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INTRODUCTION,

THE object of this Analytical View is two-fold;

first, to assist those who are desirous of under

standing the truths unfolded in the Prindpia^ and

of knowing upon what foundation rests the claim

of that work to be regarded as the greatest monu

ment of human genius secondly, to explain the

connexion of its various parts with each other, and

with the preceding and the subsequent progress

of the science.

I. It cannot be denied that fully to comprehend
the propositions, to follow the demonstrations

throughout, requires the reader to be well ac

quainted with the Mathematics; and even one so

prepared, will find the task far from easy in conse

quence of the synthetical method almost every

where adopted, the geometrical form of the inves

tigation in many cases where the algebraical would

be more convenient, and the extreme conciseness

very generally studied, often to the omission of

a 2
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many steps in the process.* But it is equally un

deniable that with very moderate mathematical

acquirements, a distinct and accurate knowledge

may be obtained of the fundamental truths un

folded, of the reasoning by which some of them,

and these the most important, are sustained, and

of the nature of the proof on which the others rest.

There is not much difficulty, indeed, in learning

those truths, in comprehending the propositions

without going further. But this is in every way
a most imperfect knowledge, and neither can give

satisfaction though retained, nor is likely to be re

tained without a knowledge also of the demonstra

tions. A great advantage, however, is gained, if

the learner can not only follow the demonstration of

the more important propositions, so as to be satis

fied of their truth, but can comprehend the nature

of the proof in the other instances. He has both

made solid progress in mastering the principles of

the science, and has become able to judge for

himself the merits of the great work which first

taught it to the world.

Thus two classes of readers may benefit by this

Analytical View ;
those who only desire to become

* No one needs scruple to confess how difficult he has found the reading

of the Principia, when so consummate a geometrician as Clairaut has made

a like observation, (Mem. Acad. 1745, p. 329.), though somewhat qualified.
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acquainted with the discoveries of Newton, and the

history of the science, but without examining the

reasoning, and those who would follow the reasoning

to a certain extent, and so far as a knowledge of

the most elementary parts of geometrical and ana

lytical science may enable them to go. It has

been found upon trial that readers of both descrip

tions have been able to peruse the work with

advantage, even readers of the second description.

These have easily followed, not only the commen

tary upon the gradual progress of discovery, and

the state of the science before Xewton*, but passing

over the exposition of the differential calculus f
have pursued the demonstration of the fundamental

law of gravitation J,
and even apprehended the

proof of its universal action according to the inverse

proportion of the squares of the distances. Pass

ing over the detailed discussion of central forces
||,

the illustration of its application to planets and

comets is involved in little difficulty ^f; and the

manner of finding the place of these bodies at

given periods of their revolution may be under

stood without entering into the details of the in

vestigation.** The ascertainment of the force

* First 20 pages. f P. 20. to p. 31.

J P. 31. to 41. P. 41. to 50.

II
P. 50. to 64.

[ P. 64. to 69.

**P. 69. to 76.
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answering to a given orbit is much easier than

the converse of finding the orbit from knowing
the force

; accordingly the subject of the inverse

problem may be passed over.* So may the great

head of disturbing forces f ,
but the interesting his

tory of the problem of three bodies may without

difficulty be comprehended.J The investigation,

however, of Lagrange and Laplace of the prin

ciple upon which the stability of the system

depends, must be taken upon the results without

entering into the steps of the process. But

the wonderful anticipation by Newton of sub

sequent discoveries may be generally understood

and appreciated. ||
The subject of the attraction

of masses, spherical and others, may be regarded

as not coming within this elementary view of the

work.^[ The application of dynamical principles

to the rays of light **, and the general statement

respecting the Newtonian discoveries, and the con

stitution of the universe, may easily be followed.ff

Nor can there be great difficulty in understanding

the explanation given under the Third Book, of

the effects of attractive forces upon the figures of

the heavenly bodies, the motions of comets, so far

* P. 76, to 87. t P- 87- to 108.

.t P. 93, 94. 108. to 112. P. 112. to 124.

j|
P. 132. to 134. fP. 134. to 150.

** P. 150. to 153. ft P- 153. to 160.
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as that subject has not already been dealt with,

and the doctrine of the tides, and in tracing the

course of reasoning by which these important

subjects are investigated.*

The theory of motion in resisting media, and

generally whatever relates to fluids, whether their

pressure or their movements, forms the next sub

ject of inquiry ;
but in the elementary view with

which we are now occupied, it may be properly

passed over, with only this remark, that the

matters contained in the Second Book are con

veniently described at the end of the account

given of the First, although it has been found

expedient to follow a different plan of arrange

ment in the Analytical View of the Second from

that originally laid down. The great progress

which has been made in hydrodynamics since the

time of Newton, has rendered it necessary to enter

more minutely into the investigations connected

with the Second Book, than into those of the First

and the corresponding portions of the Third.

Hence this portion of the present work cannot

fail to be found less elementary than the former.

An acquaintance with the subject, too, is less

indispensable towards obtaining a knowledge of

the Newtonian philosophy as exposing the system
* P. 285. et seq.
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of the universe, its structure and motions, al

though it must be sedulously studied by all who

would become acquainted with physical science,

and all who desire to understand the whole of

the Principia.

It has been deemed expedient in giving the pro

positions of the First Book, to anticipate in some de

gree their application to the motions of the heavenly

bodies, which form the subject of the Third. This

course was naturally suggested by the circumstance

that the greater part of these propositions bear a dis

tinct reference to the heavenly motions. But it is

truly gratifying to find, as we now do, from Sir D.

Brewster s valuable Life of Sir Isaac Newton (one

of the most precious gifts ever made both to

scientific history and physical science), that the

illustrious author himself considered this the best

method of teaching the Principia to those not

thoroughly conversant with mathematics. Applied

to by the celebrated Dr. Bentley, who was desirous

of so far understanding the book that he might be

able to lecture upon its uses in behalf of Natural

Religion, he laid down a plan of reading closely

resembling that sketched in the beginning of this

Introduction ; recommending that after the earlier

propositions of the First Book, the Third should be

taken so far as to perceive its scope, and then such
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parts of the First as &quot; he should have a desire to

know, or the whole, in order, if he should think

fit.&quot; Newton also requires in his correspondent a

much more moderate provision of geometrical and

algebraical knowledge than another mathematician

laid down as requisite, to whom application had

been made for advice, and who gave Dr. Bentley

so formidable a list of books as necessary to be read,

that he at once appealed to Sir Isaac Newton him

self, who prescribed three or four instead of above

thirty. (Vol. i. p. 464.)

If it has been made manifest that a very limited

acquaintance with mathematics may suffice for

attaining a competent notion of the general scope of

Newton s discoveries and of the great work which

revealed them to the world, it is no less certain that

the knowledge thus acquired must be superficial,

except as regards the fundamental doctrine of gra

vitation, the foundation of the system ;
and that

in order well to understand the dynamical researches

which have exercised so mighty an influence upon
the whole of Natural Science, a much more full

and minute study of the Principia is required. It

is to be hoped, therefore, that readers of the two

classes referred to, those of the second especially,

may be encouraged to pass into the third, for whose

use this Analytical View is designed; may make
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themselves, in some measure, masters of the Cal

culus, the help of which is required in most of the

investigations ;
and may follow these so as to under

stand the whole of the propositions, by satisfying

themselves of their demonstrated truth. That this

also can be done with only a previous knowledge of

elementary geometry and algebra, has been proved

upon trial, that knowledge sufficing to attain an

acquaintance with the rules explained in those

parts of this treatise above recommended to be

passed over by the more general reader. It is by
no means intended to affirm that a complete know

ledge of the Principia can be attained without much

further study. An intimate famiHarity with the

Calculus, or with the analogous method of

Limits, is required by those who desire to follow

the whole of the demonstrations, and to perceive

the connexion between the different steps as

clearly as they can trace those of any elementary

process in geometry or algebra. Other helps than

this work are required, and are not wanting, to

facilitate the entire mastery of the subject by such

as would thoroughly understand the Principia in

all its parts. The present treatise is not designed

for their use, further than as it may aid them in

the earliest part of their studies. It is intended for

those who may not be able, or may not be disposed,

to go beyond acquiring such a knowledge of the
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subject and of the Book, as can be attained by a

moderate degree of labour, and an acquaintance

with only elementary mathematics.

II. The accomplishment of the other object of

this Treatise, examining the connexion of the dif

ferent parts of the Principia with each other, and

with former and subsequent discoveries, showing its

transcendent merits, and removing the objections,

or rather the criticisms, that have sometimes been

offered upon a few comparatively unimportant por

tions of the great work, will, beside performing

that service, also afford additional help to the study

of it, and tend to promote the taste for understand

ing it, so as to judge of its unparalleled excellence.

It is satisfactory to find that many of the propo

sitions are capable of demonstration by a process

different from that employed by Newton, especially

when this process is more easily followed. In

many cases the analytical substituted for the syn

thetical method, is interesting as a matter of curi

osity, independently of its more didactic character.

This may also be predicated of the occasional pre

ference of algebraical to geometrical reasoning.

The greatest interest, however, belongs to observ

ing the mutual bearings of the propositions, per

ceiving sometimes how one arises out of another,

sometimes how the two are so connected that toge

ther they exhaust the subject, sometimes how the
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establishment of one mere general truth furnishes

the proof of others less general which had been pre

viously reached by a different route
;
often to mark

the diversities as well as resemblances of propo

sitions, and the particular circumstances upon

which these severally depend ;
not rarely to note

in what way others had imperfectly obtained the

knowledge of these truths, or altogether had failed

to observe them
; frequently to find them deriving

new support from things afterwards brought to

light, and to see them explain phenomena subse

quently for the first time observed
;
above all, to

see, and as we see to marvel how, beside those doc

trines, the teaching of which forms the main object of

the work, which are expounded with an exhaustive

fulness, and are at their first discovery established

in absolute perfection, so that scarce any addition

has, in the vast majority of instances, been found

either possible or required, there are also the

foundations laid of new discovery in other direc

tions, the rudiments provided of other systems, and

the very course plainly pointed out by which these

unthought of truths should in remote ages be

explored.

On some few points differences of opinion having

arisen as to other men s claims to the discovery,

all controversial matters are purposely avoided.

But although it must be confessed that philoso*
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phers, as well in foreign countries as among our

selves, have shown no reluctance to allow New

ton s title to the first place, there have occa

sionally been criticisms hazarded rather than

objections made, touching several parts of his

great work
;
and these in most cases have origi

nated rather in inadvertence than in any unworthy

prejudice. It became necessary to correct such

errors, in justice to the illustrious author, who

could not have been aware of the statements,

except perhaps in one instance. It is possible he

might have known the groundless remarks of J.

Bernouilli in that particular; the equally erro

neous statements of Bailly and Laplace of course

he could not have been aware of, and we may

confidently add, never could have foreseen
;

in

deed they could only be ascribed to oversight in

those eminent authors. The error detected by
F. Boscovich respecting the comet s path belongs

to another class, and arose entirely from a ne

glect of that careful examination of the limits of

a problem peculiar to the ancient analysis, that

exhaustive process by which the prolixity some

times complained of finds ample compensation in

its precluding the possibility of mistake.

Thus it is hoped that, partly by the account of

the work and partly by discussions connected

with the subjects of which it treats, the study
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of it may be both promoted and facilitated
;
and

this kind of service towards the progress of science

is not to be altogether contemned. They who

are incapable themselves of advancing it by the

discovery of new truths, may usefully employ

themselves in helping others to a knowledge of

what the great masters have done
;
and they may

best do this if they shall not disdain the office

of elementary explanation and discussion. The

wisest of the ancients was said to have brought

Philosophy down from heaven to earth
;
he cer

tainly valued himself chiefly on his unceasing ef

forts to stir up in men s minds the desire of

knowledge. What he found necessary with regard

to the nature of the subject, we in our day may

perceive to be equally necessary because of the

clouds in which writers of vast and original ge

nius almost unavoidably involve the records of

their inquiries after unknown truths.

But whatever brings men acquainted with those

profound researches, raises their minds to con

templations far more sublime than any which are

connected merely with worldly science. To survey

the most wonderful works of creation, to compre
hend the laws by which the system of the universe

is governed, the principles which everywhere per

vade it, and bear irrefragable testimony to the unity

as well as the power of the divine Author and Dis-
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poser of all, is the most impressive lesson that un

assisted reason can teach our species. It is an ob

servation of Paley, marked with his wonted sagacity,

that though Physical Astronomy, until well under

stood, presents less striking proofs of design to the

mind than the other branches of science, yet when

fully apprehended, it very far exceeds all the other

evidences of Natural Religion. &quot;We must recollect,

too, that Newton himself regarded this as the most

precious part of his philosophy; declared that in

framing it he had been moved by a desire to in

culcate religious belief, expressed his gratification

in finding that his efforts had not been vain, and

closed the exposition of its principles with a com

mentary upon the nature and attributes of God.

His followers may be permitted to indulge the

hope that he would have prized their humble at

tempts at diffusing a knowledge of his immortal

labours, rather as falling in with his pious wishes

for the happiness of others, than as contributing

to the illustration of a fame which is imperishable,

nor admits of any increase.
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NEWTON S PRINCIPIA,

ANALYTICAL VIEW.

THIS work is justly considered by all men as the greatest

of the monuments of human genius. It contains the

exposition of the laws of motion in all its varieties, whether

in free space or in resisting media, and of the action

exerted by the masses or the particles of matter upon
each other, those laws demonstrated by synthetic reason

ing ; and it unfolds the most magnificent discovery that

was ever made by man the Principle of Universal

Gravitation, by which the system of the universe is go
verned under the superintendence of its Divine Maker.

Two of the three Books into which the treatise is divided

are chiefly composed of mathematical investigations, con

ducted by the most refined and profound, but at the same

time the most elegant application of geometry, and of a

calculus which is only a particular form of the fluxionary

method invented by the illustrious author in his early

years. The Third Book contains an explanation of the

motions of the heavenly bodies, deduced chiefly from the

first portion of the former part, and grounded upon the

B



phenomena observed by astronomers. This concluding

portion, however, of the great work, is also interspersed

with geometrical reasoning of the same admirable descrip

tion as characterized the former, and applied to the so

lution of problems respecting the heavenly motions.

Before Sir Isaac Newton appeared to enlighten man

kind, and to found a new era in the history of physical

science, the eminent men who had preceded him had made,

during the century immediately preceding his birth, very

important steps in furthering the advancement of our

knowledge ; and they had approached exceedingly near

that point which forms the most important of all his dis

coveries, according to a kind of law which seems to

regulate the progress of human improvement a law of

continuity, which apparently prevents any sudden, and,

as it were, violent change, from being made in the in

tellectual condition of the species, and prescribes the

unfolding of all great truths by slow degrees, each

mighty discovery being preceded by others only less

considerable than itself, and conducting towards it. The

great discoveries in pure mathematics afford striking

examples of this truth. That of Logarithms by Napier

is, perhaps, the instance in which the most considerable

deviation has been made from the rule ; but even here

there had been some curious methods of mechanical

calculation invented before, and the discoverer of lo

garithms himself had reached the point very nearly by
other most ingenious contrivances, before he actually

made his great step.

But the Fluxionary or Differential Calculus gives a

remarkable exemplification of the general principle; and

its subsequent most important extension, the Calculus of

Variations, furnishes another not less striking. Ever since

Descartes s happy application of Algebra to Geometry had
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opened the way to the grand discovery of Newton and

Leibnitz, the foundation of modern science, mathematicians

had been intent upon the resolution of problems connected

with the rectification and quadrature of curves, and the

determination of points that possess properties of maxima

and minima, as well as the finding of normals, tangents,

and osculating circles. These inquiries had led them to

consider the laws by which the relations between the or-

dinates and abscissae referred to any given axis are go
verned at different points of that axis ; for in truth that

implies the nature of the curvature itself, and includes

the manner in which the length of the curve line increases

or diminishes, as well as the space which it incloses. They
were thus led to examine the generation of those curve

lines and curvilinear spaces, whether that is conceived

to be effected by the movement in the one case of points,

and in the other of straight lines, or is supposed to be

produced by the constant juxtaposition of indefinitely

small straight lines inclined to each other according to

a given law, in the one case, and indefinitely small rect

angles in the other. The latter is perhaps the more

natural supposition of the two, and not the less easy.

For if any one is set to measure the area of a field

bounded by a curvilinear outline, as he can at once

measure a space inclosed within straight lines, his course

will be to divide the given space into rectangles, and

then to divide each of the smaller curvilinear spaces

into other rectangles, and so on till he has exhausted

the whole by a series of rectangles, always decreasing in

size as they increase in number, and the last of which

seem to coincide nearly or sensibly with the area of the

outer or curved line of boundary. Thus he would proceed

by trial and actual measurement of the space ; and thus

do land-measurers (the lineal descendants of the first

B 2
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geometers, as well as their namesakes) still proceed. But

speculative mathematicians being aware of the general

properties of the lines they have to examine, and these

being regularly formed, which the boundary of the field

is not, they could calculate the relations to each other of

the sides of the rectangles into which they divided the

figure, and could thus form series of rectilinear figures

diminishing in size, and which series might be carried to

any length so as ultimately to exhaust the curvilinear area.

Thus ABC being a semicircle, it was easy to find the area

of the semihexagon or three equilateral triangles ADF,
FDE, and DEC, and then of the triangles FBExS,
and again of the triangles F O B x 6, and so on ; so that

the radius AD being called r, there was obtained a

series of this form, | r2 V3 + f r2

(2- A/3) +~ ^2

/2 Va 2 ^~2^\ +* &c. : And thus we have also the

approximation to the length of the circle.

But the extreme cumbrousness of this calculus, which

is still more unmanageable in other curves where the

radii are not, as in the case of the circle, equal, made it

necessary to find some other method ; and geometricians

accordingly examined the laws by which the areas increase

in each curve, so that by adding all those innumerable

increments together their sum might give the exact space

* The three first terms give 3.10582 ; the seven first come very near the

ordinary approximation, 3.14159, for they give 3.14144.
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required. The same process was attempted with the

lengths of the curves, considering them as polygons whose

sides diminished while their numbers increased indefinitely.

In this way Cavalleri, Fermat, and \Tallis, and still more

Harriot and Roberval, appear to have come exceedingly

near the discovery of the general rule for performing these

operations before Newton and Leibnitz, unknown to each

other, made the great step. Roberval especially had

solved many problems of quadrature and of drawing

tangents, by methods extremely similar to the Newtonian.

Nor were the ancient methods of Exhaustion and Indi

visibles so far distant as to let us doubt that, had the

old geometers been possessed of the great instrument of

algebra, and bethought them of its truly felicitous ap

plication according to the idea of Descartes, long before

our times they would have anticipated the discoveries

which form the great glory of modern science.*

The discovery of the Calculus of Variations affords

a similar example of gradual progress. When the

differential calculus had enabled us to ascertain the

maxima and minima of quantities, for example the value

of one co-ordinate to a curve, at which the other becomes

a maximum or a minimum, or, which is the same thing,

the point of greatest and least distance between the

curve and a given right line, or, which is the same

thing, when the general relation of the co-ordinates

being given we were enabled by means of the calculus to

examine what that particular value was at which a

maximum property belonged to one of them then

geometricians next inquired into the maxima and minima

of different curves, that is to say, into the general re

lation between the co-ordinates which gave to every

* Among other marvels in Galileo s history he seems to have made
a near approach to the calculus. See M. Libri s most able and learned

work, Hist, de Math, en Italic, torn iv.

B 3
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portion of the curve a maximum or a minimum value in

some respect. Thus, instead of inquiring at what value

of x (the abscissa) in a known equation between x and

the ordinate y, y became a minimum, or the curve ap

proached the nearest to its axis, the question was what

relation x must have to y (or what must be the equation

as yet unknown) in order to make the whole curve, for

example, of the shortest length between two given points,

or inclose with two given lines the largest space, or

(having some property given) inclose within itself the

largest space, or be traversed in the shortest possible time

by a body impelled by a given force between two given

points. Here the ordinary resources of the differential

calculus failed us, because that calculus only enabled us,

by substituting in the differential equation the value of one

co-ordinate in terms of the other, to make the whole equal

to nothing, as it must be at the maximum or minimum

point where there is no further increase or decrease. But

here no means were afforded of making this substitution,

and the problem seemed, as far as this method went,

indeterminate. Various very ingenious resources were

employed by Sir Isaac Newton, who in the Principia

seems to have first solved a problem of the Isoperimetrical

class that is, finding the solid of least resistance; and

soon after by the Bernouillis and other continental ma

thematicians, who worked by skilful constructions and

suppositions consistent with the data. The calculus called

that of Variations has since been invented for the general

solution of these and other similar problems. It con

sists in treating the relations of quantities, or of their

functions, as themselves varying, but varying according

to prescribed rules, just as the differential calculus regards

the quantities themselves, or their functions, as varying

according to prescribed rules. It bears to the differential
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calculus somewhat of the relation which that bears to

the calculus of fixed and finite or unvarying quantities.

It is wonderful how very near Bernouilli, when he

solved the problem of finding the line of swiftest

descent, came to finding out this calculus ; if, indeed, he

may not be said to have actually employed it when he

supposed, not as in the case of the differential calculus,

two ordinates of a known curve infinitely near one an

other, but three ordinates infinitely near, including two

branches of an unknown curve, each infinitely small ;

for he certainly made the relation of these ordinates to

the abscissa vary. Euler used the calculus more sys

tematically in the solution of various problems; but he

was much impeded for want of an algorithm. This

important defect was supplied by Lagrange, who reduced

the method to a system and laid down its general prin

ciples ; but had Euler gone on a little step further, or

had Bernouilli been bent on finding out a general method

instead of solving particular problems, or had Emerson,

who has one or two similar investigations in his book

on Fluxions, reduced the method by which he worked

them to a system by giving one general rule (which, writing
a book on the subject, he was very likely to have done),

the fame of that discovery would have been theirs, which

now redounds so greatly and so justly to the glory of

Lagrange.
The discovery of Gravitation as the governing prin

ciple of the heavenly motions, is no exception to the rule

which we have stated of continuity or gradual progress.

When Copernicus had first clearly stated the truth to

which near approaches had been made by his pre

decessors, from Pythagoras downwards, that the planets
move round the sun, and that the earth also moves on

its axis while the moon revolves round the earth, he yet
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,

accompanied his statement with so little proof beyond the

agreement with the phenomena, which the Ptolemaic

hypothesis could equally boast of*, that for more than

half a century afterwards it had no general acceptance.

Bacon himself rejecting it ; when Galileo, by his telescopic

discoveries, especially of the phases of Venus and the sa

tellites of Jupiter, and by his yet more important dis

coveries in the laws of motion, may be said first to have

proved the truth of the Copernican system. Afterwards

the satellites of Saturn, added to Kepler s observation of

Mercury s transit over the sun, afforded most important

confirmation. The great discoveries of this eminent man

followed close after those of Galileo: First) the motions

of the planets were found to be in ellipses with the sun in

one focus ; secondly, lines drawn to the sun from them were

found to describe areas proportional to the times of their

revolution ; and, thirdly, the relation was established be

tween the squares of those times and the cubes of the

distances of the bodies from the focus.

How near this brought scientific men to the cause

or law of the whole is manifest, especially when we

regard the connexion thus established between the re

volving bodies and the great luminary in the centre.

Although Kepler himself erroneously mingled with the

influence which this law of motion led him to ascribe to

the sun, a transverse force which he deemed necessary to

maintain the projectile motion of the planets round the

centre ; yet others formed more correct ideas of the matter.

It seems to have been Huygens, who, fourteen years

before the
&quot;Principia&quot;

was published, first showed the

true nature of centrifugal forces. Several years earlier,

however, Borelli, in treating of the motion of Jupiter s

* It is certain that its greater simplicity was, before Galileo s time,

the only argument in favour of the Copernican theory against the Ptolemaan.
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satellites, considers the planets as having a tendency to

resile from the sun and the satellites from the planets,

but as being &quot;drawn towards and held by those central

bodies, and so compelled to follow them in continued

revolutions.&quot; He also most accurately compares the re

ceding (or centrifugal) force with the tendency of a stone

whirled in a sling to fly off at every instant of its motion.

Hooke, a man of unquestionable genius, and whose partial

anticipations of many great discoveries are truly remarkable,

about the same time with Borelli, asserted that the at

traction of the sun draws away the planets from moving
in straight lines, and that the force of the attraction varies

with the distance. He had, as early as 1666, read to the

Royal Society a paper explaining the curvilinear motion

of the planets by attraction. Halley, as well as others, had

even hit upon the inverse duplicate ratio, by supposing

that the influence from the sun was diffused in a circle, or

rather a sphere, and that therefore the areas proportioned

to that influence were as the squares of the radii, and

that consequently the intensities, being inversely as those

areas, were inversely as the squares of the radii or dis

tances. Finally, Hooke had foretold, that whoever set

himself to investigate the subject experimentally would

discover the true cause of all the heavenly motions.

Such were the near approaches which had been made

to the law of Gravitation before its final and complete

discovery. But although in this gradual progress it re

sembles almost all the other great improvements in

science, in one material respect it differs from them all.

The theory was perfect which Newton delivered, and the

whole subject was at once thoroughly investigated. It was

not merely that the general principle hitherto anxiously

sought for, and of which others had caught many glimpses,

was now unfolded and established upon appropriate founda-
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tions ; but almost every consequence and application of it

was either traced, or plainly sketched out; it was pursued

into all the details; a systematic account of its operation

was given, symmetrical, and in its main branches complete ;

so that, however nearly former inquirers had approached

the general law, the distance was prodigious between their

conjectures, how learned and happy soever, and the magni
ficent work which the genius of Newton had accomplished.*

It must be observed, too, that, beside this grand achieve

ment, the Principia performed three other most important

services to physical and mathematical science. First. It

laid a deep and solid foundation for subsequent discoveries

in the science of physical astronomy, both by the general

principles of dynamics which it unfolded, and by the ap

plication which it made of these to the heavenly bodies

and their motions. Secondly. It gave a complete system

of dynamics applicable to all subjects connected with

motion and force and statics a system throughout abound

ing in the most important original mathematical truths,

expounded and proved with singular beauty, though with ex

treme conciseness. Thirdly. It propounded and showed the

application of a new calculus, or method of mathematical

investigation, that method by the help of which those truths

had been discovered ; and by which others, before resting

upon an empirical foundation, were demonstrated. Thus

it is no exaggeration to say that, even if the great dis-

* The subsequent discoveries of mathematicians by means of the improve
ments in the calculus, have added new illustrations, and traced further

consequences of the theory. But there is only one of their improvements
which can justly be said to have advanced the evidence of the fundamental

principle further than Sir I. Newton had carried it, by supplying any de

fect which he had left
; we allude to the reconcilement by Clairaut of the

moon s apogeal motion according to the theory with the observations.

This is fully explained in the sequel. It forms one of the most interesting

passages in the whole history of science.
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covery of the law which governs the universe were taken

away from the Principia, it would still retain its rank at

the head of all the works of mathematicians, as the most

wonderful series of discoveries in geometrical science, and

its application to the principles of dynamics.

That the reception of this work was not such as might

have been expected has frequently been alleged; and al

though an ingenious and well-meant attempt has lately

been made by an eminent author* to relieve this country

from its share of the imputation, chiefly by showing the

estimation the author was held in immediately after its

publication; it is, on the one hand, certain that Newton s

previous fame was great by former discoveries, and that

after its appearance the Principia was more admired than

studied. There is no getting over the inference on this

head which arises from the dates of the two first editions.

There elapsed an interval of no less than twenty-seven

years between them; and although Cotes speaks of the

copies having become scarce and in very great demand

when the second edition appeared in 1713, yet had this

urgent demand been of many years continuance, the re

printing could never have been so long delayed ; nor was

the next edition required for thirteen years after the se

cond. So that in forty years the greatest work ever com

posed by man reached only a third edition ; and that third

has, during the succeeding hundred years, been the one

generally in use ; although translations and excerpts have

been published from time to time, and two editions were

printed on the Continent, one at Amsterdam and one

at Cologne. The doctrines of the work were, however,

much more readily embraced and more generally diffused

in this country, which had the benefit of Maclaurin s ad-

* WhewelTa History of the Inductive Sciences, vol. ii.



12 KEWTCW g FBJSCIPIA.

nmable view of the more general principles of the system,

pnbfifhed about the middle of the last century. On the

Continent they made their way far more slowly; nor was
it until Voltaire employed his great JMBMII of clear ap
prehension and toad statement to give them currency,
that the Cartesian prejudices of our neighbours gave

way, and the true doctrine found a general and a willing

MMffcHMM.
It mustbe admitted that the manner in which the truths

the slowness of the world at large in qdbmcMg them, but
has also contributed to the reluctance with which men
bare generally undertaken the task of reading that great

work, and satisfying themselves of the proofs upon which
its doctrines rest fWfiifsjiiaj is everywhere rigorously
studied, Nc^ only does the author aroid aU needless pro

lixity and repetition in unfolding bis iliofflpMsn^ but he

leaves out so many of the steps of his demonstration, and

assumes his reader to be so expert a geometrician, that

the lAsw of following him is often sufficient to deter

orfhiff students from malfiBg; the effort. If matbe-

Mtkd MMfag II MPfll tK&amp;lt;: r.ar/j* pajV;kir,d of operation
with other studies, the perusal of the Princi[/ia is emphati

cally an actire exercise of the min&amp;lt;L For what, to the

intititire ^ilfm of him who could discover tbe theorem

or solve the problem, appeared too plain to require any
proof, may well stop common minds in their progress
towards the point whither he is guiding them ; tbe dis

tances which he can stride at MM over this difficult

path must, by weaker persons, be divided into many
portks, and twvelled by successive steps. Add to which,

that, as tbe method of proof is throughout synthetical,

and a it is geometrical, the helps of modem analysis are

thus withheld. Upon tbe whole, therefore, a most valuable
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service w:i* rendered TO stu^on:* 1 y :bc ab e :v;ui lc:vrr.o-.i

commentary of the Fathers, Le Seur and Jacquier, who,

in 1739 and 1742, published the Principia, with very

copious illustrations, although it is to be regretted that

they resort far less frequently to analysis than was de

sirable. It is remarkable enough, and affords an addi

tional proof of the slow progress which truth had then

made in some parts of Europe, that these excellent authors

deemed it necessary to accompany their publication of

the Third Book, which treats of the heavenly motions,

with a declaration in these words: &quot; Xewtonus in hoc

tertio libro Telluris motae hypothesim assent. Autoris

propositiones aliter explicari non poterant, nisi eidexn

quoque facta hypothesi. Hinc alienam coacti sumus

irerere personam ; ca^terum latis a summis Pontificibu?

contra Telluris motum Decretis nos obsequi profitemur.
&quot;

This edition is dated, as might be supposed, at Rome.*

The Principia begins with a definition of terms, and

a compendious statement of HA science of dynamics as it

e\isu\l prevun;? :- N OY : oil s 4bBMtrilft The Mbi&MM!,

eight in number, comprise that of quantity &f waiter*

which is in the proportion of its bulk and density, the

ile:i&amp;gt;i!Y Ivi-p; the pMfOHlMI ^:&quot;

:

.:&amp;gt; :r.:*s&amp;gt; :^
:

.:&amp;gt; bulk ::.e

pHQB| :

*

&quot;&amp;gt;

*
&quot;

-^hieh i&amp;lt; in
projx&amp;gt;rtion to^kfl &amp;gt;ehv::y

and quantity of matter jointly the rw wri^p, whkh is

* It Mst, IWWVTW, be otaarrca, tfudt s*A ^gotsy *nd mtoicwmco

by d*o imimfcuam t tte tJiaViMi^ to ptV&k %
V-.--.-;..--. ^.:&quot; :..&amp;gt; : ;.-.-.;.-.&amp;gt;;. .;/.; :-.; .-.:\ o1 the ;v,v;&amp;gt;. ;.

--.v.y.v;
: . -. .^.vc. ^&amp;gt; ; ::...&amp;gt;... .

|fc| \ ; r\ :.- ::-.v- .\ .; which :.:~..\ ft&amp;gt; rc*A&amp;gt;Yi^Wc :. ..-.-.:..-,:.. -.
^&quot;

;

-

,. s ; ;

A!A&amp;gt; to wontion, for the credit of the I^I-VA! G-ovornme-nt, tht * Ute pMrtMP

^IV.s Vll.&amp;gt; j\nvwwsl A K-ixuU of tix? ik^cTce Ag^^st the Cojxsnakaua sygMHk
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the force or power of matter to persist in any given

state, whether of rest or of motion in a straight line, and

to resist any external force impressed upon it to change
that state centripetal force., which is the power that

draws towards a given point or centre bodies at a distance

from it finally, the three kinds of amount of centripetal

force ; the absolute amount, in proportion to the intensity

of the power exerted in drawing towards the centre ; the

accelerating, in proportion to the velocity generated in a

given time; and the moving, in proportion to the motion

generated in a given time towards the centre.*

Two things are worthy of remark in these definitions :

first, that, as if foreseeing the cavils to which his doc

trines would give rise, he guards, in a scholium, against

the supposition that he means to give any opinion respect

ing the nature or cause of centripetal force, much less

that he ascribes any virtue of attraction to mere centres

or mathematical points ; whereas he only means to express

certain known and observed facts : secondly, that, in

illustrating his definition of centripetal forces, he really

anticipates his great discovery ; for, after giving the

examples of magnetic action, and of a stone whirled in

a sling, he proceeds to the motion of projectiles, and shows

how, by increasing the centrifugal force, they may be made

to move round the earth, as may also, he says, the moon,

if she be a heavy body, or in any other way be deflected

towards the earth, and retained in her orbit. That force,

he adds, must be of a certain amount, neither more nor

less ; and the business of mathematicians is to find this

necessary amount ; or, conversely, having the amount

* There are eight definitions in the book, though we have only given

them under seven heads, not having made a separate definition of the

force impressed, which is here mentioned under the important head of the

vis inertice.
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given, to find the curve in which it makes the body move.

The connexion between the inquiries which form the

main subject of the two first books of the Principia and

Physical Astronomy, the subject of the third, is thus

explicitly stated ; but a plain indication is also here

afforded of the great discovery in which the whole inves

tigation is to end.

The doctrines of dynamics, known previously to his

discoveries, are then given in the form of corollaries to

the three general Laws of Motion. The first law is

that of the vis inertia, already explained ; and it is

to be observed here that a steady and clear conception

of the tendency of all moving bodies to proceed in a

straight line unless deflected from it, is, perhaps, more

than anything else, that which distinguished the Newtonian

from the immediately preceding doctrines, mixing up as

these did more influences than one proceeding from the

centre with a view to explain the composite motion of

the planets.

The second law is, that all changes in the motion of any

body, or all changes from rest to motion, are in proportion

to the moving force impressed, and are in the straight

line of that force s direction.

The third law is, that reaction is always equal and

opposite to action ; or that the mutual actions of any
two bodies are always equal to one another, and in opposite

directions.

From these laws the six corollaries which are added

deduce the fundamental principles of dynamics ; and

there is a scholium to the whole, which states the applica

tion of those principles to the descent of heavy bodies,

and the parabolic motion of projectiles. Of all the prin

ciples, the most important is that of the Composition and

Resolution of forces. As by the first law a body always
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perseveres in the straight line it moves in, unless in so

far as some other force alters its direction ; and as by the

second law any new force impressed tends to move it in its

own direction, it follows that, if two forces, not in the

same nor in directly opposite directions, act at one time,

and by an instantaneous impulse, on any body at rest, it

must move in such a direction as that it shall be found both

in a line parallel to the direction of the one force, and in

a line parallel to the direction of the other ; that is to say,

in the diagonal of a parallelogram whose two contiguous

sides are in the directions of the two forces, and are respec

tively equal to the space each force would carry it through
in its own direction. Moreover, as each force separately

would have carried it to the end of the line of its direc

tion in the given time, it must move through the diagonal

in the same time which it would have taken to move

through either side if either force had acted alone.

Thus the direction of every motion occasioned by any two

forces acting at an angle to each other, may always be

found by completing the parallelogram of which the direc

tions of those forces are the contiguous sides ; and so of

any motion occasioned by any number of forces whatever

acting angularly. And, conversely, every motion of a

moving body may be resolved into two, of which the one

is in any given direction whatever, and the other is found

by completing the parallelogram, whereof that given direc

tion is one of the sides, and the direction the body moves

in is the diagonal.

From this resolution of forces it is easily shown, that

if any weights or other powers acting in parallel lines

are applied to the opposite ends of a lever moving on a

centre or fulcrum, the effect of each will be directly as its

distance from that centre, in other words, as the length of

the contiguous arm of the lever ; consequently, that if the



NEWTON S PRINCIPIA. 17

weights or powers are made inversely as those lengths, the

whole will be in equilibrio or balanced. This is the well

known and fundamental principle of the lever, the founda

tion of mechanics ; and it applies also to the wheel and

axle and the pulley. The fundamental properties of the

screw, the wedge, and the inclined plane are deduced in

like manner from this important proposition. So may
all the properties of the centre of gravity, and the method

of finding it ; for, in fact, the fulcrum of the lever is the

common centre of gravity of two bodies equal to the

two weights, and placed at the opposite ends of the

lever; and the line joining the bodies is divided in the

inverse proportion of those bodies. It also is easily shown

that the common centre of gravity of two or more bodies

is not moved, nor in any way affected, by their mutual

actions on each other, but it either remains at rest, or

moves forward in a straight line. So are the relative mo
tions of any system of bodies, whether the space they

occupy is at rest, or moves uniformly in a straight line.

The Scholium to the Laws of Motion first considers

very briefly the motion of falling bodies which descend

with a velocity uniformly accelerated, that velocity which

is given to them by the attraction of the earth during

the first instant continuing and having at each succeeding

instant a new impulse added. The acceleration, therefore,

is as the time; and they move through a space propor

tional to the velocity and the time jointly, consequently

proportional to the square of the time, since the velocity is

itself proportional to the time.*

*
Velocity is as time, i. e., v is as m t $ space is as velocity x time,

or s as v x t ; therefore space is as time x time, or as square of time, that

is, s is as m t x t, or m t
2

. The proportion of the space fallen through

by the force of gravity (or moved through by any body uniformly acce

lerated) to the square of the times, is also demonstrated thus. Let the

C
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The Scholium next, with equal brevity, states the

projectile motion of heavy bodies. If a body be impelled

in one direction by a force producing a uniform motion,

and in another direction at any angle with the former

by a force not uniform but accelerated, the diagonals

which it will move through will at every instant change

their direction towards the quarter to which the acce

lerating force tends. But a series of such diagonals is

a polygon of an infinite number of sides, infinitely

small : in other words, a curve line. Now in the case of

a projectile, this continued or accelerating force is such

as to make the body, if no other force acted on it, fall

through spaces proportional to the square of the times.

velocity acquired at any moment P of the time A P be P M, and because

the velocity uniformly increases, or as the time, PM : A P : : B C : A B,

and therefore the line A C is a straight line, and the triangles A P M,
ABC, are similar. But if qN is infinitely near P M, or P q represents the

smallest conceivable time, the motion during that time may be conceived

to be uniform and not accelerated. Now the space through which any

body moves is as the velocity multiplied by the time (s= v f), therefore the

space moved through in the time ~Pq is as P q x ^N. So the space moved

through in the time A B will be as the sum of all the small rectangles

P q x N
&amp;lt;/,

or as the triangle ABC. But the triangle A B C is to any other

of the triangles APM as AB2
: AP2

; therefore the spaces are as the

squares of the times. The great general importance of this proposition

which Galileo first proved, makes it necessary to have the demonstration

clearly fixed in the reader s recollection.
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The other force acting once for all would make it, were

there no gravity acting, move in spaces proportioned to the

times simply. The latter or projecting force would make

it move through AB uniformly, or in spaces proportional

to the times ; the force of gravity would make it move

through AP with a motion proportioned to the square

of the times ; therefore it will move in a curve passing

through M, if P M is equal, and parallel to AB; and

AP will be as the square of AB or PM, which is the

property of the conic parabola in . AP= PM2
, m being

the parameter to the point A.

The Scholium concludes by stating some consequences

of the equality of action and reaction, the third Law
of Motion, with respect to oscillation and impact, and

also with respect to mutual attractions ; of which conse

quences the most important is that the attraction or weight

of heavy bodies in respect of the earth, and of the earth

in respect of them, is equal.

The great work itself, after these preliminary though
essential matters, proceeds to its proper subject. But

in order to show how the demonstrations are conducted,

a short treatise is prefixed upon the method of Prime and

Ultimate Ratios, in eleven Lemmas, with their corollaries.

This method consists in considering all quantities as

c 2
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generated by the uniform progression or motion of other

quantities, and examining the relations which the smallest

conceivable spaces thus generated by this motion bear to

one another, and to the spaces generated at the moment of

their inception, or when they are nascent, which is termed

their prime ratio, and at the moment of their vanishing,

or when they are evanescent, which is termed their ultimate

ratio. Thus a point moving along in a straightforward

direction generates a straight line ; a line moving parallel

to itself, or two. lines moving at right angles to one another,

generate a rectangle : one line moving, while a point in it

moves along it so that its progress on the moving line

always bears a given ratio to the progress the line has

made (m .AP=P M), describes a triangle ; the same

motion, if the progress of the point bears a variable

relation to that of the line (x. AP=PM ; x.xAP
being some function of A P), describes a curve line and

curvilinear area ; and so of solids, which are generated by
the motion of planes.

It follows from this mode of generation that if the length

of any curve line be divided into an infinite number of

lines, the sum of these will not differ from the curve

line by any assignable quantity, nor will each differ from

a straight line
; and if its area be divided into an infinite

number of smaller areas by lines drawn parallel to the
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line whose progressive motion generated the curvilinear

area, the sum of these infinitely narrow areas will differ

from the area of the curve by a difference less than any

assignable quantity, nor will each differ from a rectangle ;

in other words, the ratio of the nascent curve line and

nascent curvilinear area will be that of equality with the

small lines and small rectangles, and the ultimate ratio of

the sums of the lines and rectangles to the whole curve

line and curvilinear area, respectively, will be that of

equality : Or to put it otherwise, if the axis of the curve

be divided into parts P P, &c., and the area into spaces

PMEP, &c., by ordinates PM, PK, &c., and the num
ber of these spaces be increased, and their breadth PP
be diminished indefinitely, which is the operation of the

o

generative motion of PM, the size of each of the small

spaces MNRO (by which the curvilinear areas differ from

the rectangles) diminishes indefinitely, and the ultimate

ratio of all the curve areas PMEP, and all the rectangles

PNRP, becomes that of equality, and therefore the sum

of evanescent differences NM O R, NROR, &c., whereby
the whole curvilinear area differs from the whole amount

of the rectangles P NRP, becomes less than any assignable

quantity, or the curvilinear area coincides with the sum

of the rectangles. And so of the sum of all the diagonals

MR, RR, &c., which becomes the curve line MR A.

Hence we infer that the amount of these small spaces
c 3
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or quantities N M O R, formed by multiplying together

two evanescent quantities, is as nothing in comparison with

the rectangles P M O P formed by only one evanescent

quantity multiplied into a finite quantity, and may be

neglected in any equation that expresses the relations of

those rectangles with each other. But if some other

quantities be found which are, in comparison with these

small ones, themselves infinitely small, the areas formed by

multiplying this second set of small quantities may be

rejected in any equation expressing the relations of those

first small quantities.

Thus we have the origin and constitution of quantities

which in the Newtonian scheme are called fluxions of

different orders, because conceived to express the manner

of the generation of quantities by the motion of others,

and in Leibnitz s language are called infinitesimals or

differences, because conceived to express the constant addi

tion of one indefinitely small quantity to another. Ob

taining the fluxions, or the differences, from the quantity

generated by the motion or by the addition, is called the

direct method; obtaining the quantity generated from the

fluxions, or finding the sum of all the differences, is called

the indirect method. The one theory calls the direct

method that of finding fluxions, the indirect that of finding

fluents ; the other theory calls the former differentiation,

or finding differentials, the latter integration, or finding

integrals. The two systems, therefore, in no one respect

whatever differ except in their origin and language;

their rules, principles, applications, and results, are the

same.

A different symbol has been used in the two systems ;

Newton expressing a fluxion by a point or dot, and the

fluxion of that fluxion, or a second fluxion, by two dots,

and so on. Leibnitz prefixes the letter d, and its powers
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d2
, d3

, &c., instead, to express the differentials. In like

manner f for sum is used by the latter to express the

integral, and/by the former for the fluent. Although
the continental method of notation is now generally used,

and is on the whole most convenient, yet it has its inconve

nience, as the d is sometimes confounded with co-efficients

of the variable quantities ;
it is in some respects, too, not

very consistent writh itself; as by making d x2 mean the

square of the fluxion, or differential of x
;
whereas it,

strictly speaking, appears to denote the differential of a:
2

.

There can be no doubt, however, which notation is the most

convenient in the extension of the system to the calculus of

variations, where the symbol is 8
; for, although the varia

tion of a fluxion or differential may perhaps even more

conveniently be expressed by 8 x than by I d x, yet the

fluxion of a variation can with no convenience be expressed

bv^-, or otherwise than by d%x. The expression of
* ox

second fluxions undeveloped is also far less convenient

by the Newtonian notation. Thus the fluxion of -^ is
J dx

sometimes required to be expressed without developement,

as in the expression for the radius of curvature, where

it is often expedient not to develope it in the general

equation, but to find -^ in terms of x or y before taking
Ct 3C

its fluxion ; yet nothing can be more clumsy than to place

a dot over the fraction, whereas d -r- IS perfectly con-

venient.

Several important considerations arise out of the nature

and origin of these infinitesimal quantities as we have

described them ; and to these considerations we must now

shortly advert, as they give the rules for finding the

c 4
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fluxions or differentials of all quantities, and, conversely,

lead to those for investigating or finding the fluents or

integrals of fluxional or differential expressions.

A rectangle AM being generated by the side P M
moving along A P while the side N M moves along A N,
the movement or fluxion or differential of A M, or of

A P x P M, is P S + M O, part of the gnomon P S

) R A
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and of -^9 or xm x y~
n= m zm~ }

y~
ndxn xm y~

n~ l d y,

_mxm- l

y
n dx nxmy

n - l

dy

Consistently with the same principles, we may deduce

this rule otherwise and more strictly. Let x + d x be

the quantity when increased by the differential. This

multiplied by itself, or its square when completed, is x*

+ 2 xdx+ (dxf\ but to have the mere increment or dif

ferential we must deduct x~ } and we must also reject (d #)
2

as evanescent compared with the function 2 x d x, which

leaves 2 x d x for the differential. So the cube is x3
-f

3 x 1 d x+ 3x(dx-*) + (dx)
3

&amp;gt;

an(l rejecting, in like manner,

we have 3 x1 dx ; and by the binomial theorem (x + d x)
m

is

xm +mxm- 1 d x, + 8tc. + (d x)
m

, of which only the second

term can upon the same principles be retained
; that is

- 1 dx: And the same rules apply to the differentials

of surds; so that the differential of (x +yf is y
* v x+ y

It also follows that the fluent or integral is a quan

tity such that, by taking its fluxion or differential

according to the foregoing principles, you obtain the

given fluxional or differential expression. Thus if we

have to integrate any quantity as xm d x, we divide by
m + 1, and increase the exponent by unity, and erase

xm+l
the differential quantity ; so that -- is the integral

required. But as every multiplication of any two quan

tities whatever gives a finite product, and every involution

a finite power, while we can only divide so as to obtain a

finite quotient, or extract so as to obtain a finite root,

where the dividend or the power operated upon happens

to be a perfect product or a perfect power ; so in like
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manner we can only obtain the exact integral where the

expression submitted to us is a complete differential Thus,

though such an expression as == is integrable, such

an expression as is not integrable, for want
v 1 -f-#

2

of the x in the numerator; and various approximations
and other contrivances are resorted to in order to ac

complish or, at least, approach this object, of which the

methods of series^ of logarithms, and circular arcs are the

most frequently used. The simplest case of integration

by series may be understood in examples like the last;

for if the square root be extracted by a series, we may be

able to integrate each term, and so by the sum of the

integrals to approach the real value of the whole.

From the doctrine as now explained, and the original

foundations of the method as traced above, it follows that a

variety of the most important problems may be solved with

ease and certainty, which by the ancient geometry could

only in certain cases, or by a happy accident, be investigated.

Thus the tangents of curves may be found. For as the

subtangent S P : P M :: M N : T N, S p=

=~j~ And so the perpendicular may always be drawn ;

for the subnormal EP = -- = ~^=^ There~

fore we have only to insert the one of these quantities in

terms of the other from the equation between x and y (the

equation to the curve), and we get the expressions for the
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subtangent and subnormal. Thus in the common parabola,

whose equation is y
1= a z, the subtangent , = -

y
y 2 W 2

x ~- = -*- or 2 x ; and in the hyperbola, whose equa-
cly ci

tion is xy a 1
, the subtangent is x. So in the circle

y
2 = 2 r x x2

, y^JL (tae subnormal) = r x (r being

the radius); all which we know from geometrical demon

stration to be true.

Next, it is evident that when a quantity increasing has

attained its maximum, it can have no further increment ;

or when decreasing it has attained its minimum, it can

have no further decrement; consequently in such cases

the differential of the quantity is equal to nothing.* Hence

a ready solution is afforded of problems of maxima and

minima. Thus would we know the proportion which two

sides of a rectangle must have to each other, in order

that, their sum being given, they may form a rectangle con

taining the greatest space possible ; the differential of the

rectangle must be put equal to nothing. Thus their sum

being = a, the quantities are x and a or, and their rectangle

is a x x1
, its differential adx 2 x d x, and this being

put = 0, we have adx = 2zdz, or # = -
; therefore the

figure must be a square. So would we know the point of

the parabola (bx)-= a(y c) where the curve comes

nearest the line b, the ordinate y must be a minimum, and

x- (b-x) 2
, , 2(b-x}d y = 0. rs ow y = --- -f c, and d y = --- x

* Sir I. Newton s own statement of the method is here followed. Me-

thodus Fluxionum Opuscula, torn. i. p. 86. edit. Geneva, 1744. It has,

however, been since universally admitted that the more accurate view is

to regard the change of the sign as the criterion, both as to maximum and

minimum values, and as to points of contrary flexure.
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dx, which being put = gives us #=
&amp;gt;; or, at the

extremity of the line b, the curve approaches the nearest ;

and that whatever be its parameter; for a has vanished

from the equation.

Again, we have seen that the ultimate ratio of the

sum of all the rectangles M P x P Q, contained by the

ordinates and the increments of the abscissa to the curve s

area A P M is that of equality ; or, in other words, that

the differential of a curvilinear area being the rectangle con

tained by the ordinate and the differential of the abscissa,

or y d x, the integral of this, or the sum of all those small

rectangles, is equal to the area. In this expression, then,

let y be inserted in terms of x, and the integral gives the

area. Thus in the parabola y= Va~x; therefore d x Va x

is the differential of the area, and its integral, or which is

P 2y*dy . 2 y
3 2 y

2

the same thing, the integral of --, is - x
,
or. x

CL O CL o CL

2
xy, that is,

- xy, or two- thirds of the rectangle of the
o

co ordinates ; as we also know from conic sections.

Next, we have seen that the ratio of the infinitely small

rectilinear sides into which a curve line may be divided

(each of those small lines being the hypothenuse of a

right-angled triangle, the sides of which are the differentials

N T, M N of the co-ordinates), to the infinitely small

portions of the curve itself is that of equality ; therefore

the differential of the curve is equal to the square root of

the sum of the squares of the differentials of the ordinate

and abscissa, and that differential is equal to

Hence in the circle, an arc whose cosine is x and radius

r is equal to the integral of
,
------ . And an arc whoseV r2 x2

cosine is rx, is equal to the integral of -
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Again, because solids may in like manner be con

sidered as composed of infinitely thin solids or plates,

one placed upon the other, their differential is the area of

the surface multiplied by the differential of the axis. Thus

the base of any solid generated by the revolution of a

surface rectilinear or curved must be a circle, and the

proportion of the radius to the circumference being taken

as r : c, y being the ordinate to the line bounding theo
/2s

?y

vertical section, the surface will be -~- and the differential

of the axis x being dx, the differential of the solid will be

-^r , in which y in terms of x being inserted from the

boundary line s equation, the integral gives the solid con

tent. Thus if the line which bounds is straight and

parallel to the axis, or the solid is a cylinder, its content

is the circle multiplied by the axis
;
and if the line is drawn

to a point in the axis, or the solid is a cone, then its content

is one-third of the same product, or one-third of the cy
linder well-known properties of those two figures, proved

by ordinary geometry. So in like manner we find the

sphere to be two-thirds of the circumscribing cylinder,

the celebrated discovery of Archimedes, of which he caused

the diagram to be inscribed on his tomb.

Lastly, it may in like manner be shown that the radius

of the osculating circle at any point of any curve, that

is, the circle touching it at such point, and having
the same curvature with it at that point, is equal to

where dy being found in terms of

x, the differential of
j|

is to be taken, so that there

will in the result in each case be no differential at all.
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Thus in the parabola z/
2= 2 a x, the radius of curvature is

a

In all these operations, however, it must be observed,

that as constant or invariable quantities have no dif

ferentials, so when we reverse the operation and find in

tegrals from given differential expressions, we never can

tell whether a constant must not be added in order to com

plete that quantity, by taking whose differential the given

expression was originally obtained. The determining of

this constant quantity, and the finding whether there be

any or not, depends upon the particular conditions of each

problem. It is always added as a matter of course.

Thus when we integrate d x + dy,we cannot tell whether

this quantity arose from taking the differentials of x and y

only, or from taking the differential of x + y + c ; and it

must depend upon the nature of the question whether c is

to be added to the integral or no ; and if to be added, how

it shall be ascertained.

Having explained this important method of investigation,

by the help of which Newton was enabled to make his

greatest mathematical discoveries, and by the principles

of which he demonstrates them in the Principia, it only

remains, before proceeding to the analysis of those dis

coveries, that we should remark the preference which he

gives to the geometrical methods, improved and adapted

to his purpose by the doctrine of Prime and Ultimate ratios.

He uses this doctrine similar in principle to, and the foun

dation of, the noble and refined calculus which we have

been considering ; but he does not at all employ that

calculus.

The First book treats of the motion of bodies with-
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out regard to the resistance of the medium that fills the

space in which they move ;
and it is principally devoted

to the consideration of motions in orbits determined by

centripetal forces, and to examining the attraction of bodies.

The Second book treats of the resistance of fluids chiefly

as affecting the motions of bodies that move in them.

The Third book contains the application of the principles

thus established to the motions, attractions, and figures

of the heavenly bodies.

The fundamental proposition, as it may justly be termed,

of the whole system, is one which Newton s predecessors

may be said to have nearly reached; which Kepler, had

he been more inclined to trust demonstration than em

pirical observation, probably would have attained ; and

which Galileo would certainly have discovered had he con

templated the facts discovered by Kepler, particularly his

second law *
: The proposition is this. If a body is driven

by any single impulse or force of projection, and is also

drawn continually by another force so as to revolve round

a fixed centre, the radius vector, or line drawn from the

body to that centre, describes areas which are in the same

fixed plane, and are always proportional to the times of the

body s motion ; and conversely, if any body which moves

in any curve described in a plane so that the radius vector

to a point either fixed or moving uniformly in a straight

line, describes areas proportional to the times of the body s

motion, that body is acted on by a centripetal force tending

towards and drawing it to the point.

To prove this, we have to consider that if a body

moves equably on in a straight line, the areas or triangles

* See the historical notice above respecting this second law, viz., that the

planets describe areas proportional to the times by their radii vectores.
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which are described by a line drawn from it to any

point are proportional to the portions of the straight line

through which the body moves, (that is to the time, since,

moving equably, it moves through equal spaces in equal

times,) because those triangles, having the same altitude,

are to one another in the proportions of their bases. S

being the point and AO the line of motion, SAB is to

SB c as AB to B c. If then at B a force acts in the line

S B, drawing the body towards S, it will move in the

diagonal B C of a parallelogram of which the sides are

B c and B V, the line through which the deflecting force

o

would make it move if the motion caused by the other

force ceased. Cc therefore is parallel to VB, and the

triangle SBC is equal to the triangle SBc; consequently

the motion through AB and B C, or the times, are as the

two triangles SAB and SBC : and so it may be proved if

the force acting towards S again deflects the body at C,

making it move in the diagonal C D. If, now, instead of

this deflecting force acting at intervals A, B, C, it acts at

every instant, the intervals of time become less than any

assignable time, and then the spaces A B, B C, CD will

become also indefinitely small and numerous, and they will

form a curve line ; and the straight lines drawn from any

part of that curve to S will describe curvilinear areas, as

the body moves in the curve ABCD, those areas being

proportional to the times. So conversely, if the triangles
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S B c and SBC are equal, they are between the same

parallels, and c C is parallel to S B, and D d to S C ;

consequently the force which deflects acts in the lines SB
and S C, or towards the point, S. It is equally manifest

that the direction of the lines Be, C d, from which the

centripetal force deflects the body, is that of tangents to

the curve which the body describes, and that consequently

the velocity of the body is in any given point inversely

proportional to the perpendicular drawn from the centre to

the tangent; the areas of the triangles whose bases are

equal, being in the proportion of their altitude, that is,

of those perpendiculars, and those areas being by the pro

position, proportional to the times.

There are several other corollaries to this important

proposition which deserve particular attention. B c and

D e are tangents to the curve at B and D respectively;

v B

B C and D E the arcs described in a given time; C c

and E e lines parallel to the radii vectores S B and S D
respectively ;

and C V, E d parallel to the tangents. The

centripetal forces at B and D must be in the proportion of

V B and d D (being the other sides of the parallelograms

of forces) if the arcs are evanescent, so as to coincide with

the diagonals of the parallelograms V c and d e. Hence

the centripetal forces in B and D are as the versed sines

D
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of the evanescent arcs ; and the same holds true if instead

of two arcs in the same curve, we take two arcs in dif

ferent but similar curves.*

From these propositions ajiother follows plainly, and its

consequences are most extensive and important. If two

or more bodies move in circular orbits (or trajectories)

with an equable motion, they are retained in those paths

by forces tending towards the centres of the circles ; and

those forces are in the direct proportion of the squares of

the arcs described in a given time, and in the inverse pro

portion of the radii of the circles.

First of all it is plain, by the fundamental proposition,

that the forces tend to the centres S, s, because the sectors

A S B and PBS being as the arcs A B, B P, and the

sectors a s b, p b s, as the arcs a b, b p, which arcs being

all as the times, the areas are proportional to those times

of describing them, and therefore S and s are the centres

of the deflecting forces. Then, drawing the tangents A C,

a c, and completing the parallelograms D C, d c, the diago

nals of which coincide with the evanescent arcs A B, a b9

we have the centripetal forces in A and a, as the versed

sines A D, a d. But because A B P and a b p are right

angles (by the property of the circle), the triangles AD B,

A P B, and a d b, a p b, are respectively similar to one

another. Wherefore A D : A B :: A B : AP and AD
AB2

i n j ab2

= --; and in like manner a d = , or. as the evan-AP ap
A B 2

escent arcs coincide with the chords, AD= arc . ^ and
XX JL

a IP
6/=arc . Now these are the properties of any arcs de

scribed in equal times ; and the diameters are in the pro-

* If B C, D E, are bisected, the proportion is found with the halves

of V B, D d-
t
and that is the same proportion with the whole versed sines.
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portion of the radii ; therefore the centripetal forces are di

rectly as the squares of the arcs, and inversely as the radii.

It is difficult to imagine a proposition more fruitful

in consequences than this ; and therefore it has been de

monstrated with adequate fulness.

In the^rs^ place, the arcs described being as the velocities,

if F,/ are the centripetal forces, and V, v the velocities, and

R, r the radii, F :/ :: V 2
: y2

; and also :: r : R ; orF :

V2 v2

f :: :- : . Now as in the circle V and R, v and r
JAi T

are both constant quantities, the centripetal force is itself

constant, which retains a body by deflecting it towards

the centre of the circle.

Secondly. The times in which the whole circles are

described (called the periodic times) are as the total cir

cumferences or peripheries ; T : t : : P : p : But the pe

ripheries are as the radii or :: R : r. Therefore T :

p p
t :: R : r; also V : v :: = : ^-, therefore inversely as

j_
*

the radii, or T :*::?:- and V2
: v2

:: ?* : -*. But

V2 v2

the centripetal forces F :/:: ^ : 5 substituting for the

D 2
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T) 2 2

ratio of V2
: v2

, its equal the ratio of =-
2

:

-^ , F : f : :

~2 :

~2*j
r the centripetal forces are directly as the

distances and inversely as the squares of the periodic

times ; the forces being as the distances if the times

are equal; and the times being equal if the forces are

as the distances. It also follows that if the periodic

times are as the distances, then F : f : : =- : ;
that is,E T

:: :-, or inversely as the distances. In like man-
Jbv T

ner if the periodic times are in proportion to any power

n, of the distance, or T : t :: E&quot; :
r&quot;,

we shall have

T2
: P :: E2

: r^ and F : / :: ^ :
~

n \ that is

: : M_ t

: ^n-i 5 and conversely if the centripetal force

is in the inverse ratio of the (2n l)
th
power of the dis

tance, the periodic time is as the nih
power of that dis

tance. Likewise, as the velocities of the bodies in their

orbits or V :::: if we make T : t :: Ew
: r,

T) 11
then V : v ::

g^
: -, or :: j^ :

l
. Thus, sup-

o

pose n is equal to ^ we have for the velocities V : v

::
... _.. :

-
t or they are in the inverse subduplicate pro

portion of the distances; and for the centripetal forces we

have F : f :: jpi
*

-3^1
:: t?2

:

&quot;2?
or the attraction

to the centre is inversely as the square of the distance.
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Now if w=
|,

T : f.: R^ : r*, or T 2
: f- :: B* : r*

;
in

other words the squares of the periodic times are as the

cubes of the distances from the centre, which is the law

discovered by Kepler from observation actually to prevail

in the case of the planets. And as he also showed from ob

servation that they describe equal areas in equal times by
their radii vectores drawn to the sun, it follows from the

fundamental proposition, first, that they are deflected from

the tangents of their orbits by a power tending towards the

sun; and then it folio vf^secondly9 from the last deduction re

specting it, (namely, the proportion ofF : f - - :
-59) that

this central force acts inversely as the squares of the

distances, always supposing the bodies to move in cir

cular orbits, to which our demonstration has hitherto

been confined.*

The extension, however, of the same important pro

position to the motion of bodies in other curves is easily

made, that is to the motion of bodies in different parts

of the same curve or in curves which are similar. For

in evanescent portions of the same curve, the osculating

circle, or circle which has the same curvature at any point,

coincides with the curve at that point; and if a line is

drawn to the extremity of that circle s diameter, A M B
and a m b may be considered as triangles ; and as they are

right angled at M and ??z, A M- is equal to A P x A B and

a m2 to a pxa b , and where the curvature is the same

as in corresponding points of similar curves, those squares

are proportional to the lines A P, or a p ; or those versed

* We shall afterwards show, from other considerations, that this sesqui-

plicate proportion only holds true on the supposition of the bodies all

moving without exerting any action on each other, when we come to con

sider Laplace s theorems on elliptical motion.

D 3
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sines of the arcs A M and a m are proportional to the

squares of the small arcs. Hence if the distances of two

bodies from their respective centres of force be D, d, the

deflecting force in any points A and a being as the versed

sines, those forces are as A M2
: a m 2

; and from hence

follows generally in all curves, that which has been demon

strated respecting motion in circular orbits.

The planets then and their satellites being known by Kep
ler s laws to move in elliptical orbits, and to describe round

the sun in one focus areas proportional to the times by their

radii vectores drawn to that focus, and it being further

found by those laws that the squares of their periodic times

are as the cubes of the mean distances from the focus^

they are by these propositions of Sir Isaac Newton which

we have been considering, shown to be deflected from the

tangent of their orbit, and retained in their paths, by a

force acting inversely as the squares of the distances from

the centre of motion.

But another important corollary is also derived from

the same proposition. If the projectile or tangential force

in the direction A T ceases (next figure), the body,

instead of moving in any arc A N, is drawn by the

same centripetal force in the straight line A S. Let A n

be the part of A S, through which the body falls by the

force of gravity, in the same time that it would take to

describe the arc A N. Let A M be the infinitely small
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arc described in an instant ; and A P its versed sine.

It was before shown, in the corollaries to the first pro

position, that the centripetal force in A is as A P, and

the body would move by that force through A P, in the

same time in which it describes the arc A M. Now the

force of gravity being one which operates like the centri

petal force at every instant, and uniformly accelerates the

descending body, the spaces fallen through will be as the

squares of the times. Therefore, if A n is the space

through which the body falls in the same time that it

would describe A N, A P is to A n as the square of the

time taken to describe A M to the square of the time of

describing A N, or as A M2
: A N2

, the motion being

uniform in the circular arc. But A M, the nascent arc,

is equal to its chord, and A M B being a right angled

triangle as well as A P M, A B : A M :: A M : A P and

AM2

A P= . -p . Substituting this in the former proportion,

AM2

we have AB n:: A M2
: A N 2

, or A n : AN 5

AM 2
, that is :: 1 : AB. Therefore AN 2

i

= A n x A B, or the arc described, is a mean propor

tional between the diameter of the orbit, and the space

through which the body would fall by gravity alone, in

the same time in which it describes the arc.

D 4
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Now let A M N B represent the orbit of the moon ;

A N the arc described by her in a minute. Her whole

periodic time is found to be 27 days 7 hours and 43 mi

nutes, or 39,343 minutes; consequently A N : 2 AN B
::1 : 39,343.

But the mean distance of the moon from the earth

is about 30 diameters of the earth, and the diameter of

her orbit, 60 of those diameters ; and a great circle of the

earth being about 131,630,572 feet, the circumference of

the moon s orbit must be 60 times that length, or

7,897,834,320, which being divided by 39,343 (the num
ber of minutes in her periodic time), gives for the arc

A N described in one minute 200,743, of which the

square is 40,297,752,049, orAN 2
, which (by the propo

sition last demonstrated) being divided by the diameter

AB gives A n. But the diameter being to the orbit

as 1 : 3.14159 nearly, it is equal to about 2,513,960,866.

Therefore A n = 16.02958, or 16 feet, and about the

third of an inch. But the force which deflects the moon

from the tangent of her orbit, has been shown to act

inversely as the square of the distance ; therefore she would

move 60 x 60 times the same space in a minute at the

surface of the earth. But if she moved through so much

in a minute, she would in a second move through so much

less in the proportion of the squares of those two times,

as has been before shown. Wherefore she would in a

second move through a space equal to 16^ nearly

(16.02958). But it is found by experiments frequently

made, and among others by that of the pendulum *, that a

* It is found that a pendulum, vibrating seconds, is about the length

of 3 feet 31 inches in this latitude ;
and the space through which a body

falls in a second is to half this length as the square of the circumference of

a circle to that of the diameter, or as 9.8695 : 1, and that is the proportion

of the half of 3 feet 3^ inches to somewhat more than 16 feet.
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body falls about this space in one second upon the surface

of the earth. Therefore the force which deflects the moon

from the tangent of her orbit, is of the same amount, and

acts in the same direction, and follows the same proportions

to the time that gravity does. But if the moon is drawn

by any other force, she must also be drawn by gravity ; and

as that other force makes her move towards the earth 16

feet ^ inch, and gravity would make her move as much,

her motion would therefore be 32 feet inch in a second

at the earth s surface, or as much in a minute in her orbit ;

and her velocity in her orbit would therefore be double of

what it is, or the lunar month would be less than 13 days

and 16 hours. It is, therefore, impossible that she can

be drawn by any other force, except her gravity, towards

the earth.*

Such is the important conclusion to which we are

led from this proposition, that the centripetal forces are

as the squares of the arcs described directly, and as the

distances inversely. The great discovery of the law of

the universe, therefore, is unfolded in the very beginning

of the Principia. But the rest of the work is occupied

with tracing the various consequences of that law, and

first of all in treating generally of the laws of curvilinear

motion. The demonstration of the moon s deflection has

been now anticipated and expounded from the Third

Book, where it is treated with even more than the author s

accustomed conciseness. But there seemed good ground

for this anticipation, inasmuch as the Scholium to the

Fourth Proposition refers in general terms to the con-

* The proposition may be demonstrated by means of the Prop. XXXVI.
of Book I., as well as by means of the proposition of which we have now
been tracing the consequences (Prop. IV). But in truth the latter theorem

gives a construction of the former problem (Prop. XXXVI.), and from it

may be deduced both that and Prop. XXXV.
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nexion between its corollaries, and the Theory of Gravi

tation.

The versed sine of the half of any evanescent arc (or

sagitta of the arc) of a curve in which a body revolves,

was proved to be as the centripetal force, and as the

square of the times ; or as F x T 2
. Therefore the

force F is directly as the versed sine, and inversely as the

square of the time. From this it follows that the central

force may be measured in several ways. The arc being

Q C, we are to measure the central force in its middle

point P. Then the areas being as the times ; twice

the triangle S P Q, or Q L x S P is as T in

the last expression ; and, therefore, Q R being parallel

to L P, the central force at P is as
O

Q p2O -L X

So if S Y be the perpendicular upon the tangent P Y,

because P K and the arc P Q, evanescent, coincide, twice

the triangle S P Q is equal to S Y x Q P ; and the
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O R
central force in P is as Q v ^ n p2 . Lastly, if the revo-

o i. X \^ -t

lution be in a circle, or in a curve having at P the same

curvature with a circle whose chord passes from that point

through S to V, then the measure of the central force

will be o Y2 pv* -^7 finding the value of those solids

in any given curve, we can determine the centripetal force

in terms of the radius vector S P ; that is, we can find

the proportion which the force must bear to the distance,

in order to retain the body in the given orbit or trajectory ;

and conversely, the force being given, we can determine

the trajectory s form.

This proposition, then, with its corollaries, is the foun

dation of all the doctrine of centripetal forces, whether

direct or inverse ; that is, whether we regard the method of

finding, from the given orbit, the force and its proportion

to the distance, or the method of finding the orbit from

the given force. We must, therefore, state it more in

detail, and in the analytical manner, Sir Isaac Newton

having delivered it synthetically, geometrically, and with

the utmost brevity.

. It may be reduced to five kinds of formula?.

