, $144,149$.
Species, Relation of to genera, 149
Speckkäfer, 590.

Sperm, 97.
Spermatophores, 99.
spermatozoon, 33, 97.
Sphrridia, 272.
Sphærodorum, 372, 379.
Sphæroma, 460.
Sphronectes 250.
Sphrronites, 289.
Sphærophyra, 205.
Sphærotherium, 521.
Sphærozoum, 191.
Sphærularia, 356.
Sphex, 552, 596.
Sphingina, 584.
Sphinx, 584.
Sphyrocephalus, 311.
Spicula of Nematoda, 347.

Spiders, 498.
Spindle-tree moth, 382.
Spinning glands, 532.
Spinning mite, 495.
Spio, 382.
Spiodeæ, 381.
Spio-Nephthys larva, 378.

Spionidx, 381.
Spiralzooids, 241.
Spirillum, 206.
Spirochæta, 206.
Spirographis, 382.
Spiroptera, 348.
Spirorbis, $372,382$.
Spirostomum, 205.
Sponges calcareous, 222 ; glassy, 221; gelatinous, 221 ; horny, 222 ; levantine, 221.
Sponge type, 210.
Spongia, 221.
Spongiadr, 221.
Spongiaria, 214.
Spongilla, 218, 221.
s'pontancous gencration, 10.
spores, 97.
Spores 128 ; of Trematoda, 129.
Sporocyst, 129, 319.
Spring-flics 564.
Springkäfer, 589.
Spring-tails, 554.
Spumella, 195.
Squama, 572.
Squilla, 472.
Stag-bectle, 689.
Staphylinus, 590.
Star coral, 232.
Star-fishes, 290, 292.
Stauridre, 230.
Staurocephalus, 379.

Stechfiege, 176.
Stelleridea, 292.
Stemmata Arthropoda, 108.

Stenorhynehus, 178
Stentor, 205.
stephanoeeros, 404.
Stephanosphaera, 195.
Sterile polyp, 237.
Sternum, 525.
stigmata, 71.
Stilettfliegen, 576.
Sting, 592.
Stipes, 523.
Stomatopocla, 470.
Stomobrachium mirabile, 239.
Stomoxys, 576.
Stone eanal, 272.
Stratiomys, 577.
Strepsiptera, 565.
Striclulantia, 571.
Strobila, 125, 255, 2526.
Strongylidæ, 347 .
strongylocentrotus, 296.
Strongylus, 352.
Struggle for existeuce, 145.

Stutzkäfer. 590.
Stylaria, 386.
Stylasteridæ, 241.
Stylochus, 316.
Stylonychia, 205.
Stylops, 566.
Suberites, 229.
Subgenital pits of Diseuphora, 260.
Submentum, 524.
Suboesophageal ganglion, 82.
Sub-speeies, 141 .
Succession of similar types, 171.
Suctoria, 205, 446.
Summer eggs of Phyllopoda, 418.
Summer cggs of Rotifera, 403.
Summer eggs of Turbellaria, 313.
Supra-œsophageal ganglion, 80.
Swallow tail, 585.
Swammerdam, 133.
Sweat glands, 77.
Sycaltis, 222.
Sycandra, 222.
Syeetta, 220.
Sycilla, 222.
Sycon, 221, 222.
syconide, 212, 217, 222.

Sycortis, 222.
Syculmis, 222.
Sycyssa, 220.
Syllis, 379.
Syllis prolifera, 372 .
Symbiotes, 492 .
Sympathetic, 82.
Synapta, 278, 283, 298, 29!.
Synaptidx, 28:3.
Syrphus, 576.
System, Meaning of, 150.
System of Aristotle, 132.
Cuvier, 136.
Linnæиs, 135.
Pliny, 132.
Prescnt clay, 138.

T'a banidæ, 574, 576.
Tabanus, 577.
T'aehina, 576.
Tachinæ, 541.
Taetile corpuscles, 47 .
Tænia, 327, 330, 331, 335.
Tænia eucumerina, 329.
Tæniadæ, 334.
Talitrus, 455.
Tanais, 459.
Tanystomata. $57 \dot{6}$.
Tanzfliegen, 576.
Tapetenmotte, 582.
Tapeworm 326 .
Tarantula, 504.
Tardigrada, 496.
Tarsus, ${ }^{\text {ô27. }}$
Taste, 92.
Tegenaria, 504.
Tegmina, 228.
Tegulæ, 591.
Teleas, 594.
Tcleas, larva of, 549 .
Tclephorus, 589.
Telepsavus, 382.
Telepsavus-Chætopterus larva, 378.
Telolecithal, 112.
Telotrocha, 378.
Telson of thoracostraea 461.

Tencbrio, 589.
Tenthredo, 5!
Teratology, 51.
T'ercbella, 382.
Terebra, 592.
Tcrebrantia, 594.
Terga of Cirripedia, 439.
Termes, 561.
Termites, 559.
Terricola, 385.
Tesselata, 285.
'Testis, 97.
Tetracoralla, 230.
Tetranychus, 195.
'Tetraphyllidee, 3338.
Tetraplasta, 19 H .
'Tetrapueumones, 504.
T'etrarhynchus, 327,338.
'Tetrastemma, 3.31, 342.
Tettigonia, 571.
Tettix, 5.5
Textularia, 187.
Thalamophora, 181 .
Thalassema, 392.
Thalassicolla, 190.
Thalassina, 477.
Thamnoenidia, 241.
Theca of Actino\%ua,228.
Thccla, 585.
Theeodontidx, 175.
Thelyphonus, 008.
Thereva, 576.
Theridium, 502. 505.
Theriodonta, 175.
Thomisus, 504.
Thoracostraca, 460.
Thread eells, 212.
Threadworms, 344.
Thrips, 559.
Thysanopoda, 475.
Thysanozoon, 316.
Thysanura, 553.
Tibia, 526.
Tieks, 493.
Tiger-beetles, 590.
Tillodontia, 173.
Tillotherium, 173.
Tima, 242.
Tinea, 582.
Tipula, 578.
Tipularixe, 577.
Tissue, 29.
Todtcngräber, 590.
Tomopteris, 380.
Tornaria, 300.
Tortoiscsinell butterlly, 585.

Tortrix, 582.
Toueh, 84.
Toxodon, 170.
Toxodoutia, 173.
Toxopneustes. 296.
Trachea, 70, 110.
Trachclius, 204.
Trachymeduste. 239, 242.
Trachynema, 239, 242.
Trachys, 589.
Transverse plane of Ctenophoma. 262.
Trap-door splider, 504 .
T'rematoda, 316,
Trepang, 299.

Trienophorus, 338.
Trichina, 347, 348, 3ั̌3, 35ัt, Зอัธ.
Trichocephalus, 348, 3ั̄3.
Tricliodectes, 336 , 568.
Trichodes, 589, 599.
Trichodina, 205.
Trichomonas, 194.
Trichoptera, 564.
Trichosomum, 353.
Trichotrachelidæ, 353.
Trigonia, 599.
Trilobita, 483.
Triphæna, 58:.
Tristomum coccineum, 323
Trivium, 269.
Trochal dise of Rotifers, 401.

Trochanter, 526.
Troctes, 559.
Trogus, 595.
Trombidium, 495.
Trypeta, 5 位.
Tubc-spinners, 50t
Tubicinclla, 446.
Tubicolre, 380.
Tubicolaria, 401, 404.
Tubifex, 38 ..
Tubipora, $2: 31$.
Tubitela, 504.
Tubularia, 239. 241.
Tubularia, $2+1$.
Turbellaria, 309.
Turbinolia, 232.
Tylenclus, 357.
Type, 52.
Type of Desor, 3+1.
Typhis, 456.
Typhlosole of Lumbricus, 383.
Tyroglyphus, 492.
Umbellula, 231.
Upper lip of Crustacea, $+12$.
Uloccridae, 594.
Uropola of Crevettina, 454.

Uterine bell of Acanthocephata, 361.

Uterus, 99.
Vagina, 99.
Vampyrclla, 194.
Vanessa, 553, 585.
Variability, 145.
Varieties, 141.
Variety, Relation of to species, 149 .
Vascular pore of Nematoda, 346.
Vascular system, 59.
Vas deferens, 99.
Vein, 62.
Vcins, 528.
Vclarium, 2 2ั2.
Velarium of Scyphomedusæ, 252.
Velella, $2+6,250$.
Velellidæ, 244.
Velia, 572.
Venous, 73.
Ventral plate, 545.
Ventriculitidæ, 221.
Vcretillum, 231.
Vcrmes, 302.
Vesiculæ, seminalcs, 99.
Vesiculata, 239, 241.
Vcspa, 597.
Vexillum, 266.
Vibrio, 206.
Vine-lice, 570.
Vincgar worm, 357.
Visceral nerves, 82.
Vitcllarium of Turbellaria, 312.
Vocal organs, 552.
Volvox, 195..
Vortcx, 313.
Vortex viriclis, 310.
Vorticclla, 205.
Waffenfliegen, 577 .
Wallace, 147.
Warm-blooded, 7 t.
Wasps, $5!17$.
Wasscrlänfer, 572.
Water-bugs, 771 .
Watcl-fleas, $41!$.
Watcrmites, 495.
Watcr-scorpions, 572 .

Water-spiders, 504.
Water-vascular system, 308, 311.
Watcl-vascular vessels of Platyhclminthes 7\%.
Wax glands, 532.
Wecvils, 588.
Weizenflicge, 576.
White ants, 5.59.
White butterflies, 585.
White coral, 232.
Wickler, 582.
Wings, 528.
Winkelspinne, 50t.
Winter cggs of Rotifera,

- 403.

Winter eggs of Turbellaria, 313.
Winter-sleep, 74.
Wolf-spider, 504.
Wood-bees, 598.
Wood-wasps, 594.
Worm, Paste, 357.
Worm, Vinegar, 357.
Wotton, 133.
Xantho, 478.
Xenos, 566.
Xiphosura, 480.
Xylocopa, 598.
Xylophaga, 589.
Xylophagus, 577.
Xylotomæ, 576.
Yolk, 111.
Yolk-cord, 543.
Yolk, Eftect of, on dcvelopment, 120.
Yponomenta, 582.
Zerene, 583.
Zоæа, 466.
Zoantharia, 231.
Zoantlus, 232.
Zoogloca, 200.
Zoological provinces, 160 .
Zooplyytes, 209.
Zoosperms, 20).
Zoospores, 194, 197.
Zoothammium, 205.
Ziiinsler, 582.
Zygænล, 584.

cot.

$R 36312$

$$
\begin{aligned}
& \text { By or } \\
& \text { of the } \\
& m e
\end{aligned}
$$

ELEMENTARY TEXT-BOOK OF ZOOLOGY.

ELEMENTARY TEXT-B00K
 OF

 ZOOLOGY.

 ZOOLOGY.}

SPECIAL PART: MOLLUSCA TO MAN.

BY
DR. C. CLAUS,
Projessor of Zoology anel Comparative Anatomy in the University of Viennue Director of the Zoological Station at Trieste.

TRANSLATED AND EDITED BY

> A D A M SEDGH[CK, M. A.,

Fellow and Lecturer of Tr-inity College, Cambridge,

WITH THE ASSISTANCE OF
G. HEATHCOTE, B.A., Trinity College, Cambridge.

WOODCUTS.

LONDON:

W. SWAN SONNENSCIEEN \& CO. [ATERNOSTERSQUARE。

TABLE OF CONTENTS.

Page
MOLLUSCA 9

1. Lamellibranchiata 15
2. Asiphonia 2.)
3. Siphoniata 27
II. SCAPHOPODA 28
III. GASTROPODA 30
4. Prosobranchiata 43
5. Placophora 44
6. Cyclobranchiata 45
7. Zeugobranchiatia 45
t. Ctenobranchiata (Aniso- brauchiata) 46
8. Heteropoda 48
9. Pulmonata 50
10. Basommatophora 51
11. Stylommatophora 51
t. Opisthobranchiata 52
12. Tectibranchiata 52
13. Nudibranchiata 52
14. Saccoglossa 53
IV. PTEROPODA 53
15. Thecosomata 56
16. Gymnosomata 56
Y. Cephalopoda 56
17. Tetrabranchiata 67
18. Dibianchiata 69
19. Decapoda 70
20. Octopoda T0
MOLLUSCOIDEA 71
21. BRYOZOA 71
22. Endoprocta 77
23. Ectoprocta 78
24. Lophopoda (Phylactola- mata) is
25. Stelmatopoda (Gymnolie- mata) 79
Paze
II. Brachiopoda S0
26. Ecardines 8.
27. Testicardine; 85
TUNICATA 85
I. Tethyodea (Ascidians) 90
28. Copelatæ 100
29. Ascidiæ Simplices 100
30. Ascidiæ Compositæ 101
t. Ascidiæ Salproformes 102
II. Thaliacea 103
31. Desmomyaria 108
32. Cyclomyaria 109
VERTEBRATA 109
I. Pisces 129
33. Leptocardii (Acrania). 150
34. Cyclostomi (Marsipo- branchii). 153
35. Selachii (Chondro- pterygii) 157
36. Holocephali. 161
37. Plagiostomi. 161
38. Squalites 162
39. Rajicles 163
40. Ganoidei 163
41. Choudrostei 165
42. Crossopterygii 166
43. Euganoides 166
44. Amiades 166
45. Telcostei 166
46. Lophobranchii 167
47. Plectoguathi 167
48. Physostomi 168
49. Anacanthini 170
50. Acanthopteri 171
51. Dipnoi 173
52. Honopnetmona 175
53. Dipuermona 175
1I. גmplimbiA • • 176
54. Apoda (Gymnophioma) 187
55. Raplatores rige
56. ('andata (Urodela) 188
57. Ichthyoide: 189
58. I'ceremeibrenchicte. 190
59. Derolverwe 190
60. Silamandrina 1:11
61. Batrachia $=\lambda$ num $1!92$
62. Aglossa 19.1
63. Oxylactylia. 19.4
64. Discolactylia 105
[1]. Repthan 195
65. Plagiotremata (Lepiclo- sauria) 207
66. Ophidia 207
67. Opoterodonta 211
68. Culubriformia 211
69. Proteroglypha 212
70. Solenoglypha 213
71. Sanrii (Lacertilia) 214
72. Amulata 217
73. Vermilingnia 217
74. Crassilinguia 218
75. Brevilinguia 219
76. Fissilinguia 220
Proterosamia 2.20
Thecodontia 220
Dinosamia 220
Ornithoscelida 220
Pterosauria 221
77. Hydrosauria 221
78. Enaliosauria 222
79. Crocodilia 223
80. Chelonia 225
IV. Aves 230
81. Carinatæ. 255
82. Natatores 255
83. Grallatores 257
84. Gallinacci 260
85. Columbinæ 261
86. Scansores 263
87. Passeres 264
88. Levirostres 265
89. Tenuirostres 265
90. Fissirostres 266
91. Dentirostres 266
92. Conirostres 268
93. Ratitæ 270
V. Mammalas 273
A. Aplacentalia 300
94. Monotremata :30)
95. Man'supiallia 301
96. Glivina $: 0: 3$
97. Macmonda :0:
98. Scandentia $30: 3$
99. Rapracia ;04
B. Placentalia 30.5
a. Aifeciluatia 305
100. Edentata 305
101. Cetacea 306
102. Cetacea Camivora 309
103. Denticete $30!$
104. Mystucte 310
105. Cetacea Herbivora (Si- renia) 310
106. Pcrissodactyla 311
107. Artiodactyla 314
108. Pachydermata $: 14$
109. Ruminantia :15
〕. Deciduata 318
110. Proboscidea. 318
Lamnungia (Hyrn- coidea) 319
111. Rodentia 320
112. Insectivora 322
113. Pinnipedia 323
114. Carnivora 324
115. Chiroptera :327
116. Frugivora 32s
117. Insectivora 22:9
118. Prosimir (Lemurs) 330
119. Primates 332
120. Arctopitheci :334
121. Platyrrhini 335
122. Catarmini 335
123. Man $33!$

SPECIAL PART:
MOLLUSCA TO MAN.

CHAPTER I.

MOLLUSCA.*

Bilaterally symmetrical unsegmentecl animals, without a locomotory skeleton: with a ventral foot ancl usually a culcareous univalve or bivalve shell; with brain (supraosophageal ganylia), circumosophayeal ring, and subasophageal group of ganylia.
Since Cuvier several different groups of animals, which were placed amongst the worms by Linnæus, have been included in the Mollusca. Of late years, however, the anatomy and derelopment of these forms lave been more closely examined, and it seems fairly certain that some of them are allied to the Worms. In any case, the group Mollusca must be looked upon as of more limited extent than has for some time been the case. The bivalved Brachiopoda, which in structure and development stand in closer relationship

Fig. 402.-Older larva of a Gusteropod (after (fegenbaur). S, Shell; P, foot; $T^{\prime} c l$, velum ; T, tentacles; O_{l}, operculum for the closure of the shell opening. to the Bryozoa, may be removed from the Mollusca and united with the latter under the head Molluscoidea. The Thonicata also must be constituted an independent group between the Mollusca and the Vertebiata.

[^126]The Mollusca are mionted, mesegnented :minalds, without jointed appendages. The borly is covered lyy a soft sliny skim. They lack both an internal and external locomotory skeleton, and appear thenefore especially suited for life in water. But few of them are terrestrial, and when this is the case the locomotion is always limiter and slow; white the aquatic forms, in conrespondence with the far more fiavonable conditions for locomotion presented by water, may be endowed with the power of lalpid swimming.

The dermal muscular system plays an inportint part in thr locomotion of these animals, especially that part of it placeer on the lower, i.e., rentral, surface of the body. Th this region it is greatly developed, and gives rise to a more or less projecting locomotory organ of very rarious shape, the foot (figs. 492 and 493). The foot always consists of an mpaired median structure, which is some-

Fig. 493.-Larva of Vermetus (after Lacaze-Duthiers). S, velum ; $B r$; gill ; F, tentacle ; P, foot; $O c$, eye. times divided into several parts and may possess in addition lateral pairerl portions, the epipodia. Above the foot there very generally exists on the body a shield - shaped thickening of the integument, the so-called manile, the edges of which, in more advanced development, grow over the body as a fold of the skin and partially or completely cover it. The surface of this fold of slin secretes calcareous and pigmentary substances, and gives lise to the variously shaped and coloured shells which contain and protect the soft body. In addition to the fool and mantle, the body generally possesses in the anterior region, on either side of the mouth, a prir. of lobe-like appendages, the buccal lobes, which are the remnants of a largely-developed larval structure, known as the velum.

In the higher Mollusca (Cephalopherce) the anterior part of the body bearing the buccal lobes, and containing the central parts of the nervous system and the sense organs, is more or less sharply marked off as a head. The part of the body behind the head constitutes the main mass of the animal. Its dorsal portion (the visceral sac) contains the viscera and is frequently spirally twisted, as a result. of which the bilateral symmetry undergoes externally a
remarkable distubance. The visceral sac may, however, liave a flattened or cylindrical form and retain its symmetry. In this group (the Cepluctophora) the shell may be simply plate-shaped or spirally wound, or remain as a mere flat rudiment hidden under the dorsal integument. In one group of the Cephalophora, viz,, the Cephectopoduc, a circle of arms is attached to the head aromed the month opening. They serve both for swimming and creeping, and for the capture of nourishment. By Lovén and R. Lenckart they were looked upon as modifications of the buccal lobes; by others, perhaps with greater justice, as tentacles, and by others again as

Fig. 494.-Male of Carinaria mediterranea (after Gegenbaur). P, Foot; s, sucker; 0 , mouth ; $B m$, buccal mass; M, stomach; $S p$, salivary gland; L, liver; A, anus; $C G$, cerebral ganglion; $T e$, tentacle; Oc, eye; Ot, auditory vesicle; $B G$, buccal ganglion; Pg, pedal ganghon; $M g$, mantle ganglion; N, kidney; $B r$, gill; $A t$, auricle; Te, ventricle; $A r$, aorta; Z, hinder branch of the same; T, testis; T, d, vas deferens; W_{p}, ciliated furrow; $P e$, penis ; F, flagellum with gland.
modifications of the foot. A perforated funnel-shaped cone, through which the excretory products and water which has passed over the gills is expelled from the large mantle cavity, and which thus serves at the same time as a swimming organ, probably corresponds to the fused folds of the epipodia. Amongst the Gustroporle the head is provided with tentacles and buccal lobes, and the ventrally placed foot possesses a large flat plantar surface ; more rarely it has the form of a vertically placed fin (Heteropodla, fig. 494). In another gronp, the Lamellibranchicta (Acephata), there is no independent head, and the laterally compressed body bears two large lateral mantle
lobes, ench of which secretes a single shell; the two valses so formerl we united on the donsal surfice by a ligament.

The internal organization of the Mollusea perents as many difterences as does the extermal form. Like the extermal form, the internal structure also freguently presents smprising deviations from the bilatemal armagement.

The nervous system: (figr. 495, 496, 497) consists of a don:al pair of graglial lying on the reophagus (only exceptionallyfig. 495-dissolved into a genemal gimglionic inventment of the com-

Fig. 195. -Nervous system of Chiton (after B. Haller). Si, œsophageal ring; $B g$, buccal ganglion; $P(S t$, pedal uerve, $P a S t$, pallial nerve ; $B r$, gill. missure), the cerebral ganglia (figs. $496,497,(y)$, from which pass off the sense nerves and and resophatgeal ring, composed of several fibrons cords. The latter prinitively gives off two pains of nervetrunks. The nerves of the upper and lateral pair are the pallial nerves (fig. 495, PuS't); they supply the lateral parts of the body and the mantle. The nerves of the rentral pair are placed nearer the middle line, and are known ats the pedal nevres (fig. 495, Pes't ; they are connecterd together by transverse commisures (fig. 495) and innervate the muscles of the foot. This arrangement, found in the simplest form in Chiton, agrees essentially with that of the Gepliyrean-like genus, Areomenic. At a more adranced stage, two large swellings are found at the origin of the pertal nerves; these are the pedal ganglia (figs. 496, 497, $P g$). Tn addition, a third group of ganglia, known as the visceral yanglia, is also found. The arrangement of the latter ganglia is rely various; they are sometimes fused with the cerebral, sometimes with the pedal gatnglia, and are sometimes broken up into sevenal groups of ganglia. They are

[^127]comected with the cerebral ganglia by a longer or shorter commissure, and give off nerve plexuses to the heart, gills, and generative organs. This third pair of ganglia is, therefore, regarded as the equivalent of the sympathetic, but mujustly, as it also gives off nerves to the skin and muscles. Small ganglia (buccal ganglia), lying ahove and below the buccal mass and sending off nerves to the oesophagus and intestine, may more justly be regarled is sympathetic.

Tactile organs are present in the more highly-developed Mollusca, as two or four lobes placed near the mouth, the above-mentioned buccal lobes; in addition to which, tentacle, round the edge of the mantle are often found in the Acepphata, and in the Cephutophora two or four retractile tentacles on the heach. The eyes have almost always a complicated structure, and are provided with lens, iris, choroid, and retina. There are usually two of them on the head; in lale cases-e.g., in some Lamellibranchs -they are more numerous, and are placed on the edge of the mantle. Auditory organs are very generally present. They have the form of closed otocystrs, provided with hains on their internal walls. They are usually paired, and lie either on the cerebral or peclal ganglia (fig. 497, Ot). They are, however, always innervated from the former.

In the alimentary canal, three

Fig. 496.-Nervous system oi the pual mussel (Anodontu)(after Keber). O, mouth ; A, anus ; K, gills; P, foot; $S e$, labial jalps; $G g$, ecrebral ganglion; $P g$, pedal ganglion; $T g$, splanchnie ganglion; G, generative gland; $O e^{\prime}$, externnl opening of kiduey; $O_{c}{ }^{\prime \prime}$, opening of generative gland. rlivisions, at least, can be clearly distinguished-the œesophagus, the stomach and intestine, and the hindgut or rectum. Of these the middle or digesting division (stomach and intestine) is ustually characterized by the possession of a very extensive liver. Kidneys are always present, and are frequently paired and symmetrical in each half of the body. Often, however-principally when the body is asymmetrical-the kidney of one side is sm ullei (Patella, Maliotis) or is entirely absent (Castro-
poobu). They ustatly have the form of saces with a wide lumen, and open on the one hand into the hody catvity (pericardial simus), and on the other to the exterior by a lateral opening.

Fig. 197. - Nervous system of Cassidaria (after Haller). Cg , cercbral ganglion; $P g$, pcdal ganglion; $P l g$, pleural ganglion; $B g$, buccal ganglion; Gsp, surraintestinal gavglion; Gs , subintestinal ganglion; TV, visceral ganglion; Ot, otocyst. In all probability the molluscan kidney is homologous with an annelidan secrmental organ. 'The internal, funnelshaped opening is frecpuently beset with cilia. The anns is very often removed from the middle line, and placed on one side of the borly.

A compact heart is always present, driving the blood through the ressels into the organs. The vascular system is never completely closed, for, even when the arteries and veins are connected by capillaries, blood sinuses, derived from the body cavity, are inserted into the course of the ressels. The heart is always arterial-i.e., systemic -and receives arterial blood from the respiratory organs.

Respiration is in all cases carried on through the general outer surface of the body; but in addition special respiratory organs, in the form of branchice, more rarely of lunys, are present. The branchia are ciliated projections of the body surface, and are usually placed between the mantle and the foot; they may have the form of branclied appendages, or of broad lamellie (Lamellibranchicata). The lung, on the other hand, is derived from the mantle cavity, which is filled with
air, and the inner surface of which is thrown into a number of complicated folds, so as to expose a large surface for the respiatory blool-vessels ; it communicates by an opening with the external medium. The pulmonary and branchial cavities are, therefore, morphologically equisalent.

Reproduction is always sexual. The hermaphoodite condition, on the whole, preponderates; nevertheless, not only many marine Gastropods, but also most Lamellibranchs and all Cephalopods are diœcious.

Development usually begins with a total segmentation, which is followed by the formation of a blastoderm surrounding the hinder part of the yolk or the whole yolk. The just hatched young often pass through a complicated metamorphosis, and possess an anterior ${ }^{*}$ cutaneous expansion bordered with cilia-the velum-which functions as a locomotory organ. In form, disposition of cilia and organisation, many molluscan larve permit of a closer comparison with Lovén's wor'm larva.

By far the majority of the Mollusea are aquatic animals, especially marine; only a few live on land, and these always seek damp. localities. When we consider the extraordinarily widle distribution of the Mollusca in past times, the importance of their fossil remains for the determination of the age of the sedimentary formations becomes intelligible.

Class 1.-LAMELLIBRANCHIATA.*

Laterally compressed Mollusca without separated head, with bilobed mantle and bivalve shell, composed of a right and left half and connected by a dorsally-placed ligament; with large gill plates; sexes usually separate.

The Lamellibranchs were formerly united with the Brachiopoda as Conchiferc. Like the latter, they lack a clifferentiated cephatic region, and possess a large and usually bilobed mantle and a bivalve shell. Nevertheless, the structural differences between these

[^128]two groups aro so ceschatial, that a done commedion between them emmot be maintaned.

The ustally strictly symmetrical borly is laterally compressed and of considerathle axtent, amd is surrounded by two lateral mantle lobes, which are contimous acrons the donsal middle line and sechede a light and left shell vilve. To the sides of tle mouth openisg are foum two pains of leaf-or tentacle-like buecal lobos-the labial palps. On the ventral surface a large, usually hatehet-shaped foot (fig. $198, F$) projects; and two pars, mely one pair, of lange lamellar gills are always placer in the mantle furmow between the mantle and foot (tig. 498, K).

Fig. 498.-Anatomy of Unio pictorum (after C. Grobben). IS, anterior adductor muscle ; $H S$, posterior adductor muscle ; MS, labial palp; F, foot; ht, Mantle; K, brauchiat ; $C g$, corchral ganglion ; $P q$, pedal ganglion; $M g$, splanchnic ganglion; O, mouth; M, stomach ; L, liver ; Kr S, crystalline style ; D, intestine ; $-4 f$, anus; G, generative organs; A, region of mantle lobes bounding the exhalent or cloacal orifice; E_{n} regions of ditto bounding inhalent or branchial orifice; N, kidney ; $\boldsymbol{V} h$, auricle; $H k$, ventricle; $I^{r} A$, anterior aorta; ΠA, posterior aorta, P, pericardial gland (schematic).

The hind end of the edges of each mantle lobe almost always presents two slight, contiguons excivations (fig. 498, A and E), the ventral of which is bordered by numerous papilla. When the two halves of the mantle are above together, these excavation: form, with the corresponding structures of the opposite side, two slit-like openings, placed one behind the other. The upper or dorsal of these two openings functions as the cloacal, or exhalent opening ; the lower or ventral as the inhalent opening. Through the latter, with a slightly gaping shell, the water is driven hy the peculiar arangement and action of the cilia on the inner.
surface of the mintle and the gills into the mantle and respinatory chamber. Foorl materials pass with the water to the labial palps, and so to the mouth. The edges of the mantle lobes do not always remain free through their whole extent, but frequently fuse together, first at the hind end, and then gradually forwards. As a result of this fusion, a posterior opening, including in itself the inhalent and exhalent orifices, becomes separated from the anterior opening into the mantle cavity; and, further, the exhalent and inhalent openings become separated from each other by a transverse bridge of tissue. The long anterior opening or foot-cleft, in consequence of the progressive fusion of the mantle edges, often becomes gradually so shortened, that the foot, which is correspondingly reduced, can scarcely be protruded. In this case, the mantle comes to have the form of a saccular investment with two openings. The further forward the fusion of the two mantle lobes proceeds, the more marked becomes a peculiar elongation of the posterior mantle region round the inhalent and exhalent openings-an elongation of such a nature that two contractile tubes, or siphons, become formed (fig. 499, () . The latter may reach such a size that they can no longer be drawn between the posterior edges of the gaping valves of

Fig. 499.- a, Muctru elliptica, animal with shell; wils, cloacal or exhalent siphon; $k S$, branchial or inhalent siphon ; P, foot. b, left valve of M. solida; $I M$, anterior adductor muscle ; $M H$, posterior adductor muscle; $M \mathcal{M}$, pallial line; $I L b$, pallial indentation.
 the shell. The two siphons often fuse witl one another; but the two canals, with their openings surrounded by tentacles, remain separate. In the most extreme cases the siphons are enormously enlarged, and the posterior region of the body is peculiarly elongated and uncovered by the rudimentary shell; so that the whole animal acquires a vermiform appearance, the shell-bearing anterior region of the body constituting the head (T'ereclo, fig. 505).

The mantle and skin consist of a cellular, slimy epidermis, beneath which lies a connective tissue, richly traversed by muscular fibres. The epidermis on the outer surface of the mantle consists of columnar. cells; while on the inner surface of the mantle the cells composing VOL. II.
it are ciliated. Pigments are present principally upon the erlger of the mantle, which are freguently folded or beset by prapille :mble tentacles.

The outer surfare of the mantle secretes a strong calcaneons shell, Which is constituted of two valves comesponding to the two mantle loher. The two valves are mited donsally. They are ravely exatly alike. Nevertheless, the term merguivalve is only applial to those shells in which the anymmetry is rery manked, and the valses c:an he distinguished as upper and lower. The lower valse is the litrger and more ardhed, while the upper is smaller and flatter, (losing up the carity of the lower after the namer of an operculum. The erlges of the two valves are generally closely applied to one another, still they may gape more or less widely at various points for the exit of the foot,

Fig. 500.-dvicula semisagitta, the valves are shifted oreld one another ; λI, muscle impression. bysisus and siphons. The latter is especially the case for those Mollusch which bore in sand, woord, or hard lock. In extreme cases the shell may, by it wide anterioremargination and an extended docking of its posterior part, be reduced to an amnular rudiment (Terecto), while to it.s linder end is applied a calcareous tube, which may intimately fuse with the shell rudiments and receive the latter entirely into itself (Asperyillum).

The two values of the shell are always connected dorsally by an external or internal ligament, which tends to keep the ralres open. The two shell valves are also firmly womected together dorsally by interlocking teeth, which constitute the so-called hinge (cardo). The hinge edge with the ligament is therefore to be distinguished from the free edge of the shell, which is divided into an interior, inferior (ventral), and posterior or siphonal edge. The anterior and posterior edge may generally be ensily determined by the position of the hinge-ligament with regard to the two rmbones (nutes). Which have the form of two prominencies projecting over the dorsal enge, and indicate the point (upex:) where the development of the valse: began. The area is behind the apex, and inclades the dorsal posterior side of the shell. The part of the dorsal enge in front of
the aper is usually shorter, and contains, at least in the equivalse species, an excaration, the henula, by means of which the anterior edge can be at once recognised.
While the outer surface of the shell presents various sculpture markings, the imner snrfice is smooth and shines with the lustre of mother-of-pearl. On a closer examination, impressions and pits become risible on the inmer surface. A narrow line, the so-called mantle or pallich line (the line of attachment of the mantle edge to the shell), is placed near and fairly parallel to the rentral edge of the shell (fig. 499, $\mathrm{H}(\mathrm{l})$. In the siphoned forms this presents posteriorly a bend directed forwards and upwards (Mb), the pallial bay, which is due to the siphons. Impressions are usually caused by the insertion of an anterior and posterior adductor muscle which pass throngh the body of the animal transversely from one side to the other, and are attached to the inner surface of the shell (fig. 499, HM, $V M$). While in the equivalve mussels (Orthoconcha) the two impressions are usually of equal size, in the unequivalre forms (Pleuroconchat) the anterior adductor is reduced, and may completely ranish; the posterior adductor, on the other hand, now a muscle of much larger-

Fig. 501. - Vertical section throngh the shell and mantle of Anodonta (after Lerdig). Cu, cuticle; S, prismatic layer; $B l$, laminated (mother-of-pearl) lajer' Ep', external epithelium of mantle; Fd, connective tissue sulostance: $E p^{\prime \prime}$, internal epithelium of mantle. size, shifts forward to the middle of the shell (fig. 500). Hence the names Dimyarict and Monomyaria. According to its chemical composition, the sliell consists of carbonate of lime and an organic matrix (conchyolin), which usually presents a laminated texture. In addition to this laminated layer there is also a thick external calcareous layer, composed of large, pallisade-like prisms, which are placed side by side and may be compared to the enamel of teeth (fig. 501, S^{\prime}). Finally, on the onter surface of the shell there is a horny cuticle, the so-called epidermis ($C u$). The internal lamimated layer is secreted by the whole intermal surface of the mantle,

While the two onter layers are formed maly by the free edge of the mantle. The growth of the shell is effecterl in two ways; (1) by additions to the intermal laminated layer, wherehy the shell increases in thickness; (2) by alditions to the prismatio and homy layern, whereby it incerases in suluerficial extent. Accordingly the onter. coloured pant of the shell, which is componed of vertical frisms and a honny cuticle, when once formed camot increase in thickness; while new concentric layers are constantly heing adderl to the internal colourless mother-of-pearl layer dming the whole life of the animat. The mantle-secretion gives rise in the so-called pearl-musisel (Melertgrina, Unio margaritifer), to the formation of pends.

The foot is completely absent in comparatively few of the Jamellibrunchiuta, and only in those which have lost the power of loromotion (Ostrea, Anomia). In many forms, principally in the larva (l'mio), less frequently in the adult (Mytitus), the foot possesses it byssus gland, which secretes silk-like fibres, by which a temporary or pernanent attachment of the animal is effected. The form and size of the foot vary very considerably, according to the special kind of locomotion. The foot is most frequently used for creeping in sand, and then is hatchet-shaped; in other cases it is spread out laterally and it.s creeping surface has the form of a disc. More rarely it is of a large size and bent, in which case it serves for springing movements in the water (Cardium). Some Lamellibranchs possess a linear club-shaped or cylindrical foot (Solen, Solenomya), and move by rapidly retracting the foot and ejecting water through the siphons. Many use the foot for burying themselves in mud ; others bore into wood (Teredo) or hard rock (Plolas, Lithorlomus, Saxicava, etc.), for which purpose they push themselves against the rock with their short blunt foot (Pholus, Teredo), and use the hard and often finely serrated erlge of their shell as a giater, giving it a rotatory movement. According to Hancock, the foot and edge of the mantle at the anterior end of the gaping shell are beset with siliceons crystals, and effect the excaration of the rock after the manner of a file.

The nervous system presents three pairs of ganglia, the cerebral, pedal, and visceral ganglia. The visceral ganglia are connecterl with the cerelnal by a longer or shorter commissure on each side (figs. 496 and 498). Since there is never a distinct head, and sense organs do not appenr on the anterior region of the body, the brain (cerebral ganglia) is proportionately little developed. Its nerves supply mainly the region round the month and the mantle, to which two large nerves are often distributed. The two halves of the brain
are frequently ((Chio) far remored from one another laterally, and are approximated to the anteriorly placed pedal ganglia (Pecten), whose nerves are distributed on the rentral side of the body in the foot. The large visceral yanglia are placed on the ventral side of the posterior adductor muscle, and supply nerves partiy to the gills and partly to the viscera and to the mantle; the latter are two large trunks which run in the edge of the mantle and anastomose with the mantle nerves from the brain, often forming plexuses. Large nerves also pass off from the visceral ganglia to the siphons, at the base of which they form an accessory pair of ganglia.

Sense organs.-Auditory organs, eyes, and tactile organs are present. The former have the form of paired auditory resicles, and lie beneath the œesophagus attached to the pedal ganglia (theirnerve, however, arises from the brain) ; they are characterised by the large hair cells which line the wall of the resicle. Eyes may either be simple pigment spots at the end of the respiratory tube (Solen, Tenus), or be much more highly developed and placed on the edge of the mantle of Arca, Pectunculus, Tellina, and especially of Pecten and Spondylus. In the latter genera they are placed on stalks between the marginal tentacles, and have an emerald green or brown red colour ; they consist of an eye-bulb with a corneal lens, choroid, iris, and a well-developed layer of rods into which the optic nerve passes. The sense of touch is provided for by the labial palps, the edges of the respiratory apertures (siphons) with their papillæ and cirri, and also the often numerous tentacles at the edge of the mantle (Lima, Pecten). In all probability the hair cells found in the mantle are the seat of a special olfactory sense (tracking sense).
The digestive organs begin with the mouth, which is placed between the labial palps (fig. 498). The mouth leads into a short cesophagus, into which the cilia of the labial palps drive small nutrient particles receired into the mantle carity with the water. Jaws and tongue are always absent. The oesophagus widens into a spherical stomach, at the pyloric end of which a blind sac, which can be closed up, is attached. A rod-like transparent structure (crystalline style) is often found either in the abore-mentioned blind diverticulum of the stomach, or in the alimentary canal itself. It is to be regarded as an excretion-product of the alimentary epithelium, and is periodically renewed. The intestine always attains a considerable length, is much coiled and is surrounded by the liver and generative glands ; it projects into the foot and then ascends again behind the stomach to the dorsal surface: it then traverses the
ventricle of the heart, pasises over (dorsal tos) the posterion adductor muscle to open at the hind mad of the horly into the mantle eavity at the end of a projecting papilla.

The circulation is effecterl hy inl interial heart, which is enclosed in a pericandium and lies in the donsal middle line slightly in fiont of the posterion adductor musele. The heart consists of a median ventricle, which is perforated by the alimentary canal, and of two lateral anricles, through which the hoor enters the ventricle. 'The ventricle of the heart of Arca is peculiar in heing double; the efferent arote, however, unite to form in mpaired vessel. The damifications of the anterior and posterior arorta learl the bloor into a complicated system of lacume in the mantle and in the interspisces between the viscera. These, which coincide with the body cavity, represent the capillaries and finer venous ressels; while, hy sone observers, they have been regarded as a true capillary and venous system. The chief venous sinuses are two lateral sinuses placed at the base of the gills, and a median sinus into which the lacunse of the foot lead. From these part of the bloorl passes direct into the gills; the main part, however, first passes through a network of canals in the walls of the kidney or organ of Bojanus, as through a kind of portal circulation, and thence into the gills, whence it is returned as arterial blood to the auricles of the heart. Water is said to enter the circulation through openings in the foot and to become mixed with the blood. Nevertheless the erectile networks of the foot are blood-lacune.

Organs of respiration.-There are usually two paiss of hranchial leaflets (gills), which begin behind the labial palps and pass backwards along the sides of the borly. The outer surfaces and the interlamellar water-spaces of these branchial leaflets are covered with cilia, which keep up a continuous flow of water over the gill.. The outer gill, viz., that lying next the mantle, is usually considerably the smaller of the two. It is often completely alsent, so that the number of the gills is reduced to a single pair. Sometimes the gills of the two sides fuse with one another across the middle line in the posterior region, and may in extreme cases represent a sack, like the branchial sack of the Ascidians (Clavagella).

The most important of the excretory organs - the organ of Bojanus, so-called after its discorerer-is a paired, glandular sine with folded walls, and of an elongated oval form, whose cirity communicates with the pericardium (fig. 498). The substance of this gland, which functions as kidney, is composed of a yellow or
brown spongy tisme, which is covered with a closely ciliated layer of cells, from which concrements containing calcareons matter and uric acid (also guanin) are excreted. The simple duct often receives the duct of the generative apparatus, or the two organs open together on a common papilla on either side. In the Siphoniata, on the other hand, the renal and generative openings are almost always separate.

Generative organs. - The Lamellibranchs are, with a few exceptions (the genera, Cyclas, Pecten, Ostrea, Clavayella, Pandora), dicecions. Both kinds of sexual organs lie amongst the viscera, and have the form of lobed or racemose glands, which are placed near the liver, suround the windings of the intestine, and extend into the base of the foot. The testis and ovary can usually be distinguished from one another with the unaided eye by their colour; the ovary being red in consequence of the colour of the ova; the sperm, on the contrary, is milk-white or yellow. The openings of the ducts are placed right and left near the base of the foot. The form, position and opening are exactly the same in the hermaphrodite glands, in which the male and female follicles may be separate and open separately (Pandora) or together (Pecten, Clavagella, Cyclas); or the same follicles may function sometimes as ovary and sometimes as testis (Ostrea, Cardium norwegicum). In the diœcious forms, the male and female animals may differ in the shape of the shell, as is the case in the fresh water Unionidce. Here the outer gills of the female are used for the reception of the eggs (brood pouch), and the shell is more arched. Hermaphrodite individuals are met with among the freshwater mussels, both in Unio and in Anodonta. The fertilization of the eggs is probably usually effected in the mantle or branchial cavity of the female.

But few Lamellibranchs are viviparous. The fertilized eggs, however, almost always remain for some time between the valves of the shell, or pass into the branchial leaflets, where they undergo the early processes of embryonic development under the protection of the mother. This care of the brood is especially conspicuous in the fieshwater forms; in the Cnioniclee the eggs pass into the great longiturlinal canal of the external gill, whence they are distributer into the gill spaces, which become enormously widened and modified into peculiar brood-pouches. In the emptying of these brood-pouches the contents are expelled through the great longitudinal canal as a mass of eggs, united together by mucus and containing ciliated embryos, or as a continuous string of eggs.

The development* of the embryo is introduced by an unequal segmentation. The segments armage themselves in the form of a blastosphere, on which the archenteron often arises by invagination, while the mesoderm is developed from two cells which are early

Fig. 502.-Stages in the development of the larva of Terello (after B. Hatschek). ", optica mediansection of an embryo with two mesoderm cells (M_{8}) and two cntodcrm cclls ($E \cdot 2$); $E c$, ectoderm cells. b, Ciliated embryo with mouth (O), stomach, intestine, and shell gland $(S d r)$; S, shcll. $--c$, Later stage; $S p$, apical plate ; A, anal invagination.

d, Larva of iTeredo. O, mouth; A, anus; Pre, præoral ciliater ring ; Pow, postoral ciliated ring ; N, pronepbros; Ot, otocyst ; $P g$, pedal ganglion : $M z$, mesoderm cells.
separated. The first trace of the endoderm also may hare the form of two cells (tig. 502). The embryo, which is partially ciliated and often rotates within the egg membranes, soon acquires a ciliated relum and shell gland. The nervous system, otocysts, and foot are not differentiated till

> * Vide especialḷ Lovén.
" Bidrag till Kännedomen om Ctrecklingen af Mollusca Acephala Lamellibranchiata." Stockholm. 1848.

Flemming, "Studien uiber die Entwickelungsgeschichte der Najaden." Sitznugsber. der K. Akad. der ITissensch. Vienna. 1875.
Carl Rabl, "Ueber die Entwickelungsgeschichte der Malermuschel." Jena, 187 (\%.
B. Hatschek, "Ueber die Entwick-gesch. von Teredo." Arbritc" aus dem. zont. Institute, etc., Tom. III. Vienna. 1881.
afterwards; while the heart, kidney, and gills are still later in making their appearance. Among the provisional arrangements the velum, which proceeds from the sides of the preoral ciliated ring, is rery generally present, and in the free-swimming larve has the form of a large ciliated ring or collar.

The development of the freshwater forms (Cyclus, Unio, Anodonta), in which the eggs and embryos are contained in well-protected brood pouches, may generally be called direct. The marine Lamellibriunchs, on the other hand, are born at an early stage, and swim about for a long time as larve with large umbrella-like velum, from which the labial palps are developed (fig. 503).

The Lamellibranchs are for the most part marine and live at different depths, sometimes creeping, sometimes swimming and jumping. Many are without the power of changing their position, inasmuch as they fix themselves at an early age by means of the byssus threads to rocks and stones (oysters). Others, as the boring forms, bore passages in the wood of ships and piles and in rocks.

The Lamellibranchs had a wide distribution in the earlier periods of the earth's history, and their fossil shells are most excellently preserved ; they are therefore of the greatest importance as characteristic fossils for the determination of the age of formations.

F1g. 50:. -Larva of Montacute bidentatu (after Lovén). S. velum; S_{p}, apical plate with flagellum; D, intestine; L, liver ; $S M$, anterior adductor muscle; $P e$, foot.

1.-ASIPHONIA.

Mantle without siphons. Pallial impression simple.
Fam. Ostreidæ. Oysters. bhell valves unequal, laminated, with weak hinge usually without teeth, and simple central adductor musele. In the truc oysters the more arehed left valve is firmly attached, while the right and upper valve, which is fastened by an internal ligament, lies as an operculum on the lower valve. Mantle eompletely split and fringed at the edge; gill lamellæ, on the contrary, partially fused on their outer edge. Foot absent or rudimentary. They usually live together, like colonies, in the warmor seas, where they may form banks of considerable extent (oystcr banks). They were also represented in earlier times, especially in the Jura and in the Chalk. Ostrea celuti. L., oyster, on the coasts of Europe on roeky ground ; probably includes a serics of different speeies according to the locality. According to Davaine, the oysters are said to produce only male sexual produets towards, the end of the first year,
and it is only later, from the thirl yenr onwards, that they becone females and proctuce ova. Moelius, on the contrary, asserts that the sperm is the later formed, and not matil after the pregnant beast has got rid of her egas. The reproduction takes place especially in the months of June and July: at which time, in spite of their extriondinary fertitity, the oysters inust not be gathered.
 plasemter 1.

Fam. Pectinide. Scollops. shell equivalvert or uncquivalved, but tolerably equisided, with straight hinge line; often with fan-shaped ribs and bands, with single adductor musele. The free and completely split mantle edges hear numerous tentacles, and often emerald green cyes in great number. The small foot often secretes byssus filmes for attachment. Nome are attachel by their arehed shell valve (Spondylus), wthers swim about by rapidly opening and elosing the shell (Pecten). Many are edible and are even more esteemed than

Fig. 504. - Mytilus cdulis (règne animal). O, mouth; S, labial palps; P, foot; B, byssus secretion; $B r$, gills; M, thickened edge of mantle.
the ofsters. Perter Jucolerus L., P. murimus L., P. varius L. Mcditerranean. S'pondylus yacderopus L. Lima synamosu Lam.

Fam. Aviculidæ. With oblique unequivalred shell of laminated texture and inner mother-of-pearl laycr. They posscss two adductor muscles, of which, however, the anterior is very small. Mantle completely open. Foot small, secreting byssus. Avicula hirundo L., Gulf of 'larent. Meleatrinu maryaritiferol L., pearl mussel, inhabits especially the Indian and Pcrsian Ocenns, and also the Gulf of Mcxico. Secretcs pearls.* The intcrnal layer of the shell is used in commerce as mother-of-pcarl. Malleus culyuris, Lam., Indian Ocean.

Fam. Mytilidæ (fig. 50t). Mussels. Shell equivalved, corered with thick epidermis, with large posterior and small anterior muscle impressions. The tongue-shaped foot fastens itself by the byssus fibres which it secretes. Mantle more or less free except a short siphomal opening fringed at the edge. Pimna squamusis Gm., Mediterranean. Mytilus molis.s L... edible musscl of the North sica and Baltic (fig. 504). Lithurlomus dactylus Sow., in the Mediter-

[^129]ranean (Temple of Scrapis at Pozzuoli). Dreyssechu pulymorphu Fall., has gradually extended over many freshwater systems of Germany.

Fiam. Arcaceæ (Arehemuscheln). Shell thick, equivalved with welldeveloped hinge, and covered by hairy epidermis. The two adduetors form tivo equally large anterior and posterior musele impressions. Arere Tore L., Meliterranean. Pectunculus pilosu.: L., Mediterranean.

The Trigoniadæ (Trigoniacea) are allied herc. Trigonia pectinata Lam.
Fam. Unionidæ (Najades), Freshwater Mussels. With long equivalved but not equisided shells, whieh are eovered externally by a strong smooth usually brown epidermis, and intermally by a mother-of-pearl layer. One of the musele impressions is divided. Foot with eutting edge ; gills fused behind the foot. The outer gill plates also funetion as brood-pouehes for the cleveloping eggs. They live in standing or running water.

Anodonta cyynea Lam., in ponds. A. anatina L., more in rivers and brooks. Unio pictorum L., (Malermusehel). Unio tumidus Retz., batavus Lam. Margaritanu maryaritifera Retz. (Flussperlmusehel), in mountain streams of South Germany, espeeially in Bavaria, Saxony, and Bohemia.

II.-SIPHONIATA.

Part of the mantle edges fused, with elongated tubular siphons.
F'am. Chamidæ (Chamacea) (Gienmuscheln). Shell unequivalve, with strongly developed cardinal teeth and simple pallial line. The mantle edge fused, except at three points, viz., the opening for the foot, the dorsal (cloacal) and ventral (inhalent) siphons. Chama Lazarus Lam.

The Tridacnidæ are elosely related to the above. Tridaenu gigas L. Hippopus maculatus Lam. Indian Ocean.

Fam. Cardiidæ (Cardiacea) Coekles. Shell equivalve, fairly thiek, heartshaped and arehed, with large ineurved umbones, extermal ligament, and strong hinge formed of several teeth. Siphons short. Foot powerful and bent elbowlike, serves for swimming ; passes out through anterior slit. Cardium edulo L., North Sea and Mediterranean. Hemicardium cardis.sa L., East Indies.

Fam. Lucinidæ (Lucinacea). Shell cireular, free, closed, with one or two eardinal teeth, and a second quite rudimentary lateral tooth. Pallial line simple. Mantle open in front, prolonged behind into one or two siphons. Lurina lactea Lam. Mediterranean.

Fam. Cycladidæ.* Shell equivalve, free, swollen, with external ligament and thick horny cpidermis. Mantle with two (rarely one) more or less fusecỉ siphons. Live in fresh water. C'yclas eornca L., Pisidium Pf. Corbieula Mühlf.

Fam. Cyprinidæ. Shell regular, equivalve, elongated to an oval, closed, with thiek and strong epidermis. One to three principal eardinal tecth, and usually a hinder lateral tooth. Pallial line simple. Mantle edges fused to form tivo siphonal npenings. C'yprina islandica Lam., Isucurdia cur L. Mediterranean.

Fram. Veneridæ. Shell regularly round, or oblong with three diverging cardinal teeth on eaeh valve. Pallial line bent in. Siphous of unequal size, fused at the base. Venus verrucusa L., Mediterranean. Cythroca Chione L., edible, Meditcrranean. C. Dione L., Atlantic Ocean.

Fam. Mactridæ (Fig. 499). Shell trigonal, equivalve, closed or slightly

[^130] 1835.
gaping, with thick epidermis. Two diverging cardimal tecth. Prallial indentation short. romadel. Siphons fuserl, with fringed openings. Mactra stultmum L., Mediturmean. Lutruria Lam.

Fam. Tellinidr. With two long, completely separated siphons; eelges of mantle widely open, bearing tentacles. 'I'riangular foot. Trllima baltica Gm. T. ralliata L. Donare trunculus L.

Fim. Myidæ (Gapers). Mantle almost eompletely closed, with slit for the protmsion of the short or eylindrically clongated foot, and very lone

Fig. 505. - Teredo
navalis, removed fromits calcareous tube, with elongated siphons (after. Quatrefages). fleshy fused siphons. The valves gape at eachend and poresess a weak hinge. Bury themsel ves deepp in mud and samed. Sollon ragimu J., jazor shell. My, trumcata I. ((iaper).

Fam. Gastrochænidæ (Tubicolidæ). Shell thin, equivalve, tonthless, sometimes inserted in a ealcarcous tube formed by an exeretion of the mantle. Mantle with one small opening anteriorly and prolonged behind into two fused siphons with terminal openings. G'ustrochoena clucal L., c'lavayclla bucilluris Desh. Asypergillum jaranum Lam., Indian Oecan.

Fam. Pholadidæ. Boring mussels. The valves of the two sides gaping; without eardinal teeth and ligament, but with aceessory ealeareous pieecs which lie either on the hinge (Plolus) or on the siphons (Tererio, fig. j0.5). Mantle with only small opening for the passage of the thick foot. Siphons elongated. Bury themselves in mud and sand, or bore into wood and even into solid stone, calcareous rocks and corals. They form passages, from whieh they protrude their fused siphons. Plulus ductylus L. Piddoek, Ph. crassata L. Terento nuralis L. (Fig. 505) Shipworm, was the eanse of the famous dam-break in Holland at the beginning of last eentury.

SCAPHOPODA.

Dioccious Mollusca without head, eyes, or heart, with tri-lobed foot, and tubutar calcareous shell open at the two ends.

The Scophopocto are allied to the Lamellibranchs. The adminable investigations of Lacaze-Duthiers* first cleared up this group of Molluses, which were for a long time known as Cirrobranchicta and grouped amongst the Gastropods. He showed that they are closely related to the Acephatc, and constitute forms transitional between the latter and the Cephulophora.

The shell is an elongated, somewhat bent, open, conical (with the apex broken off) tube, and contains the animal, which has a similar shape and is fastened by a muscle to the thinner lower edge of the shell

[^131](fig. 506). The body possesses a saccular mantle, ${ }^{\text {T }}$ like the shell open at both ends, and a trilobed foot; the foot is protruded through the larger of the openings of the shell from the anterior opening of the mantle, the margin of which is thickened. A separated cephalic region is not present, but there is an egg-shaped projection in the mantle cavity, at the apex of which is placed the mouth, surrounded by eight leaf-like labial

Fig. อ06.-Dentalium Taientinum (after Lacaze-Duthiers). Animal withont shell from right side. P, foot; Mt, circular muscle of mantle ; M, longitudinal muscle; $B r$, gills ; N, kidney; L, liver; G, generative gland. appendages.

The buccal armature consists of a lateral (right and left) rudimentary jaw, and a tongue beset with five rows of plates.

The alimentary canal is divided into a buccal cavity, cesophagus, stomach with large liver, and an intestine, which after several coils closely pressed together, opens behind the foot into the middle of the mantle cavity.

The circulatory organs are reduced to two mantle vessels and a complicated system of wail-less spaces of the body cavity.

Respiration is effected by the surface of the mantle and also by the filiform tentacles, which arise from two ridges (cervical collar) behind the head-like buccal prolongation.

The kidney lies round the rectum, and opens by two openings placed on the right and left of the anus.

The nervous system consists of three groups

a
Fig. 507.-Larva of Dentalium (after Lacaze-Drthiers). a, foung larva with first rudiment of shell (S). b, Older larva seen from the dorsal surface; T, tentacle collar; G.g, cerebral ganglion; Oez, esopluagus; L, liver. of ganglia, of which the pedal ganglion bears two otocysts. Eyes are absent. The numerous ciliated tentacles serve as tactile oryans.

The Scaphopoda are diecious. The ovaries and testes are unpaired finger-shaped lobed glands, which are placed behind the liver and intestine, and open to the exterior with the right kidney.

The amimals live buried in mud, and ereep about slowly by meanof the foot. The yombe swim about for some time as lavar, provided with ciliated tuft and riliated collar; then acquine a shell, which is almost hivalve, a velmm, and foot; the shell mbsequently heromes tulular (fig. う07).

Order:-Solenoconchæ.

Fam. Dentalidx. Ientulimm rutulis I., D. chphantimum I... Mediterrancan and Inclian Ocean.

Class II.-GASTROPODA.

Mollusca with distinct head, often learing tentacles; a ventral muscular foot and undivided mantle, which firequentl!y secretes a simple plate-shaped or spirally turisted shell.

The anterior part of the borly or head usually bears two or four

Fig. 508.-Helia promatia. O, Eyes at the extremity of the tentacles and two eyes, which are placed sometimes at the apex, usually at the base of a pair of tentacles (fig. 508). The muscular foot projects from the rentral side of the body : it. form and size presents numerous modifications. As a rule it has a broad and long plantar. surface ; but in the Heteropodu it has the form of a rertically extended fin. The shape of the body depends on the position and form of the mantle. The latter is placed like a cap on the dorsal surface, and consists of a more or less considerable fold of the dorsal integument ; its elge is usually thickened, sometimes also prolonged into

[^132]lobes or drawn out into processes. The lower surface of the mantle unailly serves as the roof of a carity, which extends on to the clorsal surface and also on to the sides of the body. This carity contains the respinatory organ, and opens to the exterior by an aperture or tubular prolongation at the mantle enge.
The body carity is developed on the dorsal surface of the foot, usually in a visceral sac, which projects like a hermia. The visceral sac tapers gradually at its upper end, and is usually spirally twisted. The mantle and visceral sac are covered by the shell, which to a certain extent repeats the twistings of the latter and can usually completely receive and protect the head and foot when the animal is retracted. The shell is as a rule hard and calcareous, and possesses an internal nacreous layer similar to that of the mother-of-pearl layer of the Lamellibranch shell, The shell is sometimes delicate, horny, and flexible, or it may have a gelatinous (Tiedmannict) or cartiliginous (Cymbutic) consistency. More rarely the shell is so small that it only covers the mantle cavity with the respiratory organs or lies hidden completely within the mantle (Limax, Pleurobranchicatca). In other cases it is thrown off at an early stage, so that. the adult beast is completely without a shell (Vudibranchiata). The shell differ's from that of the Lamellibranchicta in being

Fig. 509.-Section through the shell of Helix pomatia. composed of a single piece; it is either flat and cup-shaped (Putella) and uncoiled, or it is spirally twisted in very, different ways, from a flat disc-shaped to the long drawn-out turret-shaped spiral (fig. 509). In the first case it more resembles the embryonic shell, which lies as a delicate, cap-shaped covering on the mantle. The growth of the shell keeps pace with that of the animal, the additions being made to the edge of the shell, riz., to that part which lies on the edge of the mantle. In consequence of the inequality of this growth spiral twistings arise, the diameter of which gradually and continuously increases. Inasmuch as the unsymmetrical growth of the shell is due to the unequal growth of the body, the position of the openings of the unpaired organs (anus, sexual opening) to one side of thegreat external lip of the shell is intelligible.

The following parts may be distinguished in a spirally-twisted shell ; (1) the apex, as the part of the shell at which the growth hegan and from which the spiral twistings started ; (2) the opening
or "pperture, which leads into the last and manally harent turn of the spinal ; its $\mathrm{lip}_{\mathrm{p}}$ (peristomm, swollen in the adnlt anmal, lies on the edge of the mantle. The spial is twisted to the right or left romul an axis which is directed from the apex to the aperture, and is indicater either by a solid spindle (columella) or a hollow canal. When the turns of the spial we far removed from the axis, this canall inay become an almost conical space with a wirle opening (Solrorimm). The tums are usially closely applierl to one another; more ravely they are separated (Sculuriu pretiosa). Aecording to the position of the columella, a columella edge or inner lipand an onter edge or outer. lip of the aperture may be distinguished. The latter may be entire (holostomatous), or broken by an excavation which is often prolonged into a canal (siphonostomatous). In many Gastropods an opercutum is added; this is usually placed on the hind end of the foot, and closes the shell aperture when the animal is retracted. Nany tertestrial Gastropods secrete before the beginning of the winter sleep in operculum, which is thrown off' again in the spring.

The slimy integument consists of a superficial layer of cylindrical cells, which are fiequently ciliated, and of a connective tissue dermis, which is inseparably connected with the dermal muscles. C'rlcareous and pigment glands are placed in the integument; they are especially numerous at the edge of the shell, where they contribute to the growth and peculiar colouring of the shell. The shell, which is a cuticular structure, is secreted by the epithelium, like otlier cuticular structures; it becomes hard when the calcareous salts which are mixed in the organic basis assume a hard and crystalline condition. The superficial layer of the shell often remains uncalcified as a thin delicate epidermis, while the inner surface is thickened by mother-ofpearl layers (secreted by surface of mantle). The connection of the animal to its shell is effected by a muscle, which on account, of its position on the spindle (columella), is called the spindle muscle. This muscle arises from the dorsal part of the foot, and is attached to the spindle at the beginning of the last turn of the spiral.

The nervous system presents a great resemblance to that of the Lamellibrunchicutc, but there are many differences in detail.

In the Placophora, whose nervous system presents close relations to that of Neomenic and Chwoderma, the ganglionic swellings are not marked (fig. 495). In all other calses the three typical groups of ganglia are present.

* The subjoinel aceount of the nervous system is slightly modified from the German.-ED.
connected together by a transverse band, and each of them gives off a commissure to the pedal ganglia $(P g)$, and a second commissure to a pair of visceral ganglia $(P l g)$. The latter ganglia, which are known as the commissural or pleural ganglia, are also connected with the pedal ganglia (fig. 497). There are thus two nervous commissures round the cesophagus-the direct cerebro-pedal, and the cerebro-pedal by way of the pleural or commissural ganglia. The pleural ganglia may lie directly on the cerebral or pedal ganglia.

Fig. 510.-Nervons system of Haliotis (diagrammatic, after Stengel). C\%, cerebral ganglion; $P g$, pedal ganglion; $P l g$. pleural ganglion (commissural ganglion); $A g$, abdominal ganglion ; O aud O^{\prime}, olfactory organs ; $P e$, pedal cord ; S and S^{\prime}, lateral nerves; $B r$, gills. b, Nervous system of Limncus (after Lacaze-Duthiers).

The pleural ganglia are part of the third typical group of ganglia, viz., the visceral group. They are connected with each other by a long commissure, the visceral commissure, which often extends into the hinder part of the body, and contains several ganglia in its course ; the latter ganglia, which also constitute part of the visceral group of ganglia, send off nerves to the sexual organs, kidney, heart, gills, olfactory organs, and mantle (fig. 497, Gs b,V g, Gs; fig. 510 $a, O, O^{\prime}, A g$; fig. $510 b, A g$).

The visceral ganglionic system of Gastropods is therefore broken VOL. II.
up into several ganglia, and is connected with the pedal (by the pleuro-pedal commisisure) as well as with the cerelnal.

In the Prosobranchicta the position of the visceral commissure, with its ganglia, and nerves presents a peenliar condition (Chiustoneura) ; the commissure from the right pleural granglion passes over(dorsal to) the alimentary canal to the left side, and here forms a ganglion-the supraintestinal yanylion (fig. 497, Gisp)-which supplies the left side, while the commissure from the left pleural ganglion passes under (ventral to) the alimentary canal to the right side, and there gives rise to a ganglion, the subintestinal ganylion, which supplies the right side (vide also fig. $510 a$). The part of the visceral commissure, which connects the supra- and sub-intestinal ganglia often contains one or more ganglia ($V^{\prime} y, A g$). More rarely this crossing is less clearly marked. The cerebral ganglia always give off a pair of nerves, one on each side of the cosophagus, to the buccal ganglia, which give off nerves to the mouth and alimentary canal (fig. 497, Bg).

Sense organs.-Eyes, auditory vesicles (otocysts), tactile and olfactory organs are present.

The eyes are paired, and are usually placed at the end of stalks, which are as a rule fused with the tentacles. The eyes are largest and most developed in the Heteropoda,* in which group they are fastened in special transparent capsules and admit of a movement of the bulb.

The two otocysts are ciliated internally, and are, except in the Heteropoda, connected with the pedal ganglion (fig. 497, 0ℓ), although their nerve always arises in the brain.

Tactile organs are represented by the tentacle; the edges of the lips which are often folded, and lobe-like prolongations which are found here and there on the head, mantle and foot. There are usually two tentacles; \dagger exceptionally they are absent (Plerotrachea, etc.). They consist of simple contractile prolongations of the body wall, which can sometimes (Pulmonata) be invaginated into the interior of the body. Certain peculiar hair cells, from which tufts of hairs project in the aquatic Molluscs, are to be looked upon as the seat of a special sensation. They are scattered over the whole surface of the body, and are especially aggregated upon the parts of the body

[^133]serving for the tactile sensation. The antennæ of the terrestrial Gastropods possess on their end-plates a great number of fine sensecells (club-shaped cells witl rods, Flemming), which are placed between specially-modified epithelial cells, and probably function as olfactory organs. Recently an organ, which was supposed to be a rudimentary gill and is innervated from the supraintestinal ganglion,

Fig. 511.-Anatomy of Helix pomatia (after Cuvier). The mantle cavity is opened on the left side, and the mantle is turned over to the right. The body cavity has been opened and the viscera are umravelled. $C g$, cerebral ganglion; $S p$, salivary gland; M, stomach; D, intestine ; L, liver ; A, anus; N, kidney; $A t$, auricle ; C, ventricle; $P l$, lung; $Z d$, hermaphrodite gland, invested by the lobes of the liver; $E d$, albumen gland; Pr, prostate; Ut, uterus; $R s$, receptaculum seminis; $D r$, finger-shaped glands; $P s$, dart sac; P, penis; $F l$, flagellum; $M r$, retractor muscle; $S p$, spindle muscle.
has been recognised as a sense organ and explained as an olfactory * organ.

In the Zeugobranchiata (Fissurella, Maliotis), two such organs are present, one on the right and the other on the left side, and are indicated by a considerable ganglion.

The digestive organs rarely have a straight course; they are

* J. W. Spengel, "Die Geruchsorgane und das Nervensystem der Mollusken." Zeit. für'. niss. Zool., Tom. XXXV.
usually much coiled, and as a lule bend forwards to open in front on the right side in the mantle cavity. The anus, however, is sometimes on the dorsal surface behind.

Fig. 512.-Alimentary canal of Eolis papillosa (after Hancock). $B m$, buccal mass; $O e$, œsophagus; M, stomach, L, liver sacs, which enter the dorsal appendages; A, anus.

Many of the higher Giastropodu possess an invaginable proboscis, the invagination. beginuing at the base; others possess one which is retractile from the point. 'The mouth is bounded by lips, and leads into at buccal cavity armed with hard masticating structures, and receiving the ducts of two salivary glands. The buceal cavity leads into the cesophagus, which is followed by it dilated stomach, usually provided with a crecal appendage. The stomach opens into an intestine, which is usually long and much coiled, and surrounded by a very large, multi-lobed liver. The liver' occupies nearly all the upper part (upper coils) of the visceral sac, and pours its secretion into the intestine and also into the so-called stomach (fig. 511). The arrangement of the digestive canal and of the liver presents in details many essential modifications; one of the most remarkable is that offered by the intestine with its hepatic ceca of the Phlebenterata (fig. 512). The terminal portion of the intestine is distinguished by its size, and may be called the rectum. 0

The armature of the buccal cavity consists partly of jaws placed on the upper wall, partly of the so-called lingual ribbon (radu-
 la), placed on a tongue-like projection of the ventral surface of the buccal cavity.

The jaws consist either of a single curved horny plate, placed close
buccal - Longitudinal section through the buccal mass of Helix (after W. Keferstein). O, mouth; Mh, buccal cavits; M, muscles; $R d$, radula; $Z n$, lingual cartilage; $O c$, osophagus; If, jaws; Z, sheath of radula.
behind the edge of the lip, or of two lateral pieces of very different form, between which, in some Pulmonates, there is an ulpaired piece. There are no lower jaws; but ou the floor of the buccal
cavity there is a ridge, partly muscular and partly cartilaginous, which, from its resemblance to the tongue of the Vertebrata, has received the sume name (fig. 513). The surface of this tongue is covered by a tough membrane, known as the lingual ribbon or radula, on which are arranged transverse rows of plates, teeth, and hooks of a characteristic form. Behind, the radula passes into a cylindrical pocket, the so-called radula sheath (fig. 513 Z), which projects in $\%$ tubular manner from the lower (ventral and posterior) end of the buccal mass. The radula is secreted in the radula sheath. The size, number, and form of the plates and teeth on the surface of the radula vary in different forms, and afford important systematic characters for genera and families.

In the transverse rows of plates-the so-called segments of the radula membrane-median, intermediate, and lateral plates may be

Fig. 514.-a, A segment of the radula of Pterotrachea Lesueurii (after Macdonald). b, ditto of Neretina fluviatilis (after S. Lovén).
distinguished (fig. $514 a, b$). Troschel believed that natural divisions could be formed according to the special structure of the armature of the radula. But this one-sided systematic treatment requires many corrections, as has been especially shown in the case of the Taenioglossa and Rhipidoglossa.

The vascular system presents numerous and essential variations. The heart is enclosed in a special pericardium, and is usually placed on one side of the middle line near the respiratory organs (fig. 515). It usually consists of a conical ventricle, which gives off the aorta, and of an auricle which is turned towards the respiratory organs, and into which the blood passes by veins. In some Gastropods (Gastropods with two gills, Haliotis, Turbo, Nerita, Fissurella, etc.), the heart resembles that of the Lamellibranchs, in that there are two auricles and the ventricle is pierced by the rectum. The aorta usually divides into two arteries, of which one passes forward and gives off
many branches to the head and foot; while the other passes dorsalwards to the viscera (fig. 515, Au, Ac). The arteries terminate by opening into blood spaces of the body cavity without special walls, from which the blood passes either through the branchisil (pulmonary) arteries, or direetly, without traversing intermediate vessels (Ifeteropodu and many Nudibranchiuta), to the respinatory organs, whence it is returned through branchial (pulnonary) veins to the auricle. The arrangements described as obtaining in the LamelliIranchiata, by which water is able to enter the blood spaces and dilute the blood, are said to oceur also in Gastropodu.

In a small number of Gastropods only is respiration effected

Fig. 515. - Nervous system and circulatory organs of Paludina vivipara (after Leydig). F, tentacle; Oe, œsophagus; $C g$, cerebral ganglion with eye; $P g$, pcdal ganglion with adjacent otocyst; $V g$, visceral ganglion; Phg, pharyngeal ganglion; A, auricle of heart; $V e$, ventricle; $A a$, abdominal aorta; $A c$, cephalic aorta; V, veins; $V c$, afferent vein ; $B r$, gill.
exclusively through the general integument. By far the greater number breathe through gills, and many through lungs ; a few combine branchial and pulmonary respiration. The gills are usually foliaceous or pennate cutaneous appendages, which are generally placed between the mantle and foot and enclosed by the mantle fold; in rare cases they are exposed and placed on the dorsal surface. The mantle cavity is therefore at the same time the respiratory cavity.

The primitive arrangement of the gills appears to be that found in the Zeugobranchiata, in which there are two, one on each side; but, usually an asymmetrical development takes place, and
one gill only remains (fig. 516). The respiration of air is confined to some Prosobranchiata and to the Pulmonata. In this case also the mantle cavity serves as the respiratory cavity, but it differs from the branchial cavity by containing air, and possessing, instead of a gill, a rich network of blood-spaces and vessels on the inner surface of its roof. Both branchial and pulmonary cavities communicate by a long slit along the mantle edge or by a small round aperture, capable of being closed, with the external medium. Frequently, however, the edge of the mantle is prolonged into a long respiratory tube of variable length, which is analogous to the siphon of the Lamellibranchiata. This siphon corresponds, as a rule, to a notch or canal of the shell (vide p. 32).

Fig. 516.-Anatomy of Cassis cormuta (after Quoy)). R, proboscis; Si, siphon; Br, gill ; $N k$, olfactory organ (formerly regarded as a rudimentary gill) ; Spd, salivary gland; N, kidney ; P, penis.

The structure of the respiratory organs has become of importance for the classification of the larger groups. According to the position of the respiratory organs, with regard to the heart and its auricle, two great divisions can, as Milne Edwards has pointed out, be established: (1) the Opisthobranchiata, in which the auricle and gills are placed behind the ventricle; (2) the Prosobranchiata, in which the auricle, with the branchial vein entering from the front, lies in front of the ventricle. As far as this character is concerned, the Heteropoda and most Pulmonata are allied to the latter group; but the Pudmonata, in many features of their organization and in their hermaphroditism, stand closer to the Opisthobranchiata.

The kidney (fig. 516) is the most important excretory organ of
the Cephlalophura. It conresponds in position and strmeture to the organ of Fojanus of Lamellibranchs. It is, however, usually mo pared, and lies near the heart as an elongated triangular sace, with spongy (rarely smooth) walls of a yellowish brown colour. The secretion of the gland consists mainly of hard concrements, which arise in the lining cells, and consist of uric acisl, calcaneous and ammoniacial salts. It opens near the anns into the mantle cavity, either immediately by a slit capable of being closerl, or by a special excretory duct rumming with the rectum.

The Gustropodu generally possess, in the roof of the respiratory cavity, a mucous gland, which often pours out an enormous quantity of its secretion through the mantle orifice. The purphle gland (Purpura, Murex) lies in the roof of the mantle cavity, ncar the rectum. It is a long, whitish-yellow glandular masis, the colourless secretion of which, according to the investigations of Lacaze-Duthier, quickly acquires, under the influence of sunlight, a red or violet colour. The secretion of this gland was known to the ancients, and prized by them on account of its pcrmanence. The coloured fluid, which is excreted from pores of the skin of many Opisthobranchs, e.g., Aplysia, must not be confounded with the genuine purple.

Another gland, whose function is not accurately known, is the pedal gland of Limax and Arion. It extends through the whole length of the foot, and consists of unicellular glands, the delicate ducts of which open into the band-shaped main duct. The latter opens to the exterior between the foot and the head. In many naked Pulmonates (Arion) there is, in addition, a gland at the point of the tail, which secretes considerable quantities of mucus with great rapidity.

Generative Organs.-Some of the Gastropoda are diœcious, some are hermaphrodite. The Pulmonata and Opisthobranchiata are hermaphrodite ; the Prosobranchiata are dimeious. Almost all Gastropods lay eggs, usually in strings. Only a few bear living young, which have developed from the fertilised eggs in the uterus.

The female organs consist of an ovary, oviduct, albumen gland, uterus (dilated and glandular part of the oviduct), vagina, and receptaculum seminis.

The male organs consist of a testis, a vas deferens with seminal vesicle, a ductus ejaculatorius, and external copulatory organs.

The hermaphrodite forms are distinguished by the close connection of the male and female generative glands and their ducts; for not only are the latter in direct communication with each other,
but the ovaries and testes are, with a few exceptions (Actcoon, Junus), united in one hermaphrodite gland, which is usually imbedded among the lobes of the liver. The ova and spermatozoa arise either in different but adjacent follicles of the lobed or branched hermaphrodite gland (Nudibranchiata), the ovarian follicles being placed peripherally to the semeniferous follicles (LEolis) or the epithelium of the same follicle produces in one part ova, in another part spermatozoi, not however usually at the same time, the maturity of the male element preceding that of the female (terrestrial snails). The efferent duct of , the female is nearly always provided with a separated albumen gland, and a receptaculum seminis (fig. 517). In the Helicidce the vagina bears two tufts of fingershaped glandular tubes and a peculiar sac-the dart-sacwhich produces in its interior a dart-like calcareous rod. The latter - the so-called love-dart-is attached to a papilla at the base of the sac; it is protruded during copulation, and seems to play the part of a stimulating organ. It is usually broken during use and is replaced later by a new one. The male generative opening is always in connection with a protrusible penis, and usually

Fig. 517.-Sexual organs of the Roman Snail (Helix pomatia). $Z d$, hermaphrodite gland; $Z g$, its duct ; $E d$, albumen gland; $O d$, oviduct and seminal groove; $V d$, vas deferens; P, protrusible penis ; $F l$, flagcllum ; Rs, receptaculum seminis; D, finger-shaped gland; L, Spiculum amoris; Gö, common genital opening. (After Baasen). opens with the female into a common lateral cloaca.

The structure of the generative organs in the diœecions Gastropods resembles that of the hermaphrodite forms. A receptaculum seminis and an albumen gland may be present in the female (Puludina). The ovaries and testes lie hidden among the lobes of the liver, and the sexual orifices are placed laterally. The males almost always possess a projecting penis, which is either perforated by the terminal part of the vas deferens (Buccinum) or traversed by a furrow, at the base of which the sexual opening is placed. When
the penis is remote from the sexual opening, : ciliated furrow is present, which conducts the spermatozoa from the opening to the penis (Ifurex, Dolium, Strombus').

The embryonic* development begins with in unequal segrentation leading to the formation of a blastula or gastrula. Later the embryo aequires a ciliated velum, the first rudiment of the shell, foot, and primitive kidney, and rotates in the fluid albumen of the egg by the vibrations of the cilia.

The free development is either direct, the just-hatched anima possessing (excepting for the rudiments of larval organs) the form and organization of the adult (Pulmonata), or it takes place by a metamor'phosis. Almost all marine Gastropoda develop by meta-

Fig. 518.-Some stages in the embryonic development of Planorbis (after C. Rabl). a, optical section through a segmenting orum (24 segments). $R k$, polar bodies; Fh, segmentation cavity. b, stage with four mesoderm cells, viewed from the regetative (lower) pole. Ms, mesoderm cells; En, endoderm; Ec, ectoderm. c, Oblique optical longitudiual section through the stage with four mesoderm cells. d, Older embryo, in which the shell gland has shifted to the right. Sdr, shell gland; S, shell; O, mouth; D, alimentary canal ; R, commencing radula; $S p$, apical plate (thickening of præoral lobe) ; Oc, eyes; Ot, otolith; N, primitive kidney; Ve, velum.
morphosis, and the larva possess two large ciliated sails (velum), which serve as locomotory organs in place of the still rudimentary foot. The shell, which is already present on the dorsal surface, is still small and flat with hardly any trace of the spiral twisting, and can usually be closed by an operculum which is attached to the foot. Very often a change of shell is effected, the old embryonic shell being thrown off and a new one formed in its place.

[^134]By far the majority of Gastropoda are marine ; the Basommatophora and some Prosobranchiata (Paludina, Valvata, Melaria, Neretina, etc.) inhabit fresh-water. Many Littorina, Cerithia, Melenia, etc., live in brackish water. The Cyclostomida, and the Stylommotophorca among the Pulnonates, are terrestrial. Further; many branchiate Gastropods are able to live for some time out of water in dry places; in such circumstances they are withdrawn into their shells, the opening of which is closed by the operculum. Almost all move by creeping; some, however, as Strombus, jump; others, as Oliva and Ancillaria, swim excellently by the aid of the lobes of their foot. Some marine forms, as Magilus, Vermetus, etc., are fixed by their shells; a few only are parasitic, as Stylifer on sea-urchins and starfishes, Entoconcha mirabilis in Synapta.

The method of nutrition differs as much as the habitat. Many, especially the Siphonostomata, are voracious predatory animals, and prey on living animals; some branchiate Gastropods, as Murex and Natica, with this object bore into the shells of Molluscs ; several (Strombus, Buccinum) prefer dead animals. An equally large number, viz., almost all Pulmonates and holostomatous branchiate Gastropods, feed on plants.

Order 1.-Prosobranchiata.*

Dicecious branchiate Gastropods with shell, and with gills in front of the heart.

Behind the usually distinctly separated head lies the respiratory (mantle) cavity, into which the rectum, kidney, and oviduct open. In rare cases two gills are present, as a rule the right gill is absent. The branchial veins enter the heart from the front. Cerebral, pedal, pleural and visceral ganglia are present. The males are, as a rule, more slender, and are easily recognized by the large penis placed on the right side of the anterior part of the body. In the generative organs, the accessory glands are usually absent. The eggs are surrounded by albumen and laid in capsules, which are frequently fixed to foreign objects; more rarely they are attached to the foot and carried about (Janthina).

[^135]Sulb-order 1. Placophora.* Body vermiform, symmetrical, without eyes and tentucles. Ventral surface futtened; dorsal surface covered by culcareous plates placed in a seymuental mameor one behind the other. Gills and kidney praired.

The Placophomare the most nearly allied of all Mollusea to certain forms of worms, to which they approximate through the genera Neomeniu and Chuctodermu. The symmetrical body does not possess is separated head, eyes, or tentacles. The integument presents numerous scattered spines, which are sometimes hard and chitinous, and sometimes calcified; they always arise in special follicles lined by ectoderm cells. In addition to these integumentary structures, which are also present in Cluctoderma, there are a series of broad calcarcous

FIG. 519.-Chiton (spiniferus) spinosus (règne animal). plates on the dorsal surface, which are only exceptionally covered by the mantle (C'ryptochiton), and which, according to their origin, represent a multivalve Molluscan shell. The free edge of the mantle is moderately thickered, and under it on each side is placed the small mantle cavity as a furrow containing a series of leaf-like gills (fig. 519).

Of special interest is the simple condition of the nervous system (fig. 495), which greatly resembles that of the Gephyrean-like genera Neomenia and Chuctoderma. Cerebral ganglionic swellings are absent, in correspondence with the want of eyes and tentacles. Four nerve trunks pass off from the double oesophageal ring, an upper lateral pair, the pallial nerves, and a ventral pair, the pedal nerves, which latter are connected by transverse commissures. Pedal and visceral ganglia are not separated as ganglionic swellings from the nerve stems. Buccal ganglia, on the contrary, are present.

The alimentary canal begins with the mouth, which is placed on a roundish lobe; it is much coiled, and extends through the whole length of the body, to open by the anus at the hind end. As in

[^136]most Cephalophora (Odontophora) a large muscular mass, the tongue, covered by a hard chitinous plate, the raduld, is found upon the floor of the buccal cavity. The heart, on the other hand, more nearly resembles in structure and position that of the Lamellibranchs, in that it consists of two auricles opening into a median ventricle, which lies over the rectum.

The kidneys are paired, and open right and left in the mantle furrow ; [they also open, as in other Molluses, into the pericardium]. The Placophora are dieecious.

Testes and ovaries are simple unpaired glands, which lie immediately over the liver and alimentary canal ; their ducts open on each side into the mantle cavity in front of the kidneys.

The development of the egg begins with an equal segmentation ; subsequently the segments of one-half of the ovum divide less rapidly. This half is invaginated, so that a gastrula arises. The larva which leaves the egg membranes resembles Lovén's worm larva in the possession of two eye-spots and a ciliated ring, and develops without a larval shell.

Fam. Chitonidæ. In place of the shell, eight caleareous pieees are present, which are so arranged that the hinder edge of one shell piece overlaps the anterior edge of the next following piece.

Chiton squamosus L., Mediterranean. Cryptochiton Stclleri, Midd.
Sub-order 2. Cyclobranchiata. Prosobranchiata with flat plateshaped shell and foliaceous gills, which are arranged in a closed circle under the edge of the mantle round the broad root of the foot. The buccal lobes are little developed. The foot is powerful, and usually flat and broad. The lingual armature, like that of the Placophora, is formed of toothed horny plates, hence the name Docoglossa of Troschel. A cervical gill placed on the right side of the neck is sometimes present (Lottia). Two kidneys are present. External copulatory organs absent. They feed on plants.

Fam. Patellidæ, (Limpets). The shell is bowl-shaped, and eonsists of a single piece, to whieh the animal is attaehcd by a horse-shoc-shaped musele. Head with two tentaeles, at the swollcn base of which are plaeed the eyes. Tongue extraordinarily long and spirally coiled. The radula is without the median plates, while the intermediate and marginal plates are raised to hooks, and smaller lateral plates appear.

Patella L. The apex of the shell is slightly eecentrie, and hardly inclined to the front. P. corvlea L., P. tarentina Lam., P. scutellaris Lam., Adriatic and Mediterrancan. Nacclla Sehum. Circle of gills broken on the head; the apex of the pellueid shell, shining internally like mother-of-pearl, bent forwards. N. pellucida L.

Sub-order 3. Zeugobranchiata. Gills bipennate, paired and sym-
metrical. Anterior border of mantle deeply cleft, in correspondence with which the shell is perforated or provided with a slit on its outer lip. Kidneys paired, that of the left side rudimentary. Auricle paired; ventricle perforated by rectum. 'Tongue rhipidorglossal, in that the complicated radula bears in each transverse row, m addition to the median and intermediate plates, a great number of lateral plates which are arranged in a fan-like manner and the upper edges of which are bent into the form of hooks. 'Jhey are all herbivorous, and ine without a retractile proboscis or siphonal tube at the shell aperture. They often possess filiform appenclages on the foot. A penis is not developed.

Fam. Fissurellidæ, Shell eup- or eap-shaped, with an aperture at the apex or an anterior marginal excavation for the entranee of water into the mantle eavity, whieh contains two symmetrical gills. Mantle edge fringed. The animals resemble the Patcllide, are provicled with tentaeles and a large foot. lrissurclla Brug. Shell with longish apgrture through the apex, whieh is

Fig. 520.-Conus textilis (règne animal). R, proboscis; $S i$, siphon ; F, tentacle ; O, eye. placed in front of the middle. F. graca L., Adriatie and Mediterrancan. Emarginula Lam. An excaration at the anterior edge of the decp bowl-shaped sholl. E. clungata Costa, Adriatie and Mediterranean. Srutus Montf. (Parmophorus Blainv.) Anstralia.
Fam. Haliotidæ. Sea-cars, ormers. Shell flat, earshaped, internal mother•ofpearl lustre, with a row of holes on the left side. The mantle cavity is on the left side and contains two gills, of which the right is the smaller. Foot fringed, with a broad pedal surfaee. Head with two long tentaeles and short stalked eyes. Hatiotis L. Spiral of shell small and flat. Foot projeeting slightly over the shell. II. tuberculata L., Adriatie and Mediterranean.

Sub-order 4. Ctenobranchiata (Anisobranchiata, e.p.). With large cervical gill of pectinate form on the left side with small olfactory organ (so-called rudimentary gill, fig. $516, N \%$). A spiral shell is very generally present (fig. 520). The male possesses a penis on the right side. Most are carnivorous and possess a protrusible proboscis.

1. Rhipidoglossa. Each transverse row of the radula with numerous lateral plates arranged in a fan-like manner (fig. 514, b).

Fam. Trochidæ, (Top shells). With eonieal shell and spiral opereulum. Foot prolonged into eirri and lobes. Eyes on short stalks. Turlo L. With roundish (eonvex) windings, round aperture, and bueeal edge somewhat eut off. T. rugosus Lam. Troolus L. With angnlar windings, bnecal edge
divided aborc, and outcr lip thin. Tr. varius L., Adriatic and Mcditerr:ulean.
Fam. Neritidæ (Neritacea). With thick, hemispherical shell and opcrculum. Eyes stalked, behind the two long tentacles. Proboscis short, often bilobed. Foot large, triangular. Heart perforated by rectum, with two auricles. Nerita L. Shell thick, hemisphcrical, spiral lateral ; aperture semi-circular. N. rugate, Kocl.; N. (Neritina) fluviutilis L.; Navicella Lam.; N. clliptica Lam., Pacific Ocean.
2. Ptenoglossa.-Without siphon, aperture of shell entire, without excavation or canal. Tongue armed with rows of numerous small hooks and without the median plates.

Fam. Janthinide. Janthina bicolor Menke, Mediterranean.
Fam. Solariidæ, (Wentle-traps). Scalaria communis Lam., Sc. pretiosa Lam., East Indies. Solarium perspectivum Phil., Mediterranean.
3. Rhachiglossa.-With long proboscis invaginable from the base. Tongue long and narrow with at most three plates in each transverse row, a toothed median plate and an intermediate plate on each side, which are often reduced to mere hooks, and may be absent. All possess a siphon and are predatory.

Fam. Volutidæ (Faltenschnecken). Toluta ưdulata Lam., New Zealand; I. resportilio, East Indies; Cymbium athiopicum L.

Fam. Olividæ. Oliva utriculus Lam., Indian Ocean; Harpa rentricosa Lam., New Guinca.

Fam. Muricidæ (Canaliferæ). Murox brandaris L., Mediterrancan. Fusus australis, Quoy Gaim. Columbella mercatoria L., Atlantic.

Fam. Buccinidæ. Whelks. Buccinum undatum L. ; Nassa reticulata L. Mediterranean ; Purpura lapillus L., North Sca.
4. Toxoglossa.-Tongue with two rows of long hollow hooks, which can be protruded from the mouth. All possess a siphon, and usually prey on marine animals.

Fam. Conidæ (fig. 520) (Kegclschnecken). Conus littcratus L., East Indies.
Fam. Terebridæ (Schraubenschnceken). Terebra dimidiata Lam.
Fam. Pleurotomidæ. Pleurotoma nodifera Lam. ; Cancollaria Lam. ; C. cancellata, Lam.
5. Tænioglossa.-In each transverse row of the elongated radula there are usually seven plates. Two small jaws usually found at the mouth entrance.

Holostomatous are :-
Fam. Littorinidæ, (Winkles). Littorina littorea L.
Fam. Cyclostomidæ. Respire air like the Pulmonata by vesscls of the mantlc cavity. Live in damp places on land. Cyclestoma clegans Drap.

Fam. Paludinidæ, (Flusskiemenschnceken). Inhabit fresh water. Paludina vivipara L. ; P. impura Lam.

Fam. Vermetidæ, (Wurmschnceken). Vermetus arenarius L.
Fam. Cerithiidæ. Cerithinm leve Quoy Gaim.

Siphonostomatons are :-
Fram. Cypræidæ, (Cowries). ('ifnrra tiuris Lam; C.mmreta I.
L’am. Tritoniidæ, (Tritonshörner). Tivitoninm raricgatum Brug. ; Rumella gigantion Latm.

Fram. Doliidæ. Cussis corrutre Lam. ; Iolium galew L., Meditermanean.
Fiam. Strombidæ (Alata) (Fligelschucekeu). Stromlus. Isalorllu Lam.; D'terocerus lamlis Lam. ; liostellavia rectirostris Lam.
liam. Naticidæ. Nutica umpullaria Lam.; Sigaretus huliotniderss L., Atlantie.

Liam. Capulidæ, (Miitzenselnecken). C'apulus hungaricus L., Adriatic; Culyptrcea rugasa Desh.
F'am. Ampullariadæ, (Doppelathmer). With branchial and pulmonary cavity. In rivers of hot eountries. Ampullaria celcbensis Quoy. ; A. polita Desh.

Order 2.-Heteropoda.*

Pelagic Gastropoda with fin-like foot, large projecting head and highly-developed moveable eyes. Dicecious.

The body (fig. 521) of the Heteropoda is usually cylindrical and elongated and prolonged into a proboscis-like projecting head, which carries large well-developed eyes and tentacles, and encloses a power-fully-armed protrusible tongue (fig. 514 a). The main peculiarity of the body consists in the formation of the foot, the anterior and middle portion (pro- and mesopodium) of which is modified to the form of a leaf-shaped fin, often provided with a sucker (fig. $521 S$); while the hinder section (metapodium) is considerably elongated and extended far backwards, and seems to form the caudal continuation of the body. The visceral sac is either spirally twisted, and enclosed by a mantle and spiral shell (Atlantce), or has the form of a saccular and projecting mass, which is placed at the limit of the hinder region of the foot, and is likewise covered by the mantle and a hat-shaped shell (Corinaria, fig. 521) ; or finally the visceral sac is reduced to a very small, scarcely-projecting nucleus, which is covered on the front side by a membrane with a metallic lustre and is completely without a shell.

The nervous system is more highly dereloped than that of any other Gastropod. The two large eyes are placed near the tentacles in special capsules, in which they are moved by several muscles. The

[^137]large auditory vesicles each receive a long auditory nerve from the cerebral ganglion, and are characterised not only by the remarkable vibrations of the long tufted cilia of their epithelium, but also by the arrangement of the nerve cells (group of hair cells of the macula acustica round a large central cell, fig. 83). In addition numerous peculiar nerve-endings in the skin, which appear to serve the tactile sensation, and the so-called ciliated organ on the anterior side of the visceral sac, are present. The latter has the form of a ciliated pit, under which is placed the ganglionic swelling of a nerve which

Fig. 521.-Male of Carinaria meditorranea (after Gegenbaur). P, foot ; S, sucker; O, month; $B m$, buccal mass ; M, stomach; $S p$, salivary gland; L, liver; A, anus; $C G$, cerebral ganglion ; Te, tentacles ; Oc, eye; Ot, auditory vesicle ; $B(f$, buccal ganglion; $P g$, perlal ganglion; $M g$, mantle ganglion; N, kidney ; $B r$, gills; $A t$, auricle; $V e$, ventricle; $A r$, anterior aorta; Z, posterior branch of same; T, testis; $V d$, vas deferens; $W^{\prime} p$, ciliated furrow ; $P e$, penis; F, flagellum with gland.
arises in the visceral ganglion; it has the value of an olfactory organ.

The males are distinguished by the possession of a large copulatory organ, which projects freely on the right side of the body : the males of Pterotrachea also possess a sucker on the foot. In Atlanta and Carinaria the sucker is present in both sexes. The testes and ovaries fill the posterior part of the visceral sac and are partially imbedded in the liver. The ducts,' riz., vas deferens and oviduct, open on the right side of the body ; the former at some distance from the organ of copulation, to which the sperm is conducted from the sexual opening in a ciliated furrow. The copulatory organ consists

VOL. II.
of two parts plaecd side by side, (1) the penis with the eontinuation of the ciliated groove ; and (2) the ghand rod which encloses :a longish glind. The oviduct (fig. 90) is more complieated, inasinuels as a large albumen gland and a receptaculum seminis open into it ; its dilated terminal part acts as a vagina.

Tho Heteropoda are exelusively pelagic animals, and they are often found in great numbers in the warmer seas. They are sonewhat clumsy in their movements, which are effeeted with the ventral surfaec uppermost by oscillations of the whole body and the fin. They are all earnivorous. When the tongue is protruded, the lateral teeth fly apart from one another like the limbs of forceps, and when retracted they again fall together. By means of these prehensile movements small marine animals are seized and drawn into the mouth.

Fam. Pterotracheidæ. Carinaria mediterranea Lam., Pterotrachea eoronata Forsk., Mediterranean.

Fam. Atlantidæ. Atlanta Peronii Less., Mediterranean.
Al

Fig. 522.-Avion empiricorum (règne animal). Al, respiratory aperture.

> Order 3.--Pulmonata.*

Terrestrial and fresh-water Gastropods with lung which is placed in front of the heart. Hermaphrodite.

The roof of the mantle eavity, as in the Cyclostomidos, is provided with a network of vessels for aërial respiration. The mantle (pulmonary) eavity opens to the exterior on the right side by a respiratory aperture (fig. 522.) The mantle eavity of the young of the freshwater Pulmonates is at first filled with water, and only later with air. Some species of Planorbis and Limnceus retain, during the whole time of their life, the ability to breathe both in air and water (some Limnceus, with lungs full of water, have been dredged up at

[^138]considerable depths in Lake Constance). The anus and renal opening are placed near the respiratory aperture, sometimes in the respiratory cavity itself. The generative organs open some way in front, but on the same side. In the forms with a left-handed spiral, the respiratory orifice, anus and generative opening are on the left side. Some Pulmonates are naked, or possess only rudiments of the shell in the dorsal integument; others carry a relatively thin and usially right-handed shell. Physa, Planorbis, and Clausilia alone present a left-handed spiral. A true operculum is absent. On the other hand, many forms secrete temporarily a winter operculum.

