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PREFACE.

[1.] The volume now offered to the public is designed as an assis-

tance to those persons who may be disposed to study and to em
ploy a certain new mathematical method, which has, for some
years past, occupied much of my own attention, and for which I

have ventured to propose the name of the Method or Calculus of

Quaternions. Although a copious analytical index, under the

form of a Table of Contents, will be found to have been prefixed

to the work, yet it seems proper to offer here some general and

preliminary* remarks: especially as regards that conception from

which the whole has been gradually evolved, and the motives for

giving to the resulting method an appellation not previously in

use.

[2.] The difficulties which so many have felt in the doctrine

of Negative and Imaginary Quantities in Algebra forced them-

selves long ago on my attention; and although I early formed

some acquaintance with various views or suggestions that had

been proposed by eminent writers, for the purpose of removing

• Some readers may find it convenient to pass over for the present these pre-

fatory remarks, and to proceed at once to the Volume, of which a large part has

been drawn up so as to suppose less of previous and technical preparation than

some of the paragraphs of this Preface. Indeed, great pains have been taken

to render the early Lectures as elementary as the subject would allow ; and it

is hoped that they will be found perfectly and even easily intelligible by persons

of moderate scientific attainments. It is true that some of the subsequent por-

tions of the Course (especially parts of the concluding Lecture) may possibly

appear difficult, from the novel nature of the calculations employed : but perhaps

on that very account those later portions may repay the attention of more ad-

vanced mathematical students.
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or eluding those difficulties (such as the theory of direct and in-

verse quantities, and of indirectly correlative figures, the method

of constructing imaginaries by lines drawn from one point with

various directions in one plane, and the view which refers all to

the mere play of algebraical operations, and to the properties of

symbolical language), yet the whole subject still appeared to me

to deserve additional inquiry, and to be susceptible of a more

complete elucidation. And while agreeing with those who had

contended that negatives and imaginaries were not properly

quantities at all, I still felt dissatisfied with any view which

should not give to them, from the outset, a clear interpretation

and meaning; and wished that this should be done, for the square

roots of negatives, without introducing considerations so expressly

geometrical, as those which involve the conception of an angle.

[3.] It early appeared to me that these ends might be at-

tained by our consenting to regard Algebra as being no mere

Art, nor Language, nor primarily a Science of Quantity ; but

rather as the Science of Order in Progression. It was, how-

ever, a part of this conception, that the progression here spoken

ef was understood to be continuous and unidimensional : extend-

ing indefinitely^ri^ard and backward, but not in any lateral

direction. And although the successive states of such a progres-

sion might (no doubt) be represented by points upon a line, yet

I thought that their simple successiveness was better conceived

by comparing them with moments of time, divested, however, of

all reference to cause and effect; so that the " time" here consi-

dered might be said to be abstract, ideal, or pure, like that "space"

which is the object of geometry. In this manner I was led, many
years ago, to regard Algebra as the Science of Pure Time:
and an Essay,* containing my views respecting it as such, was

publishedf in 1835. If I now reproduce a few of the opinions put

• Theory of Conjugate Fuaotions, or Algebraic Couples ; with a Preliminary

and Elementary Essay on Algebra as the Science of Pure Time. (Read Novem-

ber 4th, 1833, and June 1st, 1835) Transactions of the Royal Irish Academy,

Vol. XVII., Part n. (Dublin, 1835), pages 293 to 422.

1 1 was encouraged to entertain and publish this view, by remembering some

passages in Kant's Criticism of the Pure Reason, which appeared to justify the

expectation that it should be possible to construct, d priori, a Science of Time,
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forward in that early Essay, it will be simply because they may
assist the reader to place himself in that point of view, as regards

the first elements of algebra, from which a passage was gradually

made by me to that comparatively geometrical conception which

it is the aim of this volume to unfold. And with respect to any-

thing unusual in the interpretations thus proposed, for some sim-

ple and elementary notations, it is my wish to be understood as

not at all insisting on them as necessary,* but merely proposing

them as consistent among themselves, and preparatory to the

study of the quaternions, in at least one aspect of the latter.

[4.] In the view thus recently referred to, if the letters a and

B were employed as dates, to denote any two moments of time,

which might or might not be distinct, the case of the coincidence or

identity of these two moments, or of equivalence of these two

dates, was denoted by the equation,

B = a;

which symbolic assertion was thus interpreted as not involving

any original reference to quantity, nor as expressing the result

as well as a Science of Space. For example, in his Transcendental jEsthetic,

Kant observes :
—" Zeit und Raum sind demnach zwey Erkenntnissquellen, aus

denen a priori verschiedene synthetische Erkenntnisse geschopft werden konnen,

wie vornehmlich die reine Mathematik in Ansehung der Erkenntnisse vom Raume

und desscn VerliUltnissen ein glanzendes Beyspiel gibt. Sie sind namlich beide

zusammengenommen reine Formen aller sinnlichen Anschauung, und machen

dadurch synthetische Siitze a priori mbglieh." Which may be rudely rendered

thus: "Time and Space are therefore two knowledge-sources, from which

different synthetic knowledges can be a priori derived, as eminently in reference

to the knowledge of space and of its relations a brilliant example is given by the

pure mathematics. For they are, both together [space and time], pure forms of

all sensuous intuition, and make thereby synthetic positions a priori possible."

(Critik der reinen Vernunft, p. 41. Seventh Edition. Leipzig: 1828).

* For example, the usual identity (b- a) + A = B, which in the older Essay

was interpreted with reference to tim^, as in paragraph [8] of this Preface, the

letters a and b denoting moments, is in the present work (Lecture I., article 25)

interpreted, on an analogous plan indeed, but with a reference to space, the let-

ters denoting poinds. Still it will be perceived that there exists a close connexion

between the two views ; a step, in each, being conceived to be applied to a state

of a progression, so as to generate (or conduct to) another state. And generally

I think that it may be found useful to compare the interpretations of which a

sketch is given in the present Preface, with those proposed in the body of the

work.
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of any comparison between two durations as measured. It cor-

responded to the conception of simultaneity or synchronism; or,

in simpler words, it represented the thought of the present in time.

Of all possible answers to the general question, "When" the

simplest is the answer, "Now :" and it was the attitude of mind,

assumed in the making of this answer, which (in the system here

described) might be said to be originally symbolized by the

equation above written. And, in like manner, the two formulae

of no«-equivalence,

B > A, B < A,

were interpreted, without any primary reference to quantity, as

denoting the two contrasted relations of subsequence and oi pre-

cedence, which answer to the thoughts oi thefuture and the past

in time; or as expressing, simply, the one that the moment b is

conceived to be later than a, and the other that B is earlier than

a: without yet introducing even the conception of a measure, to

determine how much later, or how much earlier, one moment is

than the other.

[5.] Such having been proposed as ihs first meanings to be

assigned to the three elementary marks = > < , it was next sug-

gested that thefirst use of the mark -, in constructing a science

ofpure time, might be conceived to be the forming of a complex

symbol b - a, to denote the difference between two moments, or

the ordinal relation of the moment b to the moment a, whether

that relation were one of identity or of diversity ; and if the lat-

ter, then whether it were one of subsequence or of precedence,

and in whatever degree. And here, no doubt, in attending to

the degree of such diversity between two moments, the concep-

tion of duration, as quantity in time, was introduced : the full

meaning of the symbol b - a, in any particular application, being

(on this plan) not known, until we know how long after, or how

long before, if at all, b is than a. But it is evident that the no-

tion of a certain quality (or kind) of this diversity, or interval,

enters into this conception of a rfz^rewcc between moments, at

least as fully and as soon as the notion oi quantity, amount, or

duration. The contrast between the Future and the Past appears

to be even earlier and more fundamental, in human thought, than

that between the Great and the Little.
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[6.] After comparing moments, it was easy to proceed to

compare relations; and in this view, by an extension of the recent

signification [4] of the sign =, it was used to denote analogy in

time ; or, more precisely, to express the equivalence oftwo marks

ofone common ordinal relation, between two pairs of moments.

Thus the formula,

D - c =B- A,

came to be interpreted as denoting an equality between two

intervals in time ; or to express that the moment d is related

to the moment c, exactly as b is to a, with respect to identity

or diversity: the quantity and quality of such diversity (when

it exists) being here both taken into account. A formula of

this sort was shewn to admit of inversion and alternation

(c-D = A-B, d-b = c-a); and generally there could be per-

formed a number of transformations and combinations of equa-

tions such as these, which all admitted of being interpreted and

justified by this mode of viewing the subject, but which agreed

in all respects with the received rules of algebra. On the same

plan, the two contrasted formulae of inequalities of differences,

D-OB-A, D-C<B-A,

were interpreted as signifying, the one that d was later, relatively

to c, than b to a ; and the other that d was relatively earlier.

[7.] Proceeding to the mark +, 1 used this sign primarily &s

a mark of combination between a symbol, such as the smaller

Roman letter a, of a step in time, and the symbol, such as a, of

the moment from which this step was conceived to be made, in

order to form a complex symbol, a + a, recording this conception

of transition, and denoting the moment (suppose b) to which the

step was supposed to conduct. The step or transition here

spoken of was regarded as a menial act, which might as easily be

supposed to conduct backwards -ds forwards in the progression of

time; or even to be a null step, denoted by 0, and producing 7io

effect (0 + A = a). Thus, with these meanings of the signs, the

notation

B = a+ a,

denoted the conception that the moment b might be attained, or
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mentally generated, by making (in thought) the step a from the

moment a. And it appeared to me that without ceasing to re-

gard the symbol b-a as denoting, in one view [5], an ordinal

relation between two moments, we might also use it in the con-

nected sense of denoting this stepfrom one to another : which

would allow us (as in ordinary algebra) to write, with the recent

suppositions,

B-A = a;

the two members of this new equation being here symbols for

one common step.

[8.] The usual identity,

(b - a) + A = B,

came thus to be interpreted as signifying primarily (in the

Science of Pure Time) a certain conceived connexion between the

operations, of determining the difference between two moments

as a relation, and of applying that difference as a step. And the

two other familiar and connected identities,

c - A = (c - b) + (b - a), c - b = (c - a) - (b - a),

were treated, on the same plan, as originally signifying certain

compositions and decompositions of ordinal relations or of steps

in time. A special symbol for opposition between any two such

relations or steps was proposed ; but it was remarked that the

more usual notations, + a and - a, for the step (a) itself, and for

the opposite of that step, might, in full consistency with the same

general view, be employed, if treated as abridgments for the more

complex symbols + a, - a : the latter notation presenting here

no difficulty of interpretation, nor requiring any attempt to con-

ceive the subtraction of a quantity from iiothing, but merely the

decomposition of a null step into two opposite steps. But opera-

tions on steps, conducted on this plan, were shewn to agree in

all respects with the usual rules of algebra, as regarded Addition

and Subtraction,

[9.] One time-step (b) was next compared with another (a),

in the way of algebraic ratio, so as to conduct to the conception

of a certain complex relation (or quotient), determined partly by

their relative largeness, but partly also by their relative direction.
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as similar or opposite; and to the closely connected conception of

an algebraic number (or multiplier), which operates at once on

the quantity and on the direction of the one step (a), so as to

produce (or mentally generate') the quantity and direction of the

other step (b). By a combination of these two conceptions, the

usual identity,

— X a = b, or b = a X a, it - = a,
a a

received an interpretation ; the factor a being a positive or a con-

tra-positive (more commonly called negative) number, according

as it preserved or reversed the direction of the step on which it

operated. The four primary operations, for combining any two

such ratios or numbers or factors, a and b, among themselves,

were defined by four equations which may be written thus, and

which were indeed selected from the usual formulae of algebra,

but were employed with new interpretations

:

(6 + a) X a = (6 X a) + (a X a)
; (6 - a) x a = (6 x a) - (a x a)

;

(5 X o) X a = 6 X (a X a)

;

6 h- a = (i x a) h- (a x a).

[10.] Operations on algebraic numbers (positive or contra-

positive) were thus made to depend (in thought) on operations

of the same names on steps ; which were again conceived to in-

volve, in their ultimate analysis, a reference .to comparison of

moments. These conceptions were found to conduct to results

agreeing with those usually received in algebra ; at least when

was treated as a symbol of a null number, as well as of a null step

[7], and when the symbols, + a, 0-a, were abridged to + a

and - a. In this view, there was no difficulty whatever, in in-

terpreting the product of two negative numbers, as being equal

to Si positive number : the result expressing simply, in this view

of it, that two successive reversals restore the direction of a step.

And other difficulties respecting the rule of the signs appeared

in like manner to fall away, more perfectly than had seemed to

me to take place in any view of algebra, which made the thought

of quantity (or of magnitude) the primary or fundamental con-

ception.

[11.] This theory of algebraic numbers, as ratios of steps in

time, was applied so as to include results respecting powers and
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roots and logarithms : but what it is at present chiefly importatU

to observe is, that because, for the reason just assigned, the

square of euery number is positive, therefore no number, whether

positive or negative, could be a square root ofa negative num-

ber, in this any more than in other views of algebra. At least

it was certain that no single number, of the kinds above con-

sidered, could possibly be such a root: but I thought that with-

out going out of the same general class of interpretations, and

especially without ceasing to refer all to the notion of time, ex-

plained and guarded as above, we might conceive and compare

couples of moments; and so derive a conception oi couples of

steps (in time), on which might be founded a theory of couples

ofnumbers, wherein no such difficulty should present itself.

[12.] In this extended view, the symbols Ai and Aj being

employed to denote the two moments of one such pair or couple,

and Bi, B2 the two moments of another pair, I was led to write

the formula,

(Bi, Bo) - (Ai, A2) = (Bi - Ai, B2 - A,)
;

and to explain it as expressing that the complex ordinal relation

of one moment-couple (Bj, B2) to another moment-couple (ai, Aj)

might be regarded as a relation-couple ; that is to say, as a sys-

tem oftwo ordinal relations, Bi - Ai and Bj — Aj, between the cor-

responding moments of those two moment-couples : the primary

moment Bi of the one pair being compared with the primary mo-

ment Ai of the other; and, in like manner, the secondary moment
B2 being compared with the secondary moment Aj. But, instead

of this (analytical) comparison of moments with moments, and

thereby oi pair with pair, 1 thought that we might also conceive

a (synthetical) generation [7] of one pair of moments from ano-

ther, by the application oia. pair of steps [1 1], or by what might

be called the addition (see again [7] ), of a step-couple to a mo-

menf-couple ; and that an interpretation might thus be given to

the following identity, in the theory of couples here referred to:

(Bi, B,) =
(
(b„ Bj) - (a„ A,)

j + (Ai, A2).

And other results, respecting the compositions and decomposi-

tions of single ordinal relations, or oi single steps in time, such
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as those referred to in paragraph [8] of this Preface, were easily

extended, in like manner, to the corresponding treatment oi com-

plex relations, and of complex steps, of the kinds above described.

[13.] There was no difficulty in interpreting, on this plan,

such formulae of multiplication and division, as

a X (ai, aj) = (aa^, aaj) ; (aai, aaj) -;- (a,, 82) = a

;

where the symbols Ei, a^ denote any two steps In time, and a any

number, positive or negative. But the question became less

easy, when it was required to interpret a symbol of the form

(bi, bs) -r-(ai, aj),

where bi, bj denoted two steps which could not be derived from

the two steps ai, a^, through multiplication by any single number,

such as a. To meet this case, which is indeed the general one

in this theory, I was led to introduce the conception [11] of num-

ber-couples, or of pairs oynumbers, such as (Oi, 02) ; and to re-

gard every single number (a) as being a degenerateform of such

a number-couple, namely of (a, 0); so that the recent formula,

for the multiplication ofa step-couple by a number, might be thus

written :

(fli, 0) (ai, 82) =(Oiai, Oiaz).

It appeared proper to establish also the following formula, for the

multiplication ofa primary step, by an arbitrary number-couple:

(cTi, 02) (ai, 0) = (fli ai, 02 ai)

;

and to regard every such number-couple as being the sum of two^

others, namely, of a pure primary and a pure secondary, as fol-

lows :

(a„ a^) = (fli, 0) + (0, a,)

:

the analogous decomposition of a step-couple having been already

established.

[14.] The difficulty of the general multiplication of a step-

couple by a number-couple came thus to be reduced to that of

assigning the product of one pure secondary by another: and the

spirit of this whole theory of couples led me to conceive that, for

such a product, we ought to have an expression of the form,

h
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(0, 02) (0, a2) = {yia2Si2, 720232);

the coeflBcients ji and y^ being some two constant numbers, in-

dependent of the step 82, and of the number a^ : which two coef-

ficients I proposed to call the constants of multiplication. These

constants might be variously assumed : but reasons were given

for adopting the following selection* of values, as the basis of all

subsequent operations

:

71 = - 1 ; 72 = 0.

lathis, wav^thfi rea^uired law of o'^erat.ion.,o{ a. general number-

couple on a general step-couple, as multiplier on multiplicand,

was found, with this choice of the constants, to be expressed by

the formula:

(oi, 02) (ai, 82) = (a, ai - a^ a^, Oi ai + Ci aj).

And in fact it was easy, with the assistance of this formula, to

interpret the quotient [13] of two step-pairs, as being always

equal to a number-pair, which could be definitely assigned, when

the ratios of the four single steps were given.

[15.] With these conceptions and notations, it was allowed to

write the two following equations :

(1, 0) (a, b) = (a, b)
; (0, 1) (a, b) = (- b, a)

;

and I thought that these two factors, (1, 0) and (0, 1), thus used,

might be called respectively the primary unit, and the secondary

unit, of number. It was proposed to establish, by definition, for

the cliiel operations on number-pairs, a lew rules w'hic'ti seemecl

to be natural extensions of those already established for the cor-

responding operations [9] on single numbers: and it was seen that

because

(0, 1) (- b, a) = (- a, - b) = (- 1, 0) (a, b),

we were allowed, as a consequence of those rules, or of the con-

ception which had suggested them, namely, (compare [33] ), by

a certain abstraction of operators from operand, to establish the

formula,

(0, 1)^ = (-1,0) = -1.

• In some of my unprinted investigations, other selections of these constants

were employed.
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A new and (as I thought) clear interpretation was thus assigned,

for that well-known expression in algebra, the square root of ne-

gative unity : for it was found that we might consistently write,

on the foregoing plan,

(0,1) = (-1,0)J = (-!)* =1/^7;

without anything obscure, impossible, or imaginary, being in any

way involved in the conception.

[16.] In words, if after reversing the direction of the second

• of any two steps, we then transpose them, as to order; thus

making the old but reversed second step the Jirst of the new ar-

rangement, or of the new step-couple ; and making, at the same

time, the old and unreversed first step the second of the same

new couple ; and if we then repeat this complex process of rever-

sal and transposition, we shall, upon the whole, have restored the

order of the two steps, but shall have reversed the direction of

each. Now, it is the conceived operator, in this process of

passing /rom one pair oj" steps to another, which, in the system

here under consideration, was denoted by the celebrated sym-

bol v'-lj so often called imaginary. And it is evident that the

process, thus described, has no special reference whatever to the

notion of space, although it has a reference to the conception of

PROGRESSION. The symbol - 1 denoted that negative unit of

number, of which the effect, as afactor, was to change a single

step (+ a) to its own opposite step (- a) ; and because two such

reversals restore, therefore (see [lOJ ) the usual algebraic equa-

tion,

(-1)' = + 1,

continued to subsist, in this as in other systems. But the symbol

|/-I was regarded as not at all less real than those other symbols

- 1 or + 1, although operating on a different subject, namely, on a

pair of steps (a, b), and changing them to a new pair, namely,

the pair(-b, +a). And theform of this well-known symbol,

\/-l, as an expression (in the system here described) for what I

had previously written as (0, 1), and had called (see [15] ) the

SECONDARY UNIT of number, was justified by shewing that the

effect of its operation, when twice performed, reversed each step

of the pair.
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[17.] The more general expression of algebra, Oi + V- I a^,

for any (so called) imaginary root of a quadratic or other equa-

tion, was, on this plan, interpreted as being a symbol of the tium-

ber-couple which 1 had otherwise denoted by (fli, a^); and of

which the law oi operation on a step-couple had already [14]

been assigned : as also the analogous law, thence derived,* of its

multiplication h:j another number-couple, namely, that which is

expressed by the formula,

(6i, hi) (oi, ai) = {biai-bia., b^a^ + 6iaj).

In this view, instead of saying that the usual quadratic equation,

a;' + aa; + i = 0,

where a and h are supposed to denote two positive or negative

numbers, has generally two roots, real or imaginary, it would

be said that this other form of the same equation,

(:r, 2/)^ + (a, 0)(a;, 2/) + (6,0) = (0, 0),

is generally satisfied by two (real) number-couples ; in which, ac-

cording to the values of a and b, the secondary number (jj) might

or might not be zero. An equation of this sort was called a cou-

ple-equation, and was regarded as equivalent to a system of two

equations^ between numbers : for example, the recent quadratic

couple-equation breaks itself up into the two following separate

equations,

x^-y- + ax +b = 0, 2xy + ay = 0,

which always admit ofreal and numerical solutions, whether ^a=-

6

be a positive or a negative number; the difference being only

that in the former case we are to take the factor y= 0, of the se-

* The principles of such derivation were only hinted at in the Essay of 1835

(see page 403 of the Volume above cited) : but it was perhaps sufficiently ob-

vious that they depended on the " separation of symbols," or on the abstraction

of a common operand. (Compare paragraphs [15], [33], of the present Preface.)

f M. Cauchy, in his Cours d' Analyse (Paris, 1821, page 176), has the re-

mark :
—" Toute equation imaginaire n'est que la representation symbolique de

deux Equations entre quantites r^elles." That valuable work of M. Cauchy was

early known to me ; but it will have been perceived that I was induced to look

at the whole subject of algebra from a somewhat different point of view, at least

on the metaphysical side. As to the word "numbers," sec a note to [33].
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cond equation of the pair, whereas in the latter case we are to

take the other factor of that equation, and to suppose 2x + a=0.

And similar remarks might be made on equations of higher or-

ders : all notion of anything imaginary, unreal, or impossible,

being quite excluded from the view.

[18.] The same view was extended, so as to include a theory

of powers, roots, and logarithms of number-couples; and espe-

cially to confirm a remarkable conclusion which my friend John

T. Graves, Esq., had communicated to me (and I believe to

others) in 1826, and had published in the Philosophical Transac-

tions for the year 1829 : namely, that the general symbolical ex-

pression for a logarithm is to be considered as involving two ar-

bitrary and independent integers;* the general logarithm of
unity, to the Napierian base, being, for example, susceptible of

the form,

log 1=9 T-T'

where w, tu' denote any two whole numbers, positive or negative

or null. In fact, I arrived at an equivalent expression, in my

own theory of number-couples, under the form,

w (e, 0) (. 1 , •itti TT)

and generally an expression for the logarithm-couple, with the

order w, and rank w, of any proposed number-couple (y^, y^), to

any proposed base-couple {bi, bi), was investigated in such a way

as to confirm! the results of Mr. Graves.

• It is proper to mention, that results substantially the same, respecting the

entrance of two arbitrary whole numbers into the general form of a logarithm,

are given by Ohm, in the second volume of his valuable work, entitled :
" Versuch

eines vollkommen consequenten Systems der Mathematik, vom Professor Dr.

Martin Ohm" (Berlin, 1829, Second Edition, page 440. I have not seen the first

Edition). For other particulars respecting the history of such investigations,

on the subject of general logarithms, I must here be content to refer to Mr.

Graves's subsequent Paper, printed in the Proceedings of the Sections of the

British Association for the year 1834 (Fourth Keport, pp. 523 to 531. Lon-

don, 1835).

I Another confirmation ofthe same results, derived from a peculiar theory of

conjugate functions, had been communicated by me to the British Association
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[19.] After remarking that it was he who had proposed those

names, of orders and ranks oflogarithms, that early Essay ofmy

own, of which a very abridged (although perhaps tedious) account

has thus been given, continued and concluded as follows :

—

" But because Mr. Graves employed, in his reasoning, the usual

" principles respecting Imaginary Quantities, and was content

" to prove the symbolical necessity without shewing theinterpre-

'« tation, or inner meaning, of his formulae, the present Theory of

" Couples is published to make manifest that hidden meaning :

"and to shew, by this remarkable instance, that expressions

" which seem, according to common views, to be merely symbo-

"lical, and quite incapable of being interpreted, may pass into

"the world of thoughts, and acquire reality and significance, if

"Algebra be viewed as not a mere Art or Language, but as the

" Science of Pure Time.* The author hopes to publish hereafter

at Edinburgh in 1834, and may be found reported among the Proceedings of the

Sections for that year, at pp. 519 to 523 of the Volume lately cited. The partial

differential " equations of conjugation," there given, had, as I afterwards

learned, presented themselves to other writers : and the Essay on "Conjugate

Functions, or Algebraic Couples," there mentioned, was considerably modified,

in many respects, before its publication in 1835, in the Transactions of the Royal

Irish Academy.
• Perhaps I ought to apologize for having thus ventured here to reproduce

(although only historically, and as marking the progress of my own thoughts)

a view so little supported by scientific authority. I am very willing to believe

that (though not unused to calculation) I may have habitually attended too little

to the symbolical character of Algebra, as a Language, or organized system of

signs : and too much (in proportion) to what I have been accustomed to consider

its scientific character, as a Doctrine analogous to Geometry, through the Kan-

tian parallelism between the intuitions of Time and Space. This is not a proper

opportunity for seeking to do justice to the views of others, or to my own, on a

subject of so great subtlety : especially since, in the present work, I have thought

it convenient to adopt throughout a geometrical basis, for the exposition of the

theory and calculus of the Quaternions. Yet I wish to state, that I do not de-

spair of being able hereafter to shew that my own old views respecting Algebra,

perhaps modified in some respects by subsequent thought and reading, are not

fundamentally and irreconcileably opposed to the teaching of writers whom I

so much respect as Drs. Ohm and Peacock. The " Versuch," &c., of the former

I have cited (the date of the first Volume of the Second Edition is Berlin,

1828): and it need scarcely be said (at least to readers in these countries)

that my other reference is to the Algebra (Cambridge, 1830) ; the Report on

Certain Branches ofAnalysis, printed in the Third Report of the British Associa-
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" many other applications of this view; especially to Equations

'* and Integrals, and to a Theory of Triplets and Sets of Mo-

tion for the Advancement of Science (London, 1834) ; the Arithmetical Algebra

(Camhridge, 1842); and the Symbolical Algebra (Cambridge, 1845): all by

the Rev. George Peacock. I by no means dispute the possibility of constructing

a consistent and useful system of algebraical calculations, by starting with the

notion of integer number ; unfolding that notion into its necessary consequences

;

expressing those consequences with the help of symbols, which are already ge-

neral inform, although supposed at first to be limited in their signification, or

value : and then, by definition, for the sake of symbolic generality, removing the re-

strictions which the original notion had imposed ; and so resolving to adopt, as

perfectly general in calculation, what had been only proved to be true for a cer-

tain subordinate and limited extent of meaning. Such seems to be, at least in

part, the view taken by each of the two original and thoughtful writers who

have been referred to in the present Note : although Ohm appears to dwell more

on the study of the relations between the fundamental operations, and Peacock

more on the permanence of equivalent^rms. But I confess that I do not find my-
self able to frame a distinct conception of number, without some reference to the

thought of time, although this reference may be of a somewhat abstract and

transcendental kind. I cannot fancy myself as counting any set of things, with-

out first ordering them, and treating them as successive : however arbitrary and

mental (or subjective') this assumed succession may be. And by consenting to

begin with the abstract notion (or pure intuition) of time, as the basis of the ex-

position of those axioms and inferences which are to be expressed by the symbols

of algebra, (although I grant that the commencing with the more familiar con-

ception of whole number may be more convenient for purposes of elementary in-

struction,) it still appears to me that an advantage would be gained : because the

necessity for any merely symbolical extension of formulae would be at least consi-

derably postponed thereby. In fact (as has been partly shewn above), negatives

would then present themselves as easily and naturally as positives, through the

fundamental contrast between the thoughts of past anifuture, used here as no

mere illustration of a result otherwise and symbolically deduced, without any

clear comprehension of its meaning, but as the very ground of the reasoning.

The ordinary imaginaries of algebra could be explained (as above) by couples

;

but might then, for convenience of calculation, be denoted by single letters, sub-

ject to all the ordinary rules, which rules vfoxdd follow (on this plan) from the

combination of distinct conceptions with definitions, and would offer no result

which was not perfectly and easily intelligible, in strict consistency with that

original thought (or intuition) of time, from which the whole theory should (on

this supposition) be evolved. The doctrine of the n roots of an equation of the

n"" degree (for example) would thus suffer no attaint as toform, but would ac-

quire (I think) new clearness as to meaning, without any assistance from geo-

metry. The quaternions, as I have elsewhere shewn (in Vol. XXI., Part u., of

the Transactions of the Royal Irish Academy), and even the biquaternions (as I

hope to shew hereafter), might have their laws explained, and their symbolical

results interpreted, by comparisons of seis of moments, and by operations on sets
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"ments, Steps, and Numbers, which includes this Theory of

"Couples."*

[20.] The theory of triplets and sets, thus spoken of at the

close of the Essay of 1835, had in fact formed the subject of va-

rious unpublished investigations, of which some have been pre-

served : and a brief notice of them here (especially as relates to

tripletst) may perhaps be useful, by assisting to throw light on

the nature of the passage, which I gradually came to make, from

couples to quaternions.

Without departing from the same general view of algebra, as

the science of pure time, it was obvious that no necessity existed

for any limitation to pairs, of moments, steps, and numbers.

Thus, instead of comparing, as in [12], two moments, Bi and Bj,

with two other moments, Ai and A2, it was possible to compare

three moments, Bi, Bj, B3, with three other moments, Aj, a^, A3;

that is, more fully, to compare (or to conceive as compared) the

of steps in time. Thus, in the phraseology of Dr. Peacock, we should have a very

wide "science of suggestion" (or rather, suggestive science) as onr basis, on

which to build up afterwards a new structure of purely symbolical generalization,

if the science of time were adopted, instead of merely Arithmetic, or (primarily)

the doctrine of integer number. Still 1 admit fully that the actual calculations

suggested by this, or by any other view, must be performed according to some

fixed laws of combination of symbols, such as Professor De Morgan has sought to

reduce, for ordinary algebra, to the smallest possible compass, in his Second

Paper on the Foundation of Algebra (Camb. Phil. Trans., Vol. VII., Part ni.),

and in his work entitled " Trigonometry and Double Algebra" (London, 1849):

and that in following out such laws to their symbolical consequences, uninter-

pretable (or at least uninterpreted) results may be expected to arise. In the

present Volume (as has been already observed), I have thought it expedient to

present the quaternions under a geometrical aspect, as one which it may be per-

haps more easy and interesting to contemplate, and more immediately adapted

to the subsequent applications, of geometrical and physical kinds. And in the

passage which I have made (in the Seventh Lecture), from quaternions considered

as real (or as geometrically interpreted), to biquaternions considered as imaginary

(or as geometrically uninterpreted), but as symbolically suggested by the gene-

ralization of quaternion formulae, it will be perceived, by those who shall do me

the honour to read this work with attention, that I have employed a method of

transition, from theorems proved for the particular to expressions assumed for the

general, which bears a very close analogy to the methods ofOhm and Peacock

:

although I have since thought of a way of geometrically interpreting the biquater-

nions also.

• Trans. R. 1. A., Vol. XVIL, Part ii., page 422.

f These remarks on triplets are now for the first time published.
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homologous moments of these two triads, primary with primary,

secondary with secondary, and tertiary with tertiary ; and so to

obtain a certain system or triad of ordinal relations, or a triad

ofsteps in time, which might be denoted (compare [5], [7J, [12] )

by either member of the following equation

:

(Bi, Bj, B3) - (Ai, Aj, A3) = (Bj - Ai, B2 - Aj, Bj - A3).

And on the same plan (compare [7], [8], [12]), ifwe denote the

three constituent steps of such a triad as follows,

Bj — Ai=ai, Bj — A2=a2, B3 — As = a3,

it was allowed to write,

(Bi, Bj, B3) = (ai, 32, 83) + (Ai, A2, A3)

;

a triad of steps being thus (symbolically) added (or applied) to a

triad of moments, so as to conduct (in thought) to another triad

ofmoments. It appeared also convenient to establish the follow-

ing formula, for the addition o/"step-triads,

O^i. b2, b3)+ (ai, 82, 33)= (bi + ai, b2 + a2, bs + aj),

as denoting a certain composition of two such triads of steps, an-

swering to that successive application of them to any given triad

of moments (Ai, A2, A3), which conducts ultimately to a third

triad of moments, namely, to the triad (Cj, Cj, C3), if

Ci-Bi=bi, C2-B2=b2, C3-B3=b3.

Subtraction of one step-triad from another was explained (see

again [8]) as answering to the analogous decomposition of a

given step-triad into others ; or to a system of three distinct de-

compositions of so many single steps, each into two others, of

which one was given ; and it was expressed by the formula,

(ci, C2, C3) - (ai, 82, 83) = (ci - ai, C2 - 82, C3 - 8s)

:

while the usual rules of algebra were found to hold good, respect-

ing such additions and subtractions of triads.

[21.] Multiplication of a step-triad by a positive or negative

number (a) was easy, consisting simply in the multiplication of

each constituent step by that number ; so that I had the equation,

a (81, 82, 83) = (aai, aaj, aa,) :
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and conversely it was natural (compare [13] ) to establish the

following formula for a certain case of division of step-triads,

(aai, aaj, aaj) -^ (ai, aj, aj) = a.

But in the more general case (compare again [13]), where the

steps bi, ba, bs of one triad were not proportional to the steps a„

aj, a,, it seemed to me that the quotient of these two step-triads

was to be interpreted, on the same general plan, as being equal

to a certain triad or triplet of numbers, Oi, «2, a^; so that there

should be conceived to exist generally two equations of the forms,

(bi, bj, hi) H- (ai, 32, aa) = (a^, a^, a^)
;

(bi, hi, bs) = (ai, a^, Oj) (ai, a^, aj)

:

the three (positive or negative) constituents of this numerical

triplet (fli, 02, Oa) depending, according to some definite laws, on

the ratios of the six steps, ai a^ aj bi bj h^.

[22.] In this way there came to be conceived three distinct

and independent unit-steps, a primary, a secondary, and a ter-

tiary, which I denoted by the symbols,

and also three unit-numbers, primary, secondary, and tertiary,

each of which might operate, as a species oifactor, or multiplier,

on each of these three steps, or on their system, and which I de-

noted by these other symbols,

xij X2, X3 :

or sometimes more fully thus,

(1, 0, 0), (0, 1, 0), (0. 0, 1).

A triad ofsteps took thus the form,

rl^ + sli + tli,

where r, s, t were three numerical coefficients (positive or nega-

tive), although li I2 13 were still supposed to denote three steps

in time; and any triplet factor, such as (tn, n, p), by which this

step-triplet was to be multiplied, or operated upon, might be put

under the analogous form,

ffiXi H-nxj +PX3.



PREFACE. (19)

Continuing then to admit the distributive property of multipli-

cation, it was only necessary to fix the significations of the nine

products, or combinations, obtained by operating separately with

each of the three units of number on each of the three units of

step : every such product, or result, being conceived, in this

theory, to be itself, in general, a step-triad, of which, however,

some of the component steps might vanish. Hence, after writing

I proceeded to develope these nine step-triplets into nine trino-

mial expressions of the forms,

where the twenty-seven symbols of the form 1^^ ^_ ^ represented

certain^xerf numerical coefficients, or constants of multiplication,

analogous to those denoted by •y, and -/^ in [14], and like them

requiring to have their values previously assigned, before pro-

ceeding to multiplication, if it were demanded that the operation

of a given triplet of numbers on a given triplet of steps should

produce a perfectly definite step-triad as its result.

[23.] Conversely, when once these numerical constants had

been assigned, I saw that the equation of multiplication,

(»jxi+ wxj + ^xj) (rli + slj + Zls) = x\i + y'[. + zli,

was to be regarded as breaking itself up, on account of the sup-

posed mutual independence of the three unit-steps, into three or-

dinary algebraical equations, between the nine numbers, m, n, p,

r, s, t, X, y,z; namely, between the coefficients of the multiplier,

multiplicand, and product. These three equations were linear^

relatively to m, n,p (as also with respect to /•, s, t, and x, y, z)
;

and therefore while they gave, immediately, expressions for the

coefficients xyz of the product, and so resolved expressly the

problem of multiplication, they enabled me, through a simple

system of three linear and ordinary equations, to resolve also the

converse problem [21] of the division of one triad of steps by

another: or to determine the coefficients nmp of the following

quotient of two such triads,

mx, + wx2+;)X3=(a:li4yl2+ zl^) ^ (rl, + sl^ + tl^).
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[24.] Such were the most essential elements of that general

theory of triplets, which occurred to me in 1834 and 1835 : but

it is clear that, in its applications, everything depended on the

choice of the twenty-seven constants of multiplication, which

might all be arbitrarily assumed, before proceeding to operate,

but were then to be regarded as,fixed. It was natural, indeed, to

consider the primary number-unit x, as producing no change in

the step or triad on which it operates ; and it was desirable to de-

termine the constants so as to satisfy the condition,

x^ y.1 = X2 X3J

for the sake of conforming to analogies of algebra. Accordingly,

in one of several triplet-systems which I tried, the constants were

so chosen as to satisfy these conditions, by the assumptions,

xili = li, Xil2=lj, xi 13 = 13,

X2l, = l2, Xjl2= I1+ (6-6-^)12, X2l3 = 6l3,

X3li = l3, X3l2=^ll3, X3l3 = li +6I2+ CI3;

which still involved two arbitrary numerical constants, b and c,

and gave, by a combination of successive operations, on any ar-

bitrary step-triad (such as rl, + si j + tl,, whatever the coefficients

r, s, t of this operand triad might be), the following symbolic

equations,* expressing the properties of the assumed operators,

x,, X3, and the laws of their mutual combinations :

x2'=(6-6-')x2 + l;

^2 ^3 ~ X3 X2 = X3
J

X3^ = CX3+ 6x2 + 1;

while the factor x, was suppressed, as being simply equiva-

lent, in this system, to the factor 1, or to the ordinary unit of

number. But although the symbol xj appeared thus to be given

by a quadratic equation, with the two real roots b and - 6"^ I saw

that it would be improper to confound the operation of this pe-

culiar symbol xj with that of either of these two numerical roots,

of that quadratic but symbolical equation, regarded as an ordi-

nary multiplier. It was not either, separately, of the two ope-

* These symbolic equations are copied from a manuscript of February,

1835.
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rations x^-b and x^+b'^, which, when performed on a general

step-triad, reduced that triad to another with every step a null

one : but the combination of these two operations, successively

(and in either order) performed.

[25.] In the same particular triplet system, the three gene-

ral equations [23] between the nine numerical coefficients, of

multiplier, multiplicand, and product, became the following :

X =^mr + ns+pt;

y = ms + nr+(b-b'^)ns+ bpt ;

z = mt+pr+b (nt + ps) + cpt;

whence it was possible, in general, to determine the coefficients

m, n, p, of the quotient of any two proposed step-triads. The
same three equations were found to hold good also, when the

number-triplet {x,y, z) was considered as the symbolical product

of the two number-triplets, (m, n, p) and (r, s, t) ; this product

being obtained by a certain detachment (or separation) of the

symbols of the operators from that of a common operand, namely

here an arbitrary step-triad. In other words, the same algebraical

equations between the nine numerical coefficients, xyz, mnp, rst,

expressed also the conditions involved in the formula of sym-

bolical multiplication,

{x, y, z) = {m, n, p) (r, s, t),

regarded as an abridgment of the following_/M//er formula

:

{x, y, z) (ai, 32, a,) = (m, n, p) (r, s, t) (a,, &^, &,)

;

where ai, &i, a, might denote any three steps in time. Or they

might be said to be the conditions for the correctness of this

other symbolical equation,

a;xi + yxj + 2x3 = (mxi + mx, + px.^) (rxj + sxj + tx^),

interpreted on the same plan as the symbols x^^, x^x^, x^x^, x^^

in [24].

[26.] All the peculiar properties of the lately mentioned

triplet system might be considered to be contained in thelthree

ordinary and algebraical equations, [25], which connected the

nine coefficients with each other (and in this case with two arbi-

trary constants). And I saw that these equations admitted of
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the three following combinations, by the ordinary processes of

algebra

:

x-b'^y = {m-b'^n) (r-J"'s);

X + by + az={m+hn + ap) {r + bs + at)
;

x-¥by+dz = (m + bn + dp) {r + bs + at)
;

where a, a were the two real and unequal roots of the ordinary

quadratic equation,

Here, then, was an instance of what occurred in every other tri-

plet system that I tried, and seemed indeed to be a general and

necessary consequence of the cubicform of a certain function,

obtained by elimination between the three equations mentioned

in [23], at least if we still (as is natural) suppose that Xi = l:

namely, that the product of two 'triplets may vanish, without

eitherfactor vanishing. For if (as one of the ways of exhibiting

this result), we assume

n = bm, r = -bs, t = 0,

the recent relations will then give

x = 0, y=0, z = 0;

so that, whatever values may be assigned to m, p, s, we have, in

this system, the formula

:

(m, bm, p) (- bs, s, 0) = (0, 0, 0).

For the same reason, there were indeterminate cases, in the ope-

ration of division of triplets : for example, if it were required to

find the coefficients mnp of a quotient, from the equation

(m, n, p) (- bs, s, 0) = (x, y, z),

we should only be able to determine the function m-b'^ n, but

not the numbers m and n themselves; while p would be entirely

undetermined: at least \i x+by and z were each =0, for other-

wise there might come infinite values into play.

[27.] The foregoing reasonings respecting triplet systems

were quite independent of any sort of geometrical interpretation.

Yet it was natural to interpret the results, and I did so, by con-

ceiving the three sets of coefficients, (m, n,p), (r, s, t), {x, y. z),
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which belonged to the three triplets in the multiplication, to be

the co-ordinate projections, on three rectangular axes, of three

right lines drawn from a common origin ; which lines might (I

thought) be said to be, respectively, in this system of interpreta-

tion, the multiplier line, the multiplicand line, and the product

line. And then, in the particular triplet system recently de-

scribed, the formulae of [2G] gave easily a simple rule, for con-

structing (on this plan) the product of two lines in space. For

I saw that if threefixed and rectangular lines, A, B, C, distinct

from the original axes, were determined by the three following

pairs of ordinary equations in co-ordinates :

x+hy^Q, z = Q, for line A;
y-bx = 0, z ~ ax = 0, . . . B;

y - bx = 0, 2 - a'x = 0, . . . C;

we might then enunciate this theorem:*

" If a line L" be the product of two other lines, L, U, then

on whichever of the three rectangular lines A, B, C we project

the two factors L, L', the product (in the ordinary meaning) of

their two projections is equal to the product of the projections

(on the same) of L" and U, U being the primary unit-line

(I, 0, 0)."

[28.] I saw also that it followed from this theorem, or more

immediately from the equations lately cited [26], from which the

theorem itself had been obtained, that if we considered three

rectangular planes, A', B', C, perpendicular respectively to the

three lines A, B, C, or having for their equations,

y-bx^O,(A'); x + by-^az^O,{B'); x + by-^ a'z^O, (C);

then every line in any one of these three fixed planes gave a null

product line, when it was multiplied by a line perpendicular to

that fixed plane : the line A, for example, as a factor, giving a

null line as the product, when combined with any factor line in

the plane A'. For the same reason (compare [26] ), although

the division of one line by another gave generally a determinate

• This theorem is here copied, without any modification, from the manuscript

investigation of February, 1S35, which was mentioned in a former note.
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quotient-line, yet if the divisor-line were situated in any one of

the three planes A', H, C, this quotient-line became then in-

Jinite, or indeterminate. And results of the same general cha-

racter, although not all so simple as the foregoing, presented

themselves in my examinations of various other triplet systems :

there being, in all those which 1 tried, at least one system of

line and plane, analogous to {^A) and {A'), but not always three

such (real) systems, nqt'always at right angles to each other.

[29.] These speculations interested me at the time, and some

of the results appeared to be not altogether inelegant. But 1 was

dissatisfied with the departure from ordinary analogies of algebra,

contained in the evanescence [26] [28] of a product of two trip-

lets (or of two lines), in certain cases when x\e\iheT factor was

null ; and in the connected indeterminateness (in the same cases)

of a quotient, while the divisor was different from zero. There

seemed also to be too much room for arbitrary choice of con-

stants, and not any sufficiently decided reasons for finally prefer-

ring one triplet system to another. Indeed the assumption of

the symbolic equation [24], Xi = 1, which it appeared to be conve-

nient and natural to make, although not essential to the theory,

determined immediately the values of nine out of the twenty-se-

ven constants of multiplication ; and six others were obtained

from the assumptions, which also seemed to be convenient (al-

though in some of my investigations the latter was not made),

The supposed convertibility (see again [24] ), of the order of the

two operations x^ and xj, gave then the three following condi-

tions,

><3 ^^2 ll — ^^2 ^^3 -til ^3 ^2 •'2 = ^^2 ^3 -^2) ^^3 ^2 I3 — ^2 ^3 Isi

of which the first was seen at once to establish three relations be-

tween six of the twelve remaining coefficients of multiplication,

namely (if the subscript commas be here for conciseness omitted),

I231 = '3211 •'232 = -'322) '233 = 1323'

The two other equations between step-triads, given by the recent

conditions of convertibility, resolved themselves into six equa-

tions between coefficients, which were, however, perceived to be
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not all independent of each other, being in fact all satisfied by

satisfying the three following :

•'J21 — ^223 '332 ~ '-233 ^322 \

I221 = I233 (I233 ~ I222) + 1223 (I322 ~ -1 333)

;

1^331 = -1332 ('^233 ~ -1 222) + -1 322 (I 322 ~ -I333)
)

of which the two former presented themselves to me under forms

a little simpler, because, for the sake of preserving a gradual as-

cent from couples to triplets, or for preventing a tertiary term

from appearing in the product, when no such term occurred in

either factor, 1 assumed the value,

I223-O.

There still remained ^re arbitrary coefficients,

-^222) -^322, -^323, ^ZZ2y *-333j

which it seemed to be permitted to choose at pleasure: but the

decomposition of a certain cubic function [26] of r, s, t into fac-

tors, combined with geometrical considerations, led me, for the

sake of securing the reality and rectangularity of a certain sys-

tem of lines and planes, to assume the three following relations

between those coefficients :

I222 = I323 - I323) l322 = "l 1332=^323;

which gave also the values.

But the two. constant coefficients I303 and I333 still seemed to re-

main wholly arbitrary,* and were those undetermined elements,

denoted by b and c, which entered into the formulae of triplet

multiplication [25], already cited in this Preface.

[30.] I saw, however, as has been already hinted [19] [20],

that the same general view of algebra, as the science of pure

time, admitted easily, at least in thought, of an extension of this

• The system of constants 6 = 1, c = 1, might have deserved attention, but I

do not find that it occurred to me to consider it. In some of those old investi-

gations respecting triplets, the symbol V- 1 presented itself as a coefficient: but

this at the time appeared to me unsatisfactory, nor did I see how to interpret it

in such a connexion.
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whole theory, not only from couples to triplets, but also from

triplets to sets, of moments, steps, and numbers. Instead oitwo

or even three moments (as in [12] or [20]), there was no difficulty

in conceiving a system or set of n such moments, Ai, Aj, . . a„,

and in supposing it to be compared with another equinumerovs

momental set, b,, Bo, . . b„, in such a manner as to conduct to a

new complex ordinal relation, or step-set, denoted by the formula,

(Bi, Bj, . . B„) - (Ai, Aj, . . A„) = (Bi - Ai, Bj - Aa, . . B„ - A„).

Such step-sets could be added or subtracted (compare [20] ), by

adding or subtracting their component steps, each to or from its

own corresponding step, as indicated by the double formula,

(bi, bj, . . b„) + (ai, 32, . . a„) = (bi + ai, bo ± a,, . . b„ + a„) ;

and a step-set could be multiplied by a number (a), or divided by

another step-set, provided that the component steps of the one

were proportional to those of the other (compare [13] [21] ), by

the formulse:

a (ai, 32, . . a„) = (asi, aaz, . . aa„)

;

(aai, aai, . . oa„) -4- (ai, a^, . . a„) = a.

[31.] But when it was required to divide one step-set by ano-

ther, in the more general case (compare [13] [14] [21] ), where

the components or constituent steps Hi, a.^, . . a„ of the one set

were 7iot proportional to the corresponding components bi, h^, .

b„ of the other set, a difficulty again arose, which I proposed still

to meet on the same general plan as before, by conceiving that a

numeral set, or set or system of numbers, {oi, a,, . . a„), might

operate on the one set of steps, (ai, 33, . . a„), in a way analogous

to multiplication, so as to produce or generate the other given

step-set, as a result which should be analogous to a product. In-

stead oi three distinct and independent unit-steps, as in [22], I

now conceived the existence of « ^Mch unit-steps, which might be

denoted by the symbols,

ii, I2, . . 1„

;

and instead of three unit-numbers (see again [22] ), I conceived

n such unit-operators, which in those early investigations I de-

noted
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and of which I conceived that each might operate on each unit-

step, as a species of multiplier, or factor, so as to produce (gene-
rally) a new step-set as the result. There came thus to be con-

ceived a number, =w=, of such resultant step-sets, denoted, on the

plan of [22], by symbols of the forms :

""a V = l/,s, 1 li + l/,ff, 2 12 + • • • + l/,s,„ In ;

where the n^ symbols of the form 1/,^,,, denoted so many numerical

coefficients, or constants of multiplication, of the kind previously

considered in the theories of couples [14], and of triplets [22],

which all required to have their values previously assumed, or

assigned, before proceeding to multiply a step-set by a number-
set, in order that this operation might give generally a definite

step-set as the result.

[32.] Conversely, on the plan of [23], when the n' numerical
values of these coefficients or constants 1/,^^ had been once fi.\ed,

I saw that we could then definitely interpret a product of the

form,

{my.,+ . .+mgXg + . .m„x„) {r,l,+ . . + rf\f+ . . + r„l„),

where ?«i, . . m^, . . ?«„ and r^, . . ?y, . . ?•„ were any 2n given

numbers, as being equivalent to a certain new or derived step-

set of the form,

x,li + .. + oei,lk+ - . +x„ln;

where .t,, . X/,, . . a;„ were n new or derived numbers, determined

by n expressions such as the following :

Xk = '2.mgrjlf^g^},;

the summation extending to all the n- combinations of values of

the indices / and g. And because these expressions might in

general be treated as a system of n linear equations between the

n coefficients ?»j of the. multiplier set, I thought that ihe division

of one step-set by another (compare [14] [23]), might thus in

general be accomplished, or at least conceived and interpreted,

as being the process of returning to that multiplier, or of deter-

mining the numeral set which would produce the dividend step-

set, by operating on the divisor step-set, and which might there-

fore be denoted as follows :
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Wi xi + . . + ;n^ x^ + . . OT„ x„ = (a;, li + . . + Xj, U 4 . • + a;„ 1„)

-j- (r, li + . . Tf 1/+ . . + r„ 1„)

;

or more concisely thus,

S?w^x3=Sa;ftlft -=-Sr/l/:

while the numeral set thus found might be called the quotient of

the two step-sets.

[33.] It may be remembered that even at so early a stage as

the interpretation of the symbol bx a, for the algebraic product

of two positive or negative numbers,* it had been proposed to

conceive a reference to a step (a), which should be first operated

on by those two numbers successively, and then abstractedfrom,

as was expressed by the elementary formula [9],

(ixa)xa = 6x(axa).

Thus to interpret the product -2x-3as= + 6, I conceived that

some time-step (a) was first tripled in length and reversed in di-

rection ; then that the new step (-3a) was doubled and reversed;

and finally that the last resultant step (+ 6a) was compared with

the original step (a), in the way of algebraic ratio [9], thereby

conducting to a result which was independent of that original

step. All this, so far, was no doubt extremely easy; nor was it

difficult to extend the same mode of interpretation to the case

[17] of the multiplication of two number couples, and to inter-

pret the product of two such couples as satisfying the condition,

(6i, 62) (fli, Qo) X (a,, aa) = (61, b.) x (oi, 03) (a,, a.)

;

the arbitrary step-couple (ai, a^) being first operated on, and af-

terwards abstracted from. In like manner, in the theory of

triplets, it was found possible [24] [25] to abstract from an ope-

rand step-triad, and thereby to obtain formulae for the symbolic

• This word " number," whether with perfect propriety or not, is used

throughout the present Preface and work, not as contrasted -Kith fractions (ex-

cept when accompanied by the word whole or integer), nor with incommensura-

bles, but rather with those steps (in time, or on one axis), of some two of which it

represents or denotes the ratio. In short, the numbers here spoken of, and else-

where denominated " scalars" in this work, are simply those posi^iWs or nega-

tives, on the scale of progression from - 00 to + a> , which are commonly called

reals (or real quantities) in algebra.
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multiplication of the secondary and tertiary number-units, xj, x^,

and more generally of any two numerical triplets among them-

selves. But when it was sought to extend the same view to the

still more general multiplication of numeral sets, new difficulties

were introduced by the essential complexity of the subject, on

which I can only touch in the briefest manner here,*

[34.] After operating on an arbitrary step-set 2 ry 1/ by a

number-set 2w;,; x,, and so obtaining [32] atiotlier step-set,

2.T;, l/„ we may conceive ourselves to operate on the same gene-

ral plan, and with the same particular constants of multiplication,

on this new step-set, by a new nuniher-set, such as '^n{,fy,i', and

so to obtain a third step-set, such as 2a;V l/i. : which may then be

supposed to be dicided (see again [32] ) by the orifjinal step-set

Sr/1/, so as to conduct to a quotient, which shall be another nu-

meral set, of the form Sm"j»x^„. Under these conditions, we may
certainly write,

SwV xg, (Sw.^ x^ . Sr/ 1/) = S»iVV • Sr/ 1/;

but in order to justify the subsequent abstraction ofthe operand

step-set, or the abridgment (compare [25] ) of this formula oi suc-

cessive operation to the following,

Sm'j. x^, . 2ot^ Xy = S»/'y., Xy,,

which may be called a formula for the (symbolic) multiplication

oftwo number-sets, certain conditions ofdetachment are to be sa-

tisfied, which may be investigated as follows.

[35.] Conceive that the required separation ofsymbols has

been found possible, and that it has given, by a generalization of

• A fuller account of this theory of sets, with n somewhat different notation

(the symbols c, ,, t and «r, /,
.

" being employed, for e.vample, to denote the co-

efficients which would here be written as 1/, ,-, , and 1',, /, ,"), and with a special

application to the theory of-gHaiernioHs, will be found in an Essay entitled: "Re-

searches respecting Quaternions. First Series." Trans. R. I. A. \ ol. XXL,

Partn. Dublin: 1848. Pages 199 to 29G. (Read November 13th, 1843.) This

Essay was not fully printed till 1847, but several copies of it were distributed in

that year, especially during the second Oxford Meeting of the British Associa-

tion. The discussion of that portion of the subject which is here considered is

contained chiefly in pages 225 to 231 of the volume above cited.
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the process for triplets in [24], a system of n^ symbolic equations

of the form,

Xj, Xp = i, i 5,5.,^'. x^„

;

where lj,,.,^» is one of a new system ofv? numerical coefficients,

and the sum involves n terms, answering to n different values of

the index g" . Under the same conditions, the recent formula for

the multiplication of numeral sets breaks itself up into n equa-

tions, of the form,

the summation here extending to n"^ terms arising from the com-

binations of the values of the indices g and ^'. For all such

combinations, and for each of the n values oi f, we are to have

(if the required detachment be possible) the following equation

between step-sets :

X^, . Xg
\.f=

Xg, Xg.if,

and conversely, if we can satisfy these w' equations between step-

gets, we shall thereby satisfy the conditions of detachment [34],

which we have at present in view. But each of these w' equa-

tions between sets resolves itself generally into n equations be-

tween mimhers : and thus there arise in general no fewer than n*

numerical equations, as expressive of the conditions in question,

which may all be represented by the formula,*

^V.s,'' ^Kg:'"= 2lj,<,.,A l/,A,ft.

;

all combinations of values of the indices^/, g, g', h! (from 1 to n

for each) being permitted, and the summation in each member

being performed with respect to h. Now to satisfy these w*

equations of condition, there were only 2w' coeflBcients, or rather

their ratios, disposable : and although the theories of couples and

triplets already served to exemplify tlie possibility of effecting

the desired detachment, at least in certain cases, yet it was by

no means obvious that any such extensive reductions] were likely

A formula equivalent to this, but with a somewhat different notation, will

be found at page 231 of the Essay and Volume referred to in a recent Note.

t On the subject of such general reductions, some remarks will be found at

page 251 of the Essay and Volume lately cited.
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to present themselves, as were required for the accomplishment

of the same object, in the more general theory of sets. And I

believe that the compass and difficulty, which I thus perceived

to exist, in that very general theory, deterred me from pursuing

it farther at the time above referred to.