1. If the central force in two similar orbits be called

F and f, the times T and t, the versed sines of half the

arcs S and s, then F : f :: :
&quot;2

&amp;gt;

anc^ generally F is as
JL t

2. But draw SP to any given point of the orbit

in the middle of an infinitely small arc Q C. Let T P
touch the curve in P, draw the perpendicular S Y from

the centre of forces S to P T produced, draw S Q infi

nitely near S P, and Q R parallel to S P, Q o and R o
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parallel to the co-ordinates S M, M P. Then P being

the middle of the arc, twice the triangle S P Q is propor

tional to the time in which C Q is described. Therefore

QP x SYorQL xPSis proportional to the

C Q
time ; and QR is the versed sine of

&amp;lt;^,

therefore

Q O T?

F as r-T2 becomes F asT~9 an(^ if S M =
a:,T

M P = y } and because the similar triangles Q K o and

S M P give Q R -
^f^&amp;gt; and because A M beingO -A-L

the first differential of S M, o Q is its second differential

(negatively), therefore Q R = -
x

&quot;*&quot;^

(taken
x

with reference to d t constant), and F is as

~f^,y*,,- But LQ2 = QP 2 - LP 2 and

L P is the differential of S P or Vx* + f. Therefore
2

4 (d-\
(x d y v d x}

2
&quot;

\ y)L Q2 = v ^ y } =
2 ^2~, and F is as

x2 + 2 x2 + 2

y*

But as the differential of the time (L Q x P S) may
be made constant, Q R will represent the centripetal

force ; and that force itself will therefore be as

*L.
)

* taken with reference to d t constant.

* Of these expressions, although I have sometimes found this, which

was first given by Herrman, serviceable, I generally prefer the two,

which are in truth one, given under the next heads. But the expression

first given ____Jtll is without integration an useful one.

* y
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3. The rectangle S Y x Q P being equal to Q L x S P

and s Y = yd^^Ly we have F as
Vdx2 + dy*

QR QR QR

OR OP 2

4. Because F =
g ^2

^
Q p 2

and -- is equal to the

chord P V of the circle, which has the same curvature

with Q P O in P, and whose centre is K (and because

Q P 2 = Q R x P V by the nature of the circle and

the equality of the evanescent arc Q P with its sine, and

thus P V = ^J
2

,
- therefore^ =^ ),

Fisas

Q y2
-

p~v*
In like manner if the velocity, which

v2

is inversely as S Y, be called v, F is as
py. Now the

chord of the osculating circle is to twice the perpendicular

S Y as the differential of S P to the differential of the

perpendicular; and calling S P the radius vector r, and

S Y=, we have PV = ~
-, and F is

dp
Q 7

also F is as . In these formulas, substituting for p

and r their values in terms of x and y, we obtain a mean
of estimating the force as proportioned to r, which is

V x*+y
2

.

5. The last article affords, perhaps, the most obvious

methods of arriving at central forces, both directly and

inversely. Although the quantities become involved and

embarrassing in the above general expressions for all

curves, yet in any given curve the substitutions can more

easily be made. A chief recommendation of these expres-
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sions is, that they involve no second differentials, nor any
but the first powers of any differentials. But it may be

proper to add other formulas which have been given, and

one of which, at least, is more convenient than any of the

rest.

One expression for the centrifugal force (and one some-
7 o

times erroneously given for the centripetal)
*

is ^p, s be-
-t _Lv

ing the length of the curve and R the radius of curvature.

This gives the ready means of working if that radius is

known. But its general expression involves second diffe-

ds*

rentials, the usual formula for it being
~

fdv
2 x d -=^

consequently we must first find - = X (a function of
CL X

x), and then there are only first differentials.

Another for this radius of curvature is

ds*
is Used ^ Laplace ; and ano-

V fl 7*

ther is -5 -, which, with other valuable formulas, is

to be obtained from Maclaurin s Fluxions. But the for

mula generally ascribed to John Bernouilli (Mem. Acad.

des Sciences, 1710), is, perhaps, the most elegant of

7*

any, F = --
5
-

^; and this results from substitutingA . p X -tt a

2 T d T
2 R for its value i

-
, in the equation to F, deduced

above from Newton s formula, namely, F = ^ .

2p
3 dr

* This error appears to have arisen from taking the case where the

radius of curvature and radius vector coincide, that is, the case of the

circle, in which the centrifugal and centripetal forces are the same. See

Mrs. Somerville s truly admirable work on the Mec. Cel., where the error

manifestly arises from this circumstance.
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But the proposition is so important, that it may be

well to prove it, and to show that it is almost in terms

involved in the third corollary to Prop. VI. Book I. of

the Principia. By that corollary F =
-^-^ (C being

the osculating circle s chord which passes through the

centre of forces). But drawing S Y, the perpendicular

to the tangent, and P C F through the centre of the

circle, and joining V F, which is, therefore, parallel to

Y P, we have V P : P F :: S Y : S P or C : 2 R ::p : r

and C = -, which substituted for C in the above

equation, gives F=
^L^.

It is remarkable that the circumstance of this formula

being thus involved in that of Sir Isaac Newton seems never

to have been observed by Keill, who, in the Philosophical

Transactions, xxvi. 74, gives a demonstration of it much
more roundabout, and as of a theorem which Demoivre had

communicated to him, adding, that Demoivre also informed

him of Sir Isaac Newton having invented a similar

method before. In fact, he had, above 20 years before,

given it in substance, though not in express terms, in the

Sixth Proposition, the addition of two lines to which would

at once have led to this formula. But, again, when John
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Bernoulli!, two years afterwards, wrote his letter to Herr-

man (Mem. Acad. des Sciences, 1710), he gives it as his

own discovery, and as such it has generally been treated,

with what reason we have just seen. He is at much

pains to state, p. 529., that he had sent it in a letter to

Demoivre in February, 1706 ; but the Principia had been

published nineteen years before. Herrman, in his Phoro-

nomia, erroneously considers the expression as discovered

by Demoivre, Grandi, and Bernouilli. (Lib. I. Prop.

XXII.)
In all these cases p is to be found first, and the expres

sion for it (because, pp. 42, 43., TP:PM::TS:SY

and T S= } an(i PT =. Vdy^ + dx*}
is p

= SY -^y dx
- xd

&amp;gt;y_^ vy~~~
m Also r =

= N/#2

-fy
2
. Then the radius of curvature K =

(dx* + dy2
) , . dy .

j -3v~ (X being in terms of x, and having no
d#2 xrfX v & d x

differential in it when the substitution for dy is made).

Therefore, the expression for the centripetal force becomes

***dX . . ,

5 in which, when y and d y are put

in terms of x, as both numerator and denominator will be

multiplied by d #3
, there will be no differential, and the

force may be found in terms of the radical that is, of

r, though often complicated with x also. It is generally

advisable, having the equation of the curve, to find
/?, r,

and R, first by some of the above formulas, and then sub

stitute those values, or d p and d r, in either of the

expressions forF, - or
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To take an example in the parabola, where S being

the focus, and O S = , y
1 = 4 a x, and T M = 2 x9

and;; = Y S = */\a + x) a
; r = S P = a + x, and

E = ^-r = 2 (a + a?) A / &quot; +
*; we have therefore F asV

M N

x 2 (a

meter) is constant, inversely as the square of the dis

tance : And the other formula F as
3^ gives the

same result for the law of force, or

Again, in the ellipse, if a be half the transverse axis,

and b half the conjugate, and r the radius vector, we have

/ r a b d r f

p = b \f ---
, and d p = -

3-
thereforeV 2-r /-2-

dp a b d r a
the formula -~ becomes : 5 = Tr~5 or

p*.d* ft* A/r x ^ x dr b2 r2

the force is inversely as the square of the distance.

* This result coincides with the synthetical solution of Sir Isaac Xewton
in Prop. XIII.

E
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Lastly, as the equations are the same for the hyper

bola, with only the difference of the signs, the value

of the force is also inversely as r2, or the square of the

distance. In the circle a = the radius = r = p ; hence

M ft

becomes -^-, which, being constant, the force is every-

where the same. But if the centre of forces is not that

of the circle, but a point in the circumference, the force is

1V
Respecting centrifugal forces it may be enough to

add, that if v is the velocity and r the radius, the

v2

centrifugal force f, in a circle, is as . Also if R be

v1

the radius of curvature, f for any curve is = ^

When a body moves in a circle by a centripetal force

directed to the centre, the centrifugal force is equal

and opposite to the centripetal. Also the velocity in

uniform motion, like that in a circle, being as --, the
6

space divided by the time, and the arc being as the

s2 r
radius r, f is as -^ or as

~^.
If two bodies moving in

/* 6 C

different circles have the same centrifugal force, then the

times are as ^ r. It is to the justly celebrated Huygens
that we owe the first investigation of centrifugal forces.

The above propositions, except the second, are abridged

from his treatise.*

- The rest of the investigation of centripetal forces is an

expansion of the formulas above given, and their appli

cation to various cases, but chiefly to the conic sections.

It may be divided into four branches. First, the rules

*
Horologium Oscillatorium, ed. 1673, p. 159, App.
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are given for determining the central force required to

make the body move in a given orbit of one of the four

conic sections. Secondly, the inquiry becomes material

how curves of a given kind, namely, the conic sections,

may severally be found by merely ascertaining certain

points in them, or certain lines which they touch, because

this enables us to ascertain, among other things, the

whole of a planet s orbit, from ascertaining certain points

by actual observation. This branch of the subject is

purely mathematical, consisting of the rules for drawing
those curves through given points, or between, or touching

given straight lines ; and it is subdivided into two heads

according as one or neither focus is given. The third

object is to ascertain the motion, place, and times of bodies

moving in given trajectories generally ; and, among others,

also of bodies descending, or retarded in ascending, by

gravity. The fourth branch treats of the converse inquiry

into the figures of the trajectories, and the places, times,

and motion, when the nature of the centripetal force is
j

&amp;lt;

known.

It is thus manifest that the great importance of motion

in the Conic Sections made Sir Isaac Newton consider

those curves in particular, before discussing the general

subject of trajectories.

i. In exemplifying the use of the formulas we have

E 2
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shown the proportion of the force to the distance in the

conic sections generally, their foci being the centres of

forces. Let us now see more in detail what the pro

portion is for the circle. Let S be the centre of forces

and K of the circle, P T a tangent, S Y a perpendicu

lar to it, KM and M P co-ordinates, S K= &, KO= a,

P M= ?/, and M K= x. Then, by similar triangles, T K P

S T x KP
and TSY, we have SY= r ,. , or (because the

sub-tanent M T =
, and 2= ^2 +y2

)

a
Or

(
--

:^a~~J ;
a*so ^ P = v/fl

2 + %b x + b*9 and because

by the property of the circle O S x S B or (a + b)

(a-l&amp;gt;}
= a 2 -b 2=PSxS V; therefore

SV=- &quot;

2 ~* 2

andPV =
^ a? + 2bx + b*

Now by the formula already stated as Bernouilli s,

but really Sir Isaac Newton s, the centripetal force in

SP
P is as o-^rr

-^ } R being the radius of curvature,
O JL X JAi

and in the circle that is constant being = , the semi-

diameter ;
therefore the force is as

a* + 2

8xa*V a* + 2bx+b* . . B O2 x S P
or as

j- g , , 3 , that is
2

B Q2 x S P 3

or as /.T. o . ^ 7 \u ^ 02

BO

SP 3

J -J- 9 /&amp;gt; r
= P V. Therefore the central
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BO
force is as p V3 ^ p2 ; or (because O B 2 is constant) the

-XT V X ^5 -L

central force is inversely as the square of the distance and

the cube of the chord jointly. Of consequence, where S

is in the centre of the circle and b = o, the force is con

stant, SP becoming the radius and PV the diameter ; and

if S is in the circumference of the circle as at B, or a= b,

then the chord and radius vector coinciding, the force is

inversely as the fifth power of the distance, and is also

inversely as the fifth power of the cosine of the angle

PSO.
By a similar process it is shown that in an ellipse the

force directed to the centre is as the distance. Indeed, a

property of the ellipse renders this proof very easy. For

if S Y is the perpendicular to the tangent T P, and N P

(the normal) parallel to SY, and S A the semi-conjugate

axis ; S A is a mean proportional between S Y and PN,

A S 2

and therefore S Y = -
; also the radius of curva

ture of the ellipse is (like that of all conic sections)

4PN3

equal to -

, P being the parameter. Therefore

we have to substitute these values for S Y and the

radius of curvature, R, in the expression for the central

E 3
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4 . P N
P 2 x PN 3

p2

4 A o 6 x S P ; so that, neglecting the constant

the centripetal force is as the distance directly

&quot;Trom hence it follows, conversely, that if the centripetal

force is as the distance, the orbit is elliptical or circular,

for by reversing the steps of the last demonstration we

arrive at an equation to the ellipse; or, in case of the two

axes being equal, to the circle. It also follows that if

bodies revolve in circular or elliptical orbits round the

same centre, the centre of the figures being the centre

of forces, and the force being as the distance, the periodic

time of all the bodies will be the same, and the spaces

through which they move, however differing in length

from each other, will all be described in the same time.

This proposition, which sometimes has appeared paradoxical

to those who did not sufficiently reflect on the subject, is

quite evident from considering that the force and velocity

being increased in proportion to the distance, and the

lengths of similar curvilinear and concentric figures being

in some proportion, and that always the same, to the radii,

the lengths are to each other as those radii, and conse

quently the velocity of the whole movement is increased

in the same proportion with the space moved through.

Hence the times taken for performing the whole motion

must be the same. Thus, if V and v are the velocities,

B. and r the radii, S and s the lines described in the

times T and t, by two such bodies round a common

centre, Y:v::E,:r, and S:s::R:r; and because

V = ~ and v= 1, ~
:|:.R:
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t r ; or R ; r :: T R : t r ; and therefore T = . Hence

if gravity were the same towards the sun that it is

between the surface and centre of each planet, or if the

sun were moved but a very little to one side, so as to be

in the centre of the ellipse, the whole planets would

revolve round him in the same time, and Saturn and Uranus

would, like Mercury, complete their vast courses in about

three of our lunar months instead of 30 and 80 years, a

velocity in the case of Uranus equal to 75,000 miles in a

second, or nearly one-third that of light.

It also follows from this proposition that, if such a law

of attraction prevailed, all bodies descending in a straight

line to the centre would reach it in the same time from

whatever distance they fell, because the elliptic orbit

being indefinitely stretched out in length and narrowed

till it became a straight line, bodies would move or vibrate

in equal times . through that line. This is the law of

gravity at all points within the earth s surface, and Sir

I. Newton has adapted one of his investigations to it,

when treating of the pendulum.

Another consequence of this proposition is, that if the

centre of the ellipse be supposed to be removed to an

infinite distance, and the figure to become a parabola,

the centripetal force being directed to a point infinitely

remote, becomes constant and equable ; a proposition dis

covered first by Galileo.

Sir Isaac Newton having treated of the centripetal force

in conic sections, where the centre of forces is the centre

of the figure (and generally whatever be the centre in

the case of the circle), proceeds to treat of that force where

it is directed towards the focus of one or other of those

curves, and not to the centre. It is easy to demonstrate

a compendious theorem, that which forms the subject of

his three first propositions, in which he determines the

E 4



56 NEWTON S PRINCIPIA.

law of the force for the three curves (parabola, hyper

bola, and ellipse) severally. For this purpose a simple

reference to the formulas already stated will suffice;

indeed our illustration of those formulas has already anti

cipated this.

If O P A be a conic section whose parameter is D,
S Y the perpendicular to the tangent T P, P R
the radius of curvature at P; then SY : SP :: D

: P N (the normal), and S Y =
^ ^ ^ ; also P R =

4 P N 3

j-p
Substitute these values of S Y and P R (p

and R) in the expression formerly given for the central

force

SP
x B , and we have D 3

. 8 P 3 4 P
8 P or

jj ^ p 2 , which is (D being invariable) as the inverse

square of the distance. Therefore any body moving in

any of the conic sections by a force directed to the

focus, is attracted oy a centripetal force inversely as the

square of the distance from that focus. This demon-
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stration, therefore, is quite general in its application to all

the conic sections.

It follows that if a body is impelled in a straight line

with any velocity whatever, from an instantaneous force,

and is at the same time constantly acted upon by a cen

tripetal force which is inversely as the square of the distance

from the centre, the path which the body describes will

be one or other of the conic sections. For if we take the

expression ^ rrjj* and work backwards, multiplying the
J . O -L

numerator and denominator both by S P, and then mul-

8 D 2 P N 3

tiplying the denominator by Q r\2 u
\3&amp;gt;

we obtain the

expressions for the value of S Y, the perpendicular, and

for K, the radius of curvature. But no curves can have

the same value of S Y and R, except the conic sections ;

because there are no other curves of the second order,

and those values give quadratic equations between the

co-ordinates.

By pursuing another course of the same kind alge

braically, we obtain an equation to the conic sections

generally, according as certain constants in it bear one

or other proportion to one another. The perpendicular

S Y and the radius of curvature are given in terms of the

normal ; and either one or the other will give the equation.

(dx^ +dy^ 4 P N 3 4v3

Thus =- =xdx+d
,dxxd i

which gives D 2 d x3 = 4 ?/
3 x (d

2
y d x d2 x d y) an

equation to the co-ordinates. Now whether this be resol

vable or not, it proves that only one description of curves,

of one order, can be such as to have the property in

question. The former operation of going back from the

expression of the central force, proves that the conic sec-
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tions answer this condition. Therefore no other curves

can be the trajectories of bodies moving by a centripetal

force inversely as the square of the distance.*

It may be remarked that J. Bernouilli objects (Mem.
Acad. des Sciences, 1710) to Sir Isaac Newton that he

had assumed the truth of this important proposition

without any demonstration. But this is not correct. He

certainly gives a very concise and compendious one ; but

he states distinctly that the focus and point of contact

being given, and the tangent given in position, a conic

section may be described which shall at that point of

contact have a given curvature; that the curvature is

given from the velocity and central force being given;

and that two orbits touching each other with the same

centripetal force and velocity cannot be described. This

is in substance what we have expounded in the above

demonstration. But it must also be observed, as Laplace

has remarked, that Newton has in a subsequent problem

shown how to find the curve in which a body must move

with a given velocity, initial direction, and position ; and

since, when the centripetal force is inversely as the square

of the distance, the curve is shown to be one or other of

the conic sections, he has thus demonstrated the proposition

in question ; so that if he had not done so in the corollary

to one problem, he has in the solution of another, f

J. Bernouilli objects also to a very concise and elegant

* The equation may be resolved and integrated ;
there results, in the first

instance, the equation d x= ^-=y and therefore the integral is this

quadratic, c3 a-
2 2 cy

1 2 e C .r + C2 + D2=0. Another demonstration is

given in the Appendix, No. 2.

f Systeme dn Monde, liv,, v. chap. 5. It is to be observed, that the

Seventeenth Prop. Book I., is exactly the same in the first as in the subse

quent editions, except the immaterial addition of a few lines to the demon

stration. Consequently, Bernouilli must have been aware of it when he

wrote in 1710.
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solution of the inverse problem given by Herrman in the

same volume of the Memoires, and which had been com

municated to him before it was presented to the Academy.

This solution proceeds upon his general expression for the

j2 x
centripetal force,

- -
-v^-j-y

2
; and the objection made

is that he works the problem (as he does in a few lines)

by multiplications and divisions which show that he was

previously aware of the solution in the case of the conic

sections. But this is no objection to a solution which being

of a problem already known, can only be regarded as a

demonstration that the former solution was exact. It is

an objection which, if valid, applies certainly to the de

monstration which we have just given of the proposition ;

but so it does to all the demonstrations of the ancient

geometrical analysis. It is a more substantial objection

that Herrman omitted a constant in his integration ; but

by adding it, Bernoulli shows that the equation which

Herrman found, when thus corrected, expresses the conic

sections generally.

This truth, therefore, of the necessary connexion be

tween motion in a conic section and a centripetal force

inversely as the square of the distance from the focus, is

fully established by rigorous demonstration of various kinds.

If we now compare the motion of different bodies in

concentric orbits of the same conic sections, we shall find

that the areas which, in a given time, their radii vectores

describe round the same focus, are to one another in the

subduplicate ratio of the parameters of those curves. From

this it follows, that in the ellipse whose conjugate axis

is a mean proportional between its transverse axis and

parameter, the whole time taken to revolve (or the periodic

time) being in the proportion of the area (that is in the

proportion of the rectangle of the axes) directly, and in



60

the subduplicate ratio of the parameter inversely, is in the

sesquiplicate ratio of the transverse axis, and equal to the

periodic time in a circle whose diameter is that axis. It

is also easy to show from the formula already given re

specting the perpendicular to the tangent, that the velocities

of bodies moving in similar conic sections round the same

focus, are in the compound ratio of the perpendiculars in

versely and the square roots of the parameters* directly.

Hence in the parabola a very simple expression obtains for

the velocity. For the square of the perpendicular being
as the distance from the focus by the nature of the curve

(the former being a2 + a x, and the latter a + x), the

velocity is inversely as the square root of that distance. In

the ellipse and hyperbola where the square of the per

pendicular varies differently in proportion to the distance,

the law of the velocity varies differently also. The square
of the perpendicular in the ellipse (A being the transverse

axis and B the conjugate, and r the radius vector) is

B2 x r B 2 x r
-r- ; in the hyperbola, -r , or those squares of
xx T J\. -J- 7*

the perpendicular vary as and . in thoseA r A + r

curves respectively, B 2

being constant. Hence the ve

locities of bodies moving in the former curve vary in a

greater ratio than that of the inverse subduplicate of the

distance, or _, and in a smaller ratio in the latter curve,Vr

while in the parabola -=. is their exact measure.v r

To these useful propositions, Demoivre added a theorem

of great beauty and simplicity respecting motion in the

* By parameter is always to be understood, unless otherwise mentioned,
the principal parameter, or the parameter to the principal diameter.
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ellipse. The velocity in any point P is to the velocity in

T, the point where the conjugate axis cuts the curve, as

the square root of the line joining the former point P
and the more distant focus, is to the square root of

the line joining P and the nearer focus. It follows from

these propositions that in the ellipse, the conjugate axis

being a mean proportional between the transverse and

the parameter, and the periodic time being as the area,

that is as the rectangle of the axes directly, and the

square root of the parameter inversely, t being that time,

ab
a and b the axes, and p the parameter, t = =, and

b2 = ap\ therefore ab = a^ap A/a3 * ^ p\ and t =

Va?, and /
2= 3

; or the squares of the periodic times

are as the cubes of the mean distances. So that all

Kepler s three laws have now been demonstrated, a priori,

as mathematical truths
; first, the areas proportional to the

times if the force is centripetal second, the elliptical orbit,

and third, the sesquiplicate ratio of the times and dis

tances, if the force is inversely as the squares of the dis

tances, or in other words if the force is gravity.

Again, if we have the velocity in a given point, the

law of the centripetal force, the absolute quantity of

that force in the point, and the direction of the projectile

or centrifugal force, we can find the orbit. The velocity

in the conic section being to that in a circle at the given

distance D as m to n, and the perpendicular to the tangent

beino1

p, the lesser axis will be -. and theO * ^ /r\OOv 2n2 m 2

greater axis
2 %&amp;gt;

*ne signs being reversed in the

denominator of each quantity for the case of the hyperbola.

Hence the very important conclusion that the length of
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the greater axis does not depend at all upon the direction

of the tangential or projectile force, but only upon its

quantity, the direction influencing the length of the lesser

axis alone.

Lastly, it may be observed, that as these latter pro

positions give a measure of the velocity in terms of the

radius vector and perpendicular to the tangent for each of

the conic sections, we are enabled by knowing that ve

locity in any given case where the centripetal force is

inversely as the square of the distance, and the absolute

amount of that force is given, as well as the direction of

the projectile force and the point of the projection, to

determine the parameters and foci of the curve, and also

which of the conic sections is the one described with that

force. For it will be a parabola, an hyperbola, or an ellipse,

according as the expression obtained for
/&amp;gt;

2
(the square of the

perpendicular to the tangent) is as the radius vector, or in

a greater proportion, or in a less proportion. This is the

problem above referred to, which John Bernouilli had en

tirely overlooked, when he charged Sir Isaac Newton with

having left unproved the important theorem respecting

motion in a conic section, which is clearly involved in its

solution.

Before leaving this proposition, it is right to observe

that the two last of its corollaries give one of those sa

gacious anticipations of future discovery which it is in

vain to look for anywhere but in the writings of this great

man.* He says, that by pursuing the methods indicated

in the investigation, we may determine the variations im

pressed upon curvilinear motion by the action of disturbing,

or, what he terms, foreign forces; for the changes intro-

* See a singular anticipation respecting dynamics, by Lord Bacon, in De
Ang. Lib. III., under the head Translation of Experiments. It was pointed
out to me by my learned friend B. Montague.
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duced by these in some places, he says, may be found, and

those in the intermediate places supplied, by the analogy

of the series. This was reserved for Lagrange and La

place, whose immortal labours have reduced the theory of

disturbed motion to almost as great certainty as that of

untroubled motion round a point by virtue of forces di

rected thither.*

We have thus seen how important in determining all the

questions, both direct and inverse, relating to the centri

petal force, are the perpendicular to the tangent and the

radius of curvature. Indeed it must evidently be so, when

we consider, Jirst, that the curvature of any orbit depends

upon the action of the central force, and that the circle

coinciding with the curve at each point, beside being of

well-known properties, is the curve in which at all its points

the central force must be the same; and, secondly
r

, that the

perpendicular to the tangent forms one side of a triangle

similar to the triangle of which the differential of the radius

vector is a side; the other side of the former triangle being

the radius vector, the proportion of which to the force it

self is the material point in all such inquiries. The difficulty

of solving all these problems arises from the difficulty of

obtaining simple expressions for those two lines, the per

pendicular p and the radius of curvature K. The radius

vector r being always */x~+y
2

interposes little em

barrassment; but the other two lines can seldom be con

cisely and simply expressed. In some cases the value of

F, the force, by d r and dp may be more convenient than

in others; because p may involve the investigation in less

difficulty than K; besides that p
3 enters into the expression

which has no differentials. But in the greater number of

*
Laplace (Mec. Cel. lib. xv. ch. i.) refers to this remarkable passage

as the germ of Lagrange s investigations in the Berlin Memoires for 1786.
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instances, especially where the curve is given, the for

mula -^ will be found most easily dealt with.

ii. The next branch of the inquiry relates to the de

scribing the conic sections severally, where certain points

are given through which they are to pass, or certain lines

which they are to touch. The subject is handled in two

sections, (the fourth and fifth,) the first of which treats the

case where one of the foci is given; the second the case

where neither focus is given. This whole subject is purely

geometrical; and exhibits a fertility of resources in treating

these difficult problems, as well as an elegance in the manner

of their solution, which has few parallels in the history of

ancient or modern geometry. This portion of the Prin-

cipia, however, is incapable of abridgment; and there is no

advantage whatever in resolving the problems analytically,

but rather the contrary; for with the exception of one of

the lemmas, in demonstrating which Sir Isaac Newton
himself has recourse to algebraical reasoning in order to

shorten the proofs, the geometrical process is in almost

every instance extremely concise, in all cases much more

beautiful, and less encumbered than the algebraical. The

superiority of the former to the latter method of in

vestigation in such solutions is apparent on trying al

gebraically some simple case, as that of describing a circle

through three points, or through two points and touching a

line given in position ; no little embarrassment results from

the number and entanglement of the quantities in the solu

tion. Even so great a master of analysis as Sir Isaac Newton,
in solving the problem of describing a circle through two

points, and touching a given line, could find no better ex-

- e
2 b V e

2 b 2 + e2 a 2 - d2 a
pression than x = 3 although

ct
2 a?

geometrically the construction is easy by drawing a circle
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on one segment of the line joining the given points, and

another on the given line.* These are comparatively

simple problems ; in the more difficult cases of the conic

sections this embarrassment is often inextricable, f

To illustrate the application of these important pro

blems, let us suppose that by observation we obtain three

points in the orbit of any planet, and would ascertain from

those points the position of the greater axis, and the focus

in which the sun is placed, the eccentricity of the orbit or

distance of the focus from the centre of the ellipse, and the

aphelion, or greatest distance to which in its course the

planet ever is removed from the sun ; this is easily done by
means of Prop. XVIII. (Book I.), for that enables us to

find the elliptical and hyperbolical trajectories, which pass

through given points, when one focus and the transverse

axis are given ; and thus to find the other focus, and the

centre of the curve, and the distance from the given focus

to the further extremity of the axis, which is the aphelion.

In like manner the problem which Sir Isaac Newton

calls by far the most difficult of any, and says that he

had tried to solve in various waysj, that of finding the tra-

jectory_of a comet from three observations, supposing it

to move in a parabolic orbit, is reduced by an elaborate

an3^3irBcult process of reasoning to describing a parabola

through two given points, which are found in its own orbit

from the observations. /Now Prop. XIX. of Book I.

gives an easy solution of this problem. It is only to

* The above algebraical solution is that of Prop. 43. of the Arith. Univ.,

where Props, 59, 60, and 61. are also solutions of the three first problems
of Sect. V. of the Principia, B. I.

f Maria Agnesi s Instituzioni Analitiche abounds in elegant alge
braical investigations of geometrical problems, but affords no grounds
for modifying the above remark.

J Problema hocce longe difficillimum multimode aggressus (Lib. III.

Prop. 41.).

Several other propositions are given in the first book for the purpose
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describe from each of the given points a circle, with the dis

tance of that point from the given focus as a radius, and the

straight line touching these two circles will be the directrix

of the parabola, and the perpendicular to it from the focus,

its axis ; the principal vertex being the middle point of

that perpendicular. The coincidence of the very eccentric

elliptical orbits of the comets with the parabola, makes this

parabolic hypothesis answer for determining their places

and times in the general case.

The correction of the orbit thus found is reduced to

finding the orbit of an ellipse which shall pass through

three given points, and this is done by the 2 1stpropo-

sition of Book I., or rather by the 16th lemma, to which

it is a corollary, for inflecting three straight lines from three

given points, the differences, if any, between the lines, being

given.

Sir Isaac Newton tried the accuracy of the methods

thus found upon several comets, and particularly on the

celebrated one of 1680, called Halley
s comet, from the

great labour which that mathematician, in aid of his illus

trious friend and master, bestowed upon the calculation of

its orbit. The following is a short statement of the general

result of a comparison between the places computed from

the theory, and the places found by actual observation,

in the cases tried.

of facilitating the solution of this difficult problem by another method
;

but the author informs us that he subsequently fell upon the method which

he has given in the
^third^book,

and which he prefers for its greater sim

plicity. It is, however, very Remarkable that he overlooked the important

circumstance of there being a porism connected with his solution, or a

case in which the problem becomes indeterminate and has an infinite number

of solutions
; and what is still more singular that the case of the comet is

that of the porism, so that the solution is wholly inapplicable. This

was first discovered by F. Boscovich in 1749; it being found that the solution

had thrown the comet upon the wrong side of the sun. (See Life of Sinison,~~&quot;
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First, as regards the comet of 1680, or Halley s comet.

In comparing four observations with the geometrical com

putation, Sir Isaac Newton found an error of 5 3&quot; on

an average in the latitude, and about V in the longitude.

But Halley, having afterwards made the computations

with greater accuracy by arithmetical operations, found

the average error, on sixteen observations, in the latitude

only about 52&quot;, and in the longitude 1 28&quot;. The average

error found on a comparison of the theory with twenty-

one observations made abroad, was found by Halley only

to be 50&quot; in the latitude, and 57&quot; in the longitude.*

Secondly, as regards other comets.

In the computations of the comet 1665, the error was,

on an average of eighteen observations, 8&quot; in the latitude,

and in the longitude V 25&quot;. In the latitude the errors

by excess nearly balance those by defect, the one being to

the other as 40 to 49. In the longitude, supposing the

observation of December 7 accurately stated (which, from

the error amounting to 7 33&quot;, seems very doubtful), the

errors by excess are sixteen times more considerable than

those by defect. In the comets of 1682 and 1683, on

comparing the observations of Flamstead with the theory,

the error was 1 31&quot; in latitude, and 45&quot; in longitude, for

eleven observations of the former comet, and for seventeen

of the latter comet, I 10&quot; in latitude, and 1 29&quot; in lon

gitude. But the comet of 1723 came nearer its computed

place ; the average error of latitude on fifteen observations

of Bradley, compared with the same number by Halley

himself, and Pound (his uncle), was only 21&quot;^
in the la

titude, and somewhat under 25&quot; in the longitude. It is to

be remarked that this is apparently the case in which the

* This omits the observation made 26th December, as there is mani

festly an error in the figures of that observation.

F 2
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observations were the most accurate, three eminent obser

vers checking each other, and no one observation differing

from the computation much more than by the average of

the rest, while great differences occur in all the other cases,

and give rise to a suspicion of error. For in the comet of

1683, there was one day (Aug. 15) in which the latitude

differed between three and four times, and the longitude

three times more than the average ; and in the observations

of the comet of 1665 there are several errors in longitude

of twice, and one error of no less than five times, above

the average. These particular observations, and not the

theory, then, were probably at fault in those instances ; but

they affect the general average materially.

The intimate connection between the purely geometrical

parts of the Principia, the Fifth and Sixth Sections of the

First Book, and the most sublime inquiries into the motions

of the heavenly bodies, those motions, too, which are the

most rapid, and performed in spaces the most prodigious,

may suffice to show the student how well worthy these

mathematical investigations are of being minutely followed.

Were they wholly unconnected with such important spe

culations in Physical Astronomy, and only to be regarded

as a branch of the Higher Geometry, they would deserve

the deepest attention, for their interesting development of

general relations between figures so well known as the

conic sections, for the marvellous felicity of the expedients

by which the solutions are obtained, and for the inimitable

elegance with which the reasoning is conducted. As a

mere matter of mathematical contemplation, beginning and

ending in the discovery of the relations which subsist be

tween different quantities and figures, they afford matter

of lasting interest to the geometrician. But it certainly

heightens that interest to reflect that the same skilful and

simple construction which enables us to describe a para-



NEWTON S PRINCIPIA. 69

bola through given points, or touching given lines, be

side gratifying a curiosity purely geometrical, leads us

to calculate within 20&quot; of the truth the place of bodies

revolving round the sun in orbits so eccentric that the el

lipse which they describe coincides with a parabolic line,

instead of being nearly circular like the path of our globe,

although our own distance from that luminary is near a

hundred millions of miles.

iii. We are next (to consider the motion of bodies in

conic sections which are giveny and &amp;lt;

ascending or de

scending in straight lines under the influence of gravity ;

that is, the velocities and the times of their reaching given

points, or their places at given times. This branch of the

subject, therefore, divides itself into two parts, the one

relating to motion in the conic sections, the other to the

motion of bodies ascending or descending under the in

fluence of gravitation. The Sixth Section treats of the

former, the Seventh of the latter.

(1.) In order to find the place of a revolving body in its

trajectory at any given time, we have to find a point such

that the area cut off by the radius vector to that point

shall be of a given amount ; for that area is proportional/^^

to the time. Thus, suppose the body moves in a parabola,

and that its radius vector completes in any time a certain

space, say in half a year moves through a space making
an area equal to the square of D ; in order to ascertain

its position in any given day of that half year, we have

to cut off, by a line drawn from the centre of forces, an

area which shall bear to D2 the same proportion that

the given time bears to the half year, say 3 to m2
, or we

3
have to cut off a section A S P =

^
D2

, A P being the

parabola and S the focus. This will be done if A B
F 3
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be taken equal to three times A S, and B being drawn

perpendicular to A B, between B O, B A asymptotes, a

S M

rectangular hyperbola is drawn, H P, whose semi-axis or

semi-parameter is to D in the proportion of 6 to m;

it will cut the parabolic trajectory in the point P,

required. For calling A M = x and P M = y and A S

= a
; then A B = 3 a and y x (x + 3 a) = half the

square of the hyperbola s semi-axis, which axis being

36 D 2 18 D 2
fx \=

-3-^2-
=

tf-&amp;gt;

or y
( 3

+ a
)

3D2 /2 1 1

6D
equal to ,3/0m

X X-

3 -D 2
m, , 2 1 , ,

3D 2

r . Therefore - x y ^ (x a) y 2

2 211
and -

, A M x P M =
^

x y ; and -
(x
-

a) y = -

SM.PM=SMP; therefore the sector A S P= 3 D 2

so that the radius from the focus S cuts off the given area,

and therefore P is the point where the comet or other

o

body will be found in
^ parts of the time.

If the point is to be found by computation, we can

easily find the value of y by a cubic equation, ?/
3 + 3 a2
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18 a2 D2

y -^ s an(^ making B L = y} L P parallel to

A M, cuts A P in the point P required. Sir Isaac

Newton gives a very elegant solution geometrically by

bisecting A S in Gr, and taking the perpendicular G K
to the given area as 3 to 4 A S, or to S B, and then

describing a circle with the radius R S ; it cuts the para

bola in P, the point required.* This solution is infinitely

preferable to ours by the hyperbola, except that the

demonstration is not so easy, and the algebraical de

monstration far from simple.

It is further to be observed, that the place being given,

either of these solutions enables us to find the time.

3 D2

Thus, in the cubic equation, we have only to find ^-.

It is equal to - -
5

-
; and as D 2

is the given integer,

or period of e. g. half a year, the body comes to the point

P in a time which bears to D 2 the proportion of unity to

if -f 3 a2
?/

Sir Isaac Newton proceeds to the solution of the same

important problem in the case of the ellipse, which is

that of the planetary system, and is termed Kepler s

problem from having been proposed by him when he had

discovered by observation that the planetary motions were

performed in this curve, and that the areas described by
the radii were proportional to the times. In the parabola

which is quadrable and easily so, the area being two-

thirds of the rectangle under the co-ordinates, the solution

of this problem is extremely easy. But the ellipse not

* The most singular relation subsists between the hyperbolas and pa

rabolic areas, giving rise to very curious Porisnis connected with Quadra
tures. See Phil Trans. 1798, part ii.

F 4
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admitting of an expression for its area, or the area of

its sectors, in finite terms of any product of straight lines,

the problem becomes incapable of a definite solution.

Newton accordingly begins his investigation by a lemma,

in which he endeavours to demonstrate that no figure of

an oval form, no curve returning into itself and without

touching any infinite arch, is capable of definite quadrature.

It is rarely, indeed, that the expression
ff

endeavour,&quot; can

be applied to Sir Isaac Newton. But some have ques

tioned the conclusiveness of his reasoning in this instance.

The demonstration consists in supposing a straight line to

revolve round a point within the oval, while another point

moves along it with a velocity as the square of the portion

of the revolving line between the given centre and the

oval, that is, as the radius vector of the oval from the

given centre. It is certainly shown, that the moving

point describes a spiral of infinite revolutions ; and, also,

that its radius is always as the area of the oval at the

point where that radius meets the oval. Ifthen the relation

between the area and any two ordinates from the oval to

any axis is such as can be expressed by a finite equation,

so can the relation between the radius of the spiral and

co-ordinates drawn parallel to the former, or the co

ordinates to the same axis. Therefore it wr
ill follow,

that the spiral can be cut only in a finite number of points

by a straight line, contrary to the nature of that curve.

Indeed, its co-ordinates being related to each other by an

algebraical equation is equally contrary to its nature ;

consequently the possibility of expressing the relation be

tween the area of the oval and the co-ordinates leads to

this absurd conclusion, and therefore that possibility cannot

exist ; and hence it is inferred that the oval is not quadrable.

Sir Isaac Newton himself observes that this demon

stration does not apply to ovals which form parts of curves,
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being touched by branches of infinite extent. But it does

not even apply to all cases of ovals returning into them

selves, and unconnected with any infinite branches. There

is, for example, a large class of curves of many orders,

those whose equation is y
m = ri

n x(n~ l ^ m x (a
n xn

) ; and

when m is even these curves are quadrable ; and in

every case where m and n are whole positive even num

bers, it is the equation to a curve returning into itself.

This is manifest upon inspection : forfy d x =^fn xn
~ l

(a
n xn

)* d x is integrable because the power of x with

out is one less than that of x within the radical sign ; and

because there is no divisor there can be no asymptote;

while it is plain that the - - root of an xn is impossible

when either -\-x or x is greater than a, n and m being

both whole even numbers. Wherefore the curve re

turns into itself; and as ?/
= 0, both when x = 0, and

when x = + #, or a, therefore the figure consists of two

ovals meeting or touching in the origin of the abscissae.

These two ovals admit of a perfect quadrature; the in-

m m + 1

tegral being C -
n(m + l

\ (&quot;

~
*&quot; )

m Tn &quot;s if

m = n 2 the area is C J (a
2 ^2

) |, the latter

quantity being one-half of an area that has to one-third the

rectangle of the co-ordinates the same proportion which the

difference of the squares of the diameter and abscissa has

J5

to the square of the abscissa ; for f (a
2 x2

)
2 = ^ x y x

2-*2

The particular inquiry respecting motion in the ellipse

did not perhaps require the proposition to be proved in

the very general form in which Sir Isaac Newton has
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given it. That the ellipse cannot be squared might per

haps be sufficiently proved from this consideration, founded

upon a reasoning analogous to that on which the lemma

in question proceeds. If a curve be described such that

its co-ordinates, or the rectangle contained by the co-or

dinates, shall always bear a given proportion to the areas

of the ellipse on the same axis, this curve cannot be alge

braical, not merely because of its equation involving quan
tities not integrable (for that may be said to be the ques

tion), but because it will stop short at a given line, which

no algebraical curve can do. It will have no branch ex

tending beyond the perpendicular at the end of the axis :

and moreover its equation is known to be that of a tran

scendental curve. This reason cannot be applied to all

curves returning into themselves ; because, as we have seen

in one class, the equation to the curve, whose co-ordinates

should express their areas, is algebraical ; and also because,

in that class, the secondary curve is found to have two

branches which meet in cusps, and so do not stop short.

If described by the proportion of areas they would seem

to stop short, that property only belonging to one of their

branches ; but their equation discloses the second branch.

It is one of many instances of a truth perhaps not suf

ficiently remarked by geometricians, that curves sometimes

have particular portions to which certain properties belong

exclusively, no other part of the curve having them.

As the area of the ellipse cannot be found by alge

braical quantities, or by the description of algebraical

curves, the problem of Kepler cannot be solved otherwise

than by transcendental curves, logarithms, circular arcs,

or approximation. Sir Isaac Newton gives a solution by
means of the cycloid described on an axis at right angles

to the transverse axis of the ellipse, at a distance from

its vertex which is a fourth proportional to half the trans-
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verse axis, the focal distance, and the eccentricity, and

with a generating circle whose radius is the distance of

this perpendicular from the centre. A parallel to the cy

cloid s axis, at the point whose abscissa is to the periphery

of the generating circle in the proportion of the given

time to the periodic time, cuts the ellipse at the place

required. This solution requires a construction beside that

of the curve described ; but a cycloid may be described

which shall cut the ellipse directly at the point required.

If a circle is described on A B the transverse axis, and its

quadrant A k is cut in O, in the given ratio of the times

in which the elliptical area is to be cut ; and then a cycloid

is described, whose ordinate P M is always a fourth pro

portional to the arch O Q, the rectangle of the two axes

and the distance between the foci ; or to O Q, A B x

2 . C F, and 2 . C S, this cycloid cuts the ellipse in the

point required, P. The equation to this curve G P is simple

enough, and the construction easy ; for the ordinate is in a

given proportion to the arc Q O of the quadrant. As,

however, an arithmetical approximation by means of series

is required in practice, Sir Isaac Newton gives two me

thods, both of great elegance and efficiency.

It may be proper here to note the names given by astro

nomers to the lines and angles in ihe ellipse connected

mainly with the investigation of this problem. The sun

being in the focus S, and P the planet s place, the aphelion
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of the planet is B; the perihelion A; the arch BP, or

angle BSP is the true anomaly; BO being to the whole

circumference as the time in B P to the whole periodic

time, BO, or O S B, is the mean anomaly, and Q B, or

Q C B, is the eccentric anomaly, C being the centre of the

ellipse : A and B are likewise called the apsides (or apses),

and AB, the transverse axis, is called the line of the ap-
o r^

sides ; S C, or more generally -r-p
ig the eccentricity.

(2.) The next subject of inquiry is the comparison of

; bodies moving in a straight line towards the centre of

forces, with those moving by the same centripetal force in

the conic sections whose axis is that straight line. If the

projectile force by which a body revolves in any of those

curves round the focus as a centre, suddenly ceases, and

the body falls towards the centre of the curve, it is shown

that its place at any given time, will be the point at which

the line of descent is cut by a perpendicular from the

point of the curve where the radius from the vertex makes

its area proportional to the time consumed in the fall.

For take the parabola whose area is f sc y, and let the

distance of the point where the body begins to descend in

a straight line be C ; the parabolic sectors, which are as the

fx + 3 C\ /
times, are expressed by y x ( ~ ) f = f x y +

(C x)
~

)
or ^ x (x + 3 C) ;

and if another parabola
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with the same vertex, and with a smaller parameter, b, is

drawn nearer the straight line, its sectors are -
(x + 3C).

Now the times in the first parabola, or the areas, at

any two points referred to the abscissae x and z, being

(x -f 3 C), and ^~ (z + 3 C), the times or areas

in the second parabola will be ~ (x -f 3 C), and
^

(z + 3 C), respectively ; and therefore it is evident that

the areas at the distances x and z, in the one curve are

in the same proportion to one another with the areas in

the other curve at those distances. If the parameter be

continually diminished of the second curve, until that curve

coincides with the axis, the same proportion holds ; and

the times, therefore, in falling through the axis, will be as

the areas of the first curve, corresponding to the points of

that axis. And so it may be shown in the ellipse and

hyperbola.

Hence it follows, that in the case of the parabola, the

velocity of the falling body in any given point is equal to

that with which the body would, moving uniformly, de

scribe a circle having for its centre, the centre to which

the body is falling, and for its diameter the distance of

the given point from that centre. In the circle, the ve

locity at the given point is to the velocity in the circle

described from the centre, with the distance of the given

point for the radius, as the square root of the distance fallen

through to that of the whole distance of the point where the

fall begins. Thus let d be the distance of the given point

to which the body has fallen, D the distance of the point

at which it began to fall ; the velocity in the case of a para

bola is equal to that of the body moving in a circle, whose
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radius is ^ d
; in the case of a circle, it is to that of a body

moving in a circle whose radius is d, as A/ D d :

A/ D. And the like proportion subsists in the case of the

hyperbola.

Further, a rule is thus deduced for determining, con

versely, the time of descent, the place being given. A
circle is to be described on A S = D, as the diameter,

and another from S the centre, towards which the body

falls, with the radius . P being the point to which it
2i

has fallen, if the area S X B be taken equal to S C A,

the time taken to fall through A P is equal to the time

in which the body would move uniformly from B to X.

Hence the periodic times being in the sesquiplicate ratio

of the distances (t
= d ^) and because 2 2 = 2 A/ 2, the

time taken to fall through the whole distance to the centre

is to the periodic time of a body revolving at twice that

distance round the same centre as 1 to 4 V 2
; and thus

we can calculate the time (supposing the planetary orbits

to be circular) which any one would take to fall in a

straight line to the sun, or any satellite to its principal

planet, if the projectile motion were suddenly to cease.
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The moon in this way would fall to the earth in about four

hours less than five days.*

The inquiry is closed with a solution of the general p

blem, of which the preceding solutions for the conic sec

tions, and for the force inversely as the squares of the

distances, are only particular cases ; and the times and

velocities are found from the places, or the places from the

times and velocities, where a body ascends from or de

scends to the centre, influenced by a centripetal force of

whatever kind. On the given straight line of ascent or

descent a curve is to be described whose co-ordinates are

the centripetal force at each point of the axis, or whose

equation isy= X, X being a function of xy the distance

from the beginning of the motion. The area of the curve

at each point is f y d x=f X d x-, and if that integral is

equal to Z 2
, Z is as the velocity at the distance a x, from

the centre. Another curve described on the same axis,

... 1 . (*dxand whose equation is u = -=-, gives by its areas / -~-

=
, the time taken to move through the distance a x

;

it is equal to . This is easily demonstrated ; for, first,

if the velocity be v, and the time d t, the space being

d x, we have the force?/ = -=
; and as dt= , there-d t v

fore y = -3 , and y d x = v d v, and f y d x=
;

but

7P=.fydx\ therefore Z = -
, and the velocity is as

the area Z. Again ; for the time in the other curve ;

* It is comparing the greatest with the smallest things, to observe that the

time of the revolution of a planet round the sun, or the planetary year,

bears the same proportion to the time in which the planet would fall to the

sun, -which the square of the side of a bee s cell does to one of the six tri

angles, or to the sixth part of the rhomboidal plate. (See Appendix to vol.

i., Paley Illustrated.)
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u
2,

and v = */2 . Z ; also d t = - - = 7=
-

Therefore t =
x

- = \/2 . ^, or the time is as

the area . In these expressions, therefore, to find Z and

we have to substitute the values of X and Z in terms

of x, and integrate.

It is hardly necessary to add, that if, instead of the

velocity and the time being sought (Z and
), these are

given, and the place reached by the body be sought, we

find it by the same construction ; and ascertaining what

value of x gives the value of Z, the square root of the

area. But it may be well to note here, that if O M be

the curve, whose ordinate P M or y = X, the centripetal

force at P in. terms of A P or x, or the gravitation of

any particle of a homogeneous fluid towards S at the point

P ; then the column of that fluid whose altitude is A P
will press at P, as the area A P M O, or as v2, the square

of the velocity acquired by a body falling through A P.

iv. The next object of research is to generalise the pre

ceding investigations of trajectories from given forces, and

of motion in given trajectories, applying the inquiry to all

kinds of centripetal force, and all trajectories, instead of

confining it to the conic sections, and to a force inversely
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as the square of the distance. This forms the subject of

the Eighth Section, which therefore bears to the Third,

Fourth, Fifth, and Sixth, the same relation that the con

cluding investigation of the Seventh Section (on rectili

near motion influenced by centripetal force) bears to the

rest of that section.

The length at which we before went into the solution

of the problem of central forces (inverting somewhat the

order pursued in the Principia) makes it less necessary to

enter fully into the general solution in this place. TTe

formerly gave the manner of finding the force from the

trajectory in general terms, and showed how, by means

of various differential expressions, this process was faci

litated. It must, however, be remarked, that the inverse

problem of finding the trajectory from the force, is not

so satisfactorily solved by m^ns of those expressions.

For example, the most general one at which we arrived of

vy + (
x - of xdx^.d^i, C

f + (*
~ *T

the force inversely as the square of the distance, presents

an equation in which it may be pronounced impossible to

separate the variables so as to integrate, at least while

d X, the differential of ~, remains in so unmanageable a

form; for then the whole equation is , ,
-

-,

-
x , N ,

2 (ydx (x a) d yj

= =, and thus from hence no equation to

(f + (x- of) i

the curve could be found. It cannot be doubted that Sir

Isaac Newton, the discoverer of the calculus, had applied

all its resources to these solutions, and as the expressions

for the central force, whether
3 =~, or

3 ;T
&amp;gt;

or
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n (in some respects the simplest of all, being

taken in respect of d t constant, and which is integrable

in the case of the inverse squares of the distances, and

gives the general equation to the conic sections with sin

gular elegance), are all derivable from the Sixth Propo

sition of the First Book, it is eminently probable that he

had first tried for a general solution by those means, and

only had recourse to the one which he has given in the

Forty-first Proposition when he found those methods un

manageable. This would naturally confirm him in his plan

of preferring geometrical methods ; though it is to be ob

served that this investigation, as well as the inverse pro

blem for the case of rectilinear motion in the preceding

section, is conducted more analytically than the greater

part of the Principia, the^reasoning of the demonstration

conducting to the solution and not following it synthe

tically.

A is the height from which a body must fall to acquire

the velocity at any point D, which the given body moving
in the trajectory V I K (sought by the investigation) has

at the corresponding point I ; D I, E K, being circular

arcs from the centre C, and C I= C D and C K= C E.

It is shown previously that, if two bodies whose masses are

as their weights descend with equal velocity from A, and

being acted on by the same centripetal force, one moves

in V I K and the other in A V C, they will at any cor

responding points have the same velocity, that is at equal

distances from the centre C. So that, if at any point D,
D b or D F be as the velocity at D of the body moving
in A V C, D b or D F will also represent the velocity at

I of the body moving in V I K. Then take D F=y as

the centripetal force in D or I (that is, as any power of

the distance D C, or a x, V C being a, and C D, x)
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V D F L will be/y d x. Describe the circle V X Y with

C V as radius. Let V X= z, and Y X will be d z, and N K

x d z=
~~^~

Tlien I C K being as the time, and d t being

constant, that triangle, or
IC * KN

, is constant, and

K N is as a constant quantity divided by I C, or as Q*

If we take - to VA VLB (proportioned to the force at

any one point Y and therefore given), as K N to I K
therefore this will in all points be the proportion ; and the

squares will be proportional, or fy d x :Q?::I K 2
, or

C

K N 2 + I N 2
, to K N 2

; and therefore / y d x -
: :: I N 2

, or rf
2

Therefore

G 2
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Q d x x2 d z

V
x

&amp;gt; a (twice

_
the sector I C K)= /~ ~T) 2 Agam a az

O 7 Q99 j j x2 d z a2 a 1

:: a2
: x2

; and adz x __ = _ x

^~V 1

= twice the sector Y C X.

^
Hence results this construction. Describe the curve a b Z,

n
such that (D b= u) its equation shall be u=

and the curve a c x such that (D c=&amp;lt;p)
its equation may

be
&amp;lt;p

=
/&quot;&quot; T~

=
132~- Tnen tne differentials of

the areas of these curves, or udx and
&amp;lt;p

d x, being respec-

\c^ d x v tt ax
tively &quot;~A. ^ _ Q* and

// ,7 _^I and
^u \/ ^* V

*&quot;

J?

, x2 d z ^ adz ,

those being equal to and &amp;gt; or the sectors which

are the differentials of the areas VIC and VX C, the areas

themselves are equal to those areas ; and therefore from

V X C being given (if the area c D V a be found), and

the radius C V being given in position and magnitude, the

angle V C X is given ; and from C X being given in

position, and C V in magnitude and position, and also

the area CIV, (if V D b a be found), the point I is

found, and the curve V I K is known. This, however,

depends upon the quantities made equal to u and
&amp;lt;p



NEWTON S PRINCIPIA. 85

severally being expressed in terms of x, for this is necessary

in order to eliminate y from the equations to these curves ;

and then it is necessary to integrate these expressions; for

else the angle Y C X, and the curve V I K, are only ob

tained in differential equations. Hence Sir Isaac Newton

makes the quadrature of curves, that is, first the inte

gration of/y d x, to eliminate y, and then the integration

of the equations resulting in terms of u and x9
&amp;lt;p

and x

respectively, the assumptions or conditions of his enun

ciation. The inconvenience of this method of solving the

problem gave rise to the investigations of Hermann and

Bernouilli. The equation of the former, involving, how

ever, the second differential of the co-ordinate, is to the

rectangular co-ordinates; that of the latter is a polar

equation, in terms of the radius vector and angle at the

centre of forces.

To illustrate the difficulty with which this method of

quadratures is applied, in practice take the case of

the centripetal force being inversely as the cube of

the distance ; then y = ~ and the curve B L F is

quadrable. If we seek the circle Y X Y by rectangular

co-ordinates X O, O Y, we find the equation to obtain

O Y = D in terms of x, is of the form

Q a2 d

(c being the constant introduced by integratingfy d x\
Now there is no possibility of integrating these two quan
tities otherwise than by sines, and we thus obtain, nor

can we do more, the following equation to D in terms of x\
* o 3
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a - D

x arc cos.
,
_

+ 2 Q2 V2 c - x

And if we get D from this, in terms of cos. x9 we have

then to obtain P C by similar triangles, and from I P C

being right-angled and I C = x, to obtain P I, in order to

have the curve V I K.

But if we proceed otherwise, and instead of working

by quadratures, take v the velocity of the body at I, or

gi

in the straight line at D, and make
^

the area described

in a second, and the angle V C I, we obtain as a

(* d 3T

polar equation to V I K, d = =. (x beingx v 4 x 1 v2 c2

in this case both C D and the radius vector). Then,

to apply this general equation to the case of the centri

petal force being as , let the force at the distance 1 be
X

put equal to unity, and supposing the velocity of pro

jection to be that acquired in falling from an infinite

height, the equation to the trajectory becomes

c d x , . . ,

and interatin, =
2

, .

x Vl c2 v 4 c

, x
x log. -.

The whole subject of centripetal forces, inverse and

direct, under the four heads which we began by stating,

has therefore been (Jiscussed, but always upon the assump
tion that the bodies acted upon move in orbits which

remain at rest, and thus that the axis of the curve which

they describe remains constantly in the same position.

Another subject of inquiry is presented to us if that axis
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itself moves, revolving round the centre of forces, and

we are required to ascertain the line in which the body
moves in this moving orbit, as related to the line described

by a body moving in a fixed orbit ; or conversely to

ascertain the motion in the two orbits. This subject

divides itself into two branches, according as the planes

in which the motions are performed pass through the

centre of forces or not. Motions in the planes of the

centre form the subject of the Ninth Section ; the Tenth

treats of motions in eccentric planes. Under the former

division, a principal object of investigation is that which

indeed measures the orbit s motion, and is identical with

it, the motion of the apsides ;
in other words, the positions

successively taken by the two points of the revolving

orbit, where the tangents are perpendicular to the axis,

and where, consequently, the moving body begins to

come back towards the centre from its greatest distance

in that direction of the axis ; while, under the latter

division of the subject, a main point of discussion is the

vibration of pendulums.

i. If a body, revolving round a centre of forces, is acted

upon laterally by any other force beside the centripetal and

the centrifugal (or tangential), though the centre may re

main fixed, the orbit will not remain so. The axis of the

curve described will move forward or backward, according

to the direction of the disturbing force. This motion of the

axis is considered as a revolving motion of the orbit, and is

the subject of our present consideration. The great prac

tical importance of the inquiry will presently be shown.

Suppose a body moves in an ellipse that is very nearly a

circle, the centripetal force being inversely as the square of

the distance; the centrifugal force is in the direct proportion

of the square of the velocity and the inverse proportion

of the distance, jointly ; that is, ( being the distance,

G 4
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and v the velocity in a circle,) as ; and v being as -,
a a

the centrifugal force is as -3, or inversely as the cubes
CL

of the distances. A C B is the fixed ellipse ; a C b, the

one described by the body under the influence of a

disturbing force, or in any other way made to move

in an orbit whose axis, I S, or line joining the apsides a,

b9 is revolving round S. Suppose the angular motion

of the second ellipse to be in a given proportion to

the motion of the body in the first, or that sp being

equal to S P, the angle B S P is - of the angle b S p.

The difference of the centrifugal forces of the two bodies

must be equal to the difference of their centripetal

forces. Calling T and t the centrifugal forces in the

fixed and moveable orbits respectively; C and c the

centripetal forces; T t C c, and c = C + t

T. But T : t in the proportion of the squares of the

velocities, or of the angular motions, that is as m2
: n2

and T t : t : : m2 n2
: n2

; and because the centri

fugal forces are at different distances, inversely as the

cubes of those distances, therefore the difference of those

forces in the two orbits, being in a given ratio to either
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of them, must be inversely as the cube of their common

distance from the centre, or of the altitude of the revolv

ing body in its orbit. Hence it follows that d being the

common altitude or distance, and P the parameter, the

force required to move the body in the moveable ellipse
O T^l / 9 O\m 2

r(n* m z

)
, , .

,
. ,

_

is as -j2 x pTa 9 anc^ conversely, if such is the force,

the motion will be in a moveable ellipse : And again,

if a be the transverse axis of the ellipse, the forces in

the fixed and in the moveable orbit will be to each other as

nf d .

=- and
.p. (ft

2 m 2
) TT&quot;

. ,, -. Hence, m order that

a body may move in a moveable ellipse, or an arc which

advances or moves round in the direction of the body s

motion, the centripetal force must vary in a higher propor
tion than the inverse square of the distance, but less than

the cube ; and that the body may move in a retirincr

ellipse, or an arc which moves round in a direction

contrary to that of the body s motion, the centripetal force

must vary in a less proportion than the inverse square of the

distance.

From these propositions, Sir Isaac Newton is enabled

to ascertain the proportion of the centripetal force to

the distance, when the motion of the elliptical axis, that

_is^of_
the apsides, or extreme points of it, shall be given ;

and conversely~&quot;to ascertain the motion of the apsides

when the proportion of the centripetal force to the dis

tance is given. Let
&amp;lt;p

: be the proportion of the angular
motion by which the body in the moveable orbit comes

round to the same lines of apsides, to the angular motion

of one revolution, or 360; then the centripetal force will

be as the power of the distance d, which is represented

by ?5 3. Thus, if
&amp;lt;p

=
6, or the axis of the move-
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able orbit moves only through the same space with the

axis of the fixed orbit, that is if the moveable orbit coin

cides with the fixed, then the centripetal force is as

d 1
- 3 = d~ 2

-y-2 ;
and conversely, if the central force is

as Tg, the line of the apsides has no motion whatever.

Hence the important proposition, that the inverse square

f.of the distance, the actual law of gravitation, is the only

/ proportion which prevents the line of the apsides from

I moving at all. Again, if
&amp;lt;p

: :: 363 : 360, or the line of

the apsides advances three degrees in each revolution,

then the centripetal force is between the inverse square and

inverse cube of the distance, but much nearer the for-

2

mer; for -^
3 becomes nearly equal to 2 |7, or about

2-
5

-
1

T . But suppose the excess of the angle between the

axes in one orbit over that angle in the other orbit to

2

be only 11&quot; 53
&quot;,*

then -
2

3 becomes equal to 2
JTJ 77r ,

or say 2^^^, and the force as
g

,
-. In like man

g
,

ner, if some extraneous force is impressed upon the revolv

ing body, from knowing the amount of that force we

can find the motion of the apsides, and conversely. It

is found by following the method of Sir Isaac Newton,

that the advance in a single revolution on the suppo

sition of the disturbing force being to the centripetal force

as 1 to 357-45, is equal to 1 31 28&quot;.

Now it is found that in the planetary motions these

* The amount of 12&quot; is often given for the advance of the axis of the

earth s orbit
; but we have followed Laplace s number of 36&quot; 7

&quot;,
which

on the sexagesimal scale is 1 1&quot; 89
&quot;,

or 1 1&quot; 53 &quot;. This small difference makes

a difference of 1000 years in the total revolution.
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variations of the centripetal force actually take place. The

action of the sun, for example, upon the moon, while

she is acted upon by the earth, coincides with that of

the earth in some parts of her orbit, and in some parts

opposes this action, thus alternately adding to and taking

away from the force of her gravitation towards the earth ;

and this increase and diminution is greater at the greater

distances of the moon from the earth. Hence the pro

portion of the centripetal force which keeps her in her

orbit, is somewhat different from the exact ratio of the

i

inverse square of the distance. There is more taken

away from this centripetal force by the sun s action

while the bodies are placed towards each other in one

direction, than there is added when in the other position ;

and therefore there is a total diminution of the moon s

gravitation, or the centripetal force decreases in a somewhat

higher ratio than as the square of the distance increases ;

in other words, the denominator of the expression -^
1S

greater than this exact power of d, which we have seen

keeps the orbit and its axis fixed with respect to the

centre, which in this case is the centre of the earth.

Hence this axis of the moon s orbit revolves in the

direction of the moon s motion, and in a certain period

makes a complete revolution. So that at one time,

half this period, the moon s greatest and lea:t distances

from the earth (her apogee and perigee) have changed

places, and at the end of the period they resume their

former position. The amount of this motion of her

apsides is about 3 in each revolution, or 39 in a year ;

so that the axis of her ellipse revolves in nine years ;

and the centripetal force is not as -^ but , nearly
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the proportion above shown to belong to a progression

of the apsides, equal to 3 in a revolution. In like

manner the orbit &quot;of the earth is not immoveable, owing
to the disturbing forces of the larger planets, Jupiter,

Saturn, Mars, and Venus. But the disturbance here is,

of course, incomparably more minute. The apsides of

the earth s orbit only move 11&quot; 53 &quot;

in the year, instead

of 39 ; and the expression for the centripetal force is there

fore, as we have seen above, the inverse not of d^9 but

of d2
6oso&amp;lt;j. The axis of the earth s orbit thus revolves in a

period of about 109,060 years.

It is, however, to be observed that, although this motion

of the axis of the earth s orbit is the result of the theory

of gravitation, and indeed affords a new proof of it, Sir

Isaac Newton did not himself consider it as worthy of

attention. He regarded it as indicating so very minute

a deviation from the law of the inverse square of the

distance, as not to alter sensibly the form and position

of the orbits resulting from thence. He therefore did

not give any calculation respecting it. To say that he

was ignorant of it, or that he affirmed the absolute

quiescence of the planetary apsides, as some have done *,

is wholly erroneous. The statements and methods in

the Forty-fifth proposition and its corollaries are quite

general, applying to all bodies acted on by disturbing

forces ; so is the Sixty-seventh, with the Sixth, Seventh,

and Eighth corollaries, of general application ; and even

in the proposition (the Fourteenth of the Third book) in

which he affirms that the aphelia and nodes of the orbits

are at rest, he refers to inequalities arising from dis

turbing forces, while in the scholium that immediately

follows he expressly states the motion of the aphelion of

*
Bailly, Hist. Ast. torn. ii.
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Mars, and collects from thence that of the Earth, Venus,

and Mercury, by the law which regulates the motion of

the apsides, namely, the sesquiplicate proportion to the

distances. By this he makes the motion of the Earth s

aphelion 17 40&quot; in a century, or 10&quot; 36&quot; yearly, being

not a second and a half different from what it is now

understood to be.

The calculation of the motion of the moon s apsides,

however, which he deduced from these propositions, differed

widely from the truth. He made it, as we have seen,

amount to little more than a degree and a half each revo

lution*, or about one-half of the truth ; and for the dis

crepancy between the theory and the phenomena he seems

to have failed in accounting. Others, in the earlier part

of the eighteenth century, having applied to the subject

a different investigation, but founded upon his principles,

obtained a different result, but erring by excess ; for they

made the motion 3 27 each revolution, or nearly 45 in

the year instead of 39. About the year 1745 the three

great mathematicians of that age, Clairaut, Euler, and

D Alembert, investigated the subject ; and applying the

whole resources of analysis to its discussion as a case of

the problem of three bodies, obtained general solutions of

great beauty. However, they still found the theory differ

with the fact nearly as much as Newton himself had done;

and Clairaut was even driven by this to devise a new law

for the purpose of explaining the apparent discrepancy. He

supposed the centripetal force to be not as -j-2
but as

-TJ + -74*
In a very short time, however, he candidly

gave up this theory, and announced the important fact

that he had found the whole error to arise from his hav-

* 1 31 28&quot;.
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ing in his approximation neglected some quantities as

extremely minute, and supposing they could not affect the

result, whereas one of the quantities upon which the

result mainly depends, having a small numerator, is nearly

doubled by the introduction of the quantities omitted.

Upon again going through the investigation without those

omissions, this great geometrician had the satisfaction of

finding that the result made the motion of the moon s

apsides agree with the fact ; and both Euler and D Alem-

bert now found that in their solutions they had, by a

singular coincidence, fallen into the same error. Laplace

has since in his great work* given a complete investi

gation of the problem, and the results to which he is

conducted by the theory are also most satisfactory. He
finds the amount to differ only one four hundred and

forty-fourth part from that given by observation, which,

reduced to our sexagesimal degrees, is only a difference

of 24&quot; 12 &quot; from the observed amount. His solution

in the case of the nodes does not come so near the

observation ; it is only correct within the 350th part ;

and yet the success of the theory in the case of the nodes

was always reckoned its great victory in the hands of its

author, while the case of the apogee cast some doubt

upon it. Laplace made a discovery in the course of this

inquiry of a similar variation in the apogeal movement,

and that it becomes slower at the rate of 15&quot; in 100

years, which the recent observations confirm.

It was certainly impossible for the Newtonian theory

to obtain a more brilliant triumph. f But it deserves to

* Mec. Gel. liv. vii. s. 16.

f For Clairaut s papers, see Mem. de 1 Acad. des Sciences, 1745 and

1748. But there is an admirable paper of the same illustrious mathema
tician on the motions of the orbits in the Mem. for 1754. The first cited

volume contains both Clairaut and D Alembert s famous investigation

of the problem of the three bodies, to which reference is made in the text
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be mentioned, that the statement made by Bailly is even

more incorrect upon this subject of the moon s apsides than

upon the motion of the planetary axis. He asserts that

Newton represented the theory as (

giving the quantity

of the moon s apogeal motion with exactness ;

&quot; and that

this having been a mere dictum of his without a demon

stration, philosophers waited to find it proved by subse

quent inquiry, as the theory had been on so many other

points. The great inaccuracy of the substance is assuredly

not rendered the less distasteful by the manner of this

statement. &quot; II avait souvent parle a la maniere des pro-

phetes qui disent ce qu on ne peut voir : alors c est la foi

qui croit, il faut que la raison se soumette.&quot; (Hist, de

TAstron. iii. 150.) Newton never asserts anything which

may not, from what he himself lays down, be strictly

demonstrated. He certainly leaves much to be supplied ;

but he never leaves the reader who would, with due know

ledge of the mathematics, follow his reasoning, to trust

his word. Even the scholium at the close of the Lunar

theory (after Proposition xxxv. B.
iii.), where more of

the investigation is omitted than perhaps in all the rest of

the Principia together, may be followed argumentatively

by a learned and diligent reader, as the Jesuits have shown

in their inimitable commentary upon it. But touching
the particular instance referred to by Bailly, nothing can

be more contrary to the fact than his statement. Sir

Isaac Newton in the general proposition which we have ana

lysed above, after finding that any body acted upon by a

disturbing force in the given proportion to the centripetal,

will have by the theory a progressive motion of its apsides

equal to 1 31
28&quot;, although he had not in the whole

as having been undertaken by them and Euler at the same time. See

Life of D Alembert, p. 427., where the history of this celebrated investigation
is given at length.
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corollary made any particular application to the moon s

motion, adds,
&quot; the apsis of the moon has a velocity twice

as great nearly
&quot;

(apsis lunas est duplo velocior circiter),

(Cor. 2. to Prop. xlv. B. i.);* and though in the propo

sition in which he applies his theory to find the disturbing

force of the sun, (xxv. B. iii.) he finds it to be to the cen

tripetal force as 1 to 178J nearly (or double what he

had argued upon in the former proposition), he is so far

from deducing from thence any inference that the apsides

by the theory move 3 in each revolution, that he makes

no application at all of the proposition to finding their

motion. But in the celebrated scholium where he sums

up all the disturbances, he treats of this motion, and he

expressly shows that it only comes out to be anything

like the true motion of 3 by an assumption contrary to

the theory ; that is, by taking not the true equation to the

sun s mean motion, but the equation on the hypothesis of

its following the inverse triplicate ratio. The words above

quoted from the general proposition upon the apsides in

the first book, are quite sufficient to protect Newton s

memory from any such aspersion as that now under con

sideration.