While the Pulmonates (with some exceptions) resemble the Prosobranchs in the position of the heart behind the respiratory organs, in the arrangement of other organs, e.g., the nervous system, they more resemble the Opisthobranchs. The dentition consists of an unpaired, horny, and usually longitudinally-ribbed upper jaw (which, however, may be absent) and of a radula, which is covered with a great number of toothed plates in longitudinal and transverse rows. All are hermaphrodite. A few, e.g., species of Clausilia and Pupa, are viviparons. Most Pulmonates, however, lay eggs, either as in the fresh-water forms united in tubular or flat masses on water-plants, or as in the terrestrial forms in damp places, each one being surrounded by a protecting calcareous shell. The ovum is always contained in a large mass of albumen, which serves as nourishment to the developing embryo.

I.-Basommatophora.

The eyes lie at the base of the two tentacles. Present many resemblances to the Tectibranchiata.

Fam. Limnæidæ. Limncus auricularis Drap., (Pond snail); L. stagnalis O. Fr. Müller; Physa fontinalis L., Planorbis cornens I., Ancylus tluriatilis Blainv.

Fam. Auriculidæ. Auricula Jude Lam., A. Mide Lam., Carychium mini mum, O. Fr. Müll.

II.-Stylommatophora.

The eyes lie at the tips of two usually retractile tentacles (posterior tentacles).

Fan. Peroniadæ (Amphipneusta). Lung behind heart (Opisthopulmonate). Peronia verruculata Cuv., Veronicella. Blainv., Onchidium Buchan.

Fam. Limacidæ (Naked snails). Arion Fér. Sexual opening beneath the respiratory orifiee in front of the middle of the dorsal shield. Back without a
keel, with candal gland and mucous aperture at end of body. A. rmpiricorum Fér., Limale L. Respiratory aperture behind the middle of the right edge of

F1r. 523. - Doris (Acanthoduris) piloza (Bronn). Br, gills; \mathcal{A}, anus; F, tentacle. the mantle. Sexand opening far removed from respiratory iperture behind the riglit tentacle. Back keeled, without caudal gland and mucons orifice. L. agrest is L., L. vincrerus O. Lir. Muill.

Fom. Helicidæ. Succinca amphitin Drap., P'ına muscontum L., ('lausitia bidrons Dral', Bulimus montawus Drap., Ileti,e pommatiu L. (Roman snail), If. nemorulis I.

Order 4.-Opisthobranchimata,*
Hermaphrodite G'astropods, with flat foot. Branchial veins open into the auricle belind the ventricle.

The great majority of this order are without a shell. The branchial cavity never contains more than one gill. The gills are usually exposed (fig. 523) or absent. Sometimes there are dorsal processes, into which appendages of the alimentary canal enter (fig. 525). The nervous system contains cerebral, visceral and pedal ganglia (except in Tethys, which has a fused ganglionic mass and simple oesophageal commissure). The branchial veins, with a ferv exceptions (Giastropteron), enter the heart from behind.

Sub-order 1. Tectibranchiata. Gill almost always on the right side, covered by the mantle edge or placed in a dorsal branchial catvity. Shell usually present (fig. 524).

Fam. Pleurob:anchidæ. With large gill on right side, and usually internal shell. Pleurobranehrea Meckelii Cuv., Pleurobranchus aurantiacus Cur., Unbrella mediterranea Lam.

Fam. Aplysiadæ (Sea-hares). Shell covered by two lobes of the foot. Aplysia depilans L., Mediterranean.

Fram. Bullidæ. Bulla ampulla L., Philine aperta L., Acera builuta O. Fr. Müll.

Fig. 524. - Plewrobranchus arrantiacuts (règne anima!). Br, gills; P, penis; F, tentacle; R, proboscis.

Sub-order 2. Nudibranchiata. Marine Gastropods, without shell

* Alder and Hancock, l.e. H. Miiller and C. Gegenbaur, "Ueber Phyllirhoë bucephalum." Zeit.f. wiss. Zool., Tom IV., 1854.
or mantle. The gills project freely on the dorsal surface, and may receive appendages of the alimentary canal.

Fam. Tritoniadæ. Gills in two longitndinal rows on the back. Tivitonia IIembergii Cuv., Seyllaca pelagiea L.
To this family is allied Tethys finibriata L., with concentrated ganglionic mass, without radula and buccal mass.

Fam. Dorididæ. Gills in circle round anus (fig. 523). Doris eoccinea Forb., D. tuberculata Cuv., Adriatic and Mcditerranean.
Fram. Æolididæ. Numerous processcs on clorsal surface, into which diverticula of the alimentary canal pass (Phlebenterata). Allis papillosa L. (fig. 525), Tergipes Eihwardsi Nordm. Here are allied Phyllirhoë bucephalum Pér., and the Plyllidiida.

Sub-order 3. Saccoglossa. Gills absent, or as simple appendages of the dorsal integument. The radula with a single row of toothed plates, of which the anterior, after they are worn out, fall into a pocket developed on the floor of the buccal cavity.

Fam. Limapontiadæ. Limapontia atra Johnst.
Fam. Elysiadæ. Elysia viridis Ok.

Fig. 525.-AEAlis papillosa (Bronn). Rp, dorsal papillæ.

Class III.-PTEROPODA. *
Hermaphrodite Mollusca without sharply separated head, with two

Fig. $523 .-$-, Pneumodermon violaceum from the ventral side. b, Clione australis from the side (Bronn). $F l$, fins; $T e$, tontaeles.
large wing-like fins, often with cephalic cones.

The body is sometimes elongated and straight, sometimes with its hinder part spirally rolled. The anterior region bears the

[^139]H. Fol, "Sur lc dévcloppement des Ptéropodes." Archivés de Zoologie expérimentale, etc., Tom. IV̄., 1875.
mouth and tentacles but is hardly separated off as a distinct head: boneath the mouth there are two large lateral fins which morphologically are to be explained as paired parts (epipodia) of the foot (the unpaired part is rudimentary), and which, by their wing-like flappings, canse the movement of the animal. The body is eithere naked (fig. 526) and without distinctly separate mantle, or there is a shell of vory various shape, into which the body with the fins can

Fig. 527.-Creseis acicula from the dorsal side (after Gegenbaur). The hinder part of the body is omitted. Fl, fins ; O, mouth ; Oes, cesophagus; P, median lobe of the foot ; F, tentacle; $G y$, cerebral ganglion; $M n$, mantle nerve ; W s, ciliated shield ; M, stomach; $B l$, blind sac of stomach ; A, anus; N, kidney ; $O \ell$, opening of kidney into the mantle cavity ; At, auricle; Ve, ventricle; G, sexual gland ; R, retractor. usually be completely withdrawn, and which may be horny, gelatinous and cartilaginous, or calcareous, and is almost always symmetrical. In the last case (presence of shell) the mantle is usually very completely developed and encloses most of the body to the region of the fins, behind which the slit-like entrance to the mantle cavity is placed. The integument usually contains calcareous concretions, cutaneous glands, and pigment cells, which may give the body a dark brown, sometimes brownish, or even reddish colour.

The mouth is sometimes surrounded by several arm-shaped processes (Clio), or by two processes beset with suckers (Pneumodermon), the cephatic cones (fig. 526). It leads into a buccal cavity, armed with jaws and toothed radula; at the bottom of the mouth the long œsophagus begins (fig. 527). The œesophagus leads into a dilated stomach, which is followed by a long, coiled intestine, which is surrounded by the liver and bends laterally and forwards. The anus is usually in the mantle cavity on the right side and near the front end.

The circulatory organs are reduced to arterial vessels; the main trunks arise from the spherical ventricle. The veins are replaced by a system of lacunæ of the body cavity without special walls, into
which the arteries open. The blood returns from the lacunx through the respiratory organs to the pericardial sinus, whence it enters the auricle through the venous ostium.

The respiratory organs, as far as they are not represented by the whole integument (Clio), have the form either of foliaceous branchial appendages (Pneumodermon) at the hind end of the body, or, in the shell-bearing forms, of internal gills placed within the mantle cavity, the entrance to which is lined with peculiar ciliated bands. The gills are always but slightly developed, and are reduced either to folded elevations of the ciliated mantle-wall, or to the mantle-wall itself.

The kidney is an elongated contractile sac, which communicates with the pericardial sinus by a ciliated funnel, and with the mantle cavity or directly with the exterior by a strongly ciliated opening which is capable of being closed.

The nervous system resembles that of the higher Opisthobranchs. Pleural ganglia are present. The cephalic cones receive their nerves from the brain; the two fins as parts of the foot from the pedal ganglia.

Sense organs.-A pair of auditory vesicles are always present. Eyes' on the other hand are absent or very rudimentary, as red pigment spots (Hyalea) placed either on the visceral sac near

Fig. 528.-Larva of Cerolinic triden. tate (after Ful). Ms, velum ; P, foot; P^{\prime}. the two lateral (epipodial lobes of the foot ; A, anus; M, retractor muscle; $M d$, stomach. the œesophageal ring or on the tentacles (Clio). Tactile organs are represented by two small tentacles (Hyalea, Cymbulia) and the larger cephalic cones which are sometimes beset with suckers (Clio and Pneumodermon).

The Pteropoda are hermuphrodite. The hermaphrodite gland lies near the heart behind the stomach in the visceral sac, and usually possesses a common duct which is provided not only with a seminal vesicle, but also with a kind of albumen gland and receptaculum seminis; it opens to the exterior usually on the right side in front of the anus. The penis is sometimes in the terminal part of the duct ; in the Hyaleidce and Cymbutiidee it has the form of a rolled-up protrusible tube placed in front of the sexual opening. The eggs are surrounded by albumen and laid in long strings which float freely in
the sea. The embryos acquire velar lobes and shell, and leave the egg as larvie (fig. 528). While the velum is atrophying, the two fins gradually "ppear on the first-formed unpaired part of the foot, while the shell (with operculum) is usually cast off. The IIyaleide howover appear to keep the larval shell and develop it further, while the Cymbutiade replace it by a new shell. 'I'he naked I'neumodermidas and Clionidee do not after the loss of the velum and shell grow direct into the sexmal animal, hut first acguire three rings of cilia and pass into a new larval phase (fig. 529). The Pteropods always live on the high sea, but may by retracting their velum sink.

Order 1.-Thecosomata.

Pteropoda with a shell. Head but little developed, often not

Fig. 529.-Larva of Pneumodermon (after Gegenbaur). distinct; tentacles rudimentary. The rudimentary foot remains in connection with the fins.

Fam. Hyaleidæ. Shell calcareous or horny, swollcn ventrally or pyramidal, symmetrical, with pointed processes. Hyalca tridentata Lam., Cleodora Per. Les., C'rescis Rang., Chr aeicula Rang., Mediterranean.

Fam. Cymbuliidæ. With cartilagino-gelatiıous shell, boat-shaped or slipper-shaped. Cymbutia Peronii Cuv., Tiedmannia neapolitana Van Ben.

Order 2.-Gymnosomata.
Naked Pteropods, head bearing tentacles, often with external gills. Fins separated from the foot. Larvæ with rings of cilia.

Fam. Clionidæ. Body spindle-shaped, without gills. Clio lorealis Pall., constitutes with Limacina arctica the chicf food of Whales.

Fam. Pneumodermonidæ. Body spindle-shaped, with external gills, and two protrusible arms, whieh are beset with suckers and plaeed in front of the fins. Pneumodermon violaccum d'Orb.

Class IV.-CEPHALOPODA. *

With well-marked head, a circle of arms bearing suckers round the mouth and funnel-shaped perforated foot. Diocious.

In the form of their body the Cephalopods are most nearly allied

[^140]to the Pteropods. The morphological relation between these tivo groups was first thoroughly discussed by R. Leuckart. He showed that the cephalic cones (tentacles) of Clio correspond to the cephatic arms of Cephalopods, while the median lobe of the foot, represented by the cervical collar; is the equivalent of the funnel. Huxley, however, does not take this view ; he holds that the arms are parts of the propodium and that the funnel, which is formed by the fusion of paired folds, is equivalent to the paired elements of the epipodium which in Pteropods form the fins.

The mantle carity is placed on the posterior surface of the body, which in the natural position is the under surface. In it are placed on each side one (Dibranchiata) or two (T'etrabranchiuta) gills, the anus, the paired renal openings, and the genera-

Frg. 530.-Octopus macropus, creeping (after Verany), T, funnel. tive opening which is sometimes single and sometimes paired. The tyes and olfactory organs are placed at the sides of the head. Anteriorly around the mouth four pairs of fleshy cephalic arms,
chromolithographiés d'après le vivant." Ie Partie. Céphalopodes de la Méditerranće. Gênes, 1847-51.
H. Müller, "Ueber das Männehen von Argonauta argo und die Heetoeotylen." Zeit. für niss. Zool., 1855.

Jap. Steenstrup, "Heetocotylus dannelsen hos Oetopodsl., ete." K. Danks. Tidensk. Selskabs sherifter, 185ั6. Uebersetzt in Archiv für Naturgesch., 1856. Alb. Kölliker, "Entwiekelungsgeseh. der Cephalopoden." Zuirich, 1844.
arratred in a circle, project; they scrve for creeping and swimming, as well is for the capture of prey, and usually bear rows of suekers on their oral surface. In many forms (Octopoda) the basal parts of the arms are united by a membrane which forms a kind of funnel in front of the mouth, the cavity of which is contracted and dilated in movement (not to be confounded with the pedil funnel, fig. 530 ' ${ }^{\prime}$). In others two lobe-like cutancous appendages, the socallcd fins, serve for swimming (fig. 531) : these forms (Decapodu)

Fig. 531.-Loligo vulgaris (after Verany). possess in addition to the cight arins a pair of very long tentacles (fig. 531).

In Nautilus, the single living representative of the Tetrabranchiata, therc is found in place of the eight arms a crown of vcry nuinerous tentacles. These, however, according to the view of Valenciennes, appear to correspond morphologically to suckers; in fact similar filaments are found on the arms of Cirroteuthis, as prolongations of the cylindrical nucleus of the suckers. The true arms of N'autilus are very short and rudimentary, forming fold-like lobes at the base of the tentacles.

The funnel is placed on the ventral (posterior) side and projects from the broad opening of the mantle cavity, which can be closed laterally by suckers. It has the form of a cylindrical tube, narrowed at the front (free) end, and in Nautitus is open along the under surface. Its broad base is placed in the mantle cavity, and it serves to conduct away to the exterior from the latter the respiratory water which has entered by the general mantle-opening, and with it the excrementitious and generative products. At the same time, acting in conjunction with the powerful mantle musculature, it serres as an organ of locomotion. The respiratory water is violently driven through the fumnel by the contraction of the mantle, the greneral
opening of the mantle being firmly closed by the sucker-like arrangement at the base of the funnel ; the animal, in consequence of the reaction, is thus projected backwards.

Many Cephalopoda are naked (Octoporla), others (Decapoda) possess au internal rudimentary shell, a few (Argonauta, Nautilus) are provided with an external spirally-coiled shell. The internal shell rudiment of the Decapoda lies in a pocket in
the dorsal mantle, and is usually a flat, laucet-shaped spongy calcareous plate (os sepice). The external shell is only exceptionally thin and simple (Argonauta) ; usually it is spirallytwisted and divided by cross partitions into a number of successive chambers. The animal lives in the anterior chamber, which is the last formed and largest. The other chambers, which diminish continuously in size backwards, are filled with air; they remain, however, connected with the large anterior chamber by a central tube (siphon), which perforates the partitions and contains a prolongation of the animal's body.

The dermis of the Cephalopoda contains the remarkable chromatophores, which cause the well-known play of colours. These consist of cells filled with pigment; to their walls, which are formed of a cellular mem-
 brane, numerous radiating muscular fibres are attached. When the latter contract the cells are pulled out into a star shape; in the processes so formed the pigment is distributed. When the contraction ceases, the cell returns, in virtue of the elasticity of its walls, to its original spherical form and the pigment is again concentrated in a small space; thus the animal changes its colour. There are usually two kinds of chromatophores, as far as colour is concerned, placed above and near one another. They are connected with a special centre
(after W. Keferstein). L, lip ; Mxi, Mxs, lower and upper jaws ; Ra, radula; $B q$, buccal ganglion; Spd, salivary gland; Oe, œesophagus ; L , liver ; Gg, bile duct; Gsp, splanchnic ganglion ; M, stomach; $A I^{\prime}$, blind appendage of stomach; A, anus; $T b$, ink sac.
on the stalk of tho optic ganglion and they canse it rapid interchange of hlue, red, yellow and dark colours. In addition to the chromatophores, there is a deeper layer of small shining spangles Which produce interference colours, and thus give rise to the peculiar iridescence and lustre of the skin.

The Cephalopoda possess an internal cartilaginous skeleton, which serves for the protection of the nerve centres and sense orgrans

Fig. 533.-Nervous system of Sepia officinalis (after Chéron). Cg, cerebral ganglion; $V g$, visceral ganglion; $B y$, buccul ganglion; $S p g$, suprapharyugeal ganglion; $T g$, ganglia of the tentacles; Gist, stellate ganglion; Ot, auditory resicle. and attachment of muscles. In the Dibranchiata this skeleton constitutes a cartilaginous capsule which encloses the cerebral ganglia, cosophageal ring, and the auditory organ, while its lateral portions are hollowed out and represent the orbits. There are also (Decapods) optic cartilages, a so-called brachial cartilage and dorsal cartilage, various small cartilages for the closure of the mantle cavity, and fin cartilages for the support of the fins.

Alimentary canal. The mouth, which is placed within the circle of arms, is surrounded by a circular fold forming a kind of lip (fig. 532). It is armed with two powerful jaws, an upper and a lower, which resemble in form a reversed parrot's beak. The radula, which recalls that of the Heteropoda, bears in each row a tooth-like median plate, and on each side three long looks, adapted for drawing in the food; in addition there may also be some flat non-toothed plates. The œesophagus usually receives two pairs of salivary glands, and either has the form of a simple narrow tube, or presents before its junction with the stomach a crop-like dilatation (Octopods, fig. 535 Jn).

The stomarh (Fig. $532 M$) is usually spherical ; its walls are muscular and its internal lining is raised into longitudinal folds or papillæ. It possesses a large, sometimes spirally wound, cæcal appendage, which opens into it close to the point of origin of the intestine, rarely at some distance from that point. The ducts of the large liver open into this ceccum. A mass of yellow glandular lobes, Which are attached to the upper part of the bile ducts, may be interpreted as pancreas (fig. $532 G g$). The intestine is but little convoluted and the anus always opens in the middle line of the mantle cavity.

Fic. 534.-Horizontal section throngh the eye of Sepia (diagrammatic, after Hensen). $K K$, cephalic cartilage ; C, cornea ; L, lens ; Ci, ciliary body ; Jk, iris cartilage ; K, cartilage of optic bulb; Ae, argentea externa; W, white body; Opt, optic nerve; Go, optic ganglion; $R e$, outer layer of rods, $R i$, inner layer of rods of the retina; P, pigment laser of the retina.

The nervous system is characterised by its great concentration and high development. In the Dibranchiata the nerve centres constitute a large ganglionic mass which is placed in the cartilaginous cranial capsule and is perforated by the esophagus (fig. 533). It is divided into a dorsal and a ventral portion, connected by two commissures. The former corresponds to the brain (cerebral ganglia) and sends nerves to the sense organs and to the buccal ganglia. The ventral portion consists mainly of the pedal and visceral ganglia.
'The latter sends a large mumber of nerves to the mantle, the viscera and the gills. The large ganylion stellatum, which is found on eath side in the mantle, a ganglion of the vena cava, two branchial ganglia, and the grenglion splenchinicum are all developed on the

F1G. 535.- Viscera of Octomus vulgaris after removal of the posterior mantle wall and liver (after M. Edwards). Bm, bnccal mass ; Sel', upper salivary gland: Oe, œsophagus, Sel", lower salivary gland; $J n$, crop; M, stomach; A, end of the rectum turned back; $O c$, eye; $T r$, funnel; $B r$, gills; $O r$, ovary; Od, ovidnct; N, kidney; $K v$, auricle, receiving the branchial vein; V, posterior vena cava; C, rentricle; $A o$, aoita. course of these nerves from the visceral ganglia.

Of the sense organs the large eyes, placed on the sides of the head, are the most conspicuous. Each cyebulb is placed in a special orbit, which is partly formed by an excavation in the cephalic cartilage. It is enclosed in a strong eapsule which is continued over the front of the eye as a thin and transparent membrane, the cornea. The cornea may, however, be entirely absent (Nautilus), or in other cases be pierced beneath aneyelid-likecutaneous fold by a small hole (Oigopsidce), through which the water enters the anterior optic chamber, and passes into a space of various extent round the anterior surface of the bulb (fig. 534). The Cephalopod eye possesses almost exactly the parts as the Vertebrate eye. The presence of the inner layer of same retinal rods in the former may be mentioned as an essential difference between them. The eye of Nautilus is without the lens.

The two auditory sacs are placed in the cephalic cartilage, and in
the Dibranchiata in special cavities of the latter, the so-called cartilaginous libyrinth. They receive from the pedal ganglion their short anditory nerves, which, however, arise in the brain.

The respiratory organs have the form of two (Dibranchiata) or four (Tetrabranchiata) pennate gills, which are placed at the sides of the visceral sac in the mantle cavity. They are bathed by a current of water which is continually renewed.

The heart lies in the hinder part of the visceral sac, more or less closely approximated to the apex of the body. It consists of a median ventricle and as many lateral auricles as there are gills (figs. 535 and 536). A large anterior aorta (aorta cephatica) passes off from the ventricle and gives in its course strong branches to the mantle, alimentary canal, and funnel, and breaks up in the head into vessels to the eyes, lips

and arms. A pos- Fig. 536.-Circulatory and excretory organs of Sepia officinalis teriorly directed visceral artery also leaves the ventricle. The capillary network, which is richly developed in all the organs, passes partly into sinuses, partly into veins, which are collected through lateral veins into a large anterior and a posterior vena cava. Each of these bifurcates into two or four trunks (according to the number of gills) which carry the blood to the gills. Immediately before their entrance into the gills the walls of these so-called branchial arteries are (except in Nautilus) especially muscular and rhythmically contractile and constitute branchial hearts. The Cephalopoda also possess arrangements by which a mixture of water with the blood can be effected.

Paired kidney sacs are always present, one on each side of the
abdomen. They open into the mantle cavity, each throngh the apex of a papillat. The anterior walls of the sacs are pushed inwards by eaceal appendagos of the vente cavae (branchial arterics), so as to give rise to a number of meemose lobules projecting into each renal sace (fig. 536). The renal saces, as in other Molluses, communicate, with the borly cavity, which in Sepia is largely developed and contains the heart, frencrative organs, cte., but in the Octoporla is reduced to a

Fig. 537.-Anatomy of the borly of a female Sepia (after C. Grobben). Ov, ovary in its cavity (body carity) which is laid open; Od, oviduct; Oc, opening of the same; OdD, oviducal gland; Nd, nidamental gland; $A D$, accessory nidamental gland ; N, kidney; U, ureter; $L k$, canal of the body carity (water canal); $K h$, branchial heart; Kha, pericardial gland (appendage of branchial heart); K, gills; $A f$, anus ; Gist, stellate gauglion. narrow tubular space (" water - vascular system" of Kronn) and only contains the sexual glands.

An cxcretory organ very generally present is the ink-sac. It is a piriform sac, whose duct opens to the exterior with the anus, and empties an intensely black fluid, which surrounds the body of the animal as in a black cloud, and so protects it from the pursuit of larger marine animals.

The Cephalopoda are diœecious. Males and females present external sexual differences which principally concern a particular arm. According to the discovery of Steenstrup, one of the arms in the male always becomes modified, hectocotylized as it is called, as an intromittent organ. The two sexes of Argonauta differ considerably, inasmuch as the small male has no shell.

The sexual glands lie freely in the body cavity. Their products are dchisced into the body cavity, from which they are taken up and conveyed to the cxterior by special ducts. The orary is unpaired and racemose, and the oviduct is a double (Octopoda) or unpaired (usually left) duct opening into the mantle cavity; it reccives in its
course a round gland, and its terminal portion possesses glandular walls. In addition, the so-called nidamental glands (fig. 537) are present in the Decapola and Nautilus; they open into the mantle cavity near the generative opening and secrete a cementing substance which surrounds and unites together the egge. The eggs are sur-rounded-either singly (Argonautc, Octopus) or in great number (Sepia) - by capsules with long stalks, which are united together in racemose masses (so-called sea-grapes), and fastened to foreign objects in the sea. In other cases the eggs are aggregated in gela-

Fig. $538 a$.-Male sexnal organs of Sepia officinalis (arter Duvernoy), modified from C. Grobben. T, testis, with a piece of peritoneum; T, opening of the testis into the body cavity ; $V d$, vas deferens; O, opening of the vas deferens into the body cavity; $V s$, vesicula seminalis; P_{i}, prostate; $S p$, spermatophore reservoir; Oe, sexual opening. tinous tubes (Loligo, Sepiolu).

The male generative apparatus presents a similar arrangement (fig. 538, a). Thetestis (T^{\prime}) consists of an unpaired gland formed of long cylindrical tubes. The duct of the testis is placed on the left side and is long, çoiled and complicated. The
following parts may be distinguished in it: (1) a much coiled vas deferens $(V d)$, which opens into the body cavity, (2) a long dilated vesicula seminalis ($V s$) with two prostatic glands ($P r$) opening into its terminal portion, (3) a spacious sac, known as Needham's sac, in which the spermatophores are formed, and which opens into the mantle cavity at the apex of a papilla placed on the left. side.

In copulation the large spermatophores (fig. 538, b) are introduced by means of the hectocotylised arm into the female sexual opening. In some Cephalopoda (Tremoctopus violaceus, Philonexis Curence, and vol. ir.

Argommente argo) the hectocotylised arm of the male appears as an individualized intromittent organ which is filled with sperinatophores, then separates from the borly of the male, moves about for a time independently, and finally conveys the semen into the mantle cavity of the female (fig. 539).

The development* of the cgeg is introduced by a discoidal (partial) segmentation which takes place at the pointed pole of the egg. As in the bird's egrg, the segmented portion of the ovum (formative yolk) gives rise to a germinal disc which in the sulsequent growth is laised more and more from the lower part of the blastoder'm which forms the yolk salc. Soon several projections appear on the embryonic

Fıg. 539. - Male of Argonauta argo (aîter H. Müller). $H c$, hectocotylised arm. rudiment (fig. 540) ; first in the centre of the grrm a flattened ridge is formed around a central depression (M) which it soon grows over. This is the mantle [the depression is the so-called shell gland]; on each side of it the two parts of the funnel appear (T_{r}), and between these and the mantle the gills ($B r$). Also laterally but exter'nal to the folds of the funnel the first traces of the head appear as two pairs of elongated lobes, of which the external anterior pair bears the eyes. On the outer edge of the dise papilliform structures are formed, the first rudiments of the arms. In the later growth of this absolutely symmetrical embryo the Cephalopod form becomes more and more apparent: the mantle projects considerably, and grows over the gills and two parts of the funnel, which fuse to form the definitive funnel. The cephalic lobes grow together between the mouth and funncl, and on their oral sides become more sharply constricted off from the yolk, which with a few exceptions persists for some time as a yolk sac (fig. 541).

The Cephalopods are marine animals, some frequenting the coast and others the high seas. They feerl on the flesh of other animals,

[^141]especially Crustacea. Some of them attain a great size. The flesh is

Order 1.-Tetrabranchiata.*
C'ephalopoda with four gills in the mantle cavity and numerous retractile Dstentacles on the head, with split funnel and many-chambered shell.

The appendages of the head are peculiar. In place of the arms there are a number of filiform tentacles round the mouth. In

Fig. 541.-Almsto ripe embryo of Sepia o.dicinalis from the dorsal (anterior) face (after Kölliker). $D s$, yolk sac.

Noutilus there are on each side of the body (a) nineteen external tentacles, of which the dorsal pair constitutes a kind of hood which can close the orifice of the shell; (b) two ocular tentacles on each side near the

[^142] Kenntuiss von Nautilus" (in Duteh), Ansterdam, 1856.
W. Keferstein in Bronn, Classen und Ordnungen des Thierreciehs. Dritter Band. Cephalopoda. 18 (你.
eye and (c) twelve intermal tentacles, the four ventral of which on the left side are in the mate modified to form the spadix, an organ analogous to the hectocotylised arm. Finally, in the female there are on each side, within the latter, fourteen or fifteen ventrallyphaced labial tentacles. (Fig. 542.)

The cephalie eartilage, instearl of forming a complete ring, consists of two horse-shoe-shaped limbs on which the central prarts of the nervous system lie. The eyes are stalked, and are without it lens or other refractile media. 'Ithe funnel has the form of a lamina rolled upon itself, but the edges are free and not fused. There is no ink-sac. The branchise are four in number as are also the branchial ressels and the kidneys.

Fig. 542.-Neutilus (règne animal). T, tentacles; P, pupil of the eye ; $E k$, terminal chamber; $T r$, funnel ; K, chambers of the shell ; S, sijhon ; Ma, mantle; M, mnscle.

The hinder part of the thick external shell of the Tetrabranchiata is divided by cross partitions into numerous chambers, which are filled with air and are traversed by a siphon. The shell consists of an external, frequently coloured calcareous layer, and an internal mosher-of-pearl layer. The similar structure of many fossil shells: allows us to infer a similar organisation for their unknown inhabitants. The position and structure of the siphon, as well as the form of the septa, and the lines of fusion of the latter with the shell, are important characters for the classification of the fossil Tetrabranchiata. The small number of living species of the genus Nautilus are found in the Indian and Pacific Oceans.

Fam. Nautilidæ. The septa are simply bent and concave towards the anterior chambers. Linc of suture simple, with a few large wavy curves or a lateral lobc. Siphon usually central ; shell orifice simple. Orthoceras, shell straight. O. regularis v. Schl., calcarcous strata of the North Germar plain. Nautilus, shell coiled. N. pompilius L., Indian Ocean.
Fam. Ammonitidæ. The septa much folded at the sides, always with lobe on the onter sidc, in the middle usually convex forwards. Siphon on the outer sidc. Contains only fossil forms. Gonintites retrorsus v. Bueh., Ceratites nodusus Bosc., Ammonites capricornus v. schl.

Order 2.-Dibranchlata.*

Cephalopoda with two gills in the mantle cavity, eight arms bearing suckers or hooks, complete furnel and ink-sac.

The Dibranchiata possess round the mouth eight arms provided

Fig. 543.-Argonautu argo (female), swimming.
with suckers or hooks; in the Decapoda there are, in addition, two long tentacles placed between the ventral arms and the mouth. The cephalic cartilage constitutes a completely closed ring surrounding the central parts of the nervous system; its slightly arched lateral parts serve for the support of the sessile eyes. There are only two gills in the mantle cavity and the same number of branchial vessels and kidneys. The funnel is closed. An ink-sac is usually present. The shell is in many forms completely absent ; in others it is reduced to a horny or calcareous dorsal lamella. A spirally-coiled shell is

[^143]rarely present. In the female Argonaula (fig. 54.3) there is a singlechambered spimal shell with thin walls; in Spirula (fig. 544) there is it multilocular spinal shell, the chambers of which are traversed by a siphon.

Sub-order 1. Decapoda. In addition to the eight arms, there are two long tentacles between the third and fourth pains of arms (rentral). The suckers aro stalked and provided with a horny rim. The eyes are without a mphincter-like lid. The mantle bears two

Fig. 544.-Spivule Peronii (Bromn). lateral fins, and at the mantle edge a well-developed apparatus for closing the mantle opening. An intermal shell is present.

Fam. Spirulidæ. Sprirula Peronii Lam., Pacifie Oecan.
Fam. Belemnitidæ. Jielemniles aigitalis Voltz, Upper Lias.
Fam. Myopsidæ. With elosed cornea and covered lens. Sepia officinalis Lam., Loligo vulgaris Lam., Mediterranean (fig. 531). Sepinla vulgaris Grant., Mediterranean, IRossia mucrosoma Fér. d'Orb., Mediterranean.

Fam. Oigopsidæ. Eyes with widely-opened cornea, so that the erystalline lens is exposed and bathed by the sea-water. Onychoteuthis Lichtenstrini Fér., Ommastrephes todarus d'Orb.

Sub-order 2. Octopoda. The two tentacles are not present. The eight arms bear sessile sucker's without a horny ring, and are connected at their base by a membrane. Eyes relatively small, with sphincter-like lid. The short, rounded body is without the internal shell, and usually also the fin-like appendages. Mantle without cartilaginous apparatus for closing mantle opening, and attached to the head by a broad cervical band. Funnel without valve ; oviduct paired.

Fam. Octopodæ (fig. 530). Octopus rulyaris Lam., O. macropus (fig. 535), Elfdone mosehata Lam.

Fam. Philonexidæ. Philonexis Carence Ver., Tremectopus violaceus Dell. Ch., Argonauta argo L. The small male is without a shell (fig. 539). The large female possesses fin-like expansions of the dorsal arms, and bears a boatshaped, delicate shell, round the sides of which the arm-fins are spread (fig. of 3).

CHAPTER II.

MOLLUSCOIDEA.

Attached bilateral unsegmented animals, with crown of ciliated tentacles or spirally rolleil buccal arms; enclosed by a cell or by a biralve sluell, the valves of which are dorsal and ventral: with a simple ganglion or with several ganglia connected by a pharyngeal ring.

The two groups, Bryozoa and Brachiopoda, which are included in the Molluscoidea were formerly placed amongst the Molluscs, to which they do indeed present affinities. With the increase in our. knowledge of their developmental history, it appears more and more probable, not only that the two groups are descended from an ancestral form common to them and the Annelids, but also that in spite of the considerable differences between them in the adult state, they ar'e in reality closely related, a supposition which agrees with the great resemblance of their larvæ. Should this view of the close relationship of the Brachiopoda, which are always solitary, with the Bryozoa, which almost always form colonies, turn out to be well grounded, then the tentacular crown and the simple ganglion of the latter would be homologous with the spiral arms and subœsophageal ganglion of the former respectively.

Class 1. - BRYOZ0A $*=$ POLYZ0A.

Small animals usually united together to form colonies; with ciliated tentacular crown, horse-shoe-shaped alimentary canal and simple ganglion.

The Bryozoa owe their name to the moss-like dendritic appearance of their colonies, on which the small individual zooids are arranged in a regular manner. The colonies may, however, have a foliaceous or polyparium-like form, or they may form crusts on the surface of foreign objects. Solitary Bryozoa are rare exceptions (Loxosoma). As a rule the colonies possess a horny or parchment-like, frequently

[^144]also ealcareons, rarely gelatimous exoskeleton, which arises from the hardening of the euticlo around the individual zooids. Fiach zooid (zoocium) (fig. 545) is aceordingly surrounded by a very regular and symmetrical ease-the ectocyst or cell ; through the opening of which the anterior part of the soft borly of the contaned zooid with its tentaeular erown can be protruded.

The form of the cells, aud the manner in whiels they are connceterl together, are very different in the different groups, and give rise to a great variety in the form of the eolonies composed of them. The cells are usually completely shut off from each other. With regard

Fig. 545.- Plumatella repens (after Allman). T, Tentacles; L, Iophophore; Oe, œesophagus; $M g$, stomach ; A, anus; F, funiculus ; $S t$, statoblasts ; $T s$, tentacular sheath; Ek, ectocyst; En, endocyst; Gg, gangliou; Pvm, parietovaginal muscles; lim, retractor muscle. to their connection, they sometimes projeet obliquely or at a right angle ; sometimes they are spread out horizontally on the same plane; sometimes arranged in rows on a branched axis. Their openings are usually turned towards one sido or towards two opposite sides. The soft body wall, or endocyst (fig 545, En) is elosely applied to the inner wall of the ectocyst: it consists of an external layer of eells (matrix of the eetocyst) and of a network of crossing museular fibres (the external fibres are transversely, the internal longitudinally arranged), whieh are separated from the first layer by a homogeneous membrane. On the inner side of the muscular layer there is, at least in the fresh-water Bryozoa, a delieate layer of eiliated eells which line the body earity. At the opening of the eell the soft endocyst is invaginated inwards, and passes thence on to the anterior and extrusible part of the body, of which it forms the only investment. In most freshwater Bryozoa this reduplieature of the endocyst is always present even when the zooid is protruded (fig. 545). The greater part of the anterior region of the body, with its crown of tentacles, can, howerer, always be protruded from the eell and retracted into it again by special muscles traversing the body cavity (fig. 545).

The dise on which the mouth is placed is known as the lophophore. The lophophore is either eircular (Stelmatopoda), or it is draw out
into two lobes so as to have a horse－shoe shape（Lophopodu，fig．545）， and its margins are produced into a number of richly ciliated ten－ tacles．The tentacles are simply hollow processes of the body wall； they are provided with longitudinal muscles，and their cavity com－ municates with the body cavity，from which they are filled with blood．They serve both for procuring food（setting up by means of their cilia whirlpools in the water）and for respiration．

The digestive organs lie freely in the body cavity，and are attached to the integument by the so－called funiculus and by bundles of muscles． The body and tentacular apparatus has been in－ correctly regarded as a kind of individual，and opposed to the cell or Cystid，in which it is placed， as the Polypid．The mouth is placed in the centre of the circular or horse－shoe shaped lophopore，and a moreable epiglottis－like process，known as the epistome，often projects over it．The alimentary canal is bent on itself，and consists of（I）an elongated ciliated œesophagus often dilated to a muscular pharynx ；（2）a spacious stomach，with a blind backward prolongation，the hind end of which is attached to the body－wall by a cord （funiculus），and（3）a narrow intestine，which is bent up nearly parallel with the pharynx and is directed forwards．The intestine opens by the dorsally－placed anus，near but usually outside the buccal disc（Ectoprocta，fig．545）．In a few forms the anus is within the circle of tentacles（Endo－ procta），e．g．，Pedicellina and Loxosoma（fig．546）．

Heart and vascular system are absent．The blood fills the whole body cavity，through which it is circulated chiefly by the cilia of the body－ wall．The whole surface of the anterior protrusible

Fig．546．－Pedicellina echinata．Te，tentacu－ lar crown ； 0 ，mouth ； $M D$ ，alimentary canal； A ，anus；G ，ganglion； Ov，ovary． part of the body，and especially of the tentacles，serves as a respiratory organ．The ciliated canal of the Endoprocta is to be regarded as a kidney．

The nervous system consists of a ganglion placed on the seso－ phagus between the mouth and the anus．This ganglion in the Lophopode is contained in the cavity of the lophophore，and is attached to the osophagus by a delicate circum－œ⿰㇒⿻二丨冂刂灬丶丶ophageal ring；it sends off numerous nerves to the tentacles and œesophagus．Accord－
ing to Fr. Miiller there is in Serinturin a so-called colonind nernoms systeme which comertis the individual zooids of one colony and enables then to co-ordinate their activities. Claparede *escribes the same for V^{\top} esicularia, also for Scrupocellarie scruposa and Bugnela (ravicu(uria). Special organs of sense have not been recognined.

Many forms of Bryozoa present examples of a well-inarked polymorphism. In Serialaria and its allies the joints of the stalk represent a special form of individual; they have a comsiderable size and a simplified organization, and serve as the ramified substratum on which the nutritive individuals

Fig. 547.-Bugula avicularia (after Busk). Te, Tentacular (suwn; R, retractor muscle; D, illinentary canal ; F, funic'ulus; $A v$, avicularia; Oes, cesophngrs; Olz, Ovicells. are placed. In addition, there are here and there joints of the roots which, under the form of tendril- and stolon-like processes, serve to attach the colony. The peculiar appendages known as avicularia and vibracula, which are modified individuals and seem to have the function of food-procuring organs, tre found in many marine Bryozoa. The avicularia (fig. 547, Av) resemble birds' heads and consist of two-armed pincers, which are attached to the colony near the openings of the cells and occasionally snap. They may seize small organisms, e.g., worms, and hold them till they are dead; the decomposing organic remains are swept into the mouth by the currents caused by the cilia of the tentacles. The vibracula hare a similar arrangement, but present in place of the snapping beak a long and extremely moveable flagelliform filament (fig. 548). Finally there are the ovicells (oocia), each of which is filled with an egg; they have the form of helmet or dome-shaped appendages and are sessile on the zoœcium (fig. 547 Ovz).

The reproduction is partly sexual and partly asexual; in the latter case it may be effected by the so-called statoblasts or by budding. The male and female sexual organs are reduced to groups of cells producing either spermatozoa or ova, which usually arise in

[^145]the same animals, more rarely in different individuals. The ovaries which are filled with many ova ire placed on the immer surface of the anterior part of the body wall; while the testes with their seminal capsules are developed either on the upper part of the funiculus or near the point of attacliment of the latter to the body wall. Both kinds of generative products are delisced into the body cavity where fertilization takes place. From the body cavity the fertilized egg passes either into a bud of the body wall (Alcyonella), or, as in marine Bryozoa, into an external appendage, - the оесіит.
The name statoblast (fig. 549) was given by Allman to certain peculiar reproductive bodies, which were formerly
 regarded as hard-shelled winter eggs, Fig. 548.--Scrupoccllaria ferox (after but by him were recognised to be germs which are not fertilised. The statoblasts are found only in the fresh-water forms. They arise from masses of cells which appear principally towards the end of summer on the funiculus (fig. 545). They usually possess a lens-like, biconvex form, and are covered by two watchglass-shaped, hard chitinous shells, the edges of which are often enclosed by a flat ring formed of cells

Fig. 549.-Statoblasts of Cristatella mucedo (after Allman). a, From the surface; b, from the side. containing air (float), and sometimes (Cristatella) provided with a crown of projecting spines (fig. 549).

A very important part of the reproduction is effected by buds which remain permanently attached. The process of budding begins very early in life, before the development of the embryo is completed, and gives rise to the formation of colonies. Parts separated off from the colony are rarely able to produce new colonies (Cristatella, Lophopus).

The development is always connected with a metamorphosis. The budding always begins in the embryo. In the fresh-water forms, after the alimentary tract and tentacular apparatus have made their appearance: a second alimentary canal and tentacular apparatus arise,
so that the ciliated embryo still enclosed in the eger membranes represents a small colony of two individuals. In the manine chilostomatous Bryozoa the fertilized eger passes into the ovicell, which consists of a helmet-shaped capsule and a vesicular operculum. Here the egg segments and develops into an embryo, which passes out as a ciliated larva, and swims about freely in the sea. The irregularly globular larva possesses a ling of cilia (fig. 550, a, b, c). After some time the larva attaches itself and develops the tentacular crown. The primary zoocium soon produces new zoocia by budding ; avicularia are

Fig.550.-a, Larva of Cenele reptans (after Barrois). b, Larva of Lepralia (after Barruis). c, Cyphonautes (diagrammatic after Hatschek). Oe, mouth ; Af, anus; Cl , tuft of cilia; $\mathrm{K} n$, bud. developed, and fimally, but not until after the deatl of the older zoœcia, root filaments.
ъ
In the Endoprocta the egg develops in a brood-pouch placed on the oral side of the animal. The segmentation is complete, and leads to the formation of a blastosphere ; the endoderm arises by invagination, and gives rise to the lining of the midgut; the œsophagus and rectum being formed from the ectoderm (fig. 551). The mesoderm arises from two cells. The larre of the Endoprocta possess an alimentary canal bent into the form of a horse-shoe, and a ciliated collar which is protruded at the front end; further, they contain a bud (fig. $551 e, I^{r} n$), as the first rudiment of a second individual, and a cement gland at the hind end $(D r)$.

Other larval forms, which are apparently of a very different structure, are reducible to the same type-e.g., C'yphonautes (fig. $500, c$), a larva which is found in all seas, and is, according to Schneider, the larva of Membranipora pilosa.

After the winter the contents of the statoblasts give rise to simple, non-ciliated animals, which possess, when they are hatched, all the parts of the adult animal, at once become attached, and produce new colonies by budding.

The Bryozoa are for the most part marine, and they attach themselves to stones, Lamellibrianch shells, corals and plants. Some fre l_{h}-water forms belonging to the genus Cristatella have the power of moving about.

The Bryozoa were widely distributed in the earlier periods, as their numerous fossil remains, which increase in number from the Jurassic period onwards, prove.

Order 1.-Endoprocta.*

Bryozoa with anus within the circle of tentacles.
In the structure of their bodies and the formation of their colonies

Fig. 551-Development of Pedicellina echinata (after B. Hatschek). a, Blastosphere with flattened side of endoderm. Ec, Ectoderm; En, eudoderm; Fh, segmentation cavity. b, Later stage in optical median section. One of the two tirst mesoderm cells (Ms) which lie to the right and left of the middle line is indicated. c, Later stage in optical median section. D_{r}, Cement gland; Oe, œsophagus; $A f$, first rudiment of the rectum. d, Young larva in optical median section. A. Atrium ; HD, rectum; Kh, bud. c, Free-swimming larva, extended. N, Excretory canal ; L, liver cells ; Ms, mesoderm cells.
the Endoprocta present simpler, more primitive conditions since they retain essentially the organization of the Bryozoan larva. The tentacular apparatus of the adult is from its origin directly reducible to the ciliated crown of the larva. Mouth and anus both open within the tentacular circlet into a kind of atrium, which forms

[^146]a brood-ponch in which the testos and ovaries open and the embryos "He developed. A pair of ciliated excretory canals is present.

Fram. Pediccllinidæ. Stocks with stolons, on which the long-stalked individunls project. IPrdice?lima echimuta, Sars. (fig. 65, 2).

Fram, Loxosomidx. Long-stalked solitary animals. Lowrosoma singutare Kef., L. neapolitnnum Kow.

Order 2.-Ectoprocta.

Br:yozor with anus openiny outside the tentacular circlet.

'Ihis group includes by far the greater number of the Bryozoa;

Fig. 552. - Pedicellina echincta. Te, Tentacnlar crown ; O, mouth ; $M D$, alimentary canal (mesenteron) ; A, anus; Ov, ovary; G, ganglion. their structure has been especiatly referred to in the precedent description of the class. The anus always opens outside the ring of tentacles, which are either arranged in a closed circle or on a two-armed horseshoe-shaped lophophore.

Sub-order 1. Lophopola * (Phylactolæmata Allm.).

Frest-water Bryozoa (ercepting the marine lihubdopleura) with horseshoe-shaped lophophore and epistome.

The Lophopoda are mainly distinguished by the bilateral arrangement of the numerous tentacles on the two-armed lophophore (fig. 553). There is always present above the mouth a moveable, tongue-shaped process, the epistome, whence the name Phylactolcemata given by Allman to this sub-order. The zooids are usually of considerable size, and, as opposed to the marine Bryozoa, they are all alike (i.e., there is no polymorphism). The cells frequently communicate with each other and give lise to ramified, or more spongy massive stocks of alwiays trunsparent, sometimes horny, sometimes softer (either leathery or gelatinous) consistency. Statoblasts are very generally present.
Fam. Cristatellidæ. Frec-moving colonies on the upper surface of which the indivicual zooids are arranged in coneentrie circles. C'ristatel7a mucedn Cur.

Fam. Plumatellidæ. Attached, massive or ramified colonies of fleshy or coriaceous consistence. Lopluopus erystallinus Pall., Alcyonella jullgosa Pall, Plumatella repens. L. (figs. 545, 553).

[^147]
Sub-order 2. Stelmatopoda (Gymnolæmata).

Bryozoa with discoidal lophophore, tentacles in a closed circle; mouth without epistome.

The Stelmatopoda are, with the exception of the Paludicellida, all marine forms. 'They are always without the epiglottis-like epistome, and possess a complete circle of less numerous tentacles, which arise from a round buccal dise (fig. 547). In many forms, as in Alcyonidium gelatinosum, Membranipora pilosa, a flask-shaped ciliated canal in the body cavity has been observed; it opens to the exterior near the tentacles, and probably corresponds to the nephridia of segmented worms. Statoblasts are only rarely present. The eggs usually give rise to ciliated larve. The colonies are for the most part polymorphic, being often composed of root- and stem-cells, with vibracula and avicularia. The ectocysts are sometimes horny, sometimes incrusted with calcareous matter, and present great variety of form.

Tribe 1. Cyclostomata. The orifices of the cells wide and terminal, without movable appendages. Most of the species are fossil. The living species inhabit the Northern Seas.

Fam. Crisiadæ. Colonics erect and jointed. Crisia eormuta Lam., Meditcrranean and North Sea;

Fig. 553.-Plumatella repens, slightly magnitied (after Allman). L_{p}, Lophophore; D, alimentary canal.
C. churnea L.

Fam. Tubuliporidæ. The zoœcia disposed in continuous rows. Idmonea atlantica Forb., Phalangella palmata Wood, Arctic Ocean.

Tribe 2. Ctenostomata. Apertures of the cells terminal; when the tentacular sheath is retracted they are closed by a circle of spines as by an operculum. Stem-cells and root-filaments frequently occur'

Fam. Alcyonidiidæ. Zoœcia united to form gelatinous stocks of irregular form. Alrymidium gelatinosum L., Northern Seas.

Fam. Vesicularidæ. The zoœcia project as frec tubes on the branched, creeping or erect colonies. Vesicularia uva L., Farella perdicellata Ald., Norway, Serialaria Coutinhii, Fr. Müll.

Fam. Paludicellidæ. Fresh-water forms. Puludieclla Ehrenbergii, Van Ben.
Tribe 3. Chilostomata. The apertures of the horny or calcareous
cells can be closed by a movable operculum or by a splineter muscle. Avicularia, vibracula, and ovicells are of ten present.

Fiam. Cellulariidæ. Dichotomously branched colonies; zonecia in two or several rows. Cellularia Pallas, C. Peachai Busk, Sórupmecllaria Van Bens. S. scruppase I .

Fam. Bicellariidæ. Yocecia conical or quadrangular, bent. Lateral face on which the aperture is placed is elliptical, and placed obliquely to the median plane of the axis. Buyula Oken, A3. avicularia 1. (fig. 547).

Fiam. Membraniporidæ. Koocia more calcificd and united to form an incrusting colony. Membremipuru Blainv., M. pilosa L., Adriatic ; Lerpralia pertusa Esp., Adriatic ; J'lustra membranucra I.

Fam. Reteporidæ, Zocecia oval-cylindrical, united to a reticulated colony. lietepora Lam., Il. cellulosa L., Mediterranean to the Aretic Ocean.

Fig. 554.-Anatomy of Wraldheimia australis, seen from the side (after Hancock) Do, Dorsal side; $V e$, ventral side of the mantle; St, peduncle; Ma, adductor; Md, divaricator $A \tau$, arms: $V 20$, anterior body wall; Oe, œesophagus; D, iutestiue ending blindly: 0 , point of opening of the liver (L); $T r$, funnel of the oviduct.

Class II.-BRACHIOPODA.*

Fixed Molluscoidea, with anterior (dorsal) and posterior (ventral) shell-valves, with two spirally-coiled buccal arms.

The more recent researches into the development have shown that

* R. Owen. "On the anatomy of the Brachiopoda." Transact. Zool. Suc., London, 1835.
A. Hancoek, "On the organisation of the Brachiopoda." Phit. Trans.: London, 1858.

Davidson, "Monograph of the British fossil Brachiopoda." 1858.
Lacaze-Duthicrs, "Histoire naturclle des Brachiopodes vivants de la Mediterranée." Anн. des. Sc. Nat., 1871, Tom. XV.
Kowalevski, "Russische Abhandlung iiber Brachiopoden-Entwickelung." Moskan, 1874.
W. K. Brooks, "The development of Lingula. and the systematic position of the Braehiopoda." Chesapreake Zool. Lab. Scient. Results: 187 s.
the Brachiopoda, which have hitherto been regarded as Molluses, are closely related to the Bryozoa.

The Brachiopoda possess a large body, enclosed in a bivalve shell, of which one valve is anterior (dorsal valve), the other posterior (ventral valve) (fig. 554). Both valves lie upon corresponding folds of the integument (mantle lobes), and are often connected on the back by a kind of hinge, above which the usually more arched ventral valve projects like a beak. This ventral valve is either directly fused with foreign bodies, or the animal is attached by a peduncle projecting through the opening of the beak (fig. 554 St). The peduncle may, however, pass out between the two valves (Lingula). The valves of the shell are cuticular structures secreted by the skin and impregnated with calcareous salts ; they are not opened by a ligament, but by special groups of muscles (fig. $554 M d$); they are closed also by muscles which are placed near the hinge, and pass transversely from the dorsal to the rentral surface through the body carity (fig. 554 Ma).

The body is bilateral and enclosed by the shell ; it possesses two large reduplications of the integument, the two mantle lobes, which are applied to the inner surface of the shell. The edges of the mantle lobes are thickened, and carry very

Fig. 555.-Dorsal valve of shell of Waldeheimia custralis with the brachial skeleton (after Hancock). regularly-arranged setæ. The mantle may also produce within its own substance calcareous spicules or a continuous calcareous network.

The mouth is placed between the bases of the two spiral arms and leads into the esophagus; the latter passes into the intestine, which is attached by ligaments and surrounded by large hepatic lobes. The intestine either describes a single bend, or is of considerable length and coiled (Discina, Lingula). In the latter case it opens into the mantle cavity by an anus placed on one side of the middle line; while in the hinged Brachiopoda (Terebratula, Waldheimia) there is no anus, and the intestine ends blindly in the body cavity (fig. 554). Sometimes the end of the intestine is continued into a string-like organ (Thecidium).

The two buccal arms are supported by a hard framework, conVOL. II.
sisting of calcareous processes of the dorsal valve of the shell (fig. 555). They have the form of long appendages rolled up in a conical spiral on the anterior side of the body; and they are traversed, as are the labial palps of many Lamellibunchs, by a groove. The edges of the groove give rise to close-set and long fringes composed of stiff

FIG. 556.-Development of Argiope (after Kowalevski). a, Larva, the gastric cavity of which has given rise to the diverticula of the body cavity ($L h$); D, gut. U, Larva with three regions or segments. c, Larva with four bundles of seta in the mantle-lobes of the middle segment. d, Later stage. c, Attached larva with mantle lobes bent anteriorly. f, The tentacles (T) are developed; St, peduncle.
and movable filaments, the ciliated covering of which produces a strong current which leads small particles of food to the mouth opening.

The heart is placed on the dorsol side of the anterior part of the intestine (stomach). It receives the blood through a venous trunk
running on the osophagus, and gives off several lateral arterial trunks. The vascular system is not closed, but is in connection with a blood sinus surrounding the alimentary canal, with the lacune of the viscera and with a well-developed system of lacunre in the mantle and arms. In the latter the blood is brought into close osmotic relation with the water, over a large surface; the inner surface of the mantle and the spiral arms are, therefore, correctly regarded as respiratory organs.

Excretory organs.-Two, rarely four, canals, which are provided with glandular walls and open on each side of the intestine with a funnel-shaped aperture (fig. 554 Tr r) into the body cavity, and on either side of the mouth to the exterior, are to be regarded as kidneys (corresponding to the segmental organs of Annelida.) They function at the same time as generative ducts, and were called oviducts by Hancock.

The nervous system consists of a circumœesophageal ring on which two small supraœsophageal ganglia are inserted. The subœsophageal ganglionic swelling of the ring is, however, much larger, and from it nerves pass out to the dorsal mantle lobe, the arms and addiuctor muscles, and to two small ganglia which supply the ventral mantle lobe and the peduncular muscle with nerves. Sense organs are not known with certainty.

Fig. 557 a.-Larra of Lingula (afte. Brooks). T, Tentacles ; O, mouth; D, alimentary canal ; $A f$, anus; L, liver; $S t$, rudiment of peduncle.

Generative organs.-In all probability most Brachiopoda, as Discina, Thecidium and Terebratulina are dicecious. The sexual organs consist of thick yellow bands and ridges which have a paired arrangement and project from the body cavity into the lacunæ of the mantle, and are there considerably ramified. The eggs pass from the gland's into the body cavity, and are conducted to the exterior by the oriducts (excretory organs) whose funnel-shaped internal openings have already been mentioned.

Development (fig. 556).-After a total segmentation a kind of gastrula is formed, usually by invagination, and the archenteron (Aryiope) becomes divided as in Sagittce into a median cavity, and two lateral diverticula which are constricted off and give rise to the body cavity (fig. $556 a, b$). The oval larva then elongates - and becomes divided by constrictions into three segments (fig. $556 b, c$),
of which the anterior becomes umbrella-shaped, and develops cilia and eye-spots; subsequently it atrophies and gives rise to the upper lip. A fold is formed on the middle segment; this gives rise to the two mantlo lobes, which soon cover the body and a part of the caudat segment (fig. $556, d$). Four bundles of long setie, which, as in the Worms, can be drawn in and protruded, make their appeatrance on the ventral lobo of the mantle of the developing larva. Sater the larva becomes attached and the metamorphosis

Fıg. 557 b.-Longitudinal section of an older larva (after Brooks). Do, Dorsal; Ve, ventral valve of the shell; $M i$, thickened mantle edge ; T, tentacles; 0 , moutls ; Md, stomach ; $A d$, intestine ; M, posterior muscle; G, ganglion. begins. The fixed posterior segment becomes the peduncle; the mantle lobes bend forward and produce the shell. The bundles of setre are thrown off; the deposition of calcarcous matter in the shell begins, and the tentacular filaments (which are at first arranged in a circle) of the later arms make their appearance. In T'hecidium the inner layer (mesoderm and endoderm) arises from masses of cells which are budded off into the segmentation cavity. The subsequent metamorphosis of the larva when provided with tentacles has been most accurately investigated by Brooks for Lingula, the larvæ of which are still free-swimming when the tentacles are being developed (fig. $557, a, b$).

At the present day but few Brachiopods are found in the different seas, as compared with the much larger number in the earlier formations ; certain species of these fossil Brachiopods have great importance as characteristic fossils. The oldest fossils also belong to the Brachiopoda and certain genera which first appeared in the Silurian have persisted to the present day (Lingulct).

Order 1.-Ecardines (Inarticulata.).

Shell without hinge and brachial skeleton. Alimentary canal with laterally-placed anus. Edges of the mantle lobes completely separated.

[^148]
Order 2.-Testicardines.

The shell is calcareous, with hinge and brachial skeleton. The intestine ends blindly.

The exelusively fossil families of the Orthidæ and Productidæ (Productus Sav.), the edge of the shells which have no hinge, form the transition between the two orders.

Fam. Rhynchonellidæ. Rhynchonella psittacea Lam., fossil species found in the Silurian. Pentamerus Sow., contains only fossil species from the Silurian and Devonian formations. The fossil Spiriferidee are allied here (Spirifer Sow.).

Fam. Terebratulidæ. Thecidium meditcrraneum Riss., Waldheimia King; . Tercbratula vitrea Lam., Mediterranean; Torchratulina caput serpontis L., North Sea ; Argiope Dp.

CHAPTER III.

Tunicata*

Bilateral, sacculcor, or barrel-shaped animals; the respiratory cavity with two wide openings, between which is placed a simple nerve ganglion. Heart and branchice are present.

The Tunicata owe their name to the presence of a gelatinous or cartilaginous envelope or mantle (the tunica externa or testa), which completely surrounds the body. The body is saccular (Ascidians) or barrel-shaped (Salpce). In all cases there is at the anterior end a wide opening (figs. $558,559,0$), which can be closed by means of muscles, and often also by valves. Through this opening water and nutrient matters pass into the pharyngeal cavity, which also serves as a respiratory organ. At some distance (Ascidians) from this first opening, or at the opposite end of the body (Salpoe), there is a second opening (figs. $558,559 \mathrm{~A}$), which can also be closed; this serves as the exhalent opening of the cloacal cavity ($K l$), which communicates with the pharyngeal cavity.

[^149]The integument is sometimes gelatinous and sometimes of leathery or cartilaginous consistency, and is often clear as crystal or transparent, but sometimes oparquo and variously coloned. The outer. surface is smooth or warty, sometimes spiny or felted. This external

Fig.553.-Clavellina lepadijormis(règneanimal), somewhat diagrammatic. 0 , Mouth ; Br , gills; End, endostyle ; Oe, œesophagus; G, nervous centre ; $M D$, stomach ; $K l$, cloacal space ; A, exhalent pore; $A f$, anus; $G D$, genital glaud; $G g$, genital duct; $S f$, stolons. integument, which completely envelopes the body, is called the external mantle (tunicu), and was formerly regarded as a sort of shell and compared to the bivalve shell of the Lanellibranchs. This view seemed to be supported by the interesting discovery of Lacaze-Duthiers * that there are Ascidians in which the stiff cartilaginous tunic is split into two separate valves which can be closed by special muscles (Chevreulius). As a matter of fact, this is simply an external analogy, for the mantle space corresponds to an atrial cavity, and the branchial sac to the pharyngeal sac. The substance of the mantle arises as a cuticular excretion; it consists of a matrix containing cellulose and cells, and therefore with respect to its structure is a kind of connective tissue. In the colonial Tunicates the external mantles of all the individuals may fuse together to form a common mass.

Beneath the saccular mantle lies the body wall of the animal, the outer cellular layer of which is applied to the mantle and represents the ectodermal epithelimu which has produced the mantle and also the subjacent so-called internal mantle layer. Within the latter all the organs of the

[^150]body,-the muscles, nervous system, the digestive apparatus, the generative and circulatory organs,-lie embedded in a kind of body cavity.

The nervous system is confined to a simple ganglion, the position of which near the inhalent aperture marks the dorsal surface. The nerves which radiate from the ganglion branch and pass, some to the muscles and viscera, some to the sense organs-such as eyes, auditory and tactile organs-which are found principally in the freeswimming Tunicates.

The muscular system is chiefly developed around the respiratory cavity, and serves for the dilatation and contraction of this space as well as for closing the inhalent and exhalent pores. In the Ascidians there are three layers of muscles, an external and internal longi-

Fig. 559.-Salpa democratica from the side, somewhat diagrammatic. 0 , Mouth; $P h$, pharyngeal cavity; $K l$, cloaca: A, exhaleut opening; $B r$, gills; N, nervous centre; Mcl, mantle; M, muscular rings ; Z, languet ; $W b$, ciliated arc ; End, endostyle; W_{r}, ciliated gronve; $N u$, uncleus; C, heart.
tudinal and an internal circular layer, while in the Salps there are band-like rings of muscles embedded in the substance of the bodywall, and effecting not only the renewal of the water used in respiration, but also the movements of the free-swimming barrelshaped body. A special organ of locomotion is present in the small Appendicularia and the free-swimming Ascidian larve; it is placed on the ventral surface as indicated by the position of the heart, and consists of a vibratile whip-like caudal appendage supported by a notochordal rod (urochord).

The alimentary canal begins in all cases with a wide pharyngeal cavity, which functions as a respiratory organ. The anterior mantle opening, which must be looked upon as the mouth, leads into this cavity. The œsophageal opening is placed at a distance from the
month inside this respiratory cavity, which in the Ascidians has the form of a latticed brimelial sace. A ciliated groove bounded by Lwo folds extends along the middle vential line of the pharyngeal cuvity, between the mouth and the opening of the asophagus. The grlandular walls of this ventral groove are distinguished as the endostyle (figs. 558 and 559 , J'nd). It begins with two lateral ciliated arcs, which mite to form a complete ring near the inhalent aperture (mouth), and somewhat in front of the ganglion pass over a small cone projecting into the pharyngeal cavity.

The digestive canal which follows the pharyngeal cavity consists of a ciliated oesophagus, which is usually narrowed into the form of it fumel ; of a stomach, usually provided with a liver ; and of a small intestine, which bends round, forming a loop, and opens into the cloacal cavity.

There is always a heart, which is placed on the ventral side of the intestine and is surrounded by a delicate pericardium. The contractions, which are active and regular, pass from one end of the heart to the other.

The sudden change in the direction of the contractions (discovered in the Salps by Hasselt), by which after a momentary period of rest the direction of the blood stream in the heart is reversed, is worthy of note. The vascular trunks (lacunæ) passing from the heart lead into a system of spaces in the body wall through which the blood passes. In the Ascidians there are also vascular loops in the mantle, in that diverticula of the body wall, containing blood and covered with epidermis, project into the mantle. Two principal channels for the blood are placed in the middle line-one on the dorsal side, and the other on the ventral beneath the ventral groove; they are connected by transverse channels placed in the wall of the branchial cavity. The latter communicate with the blood spaces of the variously-shaped branchia, which is formed by the walls of the pharynx, and over the surface of which the water is continually renewed by means of the vibratile cilia which cover it. In the Ascidians almost the entire wall of the pharynx takes part in the formation of the gill. In these animals the pharynx has the form of a sac with net-like walls-i.e., its walls are perforated by a number of slits, which lead from the pharynx into a chamber which is developed round it. This chamber is derived from the cloacal cavity, and is known as the peribranchial chamber. The branchial sac or pharynx is fixed to the walls of the peribranchial cavity along the whole length of the endostyle, and by numerous short trabecula
which pass from the bars of the branchial network to the outer wall of the peribrauchial chamber. In other cases, the number of gillslits is considerably reduced, and the gill is confined to the dorsal part of the pharyngeal wall (Doliolum, Salpa).

Generative Organs.-The Tunicates are hermaphrodite; the male and female generative products, however, often attain maturity at different times. The Salps especially, at the time of their birth, have only the female organs, and it is not until later when they are pregnant that the male organs attain maturity. In Perophora the testes become mature first, in the Botryllidre the ova. The testes and ovaries lie, as a rule, among the viscera in the hind part of the body. The ovaries have the form of racemose glands, the testes of blind tubes united in tufts. The generative ducts of both sexes open into the cloacal chamber, in which (rarely in the place where the germs originate) the fertilization of the ovum and the development of the embryo takes place. The embryo either leaves the cloacal chamber through the exhalent aperture while still enveloped by the egg-membranes, or is nourished by a sort of placenta and born at a more advanced stage of development (Salpa).

In addition to the sexual reproduction, the asexual reproduction by means of budding is very general, and frequently leads to the formation of colonies with very characteristic grouping of the individuals. The budding sometimes takes place on different parts of the body, sometimes is confined to definite places or to a germ-stock (stolo prolifer). The colonies thus produced do not by any means always remain fixed; but, as e.g., Pyrosoma, may possess the power of moving from one place to another, or, as in the Salp-chains, they can swim tolerably rapidly.

The embryonic development of the Ascidians presents a great resemblance to that of the lower Vertebrates, and more especially to that of Amphioxus. After the completion of the total segmentation a twolayered gastrula is formed, from the ectoderm of which the neural tube is developed. At the same time an axial skeletal structure, like the chorda dorsalis, arises from a double row of endoderm cells. The relative positions of the alimentary canal, the nervous system and the notochord are analogous to those of the Vertebrates.

The post-embryonic development of the Ascidians is complicated. The embryos leave the egg-membranes as movable larva (Ascidian tadpoles) provided with a swimming organ (tail) and an eye-spot. They swim about freely for some time, and in many cases produce a small colony by budding before becoming fixed. In the Salps and

Doliohum there is an altermation of generations, which was discovered in the case of Doliolum by Chamisso long before Steenstrup. The solitary Silp, developed from the fertilized ovom of the viviparous sexual form remains asextal all its life, but from its stolo prolifer chains of Salps we produced, the individuals of which differ considerably in form from the asexual animals and are sexual. In Dotiolum the alternation of generations is much more complicated, inasmuch as several generations succeed one another in the cycle of development.

All the Tunicata are marine animals and feed on Algce, Diatoms, and small Crustuceu. Many, and especially the transparent I'yrosomidue and Sulpicle, are phosphorescent, emitting a beautiful and intense light.

CLASS I.-TETHYODEA* (Ascidians).

For the most part fixed Tunicata with saccular bodies. The inlualent and exhalent pores are placed close together, and the branchical sac is large. Development by means of tailed larva.

The body of these animals, as the name Ascidia implies, has the form of a more or less elongated tube or sac with two openings, which are usually close to one another ; of these openings the anterior is the mouth and the posterior the cloacal opening. More rarely, as in the Botryllidce and the free-swimming Pyrosomidle, the two openings are placed at a considerable distance from one another at the opposite ends of the body. The mouth can be closed by a sphincter muscle, and in many cases by four, six, or eight marginal lobes (fig. 560). The edge of the exhalent opening, which can also be closed, and which is placed behind the mouth on the neural (dorsal) side, is often similarly divided into four to six lobes. The spacious pharynx which, as a rule, has the form of a latticed branchial sac, contains at some

[^151]distance from the mouth a circle of usually simple tentacles. On the neural side of the branchial sac is the cloacal cavity which receives not only the water flowing out through the branchial slits, but also the freces and the generative products. The digestive canal, together with the other viscera, is sometimes placed as in all the simple Ascidians rather to the side of the branchial sac or, as in the elongated forms of the compound Ascidians, simply behind the same, and in the latter case often occasions a constriction of the body, so that Milne Edwards was able to distinguish a thorax and abdomen, or even a thorax, abdomen and post-abdomen.

The Ascidians either remain solitary, and then usually attain a considerable size (A. solitarice), or by budding and throwing out root-processes they produce branched colonies, the individuals of which are connected together by their body walls, and are not embedded in a common mantle covering (A. socicles). In other cases (Synascidice) numerous individuals live in a common mantle ; they often have a characteristic arrangement around a common central opening (A. compositce), so that each group has its central cavity, into which the exhalent (i.e. atrial) openings lead as into a common cloacal cavity (fig. 561). There are solitary (Appendicularia) as well

Fig. 560.-Clarellana lepadiformis (règne animal), somewhat diagrammatic. 0, Mouth; $B r$, brauchix: ; End, endostyle ; Oe, œsophagus; G, nervons centre ; $M D$, stomach; $K l$, cloacal clamber; A, exhalent pore ; $A f$, anus; $G D$, genital glaud; Gg, duct of genital gland; Sf, stolons. as compound Ascidians (Pyrosoma) which can move freely. The solitary Appendicularice execute the most perfect swimming movements. In their external form they resemble the free-swimming Ascidian larvæ, and like these they have a whip-like swimming
tail, which by its undulating movements propels the body forward.

In order to understand the structure of the Ascidians, it will be well to start from these simply organised forms. 'I'he most striking character of the Appendicularia, next to the possession of the rentrally-placed swimming tail with its notochord-like skeletal axis (urochord), consists in the absence of a cloacal chamber for the reception of the excreta. The anus is placed in the middle line of the rentral surface; further, there are two funnel-shaped atrial cunals which begin on either side with a strongly-ciliated opening

Frg. 561.-Botryllus violaceus (after M. Edwards). O, Mouth; A, common cloacal opening of a group of individuals. into the pharyngeal sac, and open to the exterior right and left, usually rather in front of the anus. These branchial passages arise as invaginations of the ectoderm, which come into connection with corresponding evaginations of the pharyngeal sac. The introduction of nourishment is regulated by two ciliated ares, which begin at the front end of a short endostyle, surround the entrance of the pharyngeal sac, and run obliquely towards the dorsal surface, where they unite to form a median row of cilia (composed of two rows of ciliated cells). The latter passes back to the opening of the osophagus, opposite a narrow ventral ciliated band, which begins at the hind end of the endostyle (fig. 562).

The Ascidian larvæ (Phallusia) also have, as Krohn long ago discovered, two branchial slits with corresponding atrial passages. The latter, according to Kowalevski, arise as invaginations of the ectoderm, and later on unite on the dorsal side, and then open by a common cloacal orifice. The ectodermal lining of the atrial cavity, which grows round the sides of the pharyngeal sac, consists, therefore, of a branchial layer which is applied to the pharynx, and a parietal layer which forms the internal lining of the outer wall of the peribranchial or atrial cavity. The atrial cavity extends round the pharynx as far as the sides of the endostyle. The wall of the
pharynx becomes perforated by an ever-increasing number of slits, and thus gives rise to the branchial basket-work.

The special form of the branchial basket-work presents numerous modifications of systematic value. Not only is the external surface of the branchial sae attached to the body-wall by trabecule and bands,

Fig. $562 .-$ Appendicularia (Fritillarie!) furcata. a From the ventral side with the tail bent forwards. $G D$, Genital glands; M, muscles of the tail. b, From the ventral side after the caudal appendage has been removed. 0 , Mouth; End, endostyle; $S p$, the two ciliated passages of the pharyngeal cavity ; $D W$, the dorsal row of cilia; Oe, œesophagus; $M d$, stomach ; Δf, anus; $D r$, glands ; C, heart; Ov, ovary ; T, testis.
through which the blood passes, but the internal surface also often presents folds and projections of varying form. Similarly the hranchial openings with which the wall of the pharynx is pierced differ in size, number, and form ; they may be rounded, elliptical, or even spirally coiled.

The ciliated arrangements in the perforated brauchial sae of the

Ascidians correspond to those of the Appendiculurice, and consist of the so-called cudostyle with the vential groove and the two ciliated aches.

The ciliated osophagus is short and funncl-shaped, and leads into a clilated portion distinguished as stonach, whose walls have a laycr of large entoderinal cells and arc complicated by the presence of fold-like projections. Glands, which are sometimes follicular, sometimes composed of bundles of tubes, or of tubes united in a network, lic upon and open into the stomach; they are gencrally known as * liver, but would be better called hepatopancreas. The small intestine which follows the stomach is of considcrable lengtl, is usually bent on itself (hæmal curvature), and is continued into a short rectum (piriform in Appendicularia), which opens into the cloacal chamber. Besides the glands alrcady mentioncd, a gland-like organ has been found in many Ascidians : as there is no opening to this gland, the concretions found in its lumen are probably not in general removed. It may, perhaps, be regarded as a kidney, sincc Kupffer \dagger has shown that uric acid is present in the concretions.

The heart is placed on the ventral side of the intestinal canal. It is a contractile tube, each end of which is prolonged into a vessel. In the Appendicularice (Copelata) the heart is placed transversely. and is pierced by only two slits. The so-called vascular system of the Ascidians consists of a rich net-like system of lacunr, which cannot, however, be said to have special walls.

The nervous system is reduced to an elongated ganglion (cerebral ganglion) placed on the dorsal side of the branchial cavity. From this ganglion nerves are given off, especially forwards towards the entrance of the pharyngeal sac; but unpaired sense nerves and lateral and posterior nerves also arise from it. In the Copelata and Ascidian larvæ the cerebral ganglion is more complicated. In these animals it has the form of a cord, primitively containing a carity, and divided later by constrictions into three regions, and is connected with ganglia in the tail (fig. 563). The anterior conical part of the brain gives off paired sensory nerves to the region of entrance into the branchial sac ; on the median globular part are placed the auditory vesicle and a stalked ciliated organ ; while the attenuated posterior part gives off two lateral nerves to the atrial canals, and is prolonged

[^152]into a long nerve, which at the base of the tail dilates to a ganglion, and in its further course forms a number of smaller ganglia (fig. 563). The reduction of the central nervous system to the simple ganglion of the Ascidian begins after loss of the tail, and after development of the branchial basket.

Of sense organs the processes of the integument which serve for tactile purposes (the lobes of the oral and atrial apertures and the tentacles), and peripheral nerves, ending in epithelial cells, are most widely distributed. The large ciliated cells on the edge of the mouth of the Copelata must be placed in the same category. The ciliated pit is to be regarded as an olfactory organ. It consists of a depression in the wall of the pharynx lined with ciliated cells, and is situated in front of the ganglion. Accolding to Julin, it is, together with a gland situated beneath the ganglion, to be regarded as the equivalent of the hypophysis. In the Copelata the ciliated pit is elongated and lies on the right side of the ganglion.
-There is an auditory vesicle on the left side of the ganglion in the

Fig. 563.-Nervous system of Appendicularia (Fritillaria) furcata (after Fol.). G, Ganglion ; N, body nerve ; N^{\prime}, lateral nerve ; Ot, otolith vesicle; $R g$, olfactory pit; $T z$, tactile cells with their nerve ; Fb , arch of cilia. Copelata. This structure, which is developed from a cell of the wall of the ganglion, is found in the Ascidian larvæ, but degenerates soon after the attachment of the larva. Paired auditory vesicles appear in Pyrosoma where they are connected with the ganglion by a short stalk.

Masses of pigment which are present with great regularity on the lips of the large openings of the body in the simple and compound Ascidians may be interpreted as eye spots. The eye of the Ascidian larve, which lies on the ganglion and originates from a part of the neural caual, has a more complicated structure. Later it degenerates, but in Pyrosoma it is retained in the adult condition and possesses a lens-like structurs.

The generative organs are always united in the same animal. The formation of villi on the surface of the egg-membrane by the follicular cells surrounding the ovum is remarkable. The origin of

Fig. 564.-Development of Phallusia mammillata (after Kowalevski). a, Blastosphere beginning to invaginate ; $F h$, segmentation cavity. b, Gastrula with blastopore (0) : Ed, endoderns; $C h$, commencing notochord (urochord). c, Later stage. $E k$, Ectoderm ; N, rudiment of the still open neural canal. d, Stage with body and tail; $E u^{\prime}$, endodermal layer in the tail: M, muscular cells in tail. e, Just hatched larva; $R g$, anterior swelling of the spinal division of the neural tnbo; $R m$, posterior part of neural tube; $G b$, dilated auterior part of neural tube (cerebral vesicle), with otolith projecting into it; F, opening of $G b ; A$, eye; 0 , invagination of mouth; $P h$, pharyngeal cavity ; Ed, endostyle; D, commencing intestiue; $K l$, atrial opening; $B l$, blood corpuscles; $H p$, papilla for attachment. f, Two days' larra (only the begimning of the tail is represented) ; ${ }_{1} K s,{ }_{2} K s$, branchial stigmata : $B b$, branchial vessel between them ; B, intestine.
the so-called test-cells (follicle-cells which have migrated inwards) over the substance of the yolk on the inside of the egg-membrane, is also worthy of note.

Development.-The segmentation is complete, and leads, according to Kowalevski, to the formation of a blastosphere as in Amphioxus (fig. 564). The wall of the blastosphere then begins to invaginate. After the completion of the invagination the blastosphere becomes a gastrula, with the remains of the segmentation cavity between the ectoderin and entoderm (fig. 564, Fh). The mouth of the gastrula is at first wide, but soon becomes narrower and narrower, until finally it becomes transformed into a small opening placed on the dorsal surface at the hind end of the body. A flat median groove on the ectoderm appears along the dorsal side of the already bilaterally symmetrical embryo extending from the blastopore forwards. This groove, into the hind end of which the blastopore opens, is the first rudiment of the central nervous system. It is known as the medullary groove. Its edges project and form the medullary folds which grow round and close the narrow blastopore, and gradually fuse with one another from this point forwards in such a manner as to convert the groove into a canal, the walls of which separate from the external ectoderm and give rise to the central nervous system. This canal is kuown as the medullary canal : behind it is shut off from the exterior, but communicates with the cavity of the gastrula (archenteron) by way of the blastopore (fig. 564 c), which is now known as the neurenteric canal; while in front it remains open for some time. Before these processes are completed two rows of the endoderm cells of that part of the gastric wall which immediately underlies the neural tube become different from the remaining endoderm cells and give rise to the first rudiment of the notochord. The anterior part of the archenteron only gives lise to the pharynx and intestine (fig. 564, e), while the posterior part furnishes the cell material not only for the notochord, but also for the muscular system and the blood corpuscles. It may accordingly be asser'ted that the mesodermal organ; in the Ascidians arise from the entoderm, which is as good as saying that the hinder half of the gastral sac has the value of mesoderm.

In the further conrse of development the somewhat elongated spheroidal body grows out at the posterior and inferior end, opposite to the blastopore and rather to the right,* into a tail-like prolongation, the axis of which is formed by the cells of the notochord (at this period arranged in a simple row). The neural canal is prolonged into

[^153]the tail dorsal to the notochord. 'The tatil, thas developed, becomes bent and applies itself to the side of the body opposite to that on which the nervous system is placed (rig. 5(ite). Subsequently the skin begins to thicken at the anterior end and gives rise to three pupillie, the future papille for attachment. The radiment of the nervous systom, on which two pigment spots provider with refractive organs make their apperance (eye and auditory organ, fig. Jfite, f), is converted at its interior extremity into a resicle and is continuer above the chorda into the tail (as it cord with a central canal) (A. canina).

The branchial sice, still closed and formed of columnar epithelium, lies close to the nervous system : it is separated from the ventral wall of the body by roundish uncoloured cells, which are probably the formative elements of the blood and of the wall of the heart. It has at this period the position and relative size of the future pharynx and its posterior dorsal extremity grows ont to form the, at first ciecal, rudiment of the digestive canal (fig. $564 e, D$). The mouth is formed from an invagination of ectoderm on the dorsal surface immediately in front of the anterior end of the cerebral vesicle (fig. $564 e, O$). The cloaca first appears as a pair of dorsally-placed epiblastic involutions (fig. $564 e, K l$) : these ingrowths meet and fuse with the wall of the branchial sac so that two perforations are formed. The embryo surrounded by the mantle (formed of gelatinous substance with amœboid test-cells which lave wandered into it) now breaks through the villous egg-membrane and passes into the stage of the freeswimming larval, which presents on the right side of the endostyle the first rudiments of the heart, and possesses all the organs of the later Ascidian except the vessels and the generative glands: in its subsequent development, however, it has to go through a decidedly retrogressive metamorphosis. After the larva has attached itself by means of its papillee, the tail aborts, the muscles and notochordal sheath degenerate, and the axial string of the notochord contracts. The nervous system with the pigment organs degenerates, and the cavity in it disappears; the branchial sac, on the contrary, increases in size, and the cesophagus, stomach, and intestine proper become more sharply distinct. The mantle then becomes firm, the mouth opening perforates the gelatinous covering and becomes the entrance to the branchial sac: behind the mouth the arch of cilia appears at the anterior end of the rentral furrow, which was formed at an earlier stage and gives rise to the endostyle. The opening to the resophagus becomes funnel-shaped and more distinct. The first branchial slits
soon become visible. The blood with its amoboid corpuscles is already moving in the body cavity beneath the skin, and indeed on the branchial sac, through definite channels in the connective tissue, which connects the walls of the branchial sac with the skin. The water which flows through the slits of the branchial sac is collected in the peribranchial space the opening of which coincides with the cloacal opening.

Asexual Reproduction.-In addition to the sexual reproduction, multiplication by means of budding plays an important part, particularly in the Synascidians. According to Krohn, Metschnikoff, and Kowalevski, an entodermal layer (arising in Botryllus from the covering of the atrium) and mesodermal cells as well as the ectoderm take part in the formation of the buds. Many Ascidians, as Perophora and Cluvellina, produce stolons by budding, and from these new individuals are developed, but the latter are not united together into a compact system. Complex systems of buds are developed in the Synascidians, the individuals of which are embedded in a common cellulose mantle. In some cases the larva may form buds while it is still in the tailed stage (Diclemnum). In Botryllus, a genus which is distinguished by the star-like grouping of the individuals round a common cloaca (fig. 561), and by the rich branching of the blood canals, the larva is simple, and does not, as Sars believed, form a colony. Metschnikoff and Krohn, whose accounts agree, have both shown that the eight knob-like buds of the larva are only processes of the ectoderm and contain diverticula of blood spaces. The young Botryllus produces only one bud (first generation), and before the latter is mature perishes without attaining sexual maturity. The bud of the first generation produces two buds (second generation), and dies without reaching sexual maturity. The buds of the second generation each produce two buds, which arrange themselves in a circle, and after the death of their producers form the first system with a common cloaca. In a similar manner new buds are formed, and the older generation dies; the new systems are, however, as transitory and are replaced by others, so that as the stock increases the old generations are continually being replaced by new. In this continuous process of renewal the first-formed generations have only the provisional value of establishing the colony. The later generations alone become sexually mature, and the female maturity is attained before the male. The ova of the still young hermaplirodite generations are fertilized by the sperm of the older ; and it is not until after the death of the latter that the testes of the former become
fully developed. The young generations, therefore, now have the double task of curing for their own atready fertilizerl eggs and of fertilizing those of the succeeding generations.

> Order 1.-C(opecatai* (Ascidians with larval tail).

Sinall free-swimming Ascidians of long oval form, with swimming tatil ; they resemble in the whole of their organization the larve of other Ascidims (fig. 562). The anus opens directly to the exterior on the ventral side. The pharyngeal sac is pierced by only two branchial slits. The heart has two slits and no vessels, The ovaries and testes lie in the hind part of the borly, close to one another, and are without duets. The elongated cerebral ganglion is divided by constrietions into three parts; it is connected with a ciliated pit and an otolithic vesicle, and is prolonged into a nerveeord of considerable size. The latter is continued into the tail, at the base of whieh it swells out to a ganglion; in its further ecurse it forms several small ganglia, whence lateral nerves pass out. In eonsequence of a torsion of the axis of the tail, the originally dorsally-placed caudal nerve comes to have a lateral position. The segmentation of the nerve-cord in the tail (as shown by the ganglionic swellings) eorresponds to the segmental divisions of the museles, which reeall the myotomes of Amphioxus. The large ehorda (urochord), whieh extends along the whole length of the tail, constitutes another point of resemblanee to Amphioxus.

Some species have a pellueid gelatinous eovering, comparable to a shell. The development of these small animals, which were formerly erroneously held to be larva, has been insufficiently investigated.

Fam. Appendicularidæ. Vikopleura Mertens (Appendicularia Cham.), Oicophoeera Gegbr., Oi.furcata Gegbr., Fritillaria Fol. The integument forms a hood-like reduplicature in front; the tail one and a-half times as long as the elongated body; the endostyle is eurved. Fr. furcata C. Vogt., Fr. formicu Fol, Forculerskia Fol. Without heart and endostyle. Reetum absent. h. tenuis F̌ol, Messina.

Order 2.-Ascidie smplices. \dagger

This order comprises solitary forms as well as branched stocks.

[^154]The latter, or social Ascidians, are placed on branched root-processes, and have for a time, or permanently, a common circulation. The mantle-parencliyma is usually of transparent liyaline consistency. The body of the solitary Ascidians is far larger and is surrounded by a hard cartilaginous, very thick and usually completely opaque mantle, the surface of which often has wart-like protuberances and incrustations of various kinds (fig. 560).
Fam. Clavellinidæ. Social Ascidians, the stalked inclividuals of which arise from a commori branched stolon, or on a common stem. The body is sometimes (Clurellina) divided into three regions, like that of the Polyelinilla. Clavellina Sar.: (7. lepuniformis Sav., North Sea; Perophora Listeri Wiegm., North Sea.
Fam. Ascidiadæ. Solitary Ascidians, usually of considerable size. The individuals reproduce themselves, as it seems, only occasionally by budding, and are connected, when they are aggregated together, neither by a common mantle covering nor by bloodvesscls. Ascidia L. (Phatlusia Sav.) ; A. mammilluta Cuv., Mcliterranean ; A. (Ciona) intestinalis L., etc. ; Cynthia Sav., C. papillosa Sav., C. mierocesmmus Cuv., Checreulius Lac-Duth., Mediterranean.
The deep-sea Ascidians are very remarkable aberrant furms. Hyppobythin.s. caleycodes Mos., and Octacnemus lyythius Mos.

Order 3.-Ascidie composite.**

Numerous individuals lie in a common mantle layer, and form soft, brightly-coloured colonies, which have a spongy or lobed form, and not unfrequently form crusts round foreign objects.

In almost all cases the individuals are grouped in a definite number round a common cloaca (Botryllidce), so that round or star-shaped systems with central openings are formed in the colony (fig. 561). The body is sometimes simple and short, sometimes long and divided into two or three regions, and sends out branched processes containing blood into the common mantle mass, so that the latter is permeater by vascular canals.

Fam. Botryllidæ. The viscera of the simple body, which is not divided into thorax and abdomen, lie by the side of the respiratory cavity; without lobes round the inhalent opening. Botryllus stellatus, Pall. ; B. violaceus Edw.

Fam. Didemnidæ. The viscera arc for the most part placed behind the respiratory cavity, and the body is divided into two parts, the thorax and abdomen. Diflemmm Sav. : D. candidum. Sav. ; D. stylifermm Kow.

Fam. Polyclinidæ. The body of the individual is much elongated, and is

[^155]diviled into thomas. abxhmon, amd postablomen. The heart lies at the hind end of the body. Amarrecium Edw. ; A proliferum Eidw.

Order 4.-Aschide salpabormes. ${ }^{*}$

Free-swimming colonies, which float on the surface of the seat, and have in general the form of a fir cone, hollowerl out like a thimble. They are composed of mumerous individuals arranged in the common gelatino-cartilaginous mass in a direction at right angles to the long axis of the colony. The inhalent openings lie in irregular circles on the external surface ; the exhalent openings open opposite to them into the space which serves as a common cloaca. The branchial sitc is wide and latticed as in the Ascidians. The intestine and ovary are compressed together, and lie in a rounded prominence like a nucleus.

Fig. 565.-An individual of Pyronsoma, (after Keferstein). O, Mouth ; A, atrial apperture ;
$A f$, abus ; Ov, ovary ; T, testis ; N, gauglion ; Enel, endostyle ; $B r$, branchial sac ; $\mathrm{H}^{\prime} b$, arch of cilia; C, heart; St, stolo prolifer. b, Csathozoid of Pyroosoinc (after Kowalerski). H, Heart ; Kl, cloaca ; D, yolk around which are the four individuals (ascidizzoids).
(fig. 565 a) ; near them is the heart. The ovary brings only one ovum to maturity, which is surrounded by a saccular follicle with a long stalk. The stalk constitutes the oviduct, and opens into the cloacal cavity. The eye lies on the ganglion. By the presence of the eye, as well as by the position of the two respiratory openings and of the viscera, by the method of reproduction and the free locomotion, the Pyrosomidce are allied to the Salps.

Budding takes place by means of a stolon, which begins at the hind end of the endostyle, and contains an endodermal process of

[^156]the latter (endostylic cone). Sexual reproduction and gemmation take place in the same individual.

The egg develops within an ovarian sac into an embryo, which has the form of a stunted Ascidian-like individual (cyathozooid), and produces, by budding from a stolon, a group of four individuals (ascidiozooids). The peculiar mode of origin of these individuals has been minutely described by Huxley and Kowalevski (fig. 565 b). The process of budding, by which the colony is increased, is no less complicated: it takes place on a germ-stock (stolo prolifer, fig. $565 \mathrm{c}, S t)$ placed behind the endostyle. Each commencing bud receives a prolongation of the foundation of the ovary,* as well as of the endoderm.

The Pyrosomidce derive their name from the bright light which they emit. According to Panceri, this light proceeds from a paired group of cells in the region of the mouth.

Fam. Pyrosomidæ. These animals were diseovered by Peron in the Atlantie Oeean. and were at first regarded as solitary individuals. Pyrosoma Pér.; P. atlantieum Pér. ; P. clegans and giganteum Les., from the Mediterranean.

Class II.-THALIACEA. \dagger

Free-swimming transparent Thmicata with cylindrical or caskshaped body. The mantle apertures are terminal, and at opposite ends of the body. The branchice are band-shaped or lamellar, and the viscera are compressed together into a nucleus.

The Thaliacea (fig. $566 a, b$) are transparent, cylindrical or caskshaped animals, of gelatino-cartilaginous consistency; they are eithersolitary, or the individuals are united in chains (usually in double rows). They move on the surface of the sea by the rhythmically alternating contraction and dilatation of the branchial cavity. The two openings are placed at opposite ends of the body; the mouth at the anterior end, the atrial at the posterior end, near the dorsal

[^157]surface. The mouth has usinally the form of a brow transverse slit, bounded by movable lips, and leads into the large respiratory cavity, which consists of the pharyngeal cavity and the cloaca, and contains the lamellar or band-shaped gill, extended from the dorsal surface obliquely backwards and ventralwards. In Joliolum the gill has the form of an oblique partition, which is pierced by two lateral rows of large transverse slits, through which the water flows

FIG 566.-a Salpa mucronate. b, S. ilemocratica. O, Mouth ; A, cloacal aperture ; NT, ganglion ; $B r$, gill End, endostyle; $\mathbb{F} g$. ciliated pit; Mas, mantle; $N u$, nucleus; C, heart; Emu, embryo ; St, stolo prolifer:
from the pharyngeal cavity into the cloacal chamber. In Salpa the transverse slits are represented by one very large gill-slit on each side, so that the branchial wall is reduced to a median band (the median part of the gill of Doliolum). The two arches of cilia which bound the entrance to the respiratory cavity, and the rentral endstyle (mucous gland) from which a ciliated groove leads to the esophagus, are placed in the wall of the pharyngeal cavity.

The digestive canal, together with the other viscera, the heart and the generative organs, are closely packed together in a brightlycoloured mass, the nucleus, at the rentral side of the hind end of the body. The mantle is often thickened round the nucleus so as to form a globular swelling.

The nervous system, the sense organs, and the organs of locomotion, in correspondence with the power of free locomotion, present a higher grade of development than in the Ascidians. The ganglion, with its numerous nerves, lies above the point of attachment of the branchial band, and attains a considerable size. On the ganglion there is usually (Salpa) a piriform or spherical process, with a horse-shoe-shaped brownish-red pigment spot and numerous rod-shaped structures, which prove beyond all doubt that this structure is an eye. In other cases (Doliolum) there is on the left side of the body an auditory vesicle connected with the ganglion by a long nerve. The median ciliated pit, too, is placed in the respiratory cavity in front of the ganglion. Peculiar sense organs, probably tactile in function, have been observed in Doliolum in the lobes of the two mantle apertures and also on other parts of the external skin. These have the form of groups of roundish cells into which nerves enter.

Locomotion is effected by means of broad bands of muscles, which span the respiratory cavity like hoops, and by their contraction narrow it. Part of the water is thus driven out of the cloacal aporture, and the body is propelled in the opposite direction.

The reproduction of the Salps is alternately sexual and asexual. The solitary Salps are produced sexually, the chains of Salps asexually. The individuals of the chains of Salps are sexual animals, which form no stolon ; the solitary Salps only reproduce themselves asexually by budding on a ventrally-placed stolon. Since these two forms, which differ both in size and shape, as well as in the course of their muscular bands, and in certain features of the gills and viscera, alternate regularly in the developmental cycle of the species, the development represents an alternation of generations, which may even be still further complicated (Doliolum). This alternation of solitary Salps and chains of Salps was discovered long before Steenstrup by the poet Chamisso.

The Salps which form the chain are hermaphrodite, but the two kinds of sexual organs are neither developed nor ready to discharge their functions at the same time. Soon after birth the female organs attain maturity, while the testicular ceca are not developed till later, and produce the sperm still later. In Salpa the female
parts are alinost always reduced to a capsule enclosing it single eggr and surroumbed by blood. This capsule opens into the respiratory eavity on the right side, some distance from the nucleas, by a harrow stalk-like dnet (fig. $5(67$ h). After fertilization the stalk becomes

shorter; so that the egg, which is increasing in size, approaches closer and closer to the lining of the respiratory cavity, and forms with its capsule a projecting cone in which, as in a brood pouch, the embryonic development takes place.*

In the course of development a placenta is formed between the embryo

[^158]and the mother, and this structure plays an important part in the nourishment and growth of the embryo. In the further development of the organs, which agrees in its general features with that of the Ascidians, the placenta becomes more sharply marked off from the body of the embryo, at the posterior end of which a structure known as the elceoblust-the equivalent of the notochord —makes its appearance (fig. 567 c).

It is only after a relatively long period that the embryo is born as a small fully-developed Salpa, which, however, still possesses the remains of the placenta and the elccoblast.

This solitary Salpa, which has been produced sexually, grows considerably during its free life, but always remains asexual, while by budding on its stolon it produces a number of individuals united together in chains. This stolon or germ-stock is a process of the body containing the rudiments of the most important organs. Its central cavity is traversed by a stream of blood, and on its walls the buds sprout out. In Sulpa, as in the Ascidians, the stolon lies on the ventral side, and later enters into a special, open excavation of the body covering (fig. 567 a).

On account of the extraordinary fertility of the stolon several groups of buds of different ages are always present one behind the other; they separate successively as independent chains.

In Doliolum the reproductive processes are much more complicated, for not only do the sexually produced young undergo a metamorphosis but a new series of generations is introduced into the life history. The eggs are laid, and the larve which issue from them are provided with tails and resemble Ascidian larvee (fig. 568, e). They develop into asexual forms which differ from the sexual forms, and are provided with a dorsal stolon (fig. 568 b, Std); the ventral stolon (stolon of Salpa) is rudimentary (Stv) (rosette-shaped organ). Two different kinds of buds are formed on this dorsal stolon, viz., median buds and lateral buds (Gegenbarur). The lateral buds have a slipper-like form, and are without the cloacal cavity ; they do not reproduce themselves, but are concerned with the nourishment of the asexual form. The latter as it increases in size loses its gills and alimentary canal, while its muscular system becomes powerfully developed. The median buds develop into individuals, which resemble the sexual animals except that they are without genital organs; they therefore represent a second generation of asexual forms, which become free and produce the sexual generation from a ventral stolon.

