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With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 
observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show 
that a confirmation of equality to the speed of light as indicated by indirect Galactic observations 
will have important consequences for a very large class of alternative explanations of the late-time 
accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski 
scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between 
acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a 
self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the 
minimal modification required for self-acceleration with standard gravitational-wave speed and show that 
its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological 
constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a 
genuine scalar–tensor modification of gravity.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Nearly two decades after the discovery of the late-time accel-
erated expansion of our Universe [1,2], unravelling the physical 
nature underlying the effect remains a difficult puzzle and a prime 
endeavour in cosmology. In the concordance � Cold Dark Matter 
(�CDM) model, a cosmological constant � contributes the bulk 
of the energy density in the present cosmos and accelerates its 
expansion in accordance with Einstein’s Theory of General Rela-
tivity (GR). While � may be attributed to a vacuum energy, its 
observed value is inexplicably small to theory. Alternatively, it has 
been conjectured that a modification of gravity at cosmological 
scales may be responsible for the effect (see [3–5] for reviews). 
However, stringent constraints from the verification of GR in the 
Solar System must be satisfied and a few screening mechanisms 
have been identified that can restore GR in high-density regions 
while still permitting significant modifications at low densities at 
cosmological scales (see [6] for a review). Such a screening effect 
shall conservatively be assumed to be in operation here for the 
cosmological modifications not a priori to be ruled out, in partic-
ular satisfying tight lunar-laser-ranging bounds on the evolution of 
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the gravitational coupling [7]. The simplest infrared remnant we 
can conceptualise to arise from a potentially more fundamental 
theory of gravity is a single effective scalar degree of freedom that 
permeates the universe and may modify gravity to drive cosmic 
acceleration. The most general scalar–tensor theories have been 
shown to contain enough freedom to recover the cosmological 
background expansion and large-scale structure of �CDM without 
the need of a cosmological constant to explain cosmic accelera-
tion, while remaining theoretically consistent [8,9]. However, the 
requirement of self-acceleration for degenerate models implies a 
symptomatic and detectable deviation of the propagation speed of 
gravitational waves from the speed of light [9].

In contrast, the Hulse–Taylor binary system and observations 
of ultra-high energy cosmic rays set tight constraints on possi-
ble deviations in our Galactic environment, which is a strong in-
dication that the two speeds should also agree at cosmological 
scales [9–11]. With the recent breakthrough in the direct detec-
tion of gravitational waves with the Advanced Laser Interferome-
ter Gravitational-Wave Observatory (aLIGO) [12,13], a cosmological 
measurement will likely soon be realised. It will provide the cru-
cial constraint to break this dark degeneracy. Hence, provided the 
confirmation of a standard speed of gravity at cosmological scales, 
a genuine self-acceleration generated by a scalar–tensor modifica-
tion of gravity must manifest in the large-scale structure. In this 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Letter, we determine the minimal cosmological signatures such a 
scenario must produce which cannot be suppressed by screening 
mechanisms. We then examine whether these conservative signa-
tures are compatible with observations.

2. Self-acceleration from modifying gravity

Conceptually, modified gravity may be thought of as the pres-
ence of a force altering the motion of a freely falling particle 
along a geodesic which is determined from a metric that obeys 
the Einstein field equations but where the matter sector is modi-
fied. Alternatively to this Einstein frame, one can define a Jordan 
frame, where the motion of the particle is still governed by the 
geodesic but the metric satisfies a modified field equation with a 
conventional energy–momentum tensor. While in GR there is no 
difference between the two frames, when gravity is modified the 
respective equations of motion are distinct in form. Note however 
that for a general modification defined in Jordan frame, an Ein-
stein frame does not always exist for all metrics. We shall therefore 
more generally define an Einstein–Friedmann frame [9] which only 
requires that the cosmological background evolution equations, 
which are the relevant equations to address cosmic acceleration, 
can be mapped into their standard form.