It may further be remarked, that Bailly s general

criticism on Newton s whole investigation of the moon s

motion is singularly unfortunate. He represents him

as having only given a rough sketch of the subject,

leaving others to fill up. He says, that this is the

part of Newton s work most involved in obscurity; that,

concealing the route he pursued, he plainly has not

taken the problem in its full extent, but only shown ge

nerally, and by a few examples, that those irregularities

could be deduced from the theory; though he renders

* It is remarkable that these words are not in the first edition of the

Priucipia.
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ample justice to Newton s transcendent merits in other

respects. But here Bailly has a far higher authority than

his own against him, justly as his own name is held in

respect. Laplace, in his earlier writings*, had seemed

not sufficiently impressed with the inestimable value of

that part of the Principia; and had, while he distinctly

gave the work at large the f

pre-eminence over all other

productions of the human understanding,&quot; yet appeared
to regard the theory of disturbed planetary motion, and

especially of the moon s motion, as a sketch left for others

to complete when the calculus should be more improved.
Yet in his last work, the concluding part of the Me-

canique Celeste, published the year before his death, he

distinctly declares this very portion of the Principia to

be among the greatest monuments of the author s genius.
&quot; Je n hesite point a les regarder (recherches sur la theorie

de la lune) comme une des parties les plus profondes
de cet admirable

ouvrage.&quot;f

It remains, however, that we mention an unaccountable

statement of the truly great geometrician whom we have

last cited. In treating of the history of the lunar theory,
he says that Newton, when seeking the correction of the

sun s disturbance of the moon s gravitation towards the

earth,
&quot;

supposes that disturbance to be 3 17 of the moon s

gravity, or that which results from the observed amount of

the lunar
apogee.&quot; (Mec. Cel. lib. xv. chap. 1.) For this

he refers to Book iii. Prop. iv. of the Principia, which is

evidently a wrong reference, that proposition, and indeed

that part of the book, treating of other subjects. Nor can

any place be found that Laplace could have had in his

view, except the Twenty-first proposition of the Third

*
Systeme dn Monde, liv. v. chap. 5.

f Mt-c. Ccl. liv. xvi. chap. 1.
; published in 1825.

II
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book, in which the sun s disturbing force on the moon s

motion is investigated. But respecting that proposition,

it is wholly inaccurate to say that he there makes any

hypothesis or assumption of the proportion between the

disturbing force and the moon s gravity; for he deduces the

proportion of 1 to 178f , (or which is nearly the same thing,

2 to 357,) from the duplicate ratio of the periodic times, and

deduces it as a consequence of the Seventeenth corollary to

the Sixty-sixth proposition of the First book, which corol

lary comes easily from the Second corollary of the Fourth

proposition of the First book. It is, therefore, wholly

impossible to represent that position as a mere assumption

to suit the observation of the moon s actual variations.

ii. The next subject of consideration is the motion of bo

dies along given surfaces, not in planes passing through the

centre of forces, to which case our inquiries have hi

therto been confined.

Let a body move in any plane, in a trajectory, by a force

directed towards a centre out of that plane, and we are

to examine its motion under two heads, as we did the mo
tion of a body when the centre was in the plane of the tra

jectory ; that is, first, the curve described by the given force;
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and next the force, with the velocity, when the curve is

given.

For this purpose, let P be the perpendicular S C to the

plane from S the given centre, this being the shortest

line from the point to the plane ;
D the distance S P from

the centre to any point P of the curve; the distance C P= d

of that point P to the centre in the plane, that is, to the

point C where p falls on the plane; and let F, the central

force, be represented by R S. It is evident that the force

R S, acting in the line P S (without the plane), is com

pounded of two, R K and S K, of which R K only can

have any effect on the motion in the plane, the other S K
which tends to draw the body out of the plane being by the

supposition nothing, because the body moves wholly in the

Q Ti /^
T&amp;gt;

plane C P B E. But by similar triangles, R K= p-g

= -^ ; therefore if the proportion of the centripetal force

to the distance be known, that is, if F = D M
, RK = d.

D&quot;-
1
. But D 2 = d2 + p

2
, and D = Vd2

+p* ; therefore

R K, the force acting at P towards the centre C, is d x

(d
2 + p

2
) ^, which gives it in terms of the distance C P,

and the given line S C. Thus if the central force is as

the distance S P, the force acting towards the centre

becomes equal to d, or as the distance on the plane. So if

the central force is inversely as the distance, then n 1,

and the force to the centre on the plane is ^ r

-=
2&quot;,

and if it is inversely as the square of the dis-

tance, the force on the plane is ; -. But the
&amp;lt;&amp;gt; + p*)?

central force being given in the plane, the investigation
H 2
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is reduced to that formerly explained, for finding motions

and trajectories when the centre is in the same plane with

the motion. Hence in the case first put, of the force to

wards S being as D, and the force towards C being, con

sequently, as d} it follows from what was formerly shown

respecting motion in the same plane, that the curve de

scribed on the plane of the centre C, or P B, in this case is

an ellipse ; that the times in which the ellipse is described

will be the same in whatever plane the bodies move; and

that if the ellipse, by lengthening its axis indefinitely,

becomes a straight line, the vibrations of the body in that

line will be performed in equal times to and from the centre

on both sides of it.

By a somewhat similar process, we find the motion and

trajectory of a body moving on a curve surface, by a force

directed towards a given centre in the axis of the solid of

revolution which forms that curve surface. It is first

shown, that if from any point of the trajectory P g H on

the curve surface (which being a curve of double curvature

we shall call the double curve), a perpendicular g o be

drawn to the axis C S, and from any other point of the

axis there be drawn a line equal and parallel to g o, as C p9

C p will describe areas proportional to the times. By
means of this proposition and the former ones respecting

motion in the same plane, we are enabled to find the curve

P p h on the plane P B E, the points of which curve are,

as it were, a projection on that plane of the trajectory, or

double curve, P g H ; and having found P p h, the double

curve is found by drawing perpendiculars to the plane

P B E, from the curve P p h to the curve surface P G E,

whose form is given. Thus suppose the solid to be a cy

linder, in \vhich case the curve P p h will be the circle which

is the section of the cylinder ; then if the central force

acts (by S being removed to an infinite distance) in lines
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parallel to the axis, and we suppose the body to begin its

motion in the double curve P g H, with the same velocity

as that given or central velocity, with which it would

describe P p h, the double curve is found by taking the

ordinates p g in a given proportion to the square of

P p-
the circular archPp, or as ; and consequently Pg H

is a species of quadratrix described on a cylinder.

The motion of pendulums is evidently a case of motion

in a curve surface by a force directed towards a point in

the axis of the solid, of which solid the curve described

by the pendulous body is a section ; and Sir Isaac Newton

discusses this subject fully. As subservient to this in

quiry, he gives some important properties of the cycloid,

or rather of the hypocycloid and hypercycloid : For he is

not satisfied with the investigation, which is sufficiently

easy, of the ordinary cycloid s properties, the curve de

scribed by a point in a circle or wheel running along

a straight line, but examines what is more difficult, the

properties of the hypercycloid and hypocycloid, or the

curves described by a wheel moving on the convex, and

the concave great circle of a sphere respectively. Of these

properties the most important is this. If D be the dia

meter of the sphere, and d that of the wheel, the length

of the hypercycloid is equal to four times
yy

x (D + d),

or four times the length of a fourth proportional to the sum

of the two diameters, the wheel s diameter and the sphere s.

It is then shown how a pendulum may be made to vi

brate in a given cycloid, or rather hypocycloid, namely, by

taking a distance, which is a third proportional to the

part of D, which the hypocycloid cuts off (that is, the

distance of the hypercycloid from the centre of the

H 3
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sphere) and ; and from that distance S f

two cycloids touching the sphere, or its great circle, and

meeting in the point so found. If to that point S, a flexible

line or thread be attached and bent round one of the

cycloids SP, it will unrol itself and then bind itself

round the other cycloid S P , and its extremity will de

scribe the cycloidal curve P P required, one of whose

properties is, that all the vibrations in its arches are per

formed in equal times, however unequal the lengths of

these arcs may be, provided that the centripetal force is in

each part of the curve directly as the distance from the

centre, and that no other force acts on the moving body.

But the same solution may be generalised and applied

to any given curve whatever ; for the curves found, and

along which the flexible line is traced and from which it is

then unrolled, are the evolutes of the given curve; and are

found in each case by means of the radius of curvature,

being the curve formed by its extremity, or the locus of the

centres of the osculating circles to all the given curve s

points. If the curve in which the body is to move be a

circle, the evolute is, of course, a point, the centre of

that circle, the radius of curvature being that of the circle.

If the curve is a conic parabola, it will be found that the

evolutes, or the lines from which the pendulum s thread

must wind off, are cubic parabolas, whose equation is

?/
2= (!#)

3
, the length of the pendulum being unity. The

only case of the problem investigated by Sir Isaac Newton

is that of the cycloid, which has the remarkable property.
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that its evolute is an equal and similar cycloid, a property

which it has in common with another curve, the logarithmic

spiral, whose tangent makes with the radius vector a con

stant angle. He investigated the case of hypocycloids and

hypercycloids, rather than the common cycloids, because

it is that of the earth s gravity, which above the surface de

creases inversely as the square of the distance from the

centre, but within the sphere increases as the distance

simply.

It follows, from the propositions respecting the vibration

of pendulums, that the times of the descent of falling bodies

may be compared together and with the times of vibrations

of the pendulum : So that the time of a vibration round a

given centre being given, as a second, the time of the

falling body s descent to the centre of forces can be found,

or the equal time of vibration in the circular arch of

90 with any radius. The time is to the given time as

1 to
Y),

L being the length of the pendulum, and D

the distance from the point of suspension to the centre

of forces; and since D becomes infinite and the lines in

which the central force acts parallel, and since half the

length of the pendulum is to the line fallen through in the

time of one vibration as 1 to 9,869 nearly (the proportion

of the square of the diameter to that of the circumference),

we can easily ascertain the force of gravity at any point

by the length of the pendulum vibrating seconds. It is

found to be in these latitudes about 34 44 ; consequently
a body falls in a second through about 16 feet 9 inches.

Hitherto we have only considered the motions and tra- /

jectories of bodies acted upon by forces directed towards

a fixed centre whether in the plane of their motion or out

of that plane, and supposing that plane either to be fixed

or to be moved round the centre of forces. But as action

H 4
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and reaction are equal and opposite, by the third of the

Laws of Motion originally stated, it is evident that the

case of a fixed centre cannot exist when the attraction,

which we call the centripetal force, proceeds from a body

placed in the centre, unless, indeed, some counteracting

force shall fix this body to one point ; for if no force exists

but the mutual action of the two bodies, the central body

must be acted upon by the one which moves round it, and

its position must be affected by this action. Hence, for

example, if there were only two heavenly bodies, M and

E, and the one, M, moved round the other, E, by a pro

jectile force originally impressed upon it, the other, E,

would also move round M, unless the mass of the latter

body was infinitely small, and its attraction, proportional

to this mass, could not sensibly affect the larger body.

Again, if two bodies, the one moving round the other,

both together move round a third, S, the action of this

third will affect the motions of the other two relatively

to each other. Thus each smaller system will be affected,

both as to the motions and orbits of the bodies composing

it, by the action of the body in the common centre of the

whole; and they will also be affected by the action of

the bodies in the other systems, having the same com

mon centre. The inquiry, therefore, divides itself into two

branches ; first, the difference between the motions which

we have hitherto been considering when the centre was

fixed, and the actual motions of the system, as that of

the moon and earth revolving round each other with a

moveable centre ; secondly, the still more important dif

ference between the motions already considered, and the

actual motions, which difference is caused by the mutual

actions of the whole bodies on each, and varies both the

motions and the orbits of all.

i. Suppose two bodies mutually attracting each other
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and impelled by a single original force of projection, as E
and M, their centre of gravity being G ; it is clear that

if M moves a very small space to m by the attraction of

E, so will E move to e by the attraction of M, and the

two triangles E G e and M G m will be similar in all

respects ;
for the lines M G, m G and EG, e G are

proportional, because the segments of the lines E M and

e m are always in the same proportion, G being the centre

of gravity, and those segments, therefore, inversely as the

masses of E and M. Therefore the. curves which the

bodies describe round the centre of gravity will be entirely

similar. In like manner they will describe similar curves

each round the other, and the radius vector of each from

the other, as well as from the centre of gravity, will describe

areas proportional to the times. It follows from this and

from what was before shown respecting centripetal forces,

that the two bodies will move in concentric ellipses round

one another and round their common centre of gravity, if

the centripetal force is as the distance, and that each

will describe one or other of the conic sections, having

the other, or the common centre of gravity, in the focus,

if the centripetal force is inversely as the square of the

distance. In like manner, because of the ratio between

the squares of the periodic times and the cubes of the dis

tances, it may be shown that if T be the periodic time of

the bodies moving round their centres of gravity, and t
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the periodic time of M moving in a similar figure round

E at rest, T : t :: \/E : &amp;gt;/M + E. Further if these bo

dies move with forces inversely as the squares of the

distances round their centres of gravity, and A be the

greater axis of the ellipse described by M round E, a

the greater axis of the ellipse it would describe round

E at rest in the same time, and if M + E : m : : n : E,

then A : a : : M + E : m. Hence, if we have the periodic

times of the planets, we can find the greater axes of their

orbits by taking A3 to 3 in the proportion of T 2 to t
2

(the ellipse being supposed described round the sun), and

multiplying it by - So the masses may, likewise, be

found from the distances.

The motions and paths of bodies thus mutually acting

are now to be considered. And first our author shows,

that if two bodies act on each other, and move without any

other, or foreign, influence whatever, their motion will

be the same as if, instead of acting on one another, some

third body placed in their centre of gravity acted upon
each of them with the same force with which each acts

on the other ; and the same law will prevail (but referred

to the distances from the centre) which prevailed in their

mutual actions when referred to their distances from

each other. Suppose the bodies M and E to attract

with forces directly as their masses M and E, and in

versely as any power n of their distances, that is, suppose

their attraction to be as
n̂, and =p and that the dis

tances of the centre from M and E are C and c re

spectively ; then because C : c : : E : M, and C : C + c

(or D) :: E : E + M, a body in the centre will attract

M with a force as pp if it be equal to ..,
-

, that is



107

equal to ^p
-

^-n9 and, in like manner, it will attract

M Mn+1
E with a force equal to jp

if it be equal to.-^ ^. n.

If n= 2, or the force be as the inverse square of the

distance, the body placed in the centre will be equal to

M3

Tp
-

MV2&amp;gt;

if n~ ~~
1* or the attraction be directly as the

distance, the body will be in both the case of M and

E equal to E +M ; and if the attraction be as the square

of the distance directly, the central body will be in the

-&quot;. , .. (M + E)
2

, (M + E)
2

two cases of the two bodies,
*

^-p and v-^ -
IVI jit

respectively.

Xext as to the absolute trajectory of the bodies thus

acting on one another, or their path in space, we have

an investigation analogous to those inquiries formerly in

stituted where the centre of forces was fixed. For the

body or bodies being known (by what we have last shown)
whose mass gives at the centre the same attractions as the

two bodies exercise on each other, we can determine for

each of these bodies the path in which it will move, pro

vided we know the initial direction and velocity. Thus

let m= 2 in the last expressions, we have for the mass by
which Mis attracted towards the common centre of gravity

E3

j^f
-

pY2 ; and proceeding as was formerly shown in the

case of immoveable centres, we find that if the curve de

scribed round the centre at rest be a circle, if that centre

moves in a straight line, the orbit in space will be of the

cycloidal kind; if the centre moves in a circle, it will be

an epicycloid or hypercycloid ; and if the curve be a conic

parabola, the motion of the centre will change this into a

cubic parabola, which will thus be the path arising from
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its parabolic motion combined with the advance of the

centre of gravity. The moon in this way describes thirteen

cycloidal curves in a year, and all of them concave towards

the sun.

It appears then, that the orbits of the system composed
of our earth and its satellite, must be considered as traced,

not by either of these bodies but by their centre of gravity.

While neither body describes an ellipse round the sun, but

both revolve round each other and round their centre of

gravity, that centre itself describes an elliptical line a line

which would be a perfect ellipse if no disturbances of an

other kind than those which we have been considering in

terfered to alter the form of the orbit. To these disturbances

we now proceed.

ii. While the primary planets and their satellites are

influencing each other and while the whole motion of each

subordinate system round the sun, the common centre, is

the elliptical orbit described by the centre of gravity of

each such system, there are disturbing forces exerted on

each planet by the rest, and on the motions of satellites by
the action of the sun also; so that many sensible deviations

take place from the motions, and from the orbits, which

those bodies, both primary planets and satellites, would

have, if they moved round the common centre undisturbed ;

that is, if they described elliptical orbits round the sun

by his attraction, without any other force acting on them,

except that attraction of the sun on each planet, and

the attraction of each planet on its satellites. If no such

disturbances existed, and the only forces that acted were

the mutual actions of the primary and satellites on each

other, and of the sun on the common centre of gravity of

the primary and satellites, the centre would describe an

ellipse round the sun, and the primary and satellites

would describe ellipses round each other and round that
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centre of gravity. Such, however, is not the case ; and we

are now to consider the effects of the disturbance occa

sioned by the sun s action upon the satellites, and the

disturbance occasioned by the action of the planets onjone

another. This forms the subject of Sir Isaac Newton s

investigations in the second branch of that section which

we have been considering ;
an inquiry regarded by some

as the most extraordinary portion of the great work

which forms the principal monument of his genius. From

this opinion it is difficult to withhold our concurrence ; but

it may be admitted that here, as in the operations for find

ing orbits from given forces and conversely, the great

improvements of modern analysis have afforded easier and

more manageable methods of investigation. That this

must be true as regards the planetary disturbances, will

be apparent upon a little reflection.

The grand problem in every case is to find the precise

effect of a disturbing force upon the path of a given body

moving by a combined centripetal and projectile force;

and \vhat has been called the Problem of Three Bodies

presents the simplest case of the question, being the deter

mination of the motions of two bodies acted upon by one

another and by a third body. But though this is the

simplest case of the general question, it has been found

to present difficulties of the highest order ; and a general

and rigorous solution of it has been found to exceed the

powers of the most improved analysis. In the time of Sir

Isaac Newton, that analysis of which he was the inventor

had not attained any thing like its greatest perfection.

Hence, in grappling with the subject, he had much of

the difficulty to contend with, which made him give less

convenient formulas than we now possess for the solution

of the other problems relating to orbits and motions. The

mere improvement of the integral calculus by the advan-
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tageous approximations through series, logarithms, and

the arithmetic of sines, would have afforded important faci

lities for these inquiries ; because the solution must come

always to an integration. Accordingly Euler, D Alem-

bert, and Clairaut, availed themselves of that improve
ment to investigate the problem, as we have already seen.

But soon after their researches had led to the important
result formerly described, a great refinement was intro

duced into the calculus, which bore directly upon the sub

ject of these inquiries ; and this exceedingly facilitated

the solution of the problem in its more extended application.

We allude to the invention of the Calculation of Varia

tions by Euler and Lagrange.

We have in the introductory part of this Analytical

View explained that this calculus enables us to examine

the transition of one curve into another in certain circum

stances, by showing how those lines may be found which

have certain properties in relation to other lines of a

different kind, and thus to investigate problems with

respect to curves whose nature changes under the inves

tigation, because the relation between their co-ordinates

is variable, and is indeed the thing sought for. It is

evident, therefore, that this calculus has its immediate

application to the subject in question. For the effect of

the disturbing force is to change at each moment the

nature of the path, which, but for that force, would be

described; or the inclination of orbits to one another,

which, but for such disturbances, would subsist; or the

position in space, which, but for the disturbance, these

orbits would have. Now, those changes produced by
mutual disturbances, really comprise all the effects of the

disturbances on the planetary system. Thus, beside the

precession of the equinoxes and the motion of the apsides

and nodes, which we have just now generally stated,
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the alteration in the form of the curve includes also the

change of its eccentricity, and the acceleration or retar

dation of the motion itself. Hence, we have at once

proved that the determination of those effects which arise

from disturbing forces, is in a peculiar manner the pro

vince of this new and refined analysis, the Calculus of

Variations. Therefore, beside the facilities afforded by
the improvement of older methods of investigation, the

addition of this new instrument to our means of solving

the problem has established an entirely novel method,

and opened an almost unknown field of inquiry, from

which the original author of all these discoveries was

necessarily shut out. Instead, therefore, of minutely going
over the steps of his solution, as applied to the celestial

motions, we shall show the course which he pursued by

demonstrating its fundamental principles ; but we shall

begin by stating concisely the results of the more recent

investigations as affecting the science of physical astro

nomy, and shall reserve the fuller discussion of this subject

for the account of Laplace s work.

In considering the motions of the planets and their

satellites round the sun, we may first regard him as from

his magnitude and distance so little affected by their

attractions, that his motion is trifling, and cannot sen

sibly affect that of the other bodies ; so that he may be

viewed as at rest ; and then the smaller bodies will both

move round one another, and round the larger and more

distant body as if he were fixed. But not only will the

movement of these bodies be thus affected by their mu
tual actions ; they will also be affected in their motions round

one another by the action of the third body, the sun ; and

this action will disturb and alter their relative motions, as

regards both their velocities, the forms, and the positions

of their orbits. Thus the position of the moon s path
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round the earth is affected by the sun s attraction, -that

is, by her gravitation towards the sun, which combines

with her gravitation towards the earth to determine her

absolute motion ; and both the position of the axis of her

orbit (the line of apsides), and the position of the line

joining the intersections of her orbit s plane with the

plane of the earth s orbit (the line of nodes), are continu

ally changing ; and we have seen in a particular manner

how the apsides revolve in one period of time (about nine

years), and the nodes in another, (about nineteen years).

But there is a variation in the rate at which both the

line of the apsides and the line of the nodes revolve.

The quantity by which both of these lines advance in

each year sensibly decreases ; so that the period in which

each effects a complete revolution becomes longer and

longer. It appears that the former line revolves now 8 2&quot;

slower than in the earliest ages of astronomical obser

vation, about 25^ centuries ago ; the latter line only

1 42&quot; 14 &quot;

the former motion diminishing each century

by 36&quot; 41
&quot;;

the latter by 7&quot; 51&quot; .

It is equally found that the disturbing forces accelerate

the moon s motion by a very small quantity; or that

she revolves round the earth in a period of about 11&quot; 7&quot;

shorter than she did a century ago ; her angular velocity

being increased between the 12 and 13,000 millionth part

of her total velocity in the period of 100 years. This

makes the yearly acceleration wholly insensible ; and the

total acceleration, or shortening of her periodic time since

the creation of our species 60 centuries ago, only 11

minutes and 7 seconds, supposing it to go on as the

times ; but it increases in a lower proportion (probably as

the cube of the times); so that its total amount is more

considerable, and Laplace reckons it at about 7 30&quot; for

the last 25| centuries. This acceleration had not been
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unobserved in Halley s time, and it was discussed acutely

by Mayer ; but its cause was first discovered by Laplace :

it is the sun s action upon the moon, combined with the

variation in the orbit of the earth, the eccentricity of

which has been diminishing regularly, though by an

extremely small quantity (only V.0000007667 of the

greater axis of our orbit); so that the orbit has been

slowly approaching more and more to the circular form.

It is a great proof of the usefulness of the calculus in

these investigations, that this great geometrician appears

to have discovered the connexion between the earth s

diminishing eccentricity and the acceleration of the moon s

mean motion, by the careful examination of the mere

equation or algebraical expression. For the reciprocal

of the semi-axis of the moon s orbit -, as influenced by

the sun s attraction combined with the earth s, is found

to be represented by an expression, which, among other

terms, contains this : ^ in which a* is the

semi-axis of the earth s orbit, nf the mass of the sun,

and e the eccentricity of the earth s orbit. Consequently,

as e* decreases, increases, the term being negative;

and therefore a itself decreases as e&quot; decreases ; in other

words, the moon s orbit is diminished, and her velocity

augmented, in consequence of the earth s eccentricity

decreasing. But if the diminution of the greater axis is

not admitted as necessarily lessening the orbit, we may
recollect the relation between the times and the mean

distances, the squares of the former being as the cubes

of the latter; and the mean motion is, of course, in

versely as the periodic time. However Laplace fur

nishes us with a still closer reason, and illustrates the
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use of the calculus, as it were, by a new triumph, in

another part of the Mecanique Celeste.* For the equation

t V ,

of the mean anular motion is shown to be n = -,

t being the time, a the transverse axis, and
ju,

the sum of

the masses of the two bodies, in this case the moon and

the earth. Therefore n, the mean motion, must neces

sarily be accelerated as a, the axis, is diminished.

And here in passing, we also observe how Kepler s law

of the sesquiplicate ratio may be anew proved, but only if

we make p,
= S (the sun), and neglect the mass of the

planet. For take two planets whose mean motions are n

and n* round a third body, and their mean motions be

ing as and
\^~&amp;gt;

an(^ because (2 TT being 360),
az a?

Q n

n t = 2 TT, therefore t = , and ?=
-^-

9 or t =
3

2 TT
viw

l_
ag

, and ^JLf ; consequently
2

: ^ 2
:: a3

:
&amp;gt;3

being Kepler s law, which is thus demonstrated. But

it is only demonstrated and is only true if V ^ is the same

to both planets, that is, if
ju.
= S in each case. Now, this

may be assumed in the case of those bodies revolving round

the sun, or of the satellites of Jupiter and Saturn revolving

round those primary planets, because of the great dispro

portion between the central body and the others, (the largest

of them, Jupiter, being less than a thousandth part of the

sun.) But the law would not hold true if p were taken,

which in strictness it ought to be, as S + P, the sum of

the masses of the central and the revolving body ; for then

p. would differ in each instance, and the sesquiplicate pro-

* Liv. ii. ch. 3.
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portion would be destroyed. Hence, we arrive through
the calculus at this important conclusion, that the law only

holds, if the mutual actions of the planets on each other

are neglected, and that, therefore, the law is not rigorously

true where, as in the case of the earth and others, the

actions of the other planets are sensible.

Again, the inspection of the algebraical expressions shows

that the variation in the eccentricity of the earth s orbit

produces, likewise, the retardation of the apsides and

nodes; and this discovery was also made, apparently, by
the mere inspection of the expressions which the calculus

had furnished. Thus the expression for the motion of the

perigee (or apsides) involves the integral f e
f2 d v (y being

the true anomaly);* and this quantity is positive. There

fore the decrease of the eccentricity of the earth s orbit,

causes a decrease, also, of the perigeal motion of the moon.

And one of the terms of the equation to the motion of the

nodes contains the same integral f e 2 d v ; consequently

the same eccentricity is likewise the cause of the variation

in the period of their revolution.!

Now we have seen how extremely small these irregu

larities in the moon s motion are which the theory gives

by this analytical process, and that they are hardly sensible

in a whole century ; yet it is found that the deductions

of the calculus are in a remarkable manner confirmed by
actual observation. Practical astronomers, for example,

wholly ignorant of Laplace s discoveries, have ascertained

that the secular variation in the motion of the moon s

apsides, ascertained by comparing the eclipses in the Greek,

Arabian, and Chaldean astronomy, with those of the last

*
Angle of the radius vector with the axis of the orbit.

f Mec. Gel. liv. vii. ch. 1. This wonderful chapter is a mere series

of integrations, and contains, from the inspection of the equations, those

extraordinary discoveries respecting the laws of the universe.

I 2
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century, is about 3.3, or 33 tenths of the moon s mean

motion ; and this is the exact result of the calculus. Laplace

also discovered, chiefly by similar means, a very small

secular inequality in the moon s motion never before sus

pected, and produced by the sun s attraction.* It was

found by observing, that the divisor of some of the frac

tional terms of the equation which shows the inequality

is extremely small, and that, consequently, the irregu

larity may become sensible. A correction of the tables

Avas thus introduced by this great geometrician, in which

the theory approaches, on an average, to within J^ of

the actual observation. The sign of this inequality being

negative, it is a retardation of the mean motion, and is to be

set against the secular acceleration. It must be observed,

moreover, that the errors of the theory, as compared with

the observation, are half of them by excess and half by
defect ; so that they may be said to balance each other.

The maximum of this inequality is little more than 15&quot;,

and its period is 184 years.

Hitherto of the moon ; but we are, in like manner, con

ducted by the same refined, though complicated, analysis

to the variations in the orbits, and consequently in the

motions of the earth and of the other planets, as well as of

the satellites of Jupiter and of Saturn. The most remark

able variations produced upon these orbits are the changes

in their eccentricity and in their aphelion ;
the former

being constantly, though slowly, shortened the latter

moving round in slow revolutions, as the line of the

moon s apsides revolves, but revolves much more swiftly.

The expressions obtained in the case of any one planet

for the eccentricity and perihelion longitude (revolving

motion of the axis), are mainly composed of the masses,

* Mec, Gel. liv. vii. eh. 5.
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distances, eccentricities, and perihelion longitude of the

disturbing bodies, with the known eccentricity and longi

tude of the planet in question at a given epoch. Hence

we perceive that on these circumstances depends the varia

tion of the eccentricity and the revolution of the axis of

the planet. Thus the secular variation of the eccentricity

of the earth s orbit is 0.000045572 of e, the eccentricity

which at the epoch (1750) was 0.016814 of the semi-axis

major of its orbit ; and it has the negative sine in the

expression; consequently the eccentricity is on the decrease,

as we before observed. This diminution of the eccentricity

amounts to about 18&quot; 79
&quot;

yearly (or about 3900 miles).

We have already observed that the annual revolving mo
tion of the axis of the earth s orbit is IV 53

&quot;,
and its

period 109,060 years. The examination ef the expres

sions for these irregularities shows, as might be expected,

that Mars, Venus, and Jupiter bear the most considerable

share in producing the variations.* But it is a truly re

markable circumstance that the direct action of those

planets upon the moon s motion is hardly sensible com

pared with their indirect, or, as it is sometimes called,

reflected action upon the same body, through the medium

of the sun and the earth. For these planets, Mars, Venus,

and Jupiter, by altering the eccentricity of the earth s

orbit, very sensibly affect the motions of the moon, as we

have seen, while directly their action is incomparably less

perceptible.

The perihelion longitudes of all the other planets are

increasing, or their orbits advancing, except Venus,

whose apsides are retrograde ; and the eccentricities of

Venus, Saturn, and Uranus, are decreasing, like that

of the earth, whilst those of the other planets are on the

* Mec. Ccl. liv. ii. eh. 6, 7, 8.; liv. vi. eh. 7.

i 3
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increase. These variations are greater in Saturn than in

any of the others, considerably greater than the varia

tions of Mars, which comes the nearest to them. The

variation in the eccentricity of Jupiter s orbit is nearly three

times as great as in the Earth s ; that of Saturn between

five and six times greater than the Earth s; while the

variation in the perihelion longitude of the former is

about five-ninths of the Earth s variation; and Saturn s

exceeds the Earth s in the ratio of about 25 to 18, and

exceeds that of Mars only somewhat more than as 49

to 48.

When the attention of mathematicians and astronomers

was first directed closely to examine the disturbances of

these planets, it appeared hardly possible to reconcile such

vast and numerous irregularities, as were found to exist,

with the theory of gravitation, or indeed to reduce them

under any fixed rule whatever. The case seemed to be

come the more hopeless when so consummate an analyst

as Euler, the great improver of the calculus, failed in

repeated attempts at investigating the subject, committing

several important errors which for a time were not de

tected, but which showed, or seemed to show, a wide dis

crepancy between the theory and the observations. By
one discovery, indeed, to which his researches led him, he

may be said to have laid the foundation of the most ex

traordinary step which has been made in the knowledge

of the planetary system. We allude to his theorem on the

periodicity of the eccentricities and aphelia of Jupiter and

Saturn. But in most other respects his attempts signally

failed. D Alembert made little progress in this inquiry ;

but at length Lagrange, and still more Laplace, by apply

ing all the resources of the calculus, in its last stage of

improvement, and after the method of Variations had been

systematised, succeeded in reducing the whole to order,
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and discovered, while investigating these motions, the

great law of the stability of the universe.

The circumstance which mainly contributes to render

the irregularities in the motions of two planets great, and

which especially augments the disturbance of Jupiter s

satellites, is that their mean motions should be commen

surable, which those of Jupiter and Saturn are after a very

remarkable manner. Five times the mean motion of

Saturn are equal to nearly twice that of Jupiter ; and the

three first satellites of Jupiter are so related to each other,

that the mean motion of the first, added to twice the mean

motion of the third, is equal to three times that of the

second
; while the longitude of the first added to twice that

of the third, and subtracted from three times that of the

second, makes up exactly 180. Laplace showed, that this

proportion, if it was not originally fixed between those

satellites, must have been established by the action of the

attractive and disturbing forces *; and it is a truly remark

able thing, that when the theory had given a value for the

three mean motions, M 3 m -f 2 \L
= 0, the comparison

of the eclipses for a century was found to make the expres

sion only 9&quot;,
and consequently to tally with the theory

within that very small difference. The observation of the

effects which were produced upon the equations which

resulted from the analysis, by the proportions above stated

between the mean motions of Jupiter and Saturn, induced

Laplace to suspect that this made quantities become of

importance, which from the high powers of the denomi

nators might otherwise have been insignificant. For one

of the terms in the equation to 8 r (variation of the radius

vector of the first satellite), for example, had for its deno-

* Mec. Cel. liv. vi. ch. 1.2. 12. 13.; also for the analytical investiga

tion, see liv. viii. throughout, and liv. ii. ch. 8. s. 65.
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minator 4 (n
f

n)* N2 in which n and n are the mean

motions of the first and second satellite, and N a composite

quantity not materially differing from n , which differs

hardly at all from -, inasmuch as n= 2 n , while n =
2t

2 n&quot;
(n&quot; being the mean motion of the third satellite) ; and

hence the above denominator becoming little or nothing,

the term is of large amount ; and so of 8 v, the variation of

the anomaly.* He accordingly undertook the laborious

task of examining this complicated subject by considering

all these quantities ; and he arrived at the discovery of,

among other inequalities, a retardation of Saturn s motion

of about 3&quot; 6&quot; yearly, and an acceleration in Jupiter s

motion of about V 18 &quot;. Another irregularity in Saturn s

motion with respect to the vernal and autumnal equinox
had been observed by astronomers in the last century, and

could not be explained. Laplace found this, like all the

rest, to follow from the Newtonian theory. In short,

when summing up the subject in one of his concluding

books, he naturally and justly exclaims,
&quot; Tel a etc le

sort de cette brillante decouverte, que chaque difficulte

qui s est elevee, est devenue pour elle un nouveau sujet

de triomphe ; ce qui est le vrai caractere du vrai systeme
de la nature.&quot; f

There is no sensible disturbance produced by any
of the satellites, except the moon, upon the motion of

their primaries, from the extreme smallness of their

masses compared with those of the sun and of their

primaries; for 8 r is equal to a series in which

M M &quot;M&quot;

C are actors ea term k m

* Mec. Cel. liv. viii. ch. 1. 4.

| Ibid. liv. xv. ch. 1 Syst. du Monde, liv. v. ch. 3.

+ Ibid liv. vi. ch. 4.
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being the masses of the satellites, and M that of the

planets. Now, in the case of Jupiter =

77l

and TF are somewhat greater; but the greatest of the

miii I
four factors ^ = only. But in the case of the

earth this factor amounts to about ; so that 5 r and
oU

8 v become sensible ; and will be so, even if, in

stead of
^rr,

we take the factor ^T_ which is more

correct.*

When Laplace began his celebrated investigations of

the orbits of Jupiter and Saturn, he found that, on substi

tuting numerical values for the quantities in the expres

sion of the mean movement of the one body as influenced

by the action of the other, the sums destroyed one ano

ther, and left the whole effect of this disturbing force equal

to nothing, or the mean motion of neither planet at all

affected by the other. The formulas could be in each case

reduced to terms only involving two co-efficients ; and these

destroyed one another, f He soon found that the same

principle applies to all the heavenly bodies ; that their

mean motions and mean distances (the great axis of their

orbits) are not affected by any changes other than those

which occur within limited periods of time ; that conse

quently the length of the solar year is precisely the same

at any one period of time, as it was at a period so far

distant as to enable the changes which are produced

within those moderate limits to be effected. This impor

tant proposition he demonstrated upon the supposition,

* Mec. Cel. iv. vL ch. 10. 30.

f Ibid, livvii. ch. 7 ; liv. xv. ch. 1.
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that the squares of the masses, and the fourth powers of

the eccentricities, and the angles of the orbits, are neg
lected in the calculus.* But Lagrange afterwards showed,

that the theorem holds true, even if these quantities be

taken into the account. The examination of the moon s

motion demonstrates the same important fact, with respect

to the permanency of the greater axis and mean motion

of the planets ; for if the solar day were now F^ of a

second longer than it was in the age of Hipparchus, the

moon s secular equation would be augmented above 42 per

cent, or would be in that large proportion greater than it

now is known to be. Therefore there has not even

been the smallest change of the mean movement of the

planets.

The other changes which take place in the orbits and

motions of the heavenly bodies, were found by these great

geometricians to follow a law of periodicity which secures

the eternal stability of the system. The motion of the

earth s orbit we have already seen is so slow, that its axis

takes above 109,060 years to perform a complete revolution ;

but after that time it occupies precisely the same position

in space as it did when this vast period of time began to

run. So the eccentricity of the earth s orbit has been for

ages slowly decreasing, and the decrease will go on, or

the orbit will approach nearer and nearer to a circle, until

it reaches a limit which it never can pass. The eccen

tricity will then begin slowly to increase until it again

reaches its greatest point, beyond which the orbit never

can depart from the circular form. The same principle

extends itself to all the planets. Thus, the time of the

secular variation of Jupiter s eccentricity is 70,400 years.

All these deductions are the strict analytical conse-

* M6c. Cel. liv, ii. eh. 7. and 8. (sects. 54 and 63.)
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quences of the equations to the eccentricity of the pla

netary orbits, obtained by the investigation of the total

effect of the mutual actions of the heavenly bodies. There

results from that analysis this remarkable theorem. That

if the eccentricities of the different planets be called e, e ,

ef , &c., their masses m, m , m&quot;, &c., and their transverse

axes a, of, a&quot;, &c., and if the integration be made of the dif

ferential expression for the relation between the differentials

of the eccentricities multiplied by the sines of the longitude

and the differentials of the time, and for the relation be

tween the differentials of the eccentricities multiplied by
the cosines of the longitudes and the differentials of the

fdesin. r , d e&quot; sin.^ decos.^ , de^cos.
tune

&amp;gt; ( -jrr^
and

-dir* ~dt~ and
si

&c., we obtain the equation e1
. m . ^ a + ev2, m\ ^ a&quot; + ef

2
,

m&quot;. Va&quot;, &c. = C* ; C being a constant quantity. Now,

as all the motions are in the same direction, */ay VJ, &c.,

are all positive. Hence, it follows that each of the quanti

ties e . m . Va, e . mv
. ^\ &c., is less than C ; and sup

pose at any one period the whole eccentricities e, e , e&quot;, &c.,

to be very small, which is known to be true, C, which at

that period was the sum of their squares, must be very

small; the other quantities m, m f

, &c., being wholly con

stant, and Va, V a , &c., being invariable in considerable

periods of time. Therefore, it is clear that the varia

tion in any one of those eccentricities, as e, never can

exceed a very small quantity, namely, a quantity propor

tional to VC e 2
e&quot;

2
, &c. The whole possible amount

of the eccentricity is confined within very narrow limits.

It never can for any body, whose eccentricity is e, exceed

a quantity equal to

* Mec. Gel. liv. ii. ch. 6, 7. (sects 53. 55. 57, 58).
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_ e . m - e
f *

. m&quot; . Va&quot;
- &c.

m .

So that the eccentricities never can exceed a very small

quantity.

Thus the changes which are constantly taking place in

the planetary orbits are confined within narrow limits;

and the other changes which are the consequences of this

alteration of the orbits, as, for instance, the acceleration

of the moon which we before showed arose from the varia

tion of the eccentricity of the earth s orbit, are equally con

fined within narrow limits. Those changes in the heavenly

paths and motions oscillate, as it were, round a given
middle point, from which they never depart on either

hand, beyond a certain small distance ; so that at the end

of thousands of years the whole system in each separate

case (each body having its own secular periods) returns to

the exact position in which it was when these vast succes

sions of ages began to roll. For similar theorems are

deduced with respect to other revolutions of the system,

whose general destiny is slow and constant change, but

according to fixed rules, regulated in its rate, confined

in its quantity, limited within bounds, and maintaining

during countless ages the stability of the whole universe

by appointed and immutable laws.

Laplace examined in the last place the possible effects

upon the celestial motions of the resistance of a subtle

ethereal medium, and of the transmission of gravity or

attraction not being instantaneous, but accomplished in

a small period of time. The result of his analysis led

him to disbelieve in both these disturbing causes. He
found that in order to produce its known effects, the trans

mission of gravity, if effected in time, must be seven
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y ij lb
millions of times swifter than that of light, or 147 thou

sand millions of miles in a second.*

iii. The great system of most interesting truths which

we have now been contemplating is the work of those who

diligently studied the doctrines unfolded by Sir Isaac New
ton, respecting the motions of bodies which act upon each

other, while they are moving around common centres of

attraction. He laid down the principles upon which the

investigations were to be conducted ; he showed how they
must lead to a solution of the questions proposed, touching
the operation of disturbing forces ; and he exemplified the

application of his methods by giving solutions of these

questions in certain cases. Although his successors, tread

ing in his steps, have reaped the great rewards of their

learning and industry, and are well entitled to all praise

for the skill with which they both worked and improved
the machinery that he had put into their hands, at once

improving the calculus invented by him, and felicitously ap

plying it to advance and perfect his discoveries, yet the

distance at which his fame leaves theirs is at least equal to

that by which a Worcester and a Watt outstripped those

who, in later times, have used their mechanism as the means

of travelling on land and on water, in a way never foreseen

by those great inventors. Strict justice requires that we

should never lose sight of the truth repeatedly confessed by

Euler, Clairaut, Delambre, Lagrange, Laplace, that all

the advances made by them in the use of analysis, and in

its application to physical astronomy, are but the conse

quences of the Newtonian discoveries; so that we are guilty

of no exaggeration, if we regard the most brilliant achieve

ments of those great men only as corollaries from the pro

positions of their illustrious master. Let us briefly see

* Mec. Cel. liv. vii. ch. 6 ; liv. x. ch. 7.
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how he laid the deep and solid foundations of the fabric

which we have been surveying.

After examining the motions of a system of two bodies

with respect to one another, and their common centre of

gravity, and in space, as those motions are affected by the

mutual attractions of the two bodies themselves (in the

manner which we have already described), Newton pro

ceeds to the great problem of the Three Bodies, as it has

been termed, because the solution is so difficult, that gene

rally the attempt has been confined to the case of three only,

this also being sufficient for determining the more impor
tant disturbances of the moon s motions. The inquiry,

however, is general in the Principia ; and its subject is,

the motion, produced by the mutual actions upon one ano

ther of the bodies in a system. Thus, for example, the

inquiry already analysed regards the effect produced upon
their motion in space, by the mutual attractions of the

earth and moon; that to which we now are proceeding

regards their motion, as also influenced by the disturbing

force of the sun, and indeed, even by the smaller but

not evanescent disturbing forces of the other planets. So

as the former inquiry may be extended on the same prin

ciples to the motions of Jupiter and Saturn, and their

satellites; this new inquiry applies also to the disturbances

of their systems by ours, and of our system by theirs.

Newton begins by showing that if the attracting force

increases as the distance of the bodies from each other,

any two, M and E, will revolve round their common

centre of gravity, G, in an ellipse having Gr for its centre.

This is plain from what was formerly proved when treat

ing of the conic sections, and also more lately respecting

the centre of gravity. If, then, each of these is attracted,

in the same manner, by a third body S, this force, being

resolved into two, one parallel to the line joining M and
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E, the other parallel to the line joining E and G, the

former force will only accelerate the motion of M and

E round G by an addition to the mutual attraction of M
and E ; the latter force will draw the centre G towards S

or towards G , the common centre of gravity of the three

bodies, and combined with the action of M and E upon
their centre G will make G revolve in an ellipse round

G , the common centre of the three, round which also, in

like manner, S will describe an ellipse, G being the centre

of those two ellipses. Thus the bodies M and E will de

scribe an ellipse round the centre G, and the centre G
and body S will describe ellipses round the centre G ,

both G and G being the centres of these ellipses ; and

so of any greater number of bodies. Moreover, the ab

solute amount of the attractive force in each centre will be

as the distance of the centre from the bodies or centres of

gravity severally, multiplied by the masses of the bodies.

So that E and S are attracted to G by a force as (M +E
+ S) multiplied by their respective distances from G.

Lastly, the times in which these ellipses are described by
the bodies and the centres, are all equal by what was

before proved respecting motion when the force varies as

the distances.

This law of the centripetal force is the only one which

preserves the entire ellipticity of the orbits, notwithstand-

ing any mutual disturbances; but it produces, at great

distances, motions of enormous velocity. Thus we have

seen that Saturn would move at the rate of 75,000 miles

in a second (or a third of the velocity of light itself), were

there no disturbance from the other bodies ; but the dis

turbance might greatly accelerate this rapid motion. If

the law be the inverse square of the distance, there will be

a departure from the elliptical form of the orbits and

from the proportion of the areas to the times, indicating
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that the several resulting forces are not directed towards

the several centres. But this departure will be less con

siderable in proportion as the body in the centre of any

system, or in the common centre of any number of sys

tems, is of a magnitude exceeding that of the revolving

bodies, or systems of bodies, because this will prevent

the central body moving far from its place, or much out of

a straight line; and also the departure will be less in

proportion as the bodies, or systems revolving, are at a

great distance from the centres or from the common centre,

because the diminution of this distance increases the

inclination of the lines in which the disturbing forces act,

and thus disturbs the motions of the bodies among them

selves. Again, if the law of the attraction varies from the

inverse square of the distance in some, and not in others,

the disturbing effect will be increased. So that we may
infer the universality of the law and also the small amount

of the disturbing force, and its acting in nearly parallel

lines, if we find the ellipticity of the orbits not much de

ranged, and the proportions of the areas to the times not

greatly interrupted.

Newton proceeds to examine more minutely the disturb

ances caused in a system of Three Bodies, of which two

smaller ones move round a third larger one, and all attract

one another by forces inversely as the squares of the dis-
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tances. Let S attract M with a force inversely as the

square of the distance ; call the mean distance = 1 ; the

mean force will be -^
= 1. Let the distance from S,

successively taken by M in moving round E, or its true

distance, be S M ; thence the force at M is ^
. ,

2
. Take

S
S L = ^r and drawing L N parallel to M E, the

forces at M are L N + Q (Q being a quantity that

varies as -..--. and S N. Now L N : ME::

S L : S M; and L N = = -. Therefore

the force acting upon M towards E is as ME +^^ ; con-

sequently it will increase the attraction of E, but it will

not be inversely as the square of the distance ; and there

fore M will not describe an ellipse round E, and the force

N S does not tend towards E, nor does the force resulting

from compounding L N, or ME, or L N +M E, with

N S, tend to E. So that the areas will not be proportional

to the times. Therefore, also, this deviation from the ellip

tical form and from the proportional description of the areas

will be the greater, as the distances L N and ]S
T S are smaller.

Again, let S attract E with a force as cr-;o hi 2

if this were equal to S N, it would, by combining with

SN, that is, with the attraction of S on M, produce
no alteration in the relative motion of M and E. There

fore, that alteration is only caused by the difference

S
between SN and Q-^; wherefore the nearer SN is

to the proportion of
^, that is (because of the
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proportion of S L =
^r^ J,

the nearer S N is to unity,

the mean force upon M ; and the nearer the forces exerted

by S on M and on E approach to equality, the less will

the elliptical orbit be disturbed, and the more nearly will

the areas be described proportionally to the times. If the

disturbing force of S acts in a plane different from that in

which M and E are, M will be deflected from the plane

of its orbit; because the force SN -

2
will not pass

through E; consequently this deflection will be greater or

less in proportion as this difference is greater or less, and

will be least when ^^ ^s nearly equal to the mean force

of S upon M.

We have hitherto been supposing S, the greater body

round which M and E revolve, to be at rest while they

revolve round each other (the case of the earth and of

other planets having satellites). If we now suppose E to be

the greater and central body, and that M and S both move

round E (the case of the planets round the sun), a similar

proposition may be demonstrated with respect to the dis

turbances : And it is further clear in this case that if S

moves round G, the centre of gravity of M and E, the

orbit of S will be less drawn from the elliptical form, and

its radius vector will describe areas more nearly proportional

to the times than if it moved round E. This appears

clearly from observing that the direction of the centripetal

force towards G, that is S G, must be nearer E than M ;

that the attractive forces by which S is drawn are as

- ~~ ~^ tnat their resultin force lies in tne line

S G ; and also that S M varies, while S E remains the

same, or nearly so.
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In all these cases the absolute attractive forces are as the

masses of the attracting bodies; and if there are a num

ber of these, A, B, C, E, &c., of which A attracts all

the rest with forces as ^ &&amp;gt;
&c., (D, d, &c., being the

distances from A,) and B also attracts A, C, E, &c.,

with forces as , 2 , the absolute attraction of A and

B towards each other are as the masses A and B. Hence

in a system, as of a planet and its satellites, if the latter

revolve in ellipses, or nearly so, and describe areas pro

portional, or nearly so, to the times, the forces are mutually
as the masses of the bodies ; and conversely, if the forces

are proportional to the masses, and ellipses are described

and the areas as the times, the mutual attractions of all

are inversely as the squares of the distances.

It is proved, by reasoning of the same kind, that the

disturbing force of S is greatest when M is in the points

C and D of the orbit (or the quadratures*), and least when
M is in A and B (or the line of conjunction and opposition

called the syzygies). When M is moving from C to A and

from D to B, the disturbing force accelerates the motion of

M, which then moves along with the disturbing force.

When M moves from A to D, and from B to C, its mo
tion is retarded, because the disturbing force acts against
the direction of M s motion. So M moves more swiftly
in syzygy than in quadrature, and its orbit is more curved

in quadrature than in syzygy. But it will recede further

from E in quadrature, unless the eccentricity of the orbit

should be such as to counterbalance this recession: for the

operation of the combined forces is twofold ; it both makes
the line of apsides move forward in one point of the

body s revolution and backward in another, but more for

ward than backward, and so upon the whole makes it ad-

K 2
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vance somewhat each revolution (as we before saw) ;
and

it also increases the eccentricity of the orbit between qua
drature and syzygy, and diminishes that eccentricity be

tween syzygy and quadrature. So of the inclination of

the orbit, which is always diminished between quadrature

and syzygies, and increased between syzygy and qua

drature, and is at the minimum when the nodes are in

quadrature and the body itself in syzygy.

We found before that the force L N was as
oiv/p-

The forces L N and N E are directly as the mass S, and

when S is very distant, the forces L N&quot; and N E vary as

S
or inversely as the squares of the periodic times ;

and if at a given distance the absolute disturbing force

be as the magnitude of the disturbing body, whose dia-

rf?

meter is d, these forces are as o -^3 ;
or as the cube of the

apparent diameter of S. Also if instead of one sa

tellite, M, moving round E, we have several whose orbits

are nearly of the same form or inclination (like the first

three of Jupiter), the mean motion of their apsides and

nodes each revolution are directly as the squares of their

periodic times, and inversely as the squares of the planet s

time, and the two motions (apsides and nodes) are to

one another in a given ratio.

We now have one of those extraordinary instances which

abound in his writings, of Sir Isaac Newton s matchless

power of generalization ; of apprehending remote analogies,

and thereby extending the scope of his discoveries. Having
shown how the disturbing forces of bodies in a system act

upon their motions with respect to each other, he now

examines the effect of such forces upon the constitution

of the bodies themselves. He supposes, for example.
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that a number of masses of a fluid revolve round E at

equal distances from it by the same laws of attraction by

which M moves round E, and that these masses are thus

formed into a ring ; then it follows that the portions of this

ring will move quicker in syzygy than in quadrature, that

is, quicker at A and B than at C and D ; also, that the

nodes of the ring, or the intersections of its plane with the

plane S E, will be at rest in syzygy, and move quickest in

quadrature, and that the ring s axis will oscillate as it re

volves, and its inclination will vary, returning to its first

position, unless so far as the precession of the nodes carries

it forward. Suppose now E to be a solid body with a

hollow channel on its surface, and that E increased in

diameter until it meets the ring, which now fills that

channel, and suppose E to revolve round its own axis

the motion of the fluid, alternately accelerated and re

tarded (as we have shown), will differ from the equable

rotatory motion of the solid on its axis, being quicker than

the globe s motion in syzygy, and slower in quadrature.

If S exerts no force, the fluid will not have any ebbs and

flows, but move as round a centre that is at rest; but

if the varying attraction of S operates, being greater

when the distance is less, the disturbing force acting in the

direction S L, and being as ,. 2 , will raise the fluid in A

and B, or in syzygy, and from thence to quadrature, C
and D, while the force L N will depress it in quadrature,

C and D, and from thence to syzygy, A and B, If we

now suppose the ring to become solid, and the size of E
to be again reduced, the inclination of the ring will vary,

and oscillate ; and the precession of its nodes will continue

the same and so would the globe, if, without any ring

at all, it had an accumulation of matter in the equator,

or had matter of greater density there than elsewhere, and

K 3
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at the poles. If, on the other hand, there is more matter

at the poles, or matter of a less dense kind at the equator,

the nodes will advance instead of receding. So that by

knowing the motion of the nodes, we can estimate the

constitution of the globe; and a perfectly spherical and

homogeneous globe will move equally and with a single

motion only round its axis. No other will.

The Sixty-sixth Proposition, or rather its twenty-two

corollaries, constitute perhaps the most extraordinary por

tion of the Principia. We have seen that Sir Isaac

Newton here deduces most of the leading disturbances in

the motions of three bodies, for example, the moon,

earth, and sun, from the propositions which had been

before demonstrated. We perceive in succession the mo
tion of longitude and latitude ; the various annual equa

tions, motion of the apsides (in which, however, by omitting

the consideration of the tangential force, he calculated

the amount at one half its true value), the evection*, the

alteration, and inclination ; the motion of the nodes. Even

the doctrine of the tides, and the precession of the equinoxes,

are all handled clearly, though concisely, in this pro

position. The greater part of the Third Book is occupied
with the application of these corollaries to the actual case

of the moon, earth, and sun; and it is not any exaggeration
to affirm that the great investigations which have been

undertaken since the time of Sir Isaac Newton, and of

which we have just been surveying the principal results,

are an application of the improved calculus to continue the

inquiries which he thus here began.
The propositions respecting the masses of the attracting

bodies which we considered before the corollaries to the

*
Laplace has erroneously stated that Newton overlooked the Evection

;

but it forms, though not by name, the subject of the ninth corollary to this

Sixty- sixth Proposition.
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Sixty-sixth Proposition (although they come later in the

Principia), and the latter of those corollaries, naturally lead

to the subject of the next two sections, the one upon the

attraction of spherical bodies, the other upon that of bodies

not spherical.

i. The attraction exerted by spherical surfaces and by

hollow spheres is first considered. If P be a particle si

tuated anywhere within A B D C, and we conceive .two

lines A D, B, C, infinitely near each other drawn through

P to the surface, and if these lines revolve round a P b,

which passes from the middle points a and b, of the small

arcs D C, and A B, through P, there will two opposite

cones be described ; and the attraction of the small circles

D C, A B upon P, will be in the lines from each point

of those circles to P, of which lines C P, D P, are two

from one circle, and A P, B P, two from the other circle.

Now this attraction of the circle C D is to that of the circle

A B, as the circle C D to the circle A B, or as C D- to A
B2

(the diameters), and by similar triangles C D2
: A B

:: P C 2
: P A2

. But by hypothesis, the attraction of C D
is to that of A B as A P2

: P C2
; therefore the attraction

of D C is to the opposite attraction of A B as A P 2
, to

P C2
, and also as P C2 to A P 2

, or as A P 2 x P C 2 to A P2

x P C 2
, and therefore those attractions are equal ; and

K 4
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being opposite they destroy one another. In like manner,

any particle of the spherical surface on one side of P,

acting in the direction of a P, is equal as well as opposite

to the attraction of another particle acting on the opposite

side, and so the whole action of every one particle is de

stroyed by the opposite action of some other particle ; and

P is not at all attracted by any part of the spherical sur

face; or the sum of all the attractions upon P is equal

to nothing. So of a hollow sphere ; for every such sphere

may be considered as composed of innumerable concentric

spherical surfaces, to each of which the foregoing reasoning

applies ;
and consequently to their sum.

We may here stop to observe upon a remarkable in

ference which may be drawn from this theorem. Sup

pose that in the centre of any planet, as of the earth,

there is a large vacant spherical space, or that the globe is

a hollow sphere ;
if any particle or mass of matter is at any

moment of time in any point of this hollow sphere, it

must, as far as the globe is concerned, remain for ever

at rest there, and suffer no attraction from the globe itself.

Then the force of any other heavenly body, as the

moon, will attract it, and so will the force of the sun.

Suppose these two bodies in opposition, it will be drawn

to the side of the sun with a force equal to the dif

ference of their attractions, and this force will vary with

the relative position (configuration) of the three bodies ; but

from the greater attraction of the sun, the particle, or

body, will always be on the side of the hollow globe next

to the sun. Now the earth s attraction will exert no in

fluence over the internal body, even when in contact with

the internal surface of the hollow sphere ; for the theorem

which we have just demonstrated is quite general, and

applies to particles wherever situated within the sphere.

Therefore, although the earth moves round its axis,
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the body will always continue moving so as to shift its

place every instant and retain its position towards the

sun. In like manner, if any quantity of movable particles,

thrown off, for example, by the rotatory motion of the

earth, are in the hollow, they will not be attracted by the

earth, but only towards the sun, and will all accumulate

towards the side of the hollow sphere next the sun. So

of any fluid, whether water or melted matter in the hollow,

provided it do not wholly fill up the space, the whole of it

will be accumulated towards the sun. Suppose it only

enough to fill half the hollow space ; it will all be ac

cumulated on one side, and that side the one next the

sun; consequently the axis of rotation will be changed and

will not pass through the centre, or even near it, and will

constantly be altering its position. Hence we may be

assured that there is no such hollow in the globe filled

with melted matter, or any hollow at all, inasmuch as there

could no hollow exist without such accumulations, in con

sequence of particles of the internal spherical surface

being constantly thrown off by the rotatory motion of the

earth,

IfA H K B be a spherical section (or great circle), PRK
and PIL lines from the particle P, and infinitely near

each other, S D, S E perpendiculars from the centre,

and I q perpendicular to the diameter; then, by the

similar triangles P I R, P p D, we find that the curve

surface bounded by I H, and formed by the revolution

of IHKLI round the diameter AB, and which is
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I P 2

proportional to I H x I q, is as
-p
-

pro
5 and if the attrac

tion upon the particle P is as the surface directly, and

the square of the distance inversely, or
p~ri?

that attrac

tion will be as -^
-^a But; if the force acting in the
PpxPS

line PI is resolved into one acting in P S and another acting

in SD, the force upon P will be as
p-|,

or (because of the

p
similar triangles P I Q, P Sp) as ~. The attraction,

therefore, of the infinitely small curvilinear surface formed

P 1

by the revolution of I H is as p- - or as-- ; that
.L p x

is inversely as the square of the distance from the centre

of the sphere. And the same may be shown of the sur

face formed by the revolution of KL, and so of every part

of the spherical surface. Therefore the whole attraction

of the spherical surface will be in the same inverse du

plicate ratio.

In like manner, because the attraction of a homogeneous

sphere is the attraction of all its particles, and the mass

of these is as the cube of the sphere s diameter D, if a

particle be placed at a distance from it in any given
ratio to the diameter, as m. D, and the attraction be

inversely as the square of that distance, it will be directly

as D3
, and also as

7̂ rjp,
and therefore will be in the sim

ple proportion of D, the diameter. Hence if two similar

solids are composed of equally dense matter, and have an

attraction inversely as the square of the distance, their at

traction on any particle similarly placed with respect to

them will be as their diameters. Thus, also, a particle
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placed within a hollow spheroid, or in a solid, produced

by the revolution of an ellipsis, will not be attracted at all

by the portion of the solid between it and the surface, but

will be attracted towards the centre by a force proportioned

to its distance from that centre.

It follows from these propositions, first, that any par

ticle placed within a sphere or spheroid, not being affected

by the portion of the sphere or spheroid beyond it, and

being attracted by the rest of the sphere, or spheroid in the

ratio of the diameter, the centripetal force within the solid

is directly as the distance from the centre ; secondly, that

a homogeneous sphere, being an infinite number of hollow

spaces taken together, its attraction upon any particle placed

without it is directly as the sphere, and inversely as the

square of the distance ; thirdly, that spheres attract one

another with forces proportional to their masses directly,

and the squares of the distances from their centres in

versely ; fourthly, that the attraction is in every case as

if the whole mass were placed in the central point ;

fifthly, that though the spheres be not homogeneous, yet if

the density of each varies so that it is the same at equal

distances from the centre of each, the spheres will attract

one another with forces inversely as the squares of the

distances of their centres. The law of attraction, however,

of the particles of the spheres being changed from the

inverse duplicate ratio of the distances to the simple law

of the distances directly, the attractions acting towards

the centres will be as the distances, and whether the spheres

are homogeneous or vary in density according to any law

connecting the force with the distance from the centre,

the attraction on a particle without will be the same as if

the whole mass were placed in the centre ; and the

attraction upon a particle within will be the same as if

the whole of the body comprised within the spherical
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surface in which the particle is situated were collected

in the centre.

From these theorems it follows, that where bodies move

round a sphere and on the outside of its surface, what was

formerly demonstrated of eccentric motion in conic sections,

the focus being the centre of forces, applies to this case of

the attraction being in the whole particles of the sphere;

and where the bodies move within the spherical surface,

what was demonstrated of concentric motion in those

curves, or where the centre of the curve is that of the at

tracting forces, applies to the case of the sphere s centre

being that of attraction. For in the former case the cen

tripetal force decreases as the square of the distance in

creases; and in the latter case that force increases as the

distance increases. Thus it is to be observed, that in the

two cases of attraction decreasing inversely as the squares

of the central distance (the case of gravitation beyond the

surface of bodies), and of attraction increasing directly with

the central distance (the case of gravitation within the sur

face), the same law of attraction prevails with respect to

the corpuscular action of the spheres as regulates the

mutual action of those spheres and their motions in re

volution. But this identity of the law of attraction is con

fined to these two cases.

Having thus laid down the law of attraction for these

more remarkable cases, instead of going through others

where the operation of attraction is far more complicated, Sir

Isaac Newton gives a general method for determining the

attraction whatever be the proportions between the force

and the distance. This method is marked by all the geo

metrical elegance of the author s other solutions ; and

though it depends upon quadratures, it is not liable to the

objections in practice which we before found to lie against

a similar method applied to the finding of orbits and forces ;
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for the results are easily enough obtained, and in con

venient forms.

If A E B is the sphere whose attraction upon the point

P it is required to determine, whatever be the proportion

according to which that attraction varies with the distance,

and only supposing equal particles of A E B to have equal

attractive forces ; then from any point E describe the circle

E F, and another e f infinitely near, and draw E D, e d

ordinates to the diameter A B. The sphere is composed
of small concentric hollow spheres E ef F ; and its whole

attraction is equal to the sum of their attractions. Now
that attraction of E e f F is proportional to its surface

multiplied by F /, and the angle D E r being equal to

D P E (because P E r is a right angle by the property

of the circle), therefore E ; = - -
, and if we

call P E, or P F = r, E D = y, and D F = x, D d will be

dxy and Er =-
; and the ring generated by the re-

*/

volution of r E is equal to r E x ED, or r E xy; therefore

this ring is equal to rdx, or the attraction proportional to

the whole ring E e will be proportional to the sum of all the

rectangles PD x D d, or (a x)dx , that is, to the integral

2 ax_xz

of this quantity, or to ^
-

; which by the property of

y*
the circle is equal to - Therefore the attraction of the

solid E efF will be as ?/
2 x F /, if the force of a particle

F/on P be given; if not, it will be as y
1 x F/x / that

force. Now d x : F f :: r i PS, and therefore F/ =
PSxdx , . yxPSxrf#x/-

, and the attraction ofL efF is as ---
;

r J r

or taking/ = rn (as any power of the distance P E), then

the attraction of E efF is as P S . rn
- l

if dx. Take D N
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R

(
=

M) equal to P S. r&quot;

1

y
2
, and let B T)= z, and the curve

BNA will be described, and the differential area ND dn will

be ndz (by construction) PS. rn
~ l

y*
1
dx\ consequently

u dz will be the attractive force of the differential solid E e

/F; and fudz will be that of the whole body or sphere

A E B, therefore the area A N B= f udz is equal to the

whole attraction of the sphere.

Having reduced the solution to the quadrature of

A N B, Sir Isaac Newton proceeds to show how that

area may be found. He confines himself to geometrical

methods; and the solution, although extremely elegant,

is not by any means so short and compendious as the

algebraical process gives. Let us first then find the

equation to the curve A N B by referring it to the rec

tangular coordinates D 1ST, AD. Calling these y and x

respectively, and making P A = b, AS (the sphere s

f

radius) = a and P S, or a + b, for conciseness, = -. Then

PE =
(b 2 ax-
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= Vb 2 + 2 (a + b)x
= ^b* + fx I and D N = y = (by

construction)
^-

nTT~~^ *^e attract ive f rce f

the particles being supposed as the -th power of the dis-

n

tance, or inversely as (b
2

+fx)*. This equation to the

curve makes it always of the order -
. If then the

force is inversely as the distance, A N B is a conic hyper
bola ; if inversely as the square, it is a curve of the fifth

order; and if directly as the distance, it is a conic

parabola ; if inversely as the cube, the curve is a cubic

hyperbola.

The area may next be determined. For this pur-

i ro-x xx
pose we have fydx = I

-~5+r~J 2(b*+fx)~
2 (af + Z&amp;gt;

2

)
= h, this integral will be found to be

4 (a

-

x (2 a + b^ (b* + fx)-iT - ^

I / tf-n
+ C ;

and the constant C is -y-r x
(4 (a + 6)

2 \6-Ji

(2 a + bYb*-
n h \ .

_^_

^ i 3-n
1 . This in every case gives

i n o ?i /

an easy and a finite expression, excepting the three cases

of n 1, n 3, and n = 5, in which cases it is to be

found by logarithms, or by hyperbolic areas. To find

the attraction of the whole sphere, when x = 2 a,



144 NEWTON S PRINCIPIA.

I s) rt

(2 a + ft}
-- (2

5 n o n 1

for the whole area A N B, or the whole attrac-
n

tion. If P is at the surface, or A P = b = 0, and

ft = 2, then the expression becomes as a, that is, as the

distance from the centre directly. We may also perceive

from the form of the expression, that if n is any number

greater than 3, so that n 3 = m, the terms b3~ n

become inverted, and b is in their denominator thus :

fT~ n^&quot;

Hence
&amp;gt;

if n &amp;gt; 3 and A P = b = 0, or the

particle is in contact with the sphere, the expression

involves an infinite quantity, and becomes infinite. The

construction of Sir Isaac Newton by hyperbolic areas

leads to the same result for the case of n = 3, being one

of those three where the above formula fails. At the

origin of the abscissa? we obtain, by that construction, an

infinite area ; and this law of attraction, where the force

decreases in any higher ratio than the square of the

distance, is applicable to the contact of all bodies of

whatever form, the addition of any other matter to the

spherical bodies having manifestly no effect in lessening

the attraction.

By similar methods we find the attraction of any por

tion or segment of a sphere upon a particle placed in the

centre, or upon a particle placed in any other part of the

axis. Thus in the case of the particle being in the centre

S, and the particles of the segment K B G attracting with

forces as the -
power of the distance S O or SI, the

curve A N B will by its area express the attraction of

I O2

the spherical segment, if D N or y be taken =
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-
, S O being put = c, and AD = x

t and
\
x a

)

A S = a, as before ; fy d x may be found as before by
(x of d x c2 d x

integrating
-

-f
--

. The fluent is

\
x a

)

(*
~

a)
3 &quot;&quot;

, (x-aj~
n

p , p 2 c
3 -&quot;-- c- -1--

{_ L, ; an(i (^ = _^
-- .

3 n 1 n n- 4 71 + 3

and the whole attraction of the segment upon the particle

at the centre S is equal to --- - + -5 ;3n l ?i n 2
4:71

/ \ n

Thus, if n 2 the attraction is as , or as OB 2

directly, and as S B inversely ; and if c = o, or the at

traction is taken at the centre, it is equal to a ; and if

the attraction is as the distance, or n = 1, then the

attractive force of the segment is -
(a

2 c2
)
2

.

ii. Our author proceeds now to the attractions of

bodies not spherical ; an inquiry not perhaps, in its

greater generality, of so much interest in the science of

Physical Astronomy, where the masses which form the

subjects of consideration are either spherical, or very

nearly spherical, to which our examination has hitherto

been confined. But this concluding part, nevertheless,

contains some highly important truths available in astro

nomical science, because it leads, among other things, to

determining the attraction of spheroids, the true figures

of the planets.

The attractions of two similar bodies upon two similar

particles similarly situated with respect to them, if those

attractions are as the same power of the distances -, are

to one another as the masses directly, and the ?*
th
power

of the distances inversely, or the ?*
th

power of the homo-

L
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logons sides of the bodies ; and because the masses are as

the cubes of these sides, S and s, the attractions are as

S3
. s

n
: s3 . Sw

, or as s
n~*

: SM
~ 3

. Therefore, if n = 1,

the attraction is as S2
: s

1
;

if the proportion is that of

the inverse square of the distance, the attraction is as

S : s; if that of the cube, the attraction is as 1 : 1, or

equal ; if as the biquadrate, the attraction is as s : S ;

and so on : and thus the law of the attractive force may
be ascertained from finding the action of bodies upon

particles similarly placed.