Order 1.-Desmomyara (Salpas).

Thatiucea of eylindrical, usually dorso-ventably flattened form, with band-shaper muscular hoops and thick mantle (fig. 5666). The

Fig. 568. -The forms of Doliolum denticulutum (c, b, u, c, after C. Grobben ; c, after Gegenbaur). a, Sexual animal. 0, Moutlı A, cloncal aperture; $K l$, cloacal space; N, nerre centre: $H s$, cntaneous sense organ; $W b$, arch of cilia; $W_{y} y$, ciliated pit; Encl, endostyle ; Br; gills: C, heart; D, intestine; T, testis; $O v$, ovary ; M, muscular hoops, b, First isexual generation. Stv, Ventral stolon; Stu, dorsal stolon; Ot, auditory organ. c, A later stage of b, with developed dorsal stolon and aborted intestine and gills, less highly magnified. $M s$, Median buds; Ls, litteral buls. d, Nutritive animal produced froun the lateral buds with large mouth and withont cloaca; Oe, cesophitgus. c, Doliohum larva with larval tail; Ch, chorda (urochord).
anterior opening is furmished with at ralve-like lip which can be shut down. The gill reaches from the ganglion to the oral region, and in consequence of the development of two large lateral branchial slits
is reduced to a median band. The viscerat are compressed together at the end of the ventral side and form the so-called nucleus. Solitary generations which reproduce themselves by means of stolons regularly alternate with sexual animals which are budded from the stolon and united in chains. The maturity of the female sexual organs precedes that of the male organs. The single egg develops into an embryo which is nourished within the brood-pouch of the viviparous mother by means of a placenta, and becomes a solitary Salpa (asexual form) (fig. 567 c).
Fam. Salpidæ. Salpa Forsk.: S. pinnata Forsk., S. तemocratica Forsk., S. mucromate Forsk. (chain form), Adriatic and Mediterrancan. S. africana Forsk., S. murima Forsk. (chain form), Adriatic and Mediterranean. S. ehorliformis Quoy. Gaim., S. zonaria Pall. (chain form).

Order 2.-Cyclomyaria.

Body cask-shaped, mouth and atrial opening surrounded by lobes, with delicate mantle (fig. 568). The muscles are in the form of closed rings. The dorsal wall of the pharyngeal cavity is formed by a branchial lamella which is pierced by numerous slits, is placed obliquely or is bent and stretched far forwards (D. denticulatum). The digestive canal is not compressed into a nucleus. The ovaries contain several eggs. The testes attain maturity simultaneously with the ovaries. In the first asexual generation there is a large auditory vesicle on the left side. The development takes place by means of a complicated alternation of generations.

Fam. Doliolidæ. D. denticulutum Quoy, Gaim., the gill is bent and is pierced by about forty-five slits. D. Mülleri Krohn. The gill is straight, with ten to twelve slits on either side, Mediterranean.

CHAPTER IV.

Vertebrata.*

Bilaterally symmetrical animals with an internal skeleton (vertebral column), of which dorsal processes (upper vertebral arches) enclose the nervous centres (brain and spinal cord), and ventral processes (ribs) the cavity in which the veyetative organs are enclosed. There are at most two pairs of limbs.

The various animals included in this group were first put together

[^159]hy Aristotle, who callorl them" animals with blood" (vol. 1., p. 132); ho also put forward the possession of a hony or cartilaginous skeletal axis as a common characteristic. But it was Lamark who tinst recognised the presence of a vertebral colamn as the most important character, and introduced before Cuvier the name of l'ertebralu into the science. 'This designation, however', in its strict significunce, is only an expression for a definite grade of development of the skeleton, which maty persist in its first unsegmented condition ins the notochord (Amphioxus, Myxine). The most inportant characteristics therefore of the Vertebrata do not depend upon the presence of internal vertebre and of a vertebral column,

Fig. 569.-Transverse section through the chorda dorsalis (Cl) of the larva of Bombinator igneus (after Götte). Ch S, Notochordal sheath ; $S k$, skeletogenous layer ; N, spinal cord. but upon a combination of character's which have to do with the general relations of position, the mutural arrongement of the organs and the mode of embryonic rlevelopment. We may accordingly define the Vertebrata as laterally symmetrical organisms with an axial skeleton, on the dorsal side of which is placed the central nervous system (brain and spinal cord), while on its ventral side lie the alimentary canal with its two openings (oral and anal) and the rest of the viscera and the heart ; the latter being placer on the ventral side of the alimentary canal.

The Skeleton.-The presence of an internal skeleton is a character of great importance. While in the Invertebrates the firm supporting structures are almost always produced by the hardening and segmentation of the external skin, in the Vertebrates the relation of the hard to the soft parts of the body is leversed. The hard parts are placed in the axis of the body, and send out processes towards the dorsal and ventral surfaces, which constitute lespectively a dorsal canal for the reception of the central nerrous system (brain and spinal cord) and a ventral arch over the vascular trunks and the viscera. In the simplest and lowest Vertebrates the axial skeleton remains as an elastic cord-the notochord (chorda clorsalis), which in the higher. Vertebrates is present in embryonic life and constitutes the first rudiment of the vertebral column (fig. 569). When the internal skeleton acquires a firmer consistency it, like the external skeleton of the Invertebrates, becomes segmented. This modification is intro-
duced by alterations in the notochordal sheath as well as in the surrounding skeletogenous sheath (fig. 570, a). The latter gives rise to cartilaginous or bony rings, which represent the first rudiments of the vertebral bodies. These rings constrict the notochord till they assume the form of biconcave cartilaginous or bony discs, and become connected with cartilaginous or bony arches which are developed round the spinal cord and the perivisceral cavity (fig. 570 a, b). Each vertebra therefore consists of a principal median portion, the body of the vertebra or centrum, which frequently retains the remains of the notochord in its axis; of a dorsal or neural arch, and a ventral or hæmal arch. The two limbs of the dorsal arch are called neurapophyses, those of the ventral arch hæmapophyses, and the unpaired median prolongation of each arch is known as the spinous process (fig. $570, D, D^{\prime}$). The transverse processes (pleurapophyses) which arise from different parts of the vertebre, either from the neural arches or from the centra, are not independent structures but merely processes. The ribs, on the other hand, are independent lateral bony or cartilaginous rods which are attached either to the hæmapophyses (fishes) or to the pleurapophyses, and embrace the part of the body cavity containing the viscera.

Regions of the vertebral column.-In the higher Vertebrates the primitive homonomous segmentation of the skeleton gives place to a heteronomous segmentation which leads to the origin of a number of regions. In this point as in others there is a parallel between the segmented 'Invertebrates and Vertebrates. In the first place an anterior region or head

Fig. 570.- , Diagram: of the vertebral column of a Teleostean with intervertebral growth of the notochord. Cle, Notochord ; Nk, bony vertebral bodies; J, membranous intervertebral portion. b, Vertebræ of fish. K, Body of vertebra, Ob, dorsal arch (neurcepophysis) ; Ub, ventral arch (hemetpophysis) ; D, dursal spinous process; D^{\prime}, rentral spinous process; R, rib. can always be distinguished from the posterior uniformly segmented region or trunk (fig. 571) ; and this division corresponds with the enlargement of the anterior part of the central nervous system to
form the bain and with the first portion of the athmentary canal. The canal formed by the neural arehes is here dilated to form the cranial capsule, on the ventral side of which me placed cartilaginous arches known as the visceral arches, of which the anterion pair constitutes the mandibular appanatus, is armed with teeth and surrounds the entrance to the alhmentary canal (fig. 571). The mandibular arch is followed by a number of arches which surround the pharynx; the first of these is the hyoid arch and the rest are the branchial arches.

The part of the body behind the head may be divided into two regions: (1) an anterior region-the trunk proper-in which the peritoneal or body civity lined by the peritoneal membrane is placed ; the vertebre in this region bear ribs ; (2) a posterior region or tail,

Fig. 571 .-Head and anterior region of the vertebral column of Acanthias (after Owen). K, Body of vertebra; O, neural arch; S, intercalated piece; P_{q}, Palatoquadrate; $L k$, labial cartilage ; $Z b$, hyoid arch; $K l$, branchial arch ; $S g$, shoulder-girdle.
in which there is no body cavity, and the hremapophyses unite with each other to enclose a canal (containing the caudal vessels). This, the most simple form of segmentation of the trunk, is confined to the lower Vertebrates which propel themselves by the flexion and undulatory movements of the vertebral column, and, like the Annelids, live in water, in mud, or in the earth, or even creep after the manner of snakes on the surface of the earth.

In the higher Vertebrates, however, in which, as in the Arthropods, the function of locomotion is discharged by paired appendages, the movements of the chief axis are reduced and in many regions are altogether absent. In the Vertebrata there are only two pairs of limbs, an anterior pair and a posterior pair. In the lower Vertebrata they have the form of fins and play but a subordinate part in locomotion. In such cases, therefore, the vertebral column retains
its mobility and the uniformity of its segmentation. It is only in those cases in which the method of locomotion requires a greater expenditure of force on the part of the limbs, and a firmer connection between them and the axial skeleton, and the limbs are more strongly developed, that the vertebral column is divided into successive regions, each of which is characterised by the special form of the vertebre composing it.

Since the posterior limbs constitute the chief supports of the body, and are the principal seat of the propulsive power, their girdle is usually immoveably fused with a region of the vertebral column, which is distinguished by the firm and rigid connection of its vertebre (fig. 572). This region, which is situated between the trunk and the tail, is called the sacral region, and is formed in the Amphibia by a single vertebra, in Reptilica by two, and in the higher Vertebrates by a number of vertebree, the transverse processes of which are specially large and are firmly united to the iliac bones of the pelvic girdle by means of their corresponding libs (fig. 572, S). With the development of the anterior limbs, and the need of a firmer connection between them and the trunk, a more rigid region of the vertebral column makes its appearance in the anterior part of the body. This region is known as the thoracic region and its vertebre as the thoracic or dorsal vertebree (fig. VOL. II.

Fig. 572.-Skeleton of Kenopomu utleghuniense. Ocl, Exoccipital bone; P, parietal bone ; F, frontal ; $T y$, tympanic ; Pe, petrosal ; Mx, maxillary; Jmx, inter-maxillary (præmaxillary) ; N, nasal ; To, vomer ; Et, girdle bone ; Pt, pterygoid; Sc, pectoral girdle; $I l$, pelvic sirdle; S, sacral vertebra; R, ribs; b, hyoid arch ($Z b$), and branchial arches ($K b$) cf the same.
$573,1)$. Tts ribs we distinguished by their special length, and they aro comected ventrally with a system of cartilaginous or bony piecos (sternum) placed in the middle line of the ventral body-wall. Between the head and thoracic region on the one hand, and between the thomacic and sacmal region on the other, there is a region the vertebae of which are more movable npon one another. The region which connects the head with the thorax-the neck (cervical region)-is chanacterised by the greater freedom of movement possessed by its vertebrax, on which the rudiments of ribs are retained. The region between the thorax and sacrum-the lumbar region (fig. $573, L$) -is distinguished by the great size of its transverse processes, and at the same time by a greater mobility of its vertebree which ine as a rule without ribs.

Accordingly the trunk of the higher Vertebrates is divided into cervical, thoracic (dorsal), lumbar and sacral regions, which are followed by the caudal region (fig. $573, C$).

The limbs, which have perhaps been derived from lateral folds of the skin or possibly from parts of the visceral arches, present very considerable differences in their form and function. They may have the form of legs and support the body as in terrestrial animals, or serve for flight as the wings of aerial animals, or they may be used in swimming, as the fins of aquatic animals. It can be shown, however, that in every case they are composed of the same essential parts, the variation, suppression, and reduction of which determines the differences between them.

Just as legs, wings, and fins are homologous organs, so the anterior and posterior pairs of limbs seem to be repetitions of the same arrangement. In both we can recognise the girdle for the connection with the vertebral column, the shaft composed of long tubular bones and the terminal region. In tracing the development of the extremities Gegenbaur takes the skeleton of the fin of Cerutodus and of the Crossopterygiuns (archipterygium) as his starting-point, from which, by the reduction of certain regions and the modification of others, the limbs of the higher Vertebrates may be derived. The pectoral girdle, that is the girdle of the anterior pair of limbs, consists of three paired pieces - the dorsal shoulder-blade (scapula) and two ventral pieces placed one behind the other, known as the præcoracoid (with the clavicle) and the coracoid. The pelvic girdle, or girdle of the posterior limbs, corresponds to the pectoral girdle, and is likewise composed of three paired elements-a dorsal element attached to the sacrum and known as the ilium, and two
ventral elements which join their fellows in the middle ventral line, and are known as the pubis and ischium. The limbs are divided into three segments--the two proximal of which are long and contain long hollow bones articulated together, the thiird segment being shorter and terminal. These segments are called brachium, antebrachium and manus in the fore-limb: femur, crus and pes in the hind-limb.

The proximal segments (i.e., the brachium and femur) each contain one bone-the humerus (H) and femur (F e) respectively. The middle segments (i.e., antebrachium and crus) each contain two bones-the radius and ulna in the former (R, U), the tibia and fibula (T, F) in the latter. The distal or terminal segments (i.e., the manus and pes) each contain a large number of elements placed close together. These elements consist of two proximal rows of bones, known in the hand as the carpus, and in the foot as the tarsus; of a middle row, known respectively as the metacarpus and metatarsus; and of a number of distal bones known as the phalanges, and constituting the skeleton of the fingers and toes.
The skull varies considerably in form and structure. When the vertebral column is membranous and cartilaginous, the skull likewise consists of a continuous membrano-cartilaginous capsule, which in essential points agrees with the embryonic rudiment of the cranium (primordial cranium) of the higher
 Vertebrates (fig. 571). From this primordial cranium the bony
skull* is developed partly by ossifications in the cartilaginous (apsule or hy ossifications proceeding from the membranots perichondrium; partly by the addition of membrame bones, which gradaally supphant the curtilaginous parts.

Segmentation of the skull.-It is only when the cranial capsule is bony that any companison can be instituted between the arangement of the hard parts of the skull and that of the parts of a vertebra: this comparison has led to the view that the skull is composed of three or four vertebre or segments. These are from behind forwards, the occipital, parietal, frontal and ethmoid segments. Each such segment, according to the vertebral theory of (P. Fiank) Gœothe and

Fig. 57t.-Lateral view of a goat's skull; Ol, exoccipital bone; C, condyle; O, supraoccipital ; S_{q}, squamosal ; $T y$, tympanic ; $P e$, petrosal ; $P m$, paramastoid process ; $P a$, parietal; Fr, frontal, La, lachrymal ; Nou, nasal; Fo, optic foramen ; Mx, maxilla; Jmx, inter-maxilla (pre-maxilla) ; Ju, jugal ; Pul, paiatine ; Pt, pterygoid.

Oken, is smpposed to consist of a basal part corresponding to the body of the vertebra, and of a neural arch formed of two lateral pieces and a median dorsal piece (spinous process) (fig. 574). According to this theory the basi-occipital bone would correspond to the body of the vertebra, the two exoccipitals to the lateral parts of the neural arch, and the supra-occipital to the dorsal median parts or spinous process. The bones of the middle or parietal region of the skull consist of a basal bone, the basisphenoid, two lateral bones, the alisphenoids and two dorsal bones, the parietals; the two latter are membrane bones, and complete the arch dorsally. The bones of the

[^160]anterior or frontal region likewise consist of the basal præsphenoid, the two lateral orbitosphenoids, and the two dorsal frontal bones, which are membrane bones and complete the arch dorsally.

The ethmoid may be regarded as representing the body of a fourth or anterior vertebra; it is covered above by the nasal bones and below by the vomer.

Finally, between these different bones other bones are intercalater, e.ig., the mastoid and petrosal between the occipital and sphenoidal.

Recently essential objections to this vertebral theory have been raised by Huxley and Gegenbaur ; and these objections have proved fatal to the theory. According to Gegenbaur, the skull is composed

Fig. 575.-Median longitudinal section of a sheep's skull seen from the inside. $O b$, basioccipital; Ol, exoccipital; $0 s$, supraoccipital ; $P e$, petrous bone; $S p b$, basisphenoid; P_{s}, præsphenoid; Als, alisjphenoid ; Ors, orbitosphenoid; $P u$, parietal; $F r$, frontal; $S f$, frontal sinus; $N a$, nasal ; C, turbinal; $C i$, inferior turbinal; Pt, pterygoid; Pal, palatine; Vo, vomer; $M x x$, maxilla; $J m x$, inter-maxilla (pre-maxilla).
of a much greater number of segments corresponding to the primary visceral arches, and the resemblances between the cranial bones, especially of the median and anterior regions of the skull, and the parts of a vertebra are entirely secondary.

The rest of the hard parts, which are more or less intimately connected with the skull, consist of a number of arches lying one behind the other, and surrounding the entrance into the visceral cavity.

The anterior of these-the maxillo-palatine apparatus-forms the facial region. In its simplest form it consists of two moveable pieces (palato-quadrate and lower jaw), which are attached by the hyomandibular (the dorsal element of the second arch) to the auditory region
of the skull（fig． $571, / /$ ）．The＂pper piece of the tirst arch，like－ wise，is sometimes more or less fimly applied along its whole length to the skull，and when assificalion takes place it becomes divided on either side into an onter and inner series of pieces，the finst including the jugal，the maxilla，and præmaxilla，the latler the pterygoid and palatine（fig．575）．These series of bones form the upper jaw and the roof of the mouth．

The lower jaw，which is primitively a simple cartilaginous arch （Meckel＇s curtilage），also becomes replaced on either side by a number of bones（articulare，angulare，dentary，etc．），of which the dentary usually bears teeth and is the lirgest．

The visceral arches which follow the mandibular arch and are also connected with the skull are developed in the wall of the pharynx， to which they bear the same relation that the ribs do to the thoras and body cavity．The anterior arch（hyoid arch），the upper portion of which in the lower．Vertebrates serves as the suspensorium of the jaw（hyomandibular），forms a support for the tongue，and the arch of each side meets a median basal piece（os linyucle）．The latter is followed by a series of median unpaired bones（copulce），which connect the following arches（branchial arches）．The branchial arches are most developed in the aquatic Vertebrates，in which they are separated by the pharyngeal slits，and serve to bear the gills．In the air－ breathing Vertebrates they become more and more reduced，and finally are only discemible in jmperfect number as embryonic struc－ tures．The remains of the whole apparatus form the body and cornua of the hyoid bone．

Integument．－The external skin of the Vertebrates is divided into two very distinct layers，the epidermis externally and the cutis internally．The latter is principally composed of a fibrous connective tissue，with which muscular elements come into relation，without however forming a complete dermal－muscular envelope as in the Annelids．

When the dermal muscles have a considerable extension over large surfaces，they serve exclusively to move the skin and its manifold appendages，but are not used for the movements of the trunk，which are produced by a highly－developed muscular system surrounding the skeleton．The cutis is continued into a deeper，more or less loose layer，the subcutaneous connective tissue，but its more superficial part is tolerably compact，and contains not only various pigments，but also blood－vessels and nerves．At its upper surface the cutis is raised into small conical papille，which are covered by the epidermis and
are of importance not only as special sense organs (tactile organs), but also for the production of various lard structures (scales, teeth). The epidermis is composed of several layers of cells, of which the upper and older layers are cast off, while the lower layers (stratum Malpighi) are actively growing and serve as a matrix for the continual renewal of the upper layers, and sometimes contain the cutaneous pigments. Some of the appendages of the skin are epidermal structures, in which case they arise as the result of peculiar and independent growths of the epidermis (hairs and feathers). Some are derived from ossifications of the dermal papillæ which sometimes may even give lise to a hard and complete dermal armour (scales of Fishes and Reptiles, carrapace of Armadillos and Tortoises).

The central nervous system is placed in the dorsal cavity formed by the upper arches of the vertebræ ; it consists essentially of a cord-the spinal cord --the anterior enlarged and more differentiated part of which is distinguished as the brain. The spinal cord con-
 tains a narrow central canal, which is continued into the brain, where it widens out and forms the ventricles of the

Fig. 576.-Embryo chick at end of second day (atter Kolliker). Vh, Fore-brain; Mh, midbrain ; $H h$, hind-brain ; Ab, optic vesicle; $M R$, medullary canal; UIV, protovertebræ; StZ, vertebral plates of the mesoderm ; $S P$, lateral mesoblastic plates ; H, heart. brain. The brain and spinal cord are, therefore, parts of the same organ. The brain seems to be the seat of the intellectual faculties and the central organ of the sensory apparatuses ; while the spinal cord conducts the impulses to and from the brain, and in particular is the centre of reflex movements, but it also contains the centres of certain automatic actions. The mass of the brain and that of the spinal cord increase as might be expected, as the grade of life is higher. They increase, however, in an unequal ratio, for the brain soon preponderates over the spinal
cord. The lower Vertehnates with cold blood lave a relatively small bian, the masis of which is still considerably smatler than that of the spinal corrl. In the wam-blooded Vertelnates, on the other hand, this proportion is reversed, and the more markedly, the higher the orgunistion and grade of life of the animal in question.

The spinal nerves arise in pairs from the spinal cord : each nerve has two roots-a dorsal sensory root and a ventral motor root. They correspond in number with the vertebrae, between which they pass out, so that the spinal cord repeats in a general manner the segmentation of the vertebral column.

In the brain the arrangement of the nerves presents several complications which are further increased by the origin of two sensory nerves - the olfactory and optic. In spite of the differences in form

F'Ig. 577.- a. Brain and anterior part of the spinal cord of a human embryo seen from the side (after Kölliker). Wh, Fore-brain; Zh, thalamencephalon; Mh, mid-brain : Hh, hind-brain; Nh, medulla oblongata; T, anterior ventral end of the thalamencephalon; NO, optic nerve. 6. Diagrammatic longitudinal section through a vertebrate brain (after Huxley). Hs, Hemispheres; LO, olfactory lobes; Olf, olfactory nerve; ThO, optic thalamus; V t, third ventricle; No, optic nerve; H, pituitary body (hypophysis); G_{p}, pineal gland; $C Q$, corpora quadrigemina; Cl , cerebellum; $M O$, medulla oblongata; $P V$, pons Varolii.
and structure presented by the brain, three principal regions which correspond to the three vesicles found in the embryo can always be distinguished (fig. 576). The anterior vesicle (fore-brain, fig. 576, Wh) corresponds to the cerebral hemispheres and the optic thalami (fig. 577, $H s, T h O$), the middle vesicle (mid-brain, $M h$) to the corpora quadrigemina (fig. 577, C Q), and the posterior vesicle (hind-brain, fig. 576, $H h$) to the cerebellum and mechulla oblongata (fig. 577, Cb, MO). The anterior vesicle, however, is again divided into two parts-an anterior bilobed part, which constitutes the cerebral hemispheres and coutains the lateral ventricles, and a posterior unpaired part which constitutes the so-called thalamencephalon with the thalami optici and the parts surrounding the third ventricle (fig. 577). The third cerebral vesicle is also divided into two parts-anteriorly the cerebellum, and posteriorly the medulla oblongata.

The sense organs preseut the following arrangement. The anterior is the olfactory organ, which consists of a pit usually paired, exceptioually unpaired (Cyclostomes) ; the nerves which pass to these pits arise from the fore-brain and are often swollen at their origin into special lobes (olfactory lobes). In aquatic animals which breathe by gills the nasal cavity consists with rare exceptions (Myxine) of a blind sac. In all lung-breathing Vertebrates, on the contrary, it communicates with the cavity of the mouth by the nasal passages, and serves for the entrance and exit of the pulmonary air.

Next come the eyes with the optic nerves which arise from the thalamencephalon and mid-brain. They are always paired (for the structure of the eye vide p. 73, vol. i.). In $A m$ phioxus alone they are represented by an unpaired pigment spot placed on the anterior end of the central nervous system.

The auditory organ, the nerve of which belongs to the hind-brain (probably derived from the sensory root of a spinal-like cranial nerve), is entirely absent in Amphioxus. In its simplest form it is a membranous sac(membranous labyrinth) containing fluid and otoliths. The posterior part

Fig. 578.-Diagram of the auditory labyrinth (after Waldeyer). I, of fish; $I I$, of bird; III, of mammal ; U, utricle with the three semicircular canals; S, saccule; $U S$, alvens communis; C, cochlea; L,
lagena; $C r$, canalis reuniens; R, aquæductus vestisaccule; $U S$, alvens communis; C, cochlea; L,
lagena; $C r$, canalis reuniens; R, aquæductus vestibuli.
of this sac is usually prolonged into three semi-circular canals, while the anterior part, which in many cases is separated as the succule, gives off a prolongation which forms the cochlea (fig. $578, S, C$.).

The sense of taste is located in the palate and the root of the tongue. The organs of taste consist of peculiarly-modified groups of epithelial cells (taste buds), and are supplied by a spinal-like cerebral nerve (glossopharynyeal). The general sensibility, which is distributed over the whole surface of the body, and the tactile sense are also connected with the terminations of the sensory filbres of spinal nerves.

In addition to the cerebro-spinal nervous system there is (except in Amphioxus and the Cyclostomes) a special visceral nervous system
-the sympathetic. This is formed hy precial branches of the npinal nerves and spinal-like cramial nerves, which are commected with special gingelia amd give ofl' nervons plexusen to the visectat (fig. 80).

The organs of nourishment, circulation, and reprorluction are placed in the body eavity whieh extends bencath (vential to) the skeletal axis. The digestive canal is a more or tess elongated tulue which in the region of the skull is encircled by the viscenal arches; it begins with the mouth and ends with the anns, which latter is placed on the ventral surfaee at varions distances from the hinder end of the body (aceording to the length of the caudal region of the vertebral column). The alimentary eanal is invested in the greater part of its course by a fold of the peritoneum which lines the body cavity, and is fastened to the under surfaee of the vertelral column by the two lamellee of this fold, which are closely applied to one another and form the mesentery. As a rule the alimentary canal is much longer than the distance between the mouth and anus, and therefore forms more or less numerous coils in the body cavi y.

The digestive canal is almost always divided into three regions, the oesophagus and stomaeh, the small intestine with liver and pancreas, and the large intestine. The esophagus always begins with a huccal cavity, on the floor of which a muscular fold, the tongue, projects. Although this organ, which is richly supplied with nerves, is in general rightly regarded as an orgin of taste, it nevertheless plays a eonsiderable part in the reception of the foorl, and may even in some eases altogether lose its importanee as an organ of taste. The buccal cavity, except in Amphiocus and the Cyclostomes, is enclosed by the skeletal arch known as the m:xxillo-palatine apparatus and the lower jaw, of which the latter is always capable of powerful movements, while the parts of the former are either more or less firmly united together and attached to the bones of the skull, or are capable of movement on the latter. The two jaws, unlike those of the Arthropoda, work upon one another in the direction from below upwards. They are usually furnished with teeth. The teeth are clerived from ossificd papille (dentine) of the mucous membrane of the mouth (fig. 579), which are covered with an epidermal structure-the enamel; they are either directly fused with the bones of the jaw or inserted into special alveoli in the latter. The teeth in the higher Vertebrates are confined to the upper and lower jaws, but in the lower Yertebrates they may appear on all the bones which surround the buccal cavity. Teeth are, however, often altogether absent. In Birds and Tortoiseri they are replaced hy a horny covering of the sharpedges of the jaws
(beak), and certain toothless Whales bear horny plates (the so-called whalebone) on their palate.

In almost all cases the alimentary canal is provided in its different regions with independent glands which mix their secretion with its contents. In the cavity of the mouth the saliva secreted by a greater or less number of salivary glands is mingled with the food. In many aquatic animals these salivary glands may be reduced or be wholly absent. Into the first part of the small intestine the bile and the secretion of the pancreas, which is of great importance for the digestion of the food, is poured. The bile is secreted by the livera large gland through which the venous bloock returning from the viscera passes on its course to the heart (portal circulation). In Amplioxus the liver is represented by a simple crecal diverticulum of the intestine. In Amphioxus and some other fishes the pancreas is wanting. The small intestine in which the

Fig. 579. - The development of the tooth in Triton (after O. Hertwig). a, The first stages of the development of a tooth; on the right hand is the carliest rudiment. b, Later stage of development. $D K$, papilla of the cutis which later becomes the dentine of the tooth $M S$, enamel membrane (epithelial growth which forms the enamel) ; D, dentine ; S, enamel ; $E p$, epithelinm of the mouth.
juices are absorbed is distinguished not only by its great lengthit is in fact this portion of the alimentary canal which is arranged in coils--but also by the presence of internal folds and papille which considerably increase the extent of absorbing sturface. The terminal legion (large intestine, rectum) of the digestive canal is principally distinguished by its width and its powerful muscles.

Special respiratory organs, as lungs or gills, are always present. The gills usually consist of double rows of lancet-shaped lamelle, which are arranged on the sides of the pharynx behind the mandibular arch, and except in the Cyclostomes are borne by visceral arches. Between these arches there are always narrower or wider slit-like openings, which lead directly into the pharynx and allow the water
which bathes the gills and serves for respiration to pass from the pharyax into the branchial cavity. On the external side the gills are often protected by a cutancous fold or by an operculum, at the lower or posterior margin of which there is a long slit for the passage outwards of the water from the branchial cavity. The gills may, however, projeet is meovered external appendages (external gills of Amplibians and Selachian embryos).

In the lower. Vertebrata lungs and gills inay coexist in the same animal, and in fishes the lungs are represented by a morphologieally equivalent organ-the swimming blaclder. Lungs, however, in their more complete development are only found in the higher and for the most part rwarm-blooded Vertebrates. In their simplest form they appear as two saes filled with air and opening by a common air passage (trachea) into the pharynx. The walls of the pulmonary sacs contain the respiratory capillaries; their surface is usually increased by folds and projections which give them the appearance of a spongy organ or of an organ traversed by tubes. The two lungs often extend far into the body cavity, but in the higher Vertebrates they are confined to the anterior part of the latter which may be more or less completely separated off from the hinder part of the body cavity by a transverse partition-the diaphragm-and is then called the thoracic eavity.

Aerial respiration also requires a continual change of the medium serving for respiration ; the exchange of the used-up air saturated with carbonic acid gas for the atmospheric air rich in oxygen. This exchange is effected by various mechanical arrangements on which the so-called respiratory movements are dependent. 'These movements take place in all those Vertebrates which breathe by means of lungs, but are most complete in the Mammalia, in which they consist in alternating rhythmieal contractions and dilatations of the thorax.

At the entrance of the trachea and in connection with the organs of respiration is the vocal organ (larynx), which is usually formed by a modification of the upper portion of the trachea. The larynx contains vocal chords, and opens into the pharynx by a narrow slit (glottis) which is usually capable of being elosed by an epiglottis.

The circulatory organs are in close relation with the respiratory organs. The vaseular system is always closed and contains red blood (except in Amphiowus and the Leptocephatida, where the blood is white). The red colour of the blood, which was formerly held to be the essential character of blood (Aristotle), is due to the presence of an
enormons number of red blood corpuscles, which are flat, disc-shaped globules, contain the colouring matter (hæmoglobin) and carry the oxygen to the tissues. In addition to the red blood-corpuscles there are small colourless cells in the blood-the amoboid white blood-corpuscles (vol. i., fig. 19).

Except in Amphioxus, in which the larger vascular tronks pulsate, a definite part of the vascular system is always developed to form a heart. The heart lies in the anterior part of the body cavity, and is primitively placed exactly in the middle line. It has a conical shape and is enclosed in a pericardium. The position of the principal vessels and their connection with the heart are in the simplest case as follows: A large artery-the dorsal aorta-runs along the vertebral column and gives off numerous lateral branches, corresponding to the segmentation of the vertebral column, to the right and left. Beneath this there is in the caudal region, an unpaired vein-the caudal vein,-in the body cavity on the contrary a pair of veinsthe inferior cardinal veins. These veins receive their blood from lateral venous branches which proceed directly from the capillary network of the arterial branches. Another principal vein-the vena cava inferior-separated from the cardinal veins by the hepatic portal system, and connected with two superior cardinal veins, conveys the venous blood back to that portion of the heart which is known as the auricle. From the auricle the blood flows into the the muscular ventricle and is forced thence into an ascending artery (corta ascendens or cardiac aorta). The latter divides into lateral arterial arches which pass towards the dorsal side and unite beneath the vertebral column to form the anterior part of the dorsal aorta (aorta descendens) (vol. i., fig. 57).

This system of the aortic arches is, however, complicated in various ways by the insertion of the respiratory organs in the course of the circulation (compare vol. i., p. 63 et seq).

In all Vertebrates there is a system of lymphatic vessels. These are a special part of the vascular system and contain a clear nutritive Huid (chyle and lymph) which is filled with colourless corpuscles (lymph corpuscles). They conduct the lymph (containing plastic materials for the renewal of the parts of the blood which have been consumed in metabolism) to the blood. The principal trunk of the lymphatic system (the thoracic duct) runs along the vertebral column and in the higher Vertebrates opens into the upper part of the vena cava superior. In the lower Vertebrates there are several communications between the lymphatic and vascular systems. Special gland-
like organs-the so-ralled vascular glands, spleen-are inserted into the course of the lymphatic vessels.

Uriminy organs or kidneys are gencrally present. 'They have the form of paired glands and lie beneath the vertehal column. The first rudiments of the kichers appear in the form of organs resem-

FIg. 580.-Diagrammatie longitudinal seetion through an ideal vertel)rate embryo (after Balfour). a, After the eompletion of segmentation. b, Later stage in whieh the mesenteron is being formed at the hind end of the emb)ryo (gastrula). c, Stage in whieh the neural eanal is elosed and eommnnieates with tho alimentary eanal. Ec, ectoderm ; Eut, entoderm; Ms, mesoderm ; Fh, segmentation eavity; Dh, alimentary envity; Nr, neuralieanal ; Ch, notoehord.
bling the segmental organs of Amelids. Peritoneal invaginations (urinary tubules), which communicate with the body carity by funnelshaped openings, come into connection with the primitive kidney-duct (archinephric duct) which is the first part of the system to appear (compare vol. i., p. 76, fig. 71). The ducts of the kidneys-the wreters
-ustally unite to form an unpaired terminal section-the urethre, which, in Teleostears only, opens behind the anns; very often it opens into the cloaca, and in Mammals almont always unites with the terminal parts of the genital ducts to form a common urogenital canal. A resicular reservoir-the urinary bladder-is often inserted into the course of the efferent ducts. In fishes only does the bladder lie behind the intestine.

Reproduction is always sexual, and separate sexes are the rule. A ferr fishes only (species of Serranus) are hermaphrodite. In male Amphibians however traces of ovaries are found.
Both kinds of sexual glands lie as paired organs in the body cavity, and send off paired ducts which in the lower Vertebrates open into the cloaca and often join to form an unpaired canal. Sometimes indeed the ducts are absent and the genital products fall into the body cavity and pass out thence to the exterior by a genital pore. The division of the generative ducts into different regions, and

Fig. 581.-Transverse section through a young cmbryo of Triton treniatus (after O. Hertwig). a, First appearance of the medullary folds and formation of the notochord. b, Closing of the medullary groove. The notochord is completely separated off from the entoderm. The constriction of the mesoderm into the protovertebra is beginning (left hand side of the figure). Ec, ectoderm ; N, nervous system; R, do:sal groove; $M W$, medullary tolds; M_{p}, somatic mesoblast; Mo, splanchnic mesoblast; Ch , notochord; End, intestinal endoderm; $D h$, lumen of gut; $L h$, body cavity (pleuroperitoneal cavity); UW, protovertebra; D, yolk.
their connection with accessory glands and external copulatory apparatuses determines the great variations in the structure of the generative organs which are most complicated in the Nrammalia.

In many Fishes and Amphibia copulation is confined to an external union of the two sexes, and the eggs are fertilized in the water. Most Fishes, many Amphibia and Reptiles, and all Birds lay their eggs. All the Mammalice are viviparous and their small ova undergo embryonic development in the female generative ducts.
'The development of the emlnyo (fig. 580) begins with a total on partial (discoidal) segmentation. 'The first rudiment of the embryo is usually a germinal dise or blastorlem lying upon the yolk. From the posterior end of this dise the alimentary cavity is developed. A primitive streak which marks the long ixis of the embryo is developed by a thickening of the layer's of the blastorlerm. Two laterally platerd longitudinal folds give rise to an ectodermal groove-the medullary groove or first rudiment of the central nervous system-beneath which is placed the notochord which is developed from the endoderm (fig. 581).

The medullary groove which is dilated interiorly is closed by the growing together of its edges, and the tube so formed gives rise to the spinal cord and to the brain. Its lumen is for some time in

Fig. 582.-Transverse section through a chick embryo of the second day (after Kölliker). $E c$, ectoderm; N, medullary caual ; End, endoderm; Ch, notochord; UW, protovertebra; UNg, Wolfian duct (primitive duct of kidney); $M p$, somatic mesoblast ; Mc, splanchnic mesoblast; Lh, body carity ; Ao, primitive aorta.
communication with the alimentary cavity by the neurenteric canal. At the sides of these structures the mesoderm extends in the form of two bands, the median portions of which (protovertebral plates) become segmented in the course of the further development and give rise to the protovertebre (figs. 576 and 582). The archinephric duct is separated off at the boundary between the protovertebræ and the unsegmented lateral plates of mesoblast, while the generative glands arise nearer the median line from the peritoneum of the lateral plates of mesoblast. While the dorsal part of the embryo is thus being formed the alimentary canal becomes further developed on the ventral side of the blastoderm, and gradually absorbs the yolk, often leaving an external yolk sac. The young animals only undergo a metamorphosis in the naked Amphibia and several Fishes.

The division of the Vertebrata into the four classes of Fishes, Amphibia, Birds, and Mammals was first established by Linnæus, though it had been aheady indicated in the system of Aristotle.

The Fishes and Amphibia ase cold-hlooded animals (i.e., animals with a varying temperature) ; Aves and Mammals are warm-blooded
(i.e., with a constant temperature), and as they attain a much higher grade of life they are distinguished as the higher Vertebrates. Recently the naked Amphibia have rightly been separated from the scaly animals or Reptilia, and together with the Fishes have been distinguished as lower Vertebrates, in distinction to the Reptiles, Birds, and Mammals, which have been classed as higher Vertebrates. Fishes and Amplibia have, in fact, many character's in common, and seem to be less sharply marked off from one another (Dipmoi) than are the Amphibia from the Reptilia. The two former groups not only resemble one another in the branchial respiration and in the frequent persistence of the notocord, but also in the simpler course of the embryonic development and in the absence of the embryonic organs characteristic of the higher. Vertebrates-the amnion and the allantois. On these grounds, and in consideration of the many relations between Reptiles and Birds, Huxley distinguishes three principal groups of Vertebrata-the Ichthyopsida (Pisces and Amphibia), the Sauropsida (Reptilia and Aves), and the Mammalia. Among the Fishes there are certainly such wide differences of organisation that we are justified in dividing them into several classes. The Leptocardic might be separated not only from all the Fishes but also from all other classes of Vertebrates as Acraniata; also the Selachians, the Cyclostomes and the Dipnoi might be regarded as separate classes if it were not more convenient to preserve the unity of the class Pisces.

CHAPTER V.

Class I.-PISCES.*

Cold-blooded, generally scaly, aquatic aninuals with unpaired fins and paired pectoral and pelvic firs. They breathe exclusively by means of gills, and lave a simple heart consisting of auricle and ventricle. They are witlout anterior urinary bladder.

The peculiarities which the structure and internal organisation of these animals present result in general from the requirements of their.

[^161]mquatic habits. Although there we in all classes of Vertebrates forms which move and live in water, yet nowhere is the whole organisation so completely adapted to an aquatic life as in Fishes.

The body is in general spindle-shaped and more or less compressal, but in details presents numerous modifications. There are eylindrical, smake-tike fishes (Lampreys) as well as fishes with a sphericel, balloonlike form (Gymmodonta). Others are elongated and band-shaped, and other's again are very short, flat and unsymmetrical (Pleuronectides). Finallya dorsoventral flattening may lead to a flat diseoidal form(Rays).

Locomotion is effected mainly by lateral flexions of the vertebral column, which are eaused by the powerfnl body muscles. The effect of these movements may be greatly increased by the unpaired dorsal and ventral fins, which are capable of being elevated and depressed. The two pairs of extremities-the pectoral and pelvic fins-appear, on the contrary, to be used more as rudders to direct the course of

Fig. 583.-Perca fluviatilis (règne animal).
the animal. The structure of the rertebral column, which is not divided into many regions, corrresponds to the mode of locomotion. The head is directly attached to the trunk, and is usually rigidly connected with it. A moveable cervical region, which would be a hindrance in swimming, is completely absent. The anterior part of the body is rigid, but behind it becomes more flexible and passes gradually into the the tail, the vertebre of which permit of the most complete movements on one another, and which on that account constitutes the principal organ of locomotion.

Fins.-The system of unpaired fins is developed from a median cutaneous fold of the embryo, extending over the back and tail as far as the anus. Subsequently this fold becomes broken up into parts, the definite unpaired fins. There are usually three such parts, constituting the dorsal fin (pinna dorsalis), the caudal fin (pinno candulis), and anal fin (pinna anclis) (fig. 583). These lidges of skin are supported as a rule by firm rays-the fin-rays ; in the 'Teleosteans either by hard,
bony, pointed spines-the so-called spine-rays (Acanthopteri)—or by soft jointed rays (Mclacopteri). The caudal fin is as a rule composed of a part of the dorsal and a part of the ventral fin-fold, but it varies much in its form. When the dorsal and ventral lobes are symmetrical the caudal fin is said to be homocercal ; when the ventral lobe is the larger, in which case the caudal part of the vertebral column is usually bent dorsalwards, the caudal fin is said to be heterocercal. It sometimes happens, however, that while the caudal fin is externally homocercal the axial skeleton is bent dorsalwards so that the fin is internally heterocercal.

The paired pectoral and pelvic fins correspond to the anterior and posterior limbs of other Vertebrates. The former are attached to the head immediately behind the gills by means of an arched shouldergirdle, while the two pelvic fins are approached to the middle line and placed further back, usually on the abdomen (ventral fins); sometimes, however, they lie between the pectoral fins (thoracic fins), and more rarely in front of the latter on the throat (jugular fins).

The integument of fishes is seldom completely naked (Cyclostomi). As a rule scales-ossifications of dermal papillæ, which are completely corered by epidermis-are embedded in it. The scales are often so small that they are hidden beneath the skin and seem to be completely absent (Eels). As a rule, however, they are present as firm, more or less flexible plates, which are covered with a number of concentric lines and radial striations and lie on one another like slates on a roof. Scales may be distinguished according to the structure of their free edges as cycloid scales with smooth edges, and ctenoid scales with serrated edges. Scales, which overlap but little and are generally rhomboidal, more rarely cycloidal in shape, and have an outer layer of enamel, are called ganoid scales, while the term placoid scale is applied to the small bony granules (composed of enamel and dentine) of different shapes, which lend to the surface of the skin the appearance of shagreen (these are the primitive form of teetl). Agassiz divided the Fishes according to the shape of their scales into Cycloids, Ctenoids, Gcanoids, and Placoids.

In the skin there are peculiar cutaneous canals communicating with the exterior by lateral rows of pores. These are called the lateral lines and were considered to be slime-secreting glands till Leydig** discovered that they contain a sense organ.

[^162]In the Mypinoids and Acipensericle these orgons have the form of short sals; in the Rays, Skates, and ('himieras they are simple tuben, which hegin as anpulle and extend also over the hearl in several rows. In the 'leleostei there are hanching tubes which pierce the seales of the lateral lines as pores, and are also present on the head in several row (fig. 583). Nerves run in the walls of these tubes and end in knob-like swellings. The epithelial covering of the latter contains in the centre short piriform cells, which at the free end are prolonged into a fine stiff hair, while at the base they pass into a varicose process-the axis cylinder of a nerve fibre (fig. 584).

The skeleton in its simplest form consists only of the notochord (Ampheioxus). The notochord also persists in the Myxinoids, which

Fig. 584.- \quad, Lateral organ in the tail of a fish (roach); N, nerve. l, lateral organ in the head of a young fish (bream) (after F. E. Schulze). possess a cartilagino-membranous cranial capsule. In the Petromyzontidu* there appear for the first time, above the notochord, cartilaginous neural arches, and similarly beneath it paired cartilaginous bands. These are the first rudiments of the dorsal and ventral vertebral arches. These rertebral arches are more perfect in sturgeons (Acipenser), and in the sea-cats (Chimera), in which the notochord persists, surrounded by a very compact connective-tissue sheath. A differentiation of the axial skeleton into separate vertebræ is first found in the Skates and Rays, where dorsal and ventral arches are united with annular portions of the notochordal sheath which become cartilaginous vertebral bodies. The notochord is constricted by the growth of the latter in the centre of each rertebra, in such a manner that biconcave (amphicolous) vertebral bodies are formed,

[^163]the conical cavities of which contain a part of the remains of the notochord. The notochord as a rule persists also in the centre of the vertebral body as a thin cord (connecting the dilated intervertebral portions, fig. 570 a). In the bony Ganoids and the Teleosteans the biconcave* vertebral bodies are completely ossified and fuse with the corresponding upper and lower bony arches, so as to form a complete vertebra. In some parts of the trunk ribs are attached to the pieces of the ventral arches (hæmapophyses) which here diverge from one another; and there are often in addition ossifications of the inter-muscular ligaments.

The structure of the skull in Fishes presents a series of grades of development culminating in the complicated skull of the Teleostei. The primordial skull of the Cyclostomes is the simplest. It consists of a cartilagino-membranous cranial capsule, in the hard basilar part

Fig. 5s5.-Cephalic skeleton of the Sturgecn (after Wiedersheim). Ro, rostrum ; Cn, nasal pit; O, orbit ; $H m$, hyomandibular ; S, symplectic ; $P q$, palatoquadrate ; Mid, lower jaw ; $H y$, hyoid bone; V, foramen for the vagus ; R, ribs.
of which the notochord ends. Two bony capsules-lateral appendages of the bony basilar region-enclose the auditory organ, while two anterior pieces are connected with the complicated apparatus of the facial and palatal cartilages. The primordial skull of the Selachians (fig. 571) shows a further advance in development. It has the form of a simple cartilaginous capsule which is not further divided into separate pieces. The notochord ends in its base. In the sturgeon (fig. 585), there are bony pieces as well as the cartilaginous cranial capsule. These consist of a flat basilar bone-the parasphenoid-and a system of dermal membrane bones. A true bony cranial investment is first developed round the primordial skull of the Dipmoi. In the bony skulls of the Ganoidei and Telcostei there still remain continuous portions of the primordial cartilaginous cranium (Pike

[^164]imd Silmon). The remains of cartilage are retained longent in the ethmoid region (Silarus, C'ypninus), while on the roof and base of the skull all remans of eartilage are replaced, partly by membrane bones and partly by the primarily ossifying occipitals (basi-and exoccipital) and petrosals (periotic) as well as by the alisphenoids.

The posterior part of the skull is connected with the vertebral colum withont any special articulation (except in the Payss and

Fig. 586.-Cephalic skeleton of Perca fluviatilis (règne animal). On, supraoccipital; Oex, epiotic; Par, parietal; $S q$, squamosal (pterotic) ; $F r$ r, frontal; Frp, posifrontal (sphenotic) ; PrO, prootic; Als, alisphenoid ; Ps, parasphenoid; Ethi, median ethmoid; Ethl, lateral ethmoid (præ-frontal); Hm, hyomandibular; S, symplectic; Q, quadrate; Mtp, metapterygoid; Enp, endopterygoid; Ekp, ectnpterygoid; Pul, palatine; To, vomer ; Jm, intermaxillary (premaxillary) ; $M x$, maxillary; D, dentary ; Ar, articulare ; An, angulare ; $O p$, operculum ; $P O p$, præ-operculum ; $S O p$, sub-operculum ; JOp, interoperculum ; Hy, hyoid arch ; Brs, branchiostegal rays; Cl , clavicle; $S c$, scapula Cor, coracoid; Ssc, supraclavicle; $A c$, accessory bone.

Chimæra), the os basilare having the conical depression and form of a vertebral body. Between the exoccipitals (which contain the foramina for the exit of the vagus and glosso-pharyngeal nerves) and the supra-occipital, which is distinguished by a strong ridge, an epiotic bone (occipitale externum) is inserted on either side (fig. 586, Oex). Close to the epiotic bone is the opisthotic (Huxley), which varies greatly in size and form (being very large in Gcedus and small in

Esox), and the prootic ($\mathrm{Pr} \cdot \mathrm{O}$), which surrounds the anterior semicircular canal and is pierced for the exit of the trigeminal nerve. There is also an external bone, the squamosal (pterotic) ($S q$), to which the hyomandibular is articulated. The lower surface of the cramial capsule is covered by the long parasphenoid (P_{s}). The lateral walls of the skull are formed by two pairs of wing-like bonesthe orbitosphenoids and the alisphenoids (fig. 586). Of these the alisphenoids are applied to the sides of the parasphenoid, and are almost always discernible with their openings for the exit of the optic nerves and the orbital branch of the trigeminal. The two orbitosphenoirls are often united on the floor of the skull so as to form a median bone, which, when the cranial cavity is reduced, may be represented by a cartilaginous or memhranous septum.

The roof of the skull is formed of bony plates, below which remains of the primordial cartilaginous cranium are only rarely retained. Close in front of the occipital are two parietal bones $(P(u r)$, and in front of these again the great frontal bone $(F r)$, on each side of which is developed a post-frontal (FrP), which reaches to the squamosal (pterotic), and takes part in the articulation with the hyomandibular.

In the ethmoid region there is in the prolongation of the base of the cranium an unpaired cartilage or bone, -the median or unpaired ethmoid. This is covered ventrally by the large vomer, which is attached to the parasphenoid. There are also two paired lateral bones-the lateral ethmoids or prefrontals-which are perforated by the olfactory nerves and form the supports of the nasal pits (nasal capsules). There are finally accessory membrane bones-the infra-orbital and supra-temporal - which protect the cranial (sensory) canals.

A true maxillary apparatus appears for the first time in the Selachians and Sturgeons, where a hyomandibular attached to the auditory region serves to support the mandibular and hyoid arches (figs. $571 H$ and $585 \mu \mathrm{~m}$). The upper part of the mandibular arch (the palatoquadrate) is usually moveably attached to the skull by ligaments. In the Teleostei the mandibular suspensorium is divided into several parts, and the branchial operculum is attached to it. The upper part is formed of a hyomandibular, and two bones called by Cuvier the symplectic and tympanic (metapterygoid) ; the preoperculum forms the middle part, and finally the lower part, which bcars the articulation of the lower jaw, is formed by the quadrate or quadrato-jugal. The flat osseous plates applied to the hinder edge
of the prapopereulam constitute the branchial opercolum, and are distinguished as operculum, snbopereuham, and interoperculam. A bone extending from the metapterygoid and quadrate to the upper jaw corresponds to the pterygoid, and is, as a rule, formed of an external (ectopterygoid) and an internal piece (endopterygoid). Then come the palatine hone and the appuatus of the upper juw, with the pramaxilla (intermaxilli), which is placed at the front of the shout and is usually moveable, and the very variable, usually toothless maxilla. The two limbs of the lower jaw are only arrely fused together in the middle line, and are divided at least into a posterior

Fig. 587.-Hyoid apparatus and branchial arches of Perca fluviatilis (règne animal). I,'hyoid apparatus; $I I-V$, branchial arches; $a, b ; c, d$, joints of the branchial arches, the upper joints (Ops) are the superior pharyngeal bones (pharyngo-branchials); $T T,(O p i)$ the inferior pharyngeal bones (reduced sth branchial); Cop, copnlæ; Rb, branchiostegal rays.
os articulare and an anterior dentary; there may, however, also be an angulare and an operculare.

Behind the mandibular arch there follows a system of equivalent arches surrounding the pharyngeal cavity. Of these the anteriorthe hyoid arch-bears on its outer edge a number of cartilaginous rods, which serve to support the opercular membrane and are called the branchiostegal rays (fig. $587, R b$), while the remaining arches are the branchial arches and serve for the support of the branchial lamelle (fig. 587). In the Teleosteans four (seldom three) arches bear gills, while the posterior arch is reduced so that only its ventral
part (ceratobranchial) remains and forms the so-called inferior pharyngeal bones (pharryngealia inferiora). The upper segments of the branchial arches, which are applied to the base of the skull, are distinguished as the superior pharyngeal bones (plaryngobranchials or pharyngeatia superiora).

Paired Fins.* The pectoral fins are in the Teleosteans attached to the skull by means of the shoulder girdle. In the cartilaginous fishes the shoulder girdle is a simple cartilaginous arch, which unites with that of the other side in the middle ventral line. In the cartilaginous Ganoids the shoulder-girdle is transitional between this primary form and the secondary form, which is characteristic of the Teleosteans (fig. 586), inasmuch as membrane bones (clavicle) are applied to the primary cartilaginous girdle. Ossifications also arise in the cartilage itself and give rise to bones known as the scapula and coracoid, or the precoracoid.

The skeleton of the fins, which is articulated to the shouldergirdle, can be derived from the primitive form of fin known as the archipterygium, which still persists in Ceratodus as an axial row of cartilaginous pieces beset with jointed lateral rays (rudii).

The nervous system (fig. 588) presents the lowest and simplest form found in any Vertebrate. In general the brain is small and consists of several swellings lying one behind another. Of these the small anterior, as the lobi olfuctorii, pass into the olfactory nerves. The larger anterior lobes correspond to the hemispheres, the median globular swellings to the lobe of the third ventricle with the corpora quadrigemina. From this part of the brain the optic nerves are given off anteriorly, while on its lower surface the infundibulum, to which the pituitary body is attached, arises from the floor of the third ventricle.
The posterior region corresponds to the cerebellum and the medulla oblongata. The cerebellum, which varies considerably in size and form, constitutes a transverse bridge, which covers the anterior part of the fourth ventricle. Lateral swellings-the so-called lobi pos-teriores-are often developed in this region; in the Sturgeons and Squalidre at the origin of the trigeminal nerve, as the lobi nervi trigemini; in Torpedo as the large lobi electrici, projecting over the fourth ventricle.

A separate visceral (sympathetic) nerrous system is absent in the

* Compare C. Gegenbaur, "Untersuchungen zur vergleichenden Anatomie der Wirbelthicre." 2 Heft, Leipzig, 1865.
C. Gegenbaur, "Ueber das Skelet der Glicdmassen." Jen. naturwiss. Zeitsch., Tom. V.

Cyclostomes alone, where it is represented by the vagus and by fibres of the spinal nerves. The spinal cord, the mass of which is con-

Fig. 588.-Brain and anterior part of the spinal coid and nerves of Hexanchus grisent (after Cregenbaur). The nerves are dissected out on the right side; the right eye remored. A, Anterior cavity of the skull ; N, nasal capsule ; Th, fore-brain (cerebral hemispheres) ; Mh, mid-brain (optic lobes); $C e$, cerebellum ; Mo, medulla oblongata; Bo, olfactory bulb; tr, trochlear nerve (fourth nerve) ; $T r^{\prime}$, first (ophthalmic) branch of the trigeminal or fifth; a, terminal branches of the same in the ethmoid region; Tr ${ }^{\prime \prime}$, second branch; $T r^{\prime \prime \prime}$, third branch; Fa, facial (seventh) ; Gp, glossopharyngeal (ninth); $V g$, ragus (tenth) ; L, lateral branch of vagus (to lateral line) ; J, intestinal branch; $O \varepsilon$, superior oblique muscle of eye; $R i$, internal rectus muscle; $R c$, external rectus; Rs, superior rectus; S, spiracle; $P q$, paiatoquadrate; $H m$, hyomandibular; R, branchial rays; $I-V I$, branchial arches; $B r$, branchie ; P, spinal ncrves.
siderably greater than that of the brain, extends tolerably uniformly throughout the whole length of the neural canal, and usually does not form io so-called cauda equina. Rarely its upper part presents
paired or unpaired swellings (Trigla, Orthayoriscus) at the origin of the spinal nerves.

The eyes are seldom hidden beneath the skin and the muscles (Myxine, Petromyzon, Amblyopsis). In Amphioxus they are represented by a pigment spot lying directly on the central nervous system. In all other fishes they are characterised by possessing a tlat cornea and a large, almost spherical crystalline lens, the anterior surface of which projects far out of the pupil (fig. 589). As peculiar structures of the eyes of fishes are further to be mentioned the so-called choroideal gland-a vascular body (rete mirabile) usually projecting at the entrance of the optic nerve, as well as a fold of the choroid known as the processus falciformis, which traverses the retina, and the campanule Halleri which is attached to the lens.

The auditory organ * (absent only in Amphioxus) consists only of the labyrinth (fig. 578, I), and in Teleosteans, Ganoids, and Chimcerce lies partly in the cranial cavity, surrounded by fatty tissue. It is worthy of notice that in Cyprinoidce Characince, Siluridce, and others, the labyrinth is connected with the swimming bladder by a chain of small bones.

The olfactory organ in Amphioxus consists of a simple unsymmetrical pit at the anterior end of the nervous centre. In Cyclostomes also it consists of a simple tube, with an unpaired median opening. All other fishes possess double, and indeed with the exception of the Dipnoi blindlyclosed nasal cavities, the internal surface of which is considerably increased by folds of the mucous membrane.

FIg. 589. - Horizontal section through the eye of Esox lucius. Co, cornea; L, lens; Pf, processus falciformis ; CH, campanula Halleri ; No, optic nerve ; Sc, ossifications of the sclerotic.

The sense of taste seems to be less developed. It is located in the buccal cavity, and especially in the richly innervated part of the soft palate. For the tactile sense, lips and their appendages-the frequently appearing barbules-probably serve. Certain isolated rays of the ventral fin may also, on account of their rich nerve supply, be regarded as tactile organs (Trigla). The nervous organs of the so-called mucous canals, which we have before mentioner, constitute an organ of a special sense.

[^165]The electrical organs* may be mentioned ats a peripheral appendage of the nervous systenn (Torpedo, Ciymnolus, Maleptermeus, Mormyrus). They are nervous appatatuses which in the armagement of their parts may be compared to a Voltaic pile. They develop electricity, ant give electrical discharges when their opposite poles are

Fig. 590.-Torpedo with electric organ dissected out (EO) (after Gegenbaur). On the right side the dorsal surface only of the organ is exposed; on the left side the nerves which go to it are shown. Le, clectric lobe; Tr, trigeminal nerve; V, vagus nerve ; 0 , eye; $B r$, gills ; on the left the individual branchial sacs ; on the right the latter are shown covered with a common muscular layer. Gr, Gelatinous tubes of the skin (sense canals).
connected. In Torpedo these organs are situated (fig. 590) between

[^166]the branchial pouches and the anterior cartilages of the pectoral fins, and consist of a number of perpendicular columns cncloser by walls of comective tissue. The columns are divided by a great number of membranous transverse partitions into a series of compartments placed one abore another. Each of the latter contains a layer of gelatinous tissue, and a finely granular plate containing nerve endings and large muclei (electrical plate). The latter corresponds in a certain degree to the copper and zinc element.s of the Voltaic pile, the former to the moist intermediate layers; while the connective tissue framework seems to serve only to carry the nerves and blood-vessels. Each transverse partition contains a rich network of nerves, which is distributed on the electrical plates. The face on which the nerves ramify is the same in tall the columns of the same

Fig. 591.-Alimentary canal and generative organs of Clupea Harengus (after Brandt). Br, gills; $O e$, œsophagus ; V, stomach ; $A p$, pyloric appendages ; D, intestine ; A, anus ; $V n$, swimming bladder ; D_{p}, pneumatic duct; S, spleen; T, testis; $T d$, vas deferens; Gp, genital pore.
organ, and is always electro-negative, the opposite free surface being positive. In Mclapterurus, the other surface of the plate (the posterior surface) on which the nerves enter is electro-positive, but this apparent exception is explained by the fact that the nerves pass through the plate and are distributed on the anterior snuface, which is electro-negative. In the electric Eel (Gymnotus electricus) the electric organ lies at the side of the tail and consists of long horizontal colnmns; in Mrulupterurus it lies along the body beneath the skin. Similar organs in Mormyrus are distingnished as psendelectric organs, since althongh they have a similar structure, they give rise to no electric phenomena.

The digestive organs vary much in structure. The mouth, which is placed at the anterior end of the head, usually has the form of a transverse slit, and can sometimes be extended forward by means of
the moveable supporting bones of the upper and lower jaws (Labroidea). The buccal cavity is distinguished by its width, and by the great number of teeth it contains, which are developed from the papilla of the mucous membrane by dentinal ossification. There are often two curved parallel rows of teeth on the upper jaw ; an outer row on the premaxilla, and an inner row on the palatine, and there may also be a median unpaired row on the vomer. On the lower jaw there is only one curved row of tecth. There may also be teeth on the hyoid arch and on the rpper jaw (maxille) and parasphenoid, and, as a rule, on the branchial arches also, especially on the upper and lower pharyngeal hones. The teeth are distinguished according to their shape into pointed conical prehensile teeth and grinding teeth.

A small, hardly moveable tongue is developed on the floor of the

Fig. 592.-Diagrammatic longitudinal section through the head ot' a larva of Petromyzon (after Balfour). $\quad N$, nervous system; Ch, notochord; Ot, auditory vesicle (represented as visible) ; O, mouth; r_{e}, velum ; H, thyroid involution; K_{8}, branchial pouches; C, heart; $A l$, optic vesicle; Ol, oltactory pit. buccal carity, and the lateral walls of the pharynx are pierced by the gill slits. Following the pharyngeal cavity, there is a usually short, funnelshaped esophagus, and a large stomach, which is frequently drawn out into a cæcum of considerable size (fig 591). Ciecal appendages (pyloric appendages) are not unfrequently met with at the entrance to the longer mid-gut (small intestine) which is marked off by a valve ; they probably serve the purpose of increasing the extent of the secreting surface of the alimentary canal. The intestine is usually several times coiled, and its internal surface is remarkable for the longitudinal folds of the mucous membrane; villi such as are found in the higher Vertebrates are only rarely present ; but in the Selachians, Ganoids, and Dipnoi there is a peculiar spirally-coiled longitudinal fold-the so-called spiral valve-which contributes essentially to the enlargement of the absorbent surfaces. A rectum is not always clearly marked off, and when present is always short, and in the Seluchions it is furnished with a creal appendage. The anus is usually situated far back, and is always ventral and in front of the urinary and gencrative openings. In fishes with jugular fins, and in some Telcosteans without rentral
fins, it is situated very far forward, and may even be on the throat.

Salivary glands are absent in Fishes, but there is a large liver which is rich in fat and is usually provided with a gall-bladder; there is also usually a pancreas, which is by no means replaced by the pyloric appendages as was formerly believed.

In many fishes the swimming bladder, an organ which by its mode of origin corresponds to the lungs, is developed as a diverticulum of the alimentary canal. It is almost always an unpaired sac filled with air and placed on the ventral side of the vertebial column, dorsal to the alimentary canal : it is sometimes closed and sometimes

Fig. 593.-Horizontal section through the branchial cavity showing the roof. a, of one of the Squalide, b, of a Teleostean, (altered from Gegenbaur). Nal, nasal aperture ; Md, mandible; $Z b g$, hyoid arch; $K l$, branchial arches; $O e$, œesophagus; $S p l$, spiracle; $B r$, gills ; $S p$, gill slits ; Se, septa of branchial pouches ; $P s b$, pseudobranch of the branchial operculum (hyoid pseudobranch) ; $O p$, operculum.
communicates by an air tube-the pneumatic duct-with the interior of the alimentary canal (Physostomi) (fig. $591 \mathrm{~V} n$). Its walls are formed of an external elastic membrane which is sometimes invested with muscles, and an internal mucous membrane. Glandular structures are sometimes present in the internal coat, and these may exert an influence on the enclosed air. The internal surface is usually smooth, but sometimes is provided with reticulated projections which lead to the origin of cellular cavities (Ganoidei). Physiologically the swimming bladder is a hydrostatic apparatus, the function of which seems to consist essentially in rendering the specific weight of the fish variable, and in facilitating the rapid clange in the position of the centre of gravity. The fact that many fishes

Which swim very well are without the swimming bladder is by no means farourable to the interpretation of its function. When it is present the fish must have tho power of compressing it, partly by the muscles in its walls and partly by the muscles of the body, and thus rendering the body specifically heavier so that it sinks. When the compression of the muscles is removed the compressed air will again expand, the specific gravity diminish and the fish will rise. If the pressure is unequal on the anterior and posterior parts then that half of the fish which is rendered specifically heavier will sink. Still more complicated relations, however, seem to exist according to the investigations of Bergmann.*

Respiration is in all cases effected by gills.
In the Cyclostomes (fig. 592) which have no visceral arches there are six or seven pairs of branchial

Fig. 594.-Head of Anabas scandens (règne animal). The operculum has been removed to shew the spacious upper pharyngeal bones (pharyngo-branchials). pouches. These open into the wsophagus either by internal branchial passages or (Petromyzon) by a common canal which receives all the branchial passages. The water is expelled through external branchial passages round which a network of cartilaginous rods is developed.

In the Plagiostomes (fig. 593 r) there are saccular spaces the walls of which are supported by cartilaginous rods. These branchial sacs communicate with the exterior by lateral openings and contain the branchial leaflets which are attached to their walls: they are separated from one another by partition walls which are placed between the two 'rows of leaflets of each arch, and they are supported by an external framework of cartilaginous rods. In the Selachians there are, as a.rule, five pairs of branchial sacs, of which the last has a row of leaflets on its anterior wall only, i.e., on the posterior side of the fourth true branchial arch; while the first pouch has, in addition to the anterior gill of the first branchial arch, a gill on the hyoid arch corresponding to the accessory gill of Chimura and the Ganoidei. The mandibular arch, however, sometimes bears a

[^167]remmant of a gill-the pseudobranch of the spiracle-the vessels of which belong to the arterial circulation and form a rete mirabile.

In the Teleosteins (fig. 593 b) and the Ganoids the lancet-shaped lamelle are arranged in double rows on the four visceral arches which function as branchial arches, and they form four comb-shaped gills on either side. These gills lie in a spacious branchial cavity covered by the branchial operculum and the branchial membrane. There is, however, an accessory gill on the inner side of the branchial operculum ; this in many Ganoids and Chimæra functions as a gill, but in the Teleosteans has lost its respiratory function, and is then known as the pseudobranch of the operculum or of the hyoid arch.

External gills projecting from the slits of the branchial pouches are found only in the embryos of the Plagiostomes. Rudiments of external gills are found in Rlinocryptis annectens.

Finally the secondary cavities, which are sometimes found annexed to the branchial cavity and increase the respiratory surfaces by the development of a capillary network, must be regarded as accessory organs of respiration. They consist either of labyrinthine cavities in the superior pharyngeal bones (fig. 594) or of saccular appendages of the branchial cavity (Saccobranchus, Amphipnous). True lungs derived from the swimming bladder, with internal cellular spaces, a short air-tube and glottis-like opening into the pharynx, are only found in the Dipnoi (according

Fig. 595.-Diagram of the circulation of a Teleostean. T, ventricle ; Bu, bulbus arteriosus with the arterial arches which carry the blood to the gills; $A b$, arterial arches ; $A 0$, aorta descendens into which the epibranchial arteries passing out from the gills unite ; N, kidneys; D, intestine; $L k$, portal circulation. to Hyrtl the swimming bladder of Gymnarchus is also at lung).
Vascular system.-The blood is generally red; it is white only in Amplioxus and the Leptocephalidec; it circulates in a closed VOL. II.

Vascular system, in which, except in A mphioxus, it muscular pulsating region or heart is present. 'The heart (fig. 595) is placed fia forward on the throat, vential to the branchial franework, and is melosed in a pericandinm, the cavity of which communicates with the body cavity in some Pluyiostomes, C'himara, Acipenser, ctc. It is a simple vonous branchial heart, ind is composed of a thin-walled large auricle and a very powerful muscular ventricle. The auricle receives the venoms blood returning from the body, and the ventricle forces it throngh an ascending aorta to the respiratory organs. The aortat begins with a hulbous swelling (bullus arteriosus'), which in the Ganoids, Plagiostomes, and Dipnoi is replaced by an independently pulsating part of the heart with rows of semi-lunal valves (conus arteriosus). While the fishes with a simple non-muscular lullus arleriosus have but two semi-lunar valves at its origin, the above mentioned orders usually have two to four, or rarely five rows of three, four or more valves each in the conus arteriosus. The aorta at once divides into a number of paired vascular arches corresponding to the embryonic aortic arches. These are the branchial arteries; they pass into the branchial arches and give off branches to form the capillary networks of the gills. From the capillary networks small vessels pass out which unite to form a larger branchial vein in each branchial arch (epibranchial artery). The arrangement of these veins corresponds to that of the branchial arteries; they unite to form the large corla descendens or dorsal aorta. Before they unite the cephalic arteries pass off from the epibranchial arteries of the anterior arch. The arrangement of the principal venous trunks in fishes is most nearly related to the embryonic condition. Corresponding to the four cardinal veins of the embryo, two anterior and two posterior vertebral * veins (jugular and cardinal veins) bring back the blood from the anterior and posterior part of the body re spectively. These veins unite on each side to form two transverse veins-the ductus Cuvieri-which enter the sinus venosus of the heart. The course of the returning venous blood is complicated by the insertion of a double portal circulation. The caudal vein passes directly into the posterior cardinal veins only in Cyclostomes and Selachians : in all other fishes there is a renal-portal circulation, in that the caudal vein breaks up into capillaries in the kidneys, from which the blood passes into the posterior cardinal veins. For the hepatic portal circulation on the other hand the venous blood of the

[^168]intestine is used ; this blood after passing through the capillaries of the liver is returned to the heart by one or more veins which correspond to the inferior vena cava and open into the sinus venosus between the two ductus Cuvieri. Such capillary systems must be a considerable lindrance to the circulation of the blood and explain the development of the so-called accessory hearts on the caudal vein of the eel and on the portal vein of Myxine.

The urinary organs of Fishes (fig. 596) consist of paired kidneys extending along the backbone from the head to the end of the body cavity, and giving off two ureters which unite into a common duct on which a bladder is usually developed. The urinary bladder and its duct always lie behind the intestinal canal. In most Teleosteans the efferent duct of the bladder opens by a common orifice with the sexual opening, or on a special papilla behind the sexual opening. In the Plagiostomes and Dipnoi on the other hand a cloaca is developed ; in the former the ureters and the generative ducts open into the dilated terminal part of the intestine-i.e., the cloaca-behind the rectum ; while in the latter the ureters open into the cloaca separately on each side.

Generative organs.-Excepting in certain forms, such as Serranus and Chrysophrys, which are hermaphrodite (also some carps), Fishes are of separate sexes ; the two sexes often present more (Macropodus) or less (Tincu, Cobitis) considerable sexual differences. The male and female reproductive organs (fig. 591) often resemble one another

Fig. 596.-Kidneys of Salmo fario (after Hyrtl). R, kidneys ; U, ureter; $T e$, bladderlike dilation; U_{r}, efferent duct of bladder; D, ductus Cuvieri; V_{s}, subclavian vein. so closely in form and position that it is necessary to investigate their contents in order to distinguish the sex, especially as external sexual differences are frequently absent.
The ovaries are paired (in the Myxinoids the Squatidoe, and certain Teleosteans, as Perca, Blennius, Cobitis, they are unpaired) elongated sacs, which lie vential to the kidneys at the sides of the intestine and the liver. The ova originate on the internal transversely folded walls of the ovaries in closed follicles in which they receive a thick esg-capsule (with pores and micropyle), and escape thence into the
cavity of the wate which becomen greatly swollen at the bereding time. The testes on the other hand are, except in the ryclostomes, paired, and they are composed of transverse canals or vesicular cavities.

In the simplest case the testes and ovaries have no special ducts, but the genital products are dehisced from the wall of the gland into the body cavity, whence they pass out to the exterior through a genital pore situated behind the annis (in Cyclostomes, Eels, ind female Salmon). As a tule, however, gencrative ducts are present; they may either be direct prolongations of the genital glands as in the Teleosteans, or as in the Ganoids, female Plagiostomes and Dipnoi independent canals which begin with a free funnel-shaped opening into the body cavity (Miillerian ducts). In the Teleosteans the two oviducts as well as the vasa deferentia unite to form an unpaired duct which opens to the exterior on the urogenital papilla between the openings of the anus and the urinary duct; in the Ganoids, on the other hand, as well as in the Plagiostomes and the Dipnoi a common cloaca is formed. Accessory external copulatory organs are only found in the male Plagiostomes, in the form of long grooved cartilaginous appendages of the ventral fins.

Most fishes are oviparous; only a few Teleosteans, as Anableps, Zoarces, the Cyprinodonta, etc., and a great number of the Sharks, bear living offspring, which for the most part undergo their embryonic development in a dilated part of the oviduct which serves as a uterus. Reproduction usually takes place only once in the year, most frequently in spring, more rarely in the summer, and exceptionaliy, as in many of the S'rlmonidce, in winter. Many fishes, especially the males, undergo changes of colour and develop growths of skin at the spawning time. The two sexes often assemble in great shoals and seek out shallow places near the banks of rivers or near the sea coast (Herrings) for spawning. Some make more extended migrations. and pass in great shoals over great distances along the sea coast (Tunny-Fish). Other's leave the sea and pass up the mouths of river's, and overcoming great obstacles (Salmon leaps) make their way up into the smaller streams in which they deposit their spawn in sheltered places where the food is plentiful (Salmon, Sturgeon, etc.). The Eels on the other hand migrate from the rivers into the seal, and in the following spring the young Eels enter the freshwater by millions and pass up the stream. The spawn is as a rule fertilized in the water, and thus artificial fertilization and pisciculture is rendered possible. In the viviparous fish, and in the Rays, Chimara. and

Dog-tishes, which lay large eggs enclosed in a horny shell, a true copulation and an internal fertilization of the egg takes place. It is worthy of note that in a few exceptional cases the male undertakes the charge of the brood (Hippocimpus, Cottus, Gusterosteus).

The embryonic development of the fishes is principally distinguished from that of the higher Vertebrates by the fact that neither amnion nor allantois are developed. Both the small eggs of the Teleosteans, which are provided with a micropyle, and the large eggs of the Plagiostomes, which are surrounded by a hard horny case, contain a large quantity of food yolk, and undergo a partial segmentation. The eggs of Amphioxus and of the Cyclostomes, however, undergo a total segmentation. As a rule the young fishes leave the egg-membranes tolerably early, with more or less distinct remains of the yolk-sac, which is by this time completely taken up into the interior of the body, but projects externally, like a hernia. Although the body-form of the just-hatched fish differs essentially from that of the adult animal, yet no true metamorphosis takes place save in a few exceptional cases.

Most fishes live in the sea, and the number of their species and genera increases as we approach the equator. But they are not all exclusively confined to fresh or salt water. Many, as the Plagiostomes, live almost entirely in the sea ; others, as the Cyprinoidei and Esocidce, are confined to fresh water, but there are also fish which periodically change their habitat, especially at spawning time. Some fish live in subterranean waters and are blind like the inhabitants of caves (Amblyopsis spelceus). Few fish are able to live any length of time out of water; as a rule the wider the gillslits, the quicker does the fish die on dry land. Fishes with narrow gill-slits (Eels) possess an uncommon tenacity of life out of water. According to Hancock, a species of Doras migrates in great shoals over the surface of the ground from one piece of water to another. Except the Dipnoi, certain East Indian fresh-water fish, whose upper pharyngeal bones are hollowed out into the form of a labryinth and form a multicellular reservoir for water, are capable of living the longest time out of water (Anabas scandens). There are even fishes which can fly (Exoccetus, Dactylopterus).

Fishes are of great importance to our knowledge of the development of animal life on the earth owing to the frequent appearance of their fossil remains in all geological periods. In the palroozoic formations very singular fish-forms, as the Cephalaspitce (Cepalaspis, Coccosteus, Pterichthys), constitute the oldest representatives of the

Vertebrata. From the palarozoic formations to the chalk we find ahnost exclusively cantilaginous fishes and Gianoids, anongst which the forms with persistent notochord and cantilaginous skull predominate. Gamoids, with a fully-developed bony sikeleton, round scales and an extermally homocercal caudal fin, appen for the first time in the dua, where we also find the first Treleostenns. From the chalk onwards, in the more recent formations, the Teleosteans increase in number and varicty of forms the nearer we approach to the fimun of the present time.

> Order 1.-Leptocardil * (Acrania).

Lanceolate Fishes without prived fins. The notochord is persistent; there is no skull-capsule. The blood is colourless, and there ure pulsating vascular trunks.

The body of Amphioxus (which was taken by Pallas for a slug) is about two inches long. It is shaped like a lancet, and is provided with dorsal and anal fin-like folds, which, however, are without rays, and are continued into the lancet-shaped caudal fin. In the place of the vertebral column the strong notochord persists; on the dorsal side of this is the spinal cord, the slightly swollen anterior extremity of which represents the rudiment of the brain. There is no capsule corresponding to the skull. There is a rudimentary eye, consisting of an unpaired pigment spot, situated at the anterior end of the central nervous system in the nervous tissue; also a small olfactory pit placed on the left side. There is no auditory organ.

The mouth, which is without jaws, is a long slit: upported by a jointed horse-shoe-shaped cartilage, bearing ciliated cirri. It leads into a long and spacious sac (pharynx), which is pierced by a number of lateral slits, and serves the function of respiration. At the entrance of the pharynx there are two folds, and on either side three fingershaped ciliated projections. The walls on each side are supported by

[^169]obliquely directed rods, and form over the rods leaf-shaped, inwardly projecting branchial folds. Between the latter there are slit-like openings for the outflow of the water, which passes into a superficial cavity-the atrical cavity-produced secondarily by the growing over of a fold of the integument and opening to the exterior by a pore-the atrial pore-on the ventral side. The intestine begins at the posterior end of this branchio-pharyngeal sac, and passes in a straight course as far as the tail, where it opens by a somewhat laterally-placed anus. The intestinal tube is divided into two regions, of which the anterior receives a creal hepatic sac, which extends forwards on the left side of the pharynx.

The vascular system is without an independent heart, but in its place the principal vessels pulsate. The arrangement of the vessels permits of comparison with the vascular apparatus of the Invertebrata (Annelids), and at the same tine it represents, in the simplest form, the arrangement typical of Vertebrates. A longitudinal trunk running beneath the respiratory sac gives off numerous vessels, which are contractile at their origin, to the gills. The anterior pair of these branchial arteries forms a contractile vascular arch placed behind the mouth, the two parts of which unite beneath the notochord to form the aorta, which receives the next following branchial arteries. The venous blood returning from the organs is collected in a vessel placed above the hepatic cæcum ; this vessel becomes the subpharyngeal longitudinal trunk. The blood returned from the intestinal canal is collected in a vessel-the hepatic vein-which breaks up into fine branches on the hepatic cecum. A second contractile vessel (vera cava) receives the blood from these branches, and conducts it back into the subpharyngeal longitudinal trunk. The blood corpuscles are colourless.

Generative Organs.-The mimals are diuccious. The ovaries and testes resemble each other extermally, and consist of a series of paired bodies. They are arranged segmentally (in prolongations of the borly cavity), one piri being found in eatl segnent over the

Fig. 598.-Development of Amphioxus (after B. Hatschek). A, Blastosphere. B, commencing invagination of the entoderm (gastrula). C, Later gastrula, the cilia of the ectoderm cells are not represented. D, Stage with two somites (primitive segments), seen in optical longitudinal section. $U S$, Primitive segments or somites; $M F F$, mesoderm folds , N, medullary canal; Oe, external opening of the latter. E, Stage with nine somites seen from the dorsal surface to shew the asymmetry of the somites, the notochord (Ch) is shown in section. F, Larva with mouth (O) and first gill slit (K) seen from the left side ; D, intestine; $B 1$, veutral blood-vessel.
greater part of the length of the branchial sac (fig. 597, Ov). The generative products are dehisced into the atrial cavity, and pass thence through the pharynx and mouth to the exterior.

Eor a short distance in front of the atrial pore the epithelium of
the rentral wall of the atrial cavity is thrown into a number of peculiar longitudinal folds which have been interpreted as kidneys.

Development.-The eggs undergo a total segmentation. The cells resulting from segmentation form a blastosphere, which by invagination is transformed into a ciliated gastrula larva (fig. 598, A, B, C). The mesoderm is developed from lateral folds of the entoderm, and at once segments iuto somites; and at the same time the medullary canal, which communicates with the alimentary canal behind and opens freely to the exterior in front (fig. 598, D), is formed from the ectoderm. Soon after the notochord arises from the endoderm. The changes, which take place in the larval life, are introduced by a considerable elongation of the body. In the further development the larva is remarkable for a striking asymmetry (of somites, mouth, anterior gill-slit, anus, olfactory organ). The branchial apparatus, which is at first free, is afterwards covered by a reduplication of the skin (formation of the atrial or peribranchial cavity).
The only gemus of the Leptocardii is Amphioxus Yarrel (Branchiostomme Costa) including a single species distributed on the sandy coasts of the North Sea, of the Mediterranean, and of South America. A. lanceolatus Yarrel, Lancelet. The forms described as A. Beldeltri Gray. from the Indian Ocean, and A. elom. yutn: Sundev. probably belong to the same species.

Order 2.-Cyclostomi* (Marsipobranchi).

Vermiform Fishes without pectoral or pelvic fins ; with cartilaginous skeleton and persistent notochord. There are six or seven pairs of pouch-like gills. The olfactory fossa is unpriverl, and the circular or semicircular suctorial mouth is without jars.

Fig. 599.-Myxine glutinosa (règne animal).
The Cyclostomi have a cylindrical vermiform shape (fig. 599), and

* Joh. Mï̈ller, "Vergleichende Anatomie der Myxinoiden." Bcrlin, 1835-t5. Aug. Miiller, "Ueber die Entwickelung der Neunaugen." Mïller"'s A rehir., 1856.
Max Schultze, "Die Entwickclungsgeschichte von P. Planeri." Haarlem, 1856.
P. Langerhans, "Untersuchungen iiber Petromyzon Planeri." Freiburg. 1873.
W. Mitler, "Ueber das Urogenitalsystem des Amphioxns und der Cjelostomen." Jen. natumisis. Zeit.r. 7 n'. Tom. IX., 1875.
A. Schncider. "Pciträge zur vergleichenden Anatomie und Entwickclungsgeschichte der Wirbelthiere." Berlin, 1879.
Calberla, "Zur Entwiekelung des Medullarrohrs und der Chorda dorsalis der Telenstier und der Petromyzonten." Morphon. Jtihrl., T'om. IlI., 1877.
their skin is without scales. They haveno pared fins but the system of vertical fins is developed over the whole lengeth of the donsal surfice and of the tail, and is ustally supported by cartilaginous laty. 'The skeleton is confined to at cartilaginons rudiment of the vertebaal column amd skull. 'The notochord persists as the axial skeleton: its sheath presents thaces of segmentation in the presence of rudimentary cirrtilaginons nemat arches (fig. 6(0), b), and in the caudal region (l'etromyzon) of the lower vertebral arches also.

At the anterior end of the notochord there is a cartilaginonembranous cranial eapsule enclosing the batin. It has a bony basal

Fig. 600.-Skull and beginning of the vertebral column of Petromyzon murimus (after Joh. Müllcr). u, In longitudinal vertical section. b, Seen from above. A, notochord; B, neural canal; C, rudimentary vertebral arches; D, cartilaginous part, and D^{\prime}, membranous part of the cranial roof ; E, base of skull ; F, auditory capsule; G, nasal capsule; G^{\prime}, naso-palatine duct; $G r$, blind end of $G^{\prime} ; H$, process of the bony palate; J, posterior plate covering the mouth ; K, anterior plate covering the mouth; L, labial ring ; M. styliform appendage of L. region and lateral cartilaginous verieles in which the auditory orgalls are enclosed (fig. 600)). In place of the visceral skeleton there are cartilaginous pieces surrounding the palate and pha$1 \cdot y n x$, various labial cartilages and a complicated frame worlz of cartilaginous rods, which form the so-called branchial basket round the branchial sacs, and are in part attached to the vertebral column.

The Cyclostomi possess a brain of the piscine type with three principal sense nerves and a reduced number of spinal-like nerves. Two eyes are always present, but they may be hidden under the skin or even covered by museles (Myxine, larva of Petromyzon). The olfactory organ is an unpaired sac opening in the median line between the eyes. In the Myxinoids the olfactory capsule has in addition a posterior. opening which pierces the palate and can be closed by a valrular apparatus. This communication between the nasal and pharyngeal cavities serves for the introduction of water into the branchial sac ; for the mouth when performing its function as a suctorial organ is closed so far as the passage of water is concerned. The auditory organ is reduced to a simple membranous labyrinth which consists of the vestibulum and one or two semicircular canals.

Alimentary canal.-The mouth, which is surrounded by fleshy
lips and often ly filamentous processes, is circular in shape, though the lips cin be applied together so as to form a median longitudinal slit. It leads into a funnel-shaped buccal cavity, which is without jaws and is armed on the soft palate as well as on the floor with horny teeth (fig. 601). At the bottom of the finnel is the tongue, which, moving up and down like a piston, enables the animal to attach itself by its mouth as by a sucker. The pharynx, which follows the mouth, communicates with the branchial sacs either directly or by a special passage (Petromyzon). The intestinal canal passes straight to the rectum and is divided into stomach and intestine by a narrow region, the walls of which project so as to form a sort of valve. The liver is always well developed, but there is no swimming bladder.

The gills (fig. 592) lie at the sides of the œesophag'us in six or seven pairs of branchial sacs. These open on either side by external branchial passages into the same number of separate respiratory apertures. In Myxine on the other hand there is on each side, almost on the ventral surface, only one opening, into which all the external branchial passages of the same side open.

On the other side the racs communicate with the œesophagus, but, except in Ammocretes, never directly by simple openings but by internal branchial passages or, as in Petromyzon, by a common passage lying beneath the œesophagus into which passage all the other branchial passages open. The

Fig. 601.-Head of Petromyzon marinus, seen from below Showing the horny teeth of the buccal cavity (after Heckel and Kner). water flows in from the exterior through the external branchial openings or in Myxine through the nasal passage, and is driven by the contraction of the constrictor muscles of the branchial sacs either out by the same way (Petromyzon), or into the resophagus, and from this to the exterior through a special unpaired canal on the left side.

The heart lies beneath and behind the branchial skeleton. Some of the vascular trunks pulsate, e.g., the portal vein in Myxine. The aortic bulb has no muscular layer, and contains, as in the Teleosteans, only two valves.

The urinary and genital organs are of simple structure. In Myxine the kidneys retain the primitive segmental arrangement, there being a urinary tubule and Malpighian body in every seg-
ment. In Myxime the urinary ducts open with the genital pore, in P'etromyzon into the intestinc. In firont of the kidneys, in the region of the herrt, there is mother part of the kidney which in the adnate animal is no longer functional. This is the heard-kiduey or pronephros (Nehenniere of Joh. Miiller'). It consists of a number of glambular ducts, which begin with funnel-shaperl openings into the body cavity (pericurdial eavity), and in the young animal open into the minary duct.

The genital glands are mpaired in hoth sexes. In Mysine they lie on the right side ; in Petromyzon in the middle line. They neverpossess ducts, but the eggs and spermatozoa are at the breeding tine dehisced into the body cavity, whence they pass out through a pair of genital pores placed behind the anus.

The Petromyzontidce undergo a kind of metamorphosis, which was

Frg. 602.-a, Petromyzon fluviatilis (after Heckel and Kner). l, c, d, stages in the transformation of Ammocotes Uranchialix into Petromyzon Pleneri (after v. Siebold). b, Head of an eyeless larva seen from the side; c, the same seen from underneath: d, later stage with small eyes, seen from the side.
discovered two hundred years ago by Baldner, a fisherman of Strasburg, but has only recently been rediscovered by Aug. Muiller. The young larvæ (fig. 602, b, c, d) are blind and without teeth. They possess a small mouth, surrounded by a horseshoe-shaped upper lip, and were for a long time placed in a special genus- A mmocetes.

The Cyclostomes live partly in the sea; they ascend rivers at spawning time, sometimes carried by the Salmon and Shad (Alausi vulgaris), and deposit their eggs in holes in the river-bed. Others are river-fish. They attach themselves to stones and to dead and living fish, which latter they may in this way kill. They also eat worms and small aquatic animals. The genus Myxine is exclusively parasitic on other fish and even makes its way into their body cavity, thus affording an example of an endoparasitic Vertebrate.

Fam. Myxinoidæ (Hags). Head obliquely truncaterl ; suctorial mouth without
lips, and surrounded by labial proeesses; eyes hidden beneath the skin. There is an opening from the nasal eavity into the mouth through the posterior part of the palate. The branehial potehes open to the exterior cither by a eommon ventral aperture on eaeh side (1My rine, Gustrobranchus.) or by seven apertures on each side or asymmetrieally by six apertures on one side and seven on the other (Bdellostoma). Marine. Myxineglutinosa L. (fig. 599). Bidellostoma heptatrema Joh. Miill., found at the Cape.
Fam. Petromyzontidæ. Lampreys-Nine-eyes. With seven external gill slits on each side of the neek, and a common internal branehial passage whieh opens anteriorly into the pharynx. The nasal cavity ends blindly. The round mouth, without labial processes, with fleshy lips, whieh can be approaehed so as to leave a slit-like opening. Petromyzon marinus L. Lamprey, two feet in length, aseends rivers with the Shad, in the spring, to spawn. P. fluviatilis L., River Nine-eye (fig. 602 a). P. Planeri Bloch, small river Nine-eye, with Ammocretes branchialis as larva. It attains a length of 5 to 6 inehes.

Fig. 603.-Acanthius vulgaris Spl, spiracle; Kis, gill slits.
Order 3.-Selachi* (Chondropterygit).

Cartilaginous Fishes with large pectoral and pelvic fins, with transverse ventrally-placed mouth, usually with five (rarely six or seven) pair's of branchial pouches and branchial slits. They have a muscular conus arteriosus which contains several rows of valves. The intestine has a spiral valve.

The Selachians differ strikingly in their outward appearance from all other Fishes (fig. 603), and present even among themselves great variations. The form and position of the mouth, which is a broad transverse slit placed on the under surface of the snout, is an important distinguishing character. The skin usually contains a number of bony granules (ossified dermal papillæ, placoid scales), and obtains

[^170]thereby a rough shatreen-like surface. Sometimes, especially on tho tail (Ruilue), there are larger bony plates, armanged in rows and provided with pointed spinous processes, which serve for protection (ichthyortoratites). All the Selachians have lange pectoral and pelvic fins. The former are attached hy a cartilaginous shouldergrirlle to the posterior part of the skull, or to the anterior region of the vertebral columm ; they we either sharply marked off and have an almost vertical position on the anterior part of the body (Chimara and S'qualidese , or they have the form of very large, horizontallyplaced lateral expansions of the body (fays). In the latter case they reach by means of the so-called cranial fin cartilages to the anterior end of the snout, and lean by posterior suspensors on the pelvic framework of the ventral fins; the latter are always placed near the anus, and in the male bear peculiar grooved cartilaginous appendages, which are the accessory copulatory organs (claspers). The unpaired fins also may be well developed, and, as their number and position varies in the different forms, they may be of systematic importance. A sharp bony spine is sometimes present in front of the dorsal fins, or completely isolated on the dorsal surface of the tail (Trygon), and this as well as the spinous and hooked processes of the dermal bony plates serve as a weapon of defence. The caudal fin is always markedly heterocercal externally.

The skull is an undivided, cartilaginous capsule, the base of which sometimes is articulated to the vertebral column (Chimera and Raiidce), while sometimes it is excavated like the body of a vertebra (fig. 571). On the facial region the cartilaginous mandibular arch persists, and is attached to the auditory region of its skull by the hyomandibular. The palatoquadrate bar is moveably connected to the cranial capsule (except in Chimcerct). The palatoquadrate and the lower jaw are always cartilaginous, and as a rule are abundantly furnished with teeth. The vertebral column with its remains of the notochord is also principally cartilaginous, but separate biconcave vertebræ are developed, the form of which offers numerous variations.

In all cases there are dorsal and ventral arches, which sometimes remain separate and sometimes fuse with the vertebral bodies. Ribs only appear as cartilaginous rudiments.

In the structure of the gills (fig. 593), the Selachians differ essentially from the Teleosteans in possessing five branchial pouches on either side; the branchial lamellæ are attached in their whole length to the partition walls, which are supported by the lateral cartilaginous rays of the branchial arches. The branchial pouches are placed
relatively far back, and each of them has a separate external opening. These openings are in the Squatidue on the sides, in the Raiudee on the ventral surface of the body. In the Chimeride the branchial pouches open on either side into a common gill-slit, over which a cutaneous fold, arising from the suspensorium of the jaw and serving as a branchial operculum, is spread.

The dentition presents many variations. Sometimes (Hexanchus, Acunthias) the whole of the buccal cavity as far as the entrance to the esophagus is covered with small teeth of the mucous membrane (placoid scales*); sometimes there are larger teeth, which also always belong to the mucous membrane, and are arranged in rows on the rounded edge of the jaw in such a manuer that the younger posterior rows of teeth have their points turned inwards, while the teeth of the anterior rows, which are older and more or less worn, have their points turned upwards and outwards.

In the Squalides, dagger-shaped or saw-shaped serrated teeth preponderate, while conical or flat pavement-like molar teeth are characteristic of the greater number of Raiides.

Spiracles are frequently present on the upper surface of the head behind the eyes; they are used for the expulsion of the water from the pharyngeal cavity. The digestive canal is dilated to a spacious stomach, but is relatively short ; the small intestine is furnished with a spirally coiled fold of the mucous membrane-the so-called spiral valve--which considerably increases the extent of the absorbing surface. A swimming bladder is always absent, though the rudiment of it is often discernible.

The heart* has a muscular conus arteriosus; it contains two to five rows of valves, and represents a part of the ventricle which has become independent.

In the structure of the brain and of the sense organs, the Selachians hold the highest place amongst the fishes (fig. 588). The hemispheres are of relatively considerable size, present longitudinal and transverse impressions, and traces of convolutions on their surface. The cerebellum, also, may be so well developed that the fourth ventricle is almost entirely covered by it. The two optic nerves always form a chiasma and some of their fibres cross. The eyes in the S'qualides are not only protected by free lids, but often also by a moveable nictitating membrane.

[^171]The urinary organs of the I'lugiostomi are paired kidneys, which sometimes retain the ciliated finmels (upphirostomake).

The sexes can be easily distinguished by the form of the pelvie fins. A true copulation always takes phace. The female genital organs consist of a large, single or double ovary and paired glandular oviducts, which are separate from the ovaries and begin with a common fumel-shaped ostium, and in their further course each of then possesses a uterus-like dilatation. The two oviducts open by a common aperture (in the Chimeridu only by separate orifices) into the cloaca. The ova have a large amount of food-yolk, and are euclosed by a mass of albumen, and sometimes by a thin membranous folded chorion, sometimes by a tough, parchment-like, flat shell,

Fig. 604.-Embryo of Mustelus levis, connected with the uterus by the umbilical placenta (D_{p}) (after Joh. Müller). which is prolonged into four horns, or into twisted strings, which serve to attach it to marine plants. In the latter case the eggs are laid (the true Rays and Dogfish) ; in the former (electric Rays and viviparous S'qualides), on the other hand, they develop in the uterus. In this case the eggs are closely applied to the walls of the uterus during the development, the folds of the chorion interlocking with the ridges of the uterine walls. Thus the addition of nutriment is reudered possible. Sometimes the connection between the mother and the embryo is more iutimate, and is effected by means of a true umbilical placenta, which was known to Aristotle in Mustelus leveis (fig. 604). As Joh. Müller * has shown, the long-stalked yolk-sac of the embryos of Mrustelis lcevis and species of Carcharias develops a great number of villi, which are covered by the delicate egg membrane, and like the cotyledons of Ruminants fit into corresponding depressions in the uterine mucous membrane. In other respects,

[^172]also, the embryos of the Plagiostomes exhibit notable peculiarities, especially in the possession of external branchial filaments (fig. 605), which are lost long before birth.