[30.] There was, however, a motive which induced me then

to attach a special importance to the consideration oi triplets, as

distinguished from those more general sets, of which some ac-

count has been given. This was the desire to connect, in some

new and useful (or at least interesting) way, calculation with geo-

metry, through some undiscovered extension, to space of three

dimensions, of a method of construction or representation [2],

which had been employed with success by Mr. Warren* (and

indeed also by other authors, t of whose writings 1 had not then

* ''Treatise on the Geometrical Representation of tlie Square Roots of Ne-

gative Quantities. By the Rev. John Warren, A. M., Fellow and Tutor of

Jesus College, Cambridge." (Cambridge, 1828.) To suggestions from that

Treatise I gladly acknowledge myself to have been indebted, although the in-

terpretation of the symbol V— 1, employed in it, is entirely distinct from that

which I have since come to adopt in the geometrical applications of the quater-

nions.

t Several important particulars respecting such authors have been collected

in the already cited " Report on certain Branches of Analysis" (see especially

pp. 228 to 235), by Dr. Peacock, whose remarks upon their writings, and whose

own investigations on the subject, are well entitled to attention. As relates to

the method described above (in paragraph [30] of this Preface), if multiplication

(as well as addition) ofdirected lines in one plane be regarded (as I think it ought

to be) as an essential element thereof, I venture here to state the impression on

iny own mind, that the true inventor, or at least the first definite promulyator of

that method, will be found to have been Argand, in 180G: although his " Essai

sur une Maniere de representer les Quantites Imaginaires," which was published

at Paris in that year, is known to me only by Dr. Peacock's mention of it in his

Report, and by the account of the same Essay given in the course of a subse-

quent correspondence, or series of communications (which also has been noticed

in that Report, and was in consequence consulted a few years ago by me), car-

ried on between Fran9ais, Servois, Gergonne, and Argand himself; which series

of papers was published in Gergonne's Annales des Mathimatiques, in or about

the year 1813. My recollection of that correspondence is, that it was admitted

to establish fully the priority of Argand to Francais, as regarded the method

[36] of (not merely adding, but) muUijihjing together directed lines in one plane,

which is briefly described above : and which was afterwards independently re-

produced, by Warren in 1828, and in the same year by Mourey, in a work enti-

tled :
" La Vraie Theorie des QuantitC-s Negatives, et des Quantites pretendues
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heard), for operations on right lines in one plane : which method

had given a species of geometrical interpretation to the usual

and well-known imaginary symbol of algebra. In the method

thus referred to, addition of lines was performed according to the

same rules as composition ofmotions, or of forces, by drawing

Imaginaires" (Paris, 1828). If the list of such independent re-inventors of this

impoi-tant and modern method of constructing by a line the product of two di-

rected lines in one fixed plane (from which it is to be remarked, in passing, that

my own mode of representing by a quaternion the product of two directed lines

in space is altogether different) were to be continued, it would include, as I have

lately learned, the illustrious name of Gauss, in connexion with his Theory

of Biquadratic Residues (Gijttingen, 1832). On the other hand, I cannot per-

ceive that any distinct anticipation of this method of multiplication ofdirected lines

is contained in Bute's vague but original and often cited Paper, entitled " Me-

moire sur les Quantitcs Imaginaires," which appeared in the Philosophical

Transactions (of London) for 1806, having been read in June, 1805. The inge-

nious author of that Paper had undoubtedly formed the notion of representing the

directions of lines by algebraical symbols ; he even uses (in No. 35 of his Memoir)

such expressions as V2 (cos 45' + sin 45' V - 1) to denote two different and di-

rected diar/onals of a square : and there is the high authority of Peacock (Report,

p. 228), for considering that the geometrical interpretation of the symbol V — 1,

as denoting perpendicularity, was "first formally maintained by Buee, though

more tlian once suggested by other authors." In No. 43 of the Paper referred

to, Buec constructs with niucli elegance, by n hent line ake, or by an inclined

line AK (where ke is a perpendicular, — la, erected at t)ie middle point K of a

given line An, or a), an inint/inary root (.r) of tlie quadratic equation, x (a — x') = l a-,

which had been proposed by Carnot (in p. 54 of the Geometrie de Position, Pa-

ris, 1804). But when lie proceeds to explain (in No. 4C) of his Paper) in what

sense he regards the two lines ae and En (or the two constructed roots of the

quadratic) as iiaving tlieir product equal to the given value ^ a^ op i ^ij-^ Buee ex-

pressl:/ limits tlie signification of such a product to the result obtained by multi-

phjing the arithmetical values, and expressly excludes the consideration of the

positions of the factor-lines from his conception of their multiplication: whereas

it seems to me to belong to the very essence of the method [36] of Argand and

others, and generally to that system of geometrical interpretation whereon is

based what Professor De Morgan has happily named Double Algebra, to take

account of those positions (or directions), when lines are to be multiplied together.

My 0!fn conception (as has been already hinted, and as will appear fully in the

course of this work), of the product of two directed lines in space as a quater-

nion, is altogether distinct, both from the purely arithmetical product of nume-

rical values of Bu^e, and from the linear product (or third coplanar line), in the

method of Argand : yet I have thought it proper to submit the foregoing re-

marks, on tlie invention of this latter method, to the judgment of persons

better versed than myself in scientific history. A few additional remarks and

references on the subject will be found in a subsequent Note.
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the diagonal of a parallelogram ; and the multiplication of two

lines, in a given plane, corresponded to the construction of a

species oifourth proportional, to an assumed line in the same

plane, selected as the representative of positive unity, and to the

tv?o proposed /ac^or-/ine« : such fourth proportional, or product-

line, being inclined to one factor-line at the same angle, measured

in the sa?ne sense, as that at which the other factor-line was in-

clined to the assumed unit-line ; while its length was, in the old

and usual signification of the words, a fourth proportional to the

lengths of the unit-line and the two factor-lines. Subtraction,

division, elevation to powers, and extraction of roots, were ex-

plained and constructed on the same general principles, and by

processes of the same general character, which may easily be con-

ceived from the slight sketch just given, and indeed are by this

time known to a pretty wide circle of readers : and thus, no doubt,

by operations on right lines in one plane, the symbol V-l re-

ceived a perfectly clear interpretation, as denoting a second unit-

line, at right angles* to that line which had been selected to re-

• Besides what has been already referred to, as having been done on this

subject of the interpretation of the symbol V-1 by the Abbe Bu^e, it has been

well remarked by Mr. Benjamin Gompertz, at page vi. of his very ingenious

Tract on " The Principles and Applications of Imaginary Quantities, Book II.,

derived from a particular case of Functional Projections" (London, 1818), that

the celebrated Dr. Wallis of Oxford, in his " Treatise of Algebra" (London,

1685), proposed to interpret the imaginary roots of a quadratic equation, by

going out ofthe line, on which if real they should be measured. Thus Wallis (in

his chapter Ixvii.) observes :
—" So that whereas in case of Negative Roots we

"are to say, the point B cannot be found, so as is supposed in AC Forward, but

"Backward it may in the same Line: we must here say, in case of a Negative

" Square, the point B cannot be found so as was supposed, in the Line ac; but

"Above that Line it may in the same Plain. This I have the more largely in-

"sisted on, because the Notion (I think) is new; and this, the plainest Declara-

"tion that at present I can think of, to explicate what we commonly call the

" Imaginary Roots of Quadratick Equations. For such are these." And again

(in his following chapter Ixviii., at page 269), Wallis proposes to construct thus

the roots of the equation aa + 6a + « = :—" On ACa = b, bisected in c, erect a

" perpendicular cp = Vo;. And taking pb = Ai, make (on whether side you please

" of CP), PBC, a rectangled triangle. Whose right angle will therefore be at c

" or B, according as pb or PC is bigger ; and accordingly, Bc a sine or a tangent,

"(to the radius pb,) terminated in pc. The streight lines ab, Ba, are the two

"values of a. Both affirmative if (in the equation,) it be - ba. Both negative,

" if + ba. Which values be (what we call) Real, if the right angle be at c. But

e
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present positive unity. But when it was proposed to leave the

plane, and to construct a system which should have some general

analogy to the known system thus described, but should extend

to space,* then difficulties of a new character arose, in the endea-

" Imaginary if at B." These passages must always (I think) possess an histo-

rical interest, as exemplifying the manner in which, in the seventeenth century,

one so eminent for his powers of interpretation of analytical expressions, as Dr.

Wallis was, sought to apply those powers to the geometrical construction of the

imaginary roots of an equation : and for the decision with which he held that such

roots were quite as clearly interpretable, as " what we call real" values. His par-

ticular interpretation of those imaginary roots of a quadratic appears indeed to

me to be inferior in elegance to that which was long afterwards proposed by

Buee. But it may be noticed that, whether his point B were on or q^the line

ACa, Wallis seems (like Buee, and many other and more modern writers) to have

regarded that right line, as being in some sense a sum, or at least analogous to a

sum, of the two successive lines ab, na ; which latter lines conduct, upon the

whole, from the initial point a to the final point a ; and construct according to

him the two roots of the quadratic, whose algebraic sum is = b. Indeed, Wallis

remarks (in the same page 269) that when those two roots are algebraically ima-

ginary, or are geometrically constructed (according to him) by the help of a point

B which is above the line ACo, then that straight line is not equal to the aggregate

of AB + Ba ; but this seems to be no more than guarding himself against being

supposed to assert, that two sides of a triangle can be equal in length to the

third. In chap. Ixix., p. 272, he thus sums up :
—" We find therefore, that in

" Equations, whether Lateral or Quadratiok, which in the strict Sense, and first

*' Prospect, appear Impossible ; some mitigation may be allowed to make them
*' Possible ; and in such a mitigated interpretation they may yet be useful." For

lateral equations (equations of the first degree), the mitigation here spoken of

consists simply in the usual representation of negative roots, by lines drawn back-

ward from a point, whereas they had been at first supposed to be dravm forward.

For quadratic equations with imaginary roots, Wallis mitigates the problem, by

substituting a bent line Asa for that straight line ACa, which constructs the given

algebraical sum (6) of the two roots of the equation, or parts of the bent line,

AB, Ba. It is also to be noticed that he appears to have regarded the algebraical

semi-difference of those two roots, ab, Ba, as being in all cases constructed by the

line BC, drawn to the middle point c of the line Aa : which would again agree with

many modern systems. Thus Wallis seems to have possessed, in 1685, at least in

germ (for I do not pretend that he fully and consciously possessed them), some

elements of the modern methods of Addition and Subtraction of directed lines.

But on the equally essential point of Multiplication of directed lines in one plane,

it does not appear that Wallis, any more than Buee (see the foregoing Note), had

anticipated the method of Argand.
* At a much later period 1 learned that others had sought to accomplish

some such extension to space, but in ways different from mine.
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vour at surmounting which I was encouraged by tJie friend al-

ready mentioned (Mr. John T. Graves), wlio felt the wish, and

formed the project, to surmount them in some way or other, as

early, or perhaps earlier than myself.

[37.] A conjecture respecting such extension of the rule of

multiplication of lines, from the plane to space, which long ago

occurred to me (in 1831), may be stated briefly here, as an illus-

tration of the general character of those old speculations. Let

A denote a point assumed on the surface of a fixed sphere, de-

scribed about the origin o of co-ordinates, with a radius equal to

the unit of length ; and let this point a be called the unit-point.

Let also b and c be supposed to be two factor-points, on the

same surface, representing the directions oa, ob, of the two fac-

tor-lines in space, of which lines it is required to perform, or to

interpret, the multiplication ; and so to determine, by some fixed

rule to be assigned, the product-point d, or the direction of the

product-line, od. Then it appeared that the analogy to opera-

tions in the plane might be not ill observed, by conceiving d to

be taken on the circle abc ; the arcs, ab, cd, of that (generally)

small circle of the sphere being equally long, and similarly mea-

sured ; so that the two chords ad, bc should be parallel: while

the old rule of multiplication of lengths should be retained : and

addition of lines be still interpreted as before. But in this sys-

tem there were found to enter radicals axiAfractions into the ex-

pressions for the co-ordinates* of a product ; and although the

case oi squares of lines, or products of equal factors, might be

rendered determinate by agreeing to take the great circle ab,

when the point c coincided with b, yet there seemed to be an ea-

eeDtia.1 indetermination in the construction of the reciprocal o( a.

line : it being sufficient, according to the definition here consi-

• The rectangular co-erdinates (or projections) of the two factor-lines and

of the product-line being denoted by xyz, xyz, x'yz, if we also write, for con-

ciseness,

r = V (.r! + y"- + 2'), r' = V {x^ + y' + 2'), p = xx^- yy + zz,

then the expressions which I found for x" y z may be included briefly in the

equations

:

x'~rr' y 2 ^rx—rx

rx- rx
~ ry'-ry " rz-rz p-rr
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dered, to take the chord bc parallel to the tangent plane to the

sphere at the unit-point, in order to make the product point D

coincide with that point a. There was also the great and (as I

thought) fatal objection to this method of construction, that it

did not preserve the distributive principle of multiplication ; a

product ofsums not being equal, in it, to the sum ofthe products:

and on the whole, I abandoned the conjecture.

[38.] Another construction, of a somewhat similar character,

and liable to similar objections, for the product of two lines in

space, occurred to me in 1835, and also independently to Mr. J.

T. Graves in 1836, in which year he wrote to me on the subject.

It may be briefly stated, by saying that instead of considering,

as in the last-mentioned system, the small circle abc, and draw-

ing the chord ad, from unit-point to product-point, so as to be

parallel to the chord bc from one factor-point to the other, it was

now the arc ad of a great circle on the sphere, which was to be

drawn so as to bisect the arc bc, of another great circle, and be

bisected thereby. Or as Mr. Graves afterwards expressed to me
the rule in question :

—" Bisect the inclination of the factor-lines,

and then double forward the angle between the linear unit and
the bisecting line:" the rule of multiplying lengths being under-

stood to be still observed. Mr. Graves made several acute re-

marks CD the consequences of this construction, and proposed a

few supplementary rules to remove the porismatic character of

some of them : but observed that, with these interpretations, the

square-root of the negative unit-line, or the triplet (- ], 0, 0)*,

would still be indeterminate, and of the form (0, cos0, sinO),

where B remained arbitrary: while cases might arise, in which the

"minutest alteration" of a factor-line would make a "considerable

change" in the position of the product-line: and this result he

conceived to be, or to lead to, " a breach of the grand property

of multiplication," respecting its operation on a sum. He left to

me the investigation of the general expressions for the " consti-

tuent co-ordinates" of the resultant " triplet," or product-line, in

terms of the constituents of the factors : and in fact I had already

obtained such expressions, and had found them to involve radi-

cals and fractions, and to violate the distributive principle, as in

the system recently described [37] ; with which indeed the one
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here mentioned had been perceived by me to have a very close

analytical connexion.*

[39.] Mr. J. T. Graves, however, communicated to me at the

same time another method, which he said that he preferred,

among all the modes that he had tried, " of representing lines in

space, and of multiplying such lines together." This method

consisted in considering such a line as a species of " compound

couple," or as determined by two couples, one in the plane of ay,

and the other perpendicular to that plane : it having been easily

perceived that the rules proposed by me for the addition and

multiplication [17] of couples, agreed in all respects with the pre-

viously known method [36], of representing the operations of the

same names on lines in one plane. From this conception of eom-

pound couples Mr. Graves derived a " general rule for the multi-

plication of triplets," which I shall here transcribe,! only abridg-

ing the notation by writing p and p, to represent the radicals

^J {s? + y^') and VC^i^ + ^iO' °'' •'^^ projections of the factor-lines

on the plane oi xy: "(x, y, z) {x^, y-,, 2i) = (a;j, y^, Z2), where

. ./ xxi- yyi\ , .

2 = (|0|0i
- zzi) , 2/2 = (ppi - zz^)

This particular system of expressions he does not seem to have

developed farther, nor did it at the time attract much of my own

• With the notations recently employed, the expressions which I had found

for the co-ordinates of the product, in the case or system [38], are included in

the equations,

X 4 tt' _ y" _ z' rx + r'x
_

Tx + rx ~ ry + r'y tz + r'z -p-v rr

•which only differ from those for the former case [37], by a change of sign in the

radical r'(or7-), which represents the length of a factor-line. The conditions

for both systems are contained in these other equations,

XX + yy" + zz = r' «:', xx + y'y + zz' = /' .r, x"' + y"2 + z"2 = r« r'

;

and the quadratic equation in x", obtained by elimination of y" and z", resolves

itself into two separate factors, each linear relatively to x", namely,

{p- rr) (x" - rr') - (rx - r'xy = 0,

lp+ rr) (x + rr') - (rx + r'x)' = 0.

The first corresponds to the system [37] ;
the second to the system [38].

fFrom Mr. Graves's Letter of August 8th, 1836.
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attention : but I have thought it deserving of being put on re-

cord here, especially as, by a remarkable coincidence, it came to

be independently and otherwise arrived at by another member of

the same family, at a date later by ten years, and to be again

communicated to me.* And perhaps I may be excused if I here

leave the order of time, to give some short account of the train

of thought by which his brother, the Rev. Charles Graves, ap-

pears to have been conducted, in 1846, to precisely the same re-

lations between the constituents of three triplets.

[40.] Professor Graves employed a system of two new ima-

ginaries, i and^', of which he conceived that i had the eflPect of

causing a rotation (generally conical) through 90° round the axis

of 0, whiles' caused a line to revolve through an equal angle in

its own vertical plane (that is, in the plane of the line and of z)
;

and then he proceeded to inultiply together the two triplets

x+ iy+jz, a;'+ iy +jz!, by a peculiar process, and so to obtain a

third triplet x"+iy"+jz": the relations thus resulting, between

the co-ordinates or constituents, being (as it turned out) identi-

cal with those which his brother had formerly found. These

symbols I and J were each a sort offourth root of unity : and the

first, but not the second, had the property of operating on a sum
by operating on each of its parts separately. Thus, as Profes-

sor Graves remarked, multiplication of triplets, on this plan,

would not be a distributive operation, although it would be a

commutative one. The method conducted him to an elegant ex-

ponential expression for a line in space, namely, js'^ sJ'^, where r

was the radius vector, and /, X might be called the longitude and

latitude of the line, so that the co-ordinate projections were

(some peculiar considerations being employed in order to justify

these expressions of them, as connected with that of the line) :

x = r cos / cos X, y = r sin I cos \, z = r sin X.

And then the rule for the multiplication oftwo lines came to be

expressed by the very simple formula

:

• By the Rev. Charles Graves, Professor of Mathematics in the University

of Dublin, in a letter of November 14th, 1846.
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the lengths being thus multiplied (as in the other systems above

mentioned), but the longitudes and latitudes of the one line being

respectively added to those of the other: which was in fact the

rule expressed by Mr. J. T. Graves's co-ordinate formulae [39].

[41.] It will not (1 hope) be considered as claiming any me-

rit to myself in this matter, but merely as recording an unpursued

guess, which may assist to illustrate this whole inquiry, if I ven-

ture to mention here that theirs/ conjecture respecting geometri-

cal triplets, which I find noted among my papers (so long ago as

1830), was, that while lines in space might be added according

to the same rule as in the plane, they might be multiplied by

multiplying their lengths, and adding their polar angles. In the

method [36], known to me then as that of Mr.Warren, if we write

x = r cos 0, y=r sin Q, we have, for multiplication uithin the

plane, equations which may be written thus, r" - rr', 6"= 6+ ff. It

hence occurred to me, that if we employed for space these other

known transformations of rectangular to polar co-ordinates,

x = r cosO, y=r s'm 6 cos (p, z = r sin sin (j,,

it might be natural to dejine multiplication of lines in space by

the slightly extended but analogous formulae,

r" = rr', &'=Q + &, ^"=0 + f

:

which, however, conducted to radicals, as in the expression,

x" = xx - {y^ + z')i (j/'» + z'=)*,

whereas within the plane there were rational values for the rect-

angular co-ordinates of the product, namely (compare [17] ),

x" = xx' - yy', y" = xy' + yx'.

But this old (and uncommunicated) conjecture of mine, which

was inconsistent with the distributive principle, though possess-

ing some general resemblance to the lately mentioned results [39]

[40] of Messrs. John and Charles Graves, cannot be considered

to have been an anticipation of them. For while we all agreed

in adding the longitudes of the tvyo factors (in the sense lately

mentioned), they added latitudes also; while 1, less happily, had

thought of adding the colatitudes, or the angular distances from

a line («), instead of those from a plane {xy). And this diffe-
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rence of plan produced a very important difference of results.

Indeed the two systems are totally distinct, although there exists

some sort of analogy between them.

[42.] I shall here mention one more system, which was com-

municated to me* in 1840, by the elder of those two brothers,

and which involved a method of representing the usual imagi-

nary quantities of algebra, each by a corresponding unique point

on the surface ofa sphere, described (as in [37] ) about the ori-

gin with a radius = 1: whence it appeared that the ordinary ima-

ginary expression r (cos Q + V - 1 sin 0) might be denoted by a

triplet (x, y, z), under the condition, x^ + y'^ + z'^ = \: and that the

rules thus obtained, for the multiplication oi such triplets, might

perhaps afford some analogy, suggesting rulest for the more ge-

neral case, where the constituents x,y, z are wholly independent

of each other. Mr. J. T. Graves's " mode of representing quan-

tity spherically" was stated by him to me as follows:—"All po-

" sitive quantities r may be represented by points on an assumed

" semicircle, by taking the extremity of the arc 2 tan'' t (counted

" from one end (a) of the semicircle) to represent r. Next let us

" consider our sphere as generated by the revolution of the semi-
«' circlet abc round the axis AC (forwards or backwards, according
" to arbitrary convention). When the semicircle has moved
*' through an angle 0, let the position of a point on its circumfe-

•' rence denote r (cos 0+ V^- 1 sin 6), if the same point in its ori-

"ginal position denoted r." I make a very easy transformation

of this statement, when I present it thus:—Construct all quan-

tities (so called), real and imaginary, according to the known me-

thod already described in [36], by drawing right lines from

the assumed point (a) of the unit-sphere, in the tangent plane at

that point ; double all the lines so drawn, and treat the ends of

• In a letter of October 17th, 1840, from J. T. Graves, Esq.

f Mr. Graves appears not to have actually worked out such rules, at least I

do not find that he communicated them to me. They would probably have been,

on the plan described in [42], to have multiplied (as before) the lengths, and (as

before) added the longitudes : but to have then multiplied the tangents ofthe halves

of the colatitudes of the factors, in order to obtain the tangent of the half of the

colatitudc of the product.

X A figure, which it seems unnecessary here to reproduce, accompanied Mr.
Graves's Letter.
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the doubled lines as the stereographic projections of points upon

the sphere. Infinity was thus represented, in the particular system

of Mr. Graves here described, by the point diametrically oppo-

site to A. And in this endeavour of mine, to furnish faithfully a

record of every circumstance, which, even as remotely suggesting

to ?i friend a train of thought, may have indirectly stimulated

myself, I must not suppress the following acknowledgment of

Mr. J. T.Graves:—"What led me to this was a passage in

"a letter from De Morgan,* in which he expressed a wish to be

" able to represent quantity circularly, in order to explain the

" passage from positive to negative through infinity."

[43.] The foregoing specimens may suffice to exemplify the

attempts which were made, a considerable number of years ago,

by Mr. Graves and by myself: on the one hand, to extend to

space tiiat geometrical construction for the multiplication of lines,

which was known to us from the work of Mr. Warren ; and on

the other hand, to render more entirely definite my conception of

algebraical t)-iplets. I will not here trouble my readers with any

further account of the conjectures on those subjects which at va-

rious times occurred to him or me, before 1 was led to the qua-

ternions, in a way which I shall presently explain. But I wish

to mention first, that among the circumstances which assisted to

prevent me from losing sight of the general subject, and from

wholly abandoning the attempt to turn to some useful account

those early speculations of mine, on triplets and on sets, was pro-

bably the publication of Professor De Morgan's first Paper on

the Foundation of Algebra,! of which he sent me a copy in 1841.

In that Paper, besides the discussion of other and more impor-

tant topics, my Essay on Pure Time was noticed, in a free but

friendly spirit; and the subject of triplets was alluded to, in such

passages, for instance, as the following:—"But in this branch

of logical algebra" (that referred to in paragraph [36] of the pre-

sent Preface), " the lines must be all in one plane, or at least

affected by only one modification of direction : the branch which

shall apply to a line drawn in any direction from a point, or mo-

• Augustus De Morgan, Esq., Professor of Mathematics in University College,

London.

f In Vol. VII., Part II., of the Cambridge Philosophical Transactions.

f
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dified by two distinct directions, is yet to be found." . . "An

extension to geometry of three* dimensions is not practicable

until we can assign two symbols, Q, and w, such that a + bQ, + C(»

= ai + 6ii2 + Citt) gives a = ai, b=bi, andc = Ci: and no definite

symbol of ordinary algebra will fulfil this condition." My sym-

bols xs, X3 (of 1834-5) had not then been published, nor other-

wise exhibited to him ; they were designed to fulfil precisely the

foregoing conditions : but I was not myself satisfied with them,

as not considering them " definite" enough (compare [29] ).

[44.] In the early numbers of the Cambridge Mathematical

Journal, there appeared some ingenious and original Papers, by

the late Mr. Gregory and by other able analysts, on the signs +

and -, on the powers of +, on branches of curves in different

planes, and on other connected subjects : but I hope that it will

not be thought disrespectful if I confess that I do not remember

their having had much influence on my own trains of thought.

Perhaps 1 was not sufficiently prepared, or disposed, to look at

algebra generally, and its applications to geometry, from the

same point of view, and was thereby prevented from studying

those Papers with the requisite attention. At least, if anything

in my own views shall be found to be inconsistent with those put

forward in the Papers thus alluded to, I wish it to be considered

as offered with every deference, and not in a controversial spirit.

And if for the present I omit all further mention of them, it is

partly because, without a closer study, I should fear to do them

injustice: and partly because I make no pretensions to be here

• Professor De Morgan proposed at the same time a remarkable conjecture,

which he may be considered to have afterwards illustrated and systematised, by

his theory oi cube-roots of negative unity, employed as geometrical operators, in

his Paper on Triple Algebra (Camb. Phil. Trans., Vol. VIII., Part, iii.); namely,

that "an extension to three dimensions" might " require a solution of the equa-

tion 0'j; = — a:." I much regret that my plan will not allow me to attempt the

giving any further account, in this Preface, of that very original Paper of Pro-

fessor De Morgan, the first suggestion of which he was pleased to attribute to

the publication of my own remarks on Quaternions, in the Philosophical Maga-

zine for July, 1844: and a similar expression of regret applies to the independent

but somewhat later researches of Messrs. John and Charles Graves, in the same

year, respecting other Triplet Systems, which involved cube-roots of positive

unity, and of which some account has been preserved in the Proceedings of the

Royal Irish Academy.
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an historian of science, even in one department of mathematicaj

speculation, or to give anything more than an account of the pro-

gress of my own thoughts, upon one class of subjects. For the

same reasons, I pass over some other investigations having refe-

rence to the imaginary* symbol of algebra, which were not used

as suggestions by myself, and proceed at once to the quaternions.

[45.] With such preparations as I have described, I resumed

(in 1843) the endeavour to adapt the general conception of trip-

lets to the multiplication of lines in space, resolving to retain the

distributive principle, with which some formerly conjectured sys-

tems had been inconsistent, and at first supposing that I could

preserve the commutative principle also, or the convertibility

[24] [29] of the factors as to their order. Instead of my old

symbols xi, x^, X3 (see [22] ), I wrote more shortly 1, i,j; so that

a numerical triplet took the form x + iy +jz, where I proposed to

interpret x, y, z as three rectangular co-ordinates, and the trip-

let itself as denoting a line in space. From the analogy of cou-

• I am unwilling, however, to leave unmentioned here (although it did not

happen to supply me with any suggestion), a remarkable use of the symbol

V-1, which was made by the late Professor Mac Cullagh, of Dublin, whose great

and original powers in mathematical and physical science must ever be remem-

bered with admiration, and which he seems to have connected (in 1843) with in-

vestigations respecting the total reflexion of light. (See Proceedings of the

R. I. A. for the date of January 13, 1845.) This use of imaginaries was founded

on a theorem relative to the ellipse, which was expressed by him as follows, in

a question proposed at the Examination for the Election of Junior Fellows in

1842 (see Dublin University Examination Papers for that year, published in

1843, p. Ixxxiv.): " Detur in spatio ellipsis, cujus centrum est origo co-ordina-

tarum. Puncta xyz, x'y'z in ellipsi sint termini diametrorum conjugatarum.

Ostendendum est quantitates iraaginarias

y + y'V^ z + z'^-l

j: + x'V-1 I + j-'V-l

constantes esse pro quolibet systemate diametrorum conjugatarum." This

elegant theorem of Professor Mac Cullagh may easily be proved, without em,

ploying any but the usual principles respecting the symbol V- 1, by observing

that the following expressions, for the six co-ordinates in question,

x = a cos w + a' sin », y = b cos b + i' sin «, 2 = c cos v + c sin v,

X = a' cos « - a sin v, y = b' cos v - b sin v, z = c' cos « - c sin v,

give

x+i'V-l w + v'V-1 + z'V-l . ., ,^ = < ' = = cos V - sin » /- 1.

a + a'V-l i + 6'V-l c + c'V-1
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pies, I assumed i^=-l; and tried the effect of assuming also.

j^ = -l, which I interpreted as answering to a rotation through

two right angles in the plane o{xz,as «' = -! had corresponded

to such a rotation in the plane of xy. And because I at first

supposed that ij and_;'i were to be equal, as in the ordinary cal-

culations of algebra, the product of two triplets appeared to take

the form,

(a + ill +jc) {x + iy +jz) = {ax -by- cz) + i (ay + bx)

+j {az + ex') + ij (bz + cy) :

but I did not at once see what to do with the product ij. The
theory of triplets seemed to require that it should be itself a

triplet, of the form,

the coefficients a, /3, y being some three constant numbers : but

the question arose, how were those numbers to be determined, so

as to adapt in the best way the resulting formula of multiplica-

tion to some guiding geometrical analogies.

[46.] To assist myself in applying such analogies, I consi-

dered the case where the co-ordinates b, c were proportional to

y, z, so that the two factor-lines were in one common plane, con-

taining the unit-line, or the axis of x. In that particular oase,

there was ready a known signification [36] for the product line,

considered as the fourth proportional to the unit-line (assumed

here on the last-mentioned axis), and to the two coplanar factor-

lines. And I found, without difficulty, that the co-ordinate pro-

jections of such a fourth proportional were here,

ax -by- cz, ay + bx, az + ex,

that is to say, the coefficients of 1, i,j, in the recently written

expression for the product of the two triplets, which bad been

supposed to represent the factor-lines. In fact, if we assume

y=Xb,z = Xc, where A is any coefficient, we have the two iden-

tical equations,

{ax -W - Xc»)= + (Xa + xf (b- + c') = (a' + b' + c') (a;^ + X' 6' + X" c=),

(Xa + x)(b'+c')i (b-+c'-)i ^ Xib^ + c^f'
tan-' ^^

t^tt;
—-^ = tan-i i —i- + tan"'-^^ .

ax-X (o' + c^) a x
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which express that the required geometrical conditions are satis-

fied. It was allowed then, in this case ofcoplanarity, or under
the particular condition,

bz-cy = 0,

to treat the triplet,

(ax -by- cz) + i {ay + bx) +j (az + ex),

as denoting a line which might, consistently with known analo-

gies, be regarded as the product of the two lines denoted by the

two proposed triplets,

a + ib +jc, and x + iy +jz.

And here theJourth term,

ij{bz + cy),

appeared to be simply superfluous: which induced me for a mo-
ment to fancy that perhaps the product ij was to be regarded as

= 0. But I saw that this fourth term (or part) of the product

was more immediately given, in the calculation, as the sum of

the two following,

ib.jz, jc.iy;

and that this sum would vanish, under the present condition

bz=cy, if we made what appeared to me a less harsh supposition,

namely, the supposition (for which my old speculations on sets

had prepared me) that

ij=-ji:

or that

ij= + k,ji = -k,

the value of the product k being still left undetermined.

[47.] In this manner, without now assuming 6z - cy = 0, I

had generally for the product oftwo triplets, the expression of

quadrinomialform,

{a + ib +jc) {x + iy +jz) = {ax -by- cz) + i {ay + bx)

+j {az +cx) + k {bz - cy)
;

and I saw that although the product of the sums of squares of

the constituents of the two factors could not in general be decom-

posed into three squares of rational functions of them, yet it

could be generally presented as the sum oifour such squares.
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namely, the squares of the four coefficients of 1, i,j, k, in the

expression just deduced : for, without any relation being assumed

between a, b, c, x, y, z, there was the identity,

(a' + 6' + c') {x" + y' + z") = {ax-by- czf + {ay + bxY

+ {az + cxy + {bz - cyy.

This led me to conceive that perhaps instead of seeking to con-

jine ourselves to triplets, such as a + ib +jc or (a, b, c), we ought

to regard these as only imperfectforms q/'QUATERNioNS, such as

a + ib ^jc + kd, or (a, b, c, d), the symbol k denoting some new

sort of unit operator : and that thus my old conception of sets

[30] might receive a new and useful application. But it was ne-

cessary, for operating definitely with such quaternions, to fix the

value of the square k^, of this new symbol k, and also the values

of the products, ih, jk, ki, kj. It seemed natural, after assuming

as above that i^=j'^ = - 1» and that ij = k,ji=- k, to assume also

that ki =:-ik = - i'j = +j, and kj = -jk =j' i = - i. The assump-

tion to be made respecting k'' was less obvious ; and I was for a

while disposed to consider this square as equal to positive unity,

because i'j' = + 1 : but it appeared more convenient to. suppose, in

consistency with the foregoing expressions for the products of

i,j, k, that

k'^ = ijy = - Mjry = - i^/ = - (- 1 )
(_ 1

) = _ 1

.

[48.] Thus all the fundamental assumptions for the multipli-

cation oftwo quaternions were completed, and were included in

the formulae,

«'=/= A' = -1; V = -ji = k; jk=-kj=i; U = -ik=j:

which gave me the equation,

{a, b, c, d) (a', b', c', d') = (a", b", c", d"),

or

{a + ib +jc + kd) (a + ib' +jc' + kd') = a" + ib"+jc" + kd",

when and only when the followingybwr separate equations were

satisfied by the constituents of these three quaternions

:

a = ad - bb' - cc - dd',

b"={ab'+ba') + {cd'-dc),

c" -= (ac + ca') + {dU - bd'),

d' = {ad'+ dd) + {be - cU),



PREFACE. (47

)

And I perceived on trial, for 1 was not acquainted with a theorem

of Euler respecting sums offour squares, which might have

enabled me to anticipate the result, that these expressions for

a", h", c", d" had the following modular property

:

a"^ + 6"' + c"» + d"^ = (o'' + b' + c' + d') (a'^ + b'" + c' + rf'^).

I saw also that if, instead of representing a line by a triplet of

the form x+ iy-vjz, we should agree to represent it by this other

trinomialform,

ix +jy + kz,

we should then be able to express the desired product oftwo lines

in space by a quaternion, of which the constituents have very

simple geometrical significations, namely, by the following,

{ix +jy + kz) (ix -\-jy' + kz) = w" + ix" +ji/' + kz",

where
w" = - xx' - yy - z£,

x" - ysf - zy, y" = zx! - xz', z" - xy' - yx
;

so that the part w\ independent of ijk, in this expression for the

product, represents thejororfucf of the lengths of the two factor-

lines, multiplied by the cosine of the supplement of their inclina-

tion to each other; and the remaining part ix" -¥Jy"+kz" o{ the

same product of the two trinomials represents a line, which is in

length the product ofthe same two lengths, multiplied bi/ the sine

of the same inclination, while in direction it is perpendicular to

the plane ofthe factor-lines, and is such that the rotation round

the multiplier-line, from the multiplicand-line towards the pro-

duct-line (or towards the line-part of the whole quaternion pro-

duct), has the same right-handed (or left-handed) character, as

the rotation round the positive semiaxis of k (or of z), from the

positive semiaxis of i (or of x), towards that of,;" (or of y).

[49.] When the conception, above described, had been so far

unfolded and fixed in my mind, I felt that the new instrument for

applying calculation to geometry, for which I had so long sought,

was now, at least in part, attained. And although 1 had left se-

veral former conjectures respecting triplets for many years uncom-

municated, except by name, even to friends, yet 1 at once pro-

ceeded to lay these results respecting quaternions before the
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Royal Irish Academy (at a Meeting of Council* in October,

1843, and at a General Meetingf shortly subsequent) : introducing

also a theory of their connexion with spherical trigonometry, some

sketch of which appeared a fewmonths later inLondon (in thePhi-

losophical Magazine for July, 1844). On that connexion ofquater-

nions with spherical trigonometry, and generally with spherical

geometry, I need not at present dwell, since it is sufficiently ex-

plained in the concluding Lectures of this Volume : but it may be

not improper that a brief account should here be given, of a not

much later but hitherto unpublished speculation, of a character

partly geometrical, but partly also metaphysical (or d priori), by

which I sought to explain and confirm some results that might

at first seem strange, among those to which my analysis had con-

ducted me, respecting the quadrinomialform, and non-commuta-

tive property, of the product of two directed lines in space.

[50.] Let, then, the peoddct of two co-initial lines, or of two

vectors from a common origin, be conceived to be something which

has QCANTITT, in the sense that it is doubled, tripled, &c., by dou-

bling, tripling, &c., either factor ; let it also be conceived to have

in some sense, quality, analogous to direction, which is in some
way definitely connected with the directions of the two factor lines.

In particular let us conceive, in order to preserve so far an ana-

logy to algebraic multiplication, that its direction is in all re-

spects reversed, when either of those directions is reversed ; and

therefore that it is restored, when both of them are reversed. On

• The Minutes of Council of the E. L A., for October 16th, 164-3, record

" Leave given to the President to read a paper on a new species of imaginary

qoantities, connected with a theory of qoatemions." It may be necessary to

state, in explanation, that the Chair of the Academy, which has since been so

weU fiUed by my friends, I>r3. Lloyd and Robinson, was at that time occupied

by me.

t At the Meeting of November 1 3th, 1843, as recorded in the " Proceedings"

of that date, in which the fundamental formulx and interpretations respecting

the svmbols ijk are given- Two letters on the subject, which have since been

printed, were also written in October, 1843, to the friend so often mentioned in

this Preface, Mr. J. T. Graves : and the chief results were also exhibited to his

brother, the Rev. C. Graves, before the public communication of November,

1843. These circumstances (or some of them) have been stated elsewhere : but

it seemed proper not to pass them over without some short notice here, as con-

nected with the date of the invention and poblication of the quaternions.
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the other hand, for the sake of recognising what may be called

the symmetry ofspace, let this direction ofthe product, so far as

it can be constructed or represented by that of any line in space,

be conceived as not changing its relation to the system of those

twofactor directions, when that system is in any manner turned in

space ; its own direction, as a line, being at the same time turned

with them, as if it formed a part of one common and rigid system

;

and the numerical element of the same product (if it have any

such) undergoing no change by such rotation. Let the product

in question be conceived to be eniiTely determined, when the fac-

tors are determined; let it be made, if other conditions will allow,

for the sake of general analogies, a distributive function of those

two factors, summation of lines being performed by the same rules

as composition of motions; and finally, if these various conditions

can all be satisfied, and still leave anything undetermined, in the

rules for multiplication of lines, let the indeterminateness be re-

moved in such a way as to make these rules approach as much
as possible to the other usual rules for the multiplication of num-

bers in algebra.

[51.] The square ofa given line must not be any line in-

clined to that given line; for, even if we chose any particular

angle of inclination, there would be nothing to determine the

plane, and thus the square would be indeterminate, unless we

selected some one direction in space as eminent, which selection

we are endeavouring to avoid. Nor can the square of a given

line be a line in the same direction, nor in the direction opposite;

for if either of these directions were selected, by a definition, then

this definition would oblige us to consider the square as reversed

in direction, when the line of which it is the square is reversed

;

whereas if the two factors of a product both change sign, the di-

rection of the product is always (by what has been above agreed

on) preserved, or rather restored. We must, therefore, consider

the SQUARE OF A LINE as having no direction in space, and there-

fore as being not (properly) itself a line; but nothing hitherto

prevents us from regarding the square as a number, which has

always one determined sign (as yet unknown), and varies in the

duplicate ratio of the length of the line to be squared. If, then,

the length of a line a contain a times the unit of length, we are

9
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led to consider aa or a' as a symbol equivalent to la^, in which I

is some numerical coefficient, positive or negative, as yet un-

known, but constant for all lines in space, or having one common

value for all. And, consequently, if a, /3 be any two lines in any

one common direction, and having their lengths denoted by the

numbers a and b, we are led to regard the product a/3 as equal to

the number lab, I being the same coefficient as before. But if the

direction of |3 be exactly opposite to that of a, their lengths being

still a and b, their product is then equal to the opposite number,

—lab. The same general conclusions might perhaps have been

more easily arrived at, if we had begun by considering the pro-

duct of two equally long but opposite lines; for it might perhaps

then have been even easier to see that, consistently with the sym-

metry of space, no one line rather than another could represent,

even in part, the direction of the product.

[52.] Next, let us consider the product aj3 of two mutually

perpendicular lines, a and j3, of which each has its length equal

to 1. Let a', j3' be lines respectively equal in length to these,

but respectively opposite in direction. Then a'j3 = - aj3 = aj3'

;

a'/3'= aj3. If the sought product aj3 were equal to any number,

or even if it contained a number as Apartoiits expression, then,

on our changing the multiplier a to its own opposite line a, this

product or part ought/or one reason (the symmetry ofspace) to re-

main constant (because the system of the factors would have been

merely turned in space) ; and for another reason (a'j3 =- aj3) the

same product or part ought to change sign (because one factor

would have been reversed) : but this co-existence of opposite re-

sults would be absurd. We are led therefore to try whether the

present condition (pi rectangularity ofthe two factors) allows us

to suppose the product a/3 to be a line.

[53.] Let y be a third line, of which the length is unity, and

which is at the positive side of /3, with reference to a as an axis

of rotation ; right-handed (or left-handed) rotation having been

previously selected as positive; let also 7' be the line opposite

to 7. Then any line in space may be denoted by jwa + «/3 +^7

;

we are therefore to try whether we can consistently suppose aj3

= jwa + Mj3 + p7, >n,n,j9 being some three numerical constants.

If 80, we should have (by the principle of the symmetry of space)
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a'/3 = md + k/3 +J07'; and therefore (by a change of all the signs)

aji = ma + n(i'+p-y ; therefore n/3' = n/3, and consequently - n = n, or

finally m= 0. In like manner, since a/3 = -a/3' = - {ma + nfi'+py')

= ma.'+n(i + py, we should have md^ma, and therefore m = 0.

But there is no objection of this kind against supposing aj3 =f>-y,

j9 being some numerical coefficient, constant for all pairs of rectan-

gular lines in space : for the reversal of the direction of a factor

has the effect of turning the system through two right angles

round the other factor as an axis, and so reverses the direction of

the product. And then if the lengths of these two lines a, /3, in-

stead of being each = 1, are respectively a and b, their product aj3

will be =paby ; that is, it will be a line perpendicular to both fac-

tors, with a length denoted by pab, and situated always to the

positive or always to the negative side of the multiplicand line /3,

with respect to the multiplier line a as an axis of rotation, accord-

ing as the constant number p is positive or negative.

[54.] So far, then, without having yet used any property of

multiplication, algebraical or geometrical, beyond the three prin-

ciples: 1st, that no one direction in space is to be regarded as

eminent above another; 2nd, that to multiply eitherfactor by any

number, positive or negative, multiplies the product by the same;

and 3rd, that the product oftwo determinedfactors is itself de-

termined; we are led to assign interpretations: 1st, to the pro-

duct of two co-axal vectors, or of two lines parallel to each other,

or to one common axis; and 2nd, to the product of two rectan-

gular yeciOTs; which interpretations introduce only two constant,

but as yet unknown, numerical coefficients, I and p, depending,

however, partly on the assumed unit of length. And we see

that for any two co-axal vectors, a, /3, the equation a/3 - /3o =

holds good ; but that for any two rectangular vectors, aj3 + /3a = 0.

K product of two rectangular lines is, therefore, so far as the

foregoing investigation" leads us to conclude, not a commutative

function ofthem.

[55.] Since then we are compelled, by considerations which

appear more primary, to give up the commutative property of

multiplication, as not holding generally for lines, let us at least

try (as was proposed) whether we can retain the distributive pro-

perty. If so, and if the multiplicand line /3 be the sum of two
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Others, /3i and /Sj, of which one (j3j) is co-axal with the muUiplier

line a, while the other (/Bj) is perpendicular thereto, we must in-

terpret the protluct ajj as equal to the sum of the two partial

products, a/3i and aji^- But one of these is a number, and the

other is a line ; we are, therefore, led to consider a number as being

under these circumstances added to a line, and as forming with it

a certain sutn, or system, denoted by itjSi + a/Sa, or more shortly

by aj3. And such a sum of line and number may perhaps be

called a gkammarithm,* from the two Greek words, ypafifir], a

line, and apidfiog, a number. A grammarithm is thus to be con-

ceived as being entirely determined, when its twoparts or elements

are so ; that is, when its grammic part is a known line, and its urith-

mic part is a known number. A change in either part is to be

conceived as changing the grammarithm ; thus, an equation be-

tween two grammarithms includes generally two other equations^

one between two numbers, and another between two lines.

Adopting this view of a grammarithm, and defining that aj3 = aj3i

+ a/Ji, when j3 = /3i + ^i, |3i i a, jSz 1 a, the product of any deter-

mined multiplier Hue and any determined multiplicand line will

be itself entirely determined, as soon as the unit of length and

the numbers / and p shall have been chosen ; and it remains to

consider whether these numbers can now be so selected, as to

make the rules of multiplication of lines approach more closely

still to the rules of multiplication oi numbers.

[56.] The general distributive principle will be found to give

no new condition; and we have seen cause to reject the commu-

tative principle or property, as not getierally holding good in the

present inquiry. It remains, then, to try whether we can deter-

mine or connect the two coefficients, I and p, so as to satisfy the

associative principle, or to verify the formula,

a j3y = aj5 y-

* The word "grammarithm" was subsequently proposed in a communication

to the Royal Irish Academy (see the Proceedings of July, 1846), as one which

might replace the word " quaternion," at least in the geometrical view of the

subject : but it did not appear that there would be anything gained by the sys-

tematic adoption of this change of expression, although the mere suygestioit of

another name, as not inapplicable, seemed to throw a little additional light on

till' whole theory.
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For this purpose we may first distribute the factors |3, 7 into
others, /Bi/Bzyi^jya which shall be parallel or perpeiulicular to
it and to each other; and then shall have to satisfy, if possible,
six conditions, which may be reduced to the six following

:

a.aa = aa. a; a . aa = aa . a ; a . aa" = aa . a'

;

a . aa = aa.a; a . da = ad. d ; a . da" = ad. a"

;

a, d, a" being three rectangular unit-lines, so placed that the ro-

tation round a from d to a" is positive. Then, by what has been
already found, the following relations will hold good

:

aa = aa = a a' = I; ad = — a'a = pa" ;

o-a =-a a = - pd ; da" = - d'd = -vpa;

and the six conditions to be satisfied become,

a. 1=1. a; a.pd'=l.d; a.-pd = 1 .a;
a . -pa" =pa" .a; a . 1 = pa" . d ; a . pa = pa" . a".

Of these the first suggests to us to treat an arithmic factor as
commutative (as regards order) with a grammic one, or to treat

the product "line into number" as equivalent to "number into

line;" the fourth and sixth conditions afford no new information;

and the second, third, and fifth become,

-p^d=ld; -p'^d'^la"; -p'a = /a.

The conditions oj" association are therefore all satisfied by our

assuming, with the present signification of the symbols,

al=la, and l = -p'^;

and they cannot be satisfied otherwise. 7"he constant I is, there-

fore, by those conditions, necessarily negative; and every line

in tridimensional space has its square (on this plan) equal to a

NEGATIVE number: which is one of the most novel but essential

elements of the whole quaternion theory. (Compare the recent

paragraph [48] ; also art. 85, pages 81, 82, of the Lectures.) And

that a grammarithm [55] may properly be called a quaternion,

appears from the consideration that the line, which in it is added

to a number, depends itself upon a system of three numbers, or

may be represented by a trinomial expression, because it is al-

ways the sum of three lines (actual or null), which are parallel
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to three fixed directions (compare Lecture III.). The coefficient

p remains still undetermined, and may be made equal to positive

one, by a suitable choice of the unit of length, and the direction

of positive rotation. In this way we shall have finally the very

simple values,

;) = +l, /=-!;

and the rules for the multiplication of lines in space will then be-

come entirely definite, and will agree in all respects with the re-

lations [48], between the symbols ijk.

[57.] Another train of a priori reasoning, by which I early

sought to confirm, or (if it had been necessary) to correct, the

results expressed by those new symbols, was stated to the R. I.

Academy* in (substantially) the following way. Admitting, for di-

rected and cop/anar lines, the conception [36] oi proportion ; and

retaining the symbols ijk, or more fully, + 1, +j, + k, to denote

three rectangular unit-lines as above, while the three respectively

opposite lines may be denoted by - i, -j, -k; but not assuming

the knowledge of any laws respecting their multiplication, I

sought to determine what ought to be considered as the fourth
PROPORTIONAL, u, to the three rectangular directions^ j, i, k,

consistently with that known conception [36^for directions within

the plane, and with some general and guiding principles, respect-

ing ratios and proportions. These latter assumed principles

(of a regulative rather than a constitutive kind) were simply

the following: 1st, that ratios similar to the same ratio must

be regarded as similar to each other; 2nd, that the respec-

tively inverse ratios are also mutually similar; and 3rd, that

ratios are similar, if they be similarly compounded of similar

ratios : this similarity of composition being understood to include

generally a sameness of order. It seemed to me that any pro-

posed definitional! use of the word ratio, which should be in-

• See the Proceedings of November 11th, 1844.

t In the abstract published in the Proceedings, the words " South, West,

Up" were used at first instead of the symbols i, _;, k ; and the sought fourth pro-

portional tojik, which is here denoted by u, was called, provisionally, " Forward."

% As an example of the use of the first of these very simple principles, in

serving to exclude a definition which might for a moment appear plausible, let us

take the construction [38], and inquire whether (as that construction would
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consistent with these principles, would depart thereby too widely

from known analogies^ mathematical and metaphysical, and would

involve an impropriety of language: while, on the other hand, it ap-

peared that if these principles were attended to, and other analogies

observed, it was permitted to extend the use of that word ratio, and

suggest) we ca.u properly say that /our directions (or four diverging nnit-lines),

a, /3, y, S, form generally a proportion in space, when the angles aS, Py, between

the extremes and means have one common bisector («). If so, when the three di-

rections a, /3, 7 became rectangular, we should have a : j3 : : y: — a, and y : — a

:: p-.-y; but we should have also, a : j3 : : /3 : - a, and not a : /3 : : /3 : — y ; so that

the two ratios, a : /3 and ;8 : — y, would be said to be similar to one common ratio

(y : — a), without being similar to each other, if the foregoing construction for a

fourth proportional were to be, by definition, adopted : and this objection alone

would be held by me to be decisive against the introduction of such a definition ;

and therefore also against the adoption of the connected rule mentioned in [38],

as having at one time occurred to a friend (J. T. G.) and tOtmyself, for the mul-

tiplication of lines in space, even if there were no other reasons (as in fact there

are), for the rejection of that rule. A similar objection applies, with equal decisive-

ness, against the rule mentioned in [37], as an earlier conjecture ofmy own. On
the other hand, an analogous and equally simple argument may serve tojustify the

notation D — c = B - A, employed by me in the following Lectures, and elsewhere, to

express that the two right lines ab and CD are equally long and similarly directed,

against an objection made some years ago, in a perfectly candid spirit, by an

able writer in the Philosophical Magazine (for June, 1849, p. 410) ; who thought

that interpretation more arbitrary than it had appeared to me to be; and

suggested that the same notation might as well have been employed to signify

this other conception

:

—that the two equally long lines ab, cd met somewhere, at

a finite or infinite distance. I could not admit this extension ; for it would lead

to the conclusion that two lines ab, ef might be equal to the same third line CD,

without being equal to each other : which would (in my opinion) be so great a

violation of analogy, as to render the use of the word "equal," or of the siyu =,

with the interpretation referred to, an embarrassment instead of an assistance.

But I do not feel that analogies are thus violated, by the simultaneous admis-

sion of the two contrasted proportions (see (3) (4) (5) of [57] ),

u:i .:j: k, u:j::i:-k;

for the elementary theorem called often " alternando," (tvaWa^ Xoyof, Euc. V.

Def.l3, and Prop. 16) is by its nature limited (in its original meaning) to the case

where the means which change places are homogeneous with each other : whereas

two rectangular directions, as here i and j, are in this whole theory regarded as

being in some sense heterogeneous. They have at least no relation to each other,

which can be represented by any ratio, such as Euclid considers, of magnitude

to magnitude; and therefore we have no right to expect, from analogy to old re-

sults, that alternation shall generally be allowed in a. proportion involving such

directions : although, within the plane, alternation is found to be admissible.
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the connected phrase proportion, not only from quantity to direc-

tion, within one plane, as had been done [36] by other writers,*

• Since the note to paragraph [36], pp. (31) (32), was in type, I have had an

opportunity of re-consulting the fourth volume of the Annales de Mathematiques,

and have found my recollections (agreeing indeed in the main with the formerly

cited page 228 of Dr. Peacock's admirable Report), respecting the admitted

priority of Argand, confirmed. Franfais, indeed (in 1813), published in those

Annales (Tome IV., pp. 61, . . 71) a paper which contained a theory of "pro-

portion de grandeur et de position," with a connected theory of multiplication

(and also of addition) of lines in a given plane ; but he expressly and honourably

stated at the same time (p. 70), that he owed the substance of those new ideas

to another person ("le fond de ces idees nouvelles ne m' appartient pas"):

and on being soon afterwards shewn, through Gergonne, whose conduct in the

whole matter deserves praise, a copy ofArgand's earlier and printed Essay ( Paris,

1806), Franvais most fully and distinctly recognised (p. 225) that the true author of

the method was Argand ("il n'y a pas le moindre doute qu'on ne doive li M. Ar-

gand la premiere idee de repr^senter g^ometriquement les quantites imagi-

naires"). Nothing more lucid than Argand's own statements (see the same

volume, pp. 130, 137, 138), as regards the fundamental principles of the theory of

the addition and multiplication of coplanar lines, has since (so far as I know)

appeared ; not even in the writings of Professor De Morgan on Double Algebra,

referred to in former notes. But Argand had not anticipated De Morgan's

theory of Logometers; and was on the contrary disposed (pp. 144, .. 146) to

regard the symbol V— 1 , notwithstanding Euler's well-known result, as de-

noting sl li?ie (^kp), perpendicular to the plane of the YinGS 1 and V— 1 : and to con-

sider it as offering an example of a quantity which was irreducible to theform

p + qV~ 1, and was (according to him) as heterogeneous with respect to V— 1, as

the latter with respect to + 1 (" aussi hetdrogene" &c.). The word modulus

(" module"), so well known by the important writings of M. Cauchy, occurs in a

later paper by Argand, in the following volume of the Annales, as denoting

the real quantity V;?' + q'-. If I have seemed to dwell too much on the specula-

tions of Argand (not all adopted by myself), it has been partly because (so far

as I have observed) his merits as an original inventor have not yet been suffi-

ciently recognised by mathematicians in these countries : and partly because one

ofthe two most essential links (the other being addition) between Double Algebra

and Quaternions, is Argand's main 3.r\A fundamentalprinciple respecting copla-

nar PROPORTION, expressed by him as follows (Annales, T. IV., pp. 136, 137):

—

'* Si (fig. 2) Ang. A.KB = Jng. a'k'b', on a, abstraction faite des grandeurs abso-

lues, KA : KB : : k'a' : KB. C'est l4 le principe fondamental de la theorie dont

nous avons cssaye de poser les premieres bases, dans 1' ecrit dont nous donnons

ici un extrait" (namely, Argand's printed Essay of 1806, exhibited by Gergonne

to Fran9ais, after the appearance of the first paper of the latter author on the

subject in 1813). Argand continued thus (in p. 137): " Ce principe n'a rien

au fond de plus etrange que celui sur lequel est fondee la conception du rapport

geometrique entre deux lignes de signes differens, et il n' en est propreracnt

qu' une generalisation :" a remark in which I perfectly concur.
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but also from the plane to space* The supposed propor-
tion,

j:i::k:u,
(1)

gave thus, by inversion,

u:k:'.i:j;
(2)

but also, in the planes of y, ik, there were the two proportions,

i:j •.•.j:-i, and kit :: -i:k; (3)

compounding therefore, on the one hand, the two ratios, u : k and
k : i, and, on the other hand, the two respectively similar ratios,

j: -i, and -i ik, there resulted the new proportion,

u:i::j:k; (4)

which differed from the proportion (2) only by a cyclical trans-

• Although the observations in par. [57] relate rather to proportions than to

imaginaries, yet the present may be a convenient occasion for remarking that

Buge, and even Wallis, had speculated, before Argand and Fran9ais, on inter-

pretations of the symbol V— 1, which should extend to space : but that the nearest

approach to an anticipation of the quaternions, or at least to an anticipation of
triplets, seems to me to have been made by Servois, in a passage of the lately

cited volume of Gergonne's Annales, which appears curious and appropriate

enough to be extracted here. Servois had been following up a hint of Gergonne,

respecting the representation of ordinary imaginaries of the form x+y^-1
(i and y being whole numbers), by a table of double argument (p. 71); and

thought (p. 235) that such a table might be regarded as only a slice (une tranche)

of a table of triple argument, for representing points (or lines) in space. He
thus continued :

—" Vous donneriez sans doute 4 chacune terme la forme trino-

" miale; mais quel coefficient aurait le troisi^me terme? Je ne le vois pas trop.