Let us now consider the attraction of any body, of

what form soever, attracting with force proportioned to

the distance towards a particle situated beyond it. Any

two of its particles AB attract P, with forces as A x AP
and B x B P, and if G is their common centre of gravity,

their joint attraction is as (A-f B) x G P, because B P,

being resolved into B G and G P, and A P into A P

and G P, and (by the property of the centre of gravity)

GPxA=APxG, therefore the forces in the line A P

destroy each other, and there remain only P G x B and

P G x A to draw P, that is
(
A + B) x P G ; and the

same may be shown of any other particles C and the
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centre G of gravity, of A, C, and B, the attraction of

the three being (A + B + C) x G P. Therefore the

whole body, whatever be its form, attracts P in the line

P S, S being the body s centre of gravity, and with a

force proportional to the whole mass of the body multi

plied by the distance P S. But as the mutual attractions

of spherical bodies, the attraction of whose particles is

as their distance from one another, are as the distances

between the centres of those bodies, the attraction of the

whole body A B C is the same with that of a sphere of

equal mass whose centre is in S, the body s centre of

gravity. In like manner it may be demonstrated that the

attraction of several bodies A, B, C, towards any particle

P, is directed to their common centre of gravity S, and is

equal to that of a sphere placed there, and of a mass equal

to the sum of the whole bodies A, B, C ; and the at

tracted body will revolve in an ellipse with a force

directed towards its centre as if all the attracting bodies

were formed into one globe and placed in that centre.

But if we would find the attraction of bodies whose

particles act according to any power n of the distance, we

must, to simplify the question, suppose these to be sym
metrical, that is, formed by the revolution of some plane

upon its axis. Let A M C H G be the solid, M G the

diameter of its extreme circle of revolution next to the

particle P ; draw P M and p m to any part of the circle,

and infinitely near each other, and take P D = P M, and

P o = P m ; D d will be equal to o M (d n being infi

nitely near D N), and the ring formed by the revolution

of M m round A B will be as the rectangle A M x M m,

or (because of the triangles A P M, m o M, being similar,

and D d = o M) P M x D d, or P D x D d. Let D N
be taken =

i/
= force with which any particle attracts

at the distance P D = PM = x y that is as xn
; and if

L 2
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A P = b} the force of any particle of the ring is as ,

X

and the attraction of the ring, described by M m, is as

x D d x P D, or as b y d x9 and the whole attrac

tion of the circle whose radius is A M, being the sum of

all the rings, will be as bfy d x, or the area of the curve

L N I, which is found by substituting for y its value in x,

that is xn . This fluent or area is therefore = ~bfx
n d x

= h C ; and C =
^~ Also, making P b

= P E in order to have the whole area of L N I, which

measures the attraction of the whole circle whose radius is

b c n+l b
F A, we have (x being = P b = c) n+l n + 2

for
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that attraction. Then taking D N in the same proportion

to the circle D E in which D N is to the circle A F, or as

equal to the attraction of the circle D E, we have the

curve R N T, whose area is equal to the attraction of the

solid L H C F.

To find an equation to this curve, then, and from

thence to obtain its area, we must know the law by which

D E increases, that is, the proportion of D E to A D ; in

other words, the figure of the section A F E C B, whose

revolution generates the solid.

Thus if the given solid be a spheroid, we find that its

attraction for P is to that of a sphere whose diameter is

equal to the spheroid s shorter axis, as 7^ 7-5
- to

d2 + A2 a

-^-j-, A and a being the two semi-axes of the ellipsoid, d
o d~

the distance of the particle attracted, and L a constant

conic area which may be found in each case ; the force of

attraction being supposed inversely as the squares of the

distances. But if the particle is within the spheroid, the

attraction is as the distance from the centre, according to

what we have already seen.

Laplace s general formula for the attraction of a spherical

surface, or layer, on a particle situated (as any particle

must be) in its axis, is ff d f x f d f J?9 in

which /is the distance of the particle from the point where

the ring cuts the sphere, r its distance from the centre of

the sphere, or the distance of the ring from that centre,

d u consequently the thickness of the ring, TT the semicircle

whose radius is unity, and F the function of/ representing

the attracting force. The whole attraction of the sphere,

therefore, is the integral taken from / = r u to f
L 3
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2 TT . u du, , TT . u u
r -f u, and the expression becomes - - - -f

jfdf x / &amp;lt;*/
F with (r + w) (r M), substituted for /,

when f results from this integration. Then let F =

or the attraction be that of gravitation; the expression

2 TT . u d u r* ^ df 2 TT . u d u

becomes / fdfxf = &quot;~

x
r *J J J j fi r

/ 2 12 TT . u d u (r + u)(r u) _2-7-7- ~2~

--- x u = 2 TT u 1 d u x ; and the coeffi

cient of d r, taking the differential with r as the variable,

is + -2
-

consequently the attraction is inversely

as the square of the distance of the particle from the

centre of the sphere, and is the same as if the whole sphere

were in the centre.*

f The First Book of the Principia concludes with some

propositions respecting the motion of infinitely small bodies

through media, which attract or repel them in their course,

that is to say, of the rays of light, which, according to the

Newtonian doctrine, are supposed to be bodies of this kind,

hard and elastic, and moving with such rapidity as to

pass through the distance of the sun from the earth, or

95 millions of miles, in seven or eight minutes, that is,

with a velocity of above 211,000 miles in a second. Sir

Isaac Newton shows that, if the medium through which

they pass attracts or repels them from the perpendicular

uniformly, they describe a parabola, according to Galileo s

law of projectiles ; but if the attraction or repulsion be

* Mec. Ccl. liv. ii. ch. 2. The expression is here developed; but it

coincides with the analvsis in 8 11.
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not equable, another curve will be described ; yet, that in

either case the sine of the angle of incidence (or that made

with the plane where they enter the medium), is to the sine

of the angle of refraction (or that made with the plane

they emerge from) in a given ratio ; that the velocities

before incidence and after emerging are inversely as the

sines of incidence and refraction ; and that if the velocity

after incidence is retarded, and the line of incidence inclined

more towards the plane of the refracting medium, the

small bodies will be reflected back at an angle equal to

that of incidence.

He then remarks on the inflexion and deflexion which

light suffers in passing, not through, but by or near bo

dies, as discovered by Grimaldi *, and as confirmed by his

own experiments. He shows that the rays are bent most

probably in curve lines, the nearest rays towards the bend

ing body, the furthest rays away from it ; and he infers

that, in refraction and reflexion, a similar curvilinear bend

ing takes place somewhat before the actual point of re

fraction and reflexion. He further mentions the colours

formed by flexion, as three coloured fringes or bands,
&quot; tres colorum fascias.&quot; I, however, long ago showed

(Phil. Trans. 1797, Part II.) f that this is not the real fact;

having found that a much greater number of these fringes

are formed by flexion, and that they are, like the pris

matic spectrum, images of the luminous body. This ex

periment has been repeated by Sir David Brewster and

others ; nor can any doubt be entertained that there are

innumerable fringes decreasing in breadth, and in the

breadth of the dark intervals between them, until they
become evanescent. But as if it were the fate of all this

* Grimaldi termed it diffraction.

f In Phil. Trans., 1850, and Mem. Inst. de France, 1854, are my other

papers on Inflexion, showing the same phenomenon, as well as the different

flexibility of the rays.

L 4



152 NEWTON S PKINCIPIA.

great man s discoveries, that nothing should ever be added

to them but by the use of means which he had himself

furnished, it was only by applying a form of experiment

which Sir Isaac Newton had used in examining the

colours of thick and thin plates, that this important fact

was ascertained, he not having subjected the phenomenon
first observed by Grimaldi to that mode of investiga

tion.*

The Fourteenth Section concludes with an elegant so

lution of a local problem in Descartes s Geometry, for

finding that form of refracting glasses which will make

the rays converge to a given focus, a problem, the de

monstration of which Descartes had not given. The

brilliant discoveries made by Sir Isaac Newton upon the

refrangibility and colours of light, not belonging to dy

namics, he pursues the subject no further in this place,

having reserved the history of those inquiries for his

other great work, the Opticsf, perhaps the only monument

of human genius that merits a place by the side of the

Principle,

The truths which we have been contemplating respect

ing the attractions of bodies are fruitful in important

consequences respecting the constitution of the universe.

We have seen that the law of attraction which makes it de

crease as the squares of the distances increase, and the law

which makes it increase as the distances decrease, are the

* The Undulatory Theory of light, towards which philosophers have of

late years appeared to lean, is no exception to this remark; for the princi

ples of that Theory may be found in the Eighth Section of the Second

Book of the Principia, and the Scholium which concludes that Section

seems to anticipate the application of its principles to Optical Science.

j-
An abstract of these discoveries had been given in the Lectiones

Opticao at Cambridge seventeen years before the publication of the Prin

cipia in 1687. The Optics only appeared in 1704.
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only laws which preserve the proportions between the force

and the distance, the same for the attraction of the particles

of bodies, and for the attraction of the masses in which

those particles may be distributed the only laws which

make the attraction of bodies the same with that of their

mass placed in the centre of gravity. Now these two

laws regulate the actions of bodies gravitating towards

each other, the one being the law7 of gravitation beyond
the surface of attracting bodies, the other, the law of gra

vitation between the surface and the centre. Thus, then,

there is every reason to believe that this law pervades

the material world universally, acting in precisely the

same manner at the smallest and at the greatest distances,

alike regulating the action of the smallest particles of

matter, and the mightiest masses in which it exists. This

action, too, is everywhere mutual ; it is always in direct

proportion to the masses of the attracted and attracting

bodies at equal distances; where the masses are equal,

it is inversely as the squares of the distances beyond the

bodies, and within the bodies, as the distances from the

centre; and where the masses and distances vary, it is

as the masses divided by the squares of the distances in

the one case, and as the masses multiplied by the dis

tances in the other. This law then pervades and governs

the whole system.

The discoveries which astronomers have made since

the death of Newton, upon the more remote parts of the

universe, by the help of improvements in optical instru

ments, have further illustrated the general prevalence of

the law of gravitation. The double fixed stars, many
of which had long been known to astronomers, and which

were believed to retain at all times their relative posi

tions, have now been found to vary in their distances

from each other, and to move with a velocity sometimes
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accelerated, sometimes retarded, but apparently round

one another, or rather round their common centres of gra

vity. A course of observations continued for above

twenty years, led Herschel to this important conclusion

about the year 1803 ; his son has greatly added to our

knowledge of these motions ;
and Professor Struve, of

Dorpat, applying geometrical reasoning to the subject, cal

culated the orbits in which some of the bodies appear

to move. One of the most remarkable is the star y Vir-

ginis, on which Cassini had made observations in 1720.*

It has now been found that one of the stars of which

it is composed is smaller than the other ; that the revolv

ing motions of the two during the first 25 years had a

mean annual velocity of 31 23&quot; ; during the next

21 years, of 29 17&quot; ; during the next 17 years, of

only 2 42&quot;; and during the last two years (1822,

23) of no less than 52 51&quot;. The elder Herschel

calculated the time of their whole revolution, the pe

riodic times of those distant suns, at 708 years; it is

now supposed not to exceed 629. Another pair of stars

are found to revolve round one another in between 43

and 44 years, while a third pair take 12 centuries to

accomplish their revolution.! Although our observations

are far too scanty to lay as yet the ground of a system
atic theory of these motions, they appear to warrant us in

assuming that the law of attraction which governs our

solar system extends to those remote regions, and as their

suns revolve round one another, each probably carrying

about with it planets that form separate systems, we shall

probably one day find that equal areas are there as here

described in equal times, and that the orbits are ellip

tical ; or, which would come to the same thing, that the

* Mem. Acad. ties Sciences, 1720.

f Phil. Trans. 1803, p. 339; ib. 1824, Part III.
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sesquiplicate proportion of the periodic times and mean

distances is observed *, from whence the conclusion would

of necessity follow, that the centripetal force followed

the rule of the inverse square of the distance, and that

gravitation such as we know it in our part of the uni

verse, likewise prevails in these barely visible regions.

Thus additional confirmation accrues to the first great

deduction drawn from the theorems respecting attraction

in the Principia.

But other interesting corollaries are also to be deduced

from these propositions. They enable us to ascertain,

for example, the attractions, the masses, and the figures

of the heavenly bodies. Sir Isaac Newton boldly and

happily applied them to determine these important par

ticulars, apparently so far removed beyond the reach of

the human faculties.

1. The weights of bodies at the surface of the different

planets were thus easily determined. The law by which

the attractive force of spherical bodies decreases as the

square of the distance increases, whether those bodies be

homogeneous or not, provided their densities vary in the

same proportion, and the other law regulating the pro

portion between the periodic times and the distances of

the planets, enabled him to compute the attraction of

each planet, for equal bodies at given distances from their

centres, by comparing the observed distances and periodic

times of each ; and he was thus also enabled, by knowing
their diameters, to ascertain the weights of bodies at their

surfaces. He found in this manner, that the same body
which at the surface of the Earth weighs 435 pounds, at

*
It may even seem that already the observed axes of those remote orbits,

when compared with their periodic times, approach the sesquiplicate ratio-

Thus one has its axis 7&quot; 9, and time 58 years ; and another its axis 3()&quot;
-

8,

and time 452 years.
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that of the Sun weighs 10,000, at that of Jupiter 943,

and at that of Saturn 549,

2. So too the masses of matter in each planet and in

the satellites may be ascertained. The motions of the

satellites of Jupiter and Saturn afford the easiest means

of determining the masses of those planets ; and the

motions of the other planets round the Sun enable us to

solve the problem, though not so accurately, as to them.

The mass of Jupiter compared with that of the Earth

may be easily supposed to be prodigious, when we find all

his satellites revolve round him so much more rapidly than

the Moon does round the Earth, although all of them but

one have much larger orbits. Thus the second satellite

revolves in a seventh of our lunar month, though its path

is half as long again : and hence, its velocity is between

10 and 11 times as great. Sir Isaac Newton ascertained

the masses of Jupiter, Saturn, and the Earth to be to

that of the Sun as TTT̂ 7, ^T* T^gV 02* to 1 respectively.

In like manner the densities are found, being as the

weights (first found) divided by the axes. Thus he

determined the relative densities of Jupiter, Saturn, and

the Earth to be as 94 J, 67, and 400, to 100, the density

of the Sun. Laplace has ascertained the masses of the

heavenly bodies by an entirely different calculus, founded

upon the comparison of numerous observations with

the formula? for determining the disturbances. The result

is extremely remarkable in one particular. It agrees to

a fraction, as regards Jupiter, with the calculation of

Newton, making the mass of the planet y^Vy -^u ^ the

observations of Pound respecting Saturn s axis, on which

Newton had estimated Saturn s mass, were subject to

considerable uncertainty ; so at least Laplace explains

the difference of his own results; but he admits* that

* Mec. Cel. liv. vii. eh. 16, s. 44.



NEWTON S PRINCIPIA. 157

even in his day there prevailed considerable uncertainty

respecting this planet s mass, while that of Jupiter, being

well ascertained, agrees perfectly with Sir Isaac Newton s

deduction. Laplace gives the masses of the four great

planets thus, that of the Sun being unity : Venus SĴ Q^ ;

Mars 25^20; Jupiter lQ^ g (differing by TV only

from Newton s, who indeed did
4
not insert decimals at all) ;

and Saturn _ A_* The Moon s mass he makes l

-,o 5 3 4 U a o a o 7

that of the Earth being unity, while the greatest of

Jupiter s satellites is only 0,0000884972, Jupiter being

unity. This great geometrician s observations upon Sa

turn s ring are peculiarly worthy of attention. The ex

treme lightness of the matter of which the planet consists,

has already been shown ; it is six times lighter than the

mean density of the Earth; or, if the mean specific

gravity of the latter be taken as 5 f, that of water being

as 1, the matter of which Saturn is composed must be

only 3J times heavier than cork, and lighter than India

rubber. But Laplace has satisfactorily shown that his

rings must be composed of a fluid, and that no other con

struction can account for their permanence.^

3. Sir Isaac Newton, lastly, by the principles which we

have been explaining in the latter part of our Analysis,

investigated the figures of the heavenly bodies. Thus he

especially examined that &quot;of the Earth. This planet, in

revolving round its axis, gives those particles the greatest

tendency to fly off which move with the greatest velocity,

that is, those which are furthest from their centres of ro

tation ;
in other words, those which are nearest the equa

tor ; while those near the poles, describing much smaller

circles, move much slower and have far less tendency to

* Mec. CeL liv. x. ch. 8, 9 ; correcting liv. vi. ch. 6.

f The mean of Maskelyue aud Cavendish s experiments.

Mec. CeL liv. iii. ch. 6.
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fly off. Hence there is an accumulation of matter towards

the equator, which is raised, while the poles are depressed

and flattened, and the equatorial axis is longer than the

polar. By comparing the space through which heavy

bodies fall in a second in our latitudes with the centrifugal

force at the equator, he found that the gravity of bodies

there is diminished
-g-J-g

at least, or that the equatorial

axis is, at least, ^-J-g longer than the polar. But he con

sidered this estimate as below the truth, because it does

not make allowance for the effect produced on gravitation

by the increase of the distance at the equator from the

centre. Accordingly, by a skilful application of the

method of false position, he corrected this calculation, and

ultimately brought out the proportion to be that of 229 to

230, making the equatorial axis about 34J- miles longer

than the polar, the whole axis being about 7870 miles.

He also estimated the two axes of Jupiter to be as 11^ to

10, supposing the density of the body to be the same

throughout; but if it is greater towards the equator, our

author observed that the difference between the axes

might be decreased as low as 13 to 12, or even 14 to 13 ;

which agreed well enough with Cassini s observations in

those days, and still more nearly with Pound s. But

more accurate observation has since shown that the dif

ference is considerably less, the disproportion being not

more than that of 1074 to 1000 ; so that the planet must

be very for from homogeneous and its equatorial density

greatly exceed its polar. Thus, too, accurate measure

ments of a degree of latitude in the equatorial and polar

regions, and experiments on the force of gravity,

as tested by the length of the pendulum vibrating

seconds in those different parts of the globe, have led to

a similar inference respecting the Earth, its axis^being now

ascertained to bear the relation, not of 230 to 229, as
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Newton at last concluded, nor even that of 289 to 288,

according to his first approximation, but only that of 336

to 335 *, being an excess of little more than 23J miles.

The calculation of Newton was formed on the supposition

of the Earth being homogeneous ;
and it is worthy of

remark, that although the later observations, by proving

the flattening at the poles to be less than he, on this

hypothesis, assigned it, have shown the Earth not to be

homogeneous, no correction or improvement whatever

has been made on his theory in this respect. We find

Laplace, on the contrary, in the very passage to which

we are now referring, assuming his precise fraction ^^
as the one given by the theory upon the supposition of

the globe being homogeneous, and reasoning upon that

fraction.f

Now it is fit that we here pause to contemplate perhaps

the most wonderful thing in the whole of the Newtonian

discoveries. The subject of curvilinear motion, or mo
tion produced by centripetal forces, was certainly in a

great measure new, and Sir Isaac Newton s treatment of

it was in the highest degree original and successful. But

the laws of attraction, the principles which govern the

mutual actions of the planets, and generally of the masses

of matter, on each other, was still more eminently a

field not merely unexplored, but the very existence of

which was unknown. Not only did he first discover this

field, not only did he invent the calculus by means of

which alone it could be explored, and without which

hardly a step could be made across any portion of it (for

the utmost resources of geometrical skill in the hands of

the Simsons and the Stewarts themselves, who in other

inquiries had performed such wonders by ancient ana-

* Mec. Cel. liv. iii. ch. 5. t Il&amp;gt;id liv- & ch- 5 s - 4L
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lysis, would have failed to do anything here), but the

great discoverer actually completed the most difficult in

vestigation of this new region, and reached to its most

inaccessible heights, with a clearness so absolute, and a

certainty so unerring, that all the subsequent researches

of his followers, and all their vast improvements on his

calculus, have not enabled them to correct by the fraction

of a cipher his first results. The Ninetieth and Ninety-

first Propositions of the First Book, containing the most

refined principles of his method, are applied by him in

the Nineteenth of the Third Book to the problem of the

Earth s figure; his determination of the ellipticity, sup

posing the mass homogeneous, is obtained from that appli

cation. A century of study, of improvement, of dis

covery has passed away ; and we find Laplace, master of

all the new resources of the calculus, and occupying the

heights to which the labours of Euler, Clairaut, D Alem-

bert, and Lagrange have enabled us to ascend, adopting

the Newtonian fraction of ^y, as the accurate solution

of this speculative problem. New admeasurements have

been undertaken upon a vast scale, patronized by the muni

ficence of rival governments ; new experiments have been

performed with improved apparatus of exquisite delicacy ;

new observations have been accumulated, with glasses

far exceeding any powers possessed by the resources of

optics in the days of him to whom the science of optics,

as well as dynamics, owes its origin ; the theory and the

fact have thus been compared and reconciled together in

more perfect harmony ; but that theory has remained un

improved, and the great principle of gravitation, with its

most sublime results, now stands in the attitude, and of

the dimensions, and with the symmetry, which both the

law and its application received at once from the mighty

hand of its immortal author.
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NOTE.

The argument in page 136. is succinctly and po

pularly stated respecting the supposition of a hollow in

the centre of the Earth, and several steps are omitted.

One of these may be here mentioned in case it should

appear to have been overlooked. Suppose a mass m de

tached from the hollow sphere M, and impelled at the

same time with that sphere by an initial projectile force,

then its tendency would be to describe an elliptic orbit

round the sun, the centre of forces, and if it were detached

from the earth it would describe an ellipse, and be a small

planet. But as the accelerating force acting upon it would

be different from that acting on the earth, the one being

as
pp } and the other as

^-y (D being the dis

tance and S the mass of the sun), it is manifest that, sooner

or later, its motion being slower than that of the hollow

sphere, if m be placed in the inside, it must coine in con

tact with the interior circumference of the sphere, and

either librate, or, if fluid, coincide with it, as assumed in

the text. Where parts of the spherical shell come off by

the centrifugal force, of course no such step in the

reasoning is wanted; nor is it necessary to add that

neither those parts nor any other within the hollow shell

can have any rotatory motion.
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II.

HITHERTO we have considered all motion as performed

in vacuo, or in a medium which offers no resistance to the

action of forces upon bodies moving in any direction. It

was necessary that the subject should first be discussed

upon this supposition ; and the hypothesis agrees with

the fact as far as the motions of the heavenly bodies are

concerned. But all the motion of which we have any

experience upon or near the surface of the earth, is per

formed in the atmosphere that surrounds our globe ; and

therefore, as regards all such motion, a material allow

ance must be made for the resistance of the air when we

apply to practice our deductions from the theory. It is

also obvious that a still greater effect will be produced

upon moving bodies, if their motion is performed in a

denser fluid, as water. Further, the pressure and motion

of fluids themselves form important subjects of considera

tion, independent of any motion of bodies through them

and impeded by them. These several matters form the

subject of the sciences of Hydrostatics, Hydraulics, and

Pneumatics; the first treating of the weight and pressure

of watery fluids, the second of their motion, the third of

aeriform or elastic fluids. They are discussed in the

Second Book of the Principia. It consists of Nine Sec

tions ;
of which the First Three treat of the motion of

bodies to which there is a resistance in different propor

tions to the velocity of the motion
; the Fourth treats of

circular or rather spiral motion in resisting media; the

Sixth, of the motion and resistance of pendulums ; and

part of the Seventh discusses the motion of projectiles ;

while the rest of the Seventh, and the whole of the four
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remaining sections, treat of the pressure and motion of

fluids themselves and propagated in pulses, or otherwise,

through fluids. We shall arrange the subjects under these

Five heads, instead of following the precise order of the

work itself.*

Two observations are applicable to this branch of the

subject, and to the treatment of it in the Principia ; and

these observations lead to our distinguishing this portion

of that great work from the rest.

First. Much more had been accomplished of discovery

respecting the dynamics of fluids before the time of Sir

Isaac Newton, in proportion to the whole body of the

science, than in the other branches of Mechanics. The

Newtonian discoveries, therefore, effected a less consider

able change upon this department of Physics than upon

Physical Astronomy and the general laws of motion. As

early as the time of Archimedes the fundamental principle

of the general or undequaque pressure of fluids had been

ascertained ; many of the easier problems, and even some

of the more complicated, had been investigated bv its aid.

When dynamical science was newly constructed by the

illustrious Galileo, the progress which he made may almost

be said to have formed Hydrostatics and Hydraulics into a,

system ; and Pascal s original and inventive genius, soon

afterwards applied to it, enabled him clearly to perceive

the hydrostatic paradox, and even led him to a plain an

ticipation of the hydrostatic press. f Torricelli about the

same period reduced the atmosphere under the power of

weight and measure, making it the subject of calculation by
the beautiful experiment which first ascertained its gravity,

* For the arrangement, see the Summary of Contents,

t He calls a box of water &quot;a new mechanical principle by which we may
multiply force ad libitum.&quot; (Eqoil. of Fluids, 1653.)

M 2
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which had long been suspected but not proved. Pascal

first extended the Torricellian experiment to all the perfec

tion, indeed, which it has ever attained, by showing the con

nexion between the height of places on the earth s surface,

and that of the mercurial column; thus demonstrating

satisfactorily the pressure of the atmospherical column.

Torricelli had also, from experiments on the spouting of

water, inferred that the velocity of the spouting column,

or jet, is as the square root of the height of the reservoir

of fluid whose pressure causes the flow. So that the fun

damental principles being ascertained, considerable progress

was also made in their systematic application, when Sir

Isaac Newton came to treat the subject as a branch of his

general dynamical theory, and to investigate the laws of

fluids by means of those profound principles which he had

established with respect to all motion. Thus more was

done before his time, and less consequently left for him to

do here, than in the other branches of the general subject.

Secondly. It is also true that the work which he pro

duced upon this branch of science, did not attain the same

perfection under his hands, as the rest of the Principia,

Although he treated it upon mathematical principles, he

left considerably more to be done by his successors than he

left to be added by those who should follow him in the

field of Physical Astronomy. A great step was almost

immediately made by J. Bernouilli, in ascertaining the

effects of the air s resistance upon the motion of projectiles;

and an error so apparent was pointed out in one of the

Propositions in the Principia (Book II. Prop. 37*), that

the correction coming to the author s knowledge, he struck

it out of the second edition, then in the press. His ori

ginal solution of the problem as to spouting columns,

* First Edition, published in 1687.
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having differed from the rule which Torricelli had deduced

experimental ly, Xewton again investigated the question by
a different and an admirable process ; but even now the

subject remains in a very unsatisfactory state. Nor can it

be said that the science of hydrodynamics generally has

attained the perfection of the other branches of Mechanical

philosophy; while it is certain that the application to it of

the calculus by Euler and D Atembert*, and still more by

Clairaut, has greatly added to the theorems left by Sir

Isaac Newton ; and the researches of Laplace upon ca

pillary attraction form a department of science almost

unknown before the latter part of the eighteenth century.

The statement of these particulars was necessary in

order to place the relative merits of the different branches

of the Principia in their true light. That a great improve

ment was accomplished in natural knowledge by this por

tion of Sir Isaac Newton s discoveries, none can doubt.

That the Second Book displays at every step the profound

sagacity and matchless skill of its author, is undeniable.

That it would have conferred lasting renown upon any one

but himself, had it been the only work of another man, is

certain. Nor can we forget that in rating its importance

as we have ventured to do, we only undervalue this portion

of the Principia, by applying to it the severest of stand

ards, comparing it with the discovery of the laws which

govern the system of the universe, and placing it in con

trast with the other parts of that unrivalled effort of human

genius.

* Their invention of the Calculus of Partial Differences \vas connected

with this subject. (See Life of D Alembert.)

11 3





ANALYTICAL VIEW.

- PRINCTPIA. BOOK SECOND.

CHAPTER I.

THE ELEMENTARY PRINCIPLES OF HYDROSTATICS, AND THE

LAWS OF DENSITY OF AN ELASTIC FLUID COLLECTED ROUND
A CENTRE OF FORCE. -

I. Elementary Principles of Hydrostatics.

1. What a fluid is, the terms viscosity, solidity, &c.

2. \Vhat the foundation is on which the theory of Hydrostatics is built.

Newton, xix.

3. The fundamental equation by which we know the properties of a fluid

in equilibrium. Note I.

4. Three consequences of this equation. Note I.

(1.) That there must in all cases be a certain relation among the forces.

(2. ) Level surfaces are surfaces of equal density.

(3.) Level surfaces are surfaces of equal temperature.

5. Newton, xx., Fliuds under the action of gravity only.

II. The Law of Density in a compressible Fluid under the Action of a central

Force.

1. Solution of the question defect in the application to physical ques

tions, Newton, xxi. xxn. &c.

2. First application. Measurements of heights. Note II.

Second application. Form of our atmosphere, the Zodiacal light not

part of the Sun s atmosphere. Note II.

I. 1.
&quot; HYDROSTATICS&quot; is that part of statics which treats

of the equilibrium of fluids. Afluid ?&amp;gt; any body whose parts
M 4
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yield to any force impressed on it, and by yielding are easily

moved among themselves. This is Newton s definition. It

includes gases and aeriform bodies, as well as those to

which we, in ordinary conversation, apply the terms &quot;fluid&quot;

or &quot;

liquid.&quot;

The fundamental idea of a fluid is, that of a body whose

particles may be moved amongst each other on the appli

cation of the slightest possible force. It is therefore

directly opposed to a rigid body, whose definition is that

its particles cannot be moved amongst each other, no

matter how great a force is applied. It is evident that

no substance that we meet with in nature is strictly either

a fluid or a rigid body ; but they approach more or less to

the one or the other. When they partake more of the

fluid than the rigid nature, they are called &quot; viscous
;&quot;

when the contrary, they are called (&amp;lt;

solid.&quot; These two

are therefore indefinite terms, and no clear boundary can

be drawn between them.

2. The science of Hydrostatics is divided into two parts.

In one we assume certain general principles as the grounds

of all our reasoning. We may consider these as established

either by experiment, or as truths which it is the office of

the other part of the science to demonstrate. In the other

we make certain general assumptions as to the constitution

of a fluid, and then we attempt to deduce from these the

general principles on which all the rest of hydrostatics is

founded. This division occurs in most mechanical sciences.

Thus, in Geometrical Optics, we assume the laws of

reflection and refraction ;
it is the part of Physical Optics

to establish their truth. It is not here our office to enter

into the science of Molecular Hydrostatics; we must post

pone, therefore, such consideration to a future chapter.

The mathematical theory of Hydrostatics is founded upon

two laws.
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1. The pressure of the fluid upon any element of a

surface exposed to it is normal to that surface.

2. Any pressure communicated to a fluid mass in

equilibrium is equally transmitted through the whole fluid

in every direction.

Consider any point in a fluid, and let an indefinitely

small plane pass through it ; by the second law the pres

sure is the same, whatever be the inclination of the plane

to the horizon; by the first it is normal, and proportional

to the area of the plane. Let this area be ; then the

pressure may be represented by p . This quantity p is

therefore what we seek to find. It is what the pressure

would be if the area were unity, and the pressure constant

over that area. It is therefore called the &quot;

pressure referred

to a unit of area.&quot;

The law expressing the equality of pressures in all direc

tions is true in viscous as well as perfect fluids. The dif

ference is this, that in the latter the transmission of the

pressure is effected in a moment, in the former it takes

time. During this interval the law is not true ; but when

a short time has been allowed to pass, the fluid takes up its

form of equilibrium, and the pressure becomes equal in all

directions.

These two laws are not independent. The first con

tains the second. For, let the fluid contained within the

pyramid O A B C in the interior c

of the fluid become solid. This

is allowable, for, the fluid being in

equilibrium, the pressure on the

solidified element will be borne

and resisted in exactly the same

way that it was while still fluid. Let p be the pressure

referred to a unit of area on the plane C O A at O, q

that on a plane parallel to B C A through O. Let the
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pyramid diminish without limit, the pressures on the two

sides C O A and B C A will be normal and respectively

equal to

p x area C A, q x area B C A.

Resolving these, parallel to B, we have

p area C O A area C O A
q area B C A area B C A 5

because this latter ratio expresses the cosine of the incli

nation of the two planes ; hence

p =
q.

Similar equations hold by symmetry for the other sides.

And therefore the pressure is equal in all directions.

This includes Prop. xix. of Section V.

3&amp;lt;

\ Note I.

4. J

5. Newton proceeds to consider the equilibrium of a sphe
rical mass of fluid, like our atmosphere, resting upon a

spherical concentric bottom, and gravitating towards the

centre of the whole. The object is to determine the pres

sure on any point A of the bottom. Divide the fluid into

concentric orbs of equal thickness dx. Now any part of

a fluid at rest may be supposed to become rigid ; for it

will then resist and be resisted by the remainder of the

fluid in exactly the same manner as before. Draw, then,

any cylindrical canal from the point A to any point B
in the surface of the fluid, and suppose its superficies to

become rigid. This canal will be divided into elements by
the concentric orbs. Let d s be the length of any one

of these elements, and F the force of gravity ; then the

weight of that element is Fds. This acts directly to

wards the centre, that is, along dx. Resolving along the

canal, the force with which this element tends to press

the bottom of the canal is Fdx. The same is true for
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all the elements ; hence the whole pressure on the bottom

of the canal is

that is to say, it is equal to the weight of a cylinder of

fluid, whose base is the area of the part A of the bottom,

and whose altitude is the same as that of the superincum

bent fluid.

The bottom is not pressed by the whole weight of the

incumbent fluid, but only that part which is described

above ; and it will be the same whether the fluid rises per

pendicularly above A in a rectilinear direction, or whether

it be contained in crooked cavities and canals, whether

these passages be regular or irregular, wide or narrow.

If a body of the same specific gravity as the fluid, and

incapable of condensation, be immersed in the fluid, it will

neither acquire motion by the pressure of the fluid, nor

any change of figure. Any portion of a fluid at rest may

clearly be supposed to become solidified without affecting

the equilibrium. Let a part of the fluid equal and similar

to the body about to be immersed become solid ; removing
it we may replace it by this body, and the equilibrium

will still subsist. It also follows that the resultant of all

the pressures exerted by the fluid on the solid is a force

equal to the weight of the fluid displaced acting upwards

through the centre of gravity of the volume of the body.

If, therefore, a solid be immersed in a liquid, it will remain

at rest if it be of the same density as the fluid. But if it

be of greater density, it will be no longer sustained by
the resultant pressures, and will sink to the bottom. If it

be of less density, it will rise to the surface, being acted

on upwards by a greater force than its own weight. Hence,

Newton concludes, bodies placed in fluids have a twofold

gravity ; one true and absolute, the other apparent, vulgar,
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and comparative. Absolute gravity is the whole force

with which the body tends downwards. Relative gravity

is the excess of gravity with which the body tends down

wards more than the ambient fluid. The bodies, therefore,

which we call light, and which appear to fall so slowly, or

even seem to rise in the air, are light only in comparison

with the air. If there were no air, their apparent gravity

would be their real gravity, and all bodies are found to

fall when placed in a vacuum.

II. 1. Having discussed some of the fundamental proper

ties of fluids, and obtained the equations of equilibrium, we

can proceed to apply them to some of the great problems

that Nature presents us with. The first case which Newton

considers is the law of density in a compressible fluid

which is attracted according to any law by a force tending

towards a given centre. He does not consider this pro

blem in its most general form, nor would there be any

advantage in doing so. The only forces which present any
interest are those which vary according to some power of

the distance.

Let us assume that the attraction upon any particle

whose mass is a unit, and distance from the centre x, is,

_

x n

where \L is some constant quantity, of n + 1 dimensions.

The fluid will manifestly arrange itself symmetrically round

the centre of force. We may therefore consider only those

particles that lie in the axis of x. Take therefore a small

rectangular element at a distance x from the centre of the

earth, and whose sides are dx dy dz. This element must

be at rest under the action of the fluid pressures on its

sides and its own gravity. If p be the pressure referred

to a unit of area at this point, these two pressures will be

clearly
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p dy dz and (p -\--r-.dx) dy dz

acting along the axis of a:. And the weight will be

and since there is equilibrium the sum of these must be

zero. The equation of fluid equilibrium is then

dp=-f. -..**
---

(1).

To solve the problem we require the relation between p
and

p. In fluids generally we have

p= x P
-----

(2).

This is the law which Newton takes for granted in the

two cases which he has worked at length. He also states

the results that would be arrived at if we had assumed

other laws ; and, as we shall see, Laplace has been led to

believe that the above is far from being true within the

earth.

Substituting from the second equation the value ofp in

the first,

*&amp;lt;lp=-p ^ dx.

Hence dividing by p and integrating,

- - -
(3), .-

71 1 *

where C is some unknown constant. Hence

u. 1

p
= D s t&quot;^ 7^

where D is the density at the centre or at an infinite dis

tance, according as n is less or greater than unity, and can

only be determined by some of the given conditions of the

fluid.

Generally, we conclude from the above, that when the
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reciprocals of the (nl)ih
powers of the distances are in

arithmetical progression, the densities at those points will

be in geometrical progression.

Two cases of the above are worthy of notice, when

n= 2 and when w= 0. In the former the force attracts

inversely as the square of the distance, and the density at

any point is given by
+ ]

p
= D . g

* *

that is, if the distances be in harmonical progression, the

densities will be in geometrical progression. In the latter

case the force is constant and equal to p, and the density

is given by

that is, if the distances decrease in arithmetical progression

the densities will decrease in geometrical progression.

These cases we might suppose to bear some analogy to the

state of our atmosphere, the former holding when the

changes of elevation are great, the latter when they are

small.

There is one case, especially considered by Newton, in

which the preceding general formula fails, viz. when

n=l, for then log p in equation (3) appears to be always

infinite; but this is not really the case, for C is also

infinite and negative. The form of the integral has

changed, and by merely repeating the process, we get

K log p
= C p log x

_
.*. p

= D . x *

The preceding investigations are not, however, of any

very great practical utility. They are all founded on the

supposition that the compression varies as the density.
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Now this is only true when the temperature is constant.

When it is not, we have seen that the true law is that

p = x p (1 + a
t).

If, however, we attempt to use this equation, we require

to know the law according to which t, the temperature,

varies as we ascend into the air and descend into the

earth. We can have but little assistance in determining

this from observation. As Humboldt* has remarked, our

experimental knowledge of the interior of the earth is

limited in the extreme. The greatest depth below the

surface of the sea that has yet been obtained, is probably
that of the salt-works of Xew-Salzwerk, near Minden,
in Prussia; yet this was only 1993 feet, or less than

Y^-Joo^ part of earth s radius. The observations even on

these small depths are liable to serious errors, as the

different periodic variations of temperature caused by the

diurnal or annual heating of the surface, the greater

exposure to the surface air, &c. The temperature of

water at the bottom of the salt mine was 90 8 Fahren

heit, giving a mean decrease of 1 Fahrenheit for every
53 -8 feet. If we tried to make our observations on the

law of density instead of that of temperature, for the

knowledge of either would enable us to integrate the

equations, we can succeed no better. The dippings of

strata beneath the surface, which rise again at known

distances, only reach some twelve thousand feet below the

surface of the sea ; and if to this we added the height of

the highest mountain, we have only a knowledge of

jiTth part of earth s radius.

We have also observations made on the temperature of

the air at the summits of mountains, and in balloon

*
Kosmos, i. 150.
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ascents. The former will not furnish us with the re

quired law, because the presence of the mountain will

affect the temperature of the air by its radiation of the

solar rays. Gay Lussac, in his celebrated aerostatic ascent

of 3816*12 fathoms, found the temperature at the upper

station 14 9, giving a depression of 1 for every 95 14

fathoms. A great variety of observations have been

made, and many empirical laws invented to suit them.

To mention only one : Mr. Atkinson, in the second volume

of the Transactions of the Astronomical Society, asserts,

that at an altitude of h feet the depression in temperature

will be given by

h

nearly. We might make use of these results, and by

repeating our calculation in the manner indicated, obtain

various formulas to determine the density at any point.

But such results can never be very trustworthy.

II. 2. Note II.
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CHAPTER II.

THE FIGURE OF THE EABTH.

1. Newton s calculation of the ellipticity of the earth its defects.

2. An accurate investigation of the ellipticity on the supposition that the

earth is homogeneous the form thus found proved to be stable.

Note IIL

3. Newton s calculation of the law of variation of gravity.

4. Newton s application of his theory to the planet Jupiter.

5. The figure of the earth considered as heterogeneous, Clairaut and

Laplace s results. Note IV.

a. The form of the strata.

/3. The law of variation of gravity.

6. The law of density in the interior of the earth. Note IV.

7. Whether the interior of the earth is solid or fluid. Note IV.

8. Measures to determine by observation the ellipticity of the earth s

surface. Note IV.

a. Measurement of degrees,

/3. Observations on the pendulum.

7. Astronomical observations.

1. IN the eighteenth proposition of the third book, New
ton considers why the earth and planets are protuberant at

their equator. He does not investigate the form of the earth,

but merely shows that if it had been originally fluid, the

matter, by its ascent towards the equator, would enlarge

the diameters there, and by its descent towards the poles

it will shorten the axis. And even if the earth had not

been originally fluid, yet if the earth were not higher at

the equator than at the poles, the seas would subside

about the poles, and rising towards the equator, would

lay all things there under water.

Taking for granted that the true form of the earth is

N
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a spheroid, Newton proceeded to calculate its ellipticity.

This he does nearly as follows :

(1.) From Picart s and Cassini s measures of a degree,

he finds, supposing the earth spherical, that its radius

must be 19,615,800 Paris feet. From some observations

on falling bodies at Paris, he calculates that the force of

gravity at that place is such, that a body will fall 2174

lines in the first second of its descent. Knowing the

earth s radius, and its time of rotation, it is easy to cal

culate the centrifugal force at the equator ; viz., such that

under its action, a body would describe 7.54064 lines in

the first second. Since the resolved part of the centri

fugal force perpendicular to the earth varies as the square

of cosine of the latitude we can calculate the centrifugal

force at Paris, and then adding it to the force of gravity,

calculate as above, we find the whole undiminished force

of gravity at that place to be such, that a body would

describe 2177.267 lines in the first second of its descent.

The undiminished force of gravity at the equator will differ

from this by a very small quantity ; hence rejecting small

quantities of the second order, the ratio of centrifugal

force at the equator to equatorial gravity is as 1 to 289.

This ratio is still in use.

(2.) If we took a spheroid, whose axes are as 101 to

100, by a simple application of Prop. XCL Book I.,

Newton shows that the force of gravity at the pole is to

that at the equator as 501 to 500. Take now two canals,

from the surface to the centre; let one meet the surface at

the pole, the other at the circumference. That there may
be equilibrium the weights of these two canals must be

equal. Conceive these divided by transverse parallel

equidistant surfaces into parts proportional to the wholes ;

the weights of any number of parts in the one leg will

be to the weights of the same number of parts in the
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other as their magnitude and the accelerative forces of

their gravity conjunctly ; that is, as 101 to 100, and

500 to 501, or as 505 : 501. The difference, viz., four

parts, must be supported by the centrifugal force. Hence

the ratio of the centrifugal force bears to gravity the ratio

4 : 505.

(3.) Newton now brings in the rule of proportion. If

a centrifugal force j$j cause a difference of elevation of

the two legs T^Q, what difference will a centrifugal force

g-^g make ? The calculation gives a result |^, or the

diameter of the earth at the equator is to its diameter at

the pole as 230 to 229. The ratio of the difference of

these diameters to the equatorial diameter, is called the

ellipticity of the planet.

This investigation of Newton is manifestly altogether

defective. He assumes not only that the spheroid is a

form of equilibrium, but that the ellipticity is always

proportional to the ratio of the centrifugal force to gravity.

These two assertions are indeed true, but they are not

self-evident. It was Maclaurin who first demonstrated

their truth. It is very remarkable in how wonderful a

manner Newton often arrives at correct results by means

the most inadequate. Of this there are many other

instances besides the present one. He guessed the mean

density of the earth he determined by analogy that the

velocity of waves varied as the square root of their

length. Another analogy led him to a curious result in

regard to the tides.

2. NOTE III.

3. Newton remarks that the force of gravity will not be-

the same at all points of the earth. For draw any radius

O P= r from the centre to any point P in the circum-

N 2
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ference. Then the earth, being considered homogeneous,
the attraction of the spheroid on any point Z in OP,
resolved along this radius, will be proportional to its

distance O Z from the centre. The same is true for the

centrifugal force. Hence altogether the resolved part of

gravity at any point Z in O P resolved along the radius

varies as O Z. Let it be represented by co z, where z= OZ,
and co may vary with the position of P. The whole weight

of the column is therefore

co/ z d z =
-J-

co r2
;

J*
and this must be the same for all radii ; hence co varies

inversely as r2, and therefore the attraction varies as

2= , when Z lies on the surface. Hence the force

of gravity towards the centre must vary on the sur

face of the same planet reciprocally as the distance of the

bodies from the centre of the earth. As the earth is

very nearly spherical, this must be also very nearly true

for the whole force of gravity. Let Gr then be the force

of gravity at the equator, g that at the point P, whose

latitude is X and radius r, then

= I* - A/ 1 __

= G-
{
1 + e sin2 A} nearly.

We shall show in another chapter that the force of

gravity is proportional to the length of the seconds pen

dulum
;
hence if / and L be the lengths in the latitude A

and at the equator,

Z=L{1 + gsin2A}.
The value of I was known in the latitude of Paris,

whence that of L can be found, and thence the length in



NEWTON S PRINCIPIA. 181

any latitude. Newton now refers to a number of obser

vations on the length of the seconds pendulum in various

latitudes, as a means of testing the truth of his theory. It

appeared that the length of the seconds pendulum does

decrease as we approach the equator in the ratio of the

square of the sine of the latitude, and so far observation

confirms the theory. But it also appeared that the

decrease of gravity was greater than that given by the

theoretical expression. Whence Newton concluded that

the value of e, as given by theory, was a little too small.

Here, however, he was wrong; for if the earth be con

sidered as heterogeneous, an exactly opposite conclusion

will follow from Clairaut s theorem.

The planet Jupiter, owing to its great angular velocity,

is very protuberant at its equator, and thus the difference

of the lengths of its two axes could be determined with

tolerable accuracy. This planet, therefore, furnished

Newton with a good test of the truth of his theory. Since

the centrifugal force varies as the square of the angular

velocity, and inversely as the radius; and gravity in

different planets varies as the radius and as the density

conjointly, hence the ratio of the centrifugal force to

gravity varies as the square of the angular velocity

directly and the density inversely. The ellipticity by
what precedes has the same proportion. On substituting

the known numerical values of these quantities, we find for

the ellipticity of Jupiter -^7.
Cassini observed in the year

1691, that the diameter of Jupiter from east to west is

greater by about Tjth part than the other diameter. Mr.

Pound with his 123 feet telescope and an excellent

micrometer, measured the diameters of Jupiter in the

year 1719, and found them on four occasions to have the

ratios 12 to 11, 13| to 12J, 12f to llf, 14^ to 13J.
K 3
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Thus Newton found a great discrepancy between the

results of observation and theory. He accounts for this

by remarking that there are two causes whose effects have

not been allowed for. First, the diameters of Jupiter will

appear in the telescope greater than they really are. The

magnitude of the correction to be applied depends on the

size of the telescope, and the care that has been taken in

its construction. The greater diameter of Jupiter being

37&quot;, the lesser, according to the above ratio, will be

33&quot; 25&quot; , add thereto 3&quot; for the effects of aberration,

and the apparent diameters of the planet will be 40&quot; and

36&quot; 25
&quot;,

which are to each other in the ratio of 1 1 to

10|, very nearly. Secondly, Newton remarks that the

theory assumed Jupiter to be of uniform density. But

this is not likely to be true.

5.

6t
J- NOTE IV.

8.
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CHAPTER III.

THE MOTION OF A PARTICLE IN A RESISTING MEDIUM.

1 . The object and mode of conducting the enquiry.

2. When the resistance varies as the velocity.

a. Rectilinear motion.

0. Curvilinear motion. Section I.

3. When the resistance varies as the square of the velocity.

a. Rectilinear motion.

p. Curvilinear motion. Section IT.

4. When the resistance varies partly as the velocity and partly as the

square of the velocity, and the motion is rectilinear. Section HE.

5. When the resistance varies as any power of the velocity and the

motion is rectilinear consideration of an analytical difficulty in

the solution the terminal velocity and instances.

6. The motion of a particle in a resisting medium round a centre of

force.

o. The method used by Newton.

. The method supplied by the Planetary Theory. Section IV.

1. PART of the theory of the motion of a body in a resist

ing medium is contained in the first four sections of the

second book. The manner in which a medium resists the

motion of a body moving in it is not the subject of this

inquiry. It manifestly depends on a great many circum

stances which we shall presently consider. At present we

shall assume that the changes of resistance throughout

the motion depend only on the changes of velocity. Again,

the resistance will greatly depend on the form of the body,

and will change, therefore, as the body during its motion

opposes different faces to the resistance of the fluid. If

the resultant of the resistances on the several parts of the

N 4
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body does not pass through the centre of gravity, the

resistance itself will tend to cause rotation in the body.

To simplify our analysis we shall consider the bodies to

be indefinitely small particles.

The principle on which we proceed is, that the motion

of the particle will be the same as if the resisting medium

were removed, arid that, first, a retarding force is substi

tuted in its stead, which acts along a tangent to the mo
tion of the particle, and depends only on the density of

the fluid and the velocity of the particle at the moment

under consideration, and that, secondly, all the impressed

forces are, by the buoyancy of the fluid or other causes,

diminished in a known ratio.

In considering the motions of bodies in vacuo we exa

mined the effects of various laws of gravitation besides

that which we know to exist in nature. So we may now

examine the consequences of supposing the resistance to

vary according to different functions of the velocity.

It is to Newton and Wallis * that we owe the first

researches on the theory of the motion of bodies in resist

ing media. Wallis, in the same year that Newton pub

lished his &quot;

Principia,&quot;
communicated his reflections on this

subject to the Royal Society, who published them in their

Transactions for 1687. Wallis, however, does not go so

deeply into the subject as Newton did. A little after

Newton s book appeared, Leibnitz asserted that he had

already discussed these subjects, and that he had commu

nicated his opinions twelve years previously to the Academy

of Sciences at Paris. Huygens also considered some

points in this theory at the end of Traite de la Pesanteur,

which appeared in 1690. Finally, everything which had

been either proved, or stated without proof, was demon

strated by Yarignon by the aid of the modern calculus.

* Montucla, Part IV., Lib. VII. 6.
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The process that is now used to determine the motion

is founded on the following reasoning. Let us suppose

the particle moving in any curved line ; let s be the arc

described measured from any point at the time t. The

time is supposed to be measured from any epoch anterior

to the commencement of the motion. Then in the small

time S t, the particle will, according to the notation of the

differential calculus, describe a small arc s, hence the

mean velocity of the particle during this interval will be

g
. Now let 8 t diminish without limit, the mean velocity

will become the actual velocity (y) at the instant t, and

hence

ds
V =

Tf

Similarly, the velocity being v at the time t, that at the

time t + $t will be v + 8 v
; hence the acceleration is such

that in time t a velocity S v has been added to the motion ;

hence the mean acceleration in that interval, measured by
the velocity that would have been added in a unit of time

v

if it had remained constant during that time, will be =

Now let 5 t diminish without limit, and the mean accelera

tion becomes the actual acceleration (f) at the instant, and

d t

But an accelerating force is measured by the quantity of

velocity it would add to the body in a unit of time, if it

remained constant during that interval, so that we have

merely to equate the accelerating force as given by the

question, to the acceleration as given by the preceding
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formula, and we shall have an equation to determine the

motion.

If x and y be the co-ordinates of the particle at any
time ^, it will follow by similar reasoning applied to the

second law of motion that the velocities parallel to the

axes are

d x i d y~ and

and the accelerations are

parallel to the same axes.

2. PROBLEM. To determine the motion of a particle moving
in a straight line in a medium, and thereby resisted in the

ratio of its velocity, and acted on by a uniformforce.

Let V be the velocity of the particle at any time which

we shall take as an epoch to measure our time from, and

the place of the body at this time, as our &quot;

origin
&quot; from

which to measure the distance of the particle at any
other time. Take as our direction of measurement the

direction in which the particle is moving at that epoch.

Let x and v be the distance and velocity of the body at

any time t. Let m be its mass, and let K v be the re

sistance when the body is moving with a velocity v
; that

is to say, let * v be the moving force which would be

required to keep the body moving, with this velocity in

the medium. Let / be the uniform accelerating force

measured in the usual way.
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Then the whole moving force on the body will clearly

be

m f K v.

Also we know that for any particle the accelerating force

is -=-, and therefore the moving force is m
-j-. Equating

these two

dvm
j

= mf K v

dv K

This equation contains the whole of the motion.

dx
First. We know that v = ~, substituting, we have

dv _ K^dx
d~t ~J

&quot;

m~Tt

. . integrating throughout the time t,

If x were nothing, or the medium did not resist the

particle, we should have,

v-V=ft -
(3.)

Hence the motion lost by resistance is

x x

that is, it is proportional to the space gone over. This is

Newton s first proposition. A similar proof will apply if

f be not constant.

Secondly. Suppose/ =0; or that the particle moves

by its
&quot; vis insita

&quot;

only. Then,

dv _ K

d t~ m

m
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integrating throughout the motion

i
v K

i

log ^ = tO V *vim

=V.. - - - -
(4.)

That is, when the times are in arithmetical progression,

the velocities are in geometrical progression. Also, we

have already proved that

v-V = -- x - - -
(5.)m

or the velocity lost in passing over any space varies as

that space.

As soon as the value of K is known, the above formulae

may be submitted to accurate calculation. As its value

depends on the form of the body, and the density of the

medium, it can only be found by experiment in any par

ticular case.

We may, however, learn some curious facts from these

formulas. From the formula for v, in terms of t, we see

that though v continuously decreases as t increases, yet

it never vanishes. The particle will then never stop,

though constantly retarded. A little consideration will

show that this is just what we should expect. For the

resistance, varying as the velocity, takes away from the

K d t

velocity in any small time d t, a certain fraction of

the velocity that the particle has left. And as by taking

away continually the halves of any quantity no one can

remove the whole, so neither can this resistance ever

destroy the whole velocity.

From the second formula we learn, that since v can
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never be zero, it is always positive, and therefore

m TT
x &amp;lt;

- V.
X

The resisted particle can never reach a point distant

- V from the origin, and it takes an infinite time to de-
X

scribe this space.

We may also represent the motion of the particle by the

several parts of an hyperbola. Construct an hyperbola

T P A, whose asymptotes are the per

pendicular straight lines, O X, O Y.

Then P being any point, and

P N parallel to O Y, we know

that O. N . P N is constant, and

equal to one quarter the sum of

the squares of the axes. Let the hyperbola be such that

this is equal to c2.

Then take O B = V, and N = v. By (5), we

have,

B N = - s.m

Hence the velocity being represented by O N, the

space described will be proportional to B N.

Also, P N = y

m= y d v
X C

m
/&quot;

* xP / ^

or the time is proportional to the area P N B A. If the

hyperbola be so drawn that the number of units of area
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77?

in c2
is equal to , then the number of units of area in

K

P N B A will equal the number of units of time elapsed.

Thirdly. We may now proceed to consider the more

general case. We have

dv K

rt^f-a,&quot;

Hence by division we have,

fm mJ v
K

Integrating throughout the motion 3

fm

Hence, if from the velocities there be subtracted the

constant quantity ^, then these differences are in

geometrical progression, when the times are in arithme

tical progression.
s7 fvt

Again, since v =- tnis equation gives

dt X

integrating throughout the motion,

which ^ives x in terms of t. This equation is the same

as the more simple one,

already established.
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From these equations we learn by interpretation several

facts.

1. Let the velocity of projection be in the direction in

which the accelerating force / acts. Hence f is here

positive.

. Since e m can never change sign, the quantities

fm , T7 fmv J~ and V -

X X

have always the same sign. Hence the velocitv is always

greater or always less than -
according as the velocity

of projection is greater or less than that quantity.

(B. Since e
~

*

continually diminishes as time goes on,

but never vanishes for any finite value of t, hence the ve

locity v continually approaches
-

, but never actuallyX

equals it.

y. If F the velocity at any one point should equal

1

, the velocity is always equal to the same quantity.

8. Since v continually approaches a finite quantity, the

expression for x shows that the space described continually

increases and finally becomes infinite in an infinite time.

e. The velocity continually approaches the limit ^-
*,

hence x is the mass of that body whose limiting velocity

is/.

2. Let the velocity of projection be in a direction op

posite to that in which the force/ acts. Here /is negative,

and our formula become

fmv + J =
X
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As time goes on, the second factor on the right hand of

the first equation continually decreases. Hence v decreases,

until a time comes when

= y 4-
X

or,

m/ V v\
1 If T /C \=

;
los( 1 +?)/m,

then v= or the body comes to rest.

After this time, v becomes negative, or the body begins

to move in the opposite direction. This case has been

already considered.

2. PROBLEM. Supposing the force of gravity to be uni

form and to tend perpendicularly to the plane of the

horizon, to determine the motion of a projectile in a

medium which resists in the ratio of the velocity.

Suppose the body projected with a velocity V and in a

direction making an angle with the plane of the horizon.

Take this also as the epoch from which we measure the

time, and let v be the velocity and the angle the direction

of motion makes with the horizon and s the arc described

at any other time t. Let the position of the particle be

defined by two co-ordinates x and y, giving respectively its

distance from the point of projection measured along a ho

rizontal line, and its altitude at the time t. Our first ob

ject is manifestly to find x and y in terms of t.

By the second law of motion each force produces its own
effect as if the particle were at rest and it the only acting
force. In considering then the motions parallel to any di-
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rection, we may wholly omit those perpendicular. The

only force acting along the axis of x is the resolved part

of the resistance in that direction. This is

x v cos.

But we know thatv= -= and cos = ~r. Hence the movingat as

force is

dx

By similar reasoning that parallel to y is

i&quot;&quot; *
dt

Hence just as in Art. 2., the equations of motion are

d* x dx
m

dt*
~~

*dt
d y

-
(1.)

We have met with both these equations before. The mo
tion parallel to x is manifestly the same as that in the

second case of Art. 2. We can therefore write down our

results at once, viz.

V COS = -= = V COS a . e m
a t

and
m IT /I

x = V COS a . ( 1 g

-
(2).

The motion parallel to y is the same as that of the third

case of Art. 2. Hence
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, sin = ^/ =
dt

m
x

^ .V sin a +
a m\ --t

+ ^
) e *

x /

m (3).

When any one of the five quantities x, y, v, 0, t, are

given, these four equations determine the other four. It

is therefore reduced to be a mere matter of arithmetic

calculation to determine the position of the particle at any
time. It may be laborious and tedious, but there is no

difficulty in it.

We shall now trace the curve the particle describes.

Find t from the second equation and substitute in the

fourth, we have

y =9

+ - -
(4.)

Let O be the origin, O B the direction of projection,

A O C a horizontal. Take O C

= . V cos a, and draw C B ver-
x

tical. Then from the above equa
tion it is manifest that B C is an

asymptote to the curve. Take

\ Q

B A = (
J a, a quantity, it will

be observed, that is independent

both of V and a. Join O A, and

let ft
= L A O C

. . tan ]8
= tan a + . ^ .

V COS a
-

(5.)
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If P be any point in the curve, and N P M vertical

x cos a
MN=

m cosa/

put N A = f, N P = *j

CM
^co-

-,log|
- -

(6.)

m cos a TT
where a = -

-5
V.

x cos p

This is a very simple form of the equation to the curve

and enables us to investigate many of its properties with

ease. We learn that if the successive values of N A are

in geometric progression those of N P will be in arithme

tical progression. This is Newton s second corollary.

It is also manifest from the manner in which we eli

minated t, that we have

,-(tan a + . ^_ )
x - Z^L # -

x V COS a&amp;gt;

or the particle moves in such a manner that its distance

from O A, measured parallel to any fixed straight line,

varies as the time. This is Newton s first corollary.

Since O B . cos a = O C, and O C = V cos a

.-.OB-5V5
X

and since any point may be considered as the origin of

projection, we learn that the velocity at P is always pro-
o 2
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portional to the tangent P T. This is Newton s sixth

corollary.

If / be the latus rectum of the parabola that would be

described under the same circumstances of projection, if

the medium offered no resistance, then

l
_ 2 Y2 cos 2 a

OCf
9

3. PROBLEM. To determine the motion of a particle moving

in a straight line in a medium resisting in the ratio of the

square of the velocity and acted on by a uniform force.

Let the symbols V, v, x, m, t, *3 have the same meaning
that they had in the corresponding problem in which the

resistance varied as the velocity. Then the whole moving
force upon the particle will clearly be

mf x v2

also we have the accelerating force on a particle moving
-, . dv , . . . dx ,m any manner equal to ; which, since v= , may also

u t u t

be put under the form v . Taking both these forms,

we have

dv
mv-j- = mf K

dx
which are identical equations. The first equation gives v

in terms of t} the second v in terms of x.

First. Suppose /= 0, or that the body moves by its

&quot; vis insita
&quot;

only.
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Then since

d v _ x
2

d t~ m

dv x ,

v2 m

integrating throughout the motion

s-y-s
- -

(1 -&amp;gt;

Again

.-. = L-a-^
V 771

.

*

. integrating throughout the motion

, t; x
I K v = *

.-..-y. .--*. - -
(2.)

Since u =
,
this equation is the same as

e *&amp;lt;/* = Vrf

integrating throughout the motion

5 l-_i = *
. v &amp;lt;m

- -
(3.)

From these equations we may gather every circumstance

of the motion. From (1) we learn that if the times are in

Arithmetical Progression the velocities are in Harmonica!

Progression ; and that the velocity varies inversely as the

time when counted from an era -^.units of time before
x V

o 3
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the epoch at which the velocity is V. Also from (2) we
learn that when the spaces are in Arithmetical Progression

the velocities will be in geometrical Progression.

A mere inspection of these equations shows that the

particle will continue to move for ever with a continually

decreasing velocity, and that it will pass over an infinite

space.

We may represent, as Newton has done, the motion by
the several parts of an hyperbola. Construct the hyper
bola B P, whose asymptotes are the perpendicular straight

lines O X, O Y. Then P being any point in it and P N
an ordinate, we have

ON. PN=c2

Take O A to contain ^ units of space, and A N to con

tain t units of space, then AN represents the time.

Since O N = t + ~

K C

or the ordinate represents the velocity.

/-
vdt

_

m
x c2

putting y for P N, hence the area A P represents the space

described.

Secondly. We may proceed to consider the more

general case. We have

dv K
v -j- f tr
dx m

v d v
.-. =fdx
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integrating throughout the motion,

i-
r

&quot; / = - 2- x
Log

- m
1 - -V*

which is true, whether the body is moving in the direction

in which / acts or the opposite, provided only we give /
its proper sign.

Again we have

dv ,.
x

2_ = f v
dt J m

=fdt
X.

^7
1

-v 1 -V .V
*. 1 log y-^

-
-

1 &quot;

?
v

provided/be positive, but if negative, say /,

tan&quot;
1 */ v - tan- v/-^- V = - %/^ *

??*/ 77Z/ m

the first or second equation being true, according as the

particle moves in the direction in which / acts or the

opposite.

From these equations we can infer the nature of the

motion.

(1.) Let the velocity of projection be in the direction

in which the force /acts. Then /is positive.

- X
a. Since e m can never change sign, the quantities

m f , TTO m f
v2 ^ and V 2

o 4
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have always the same sign. Hence the velocity is always

greater or always less than +/
m *

x

*
x

/3. Since e

~
m *

continually decreases as x increases,

v continually becomes more and more equal to \/ Be.
tt

y. As t increases and finally becomes infinite, the

equation connecting v and t shows that v continually

approaches and finally becomes equal to A/ ~
} a fact

* /v

which we could not infer from the first equation. This

velocity is called the &quot; terminal
velocity.&quot; Let us repre

sent it by the letter u. The equations may then be put

under the simple forms

-,
U + V , U + V si f *

log _L--- log-! = 2 J- t.^ u v u V u

Suppose the particle to begin to fall from rest, then we

have V=0 and/ =g.

v = u . A/ 1

U U ,

* 8
j.

x ut log 2 H log (1 4- e )

y y

(2.) Let the velocity of projection be in a direction

opposite to that in which f acts. Here f is negative,

write f for it, we learn that v 0, or the particle will

come to rest after having described a space given by the

equation
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and the time of describing this space is to be found

from

or,

In a preceding section Newton had determined the path

of a projectile when the resistance varied as the velocity,

and here was the place to give the solution of the cor

responding problem, when the resistance varied as the

square of the velocity. But this is a far harder question ;

~we~are even now unable to find quite accurately the path

described. Newton considered the problem in an indirect

manner. He determined the law of density that a given

curve may be described, but he could not thence deduce

the curve that gave the density uniform. He even made

several mistakes, which were corrected at the suggestion

of John Bernoulli, in the edition of 1713.* In 1718

Keill, in the course of the quarrel between the supporters

of Newton and Leibnitz, dared the foreigners to attempt

this question. Bernoulli was the first who gave a solution,

and challenged the proposer to furnish his own solution

within a certain time. This, however, Keill was unable

to do. Meantime Nicholas Bernoulli, of Padua, supplied

a solution ; and seventeen days after the time fixed had

elapsed, Taylor vindicated the honour of England by a

tardy solution. The problem we shall now consider is

somewhat more general than that enunciated by Newton,

and it is as follows :

* Montucla, Part IV. Liv. VII. 6.
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The resistance of the air being supposed to vary as the

square of the velocity and as the density conjointly) and the

forces to tend to directly to the plane of the horizon, to

determine what must be the law of density of the medium

that the particle may describe a given path, and to find the

velocity at any point.

Let the axis of x be taken horizontal and that of y
vertical, let x, y be the co-ordinates of the particle at any
time t, and s the arc described. Let p be the density of

the medium at the point (#, y\ and v the velocity of the

particle, V the velocity, and a the angle of projection.

Then the resistance of the medium may be taken as

Resistance = K p v 2
.

Let Y be the force acting on the particle parallel to the

axis of y. The equations of motion will be

d*_x
K

2
dx

d~T2 ~m pV Ts

~
dsdt* m

which may be put in the form

&quot;* = _ JL
p v 1 - .

(i.)7
&quot;

m r
c? *

m f dt

(t II fJ /*

Multiply these equations by ~ and -7- and subtract,

d x d2
y _ d y d2 x __ y d x ^^

dt d t
2 d t d t

2
&quot;

d t

By the theorem in the differential calculus for changing

the independent variable, we have, therefore,

~d~x\
2 d2

y y
7Tt\ die2

~~
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But from (1) we have

d x\~
l jdx

dxdx ~ x f*

Tt
= ~

mj ? d
*&amp;gt;

whence eliminating , we have
CL 6

- (4^dx* V 2 cos 2

an equation from which either p or Y may be found when

the relation between x and y, which determines the curve

is given.

The velocity at any point of the curve is that due to one-

fourth the chord of curvature. For looking at equation

(3), the left-hand side is the denominator of the expression

for the radius of curvature K, whence

g&quot;&quot;~

-L j }
a s

Since =- is the cosine of the angle, the normal makes
cL s

with the axis of y, the quantity in brackets is one fourth

the chord of curvature. Whence the proposition follows.

The equation (4) will also enable us to determine the

equation to the path when the law of density and the

force is given; as an instance take p constant, and Y
= g the force of gravity. Then

V2 COS2 a

an equation which can be only approximately integrated.

Newton takes several examples to illustrate his reason

ing. For instance, if the path be a semicircle and the

force gravity, we have
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Y = J

where ex. is the radius of the semicircle, whence, by a

simple substitution, we get

3 x

2 x a y
so that the density of the medium at any point varies

as tangent of the angle a radius through the point makes

with the vertical. Newton also determines the law of

density when the particle describes an hyperbola with one

asymptote vertical, chiefly with the view of finding an

approximation to the curve which a particle will describe

in a uniformly resisting medium. This was a problem
which Newton was unable to solve, except in this imper
fect and indirect manner. We shall not therefore dwell

on this, but will proceed at once to indicate the manner

in which the question is now answered.

Taking the equation

d 2 y q z* s7 ~ m
dx* V2 cos2 a

*

multiply both sides by VI + p*dx, where p =-r, and
Cl OC

integrate

2 ~*
T 2 f

= H- cos 2
. \p V 1 -f p

2

. K 2 a L-* r
2^

\

In gunneryp is usually small, let us reject the powers of

p higher than the second, we get

2-s 2x V2

g m =l-i- cos 2 a (tan a p)
mcj

l)
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.. .
2 _ 2 . p = -

(dx m ^ \

/* , N

a
. (e

-
1)

+ MgMc M _*9(~*-V
2 A V2 / 4 A2 V 2 cos2 a

which is the equation to the path.*

4. PROBLEM. To determine the motion of a particle

moving in a straight line in a medium resisting partly in

the ratio of the velocity, and partly in the ratio of the square

of the velocity, and acted on by a uniform force.

Let the symbols V, v, x, m, t,f have the same meaning
that they had in the corresponding problem in which the

resistance varied as the velocity. Let the whole resist

ance R be represented by the formula

K = KV + -v 2

a

then the whole moving force will then be

f X
2mf xv v

a

and our equations of motion are

d v
m
dt
dv

mv -jd x

&amp;gt; = mf xv v 1
.

c*.

First. Let f = o or the particle move by its innate

force only.

Then
dv x K v2

d t m in* ex.

* Earnshaw s Dynamics.
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d v K d t

f a\ 2 a2
&quot;

(&quot;

+
2)

-
1

integrating throughout the motion

m

1
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dv k dt
m

for the sake of brevity, put

a;

2

4

and integrating, we get, after correction,

a;

2 mfa
4 k

&amp;gt;

v + - - c

c k

this will enable us to find t in terms of u, and, by solving

the equation, v in terms of t.

If the particle be moving in the direction opposite to

that in which f acts, and if, also

the above integral becomes imaginary ; the true expression

will manifestly be, if

b b am

Again, we have

d v x xv2

d x m m OL

* _(** ^ mf*\ ^
h

2 U &quot; ~rv
for the sake of brevity put
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and integrating we have

v +
~2
+ C

2 x

c
*+

2
*

where the quantity C is obviously equal to what the left

hand side of this equation becomes when V, the initial

velocity, is substituted for v.

If the particle move in the direction opposite to that in

which / acts, and if

this expression becomes imaginary. It is obvious, how

ever, that if we put

2 = f _ ^

that the true integral will be

a 2
r\ -.-

where C is obviously equal to what the left hand side

becomes when V is put for v.

The quantity x in these formula is the mass of that

particle whose terminal velocity is

/?
A/4

the quantity , therefore, represents a number, thus we

see that the preceding expressions are perfectly homo

geneous.

In exactly the same manner we may proceed to de

termine the motion of a particle in a medium resisting ac

cording to any other function of the velocity.
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If the resistance vary as v
n and the particle move by its

own ft vis insita
&quot;

only. Then since

d v
__

d v

J~t
= V

d~x

. . integrating both equations throughout the motion,

- D
*

vn-i y
7

&quot;&quot;&quot; 1 m

equations which never become nugatory except when

n=l or n 2) both which cases have been already con

sidered.