We assume a four-dimensional, spatially statistically homoge-
neous and isotropic as well as flat (k0 = 0) universe with the 
Jordan-frame Friedmann–Lemaître–Robertson–Walker (FLRW) met-
ric given by the line element ds2 = −dt2 + a2(t)dx2, where we set 
the speed of light in vacuum to unity. The scale factor a(t) deter-
mines the Hubble parameter H(t) ≡ d ln a/dt . We then specify the 
conformal factor � mapping the Jordan-frame metric gμν to the 
metric g̃μν = � gμν in the Einstein–Friedmann frame and trans-
form the time coordinate to cast g̃μν in the same form as the 
Jordan-frame FLRW metric with ã(t̃) denoting the scale factor as 
function of proper time t̃ in the Einstein–Friedmann frame. For the 
cosmic acceleration observed in the Jordan frame to be genuinely 
attributed to a gravitational modification rather than the contri-
bution of a cosmological constant or a dark energy in the matter 
sector, there should conservatively be no positive acceleration in 
ã(t̃) (see, e.g., Ref. [14]). Hence, whereas the observed late-time 
accelerated expansion implies

d2a

dt2
= a H2

(
1 + H ′

H

)
> 0 (1)

for a � 0.6, a genuine self-acceleration from a generic modification 
of gravity must satisfy [9]

d2ã

dt̃2
= a H2

√
�

[(
1 + H ′

H

)(
1 + 1

2

�′

�

)
+ 1

2

(
�′

�

)′]
≤ 0 (2)

with primes indicating derivatives with respect to ln a. Thus, self-
acceleration implies −�′/� �O(10−1).

Naturally, the gravitational modification should also have an 
impact on structure formation and the propagation of gravitational 
waves. To describe how large-scale structure is affected, we con-
sider linear scalar perturbations of the FLRW metric, adopting the 
Newtonian gauge with � ≡ δg00/(2g00) and � ≡ δgii/(2gii), work-
ing in Fourier space, and restricting to a universe dominated by 
pressureless dust pm = 0 with background matter density ρm and 
perturbation 
m in total matter gauge. We then characterise the 
modified Einstein field equations by an effective modification of 
the Poisson equation, μ, and a gravitational slip, γ , [15–17]

k2
H� = −κ2ρm

2
μ(a,k)
m , � = −γ (a,k)� , (3)
2H
respectively, where kH ≡ k/(aH) and κ2 ≡ 8π G with bare grav-
itational constant G . The standard energy–momentum conserva-
tion equations then close the system of constraint and differential 
equations determining the evolution of the scalar modes. The mod-
ified cosmological propagation of tensor modes is described by the 
linear traceless spatial metric perturbation hij ≡ gij/gii with [18]

h′′
i j +

(
ν + 2 + H ′

H

)
h′

i j + c2
Tk2

H hij = 0 , (4)

where ν describes a running of the gravitational coupling or Planck 
mass, altering the damping term, and cT denotes the tensor sound 
speed, which can differ from the speed of light. GR is recovered in 
the limit of μ = γ = ν = cT = 1.

3. Effective field theory

As an alternative to cosmic acceleration from a cosmological 
constant �, we shall consider the presence of a single low-energy 
effective scalar field that permeates our Universe and couples non-
minimally to the metric, modifying gravity such to cause the late-
time expansion to accelerate. Horndeski gravity [19] describes the 
most general four-dimensional, local, and Lorentz-covariant scalar–
tensor theory with at most second-order derivatives of the scalar 
and tensor fields in the Euler–Lagrange equations. It embeds a 
large fraction of the modified gravity and dark energy models that 
have been proposed as alternative explanations for cosmic acceler-
ation [3–5]. To conveniently describe its cosmological background 
and linear perturbations, we adopt the effective field theory (EFT) 
of cosmic acceleration (see Ref. [20] for a review). The formal-
ism disentangles the Hubble parameter H as a generally freely 
time-dependent function that determines the cosmological back-
ground evolution. Linear perturbations are then characterised by 
an additional four free functions of time, each describing a dif-
ferent physical property of the scalar–tensor theory: αK, αM, αB, 
and αT. The kineticity αK parametrises a kinetic energy contribu-
tion from the scalar field that can cause it to cluster at ultra-large 
scales. The running of the gravitational coupling with Planck mass 
M2 at the rate αM ≡ (ln M2)′ introduces a gravitational slip be-
tween � and � and modifies the damping of tensor waves. The 
parameter αB describes interactions of the scalar and metric fields 
through braiding, or mixing, of their kinetic contributions, giving 
rise to clustering of the scalar field on small scales. Finally, αT
parametrises a departure of the speed of tensor modes from the 
speed of light, also contributing to the gravitational slip. �CDM is 
recovered when αi = 0 ∀i.