" L' analogie semblerait exiger que le trindme fut de la forme, p cos a + q cos /3

" + r cos 7, a, |3, y etaut les angles d'une droite avec trois axes rectangulaires

;

" et qu' on eut

"(p cos o+gcos;3 + r cosy) (p'co3a + }'cos/3 + r' cosy) = cos2a + cos»/3 + cos2y = l.

" Les valeurs de p, q, r, p, q', r qui satisferaient a cette condition seraient ab-

"surdes" (" quantites non-r^elles," as he shortly afterwards calls them) : "mais
" seraient-elles imaginaires reductibles a la forme g^nerale A + SV— 1 ? Voila

"une question d' analise fort singuliere, que je soumets a vos lumi^res." The

six NON-KEALS which Servois thus with remarkable sagacity/oresaw, without

being able to determine them, may now be identified with the then unknown sym-

bols + f, +j, + *, - i, —j, — i, of the quaternion theory : at least, these latter

symbols fulfil precisely the condition proposed by him, and furnish an answer to

his " singular question." It may be proper to state that my own theory had

been constructed and published for a long time, before the lately cited passage

happened to meet my eye.

h
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position of the three directions ijk. For the same reason, we

may make another cyclical change of the same sort, and may
write

u:j •.:k:i; (5)

while, in this cycle of three rectangular directions, ijk, the right-

handed (or left-handed) character of the rotation, round the first

from the second to the third, is easily seen to be unaffected by

such a transposition. Again compounding the two similar ratios

(I) with these two others, which are evidently similar, whatever

the unknown direction u may be,

i : - i : : u : - u, (6)

we find this other proportion,

j:-i::k:-u; (7)

and therefore, by (2) and (3),

u:k ::k:-u. (8)

In like manner,

u:i::i:-u, and u:j : -.j i-u; (9)

and in any one of these proportions, any two terms, whether be-

longing to the same or to different ratios, may have their signs
changed together. All these proportions, (2) . . (9), follow from
the original supposition (1), by the general principles above
Stated, without the direction u being as yet any otherwise deter-
mined.

[58.] Suppose now that the two rectangular directionsJ and
k are made to turn together, in their own plane, round i as an
axis, till they take two new positions^i and ^i, which will there-

fore satisfy the proportion,

j:k::jr.ki. (10)

We shall then have, by (4),

u:i::jr.kr, (11)

and therefore, by a cyclical change of these three new rectan-

gular directions,

u:j,::h:i::l:i„ (12)

if I and i, be obtained from A. and i by any common rotation
round y,. Another cyclical change, combined with a rotation
round the new line /, gives finally.
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uil:: irJi-.-.m-.n; (13)

where /, m, n may represent any three rectangular directions

whatever, subject only to the condition that the rotation round

/ from ?n to M shall be of the same character as that round i from

j to k. With this condition, therefore, the first assumed propor-

tion ( 1
) may be replaced by this more general one :

n:m::l:u; (14)

while for (8) and (9) may now be written, with the same signi-

fication of the symbols,

u:l::l:-u; u: m :: m:-u; u:n::n:-u; (15)

and because n:m : : to : - n, we have these other and not less ge-

neral proportions,

m:-n '.: l:u; m:n :: l:-u. (16)

If, then, there be any such fourth proportional, u, as has been

above supposed, to the three given rectangular directions^', i, k,

the same direction u, or the opposite direction - u, will also be,

in the same sense, the fourth proportional to any other three rect-

angular directions, n, m, I, or m, n, I, according as the character

of a certain rotation is preserved or reversed.

[59.] This remarkable result appeared to me to justify the

regarding the directions here called + u and - u rather as nume-

rical (or algebraical) than as linear (or geometrical) units; and

to make it proper to denote them simply by the symbols +1

and - 1 ; because their directions were seen to admit only of a

certain contrast between themselves, but not of any other change:

all that geometrical variety, which results from the conception of

tridimensional space, having been found to disappear, as regarded

them, in an investigation conducted as above. And in fact it is

not permitted, on the foregoing principles, to identify the direc-

tion u with that oi any line {I) whatever: for in that case the

proportion (13) would give the result I: I :: m:n, which must be

regarded in this theory as an absurd one, the two terms of one

ratio being coincident directions, while those of the other ratio

are rectangular. But there is no objection of this sort against

our supposing, as above, that

+ M = 4 1, -tt = - 1

;

(17)

and then the proportions, derived from (13), (15),
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l:l::m:n::n:-m; l:/::/:-l, (18)

maybe conveniently and concisely expressed by formulse oi mul-

tiplication, as follows:

lm = n; ln-='-m; /» = -!. (19)

[60.] In this way, then, or in one not essentially different,

the fundamental formulae [48] of the calculus of quaternions, as

first exhibited to the R. I. A. in 1843, namely, the equations,

i»=-l,/ = -l, A» = -l, (a)

ij = + k,jk = + i, hi = +j, (b)

ji = -k, kj = -i, ik = -j, (c)

were shewn (in 1844) to be consistent with a priori principles, and

with considerations of a general nature ; a product being here

regarded as a fourth proportional, to a certain extra-spatial*

unit, and to two directed factor-lines in space : whereas, in the

investigation of paragraphs [50] to [56], it was viewed rather as

a certain function of those two factors, the form of which func-

tion was to be determined in the manner most consistent with

some general and guiding analogies, and with the conception of

the symmetry ofspace. But there was still another view of the

whole subject, sketched not long afterwards in another commu-
nication to the R. I. Academy,'!' on which it is unnecessary to say

more than a few words in this place, because it is, in substance,

the view adopted in the following Lectures, and developed with

some fulness in them : namely, that view according to which a

Quaternion is considered as the Quotient of two directed lines

in tridimensional space.

• It seemed (and still seems) to me natural to connect this extra-spatial unit

with the conception [3] of time, regarded here merely as an axis of continuous

and uni-dimensional progression. But whether we thus consider jointly time and

space, or conceive generally any system offour independent ares, or scales of pro-

gression (k, i,j, k), I am disposed to infer from the above investigation the fol-

lowing LAW OF THE FOUR SCALES, as One which is at least consistent with

analogy, and admissible as a definitional extension of the fundamental equations

of quaternions :
—" A formula o? proportion between four independent and directed

units is to be considered as remaining true, when any two of them change placet

with each other (in the formula), provided that the direction (or sign) of one be

reversed." Whatever may bo thought of these abstract and semi-metaphysical

views, the formula (a) (b) (c) of par. [60] are in any event a sufficient basis for

the erection of a calculus of quaternions.

t See the Proceedings of Feb. 10th, 1845.
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[61.] Of such a geometrical quotient,* b j- a, the fundamen-

tal property is in this theory conceived to be, that by operating,

as a multiplier (or at least in a way analogous to multiplication),

on the divisor-line, a, \t produces (or generates) the dividend-

line, b ; and that thus it may be interpreted as satisfying the

general and identical formula (compare [9] )

:

(b -n'a) X a = b.

The analogy to multiplication consists partly in the operation

being one which is performed at once on length and on direction,

as in the ordinary multiplication of aline by a positive or nega-

tive number; or as is done in that known generalization [36] of

such multiplication, for lines within one plane, which (for reasons

assigned in notes to former paragraphs) ought (I think) to be

called the Method of Argand: and partly in the circumstance

that the new operation possesses, like that older one (from which,

however, it is entirely distinct,^ in many other and important re-

spects), the distributive and associative,'!;, though not like it (ge-

nerally) the commutative properties, of what is called multipli-

• This view of a geometrical quotient was also developed to a certain extent,

in an unfinished series of papers, which appeared a few years ago in the Cam-

bridge and Dublin Mathematical Journal, under the head of Symbolical Geome-

try : a title adopted to mark that I had attempted, in the composition of that

particular series, to allow a more prominent influence to the general laws of

symbolical language than in some former papers of mine ; and that to this extent

I had on that occasion sought to imitate the Symbolical Algebra of Dr. Peacock,

and to profit also by some of the remarks of Gregory and Ohm.

'f
Among these distinctions of method, it is important to bear in mind that no

one line is taken, in my system, as representing the direction of positive unity: and

that, on the contrary, every vector-unit is regarded as one of the square roots of

negative unity. It is to be remarked, also, that the product of two inclined but

non-rectangular vectors is considered in this theory as not a line, but a quater-

nion : all which will be found fully illustrated in the Lectures.

J To this associatii-e principle, or property of multiplication, I attach much

importance, and have taken pains to shew, in the Fifth and Sixth Lectures, that

it can be geometrically proved for quaternions, independently of the distributive

principle, which may, however, in a different arrangement of the subject, bo

made to precede and assist the proof of the associative property, as shewn in th«

Seventh Lecture, and elsewhere. The absence of the associative principle ap-

pears to me to be an inconvenience in the octaves or octonomials of Messrs. J. T.

Graves and Arthur Cayley (see Appendix B, p. 730) : thus in the notation of the

former we should indeed have, as in quaternions, ij=k, but not generally i.jw

= kio, if (J represent an octave; for i.jl = in = - o — -kl = -ij .1.
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cation in algebra;* at least when a few definitional formulae

(resembling those in par. [9] ) are established. And the motive

(in this view) for calling such a quotient a Quaternion, or the

ground for connecting its conception with the number Four, is

derived from the consideration that while the relative length

of the two lines compared depends only on one number, express-

ing their ratio (of the ordinary kind), their relative direc-

tion depends on a system 0/ three numbers : one denoting the

ANGLE (a ^ b) between the two lines, and the two others serving

to determine the aspect of the plane of that angle, or the direc-

tion of the AXIS of the positive rotation in that plane,yroOT the

divisor-line (a) to the dividend-line (b).

* The expression "algebra," or "ordinary algebra," occurs several times in

these Lectures, as denoting merely that usual species of algebra, in "which the

equation ab = ba is treated as universally true, and not (of course) as implying

any degree of disrespect to those many and eminent writers, who have not hi-

therto chosen to admit into their calculations such equations as a/3 = — /3a, for

the multiplication of two rectangular lines, or for other and more abstract pur-

poses. It is proper to state here, that a species of non-corrmntative multiplication

for inclined lines (aussere Multiplikation) occurs in a very original and remark-

able work by Prof. H. Grassmann (Ausdehnungslehre, Leipzig, 1844), which I

did not meet with till after years had elapsed from the invention and commnni-

cation of the quaternions : in which work I have also noticed (when too late to

acknowledge it elsewhere) an employment of the symbol /3 - n, to denote the

directed line (Strecke), drawn from the point a to the point /3. Nothwithstand-

ing these, and perhaps some other coincidences of view. Prof. Grassmann's system

and mine appear to be perfectly distinct and independent of each other, in their

conceptions, methods, and results. At least, that the profound and philosophi-

cal author of the Ausdehnungslehre was not, at the time of its publication, in

possession of the theory of the quaternions, which had in the preceding year

(1843) been applied by me as a sort of organ or calculusfor spherical trigonome-

try, seems clear from a passage of his Preface (Vorrede, p. xiv.), in which he

states (under date of June 28th, 1844), that he had not then succeeded in ex-

tending the use of imaginariesfrom the plane to space; and generally that nnsur-

mounted difficulties had opposed themselves to his attempts to construct, on his

principles, a theory of angles in space (hingegen ist es nicht mehr moglich, ver-

mittelst des Imaginaren auch die Gesetze f iir den Raum abzuleiten. Auch
stellen sich iiberhaupt der Betrachtung der Winkel im Raume Schwierigkeiten

entgegen, zu deren allseitiger Lbsung mir noch nicht hinreichende Musse gewor-

den ist). The earlier treatise by Prof. A. F. Miibius (der barycentrische Calcul,

Leipzig, 1827), referred to in the same Preface by Grassmann, appears to be

a work which likewise well deserves attention, for its conceptions, notations,

and results ; as does also another work of Mobius (Mechanik des Himmels,

Leipzig, 1843), elsewhere referred to in these Lectures (page 614).
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[62.] For the unfolding of this general view,* and the deduc-
tion from it of many geometricalf and of some physicalf conse-

quences, I must refer to the following Lectures ; of which a
considerable part has been drawn up in a more popular§ style than

this Preface : while the whole has been composed under the in-

fluence of a sincere desire to render the exposition of the subject

as clear and elementary as possible. The prefixed Table of
Contents (pp. ix. to Ixxii.), though somewhat fuller than usual,

will be found useful (it is hoped) not merely as an analytical

Index, assisting a reader to refer easily to any part of the volume
which he has once carefully read, but also as a general abridg-

ment of the work, and in some places as a commentary.^ The

• I may just hint here that the biquaternions of Lect. VII. admit of being

geometrically interpreted (corap. note to [19] ), by considering each as a couple of

quotients (-, ^), constructed by a triradiai, (a, /3, y), and multiplied by a com-

mutative factor of the form V-1 (compare [16] ), when the line-couple {fi, y) is

changed to (- y, /3), or when the angle j3y is changed to an adjacent angle.

t ^fotwithstanding some references to works of M. Chasles, and other emi-

nent foreign geometers, my acquaintance with their writings is far too imperfect

to give me any confidence in the novelty of various theorems in the VII'*' Lec-

ture and Appendix (such as those respecting generations of the ellipsoid, and
inscriptions of gauche polygons in surfaces of the second order), beyond what
is derived from the opinion of a few geometrical friends.

X Some such physical applications were early suggested by Sir J. Herschel.

§ It had been designed that these Lectures should not go much more into

detail than those which have been actually delivered on the subject by me, in

successive years, in the Halls of this University ; and the First Lecture, printed

in 1848 (as the astronomical allusions at its commencement may indicate), was

in fact delivered in that year, in very nearly the form in which it now appears.

But it was soon found necessary to extend the plan ofthe composition: and it is

evident that the subsequent Lectures, as printed, are too long, and that the last

of them involves too much calculation, to have been delivered in their present

form : though something of the style of actual lecturing has been here and there

retained. The real divisions of the work are not so much the Lectures them-

selves, as the shorter and'more numerous Articles, to which accordingly the

references have been chiefly made. An intermediate form of subdivision into

Sections has however been used in drawing up the Contents, which the reader

may adopt or not at his discretion, marking or leaving unmarked the margin of

the Lectures accordingly. Some new terms and symbols have been unavoidably

introduced into the work, but it is hoped that they will not be found embarrass-

ing, or difficult to remember and apply.

II
For instance, as regards the formation of the Adeuteric Function (p. xliii.)
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Diagrams are numerous, and have been engraved* with care from

my drawings : some of them may perhaps be thought to have

been unnecessary, but it appeared better to err, if at all, on the

side of clearness and fulness of illustration, especially in the early

parts of a work based on a new mathematical conception, and

designed to furnish, to those who may be disposed to employ it,

a new mathematical organ. Whatever may be thought of the

degree of success with which my exertions in this matter have

been attended, it will be felt, at least, that they must have been

arduous and persevering. My thanks are due, at this last stage,

to the friends who have cheered me throughout by their conti-

nued sympathy ; to the scientific contemporariesf who have at

moments turned aside from their own original researches, to no-

tice, and in some instances to extend, results or speculations of

mine; to my academical superiors who have sanctioned, as a

subject of public and repeated examination in this University,

the theory to which this Volume relates, and have contributed to

lighten, to an important extent, the pecuniary risk of its publi-

cation : but, above all, to that Great Being, who has graciously

spared to me such a measure of health and energy as was required

for bringing to a close this long and laborious undertaking.

William Rowan Hamilton.

Observatory of T. CD., June, 1853.

• By Mr. W. Oldham, whose fidelity and diligence are hereby acknowledged.

+ In these countries, Messrs. Boole, Carmichael, Cayley, Cookie, De Morgan,

Donkin, Charles and John Graves, Kirkman, O'Brien, Spottiswoode, Young, and

perhaps others: some of whose researches or remarks on subjects connected with

quaternions (such as the triplets, tessarines, octaves, and pluquaternions) have

been elsewhere alluded to, but of which I much regret the impossibility of giving

here a fuller account. As regards the theory of algebraic keys (clefs algebriques),

lately proposed by one of the most eminent of continental analysts, as one that

includes the quaternions (Comptes Rendus for Jan. 10, 1853, p. 75), it appears to

me to be virtually included in that theory of sets in algebra (explained in the

present Preface), which was announced by me in 1835, and published in 1848

(Trans. R.I. A., Vol. XXL, Partu., p. 229, &c., the symbols x,- being in fact

what M. Cauchy calls keys), as an extension ofthe theory of couples (and therefore

also of imaginaries) : of which sets I have always considered the quateknions

(in their symbolical aspect) to be merely a particular case. Before the publica-

tion of those sets, the closely connected conception of an ^^ algebra of the n"> cha-

racter" had occurred to Prof. De Morgan in 1844, avowedly as a suggestion from

the quaternions. (Trans. Camb. Phil. Soc, Vol. VIII., Part m.)
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QuATEKNiON Article 91 ; Pages 89, 90.

§ xvni. When the factor, q, is regarded (see § vi.) as a geometkical quotieht

= /3 -7- o = DB -^ DA, it may conveniently be pictured or constructed by a

BiRADiAL, ADB, Tfith a curved arrow inserted, and directed _^om the ini-

tial ray DA (the faciend, or divisor-line, a), towards \hifinal ray db (the

factum, or dividend-line, /3) ; the point D, from which the two rays di-

verge, is the vertex of the biradial ; a biradial has a sbape, or species, de-

pending on the ratio of the lengths of its two rays, and also on the angle

which they include ; two biradials may be similar, namely, by their agree-

ing with each other in these two respects ; but a biradial has also a plane,

and an aspect, determined by and directed towards that star, or region

of infinite space, which the plane may be said to face, and as seen from

which the rotation from the initial to the final ray would appear to be po-

sitive (right-handed) ; condirectional and contradirectional (or opposite)

biradials, included in the class ofparallel biradials ; two biradials, which

are at once similar and condirectional, are said to be equivalekt bira-

dials ; examples ; it is proposed to employ (see § xx.) the conception

and construction of such biradial figures to assist in determining the con-

ditions of equality between two geometrical quotients,
f3
~ a, and ^ -r- y ;

and also in enumerating the modes ofpossible inequality, of any two such

quotients Articles 92 to 95 ; Pages 90 to 95.

§ XIX. Analogous determinations for differences ofpoints (see § i.), constructed or

pictured by straight lines, with straight arrows attached ; interpretations

of the two equations D — c = b— a, d = b — a + c; d is here the/oarM

corner of a parallelogram, of which c, A, b are three successive corners,

and of which the altitude may vanish ; inversion and alternation of an

equation between diflTerences of points, c-a + b = b-a + C; vectors are

equal, when they differ only in their situations in space ; addition of vec-

tors still corresponds to composition of vections, although they are not

now given as successive (compare § v.) ; such addition is commutative and

associative, a + /3 = /3 + a, (y+/3) + a = y+(/3 + a); the sum of any

set of vectors is simply that one resultant vector which produces the same

total or final effect, in changing the position of a point, as all the pro-

posed summand vectors would do, if the motions, of which they are sup-

posed to be the instruments, were simultaneously or successively per-

formed ; the sum of two directed and co-initial sides of a parallelogram is

the intermediate and co-initial diagonal ; most of the foregoing results

of this section (xix.) are common to several other modern theories ; a vec-

tor (in space) is a species of natural triplet, suggested by geometry,

and found to be capable of a triple variety, or to depend upon a system of

three distinct elements, which admit of being expressed numerically, and

correspond to tlie TRIDIMENbloUAL character of sr\Ci:; in the present

calculus (compare § xii.), a vector may be represented generally by the

TRiNOJtiAL tOKJi- p = i.r -t )y + Az, where a:, y. z are three scalar (or Car-
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tesian) co-ordinates, while i,j, k are those three rectangular vector- units,

which were introduced (see § x.) in the foregoing Lecture,

Articles 96 to 101 ; Pages 95 to 105.

§ XX. Equivalent biradials (see § x^^^.) correspond to eqbal QDOirENTS ;

examples ; in fact a biradial may be turned round in its own plane, or

transported parallel to itself, or Us legs maybe altered proportionally,

without changing the relative direction, or the relative length, of those

two legs, or rays, or vectors, and therefore without affecting that complex

(metrographic) relation between the two rays which has been considered

(in § VI. ) as determining their geometrical quotient ; hence in this calcu-

lus, as in many other modern systems, the equation ^ -^ y = /3 -7- a, be-

tween two quotients, is interpreted as signifying a proportionality of

lengths, combined with an equality ofavigles in oneplane, between the two

pairs of lines, a, 13, and y, S; but, when we come to take account of the

PLANE OF THE ANGLE, between any two such lines a, P, and to regard

that plane as variable in space, there arises a new double variety,

in the geometrical quotient fS-r- a, or in the numerical elements on which

it depends ; because we introduce hereby the consideration of the aspect

(see § xviii.) of the plane, or of the biradial, and thus bring into play (or

at least may be conceived to do so) a new pair or numbers, such as

those which determine in astronomy the inclination of the plane of

the orbit of a planet or comet to the ecliptic, and the longitude ofits node,

in addition to that former pair of numbers, which determine the ratio

of the lengths of the two lines compared, and the magnitude of the angle

between them : the Geometrical Quotient of two vectors is found

therefore again (compare § xvii.), in this new way, by consideration of its

representative biradial, to involve or depend upon a system of four

NUMBERS (^two for shape, and two for plane}, and to be (see again § xvii.)

,

in that sense, a Quaternion, . . . Articles 102 to 107 ; Pages 106 to 112.

§ XXI. Multiplication oftwo arbitrary quaternions, effected by means of their re-

presentative biradials, prepared so that the yina/ ray of the multiplicand

may coincide with the initial ray of the multiplier, as factum and profaciend ;

and therefore so that the identity {y^ P) x (J3 -i- a) = y ~- a, of§ vn.,

maybe employed to form the product ; this process is absolutely/ree/rom

vagueness in its conception, and altogether definite in its results, which

therefore are adapted to become the subject matter of theorems ; exam-

ple, here stated by way of anticipation, q" q q= q" -q' q; this is the os-

aociative principle of multiplication of quaternions, and will be afterwards

fully discussed (in Lectures V., VI., VII.) ; Division of Quaternions may

obviously be effected by an entirely analogous process,

Article 108; Pages n>. 113.

§ XXII. Before entering on the general theory of operations on qvaterniovs, we

may perform operations on numbers, and on lines, regarded as particular

cases of quaternions ; for example, we can shew that the tensor of a sca-

lar is the absnhite (m arithnioticiil) rahic of that scalar, T (+ 3) = ."
;
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andtbat the tensor of a vector is the number expressing the length of that

rector, Ti = T/=TA = l; T . ktX = Tk . TX, T(\h- = TX h- Tr:

Tp= vZ-p^i Tw= •v/+u)-; it will be proved (in § LXiii.) that gene-

rally the tensor of a quaternion q is

Tj = T (w + p) = V(w2 - p2) ;

examination and explanation of a formula which may seem at first a pa-

radox Articles 109 to 112 ; Pages 113 to 117.

§ XXIII. The versor of a positive scalar is the sign +, or the factor + 1 ; the

versor of a negative scalar is the sign — , or the factor — 1 ; the versor Up,

of a vector p, is the vector-unit in the direction of that vector. Up = p

-7- Tp = p -^ V(— p2), (Up)2= — 1 ; the versor of zero, UO, is generally

an indeterminate symbol, but it may become determinate, if we know, in

any particular investigation, the law according to which the scalar or vec-

tor tends to vanish ; a tensor may be treated as a positive scalar (instead

of ft signless number) ; the conjugate of a scalar is the scalar itself, but

the conjugate of a vector is equal to that vector reversed, Ku; = -f u?,

Kp = — p ; it may be remarked by anticipation, that the conjugate of a

quaternion is, generally, see § lxiii.,

Kg = K (lo + p) = H! — p,

Articles 113, 114; Pages 118, 119.

§ XXIV. Powers of vectors, the exponents being still scalars, but the vector bases

being not now unit-lines (compare § Xiv.) ; such powers are quaternions

;

examples : the tensor of the power is the power ofthe tensor, and the ver-

sor of the power is the power of the versor ; T . p' = (Tp)' = Tp, U . p'

= (Up)' = Up' ; the power p', when operating as a factor on a line <r j_ p,

produces another line r = p'lr, which also is perpendicular to p ; the direc-

tion of this new line t is formed from that of ir by a rotation through i

quadrants round p, and its length bears to the length of it a ratio expressed

by the <" power of the number Tp which expresses the length of p ; the

power, or quaternion, or quotient, p' = r -7- cr, degenerates into a scalar

when t is any even integer ; p°, for example, is positive unity, and p* is a

negative number, = — Tp* (compare §§ xiii., xxii.) ; on the other hand

the power p' degenerates from a quaternion into a vector, when the ex-

ponent t is any odd whole number, for example,
f>^
— p', another and

more important example is the reciproca/ of p, or the power p-i
; this

power is a line, which, when operating as a factor on a line a perpendicu-

lar to p, has the effect of dividing the length of a by the number Tp, and

of causing its direction to turn negatively (or left-handediy) through a

quadrant, round p as an axis ; the tensor and versor of the reciprocal are

respectively the reciprocals of the tensor and versor, T (p-') = (Tp)-i,

U (p-i) = (Up) > =-Up, p-i = -Tp-i .Up ; any two reciprocai.

VECTOKS, p and pi, have their directions opposite, and their

LENGTHS RECIPROCAL ; the product ^ X a " ' is equal to the quotient

;8 -T- a, and may be denoted more concisely by /3rt
-

' or by — , while the re-
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ciproeal a "l may also be denoted by -
; for powers of vectors with scalar

a

exponents, we have generally (as in algebra), p™ p" = 9"*+", ....
Articles 115 to 118 ; Pages 119 to 125.

§ XXV. Illustrations from the logarithmic spiral ; the quotient of two vectors

(in space) may generally be put under the /orm o/ a ;)oi«er, p', where

the base p is a vector, depending (see § xix.) on a system of three num-

bers, and serving to fix the aspect and angle ofa spiral ; while the eX'

ponent, t, is (as in § xxiv.) a scalar, and serves to mark (in this mode

of illustrating the subject) the ^acfton of a quadrant at the pole; the

Quotient of two rags is therefore again found, in this new way, to be a

Quaternion, or to depend generally on a system offour numerical ele-

ments, Articles 119, 120; Pages 125 to 129.

LECTURE IV.

(Articles 121 to 174 ; Pages 130 to 185.)

PROPORTIONS OF LINES IN ONE PLANE, POWERS AND ROOTS OF QUATER-

NIONS; NOTATIONS,
III, /_q. Ax. 5; GEOMETRICAL EMPLOYMENT OF

V- 1, AS A PARTIALLY INDETERMINATE SYMBOL.

§ xivi. Recapitulation ; construction of a quadrantal quaternion or of the quo-

tient of two rectangular lines (compare § XI.) by a line drawn in the di-

rection of the axis of the versor of this quotient or quaternion, and with a

length which represents the tensor of the same quadrantal quaternion

;

thus the rotation round the quotient-line, from the divisor line to the di-

vidend-fine, is positive (compare again § xi.) ; examination and con6rma-

tion of the consistency of this conception of a quotient-line, with earlier

principles of this calculus; division of one Kne by another (§ VI.) may
be regarded, in this view, as a case of the division of one quotient (§ vu.),

or of one quaternion (§ xxi.), by another quotient or quaternion, but the

results of these different views agree ; an equation between quotients may
in like manner receive two distinct but harmonizing interpretations, of

which one is that (comparatively) usual one, referred to in § xx., while

the other seems to be peculiar to quaternions,

Articles 121 to 126 ; Pages 130 to 139.

§ XXVII. On the same plan two distinct methods of interpretation may be applied

to the symbol ji-i-axy, where a, 13, y are supposed to be three coplanar

lines, y 1 1
1 a, /3 ; but they both conduct to one common line B as the re-

sult, namely, to that fourth line, in the plane of a, /3, y, which is, in seve-

ral other systems also, regarded as the fourth proportional to those

three lines, and satisfies, in a sense already mentioned (§ xx.), the equa-

tion l^y-p-i-a, or the proportion a : fS : : y: S, which admits of in-

version and alternation ; this proportion gives two others, between the ten-

sors and the versors respectively (see §§ xxii., xxiii.) of the four coplanar
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lines ; we may write i = /3a- ' . y, and S = ya' . /3, but are not yet enti-

tled to write i = /3.a-'y, nor J = y.a-'/3, because the atsociative

principle of multiplication (compare § xxi.) has not as yet been proved

;

we may already see that (on the principles above employedj the fourth

proportional to three lines which are not coplanar CANKOT be AST liue
;

in fact it wiU be shewn, in the Fifth Lecture, to be a non-quadranial qua-

ternion, Aiticles 127 to 130; Pages 139 to 144.

§ XXVIII. Wien the three lines a, (3, y are coplanar, and are supposed to be ar-

ranged as the base, bc, and the two successive sides, CA, AB ( following the

base), of a triangle inscribed in a circle, the fourth proportional S may be

constructed by a certain line af, which touches, at the vertex A, the seg-

ment BCA (or acb), or which coincides with the initial direction of motion

along the circumference, from a to b, through c ; if a quadrilateral ABCD

be inscribed in a circle, and if the first side ab be divided by the second

side BC, and the quotient multiplied into the third side CD, the resulting

line, DF = AB -=- BC X CD, will have the direction opposite to that of the

fourth side da, or the direction of that fourth side itself, according as the

quadrilateral is an uncrossed or a crossed one ; the results of this section

(§ xxviii.), respecting fourth proportionals to three sides of an inscribed

triangle or quadrilateral, do not essentially require, for their establishment,

any principles pecw/it/r to quaternions, . Articles 131, 132 ; Pages 144 to 148.

§ XXIX. The THIRD PKOPORTIONAL to any two lines a, y is easily constructed,

as a third line c, coplanar with tliem ; but when we have thus the propor-

tiou a : y ; : y ; £, we must NOT generally, in the present calculus, write the

usual algebraic equation between square and product, y2 = a£, nor

y* = fa ; iu fact these two equations are equally true in algebra, and in se-

veral modern geometrical systems, but ae is not generally equal to ta in

quaternions, on account of the generally non-commutative character of

multiplication (see §§ x., xi., xv.) ; we may however write, under the

conditions supposed, ta-i = Cya-')s, af-i = (y£-')', if we retain, for

quaternions generally, the notation q- = q x q, with the corresponding de-

finition of a square ; in like manner we must not write, in this calculus,

as a general expression for a mean pkopoktion.vIt y = + V af, but may

write y = + (fa - 1)* "i '° which expression it is proposed to take the upper

sign, when y bisects the angle itself between the directions of a and t, fJJL^I^J'
but the lower sign when it hitirliS the a^iplement. of that angle ; in the . 'CV
former of these two cases, y may be said to be by eminence the mean /*iX. O-iMCl^

proportional between u. and i, its length being also a mean between

theirs ; the mean between two given vectors is thus in general a deter-

mined vector ; but when the two vectors have opposite directions, their

mean proportional may then take any direction in theplane perpendicular

to the extremes, Articles 133, 134; Pages 148 to 101.

§ xx\. Analogous interpretations of the two symbols (/3a-')4a, (^a"') a, as

denoting the SIMPLEST pair of mean proportionals, inserted between a

and j3 ; these two means must not, in tl\c present calculus, bc denoted ge-

c
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nerally by the symbols, /3* a', /3^ a^ ; the tensor and versor of the cube

root of a quaternion may be regarded as being respectively the cube-roots

of the tensor and the versor ; in general we may interpret the powek 9' of

any guaternion q, witi) any scalar exponent /, as being a new quaternion^

of which the tensor and the versor are respectively the same (f'^) powers

of the tensor and the versor of the old or given quaternion, which is pro-

posed as the BASE of the power j thus (compare § xxiv.),

T.qi= (Tg)' = Tq', V . q' = (Vq)' = Vq'
;

and we may conceive that this latter /lOK'er ofa versor is itself another

versor, which has the effect of turning any line a, in a plane perpendicular

to the axis of U5, or of g, through an angle, or amount of rotation, posi-

tive or negative, represented by the product txLq; but in order to deve-

lope and apply this general conception, we must first fix definitely what is

to be understood in general by the angle, or amplitude, z. 9, of a quater-

nion, or of a versor, . .... Articles 135, 136; Pages 151 to 153.

§ xxxt. If we allow this amplitude z 9 to take any one of the values included in

the formula /.g = q + 2lTr, where q denotes an Euclidean angle, </ > 0,

< TT, we shall then have two values for a square root, three for a cube root,

&c., as in the usual theory of roots of unity, and as in those modem geo-

metrical systems which represent all such powers or roots by lines, whereas

with us they are quaternions ; examples : this view of / g would give

/(90 = <? + 2(ft + Ow, Z.(9") =4 + 2(mu + m')7r, L.q"** = {u + t)q

+ 2p {u^f)n + 2pV, ^ (7" . 9') = (k + <) g + 2 (/< + TOM + n) 5r i and in

order that we should have generally J" (jr' = g"»', it would be necessarj-

and sufficient to assume p = m = l, or, in other words, we should assume

one common value g + 2?7r for z. q, in forming the three powers here com-

pared ; and after making this assumption, it would still be necessary, in

general, to retain that value t (g i- 2/7r) of the power 9', which was im-

mediately given by the multiplication t x L q, and not to add to this pro-

duct any multiple itrr of the circumference, before proceeding to form, by

a second multiplication, the angle of the power 0/ a poajw of a quater-

nion, if we wish that this new power shall satisfy generally the equation

{q'y' = q"<, Articles 137 to 147 ; Pages 153 to 163.

§ xxxn. But for the sake of avoiding as much as possible all multiplicity of

value of elementary symbols, it appears convenient to define that the nota-

tation I q shall represent the simplest value of the angle, or that one

which most conforms to ordinary geometrical usage, namely, the angle in

the first positive semicircle, which was lately denoted by q, admitting

however and •"• as limits, and therefore writing Z 5 ^ 0, £ ff ; so that

the prefixed mark l comes to be the characteristic of a definite operation,

which may be said to be the operation of taking the angle of any pro-

posed quaternion q; this view agrees with our earlier definitions (§§ xiv.,

XXIV.) respecting powers of vectors, and gives lp= -, so that the angle
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of a vector is a right angle ; the angle of a positive scalar is zero, and the

augle of a negative scalar is two right angles ; Tvith the single exception of

powers of negatives (for wliich powers, as well as for their bases, the axes

are indeterminate), the same definition assigns a determinate quaternion

as the value of the t"' power of any proposed quaternion q ; and the equa-

tion q<'q' = q"*' is satisfied, each member representing a quaternion, of

which the versor has the eflTect of turning a line perpendicular to the axis

of q through an amount of rotation represented hy (u + t) i q, . . .

Articles 148 to 150 ; Pages 163 to ICC.

§ xxxiii. On the other hand, although the rotation produced by the operation

of the power q^ is now correctly and definitely expressed by the product

t X I q, yet because this product is not generally confined between the

limits and w, we cannot now consider it as being generally equal to the

angle of the power, because we have agreed (in § xxxii.) to confine the

ANGLE of every quaternion, and therefore of the power 5' among the rest,

within those limits ; thus with the present definite sicnifioation of

the maris L, we must not write generally I (q') =: t x /. q, but rather

^ (5') =2n7r + t Lq, the axis of the power being in the same direction as

the axis Ax . 9 of the hase, or else in the opposite direction, according as

it becomes necessary to take the upper or the lower sign ; the square root,

q\, of a (non-scalar) quaternion is acute-angled, and so are the cube-root,

qi, &c., while the axes of these roots coincide with the axis of their com-

mon power ; but the square g2 of an o6<«se-angleiJ quaternion 9 has its

angle L (9^) equal to the double of the supplement of the obtuse angle L q,

and has its axis in the direction opposite to that of the axis Ax . 9 ; with

this definite view of powers and roots, although three distinct quaternions

may have one common cube, yet only one of them is (by eminence) the

cube-root of that cube ; examples : in like manner the symbol (j^)4 de-

notes now definitely +9, or — q, according as the angle of 9 is acute or

obtuse
; (p*)4 denotes a vector, with a length = Tp, but with an indeter-

minate direction, because p^ is a negative scalar ; we must not now write

generally (9')" = !"'i hut may establish this modified formula, (9*)" =

{An . g)*"" . q<", Articles 151 to ICl; Pages 166 to 174.

§ xxxiv. Reciprocals and conjugates of quaternions (compare §§ xxiv., xxx.) :

T(9-0 = (T9)-' = T9-', U(9->) = (U9)-i=U9-i;

l{q-'^) = lg. Ax . (9-1) = - Ax. 9 ; U9 "
' = KD9 = reversor

;

LKV3=lVq, Ax.KU9 = -Ax.U9;
lKq=Lg, As. .Kq = -Ay. . q, 'rKq = Tg;

the reciprocal and conjugate of 9 may be thus expressed,

9-i=T9-i.KU9, K9 = T9.U9-i;

in general 9K9 = T9', so that the product of any two conjugate

quaternions is a positive scalar, namely, the square of their common

Censor; T9=(9K9)J, U9 = + (9 -H K9) 5, according as Z 9 § - ; exam-
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pies ; when g is a vector = p, so that lg = -, then Kq = — g (compare

§ XXIII.) ; and although (q-i-Kq)i is in this case an indeterminate vec-

tor-unit, yet we have still Ug2 = q-i- Kgi, each member being = - 1, . .

Articles 162 to 165 ; Pages 175 to 178.

§ XXXV. More close examination of the case of ihdktermination, mentioned

in several recent sections, when the base of a power becomes a negative

scalar ; Z. (— 1) = w ; Ax . (— 1) is indeterminate ; the symbol (— 1)' or

(—)' denotes a versor, which has the effect of producing a given and deji-

Jinite amount ofrotation = <7r, but in a wholly arbitrary plane ; in parti-

cular, i (- 1)} = -, so that (- 1)J or ^/— 1 represents in this theory

(compare §§ x., XXIX., XXXii, xxxiii.) a quadrantal versor with an arbi-

trary axis, and therefore also a vector-uuit with an indetermihate

uiKECTioN ; this /)er/«e«/y real hat partially indeterminate interpre-

tation, of the symbol V-1, is one of the cAi's/ peculiarities of the

present calculus, so far as its connexion with geometry is concerned ; ex-

amples of its use, in forming certain equations of loci ; if o be origin

of vectors, and p a point upon the unit-sphere, then the rector of that

point may be expressed as follows

:

p-0 = p = V-l,

so that p2 + 1 = is a form for the equation of a spheric surface ; this

form is extensively useful in researches of spherical geometry ; the ex-

pression p — ^ + b^—\ represents the vector of a point upon another

sphere, whose radius is b, and the vector of whose centre is (3 ; the equa-

tion of this new sphere may also be thus written,

(p - /3)2 + 62 = 0, or thus, T (p - /3) = J ;

the equation pa-^ = V— 1, or (po-i)2 = — 1, may be interpreted as repre-

senting a circular circumference, namely, the great circle in which the

plane through o, perpendicular to a, cuts the sphere which has the origin

o for its centre, and has its radius = Ta ; the indefinite plane of the same

circle may be represented by the equation U . pa-i = V- 1, and a paral-

lelplane by U . (p - /3) a - • = V - 1 ; the equation pa -
1 = (— 1 )i repre-

sents another circle, namely, the locus of the summits of all the equilate-

ral triangles which can be described upon the given base a ; and the

equation U . pa"^ = (— 1)J represents a sheet of a right cone, with its ver-

tex at the origin, and with the last-mentioned circle as its base.

Articles 166 to 174 ; Pages 178 to 185.
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LECTURE V.

(Articles 175 to 250 ; Pages 186 to 240.)

ASSOCIATIVE PRINCIPLE FOR THE MULTIPLICATION OF THREE LINES IN

SPACE ; QUATERNION VALUES OF THEIR TERNARY PRODUCTS, fiay, AND

FOURTH PROPORTIONALS, /Sa'^; VALUES OF ijk, kji; GENERAL CON-

STRUCTION FOR THE PRODUCT OF TWO VERSORS, BY A TKANSVECTOR

ARC UPON A SPHERE.

§ XXXVI. Proof that for any three coplanar vectors, a, (3, y, the product j3.a-^y

represents the same fourth line S in their plane as the product /3a -
1 . y ;

thus j8 . a -

1
7 = /8a -

1 . y, at least when a
1 1 1

/?, y (this last restriction is

afterwards shewn to be unnecessary) ; the proof is given fur tlie three

cases, 1st, when the product a-^y is a vector; 2nd, when it is a scalar;

and 3rd, when it is a quaternion ; in treating these cases, we avail our-

selves of the formulse, a-^ . at-^ = s-^, y6.£-' = y, Z,ij . rj-^9 = K&.,

which are indeed included in the general associative principle of multipli-

cation (stated by anticipation in § xxi.), but can be separately and more

easily proved ; in general, by the conceptions of reciprocal and product,

it can easily be shewn that for any two quaternions q and r, we have, ns

in algebra, the identities, t-^ .rq = q, rq. 5-i = r; another general for-

mula for the multiplication of any two quaternions is /i\-' . Xk"' = /ik"',

Articles 175 to 182 ; Pages 186 to 192.

§ XXXVII. Negatives of quaternions,

T(,-q) = 1g, L(,-g) = v~lg = -ir-L'Kg, As..(-g)=-Ax.q = As..Kq;

the axes of the negative and conjugate coincide, but their angles are sup-

plementary ;

T (- K}) = Tg, Z. (- Kg) = ir - / 9, Ax . (- Kj) = Ax . g ;

the negative of the conjuffate has the effect of turning the line on which it

operates, round the same axis as the original quaternion, but through a

supplementary angle
;
(these results are seen at a later stage, to admit of

being connected with the form Tg (cos -i- v^ - 1 sin) I g, to which every

quaternion g may be reduced, but in which the V — 1 is regarded as re-

presenting a vector-unit, in the direction of Ax . g) ; KKg = g, K' = 1

;

K (— g) = - Kg ; if this =+ g, then g must be a vector, and rice versd

;

the tensor and versor of a product or quotient ofany two quattmions

are respectively Hie product or quotient of the tensors and versors,

T.rg = Tr.Tg, U.rg = Ur.Uj,

T(r-i-g) = Tr-^T9. U (r -^ g) = U>-^ Ug
;

thi-i result is connected with the mutual independence of the luu nets or
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operations of tensiou and of version ; the conjugate and tlie reciprocal of

the product of any two quaternions are respectively equal to the product

of the conjugates, and to the product of the reciprocals, but taken in an

inverted order, E..rq=Kq.Kr, (rj)' = 9-' r-> ; i( S — fia-^ . y =

ya-i. /3 (see § XXVII.), then ;3 . a-i y = K (-;8).K (ya-i) = -K(j.a-i./3)

= —KS = £; the result of the foregoing section, that /3 . a -
' y = /3a "

' • y,

when a, /8, y are three coplanar vectors, is therefore confirmed in this new

way, Articles 183 to 193 ; Pages 192 to 198.

§ XXXVIII. The associative principle therefore holds for the multiplication of any

three coplanar vectors, such as the recent lines y, a"', and j3, with a

partial validity of the commutative principle also ; so that we may dis-

miss the point in the notation, and may write either S — ^a-^y, or

5=ya-i/3; the line S may still be called (see § xxvii.) the Fourth Pro-

portional to a, fi, y, or to a, y, /3 ; but it may also be said to be the

continued product of y, a"', (5, or of ;8, a"', y ; without introducing — 1

as an exponent of the middle factor, if /i
1 1

j \, k, we have the following

equation of coplanarity, ;i\«: = icX/i; each of the symbols here equated

denotes a line, coplanar with the lines k, X, //, which fourth line in their

plane may at pleasure be called the fourth proportional to \-i,
/j, k, or to

\-i, K, 11, or the continued product of /c, X, /i, or of fi, X, k
;
(X-i)-i = X,

(g-i)-i = 5; |8ay = a2.(3a-iy; and because a*<0(by § xm.), the

continued product fiay of three coplanar vectors, y, a, (8, has the direc-

tion opposite to that of the fourth proportional to the lines a, /3, y ; the

continued product (a — c) ( c — bJ (b — a) of the three successive sides,

AB, BC, CA, of any plane triangle abc, represents by its length the product

of the lenffths of those three sides, and by its direction the tangent at A to

the segment ABC of the circumscribed circle (contrast with this the cor-

responding result in § xxviii.); this construction of a continued product

appears to be peculiar to quaternions ; case where the three points A, b, c

are situated on one straight line ; if A, b, c, d be the four successive cor-

ners of an uncrossed and inscribed quadrifateral, the continued product

(d — c) (c — b) (b — a), of the three successive sides ab, bc, cd, is con-

structed in this calculus by a line which has the direction of the fourth

side, DA or A — D ; but the same product represents a line in the direction

opposite to that of the fourth side, if the quadrilateral be a crossed one

;

these results also (which may again be contrasted with those of § xxviii.)

appear to be peculiar to quaternions ; the formula,

U.(d-c;(c-b) (b-a) = +U(a-d),

expresses, in the present calculus, a property which belongs only to plane

and inscriptible quadrilaterals, . . . Articles 194 to 200 ; Pages 198 to 203.

§ XXXIX. Interpretation of the fourth proportional /3a-> . y, or /3 -^-a x y, for

the cases where the three lines afiy are not coplanar, y no« ||| a, P, but

where a is perpendicular either to y or to /3 ; for each of these two cases,

the associative property of multiplication holds, /3a-i . y = /3. «-' y, and
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the point msy therefore be omitted; but the symbol fia-^y does not now

represent any line but a quaternion ; the symbol /3ay denotes another

quaternion, which is still (as in the last section) = a* . jSa-' y ; the ver-

sors of tliese two quaternions are negatives of each other, U . /3ay = —

U . /3a " ^ 7 ; for any multiplication of any number of quaternions, the

tensor of the product b equal to the product of the tensors (compare

§ xxxvii), Tn = nX; in the case where the three lines ajiy compose a

rectangular system^ the fourth proportional /3a "i y degenerates from a

quaternion to a scalar, which is a negative or a positive number, according

as the rotation round a from /3 to y is of a positive or a negative charac-

ter; on the contrary, the continued product /3ay is positive in the first of

these two cases, and negative in the second ; thus (Say = — ya/3 = + T;3 .

Ta . Ty , if /3 _L o, y j_ a, y J. /3, the upper sign holding when the ro-

tation round y from a to ;3 is positive ; if da, db, dc be three co-initial

edges of a right solid, then

(c— d) (b — d) (a - d) =+ volume of solid,

according as the rotation round the edge da from db towards do is di-

rected to the right hand or to the left ; examples from the unit-cube, k —j
xi = - 1, A/i = + l, i;A = -l, . . . Articles 201 to 210; Pages 203 to 208.

§ XL. More general cases, where a, j3, y are neither coplanar, nor rectangular

;

each of the two symbols, /3a -
1 . y, /3 . a ~ ^ y , represents a determined

quaternion, but it remains to prove (§§ XLii., XLiii.) that these two qua-

ternions are equal; it is sufficient for this purpose to establish the equality

of their versors, and therefore the lines a, |3, y may be supposed to be

three unit-vectors, OA, ob, oc, terminating at three given points a, b, c

on tlie surface of the unit-sphere (§ xxxv.) ; the quaternion quotient /3a " i

becomes then a versor, with aob for its representative biradial (§ xvui.)

;

and the great-circle arc, ab, which subtends the angle aob, may be said

to be the REPKESENTATiVE ARC of the Same quaternion or versor, /Sa"';

it is proposed to construct the representative arc of the quaternion /3a - •
. y,

Articles 211 to 21G ; Pages 208 to 212.

§ xi.i. Equality of any two versors corresponds to equality of their represen-

tative arcs, such AKCUAL EQUAUTY being defined to include sameness of

direction on the spheric surface, of the veotob arcs compared, so that

EQUAL ARCS are always supposed to be portions ofone common great cir-

cle ; but an arc may be conceived to slide or turn, in its own plane (com-

pare § XX.), or on the great circle to which it belongs, without any change

of value ; constructions for multiplication and division of versors, bj' pro-

cesses which may be called addition and subtraction of their representa-

tive arcs ; if any multiplicand versor q, and any multiplier versor r, be

represented by two successive sides kl, lji, of a spherical triangle klm,

the product versor rq will be represented by the base KM of the same tri-

angle; thus versor, proversor, and transversor (see § ix.), are represented

by what may be called an arcual vector, an arcual provector, and an ar-

cual transvector respectively (compare First Lecture) ; we may write the

formula'^ lm t^^ kl = '~ k.m, and the akcual sum of two successive



xxiv CONTENTS.

sides of any spherical triangle, regarded as two successive vector arcs, may

in this sense be said to be equal to the base (compare §§ iv., v.); such

ADDITION (of vector arcs) corresponds to, and represents, & composition of

two successive versions (§ ix.), or plane rotations of a line (the radius)
;

the sum of the three successive sides of a spherical triangle, or generally

the sum of all the successive sides of any spherical polygon, may be said

to be a null arc, or to be equal to zero, '- mk + ^ L5i + '^ kl = ; to go

on the surface of the sphere successively from k to l, from L to M, and from

M to K again, produces no final change of position; subtraction ofvector

arcs, corresponding to division ofversors, is very easily effected, on the

same general plan of construction, and represents (compare again § ix.)

a decomposition of a given version into two others, of "which the first in

order is given, namely, the one represented by the subtrahend arc ; in

short, for arcs as for lines, the relations of § iv., between vector, provector,

and transvector, hold good in this manner of speaking ; the provector arc

is regarded as the remainder, in the arcual subtraction of vector from

transvector ; addition of ARCS is not a commutative operation ; for if

two arcs kk', mm bisect each other in l, we shall have

" KL + ^ LM = '- Lk' f ~ m'l= ^ m'k',

and this arcual sum ^ m'k' is indeed equally long with the arc ^ K3r,

which was found to be = ^ lm + -^ kl, but it is part of a different great

circle, and therefore these two sums are not arcually equal to each other,

in the sense of the present section ; this result answers to and illustrates the

general non-commutativeness of the operation of multiplication of versors,

whereby qr is not generally = rq (§§ x., xi., xxix. &c.) ; it is necessary to

distinguish in writing between two such symbols as '--'+ ^ and '-'-F-^';

the rule adopted in this calculus is to write the symbol of the addend arc,

like that of the multiplier quaternion, and generally the symbol op the

operator, to the left of the symbol of the operand, that is, in this

case, to the left of the symbol of the arc to which another is to be added;

thus we still write "provector plus vector," and not, generally, vector plus

provector ; several other general properties of multiplication and division

of quaternions may be illustrated by the same method of arcual construc-

tion, Articles 217 to 222; Pages 212 to 217.

§ xlii. Application of the method of the last section to tlie problem proposed

at the end of § xl., namely, to the construction of the representa-

tive arc of thefourth proportional 15a- ^. y to three unit-vectors, a, fi, y,

or OA, OB, oc, which are not rectangular, nor in one common plane

(§ XL.), but which shall at first be supposed to make acute angles with

each other, so that the sides of the triangle ABC shall each be less than a

quadrant ; the vector arc representing y is here a quadrant kl with c for

its positive pole ; the provector arc representing the other factor jia - >, is

the arc ab, or an equal arc lm ; the transvector arc km, which represents

the required fourth proportion.il, under the form of the prorfuci /3a" ^ . y,

is found to have its pole at a new point D, which is a corner of a new ciV-

cuiHscribcd spherical triangle DKF, whose sides ef, fd, de are respec-
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tiVely bisected by the three comers A, B, c of the old or ffieen triangle
j

and the bepresentattve ahqle, kdm, at this pole o, ^hich corresponds

to the representative arc, KM, and may replace it, as representing the

fourth proportional to the three sectors a, /3, y, is equal to the semisum of

the angles of the auxiliary triangle, def, or to the supplement of that

semisum, according as the rotation round a from /3 to y is positive or ne-

gative ; hence the two quaternions ;8a- ' . y and ya" i
. /3 have one common

axis, namely, the radius on, but have their angles supplementary ; but

these were the conditions assigned in § xxxvii., as necessary and suffi-

cient, in order that one quaternion should be the negative of the conjugate

of the other ; we have therefore, as in the last cited section,

(3a-l.y = -K(ya-i./3) = /3.a-l7,

and the associative principle is again found to hold good for the three

vectors y, a-i, j3, although these three hnes are not now coplanar (as

they were in §§ xxxvi., xxxvii.), and do not form a wholly or even par-

tially rectangular system (as they did in § xxxix.)

Articles 223 to 235 ; Pages 217 to 228.

§ XLiii. Other proof of the same theorem, by means of an analogous construc-

tion for the product /3 . a"iy ; the caae where /3 j_a may be treated as a

limit of a case lately discussed, the arc ab becoming a quadrant, and the

triangle def becoming a lune ; case where the arc AB is greater than a

quadrant; value of /3a-i. y', when y' = - y, and when the sides of the

new triangle abc' are each greater than a quadrant ; we have

|8a-l . y' = - K (y'a-1 . i3)
= jS . a-l y'

;

in EVERY case, the associative pkinciple of multiplication holds good

for any system o/three vectors, and we may always write in this

calculus (as in algebra) the formulae,

j8.a-iy = /3a-i.y = /3a-iy; )3.ay = /3a .y = /3ay
;

to establish this result has been the main object of the present Lecture, .

Articles 236 to 240 ; Pages 228 to 233.

§ XLiv. Partial indetermination of the constructed triangle def, when the given

triangle ABC is triquadrantal ; the point d may take infinitely many po-

sitions on the sphere, but the semisum of the angles at d, e, p is always

equal to two right angles ; the scalar character of the fourth proportional

to three rectangular vectors, which had been established in § xxxix., may

in this way be proved anew, as a particular or limiting case of a much

more general result ; when a scalar is treated as a quaternion, its axis is

indeterminate ; the rule of § xxxix. for determining the sign of the scalar

is also reproduced, Articles 241 to 244 ; Pages 233 to 237.

§ XLV. Illustrations of the equations (of § xxxix.), */» = + 1, ijh=-\ ; the

former may be interpreted as expressing that if a line X be suitably chosen,

namely, so as to be perpendicular to the (meridional) plane of h and i,

and be then operated on successively by i, by j, and by h, considered as

d
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three quadrantal and mutually rectangular vcrsors (§ x.), the final direc-

tion of this reuolvivg line X will be the same as the initial direction ; the

latter equation (ijt = - 1) may in like manner be interpreted as expres-

sing that if the same (westward or eastward) line X be operated on suc-

cessively by h, hjj, and by i, it will take at last that (eastward or west-

ward) direction which is opposite to the initial direction ; and because

each of the vector-units i, j, k, when'thus regarded as a quadrantal versor,

is evidently (see again § x.) a semi-inversor, we have in this way ex-

tremehj simple intebpretations _/br all the parts of the formula,

ii=ji = k'i = ijk=-l;

which continued equation may be considered as including within itself all

the laws of the coMBraATiojJ OF THE symbols, i,j, h ; and therefore

ultimately, on the symbolic side, the whole theory of quaternions,

because these are all reducible to expressions of the quadrinomialform,

q = w + ix+jy+kz,

Articles 245 to 250 ; Pages 237 to 240.

LECTUEE VI.

(Articles 251 to 393 ; Pages 241 to 380.)

GENERAL ASSOCIATIVE TROPERTT OF THE MULTIPLICATION OF QUATER-

NIONS ; REPRESENTATION OF THE PRODUCT OF TWO VERSORS BY THE

EXTERNAL VERTICAL ANGLE OF A SPHERICAL TRIANGLE; CONNEXION

OF TERNARY PRODUCTS OF QUATERNIONS WITH SPHERICAL CONICS;

CONTINUED PRODUCTS OF THE SIDES OF PLANE OR GAUCHE POLYGONS

INSCRIBED IN A CIRCLE OR IN A SPHERE; COMPOSITION OF CONICAL

ROTATIONS ; THEORY OF SPHERICAL POLYGONS OF MULTIPLICATION,

WITH THEIR SYSTEMS OF INSCRIBED CONICS, AND RELATIONS OF FOCAL

ENCHAINMENT.

§ xi.vi. Postponement of the proof of the distributive principle of the multiplica-

tion of quaternions ; additional illustrations of the general theory of the

fourth proportional to three vectors, which was assigned in the foregoing

Lecture ; case of coplanarity, regarded as a limit,

Articles 251 to 257; Pages 241 to 247.

