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abstract

We give here another simple proof of Lüroth’s theorem. It needs no more than the basics of field

theory and Gauss’s lemma on primitive polynomials.

Theorem (Luroth): Let K be a field and M be an intermediate field between

K and K(X) , for some indeterminate X . Then there exists a rational function

f(X) ∈ K(X) such that M = K(f(X)) . In other words, every intermediate ext-

ension between K and K(X) is simple.

Proof : We can assume w.l.g. that M ̸= K and M ̸= K(X). Let P (Y ) be the

minimal polynomial of X over M ,

P (Y ) = Y n + rn−1Y
n−1 + . . .+ r1Y + r0 (ri ∈ M ⊂ K(X)) .

Necessarily, one the the ri’s, say rk , does not belong to K , else X would be algebraic

over K . For all i = 0 , 1 , . . . , n− 1, let us put ri = ai/bi , where ai , bi ∈ K[X] , and

ai is coprime to bi . The polynomial P (Y ) can be multiplied by the l.c.m. of the bi’s

in order to obtain a primitive polynomial

Q(Y ) = cnY
n + cn−1Y

n−1 + . . .+ c0

over the ring K[X] . Let us consider the polynomials

R(X , Y ) = ak(Y )bk(X)− ak(X)bk(Y ) ∈ K[X ,Y ]

and

S(Y ) =
R(X , Y )

bk(X)
= ak(Y )− ak(X)

bk(X)
bk(Y ) ∈ M [Y ] .

Since R(X ,X) = 0, Q(Y ) divides S(Y ) in K(X)[Y ] , therefore it also divides

R(X , Y ) in K(X)[Y ] . But K[X] is a unique decomposition domain, hence Gauss’s

lemma implies that Q(Y ) divides R(X , Y ) in K[X ,Y ] . Now,

degX(R) ≤ max(deg ak , deg bk) ≤ max(deg(cn) , deg(ck))
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because

deg(cn) ≥ deg(bk) and deg(ck) ≥ deg(ak) .

Therefore degX(R) ≤ degX(Q). Since Q divides R in K[X , Y ] , it follows that

degX(R) = degX(Q) ,

that is, R = QT where T ∈ K[Y ] .

claim: The polynomial T (Y ) is constant: T (Y ) ∈ K .

Proof : Assume, in order to obtain a contradiction, that deg(T ) > 0. Put

ak(Y ) = q1(Y )T (Y ) + l1(Y ) and bk(Y ) = q2(Y )T (Y ) + l2(Y ) ,

with deg(l1) < deg(T ) and deg(l2) < deg(T ). The polynomial T (Y ) divides

ak(Y )bk(X)− ak(X)bk(Y ) ,

hence also

l1(Y )bk(X) + l2(Y )ak(X) .

Since deg(l1) and deg(l2) are less than deg(T ), this is possible only if

l1(Y )bk(X) + l2(Y )ak(X) = 0 .

But this last equation is impossible since ak is coprime to bk , and ak or bk is non-

constant. Thus, deg(T ) = 0 and T ∈ K as claimed.

From the above claim, it follows that

Q(Y ) = c (ak(Y )bk(X)− ak(X)bk(Y )) , c ∈ K.

Therefore deg(P ) = max(deg(ak) , deg(bk)), or what is the same,

[K(X) : M ] = max(deg(ak) , deg(bk)) .

Furthermore, X is a root of the polynomial S(Y ), and S(Y ), which belongs to

K(ak/bk)[Y ] = K(rk)[Y ] , is of degree equal to max(deg(ak) , deg(bk)); this implies

[K(X) : K(rk)] ≤ max(deg(ak) , deg(bk)) .

Thus,

[K(X) : M ] ≥ [K(X) : K(rk)] .

Finally, since rk ∈ M ,

[K(X) : M ] = [K(X) : K(rk)] ,

hence M = K(rk).
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