The linearly perturbed modified Einstein equations in EFT 
[20–22] at the observable sub-Hubble scales (kH � 1) can be de-
scribed by Eqs. (3) with

μ∞ = 2 [αB(1 + αT) − αM + αT]2 + α(1 + αT)c2
s

αc2
s κ2M2

, (5)

γ∞ = 2αB [αB(1 + αT) − αM + αT] + αc2
s

2 [αB(1 + αT) − αM + αT]2 + α(1 + αT)c2
s

, (6)

where α ≡ 6α2
B + αK and c2

s denotes the sound speed of the scalar 
mode. Note that c2

s depends on αi and H , whereby α c2
s , and thus 

μ∞ and γ∞ , are independent of αK. For c2
s 
� 1, the scale depen-

dence in μ(a, k) and γ (a, k) for natural self-accelerated models is 
governed by a Compton wavelength of order the Hubble scale [14]. 
Hence, scale independence in μ � μ∞(a) and γ � γ∞(a) serves as 
a good approximation for our observational purpose. For the tensor 
perturbations in Eq. (4) it follows that ν = 1 + αM and c2

T = 1 + αT
[18,20], directly relating the modifications of the scalar and tenor 
modes.
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Importantly, following Eqs. (1) and (2), a cosmic acceleration 
which can genuinely be attributed to a modification of gravity re-
quires [9]

−�′

�
= −

(
αM + α′

T

1 + αT

)
� O(10−1) (7)

at late times. This implies that at least one of either αM or α′
T

should be nonzero.

4. Implication of αT � 0

Importantly, self-accelerated Horndeski scalar–tensor gravity 
contains enough freedom to reproduce the �CDM values μ(a, k) =
γ (a, k) = 1 in Eqs. (3) at all scales and additionally allow a re-
covery of the concordance model background expansion history 
[8,9]. Thus, cosmic acceleration from a cosmological constant or a 
scalar–tensor modification of gravity cannot rigorously be discrim-
inated using geometric probes and the large-scale structure only. 
The capacity for such a degeneracy or linear shielding effect [8], 
however, requires that μ = γ = 1 in Eqs. (5) and (6) and with re-
covery of H = H�CDM, this yields a nonlinear differential equation 
relating αM to αB and the condition [9]

αT = κ2M2 − 1

(1 + αB)κ2M2 − 1
αM . (8)

Therefore for a degeneracy to occur and for a self-acceleration with 
�′ 
= 0, we must have non-vanishing αM, αB and in particular αT, 
which generally implies a deviation of the propagation speed of 
gravitational waves cT from the speed of light.

Note that there already are strong indications that αT � 0. For 
instance, the observation of ultra-high energy cosmic rays im-
plies that subluminal deviations from cT = 1 are constrained to 
O(10−19–10−15) as otherwise they would decay due to gravita-
tional Cherenkov radiation before reaching Earth [10]. Furthermore, 
the Hulse–Taylor binary system places percent-level constraints on 
deviations from cT = 1 [11]. It can, however, currently not fully be 
ruled out that a screening mechanism may not suppress the cos-
mological deviations in cT in the Galactic environment from which 
these constraints are inferred. However, this is unlikely given the 
high degree of suppression required and, moreover, it was shown 
in Ref. [11] that the screening mechanism conventionally associ-
ated with the modifications introducing αT 
= 0 is not capable of 
such a suppression.

To be fully conservative, however, we ultimately require a cos-
mological constraint on cT. The recent aLIGO observation of a grav-
itational wave (GW150914) [12] emitted by a merger of two black 
holes at (0.4 ±0.2) Gpc and the nearly simultaneous detection of a 
weak short gamma-ray burst in the Fermi Gamma-ray Burst Mon-
itor [23], which has been claimed to be connected with the same 
event, would constrain αT � 0 for the purpose of self-acceleration 
in Eq. (7). While the association of the two measurements is con-
troversial [24,25], it demonstrates that with the advent of direct 
gravitational wave observations a cosmological measurement of cT
will likely soon be realised, potentially already in the second aLIGO 
observing run. A confirmation of cT � 1 would then imply that 
self-acceleration must solely be due to an evolution of the grav-
itational coupling with −αM � −�′/� � O(10−1). Furthermore, 
from Eq. (8) it then follows that there cannot be any degeneracy 
effect and that the self-accelerated modification must manifest in 
the large-scale structure.