From these equations we may learn several remarkable

facts.

First. Suppose n greater than 2. Then both the right

hand members of the above equations are positive ; hence v

can never vanish, and the body will continue moving for

ever, with an ever diminishing velocity, and will pass over

an infinite space.

Secondly. Suppose n greater than unity but less than 2.

Then v vanishes only when t is infinite, but then

-=
x 2 - n V&quot;-

2

So that the particle t continues to move always with an

ever diminishing velocity, and will pass over a finite space.

Thirdly. Suppose n less than unity, then when v

vanishes, we have

- -=

m
=

that is, the particle moves on with a diminished velocity,
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and finally -stops after a time given by the first equation,

having described a space given by the second. It is ma

nifest that the particle remains at rest, until it is disturbed

by some new force.

But here we have a remarkable singularity in the equa
tions ; for according to them, as t increases v l~n does not

remain equal to zero, but becomes negative. What is the

explanation of this ? It must be sought for in the nature

of a differential equation. There are always two species

of integrals. One called the &quot;general integral,&quot;
which

contains the full number of arbitrary constants, and ano

ther, called the &quot;

singular solution,&quot; not included in the

former, and which does not contain the full number of ar

bitrary constants. These latter in dynamical problems are

usually of little value, because they do not agree with the

initial conditions of motion. But, if by any chance they

should satisfy these conditions, it is possible that they may
be the true representatives of the subsequent motion. The

choice between them and the general integral must be

founded on extrinsic considerations. The differential equa

tion we started with, is a mere statement of the forces, and

must be true throughout the motion. This motion must

therefore be represented either by the general or the sin

gular solution. We have seen that the general solution

only represents the motion up to a certain time ; after that

we must have recourse to the singular solution. If we

proceed to find this, by the usual methods, we arrive at

the solution

v=0,
which we see represents the motion subsequently to the

above mentioned time.*

One of the most remarkable facts connected with motion

in a resisting medium is the existence of a &quot; terminal ve-

* Duhamel, Cours de Mecanique.
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locity&quot;
when the body moves in a straight line, under the

action of a uniform force. This may be defined to be that

velocity which makes the resistance equal to the moving
force acting on the particle. Let

&amp;lt;p (v) be the law of re

sistance, and mg the moving force. Then if u be the ter

minal velocity, we have

&amp;lt;p (u)=mg
an equation to find u. Suppose the resistance to vary as

the square of the velocity and $ (v)
= x v2

, then

&quot;A/

m g
x

It is manifest that if the body were projected with this

velocity, it would continue to move uniformly in the me
dium. This is a consequence of the first law of motion.

Also if the particle began to fall from rest, its velocity will

continually increase under the action of the force g, and

approach equality with the &quot; terminal
&quot;

velocity, and only

become equal to it when the time is infinite. All this is

quite manifest and needs no analytical investigation.

Though the velocity of the particle never becomes equal

to the terminal velocity, yet it soon becomes so little dif

ferent from it that, for all practical purposes, we may con

sider the particle as moving with an uniform velocity equal

to the terminal velocity. In considering the motion of a

falling body we arrive at the equation,

. s m

Now if -- be a very small quantity, it does not require a

very large value of x to render the second factor so small

that we may without much error consider

X

p 2
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It is needless to point out how different this is from

motion in vacuo, where the velocity would have gone on

increasing without any limit.

One familiar instance of motion in a resisting medium

is the descent of rain. The drops descend then with a

uniform motion, the larger drops going quicker than the

smaller, and the velocity of descent increasing as the drops

grow in size. If the rain descended with the velocity due

simply to the action of gravity, a heavy shower of rain

would commit serious injury. A drop of rain falling from a

cloud a mile high would have acquired a velocity of about

576 feet a second. The actual velocity is perhaps less than

one five thousandth part of this.

In the fourth section Newton discusses the motion of

a particle in a resisting medium when acted on by a feebly

resisting medium. He begins by considering the case in

which the density of the medium varies inversely as the

distance from the centre of force, and under peculiar con

ditions of the motion of the body extends his deductions

to any law of distance. We have followed his method,

with the exception that, as we have the powerful aid of

analysis, we can treat the question with greater generality.

But since Newton s time we have discovered much better

methods ; it has been thought not out of place to give a

very brief view of them, so far as they depend only on

first principles.

6. OL. A particle moves in an equiangular spiral under the

action of a central force in the pole, in a medium whose

density varies as some function of the distance from the

pole. To determine the connexion between the law of density

and the law of force that this motion may be possible.

The equiangular spiral, by definition, possesses the

property that the tangent at any point makes a constant
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angle with the radius vector : let this angle be called a.

Let r and v be the radius vector and velocity of the particle

at any time t. Let P be the central force, and x v- the

resistance at any time, then P and x are functions of r.

The equation giving the motion along the arc is clearly

d v
_&amp;gt;= x v2 P cos a.

a t

But in all curves

dr- = v COS a
a t

d v d v
. . -j- = -j- . V COS a

d e? r

Hence the above equation becomes

d r cos a

It is to be observed that this equation is true whatever

be the nature of the curve described.

The equation giving the motion perpendicular to the arc

is well known to be

^ = P Sin *H
But in the equiangular spiral the radius of curvature R

is 7^ , hence we have
Sin a

v* = Pr - -
(2.)

If we substitute this in equation (1) we get

1^dP =
P \ cos *J r

f*f O v r&quot;

.-. log P = C - _
c/ V cos a/ r

which is the required connection.

If the central force vary inversely as the Square of the

distance, we have

P 3
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whence it follows that

.

2 r

or the density varies inversely as the distance. The nega

tive sign shows that the angle a must be greater than a

right angle, or that the particle continually approaches the

centre of force. Let x =
, where D is the resistance

at a unit of distance to a unit of velocity, then

^ ___
cos

~~2~~

On looking at equation (2) we see that whatever be the

law of force, the velocity is the same as that in a circle at

the same distance, and when the force varies inversely as

the Square of the distance, we have

-V?-
This is Newton s first corollary.

Again, when K or D is given, equation (3) gives us the

means of finding . Thus a spiral may be fitted to any

density. This is Newton s second corollary.

And when the a or the spiral is given, the ratio of the

resistance to the centripetal force is easily found. We
observe that since cos. a must be less than unity, this ratio

must be less than J, otherwise the orbit described will not

be the equiangular spiral. When this ratio is \ exactly,

the value of a is zero ; that is, the spiral is reduced to its

limiting case, viz., a straight line passing through the pole.

This includes Newton s third and fourth corollaries.

Also the time of describing any arc may be found;

for since
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dr
- = v COS a

a t

- COS a

t = CSrdr
COS a

&quot;

&amp;lt;\//*t/

So that the time of going from the distance r
l
to the dis

tance i\ is

E-fJ^jjL (r^-r^) -
(4).

When a is nearly a right angle, this time becomes very long.

If a = 0, the same formula will give the time of descent

T down any part of a radius vector. Hence we see

that

ay
T =

,

COS a

and the number of revolutions described may also be

found : for if be the angle the radius vector r makes

with any fixed straight line, we have

it dr
.d V = tan a

r

^2
~~

^1
= tan a 10 &quot;&quot;*

T
\

Hence the number of revolutions will be

,,T tan a , r /e,\

(o).

This includes Newton s fifth and sixth corollaries.

If we neglect the eccentricities of the planetary orbits,

the velocity at any point in vacuo is given by the usual

formula

u2 = Pr
Let us then assume as the velocity in a resisting medium

v 2 = Pr
(

P 4
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where p is a very small quantity. Then since the equa
tion

is always true, we have

ESin. =

Substitute for B. and Sin a their known values

d s r d

&:*&**$+$
where j3 is the angle the tangent makes with any fixed

straight line,

+ constant.

But /3
= a, hence the variation of a is expressed by

the above integral. As an approximation, consider p as

a small constant whose square may be rejected, hence

a =a +pQ
Now p is so small that it requires a large value of /3, the

angle described, to render the latter term sensible. Hence
for many revolutions we may regard a as constant, that

is, regard the orbit as an equiangular spiral. We may,
therefore, apply our preceding conclusions. If the radius

of a planet s orbit be r, by equations (3) (4) (5) we learn

that the time before the radius has decreased by S r will

be

T = 1 8 r

2V Krg
and the number of revolutions in that time will be

AT l * r
JN = -

. = nearly.4 TT x r2

The value of x is so small that, as these formulae show,
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it will require a very long time before r can be per

ceptibly changed.

But regarding 8 r as indefinitely small, these expressions

will be accurate. Hence the whole time which it will take

the planet to arrive at the centre will be

2

and the whole number of revolutions will be

1

These expressions cannot be integrated until the law of

density is known as a function of the distance.

If we assume that the density varies inversely as the

distance from the centre, we have x r = D, a constant ;

performing the integrations, we have

The number of revolutions is infinite, because the time

of a revolution becomes ultimately infinitely small. Com

pare the first of these formula with (4) and we learn that

if r
l
be the radius at any instant, r

2
the radius after one

complete revolution, the whole time of reaching the centre

of force will be to one revolution from radius T^ to radius

3 3 _3

r
2

in the ratio of r^ to r^ r2
2 or f r

t
to r^ r

2 nearly.

In the case of the planets, r
l

?*
2 is so small as to be

altogether insensible ; hence the above time is indefinitely

great.

/3. In the seventeenth proposition of the third section of

the first book Newton remarks, that &quot; if a body move in a

conic section, and is forced out of its orbit by any impulse,

we can discover the orbit in which it will afterwards pursue
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its course.&quot;
&quot; And if that body is continually disturbed

by the action of some foreign force, we may nearly know
its course by collecting the changes which that force

introduces in some points, and estimating the continual

changes it will undergo in the intermediate places from the

analogy that appears in the course of the series.&quot; This

method, which Newton only applies to determine the

general effect of any disturbing force, we can use, by the

aid of the differential calculus, to determine its effect to any

degree of accuracy.

Let us conceive a planet to be describing an ellipse

round the sun in the focus, and let it be continually dis

turbed by the resistance of the medium in which the planet

moves. At the time t, let , e, w be the mean distance,

eccentricity, and longitude of the apse of the ellipse, and

let r, 0, v be the distance, longitude, and velocity of the

planet. The attraction of the sun and the resistance of

the medium will be represented by~ and K v2
, where

ju,

and K are certain constants.

From the sixteenth proposition of the third section of

the first book it is easy to deduce by a known property of

the ellipse, that

1 _ 2
__
V

a r p

But in the time dt, v is decreased by the resisting me
dium by

dv KV2 dt

da 2v
. .

- = d v
a? a
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we might express u, the velocity, in terms of the time by the

usual formula of elliptic motion ; this would not lead to

any lengthy calculations, but as e and x are very small,

there is no practical advantage in investigating more than

the principal terms in the series expressing the changes of

the elements. &quot;We may then put

v = G?Z,

where n is the mean angular velocity ; and hence

p = aW,

... *? = - 2 x a? n
d t

and x being very small, we may reject the variations of

the quantities on the right hand side,

.*. a
l

= 2 x a2
?it)

where a
,
a

l9
are the values of the mean distance at the

beginning and end of the interval t.

By the fourteenth proposition of the third section and

the first of the second, we can easily see that

ft,
a (1 e

2
)
= v2 r2 sin2

,

where a is the angle between the radius vector and tan

gent. Hence

da ,. _ de _ . 9 e?u

P TJ Q ~ e )
~&quot; ^ pae

-j-.

= % v sm a r -r
t

= 2 x v3 sin2 a . r2

Now as we retain only the principal terms, we have

a = 90,
r = a(l ecos w),

substituting, we get

de
-T- = 2 x a n cos w ,
rt 6

.. ^ e = 2 x a . sin ?i #3

where e ^j are the values of e at the beginning and end of
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the interval t. Thus we learn that in one complete revo

lution the eccentricity is unchanged.

By a well known property of the ellipse

&quot; (1 ~*2) = 1 + e cos (0
-

co)

r . v * snr /a \
.*. = 1 + e cos (9 co)

P

putting sin a = 1 we get by differentiating

2rvdv de , . dca

p d t d t d t
9

so that

7 O SI V&amp;gt;

= - sin n t

2 x a
.*. coj

co . cos n t)

where co
, coj

are the values of co at the beginning and

end of the interval t. Thus we learn that the changes in

co are very much greater than those in e9 but that by
the end of one revolution both have returned to their

original values.
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CHAPTER IV.

THE MOTION OF FLUIDS, AND THE RESISTANCE TO BODIES

MOVING IN THEM. SECTION VII.

1. Newton s investigation of the law of resistance to similar bodies.

2. The manner in which the resistance depends on the form of the body.

Newton, xxxiv. & xxxv.

3. Their resistance when the body is a surface of revolution.

4. The surface of least resistance, its properties and form. Scholium,

Prop, xxxiv.

5. The law of resistance deduced from experiment. Prop. xl. and

Scholium.

1. SUPPOSE we have two systems of an equal number of

particles similarly placed, and proportional each to each

both in density and volume. Let them begin to move,

the particles of one system amongst themselves, and those

of the other amongst themselves, with like motions and in

proportional times. If no action ever took place between

the particles, by the first law of motion the similarity

between the systems will always exist. It is also clear

that any collisions or reflexions among the particles will

not affect this similarity of motion ;
if any collision occur

in one system an exactly similar collision will occur in the

other ; similar changes of motion will be thereby produced

in the two systems.

Next, suppose the particles attract or repel each other

with accelerating forces, which are as the squares of the

velocities directly and the diameters inversely of the cor

responding particles in the two systems. Consider two

homologous particles, one in each system, the attractions
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of the rest on these being each in the above ratio, the

resultants will also be in the same ratio, and the attracting

particles at the beginning of the motion being similarly

placed, and the forces in each system proportional, the

directions of the resultants will be parallel. Now we know

that two similar particles beginning to move in parallel

directions will describe similar orbits in proportional times,

when at the end of those times the directions of the forces

are parallel and proportional to the squares of the velo

cities and the reciprocals of any homologous sides of their

orbits. Hence these two particles begin to move similarly

under the action of such forces as tend to preserve the

similarity of their motions. And the same is true for all

homologous particles in the two systems. Hence all the

particles of the one system at the end of any small time T,

are placed similar to those of the other at the end of the

small proportional time T and are moving in a similar

manner. Hence the same thing will again be true at the

end of the next proportional intervals, that is, at the end

of the proportional times 2 T and 2 T . Therefore the

particles will continue always to move among themselves

with like motions and in proportional times.

Let there be two fluids or systems such that the

particles of the one are similar to those of the other ; let

the diameters and distances of any two particles in one

system be d times the diameters and distances of the cor

responding particles in the other, and let the density of

these particles in one system be p times that of the cor

responding ones in the other system. Let the particles

begin to move from similar positions, and if we suppose
the forces in the two systems to be always proportional to

the squares of the velocities directly and the diameters of

the corresponding particles inversely, the several particles

will describe similar orbits in similar times. Let the velo-
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city of any particle in one system be v times that of the

corresponding particle in the other when at the correspond

ing part of its orbit. Let two large bodies which are

similar to each other in the same manner that two cor

responding particles are similar, be similarly projected

into these two systems. They will then describe similar

orbits in proportional times. The diameter of one body is d

times that of the other, and the velocity ofone will be v times

that of the other. Let us consider the resistances to these

bodies : it will arise partly from the centripetal forces with

which the particles and the body act on each other, and

partly from the collisions and reflexions of the particles

and the body. The resistances of the first kind are, by

hypothesis, as the squares of the velocities directly and the

diameters of the corresponding particles inversely, and the

masses of those particles directly, that is, the ratio of the

resistances in the two systems is

The resistances of the second kind are as the number of

reflexions and the forces of those reflexions. The number

of the reflexions in the two systems are as the velocities of

the corresponding particles directly, and the spaces between

their reflexions inversely, hence the ratio is
-&amp;gt; The forces

of the two systems are as the velocities and masses of the

corresponding particles, hence their ratio is v. d3
. p ; hence

the ratio of the resistances is

-xv d^p = v* . d2
. p

joining these two ratios, the ratio of the whole resistance in

the two systems will be
v2

. d\ p.

In such fluids, and under such conditions as those we
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have just been considering, the resistances vary as the

square of the velocity, the square of the diameter, and the

density of the fluid.

If we have two fluids whose particles when at a distance

do not act with any force on each other, such fluids come

under the description of the similar systems just considered.

Let the particles of the two fluids be equal, then the

resistances to equal similar bodies moving in them are

accurately as the squares of the velocities of the bodies and

the densities of the fluids. Next, suppose the bodies not

equal. Because the motion of the fluid varies continu

ously from point to point, and because the force of collision

due to two equal particles moving in the same manner is

equal to that of one particle of double size, the forces of

collision will be the same if we divided the fluid into

elements, and considered them as particles. Let the equal

fluids be divided into elements, which are proportional

to the volumes of the similar bodies moving in them.

Then the resistances will vary as the square of the diameter,

the square of the velocity of the body, and the density of

the fluid.

But how far are we justified in applying these conclusions

to the fluids we meet with in nature? The forces to

which collision and reflexion are due, are those which are

sensible only at distances which are indefinitely small com

pared with the average distances between the particles.

Are these the only forces which exist between the par

ticles of a fluid? Incompressible fluids are the nearest

approach to such a state of things. In elastic fluids the

particles have a tendency to recede from each other, and

our previous reasoning cannot therefore apply to them.

Let there be three fluids A, B, C ; let them consist of

similar and equal particles regularly disposed at equal dis

tances, and let the parts of A and B have a tendency to
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recede from each other with forces that are as T and V,

and let the particles of the medium C be entirely destitute

of such forces. Let four equal bodies move in these

media, viz.

D in the medium [A ,] and E in [B] 1

F and G in [C], J
;

and let

vel. ofD vel. of F AT .

vel. of E vel. of G
= V V

then since the forces are as the squares of the velocities,,

and the diameters of the particles are equal, therefore the

resistances in the two fluids are as the squares of the ve

locities, that is

Res, to D Res, to F T
(

.

Kes.toE
==

Kes.toG V
Let us suppose also that

vel. ofD = vel. of F
.-. vel. ofE = vel. of G

augment the velocities of D and F in any ratio, and di

mmish the force V of the particles in the medium B in the

duplicate of that ratio, the medium B will approach to the

form and condition of the medium C, and therefore the

resistances to the equal and equally swift bodies E and G
moving in those media will approach equality. Hence by

(2.) the bodies D and F, when they move with great swift

ness, meet with resistances nearly equal. Hence the re

sistance to a body moving very swiftly in an elastic fluid is

almost the same as if the parts of the fluid were destitute

of their centrifugal forces and did not tend to fly from

each other. So that the resistance to similar bodies moving

very swiftly in an elastic medium vary as the squares of

the velocities and the squares of the diameters.

Q
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This reasoning requires that the velocity should be so

great that the forces of the particles will not have time

to act.

2. The preceding investigation has led us, on certain as

sumptions, to the law of resistance to similar bodies, but it

now remains to discover what change in the resistance

would be caused by a change of form in the body. A new

assumption becomes necessary. Let us suppose the par

ticles to be so rare that their distances are infinitely greater

than their diameters, so that each particle may be able to

give its blow to the body and then to make its escape

without affecting the particles which have not yet given

their stroke. It is manifest that to find the resistance

according to this principle we have to divide the surface

into elements, find the resistance on those elementary

planes separately, and by integration add the results. It

is necessary to find the resistance on a small plane in

clined at an angle to the direction of motion. Let the

area of the plane be A, then the number of particles that

will strike it will be proportional to A cos. and to the

velocity v conjointly, and each particle will strike the

plane with a normal velocity v cos. 0. The mass of each

particle is supposed the same. Hence the whole normal

resistance will be proportional to A cos.
0|

2 v2, and resolving

this along the direction of motion the resistance will be pro

portional to A~cosT0|
3 v 1

. Hence if K A v2 be the resist

ance on the plane when perpendicular to the direction of

motion, the resistance when inclined at an angle will be

x A v2 cos.
0j

It will be observed that this reasoning is true whether the

particles be elastic or not. Any change of elasticity

affects the resistance by changing x.

Let a cylinder be made to advance in the direction of its
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axis with a uniform velocity v in a medium, and let us

suppose that the particles of the fluid are perfectly elastic.

They will then rebound with the same velocity relatively

to the cylinder as that with which they struck it. There

fore the cylinder, on striking each particle, gives it a velocity

twice its own, and in moving forwards a length half its

axis communicates a motion to the particles which is to

the whole motion of the cylinder as the density of the

medium to the density of the cylinder. Hence the cy
linder meets a resistance which is to the force by which its

whole motion may be taken away in the time in which it

describes half its axis as the density of the medium is to

the density of the cylinder. If / be the length of the axis,

the time of describing the half axis will be -, and the ac

celerating force that would generate a velocity v in this

2 u2

time is
-j- ; hence the moving force, which is the re

sistance, is

2Av*p,
where A is the area of the base, and p the density of the

fluid.

Next, let us suppose the particles perfectly inelastic;

they will not be reflected, and the cylinder will merely

communicate its own simple velocity to the particles it

strikes against. The resistance is therefore only half as

great as before, that is

Resistance=A v2

p.

Thirdly. If the particles be imperfectly elastic, the par
ticles will rebound from the cylinder with a less velocity

than if they were elastic, and a greater velocity than if

they were inelastic ; hence

Resistance = x A v2

p,

where * is some quantity lying between 1 and 2,

Q 2
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3. Let us now apply this to find the resistance on a sur

face of revolution moving in the direction of its axis. Let

v be the velocity of the body relative to the fluid. We
shall then suppose the fluid in front of the body to be at

rest. Take the axis of revolution of the surface as the

axis of x, let y be the ordinate and s the arc of the gene

rating curve. By what has been already said, the resist

ance or pressure on the annulus 2 TT y d s when resolved

along the axis will be

because this latter factor expresses the cosine of the angle

the normal makes with the line of motion of the body.

Hence the whole resistance will be

( ~j~ ) dy*

Let the surface be terminated by a plane perpendicular

to the axis of x, the section will be a circle ; let r be its

radius. Let y &amp;gt;)

. r, and s = &amp;lt;r. r, then the whole resist

ance will be

Thus, assuming merely that the distances of the particles

are infinitely greater than their diameters, we learn that

in the same fluid the resistance varies as the square of the

velocity, and in similar bodies as the square of their

radii.

It is not necessary that all the particles should be of

equal size, or at exactly equal distances. It is sufficient

that the equal particles be equally scattered in vast num

bers throughout the fluid. For as the distances of the

particles are supposed indefinitely small, so vast a num

ber of particles strike the surface that it will be suffi

cient to consider only their average size and distance.
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If the particles of a fluid become packed closer together,

so that the fluid becomes denser in the ratio of p to I, it

is manifest that the number of particles striking the sur

face will be increased in this ratio, and therefore the

resistance will be increased in the ratio of p to 1. If the

masses of the particles be increased in the ratio p to 1, the

density of the fluid will be increased in this ratio, the force

of each impact will be increased in this ratio, and the

resistance will be increased in the ratio of p to 1. Hence

the resistance varies as the density of the fluid.

To show that the resistance on a sphere is half that on

one of its great circles. Let r be the radius of the sphere,

the angle any radius makes with the direction of the

motion. Then, by the general rule, the resistance on the

annulus 2 TT r sin. . r d & will be

2 TT r2 sin. d cos.
0,

3
. x u 2

.

Hence the whole resistance will be

cos. 0|
3
sin. d

*-,
4

the limits of integration being from = to = -.
2

But the resistance on a circle of radius r is

o o
x v* . TT r ,

which is just double the former result.

These results were afterwards modified by Newton. A
course of reasoning, which we shall consider in another

chapter, led him to the conclusion that the resistance on a

sphere is equal to ! c p v1
, where c is the area of one of its

great circles.

4. Upon a circular base rad. r, construct afrustrum of a

cone of given height h, such that the resistance on it may be

Q 3
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less than that on any other frustrum of the same height and

base, the motion being in the direction of the axis.

Produce the frustrum to its vertex, and let 2 be the

angle of the cone. Then it is evident that the radius of

one end being r, that of the other will be r h tan. 0. And

the resistances on the curved and flat ends will be respec

tively

sin.
2
0(r

2 - r- h tan. 0|
2
)

and (r h tan. 0)
2
,

the common constant factor TT x v2
being omitted. The

sum of these two is easily seen to be

r^-r h sin. 2 + A 2
sin.

2
0;

differentiating this we have

h sin. cos. = r 2 r sin.
2

0.

Put x for the whole height of the cone, then will

whence this construction. Let O and D be the given

centres of the two ends, and C be any point in the circum

ference of the base. Bisect O D in Q and produce Q D
to S, so that Q S = Q C. S is the vertex of the required

cone. This result Newton thought might be of use in

the building of ships.

To find the surface of revolution such that, when alto-

gether immersed) the resistance on it ivill be less than on any

other surface of the same length and breadth.

Take the axis of revolution as the axis of
or,

and let y

be the ordinate of the generating curve. And let p be

the diff. co. of y with respect to x. Then, omitting con-
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stant factors, the resistance on the curve will be propor

tional to

Then the general equation given by the Calculus of Varia

tions leads at once to

this, therefore, is the differential equation to the curve

which generates the surface of least resistance. The con

struction which Newton gives agrees exactly with the

above equation.

This equation cannot be integrated ; we cannot, there

fore, find the equation to the curve. If we could, we

should have two constants in it, which are to be determined

by the conditions, first, that when x = o, y = a, and

when x = I, y = b, where I is the length of the solid,

a and b the radii of the bounding sections.

The equation to the surface of least resistance may be

put under a more convenient form. Differentiating it we

have

p*- 2pz - 3
dy = pdx = c -j - dp

fl 2 *\ ^
. . d x = c L s

~
-3 I dp.

\p p
3

p
5
J

^

Hence,

a +
*

c
= log. p + l

2
+ JU

(1 + p2)2 (

p
3 ^

By eliminating p the equation to the generating curve

may be found.

If we wish to find where the curve cuts the axis of x,

we have merely to put y o
; this leads to

Q 4
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we cannot have c = o, for then y would be always nothing.
The numerator of the fraction cannot be nothing, for it is

always greater than unity. The denominator cannot be

come infinite without making the whole fraction infinite.

Hence the curve never cuts the axis of x ; the surface of

least resistance has a flat surface exposed to the resistance

of the fluid. The next question naturally is, what is the

least value of y ? To find this we must put

i ft

this gives p = + */ 3 and . . y = + ,- c. At this

point of the curve there must manifestly be a cusp.

As p increases from zero, y decreases from infinity ; the

curve approaches the axis. The tangent at the cusp lies

between the two branches, one going off to p= o, the other

to p oo. There are no asymptotes. If y be positive,

p is positive. The theory of Equations shows that the

equation

not having more than two changes

of sign, cannot have more than two

positive roots. Therefore the above

two branches contain all that is

above the axis of x. If we change

r the sign of y, we change the sign

of p ;
hence the curve is the same

on both sides of the axis of x. If

we change the sign of c, we shall

manifestly have the same curve,

except that it is turned the other

way, and lies on the opposite side of the axis of y.
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5. In order to investigate the resistances of fluids by ex

periment, Newton procured a square wooden vessel whose

length and breadth on the inside was nine inches, English

measure, and depth nine feet and a half. This he filled

with rain-water, and having provided globes made of wax,

with lead inclosed therein, he observed the times of the

descents of these globes, the height through which they

descended being 112 inches.

The resistance being supposed to vary as the square of

the velocity, the heights, fallen in any time t, is given by

u2 U* -*JLt \
x u t -7 log. 2 -f log. (1 + s

J

where u is the &quot; terminal velocity,&quot;
and g the relative

force of gravity. It is necessary to find u. Let A be the

weight of the globe in vacuo, B its weight in the resisting

medium. Then the density of the medium is

A- B

where a is the radius of the globe, and g the force of

gravity ; and therefore the resistance to the globe when

moving with velocity u, is

3 A-B
n*

1 n -
. O. ,

lo a g

and this is to be equal to the weight of the body, which is

B
; therefore

16 B
U ^T A=B a *

-!*
,

The value of B can be found by weighing the globe in

water. To find A we must weigh it in air, suppose we
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have W. According to Newton the density of water

is 860 times that of air ; hence

A -- B = 860 (A - W)
W-B

and

The value of a can be found from those of A and B,
for the weight of a globe of water one inch in diameter is

132.645 grains in air, and therefore 132.8 grains in vacuo.

And since the weights of globes vary as the cubes of

their diameters, hence

where A B is measured in grains, and a in inches.

We are now therefore able to calculate the value of x

when t is given. If t be not very small, the last term

may be neglected. For since when a is small

log. (1 + a)
= a nearly,

the value of that term is very nearly

M2 -U t

. g

9

and the exponent being large, this term will be insensible.

We may therefore take

u2

x = u t ---
f log. 2.

The space deduced from this formula requires a correction

depending on the narrowness of the wooden vessel in which

the experiments were made. Now if a globe descend in a

cylinder, the area of whose section is L, the resistance will

be increased in the ratio
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Hence & 2 will be decreased in the same ratio, and .*.

u decreased in the ratio of ft : 1. In all the following ex

periments the area of the greatest circle of the sphere is

small compared with the section of the cylinder ; the value

of
[i*

is therefore nearly unity. In the expression for x,

the first term is usually a hundred times the second ; hence

it will be sufficiently accurate to reduce the space x by

simply multiplying it by ft. This will be evident on an

inspection of the numbers in the following experiments.

Experiment 1. A globe whose weight was 156^ grains

in air, and 77 grains in water, described the whole height

of 112 inches in 4 seconds. On repeating the experiment,

the globe again spent the very same time of 4 seconds

in falling.

Here A= 156^f grains, 2 a= .84224 inches,

.. u= 29.03 11 inches per second.

The principal term in x is 1 16.1245,

The second is 3.0676,

.-. x= 113.0569,

and ft= .9914.

Hence the space which the globe falling in water de

scribes in four seconds is, by

theory
- 112.08,

experiment
- - 112.

Experiment 2. Three equal globes, whose weights were

severally 76J grains in air, and 5^ grains in water, were

let fall successively. Every one fell through the water in

15 seconds of time, describing in its fall 112 inches.

Here A = 76T
5
2 grains, 2 a = .81296 inches,

.. ?&amp;lt;
= 7.712 inches per second.
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The principal term in # is 115.678,

The second is 1.609,

. . ar= 114.069,

and ft= .895.

Hence the space which the globe falling in water de

scribes is, by

theory 11 3. 1741

experiment- 112. j

Experiment 3. Three equal globes, whose weights were

severally 121 grains in air and 1 grain in water, were suc

cessively let fall, and they fell in water through a

height of 112 inches in the times 46&quot;, 47&quot;, and 50&quot;.

By theory these globes ought to have fallen in about 40&quot;.

The weight of the globe in water is so small, that any
errors in the weighing, or produced by the rarefaction of

the wax, by the heat of the hand, or by the weather, or

by bubbles of air adhering to the globes, become sensible.

That the experiment may be certain, the weight of the

globe in water should be several grains.

Newton began the foregoing experiments to investigate

the resistances of fluids, before he had discovered the

theory laid down in the preceding sections. In order to

examine the theory after its discovery, he undertook

another course of experiments. He procured a wooden

vessel, whose breadth on the inside was 8 inches and

depth 15 feet. He made four globes of wax with enclosed

lead, each weighing 139^ grains in air, and 7-| grains in

water. These he let fall, measuring the times of their

falling in the water with a pendulum oscillating half

seconds. The globes were cold, and had remained so for

some time, both when they were weighed and when they

were let fall, because warmth rarefies the wax, and by

rarefying it diminishes the weight of the globe in water,
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and wax when rarefied is not instantly reduced by cold to

its former density. Before they were let fall, they were

totally immersed in water, lest, by the weight of any part

of them that might chance to be above water, their descent

should be accelerated in the beginning. Then, when after

their immersion they were perfectly at rest, they were let

go with the greatest caution, that they might not receive

any impulse from the hand that let them down. At

Newton s first experiments the weather was a little colder

than when the globes were weighed, and therefore he

repeated the experiments another day. On making the

experiments several times over, he found that the globes

fell mostly in the times of 49J to 50 oscillations, the times

varying, however, from 47-| to 53 oscillations. On com

puting from the theory the time of descent, it was found

to be 50 oscillations, very nearly. Newton tried eight

other sets of experiments, in all of which there was a

tolerable accordance between theory and experiment. The

times in which the balls descended varied, sometimes

as much as one-fifth of the whole time of descent ; but the

errors were generally as much on one side as on the other

of the theoretical result. Whence, for such swift motions

as these, we may conclude that the resistance on a globe

is very nearly represented by the preceding theory.

Those globes which fell with a slower motion were found

to agree best with the theory, and the reason of this is as

follows. When the globes were first let fall, it was found

that they oscillated about the centre, that side which is

heaviest tending to descend first. The globe in conse

quence of these oscillations communicated a greater motion

to the fluid than it otherwise would, that is, it met with

a greater resistance. In the heavier and larger globes this

oscillation was not checked by the water until after several

oscillations, and hence these were more resisted than the
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lighter ones, which fell slower. Every care was taken to

diminish these oscillations, but they could not be alto

gether prevented.

From the top of St. Paul s, in June, 1710, two glass

globes were allowed to fall through the height of 220

English feet. One was full of quicksilver, the other con

tained air. The two globes rested on a wooden table, which

turned round iron hinges on one side, the other side being

supported by a wooden pin. The two globes were let fall

together by pulling out the pin by means of an iron wire

reaching from thence quite down to the ground, so that

the pin being removed, the table, which had then no sup

port but the iron hinges, fell downwards, and turning

round, the globes dropped off it. At the same instant

with the same pull of the iron wire that took out the pin,

a pendulum, oscillating seconds, was set in motion. The

wooden table was not found to turn so quickly on its hinges

as it ought to have done. Hence the times of descent

were prolonged 3&quot;. This must be taken into account, as

in that time the ball full of mercury would have described

37 feet. The difference between theory and experiment
was found to be very small. To mention one instance, one

globe of air fell 220 feet in 8.2&quot;; according to theory it

should have fallen in that time 225 feet 5 inches. The

resistances to the globes of mercury were found to be so

small in comparison with their weight, that they fell in

nearly the same time which they would have taken to fall

through the same height in vacuo. The differences could

not be observed with sufficient accuracy to furnish a test

of the theory, the difference being sensibly the same for

globes of all weights.

In July, 1719, Dr. Desaguliers made some other

experiments of the same kind. The globes let fall were

formed of hogs bladders blown full of air. They were
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let fall from the lantern at the top of the cupola of the

same church, a height of 272 feet. The agreement be

tween theory and experiment was even more striking than

in the last experiments.

The theoretical results are calculated on the supposition

that the resistance is proportional to the square of the

velocity, the density of the fluid, and the surface of the

sphere. The comparison with experiment serves to test

all these laws. We may, therefore, conclude that for such

velocities as those here experimented on, varying from 6 to

30 feet per second, and for spheres of radii varying from

J to 3 inches, and for the fluids of air and water, those

three laws are tolerably correct.

Newton remarks that these experiments are more accu

rate than those he made with pendulums ;
for the vibrations

not being very small, the body always excited a motion of

the fluid contrary to the motion of the pendulum on its

return, and thus the whole resistance appeared greater

than it really was.

[See NOTE V.]
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CHAPTER V.

THE MOTION OF A PENDULUM.

1. Some general considerations.

2. Motion in vacuo, Newton xxiv.

3. The properties of a pendulum.
4. Motion in a resisting medium Modern method of considering the

perturbations of a pendulum, the Newtonian method.

5. Newton s experiments to discover the law of resistance.

1. THE importance of the pendulum can hardly be over

rated. It ministers to our comforts in a variety of ways.

But what is more to our present purpose, it is a powerful

engine of discovery. It can be made to test the laws of

impact, it teaches us the law of resistance by which fluids

retard the motion of bodies moving in them. It enables

us to note the variations of gravity over the earth, and

thus reveals to us not only the form of the world, but also

the force with which it attracts external objects. It has

even been applied lately to prove ocularly the rotation of

the earth. There is no end to its applications. It is the

great accuracy with which the time of oscillation may be

observed that renders this instrument so useful. By
noting the time of any great number of oscillations, and

dividing that time by the number of oscillations, we can

find the time of any one with great accuracy. It is, there

fore, highly necessary for us to consider carefully the pro

perties of a pendulum.

A pendulum is any solid body which oscillates about a

fixed horizontal axis. A simple pendulum consists of a
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material particle suspended from a fixed point by an in

flexible inextensible string without weight. The length

of this string is called the length of the simple pendulum.
A perfect simple pendulum is only a mathematical idea ;

we may approximate to such an instrument, but we can

not accurately construct it. It will, therefore, in many
cases be necessary to have the means of determining, when

any compound pendulum is given, the length of the equi

valent simple pendulum. The first person who solved this

generally was Huygens in his &quot;

Horologiurn Oscillato-

rium,&quot; 1673. The principle on which he proceeded was not

so simple as that to which this and such like problems are

now referred. But the result is that if h be the distance

of the centre of gravity from the axis of suspension, and

mi2 the moment of inertia about an axis through the centre

of gravity parallel to the axis of suspension, the length of

the equivalent simple pendulum will be

y _

This is on the supposition that the body moves in vacuo

under the action of gravity. If it move in a medium

resisting according to any function of the velocity, the

above will still be the length of the equivalent simple pen
dulum. For the resistance on a unit of area being supposed
to be x vn 9 according to the usual theory of resistance,

the moment of the whole resistance on the surface will be

A . vn ,

where A depends on the form of the surface, and not on the

nature of the motion. Hence to make the simple pendu
lum move in the same manner, we have merely to suppose
that the weight of the particle is equal to the weight of

the pendulum, and that it experiences a resistance which

B



242 NEWTON S PRINCIPIA.

follows for variations of velocity the same law that any

element of the pendulum experiences, but whose magni

tude is such that the whole moments of the resistance on

the pendulum and particle about the axis of suspension

are equal. In reasoning then on the pendulum we may

always consider it as a simple pendulum. For when we

have determined its motion, the preceding formulas enable

us to determine that of the compound pendulum.

Newton does not confine himself to the case in which

the particle describes a circle. Supposing the string

flexible, he has given in the first book a way of making it

describe any given curve. Of all these the cycloid is that

which possesses the most important properties. The motion

of a particle in a cycloid is discussed, because it gives us a

deeper insight into the laws of pendulous movements than

that in any other curve. The motion of a particle in a circle

is considered, because in practice most pendulums are so

constructed that any point in them describes a circle.

[See NOTE VI.]

A particle constrained to move in a cycloid ivhose axis is

vertical is acted on by gravity and resisted by a constant

force. To determine the motion. Newt. xxv.

Let / be twice the radius of the generating circle, s the

distance of the particle at any time t from the lowest point

(C) of the cycloid, v the velocity, and m the mass of the

particle. Letjfbe the constant resistance.

Then the moving force along the tangent is

I

supposing the particle to be descending.
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d 2 s
But this is also in , hence we have

This equation being of a standard form, we can write

down its integral,

= L cos A /f (t
-

A) 4-
/\/ /

v mg

where L and A are constants depending on the initial con

ditions of motion.

/ f
Take a point O in the arc, so that CO =

, and let sf be
mf

the arc when measured from this point. Then

/ = L cos (t
-

A).

Suppose the particle began its descent from D, then A

is clearly the time at which the particle was at D, and

L= arc O D. It is manifest the greatest velocity will be

at O. If the particle had been undisturbed by /, the same

equation would have given the arc measured from C.

If then the particle when resisted by f be at P at any

time, and if another particle not resisted byf be at Q at

the same time, then DP bears to PQ the constant ratio

DO to DC.

The effect of any constant resistance is to dimmish the

arc continually in an arithmetical progression, but not to

affect the time of oscillation.

R2
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A particle constrained to move in a cycloid whose axis is

vertical, is acted on by gravity and resisted by the medium

in which it moves in the ratio of the velocity. To deter

mine the motion. Newt. xxvi.

Let I be twice the radius of the generating circle. Let

s be the distance of the particle at any time t from the

lowest point of the cycloid, and v be the velocity, and m the

mass of the particle. Let x be the coefficient of resistance.

Then the moving force along the tangent will be

- -
. s - K v

the particle being supposed ascending its arc. But this is

d s g
*

also m -7-2 . Hence

m Tt

is the equation to find s in terms of t.

To integrate this equation, put

t*t
s = u . e

where p is some constant at our disposal ; on substitution,

the equation becomes

dp

Let us then choose i*.
so that

2 p. + - = 0,m

and the above equation is reduced to the standard form

d*u

V &quot;

F \ 4m1
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.*. u = L cos n (t A).

Supposing the time to be counted from the epoch when the

pendulum began its first complete oscillation from its

highest point, then X = 0.

_ X /

.
*

. s = L s 5Tn cos n t

Hence we learn,

1. That the oscillations will be isochronal, and the time

of oscillation

This differs from the time of oscillation in a vacuum ; if

x be small, and T the time in vacuo, the difference will be

very nearly

x 2
/

=

8mV
If we neglect terms so small as this, the time will be

unaltered.

2. The arcs of each successive oscillation will decrease

in geometrical progression, and if L be any one such arc,

X X

the next will be L s

~
/

.

A particle is constrained to oscillate in a cycloid wlwse axis is

vertical under the action of gravity, and is resisted by the

medium in which it moves in the ratio of the square of the

velocity. Determine the motion. Newt. -xxix.

Following the same notation as before, it is manifest

that the equation of motion will be

d v x
v -j- = ir s v
as m

R 3
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where w2 =
^,

and the particle is supposed to be moving

in the direction in which s is measured. When the particle

moves in the opposite direction we must change the sign

of x.

Although the above equation cannot be completely inte

grated in finite terms so as to find s in terms of t, yet we

can always find the velocity at any point of the arc. The

equation can be put under the form

rf/ + 2 l.*=-2*. S
as m

This is a standard form, and the integral will be

W2
6
2* _. _ 2 n* f s . s

2 * 5 ds

Jd

where x has been put for . We may find C either in

terms of the whole arc described, or the velocity at the

lowest point. The latter gives when s=o, v = V,

hence

-2* S __ S - -

This finite expression will always give the velocity. As x

is usually small, it may be useful to expand the above in

powers of x . We have
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Newton has given a geometrical construction for this

velocity. But it is very long, and in the present age,

when analysis is the great mathematical weapon, such a

complicated construction is of no value except as a matter

of curiosity.

If we wish to have the means of deducing the law of

resistance from experiments on the pendulum, we must in

vestigate the changes produced in the time and arc of vi

bration by a resistance that varies according to any law,

indeed by any small disturbing cause whatever. The two

next propositions of Newton have this for their object.

They are entirely geometrical and the investigations too

complicated to be inserted here. Of one of them Newton

says :
&quot;

by reason of the difficulty by which the resistance

and velocity are found by this proposition we have thought
fit to subjoin the

following.&quot; We shall first discuss the

modern analytical method* of determining the effect of

any small disturbing cause, and then give an analytical

proof of Newton s general proposition.

Let the quantities s, t, n, &c. have the same meaning as

before, and let f be the small disturbing cause which acts

along the tangent on the particle.

The equation of motion will then be

dt*

If/=o, the motion will be given by

s = a sin. (n t + b)

- = a n cos. (n t +a t

* Camb. Phil. Trans. 1826.

R 4
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Assume these to be the true equations of motion when /is
not zero, then a and b are functions of t.

And since the second equation is the differential of the

first,

sin. (n t + b) -= + a cos. (n t + b) -7- = 0;d t d t

and since they satisfy the original equation of motion,

, TX da . . N e?&
TZ cos. (nt -{- b) -7 w sin. (nt + b)-j-

= /.

Hence, solving these

-T- = sin. (n t + b)d t na

These equations, when solved, will give the changes in the

arc and time produced by the causey.

Suppose /to be a small force. Then the variations of

a and b are very small, and being multiplied on the right

hand side by the small quantity f we may neglect them.

Hence if
,
and b

/
be the altered values of a and b,

1
/&quot;&quot;

aj a = - If cos. (n t + b) d t

n^J

b,-b= A/sin, (n t + b) d t.

Hence we learn that if/ consist of two disturbing causes,

the total disturbance will be nearly equal to the sum of

the separate disturbances.

Suppose / to be the resistance of a medium varying as

the mth
power of the velocity /= x vm. The velocity in

moving from the lowest point is
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v= an cos (nt + b)

.\f=xnm am cos (nt+ b)

.-. substituting and performing the integration between the

limits nt+ b= - and nt+ b= we have

m(m 2) (in 4) &c.

b
/
- b = 0,

Q &c.
]

-3)&c. I

where a is ?r or 2 according as m is odd or even.

Hence when small quantities of the second order are

neglected, the time of oscillation is unchanged and the arc

continually decreases, and the difference between the arc

described in the descent and that described in the sub

sequent ascent will be proportional to the same power of

the arc that expresses the law of resistance with the ve

locity. This will enable us to find the law. Also if the

difference of the arcs be represented by a series of terms

such as

AV&quot;

where V is the velocity at the point where it is greatest,

the resistance at this point will be represented by a series

of terms such as

M O~ 2 ) ..... AV
/ (m + 1) (m - 1) . .

and the value of V, the maximum velocity, can be always

found by the formula

Also putting R for the moving force of the resistance, and

W for the weight of the body, it is clear that

R~ a
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the decrement of the arc varies inversely as the weight
of the pendulum.

It will be inconvenient to constrain the particle to move
in a cycloid : let us examine what errors would be in

troduced by making the particle vibrate in a circle.

Here the force is g sin
j

instead of - S) hence we must

put

/&amp;lt;/

. &amp;gt; u=
I

s g sin. - = --?-
. 53, nearly

=
~jr6

sin.
3
(w t -f ^}.

Substituting we have

#j a =0, a = I

b h - gar* \
1

b ~~
rein* J

the integrations being performed from nt + I = o to it.

Hence the arc is unaltered and the time increased by a

II a*

quantity ^_:= .

Let us now consider the con

struction by which Newton re-

I{

presented the resistance. Let a

straight line B be drawn equal to the arc of the cycloid
which an oscillating body describes, and at each of its

^ i

points D draw the perpendicular D K equal to ~ part of

the resistance at D, then and a
l being the arcs de

scribed in the descent and subsequent ascent, then

(a \

~
ft
o)

a
* ^ = area of curvc a K B-
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This admits of a very short proof, for the equation of

motion being

.ii+***a s

we have by one integration

and at the limits of integration s= a
Q
and s= + p we

have v= o

which is what we had to prove.

We have now to consider the nature of the curve aKB.
We have accurately true

s = a sin (n t + b)

v = a n cos (n t + b)

calling y the ordinate and supposing the resistance to be

equal to k vm

Let x be the abscissa measured from the middle point O
of a B 5 and

x +
ai- a* = a sin

(
n t + ft).

JYr**, let the resistance vary as the velocity, then eli

minating t,

If we neglect the variations of a with t, this is the equation

to an ellipse. The terms in y thus neglected are of the

order x2
. Secondly, let the resistance vary as the square of

the velocity. Eliminating t
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If we neglect the variations of a with t this is the equation

to a parabola. The terms in y thus neglected are of the

order *2
.

Newton takes these figures to be accurate enough for

practical purposes, and we might now proceed to deduce

the resistances at O from the difference of the arcs. But

we have said enough to illustrate Newton s method. It

is not so convenient for use as the more modern formula.

But it is remarkable that the two methods are of equal

degrees of approximation. Thus Newton arrived at as

accurate a result as that which we now use, the only

difference being that he expressed his result, according to

the custom of the age, in a geometrical form.

We must now deduce the true law of resistance from a

combination of theory and experiment. It is clear from

what precedes, that the observations must be made on the

decrements of the arcs. Newton suspended a wooden ball

weighing 57-/g- ounces troy, its diameter being 6J- London

inches, by a fine thread on a firm hook, so that the distance

between the hook and the centre of oscillation of the globe

was 10 feet. He marked on the thread a point 10 feet

1 inch distant from the centre of suspension, and even with

this point he placed a ruler divided into inches, by the

help whereof he observed the lengths of the arcs described

by the pendulum. Then he numbered the oscillations in

which the globe would lose \ part of its motion. In the

following table the first column represents the first arc, or

space the pendulum was drawn aside from the perpen

dicular ; the second column the number of oscillations ..

the third column the last arc, which is always ^ less than

the first ; and the fourth column the difierence between

the first and last arcs ;
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A!. 2 a -f B .2 2 + C 2 af

a form well adapted for a comparison with the results of

experiments. Taking the second, fourth, and sixth expe

riments of the set discussed above, we get three equations

to determine the three quantities A , B , C .

A = .0000916,

B = .0010847,

C = .0029588.

But the resistance will be expressed by

W f 7 7 3

T{n A a
+i5)

B/a * +
*&amp;lt;

w r 3 i=
y-- \

.0000583 a + .0007593 a ~*+ .0022169 a 2

[

where W is the weight of the body. Thus for such swift

motions in air as those varying from 4 to 120 inches per

second, the resistance varies as the square of the velocity.

Since a in the second case represents 1, in the fourth 4,

in the sixth 16, the resistance will be to the weight of the

globe, in the second case, as .0030345 to 121, in the fourth

.041748 to 121, in the sixth .61705 to 121.

The next point to be determined is the manner in which

the resistance depends on the surface. For this purpose

Newton suspended a leaden ball of 2 inches diameter,

weighing 26 1 ounces troy, by the same thread that he

suspended the former ball, the length of the simple pen

dulum being 10J feet. He found the resistance to the

ball was 7 times that on the former ball. But the ratio

of the squares of the diameters was llyf to 1 nearly.
* f Therefore the resistance of these equally swift balls was

in less than a duplicate ratio of the diameters. But the

resistance of the thread has not yet been considered, which

was certainly considerable. This could not be accurately
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determined, but it was found to be greater than a third

part of the whole resistance of the lesser pendulum.

When this third part is subtracted, the ratio 7J to 1 be

comes 7 to or 10 to 1, a ratio not very different from

llyf to 1.&quot; Since the resistance of the thread is of less

moment in greater globes, Newton also tried the experi

ment with a globe whose diameter was 18| inches. He
found the resistance on this globe to be 7 times that on

the first globe, whose diameter was 6J inches ; but the

squares of the diameters are in the ratio of 7.438 to 1.

The difference of these ratios is scarcely greater than

what might arise from the resistance of the thread.

Therefore the parts of the resistances which are in swift

motions when the globes are equal as the squares of the

velocities, are also when the velocities are equal as the

squares of the diameters of the globes. &quot;We shall find

occasion to modify this conclusion in another chapter.

In order to determine the manner in which the resist

ance depended on the density of the fluid, Newton calcu

lated the resistance made to a body oscillating in water

and in air, and found that that part which is proportional

to the square of the velocity (and which alone it is neces

sary to consider in swift motions) is proportional to the

density of the medium. &quot; This is not perfectly accurate ;

for more tenacious fluids of equal density will undoubtedly
resist more than those that are more liquid, as cold oil

more than warm, warm oil more than rain water, and

water more than spirits of wine. But in liquids which

are fluid enough to retain for some time the motion im

pressed upon them by an agitation of the vessel, and

which being poured out are easily resolvable into drops,

the rule will be pretty accurate, especially for large bodies

moving with a swift velocity.
&quot;

Lastly, since it is the opinion of some that there is a
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certain astherial medium extremely rare, which freely

pervades the pores of all bodies, and from such a medium

some resistance must needs arise, in order to try whether

the resistance which we experience in bodies in mo

tion be made upon their outward superficies only, or

whether their internal parts meet with any considerable

resistance upon their superficies, I thought of the follow

ing experiment.&quot; Newton suspended a round deal box by
a thread 11 feet long, and compared the resistance made

to it when empty and when filled with lead. When full

of air its weight was ^ih of the weight when filled with

metal. But since the decrement of the arc varies in

versely as the weight, the box when filled with lead should

make 78 oscillations before the arc was decreased by the

same quantity that when filled with air it lost in one

oscillation. But Newton counted 77 oscillations. Assuming
that the greater resistance of the full box arises not from

any other latent cause, but only from the action of some

subtile fluid on the included metal, we may suppose that

this resistance in equally swift bodies will be as the num

ber of particles that are resisted. Let A be the resistance

on the external and B on the internal superficies of the

box when empty. Then A and 78 B will be these re

sistances when the box is full. By the preceding ex

periment the resistance on the full box A + *78B is to the

resistance on the empty box A B as 78 to 77. Solving

this simple equation, it follows that the resistance on the

internal parts of the empty box {B) will be j-gg-^ Part

of the resistance (^4) on the external superficies.
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CHAPTER VI.

MOTION OP FLUIDS RUNNING OUT OF SMALL ORIFICES.

1. Newton s solution of the question, without limiting the orifice.

2. Newton s corollary to deduce the resistance made by a fluid to a

body moving in it.

3. The fallacy of Newton s reasoning How others attempted to pursue

the investigation. Note vii.

4. The velocity as given by the Equations of Motion. Note vii.

5. The efflux of an elastic fluid through a small orifice strange conclu

sions to be deduced from the formula St. Venant and &quot;Wantzels

experiments. Note vii.

1. THE problem to determine the motion of water running

out of any vessel through a hole is so difficult that it

has not yet been completely solved. We cannot there

fore be surprised if Newton s solution of the question is

not very satisfactory. He begins by considering a case

in which he is able to give some account of the motion.

Let us suppose that we have a circular cylinder filled with

fluid, the surface of which is retained at a constant level

in such a manner that the velocity of descent of all its

parts is also uniform. In order to aid our conceptions,

]S&quot;ewton supposes this effected by the descent of a cylinder

of ice APQB, of the same breadth with the cavity of the

vessel, and having the same axis. The motion is supposed

quite uniform, and its parts, as soon as they touch the su

perficies A B, are supposed to dissolve into water and flow

down by their weight into the vessel. Let u be the uni

form velocity of descent of the cylinder, and let k be the

s
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height through which a body must fall to acquire this

velocity,

Let there be a hole E F in the centre of the bottom, and

let the whole cavity of the vessel which encompasses the

falling water be full of ice, so that the water may pass

through the ice as through a funnel. The particles of

water are supposed to cohere a little, that in falling they

may approach each other, and thus instead of being

divided into several, they will form a single cataract. We
shall also suppose the form of the

funnel such that the particles of

water fall freely down. The lines of

motion will form surfaces of re

volution whose axis is the axis of the

funnel, and the forces of cohesion act

ing on any particle have a resultant

normal to these surfaces. The velocity

of the particle will not therefore be

affected by this force, and if z be the

depth of any particle below the plane

A B and v its velocity we haveE G

each particle arrives with the same velocity at the aperture

E F. The form of the funnel was supposed such as to

admit of this motion; hence the area of any section must

be inversely as the mean vertical velocity of the fluid for

all parts of that section.

Now, if the particles of water did not exert any action

on the icy funnel through which it flows we might suppose

this funnel dissolved into water without changing the cir

cumstances of the motion. But the descending fluid does

act on the dissolved ice, and the whole nature of the motion

is changed. But Newton argues that nevertheless the
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efflux of water, as to its velocity, will remain the same as

before. It will not be less, because the ice now dissolved

will endeavour to descend ; it will not be greater, because

the ice now water cannot descend without hindering that

of other water equal to its own descent. The same force

ought always to generate the same velocity in the effluent

water. Newton does not mean that the same quantity of

water flows out, but that the same velocity is generated.

This is not, however, the vertical velocity at the orifice ;

&quot; for the particles of water do not all of them pass through

the hole perpendicularly, but flowing down on all parts

from the sides of the vessel and converging towards the

hole, pass through it with oblique motions, and in tending

downwards meet in a stream whose diameter is a little

smaller below the hole than at the hole itself.&quot; The

particles of water at the actual orifice are not all moving
in the same direction. Those in the centre are descending

vertically while those near the circumference have a lateral

motion, but at the vena contracta the whole fluid is

descending vertically. If therefore B, B be the areas of

the sections of the vena contracta and orifice, and v the

velocity of the fluid at the vena contracta, the mean velocity

of the fluid perpendicular to the orifice will be clearly

B
& 9

The quantity of water that flows past any horizontal plane

is proportional to the product of the area by the mean

perpendicular velocity. Thus the discharge is equal to

q = B V2g(h + k)

where h is the depth of the vena contracta below the sur

face of the fluid in the vessel.

T5 -I

Newton found the ratio ^= -
nearly, whence the

S 2
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mean velocity perpendicular to the orifice is nearly

the orifice being at the side of the vessel : thus the mean

perpendicular velocity at the orifice is that due to half the

T&amp;gt;

depth below the surface. This ratio
pp however, depends

on the nature of the orifice and the thickness of its sides ;

accordingly different experimentalists have given different

values. Thus for the ratio* of the diameters (the square

21 11
root of the above ratio), Newton found , Poleni ,

Bernouilli ^, Du Buat ^ Bossut -=--, Michelotti ^, Ven-
/ y ou o

. 4 _. , 33 ,, , . 32
turi -, Bidone ^-~, li/ytelwein .

5 50 50

The velocity of efflux will be the same whether the hole

be at the centre or the side of the vessel ; for though a

heavy particle of water will take a longer time in descend

ing to the same depth by an oblique curve than by a

straight line, yet in both cases it acquires in its descent the

same velocity. The velocity also is independent of the

form of the hole, for it merely depends on the depth below

the surface. And if the orifice be immersed in water the

velocity of efflux is that due to the height of the water in

the vessel above that of the surrounding fluid.

2. Newton proceeds to deduce as a corollary from this

theory the law of resistance of a fluid to the motion of a

body in it. The case of a discontinuous fluid has already

been discussed, and it has been shown that if v be the

*
Encyc. Brit., Hydrodynamics.
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velocity, and A the area of a great circle of a sphere

moving in a fluid of density p,
that the resistance will be

A v2

p. The globe and particles are supposed perfectly

elastic, and thus endued with the utmost force of reflexion.

But if, on the contrary, they are perfectly hard, and with

out any reflecting force, the above expression for the

resistance must be diminished one half. &quot; But in continued

mediums the cylinder as it passes through them does not

immediately strike against all the particles of the fluid that

generate the resistance made to it, but presses only the

particles that lie next to it, which press the particles be

yond, which press other particles, and so on, and in these

mediums the resistance is diminished one other half.&quot;

If in the centre of the hole E F a small circle P Q, of

area C, is placed, the weight of water which it sustains

will be greater than the weight of

a cone whose base is P Q and alti

tude H G, and less than that of a

spheroid on the same base and of

the same altitude. For let HP
and H Q be the boundaries of the

cataract. The cataract falls freely,

and therefore there is no pressure

on the sides of the mass of still

water H Q P. The pressure on the circle P Q is the

weight of water H Q P. And this will still be equal

to the pressure if the ice which forms the sides of the

cataract be dissolved, and the whole water be left to flow

out of the orifice in any manner whatever. A little con

sideration will show that the mass of fluid H P Q must

have its boundaries meeting in a point at H, and being

convex to G, they also meet the sides of P Q at an acute

angle. Therefore these boundaries lie without the surface

s 3
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of the cone and within the surface of the spheroid described

on the base PQ, and with an altitude HGr.

The weights of these two solids are respectively

1 2
- Chgp, and

^

where p is the density of the fluid, and h the altitude HG.
Therefore the weight supported by the little circle lies

between these two quantities. If the circle be very small,

both these will be small, and we may take the weight sup

ported as being very nearly equal to their arithmetic mean,

that is

where P is the pressure on the little circle. If, however,

C be not very small, compared with B, let us assume that

the pressure is

P =

where B is the area of the orifice EF.

Then when C is very small, this must agree with the pre

vious result, hence /3
= 1, and when C = B the weight

supported is that of a cylinder whose base is C and altitude

hy hence =
^. Moreover, so long as C is less than half

B, the expression

-

makes P lie between the limits assigned above.

Newton next proceeds to point out the analogy between

the pressure on the circle and the resistance to a circle

moving in a still fluid. Let the vessel touch the surface of
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stagnant water with its bottom CD, and let the water run

out of the cylindrical canal EFTS perpendicularly to the

horizon, and let a small circle P Q be placed anywhere in

the middle of the canal with its surface horizontal. Let

U be the velocity of the fluid at the surface, V that at the

orifice, A the area of a section of the cylinder, B and C

that of the orifice and little circle P Q, h the altitude of

the cylinder. Then

V(B - C) = UA.

If we suppose A to be infinitely greater than B, this last

equation shows that U is indefinitely small, and therefore

V2 = 2^ft,

and the pressure on the little circle is

where a is some quantity that becomes unity when

C
w diminishes without limit.
x&amp;gt;

Now let the orifice of the canal E F S T be closed, and let

the little circle ascend with such a velocity that the rela

tive motion of the circle and fluid which is compelled to

rush past it may be the same as when the water fell from

the height HGr, and the circle was at rest. The pres

sure on the circle will be the same as before. The

C
velocity of the fluid will be =~-p V, and that of

the plane ^-~ V. Let us suppose B infinitely
.D - O

greater than C, then the resistance on a plane moving

with a velocity V in still water is i C v2

p.
If a cylinder,

s 4
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a sphere, and a spheroid, of equal breadth be placed suc

cessively in the middle of a cylindric canal, so that their

axes may coincide with the axis of the canal, these bodies

will equally hinder the passage of the water through the

canal. The resistances will then be equal. The resistance,

therefore, on a sphere will be C v2

p,
where C is the area

of one of its great circles.

3. The investigation of this question, as given by Newton

in his first edition, was very erroneous. He had totally neg

lected the contraction of the vein after the fluid had passed

the orifice ; hence he had deduced that the velocity of the

efflux was that due to only half the height of the water in

the vessel. This mistake he afterwards corrected, but the

investigation still remains open to very serious objections.

For it is quite certain that the first case considered by

Newton in which the water descends by a funnel bears no

resemblance to the actual state of the motion. The water

is not found to flow out in a cataract, leaving a mass of

unmoved water supported by the bottom. Each particle,

whether vertically over the hole or near the circumference

of the cylinder, descends in a nearly vertical direction,

acquiring or losing velocities in nearly the same ratio.

Those particles which are once in a horizontal section

remain very nearly in the same horizontal plane. When
the particles approach very close to the bottom, they acquire

a considerable horizontal motion, and, in consequence, the

issuing stream continues to contract after it leaves the

orifice. The manner in which Newton deduces the law

of resistance from the velocity of efflux is also erroneous.

It is very ingenious and wonderful, but at the same time

very uncertain. The proposition being false in principle,

we cannot expect a corollary founded on that principle to

be altogether correct. The reasoning by which the resis

tances to a sphere and cylinder are shown to be equal can
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only be correct on the assumption that all the water above

the cylinder, sphere, or spheroid, whose fluidity is not

necessary to make the passage of the water the quickest

possible, is congealed. This Newton himself admits. But

such an assumption is by no means a legitimate one. It

is also certain, by experiment, that the amount of the

resistance depends very materially on the form of the

surface of the body.

[See NOTE VIL]
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CHAPTER VII.

THE MOTION OF WAVES.

1. General consideration on the nature of Waves.
2. Waves in air sound.

a. The nature of sound deduced from the phenomena. Scholium,

Prop. L.

j8. Examination of the case considered by Newton.

7. Velocity of sound Newton s error.

5. The manner in which sound spreads after entering through an
orifice. Newton xlii.

. The notes sounded by different pipes. Scholium, Prop. L.

3. Waves in water.

a. The motion is of the vibratory kind,

fr Newton s reasoning on this subject. Newton, xliv.

7. Velocity of waves. Newton xlv. & xlvi.

e. The nature of the motion of waves as given by a strict hydro-

dynamic theory. Note viii.

Waves caused by the motion of a boat,

yw. Cause of breakers over sunken rocks.

6. How the wind raises the waves.

1. To one who has never considered the nature of the motion

that occasions the appearance of a wave, the idea is at first

difficult. John Bernoulli the younger
*
declared that he

could not understand Newton s proposition on this sub

ject. The best illustration is that of a field of standing

corn, because it clearly shows that, in some waves at least,

there is no actual transfer of a quantity of matter. When
the wind blows on the field a hollow will be seen travelling

along it. This is a wave. There can manifestly be nothing

*
Whewell, History of Inductive Sciences, vol. ii. p. 310. quotes Prize

Dis. on Light, 1736.
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moving across the field, because everything is fastened to

the ground ;
but there is the appearance as if something

were moving along. Each particle of corn in turn descends

and rises again, and, as each ear is a little later in its mo

tion than the one in rear, the state or position in which

the first was, has travelled to the second. Our first idea

of a wave is, that it is a state of motion which travels

along, the particles themselves only oscillating. Our

second, that this state of motion may gradually change,

and either increase or die away.

Suppose we have a series of particles in a straight line,

let them begin to move up and down, either in this straight

line, or in any parallel straight lines, so that if one be taken

whose mean position, measured along the straight line is

distant x from the origin of measurement, its distance at

the time t from its mean position is represented by the

formula

y = af(n t m x),

where /is any functional symbol.

Then here, so long as

n t m x

is constant, y remains the same ; that is, a &quot; state
&quot;

travels

along in such a manner that its distance x at any time t

is given by this formula.

Differentiating we have

dx

but - is the velocity ; hence the &quot; state
&quot;

travels with

the velocity
-

; this, therefore, is the velocity of the wave.

Suppose we call this v, then we have

?/
= af m (y t x}.
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The fe

length
&quot;

of a wave is the distance between two par

ticles in a similar state of motion. If A be this length, y
must be the same for x = x and x = x + A. Nowj^(*r)

will be a periodic function : suppose its values recur at

intervals of c,

. . m A = c9

c
or m = -

A

and therefore,

y =

This is the type of a wave that travels in any one direction.

But it can also be demonstrated that it is the general

expression for all waves propagated with a uniform velocity

in one direction without change of form.

There are a great variety of waves; we may have

waves transmitted through elastic fluids, where a state of

condensation travels along. We can have them propa

gated along the surface of an inelastic fluid, as water in

the form of an elevation. We can have them in solid

bodies, the particles of which are supposed to oscillate

about their mean position, and to act on each other with

forces different from those which would act if the body
had been fluid. We shall briefly consider these in turn.

These waves may not travel at all parts in the same direc

tion. They may spread themselves out from a centre.

In all cases a surface passing through all points in a similar

state of motion is called a front of the wave. The phase

of a wave at any point is the situation of the particle of

that point considered as affecting its displacement and

motion. Thus, two particles are in the same phase when

their displacements are equal, and motions the same. They
are in opposite phases when the displacement and motion

of one are equal but opposite to those of the other.
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2. The true nature of sound can only be discovered by

observation. We must know something about what we

have to explain. The experimental facts divide themselves

into three species. First, those relating to the manner in

which the sounding body makes the sound. Secondly,

those relating to the manner in which the sound when

formed is conveyed to the ear. Thirdly, those relating to

the manner in which, when the sound is thus conveyed,

we hear it. In regard to the first, it is universally true

that all sounding bodies are tremulous bodies. All vi

brating bodies, however, do not give sound. In regard to

the second, it is observed, (1.) that sound cannot be con

veyed through a vacuum. Hanksbee suspended a bell in

the receiver of an air-pump ; the sound died away gradually

as the air was removed (Phil. Trans. 1705.) (2.) Sound

is not instantaneously conveyed ; the report of a gun is not

heard until after the flash has been seen. But all sounds

travel with equal velocity. Thus the various notes of any

piece of music played at a distance reach us in perfect

order. The velocity is found to vary slightly with the

temperature, and at 62 Fahrenheit travels at the rate of

1125 feet per second. (3.) Sound, unlike light, does not

travel necessarily in a straight line, but on entering through

an orifice, as a window, spreads out in all directions, but,

nevertheless, it is heard with greatest distinctness in front of

the orifice. Thus the sound of a carriage can be heard

round a corner, but a change in the loudness is perceptible

the moment when the carriage goes behind the intervening

walls. (4.) Sound can be conveyed by solid bodies, and

other fluids besides air, but in passing from one to another

a considerable portion of its intensity is lost. (5.) The

intensity of sound diminishes as the distance from the

sounding body increases. But when sound travels along a

tube, as a speaking pipe, the gradual diminution of the sound
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is very slow. (6.) Sound travelling through a dusty

atmosphere produces no perceptible motion in it. In re

gard to the third species of facts, we know but very little ;

it is sufficient for our present purpose that we find in the

ear vibrating bodies prepared to receive the sound. These

are the more obvious phenomena. They will serve as a

guide to the true theory. The true test of that theory

will be in its exact explanation of more refined and less

obvious phenomena.
Since sound is caused by a body vibrating in air, before

we invent any new theory we should prove that none of

the natural consequences of such a motion will account

for the phenomena of sound. Now we know that the

motion of a tremulous body will disturb the air near it,

and that moving air the air beyond it and so on. Thus a

disturbance will be propagated on all sides in the elastic

medium which surrounds the body. Also we find tremulous

bodies in the ear fitted to receive such vibrations. What
is more natural than to suppose that these vibrations are

themselves what we call sound ? To verify this it is ne

cessary to examine strictly the nature of the disturbance

in the air caused by a vibrating body. The investigation

cannot be given here, but the general result is as follows.

Suppose a disturbance propagated from a centre in all

directions, then, first, the intensity of the disturbance

will decrease as the square of the distance increases. Thus

as the disturbance was originally small, the motions at

some little distance from the sounding body will be quite

insensible to any of our senses except that one which was

expressly adapted to receive its impressions. Secondly,

the velocity with which any wave travels is independent

of the nature of the disturbance, and agrees very closely

with the observed rate at which sound travels.

Thirdly, the nature of the motion of the particles is such
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that at some distance from the sounding body, the directions

of oscillation of the particles will pass through the centre

of disturbance supposing the propagation symmetrical in

all directions, or more generally, whatever be the nature

of the disturbance, the vibrations are normal to the front

of the wave. In fluids no other vibrations are possible.

Of course Newton could not investigate completely the

motion of sound. That was far beyond the power of the

mathematics of his day. But, in a wonderful manner he

solved to a certain degree the simpler case of the motion of

the air in a tube. The principle he used, and the present

mode of reasoning on this subject, are both illustrated in

the following analytical view of the investigation.