§ XLVii. The product of the square roots of the successive quotients of the vectors

S, Z, ij, of the comers of a spherical triangle def, is a quaternion,

of which the angle is the semi-excess of the triangle,

and the axis of the same quaternion product has the direction of + S, that
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is of OD or of DO, according as the rotation round S from ? towards e, or

that round D from F towards E, is positive or negative,

Articles 258 to 263 ; Pages 247 to 252.

§ xLViii. General construction for the multiplication of any two quaternions, by a

process analogous to addition of their bepkesentative angles (compare

§§ XLi., xLii.) ; if these be made the base angles of a spherical triangle,

and if the rotation round the vertex of this triangle, from the base

angle which represents the multiplier, towards the base angle which

represents the multiplicand, be positive, then the product is repre-

sented by the exteknal vertical angle ; if we agree to call the ex-

ternal vertical angle of a spherical triangle generally the SI'IIkrical sum

OF the two base angles, when \he positions oi the I'ertices of these seve-

ral angles on the sphere are taken into account, and when the addend

angle answers to the multiplier quaternion, according to the rule of rota-

tion above given, we may enunciate a general RULE^r the multiplica-

tion of any two quaternions, as follows* " the tensor of the product is the

arithmetical product of the tensors (§ xxxvil.), and the angle of the pro-

duct is the spherical sum of the angles of the factors ;^ this new sort of

spherical addition of angles is connected with a certain composition

of rotations of arcs ; such addition of angles (like that of arcs in § xli.)

is a non-commutative operation ; this result furnishes a new illustration of

the non-commutative character of the general multiplication of quater-

nions ; the rotation round the axis or round the pole of the multiplier,

from that of the multiplicand, towards that of the product (compare

§§ XI., XV., XXVI ), is always posftipc, . Articles 264 to 272 ; Pages 252 to 2G1.

§ xlix. Corollaries from the general construction for multiplicalion assigned in

the foregoing section (xL\aii.) ; interpretations by it of the symbols a/3,

/3a "1, /3a -1/3, agreeing with the results previously obtained respecting

the product, quotient, and third proportional of any two vectors ; inter-

pretations of Pia'i, /3Ja?, piai, as denoting quaternions (compare §§ xxix.,

XXX.) ; analogous interpretation of the more general symbol g = /3' ai -',

when a and /3 are supposed to be unit-vectors ; the unit axis Ax . q = op,

of this quaternion j, describes by its extremity p a curve apb upon the

unit- sphere, which curve is the locus of the vertex p of a spherical triangle

APB, whose base-angles are complementary ; this cuito is a spherical

conic ; for any spherical triangle, with a, 13, y for the unit vectors of its

comers A, b, c, and with x, y, z for the (generally fractional) numbers

of right angles at those corners, the rotation round c from b to a being

supposed to be also positive, we have the three equations

y-^ya' = - 1 ; a'y-^^ = - 1
i
^^a'^y- = - 1 ;

any one of which will be found to include, when interpreted and developed,

by the principles of the present calculus, the whole doctrine of spherical

trigonometry ; with the phraseolog}' recently proposed, the spherical sum

of the THREE ANGLES of any Spherical triangle, if taken in a suitable order

of succession, is always equal to two right angles,

Articles 273 to 28" ; Pages 201 to 2Gfl.
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§ L. InterpreUtion of the symbol rqr-^. where } and r are any two quaternions;

this symbol denotes a new quaternion, with the same tensor, and same

magnitude of angle, as the original or operand quaternion, q,

T.rqr--i = Tq, L.rqr-i = lq;

but the axis of the new quaternion rjr-i is generally different from Ax. j,

and is formed or derived from this latter axis, by a conical and positive

ROTATION round the axis Ax . r, of the other given quaternion, r, throvgh

DOUBLE the ANGLE ofthat quatemion ; analogous interpretations of y" ' rq,

q'rq -'; the latter symbol denotes a quaternion formed from r, by making

its axis revolve conically round the axis of q, through a rotation expressed

by the product 2tx Lq; by employing arcs instead of angles, we may in-

terpret the symbol q { ) j"', in which q may be said to be the ope-

rating quaternion, as denoting the operation of causing the arc which

represents the operand quaternion, and whose symbol is supposed to be

inserted within the parentheses, to move along the doubled arc of the

operator, without any change ofeither length or inclination (like the equa-

tor on the ecliptic in precession) ; if t be still a scalar exponent, (jrg"')' =
yr'j-i ; the symbol qpq'^ denotes a vector formed from the vector p, and

the analogous symbol qBq-^ may be used to denote a body derived from

the body B, by a conical and finite rotation, through 2 Lq round Ax . q

;

to express that this body has afterwards been made to revolve through

2 Ir round Ax . r, we may employ the following symbol for the new po-

sition of the body, or system of vectors, r . gBj-i . r-i ; and so on for any

number of successive and finite rotations, round any axes drawn from or

through one common origin o ; interpretations of the symbols q (a + p) q-^f

}(a + B)?-'; expression for rotation of a body round an axis which does

noi pass through the origin of vectors ; symbols gi ( ^q~i, y{ )y"^i
the former represents a rotation through the angle itself o! q ; the latter

represents a reflexion with respect to the line y, or a conical rotation

of the operand (whether vector or body), round y as an axis, through two

right angles ; the formula ji . a'^ la . ji'^ = pa''^ . i . aji-'^, expresses that

two successive reflexions, with respect to any two diverging lines a and /3,

are equivalent upon the whole to a single conical rotation, round an axis

perpendicular to both those lines, through twice the angle between them.

Articles 281 to 292 ; Pages 268 to 277.

§ Li. The general demonstration of the associative property of the multiplication

of any three quaternions (mentioned by anticipation in § xxi.), may be

made to depend on the corresponding principle for the multiplication of

any three versors, q, r, s ; when these versors are represented by arcs

(§ XL.), we may propose to prove that a certain arcual equation (§ xli.)

is a consequence offive other equations of the same sort ; first proof by

spherical conies ; the, two partial or binary products rq and sr are re-

presented by portions of the two cyclic arcs of a conic circumscribed about

u quadrilateral, whose successive sides, or portions of them, represent the

three proposed /acfors, q, r, s, and their ternary product, srq ; other and

more elementary geometrical proof of the itssociative principle, not intra-
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duciog the conception of a cone ; second proof by spherical conies ; certain

angles at the corners of a new spherical quadrilateral abcd represent the

three factors and their total product, while certain other angles at the foci

EF of an inscribed conic represent the two binary products ; three equa-

tions between spherical angles are thus shewn to be consequences of three

other equations of the same sort, in such a way as to establish the pro-

perty above proposed for investigation ; it is therefore proved geo-

metrically, in several different ways, that the associative principle

OF MULTiPLicATioM holds good for any three versors, and thence for aby

three quatekniohs, sr. q = s .rq = srq; (in the Fifth Lecture this

theorem was established only for the multiplication of any three vectors')
;

esEtension to the case of any number offactors ; arcual addition (§ XLI.),

and angular summation (§ XLVIII.), are also associative operations,

although they have been seen to be not generally commutatice, ....
Articles 293 to 304 ; Pages 277 to 290.

§ Ln. Other forms of the associative principle ; if the first, third, and fifth sides of a

spherical hexagon be respectively and arcually equal to the three successive

sides of a spherical triangle, then the second, fourth, and sisth sides of the

same hexagon will be respectively and arcually equal to the three succes-

sive sides of another triangle ; or if the arcual sum of three alternate sides

of a hexagon (fifth plus third plus first) be equal to zero (see § XLI.),

then the corresponding sum of the three other alternate sides (sixth plus

fourth plus second) will likewise vanish ; symbolical transformations of the

same principle ; if aJ-i = ys-i, then ?^-i .a/3-i = ?£-'. y/S"' ; if ^£-' =

rX-i.ei)-!, then Jk-i = {))-i. e\-i
; if (tS.y/S) a = ?, then(a/3.7J) t

= ? ; remarks on the necessity that existed for demonstrating the general

associative principle of multiplication, notwithstanding that to a certain

extent the principle had been previously defined to hold good ; we may be

said to have virtually used the defikitional associative formula,

rq. a = r . qa, for the CASE where a, qa, and r . qa were lines, in order

to ihterpbkt the product, rq, of any tw^o geometrical /ac<ors, or qua-

ternions ; but the very fact of the perfect defniteness (§ xxi.) of this in-

terpretation of a binaryproduct made it necessary that we should not as-

sume butprove the corresponding formula respecting a general ternary

PRODUCT Articles 305 to 316 ; Pages 290 to 303.

§ LIU. If the continued product of any odd number of vectors be a line, it is

equal to the product of the same vectors, taken in an inverted order ; and

reciprocally, if the continued product of an odd number of vectors be not

a line, it will not remain unaltered by such inversion of the order of the

factors ; on the other hand, if the number of vectors thus multiplied be

even, the product will be changed to its own negative, if it be a line, and

not otherwise, by such inversion ; if the continued product of an even

number of vectors be a scalar, the inversion produces no change ; and re-

ciprocally if the continued product of an even number of vectors receive

no change by inversion of order, that product must be a scalar ; conjugates

and reeiprocah of products ot nni/ number if vectors nr quaiernivns, arc
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the products of the conjugates or reciprocals of the factors, taken in an in-

verted order ; in § xxxvii. this was only established for the case of two

factors ; the formula; Ka = - a, K . jSa = + a/3 (see §§ xxiil., xv.), may

now be extended as follows, K . y/Sa = - a/3y, K . Sy^a = + a^yS, &c.,

the signs of the results being alternately - and + ; the construction of

§ xxxviii., for the continued product of the three sides of an inscribed

triangle, may now be extended so as to shew that the product of the suc-

cessive sides of a poll/yon inscribed in a circle U equal either to a scalar,

or to a tangential vector, at the first corner of the polygon, according as

the number of the sides is even or oddi thus the continued product of the

four successive sides of an inscribed quadrilateral ABCD is a scalar,

V. (a-d) (d-c) (c-e) (b-a) = + 1,

and the upper or lower sign is to be taken, according as the quadrilateral

is an uncrossed or i crossed one (compare §§ xxvili., xxxvill.) ;
this

symbolical result appears to be peculiar to the present calculus, and con-

tains a characteristic property of the circle, corresponding to the known

and elementary relations between angles in alternate segments, or in the

same segment ; the versor ofany product of quaternions is equal to the

product of the versors, Un = HU, . Articles 317 to 322 ; Pages 303 to 309.

§ Liv. To interpret the continued product of the four sides of a gauche quadri-

lateral, ARci>, we may conceive it to be inscribed in a sphere ; the

product is a quaternion, of which the axis has the direction of the out-

ward or inward normal to the sphere at the first comer A, according to

the character of a certain rotation ; the angle of the same quaternion pro-

duct is the angle of the lunule, aecba, or the angle between the two

small-circle arcs, ABC, ADC
i

this includes as a limit the case of a qua-

drilateral in a circle ; an analogous construction holds for the continued

product of the sides of a gauche hexagon, octagon, or other polygon

with an even nimiber of sides, inscribed in a sphere ; the product is still a

quaternion, of which the axis is normal, or the plane tangential, to the

sphere, at the first corner of the polygon ; construction for the contmued

product of the sides of a gauche pentagox, heptagon, &c., inscribed in a

sphere; this product is a tangential vector, drawn at the first comer;

conversely, if the continued product of the sides of a gauche pentagon

ABODE be a line, when this product is constructed according to the rules of

the present calculus, the pentagon is inscriptible in a sphere ; hence is de-

rived the following zquatiok of homosph^sricism, or condition for

five points A, B, c, o, e, being situated upon one common spheric surface,

AB . BC . CD . DE . EA = EA . DE . CD . BC . AB
;

this vector character of the product of the sides of a pentagon in a sphere

includes, as a limit, the scalar character of the product of the sides of a

quadrilateral in a circle (§ Liii.), which latter relation may be expressed

by tlie following equation of concircui^\rity,

Al'. . BC . CD . DA = DA . CD . DC . AB,

Articles 323 to Si'S
; Pages 309 to 315.
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LV. One form of the equation of the tangent plane at A to the sphere abcd is

the following:

AB . EC . CD . DA . AP = AP . DA . CD . EC . AB ;

the two equations,

AB . EC . CD . DE . EA = EA . DE . CD . EC . AB,

and

AB . BO . CD . DA . AE = AE . DA . CD . EC . AB,

must therefore be incompatible, except under the supposition that either

the point E coincides with A, or that the four points a, b, c, d are copla-

nar ; in fact when the distributive principle shall have been established

(in § Lxxv.),it will become clear that the addition of these two equations

gives

AB . BC . CD X AE . EA = AE . EA X CD . BC . AB,

and therefore that either

ae2 = 0, AE = 0, E = A,

or else

AB . BC . CD = CD . BC . AB,

which are respectively (compare § xxxviu.) conditions of coincidence and

coplanarity
;
problem of inscription in a given sphere, of a gauche quadrilate-

ral ABCD, whose four successive sides ab, . . . DA shall be respectively parallel

to four given radii oi, ok, ol, om
;
problem of expressing an n'* radius,

op,„ or p„, of a given sphere, considered as a function of an initial radius

OP or p, and of n other radii, oii, . . . oi«, or ii, . . . in, to which the n

successive and rectilinear chords pPi, . . . p„-i p„ are required to be pa-

rallel ; if a and /3 be any two equally long and diverging lines, OA, ob,

and if y have either of the two opposite directions of the lines ab, ba con-

necting their extremities, then fi= — yay-^; hence in the recent question,

Pi = — 'iP'r'i P2 = — '2pi'2"', &c., and if we introduce the quaternion,

g„ = t„ . . . ijti, the solution of the problem will be expressed by the for-

mula p„ = (—)"3«p?ir' ; the same expression will hold good, if we regard

the quaternion q„ as the continued product

7,1 = (an- pii-i) (an-i-pn-2) • (a\-p),

of the nfrst segments v\\, PiAo, . . . &c., of the n successive chords, on

which Ai, A., &c., are n points arbitrarily taken, but not supposed to be

situated upon the surface of the sphere ; relation to a conical rotation (see

§L.); EQUATION OF, CLOSURE, p,i = p; for an inscribed and cticK-sided

polygon, pq,i=q„p. Ax . 7,. ||
p, with inclusion of the limiting case for

which tbe product qn is a scalar ; for an odd-sided polygon, pq,, = - q„p,

and the same product 9,, must reduce itself to a vector j_ p ; these last

results agree with those of § Liv. ; if, in a sphere, the five successive sides

of an inscribed gauche pentagon, Abcde, be respectively parallel to the

five radii drawn to the five corners of a superscribed spherical pentagon,

IKLMN, then the//M corner N of the second pentagon is situated some-

where upon that great circle FH, of which a portion coincides with the
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arcual tan, ^lm+^hc (see § xu.) etfhe/irtt and third sidet of that

second pentagon ; this theorem involves and expresses a gbaphic pko-

PERTT OP THE SPHBKE, which is sufficient to characterize that surface,

and is analogous to the well-known and elementary relation between the

DmEcnoNS of the sides of a quadrilateral inscribed in a circle ; indeed

this graphic property of the circle can be derived as a limit from the lately

stated and graphic property of the spAere , theorem respecting « general

relation of an inscribed gauche polygon of 2b sides, to a certain other in-

scribed polygon of 4n + 1 aides ; examples,

Articles 329 to 340 ; Pages 315 to 325.

§ LVI. Composition of conical rotations; the symbol srqB (srq)-^ denotes the

position into which the body B is brought, by three successive andfinite

rotations, round the three successive axes. Ax . q. Ax . r. Ax . s, all

drawn from the origin o, through the three successive angles denoted by

2Z.9, i Lr, i ts; but the same final position of the body, or of the sys-

tem of vectors operated on (compare § L.), can also be attained by a sin-

gle resultant rotation, round Ax . srq, through 2 L.srq; in like manner

any number of successive and conical rotations of a line p, or body B,

round axes passing through one common point o, can be compounded into

one, by multiplying together, in the given order, the quaternions which

represent, by their axes and angles, the halves of the given rotations, and

then taking the axis and the doubled angle of the quaternion product

;

examples: the identity /3-7-a = )8xa-i of§ xxiv., since it gives

08 -T- a) p (a-7-/3) = (3.o-ipa. j3-i, may be interpreted (see again §L.)

as expressing that two successive reflexions of an arbitrary line p, with

respect to two given lines cl, ^, are jointly equivalent to the double of the

conical rotation represented by the arc ab ; the identity, -y -r- a =

^y^ j3y X (fi -i- a), of § vix., condncts in like manner to the conclusion

that a conical rotation thus represented by the double of an arc ab, if fol-

lowed by another conical rotation represented by the double of a successive

arc BC, produces on the whole the same effect as that third and resultant

conical rotation, which is on the same plan represented by the double of

the arc Ac ; that is, by the double of the arcual sum (see § xi.i.) of

the halves of the arcs which represent the two component rotations ;

three successive and conical rotations, represented by the doubles of the

three successive sides of any spherical triangle, produce on the whole no

effect ; geometrical illustrations and confirmations of these results ; exten-

sion to spherical polygons, and to any number of successive rotations, re-

presented by the doubles of the sides ; rotations may be represented also

by spherical angles (instead of arcs); the equation y'Jiia.'——l, of

y § XLix., shews that if the double of the rotation represented by the angle

CAB be followed by the double of the rotation represented by the angle

ABC, the result will be the double of the rotation represented by the angle

ACB, or the opposite of the double of the rotation represented by boa ; two

successive reflexions, with respect to two rectangular lines, are equivalent

to a tingle reflexion with respect to a line perpendicular to both ; if a body
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be made to revolve through any number of successive rotations, represented

as to their axes and amplitudes by the doubles of the angles ofany sphe-

rical polygon, the body ivill be thereby brought back to its original posi-

tion Articles 341 to 349 ; Pages 325 to 334.

§ L^^I. The system of the two successive rotations represented by the two succes-

sive sides DF, FE, of any spherical triangle, is equivalent to a single rota-

tion, represented by the double of the arc which is the common bisector of

those two sides ; the arcual sum i, ^Ei>+ i^ ^ vis,-r \ — nr, of the halves

of the three successive sides of any such triangle def, is an arc which has

the first comer d of that triangle for its positive or negative pole, accord-

ing as the rotation round D from F towards e is positive or negative; the

length of the same sum-arc represents the spherical semi-excess, or semi-

area, of the triangle ; extension to any spherical polygon, and even to

ANT CLOSED FIGUKE ON A SPHERE ; case of negative areas ; successive

rotations, represented by the successive sides of any spherical triangle or

polygon (and not now by the doubled sides), or even by the successive

elements of any closed perimeter on a sphere, compound themselves into a

single resultant rotation round the first corner or point of the figure, or

round the radius drawn to it, through an angle which is numerically equal

to the TOTAL AREA of the figure (the case of negative elements of area

being attended to when necessary) ; if a body, or system of vectors, be

made to revolve in succession round any number of different axes, all pass-

ing through one fixed point, so as first to bring a moveable line a into

coincidence with a fixed line j3, by a rotation round an axis perpendicular

to both ; secondly, to bring the same moveable line a from the position j3

to another given position y, by revolving in a new plane ; and so on, till

after bringing it to coincide successively with anj' number of lines given

and fixed, and finally after turning from k to X, the line a is brought 6aci

from X to its own original position ; then the body will be brought, by

this succession of rotations, into the samefnal position as if it had re-

DO^tted ROUND THE ORIGINAL POSITION nf the moveable line (a), as an

axis, through an angle offinite rotation which has the same numerical

measure as the srHERiCAL opeking of the PYRAJIID (o, (3, y, . . . k, X),

whose edges are the successive positions of the line ; in symbols, for the

case of five given lines, including the original position of a, if wc firm the

quaternion product,

and if the rotations round a, from /3 to y, from y to t, and from (^ to t be

positive, then

T5 = l, Ax.9 = a, I q= l (_A + B + C +D + E - Sw),

the addition of the five angles of the pentagon being performed in the

usual way (and not here by such spherical summation as was mentioned

in § XLVIII.) ; extension to the product of the square roofs nfany number

e
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of successive quotients of vectors ; even if that number be infinitef this

product of square roots is still a definite quaternion^ of which the angle

represents the semi-area of a closedfigure on a sphere^ while the axis of

this latter product is still the radius drawn to the first point of the figure

;

interpretation of the symbols,

/3 y a

a P p

if fas in § XLii.) the corners a, b, c of one spherical triangle bisect respec-

tively the sides opposite to the corners d, e, f of another, and if a body be

made to revolve in succession through three rotations represented respec-

tively by 2 — CA, 2 -^ BC, 2 -~ AB, or by the doubles of the three

SIDES of the first triangle aec, taken in an inverted order, this body

will on the whole have revolved round the corner i> of the second triangle,

as round a negative pole, through an angle which is numerically equi-

valent to the doubled area of the same second triangle, def, . . .

Articles 350 to 357 ; Pages 334 to 343.

§ Lviii. New elementary proof of the associative property of multiplication of

three quaternions ; six double co-arcualities may be assumed to exist by

construction, and then the theorem is, that three arcual equations are con-

sequences of three others ; this corresponds to the second proof by spheri-

cal conies in § u., which shewed that three equations between angles

were consequences of three others : if q, r, s, (, be any four given quater-

nions, and u their total or quaternary product, u = tsrq, while v, w, x
denote respectively their three binary products, rq, sr, ts, and y, z denote

their two ternary products, srq, tsr ; if also these ten factors and products

q, r, s, t, u, V, w, X, y, z, be represented by ten angles at ten points

a, b, c, d, e, f, g, h, I, K upon the unit-sphere, then since y~sv, z^tw,

u = ty, we can, by six triangles, answering to six binary multiplications,

construct successively the six points F, G, ii, i, K, and E, the four points

A, b, c, d being here regarded as given, and also certain angles at them
;

in this process of construction. Iris represented by two different angles

at B, giving one equation of condition; Z s is represented by rtree dif-

ferent angles at c, giving two other such equations ; /. t gives two equa-

tions ; Lv, Lw, and t y give each one other equation : but the angles of

q, I, z, u, are each only once employed in the construction ; on the whole

then there are eight equations of construction, required for the cor-

rectness of the figure ; but the associative principle gives /oar other binary

products, y = uiq, z = xr, u = xv, u= zq, &nifour other triangles; there

are thus ten triangles in the completed figure, representing ten binary

multiplications (on the plan of § XLViii.), and it is found that each of the

ten points A ... K is a common corner o{ three of those ten triangles; at

each point three angles are equal, and there are thus as many as twenty
equations between angles, including the eight equations of construction;

the remaining twelve equations are therefore consequences ofthose eight, in

virtue of the associative principle, . Articles 368 to 3G4 ; Pages 343 to 350-
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§ Lix. In general, if there be any number, n, of quaternions (or versors), q\,.. . 9„,

represented by angles at m points, Qi, . . . tj,, on a sphere, and if the total

product q = q„ q„-i . . . q^qibe represented at another point Q, we may
conceive these points to be the successive corners of a certain spherical po-

lygon ofp = b + 1 sides, which may be called a polygon of multiplica-

tion ; this conception includes the cases of the triangle of binary multipli-

cation in § XLVIii., the second quadrilateral of ternary multiplica-

tion, ABCD, in § LI., and the pentagon of quaternary multiplication,

ABODE, in § LVIII. ; in general we may form n — 1 Unary products,

n = ?29i) &c., n — 2 ternary products, *i = q^q-^qi, &c., and so on ; the

number of these intermediate or partial products, or of their represen-

tative points on the sphere, is J (n + 1) (n — 2) ; along with the p former

points, they make up altogether J(B+l)n points in the completed

figure ; each point may be supposed to have two spherical co-ordinates,

but between these (n + 1) n co-ordinates there exist generally n (n — 2)

relations, or equations of condition, because they are all determined by the

n versors qi . . . g,„ and therefore by 3k numbers (compare § xvu);
other proof of the general existence of n (n — 2) equations of condition, or

equations between certain angles in the figure; each of the ^(n-i-l)*

points of the figure is a common corner of n — 1 different triangles, re-

specting so many binary multiplications ; at each point, n — 1 angles are

equal, and thus there are in all Jre (n+ 1) (n - 2) equations between an-

gles ; of these, n (n-2) are true by construction (as above), and the re-

maining angular equations are true by the associative principle ; there

are therefore Jn (n - 1) (re - 2) equations of association, which are

consequences ofnin-T) equations of construction; and the de-

pendent equations are more numerous than those on which tiiey depend,

whenever the number n of the proposed factors exceeds three ; in the com-

plete construction oi a polygon of multiplication, with/) = n+ 1 corners,

and ip (p— 3) insertedpoints (representing parrta? products), is involved

(by the associative principle) the construction of a number of auxiliary

spherical polygons of inferior degree, expressed by the formula

v(p-i) (p-2) . . (p-p'+l)
1 o a . , if P be the number of sides of the
I t £ • O • • p
auxiliary and inferior polygon ; this result is not to be confounded with the

elementary theorem of combinations, expressed by the same formula, . .

Articles 366 to 378 ; Pages 351 to 366.

§ Lx, The /oca/ character, mentioned in § Li., of the points E, F which represent

the two binary products rq, sr, in any case of ternary multiplication, srq,

namely, that they &k foci of a spherical conic inscribed in tlie quadrila-

teral ABCD, if A, B, c, D he the four points which represent the three fac-

tors, q, r, s, and their total or ternary product, may be denoted by the for-

mula,

EF (. .) ABC1>,

whicb admits of various transformations ; in the conij)lete construction of

thep-sided polygon of multiplication, there iirises a i-ystem nffiich conies,
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in number amonnting to ^p (p - 1) (p - 2) (p - 3), and inscribed in

so many quadrilaterals ; their foci are the ip ( p - 3) inserted points (of

§ Lix.), -which represent the partial products ; these points may therefore

be called the focal points of the polygon of multiplication ; and if they

be conceived to be the comers of a certain other polygon or polygons,

there will exist, between these different polygons, a species of focal en-

chainment; examples ; table offifteen focal relations, {oT the case of the

general hexagon of multiplication ; this hexagon is in this way connected

or enchained with a certain other heiagon, and also with a triangle on the

sphere, the nine comers of which auxiliary hexagon and triangle arefoci

of a system offifteen spherical conies, inscribed in fifteen spherical qua-

drilaterals of the completed figure
;
geometrical and numerical illustra-

tions ; the general pem<a^OB of multiplication abcde (of § lviii.) is in

an analogous way /ocaZZy encAained with another pentagon FIGKH (or

with fghik), by a system office conies, giving the five following focal

relations

:

FO (. .) ABCI ; GH (. .) BCDK ;

HI (. .) CDEF ; IK (. .) DEAG ; KF (. .) EABH ;

each conic has its foci at two comers of the second spherical pentagon,

and touches two sides of the first ; elementary illustration, taken from the

limiting case where the pentagons become regular and plane, ....
Articles 379 to 393 ; Pages 866 to 380.

LECTURE VII.

ADDITION AND SUBTRACTION OF QUATERNIONS ; SEPARATION OF THE SCA-

LAR AND VECTOR PARTS; NOTATIONS S AND V; DISTEIBDTIVE PRIN-

CIPLE OF MULTIPLICATION OF QUATERNIONS; NEW PROOF OF THE AS-

SOCIATIVE PRINCIPLE ; GEOMETRICAL APPLICATIONS OF THESE PRIN-

CIPLES, INCLUDING SOME NEW GENERATIONS AND PKOPEETIES OF THE

ELLIPSOID; NEW REPRESENTATIONS OF LOCI; CONNEXIONS OF QUA-

TEENIGNS WITH CO-ORDINATES, DETERMINANTS, TRIGONOMETRY, LO-

GARITHMS, SERIES, LINEAR AND QUADRATIC EQUATIONS, DIFFEREN-

TIALS, AND CONTINUED FRACTIONS; INTRODUCTION OF THE BlQCATER-

NION.

§ Lxi. Recapitulation, .... Articles 394 to 400 ; Pages 381 to 386.
r

§ LXii. Addition of a number to a line; interpretation of the symbol 1 + A; we

look out for some common operand, that is, for some one line such as i, on

which the two proposed summands, k and 1, can both operate separately

as factors, in ways already considered, so as to produce two separate re-

sults or partial products, which shall themselves be or denote lines,

numely, in tliis casej and i ; we then add these two lines (§§ v., xix.),

to as to form a new line {i -\- j) ; finally we divide the sum by the common

operand, and we take the quotient (J
-\- j) -^ i, obtained by this division,
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which quotient is in general (see §§ vi., xx.) a quaternion, as the alue

of the proposed sum,

1 -f A = (It + Ai) -i- «' = (« + j) H- '

;

the effect of 1 + A, as a factor, is to change the side of a horizontal square

to that diagonal of the same square which is more advanced than it in

azimuth by 45°

;

T(l + A) = 2*, U(1 + A) = A*, 1+4 = 2*4*;

this plan of interpretation of the symbol 1 + A is analogous to that em-

ployed in the calculus of finite differences for the interpretation of the sym-

bol 1 + A, in which also the two summands appear at first as heteroge-

neous, but are incorporated by being made to operate on one common

function fx ; more elementary illustration of the process ; in general the

symbol lo + p, where w denotes a scalar, and p a vector, can on the same

plan be interpreted as a quotient oftwo lines, and therefore as a quater-

nion, by taking some line aA-p, and defining that ic + p = (via + pa) -:- a,

when wa and pa are lines ; addition of this sort is a perfectly definite

operation, and has the commutative character, a? f p = p + uj, , . .

Articles 401 to 405 ; Pages 387 to 391.

' uciil. Conversely, an arbitrary quaternion q can always be definitely decomposed

into two parts, such as w and p, of which one shall be n number and the

other a line, although it is possible that one of these parts may vanish ; if

q = P — a, and if we decompose the dividend line j8 by projection into

two partial vectors, or summand lines, /3', /3", respectively parallel and

perpendicular to the divisor line a, and divide each part separately by

that line a, the partial quotients thus obtained will be respectively the

scalar part and the vector part of the total quotient or quaternion q ; in-

troducing then the letters S and V, as characteristic of the two operations

of TAKiMG THE SCALAR and TAKING THE vECTOK of a quaternion, we

shall have S(!« + p) = w, Y (w+ p) = p, and S (/S-f- a) = /3'-^ a,

V(/3-H«)=;l3"H-a, if/3 = /3'+/3", /3'||p, /3"j.p; q = Sq + Vq=Vq
+ Sq, l = S + y=V+S; also (compare § XVI.), S2 = S, SV = VS = 0,

V2 =V; thus, Sw = w, Sp = 0, \w = 0, Vp = p; conjugate quaternions

have equal scalars but opposite vectors, SK9 = + S9, 'VK.q = ~Yq,

SK=S, TK = -V; K(u. + p) = a.-p (§ XXIII.); Kq = Sq~Vq,

K=S-V; TK = T (§ xxxiv.), T (u> + p) =T (w- p) = («)i!-p2)J

(§ xxu.) ; if I be a scalar, Vx = 0, then S xq = xSq, V. xq = xYq
;

for example,

S(-9) = -S9, Yi-q) = -Yq;

S{~Kq) = -Sq, Y{-Kq) = +Yq, -K =V-S;
x(w + p) = xw + xp; STq = + Tq, VT9 = ;

&q = Iq . SUj, Yq = Tq .YVq ;
VUry = UV9 . TYVq ;

VYq = Ax . q, iVYqy = - 1, UV7 = V - 1 ;

quattrnions are connected with trigonometry, by the rclatiun.s,

i>U(; = cos L q, TVU7 = sin L 7

;
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these reproduce the following general expression of well-known Jirm, as

representing in this system the versor of a quaternion,

lJg = Sl!g-^VUq= co3lg + V-^ sin /j;

but the symbol V- 1 here denotes (compare § xxiil.) the particular vec-

tor-unit which is drawn in the direction of UV9 or of Ax . }, that is, in

the direction of the axis of the versor ; the indetermination mentioned in

the Fourth Lecture (§ xxxv.) thus disappearing, when U9 is a determined

versor, Articles 406 to 411 ; Pages 391 to 397.

§ LXiV. Expressions for geometbical loci, supplied by the symbols S and V

;

the scalar of a quaternion is positive, null or negative, according as the

angle of the quaternion is acute, right, or obtuse ; S(p-=-a) = S.pa"i = 0,

according as ap = - , if the symbol ap here denote the angle between the

directions of the two lines a, p, and therefore the angle of their quotient,

regarded as a quaternion (but not the angle of that other quaternion which

is their product) ; to write the equation S (p -f- a) = 0, or S . pa "
' = 0, is

therefore to express, by the notations of this calculus, that the hne p is per-

pendicular to the line a, and consequently that the locus of the point p is

a PLANE through the origin O, perpendicular to the given line OA, if

a=0A, p = OP; ifalso/3 = OB, the equation S.(p-|8)o-i = expresses

the perpendicularity p - jS J_ a, and gives, as the locus of p, a plane

through B, perpendicular to OA, or parallel to the former plane ; such a

parallel plane may also be denoted by the equation S . pa -
1 = a, where

the scalar a is such that aa denotes the constant projection p' = op' of the

variable vector p on the fixed vector a ; the equation S.ap-i=l ex-

presses that the projection of a on p is the line p itself, or that the angle

OPA is right ; it gives, therefore, as the locus of p, a sphere with oa for

diameter ; the same spheric surface may also be denoted by either of the

equations,

S.(a-p)p-i = 0, T^p-^j = iTai

methods of transforming, by calculation, any one of these equi-significant

forms into any other, will be explained at a later stage (in § lxxvl) ;

more generally the two equations,

T{p-i(« + i3)} = T{J(''-«}, S^=0,
p-P

each represent a sphere described on ae as diameter,

Articles 412 to 415 ; Pages 397 to 402.

§ LXv. The system of the two equations S . pa-i = 1, S . /3p-' = 1, represents a

CIRCLE, namely, the mutual intersection of the pZanc through a, perpen-

dicular to OA, and the sphere on OB, as diameter ; the product of the

same two equations, namely, the equation S . pa" '. S
.
/3p-' = 1, re-

presents a CONE, with the last described circle for its base; if this last
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equation be combined with the equation of a newplane, S .
py-i = 1, the

resnlting system represents a plane conic, considered as a curve in

space ; the equation of the cone may also be thus written,

under this form it gives the subconteary cikcular section of the cone,

namely, as the intersection of the sphere described on a -
' as diameter,

with the plane S. p/3 = l ; the parallelplane through the vertex, S.p/3 = 0,

touches the former sphere S . /3p " * = 1 , which contained the^rmer circular

base ; this latter plane, and the plane S . pa = 0, are the nvo cyclic

PLANES of the cone ; the equations of these two planes may also be thus

written, S . /3p = 0, S . ap = ; for in general (by §§ xv., lxiii.), S . pn =

SK . pa = S . ap ; thus, in taking the scalar of the product of any two vec-

tors, we are allowed to alter their order ; more generally it will be found

(see § Lxxxix.), that under the sign S we may alter cyclically the

ORDEK of any NOJiBRR offactors, even if those factors be quaternions ; a

spherical conic may be expressed by combining either of the two forms

above assigned for the equation of the cone with any one of the three fol-

lowing forms for the equation of the concentric sphere,

Tp = c, p2+ci! = 0, s''-I^ = 0;
p + y

y is here the vector of some one point upon the sphere, and c is the length

of the radius ; we might also represent the same concentric sphere by the

equation Tp = Ty, or p2 = y2 ; one cyclic arc may be represented by the

two equations S . ap = 0, Tp = c, and the other cyclic arc by the equa-

tions, S . /3p = 0, Tp = c Articles 416 to 421; Pages 402 to 407.

( LXVI. If a given sphere with a for radius have its centre at the origin o, and if

we conceive T to be a sought point of contact of the sphere with a rectili-

near tangent from a given external point s, and make <r = OS, t = OT,

we shall have the two equations T^ = — a\ S . <rr" ' = 1, the first denoting

the given sphere round o, and the second an auxiliary sphere on os ; the

POLAR plane of the point 3, or the plane ofwhich s is the pole, with re-

spect to the given sphere, is the plane ofthecircle of intersection of the two

spheres, and its equation (obtained by suitably multiplying their equa-

tions) is S . ITT- = - a*, or S . 7-/t
-

' = 1, ifwe make ji = om = - a^ff-' ; r is

here treated as a variable vector, but a and p as fixed vectors ; U^ = Va,

T/t = a2T(r-i ; m is the centre of the circle of contact of the given sphere

with the ENVELOPING cone of tangents drawn from S; if p = op be the

variable vector of a point p upon this cone, then

{ (S . a (p - ff)}2 = (<rH a') (p - <r)^

but a simpler form of the equation of the enveloping cone will be assigned

afterwards (in § Lxxvii.) ; the cone which cuts this enveloping cone per-

pendicularly along the above-mentioned circle of contact, and has its ver-
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tex at the centre of the given sphere, is (S . ap)^ + a2ps = ; the equation

S . (jp = — a2 expresses that the points p and s are conjugate rorars,

with respect to the given sphere ; the equations S . pff = — a^ S . pir'= — a^,

represent jointly a eight line, which is the polar of the line ss' ; the

continued equation,

S.p<r= S.po'' = S.p'o-= S.p'i7'=-o'2,

expresses that the two lines pp', ss', are keciprocal poi^rs of each other,

with reference to the same given sphere as before; in general, for any two

vectors p and a,

S . pff = Tp Tit cos (fl- - pff)

;

the scalar of the product o/any two lines is equal to the rectangle under

the lines, multiplied by the cosine of the supplement of the angle between

their directions ; l.pa^Tr — pa-ir — l.pa ';

SU.piT-i = + cos pa, SU.piT = — cos pa;

this supplementary relation between the angles of the product and quo-

tient of two lines (compare § lxiv.), is one which it is important to re-

member in this calculus, from the principles of which it was deduced so

earlv as in § xv. ; it may also be considered as connected with the negative

character of the square ofa vector (§xiir.), since |3a = a 2. |8a -i = — T

a2./3a'', U.j3a = -U.|3a'i, uni the angle of the nei/afiiie of a quater-

nion is the supplement (by §xxxvii.)of the angle of the quaternion iVseZ/;

if /? be (as in § lxiii.) the projection of /3 on a, then S . /3a = /3'a = a/?,

and this scalar product (see again § xiii.) is positive or null or negative,

according as the angle between a and (3 is obtuse, or right, or acute (con-

trast again § LXiv.) ; the projection /? may be expressed in terms of /3 and

a, by writing j8'=a-i S, /3a, or /3' = a S./3a-^

Articles 422 to 426 ; Pages 407 to 416.

§ LXVii. Vector of the product of two lines a, /3 ; if /3" denote (as in § ijciii.) the

component of /3 which is perpendicular to a, then V./3a =/3"a = a line

perpendicular to the plane of the two given factors a, P\ V./3aj.o, V.

/3a J. /3 ; the rotation round this vector oftheproduct, from the multiplier

line /3, towards the multiplicand line a, is positive ; whereas the positive

rotation round the vector ofthe quotient (3-i- a, or /3a"', is directed from

a towards /3 ; UV./3a =— UV./3a-i ; the length of the vector of the pro-

duct of two adjacent sides of a parallelogram represents the area of that

parallelogram,

TV./3a= /I7AOB = T/3Tasin/3a;

TVU./3a = 3in /3a (compare §LXin.) ; "V . afi — - V . 13a, the vector of the

product of two lines changes sign (or direction) when the two factors are

interchanged (whereas, by § Lxv., S.a^S = + S./3a) ; the perpendicular

component /3" may be expressed in any one of the following ways,

,3" = V./3a-^a=-a-iV.j3a = a-iV.a/3

= V./3a-ix n = -aV./3a-i = a V.a-i p\
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new proof (compare § l.) that when y« = a/3, then y is the refuixion

of the line P with respect to a ; the equation Y.pa = 'V . fia, or V . (p - j3)

a = 0, expresses that the termination p of p is situated on the right line

through n, which is parallel to a, or to OA ; the same nEcnuNEAK locus

of p may be expressed by writuig p = /3 + xa, where x denotes a variable

scalar ; the equation V . pa = denotes the indefinite right lino throvgh the

origin o, of which the given line OA is a part ; V . pa = V . a|8 denotes

another indefinite right line, parallel to the line OA, and passing through

a point c, which is the reflexion of the point b with respect to the line oa;

the equation V (p V . j3n) = 0, or V . p V . /3a = 0, expresses that p is per-

pendicular to the plane AOB of a and /3 ; whereas the equation S.pV .fta

— (afterwards abridged, sec § Lxxxvi., to the form S . p/3a = 0) , expresses

that the three lines a, p, p, are coplanar, and gives therefore a plane as

the locus of p ; the equation,

(V.pa)2=(V./3a)2, orTV.po = TV./3a,

denotes a cylindeb of bevolbtion, with a for axis, and T/3" for radius

;

in like manner the equation (V.p/3"i)^+ t-=0, or TV.p/3-i = <', repre-

sents another cylinder of revolution, with /3 for axis, and iT/3 for radius,

Articles 427 to 431 ; Pages 41G to 423.

§ Lxvni. If we cut the last cylinder by the perpendicular plane S.p/3-'=o, the

section is a circle, contained on the sphere Tp = (a" + i^) j T/3 ; the sphere

round origin with radius T/3, namely, the sphere for which Tp = T/3, or

T.p/3"i = l, may have its equation thus transformed, (S.p/3-')2 - (V.

pj8-i)2=l, and may be regarded as the locus ofa varying circle, for

which S.p/3-'=x, TV.p/?-' = (1 — x2)Jj the first of these two equations

of the circle represents here a valuing plane, and the second represents a

varying cylinder of revolution ; if a be inclined to |8, the cylinder TV

.

p/3-i = 6 is cut obliquely by the plane S.po-i = a in an ellipse; in like

manner the equations, S.pa-i =!•, TV.p/3-i = (1-1% represent a va-

rying ellipse, of which the locus (obtained by elimination of x) is an

ellipsoid, represented by the equation, ....

(S.pa->)''-(V.p/3-i>=l;

geometrical illustration of this mode of generating an ellipsoid by a cer-

tain deformation ofa sphere (^ellipses being substituted for circles, by sub-

stituting oblique for perpendicular sections of a certain varying cylinder)

;

the ellipsoid is enveloped by the cylinder of revolution, whose equation

is (V.p/3-')- = - 1 ; the plane of the ellipse of contact is S.pa-' = 0;

the equation of the ellipsoid may also be thus written, (S.pa-i)2+ (TV
p/3-i)' = l; orthus, T (S.pa-i + V.p/3->) = l; this last form will be

found to furnish (in §§ lxxviii., &c.) a new mode ofgenerating the ellip-

soid (or rather a number of such new modes),

Articles 432 to 436 ; Pages 423 to 430.

§ Lxix. Analogous deformations of other surfaces of revolution ; the locus of the

varying circle, S .
p(3-i = x, TV . p^3-' = {x- - 1)S, is an equilateral

f
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AND DOUBLE-SHEETED HTPERBOLOID OF KEVOLUTIOM, WhoSe equation 13

(S. p;3-')2+ (V. p/3-')2= 1 ; the locus of the connected and varying el-

Kpse, S . pa -
1 = X, TV . p^ - ^ = (x* — 1)J, where a is still supposed to be

inclined to j3, is another double- sheeted hyperholoid^ which is not one of

revolution, and which has for its equation the following,

(S.pa-')2 + (V.p/3-ip=l;

geometrical illustrations : the right and oblique cones, which are respec-

tively ASYMPTOTIC to these two hyperboloids, have their equations formed

by changing 1 to in the second members of the equations of those two

surfaces ; by changing 1 to — 1 in the same second members, we get the

equations of two sinole-sheeted bypebboloids, with the same asymp-

totic cones, of which two hyperboloids the first is equilateral and of revo-

lution, while the second touches the ellipsoid of § LXVIII. along the ellipse

of contact mentioned in that section, namely, the ellipse whose equations

are,

S.pa-i = 0, TV.p/3-i = l;

the second of the two double-sheeted hyperboloids touches the same ellip-

soid at the extremities of the two opposite vectors which have the directions

of + /3, the common tangentplanes at those two points being given by the

formula S . pa"' =+ 1 ; the equations,

S.pi3-i + (V.pi3-O2 = 0, S.pa-i + (V.pj3-i)2 = 0,

represent two elliptic paraboloids, whereof the first is a surface of re-

volution; the equations . pa"' S. p/3-i = S. py-' represents an hyperbo-
lic paraboloid ; an arbitrary surface of revolution may be

represented by the formula, TV. p/3-' =/(S . p/3-i), and then the con-

nected equation, TV . p/3-» =/CS .pa-^) will represent the result of a cer-

tain DEFORMATION of that Surface, whereby ellipses are still substituted

for circles ; but if o be supposed to be not inclined to /3, but only to be

longer or shorter, the results of all the foregoing deformations will them-

selves be surfaces of revolution, . . . Articles 437 to 440 j Pages 430 to 435.

§ Lxx. MacCullagh's modulak generation of surfaces of the second order, ex-

pressed in the language of quaternions ; origin being on a directrix, a being

vector of a _/bca», (3 vector of another point of directrix, and y perpendicular

to a directive plane, the following equation may be established, T (p - a) =
T (pS . y/3 - ^S . yp) ; it will be found (see § xci.) that this equation ad-

mits of being put under the form

T(p-a) = TV.yV./3p, . . .

Article 441 ; Pages 436 to 437.

§ lxxi. The symbol V (V . a/3 ."V . yj) denotes a line situated in the intersection

of the two planes of a, P, and of y, J ; if there be six diverging vectors a,

a, . . . a", and if we form from therti three others, (3, /?, /3", by the

formulsB.
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^=V(V.aa . V.a'"o"),

/3'=V(V.aV.V.o'''a»).

(3"=V(V.oV". V.a«a),

then the equation, = S . j3 /S' /3", expresses the condition for the six diverg-

ing lines, a, a', . . . a", being six sides of one common cone of the second

degree, and may therefore be called the equation of homoconicism ; the

scalar function S . /3 (S" ;6" may be called the AcoNic Function of the six

vectors a . . a', or of the hexagon (plane or gauche) at whose corners

they temiinate, because it vanishes when they are ?iomoconic, by a fomi

of the theorem of Pascal ; hence may be derived an expression by quater-

nions, for what may be called the Adeuteric Function of ten vectors,

a, a, . . . a'", or of the (generally gauche) decagon at whose comers

they terminate, because this function vanishes, when those ten points are

on one COSlmon deuteric siirface, or common surface of the second

order ; the Adeuteric may be thus expressed,

S (+ abcdef. ghik),

if A . . . K be the ten points, while the symbol abcdef here denotes the

aconic function of six of them, with respect to any eleventh point o arbi-

trarily taken as an origin, and ghik denotes the pyramidal function of the

other four, that is, the sextupled volume of the pyramid of which they are

the comers, taken with a proper algebraic sign ; in symbols, this pyramidal

function of four points, G, H, i, K, or of four vectors, a'', a"', a'"', a'" may

be expressed by quaternions as follows

:

S . (a« - a") (a'l" - a") (a'" - a") (compare § lxxxix.)
;

the ten points are supposed to be combined in all possible ways, as groups

of four and six (namely in 210 ways), by successive mutual interchanges

of points or of letters between the two groups ; for every such binary inter-

change the sign + prefixed to the product varies ; this formation of the

adeuteric function is only alluded to in the text of the Lecture, . . .

Article 442 ; Pages 437 to 439.

§ LXXII. The general addition of any two quaternions can always be easily and

definitely effected by the rule of the common operand, or by the formula

(y .J. a) -I- (j8 -i- a) = (y + /3) -j- n ; subtraction of quaternions may in like

manner be effected by the formula (y -f- a) - (/3 -^ a) = (y -/3) -^ a

;

Articles 443 to 447 ; Pages 439 to 444.

§ Lxxin. Properties of such addition ; it is a commutative and associative opera-

tion ; the scalar, vector, and conjugate of a sum of quaternions are respec-

tively the sums of the scalars, vectors, and conjugates, S2 = 2S, V2 = 2 V,

KS = SK ; similarly for differences, SA = iiS, VA = AV, KA = AK ; it is

useful to be familiar with the two following general expressions, for the

scalar and vector parts of the product of any two vectors, S . a/3 = ^ (a^ +

;8a), V . a/3 = i («/3 - 18«). • Articles 448, 449 ;
Pages 444 to 447.

§ Lxxiv. The general quadrinomial form, 7 = iu + ix +jy + hz, for a quatcr-
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nion, may now be more fully undcistood
;

g' = w' + ix +jy' + hz being

another quadrinomial of the same sort, the sum and difference of these two

quaternions are formed by taking the sums and differences of their consti-

tuents, w, X, y, z and w, x, y',z\ in symbols, ?' + j = w' + lo + i (j:' + x)

+j (y + y) + * (^' + ^) ; * quaternion cannot vanish, except by its four con-

stituents separately vanishing ; nor can two quaternions become equal,

without their constituents becoming separately equal ; an equation q'= q

between two quaternions includes thus a SYSTEM OF FOUK EQUATIONS be-

tween scalars ; namely, w =v.; x =x,y' = y, z =z,

Article 450 ; Pages 447 to 449.

§ Lxxv. General proof of the disteibutive peikciple of multiplication of

quaternions ; Jir .'Sq='S .rq ; . . . Articles 461 to 455 ; Pages 449 to 455.

§ i.xxvi. Elementary applications of the distributive principle; transformations

by means of it, referred to in § lxiv. ; the equation or identity,

(a-/3)2 = a2-2S.a/3 + /32,

is equivalent to Ihe fundamental formula ofplane trigonometry, or to the

equation,

ba2 = ca' - 2ca . cb . cos ACB + CB^
;

centre of mean distances, or of gravity, /i = 2 . ao -=- 2 a ; investigation of

the (spherical) locus of the vertex of a triangle, of which the base and the

ratio of the sides are given; T((r-ny) =T(jio-- 7), if T(T= Ty, . . .

Articles 456 to 459 ; Pages 455 to 4C0.

§ i.x.xvii. Intersections of right line and sphere ; the locns of all the tangents to

the sphere p2 -|- c' = 0, which can be drawn from the extremity of /3, has

for equation, c2 (p — |Sp = ^V./3p)2; this /orm of the equation of the en-

veloping cone is simpler than that which was obtained in § lxau., but the

one can be transformed into the other ; new investigation of the equation

of the polar plane, S. /3p= — c^ (compare again §Lxvi.); proof by qua-

tL'ruions, of the known harmonic property of this plane ; HAKMONIC mean

BLTWEEN ANY TWO VECTOKS
;
/oHr<A harmonical to any three points (not

necessarily on one straight line) ; extension hereby given to the usual no-

lion of harmonic conjugates ; circular harmonic group (four points on a

circle, for which what is called the anharmonic quotient becomes unity')
;

interpretations of the sum and difference of tlie reciprocals of any two

rectors Articles 4C0 to 464 ; Pages 460 to 466.

§ i.xxviii. Equation of ellipsoid resumed (from § lxviii.), and transformed to

T (ip + pe) = k"-
- 1«

i

geometrical equality hence deduced,

(iiiNEKATXON OF THE liLLiPsoiD, hciice dcrivcd ; if A be a superficial point

of » fixed sphere with centre c, and 11 an external point, and if a secatit

uDu' be drawn, and on tlic (juUk-chord ad, or on that chord cither wnv
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prolonged, a portion ae bo taken, which in length is equal to bd', the lo-

cus of the point E will be an ellipsoid, with A for its centre, and b for a

point of its surface ; Anc in this construction may be called the generat-

ing TRIANGLE, and the sphere roimd c the diacentric sphere ; the

points D and d' on that sphere may be said to be conjugate guide-points

;

geometrical deductions from tlie formula, ae = bd' ; constructions for the

lengths and directions of the three principal semi-axes of the ellipsoid, a,

b, c ; expressions for the lengths of the sides of the generating triangle,

BC= 4 (a+ c), CA = J (^a — c), AB = ac4"'
;

enveloping cylinder of revolution, with the side AB for axis, and BG = 6

for radius, if o be tlie second point of intersection of ab with the diacentric

sphere ; the two other sides, BC, CA, of the triangle are perpendicular to

the two cyclic planes of the ellipsoid; the one that is A-k, or j. oa,

touches the diacentric sphere at A ; these planes are also shewn by this

construction to be (as is known) the cyclic planes of all the concentric

cones, that rest on those srHEiiicAL cONics in which the ellipsoid is cut

by a system of concentric spheres ; meas sphere, containing the two dia-

metral and circular sections; the construction exhibits also geometrically

the known mutual rectangularity of the semi-axes aei, AE2 of any other

diametral section of the ellipsoid, and conducts easily to the known ex-

pression for the difference of the squares of their reciprocals, namely,

AE2-2- AEi-2 = (c-2-a-2) sin t) sin v,

where V and v are the inclinations of the cutting plane to the two cyclic

planes ; the equations of these latter planes are, respectively, S . ip = 0,

S . fcp = ; the equation of the mean sphere is

Tp = i = (<c2-<2)T(.-K)-i;

a = Ti + TK, c = Ti-T)c, ac = K'--fi, aci-i = T(t-ic)
;

equations ofa spherical conic on the ellipsoid ; expressions for the two new

vectors, i, k, as functions of the vectors, a, (3, of § Lxviii.,

Articles 465 to 470 ; Pages 406 to 475.

§ Lxxix. Introduction of two new vectors, X, /i, with two new scalars, h, K, and

two new pomts, l, m, which all depend upon and vary with the vector p,

or the point e, and satisfy the equations,

\ = (x-p + pic) (k - 1)-' = A (t - k) = -^L = A . AB,

;u = (tp + pi) '(i - 1)- 1 = h (r - = A3I = A' . BA;

to each given value of h (between certain limits) answers a circle on the

ellipsoid, for which

S.icp = iAT(i-ic)-.i^ = T(p-X) = »i

in like manner, to each given value of li (suitably limited) there answers

another circle on the ellipsoid, determined by the cq\iatious,

S . rp = i A T (i - k)', jni= T (p - /y) = 6 ;
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these two suhcontrary and circular sections of the ellipsoid have their

planes perpendicular to the sides, CA, CB of the generating triangle

(§ Lxxvm.), and therefore/iaraWeZ (as is known) to the two cyclic planes;

every such pair of suhcontrary circles (A, A) is contained (as by known

results it ought to be) on one common sphere ; this sphere, in these calcu-

lations, is given by the formula,

T(p-?) =^ = n,

where the vector %, the positive scalar n, and the point N, may be deter-

mined by the equations,

AN = ? = Ai + A'Kr, b-i-rfi = {k+K) (Jifi + Kt?);

and if we make en = ?— p= I- v, then N is the/oo* of the normal to the

ellipsoid drawn at the point E, and terminated by the plane of the gene-

rating triangle, or by the plane of the greatest and least axes, while n de-

notes the length of that normal ; the new vector v is parallel to the normal,

and satisfies the equation S . vp = 1 ; its expression as a function of p is,

r = («= - (5) - 2
{
(i - (c)2 p + 2t . S . icp + 2/c S . jp } ;

the equation of the ellipsoid may be put under the form, p2 + i^ = x^^

while that of the mean sphere may be thus written, (y'+h- = 0, . . .

Articles 471 to 474 ; Pages 476 to 479.

§ Lxxx. If we make for abridgment v = (p (p), or simply v = fp, the vector func-

tion tp will be linear or distributive^

'P(.P + p) = ^P + <PP\ ^"PP = <P^P, <P (^P) =xipp;

and if we agree to write /(p, ar) = S . pf-^a; the scalarfunctionfmil be

at once commutative or symmetric with respect to the two vectors on which

it depends, and linear or distributive relatively to each of them, so that

/(^' p) =f{p^'^)<fi.P+ P, ^ + ^) =/(p. =r) +/(p, ct) +/(p', to) +/
(p'l '^'). /(^Pi y^) = ^/(p. w) ; if then we farther abridge /(p, p) to /
(p) or to /p, this new scalar function of one vector will, relatively to it, be

of the second dimension, and we shall have

/(P + P')=fp + 2/(p, p) +fp, f{xp) = x^fp ;

the equation of the ellipsoid reduces itself in this notation to the formula,

fp = l; and if a cylinder (not generally of revolution) be circumscribed

about the ellipsoid, with its generating lines parallel to a given vector "cr,

the equation /(p, et)= represents the diametral plane of contact, and

the normal to that plane has the direction of the vector ^jr ; in general

the last equation denotes that the directions of p and OT are conjugate, re-

latively to the ellipsoid; reciprocal relations of bisection, conjugation of

line and plane, system of three conjugate semi-diameters, equation x^ + g-

+ z'=l, Articles 475 to 480 ; Pages 480 to 485.