Almost all the Plagiostomes are marine; only a few of them are found in the larger rivers of America and India. They are all carnivorous, and feed on large fishes, or crustacea and mollusca. Some few (Torpedo) possess an electric organ.

With the exception of Pleurcoconthus, remains of spines and teeth only are preserved in the Palæozoic formations. From the secondary period onwards the remains are more complete and numerous.

Sub-order 1. Holocephali.

Selachians with maxillo-palatine apparatus firmly fused to the skull, with single external yill slit on each side and small opercular membrane.
The thick strangely formed head is provided with large eyes which

Frg. 605.-Embryo of Acanthias with external gills. Sp, spiracle ; M, mouth; $N b$, stalk of yolk-sac.
are without lids. The mouth is small and lies on the under surface of the snout. The maxillo-palatine (palato-quadrate) bar is firmly fused with the skull, while the lower jaw articulates with a styliform process of the skull (hyomandibular). The mandible has but few teeth (four above, two below). The naked skin is traversed by the large passages of the lateral sense organs. There are no spiracles. The vertebral bodies are replaced by thin calcareous annular incrustations in the sheath of the notochord. They lay eggs with horny shells.

Fam. Chimæridæ (Sca-cats). Chimcera monstrosa L. (fig. 606), Northern Seas and Mediterranean : Callorhynchus antarcticus Lac., Cape and Pacific.

Sub-order 2. Plagiostomi.

Selachians with wide transverse mouth, which is placed far back, separate vertebral bodies, and a more or less reduced notochord. There are five (exceptionally six or seven) externul gill slits on each side.
The nasal apertures are placed on the under surface of the snout, vol. II.
a little in front of the tramsvarsely arched month. The skin is rarely makeal ; it usmally shagreen-like in consequence of the osseous bodies which are embedred in it, on it may also be covered with osseons plates and seates. The palato-phatlate lati is moveable and is separate from the cartilaginous cranial catponts.

Tribe 1. Squalides (Sharks). Sppindle-shaped Plagiostonnes, with lateral gill slits; eyelids with free edges; incomplete shoulder girdle, without camial fin curtilages.

The body is spindle-shaped, carries the pectoral fins more or lesss vertically, and ends with a powerful tail, which is hent dorsalwards at the end. There are, however, forms which, with regard to their body shape, wre allied to the Rays, and constitute forms of transition to the latter gromp, e.y., the genus Squatina. The teeth are usually pointed and dagger-shaped, and placed in numerous rows. The

Fig. 606.-Chimara monstrosa (règne animal).
families are distinguished principally by the number and position of the fins, by the presence or absence of spiracles and of a nictitating membrane, and also by the form and structure of the teeth.

Fam. Scyllidæ (Dog-fishes). Scyllium canicula L., the coasts of Europe.
Fam. Cestraciontidæ. Cestracion Philippi Blainv.
Fam. Lamnidæ (Porbeagles). Lamma !llauca Miill., Henle : Sclache ma.rima Gunn., reaches a length of thirty-two feet.

Fam. Carchariidæ. 'archurius glaucus Rond, the Blue Shark. with umbilical placenta. C. Tamin Risso. These two last are found in the Mediterranean and the Oeean. Zygcrnu mallous Risso, the Hammer-headed shark.
Fam. Galeidæ (Topes). G̛uleus ronis Rond., European seas; Mustelus, culyaris and lereis Rond., with umbilical placenta, both are found in the Meditcrranean.

Fam. Notidanidæ. Notidtumus (Hewnehus) griserss Gin. and I. (Heptancheus) cinereus Gm., Mediterranean and Occau.

Fam. Spinacidæ (Spiny Dog-fishes). Acarthias rulty(c) is Risso (tig. (iv3). found from the northern seas to the South Sea.

Fam. Squatinidæ (Angel- or Monk-fishes). Squatinut rulyaris Risso (Squaths: squatina L..) European seas.

Tribe 2. Rajides (Skates and Rays). Plagiostomes, with flat bodies; with five gill slits opening on the ventral surface internal to the pectoral fins; with complete pectoral girdle and cranial fin cartilages, without anal fins.

In consequence of the size and horizontal expansion of the thoracic fins the flat body presents the form of a large disc, prolonged behind into the long thin tail, which is frequently armed with spines, rarely with one or two serrated stings. The mandibles are short and stout, and are furnished with teeth which may be either small and conical, and arranged near one another in rows, or broad and plate-like. The Rays live for the most part at the bottom of the sea, and feed principally on Crustaceans and Molluscs. The Torpedos have an electrical apparatus between the fin cartilages and the branchial pouches. By means of this organ (fig. 590) they can stun even larger fishes. Many Rays reach the considerable size of ten to twelve feet.

Fam. Squatinorajidæ. Pristis antiquorum Lath. Sawfish, Ocean and Mediterranean ; Rhinobatus gramulatus Cuv.

Fam. Torpedidæ. Electric Rays. Torpedo marmorata Risso. Mediterranean and Ocean : Narcine brasiliensis v. Ott.

Fam. Rajidæ. Skates and Rays. Raja clavata L. ; R. miraletus L.
Fam. Trygonidæ. Sting Rays. Trygon pastinaca L. (Pastinucu marina Bell), Atlantic Ocean.

Fam. Myliobatidæ. Eagle Rays or Sea Devils. Mylinbatis aquillu L., Mediterranean.

> Order 4.-G Ganoinel.*

Cartilaginous and bony Fishes, with enamelled scales, or with osseous dermal plates and fulcra, with musculur convs arteriosus containiny rows of valves; with comb-shaped gills and spiral valve in the intestine.

In former periods of the world's history this order was richly and variously represented (Sauroida, Lepidoidce, Pycnodonta), while at the present day it contains only a few forms (Lepidosteus, Polypterus, C'alamoichthys, Amia, Acipenser, Scaphirhynuchus, Spatulavia). It is difficult to establish the limit towards the Teleosteans, since there is

[^173]110 single differential chanacter common to all the Gamoids (even the spiral valve of the intestine is rudimentary in Amia and Lepindosteus).

The scales from which the name of the order is derived are for the most part of a thomboidal form, and are alwatys covered with it smooth layer of mamel. They are comected together by articulan processes, and encircle the borly in obliquely directed rings (fig. fi07).

As regards the structire of the skeletom, the Ganoids are partly cartilaginous and partly bony fishes. Both among the fossil Gimoids and those living at the present time (Sturgeon) there are forms which, by the persistence of the notochord and the formation of bony arches, are allied to the Chimuridue. The cartilaginous cranial capsule is always covered with external membrame bones, and the mundibular suspensorinm, the jaws, the branchial arches, and the operculum possess a bony consistency. In the so-called bony Ganoids, the primordial cranium is more or less completely replaced by a bony skull, and the vertebral column gradually becomes bony, inasmuch as the vertebræ acquire, through various intermediate steps,

Fig. 607.-Polypterns bichir.
the biconcave form of the Teleostean vertebræ, and in Lepidosteus reach a phase of development in which, by the presence of an anterior articulating head, they resemble the opisthocolous vertebre of Amphibia. Bony ribs, also, are fairly frequently present.

The caudal fin is usually heterocercal, and the end of the rertebral column is sometimes continued into its superior lobe: there are. however, forms which are transitional in this respect, and lead to the homocercal (diphycercal) form. The spine-like splints known as fulcra, which are arranged in a single or double row on the upperedge and the first ray of the fins, particularly the caudal fin, are peculiar to Ganoids. ("Every fish with fulcra on the anterior edge of one or more fins is a Ganoid."-Joh. Miiller.)

Anatomically the Ganoids present many points of resemblance to the Selachians. The anterior region of the ventricle is separated off as a rhythmically contractile conus arteriosus, and contains sereral longitudinal rows of valves, which extend as far as the anterior limit of the muscular investment, and prevent the blood flowing back from the artery into the conus during the diastole. The comb-shaped
gills, on the other hand, lie, as in the Teleosteans, freely in a branchial cavity beneath a branchial operculum, to which a large gill containing venous blood is often attached. This respiratory accessory gill (opercular gill) is wanting in Amia and Spatularica, and must be distinguished from the pseudobranch of the spiracle, which may be present together with it.

All the Ganoids possess a swimming bladder with a ductus pneumaticus and two peritoneal canals (abdominal pores), which open at the sides of the anus (as in Chimcera and Plagiostomi). The optic nerves do not simply cross over one another, but form a chiasma with partial exchange of the fibres. The generative organs present many noteworthy peculiarities. There are two ovaries and the ripe eggs escape into the abdominal cavity. Thence they pass into an oviduct [Müllerian duct] which begins with a funnel-shaped opening into the body cavity and opens behind into the urinary duct or into the corresponding cornu of the urinary bladder (Spatularia, Lepi-

Fig. 608.-Acipenser ruthenus (after Heckel and Kner).
dosteus), or unites with the oviduct of the opposite side and opens behind the anus by a single genital pore into which the short urethra also opens. (Hyrtl.) In the two first cases a urogenital canal leads from the bladder to a urogenital pore placed behind the anus. In the male it is remarkable that the same abdominal funnels [Miillerian ducts] also function as seminal ducts. [It has been shown by Balfour and Parker (Structure and Development of Lepidosteus, Phil. Trans., 1882), that in Lepidosteus at any rate the testis is connected with the Wolffian body by a testicular network.]

Tribe 1. Chondrostei. Cartilaginous Ganoids with persistent notochord. Branchiostegal rays scanty or absent. Caudal fin heterocercal, with fulcra. Cranium cartilaginous, covered by dermal bones. The teeth are small or altogether absent. The skin is naked or has osseous plates instead of scales.
Fam. Acipenseridæ (Sturgeons). Acipenser sturio L., Sturgeon; A. ruthemus. L., Sterlet (fig. 608) ; A. hus. L. (Hausen), Scaphirliynchus cataphractus Gray, Mississippi.
l'am. Spatularidæ (Lifftelstöre). s'putuluria ['mlyndon]. folium Lac., Mississippi ; Sy. gludins: Martens, Yantsekiang.

Tribe 2. Crossopterygii. Ganoids with two loroad jugular plates instead of the branchiostegal ayns, and astally with a pointed (diphycercal) caudal fin. The shafts of the pectoral as well as of the pelvic fins, which are placed far lack, are invented with scales, which also cover the rays. The scales are sometines thin and cycloid, sometimes strong and rhomboid. The Crossopterygii lend to the Dipnoi and Amphibia.

Fam. Polypteridæ. With rhomboid scalcs, and dorsal fins divided up into a number of small fins. P'olyptrmus lichir Geoffr. (fig. fifor), with from cight to sixtecn small fins, rivers of Tropical Africa; Calamoirlathys culabaricus Smith, Old Calabar.

Tribe 3. Euganoides (Bony Ganoids). Ganoids with rhomboidal scales, and usually with fulcra on the anterior border of the fins. They have numerous branchiostegal rays. The pelvic fins are placed between the pectoral and anal fins.

Fam. Lepidosteidæ (Gar-Pikes, Bony Pikes). Form of body elongated, pike-like. The dorsal fins are placed far back; the caudal fin heterocereal and sharply eut off. Fresh waters of Cuba, Central and North America. Lepidnsteus platystnmus Raf. ; L. nsscus L. ; L. sputula Lac.

Tribe 4. Amiades. Bony Ganoids, with large round enamelled scales, bony branchiostegal rays, and heterocercal caudal fin. There are no fulcra.

Fam. Amiadæ. Amia calra Bonap., rivers of Carolina; most nearly allied to the bony fishes (r'rupeidle and Salmomides).

Order 5. -Teleostei (Bony Fishes)

Fishes with bony skeleton, with free gills (usually four on each side) and an external branchial operculum. There is a lullous arteriosus with two valves at its base. The optic nerves do not form a chiasma.

The Teleosteans comprise by far the greatest number of all fishes, and are distinguished from the cartilaginous fishes and Ganoids br a number of anatomical characters. They possess a simple bulbus arteriosus with only two valves, which are placed opposite to each other at the origin of the bulbus. The bulbus arteriosus is not a separate part of the heart with independent pulsation, but the thickened commencement of the cardiac aorta. Spiracles and a spiral valve of the intestine are never found. The optic nerves simply cross one another, or the fibres of the one pass hetween the
fibres of the other without forming a chiasma. The gills are ustally comb-shaped, and, as in the Ganoids, lie freely in a branchial cavity under a branchial operculum, to which is added a a branchiostegal membrane, supported by branchiostegal rays. The skeleton is characterised by the well separated, usually bony vertebre, and by the bony skull, beneath which remains of the primitive cartilaginous cranium often persist. The skin is only rarely naked or apparently without scales. In such cases the scales are very small and do not project from the surface; more frequeutly bony plates and scutes wre present in it, especially behind the head. As a rule the skin is covered by cycloid or ctenoid scales which overlap one another.

The urinary and genital organs open behind the anus either separately or by a common aperture on a urogenital papilla. [The kidney is dilated in front to form a head-kidney, which, however, is in the adult, sometimes if not always, largely composed of a tissue resembling lymphatic tissue (Balfour). The generative ducts are continuous with the investments of the generative glauds in both sexes, and in the male there is no connection between the testis and the kiduey.]

Only a few Teleosteans are viviparous; they almost all lay small eggs in enormous numbers in protected places.

Sub-order 1. Lophobranchii. Teleosteans with armoured skin, elongated tubular snout which is without teeth. The gills are in the form of tufts and the gill slits are very narrow.

Fig. 609.-Male of Hippocampus with the brood-pouch (Brt).

Fam. Pegasidæ. The body is flattened : pectoral fins large, spread out like wings ; pelvie fins small. Peffasus volars L., East Indies.
Fam. Syngnathidæ. The body is cylindrieal or laterally compressecd. The gill openings narrow, and peetoral fins small; males with brood-pouches (fig. 609). s'ynynathus. ucus L., Pipe-fish : Hippocampus antiquorum Leach., Sea-horse, Mecliterranean.

Sub-order 2. Plectognathi. Globular or laterally compressed Teleosteans, with immovably fused maxilla and premaxilla, and narrow mouth. The dermal armour is strong and often bears spines. There are usually no pelvic fins. The gills are comb-shaped.

Tribe 1. Sclerodermi. Jaws with separated teeth.

F'am. Ostracionidæ ('Trunk-fishers). Body coffer-like, triangular or quadrangular, often froloned into hom-like processes ; with firm dermal armour consisting of polyhedral hony plates, on which only the fins and tail are muvable: Ostrucime trignetrr L. (fig. 610), West Indies; O. quantricornis L ., West Africa.

Fam. Balistidæ (File-fishes). The body is laterally compressed, and the skin is covered with rough granules, or with hard rhomboid scales, and is often beantifully coloured. Bulistes marnlatus L., Atlantic and hudian Ocems.

Tribe 2. Gymnodontes. The jaws modified into a beak, with cutting undivided or double dental plate. Dorsal spines absent.
Fam. Molidæ. Orthagoriscus menla [31. Smifish.
Fam. Tetrodontidæ [Globefishcs, Sea-Hedgehogs.] Diordon hystrix. L., Atlantie and Indian Oecans ; Tetrodon cutuneus Gthr., St. Helena.

Sub-order 3. Physostomi. With soft fins (malacopterygians), with

Fig. 610. - Ostracion triqueter (règne animal).
comb-shaped gills and separated jaw bones. Pelvic fins abdominal or absent. Swimming bladder always with a ductus pneumaticus.

Fam. Murænidæ (Eels). Murena helena L.; Anguilla anguilla L. (rul. garis), Europe. At the breeding scason in autumn they migrate from the rivers into the sea, and there first attain sexual maturity. The reproduetive proeesses are not perfeetly known, though male and female hare been distinguished from one another, and the presence of both kinds of sexual organs has been shown. In the spring the young eels migrate from the sea into the rivers. Conger vulgaris Cuv., coasts of Europe.

Fam. Gymnotidæ. Gynenotus clectricus L. (Eleetric cel). Lives in the swamps and rivers of South America, attains a length of six fect, and ean, by means of its electrie discharge, knoek down even large animals, c.!!., horses. Celcbrated by the expcriments of A. v. Humboldt.

Fam. Clupeidæ (Herrings). With tolerably eompressed body, which with the cxception of the head is eovered by large, thin, easily-dctached scales. Clupea havengus L., the Herring of the northern seas. It appcars every year at certain times, in chormous shoals, on the Scottish and Norwegian eoasts. The prineipal takes occur in September and October. C. (Haren!ula) spruttus: L., the Sprat, North Sca and Baltic ; Enyrautis cnerusirflolus Rond., Anehovr:

Aluwsu culyaris C'uv., Val., the Shad; migrates in May at the spawning season from the scir into the rivers, $t \cdot y$., up the Rhinc to Bascl, and in the Main to Würzburg. Attains a lcugth of tiree fect. A. pilchardus Bloch. Sardine, Mediterranean.

Fam. Esocidæ (Pikes). The head is broad and depressed ; the dorsal fins are placed far baek. l'scudobranch glandular, hidden. Voracious carnivorous fish, with wide throat and powerful dental armaturc. Eso.x lucius I., Pikc ; Uimbra Krameri Joh. Miill.

Fam. Salmonidæ. With adipose fin, simple swimming bladder, and numerous pylorie appendages. The ovaries are sacs from which the eggs fall into the abdominal cavity. At spawning time, which is usually in the winter months, the two scxes often exhibit striking differences. They are large predatory fishes, and belong principally to the rivers, mountain streams, and lakes of the northern regions. They likc clear eold waters with stony bottom; but they have, also, representatives in the sea, whieh aseend the rivers and their tributaries to spawn. Coregnuus Wartmanni Bloch, Blaufelehen ; in the Alpinc lakes. Thymallus rulgaris Nilss. (vexillifer), Grayling ; Salmu saleclinus L., Saibling ; S. lucho L., Huchen, in the region

Fig. 611.-Lower pharyngeal bones with the teeth of a carp (after Heckel and Kner). of the Danube, a large predatory fish. S. salar., Salmon; S. lacustris L. (Seeforelle, Sehwebforelle), in the lakes of the Alps of Central Europe. S. trutta L., Salmon or Sea trout ; S. frurio L., Trout.

Fam. Cyprinidæ (Carps). Fresh-water fish, with narrow mouth, often provided with barbules. The jaws are weak and without teeth, but the lower pharyngeal bones arc abundantly furnished with teeth (fig. 611). Cyprinus carpio L., the Carp ; Carassius rulyaris Nilss., Crueian and Prussian Carps (Karausehe) ; Tincu vulgaris Cuv., Teneh; Barbus thuriutili.: Ag., the Barbel ;

Fig. 612.-Rhodeus amarus. Female (after v. Siebold).
Ginbio thuriutilis: Flem., the Gudgeon; Rhorleus amarus Bloeh. (Bitterling). The female has an ovipositor with which she deposits the ova in the gills of the fresh-water mussel (fig. 612). Alburmus lucidus Heck. Kner, the Blcak; Leveissrus: rutilus L., the Roach ; L. cephulus L., the Chub : Chondrostoma nusus L., (Näsling) ; frbramis brama Flem., Bream ; Phoxinus leeris L. Ag., Minnow.

Fam. Acanthopsidæ. The swimming bladder is eontained in a bony capsulc. Cubitis. fossilis L.; C'. burbatula L., Loach; ('. trenia L.: Spined Loach or Groundling.

Fram. Cyprinodontidæ (Toothed Carps). Viviparous. C'yfminuthon (Lathiass

Fonn. Siluridx. Fresh-water fish, usually with hroal depressed loced, strong dental armature, and skin naked ore cosered with an armour of bony plates. Silumes glanis I。 (Wels, Waller). The largest river fish of Envope. Jypust oums La". (Pinzerwels) : Mulapherurus elerlriens L. (Kitterwells), Nile.

Fig. 613.--Exocoetux Rondeletii (after Curier and Valenciennes).
Sub-order 4. Anacanthini. Malacopterygians (soft fins), which with regard to their internal anatomy are allied to the Acanthopteri by the absence of a ductus pneumaticus; usually with jugular pelvic fins.

Fam. Ophidiidre. Ophirlium Urribatum L., Mediterranean; Anmmdytes tolitumus L., Sand-eel, North Sea.
Fam. Gadidæ, Gudus morrlua (the Cod). In Germany dried cod is ealled stoekfisch, salted cod Laberdan. Cod-liver oil is prepared from its liver. Its

Fig. 614-Gasterosteus aculeatus (after Heckel and Kner).
young (Dorseh) were for a long time considered as a separate species (G. callarim.s). G. aglefinus. L. Haddock, with a black spot behind the pectoral fin. G. morlantus L., Whiting, consts of North Europe: Mrolurcius rulgaris. Flem., Hake, Mediterraneau and Northern Seas; Latu vulguris Cur., Burbot, Eel-pout, Cony fish. Predatory fresh-water fish.

Fam. Pleuronectidæ. Flat fishes. The bolly is compressed, disc-shaped, and strikingly asymmetrical. The side which is direeted upwards towards the light is pigmented (with change of colours) : the other is free from pigment. Both
eves are plaeed on the pigmented side, towards which the head is tumed and the arrangement of its bones shifted to correspond with this asymmetry. Hippoglussus rulyaris, Flem, the "Holibut, coasts of North Europe; Rhombus murimus L., the Turbot; Rh. leevis hond., the Brill, Europcan eoasts; Pleuronectes plutessen L.. the Plaice; Pl. limande L., the Dab; Pl. Htesus L., the Flounder, ascends rivers ; Silen venlgariv Quens., the Solc.

Fam. Scomberesocidæ. Marinc Malacopterygians, with cycloid scales. The lower pharyngcal bones are fused (Pharyngoynathi). Belome acns Rond., Gar-pike ; Scombereson sourus. Wall). Exorcetus evoluns L., the Flying fish. The peetoral fins are strengthened so as to form flying organs. W. exciliens L., Emropean Seas: E. RondeletiiCur. Val., Mediterranean (fig. 613).

Sub-order 5. Acanthopteri.

 Spiny-rayed fishes with combshaped gills; lower pharyngeal bones usually separate: thoracic, rarely jugular or abdominal pelvic fins. Swimming bladder closed, without ductus pneumaticus.Tribe 1. Pharyngognathi. The lower pharyngeal bones are fused.

Fam. Pomacentridæ. Amphiprion bifaseiatus Bl., New Guinea; Pomucentrus fasciutus Bloch., East Indies.

Fam. Labridæ. The Wrasses (Lippfische). Brightly - coloured fish, with fleshy protrusible lips. Lalrus maculatus Bl., coasts of Europe: C'renilabrus pavo Brïnn; Julis puro Hassq., Mediterrancan ;
 Scarus cretensis. Aldr., Parrot-fish, Fig. 615.-Nest of Gasterosteus pungitius (after Mcditerranean. Landois).
Tribe 2. Acanthopteri (s. str.). The lower pharyngeal bones are not fused.

Fam. Percidæ. Pcrehes. Fins thoracic : seales ctcnoid ; edge of branchial opcrculum or preopereulum serrated or spinous. There are teeth on the præmaxilla, lower jarr, vomer and palatine. Peren ffurintitis Rond., Common Pereh (fig. 58.3). A voracious fish, especially pursues small Cyprinoids. Labrurr lupus Cur., the Bass, Mcditerranean ; Aerrina cermua L., the Pope, river fish; Lucinperca sandra Cur., river fish of South Europe; Scrranus scribu L., hermaphrodite, Mediterrancan; Gusterustens ueuleatus L., the Sticklebaek (fig. 6114), remarkable for forming a nest and protecting the eggs and young ; G. punyitius. L., teu-spined Stickleback (thc Tinker) (fig. 615); G. spinachin L., fifteen-spined Stiekleback.

F'am. Mullidæ, Mullets. Mallus: harlurtus: L., red Mullet.

Fimm. Triglidæ. C'ottus: gollio L., liver liullhend or Miller's Thumb, A small iish fomud in elear brooks and streams. It hides beneath stomes, and defends itself ly expanding its branchial operculum. The male madertakes the eare of the brood. (! serorpius: La.. sien-scorpion; Prigla gunardux 1... Girey

Fig. 616.-Zoarces viorparus. A, anus; r^{r}, urogenital opening.
Gurnard; Ductylopterus rolitans. L., Flying Gurnard ; Uranoscopus scaber L. (Sternseher), Mediterranean ; Senpuana porcus L.: Traehinus draco L.

Fam. Sciænidæ (Umberfisehe). L'murina cirrhesa L., Mediterranean ; C'rrvina nigra Salv., Mediterranean; Scirenu aquillu Risso., Mediterranean.

Fam. Scomberidæ. Maekerels. Body elongated, more or less compressed, sometimes very high. The skin is often silvery, and sometimes naked, sometimes eovered with sinall seales. There are keeled bony plates in places,

Fig. 617.-Lophius piscutorins (after Cuvier and Valenciennes).
espeeially near the lateral line. The eaudal fin usually has a semilunar shape. They constitute, on aceount of their tasteful flesh, an important objeet of the fishing industry-the Maekerel in the North Sea and the Channel, the Tumy Fish in the Mediterranean. Scomber scomburus L., Maekerel : Zeus faber I... the Dory ; Thyunus rul!faris Cuv.. Val., Tumy Fish ; Prlumy.s sarda Bl., Merliterranean; Caruse traehurus L., Horse-Mackerel, eoasts of Europe: liphias. gladius L., Sword-fish ; Echencis. naur-rates L... Sueking-fish.

Fam. Gobiidæ. Gobies. Gobius niger Rond.; ('́. Huciatilis Pall., Rivers of Italy and of South-west Russia.

Fim. Blenniidæ. Blennics. Annarhichas lupus L., Wolf-fish; Blennius neellaris L., Butterfly-fish. Mediterrancan; Zivarces viripurus Cuv. (fig. 616), riviparous.

Fam. Tænioidæ. Silvery marinc-fish, with compresserl, ribbon-like, elon-gated-like body. Truchypterus fal.r Cuv., Val. = Tr. tomia Bl., Sclun., Nice ; C'epola rubescens: L., Band-fish, coasts of Europe.

Fam. Labyrinthici. The upper pharyngeal boncs arc hollowed out so as to have the form of coiled (meandering) lamellæ (fig. 594), in the spaces between which the watcr required to keep the gills moist is retained. Anabus scandens Dald., Climbing Perch, East Indies.
Fam. Pediculati. Of stont elumsy shape. The skin is naked, or eovered with rough promiuences. The pclvie fins, which are small and placed on the throat (jugular), have their so-called carpal pieces elongated, so that they form morable arm-like supports for the body, and are in fact used for hopping and crecping. Lophius piscatorius L., Angler, Frog-fish, etc. (β árpaxos of the Greeks), coasts of Europe (fig. 617) : Chironectes pictus Cuv.

Oi'der 6.--Dipnoi.*

Scaly Fishes with branchial and pulmonary respiration, with persistent notochord, muscular conus arteriosus and spiral valve in the intestine.

The Dipmoi (fig. 618) form a group so strikingly transitional between Fishes and Amphibians that their first discoverer regarded

Fig. 618.--Protopterus annectens.
them as fish-like Reptiles, and in more recent times they have been regarded as scaly Amphibians. In their external form they decidedly resemble Fishes. The head is broad and flat, and has small, laterally placed eves and a fairly widely-split snout, at the extremity of which are placed the two nasal openings. Directly behind the head are two thoracic fins, which, like the similarly-formed pelvic fins, possess

[^174]it membramons border sulprorterl by lay'; or (Ceratodus), like the fins of the Crossopterygians, consist of a centrat slaft cotered by scaly skin, and of it border provided with mas. The pelvie fins are phaced far back. In front of the anterior pair of fins there is a gill slit on either side, above which in the African genus Protopterus (fihinucrypuis) three external gill tufts are retained till late in life. In the Brazilian genus Lepuidosiren external gills are absent.

The Dipnoi show themselves to he fishes by the possession of gills ass well as by the external form. There are either four gills (C'eratodus) as in fishes, or their number is reduced. The structure of the skeleton points decidedly to the Ganoids, to which the Diproi are in other respects closely related. In Lepidosiren the notuchord persists as a continuous cartilaginous cord, from the fibrous sheath of which dorsal and ventral bony arches with ribs project. In front the notochord is prolonged into the base of the skull, which remains at the stage of the primitive cartilaginous cranium. It is, howerer; covered by some osseous pieces. The facial bones of the head are much more developed, especially the jaws, whose teeth consist, as in Chimcera, of perpendicularly-placed cutting plates or (Ceratodus) recall those of C'estrucion. The intestine contains a spiral ralve, which terminates at some distance from the cloaca. The cloaca contains the sexual opening, and the openings of the ureters in its side walls: it opens to the exterior-sometimes to the right side, and sometimes to the left, and on its posterior side there is in Lepidosiren an independent urinary bladder.

On the other hand, the respiration by means of lungs and the structure of the heart indicate a relationship to the naked Amphibia. The cartilaginous nasal, capsules, as in all lung-breathing animals, open behind into the mouth by apertures, which perforate the roof of the mouth, and are placed far forward, directly behind the extremity of the snout. The swimming-bladder is represented by two sacs (in Ceratodus only one) placed outside the body cavity, ventral to the kidney, and opening into the ventral wall of the pharynd by means of a short common duct. These sacs function as lungs, inasmuch as they obtain venous blood from a branch of the posterior aortic arch and return arterial blood to the heart by pulmonary veins. To this agreement with the Amphibia may be added the similar arrangement of the heart and the principal trunks of the vascular system, the incompletely divided right and left auricles and the double circulation. There is a muscular conus arteriosus which either has an arrangement of valves like that in the Ganoids
(Ceratodus) or contains, as in the frogs, two lateral spiral longitudinal folds, which fuse at their anterior end and effect the division of the lumen into two (for the branchial arteries and the pulmonary vessels).

Sub-order 1. Monopneumona. The body is covered with large cycloid scales (fig. 619 a). Vomer? with two oblique incisor-like dental lamella. Palate armed with a pair of large and long dental plates (molars), which have if flat undulated surface and five or six sharp prongs on the outer side. Lower jaw with two similar dental plates (fig. 619, c). Fins as in the Crossopterygii, with scaly shaft and rayed border on each side (fig. 619, b). The valves in the conus arteriosus rather resemble those of the Ganoids.

Frg. 619.-a, Ceratodus miolepis. b, its pectoral fin (after Günther). c, lower jaw with dental plates of Ceratodus Forsteri (after Krefft).

Branchial apparatus formed of five cartilaginous arches and four gills. Pseudobranchs (hyoidean) are present. The lung is composed of two symmetrical cellular halves. The two ureter's open on the dorsal side of the cloaca by a common opening. There is a pair of wide peritoneal slits (abdominal pores) behind the anus. The Monopneumona feed on leaves, which they tear off with their incisor teeth and masticate with their molars. They make use of the lungs in respiration principally when the muddy water is saturated with gases from organic matter. They have existed since the Triassic period.
Fam. Ceratodidæ, with the single genus Cerutodus Ag. C. Forsteri Krefft, (and miolcpis Giinth.), the Barramuuda, Queensland; reaches a length of six feet. Its flesh is salmon-like and mueh esteemed as food.
Sub-order 2. Dipneumona. Fins narrow, with jointed cartilaginous
shaft and bays only on one side. Gills more reduced. Valvula. armagement of conus arteriosus like that in the Batrachians. Lungs paired.

Fam. Lepidosirenidæ. Prontupterius (1nnectrns (fig. (i18) Owen, tropical Africa; Lerpiddsimern pur radlorrus. ドit\%g., Brazil.

CHAPTER VI.

Class II.-AMPHIBIA.:

Cold-blooded cmimals usually with a naked skin, with pulmonary and branchial respiration, and incompletely double circulation. The embryos have neither amnion nor allantois.

The external form of the body is adapted both for an aquatic and a terrestrial life. It presents, however, considerable variations lead-

Fig. 620.-Larva of Salamandra maculata (after Malbranc). Mx, median, Uy, lower lateral line.
ing to the creeping, climbing, and jumping land animals. An elongated, cylindrical, or more compressed form is the most frequent, and the body often ends with a large compressed swimming tail. Limbs may be absent, as in the cylindrical Caciliide, which live underground in damp earth. In other cases there are only short anterior limbs (Siren), or anterior and posterior stumps, which have a reduced number of toes and are unable to raise the serpentining body from the ground. Even when the extremities hare a considerable size and end with four or five digits, they act rather as pushing :organs in the movement of the elongated and flexible body. The Batrachians, which have shor't and stout bodies and are without a tail in the adult state, alone possess powerful limbs adapted for running and jumping, and even for climbing.

The skin,* which is of great importance not only as a secretory

[^175]but also ats a respinatory organ, is as a rule naked and slimy. The Cucilizdce alone possess thickened cutaneous rings, in which scales are imbedded. The sense organs of the lateral line (fig. 620) also are present in the aquatic forms, especially in the larval condition. Glands and pigments are very generally present in the integument. The former often secrete strongly smelling and caustic juices, which act as poisons on other : organisms (parotid glands, as well as glands on the sides and posterior extremities). The various colourings of the skin are principally due to branched pigment cells of the cutis. The change of colour in the Frogsa phenomenon which has been known for some time-is caused by changes in the form of these cells.

Skeleton.—Although a notochord may persist (Cceciliidcu, Proteus), yet bony, at first biconcave vertebræ,* are always developed, and are separated by intervertebral cartilages. In the Salamandrina the cartilage in the intervertebral regions grows considerably and gradually supplants the notochord, the remains of which become cartilaginous. As the result of further differentiation of the intervertebral cartilages, the rudiments of an articular head and an articular cup are developed, which, however, are only completely separated in the Batrachians provided with proccelous

[^176]VOL. II.

Fig. 621.-Skeleton of Menopoma alleghaniense. Ocl, Exoccipital ; P, parietal ; F, frontal; $T y$, tympanic ; $P e$, petrous (prootic) ; $M x$, maxilla; Jmx, premaxilla; N, nasal ; Vo, vomer ; Et, girdle bone (sphen-ethmoid); $P t$, pterygoid ; Sc, pectoral arch ; $J l$, pelvic arch ; S, sacral vertebra; R, ribs. U, hyoid aparatus (remains of hyoid (Zb) and branchial arches (Kl).
vertebre.* The number of vertelnae is usually considerable, in accordince with the elongated form of body; but in the Butrachice the vertohral column consists of only ten vertehne with very long transverse processes, which usually at the same time represent the ribs: while, with the exception of the first vertebra which is modified to form the athas, almost all the vertebra of the tronk posisess small cartilaginous rudiments of rilss. The sacmal region is formed by a single vertehra (fig. 621).

Skull.-The primordial cartilaginous cranium persists, hut usually loses its roof and floor, and is partly replaced by bony pieces, some of which are ossifications of the cartilaginous capsule (exoccipitals, auditory capsules, sphen-ethmoid, quadrate), while other:s are

Fig. 622.-Skull of Rena esculenta (after Ecker). a, from the dorsal, b, from the rentral side ; [Membrane bones of one side removed in each case]. Ocl, exoccipital; Pe, petrosal (prootic) ; Et, girdle-bone or sphen-ethmoid; $T y$, tympanic; F_{p}, fronto-parietal; J, quadrato-jugal (jngal); $M x$, maxillary; $J m x$, præmaxillary ; N, uasal; P_{\Downarrow}, parasluhenoid; Pt, pterygoid; Pl, palatine; V, vomer.
investing bones (parietals, frontals, nasals, vomer, parasphenoid) (fig. 622). As in Lepidosiren the basi- and supra-occipital remain as small cartilaginous tracts. There is also a parasphenoid on the base of the skull (fig. 622, Ps). The large exoccipitals (Ocl) (fused with the opisthotic) articulate by means of two condyles with the first vertebra, as in the Mammalia. The projecting anditory region is pierced by the fenestra ovalis, and the bone in its anterior part corresponds to the prootic $(P e)$. The lateral walls of the skull remain cartilaginous, but in the ethmoid region there is a ringshaped bone-the girdle bone, or sphen-ethmoid.

[^177]As in Lepidosiren the mandibular arch is firmly connected with the sknll. The mandibular suspensorium and the palato-quadrate are in direct comnection with the cartilaginous cranium, and form on either side a wide outstanding infra-orbital arch, the anterior end of which either remains free or fuses with the ethmoid cartilage. The ossification appearing at the end of the suspensorium gives rise to the quadrate, while a membrane bone, almost hammer-shaped and overlying the suspensorial cartilage, is called the squamosal or perhaps more correctly tympanic ($T^{\prime} y$). Two membrane bones extend forward along the lower side of the palato-quadrate bar-the pterygoid ($P t$) behind and the palatine $(P l)$ in front. The palatine is transversely placed behind the vomer. The outer arch of the upper jaw, formed by the premaxillary and maxillary bones ($\operatorname{In} x, M x$) may by means of a third posterior bone-the quadrato-jugal (J)-be continued back to the quadrate, but in many Perennibranchicta it is incomplete, the maxillaries being absent. The skeleton of the visceral arches is more or less considerably reduced in correspondence with the retrogression of branchial respiration. In the perennibranchiate Amphibia (Amphibia with gills throughout life) the visceral arches are more numerous, and present an arrangement similar to that found only transitorily in the larvæ of the other forms. In the Salamandrina, in addition to the hyoid arch, the remains of two branchial arches persist; while in adult Batrachians only a single pair of arches is retained on the hyoid bone. This branchial rudiment is attached to the posterior edge of the body of the hyoid bone, and serves as a suspensorium for the larynx.

In the pectoral girdle three parts may be distinguished-the scapula, the precoracoid, and the coracoid, to which a dorsal cartilaginous supra-scapula is added. While in the tailed Amphibia (Urodela), the arch is interrupted below, in the Batrachia the two halves are joined to each other in the middle ventral line, as well as to a posterior plate which has the value of a sternum, and an anterior plate known as the episternum. The pelvic girdle is characterised by the narrow form of the iliac bones, which are attached to the strong transverse processes of a single vertebra, and at their posterior end are fused with the ischiac and pubic bones.
The nervous system is higher in several respects than that of the fishes. The brain (vol. i., fig. 80) is certainly in all cases small, but the hemispheres are large and the differentiation of the thalamencephalon and mesencephalon is further advanced. The optic lobes reach a considerable size, and the medulla oblongata encloses a wide
fourth ventricle. The cranial nerves have the sime relations an in the Fishes, since not only are the fuciul nerves and the nerves supplying the muscles of the eye often comnected with the trigeminal, but the glossopharymyeal and the spinal accessory are represented by bramehes of the vargus. The hypoylossal is, its in the Fishes, the first spinal nerve.

With regard to the sense organs the two eyes may be rudimentary and concealed beneath the skin (I'roteus, C'ociliidu). In the I'erennibranchicutc eye-lids are completely absent, while the Sulamandrinu have an upper and lower eye-lid, and the Butrachians, except Pipu, have, besides the upper eye-lid, a large very movable nictitating membrane, with which a rudimentary lower eye-lid co-exists only in Bufo. In the Batrachians there is a retractor muscle by means of whicl: the large bulb of the eye can be drawn back. The structure of the auditory organ * of the Amphibia resembles that of Fishes. It is usually confined to the labyrinth with three semi-circular canals; in the Batrachians alone there is a tympanic cavity, which communicates with the pharynx by means of a wide Eustachian tube, and is closed externally by a tympanic membrane, which is sometimes freely exposed on the surface and sometimes covered by the skin. The tympanic membrane is connected with the fenestra ovalis by a small cartilaginous rod (remains of the hyomandibular') with a cartilaginous plate (columella with operculum). When there is no tympanic cavity these structures are covered by muscles and skin. The cochlea, which was first discovered by Deiters in the frog, is probably present in all Amphibia. The olfactory organs are always paired nasal cavities, which are provided with folds of the mucous membrane and open internally either anteriorly within the lips, or, in the Batrachians and Salamandrines, further back between the maxillaries and palatines. The external skin, which is richly supplied with nerves, is to be regarded as the seat of the tactile sense. The posisession of the sense of taste is indicated by the presence of taste papille on the tongue of the Batrachians. The Amphibia certainly swallow their food unmasticated, and the tongue also subserves other functions ; for instance, in the Batrachia it is used as a prehensile organ.

Alimentary canal.-The mouth is a wide slit. The vomers, palatines, and jaws are usually armed with sharp backwardly curverl teeth, which are used not for mastication, but for holding the prey. Teeth are seldom absent, as in Pipa and some Toads ; but in the Flogs they are always present on the upper jaw and palate.

[^178]The respiratory and circulatory organs resemble, in essential points, those of the Dipnoi, and stamp the Amphibia as connecting links between the aquatic amimals which breathe by gills and the higher Vertebrates with pulmonary respiration. In all cases there are two lung sacs, either simple or prorided with cellular spaces; but in addition to these there are, either in the larva or in the adult animal (Perennibranchicta, fig. 58), three (or four) pairs of gills, which sometimes lie in a cavity covered by a reduplication of the skin and provided with an external opening, and sometimes project freely on the neck as branched or tufted cutaneous appendages. The respiratory movements are effected, in the absence of a thora: capable of distension and contraction, by the muscles of the hycud bone and by the abdominal muscles. The unpaired air-tube (trachea), which is supported by cartilaginous rods, is usually exceedingly short and wide, like a larynx, and in the Anura alone is developed to form a vocal organ, which produces loud croaking sounds and is in the male sex frequently reinforced by a resonating apparatus, •consisting

Fig. 623.-Aortic arches of an old frog larva (from Bergmann and Lenckart). A a, the aortic arches uniting into the descending aorta ($A d$) ; Ap, pulmonary artery ; Kg, cephalic arteries; $B r$, gills. of one or two sacs communicating with the buccal carity.

As long as the respiration is carried on entirely by means of gills the structure of the heart and the arrangement of the principal arterial trunks are the same as in Fishes. Later, when the pulmonary respiration begins, the circulation becomes double and the auricle becomes divided by a septum into a right and left chamber, of which the right receives the veins from the body, the left those from the lungs. The ventricle, on the contrary, still remains single, and therefore contains mixed blood. It leads by a muscular rhythmically pulsating conus arteriosus into the ascending aorta with the reduced rascular arches.

In the first period of larval life there are four pairs of vascular. arches, which smround the pharynx without dividing into capillaries
and mite bencath the vertehral column to form the two roots of the descenting aorta. With the appearance of gills the thee anterior pains of arches give off vascular loops, which form the system of the branchial capilliuies, while the dorsal [arts of the arches unite with one :nother in virious witys to form the roots of the descending aorta (fig. 623).

The fourth vascular arel, which, moreover, is frequently a lananch of the third (Batrachians), or arises in a common ostium with the latter on the hulbus (Salamander), has no relation to the branchial respiration, and leads rirectly into the root of the aorta. It is this

Fig. 624.- Heart and principal arteries of a toad. $A d$, Right aortic arch; A, left aortic arch; $C a$, carotid; $C d$, carotid gland; A_{p}, pulmonary artery; H, cutaneous artery; M, posterior vascular arch which sends a branch, one on ench side, to the developing lung.s (fig. 624, Λp), and so constitutes the first rudiments of the pulmonary arteries, which soon increase in size and importance. In the Perennibranchiates these arrangements persist in essentials through life, but in Batrachians and Salamanders the disappearance of the gills is followed by further reductions, which lead to the arrangement of vessels found in the higher. Vertebrates. With the atrophy of the branchial capillaries the connection between the bulbus arteriosus and the descending aorta is again represented by simple arches, which are in part reduced to narrow canals or eren to solid cords of tissue (ductus Botalli) (fig. 624 and fig. 59). The anterior arch sends off branches to the tongue, and also the carotids, at the origin of which there is a swelling--the so-called carotid gland (fig. 624). The two middle arches form the roots of the descending aorta and branehes may be also given off from them to the head. The posterior arches, which at their origin are often fused with the preced-
ing, give rise to the pulmonary. arteries, a narrow ductus Botalli, the lumen of which is sometimes obliterated, being usually retained. Vessels for the head and occipital region are often given off from the roots of the aorta. In the Batrachians, which, in consequence of the mion of the two posterior branchial arches, possess only three vascular arches, the aortic root is the prolongation of the middlle arch on each side, and gives off the vessels of the scapular region and the anterior extremity, and often, also, on one side an ar'tery to the viscera (mesenteric artery). The posterior arch sends off the pulmonary arteries and a strong trunk to the skin of the back, but does not retain its connection with the roots of the norta. As in Fishes,

Fig. 625.-a, Urinary and genital apparatus of the left side from a male Salamander, partly diagrammatic. T, testes; $V e$, vasa efferentia; N, kidney with collecting urinary tubules; $M g$, Müllerian duct; $W g$, Wolffian duct or vas deferens; $K l$, cloaca; Dr, prostate glands. b, Urinary and genital apparatus of the left side of a female Salamander without the cloacal part. Ov, Ovary ; N, kidney; $H l$, the urinary duct corresponding to the Wolfian duct; Mg, oviduct or Müllerian duct. there is a renal-portal system, as well as an hepatic-portal system.
'TYe lymphatic vessels of the Amphilia accompany the hoodvessels as plexuses, or as wide lymphatic simmes. In certain placess the lymph receptacles are thythnically contractile, and have the value of lymph hearts. In the Salamanders and Froges there are two lymph hearts bencath the dorsal integument in the seapular rearion, and two close hehind the ilcum. Of the vascular glands the most notewortly are the thymus, which is always paired, nurd the spleen, which is never ablsent.

The urinary organs (fig. 625) arc paired kidneys, the numerous collecting tubules of which enter the ducts of the primitive kidney; these open on wart-like protuberances on the dorsal wall of the cloaca. The urinary bladder is an unpaired diverticulum of the ventral wall of the cloaca ; it is usually bifid at its free end.

In all cases there is a close relation between the minary organs and the efferent ducts of the generative organs (fig. 625). As in the higher Vertebrates the primitive kidney (Wolftian body or mesonephros) in part becomes the epididymis and the efferent apparatus of the testis, so also in the Amphibice a part at least of the primitive kidney, which in these animals persists as a urinary organ, functions as epididymis. The vasa efferentia sink into the kidneys and become connected with the urinary tubules, and thus conduct their contents, usually by means of a common duct, into the terminal portion of the duct of the primitive kidney, which functions as a urogenital duct. In the Salamanders there are, in addition, glands called prostate glands on the wall of the cloaca. In the female sex the Muillerian duct, which is rudimentary in the male, assumes the function of oviduct. This duct begins with a free funnel-shaped dilated opening into the body cavity, takes a sinuous course, and opens; often after forming a uterus-like dilation, with the urinary duct laterally into the cloaca, in the wall of which, in the Salamandrina according to v. Siebold's discovery, saccular glands functioning as seminal receptacles are placed. A complete hermaphroditism seems never to occur, although in the male Toad, especially in Bufo variabilis, rudiments of the ovaries have been found near the testes.

Males and females are often distinguished by their size and colour; and also by other peculiarities (vocal sacs), which are especially prominent at the breeding season in spring and summer. In spite of the absence of external organs of copulation, sexual intercourse takes place, but it usually consists merely of an external approximation of the two sexcs (Batrachians), and has for its consequence a fertilisation of the cggs outside the body of the mother. The male Salamander:
alone have copulatory organs in the form of the swollen lips of the cloaca, which during copulation clasp the cloacal aperture of the female, and thus render an internal fertilization possible. In this c.ase the eggs can undergo their development within the body of the female, and the young be born at a more or less advanced stage of development.

It is only in exceptional cases that the parents have an instinct which leads them to watch over the further fate of their brood, as for example Alytes (fig. 626) and the South American Surinam Toad (Pipa dorsigera). The male of Alytes winds the string of eggs round its hind legs and burrows into the damp earth, and only gets rid of his load when the embryonic development is completed. The male of Pipa places the eggs when laid on the back of the female, which then develops a cell-like pouch rouncl each egg. The larve are hatched and undergo their metamorphosis in these pouches. In other genera, as Notodelphys, the females possess a spacious brood-sac beneath the dorsal integument. Except in these cases, the eggs are either attached singly to water plants (Tritonidce) or laid in strings or irregular. clumps.

Development.-The eggs, which are relatively small,* undergo an unequal segmentation (vol. i., fig. 104) after fertilization. The Amphibia agree with the Fishes in not developing an amnion or allantois - the

Fig. 620.-Alytes obstetricans. Male with the string of eggs. embryonic membranes of such importance in the higher Vertebrates. In the Amphibians, however, the urinary bladder which arises from the ventral wall of the cloaca is morphologically equivalent to the allantois. The embryos are also without any external yolk-sac constricted off from the body, the yolk being enclosed at an early period by the ventral plates. As respiratory organs gills are

[^179]developed on the viscemal arehes; they nsuatly only reach their full development in larval life. The young are always hatched at an early stage, and undergo a metanorphosis. 'Jhe larva when latehed recalls the piscine type by the laterally compressed swimming tail, and by the possession of external gills (fig. (627); it is still without the two pairs of limbs, which only sprout out as the growth of the body progresses. During these processes the lung sacs which have grown out on the pharyux berin to function, sometimes (Batrachia) after the external gills have been replaced by intemal branchial leaflets covered by the skin, and a branchial slit has been formed on the side of the neck to allow of the exit of the water (fig. 111). Finally the branchial respiration is completely lost in consequence of the atrophy of the gills and their vessels, the tail becomes shorter and shorter and finally, in the Butruchice at least, completely vanishes. In the other groups the later or earlier phases of the developmental series are maintained throughout the whole life; thus in the

Fig. 627.-Larva of Dactylethru (after Parker).
Salamondrince the tail, and in the Perennibranchicuta the gills also, or at least the external gill slits (Derotrema) persist, and the extremities remain rudimentary, or even the anterior pair alone are developed. Accordingly the series of forms indicated by the classification of these animals offers a strikingly close parallel to the successive phases of the developmental history of the individual forms.

The Amphibia frequently live in water only during larval life; as terrestrial animals in the adult state they choose damp shady places near water, since the cutaneous respiration necessitates in all a moist atmosphere. The food almost always consists of insects and worms, but in larval life principally of vegetable matters. The need of food is, however, relatively small, in correspondence with the low energy of the vital processes, with the sluggishness of their movements and psychical manifestations. The Amphilica can live for months without food, and, as for example the Batrachia, hibernate buried in the mud.

Fossil remains of this group first appear in the Tertiary period, with the exception of the extinct family of the Labyrinthodonta (Ifustodonscurus) which belongs to the Trias.
Order 1.-Apoda* (Gyminophiona).

Termiform Amphibia coverech with small scales, without limbs, with biconcave vertebre.
The external skin of the Gymnophiona, which were for a long time classed with the Snakes, contains small scales which are arranged in transverse rings (fig. 628). The internal organisation and the transitory branchial respiration, however, places them amongst the Amphibia, of which group they are in many respects, the most lowly organised. This is especially the case with the skeleton, which is

Fig. 628.-Siphonops mexicana (règne animal).
distinguished by the biconcave form of the vertebre and the persistent notochord. The bony skull, which has two condyles, is firmly united to the facial bones, of which the maxille and palatines bear small backwardly-curved teeth. Pectoral and pelvic girdles and limbs are entirely wanting. The small slit-like mouth lies on the lower side of the conical head. The two nares are placed in front on the snout, and near them a blind pit on each side is visible in several genera. These so-called false nares (like the cephalic pits of snakes) lead into canals, which are regarded by Leydig \dagger as sense organs.

The eyes are always small in correspondence with the subterranean mode of life, and are only visible through the skin as small specks. There is neither tympanic membrane nor tympanic cavity.

The Giymnophiona live in South America and the East Indies, and feed principally on Worms and Tnsect-larve. Joh. Müller was the first to show that Coceilica glutinosa possesses, in the larval period, a gill slit on each side, which leads to the internal gills. According to Gervais, Coccilia compressicaucle is born without a trace of branchial apertures, and Peters has recently confirmed this assertion. Peters,

[^180]however, observed on the neck of the recently-born young, which we deposited in water, large vesicles which he regarded as gills.
 mrxictum Dım. Bibs. (fig. (i2s) ; S. anmulata Wagl., Brazil ; Jjuirrimm Wagl.. Ceylon.

The extinct Labyrinthodonta of the Triassic, the Permian, and the Curboniferous formations must be regarded as a special order of Amplibior. They unite in a remarkable manner the characters of the Ganoids and those of the urodele Amphibians. They possessed an external dermal skeleton, consisting of three broad hony thoracic plates and small scutes on the abdomen, amphicnelous vertebrat and peculiar folded teeth (hence the name of the group) in the Crocodilelike jaws. It has also been shown that they possessed branchial arches in the young state (Archegosaurus). The footmarks of gigantic animals (Chirotherium), which have been discovered in the Buntersandstein in England and Germany (Hildburghausen), and which some have ascribed to Chelonia and others to Marsupials, are probably due to the Labyrinthodonta. Owen has distinguished the oldest forms with armoured skull as Ganocephala. Archegosaurus Dechenii Goldf., Labyrinthodon Rütimeyeri Wied.
Order 2.-Caudata* (Urodela).

Elongated Amphilia with naked skin, usually with fowr short limbs and persistent tail, with or without external gills.

The body, which is naked, ends with a long, usually laterally compressed, swimming tail, and possesses as a rule two pairs of short extremities far removed from one another. These limbs effect the relatively clumsy movements of the animals on land, but in swimming are used in a much more effective manner as oars. The posterior limbs are completely absent only in exceptional cases (Siren) while the anterior limbs remain as short stumps.

Some Urodeles (Perennibranchiata) possess throughout life three pairs of branched external gills, in addition to the lungs. Other: indeed cast off the gills in the course of their development, but retain throughout life an external gill slit on each side of the neck

[^181](Derotremu). Many, however, even completely lose the latter, and show themselves by their whole organisation to be the highest members of the order (Salamandrina). In the two first cases the vertebree are biconcave, like those of the Fishes, and enclose well-preserved remains of the notochord. The fully-developed Salamandrina, on the contrary, have vertebre with an articular head in front and a concavity behind (i.e., are opisthoccelous).

The eyes, which are small and sometimes rudimentary, are placed beneath the transparent skin, and except in the Salamandrina are without distinct lids. In all cases the anditory organ is without a tympanic membrane and tympanic cavity. The nasal apertures are placed at the end of the projecting snout, and lead into slightly developed nasal cavities, which communicate with the buccal cavity by openings placed far forward in the roof of the mouth immediately behind the maxillæ. The buccal cavity is armed with small sharp hooked teeth, which on the lower jaw are arranged in single rows, but on the upper jaw and often on the palatine bone are in double rows. Almost the whole lower surface of the tongue is attached to the floor of the buccal cavity.
The life history of the Axolotl, which was taken by Baird, Cuvier, and others for the larva of a Salamandrine, is very remarkable. According to the observations which were made by Duméril in the Jardin des Plantes at Paris, the young reared from the eggs of the Axolotl under suitable conditions lose the gill tufts and develop into a form which agrees with the Salamandrine genus Amblystoma, while the specimens which were originally introduced from Mexico preserve the Perennibranchiate form in the sexually adult condition. Species of Triton also have occasionally been found with perfectly developed gill tufts in the sexually adult state.

Sub-order 1. Ichthyoidea.*

Crodela with three pairs of external gills or without them, but with persisting branchial aperture; with fish-like biconcave vertebree and well-preserved notochord.

The Ichthyoidea represent the lowest grade among the Crodela with regard to their respiration, the strocture of their skeleton, and their whole organisation ; and to a certain extent represent persistent developmental stages of the Salamandrina. The eyes are small, and

[^182]are covered by the transparent integment. The palatal teeth (siren) :ue arranged in rows like the teeth of some Fishes, or form a curved areh at the anterior end of the palatine bones. The extremities also me weak and reduced ; the anterior end with three or four digits, and the posterior with two to five jointed digits. 'The digits may, however, be rulinentary and be withont distinct joints.

Amongst the 'Tertiary remains of this group the gigantic Andrias Scheuchzeri, which becane fanous ats Ilomo diluvii lestis, is worthy of renurrk.

Tribe 1. Perennibranchiata. With persistent gills, usually without maxillary bones. The vomer and palatine bone with row's of teeth.

F'am. Sirenidæ (Armmolehe). With clongated eel-like body and rudimentary anterior limbs, without posterior limbs. Siren lacertinu L., South Carolina.

Fam. Proteidæ (Olme). Body elongated and cylindrieal ; anterior limbshort. with three digits; hind limbs placed far baek, with two digits. Onl.

Fig. 629.-Menobranchus lateralis (règne animal).
two gill slits on each side. Praters angumens Laur. Flesh-eoloured and living in the subterranean waters of Carniola and Dalmatia.

Fam. Menobranchidæ. Body elongated, with tolerably broad head and fourtoed limbs. There are four gill slits on eaeh side. Menobranchus lateralis say: Mississippi (fig. 629). Probably holds the same relation to the genus Batrouchoseps.s Bonap. that Siretlon does to Amblystoma (Cope). Siredon pisciformis. Shaw, and muculatu.: Baird., Axolotl. The eggs are laid in the water either singly or in masses. The larva, when hatehed, are from fourteen to sixteen mm . long, have three pairs of gills, and are still without limbs. Under suitable conditions they lose in the course of further development (aceording to Duméril. whose observations have been several times eonfirmed) the gill tufts, the dorsal and eaudal erests, and assume the form of A mblystomn (second sexual form).

Tribe 2. Derotrema. Without gill tufts, usually with a branchial aperture on each side of the neck, with maxillary bones, and teeth which are usnally arranged in one row.

Fam. Amphiumidæ (Aalmolche). Body elongated eel-shaped, with short cxtremities far apart from one another. Amphiuma L., A. tridactylum Cur. (A. means I., with but two digits), Florida. $_{\text {. }}$

Fam. Menopomidæ. Of Salamander-like appearanee, with four anterior and
five proterior digits. Menoppomu ulleghuniense Harl.. l'emasyIvania and Virginia; Cryptolruncthus juponicus r. d. Hoer., more than three fect long, Japan.

Sub-order 2. Salamandrina.*

Hithout gills or gill aperture, with valve-like eye-lids and opisthocolous revtelict.

The body, which is shaped more or less like that of a Lizard, is without external gills and gill-slits in the adult state, and always possesses anterior and posterior extremities, of which the first usually have four and the latter five digits. Well-developed eyelids are always present. The palatal teeth form two rows, which unite in the middle line at the posterior margin of the palatine bone. The skin is moist and slimy, and has a more or less uneven warty appearance, owing to the presence of a number of glands which secrete a pungent and irritating milky fluid. These glands are sometimes especially aggregated in the region of the ear.

The Aquatic Salamanders (Newts) lay fertilized eggs on plants. The Land Salamanders, on the contrary, are viviparous and deposit their offspring, which pass through their metamorphosis more or less completely in the uterus of the mother, in water. The spotted Land Salamander produces thirty to forty larve, each twelve to fifteen mm . long, with four legs and external gill tufts, while the black Land Salamander of the higher Alpine regions bears only one [two ?] completely-developed offspring. In the latter case, of the numerous eggs which enter the two uteri, only the lowest on each side develops into an embryo, which derives its nourishment from the rest of the eggs which run together so as to form a common mass, and is able to undergo all the stages of development within the uterus.

Fain. Tritonidæ. Aquatic Salamanders or Ncwts. Of slender form, with latcrally compressed swimming tail. Thiton cristatus Laur., large Newt. Tr. alpestris Laur. (i!pueus Bechst.), (Bergsalamander). Tr. teniatus, Schn., small Newt.

Fam. Salamandrinæ. Land-Salamandcrs. Clumsy body, with cylindrical tail. Salamandra maculosa Laur.. the Spotted Salamander; distributed over almost all Europe to North Africa. S. atra Laur., Black Salamander: in the high mountains of South Germany, France and Switzerland.

* Rusconi, "Amours des Salamandres aquatiques," Milano. 1821.

Rusconi, "Histoirc naturelle, dévcloppement et métamorphose de la Salamandre terrestre," Paris, 1854.
v. Sicbuld, "Ueber das Receptaculum sominis der weiblichen Urodelen." Zeitsehr. für wiss. Zmol.. 18 s.s.

Fr. Leydig. "Ucher dic Molche der würtembergischen Fauna," Archic für Naturifesch., 1867.
li. Wicdershcim, "Salamandrina perspicillata und Gcotriton fuscus, etc., Genua, 1875.

> Order 3.- Batrachia* = Anura.

Amphibie of stout form, with moked stin, without twil, with procrelous vertebree arul well-developed extremities.

The body is short and stont and is without a tail. On the head we the wide mouth and the large cyes, the iris of which hass usually a golden lustre. The eye-lids are well developerl, and the lower, which is transparent, can be drawn as a nictitating membrane completely over the eye. The nasal apertures are placed far forward on the extremity of the snout, and can be closed by membranous valves. In the auditory organ there is generally a tympanic cavity, which comnunicates with the buccal cavity by means of a short wide Eustachian tube and is bound externally by a large tympanic uembrane, which is sometimes free and is sometimes concealed beneath the skin.

Only a few of the Batrachia are without teeth (Pipu, Bufo) ; as a rule there are small hooked teeth arranged in simple lows at least on the vomer, in the Frogs and Pelobaticle, on the maxillaries and preemaxillaries also. The tongue is absent only in a small group of exotic forms; it is usually attached between the rami of the lower jaw in such a way that its posterior part is completely free, and can be protruded as a prehensile organ from the wide mouth.

Ribs are, as a rule, absent, but the transverse processes of the dorsal vertebræ attain a considerable length. A pectoral and pelvic girdle is in all cases present. The former is distinguished by firm connection with the sternum, the latter by the styliform elongation of the ilium. The hyoid bone in its definitive form is considerably simplified ; the body, is supported by large anterior horns, while the branchial arches on each side are reduced to a single posterior horn.

In the skin, which is usually naked, glands with an acrid milky secretion are often aggregated in many places, especially in the regic n of the ear, where they form large glandular projections (paroticl). Glandular aggregations occur also on the middle division of the hind legs (Bufo calamita) and on the sides of the body.

[^183]Reproduction takes place in the spring. Copulation is confined to an external approximation of the two sexes, and almost always talkes place in the water: The male, which sometimes has a wart-like eleration on the thumb (Rana) or gland on the arm (Pelobates) embraces the female from the back, usually behind the front limbs, and pours out the seminal Huid over the spawn as it issues in strings or in clumps. The indiridual eggs are surrounded by a viscous layer of albumen which swells up in the water.

The upper half of the orum is of a darker colour than the lower. The process of segmentation logins in the upper part, and the constrictions which lead to the formation of the segmentation spheres proceed more rapidly in this region than at the lower pole. With the end of segmentation a cavity - the segmentation cavity-appears in the mass of cells; it is placed nearer to the upper pole than to the specifically heavier lower pole. The germ [blastoderm], with medullary plate and folds, arises on the upper half; it quickly, even before the closure of the medullary canal to form the medullary tube, grows round the yolk. After development of the branchial arches and before the mouth is formed, the embryos which have a short tail leave their egg membranes as tadpoles at a stage of development which raries with the species. They then attach themselves by means of two suckers to the gelatinous remains of the spawn (similar suckers are present on the throat of the Triton-larve, where however they are stalked). Most larra leave the egg membranes with more or less developed rudimeuts of three pairs of branched external gills (rol. i., fig. 111). The body gradually increases in length and the fin-like tail developes. Later the mouth is formed and the larra logins to feed. Soon the external branchial appendages disappear, while the skin grows over the gill slits like an operculum in such a manner that only one gill aperture is left, through which the water flows out of the branchial chambers on either side.

During these processes fresh lancet-shaped gill-plates are developed in double lows along each branchial arch. The month is armed with a horny beak, which is used in gnawing vegetable and also animal substances. The intestine has become very long and much coiled, and the lungs have grown out of the pharynx in the form of long sacs. As development proceeds the hinder extremities first make their appearance on the body of the Tadpole close to the attachment of the strongly-developed swimming tail. As the pulmonary respiration increases, the branchial apparatus becomes more and more reduced, and the animal undergoes an ecdysis, with which is conYOL, II.
nected not only the loss of the internal gills, but also the appearance of the anterior extremities which have been long concealerl beneath the skin. The horny beak is now east off", and the eyes, which have hitherto been concealed beneath the skin, appear on the surface, and are of considerable size. The larva has now become an exclusively air-breathing, four-legged Frog, which has only to lose its swimming tail in order to acquire its definitive form and be fitted for its terrestrial life (vol. i., fig. 112).

Some Butrachice are true land animals (Toads and Tree-Frogss), which especially love dark and damp hiding places; others live indifferently on land or in water. In the first case the five toes of the hind feet are either entirely without a connecting membrane or only have an incomplete one ; exceptionally (Pelobates), however; they are completely webbed. In the second case, on the contraly,

Fig. 630.-Dactylethra capensis. the hind feet are, as a rule, completely webbed. The land Frogs usually seek the water only at spawning time; they crawl, run, and hop on the land, or dig passages and holes in the earth (Pelubrtes, Alytes), or they are able to climb up shrubs and trees by means of suctorial dises on the ends of their toes (Dendrobates, Iyla).

Tribe 1. Aglossa. Batrachia without tongue. The tympanic membrane is not exposed. The cyes are placed anteriorly near the angles of the mouth. The hind feet have entire webs. They live in hot localities, especially of the New World.
Fam. Pipidæ. Body toad-like, flat, without teeth on jaws and palate. Pipa dorsigera Schn., Surinam Toad.

Fam. Dactylethridæ. The body is more frog-like, with teeth on the maxillaries and premaxillaries. Xenopu.s (Ductylethra) capensis Cuv. (Krallenfroseh), (fig. 630); Myobatrachr(s paradoxus Sehleg.

Tribe 2. Oxydactylia. Batrachica with freely movable tongue and pointed fingers and toes.

Fram. Ranidæ. Water-Frogs. Batrachians with long hind limbs. which are adlapted for jumping, and the toes of which are usually eonnected by cutire swimming membraues. There are small hooked tecth on the maxillaries. pre.
maxillaries, and nsually also on the vomer. Rana csculenta L., the green Frog. Green with dark spots and yellow longitudinal streaks on the back. The male has two vocal saes. Leares its place of conecalment at the end of April, and spawns at the end of May or the beginning of June. On the banks of stagnant water. Ih. tempuraria L., the brown frog, with cark spots on the head in the anditory region. It appears very early, and copulates in March; but only remains in the water to spawn, and then frequents meadows and fields. Steenstrup has divided this frog, which is widely divided over Europe, into two species (R.ox'yrhina, platyrhina). R.mugicns Daud., Bull-frog, North America; Pseudis paradoxa L., South America, distinguished by the size of its larvæ.

Fam. Pelobatidæ. Land-frogs, Toad-frogs. With more or less warty, rough, and richly glandular skin, and clumsy toad-like form; with tecth on the maxillarics. Alytes obstetricans Laur. (fig. 626); Pelobates fuscus Laur.; Bombinator igneus Rös. (Unke, Fenerkröte).
Fam. Bufonidæ. Toads. Of clumsy build, with warty glandular skin (earglands) and toothless jaws. The posterior feet have five digits, and are but little longer than the anterior, so that the animal is unable to spring with the same agility as the Frogs ; but they can in many cases run with great speed. Bufo vulgaris Laur., the common Toad ; B. viridis Laur. (variabilis), the green Toad ; B. calamita Laur. (Ǩrcuzkröte).

Tribe 3. Discodactylia. Batrachians with tongue and with broad digits, the points of which are provided with suctorial dises.

Fam. Hylidæ. Tree-frogs. With maxillary teeth and without parotids. Hyla arborea L., Tree-frog, cosmopolitan; Notudctphys ovifera Weinl., Mexico. The female has a brood-pouch on the posterior part of the back. The larve have bell-shaped external branchial vesicles. Mhyllomedusu bicolnr Bodd., South America; Dendrobutes tinctorius Schn., Cayennc.

CHAPTER VII.

Class III.-REPTILIA.*

Scaly or armoured cold-blooded animatls with exclusively pudmonary respiration and two ventricles incompletely separated from one another. Embryos with an amnion and an allantois.

The body-form of the Reptitica varies far more than does that of the 1 mphibica, but repeats on the whole the types described for the latter class. The trunk still plays the principal part in locomotion, and accordingly the vertebral column presents a uniform segmentation adapted for serpentine movements. The body, except in the

[^184]'Tortoises, is elongated and more or less rylindrical, and is either altogether apodal, as in the Snakes, or is provided with two or four extremities, which as a rule serve only to support and push on the body which glides along the ground on its belly. In correspondence with this mode of locomotion a rervical region is scurcely at all marked, and even when more developed is always relatively rigid; the tail ori the other land is long and movable.

The skin, as opposed to the predominating soft and naked skin of the Amphilia, is tongls and firm, in consequence of ossifications of the cutis as well as of a cornification of the epidermis. The formermay give rise to bony scutes, overlapping one another in a tectiform manner (Scincoiclea), or to larger bony plates, which constitute a hard, more or less continuous, dermal armour (Crocodiles, T'ortoises).

In general pigments are present in the dermis as well as in the deeper layer of the epidermis; they determine the riverse colouring of the skin, and sometimes cause a true change of colour (green Tree Snake, Chamceleon). Cutaneous glands are also widely distributed among the Reptilica. Many Lizards in particular possess rows of glands on the inside of the femur and in the anal region, which open by distinct pores sometimes on wart-like protuberances (femoral pores, anal pores). In the Crocodiles, too, larger groups of glands are placed beneath the dermal armour both at the sides of the anus and on the sides of the rami of the lower jaw.

The skeleton only exceptionally presents the embryonic form of a cartilaginous cranial base and persistent notochord. The rertebral column is more distinctly divided into regions than is that of the Amphibia, although the thoracic and lumbar regions still allow of no sharp limitation. In the cervical region the first rertebra becomes the atlas and the second the axis. While fossil Hydrosaurians and the Ascalabota possess biconcave rertebra, the vertebral borlies of other Reptiles are always bony and generally procolous.

Ribs are very generally present, often along the whole length of the trunk. In the Snakes and the snake-like Lizards, in which a sternum is absent, all the vertebree of the trunk with the exception of the atlas bear libs, which, to compensate for the absence of limbs, are capable of free movements. In the Lizards and Crocodiles (fig. 573) there are short cervical ribs. The thoracic ribs are joined to a sternum by means of special sternocostal pieces. In the Crocodiles there is in addition an abdominal sternum, which extends over the belly to the pelvic region, and is composed of a number of ventral ribs (without dorsal part). The sacral
rertebre, of which there are usually two, have very large transverse processes and ribs.

The skull (fig. 631) articulates with the atlas by means of an unpaired, often trifid condyle of the occipital bone, and presents a complete ossification of nearly all its parts, the primordial cranium being almost completely replaced. In the occipital region all four elements are present as bones; but the basi-occipital (Tortoises) and the supra-occipital (Crocodiles and Snakes) may be excluded from the boundary of the foramen magnum. In the periotic capsule there is a fenestricu rotundu, as well as the fenestra ovalis with the columella. The opisthotic, which usually fuses with the exoccipital, takes part in bounding the fenestra ovalis (in the Tortoises the exoccipital and the opisthotic are separate).

The prootic, on the other hand, is separate in all Reptiles; at its anterior there is in front of the lateral parts of the occipital region a separate prootic, at the front margin of which is the foramen for the third branch of the trigeminus. The epiotic is fused with the supra-occipital. The anterior expansion

Frg. 631.- Skull of Monitor (after Gegenbaur). a, from above. b, from below. C, occipital condyle; Ocs, supra-occipital; Ocl, exoccipital; Ocb, basioccipital ; P, parietal; $F r$, frontal; $P f$, postfrontal ; Prf, prefrontal ; L, lacrymal ; N, nasal; Sq, squamosal ; Q, quadrate; Qi, quadratojugal; J, jugal; $M x$, maxillary; Jmx, præmaxillary; Co, columella; Bs, basi-sphenoid; Pt, pterygoid; Pal, palatine; Vo, vomer; T_{r}, os transversum. of the cranial capsule, and the development of the sphenoidal region, present considerable differences. At the base of the skull there is a basisphenoid in place of the parasphenoid. The alisphenoids and the orbitosphenoids are as a rule wanting, and are often replaced by processes of the parietals (Chelonia) or of the fronto-parietals (Ophidicu). In the Chelonicand Lizards there is a large membranous interorbital septum, which may also contain ossifications. The bones of the roof of the cranium are always very large-sometimes paired, sometimes
mpaired．The frontal bone in many ease takes no part in the formation of the roof of the cranial cavity，and only lies on the interorbital septum．Behind the lateral parts of the frontal in the temporal werion are the postfrontals（I＇ $\mathcal{\prime}$ ）．In the ethmoidal region the median part remains in part cartilaginous，and is covered above by the paired nasul bones（ N ），and at the base by the romer （ ${ }^{\prime}$ o），which in the Snakes and Lizards is paired．The lateral parts are always separate from the median，and are known as the lateral ethmoids or praefrontals（ $\left.P^{\prime} \cdot f\right)$ ．In the Jizirds and Crocodiles lachrymals（ L ）are present on the outer side of the preefrontals， bounding the anterior margin of the orbits．

The squamosal $\left(S_{q}\right)$ is more intimatcly applied to the cranium，and the quadrate (Q) is always a strongly developed bone．In C＇helonia and Crocodilia the quadrate and maxillo－palatine apparatus are im－ movably united with the wall of the skull；in Snakes and Lizards， on the other hand，they are more or less freely morable．In the first case not only are the large pterygoid and palatine bones fused with the sphenoid，but the quadrate bone is very firmly connected with the superior maxillary（i．e．jugal）arcade．In the Crocodiles a transverse bone（os transversum）is developed between the pterygoid and maxillary，and also a superior temporal arcade by which the squamosal is connected with the postfrontal on either side．In the Lizards，in which the maxillo－palatine apparatus and quadrate are movably articulated to the skull，the jugal arch is completely absent ［i．e．，the jugal is not connected with the quadrate by bone］．On the other hand，these animals possess not only a transrerse bone（os transversum）（fig．631，Tr），already mentioned for the Crocodiles， but also a column－like bone－the columella－which extends between the parietal and pterygoid．The facial bones are，however，most movable upon one another in the Ophidic，which are without the jugal arcade，but present a large os transversum．The two rami of the mandible，which in all Reptilia and lower Vertebrates are com－ posed of several pieces，are in these animals comnected at the symphysis by an elastic band，an arrangement which permits of considerable extension towards the sides．

The visceral skeleton is reduced to the hyoid bone，from the anterior arch of which the dorsal element（hyomandibular）is separated off， enters into relation with the auditory apparatus，and is known as the columella．The hyoid bone is most reduced in the Snakes．

The limbs and their girdles are completely absent in most Snakes． In the Peropoda and Tortricida，however，traces of hind limbs are
found in the anal region, bnt they are hidden beneath the skin, except the terminal part, which bears a claw. In the Lacertilia the extremities present very various grades of development; while the pectoral and pelvic girdles are without exception present, though they are sometimes very rudimentary, the anterior and posterior limbs may be completely absent (Blindworms), or the one pair may be present without the other as small rudiments. In most cases, however, both pairs of extremities are completely developer, and provided with five digits. Sometimes the digits are connected by swimming membranes (Crocodiles), or the extremities are modified to form flat swimming fins (fossil Hydrosaurians and Turtles).

The nervous system (fig. 632) is de- Cb cidedly higher than that of the Amphibice. The hemispheres are distinguished by their considerable size, and begin to coverthe mesencephalon. The cerebellum shows rarious grades of development progressing from the Snakes to the Crocodiles, and in the latter recalls that of Birds by the contrast of its large median lobe and its small lateral appendages. Of the cranial nerres the facial is no longer united with the trigeminal, and the glossopharyngeal appears as an independent nerve, which has, howerer, several connections with the ragus. The spinal accessory also arises independently except in the Snakes. Finally the hypoglossal, which passes out through a single or double opening in the skull, enters the category of the cranial nerves.

Fig. 632.-Brain of the Alligator seen from above (after RablRiickhard). Th, prosencephalon (cerebral hemispheres) ; $\boldsymbol{M} h$, meseucephaton (corpora bigemina); Cb , cerebellum; NKo, medulla oblongata; I, olfactory nerve; $I I$, optic ; $I \mathrm{Y}$, trochlear (fourth); Y, trigeminus (fifth) ; YIII, auditory nerve ; $L X$, glossopharyngeal (ninth); X, vagns (tenth); II, spinal accessory (eleventh); $1 C$, first spinal nerve; $2 C$, second spinal nerve.

The eyes are without lids in the Snakes, Geckos, and Amphisbrenas, but are protected in these animals by a transparent capsule, which is sep:urated from the cornea by a space filled with lachrymal fluid. In all other cases there is an upper and lower eyelid. An independent nictitating membrane at the inner angle of the eye is always accom-
panied by the appearance of a special grland (Ifriderium ylumed). Pecnliar folds of the choroid, which correspond to the processus falciformis of the eyes of Fishes and to the so-called pecten of the eye of Birds, are present in the eye of Lizards.

The auditory organ has a simple tubular cochlea and a corresponding fenestrat (fenestra rotunda). A tympanic cavity with biastachian tube and tympanic membrane is wanting only in the Snakes and apodal Lizards. In these cases the operculum, which covers the fenestra ovalis, and the columella which is attached to the operculum, are buried among the muscles, as in numerous Amphitia. When a tympanic cavity is present, the columella is applied by its cartilaginous end to the tympanic membrane, which in many Lizards is still concealed beneath the skin, while a wide Eustachian tube learls into the pharynx. A cutaneous fold above the tympanic membrane of the Crocorliles may be regarded as the first rudiment of an external ear.

The olfactory organ of the Reptitic shows, principally in the Chelonia and Crocodilia, a considerable augmentation of the surface of the mucous membrane, the folds of which are supported by cartilaginous turbinals. The external nares can be closed only in the Water-Snakes and the Crocodiles by an arrangement of valves. In the Crocodiles and Chelonians the internal nares open far back on the palatal part of the mouth. In the Snakes and Saurians there is also a second olfactory organ embedded between the turbinals and the vomer (nasal glands, Rathke, Jucobson's organ, Leydig), the nerve of which arises at the end of the olfactory lobe, and is spread out like a cup around a cartilaginous papilla.

The sense of taste is by no means always located in the tongue, since in Snakes and many Lizards this organ serves for feeling, and in other cases-e.g., the Chamæleon-is used as a prehensile organ. Leydig* has recently discovered cup-shaped sense-organs in the buccal cavity of Snakes and Saurians. In the Snakes they are arranged alongside the rows of maxillary teeth, in Saurians they are embedded in small pits of the connective tissue.

Alimentary canal.-Excepting in the Chelonia, whose jaws possess a horny cutting investment, which constitutes a kind of beak, the jaws are provided with conical or hooked prehensile teeth, which hold fast the prey, but cannot masticate it. As a rule, the teeth are confined to the jaws, and are always arranged

[^185]in a single row; sometimes they are fastened to the upper edge (ucrodont), sometimes to an external, strongly projecting ledge of the flat dental groove (pleurodont), rarely, as in Crocodiles, they are wedged into special alveoli. Hooked teeth may also be present on the palatine and pterygoid hones, and in this case they frequently (e.g., in non-poisonous Snakes) form an inner arched row on the roof of the mouth. In the poisonous Snakes special teeth of the upper jaw are traversed by a groove or canal, and enter into close relation with the ducts of poison glands, the secretion of which passes into the wound through the groove or camal in the poison teeth. Salivary glands are found in Snakes and Lizards, both in the lips and on the lower jaw, and a sublingual gland may also be present. The possession of the latter is characteristic of the Chelonia.

The œesophagus is very long, and is capable of an extraordinary degree of dilatation. Its walls are usually folded longitudinally, but they may also be beset with large papillæ, as in the Turtles. The stomach is usually arranged longitudinally, except in the Chelonia, which possess like the Frogs a transversely-placed stomach. The stomach of the Crocodiles resembles that of Birds, both by its rounded form and by the strength of its muscular walls. The small intestine is but little coiled, and remains relatively short; in the Land-Tortoises alone, which live on regetable matter, is the intestine more than six or eight times longer than the body. The broad large intestine (rectum) usually begins with an annular valre, and often with a crecum, and leads into the cloaca, which opens beneatli the root of the tail by a round opening, or as in the Snakes and Lizards by a transverse slit (Plagiotrema). Liver and pancreas are never absent.

The Reptitica breathe exclusively by lungs, which have the form of spacious sacs, with alveolar projections of the walls, or with wide spongy cavities (Tortoises and Crocodiles). In the Smakes and swakelike Lizards the lung on one side is more or less reduced, while the other obtains a correspondingly greater size. The posterior end of the latter loses not only the cellular alveolar spaces, but also the respiratory vessels, and has the form of an air-reservoir (foreshadowing the air-sacs of Birds), which renders respiration possible during the slow process of swallowing. The afferent air-passages are always differentiated into a larynx beginning with a slit-like glottis, and into a long trachea and bronchial tubes, supported by cartilaginous and often bony rings. A membranous or cartilaginous
epiglotis is present in many Tortoises, Snakes, and Lizards. The Geckos and Chamaleons alone have a vocal apparatus. The renewal of the air necessary for respiration is, except in the Chelonia, always effected by aid of the ribs.

The circulatory organs (fig. GU) present various grades of develop ment, even to the complete division of the heart, and to the separation of the venous and arterial blood.

Fig. 633.-Heart and large vascular trunks of Alligator lucius seen from the ventral side and partly opcnerl (after Gegenbaur), D, right auricle; S, left auricle; O, ostirm venosum of the right anricle; Ov, auriculorentricular aperture; $B a$, bulbus arteriosus ; C, carotis primaria; $S_{l l}, S_{s}$, subclavian arteries; $\mathcal{A} d$, right aortic arch; $A \varepsilon$, left aortic arch; P, pulmonary artery; Γ, connection of right with left aortic arch; M, mesenteric artery; $P c$, conncction of the heart with the pericardium; $F P$, position of the foramen Panizzr. Not only are there two auricles whicl are distinct even externally, but the ventricle also is divided into a right and left chamber. The partition wall of the ventricles is indeed perforated in Snakes, Lizards, and Chelonians ; but in the Crocodiles it is complete, and effects the separation into a right and left rentricle. In the first cases the pulmonary arteries and the aortic trunks arise from the wide thin-walled right division of the ventricle. In the Crocodiles, on the other hand, the pulmonary arteries and the aortic trunks hare a separate origin (fig. 633). The complete number of aortic arches is present only during the foetal life ; in later life their number becomes much reduced. Originally five pairs of rascular arches-as also in Birds and Mammals-are present; they embrace the gullet and join to form the two roots of the aorta. Most of them, however, undergo reduction, losing their connections with each other, so that finally each aortic root (Saurians) arises from two vascular arches, or is the prolongation of a single aortic arch. The aorta, which passes out from the heart, is divided into three trunks-a right and left aorta and a pulmonary artery-each with a separate opening into the rentricle [i.e., three distinct arterial trunks leare the
ventricle or rentricles, and not one only as in the Ichthyopsida]. In the Suakes and Lizards the left arterial trunk is prolonged into the left aortic root without giving off vessels (fig. 60, Aos), while the right and larger before being prolonged into the right artic root gives off a common stem for the two carotids (fig. $60, l$), between which and the corresponding aortic roots a comnecting vessel (ductus Botalli), constituting a second persistent aortic arch, may be retained (many Lizards). In the Chelonic the right aortic arch likewise gives off the carotids and subclavians, while the left gives off the risceral arteries. In consequence of the very small size of the aortic root of the latter, the aorta appears to be mainly a prolongation of the right aortic arch. Crocodiles present the same arrangements, but in them the right arterial trunk arises from the left rentricle and receives arterial blood from the latter. In this case also, in spite of the complete clivision of the heart, the mixture of venous and arterial blood is not wholly avoided, since there is a communication - the foramen Panizace-between the right and left aortic arches. When the separation of the two rentricles is incomplete, mixture of the two kinds of blood takes place in part in the heart, although the entrance into the pulmonary vessels can by special valvular arrangements be separated from the ostia of the arterial trunks in such a manner that the arterial blood principally flows into the latter, and the venous into the former (Brïcke). In the venous system there is, as in the Amplibicu, a renal-portal as well as an hepatic-portal circulation. In the Chelonia and Crocoditic, however, the renal-portal system is more and more reduced, for the greater part of the blood of the iliac veins passes to the liver. The system of lymphatic vessels presents extraordinarily numerous and wide lymph spaces, and is arranged exactly like that of the Amphibica. Contractile lymph hearts have only been discovered in the posterior part of the body at the junction of the trunk and tail. They are paired and situated on the transverse processes or ribs.

The kidneys of Reptiles belong, as in Birds and Mammals, to the hinder region of the trunk, and correspond accordingly only to the posterior broad part of the Amphibian kidney. In Lizards and Chelonians a urinary bladder projects on the anterior wall of the cloaca. The urine is not by any means always fluid, but is often a whitish mass of firm consistency, and contains uric acid.

The generative organs (fig 634) resemble those of Birds. The morphological relations of the generative organs of the higher vertebrates are attained, inasmuch as the anterior region of the
kidney (primordial kidney and Wolffian duct), which in the Amplithia still functions as a winary organ, is here transformed into the efferent apparatus of the testis (epididymis and vas deferens), and in the female sex vanishes or rarely persists as a rudiment (Rosenmïller's organ, canal of (ü̈rtner), while in the female the Müllerian

Fig. 634.-Urogenital apparatus of Lacerta agilis (after C. Heider), a, of the male. N, kidney; H, testis; $N h$, epididymis; $V d$, vas deferens; P, remains of the primordial kidney (Wolffian body); T, remains of the Müllerian duct; $P e$, penis; $S P$, pores of femoral glands; $S D$, femoral glands. $-b$, Of the femalc. $H b$, urinary bladder; Md, rectum (cut); Cl , cloaca $O v$, ovary ; T, Müllerian duct developed into oviduct.
duct becomes the oviduct. The oviducts as well as the vasa deferentia open separately into the cloaca. The oviducts begin with a wide peritoneal ostium, have a sinuous course, and secrete the calcareous and usually membranous egg shells. The eggs in many cases remain a long time in the terminal part of the oviduct (which may then
be termed the uterus), sometime.s till the embryonic development is completed.

The males always possess external organs of copulation, to which in the females similarly arranged rudiments (clitoris) correspond In Snakes and Lizards (Plagiotrema) these organs consist of two protrusible hollow tubes, which are either smooth or covered with spines and lie retracted in a pouch-like cavity behind the cloaca. When protuded their surface is traversed by a groove which conveys the sper'm from the genital opening's of the cloaca. In the Chelonia and Cirocodilia, on the other hand, an erectile penis supported by fibrous bodies projects on the anterior wall of the cloaca. This penis also has a groove in which the semen is received and passed on, but it cannot be invaginated like the two penises of Snakes and Lizards. Copulation always leads to the fertilization of the ova within the body of the mother. But few Reptiles, e.g., Pelias berus amongst the Snakes, and the Blindworm amongst the Lizards, are viviparous. Most forms are oviparous, and bury their eggs in damp earth in sheltered warm spots, and take no further trouble about their fate. Some of the Pythons, however, are an exception to this; inasmuch as they coil their body together over the egrg which they have laid, and afford warmth and shelter to the developing brood.

The developmental history * of the Reptiles is very similar in its general features to that of Birds. The ovum is relatively large, and is sometimes surrounded by a layer of albumen within the shell. The segmentation is partial and leads to the formation of a discoidal blastoderm, with primitive groove and medullary folds. Before the medullary folds have closed, a tiansverse depression appears at the dilated anterior end of the medullary groove; this depression is the head fold, which leads to the origin of the cranial flexure, a feature always found in the higher vertebrates. [The cranial flexure is found in all vertebrates except Amphioxus.] The embryo which at first lies flat on the yolk, becomes gradually more and more sharply marked off from the latter, for the ventral walls of the boat-shaped body grow together, and leave only a small opening (umbilicus).

[^186]Thus it happens that the central digestive camal, which at first has the form of a shallow groove, becomes converted into a tube which remains for some time commected with the yolk at the umbilicus by a narrow duct.

The appearance of a membrane enclosing the embryo and known as the cmmion (fig. 635) is characteristic. The amnion arises in the following way. The outer layer (somatopleure) of the blastoderm is raised at the anterior and posterior end of the embryo, and forms two folds covering the head and tail end. These folds soon extend

Fig. 630.-Two stages in the development of the chick (after v. Baer) to show the development of the amnion and the allantois. $-a$, The two folds of the amnion are still widely separate from one another; only the first rudiments of the allantois are visille. $-b$, Later stage with closed amnion. E, embryo; D, vitelline membrane; $A m$, amnion; $S h$, Serous membrane; $D h$, alimentary cavity; $D g$, umbilical passage ; Γ, Yolk; C, heart; $A l$, allantois. over the lateral portions, and fuse over. the body of the embryo, so as to form a closed sac filled with fluid. Another organ which is characteristic of the higher vertebrates is the allantois. This arises at the posterior end of the body as a vesicular. evagination of the ventral wall of the alimentary canal, and grows out to a sac of considerable size. The walls of this sac, which is filled with fluid, are, unlike those of the ammion which is entirely without vessels, extraordinarily vascular and represent an embryonic respiratory organ, which in the long duration and complicated developmental processes of embryonic life is of great importance. The appearance of the allantois is correlated, not only $\frac{\underset{8}{7}}{\bar{i}}$ with the disappearance of branchial respiration, but also with the complete absence of a metamorphosis; the young animal being completely organised when it leaves the egg.

Some Snakes and Lizards extend far north, while the Crocodilia are confined to the torid zone, and only isolated examples of the Chelonia belong to the torrid zone.

The Reptilico of the cold and temperate regions fall into a sort of winter sleep, and in the hot climates there is a summer sleep which comes to an end with the beginning of the rainy season.

Most Reptiles are very tenacious of life, and can exist a long time without food and with limited respiration, and are capable, though in a less degree than the Amphibia, of reproducing injured or lost parts of the body.

The oldest fossil remains of Reptiles belong to the Primary period, but appear only very sparingly in this period, being confined to the Kupferschiefer formation (Proterosturus Speneri). The Secondary period (Trias and Jura) can show a far greater variety of forms. At this time the Saurians and Hydrosaurians were predominant. The scaly Lizards first appear in the upper strata of the Jura, and are most abundant in the Tertiary period, which also presents a few remains of Snakes. Chelonic first appear--excepting the doubtful footprints of the Trias-in the Jura. Land-Tortoises are first met with in the Tertiary formations.

Sub-class 1.-PLAGIOTREMATA (LEPIDOSAURIA).

Reptiles with scales and clermal shields, either apodal or provided with extremities. They have a transverse anal slit and a double penis.

> Order 1.-Ophidia * (Snakes).

Apodal Plagiostrenata without pectoral girdle; with bifid protrusible tongue ; usually with freely movable, always displaceable, maxillary and palatine bones; without urinary bladder.
The Snakes are chiefly characterized by the absence of extremities, and by the distensibility, sometimes extraordinary, of the mouth and pharynx. They cannot, however, be sharply separated from the Lizards. Formerly the limitations of this order rested entirely on the absence of extremities, and thus not only were the Cceciliadce amongst the Amphibia, but also the Blindworms and other genera of apodal Lizards, included in it. The Amphisberidec also were

[^187]formerly regraded as Ophitia. Moreover, many Snakes have the rudiments of posterior extremities, which are placed at the root of the tail and have a conical claw projecting at the side of the anus. No Snake has a pectoma girdle or any trace of an anterior pair of extremities.

Th the skull of the Snakes (fig. 636) the temporal arcades are ahsent [i.e., the postfrontal is not directly connected with the squamosal, and there is no jugal or quadnato-jugal comnecting the maxilla with the quadrate]. The cranial cavity is very long. The anterior and middle parts of its lateral walls are formed by descending wing-

Fig. Cisbi. -Skull of Crotalus horridus. Ocb, Basioccipital; $O c l$, exoccipital ; Ocs, supraoccipital ; P_{r}, prootic ; $B s$, Basi-sphenoid; $S q$, squamosal ; P, parietal ; F, frontal; $P f$, post-frontal ; Prff, præ-fiontal ; Et, median ethnoid; N, nasal; Qu, quadrate; $P t$, pterygoid; $P l$. palatinc ; II x, maxillary ; $J_{m x}$, , $1 \times$-maxillary ; $T r$, transverse ; D, dentary; Art, articulare of the lower jaw. like processes of the parietal and frontal bones. The maxilla is connected with the pa-lato-pterygoid arcade by an os trausversum, and these bones are so completely morable upon one another and the cranium, that the mouth is capable of being considerably dilated and laterally extended. The quadrate bone is very movably articulated with the squamosal, which is also movably attached on the occipital region. The tro rami of the lower jaw are as movable as are the parts of the maxillo-palatine apparatus. They are connected at the symphysis by an elastic ligament, which permits of a considerable amount of lateral movement.

The armature of the jaws consists of a number of recurved prehensile teeth, which are arranged in a single row on the lower jaw, and usually in a double row on the maxillo-palatine apparatus; they chiefly serve to hold the prey fast while it is being swallowed. Hooked teeth may also be present on the pramaxilla (Python). Only in the Opoterodontce are the teeth confined to the npper jaw or to the lower jaw. Besides these solid hooked teeth many snakes possess in the npper jaw grooved teeth, or hollow poison teeth, which
are trarersed by a canal ; the canal is commected with the duct of a poisongland, and throngh it the secretion of the latter is poured. Frequently the maxilla is much reduced, and contains on each side only one large perforated poison-tooth, near which, however, other larger and smaller supplementary teetl are always placed (Solenoglypha). The grooved teeth are rarely more numerous, and are attached to the maxillaries either quite in front (Proteroglypha), or behind a row of hooked teeth (Opisthoglyphia). In both cases the maxilla is larger than that of the Solenoglypha. In the Aglyphodonta, however, where there are no grooved teeth, the maxilla attains the greatest size and the richest dentition. While the groored teeth are immorably fixed, the tubular poison teeth are erected, with the maxillaries to which they are attached, when the mouth is opened, and are, when the snake strikes, driven into the flesh of the prey. Simultaneously the secretion of the poison gland, which is forced out by the pressure caused by the con-
 traction of the temporal muscles, is injected into the wound ; it is thus mixed with the blood, and quickly causes the death of the victim.

The hard structures of the integument, which have the form of scales, scutes, and

Ic. 637.-Head of Calopeltis Aesculapii. a, Dorsal view, b, ventral, c, Lateral view of head of Tropidonotus viperinus (after E. Schreiber). a, Frontal scute; b, supra-ciliary scutes; c, posterior nasal scute; d, anterior nasal scute; e, parietal scute; f, rostral scute ; g, upper labial scutes; h, nasal scute; i, preorbital scutes; k, loreal scute; l, postorbital; m, temporal scutcs: o, chin scute; p, lower labial scutes; q, mental scute; r, cervical scutes; 8, cervical scalcs; t, ventral scutes. splints, vary much in form, number, and arrangement. While the dorsal surface of the trunk is always covered with smooth or keeled scales; the head is covered with scales as well as with scutes and plates, which, like those of the Lizards, are distinguished according to their special position as frontal, parietal, and occipital scutes ; also as rostral, nasal, temporal, and labial scutes, etc.
(fig. 637). 'The montal scutes-i.e., the seates in the mental growe On the ventral surface hetween the rami of the lower jaw (fig. (j37, 4) -may be mentioned ats peculiar to most shakes; in front of these two accessory labial scutes on either side form with the unedian labial scute (o) the anterior bounlary of the mental groove. The seutes on the abdomen wo for the most prot broad, ame invent the trunk like transverse bands (fig. ($9: 37 \mathrm{~b}, \mathrm{l}$) ; but seales and small median scates may also be present here. The ventral surface of the tail, on the other hand, is, as a rule, covered by a double, or rarely by a single, row of smites. Sinakes moult several times in the courne of the year; they strip off the whole of the epidermis on which the seulpture of the eutis is repented.
'The internal organisation corresponds with the requirenents of the elongated form of the body, as well as with the mode of locomotion and nourishment. A long and extensible gullet with thin walls leads into the dilated saecular stomach, which is followed by a relatively short small intestine. The larynx is placed extraordinarily far forward, and can be projeeted into the mouth during the long and diffieult aet of swallowing. The trachea is extremely long, and often contains respiratory air-cells in its course. The left lung is usually entirely rudimentary, while the right lung is correspondingly large, and is transformed at its posterior end into a vesicular airreservoir.