5. Minimal self-accelerated modification

In the following, we adopt αT = 0 and determine the mini-
mal signature a self-accelerated modification must leave in the 
large-scale structure. With �′/� = αM in Eq. (2), we find that self-
acceleration must satisfy(

1 + H ′

H

)(
1 + 1

2
αM

)
+ 1

2
α′

M ≤ 0 , (9)

where positive acceleration in Jordan frame implies (1 + H ′/H) > 0
from Eq. (1). We define aacc as the scale factor at which this 
term vanishes. For a �CDM expansion history this implies aacc =
[�m/(1 − �m)/2]1/3. Since we want to recover �CDM at early 
times, we set αi = 0 ∀i for a ≤ aacc and also adopt H = H�CDM
to render the models indistinguishable at the background level, 
restricting to the strictly necessary modifications in the linear fluc-
tuations in the accelerated era a > aacc. Integration of Eq. (9) yields 
αM ≤ C/aH − 2, where C is an integration constant, which from 
requiring that the modification vanishes at a = aacc we set to C =
2H0aacc

√
3(1 − �m). We have αM(a > aacc) < αM(a ≤ aacc) = 0. An-

other integration yields M2 and with normalisation at aacc,

κ2M2 ≤
(aacc

a

)2
eC(χacc−χ) , (10)

where χ denotes the comoving distance. The modification is min-
imal when we have equality. To avoid ghost and gradient instabil-
ities of scalar and tensor fluctuations, the modified models must 
satisfy M2 > 0, α > 0, and c2

s > 0 [21]. As we want to recover 
GR at early times and require self-acceleration, we further have 
κ2M2 ≤ 1. From Eqs. (3) and (5), this implies that the modification 
must yield an enhancement of gravity with μ ≥ 1. To minimise 
the effect on the growth of structure with respect to GR, we re-
quire αB = αM and hence, we obtain μ = (κ2M2)−1 and the GR 
value γ = 1. This fully specifies the minimal Horndeski scalar–
tensor modification required for a genuine self-acceleration and 
yields μ(a ≤ aacc � 0.6) = 1 increasing to μ(a = 1) � 1.04 today 
with γ = 1 at any scale factor.

6. Challenges from large-scale structure

We conduct a parameter estimation analysis of the minimal 
self-accelerated modification and �CDM employing cosmomc [26]
and mgcamb [27], where we adopt the default basic cosmological 
parameters [28] for variation. Importantly, note that the modified 
model does not introduce any new parameters. We use geomet-
ric probes from supernovae [29], baryon acoustic oscillation dis-
tance [30–32], and local H0 [33] measurements as well as the 
Planck 2015 [28] cosmic microwave background (CMB) temper-
ature fluctuation, polarisation, and lensing data, including cross 
correlations and low-multipole measurements. While the geomet-
ric probes only constrain background parameters, the secondary 
anisotropies in the CMB are sensitive to the late-time modifications 
in μ. In addition, we use the EG ≡ � �m/(
′

m/
m) [17] mea-
surement of Ref. [34], testing a combination of weak gravitational 
lensing, galaxy clustering, and structure growth rate, where � =
(1 +γ )μ/2 describes the modified Poisson equation of the lensing 
potential �− ≡ (� − �)/2. Note that while there are newer mea-
surements of EG , the low-redshift constraint of Ref. [34] is most 
suitable for our purpose (a > aacc). Finally, we use the publicly 
available data [35] of cross correlations of the CMB temperature 
field with foreground galaxies through the integrated Sachs–Wolfe 
(ISW) effect, where we follow Refs. [36,37] in the implementation 
of the gravitational modifications in the likelihood code.

We find that in comparison to a cosmological constant and 
given cT � 1, the minimal self-accelerated modification produces 
a 
χ2 = 9.2 (3σ ) poorer maximum likelihood fit to the combina-
tion of these data sets. For an approximation of the Bayes factor 
using the average likelihood over the chain samples [26], we find 
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B ≈ 〈L�〉s/〈LMG〉s � 39, which points towards a very strong ev-
idence for �. The difference is driven by the galaxy-ISW cross 
correlations, which provide a direct probe of the evolution rate of 
the Planck mass αM responsible for self-acceleration. Note that the 
ISW effect is sensitive to �′ = −αM� which modifies the change 
in energy of CMB photons when traversing the evolving potential 
�′− 
= 0 at late times.

7. Caveats

The concordance model provides a good fit to cosmological ob-
servations, which motivated our consideration of the minimal self-
accelerated modification. While we found that the fit worsened for 
the small deviation, we cannot strictly exclude the existence of a 
radical and very different modification that may improve the fit. 
It is important to note, however, that due to the condition that 
αT � 0 and μ ≥ 1, a self-accelerated model cannot account for 
the slight preference of a weakening of gravity in the cosmolog-
ical data reported, for instance, in Ref. [38]. On the contrary, the 
enhancement of gravity due to self-acceleration increases tensions 
in this data. Instead of minimising the modification in μ, one may 
also chose to minimise it in �. This can, however, not be done 
without knowledge of αB. Adopting the same time evolution in αB
as in αM, we find that this can only reduce � at a few percent 
over � = (κ2M2)−1 following a minimisation of μ, while this also 
increases deviations in μ and γ . One may also imagine that a scale 
dependence in μ and γ within the Hubble horizon, arising for in-
stance from cs � 1 may weaken the modification observed at very 
large scales. However, a semi-dynamical approximation accessing 
these scales shows that for αT � 0, the evolution of � in this limit 
is governed by H and αM and hence directly modified by the run-
ning of the gravitational coupling [22].