Whatever the motion of the air may be, we suppose the

tube so small that we need not consider any motion ex

cept that which is along the length of the tube, and this

motion will be the same for all particles in the same per

pendicular section of the tube. Suppose, then, that at the

time t, the particle which when the air was at rest was at

a distance x from the origin of measurement is at the dis

tance z + %. Then an element of air whose length had been

dx, is now dx + dg, and as the mass must remain the same,

the density which was D is now

= D l ~
p
= - ~

TT
, , ** V dxj
i T -r~dx

The square of may be neglected, for we know that that

particular motion of the air which we call sound, whatever

it may be, is very small. Also the pressures on the two

sides of the element are, when reduced to a unit of area,

p and p +
-j

- d x,
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and since the pressure varies as the density \ve have

P = xf,

and therefore the moving pressure on the element is

dp,K ~ a x.
dx

But the mass moved is D dx ; hence on substitution for
p,

the accelerating force on the element is

Thus the force depends on the displacement, and the

displacement, in its turn, 011 the force. If we assume a

form for the displacement, and then show that this dis

placement leads to a force that will produce this exact

displacement, we have discovered a possible motion. And
if this displacement also agree with all the other conditions

of the question, we have discovered the actual motion.

For it is clear that from a given disturbance under given

circumstances, only one kind of motion can result. Newton

assumes accordingly that

= a. sin (nt mx).

The accelerating force is then, by two differentiations,

K m2.a sin (ntmx)
= xm2

.

that is, the force varies as the distance from a fixed point

and urges the particle towards that point. This force is

well known to lead to the very form for that we started

with, (Prop, xxxviii. of Book I.) provided

?z
2= x m2

,

or the velocity f
J
with which the wave is propagated is

N/x7 This, therefore, is the velocity of sound.



NEWTON S PRINCIPIA. 273

As an example of a case in which the motion is actually

represented by this law, let us take an infinite tube, and

suppose the air in a small part of it to be set in motion, so

that it will begin to move according to the form we have

assumed for f. Let the extremities of this part of the tube

be A and B, the particles A and B and all the remainder

of the air in the tube is supposed to be at rest. Let us

now consider the motion during a small time 8 1. The

particles between A and B will, by the above reasoning,

continue to move according to the law assumed for . The

velocity and condensation, therefore, being represented by

-7 and -r will be respectivelvat d x

a n sin (nt mx) and a m sin (n t m x).

Let x be measured in the direction from A to B, which we

shall suppose from left to right. The particle A is at rest,

the condensation at that point and for all points on the left

of A is zero. Take a particle a on the right of A, where

A a = $ x, the condensation at that point is indefinitely

small and is decreasing. The particle A will, therefore,

remain at rest. The particle a will come to rest, that is,

be in the same situation that A is in, at the end of the

time 8 1, where

n 8 t = m 8 .?,

that is, the left end of the pulse travels onward with a

velocity , leaving the air behind it undisturbed. By

similar reasoning, it can be shown that the right end of

the pulse travels onward with the same velocity. At the

end of the time 8 t, the pulse will merely have advanced a

space 8 x, and the circumstances of the motion will be the

same as before. The same motion will, therefore, be

T
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repeated in the next interval, and so on throughout

all time.

Thus we see a single pulse can be propagated along the

tube without any change in magnitude, form, or time of

vibration. In order to form these pulses let us imagine a

plate to be placed at one end of the tube, vibrating accord

ing to the law

= a sin n t,

then each pulse of the plate as formed will be propagated

unaltered along the tube, and the motion at any distance x

from the plate will be given by the law

= a sin (n t m x).

The velocity of sound is independent of the values of m
and n. These are the only constants on which the differ

ence between two notes could depend. Whatever, then,

is the pitch of a sound, it will travel with the same

velocity.

The numerical value of the velocity of sound depends on

the constant K. This expresses the constant ratio of the

elastic force or pressure of the air to its density. The density

ofthe air Newton calculated to be about th part of the
j. io yu

density of quicksilver, and the pressure of the air is equal

to the weight of a column of mercury about 30 inches

high. Hence the ratio of these two is equal to

orj

g x g x 11890,

the units being feet and seconds of time. The square root

of this, which is the velocity of sound, is 979. Sound,

therefore, should travel at the rate of 979 feet per second.

The elastic force p for a given density being increased by
an increase of temperature, the result thus obtained should

be too small in hot air and too great in cold. But this
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result should be true about the temperature of spring and

autumn.

When Newton completed this investigation the true

velocity of sound was not accurately known. From some

rough experiments, conducted by himself, he believed

that this result was really near the truth. But subsequent

experiments showed that it was erroneous by 163 feet.

This was a very serious error, and Xewton tried to explain

it away, by saying that no allowance had been made either

for the crassitude of the solid particles of the air, or the

presence of vapours. He even attempted to show that

on taking these into account, the calculated and observed

velocities were in close agreement. Such explanations are,

however, unsatisfactory, and unless some other explanation

had been found, the theory would stand in direct opposition

to experiment. The theory of sound continued to advance

by the labours of the great mathematicians who followed

Xewton ; the motion of sound in a tube was investigated

without any assumption as to the nature of the motion, but

the discrepancy still remained unexplained.

This was reserved for Laplace, who remarked that in

rapid vibrations, the sudden rarefactions and condensations

of the air must affect its temperature, and therefore its

elasticity. The amount of this must be determined by

experiment, and it was shown that if s represent the

condensation, the form to be used must be, not as

heretofore

p = * D (1 + *),

but

p = K (I + ft) D . (1 -f 5),

where ft lies between *3748 and 4. The velocity of sound,

therefore, is not \/ x, but V K (I + ft). The agreement
T 2



276 NEWTON S PBINCIPIA.

of the observed and calculated velocity was now found to

be very close.

The value of x depends on the general temperature of

the air. By Amontem s law, we know that if K be the

value at any temperature, the value at any other exceeding

this by will be

where a =
-r^-. If, therefore, the temperature of the air

be above 60, the velocity of sound will be 1124

feet nearly -

! &quot;

The demonstration we have given of Newton s propo

sition of the motion of sound in a tube may easily be

extended into a vigorous demonstration. For the accele

rating force on any element having been shown to be

the equation of motion must be

d t
2 dx

putting a2 for x (1 -f /3).
This equation must be true for

the motion of sound in a tube under all circumstances.

Thus, the tube may be finite, open or closed, and the dis

turbance may be caused in any manner. The complete

integral of this equation is known to be

where / and ty are unknown functions depending on the

nature of the disturbance and the other circumstances of

the tube.

This investigation of the motion of sound in the air

depends on the assumption that the medium is a perfect

fluid. But this is not the case. The effect of internal
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friction is found to consist partly in a diminution of the

velocity of propagation, and partly in a more rapid dimi

nution of the intensity than would correspond to the

increase of distance from the centre of divergence. The

diminution of velocity is found on calculation to be so

small, that it is less than one foot in 1,578,000 miles. The

change of intensity, though not so utterly insignificant

as the change of velocity, is found to be still insensible.

Such small differences as these may be altogether neglected.

It is well known that sound does not always travel in

a rectilinear direction. &quot;

Sounds,&quot; Newton remarks,
&quot;

may be heard though a mountain be interposed ;
and if

they come into a chamber through the window, dilate

themselves into all parts of the room, and are heard in

every corner, not as reflected from the opposite walls, but.

as directly propagated from the window, as for as our

senses can
judge.&quot; Let us imagine a series of waves to

be advancing directly through an orifice, and let the aper
ture be divided into small elements. Each element may
be considered as the origin of a series of disturbances. The

disturbance in any part of the room will be made up of

those propagated from all the several elements. Now, the

motions being all small, it is a well known principle that

the actual disturbance will be the sum of all those that

would have been propagated from each separate element

on the supposition that there was no other motion at the

same time in the medium. Each separate disturbance may
be calculated by the known rules according to which any
motion spreads itself on all sides. The actual disturbance,

on which the sound depends, will be represented by a

definite integral. It is needless to go through the work,
but the result is, that, provided the length of a wave be

not very small compared with the orifice and this is the

case in sound, and the waves on the surface of water the
T 3
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motion will be sensible at other points of the room, as

well as directly in front of the orifice. Thus Newton s

expectation was confirmed, though he was ignorant of the

condition on which it depended. But if the length of the

waves are indefinitely small compared with the size of the

orifice, and this is the case in the Undulatory Theory of

Light, then it is found that, excepting directly in front

of the orifice, the definite integral is altogether insensible,

the condensations and forward motions of one wave being

superimposed on the rarefactions and backward motions of

another in such a manner that there is no sensible disturb

ance. Such waves must be considered as being propa

gated in rectilinear directions.

The first step in the theoretical explanation of the sounds

produced in pipes was made by Newton. He remarks that

Sauveur found by experiment that an open pipe about five

Paris feet in length gives a sound of the same tone with a

viol string that vibrates a hundred times in a second.

Therefore, he argues, there are near one hundred pulses in

a space of one thousand and seventy Paris feet, which a

sound runs over in a second of time ; therefore one pulse

fills up a space of about 10T
7

Q Paris feet, that is twice the

length of the pipe. From whence it is probable that the

lengths of the pulses in all sounds made in open pipes are

equal to twice the length of the pipes. Newton did not

examine any further into the subject, but leaves it for

others to carry out the theory. Lagrange and Bernoulli

were the first to give more minute explanations of the

leading facts. Since that time, Euler, Lambert, Poisson,

have developed the subject still further.

The theory is to a great extent included in the equations

to the motion of sound in a tube which we have already

given. It can be shown from these that the motion is

made up of two waves continually travelling along the tube
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in opposite directions. Of these one may often be con

sidered as the reflection of the other at the open or closed

end of the tube. These two waves will
&quot; interfere

&quot;

as it

is called, and there will be in consequence two sets of

points in the tube, which possess remarkable properties.

At any point of one set there is no motion in the air, but

only a condensation. At any point of the other set there is

no condensation, but only motion. The first are called

&quot;nodes,&quot; the other
&quot;loops.&quot;

These points are placed in

regular order, alternately a node and loop at distances one

fourth the length of a wave.

Suppose a tube closed at one end to be sounding a note

in unison with a vibrating plate at the other. Then clearly,

since the air must remain in contact with the tube at the

closed end, there can be no motion there. That point must

be a node. Since the air moves in consonance with the

vibrating plate, there must be no &quot;action or reaction&quot;

between the air and plate. If there were, the sounds would

not be in unison, and the note of both the tube and plate

would begin to change. The pressure of the air must

therefore be the same on each side of the plate; therefore

there is no condensation in front of the plate. That point

must be a loop. One end of the tube is therefore a loop,

the other a node. Hence the length (
I

) of the tube must

be an odd multiple of
j,

where x is the length of a wave.

That is,

That note which has the largest value of \ which can be

sounded from a given pipe is called the &quot; fundamental &quot;

note of that pipe. For this note n = 0, and we have

The pitch of a note being determined by the length of the

T 4
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wave which forms it, all the notes that can be sounded

from the same closed tube will form the series

,11111
3 5 7 9

&C *

for we have merely to give n all its values from nothing to

infinity, to get all the possible values of A.

Suppose now the tube to be open at the end opposite to

that by which the air is set in motion. It is assumed that

at the open end the density of the air must be the same as

that of the surrounding air, a fact that is not exactly true.

Taking it for granted, it will follow that both ends of tube

must be loops. The length of the tube must therefore

be an even multiple of -, that is

The fundamental note corresponds to n = 1 or

A= 2Z,

and all the notes that can be sounded from the same open
tube will form the series

1111
1

2 3 4 5&amp;gt;

&C

We also learn that the note of the pipe being measured

by the value of A, it will be proportional to the length of

the pipe, and that to get the same note from two pipes,

one closed and the other open at the end opposite to that

at which the air is set in motion, the second must be double

the length of the first.

The theory of stringed instruments is in many instances

remarkably similar to that of wind ones. The equations of

the oscillations of a stretched string are exactly the same as

those of a sounding pipe.

Much progress has been made by the experimental re

searches of Hopkins, Chaldni, Savart, Willis, and others.
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But we have no space to do more than merely allude to

their labours.

There are a great many other waves propagated through

the air besides those which can be heard. Our ear is a

musical instrument that vibrates in consonance with all

notes whose periods lie between two limits. All other

sound waves therefore, though their theory is exactly the

same, are not heard.

Besides these sound waves, there are other great waves

which traverse the air in all directions, and whose passage

is indicated by the variations of the barometer. These

waves are very large, and pass over whole continents in

their course, and seem to recur with some regularity.

Their theory is different from that of sound, and as yet

imperfectly understood. The examination of the &quot; facts
&quot;

connected with them was begun by Herschel, and has been

since continued with much success by William Birt.

So also the waves that produce sound can travel through
other substances besides air. The theory is in some points

different from that we have been considering.

3. That the elevations on the surface of water which we

call waves are not really the transmission of a body of

water, but merely the movement of a particular state of

motion, will be obvious on very little consideration.

First) by experiment, a piece of cork floating on water

agitated in this manner is found merely to oscillate, and

does not advance as the wave moves onwards. Secondly,

by theory, such a disturbance being supposed given to the

water, as we know by experience will produce the appear

ance of waves, the principles of Hydrodynamics lead us

to the conclusion that the motion is really of a vibratory

kind.
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On this subject Newton has not many propositions. He
has shown an analogy between the motion of waves and

the oscillation of water in a pipe.

Let there be a column of fluid

of length I in the U pipe M A m :

let the water when at rest stand

at the level M m. Then if it be

raised above this level in one leg

to the height P, it will be depressed an equal
amount in the other, say to Q. The weight of water

tending to pull it back again will be equal to twice the

weight of the column P M
; that is, the force varies as the

displacement, and tends to pull the body back to its ori

ginal position. This case of motion has been investigated

in the First Book, and the result is, that the motion is

vibratory, the time of oscillation will be always the same,

and equal to 2 TT divided by the square root of the ratio of

the accelerating force at any distance to that distance.

But the moving force is twice the column P M, and the

mass moved is the column Z. Hence the time will be

/2l**/-,

or it varies as the square root of the length of the column

of water.

Now, in waves the motion is carried on by the succes

sive ascents and descents of the water ; hence the time

that must elapse before any particle now at the top of a

wave will again be the top is

where / must here be assimilated to half the length of a

wave. We cannot say they are equal to it, but they will

increase or decrease together. Newton assumes
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and therefore the time of oscillation is

where A is the length of a wave, measuring either from

top to top or hollow to hollow. This expression for the

time is the same as that for the oscillation of a simple

pendulum whose length is A. Hence a wave whose length

is equal to the length of a simple pendulum should advance

a space equal to that length in the time of one vibration

of that pendulum. The velocity of the wave will therefore

be

1

Thus the velocity is independent of the magnitude of the

waves, or the density of the fluid. It is greater for long

waves than short ones. The waves of sound in air travel

with equal velocity, whatever be their length. The undu-

latory theory of light requires us to believe that, except

when light goes through a vacuum, the waves of different

length travel with different velocities.

Newton does not propose this as more than a first

attempt. He says,
&quot; These things are true on the suppo

sition that the particles of water ascend and descend in a

right line. But, in truth, that ascent and descent is per

formed in a circle, and therefore I propose the time defined

by this proposition as only near the truth.&quot; In modern

times the motions of waves have been more accurately

investigated. If h be the uniform depth, A the length of

the waves, v the velocity of propagation,

-

_45rA

/ 1-e
~

/ ~EI*v
\f 1 + CX
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If the depth be very great we have

/ 9 *&amp;gt;

v = V |~ very nearly,

and when the wave is very long,

v = Vg h very nearly.

The former of these results is not the same as Newton s,

but the general conclusion will be unaltered. The exact

result may, however, be obtained by Newton s reasoning,
if we slightly change the value assumed for I and take

The second result admits of an easy demonstration,
which we shall speak of in another place.

[See NOTE YIIL]
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CHAPTER VIII.

THE THEORY OF THE TIDES.

I. Newton s investigation on the Tides.

o. The tides considered as a question in the motion of fluids, de

duced from the Lunar Theory.

0. General explanations of eight phenomena of the titles.

7. The calculation of the height of the lunar and solar tides.

5. The tides in the moon.

II. The theories that have been proposed since Newton s time. Note IX.

1. The Equilibrium Theory.
a. Its fundamental hypothesis.

. The results of calculation made according to this theory, three

kinds of tides.

7. Airy s opinion of this theory.

2. The Hydrodynamic Theory.
a. Its fundamental assumptions.

& The results of calculation, three kinds of tides.

3. The Wave Theory.
a. Consideration of ocean tides.

fr River tides, results of calculation and explanation of the chief

phenomena.

7. Where this theory fails.

III. Some results of observation. Note IX.

THE cause of the tides in the ocean have always excited

the curiosity and wonder of mankind. Their regularity,

the magnitude of the scale on which they take place, the

difficulty of conceiving what that power could be that can

raise twice a day so vast a body of water, all render the

question one of the most interesting in the whole range of

science. Phitheas, it is said, was the first who remarked

that the tides followed the course of the moon. But the
&quot;

why
&quot; was still as great a mystery as before. Galileo
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thought he could explain it by a combination of the rotation

of the earth about its axis with the annual motion round

the sun. The impossibility of deducing an explanation

from these premises of the most ordinary phenomena of the

tides is evident from what we have said in a previous

chapter. Galileo, busy in establishing by new proofs the

rotation of the earth, was naturally inclined to find in it

the cause of a phenomenon so mysterious, which if it had

succeeded would have furnished him with a most powerful

argument. Descartes had another equally impossible

theory; it was reserved for Newton to suggest the true

cause of the motion of the sea. The discoverer of gravi

tation could not be long before he saw that whether or not

it was the only cause of the tides, it must certainly be one

of them. The attraction of the moon could not be the

same in all parts of any extended sea. Motion, therefore,

must ensue. Nor could any position of rest be ever

assumed, because the earth and moon themselves are in

motion. And here Newton showed his superiority over

those philosophers who afterwards treated of the same

subject. He saw that the motion of the tides was a

question of Hydrodynamics, and in his First Book he con

siders it as such, and has even shown that in one particular

case the water would be lowest in that part which is

immediately under the moon. That he did not do more is

no reproach. Even at the present day the theory of

Hydrodynamics is in its infancy : how impossible then it

must have been in Newton s time, when the simple laws

of the motion of a single particle had only just been

understood, to have attempted the consideration of a fluid

under the action of complicated forces. Newton gives,

therefore, merely a general explanation of the tides, and

enters into some numerical calculations merely as a first

attempt.
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Let us imagine that a uniform channel is cut round the

earth at the equator and filled with water : let it be sup

posed that this fluid is disturbed by the action of the sun

or moon; supposed for simplicity also to move in the

equator. Newton endeavoured to discover in what man

ner the water would move in this imaginary channel,

Book I., Prop. LXVI., Cor. 19. In considering the motion

of a satellite supposed when undisturbed to describe a

circle round the earth, Newton has shown that the

disturbing force will in two different ways cause the orbit

to become slightly oval, the earth remaining in the centre

and the greater axis being perpendicular to the straight

line joining the sun and the centre of the earth. This is

somewhat parallel to the case in point. If each particle

of water were kept in its place by its centrifugal force

they would tend to rise at the quadratures and sink at the

syzygies, they would be swifter at the syzygies and slower

at the quadratures ; they would ebb and flow in its

channel after the manner of the sea. But the analogy is

not perfect, for the water is supported, not by its centri

fugal force, but by the channel in which it flows. We see,

however, that an ebbing and flowing of the sea will be

produced, though the points of greatest and least height of

water may be different. This reasoning applies whether

the disturbing body be the sun or moon.

Though, therefore, by this reasoning we cannot deduce

a perfectly accurate theory of the tides, yet we are able to

perceive that the sea ought to rise and fall twice in each day.

The moon will form at any place two high tides and two

low tides in the interval between leaving the meridian of

that place and returning to it again, that is, in a lunar day.

The sun will also at the same place form two high tides

and two low tides in the interval between leaving the

meridian and returning to it again, that is, in a solar day.
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These two will not appear separately, but a mixed tide

will result from the two. Since both are small, we may
consider the actual tide as being the sum of the two tides

that would have been formed had the disturbing bodies

acted alone. The force of the moon to raise the tides is

much greater than that of the sun, as we shall presently

see, so that for most purposes we may altogether neglect

the solar tide, or rather regard it as a small correction to

be applied to results calculated on the supposition that the

moon alone acted to raise the tide.

First. The lunar tide follows the moon at a given in

terval, called the &quot;

establishment.&quot; Hence as the moon by
her proper motion rises every day about forty minutes later

than on the preceding day, the high tide will be as much

later every successive day. But more minute investigation

shows that the high tide does not follow the moon s passage

over the meridian by any constant interval. We must

make a small correction for the effect of the solar tide. If

the sun follow the moon across the meridian, the solar high

tide will follow the lunar high tide, and the actual high

water formed by the union of the two will lie between

these two tides, and will therefore follow the moon s passage

across the meridian at an interval slightly greater than the

&quot;

establishment&quot; So if the sun precede the moon the

interval will be less. Therefore, when the moon is in the

first and third quarters, the high water is a little later, when

in the second and fourth a little earlier, than the establish

ment would indicate.

Secondly. At or about new and full moon, the high tide

formed by the sun coincides with that formed by the moon,

hence the high tides will be higher and the low tides lower

than when the moon is in any other position relative to the

sun. These are called Spring Tides. At or about the half

moon, the high tide formed by the sun coincides with the
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low tide formed by the moon. They tend to neutralise

each other. The high tides will be lower and the low

tides higher than at other times. These are called Neap
Tides.

Thirdly, The effects of the luminaries depend on their

distance and vary inversely as the cubes of their distances.

Hence the respective tides of the sun or moon are greatest

when the luminary is in perigee and least when in apogee.

In winter the solar tides are therefore greater than in the

summer, and the lunar tides have like changes every fort

night.

Fourthly. The effects of the disturbing bodies depend on

their declinations. If the moon were at the pole, it would

attract the water without any daily remissions of its action.

The water would assume a position of equilibrium, and

there would then be no daily tides. Thus as the luminaries

decline from the equator, their effects become less and less.

Fifthly. The river tides are formed by the propagation
of the tidal disturbance from the seas where they were

formed. In these therefore the greatest tides occur later

than they should do according to the above statement.

Sixthly. The effects of the disturbing bodies depend on

the latitude of the place. Suppose the attraction of the

moon to raise a tide, one of whose highest points is in la

titude , therefore the other is in the other hemisphere at

the same latitude. This state of tide in one day will travel

round the earth, the vertices always remaining at the same

latitude a. Then it is clear that the altitude of the tide at

any place will depend on its distance from a vertex of

this heap of waters. That place will have the highest

tide over which the vertex passes, and the height at any
other place will be less and less the greater the angular
distance from the vertex ; that is, the greater the difference

of latitude between the place and one vertex. The tide

will therefore be least at the equator and poles, and
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greatest in latitude a ; thus the height of the tide varies

with the latitude.

Seventhly. But the difference between the latitude of the

place and one vertex is not the same as that between it

and the other vertex. Hence, though we have two tides

every day, these two tides will be of unequal magnitude.

The moon s orbit is inclined at but a small angle to the

ecliptic; hence, speaking generally, her orbit will have

nearly the same position relative to the equator that the

sun s orbit has. A line drawn through the centre of the

earth and moon is the axis of the tidal spheroid. The tides

which occur on the side next the sun, when the sun has

north declination, will be greater than the tide on the op

posite side of the earth. Therefore in summer the day tides

are greater than the night tides
; similarly in winter the

night tides are greater.
&quot; If the pole of the tidal flood

follow the moon, say at six hours, the pole will be north

from the time the moon is six hours west of the sun to the

time when she is six hours east, that is, from the time when

the high tide is at noon to the time when it is at mid

night.&quot;
In such a case therefore the afternoon tide is

greater than the morning tide in summer and less in

winter. Similar reasoning will apply when the &quot;

age of

the tide
&quot;

is twelve, thirty, &c. hours.

Eighthly. If the tide be brought to any place by two un

equal channels, the two tides following the two transits ofthe

luminary across the neighbouring oceans will meet one ano

ther at this place, and form a compound tide. Suppose one

tide to be delayed six hours, it will be in exact opposition to

the tide which arrives by the other path. If the two were

equal, the waters would stagnate, and there would be no

tide at this particular point. But if the luminary be not

in the equator, the two tides are unequal ; hence, compound

ing the two, there will be one tide every twenty-four hours.

Newton quotes from Halley, as an example of this, the
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port of Batsham, in Tunquin, lat 20 5(X N. The tide

arrives by two inlets, one from the seas of China, between

the continent and the island of Leuconia ; the other from

the Indian Sea, between the continent and the island of

Borneo. &quot; The tide begins every successive day later by
about three quarters of an hour ; so that in fifteen days

the time of high water advances from one o clock in the

afternoon, for instance, to twelve at night ; after which it

does not advance to one in the morning, but falls back

thirteen hours to twelve at noon, and so on perpetually.

In this way the high water is always in the afternoon

during the summer half year (March to October), and in

the forenoon during the remaining half. About the time

when the tide falls back thirteen hours, the tides are very

small and scarcely perceptible ; at the intermediate times

they are
greatest.&quot; (Phil Trans. 1833, page 224. Whewell.)

Let us now follow Newton in his attempt to calculate

numerically the forces of the sun and moon to raise the

tides. He first refers to his Lunar Theory for a calcula

tion of the force of the sun to draw the moon towards the

earth. When in quadratures this force is G38W .G g,

where g is the force of gravity at the surface of the earth.

When in syzygy the force is double this quantity. But

the disturbed bodies are here the particles of water at the

surface of the earth, which are nearer the earth than the

moon in the ratio of 60J to 1. These forces must, there

fore, be decreased in the same ratio. The force in quadra

tures is therefore ^wo g, and that in syzygy double

this quantity. The first depresses the water in quadra

ture, the second raises that in syzygy. Hence the two

produce the same effect, and the whole force to raise tne

sea will be the sum of the two, that is, tfrice the torce in

quadrature.
u 2
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The force of the sun, therefore, to raise the tide, will

be
128^200 9- But the centrifugal force has been shown

to be g- The latter raises the water to a height under

the equator exceeding that under the poles by 85,472 Paris

feet. Hence, the sun s force is -j^th part of the centri

fugal force, and will raise the water , or 1 Paris foot

and 11^ inches, about two English feet.

If the mass of the moon had been known in Newton s

time, he might have made a similar calculation to deter

mine its force to raise the tides. But he was obliged to

deduce this mass from the height of the tide itself.
&quot; Be

fore the mouth of the river Avon, three miles below Bris

tol, the height of the ascent of the water in the vernal and

autumnal syzygies of the luminaries (by the observations

of Sturmy), amounts to about 45 feet ; but in the quadra

tures to 25 only. The former of these forces arises from

the sum of the forces of the sun and moon, the latter from

their difference.&quot;

If, therefore, L and S are supposed to represent respec

tively the forces of the sun and moon while they are in

the equator as well as in their mean distances from the

earth, we shall have L + S to L S as 45 to 25, or

L to S as 7 to 2. Newton remarks that the observations

at Plymouth by Colepress gave a ratio 41 to 23, a propor

tion which agrees tolerably well with the former. He,

however, prefers the former result, because the observa

tions were made on larger tides. This reasoning proceeds

on the supposition that the earth is without rotation, and

in that case there would be high water immediately under

the luminary. But this is not the case ; it does not occur

until three hours after the transit of the luminary. Nei

ther does the highest tide occur at the syzygy, but about

three days after. Newton attributes this to the &quot; force of

reciprocation,&quot; which the water once moved retain a little
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while by their vis insita. The luminaries continue to act

with great power for a little while after the moment of

their greatest strength, and thus continue to raise the tides.

But Laplace remarks (Mec. Cel. xiii., chap. 1.) that &quot;vrai-

semblable
&quot;

as this is, it is nevertheless erroneous, for an

accurate investigation shows that, notwithstanding this

continued action of the luminaries, the greatest full tides

should occur exactly at the syzygies and the least exactly

at the quadratures, and that therefore the explanation of

the delay must be sought for in the accessory circumstances.

It is, in fact, due to friction.

Newton then proceeds to make several &quot;

corrections&quot; to

this result which he conceives to be necessary. He
observes that the luminaries are not in the positions of

greatest efficiency at the moments of the greatest high

tide at the place under consideration ; that therefore it

is not the whole force of these luminaries that is employed

to raise the tide, but this force multiplied by the cosines

of certain angles. He corrects, therefore, for the instan

taneous angular positions of the luminaries at the moment

of the greatest tide. He also remarks that changes in the

distance of the moon are produced by the inequality in

her motion called the &quot;

Variation,&quot; and he adds, therefore,

another correction for the distance of the luminary at the

moment of the greatest tide. But Laplace points out that

this correction also is wrong. In fact it contradicts the

previous reasoning, for if the tide be due to the accumu

lated action of the luminaries during a certain instant, we
must not consider it as proportional to the force at the end

of that interval. But when all corrections are applied,

he finds that the sun s force raises the tides by 1 foot II^
inches, and the moon s force will therefore raise the same

to the height 8 feet 7^ inches, and the joint action of

the two to the height 10J feet, and when the moon is

u 3
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in its perigee to the height of ] 2J feet, and more, especially

if the wind sets the same way as the tide.

Newton makes some remarks on the observed nature of

the tides in different parts of the world. His explanations

are not always perfectly correct. To have a full tide

raised, an extent of sea from east to west is required of

no less than 90 degrees. Hence, he infers, the tides

in the Pacific are greater than those in the Atlantic,

and those in the North Atlantic than those within the

tropics. In some ports, where the water must be forced

in and out through narrow channels, the flood and ebb

must be greater than ordinary, and this force of efflux,

being once given to the water, may, he argues, con

tinue until it raises the tide as much as fifty feet. But

on such shores as lie towards the sea with a steep ascent,

where the waters may freely rise and fall without that

precipitation of influx or efflux, the proportion of the

tides agrees with the forces of the sun and moon.

The force of the moon being
-
only ^^th part of

gravity at the surface of the earth, will not be sensible

in any statical or hydrostatical experiment, or even in

those of pendulums. It is in the tides only that this

force shows itself.

I have already mentioned that the mass of the moon was

unknown in Newton s time. He makes use of the obser

vations on the tides to determine her mass and density.

Her force is ^th part of the sun s force to raise the
4 4815 *

tides. And, by lunar theory, these forces vary as the

masses of the attracting bodies directly and the cubes of

their distances directly; that is, as their densities and

the cubes of their apparent diameters. These diameters

being 31 , 16J,&quot;
and 32 , 12&quot;, the ratio of the densities is

4 8 91 to 1. But the density of the sun was known to be

one-fourth that of the earth. Hence the moon is denser
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than the earth in the ratio of 11 to 9. The true diameter

of the moon is to the true diameter of the earth (according

to Newton) as 1 to 3-65. Hence the mass of the moon

is
gjj-L. (or nearly^th) that of the earth. It is now known

that the true mass is about ^th that of the earth.

If the moon s body were fluid like our sea, the force of

the earth would raise tides in it. The tide in the moon

caused by our earth is to the tide in our sea caused by the

earth as the mass of the earth to the mass of the moon.

This ratio Newton imagined to be 1 to 39-788. Hence

he concluded the lunar tide was 93 feet. Upon this ac

count the figure of the moon would be a spheroid whose

greatest diameter produced would pass through the centre

of the earth and exceed the diameters perpendicular by 186

feet. It might be supposed that the tides in the moon

must be overwhelming. But as the moon always turns the

same face to us, the tide is stationary, and would therefore

merely affect the permanent surface of the lunar ocean.

But no sea has ever been detected in the moon. If the

moon had been originally fluid, or had been created in a

form which would have no tendency to break up, her

longest diameter must point to the earth. Hence the same

face of the moon would always appear to us, and the body
could not rest in any other position, but would always re

turn by a slow vibratory motion.

[See Note IX.]

u 4
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CHAPTER IX.

THE CIRCULAR MOTION OF FLUIDS.

1. The hypothesis of the Cartesian theory.

2. Newton s hypothesis as to the law of internal friction in fluids, the

motion of a cylindrical vortex Bernoulli s objections to this re

sult. Prop. LI.

3. Some difficulties of the Cartesian theory which are considered by
Newton.

a. The Sun s rotation. LII. Cor. 4.

/3. The third law of Kepler. Scholium LIU.

7. The two first laws of Kepler. Scholium LIII.

5. The density of the planets, LIU.

e. The disturbance of the Sun s motion by the planetary vortices.

LII. Cor. 5, &c.

1. BEFORE the time of Newton the Cartesian theory was

believed in by almost every nation of Europe. It was

therefore necessary that some notice should be taken of

these opinions in a work in which a totally different system
was proposed for the first time. Accordingly Newton has

devoted a section to the consideration of this hypothesis.

The philosophy of Descartes was naturally a very popular

one. Its explanations of the general facts of astronomy
were so exceedingly simple that it required no previous

learning to enable any one to understand them. Men
were pleased to think that in a few minutes they could

learn the cause of the motion of the planets. The sun was

supposed to be the centre of a vast vortex or whirlpool, the

density and angular velocity of the various parts of which

were different. The planets being placed, each in that
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stratum whose density was equal to its own, were thus

dragged round the sun. Those planets which had satellites

were themselves the centres of smaller whirlpools in which

their secondaries revolved according to the same laws by
which they themselves were carried round the sun. The

ellipticity of the orbits were accounted for by supposing

the vortices themselves not circular. Such was the theory

as given by Descartes. It was open to so many ob

jections that it was greatly changed in character by his

successors. Newton proved that the original theory could

not be made to agree with Kepler s laws. Bernoulli*

imagined the vortices to be circular, and accounted for the

elliptic path of the planet by a combination of an os

cillatory movement with the circular motion of the whirl

pool. Bouguer then showed that the two portions of the

curve which the planet would describe in its oscillations

from aphelion to perihelion would not be equal or similar.

D Alembert showed that an elliptic vortex was, under the

circumstances of the case, impossible. The theory was

always unsatisfactory : all sorts of suppositions were made

in vain by Huygens, Perrault, Villemot, Mollieres, Ga-

maches, &c. They never could explain one phenomenon
without contradicting another.

Newton of course considers the Cartesian theory as it

was originally given by its author. We shall confine our

selves within the same limits. The theory has no longer

any adherent, and there can be no advantage in attacking

that which no one defends.

2. If the particles of a fluid did not exert any action on

each other, a vortex in which the velocity was any function

of the distance would be possible. For suppose the whole

fluid in any cylinder to be revolving round the axis ;

*
Montucla, ii. 327.
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describe two indefinitely near cylinders with this straight

line as their common axis. The fluid between these two

cylinders will evidently revolve unchanged whatever

be its velocity, and however different from that of the

neighbouring fluid, the normal pressure being sufficient

to counteract the centrifugal force. There is, however,

no perfect fluid in nature : if a stream of one fluid be made

to pass through another, it will carry the particles of the

second along with it. A true theory of vortices must

take account of this &quot; internal friction&quot; of the fluid.

Newton starts with the hypothesis that &quot; The resistance

arising from the want of lubricity in the parts of afluid is,

caeteris paribus, proportional to the velocity with which the

parts of thefluid are separatedfrom each other.&quot;

This hypothesis, as Newton himself remarks, is probably

not altogether correct, but, nevertheless, there can be no

doubt that it will give us a general idea of the motion.

The first problem to which we shall apply it will be

the following:

Two infinite cylinders &quot;having
a common axis revolve in

any uniform manner about that axis. Fluid is placed be

tween them, and soon acquires a rotatory motion; it is required

to determine what that motion will be after it has become

settled or steady.

Divide the whole fluid by concentric cylinders whose

radii continually differ by 8r. Then we may suppose the

fluid between any two of these to solidify, and the circum

stances of the case will not be in the least altered, provided

we at the same time make 8 r diminish without limit. Let

us then consider the friction between any two of these

solidified cylindrical elements. Let GO and ca + 8 w be the

angular velocities of two consecutive cylinders, and let the

radius of the surface of junction be r. It is manifest that

the relative velocity of the two cylinders is
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7
CL CO

and therefore the friction which is proportional both to the

velocity and the number of particles that rub against each

other will be proportional to

2^^ ar *
-r~ v T.
dr

In order that the motion of any cylindrical element may
not change, the friction on its two sides must be equal.

Hence the expression

r
*d^

must be the same for all values of r ; call this value a ;

hence, integrating, we have

*

. -^*A
; :

.i
:

-..,.

where a and /3 are constants depending on the angular

velocities of the inner and outer cylinders. Supposing

these to be co
l

o&amp;gt;

2 , respectively, and r
l
r
2
to be the radii, we

have the two equations

to find a and |3.

In order that this state of motion may be &quot;

stable,&quot; it

is necessary that the centrifugal force should increase

from the centre to the circumference, unless the fluid be

sufficiently tenacious to resist the change of motion that

might follow the inequality of pressure.
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If the fluid be homogeneous, this condition requires that

_ *2

r

should increase with r. Hence its differential coefficient

must be always positive ; that is,

on substituting for a and (B their values, this gives

&quot;

&amp;gt;

l
fl i- M

=; &quot;2 (
l

^rj
If there be added or taken away from the fluid and

cylinders any constant quantity of angular velocity, the

mutual attraction of the particles of fluid will not be

changed, and therefore the relative motion will remain

the same as before. If we impress on the whole system
such a velocity as to make /3

= 0, we get

a

**-/&amp;gt;

and this is the case considered by Newton. Unless the

fluid be heterogeneous, this state of motion is unstable.

Each particle of fluid has a greater tendency to fly from

the centre than those beyond it, and hence if any circum

stance occurs to alter the symmetry of the motion, the

particles of those strata which have too great a centrifugal
force will immediately fly from the centre, and the whole

motion will be changed. This state of motion is like the

case of a stratum of a heavy fluid resting on the surface of

a lighter one.
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Bernoulli, in his dissertation, entitled &quot; Nouvelles

Pensees sur le Systeine de Descartes avec la Maniere d en

deduire les Orbites et les Aphelies de Planetes,&quot; has made

two objections to these investigations. First, that

Newton in calculating the amount of the friction between

two layers of fluid has not considered the pressure between

those layers; and, secondly, that in calculating the effect o

the friction, he has not taken into account the arm of the

lever at which it acts. Bernoulli then attempted to show

that the density, being supposed to vary with the distance,

the motion in the vortex will agree with that given by

Kepler s third law.

But D Alembert* showed that this does not follow from

Bernoulli s own equations, for it appears that he has, in

integrating, omitted the lower limit ; thus he considered

771

m-\ j X
x a x = ,

o fn.

which is true only when m is positive, whereas he after

wards assumes w= J. The first of Bernoulli s objections

has been anticipated by Newton himself. In the scholium

to the fifty-second proposition, he says,
&quot; The matter by its

circular motion endeavours to recede from the axis of the

vortex, and therefore presses all the matter that lies be

yond. This pressure makes the attrition greater and the

separation of the parts more difficult, and by consequence
diminishes the fluidity of the matter.&quot; D Alembert re

marks that Mr. Musschenbroek in some very exact expe

riments, found that when the velocity is small, the friction

was proportional to the velocity, and not to the pressure.

That similar results have been obtained by later experi

mentalists is evident from what has been said in a pre

vious chapter.

* Traite des Fluides, p. 408.
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Bernoulli s second objection has more force, according

to our preceding investigation, the friction being

and the arm of the lever at which this acts being r, we

have

o dca .

,3__ 8r .

to be constant for all values of r, this gives

=
~^ + e-

If a sphere begin to rotate and communicate an angular

velocity to the surrounding fluid, the inner parts of the

vortex will move quicker than those without, and these

by friction will be continually communicating velocity to

those outer strata. The vortex created will, therefore,

always grow larger and larger, and the motion of the sphere

will be continuously transferred from the centre to the

circumference, until it is swallowed up and lost in the

boundless extent of space. Hence there must be some

active principle which may tend to communicate velocity

to the cylinder, otherwise it will move slower and slower

and finally lose all its motion. If any motion had been

communicated to the infinite fluid also, the friction of the

fluid and cylinder will never cease to retard or accelerate

that body until the whole fluid and cylinder revolve round

with the same angular velocity. This, therefore, ought to

be the state of the Cartesian vortex. But it is well known

that the planets do not describe their orbits in the same

time.

Newton next argues that even if we grant the existence

of an active principle that will keep up the angular velo-
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city of the Sun, yet still it is impossible to explain the

existing phenomena by a vortex. The third law of Kepler

declares that the squares of the periodic times of the

planets are as the cubes of their mean distances. But his

preceding propositions have shown that this is not the case

in a vortex. It is true that his reasoning is founded on

two hypotheses ; first, that the resistance arising from

friction varies as the velocity; and, secondly, that the

degree of fluidity is the same throughout the vortex. Let

us, however, suppose that the friction varies as the ?rcth

power of the velocity, and the frictional power of the

several strata as the ttth power of the distance. Then,

according to Newton, we have

r ) . r
n = constant

d rJ

r

Hence, that Kepler s law may be true, we must have

3
n + 2 = - m\

either, then, m is greater than unity, or n is negative. But

Newton considered that if the resistance did not vary as the

velocity, it would vary in a less ratio, that is, m less than

unity, and that if the parts of the fluid had various degrees

of fluidity, those parts that had least fluidity would be

heaviest, and would, therefore, be furthest from the centre,

that is, n positive ; hence he thinks that the theory of

vortices cannot be made to explain the third law of Kepler.

The motion of the vortex cannot be made to agree with

the two first laws of. Kepler. The planets move in ellipses

which are so placed that their major axes are not parallel.

To account for this Descartes supposed the vortices them-
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selves elliptical. The fluid between two elliptic curves of

motion must always keep between them, and therefore

the velocity must be greatest where the distance between

the paths is least. But by Kepler s law the velocity is

such that the areas described are proportional to the time.

These two conclusions can be shown not to agree. As an

example, let us take the three orbits of Venus, Earth,

and Mars. &quot; At the beginning of the sign of Virgo,

where the aphelion of Mars is at
present,&quot; says Newton,

&quot; the distance between the orbits of Mars and Venus is to

the distance between the same orbits at the beginning of

the sign of Pisces as 3 to 2. Therefore the matter of the

vortex between those orbits ought to be swifter at the be

ginning of Pisces than at the beginning of Virgo in the

ratio of 3 : 2. Therefore the velocity of the Earth at the

beginning of Pisces should be to its velocity in the begin

ning of Virgo in the same ratio. But judging from the

Sun s diurnal motion, we know that the Earth is swifter at

the beginning of Virgo than at the beginning of Pisces.

Hence the hypothesis of vortices is not reconcileable with

astronomical phenomena.&quot;

If a body be carried round a vortex, it must have the

same density as the fluid along its path. In that case it

may be regarded as a piece of solidified fluid, and its cen

trifugal force is just balanced by the pressures on its two

sides. But if the density be different, this balancing no

longer takes place. The centrifugal force will be greater

or less than the difference of pressures, according as the

density of the body is greater or less than that of the fluid.

Hence the body will recede from or approach to the centre

according as its density is greater or less than that of the

fluid. If the strata of fluid be not placed so that their

densities increased with the distance, not only would they

themselves be in an unstable state, but the globes also, if
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displaced, would not return to their former orbits. We
should, therefore, expect those planets which are furthest

from the sun to be the densest; but the contrary is the

case. Principia, prop, viii., book Hi., cor. 4.

The planets that have satellites were supposed by Des

cartes to be the centres of smaller vortices ; but it has been

already shown, that every vortex continually grows larger

and larger, and thus every part of the fluid will be agitated

with a motion resulting from the action of all the globes.

Therefore the vortices will not be confined to any certain

limits, but by degrees will run mutually into each other,

and by the mutual action of the vortices on each other the

globes will be perpetually moved from, their places. They
cannot possibly keep any certain positions among them

selves unless some force restrains them. Forces are ne~

cessary, therefore, not only to keep the globes turning, but

also to keep them in their places.
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CHAPTER X.

THEORY OP COMETS.

1. The Comets are planets moving in very eccentric conic sections.

2. To determine the particular orbit of a given comet.

(1.) THE visit of a comet presents to us a great mys

tery. It comes unexpectedly, remains but a short time,

often presenting a magnificent spectacle, and then dis

appears in a manner as wonderful as its appearance. It

is one of those great problems that God has set before

us. Many of the ancients regarded them *
as simple

meteors, sent from the Supreme Being as signs of his

anger or prognostics of future events. Others, as the

illustrious Seneca, had better views on the subject &quot;I

do not follow the opinion of our philosophers ; I do not

consider the comets to be passing fires, but as one of the

eternal works of nature.&quot;!

Newton set about the solution of this great problem
in his usual logical manner. The first point to be settled

was whether they were simple meteors of our atmosphere

or not. Their want of diurnal parallax is a convincing

proof that they are at least further off than the moon.

But how much further? We must have some idea of

their distance to determine to what class of forces their

*
Pingr, Comet ; Bossut, Hist, de Math.

f Seneca, Nat. Quaest. lib. vii.
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motions are subject. Comets are found to move more

than ordinarily slow or swift according to the position of

the earth. They have, in fact, an annual parallax. There

fore they belong to the region of the planets. This result

Newton confirms by some considerations on the brightness

of their heads. He proves that they shine by reflected

light, and then comparing their light with that of the

planets, he shows how much those persons are mistaken

who remove the comets almost as far as the fixed stars.

If the comets move in the region of the planets, they

must be subject to the attractions of the sun and the

other planets. Neglecting for a first approximation these

latter attractions compared with that of the sun, we know

that the comet, being attracted towards the sun by a force

which varies inversely as the square of the distance,

must move in a conic section with the sun in one focus,

and describe round it areas proportional to the times.

This conic section may be either an ellipse, hyperbola, or

parabola. In the former case the squares of their periodic

times are as the cubes of their mean distances. This will

furnish us with a complete test of the truth of our argu

ments. By observations made on the latitude and lon

gitude of a comet, we can calculate its orbit with an

accuracy depending on the degree of approximation to

which we have earned the solution. We can then deter

mine the distance and position of a comet at any moment.

If these results agree with observation, there can be no

doubt that our theory is correct. The difficulty of the

problem is unfortunately as great as its importance. The

comets move in such elongated ellipses, that, as a first

approximation at least, we may consider their orbits as

parabolas. But Newton speaks of the problem, even when

thus simplified, as &quot; Problema hocce longe difficillimum&quot;

(2.) Newton proposed two ways of determining the

x 2
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orbit of a comit. One of these may be found in his little

treatise De Systemate Mundi, and the other in the Third

Book of his Principia. The first is by far the simplest

of the two. The small part of the comet s path is con

sidered as a straight line, the two parts of which are

described by the comet with the velocity it had at the

beginning of those parts. These velocities are assumed

to be V times that in a circle at the same distance. Let

a first approximation to the distance of the comet from

the earth at the time of the middle observation be sup

posed known, and let us represent it by the letter x.

Newton then shows how to draw a straight line which

will be divided by the directions in which the comet is

seen at the times of the three observations in the ratio of

the intervals between those observations. If this straight

line, thus found, can be described in the given time with

the velocity given by our assumed value of V, the value

of x that corresponds to V has been found ;
if not, a se

cond value of x must be assumed ; and then by an applica

tion of the rule of false, a new value may be determined,

which is nearer the truth, and by repeating this process,

we can arrive at any degree of accuracy. The value of

V being therefore supposed known, the velocity, position,

and direction of motion of the comet are also known at a

given time. By the First Book we can describe the orbit

that a body projected in a given manner from a given

point will describe round a given centre of force. Begin,

then, with an approximate value of V, and construct the

orbit. Make a fourth observation on the comet when at

a great distance from its position at the three first obser

vations. The longitude thus found should agree with

that in the orbit just constructed. If not, a new value of

V must be found, and by the rule of false, the true value

may be continually approximated to.
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The other method begins by assuming the orbit to be

parabolic.

Three observations of a comet are supposed to be made

at given times; then the positions of the earth T, t, T, being

known, we can draw the directions of the straight lines

T A, tB, T C, joining the comet and the earth at those

times. Suppose now that by
some means a first approxima

tion to the distance of the

comet at the times of the second

observation has been dis

covered, then we can mark off

a distance t B, and B will be

one point in the comet s orbit.

Suppose also that from some

properties of the parabola we

can determine approximately,

First, the length of the sagitta

B E drawn from the point B
of a comet s path in a known

direction and cut off by the chord A Cjoining the positions

of the comet at the first and last observations ; Secondly,

the ratio in which the chord A C is divided in the point

E : Thirdly, the length of the chord A C. Then, by means

of the first two properties, we can construct the chord A C,

and if its length be the same as that given by the third

property, our assumption as to the value of t B was correct.

If not, by making several trials, and by applying the &quot; rule

of false,&quot; we can correct our assumed distance t B, and,

therefore, ultimately obtain three points A, B, C in the

orbit. By a simple construction given in the First Book, a

parabola can be described which passes through two points

and has its focus in the centre of the sun. This will be the

comet s orbit.

x 3
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Both these methods, it will be observed, require the dis

tance of the comet at the time of the observation to be

known at least approximately. The expedient* suggested

was to consider a small portion of each orbit as rectilinear

and described with uniform motion. Then four observa

tions being made at moderate intervals of time, four straight

lines are given, across which a straight line is to be arawn

so as to be cut in three parts in the same ratios of the

intervals of time. This geometrical problem had been al

ready solved by Wallis, Wren, and Newton, but its applica

tion to comets had never led to any satisfactory result. A
little consideration will enable us to understand why. If

the four straight lines pass through one point, the problem
admits of more than one solution. Geometers call this a

porismatic case. In fact, a whole family of straight lines

can be drawn cutting the four straight lines in the re

quired ratios. When the straight lines do not exactly

meet in a point, only one straight line can be drawn ;

but, as might be expected, the construction to draw this

line is such that any small error in the data will make a

very great change in the cutting line. This, Boscovich

remarks f, is exactly what occurs in the application to

comets ; the arcs of the two orbits, which are considered as

straight lines, are necessarily small, and in this case the

four straight lines can be shown to meet very nearly in

one point.

Newton was not a man to be content with merely a

general theory of comets ;
he at once reduced it to practice.

He proceeded to try his method on the comet of 1680.

By scale and compass, in a figure in which the radius of

the earth was 16^ inches, he determined the elements of

the orbit. Halley afterwards again calculated these with

* Edin. Trans., vol. iii.

f Phil. Keceiit. a Bcncdicto Stay cum adnot, Boscovich, lib. ii. p. 345.
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greater accuracy by means of an arithmetical calculus.

Moreover, observing that a remarkable comet had ap

peared four times at equal intervals of 575 years, he tried

to find an elliptic orbit whose greater axis should be

138-2957 times the radius of the earth s orbit, so that a

comet might revolve in it in 575 years. Taking this

ellipse as the orbit of the comet, the observations from the

beginning to the end were found to agree as perfectly

with the computed places of the comet as the motions of

the planets do with the theories from whence they are

calculated; and this agreement clearly shows that it was

one and the same comet that appeared all that time, and

also that the orbit of that comet has been rightly defined.

X 4
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NOTE I.

THE reasoning by which the law of density of a com

pressible fluid under the action of a central force was

found may be extended to the determination of the con

ditions of equilibrium of any fluid under the action of any

forces. This proposition is of course the foundation of the

modern science of Hydrostatics, and may be investigated

as follows

To determine the conditions of the equilibrium of any

fluids, acted on by any forces.

Choose any rectangular axes of reference, and take any

small element whose edges are parallel to the axes and

equal to dx, dy, dz respectively. Let xyz be the coordinates

of one corner. Let X Y Z be the resolved parts of the acce

lerating forces acting on the element parallel to the axes,

and let p be the density of the fluid. If p be the pressure

referred to a unit of area at the corner (xyz}, the pressure

on the side of the element parallel to the plane of y z

will.be

p dy d z,

which by Law I. acts perpendicular to the face. The pres

sure on the opposite face will be

dz;

and therefore the pressure tending to move the element

parallel to the axis of x is

dp , , /

$M**dy&amp;gt;f*.
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But the moving force

p X dx dy dz

tends to do the same, and since the element is in equili

brium, the sum of these two must be zero.

,.g = ,X - - -
(1).

By Law II. the pressure referred to a unit of area on all

the faces meeting at the corner (xyz) are equal, and as

similar reasoning applies to all the sides of the element, we

shall have

These three equations are necessary and sufficient for

equilibrium.

These equations may be put under a form which is very

useful, and may sometimes be used independently of any
axes of coordinates. For draw any curve in the fluid and

consider an element ds of its arc. Since no assumption

has been made as to the axis of #, take it as tangent to the

arc, and if S be the resolved part of the force along the

tangent, the equation (1) shows that

\ dp _
-= io.

p d s

Reverting to the old position of the axes, the resolved parts

of X Y Z along the tangent is

hence

dx
^r dy dz

Jv -, + JL
-
t + A -j ;as d s d s

1

dp = Jidx -f Ydy -f
rLdz

9
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an equation which we shall have frequent occasion to use

in illustrating Newton s propositions.

Let us now consider some of the consequences of this

proposition.

Consequence L In order that there may be equilibrium,

the forces and density of the fluid must be such that

p Xdx+pYdy+pZdz
is a perfect differential, that is, we must have

dpX. d pY dp^K. _ dpT* /Wftt
~d^~ ~J^&amp;gt; ~d7 dx

If we eliminate p from these equations, we get

X + Y tZ- = 0.
\dz dyJ \dx dx) \dy dx )

Hence unless this equation be satisfied there is no fluid

which will be in equilibrium under the action of the forces.

But if the equation be satisfied, the law of density must

still be such as to satisfy one of the equations (5) (6).

The only forces we meet with in nature are those which

tend to fixed centres, and vary as some function of the

distance from those centres. In all such cases the quantity

Xd*+ Ydy + Zdz
is a complete differential. For calling r the distance of

any point from one of the centres of force, and
&amp;lt;p(r)

one of

the laws of attraction, we have

where a is the abscissa of the centre of force, and similar

expressions hold for Y and Z. Hence
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since x
|

2
-\-y b 2 -fz c 2 =r2

, and hence the above

quantity is a perfect differential. The criterion is there

fore satisfied, and it is therefore always possible to find

a fluid that can be kept in equilibrium by the forces in

nature.

Consequence II. Def. A surface along which the pres

sure is the same is called a level surface. It is also some

times called a surface of equal pressure. A surface along
which the density is the same is called a surface of equal

density. Let us call the perfect differential

then we have

and this cannot exist, by a known theorem of the Dif

ferential Calculus, unless the three quantities p, p, P are

functions, each of each. Hence the density is always a

function of the pressure, and therefore

All level surfaces are also surfaces of equal density.

The differential equation to all level surfaces is

or, which is the same thing,

P= constant.

Def. The bounding surface of any liquid exposed to

any constant pressure, as for instance that exposed to the

atmosphere, is called a free surface. All free surfaces are

clearly level surfaces.

The resultant of the forces at any point is perpendicular
to the surface of the level surface passing through that

point.

Take the point as origin, and the tangent plane to the

surface as the plane of xy, so that dz= 0, and the axis of

z is normal. Along the surface we have
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or,

but dx and dy are quite independent and can have any
ratio

.-. X= 0, Y= 0,

that is, Z, the only force, acts along the normal.

Consequence III. If the fluid be elastic, Amontem has

shown, by experiment, that there must be the relation

between p, ^,
and the temperature, k, is a constant quan

tity depending on the nature of the gas, and a a numeri

cal quantity = ^y, nearly. Then we have

dp_
f

p
&quot;

k(l + *l)

hence, as before,/?, 9, P are functions each of each, so that

All level surfaces are surfaces of equal temperature.
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NOTE II.

THE law of density of the several strata of the air, deter

mined by Newton, is not, as we have seen, sufficiently

accurate to be of any practical utility.

Nevertheless the expressions for the density in times of

the height are not without their use. Thus they enable

us to determine the heights of mountains by barometric

observations. Let
/?, p,

r be the pressure, density, and tem

perature at an altitude z. Let a be the radius of the

earth, gQ
the force of gravity at the surface. Then the

force of gravity at an altitude z will be very nearly

where n is some constant. If the upper station be in the

air, the law of gravity shows us that

n = 2;

but if, as is usually the case, the upper station be on a

mountain, the attraction of the elevated ground must not

be neglected. In this case the value of n will depend on

the form of the mountain. It is found that

5
* =

4

is sufficiently accurate for our present purpose. Retaining

the general form of g, we have, as before, the two equa
tions



NEWTON S PRINCIPIA. 321

Hence, by eliminating p

-- _
.

p x (1 + a T)

Integrate this, on the supposition that r is constant,

-n sx (1 -f a T) V 2 a

Let h
Q, A! be the heights of the mercury in the barometer

at the lower and upper stations, and T
O , rp the temperatures

at those stations respectively. Therefore the above expres
sion gives

The value of r being constant is taken as the mean of the

two observed values T
O , T I( It is this fact that the decrease

of temperature is found by actual observation at every

application of the formula that renders the results so trust

worthy. If we neglect z2 the above leads to

in yards. The logarithms are in this formula the ordinary
tabular ones to base 10, and the temperatures are expressed
in degrees above 32 F.

If very great accuracy be required, a variety of small

corrections for x, a, gQ are necessary. The correction for

the variation of gravity with the height may be found by

substituting the value of z thus found in

and this is to be added to the former result.

(2.) There is another very interesting application of these

Y
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formulae which we find in the second volume of Laplace s

&quot;

Mecanique Celeste.&quot; We are enabled to determine in

some measure the form of the atmosphere of the heavenly

bodies. We have as yet neglected the effect of the centri

fugal force ; suppose the angular velocity to be co, the

co-latitude of the particle of atmosphere under considera

tion. Then including this force in our equation we have

dP^-ILdx + rfx sin. d (x sin. 0),

where the earth is considered to be a homogeneous sphere

whose particles attract according to the law of the inverse

square of the distance. Now along the free surface of

the atmosphere p is constant, and . . dp ; hence

- ^ dx + co
2 x sin. d (x sin. 0)

=

.-. const. = - + ~ . x2
sin.

2
0.

This therefore is the equation to the surface of the atmo

sphere. Let us compare the polar and equatorial diameters.

Call them 2 R and 2 R . When x = R we have 0, the

co-latitude, a right angle ; hence

+ \ co
2 R2 = const.

1-X &quot;2

when x = R , is nothing, hence

= const.

_ R -R _ ^_ R/ 3

Now at the equator the centrifugal force is less than

gravity, that is
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R -R
.

1

R :
2

Laplace deduces from this that the zodiacal light cannot

be part of the Sun s atmosphere, for it has the form of a

very flat lens, in which the polar diameter is far less than

two-thirds the equatorial. Another sufficient reason is,

that an atmosphere cannot extend beyond the orbit of a

planet which describes its revolution in a time equal to

the rotation of the Sun. Hence, as the Sun revolves in

twenty-five days and a half, its atmosphere cannot extend

so far as Mercury or Venus. We know that the zodiacal

light extends much further. It is therefore not part of

the Sun s atmosphere. The zodiacal light is a lenticularly

shaped envelope which revolves round the Sun. Her-

schel
( 897.) conjectures it to be no more than the denser

part of that medium which resists the motion of comets,

loaded perhaps with the actual materials of the tails of

millions of those bodies, of which they have been stripped
in their successive perihelion passages. It is an illuminated

shower or tornado of stones. According to Professor

Thomson, the inner parts of this tornado are always getting

caught by the resistance of the Sun s atmosphere, and

drawn to his mass by gravitation. They are always

approaching the Sun, but very gradually, and he asserts

that the mere fall of these aerolithes on the Sun is suffi

cient to account for the permanence of the Sun s heat.

T 2
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NOTE III.

THE whole calculation of Newton is founded on the

supposition that the earth is homogeneous. Taking this

for granted, it is possible to investigate without any long

analysis the form of the earth. We cannot easily prove that

the spheroid is the only form of equilibrium, but we shall

show that it is at least one of the forms of equilibrium.

That therefore if the earth had been originally fluid, it

might have assumed a spheroidal form
; or if not originally

fluid, yet if created in this form that its several parts

would have no tendency to break up.

A spheroidal mass of homogeneous fluid revolves round an

axis with a uniform velocity; to determine if the equi

librium of the fluid be possible, and if so what is the

ellipticity of the surface.

Let , b be the axes of the surface, e and e the eccen

tricity and ellipticity of the surface, then by definition

Let the axis of revolution (b) be taken as the axis of z
t and

let the centre be the origin. Let w be angular velocity,

p the density of the fluid. It is well known that the at

tractions of the spheroid on a particle whose co-ordinates

are xy z resolved parallel to those axes are respectively

i I vTT

ifr4 VT^
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f- 1

-j
e V I e

2
siri&quot;

1 e \
z.

e I J

For brevity s sake call the coefficients of or, y, z, A, A, B.

Then, according to the notation of last chapter, we have

X=-(A-co 2
):r

Y=-(A-^)y
Z = -Bz

The equation to the surface is

or (A w2
)2-^ + (A o?}ydy + Ezdz

integrating we have

A w 2

^ (x* -f y
2

) 4 z2 = constant,

the equation to a spheroid; hence the equilibrium is

possible. The eccentricity will be given by

A -co 2

or by substitution

,2

-f
TT p

3 co
2

The quantity 7
- is the same as

4 7T p

- a
_ centrifugal force at equator

4 equatorial gravity

and this we usually denote by the letter m. Hence the

equation to find e becomes
T 3
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** (3 -2e2)vr=~? .

We have already seen that m is nearly g--^, whence we find

1

&quot;232*

If a curve be constructed of which the abscissa is e and the

ordinate the left hand side of the above equation, it will

be found to resemble from e= to e=\ s the line OEBC
where O C= 1. Take OG= fro, and draw G E F parallel

to the axis of X, then we see

that the curve cuts this straight

line twice, and each of these
x
points corresponds to a value

of e that will satisfy the above equation. It would appear
that for the same value of co there are two values of e, GE
and GF, which are consistent with equilibrium. But it

does not follow that if a mass of fluid be set in motion

with an angular velocity on that it can take either of these

forms. There is another condition to be satisfied. There

is a certain principle in mechanics, called the conservation

of areas, which teaches us that &quot; if any number of bodies

revolve round a centre, and are acted on only by their mu
tual attraction and by forces directed to the centre, the sum
of the products of the mass of each by the projection on

a given plane of the area which it describes round that

centre bears a constant ratio to the time.&quot; Hence the fluid

must take up such a form that this ratio shall be the same

as that in the fluid as originally set in motion. It requires

but little consideration to perceive that for two forms so

different that one is nearly a sphere and the other ex

cessively elliptical, it is impossible that the same angular ve

locity could sweep out the same areas in the same time.

This form of equilibrium of the earth is stable, for if

the form were, by any chance, to become less spherical,

by the principle of the conservation of areas, the angular
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velocity would decrease, and therefore the earth would

return to its original form. So also, by similar reasoning?

the same would occur if the earth were to become less el

liptical.

If e be small, it is easy to see that the preceding equa
tion leads us to

since 2e2 =
e, when the powers of e higher than the second

are neglected.

Y 4
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KOTE IV.

5. THE problem to determine the ellipticity of a planet

considered as heterogeneous, is by no means an easy one. It

certainly was beyond the powers of an age when the laws

that govern the equilibrium of fluids were almost unknown.

Newton determines the form of equilibrium from the con

dition that the weights of all columns of fluid, from the

centre to the surface, must be equal. This, however, is

not sufficient for equilibrium. Huygens added afterwards

another condition, that the form of the surface must

always cut perpendicularly the direction of the resultant

force. But even these two conditions together are not

sufficient. Clairaut (Figure de la Terre, Chap. III.) gave
an instance in which, under a particular law of gravity,

the particles of fluid could be so arranged that both these

conditions were satisfied; yet he also showed that, so far

from the fluid being in equilibrium, it was actually impos
sible for any fluid to rest in equilibrium under the action

of these forces. It was Clairaut who first investigated

all the necessary conditions of equilibrium, and showed

that both the principles hitherto used were included in the

one he proposed. His famous work,
l( Theorie de la

Figure de la Terre&quot; was published in 1743, and in it he

applied his theory to determine the form of the earth

considered as heterogeneous. Very little has been effected

in this subject since his time. The form of the investi

gation has been changed, but all the results remain essen

tially the same. The form of the earth, whatever it may
be, must consist of &quot; level

&quot;

strata of equal density, of

which the surface is one. Clairaut assumes all these to be
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spheroids, having their minor axes in the same direction,

but not necessarily of the same ellipticity. He then shows

that when there is a certain relation between the density of

any stratum and its ellipticity the fluid will be in equili

brium. Assuming that the density increases with the depth,

it follows that the ellipticities must decrease from the surface

to the centre, so that the strata are more and more nearly

spherical the nearer they are to the centre of the earth.

Suppose the earth to consist of a spheroidal nucleus

formed of spheroidal strata of different densities, sur

rounded by a very thin layer of fluid (the sea), and sup

pose the laws of the density and the ellipticity of the

strata to be any whatever, except that the ellipticity of

the outermost stratum is the same as that of the thin

layer of fluid upon it, then if G be the equatorial gravity,

g the gravity at latitude A, s the ellipticity of the outer

most stratum, m the ratio of the centrifugal force at the

equator to the equatorial gravity,

g = G (1 + n sin.
2
A)

5
n =

2
m ~~ *

This is a very remarkable proposition : the law of gravity

along the surface of the earth is then quite independent
of the law of density in the interior. It also furnishes us

with a method of determining the ellipticity by observa

tions on the force of gravity in different parts of the earth.

It is usually called &quot; Clairaut s Theorem.&quot;

If the earth was not originally fluid the strata of equal

density may not have been spheroidal. But merely

assuming that they differ but little from spheres, and

that the surface is covered by a fluid in equilibrium,

Laplace has shown that the changes in the force of gravity

at the surface, and for all external points, is quite inde-
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pendent of the nature of the internal structure. There is

a certain general connection between the form of the

surface and the variation of gravity which he establishes

on the above suppositions. This general connection has

been lately demonstrated without making any hypothesis

respecting the distribution of matter in the interior of the

earth, but merely assuming the law of universal gravita
tion.

The investigations of Laplace lead to the same result

as those of Clairaut, but there is this difference between

their modes of reasoning. Clairaut assumes that the

forms of the strata are spheroidal, and then shows that

the whole will be in equilibrium. Laplace merely assumes

that they differ but slightly from spheres, and then de

duces from the condition of equilibrium that their forms

are spheroidal. The solution of the question would in

fact lead to a functional equation : we cannot write down
the condition of equilibrium without knowing the attrac

tion, and we cannot find the attraction without knowing
the form of equilibrium. The analysis by which Laplace
was enabled to prove the strata spheroidal is entirely his

own invention. Its power is very great, and in many
other investigations it has proved a useful engine of dis

covery.

6. We have seen that the earth cannot be homogeneous;
we have also learnt from the investigations of Clairaut

and Laplace that it consists of strata of different densities

increasing from the circumference to the centre : it becomes

an interesting question to determine this law of density.

Legendre was the first who ascertained what is very

probably the true law. But it is the more finished results

of Laplace that we shall now consider. They are entirely

built upon one assumption. We know that in gases and

fluids the ratio of the change of pressure to the change in

density is constant. But in solids and semi-fluid bodies

it is more natural to suppose that this ratio increases with
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the density. The most simple assumption is to suppose
that it varies as the density. Supposing this to be the

truth it is not difficult to investigate the density of the

strata. But it is an assumption, and must stand or fall

according as its results agree with, or differ from, those of

observation. Fortunately it enables us to integrate the

equation connecting the density and ellipticity of any

stratum, and thus the ellipticity of the external stratum

furnishes us with a test of the truth of the law.

Taking for granted the truth of the law, a very simple

calculation will give us the corresponding law of density.

Let us consider the earth as a perfect sphere, and let us

neglect the effect of the centrifugal force. The strata

of equal density will then all be spheres. Let p be the

density of that stratum whose radius is x. Let p be the

pressure at that stratum referred to a unit of area.

We have first to find the attraction on a particle situated

in the stratum whose radius is r. The attractions of all

the external strata is manifestly nothing. To find the

attractions of the internal ones, we have merely to suppose
them concentrated into their common centre and attracting

according to the usual law. This will manifestly give

where p is the force of attraction of a unit of mass at a

unit of distance. The law of fluid equilibrium will then

give

-(1.)

Also we have by our assumption

dp = xp.dp - - - -
(2.)

whence we get
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or, which is the same thing,

differentiating,

=0.

4 7T //

Put-- =
(f for the sake of brevity. We have now a

differential equation to find p r. The integral is well

known to be

p r = A sin (q r + B).

Now because the integral in equation (3.) has r = for its

lower limit, it will be found on substitution that this value

of p r will not satisfy it unless B = 0. Indeed, if B were

not zero, we would have the density infinite at the centre,

which is manifestly impossible ; for, no matter how great
the pressure may be, it must still be finite.

We have then

. sin q rL

This gives a density gradually decreasing from the centre,

and therefore not contrary to what is a priori probable in

the case of the earth.

The values of A and q have yet to be determined. But
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the experiments of Cavendish and Maskelyne have revealed

to us the mean density of the globe ; and, supposing the

density of the superficial stratum to be the same as that of

granite, we have two equations to determine A and q.

Working out these numerical calculations, we find that

sm

where D is the density of the superficial stratum.

There are two results which will serve to verify this

law.

1 . We know that there is a precession of the equinoxes,

because the resultants of the attractions of the sun and

moon do not pass through the centre of the earth. The

position of the lines of action of these resultants mani

festly depend on the law according to which the density of

the several strata varies. This calculation has been made,

and it is found that, taking the above law of density, the

precession should amount to 51&quot; -3566. The observed

precession is 50&quot; 1.

2. The ellipticity of the earth is caused by its rotation,

and depends also on the law of density of its strata. The

calculated result is s = The result of geodetic

measures s e =
It is upon the remarkable agreement of our supposition

with observation in these two cases that our belief in the

law is founded.

7. But though we have thus investigated the law of den

sity of the strata, it is not to be therefore concluded that

the earth is solid throughout ; on the contrary, the rate at

which the temperature increases with the depth is such

that if continued for 25 miles, the heat would be sufficient,

under a pressure of one atmosphere, to melt a stratum of

granite. Is, then, the interior of the earth a vast mass of

molten strata whose densities obey the law already inves

tigated ? and if so, what is the thickness of the crust ?
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Mr. Hopkins has performed some very laborious calcula

tions with a view of determining this question. He

begins with some general remarks. There are two ways
in which a body may cool, by conduction or convection.

The earth being at first fluid, would begin to cool by
convection. Now the temperature and pressure will both

be greater at the centre than near the circumference.

Because the temperature is greater at the centre, the body
will solidify first at the outer parts, and the earth would

become a crust containing a heterogeneous fluid. But

because the pressure is greatest at the centre, the body
will tend to solidify first at the centre, and thus on cooling

it would become solid throughout. We cannot tell which

is the predominating cause, and the investigation of the

earth s refrigeration leaves the point uncertain. But

there may be other tests whereby we can determine this

question.