The auditory organ is without an apparatus for eonducting sound, and the eyes have no movable lids. The eye-ball, with its usually vertical pupil, is covered by the skin, which is here transparent, and behind which it is bathed by the lacrymal fluid. The nasal apertures are usually placed quite at the apex or on the lateral margins of the snout. The forked horny tongue serves not as an organ of taste, but as a taetile organ, and is enelosed in a sheath, from which it can be protruded through an indentation of the extremity of the nout, even when the mouth is closed.

The Snakes move principally by means of lateral Hexions of the vertebral column. The vertebre are very numerous, and almost always bear ribs in the region of the trunk. The centru are eoncave in front and convex behind; they are connected with one another by free ball and socket joints, and by horizontal articular surfaces of the transverse processes in such a manner that dorso-ventral movements are impossible. The ribs are also freely articulated with the vertebral bodies, and can be moved backwards and forwards, movements which are of great use in assisting locomotion. The Snakes
run in a certain sense on the extreme points of their ribs, which are attached to dermal scutes; for they move by altermately pushing the ribs forward, and drawing after them the ventral scutes, which are attached to one another and to the ribs by muscles.

The Snakes feed exclusively on living animals, both warm-blooded and coll-blooded, which they attack suddenly, kill and swallow whole without mastication. Swallowing is effected thus: the teeth on the jaws are alternately hooked further and further forwards into the body of the prey, as a result of which the mouth and pharynx of the suake are in a sense gradually drawn over the animal, whose surface is at the same time made slippery by the abundant secretion of the salivary glands. During this process the larynx is projected forward between the rami of the jaws, so that respiration can be maintained. After the completion of this laborious operation of swallowing, the animal appear's entirely prostrated, and passes a long period in inactivity, during which the very slow but complete digestion takes place.

Snakes copulate, and are for the most part oviparous. They lay a small number of large eggs, in which the embryonic development may be already far advanced. There are, however, also viviparous Snakes; for example, the sea-snakes (Hydrophiclce) and the vipers (Pelias berus).
Most of the species distinguished by size and beauty of colour belong to the warmer zones, only the smaller forms extend into northern temperate climates. Many Snakes are fond of the water and are truly amphibious. Others live for the most part on trees and shimhs, or on sandy ground ; others exclusively in the sea. In the temperate countries they fall into a kind of winter sleep, in the hot countries they undergo a summer sleep in the dry season.

Sub-order 1. Opoterodonta. With narrow, non-distensible, slitlike mouth, and immovably comnected facial bones, without or with only a short tail. They have solid hooked teeth only in the upper jaw or in the lower jaw. Posterior limbs present as rudiments. They live beneath stones, or in passages in the earth, and feed on insects.

Fam. Typhlopidæ. T!/phlops: lumbricalis Merr. (fig. (i:3s), Antilles. 1. ivmicularis L., Grecee. Stennstama nigricans. Dum. Bibr., South Africa.

Sub-order 2. Colubriformia. Both jaws armed with solid hooked teeth. In the upper jaw the last tooth may be grooverl, and then may be either without poison glands, or may be comnected with the
duct of a small poison gland. This suh-order includes the Aglyphodonta and the Opisthoglypha.

Fam. Uropeltidæ. With short pointed had, mouth not distensible, but with teeth in both jaws. Vropeltis philippinns Cus.

Fam. Tortricidæ. With small hardly discemible head and short comical tail. The teeth are small, and there are tweth on the patatine bones. They have a rudiment of the pelvis with small anal claws.

Fig. 638.-Typhlops lumbricalis (règne animal).

Timirix.aytals Hmpro, South America; ('ylindrophix. rufa Gray, Java.

Fam. Pythonidæ. With long oval heads covered with scutes or scales, with rudiments of hind limbs which terminate with an anal elaw at the sides of the clonca. Bryx jacmlas. Wagl., South Europe; Bume constrictor L., Brazil; I'ython reticulatus sichn., Sumatra.

Fam. Colubridæ. The head is not very broad, and is distinet; it is covcred with scutes. The dentition is complete. The tail has a double row of seutes on the under surface. Cirmella arstriaca Laur. $=$ C. lavis Lac., widely distributed in Europe; Liophes cobella 1. Brazil; Tropidonotus natrix Gesn., Ringed snakc. With obliquely keeled scutes. The species is widely distributed in Europe. Ti: tesselatus Meyr:; Colubrr (Calnpeltis) Aisenlapii Gesn. $=$ C. Harescens Gm., the snake of Æsculapius. South Europe, Schlangenbad, Austria; Zamenis atrovirens. Shaw, South Europe; Herpetodryas carinatus L... Brazil.
Fam. Dendrophidæ. Tree snakes. Body thiu and slender, head usually long, flat and distinct from the neck. The ventral seutes usually with two keels. Ventral eaudal scutes in two rows. Dendrophis pieta Gm., East Indies; Ahcetnlla smaragdina Boie, West Africa.

Fam. Dryophidæ. Body very long and slender, as is the head; snout thin and sometimes prolonged into a flcxible appendagc. Dryophis argented Daud.. Cayenne.
Fam. Psammophidæ. Sand snakes. The posterion tooth of the upper jaw is groored. Psammophis lineatus Dum. Bibr., Mcxico; Celopeltis lacertina Wagl., Egypt.
Fam. Dipsadidæ. The body tolerably slender, strongly compressed : with short tail, broad at the end, and very distinct. There are nsually posterior grooved teetll. Dipsas dendrophila Reinw., East Indics; D. fasciata Fisch., West Africa.
Fam. Scytalidæ. The hindmost tooth in the upper iaw is the longest. and is grooved. Seytale coronatum Dum. Bibr., Brazil. Oxyrhopus plumbers. Wied.. South America.

Sub-order 3. Proteroglypha. Poisonous snakes with large groored
teeth, which are placed anteriorly in the upper jaw, and behind which there are usually solid hooked teeth. The palatine and pterygoid bones, as well as the lower jaw, tre armed with hooked teeth.
Fam. Elapidæ. Resemble the Collubridere. Head covered with scales; usually with two rows of sub-caudal scutes. Naja tripulians Mcrr., the Cobra, Bengal ; N. huje L. Clcopatra's Snake, Egypt; Elaps corallinus L., the coral Snake, South Ameriea. (Fig. 639.)

Fam. Hydrophidæ, Sea-Snakes. With scarcely distinct head which is covered with scutes, and compressed body which is prolonged into a strongly compressed

Fig. 639.-Elaps corallinus (règne animal).
swimming-tail. They are viviparous. Pluturus fusciatus Daud., Indian Ocean Hydrophis (Pelamis) bicolor Daud. (fig. 640), Indian Ocean.

Sub-order 4. Solenoglypha. Snakes with triangular head and relatively short tail. The small upper jaw has a hollow poison tooth on either side, and one or more reserve teeth. Small solid hooked teeth are also present on the palate and in the under jaw.

Fam. Viperidæ (Vipers). Head strongly marked off and broad, without pits between the narcs and eyes. There arc usually two rows of scales on the under side of the short tail. Vipera aspis Merr. In wooded mountain regions of South Europe. V. cmmurdytes Dum. Bibr. The sand viper, with a soft horny prominence on the tip of the snout. Italy and Dalmatia. Pelias berus.
(Krenzotter). ('ommon Viper, distingrished by the black-brown rigrag band on the hack. Fonnd in the mountain forests of liurope.

Fimm. Crotalidæ. With a pit between the eyes and nose. Crotulus durissus L... liattlesnake of south-cast of North America; C. Inorvidus: L. Soutlı Amerieas Bothrops atrox Is, Bra\%il.

Fig. 640. $-\boldsymbol{H y}$ drophis bicolor (règne animal).

> Order 2.-Saurii * (Lacertilia)--Lizards.

Plagiotrema with pectoral girdle and sternum, usually with tympanic cavity and movable eyelids; with a non-extensible mouth and with urinary bladder.

The Lizards always have an elongated and sometimes a snake-like body. As a rule there are four extremities, which, howerer, scarcely

* Tiedemann, "Anatomie und Naturgeschichte der Drachen." Nürnberg, 1811.
J. E. Gray, "Catalogue of the specimens of Lizards in the Collection of the British Museum." London, 1845.

Fr. Leydig, "Die in Dentschland lehenden Arten der Saurier." Thibingen, 1872.
carry the body raised from the ground ; but in locomotion are used principally for pushing the body forward ; they may also be used for clinging (Chamelion), climbing (Geckos), and digging. They usually end with five clawed digits. They are sometimes so short and rudimentary, that they have the apparance of stumps applied to the serpent-like body, and are without scparated digits (Chamcesaura). In other cases rudiments of the posterior limbs alone exist (P 'seudopus) (fig. 6.41), or anterior limbs only are present (Chirotes); or finally external limbs may be entirely absent (Anyuis, Acontias, Ophisurerus). The pectoral and pelvic girdles are howerer present, and in all Lizards except Amphisbenco there is at least a rudiment of the sternum, which increases in size as the anterior limbs become more developed, and then serves for the attachment of a correspondingly greater number of ribs. The ribs are only wanting on the most anterior cervical vertebre, and sometimes on some of the lumbar as well as on the caudal vertebre. The anterior ribs present a peculiar molification in Draco, being extremely long and serving to support lateral expansions of the skin, which can be used as wings.

The cranial capsule (fig. 631) does not usually extend into the orbitai region, behind which it is imperfectly closed by membranous structures (membranous interorbital septrm). The squamosal is firmly attached to a strongly projecting process (parotic process) of the posterior temporal region. The hinder end of the maxilla is frequently comected with the postfrontral ($P f$) by a bony bridge, the jugal (fig. $631 J$), which encloses the orbit; while a bone (quadratojugal) passes from the jugal to the quadrate, bridging over the temporal region.

An important character of the Lizards as opposed to the Snakes consists in the fact that the bones of the jaws are not movable upon one another. Parts of the maxillo-palatine apparatus are indeed morably comected with the skull (Hatteria $=$ Sphenodon excepted), especially the pterygoids, which are applied to the articular processes of the basisphenoid, and usually articulate with the quadrate; but the individual bones of the maxillo-palatine apparatus are firmly connected with one another, and with the anterior part of the skull. The pterygoids are firmly attached to the maxillaries by a transverse bone, and serve to support the parietal bones by a rod-shaped columella [ir bone which extends from the parietal to the pterygoid on each side]. On the top of the skull the parietal bones and the ocripital segment are commected by fibrous tissue, and in consequence are slightly morable upon one another. The quadrate bone is
movably articulated with the parotic process of the temporal region and supports the lower jaw, the rami of which :ure firmly connecterl at the symphysis.

The dentition of the Lizinds in form, structure and mode of fixture of the teeth, presents firl greater diversity than does that of the Snakes; it is however not so complete since the palate has never an imere row of teeth, but only small lateral groups on the pterygoids. The teeth are almost always attacherl directly to the bone, either on the edge of the jaw (Acrodont), or on the inner side of the jaw (Plecrodont), This distinction corresponds to the geographical distribution of the Igruancus, those found in the eastern hemisphere being Acrodonts, and those in the western Pleurodonts. The shape of the tongue seems importinnt, and the principal groups are distinguished and named according to this characteristic.

Most Lizards have eyelids, an exposed tympanic membrane and a tympanic cilvity. Only the Amphisbcences and Geckos are without eyelids, and have the same arrangement for covering the eyes as have the Snakes. In the Scincoidece the lower eyelid can be raised like a transparent curtain without hindering the sight. In the Chamalionidce the single eyelid is a muscular cutaneous ring of skin with circular opening.

The integument of Lizards resembles in its general features that of Snakes, but presents much greater variety. Sometimes there are flat or keeled scales, sometimes scutes and larger plates, for the distribution of which on the head the terminology already described for Snakes is used. In addition, more irregular hardenings of the skin may occur-warty protuberances which give the skin an appearance similar to that of the Toads (Geckonidee). On the other hand there are often cutaneous lobes on the throat, crests on the back and on the top of the head, also folds of skin on the sides of the trunk, on the neck, etc. Although the skin of Lizards is in general poor in glands, yet in many forms cutaneous glands and corresponding rows of pores along the inner side of the thigh (fig. $634, S P$) and in front of the anus are constantly present.

As a rule, the females after copulation (which in temperate regions takes place in summer) lay a small number of eggs ; some genera are viviparous (Anguis, Seps). Most are harmless, and are useful by destroying Insects and Worms ; larger species, as the Iyuanc, are hunted for the sake of their flesh. By far the greater number, and all the larger and more beautifully coloured species inhabit the warme: and hot, combtries.

Fossil remains of Lizards have been found in great numbers, the oldest from the uppermost strata of the Jura. The Lizards of the chalk (Mosasururus, ete.), which are most mearly related to the Monitors, were of gigantic size.

Sub-order 1. Annulata. Body snake-like, with hard scaleless skin, which is divided into rings by transverse furrows (fig. 642). These rings are again crossed by longitudinal furrows in such a way that the surface has an elegantly plated, mosaic-like appearance. There are large scutes only on the head and throat. There is no sternum, and the pectoral girdle, except in Chirotes, remains very rudimentary.

Rudiments of a pelvis are in all cases present. As a rule extremities are wanting, but small front feet (Chiroies) may be present. Eye-lids and tympanic membrane are absent; the small eyes are covered by the integument. A columella is also absent. The tongue is short and thick, without sheath, and the dentition, as in the scaly Lizards, is either acrodont or pleurodont. They are harmless animals, and live for the most part in America, like the Ccecilicudce, beneath the ground, usually in ant-hills, and feed on Insects and Worms.

Fam. Amphisbænidæ. Amphisbocnu allu L., Brazil ; A. fuliginosa L., South America (fig. 6+2). Chirutes bumbricoides Flem. Mexico.

Sub-order 2. Vermilinguia. Lizards of the Old World, with vermiform tongue, which can be protruded with great rapidity to a great distance, and deep laterally compressed body, which is covered with a shagreen-like skin. The structure of the skull differs considerably from

Fig. 642.-Amphisbaena fuliginosce (règne animal). that of the other Lizards, in that the parietal bones are not movable on the occipital, but are firmly united to the latter and to the occipital crest, which is continued over the parietals.

Fain. Chamæleonidæ. The fcet are prehensile, and end with five digits, which are arranged in bundles of two and three. The digits of each bunde are conneeted together as far as the elaws, and the two bundles work on one another like the arms of a pair of pineers. The long and slender tail is prehensile,

L.ACERTILIA.

coiling romm t wigs and branches to attial the animal. They are all aroondout The tympanic membranc is hiddun, being eovered by the integuncont. The 'hamableons possess the remarkable power of changing the colour of their skin ; the ehange is dependent on the light-stimulns of surrounding objects, and is subordinated to the will of the animal. Hecemt researehes, especially those of Briicke," lave contributed to the explanation of this phenomenon. I'wo different layeris of pigment are pace l beneath the thin epidermis-a superficial layer of clear, yellow pigment, and a (leeper layer of diak-brown tw black, the mutual extension and position of which varies. dlenmelerm rulyaris Cuv., South spain and A frica.

Sub-order 3. Crassilinguia. With thick and short fleshy tongue, which is hardly indented at the point; as a rule it is rather rounded,

Ftg. 643.-Platydactylus mauritanicus. and cannot be protruded. Eyclids are usually present. The tympanic inembrane is usually exposed. In all cases there are four limbs, with digits directed forwards. They live exclusively in the hotter regions of the Old and New Worlds. The eastern and western hemispheres contain types surprisingly alike, which, howerer (with the exception of the Geckos) can he sharply distinguished by their dentition; all those found in America are pleurodont, those of the Old World are acrodont.

Fam. Ascalabotæ. Geckos. Lizards of elumsy Salamander-like form, and of small size ; with riseous lobes on the digits for attaehment, and with biconeave vertebre. They are all pleurodont, and without palatal teeth. Ther are shy, nocturnal animals, and their eyes are large and without lids. They climb and ruu rery skilfully on smooth and stecp walls, with the help of their retractile claws and the lobes on their digits. They live for the most part in hot countrics; only a few are found in south Europe. They are harmless, but are erroncously considered as poisonous on account of the aerid fluid of their clinging digits. At night they make a loud ery, sounding like the word "Gecko." Platydactylus mauritanicus. L. (fig. (6t3); Pl. muralis Dum. Bibr. Mediterranean coasts : Hemiductylus rerruculatus Cur. Mediterrancan coasts; Ptychozon homalocephatum Kuhl., Java.

Fam Iguanidæ. Lcguana. The body, which is somewhat laterally compressed, is supported by long slender legs, whieh are pre-eminently adapted for climbing. The head is more or less pyramidal, and often raised like a helmet, and of a peculiar shape, in eonsequence of the possession of a membranous jugular sae.

[^188]Tympanie membrane usually exposed. Many of them have a spiny dorsal erest. and change their colour like the Chamæleons.

The following Iguanas belong to the western hemisphere, and are pleurodont: Polyclious marmoratu: L'nv., Brazil ; I! Merr., West Indies: I. delicatissima Laur., tropical Ameriea; Cyclura carinata Gray. Cuba; Busiliscus mitrutu.s Daud., South America.

The following belong to the castern hemisphere, and are acrodont: Calotes ophimuchus Merr., East Iudies; Draer rolans. L., Java; Lophiura amboinensis richloss.

The New Zualand genus, Hatteria = Sphenorlom, which was formerly reckoned among the Ignanide, shows such considerable differences in its organization that (iünther established for it a third order of sealy Reptiles under the name of Rhynchocephalia,* which Huxley holis to be allied to the extinct Triassic Lacertilian gencra Hyperodapedon and Rhynchosanrus.

Fan. Humivagæ. Lizards with broad flat body, supported by shorter limbs ; of almost toad-like aspect. The skin is not unfrequently covered with spiny scales. They live on the ground in stony and sandy places, where they hide themselves in pits and holes.

To the Humivagce of America, which are all pleurodont, belong Phrynosoma mbiculare Wiegm., Tapayaxin, Mexico ; Tropidurus cyclurns. Wied., Brazil.

Fig. 641.-Scincus officiurtis (règne animal).
To the IHmivage of East India and Africa. which are acrodont, and possess canine tecth, belong Phrynocrphatus hrolinscopus Kp.. Siberia; Uromastix. spinipes Merr., Egypt; Agama colonnrum Daud., Egypt; Stellio rulgaries Latr., Hardun, Egypt.

Sub-order 4. Brevilinguia. Scally Lizards, with elongated, often snake-like body. The limbs are very diversely developed. The tongue is short and thick, without sheath, more or less indented at the thinner anterior end, and but slightly protrusible. Eyelids are, as a rule, present. The tympanic membrane is often concealed beneath the rkin.

Fam. Scincoideæ. Sand-Lizards. The more or less snake-like body is covered with smooth bony scales. The crown of the head is invested with larger scutes. Anguis fragilis L., Blindworm, Lurope ; Scincus afficinalis Laur. (fig. 644) Egypt; Seps chalcirlica Merr., Dalmatia: Acontias maleagris Cur., Cape.

[^189]lian. Ptychopleuro. The body is provided with two lateral fobls of skin, covered with small seates. These folds extend from the region of the car to near the ams, and form the boundary between the dorsal and ventral surfaces. Zonurius riorlylus Merr. = gristus Cuv., Sonth Africa; Psemplopus, Prallasie, Cuv., South-east Furope, nud in lower Austria; Py!nopus (Bipers) lepidopues
 erntrulis. Dand., North America.

Sub-order 5. Fissilinguia. Pervodoutce, with long and thin, protrusible bifid tongue, usually with complete eyelids, and always with exposed tympinnic membrane. The scales of the trink are small and imbricated, those of the long tail inostly lozenge-shaped.

E'am. Lacertidæ. Mostly brightly coloured, very agile Lizards, with long tail and head covered with sentes. The ventral surface is covered with usually rhomboidal seales, arranged in oblique rows. Larerta civipara L., Germany and south Europe, viviparous; L. werluta Daud. ; L. viridis, green with blaek spots in front, Dalmatia; L. agilis L. - stirpium Daud., eommon Lizard ; L. muralis Merr., South Europe ; Irloderma horridum Wiegm., Mexico.

Fam. Ameividæ. Lizards of the New World whose head is covered with seutes, as in the Lacertide, while the abdomen is covered with rhomboidal seutes. arranged in transverse rows. Tejus monitor Merr. = T. Tejuexin L.. Brazil, live in holes in the earth and in hollow trunks of trees. Feed on Mice, Inseets, and Worms, and arc, including the long tail, four or five fect long. They are hunted and eaten. Amriva vulyuris Licht., West Indies.

Fam. Monitoridæ. Elongated Lizards of large size, without femoral pores. The crown of the head, the back and the abdomen, are covered with small plate-like scales. The scparation of the ventricles of the heart is the most complete in the whole order. Psammosaurus seincus Merr. = Varamus arenarius Dum. Bibr., Egypt ; the Land Crocodile of Herodotus: Monitur nilotious Hassl., eats the eggs of the Crocudile.

The Proterosauria and Thecodontia are fossil groups of Saurians. The former represent the oldest Lizards, and are distinguished by the possession of biconcave vertebral bodies and bifid spinous processes. They are found in the Kupferschiefer'. The Thecodontic, also with biconcave vertebre, possessed compressed teeth wedged into alveoli, with their crowns covered with finely serrated strise ; they belonged to the Triassic period.

The fossil Dinosauria must be mentioned as a special order of Reptiles. These were the colossal terrestrial inhabitants of the Jura, Weald, and lower chalk; in several features of their structure they recall Mammals, especially the Pachydermata.

Other orders of fossil Saurians, as the Ornithoscelida, present modifications which point in various ways to the organisation of birds. Characterised by the preacetabular extension of the ilium and the downward direction of the elongated pubis and ischium, they possessed, at least in the group which includes the Jurassic genus

Compsoynuthus, very long cervical vertebree, an almost bird-like heid, a rery long neck, short anterior and very long posterior ribs. The astragalus is fused with the long tibia, as in birds.

The Pterosauria or Pterodactyls, which likewise lived principally in the Jurassic period, were flying Samians. The external finger of the hand was elongated in the form of a sabre, and of considerable strength (fig. 118); it probably supported an expansion of the integument, which enabled the animal to float along in the air, oreven to Hl :

Rhamphorlynchus Gemmingii H. r. M., lithographic slate. Pterodactylus lonyirostris Cuv., Jura.

Sub-class 2.-Hydrosauria.*

Aquatic Reptiles of considerrable size, with teeth wedlyed into the juws, and leathery or armoured skin, with swimming fins or powerful feet, the digits of which are connected by webs.

The Hydrosaurians, represented at the present time by the Crocodiles, are characterised by their usually gigantic size, by an organisation corresponding to their aquatic habits, and by their high derelopment.

The numerous fossil forms were exclusively inhabitants of the sea, and had swimming fins resembling those of Whales; the bones of the arm were short, the carpal bones and the phalanges were numerous, and the digits were connected. The vertebral column, which was movable in its individual regions, and still composed of broad amphicelous vertebre, was prolonged into a tail of considerable size, which was probably surrounded by a membranous fin. At a higher grade of derelopment the vertebral column consists of opisthocelous reptilian vertebre, and ends with a swimming-tail, surrounded by a cutaneous fold. The extremities become more and more like feet, and the distinctly separated digits are still webbed. Such forms no longer inhabit the high sea, but are found on the coast in lagoons, and near the mouths of rivers. They go up on to the land, and more quickly upon it, but they are unable to turn quickly and easily.

The dentition shows that the Hydroscuricus are powerful preda-

[^190]
tory animals. The flat heat is prolonged ints a long siont; the long jaws atre armen with shamp conical prehensile teeth, which ite werged intorleep alverli; the crownof the teeth are sometimes swooth, sometines striaterl or superficially folded, and are gradually replaced by succeeding supplementary teeth. Rils are present in great numbers, E not only in the very long thomacic regiom, but aleo in the cerrical and abdominal regions.

In the Crocodiles there is, in the abdominal region, a narrow stermum abclominate, which is prolongel to the pelvic girdle, and bear's on its. sides, a number of abdominal ribs. the upper ends of which do not reach the vertebral column (fig. fi45). The internal organisation prolably presented different grades of perfection in the various groups, of which only the highest-viz., that found in living Crocorliles-cinn be known to us.

Order 1.-Exaliosatria.

IHydroscuria with naked leather!y skin, biconcave vertelnce and sucimming fins (confined to the secordary period).

The remains: of these gigantic inhabitants of the sea, which livel through the secondary period from its begimning to its end, show that they were the most powerful marine animals of that time. They were of extreme length, and possessed : usuatly elongated, Hat snout with
numerons conical prehensile teeth, it very long mobile trunk, and fin-like extremities as in the Whales.

Fam. Nothosaurii (Sauropteryyii Owen). With elongated bones of the upper jaw which reach to the point of the long snout; without superior temporal bones ; with simple conical tecth. Belong to the Trias. Nothusaurus mirubilis Miinst. ; Simoseurus H. v. M., and others.

Fam. Plesiosaurii (Suuropteryyii Owen). With long snake-like neck, short head and tail, and clongated swimming fins. They lived in the Jura and the chalk. Plesiosaurus Conyb.

Fam. Ichthyosaurii (Ichthyopterygii Owen). With very short neek, thick elongated body, short swimming fins, and long tail probably surrounded by a fin. The snout, pointed and elongated like a beak, is prinelpally formed by the premaxillary bones. The teeth present a striated and folded surface, and are elosely erowded together. They are found prineipally in the Jura, rarely in the chalk. Ichthyøsпurus. communis De la Beehe, etc.

Order 2.-Crgcodilia (Loricata).

Hydrosauriu, with bony dermal plates and teeth wedlyed into the bones of the jaws, to which they are confinedl; with four partly clawed feet and lony, keeled swimminy tail.

The extremities no longer have the form of swimming fins, but of freely articulated legs and feet with separated digits. The integument is granular and leathery, and contains, especially on the dorsal surface, large and in part keeled, osseous plates. On the tail these plates form a dentated crest, paired in front, but in its hinder part simple.
The broad flat skull is distinguished by the corroded appearance of the surface of the bones, and possesses separated alisphenoids, and above the maxillo-jugal arcade a supra-temporal arcaule, which is separated from the orbit by a bony bridge (process of the postfrontal and jugal). The roof of the skull is formed by an mpaired parietal and frontal, to which are joined the paired nasal bones. The upper jaws are firmly united with the skull and are elongated so as to form a long snout, at the end of which the paired premaxillary bones are wedged in. The sides of the snout are formed by the maxillary bones which wre very large. The premaxillaries, which bound the nasal apertures, and the maxillaries develop horizontal palatal plates, which meet in the middle line and form the anterior part of the hard palate. The lacrymal is always of considerable size. Behind, the palatine and pterygoid levelop palatal plates which unite suturally in the modian line, and constitute a completely closed
roof for the buccal catvity. 'The posterior nares whichare surrounded by the paired vomers open at the posterior margin of the buceal cavity. 'I'he conical teeth, which are completely confined to the bones of the jaws [promaxille, maxille, and mandible], are deeply wedged into alveoli, and they present slightly compressed striaterl crowns. The fourth tootlo of the mandible is usually distinguished by itn great size as a prelensile tooth, and, when the jaws are shat, fits into a gal or an excavation in the upper jaw. In the I'elensumpia the vertebrat are amphicnlous; in the steneosauria, which are also extinct, they are opisthocolous, and in the Crocodiles of the present day procolous.

The internal organisation of the living Crocodiles is the highest amongst all Reptiles. The cyes have vertical pupils and two lids as well as a nictitating mombrane. The nasal openings lie far forward on the point of the snout, and, as well as the ears whicl are placed far back, can be closed by cutaneous valves. The buccal carity, to the floor of which is attached a flat non-protractile tongue, is without salivary glands, and leads by a wide œesophagus into the rounded muscular stomach, which resembles that of Birds in form and structure, and specially in the aponcurotic discs of its internal lining. The stomach is followed by a thin-walled duodenum, which is beset with papillæ, and passes into the small intestine, which is folded in a zigzag fashion. There is no crecal appendage to the short wide large intestine. The latter becomes narrow and almost fummelshaped, before it opens into the cloaca, from the anterior wall of which arises the erectile copulatory organ. The structure of the heart is the most perfect found in all Reptiles, and, in the complete separation of a right venous and a left arterial portion, affords a direct transition to that of the warm-blooded animals. Finally, the free communication of the body cavity by openings of the so-called peritoneal canals, which recall the abdominal pores of the Ganoids and Selachians, deserves to be mentioned as peculiarities of the Crocodilia.

Three groups of Crocodiles are to be distinguished: two of these the Teleosauria (Amphicolia) and Steneosauria (Opisthoccelia) are extinct. The former with the genera Mystriosarmus Kp. and Teleosaurus Geoffi. are confined to the Jnrassic formation, the latter with Steneoscurrus Geoffi. Cetiosaurus Owen, etc., occur in the Jura and in the chalk. Only the third group of the Crocodiles or Proccelica has persisted from the chalk onwards through the tertiary period to our own time.

Sub-order Procœlia = Crocodilia, s.str:

With procelons vertebree and long compressed swimming tail, the dorsal side of which bears a double cutaneous crest, which becomes single at the posterior end. The anterior feet with five free digits; the posterior with four digits, which are more or less united by webs. Lire in the mouths and lagoons of great rivers in the warmer climates of the Old and New Worlds, and seek their prey by night. The hard-shelled eggs are laid in the sand and in holes on the banks.

Fam. Crocodilidæ. The so-called caninc teeth (fourth tooth of the lower jaiw) fit into a notch of the margin of the upper jaw. Hind feet with complete swimming mombrane. Crocorlitus ruigaris Cuv., Nile. (?. rhombifer Cur., Cuba.
Fam. Alligatoridæ. The snout is broald and without notch for the so-called canines of the mandible. Swimming membranes only partially developed or rudimentary. [Found only in Amcriea.] Alligutor lucius Cuv.; Caiman. (Jucare) solcrop.s Schn.

Fam. Gavialidæ. Rhamphostoma ganyeticum Geoffi.. East Indies ; Rhynchosimehus: Schlergelii Gray, Australia.

Sub-class 3.-Chelonia.*

Reptilia of short, stout form of body, with an upper and lower osseous shield which covers the dorsal and ventral surfaces. There are four feet, and the jaws are without teeth.

No other group of Reptiles is so clearly defined and characterised to the same extent by peculiarities of form and organisation as is that of the Chelonia. The investment of the body by an upper, more or less arched and ustally osseons dorsal shield (carapace), and by a lower ventral shield (plastron), joined to the former by lateral arches, forms a character as distinctive of the Chelonia as is the possession of wings and feathers of the class Aves.

The shield-like, dermal armour (fig. 646) beneath which the head extremities and tail can often be retracted, owes its origin partly to osseous parts of the vertebral column and partly to the accessory dermal bones, which are intimately comnected with the former. The flat plastron contains nine more or less developed osseous pieces, an anterior unpaired interclaviculdur, and four pairs of lateral pieces (the anterior being distinguished as claviculdaria) between which there

[^191]may be left a median space, closed by skin or cartilage (Trionym, Chelonia, ete.). The spinons processes and ribs of the thoracic rertelne take part in the formation of the large canapace, as well ats a number of paired and umpaired osseons dermal plates, which are phaced partly

Fig. 646. - Skeleton of Cistudo (Enys) suropaca. V, vertebral (neural) plates; C, costa plates; M, marginal plates; Nu, nuchal plate; Py, pygal plate; B, plastron (ventral shield) ; Cl, clavicle; Jel, intcr-clavicle ; Sc, scapula; Co, coracoid; Pco, acromial process (pro-corncoid); $P l$, pubis; J_{s}, ischium; $J l$, ilium; ΠI, humcrus; R, radins: U, ulna; $F e$, femur ; T, tibin ; F, fibula.
in the median line in the neck (nuchalplate), and in the sacral region (pygal plate), and partly laterally at the edge of the shield ($\because 2$ marginal plates).

While the spinous processes of eight of the thoracic vertebre (2nd
to 9 th) apperr in the median line as horizontal plates [neural plates], the ribs of the sume vertebree (2 nd to 9 th, these ribs are distinguished from the first and last ribs by their greater length) are transformed into broad transverse plátes [costal plates], which are joined with one another by indented sutures, and present the special peculiarity of giving off broad processes, which arch over the muscles of the back, and are connected with the neural plates (expanded spinous processes). In addition, larger plates, which owe their origin to cornifications of the epidermis, are usually present. They are applied to the outer surface of both the dorsal and ventral shields and are used, in the case of some of the larger species, as tortoiseshell. They by no means correspond with the subjacent bony pieces, but are very regularly arranged in such a manner, that in the dorsal shield a median and two lateral rows of plates can be distinguished, and round the periphery a circle of marginal plates. On the ventral surface, on the other hand, there is a double row of such plates.

Unlike the middle (thoracic) region of the vertebral column, the vertebree of which are firmly connected with the dorsal shield, the cervical and caudal vertebre are always movable upon one another. The cervical region is exceedingly flexible, and can be more or less completely retracted within the shell ; it consists of eight long vertebree, which are without ribs. The ten rib-bearing vertebree are followed by two or three sacral vertebre, which project beneath the carapace, and by a considerable number of very movable caudal vertebre.
The head is tolerably arched: the bones of the skull are firmly united to one another by sutures, and form a broad roof, which is prolonged into a strongly developed occipital crest. The skull is characterised by the possession of a pair of parietal bones and of large anterior frontals. Descending lamellar processes of the parietal bones extend along the sides of the cartilaginous cranial capsule as far as the short basisphenoid. The temporal fossa is most completely roofed in in the marine Chelonia by broad osseous plates which are formed hy the postfrontal, jugal, quadrato-jugal, and the squamosal. The opisthotic remains as an independent bone behind the prootic, which forms the lateral walls of the cranial cavity. All the parts of the maxillo-palatine apparatus as well as the quadrate are firmly connected with the hones of the skull, and are marked off from one another by serrated sutures. The facial parts of the skull are strikingly short, and the nasal bones are absent. The bony palate is formerl by the broad palatine and the unpaired vomer, behind the
palatine plates of which the posterion nares open. The pterygoids are very broad and lamellar. Teeth are completely absent, both on the patatal bones and on the high, relatively shorl bones of the jaws, but the edges of the latter are covered, like the beak of a bird, by sharp cutting, sermated horny plates, which enable certain species to bite with great vigour and to inflict sensible wounds.
'The fom limbs enable the Chelonia to creep and run on land: in the aquatic forms, however, they are swimming feet or fins. The position of the pectoral and pelvic girdles, and of the corresponding muscles, between the dorsal and ventral shiclds, is remarkable; but is fully explained developmentally by the growth of the anterior and posterior ribs. The scapula is formed of an ascending rod-like bone, the upper end of which is attached to the transverse process of the anterior thoracic vertebra by a ligamentous or cartilaginous comeetion. A strong aeromial process (procoracoid) reaches from the scapula to the unpaired portion of the ventral shield, to which it is likewise attached by a ligamentous or cartilaginous connection. The pelvis closely resembles that of the Saurians, and except in the Land Tortoises is not firmly connected with the carapace.

In the organs of digestion and reproduction Chelonians partly resemble Crocodiles and partly Birds. They especially resemble the former in the structure of the male generative organs, and in the possession of peritoneal canals, which are, however, closed. The opening of the genital ducts and the ureter's into the neck of the urinary bladder, which accordingly functions as a urogenital sinus, is worthy of remark. The eyes are placed in closed orbits, and have lids and a nicticatiug membrane. There is always a tympanic cavity with a wide Eustachian tube, a long columella and a tympanic membrane, which is risible extermally. The tongue is attached to the floor of the buccal cavity, and is not protrusible ; in the Land Tortoises it is beset with long papillæ.

The copulation lasts a day, and during that time the male is carried on the back of the female. The eggs are laid in small number, except in the marine Chelonia, in which they are more numerous. They contain within the shell a layer of albumen, surrounding the yolk, and are buried in the earth, in the aquatic Chelonians near the shore. According to Agassiz the North American Marsh Tortoises lay eggs only once in the year, while they copulate twice (in the spring and autumn). The first copulation, according to this investigator, takes place in Emys picte in the serenth year, the first deposition of egg's in the eleventh year of the amimal's life.

These facts agree with the slow growth of the body of the Tortoises, and the great age which they attain.

The Chelonians belong mainly to warmer climates, and live principally on vegetables; many of them, however, also live on Mollusca, Crustacea, and Fishes.

Fossil remains are first found, but rarely, in the upper white Jura. More numerous remains are found in the Tertiary period.

Fan. Cheloniadæ. Turtles. With flat dorsal and often cartilaginous ventral shicld, between which the head and extromities cannot be retracted. The latter are fin-like fcet, with immovably connected digits, which are usually without nails, and are covcred by a common skin. The anterior limbs are much longer than the posterior. Chelonia esculenta Merr.; Ch. (Caretta) imbricata

FIG. 647.-Thalassochelys caretta (règne animal).
L., Atlantic and Indian Ocean; Thalassuchelys saretta L. = corticata Rond. (fig. 647), Atlantic Ocean and Mcditerranean ; Splutrgis coriacea Gray. Rarc in the Mediterranean, more common in the Atlantic Ocean and South Sea.

Fam. Trionycidæ. Soft or Mud Tortoises. With flat, oval, incompletcly nssified dorsal shield, and long retractile neck. Jaws with cutting edges, surrounded by fleshy lips. The head and feet arc not retractile. The nasal openings are on the long snout. Triony, ferone Merr. A fierce animal. Found. in the rivers of Georgia and Carolina. Good to eat.

Fam. Chelydæ. Head and feet not retractile. Latter end with free digits, which are webbed and furnished with claws. Chely.s fimbriata Schweig., Matamata. South Ameriea.

Fam. Emydæ. Freshwater Tortoises. Dorsal shield flat, plastron usually small. Fect thick, with freely movable digits, which are connected by a wer. They swim cxcellently, and move also with great facility on land. They prin-
cibally inhabit sluggish rivers and ponds. Cietudn curopera Schncid. = lutaria
 on the Caspian Sea, in Dabmatia and Greece; Clurlydre serpernt ine d., with very sharp jaws, in Nurth America.

F'inn. Chersidæ. Land Tortoiser. With high, arched, ussified carapace; head and feet retractile. 'The digits are immovably conmected as far as the mails to thick club-leet, with indurated soles. They live in damp and shady localities in wam and hot climates, and feed on plants. Trastudn growa L.., ne'momulis. Allli., = mur!!inata, South Italy ; 'I', tubulatre Daud., in Ancrica.

CHAPTER VIII.

Class IV.-AVES,* BIRDS.

IVarm-blooded oviparous animals, covered with feathers. The chambers of the heart are completely separated. The right aortic arch persists. There is a single occipital condyle, and the anterior limbs are transformed into wings.

As opposed to the poikilothermic Vertebrates (i.e., Vertebrate. whose temperature varies with that of the external medium) the blood of Aves and Mammalia possesses a high temperature, which remains tolerably constant in spite of the changing temperature of the external medium. This maintenance of a constant temperature demands above everything a great energy of metabolism. The surface of all the vegetative organs, especially of the lungs, kidneys, and alimentary canal, has a relatively greater extension in the warmblooded than in the cold-blooded animals. The operations of digestion, preparation of blood, circulation and respiration are carried on with much greater energy. With the need of a richer nourishment, the processes of vegetative life take a disproportionately more rapid course, and as the high and uniform temperature of the blood is a

[^192]condition necessary to their very maintenance, they seem to be the principal source of warmth produced. Since the loss of heat is greater when the temperature of the external medium is lowered, the activity of the vegetative organs must considerably increasc in the colder season of the year, and in the northern climates.

In addition to the continual addition of new quantities of heat, a second canse contributes to the maintenance of the constant temperature of the warm-blooded animals. This is the protection afforded br the special nature of the covering of the body. While the Vertebrates with a variable temperature have a naked or armoured skin, Birds and Mammals have a more or less close covering of hairs or feathers, which limits to a great extent the loss of heat by radiation. The large aquatic animals, on the other hand, have a scanty covering of hair, but they develop thick layers of fat beneath the cutis, which serve for the retention of heat, and at the same time for hydrostatic purposes.

There is in all cases a mutual relation of a complicated kind between the factors which favour the withdrawal of heat and the conditions of the retention and the formation of heat, a relation which in spite of many variations in its individual factors results in the equalization of the heat generated and the heat lost. Some Mammals are able to maintain their proper temperature only within certain limits of the external temperature ; these animals are to a certain extent incompletely homothermic, and when the temperature sinks below a certain point they fall into the so-called winter-sleep (hibernation), i.c., a state of rest characterised by an almost complete absence of movement, and by a diminution in the energy of all the rital processes. In the class of Birds, whose higher temperature permits of no interruption or limitation of the vital functions, there is no example of hibernation. But these animals have numerous means of heat adjustment at their disposal ; in particular, the swiftness of their flight enables them to leave their homes at the approach of the cold season, and to betake themselves to warmer climates, where food is abundant. The common migrations of the migratory birds, migrations which sometimes extend over great distances, to a certain extent take the place of the winter-sleep of the hibernating animals; in the Mammalia whose organisation permits of hibernation migrations like those of Birds are very rave.

The most essential peculiarity of Birds, and one with which many characteristics both of external appearance and of internal organisation are correlated, is their power of flight. This peculiarity in
connection with these chanacters determines the shap definition as well as the relatively freat miformity of the class, which, indeerl, is descemded from the Sianiams, hut exists at the present day without any forms transitional to other grouls. On the other hamd, the remains of a group of Satriatus (Apcharopterys. lithogrephice have been diseovered in the Sohtenlofen lithographic slate which combine chamacters of the Pterodactyls with those of the Birds.
'The entire structure of the body of Birds corresponds with the two principal modes of locomotion-on the one hand flight, and on the other walking and hopping on the earth. The tronk, which is oval, is supported in an obliquely horizontal position on the two hind legri, the pedal surfiace of which stretehes over a relatively large area. Posteriorly the body is prolonged into a short rudinentary tail, the last vertebra of which serves for the support of a gronp of stift steering, or tail feathers (rectrices). In front it is prolonged into it movable neck, on which is balanced a light, rounded head, with it projecting, horny beak. The anterior extremities, which are transformed in to wings, lie folded together at the sides of the body.

Arrangements for lessening the weight of the body are discernible in the special structure of all the systems of organs; these are especially noticeable in the structure of the osseous skeleton. The bones contain air-spaces (pnermuticity), which communicate with the air-sacs of the body through openings in the dense and firm osseous substance, which is however confined to a relatively thin layer. This pnemmaticity is most highly developed in those birds which combine a quick and enduring power of flight, with a considerable size of body (Albatross, Hombill, Pelican). In these cases all the bones except the quadrato-jugal and the scapula appear to be pneumatic, while on the other hand in the Ratitce (Ostrich), which have lost the power of flight, all the bones except some of the cranial bones are filled with marrow.

The Skeleton.--Except in the Ostrich-like birds, the cranial bones very early fuse together to form a light and firm skull, which articulates with the atlas by means of a single condyle. The squamosal and periotic bones (prootic, epiotic and opisthotic) fuse to form a single bone which is united with the occipital and with which the quadrate articulates. The large frontal bones take the principal part in the formation of the cranial roof. Almost the whole of the upper edge of the large orbit, which in the Parrots is closed by i lower ring, is formed by the frontal bones. An independent lachry-
mal is present at the anterior margin of the orlint. The ethmoid region and the cramial
 capsule are widely separated by an interobital septum of considerable size. The latter, sometimes together with the remains of the fused orbitosphenoids, frequently remains membranous and unossified in its median part, and rests on an elongated bony rod corresponding to the basisphenoid. At the base of the temporal region there are two bonesthe basitemporals (Parker)-which are ankylosed with one another, and are probably to be referred to a parasphenoid. In all cases independent ahisphenoids are present. The ethmoid region is composed of a vertically placed, unpairel ethmoid, situated in the anterior. prolongation of the interorbital septum, and of lateral ethnoids which separate the eyes and nasal cavities, and through which the olfactory nerves pass into the nasal cavities. The lateral ethmoids may be swollen and contain ethnoidal cells. In front of them are developed the two nasal cavities with their bony or cartilaginous septum, which is the prolongaltion of the umpared ethmoid, and aftords a support to the rollerl-up turbinal bones, which are sometimes also attached to the vomer. The facial bones unite to form a projecting loeak, the margins of which are covered with homy sulistance, and

Fig. 618.-Skull of Oifs tarle (bustartl). a, From the side; b, from beneath. $O b$, basi-occipital; C, conclyle; $O l$, ex-occipital ; $O s$, supra-occipital; Sy, squamosal; BI, basi-temporal(parasphenoid); Spu, basi-sphenoid; Alx, alispheroid; Sm, inter-orbital septum; Et, mediun ethmoid; $P a$, parietal ; $F r$, frontal ; M_{n}, maxillary; Jmx, premaxillary ; N, nasul ; L, lachrymal ; J, jugal; Q.j, quallato-jngal ; Q, quarlrate; $P t$, pterxgoid ; l^{2} ul, palatinc ; Vo, voiner ; D, dentarer : Art, articulare; Any, augulare. which is often movally comecterl with the skull. The suspensorium
of the lower jaw and the maxillo-palatine apparatus are enabled by special articular arrangements to move on the temporal bone and on corresponding processes of the basisphenoid. The quadrate, which is articulated to the temporal bone, has, besides the articular surface of the lower jaw, movable comections with the long rod-like quadrato-jugal, and with the usually styliform pterygoid which runs, obliquely inwards, while the base of the upper beak presents a thin elistic place helow the frontal bone, or is separated from the frontal bone by a transverse movable suture. When the beak is opened, and the lower jaw is moved downwards, the pressure on the quadrate bone is transferred to the rod-like quadrato-jugal and the pterygoid bones; and from these is transmitted

Fig. 619.-Hyoid apparatus of Corvus cornix. Co, body of hyoid ; Zh, cornua: Ent, entoglossal bone. partly directly and partly by means of the palatine bones to the upper beak, so that the latter must be more or less raised at that point. Therefore, when the mouth is opened, the end of the beak is raised. The greater part of the upper beak is formed by the unpaired premaxilla, with the sides of which the maxille are fused, while an upper median process ascends between the nares and unites with the frontal on the inside of the nasal bones.

The hyoid bone (fig. 649) is prolonged into a posterior rod ; its anterior * cornua are usually two-jointed and are not connected with the skull, but in some cases they are much elongated and arch over the skull as far as the forehead (Woodpecker). They then constitute in comnection with the muscles of their sheath a mechanism for the protrusion of the tongue.

In the vertebral column (fig. 650), a very long movable cervical region, a rigid dorsal and pelvic region and a rudimentary, only slightly movable caudal region can be distinguished. In Birds there is no separation of thoracic and lumbar regions as in Mammals, since all the dorsal vertebre bear ribs and the region corresponding with the lumbar region takes a share in the formation of the sacrum. The cervical and dorsal regions also are not sharply distinct from

[^193]one another, since the cerrical vertebre, as in the Crocodiles, bear riks, which unite with the transverse processes to form a foramen thansersinitim. The neek is long and always freely movable, and contains 9 to 23 vertelree (Swan). The shorter dorsal vertebree are always less numerons; they have superior and inferior spinous processes and all bear ribs, to the rentral ends of which sterno-costal bones ine articulated at an angle which projects backwards (fig. 650, Stc). The sternocostals also articulate with the margin of the sternum, and serve when they are extended to increase the distance between the latter and the vertebral column. But, since the ribs are firmly applied to one another by means of posterior processes (processus uncinati), the movement of the sternocostal ribs must necessarily affect the thorax as a whole, and dilate it (inspiration). The sternum is a broad flat bone which covers not only the thorax but a great part of the abdomen, and bears a projecting keel-like crest which serves for the attachment of the muscles of flight (Carinatce). The sternal crest is reduced or obsolete only when the power of flight is feeble or entirely absent (Ratitce).

The rib-bearing dorsal vertebree are followed by a tolerably extensive division of the vertebral column, which corresponds to the lumbar and sacral regions, and which, by the fusion of a number of rertebree with each other, and with the long iliac bones of the pelvic girdle, presents the characters of the sacrum. The sacrum is much elongated, and includes sixteen to twenty and more vertebre ; of these a certain number can be shown to be lumbar (presacral), and are almost always preceded by two to tluree rib-bearing dorsal vertebre. Then follows the true sacrum ; it consists of two vertebre, which are equivalent to the sactal vertebre of Lizards and Crocodiles, and constitute by means of their transverse processes (with fused ribs) the main support of the pelvis near the cup of the hip-joint (acetabular vertebrec). Finally the true sacrum is followed by a postsacral region, which is composed of from three to seven of the anterior caudal vertebr"e. The short caudal region, which succeeds the postracral, consists, as a rule, of from seven to eight movable vertebree, of which the last is represented by a vertical, laterally compressed plate-the pyyyostyle - to which the muscles for the movement of the steering feathers (rectrices) of the tail are attached. This deep ploughshare-shaped terminal body is composed of from fourto six vertebre, so that the reduction of the number of the caudal vertebree, as compared with that of the Sururure (Archceopterym), is by no means so considerahle.

Shoulder girdle and wings.-The peculiarities of the anterior extremities arc connected with their transformation into wings. Their connection with the thorax is always a firm one, since flying organs, whose movement pre-supposes a great expenditure of muscular power, require the necessary support on the tronk. While the scapula, which is a long, sabre-shaped bone, lies along the dorsal side of the thoracic framework, the clavicle and coracoid, as pillar-like supports for the shoulder-joint, are attached to the sternum. The two clavicles are fused so as to form a fork (furcula). The anterior extremity consists of a humerus, a longer forearm composed of radius and ulna, and the reduced hand. The latter contains only two carpal bones, an elongated metacarpus and three fingers--viz, the pollex or thumb, bearing the socalled bastard wing (alula), a middle finger', and a little finger'. The humerus, the forearm, and the hand are so placed when at rest, that the humerus is directed backwards, the long forearm lies tolerably parallel to it and is directed forrvards, while the hand is again bent backwards.

Pelvic girdle and legs.-The girdle of the hind limbs has the form of an elongated pelris connected with a great number of lumbar and sacral vertebre, and except in the ostrich (Struthio camelus) is without a symphysis pubis. The short and powerful femur is directed obliquely horizontally forwards, and concealed beneath the flesh and feather's of the abdomen, in such a manner that the knee-joint is not visible externally. The crus, which is much longer and more extensive, is chiefly composed of the tibia, the fibula being quite rudimentary and represented by a styliform bone on the outer side of the tibia. The crus is always followed by a long forwardly directed bone-the tarso-metutarsus-which is composed of the fused tarsal bones of the distal row (intertarsal joint), and of the metatarsal bones. The tarso-metatarsus varies much in length, and is the cause of the differences in the length of leg. At its lower end it divides into three processes, which are provided with articulating heads, for the attachment of the same number of toes. When a fourth toe is present, there is always a small bone on the inner side of the metatarsus, and to this bone the fourth inner toe is attached. The three or four toes (only in one case is the number reduced to two) are composed of several phalinges, the number of which increases from within outwards in such a manner that the first toe has two, the fourth (cxternal) five joints.
[The digits present in the Avian pes are Nos. 1, 2, 3, 4, or $2,3,4$, or in the Ostrich 3, 4. Digit No. 5 is never present.]

Themnseles of the thomx are powerfully developed in comection with the power of flight, and a peculiar muscular arrangement, in consequence of which the toes are mechamically bent when the :minal sits, deserves mention.

Exoskeleton.-The most important character in the external appearance of Birds is their covering of feathers. The skin is only naked in a few phaces-as on the beak, the toes, usually on the tar:ometatarsus, and sometimes on the neek (Vulture), or even on the abdomen (Ostrich) ; and also on the cutaneous outgrowths of the heid and neck (Gallinaceous birds and Vulture). While the naked skin at the base of the beak is soft (so-called cere), the edges of the beak are usually cornified, and are only exceptionally soft (Ducks, Snipe), and then are richly innervated and serve as a fine tactile organ. The skin on the toes and tarso-metatarsus is also cormified, so as to form it firm horny covering, which is sometimes gramular, more often divided into scales, and which may afford important systematic characters. When this integument forms a long continuous horny sheath on the anterior and lateral surfaces of the metatarsus, the latter is termed laminiplantar (Thrushes and singingbirds). The following special horny structures may be mentionedthe claws on the toes, the so-called spurs on the posterior and internal edge of the metatarsus in the male Gallinacere, and sometimes on the thumb-joint of the wing (Parra).

The feathers of Birds correspond to the hairs of Mammalia, and like them arise in pits of the dermis lined by the epidermis. At the bottom of the pit there is a vascular papilla, the epidermal investment of which gives rise by its rapid growth to the first rudiment of the hair or feather, around which the epidermal lining of the pit lies like a sheath. In the feather the axial part or stem with the calamus and shaft ($\%$ hachis) is to be distinguished fiom the vane (vexillum). The cylindrical hollow calamus is partly embedded in the skin, and encloses the dried-up papilla (pith) ; the rhachis is the projecting part of the stem, and bears a number of lateral processesthe barbs-which with their attached parts (barbules) constitute the vane (vexillum). The lower slightly concave side of the rhachis presents along its whole length, from the end of the calamus to the point of the feathers, a deep longitudinal groove, at the base of which a second feather-the aftershaft (hyporhachis)-arises, which, as well as the main-shaft, gives off two rows of barbs, but only in rare cases (Cassowary) reaches the lengtl of the main shaft. and is sometimes (wing and tail quills) completely absent. The barbs:
(rami) send of' barbules (radii) arranged in two rows, and the barbules (at any rate of the front row) bear barbicels and hooklets, which by their mutual interlocking effect the firm conmection of the whole vexillam.

According to the nature of the stem and barbs, the following kinds of feather can be distinguished-contour fecthers (pennce), with stiff shaft and firm vexillum; down feathers (plumce), with soft shaft and vane, the barbs of which bear round, or knotty barbules without hooklets; and finally filoplumes (filoplumce), with slender bristle-like shaft, the vane of which is reduced or absent. The pennce determine the external outline of the plumage, and attain their greatest size as remiges in the wings and as rectrices in the tail. The plumce form the deep layer of the plumage, and are covered by the contour feathers; they serve for the retention of warmth. The filoplumes, on the other hand, are distributed more among the pennce, and at the angle of the mouth have the appearance of stiff bristles (vibrissct). There are, moreover, many forms of feathers intermediate between these principal forms. In the autumn there is a complete change of feathers (autumnal moult), whereas the spring moult by which the bird acquires its breeding plumage is only rarely connected with a complete new formation of the plumage. As a rule, the spring moult consists in a colouring of the feathers (probably by chemical change in the pigments already present), and sometimes in a mechanical breaking off of certain parts of the feathers.

Birds have no sebaceous or sweat-glands, but there is often a bilobed gland above the last caudal vertebra. This gland (the uropygial gland, or oil-gland) has a simple duct, and its oily secretion serves to anoint the feathers.

The plumage is only rarely distributed evenly over the whole of the body (Aptenodytes). Usually the contour feathers are arranged in rows-the so-called pterylce-between which there are spaces-the apteria-which are naked or only covered with down (fig. 651). The form and distribution of these spaces present modifications which can be used in classification.

The grouping of the feathers on the anterior limbs and on the tail determines the utility of these organs as wings and steering apparatus respectively. The wing has to a certain extent the form of a fan, which can be folded at two points-viz., the elbow joint and the carpal joint; its surface is formed by the large remiges on the under surface of the hand and forear'm, but partly also by special folds of the skin, which stretch between the body
and humerrs, and between the humerus and forentm. The posterion of these folds is of importance in connecting the wing with the body; the anterior has a relation to the mechanism by which the wing is unfolded, inasmuch as it contains in elastic band which oxtends along its onter edge from the humerns to the articulation of the hand, and which, when the forearm is extended, exercises a traction on the thumb side of the carpal joint, and so canses the simultaneous extension of the hand.

Fig. 651.-Pteryle and apteria of Gallus Bankiva (after Nitzsch), a, ventral side; b, dorsal side.

The large wing-feathers (remiges) are attached along the lower edge of the hand and forearm. Those which are attached to the hand, from the extremity of the wing to the carpal joint, are known as primary remiges (fig. $652, H S$), while those attached to the forearm as far as the elbow joint are called secondary remiges ($A S^{\prime}$). There are usually ten primaries, and a greater but rariable numberof smaller secondaries.

A number of feathers (coverts) attached to the upper end of the humerus are called scapulars (parapterum), and some feathers fas-
tened to the thumb-joint (sometimes replaced by a spur) are called the bastard-wing (cululct). All the remiges are covered at their basc by shorter feathers, which are arranged in overlapping rows, and are known as corerts (tectrices, tig. 652, T). In certain cases the wings may become so much reduced that the power of flight is almost or quite lost, a condition which is met with in some running and land birds (Dinormithide, Kiwi and Ostrich), and also in certain water (Penguin).

The great contour-feathers of the tail are called rectrices (RT), hecause during flight they are used for altering the direction and for steering. There are, as al rule, twelve (sometimes ten or twenty and more) rectrices attached to the last caudal vertebra in such a way that they can be moved singly, and unfolded laterally like a fan, as well as be all raised or depressed together. The roots of the tail quills are covered by a number of coverts, which in some cases attain an extriaordinary size and shape, and constitute an ornament to the Bird (Peacock). When the power of flight is absent the tail loses its significance as a steering apparatus, and the tail quills are reduced or completely absent. In such cases, howerer, some of the coverts

Fig. 652.-Nomenclature of the plumage and regious of Bombycilla garmu (wax-wing) (slightly modified after Reichenbach). S, forehead ; $S c$, occiput; H, hind-head; Z, lore; W, cheek; N, nape ; R, back ; π, throat; $B r$; breast; $B a$, luclly; St, rent: B, tall coverts; $R t$, tail, with tail quills (rectrices); $I I_{s}$, primarics; $A s$, secondaries ; T, coverts (tectrices) ; P, scapmlars (parapterum) ; $A l$, bastard wing (alula). may uttain a considerable size as ornameutal feathers.

The hind limbs, which are principally used in the locomotion of the animal on firm ground present numerous varieties, according to the mode of locomotion of the Bird. In the first place, walking legs, or pedes grodurii, and wading legs, or pedes vadantes, are to be distinguished (fig. 653). The former are much more completely feathered, being covered at least as far as the articulation of the heel; but they vary considerably, The following varieties may be listinguished (fig. 653) :-pedes culhamantes, with four toes directed rof. II.
forwards, C'ypselus (1) ; pedes scansorii, with two toes directerl forwards and two backwards, Picias (b); pecdes fissi, with three toes directed forwards and one bick, the anterior toes being free to their

Fig. 653.-The most important forms of Birds' feet (b, r, d, f, n, from the règne animal). a, pes adhamans of Cypselus apus; ℓ, P. scansorius of Picus copensis; c, P. ambulatorius of Phusianus colchicus; d, P. fissus of Turdus torquatus; e, P. gressorius of Alcedo isyidu; f, P. insidens of Falco biarmicus; g, P. colligatus of Mycteria senegalensis; h, P. cursorius of Struthio camelus ; i, P. palmatus of Mergus merganser: k, P. semi-palmatus of Recurcirostra avocetta; l, P. fissi-palmatus of Podiccps cristutus; m, P. lobatus of Fulica utra; n, P. steganns of Phaëfon rethereus.
roots, Turdus (d); pedes cmbulatorii, with three toes directed forward, the inner toe backwards, the middle and outer toes united at their roots, Plasianus (c) ; pedes gressorit, the imer toe is placerl behind ; of the three anteriorly directed toes, the middle and outer
are fused as far as the middle, Alceclo (e) ; pedes insidentes (f), the imer toe is behind, the three anteriorly directed toes are united by a short membraue, Falco $\left(f^{*}\right)$. Sometimes the outer toes of the pes scansorius (Cuculus), and the inner toe of the pes adhamans (Colius) can be turned both forwards and backwards. The wading legs (p. vouduntes) as opposed to the walking legs (p. grudarii) are characterised by the partly or completely naked, unfeathered tibial region; they are found principally in Water Birds, amongst which the Grallutores have wading legs with a very long metatarsus-the so-called pedes grallarii. The p. grallarii may be distinguished into p. colligati, in which the anterior toes are united at their roots by is short membrane, Ciconica (g) ; and the p. semicolligati, in which this membranous connection is confined to the middle and outer toes, Limosa. The running legs (p.cursorii) are powerful pedes grallarii without hind toes, and with three (Rhea) or two Struthio (h) strong front toes. The short wading legs of the swimming birds, as well as the longer legs of the Grallatores, present with regard to the structure of their feet the following types:-Swimming feet, or pedes palmati, when the three anteriorly directed toes are connected as far as their extremities by an undivided swimming membrane or web, Anas (i); half swimming feet, or p. semipalmuti, when the web only reaches to the middle of the toes, Recurvirostra (k) ; split swimming feet, or p. fissipalmati, when the toes have an entire cutaneous border, Podiceps (l) ; lobed feet, or p. lobati, when the border is lobed on each joint, Fulica (m). When the hind toe is also included in the web membrane the feet are termed p. stegani, Halieus [Phalacrocorax] (n). Finally, the hind toe may be reduced or completely absent in the Vatutores and Grallatores.

The Brain of Birds (fig. 79) is much more highly developed than that of Reptiles, and completely fills the roomy cranial cavity. The hemispheres are, indeed, still without superficial convolutions, but already possess a rudimentary corpus callosum (Meckel). They covernot only the thalamencephalon, but also the two large, laterally displaced corpora bigemina. The differentiation of the cerebellum is still further advanced, since there is a median part corresponding to the so-called vermis of Mammalia, and small lateral appendages.
In consequence of the cervical flexure of the embryo the medulla oblongata forms an angle with the spinal cord, the posterior columns; of which diverge from one another in the posterior enlargement of the lumbar region so as to form a second sinus rhomboidalis. The cranial nerves are all separate and their distribution is essentially the same
ats in the Mammalia. The spinal cord reaches almost to the end of the neural canal of the vertebral columin.

Sense Organs. - The eyes always attain a consilerable size and a high development. The eyelids are always movable, especially the lower lid and the transparent nictitating membane, which is drawn over the eye by a peculiar muscular appanatus. The cyeball (fig. 65.1) of the Biad hats an musual form, in that the hind part on which the retina is spread is a segment of a mucn larger sjulare than is the small anterior part. The two parts are comected by a median portion, which has the shape of a short truncated cone, with the smallest end directed forwards. This form of the eyeball is most marked in the nocturnal birds of prey,

Fig. 654.-Eyc of a nocturnal bird of pres (after Wicdersheim). Co, cornea; L, lons ; Rt, retina; P, pecteu; λ^{\top}, optic nerve; $S c$, ossifications of the sclerotic; $C M$, ciliary muscle. and least in the aquatic Birds in which the axis of the eye is shorter: There is always a bony selerotic ring behind the edge of the cornea. The cornea, except in the swimming Birds, is strongly arched, while the anterior surface of the lens in the nocturnal Birds alone possesses a considerable convexity. The pecten (wanting only in Apteryx:) is a peculiar structure of the avian eye. It consists of a process of the choroid, which traverses the retina and passes obliquely through the vitreous humour to the lens. It corresponds to the falciform process of the piscine and reptilian eye. The avian eye is characterised not only by the sharpness of vision consequent on the large size and complicated structure of the retina, but also by the highly-developed power of accommodation, which is principally due to the muscle of the socalled ciliary ligament (Krampton's muscle), and also to the great. molility of the muscular iris (dilatation and contraction of the prpil).

The auditory organ (fig. $578 / I$.) is enclosed by spongy masses of bone. It possesses three large semicircular canals and a dilated cochlea (lagena). The vestibule, which on account of its small size may also be regarded as the lower dilated part of the cochlea, has two openings : the foramen ovale which is closed by the terminal piece (operculum) of the columella and looks into the tympanic cavity, and a second more rounded opening, the forcmen rotundum, which is closed by membrane. In addition to the labyinth there is
always a tympanic cavity which communicates with the air-apaces in the neighbouring bones of the skull, and with the pharynx close behind the posterior mares by means of the Eustachiim tubes. Towards the exterior the tympanic cavity is closed by a tympanic membriane, to which the long rod-shaped auditory ossicle (columella), corresponding to the stapes of Mammalia, is fastened. On the outer side of the tympanic membrane there is a short external auditory meatus, the opening of which is often surrounded by a circle of larger feathers, and in the Owls is overlapped by a cutaneous valve which is likewise beset with feathers, and constitutes a rudimentary pinna.
The olfactory organ has three pairs of turbinal bones in the spacious nasal cavities, which are separated by an incomplete septum (nares pervice). The two nasal apertures, except in Apteryx, lie more or less near the root of the upper beak ; sometimes (Crows) they are covered and protected by stiff hairs; in the Procellaridue they are elongated into a tube and join one another. A so-called nasal gland usually lies on the frontal bone, more rarely beneath the nasal bone or at the inner corner of the eye; it opens by a simple duct into the nasal cavity.

The sense of taste is connected with the soft base of the tongue which is rich in papille. The tongue is soft throughout its whole extent only in the Parrots. In most other cases it has a firmer covering, and in many cases lends important aid in mastication. In general the tongue as well as the beak may be regarded as a tactile organ. In rare cases (Snipe, Duck) the beak is the seat of a finer tactile sensibility, owing to the possession of a soft skin rich in nerves and in the end-corpuscles of Vater.

Alimentary canal.-In spite of great differences in the mode of nourishment the avian digestive organs present a fairly uniform structure ; their peculiarities have relation to the power of Hight. The jaws are covered by a hard horny sheath and transformed into the beak. True teeth are entirely absent, at least in living Birds as opposed to the fossil Odontornithes (Ichthyomis, Hesperornis); dental papillie were however discovered by Etienne Geoffroy St. Hilaire in the jaws of the embryo Parot. While the upper beak is formed by the fused premaxillæ, the maxille and the nasal bones, the lower corresponds to the two rami of the lower jaw, the fused extremities of which are known as the myxa. The lower edge reaching from the angle of the chin to the extremity is termed the gonys, the edge of the upper beak is the culmen, the region between the eye
innd the base of the beak which is covered by the cere (ceroma) is the lore. The form and development of the bak vary extremely according to the special mode of subsistence (fig. 655).

The tongue, which is always movable, lies on the floor of the

Fig. 655.--Forms of beaks $(a, b, c, d, k$, after Naumann; g, i, m, o, règne animal ; l, from Brehm). a, Phœnicopterus antiquorum ; b, Platalen leucorodia; c, Emberiza citrinella; d, Turdus cyanus; e, Falco candicans ; f, Mergus merganser; g, Pelecanus perepicillatus; h, Recurvirostra avocette: i, Rhynchops nigra; k, Columba livia: l, Baleniceps rex; m, Anastomos coromandelianus; n, Pteroglossus discolor; o, Mycteria senegalensis; p, Falcincllus igneus: q, Cypselus apus.
buccal cavity. It consists of the horny or fleshy covering of two cartilages attached to the anterior end of the hyoid bone, and serves for deglutition, and frequentlv for seizing food. The buccal cavitr, which in the Pelicans is dilated into a large cerrical sac supported by the rami of the lower jaw, receives the secretion of a number of
salivary glands. There is no velum palati. The muscular, longitudinally folded cesophagus, the length of which in general depends on that of the neck, frequently possesses-especially in the birds of prey, but also in the larger granivorous birds (Pigeons, Fowls, Parrots) -a crop-like dilatation, in whicl the food is softened (fig. 656). In the Pigeons the crop bears two small round accessory sacs, the walls of which secrete in the breeding season a cheesy substance used in feeding the young.

The lower end of the œsophagus is dilated into a glandular proventriculus, which is followed by the wide muscular stomach (gizzard). While the proventriculus has, as a rule, an oval form and is smaller than the gizzard, the latter is provided with muscular walls, which are weaker (birds of prey) or stronger (granivorous birds), according to the kind of food eaten. In the granirorous birds the gizzard is excellently adapted for the mechanical preparation of the softened food material by the possession of two solid plates, which form the horny internal wall, and work against one another. The first loop of the small intestine (corresponding to the duodenum) surrounds the elongated pancreas, the ducts of which, as well as the usually double bile ducts, open in this region. The beginning of the short large intestine is marked by a circular valve, and by the origin of two caca ; it presents no distinction

Fig. 656.-Digestive canal of a bird. Oe, œesophagus ; K, crop ; $D m$, proventriculus; Km , gizzard; D, small intestine; P, pancreas (placed in the duodenal loop) ; H, liver ; C, the two cæca; $A d$, large intestine; U, ureter; $O v$, oviduct; $K 7$, cloaca. into colon and rectum, and passes into the cloaca, into which the urinogenital apparatus also opens. At its entrance into the cloaca it presents a sphincter-like circular fold. A peculiar glandular sacthe bursa Fabricii-opens into the dorsal wall of the cloaca.

The large elongated kidneys are placed in excavations of the
sticrom, and are divided by intentations into a number of loben. The ureters run behind the rectum and open into the rloacea internally to the genital apertures. The urinary secretion is not Huid, iss in the Jfammatirn, but is a white semi-fluid mass, which soon hardens.

The heart is completely divided into a right and left half, and lie. in the median line, enclosed by the pericurdium. As a peculiarity of the hoart may be mentioned, the special development of the right atrioventricular valve, which, unlike the tricuspid valve of the Mammalian heart, is a simple strong muscular fold. Since the diaphragm is rudimentary, the thoracic cavity is directly continuous with the abdominal. The pulsations of the heart, in correspondence with the more active respiration, are repeated more rapidly than in Mammalia. The right arortic arch persists. The veins open by two superior and one inferior vena cava into the right auricle. The renal-portal circulation still persists in Birds, though it is but slightly developed.

The lymphatic system opens by two thoracic ducts (ductus thoracici) into the superior venre cava, but also very generally communicates with the veins of the pelvic legion. Lymph hearts are only found at the side of the coccygeal bone in the Ostrich and Cassowary, and in some wading and swimming Birds. They are. however, often replaced by vesicular non-contractile dilatations.

Respiratory organs.- The glottis is placed behind the root of the tongue, and leads into a long trachea, which is supported by bony rings. The trachea is not unfrequently longer than the neck, and in such cases, principally in the male sex, is thrown into a number. of coils, which either lie beneath the skin (Capercally) or even penetrate into the hollow crest of the sternum (Whooper Swan).

The lower larynx or syrinx.-Except in the Ostrich, the Stork, and some Vultures, the vocal organ is developed at the point where the trachea divides into the bronchi, so that both divisions take part in its formation (fig. 657). The last tracheal rings and the anterior bronchial rings have a moditied form, and are often intimately connected with each other; the end of the trachea and the beginning of the bronchi are compressed or dilated into a vesicular form and transformed into the so-called tympanum, which in the males of many Ducks and Divers is dilated into unsymmetrical secondary cavities (tympanic cavity and labyrinth), which serve as resonating apparatuses. The part of the trachea from which the bronchi pass off (i.e., tympanmm) is traversed in a horizontal direction by a projecting
osseous band-the pessudus-which forms a vertical septum between the anterior apertures of the two bronchi. This septum, at its anterior (ventral) and posterior (dorsal) ends, gives off on each side two arched processes, which pass downwards-one along the dorsal, and the other along the vential edge of the bronchus of its side; and between these cornua the internal wall of each bronchus, which is here membrauous, is stretcherl, and constitutes the membrana tymponiformis interna. In the Singing Birds there is in addition a semi-lunar fold (membrana semilenurris) on the pessulus, as a prolongation of the membrana tympaniformis interna. In many cases a membranous fold-the membranu tympuniformis exterma-is developed

Fig. 657.-Lower larynx of Raven (trom Owen). u, Side view of larynx laid open.- b, Larynx after removal of muscles.- c, Larynx with museles, from the front ; d, from the side. St, pessulus ; IIty, membrana tympaniformis interna; JEs, membrana semilunaris; $R t$, modified last tracheal ring ; $R b$, the modified three first bronehial rings ; $I V$, muscles.
on the external side of the tympanum, and forms with the free edge of the internal tympaniform membrane (i.e., with the membranue semilunuris), a vocal slit or glottis on either side. The tension of these folds, which function as vocal cords, is regulated by a muscular. apparatus, which connects the trachea with the lateral parts of the tympanum, or also with the anterior bronchial rings, and is most highly developed in the singing birds, in which the syrinx may possess five or six pairs of such muscles.

The bronchi are relatively short and lead, at their entrance into the lungs, into a number of wide membranous bronchial tubes, which traverse the pulmonary tissue. The lungs are not, as in Mammals, freely suspended in a closed thoracic cavity and invested
by at plenral sac, but are attached to the dorsial wall of the body cavity hy cellular tissue, and sunk in the interspaces between the ribs at the sider of the vertehral column. The hehaviour of the bronchial tubes and the structure of the finer respiratory air-spaces of the lungs present essential diferences from those of the Mammalia. The large

Fic. 65s.-Lunges and :ur-saces of the pigcon (diagrammatic, after C. Heider). Tr r, trachea ; P, lungs; L_{p}, peritracheal air-sac with its diverticula ($L h$ and $L m$) into the humerus (II) and between the pectoral muscles; C, their connection with the sternal air-spaces ; Lth, thoracic air-sacs : $L u$, abdominal air-sacs. air-sacs are diverticula of the lungs (fig. 658); they have a failly constant arrangement, extending forwards between the clavicles (peritracheal or interclavicular air-sac), and also into the anterior and lateral regions of the thorax (thoracic airsacs), and backwards among the viscera, into the pelvic region of the abdominal cavity (abdominal air-sacs). The abdominal sacs lead into the cavities of the femor: and pelvic bones, while the smaller anterior sacs are prolonged into the air-spaces of the bones of the arm, and into those of the skin, which are sometimes, especially in the large swimming Birds, which fly well (Sula, Pelecunus), so numerous that the skin emits a crackling sound when touched (maintenance of temperature, reduction of specific gravity, air reserwir: for respiration). With such arrangements combined with the rudimentary form of the diaphragm already mentioned, and the peculiar structure of the thorax, the mechanism of respiration must be quite unlike that of the Mammalia. The dilatation of the thoracic framework, which also encloses the abdominal caritr, is the revult of the extension of the sternocostal bones and the consequent increase in the distance
between the sternum and the rertebral column. The respiratory morements are therefore mainly effected by the sternocostal muscles and the elevators of the ribs, which function as inspiratory muscles.
The generative organs closely resemble those of the Reptitia. The males are distinguished, not only by their superior strength, but also by the brighter colour of their plumage and the greater variety of their song. There are two oval testes on the anterior side of the kidneys; they become much enlarged at the breeding season, and the left is usually the larger. The epididymis, which is but little dereloped, leads into the ras deferens, which passes back along the outside of the ureter. The ends of the vasa deferentia are frequently swollen so as to form seminal vesicles, and open on two conical papille placed on the hinder (dorsal) wall of the cloaca.

A copulatory organ is, as a rule, wanting; in some of the larger water birds, however (Ciconia, Platclect, etc.) a rudimentary penis is present as a wart-like process on the front (ventral) wall of the cloaca. It is larger in most of the Struthionicle, the Ducks, Geese, Swans, and in the Curassows and Guans (Penelope, Lrax, Crax). In these Birds a curved tube, supported by two fibrous bodies, is attached to the ventral wall of the cloaca. The end of the tube can be retracted by an elastic band. A superficial groove serves to conduct the sperm during copulation. In the two-toed Ostrich, the penis attains a still higher structure, analagous to that of the male copulatory parts of the Chelonica and Crocodilia. Below the two fibrous bodies, the broad bases of which arise from the front wall of the cloaca, there is a third cavernous body the extremity of which is nonretractile and passes into an erectile bulb-the rudiment of a glans penis.

In the female generative organs the orary and oviduct of the right side are reduced or entirely absent. The generative organs of the left side, however, are correspondingly larger at the breeding season. The orary is racemose ; the oviduct is much coiled, and is divided into three regions: (1) The wide abdominal ostium in front ; (2) the coiled glandular part which secretes, from the glands of its longitudinally folded mucous membrane, the albumen which is added in layers and is twisted together at the ends to form the chalaze ; (3) a porterior short and wide portion-the so-called uterus-which serves to produce the rariously coloured egg-shell, and opens by a short and narrow terminal region into the cloaca on the outer side of the corresponding ureter. When there are copulatory parts in
the male, there are also chtoris-like shructures at the sime plate in the female.

Development.-Birds are, without exception, oviparons (relation to power of flight). The egge is remarkable for the large amount of yolk (distinguishable into white and yellow yolk), and its prous calcarcous shell (tig. 659). The development rerpuires a high temperature, at least equal to that of the blood. The necessary heat is usually supplied by the bind during inculbation.

Fertilization takes phace in the upper region of the oviduct before the secretion of the albumen and of the shell membrane, and is at once followed by the partial (discoidal) segmentation which only implicates

Fig. 659.-Diagrammatic longitudinal section through an undeveloped hen's egg (after Allen Thomson). BI, germinal (lise; $\epsilon_{\dot{T}} D$, yellow yolk; $W D$, white yolk; $D M$, vitelline membrane ; $E W$, albumen ; Ch, chalaza ; S, shell membranc; KSS, calcareous shell; $L R$, air-chamber. the clear pirt of the yolk (formative yolk) around the germinal vesicle-the so-called trearl of the cock (cicutricula).

When the egg is laid, the segmentation is already completed, and the cicatricula has developed into the germinal risc or blastoclerm. The embryo, which later projects from the yolk, developes, as in Reptiles, the characteristic fotal membranes-the amnion and allantois (fig. 635). The duration of the embryonic development varies according to the size of the egg and the relative development of the young when hatched. The Birl, when ready to creep out, breaks the blunt end of the shell by means of a sharp tooth placerl at the extremity of the upper beak.

The young when hatched have essentially the organisation of the adult animal, although they may still be far inferior to it in the degree of their bodily development. While the Gullinacsi and the Cursores, and most Grallatores and Nutatores have when hatched a complete covering of down, and are so far advanced in development, that they at once follow the mother on land or into water and there seek their own foorl (præcoces) ; others like the

I'usseres, Sicunsores, C'olumbince and líuptores leave the egg membranes very early (altrices); they are naked, or only covered with down in places, and incapable of free locomotion or of feeding themselves, and remain for some time in the nest, in which they are fed and tended by their parents.

The mental qualities of Birds are incomparably higher than those of Reptiles. The high development of the senses (sight) render: them capable of a sharp discernment, with which is combined a good memory. Under the guidance of its parents the Bird gradually leurns to fly and sing; it collects experiences, which it combines so as to arrive at judgments and conclusions ; it recognises the surroundings of its nest, distinguishes between fliends and foes, and selects the proper means both for the preservation of its existence and for the care of its brood. In some Birds the capacity for profiting by instruction and the faculty of imitation are extraordinarily developed (Starling, Parrot). The emotional side appears no less dereloped, as may be inferred not only from their general behaviour and the varying expression of their song, but especially from the behaviour of the two sexes at the breeding season. Their instinctive actions are directed to the preservation of the individual, and as in Insects, but in a far higher degree, to the care of their offspring.

In general the manifestations of intelligence as well as of instinct. attain their maximum at the time of reproduction, which in the temperate and colder climates usually takes place in the spring (in the Crossbill exceptionally in the middle of winter, winter plamcorye, Ireediny plumarge). The voice* is clearer and richer in the breeding season; the male endeavours to excite the female by his song and the beauty of his plumage. In addition to the changes of plumage and song, the whole behaviour of Birds is modified under. the influence of sexual excitement (love-gestures, etc).

With the exception of Fowls, Pheasants, etc., Birds are monogramous; they pair only for the breeding time, and collect together later, and migrate in larger flocks. There are, however, some instances of the miglation of single pairs.

Most Birds build nestr, and seek for this purpose a suitable place in the district they inhabit. Only a few Birds (Goat-suckers, etc.) are content simply to lay their eggs on the ground, others (Skua. 'Terns, Ostrich) scoop out a pit or make a depression in moss and grass (Tetrcomille). The most skilfully constructerl, however, ale the

[^194]nests of those Birds which glue particles of extraneous matter together. with their sticky saliva or which weave fine tressworks of moss, wool and grass-stalks (Weavers). As a rule it is the female alone which builds the nest, the male merely helping in collecting the materials. There are, however, instances in which the male takes a share in the construction (Swallows, Weavers) ; while in other cases (Grallinucei, Chaftinch) the male takes no share at all in buikding the nest. Many sea Birds, as the Auks and Penguins, lay but one egg, the large Birds of prey, Pigeons, Siwifts, and Hummingbirds, lay two eggs. The number of eggs is larger in the singing Birds and still greater in the swimming Birds of ponds and rivers, and in the Fowls and Ostriches. The duration of the period of incubation is equally various; it depends upon the size of the eger and the degree of development of the young when hatched.

While the Humming-birds and golden-crested Wrens incubate foreleven to twelve days, and the singing Birds fifteen to eighteen day:, Fowls require three weeks, Swans double that time, and Ostriches seven to eight weeks. Inculation essentially consists in keeping the eggs at a warm, uniform temperature; this is effected by the body of the sitting bird, and is often facilitated by the presence of naked places on the body. As a rule, the mother alone sits, and the male occupies limself with bringing her fool. Not unfrequently, however, as in the Pigeons, Peewits, and many swimming birds, the two parents relieve one another regularly ; the male in such cases certainly sits only for a shorter time during the day, while the femalesits through the whole night. In the Ostrich the female only sits during the first period of incubation; later the parts are changed, and the male undertakes the chief part of the incubation, especially sitting almost all night. The behaviour of numerous Cuckoos, and especially of our native species, is very remarkable ; they leave the building of nests and the care of their brood to other Birds, and lay their small eggs, singly and at intervals of about eight days, amongst the eggs of different singing Birds.

The care and nurture of the young usually falls entirely or mostly on the hen bird. On the other hand, as a rule, both parents take an equal part in the protection of the brood.

Leaving out of consideration the activities which relate to reproduction, the instinct of Birds manifests itself, principally in late summer and autumn, as an impulse to migrate, and still more mysteriously as a true guide on the journey. Few birds of the colder and temperate climates pass the winter in the places where
they breed (Resident birls; Eagles, Owls, Ravens, Woodpecker's, Magpies, Sparrows, Titmice, Grouse, etc.) Mary of them rove over larger and smaller regions in search of food (Strichuögel; Thrushes, Bramblings, and Chaffinches, Woodpeckers, Yellow Bunting, Finches, and crested Lark). Others migrate before the beginning of the cold season of the year, when nourishment is deficient, from the northern climates to the temperate, from these to southern regions (Zuyvöyel; Swallows, Storks, Jackdaws, Crows, Starlings, Wildgeese, Cranes, etc.)

There are but scanty materials for the geological history of this class. Leaving out of consideration the feather-tailed Archceopteryx lithoyraphica* (fig. 119) of the Jura (Saurure), the oldest remains of the swimming and wading birds belong to the chalk. In the tertiary period the remains are indeed more frequent, but are nevertheless insufficient for a more accurate definition. In the Diluvium, on the other hand, numerous types of species still living are found, as well as remarkable gigantic forms which have become extinct within the historical period (Palceornis, Dinornis, Palapteryx, Didus).

I. CARINATÆ.

The sternum has a keel (carina) for the insertion of the powerfully developed muscles of flight. The remiges of the wing and the rectrices of the tail are usually well developed. Almost all are able to fly.

Order 1.-Natatores (Swinming Birds).

Aquatic Birds with short legs often placed far back; feet either pedes palmuti" or p. stegani.

The form of the body of the swimming Birds varies extraordinarily, according to the special adaptation to their aquatic habitat. They all have a thick compact plumage, a very rich clothing of down, and a large uropygial gland. The legs are short and are placed far back, and usually feathered as far as the ankle. They end with swimming feet, either pedes palmati, or fissipalmati, or stegani. The Natatores are all excellent swimmers; many are strong flyers, while others are

[^195]incapable of flight, and are almost entirely ronfined to the water. Mos of them also dive with great skill, cither shooting down into the water from the air or suddenly diving beneath the water while swinming' 'The form of the beak varies ats much as does the structure of the wings. Sometimes the beak is much arched and anmed with cutting edgere, and sometines flat :and lonoud ; sonetimes elongated and pointer. The form of the beak is correlater with the mode of sulsistence: in the first case we lave to do with

Fig. 660.-Aptenodyter putugonice (from Brehm). predatory birds, which especially prey on fishes, in the last case with linds, which live on worms and small aquatic animals, but also on fishes. The swimming Birds, with broad soft-skimerl beak, search in the mud and feerl not only on worms and small aquatic animals, but also on seeds and vecetable matters. The Nratutores are gregarious, and exist in great flocks on the sea coasts or on inland waters, but some of them are also found on the high seas, far from land. Nost of them are migratory. They nest near the water, often in common breeding places, and lay a few eggs either directly on the ground, or in holes, or in simple, rudely-made nests. Many of them are of great importance to man, partly on account of their flesh and eggs, and partly of their down and skins, and partly also on account of their excrements, which are used as manure (guano).

Fam. Impennes (Penguins). The wings are fin-like. without remiges, corcrerl with small scalc-like feathers. The tail is short, with stiff feathers. The short swimming-feet have a recluced forwardly-directed hiud toe, and are placed so far back that on land the body must be carricd almost rertically. They are excellent divers. In the breeding season they stand upright and arranged in long rows-the so-called sehools. They lay only one cgg in a depression in the ground, and keep it in a vertically upright position during incubation : but they can also carry it about buricd in the down between the legs. Both sexes participate in incubation. Apterorlytes putagonira. Forst., King-Penguin (fig. 660): Spheriscus demers:us. L., Blaek-footed Penguin. South Africa aucl Americul ; Eulyptes rhirysocomu I., South Sea. Patagonia.

Fam. Alcidæ (Auks). The wings are short and ill-adapted for flight. There are, however, small remiges. The sivimming-fect with rudimentary or without hind toc. Their commou breeding-places are on the coasts (Vogellerge), where they lay their eggs singly in holes in the earth or in nests, and bring up their young. Alca impennis L., Great Auk; now extirpated. A. torrla L., Razorbill; Mormon urcticus Ill. (fratercula Temm.), Puffin; Uria troile Lath., Guillemot; U. gryllc Cuv., Black Guillemot.

Fam. Colymbidæ (Divers). The head has a pointed straight beak. The freely projecting metatarsus is strongly laterally compressed. The fect are palmate or fissipalmate. Podiceps cristutus L., Great crested Grebc ; P. minur Gm.; Colymbus glacialis L., Great Northern Diver.

Fam. Lamellirostres. Beak broad, deep at the base, covered with a soft, riehly innervated skin, with transverse lamelle on its edges (dentated appearance), and ends with a nail-like extremity. The feet are palmate (p. palmuti), with rudinentary hind toe, which is sometimes naked, sometimes fringed with mombrane. Phowicopterus antiquorum. L., Flamingo, North Afriea: Cygnus. nlor L., Mute Swan; C. musicus Bechst., Whooper' Auser cinereus Meyer, Gray Goose ; A. hyperborcus L., Snow Goose ; 1. segetum L., Bean Goose ; Anas boschas L., Wild Duck, the ancestral species of the various races of homestic ducks; A. (Thdorma) tadorna L., Sheldrake; Mergus meganser L., Goosander: M. serruter L., Redbreastcd Merganser; M. ulbellus L., Smew.

Fam. Steganopodes. Large swimming birds, with small head, well developed. often long and pointed wings, with swimming feet (p. stegani). Pelecanu.s mocrotalus L., Pelican; Halicus carbo, Cormorant; Tachypetes uquilu L., Frigate Bird; Sula bassura L., Gannet, North Europe ; Pluëton cetherius L., Tropicbird.

Fam. Laridæ (Gulls). Lightly built Swallow- or Pigeon-like swinmingbirds, with long pointed wings and often forked tail, relatively high, three-toed swimming-feet and free hind toe. They dive from the air (Stosstancher). Sterna hirundo L., Tern; Larus minutus Pall., Little Gull ; L. ridibundus L., Blacklieaded Gull; L. ranus L., Common Gull ; Lestris parasitiera L., Skua, North German Coasts ; Rhynchops niyru. L., Skimmer.
Fam. Procellariidæ (Sturmvögel). Gull-like birds, with rostrum compositum. Feet palnate, hind toe absent or reduced to a stump. They sclect rocky and preeipitous coasts for their common breeding-places. The female lays one egg and takes turn with the male in incubation. The young are nurtured for a long time. Diomedea exulans L., Albatross, South Sca; Procrllaria glaciali.s L., Fulmar Petrel, from the Arctic Seas to North German Coasts ; Thalacsidirtumu pelayica L., Stormy Petrel, Atlantic Ocean.

Order 2.-Grallatores (Waders).

Birds with lony thin neck and long berk, with elongated worling leys (p. varlantes).

The Grallatores are adapted for an aquatic life, since they have to seek their food in water, but their adaptations are of a different kind to those of the Natatores. They live more in swampy places. on the banks of river's and seas, and wade through shallow water in
order to seek snatis and worms, or frog and fishes. They therefore possess, with some exceptions, long wading legs, with usually natkerl tibie projecting freely from the horly, and very long metataras of ent covered with scales. But few have running legs (p. cursorii) and are land birds (Bustards). Some (Rails) are similar in their mode of life, the shortness of their legs and the structure of their toes, to the swimming birds (N^{\top} ututores), and swim and dive well, hut fly badly. Corresponding with the considerable length of the legs, there is a long neek and usmally also a long beak. The size and forn of the beak varies exceedingly. When small worms, Insect larrat and Molluses are sought in mud and loose earth, the beak is long. but relatively wealk and soft, and has a sensitive richly innervated extremity; in other cases the beak is very strong, angular; and adapted for the capture of fishes and frogs, and eren of small Manmals ; and finally in the transitional groups before mentioned it is short and strong, like that of a fowl, with a somewhat arched culmen, and adapted for an omnirorous diet. The feet also present great differences in the size and connection of the toes. The wings usually attain a medium size. The tail, on the other hand, is short. The plumage is more uniform and simple, and but rarely presents beautiful and glittering colours. Nost Girallatores are migratory birds of the temperate regions, and live in pairs, in a monogramous state. They build rude nests on the ground, on the shore, or on trees and houses, more rarely on water. The young are sometimes allrices, and sometimes precoces.

Fam. Charadriidæ. Plovers. With tolerably thick head, short neck. and hard-edged beak of medium length. Cursoriu.s curөpeии: $=C$. isubulimus . . ., North Afriea and South Europe; Oedicnemus. crepitans: Temm., Steppes in South Europe, Afriea and West Asia, also on the great fallow lands in Germany. Charadrins pluvialis L., Golden-plover, inhabits the Tundra: T'encllus cristutus M.. Peewit, Germany and Holland.

Fam. Scolopacidæ. Sniple. Head of medium size. strongly arehed with a long. thin, usually soft beak, eovered with a riehly innervated skin. Totunus: hypubeucus Temm., Dandpiper; Recurvirostru acoctte L., Arocet; Tringa cinereu Gm., Mackertes pu!fnax Cuv., Ruff ; Sconlopax rusticolu L., Wroodcock; Gullinago medin Gray, Snipe: G. gallinula L., Jack Snipe: Numenius arquatu L., Curlew.

Fam. Herodii =Ardeidæ. Herons and storks. Large Grallatores with powerful body, long neck, and small, partly uaked head : beak powerful. without cere. with sharp hard edges, sometimes curved at the point, rarely spoonshaped. Legs long, and naked far above the intertarsal joint: feet nsually p. colliguti: hind toe rests on the gromd. Ibis rubra Vieill.. the scarlet lbis of Central America. I. religinsa Cuv., the saered Ibis: Fatcincllus.

med (iould; Arden cinerell L.; I. purpuren L., Sonth Europe; Ciconiu
 Inustumus: lamelligrous: Temm., East Indies; Grus cinerea Bechst., Common Cranc.

Fam. Rallidæ. Water-hens, Rails. Intermediate between the Nutatores aud the Gullinucei. Rullus aquaticus L., Water Rail, Northern and Central burope to Central Asia: C'rer prutenwis L., Cornerake; Cr. poranua L.. Emrope, Spotted erake: Parra jacana L., Ameriea; Galimula chlorrpmus. L., Moorhen: Frulica utru L.. Coot. On the reedy lakes and ponds of Europe.
Fam. Alectoridæ. Transitional between the Grallatercs and Gallinacei.

Fls. 661.-Chuna chacuria (règne animal).

They resemble the former in the length of their legs, and the latter in their mode of life and in the form of their beak. Otis tarda L.. Bustard, Lives as a migratory bird (Strichvogel) in the plains of South-east Europe with one or two females to each malc. O. tetrax L., more in the South: Dicholophers cristatu: Ill., Cariama [Scriema], in Brazil, lives on Lizards and Snakes like the Sceretary-bird of South Africa. Psophin crepitans L., Trumpeter, Sonth Ameriea; Palumeden ronruntu L., with spurs on the wings. Cllmuna charariu Ill., sereamers (fig. fifil). With spurs on the wings. Is domesticated. Receives in German the name of Shepherd's bird from its use as keeper and defender of flocks of hens and geese in South Ameriea.

Order 3.-Galhinarmi= Rasomes.

I'errestricel birds of medinm and sometimes considerable size, of stout build, with stort, rounded wings, strony beak, ussuelly arched anul bent downorbids at the point, and with poveriful fect adupted jor perching (1 . insidentes), usually mrecoces.

The Gullinucci possess in gencral a stout body with thick plumare, small head and powerful beak, short or moderately long neek, usually short and rounded wings, legs of medium length and well-developerl tail, composed of uumerous rectrices. Therc are often naked places on the head, as well ats erectile combs and cutaneous folds (wattles), the latter principally as distinctions of the male sex. The beak is usually short, broad and high, and is characterized both by the overlapping cutting edges and by the depressed extremity of the upper. beak. Its base is soft and membranous, and covered with feathers, among which it membranous or cartilaginous scale projects over the nasal apertures. The plumage of the Grallinacei is close and stiff, and often beautifully marked and ormamented with rich colour's and a metallic lustre (male). The tail quills are usually more than twelve in number, and there may be as many as eighteen or twenty. The wings are as a rule short and rounded, with ten primary remiges and twelve to eighteen secondary. The flight, therefore, is clumsy: only the Pteroclide fly quickly and with skilful turnings. The legs are powerful and short, or of medium length; they are usually feathered as far as the foot-joint, rarely up to the toes. There is often a sharp spur, which serves as a weapon, on the metatarsus of the male above the hind toe, which is articulated high up. The Gallinacei live for the most part on the ground, either in forests or in fields, on grassy plains from high mountains down to the sea coast. They are good runners, and seek their food on the ground, feeding specially on berries, buds and seeds, also on insects and worms. They form their rude nests for the most part on the surface of the ground, or in low bushes; more rarely on high trees, and lay a great number of eggs. As a rule the cock lives with a number of hens, and takes no part either in the building of the nest or in the care of the brood. The young are for the most part prococes. The hens are casily domesticated, and on account of their eggs and their wellflavoured flesh, have been made useful as domestic animals from the earliest times.

Fam. Penelopidæ. Large, long-legged Giullinacti, with well-developed remiges and long, rounded tail, resembling the three-toed Ostrich in the structure of the
protrusible penis. Crur alcertor L., Curassow, South America ; Vrax puaxi L., 1. gateata Cur., Mexieo; Peneloper cristatu Gm., Guan, Brazil ; Melragris mexicana, Gould., ancestral form of M. yalloparo, the Turkey.

Here are allied the Crypturidæ (Tinamidæ), Tinamous, and Opisthocomidæ, Hoazin.

Fann. Megapodiidæ (Momel-hirds). Long-legged Gallinacci, of medium size, with short, broad tail and large strongly-clawed, ambulatory foot (pes ambulatorius), the hind toe of whieh is articulated at the same level as the front toes. Meqacephaton maleo Temm., C'elebes: Meqaportius tumutus, North East of Australia.