8. Discussion

The recent observational breakthrough in the direct detection 
of gravitational waves will likely soon enable a measurement of 
the cosmological speed of gravity. A confirmation of equality to 
the speed of light, strongly supported by Galactic measurements, 
would have important implications for self-accelerated Horndeski 
scalar–tensor theories. We have shown that signatures of a self-
acceleration must then manifest in the linear, unscreened cosmo-
logical structure, as the measurement of a tensor sound speed 
consistent with the speed of light prevents a dark degeneracy in 
the large-scale structure with a cosmological constant or dark en-
ergy.

We have derived the minimal modification required for a gen-
uine self-acceleration in this scenario and found that in compari-
son to a cosmological constant, it produces a 3σ poorer maximum 
likelihood fit to cosmological observations, including geometric 
probes, CMB data, and constraints from weak lensing, galaxy clus-
tering, and the structure growth rate. But in particular, we have 
used galaxy-ISW cross correlations that are very sensitive to the 
evolving gravitational coupling responsible for a self-acceleration 
in a modified gravity model consistent with a gravitational wave 
propagation at the speed of light. Future weak lensing measure-
ments of the evolution of �− and standard sirens [9], both sensi-
tive to αM, may improve the discrimination between the models. 
Although marginally still possible, our result sets a challenge to the 
concept of cosmic acceleration from a genuine scalar–tensor mod-
ification of gravity.

Acknowledgements

The authors thank Andrew Liddle and Andy Taylor for useful 
discussions and comments on the manuscript. L.L. was supported 
by a SNSF Advanced Postdoc.Mobility Fellowship (No. 161058) and 
the STFC Consolidated Grant for Astronomy and Astrophysics at 
the University of Edinburgh. N.A.L. acknowledges support from 
a FCT grant (No. SFRH/BD/85164/2012). Numerical computations 
were conducted on the COSMOS Shared Memory system at 
DAMTP, University of Cambridge operated on behalf of the STFC 
DiRAC HPC Facility. This equipment is funded by the BIS Na-
tional E-infrastructure capital grant ST/J005673/1 and STFC grants 
ST/H008586/1, ST/K00333X/1. Please contact the authors for access 
to research materials.

References

[1] A.G. Riess, et al., Supernova Search Team, Astron. J. 116 (1998) 1009.
[2] S. Perlmutter, et al., Supernova Cosmology Project, Astrophys. J. 517 (1999) 565.
[3] T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513 (2012) 1.
[4] K. Koyama, Rep. Prog. Phys. 79 (2016) 046902.
[5] A. Joyce, L. Lombriser, F. Schmidt, Annu. Rev. Nucl. Part. Sci. 66 (2016) 95.
[6] A. Joyce, B. Jain, J. Khoury, M. Trodden, Phys. Rep. 568 (2015) 1.
[7] J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev. Lett. 93 (2004) 261101.
[8] L. Lombriser, A. Taylor, Phys. Rev. Lett. 114 (2015) 031101.
[9] L. Lombriser, A. Taylor, J. Cosmol. Astropart. Phys. 1603 (2016) 031.

[10] G.D. Moore, A.E. Nelson, J. High Energy Phys. 09 (2001) 023.
[11] J. Beltrán Jiménez, F. Piazza, H. Velten, Phys. Rev. Lett. 116 (2016) 061101.
[12] B.P. Abbott, et al., LIGO Scientific Collaboration Virgo Collaboration, Phys. Rev. 

Lett. 116 (2016) 061102.
[13] B.P. Abbott, et al., LIGO Scientific Collaboration Virgo Collaboration, Phys. Rev. 