§LXXXI. Theequation/(p,TO) = 1, or S.rCT = l, expresses that the vector m ter-

minates on the tangent plane to the ellipsoid, drawn at the extremity of the
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semi-diameter p j the vector v, or ^p, may be called the vector op proxi-

MiTT, namely, of the taDgent plane to the centre, because its reciprocal

V -
' represents in length and in direction the perpendicular let fall from

that centre on that plane; in general the formula / (p, w) = 1 may be said

to be the equation of conjugation between the two vectors p and ot, be-

cause it expresses that they terminate in two conjugate points ; the same

equation represents the polar plane of either of those two points, when the

other is treated as variable ; if c; be treated as the vector of the vertex of

an enveloping cone, the equation of that cone is

{/(p, c7)-i}2 = (/p-i)(yor_i):

when the vertex goes off to infinity, there results an enveloping cylinder,

with the equation/ (p, ra)^ = (/p — 1)/^' ; verifications for th o case of t

sphere, for which K = O,0p = i--p; general harmonic property of the polar

plane, Articles 481 to 48G; Pages 485 to 491.

§ Lxxxii. The triangles Lam, abc, are similar and similarly situated in one com -

mon plane ; the points e, d, e, l are concircular ; the triangle lem is isos-

celes ; the lines ln, mn are portions of the axes of the two circles on the

ellipsoid which pass through the point e, . Articles 487, 488 ; Pages 491, 492.

§ LXXXIII. New proof of the associative principle of multiplication of (quater-

nions, derivedfiom the distributive principle ; importance of combining

these two principles, Articles 489, 490; Pages 493 to 495.

§ Lxxxiv. Transformed equation of the ellipsoid,

T {I'p + pic') = k'^ - l'2 ; tic' = IK = T . IK
;

new generating triangle abc', and new diacentric sphere round c, touch-

ing at A the cyclic plane J_ i (compare § lxxviii.)
; ab' is the axis of

asecond enveloping cylinder of revolution ; if we malte (compare § lxxix.),

al' = X' = 2 (k' - i') -1 S . k'p, am' = |u'= 2 (t' - k')
-

' S . I'p,

the two new triangles, l'm's and abc' are similar and similarly situated in

one common plane, namely, in thcprincijoa/p^ane of the ellipsoid; the

symbols V"^ 0, S"^0, denote respectively a scalar and a vector ; when

three points are collinear, the vector part of the quotient of the differences

vanishes and conversely ; lsim'l' is a quadrilateral in a circle, whereof the

diagonals LM, ml' intersect in N, that is (§ lxxix.), in ibefoot of the

normal to the ellipsoid ; generation oi' A system of two iiecipeocal

ELLIPSOIDS, by means of a jioving spiieue
;
generation of the same sys-

tem of two elhpsoids by means of a fixed spheije ; ifthe sides of a plane

quadrilateral inscribed in the jixed sphere move parallel to fourfixed

lines, one pair of opposite sides will intersect in a point on one ellipsoid,

and the other pair of opposite sides will intersect in the corresponding

point on the other or reciprocal ellipsoid ; these two ellipsoids have one

common mean sphere, namely, the fixed sphere employed in the construc-

tion ; other geornetrical relations of the fixed sphere and lines to the two

elhpsoids thus generated, . . . Articles 491 to 495 ; Pages 495 to 502.
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§ Lxxxv. Generation of an ellipsoid by means of a fair of sliding sriiEr-ES
;

if two equal splicrcs slide within two cylinders of revolution, whoso axes

intersect each other, in such a manner that the right line joining their cen-

tres moves parallel to a fixed line, the locus of their circle of intersection

is an ellipsoid, inscribed at once in both the cylinders ; the same ellipsoid

may also be generated as the locus of the circular intersection of another

pair of sliding spheres, inscribed within the same two cylinders, but with

their line of centres parallel to a different straight line ; the diameter of

each sliding sphere is equal to the mean axis 26 of the ellipsoid ; an arbi-

frary curve on the surface of the ellipsoid may he described by the vertex

E of an isosceles triangle LE-m' (or l'eji), the common length of whose

two sides el, em' (or ei,', em) is constant, and = b, while its base lm' (or

l'm) moves parallel to a given line AC (or Ac'), and is inscribed in a given

angle bab' ; or a rhombus of constant perimeter, — 46, may be employed to

generate, in an analogous way, by the motions of two opposite corners, two

curves on the ellipsoid, Article 490 j Pages 502, 503.

§ LXXXVI. Introduction of tu-o new fixed vectors, j; = TiU(i— k), = T/cU

(i'— k') ; making (7 =— A' T(l — Kt-'), we have ^=j'i), \'=p9, and the

equations of one pair of sliding spheres become

T(p-5^) = T(p-5e) = i;

for an)' one value of the variable scalar g, the plane of the circle of inter-

section is represented by the equation,

j(e2_,2) = 2S.(e-^)p,

and we have the value, >; — e=6Ut; elimination of ^ gives for the ellip-

soid, regarded as the locus of these circles, the transformed equation,

TV-?p4-=02_,,,or,TvH^-''-'- ^-"^
u(,-e) " ' ,-9 T(,-e)'

other mode of obtaining this last equation from the form in § Lxxvni.,

namely, 1 {ip -\- pK) = ifi - i^ ; in general, for any three vectors a, (3, y, we
have the identities,

S . a/3y = - S . yfia, Y . a^Sy = + V . -y^a,

with analogous results (compare §§ Liii., Lxm.) for the scalar and vector

of the product of any odd number of vectors ; we have also, generally,

S.yV.I3a = S.yPa, S.yYq^S.yq;

n fraction in this calculus may generally be transformed (as in Algebra),

by dividing both numerator and denominator by any common vector or

quaternion distinct from zero ; or, in other words, by multiplyijtg each into

(but not generally 6y) the reciprocal of any such vector or quaternion, .

Articles 497 to 500 ; Pages 503 to 509.

§ Lxxx\ii. Geometrical significations of the two new fixed vectors, ri,0\ i) +
= w is the vector of an u:mbii,ic of tlio eUipsoid, and the equation of the
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tangent plane at that umbilic (found by making j = 2) is S . (6 - ij) p =
62- );2 ; the umbilicar normal there has the direction of ij - 9, or of the

cyclic normal t ;
6-' — j/-' has the direction of the other cyclic normal k ;

( = T;,U()/-e),ic = TeU (6-1-1,-1);

a = T)j + T0, 6 = T(»/-e), c = Tr,-Te;

the earn and difference U ?, + TJ9 are respectively equal to U (i — /c) + U
(/— k'), and have the directions of the greatest and least axes of the ellip-

soid ; the length of an umbiUcar vector, or umbilicar temi-diameter of the

ellipsoid, is

« = Tw = T (i; + 6) = V (a2 - J.2 4 c2)
;

the length of the perpendicular firom the centre on the umbilicar tangent

plane is

p = (02-)j2)T();-e)-i = ac6-i;

these values of a and p agree with known results ; another umbilicar vec-

tor is

w'= T, U6 + TeUij = -T.,9.(q-i + e-i);

— w, — w' are also umbilicar vectors; thxis )7"i + 6"' has the direction of

such a vector

;

w + w' = (Ti; + Te) (Ui, + US),

w -W = (Tij - T0) (U)j - U9),

the angles between the umbilicar diameters are seen to be bisected by the

greatest and least axes, Articles 501 to 503 ; Pages 509 to 511.

§ Lxxxviii. For the tqvxiTe of any quaternion we have the following scalar, vec-

tor, and tensor,

S . 9= = Sjs + Vj2, V . 92 = 2VJ S9, T . }2 = S?2 - V92

;

hence for the scalar of the square root of any other quaternion q we have

the expression,

SV5' = V(iSj' + iT9');

this is only one out of a vast number ot general transformations, in which

the present calculus abounds, and which may be deduced from the

laws of the symbols S, T, U, V, K ; applied to the ellipsoid, in combination

witli the recent values for a, b, c, it enables us to infer that the linear ec-

centricities of the two sections, perpendicular respectively to the mean and

greatest axes, are,

(a2_c2)4.= 2TV(,e), (62-02)* = 2SV (1)6);

if we change at once 9 to t6 and j, to <-i
ij, where t is any positive scalar,

we pass to a confocal ellipsoid, the focal ellipse and focal hy-

perbola remaining still unchanged ; the focal ellipse may conveniently

be represented by the system of the two equations

S . pUq = S . pUe, TV . pU>, = 2S V (1/6),

which represent separately the plane of the ellipse, and a cylinder of revo-
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liition on which the ellipse is contained ; or we may combine the same plane

witli this other cylinder of revolution,

TV.pU0 = 2SV()7e)i

the focal hi/perbola is adequately represented, as a curve in epace, by the

single equation^

V.i,p.V.p9=(V.>,e)2;

because this equation will be found to include within itself the eqxmtion

ofthe plane of the hyperbola, namely, S . pi)© = 0, as well as the constancy

of the product ofthe projections on the asymptotes, which asymptotes are

here the lines >), 9, or (as is known) the axes of all the cylinders of revo-

lution circumscribed about the ellipsoid and its confocals ;

Articles 504, 505 ; Pages 511 to 513.

§ LXXXIX. In general, in this Calculus, a scalar equation, fp = c, involving one

variable vector p, represents a surface ; in fact it is equivalent to an ordi-

nary algebraic equation between the three Cartesian co-ordinates x, y, z,

and maj- be changed to such an equation by substituting for p its trino-

mial value i.r+jy + hz (see §xix.); examples; the actual process of

squaring the last-mentioned trinomial gives p^=-x^-y^-z'; if we make

a = ia+jb + kc, a = ia +jb' + he, then actual multiplication gives ex-

pressions for the products ap, a'ap, of which the scalar parts are, respec-

tively, S . op = - {ax + by + cz), and S . a'ap = the determinant

a, b,
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and therefore also p, or at least to restrict those co-ordinates, and this

vector, to nfinite variety of values ; examples ; if 5 be a given quaternion,

the equation V . 2p = \ pves 089= X + j-iV.Wy; notations -, &c.

;

s

other form for the solution of the last equation in p; the equation

/3X/3-' + yXy-'
V. /3py = \ gives p = ~— ; interpretation of this expression,

py + yp
in connexion with the results of § xlii. ; the sine of the semisum of the

angles of the spherical triangle dep is equal to the cosine of the com-

mon bisector ae of two sides, divided by the cosine of en, namely, of the

half of the third side
; for any three vectors, we have the following trans-

formation, which is very often useful in this calculus,

V./3py = /3S.rp-pS.^/+7S./3p

Articles 513 to 518 ; Pages 621 to 526.

§ xci. Other mode of deducing this general and useful equation of transforma-

tion ; if n' be used as the characteristic of the operation of taking a pro-

duct, with an inverted order of the factors, then (by §§ Liii., lxiii.),

Kn = nK, s = i(i + K), v=j(i-k;);
hence

sn = jn+inK, vn=4n-AnK;

thus, whatever vectors a, /3, y, I, may be, we have

S.y/3a = i(r|3a-a/3y), V. y/3a = Uy(3a + a/3y);

S . ly^a = J {dyl3a+ ajiyi), V. Sylia= | {Syjia- afiyS), &c.

;

and the identity, i (y/3a + a/3y) = Jy ((3a + aji) - I (ya + ny) /3 +

ia (7/8 -f /3y), gives V. y/3a= yS . /3a- /3S . ya+ aS . /3y, a result agree-

ing with the last section ; we have also (compare § Lxx.), these two other

formulae of transformation,

V. yV. /3a = aS . /3y - /3S . ay
i
V (V. y/3 . a) = yS . /3rt - /8S . ay

;

the student ought to make himself very familiar with the three last for-

mul<E, which are valid for any three vectors ; we have also, for any four

vectors,

S . a."a da = S . a "aS . doC' — S . a"'a'S . da + S . a"'a"S . ad

;

S(V. a'V'.V. a'a) = S. a"'a . S . a'a"-S.a'V. S . a"a ;

the comparison of the two expressions for V (V. dd^. da) conducts to

the first identity of § Lxxxix. ; as included in which, it is shewn that if

a, d be two non-parallel vectors, and a"= V. da, then an arbitrary vec-

tor p may be expressed as follows,

o dp
, .Q P« ,

S dp
p = aS —:7 + no —7, H :t— , • •

a a a

Articles 519 to 523; Pages 526 to 529.
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§ xon. Connexion of quaternions with tphmeal trigonometry ; the expression

recently given for the scalar part of the product of the vector parts of two

binary products of vectors may be interpreted as equivalent to the follow-

ing theorem of Gauss,

cos ll'. cos l'l" — cos ll'". cos l'l''= sin ll'. sin l"l"' cos A,

where A is the spherical angle between the arcs ll', l'l"; there are various

ways of deducing from quaternions the fundamental formula, cos b =

cos c cos a + sin c sin a cos £ ; if the rotation round ;8 from a towards y

be positive,

v. y/3 .V. /3a = sin a sin c (cos + /3 sin) B ;

tana/^y = tan£ = j3-i-(V.y/3.T./3o),

Articles 524 to 526; Pages 529 to 532.

§ xciii. Connexion of quaternions with goniometry, or with the doctrine otfunc-

tions of angles ; a and i being any two unit-vectors, and t any scalar, we

have S . a' = S . i' =/(<) =ft = a scalar and even function oft; a' =Ji

+ a/ (t - 1), i' =/< + ./(< - 1) ; /(.- =/«, /(2 + <) = -/<;/(« + *)

=/«/<-/(«- !)/(<- 1); (y?y-+ {/(*-i)}=i= i;/(iO = (i + i/0»;

the values offt may be numerically calculated and tabulated ; the func-

tion / of a multiple of t may be transformed by the help of the equation,

2/(nO = {/>+'/('-0}"+{/'-'/C'-i)}";

the consideration of a small rotation gives the differential expression,

d.t' = ^.' + id<; hence/< = ^/(t + l),/-t + f|:Jyi=0;yO= l,/0= 0;

developements for/< andy(/ — 1) ; t' = ein"'', this exponential symbol being

here employed merely as a concise expression for a series of well-known

form ; with the usual notations for cosine and sine, fl = cos — , i' = cos —'•'2 2

vt
+ 1 sin — ; the equation y'l3va'= — 1, of § xux., under the form y^-i =

P'Ja", may be expanded into the following, cos (,"' — C') + y sin (^tt—CT)

= (cos B + 13 sin B) (cos A -^a sin .4) ; the comparison of scalars gives a

known and fundamental formula of spherical trigonometry, from which all

others might be deduced, namely, — cos C = cos B cos A — cos c sin £ sin .^

;

the comparison of vectors gives

y sinC= a sin A cos 5 + /3 sin 5 cos ^4 + V. /3a. sin^sinfi,

which may be interpreted as a theorem respecting the construction of a pa-

rallelepipedon, connected with a spherical triangle; addition of quater-

nions, and the distributive character of their multiplication, might be illus-

trated by spherical trigonometry, . Articles 527 to 529 ; Pages 532 to 537.

§ xciv. Brief account of some early investigations by the present writer, whereby

he was led (in 1843) to results agreeing in substance with those lately

mentioned, respecting the connexions of quaternions with spherical trigo-
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nometry ; symbolic multiplication table, for the squares and products of

t, j, k ; developement of a product of two quaternions, under their quadri-

nomial forms ; reproduction of a theorem of Euler, respecting the products

of sums offour squares ; subsequent extension (in the same year) by

J. T. Graves, Esq., to a theorem respecting sums of eight squares, and to a

theory of certain octaves, involving seven distinct imaginaries
; allusion to

subsequent publications of Professor De Morgan, and other mathematicians

of these countries, in the same general field of research, or at least on ana-

logous subjects, such as the triplets, tessarines, and pluquaternions ; the

writer regrets that it is not possible for him here to analyze, or even to

enumerate, those important and interesting publications ; the quaternions

early conducted him to a general theorem respecting spherical polygons,

which includes as a particular case the following theorem respecting a

spherical triangle, and may in turn be derived from it,

(cos C + -y sin C) {cos B + p sin B) (cos A + asmA) = — l ;

this particular theorem may be expressed by the lately cited formula of

§ XLix., y=/3s'a' = — 3 ; the more general theorem for a polygon may be

a
expressed by an analogous equation, namely, a^"^ . . . ai"i a° = (— 1)»

;

another early and general theorem of this calculus, respecting spherical

polygons, which is a sort ofpolar transformation of the foregoing, may
be expressed by a connected formula, . Articles 530 to 536 ; Pages 537 to 545.

§ XCV. Exponential Functions, direct and inverse ; the tensor of the sum of any

number of quaternions cannot exceed the sum of the tensors ; if we write

the number m may be assumed so large, however large the gieen tensor of

the quaternion q may be, that the last term (reading here from left to

right) may have its tensor less than any given and positive quantity, b
;

and not only so, but that the quaternion sum of the n following terms of

the same series, or the quaternion difference F,„ + „ (5) — Fm (9), shall also

have its tensor <i, however large the number n of these new terms may

be ; the finite series F,„9 converges to a definite quaternion limit, F^ 5

or Fj, when the number m of terms increases indefinitely ; the resulting

function, F9, has the well-known exponential chabactek, whenever

the condition of commutativeness is satisfied ; Fr . Fj = F (r + 9) if rj =

gr ; for example, we have, generally, F9 = FS9 . FV9, where it is found

that FS9 is a positive scalar, and FTj is a versor, so that TF9 = FS9,

TFV9 = 1 ; XJF9 = FV9 = (cos+ UV9 sin) TV9 ; F ( V9 + ^ UV9) = UV9

. FV9, F (V9 + irUV9) = - FV9 = (cos - UV9 sin) (tf - TV9) ; the

function FV9 is a periodic one, in the sense that it only changes sign,

when we add + tt to TV9 ; any versor, Ur, may be considered as an ex-

ponential function ofa vector, and put as such under the form FV9', where

the (positive) tensor TVq shall not exceed tt, and may therefore be treated
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as the angle of the versor, TVj' = /Ur, with that definite sense of the

word "angle," which was proposed in§xxxii. ; if the versor Ur have

been given, or found, under the form, FVq, and if TV} > ir, whereas

TV}' j> IT, it is proposed to consider Yq, and not Vq, as the (principal)

value ofthe inverse exponential function, or to write F" i Ur = Vg ;

with this definite signification of that function we may therefore write,

/r = z.Ur = TF-iUr;alsoUr-'Ur = UVr= Ax.7-,andF->Ur= UVr.

I r ; we may also definitely interpret F"' Tr as =lTr= that positive or

negative number, or zero, which is the natural or Napierian logarithm of

Tr ; and more generally we may agree to call the inverse exponentialJimc-

tion (or the imponential,) F-' r, of any quaternion r, the i,ogarith>i

of that quaternion, and to interpret it definitely as follows :

lr=F-ir = F-iTr + F-lUr = lT7- + UV7-.^r;

the scalar of the logarithm of a quaternion is thus the logarithm of the

tensor, and the vector of the logarithm is the logarithm of the versor ; in

symbols,

Sir = ITr, Vlr = lUr = UVr . L r

^product of axis and angle ; that is, the vector of the logarithm of any

quaternion is constructed, in our system, by the representative arc

rectified, and placed perpendicularly to the plane, or in the di-

rection OF THE axis, of the quaternion ; the logarithm of a given qua-

ternion, thus interpreted, is generally a detekmined quaternion, but be-

comes partially indeterminate, when the given quaternion degenerates to

a negative number, or to zero ; we may agree to employ the usual symbol

c9, as a concise expression suggested by algebra (compare § xciii.), for

the series 1 + j + ^ j^ + &c., or for the direct exponential function F} ; a

POWER of a quaternion, with a quaternion exponent, may then in ge-

neral be definitely interpreted by means of the formula,

g'-=F(rF-'}) = e'''«;examples, _;'• = *, y^ =di
expressions for the tensor and versor of the general power, q' ; MENSOB of

a quaternion, Mj = IT} (this notation and nomenclature are not insisted

on) ; definite interpretation of the logarithm of a given quaternion to a

given quaternion base, namely, as the quotient of their two natural lo-

garithms ; log, . }'= 1}' -i- 1} ; this general logarithm might be so in-

terpreted as to involve two arbitrary integers, as in some known theories

;

but we prefer, in this calculus, to exclude such indetermination by defini-

tion, in this as in other cases, wherever such exclusion is possible ; inter-

pretations of the sine, cosine, and tangent, of a quaternion ; if we take two

arbitrary quaternions, q and r, we shall still have, as in algebra,

e'- e« = 1 + (r + }) + J C'' + 21-? + }2) + Sec.

;

but r2 + 2rg + }2, 8tc. will not In this calculus be equal to the square, &c.,

of r + 5, unless rq = qr, or V.VrVj = 0, which will not generally happen
;

when this condition of commutativeness, of } and r as factors, is not satis-

fied, then if x be any scalar coefficient, supposed to vanish after the per-
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formaiice of n saccessive differentiations, we shall indeed have ttill the ex-

pression,

I — j
. e»-e»4 = r" + nr"-' 9 + Jn (n - 1) r"-! 52+ . . +q>';

but the polynome, thus obtained, will not be an expansion of the power

(r + g)", Articles 637 to 550
i
Pages 545 to 557.

§ xcvi. A quaternion equation, fq=r, where/ denotes a function of known form,

may always be conceived as broken up into /bur equations of the ordinary

algebraic kind, involving the four constituents, w, x, y, z, of the sought

quaternion q (compare § lxxiv.) ; we may conceive xt/z to be eliminated

between these four equations, and the 6nal equation in w to be resolved
;

or we may suppose that p = Xq is deduced (compare § xc.) from the vec-

tor equation, Wfq = Vr, and that its value is substituted in the scalar

equation, S/g = Sr, and that a; = Sj is then deduced therefrom ; or the eli-

mination between these two equations, of vector and scalar kinds, may be

performed in the opposite order ; we may also substitute, for the one vector

equation, three scalar equations, such as

S . Kfq = S . Kr, S .\fq = S .\r, S . fifq= S . /ir,

where k, X, ft are any arbitrary and auxiliary vectors ; equations of the

form S . bqa = c, S . a^qaiqa + 2 . biqb = c, may be called respectively

equations of tbe^r*^ and second degrees ; the general equation of the n'*

degree, in quaternions, breaks up into four scalar equations which are each

of the same(n"') degree; and elimination between these must be supposed

to conduct, generally, to an ordinary equation of the degree of which the

exponent is n* ; thus a quadratic equation in quaternions may be expected

to have, in general, sixteen roots, or solutions, at least of the symbolical

kind ; although in particular cases, by the vanishing of certain terms, the

degree of the final equation may be depressed below its general value, . .

Articles 551 to 553; Pages 557 to 659.

§ XCVII. Discussion of the general equation ofthe first degree, 2 . bqa = c, where

a b, a, b', . and c axe given quaternions, but g is a sought quaternion
;

taking (compare § xcvi.) the scalar and vector parts, and then ehminat-

ing w or Sq, there results a linear and vector equation of the form 2 . /3S

.

ap + "V. rp -a, where a, /3, a', /?, and a are given vectors, and r is

a given quaternion, but p is a sought vector ; the equation gives

S . XiT= S . X'p, if X' = 2 . aS . /3X + V. s\,

where s = Kr ; forming similarly ft' from fi, and assuming X and /j so that

V. X/i = a, we have

mp =V. \>' = 2V. aa'S . ^^a + 2V. aV (V. /3(t . r) f SrV. irr-VrS . ar,

and the scalar coefficient m = 2S . aa'o"S . ^'/3/3 + 2S (rV. aa'
.
V. ^^)

+ Sr2S . ra/3 - 2S . raS . r/3 + SrTr^ ; remarks on the notation ; exam-

ples ; solutions of the equations, V. jipa = a, V. rp = a, agreeing with the

results of § xc. ; discussion of the equation bq \qb = c, where b, c, q are

quaternions ; one form of solution is, 298* = Vc + K6S .
ct -

' ;
another is,

29* (6 + h') - be + cb, if 6' = K&, so that 6 + 6' = 2Sft, and bh = hb = T62

;
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or we may deduce and employ the equation, (bq — qb) S6 = V.VftVc ; or

may regard the proposed equation as a case of the following,

aq + qb- c,

which gives, q (A2 + 26Sa + Ta2) = a'c + cb, if a' = Ka; if we make r = ff

+ y, and S . /3S . ap + V. yp = ^p, ;// = ^ + y, the general linear and vec-

tor equation of the present section hecomes i//p = a, and the problem of its

solution comes to inverting the function ^; ih^functional characteristic

(p is found to satisfy a symbolic and cubic equation, = n + n'^

+ ri'<p^ + <p^, where n, n, re" are three scalar coefficients, of which the va-

lues are assigned, in terms of the given vectors, a, j5, a, (3, . . and y ; the

characteristic ^p must therefore satisfy this other symbolic and cubic equa-

tion,

= 4/3 — m'^^ + m'\jj — m, where in=g^ — n'g'

+ n'g - n, ni = Sg'' - 2ng + re', m" = 3j - n"

;

the solution of the linear equation, ^p = tr, comes thus to he found anew

under the form,

mp = 7ni|/-i(T = (m' — m";/' + 1^2) o- = o-" — ga + g^(T,

where a and tr" are vectors derived from the given vector a, by assigned

operations, involving the given vectors a, j3, a', /S", . . and y, but not the

scalar g ; theorem of the pakallelepipedon of derivation, obtained

by interpreting the lately written symbolic and cubic equation ; for any

proposed mode of linear defgiimation, represented by the operation i//,

if we form the three successive derivative lines, ^p, ^^p, ^pi and then

decompose, by projections, the original line p into three others, in these

three directions, or in their opposites, the ratio of each component to the

corresponding derivative line will depend ONLY ON THE MODE OF DERI-

VATION, and not generally on the length, nor on the direction, of the line

p thus operated on ; we have m^^/-^ = 0, and therefore generally ^~^

= ; but if it happen that ^ is a root, gi or g2 or ^3, of the ordinary cubic

equation, = m =g^ — n"g'^ + n'g — n, then the function \jjp may vanish,

without p itself vanishing ; if, after assuming ang arbitrary vector ff, we

derive from it three others by the formulae,

Pi = o" - gi"' + gi'^tr, P2 = <t"- yjir' + ^a^ff, pi^a -g:)<s + g-i'a,

we shall have

i^ipi = 1//2P2= iizpz = in(T = ;

that is, for these thkee directions, pi, p2, pz, we shall have

'j>Pi = -9iPu <pPi= -9iP2, ^P3 = -<?3P3i

this analysis might be developed so as to include the theories of the axes

of a surface of the second order, and the axes of inertia ofa body, . .

Articles 554 to 567; Pages 559 to 569.

§ xcviil. Definition of the diffeeential of a function of a quaternion,

d/g = lim.n {f{.q + n-i Aq) -fq};
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g and dg are here any two quaternions, Tdg being not necessarily small,

but the positive whole number n being conceived to increase without li-

mit ; the iJard quaternion dfg, which results as the limit of this process, is

3L function of the two assumed quaternions, q and dq, of which the parti-

cular/orm depends on the form of the proponed function, f, but which is

always linear, or distributive, with respect to tlie quaternion Aq ; but this

differential Afq is not in general reducible in this calculus, to a product of

the form/'J . Aq, itf'q denote a function of the quaternion q alone
; when the

function /(g + dj) can be developed in a series, involving terms or parts

of successively higher and higher dimensions, with respect to the quater-

nion dJ, the part of this developemait which is of the first dimension, re-

latively to Aq, is (as in the ordinary differential calculus) the required

differential Afq ; but it is proposed to avoid, in this calculus, adopting this

as the fundamental property of a differential, because the recent definition

can often be applied more easily than the developement can be found

;

examples ; A . g^ = q . Aq + Aq . q, or more concisely, d . g* = gdg + dgg, dg

being treated as a simple symbol, or as if it were a single letter ; d . g-

1

= — g' 1 dgg"i ; in differentiating any product of quaternions, we simply

differentiate each factor in its own place ; we may extend Taylor's series

to quaternions, under the form /(g + dg) = e'fq, where dg is treated as

constant ; examples

;

.... Articles 568 to 573; Pages 569 to 572.

i xcix. Geometrical applications ; if a vector p be a given function tpt of a varia-

ble scalar t, we may express its differential under the usual form, dp = Aipl

= <p't , it = pit, where p =<p't= & certain derived vector, which is parallel

to the tangent to the curve in space, which is the locus of the extremity

of p ; the length of this new vector is unity, Tf't = 1, if the arc be the in-

dependent variable ; in mechanics, if t denote the time, and if a second

differentiation have given dp' = A^'t = ip"t . At = p"d<, then p may be called

the vector of velocity, and p" the vector of acceleration, while p may be

named the vector ofposition ; in geometry, if < be again the arc of tlie

curve, p ~ p"''^ is the vector of the centre of the osculating circle, and p"

may therefore be called the vector of curvature ; when a surface is ex-

pressed, as in § Lxxxix., by an equation of the form /p = const, where/

denotes a scalar function, we may then, by cyclical permutation under the

sign S (see the same section lxx-kix.), express the differentiated

equation of that surface under the form d/p = 2S . vdp = ; the logic

of this process will be more closely considered in § ci. ; v is a nor-

mal VECTOR, and if we oblige it to satisfy the condition S.vp = l,

then (compare § lxxxi.) its reciprocal v-\ will represent, m length

and in direction, the perpendicular let fall from the origin of vec-

tors on the tangent plane to the surface, so that v itself may be called,

under the same conditions, the vector of proximity ; without ohh'g-

ing V to satisfy the equation S . vp = 1, if we only choose it so as to

give generally S . rdp = 0, it will still be, as before, a nonnal vector, and

tliis s}-mbol V may be used to form equations of classes of sur-

faces ; thus an arbitrary cone (with vertex at origin) may be denoted

h
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by the equation S . vp = 0, an arbitrary cylinder by S .va=0, and au

arbitrary surface of revolution by S . /3vp = ; this last equation is ana-

logous to an EQUATION IN PARTIAL DIFFERENTIALS, and may be treated

as such by a species of integration, eliminating v, and introducing an

arbitrary function, under the form p2 = F(S.;8p), or TV. p;3"' =

/(S . pp"')> which last form was assigned in § LXix. ; conversely, by a

process of differentiation, we can eliminate the arbitrary function^ f from

this last equation, and so recover the formula of the present section,

S./3»'p = 0, Articles 574 to 578; Pages 572 to 575.

§ c. Geodetic lines ; the normal property ofthe osculating plane gives the following

general equation of a geodetic, S . vdpd^p = 0, or S . vp'p = 0, p being re-

garded as a function of some scalar variable ; we have also this other ge-

neral formula, V. vdUdp = 0, where dUdp denotes the differential of the

versor of the differential of p, and is treated as a simple symbol; if we

take the arc at the geodetic as the independent variable, or suppose that

Tdp is constant, the last general form may be reduced to V. vi'^p = 0, or

V. vp" = ; examples
;
geodetics on a sphere, and on an arbitrary cylin-

der, cone, and surface of revolution ; variations in quaternions ; for-

mula for the differential of the tensor of an arbitrary vector a, dTir =
— S . Uffdff = S . Uo--' d(T ; this result will be extended in § ci. ; Si = iS,

i\=\S; the variation of the length of the arc of a curve, on any given

surface, is expressed by the formula,

^jTdp = J5Tdp = - AS . Udpjp + |S (dUdp . ^p) ;

hence the varied equation ofthe surface being S . vSp = 0, the general diffe-

rential equation of a shortest line is V. vdUdp = 0, as above ; equations

of limits ; for a geodetic on an ellipsoid, with the same significations off
and »/ as in § Lxxx., if Tdp be assumed as constant, the differential equa-

tion of the geodetic becomes,

dfdo dv
= sTf + S — , and gives T>. V (/Udp) = const.

;

this reproduces the well-known theorem of Joachimstal, P. 7) = const.,

because Tj/ = P-', and V(/Udp) = D - >, if P be theperpendicular let fall

from centre on tangent plane, and D the semidiameter parallel to the ele-

ment dp
;
geodetic on a rfetie/opaWe surface

; proof of the rccH/mcar/orm

which the curve assumes, when the surface is flattened into a plane ; the

general theorems ofGauss, respecting the spheroidical excess (or defect) of

a geodetic triangle on an arbitrary surface, admit also of being proved bv
quaternions ('see the investigation in § cvi.) ; reproduction of some geome-
trical properties, discovered by M. Delaunay, of the curve which on ngiven

surface, and with a given perimeter, includes the greatest area ; it is pro-

posed to iiamc a curve of this kind a Didonia; t\\a isoperimetrical for
muln for its determination is

IS . Vvipdp + ciiJ'Tdp = 0,
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w Licli gives the following differential equation of a Didonia,

c-id|0 = V.Ui/dUdp;

yeodetics are that limiting case of Vidonias, for which the constant c is

infinite ; in general, that constant may have its expression in various ways

transformed, and may receive various geometrical interpretations ; among

which the most remarkable is connected with the known property of the

curve, that if a developable surface be circumscribed about a given surface,

so as to touch it along a Didonia, and if this developable be then unfolded

into a plane, the curve will at the same time be flattened generally into a

circular arc, of which the radius =c, . Articles 579 to 690 ; Pages 575 to 584

(I. More close examination of the logic (compare § xcix.) of the process of dif-

ferentiating the equation of a surface, and so obtaining the equation of its

tangent plane, and the normal vector v, without necessarily supposing for

that purpose the differential dp to be small ; diiferential of &function of a

function of a quaternion ; d/(^5) = d (/(/i) 9 ; examples of the process
;

case of the ellipsoid ; differentials of the tensor and versor of a qua-

ternion, and of their logarithms: dT5= S . djUj-i, dlT} = S . dgj',

AWq^d-VqUq-"^ ='V.Aqq~^ \ incidental notice of the general transfor-

mations, r -
1 (r2<7=) * 9 -

1 = U (Sr S9 + Vt- Vj) = U (rg + KrK?) ; by in-

verting the function which expresses (see § lxxix.), the normal vector v

for tlie ellipsoid in terms of p, we find

p = (1= + k2) v - 2V. IVK + 4 (t - k)-2 V. leS . ikv
;

hence the equation of that other anil reciprocul ellipsoid, on which n ter-

minates, may be thus written,

1=S. >'p = (l-+ K^) ^2-28. IVKV- -i (|-k)-2(S.U-|')-;

the mean semi-axis o( litis reciprocal ellipsoid is 6 -
' (contrast § lxxxiv.);

in general, the locus of the extremity of the vector ofproximity (sec

§ XCIX.), for any surface, may be very simply proved to be (as is other-

wise known) a surface reciprocal tliereto, by shewing tliat the equations

S.rp = c, S.cdp^O, give S . p)' = c, S.pd>'=0, . . .

Articles 591 to 597; Pages 584 to 588.

§ cu. More close examination of tlie extension (§xoviii.) of Taylor's Series to

quaternions
;
proof that whenever the quaternion function/ (7 + xr) can

be developed, in a finite or infinite series, of the form fu + xf\ + .i-yj + &c.,

X being a scalar, we must have d"/9 = A"0"/,„ if Or/ be treated as con-

stant, and = r ; other proof of this theorem, under the form that if

/ (9 + xiq) =/i + xf, + x-f. + &c., then n/„ = d/„ - 1 ;
proof tliat if we sup-

pose the n first of the successive differentials of the fiincti.in of,/V/ to be

finite,ani.itx be supposed saaW of the /r..( order, then tlie c.xprc^.-ion >,.
-

f{q + xAq)-fq-xAfq- \x^i\1q -
. . " ^:^^"'^"fl '' ^™^" °^ ""

order higher than the n">
i

or that not only the expression j„ itself, but
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its n first successive differential coefficients, taken with respect to x, va-

nish with that scalar variable ; it is to be remembered that q and dq are

treated throughout this section (compare § xcviii.) as two arbitrary quater-

nions ; and that Tdq is not here supposed to be small, although in geome-

trical applications it is often convenient to attribute small values to Tdp

;

example from the equation of the ellipsoid, which may be rigorously de-

veloped under thefinite form, =/(p + dp) —fp — dfp + Jd^/p, dp denoting

an arbitrary chordal vector, drawn from the extremity of p, to any other

point of the surface Articles 598 to 601 ; Pages 588 to 592.

§ cm. When dp is thus treated as a finite and chordal vector, the equation

= d/p + id2/p, or = 2S . vdp + S . dj/dp,

or the same equation with an additional term S . vdp S . OTdp, where ts

is an arbitrary vector, represents an ellipsoid, or other surface of the se-

cond order, which osculates in all directions to the given surface /p =
const, or has with it complete contact of the second order, at the extre-

mity of p ; if rr be the vector of the centre of the sphere which osculates

to the surface in the direction marked by the limiting value of Udp, then

V dv
= S -r-, the second member being regarded as a function of this va-

P - ff dp

lue of Udp ; applied to the ellipsoid, this formula reproduces the known

expression i)* .
P-i, as the value for T (p - a), or for the radius of cur-

vature of a normal section of the surface,

Articles 602 to 606 ; Pages 592 to 596.

§ civ. For any surface, S . SAvip - S . ivSip, if in forming iiv we operate only

on dp, but not on p itself, as contained in the expression of dv ; hence it

may be inferred that the directions of osculation of the greatest and least

spheres, determined by the formula 5S . dxdp-' =0, are also the directions

of the lines of curvature, for which consecutive normals intersect, and

which have for their differential equation = S . vdvdp ; this latter equa-

tion expresses that dpjjv.viv, and therefore contains one of the theo-

rems of Dupin, namely, that the tangent to a line,of curvature on any sur-

face at any point is perpendicular to its conjugate tangent ; equations of

the indicatrix, S . vdp = 0, S . dvdp = constant ; the equation of the lines

of curvature may also be thus written, = S . dvSVip ; or thus,

= V . dpdUv ; this last form contains a theorem of Mr. Dickson, that if

two surfaces cut along a common line of curvature, they do so at a con-

stant angle ; transformation of the equation of § cm., for the curvature

of a section of a surface,

" ^ g ^P ^ g
V

O — p dp2 ti) — p^

conducting to the theorem of Meusnier ; other general transformation and

interpretation of the formula of § ciiL, for the curvature of a normal sec-

tion ; if on the normal plane crp' to a given surface, containing a given

linear clement rp', we project the normal to the surface at the near point.
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r', this projected normal will croes the given normal cp, which is drawn

at the given point p, in the centre c of the sphere which osculates to the

surface along the element, .... Articles 607 to 612 ; Pages 596 to 601.

§ cv. Considering the vector p, of a variable point on any surface, as a function,

= '/' (^1 y)> 0^ '^0 scalar variables, ^ and y, which are themselves re-

garded as functions of some one independent and scalar variable, we may
write,

dp = p'Ax + p.dy ; dp' = p"dx+ p 'dy ; dp, = p/di + p/y ;

d2p = p"dx2 + 2p,'dxdy + p„d3/2 + p'i^x + p,d«y

;

p, p,,
p

", p', p„ being five new vectors

;

it is allowed to write v = \. p'p^, because p and p, are tangential, and there-

fore the V thus found is normal ; in the expression for S . vi^p, S^x and

i^y disappear; and if we make Uv (<7- p)-i = /J-i, so that R is the ra-

dius of curvature of a normal section, of which a is Vmnector of the centre

of curvature, we shall have, by § civ., an equation of the form,

= fl- 1 dp2 - S .UvdV = A&x'i + 2Sdxdy -H Cdy2 ;

for a line of curvature, we have

= Aix + B&y = Bix + Cdy, and therefore AB - C* = 0,

where

.4 = iJ-ip'2-S.p"U»', £=R-iS.p'p,-S.p;Ui/, C=iJ-ip2-S.p,Ui/;

'R\, Ri being the two extreme radii of curvature, the measuke OF curva-

TUHE of the surface may be thus expressed.

V V \ V I

example; deduction of the usual formula, (rt — s-") (l+pS+g')-^; in

general if c = - p'2, /= - S . p'p,, g = - p}, so that the square of the length

ofa linear element of the surface has for expression

Tdp2 = eix^ + 2/dxdy + jdy',

the recent expression for the measure of curvature is shewn to depend only

on the three scalars e, f, g, on their six partial differential coefficients of

the first order, and on three of their nine partial differential coeflScients of

the second order, taken with respect to * and y ; in this way is reproduced

by quaternions a very remarkable theorem of Gauss, namely, that if a sur-

face be treated as an infinitely thin aai flexible, but inextensible solid,

and be then transformed as such into another surface, such that each

LINISAR ELEMENT of the new is equal in length to the corresponding ele-

ment of the old one, the measure of curvature at each point will not

BE ALTERED by this TRANSFORMATION,

Articles 613 to 615; Pages 601 to 604.

§ cvi. If X denote the length of the geodetic line ap, drawn on the surface from a
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fixed point A, and if y denote the angle bap wliicb the variable geodetic

AT makes there with a 6xed line ab, then

p- = - 1, S.p'p,= 0, or e = l,/=0,

and these equations may be differentiated ; hence if we make m = ^g = Tp,,

the general expression for the measure of curvature reduces itself to the

following, which (with a somewhat different notation) was first discovered

by Gauss,

TJi" 1Aj- 1 = - m'm- 1 ; or, fir ifio" i= d^ Tip -r- (dp2 TSp)
;

treating x and y as functions of the arc « of a new geodetic on the surface,

not drawn from the fixed point a, and denoting by v the angle between an

clement ds or rp'of this new geodetic, and the prolongation of the old geo-

detic line ap, the differential equation of the new geodetic becomes,

z" = myn'i/'^, or i'' = — m'y' , or dr= — m'dy

;

we may also conveniently write, in a slightly modified notation,

c' B = - m'dt/, or ^r = — dTlp -i- Tdp,

d referring here to motion alonff the original geodetic ap, and S to passage

from that line to a near one ; dlv, or — m'ixSy, is then a symbol for the

spheroidical excess (compare § c.) of a little geodetic quadrilateral, of

which tlie area = miri'y ; dividing the excess by the area, we find the quo-

tient = - m"m- 1 = the measure of curvature of the surface ; but also this

measure = Rr'^Hj.'' = y . iVvSVv— 'V.ipSp =the area of the corres-

Itonding superficial element of the unit-sphere, divided by the element of

area of the given surface, this correspondence consisting in a parallelism

between radii and normals ; hence, as Gauss proved, the total curva-

ture of any small or large closedfigure^ on any arbitrary surface, bounded

by geodetic lines, or the area of the corresponding portion of the surface

of the iniit-sphere (not generally bounded by great circles), is equal

(with a proper choice of units) to the spheroidical excess ofthefigure;

singular points are here excluded, and the sign of the element of the sphe-

rical area is supposed to change, when we pass from a convexo-convex to

a concavo-convex surface, .... Articles 616 to 619; Pages 604 to 609.

§ cvii. Many other geometrical applications of differentials of quaternions miglit

easily be given ; for instance, they serve to express with ease what M.

Liouville has called the geodetic curvature of a curve upon any surface

;

they may also be employed to calculate the normal and osculating planes,

and the evolutes, torsions, &c. of curves of double curvature ; transforma-

tions of the symbols <J <1 , <1^, where

id j'd Ad , id j'd M
dx ay az ax ay az f

.lyzxyz being six independent and scalar variables; the formulic,

/ <!' il" '1" \
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d'ti i^v d2»

dx2 dy2 d22
'

appear likely to become hereafter important in mathematical physics;

- < t> may represent the/«x of heat, if ti be the temperature of a body

;

or if V be the potential of a system of attracting bodies, then < v repre-

sents, in amount and in direction, the accelerating force which they exert

at the point xyz ; in geometry, the vector <1 « is normal to the turfuce for

which the scalar function t> = constant ; when operating on such a func-

tion,

< = -(S.dp)-id,

Article 620 ; Pages 609 to 611

I
cviii. Applications of quaternions to physical astronomy ; the vector function,

^a = a-'Ta-i, may be called the tractok of a, because it represents, in

length and in direction, the accelerating force of attraction which an unit

of mass at the origin exerts on a point placed at the end of the vector of

position., a ; by the rules of this calculus, this function milV be thus trans-

formed,

0a = dUa -^V. aAa = (Ua)'-i- V. ad

;

the differential equation of mohon o/ a 6£«ary iyitem, d^a = M^ad*', or

a'-Mfa, gives the following, integrals of the first order, V. an'=7',

a = i1/y-i(£ — Ua), where y and c are constant vectors, but a is a varia-

ble vector ; the first contains the laws of constant plane and area, and tho

second contains the law of tite circulak hodogeaph ; eliminating the

vector of velocity, a, we obtain this equation of the orbit, = Ta + S . as

+ Af-i y2, or r-i=p-i (1 -I- e cos »), agreeing with a well-known result

respecting the conic-sectionform of the curve, and/oco/cAaracterof that

body about which the other is conceived to move ; the varying tangential

velocity of this latter body may be decomposed into two parts, both con-

stant in amount, and one constant also in direction j theorem of HODO-

ORAPHic ISOCHBONISM, Corresponding to Lambert's theorem ; allusion to

a conception of Moebius ; the difference ^ (a + Aa) - ipa, or A<pa, of the

tractor function ^a, might perhaps be called the turbator, because it

expresses, with Newton's law, the amount and direction of tho disturbing

force which an unit-mass, supposed to be situated at the common origin

B of the two vectors a and a + Aa, exerts on a body a situated at tlie eml

of the latter variable vector, to disturb its relative motion about a body r

at the end of the former vector ; developement of tliis disturbing force,

under the supposition that TAa < Ta, or that the distance b = ca, of the

disturbed body A from the centre c of the relative motion, is less than the

distance a = BC of the disturbing body b from the same ccutrc; example,

where a^b, c denote moon, sun, and earth ; wc liavc tlio transformatinii,
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hence results a derelopement of the form ^ (/3 + n) = S„, „' 0„, „/, in

which the law of formation of the terms is assigned ; the son's disturbing

force on the moon is in this way seen to admit of being decomposed into a

series ofgroups of smaller and smaller forces-, in the varying plane of the

three bodies, represented in amount and in direction by the terms of this

developement ; if o, t denote the geocentric distances ofthe sun and moon,

and C their geocentric elongation measured from the sun towards the

moon in their common great circle in the heavens, then the angle from the

sun's geocentric vector — a to the component force 0,i, n' is = (n — n) C,

and the in^ouify of the same partial force is =m,„ ,/ (6a- ')"+"' a-*, m„, „•

being an assigned and rational numerical coefficient; in the first and

principal group, there are two component forces, of which one, ^i, o, has its

intensity = J6a-', if the sun's mass be talien for unity, and is directed along

the moon's geocentric vector /3 prolonged, or towards the moon's apparent

place in the heavens, while the other, 0o, i, has an exactly triple intensity,

and is directed towards what may be called a fictitious moon, or to a

point which is a sort of reflexion of the moon's place with respect to the

sun ; the second group contains three partial forces, which may be said to

be directed towards three runs (one real and two fictitious), and the in-

tensities of these forces, taken in a suitable order, are exactly proportional

to the whole numbers 1, 2, 5 ; these results may be indefinitely extended,

and applied to the perturbation of an inferior by a superior planet, &c.
;

some of these and other results of the application of qnatemions to mecha-

nical or physical problems, such as the conditions of equilibrium, the

theory of statical couples, and the motion of a system'ofmutually attract-

ing bodies, were communicated to theEoj-al Irish Academy in 1845 ; the

present writer has since made other physical applications of the same prin-

ciples, and has published some of them, but is aware that nothing impor-

tant in that way is likely to be done, until the more full co-operation of

other and better mathematicians shall have been gained, , . . .

Articles 621 to 624; Pages 611 to 620.

§ cix. A DEFINITE DJTKGRAL in quaternions may be interpreted as a limit of a

sum ; but, even when the function to be integrated remains^nite between

the limits of integration, still if the differential factor dg under the sign of

integration be itself essentially a quaternion, then a certain degree of I'n-

determination of value of the quaternion integral I FQ], &q) arises from

the possibility of assuming indefinitely many different laws of dependence

of the variable quaternion j on a scalar variable t, which latter may be

supposed to change from to 1, while q changes from one given quater-

nion value 90 to another qi ; in this way arises a new sort of variation of

a definite integral, depending on the non-commutative character of multi-

plication, which may be symbolized by the formula,

a Q = d
f"
F (9, dj) = [*'

{ J,F (?, d?) - d,F (,, ^91 }

;

J?o iqo

for example,

'f.W? = J (^/? • d? - i.fl ^9)> if ^?o = 0, J?! = ;
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more particularly,

S\ qdq = S\ }(3('d<= (_Sqiqi-qiSgi)dt,
J90 Jo Jo

the integral relatively to t being interpreted as the limit of a sum ; exam-

ples of different functional forms which maybe assumed for j;, and of the

f?i
different quaternion values thereby obtained for the integral qdq; this

J 90

sort of variation of a definite integral vanishes, as in the ordinary integral

calculus, when the function F(_q, dy) is an exact differential ; for exam-

ple, although, between given quaternion limits, the integrals of qdq and

Aqq are each separately subject to the kind of indetermination above ex-

plained, yet the integral of their sum is fixed, and we may write, defi-

nitely, as in algebra,

1:

''\qAq+dqq) = q{'-q<?
?o

analogous remarks would apply to such expressions as

i£ =[''['V(y,r,d5,dr);
jroiqo

if the subject of this section shall be hereafter pursued, it will be proper to

combine it ftith the researches of M. Cauchy, respecting definite integrals

taken between imaginary limits of the ordinary kind, and respecting that

other species of indetermination, which arises from the passage of func-

tions through infinity, and not from any supposed absence of the commu-

tathe property of multiplication, . . Articles 625 to 630 ; Pages C20 to 627.

§ ex. Differentiation of implicit functions, and of radicals ; examples ; if/j; de-

note any scalar function of a scalar variable x, and if d^ =fxAx, tlien

in passing to quaternions, we have V.V?V/?= ; if also we suppose UV/7

= + Wq, and denote by dq — dq that part of dq which is a vector per-

pendicular to Vq, we shall have, under these conditions, the formula djq

=fqSq + Tyfq dUVi;, wliich may be in various ways transformed, and

gives the equation,

yqdfq + dfqVq =fq (Jqdq + dq\q)

;

connexion ot differentials and derelopements vi\i\\ equations of the first

degree ; to find the differential of the square root of a quaternion r, we

are by § xcviii. to resolve the equation qdq + dqq = dr, which is of the

same form as the equation bq + qb = c, discussed in § xcvii. ; and a se-

ries of equations of this linear form inay be employed to develope the

square root of a sum, in a quaternion series, of the form

(62+c)*=6+?i+9;4&c.,

Articles 631 to 635; Pages 627 to C3I.

§ CXI. Quadratic equations in quaternions (compare § xc\i.)
;
an equation of

the form q^ = qa + h, or of this connected form, r- = or + 6, where nbqr are

i
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quatemiona, and q + r = a, qT= — b, has in general SIX ROOTS, of which

two are real, and four iTnaginary ; the determination of these six quater-

nion roots depends on a scalar equation of the sixth degree, which is of

cubic form j the scalar and cubic equation thus ohtained has in general

one positive and two negative roots ; case in which one root of the cubic

vanishes; examples of the above form of a quadratic equation in quater-

nions,

q^ = 5qi + 10j, q^= qi+j\

more general example, q^ = qa-h 13, where a and /3 denote two rectangular

vectors, Sa = 0, S/3 = 0, S. a/3= 0; the six quaternion roots of this last

quadratic are given by the three formnlje,

L ? = ia + (i-i/3±ia-l(a*+4/32)*,

II. 9 = JCl + U,3)[a±(a2+2T/3)*},

III. j= i(l-U/3){<i+(n2-2T/3)J},

in which it is to be remembered that a/3 = — ;8a,sothat the ordinary rules

of algebra are not all applicable here (§§ X., xi., &c.) ; by the peculiar

rules of the present calculus, it is easy to shew that the common value of

jS and qa + (i is, for the first formula,

each of the other two fonnulae may also be shewn, d posteriori, to give

equal values for the two quaternions g* and ga + /3 ; the third formula

gives always two imaginary values for q ; but, according as a* + 4/3^ < or

> 0, we shall have two real quaternions from the second formula, and two

imaginary vectors from the first, or two real vectors from the first, and

two imaginary' quaternions from the second expression 5 in the former case,

the two real quaternion roots of the quadratic equation have a common

tensor =VTi5; in the latter case, the two real vector roots have unequal

lengths, or tensors, but VT/3 is still the geometrical mean between them
;

the distinction between these two cases corresponds (compare § LXXVII.)

X.ol\l&imaginarin£SSOT reality o{\hQ intersections of the sphere, p3=: g. ap,

and the right line, \.ap=fi; the imagisary quatzrxioss considered in

the present section (compare § XCVI.) are all reducible to the form, q = q

+ y' V — 1, where q and q" are quaternions of the real and ordinary kind,

such as have been hitherto considered in these Lectures, and V — 1 is the

old and oeddjakt ijiagisabt symbol of common algebra, and is to be

treated, in this sort of combination with the peculiar symbols, (ijk, &C-)

of the present calculus, not as a real vector (contrast the earlier use of

the same symbol in § xxxv.), but as an imaginary scalar ; an expression

of this mixed form, 9'+ V - 1 9", is named by the writer a Biqlaternion ;

the study of them wUl be found to be important, and indeed essential, in

the future developement of this calculus

Articles 636 to 650 ; Pages 631 to 643.

§ r.Yii Application of the foregoing principles, to continued fractions, of the

form
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where a, b, and c (= tio) are any three given quaternions, and i is a posi-

tive whole number ; mating

we have ei= qi'voqi'', where 91, 92 are any two roots of the quadratic

equation q^ = ga + b; examples,

in the two first of these four examples, the continued fraction has gene-

rally a period of six values, which may be found at pleasure by employing

the two real quaternion roots of the quadratic equation g^ = qi +j, namely,

gi = i(l+«+y-*), 9j=K-1 + '-^'-*)!

or two conjugate imaginary solutions of that quadratic, such as the pair

91 ~zi— k, 92 = 2:" 1 i — k, where z = (cos + V— 1 sin) —, V— 1 being the old

imaginary symbol (compare § cxi.) ; or the other pair of imaginary roots

of the same quadratic equation, included in the expression,

or by any other selection of two roots, for instance, by combining one real

and one imaginary root ; the six real quaternion terms of the period, found

by any of these combinations of roots, agree with those obtained by ac-

tually performing the divisions prescribed by the form of the continued

fraction ; in the third example above cited, of such a fraction, the value

does not circulate, but (generally) converges to a limit, so that

(m c = 2A - », unless c — ik-ii;

in this last case, and also in the case when c = ik~i, that is, when c is «

real root of the quadratic c^ + 5ci= 10/, the value of the fraction is con-

stant ; geometrical interpretations, for the case where c = ixo + kzo, xo and

zo being regarded as the coordinates of an assumed point po in the plane

of ik (or xz) ;
successive derivation of other points Pi, P2, &c., according

to a law assigned ; if the assumed point be placed at either of two fixed

points Fi, F2, in the same plane of ik, its position will not be changed by

this mode of successive derivation ; but if Po be taken anywhere else in the

plane, the derivative points will indefinitely tend to the fixed position Fi,

so that we may write

p, Fi = 0, P^ = F2, unless Po = 'i

;

law of this approach; continual bisection of the quotient, PF2 -H PFi, of

the distances of the variable point p from the two fixed points; theorem of

the two circular segments, on the common base FiF,, and containing the
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two sets of alternate and derivative points, Po, Pa, P4 . and Pi, P3, P5 . .

to infinity ; verification by co-ordinates ; relation between the two segments

;

more general geometrical theorems of the same kind, obtained as interpre-

tations of the results of calculation with quaternions, respecting the fourth

example ofa continued fraction above mentioned, with the supposition that

jS is a vector perpendicular to a and to po, and under the condition

a* + 4/32> (see again § cxi.)

;

interpretation of this condition; when a^+i^< 0, there is no ten-

dency of the variable point to converge to any fixed position ; the quadratic

g2 = ga + /3 (of § CXI.) gives

fl = 92a2 + /32, (292 - a2)« = ai + 4/32

;

but when a* + ij3^ = 0, the hiquaternion solutions of the quadratic give,

indeed, like the real roots,

(2g2-a2)2=-0, but nof, like them, 2g2-a2 = ;

those solutions give in this case 2^2 — «« = 4S}Vg, Vg = p' + V— 1 p",

where p' and p" denote two real and rectangular and equally long vec-

tors ; and the square of such an expression vanishes, without our

being allowed to equate the expression itselfto zero ; algebraical interpre-

tation of the general results at the commencement of this section, divested

of quaternion symbols, and connected with afunctional law of derivation

offour scalars from four other scalars arbitrarily assumed, and from

eight given and constant scalars ; the indefinite repetition of this process

of derivation conducts generally to one ultimate or limiting system, of four

derivative scalars, . . .... Articles 651 to 668 ; Pages 643 to 664.