F'am. Phasianidæ (True fowls). The head is partially bare of feathers, espeeially in the eheek region : it is often adorned with coloured combs, entaneous lobes or tufts of feathers, and has a strongly-arehed beak of mediuin length, with the point eurved downwards. The two sexes are strikingly different, the male being larger and more riehly adorned. They are inhabitants of the Old World. Gallus banlitia Temm., Island of Sunda : Lophophonus refulgens Temm., Himalayas ; Plusiruus. colehicus L., Common Pheasant: Ph. pictus L., Golden Pheasant; Ph. (Gullophasis) nyethcmernis L.., Silver Pheasant, China; Paro cristatus L., Pencoek: Argus yigunteus Temm., Argus Pheasant, Malacea, Borneo ; Numida melcu!fris L., Guinea Fowl, North Africa.
Fam. Tetraonidæ. The body is stout, the neek short, the hend small and feathered, with at most.one naked stripe above the eyes. The legs are short, and are ustally feathered down to the toes. Tetran uromallus. L., Capereally; T. tetrix L., Blaek Gronse. The hybrid between these two speeies is ealled T. medtus, by Meyer. T. bonasia L., Hazel Grouse ; Lagnpus atbus Vieill., Willow Grouse, Scandinavia ; L. alpinus Nilss. ; Perdrix einerea, Briss., Partridge ; P. saxatilis M.W.; P. rulnru Temm.. Red-legged Partridge ; Coturnix dactylisonuns Meyer, Quail.

Fam. Pteroclidæ (Sand-grouse). Small Cullinacri, with small head, short beak, shor't, weak legs, long-pointed wings aud wedge-shaped tail. Feet with short toes; hind toe when present rudimentary and attached high up : it may be absent. Pterocles alchuta Gray, in Asin Minor and Africa; Syrrouptes paradnoxus. Pall., in the steppes of Tartary, and lately in North Germany:

Order 4.-Columbine (Pigeons).

Birls with weak soft beak, swollen round the nasal apertures, with pointed winys of medtium size, und short cloven feet (pecles fissi). The young are altrices.

The Columbince are most nearly allied to the Pteroclidce. They are of medium size, with :mall head, short neck and short legs. The beak is longer than in the Giallinacei, but weaker, and gently arched at the homy, somewhat turned-up extremity: At the base of the beak the sealy cover of the nasal openings is swollen, naked, and membranous. The rather long, pointed wings enable the bird to fly quickly and skilfully. The tail is weak and rounded, and contains usually twelve, raurely fourteen, or sixteen rectrices.
'The stifl', beantifully coloured plunage lies smoothly on the body, and presents hatdly any diflerence in the two sexor. 'The short legs are unfitted for rapid and constant locomotion. The feet are cloven (p. fissi) or ambulatory (p. cembulutorii), and the well-developed hind toe rests on the ground. The Columbiuce have a paired crop, which at the breeding season in both sexes secretes a creatmy Huid for the nourishment of the young. They are distributed over all parts of the workd. They live in pairs or in flocks in forests, and feed almost exclusively on grain and seeds. The species which live in the north are miglatory (Kugvögel) ; others make short migration (Strichvögel), while others are resident birds. They live in a state of monogamy, and lay two, rarely three, eggs in a rudely-constructed nest. Buth

Fic. 662.-Columbu livia (after Naumann).
sexes take part in hatching and bringing up the young. The young leave the egg almost entirely naked, with closed eyelids, and, as altrices, require the care of the mother for a considerable time.

Fam. Columbidæ. The beak, with smooth edges, never dentated. Chlumbu livia L., Roek-Dove (fig. 662). Slate-blue, with white wing-eoverts and two black bands on the wings and tail. It is the aneestral form of the numerous races of domestie pigeon. It nests on rocks and ruins, and is distributed from the eoasts of the Mediterranean over a great part of Europe and Asia. C. (Palumbrenas) cenas L., Stock-Dove: Palumbu, torquatus. Leach, Ring-dove; Letopistes migraturius. L., Passenger Pigeon, North America: Turtur anritus Bp., Turtle-Dove ; T. risorius Sws.; Ginura coronata. Flem., New Guinea.

Fam. Didunculidæ. Beak eompressel. lower jaw dentated. with houked extremity. Didunculus strigirostris Goukl, samoa Islands.

The extinct Dodos (Ineptæ) were allied to this last family, and have been placed among the pigeon-like birds. They were living in Vasco di Gama's time on small islands on the East Coast of Africa (the Mascirenes), and were still plentiful ; they became extinct two hundred years ago. As far as we can judge of the appearance of this bird from the preserved remains (in [London] Oxford and Copenhagen) of skulls, beaks, and legs, and from the old descriptions, and especially from an old oil painting preserved in the British Museum, the Dodo, Diclus ineptus L., was an unwieldy bird, larger than the Swan, with lax plumage, powerful, four-toed, scraping feet, and strong, deeplycleft beak.

Order 5.-SCansores.

Birds with powerfid beak, stiff plumage having but little down, and scansorial feet. The youny are altrices.

Within the artificial limits of this order is included a number of groups of very different birds which essentially agree only in the structure of the feet, which are adapted principally for climbing; they present, however, considerable differences in the manner of locomotion, and find their nearest allies in several families of Passeres. The beak is always powerful ; it is sometimes long, straight, and angular, adapted for hammering and chiseling on trees (Woodpecker) ; sometimes short and curved like a hook (Parrot), or of colossal size and with dentated edges (Toucan). The legs end with long-toed, scansorial feet, the outer toe of which can in some cases be directed forward. The metatarsus is seldom feathered, more frequently beset with semirings and scutes in front and small scales behind. The wings contain very generally ten primaries. The tail is sometimes used as a support in climbing. Most of the Scansores inhabit forests, nest in hollow trees, and feed on insects, some of them, however, on small birds, and others on fruit and vegetable matters.

Fam. Ramphastidæ (Toueans). Raven-like birds, with colossal, marginally serrated beak, and horny, brush-like tongue. Ramphastus toco L. ; Pteroglo.sus Aracari Ill.

Fam. Trogonidæ. Beak short and strong, with usually serrated edges and wide, slit-like mouth, with bristles at the corner of the mouth. The plumage of the male has a metallie lustre. Trogon curucui L., Brazil; Culurus rceplendens Gould, the Quesal, in Central Ameriea. Here are allied the Jaeamar (Galbula) and Puff-bird (Bucco).

Fam. Cuculidæ (Cuekoos). With gently-curvecl. (leeply-cleft beak, long pointed wings, and welge-shaped, pointerl tail. The feet are seansorial, and the outer toe can be direeted forward. Cuculus canorus L., European Cuekoo,
sparrowhawk-like, with barrel phmage ; Coocystes glandarins I.., Great Spotted Curkoo of South Europe.

Here are allied the Musophagidæ (Ilaintain-eaters). Corythaiar persor L., Gninea; Musophayu vinlacer Isert, Plaintain-cater, West Africa. In Cólius the onter and inner toes can be turned backwards or forwards.
l'am. Picidæ (Wooctpeckers). L'owerfully-built sconsores, with strong: chisel-shaped beak, pointed in front, without cere. Metatarsus with transverse scales; leet with strong elaws; wilh firm tail. The tongue is long, flat and horny, and bears at its end arrow-like, short, reeurved hooks ; it ean be rapidly protruded to a considerable distance in eonsequenee of a peeuliar mechanism of the hyoid bone. I'le cornua of the hyoid are bent into wide arehes, and extend over the skull to the base of the beak. Picus martius L.. Blaek Woodpeeker, Euroje and Asia; I'.major L.; P.medius I. : I'. (Pirulus) minur L., Lesser Spotted Woodpeeker, Europe ; I^{\prime}. trinactylus: L. ; P. virialis L., Green Woodpeeker ; I. c'anus Gm., Greyheaded Green Woodpecker ; Iyn.r. torquilla L., Wryneek.

Fam. Psittacidæ (Parrots). Scansores of the warmer climates, with stout, strongly-bent beak, fleshy tongue, and powerful legs with short metatarsus. The feet, with toes arvanged in pairs, are used like a hand to scize the food. The upper beak, whieh is dentated and covered at its base by a cere, is artieulated with the frontal, and its long hooked extremity overlaps the short and broad lower beak. Most of the Parrots belong to America, many also to the Moluccas and Australia. A few are found in Polynesia, New Zealand, and Afriea.

Plictolophince. Coekatoos. Head usually with movable erest. Plictolophus leneocephalus Less.; Nymphicns Nove Lollandia Gray; C'alyptorlymohtis galcatus Lath., Van Diemen's Land.

Platycercince. Parrakcets. With moderately pointed. rarely rounded wins, and long. graduated, wedge-shaped tail. Sittace militaris L.. Maceaw. Mexieo: Palcornis Alexandri L., Ceylon; Mclopsittacus undulatus: Shaw (Wellenpapagei), Australia; Pezoporus formosus Lath., Ground-Parrakeet, Australia: Platycercнs Pennantii Lath., Australia.

Psittacince. Tail troneated, or rounded. Psittacus sitharus L., Grey Parrot. West Africa ; Psittacula pusserina L., Love-bird, Brazil.

Trichoglossince. Lories. The tip of the tongue is pencil-shaped. with feathery. horny papille. Triehoglossus papucnsis L., New Guinea; Nestor meridiomalis L., New Zealand.

Strigopince. Kakapos. Of owl-like appearance, with ineomplete feather-dise. Strigops habroptilus Gray, New Zealand.

Order 6.-Passeres (Insessores). Passerine Birds.

Birds with horny beak, without cere. Metutarsus covered with lamince, or scales. The feet are pedes ambulatorii, p. gressorii, or p. adhamantes. The young are altrices. A vocal apparatus with muscles is frequently present.

The birds included in this large order are of small size, and present great differences in the form of their beak; they fly exceedingly. well. When on the ground they hop, or more rarely walk, and
they remain by preference on trees and in bushes. They are usually divided according to their vocal apparatus into two orders - the singing birds or Oscines, and the shrieking birds or Clamatores; a division which seems the more artificial because the same types of form of beak and of the whole structure of the body are repeated in the two groups. An arrangement based on the form of the beak might lead to less artificial groups. By far the greater number of Passeres live in monogamy, often united in large flocks. Many of them build skilfully-constructed nests, and are migratory.

Tribe 1. Levirostres. Clamatores, with large, but light beak, short, weak legs, and gressorial or fissate feet, which are adapted for clinging to branches.

Fam. Buceridæ (Hormbills). Raven-like birds, of considerable size, with colossal, but always light, dentated. and downwardly-curved beak and horn-like head-dress at the base of the upper beak. Bucorvus abyssinicus Gm.; Bucerus rhinoceres L.. Sumatra.

Fam. Halcyonidæ (Kingfishcrs). Pusseres, with large head and long, keelerl, angular beak, relatively short wings and short tail. Metatarsus short; feet gressorial. Alceddo ispidd L.. Europe: Ceryle rudis. L., Black and white Kingfishcr, Africa: Dacelo gigas Glog., Australia.

Fam. Meropidæ. Bee-eaters. The beak is compressed and gently curved downwards. The plumage is rariegated; the legs are weak. The wings are pointed, with long coverts. Merops apiaster L., South Europe.

Fam. Coracidæ. Rollers. Large, beautifully coloured birds, with deeply-cleft beak with sharp edges and recurved extremity. The wing: are long and the feet cloren (p. fissi). Coracia*s yurrula L.. Roller.

Tribe 2. Tenuirostres. Clcomatores and Oscines with long, thin beak and ambulatory or cloven feet (p. combulutorii or fissi), with long hind toe.

Fam. Upupidæ. Hoopoes. Beautifully coloured Clamatores with long. laterally compressed beak: short, triangular tongne and long, strongly rounded wings. Upupa epop.s L., Hoopoe.
Fam. Trochilidæ. Humming birds. The smallest of all birds. Variegated plumage with metallic lustre. Slender foet (μ. ambulatorii or fiswi). The long, awl-shaped beak has, in consequence of the projecting edges of the upper beak, the form of a tube. from which the long tongue. which is cleft up to the root, cau be rapiclly projecterl. Rhamphodon neve ins Less., Brazil ; Pluëthomissmperciliosus Sws.. Brazil : Trochitus coluthris L. : Loplhornis magnifica P1.. Brazil.

Fam. Meliphagidæ. Honey suckers. small, beantifully colomred birds, of stout build, with muscular vocal apparatus, with long gently-curred beak, long metatarsus, wings of medium length and long tail. Meliphaya auricomis Sws., Australia: Nectarinia famest Ill.: N. (Cimmpris) splencifa Cuv., South Afriea.

Fam. Certhiidæ. Trececrecpers. Oscines with long, slightly-curved beak, pointed, horny tonguc, metatarsus covered with scales, and long hind toc with a sharp claw. Certhia fumiliarix L.. Common creeper; Tichodromu muraria III.. Wall erecper.

Tribe 3. Fissirostres. With short neek, flattened head, ind deeply-cleft beak, with long, pointed wings and weak feet (1 , amburlutorii or culhamuntes). 'They all Hy with rapidity and dexterity. They catch their food, especially flies, Newroplere and butterflies, during flight with open beak. 'Ihey live for the most part in warmer climates.

Fam. Hirundinidæ. Swallows. Simall, delicately-formed Oweiners with broal, triangular beak, compressed at the point, nine primary rectrices and long, forked tail. 'They are distributed over all parts of the earth, and construct their nests with skill. The Europcan speeies pass the winter in Central Africa. JFirundo L. Beak short and triangular ; metatarsus naked. The first and second remiges of equal length. II. rusticu L., Swallow. JI. (Chelidlon Boic. with feathered metatarsus) urbirul L., Martin. II. ('ontile Boic. The nasal apertures free, the tail slightly cxeavatal and moderatcly long) riparia L., Sand Martin. Nests in holes in the earth, which it digs for itsclf in banks. II. rupestris. Seop., Crag Swallow, South of France.

Fam. Cypselidæ. Swifts. Swallow-like Clamatores, with narrow wings curved in the form of a sabre; short feathered metatarsus and strongly elawed feet (pedes adluanuntes) ; sometimes with inwardly directed hind toe Colloculia resculenta L., (Salanganc), East Inclies; Cypselus. upus. L., Swift; C. mella L., (ulpiurs), Alpine Swift.

Fam. Caprimulgidæ. Goatsuckers. Clamatores, with short, uneommonly flat, triangular beak. Their size varics from that of a lark to that of a raren. Plumage soft, owl-like, and of the colour of the bark of trees. The legs are very weak and short. Hind toes half turned inwards, but ean also be turned forwards. The middle toe is long, and sometimes has a serrated elaw. They live for the most part in forests, and feed espeeially on moths, which they catch in their open mouth, during their swift, silent flight. As a rule they lay two eggs on the bare ground, without even scraping a hole for their reception. Caprimulgus L., the buccal slit extends to close below the eyes. Edge of beak not dentated, is fringed with stiff bristles. C. curoppreses L. ; C. ruficollis Temm., Spain.

Tribe 4. Dentirostres. Principally Oscines with variously-shaped, often thin and pointed, sometimes slightly curved beak; upper beak is more or less notched at the point. In the wings, which are of medium length, the first of the ten primary remiges is reduced, and may be eutirely absent.

Fam. Corvidæ. Beak strong and thick, somewhat curved anteriorly and slightly notched. Curvus corux L., Raven ; ('. cornix L., Hooded Crow; C. corone L., Carrion Crow ; C. fiutilegus L.. Rook: C. monedula L., Jackdaw: Picu candata Ray, Magpie; Garrulus glundarius L., Jay; Oriolus galbulu L.. Golden Oriole.

Fam. Paradiseidæ. Birds of Paradise. With slightly curved, compressed beak. Feet very strong and toes large. The two middle reetriecs are often clongated and filitorm, with sinall vane only at the extremity. Male with tufts of lax feathers at the sides of the body, and also on the neck and breast. Parardisen aporda L.: : Cincinnurus. refins. L., New Guinca, (fig. G6i3.)

Fam. Sturnidæ. Starlings. Oweines with straight or slightly curved, strong ixak, the point of which is rarely only slightly notehed, without rictal vibrissie. Sturnus rulyuris It, Starling : Pustor roscu. Tcmm., Rose-coloured Starling ; Buphetya afiricana L., Oxpeeker.
Here are allied Pipron umponla L.., Cayenne; Rupicolu crocer Bp., Cock of the Fock, South America, and the Cotingidæ.
Fam. Laniidæ. Shrikes. Large, powerful Oscines with hooked, strongly serrated beak, strong rictal vibrissie, and tolcrably long, sharply clawed fcet. Lamius cacubitur L., Grey Shrike; L. minor L., Lesser Grey Shrike; L. rufus Briss., Woodehat Shrike ; L. collurio L., Red-backed Shrike.

Fam. Muscicapidæ. Flycatchers. Beak short, broad and depressed at the

Fig. ifis.-Cincimurrus regius (male and female).
base, somewhat compressed anteriorly, with hooked curvod point. Muscicapa grisola L.; M. atricapilla L.; N. collaris Becbst., (albicollis) : Bomluycilla garmla L.. Waxwing.

F'am. Paridæ. 'Titmice. Small, bcautifully coloured, and very agile Oscines, of stout build, with sharp, short. almost conical beak. Parus major. L., Great Titmouse: P. ater L., Coal Titmouse ; P. carulews L., Blue Titmouse; P. cristutus. L.. C'rested Titmonse ; I'. palustris L., Marsh Titmouse ; P. coudatus L., Long-tailed Titmonse; AcyitluTus pendulinus L., Penduline Titmouse ; Sitta curopece L., Nuthatch.

Fam. Motacillidæ. Wragtails. Slender body; bcak tolerably long, and notched at the point. Autlus pratensis Bechst., Meadow Pipit; Motacilla alba L.. M. fluva L.: M. sulplurra Bechst. ; Aecentor ulpinus Bechst., Alpine Accentor.

Fanc. Sylviidx, small Oscines, with thin and pointed beak and metatarsus eovered with seales in fromt. Syllcia nisuria Bechst., Barred Warbler; S. atricopilln Lath., Blackeap; Plyyllopmeruste hypulais Bechst.; Troglondytes parvulus Koch, Wren; Regulus oristatus koch; IR. ignicapillus. Naum., Fireerested Wren.

Fam. Turdidæ. 'Thrushes. 'The beak is tolcrably long, somewhat compressed, and slightly notelied before the point, and furnished with vilorissit at its base. The metatarsus is long, and covered with an anterior and two lateral scales, laminiplantar. Cïnclus: aquaticus Beehst., Dipper ; Luseinia phitomela Beehst., Thrush Nightingale, large nightingale in East Europe ; L. luseiniu L., Nightingale; L. sureica L., Blue-throat; L. rubienla L., Robin; Tíurlus prilaris L., F'icldfare ; 'T. musious L...Thrush ; T. Iliacus L.., licdwing ; ''. torquatus L., Ringonzel ; 'T', mernla L., Blackbird; T. sarutilis. L., Rock Thrush; T. migratorius L., American lobin; T. eyanus L., Blue Thrush. The Lyre-lird (Menura superbra, Dav.) - a large bird found in New Holland-is allied to the Thrushes in the form of its beak.

Tribe 5. Conirostres. Oscines of small size, with thick head and powerful, conical beak, with short neck, wings of medium length and ambulatory feet (p. cmbulutorii). The metatarsus is short, and is covered with scales in front. They feed on corn and seeds, berries and fruits, but do not despise insects.

Fam. Alaudidæ. Larks. The plumage is earth-coloured ; the beak is of medium length, the wings broad and long, and the tail short. Alanda arvensis. L., Skylark; A. arborea L.. Woodlark; A. eristata L., Crested Lark; A. alpestris L.. Shore Lark: A. calandra, Calandra Lark, South Europe.

Fam. Fringillidæ. Finches. With short, thick, conical heak. without noteh, but with a basal swelling. Emberiza citrinella L., Ycllow Bunting ; E. cia L., Meadow Bunting ; E. niralis L., Snow Bunting ; Fringilla coelebs L., Chaffinch: F. spinus L., Siskin; F. carduelis L., Goldfinch ; Passer dumesticus L., Houscsparrow ; P. montanus L., Tree-sparrow: Cocrothraustes rulgaris Pall., Hawfinch: Pyrvlhula vulgaris Briss., Bullfinch: P. canarin L., Canary; Loxia rurvirostra Gm., Crossbill.

Fam. Ploceidæ. Weaver-birds. Build purse-shaped nests. Live in Africa, East India, and Australia. Ploceus textor Gray ; Pl. sucius Gray.

Order 7.-Raptatores (Birds of Prey).

Powerfully-built birds, with curved beak, looked at the extremity, and strongly clawed feet (p. insidentes). They feed mincipally on warm-blooded animals.

The Raptatores are characterised by their powerful build, by the ligh development of their sense organs, and by the special development of their beak and of the armature of the feet, by which they are fitted for their peculiar mode of existence. The compressed root of the beak is covered by a soft cere, which surrounds the nasal apertures. The cutting edges, and the hooked and downwardly-
curved point of the upper beak are always hard and horny. The strong toes, of which the outer can be turned backwards or forwards, are always armed with powerful claws, which are adminably adapted for the seizure of prey. The feet are p. insidentes, and are feathered to the intertarsal joint, rarely to the toes. Before the digestion the food is softened in the crop, from which the feathers and hairs rolled together in balls are ejected as the "castings." As a rule the female alone incubates, but the male assists in procuring food for the helpless young. Some genera of Owls and Falcons are cosmopolitin.

Fam. Strigidæ. Owls. With large, anteriorly direeted eyes, which are surrounded by a cirele of stiff fenthers, sometimes in a veil-like mamer; with strong, hooked beak, bent downwards from the base. The ear has usually a membranous opereulum and external cutancous fold, on which the feathers may be grouped, so as to give the appearanee of a coneha. Strix Hammer. L., Barn Owl (fig. 664) ; Syrnium aluco L., Tawny Owl ; Otus vulgaris L... Long-cared Owl : O. brachyotus Gm., Short-eared Owl ; Bulo maximus sibb., Eagle Owl; Ephicultes scops L., Scops Owl, South Europe ; Surnia passerina Blas., Sparrow Owl : Nyctea nicea Daud., Snowy Owl.
Fam. Vulturidæ. Vultures. Iraptatores of large size, with long, straight beak, only bent downwards at the tip. Nares often pervious (Cathartine). Head and neek often in great part naked. The head sometimes bears lobed appendages; the neek is often surrounded by a collar of down and feathers. Sarcorthamphous gryphus Geoffr., Condor; S. papa Dum., King-Vulture: South Ameriea; Cathartes aura IIl.; C. ctratus

Fig. 664. - Head of Strix flammer. Baird, Turkey Buzzard, South Ameriea; Neophron percnopterus Sav., Egyptian Vulture ; Vultur cincreus Gm., Sonth Europe; Gyps fulvus Briss; Gypaëtus barbatus Cnv., Lämmergeier; South Europe.

Fam. Accipitridæ=Falconidæ. With shorter and usually dentated beak. feathered head (rarely with naked ehceks) and neek. Metatarsus of medium length, and sometimes feathered.

Aquila chry.sac̈tos L., Golden Eagle, South Germany; B. imperialis Kais. Blas., Imperial Eagle, South Europe ; A. fulva M.W.. Golden Eagle, T'yrol ; A. naeria Briss., Spotted Eagle ; Haliaëtos allicillu Briss. (ossifrayus L.). Sea Eagle, Europe, North Africa; Paudion Laliaëtos, Cuv., Osprey, Northern hemisphere.

Hilures regalis Briss., Red Kite. Scizes its prey from other birds, and only takes small animals-as hamster-rats, moles, and mice; M. uter Daud., Black Kite.

Butco culguris L., Buzzard: B. lugopus L., Rough-legged Buzzard: Perrnis apicorus C'uv., Honey Bnzzard.

- L.stur palumburius. L., Goshawk; Nisus communis: Cuv., Sparrowhawk.

Falco tinnuисulus: L., Kestrel ; Tr. peregrinus. L... Peregrinc-faleon ; tr. crundidu.s (im. $=$ gyrfalco L.. Jer-falcon.

Circus rufus L. (ceruginusus), Marsh Harrier ; C. cyuneus L.. Hen Harrer.

F'am. Gypogeranidæ. Slender buty, with long meck, long wings aud tail, and much elongated metatarsis. Reak with extended cere. laterally eomprowed and strongly curvel. Cigpogerumus serpenturius Hil., secretary bircl. Filiebadly, bat rums well ; preys on shake in Africa.

11. RATITIE.

Birds incapable of flight, withont sternal keel, and without firm remiges or rectrices.

> Order 1. Cursores.

Ratitce of considerable locl!y sire, with three-toed or asceptionally with two-toed cursorial feet.

The Ostriches, which are the largest of living birds, possesm a broad and flat, deeply-slit beak with a hlunt point. a relatively small, in part naked, head, a long, slightly feathered neck and long powerful cursorial legs. Besides the reduction of the wing-bones, there are other peculiarities of skeletal structure which characterise these birds as being exclusively cursorial. Almost all the bones are heary and massive, with much reduced pnemmaticity. The sternum has the form of a broad, slightly arched plate, without any trace of a keel. The clavicle also is undereloped, and the uncinate processes of the ribs are rudimentary or entirely absent. The plumage corers the body with tolerable uniformity, except that there are naked places on the head, the neck, the extremities, and the abdomen ; but does not present any regular arrangement of pteryle ; it approximates in its special structure to the hairy corering of Mammatia (Cassowary). While the down is much reduced, the contour-feathers have a more down-like appearance on account of their flexible shaft and lax vane. or they may be stiff and hair-like with setiform barbs, or sometimes; as in the wings of the Cassowary, they are spine-like.

Fam. Struthionidæ. Two-toed Ostriches, With naked head and neck. pubic symphysis and long, eompletely naked, two-toed legs. They inhabit the plains and deserts of Africa. They live in companies, and are polygamous. Struthie camelus. L., Ostrich.
Fam. Rheidæ. Three-tocd Ostriehcs. With partially feathered head and neck. and threc-tocd feet. They inhabit Amerien. Rhou americanu Lam.. Rhea.
Fam. Casuariidæ With high, almost compressed beak, and usually a helmetshaped, bony knob on the head, with short neck and three-toed legs, Dromerue Norer Hollandice Gray, Emeu, Australia: Casuurius gulcutu. Vicill., Cassowars, New Guinea [Ceram].

The reduction of the wings in terrestrial birds is not confined to the Ostriches ; but is also characteristic of a number of very strangely organised forms which differ so much from each other that they deserve to be separated into several orders. These birds belong principally to New Zealand; also to Madagascar and the Mascarenes. some of them are extinct, but have only become so within historic times.

In the uninhabited forest regions of the north island of New Zealand there still lives, though gradually approaching extinction,

Fic. 665.-Apteryx Owemii.
an extremely remarkable bird-the Kiwi (Apteryx Mantelli = Australis Shaw), which is sometimes placed among the ostriches and called the Dwarf Ostrich. A second species of the same genus (A. Owenii) belongs to the south island, on which another larger form (Rourou) is said to exist, and has been distinguished as a third species (A. maxima. Verr.). These birds (Apterygia), which are about the size of a large hen, are entirely covered with long, hair-like feather's, which hang down loosely and completely hide the rudimentary wings. The short, powerful legs are covered with scales; the three anteriorly. directed toes are armed with claws adapted for seratching; the hind toe is short and laised from the ground. The head, which is borme

On it short neck, is prolonged into a long and rounderl, snipe-like beak, at the extreme point of which are the nasal apertures. The Kiwis are nocturnal lirds, which by day remain concealed in holes in the earth and go out at night to seek their food. They feed on insectlarve and worms, live in pairs, and at the breeding time, which seems to come twice in the year, they lay, in holes scraperd in the earth, a strikingly large egrg, which according to some is incubated by the female, and according to others by the male and femate in turn.

A second group of terrestrial birds of New \%ealand, which are incapable of flight, includes a number of forms which are in great part extinet, and some of which attained an enormous size (up to ten feet high). These are the Dinornithidæ. Of heavy, nuwieldy buikd, and incapable of raising themselves from the ground, they were unable to resist the pursuit of the natives of New Zealand. The remains of some have been found in the diluvium, and in some cases the bones appear so recent, that it cannot be doubted that they co-existed with man. The traditions of the natives about the gigantic Moa, and numerous discoveries of the fragments of eggs in graves, also point to the fact that these gigantic birds have lived in historic times; while, on the other hand, recent discoveries have rendered probable the existence of smaller species at the present day. Recently in the exploration of the mountain chains, between the Rewaki and Tabaka rivers, the footprints of a gigantic bircl, the bones of which were already known from the volcanic sand of the north island, have been discovered. The restoration of the skeleton of gigantic species (Palapteryx ingens, Dinornis giganteus, elephantopus, etc.) has been partially effected from the bones which have been collected. A skeleton of Dinornis elephantopus is in the British Museum, and one of P. ingens has been set up in Vienna by Hochstetter (Voyage of the Novara). In Madagascar pieces of the tarsal bones of a gigantic bird have been found in the alluvium (Epyornis maximus -the Reek of Marco Polo), and well-preserved, colossal eggs have been discovered in the mud, the contents of which would have been equal to about 150 hen's eggs.

CHAPTER IX.

Class V.-MAMMALIA.*

H'arm-blooded, heiry animals with double occipital condyle. They are viviparous and suckle their youny with the secretion of mill (mummary) glands.

As opposed to Birds, Mammals are adapted, by the similar structure of the two pairs of extremities, to live principally on land. There are, however, in this class also forms which are fitted in various degrees for an aquatic life, and even live entirely in water, and again forms which move and find their food in the air.

The surface of the skin is rarely quite smooth as in the Cetucect, but is traversed by numerous curved, spiral, and partly crossing furrows, and in many places (sole of foot, ischial callosities) is thickened and indurated, so as to form firm, horny plates.

The hairy covering is to Mammalia (named "Inacothiere" by Oken), what the plumage is to Birds. Hairs are never entirely absent; even the huge aquatic forms and the largest of the tropical terrestrial species which seem to be naked, possess hairs on certain parts of the body ; e.g., the Cetccecc have short bristles, at least on the lips. Hairs, like feathers, are epidermal structures (fig. 666.) The bulbous root is placed on a vascular papilla (pulpa), at the bottom of a pit, which projects into the cutis and is lined by epidermal cells (hair-follicle) while the upper part, or shaft, projects freely on the surface of the skin. Two kinds of hairs may be distinguished, according to the strength and rigidity of the shaft, viz., contour hairs and woolly hairs. Woolly hairs are delicate and curled, and surround in larger or smaller numbers the base of each contour hair. The finer and warmer the fur, the more numerous are the woolly hairs (winter-fur). When the contour hairs have a greater strength they become bristles,

[^196]and when still stronger ind thicker they constitute mpines (Hedgeloow, Porcupine.) To tho stronger hain's are attarcherl smooth inuscles of the dermis, by means of which cach one of them wan be moved singly, While the striped musculan system of the dermis caluses the bristling of tho hairy covering and the erection of the spines over latger. extents of surface.

The epidermis may also give rise to smaller lormy scales as well as to large overlapping scales: the former on the tails of Porlents anrl Marsupials, the latter upon the whole dorsal and lateral surfaces of the Pangolins (Manis),

FIG. 666.-Section through the human scalp. Ep, Epidermis; Ul, transverse bands of the connective-tissue of the cutis; $U_{\text {}}$, longitudinal bands of the same; H, hair; $H z$, root of hair ; P, hair papilla; $I I b$, Hair follicle; M_{a}, musculus crector pili; T, sebnceous gland ; $S D$, sweat glond; F, fat loorly. which thins possess is horny epidermal exoskeleton. Another form of exoskeleton is found in the Armadillos; it arises by ossification of the dermis, and consists of suturally united plates, and in the middle of the body of broad, movable, bony girdles. Amongst the dermal ossifications must also be reckoned the antlers of the Deer which wre periodieally renewed. The homy sheaths of the Cavicormia, the horns of the Rhinocrritce and the varions hormy corerings of the extremities of the digits are epidermal struetures. The latter may be distinguisherl into nails (ungnis lamnaris, unguis tegularis), claws (fulorta), and honfs (ungula.)

Cutaneous glands.-Sweat glands and sebaceous glands (fig. (ifiti) are widely distributed. Selaceous glands are invariable accompaniments of the hair follieles, but they are also foumd on naked parts of the skin ; they seerete a fatty grease, whieh keeps the surface of the skin soft. The sweat glands have the form of eoiled glandular tuber with sinuous ducts, and ine only seldom absent (Cetacce, I/us, Tulfur).

The larger glands, with strongly smelling secretions, which open on various parts of the integument of many mammals, are to be regarded as modified sebaceons or more lurely sweat glands. As examples of such glands may be mentioned - the occipital glands of the Camel, the glands which ise placed in a depression of the lachrymal bone of Cervers, Antilope, Ovis, the temporal glands of the Elephant, the facial glauds of the Bat, the pedal glands of Ruminants, the lateral glands of the Shrewmouse, the sacral gland of Dicotyles, the caudal glands of the Desman, the crural glands of the male Monotremes, etc. These excretory organs are most frequently found near the anus, or in the inguinal region, and are then often placed in special

Fru. Git7.-Skull of a goat, from the side. Ol, exoccipital; C. condyle; $P_{i n}$, paramastoid process; $O_{s,}$, supra-occipital: $S q$, squamosal; $T y$, tympanic ; $P e$, petrous (mastoid portion); P(t, parietal; Fr, frontal; La, lachrymal; Na, natal; Fo, optie toramen; $U x$,

cutaneous pits -e.g., the anal glands of many Carirora, Podentic, and Eidentuta, the civet gland of the Virerridue, the musk pouch of Moschus moschiferus, and the preputial glands of the male Bealver.
The skeleton is formed of heavy bones containing matrow. The skull (fig. 667) is a spacious capsule, the bony pieces of which are only exceptionally (Orrithorhynchus) fused in early life, but as a rule they remain for the most part separated by sutme throughout life. There are, however', many cases in which in the adult animals the sutures have partly or wholly vanishel (Ape, Weasel). The great extension of the cranial capsule is due not only to the large size of the roof of the skull, hat also to the fact that the lateral bones
of the skull in plate of the interonbital septum extend forwand into the ethmoid region. Thus it happens that the ethmoid (laminu cribrose constitutes the boundary of the anterion and lower prart of the skull (fig. (668). The temporal bones also take an essential part in bounding the canial cavity, since not only the petrous and a part of the matoid,* but also the large squanossal occupy the space remaining between the alisphenoids and exoccipitals. The occipital always articulates with the first cervical vertebra (rullus) by two condyles, and its lateral portions (exoccipitals) frequently present it pyramidal process on each side (juyular or paramustoid mocess). The presphenoid and basisphenoid (fig. $6(68$) often remain separate

Fig 668. -Median longitudinal section of shecp's skull, from inside. Ob, Basi-occipital ol, exoceipital; Os, supra-occipital; $P e$, petrous; $S_{p} b$, basi-sphenoid; P_{r}, preesphenoid : Als, alisphenoid; $O_{r} r$, orbito-sphenoid ; $P_{(1,}$, parietal ; F_{r}, frontal; $\leqslant f$, frontal sinus ; Eth, ethmoid; Na, nasal ; C, ethmoturbinal ; Ci, inferior turbinal ; Pt, pterrgoid; Pal, palatine; To, vomer; Mr, maxillary; Jmx, præmaxillary.
for a long time. To the latter are applied the alisphenoids with the parietals, which belong to this region. An interparietal is often developed behind the parietal ; it is, however, usually ankylosed with the supra-occipital, more rarely with the parietal. The frontal bones constitute the roof of the skull in the region of the orbitosphenoids; they are less frequently fused than are the parietals. The temporal bone hats several constituents-(1) The petrous portion, which is composed of the three pieces of the periotic capsule-the mo-, opistho-, and epiotic ; (2) the mastoid portion, which is a part of the epiotic; (3) the squamous portion or squamosal, which is a larger bony scale; (4) the tympanic bone, which is attached to the squamosial, hounds

[^197]the external auditory meatus, and is frequently dilated to a projecting catpsule (tympanic bulla). Postfrontals are absent. The perforated cribriform plate (lamina cribrosa) of the ethmoid forms the anterior boundary of the cranial cavity. In the Apes and Man only, do the lateral parts of the ethmoid (the part known as lumina papyrucece) take part in the formation of the inner wall of the orbit. In all other cases the ethmoid is placed in front of the orbit, and its sides are covered by the maxillaries; in such cases it has a considerable longitudinal extension. Two parts may be distinguished in the ethmoid-(I) A median plate-the lamina perpendicularis--which is continued in front into the cartilaginous internasal septum, and is underlaid by the vomer; (2) the lateral masses, with the lamina cribrosa and the labyrinth (ethmoidal cells and the two upper turbinals) ; the first corresponds to the unpaired ethmoid, the second to the prefrontals of the lower Vertebrates. Finally, in the anterior part of the nasal cavities there are, as independent ossifications, the inferior turbinals (maxillo-turbinals), which are attached to the inner surfaces of the maxillary bones. On the outer surface of the ethmoid region are placed, as membrane bones, the nasals above and the lachrymals to the sides. The lachrymal (absent as an independent bone in the Pinnipedice and most Cetacea) is placed in the anterior wall of the orbit ; but usually also appears as a facial bone on the outer surface.

The firm fusion of the maxillo-palatine apparatus with the skull and the relation of the mandibular suspensorium to the tympanic cavity, are characteristic of the Mammalia. The lower jaw articulates directly with the temporal bone without the interposition of a quadrate, the morpliological equivalent of which is shifted, in the course of development, into the tympanic cavity and transformed into the incus, while the upper part of Meckel's car'tilage (articulare of the lower jaw) becomes the malleus (Reichert). The stapes, on the contrary, is said to be developed from the upper piece of the hyoid arch (hyomandibular'). The maxillary, pterygoid, and palatine bones have similar relations to those of the Chelonia and C rocodilicu, but a quadratojugal is always wanting, since the jugal is applied to the squamosal. A palatal roof (hard palate) separating the buccal and nasal cavities is always present; the posterior nares open at its hind end.

The cranial capsule is so completely filled by the brain in the Mammalia that its internal surface presents a relatively accurate impression of the surface of the brain. Owing to the considerable size of the brain the cranial capsule is far more spacious than in any
other class of Vertebrates: but it presents great variations in this respect in the individual groups, more especially with regard to the development of the face, the prominence of which in general varies inversely with the development of the intellectual faculties (Camper's facial angle). The hyoid hone is reducer to a transverse, loridge-like price (body of the hyoid), with two pairs of cornu. In Mycetes it is largely developed and excavated.

The vertebral column, except in the Cetacea, is divided into five regions, viz., cervical, thoracic, lumbar, sacral and caudal (fig. 669). In the aquatic Cetacean, which are without hind limbs, the lumbar

Fig 669.- Skeleton of the Lion (after Giebel; Bronn's'Classen wad Orduungen). St, sternum: $S c$, scapula ; H, humerus ; R, radius ; V^{\top}, nina ; $C p$, carpus ; Mc, metacarpus ; JV, ilium; P, pubis; $J s$, ischium ; $P C$, femur ; T, tibial $F T$. fibula ; P, patella; $T \varepsilon$, tarsus ; Mt, metatarsus ; C, calcaneum.
region passes gradually into the caudal; on the other hand the cervical region is strikingly shortened, and the fusion of its anterior vertebrae renders it rigid and immovable. The vertebral bodies are only exceptionally (neck of Ungulates) connected by articular surfaces, but are usually joined by elastic discs (intervertebral ligaments). The first cervical vertebra (atlas) is a bony ring with broad, wing-like, transverse processes, on the articular surfaces of which the two occipital condyles rest and permit of the heal being raised and depressed. The turning of the head to the right and left is effected by the movement of the atlas about a median process-the odontoid process-- of the next rertemia, which is called the ards (ep)istrophers).

This process corresponds morphologically to the centrum of the atlas, which is separated from the latter and joined to the centrum of the axis.

The dorsal vertebrat are characterised by high, crest-like, spinous processes, and by the possession of ribs. The anterior ribs are attached by curtilage to the sternum, which is usually elongated and composed of a number of bony pieces arranged one behind another; the posterior ribs (the so-called "false ribs") do not reach the sternum. The ribs articulate with the vertebre by means of a cipitulum and a tuberculum. While the number of cervical vertebre is almost constantly seven, that of the dorsal vertebree is subject to a greater variation. As a rule there are thirteen, sometimes twelve dorsal vertebre; but there is a less number in some Bats and Armadillos, while there are fifteen or more in some animals. The Horse has eighteen, the Rhinoceros and Elephant nineteen to twenty, and the three-toed Sloths have twenty-three to twenty-four. The lumbar rertebre, which have long lateral processes in place of ribs, are usually seven in number. The number rarely sinks to two as in Omithorhynchus and the two-toed Anteaters, and still more rarely rises to eight or nine (Stenops). The sacral vertebree, which vary in number from two (Marsupials) to four, more rarely nine (Armadillo), are firmly united with one another, and by their transverse processes (with the rudiments of the ribs) with the iliac bones. The caudal rertebree, which rary considerably in number and mobility, become narrower towards the end of the axis of the body, and often (Kangar'oo and Anteaters) possess inferior spinous processes ; but all the processes become less and less conspicuous towards the posterior extremity.

The anterior pair of extremities is never absent. The clavicle is absent when the anterior limbs serve only for the support of the anterior part of the body in locomotion, or perform simple, pendulumlike morements, as in swimming, walking, rumning, jumping, etc., (Whales, Ungulates, Carmivora). Otherwise the scapula is connected with the sternum by a more or less strong, rod-shaped clavicle. The coracoid is almost always reduced to the coracoid process of the scapula: in the Monotremata only is it a large bone which reaches the sternum. The posterior extremities are more firmly connected with the body than are the anterior. In the Whales alone is the pelvic girdle rudimentary, and is represented by two rib-like bones which are 'fuite loosely' comected with the vertebral column. In all other Mammals the pelvic girdle is fused with the lateral parts of
the sacrum, and is closed ventrally by the symplysis of the pubis and sometimes also of the ischimm. The appendacges articulated to the pectoral and pelvic girdles are considerably shortened in the swimming Manmalia, and either constitute, as in the C'elucea, flat fins, the bones of which are immovalble upon one another. (in the Sirenia there is a joint at the elbow), and in which there are a great number of phalanges, or, as in the Pinnipectia, lave the form of fin-like legs, which can also be used in locomotion on land. In the Cheiroptera (Bats), the anterior legs present a large surface in consequence of an expansion of the integument (pulayium) uniting the fore-limbs with the sides of the body, and extended between the elongated fingers. The fins of the Cetacea and the wings of the Cheiroptera are, with the exception of the thumb of the latter which projects from the patagium and hears a claw, without nail-like structures.

In the land Mammalia the extremities present considerable variations both in their length and special structure. The length of the tubular lumerus in general varies inversely with that of the metarcarpus of the anterior extremity. The rodius and uluce in the forelimb and the tibica and fibulco in the hind-limb are almost always longer than the humerus and femur respectively. The ulnc forms the hinge-joint of the elbow, and is prolonged at this point into a process called the olecranon; the radius, on the other hand, is connecterl with the carpus, and can often be rotated round the ulna (pronation, supinution) ; in other cases it is fused with the ulna, which then constitutes a rudimentary, styliform rod as far as the articular process. In the hind-limb the knee-joint projects forwards, and is usually covered by a knee-cap, the patella; the fibula is sometimes (Marsupials) movable on the tibia, but as a rule these two bones are fused, and the fibula which is placed posteriorly and externally is usually reduced. The variations in the terminal parts of the limbs are far more striking (fig. 670). The number of digits is never greater than five, and is often less. The digits disappear in the following order: firs', the inner digit or thumb (digit No. 1), which is composed of iwo phalanges, becomes rudimentary and vanishes; then the small outer digit (digit No. 5) and the second inner digit (digit No. 2) are reluced, sometimes remaining ou the posterior surface of the foot (Ruminants) as small accessory claws which do not reach the ground, or totally ramish. Finally the second external digit (No. 4) is reduced or absent, so that the middle digit alone remains for the support of the limb (horse).

This gradual reduction of the digits is accompanied by a simplification and alteration of the carpal and tarsal, metacarpal and metátarsal bones; the metacurpals (metatarsals) of the rudimentary or absent digits are reduced to styliform bones or are entirely absent, while the two middle metacarpals (metatarsals) (3 and 4) are often united to form a strong and long tubular bone. The small carpal and tarsal bones which are employed in the formation of the foot-joint, and serve essentially to diminish the shock produced by the movements of the limbs when used in locomotion, are arranged usually in two, sometimes in three rows; in the tarsus, two bones-the astragalus and calcaneum-are usually much larger than the rest. The

Fig. 670.-Skeleton of hand of-u, orang ; $b, \log ; c, p i g ; c l$, ox $; e$, tapir ; f; horse $(b, c, d$, after Gegenbaur). R, radiu:s; U, ulna; A, scaphoid; B, semi-lunar; C, wiquetrum (cunciform); D, trapezium ; E, trapezoid ; F, capitatum (magnum); G, hamatum (unciform) ; P, pisiform ; C, centrale carpi ; M, metacarpus.
digits of the anterior foot may be called fingers after the analogy of the human hand. The anterior foot becomes a hand when the innerfinger or thumb is opposable. The great toe of the posterior foot is also sometimes opposable, but the foot does not on this account become a hand, but only a preliensile foot (Apes); for the hand is characterised ly the special arrangement of the carpal bones and muscles. According to the manner in which the foot rests on the ground in movement, animals are distinguished as plantigrades, digitigrades and unguligrades. In the last case the number of digits and metacarpals (and metatarsals) is reduced, and the limb is much elongated by the transformation of the metacarpal (metatarsal) bone into a long tubular hone.

The nervous system (fig. (i71) is chanacterised by the rize and high derelopment of the brain, the hemispheres of which are so large that they not only fill the interior part of the cranial cavity, but eren

Fig. 671.-Brains of Mammalia. ", Brain of rabbit, from above ; the roof of the right hemisphere is removed so as to expose the lateral ventricle. b. The same from below. c, Brain of eat; on the right side the lateral and posterior part of the hemisphere is removed, and almost as much on the left side, and the greater part of the hemispheres of the cercbellnm have been removed. d, Brain of orang (κ, b, c, after Gegenhaur : d, from the règne animal). $17 h$, cerebral hemispheres; $N H /$, corpus quadrigeminmm; $C b$, cerelelltum ; Mo, Imedulla oblongata; Lo, olfactory, lobe : 11 , optie nerve: $\mathrm{V}^{N} \mathrm{~N}$, trigeminal; VII $V I I I$, facial and auditory nerves; $I I$, brpoplyssis ecrelori; Th, optic thalamus; $S r$, sinus rhomboidulis.
partly corer the cerehellum. In the Marsupials and Monotremes the surface of the hemispheres is still smonth; but in the Edentates. Rodents, and Tnsectivores it is marked by depressions and ridges. which in the higher forms become regular furrows (sulci) and comso-

Lutions ($\left.y y_{i} i\right)$. A commissure (compus callosum) commecting the two hemispheres is well-dereloped, and rudimentary only in the Aplacentalia. On the other hand the optic lobes, which are known as the corpora quadrigeminu, and are the equivalents of the corpora bigemina of the lower forms, are reduced in size, and are in great part or entirely covered by the posterior lobes of the hemispheres. The pituitary body (hypophysis) and the pineal gland are never absent. The cerebellum in the Aplacentalice resembles that of the birds in the disproportionate development of its median lobe. There are, however; numerous intermediate stages between such a cerebellum and a cerebellum in which the lateral lobes are largely developed. The pons $T^{\text {arorolii also is little developed in the lower. }}$ forms, but in the higher Mammals is increased to a large swelling at the point where the brain is prolonged into the spinal cord. The twelre cranial nerres are completely separated. The spinal cord usually extends only as far as the sacral region, where it ends with a caucda equince; there is no posterior rhomboidal sinus.

Sense organs. -The olfactory organ presents, on account of the complication of the ethmoidal labyrinth, a greater development of the olfactory mucous membrane than in any other class. The two nasal cavities, which are separated by the median septum, often communicate with spaccs in the neighbouring cranial and facial bones (sinus frontales, sphenoidules, maxillares), and open externally by paired apertures; in the C'etacea, which have no sense of smell, the latter may be fused to form a median opening (Delphinider). In this case the nasal passages serve only as air-passages. The nasal openings are, as a rule, supported by movable cartilaginous pieces, which in some cases are largely developed and lead to the formation of a proboscis, which is nsed as a burrowing and tactile organ, and when greatly developed (Elephant) as a prehensile organ. In the diring Mammals the nasal apertures can be closed by muscles (Phocicte) or by valvular apparatuses. A nasal gland is often present on the external wall of the nares, or in the cavity of the upper jaw (maxillary simus). The olfactory nerve is distributed as in the Birds on the superior turbinal bones, and on the upper parts of the nasal septum. 'The intermal nares are always paired and open into the pharynx, far back at the end of the soft palate.

The eyes (rol. i., fig. 88) present rarious degrees of development; they are always small in the Mammals which live bencath the earth, and in some cases (Spalax, (hrysochloris) are quite hidden beneath the skin, and are incapable of receiving luminous impressions. They
are usually placed at the sides of the head in an incompletely closed orbit (continuous with the temporal forssa). As a lule, cach cye has a separate field of vision; a convergence of the optic axes is only possible when the cyes are placed on the front of the head (Primutes). Besides the upper and lower eyelids there is an internal nictitating membrane (with the Harderian gland), which is, however; not fully developed, and is without the muscular apparatus of the Birds' nictitating unembrane; it is sometimes reduced to a small rudiment (plica semilunaris) at the inner corner of the cyc. The cyeball is nore or less spherical (in the Cetucect, etc., with shortened axis), and

Fig. 672.-The human car (combined represeutation) with vicw of the tympanic membrane from the tympauic cavity. Ge, External auditory meatus ; T, membrana tympaui ; $C t$ tympanic cavity ; Wu, Eustachian tubc; M, malleus; J, incus; $S t$, stapes closing the fenestra ovalis (F_{0}) ; F r, fenestra rotunda; r°, vestibule; C, cochlea; S, scmicircular canals.
can often be retracted into the orbit by a retractor bulbi. The lachrymal gland with its duct, which opens into the nasal cavity, lies on the upper and outer side of the orbit. The cloroid has a tapetum in the Carnivores, Pimipedes, Dolphins, Ungulates, and some Marsupials.

The auditory organ (fig. 672 , and fig. 578 , iii.) differ's from that of the bird principally in the more complicated development of the external ear, in the greater number of sound-conducting bones (stupes, incus, malleus), and in the form of the cochlea, which is usually coilerl into two or three spiral passiages. The tympanic cavity is also mose spaciots, and is by no means always confined to the space
enclosed by the tympanic bone which often projects like at resicle (tympanic bulla), but is in communication with cavities in the neighbouring cranial boncs. The tympanic cavity is largest in the Cetacen, in which the sound is not transmitted, as in the terrestrial animals, by the tympanic membrane and the auditory ossicles to the fenestra oralis of the vestibule, but is conducted mainly by means of the bones of the head through the air of the tympanic cavity to the fenestial (f. rotunduc) of the unnsually large cochlea, and thence by the perilymph of the scala tympani. The three semicircular canals, with the vestibule and cochlea, are very firmly embedded in the petrous bone, which in the Cetacea is only connected by ligaments with the neighbouring bones. The Eustachian tubes open in the Cetacea alone into the nasal passages, in all other Mammals into the pharynx. An external ear (pinna) is wanting in the Monotremes, many Pinnipedes, and in the Cetccea, in which the external meatus outside the courex tympanic membrane is represented by a solid cord; it is rudimentary in the aquatic animals which are able to close the external opening of the ear by a valvular apparatus, and in the burrowing Mammalia. In all other cases it consists of a very variously-shaped external appendage, supported by cartilaginous pieces and usually moved by special muscles.

The sense of touch is mainly located in the skin of the ends of the extremities (tactile corpuscles on the tips of the fingers and on the surface of the hand of Man and the Apes); also on the tongue, proboscis, and lips, in which long bristle-like tactile hairs (vibrisse), embedded in follicles, with peculiar nervous ramifications, are very generally present.

The sense of taste has its seat principally at the root of the tongue (papillee circumvelletere, compare fig. 89 , vol. i), but also on the soft palate, and is far more highly developed than in any other class of unimals.

Dentition.-At the entrance to the digestive organs the jaws are almost always armed with teeth. Only individual genera-as Echidna, Manis, and Myrmecophaga-are entirely without teeth, while the whalebone Whales, which bear on the inner surface of the palate vertical horny plates (whale-bone), arranged in transverse rows (fig. 673), possess teeth, at least in the foetal condition. Horny teeth, produced by hardening of papille of the buccal mucous meml,rane, are present in Omithorlynnchus and Rhytina.

The dentition of the Mammalia is never so much developed as that of Fishes and Reptiles ; and the tecth, which are wedged into alvcoli,
are confined to the maxille, pramixilla', and mandible. 'The extermal part of the tooth (i.e., the part which projects from the gum, and is called the crown, as opposed to the root) is covered with the harder enamel, which consists of prisms anranged at right angles (o) the cavity of the tooth (pulp cavity). Two kinds of teeth may be distinguished--(1) Simple teeth ((l. simplices), in which the biyer of enamel forms a simple cap; (2) complicated teeth (1 . complicuti), in which the enamel is folded and penetrates into the dentine. When simple or eomplieated teeth are connected together by osscous tissue (cement), they are ealled eomposite teeth (λ. compositi-Hare, Elephant). Rarely, and only in those eases in which the dentition is used, as in the Crocodile, as a prehensile or cutting apparatus, are the teeth in all parts of the jaws alike, having the form and function

Fic. 673.-Skull of Balucnat mysticetus with the whalebone (règne animal).
of prehensile conical teeth (Dolphin). As a rule, they are distinguished according to their position in the anterior, lateral, ambl posterior parts of the jaw as incisors, canines, and grinders (back teeth). The incisors are chisel-shaped, and serve to cut the food; in the upper jaw they belong exclusively to the premaxillary hones. The canines, which are placed to the sides of the incisors, one in each half of the jaw, are conical or hooked, and serve principally as weapons for attack and defence; not unfrequently: however they are absent (Ruminants, Rodents), and there is a wide gap (diustema) between the incisors and the grinders. The latter are specially adapted for the finer mastication of the food, and theircrowns are usually provided with a tuberculated or grinding surface. The teeth either last thoughout life, and the dentition is not renewerd (Monophyodonta : Edentates, Cetaceans), or there is a single change of teeth (Diphiyodontu) (fig. 674). In the latter case the teeth which
are changed constitute the mill: clentition. The anterior grinders, which with the incisors and canines are replaced, are known as the premolars, as opposed to the posterior, true molars, which belong to the permanent dentition, and are not replaced. The true molars only appear after the milk teeth have been replaced, and are distinguished by the size and number of their roots, as well as by the extent of their crowns. Formulix, in which the numbers of incisors, canines, premolars, and molars in the upper and lower jaws are given, are used to indicate in a simple manner the nature of the dentition, e.g., the dental formula of man is

$$
\begin{array}{l|l}
2 & 12 \\
\frac{2}{2} & 1 \\
2 & \frac{3}{3}
\end{array}\left[\begin{array}{ll}
i \cdot \frac{2 \cdot 2}{2 \cdot 2} c \cdot \frac{1 \cdot 1}{1 \cdot 1} p \cdot m \cdot \frac{2 \cdot 2}{2 \cdot 2} m \cdot \frac{3 \cdot 3}{3 \cdot 3}
\end{array}\right] .
$$

Alimentary canal. In addition to the hard structures at the entrance to the digestive cavity, soft, movable lips which bound the mouth opening, and a fleshy tongue which is of very various form and lies on the floor of the buccal carity, are of special importance for the introduction and preparation of the food (fig. 675). In the Monotremata the lips are replaced by the edges of the beak. The tongue, however, is never absent, but it may be immovable, and completely fused with the floor of the mouth, as in the Whales. Its front part is mainly tactile in function, but in some cases

Fig. 67..--Dentition of Cebus (while changing the teeth) after Owen. i, Incisors: c Canines ; $p 1 p^{2} p 3$, Præmolars of the milk dentition; J1 J2 Incisors: r, Canine; P1 P2 P3, Præmolars of the permanent dentition M1M2M3, Molars. it is used to seize (Giraffe) or capture food (Ant-eaters). Varionsly shaped papillæ, which are often cornified and bear recurved hooks, project from its upper surface. The papille circumrallate alone have a relation to the sense of taste. The tongue is supported by the hyoid bone and by a cartilaginous rod, which represents the os interglossrm (Iyttct). The anterior cornua of the hyoid are attached to the styloid processes of the temporal bone, the posterior bear the laryn. Beneath the tongue there is sometimes (most developel in the Insectivora) a single or double projection, which is termed the lowertongue. The sides of the buccal cavity are soft and fleshy, and are not infrequently in the Rodents, Apes, etc., dilated into wide sacs, the so-called cheek-pouches. The soft palate (palatum molle) must be inentioned as a structure peculiar to the Mammalia; it coustitutes
the boundary between the buccal cavity and pharynx. All Mammals, with the exception of the carnivorous r'etucen, have salivary glands, a parotid, a submaxillary, and a sublingual, - the fluid secretion of
b

Fig. 675- Entrance to the digestive apparatus and the respiratory organs of the Cat (after C. Heider), $\quad a$, head with exposed salivary glauds. $\quad P$, Parotid; $M \Gamma$, Sul)-maxillary; Su, Sub-lingual. b, Longitudinal section through the Head and Thorax ; the Respiratory organs are seen from the side. N, Nasal apcrture; $N m$, Turbinal bones; M, Mouth; Z, Tongue ; Pa, Velum palati ; Oe, Oesophagus ; L, Larynx ; E, Epiglottis; Zb, Hyoid; Tr, Trachea; P, Lung; D, Diaphragm; T, Thyroil; B, Thymus; $T u$, Opening of Eustachian tube into the Pharynx; H, Cercbral hemispheres; C, Corpus callosum: C_{p}, Corpora quadrigemina; Cl , Cerebellum ; R, Spinal cord; Hy, Hypophysis; W, Vertebral column ; St, Sternum, c, Longitudiual section throngh the Larynx (L) and the first part of the Trachen ($T r^{\prime}$). S, Vocal cord ; E, Epiglottis.
which is poured out in large quantities, especially in the Herbirorcl. The esophagus, which follows the wide gullet, only exceptionally presents crop-like dilations; it is usually of considerable length, and opens into the stomach behind the diapluragm (rol. i., fig. 50). The
atomach is, ats a rule, a simple transversely placed sac, but is frequently divided by the gradual difterentiation and constriction of its anterior, lateral, and posterior regions into a number of parts, which are most completely separated in the Ruminants and distinguished as four separate stomachs. The pyloric region is principally distinguished by the presence of gastric glands, and is more or less sharply separated from the begimning of the small intestine by a sphincter muscle and by an inwardly projecting fold (pyloric valve). The intestine is divided into a small and a large intestine, the boundary between which is indicated by the presence of a valve and a cercum, which is especially developed in herbivorous animals. The anterior part of the small intestine, or duodenum, contains the socalled Brunner's glands in its mucous membrane, and receives the secretion of the large liver and of the pancreas. The liver is multilobed, and is sometimes without a gall bladder. When a gall bladderis present the bile duct (d. cysticus), and the hepatic duct (d. leepaticus) unite to form a common duct (d. choledochus). The small intestine is longest in animals which eat grasses and leaves, and is characterised by the numerous folds (velloulce comiventes) and villi of its mucous membrane, and by the possession of a great number of groups of glands (Lieberkiiln's, Peyer's glands). The terminal region of the large intestine or rectum opens, except in the Monotremata which are characterised by the possession of a cloaca, behind the urogenital opening, though the two openings are sometimes surrounded by a common sphincter (Mfarsupiculia).

The heart (fig. 676) of Mammalia, like that of Birds, is divided into a right renous and a left arterial portion, each with a ventricle and auricle (sometimes as in Itulicore the division is marked externally). It is enclosed in a pericardium, and sends off an arterial trunk, which forms a left aortic arch, from which two vessels frequently arise, riz., (1) a riglit anonyma, with the two carotids and right subclarian ; and (2) the left subclavian ; or, as in man, three vascular. trunks, viz., (1) a right anonyma, with the right carotid and right subclarian ; (2) the left carotid; and (3) the left subclavian, all close to one another. As a rule, a superior and an inferior vena cava open into the right auricle; more rarely, as in the Rodents, Monotremes. and Elcphants, there are two superior vene cave. Retice mirabiliu have been recognised principally for the arterial vessels, and are found on the extremities of burrowing and climbing animals (Stenops, Myrmecoplenga, Broulypus, etc.) ; on the carotids round the hypophusis, and on the ophthalmic arteries in the orbit in Ruminants:
finally on the intercostal interies ame the iliaf veins of the Dolphin. A renal-portal system is alwatys alsent.
'The lymphatic system is provided with numerous lymphatic glands, and its main timuk (ductues thorrecicus), which is placeed on

Fig. 676. - Circulatory apparatus of Man (from Owen after Allen Thomson). I'd, Right Ventricle ; I゙s, left Ventricle ; Ad, right Aurieie; $A s$, left Auricle; fo, Aortic arch; Aod, descending Aorta; Cd, right ('ilrotid) $C s$, left Carotid; $S d$, right subclavian Artory ; S_{s}, left subelavian Artery; $1 V$, Mcsenteric Artery; Jl, common Iliae Artery; l'u, inferior Vena Cava; I'd, superior Voua Cava; $J l^{\prime}$, common Iliae vein; V_{0}, Vena porte; Jd, right Jugular; Js, left Jugular; Sver, right subelavian Vcin; $S_{\text {Sus, }}$ left subelavian; Ap, pulmonary Artcry ; $I^{\prime \prime} p^{\prime \prime}$, mulmonary Vcin; Tr, Trachea; Br, Bronchi ; P, Lungs ; L, Liver; N, Kidney ; D, Intestine. the left, opens into thes superior venit cava.
()f the ro-called vascular glands the spleen, the thymus, and the thyroid, which is especially developed in the young, wre very generally present (fig. (i75).

The paired lungs (ifg. 675) are freely suspenderl in the thoracic cavity, and are dis. tinguished by the numerous ramifications of the bronclial tubes, the finest branches of which end with conical, fun-nel-shaped dilatations (i, fimadibula), which are provided on their lateral surfaces with swellings. Respiration is mainly effected by the movements of the diaphragim, which forms a complete. usually transversely placerl, septum between the thoracic and abdominal cavities: by the contraction of its muscular parts it acts as an inspiratory muscle ; that is, it dilates the thoracic cavity. The elevation and depression of the ribs also have an effect in dilating the thorax. The trachea is, as a rule, straight, without coils, and divides at its lowerend into two bronchi leading to the lungs. There may be, in addition, a small accessory bronchus on the right side. The trachea is supported by cartilaginous half-rings which are open behind, and only exceptionally by complete rings of cartilage. The first part of the trachen,
or larynx, is placed at the lower end of the pharynx, behind the root of the tongue ; it is supported by the posterior horms of the hyoid bone, possesses lower vocal cords, complicated pieces of cartilage (cricoid, thyroid, and arytenoid cartilages) and muscles, and co:.it:tutes in vocal organ.

In the Cetacea alone is the larynx, which projects in the base of the pharynx as far as the posterior nares, used exclusively for respiration. A movable epiglottis (almost tubular in the Cetaceu), attached to the upper edge of the thyroid cartilage, projects over the glottis. WThen food is being swallowed it sinks, and closes the glottis. Accessory cavities, with membranous or cartilaginous walls, are sometimes attached to the larynx. These sometimes function as air reservoirs, e.g., the air-sacs of Balcena, sometimes as a resonating apparatus for the strengthening of the voice, as in many Monkeys (Mycetes).

The kidneys (fig. 677) still sometimes consist (Seals, Dolphins) of numerous lobes united together at the pelvis of the kidney. As a rule, however, they are compact bean-shaped glands, lying in the lumbar region, outside the peritoneum. The ureters arise from the so-called pelvis of the kidney, and always open into a urinary bladder, placed in front of (ventral to) the intestine. The duct of the bladder, or urethua, enters into a more or less close relation with the ducts of the generative organs, and leads into a simus or wrogenital cancal opening in front of the anus. Above the kidney there is a glandular organ termed the suprarencul body.

The male sexual organs (fig. 675) of inost Mammatic are characterised by the change in the position of the testes. In the Monotremata and Cetacea alone do the testes remain in their original position near the kidneys, in all other cases they descend in front of the pelvis, and, pushing the peritoneum before them, enter the inguinal canal (many Rodents), or, still more frequently, pass through the inguinal canal into a double cutaneous fold, which is transformed into the scrotum. Not unfrequently (Rodents, Bats, Insectivores) they pass back through the open inguinal canal into the abdominal cavity after the breeding season: this is effected by the cremuster, a slip of muscle separated from the oblique abdominal muscle. The scrotum, as a rule, lies behind the penis: but in the Marsupials it is formed by an invagination of the integument directly at the entrance of the inguinal canal in front of the male copulatory organ. The coiled excretory ducts of the testes, which are derived from the Wolffian body, constitute the epididymis, and leal into the two casa deferenticu, which, after forming glandular dilatations (seminal vesi-
cles), open close together into the metha. At this point open the ducts of the mostates, which differ much in form, and are often divided into several groups of glauds. Further down a second pair of glands, known as (Yowper's !glands, opens into the wethra. Rewains of the Miillerian duct-, which in the female are used as the

Pig. 677.-Urinary and sexual organs of Cricetus vulgaris (after Gegenbaur). R, Kidney' ; C^{\top}, Uretcr ; H, Urinary bladder; T, Testis ; F, Funiculus spermaticus (Spermatic eorcl) ; N, Epididymis; Td, Vas deferens; Tr, Vesieulae seminales; Pr, Prostate ; $S g$, Urogenital sinus (Urethra); (ic, Cowper's glands; Gt, Tyson's glands; Cp, Corporn eavernosa penis; Cu, Corpus caremosum urethra; E, Glans penis; P P Prepuce. oviducts, fiequently persist between the openings of the vasit deferentia. 'They are called the orgun of Weber (uterus masculinus), and in the so-called Hermaphrodite: their parts are much enlarged, and may be differentiated in the manner peculisuto the female sex. In all cases the end of the urethra, which functions as a mogenital canal, is in connection with external copulator? organs: these always hare the form of an erectile penis. which, in the Monotremata, is concealed in a pouch in the cloaca. The penis is supported by cavernous erectile bodies, which in the Monotremata are con fined to paired corpore cavernosa urethre; but in all other Mammalia there are. in addition to the corpmes carernosum urethere (c. spongios?m) which is umpained and surrounds the urethra. two upper corpora cavernose penis, which are attached to the ischium, and only rarely fuse with one another. A cartilaginous, or bony support, the su-cilled os penis (Comirore, Rorlents), may also be developed, especially frequently in the glans, which is formed by the corpus canernosum urethre (fig. 6T7). The glans. which is bifid only in exceptional cases (Momotremate, Marsupials).
varies greatly in its form, and lies retracted in a reduplication of the skin (foreskin or prepuce) which is richly glandular (gl. Tysoniance).

Female sexual organs. The ovaries (fig. 678) are unsymmetrical only in the Monotremata, in consequence of the reduction of the right ovary. In all other cases they are equally developed on either side ; they are placed in folds of the peritoneum, close to the funnel-shaped dilated mouths of the oviducts, by which they are sometimes com-

Fig. 678. -Female generative organs. a, of Ornithorhynchus (after Owen) ; b, of Viverra genetta; c, of Cercopithecus nemestrinus; Ov, Ovary ; T, Oviduct ; U, Uterus ; V, Vagina; H, Urinary bladder ; Ur, Ureter ; M, Mouth of Uterus ; F, opening of Ureter; S, urogenital Sinus; $K l$, Cloaca; D, Intestine. A style is passed through the opening of the latter into the Cloaca.
pletely surrounded. The oviduct is divided into the Fallopian tube, which is always paired and begins with a free ostium ; the dilated, sometimes paired, more frequently unpaired, middle portion-the uterus; and the terminal part, or vagina, which is unpaired, except in Marsupials, and opens behind the opening of the urethra into the short urogenital sinus, or vestibule. In the Monotremata the two tubular uteri open, without forming a vagina, on papilliform prominences into the urogenital sinus, which is still connected with the cloaca (fig. 678 c).

According to the different degrees of duplicity of the uterus
(when at vagina is present), we may distinguish: the werus duplex, with more or lesis complete oxternal reparation and double os uteri (Rodents, Marsupials); the utcous liportitus, with single os uteri, but almost complete internal partition (Rodents) ; the uterus bicomis (fig. 678 b), in which the upper parts, or horns of the uterus are sepanate (Compulatre, C'armivoru, C'etucpa, Insectirora) ; and finally the utcrous simplex (fig. 678 c) with single cavity and very muscular walls (Primutes).

The vestibule, with its glands of Duvernoy (Bartholin), which correspond to the Cowperian glands of the male, is separated from the ragina by a constriction, and sometimes also by it fold of the nutuous membrane, called the hymen. The external generative organs consist of the labia majora and labia minora, at the sides of the sexual opening, and of the clitoris. The labia majora are two external folds of skin, and are equiralent to the two halres of the scrotum : the labice minora are two smaller internal folds, and are not always, present. The clitoris possesses erectile tissue and a gleans, and is the equivalent of the penis. The clitoris may sometimes (as in Ateles) reach a considerable size, and be perforated by the urethra (Rodents, Moles, Lemurs). In such cases of perforated clitoris, there is, of course, no common urogenital sinus. Morphologically, the female genitalia represent an earlier stage of development of the male organs, which, in the cases of the so-called hermaphrodite formation, may in consequence of arrest of development preserve a more or less female structure. As a rule the two sexes are easily distinguished loy the different form of the extemal generative organs. Frequently there is a marked dimorphism in the whole external appearance; the male being larger, having a different hairy covering, being possessed of a louder voice, and provided with stronger teeth or special weapons (horns). On the other hand, the milk glands, which are situate in the inguinal region, on the alodomen, and on the thorax, and which almost always project into teats or nipples. are rudimentary in the male sex.

The breeding time (rut) is usually in the spring, rarely towards the end of summer (Ruminants), or even in the winter (Sus, Carnivora). An important phenomenon, which accompunies the rut in the female, and is independent of copulation, is the passage of one or more ova from the Graatfian follicles of the ovary into the oviduct. The ova of the Mammalia were first discovered by C. E. von Baer. They are extraordinarily small ($\frac{1}{2}$ to $_{-1}^{-1} \overline{0}$ line in diameter) and are surrounded by a strongly refractile membrane (zona

Fig. 679.-Diagramatic figtures illustrating the formation of the foetal membranes of it Mammal (after Kölliker). u, Orum with first rudiments of embryo; b, Ovum with Folk-ancand developing amninn; c, Orum with ammion closing and developing allantois; d, Ornm with villous scrous envelope, embryo with month and anus; c, Ovum in which the vascular laper of the allantois is applied to the serous envelope and has grown into the villi of the latter, yolk-sac reduced, the amniotic cavity is increasing; D, Zona radiatit; D^{\prime}, Villi of zona; $\$ h$, snbzonal membrane (serous envelope) ; S \mathcal{z}, Villi of subzonal membranc; Ch, Chorion (vaseular layer of Allantois) ; Chz, Chorionic villi (crmsisting of chorion and subzonal mombrane) ; Am, Amnion; Ah, Amniotic cavity; E, Fimbryo ; A, Embryonic thiekening of the external layer ; M, of the middlo layor ; J, of the inner layer; D s, cavity of the embryonic (blastodermie) vesicle, later of the yolksac (umbilical vesicle); Dh, Intestinal cavity ; Dg, Umbilical stalk; Al, Alla.
pellucided , round which a layer of :lbminen is often deponited in the oviduet.

The fertilization and total segmentation* of the ovum always take place in the oviduct (Fallopian tube). Amnion and clluntois are present in Mrcmmatia. In the uterus the ortun acquires a villous cont (chorion), derived from the original zona and from the sulzonal menbrame (so-called serous envelope), which is developerl within the zona. It becomes attached to the uterine wall by means of the chorion (fig. 679). Later on, the peripheral part of the allantois also becomes applied to the chorion, and, as a rule, penetrates with its ressels into the villi (secondury chorion), so that there is developed it relatively large surface, permeated with branches from the fortal vessels, the blood of which is in intimate endosmotic connection with the blood of the uterine wall. This connection of the allantois and chorion of the foetus with the uterine walls gives rise to the Placenta, by means of which the nourishment and respiration of the foetus are provided for in the body of the mother. The placenta is wanting only in the Monotrematce and Marsupictia, which, therefore, are known as Aplecentalic, as opposed to the rest of the Mammalia, which have a placenta, and are called Placentalia. The placentia presents great variations in the individual orders, in its special development and in the mode of its connection with the uterine walls. Either the villi of the placenta are loosely connected with the uterine walls, and separate from the latter at birth (Adeciducta), or they become so intimately united with the glands of the uterine mucous membrane that the latter comes away with the embryo at birth, as the deciduca or after-birth (Deciducta).t In the first case the allantois may grow completely round the orum, and the villi be numerous and uniformly distributed over the whole chorion (diffuse placenta of Ungulcutc, Cetacera), or be aggregated in special places, forming small tufts, the so-called cotylectons (Ruminants). In the other case, the placenta with its villi is confined either to an amular zone on the chorion ($P l$. ammularis, or zonury placenta of C'amirora, Pinnipedia), or to a discoidal area (discoiddal placenta of Man, Apes, Rodents, Insectivores, Bats).

* [Aecording to Caldwell's recent discovery, which was enmmumicated to the British Association at Montreal in September of the present year (18s.t), but of which no details liave as yet eome to hand, the Monotremata are oriparous and their ova meroblastic.]
\dagger [For a fuller accomit of the structure and development of the varions kinds: of placenta, the reader is referred to Balfour's ('ompuratire Embryoloy!. vol. ii.. 1. 193.]

In the foctus, lespiration is effecterl throngh the placenta, and the lungs are functionless. In correspondence with this the circulation of the foetns differs from that of the animal after birth (fig. 680). From the heart the blood is driven into the descending aorta, which sends off behind two large vessels to the placenta (umbilical or cullantoic arteries). The blood, returning fiom the placenta in the allantoic vein, passes in great part through a connecting vessel (ductus venosus Aromtii) into the inferior vena cava, and thence in part passes into the right auricle, but the greater part passes, in consequence of a special arrangement of valves, directly into the left auricle through an opening in the interauricular septum, called the forcamen ovale. The blood which reaches the right ventricle passes through a vessel (ductus arteriosus Botculli), connecting the pulmonary artery with the aorta, directly into the systemic circulation, except a small portion which

Fig. 680.-Diagram of the arrangement of the principal vessels in a human fœetus (after Huxley). H, Ventricle; V, Auricle ; do, Aortic trunk; Ce, common Carotid; Ce, cxternal Carotid; $C i$, internal Carotid; S, subclavian artery; $1,2,3,4,5$, the arterial arches-the persistent left aortic arch is not visible; Aod, descending aorta; O, Omphalomeseräic (vitelline) Artery ; O^{\prime}, Omphalomescräic (vitelline) Vein ; τ, Umbilical (allantoic) arteries with their placental ramifications ($U^{\prime \prime \prime}$); U^{\prime}, Umbilical (allantoic) vein; Tp, Portal vein; $V_{c} c$, Vena cava inferior ; C, anterior cardinal vein; D, Ductus venosus Arantii ; $D C$, Ductus Cuvieri; Az, Azygos Vein ; P, Lungs; L, Liver ; N, Umbilical vesicle (yolk-Sac); D_{i}, Vitelline duct (Ductus omphalomeseraicus); Am, Amnion.
goes to the lungs. From this condition of the circulation, it results that all the arterial vessels, except the allantoic vein, contain mixed blood.

As remains of the first stage of the circulation before the development of the placental, the omphulomeserioic vessels -an artery and it vein-which belong to the umbilical vesicle, still persist.

The duration of gestation depends on the size of the borly and the
stage of derelopment at which the young are born. It is lougest in the large torestrial, and the colosisil aquatic animals (Cimgulata, Celuceu), which live under favourable conditions of nourishment. The young of these animals are so fin advancerl in their bodily development at birth, that they are able to follow the mother (to a certain extent like prococes). The pariod of gestation is relatively shorter in the C'arnivoru, the young of which wre born naked and with closed eyes and, like altrices, are for a long time completely helpless, and need the cure and protection of the mother. It is, however; shortest in the aplacental Monotremes* and Marsupials. In these animals the young, which are borm at a very early stage (in the Kangaroo they are no larger than a nut), pass into a pouch formed by cutaneous folds in the inguinal region, and here adhere firmly to the nipples of the mammary glands. In this pouch, as in a second uterus, they are nourished by the secretion of the mammary glands, which assume at this early stage the nutrient function of the absent placenta. The number of the young, which are born, also varies very greatly in the different genera. The large Mammatia, of which the period of gestation is longer than six months, as a rule bear only one, more rarely two young ; but in the smaller Mammals and some domestic animals (Pig) the number is considerably larger, so that twelie to sixteen, or even twenty young may be boin at one time. The number of teats on the mother usually indicates the greater or smaller number of the progeny.

Many Mammals live a solitary life, and pair only at the breeding time ; they are principally such carnirorous animals as find theirsubsistence by hunting in definite hunting grounds, like the Mole in its subterranean passages. Others live united in companies, in which the oldest and strongest males frequently undertake the care of protection and leadership. Most Mammals seek their food by day. Some, e.g., the Bat, leave their hiding places in the twilight and at night. Most Camivora and numerous Ungrelutce also sleep in the daytime. Some Rodentia, Insectirora, and C'amirora fall, during the cold season of the year when food is scarce, into an interrupted (Bear, Badger, Bat), or continuous (Dormouse, Hedgehog. Marmots) winter sleep in their hiding places which are often carefully protected, or in nests formed in the earth. During this time the temperature is lowered, the respiration is less active, the heart-beat is slowed, and they take up no food, but consume the fat masses which were stored up in the antumn. The following ammals are known to mignate :

[^198]the Reindeer', the South American Antelopes, and the North-American Buffalo, the Seals, Whales, and Bats, but more especially the Lemmings, which migrate in enormous herds from the northern mountains southwards to the plains, are stopped by no obstacles on their journey, and even cross rivers and arms of the sea.

The intellectual faculties are more highly developed than in any other class of animals. The Mammatia possess the faculty of discrimination and memory: they form ideas, judgments, and conclusions; they exhibit affection and love to their benefactors, dislike, hate, and anger to their enemies; each individual has a definite character. Further, the intellectual faculties of Mammals are capable of being developed and improved, but to a relatively small extent on account of the absence of articulate speech. The more docile and intelligent of the Mammalia have been chosen by man as domestic animals, and in this capacity have played an important and indispensable part in the history of civilisation (Dog, Horse). Instinct, however, always occupies an important place in the life of Mammals. It leads many of them to construct spacious passages and ingenious nests above or below the earth, in which they rest and bring up their offspring. Almost all Mammals make special places for their brood, which they often line with soft materials ; some eren construct true nests, like those of birds, of grass and stalks on the earth. Many of those which inhabit subterranean holes and passages store up winter-provisions, which they consume in the sterile season, sometimes only in autumn and spring (wintersleeper's.)

Geographical distribution. Some orders, as the Rodents and Bats, are represented in all parts of the world. Of the Cetacect and Pinnipedice most species belong to the Polar regions. In general, the Old and Nerr Worlds have each their own fauna. The mammalian fauna of Australia consists almost exclusively of Marsupials. The oldest fossil remains (lower jaw) of Mammals are found in the Trias (Keuper Sandstone and Oolite, Stonesfield slate) and are probably Marsupial. But it is not until the tertiary period that the mammalian fauna presents a rich derelopment.

1.-APLACENTALIA.

Order 1.- Munutremata.*

The jures are elongated to the form of "t leent; the jeet wre short, fivetoed, and fiernished with strony chuns. Marsupial bones and a cloacio wre present [Oviparous; t with meroblastic ovom.]

The most important character of the Monotremes is the presence of a cloaca. The dilated end of the rectum receives the openings of the generative and minary ducts (fig. $678 a$). In addition to this character we must mention the simple condition of the fenale generative organs, the absence of teeth in the jaws, the possession of a large coracoid, and the slight development of the corpus callosum.

Fig. 681.-Echidna hystrix.

Fig. 682.-Ornithorhynchus parudoxus.
The form of the body and the mode of life of the Monotremes partly recall the Anteaters and Hedgehog (Echidnce hiystrix, fig. 681) and partly the Otters and Moles (Ornithorhynchus) ; in fact, Or-. nithorlynchus reeeived the appropriate name of "Watermole" from the Australian settlers (fig. 682). Eehidart is covered with strong spines, and possesses an elongated edentulous snout, with a vermiform, protrusible tongue. The short five-toed legs end with powerful seratching elaws, whieh are excellently adapted for rapid hurrowing. Ornithorhynchus, on the contrayy, has in close, soft fur: a flattened

[^199] vol. iii. $18+3$.
\dagger Virle mote on p. 296.
body, and, as in the Beavers, a Hlat tail. The jaws, like the beak of a Duck, are adapted for burrowing in mud, but are armed on both sides with two horny teeth, and are surrounded by a horny integument, which, at the base of the beak, projects in a peculiar. manner, so as to form a kind of shield. The legs of Ornithorhynchus are short; the five-toed feet end with strong claws, but are also furnished with very extensible welos, and are, therefore, equally well adapted for swimming and burrowing. Both sexes have, like the Marsipials, in front of the pubis the so-called marsupial bones, which in the female Echidruc support a pouch. The testes remain inside the body carity (i.e., do not descend into a scrotum). The males in both the genera possess a hollow spur on the hind foot, which receives the duct of a gland, to which for a long time poisonous. properties were erroneously attributed. It appears more probable that this spur serves only as in stimulant during copulation, since it fits into a pit in the thigh of the female. The embryos * are born at an early stage, and in Echiduce pass into the marsupial ponch of the mother. On the abdomen of the latter there are two mammary glands, which are without a projecting nipple. Fossil remains are as yet unknown.

Ornithorhynchus puradowes Blumb., The Duck-bill Platypus, Australia and Yan Diemen's Land: Echidnu hys.trix Cuv.. in the mountainnus regions of south-east Australia: E. setoser Cuv., Van Diemen's Land.

Order 2.—Marsuplalia. \dagger

Mammalia with rarious dentition, with lwo marsupial bones sup)porting a marsupial pouch, which encloses the teats of the mammar:! gleands.

The principal characteristic of the Marsupials is the possession of a sac, or pouch (mar'supium), which is supported by two marsupial bones (fig. 683), encloses the teats of the mammary glands, and receives the lielpless young after birtlı. In the absence of a placenta, birth, as in the Monotremes, takes place at a very early stage. Even in Mracropus giganteus, the males of which attain almost the leight of a man, the period of gestation does not last more than thirty-nine days, and the embryo at birth is blind and naked, its extremities arre

* Vide note. p. 296.
\dagger Ii. Owen, "Marsupialia," in 'Todd's C'yclopiedia of Anatomy, vol. iii.. 18t!.
G. Li. Waterbouse. "A Natural History of the Mammalia," rol. r., " Mansupialia," Loudon. 1846.
scurcely visible, and it is not mach nurere than an inch in length. It is placed in the ponch by the mother, sucks firmly on to one of the two or three teats, and remains in the pouch for eight or nine montls.

In their external appenmace, in their mode of nomrishnent, and in their hatbits, the Minsupials differ extatordintrily foom each other: Many of them are herbivorous, and in their dentition approach the Rodents or the Ungulates ; other's are omnivorous ; otler's, like true C'arnivora, prey on Insects, Birds and Mammals. In their general appearance and mode of lucomotion they repeat a series of types of different mammalian orders. The Wombats lepresent the Rodents,

Fig. 6s:3.-The pelvis and adjoining parts of the vertebral column of Macropus. Jl, Пium ; Pl, Pubis ; Js, Ischium ; II, Marsupial bones; A, Acetalbulum ; δ, the two sacral vertelrat.

Fig. 68t.-n, Female gencrative organs of Halmaturu* (after Gegenl)aur); Oe, Ovary; T, Oviduct; ζ, Uterus; 0 , Mouth of nterus; Γ, Vagina; B, Čecum of vagina; $U \boldsymbol{r}$, Ureter; H, Urinary bladder; M, opening of bladiler into the urogenital sinus (S). b, Bifid penis of Didelphys philander (after Otto, from (ievenbaur); E the two halves of the grans.
the fleet Kangaroos, which move by huge bounds, correspond to the Ruminants, and represent, in a certain degree, game, which is absent in Australial. The flying Marsupials (1 'etmurn!s) resemble the flying Squirrels (Pteromys) ; the climbing Phalangers (Plalangista), in their shape and morle of life, recall the Lemurs (Lemur); while others, as the Peramelide, show a likeness to the Shrews (soricicte) and Insectivores. Finally, the carmivorous Marsupials approach in their dentition to the true Camirora as well as the Insectiror"o to which they scarcely yield in the larse number of their small incisor teeth and tuberculated molin:-

The female generative orgiuns frequently present racemose ovaries : the two oriducts are prolonged into two completely separate uteri, which are followed by the peculiarly formed and likewise double Vagina (fig. 684a) ; the two vaginæ are united at the point where they receive the openings of the uteri into a common portion, which gives off a long cecal diverticulum, usually divided by a septum. From this part arise the two vaginal canals, which curve round and open into the urogenital canal. Since the external opening of the latter coincides more or less closely with the anus (the two openings are surrounded by a common sphincter), the Narsupials may be said to have a kind of cloaca. The penis ends as a rule with a bifid glans (fig. 684b), corresponding to the double vagina of the female.

Most Marsupials live in Australia, many also in islands of the Pacific Ocean and the Moluccas; Didelphys in South America. In Europe they are wholly absent at the present time, though they were distributed there in the tertiary period.

Tribe 1. Glirina (Rodent-like Marsupials). Unwieldy, heavy animals of the size of a Badger, with close soft fur, with Rodent dentition, short limbs, and rudimentary tail. The rudimentary inner toe of the hind foot alone is without the curved claw.
 Per. Les. (fossor), Van Diemen's Land and New South Wales.

Tribe 2. Macropoda (Jumping Marsupials). With small head and neck, weak, small, five-toed front legs, and hind part of the body unusually developed. The very long hind legs serve for jumping, and are aided by the long tail, the root of which is thickened. The powerful hind feet end with four toes with hooflike claws; the two internal toes are united, and the median one is rery long and powerful. The dentition recalls that of the Horse, though the number of incisors in the lower jaw (2) is smaller. The stomach is colon-like in shape, the cercum is long. They feerl on grass and plants.

Fam. Halmaturidæ (Kangaroos). Dental formula i. $\frac{3}{1} c . \frac{0(1)}{0}$ p.m. ${ }_{1}^{1} m .{ }_{4}^{t}$ Macropus gigantens. Shaw. Great Kangaroo, Hypsizrymnus rufescern.s (rould, Kangaroo Rat.

Tribe 3. Scandentia (Carpophaga). Climbing Marsupials. The second and third toes of the hind foot are fused, but the inner toe is without nail and opposable. The long tail is prehensile in accorl-
ance with the mboreal life. With rexpect to the dentition there animals are intermerliate hetween the Cilviuce and Hulmuturide.

Fimm. Phascolarctidæ. Body stont, unwiclly, hearl thick, rars large, and tail quite rudimentar?: I'husenlaretus riuroros Coldf., Koala. Dentition

Fam. Phalangistidæ. Of slemler form, with prehensile tail. Pretanrus. Antirentre Desm. : I^{\prime} p!!!murrus Desm., scarrely 4 incbes long: Phalangiva
 vierrinu, New South Wales: Tir-

Fig. 685.-Trichosurus culpinzu..
the Weasel of south and West Australia. Ph. fluripes. Waterh, yellow-footed Marsupial monse : Dasyurus. rircruinus Geoffr., Deutition : i. $\frac{4}{3} c \cdot \frac{1}{1} p \cdot m \cdot \frac{2}{2} \cdot m \cdot \frac{4}{4}$: New South Wales; Thylacinus cynocrphatus A. Wagu.. Tasmanian Wolf.

Fam. Didelphyidæ (Pedimana), Opossums. Dentition : i. $\frac{\pi}{4}$ c. $\frac{1}{1}$ p.m. $\frac{3}{3} \cdot \mu \cdot \frac{4}{3}$:
with tolerably pointed snout, large eyes and ears, and usually long prehensile tail. The feet have five toes. (In the hind foot the inner toe is opposable. Didelphys ríginiane Shaw ; 1). rancriror'e Gm., Brazil, with completely prehensile tail : D. "possum L.. ; Il. philander L. ; D. dorsigcra L., Surinam.

11.-PLACENTALIA.

I.-Adeciduata.

Order 3.-Edentata* (Bruta).

Mammals with incomplete dentition, usually with numerous grinders without roots, and scratchiny or curved claws on the extremities.
This group which includes but few genera is characterised by the relatively low grade of derelopment of all the systems of organs and especially by the incomplete dentition, teeth being in exceptional cases altogether wanting. Except in the case of a single Dasypod the incisors are always absent (fig. 686). When canine teeth are present they are small, blunt, and conical. The grinders also are weak and of simple structure, being without roots and enamel. Many (I'ermilinguia and Dasypoda) are insectivorons, others (Bradypodu) phytophagous. They are all sluggish, stupid animals, with small brain without convolutions; they climb or dig holes, and at the present time only inhabit the southern zones. Except the African Orycteropus and the genus Hanis, which lives in Africa and Asia, they are all confined to South America.

Fig. 686.-Skull of Bradypus torquutus.

Fam. Vermilinguia (Ant-eaters). With very elongated, pointed snout, narrow mouth, from which the thin, vermiform tongue can be protruded to a great distance. The jaws are weak. Teeth are altogether absent, exeept in Orycteropus, whieh possesses numerous grinders formed of longitndinal hollow fibres and searcely of the hardness of bone. The legs are short, strong, and adapted for digging ; they are used for seraping up the nests of Ants and Termites. They extend their long viseous tongue into the ant-heaps thus broken into; the inseets bite firmly hold of it, and by the rapid retraction of the tongue become the prey of the Ant-eater. Myrmecoplu!!a jubata L.; M. tetradactyla L.. (trmandua Desm.), diductyla L., South Ameriea. Manis, Pangolin; M. macmura Erxl., West coast of Africa; M. brachyuru Erxl. and javanica Desm., both found in the East Indies. Orycteropus capensis Geoffr., Aardvark of south Afriea.

Jiam. Dasypoda (Armadillos). The bocly is coverer with bony plates whieh

[^200]VOL. II.
are arrangel in transuerse rows on the back and tail, so as to form a movable dermal armom (fig. (i87). The limbs are short. and with their powerful scraping claws are well adapted for burrowing. Incisor terth are absent, except in Dusypus serceinctus and in the fossil chotumydutherinm. Both jaws have small eylindrieal grinding teeth, the number of which varies in the different forms. They inhabit sonth America. Dowsypus nucemeinctux L., the longtailed Armadillo, with eight to ten hands ; D.gigas, with upwards of a hundred teeth; Chlamydophomus truncutus, Hart, the Pichyciego, in the neighbourhool of Mendoza.

Fam. Bradypoda (Sloths). With rounded heald (fig. 686i) and anteriorly directed eyes, with very long anterior limbs and pectoral manme. The incisor teeth, and sometimes also the canines, are absent; there are three to four griuders in each half of the jaw. The large proeess on the jugal, deseending over the lower jaw, is worthy of remark. The Sloths are exclusively arhoreal ; they use the curved elaws at the end of the two or three closely connected digits for hanging on to branches during their strong but slow movements. On the ground they can only drag themselves along extremely awkwardly and helplessly. The

Fig. 687.-Dasypus gigas.
body is eovered with long and coarse hair, like diry hay. They live in the forests of South America. Bradypus tridactylus Cuv., Aï, or three-toed Sloth: Br. tin'quatus Inl., Cholerpus didactylus Ill., Unau, or two-toed Sloth.

Order 4.-Cetacea.*

Aquatic Mammalia with spindle-shaped body which is not corerent with hair: with fin-like fromt limbs and horizontal caudal fin. The posterior limbs are absent.

The Whales repeat the piscine type in the form of their borly and in the articulation of their skeleton (Fig. 688). By their whole organisation they are true Mammals with warm blood and pulmonary respiration, and they are most nearly allied to the Ungulates, which they approach through the Sirenia. Some species attain a colnswal

* D. F. Wischricht. "Zoologisell-anatomisch-physiologische Untersuchungen über dic nordischen Walthiere," Leipzig, 1849.
D. F. Nischricht og J.Reinhardt. "Om Nordhwalen," Kjöbenharm. $18(11$.
size, that only water cin carry them, and the sea supply them with food. The cervical region is not visible externally, and the head passes directly into the cylindrical trunk, while the caudal end develops a horizontal fin, in addition to which there is often a fatty fin on the dorsal stuface. Hairs are almost entirely absent in the larger forms ; being only represented by bristle-like hairs on the upper lip, which are present during the whole of life, or only during the fœetal period. In the smaller species, and in the sirenia there is a sparse covering of bristles. On the other hand, there is developed beneath the thick leathery skin in the subdermal cellular tissue a considerable layer of fat, which to a certain extent takes the place of fur, and selves both to prevent the loss of heat and to lower the specific gravity. The head is often elongated into the form of a snout, and is withont an external ear. The eyes are strikingly small and are often placed near the angle of the mouth; the nasa apertures are shifted on to the forehead. The anterior limbs are represented by short, externally mojointed swimming fins, which can
only be moved as a whole. The hind limbs are wholly wanting as external appendages.

The skull, as compared with the lage facial part of the head, which is often elongated like a beak, is small and of ten asymmetrical, the right side being the largest. Its bones are separated by sutures and loosely connected. The parietals early fuse with the interparietals to a single bone. The hard petrous bone remains isolated from the other parts of the temporal bone. The nasal cavity, in connection with the great development of the premaxillaries, is shifted entirely on to the skull. Except in the Siremia, the nasal bones are rudimentary. The jaws are frequently altogether without teeth. A change of dentition takes place only in the Sirenia. In the true Cetacea the dental germs are developed in fotal life; but the teeth either fall out before birth (Whalebone Whales), or develope into the permanent teeth (Dolphins). Of the hind limbs traces are only sometimes found, as small bones which are interpreted as the rudiment of a pelvis; in Balcena mysticetus rudiments of a femur and tibia are also present (fig. 688). The single or double nasal aperture is placed more or less high up on the skull, and leads straight down into the nasal eavities, which descend as a paired, but posteriorly single, nasal canal, which at the soft palate ean be shut off from the pharynx by a sphineter muscle. The riew that the Whale spouts water through its nasal apertures has been proved to be erroneous. The expired aqueous rapour eondenses into a cloud, and gave rise to the illusion that a column of water was ejected from the nostrils. The lungs are rery spacious; they extend, like the swimming bladders of Fishes, far backward, and play an essential part in the maintainance of the horizontal position of the body in water; the diaphragm also has a corresponding horizontal position. Saccular dilatations.on the aorta and pulmonary arteries, as well as the so-called arterial networks may serve as aids to respiration during diving.

The females bear a single (the smaller species rarely two) relatively far advaneed young, which, however, need the eare of the mother for a long time after birth. The two teats of the mamma lie in the inguinal region, in the Sirenice on the thorax.

The Whales usually live together in herds. The smaller species frequent the coasts, and even enter the mouths of rivers. The larger species prefer the open sea and colder climates. They swim with great strength and speed, usually keeping near the surface. The gigantic whalebone Whales, which are entirely without teeth,
but possess whalebone on the palate, feed on small marine aninals, mudibuanchiate Molluscs and Medusæ. The Dolphins, with their uniform carnivorous dentition, feed on larger fishes; the Sirenicu, which are intermediate, so far as their form is concerned, between the Whales and Seals, are herbivorous. Fossil remains are found in the older tertiaries.

Sub-order 1. Cetacea carnivora (True Whales). Either with conical teeth in the jaws or with whalebone on the palate. The nasal apertures are placed on the forehead. The larynx projects like a pyramid into the posterior nares. The mamme are placed on the inguinal region. The skin is devoid of hairs, and beneath it is a thick layer of fat. The limbs are movable at the shoulder joint only; their constituent bones are rigidly and immovably connected.

Fig. 689.-Delphinus delphis (ıègne animal).
Tribe 1. Denticete (Toothed Whales). Carnivorous Whales which feer principally on fish, with conical teeth in both or only in one jaw. Dentition monophyodont. Head of proportionate size. Nasal apertures often united to a single semilunar opening.