The precession of the equinoxes is caused by the attrac

tion of the heavenly bodies on the ring ofmatter surrounding
the earth s equator. One consequence of this attraction

we have already seen to be the recession of the nodes in

which it cuts the ecliptic. But this ring is fastened to the

earth : its nodes cannot, therefore, recede as fast as they

would do if the ring were left to itself. The earth is a

heavy load which it has to pull round with it. The less

this load the greater would be the precession. If the

interior surface of the solid crust be spherical, then neg

lecting the friction between it and the interior fluid, the

ring of matter surrounding the equator will only have to

pull round with it the solid crust ; the fluid will not turn

with it. Hence the precession will be greater than if the

earth were solid throughout.
But the interior surface of the crust cannot be supposed

spherical ; it is most probably spheroidal. Supposing it

so, there will be pressures between its interior surface and

the contained fluid, caused partly by the motion of the

spheroid and partly by the tidal actions in the fluid caused
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by the attractions of the Moon and Sun and by the centri

fugal force. These pressures must of course be taken into

account.

It would be uninteresting to follow step by step the

process of the investigation : they are very long, and I shall

therefore confine myself to stating the results. Mr-

Hopkins
*

first considers the earth as a homogeneous

spheroidal shell filled with a homogeneous fluid of equal

density. The two surfaces of the shell are supposed to

have equal ellipticities. On these suppositions he cal

culates the disturbing forces, forms the differential equa
tions for the motion of the pole, integrates them, and by

interpretation arrives at the following results.

&quot;

1. The precession will be the same, whatever be the

thickness of the shell as if the whole earth were homoge
neous and solid.

&quot; 2. The lunar nutation will be the same as for the

homogeneous spheroid to such a degree of approximation
that the difference is inappreciable to observation.

&quot; 3. The solar nutation will be sensibly the same as for

the homogeneous spheroid, unless the thickness of the

shell be very nearly of a certain value, something less

than one-fourth of the earth s radius, in which case the nu

tation might become much greater than for the solid sphe

roid.

&quot; 4. In addition to the above motions of precession and

nutation, the pole of the earth would have a small circular

motion, depending entirely on the internal fluidity. The

radius of the circle thus described would be greatest when

the thickness of the shell would be least, but the inequality

thus produced would not for the smallest thickness of the

shell exceed a quantity of the same order as the solar

nutation, and for any but the most inconsiderable thick

ness of the shell be entirely inappreciable to observation.&quot;

Thus it appears that the effect of these pressures between

* Phil. Trans. 1839, 1840, 1842,
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the shell and the contained fluid is that the general effect is

the same as if the whole were solid. This method there

fore fails to tell us anything of the thickness of the crust.

But when we proceed to consider the case in which both

the solid shell and the inclosed fluid are of variable density,

we arrive at a different result. The disturbing forces will

of course depend on the law of density : taking the law

which we have already investigated, we can calculate these

forces and compare them with those obtained in the case

of a homogeneous shell. The required alterations can then

be made in differential equations of the motion of the pole.

We can thus find the precession. In order that the result

thus found may agree with that found by observation, there

must be a certain relation between the ellipticity of the

internal surface of the solid part and the mean thickness of

the crust. This internal surface is a surface of equal soli

dity. If we knew, then, what function the solidity of a

body is of the temperature and pressure, we should be able

to express the ellipticity of a surface of equal solidity as

a function of the depth. By equating the two values thus

found, we should have an equation to determine the thick

ness of the crust. But we do not know the law of the

ellipticities
of the surfaces of equal solidity. If heat did

not affect solidification, they would be the same as

the surfaces of equal density. If density did not affect

solidification, they would be the same as the surfaces

of equal temperature. But both are acting causes.

Hence the ellipticity of a surface of equal solidity passing

through any point must lie between those of the surfaces

of equal density and equal temperature passing through the

same point. The ellipticity of the former decrease, those

of the latter increase, from the surface to the centre.

Hence, in order that the numerical value of precession may
be accounted for, it is sufficient that the thickness of the

crust shall not be less than a certain value, found to be

about one-fourth to one-fifth the radius.

This reasoning fails therefore to give more than an
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inferior limit to the thickness of the crust. We learn

that it must exceed 1000 miles. Mr. Hopkins has lately

undertaken a series of experiments with a view to ascer

taining the temperature at which bodies liquefy under

great pressures. An account of these was given at the

meeting of the British Association. When finally com

pleted they will throw great light on the thickness of the

earth s crust.

8. It is not to be supposed that no measures were under

taken to discover by actual observation the ellipticity of

the globe : such measures would be an excellent test of the

truth of the theory. There are three methods by which

this may be effected. The earliest of these is by measure

ment of the length of a degree in different latitudes. ^The

length of a degree varies as the radius of curvature of the

elliptic meridian, and therefore increases from the equator
to the poles. Now when the ellipticity is given, we can

express in terms of it the latitude and equatorial radius,

the length of a degree at that place. By two measure

ments of degrees we get two equations, and therefore can

eliminate the equatorial radius and find the ellipticity.

Some of these measures were effected before Newton s

time, and their results, as we have seen, were used by him

in determining the ellipticity. In 1684 Cassini measured

an arc of eight degrees,* and found, to the astonishment of

every one, that the length of the degree shortened as he

approached the poles. This was in direct opposition to

Newton s theory. It was objected that the difference be

tween the measures of two consecutive degrees was so

small, that it was possible that the errors of observation

might make that which was really the lesser appear to be

the greater. To settle this doubt it was determined that

three arcs should be measured. Godin, Bouguer and

La Condamine were sent to Peru in 1735 to measure an

*
Encyc. Met., &quot;Figure of the Earth.&quot;

Z
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arc near the equator, and in the succeeding year Mauper-
tuis, Clairaut, Camus and Le Mounier went to the Gulf

of Bothnia, while the French arc was measured by the

Cassinis and Lacaille.

The result was decisive, that the degrees shortened from

the poles to the equator. But the three values of the

ellipticity thus determined were very different. The

observations of Peru and France gave ^3-, those of Peru

and Sweden ^-L-, those of France and Sweden T|T , but on

making some necessary corrections they gave T^. So

great differences would seem to imply that the earth

differed considerably from a spheroidal form. This, how

ever, may be partly accounted for, because two of the

measures were in very mountainous countries. A great

many measures of degrees, both along arcs of the meri

dian of a parallel of latitude, have been since undertaken.

It would detain us too long to consider them individually.

The most probable value of the ellipticity as deduced from

them is e= -003352.

The second method has already been alluded to. By
Clairaut s theorem we can determine the force of gravity

at any place in terms of the latitude, the eccentricity and

the force of gravity at the equator. Two observations of

the force of gravity will therefore enable us to determine

the ellipticity. The force of gravity, as we shall show

when we come to speak of the pendulum, may be de

termined by the use of that instrument. It may also be

found by comparing the weight of a body with the strength

of a spring, or indeed any force that does not vary with

gravity. The former is the most accurate.

By a comparison of a great number of pendulum ob

servations Airy has deduced e = -003535. In the article,

&quot;

Figure of the Earth,&quot; in the &quot;

Encyclopaedia Metropoli-

tana,&quot; the Astronomer Royal has formed a table of seventy-

nine pendulum observations. Thirty of these he has set

apart as being
&amp;lt;f useless for the investigation of the earth s
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form.&quot; If g be the force of gravity in latitude A, then by
Clairaut s theorem

g= G{l+n sin2 *}.

The values of n and Gr that are found to suit best with the

forty-nine
&amp;lt;f

first-rate observations
&quot;

are

n= 005133

G= 7r
2 x 39-01677

Now if m be the ratio of the centrifugal force at the

equator to equatorial gravity,

5
n = - m e,

whence since m 0034672, the ellipticity is easily seen to

bee= -003535.

The above expression for g enables us to find the force

of gravity in any latitude. From a comparison of the

results of the forty-nine observations with those given by
this formula Airy has deduced.

1. That, cceteris paribus, gravity is greater on islands

than continents.

2. That in high north latitudes the formula gives too

small, and about latitude 45 too large a value of g ; near

the equator the errors are about equally balanced.

3. There is no reason to think gravity to be different

in different longitudes, as the irregularities on different

meridians do not appear greater than those at places near

one another. Nor does it appear that there is any differ

ence between the northern and southern hemispheres.
The observations were all reduced to the level of the

sea by Dr. Young s rule, which makes an allowance for

the attraction of the earth above the level of the sea.

But it has been pointed out by Professor Stokes, in the
&quot; Transactions ofthe Cambridge Society&quot;

for 1849, that this

rule does not take into account all the effects of the irre

gular distribution of land and sea.
&quot; Besides the attrac

tion of the land lying immediately under a continental

z 2
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station, between it and the level of the sea, the more dis

tant parts cause an increase in gravity, since the attraction

they exert is not wholly horizontal, on account of the

curvature of the earth. Again the horizontal attractions

due to the neighbourhood of a continent would cause a

plumb line to point slightly towards it, and since a level

surface is everywhere perpendicular to the vertical, the

level of the sea must be higher than it would be if the

continent did not exist. The correction therefore reduces

the observation to a point more distant from the centre of

the earth than if the continent were away ; and therefore

on this account gravity is less on a continent than on an

island. The investigation shows this latter effect more

than counterbalances the former ; so that, on the whole,

gravity is greater on an island than on a continent.&quot;

It is also probable that the ellipticity deduced by Airy
is a little too great, owing to the decided preponderance
of oceanic stations in low latitudes among the group
where the observations were taken. On looking at the

expression for g, we see that, in consequence, the calcu

lated values of gravity would be a little too small, par

ticularly for places near the pole. This will enable us to

show that Airy s second conclusion is a mere repetition

of the first ;
for that in high north latitudes, the formula

should give too small a result is no more than what we

should expect ; while about 45, the places of observation

being all continental, the formula naturally gives too large

a result. Thus we are now enabled to account, at least

in great measure, for the anomalies that Airy has noticed.

In considering the earth as an irregular figure, we must

define what we mean by the ellipticity. Let a be the

mean radius of the earth, r the radius of any point whose

colatitude is 0. Then since the earth is nearly a spheroid,

r a

\
- cos.

2

is very nearly constant. Its variations, as we go from
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place to place, are irregular, and always very small. The

mean of all the values of the above fraction may be de

fined to be the ellipticity. We cannot observe directly

the value of r. In practice, therefore, we replace this

fraction by another which contains g instead of r. If we
could make a vast number of observations in all parts of

the world, no further correction would be necessary than

merely taking the mean of all the observed values of s.

But as all our observations are made on land, and are few

in number, our errors may all tend in one direction : it is

therefore necessary to reduce our results to the surface of

the spheroid.

The third method of determining the ellipticity is

founded upon astronomical observations. If the earth

were a perfect sphere and homogeneous, the elliptic orbit

of the moon would only be affected by the known disturb

ances of the other heavenly bodies. But the earth is neither

spherical nor homogeneous. Hence arise other inequa

lities in the moon s motion, and conversely, when these are

observed, they will enable us to discover the ellipticity of

the earth. Without making any assumption as to the law

of density, the theory of the &quot;

Figure of the Earth &quot;

en

ables us to find its attraction on the moon : substituting

these in the equations of the moon s motion, we can deduce

two inequalities. The chief of these is the inequality in

latitude, and is about S&quot;, hence we get e = -003370.

The other is the inequality in longitude, and lies between

6&quot;-8 and 7&quot;,
the former gives e = -003360, the latter

e = -003407.

It is not difficult to see what will be the general nature

of the more important inequality. The consequence of

the attraction of the ring of matter surrounding the earth

at the equator, will manifestly be to pull the moon nearer

the equator. The chief disturbance will therefore be that

produced by a small force acting on the moon perpen
dicular to the plane of her orbit, and tending towards the

earth s equator. The effect of such a force is easily seen.

z s
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Let H M be plane of the

lunar orbit when the moon is

at M. And suppose that in

the small time r the moon, if

undisturbed, would describe

the arc M M . But if the moon were at rest at M, suppose
that the disturbing force would pull it through half M in

towards the plane of the equator 12 E. Then, by the

second law of motion, if we complete the parallelogram
M N, the true direction of the moon s motion at the end

of the very small time T will be M N. That is, the orbit

has been changed from 12, M M to 12 M N ; the node 12

has receded, and the inclination of the orbit has been

decreased. By similar reasoning it may be shown that if

the moon had been approaching the equator in the direc

tion M 12 the node would have advanced, and the inclina

tion would have increased.

During a quarter of a month the moon approaches the

equator ; during another quarter it recedes ; and the forces

being similar in each movement, the whole effect at the

end of a month would be zero. But, owing to other

disturbances, the node of the moon s orbit recedes nearly

at a uniform rate along the ecliptic, while the inclination

to the ecliptic remains nearly the same. Hence the incli

nation of the lunar orbit to the equator has changed in

that half month ; the disturbing forces in the two quarter-

months, though they still tend to counteract each other,

will not be quite equal in magnitude, hence a small resi

dual effect will be left which soon mounts up till it becomes

apparent.

By a little consideration of the preceding figure it will

become apparent that the greater the angle of inclination

at 12 the less will be the difference between the consecutive

positions 12 M, 12 M of the lunar orbit, i, e. the less the

inclination (z) to the equator will be changed. So that

when by the motion of the nodes along the ecliptic i is

decreasing, the effect of the disturbing force will be greater
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in the second quarter-month than the first ; that is, the

effect will be greater while the moon is approaching the

equator, than while it is receding from it, that is, by what

precedes, the whole effect of the disturbing force is to lessen

the diminution of i. Similarly, when i is increasing, this

increase is lessened by the action of the disturbing force.

This is exactly what would take place if we neglected this

disturbing cause and supposed the obliquity of the ecliptic

to be less than it really was. Hence we arrive at this

conclusion, which we shall state in the words of Laplace :

&quot; The non-sphericity of the earth produces in the lati

tude of the moon but one sensible inequality. We can

represent its effect by supposing the orbit of the moon
instead of moving in the plane of the ecliptic with a con

stant inclination, to move with the same condition on a

plane passing through the equinoxes between the ecliptic

and equator. This inequality is well adapted for deter

mining the ellipticity of the earth.&quot;

Y. 4
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NOTE V.

THE RESISTANCE MADE TO BODIES MOVING IN FLUIDS DE

DUCED FROM THE GENERAL PRINCIPLES OF DYNAMICS.

1. The Equation of motion.

a. The ordinary hydrodynamics.
& How changed when &quot; internal friction

&quot;

is taken into account.

2. The ordinary law of resistance.

a. How deduced from the equations of motion.

#. The general results of experiments made since Newton s time

compared with the law.

7. The resistance should be deduced from a rigorous solution of the

equations of motion adapted to the case under consideration,

case of the pendulum.
3. The resistance to a Pendulum.

. Bessel s mode of expressing the resistance.

$. The careful experiments of Sabine, Baily, Coulomb, &c.

7. Poisson deduces the nature of the motion and the resistance from

the ordinary Hydrodynamic equations.

5. On comparing the theory with experiment they are found not to

agree.

e. Professor Stokes takes into account the effects of internal friction.

The results agree with experiment,

4. The resistance to Moating Bodies,

a. The phenomenon of emersion.

& Waves are excited in the Fluid.

7. Strange variations of the resistance as the velocity changes.

(1.) AFTER Newton the chief writers on Hydrodynamics
were the Bernoullis, Maclaurin, and D Alembert. The

equations which the latter obtained are the foundation of

modern Hydrodynamics. He had previously discovered

a general principle whereby every question concerning the

motion of bodies may be reduced to another corresponding
one concerning their equilibrium. Thus then the science

of Hydrodynamics may be reduced to that of Hydrostatics.

The simplest case to which we can apply this principle is
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that in which the body is a single particle. It then leads

us to the three laws of motion. When Newton said that

a particle acted on by no external force will remain at

rest or move in a straight line with a uniform velocity, he

implied that there was no internal tendency in the particle

to affect its state of rest or motion. D Alembert ex

tended this to any system of particles, and his principle
asserts that the internal forces of a dynamical system are

in equilibrium among themselves during the whole mo
tion. It follows from this that the effective moving
forces upon the molecules of a dynamical system, if their

directions be reversed, will balance the external impressed
forces. Let us apply this to the state of any fluid.

Let a small element be taken in any fluid in motion

whose coordinates are x, y, z. Let p be the density at this

point and p the pressure referred to a unit of area. And
let X, Y, Z be the external impressed forces on the element.

The effective accelerating forces will be

d2 x d2
?/

d2 z

Hence the forces

d2 x dz d* z

acting on the element dxdydz, will, when all the elements

are considered, balance each other. Hence from the equa
tions of fluid equilibrium, we have

X
d x

= &quot;

d t*

=
pdy dt1
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IfLe -7 - d.LL
pdz

~

dt*

These three equations are not, however,, sufficient to

determine the motion. For we have four quantities x,y&amp;gt;z&amp;gt;p

to determine in terms of t. A fourth equation is necessary.
This D Alembert supplied from the condition that any

portion of the fluid, in passing from one place to another,

preserves the same volume if incompressed, or dilates, ac

cording to a given law, if the fluid be elastic, in such a

manner that the mass is unchanged. It is usual at present
to derive this equation from a principle that in reality is

only the above in another form. If u, v, w be the velocities

of the fluid at the point xyz in the directions of the axes ;

then the result arrived at is

dp u dp v d pw dp _---
(-
_--

1

---
1

\j,

ax ay a z at

It will be observed that these equations do not make any

assumption as to the molecular constitution of the fluid.

All that is required is that the pressure, no matter how

transmitted, shall be equal in all directions.

These equations are so complicated that hardly anything
can be done with them. But there is one general case in

which the equations are greatly simplified. This is when

X, Y, Z, u9 v, w, are such that

dy + Zdz - -
(A)

udx -f vdy + wdz - --^ -
(B)

are perfect differentials, upon the supposition that the time

is constant and the density either also constant or a func

tion of the pressure.
&quot; It becomes then of the utmost

consequence to inquire in what cases this supposition may
be made. Now Lagrange enunciated two theorems by
virtue of which, supposing them true, the supposition may
be made in a great number of important cases ;

in fact, in
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nearly all those cases which it is most interesting to in

vestigate. These are :

&quot;

1. That (B) is approximately an exact differential when

the motion is so small that squares and products of u,v,w,

and their differential coefficients may be neglected.
&quot; 2. That (B) is accurately an exact differential at all

times when it is so at one instant, and in particular when

the motion begins from rest.

&quot; It has been pointed out by Poisson that the first of

these theorems is not true. In fact, the initial motion

being arbitrary need not be such as to render (B) an exact

differential.

&quot;

Lagrange s proof of the second theorem lies open to

some
objections.&quot;

But it has received two perfectly satis

factory demonstrations.*

Supposing the motion to be such that we may put

u dx -f v dy + w dz d $

then it easily follows that

d &amp;lt; d &amp;lt; d d ~

&amp;gt;

represent the velocity parallel to axes and along the arc

&c. of the curve that the particle in question is describing.

At the time I draw curves such that all the particles in

them are at that moment moving along tangents to their

respective curves. Let s be the arc of any one of these

curves. The effective accelerating force will be -
2 ,

and

the impressed force

d* dy z
dz

d s d s d s

*
Report to the British Association, 1846, on the progress of Hydrody

namics bv Professor Stokes.
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Hence, by D Alembert s principle, and the formula for hy
drostatical equilibrium,

Let V be the velocity of the fluid, then since

dt

h
d t*

&quot;

ds dt

= y^4 JlLT | I 7 ,

d s d s d t

Hence, substituting and integrating,

an equation that will be necessary to us further on.

This integral is obtained by summing all the elements

along any one curve, and C is therefore constant only

along one curve, and may vary from curve to curve. To
determine its variations we must have data given whereby
we can know its value for all points along some surface

cutting all the curves. Further it is manifest that these

curves may change with the time ; C is then a function of t,

The motion is said to be steady when the motion is al

ways the same at the same point. Hence in this case

neither
&amp;lt;p

nor C are functions of t. And the equation be

comes

The equation of continuity may also be greatly mo
dified by the introduction of

&amp;lt;p.

If the fluid be incompres
sible, we have
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~

These equations are entirely founded on the principle

that in fluids the pressure on an indefinitely small plane at

any point is the same whatever be the position of the plane.

This principle does not hold in viscous fluids. In Hy
drostatics

*
if time be allowed to elapse, the substance

changes until the pressure becomes equal in all directions.

But in Hydrodynamics the motion of the fluid will have

changed the relations of its particles before this time will

have elapsed. If therefore we wish our equations to re

present accurately the motions of ordinary fluids some

account must be taken of these differences of pressure in

different directions.

There are a variety of questions to whose solution the

ordinary equations manifestly furnish no aid whatever.

It will be sufficient to mention the motion of rivers in

their beds, and the supply of water by a given pipe.

There are few results that will not in some degree be

affected by the viscosity of the fluid.

There have been many writers on this part of Hydro
dynamics. Navierf, PoissonJ, Barre de Saint Yenant,
and Stokes

||
have investigated the equations of motion,

but all on totally different principles. Two of these re

quire us to consider the fluid as made up of ultimate par
ticles ; the others need no such supposition. But if the

principles of their investigations are different, their results

agree very well with each other. The equations arrived

at are in the cases of a homogeneous incompressible fluid,

and of an elastic fluid in which the change of density is

small, those which would be derived from the common

* Mem. de PInstitut, vol. viii. p. 363.

f Memoires de 1 Academic des Sciences, vol. vi. p. 389.
* Journal de 1 Ecole Polytechnique, xiii. cah. 20. p. 139.

Comptes Rendus, vol. xvii. p. 1240.

|| Cambridge Philosophical Society, vol. viii. p. 287. ; Report to British

Association, 1846.
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equations by replacing -=+-, the first byd x

^P - A (
d&amp;lt;1 u ^ u

-
2 u

}
Tx~ (d^ + 5V +

dz*)

-B

Jd y

d fd u d vfd u d v dw\
\d~^

+ T* d*J

and making similar changes in the second and third. The

investigation of Professor Stokes makes A= 3 B, and he

has shown that this relation must exist even on Poisson s

own principles. The coefficient B is some constant depend

ing on the &quot; internal friction
&quot;

of the fluid.

Such are the equations giving the motion in the interior

of any mass of fluid. But we have still to consider the

equation expressing the effect of boundaries to the fluid.

In the case of ordinary hydrodynamics the condition is

manifestly that along &free surface p is constant, whereas

along a surface bounding the fluid, the normal motion of

the fluid must be the same as that of the surface. But

when we consider the fluid as possessing internal friction,

the last condition must be changed. The motion of the

fluid in contact with the surface will clearly be in every

way the same as that of the surface.

(2.) The whole theory of the resistance of bodies is in

cluded in the equations of fluid motion as enunciated above.

It is therefore both interesting and important to deduce

from them the law of resistance.

It is manifestly the same thing whether we conceive the

body to be at rest, and the fluid to impinge on it, or the

body to move with the same velocity through the fluid.

Conceive then the fluid to be moving in a horizontal

direction parallel to the axis of x, and let z be the altitude

of the surface of the water above the axis. Let a small

plane be fixed in the axis of x, and perpendicular to it.

Following the usual notation, the equation of motion

will be
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This gives the variations of/? along any line of motion,

and C may vary from one such line to another. By con

ceiving all these lines of motion cut by a plane perpen
dicular to the axis at a very great distance from the small

plane, it will be seen that C is the same for all these lines

of motion.

The theory supposes that the particles of the fluid as

they approach the small plane move slower and slower, so

that at last their velocity, when in contact with the plane,

is so small, that it may be disregarded. The pressure in

front is a statical pressure. On the other hand the par
ticles in contact with the posterior part of the plane are

supposed to move with the general velocity of the fluid in

order to fill up the void that would be left by the retreating

fluid. The pressure behind is a dynamical pressure. The

difference between these two will be the resistance.

Hence the pressure in front is given by the formula

that behind by the formula

/+, rf-i

The whole resistance will then be

for every unit of area in the plane.

It is manifest that this contains a great deal of assump
tion in regard to the motion of the fluid. We have been

trying to solve a question in Hydrodynamics without

making use of all the equations, and each omitted equation

has been replaced by an assumption. We should have

taken the equation of continuity, and having solved it,

we must adapt the solution to the conditions of the

question, viz. that the velocity resolved parallel to the

axis of x is r, and that perpendicular is nothing at an
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infinite distance from the small plane, and that the normal

velocity of the fluid over the surface of the plane is zero.

Having thus found the motion, we can then substitute

for v in the equation above, and find the difference

of pressures on the two parts of the plane. It is mani

fest that the solution in this case must contain discon

tinuous functions.

If the front of the plane be inclined to the direction of

the motion of the fluid, one of the two suppositions on

which the theory is built fails. We can no longer regard
the velocity in front of the plane as zero. It is necessary
to substitute another assumption. The theory supposes
that the velocity in front of the plane will be equal to the

general velocity of the fluid resolved in the direction of the

plane. Let
&amp;lt;p

be the angle a normal to the plane makes

with the general direction of motion. Then the velocity

of the particles of the fluid in contact with the front will

be v sin
&amp;lt;p,

and the normal pressure will be given by

Let us regard this plane as the oblique front of a cylin

der moving in the direction of its axis. Let B be the area

of a perpendicular section, then the area A of the front

T)

will be- , and the normal pressure will therefore be
cos

&amp;lt;p

-
; resolving this along the axis, the pressure will be

come, B being supposed very small,

pE = (C + gpz-^pv* sin2
&amp;lt;p)B.

Let be the angle a normal to the oblique posterior

plane of the cylinder makes with the general direction of

the motion. Then, retaining the former supposition in
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regard to the motion of the fluid behind the plane, we
shall have the normal pressure given as before by

//= C + g f&amp;gt;z Jpu
2

;

by reasoning as above, the resolved part of the pressure

along the axis will be

The difference of these two pressures will be

v2 cos3 p A ;

thus the resistance to a cylinder moving in the direction

of the axis is independent of the inclination of the posterior

end, and varies as the cube of the cosine of the inclination

of the anterior end to the perpendicular section of the

cylinder.

In determining the pressure on a curved surface, it is

usual to consider each element of the front as the oblique
end of a cylinder whose axis is parallel to the direction of

motion; the corresponding element of the back of the

body being the other oblique end of the cylinder. By
integration, therefore, the whole pressure may be found.

It also appears that the resistance depends only on the

form of the front, and not at all on that of the back of

the body. The suppositions on which this result is

founded, are

1. That the velocity of the particles behind the body is

the same as that of the general velocity of the fluid.

2. That the velocity along any element of the front is

equal to the resolved part of the general velocity of the

fluid along the plane of the element.

Throughout these investigations the motion of the fluid

has been supposed steady. No applications of these re

sults to any other case can be regarded otherwise than as

an approximation. The relative velocity of the body
A A
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and fluid must therefore be constant, or, at least, vary

slowly.

If the fluid also be not boundless, but contained within

rigid or flexible surfaces, as the body moves on, these may
have some effect in disturbing the steadiness of the mo
tion.

The fluid has been supposed incompressible. In apply

ing the law to the case of a compressible fluid, we are

omitting all consideration of the condensation in front

and rarefaction of the fluid behind the body, and also

of the vis viva lost by the waves that would be propa

gated in all directions round the body. These cannot be

said to be unimportant.
And even if the fluid be incompressible, yet if the

body be floating on its surface, the theory takes no ac

count of the heaping up of the fluid in front of the

vessel, nor the partial lowering behind, nor the consequent
waves propagated in all directions round the vessel.

Having viewed the various considerations which have

led to the ordinary law that Resistance varies as the square

of velocity, it remains to compare this law with the re

sults of experiment. This is the Lydian touchstone by
which the true gold of any theory is discovered. To
consider in detail all these would be at once uninteresting

and unprofitable. We shall proceed to sum up the

various results arrived at, and arrange them under the

heads of the theory. We shall only mention a few cases*

to show the application of the rules.

1. The resistance is only found to vary as the square of

the velocity when the body is wholly immersed, the depth of

the fluid not inconsiderable^ and the velocity neither very

small nor very large.

Coulomb found that for very small velocities the resist

ance varied as the velocity ; the part depending on the

square being inconsiderable.

* For some of these references we are indebted to the excellent article

on Besistances by Sir D. Brewster, in the Encyc. Brit.
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The experiments ordered to be undertaken by the

French Academy, in the last century, with velocities not

greater than 2 miles per hour (7 6 feet per second) showed

that the resistance to floating bodies varied as the square
of the velocity.

Hutton found that for low velocities in air the resist

ance varied as the square ; but as the velocity increased

to several hundred feet per second, the resistance varied

as a power of the velocity greater than 2-^. But as

the velocity still further increased, the error of the ordi

nary law, though -always very great, became slightly less.

Beaufoy. If the velocity exceed two miles per hour,

or 6*2 feet per second, the power of the velocity is greater
than 2 ; but this power decreases, and is less than 2, if

the velocity be greater than eight miles per hour.

Speaking of this law of resistance, Robins says
&quot; This

rule, though pretty near the truth when the velocities are

confined within certain limits, is excessively erroneous

when applied to military projectiles, where such resist

ances often occur as could scarcely be effected on the com

monly received principles, even by a treble augmentation
of its

density.&quot;
The actual resistances were found to

exceed prodigiously those calculated by the theory, when
the velocity exceeded 1200 feet a second, which is the

velocity with which air rushes into a vacuum.

Scott Russell found that in ships, as the velocity in

creased, the resistance increased in a much higher ratio

than the square of the velocity, and reached a maximum,
after which it actually decreased as the velocity increased.

Beaufoy found that bodies are more resisted just under

the surface than at the depth of six feet.

Borda found a similar result.

2. The resistance to a plane does not vary as the surface,
but increases in a quicker ratio.

Borda found that when the surfaces were as 9, 16, 36,
81 inches, the resistances were as 9, 17-535, 42-750,
104-737.

Nevertheless, the results of many experiments show that

A A 2
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the error made by assuming the resistance to vary as the

surface is not very great, unless one of the surfaces is

many times larger than the other. Thus the French

experimentalists found this law in tolerable accordance

with their results.

3. The resistance on an oblique plane does not vary as

square of sine of angle the plane makes with the direction of
motion.

The French Academy experiments were made with ves

sels with wedge-like prows of various angles. If x be half

the angle at the prow, the formula

E = P sin2 + 3-15
3

represented the resistance so exactly that the error was

always less than T n .

Hutton found that the formula

E = -84 (sin 0)
1 84

cos 2

represented the resistance.

Vince found the resistance did not vary as any con

stant power of the sine. Various other formulas have also

been given by Du Buat, Dr. Young, Eytelwein, &c.

In the experiments of the French Academy, theory

gave a result for an angle of 12 only one fortieth of the

truth. In some experiments by Vince for an angle of 10,
the resolved part of the resistance in the direction of mo
tion was ten times that given by theory.

4. The changes of resistance calculated by the theory

caused by changes ofform are erroneous. The modifica

tion of resistance on any element produced by the near

presence of others cannot be neglected.

If the formula of the experimentalists of the French

Academy be employed to calculate the resistance on cur

vilinear surfaces the results are altogether erroneous.

Robbins found that the resistance on a sphere in air was

2-27 times the resistance on its great circle. Borda found

2 45. Hutton found 2 4. The ordinary law gives 2.
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The second series of Bossut s experiments showed that

the resistance in narrow or shallow canals was greater

than in an indefinite fluid.

Du Buat deduced that the ratio of the resistance R in

a narrow canal to the resistance R in an indefinite fluid

was

where C is the area of a section of the canal, B the area

of a section of the vessel.

So many assumptions are made in the ordinary proof

that the resistance varies as the square of the velocity,

that it is no wonder if the law is found to be at variance

with experiment. We must proceed in a different man
ner if we wish to deduce the true law of resistance. The

difficulty of such an investigation is evident. Neverthe

less, by the skill of some eminent mathematicians, some

progress has been made. But the problem in its widest

form has not been solved. For such particular cases as

are most needed in practice, approximate solutions have

been found. One of these, and the most important, is the

pendulum. The innumerable applications of this instru

ment make its utility immense. Its very delicacy renders

it a very efficient test of our theories of fluid motion. The
resistance opposed to the uniform motion of bodies of cer

tain forms have also been investigated.

(3.) In the year 1826 F. AY. Bessel published in the Royal

Academy of Sciences at Berlin a new method of determin

ing the length of the seconds pendulum. In the course of

it he pointed out an error in the old reduction to a vacuum.

He states
* that &quot; if we denote by m the mass of a body

moving through a fluid, and by in the mass displaced, the

accelerating force acting on the body has, since the time

*
BaiJy on the Correction of a Pendulum.

A A 3
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of Newton, been considered equal to- . This for-m
mula is founded on the presumption that the moving force

which the body undergoes, and which is denoted by m m
is confined to the mass m. But it must be distributed not

only over the moving body, but on all the particles of fluid

set in motion by that body, and consequently the denomi

nator of that expression denoting the accelerating force

must necessarily be greater than m. From some general
mathematical considerations he concludes that a fluid of

very small density surrounding a pendulum has no other

influence on the duration of the vibrations than that it

dimi nishes its gravity and increases the moment of in

ertia.&quot;

The effect of the resistance ofthe air is then the same as if

that air was removed and a mass of air, equal to x times &quot;the

fluid displaced
&quot; was attached to the centre of gravity of

the fluid displaced, which increases the inertia of the whole

without affecting its gravity. The effect of the buoyancy
of the air is the same as if a weight of air equal to that of

the fluid displaced were removed from the centre of gravity

of the fluid displaced, affecting the gravity but not the

inertia. Let Z and y be the distance of the centres of gra

vity of the pendulum and air displaced from the axis of

suspension, b
s

the ratio of the density of the fluid to the

mean density of the pendulum, and let i be the radius of

gyration of the pendulum about an axis through its centre

of gravity parallel to the axis of suspension. Then by

merely uniting the equation of motion of the pendulum, it

becomes evident that a pendulum affected as above stated

will oscillate in exactly the same manner that a simple

pendulum whose length is A does in vacuo, where

I
2 + i* + y

2

This manner of expressing the result will be presently
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found useful. The whole object of the investigation is

the determination of x.

This mode of viewing the resistance to the motion of a

pendulum, was a great improvement. But Bessel was not

the first discoverer, though he was the first who called the

attention of the public to it. The chevalier De Buat had

treated of this very property of the pendulum in his Prin-

cipes tfHydraulique published in 1786, fifty years before.

&quot;And it is not a little remarkable that these important

and conclusive experiments of De Buat, which were made

by the order and at the expense of the French Govern

ment, which were examined at the request of the Minister

of War by the Royal Academy of Sciences at Paris,

and by them favourably reported on, which were first

published in the year 1786 and excited so much interest

that they led to the subject for the prize essay proposed

by the Academy in the following year, should have been

so completely lost sight of and forgotten that no one

should have had the least remembrance of the additional

correction for the pendulum pointed out by M. cle Bruat,

and until the rediscovery of this principle by Bessel no one

should have thought of verifying the suspicion of Xewton,
that such an effect was probable.&quot; Baily on the Correction

of a Pendulum, Phil. Trans. 1832.

A variety of experiments have lately been made to de

termine the resistance experienced by the pendulum as it

makes its small oscillations in the resisting medium. One
obvious method is to swing a pendulum in air and vacuo,
and note the number of oscillations made in any given
time. Recurring to our value of X, it is easy to see that if

N be the number of oscillations in vacuo, and N&quot; the num
ber in air in any given time, that

N&quot;
- N

k /i
2 + r2 + y

g *x //* +V /- y g ~V ~~T
/IL+L!V ~T~

A A 4
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By experiment, the value of the left hand side could be

found, and therefore, by the solution of an equation, that of

x. In making these experiments, the necessary corrections

to /, 8, &c. due to heat and other causes must not be for

gotten. It is not our office at present to consider these.

If N be the number of oscillations made in air as cal-

N N
culated on the old theory, then the value of ^ may be

found from the above by writing x= 0. And thence the

N&quot;--N
value of -r- - the number of times the old correction

must be multiplied to get the new. This ratio we shall

call n. By regarding 8 as small, and expanding, we get

Now usually y is very nearly equal to /, and -= is very small ;

hence

N&quot; N l

. &quot;IT-
=

( +*) 8
l near,y .

n = 1 -f x J

This is the method that has been adopted by Sabine and

Baily. Their memoirs will be found in the Phil. Trans,

for 1829 and 1832. The former experimented chiefly on

the effects of different media and of changes in the ex

ternal circumstances; the latter on the different resistances

experienced by different forms of bodies.

Coulomb, in his experiments, adopted a different me
thod ; he made a small plane perform small oscillations in
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a fluid round a vertical axis, perpendicular to its plane,

and passing through its centre. The force by which this

was effected was the force of Torsion. His published

account is in the Mem. de Tlnstitut, vol. iii. The mode
of experimenting was adapted for the measurement of the

decrements of the arcs, but not suited to the accurate

determination of the effect of the fluid on the time of

vibration.

The results of these experiments may be arranged as

follows :

1. That the effect of the resistance of the air is not

insensible. Du Buat, Sabine, Baily.
2. The value of n does not depend on the density of

the body, but only on the extent and form of surface.

The body might even be hollow. Baily.
3. Spheres. The value of n is a little greater for

small than large spheres. Du Buat, Baily. But on the

whole, x. is not subject to very great variations, and is

nearly equal to 7 or *8. Baily.
4. Cylinders. The value of n varies according to the

face opposed to the resistance, being greatest when the flat

side is in front. In this case the height or thickness had

considerable effect ; the less this is, the greater is n.

Baily.

5. Pendulum rod. The thinner the rod the greater is

n. Du Buat, Bessel, Baily.
6. Discs. Flat sides being opposed to the motion.

The quantity of air dragged was found to be *149 d3
,

while that by a sphere was 123 d3
grains troy, where d

is the diameter in inches. A disc, therefore, drags more

than a sphere of equal diameter. When placed edgeways
thev dragored some air. Bailv.J J

7. Nature of the surface. On covering Coulomb s disc

with a thin coating of tallow, the resistance was found to

be the same as before, and even when the tallow was

sprinkled with powdered sandstone by means of a sieve,

the augmentation of resistance was &quot; a peine sensible.&quot;
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8. Motion of the air next the pendulum.
&quot; On attaching

a piece of gold leaf to the bottom of a pendulum, so as to

stick out in a direction perpendicular to the surface, and

then setting the pendulum in motion, Sir James South

found that the gold leaf retained its perpendicular position,

just as if the pendulum had been at rest, and it was not

until the gold leaf carried by the pendulum had been re

moved to some distance from the surface that it began to

lag behind.&quot; Stokes s Cam. Trans., vol. ix.

9. When the air is reduced to half its usual density, the

value of x was found to be nearly the same ; so that only

half as much air was dragged. One experiment of Sa-

bine.

10. When hydrogen was substituted for air, the effects

on the time was not proportional to the density. Air is

thirteen times as dense as hydrogen, but the retardations

measured by the number of vibrations were as 5^ to 1.

Sabine.

11. A pendulum vibrating within glasses makes nearly
the same number of vibrations as if the glasses were ab

sent. The mean difference of three experiments of Sa

bine was *007 per diem.

12. The resistance to small velocities varies partly as the

velocity and partly as the square of the velocity. Cou
lomb.

Poisson has calculated from theory the exact effect of

the resistance of the air on the motion of the pendulum.
His memoir will be found in the third volume of Mem.
de rinstitut, 1831. He supposes the oscillations of the

pendulum very small, and as a consequence, those also of

the fluid are very small. The equations of motion of the

air, therefore, reduce themselves to the usual equations
for the propagation of sound. But the arbitrary func

tions are to be determined by the condition that the velo

cities of the molecules of air in contact with the pen
dulum are always the same, when resolved along the

normal to the surface, as the velocity of that part of

pendulum resolved in the same direction. The motion of
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the pendulum, after allowing for the buoyancy of the air,

is affected by two causes, the variations of pressure

over its surface, and the friction of the air along its sur

face. This friction is assumed to be proportional to the

difference of velocities of the air and surface resolved in

any direction along the surface. He now forms the dif

ferential equations of the motion of the fluid and pendu

lum, but finds that without some further limitation they
cannot be solved.

In the case, however, in which the surface of the pen
dulum is spherical, and the rod so thin that we may
neglect the action between it and the air, the equations

can be integrated, and the motion both of the fluid and

sphere found. The motion is supposed to be given to the

body by moving the pendulum very slightly from its po
sition of rest, and then leaving it to the action of gravity,

without impressing on it any velocity. At the commence

ment of the motion the whole air is supposed to be at

rest homogeneous and boundless in all directions.

The motion of the spherical pendulum is found to be

the same as that of a simple pendulum of a certain length

K oscillating in a medium resisting as the velocity. But it

is to be remarked that this resistance is found to arise

entirely from the friction of the air against the sphere. The

assumption that this friction exists is directly contrary to

the usual theory of Hydrodynamics. The very equations of

motion are founded on the supposition that it does not exist,

and therefore takes no account of the equal and opposite

friction of the sphere on the fluid. In testing the theory

we must omit this resistance, and the motion is therefore

the same as that of a simple pendulum oscillating in vacuo.

Theory, therefore, gives the arc constant. The value of X

thus found is

comparing this with our former value of A, we see that
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The motion of the fluid is propagated in all directions

with a. velocity equal to that of sound, and consists for

each molecule of two sorts of vibrations ; one whose
st

vibrations are very rapid, the time being TT sec, where

c is the radius of the sphere, and a the velocity of propa

gation of sound. This will produce a sharp note, but in

sensible to the ear, because the amplitude of the vibrations

_ **

containing the exponential e * c
rapidly decrease. The

time of vibration of the other sort is equal to that of the

pendulum, and its magnitude decreases successively ac

cording to the same law that those of the pendulum follow.

These also will be insensible to the ear.

We have now to test the correctness of the theory by a

brief comparison of its results with those of experiments.

Recur to our list of results.

Theory teaches us that the resistance of the air is not in

sensible ; that the value of x does not depend on the interior

structure of the body, and it explains why x does not alter

much, being a fraction depending on the form of the body
and the external circumstances of the fluid ; it enables us

even to approximate to its true value. But it does not ex

plain why x is greater for small than large spheres, and the

very principles of the theory in regard to the motion of the

fluid in contact with the body is in opposition to certain ex

periments. Theory teaches also that the effect of the fluid is

not a resisting force varying as some function ofthe velocity,

but that its effect is simply to increase the inertia of the

body, and thus leaves the arc of vibration constant, which

is contrary to the commonest observations. Neither does

the theory explain the difference between the resistances in

hydrogen and air.

The two important points of the motion are the time

and the length of the arc of vibration. Thus while the

ordinary theory of Hydrodynamics agrees in the main
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with observation in regard to the time, it does not

explain the minuter variations of the time, and totally

fails to account for the successive diminutions of the arcs

of vibration.

It becomes necessary to consider the effect of the internal

friction of the fluid. This has been accomplished by
Professor Stokes. The equations, however, in this case

become so complicated, that it requires a very long

analysis to obtain the motion even of so simple a body as

a sphere. We shall therefore merely state the results

arrived at. The sphere is suspended by a fine wire, the

length of which is much greater than the radius of the

sphere. The resistance both to the sphere and the cylin

drical wire have to be discussed. The motions are con

sidered very small, so that by some obvious reductions the

problem is reduced to the two following.

The centre of a sphere performs small periodic oscil

lations along a right line in a boundless fluid, the sphere
itself having a motion of translation only. Find the motion

of the fluid.

An infinite cylinder performs small oscillations in a fluid

in a straight line perpendicular to its axis. To find the

motion of the fluid.

Let be the abscissa of the centre of the sphere at any
time L Let T be the time of one of its small oscillations

from rest to rest, a its radius, m its mass. Let mf be the

mass of the fluid displaced, p its density, and ^ some con

stant depending on the internal friction of the fluid. Then

put

1 JL
&amp;gt;=

2
+ 4va

*
~~4 va V va

Then the resistance on the sphere is
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The motion will therefore be the same as if the sphere

were resisted by a force x m n multiplied by the velocity,

and a mass xm were added to its centre, increasing the

inertia without affecting the weight.

We are now enabled to account for many of our expe
rimental results, that is, such of them as relate to spheres.

We see that neither x nor x depend on the density of the

sphere, but only on the volume ; that both are greater for

small than large spheres. The resistance also is independ

ent of the roughness of the surface. One experiment of

Sabine showed that x remained the same when p was

reduced one half; this would seem to show that for the

same fluid, at the same temperature, the value of ja, the

coefficient of the friction, varies as the density. But since

the value of x was not the same as before, when hydrogen
was substituted for air, we see that in different media ft

depends on something else besides the density.

We may apply these conclusions to the pendulum, and

obtain results which we may test by experiments. The
effect of the term depending on x will clearly be to alter

the time of the vibration, but not the arc of oscillation ;

the term depending on x (being multiplied by the small

m
factor , whose square may be neglected) will not affect

the time of the vibration, but will decrease the arc continu

ally, so that the successive arcs form a geometrical progres
sion. The time will be increased by a fraction of the time

equal to ^ x 8 nearly, and the common ratio by which the

5* 3

arcs decrease is s
2

nearly. The less the sphere the

greater are x and x ; the more, therefore, is the time altered

and the quicker does the arc of vibration decrease.

If a sphere move uniformly in a fluid with friction, we
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may determine the resistance opposed to its motion by the

fluid. The calculation is not brief, but the result arrived

at for the resistance is

B, = 6 * /// p * V,

where V is the velocity of the sphere and \J the constant

ratio of p to p.

The calculation is founded on the supposition that V is

so small that its square may be neglected. The part of

the resistance, therefore, which depends on the simple

power of the velocity, does not vary as the surface exposed
to the fluid, but simply as the radius of the sphere. This

becomes important when we apply the above formula to

determine the terminal velocity of a very small sphere falling

in a fluid under the action of gravity.

Let o- be the specific gravity of the sphere, p, as before,

that of the fluid ; then, if V be the terminal velocity, we
have

4GrSa V= *&amp;lt;ra*,

According to the usual theory, the terminal velocity

would have been

^ ( 1 la.

Thus V varies as a2 instead of \/a, and therefore becomes

very much smaller, when a is small, than that given by the

usual theory. Professor Stokes calculated that for a

sphere one thousandth of an inch in diameter, the terminal

velocity is 1 593 inches per second; for a sphere one ten-

thousandth of an inch in diameter, the velocity is O1593.

Those given by the usual theory are respectively 32-07

and 10*14 inches per second.
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The suspension of clouds may, therefore, be explained

according to this theory. The minute drops are really

falling with very small velocities.

The investigations for the motion of cylinders have also

been effected, but it will detain us too long to consider all

the results. One fact in connexion with the cylinder is

remarkable. The motion of the fluid in immediate contact

of a sphere moving in a fluid is the same as that of the

sphere, and as we go from the surface into the depths of

the fluid, the velocity differs more and more from that of

the sphere, and finally ends in being zero. The sphere by
the friction of its surface tends continually to increase

the mass of fluid it drags with it; the friction of the fluid

at a distance tends continually to diminish it. These two

in the case of a sphere tend to equality, and the motion is

ultimately uniform. Not so in the case of a cylinder: the

increase on the quantity of fluid carried gains on the de

crease due to the friction of the fluid, and the quantity
carried increases continually. The velocity must therefore

decrease continually.

Professor Stokes has also submitted his results to a

comparison with experiment. He first proceeds to obtain

l*S, the only constant at his disposal : the results of Baily
with cylindrical rods give

VJT =-116.

&quot; It is to be remembered that V]j/ expresses a length di

vided by the square root of a time, and the numerical

value above given is adapted to an English inch as the

unit of length, and a second of mean solar time as the

unit of time.&quot;

Let us take one instance of his series of comparisons at

random : let them be the experiments of Baily on spheres

attached to fine wires. Allowance is made for the wire by
the theory of the motion of a cylinder. Allowance is

also made for the confined space, which is estimated as
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being nearly the same as that given by the ordinary Hy-
drodynamic theory. Thus in one of Baily s brass 1- inch

sphere, the several parts of n were, for buoyancy 1, for

inertia, on the common theory, 5 additional for inertia on

account of internal friction -202 correction for wire -012

correction for confined space -032 total 1-746. Kesult

of experiment, 1 755, error
y-i-T .

(4.) In the fourteenth volume of the Edinburgh Transac

tions there will be found an interesting account of some

experiments by Scott Russell on the resistance experienced

by floating bodies in their progress through the water. As
the object was to determine the resistance to ships, the

experiments were conducted on a large scale, and the

bodies used were vessels of 31 to 75 feet long. The ve

locities varied from 3 to 15 miles an hour. Two points

are worthy of notice in these experiments.
1. The Emersion of the solid body from the fluid. The

ship does not draw as much water when it is in motion as

when it is at rest. This is manifestly caused by the re

solved part of the resistance in a vertical direction.

2. The motion of the boat does not excite currents in

the water, but generates waves. These waves travel to

great distances with a velocity independent of the form of

the vessel and, when freely moving, equal to the square
root of the product of the depth of the water and gravity.

The position of the boat relative to these waves was
remarkable. Calling h the depth of the water, the ve

locity of a &quot;free&quot; wave will be * gh; let v be the velocity

of the boat. If v be less than ^gh, the wave will have a

tendency to travel a little quicker than the boat, and it

was observed that the accumulation of all the waves ge
nerated by the boat formed an elevation at the prow and
a depression at the stern. Thus the vessel rode on the

posterior side of a &quot; forced wave,&quot; with its prow elevated

above its stern. If v be greater than ^gh, opposite phe-

B B
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nomena occurred, and the boat rode on the anterior surface

of a &quot;forced wave,&quot; with its prow depressed below its stern.

If the boat were suddenly stopped, the wave became im

mediately &quot;free,&quot;
and was propagated forwards with the

velocity ^gh. If the velocity of the boat were equal to

that of a free wave, the boat rode on the top, with its prow
and stern much more out of water than its middle part.

By making the vessel move with a velocity= &quot;Sgh,
the

depth of water is increased by the height of the wave, and

it is found that by this artifice boats can be carried without

grounding over shallow parts of the canal. Professor

Airy has offered an explanation of the phenomena, to which

we shall allude when we come to discuss waves.

As may be expected, these waves considerably affect

the resistance offered to the boat. Accordingly Scott

Russell found that the resistance does not follow the ratio

of the square of the velocity, except when the velocity is

small and the depth of the fluid considerable.

The resistance was found to increase quicker than in

the ratio of the square of the velocity, as the velocity ap

proached a certain quantity determined by the depth of

the fluid. After this point of maximum, the resistance

actually decreases as the velocity increases, until the ve

locity is equal to the velocity of propagation of a free

wave, and the resistance is here less than that due to the

square of the velocity. After this the resistance increases

with the velocity, but in a ratio slower than that due to

the square of the velocity. According to the law of pro

gression established, the resistance would reach a second

point of maximum when the velocity shall have attained a

certain quantity, greater than any obtained in the ex

periments.
The best velocity for a boat to travel at in a canal is

therefore ^gh. That the resistance should be less for this

velocity than for any other is clear, for then the boat rides

on the top of the wave, and the water is moving in the
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same direction as the boat. Thus even on the ordinary

theory, the resistance (calling u and v the velocities of

the water and boat) would depend on K (v iff instead

of xv2
.

B B 2
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NOTE VI.

PENDULUM.

THERE are two properties of the cycloid which enable

us to determine, with considerable ease, the motion of a

particle oscillating in a resist

ing medium, and constrained

to describe that curve. Let
C P B be any cycloid with

the tangent at the cusp B
vertical. Let C A be its

axis, and on it describe the

semicircle C Q A. Now, P being any point on the

cycloid, draw P Q N perpendicular to C A, cutting the

circle in Q, and join C Q. Then the properties referred

to are,

1. The tangent at P is parallel to C Q.
2. The arc C P is twice the chord C Q.
A particle is constrained to move in a cycloid under the

action of gravity, to determine the motion.

Let m be the mass of the particle, w its weight, and let

/ be twice the diameter of the generating circle. Sup
pose P to be the position of the particle at any time t,

and let the arc C P be s.

The weight of the particle may be resolved into two,

one along the normal and one along the tangent. The

effect of the former will depend on the manner in which
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the particle is constrained to keep its path. If it be sus

pended in a peculiar manner by a string, it will merely
increase the tension, and thus produce no effect on the

motion. The force along the tangent will tend to pull the

particle towards C. Since the tangent at P is parallel

to C Q, this resolved force will clearly be ca cos Q C A ;

and since the angle C Q A in the semicircle C Q A is a

right angle, and the arc C P is twice the chord C Q, we

have the above force, = w ^-~
= w

j.

Hence it appears that the moving force varies as s;

that is, as the distance from C, measured along the arc.

The motion of a particle under a force varying as the

distance has already been investigated. The motion in

the present case is a particular case of that theorem ; viz.,

that case in which the particle always moves in the direc

tion in which the force acts. It was shown that all par

ticles describe their orbits round a force = p* r in the

same time, viz., =. Hence, in our case, the time of
V n,

oscillation is independent of the length of the arc de

scribed, and is equal to TT A /_. Calling this time T,V CO

we have,

/ lm
T = * A/V ;

When the arc of oscillation is circular, the preceding

investigation must be somewhat modified. When the arco
is considerable, the time of an oscillation cannot be found

in finite terms. But in all practical cases the arc bears

only a small ratio to the radius, and the time of a whole

oscillation is then found to be

rp
V

B B 3
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where a is the radius and h the vertical height through
which the pendulum oscillates. The time is therefore

longer than in a cycloid. The time also depends on the

length of the arc described. When a is very great and
h small, we may often neglect this term and say,

T = , 1.

9

We may learn many lessons from this ^important &quot;re

sult.

I. It furnishes us with a method of comparing bodies
as to the quantity of matter in each. For we see that
for pendulums of the same length

varies as T2
;

60

if then we take pendulums of the same weight, we can,
by observations on r, determine the masses or ^quantities
of matter in them. By experiments made with the

greatest accuracy, Newton and Bessel always found this
ratio constant; so that the weight of a body varies in
exact proportion to the quantity of matter in it. This
ratio we call y. And hence,

g

By observing the value of r for any value of /, we can
deduce that of y, giving, when the unit of time is a se

cond,

g = 32-18 feet.

II. The time of oscillation is independent of the arc.

By the use, therefore, of a cycloid, we are enabled to pre
vent any variations of the arc described produced by any
irregularities from affecting the rate of going of a clock.

III. Since the time of an oscillation varies as the square
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root of the length of the pendulum,, we see that short

pendulums must move much quicker than long ones.

This is an observation that every one must have made that

has entered a clockmaker s shop. But the knowledge of

the above ratio enables us to correct the clock when the

length of its pendulum has been altered by temperature,

or, conversely, to alter the length when we wish to change

the rate. Suppose the pendulum to make n oscillations in

any given time M. Then clearly,

M fg
11 = vV r

taking the logarithmic differential

In _ L
8

= &quot;

2
7&quot;

This shows that a change of length equal to a fraction

of the whule length corresponds in any number of oscil

lations to a loss of a fraction of that number of oscil

lations.

IV. Another use of the pendulum is to determine the

force of gravity and its variations over the surface of the

earth. When this has been done we have seen how the

true figure of the earth may be deduced. We have now

only to describe briefly how this application is made.

It will require, of course, great accuracy of observation.

The first requisite is to determine in the pendulum ex

perimented on the distance of the centre of oscillation

from the axis of suspension. This is the length called Z in

our formula. There is a variety of practical ways of de

termining this, which we shall not enter into now. The

second requisite is to determine the time of one oscilla

tion of this pendulum, and this is done by noting the time

of any large number of observations, and dividing by this

number ;
thus any error made in observing the time of

beginning or ending is rendered insensible. The results

BE 4
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of observation may be tabulated in any form ; a good

way of exhibiting them is by deducing from them the

length of the seconds pendulum. If A be the length, we

have,

9 = n2 A ;

thus g is always proportional to A.

But if we wish to ensure accuracy in our results it is

clear that we must allow for the effects of all causes that

may affect the time of an oscillation besides gravity. These

corrections are called &quot;

Reductions.&quot; Let us briefly con

sider what they are.

1. Ifthe centre of oscillation does not describe a cycloid,

allowance must be made for the alteration of time as de

pending on the arc described. This is called the &amp;lt;e reduc

tion to infinitely small arcs.&quot; If the arc of vibration be

n on each side of the vertical, then the time of an oscil

lation will be nearly

VI
hence the time of an oscillation must be divided by this

latter factor. If the arcs remained constant this would

be sufficient ; but it is found that the arcs continually de

crease by friction and resistance of air. Experiment
shows* that this decrease is in geometrical progression.

Taking this for granted, it is easy to deduce that the

mean time of one vibration will be

where n, ri are the first and last arcs described, and m
their number.

The time of an oscillation, as deduced from observation,

* Borda.
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must therefore be divided by the quantity between the

brackets.

This expression has been deduced on the supposition

that the point of suspension remains fixed. In the Philo

sophical Transactions for 1831, Col. Sabine has pointed

out that this is not always the case. A further correction

in such cases is, therefore, necessary.

.2 The effect of the resistance of the air must be allowed

for ; this is called the &quot; Reduction to a vacuum&quot; This

will be considered in the propositions that follow relative

to the motion of a pendulum in a resisting medium. This

correction consists of two parts, that for the buoyancy and

that for the inertia of the air. If m be the mass of the

pendulum, iri that of the fluid displaced. The effect of

buoyancy is clearly to decrease the acting force in the

ratio m m to m; and the effect of the inertia is to

increase the mass moved by xm 9 where x is a quantity to

be hereafter determined. The time is therefore increased

in the ratio

m + x m
^

-

m

Let z be the ratio of the specific gravity of the medium

to that of the body, and let z be very small, then the

above is equal to

the observed time of an oscillation must be divided there

fore by this quantity.

3. The time of an oscillation, thus corrected, enables us

to find the length of the seconds pendulum at the place of

observation. This gives the force of gravity as affected

by the attraction of all the irregularities of the earth s

surface near at hand. To render the results obtained in

different places comparable with each^other, we must reduce
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them all to one given surface. For many years it was
the custom to reduce all observations to the level of the

sea, taking account only of the height of the station. But
in the Phil. Trans, for 1819, Dr. Young pointed out that

this correction was too great, as it entirely neglected the

attraction of the intervening strata. Supposing the obser

vation to have been made on table land of an altitude h

above the level of the sea, the attraction of this stratum

will clearly differ but little from that of an infinite plane of

the same thickness and density. Let &amp;lt;r be the density of

the land, then this attraction is well known to be 2 TT a- h.

Let o be the mean density of the earth and a its radius,

4.

then g, the force of gravity, will be - TT p a = g ; hence
G

the correction for the attraction of the intervening land
Q T*

will be -
.
-

.
-

g. But the old correction for distance

is clearly
--

g\ hence the total correction will be

The quantity -fo r most rocks on the earth s surface is

2*5
nearly

-
;
hence the old reduction must be multiplied byO O

66. This corrected result gives the force of gravity at

the level of the sea, if all the land above this level were

cut off, and the sea constrained to keep its present level.

As the sea would tend in such a case to change its level, it

has been pointed out within the last three or four years
that a further correction is necessary, if we wished to

reduce the result the surface of that spheroid which most

nearly represents the earth. But the above is sufficient

for tabulating the results.

V. Another important use of the pendulum is to deter

mine the law of the resistance of different fluids to bodies
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moving in them. By experiment we can determine the

motion of a pendulum in air or water, and thus we shall

be able to test any assumed law of resistance. Newton has

devoted nearly the whole of his sixth section to this ques

tion.
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NOTE VII.

MOTION OP FLUIDS RUNNING OUT OP SMALL ORIFICES.

(3.) MANY attempts were made by the mathematicians

who followed Newton to improve and extend the theory of

the motion of water running out of vases. But though
the results were often correct, yet the principles on which

their solutions were founded did not possess a character

sufficiently elementary to entitle them to be called axioms.

Maclaurin gave an extension of Newton s theory in his
&quot; Traite des Fluxions,&quot; liv. i. chap. 12. He argues that

the weight of water must be divided into three parts : the

first, which accelerates the motion of the surface, and is

equal to A h
-y (following the preceding notation), the

d&amp;gt; t

second, which presses on the base of the vessel, and the

third which in the little time 8 1 communicates a velocity
V U to the mass V B t of fluid that flows out of the

vessel in that time. He assumes that these last two

forces are always in a constant ratio, which he supposes to

be that of the mass of solidified fluid to the mass of water

in Newton s cataract.

Daniel Bernoulli *
gave a theory founded on the prin

ciple that the fluid may be divided into horizontal strata

which remain horizontal throughout the motion and de

scend with a velocity reciprocally proportional to the area

* Traite d Hydrodynamique.
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of the section of the vessel that the stratum is passing.

He then applied the principle of the conservation of vis

viva to determine the velocity of efflux. Bernoulli was

led to this hypothesis by observing the manner in which

particles of Spanish wax immersed in the water moved

along with the fluid. A theory thus founded on obser

vation is usually a great step in advance. Even now, in

certain cases, we are obliged to have recourse to this very

assumption. John Bernoulli (Hydraulique) gave a dif

ferent theory. Taking a stratum of the fluid, he replaced

the force which would produce its motion by another

supposed to act at the surface of the fluid. Then by in

tegration he obtained the whole force that acting at the

surface would produce the whole motion of the fluid, and

this force he assumes to be equal to the whole weight of

the fluid. There would now be no advantage in dwelling
on these or any similar investigations. By the aid of

D Alembert s principle we have now correct equations,

giving the motion of fluids under all circumstances. We
shall therefore pass on to the more satisfactory solutions

that Poisson
(
Traite de Mecanique, torn. ii. chap, iii.)

gave of the question.

(4.) In modern times, it is usual to deduce the velocity

of efflux from the equations of motions. The simplest

case is when the motion is steady. Let the surface of the

fluid be always horizontal, and retained at the same level ;

let the area be A, and suppose all its parts to have the

same velocity (U) in a direction vertically downwards.

Let B be the area of the section of the fluid at the ve?ia

contract^ V the velocity of the fluid at that point. A
complete solution of the question ought to determine both

B and V in terms of the diameter of the hole and the

other circumstances of the problem. According to the

ordinary notation we have,
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along the surface y = 0, v = U, p = TT, the pressure of

the atmosphere ;

.-. 7T = +C.

At the vena contract^ the fluid moves with the same ve

locity throughout the section, and along its surface we
have

V2

h being its depth below the surface of the fluid; hence

we have

V 2 = U2 + 2ah. 1

But BV = AU. J

These are not sufficient to determine all the unknown

quantities. Sufficient equations would have been found

if we could have integrated all the equations of motion.

The quantity h differs but little from the depth of the

orifice below the vena contracta. The quantity B also

depends chiefly on the nature of the orifice, and can be

measured. The quantity U is unknown, and must be

such that the motion is steady ; eliminating we get

V=~

If the orifice be very small, we may reject f-r
j , and we

get

V =
V&amp;gt;2gh.

When the velocity of the surface is not such as to

render the motion steady, the equations cannot be inte

grated, except on the supposition that the orifice is exces

sively small. It that case we may assume with sufficient

accuracy, that the particles of fluid once in a horizontal
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section, always remain in one. This is called the hypo

thesis of parallel sections. Supposing the fluid to begin

to move from rest, it can be shown that the motion, what

ever be the form of the vessel, soon becomes steady. So

that we may in general use the preceding formula.

If the vessel be allowed to empty itself, the solution

can still be found on the same supposition. If z be the

height of the surface of the water in a cylindrical vessel

above the vena contracta, and h be the initial value of z

when the motion is supposed to begin from rest,

1-2?
2 TC 2 hi12 I

If B be very small, this expression becomes very nearly

V2 = 2 g z.

If some time has elapsed, so that
j

is a small fraction,

we have

The velocity being then very small, the quantity of

liquid that has run out of the vessel in the time t will be

very nearly

if the orifice be an aperture in a very thin plate, the value

62
of B, the area of the vena contracta is about -r of the

area of the orifice. Calling this area a, the expenditure
will be nearly*

*
Poisson, Hydrodynamique, vol. ii.
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q = -62 . a . t . JTgTi.

But the efflux is very much influenced by the nature of

the orifice. If a small vertical cylinder, or adjutage, be

applied to the exterior of the orifice, the discharge is

greatly increased, and will be nearly

q = -8 at

if, on the contrary, the cylinder be placed on the interior

of the orifice, the discharge is decreased, and will be

nearly

q = -5 a t V2 oh.

Venturi found an adjutage, consisting of two conical

portions having their smaller ends united at the com
mencement of the vena contracta, to give a very large

discharge.

(5.) An attempt has also been made to determine the

velocity of efflux of an elastic fluid rushing out of a small

orifice. The problem is a very difficult one, and no satis

factory solution has been found.

Let a quantity of any gas be compressed at density D
and pressure P, in any vessel A ; let it be allowed to run

out by a small orifice into a vessel A , filled with the same
kind of gas at density D and pressure P . It is required to

determine the rate at which the gas runs from the first

vessel into the second.

Draw a line of motion from the interior of the vessel

A to the interior of A , so that at any instant all the par
ticles in this curve are moving along tangents to the curve.

The motion of the particles at the two extremities of this

line will be infinitesimal when the aperture is very small

compared with the size of the vessels. Since the aper
ture is very small, the motion may be considered for any
short time steady ; hence the equation
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will be approximately true. The quantities p, f&amp;gt;

9 v, in

this equation express the pressure, density, and velocity at

any point of the curve. Integrating from the extremity
of the curve in the vessel A to the orifice, we have

f\J P

Supposing the difference between P, P not too great,

the fluid will rush into the receiver in a stream, and there

will be a backward current on each side to diffuse the

gas over the whole vessel. Taking some section where the

fluid may be supposed to move with the same velocity

throughout, the quantity that runs past in a unit of time,

measured in volumes of gas at density D, is

wherep and p express the pressure and density at the sec

tion, and m is a numerical coefficient depending on the

nature of the orifice and the unit in which p is measured.

We are ignorant of the true values ofp and
p-,

but if the

vessel be very large, and the difference of pressures P, P
small, the gas on each side of the stream will be nearly

stagnant, and we may substitute for p, p, the values of

P ,
D , the mean pressure and density in the receiver. If

p_p be so small that we can neglect its square, this

formula will become

an expression which is in tolerable accordance with the

results of experiment. But if P and P are not nearly

equal, this is no longer even an approximation to the

truth.
C C
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Suppose we reject the effect of changes of temperature,

we have, by Boyle s law, p = x p, whence the expression

(1.) easily gives

log
6

- - -
(3.)

MM. Barre de Saint Venant and Wantzel * have under

taken the task of testing these expressions by actual experi

ment. They have pointed out that the formula (3.) could not

possibly be accurate, for it gives the velocity of efflux a

P
maximum when p-

= 60653, so that the velocity would

actually be less the smaller the quantity of air in the vessel

A , provided it be less than a certain quantity. The velo

city would vanish when P = 0, which leads to the ex

traordinary result that a gas cannot rush into a vacuum.

If in order not to neglect the changes of temperature, we

put p = K f, we get the expression

;. AS;.
\f \

V m \
--

V //* I T~^

^

If we knew the values ofp and y this would no doubt give

accurate results. But when we substitute p P , we
are led to results as absurd as those we have just mentioned.

The truth is, that, other things being the same, the velocity

of efflux of air by an orifice is always greater the more

the pressure in one vessel exceeds that in the other. So

P
long as p- is not greater than -3 or *4, the efflux or the

quantity of air that has flowed out in a unit of time is

sensibly the same ; that efflux diminishes slowly at first,

more quickly afterwards, as the pressures approach

equality, and it becomes nothing after a finite time, when

*
Comptes Rendus, vol. ix. and xvii.
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the pressures become the same in the two vessels which

the orifice puts in communication. These are the results

of MM. Venant and &quot;Wantzel ; they have even deduced

an empirical law to represent the velocity. The efflux

per metre of orifice in volume at pressure P will be

m
n

where m, n are two numbers which depend on the nature

of the orifice, and M a number to which we give a value

a little greater than n, that the formula may give a nearly

constant value to V between the limits already stated.

c c 2
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NOTE VIII.

MOTION OF WAVES ON THE SURFACE OF WATER.

IT appears that it is not every form of waves which can

be freely propagated with a uniform velocity without any

change of form. The only case in which this is possible,

is when the vertical section by a plane passing through the

direction of propagation is, to a first approximation, the

curve of sines. A solitary wave* cannot, therefore, be

propagated without change of form; a result confirmed by
Mr. Russell s experiments. If the form of the waves were

accurately the curve of sines, they would be exactly si

milar above and below the undisturbed level. This com

mon experience shows not to be the case. On carrying our

investigation to a second approximation, on the supposi

tion that the depth of the water is much greater than the

length of the wave, it is found that the altitude of the top

above the undisturbed level is greater than the depth of

the hollow beneath it. The top of the waves are more

pointed than the hollows. Such a wave is propagated
without any change in its form. If the depth were much
less than the length of the wave, the wave will undergo
certain changes, which we shall have occasion to refer to

presently.

The motion of the water during the uniform propagation
of the wave is greatest at the surface, and decreases rapidly
with the depth ; but the rate of decrease varies very

nearly inversely as the length of the wave. Thus if the

depth of the water be much less than the length of a wave,

* Camb. Phil. Trans, vol. viii.
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the motion is nearly the same at all depths ;
if much greater

the water near the bottom is almost at rest. Each particle

of water describes an ellipse. Those at the bottom oscillate

in straight lines, and in very deep water those at the sur

face describe circles.

When the channel is not uniform the question of the

motion is much more difficult. Professor Kelland has in

vestigated one case of this kind, for which we refer our

readers to the Edin. Trans, for 1841.

The motion of any series of oscillatory waves will, of

course, tend to subside from the effects of internal friction.

The rate at which this takes place depends very much on

the length of the wave. The magnitude of the wave is

found to depend on the factor *

C = C
Q

. X 2

where X is the length of the wave, p/ a numerical quantity

depending on the amount of internal friction in the fluid,

c
Q, c the values of the factor at the times zero and t. The

value of V
it/ for water is -0564, an inch and a second

being the units of space and time. &quot;

Suppose, first, that A

is two inches and t ten seconds, then 16 7r
2
// t A~2 =

1-256 and c : c :: 1 : 0-2848, so that the height of the

waves which varies as c is only about a quarter of what

it was ; accordingly the ripples excited on a small pool by
a puff of wind rapidly subside when the exciting cause

ceases to act. Now suppose that A is 40 fathoms, or 2880

inches, and that t is 86,400 seconds, or a whole day. In

this case 16 7r
2 ^ t A~2

is equal to only 0-005232, so that

by the end of an entire day, in which time waves of this

length would travel 574 English miles, the height would

be diminished by little more than one two-hundredth

part in consequence of friction. Accordingly the long
swells of the ocean are but little allayed by friction, and

* Prof. Stokes, Camb. Phil. Trans, vol. ix., part 2.

cc 3
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at last break on some shore situated at the distance of per

haps hundreds of miles from the region where they were

first excited.&quot;

When the wave is very long it is easy to give a short

demonstration of its most useful properties. And this is

the more advantageous, for, as we shall presently see, the

tide is nothing more than an exceedingly long wave.