§ cxm. A hiquaternion may be considered generally as the sum ofa biscalw and

a bivector ; we may also conveniently introduce biconjugates, bitensors,

and biversors, and establish general formulae for such functions or combi-

nations of biquatemions, which shall be symbolical extensions of earlier

results of this calculus ; thus, in any multiplication, the bitensor of a pro-

duct can only differ by its sign from the product of the bitensors; there

exists an important class of biquatemions, for which the bitensors vanish;

such biquatemions may be called nullijic, or nuUifieis, because each may
be associated (indeed in infinitely many ways), as multiplier or as multi-

plicand, with another factor diflerent from zero, so as to make their pro-

duct vanish (compare § cxii.)
;
general expressions for the reciprocal ofa

biquatemion ; the reciprocal of a nulhfier is infinite; a real quaternion has

generally a pair of imaginarj', as well as a pair of real square roots ; hints

respecting the geometrical utility of the biquatemions, in transitions (for

example) from closed to unclosed surfaces of the second degree, and in

other imaginary deformatiotis ; reference to a proposed Appendix to these

Lectures, containing a geometrical translation of an investigation so con-

ducted, respecting the inscription ofgauche polygons, in ellipsoids, and

in hyperholoids Articles 669 to 675 ; Pages 664 to 674.
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i
cxiv. Brief outline of the quaternion analysis employed in such researches res-

pecting the inscriptions of polygons in surfaces (with which are connected

other problems respecting the circumscriptions of polyhedra) ; equation of
closure, resumed from § lv. ; distinction between the cases of even-sided

and odd-sided polygons ; if it be required to inscribe in a given sphere, or

other surface of the second order, a gauche polygon with an odd number

of sides, passing successively through the same number of given points,

there exists in general one real chord of solution, determining two real

OB imaginary positions of the initial point of the polygon ; but, if

the polygon be eten-sided, there are then (for the sphere, ellipsoid, or dou-

ble-sheeted hyperboloid) two real chords of real and imaginary solution;

for the single- sheeted hyperboloid (see Appendix), these two chords may
themselves become imaginary; in general they are reciprocal polars of

each other ; thus there may in general be inscribed, in a surface of the se-

cond order, two real or two imaginary gauche polygons, with an odd num-

ber of sides, passing through as many given and non-superficial points;

whereas, if the surface be non-ruled, and if the number of points and sides

be even, there may in general be inscribed two real, and two imaginary

polygons, which become allfour real, or else allfour imaginary, when we
pass to a ruled surface ; if we conceive that the inscribed gauche polygon

FPi . . . Pn has n + 1 sides, of which only the first n are obliged to pass

tlirough so many given and non-superficial points, Aj, . . . A„, then the

closing side, orfinal chord, p„p, belongs to a certain system of right lines

in space, of which it is interesting to study the arrangement ; quaternion

formulae connected therewith ; when the number n of the given points is

even, so that the number n + 1 of the sides of the polygon is odd, the

closing chords touch two distinct surfaces ofthe second order, which have

quadruple contact with the original surface, and with each other, and are

geometrically related to each other and to the given surface, as are three

single-sheeted hyperboloids which have two common pairs ofgeneratrices ;

when the number of the given points is odd, or of the sides of the polygon

even, then the envelope ofthe closing side consists of a pair ofcones, which

are imaginary if the given surface be non-ruled, but may become real by

imaginary deformation, namely, by passing to the case of inscription in a

ruled surface ; in this last case, the lines on the surface, which are analo-

gous to lines of curvature, as being those linear loci of the initial point p,

which are bases of developable surfaces composed by corresponding sys-

tems of positions of the variable chord PPn, are rectilinear generatrices of

the given surface ; these bases become imaginary, when we return to the

sphere, ellipsoid, or other non-ruled surface, as that in which the polygon is

to be inscribed ; when the number of given points is even, the tangents to

the two corresponding curves on the given surface, at any proposed point

P, are conjugate, being parallel to two conjugate diameters; there exist

also certain harmonic relations between the lines and planes which enter

into this theory of inscription ; references to communications by the pre-

sent writer, on this subject, of which some have been already published,

(see also Appendix B), . . . Artides 676, 677; Pages 674 to 67?.
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§ cxY. More full discussion of the signification of an equation, namely,

V. pa = pV. /)/3, or V. ap - pV. /8p,

which, had presented Itself in the foregoing analyds ; this eqoation repre-

sents generally a certain curve ofdouble curvature which is of the third

order^ as being cut by an arbitrary plane in three points^ real or imagi-

nary ; this carve is the common intersection of a certain gygtem ofsurfaces

of the second order ; it intersects the sphere p*= — 1 in ftro real and two

vmagiTwry points^ namely, in the initial positions of the first comer of an

inscribed and even-sided polygon (§ cxrv.), bat it may be said also to in-

tersect the same sphere in two other imaginary points^ at infinity ; if we

confine ourselves to real vectors and quaternions, we can express a variety

of other geometrical loci by equations of remarkable simplicity ; interpre-

tations of the ten equations,

5= 0, 5 = 1, g =— 1, Tg= 1, Uy^l, \Iq=— 1,

V5 = 0, Sg = 0, 85= 1, 85 = -!, where g = (pa- 1)2;

with the same meaning of 5, if /3 J_ a, the equation T5 = /3 repr^ents a

certain hyperbola ; if a^y denote three real and rectangular vectors, the

equation (yV. ap)^ -i- (yV. ^py — 1 represents a certain ellipse; the equa-

tion (S . ap)*-f- (yV. apy= 1 daiotes the system ofan ellipse and an hy-

perbola^ with one common pair ofsummits^ but situated in two rectan-

gular planes ; an equally simple equation can be assigned representing a

system oftwo ellipses^ in two rectangular planes, having a common pair of

sununits ; the equation tpKp — ptpL, or V. tpjcp = 0, represents a system of

two rectangular right lines, bisecting the angles between t, r ; while tie

equation tpjrp = p*P*^^ or = V. pV, ipc, represents a system of three rect-

angular lines., namely, these two bis«:tors, and a. line perpendicular to

their plane ; example from the ellipsoid, equation V. vp = ; general equa-

tion of surfaces of the second order ; equation of Fresnel's ware-surface ;

general formulae for translating any equation in co-ordinates into an equa-

tion in quaternions,

J = _ £S . ip, y = -yS . yp, z =— AS . Ap ;

other expressions for geometrical loci may be obtained, by r^arding p as

the vector part of a variable quaternion g, which is obliged to satisfy some

given equation, while its scalar part w is variable; formulae may be as-

signed which shall represent, respectively, on this plan, what may be called

Sifidl circle^ and full sphere, .... Articles 678, 679 ; Pages 678 to 688.

§ cxvi. Equation of thefocal hyperbola, T. i}p .V. p9 = (V. 7?0)2, resumed from

§ LXxxvnL ;
proof of the adequacy of this one equation to represent that

curve; geometrical illustrations of the significations of the two constant

vectors 77 and 9; they are the two obliqae co-ordiJiates of an umbilic of

the ellipsoid, referred to the asymptotes of the focal hyperbola, when di-

rections as well as lengths are attended to ; other elementary geometrical

illustrations and confirmations of some of the results of earlier sections (es-

pecially of §§ Lxxxvi. to Lxxx\-iii.), chiefly as regards the equations in-
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volving ij, B
I
additional calculations and interpretations, designed princi-

pally as exercises in quaternions ; introduction of tlie two new vectors,

Xi = p - 2 (ij + e)-i S . Sp, £ = 2V. r/ST (., + 6)-
1,

with three other vectors Xj, X3, X4, determined in terms of p by expres-

sions analogous to that for Xi ; we have the equations,

T (Xi - £) = 6 + 5-
1 S . tp, T (Xi + f ) = * - * ' S . fp,

and therefore T (Xi - e) + T (Xi + t ) = 26
;

the locus of the extremity of the derived vector Xi is a certain ellipsoid of

revolution, with the mean axis 2b of the ^'wcn ellipsoid for its major axis,

and with two foci on that axis of which the vectors are + f ; if e de-

note the linear excentricity of this new ellipsoid, e = Tt, then

e2 = (a» - 62) (62 _ c^) (a^ - 6« + c^)-
1

;

the four vectors, Xi, Xa, X3, X4 terminate at four points, Li, L2, L3, Lj, which

are the your corners of a quadrilateral, inscribed in a circle, of this de-

rived ellipsoid of revolution ; the two opposite sides, Li Lo, L3 Lj, of this

plane quadrilateral, are respectively parallel to the two umbilicar diameters

of the original ellipsoid ahc ; the two other and mutually opposite sides,

1.2L3, LjLit of the same inscribed quadrilateral, are parallel to the axes of

the two cylinders of revolution which can be circumscribed about the same

given ellipsoid (or to the asymptotes of the focal hyperbola) ; the former

pair of sides of the inscribed but varying quadrilateral intersect in a point

B (the termination of the vector p), of which the locus is the given ellip-

soid; for this and for other reasons it is proposed to name the new ellip-

soid of revolution the mean ellipsoid, and its foci the two medial foci

of the given ellipsoid a6c, .... Articles 680 to 688 ; Pages 688 to 700.

§ cxvii.* Many other geometrical applications may be made, of the same general

principles ; for example, if r be a vector tangential to a line of curvature,

then, with the significations of i, k, 1/ in §§LXxviii., lxxix., we have the

equations,

S. vr = 0, S. VTirK = 0, giving r = UV. vi + VV.vk;

this reproduces the known theorem, that the lines ofcurvature on an ellip-

soid bisect at each point the angles between the circular sections; quater-

nions may also be employed to prove some theorems elsewliere pubUslied

by the present writer, respecting the curvature of a spherical conic, . . .

Article 689 ; Page 700.

Appendix A (referred to in § cxiii.), Pages 701 to 716.

Appendix B (respecting the results of § cxiv.), Pages 717 to 730.

Appendix C (containing some additional account of the analysis by which some

of those results were obtained), Pages 731 to the end.

[ The foregoing Analysis of the work into Sections did not occur to the author until it was too

late to be incorporated with the text : but it has been printed here, as seeming likely to be useful.]
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ON QUATERNIONS.

LECTURE I.

Gentlemen,

In the preceding Lectures of the present Term, we
have taken a rapid view of the chief facts and laws of Astronomy,
its leading principles and methods and results. After some gene-
ral and preliminary remarks on the connexion between meta-
physical and physical science, we have seen how the observation

of the elementary phenomena of the Heavens may be assisted.

and rendered more precise, by means of astronomical instru-

ments, accompanied with astronomical reductions. An outline

of Uranography has been given; the laws of Kepler for the Solar

System have been stated and illustrated ; with the inductive evi-

dence from facts by which their truth may be established. It

has been shewn that these laws extend, not only to the Planets

known in Kepler's time, namely, Mercury, Venus, Mars, Jupi-

ter, and Saturn, with which our Earth must be enumerated, but

also to the various other planets since detected : to Uranus, to

Ceres, Pallas, Juno, and Vesta; and to those others of more

recent date, in the order of human knowledge, of which no fewer

than six have been found within the last two years and a half;

to Astraea, Neptune, Hebe, Iris, Flora, and Metis : among which

Neptune is remarkable, as having had its existence foreshewn by

mathematical calculation, and Metis is interesting to us Irishmen,

as having been discovered at an Irish observatory. It has also

been shewn you that these celebrated laws of Kepler are them-

selves mathematically included in one still greater Law, with

which the name of Newton is associated : and that thus, as New-
B
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ton himself demonstrated, in his immortal work, the Principia,

the rules of the elliptic motion of the planets are consequences of

the principle of universal Gravitation, proportional directly to the

mass, and inversely to the square of the distance. With the help

of this great principle, or law, of Newton's, combined with proper

observations and experiments,—especially, with the Cavendish

experiment, as lately repeated by Baily,—not only have the

shape and size of the earth which we inhabit, but even (as you

have seen explained and illustrated) its very weight has been de-

termined ; the number of millions of millions of millions of tons

of matter, which this vast globe contains, has been (approx-

imately) assigned. And not only have the motions of that Earth

of our's around and with its own axis, and round the sun, been

established, but that great central body of our system, the Sun,

through the persevering application of those faculties which God
has given to man, has itself (as you have likewise seen) been

measured and weighed, with the line and balance of science.

2. Such having been our joint contemplations in this place,

before the adjournment of these discourses on account of the

Examinations for Fellowships, you may remember that it was an-

nounced that at our re-assembling we should proceed to the con-

sideration of a certain new mathematical Method, or Calculus,

which has for some years past occupied a large share of my own
attention, but which I have hitherto abstained from introducing,

except by allusion, to the notice of those who have honoured

here my lectures with their attendance. I refer, as you are aware,

to what 1 have called the calculus of quaternions, and have

applied to the solution of many geometrical and physical pro-

blems. However much this new calculus, or method, may natu-

rally have interested myself, there has existed, in my mind, until

the present time, a fear of seeming egotistical, if 1 should offer

to the attention of my hearers in this University an account of

such investigations or speculations of my own. Accordingly,

with the exception of a short sketch, in the year 1845, of the

application to spherical trigonometry of those fundamental con-

ceptions and expressions respecting Quaternions, which I had
been led to form in 1843, and had in the last mentioned year

communicated to the Royal Irish Academy, I have abstained
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from entering on the subject in former courses of Lectures :

—

unless it be regarded as an exception to this rule, that in the ex-

traordinary or supplementary Course which I delivered here, in

the winter of 1846, on the occasion of the theoretical discovery

of the distant planet Neptune, I ventured to introduce that theory

oi Hodographs, which, in the regular course for 1847, I after-

wards more fully developed ; and which had been suggested to

me as a geometrical interpretation, or construction, of some in-

tegrations of equations in physical astronomy whereto I had been

conducted by the Method of Quaternions. But since, on the

one hand, it has of late been formally announced (as it is stated to

me) that the Professor of Mathematics in this University intends

to lecture on that Method of mine in the winter of the present

year, in connexion, probably, with some of his own original re-

searches ; and to make it, or a part of it, one of the subjects of

his public Examination of the Candidates for Fellowship in the

summer of 1849 ; while, on the other hand, the theory itself has

been acquiring, under my own continued study, a wider exten-

sion, and perhaps also a firmer consistency : it seems to myself,

—

and by some mathematical friends, among whom the Professor

just referred to is included, I am encouraged to think that it is

their opinion too,—that the time has arrived, when instead of its

being an obtrusion for me to state here, in the execution of my

own professorial office, my views respecting Quaternions, it

would, on the contrary, be rather a dereliction of my duty, or a

blameable remissness therein, if I were longer to omit to state

those views in this place, at least by sketch and outline.

3. And inasmuch as I am not aware that any one has hi-

therto professed to detect error in any of those geometrical and

physical theorems to which the Method has conducted me ; while

yet I cannot but perceive it to be the feeling of several persons,

among my mathematical friends and acquaintances, that in the

existing state of the published expositions of my own views upon

the subject, some degree of obscurity still hangs over its logical

and metaphysical principles : so that the admitted correctness of

the results of this new Calculus may appear, even to candid and

not unfriendly lookers-on, to be, in some sense, accidental, rather

than necessary, so far as the conceptions and reasonings have

B 2
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hitherto been formally set forth by me : it therefore seems to be,

upon the whole, the most expedient plan which can be adopted

on the present occasion, that I should state, as distinctly and as

fully as my own limited powers of expression, and as your re-

maining time in this Course will allow, the fontal thoughts, the

primal views, the initial attitudes ofmind, from which the others

flow, and to which they are subordinated. And if, in the fulfil-

ment of this purpose, the adoption of a somewhat metaphysical

style of expression on some fundamental points may be at least

forgiven me, as inevitable, still more may I look to be excused,

if not approved of, should I take, even by preference, my illus-

trationsfrom Astronomy, in this Supplementary Course of Lec-

tures, which, as you know, arises out of, and is appended to a

Course more strictly and properly astronomical.

4. The object which I shall propose to myself, in the Lec-

ture of this day, is the statement of the significations, at least the

primary significations, which I attach, in the Calculus of Qua-

ternions, to the four following familiar marks of combination of

symbols,

which marks, or signs, are universally known to correspond, in

arithmetic and in ordinary algebra, to the four operations known
by the names of Addition, Subtraction, Multiplication, and

Division. The new significations of these four signs have a

sufficient analogy to the old ones, to make me think it convenient

to ?-etain the signs themselves; and yet a sufficient distinction

exists, to render a preliminary comment not superfluous: or

rather it is indispensable that as clear a definition, or at least ex-

position, of the precise force of each of these old marks, used in

new senses, should be given, as it is in my power to give. Per-

haps, indeed, I may not find it possible, to-day, to speak with

what may seem the requisite degree offulness of such exposition,

of more than the twofirst of these four signs ; although I hope

to touch upon the two last of them also.

5. First, then, I wish to be allowed to say, in general terms

(though conscious that they will ne^d to be afterwards particula-

rized), that I regard the two connected but contrasted marks or

signs,
,^ + and -,
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as being respectively ai\d primarily characteristics of the syn-

thesis and ANALYSIS ofa state ofa Progression, according as

this state is considered as being derived/ram, or compared with,

some other state of that progression. And, with the same kind

of generality of expression, 1 may observe here that I regard in

like manner the other pair of cpnnected and contrasted marks

already mentioned, namely,

X and -^,

(when taken in what I look upon as their respectively primary

significations), as being signs or characteristics of the correspon-

ding SYNTHESIS and ANALY'sis of a STEP, in any such progression

of states, according as that step is considered as derived from, or

compared with, some other step in the same progression. But I

am aware that this very general and preliminary statement can-

not fail to appear vague, and that it is likely to seem also obscure,

until it is rendered precise and clear by examples and illustra-

tions, which the plan of these Lectures requires that I should

select from Geometry, while it allows me to clothe them in an

Astronomical garb. And 1 shail»begin by endeavouring thus to

illustrate and exemplify the view here taken of the sign -, which

we may continue to read, as usual, minus, although the opera-

tion, of which it is now conceived to direct the performance, is

not to be confounded with arithmetical, nor even, in all respects,

with common algebraical subtraction.

6. I have said that I Tegard, primarily, this sign,

-, or Minus,

as the mark or characteristic of an analysis ofone state of a pro-

gression, when considered as compared with anoMer state of that

progression. To illustrate this very general view, which has

been here propounded, at first, under a metaphysical rather than

a mathematical form, by proceeding to apply it under the limi-

tations which the science of geometry suggests, let space be

now regarded as thefield of the progression which is to be stu-

died, and POINTS as the states of that progression. You will

then see that in conformity with the general view already enun-

ciated, and as its geometrical particularization, I am led to regard

the word " Minus," or the mark -, in geometry, as the sign or
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characteristic of the analysis of one geometrical position (in

space), as compared with another (such) position. The compa-

rison ofone mathematical point with another, with a view to the

determination of what may be called their ordinal relation, or

their relative position in space, is in fact the investigation of the

GEOMETRICAL DIFFERENCE of the two points Compared, in that

sole respect, namely, position, in which two mathematical points

can differ from each other. And even for this reason alone,

although I think that other reasons will offer themselves to your

own minds, when you shall be more familiar with this whole

aspect of the matter, you might already grant it to be not unna-

tural to regard, as it has been stated that I do regard, this study

or investigation of the relative position of two points in space, as

being that primary geometrical operation which is analogous to

algebraic subtraction, and which I propose accordingly to denote

by the usual mark (-) of the well-known operation last men-

tioned. Without pretending, however, that 1 have yet exhibited

sufficiently conclusive grounds for believing in the existence of

such an analogy, I shall now jjfoceed to illustrate, by examples,

the modes of symbolical expression to which this belief, or view,

conducts.

7. To illustrate first, by an astronomical example, the con-

ception already mentioned, of the analysis of one geometrical

position considered with reference to another, I shall here write

down, as symbols for the two positions in space which are to be

compared among themselves, the astronomical signs,

© and J ;

which represent or denote respectively the sun and earth, and are

here supposed to signify, not the masses, nor the longitudes, of

those two bodies, nor any other quantities or magnitudes con-

nected with them, but simply their situations, or the positions

of their centres, regarded as mathematical points in space. To
make more manifest to the eye that these astronomical signs are

here employed to denote points or positions alone, I shall write

under each a dot, and under the dot a Roman capital letter,

namely, a for the earth, and b for the sun, as follows

:

© S

(Fig- 1-)
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and shall suppose that the particular operation of what we have

already called analysis, using that word in a very general and

rather in a metaphysical than in a mathematical sense, which is

now to be performed, consists in the proposed investigation of
the position ofthe sun, b, with respect to the earth, a ; the latter

being regarded as comparatively simple and known ; but the

former as complex, or at least unknown and undetermined ; and

a relation being sought, which shall connect the one with the

other. This conceived analytical operation is practically and

astronomically performed, to some extent, whenever an observer,

as for example, my assistant (or myself), at the Observatory of

this University, with that great circular instrument of which you

have a model here, directs a telescope to the sun : it is completed,

for that particular time of observation, when, after all due micro-

metrical measurements and readings, aft^r all reductions and cal-

culations, founded in part on astronomical theory, and on facts

previously determined, the same observer concludes and records

the geocentric right ascension and declination, and (through the

semidiameter) the radius vector (or distance) of the sun. In

general, we are to conceive the required analysis of the position

of the ANALYZAND POINT B, With respect to the analyzer

POINT A, to be an operation such that, if it were completely per-

formed, it would instruct us not only in what direction the point

B is situated with respect to the point a; but also, at what

DISTANCE from the latter the former point is placed. Regarded

as a guide, or rule for going (if we could go) from one point to

the other,—which rule of transition would, however (according

to the general and philosophical, rather than technically mathe-

matical distinction between analysis and synthesis, on which this

whole exposition is founded), be jYse//"rather of a synfhetic than

of an analytic character,—the result of this ordinal analysis

might be supposed to tell us in thefirst place how we should set

OUT : which conceived geometrical act, oisetting out in a suitable

direction, corresponds astronomically to the pointing, or direct-

ing ofthe telescope, in the observation just referred to. And the

same synthetic rule, or the same result of a complete analysis,

must then be supposed also to tell us, in the second place, how

FAR WE ought TO GO, in Order to arrive at the sought point



8 ON QUATERNIONS.

B, after thus setting out from the given point a, in the proper

direction of progress (this direction being, of course, here con-

ceived to be preserved unaltered) : which latter part of the sup-

posed guidance or information corresponds to the astronomical

inquiry, how far off is the sun, or other celestial object, at which

we are now looking, with a telescope properly set ?

8. Now the whole sought result of this (conceived) com-

plete analysis, of the position b with respect to the position a,

whether it be regarded analytically as an ordinal relation, or

synthetically as a rule oftransition, is what I propose to denote,

or signify, by the symbol
B - A,

formed by inserting the sign minus between the two separate

symbols of the two points compared ; the symbol of the ana-

lyZand point b being written to the left of the mark -, and the

symbol of the analyzer point a being written to the right of the

same mark ; all which I design to illustrate by the following

fuller diagram,

" '-^^ '
(Fig. 2.)

B A

where the arrow indicates the direction in which it would be ne-

cessary to set out from the analyzer point, in order to reach the

analyzand point; and a straight line is drawn to represent or

picture ihe progression, of which those points are here conceived

to be, respectively, the initial and final states. We may then,

as often as we think proper, paraphrase (in this theory) the geo-

metfical symbol B - a, by reading it aloud as follows, though it

would be tedious always to do so :
" b analyzed with respect to

A, as regards difference ofgeometrical position." But for com-

mon use it may be sufficient (as already noticed) to retain the

shorter and more familiar mode of reading, " b minus a ;" re-

membering, however, that (in the present theory) the diffe-

rence thus originally or primarily indicated is one of position,

and not ofmagnitude : which, indeed, the context (so to speak)

will always be sufficient to suggest, or to remind us of, when-

ever the symbols A and b are recognised as being what they are

here Bupj)osed to be, namely, h\gx\% oi mathematical points.
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9. Had we chosen to invert the order of the comparison, or

of the analysis of these two positions a and b, as related to each

other, regarding the sun b as the given or known point, and the

earth a as the sought or unknown one ; we should have in that

case done what in fact astronomers do in those investigations re-

specting the solar system, in which the motion of the earth as a

planet about the sun, in obedience to Kepler's laws, is treated as

an established general fact which it remains to argue from, and

to develope into the particular consequences required for some

particular question : whenever, in short, they seek rather the

heliocentric position of the earth, than the geocentric position of
the sun ; and so propose to analyze what has been here called a

with respect to b, rather than b with respect to a. And it would

then have been proper, on the same general plan of notation, to

have written the opposite symbol a - B, instead of the former

symbol b - a ; and also to have inverted the arrow in the dia-

gram (because we now conceive ourselves as going rather from

the sun to the earth, than from the earth to the sun) ; which

diagram would thus assume the form,

® A-B S-^ (Fig. 3.)

B A

Thus B - a and a - b are symbols of two opposite (or mutually

inverse) ordinal relations, corresponding to two opposite steps

or transitions in space, and mentally discovered, or brought into

notice, by these two opposite modes of analyzing the relative po-

sition of one common pair of mathematical points, a and b ; of

which two opposite modes of ordinal analysis in space, with the

two inverse relations thence resulting, the mutual connexion and

contrast may be still more clearly perceived, if we bring them

into one view by this diagram :

© b - A i^ (Fig. 4.)

B a - B A

10. Using ayormq/"WORDS, suggested by this mode of sym-

bolical notation, I should not think it improper, and it would

certainly be at least consistent with the manner in which the sub-

ject is here viewed, to say that
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The Sun's ordinal relation to the Earth in space,

or, somewhat more concisely, that what is called in astronomy,

" The Sun's Geocentric Position" (including distance),

is expressed by, and is (in that sense) equivalent, or

(with the here proposed use of Minus) symbolically equal to

" The Sun's (absolute) Position in space,

Minus the Earth's (absolute) Position."

And then, of course, we should be allowed, on the same plan, to

say, conversely, that

" The Earth's Heliocentric Position" is equivalent or equal to

" The Earth's Position in space, minus the Sun's Position."

In the same new mode of speaking, the

" Position of Venus (in space), minus the Position of the Sun,"

would be a form of words equivalent to the usual phrase,

" Heliocentric Position of Venus."

And it is evident that examples of this sort might easily be mul-

tiplied.

11. According, then, to the view here taken of the word

" Minus," or of the sign -, if employed, as we propose to employ

it, in pure or applied geometry, this word or sign will denote

primarily an ordinal analysis in space ; or an analysis (or exa-

mination) oj" the position of a mathematical point, as compared

with the position of another such point. And because, according

to the foregoing illustrations, this sign or mark (Minus) directs

us to DRAW, or to conceive as drawn, a straight line connecting

the two points, which are proposed to be compared as to their

relative positions, it might, perhaps, on this account be called

the SIGN OF TRACTION. If we wish, however, to diminish, as

far as possible, the number qfneio terms, we may call it still, as

usual, the sign of subtraction ; remembering only, that, in the

view here proposed, there is no original (nor necessary) reference

whatever to any subtraction of one magnitude from ariother.

Indeed, it is well known to every student of the elements of

algebra that the word Minus, and the sign -, are, in those ele-

ments also, used very frequently to denote an operation which is
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by no means identical with the taking away of a partialfrom a

total magnitude, so as to find the remaining part : thus every

algebraist is familiar with such results as these, that

(Negative Four) Minus (Positive Three) Equals (Negative

Seven)

;

where, if mere magnitudes or quantities were attended to, and

the adjectives " Positive and Negative" dropped, or neglected,

and not replaced by any other equivalent words or marks, the

resulting number " seven" would represent the (arithmetical)

sum, and not the (arithmetical) difference, of the given numbers
" four" and " three." And as, to prevent any risk of such con-

fusion with a merely arithmetical difference, or with the result of

a merely arithmetical subtraction, it is usual to speak of an alge-

braical difference and of algebraical subtraction ; and thus to say,

for example, that " Negative Seven" is the " algebraical diffe-

rence" of " Negative Four" and "Positive Three;" oris ob-

tained or obtainable by the " algebraical subtraction" of the

latter from the former: so may (1 think) that other and more

geometrical sort of subtraction, which has been illustrated in this

day's Lecture, be called, not inconveniently, for the sake of re-

cognising a farther distinction or departure from the merely

popular use of the word (subtraction), and on account of its con-

nexion with a new and enlarged system oi symbols in geometry,

the SYMBOLICAL SUBTRACTION ofA from B: and the resulting sym-

bol of the ordinal relation of the latter point to the former, namely,

the symbol b - a, may conveniently be called, in like manner, a

SYMBOLICAL DIFFERENCE, It is in fact, as has been already

remarked, in this new system of symbols, an expression for what

may very naturally be called the geometrical difference ofthe two

points B and a ; that is to say, it is (in this system) a symbolfor

the difference ofthe positions ofthose two mathematical points

in space ; this difference being regarded as geometrically con-

structed, represented, or pictured, by the straight line drawn

from A to B, which line is here considered as having (what it has

in fact) not only a determined length, but also a determined direc-

tion, when the two points, a and b, themselves, are supposed to

have two distinct and determined (or at least determinable)-

positiotis.
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12. For my own part I cannot conceal that I hold it to be of

great and even y«wrfamen^a/ importance, to regard Pure Mathe-

matics as being primarily the science of order (in Time and

Space), and not primarily the science of magnitude : if we

would attain to a perfectly clear and thoroughly self-consistent

view of this great and widely-stretching region, namely, the ma-

thematical, of human thought and knowledge. In mathematical

science the doctrine of magnitude, or of quantity, plays indeed a

very important part, but not, as I conceive, the most important

one. Its importance is secondary and derivative, not pri-

mary and original, according to the view which has long ap-

proved itself to my own mind, and in entertaining which I think

that I could fortify myself by the sanction of some high autho-

rities : although the opposite view is certainly more commonly

received. If any one here should regard that opposite view,

which refers all to magnitude, as the right one; and should find

it impossible, or think it not worth the eflFort, to suspend even for

a while the habit of such a reference, he may still give for a mo-

ment a geometrical interpretation to the symbol b - a, not quite

inconsistent with that which has been above proposed, by regard-

ing it as an abbreviation for this other symbol bo - ao, where

AO and bo are lines, namely, the distances of the two points a

and B from another point o, assumed on the same indefinite right

line as those two points a, b, and lying beyond a with respect to

B, or situate upon the line ba prolonged through a, as in this

diagram

:

© (bo - ao) S i;—-—^ (Fig. 5.)
B B - a A O

Here the point o may be conceived, astronomically, to represent

a superior planet, for example, Jupiter (V), in opposition to the

Sun (and in the Ecliptic) ; and it is evident that if we knew, for

such a configuration, the distance ao in millions of miles, of the

Earth from Jupiter, and also the greater distance bo of the Sun
from the same superior planet at that time, we should only have
to subtract, arithmetically, the former distance ao from the latter

distance bo, for the purpose of finding the distance bo - ao, or

BA, in millions of miles, between the earth and the sun ; which
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distance, there might thus be some propriety or convenience, on

<A/s account, in denoting by the symbol b - a. That symbol,

thus viewed, might even be conceived to suggest a reference to

direction as well as distance ; because the supposed line oa, pro-

longed through A, would in the figure tend to b ; or, in astrono-

mical language, the jovicentric place of the Earth, in the

configuration supposed, would coincide, on the celestial sphere,

with the geocentric place of the Sun. But I am far indeed from

recommending to you to complicate the contemplation of the re-

lative position of the two points a and b, at this early stage of the

inquiry, by any reference of this sort to any third point o, thus

foreign and arbitrarily assumed. On the contrary, I would advise,

or even request you, for the present, to abstain from making, in

your own minds, such a reference to any foreign point; and to

accompany me, for some time longer, in considering only the in-

ternal relation of position of the two points, a and b, them-

selves: agreeing to regard this internal and ordinal relation of

these two mathematical points in space (to whatever extent it

may be found useful, or even necessary hereafter, to call in the

aid of other points, or lines, or planes, for the purpose of more

fully studying, and, above all, of applying that relation), as being

sufficiently denoted, at this stage, by one or other of the two

symbols, b - a or a - b, according as we choose to regard b or a

as the analyzand point, and a or b as the analyzer.

13. I ask you then to concede to me, at least provisionally,

and for a while, the privilege of employing this unusual mode of

geometrical notation, together with the new mode of geome-

trical INTERPRETATION above assigned to it : which modes, after

all, do not contradict Sinythmg previously established in scienti-

fic language, nor lead to any real risk of confusion or of ambi-

guity, in geometrical science, by attaching any new sense to an old

sign: since here the sign itself (b - a), as well as the significa-

tion, is new. The component symbol " minus" is indeed old, but

it is used here in a new connexion with other elementary sym-

bols ; and the new context, hence arising, gives birth to a new

COMPLEX SYMBOL, (b-a), in fixing the sense of which we may

and must be guided by analogy, and general considerations :
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old usages and received definitions failing to assign any deter-

mined signification to the new complex symbol thus produced.

The interpretation which I propose does no more than invest

with sense, through an explanation which is new, what had

seemed before to be devoid of sense. It only gives a meaning/,

where none had been given before : namely, to a symbolical

expression of the form " Point minus Point." This latteryor?M

of words, and the geometrical nota^iow b - a to which it cor-

responds (a and B being still used as signs ojf mathematical

points), had hitherto, according to the received and usual modes

of geometrical interpretation, no meaning : but you will, per-

haps, admit that these two connected forms of spoken and

written expression v!exe,for that very reason, only \h<imorefree

to receive any new and definitional sense : especially one which

you have seen to admit of beng suggested by so simple an ana-

logy to subtraction as that which the conception ofdifference in-

volves. It will, however, of course be necessary, for consistency,

that we carefully adhere to such new interpretation, when it has

once been by definition assigned : unless and until we find rea-

sons (if such reasons shall ever be found) which may compel its

formal abandonment.

14. You see, then, to recapitulate briefly the chief part of

what has been hitherto said, that I invite you to conceive the

RELATIVE rosiTioN of any sought point b of space, when com-

pared with any given point a, as being (in what appears to me
to be a very easily intelligible and simply symbolizable sense)

the GEOMETRICAL DIFFERENCE OF THE ABSOLUTE POSITIONS of

those two mathematical points: and that I propose to denote it,

in this system of symbolical geometry, by writing " the symbol

ofthe sought point, minus the symbol ofthe given point." Such

is, in my view, the analytic aspect of the compound symbol

B - A,

if the component symbols a and b be still understood to denote

points : such is the primary signification which I attach in geo-

metry to the interposed mark -, when it is regarded as being

what I have already called, in general terms, a characteristic

OF ORDINAL analysis.
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15. But as you have already also partly seen, the same

symbol,

B - A,

may be viewed in a synthetic aspect also. It may be thought

of, not only as being the result ofa past analysis, but also as

being the guide to a future synthesis. It may be regarded as

not merely answering, or as denoting the answer, to the question :

In what Position is the point b situated with respect to the

point A ? but also this other, which indeed has been already

seen to be only the former question differently viewed: By what

Transition may b be reached, if we set out from a ?—And to

this other question also, or to this other view of the same^n<a/

Question, where, I consider the same symbol, b - a, to be a

fit general representation of the Answer : it being reserved for

the context to decide, whenever a decision may be necessary,

which of these two related although contrasted views is taken

at any one time, in any particular investigation. In its synthetic

aspect, then, I regard the symbol b - a as denoting " the step

to B from A :" namely, that step by making which, Jrom the

given point A, we should reach or arrive at the sought point b ;

and so determine, generate, mark, or construct that point.

This step (which we shall always suppose to be a straight line)

may also, in my opinion, be properly called a vector ; or more

fully, it may be called "the vector ofthe point ^,from the point

A :" because it may be considered as having for its ofiRce, func-

tion, work, task, or business, to transport or carry (in Latin,

vehere) a moveable point, from the given or initial position a, to

the sought or final position b. Taking this view, then, of the

symbol b - a, or adopting now this synthetic interpretation of it,

and of the corresponding form of words, we may say, generally,

for any such conceived rectilinear transport of a moveable point

in space, that

" Step equals End of Step, minus Beginning of Step ;"

or may write

:

«« Vector = (End of Vector) - (Beginning of Vector)."

16. Thus, in astronomy, whereas, by the mode oi analytic

interpretation already explained, the phrase,
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" Sun's Position miims Earth's Position,"

has been regarded (in § 10) as equivalent to the more usual form

of words, " Sun's Geocentric Position" (including geocentric dis-

tance) ; we shall now be led, by the connected mode of synthetic

interpretation just mentioned, to regard the same spoken phrase,

or the written expression, © - S (where the two astronomical

marks, © and J , are still supposed to be used to denote the si-

tuations alone of the two bodies which they indicate), as being

equivalent, in this other view of it, to what may be called the

" Sun's Geocentric Vector:"

which DIFFERS from what is called in astronomy the

" Geocentric Radius- Vector of the Sun,"

by its INCLUDING DIRECTION, as uiell as length, as an element

in its complete signification. In like manner, that equally long

but opposite line, which may be called, in the same new mode of

speaking, the " Earth's Heliocentric Vector," may be denoted

by the opposite symbol, S - ©, or expressed by the phrase,

" Earth's Position, minus Sun's Position ;'' the Heliocentric Vec-

tor of Venus will be, on the same plan, symbolically equal or

equivalent to the Position of Venus minus the Position of the

Sun : and similarly in other cases.

17. To illustrate more fully the distinction which was just

now briefly mentioned, between the meanings of the " Vector"

and the " Radius Vector" of a point, we may remark that the

Radius-Vector, in astronomy, and indeed in geometry also,

is usually understood to have only length ; and therefore to be

adequately expressed by a single number, denoting the magni-

tude (or length) of the straight line which is referred to by this

usual name (radius-vector), as compared with the magnitude of

some standard line, which has been assumed as the unit of length.

Thus, in astronomy, the Geocentric Radius- Vector of the Sun

is, in its mean value, nearly equal to ninety-five millions of miles :

if, then, a million of miles be assumed as the standard or unit of

length, the sun's geocentric radius-vector is equal (nearly) to,

or is (approximately) expressible by, the number ninety-Jive

:

in such a manner that this single number, 95, with the unit here

supposed, is (at certain seasons of the year) »/ull, complete, and
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adequate representation or expression for that known radius-

vector of the sun. For it is usually the sun itself (or more

fully the position of the Sun's centre), and not the Sun's radius-

vector, which is regarded as possessing also certain other {polar)

co-ordinates of its own, namely, in general, some two angles,

such as those which are called the Sun's geocentric right-ascen-

sion and declination ; and which are merely associated with the

radius-vector, but not inherent therein, nor belonging thereto

;

just as the radius-vector is itself in turn, associated with the

right ascension and declination, but not included in them. Those

two angular co-ordinates (or some data equivalent to them) are

indeed required to assist in the complete determination of the

geocentric position of the sun itself : but they are not usually

considered as being in any manner necessary for the most com-

plete determination, or perfect numerical expression, of the

Sun's Radius-vector. But in the new mode of speaking which

it is here proposed to introduce, and which is guardedfrom con-

fusion with the older mode by the omission of the word " ra-

dius," the vector of the sun has {itself) direction, as well as

length. It is, therefore, not sufficiently characterized by any

SINGLE NUMBER, such as95 (were this even otherwise rigorous)
;

but REQUIRES, for its COMPLETE NUMERICAL EXPRESSION, a.

SYSTEM OF THREE NUMBERS; such as the usual and well-known

rectangular or polar co-ordinates of the Sun or other body or

point whose place is to be examined : among which one may

6e what is called the radius-yectov; but if so, that radius must

(in general) be associated with two other polar co-ordinates,

or determining numbers of some kind, before the vector can be

numerically expressed. A vector is thus (as you will afterwards

more clearly see) a sort of natural triplet (suggested by

Geometry) : and accordingly we shall find that quaternions

offer an easy mode of symbolically representing every vector by a

trinomial form {ix^jy^kz) ; which form brings the conception

and expression of such a vector into the closest possible connexion

with Cartesian and rectangular co-ordinates.

18. Denoting, however, for the present, a vector of this sort,

or a rectilinear step in space from one point a to another point b,

not yet by any such trinomial or triplet form, but simply (for

c
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conciseness) by a single and small Roman letter, such as a ; and

proceeding to compare, or equate, these two equivalent expres-

sions, or equisignijicant symbols, a and b - a ; we are conducted

to the EQUATION,
B - A = a

;

which is thus to be regarded as here implying merely that we

have chosen to denote, concisely, by the simple symbol, or single

letter, a, the same step, or vector, which has also been other-

wise denoted, less briefly, but in some respects more fully and

expressively, by the complex symbol b - a. Such is, at least,

the synthetic aspect under which this equation here presents it-

self; but we may conceive it to occur also, at another time and in

another connexion, under an analytic aspect ; namely, as signify-

ing that the simple symbol a was used to denote concisely the

same ordinal relation of position, which had been more fully

denoted by the complex symbol b - a. Or we may imagine the

equation offering itself under a mixed (analytic and synthetic)

aspect; and as then expressing ih^perfect correspondence which

may be supposed to exist between that relative position of the

point B with respect to the point a, which was originally indi-

cated by B - a, and that rectilinear transition, or step, from a to

B, which we lately supposed to be denoted by a. Between these

different modes of interpretation, the context would always be

found sufficient to decide, whenever a decision became necessary.

But I think that we shall find it more convenient, simple, and

clear, during the remainder of the present Lecture, to adhere to

the synthetic view of the equation b - a = a; that is, to regard it

as signifying that both its members, b - a and a, are symbolsfor

one common step, or vector. And generally I propose to employ,

henceforth, the small Roman or Greek letters, a, b, a', &c., or a, /3,

a, &c., with or without accents, as symbols ofsteps, or of vectors,

19. But at this stage itis convenient to introduce the employ-

ment of another simple notation, which shall more distinctly and

expressly recognise and mark that synthetic character which we
have thus attributed to a, considered as denoting the step from

A to B ; in virtue of which synthetic character we have regarded

the latter point B as constructed, generated, determined, or

brought into view, by applying to, or performing on, the former
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point A, that act of vection or of transport, in which the

agent or operator is the vector denoted by a. We require a

SIGN OF vection: a characteristic of the operation of ordinal

synthesis, by which we have conceived a sought position b in

space to be consti-ucted, as depending on a given position a, with

the help of a given vector, or ordinal operator, at of the kind con-

sidered above. And such a characteristic of ordinal syn-

thesis, or sign ofvection, is, on that general plan which was

briefly stated to you early to-day (in art. 5), supplied by the mark

+, or by the word Plus, when used in that new sense which has

already been referred to in this Lecture, and which may be re-

garded as suggested by Algebra, though it cannot (strictly speak-

ing) be said to be borrowedfrom Algebra, at least as Algebra is

commonly viewed. For we shall thus be led to write, as another

and an equivalentform of the recent equation b - a = a, this other

equation, in which Plus is introduced, and which is, in ordinary

Algebra also, a transformation of the equation lately written :

B = a + A ;

while yet, in conformity with what has been already said, we shall

now regard it as being the primary signification of this last equa-

tion, or formula, that " the position denoted by b may be

REACHED (and, in that sense, constructed), by making the

transition denoted by a, from the position denoted by a."

20. We shall thus be led to say or to write generally, with

this (which is here regarded as being the) primary signification

of Plus in Geometry, that for any vector or rectilinear step in

space,

" Step + Beginning of Step = End of Step;"

or, " Vector + Beginning of Vector = End of Vector:"

the mark + being in fact here regarded, by what has been already

said, as being primarily the sign ofvection, or the characteristic

of the application ofa step, or of a vector, to a given point con-

sidered as the Beginning (of the step, or vector), so as to generate

or determine another point considered as the End. In relation

to astronomy, this phraseology will allow us to say that

«' Sun's Position = Sun's Geocentric Vector + Earth's position ;"

c 2
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and the assertion is to be thus interpreted : that if a straight line,

agreeing in length and in direction with the line or step in space

which we have called in this Lecture the Sun's Geocentric Vector,

were applied to the position occupied by the Earth, so as to begin

there, this line would terminate at the Sun. In exactly the same

way, we may say that the " Position of Venus in space" is sym-

bolically expressible as the " Heliocentric Vector of Venus, Plus

the Position of the Sun in Spape ;" or as the " Geocentric Vec-

tor of Venus, plus the Position of the Earth ;" and similarly in

other cases.

21. All this, as you perceive, is very simple and intelligible;

nor can it ever lead you into any difficulty or obscurity, if you

will only consent to use from the outset, and will take pains to

remember that you use, the signs in the way which I propose

;

although that way may not be, or rather is certainly not, alto-

gether the same with that to which you are accustomed. Yet

you see that it is not in contradiction to any received and estab-

lished use of symbols in Geometry, precisely because no meaning

is usually attached to any expression of the form, " Line plus

point." (Compare 13). Such an expression would be simply un-

meaning, according to common usage ; in short, it would be

nonsense : but I ask you to allow me to make it sense, by giving

to it an INTERPRETATION ; which must indeed remain so far a

DEFINITION, as that you may refuse to accompany me in assign-

ing to the expression in question the signification here proposed.

Yet you see that I have sought at least to present that definition,

or that interpretation, as divested oj"a purely arbitrary character ;

by shewing that it may be regarded as the mental and symbolic

counterpart ofanother definitional interpretation, which has al-

ready been assigned in this Lecture for another form of spoken

and written expression ; namely, for the form, " Point minus

Point :" which would, according to common usage, be exactly

as unmeaning, not more so, and not less, than the other. If you

yield to the reasons, or motives of analogy,which have been already

stated, or suggested, for treating the Difference of two Points

as a Line, it cannot afterwards appear surprising that you should

be called upon to treat the Sum of a Line and Point, as being

another Point.

22. Most fully do I grant, or rather assert and avow, that the
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primary signification which I thus propose for + in Geometry, is

altogether distinct from that of denoting the operation of com-

bining two partial magnitudes, in such a manner as to make up

one total magnitude. But surely every student of the elements

of Algebra is perfectly ^»j!72ar with another use ofplus, which

is not less distinct from such mexe\y quantitative aggregation, or

simple arithmetical addition. When it is granted, as you all

know it to be, that " (Negative Seven) + (Positive Three) = (Ne-

gative Four)," where the mark + is still read as " Plus ;" and

when this operation of combination is commonly called, as you all

know that it is called, " Algebraical Addition," and is said to

produce an " algebraic sum," although the resulting number Four

(if we abstract from the adjectives " positive" and " negative")

is the arithmetical difference, and not the arithmetical sum, of

the numbers Seven and Three : there is surely a sufficient depar-

ture, thus authorized already by received scientific usage, from

the merely />o/>M/ar meanings of the words " addition," " sum,"

and " plus," to justify me, or to plead at least my excuse, if I

venture on another but scarcely a greater variation from the same

first or popular meanings of those words, as indicating (in com-

mon language) increase of magnitude ; and if 1 thus connect

them, from the outset of this new symbolical geometry, with

CHANGE OF POSITION in spacc.

23. It seems to me then that it ought not to appear a strange

or unpardonable extension of a phraseology which has already

been found to require to be extended, in passing from arithmetic

to algebra, if I now venture to propose the name of symbolical

ADDITION for that operation in Geometry, which you have seen

that I denote in writing by the sign + ; and if I thus speak, for

example, in the recent case, of the Symbolical Addition of a to a,

which operation has been seen to correspond to the composition,

ox putting together, in thought and in expression, and therefore

to the (conceived or spoken or written) synthesis, of the two

CONCEPTIONS, ofa STEP <i&) and the beginning (a) of that step:

and NOT {primarily) to any synthesis or aggregation ofmagni-

tudes. Thus if we now agree to give to the beginning of the

step, or to the initial position, the name vehend {punctum ve-

hendum, the point about to be carried), because this is the point
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on which we propose to perform the act of vection ; and if in

lilte manner the point which is the end of the step, or the final

position (the punctum vectum, the point which in this view is re-

garded as having been carried), be shortly called the vectum ;

while the step itself has been already named the vector : we

may then establish a technical and generalformula for such sym-

bolical addition in geometry, which will serve to characterize and

express its nature, by saying that, in general,

<' vectum = vector + VEHEND ;"

while the corresponding generalformula for symbolical subtrac-

tion in geometry, with the same new names, will be the following :

" vector = VECTUM - VEHEND."

Nor shall I shrink from avowing my own belief that this general

formula, Vectum = Vector + Vehend, may be considered as a

TYPE, representing that primary synthesis in Geometry, which,

earlier and more than any other, ought to be regarded as ana-

logous TO ADDITION, in that science, and deserves to be denoted

accordingly : namely, the mental and symbolical addition (or

application) ofa vector to a vehend, not at all as parts of one

magnitude, but as elements in one construction, in order to

generate as their (mental and symbolical) swn, or as the result

or THIS vection, or transport, a new position in space, which

may be thought of as a punctum vectum, or carried point ; this

VECTUM being simply (as has been seen) the end of that line, or

VECTOR, OT carrying path, of which the vehend is the beginning.

24. These relations of end and beginning may, of course, be

interchanged, while the straight line ab retains not only its

length, but even its situation in space, although it% direction mW
thus come to be reversed: for we may conceive ourselves as re-

turning from B to A, after having gone from a to b. This path

ofreturn, this backward step, or reversed journey, considered as

having for its office to carry back (revehere) a moveable point

from B to A, after that point has been first carried by the former

VECTOR from a to b, may naturally be called, by analogy and

contrast, a revector ; and then we shall have this general for-

mula of revection,

REVECTOR + vectum = VEHEND;
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together with this other connected formula

:

VEHEND - VECTUM = REVECTOR.

The symbol for this revector will thus be a - b, if the vector be

still denoted by the symbol b - a ; that is to say, these two oppo-

site symbols,

B - A and A - B,

which, in their analytic aspect, were formerly regarded by us

(see 9) as symbols of two opposite ordinal relations in space,

corresponding to two opposite steps, are now, in their synthetic

aspect, considered as denoting those two opposite steps them-

selves ; namely, the Vector and Revector. With reference to

the ACT OF REVECTiON, the point b, which was formerly called

the vectum, might now be called the revehend ; and then the

point A, which was the vehend before, would naturally come to

receive the name revectum. But I am not anxious that you
should take any pains to impress these last names on your me-
mory ; though I think that it may have been an assistance, rather

than a distraction, to have thus briefly suggested them in passing.

25. If in the general formula lately assigned (in 23) for

symbolical addition in geometry, namely the formula, vector +

vehend = vectum, we substitute for vector its value, or equivalent

expression, namely, vectum - vehend, as given by the corres-

ponding general formula already assigned (in same art. 23) for

symhoYic'dX subtraction ; we shall thereby eliminate (or get rid

of) the ivord " vector," in the sense that this word will no longer

appear in the result of this subtraction ; which result will be the

equation,

Vectum - Vehend + Vehend = Vectum.

In symbols, the corresponding elimination of the letter a, be-

tween the two equations,

B-A = a, a + A = B, (18,19)

gives, in like manner, the result: b-a + a = b. In ordinary

Algebra, not only does the same result hold good, but it is said

to be identically true, and the equation which expresses it is

called an identity ; and in the present Symbolical Geometry it

may still be called by that name : in the sense that its truth does

not depend, in any degree, on the positions of the twopoints, a, b ;
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but only on the general connexion, or contrast, between the two

OPERATIONS ofordinal analysis and synthesis, which are here

marked by the signs- and +. For the formula b-a + a = b, or

more fully, (b - a) + a = b, may be considered as expressing, in

the present system of symbols, that if the position a be operated

on (synthetically) by what has been called the symbolical ad-

dition (or application) of a suitable vector, namely b - a, it will be

changed to the position b ; such suitable operator (b - a) being

precisely that vector which is conceived to have been previously

discovered (analytically) by what we have called the symbolical

subtraction of the proposed vehend a from the vectum b. Until

the points a and b are in some degree known, or particularized,

the line b - a must also be unknown, or undetermined: yet must

this line be such (in virtue of its definition, or of the rule for its

construction) as to conduct, or to be capable of conducting,//-ow

the point a to the point B. We know this, and this is all we

know, about that line, in general : and we express it by the ge-

neral equation or identity, B - a + A = B.

26. In like manner, if we eliminate the word " Vectum," or

the letter B, between those general equations or formulse of sym-

bolical addition and subtraction in geometry which have been

already assigned, we arrive at this other identity.

Vector + Vehend - Vehend = Vector ;

or in symbols,

a+A-A=a; or more fully, (a + a) - a = a :

which must hold good for any vehend a, and any vector a. The

same result would evidently be true, and identical, in ordinary

Algebra also : but it is here to be interpreted as signifying that

if, from any point a, we make any rectilinear step a, and then

compare the end a + a of this rectilinear step with the beginning

A, we shall be reconducted, by this analysis of the relative posi-

tion of these two points, to the consideration and determination

of the same straight line a, which is supposed to have been

already employed in the previous construction, or synthesis.

You will find hereafter that 7nany other instances occur, on which,

however, it will be impossible in these Lectures long to delay,

or perhaps often even to notice them at all, where equations or
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results, that are true in ordinary Algebra, hold good also in this

new sort of Symbolical Geometry ; although generally regarded

in new lights, and bearing new (if not enlarged) significations.

27. In all that has yet been said respecting the acts of " vec-

tion" and " revection," or the lines " vector" and " revector,"

we have hitherto had occasion to consider only two points ;

namely, those which have been above named the " vehend" (or

the revectum) a, and the " vectum" (or revehend) b. Let us

now introduce the consideration of a third point, c, which we

shall not generally suppose to be situated on the straight line ab,

nor on that line either way prolonged ; but rather so that the

three points abc may admit (for the sake of greater generality)

of being regarded as the three corners of a triangle. And let us

conceive that the former act of vection, whereby a moveable

point was before imagined to have been carried from the position

A to the position b, is now Jbllowed by another act of the same
kind, that is to say, by an immediately successive vection, which

we shall call on that account (from the Latin word provehere)

a PROVECTION : whereby the same moveable point is now car-

ried FARTHER, though not (generally) in the same straight line,

but along a new and different straight line ; and is in this manner

transported from the position b to the position c. We shall thus

be led to consider the line c - b as being a new and successive

vector, which may conveniently be called, on that account, a

PKOVECTOR : the point b, which had been named the Vectum,

may now be also named the frovehend, with reference to the

new act ofprovection here considered, and which begins where

the old act of vection ends : while, with reference to the same

new act of transport, or provection, the point c will naturally

come to be called (on the same plan) the provectum. And

thus we shall have, for any such successive vection, the formula,

Provector + Vectum = Provectum ;

as also the connected formula,

Provector = Provectum - Vectum.

It is worth noticing here, that if we substitute, in the first of these

two new equations, for the word " Vectum," its value, or equi-
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valent expression, namely, " Vector + Vehend" (23), we shall

be thereby led to write this other_^;'mM/a ofprovection:

Provector + Vector + Vehend = Provectum.

28. In symbols, if we write the equation

c - B = b,

so that the small Roman letter b shall here be used as a short

symbol for the provector, while a remains, as before, a symbol for

the vector, and satisfies still the equation (18),

B - A = a;

we shall then have not only, as before (19),

B = a + A,

but also, in like manner,

C =b+ B.

And then, by eliminating b, we shall have also this other for-

mula,
C = b+ a + a;

or more fully,

C = b + (a + a).

We may also write, without introducing' the symbols a and b,

c = (c - b) + {(b - a) + a) ;

because the second member of this equation may be reduced (by

25) to (c - b) + B, and therefore to c ; or, more concisely, we

may write,

c = (c - b) + (b - a) + A

;

which gives again, in words,

Provectum = Provector + Vector + Vehend.

The last symbolic formula (with a, b, c) is in common Algebra

an identity ; and we see that is here also at least a general equa-

tion (of provection), which holds good for any three points of

space, A, B, c, independently ofthe positions of those points, and

in virtue merely of the laws of composition and interpretation of

the symbols, or in virtue of the relations between the (conceived)

operations which the signs denote : so that it may perhaps be

called here (compare 25) a geometrical identity.

29. Astronomically, we may conceive c to denote the position

of the centre of a planet ; while a and b denote still the positions
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of the centres of the earth and sun : and then, while the vector

(b - a) is still the geocentric vector of the sun, the provector

(c - b) will be the heliocentric vector of the planet. And in a

phraseology already explained, we shall not only have as before

(20) the equation,

Sun's position = Sun's geocentric vector + Earth's position,

and in like manner.

Planet's position = Planet's heliocentric vector + Sun's position,

but also, by a combination of these two assertions, or phrases, or

equations, which combination is efiFected by substituting in the

latter of them the equivalent for the " Sun's position" which is

supplied by the former, we shall be able to conclude the correct-

ness of the following other assertion (in this general system of

expressions) :

" Planet's position = Planet's Heliocentric Vector

+ Sun's Geocentric Vector + Earth's Position."

30. Instead of thus imagining a moveable point to be carried

in succession, first along one straight line (s - a) from a to b, and

then along another straight line (c - b) from B to c, which lines

have been supposed to be in general two successive sides, ab, bc,

of a triangle abc ; we may conceive the moveable point to be

CARRIED ACROSS, by the straight line (c - a) or along the third

side, or base, ac, of the same triangle, from the original position

A to the final position c. And this new act of transport may be

called a transvection (from the Latin word transvehere, to carry

across) ; while the line c - a, when viewed as such a cross-car-

rier, may be called a transvector : and the points a and c,

which were before termed the Vehend and the Provectum, will

now come to be called, with reference to this new act of trans-

port, or transvection, the transvehend and the transvectum,

respectively. Comparing then the names of the three points, we

shall have the following new equations, or expressions ofequiva-

lence between them :

Transvehend = Vehend = a ; "^

Provehend = Vectum =b; >

Transvectum = Provectum = c : J

each corner of the triangle abc being thus regarded in two dif-
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ferent views, or presenting itself in two different connexions, and

receiving two names in consequence thereof, on account of its

relations to some two out of the three different acts, or operations,

of vection, provection, and transvection. And by a suitable se-

lection among these names for a and c, the following equation

(see 25),

c = (c - a) + A,

may now be translated as follows

:

Provectum = Transvector + Vehend.