Fam. Delphinidæ. Both jaws with similar conical tecth, but not always armed along their whole length. Nasal apertures united to a semilunar spiracle. Phocena communis Less., Common Porpoise, four to five feet long, ascends the mouths of rivers, lives on Fishes. European seas. Beluyfr (De7phinapterus) leucras Gray, White Fish; Cloliaocephulus !lphliceps Cur., Blarl: Fish, North Allantic Ocean ; Delphinus delphis L., Common Dolphin (fig. 689).

Fam. Monodontidæ (Narwhals). Upper jaw with only two anteriorly directed teeth which in the female are small ; but in the male one of them (usually that of the left side) becomes a colossal, spirally grooved tusk. The other small tecth of both jaws fall out early. Monodron monerereos L., Narwhal, North Polar sea, twenty feet long.
f'am. Hyperoodontidæ. With elongated beak-like snout, only one or two fully developer tecth on each side in the lower jaw. Facial hones, especially
premaxillaries, often anymmetrical. Spiracke semilunas. Hyperomdon bidens Flem.. more than twenty feet long. North Atlantic occan.

Fian. Catodontidæ-Physeteridæ (sperm-whates). Heal of entmous size. being one third of the length of the boly. Swollen to the extremity by the aecumulation of fluid fat (spermaceti). Uplecr jaw without teeth. Rami of the lower jaw applied to one another and armed with a row of enical teetll. Spiraeles separate. Thes live on Cephalopoda. Catodon marrocephulus Lac.. Caehelot, forty to sixty feet long, North Sea : Plyyseter tursiu Gray, North Atlantic Ocean.

Tribe 2. Mysticete (Whalebone Whales). Head very large, jaws without teeth, with whalebone (fig. 673). (Esophagus narrow; spiracles separate.

F'am. Balænidæ. C'rtureat of considerable sizc, with enormous head, wide slit-like month without teeth, and double nasal openings; with very small eyes near the angle of the mouth. Two rows of horny transverse plates, frayed out at their lower edges, arise from the palate and upper jaw. These are the whalebone plates. They project vertically into the mouth. are closely packed together one behind the other, and decrease in sizc anteriorly and posteriorly They form a kind of sieve, which when the huge month is closed retains the small Medusce, Nudibranehs. etc., which are taken in with the sea water, while the water flows out. Bulcenopteru. Rorquals; R3. rostrata Fabri, North isea : Bulcona mysticetus; Greenland Whate, reaehes a length of sixtr feet.

Sub-order 2. Cetacea herbivora, Sirenia. With thick, sparsely bristled skin, swollen lips, and anterior nasal apertures, with pectoral mammæ. The large fins are movable at the elbow joint, and end like hands with traces of nails. Neck distinct. Dentition and internal organisation approximate to those of the Ungulates. The incisors are replaced. The grinders have a flat crown, and are always well developed in both jaws. There are no canine teeth. In the Dugong there are two tusk-like incisors in the upper jaw, while the lower incisors fill out early. They feed especially on fuci and seaweed on the sea coast.

Fiam. Sirenia. Nasal openings placel far forward. Mrumetus Austrealis: Tils., American Manatce. Found at the mouths of the Orinoco and Amazon ; M. sencyulensi. Desm., Afriean Manatee: Halicmrer indica Desm.. Dugong, Indian Ocean and Red Sea: Phytina Nellari ('uv.. Steller: Nea-cow: extinet.

Order 5.-Perlssodactyla (Odd-toed Ungulates).*

Large Ungulates usually of unwieldy build; the middle digit is more developed than the others. The stomach is simple and the cocum is very large. The dentition is usually complete.

In the earlier tertiary times the Ungulates were already a welldefined group, the smaller species of which presented approximations to the Insectivora (Microchoerus) and Rodents. The Ungulata are either herbivorous or omnivorous. The dentition is highly differentiated ; the grinders are traversed by folds of enamel, with transverse ridges and short tubercles, which are usually woin down to an even, masticating surface. Large chisel-shaped incisors, which, however, may fall out or in the lower jaw be completely absent, are often present. There is always a gap between the incisors and the premolars. The canines are often absent, or only present in the upper jaw, principally in the males, and then are transformed into tusk-like weapons. Even when both upper and lower canines are present, they have this significance, and are much larger in the male sex.

Among the many differences which the Ungulates present in their whole organisation and mode of life, the difference in the number of hoofs (which corresponds with that of the toes) was held to have a special value, and accordingly Multiungulates, Biungulates, and Uniungulates were distinguished as separate orders. This division was, howerer, by no means a natural one, since it led not only to the union of widely divergent forms as Multiungulates, but also to the separation of the Uniungulates and Biungulates from their near allies. The progress of paleontological knowledge has shown that this division is untenable. Remains of extinct forms, which partly fill up the gaps between members of the supposed orders, have been discovered. Accordingly the order of Multiungulates has been recently broken up, and two members of it -the $P_{\text {poboscidec and the IIyracoidea--have been placed among the }}$ Decitluctata; and further, two orders founded upon the odd or even number of the toes-a character which had already been used by

[^201]Cuvier-were established; these are the Perissodactyla (Pachydermes ì doigts impaires Cuv., and Solidungula Aut.) with an odd number of toes, and the Artiorluctylu with an even mmber of toes. The names do not correspond strictly with the number of the toes since there are Perissodactyles-as the Tapir and Eohippus-which have four toes on the front feet; and on the other hand, there are Artiodactyles-as Anoplotherium tridactyle, -which have three toes on both front and hind feet. But, when applied in a limited sense with reference to the number of the pillar-like supporting bones of the middle digit or digits, the names are in all cases suitable. In the Perissoductyla the unpaired central digit serves as the principal support, which in the Artiodactyla is afforded by the third and fourth digits which are symmetrical and similar. In most Perissodactyla there are three digits of which the middle one is specially strongly developed. The forms which exist at the present time are confined to the families of the Tapiridce, the Rhinoceride, and the Equidce, of which the last were represented as far back as the eocene epoch (Anchitherium) by forms which constitute connecting links between the Palceotheridce and Tapirida on the one hand, and the ancestral forms of living horses on the other.

Fam. Tapiridæ. Short-haired Ungulates of medium size, with movable. proboseis. Dentition : i. $\frac{3 \cdot 3}{3 \cdot 3}$ c. $\frac{1 \cdot 1}{1 \cdot 1}$ p.m. $\frac{4 \cdot 4}{3 \cdot 3} \mathrm{~m} . \frac{3 \cdot 3}{3 \cdot 3}$. The moderately-long front legs end with four (fig. $670 c$.), the lind legs with three digits. Tapirus intious Desm., East India : T. americanus L., South Ameriea.

Fam. Rhinoceridæ. Large unwieldy Pachyderms with one or two epidermal horns on the strongly-arehed uasal bones. Dentition: i. $\frac{1 \cdot 1}{1 \cdot 1} c \cdot \frac{0 \cdot 0}{0 \cdot 0}$ p.m. $\frac{4 \cdot 4}{1 \cdot t}$ $m \cdot \frac{3 \cdot 3}{3.3}$. The four ineisor teeth are rudimentary, and sometimes fall out in old age. Rhinoeeroses appeared in the mioeene, and are also found in the plioecne and diluvium of Europe. Rhinoceros juzanus Cuv., Java; Rh. sumatrensis Cuv.; Rh. africauus Camp.; Rh. tichortimus Cur., with bony uasal septum, and hairy skin; diluvial, found well-preserved in iee. Rh. leptorhinus Cur., upper tertiaries, in Italy and south of France.

Fam. Equidæ (Solidungula Aut.). Long-limbed, slender Ungulates of considerable size. The three-jointed middle digit alone treads upon the ground. and its strong terminal joint is surrounded by a broad hoof (fig. 690). The seeond and fourth digits are either present as small aeeessory digits (in fossil horses), or are redueed to the metatarsal (metaearpal) bones (splint bones).
The dentition (fig. 691) eonsists of six upper and six lower, large ehiselshaped ineisors, whieh are arranged in a enrved line, and are distinguished by the transversely oval pit on their biting surfaces. Canine teeth are as a rule present only in the male sex in both jaws, and are small and eonieal.
In the fossil forms there are seven griuders on each side in eael jaw; in the
reeent species of the Eifuide the number is reduced to six, but there is a small tooth in front of the first premolar which soon falls out (Wolfszahn, Bojanus), Fossil; forms first appear in the eocene (Orohippus still with a rudimentary fifth digit, as well as the three other digits which rested on the ground, and Anchitherium). They persisted in the mioenc and pliocene (Hipparion) and then pass into the diluvial genus Eifuss, to which the domestie horses of the present day belong. Anchitherium Dumusii Gerv. Feet with three digits, middle

Fig. 690.-Pedal skeleton of different genera of Equide (after Marsh). a, Foot of Orohippus (Eocene) ; b. Foot of Anchitherium (Lower Miocene ; c, Foot of Hipparion (Pliocene) ; d, Foot of the recent genus Equus.
digit large, remains of fifth metaearpal on the anterior limbs. The grinders are $\frac{7}{7}\left[y \cdot m \cdot \frac{4 \cdot 4}{4 \cdot 4} \cdot m \cdot \frac{3 \cdot 3}{3 \cdot 3}\right]$ Hipparion gracile Kp., miocene. Of the seven grinders, the anterior is a simple prism with a semilunar transversc seetion ; it is lost with the milk dentition. Effus calballus. Foot composed of one digit, with remains of metatarsals (metaearpals) of seeond and fourth digits (splint

bones); (rrinders are p.m. $\frac{3 \cdot 3}{3 \cdot 3}$ m. $\frac{33: 3}{3 \cdot 3}$, with remains of an anterior seventh grinder in the milk dentition. This genus is only known in the domestic state, but is probably deseended from one or several of the speeies of horses which lived in the diluvial period. Asinus treniopus Hengl., the wild ass of South-East Asia, the aneestral form of the domestic ass (E, asinus): A. hemionus Pall., Dziguetai ; A. onager Pall., Kulan, Mongolia. 'The African
sperem (placed with the shl-genus Hippotigris. sm.) are bi. quagga Gm.;

Order 6.--Artiodacervila (Paridmierata).

(risyclates with preired digits, of which the two outer are usually rudimentary, the two middle of equal size and rest on the ground; oftere without canine and incisor teetli in the upper juro; grinders alworys with folds of enamel.

Some of the Arioductyle are unwieldly and heavily built, some are slender and graceful animals, sometimes with short, sometimes with long limbs ; the former with thick naked skin and a covering of stiff bristles, the latter with a thick fur. They walk mainly on the third and fourth digits, which are always larger than the two external digits, and touch the ground with their hoofs (fig. $670 c d$). The second and fifth digits, when present, may also take part in supporting the body, but are usually rudimentary, placed behind, and do not reach the ground ; they may be reduced to the remains of their metatarsals (metacarpals), and not be visible as external digits ; this is the case with both of them in Anoplotherium and with the external one in the posterior three-toed limb of Dicotyles.

The animals belonging to this order may be arranged in two series:-the Pachydermata and the Raminantia. The Artiodactyla were represented in the older tertiaries by forms, which with the Palcootheridce, and perhaps descended from the same sou'ce as the latter, were the forerunners of the Suidx and the Ruminants.

Sub-order 1. Artiodactyla pachydermata. With complete dentition, always with canine teeth and simple stomach. The metatarsal bones of the middle digits are never ankylosed.

Fam. Anoplotheridæ. Dentition with all three kinds of teetlı whieh are arranged in a continnous row (i.e., withont diastema). Anoplotherium comтиии: Cuv. Fossil.

Fam. Suidæ* (Setigera). With elose corering of bristles, and a short proboscis-like snont. The dentition (fig. 692) includes all the kinds of teeth, but the rows of teeth are not perfectly eontinuous. The t-i incisors are placed in anl obliquely horizontal position, and fall out in old age. Camines usually mueh elongated and triangnlar, and in the male as powerful weapous (tnsks). There are $6-7$ grinders with folded enamel in colch jaw (on each side). Only the two middle digits rest on the ground, while the smaller extermal

[^202]digits are placed behind (fig. fiñoc). Phucorkermes sthiopicus Cuv., Wart-hog, south Africal ; Phe. Etiamus Riipp. (Sus ufricanus L.), found from Abrssinia to Guinca; Porrus babyrussu L., The Babyrussa, Moluccas: Dicotyles, Pcccaries. D. torfuutus Cuv.; D. labiatus Cuv., America; Potamo chaorns africanus Schreb. (larratus Fr. Cur.), Sonth-Wrest Africa; S'us miropeeus

-s widely distributed from India to Western Europe and North Africa. Is the ancestral stock of a great number of races of our domestic pig; though on the other hand the pigs of China, Cochin-china, and Siam, and the Neapolitan, Hungarian, and Andalusian pigs, the small Buindtner pig and the Peat pig from the more recent stone period (neolithic) of

Fig. 692.-Skull of Sus scrofu feru. the Swiss lake dwellings are derived (Nathusius) from a special ancestral species (S. indicus), which is not known with certainty in the wild state, but is allied to the S. vittutus Miill. Schl. from Jara and Sumatra.

Fam. Obesa. Of unwieldy shape, with large massive head, and broad truncated, swollen snout. Hippopetumus* amphibius L. Dentition :-

$$
i \cdot \frac{2 \cdot 2}{2 \cdot 2} c \cdot \frac{1 \cdot 1}{1 \cdot 1} p \cdot m \cdot \frac{4 \cdot 1}{4 \cdot t} m \cdot \frac{3 \cdot 3}{3 \cdot 3}
$$

H. mujor. C'uv., diluvium of Central and southern Europe.

Sub-order 2. Artiodactyla ruminantia." With incomplete dentition (fig. 693), in

Fig. 693.--Stall of Ceroux cancalrnsix. which the upper incisors and canines are usually not dereloped. On the other hand there are eight, rarely only six shovelshaped incisors in the lower jaw. The general form of the grinders affords tolerably constant charucteristics. The quad-

[^203]tangular crown has four chicf prominences, which are separated by (leep valleys, which we not fillerl with cement, but we sometimes finmished with small accessory protuherances. The friemolan's are small, and have usually only one or two protuberances. The metatarsal and metacarpal bones are always ankylosed, to form a cannon bone (fig. $670 d$).

The Ruminantia are characterised physiologically and anatomically by rumination and by the sitructure of the stomach and dentition which is correlated with this peculiarity. The food always consists mainly of vegetable substances, which contain only at small portion of albu-

Fig. 694.-Stomach of a Calf. $R^{\prime \prime}$, Paunch or rumen ; R, Reticulum ; O, Mansplies or psalterium; A, Abomasum or rennet stomach; Oc, End of asophagus: OR, Esophogeal groove; D, beginning of intestine. minous matter, and must, therefore, be eaten in great yuantities. In this relation, the division of labour between the acquisition and reception of food on the one hand, and its mastication ous the other, is an advantageous arrangement, which is foreshadowed by the structure of the stomach of other Mammalia. The animal plucks and swallows its food while moving freely from place to place, and chews and masticates it when at rest. The act of rumination deperrls: upon the complicated structure of the stomach, which is divided into four, more rarely into three, peculiarly connected divisions (fig. 694). The superficially masticated, coarse food passes through the lateral opening of the csophageal groore, the lips of which are separate from one another, into the first and largest division of the stomach-the purnch, or rumen (fig. $694 R u$). Thence it passes into the small reficulum (R), a small rombled appendage of the rumen, which receives its name from the net-like folds of its imner surface. After the food is softened by the secretion which is poured into this: division of the stomach, it ascends by a process resembling romiting through the cesophagus in to the mouth, and there undergoes a second. more thorough mastication ; it is then retwrned in a semi-liquid form through the asophageal groove, which is now closed by the coming
together of it. lips, into the small third division of the stomach, which is called the psclterium on account of the numerous leaf-like folds of its inner surface. From the psalterium the food enters the fourth stomach-the longitudinally folded rennet stomach, or abomasum, in which the digestion takes its further course under the influence of the secretion of the numerous peptic glands. In only a few cases,in the Jara Musk-deer and the Tylopodu (Camels and Llamas)-is the psalterimm absent as a separate division.

Fam. Tylopoda. Ruminants without accessory digits, with a callous sole covering all three phalanges behind the small hoofs. The premaxillarics bear two, in the young animal four or six incisor tecth, while the number of the lower incisors is reduced by two. There are also strong canines in both jaws. There is no separate psaltcrium. Auchenia!f lama L., Llama; A. Kuanaco H. Sm.; A. Alpaco Gm.; A. vicugna Gm. All on the west coast of South America. Cumelus. dremedurius L., Dromedary, Grinding tecth, $\frac{6}{5}$; C. buctriunus. L. two-humped Camel of Tartary, Mongolia.
Fam. Devexa = Camelopardalidæ, Giraffes. With very long neck. long front legs; the hind legs are much shorter, and, therefore, the back slopes backwards Camelopardutis giraffa Gm., wooded plains of Central Africa.
Fam. Moschidæ. Smaul, slender Puminants, without horns, with tusk-like, strongly-developed upper canine teeth in the male. The male has between the navel and the penis a glandular sac, in which strong-smelling musk accumulates. Moschus moschiferre: L., high mountains of Central Asia, from Thibet to Siberia; Tragulus jaranicus: Pall., without musk-bag, Island of Sunda.

Fam. Cervidæ (Deer). Of slender build, with horns in the males, and two rudimentary digits. In almost all cases there is a brush of hairs on the inside of the hind foot, which affords a good means of distinguishing deer from the antelopes. Upper canines often present in the malc. Grinding tecth : $-\frac{6}{6}$ The horns, which, except in the Reindeer, aresconfined to the malc. are of systematic importance; they are solicd dermal bones, which are attached to a bony process of the forchcad, and are detached at regular periods from the thickened circular base. cast off, and renewed. They feed on leares, buds, and shoots. The females have four mammæ, but usually bear only one young. Australia and south Affica only are without ('ercide. Fossil species first appear in the middle tertiaries. Corrus caprenlus L., Roe-deer; C! claphlus, L. Red-deer; C. canadensis Priss, North America; C. cumpestris Cuv. ; Dama rulgaris Brook. Fallow-deer : Mef(areros hibernious Ow. (murycerox): extinct Irish elk of the diluvium ; Alces. porlmatus. Klein = (\because. alces L., Moose or Elk, in North Europe. liussia, and North America: liangifer turandus H., sm., Reindeer, antlers in both sexes. with numcrons broadly-projecting prongs ; they are used as beasts of burden, and for draught and riding, by the Laps.

Fann. Cavicornia. Without canine teeth, with $\frac{6}{6}$ grinders and hollow horns in both scxes. All are gregarious, and most polygamous.

Sub-fam. Antilopinæ. Antilopr dorcas Licht., Gazelle, Africa; Saiga saigu Wagn., steppes of Asia; Hippotrctyrs cquimus. Geoffr., Blaubock of South Africa: Il. ory,y Blainv. : H. milda.r Wragn., Africa; Strepsiceress Kudu Gray;

 Alps.

Sub-fain. Ovinæ. Oris urios, La, demestic sheep, of which mumerrous races are distributed over the whole earth (German sheep. Haiderchnucke, Herine, Zackelselaff, Fat-taled sheej). There was a domesticated race of sheep in the stone age. The Mouflon, O. musimou Schelel).. and the Argali. O. "rymli lall., living in Northern and Central Asia have been often regarderl as the wild

 numerous races, distributed everywherc.

Sulb-fam. Bovinæ. Uvilons moschatus B'ainv.. Musk-nx of North America; Bison ruroluews Ow. (improperly called Anerochs) ; B. ameriranh. (im.; Bululus inuffelus L.., Indian buffalo ; B. criffer L. : Prpplertgus qrunniens. L... Yak. Thibet and Mnugolia, domesticated; Bos grumrns. H., Sm.. Gaur, East Indies: B. indicus L., Kebu ; B. primigenius Boj.. diluvial, lived in ('æsar's time in Germany (calted "Ur" in the Nibelungen-Liecte), still preserved in a semi-wild condition in Chillinghan Park. Cuvier regarded them as the ancestral form of the domestie ox:-B. tan'us L..- and there can be no doulst that the Friesland or Holstein ox is to be referred to B. mimigemius. Riitimeyce has reecntly shown that a second species, which existed in the diluvial period. B. Drarluger cus Ow., is to be recarded as the ancestral species of the domestic ox.

2. DECIDUATA.

Order 7.-Proboscidea.

Multiungulutes of very large size, with long moloscis, which functions us a prehensile oryan; with compound grindiny teetl, und? thesks in the promaxillre.

The thick hide is folded, and is only sparsely covered with hairs. There is a tuft of hairs on the tail. The head is short and deep, is swollen by chambers in the frontal and parietal bones, and possesses a long movable proboscis. The occipital region descends abruptly, and almost perpendicularly. The perpendicularly-placed premaxille with their large rootless tusks, are enormously developed. In the Mrastorlonte there are also two incisor teeth in the lower jaw, which soon fall out in the female, but in the male are retained as tuski. There are no canines. According to the age one, two, or sometines even three grinding teeth are present in each jaw; they are composed of a number of parallel dental plates placed belind one another: In the genus Jilpplas these plates are connected with cement. and present on the masticatory surface transverse rhombic spaces, bounderl by enamel substance. In the Mastodonte the cement is absent, and
there are mammillary prominences on the masticatory surface. According to Owen, there are three pramolars, and the same number of molars. There are, however, never more than three, usually only two grinding teeth above the gum at the same time; for the hinder teeth, which increase in size and number of lamelle, only appear after the anterior have fallen out. At first each half of the jaw has one grinder, behind which a second is soon developed. Later on the front one is worn out, and falls out, and then a new tooth makes its appearance behind the second. The cylindrical limbs end with five digits, which are connected as far as the small hoofs. The females have a two-horned uterus, and two thoracic mamme. The placenta is zonary. Elephants live together in herds, and inhabit damp. shady places in the hot parts of Africa and India. They possess great intelligence, and when tamed are extremely useful animals. They were used even in antiquity as beasts of burden in war, and in the chase.

Fam. Elephantidæ. Elcphus indicus Cuv. The transverse spaces of the molars in the form of narrow bands, with almost parallel. finely folded edges. Head very deep, with eoncave forehead and relatively small ears. Attains a height of ten to twelve feet. Ceylon and India. The Elephant of Sumatra, ancording to Temmink, belongs to a special speeies (E. sumatranns). W. primiyenius. Blumb., Mammoth, dilnvial ; E. (Lnxorlon) Africanus: Blnmb. The transverse spaees of the molars are lozenge-shapert and less numerous. Skull less deep. Ears very large. Central and south Afriea. Mastudon !figmutenm Cuv. diluvial in North Ameriea.

The miocene genus Dinotherium Kp. is, according to its skull, closely allied (and therefore included with) the Proboscidea. Its extremities, however, have not yet been found, and the view that it is allied to the Sirenica cannot be directly contradicted. In the dentition there are no incisors in the premaxillx, while there are two large downwardly curved tusks in the lower jaw. Grinding teeth 5 $\frac{5}{5}$, with two to three rows of transverse tubercles. D. giganterum $\mathrm{K} p$.

Eppelsheim.

The Lamnungia are usually separated as a distinct order. and are placed near the Elephants. They are small and resemble the A yorti ; in their dentition they are intermediate between the Rodents and Pachyderms, and in the formation of their feet. slow resemblances to the Tapirs and have, therefore, often been placed with the Pachyderms. The body is closely haired, the front feet have four digits, the posterior three, all of which are provided with small hoofs.

 the ('oney (Saphan) of the (1dd Testament.

> Order 8. Romentha = Glares.

Hith freely mocalle, clowed diyits. Dentition with $\frac{1(2)}{1}$ chiselshoped incisors, grimeliney teeth with transverse enamel folds, and without canines.

The Rodentic are a large group of small, active Mammalia. They are easily recognizable by the dentition and structure of the teeth. The order, nevertheless,

Fig. 695.-Hyrax syriacus. includes many forms transitional to the Insectirora. Rodents are plan. tigrade animals, with freely movable digits, which are usually armed with claws, only rarely with arched nails, or even hoof-like nails. They all feed on vegetable, usually hard substances, especially on stalks, roots, seeds, and fruits. Only a few are omnivorous.

There are two large chisel-shaped, somewhat curved incisors (fig. 696), which possess enamel only on their anterior surfaces. The posterior surface is, therefore, quickly worn away by use, and the more so since the arrangement of the nirrow, laterally compressed glenoid cavity

Fig. 696.-Skill of Cricetux rulguris (afterGiebel ; Bronn's Classen und Ordnungell). necessitates an antero-posterior movement of the lower jaw during mastication. The wearing away is compensated by a proportionate, continous growth of the tooth. The grinder: which are separated from the incisors by a wide gip, possess usually transversely arranged folds of enamel, and are only tuberculaterl when the inimal is omnivorous. When these teeth are being used the lower jaw is drawn so far back that the incisors are not rubbed ag inst one another, and the lower jaw is moved backwards and
forwards in the longitudinal direction, in correspondence with the position of the transverse folds of enamel. Many of them build nests, dig out complicated burrows, and lay up stores for the winter. The latter usually possess cheek-pouches. Some fall into a deep winter sleep at the cold time of the year, others migrate in large flocks. They produce numerous young, some of them four or six litters in the year, and possess, accordingly, a great number of abdominal and thoracic mammæ. Uterus usually completely divided; placenta discoidal.

Fam. Leporidæ. With long ears, powerful hind legs, and short tail. Dentition: $\left.\frac{1}{1} \frac{0}{0} \frac{5(6)}{5}\right)\left[\right.$ i. $\frac{2 \cdot 3}{1 \cdot 1}$ c. $\frac{0 \cdot 0}{0 \cdot 0}$ p.m. $\left..^{3 \cdot 3} \mathrm{~m} . \frac{3 \cdot 3}{3 \cdot 3}\right]$. In the premaxillæ there are two posterior accessory incisors (Duplicidentuta). Lepus timidus L., Hare; L. varialitis Pall. Alpine hare; L. cuniculus K., Rabbit; Lagomys, Pikas. L. alpinus F. Cuv., barely a foot in length, Siberia: L. princeps Richards, Rocky Mountains.

Fam. Subungulata. Grinders, $\frac{4}{4}$. The fect have naked soles, and end in front with four, and behind usually with three toes. Cavia aperea L.: Aperea, in Brazil and Paraguay ; C. collaya Schreb., the tame Guinea-pig ; Coelogenys paca L., the Paca, Brazil ; Dasyprocta ayuti L., the Agouti ; Hydrochœrus capybara. Erxl., the Capybara, four feet in length, the largest of living rodents.

Fam. Aculeata. With short, obtuse snout, and spines on the dorsal side of the body. Corcolabes prehonsilis L., the Kuandu, Brazil : Erethizon dorsutus L., North America ; Hystrix. cristatus L., Porcupine, Italy and Spain.

Fam. Octodontidæ. Ortmlon Cumingii Benn., Chili; Myopotamus coypus. Gcoff., the Coypu, distributed from Brazil to Patagonia.

Fam. Lagostomidæ, Chinchillas. Erionty.s lumigera Benn., the Chinchilla Chili; Lagidlium. Cuvior i Wagn.; Lagostomus trichodact ylus Brookes, Viskatscha,
Fam. Dipodæ. Jerboas. With very long hind legs, which serve for jumping, and large, usually tufted, jumping tail. Juculus latradorius Wagn.. Huipfmaus; Dipus Etypptius Hempr. Ehrnb., Arabia; D. sagittu Schreb., sea of Aral ; Perletes caffer Ill.. Cape jumping hare (Springhase), South Africa.
Fiam. Muridæ. Mice. Grinders: $\frac{3}{3}$. With large eyes and ears, and long sometimes hairy, sometimes ringed, scaly tail. Cricetus frumentarius Pall., the Hamster ; with internal cheek ponches ; constructs subterranean passages and chambers, in which it accumulates winter provisions. It passes through a short winter sleep, and is very hurtful to corn-fields. Mus. rattus, L.. House-rat, Black Rat ; M. decumamu: Pall., Grey Rat; M. musculus L., House Mouse; 1. minutus Pall. (pemdulinuss) ; Hydromy.s eluysogaster Geoffr', Australia.

Fam. Arvicolidæ. Voles. With thick, broad head, rootless grinders, sinort, hairy ears and tail. Areicola umplihlius L., Water-rat; A. arrelis l'all., Fieldmonse: A. ufrestis L. ; Hypudreus. glureolus Schr.: Myodrs lemmus. L... the Lemming, on high mountains of Norway and Sweden, known by its migrations in immense flocks before the approach of the cold weather. Fiber ailethirus L., North America.

VOL. II.

Fam. Georhychides. Syulax typhlus l'all., lilindmouse. South Eiast Europe: (ieorhyrhas enprovis l'all.

Fam. Castoridæ. Beavers, Grinders: $\frac{4}{4}$. With flat, sented swimming-tailTwo glandular sacs which secrete the enstoreum open into the prepuce. Castor fiber L., the common lienver.

Fam. Myoxidæ. Dormiee. Connecting links between the Mice and Squirrels. Myoxus Glis Schrel), Dormouse ; M. (Muscardinus) avellanariss L.; M. (Eliomy.s) nitela Schreb.

Fam. Sciuridæ. Squirrels. Grinders: $\frac{5(4)}{4}$. Sciurus rulgaris L.., Europe and North Λ sia ; Trmias stritutus L.. ; Pteromyss volans L., Flying Squirrel, Siberia; Spermoplitus (itillu. L., East Europe; Aretomys marmota Schreb., the Marmot, Alps; A. bobre Schreb., Poland.

Order 9.--Insectivora.

Plantigrade Mammals with clawed digits, with complete dentition, small canines, and sharp-pointed grinders.

Small Mammals, which resemble in their appearance different types of Rodents, but in structure and mode of life lead to the Carnivora. The head ends with a pointed snout, which is often elongated like a proboscis. The external ears

Fig. 697.-Skull of Erinaceus europrus. are sometimes large, and sometimes reduced; the eyes are always small and reduced, and sometimes hidden beneath the fur. The dentition (fig. 697) is especially important, and resembles that of the insectivorous Bats. All the three kinds of teeth are present. The incisors are usually of considerable size, but of variable number. The canines are not always clearly distinguished from the incisors and the front grinders. The grinders are numerons, and have sharply-tuberculated crowns, and are divided into anterior premolars, of which the posterior corresponds to the carnassial tooth of the true Carnivora, and into posterior molars, which are characterized by being composed of prismatic divisions. All are plantigrades, with naked soles, and usually five-toed feet, armed with strong claws. The mamma are abdominal : the placenta is discoidal. They feed on small animals. principally on Tnsects and Worms, which they destroy in great numbers, therely benefitting man.

Fium. Erinaceidæ (Hedgehogs). Back covered with stiff bristles and spines, which afford a complete protection to the animal when the body is rolled into a ball by the action of the strongly-developed cutaneous muscles. Erinacers.
 $\left.m . \begin{array}{l}3 \cdot 3 \\ 3 \cdot 3\end{array}\right]$. Digs holes with two exits about a foot deep in the earth and hibernates. E. fossilis Schrcb., Cave Hergehog; Centetes ecaudatus Wagn., Tanrec, Madagascar ; snout elongatcd like a proboscis.

Fam. Soricidæ (Shrews). With proboscis-like snout, soft fur, and tail covered with short hairs. Peculiar glands on the sides of the body or at the root of the tail give the true Shrews an unplcasant musty smell. Cladobates tana Wagn. : Cl. murimus Müll. Schl., Borneo; Macroscelides typicus Smith, South Africa. Sorex; with 28 to 33 tceth; S. vulgaris L., Common Shrewmouse; S. fodiens Pall., Watcr Shrew-mousc ; S. pygmeus Pall. Myogale moschuta Pall., the Desman, as large as the Hamster, South East Russia.

Fam. Talpidæ (Moles). With short, latcrally-directed digging fcet, soft velvety fur, and proboscis. Talpa. Dentition : $\frac{3}{4} \frac{1}{1} \frac{3}{2} \left\lvert\, \begin{array}{llll}4\end{array}\left(\begin{array}{ll}\text { i. } \frac{3 \cdot 3}{4 \cdot 4} & \text { c. } \\ \frac{1 \cdot 1}{1 \cdot 1} & \text { p.m. }\end{array} \frac{3 \cdot 3}{2 \cdot 2}\right.\right.$ $m . \begin{aligned} & 4 \cdot t \\ & 4 \cdot t\end{aligned}=44$). T. europea L., Mole, eonstructs an ingenious subterranean dwelling, which communicates by a long gallcry with the daily multiplying burrows which the animal makes in hunting for food. The nest consists of a softly-lined central chamber and two circular passages, of which the upper one is the smaller, and communicates by threc passages with the central ehamber, while the lower and larger lies in the same plane as the chamber. Five or six communicating passages pass from the upper circular passage into the lower, from which a number of horizontal passages radiatc, and usually curve round and open into the common gallery. T. ceeca L., the Blind Mole of South Europe; Chrysochlorys inanrata Sichreb., Cape Golden Mole; Condylura cristata L., the North American Star-nosed Mole; Scalops aquaticus L., Water Mole, North Amcrica.

Order 10.-Pinnipedia.

IIairy aquatic Mammalia with five-toed fin-lifie feet, of which the posterior are directed backwards; with complete dentition; without caudal fin.

The body is elongated, spindle-shaped, possesses four fin-like feet, and ends with a short conical tail. The head is very small in proportion to the body, of globular shape, with swollen lips, and usually without external ears. The surface of the body is covered with a sliort, but. close, smooth fur. The short limbs end with broad swimming fins, which possess five digits, armed with blunt or sharp claws. The movements on land are effected in the following way: the animal raises the anterior part of its body, and throws it forward; it
employs the two front feet as supports to fix the borly, and then by bending its back drags the hinder part forward. In swimming the anterior extremities are applied to the body, and are used as rurders, while the hind feet serve as swimming fins.

Tho dentition, which is usually complete, indicates a predatory mode of life, resembling that of the true Carnivora, to which order the Pinnipedic are also allied in other anatomical characters, is in the possession of a two-horned uterus and a zonary placenta. With regard to the dentition, however, there are essential differences between the families of the Walruses and Seals. The Seals have $\frac{3}{2}$, more rarely $\frac{2}{1}$ chisel-shaped incisors, small canines in each jaw, and $\frac{6-5}{5}$ jagged grinders, of which one or two are true molars. The Walruses have a complete dentition only in the young stage; the incisors, which at first are $\frac{3}{3}$, are soon reduced to $\frac{1}{1}$ in the premaxilla. The canines in the upper jaw are transformed into huge tusks, which are used when the animal crawls on land to fix the anterior part of the body. There are five grinders in the upper jaw and four in the lower, with masticatory surfaces which wear away, in course of time, obliquely from within outwards. The change of teeth usually takes place during embryonic life. The Seals live principally on fish; the Walruses on sea-weeds, Crustacea, and Molluses, the shells of which they crush with their grinders.

Fann. Phocidæ (Seals). Pinniperles with complete dentition, short canines. and jagged molars. Halichervis grypus Nilss., Utsel. Phnea vitulina L.. Common Scal, $\frac{3}{2} \frac{1}{1} \frac{5}{5}$; Pll. Ircentandica Nilss., Northern Scas: Cystophora cristata Fabr., Greenland ; Otaria jubata Forst., Sea-lion of South America : O. (Callor himus) ursinu Per., Sea-bear, Greenland.

Fam. Trichechidæ (Walrnses). The upper canines are large, rootless, down-wardly-directed tusks. The grinders are at first bluntly pointed, but are gradually worn down, and eventually reduced to three in each ramus, while in the upper jaw there is an intemally placed incisor. Trichechus rosmaru* L .. Walrus of the Polar Scas. Dentition : $\frac{2(1)}{2(0)} \frac{1}{0} \frac{3(4)}{3(t)}$.

Ordel 11.-CArnivora $=$ Fer.e.

Carnivorous Mammatia with mechatory dentition, without or with a rudimentary clavicle, and with strongly-clawed rligits.

The Carnivora are distinguished from the Insectivora by their larger
size, and by their genuine carnivorus dentition (fig. 698). The dentition contaius all three kinds of tecth: above and below six small incisor's with single roots, and at their sides a long, conical pointed canine tooth; then a number of grinders, which are distinguished into premolar's (d. spurii), a carnassial tooth (d. sectorius), and molars (d. molares). We never find prismatic grinders with needleslaped points on the crown, as in the Insectivora. The compressed and sharp-edged premolars are the least developed ; the characteristic carnassial teeth are distinguished by the size of their cutting, usially two-or three-toothed crown, and often by the possession of a posterior bluntly-tuberculated lobe (upper carnassial tooth). The lower carmassial tooth is always the first molar; while the upper is the last premolar. The true molars have several roots ; they possess bluntlytuberculated crowns, and vary in size and number. The external form of the skull and dentition, the high temporal crest of the skull for the attachment of the large temporal muscle, and the marked curvature of the zygomatic arch for the passage of the same, the transverse articular cavity (glenoid cavity) of the temporal bone, and the cylindrical

Fig. 698.-Skull of Felis Leo. articular head of the lower jaw, which restricts the motion of the jaw to the vertical plane and excludes lateral movements,-are characters which are common to all the Carnivora, and coincide with the form of the dentition.

The limbs end with four or five freely-movable digits, which are armed with strong cutting claws (accessory to the dental apparatus), and in the front limbs are also used for seizing the prey. Only a few Carnivora, as the Bears, are true plantigrades resting the whole sole of the foot on the ground; others, as the Fivervilde, only place the anterior part of the sole (the digits and metacarpals) on the ground ; the most agile of the Camivora, on the other hand, are digitigrade, e.g., the Felidce (fig. 699.) The uterus is two-horned, the placenta zonary. Most Curnicora have peculiar anal glands, which emit an intense odour. The Carnivora are found in all parts of the world, except Australia, where they are replaced by the carnivorous Marsupials. Fossil remains first appear in the Eocene.

Frm. Ursidæ (Bear-like Carnivora). Plantigrades of nuwichly form, with elongated shout, and broad, nsually quite naked soles, and five digits. Visums I., Bear. Of umwieldy bnild, with very short tail. Grinders: $31 \frac{1}{2}$ $\left[\begin{array}{lllll}3 . e . p . m . & \begin{array}{ll}3 \cdot 3 \\ 4 \cdot 4\end{array} \text { cornussial, } & 1 \cdot 1 & m, & \frac{2 \cdot 2}{2 \cdot 2}\end{array}\right]$. The front grinders fiall ont early. if. maritimus Desnı, Polar Bear, Northern Polar Sica; U. arofos L., Brown Bear : Inocyon lotor L., Washing Racoon, is wont to (lip its food in water; North Ameriea; Sresuи rufu Desm., the Coatimoncli (Ruisselbiar), Brazil; ('crroleptes' cuudivolculus Ill.. the Kinkajon (Wickelbär'), Guiana and l'cru.

Fam. Mustelidæ (Marten-like Carnivora). Some are plantigrade (Badger), some semiplantigrade ; borly elongated, witli short legs, and fire-toed feet with non-retractile elaws ; only nne molar behind the large earnassial. Metes taxus P'all., Badger. Mephitis mesomelus Licht., Skunk (Stinkti:ier). North America. Crulo barealis Briss., Glutton ; Mustela martes L., Pine-marten, grinders: $\begin{array}{ll}3 & 11 \\ 411\end{array}$; M. foina Briss., House-marten ; M. zibclinu L., Sable-marten, Siberia; Putorius putorius L. ; P. vulgaris L., Weasel ; P erminea L., Ermine ; P. lutreola L., (Nörz) ; Lutra vulgaris Erxl., Common Otter ; L. camarlensis Selrel... North Ameriea; Enfydris marinu Erxl.: Sea otter. West islands of North America.

Fam. Viverridæ (Civets). Body elongated, sometimes cat-like, sometimes marten-like in form ; with pointed snout and long tail, whieh is sometimes rolled up into the form of a ring; they are cither plantigrarle, semiplantigrade, or digitigrade. The feet have five digits, and the claws are usually entirely, or half retractile. Half the foot, or only the toes, are placed on the ground. Viverra zibetha L . Grinders : $\begin{array}{lll}3 & 1 & 2 \\ 4 & 1 & 2\end{array}$. With large glandular sae between the anus and external gencratives, in whieh the oily sceretion known as "Ciret," and used as perfume and for external application in medieine, aecumulates. V. zirettci Sehreb., the African Ciret-cat, domestieated in Egypt and Abyssinia ; V genetta L., the Genet, South Europe ; ILerpestes iehneumon L., the Mongoose or Iehneumon (Pharaonsratte), Egypt and South Europe.

Fam. Canidæ (Dogs). Digitigrades, with non-retraetile claws, fire-tned front feet, and four-toed hind fect. C'uis Tupus L., Wolf. Grinders: $\begin{array}{ll}3 & \frac{1}{2} \\ 4 & \frac{1}{2} \overline{(1)}\end{array}$. In Europe, espeeially Norway and Sweden, also in Asia; C. Tations Sm., the Prairie Wolf; C. aureus L., the Jaekal; C'. fumiliaris L., Dog (cauda sinistronsum recurvata L.). The numerous races, whieh are known only in the donestieated and run-wild state, bave eertainly been derived from more than one aneestral species. C. rulpes L., Fox; C. lugopus L., Polar Fox, gray in summer, white in winter:

Fam. Hyænidæ (Hyæna-like Carnivora). Digitigrades with sloping back which bears a mane of elongated hairs. The dentition resembles that of the Cats in the small development of the molars, of whieh there is only one in the upper jaw. Hyoun striata Zimm., the striped Hyana of Africa and parts of India. Grinders $\frac{3}{3} \frac{1}{1} \frac{1}{0}$. $I I$. rorutu Zimm., the spotted Hyana of South Africa.

Fam. Felidæ (Cats). Digitigrades of slender buik, adapted for jumping ; with short jaws. and only few grinders-four in the upper, three in the lower jaw. Molars absent, except one small tooth abore projeeting transversely inwards. The eanines and carmassials are. however, so much the more power-
fully developed. The anterior of the two premolars of the upper jaw is reduced. In walking, the last phalanx of eaeh digit is raised vertieally, so that it does not tonch the ground, and the claws are proteeted from wear. Felis leo L., Lion ; grinders, $\frac{2}{2} \frac{1}{1} \frac{1}{0}$. F. concolor L., Puma ; F. tigris L., Tiger, Asia; F. onca L., Jaguar, Paraguay and Uraguay ; F. pardalis L., Panther-cat, South America; F. pardus L., Panther or Leopard, Africa and West Asia; F. catus L., Wild Cat, grey, with stripes, and transverse bars and vertical pupils, Central and Northern Europe; ${ }^{3}$. maniculata Rüpp., Nubian Cat; F. domestica L., the Domestie Cat, only known in domestieated state, probably deseended from several speeies; Cynailurus guttata Herrm., and jubata Sehreb. (Gueparde); F. serval L., Serval, Senegal ; Lynx lynx L., with a tuft of hairs on the ear ; L. earacal Sehreb., Asia and Persia.

Order 12.-Chiroptera.

Mammals with complete dentition; with a flying membrane (patagivm) extending between the limbs and the sides of the body, and between the elongated fingers of the fore-limb; with two thoracic mumince.

Amongst the Marsupials (Petcuurus), the Rodents (Pteromys), and the Prosimice (Galeopithecus), there are a number of forms which are assisted in jumping by a kind of parachute, which consists of a cutaneous expansion-the patagium-stretched between the limbs on each side. The patagium is much more completely developed in the Bats; in these animals it is continued over the extraordinarily elongated fingers of the hand, and in virtue of its enormous size and its great elasticity constitutes a true organ of flight, which, however; differs considerably from that of birds. The tail is included in the patagium, but the thumb and the foot are separate from it (fig. 699). The thumb has two phalanges, and is armed with a claw, as also are the five digits of the foot. Peculiar outgrowths of the skin of the head, lobe-like appendages of the nose and ear, often give the face a very strange expression. Except upon these appendages, and on the thin elastic patagia, both of which have a large supply of nerves and a delicate sense of touch, the surface of the body is closely covered with hair. The skeleton (fig. 699) is light, and displays in its structure the Mammalian type ; it is, however, distinguished from that of other Mammalia by the rigidity of the thoracic framework, and by the length of the strongly developed sacrum, with which the ischia are united. The possession of a crista sterni, and the ossification of the sternocostal cartilages, and some other peculiarities recall the skeleton of the birds. The
femmr and crus (middle division of leg) are, unlike the corresponding parts of the arm, very short. A spurlike process, cialled the calcar, projects from the inner side of the ankle-joint, and serves for thos support of the femoral and caudal part of the patagium. Of the sense organs the eyes are relatively slightly developed, but on the contrary, the senses of smell, of hearing, and of touch, are, in correspondence with the nocturnal habits, of great importance. Spallanzani has shown that Bats which have been made blind are able to avoid all obstacles in their flight with great skill. The sense of hearing is not less developed; it is essentially assisted by a large

Eic. 699.-Skeleton of Pteropus (after Owen, slightly altered). St, Sternum; Cl, Claricle ; $S c$, Scapula ; H, Humerus; R, Radius; U, Ulna; D, Thumb; Jl, Ilium; P, Pubis; J_{ε}, Ischium; $F e$, Femur ; T, Tibia; F, Fibula.
pinna, which is provided with special lobes, and can be closed by a valve.

Bats are nocturnal animals, and feed on Insects. Amongst the exotic species there are some which attack Birds and Mammals, and suck their blood (Vampire) ; other, and especially the larger species live on fruit. Many fall into a winter sleep. They bear only one or two young at a birth, suckle them with their pectoral mammary glands, and carry them about during their flight.

Sub-order 1. Frugivora (Fruit-eating Bats). With elongated dog-like head, small ears, and short rudimentary tail. The index finger, which has thee phalanges, often bears a claw as well as the
thumb (fig. 699). The other finger's have two phalanges, and are without claws. The dentition has four or two incisors, which often fall out, one canine, and four or six grinders with flat, bluntlytuberculated crowns. The premaxillie are loosely united with one another, and with the maxillæ. The tongue is beset with a numberof backwardly-directed, hormy spines. They inhabit the forests of the hot regions of Africa, East India, and Australia. Many of them are eaten on account of their well-flavoured flesh.

Fam. Pteropidæ (Flying Foxes). The small ears and the nose are without the cutaneons appendages and valves. Pteropus relulis Geoff., Kalong, East Indies. Dentitiou: $\left.\frac{2}{1} \frac{1}{1} \frac{2}{3} \right\rvert\, \frac{3}{3}$. Harp!!ím ceplulates Pall., Amboina.

Sub-order 2. Insectivora (Insect-eating Bats). The snout is short; the ears are large, and frequently covered with valves. Grinding teeth sharply tuberculated or cutting, and composed of three-sided pyramids. The thumb alone bears a claw. Some of them live on insects: some on the blood of warm-blooded animals.

Tribe 1. Gymnorhina. The nose is smooth, and without foliaceous appendages. The premaxillie are firmly ankylosed with the maxillæ. The ears sometimes meet one another on the top of the head, and are sometimes widely separate; the valres of the ear's vary considerably.

Fig. 700. Hearl of Phyllostoma (Vompy!us) surectrum (règne animal).

Fam. Vespertilionidæ. The long and slender tail is entirely included in the interfemoral membrane. Plecotus uuritus: L., Long-eared Bat ; Synotus: burbast cllus Sehreb., the liarloastelle; Tespertilio murimus Nelreb. Dentition: $\frac{2}{3} \frac{1}{1} \frac{3}{3} \left\lvert\,$| $\frac{3}{3}$ |
| :--- |$\quad\right.$ Vespermgo noctula sehreb. : V. pipist,rollus sichreb.

Fam. Taphozoidæ. Tail shorter than the interfemoral membrane. The hase of the thamb is within the patagiam. Thulnazous lencopitirus Temm., South Africa; Mystacimu turleremlata Cray. New \%ealand.

Tribe 2. Phyllorhina. Cutaneusus appondages are spread on and over the nose. They consist of a horseshoe-shaped anterior leaf (ferrum eqzinum), a medium saddle (sella), and a posterior, usiually vertical lancet-shaperd leaf (luncet) (fig. 700). The premaxillie are not ankylosed with the maxille. Ears separated. Feed partly on the bloorl of warm-hlooled Vertehrates, which they attick while sleeping.

Farm. Rhinolophidæ. Fars separated without tragus. Rhimolophus hipphaideross Bechst., small 11 orseshoe-nose. Ith. ferrum rguinum Shreb., large Horseshoe-nose ; Phyllorlhime gighes Wagn., Guinea.

Fan. Megadermidæ. The large ears approximated, with long tragus.

Fiam. Phyllostomidæ. With thick head and long truncated tongue. Nawal apparatus usually with upright lancet. Jars almost always separate, with car-valve. Phyllustoma hastatum Pall., Brazil. Dentition: $\frac{2}{2} \frac{1}{1} \frac{\pi}{5}$. Vampypres spectrum L., the Vampire of Central America.

> Order 13.-Prosmime (Lemurs).

Arboreal amimrts of the Old World, with complete insectivor-like dentition, with hands and pre-

Fig. 701.-Chiromys'madugascuriensis from Vogt and Specht. hensile feet, without a closed orbit, and with thoracic and cabdominal mammee.

The dentition holds a position intermediate between that of the Carnivora and that of the Insectivora. There are usually four incisors, of which the upper are separateci by a wide gap, while the lower project more or less horizontally ; there are projecting canines, and numerous sharply-tuberculated grinder's. The lower jaw is relatively weak, and its two rami remain permanently separate at the symphysis. The orbits are, indeed, completely surrounded by a bridge of bone, but are not shut off from the temporal fossa as they are in the Apes. In many Lemurs the clitoris is perforated by the methra. Uterus two-horned or double. There are usually several pairs of teats. The anterior limbs are shorter than the posterior. The great toe, like the thumb, is opposable except in (rateopithecus. They thus have the hands and prehensile feet of Apers, and also flat mails on the extremities of the finger's and toes, except in Gulcopithecus and Chiromys (fig. 701), which have claws on all the fingers and toes.

The second toe of the foot alone forms an exception, being armed with a long claw. There may, however, be a claw on the middle toe. The tail presents great variations in size and development, but can never be used as a prehensile tail. The Prosimice inhabit exclusively the hat regions of the Old World, principally Madagascar, Africa, and South Asia. They are almost all nocturnal in their habits, climb with great skill, but slowly and lazily, and feed on Insects and small Vertebrates.

Fam. Galeopithecidæ=Dermoptera. With elosely-furred patagium, whieh they use as a paraehute in jumping. Lower incisors peetinated and inelined forwards. They are most nearly allied to the Makis; they are noeturnal in their habits, and live partly on fruit and partly on Inseets. During the day they sleep in their hiding-places, suspended like Bats. Guleopithecus rolruns L., the flying Maki, Istand of Sunda.

Fam. Chiromyidæ. With rodent-like dentition, and with elaw-like nails on the fingers and toes. The large opposable great toe of the hind foot alone has a flat nail. In the premaxillæ and in the lower jaw there are two large rootless incisors, whieh project obliquely forwards, and, unlike those of Rodents, are eovered with enamel on both sides. Chiromys madayascuriensis Desm., the Aye-aye, permanent dentition $\frac{1}{1} \frac{0}{0} \frac{4}{3}$ (Fig. 701).

Fam. Tarsiidæ (Lung-footed animals). With thick head, large ears and eyes, short snout, much elonged proximal tarsal boncs (ealcaneum and navieulare), and long tail. The middle toe as well as the second may be amed with a

Fig. 702.-Otolicnus galugo from Vogt and ${ }^{\text {sen }}$ Specht. I elaw (Tarsius). In their appearance they resemble the Hazel-mice (Myor 'us arcllanarius), in their movements the squirrels. Tarsius spectrum Geoffr., (Gespenstmaki).

Fam. Lemuridæ. 'The lower ineisor's direeted horizontally forwards. Only the seeond hind toe has a claw-like nail. Sterops !fracilis v.l. Hoev.. the slender Lori, Ceylon ; Nycticebus tardiyradus L., the unwieldy Lori, East Indies and Island of Sunda: Lichanotus brevicuudatus Geoffr., Indri of Madagascar: Propithreus diudemu Wagn., Vlissmaki of Madagasear. Lemur catta L., macuce I., mongez L., Makis, Madagasear; ; Dentition $2(0) \frac{1}{2} \frac{3}{1} \frac{3}{3}: \frac{3}{3}$. Otolicmss senegulensis Geofir., the common Galago (Fig. 702), Africa.

> Order 14.-Primates L., Pitheci* (Apes).
> With complete dentition and $\frac{2}{2}$ chisel-shaped incisors in closed series on each side; usuctlly with prehensile feet on the lind limbs, and as a rule, with hemeds on the front limbls; with closed orbit and two pectoral muетопие.

The Aper, as a rule, are of slender build, corresponding with their quick and easy movements as arboreal animals; there are, however, heavy unwieldy forms, which, as the Baboons (Cynocepherlidece), aroid forests and inliabit rocky mountain regions. The body is more or less closely covered with hairs, except on the face, which is naked in parts, and the callous parts of the buttocks (ischial callosities). The hair is often longer in places on the head and trunk, forming tufts and manes. The human look of the face depends mainly upon the slight prominence of the jaws, and is greatest in the early part of life. The facial angle of the adults rarely exceeds 30°; but in one case, viz., in C'hrysothrix sciurece, is almost twice that size. With the increase in size of the brain, the cranial capsule becomes rounder, and the forcmen maymem gradually moves from the posterior part on to the lower surface. The pinna of the ear also has a human look, as has also the position of the anteriorly directed eyes. The orbits are completely closed towards the temporal fossw. Further, the mammre are tiwo in number and pectoral in position, as in Man. Finally, the dentition and the structure of the extremities (fig. 703) are so similar to those of Man, that he has been placed in the same order as the Apes. There are in each jaw four chisel-shaped incisors, which, as in Man, are placed close to one another without any interval. There are projecting conical canines, and in the Apes of the Old World five, in those of the New World six bluntly-tuberculated grinders, the form of which indicates that the diet is mainly regetable. The size of the canines, which project almost as much as those of the C'arnirora, occasions the presence of a considerable gap between the canines and the first premolars of the lower jaw.

The anterior limbs are usially longer than the posterior. A clavicle is always present. The forearm permits of a rotation of the radius round the ulna, and accordingly of the pronation and supination of the hand, the fingers of which, except in the

[^204]Aictopitheci, have flat or arched nails. In structure and function the hand is considerably inferior to that of man. The pelvis is long and extended, but in the Anthropomorphe it is shorter and more like that of man, though it is always flatter. The tibia and fibula are always separate and movable. The posterior extremity ends in all cases in a well-developed, prehensile foot, which, according to the osseous structure and muscular arrangements, we are not justified in calling a hand. The opposable hallux always has a nail, while the other toes may be armed with claws (Arctopitheci). By the arrangement of the hind limbs the Apes are admirably adapted for climbing and jumping. On the other hand they are less fitted for walking or running upon the four limbs, in consequence of the position of the foot; the leg is directed obliquely inwards, so that only the external edge of the foot rests on the ground. The gait is, therefore, clumsy, except in the Arctopitheci.

Their movements on the boughs and branches of trees, which are effected

Fig. 703.-Skeleton of Gurilla engena. St, Sternum ; Sc, Scapula; Ac, Acromion ; Pc, Coracoid process ; Cl , Clavicle; Π, Humerus; R, Radius ; U, Ulna; O\&, Sacrum ; Jl, Ilium ; $J_{\&}$, Ischium; P, Pubis; Fe , Femur ; Pa, Patella; T, Tibin; Fi, Fibula; C, Colcaneum ; A, Astragulus.
with great catse and sifety, are often asmisted by the long tail, which may even act as an accessory prehensile orgath.

Most Apes are gregrimious, and live in forests in hot countries. In Furope, the precipices of Gibraltar

Fig. 70t.-Skull of Pithecia Satanas. we the single resort of a species of Ape, the Barbary Ape (Iпииs ecaudatus), which is probably African in origin, and has elsewhere completely vanished from Europe. Only a few Apes lead a solitary life: most of them live together in large companies, which are led by the largest and strongest male. They feed chiefly on fruits and seeds, but also ou insects, eggs and birds. The females produce only one young (more rarely two) at a birth; they protect and tend their offspring with great love. Intellectually the Primates take with the dogs and elephants the highest place amongst Mammalia.

Suborder 1. Arctopitheci. Marmosets. South American Apes of small size, with long hairy tail, and claw-like nails. The great toe is opposable, and has a flat nail. The thumb is not opposable. In the number of teeth (thirty-two) they resemble the apes of the Old World, from which, however, they differ in the fact that the premolars (three) are more numerous than the molars(two). They produce two or even three young at a birtly, and feed on

Fig. 705.-Skull of Satyrus orang. eggs, insects, and fruit.
Fam. Hapalidæ. Dental formula $\left.\frac{2}{2} \frac{1}{2} \frac{3}{1} \quad 3 \right\rvert\, \frac{2}{2}$. Without prehensile tail. Mapale Juceluzs Gcoffr., the Salui or Ouistiti ; Midas Rusalia I.

Suborder 2. Platyrrhini. Apes of the New World, with broad nasal septum, and with thirty-six teeth $\left(\left.\frac{2}{2} \frac{1}{1} \frac{3}{3} \right\rvert\, \frac{3}{3}\right)$. (Fig. 704

The tail is sometimes used as a prehensile organ. The fingers and toes have arched or flat nails. The thumb is sometimes reduced, and is never opposable to the same extent as the great toe. Cheek poluches and ischial callosities always absent.

Fam. Pithecidæ. Apes with long hairy tail, whicli canot be used for prehension; Pithecia Satanas Hoffms.. Buazil; Myctipitherustrivirgatus v. Humb., New
 personata Geoffir. cast cuast of Bunzil.

Frg. 706.-Gorille engena, from Vogt and Specht.
Fam. Cebidæ. Apes with prehensile tail covered with hair or naked at the end. Cebus capucinus L.. Nai. Capuchin: Atrles panixcus L., Koaita, Spidermonkey. Brazil ; A. Belabluth Geoffr., Guiana; Lagothri.. Ifumboldtii Geoff., Peru. Mycetes Ill., Howling Monkeys. M. wiger Geoffr., Brazil ; M. seniculus I.

Suborder 3. Catarrhini. Apes of the Old World, with narrow nasal septum, and approximated, downwardly directed nostrils, with thirty-two teeth $\left(\begin{array}{ccc|c}2 & 1 & 2 & 3 \\ 2 & -1 & 2 & 3\end{array}\right)$. (Fig. 705). The tail is never pre-
hensile, but is in some cases rudimentary, or, its in the Anthropomorphictu, entirely absent as an external appendage.

Fam. Cynocephalidæ. Baboons. Of stont, unwieldy build, with dogr-like projecting snout. The eanine tecth are large like those of the Carnirnord. There are ehcek pouches and large iselial callosities. Ceymerephatus hanisulvigas L. ; (!. Babuin Desm., Abyssinia: (Cíclada laiujp., (ielarla; Papio mormon J... Mandrill. Africa.

Fam. Cercopithecidæ. Of slender, light build, with cheek pouehes, ischial callositics. and tail of varions lengtl, without terminal tuft. Wacacus sinirus L... and silemus L., Indin ; 1H. cynomolgus. L., the Java Ape; Ilhesus nemestrinus Geoffr., Borneo and Sumatra; Inuиs sylvunus L., recuulatus (jeoffr., Barbary Ape, North Africa and Gibraltar; Cercopithecus subeus F. Cuv., West Africa.

Fam. Semnopithecidæ. With small ischial callosities, without true cheek ponches. The thumb is short. Somnopithecus entrllus L., reverenced in the Indies as the loly ape of the Hindoos ; S. nasious Cuv., Bornco.

The Afriean genus Colubus is allicd to the Semunpitheride. from which it is distinguished principally by the thumb, whieh is rudimentary, or wanting. Cinlobus Gucreal Wagn., with long pendent white manc and caudal tuft, Ihyssinia.
Fam. Anthropomorphæ. Withont tail, with long front limbs, without ischial callosities [except in the Gibbous] and cheek pouehes. The body is closely covered with hair on the under side of the trunk and the limbs. Hylnbuts: Lar Ill., H. syudactylus Cuv., Siamang, Gibbon. The front limbs are very long. reaching to the ground. Satyru.s. Orang L., Orang-Utang, Pongo. Lires in the swampy forests of Borneo. Guilla engcua $=$ gina J. Gcoffr., Gorilla (fig Tu6). Lives gregarionsly in forests on the west eoast of Africa (on the Gaboon River) and reaches a height of five and a half to six feet. Trogledytes niger L., the Chimpanzec; lives in great companies in the forests of Guinea, and is said th build a nest with a roof upon trees.

Man.*

With reason and articulute speech, with upriyht gait, with hunds and, broad-soled, short-toed feet.

Although the view, which formerly was so widely held, that Man belongs to a special natural kingdom, above and outside the animal

* J. F. Blumenbach, "Dc generis humanis varietate nativa." Gottingæ, 1795. And. "Deeas Collectionis sure craniorum diversarum gentium illustrata," fortingre, 17c0-1820.
J. C. Prichard, "Researehes into the Physical History of Mankind." 2nd ed. London, 1826.
A. Retzius, "Anthropologische Aufsätze," iibcrsetzt in Mïller's Arehir.

Huxley, "On the zoological relations of man with the lower animals," Tat. Hist. Rce., 1861.
Huxley, "Evidence as to Man's Place in Nature," London, 1863.
C. Vogt, "Vorlesungen iiber den Menschen," etc., (riessen. 1863.
M. L. Bischoff, "Ueber die Versehicdenheit in der Sehaidelbildung des Gorilla, Chimpansé und Orang-Utang." ctc., Münehen. 1867.

Quetelet, "Anthropométric." 1870.
Friedrieh Mitller, "Allgemeinc Ethnographic," Wien, 1879.
kingdom, may now be completely put on one side as incompatible with the spirit and method of natural science, yet there are still differences of opinion as to the position of Man in the class of Mammalia, according to the value attributed to the peculiarities of his bodily structure. While Cuvier, and more recently Owen and others, establish a special order (Bimana) for Man, other investigators, as Huxley and his followers, attach a much less importance to the characters which separate Man from the anthropoid Apes, and, in agreement with Linnæus, who included Man with the Apes in his family of Primutes, regard them only as of family value. The most important anatomical differences between Man and the Apes depend upon the configuration of the skull and the face, the structure of the brain, the dentition and the formation of the extremities, the arrangement of which, in connection with certain peculiarities of the vertebral column, permit of the upright posture of the body in walking.

The rounded arched form of the spacious cranial capsule, the considerable preponderance of the skull over the face, which is not placed in front of the skull as in the anthropoid Apes and in other animals, but almost at right angles beneath it, are essential human characters, as are the relatively large mass of the brain, the great size of the anterior and posterior lobes, and, finally, the great development of the cerebral conrolutions, which, however, in the Apes are arranged on the same type.
All these peculiarities, which are of the greatest importance for the intellectual derelopment of Man, cannot be regarded as fundamental distinctions, but must rather be ascribed to gradual deviations, since there are still greater differences between the highest and lowest Apes. Efforts have been vainly made to show that certain parts, which are always present in Apes and other Mammals, are absent in Man (pramaxilla Blumenbach-Goethe) ; and the attempts to prove the conrerse of this, viz., that there are parts of fundamental value in the human organism (pes hippocampi minor Owen-Huxley), which are found in no other Mammal, have as completely failed. Further, the completely continuous row of teeth, interrupted by no gap for the opposed canines, a character by which the human dentition is distinguished from that of the Catarrinina, is not an exclusive human character, but is known in a fossil Ungulate (Anoplotherium) ; while on the other hand similar gaps have been observed, certainly only in exceptional cases (Kaffir skull in the Erlangen collection) in the human dentition. The proninent chin of Man has indeed the
value of it characteristic feature, although even this is less conspicuous in the negroes; nevertheless it is obvious that this feature cannot be regrarded as a character of fundamental importance.

Fir more important are the differences between the limbs of Man and those of the anthropoid Apes. The proportions of the individnal regions are essentially different, although the difierences are not greater than those which exist between the three species of anthropoid Apes in this respect. While in Man the legs constitute the sole support of the body, and greatly surpass the arms in length and weight, in the Apes the arms are longer, in various degrees, than the legs; the brachium in Apes being relatively shorter, the antebrachium and hand, on the other hand, much longer than in Man. In none of the three anthropoid Apes does the hand attain the perfection of the human hand ; that of the Gorilla approaches it most nearly, but is clumsier, heavier, and has a shorter thumb. The foot also of the Apes is relatively very long, and is prehensile, the sole being more or less turned inwards. With regard to the arrangement of the bones and muscles, the human foot differs essentially from a true hand, but not from the prehensile foot of the Apes. The, human foot presents a number of features, which are peculiar to Man, and are an essential condition of the maintenance of the upright posture ; these are the large and strong, but non-opposable, great toe, the arched instep (articulation of the tarsal and metatarsal bones), and the horizontal position of the sole upon the ground. With these peculiarities of the foot are correlated the large development of the calf muscle, the form of the broad shovel-shaped pelvis, the form of the thorax, and the double curvature of the vertebral columu. However high a value we may concede to the form of the head, the development of the brain and the upright position of the body, and the upright gait, yet it is undeniable that Man and the Apes are built upon the same type.

The most important consideration which induced the older naturalists to assign to man an entirely special place outside the animal kingdom, is his high intellectual development, which, founded on the possession of articulate speech, has elevated him to a reasonable being, capable of almost unlimited perfection. In fact, it were foolish to deny the great gap which, in this relation, separates Man from the highest beast. Nevertheless, if we examine without prejudice the intellectual development of the individual in early life, and of civilised humanity since the first dawn of culture, and if we subject the intellectual peculiarities of the higher animals to a com-
parative investigation, we shall reach with Wundt the conclusion that the mind of Man differs from that of the beasts only in the degree of development which it has attained.

The origin of Man and his early history are hidden in complete obscurity, but the view that he has existed for only a few centuries on the earth is completely contradicted by antiquarian and geological investigations. The simultaneous appearance of the remains of human bones (skulls of Engis and of the Neanderthal) and of stone implements, with the skeletal remains of extinct animals (Mammoth, Rhinoceros tichorhinus) of the diluvial period, proves the great antiquity of the human race. Man certainly existed in the pleistocene period, but possibly also at the beginning of the tertiary epoch. There are, however, at the present time, no definite facts with regard to his origin; * the view, that the highest form of life has also originated by the process of natural selection from one of the lower forms of Primates, is only a deduction from the Darwinian theory.

The question as to the unity of the species of Man,* which may be answered in different ways according to the different conceptions of species, may remain undiscussed, since from the impossibility of drawing a distinct line between species and race, a definite conclusion is impossible. Blumenbach, at the end of the last century, distinguished five races of men, and characterised them by the form of the head and skulls, by the colour of the skin, and the structure of the hair.

1. The Caucasian race, with white skin, fair or dark hair, globular skull, high forehead, vertically placed teeth, narrow nose, and long oval face. Inhabitants of Europe, West Asia, and North Africia. To this race belong the Indogermanic peoples (Germans, Celts, Hindoos, Iranians, etc.) ; the Semitic peoples (Jews, Arabs, Berbers, etc.) ; and the Slavs.
2. The Mongolian race, with yellowish skin, almost quadrangular short head, narrow, flat forehead, small nose, projecting cheekbones, and broad face, with oblique eyes (from above and outside to below and inside), stiff, black hair. They inhabit parts of Asia, Lapland, and North Anerica (Eskimos).
3. The Ethiopian race, with black skin and close, crisp, curly hair, with narrow elongated skull, and prominent jaws with oblique

[^205]alveolar portion; with thick lips, short flat nose, retreating forehead and chin (facial angle only 75°). They inliabit Central and South Africa (Negroes, Kafiirs, etc.).
4. The American race, with brown-yellow or copper-sed skin, with stift black hair, deep-set eyes, projecting cheek bones, and broad face. The forehead is narrow, the nose short, but projecting. They inliabit America.
5. The Malayan race, with yellow-brown to black skin, with close black loose hair, broad thick nose, turned-up lips and projecting jaws. They inhabit Australia and the East Indian Archipelago.

Cuvier recognised only the white, or Caucasian, the yellow, or Mongolian, and the black, or Ethiopian races as such; and in distinguishing them he laid great stress on differences in language and capability of civilization. The efforts of the modern Anthropologists to found a better and more natural division of races and stocks are based, according to the works of Retzius, principally on the value of the dimensions of the skulls, for the measurement of which a number of methods have been invented. Retzius distinguishes according to the different forms of the face and skiull, the long-heads, or Dolichocephati $(9: 7)$, and short heads or Brachycephali $(8: 7)$; and further, according to the disposition of the jaws and teeth, the Orthognathi and the Prognathi. The people of Europe are orthognathous, and in great part, the C'elts and Germans excepted, brachyceplialic.

I N D E X.

Aalmolche, 190.
Aardvark, 30ñ.
Abomasum, 317.
Abramis, 169.
Acanthias, 162.
Acanthopsidæ, 169.
Acanthopteri, 171.
Accentor, 267.
Accipitridæ, 269.
Acephala, 11.
Acer ${ }^{2} 52$.
Acerina, 171.
Acipenser, 165.
Acontias, 219.
Acrania, 150.
Acrodont, 201.
Aculeata, 321.
Agithalus, 267.
Aolis, 53.
Apyornis, 272.
Esculapius' Snake, 212.
Aftershaft, 238.
Agama, 219.
Aglossa, 194.
Aglyphodonta, 209, 212.
Agouti, 321.
Ahætulla, 212.
Ai, 306.
Alata, 48.
Alauda, 268.
Alausa, 169.
Albatross, $2 \tilde{i} 7$.
Alburnus, 169.
Alca, 257.
Alccdo, 265.
Alcidæ, 257.
Alcyonclla, 78.
Alcyonidium, 79.
Alectoridæ, 259.
Alisphenoid, 116 .
Allantoic artery, 297.
Allantois, 206.
Alligator, 225.
Altrices, 253.
Alula, 237, $2 \not 11$.
Alytes, 195.

Amaroecium, 102.
Amblystoma, 190.
Ameiva, 220.
Ameividæ, 220.
American race, 340 .
Amia, 166.
Ammocœtes, 156.
Ammodytes, 170.
Ammonites, 69.
Amnion, 206.
Amphibia, 176.
Amphicœlous, 132.
Amphioxus, 153.
Amphipneusta, 51.
Amphiprion, 171.
Amphisbæna, 217.
Amphiuma, 190.
Ampullaria, 48.
Anabas, 173.
Anableps, 170.
Anacanthini, 170.
Anas, 205.
Anastomus. 259.
Anchitherium, 312, 313.
Anchovy, 168.
Ancillaria, 43.
Ancylus, 51.
Andrias, 190.
Angel-fisb, 162.
Angler, 173.
Anguilla, 168.
Anguis, 219.
Angulare, 118.
Anisobranchiata, 46 .
Annarhichas, 173.
Annulata, 217.
Anodonta, 27.
Anomia, 26.
Anoplotherium, 312, 314.
Anser, 257.
Ant-cater, 305.
Antebrachium, 115.
Antelopes, 317.
Anthropomorpha, 336 .
Anthus, 267.
Antilope, 317.

Anura, 192.
Aorta, 125.
Aperea, 321.
Apcs, 332.
Apex, 18.
Aplysia, 40, 52.
Apoda, 187.
Appendicularia, 100.
Aptenodytes, 256.
Apteria, 239.
Apteryx, 271.
Aquila, 269.
Arabs, 339.
Arca, 27.
Archæopteryx, 255.
Archegosaurus, 188.
Archipterygium, 11 .
Arctomys, 322.
Arctopitheci, 334 .
Ardea, 259.
Ardeidæ, 258.
Area, 18.
Argali, 318.
Argiope, 8n.
Argonauta, 70.
Argus, 261.
Arion, $40,51$.
Armadillo, 305.
Armmolche, 190.
Articulare, 118.
Artiodactyla, 31 Һ
Arvicola, 321.
Ascalabota, 218.
Ascidia, 101.
Ascidiæ composita, 101. " salpæformcs, 102.
simplices, 100.
Ascidians, 90.
Ascidiozooid, 103.
Asinus, 313.
Asiphonia, 25.
Aspergillum, 28.
Ass, 31:3.
Astringalus, 281.
Astur, 269.

Ateles, 335 .
Atlanta, $\overline{\text { in }}$ ().
Atlas, 276.
Auehenin, 317.
Aueroehs, 318.
Auks, 257.
Aurieula, 51.
Aves, 230.
A vicula, 2 (.
Avieularia, 74.
Avoect, 2 © 8.
Axis, 276.
Axolotl. 189.
Aye-Aye, 331.
Baboon, 336.
Babyrussa, 315.
Badger, 326 .
Balæna, 310.
Balaenieeps, 258.
Balænoptera, 310 .
Balistes, 168.
Band-fish, 173.
Bandicoots, 304 .
Barbary-ape, 336 .
Barbastelle, 329.
Barbel, 169.
Barbicels, 239.
Barbules, 238.
Barbus, 169.
Barn-owl, 269.
Bakramunda, 175.
Basiliseus, 219.
Basioceipital, 116.
Basisphenoid, 116.
Basitemporal, 233.
Basommatophora, 51.
Bass, 171.
Bastard wing, 237, 241.
Batraehia, 192.
Batrachoseps, 190.
Bats, 328.
Bdellostomn, 157.
Bear, 326.
Beaver, 322.
Bee-eaters, 265.
Belemnites, 70.
Belone, 171.
Beluga, 309.
Berbers, 339.
Bezoar-goat, 318.
Bicellariidæ, 80 .
Bile duet, 289.
Bipes, 220.
Birds, 230.
Jison, 318.
Bittcrling, 169.
Blackbird, 268.
Blaekcap, 268.
Blaek-fish, 309.
Blauboek, 317.

Blaufelehen, 1 (6!).
Blenk, 16:!.
Blemuics, 173.
Blemnius, 173 .
Blindworm, 21!.
Blue-shank, 162.
Blue-tlinont, 268.
Braehiopoda, 80 .
Brachium, 115.
Braehyeephali, 3tu.
Bradypoda, 306.
Bradypus, 306 .
Branchial arebes, 118.
Branehiostegal, 136.
Branehiostoma, 15\%.
Boa, 212.
Boar, 31\%.
Bombinator, 195.
Bombreilla, 267.
Bony fishes, 166
Bony-pike, 166.
Boring-mussel, 28.
Bos, 318.
Botalli duetus, 182.
Bothrops, 214.
Botryllus, 101.
Bream, 169, 172.
Brevilinguia, 219.
Brill, 171.
Bruta, 305.
Bryozoa, 71.
Bubalis, 318.
Bubalus, 318.
Bubo, 269.
Bueeal ganglin, 34 .
Bueeinuın, 47.
Buceo, 263.
Bueeros, 265.
Bueorvus, 265.
Buffalo, 318.
Bufo, 195.
Bugula, 80.
Bulbus arteriosus, 146 .
Bulimus, 52.
Bulla, 52.
Bullfineh, 265.
Bullhend, 172.
Biandtner pig, 315.
Buntbock, 318 .
Bunting, 268.
Buphaga, 267.
Burbot, 170.
Bursa Fabrieii. 247.
Bustard, 259.
Buteo, 269.
Butterfly-fish, 173.
Buzzard, 269.
Caehelot, 310.
Caiman, 225.
Calamoielithys, 166.

Calanus, 238.
Calandra-lark. 26 S .
Calcaneum, 281.
('alcar, 328.
Callithrix, 335.
Callorhinus, 321.
Callorhynchus, 161.
Calopeltis, 212.
Calotes, 219.
Calurus, $26: 3$.
Calyptorhyuchus, 264.
Calyptiæa. 48.
Camel, 317.
Camelopardalis, 317.
Camelus, 317.
Campanula Halleıi, 139.
Canaliferæ, 47.
Canary, 268.
Caneellaria, 47.
Cancellata, 47.
Canines, 286.
Canis, 326.
Capereally, 261.
Capra, 318.
Caprimulgus. 266.
Capuehin, 335.
Capulus, 48 .
Capybaria, 321.
Caranx, 172.
Carapaee, 225.
Careharias, 162.
Cardinal vein, 125.
Cardium, 27.
Cariama, 259)
Carina, 255.
Carinaria, 50.
Carinatre, 25ŏ.
Carnassial, 325.
Carnivora, 324.
Carotid gland, 182.
Carp, 169.
Carpophaga, 303.
Carpus, 115.
Caryehium, 51.
Cassis, 48.
Cassowary, 270.
Castings, 269.
Castor, 322.
Casuarins, 270.
Cat, 326.
Catarrhini, 335.
Cathartes: 269.
Cathartine. 269.
Catoblepas. 318.
Catodon, 310.
Cnneasian race, 339.
Cauda equina, 138.
Caudal, 114.
Caudatr, 188.
Caria, 321.
Covicornin, 317.

Cebus, 335.
('ellularia, 80.
Celts, 339.
Centetes, :323.
Centrum. 111.
Cephalaspidæ, $1+9$.
Cephalophora, 10.
Cephalopoda, 56.
Cepola. 173.
Ceratites, 69.
Ceratobranchial, 137.
Ceratodus, 175.
Cercolabes, 321.
Cercoleptes, 326.
Cercopithecus, 336 .
Cere, 238.
Cerebellum, 120.
Cerebial Hemispheres, 120.

Certhia. 265.
Ceritbium, 47 .
Ccroma, 246 .
Cervical, 11 t.
Cervus, 317.
Cerylc, 265.
Cestracion, 162.
Cetacea. 306.
Cctiosaurus, $22 \pm$.
Chaffinch, 268.
Chalazæ, 251.
Chama. 27.
Chamæleon, 217.
Chamæsaura, 215, 220.
Chamois. 318.
Charadrius, 258.
Channa. 250.
Chelidon, 266.
Chelonia, 225, 229.
Chelydra, 230.
Chelys, 229.
Chersidæ, 230.
Clicvreulius, 86. 101.
Chiastoncura, 34.
Chilostomata, 79.
Chimera, 161.
Chimpanzce, 336.
Chinchilla, 321.
Chiromys, 331.
Chironectes, 173.
Chiroptera, 327.
Chirotes, 217.
Chirotherium, 188.
Chiton. 41.
Chlamydophorus, 306.
Choloepus, 306.
Chondropterygii, 157.
Chondrostci, 165.
Chondrostoma, 169.
Chorda dorsalis, 110.
Chorion, 296.
Choroideal gland, 139.

Chrysochlorys, 323.
Chrysophrys, 172.
Chrysothrix, 335.
Chub, 169.
Chyle, 125.
Cicatricula, 252.
Ciconia, 259.
Cincinnurus, 266.
Cinclus, 268.
Cinnyris, 265.
Ciona, 101.
Circus, 269.
Cirrobranchiata, 28.
Cirroteuthis. 5 S.
Cistudo, 230.
Civets, 326 .
Cladobates, 323.
Clamatores, 265.
Claspers, 158.
Clausilia, 52.
Clavagella, 28.
Clavellina, 101.
Clavicle, 114.
Cleodora, 56.
Cleopatra's snake, 213.
Climbing perch. 173.
Clio. 56.
Clitoris, 205, 294.
Clupea, 168.
Coatimondi, 326.
Cobitis, 169.
Cobra, 213.
Coccosteus, 149 .
Coccothraustes, 268 .
Coccystes, 264.
Cochlea, 121.
Cockatoos, 264.
Cockle. 27.
Cock of the Rock. 267.
Cod. 170.
Cœecilia, 188.
Coelogenys, 321.
Coelopeltis. 212 .
Colius, 264.
Collocalia. 266.
Colobus. 331.
Coluber, 212.
Colubriformia, 211.
Columba, 262.
Columbella, 47 .
Columbidæ, 262.
Columbina, 261.
Columella, 32, 180, 198, 215.

Colymbus, 2.5.
Commissuralganglia, 33 .
Compsognathus, 221.
Conchifera, 15.
Condor, 269.
Condylura, 323.
Coner, 320.

Conger, 168.
Conirostres, 268.
Conus, 47.
Conus arteriosus, 146 .
Cony-fish, 170.
Coot, 259.
Copelatæ, 100.
Coracias, 265.
Coracoid, 114.
Coral snake. 213.
Corbicula, 27.
Corcgonus, 169.
Cormorant, 257.
Cor'ncrake, 259.
Coronclla, 212.
Corpora cavernosa, 292.
Corpora quadrigemina. 120.

Corpus callosum, 283.
Corvina, 172.
Corvus, 266.
Cotile, 266.
Cotingidæ, 267.
Cottus, 172.
Coturnix, 261.
Covert, 240 .
Cowper's glands, 292.
Cowrics, 48.
Coypu, 321.
Clane, 2.59.
Crania, 84.
Crassilinguia, 218.
Crax. 261.
Creeper, 265.
Cremaster. 291.
Crenilabrus, 171.
Cr'cseis, 56.
Crex, 259.
Cribriform plate, 2 -7.
Cricetus, 321.
Crisia, 79.
Cristatella, 78.
Crocodilia, 223. 22…
Crocodilus, 225.
Crossbill, 268.
Crossopterygii, 166.
Crotalus, 21 t.
Crow, 266.
Crus, 115.
Cryptobranchus, 191.
Cryptochiton, 41.
Crypturidx, 261.
Ctenobranchiata, tis.
Ctenoid, 131.
Ctenostomata, 79.
Cuckoo, 263.
Cuculidx. 263.
Cuculus. 263.
Culmen, $2+5$.
Curassow, 261.
Curlew, 258.

Cursores, 279.
Cursorius, 258.
Cuvier, Duct of, $1+6$.
Cyathozooill, 103.
Cyclas, 27.
Cyclobranchiata, 45.
Cycloid, 131.
Cyclomyaria, 109.
Cyclostoma, 47 .
Cyclostomata, 79.
Cyclostomi, 153.
Cyclura, 219.
Cygnus, 257.
Cylindrophis, 212.
Cymbium, 47.
Cymbulia, 56.
Cynailurus, 327.
Cynoccphalus, 336.
Cynthia, 101.
Cyphonautes, 76.
Cypræa, 48.
Cyprina, 27.
Cyprinodon, 170.
Cyprinus, 169.
Cypselus, 266.
Cystid, 73.
Cystophora, 324.
Cytherea, 27.
Dab, 171.
Dacelo, 265.
Dactylethra, 194.
Dactylopterus, 172.
Dama, 317.
Daman, 320.
Dassy, 320.
Dasypoda, 305.
Dasyprocta, 321.
Dasypus, 306.
Dasyurus, 304.
Decapoda, 70.
Deer, 317.
Delphinapterus, 309.
Dendrobates, 195.
Dendrophis, 212.
Dentalium, 30.
Dentary, 118, 136.
Denticete, 309.
Dentine, 122.
Dentirostres. 266.
Dentition of mammal, 2.
Dermoptcra, 331.
Derotrema, 186, 189, 190.
Desman, 323.
Desmomyaria, 108.
Devexa, 317.
Diaphragm, 124.
Dibranchiata, 69.
Dicholophus, 259.
Dicotyles, 315.
Didelphys, 304.

Didemmum, 101.
Didunculus, 262.
Didus, 255., 263.
Dinornis, 255, 272.
Dinornithidre, 272.
Dinosauria, 220.
Dinothcrium, 319.
Diodon, 168.
Diomedea, 257.
Diphycercal, 164.
Dipncumona, 175.
Dipnoi, 173.
Dipodæ, 321.
Dipper, 268.
Dipsas, 212.
Dipus, 321.
Discina, 84.
Discodactylia, 195.
Divers, 257.
Docoglossa, 45.
Dodo, 263.
Dog, 326.
Dog-fish, 162.
Dolicocephali, 340.
Doliolum, 109.
Dolium, 48.
Dolphin, 309.
Donax, 28.
Doris, 53.
Dormouse, 322.
Dorsch, 170.
Dory, 172.
Dove, 262.
Draco, 219.
Dreyssena, 27,
Dromæus, 270.
Dromedary, 317.
Dryophis, 212.
Duck, 257.
Ductus arteriosus Botalli, 297.
Ductus Botalli, 182.
Ductus renosus Arantii, 297.

Dngong, 310.
Duodenum, 289.
Dziguctai, 313.
Eagle, 269.
Eagle-rays, 163.
Ecardines, 84.
Echeneis, 172.
Echidna, 301.
Ectocyst, 72.
Ectopistes, 262.
Ectoprocta, 78.
Eetopterygoid, 136.
Edcntata, 305.
Ecl, 168.
Ecl-pout, 170.
E'leoblast, 107.

Elaps, 213.
Electric eel, $1 / 88$.
Elcetric rays, 163.
Elcetrical organs, 140.
Eledonc, 70 .
Elephas, 319.
Kliomys, 322.
Elk, 317.
Elysia, "is.
Emarginula, 46.
Emberiza, 268.
Emeu, 270.
Emys, 230 .
Enaliosauria, 222.
Enamel, 122.
Endocyst, 72.
Endoprocta, 77.
Endopterygoid, 136.
Endostylc, 88.
Endyptes. $2 \overline{3} 6$.
Engis-skull. 339.
Engraulis, 168.
Enhydris. 326 .
Entoconcha, 43.
Entomophaga, 304.
Eohippus. 312.
Ephialtes, 269.
Epicrium, 188.
Epididymis, 184.
Epiotic. 134.
Epipodia, 10.
Episternum, 179.
Epistropheus, 278.
Equus, 313.
Erethizon, 321.
Erinaceus, 323.
Eriomys, 321.
Ermine, 326 .
Elyx, 212.
Eskimos, 339.
Esox, 169.
Ethiopian race, 339.
Etmoid, 116, 117.
Euganoides, 166.
Eustachian tube, 180.
Exocretus. 171.
Exoccipital, 116.
Fabricii bursa, 2 ± 7.
Falcinellus, 258.
Falco, 269.
Falconidæ, 269.
Fallopian tube, 293.
Fallow-decr, 317.
Farella, 79.
Fcathers, 2:38.
relis, 327.
Femur, 115.
Fenestra oralis. 178. rotunda, 197.
Fcrm, 324.

Feucrkrüte, 195.
Fiber, 321.
Fibula, 115.
Field-fare, 268.
Field-mouse, 321.
File-fish. 168.
Filoplumes, 239.
Finch, 268.
Fissilinguia, 220.
Fissirostres, 266.
Fissurella, 46.
Flamingo, 257.
Flat-fish, 170.
Flounder. 171.
Flustra, 80.
Flycatcher, 267.
Flying-fish, 171.
Flying-fox. 329.
Foramen ovale, 297.
Panizzæ, 203.
Fore-skin, 293.
Fowls, 261.
Fox, 326.
Frigate bird, 257.
Fringilla, 268.
Fritillaria, 100.
Frog, 194.
Frog-fish, 173.
Frontal, 116.
Frugivora, 328.
Fulcra, $16 \pm$.
Fulica, 259.
Funiculus, 73.
Furcula, 237.
Fusus, 47.
Gadus, 170.
Galago, 331.
Galbula, 263.
Galeopithecns, 331.
Galeus, 162.
Gallinacci, 260.
Gallinago, 258.
Gallinula, 259.
Gallus, 261.
Gannet, 2 ธ7.
Ganoccphala, 188.
Ganoidci, 163.
Ganoid scales, 131.
Gaper, 28.
Gar-pike, 166, 171.
Garrulus, 266.
Gärtncr's canal, 204.
Gasterosteus, 171.
Gastrobranchus, 157.
Gastrochæna, 28.
Gastropoda, 30.
Gavialidx, 225.
Gazelle, 317.
Gecko, 218.
Genct, 32(\%.

Georhychus, 322.
Germans, 339.
Gibbon, 336.
Giraffc, 317.
Glans, 292.
Glires, 320 .
Glirina, 303.
Globe-fish, 168.
Globiocephalus, 309.
Gnu, 318.
Goat, 318.
Goatsucker, 266.
Gobies, 173.
Gobio, 169.
Gobius, 173.
Golden-mole, 323.
Goldfinch, 268.
Goniatites, 69.
Gonys, 245 .
Goosander, 257.
Goose, 257.
Gorilla, 336.
Goshawk, 269.
Goura, 262.
Grallatores, 257.
Grayling, 169.
Giebe, 257.
Greenland Whale, 310.
Grinders, 286.
Groundling, 169.
Grouse, 261.
Grus, 259.
Guan, 261.
Gudgeon, 196.
Gueparde, 327.
Guillemot, 257.
Guinea-fowl, 261.
Guinea-pig, 321.
Gulls, 257.
Gulo, 326.
Gurnard, 172.
Gymnodontes, 168 .
Gymnolæmata, 79.
Gymnorhina, 329.
Gymnosomata, 56.
Gymnotus, 168.
Gymophiona, 187.
Gypacitus, 269.
Gypogeranus, 270.
Gyps, 269.
Gyri, 283.
Haddock, 170.
Hæmapophysis, 111.
H:emoglobin, 125.
Hags, 156.
Hairs, 273.
Hake, 170.
Halcyonidæ, 26 .
Haliacitos, 269.
Halichoerus, 324.

Halicorc, 310.
Halieus, 257.
Haliotis, 46.
Halmaturidæ, 303.
Hammer-headed shark, 162.

Hamster, 321.
Hapale, 334.
Harderian gland, 200.
Hare, 321.
Harpa, 47.
Harpyia, 329.
Harrier, 269.
Hatteria, 219.
Haw-finch, 268.
Hectocotylus, 64.
Hedgehog, 323.
Helix, 52.
Heloderma, 220.
Hemicardium, 27.
Hemidactylus, 218.
Heptanchus, 162.
Hermaphrodite fishes, 147.

Herodii, 258.
Heron, 258.
Herpestes, 326.
Herpetodryas, 212.
Herring, 168.
Hesperornis, 245.
Heterocercal, 131.
Heteropoda, 48.
Hexanchus, 162.
Hindoos, 339.
Hipparion, 313.
Hippocampus, 167.
Hippoglossus, 171.
Hippopotamus, 315.
Hippopus, 27.
Hippotragus, 317.
Hirundo, 266.
Hoazin, 261.
Holibut, 171.
Holocephali, 161.
Holostomatons, 32.
Homocercal, 131, 164.
Homo diluvii testis, 190.
Honey-suckers, 265.
Hoofs, 274.
Hoopoes, 265.
Hornbills, 265.
Horse-mackerel, 172.
Horscshoe-nose, 330.
Housc-marten, 326.
Howling-monkey, 335.
Huchen, 169.
Humerus, 115.
Humivagre, 219.
Humming-bircl, 265.
Hiipfmaus, 321.
Hyalea, 56.

Hyiehia, 3ef.
Hydroehierus, 321.
Hydromys. 321.
Hydrophis, 213.
Hydrosauria, 221.
Hyla, 19\%.
Hylobates. 336.
Hymen, 294.
Hyoid, 118.
Hyomanctibular, 117, 118.

Hyperodapedon, 219.
Hyperoorlou, 310.
Hypobythius, 101.
Hypophysis, 283.
Hyporhaehis, 238.
Hypostomus, 179.
Hypsiprymuns, 303.
Hypudxus, 321.
Hyiax, 320.
Hystrix, 321.
Ibex, 318.
Ibis, 258.
Iehneumon, 326.
Ichthyodorulites, 158.
Iehthyoidea, 189.
Iehthyopsida, 129.
Ichthyornis, 24.5.
Iehthyosaurus, 223.
Idmoner, 79.
Iguana, 219.
Ilium, 114.
Impennes, 256. 6.
Inartieulata, 84.
Incisors, 286.
Ineus, 277.
Indogermanic, 339.
Inclui, 331.
Ineptæ, 263.
Infundibula, 290.
Inseetivora, 322.
Insectivora (bats), 329.
Insessores, 264.
Interparietal, 276.
Inuus, 336.
Iranians, 339.
Irish elk, 317.
Isolium, 115.
Isocardia, 27.
Jacamar, 263.
Jacare, 225.
Jaekal, 32 (.
Jackdaw. 266.
Jacobson's organ, 200.
Jaculus, 321.
Jaguar, 327.
Janthina, 47.
Jay, 266.
derboa, 321.

Jer-faleon, 269.
Jеws, 33!.
Jugal, 118.
Jugular proecss, 276.
Jugular vein. 14%.
Julis. 171.
Jumping hare, 321.

Kitfirs, 340.
Kakapos, 264.
Kangaroo, 303.
Karausehe, 169.
Kestrel, 269.
Kidney, 126.
Kingfisher, 265.
Kiug-Penguin, 2 2ั 6.
Kinkajou, 326.
Kite, 269.
Kiwi, 271.
Koaita, 335.
Koala, 304.
Kowalevskia, 100.
Krallenfrosch, 194.
K reuzkrötc, 195.
Kreuzotter, 214.
Kuandu. 321.
Kudu, 317.
Laberdan, 170.
Labia majora et minora, 294.

Labrax, 171.
Labrus, 171.
Labyrinthici. 173.
Labyrinthodon. 188.
Labyrinthodonta, 187, 18 S.
Lacerta, 220.
Laeertilia, 214.
Laehrymal, 198.
Lagidium. 321.
Lagopus, 261.
Lagostomus, 321.
Lagothrix, 335.
Lamellibranchiata, 15.
Lamellirostres, 257.
Lamina eribrosa, 277.
раругасеа, 277.
perpendicularis, 277.

Laminiplantar, 238.
Lämmergcicr, 260.
Lamna, 162.
Lammungin, 319.
Lamprey, 157.
Liancelct, 153.
Lanius, 267.
Lark, 268.
Larus, 25%.
Laryns, 124.

Latcral line, 131. ventrieles, 120.
Lebias, 170.
Leguana, 218.
Lemming, 321.
Lemur, 331.
Lemurs. 330.
Lepidoide, 163.
Lepidosnuria. 207.
Lepidosiren, 176.
Lcpidosteus, 166.
Lepralia, 80.
Leptoeardii. 150.
Leptoptilus, 259.
Lepus, 321.
Lestris, 257.
Leueiscus, 169.
Levisostres, 265.
Liehanotus, 331 .
Lima, 26.
Limaponta, 53.
Limax, 40, 52.
Limnæus, 51.
Limpets, 45.
Lingula. St.
Lion, 327.
Liophis, 212.
Lithodomus. 26.
Littorina, 47.
Lizards, 214.
Llama, 317.
Loaeh, 169.
Loligo. 70.
Lophiura, 219.
Lophius, 173.
Lophobranehii, 167.
Lophophore, 92.
Lophophorus, 261.
Lophopoda. 78.
Lophopus, 78.
Lophornis, 265.
Lori, 331.
Loricata, 223,
Lota, 170.
Lottil, 45.
Love-bird, 264.
Loxia, 268.
Loxosoma. 78.
Lucinit, 27.
Lucioperca, 171.
Lumbar: 114.
Lunula. 19.
Linscinia, 268.
Lutia, 326.
Lutrarin, 28.
Lymph, 125.
Lymphatic. 125.
Lynx, $264,327$.
Lyre-bird, 268.
Macaeus, 336.

Maccaw, 26 .
Maehetes, 25s.
Mackerel, 172.
Macropoda, 303.
Macropus, 303.
Macroseelidcs, 323 .
Maetra, 25.
Magilus, 43.
Magpic, 266.
Maki, 331.
Malacopterrgian. 1 ;s.
Malapterurus, 170.
Malayan race, 340 .
Malleus, 26, 277 .
Mammalia, 273.
Mammoth. 31!.
Man, 336.
Manatee, 310.
Manatus, 311 .
Mandrill, 3:3.
Manis, 305.
Mantle, 10.
Manus, 115.
Marabu, 259.
Margaritana, 27 .
Marmosets, 33t.
Marmot, 322.
Marsipobranehii, 153.
Marsupialia. 301.
Marten, 326.
Martin, 266 .
Mastodon, 319.
Mastodonsaurus, 187.
Mastoid, 117. 276.
Matamata, 229.
Maxilla, 118.
Meadow-Pipit, 267.
Medulla oblungata, 120.
Megaeephalon. 261.
Megaceros, 317.
Megaderma. 330.
Megapodius, 211.
Melcagrina, 26.
Mcleagris, 261.
Meles, 326.
Meliphaga, 2(j).
Melopsittaeus, 264 .
Membranipora, 80.
Menobranehns. 190.
Menopoma, 191.
Menura, 268.
Mcphitis, 321 .
Mergus, 257.
Merluecius, 170.
Merops, 26.5.
Masonephros, 184.
Mctacarpus, 115.
Metaptcrygoirl. 135.
Metatarsus, 115.
Micc, 321.
Mirlas, 334.