Suppose we have a rectilinear channel of uniform section ;

let y be the elevation ofthe water above the mean level at a

time t, and at a distance x measured along the channel from

the origin of measurement. Let k be the greatest value of

y. Let h be the depth of the channel, K the length of the

wave travelling along the canal. Then by hypothesis A is

very great. Suppose the particle of water which when
undisturbed to have been at a distance x from the origin,

to be at the distance x +X at the time t. First let there

be two imaginary planes placed at the beginning and end

ing of the long wave. The mass * of water elevated above

the mean level will be comparable with xk, while the water

which has passed the two imaginary planes will be com

parable with h X. These two quantities, then, must be of

the same order ; hence

7 ~\r

k is of the order ;

A

and, as \ is very great, this must be very much smaller than

X. Now X is itself supposed a small quantity ; hence k

may be altogether rejected when compared with X, and

we must suppose the elevations performed by the horizontal

motions of the fluid pressing together some parts, and thus

raising it above the general level. So far as the vertical

motion is concerned, we may consider the fluid in equili

brium, and hence may use the ordinary equations of hydro
statics to find the pressure at any depth.
We shall now show that if we assume the displacement

* Camb. Dub. Mathematical Journal, Nov. 1849.
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X of the particle which was situated at the distance x from

the origin to be represented by

that then all the conditions required for a possible motion

will be satisfied. If this expression agree with the

initial conditions and all the other circumstances of the

motions, it will represent the actual motion. The whole

of the reasoning is, step for step, the same as that for the

motion of sound in a tube.

Since this form of X is independent of the depth, the

water will be agitated to the bottom, and the particles once

in a vertical plane will always remain in one. If then two

planes be taken at a distance dx when the fluid is at rest,

the mass of water between them will always remain the

same. But this mass before the motion was h dx, and at

the time t it is

the last term is very small, for both y and X are small, and

therefore may be rejected ; hence

= a m h . cos (nt mx).

If we consider any element dx of the fluid, the forces

that make it move are the pressures on its two ends. These

are, by hydrostatics,

and g(y + dy + z),

where z is the depth of the element beneath the mean
surface. Hence the moving force is

c c 4
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and the mass moved is dx ; hence the accelerating force is

dy
9 Tx

or am2

hg sm (ntmx)

or m2^^X;
hence the force varies as the displacement. This is well

known to lead to the very law assumed for X, provided

= n ;

hence the velocity of the wave, which we know is . mustm

The general equation for the motion of any long wave

may be obtained by a generalisation similar to that em

ployed in the proportion corresponding to this in sound.

The resulting equations are even the same : we arrive at

&amp;gt;J

= ~
d x

and whatever be the form of the wave, provided only it be

very long, and the height of the wave be small compared
with the depth of the water, the velocity of transmission

will be always the square root of the product of the depth
and gravity.

If each particle of the fluid be under the action of forces,

the motion may still retain the characteristics of a wave.

Such a wave, however, is called a &quot; forced wave,&quot; and there

is no necessary relation between the velocity of such a

wave and the depth of the water. As an example, let

each particle be acted on by a horizontal force

F=/. sin. (it mx).
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Let us assume the displacement

X= a sin. (i t m x)

But as we have already seen, the water seeking to recover

its level causes a horizontal force equal to

w?h g X ;

hence the whole force is

-( ** -I

By the same reasoning as before, this coefficient must be

equal to z
2
, or

hence a = - -
,

i
2 m? hg

or the motion in the horizontal direction will be given by

X = &quot;&quot;

^2
-

2 A
* ^ (**

z
2 in* h g

and the elevation of the water by

f m h / . .

This proposition will be required when we come to con

sider the theory of tides. It will also serve to explain in

some degree the motion of the waves generated by a boat

moving along the surface of a canal. It is not a complete

explanation, for the waves observed by Scott Russell were

solitary waves ; whereas we have supposed in the above

reasoning that there is an infinite succession of waves
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following each other. However, we may suppose the

grand features of the motion to be similar in the two cases.

The above expressions show that the sign of F will be the

same as or different from that of -~
according as -,

the velocity of the wave, is greater or less than */g~h*

Taking the former supposition, F must be positive, or act

in the direction of propagation where the water is rising,

that is, along the anterior surface of the elevation of the

wave, and must act in the opposite direction where the

water is falling, that is, along the posterior surface of the

elevation. If, on the contrary, the velocity of the wave

is less than Vg h, then F must act in the direction of

propagation along the posterior slope, and in the opposite
direction along the anterior slope. A boat can only push
the water forwards ; hence it must be on that side of the

slope on which a forward force is required ; that is, it will

travel behind or before the wave, according as its velocity

is less or greater than Vg h. There will be no force

acting on the other slope of the wave ; but the wave will

undergo a trifling change of form, and thus similar effects

will be produced whether this force does or does not act.

If the velocity of the boat is Vg h, no force is neces

sary. If the boat ride on the crest of the wave, it acts

on both slopes. If these actions were equal, the particles

would have their changes of motion accelerated in front

and retarded in rear, and thus the whole change would be

the same as if the forces did not act. But the head of

the boat, Airy observes, presses the water more than the

stern ; hence, on the whole, we have a small accelerating

force acting on the anterior slope. Hence, that the boat

may ride evenly on the crest of the wave, the velocity

must be a little greater than ^g h. This is true in prac
tice.

Many mathematicians have investigated the effects of

gradual changes in the depth and breadth of the canal on a
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series of long waves propagated along it. If h and b be

the variable depth and breadth, the result arrived at is

that the altitude of the wave varies
*

inversely as v^ . A/.

Professor Airy has demonstrated that waves cannot be

propagated, strictly speaking, along a canal of variable

depth. He shows that if it were possible, we would be

led to an equation that cannot be satisfied. Hence,
&quot; one

at least of the two conditions on which the equations of

Hydrodynamics are founded must fail. These are the

continuity of the fluid and the equality of pressure in all

directions. While the continuity holds, the equal pres

sure must exist, from the nature of the fluid. There

fore the continuity must cease, or the water become

broken. This appears to be the explanation of the broken

water which is usually seen on the edge of a shoal, or a

ledge of broken rocks, although the whole is covered,

perhaps deeply, with water.&quot; The* Astronomer Royal

mentions the instance of Newfoundland, where, when the

waves are high, there is a surf caused by the breaking of

the waves over the edge of a shoal 500 feet deep. A
similar breaking is observed about the line of &quot; no sound

ings
&quot;

(that is, where the water suddenly becomes deeper

than 600 feet, which at some distance borders the British

isles (Encyc. Met., art. Tides and Waves). The wave,

on reaching a part of its course where the depth changes

suddenly, breaks, because the velocity of the top part for

ward and of the hollow backwards, is too great to travel

with the velocity proper to the new depth. The top part

therefore, tumbles forwards into the hollow. The degree

of breaking is less and less the longer the wave and the less

the change of depth. If the depth alter very slowly, the

wave may be considered as only slightly breaking, and is

propagated as a changing wave.

* Green on the Motion of Waves, Trans. Camb. Phil. vol. vi.
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Professor Airy has also investigated the manner in

which the wind acts to raise the waves. His theoretical

conclusions are as follows :
&quot; It is to be understood

that either from preceding disturbances, or from the trifling

inequalities of the wind while the water is smooth, there

are very shallow undulations upon the water. When the

wind begins to act, it will at first only increase the height
of the waves in every part, and during this time the heads

of the waves will be broken. But after a time the waves

beginning with the windward shore will be (for a short

distance at least) so much increased, that the power of the

wind will merely maintain them in that state without any
increase; but for all the sea in advance, the wind will

still be raising the waves. But as the waves successively

obtain that height which corresponding, according to our

result, with the height which the wind can just maintain,

these waves will no longer be increased, but the waves

in advance will still be increased. Thus a wind of given

intensity, however long it blows, can only raise the waves

at a given point to a certain height ; which height, how

ever, will depend upon the distance of that point from

the windward shore.&quot;
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NOTE IX.

THE THEORY OF THE TIDES.

II. SINCE Newton s time many philosophers have turned

their attention to the theory of the tides. Newton left

it in so imperfect a state that much remained to be done.

~\Ye shall therefore in the briefest possible manner men
tion a few of those steps that have been since made. It

would require a treatise by itself to discuss them com

pletely. A traveller about to visit a new country looks

at the map first : we intend to furnish this map, and must

refer to other works those who may desire to study so

interesting a subject.

There are at present three theories of the tides. They
are usually called, the equilibrium theory, the theory of

Laplace, and the wave theory. The differences of these

theories will be best understood by considering them sepa

rately.

(1.) In the equilibrium theory, the rotation of the earth

is supposed to have no effect on the form of the tide, so

that the times and heights of high water, and all the

other circumstances of the tides, at any place may be cal

culated on the supposition that both the earth and the

moon remain fixed in the position they are in at the mo
ment under consideration. Whether this assumption be

legitimate, or not, is a question we shall presently have

to consider. The whole equilibrium theory is built on

the assumption of its truth.

The general explanation of the tides, according to this

theory, is very simple. The moon attracts both the earth
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and the water on the earth. But she attracts the water

immediately under her with greater force than she attracts

the centre of the earth, and she attracts the centre of the

earth with greater force than the water on the opposite
side of the earth. But the tides are formed by the position

the water assumes relative to the earth. We must there

fore consider this as reduced to rest by a force supposed to

be applied to every particle of the earth and water equal
and opposite to the force with which the moon attracts the

centre of the earth. The particles of water immediately
under the moon will therefore be drawn towards the moon ;

those immediately opposite will appear to be drawn from

the moon. Thus the water will rise and form a high tide

both on that side next the moon and also on the other.

Let us now suppose the whole earth covered with water.

Each particle of the fluid is under the action of, first, the

attraction of the earth, and, secondly, the attraction of the

stratum of liquid surrounding the earth : this will depend
on the form its surface will assume under the action of all

the forces ; thirdly, the disturbing force of the luminary.
The form of the water must be determined by means of

the equations of fluid equilibrium. The result obtained is

that the form will be very nearly a spheroid whose longer
axis points to the luminary. If be the zenith distance of

the moon at any place and any instant, c her distance, a

the mean radius of the earth, a the radius of the solid

nucleus of the earth, E and M the masses of the earth and

moon, p, p the mean density of the earth and the density
of the sea; then the height of the tide at the given place
and at the given time will be

5 M
74

(3 cos2
0-1).

The greater the depth of the ocean, or the less of is, the

greater is the height of the tide.
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The values of these several ratios are as follows :

M 1 _ 1 p_ 47r
/s

E
&quot;

74 c
~

60
***

~3~ pa

whence the coefficient is nearly

1 1

7 feet.

By observation p
= 1

p nearly, and in this case the height of

the tide is small. But if p
f be much greater, this expres

sion soon becomes considerable, and if the density of the

sea had been much greater than that of the earth, the

tides would have been very high.

We see also that the height of the tides caused by dif

ferent luminaries varies as their masses, and inversely as

the cubes of their distances.

The coefficient being called h, the greatest elevation of

the tide will manifestly be 2A, and the greatest depression
below the spherical surface will be h. The elevation is

therefore double the depression. But it must be remem
bered that this spherical surface is not the mean surface of

the ocean at the place in question, but the surface as it

would be if undisturbed by any luminary.
There will be a similar expression for the tide caused by

the sun, and the two together may be expressed by the

formula

sin 2x

f cos2 A ( A
(^cos

2

cos2(7-y)+A
/

(j^

where Z, A, are the longitude and latitude of the place, y, S,

the right ascensions and declinations of the moon, c
, c, her
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mean and actual distances, A the coefficient of 3 cos2
6 1

in the preceding formula when the moon is at her mean
distance. Accented letters apply to the sun in the same

way as unaccented do to the moon.

In this expression we see three kinds of terms. First,

those of very long period, and which are not dependent on

the hour of the day. These arise from the first line in the

above series, and cause differences in the mean elevation

of the water, depending on the declination and distances

of the disturbing bodies. As the expression contains the

factor 3 sin2 A 1 there will be no such terms or inequali

ties for any place whose latitude is sin&quot;
1

*J\.

Secondly. The terms in the second line going through
their values in about a day, they form therefore a diurnal

tide. This has no existence for any place on the equator
or at the pole, and is greatest in latitude 45. There will

be variations in the magnitude of this tide, depending on

the changes of declination and distance of the heavenly
bodies.

Thirdly. The terms in the third line go through their

values twice in about a day ; they form together, therefore,

a semi-diurnal tide. This has no existence at the poles,

and is greater the nearer the place is to the equator.

The value of this theory may be best stated nearly in

the words of the Astronomer Royal :
&quot; The most con

spicuous tide on the coasts of Europe at least is the semi

diurnal. The acceleration or retard of this tide on the

moon s transit does not at one port in a hundred agree in

any measure with the result of this
theory.&quot;

&quot; The abso

lute elevation of the tide is great at one port and small at

another, without any relation to the quantity calculated

from theory. The proportion of the elevations, however,

at the same port in different stages of the lunation agree

pretty well with the theory (though not equally at all

ports), yet the critical phenomena (spring and neap tides)

occur later than the theory gives them.&quot;
&quot; The peculiar

phenomena of river tides are not touched on by this theory.&quot;

&quot; The diurnal tide ought in these latitudes to be equal,
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or nearly equal, to the semi-diurnal tide. Yet in the

Thames it is absolutely insensible, and in other ports, as

well of England as of other ports of Europe and America,

though discoverable, it is not notorious, and has only been

found from the observations made by men of science. It

has been found to be very conspicuous at some places
near the equator, and some places near the pole, where it

ought not to be discoverable, or scarcely discoverable. The
tides of longer period have scarcely been observed.&quot;

&quot;

Altogether this is one of the most contemptible theo

ries that was ever applied to explain a collection of impor
tant physical facts. It is entirely false in its principles,
and entirely inapplicable in its results. Yet, strange as it

may appear, this theory has been of great use. It has

served to show that there are forces in nature following
laws which bear a not very distant relation to some of the

most conspicuous phenomena of the tides; and what is

more important, it has given an algebraic form to its own
results, divided into separate parts analogous to the parts
into which the tidal phenomena may be divided, admitting

easily of calculation and of alteration, and thus at once

suggesting the mode of separating the tidal movements,
and affording numerical results of theory with which they
are to be compared. The greatest mathematicians and the

most laborious observers of the present age have agreed

equally in rejecting the foundation of this theory, and

comparing all their observations with its results. And till

theories are perfect (a thing scarcely to be hoped for in

any subject, and less in the tides than any other), this is

one of the most important uses of
theory.&quot;

(2.) The next theory to be considered is that of Laplace.
In this the phenomena of the tides are treated as a question
of hydrodynamics. It is manifest that no true theory can

proceed on any other supposition. We may, as usual,

suppose the centre of the earth reduced to rest by the

application to every particle of the earth and sea a suffi

cient force. This we can do, for we are only concerned
with the motion of the sea relatively to the earth. The

D D
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two luminaries must then be supposed to travel round the

earth in respectively a month and a year. Then the pro
blem is to determine what motion will take place in any
wide expanse of ocean when acted on by these forces, the

earth and sea being supposed to have a rotation round a

fixed axis.

But such is the difficulty of the investigation, that if we
wish to get any result at all, we must make some suppo
sitions that are not quite applicable to the earth. We
must suppose the earth to be entirely covered by water,

whose depth is the same along any parallel of latitude,

which may be expressed by the formula

y= l (lq cos2
9),

where is the polar distance of the parallel of latitude, /

the depth at the equator, q a constant depending on the

rate at which the depth decreases as we approach the pole.

The investigations of Laplace are very difficult : the same

results have been obtained by a different but simpler pro

cess by Professor Airy in his article on Tides and Waves
in the Encyclopedia Metropolitana.

The result of Laplace
*

is that there are &quot; trois especes

d oscillations.&quot; As these unite without confounding them

selves, they can be considered separately.

Des oscillations de la premiere espece. These are tides

of long period, and depend on the positions of the lumi

naries, the depth of the sea as compared with the radius of

the earth, the time of rotation of the earth, the force of

gravity at its surface, and the latitude of the place, but

not on the hour of the day. Formula are found to express

their magnitude, and these, when no allowances are made

for friction and other causes of resistance, are not the same

as those given by the equilibrium theory. Laplace, how

ever, supposing the resistance to vary as the velocity, and

the tide to be exceedingly small (an assumption founded

on observation), shows that we may calculate these oscilla-

* Mec. Celeste, vol. ii. p. 313.
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tions as if the fluid at each moment put itself in equili

brium under the action of the luminary which attracts it*

And the error is less, the slower the motion of the luminary ;

it is therefore insensible for the sun, and we may even

assume it true for the moon. This is calculated on the

supposition that the resistance varies as the velocity, but

it will be, clearly, also true whatever be the law of the

resistance.

Des oscillations de la seconde espece. These are oscilla

tions which go through their period in about a day, and

constitute therefore properly a diurnal tide. It is found

that this tide does not exist either at the equator or the

poles, and it is greatest about latitude 45. It will dis

appear in every latitude if the depth of the sea be uniform,

a result as remarkable as it was unexpected. But this

only refers to the elevation of the water. The diurnal

variations of the horizontal motions caused by these terms

would still remain. The expression for the elevation of

the water is found to change sign with q ; so that if the

water be shallower at the poles than at the equator, and

its depth be less than seven miles, low water occurs at the

transit of the luminary, if deeper at the poles, high water ;

provided the transit of the luminary takes place on the

same side of the equator as the place of observation; and

the reverse occurs if the transit takes place on the opposite

side.

Des oscillations de la troisieme espece. These oscillations

go through their period in about half a day. They con

stitute a semi-diurnal tide, having two high waters and two

low waters every day. If the depth vary as the square of

the cosine of the latitude, the expression for the elevation

of the tide shows that there will be low or high water at

any place at the moment when the luminary crosses the

meridian, according as the depth of the sea is less or greater
than about seven miles. Laplace has also investigated the

nature of these tides in a sea of uniform depth, but the

Astronomer Royal has pointed out an error in his process,
D D 2
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the effect of which is to vitiate his results, and, therefore,

also, all the numerical calculations founded on them.

This theory is certainly a wonderful step in advance.

The only defects are those that the imperfection of our

mathematical knowledge renders imperative. The results

show how false that assumption is on which the equili

brium theory is built. That theory could never lead to

the result that there must be, under certain circumstances,

low water directly under the luminary. The theory of

Laplace is, indeed, founded on suppositions as to the depth
of the sea ; but still we may expect these results to bear

some analogy to the phenomena we actually meet with.

Further, only the principal terms are considered, and thus

the effects on the tides caused by the difference of the

motions of the sun and moon are not calculated.

(3.) The third theory may be called the wave theory. It

is most successful exactly where all the other theories become

so inapplicable as evidently to be quite useless. Its pecu
liar merit is the discussion of river tides and the expla
nation of the various phenomena produced by barriers,

changes of depth and breadth in the various channels

through which the tide has to pass. It is not altogether

inadequate to the discussion of certain cases of ocean tides.

The problems considered are of two kinds. First, the tides

formed in very long canals, the waters of which are acted

on by the forces of the sun and moon. These results will

be afterwards found to bear some analogy to the case of

certain oceans as they exist in nature, bounded by their

continental shores. Secondly, the tides formed in rivers

which are so short that the action of the disturbing bodies

on their waters may be neglected, and the tide may be

considered to be freely propagated up the river from the

disturbance caused at its mouth by a tidal sea.

This theory is not to be considered as contradictory of

that of Laplace. Two truths cannot be opposed to each

other. On the contrary, Laplace s equations are required

in some of the investigations of this theory. The dif-
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ference is simply this. Laplace s theory aims at deter

mining the tides as formed in extensive sheets of water, and

therefore a solution of the Hydrodynamic Equations is

taken that is adapted to such a case. The wave theory
aims at discussing the tides as formed in long canals, and

therefore a solution of the equations is taken as suited to

such a case. It is to the labours of Professor Airy that

much of the progress that has been made in this subject is

due. I may refer to his work in the Encyc. Met. for the

demonstration of most of the theorems alluded to in the

following sketch.

Let us begin by considering Newton s case of the mo
tion of water in an equatorial channel acted on by the sun,

supposed to revolve in the equator. That part of the dis

turbing force which acts perpendicular to the water, will

produce but little effect compared with the tangential force,

the weight of a column of fluid equal to the depth acted on

by the central force being infinitely less than that of so long
a column as a quarter the circumference of the globe acted

on by the tangential force. We shall therefore neglect the

central force. On applying Laplace s equations it can be

proved that the motion in a canal will be the same as if the

earth were reduced to rest, and an equal but opposite

angular velocity impressed on the disturbing body. By
Lunar Theory, the tangential force is known to be

where b is the radius of the earth, ^ the sun s mass, D its

distance from the earth, p the relative angular velocity of

the sun and earth, and &amp;lt;p any angle determining the position

of the particle. Then, by the proposition demonstrated in

the chapter on waves, the altitude will be

3 p kb*-- COS ^-

showing that if the depth k of the sea be less than ,

D D 3
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or be less than 14 miles, there will be low tide immediately
under the luminary.

In this instance there was only a semi-diurnal tide, but

when the solar path is no longer restricted to the equator,

and the channel is any position on the earth, we have both

diurnal tides and tides of longer period. The diurnal tide

does not exist when either the canal is equatorial, or the

luminary is on the equator. When it exists, the phase at

the instant of transit depends on whether the depth of the

sea be less than 3^ miles, and the luminary on the oppo
site side of the meridian or not. If both these hold or

both fail, there will be low water at zenith transit ;
if one

fails and the other holds, high water.

There are also tides of long period ; that is to say, the

relative mean level in different parts of some canals is not

the same as if the disturbing body did not act. The mean
level thus depends on the position of the luminary.

The state of the tide will manifestly be affected by fric

tion ; it appears that if we wish to calculate the height of

the tide, at any time t, we are to proceed as if calculating

the height (on the supposition of no friction) at a later

time t-\-a, with the luminaries in the position they were

in at a preceding time tfi9 where and /3 are two quan
tities given by the theory, and depending on the amount

of the friction.

In considering the effects of two bodies, we see that,

according to this theory, they do not produce effects which

have the same ratio as in the equilibrium theory. If in

that theory, p be the ratio of the lunar to the solar high

tide, and ? the ratio given by the wave theory, then

where n, n are the angular velocities of the sun and moon

relative to a fixed line on the earth, b the radius of the

earth, and k the depth of the sea. This ratio will be

different according to the different values of k. This

explains the fact, that in different seas the ratio of the
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lunar and solar tides is not constant, but varies with the

depth of the sea.

It would take too long to enter into all the applications

of this theory to oceanic tides. If we could consider the

Atlantic as a canal running nearly north and south, the

tides in it would be nearly stationary. This is certainly

not the case. The South Sea might be considered as a

canal running east and west ;
in that case there would be

a forced tide wave travelling along it. The only advan

tage of this theory in its application to oceanic tides, is

the simplicity of its analytical processes. It is even pos

sible to consider the effect of friction. The seas to which

we apply its results are not canals, but we only use them

as suo-crestive of the general characters of the motion.
i

The theory is most successful in determining the tides

in rivers. The water at its mouth being disturbed by

the tides formed in the open sea, that disturbance will be

propagated, with unaltered period, up the river with a

velocity proper to the depth, viz., the square root of pro

duct of the mean depth and the force of gravity (32-18 ft.)

This disturbance is a long wave ; when the top part of

the wave passes any point, it forms high water, and when

the lower part, low water at that place. The length of

the wave of course depends on the distance up the river

travelled by the front part of the wave formed at the

mouth of the river, while the other parts are being formed.

There may even be many high and low tides on the same

river at once. Thus La Condamine observed about

twenty places on the Amazon where there was high

water with low water at the same time at intermediate

places. It is also possible, as this long wave is propa

gated up the river, that the low water at some place a

considerable distance up the river may be higher than

the high water at the sea. This occurs on the Thames

and most rivers.

This propagation of the tide is not the transference of

a body of water up the river, but the motion of a form.

D D 4
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We have seen that when a wave travels, along a uniform

channel, that the water is moving in the direction in

which the wave travels, so long as the water is above its

mean level, and in the opposite direction so long as it is

below its mean height. This is also the case with the

tide, except so far as this circumstance may be modified

by the varying depth, breadth, &c., of the river. It is a

common error to suppose that the flow up the river ceases

when the tide begins to fall. The flow in a uniform canal

continues for three hours after tide. But if the depth
and width be decreasing, if there be any friction among
the particles of water, if there be any impediments to

the progress of the wave, as a barrier or a series of

bridges, the theory shows that this interval will be much

less, and observation confirms the result, for the mean
interval at which slack water follows high or low tide at

Deptford has been shown* to be thirty-seven to forty

minutes.

The height of the tide wave also experiences many
alterations due to the varying circumstances of the river.

If the tide be stopped by a barrier, or if we are consider

ing the tides in a gulf like the Bay of Fundy, theory
shows that there will be tide waves reflected from

the barrier, and the height of the tide at the extremity

may be greatly increased. If the breadth or depth de

crease, the height of the tide will be increased, particularly

by any decrease of the former. On entering any river,

then, we may expect the tide to be greatly increased. The

magnitude of this change depends on the breadth of the

wave, and this again depends on whether the tide be

formed by the sun or moon ; hence the ratio of the tides

formed by the two luminaries will not be exactly the same
at all places. But when the tide has entered the river, the

friction of the particles of water causes the disturbance to

diminish in geometrical progression as it goes up the river.

&quot; At the entrance of the Bristol Channel the whole rise

* Phil. Trans. 1842.
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at spring tides is 18 feet, at Swansea 30 feet, at Chepstow
about 50 feet.&quot; &quot;At Newnham it is reduced to 18 feet,

and it is still less at Gloucester.&quot;

The form of the wave itself is also changed in its progress

up the river, if the channel is so shallow that the height of

the wave bears a sensible proportion to the depth. It is

in this case necessary to carry our solution of the Hydro-

dynamic Equations to a second or third approximation.
When this is done we find that the high water travels up
the river with a greater velocity than the phase of low

water ; the wave becomes steeper in front, and long and

gentle in rear. Thus it takes less time for the tide to rise

than to fall.
&quot; In the St. Lawrence at 40 leagues below

Quebec, the rise and fall occupy equal times ; at 6 leagues
below Quebec, the rise occupies five hours and the fall

seven hours ; at twenty leagues above Quebec, the rise

occupies three hours and the fall nine hours.&quot; The rule

given by theory is, that the excess of the time of the water

falling over the time of rising is six times the product of

the time occupied by the tide wave in passing from the

open sea to the station under consideration, and the ratio

of the rise of the tide above the mean depth to the mean

depth. In this change of form we find an explanation of the

bore. Two things, says Professor Airy, are necessary for

its formation. There must be a large tide rising with

rapidity, and the channel of the river must be bordered

with a great extent of flat sands near the level of low

water. The tide rises rapidly in the centre of the river,

but the water is not broken. But, the rise being very

rapid, the water is elevated above the sands faster than it

can cover them, and therefore rushes over them with a

great velocity and a broken front. As the tide proceeds

up the river, a still more extraordinary change of form

takes place ; the middle of the rear becomes less and less

steep ; it is at last horizontal, and finally slopes the other

way. Thus for every high tide at the mouth there may
be two unequal high tides at a distance up the river. In

accordance with this, Mr. Russell has observed a double
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tide on the Dee. On going to a third approximation,

triple tides are found possible, and this occurs on the

Forth. When there are barriers in the river, as the

land at the termination of the Gulf of Fundy, the reflected

wave is such that there is no horizontal motion at the bar

rier, and that the tidal elevation at the mouth, caused

partly by the sea and partly by the reflected wave, shall

altogether be equal to the tide in the sea itself. Hence

just as in the case of sound waves in a tube, there will be
&quot; nodes

&quot; and &quot;

loops,&quot;
if I may so call them. At some

places there might be no tide, and at others there will be a

rising and falling of the water, but no wave will be pro

pagated along the channel. This is called a stationary

tide. The usual case is that which corresponds to the
&quot; fundamental node.&quot; There will be high water at all

parts of the gulf at the same moment, and the tide will be

greater the greater the distance from the mouth, and at

the termination will be double that at the mouth. But

when there is friction in the water, this is not exactly the

case. It can be shown that then a tide wave does roll up
the river with a velocity different from that proper to the

depth, and the end of the flow follows close upon high
water. The height of the tide also may or may not in

crease as it travels along, according to circumstances.

In canals adjoining two tidal seas in which high water

does not occur at the same moment, the motion of the

water must be found by the same kind of reasoning.

But as the result is complicated, we shall not consider

this case.

The motion of the tide in channels deeper in the middle

than at the sides, as, for instance, the English Channel,

has also been considered by Professor Airy. The velocity

of the phase is greater in the centre than along the sides.

The tide wave will, therefore, become slightly convex, and

the velocity being always normal to the front, it will

assume such a shape that the part of the normal intercepted
between two consecutive positions shall be proportional

to the velocity of the wave along that normal. Thus the



411

tide curve along the shore will assume a position nearly

parallel to the line of coast. The phenomena of the

motion in mid-channel will therefore be the same as that

in ordinary channels, and the direction of the current will

change only when the water is at its mean height. But

near the coast there will be a reflected wave from the coast,

and the phenomena of motion will more resemble that of

the tides in a short gulf; the direction of the current will

therefore change at high and low water. At places inter

mediate, intermediate phenomena will take place. Thus

the direction of the current will be intermediate between

the direction of the current at the centre of the channel

and that along the shore. A little consideration will show

that on one side, the current at any spot will, in one com

plete period from high to low water, go round every point

of the compass in the direction of the hands of a watch,

and on the other side in the opposite direction. The for

mer phenomena are found to occur on the English side of

the Channel, the latter on the French side.

Such are our present theories of the tides. It may be

said that we have almost obtained a complete explanation
of river phenomena. The great difficulty is with the

ocean. In mathematical language we can solve the ques
tion of the motion of the tide in one dimension but not in

two. Philosophers have been of late very assiduous in

collecting the &quot; facts
&quot;

of oceanic tides, rightly considering
that such knowledge will enable us greatly to advance the

theory. Many interesting papers on this subject will be

found in the Philosophical Transactions, and to these we
must refer our readers.

The first step was the construction of what is called
&quot; co-tidal lines.&quot; These are curves drawn through all the

places on the globe which have high water at the same

instant. By drawing these lines for the successive hours

of the day we can trace the progress of the tide wave over

the whole globe. A beautiful map of these will be found

in Johnston s Physical Atlas. It appears that the tide

wave travels east to west in the great South Seas, as a
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forced wave following the moon. On reaching the Cape of

Good Hope, one tide wave is sent up the Atlantic north

wards, and another continues its course into the Pacific,

and travels westwards and northwards up the west coast

of America in a very remarkable manner. The tide wave
in the Atlantic travels, therefore, from the south north

wards, and arrives at England fourteen hours after it left

the Cape. It here sends branches into the English and
other channels that environ England, while the chief wave
continues its progress northwards, sending other tide waves,

travelling from north to south, down the same channels.

Two tide waves arrive, therefore, at the mouth of the

Thames, and the London tide is compounded of these two.

One has travelled along the south coast in seven hours,
and the other has gone all round Scotland and descended

the German Ocean in about twenty hours. The difference

of these intervals is about twelve hours; thus the two
semi-diurnal waves arrive in nearly the same phase and

strengthen each other, and the two diurnal waves in oppo
site phases and destroy each other. There is therefore at

London no diurnal variation of the tide. These two

tides, though they meet at the Thames, do not travel in

exactly opposite directions. They both travel a little

eastwards, in direct opposition to the motion of the moon.

They are both also greatly modified by the many shoals

found in those seas. As may be supposed there are points
where the two tides meeting in opposite phases, even the

semi-diurnal tide will be destroyed. Captain Hewitt has

discovered such a point. It is situated about latitude

52J ; there is simply an alternate tidal current, but no

elevation of the water.

The tide wave in the Atlantic is probably partly formed

in the Atlantic and partly derived from the South Seas. If

it were entirely formed in the Atlantic, as the length of

that sea from south to north is greater than its breadth,

the tide wave would have a tendency to travel partly along
its length, with a very irregular velocity, and partly along
its breadth. If the tide were entirely derived from the
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Southern Ocean, the tide wave would travel along its

length with a velocity proper to its depth. This, as may
be supposed, is very irregular. The mean velocity of the

tide wave would indicate a mean depth of three and a

half miles.

Again, if we suppose that a tide wave would be re

flected from the northern coasts of America, and regard
the Atlantic as a gigantic closed gulf leading out of the

South Sea, the velocity of the tide wave would not merely

depend on the depth. Until we know more of the nature

of the bottom of the sea, we cannot determine theore

tically the motion of the tide wave.

By theory, the diurnal tide wave should be very small

near the equator and poles. But this is not the case.

The reason is manifest. TVe have neglected, in our theory,

the effect of the configuration of the coast. The importance
of this is manifest from the slight sketch we have given of

the progress of the tide over the ocean.

It is impossible for us to do more than merely allude to

the effect of wind, shoals, &c. on the tides. Neither can

we enter on the question of aerial tides. That such tides

must exist is evident, for the attraction of the luminaries

will disturb the air as well as the water. The extent of

these oscillations have even been determined by very ac

curate observations of the barometer. The variations of

pressure, as indicated by the barometer, also affect the

ocean tides in a remarkable manner. Daussy, Lubbock,
and Birt have investigated the amount, and shown that a

rise of one inch of barometer will cause a depression of

the tides of 7 inches in London, 11 at Liverpool, and 13

at Bristol.
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No. I. GALILEO.

SOME uncertainty exists respecting the decree or sentence

against Galileo, and the Copernican System. The advo

cates of the Romish Church, indeed, deny that it was

pronounced against the doctrine of the earth s motion and

the sun s rest, and affirm that the sentence was against

Galileo personally, on account of his breach of the pro

mise which he had made to Paul V. (Borghese), and the per

formance of which he evaded by giving the doctrine in the

form of a dialogue. It is also alleged that the sentence

is pronounced by the Inquisition, and not by the Holy See.

Of this there can be no doubt ; but it sets forth a previous
&quot; declaration of the theological qualifiers, made by de

sire of His Holiness, as well as of the Inquisition,&quot;

that the Copernican system is &quot;absurd and philoso

phically false and formally heretical, because expressly con

trary to the Holy Scriptures.&quot;
This seems to go beyond

the mere assertion that it is only false as being unscrip-

tural. There is, however, no doubt that the alleged infal

libility of the Holy See is confined to matters of faith ;

and thus its advocates have some ground for their asser

tion, that the heretical nature of the doctrine was alone

set forth both in the sentence on Galileo and in the previous

proceedings. The supposition that he was subjected to

E E
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torture in order to obtain his recantation, appears to rest

on no foundation, except the use of the terms rigorous

examination (rigoroso esame), said to be the form in

which torture is referred to by those sentences. But

the story is completely negatived by Galileo s own letter

giving an account of the manner in which he had been

treated, acknowledging the respect paid to him, and the

lenity of his imprisonment, or rather nominal detention,

in his friend the Archbishop of Pisa s (Picolomini s) pa
lace. (Tiraboschi, Lett. Ital. torn. viiL* lib. ii. p. 147.)

It is probable that the story of his whispering to a friend
( E pur si muove&quot;

(&quot;
And it moves for all that,&quot; ) when

he rose from his knees, on which he had made the re

cantation, rests upon no better foundation. Nothing can

be more unlikely, at least, than his choosing such a

moment for this pleasantry a moment of great though
forced humiliation, when he had in the most solemn man

ner called God to witness, that &quot; he abjured, cursed, and

detested
&quot;

the positions which he entirely believed ;

nothing more unlikely than his exposing himself to the

risk of his words being discovered by immediate examina

tion of the person whom he addressed.

But it seems still somewhat doubtful how far the sen

tence upon Galileo has been reversed. His &quot;

Dialogue
&quot;

had by decree of the f&amp;lt;

Congregation of the Index &quot;

been put
into that list of forbidden books; and Leo XII. (Genga)

nearly thirty years ago ordered it to be expunged from

that list. Mr. Drinkwater (Life of Galileo, p. 64.f)
states that it had not been erased in 1828. Mr. Lyell

(Principles of Geology, p. 56, edition, 1853), considers that

this assertion is inconsistent with the account which he

received from Professor Scarpellini at Rome, in 1828,

*
Viviani, who is described as devoted to Galileo more than a son to

a father, and who attended his master for the last three years of his life

(Montucla, ii. 290.), \ gave not the least countenance to the exaggerated
accounts of his treatment.

f Published by the Useful Knowledge Society in 1829.
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that Pius VII. (Chiaramonte) had assembled the Congre

gation
&quot; which repealed the decree against Galileo and the

Copernican system,&quot;
with only one dissentient voice. It is,

however, possible that the Index might still retain the name
of the book. It must also be remembered that nothing can

be more inconsistent with the usual proceedings and policy

of the Roman See, than making such an admission of

error as is involved in the repeal of a sentence pronounced,
and purporting to proceed upon the ground of heresy.

There can be no other explanation given of such a man
as Benedict XIV. (Lambertini), the friend and patron of

Boscovich, the correspondent of Voltaire and other lite

rary men, himself an eminent cultivator of letters, and

remarkable for the liberality of his opinions, suffering

the sentence on Galileo to continue the disgrace of his

church.

It must, however, be borne in mind, that probably soon

after Galileo s condemnation, certainly for the last century
or more, the prohibition to teach the Copernican system
was little more than nominal ; nothing else was required

than to term it the Hypothesis, and not the doctrine,

or theory, of the earth s motion. The declaration of the

Fathers (Leseur and Jacquier) accordingly calls it an Hy
pothesis. They regard the proceedings in Galileo s case,

(to which it is manifest that their words refer) as a decree

against the motion of the earth. But many have sus

pected that this is a covert attack on those proceedings;
and certainly, considering the time of the declaration ap

pearing, when Benedict XIV. was in every way promo

ting science and letters, and pursuing generally the most

liberal and enlightened policy, this supposition is not

without plausibility. It must be added that whenever the

outward deference to the decree of the Consistory was

shown, the doctrine, under the name of Hypothesis, was

openly taught, with the utmost freedom in giving the

proofs whereon it rested.

E E 2
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No. II. (p. 58). ANOTHER DEMONSTRATION.

TAKING the expression
- for the force and making it

i r= the general form -^-^ where h is constant, we have
p JLv

70

- - = ^ This is a differential equation of the second
p

3
. li r2

order, and it can have but one general integral, and that can

contain only two arbitrary constants. Such an integral has

been found ; for it has been shown that any conic section

with the focus in the centre of force satisfies the equa
tion. The nature of the case shows that any singular solution

is out of the question. We may also arrive at this result

A2

by reversing the process in p. 49. Substituting for R, g
x

dp u, , dp ft, dr i L ,
1 2 ,

-= and -1 =i -p and migrating, ?
==
-^

/&quot;i_l_ cV This is a well known property of all conic sec

tions; but to show that no other curves possess it, put

1 1 du
- u\ then since = ?r + -=-.

. r
, therefore -TTa Q

M. MA\/U &amp;gt;JL.UV/V^ n 7

r p
2 d

V~ 2 a u
C + -^ u

2 7^5 . u -f C, and therefore , = d 0.
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f*
Q 1 ^/ ~

i ,

V- -The integral of this, calling C + p= L
2
, is cos r

= Q
, or - = 2* = p +L cos a, the general equa

tion to a conic section.

. NO. III. FORCE VARYING INVERSELY AS THE
DISTANCE.

IT is remarkable that what at first sight seems to be the

most simple of all the cases, that of the central force vary

ing inversely as the distance, or of m = 1 in ~, should be

found so much the most difficult of solution, and that,

whether the proportion of - enters into motion related to

one centre only or to more centres than one. Herman,
in the Phoronomia, turns away from it, merely observing

that his formula fails when m = 1 . Clairaut, in his excel

lent commentaries on the Principia, his additions to Madame
du Chatelet s translation, deduces, chiefly from the Pro

positions of the Second and Eighth Sections (Lib. L), a

general differential equation for the curve described by a

body under the influence of a centripetal force as Y, a

function of the radius vector ; and the equation is there

fore a polar one. It involves the integration of fY dy.

Consequently, when Y = -
, the case we are now con-

/

sideriug, the integral contains an unmanageable logarithm ;

E E 3
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Ay
for the equation becomes I2f2 dx =

= _ _. He makes no mention of this

y
2

(2 B -
log y

2

)2

case, as, like Herman and most others, he seems unwilling
to approach it ; undoubtedly, however, such is the applica
tion of his formula.

Keil, in his paper on Central Forces in Phil. Trans. 1708,

p. 174., gives the case of the force as- and reduces it to

finding
_ P, the perpendicular to the tan

gent.

By one process grounded on Prop. XLI. Lib. I., this

result is obtained for the case of -, that is -

2 dxd? x + 2dy d* y _r (x d x + y dy
or//-

, ^

/d
x2 + d ?/

j-p
2 log (&amp;gt;

2

+y2

) -c = 0; and d t* being

_ (y d x x d y)
2 s* d x* + d ?/

2

72 &amp;gt;

tne equation becomes / =-4-_J (ydxxdyf

The process grounded on the formula / = h

2 p .xv

is, if possible, more hopeless; for this gives

h
(?/

2 + (x
-

c}*f X (d x d2

y - d y d2
x)

Z(ydx xdy-icd y)
3

1_
, or h (y* + (x c)

2

) (d x d2

y
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d y d2

x)
= 2 (ydx-xdy + cd y )

3
, or ^~ =

r2 (y d x x d y + c d ?/)
3

The difficulty follows -- wherever that proportion en

ters into the investigation. Thus in the problems con

nected with different centres, when it is found that

forces varying as -
2
and

2, being combined with forces

varying as the distance directly, or as r and q} give

an elliptic orbit, the resultant of the latter forces passes

through the centre, and the locus of that resultant is

the opposite semi-ellipse, and so of a circle. But when

the proportion is -- and , (also if the force towards

each centre is as the radius vector to the other centre,) the

resultant passes through innumerable points to an opposite

curve, sometimes of a different kind, although each result

ant differing in its direction from all the others, and in the

case of the circle, from the diameter, is equal to the one

passing through the middle point of the line joining the

two centres. In this case, therefore, there is no combined

action of the forces -2 and -
2 , or ^ and -

5
or of their seve

ral resultants, with the resultant of - and -, as there is in

the case of - and -, but the several forces act wholly in
m

the direction of the radii vectores severally.

It evidently appears to be a more simple and natural

combination that the two sets of forces should dimmish

E E 4
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with the distance increasing, as in -^ and -^ combined,

r q

with - and -, than that one set should decrease and ano-
r q

ther increase with the distance, as in and -~ with r and
r2

cf

q, in which case there must even be an extinction of force at

one point, where (taking the sum of the forces instead of

.! . T , m m r-\- a
their resultant)- 2 H--:

2

~-
~, or r is as in the equation

Cl 77?

f3 + -
2

r2 = m *- Of course the value of q would be

the same ; and the resultant (more accurately taken to

measure the increase of the force) would at one value give
the two sets of forces as counterbalanced.

The younger Euler (J. A. Euler) has a paper in the

Berlin Mem. 1760, p. 250, upon the action of a central force

decreasing as the distance, in the case of the attracted

body s descent towards the centre, and states the reason of

this problem being insoluble except by arcs or logarithms.
He finds that taking a= the height from which the descent

begins, f = that at which the centripetal force is equal
to the gravity of the attracted body, the time of descent

I /^*
e is = -- / dy , . . ,.

A/? /-~ V being the dis-
J*J a

^lo~

towards the centre is =
A/? -~
J*J ^

tance from the centre.

No. IV.

CENTRAL FORCES TO MORE THAN ONE POINT.

1. IT is to be lamented that Sir I. Newton did not treat

the problem of forces directed to more fixed points than
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one, as to two such points, either in the same or different

planes from the body acted on. This is the fundamental

point in considering disturbing forces when the centres are

not fixed, which makes the problem more complicated and

difficult. It is, however, sufficiently so even where the

centres are fixed.

2. That the subject must have attracted his attention

there can be no doubt. He had gone so much into the

more difficult inquiries respecting disturbing forces that he

must have fully considered the somewhat simpler, what

may be termed the fundamental, case of fixed centres. In

deed, a paper communicated to the Royal Society in 1769

(Phil. Trans, p. 74.) contains a demonstration by W.

Jones, an intimate friend of Xewton, of a proposition on

this subject, which Machin had immediately after Sir

Isaac s death given to the translator of the Principia.

Machin had observed on the want of some investigation of

the motion of forces directed to two centres, as required

to explain the motions of planet and satellite, which gravi

tate to different centres, in a word the problem of the

Three Bodies. The proposition of Machin and Jones goes

but a very little way to supply the defect complained of.

It is confined to the case of the line joining the two centres

being in different planes from the line of projection ; it is

that the triangle formed by the radii vectores and the line

joining the two centres or fixed points, describes equal solids

in equal times round that line ; and the demonstration is

similar to that of the first proposition, of equal areas in

equal times when a single force is directed to one centre.

It seems reasonable to conclude, that Xewton had, upon

full consideration, found the full investigation of the subject

beyond the powers of the calculus as it then existed. It

is at least certain that, though he might have mastered

it, he never could have delivered his results synthetically

as in the Principia.

3. The solutions on disturbing forces generally consider

one force as acting in the one direction, that of the radius



426 APPENDIX.

vector, and another in a line perpendicular to that radius

vector. Thus Clairaut (Mem. Acad. 1748, p. 435.) gives
these equations r d 2 v -{- 2 drdv = II d x~

r being the radius vector, v its angle with the axis, dx the

differential of the time, II the force to the centre, S the

disturbing force. So D Alembert (Mem. Acad. 1745,

p. 365.) takes the same course, and obtains an equation
to the orbit in question, depending on the integration of

dz, TI being the disturbing force acting in a line

perpendicular to the radius vector, and z the circular arc

described with a radius equal to the distance between the

centre of force and the vertex of the orbit. This assumes,

however, that the orbit is itself nearly circular.

4. If P = distance of E (Earth) from Moon (M) s

quadrature, s = sin. angle of rad. vec. r with the per

pendicular to a, the distance of E from S, the Sun;

i -A r AT Ai j rdP SP^mnsds
v = velocity of M

;
then v d v = p

--h -
3

supposing the motion of M to be almost uniform. Here
one of the forces acting on M is directed towards E and

E 4- M S x M E .

is = , ,
p 2
- + , ,

3 ; the other force is in a line

parallel to S E or a, and is = , _
3

. It was

in consequence of this investigation that Clairaut for some

time announced, as did also Euler and D Alembert, that

there was a material error in the Newtonian theory of the

Moon s motion. The error, which afterwards was found

to arise from their having omitted the consideration of

certain quantities, was acknowledged by Clairaut three

years later (Mem. Acad. 1748, pp. 421. 434.), but no one



APPENDIX. 427

can read that paper without feeling that the acknowledg

ment was too coldly made, after he had gone so far as to

suppose that the whole Xewtonian doctrine was over

thrown, and to propose a new law of -
2
+

^-,
the whole

of this arising from his own error. It is to be remarked,

however, that the investigation of 1745 was in all respects

most accurately conducted, and must have led to the same

result as in 1748 but for the supposition that certain quan

tities might, safely be neglected. Even in 1745 Clairaut,

upon Newton s assumption of the excentricity of M being

nothing, comes to his conclusion that the proportion of the

axes is as 69 to 70.

4. Legendre treats the subject very fully, as far as re

gards two centres, and also confining himself to the forces

being inversely as the square of the distance (Exercises

de Calcul Integral part iv. sect. 2.). He deduces from

his analysis several theorems, two of which he regards as

very remarkable. The first apparently strikes him in this

light, because it shows the same orbit to be produced by

the combined action of the two forces directed towards

two foci, as either force would produce acting on the body,

and directed to one of the foci. If V is the velocity at the

vertex of the ellipse which would make the body de

scribe that curve when acted upon by the force directed

to one focus, v the velocity at the same point which

would make the body describe the ellipse when acted

upon by the other force directed to the other focus ; then

if the two forces act together upon the body, and I is the

initial velocity, or velocity of projection, it will describe

the same ellipse, provided I2 = V 2 + v2
.

5. The other theorem follows from his integration which

gives the expression for the time. It is that if two equal

forces act upon the body directed to the two foci, and the

masses of the attracting bodies consequently are equal, the

revolving body will describe the ellipse in a shorter peri-
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odic time, will move more swiftly, than if the whole

mass were placed in one focus and acted from thence

upon the revolving body. He takes the example of the

tangent of the orbit with the axis making an angle of 30,
and finds the periodic time shorter in the proportion of

nearly 78 to 100 when the attracting mass is divided into

two, one acting in each focus, than when both combined

act from one focus,

6. What renders this problem of more centres than one

so difficult, is that the resultants of the forces pass through
different points, and that they vary by a law which differs

in each case, as the locus of their extremities is a different

curve. Take the least complicated, but still full of diffi

culty, that of two fixed points as the centres of force, and

take the instances in nature of the forces being inversely

as the square of the distance ; the radius vector to one

point being r, the force
3 ;

to the other point the radius

m
vector q, the force ^-. Now the force which acts on

f
the body being the resultant of these two, and these forces

not being as r and q, the diagonal does not pass through
the middle point of the line joining the two centres; except
in the single point of the orbit where r=q, and even then

it may not reach that line, for it is
* m

t At every other

point it runs in a different direction. Let S and S be the

two fixed points ; S P= r, and S T*= q. Then P a being

taken = -
-% , and Pa = -

2 , the resultant at that point

P bisects act! and is P c, and produced, P M cutting the

axis. From hence may be seen how complicated would be

the analysis, how next to impossible the geometrical con

struction of the locus of P, by referring the lines PM to
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S S as an axis. We know indeed that one of the forces
-^

or -^- acting towards S or S , the locus of P is an ellipse ;

but it would not follow that if both forces acted the same

curve would be the locus. That the force would be differ

ent is certain, because it would be as P c, and not as either

Pa or P a . But it may be said that the curve also would

be different. Let us,, however, suppose the case of the

curve, whatever it be, cutting the axis S S produced at

2: and 2 , points equally distant from S and S , so that

S^= S *% ; also that the angle and the initial velocity of

projection from ^ and 2 is the same, and further that the
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attraction as the mass is the same from S and S , or that

the mass of the body in S and in S is the same ; then

it seems impossible to avoid the conclusion that an ellipse,

and the same ellipse, must be described ; because one of

the forces alone acting from S, as
2 , would give the

ellipse passing through ^ and ^ ; and the other force alone

acting from S, as
^, would give the ellipse passing through

the same points ^ and 2 ; and tie initial velocity
* and angle

of projection would prevent any difference in the length of

the conjugate axis; and in the middle point answering to

the centre C, the equality of r and q and of P# and Pa
would make the diagonal PC coincide with the conjugate
axis. But a further combination of forces may be sup

posed in this case ; two forces acting towards the points

S and S and in the proportion of r and q, or and -*-.m m

How will this addition affect the locus of P ? It should

seem, for a reason similar to that before given, that the

curve would remain the same ; for the two new forces

M . SY

and , acting in r or q or PS and PS 7

respectively,
T

m m

their resultant must, if there were none other acting, pass

through the middle point C, between S and S ; and as we
know that a force acting from that point, and in proportion

to the distance from that point, causes the body to move in

an ellipse whose centre is that point, and r+ q being con

stant, the ellipse must have the same axis and coincide

* The condition of Legendre (mentioned in page 427), that I2 = V2 + v-

is supposed to hold; for otherwise the centrifugal force would not be suffi

cient to balance the centripetal.
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with the ellipse produced by the combination of the forces

m , ?7i

-3-
and

j-.

7. This had appeared to be a necessary consequence of

the conditions stated, but not as at all proving the ve

locity to be the same in the ellipse, when described by

one force ^ or
^,

or when described by the combined

action of both, or when described by the combined

r , a m m r , q ,

action of and - L
, or of -, o, , and ; be-

m m r* q* m m

cause in all those cases the velocity will be different, and

^11 i n ?72 ?* . , T)l O ..,

particularly the action of s- H with f + - will occa-
J

?*- m q* m

sion adifferent velocity in each point from that occasioned

by 5- H 5. Thus to take the velocity at one point* r2

q
2

answering to C. If Ha and Ha be taken as -^ and -
2 , the

diagonal lie is the force of ^ and -^ combined, TIC is the

resultant of and -^-combined (supposing 7?z=
l). There

fore the velocity in II will be as lie + nC, when all the

forces act, and only as He , when the two former act alone,

and as nC when the two latter act alone.* But the curves

appear to be the same in each case.

8. These consequences seeming to follow from a con-

* The difference in velocity is easily obtained, in comparing the effect of

one force and of the combined forces, from the equation v-= 2 (fx half chord

Q TJ

osculating circle, the chord being = t
, p = perpendicular to the tan

gent, and R= radius of curvature.



432 APPENDIX.

sideration of the conditions stated, but without a full and

rigorous investigation, it was very satisfactory to find that

Lagrange had arrived at the same conclusion in one case

of his solution of the problem of two fixed centres {Mcc.
Anal. pt. ii. sect. 7. ch. 3.) That solution is marked

throughout with the stamp of his great. genius. Euler had,

in the Berlin Memoirs for 1760, treated the case of the

inverse square of the distance and the centres and orbit

being in the same plane. Lagrange s solution is general for

the force being as any function of the distance, and of

x, y, z, being the coordinates. Pressed by the great

difficulties of the problem, and the impossibility of a ge
neral solution, he first confines himself to the inverse

square of the distance (p. 97.), and a general integration

being still impossible, even after obtaining a differential

equation with the variables separated, he makes a supposi
tion which enables him to obtain two particular integrals

(p. 99.), and this gives for the orbit an ellipse in the one

case and an hyperbola in the other, with the foci in the

two centres offeree; and it follows, he observes, from the

investigation, that the same conic section which is described

in virtue of a force to one focus, acting inversely as the

square of the distance, or to the centre and acting in the

direct ratio of the distance, may be still described in vir

tue of three such forces (
&quot; trois forces pareilles* &quot;), tending

to the two foci and to the &quot;centre.&quot; He adds: &quot;ce qui est

tres remarquable&quot; (p. 101.). It having appeared to many
persons that a portion of the demonstration was not so

rigorous as might be desired, M. Serret has very ably

and satisfactorily supplied the defect (Mec. An. torn. ii.

note iii. p. 329. ed. 1855), but he arrives at the same

* It is plain that &quot;

pareilles
&quot;

does not mean | of the same kind as

q
i

and v
;

for he resolves the force to the centre into two acting to the foci,

and calls the whole forces
-^- +27?- and + 2 7 q.
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result. There is also given a very important generalisa

tion of Lagrange s solution, and of Legendre s theorem

already mentioned, by M. Ossian Bonnet. (Ibid, note iv.)

9. The same reason already given proves that if, instead

of two points not in the trajectory we take two in it, as 2$

and 3 , and refer the forces to those two, and make the forces

and -y in 2IT and 2 IT respectively, and the angle of

projection and initial force the same, the same circle will

be described by the body; and that if two other forces

also act on it, as SIT and 2TI (or and -
) the same

V in m/

circle will be described by the joint action of the forces.

This is even a more remarkable consequence than the

other ; because the forces acting to the centre would of

course give a uniform motion, and those acting to the

points in the circumference an accelerated motion, and the

forces combined will give an accelerated motion. At the

middle point IT, the velocity will be, if only the forces

m J m ^ m -c A i. r r j 9 iand , act, as -
5 if the forces and - also act, it

r5 q
5 2 a2 m m

will be as \f 1+ - It must, however, be added,V 4 a4 m

that Lagrange s solution does not contain this case, of the

circle and two points in the circumference, and there is very

great difficulty in applying to it his analysis. Indeed, it

appears that if the problem be worked upon the datum

n

of B. =
*

-f 2 y r, and Q = = + 2 y q, there is no possi

bility of obtaining an expression freed from the integral sign

I
I j

in the same way as Lagrange does from his equa-

/i

tion, founded upon the datum R= -^ -f 2 y r and Q = ~
2

F F
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+ 2 y ^ ;
w = 2, and consequently m -f 2 = seems

necessary to his process.

There seems reason to suppose that the kind of reasoning
on which we have relied as to the identity of the trajectories

had influenced Legendre in confining his investigation to

the case of curves which have not infinite branches. He

expressly says (Ex. de Calc. Int. 11. 372.), that he

confines himself to curves where the orbit is restricted to

a definite space. Certain it is, that the reasons applied
to the identity in the case of curves returning into them

selves is wholly inapplicable to curves having infinite

branches.

10. The extreme complication of the problem arising
from the resultants passing through innumerable points in

the axis has been above noted, as regards the case of two

forces only ~ and . When we add the other two
f9 f i

~ and the complication is not considered by Lagrange

to be increased (p. 99.), and probably it is not as regards
the analytical investigation. But it certainly is increased

as regards the geometrical construction ; for we then have

to take the resultant of P c with P C (which is the re

sultant of r and q), and this will carry the ultimate dia

gonal representing the whole force applied to P beyond
the axis S S . Lagrange indeed does not take P C into

his analysis, because he supposes the forces r and q to act

in the same line of the radii vectores with the forces

-s- and -r-. But this would cause these radii vectores
r2

g
2

to be produced, and make their resultant also fall below

the axis. It can hardly be doubted that these considera

tions weighed with Sir Isaac Newton, in disinclining him to

the investigation of a problem which could afford no hope

of a geometrical, or of any synthetical solution. That he

had deeply considered the subject of attraction to various
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centres, in the more difficult case of raoveable centres is

certain. The justly celebrated LXVIth proposition of

the First Book affords ample proof of it; and indeed the

LXIVth proposition comes so near the subject of this

note, that it may be correctly said to contain the grounds
both of Clairaut s and Legendre s more full investigation.

11. In connection with this subject Lagrange expresses

great admiration of a theorem of Lambert, which no

doubt is remarkable, that in ellipses (the central force

being as -^ the time taken to describe any arc depends

only on the transverse axis, the chord of the arc, and the

sum of the radii vectores at its extremities. AYe may
observe, in passing, that the vanishing of the expression

for the conjugate axis in some fundamental formula con

nected with the ellipse, for example, the subtangent, gives

rise to other curious properties of the curve similar to the

one noted in this theorem, which is itself related to that

peculiarity. (See a porism arising from this circum

stance; Life of Simsoji, p. 154.) The same theorem had

occurred to Lagrange himself, in examining the problem
of deflecting forces to two centres; it is indeed derivable

immediately from the case of that problem when one force

vanishes and the centre connected with it is in an arc of

the ellipse ; for then the radius vector belonging to that

centre becomes the chord. But Euler, long before either

of them, in 1744, had given the theorem for parabolic

arcs, which they only extended to elliptic arcs, and had

published it in the Berlin Mem. 1760. Yet when Lam
bert claimed it as his own in 1771, and Lagrange gave
him the honour of it in 1780, Euler, though he lived

three years after, never thought of reminding them of his

prior claims. It was thus, too, with the first of analysts,

respecting the extension of the Differential Calculus to

that of Partial Differences (Life of D Alembert, p. 466.},

by far the greatest step in mathematical science which
F r 2
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has been made since the age of Newton and Leibnitz, if it

have not a rival in the calculus of variations, the honour

of which also is shared by him with Lagrange.
12. It must be observed that when in 1771 (Berlin

Mem.) Lambert extended the theorem to elliptic arcs, he

was ignorant of Euler having anticipated him as to para
bolic arcs. But Lagrange truly states (Mec, Anal. ii. 28.,

ed. 1855), what shows that all of them had been antici

pated by Newton. For in the IY. and V. Lemmas of the

Third Book he had very distinctly given the whole

materials of the proposition as far as parabolic arcs are

concerned.

Lagrange notes the uses of the theorem, and observes

upon the remarkable circumstance of the time not depend

ing at all on the form of the ellipse, provided the trans

verse axis remains the same. This must have frequently

recurred to his recollection, when engaged in those great

investigations which show the connection that the trans

verse axis remaining unchanged, has with the permanency
of the system.

13. He further remarks upon another consequence of

the conjugate axis, or the form of the orbit, not affecting

the time; namely, that the conjugate wholly disap

pearing, and the orbit becoming rectilinear, the theorem

applies to the time of falling to the centre, on the centri

fugal force or that of projection ceasing to act. (Berlin

Mem. 1778.) But Newton s Vlth Lemma, to which he

does not refer, in some degree anticipated this also.

14. The great difficulty of the problem of several cen

tres, has been stated. Euler was clearly of this opinion,

and he was the first that undertook the solution. After

speaking of the general problem (Berlin Mem. 1760,

p. 228.) as alike important and difficult, he confines him

self to the case of two bodies in fixed positions, acting

upon a third, which moves in the plane of those disturbing

bodies ; in a word, to the motion of a body drawn towards

two fixed centres. He says that, whoever undertakes the
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solution of this less difficult problem
&quot; will find difficulties

almost as insurmountable as in the great fundamental

problem of astronomy ;

&quot; and adds that, after making many
fruitless attempts, he had at last been led to a solution by
the accident of an error into which he had fallen in his in

vestigation. What he proposes is to find the cases in which

the curve is algebraical ; there being, according to the con

ditions, an infinite variety, most of them transcendental.

He considers, however, that if this case of two bodies in

fixed centres, and in the same plane with the body at

tracted, should be incapable of solution, the general pro

blem must prove still more so. Nothing can exceed the

clearness of his investigation ; and the ingenious subtlety

of the contrivances by which he facilitates the reduction

of his differential equations to those of a lower degree.

Of this Lagrange expresses great admiration, who, in

giving a solution of the case in some respects more ex

tended, but in others less, became fully sensible of the

difficulties of the process, and whose investigation is less

luminous than his great predecessor s. Euler reduces his

investigation to the integration of the equation

IL d x v d y
V x H- x* *Jy + y*

and obtaining the relation between the angles made by the

two radii vectores with the axis. It is clear that La-

grange s solution is obtained by another course altogether.

No. V. LEIBNITZ S DYNAMICAL TRACTS.

EARLY in 1689, about a year and a half after the pub
lication of the Principia, there appeared in the Acta Eru-

ditorum, of Leipsic, two papers of Leibnitz, entitled,
&quot; G. G. L. Schediasma de Resistentia Medii et Motu pro-

jectorum gravium in medio resistente,&quot; and &quot; Tentamen
F F 3
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de Motuum Coelestium Causis.&quot; As these tracts coincide

in their subjects and in many of their doctrines with the

propositions of Sir I. Newton, it has been held by some,
and apparently by Sir Isaac himself, that their author

had obtained from those propositions the substance at

least of his own. This is certainly a grave charge against
Leibnitz ; inasmuch as he affirms that he had not seen

the Principia when he wrote his two papers, admits that

he had seen an abridgment of it in general terms, and

expresses regret at not having seen the work itself. He
further states his inability to comprehend by what me
thods the most important of Newton s discoveries, as de

scribed in the abridgment, the elliptical motion of the

heavenly bodies, is demonstrated mathematically from

the data obtained by observation, and the law of attrac

tion governing that motion
;
a proposition which Leibnitz

gives as deduced by himself with the aid only of the

differential calculus. The whole statement, though not

in direct terms, yet by manifest implication, represents that

he had made his investigation, and arrived at the result,

without any further knowledge of the Principia than the

fact of Sir I. Newton having obtained the same result

by his process, whatever it might be.

It cannot be denied, therefore, that the strongest proof
is required to authorise the belief of his having seen the

Principia, and borrowed his propositions from thence. But

instead of proofs there appear to exist only certain sus

picious circumstances. His statement (Act. Erud. 1689,

January, p. 36.) is perhaps too particular in describing

his absence from home on his official journey. Newton

says that a copy of the Principia had been given imme

diately after its publication, to Facio Duiller, a young

mathematician, a friend of Huygens and of his own, for

the purpose of its being sent to Leibnitz ; but there is no

evidence that it reached him. (Macclesfield MS. Paper
in Newton s handwriting. Rigaud s Historical Essay,

App. Nos. XIX. XX.) The same paper of Newton
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charges Leibnitz with having endeavoured to appropriate
Mouton s discovery by denying that he had seen his work

before he made the discovery himself.*

It must unfortunately be added, that Leibnitz s con

duct in the controversy relating to the invention of the

calculus, leaves an unfavourable impression. There was

great disingenuousness, to give it no harsher name, in

John Bernouilli s proceedings, by the confession of his own

family ; and Leibnitz, who had encouraged him, betrayed
the secret confided to him of his authorship, for the mere

purpose of grasping at an advantage, by means of the autho

rity which Bernouilli s great name in the mathematical

world gave to his decision against Newton, whom he had

opposed by anonymous writings to please his patron. All

this, however, we must admit, only affords ground for en

tertaining suspicions ; and the proof required must be

sought for in the internal evidence of the works compared

together.

The fact of the abstract having appeared in the same

work the June preceding is admitted by him, as is his

having read it. The account, however, which it contains

of the Principia is exceedingly general ; none of the inves

tigations are given of the propositions which it states that

the work enunciates. We can only consider it as showing
that the truths of which it gives a concise summary, are

proved by the application of mathematical reasoning to the

known phenomena ;
and a person so learned in this science

as Leibnitz could not have read that the Principia treated

of the descriptions of various trajectories, particularly the

conic sections, according to various data (juxta varia data,

p. 308.), without perceiving at once that this must refer to

dynamical considerations. But especially must he have per

ceived in what manner Newton had conducted his investi

gations, when he found it stated (p. 310.) that the heavenly

* This was probably Mouton s method of interpolation for places between

those calculated, instead of proportional parts.
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motions were explained by the propositions in the three

first sections of the First Book, and still more particularly

(p. 311.), that from the phenomena and the things contained

in that First Book, the demonstration was given of the

elliptical orbits, the principle of gravitation, and the law

of the inverse square of the distances, in the case of all

planets and their satellites. It is manifest, therefore, that,

without having seen the Principia, Leibnitz may have

been so far enlightened by the view given of Newton s

labours, as to be set upon applying the differential calcu

lus to dynamical investigations, and to the motions of the

heavenly bodies as the most important of all. He found,

from the account of Newton s work, that he had succeeded

in solving the great problem by mathematical investiga
tion. He never had made any such attempt before

; he

now made it when he found Newton had successfully
made it ; and to a certain extent he himself succeeded.

A great difficulty arises in examining these propositions
of Leibnitz and comparing them with Newton s, from the

singular manner of using the letters in the diagrams and

referring to them, as well as from the inaccurate printing.
It however appears clearly enough that there are incon

sistencies between different parts of his investigations ; and

Newton, when he breaks off with the words &quot; Newtoniana

tantum descripsit suo more, ac describendo nonnumquam
&quot;

after, in partly the same terms, having charged him with

imitating fluxions and then erring in his imitation from

not well understanding that method, appears to have in

tended making a similar remark upon his copying the

dynamical propositions. (Riga.ud} App. XIX. XX.) No
doubt, if taken literally, and using the words centrifugal
force in the sense in which Newton and indeed all others

use it, there seems the greatest inaccuracy in the position
that it varies inversely as the cube of the distance or of

the radius vector, this being only true if the curve is a

circle. But when we find that by conatus centrifuyus he

means what would be the centrifugal force in a circle
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whose radius is the radius vector at the given point of

the curve, there is no error, and indeed he obtains his

result in the same way as Newton does, nor could it well

be obtained otherwise. His XVth proposition equally
coincides with the equation to the centripetal force de

duced from the Vlth proposition of Book I. of the Prin-

cipia ; and the resolving the forces into two, one of which

is in the direction of the radius vector, is according to that

proposition.* By harmonical motion he means motion

whereby equal curves are described by the radius vector

in equal times; of which he gives no demonstration.

Though we may be surprised with several other coinci

dences, it must be remembered that Leibnitz had the

great benefit of Huygens theorems on centrifugal forces ;

and if it be alleged that he threw his propositions into the

form of dealing with centrifugal forces, the circumstance

just adverted to will account for it without the suspicion

that he did so to distinguish his investigations from those

of the Principia. Still less have we a right to suggest that

the attempt at reducing the whole within the scope of the

hypothesis of vortices was made to conceal his knowledge
of the Principia. It without doubt originated in the

favour still entertained generally in that day for the Car

tesian philosophy, of which not only Huygens was a zealous

supporter f&amp;gt;

but Euler himself a disciple, half a century
later.!

Upon the whole, we may affirm that the internal evi

dence is insufficient to support the charge.

* The exact agreement of his XVth prop, without equation~ - r _i* =,
at d

t\

centripetal force, 6 being the angle of the radius vector with the axis, is

to be noted among other coincidences.

f Letter to Leibnitz against the principle of gravitation, 1690.

J Mem. Acad. Paris, on the Tides, 1740.

It should seem that M. Biot has, though with some hesitation, arrived

at the same conclusion, from several passages of his most learned and valu

able papers in the Journal des Savatits, 1852$ a paper which deserves to be
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diligently studied by all who take an interest in the history of the mathe
matical parts of the Newtonian philosophy. It was occasioned by the

truly admirable publication of Mr. Eddleston ( The Newton and Cotes Cor

respondence}; and it throws important light upon some points that had not

been sufficiently examined. No more profound admiration can be cherished

for Newton than this eminent mathematician constantly and warmly
expresses; nor can any disciple find the least reason to complain, unless,

perhaps, he might dissent from the observation (p. 275.) on the inferiority

of the Newtonian notation and supposition of generation compared with

the Leibnitz plan, as if on the latter alone the calculus of partial differences

could have been invented. The investigations from pp. 458. to 476., and
from 522. to 535. are of great importance ; they strikingly illustrate the

facilities afforded by analytical process in the solution of dynamical pro

blems; they, indeed, show how the propositions of Sections II. and III.

(Lib. I.), are easily deduced from one general analytical formula, and may
afford new ground for the supposition of those who think that Newton

investigated algebraically, and demonstrated geometrically. M. Biot inclines

strongly to the belief that the abstract of the Principia in the Acta Erudi-

torum, referred to in the text, was the work of Newton himself.

THE END.
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