31. Combining this result with another recent expression for

the Provectum (at end of 27), we see that we may now enun-

ciate the equation

:

Provector + Vector + Vehend = Transvector + Vehend ;

each member of this last equation being an expression for one and

the same point, namely the Provectum, or the point c. And
when this equation had once been enunciated, under the form

just now stated, an instinct of language, which leads to the

avoidance of repetition in ordinary expression, and so to the

abridgment of discourse, when such abridgment can be attained

without loss of clearness or of force, might of itself be sufficient

to suggest to us the suppression of the words " plus vehend,"

which occur at the end of each member of the equation (+ being

always read as plus). In this way, then, we may be led to enun-

ciate the following shorter formula :

" Provector + Vector = Transvector ;"

this latter formula (which we shall find to be a very important

one) being thus considered, here, as nothing more than an abbre-

viation of that longer equation, from which it is supposed to

have been in this way derived.

32. In symbols, if we write

c - A = c

thus making c a symbol of the transvector ; and if we compare

the expression hence resulting for c, namely (see 19),

c = c + A,

with the expression already found (in 28),

c = b+ a+ a;
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we shall thus be led to the equation,

b+a+A=c+A,
which we may (in like manner) be tempted to abridge, by the

omission of + a at the end of each of its two members ; and so to

reduce it to the shorter form,

b + a = c,

which agrees with the recent result, Provector+ Vector = Trans-

vector (31); because a, b, c denote here the vector, pro vector,

and transvector, respectively. Or, without introducing these

symbols a, b, c, if we compare a recent expression for c, namely

(see 28),

c = (c - b) + (b - a) + A,

with this other expression (compare 25),

C = (c - a) + A,

and suppress + a in both, as before, we shall thus be conducted

to the general equation, or geometrical (as well as algebraical)

IDENTITY :

(c - b) + (B - a) = (c - a) ;

which again agrees with the result (of 31),

" Provector + Vector = Transvector."

33. In a phraseology suggested by astronomy, and partly em-

ployed already in this Lecture, we have on the one hand (as in

29),

Planet's Position = Planet's Heliocentric Vector

+ Sun's Geocentric Vector + Earth's Position ;

and on the other hand (see 20),

Planet's Position = Planet's Geocentric Vector + Earth's Position.

Comparing these two different expressions for the position of the

planet in space, and suppressing a part which is common to both,

namely, the words

" Plus Earth's Position,"

we shall be led to say that

" Planet's Heliocentric Vector

+ Sun's Geocentric Vector

= Planet's Geocentric Vector:"

where the geocentric vector of the planet is to be regarded as the

transvector in the triangle, if the planet's heliocentric vector be
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the provector, while the geocentric vector of the sun is the origi-

nal vector itself.

34. Since (by 27),

Provector = Provectum - Vectum,

while (by 30 and 23),

Provectum = Transvector+ Vehend,

and
Vectum = Vector + Vehend,

we have the equation

Provector = (Transvector 4- Vehend)

- ( Vector + Vehend) ;

which may conveniently be abridged to the following formula :

" Provector = Transvector - Vector."

Thus, in astronomy, we may say that

" Planet's Heliocentric Vector

= Planet's Geocentric Vector

- Sun's Geocentric Vector
;"

regarding the second member of this equation as an abridgment

for the following expression :

(Planet's Geocentric Vector + Earth's Position)

- (Sun's Geocentric Vector + Earth's Position) ;

which we know to be equivalent, in the phraseology of the pre-

sent Lecture, to

" Planet's Position - Sun's Position
;"

and therefore to " Planet's Heliocentric Vector," as above.

35. In symbols, because (by 28, 32, 19),

b = c-B, c = <=+A, B = a+A,

we have the equation

b = (c + a) - (a + a)
;

which may be abridged to the following

:

b = c - a.

This signification of c - a allows us also to extend to geometry

the algebraical identity :

(c - a) - (b - a) = (c - b)
;

and generally it will be found to prepare for the establishment of

a complete agreement between the rules of ordinary Algebra and
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those of the present Symbolical Geometry, so far as addition and

subtraction are concerned. Thus, if we compare the two equa-

tions (32, 35),
c=b+a, ij

= c-a.

we find that generally, for any two co-initial vectors, a, c, we
may write (as in ordinary Algebra),

(c - a) + a = c

;

and that for any two successive vectors, a, b, we have also (as in

Algebra)

:

(b + a) - a = t
;

which new geometrical identities are of the same forms as some

others that were lately considered (in 25, 26), namely,

(b - a) + A = B ; (a + a) - A = a.

Indeed they have with these a very close connexion, as regards

their significations too, arising out of the way in which they have

been above obtained ; yet because a, b, c have been used as

symbols ofpoints, buta, b, c as symbols of lines, it would have

been illogical and hazardous to have confounded these two pairs

of equations, or identities, with each other ; or to have regarded

the truth of the one pair as an immediate consequence of the

truth of the other pair.

36. We see, however, that the original view which has been

proposed, in the present Lecture, for the primary significations

of + and - in geometry, as entering^r*^ into expressions of the

(unusual) forms " Line plus Point" and " Point minus Point,"

conducts, simply enough, when followed out, to interpretations

of expressions of the (more common) forms " Line plus Line,"

and ^^ Line mhius Line:" and that thus, from what we have re-

garded as the PRIMARY ACTS ofsynthesis and analysis (of points)

in geometry, arise a secondary synthesis and a secondary

ANALYSIS (of lines), which correspond to the composition and

decomposition ofvections (or of motions) ; and which are sym-

bolized by the two general formulae already assigned (in 31, 34),

namely,
Transvector = Provector + Vector,

and
Provector = Transvector - Vector.

The first formula asserts that of any two successive vectors,
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or directed lines (the second or added line being conceived to

begin where the first line ends), the geometrical sum is the line

drawn from the beginning of the first to the end of the second

line. The second formula asserts, that of any two co-initial

vectors (or directed lines), the geometrical difference is the

line drawn from the end of the subtrahend line to the end of the

line from which it is subtracted. The sum and the difference of

two directed lines are thus two other lines having direction ; and

the geometrical rules for determining them are found to co-

incide in THIS theory, as in several others also, with the rules

of COMPOSITION and decomposition of motions {or offorces).

For, although it would be unsuited to the plan and limits of

these Lectures to enter deeply, or almost at all, into the history

of those speculations to which their subject is allied, yet it seems

proper to acknowledge distinctly here, as I am very happy to do,

that (whatever may be thought of the foregoing general views

respecting + and -), the recognition of an analogy between

ADDITION and SUBTRACTION ofdirected lines, on the one hand,

and composition and decomposition o/"motions on the other hand,

is nothing private or peculiar to myself. Indeed, the existence

of this fundamentally important analogy has, in different ways,

presented itself to several other thinkers, starting from various

points of view, in many parts of the world, during the present

century : so much so, that it may by this time be well nigh con-

sidered to have acquired, in the philosophy of geometrical science,

what I cannot doubt its possessing still more fully in time to

come, the character of an admitted and established truth, a fixed

and settled principle. But of those more novel and hitherto less

participated views, respecting the multiplication and division

of such directed lines in geometry, on which the theory of qua-

ternions is founded, 1 perceive that our time requires that we
should postpone the consideration to the next Lecture of this

Course : for which, however, I indulge myself meanwhile in

hoping, that what has been laid before you to-day will be found

to have been an useful, and indeed a necessary preparation.
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37. You have had laid before you, Gentlemen, in the fore-

going Lecture, a statement or at least a sketch of those general

views, respecting the primary signijications of the marks

+ and -,

or of the words plus and minus, with which views, in the Cal-

culus of Quaternions, I connect the two corresponding opera-

tions oi Addition and Subtraction in Geometry. With me, as

you have seen, the primary geometrical operation which has been

denoted by the usual mark -, and the one for which I have ven-

tured to employ the familiar name subtraction, though guarded

sometimes by the epithet symbolical, consists in a certain ordinal

Analysis of the position of a mathematical point in space. This

Analysis is performed, as you have seen, through the comparison

of the position of the point proposed for inquiry, with the posi-

tion oi another mathematical point; and it \s pictured, or repre-

sented, by the traction (or drawing) of a straight line, from

the given to the sought position; from the analyzer point a, to

the analyzand point b : from the one which is regarded as being

comparatively simple, familiar, or given, to the other which is

(for the purposes of the inquiry) accounted to be comparatively

complex, unknown, or sought. In this way, the symbol b-a
has come with us to denote the straight line from a <o b ; the

point a being (at first) considered as a known thing, or a datum

in some geometrical investigation, and the point b being (by

contrast) regarded as a sought thing, or a qucesitum : while b-a
is at first supposed to be a representation of the ordinal relation

in space, of the sought point B to the given point a; or of the

geometrical difference of those two points, that is to say, the

difference of their two positions in space; and this difference is

D
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supposed to be exhibited or constructed by a straight /me. Thus,

ill the astronomical example of eartli and sun, the line b - a has

been seen to extend from the place ofo/iservation a (the earth),

to the place of the observed body b (the sun); and to serve to

CONNECT, at least in thought, the latter position with the former.

38. Again you have seen that with me the primary geome-

trical operation denoted by the mark +, and called by the name

ADDITION, or more fully, symbolical Addition, consists in a cer-

tain correspondent ordinal synthesis of the position of a mathe-

matical point in space. Instead oicomparing such a position, b,

with another position a, we now regard ourselves as deriving the

one position from the other. The point b had been before a

punctum analyzandum ; it is now a punctum constructum. It

was lately the subject of an analysis; it is now the result of a

synthesis. It was a mark to be aimed at ; it is now the end of a

flight, or of a journey. It was a thing to be investigated (ana-

lytically) by our studying or examining its position ; it is now a

thing which has been produced by our operating (synthetically)

on another point a, with the aid of a certain instrument, namely,

the straight line b - a, regarded now as a vector, or carrying

path, as is expressed by the employment of the sign of vection,

+, through the general and identical formula :

(b - a) + A = B.

That other point a, instead of being now a. punctum analyzans,

comes to be considered and spoken of as a punctum vehendum ;

or more briefly, and with phrases of a slightly less foreign form,

it was an analyzer, but is now a vehend ; while the point b,

which had been an analyzand, has come to be called a vectum,

according to the general formula:

Vector + Vehend = Vectum

;

where Plus is (as above remarked) the Sign of Vection, or the

characteristic ofordinal synthesis. From serving, in the astro-

nomical example, as a post ofobservation, the earth, a, comes

to be thought of as the commencement ofa transition, b - a, which

while thus begimiing at the earth is conceived to terminate at the

sun; and conversely the sun, b, is thought of as occupying a

situation in space, which is not now proposed to be studied by
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observation, but is rather com-eived as one which has been reached,

or arrived at, by a journey, transition, or transport of some move-

able point or hody from the earth, along t\\e geocentric vector of

the sun. I think that this brief review, or recapitulation, of some

of the chief features or main elements of the view already taken,

of the operations of Addition and Subtraction, or of the marks +

and -, will be found to have been not useless, as preparatory to

our entering now on the consideration of the analogous view

which I take of the operations of Multiplication and Division, or

of the marks x and -^ in Geometry.

39. The Analysis and Synthesis, hitherto considered by us,

have been of an oudinal kind; but we now proceed to the con-

sideration of a different and a more complex sort of analysis and

synthesis, which may, by contrast and analogy, be called car-

dinal. As we before (analytically) compared a point, b, with

a point A, with a view to discover the ordinal relation in space

of the one point to the other ; so we shall now go on to compare

one directed line, or vector, or ray, |3, with another ray, a, to

discover what (in virtue of the contrast and analogy just now re-

ferred to) I shall venture to call the cardinal relation of the one

ray to the other, namely, (as will soon be more clearly seen), a

certain complex relation of length and of direction. As one

among the reasons for the adoption of such a phraseology which

may admit of being most easily and familiarly stated, while the

statement of it will serve, at the same time, as an initial prepa-

ration, or introduction, to questions or cases of greater difficulty

or complexity, let me remind you that when the condition
I3
= a + a

is satisfied, it is then permitted, by ordinary usage, to write also

j3 -^ a = 2 ; the quotient of /3, divided by a, being, in this case,

equal to the cardinal number, two. Under the same simple con-

dition, it is, as you know, allowed by custom to write also /3 =

2 X a ; and to say that the multiplication of a, by the same car-

dinal number, two, produces /3. Now I think that we may not

improperly say that we have here, in the division, cardinally

analyzed (5, as a cardinal analuzand, with respect to a, as a car-

dinal analyzer ; and thai we have obtained the cardinal number,

or quotient, 2, as the result of this cardinal analysis ; while, in

the converse process of multiplication, we may be said to have

n 2



30 ON QUATERNIONS.

employed the same number, two, as a cardinal operator, or as the

instrument of a cardinal synthesis, which instrument or operator

thus serves as a multiplier, or as afactor, to generate or to con-

struct (3, as Si product or as z. factum, from a as a multiplicand or

faciend. In so simple an instance as this, it might be better,

indeed, to abstain from the use of any part of this phraseology

which should seem in any degree unusual; but there appears to

me to be a convenience in applying the foregoing modes of ex-

pression to the much more general case, where it is proposed to

compare any one ray, (5, with any other ray, a, with a view to

discover the complex relation of length and of direction

of the former to the latter ray ; or, conversely, to construct or

generate fifrom a, by making use of such a relation.

40. In adopting, then, from ordinary algebra, as we propose

to do, the general and identical formula,

|3 -T- u X a = j3,

we shall now suppose that |3 -f- a denotes generally a certain

metrographic relation of the ray /3 to the ray a, including at

once, as its metric element, a ratio of length to length, and also,

as its graphic element, a relation ofdirection to direction. The
act or process ofdiscovering such a metrographic relation, de-

noted by the symbol |3 -f- a, we shall call, generally, the car-

dinal ANALYSIS of j3, as an analy zand, by a as an analyzer. And
the converse act of employing such a cardinal relation, when

already found or given, so as to form or to construct ji by a suit-

able operation on a, namely, by altering its length in a given

ratio, and by causing its direction to revolve through a given

angle, in a given plane, and towards a given hand, we shall call

a cardinal synthesis. The cardinal analysis above mentioned,

we shall also call the division, or, sometimes more fully, the

symbolical d\v\^ion of the ray ^ by the ray a ; and the usual name,

quotient, shall be occasionally applied by us to the result of

this division, that is, to the metrographic relation denoted above

by the symbol /3 -f- a, and supposed to hefound by that cardinal

analysis, of which the mark -h is thuslhe sign, or the charac-

teristic. In like manner to that converse cardinal synthesis, of

which the characteristic is here supposed to be the mark v, we
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shall give (from the analogy which it will be found to possess to

the operation commonly so called) the name of multiplication,

or sometimes, more fully, that of 5y)«6o/?ca/ multiplication. And
when, after writing an equation of the form

we proceed to transform it into this other equation,

qxa = ^,

(by an application of a general formula lately cited), we shall say

that q has been multiplied into a, or (sometimes) that a has been

multiplied by q ; avoiding, however, to say, conversely, that q has

been multiplied by a, or a into q. Thus q, which had, relatively

to the cardinal analysis (-:-), been regarded as a quotient, will

come to be regarded, and to be spoken of, with reference to the

cardinal synthesis (x), as a multiplier, or as a factor ; while /3

may still be called, as above, a product, or a factum : and a

may, by contrast, be called a multiplicand, or a faciend.

41. Without ye< entering more minutely into the considera-

tion of the precise force, dtXiAfull geometrical signification, of

that act or operation which has here been called Multiplication,

or FACTION ; it may be seen already that the general type of this

process oi cardinal synthesis is, in the present phraseology, con-

tained in the following technical statement, ovformula

:

factor X faciend = factum ;

where we shall still read, or translate, the mark x by the word

" INTO." It is clear also that the converse process of what has

been above called Division, or cardinal analysis, has, in like

manner, its general type in the reciprocal formula,

FACTUM -i- faciend = FACTOR ;

where the mark -r- may still be translated, or read, as equivalent

to the word " by." And it is evident that these two general and

technical assertions, respecting the kind of (symbolical) Multi-

plication and Division in Geometry which we here consider,|are

closely analogous to the two corresponding formulae, already

assigned (in art. 23), as types of those earlier operations in geo-

metry which were there called (symbolical) Addition and Sub-

traction, namelv, the two following :
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Vector + Vehend = Vectum
;

Vectum - Vehend = Vector.

42. It is easy to push this analogy farther with clearness and

advantage. We have, for instance, the general formula of iden-

tity,

Factum -^ Faciend x Faciend = Factum

;

which corresponds to the identity (of art. 25),

Vectum- Vehend + Vehend = Vectum.

More concisely and symbolically, the written identity (of art. 40),

(5 -i- o X a = j3, corresponds exactly to the earlier identical for-

mula (of same art. 25), b - a. + a = b. Each is to be considered

as telling us nothing whatever respecting the points or lines

which seem to be compared, and of which the symbols enter into

the formulae; but only as expressing, each in its own way, a

general relation, of a metaphysical rather than of a mathetnatical

kind, between the intellectual operations, or mental acts, of Syn-

thesis and of Analysis. For each of these technical formulae may

be regarded as an embodiment, in one or other of two different

mathematical forms, of the general and abstract principle, that if

the KNOWLEDGE previously acquired, by any suitablyperformed
ANALYSIS, be afterwards suitably applied, by the Synthesis an-

swering to that Analysis, it will conduct to a suitable result :

which result, thus constructed by this synthesis, will be the very

subject (whether point, or line, or other thing, or thought)

which had been analyzed before. Or that whatever has been

found by Analysis may afterwards be used by Synthesis (or at

least may be conceived to be so used) ; and that the thing or

thought which is produced (or re-produced) by this synthetic pro-

cess, will be the same with that which had been examined or sub-

mitted to analysis previously.

43. Corresponding remarks apply to the written and spoken

identities,

q X a -T- a = q,
and

Factor x Faciend -r- Faciend = Factor

;

which are obviously analogous to the identical formulae (of 26),

a + A — a = a.

and
^'ector + \'ehend - Vehend = N'cetor.
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In fact these technical formulae may be regarded as being merely

so many different mathematical modes of embodying the general

and abstract principle, that whatever specific instrument (a or q)
o{ any known sort of synthesis (+orx), is conceived to have been

previously used, in operating on a known subject (a or a), may
be conceived to be afterwardsfound, by the converse act of ana-

lysis (- or -^).

44. After comparing any two rays, a and j3, with each other

by cardinal analysis, in one order (j3 with a), we may choose to

compare ayain the same two rays among themselves, but in the

opposite order (a with j3); exchanging thus the places of the

analyzer and analyzand, in the process of the cardinal analysis.

The relations, or the quotients, thus obtained, and denoted by

the symbols /3 -^ a and a -r- j3, may be called reciprocal cardinal

relations, or reciprocal quotients; as (in art. 9) we called b-a
and A - B the symbols of two opposite ordinal relations. Con-

sidered as reciprocal operators, or as inverse factors, the same

two symbols, /3 -;- o and a -r- 13, may be said to denote, respec-

tively, a Factor and its answering refactor; as the two oppo-

site steps denoted by b-a and a -b, were called (in art. 24), in

respect of each other, by the names of Vector and revectok.

And in reference to this act of refaction, we might call j3 the

refaciend, and a the refactum; as b has been called (in 24)

the REVEHEND, and a has been called the revectum.

45. We shall now proceed to make a further extension of this

sort of phraseology ; of which extension the deficiency (what-

ever it may be) in elegance will, it is hoped, be compensated by

the systematic convenience which will arise from its resemblance

or analogy to the language of the former Lecture ; and from the

consequent illustration which may be thrown on one set of

thoughts by their being brought into contact or juxtaposition

with another set, which other has been already considered. I

venture, therefore, to propose to you to speak now, or to allow

me to speak, of an act ofPROFACTioN as being performed, when,

after having constructed a second ray (3, from afirst ray a, by a

first act offaction, or of cardinal synthesis, such as has been al-

ready spoken of, we proceed to the construction of a tliird ray, y,

from the second rc\\
, /3, by the performance of a neic and successive
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act of synthesis, of the same general kind as before; although

this new act offaction, by which we pass to y from |3, may not

(and generally will not) be a simple continuation, or a mere re-

petition, of the first factor act, but may (and generally will) be

performed with a quite different factor as its instrument. And

then that third act of the same sort, which is able of itself alone

to replace, or is singly equivalent to, the system of these two suc-

cessive acts of faction and profaction, may be called an act of

TRANSFACTION.

46. Writing then the equation,

and, therefore, also (see art. 40),

7 = r x/3,

we shall call r the profactor, because it is the instrument or

agent in the second successive act, above mentioned, of cardinal

synthesis, or is the operator of that profaction, by which the ray

7 is generated or constructed from the ray j3, after |3 has been

already constructed from a by the former act of faction. And

with reference to the same successive faction, or joro-faction, we

shall call j3 the profaciend, and y the profactum ; in such a

manner that we shall be able to enunciate the following^r»«M/a

ofprofaction :

Profactor x Profaciend = Profactum
;

together with the converse formula,

Profactum -^-Profaciend =Profactor

;

as in the foregoing lecture we might have said in speaking of

provection,

Provector + Provehend = Provectum
;

and

Provectum - Provehend = Provector.

47. And inasmuch as the same ray, (3, is here considered and

named as the Profaciend, which had before been named, in a

different connexion, the Factum, we may substitute for the word

" Profaciend," in the first verbal formula of the last article, the

word " Factum," so as to obtain this other formula (analogous

to one of art. 27),
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Profactor x Factum = Profactum.

We may also proceed to substitute here for " Factum," its value

(assigned by art. 41), namely, the equivalent expression,

Factor x Faciend

;

and so obtain this other general formula o/pro/action (analogous

to the formula of provection at the end of art. 27),

Profactor x Factor x Faciend = Profactum.

In symbols, if,

fB = g X a, and y = r x/3,

we may write, by elimination of /3,

y = r X q X a.

Or, because y = j3 -f- a, r = y -^ /3, we may write the identical for-

mula (analogous to one in art. 28),

7 = (7^/3)^03^a)xa.
48. Conceiving, in the next place (see end of art. 45), that

the two successive acts of faction and profaction are replaced by
a single act of the same sort, equivalent to the system ofthese

two; namely, by a certain act of transfaction, in which the

Operator, or the transfactor, shall be (for the present) denoted

by the letter s ; we may then write

y = s X a; y -r-a = s ;

and with respect to this act oi transfaction, may call a the trans-

FACiEND, and y the transfactum. We shall thus have the two

general and reciprocal formulae,

Transfactor x Transfaciend = Transfactum

;

Transfactum -i- Transfaciend = Transfactor

;

with two identities, deducible by the comparison of these. And
because the ray y is here at once the transfactum and the pro-

factum, according as we consider one or the other of the two

operations of which that ray is the result ; while the other ray,

namely, a, is at once thefaciend and the transfaciend ; we may
enunciate this other general formula (compare art. 30),

Transfactor x Faciend = Profactum

;

as, in symbols, we have the identity,

(7 -i- o) X a =7.
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49. Equating then the two expressions for the Profactum, or

for -y, found in the two last articles, we have, in symbols (com-

pare 32), the formula

(7 -i- a) X a = (7 4-
i3)

X O -=- a) X a

;

and in words (compare 31) we have this general enunciation,

Transfactor x Faciend = Profactor x Factor x Faciend.

Hence (compare again the same articles 31 and 32), we may be

naturally led to adopt the two following abbreviated forms of

assertion, namely, in symbols,

(yH-a) = (7-i3)x(/3-a);
and in words,

TRANSFACTOK = PROFACTOll x FACTOll.

You see, then, that each of these two last equations (of which

the first is true and identical in ordinary algebra also) is here re-

garded as an abridged form, which is to be restored (where

required) to its complete original significance, or full and deve-

loped expression, by restoring the suppressed symbols, x a, or by

restoring the suppressed words, " Into Faciend;" exactly as it

was supposed (in the articles recently referred to), that the iden-

tical equations,

(c - a) = (c - b) + (b - a),

and

Transvector = Provector -t Vector,

were abridged forms, which were to be interpreted, or restored

to their full meanings, by restoring the symbols + a at the right

hand of each member of the one equation, or the words " Plus

Vehend" after each member of the other. And we see that, on

the present plan, as well as in ordinary algebra, whenever we

have (as above supposed)

q = ii^a; r = 7-^/3; s=y^a;
and when we have, therefore, also the equation (in which each

member is = y, and the ray a is conceived to have some actual

length),

5A-a = ?'xg'xa;

we may then abbreviate this last equation to the shorter form,

,? = »• X q.
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50. In like manner, because, under the conditions recently

mentioned, we have

r = 7-^/3 = (sxa)-^(grxa),
or

Profactor = (Transfactor x Faciend) -;- (Factor x Faciend),

we may also agree to write, more concisely (compare art. 35),

r = s^q,

and also to say (compare art. 34),

PROFACTOR = TRANSFACTOR -f- FACTOR.

And thus we shall be conducted (as in ordinary algebra) to the

following identical formulae (compare 35),

{s^q)xq=s\ (r^q)-^(j = r;

which have, indeed, a very close connexion, both of form and of

signification, with the identical equations (of articles 40, 43),

(/3 -I- a) X a = /3 ; {qxa)-^a = q;

yet which are not, in the present system, to be confounded thete-

with. For a, j3, j, have been supposed to be rays, or directed

right lines in tridimensional space ; while q, r, s, are here not

(generally) rays, or lines, but certain results of cardinal analysis,

or instruments of cardinal synthesis, namely, certain geometrical

quotients or factors, the precise nature of which we have pro-

posed to ourselves to consider more closely soon, but concerning

which we have as yet no right to assume that they must neces-

sarily follow, in all respects, the same rules of combination among

themselves, as the rays a, j3, 7. (Compare art. 35).

51. It may be useful here to collect into one tabular view

(analogous to that of art. 30) the names above assigned to the

three rays, a, j3, 7 ; which names have been the following

:

a = Faciend = Transfaciend ;

|3 = Factum = Profaciend ;

7 = Profactum = Transfactum.

Each of the three rays, which are here considered and compared,

receives thus, as we see, two diiferent names, on account of its

being regarded in two different u/ejf.?, as connected with and con-

cerned in some two out of the three diiferent (although similar)
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ac^s of faction, profaction, and transfaction ; exactly as (in art. 30)

each of the three points, a, b, c, was formerly tabulated as re-

ceiving two names, on account of its connexion with some two

of the three acts of vection, provection, and transvection.

52. To draw still more closely together into one common

contemplation, or conspectus, what has thus been separately

shewn in the foregoing and in the present lecture, we may now

conceive that the three rays, a, (3, y, are three diverging edges

oi a pyramid, abcd, which has a new point, d, for its vertex,

and for the common origin, or initial point, of the three rays

;

while the hose of this pyramid is the triangle abc (of art. 27),

which has the three old points, a, b, c, for its three corners. We
may then write, in the notation of the former Lecture,

o = a-d; j3 = b-d; 'y = c-D;

and shall have also the relations,

a = B-A = /3-a;

b = C-B = y -(3;

c=C-A='y-a.

And we may say that while each of the three points, a, b, c, re-

ceives two different names, or designations, as belonging at once

to two different sides of the triangle of vections, abc, each

of the three rays, a, (3, y, receives, in like manner, two names,

as appertaining at once to two different Jaces of the pykamid of

FACTIONS, a(3y ; namely, to some two out of the three faces which

may be called, respectively, thence of/action (a/3 or adb) ; the

Jace of pro/action {j5y or bdc) ; and the Jace of transfaction

{ay or ADc).

53. All this may be illustrated by the two following diagrams

;

of which one (fig. 6) is designed to represent the triangle ofvec-

tions, ABC, while the other (fig. 7) is intended to picture the

pyramid offactions, afiy.

A=3 B-0

C-?
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In astronomy we may still conceive, as before, that the three

points A, B, c, are situated at the centres of the Earth, Sun, and

Venus, respectively; and may then imagine that the fourth point,

D, is situated at the centre of the Moon.

Thus the three diverging edges of the pyramid, or the three

rays, a, j3, y, will coincide, in this astronomical example, with

the selenocentric vectors of the Earth, the Sun, and Venus, or

with the three rays from the centre of the Moon to the centres

of those three other bodies.

54. And as (in art. 36) we saw that what we had begun by re-

garding, in the former Lecture, as the primary significations of the

marks + and - in geometry, conducted to certain secondary signi-

fications ofthosetvio characteristics ofoperation; so now.from what

have been, in the present Lecture, conceived as the primary sig-

nifications of the marks x and -f-, we may observe that we are con-

ducted to certain analogous and secondary significations of these

two other marks or characteristics. From expressions of the

forms, "line plus point" and "point minus point," we were

before led on to the expressions of the forms, " line plus line,"

and " line minus line." And, in like manner, from expressions

of the forms,
^^
factor into ray," and " ray by ray" (where the

rays do not differ in kind from the lines before considered, and

where the words into and by are equivalent to the marks x and

-1-), we have since been conducted to expressions of the forms

" factor into factor," and " factor'% factor ;' for we have been led

to assert that " Profactor, multiplied into Factor, equals Trans-

factor" (art. 49), and that " Transfactor, divided by Factor, equals

Profactor" (art. 50). It is true that these two last assertions, like

the two corresponding enunciations of the preceding Lecture,

namely, " Provector />/ms Vector = Transvector" (art. 31), and

" Transvector minus Vector = Provector" (art. 34), have, atfirst,

offered themselves to our notice as mere abbreviations of certain

other and longer statements, in which the marks + - x -j- had all

retained what we have regarded as their primary significations.

But as we saw (in art. 36), that the abridged expressions of the

forms " line + line," and "line -line," might suggest a certain

derivative or secondary ordinal synthesis, and a corresponding

derivative or secondary ordinal analysis, which might be called
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(as in fact they often are called) " addition and subtraction of

lines," and might be interpreted (as in fact they often are inter-

preted), as answering to the composition and decomposition of

vections (or of motions) ; so we may now see that the newer ab-

breviated expressions of the forms " factor x factor" and " factor

-^ factor," may suggest a certain derivative or secondary car-

dinal SYNTHESIS, and a certain other and correspondent deriva-

tive or SECONDARY CARDINAL ANALYSIS, which may be called

" Multiplication and Division of Factors," and which admit of

being interpreted as answering to the composition and decom-

position OF FACTIONS, or of Operations of the factor kind.

55. Thus, when (see fig. 6) we assert that the Provector,

c- B, from the Sun to Venus, being added geometrically to the

Vector, B-A, which extends from the Earth to the Sun, gives,

as the geometrical sum, the Transvector, c - a, which goes from

the Earth to Venus; we may interpret the assertion (what-

ever the original motives for enunciating it may have been), as

expressing that to go straight accoss [trans-) from the earth to

the planet, if we attend only to the total or final effect of this

process, or to the ultimate change ofposition accomplished by
this mode of transport, comes to the same thing, as to go first

from the Earth to the Sun, and afterwards from the sun to the

planet. And in like manner when we assert (see fig. 7), that the

Profactor, y -^ j3, being multiplied geometrically into the Factor,

j3 -4- a, produces the Transfactor, y -^ a, we may interpret the

assertion by saying that to change at once the selenocentric ray

or vector of the Earth to the selenocentric vector of Venus, is,

as to final effect, the same thing, as to change first that seleno-

centric vector of the Earth to the selenocentric vector of the Sun,

and afterwards to change this selenocentric vector of the Sun to

the selenocentric vector of the Planet. An act ofvection may

be compounded with a. subsequent act of pro-vection into one sin-

gle act of ^/"ans-vection ; and, in like manner, an act offaction

(which changes one ray or vector to another) may be compounded

with an act of pro-faction following it, into one single act of

trans-hction, which as to its effect, or the ultimate result of its

operation, shall be equivalent to the system of those two former

acts of the same kind. To move successively along the two sides,
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AB, BC, of any triangle, abc, is to move, upon the whole, from
the first point, a, to the last point, c, of the base, ac. To sweep

over the face, adc, of the pyramid, abcd, from the edge da, to

the edge dc, or from the ray a to the ray y, is an operation

which has the same first subject, and the same last result, as to

sweep first over the face, adb, from the edge da to the edge

DB, or from the ray a to the ray /3, and then over the face bdc,

from the edge db to the edge DC, or from the ray |3 to the ray

J. (Compare the commencement of art. 48.)

5G. It has been noticed (in art. 54) that there exist two kinds

oi secondary analysis, ordinal and cardinal, which answer to the

two kinds, recently illustrated, of secondary synthesis: namely,

those two modes of analysis which consist, respectively, in the

decomposition of vections, and olfiictions. The first or ordinal

kind of secondary analysis has been called the subtraction oflines;

the second or cardinal kind of secondary analysis has been called

the division offactors. The diagrams lately exhibited (figures

6 and 7) may serve to illustrate these two processes. Thus we

have been led to say (see fig. 6), that the subtraction of theVec-

tor B - A, from the Transvector c - a, gives the Provector c - B

as the remainder ; or that the subtraction (compare art. 34) of

the geocentric vector of the Sun from the geocentric vector of

Venus, leaves, as remainder, the heliocentric vector of the planet.

And whatever motive of abridgment may have originally led us

to enunciate this assertion, while the mark - was still confined

by us to what we regarded as its primary signification, we may

now be led to interpret the assertion as expressing, that if the

act or process of transvection, from the earth a to the planet c,

be DECOMPOSED into two successive vections, of which xhe first

is the given act of veclion from the earth to the sun b, then the

second component must be (or be equivalent to) the act of pro-

vection, from the Sun b to Venus c. 'I'his, then, is an example

of what we have called secondary ordinal analysis, or Analysis

OF Vection, arising out of that primary and ordinal analysis,

or Analysis of Position, namely, the examination or study

of the position of one point b as compared with another point a,

which primary sort of analysis in geometry was considered in the

former Lecture. And in like manner, from that primary and
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cardinal analysis, or Analysis of directed distance, on which,

in the present Lecture, we have entered, by comparing one ray

/3 with another ray a, we have been conducted to a secondary

cardinal analysis, or to an Analysis of Faction ; that is, to a

decomposition ofone factor act into two other acts of the same

kind, which may be illustrated by figure 7. For we may say that

if the act or process oi transfaction, from the ray o to the ray j,

that is (in our example) from the selenocentric vector of the earth

to the selenocentric vector of the planet, be decomposed into two

successive acts of the same kind, of which the first is given to be

that act olfaction whereby we pass from the ray a to the ray /3, or

from the selenocentric vector of the earth to that of the sun, then

the second hfound to be (or to be equivalent to) that other act, of

profaction, whereby a passage of the same sort is made (along

the remaining face of the pyramid) from the ray /3 to the ray -y,

or from the selenocentric vector of the Sun to the selenocentric

vector of Venus. And thus we may, if we think fit, interpret

the assertion, that " the Transfactor divided by the Factor gives

the Profactor as the Quotient;" or in symbols, we may inter-

pret thus the formula,

7-/3 = (7-a)-(/3-a);

whatever desire of such abbreviation as might be gained by the

omission of the twice-recurring signs, x a, or by the suppression

of the twice-repeated words, " Multiplied into Faciend," may
have^r*^ induced us to adopt the latter usual formula, or the

former mode of verbal enunciation, while the mark -f- and the

name Division were still, as yet, confined by us to what we re-

garded as their primary significations : and were therefore em-

ployed to denote only the comparison of one directed dis-

tance with another.

57. As examples of such comparison or analysis, which may
illustrate what has been already said, we shall here consider a few

very simple cases ; in some of which the compared rays shall agree

with each other in direction, but differ from each other in length ;

while in other cases they shall, on the contrary, agree in length,

but differ in direction.

Supposing then, first, that we have not only (as in the ex-
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ample of article 39), ft
= a + a, but also y = j3 + /3 + j3 ; as is re-

presented in this figure,

Fig. 8.

y

We shall then evidently have, not only j3 -^ a = 2 (as in 39),

but also ^-^(3 = 3, and y -l. a = (y. In this case, then, the

factor q, the profactor r, and the transfactor s, are respectively

equal to the cardinal numbers, 2, 3, G ; and the general relation

(of art. 49) connecting thenn, or the formula, s = rxq, becoming

here simply 6 = 3x2, is obviously, in this example, consistent

with ordinary arithmetic; as is also the inverse formula (of art.

50), r = s -i- q, since it becomes here 3 = 6 -~2. Now (compare

art. 40), that division of the ray, y, or of the line j3 + /3 ^ ^, or

of 6 X a, by the ray or line )3, or 2 x a, which conducts to the quo-

tient 3, is what 1 call a primary cardinal analysis, or is an ex-

ample of what I regard as the primary operation of Division in

Geometry ; since it leads to an expression for the relative length

of a line 7, as compared with another line /3; the relation of di-

rections being already known to be, in the present case, a relation

of sameness, or identity. And on the other hand the division of

the number 6 by the number 2 is an example of what I call a se-

condary cardinal analysis ; at least when this operation is re-

garded as being the comparatively abstract analy.sis of the act

ofsextupling , whereby that act (of transfaction') is here decom-

posed into the given act of doidtUng (which is in this case the

act oifaction), and another act of the same sort (the act oi pro-

faction), which is \iCTefound, by this decomposition, to be the act

of tripling, as is expressed by the arithmetical formula 6 ^2=3,
according to the mode of interpretation of such formulte which has

been above proposed (in art. 56). In like manner in the synthetic

aspect of the question, or of the lines and numbers here compared

and combined, I regard as primary that cardinal synthesis by

which we construct the ray y, or the line /3 + /B H /3, by ojicrativg

on another ray /3 with the number 3 as a multiplier ; and I re-

gard as secondary that other sort of cardinal synthesis, by whicli

V.
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yie produce the number 6 (the transfactor), by multiplying a num-

ber 2 (the factor), by another number 3 (the profactor) ; or by

compounding the two successive acts of doubling and of tripling,

into a third act of the same sort, namely, the act of sextupling,

as is expressed, according to the mode of interpretation above

proposed (in art. 55), by writing 6 = 3x2. We may, however,

according to another mode of interpretation already mentioned

(in 49 and 50), retain theformula 6 = 3x2, and 6 -^2 = 3, with-

out introducing the conceptions of such composition and decom-

position of factions, provided that we regard these formulae as

abbreviations for the fuller assertions

6xa = 3x2xa, and (6 x a) -^ (2 x a) = 3,

in which the signs x and -^ are used in what we have called their

primary significations in geometry. And similarly in other cases,

where the lengths only, but not the directions, of the rays a, /3, y,

are different ; and when therefore the factor, profactor, and trans-

factor, are ordinary numbers, which, in this class of cases, are al-

ways positive or absolute, although they may become fractional

or incommensurable.

58. A slightly different class of cases may here be usefully

noticed, as conducting, on the same general plan, to the conside-

ration of negative numbers ; and as reproducing the usual rules

for the multiplication and division of such numbers: while it will

also serve as an useful preparation for those more complex pro-

ducts and quotients, of which we shall afterwards have to speak.

By principles already laid down, the sum of any two opposite

lines is a null or evanescent line ; for the transvector c - a va-

nishes, when the provectum c, becoming a revectum, coincides

with the vehend a. In fact it is evident that if we first go, along

any line ab, from a to b, and then return along the same line,

from B to a, we occupy the same final position as if we had not

moved at all. We may then say that

" REVECTOR + VECTOR = ZERO ;"

and that conversely,

" REVECTOR = ZERO - VECTOR ;"

the word zero, or the symbol 0, being understood to denote a

null line, \yhen used in such connexions as these. Thus
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(a-b)+(b-a) = 0;
and

(a-b) = 0-(b-a);

which latter equation may be abridged to the following formula

(familiar in ordinary algebra) :

A - B = - (b - a) ;

while, by a similar abridgment of discourse, we may say, in

words, that

REVECTOR = MINUS VECTOR :

understanding or tacitly supplying the word zero before the word

minus, in order to bring this mode of expression into harmony with

others which have been already discussed. In like manner, if we
conceive the provectum c to coincide with the provehend b (and

not now with the vehend a), it will be the provector c - b (in-

stead of the transvector c - a), which will vanish, while the trans-

vectum and vectum will coincide ; we shall, therefore, have
the enunciation :

VECTOR = ZERO + VECTOR
;

which may be abridged to the following form :

VECTOR = PLUS VECTOR

;

the word zero being still understood. In symbols we have (as in

algebra),

b - A = (b - b)+ (b - a) = + (b - a)
;

and more concisely, omitting the 0,

B - A = + (B -a).

Thus, a being a symbol for a ray, or for a vector, + a comes to be

another symbol for the same ray or vector ; and - a comes to be

a symbol for the opposite ray, or for the revector corresponding.

In like manner, after agreeing that 2a shall denote concisely the

same thing as 2 x a, the symbols + 2o and - 2a come to denote,

respectively (as in fact they are often employed to do), the dou-

ble of the ray a itself, and the opposite of that doubled ray; and

similarly in other instances.

59. Now, I think, that the clearest way of viewing positive

and negative numbers, at least as connected with Geometry (for

I endeavoured many years ago to shew that such numbers might
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be regarded as presenting themselves in Algebra, according to

the view which 1 took of that science, as results ofthe division

of one step in time by another), is to regard such numbers as

being each the quotient of the division of one step in space,

that is, of one ray or vector, hy another step in space, which has

its direction either exactly similar or else exactly opposite to the

former. Thus, the cardinal numbers, " positive two" and " ne-

gative two," or + 2 and - 2, would oifer themselves in this view

as certain geometrical quotients, or at least as quotients of certain

geometrical divisions, of that general kind which has been con-

sidered in the present Lecture, namely, as quotients of the forms,

+ 2 = + 2a-f-a; -2 = -2a-r-a;

where the symbols + 2a and^- 2a are interpreted as in the fore-

going article, and do not (here) denote abstract numbers, but

certain comparatively concrete conceptions, namely, certain rays,

or lines, or steps in space. Observe now this diagram,

Fig. 9.

y

which is designed to picture the conceptions of the relations,

)3 = -2a, 7 = +6a; and you will see that for this set of rays, a,

j3, 7, the values of the factor, profactor, and transfactor, are the

following negative or positive numbers;

Factor =q=^ ^ a = -2;

Profactor =r = y -^j3 = -3;

Transfactor = s=y -i-a = + 6.

You see, then, that the general formula or rule ofmultiplication
assigned in the present Lecture, namely, the rule

Transfactor = Profactor x Factor,

gives here, again, as in art. 57, a result agreeing with received

principles, namely, with those of elementary algebra, since it

gives

(+C) = (-3)x(-2);
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or in words, the result, that " Positive Six equals the product of

Negative Three into Negative Two." You see, too, that (in

consistency with our present views) we may either regard this

elementary result as a mere abbreviation of the formula

(+ 6) X a = (- 3) X ( - 2) X a,

where the sign x may still be considered as being used in what

we have called its primary sense ; or we may interpret the same

result of multiplication, of the two negative numbers proposed,

as signifying that the two successive acts, of negatively doubling

and negatively tripling, compound themselves into the single act

of positively sextupling. And it is obvious that analogous re-

marks apply to the converse formula of division,

(+6) -(-2) = (-3).

In general, this way of considering the multiplication and divi-

sion of positive or negative numbers (whether whole or fractional

or incommensurable), reproduces the usual rule of the signs, and

is, in all its consequences, consistent with common algebra.

60. A few words may, however, be said here upon the rule

OF THE SIGNS just referred to, in the hope that they may make

that rule and the present principles throw light upon each other.

Suppose, then, that we have, as in this figure,

Fig. 10.
1

—

f— —y
the relations [3

= -a, y=-fi, which give also (as the figure

shews) the relation 'y = + a. We might express these relations

under the forms

/3 = (-l)xa,7=(-l)x/3, y = (+l)xa,

and so arrive, on the plan of the foregoing article, at the well-

known equation of algebra,

(-l)x (-!) = (+!).

But we might also write

/3 = (-)xa, 7 = (-)x/3, 7 = (+)xa;

regarding the signs ( + ) and ( - ), when thus employed, as being

themselves of the nature oi geomeU\ca\ factors or multipliers;
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because if they operate at all, they do so on the directions of

the rays, or lines, or steps, to the symbols of which they are pre-

fixed, with the MARK OF faction X interposed ; so that their opera-

tion, whether non-effective or effective, comes to be included

under that general head or class of operation to which it has been

already stated that we apply the name multiplication in geo-

metry. And then the general relation of multiplication to divi-

sion, or of X to -f-, will enable us to form also, as expressions of

the same relations between the three rays a, j3, y, in fig. 10,

combined with the nomenclature of preceding articles, the follow-

ing little table

:

Factor =^ =j3 -^ a = (-) ;

Profactor =r= -y -h /3=(- )

;

Transfactor = « =y^a = (+).

The general formula " profactor into factor equals transfactor,"

or ?• X (jf = 5, becomes, therefore, here, the particular formula,

(-)x(-) = ( + );

and the converse general formula, " transfactor by factor equals

profactor," ox s -^q=r, becomes here,

The effect of the sign ( - ), when thus used as a factor, being to

invert the direction of the ray or step on which it operates (as is

exhibited by the arrows in the figure), this factor ( - ) itself may

be said to be an inversor; whereas the other sign ( + ), when

similarly used as a factor, may be called, by contrast, a non-

versor, because its effect is simply to preserve the direction of

the ray or step on which it operates, or seems to operate. We
may also say (by the introduction of another new but convenient

term), that the sign ( + ), as a factor, non-verts the ray, to the

symbol of which it is prefixed ; or that its effect is a non-version:

whereas the sign (
- ), as before, m-verts, or its effect is an in-

version. And thus the formula

(-)x(-)=(+)

may (on our general plan) be interpreted as expressing the re-

sult of a certain composition of factions ; that is, here, a composi-
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tion of versions, or still more precisely, a composition of two

successive inversions, into a single equivalent operation, namely,

a won-version. It signifies, when translated into ordinary words,

that if we twice successively invert, or reverse, the direction of

any step, we do what is, upon the whole, equivalent to leaving

the step unchanged: since, by this double alteration, we recover,

or restore, the original direction of that step. And in like man-
ner the converse formula,

may, on the same plan, be interpreted as expressing the decom-

position ofa non-version into two successive inversions ; or as

signifying that if it be required to follow up a first inversion of

a step by some second operation, which shall, upon the whole,

produce the eifect of a non-version, or shall restore the step to

the direction which it originally had, this second or successive

operation must be itselfan inversion, or some operation equiva-

lent^thereto. Remarks precisely similar apply to all the other

formulae of this kind, such as

( + )x(-) = (-)> (-)-(-) = ( + );

which may all be in like manneT interpreted, and with this inter-

pretation proved, if they be regarded as relating to compositions

and decompositions of inversions and nonversions of a ray, or

more generally of a step in any proposed progression : the general

rule being evidently that any even number of »i-versions are equi-

valent, on the whole, to a Hon-version ; and that, therefore, any

odd number of inversions are equivalent to a single inversion ; or

produce the same_^na/ effect, as that single inversion would do.

61. It is evident also that if we should prefer to look at these

last signs ( + ) and ( - ) in their analytic instead oi ihe'ir synthetic

aspect, or to regard them as quotients rather than as factors, they

would then (on the general plan already mentioned) come to be

considered respectively as symbols of the relations of simi-

larity and opposition between the directions of any two rays

or steps. Thus we might write again the formulae,

i3-a = (-), 7-^a=( + ),

in connexion with the lines of fig. 10, in order to express that on
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analyzing the directions of /3 and -y (as marked by arrows in that

figure), considered as analyzands, with respect to the direction of

a considered as an analyzer, we should find by this comparison

(which we regard as being still a species of cardinal analysis),

that the relation of directions between /3 and a is a relation of

opposition ; but that the relation of directions between -y and a is

a relation of similarity. And in this analytic aspect of the signs

( + ) and (
-

) as certain cardinal quotients, the formula ( - ) x

(-) = (+) may be interpreted as expressing that two relations of

opposition (of directions) compound themselves into one relation

oi similarily ; or that the opposite of the opposite of any direc-

tion is the original direction itself: while analogous and equally

simple interpretations might be given for all other formulae of

this sort, on the plan of the present Lecture.

62. In the two foregoing articles the three lines a, /3, y,

which were compared among themselves, were supposed to have

equal lengths, and to differ (so far as they differed at all) in their

directions only ; or at most in their situations in space, from which

situations, however, we abstract, in the present inquiry or contem-

plation. The on\s' operators of the cardinal kind, whether effec-

tive or non-effective, which have thus been brought into view by

the consideration of the example of art. GO, have been (as we
have seen) ihn factors ( + ) and ( - ), regarded as signs or cha-

racteristics of nonversion and of iiicersion respectively ; and not

(when used in this sort of connexion) as murks of addition and

subtraction ; although it was shewn (in articles 58, &c.) how, in

the progress o/ notation those earlier significations of + and -

which were connected with addition and subtraction, might gra-

dually come to suggest or to permit that other use of them,

whereby they are connected with multiplication and division.

63. On the other hand, in the example of art. 57, the three

lines a, /3, y, which were there compared, had all ih.e same direc-

tion, and differed only in their lengths. In that example, there-

fore, we had not occasion to consider any kind of turning, or of

VERSION ; but we had, on the contrary, occasion to consider what

may be called a stretching, or a tension, namely, that other

operation of the factor kind, by which we pass from one given

length (ami not from one given direction) to another. It was on
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extension (not on direction) in space, that we operated in that

earlier example ; the act performed was an act of a metric, and

not one of a graphic character. The agents, therefore, or the

factors, in those earlier operations of the cardinal kind which

were considered in art. 57, may naturally, in consistency with the

plan of nomenclature employed in these Lectures, receive the

general name of tensors ; and we may say, more particularly,

that the factor, profactor, and transfactor, were (in the example

here referred to) a tensor, protensor, and transtensor respectively.

And although these three tensors, in the example of art. 57, being

the three cardinal numbers 2, 3, and 6 respectively, were thus

each greater than the number one, and so had the effect of ac-

tually lengthening the line (a or j3) on which they operated
;
yet

it seems convenient to enlarge by definition the signification of

the new word tensor, so as to render it capable of including also

those other cases in which we operate on a line by diminishing

instead of ?wcrefir«?w(7 its length ; and generally by altering that

length in any definite ratio. We shall thus (as was hinted at

the end of the article in question) have fractional and even in-

commensurable tensors, which will simply be numerical multi-

pliers, and will all be positive or (to speak more properly) sign-

less NU.MBERS, that is, unclothed with the algebraical signs of

positive and negative ; because, in the operation here consider-

ed, we abstract from the directions (as well as from the situa-

tions) of the lines which are compared or operated on. Thus

the three acts, of doubling a line, of halving it, and of changing

it from the length of a side to the length of a diagonal of a

square, shall be regarded as being, all three, acts of tension ;

the tensors in these three respective acts being the integral num-

ber 2, the fractional number ^, and the incommensurable number

.
^2, The act of restoring a line to its original length, after

that length had been altered by a previous act of tension, might

be called an act of re-tension, and the agent in the second

operation might be called a re-tensor (compare art. 44) ; thus

any tensor and its answering retensor would simply be two

numbers of which each is (what is commonly called) the recip-

rocal ol the other; or, in their analytic aspect, they would re-

present ratios mutually inverse. The number 1 might be called
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a NON-TENSOR, because it makes no actual alteration in tiie

length of the line which it multiplies
; just as the sign ( + ) was

lately called a non-versor, because it leaves unchanged the di-

rection on which it seems to operate. And the general formula

for the multiplication of such signless numbers, or for the com-

position of ratios of lengths (or other magnitudes), will ofFeritself

with these conceptions and denominations, as a particular case of

the general multiplication oifactors, or of the composition of

cardinal relations, under the form (compare art. 49) :

TRANSTENS0R= PROTENSOR X TENSOR ;

together with the converse formula of division (compare art. 50):

PROTENSOR = TRANSTENSOR -f- TENSOR.

64. As regards the example of art. 59, each act of faction

there considered may be said to have been compounded of an act

of tension, and an act of inversion or of nonversion, according

as the numerical (but not signless) multiplier employed was a

negative or a positive number; and we may express this concep-

tion by writing, in reference to that example :

(-2)=(-)x2; ( + 6)=( + )x6;

with analogous expressions for all other positive or negative num-
bers. It is also evidently allowed to write, with a different ar-

rangement of the factors,

(-2) = 2x(-);
( + 6) = 6x( + );

since it comes (for example) to the same thing, whether we first

double a step and afterwards reverse its direction, or first reverse

and afterwards double. We may agree to give the general name

of SCALARS to all positive and negative numbers (that is to the

REALS of ordinary algebra), on account of the possibility of con-

ceiving all such multipliers to be represented, or laid down, on

one common but indefinite scale, extending from - oo to + oo

,

that is, from negative to positive infinity.

65. Proceeding now to a more general examination of the di-

rections of lines, or rays, in space, let us consider a somewhat

more complex case of the (analytic) comparison of such directions,

or of the (synthetic) composition of versions, than any of those



LECTURE II. 59

which were discussed in recent articles : and for this purpose let

i, j, k, denote three straight lines equally long, but differently di-

rected ; let it be also supposed that these three different directions

are rectangular each to each ; and to fix the conceptions still

more precisely, let us conceive that these directions of i, j, k, are

respectively southward, westward, and upward (in the present

or in some other part of the northern hemisphere of the earth) ;

So that i and j are both horizontal, but k is a vertical line. We
may further imagine that the common length of these three lines

is equal to some assumed unit of length, or more particularly, that

it is a. foot ; so that i is or denotes a southward foot, j is a west-

ward foot, and k is an upward foot. Then (by art, 58) + i, + j, + k,

will be other symbols for the same three directed lines ; but -i,

- j, -k, will denote respectively a northward, an eastward, and

a downward foot. This being agreed upon, let the three diverg-

ing edges, a, j3, y, of the pyramid in fig. 7 (of art. 53), be con-

ceived to be each a foot long, and to be directed respectively

towards the northern point of the horizon, the zenith, and the

east point, so that we may write the equations

:

a = -i, ^ = + k, 7 = -j.

The. pyramid being thus constructed, we may next proceed to

study the three separate acts of faction, profaction, and trans-

faction, by which we may pass respectively from a to /3, from /3

to y, and from a to y, by operating on the directions of the rays

or lines a and /3, and, therefore, by performing what may be

called acts of version, proversion, and transversion : since

it is clear that there is, in the present case, no act of <ews?on per-

formed, the three lines which are compared being supposed to

be all equally long. The agents in the three acts which we are

thus to study, may be called respectively the versor, the pro-

VERSOR, and the transversor; and we may already enunciate,

as a particular case of the general formula of multiplication of

factors in art. 49, the relation

:

TRANSVERSOR = PROVERSOR X VERSOR
;

which must, by the general conceptions and definitions of multi-

plication already stated, hold good for every composition ofver-
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sions. We may also, in like manner, as a particular case of the

general formula of division offactors in art. 50, enunciate this

converse relation,

PROVERSOR =TRANSVERSOR -^ VERSOR;

which is to be regarded as being likewise valid, by the general

significations of the terms employed, for every ca.se oi decomposi-

tion ofversions, or of rotations in geometry. We may also mo-

dify the phraseology of former articles, respecting the three lines

"> jS, 7, themselves, considered now as the subjects or the results

of operations of the versor kind, by naming those three lines as

follows (compare the t;.ble in art. 51) :

a = Vertend = Transvertend
;

^ = Versum = Provertend ;

y = Proversum = Transversum
;

in order to mark, by this nomenclature, that we now abstract

from the lengths of the lines, or that we treat those three lengths

as equal. We shall thus be able to assert generally (com])are

art. 41), that

VERSOR ' VERTEND = VERSUM,

and that

VERSUM -^ VERTEND = versor;

with other analogous formulae (compare articles 47, 48) for pro-

version and transversion respectively. But luhat the particular

acts of version are, for any particular set of lines or rays, as (for

example) for the set mentioned at the beginning of the present

article, it still remains to consider.

66. In this consideration or inquiry, we may assist ourselves

by remembering the general remarks which were offered at an

earlier stage of the present Lecture (in articles 39 and 40). The
lengths of the lines which are to be compared being (in the pre-

sent question) equal to each other, the metric element of the in-

quiry disappears, and only the graphic element remains. We
have, therefore, only now to inquire, as concerns the lines a and

/3, through what angle, in what plane, and towards which hand,

are we to turn the line a as a given vertend, in order to make it
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attain the proposed direction of the versum, that is of the line (5?

For the answer to this inquiry, when it shall be, in any manner,

with sufficient clearness and fulness assigned, will be, under one

form or other ofexpression, a sufficient description, statement, or

particularization of the sought versor, which we have already, by

anticipation, denoted by the symbol /3 -^ a, and have called a

cardinal quotient.