Lett. 116 (2016) 241103.
[14] J. Wang, L. Hui, J. Khoury, Phys. Rev. Lett. 109 (2012) 241301.
[15] J.-P. Uzan, Gen. Relativ. Gravit. 39 (2007) 307.
[16] R. Caldwell, A. Cooray, A. Melchiorri, Phys. Rev. D 76 (2007) 023507.
[17] P. Zhang, M. Liguori, R. Bean, S. Dodelson, Phys. Rev. Lett. 99 (2007) 141302.
[18] I.D. Saltas, I. Sawicki, L. Amendola, M. Kunz, Phys. Rev. Lett. 113 (2014) 191101.
[19] G.W. Horndeski, Int. J. Theor. Phys. 10 (1974) 363.
[20] J. Gleyzes, D. Langlois, F. Vernizzi, Int. J. Mod. Phys. D 23 (2014) 3010.
[21] E. Bellini, I. Sawicki, J. Cosmol. Astropart. Phys. 1407 (2014) 050.
[22] L. Lombriser, A. Taylor, J. Cosmol. Astropart. Phys. 1511 (2015) 040.
[23] V. Connaughton, et al., Astrophys. J. 826 (2016) L6.
[24] V. Savchenko, et al., Astrophys. J. 820 (2016) L36.
[25] B.P. Abbott, et al., Astrophys. J. 826 (2016) L13.
[26] A. Lewis, S. Bridle, Phys. Rev. D 66 (2002) 103511.
[27] A. Hojjati, L. Pogosian, G.-B. Zhao, J. Cosmol. Astropart. Phys. 1108 (2011) 005.
[28] P.A.R. Ade, et al., Planck Collaboration, Astron. Astrophys. 594 (2016) A13.
[29] M. Betoule, et al., SDSS Collaboration, Astron. Astrophys. 568 (2014) A22.
[30] F. Beutler, et al., Mon. Not. R. Astron. Soc. 416 (2011) 3017.
[31] N. Padmanabhan, et al., Mon. Not. R. Astron. Soc. 427 (2012) 2132.
[32] L. Anderson, et al., Mon. Not. R. Astron. Soc. 427 (2013) 3435.
[33] G. Efstathiou, Mon. Not. R. Astron. Soc. 440 (2014) 1138.
[34] R. Reyes, et al., Nature 464 (2010) 256.
[35] S. Ho, C. Hirata, N. Padmanabhan, U. Seljak, N. Bahcall, Phys. Rev. D 78 (2008) 

043519.
[36] L. Lombriser, W. Hu, W. Fang, U. Seljak, Phys. Rev. D 80 (2009) 063536.
[37] L. Lombriser, A. Slosar, U. Seljak, W. Hu, Phys. Rev. D 85 (2012) 124038.
[38] P.A.R. Ade, et al., Planck Collaboration, Astron. Astrophys. 594 (2016) A14.

http://refhub.elsevier.com/S0370-2693(16)30794-8/bib72696573733A3938s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib7065726C6D75747465723A3938s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib636C6966746F6E3A3131s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6B6F79616D613A3135s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6A6F7963653A3136s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6A6F7963653A3134s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib77696C6C69616D733A3034s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6C6F6D6272697365723A313462s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6C6F6D6272697365723A313563s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6D6F6F72653A3031s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6A696D656E657A3A3135s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib4757313530393134s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib4757313530393134s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib4757313531323236s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib4757313531323236s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib77616E673A3132s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib757A616E3A3036s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib63616C6477656C6C3A3037s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib7A68616E673A3037s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib73616C7461733A3134s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib686F726E6465736B693A3734s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib676C65797A65733A313462s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib62656C6C696E693A3134s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6C6F6D6272697365723A313562s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib475242313530393134s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib7361766368656E6B6F3A3136s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6162626F74743A3136s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6C657769733A3032s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib686F6A6A6174693A3131s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib706C616E636B3A3135s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6265746F756C653A3134s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib626575746C65723A3131s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib7061646D616E616268616E3A3132s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib616E646572736F6E3A3132s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib65667374617468696F753A3133s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib72657965733A3130s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib686F3A3038s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib686F3A3038s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6C6F6D6272697365723A3039s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib6C6F6D6272697365723A3130s1
http://refhub.elsevier.com/S0370-2693(16)30794-8/bib706C616E636B3A313564656D67s1

	Challenges to self-acceleration in modiﬁed gravity from gravitational waves and large-scale structure
	1 Introduction
	2 Self-acceleration from modifying gravity
	3 Effective ﬁeld theory
	4 Implication of αT≃0
	5 Minimal self-accelerated modiﬁcation
	6 Challenges from large-scale structure
	7 Caveats
	8 Discussion
	Acknowledgements
	References