Migration of birds, 255.
Miller's thumb, 172.
Milrus, 269.
Minnow, 169.
Moa, 272.
Molars, 287.
Mole, 323.
Molidæ. 16 S .
Mollusca, 9 .
Molluscoidea, 71.
Mongolian race, 339 .
Mongoose, 326.
Monitor, 220.
Monk-fish, 162.
Monodon, 309.
Monopueumona, 175.
Monotremata, 300 .
Moorhen, 259.
Moose, 317.
Mormon, 257.
Mosasaurus, 217.
Mosehus, 317.
Motacilla, 267.
Mouflon, 318.
Mound-birds, 261.
Mouse, 321.
Mud-fishes, 173.
Miillerian duct, 148 .
Mullet, 172.
Mullus, 172.
Mur:ena, 16 S .
Murex, 40,47 .
Mus, 321.
Muscardinus, 322.
Museicapa, 267.
Musk-ox, 318.
Musophaga, $26 \pm$.
Mussels, 26.
Mustela, 326.
Mustelus, 162.
Mya, 2 S.
Mycetes, 335.
Myeteria, 259.
Myliobates, 163.
Myobatrachus, 194.
Myodes, 321.
Myogale, 323.
Myopotamus, 321 .
Myopsidæ, 70.
Myrmeeobius, 30 t.
Myrmecophaga, 305.
Mystacina, 329.
Mysticete, 310.
Mystriosaurus, 224.
Myoxus, 322.
Mytilus, 26.
Myxa, 245.
Myxiue, 157.
Nacella, 45.
Nails, 274.

Naja, 213.
Najades, 27.
Narcine, 163.
Nares perviæ, 245.
Narwhals, 309.
Nasal, 117.
Näsling, 169.
Nassa, 47.
Nasua, 326.
Natatores, 255.
Nates, 18.
Natica, 48.
Native cats, 30t.
Native devils, $30 t$.
Nautilus, 69.
Navicella, 47 .
Neanderthal skull, 339.
Nectarinia, 26.5.
Negroes, 3 ± 0.
Neophron, 269.
Nerita, 47.
Nestor, 264.
Ncurapophysis, 111.
Newt. 191.
Nictitating membranc, 180.

Nightingale, 268.
Nine-cyc, 157.
Nisus, 269.
Nothosaurii, 223.
Nothosaurus, 22:3.
Notidanus, 162.
Notochord, 110.
Notodelphys, 195.
Nudibranchiata, 52.
Numcnius, 258.
Numida, 261.
Nuthateh, 267.
Nyctea, 269.
Nyeticebus, 331.
Nyctipithecus, 335.
Nymphieus, $26 t$.
Obesa, 315.
Oceipital, 116.
Octacnemus, 101.
Octodon, 321.
Octolicnus, 331.
Odontoid process, 27 S .
Odontornithes, 245 .
Oetopoda, 70.
Octopus, 70.
Oediencmus, 25 S .
Oicophocerca, 100.
Oigopsidx, 70.
Oikoplem:a, 100.
Olceranon, 280.
Oliva, 43, 47.
Olme, 190.
Ommastrephes, 70.
Onchidium, 51.

Ony chotenthis, 90.
Operculum, 32, 13i.
Ophiclia, 207.
Ophidinm, 170.
Ophisaurus, 220.
Opisthobranchiata, 52.
Opisthocomidx, 261.
Opisthoglypha, 209, 212.
Opisthotic, 131.
Opossum, 30 t.
Opotciodonta, 208, 211.
Optic lobes, 179.
Optic thalami, 120.
Orang-ntang, 336.
Orbitosphenoid, 117.
Oriole, 266.
Oriolus, 266.
Ormer', 46 .
Ornithorhynchus, 301.
Ornithoscelida, 220.
Orohippus, 313.
Orthagoriscus, 168.
Orthidæ, 85.
Orthoceras, 69.
Orthognathi, 340 .
Orycteropus, 305.
Oscines. 265.
Osprey, 269.
Ostracion, 168.
Ostrea, 25.
Ostrich, 270.
Otaria, 324.
Otis, 259.
Otter, 326.
Otus, 269.
Ouistiti, 334.
Ovibos, 318.
Ovis, 318.
Owls, 269.
Oxpecker, 267.
Oxydactylia, 124.
Oxyrhopus, 212.
Oyster, 25.
Paca, 321.
Pachyderms, 312.
Pagellus, 172.
Palæornis, 255, 26.
Palamcdea, 259.
Palapteryx, 255, 272.
Palatinc, 118.
Palato-quadrate, 117.
Paludicella, 79.
Paludina, 41,47 .
Palumbenas, 262.
Palumbus, 262.
Pandion, 269.
Pangolin, 305.
Panizze, foramen, 203.
Panther, 327.
Panther-cat, 327.

Panzerwcls, 170.
Papio, 336.
Paradise-birds, 266.
Parndiscida, 266.
Paramastoid process,276.
Parapterum, 240.
Parasphenoid, 135.
Paridigitata, 314 .
Parictal, 116.
Parmophorus, ± 6.
larotic process, 215̃.
Parra, 259.
Parrakcets, 26 .
Parrot-fish, 171.
Parrots, 264.
Partridge, 261.
Parus, 267.
Passer, 268.
Passeres, 264.
Pastinaca, 163.
Pastor, 267.
Patclla, 45, 280.
Paunch, 316.
Pavo, 261.
Pearl-mussel, 26.
Peat-pig, 315.
Peccary, 315.
Pecten, 26, 244 .
Pectoral, 114.
Pcctunculus, 27.
Pedctes, 321.
Pedicellina, 78.
Pediculati, 173.
Pedimana, 304.
Pegasus, 167
Pelamys, 172.
Pelecanus, 257.
Pelias, 213.
Pelican, 257.
Pelobatcs, 195.
Pelvic, 114.
Penclope, 261.
Penguins. 25.
Pemnæ, 239.
Pentamcrus, 85.
Perameles, $30 t$.
Perca, 171.
Perch, 171.
Perch, climbing, 173.
Perdrix, 261.
Peregrine-falcon, 269.
Perissodactyla, 311.
Peristoma, 32.
Pcrnis, 269.
Peronia, 51.
Pcrophora, 101.
Pes, 115.
Pes, avian, 241.
Petaurus, 304.
P'etrel, 257.
Petromyzon, 157.

Petrosal, 117.
Pezoporus, 264.
Hhacochrerus, 315.
Phaciton, 257.
Phacthornis, 265.
Phalangella, 7:.
Phalanges, 115.
Phalangista, 304.
Phallusia, 101.
Pharaonsrattc, 326
Pharyngealealia, 137.
Pharyngobranchial, 137.
Pharyngognathi, 171.
Phascogale, 304.
Phascolarctus, 304.
Phascolomys, 303.
Phasianus, 261.
Pheasant, 261.
Philine, 52.
Philonexis, 65, 70.
Phlebenterata, 36, 53.
Phoca, 324.
Phocrena, 309.
Phœnicopterus, 257.
Pholas, 28.
Phoxinus, 169.
Phrynocephalus, 219.
Phrynosoma, 219.
Phylactolremata, 78.
Phylidiidæ, 53.
Phyllirlioe, 53.
Phyllomedusa, 195.
Phyllopncuste, 268.
Phyllorhina, 329, 330.
Phyllostoma, 330.
Physa, 51.
Physeter, 310.
Physostomi, 168.
Pica, 266.
Pichyciego, 306.
Piculus, 264.
Picus, 264.
Piddock, 28.
Pigeons, 261.
Pika, 321.
Pikc, 169.
Pine-marten, 326.
Pinua, 26.
Pinnipedia, 323.
lipa. 194.
Pipe-fish, 167.
Pipra, 26 (ī.
Pisces, 129.
Pisidium, 27.
Pith, 238.
Pitheci, 332.
Pithecia, 335.
Placenta, 29 (.
Placoid, 131.
Placophora, 44.
Placuna, 26.

Plagiostomi, 161.
Plagiotremata, 207.
Plaice, 171.
Plaintain-cater, 264 .
Planorbis, 51.
Plastron, 225.
Platalea, 25.
Platurus, 213.
Platycercus, $26 t$.
Platydactylus, 218.
Platypus, 301.
Platyminini, 33t.
Plecotus, 329.
Pleetognathi: 167.
Plesiosaurus, 293.
Pleuracanthus. 161.
Pleural ganglia, 33.
Pleurapophysis, 111.
Pleurobranehrea, 52.
Pleurobianchus, 52.
Pleurodont, 201.
Pleuroneetes, 17].
Pleurotoma, ${ }^{1} \overline{7}$.
Plica semilunaris, 28t.
Plictolophus, 264 .
Ploceus, 268.
Plorers, 258.
Plumæ, 2:39.
Plumatella, 78.
Pneumatic duct. 143.
Pneumodermon, 56.
Podiceps, 257.
Pœphagus, 318.
Poikilothermic, 230.
Polychrus, 219.
Polydinidæ, 101.
Polyodon, 166.
Polypid, 73.
Polypterus, 166.
Polyzoa: 71 .
Pomacentrus. 171.
Pons varolii, 283.
Pope, 171.
Porbeagle, 162.
Porcupine, 321.
Porcus, 315.
Porpoisc, 309.
Portal, 146.
Potamochærus, 315.
Præcoces, 252.
Præcoracoid, 114.
liæfrontal, 135.
Præmaxilla, 118.
Præmolars, 287.
Prespulenoid, 117.
Prepuce: 293.
Prey, birds of, 268.
Primates, 33:2.
Primordial cranium, 115. Pristis, 16:3.
Proboscidea, 318.

Procælia, 225.
Procellaria, 257.
Processus falciformis, 139.

Procyon, 326.
Productus, 85.
Prognathi, $3 \not 10$.
Pronepliros, 156.
Prootic, $13 \overline{5}$.
Propithecus, 331.
Prosimiæ, 330.
Prosobranchiata, 43.
Prostates, 292.
Proteroglypha, 209, 212.
Proterosauria, 220.
Proterosaurus, 207.
Protens, 190.
Protoptcrus, 176.
Psalterium, 317.
Psammophis, 212.
Psammosanrus, 220.
Pseudis, 195.
Pseudobranch. 145.
Pseudopus, 220.
Psittacula, 264.
Psittacus, $26 t$.
Psophia, 259.
Ptenoglossa, 47.
Pterichthys, 149.
Pteroccras, 18.
Pterocles, 261.
Pterodactyl, 221.
Pterodactylus. 221.
Pteroglossus, 263.
Ptcromys, 322.
Ptciopoda, 53.
Pteropus, 329.
Pterosauria, 221.
Pterotic, 135.
Pterotrachea, 50.
Pterygoid, 118.
Pterylæ. 23!).
Ptychopleura, 220.
Ptychozon, 218.
Pubis, 115.
Puff-bircl. 263.
Puftin, 257.
Pulmonata, 50.
Puma, 327.
Pupa, 52.
Purpura, 40, 47 .
Putorius. 326.
Pycnodonta, 163.
Pygopus, 214, 220.
Pygostyle, 235.
Pyloric appendages, 142.

Pyloric valve, 289.
Pyrosoma, 103.
Pyrrhula, 26 S .
Python, 212.

Quarliate, 135.
Quagga, 314.
Quail, 261.
Qucsal, 263.
Quill, 238.
Rabbit, 321.
Racoon, 326.
Radius, 115.
Radula, 36.
Raja, 163.
Rajiclæ, 163.
Rajides, 163.
Rails, 259.
Rallus, 259.
Rana, 195.
Ranclla, 48
Rangifer, 317.
Rapacia, 304.
Raptatore, 268.
Rasores, 260.
Rat, 321.
Ratite, 270.
Rattlesmakc, 21t.
Raven, 266.
Rays, 163.
Razorbill, 2 万7 7.
Rcctrices, 232.
Recurvirostra, 2 25 .
Red-dcer, 317.
Redwing, 268.
Reek, 272.
Regulis, 268.
Reindeer, 317.
Remiges, 239.
Remal-portal, $1 \not+6$.
Rennet stomach, 317.
Reptilia, 195.
Resident Bircls, 2 5ั5.
Retepora, 80.
Reticulum, 316.
Rhachiglossa, 47.
Rhachis, 238.
Rhamphastus, 263.
Rhamphodon, 265.
Rhamphorhynchus, 221
Rhamphostoma, 225.
Rhea, 270.
Rhesus, 336.
Rhinobatus, 163.
Rhinoceros, 312.
Rhinoeryptis, 174.
Rhinolophus, 330.
Rhinopoma, 330 .
Rhipidoglossa, 37, 46.
Rhodeus, I 69.
Rhombus, 171.
Rhynchoccphalia, 219.
Rhynchonella, S5.
Rhynchosaume 21!.
Rhynchosuchus, 225.

Rhyncops, 2 \% 7 .
Rhytina, 310.
Rib, 111.
Ringed-suake, 212.
Ringouzel, 268.
Roach, 169 .
Roaroa, 271.
Robin, 268.
Rock-dove, 262.
Rock-rabbit, 320.
Rodentia, 320.
Roe-dcer, 317.
Rollers, 265.
Rook, 266
Rorquals, 310 .
Rosenmiiller's organ,204.
Rossia, 70.
Rostellaria, 48.
Rumen, 316.
Ruminantia, 315.
Rupicapra, 318.
Rupicola, 267.
Rüsselbär, 326.
Rut, 294.
Sable-marten, 326.
Saccoglossa, 53.
Saccule, 121.
Sacral, 113.
Sahui, 3st.
Sai, 335.
Saibling, 169.
Saiga, 317.
Saimır, 335.
Salamandia, 191.
Salamandrina, 191.
Salangane, 266.
Salmo. 169
Salmon, 169.
Salpa, 109.
Salpa, 108.
Sand-eel, 170.
Sand-grouse, 261.
Sand-lizard, 219.
Sand-martin, 266.
Sandpiper, 258.
Sand-snake, 212.
Saphan, 320.
Sarcorhamphus, 269.
Sardine, 169
Sargus. 172.
Satyrus, 336.
Saurii, 214 .
Sauroidic, 163.
Sauropsida, 129.
Sauropterygii, 223.
Saurure, 235, 25\%.
Saw fish, 163.
Scalaria, 47.
S'calops, 823.
scandentia, 303.

Scansores, 2 (i3.
Scaphirbynchus, 16%.
Neaphopoda, 28
Scapula, 114.
Scapulars, 210.
Scarus, 171.
Schwebforellc, 169.
Sciæna, 172.
Scincus, 219.
Sciurus, 322.
Sclerodermi, 168.
Scollop, 26.
Scolopacidre, 258.
Scolopax, 258.
Scomber, 172.
Scomberesox, 171.
Scops owl, 269.
Scorpæı1, 172.
Screamers, 259.
Scrotum, 291.
Scrupocellaria, 80.
Scutes of suakes, 210.
Scutus, 46 .
Scyllæa, 53.
Scyllium, 162.
Scytale, 212.
Sea-bear, 324.
Sea-cats, 161.
Sea-devils, 163.
Sea-hares, 52.
Sea-hedgehog, 168.
Sea-hor'se. 167.
Sea-lion, 324
Sen-otter, 326 .
Sea-scorpion, 172.
Sea-snakcs, 213.
Sea-trout, 169.
Seal, 324.
Sccretary bird, 270.
Seeforelle, 169.
Selache, 162.
Sclachii, 157.
Semitic, 339.
Semnopithecus, 336 .
Sepia, 70.
Scpiola, 70.
Seps, 219.
Serialaria, 79.
Seriema, 259.
Serranus. 171.
Serval, 327.
shad, 169.
Shark, 162.
Sheep, 318.
Sheldrake, 2:5.
Shepherd's bird, 259.
Ship-worm, 28.
Shrew, 32:3.
Shrikes, 267.
Siaming, 336.
Signectins, 48.

Silurus, 170 .
Simusaturus, 223.
Siphon, 17.
Siphoniata, 27.
Siphonops, 188.
Siphonostomatuos, 32 .
Sirechon, 190.
Siren, 190.
Sirenia, 310.
Niskin, 268.
Sitta, 267.
Sittace, 264 .
Skates, $16: 3$.
Skimmer, 257.
Skua, 257.
Skunk, 326.
Slavs, 339
Sloth, 306.
Smew, 257
Snakes, 207.
Snake, coral, 213.
, rattle, 214
: \quad ringet 212 .
;, sea, 213 .
," tree, 212.
Snipe, 258.
Solarium, 47 .
Sole, 171
Solea, 171.
Solen, 28.
Solenoconchæ, 30.
Solenoglypha, 209, 213.
Solidungula, 312.
Sorex, 323
Spalax, 322
Sparidæ, 172.
Sparrow, 268.
Sparrow-hawk, 269.
S'patularia, 166.
Sphargis, 229.
spheniscus, 256
Sphenodon, 219.
Sperm-whales, 310 .
Spermaceti, 310.
Spermophilus, 322 .
Spider-monkcy, 335.
Spinacidx, 162.
ripined-loach, 169.
Spinous process, 111.
Spirifer, 8\%
Spirula. 70.
Spleen. 126.
spondylus, 26.
Spoonbill, 258.
sprat, 168.
Springliase, 321.
rqualides, liz.
squalus, $16 \because$.
Squamosal, 198
Squatina, 162.
Syuatinorajidar. 1633.

Squirrel, 322.
Squirrel-monkey, 335
Stapes, 277.
Starling, 267.
Statoblast, 7 t.
Steganopodes, 257.
Stcinbock, 318.
Stcller's sea-cow, 310.
Stellio, 219.
Stelmatopoda, 79.
Steneosauria, $22 t$.
Stenops, 331.
Stenostoma, 211.
Sterlet, 165.
Sterna, 257.
Sternseher, 172.
Sterıum, 114.
Sternum abdominale, 222.

Stickleback, 171.
Sting-rays, 163.
Stoekfisch, 170.
Stork, 258.
Strepsiceros, 317.
Strichvögel, 255.
Strigops, 264.
Strix, 269.
Strombus, 43, 48.
Struthio, 270.
Sturgeon, 165.
Sturmvögcl, 257.
Sturnus, 267.
Stylifer, 43.
Stylommatophora, 51.
Subungulata, 321.
Suecinea, 52.
Sucking-fish, 172.
Sula, 257.
Sulei, 282.
Sun-fish, 168.
Supraoccipital, 116.
Surinam toad, 194.
Surnia, 269.
Sus, 315.
Sylvia, 268.
Sympathetie, 122.
Symplectic, 135.
Syngnathus, 167.
Synotus, 329.
Syrinx, 249.
Syrnium, 269.
Syrraptes, 261.
Swallows, 266.
Swan, 257.
Swifts, 266.
Swimming bladder, 143.
Sword-fish, 172.
Trachypetes, 257.
Trenioidx, 173.
Tænioglossa, 37, 47.
Talp, 323.

Tamias, 322.
'Tanrce, 323.
Tapayaxin, 219.
Taphozons, 329.
'Tapic, 312.
Tarsius, 331.
Tarsus, 115.
'Tasmanian Wolf, 304.
Tectibranchiata, 52.
Tejus, 220.
Teleosauria, 224.
'I'eleostei, 166.
Tellina, 28.
Tench, 169.
Tenuirostres, 265.
Terebra, 47.
Terebratula, 85.
Terebratulina, 85.
Teredo, 28.
Tergipes, 53.
T'ern, 257.
Testicardines, S5ั.
T'estudo, 230.
Tethyodea, 90.
Tethys, 53.
Tetrabranchiata, 67.
Tetrao, 261.
Tetraonidæ, 261.
Tetrodon, 168.
Thalamencephalon, 120.
Thalassidroma, 257.
Thalassochelys, 229.
Thaliacea, 103.
Thecidium, 85.
Thecodontia, 220.
Thecosomata, 56.
Thoracic, 113.
Thrush, 268.
Thrush-Nightingale,268.
Thylaeinus, 304 .
Thymallus, 169.
Thymus, 184.
Ihynnus, 172.
Tibia, 115.
Tichodroma, 265.
Tiedmannia, 56.
Tiger, 327.
Tinamidæ, 261.
Tinamous, 261.
'Tinca, 169.
Tinker; 171.
'I'itmice, 267.
'load, 195.
, frogs, 195.
\% Sinlinam, 1.4.
Toothed-earps, 170.
Topes, 162.
Top-shell, 46.
Torperlo, 163.
'rortoise, common, 230.
,, land, 230.

Tortoise, mud, 229.

$$
, \quad \text { soft, } 229 .
$$

Tortrix, 212.
Totanus, 258.
Toucans, 263.
Toxoglossa, 47 .
Trachea, 124.
Trachinus, 172.
Trachipterms, 173.
Tragulus, 317.
Tree-creeper, 26 .
Tree-frog, 195.
Tree-snakes, 212.
'Tremoctopus, 65, 70.
Trichechus, 324.
Trichoglossus: 264.
Tridacna. 27.
Trigla, 172.
Trigonia, 27.
Tringa, 255.
Trionyx, 229.
Triton, 191.
Tritonia, 53.
Tritonium, 48.
Trochilus, 265.
Trochus, 46.
Troglodytes, 268, 336.
Trogon, 263.
Tropic bird, 257.
Tropidonotus, 212.
Tropidurus, 219.
Trout, 169.
Trumpeter, 259.
Trunk-fish, 168.
Trygon, 163.
Tubicolidæ, 28.
Tubuliporidæ, 79.
Tunicata, 85.
Tumuy, 172.
Turbinals, 277.
Turbo, 46.
Turbot, 171.
Turdus, 268,
Turkey, 261.
Turtles, 229.
Turtur, 262.
Tylopoda, 317.
Tympanic bulla, 277.
Typhlops, 211.
Ulnu, 115.
Umberfische, 172.
Umbilical artery, 297.
Umbilicus, 205.
Umbo, 18.
Umbin, 169.
Umbrella, 52.
Umbrina, 172.
Unalu, 306.
Uncinate procerses, 135.
Unio, 27.

Unke, 19\%.
Upиил, $2(65$.
Uranoscopus, 172.
Urax, 2 (il.
Ureter, 126.
Urethra, 127.
Uria, 257.
Uroehord, 87.
Urodela, 188.
Uromastix, 219.
Uropeltis, 212.
Uronygial gland, 239.
Ursus, 326.
Uterus, 294.
Uterus masculinus, 292.
Vampire, 330.
Vampyrus, 330.
Vane. 238.
Vanellus, 258.
Varanus, 220.
Velum, 10.
Vena eava, 120.
Venus, 27.
Vermetus, 47.
Vermilinguia, 217, 305.
Veronieella, 51.
Vertebral theory of skull, 116.

Vertebrata, 109.
Vesieularia, 7!.
Vespertilio, 329.
Vesperugn, 329.
Vexillnm, 238.

Vibiacula, 74.
Vibrissie, 239, 285.
Yiper, 213.
Vipera, 213.
Viskatscha, 321.
Viverra, 326.
Viviparous selachians, 160.

Vlissmaki, 331.
Voles, 321.
Voluta, 47.
Vomer, 117.
Vulture, 269.
Waders. 257.
Wagtails, 267.
Waldheimia, S5.
Wall-crecper, 265.
Waller, 170.
Walrus, 324.
Warbler, 268.
Wart-hog, 315.
Water-hens, 259.
Water-rat, 321.
Wattles, 260.
Waxwing, 267.
Weasel, 326.
Weaver-birds, 268.
Wellempapagei, 264.
Wels, 170.
Wentle-trap, 47.
Whale-bone whales, 310.
Whales, 306.
Whelk, 47 .

White-fish, 309.
Whiting, 170.
Whooper, 257.
Wieketbiir. 326.
Winkle, 47.
Wolf, 326.
Wolf.-lish, 173.
Wolfian bocly, 184.
Wombat, 303.
Woodeock, 258.
Woodlark, 268.
Wonl eckers, 264.
Wrasses, 171.
Wren, 268.
Wryneck, $26 t$.

Xenopus. 194.
Xiphias. 172.

Yak, 318.

Zamenis, 212.
Zebra, 314 .
Zebu, 318.
Zeugobranehiata, 45 .
Zens. 172.
Zitter:s'els, 170.
Zoarces, 173.
Zona pellucida, 296.
Zonurus. 220.
Zugvögel. 255.
Zygæna, 162.
ma / s
㹰

[^0]: Trinity College, Cambridge, 1884.

[^1]: * The fact that there are a number of solid excretion products of organisms (shells) whose form is mathematieally determinable does not of course ammal this distinction.

[^2]: * The formation of an intermediate kingdom for the simplest forms of life is neither scientifieally justified, nor from praetieal considerations desirable. On the contrary, the aeeeptanee of the Protista would only double the diffieulty of determining the limit.

[^3]: * Vide R. Leuckart, "Ueber den Polymorphismus der Individuen und die Erscheinung der Arbeitstheilung in der Natur." Gicssen, 1851.

[^4]: * Th. Sehwann, "Mieroscopisehe Untersuchungen iiber dic Uebereinstimmung in der Struetur und dem Wachsthum der Thiere und Pflanzen." Rerlin, 1839. Irr. Leydig, "Lehrbuch der Histologie des menschen und der Thicre." Frankfurt a. M. 1857.

[^5]: * These cclls have heen called neuro-muscular cells; a misleading term. since it cannot be shown that they have had anything to do with the origin of ganglion cells.

[^6]: * Usually known as segmentation cavity.-Ed.
 \dagger Usually known as " body carity." or "colom."-En.

[^7]: * In addition to the older works of Krohn, H. Mitiller, M. Sehultze, ef. Boll Sitzungsberiehte der Akad. Berlin, 1876 and 1877, also Ewald and Kithne.

[^8]: * Sice Joh. Miiller, "Zur vergleichenden Physioloric des Gesichtssinnes," Leipzig, 1826 . H. Crenacher, " Untersuchungen ibber das Schorgan der Arthropoden," Gïttingen: 1879.

[^9]: * W. Wundt, "Vorlesungen iiber dic Mensehen und Thiersecle." 2 Bde. Leipzig, 1863. W. Wundt, "Grundzige der physiologischen Psyehologie," Leipzig, 1874.

[^10]: * Compare H. S. Reimarius, "Allgemeine Betrachtungen iiber dic Triebc der Thierc," Hamburg, 1773. P. Flourcns, "De l'instinct et de l'intelligence des animaux," Paris, 1851.
 \dagger The origin of the so-called animal stocks with incomplete or confined individuality among the lower animals is quite different, and mercly determincd by processes of growth ; at the same time the advantage for the preservation of the species gained by the fusion is the same. Cf. the animal stocks of the Vorticcllidx, Yolyps, and Siphonophora, Bryozoa and Tunicata.

[^11]: * Cf. especially Pasteur, " Memoirc sur les corpusculcs organisés qui existent dans l'atmosphère" (Ann. des. Sc. Nat.), 1861 ; also "Expériences relatives aux générations dites spontanées" (Compt. rend. de l'Acad. des Sciences, tome j0).

[^12]: * Thomas Huxley, "On the Anatomy and Affinities of the family of Medusæ." Philosophical Transactions. London, 1849.
 \dagger Cf. A. Kowalewski's various papers in the "Mémoires de l'Acad. de Petersbourg," on Ctenophor'a, Phoronis, Holothurians, Ascidians, and Amphioxus, I866 and 1867.

[^13]: * A. Kowalewski, "Embryologisehe Studien an Würmern und Arthropoden." Petersburg, 1871, p. 58-60.
 \dagger E. Haeckcl, "Gastreatheoric," Jen. nat. Zeitsehrift, IS74." For critieism sce C. Claus, "Die Typenlehre und Haeckel's sogenannte Gastræatheoric." Vienna, 187t.

[^14]: * Fritz Miiller, "Fir Darwin," Leipzig, 1863, p. 70-S1.

[^15]: * Adalbert de Chamisso, "De animalibus quibusdam e elasse vermium Linnæana in circumnarigatione terræ auspicante comite N. Romanzoff duce Ottone de Kotzcbue anuis 1815, 1816, 1817, 1818 peracta." Fasc. I. De salpa Berolini 1819.
 \dagger Joh. Jap. Sm. Steenstrup, " Ueber den Gencrationswechscl, etc," übersetzt von C. H. Lorenzen. Ǩopenhagen, 1842.

[^16]: * R. Leuckart, "Ueber den Polymorphismus der Individuen oder die Erscheinung der Arbeitstheilung in der Natur." Giessen, 18 ā1.

[^17]: * "Sur un noureau rapprochement à établir entre les classes qui composent le règne animal." Ann. des Museum d'Hist. Nat., Tom XIX., 1812.

[^18]: * The establishment of the eoneeption of sub-specics is eompletely at variance with the common eonception of specics, and is the most striking proof that systematists themselves recognize that the distinction between species and sub-species is a relative one.

[^19]: * C. Nägeli, "Entstehung und Begriff der naturhistorischen Art." Münich, 1865.

[^20]: * Ch. Darwin. "On the Origin of Species by means of Natural Selection," London, 18509.

[^21]: * Compare also A. R. Wallace, "Contributions to the Theory of Natural Selection."
 + Compare E. Haeckel, "Natiirliche Schöpfungsgeschichte. 4. Auflage. Berlin, 1873.
 \ddagger It is clearly a misuse of the word "Law" to represent the numerous partially opposed and limiting phenomena of herodity as so many "laws of heredity," as E. Haeckel does.

[^22]: * Ch. Darwin, "The Descent of Man, and. Selection in Relation to Sex.:" Vol. I. and I1. London 1871.

[^23]: * Fritz Miiller, "Facts for Darwin," p. 22.

[^24]: * Fr. Miiller, "Für IDarwin." Leipzig, 1864.
 \dagger A. R. Wallace, "The Gengraphical Distribution of Animats," London, 1876. P. L. Sclater, "Address to the Biological Section of the Brit. Association," 1875.

[^25]: * Andrew Murray, on the contrary, in his work on the geographical distribution of Mammalia in 1866, distinguishes only four divisions-the Palaaretic, Indo-African, the Australian, and the American. Riitimeyer recognises in addition to the six provinces of sclater a Mediterrancan and Circumpolar province. J. A. Allen ("Bulletin of the Museum of Comparative Zoology, Cambridge," vol. ii.) proposes to distinguish eight regions, in comection with "the law of circumpolar distribution of life in zones:"-(1) Aretic realm; (2) North Temperate realm; (3) Tropical American realm ; (4) Indo-African Tropical realm; (5) Tropical South American realm ; (i) Temperate Afriean realm ; (7) Ant-
 arctie realm ; (8) Australian realm.

[^26]: + Compare Riitimeyer's Eissay, "Ueber die Herkunft unsercr Thierwelt." Basel and Genf, 1867.

[^27]: * Comparc Wyville Thomson, "The depths of the sea. An aceount of the general results of the dredging eruizes of the Porcupinc and Lightning, during the summer months of $1868,1869.1870$. . London, 1873. Also the results of the Chatlengfor expedition 1874-1876.

[^28]: * "Every sedimentary formation was extended at the time of deposition over a confined territory,-confined on the one hand by the extent of the sen or freshwater basin, and on the other by the different conditions favourable to the deposition inside the basin. At the same time, in other places entirely or at any rate somewhat differently stratified formations (i.e., formations of the same age. but of different composition) resulted. Thus marine, fresh-water, and swamp formations have been deposited at the same tine from different rocks and with different fossils, while the land surface has remained free." Comp. B. Cotta. "Die Geologie der Gegenwart."

[^29]: * (Rhizocrinus Lofotensis-Apiocrinites, Pleurotomaria, Siphomia, Micraster, Pomocaris, etc.) Types of earlier and even of the older geological formations have been found prescrved in the depths of the ocean, which, in spite of the great pressurc, the want of light and deficiency in gaseous contents of the water, are more suited to the development of animal life than was formerly believed.

[^30]: * Compare O. C. Marsh, "Principal Characters of the Tillodontia." Amer. Journal if Science and Art, Vol. xi.. 1876.
 O. C. Marsh, "Principal Characters of the Dinocerata." - Imer. Jinernal of Sciencer and alit. Vol. xi., 1876.
 O. C. Marsh. " Principal Characters of the Brontotheridæ." Amer. Journal af science and Art, Vol. xi., 1876.
 \dagger Compare H. Filhol, " Recherches sur les Phosphorites du Qucrey, Etude dess fossils qu'on y rencontre et spécialement des Mammifères." Ann. Seicuces génlogiques, Vol. vii., 18 ri(.

[^31]: * O. C. Marsh, "On a new sub-class of fossil Birds (Odontornithes)." American Jontual of S'rience and Art, Vol, v., 1873.
 O. C. Marsh, "On the Odontornithes, or birds with teeth." American Journal of Seicnee and Art, Vol, x.. 1875.

[^32]: * Dujardin, "Observations sur les Rhizopodes" (Comptes rendus, 1835). Ehrenberg, "Uber noeh jetzt zahlreich lebende Thierarten der Kreidebildung und den Organismus der Polythalamien" (Ab/andlung der Akud. zu Berlin, 1839). Max Sigm. Sehultze, "Uber den Organismus der Polythalamien" (Leipzig, 1854). Joh. Muiller, "Uber die Thalassicolcn, Polycystinen und Aeanthometren" (1858). L. Haeekel, "Die Radiolarien" (Eine Monographie. Berlin, 1862).

[^33]: * Besides D'Orbigny, Max Schnltze, l. e., compare W. C. Williamson, "On the recent Foraminifera of Great Britain," London, 18as. Carpenter, "Introducetimon to the Study of the Foraminifera," London. 1862. Reuse, "Entwurf einer system. Zusammenstellung der Foraminiferem," Wien, 1861.

[^34]: * L. Cienkowski, "Ucber Cluthrulina." Archir. fur mikrosk. Anatımir, Tom III., 1867. R. Greeff, "Ueber" Radiolarien und radiolarienähnliche Rhizopoden cles siissen Wassers." Tom V. \& XI. R. Hertwig und Lesser, "Uber Rhizopoden und denselben nahe stchende Organismen." Suppl. Tom X., 1874. Also Archer and F. E. Schultze, ete.

[^35]: * Joh. Miiller; "Ueber dic Thalassicollen, Polycystinen und Aeanthometren,' Abh. Aler Berl. Lkad. 185̃S. E. Hacekel. "Die Radiolarien," Eine Monographie Berlin. 1862.

[^36]: * Ehrenberg, " Die Infusionsthierchen als vollkommene Organismen." 1838. Balbiani, "Études sur la Reproduetion des Protozonires," Jouru. de lut Phys., Tom. III. Balbiani, "Reeherehes sur les phénomènes sexuels des Infusoires,"

[^37]: * Besides Ehrenberg, Claparède, and Lachmann, loe. eit., compare Stcin. "Organismus der Infusionsthiere," Tom. ГII., 1878. Biitschli, "Beiträge zur Kenntniss der Flagcllaten." Zeitsrlhr. fiur Wiss. Zool., Tom. XXX. "Dallinger

[^38]: * L. Cienkowski, "Beiträge zur Kentniss der Monaden," drchiv fûr Microsk. Anatomie. Tom. I., 1865. L. Cienkowski, "Uber Palmellaenen und oinige Flagellaten,' Tom. VI., 1870.

[^39]: * R. S. Bergh, " Der Organismus der Cilioflagellaten," Morph. Juhrl. Tom. VII.
 L. Cicnkowski, "Ueber Noctiluca miliaris," Archir. fur mieronk. Anaomir, 1871 and 1872.

[^40]: * Besides Ehrenberg, Claparède, Lachmann, Bitschli, l. c., comparc espccially Fr. Stein, "Der Organismus der Infusionsthicre." I. and II., Leipzig, 1859 and 1867

[^41]: * N. Liebcrkühn, "Evolution des Grégarincs," Mém comr. de l'Acad. de Bely. 185ั5. N. Lieberkiihn, "Beitrag zur Kenntniss der Gregarinen." A Arfl. für" Anat. und Plysiol., 1865. E van Benedcu, "Recherches sur l'évolntion des Grégarines." Bullétin de l'Acad. roy. de Belyitue. 2 Ser. xxxi., 1871. Aimé Schneider, "C'ontributions à l'histoire des Grégarines des Invertebrés de Paris et de Roscoff." Areh. de Zool. Experiment., Tom IV., 1875.

[^42]: * R. Leuckart. "Ueber dic Morphologie und Verwandschaftsverhältnisse nicderer Thicre,": Brauuschweig, 1848.

[^43]: * Literature : Nardo G. D., "System der Schwämme," Isis, 1833 and 1834. Grant, "Observations and Experiments on the Struct. and Funct. of Sponges.: Edin. Phil. Jonnmal, 1825-1827. Bowerbank, "On the Anatomy and Physiology of the Spongiadæ," Philos. Trans., 18 Sa and 1862. Lieberkühn." Beiträge zur Entwickelungsgeschichte der Spongillen," Miuller's Archir., 1856. Licberkiihn, "Zur Anatomic der Spongien." Müller"s Arehir.: 1857. 1859, 1863, 1865, 1867. O. Schmidt, "Die Spongien des adriatischen Mceres," Leipzig. W. Engelmann, 1862, as well as Supplement. Lcipzig, W. Engelmann, 186t. 1866, 1868. E. Haeckel, "Dic Kalkschwämme," 3 Bde, Bcrlin. 1872. Fr: E. Schulzc, "Untcrsuchungen iiber den Bau und dic Entwickelung der Spongicn," Zcitschrift, für uriss. Zool., 1876-18S0.

[^44]: * Upon this ground Clark deelared the Sponges to be nearly allied to the Flagelluta, and regarded them as great eolonies of the latter.

[^45]: * Ehrenberg, "Beiträge zur physiologischen Kenntniss der Korallenthiere im Allgemeinen und besonders des rothen Meeres." Ehrenberg. "Uber die Natur und Bildung der Korallenbänke," Abh. Aler Berl. Akad, 1832. Ch. Darwin:

[^46]: * Like the first tentacle of the young Seyphistoma polyp among the MydroMrdusce.

[^47]: * Escholtz, "System der Acalephen," Berlin, 1829. Th. Huxley, ". Memoir on the Anatomy and Affinities, of the Medusæ," Phii. Truns., London, 1849.

[^48]: * L. Agassiz, "Contributions to the Natural History of the United states of America,' vol. ii.-iv., 1860-1862. G. J. Allman, "A Monograph of the Gymnoblastic or Tubularian Hydroids," vol. i. and ii., London, 1871 and 1872. N. Kleinenberg, "Hydra," Leipzig, 1872. O. and R. Hertwig, "Das Nervensystem und die Sinnesorgane der Medusen," Lcipzig, 187 S.

[^49]: * Besides Kölliker, C. Vogt, Huxley and others, compare C. Gegenbaur, "Peobachtmgen uiber Siphonophoren," Zritwelnift für nisw. Zunl., 1S53. C,

[^50]: * Besirles the works of Brandt. L. Agassiz, Huxley. Eysenbardt, compare v. Siebold, "Beiträge zur Naturgeschichte der wirbellosen Thicre." 1839. M.

[^51]: Sars, "Ueber die Entwicklung der Medusa aurita und Cyanca capillata," Archir. für Naturgesch, 18t1. H. J. Clark, " Prodromus of the History, etc., of the Order Lucermuria," Jomm. of Bost. Sore of Nut. THist., 1863. C. Claus, "Studien uiber Polypen und Quallen der Adria," Denksehriften der $F_{\text {. }}$ 1kudemie der Wiswenserl. Wien, 1877. C. Claus, "Untersuchungen iiber Charybdea marsupialis," Arbeiten aus dem Yonl. Institut. Wien, 1878. Also E. Haeckel, I. c.

[^52]: * C. Gegenbaur, "Studien über Organisation und Systematik der Ctenophoren," Lrchir. für Naturgeseh., 180̆6. L. Agassiz. "Contributions to the Natural History of the United States of America," vol, iii., Boston, 1860. A. Kowalevski, "Entwiekelungsgeschiehte der Rippenquallen," Petersburg, 18 (i6. H. Fol, "Ein Beitrag zur Anatomie und Entwicklungsgeschichte einiger Rippenquallen," Inaugural dissertation. Jena, 1869. A. Agassiz, "Embryology of the Ctenophoræ," Cambridge, U.S., 1874. C. Clmn, "Die Ctenophoren des Golfes von Neapcl," Leipzig, 1880.

[^53]: * J.S. Miller, "A Natural History of the Crinoidea or Lily-shaped Animals." Bristol, 1821. J. V. Thompson, "sur le Pentaerinus Europaus, l'état de jeunesse du genre Comatula," L'institut, 1835. J. Miiller, "Ueber den Bau von Pentacrinus eaput Medusx," Ablumdl. der Berl. Aliadl., 1841. J. Miiller, "Ueber die Gattung Comatula und ihre Arten," Ibhandl. der" Berl. - 1kad.. 1847. Leop. v. Bueh, "Ueber Cystideen," Abhandl. der Berl. Alind., 18tt. Fercl. Römer, "Monographie der fossilen Crinoideen familie der Blastoideen,"

[^54]: * Besides the works of J. Ihr. Klein, eompare E. Desor", "Synopsis des Éehinides fossiles," 1854 to 1858. S. Lovén, "Études sur les Éehinoidées." Stockholm 1874. Al. Agassiz, "Revision of the Eehini," Cambridge, 18721874.

[^55]: * G. J. Jaeger, " De Holothuriis," Dissert. inaug. Turiei, 1833. J. F. Brandt, "Prodromus deseriptionis animalium ab H. Mertensio in orbis terrarum eireumnavigatione observatorum," Fase. I. Petropoli, 1835. J. Miiller, "Ueber Synapta digitata und iiber clie Erzeugung vou Sehneeken in Holothurien,", Berlin, 185̃2. A. Baur, " Beiträge zur Naturgesehichte der Synapta digitata," Leipzig, 1868.

[^56]: * A. Kowalcrski, "Anatomie des Balanoglossus Dclle Chiaje," Mémuives de l'A card. impér. des sciences de st. Petersbourg, T'om X., No. 3, 1866. L. Agassiz,

[^57]: "The History of Balanoglossus and Tornaria," Memoirs of the American Acallem!y of Ahts and Sciences, Vol. IX., 1873. E. Metschnikoft. Z/itseht. f. wissensect. Zonl. Tom XX., 1870.

[^58]: * Dugès, "Recherehes sur l'organisation et les mœurs de Planaires." Ann. de. Sic. Nat., Ser. I., Tom XV. A. S. Oerstedt. "Entwurf einer systematisehen Eintheilung und speeiellen Beschreibung der Plattwïrmern." Copenhagen, 1844. De Quatrefages. "Mémoire sur quelques Planariées marines," Amu. nes N'c. Nat., 1845 . M. Schultze, "Beiträge zur Naturgeschichte der Turbellarien." (ireifswald, 18s̃1. L. Graff, "Zur Kemntniss der Turbellarien," Zeitschriff" fü̈. Wiss. Zonl., T'om XXIV. L. Graff, "Neue Mittheilungen iiber Turbellarien." Zritsch. f. niss. Zool., xxv., 1875. F. Hallez, "Contributions á l'histoire naturelle des Turbellariés," Lille, 1879.

[^59]: * Besides M. Schultze. Stimpison, Metschnikoff, Grube. ete., compare H. N.

[^60]: * Besides the older works and papers of Pallas, Zeder, Bremser, Rudolphi, Diesing, and others, compare van Beneden, "Les vers eestoïdes ou acotyles," Brussels, 1850. Kiiehenmeister, "Ueber Cestoden im Allgemeinen und die des Mensehen insbesondere," Dresden, 1853. V. Siebold. "Ueber die Band- und Blasen-würmer," Leipzig, 1854. G. Wagener, "Die Entwickelung, der Cestoden," Nov. Act. Leop.-Car.. Tom XXIV., Suppl., 1854. G. Wagener, "Beitrag zur Entwiekelungsgesehiehte der Eingeweidewirmer," Haarlem, 1857. R. Leuckart, "Die Blasenbandwirmer und ilure Fintwiekclung," Giessen, 1856. R. Leuekart, "Dic mensehlieben Parasiten," Bd. I.. Leipzig, 1862. F. Sommer and L. Landois, "Ueber den Bau der gesehleehtsreifen Glieder von Bothriocephalus latus," Zuitsclur. f. wiss. Zool., 1872. F'. Sommer, " Ueber den Bau und die Entwiekelungsgeschiehte der Geseblechtsorgane von Taenia mediocanellata und Taenia solium," 1birl., Tom XXIV., 18:t.

[^61]: * Compare Th. Pintner, "Untersuehungen umber dou Bal de Bandwurmkörpers," Wien, 1880.

[^62]: * Exceptionally two or more heads are found in some Cysticereus forms.

[^63]: * In Cysticerci (O. longicollis, tcnuicollis) also sterile.daughter vesicles are sometimes budded off.

[^64]: * A. de Quatrefages, "Mémoire sur la famille des Némertines," Ann. des se. Nat.. Ser. 3, Tom. VI., 1846. MeIntosh, "On the Structure of the British Nemerteans," Transact. Edinb. Royal Soc., Tom XXV., 1 \& 2. Barrois, "Mémoire sur l'Embryologrie des Némertes," Paris, 1877. Hubreeht, "Untersuchungen iiber Nemertinen, etc.," Micderl. Archiv., Tom. II.

[^65]: * Besides the older writings of Rudolphi. Bremser, Cloquet, Dujardin, compare Diesing, "Systema helminthum," 2 Bde Wien, $1850-51$. Diesing, "Revision der Nematoden," Wiener Sitzungsberich.te, 1860. Claparède, "Dc la for" mation et de la féeondation des œufs chez les vers Ncmatodes," Genève, 1856. A. Sehncider. "Monographie der Nematoden," Berlin. 1866. R. Leuckart, "Untersuchungen iber Trichina spiralis," Leipzig and Heidelberg, 1866, 2nd edition; also "Die menschlichen Parasiten." etc., Tom. II., Lcipzig and Heidelberg, 1876. C. Claus', "Ueber Leptodera appendiculata." Marburg. 1868. O. Bïtschli, " Untersuchungen iiber die beiden Nematoden del Periplaneta oricntalis:"

[^66]: * There may also be prominenees of various kinds, and even in some cases a complete eovering of spines (Cheiracanthus Dies = Gnathostoma, Ow., Ch. hispidum Fedsch.)

[^67]: * Compare Fedschenko, "Ueber den Ban und Entwicklung der Filaria medinensis," in the Beriehtrn her Freunde der Naturwiswenseluften in Moskau, Tom VIII. and X.

[^68]: * Compare the writings of R. Leuckart, Zenker, R. Virchow, Pagensteeher, cte.

[^69]: * Besiles Dajardin, Diesing, 1. c., compare: R. Leuckart, "Parasiten des Menschen," Tom II., 1876. Grecff. "Untersuchungen ïber Echinorhynchus miliaris," Arch. fïr Naturyesch, 1864. A S'chneider. :: Ueber den Bau der Acanthocephalen," Miuller's Arehiv., 1868. Also the Sitaungsberichte der Oberhessisehen Gesellschaft für Natur-und Heilkunde, 1871.

[^70]: * Besides the older works of Sarigny, Audouin et Milne Edwards, and Quatrefages, compare E. Grube, " Dic Familien der Anncliden." Archiv fiïr Naturgesch, 1850 and 1851. E. Claparède, ": Recherches anatomique sur les Annélides, cte.," Genère, 1861. E. Claparède, "Les Annélides chétopodes du golfe de Naples," Genève et Bâle, 1868, also Sup-

[^71]: * Greeff, "Ueber das Auge der Aleiopiden. ete.," Marburg. 1876 ;and " L"ntersuchungen iiber die Aleiopiden," Sor. Act. der K. Jecop. Alad., itr': Tom XXXIX., Nro. 2.
 \dagger Compare besides the works of O. Fr. Miiller, Quatrefages, Leuckart, and Krohn. espeeially A. Agassiz, "On alternate Generation of Amelids and the embryology of Autolytus eornutus," Boston Jomr'n. A'at. Hist., vol. iii.. 1863.

[^72]: * Audouin et Milne Edwards, "Classifieation des Annélides et description des celles qui habitent les côtes de la Franee," Annales des Ne. Nat.. Tom XXVII. to XXX., 1832-33. Delle Chiaje, "Descrizioni e notomia derli animali senza vertebre della Sieilia eiteriore,' Napoli, 1841. Quatrefages. "Histoire maturelle des Annelés," Tom. I, and II., 1865. Also the numerous writings of E. Grube and E. Claparede.

[^73]: * Compare E. Claparede and E. Metsehnikoff, "Beiträge zur Entwickelungsgeschichte der Chretopoden," Zeitsehr. für wiss. Zool., Tom. XIX., 1869.

[^74]: * Panceri, " La luce e erli organi lúminosi di alcuni amclidi;" Atti dclla f . Acad. scieṇsz fi. e mat. di Napoli, 1875.

[^75]: * The head (prestomium and buecal region) being reckoned as the first segment.

[^76]: * Quatrefages," Mémoire sur l'Echiure," Amn. Ies Sce. -Vıt.. 3 Šér.. Tom VII. Laeaze-Duthicrs, "Reeherches sur le Boncllia," Aun. iles Sc. Tirt.. 18 sis. W. Keferstein, "Beiträge zur anatomisehen und systematischen Kenntuiss der Sipuneuliden," Zeitschr für wiss. Zoologie, Tom XV. 1865. B. Hatschek. "Ueber Entwickelungsgeschichte des Eehiurus," etc. Wien, 1850. J. IV. Spengel. "Beiträge zur Kenutniss der Gephyrcen. I. Nittheil. aus dr" :oolngischon stution zu Nenpel, 1879 ; II. Zeitschr. fur wiss. Kool., Tom XIV., 1881.

[^77]: * There should be a third order of Gepleyrea for these animals.

[^78]: * Brandt and Ratzeburg. "Mcdicinische Zoologie." 1829. Moquin-Tandon. "Monographie de la famille des Hirudinées." 2ud. édit. Paris. 1stfi. Fr. Leydig, "Zur Anatomic von Pisciecla geometrica," Zritselur. für wiss. Zonl.. Tom. I., 1849. H. hathke. "Beiträge zur Entwickelmorsgeschichte des Hirudineen." edited by R. Leuckart, Leipzig. 1862. R. Leuekart. "Parasiten des Mensehen." Pri. I., Leiprig, 1863. Van Beneden et Hesse. "Reeherehes sur tes Bdelloides on Hirudinées et les Trématodes marins." 1863. Rohin. "Mémoire sur le déreloppement embryogénique des Hirudinées." Paris, 187i.

[^79]: * Hermann, "Das Centralnervensystem ron Hirudo medicinalis." Miunchen. 187.\%.

[^80]: * Compare E. Mctseluikotf", " Ueber einige wenig bekannte niedere Thierformen." Zritschlu. fïr mis.s. Zont., Tom. XV', 186.\%. Aleo the works of H. Lndwig and O. Biitschli.

[^81]: * Milne Edwards, "Histoire naturclle des Crustacés," 3 vol. and atlas, 18381840. C. Claus, "Untersuchungen zur Erforschung der genealogisehen Gruandlage des Crustaccensystems," Wien, 187 (i.

[^82]: * Besides the works of O. Fr. Miiller. Jumine. M. Elwards. Dana, compare Zadtach, "De Aporlis cancriformis anatome et historia evolutionis." bonnae,
 185.3 ant 1855. Fir. Leydig. "Monographie der Daphmiden." 'Tibingen, 1860.

[^83]: * Compare espeeially W. Kinz, "Ueber androgrue Misshilehug bei Cladoceren," Sitzungsber der Aharl. der Ẅssmarh. Ḧ̈'n. 18T4. Aso Schmankewitseh.

[^84]: * H. E. Strauss-Diirkheim, "Mémoire sur les Cypris de la classe des Crustacés." Mém. du Mus d'list. nut., Tom VII., 1821. W. Zenker, " Monographic der Ostracoden," Arehii. für Maturyesoh.. Tom. XX.., 18ōt. (C. Clans," Beiträge zur Kentuiss der Ostracoden. Entwickelungsgeschiehte ron Cypris." Marburg: 1868. ©. Claus. "Neue Beobachtungen iiber Cypridinen," Zeitsch". für miss. Zool., Tom XXIII. ". Clans, "Die Familie der Halocypriden." Schriften zenhnfisehen Inhults. Wien, 187t. G. S. Brady, "A Monograph of the Recent British Ostracoda," Trounsurt. of the Lin. Sine., Vol. XXVI.

[^85]: * Besides Stecustrup and Liitken l.e. eompare A.v. Nordmaun. "Mikrographisehe Beitrige zur Naturgesehiehte der wirhollosen Thiere," Berlin, 1832. H. Burmeister, "Beschreibung einiger neuen und wenig bekanuten Sehmarot-

[^86]: * Netuatia is best placed in asiuceial group. Leptostruru, leetween the Entumnstrucu and Malarostruca. The palaozoie fossil genera II!menocuris, Peltocuris. etc., would have to be placed in such a group.

[^87]: * Besides the works of Jatreille, M. Elwards, Dana, and others, compare Spence Bate and J. O. Westwoor. "A History of the British sessile-eyed Crnstacea." Tom. I. and II., London, 1863-1868. G. O. Sars. "Histoire naturelle den C'rustacés i'eau douce de Norvège." Christiania, 18157.

[^88]: * J. Bullar: "The gencrative organs of the Parasitic Isonora." . Fineru. Inut. Physiml., 1876. P. Mayer, "Ueber den Hermaphroditismus ciniger Isonoten." Mittheil, aus तlor Zon7. Stat. - Icra)el. 1879.

[^89]: * Compare Spence Bate. "On Praniza and Anceus. ete," A mu . of Tä. Mist., Ser. 3. Vol. $11 ., 1858$. Hesse, "Mémoire sur les Pranizes et les Ancées." Ann. I. Seipn. Int.. Ser. IV., Tom IX., 1864. Fr. Miiller, "Ueber den Bau der Schecrenasseln," Archir. fü̈ Nuturycsch, Tom XXX., 1864. A. Dohrn, "Entwickelung und Organisation von Praniza maxillaris sowic zur Kenntniss des Baues von laranthura costana " Zeitschur. fïr wiss. Zonl., Tom. XX., 1870.

[^90]: * IBesides the larger works of Herbst, M. Edwards. Dana, and the essays of Duvernoy: Audouin and M, Edwarts, Joly, Coueh, etc. compare Leach,

[^91]: "Malacostraca podophthalma Britannix," London, 1817-1821. T. Thompsen,
 "On the metamorphosis of Decapodous Crustacea." Zool. Journ., vol. ii., 1831, alsu Isis, 1834, 1836, 1838. H. Rathke, " Untersuchungen iiber die Bildung und rie Entwickelung des Flusskrebses," Jeipzig, 1829. 'Th. Bell, "A history of the British stalk-cyed Grustacea," London, 1853. Lerehoullet, "Rccherches d'embryologie eomparéc sur le développement du Brochet, de la Perehe et de l'Ecrevissc," l'aris. 1862. V. Hensen, "Studien iiber das Cehörorgan der
 Decaporten," Icipzig, 1863 .

[^92]: * H. Kröycr, "Fire nye Arter af slagten Cuma," Yaturh. Tirlsstr., Tom III., 1841. H. Kroiyer, "On Cumaccernes Familic," Vutur\%. Ti/kskr. N. R.. Tom III., 1846 . G. O. Sars, " Beskrivelse af de paa Fregatten Josephines Hxped. fundine Cumrecer," Stockholm, 1871. A. Dohrn, "Ueher den Pau und die Entwickelung (ler Cumaceen," Jen. nuturwiss. Zeitschr. Tom V., 1870.

[^93]: * Besides Dana, M. Edwards and others. compare O. Frr. Miiller. "Bruchstiick aus der Entwiekelungsgeschichne der Manffisser," I. and II., fre/ir fiir Naturgesch., T'om XXVII.. 1862, and Tom XXXIX., 186i3. (. Clans, "Dic Metanorphose der Squilliden," Abhandl. der (rötlim!tr. socittït. 1872. ®.
 Akad. der II issenssh., Wien, 1876.

[^94]: * Herbst. "Versuch ciner Naturgcschichte der Krabben und Krelse," :3 Bide., Berlin, 1782-180t. Leach. "Malaeostraca podophthalna Britannies," London 1817 to 1821. Th. Bell. "A history of the British stalkeyed Crustacea,", London, 1853. H. Rathke, "Untersuchungen iiber die Bildung und Entwickelung des Flusskreluses," Leipzig, 1829. Spence Bate, "On the development of Decapod Crustacea," Phil. Trals. of the lony. Nice., London, 1859. C. Claus, "Yur Keıntniss der Malacestrakenlarven," \|ïr~l. naturniss. Y/ itwefor., Tom Il., Lsial. Fr. Miiller, "Die Verwandlung der Garneelen," Arohir fïr lieturgesele, 'Jom XIX., 18(33). Fr. Miiller, "Fiir Darwin," Leipzig, 1864.

[^95]: * Besides Rathke 1. c. and Lereboullet 1. c., and a Russian paper of Bobretzky.

[^96]: * Woodward, "Monograph of the Brit. fossil Crustacea belonging to the order of Merostomata." P'. I.. \&. 11., Pulueont. Sore of Lomiton, 1866-1869. Woodward, "On some points in the strneture of the Xiphosura, having referenee to their relationship with the Eurypteridx," Quarterly Journ. Geol. Soc. of Lomdon, 1ssi7 and 1871.

[^97]: * Burmeister, "Dic Organisation der 'Trilobiten," ete., Berlin, 1843. Beyrich, " Untersuchungen iiber Trilobiten," Berlin, 1845, 1846. J. Barrande, "Système silurien du centre de la Bohéme," Prague, 1852 . \&'. W. Salter. "A monograph of the British 'I'rilobites," London, $186+1866$.
 * Portions of appendages have been recently observed on the ventral surface of an 1 saphu" ("Notes on some specimens of Lower Silurian Trilobites," by E. Billings ; also "Note on the Palpus and other appendages of Asaphus," etc., by H. Woodwatd, Querve. Fourn. uf the Grolog. She. Jondon, 1870), which are said to point to the affinity of Irilobitrs with the Isopocla.

[^98]: * A. Dohrn, *: Dic Pantopoden des Golfes von Neapel und der angrenzenden Mecresabsclnitte." Einc Monographic, Leipzig', 1881.

[^99]: Macrobintus: Hufrlandii S. Sch., Milncsium tardigradum Doy., Échiniscus. Bellermanni S. Seh.
 "Sur les Tardigrades et sur une espèee di longs pieds vivant dans l'eau de mev:" Ann. des Sre. nat. S'cir. III., Tom XV. Also the works of Kinufmann. Greeft amu
 Max. s. Schultze.

[^100]: * Besides the works of C. A. Walekenaer, Treviranus, C. J. Sunderall, T. Thorell, Menge, Koch, Dugès, Tebert, etc., compare. E. Claparede." lecherches sur l'érolution des draignés," Généve, 1862 : L. Claparede. "Etudes sur la circulation du sang chez les Aranées du geme I,yense." Génère, 1s63: F. Platean, " liecherches sur la structure de l'apprareil digestif et sur les phénoménes de la digestion chez les Aranées dipmeumones," Bruxelles, 1877.

[^101]: * H. Tacas, " Fissai sur une monographic in genre Thelyphons," Hagas. de Zoul., 1835. J. v. d. Hoeven, "Bijdragen tot de kennis van het geslacht Phrymus," Tïjlsfler: vour nut. Gieschied. 1N゙., 1842.

[^102]: * P. Gervais, "Remarques sur la famille des Seorpions et deseription de phasicurs espèees nouvelles, etc." Arch. d" masée dhist. nut., IV. Newport, "On the structure, relations, and development of the nervons and circulators Systems in Myriapoda and macrourous Amehnidn." Phit. T'rans. 184.3. L. Dufour, "Histoire amatomiqué et physiologique des scorpions." Mém. pris. à l’arad. des serinces, XIV., 18:56. E. Metschnikoft, "Embryologie de= Senrpions," Zeitsche fïr wiss., Zmol., 1870.

[^103]: * L. Dufour, "Anatomie, physiologic et histoire naturelle des Galéodes:" Comptes remdus d l"arrud. d.esscicnees. XI VI., 185s. Th. Hutton, "Observations on the habits of a large species of Galcodes," A M. and Mag. of Nat. Mist., XII., 1813.

[^104]: * E. Grube, "Ueber den Bau des I'eripatus Edwardsii." Miiller's Arelic:.: 1853. Moseley, "On the Strueture and Development of Peripatus capensis." Phit. Iruns.. 1875. [F. M. Balfour, "On the Structure and Development of Peripatns C'apensis," OHurt. Jum?. "If Mic. Sciente, 1883.]

[^105]: * Besides Fabre l.c., compare Voges, "Deiträge zur Kenntuiss der Juliden," Zeitschr. für misss. Zivol., Tom XXXI., 1878.

[^106]: * Newport, "Monograph of the Class Myriapoda. order Chilopoda," Linnean Transactions, XIX.

[^107]: * J. Swammerdam, "Historia lnscetorum generalis," Utrecht, 1669. J. Siwammerdam, "Bijbel der nature," 1737-1738. Réaumur, "Memoires pour servir à l'histoire des Insectes," 12 vols.. Paris, 1734-1742. Ch. Bonnet, "Traité d'Inscetologie," 2 vols.. l’aris, 1740. A. Rösel von Rosenhof, "Inscctenbelnstigungen," Nuirnbcrg, 17 ± 6 to 1761 . " h. de Gecr, "Mémoires pour scrvir à l'histoire des Inscetes," S vols., 1752 to $1776 . H$. Burmeister, "Handbuch der Entomologie," Halle, 1832.

[^108]: * Compare especially the mumorous papers of Lid. Brandt, "Ueber die metamorphose des Nervensystems."

[^109]: * Compare especially Leydig, "Zam feineren Bau der Arthropoden. sowie Germehs-und Gehörorgane der Krebse mul Insecten." Müller's Arehir, 1s.5n and 1860.
 H. Grenacher, "Untersuchungen iiber das sehorgan der Arthropoden." Göttingen, 1879.

 Also V. Graber; "Die tympanalen simenorgane der Orthopteren." Wien, 1875.

[^110]: * Compare 1. Leuckart, "Léber dic Mikropsle und dien feineren Bau der Schalenhant bei den Insecten." Mäller's Archir., 18.n.

[^111]: * H. Landois, "Die Ton-und Stimmapparate der lusecten." Leipzig, 1s67.

[^112]: * John Lubbock. "Monograph of the Collembola and Thre*inura." Tondon, 1873.

[^113]: * A. Scrville, " ITistoirc naturelle des Insectes Orthoptères." l'aris, 1839.
 T. De Charpentier, "Orthoptera deseripta et depicta." Leeiprig, 1841.
 I. H. Fischer, "Orthoptera Europiea." Leiprig. 1853.

[^114]: * H. Hagen, "Monographic der Terniteu." Liu. Entomol., Tom. X. and XIV.

 C'h. Lespés, "Recherelies sur l'organisation et les mœurs du Termite lueifuge." Ann. desest. Nat. IV. sèr., J'om. V., 185 亿.
 Fr. Müller, "Peiträge zur Kenntniss der Termiten." Jen. nat. Zritschr.
 Tom. VII.. 1873.

[^115]: * W. Kirby, "Sitrepsiptera, a new order of Inseets," Iran.sact. Siun. Soc., Tom X .
 v. Siiebold, "Ueber Xenos sphecidarum und dessen Selmarotzer," Beitriage zur Naturgesehiehte der wirbellosen Thiere, 1839.
 v. siebold, "Ueber strepsiptera," Arehiv, fuir Naturgeseh., Tom TX., $18+3$.

 Curtis, "British Entomology," London, 1849.

[^116]: * C. Bonnet, " Traité d'Insectologic," 'Tom. I., Paris 1745.
 J. F. Kyber, "Erfahrungen und Bemerkungen iiber die Blattliause." Germar's Magaz. der Entomer. Tom. T.. 1s15.
 J. H. Kaltenbach, "Monographic der Familie der Pffanzenlänse." Aachen, 1843.
 1859.

[^117]: * Derbès, "Notes sur les Aphides du pistachier térébinthe," Ann. des se. Nat. 1872.

[^118]: * J. W. Mcigen, " Systematische Beschreibung der bekannten europäiscben, zweifligeligen Insecten," 7 Theile. Aachen, 1818-1838.

 Wiedemann, "Ansscreuropäische zweifliigelige Insecten," 2 Thcilc. Hamm. 1828-1830.
 N. Wagner, "Ueber dic viviparen Gallmïckenlarven," Z/ritschtr. für: u'is... Zort., Tom. XV., 1865.
 A. Weissmann, "Die Entwickehng der Dipteren," Leipsig. 1864.
 A. Weissmann, " Dic Mctamorphose der Corethra plumicornis," 1866.

[^119]: * L. Dufour.'. Études anatomiques et physiologiques sur les Insectes Diptères de la famille des Pupipares." Inn. des Se. Nut.. II. ser., Tom. III., 1843.
 R. Lemekart, "Die Fortpflanzung und Entwickelung der Pupiparen." Abhamd. der naturf. Gesellschaft ะn Julle, Tom. IV.

[^120]: * F. Braner, "Monographic der Uistriden." Wien, 1863.

[^121]: * E. J. C. Esper, " Die europäischen Schmetterlinge in Abbildungen naeh der Natur, mit Beschreibungen." 7 Bde. Erlangen, $1777-1805$.
 F. Oehsenheimer und F. T'reitsehke, "Die Schmetterlinge ron Europa." 10 Bde. Leiprig, 1807-183亏.
 W. Herrich-'゙chäffer, "Systematisehe Benchreibung der" Schmetterlinge von Furopa." .) Bile. Regensburg, 1843-185.5.
 W. Herrich-Schäffer, "Lepidopterorum exoticorum species nova aut minus eognitre. liegensburg. 1850-18isi).

[^122]: * II. E. Erichson. "Zur systematischen Kemntniss der Insectenlarven," Archir für Naturypseh., Tonl. VII., VIII., and XIII.
 Th. Lacorlaire, "Gencra des Coléoptères," Paris, 185t-1866.
 L. Recltenbacher, "Fauna Anstriaca, clie Käfer;"' 3 Aufl. Wien.. 1873.

 Gemminger und Harold. "Catalogus Coleopterorum, etc.." Mïnchen, 1868. Kowalevski l.e., "Entwiekelungsgeschichte des Hydropliilus, etc."

[^123]: * Dejean, "śpeeies général des colćoptères, ete." Tom I.-V., Paris. 18251831.
 † L. Jurine. "Nouvelle méthode de elasser les Hyménoptères et les Diptères." Tom. I. Hyménoptères. Génèvia, $180 \overline{7}$.
 (!. Gravenhorst. "Ichnemmologia Europae," Vratislavia. 1829. J. Tb. C. Ratzeburg, " Die lchmeumonen der Forstinsecten." 3 Bde. Berlin. 1stt-1 isio.
 (i. Dalibom, "Hymenoptera liuropaa, precipue borealia." Isund. 1stis.
 v. Nichold, "heitrige \%ur l’arthenogenesis der Arthropolen." Leipzier. lsíl.

[^124]: * P. Huber, " Rechcrehes sur les mururs des lourmis indigèncs." Geneva, 1810.

 Latreille, "Histoire naturelle des Fourmis." Paris, 1802.
 A. Forel, "Les Fourmis de la Suisse." Zurich, 1874.

[^125]: * H. de Saussurc, "Etudes sur la famille des Vespides." 3 vols. Paris, 1852 to 18 ह̄7.
 † F. Huber, "Nouvelles ubscrvations sur les Abeilles." 2 vois. Paris, 1814.

[^126]: * G. Cuvier, "Mémoires pour scrvir à l'histoire et à l'anatomie des Mollusques." Paris, 1817.
 î. Leuckart, " Ueber dic Morphologic und dic Verwandschaftsverhältnisse der wirbellosen Thiere." Brannschweig, 18t8.

 Huxley, "On the Morphology of the Ccphalous Mollusca, as illustrated by the Anatomy of certain Hetcropoda and Pteropoda, ctc." Phil. Trans., 185 ³.

[^127]: * H. v. Jhering, " Yergleiehende Anatomie des Norvensystems und Phylogenie aer Mollusken." Leipzig, 1877.

[^128]: * G. Cuvier, "L' histoire et l'anatomie des Mollusques." Paris, 1817.

 Bojanus, "Ucber die Athem- und Kreislaufswerkzeuge der zweisehaligen Muscheln." Isis, 1817, 1820, 1827.
 S. Lovén, KK. Vet. Akarl. Mandlgr. Stockholm, 18t8. Translated in the Avch. für Naturyesch., 1849.

 Laeaze-Duthiers, Amn. des Sc. Nat., 185t-1861.
 H. and A. Adams, "The Genera of the Reeent Mollusca." Loudon, 18531858.
 T. Reeve. "Conchologia ieoniea." London, 1846-185s.

[^129]: * cf. Moebius, " Dic cehten Perlen, etc." Hamburg, 18.57.

[^130]: * Fr. Leydig, "Anatomic und Entwickelung von Cyclas." Miiller's Arehiv,

[^131]: * Lacaze-Duthiers, \cdot Histoire de l'organisation et du déreloppement du Deutalc." Ann. Th's sce, Nat., 1854-1858.

[^132]: * Martini and Chemnitz. Couchylien-Cabinet. 12 Bde. Helausgegeben rou Kiister. Niirnberg, 1837-18(6\%).

 Sowerby. "Thesaurus concliyliorm, or figmes and deseriptions of shells.:" London, 1832-1862.

 Reere. "Conchologia iconica. etc." London, 1842-1862.
 H. and A. Adams. "The gencra of the reeent Mollusen,"'s rols. Londun, 1858.
 H. Troschcl. "Das Gebiss der Schneeken." Bcrlin, 1856-1878.

 Woodwarl. "Manual of the Mollusca." 2nd ed., London, 1868.
 Fol. "Etudes sur le dévcloppement des Mollusques." I. and II.
 C. Rabl, "Ueber die Entwiekelung der Tellerschncekc." Morphol. Jahrbuch. Tom. V. 1819.

[^133]: * V. Hensen. "Ueber das Auge ciniger Cephalophoren." Zeit. fïr riss. Zoml., Tom. XV., 18 н5.
 \dagger W. Flemming. "Untersuchungen ziber Sinnesepithelien der Mollusken." Arch. für. mik. Anctomic, Tom. VI., 1870.

[^134]: * Cf. espeeially.
 N. Bobretzky, "Studien über die embryonale Entwiekelung der Gastropoden." Archiv für mik. Anat., Tom XIII., 1876.
 C. Labl, "Ueber die kntwickelung der Tellerschnceke." Morph. Jahrb. Tom V.
 Alsu Fol, Biitschli, R. Lanktster, etc.

[^135]: * Fr. Leydig, "Ueber Paludina rivipara." Zeit. für. wiss. Zool., Tom II., 1850.
 E. Claparède, "Anatomie und Entwickelungsgeschichte der Neritina fluviatilis." Mïller's Avchiv., 1857.
 H. Lacaze-Duthiers, "Mémoire sur le systèmc nerv. de l'Haliotide et Mémoire sur la Poupre." Ann. des S'c. Nat., 'Tom XII. and XIII
 N. Bobretzky, 1.c.

[^136]: * A. Th. Middendorff, "Beiträge zu einer Malacozoologica rossica. 1. Beschreibung und Anatomie neuer oder für Russland neuer Chitonen." Mém. Actad. Imp., St. Petersburig, 1848.
 S. Lovén, "Ueber die Entwickelung der Gattung Chiton." Archir für Naturgesch., 1856.
 B. Haller, "Die Organisation der Chitonen der Adria." Arbeiten a. 1. Zool Inst. in Wien., Tom IV., 1882.

 Vide also Tullberg's and Graffis works on Neomentia and Chetinterma.

[^137]: * Souleyet. "Hétéropodes. Voyage autour du monde exéeuté pendant les années 1836 et 1837 sur la eorvette la Bonite, ete," Tom II. Jaris, 1852.
 R. Leuekart. "Zoologisehe Untersuehungen." Heft III. Giessen, 1854.
 C. Gegenbaur. "Untersuehungen über Pteropoden und Heteropoden." Leipzig, 1854.
 H. Fol. "Sur le Développement des Hétéropodes." Arch. de Zuol. expperim. Tom V., 1876.

[^138]: * L. Pfeiffer, "Monographia Heliceorum viventium." Leipzig, 1848-1869; ann̉ "Monographia Auriculaceorum viventium." Cassel, 1856.
 A. Rossmässler, "Iconographie dcr Land-und Suisswassermollusken Europas." Leipzig, 1835-1859.

 Férussae et Dcshayes, "Histoire naturelle générale et particulière des Mollusques terrestres et fluviatiles." Paris, 1829-1851.

[^139]: * Rang et Souleyet, "Histoire naturelle des Mollusques Ptéropodes." Paris, 18502.
 C. Gegenbaur, "Untersuchungen iiber die Pteropoden und Hetcropoden." Lcipzig, 1855.
 A. "Krohn, Beiträge zur Entwickelungsgeschichte der Ptcropoden und Heteropoden.". Lcipzig, 1860.

[^140]: * Férussae et d'Orbigny, " Histoire naturclle génèrale et partieulière des Céphalopodes acétabulifères vivants et fossiles." Paris, 183̃-45.
 J. B. Vcrany, "Mollusques Méditerranéens observés, décrits, figurés et

[^141]: * Cf. besides van Beneden and Fölliker ; Ussow, : Zoologisch-embryologische Untersuchungen." Archiv fïr Naturgesch., 187 t.

[^142]: * Van der Hoeven, "Beiträge zur

[^143]: * Chief works: Férussac ct d'Orbigny l.c., also Verany $l c$.

[^144]: * F. A. Smitt, "Kritisk förteckning öfver Skandinaviens Hafs-Bryozoer Öfvers." Kongl. Tetensk. Akad. Förhandl., 1865, 1866, 1867.
 H. Nitsche, "Beiträge zur Kenutniss der Bryozocn." Zeit. fïr wiss. Zool., 1869 and 1871.
 J. Barrois, " Recherches sur l'cmbryologie des Bryozoaires." Paris, 1877.

[^145]: * Ed. Claparède, "Beiträge zur Anatomie und Entwickelungsgeschichte der Seebryozoen." Zeit.f.niss. Zonl.. Tom. SXI., 1871.

[^146]: * Besides Nitschc, cf., B. Hatschek, "Embryonal Entwickelung und Kinospung der Pedicellina echinata." Zeit. für wiss. Zool., Tom. XXVIII.

[^147]: * G. J. Allman, "Monograph of Fresh-water Polyzoa." Ray Soc., 1856.

[^148]: Fam. Lingulidæ. Lingula anatina Lam., Indian Ocean,
 Fam. Discinidæ. Discinu lamellosa Brod., South America.
 Fam. Craniadæ. Crenia anomala Mïll., North Sca; Cr. rustrata Hoev.. Med:terranean ; Cr. antiqua Defr., fossil from the Chalk.

[^149]: * J. C. Savigny, "Ménoires sur les animaux sans vertèbres, II." Paris, 1815.

 Chamisso, "De animalibus quibusdam e classe Vermium." Berlin, 1819.
 Milne Edwards, "Observations sur les Aseidies composées de côtes de la Manehe." Mém. Acad. Sc. Paris, 1839.
 A. Kowalerski, "Weitere Studien iiber die Entwickelung der einfaehen Ascidien." Arch. für mikr. Anatomic, Taf. VI., 1 s70.

[^150]: * Lacaze-Duthicrs, "Sur un nouveau d'Ascidien." Ann. des sic. -Vat. Ve. Scr., Tom. IV., 1865.

[^151]: * Besides the already quoted works of M. Edwards and Savigny, Cf. J. C. Savigny, "Tableau systematique des Aseidies, ete." Paris, 1810.

 Esehrieht, "Anatomisk Beskrivelse af Chelyosoma Mac-Leyanum." Kjövenhavn, 1842.
 Van Beneden, "Reeherehes sur l'Embryogénie, l'Anatomie et la Physiologie des Aseidies simples." Mém. de l'Acad. Voy. de Belgique, Tom. XX., 1st6.
 A. Krohn, "Ueber die Entwiekelung von Phallusia mammillata." Müller"s Archic, 1852.
 A. Krohn, "Ueber die Fortpflanzungsverhältnisse bei den Botrylliden und iiber die friiheste Bildung der Botryllusstöeke." Archiv für Naturgeschichte, Tom. KXXV., 1869.

 Th. Huxley, "Anatomy and development of Pyrosoma." Trans. Lin. Suc., Yol. XXIII., 1859.

[^152]: * Th. Chandelon, "Recherches sur une annexe du tube digestire des Tuniciers." Bull. de l'acad. roy. de Belgirue, Tom. XXXIX., 1875.
 \dagger Cf. Besides Kowalevski l.c. Kupffer. "Zur Entwiekelung der einfachen Ascidien." Arch. fïr mikr. Anat., Tom. VIII. 1872.

 Laeaze-Duthiers, Arch. de Zool. cxpuérin., 1874.

[^153]: * In A. manemillatr, aceording to Kowalevski. on the eontrary, this growtli takes place at the other en'l towards the left, and therefore agrees with
 that of Amphinrws:

[^154]: * Cf. C. Gegenbaur, " Bemerkungen iuber die Organisation der Appendicu1arien." Zeitsch. für wiss. Zool., Tom. VI., 185n.
 H. Fol, "Etudes sur les Appendieulaires du détroit de Messine." Mém. Suce. re Plyg. et d'Hist. Nat. de Génève, Tom. XXI.. 1872.
 + Cf. besides Laeaze-Duthiers i.e., C. Heller, "Untersuehungen iiber di." Trunicaten des Adriatisehen Meeres, I., II., III.," Denhischr. der h. - Ikad. رе Hissensch. Hien, 1874-1877.

[^155]: * Besides Savigny, cf. M. Edwards, "Observations sur les Ascidics composées des côtes de la Manche." Mém. Acall. sc., Tom. XVIII. . Paris, 1842.
 A. Giard, "Recherches sur les Synascidics." Areh. de Zool. expér., Tom. I., Paris, 1872.

 Kowalevski, "Ucber die Knospung der Ascidien." Arch. fïr mithr. Anat., Taf. X... 1874.

[^156]: * Th. Huxley: "Anatomy and development of Prrosoma." 'rrans. Limn. Sirc'. 1860.
 W. Keferstein und Ehlers, " Zonlogisehe Beiträge." Leipzig. 186i.

 Kowalevski, " Ueber die Entwickelungsgeschichte der Prrosomen." Arrin. für. miker. Anatomie. Tom. XI., 1875.

[^157]: * [Generative blastema, or indifferent tissue from whieh the reproduetive organs of the parent were developed (Huxley).]
 \dagger Compare Th. Huxley, "Observations upon the anatomy and physiology of Salpa and Pyrosoma, together with remarks upon Doliolum and Appendieularia." Phil. Trans., London, 1851.
 R. Leuekart, "Zoologische Untersuehungen." Heft JJ., Giessen. 1854.
 C. Gegenbaur. "Ueber den Entwiekclungscyklus von Doliolum nebst, Pemerkungen ibher die Larven dieser Thiere." Zeitwelur. fuir niss Zool., Tom. VII.
 C. Grobben. "Doliolum und sein Generationsweehsel, ete." Arbeiten aus dem Zool. Institute in Wien, Tom. IV., 1882.

[^158]: * Besides R. Leuckart l.c. compare Kowalcrski. "Beitrag zur Entwickelungsgeschichte der Tunicaten." "Entwickelungsgeschichte rler' Salpen." Viurlir. rem der leöniyl. Gésellsch der Wissensch., Nr. 19, Göttingen, 1868.
 IV. Salcusky, "Ueber die cmbryonale Entwickelungqgeschichte der Salpen," Zeitschr. für wiss. Zinl., Tom XXVII.. 1876.
 W. Salensky, "Ueber dic Knospming der Salpen." M(np)ph. .Juliv., Tom. IIT.. 1877.

[^159]: * Lesides the works of Cuvier, F'. Meckel and J. Miiller, eompare R. Owen, "On the anatomy of Vertebrates." Vol. I., H., III., London, 1866-68.
 ('. Gegenbaur," Grundzaige der vergleichenten Anatomic," 2 Aufl. Leipzig, 1878.
 Th. H. Huxley, "A Manual of the Anatomy of vertebrated animals." London, 1871.

[^160]: * Compare especially Reichort and Kölliker. Huxler, Parker ete.

[^161]: * Cuvier et Taleneiennes, "Histoire Naturelle des Poissons." 22 Vols., Paris, 1828-49.

 Joh. Miiller, "Vergleiehende Anatomie der Myxinoiden." Perlin, 1835-45.
 L. Agassiz, "Reeherches sur les poissons fossiles." Neufehattel, 1833-14.

 Ginther, "Catalogue of the fishes in the British Museum." London.
 C. F. v. Baer, "Entwiekelungsgeschiehte der Fisehe." Leipzig, 1835.

 VOL. II.

[^162]: * Compare Leydig, "Ueber das Organ cines seehsten Sinnes." Dresden, 1868 Fr. E. Schulze, "Ueber die Sinnesorgane der Seitenlinie bei Fisehen und Amphibien." Arch. für mikrosk. Anatomic, Tom. VI., 1870.

[^163]: * Compare Joh. Miiller l.c., Reichert, " Ueluer die Visceralbögen im Allgemeinen, etc." Nüller's Archir, 1837.
 A. Kölliker, "Ueber die Beziehungen der Chorda dorsalis zur Bildung der Wirbel der Sclachier und einiger anderer Fische." Würzburg. 1866.
 C. Gegenbaur, "Ueber die Entwickelung der Wirbelsaiile des Lepidostens mit vergleichenden anatomischen Bemerkungen." Jen. naturnissensih. Zeitsehr., Tom. 111.

[^164]: * In the genus Lepidosteus alone is there an anterior articular surface on the vertebral bodies; the centra being convex in frout and concave behind.

[^165]: * Compare E. H. Weber, "De aure et auditu hominis et animalium." P. I., "Dc aure animalium aquatilium." Lipsix, 1820.
 C. Hasse, "Anatomische Studien." Heft 3: "Das Gehörorgan der Fische." Leipzig, 1872.

[^166]: * Comparc Savi, "Reeherehes anatomiques sur le système nerveux et sur l'organc électrique de la torpille." Paris, 1844.

 Bilharz, "Das elcktrische Organ des Zitterwelses." Leipzig, 1857.
 Max Schultze, "Zur Kenntniss des elektrischen Organs der Fische." 1, 2, Halle, 1858 and 1859.

 Max Schultzc, : Zur Kenntniss des den elektrisehen Organen verwandten Schwanzorgancs ron Raja elavata." Mïller's Archir, 1858.

 Sachs, "Untersuchungen am Zitteraal." Leipzig, 1881.

[^167]: * Compare Bergmann and Ieuckart, "Anat. l'hys. Uebersielit des Thierreichs." Stuttgart, 1852.

[^168]: * Often ealled the anterior and posterior cardinal veins.

[^169]: * Joh. Miiller, "Ueber den Bau und die Lebenserscheinungen des Branchiostoma lubrieum (Amphioxus laneeolatus)." Ablandl. Iler Berliner Ahad., 1842.

 Kowalevski, "Entwiekelungsgeschichte von Amphioxus lanceolatus." St. Petersburg, 1867.

 Kowalerski, "Weitere Studien, etc." Arch. für" mikr. Anatomic, Tom. XIII.
 W. Rolph, "Untersuchungen iiber den Bau des Amphioxus lanceolatus." Morph. Juhr., Tom. II., 1876.
 P. Langerhans, "Zur Anatomie des Amphioxns laneeolatus." Arch. für mikrosk. Anatomic, Tom. XII.
 B. Hatsehck. "Studien iuber die Entwiekclung des Amphioxus." drobeiten aus dem Zool. Institute in Wien, Tom. IV., 1881.

[^170]: * Compare Joh. Miiller and J. Henle, "sirstematische Besehreibung der l'laqiostomen," mit 60 Steindruektafeln. Berlin, 184 !.
 Fr. Leydig, "Beiträge zur nikroskopisehen Anatomie und Entwiekelungsgesehiehte der Pochen und Haic." Leipzig, 1852.
 C. Gegenbanr, "Untersuehungen zur vergleiehenden Anatomie der Wirbelthierc." Leipzig, 1872.
 F. M. Balfour, "A monograph on the dovelopment of Eilesmobranch Fishes." London. 1878.
 C. Hasse, "Das natiirliehe System der Elasmobranchier." Jena, 1879.

[^171]: * O. Hertwig, Jen. naturmiss. Zeitsehr. Tom. VIII., 187 t.
 * C. Gegenhaur, "Zur vergleichenden Anatomic des Herzens." Jen. naturniss. Zeitschr. Tom. II.

[^172]: * Compare Job. Miiller, "Ueber den glatten Hai des Aristoteles." duhandl. der Berliner Mand., 1840.

[^173]: *Joh. Miiller, "Ueber den Bau und dic Grenzen der Ganoiden." \&bhandl. der Berliner Akad., 1846.
 J. Hyrtl, "Ueber den Zusammenhang der Geschlechts-11nd Harnwerkzenge bei den Ganoiden. Denkschr: her h. Akarl. der Wissenseh., Tom. VIII., Wien, 1854.

 Liitken, "Ueber die Begrenzung und Eintheilung der Ganoiden." Uebersetzt von Willemoes-Snhm. Palrontographica, 1872.

[^174]: * J. Hyrtl, "Lepidosiren paradoxa. Eine Monographic." Prag, 1845.
 G. Krefft, "Beschreibung cines gigantischen Amphibiums aus dem Wide-Pay-District in Queensland."
 A. Günther, "Ceratodus und seine Stelle im System." Areh. für - Vaturgeseh.,
 Tom. XXXVII., 1871 .
 A. Giinther, "Deseription of Ceratodus, a genus of Ganoid Fishes." Phil. Transact., 1871.

[^175]: * Wagner, "Natiirliehes System der Amphibien." Munich, 1830.

 Duméril et Bibron. "Erpétologic générale. etc." Paris, 1834-1854.

 * Fr. E. Schulze, "Epithel-mud Driisenzellen. I. Die Oberhant der Fische und Amphibien." Arch. für mikirask. Anatomir, Tom. III.

[^176]: * Compare cspccially C. Gegenbaur, "Untersuchungen zur vergleichenden Anatome der Wirbclsaiile bei Amphibien und Reptilien," J.eipzig, 1862.

[^177]: * [For a fuller account of the development of the Amphibinn vertebral column, wide Balfour, "Comparative Embryology." rol. ii.. p. 456 it seq.]

[^178]: * Compare especially the works of Deiters, Hasse, and Retziur.

[^179]: * C. E. v. Baer, "Ueber die Entwiekelungsgesehichte der Thiere," II.. Königsberg, 18:37.

 Reiehert, "Das Entwiekelungslebon im Thicrreieh," Berlin, 1840.
 (. Vogt, "Untersuchungen iiber dic Entwiekelungsgeschichte der Geburtshelferkröte," Solothum, 1842.

 Rusenni, "Histoire naturelle, développement et métamorphose de la Salamandre terrestre," Paris, 18 :) 4 .
 A. Götte, "Entwiekelungsgeschiehte der Unke," Leipzig. 187t.
 O. Hertwig, " Die Entwiekelung des mittleren Keimblattes der Wirbelthiere," Jrn. nuturniss. Zeitsi弓o.. 'Jom. XV., 1881.

[^180]: * Joh. Miiller, "Beiträge zur Anatomic und Naturgesehichte der Amphibien," Treviranus; Zeitschl. für Phys., Tom. IV., 1832.
 f. Wiedcrsheim, "Dic Anatomie der Gymnophionen," Jena, 1879.
 \dagger Fr. Leydig, " Ueber dic Schleichlurche (Cœecilia). Ein Beiträg zur anatomischen Kenntniss der Amphibien," Zeitschr. für uiss. Zool., Tom. XVIII.

[^181]: * Daudin, "Histoire naturelle gén. et partic. des Reptiles." P’aris. 1802 to 1804.

 Aug. Duméril, "Observations sur la reproduction dans la ménagerie des Reptiles du Masée d’hist. nat. des Axolots, ete.. sur leur déreloppement et sur leurs métamorphoses." Tomu. Arrh. du Muscée d'hist. nat. dr Puris. II.. ISGu.

 Alex. Strauch, "Revision der Salamaudridengattungen," Petersbirg. 1sio.

[^182]: * Cunfigliachi and Rusconi, "Del Proteo anguino di Laurenti," Paris, 1819.

 Hyrtl, "Cryptobranchus japonieus," Wien, 1 sfis.

[^183]: * Rösel von Rosenhof. "Historia naturalis ranarum nostratium," Nürnbery 1758.

 Daudin, "Histoire naturelle des Rainettes, des Grenouilles et des Crapauds." Paris, 180%.

 Ruseoni, "Développement de la grenouille commune," Milano, 1826.
 C. Bruch, "Beitrage zur Naturgeschichte und Classifieation der nackte" Amphibien," Hë̈r2b.naturnew.s. Zeitschr., 1862.
 O. Bruch, "Neue Beobachtungen zur Naturgesehichte der einheimisehen Batrachicr," Ẅ̈r~し. naturnis. Zeitshr.. 1863.
 A. Eeker, " Dic Anatomie des Frosches:" Braunschweig, $18 / 6$.

[^184]: * J. G. Schncidcr, "Historia Amphibiorum naturalis ct literaria." 1790 to 1801.
 A. Giinther, "The Reptiles of British India," London, 1864.
 E. Schreiber, "Herpetologia europar," Braunsehweig, 1875.

[^185]: * Fr. Leydig, "Zur Kenntniss der Sinnesorgane der Schlangen," Arch. füir mikr. Anatomie, Bonn, 1872.

[^186]: * C. E. v. Baer, " Ueber Entwiekelungsgeschiehte der Thiere," II., Kö̈nigsberg, 1837.
 H. Rathke, "Entwickelungsgeschiehte der Natter," Königsberg, 1839.
 H. Rathke, "Ueber die Entwiekelung der Sehildkröten," Braunschweig, 1848.
 H. Rathke, "Untersuchungen iuber die Entwickelung und den Körperbau der Crocodile," Braunsehweig, 1866.
 L. Agassiz, "Embryology of the Turtle," Contributions to the -lat. IFist., etr. II., Boston, 18:7.

[^187]: * Gray, "Catalogue of Reptiles in the collection of the British Museum," Part III., Snakes. London, 1849.

 Giinther, "Catalogue of Colubrine Snakes in the collection of the British Musetum," London, 1858.
 Jan, "Iconographic générale des Ophidiens," Livr. I.-XXVII. Paris, 1860-1868
 Lenz, "Schlangenkunde," 2 Auflage, Gotha, 1870.

[^188]: * E. Briicke, " Untersuchnngen iiber den Farbenwechsel des afrikanisehen Chamaelcons," Denkseler. der li. Ikut. der Winsensech.. Ẅ̈̀n. 1552.

[^189]: * A. Giunthcr, "Contribution of the Anatomy of Hattcria (Rhynchocephalus) (riay." Phil. Trans. Roy. Snc.. Loudon, vol. 157. ii., 1867.

[^190]: * R. Owen, "Palrontology." London, 1860.

 Huxley. "On the dermal armour of Jacare and Caiman, cte." Journ. Proreced. Limn. Snc., vol. iv., 18if(.

 Rathke, "Untersuchungen iiber die Entwiekelung und den Förperlan der Crocodile." Braunschweig, 1866.

[^191]: * H. Lathke, "Ucber dic Entwickelmeng der Schitdkröten," Braunschweig. 1818.

 Gray, "Catalogue of the Shicld Reptiles in the Colleetion of the British Museum, Part 1.. London 1Sĩ5, Suppl., 1870, Append., 1872.
 L. Agassiz, "Embryology of the Turtle." Natural History of the United States, vol. III., part III., 1857.

 VOL. II.

[^192]: Joh. F. Nammann, "Naturgeschichte cler Vögel Deutschlands," 13 Bde., Stuttgart, 1822-1860.
 "Naumannia, Archir fiur Oruithologie," Herausgegeben von Ert. Baldamus. Köthen, 1849.
 "Journal für Ornithologie." Herausgegcben von J. Cabanis. Cassel, 1853-.
 "The Ibis," 1859.
 Tiedemann, "Anatomie und Naturgeschichte der Tögel." Heidelberg. 181(11814.
 C. E. v. Baer, "Entwickelungsgeschichte der Thiere," I. und II., 1s28-1837.

 Remak, "Untersuch. uiber die Entwick. der Wirbelthiere," Berlin. 1850-is.".
 Huxley, "On the Classification of Birds," Procced. Zool. Soc., IS67.
 Gray and Mitchell, "The Genera of Pirds," London, 1841-49.
 C. Sundevall, "Tentamen." Stockholm, 187:-7.3.

[^193]: * Usually described as the posterior cornua. Ed.

[^194]: * Cf. A. E. Brehm's • Illustrirtes Thicrleben," Tom IV., V. and VT.

[^195]: * This group, which is allied to the reptilian genus Compsognatws. (Ornithoscelida) is especially charaeterised by the faet that the caudal part of the vertebral column is as long as the body, and was furnished with feathers, arranged in pairs. Since the metatarsal bones are not fused, there is no true avian tarsometatarsus.

[^196]: * Joh. Ch. D. v. Sehreber, "Dic Säugethiere in Abbildungen nach der Natur mit Beschreibungen, fortgesctzt von Joh. Andr. Wagner," Bd. I.-VII., und Suppl. I.-V. Erlaugen und Lcipzig. 1775-1855.
 E. G. St. Hilairc et Fréd. Cuvicr; "Histoire naturelle des Mammifères," Paris, 1819-1835.
 C. J. Temmink, "Monographic de mammalogie." Leiden, 1825-1841.
 R. Owen, "Odontography," 2 vol. London, $1840-1845$.

 Blasius, "Dic Säugcthiere Dcutschlands" 1875.
 G. Gicbel, "Die Sáugethiere in zoologisch-anatomischer und paläontologisches Hinsicht." Leipzig, 1850.
 A. E. Brehm, "Illustrirtes Thierleben " I., II., und III.

 And. Murray, "The Geographical Distribution of Mammalia." London, 1866. VOL. II.

[^197]: * [The petrous and mastoid together constitute the periotic.]

[^198]: * Fïde note on p. 294.

[^199]: * R. Owen. Article "Monotremata," in Tonder's "Cyclopredia of Imatomy,"

[^200]: * 'Th. Bell, Article "Edentata," in Todd's " Cyclopredia of Anatomy," vol. ii. 1836.
 W. v. Iapp, "Anatomisehe Untersuehungen ïber die Elentaten," Tiibingen. 18.52.

[^201]: * ('. Cuvier, "Recherches sur les ossements fossiles," Third edition, laris, 1846.
 T. Riyner Jones, Article "Pachydermata " in Todd's "Cyclopædia." with Supplement by F. Spencer Cobbold, 1859.
 W. Kowalevski, "Monographic des Cienns Anthracotherion Cur.. und Fersuch einer matiorlichen Class:fication der fossilen Hufthicre. Palrontographic:a," 1873.

[^202]: * Nerm, V. Nathusius: "Vorstuclien fiar Ceschichte mud Zucht der Hansthicre.
 1sis).

[^203]: * ('f. especially G. J. Sunderall, " Methodische Uebersicht iilner die wiederkanenden Thicre," 2 Theile. 1s.t7.
 Ritimeycr, " Fauna der P'fahlbaten."
 Riitimeyer. "Versuch ciner natiirlichen Gesehichte des liindes," In den

[^204]: * Vrolik. " Recherehes d'anatomie comp. sur le Chimpanzé," Amsterdam, 1841.
 G. L. Duvernoy, "Des earacteres nuatomiques des grands Singes psendoanthropomorplies." Arch. Ilu Mhusum, Tom. V111.. 18.5\%.

 1i. Owen. "Ostcology of the Anthropomorphidie," Transart. Zonl. Sore, rol. i., 183.5; vol. ii.. $18+1$; vol. iii., 1849 ; vol. iv., 1853.

[^205]: * Cf. Ch. Darwin, 'r The deseent of Man, and selection in relation to sex." London: John MEnray, vol. i. and ii., 1871.

 Cf. 'Th. Waitz. "Anthropologie der Naturvölker;" fortgesetzt von Gerland, Leiprig, 185\%)-147!.