67. Now, with the particular directions above assumed or

assigned, for the vertend and versum, or for the lines a and /3,

namely, those otherwise denoted (in 65) by -i and + k, or the

(horizontally) northward and the (vertically) upward directions,

it is clear that the angle of version is a right angle ; the plane is

meridional; and the axis of right handed rotation, from a to j3,

is a right line directed westward. In that little model of a tran-

sit instrument which you see here, the line a may be conceived

to be the telescope when pointed to a north meridian mark ; and

/3 the same telescope, directed towards the zenith. And when

I lay my hand on the westward half of the axis in the model,

and turn that part right handedly, with a motion of ihe screwing

kind, you see that the northern (or object) end of the tele-

scope comes to be elevated, while the southern (or eye) end is de-

pressed. Continuing this motion of rotation through a quad-

rant of altitude, you see that I have erected the telescope in the

model, in such a manner as to cause it to attain a vertically

upward direction ; and that thus I have, in fact, changed the

telescope (that is, its object half) from the direction symbolized

by a to the direction symbolized by /3- The required act of ver-

sion, symbolized by j3 -r- a, has, therefore, in this case, been

actually and practically performed.

68. And since the (mechanical) agent in producing this (me-

chanical) rotation, or in this right-handed (or screioing) act of

version, has been an axis or handle directed to the icest, which

direction has also been lately supposed (in art. 65) to belong to

the line denoted by the symbol + j, I propose now to denote the

versor itself, or the conceived agent of the conceived version, or

of the purely geometrical rotation from a to /3, by the connected

symbolj; availing myself (as you see) of the distinction between

the roman and the italic alphabets, to mark, at least temporarily,
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the distinction between the two different conceptions of a line, as a

turned and as a turning thing ; a versum and a versor
;
a subject

of operation and an operator. We shall thus have, on the ge-

neral plan of notation already stated or sketched for you, the for-

mulae :

^^a = (+k)-^(-i)=j;

jxa=i-(-i) = /3 = + k;

and the "j -operation" or the operation of multiplying a line

by the factor or versor J, is seen to have the effect of elevating a

transit telescope from that position in which it is directed to the

north point of the horizon, to that other position in which it is

directed towards the zenith. The conception of this operation

may be illustrated by figure 11, where the axisJ is drawn as di-

rected to the west, and as ready to operate on the telescope or

line a, which line is, before the operation, represented as directed

towards the north ; but is to be conceived as taking, after that

operation, the direction towards the zenith, represented by (i in

fig. 12 : with which two figures, I shall here, by anticipation, as-

sociate a third (fig. 13).

Fig. 11.

A

Fig. 12.

Z

N a

T JS N< >

Fig. 13.
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69. Having thus passed, by the way of rotation, from a to |3,

or from - i to + k, there is no difficulty in passing similarly from

/3 to y, or from + k to - j. The act of version having been stu-

died and symbolized, it becomes easy to study and symbolize, in

like manner, the subsequent but analogous act of proversion.

We have passed from a northward to an upward position of the

telescope; and we are now to pass from an upward to an east-

ward position thereof. This cannot, indeed, be done by any such

meridional motion as belongs to an ordinary transit telescope

;
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but it can be done by that other important mode of motion of a

telescope, of the ea;<ra-meridional kind, in the plane oftheprme-
vertical, which has been used, with great success, in some cele-

brated geodetic surveys, and also at some fixed observatories, in

Russia and elsewhere. Having already erected the telescope to

the zenith in this little model of a transit, you see that I can turn

the model through a quadrant of azimuth, so as to cause that

axis, OTsemiaxis, which had been directed westward, to take the

southward direction. And if I now lay my hand on the same

physical or mechanical semiaxis as before, but in its new and

southward direction, you see that the same sort of screwing mo-

tion, as that which was before employed, being continued through

the same angular quantity, namely, through a quadrant of rota-

tion of the telescope, in the plane of the prime vertical, has the

effect of turning that telescope from the upward to the eastward

direction, or from the direction of/3 to that of 7, that is, from

the direction of + k to that of-j. In short, you see that the re-

quired act of Proversion is thus effected ; and that I may natu-

rally denote the Proversor, or the agent of the proversion, on the

plan of the foregoing article, by the symbol i; because, as you

may see illustrated by the diagram last referred to (fig. 12), the

axis, or handle, of this proversion, is, like the line already de-

noted by + i, a line directed towards the south. We are thus led

to write the equations :

7-^/3 = (-j)-( + k)=l;

2"x|3 = ix(+k) = 7=-j;

by combining which with the equations of the foregoing arti-

cle, on the plan of art. 49, we obtain these other formulae

:

ixjxa=y; i xj = y -^ a.

70. Proceeding to consider the transversion, we are next to

inquire what one rotation in a single plane would bring the ver-

tend a into the direction of the proversum y ; or would cause the

telescope to pass, by a single act of turning, from its original and

northward, to its final and eastward direction. And it is clear,

either from the model before you of the eight-feet Circle, which
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belongs to the Observatory of this University, or from the little

diagram above drawn (fig. 13), that the plane of this transversion

is horizontal; that its angular quantity is & quadrant; and that,

if the rotation be still conceived to be W^Af-handed, its axis is a

line directed vertically upwards: so that the Transversor itself

may be denoted (on the plan of recent articles) by the italic let-

ter k, because the axis or handle of its operation has the direc-

tion of the line which we have above denoted by + k. We shall

thus have the formulae :

^xa = A;x(-i) = -j.

And by comparison of the last value of 7 -7- a, with that assigned

in the preceding article, or by the general principle that trans-

versor= proversor x versor (art. 65), we arrive at the simple but

useful equation following :

ixj=k;

which may either be interpreted (synthetically) as asserting that

the quadrantal rotationJ round a westward axis, being succeeded

by another quadrantal rotation i, round a southward axis, produces

finally, and upon the whole, the same change of direction as that

third quadrantal rotation k would do, which is performed round

an upward axis, these three rotations being all supposed to be

right-handed; or (analytically) as expressing a composition of

relations of directions in space, which corresponds to this com-

position ofrotations.

71. After settKng, as above, the significations of the symbols

i,j, k, regarded as certain quadraiital versors, or as symbols denot-

ing the conceived agents or operators of certain quadrantal and

right-handed rotations in the three rectangular planes of the prime

vertical, the meridian, and the horizon, round axes directed res-

pectively towards the south, the west, and the zenith ; we may
proceed to investigate, on similar principles, and by analogous

compositions of rotations, the symbolic values of all the other

binary products of these three factors or versors ?", j, k; and

should find for eac/jsuch product a determinate result, unaffected

by any change of the line (a) assumed as the original vertend,
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which change the general plan of the construction might allow.

Thus, in order to find anew the value of the product i xj, we may
indeed vary the vertend a, since we need not assume this line to

be (as was supposed in art. 65) afoot directed towards the north.

We might assume the line a to denote any longer or shorter line

in the same northward direction ; but then we should only alter,

in the same ratio, the lengths of the two other lines /3 and -y,

without their ceasing to be directed respectively towards the

zenith, and the east, so that the geometrical quotient y-f-a, or

the product i xj, would still be found equal to k, since the pro-

versum -y would still be a line of the same length as the ver-

tend a, and would still be advanced beyond it by a quadrant of

azimuth, while both these lines would still be contained in the

same horizontal plane, if they be conceived to radiate from one

common origin. We might even assume the vertend a to be a

line directed to the south, and not to the north as before; for the

only effect of this change would be that the versum (3 would take

a downward (instead of an upward) direction ; and that the pro-

versum y would be directed to the west, instead of being pointed

to the east : and on finally comparing the (new) westward direc-

tion of 7 with tlie (new) southward direction of a, we should find

that J was still, as before, more advanced in azimuth than a by

a quadrant, both being still in a horizontal plane, so that y -f-a

would still be found equal to k. It was thus (for example), that

in the recent act of version (68), the eye-end of the telescope in

the model was depressed from the south to the nadir ; while in

the proversion (69), the same eye-end was elevated from the

nadir to the west : and the same horizontal transversion (70),

which brought the object-endi from north to east, brought also, at

the same time, the eye-ewA from south to west. In symbols, re-

taining the recent significations of i, j, k, as well as those of i,j,

k, we might have assumed,

a = + \, /3 = -k, 7 = +j,

instead of the values or directions which were assumed for a, /3,

J, in art. 65 ; and then we should have had the relations,
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|3 -a=(-k) -( + !)=>;

7-i3 = (+j)-(-k) = z;

7 -^"=(+J) -T-(+i) = *;

whence there would have followed, as before, the equation,

i xj = k.

Nor could any variation of this result be obtained by assuming

oMe/- positions of a; for the plan of construction requires that

this line a should have either a northward or a southward direc-

tion, if it is to be used as the vertend in the determination of the

product i xj ; since it is to be in the plane of version, that is here

in the meridian plane, and is also to be perpendicular to the ver-

sum, or provertend, /3 ; which latter line
fi

must lie at once in

the two planes of version and proversion, or in the planes of the

meridian and prime vertical, and must, therefore, be a vertical

line, directed either upwards or downwards.

72. With respect to the other binary products oii,j, k, it is

easy to perceive, first, that we have, by an exactly similar com-

position of rotations, the formulae,

j X k= i, and k x i =j ;

which only differ from the formula i xj= k, by a cyclical permuta-

tion of the symbols, and can, on this account, be easily remem-

bered. In fact if it were required to determine directly the value

of the product J x k, on the same plan of construction as before,

we should have to assume a direction for the versum /3, which

should be contained at once in the two planes of version and pro-

version, or be perpendicular at once to the axes of the two suc-

cessive rotations; thus j3 must be perpendicular to both k and j,

and must, therefore, have one or other of the two opposite direc-

tions denoted by the ambiguous symbol + i ; and by a principle

already mentioned, it is unimportant which of these two we select,

the choice not affecting the value of the transversor 7 -^ a; since

a change in this choice can only invert both, at once, of the direc-

tions to be finally compared. Assuming then j3 = + i, we easily

find that we are to assume, at the same time, a = -
j, and -y = - k,

in order that we may have
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^ X a = j3 = i, y X j3 =y X i = -y ;

and thus we find that the required product is

In like manner, to determine the value of i x i, we may assume

/3 = + j, a = -k, 7 = -i,

and we find that

A-xt = (-i)-^(-k)=/.

73. On the other hand, to find the value ofJ x i, although

we may still suppose, as in the example of articles 65, &c., that

the versum (i is directed vertically upward, we must then vary

the directions of a and y from those which were employed in that

example; for if we takej3 = + k, we must take a= + j, and ^ = + 1,

in order that we may have the relations,

I X a = /3 = + k, > x /3 => X ( + k) = y

.

The telescope is now to be conceived as being originally directed

to the west; as being next elevated to the zenith, by a rotation in

the plane of the prime vertical, of which the agent or versor is

7 ; and as being finally depressed to the south point of the horizon,

by operating with the proversor J. It has, therefore, in this case,

been caused upon the whole to retrograde (and not to advance)

in azimuth through a quadrant, since it has been moved from the

west to the south. Or we might assume

« = -J' ^=-k, 7=-i,

because

»"x(-j)=(-k),y x(-k)=-i;

that is, we might conceive the telescope to be first depressed by

the versor i from the east to the nadir, and then elevated by the

proversor _;' from the nadir to the north point; but we should

still have, on the whole, a retrogression of a quadrant in azimuth,

or a /eyji-handed motion (from east to north) through a right an-

gle, round an axis directed vertically upwards. Thus,

>xj = ( + i)-^( + j) = (-i)-(-j);

but also (by 72 and 60),
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^x(-j) = ( + j). and(-) x(+i)=(-i);

whence it follows that

(-i) = (-)xAx(-j), (-i)^(-j) = (-)xA,

and finally that

In words this comes to substituting for the quadrantal retrogres-

sion in azimuth a quadrantal advance, succeeded by an inversion

of the telescope.

74. But we may also conceive the motion from east to north,

or from west to south, to be effected by a right-handei rotation

through a quadrant, performed round a downward axis; and in

this view, the transversor in the present question is seen to be a

line in the direction of-k, so that it may conveniently be de-

noted by the symbol -k, as is exhibited in figure 14.

We may then write also,

j" x/=-A;

and in fact this shorter notation is seen to harmonize with the

formula recently obtained. It is proper, however, to observe

that we have thus been conducted to one important departure

(the only one, indeed, that has hitherto offered itself to our atten-

tion)^om the rules or mechanism ofcommon algebra. For we

have been led to conclude the two contrasted results ;

i>ij=k ; j xi = -k ;

which shew that (in the present system) the multiplication of

versors among themselves is not generally a commutative ope-

ration: or that the order oi thefactors is not indifferent to the
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result. In fact we have been led to express thus a theorem of

ROTATION, which is indeed very simple, but is, at the same time,

very important, and which there is consequently an advantage

in having so short a mode of formalizing : namely, the theorem

that two rectangular and quadrantal rotations compound them-

selves into a third quadrantal rotation, rectangular to both the

components, but having one or other oftwo opposite directions

(or characters, as right-handed or left-handed, round one axis),

according as the composition has been effected in one order or in

theother. It is thus that, for example, in iigs. 11,12,13, if the ro-

tation denoted by_y he followed by that denoted by i, the telescope

has been seen to be turned upon the whole from north to east, its

intermediate position being upward ; whereas the same telescope

would (as we also saw) be brought 6acA from the east to the north,

through an intermediate and downward direction, if the rotation

i were performed frst, and afterwards the rotation^'; or would

be brought, as in fig. 14, from a westward to a southward posi-

tion. It is easy to deduce, on the same plan, the analogous equa-

tions,

kxj^-i, ix k = -j,

which are contrasted respectively, in the same way, with the

equations

_; X k = i, kx i=j;

and in which -i is a versor with a northward axis of right-

handed rotation, and -j is another versor, with an eastward axis

of a rotation likewise right-handed. Or we may write (on the

plan of the last article) these other and equivalent formulae :

k xj= {-)xi; ixk={-) xj;

which would express that the old resultant rotations round south

and west (in 72) were now to be succeeded by inversions.

75. We have not yet considered the squares of the symbols

i,j, k, or the products oi equal versors. But we have seen (in

73 and 69), that

!x (+j) = + k, andt x( + k) = -j = (- l)xj;

by combining which two results it follows that
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JXiX j =(-l)xj,
or that

I X « = - 1

.

The same conclusion would have followed, if we had twice suc-

cessively operated by i on the line -j, or on either of the two

lines + k. In general it is clear that if any line in the prime-ver-

tical (or in any other) plane receive two successive and similar

quadrantal rotations, its direction is thereby on the whole in-

verted or reversed, or multiplied by - 1. For the same reason,

we have, in like manner, the values

:

jxj=-\; kyk = -l.

We may also write more concisely (compare art. 60),

ix i=j xj=k X k={-);

and may say that these three quadrantal versors i,j, k, together

with their own opposites, -i, -j, -k, are semi-inversors, or

produce each a semi-inversion. Indeed we see more generally

that every other quadrantal versor with any arbitrary axis

in space, is, in like manner, a semi-inversor, and may be re-

garded as a geometrical square root ofnegative unity ; or even

as a square root of minus, when " minus" is treated as afactor :

so that every such versor may be considered as included among

the interpretations of the symbol V - 1 or ( - )*; at least if we

suppose, for the present, each such versor to operate on a line

perpendicular to itself, or perpendicular to the axis of that quad-

rantal rotation of which the versor is conceived to be the agent.

76. It may have been noticed that we have not only the six

formulae :

(ixj = h, jxk = i, kxi=j,

\j X i = - k, k xj = -i, i X k= -j,

considered as results of the multiplication of versors, or of the

composition ofrotations, but also the closely analogous formulee,

'ixj=k, _;'xk = i, Axi=j,

(.^' X i =-k, ^ X j =- i, ixk = -j,

considered as the six results of so many single versions, and not

of versions compounded among themselves. These two sets of

i:
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results correspond to different conceptions and constructions, and

are not to be confounded with each other. We saw, for instance

(in connexion with the figures 11, 12, 13), that the formula ixj

= k expressed (as above interpreted) the result of a process,

whereby a telescope was first elevated from a northward to a

vertical position, and then depressed to an eastward one, being

thereby caused upon the whole to advance through a quadrant of

azimuth. But the formula ? xj =k (which occurred in art. 73,

the line j being there denoted by a), expressed, at least according

to the interpretation already given, that a telescope originally

directed towards the west would be elevated to the zenith, if it

were caused to revolve right-handedly through a quadrant round

an axis directed to the south (as in the first part of figure 14).

The signification of the one formula {ixj = k) has thus been

made to depend on the consideration of three quadrantal rota-

tions, in three rectangular planes ; whereas the signification of

the other formula («' x j = k) has been made to depend on the con-

sideration of a single rotation of this sort. Yet the two results

are by no means unconnected geometrically, nor is it accidental

that their symbolic expressions have so close a resemblance to

each other ; for this symbolical analoyy arises from, and em-

bodies, a general theorem ofrotation. And 1 conceive that we

may now legitimately, and with advantage, avail ourselves of the

same analogy, or of the theorem to which it corresponds, to dis-

pense with that symbolic distinction which has been above ob-

served, between the three quadrantal versors i,j, k, and the three

lines, i, j, k, which have respectively th« directions of their three

axes. Dismissing, therefore, or suspending, the use of the ro-

man letters i, j, k, I propose now to regard the formula i xj = k,

as being the common expression of the two connected results rela-

tive to rotation, of which one was illustrated by the three figures

11, 12, 13, and the other by the first part of figure 14. And in like

manner, each of the five other formulae of the same sort, respect-

ing the binary products of i, j, k, as for example, the formula/ x k

= i, will come to be regarded as the common expressio7i of two

distinct but connected results; one relative to a certain composi-

tion of versions, and the other relative to a single rotation. It is

clear that similar remarks aj)ply to the comparison of such results
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of division of rays, and of decomposition of versions, as are ex-

pressed by the following formulae :

i=k ~-j; i = k^j;

and by others analogous thereto.

77. In this manner we may be led to regard the three italic

letters i,^', k, as symbols of the same three lines which were

lately denoted by the three /oman letters i, j, k. Or rather, for

the sake of a somewhat greater generality, in future applications,

we shall now say that i,j, /,-, may be regarded as symbols of

ANY THREE MUTUALLY RECTANGULAR AND EQUALLY LONG

LINES, whose common length is still supposed to be the unit of

LENGTH ; while the rotation, round the first (i), from the se-

cond (7), to the third (It), is positive ; that is (as we shall still

suppose) right-handed: these last suppositions being a little

more general than those of art. 65, in virtue of which the three

lines i, j, k, were respectively a southward, a westward, and an

upward foot. And, on the other hand, we are conducted to regard

each of these three right lines, i,j, k, and similarly every other
UNIT LINE in space, as being a quadrantal versor ; whose
operation, on any right line in a plane perpendicular to itself,

has the effect of turning this latter line through a right
angle, towards the right hand, in the same perpendicular
plane.

78. Indeed this view of the directional or graphic opera-

tion of one right line on another line perpendicular thereto,

whereby that operation is considered as producing or determin-

ing, by a rotation towards a given hand, a third line perpendi-

cular to both, appears to be so simple in itself, and so intimately

connected with whatever is most characteristic in the whole

conception of tridimensional space, that we might have been

pardoned if we had chosen to set out with it, and to define that

such should be regarded, in our system, as the operation of mul-

tiplying one oftwo rectangular lines by another, when direc-

tions alone were attended to. And then the contrast between

the two formulae,

i^j=k, j xi = -k,

or the non-commutative character of this sort of geometrical mul-



LECTURE II. 73

tiplication, would have offered itself to our notice, even more

simply than in art, 74 ; as expressing, for example, that ifa west-

ward line be turned right-handedly through a right angle, round

a southward axis, it is elevated to the zenith ; but that if (by

an interchange of operator and operand) a southward line be

turned, in like manner, round a westward axis, through a quad-

rant, and towards the right-hand, it is, on the contrary, de-

pressed to the nadir. And so many other consequences could

be drawn from the same simple conception of this directional

operation of line on line, that it might not be too much to say,

that the whole Theory of Quaternions, or that all the symbo-

lical and geometrical properties of quadrinomial expressions of

the form w + ix+jy + kz, where w, x, y, z are any four scalar

constituents (four positive or negative numbers), while i,j, k

are three rectangular vector units, would admit of being

systematically developed from the supposed definition, above

mentioned, of this case of the geometrical and graphic multipli-

cation of lines ; at least if this were combined with those other

and earlier definitions of geometrical addition and subtraction,

which other definitions (as was noticed in art. 36) are not pecu-

liar to quaternions, but are common to several systems of appli-

cation of symbols to geometry. But it has seemed to me that

the subject allowed of its being presented to you under a still

clearer light, and with a still closer philosophic unity, by the

adoption of the plan on which these Lectures have hitherto

been framed, and on which it is my purpose to pursue them, if

favoured for some time longer with your attention.
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79. The two preceding Lectures, Gentlemen, will be found,

I think, to have advanced us, in no inconsiderable degree, towards

a correct and clear understanding of the principles of the Calcu-

lus of Quaternions : since they have contained an. exposition of

the primary (and of some of the chief derivative) significations

attached, in that Calculus, to the four elementary signs + - x -^,

or to the four fundamental operations of Addition, Subtraction,

Multiplication, and Division, when viewed in connexion with

Geometry. Those primary significations (in the view thus taken

of them) have indeed been stated, at first, in a very general and

somewhat metaphysical manner ; but they have since been illus-

trated by so many and such simple examples, geometrical or

astronomical, combined with the exhibition, in some cases, ofap-

propriate models and diagrams, that the seeming vagueness or

obscurity, whatever it may have been, of those early statements

(in art. 5), may be hoped to have been, by this time, sufficiently

done away. We must, however, now proceed to develope still

farther the same principles, and to apply them to new questions,

in order to render still more manifest their geometrical meaning

and utility. We may not indeed be obliged to enlarge, except

in a few instances, the nomenclature or vocabulary of the

science, which some may think already too copious; but its no-

tation will require to be extended and illustrated by new defi-

nitions and examples. The conceptions themselves must be

still further unfolded and combined; and the symbols by which

they are to be embodied and expressed must be shewn to be the

elements of a Calculus, possessing, on several important points,

its own appropriate rules ; although aiming in many other res-

pects, and indeed wherever this can be done without sacrifice of
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its peculiar features, to render available, in conjunction with its

own new usages, the results and habits of Algebra. More ge-

neral processes for geometrical Multiplication and Division must

be exhibited, than have been given in the foregoing Lecture

;

and these must be combined with those already stated, for geo-

metrical Addition and Subtraction. And above all, it will be

indispensably required by the plan of the present Course, that

we should soon proceed to consider more closely than we have

hitherto done, the questions, What is, in this System, a Quater-

nion ? and On what grounds is it so called?

80. The general notion of multiplication, or of faction, in

geometry, proposed in the foregoing Lecture, has been, that it is

an act or process which operates 1st, on the length of a ray; or

2nd, on its direction; or 3rd, on both length and direction at once.

The multiplier or factor has been conceived to be the agent or

the operator in this act or process; and the multiplication ofany

two factors among themselves, in any assigned order, has been

conceived to correspond to the composition oi tvio successive diCts

of faction, and to the determination of the agent in the resulting

act oi transfaction. And the mark or characteristic of such fac-

tion, or of such composition of factions, has been with us the

familiar sign x, pronounced or read, as usual, by the word into.

As examples of such factors in geometry, we have as yet con-

sidered only i\iefour following classes : 1. tensors or signless

numbers, such as 2, 3, 6, I, \/2, which operate only mcti-icallij

on the lengths of the lines which they multiply, and which are

to be combined among themselves, as factors, by arithmetical

multiplication, or by the laws of the composition of ratios; IL

SIGNS, namely (+) and (-), regarded as marks of nonversion and

inversion, which operate (as such) only to preserve or to reverse

the direction of a line, and are combined among themselves ac

cording to the usual rule of the signs; IIL scalars, or sign-

bearing numbers, such as - 2 or + 6, which are simply the reals

of ordinary algebra, and are combined with each other as factors

according to the known rules of algebraic multiplication, while

each may be regarded as being itself i\\e jjroduct of a tensor and

a sign, and may at once alter the length of a line in a given ratio,

and also nonvert or invert its direction; IV. vectof{-units,
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or quadrantal versors, such as i,j, k, and their opposites - i, -j,

-k, of which each is a p}ire\Y graphic operator, having the effect

of turning a line, in a plane perpendicular to itself, right-handedly

through a quadrant, but having no power to alter the length of

the line whereon it thus operates. As yet, therefore, we have

not considered, V. how to multiply one of two rectangular lines

by another p«fpendicukr thereto, when the multiplier-line has a

length different from that which has been assumed as the unit of

length; nor VI. how to multiply a scalar by a vector; nor

VII. have we considered the product of two parallel lines

;

much less have we shewn, VIII. how to multiply generally

any one vector by any other, and thereby obtain a Quaternion as

the product; nor IX. how to multiply any one such quater-

nion, as a factor, by any other quaternion. It is obvious that

there must remain questions of the same sort to be considered

with respect to the division of lines and of quaternions. But I

think that before entering on these new problems, it will be use-

ful to suggest still another mode of elementary illustration (be-

sides those given in the last Lecture) of the multiplications of

the I Vth class enumerated above ; because the smallest degree of

obscurity, existing with respect to these, would be fatal to our

subsequent success, or at least would materially interfere with

the facility and clearness of our future investigations.

81. Conceive then that there are two clock faces or dial-plates,

one facing the south, as represented in fig. 15, and the other fac-

ing the west, as indicated in fig. 16 : where the letters Z, W, E,

N, S, denote, as in some earlier diagrams, the zenith (or highest

point), and the west, east, north, and south, respectively. Then

the former of these two figures may become a sort of picture of

the "i-operation," and the latter figure of the "_7"-operation," if

we proceed to interpret them as follows. In fig. 15, with the

clock face south, the i-operation, or the multiplication by the fac-

tor i, has the effect of advancing the hour-hand by three hours,

or of putting the minute-hand forward fifteen minutes, or a quarter

of an hour. And in like manner, in fig. 16, where the face is

supposed to be turned towards the west, an exactly similar ad-

vance of either clock-hand (through a quadrant) is effected by

the^-operation, or by a multiplication by the factory. Conceiv-
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ing, therefore, that we watch the motion of the hour-hand from
IX. to XII. on the dial-plate with face to the south (fig. 15),

and again from III. to VI. on that other dial-plate which faces

the west (fig. 16), we may suppose ourselves to see upon these

wUv'-o—"v}- IE N

Face West.

dials, or clock-faces, that the hour-hand is brought up from +j to

+ A, by the i-operation, but that it is, on the contrary, brought

down from + 1 to - k, by the_;-operation, as marked by the curved

arrows in the figures : and thus, or by watching the motions of

the minute-hand on the same two faces, during the fourth and

second quarters of an hour, we might in a new way exhibit to

ourselves the truth and contrast of the two important formulae :

i^j = h, jxi=^-k;

at least if (to fix our conceptions) we retain, for some time lon-

ger, that particular choice of the directions of the lines i, j, k,

which is suggested by the examples given in the foregoing Lec-

ture. The figure 15 may, on the same plan, illustrate the for-

mulae :

ixk = -j, i X {-j) = -k,

and, therefore, also the resulting formulae,

ixixk = -k, i X i= - I ;

which last result may be considered as here expressing, that if
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the minute-hand be advanced upon the southward dial-plate,

through two successive quarters of an hour, it is brought from

pointing up to pointing down, or is otherwise reversed in direc-

tion. In like manner, figure 16 exhibits the results, that

j y k = i, j X i = - k,

and that consequently,

jyjxk=-k, >xj = -l;

while the analogous results respecting the A-operation, or multi-

plication by the factor k, may be illustrated by simply laying a

watch upon a table, with its face upward.

82. Assuming then that we are by this time quite familiar

(compare 80, IV.) with the effect of a vector-unit, such as i, or

j, or A, when thus operating as a graphic factor on any line per-

pendicular to itself, let us consider, in the next place, what our

principles oblige us to regard as being the product obtained by

the multiplication of a line by another perpendicular thereto,

when (see 80, V.) the multiplier line has a length different from

that which has been chosen for the unit of length. Suppose, for

instance, that it is required to multiply the line 3;' by the line 2i

;

which latter line (by art. 58) is the same with the product 2 x i.

To adapt to this particular question the principles of the forego-

ing Lecture, we have only to assume that 3/ is the faciend ; i the

factor; i x 3/ the factum, or the profaciend ; 2 the profactor; and

therefore 2i, the transfactor ; and to seek what line the trans-

factum, or the profactum, is: for (by articles 39, 40, 41, 46, 47,

48, 49) the li7ie thus found will be the product required, since it

will be the result of the multiplication, Transfactor into Faciend.

Now the 2-operation, or the multiplication by the versori, being

performed on the line 3_/,according to the rules which we already

know, has simply the effect of turning that proposed line 3; into

the new position 3k, without any change in its length ; hence

3^ is, in this case, the factum, and we may write the equation,

i X 3j = 3k.

Operating next on this factum 3k, regarded as a profaciend, by
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the profactor 2, which belongs to the class of tensors, we now do
not turn at all the line which we thus multiply, but we stretch it

so as to double its length, and change it to the line &k; which
consequently is the required profactum, or transfactum, or final

product ; so that we have the equations,

2i .3J=2xix 3j = 2 X 3A = 6;i.

In like n)aiiner we should find that

3;' X 2i = 3 XJ X 2/ = 3 X (- 2k) =-6k;
- 2j" X 3J = - 2 X e X 3;' = - 2 X 3^ = - 6k, &c.

;

and generally we see that (as in algebra),

aix bK = ab X ik,

if « and b be any two tensors, or sealars, wljile ( and k are any two
rectangular vector units. We have then this Theorem, as a neces-

sary and important consequence of the principles of the present

System of Symbolical Geometry : the product o/any two hect-
ANGULAR LINES IS a THIRD LINE perpendicular to both ; its

LENGTH being the product of their lengths (or bearing to the unit

of length the same ratio which the rectangle under the factors

bears to the unit of area) ; and the rotation round the multi-

plier line, from the multiplicand line to the product line, being

POSITIVE (that is, as we continue to suppose, right-handed).

But we see, at the same time, that this product line assumes gene-

rally owe or other of TWO OPPOSITE DIRECTIONS, according as

the two rectangular factor lines are taken in one or in the other

ORDER ; just as we found more particularly before, that the lines

(+A), represented by the two products i x_; and,;' x i, were oppo-

site ; so that we may now write, generally, the following equa-

tion OF PERPENDICULARITY :

aj3 = -/3a, ifjS^a;

where J. is the usual sign for one line being at right angles to

another; and, in the symbols of the two products a/3 and /3a,

the mark of multiplication is omitted.

83. It will now be easy to fix the signification which should

be attached to tiie product of a number multiplied by a line (see
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80, VI.), or of a vector into a scalar. Suppose that it is required,

for example, to multiply the scalar - 2 by the vector i; or to

find the value of the product i x - 2. For this purpose we may

assume any line perpendicular to i, suppose the line 3/, as a fa-

ciend ; operate jffr*^ on this line by the factor -2, which will give

the factum - 6/; operate next on this factum, or profaciend, -6/,

by the profactor i, which will give the profactum -6A; and

finally inquire what one transfactor, operating on the assumed

faciend or transfaciend 3;', would conduct to this profactum, or

transfactum, namely, to the line - 6A : for this transfactor, so

found, will (by 49) be the sought product of profactor into factor.

In this way (since -2ix 2>j = -%k) we find, in this example, that

t X - 2 = - GA -^ 3;' = - 2e

;

and generally we may conclude, by a process of the same sort,

that

axax|3=axaxj3,

if a be any scalar, and ]3 any line perpendicular to a ; whence we

infer (see 49) that

ay^ a = a>i a,

or that the product ofa scalar and a vector is independent ofthe

order of the factors. But we know how to interpret this pro-

duct as a line, when the vector a is multiplied by the scalar a

(see art. 59) ; we are led, therefore, to interpret the product as

denoting the same line, when the scalar a is multiplied by the

vector a : and omitting the mark x, we may denote this product-

line indifferently by either of the two symbols aa or aa.

84. We have not yet fixed generally (see 80, VII.) the in-

terpretation which should be attached to the product of two

parallel lines, or to the square of a vector, in this system of sym-

bolical geometry. However we saw (in art. 75) that ih& squares

of the three vector-units i, j, k, and generally that the squares of

all quadrantal versors, such as (by art. 77) all vector-units are,

have negative unity for their common value. And if we wish to

determine generally the product of any tioo vectors, such as ia

and ix, which are parallel to one commoA line (the factors a and

X being here supposed to be scalars), and which may, therefore.
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be said to be themselves parallel lines, even if they should hap-

pen to be situated as parts of one common and indefinite axis,

we have only to assume some perpendicular line such asjy for

the faciend ; to deduce hence the factum, namely, ixxjy = xyk,

by the rule in art. 82 ; and then (by the same rule in 82), to

calculate an expression for the profactum, namely,

ia X xyk = axy x «A = - axyj = - ax y.jy

;

for thus we find that the transfactor is -ax, or that the product

required is

ia X ix = - ax.

In general this mode of proceeding shews that thep7'oduct o/any

TWO PARALLEL VECTORS is (in the present theory) a scalar
;

namely, the number which expresses the product of the

LENGTHS of the two factor lines, this number being taken nega-

tively or POSITIVELY, according as those two parallelfactor-

lines agree or DIFFER in direction.

85. For example, the square o/'every vector is a nega-

tive scalar, of which the positive opposite expresses the square

of the length of the vector ; thus

ix X ix = - XX

:

or using the exponent 2, we have the equation

{ixY = - X'.

If this result appear at all surprising, it is to be remembered, on

the one hand, that we had already (by 75) the values

and it may be remarked, on the other hand, that the general rule

recently deduced (in 84) for the multiplication of parallel lines,

gives the following equation of parallelism :

ai3=+^a, if/3||a;

where
Jj

is used as the known sign of parallelism, and lines are

Still regarded as parallel to each other, if they be parallel to one

common line; and that this last equation not only agrees (so far
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as it goes) with ordinary algebra, but also contrasts, in a strik-

ing and (as it will be found) useful way, with the lately deduced

equation of perpendicularity (namely, a/3 =-j3a, in art. 82). It

may be added that there appears to be something convenient, and

even natural, in the (symbolical) distinction thus sharply drawn

in the Calculus of Quaternions, between the two (mentally dis-

tinct) conceptions of LINE and number; every yECTOB., or directed

right line in tridimensional space, having (as above shewn) a

NEGATIVE square; while erery scalar, whether it he itself a

positive or a negative number, has, on the contrary, in this sys-

tem as in algebra, a positive square. But whatever may be

thought, at this stage, of the convenience or advantage of this

distinction, it may be already clearly seen, that the distinction

iiseU is a necessary part of the present Theory, indispensable to

its self-coherence, and required by its internal unity. To reject

this result, while other essential elements of the system were re-

tained, would be equivalent to the absurdity of asserting, that

two quadrantal and similarly directed rotations, in one common

plane, did not invert the direction of the revolving line; or that

two quadrants did not make one semicircle.

86. By a slight extension of the recent use of an exponent, it

is easy to give a clear and definite signification to such symbols

as i\,j\, k\, &c., and to shew that these symbols also may repre-

sent versors, a' though not quadrantal versors. The symbol i^

has been already seen to represent an inversor, namely, - or - 1

(see articles 75, 85), because it represents an operator or factor

which produces two semz-inversions in one plane. In like man-

ner, the symbol li may now naturally represent an operator

which produces, in the plane perpendicular to t, the <A?>(f /)ar<

ofa semi-inversion, or the third part of a quadrantal rotation.

This operator would, therefore, cause a telescope, in the plane

of the prime vertical, to advance through thirty degrees in a

right-handed rotation round a southward a.xis; or in fig. 15, it

would have the effect of making the hour-hand advance from IX.

to X., or generally from one hour to the next, on a dial-plate

facing the south. Again, the operator j'f is another versor, which

would cause the minute-hand, in fig. 16, to advance through

eight-fifths of a quadrant, or would push this hand forward by
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an interval, upon this westward dial, corresponding to twenty-

four minutes of time. Considered as operating on a transit teles-

cope, this versor would not merely elevate that telescope from a

horizontal and northward to a vertical and upward direction, as

supposed in art. 68, but would carry the same telescope stillyar-

ther, in the same direction of rotation, through three-Jifths of

another quadrant, till it should come to have a zenith distance of

54°, or an altitude of 36° above the south point of the horizon;

or in other words till it were brought into a position for observing

the transit of an equatoreal star over the meridian, if the north-

ern colatitude of the place of observation were 36° : or (in fig.

17, art. 87) from the position on to the position OQ. And finally,

the versor k' would cause the telescope of a theodolite to advance

through half a quadrant, that is, through 45° of azimuth ; or

would push on through an hour and a half (that is, through the

/la^ of three hours) the hour-hand of a watch which should be

laid with its face upward on a table. In general, if i denote any

vector-unit, and if ^ be any scalar exponent, the symbol t' de-

notes, on this plan, a versor, which would cause any right line,

in a plane perpendicular to t, to revolve in that plane through t

quadrants, or ihrough an arc = < x 90° ; right-handedly round i, if

ibe positive, but left-handedly, if ^ be negative. Thus every such

POWER, oi every unit-vector, comes with us to be interpreted

as a VERSOR (not generally quadrantal); and reciprocally every

versor may be regarded as such a power : the base of this power

being the unit-line in the direction of the axis of the versor; and

the scalar exponemt expressing the ratio which the angle (or

amplitude) of the same versor bears to a quadrant; while this

scalar is positive or negative, according as that rotation round

the a.xis, in a plane perpendicular thereto (in producing which

rotation round this axis and through this angle, the versor \?> con-

ceived to be the agent), is directed towards the right hand, or

towards the left. We know then how to interpret the symbol

i'k, if 4 be thus an unit-line, and wa vector perpendicular thereto;

namely, as denoting a third line X, which is likewise perpendi-

cular to I, and has the same length as k, but is inclined thereto,

at a determined side thereof, by an angle = t x 90°.

87. Proceeding to the consideration (see 80, VIII.) oT the

g2
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multiplication of one line by another, which is neither parallel

nor perpendicular thereto, let us at first suppose, for simplicity,

that each factor is a vector-unit ; let one of them be imagined to

have a vertically upward direction, so that it may be denoted (as

before) by the letter k; let the other be supposed to be directed

to the north pole in a northern latitude of 54°; let this latter

unit-line be denoted, for the present, hy p; and to fix the order

of the factors, let this line /? be taken for the multiplier, while

the other unit-line k shall be regarded as the multiplicand. We
are, therefore, to seek the value (or the interpretation) of the pro-

duct p-K k, or pk, by the principle (see art. 49) that pk =pka -f- a

;

or that

pk=y-^a, if/3 = Aa, y=P^,

where a j5 y are three lines, or rays, which it remains to assume

so as to satisfy these last equations. Now, because (3 = ka, we
know (compare articles 70, 71) that a and j3 must be two hori-

zontal and equally long lines, of which j3 is more advanced by a

quadrant in azimuth than a; and because 7=^/3, we know that

/3 and y are two equally long lines in the plane of the equator

(perpendicular to the polar axis p), and such that y is more ad-

vanced by a quadrant towards the right hand, or in the order of

the diurnal rotation of the heavens, than j3, or has an hour-angle

greater by an amount which answers to six hours of such rota-

tion. We /«MS^, therefore, on the present p/aw of construction,

conceive /3 to be directed towards either the east or the west

point of the horizon, and may suppose its direction to be to the

east ;" for (compare art. 71), an inversion of j3 would only invert

both^oi the two other lines a and 7 at once, and would, therefore,

not afl'ect their quotient: we may also assume that the common
length of these three lines is unity. Making then j3 = -j, we
find that a = -i, or that the line a is directed towards the north;

we find also that the line y is directed towards the culminating

point Q of the equator, or that it has the position oq lately con-

sidered (in art. 86), [which was seen to be derived from a north-

ward line ON, by operating with the versor, or graphic factor, de-

noted by the power jf. Thus, in the present question, the required

product is known, for we find the equations,
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The product /> x ^ is, therefore, a versor, of which the unit-axis

is the westward liney, while its angle, or amplitude, is = f-x 90"

= 144° ; that is to say, the sup-

plement (to two right angles)
'^'

of the angle of 36°, which has

been supposed to be the north-

ern co-latitude qos of the place

of observation, or the north po-

lar distance poz of the zenith
;

while the rotation (of 36°),yro»j
jj|

the multiplier p to the multi

plicand k, is right-handed, round the (westward) axis of the pro-

duct. All this may be illustrated by the annexed diagram (Fig.

17), to which reference has already been made.

88. It is easy now to see that this mode of constructing the

product of two unit-lines may be applied to ail other cases of

such products; and that if the factor lines were different in their

lengths from unity, we should only (by 82) be obliged to combine

with the foregoing composition ofversions a certain composition

of tensions, or to multiply the resulting versor by (or into) a

tensor, which would simply be the number that expressed the

product of the lengths of the two factor lines, or the area of the

rectangle under them. We have, therefore, this theorem, which

includes several of those already given: " The product kX, of ant

TWO vectors k and X, is in general equal to the product of a

Tensor and a Versor ; whereof the tensor is the numerical pro-

duct be, if b and c be numbers expressing the lengths of the fac-

tor lines, or their ratios to an assumed unit of length ; while the

versor is the power i^'' of the vector-unit i, this unit-line i having

the direction of the axis of right-handed rotation _/y*o»j the mul-

tiplier-line *c to the multiplicand-line X ; and the supplement t,

of the exponent 2 -f to the constant number 2, expressing the

ratio of the angle of this last rotation to a right angle." In short,

with the foregoing significations of the symbols, we shall have

the two following connected expressions:

X --

r'; kX = 6c('-';
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where - is, as usual, a symbol equivalent to c -f- 6. I" the ex-

ample of the foregoing article, the particular values of these sym-

bols were

;

t=j ; K=p ; \ = k ; b = c=\ ; t='j.

89. As another example, \eti = -j, k = A, X=j3, where /> shall

be supposed to retain its recent meaning ; so that we shall have

still 6 = c= 1, and < = f. The general theorem of the last article,

gives now the expression,

hp={-j%

as the value of the product k into p, which differs only by the

order of its factors from that considered in art. 87, and represents

a versor whose anple is still = f x 90°, but whose axis is now

directed to the east, instead of being directed to the west point

of the horizon. In fact, if we had immediately sought to deter-

mine this new product hp as the value of kpa -r- a, we might have

conveniently taken for a the line which was lately y, or the position

of a telescope oq directed towards the culminating point q of the

equator; and then we should have found joa =J, aud /cpa =kj = -i,

so that the new product Ap, regarded as a transfactor (49), would

he seen to have the effect of turning the telescope from the position

just now mentioned, through 144°, right-handedly round an east-

ward axis, till it pointed horizontally towards the north. We see

in this example what the theorem of the preceding article proves

to be generally true, that the ttvo products (in this va&e pk and

kp) of any two unit-lines, taken in two opposite orders, are mu-

tually inverse or reciprocal as to their effects as versors, one un-

doing what the other does ; because their axes (of right-handed

rotation) are opposite, while their angles (of such rotation) are

equal. They might, therefore, be called, with respect to each

other (compare art. 44), by the names of Versor and reversor.

They may also conveniently be said to be conjugate versors:

and I am accustomed to denote this relation between them, or

to form a symbol of owe such versor from the symbol of the

other, by prefixing the capital letter K, as the CHAHACTEiusric

OF conjugation : tiius with the recent significations of k and p,

as certain unit-lines, I should write the equations.
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K.pk=kp ; K. kp =pk.

And because it is tlie same thing, whether we turn a telescope

right-h-dndeAXy, round an eastward axis, or /e/f-handedly round

a west-visxA axis, through any given angle, such as that of 144°,

we may, in the recent example, write an expression with a ne-
gative exponent, namely,

kp =J-i,

instead of that other expression which was lately given for this

product kp (near the beginning of the present article). The
powers Jf andJI, with one common unit-linej for base, but with

opposite scalar exponents, are, therefore, conjugate versors ; the

former power being a value iov pk (by 87), and the latter being

a value for kp. Thus we are led to write,

and generally for any unit-vector i as base, and any scalar t as

exponent, we have the formula,

More generally kX and Xk may be said (by analogy) to be con-

jugate PKODUCTS, whether the lines denoted by k and X have

their lengths equal to unity, or different therefrom; using then

still the same characteristic ofconjugation K, we may agree to

write, in this more general case,

K . kX = Xk ; K . Xk = kX.

90. Since every geometrical product, ofany one of the classes

hitherto considered, is also at the same time a certain geometrical

quotient, or is equal to the quotient of some one directed line

divided by another, according to the general notion of such divi-

sion, which has been given above ; and because it may thus be

used as a factor, or multiplier, to generate ox produce the divi-

dend line of this quotient as a factum, or as a product, from the

divisor line as a faciend or multiplicand; while every such act

offaction, or of multiplication, may be resolved into a metric

and a giiaphic clemmt, namely, into two factor acts o( tension
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and oi version: we may already see that it must be useful to

possess signs, or marks, for expressing this general resolution of

any geometricalfactor into these two important elements, or for

denoting separately , in each particular case, on one general plan

of notation, the particular tensor, and the particular versor, by

whose multiplication among themselves the proposed factor may
be conceived to have been produced. Accordingly I employ, with

this view, the two capital letters T and U, as ciiakacteristics

of the two OPERATIONS which I call taking the tensor, and

TAKING THE VERSOR respectively; that is to say, the operations

of obtaining, by a general mode of decomposition thus denoted,

from any proposed geometrical multiplier, q, or from any pro-

posed product or quotient of lines or numbers, regarded as such

a multiplier, the two separate factors, or factor-elejients, Tq
and Uiy, whereof the former is a tensor, and the latter is a versor,

and which satisfy the two following general equations, or sym-

bolical identities (in the present system of symbols) :

q=Tq^'[]q\ q=Uqy'Tq:

implying that we may either first turn, and then stretch, or else,

at pleasure, frst stretch, and then turn a line.

And these two new characteristics, T and U (in conjunction

with K, and with a few others to be hereafter mentioned), are

among the main elements of that Calculus to which these Lec-

tures relate, so far as its notation is concerned. It will readily be

understood that if, instead of a single letter, such as q, we have

any more complex symbol, such as X -^ k, or kA, denoting the

subject of these two new operations, it may then become neces-

sary, for distinctness, to enclose this symbol in parentheses, or to

interpose a point between it and the prefixed characteristic T or

U. Thus the equations of art. 88 give

T(X^O = ^; U(X-k) = ,';

i-iT . K-X = 6c ; U . kX = t

In words we may agree to call Tq the tensor of q, and similarly

may say that llq is the versor of q. And because a versor
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does not stretch, while a tensor does not turn, we may write ge-

nerally,

T.Uy=l; U.T9=+;

the tensor-element of any versor, such as Vq, being properly a

non-tensor, namely, unity, or the factor 1 (see art. 63) ; and the

versor-element of any tensor, such as Tg', being in like manner a

non-versor, namely, the positive si(/n + {com[)i\re art. GO). On
the other hand, we have also, with equal generality, the two for-

mulae :

r.Tq=Tq- \J.Uq=Uq;

because the tensor-element of a tensor is simply that tensor itself;

while, in like manner, a versor is its own versor-element.

91. Ihe factor T^ is always a number, commensurable or in-

commensurable with unity (see art. 63) ; and the other factor Uy
admits (by 86) of being expressed under the form of a pouir
such as i', where the exponent t is another number, positive or

negative, and the base i is an unit-line with some determined di-

rection in space. Now, for the complete numerical expression

or determination of this direction, two other numbers are, in ge-

geral, required ; for if we conceive the line t to be (at some given

moment of sidereal time, and some given place of observation) a

telescope pointed to a star, then in order to express numerically

the position or direction of this telescope, and tlierebv to distin-

guish this from other directions, we must know sovie 'J wo astro-

nomical coordinates of the star, such as its right-ascen>ion and

declination, or its longitude and latitude, which would suffice to

identify the star on a globe or chart, or to fix its place in a cata-

logue. We see, then, that the power i', or the versor \J.q, de-

pends upon, and implicitly involves three numerical ele-

ments, the knowledge of a// of which is generally necessary for

its complete numerical identification. In fact to know completely

WHICH VERSOR among all possible irrsors is denoted in any

particular investigation by such a symbol as Uy, we ought to

know through what angle the corresponding version is per-

formed, and round what axis of right-handed rotation ; but in

order to ad.iust this wxw jiro|>erly, or to srt a telescope in its di-
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rection, two motions, measured by two other angles, would

in general be required to be performed. The perfect knowledge

of any one Versor, such as \]q, includes, therefore, generally, the

knowledge of the values of three angles, expressed, or at least

expressible, by a system of three numbers. And because the

Tensor T^ is itself another number, we find, upon the whole,

that the geometrical factor, or quotient, or product, which

has been above denoted by q, and which has been seen to be

equal to the product of its own tensor Tq, and of its own versor

\]q, is generally a Quaternion : in the sense that it is found by

this (and by every other) mode of analysis, or of decomposition,

to depend upon, and conversely to include within itself, a System

OF Four Numbers.

92. This conclusion is so important (we might almost say so

fundamental), with reference to the subject of the present Lec-

tures, that it may be worth while to confirm it by at least one

other mode of illustration, or of derivation, here; although we shall

meet afterwards with other confirmations and illustrations of the

same conclusion.

We have lately been considering what has been above de-

noted by the symbol q, in a synthetic, rather than in an analytic

point of view. We have (upon the whole), in the two last ar-

ticles, regarded this 9 as a factor, rather than as a quotient

;

although this latter view of q has also, in those articles, been

mentioned or alluded to. While decomposing this geometrical

multiplier q, as such a factor, into its own two cow/Jowew^ factors

of the tensor and versor classes, denoted respectively by the sym-

bols Tq and Uq, we have thought of q itself rather as operating

on a faciend ray a to produce a factum j3, then as he'ingfound by

our comparing the latter ray /3, as a dividend, with the former

ray a, as a divisor. In short, we have recently been studying the

composition of q, as an agent, rather than as a relation; or

as satisfying the equation,

9X1 = 13,

rather than as determined by the inverse equation,

(7
= |3 ^ a.
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which is, indeed, intrinsically, the same, but presents itself un-

der a differentform. But we propose to vary our modes of illus-

tration of the subject by taking now, for a while, in preference,

this latter view. Instead of studying the (synthetic) operation

denoted by the symbol q ^ a, we shall aim now to study, unfold,

represent, construct, and picture, as clearly but also as briefly

as the subject may allow, the converse (analytic) conception of

what has already been denoted by the symbol /3 -4- a ; and was

spoken of (perhaps inelegantly) at an early stage of the foregoing

Lecture (see art. 40), as being a certain metrographic rela-

tion of the ray j3, to the ray a: involving partly, as was there

remarked, a (metric) relation of length to length, and partly also

a (graphic) relation of direction to direction. Fixing, then, our at-

tention, for the present, on this metrographic relation, or on this

quotient of two rays, we are now to seek for some simple construc-

tion, diagram, ov Jigure, which ma)' represent otpicture this con-

ception, and may thereby be analogous to the construction or

representation given in the first Lecture, for the corresponding

conception of the difference of two points,

93. Resuming, then, the expression of art. 40 for q, namely,

where a and j3 denote tivo rays or directed right lines in space;

and comparing it with the expression of art. 18, for a rectilinear

step or vector a, namely

a = B- A,

where a and b denote two points, namely, the beginning and end

of the step ; we see that as this vector a, regarded as a geome-

trical DIFFERENCE, B - A, has been already constructed (in fig.

2 of art. 8, or in fig. 6 of art. 53) by a straight line ab, with a

straight arrow attached, so the factor q, when regarded as a

GEOMETRICAL QUOTIENT, j3 -i- a, may naturally be pictured by a

PAIR OF RAYS, or of right lines diverging from an origin or com-

mon point, with a curved arrow inserted between them: as has

indeed been done in fig. 7 (of same art. 53), where the angle adb

(for example), between the two rays da and db, or a and /3, being

one of three angles (adb, bdc, adc) at the vertex d of thetrian-
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gular pyramid abcd, has a curved arrow thus drawn within it,

while the word Factor is written above this arrow, and the letter

q below; the arrow being directed ^rowz the faciend, da or a, to

the factum, db or /3. A. figure constructed in this manner, such

as the figure adb just mentioned, may be called a Bihadial : it

differs from the ordinary plane triangle adb, by not expressly in-

volving, in its conception or description, the third or closing side

ab ; and it differs also from the ordinary plane angle adb, by its

essentially involving the conception of the relative length, and

indeed by its depending also on the order and plane of the two

lines or rays, da and db, which enclose it. It might, therefore,

be otherwise called an unclosed triangle ; or an angle with finite

legs: but the recent name hiradial appears to be more convenient

and expressive than either. The point d, from which the two

rays diverge, may be said to be the vertex of this biradial ; the

divisor line (or faciend) da nr.ay be called the initial ray ; and

the dividend line (or factum) db may be called, on the same plan,

the FINAL RAY of the same biradial figure adb. A biradial has,

in general, a shape, or species, depending on the ratio which

the length of the final ray bears to the length of the initial, and

also on the angle at which thefinalis inclined to the initial ray;

this shape of the biradial determining thus the shape or species of
the triangle, which is formed by closing thefigure, or l)y drawing

a straight line from the end of the initial to the end of the final

ray: and two biradials which have, in this sense, the same shape,

by their ratios and angles being equal, may be said to be similar

biradials. a biradial has also a plane and an aspect, depend-

ing on the star or region of infinite space, towards which its plane

may be conceived to face ; this region being distinguished from

that other which is diametrically opposite thereto, by the direc-

tion of the curved arrow in the figure, or by the condition that

if the biradial were looked at by a beholder situated in the proper

(or positive) region, the rotation indicated by that arrow, from

the initial to the final ray, would appear to be right-handed, like

the motion of the hands of a watch ; whereas, if viewed from the

opposite (or relatively negative) region, this rotation would seem

to be /e/j-handed, or contrary to the motion of a watch-hand.

When two biradials have, in the sense just now e.x[)laiiied, the
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same aspect, their planes both facing at the same moment the

same star, they may be said to be condirectional biradials.

When, on the other hand, they face in exactly contrary ways,

and, therefore, have opposite aspects, they may be called con-

TRADiRECTioNAL, or Sometimes simply opposite biradials.

Both these two latter classes may be included under the common
name of UNiDiRECTroNAL or (somewhat more shortly) parallel
BIRADIALS, so that the planes of any two parallel biradials are

either coincident or parallel. And finally, when two biradials are

at once similar and condirectional, we shall say that they are

Equivalent Biradials.

94. For example, if abc (in fig. 18) be an equilateral tri-

angle, and if D, e, f be respectively the points of bisection of

the sides opposite to the corners

A, B, c,then the six biradials, dba,

ECB, FAC, and FBC, dca, eab, are

all similar to each other, the angle

in each being = 60°, and the final

ray in each being twice as long as

the initial, ba = 2bd, &c. But

while the aspect of each of the

three first of these six biradials

is upward, if the figure be laid

upon a table, because when we ^

look, for instance, at the biradial

DBA in the figure 18 so laid, the rotation from bd to ba resembles

the motion of the hands of a watch, yet the aspect of each of the

three last of the same six biradials is downward, since we should

be obliged to look from below the table, or from below a horizon-

tal sheet of paper on which the same figure might be traced, in

order to see (for example), in the biradial fbc, the rotation from

BF to BC resemble the motion of those hands, to which motion

this last mentioned rotation appears contrary, when we look on

the fitrure from above. Thus the three first of these six biradials

are co)«-directional, if they be compared with each other, and so

likewise are the three last of them, if they too be compared among

themselves: consequently the three former biradials, namely, dba,
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ECB, FAC, are here equivalent biradials; and the three latter bira-

dials, namely, fbc, dca, eab, are, in like manner, mutualli/ equi-

valent. But the conditions of equivalence are not satisfied when

we compare any one of the first set with any one of the second

set of these biradials, because we then find an opposition in the

characters of the rotation as right-handed and left-handed in one

plane ; and the two biradials thus compared, for example, dba

and FBC, as the arrows in the diagram indicate, are now contra-

directional biradials, and consequently are not equivalent.

As additional illustrations of these conceptions and expres-

sions, it may be noted that if, in the same figure 18, we let fall

from E two perpendiculars, eh and ek. on af and cf, the new

biradiul hae is equivalent to the removed biradial kec, to the en-

larged biradial fac, and to the revolved biradial dba ; the aspect

of each being upward, while the angle of each is sixty degrees,

and the ratio of the final to the initial ray in each is that of two

to one.

95. The very object and purpose of introducing such bira-

dial figures as the above, being to make each of them serve as a

representation of what we have already several times spoken of

as a geometrical quotient, namely, the quotient of a final ray /3

divided by an initial ray a, it is clear that we ought now to con-

sider and determine what degree of variety msiy be allowed in the

construction of the particular biradial which is to represent any

proposed or particular quotient j3 -;- a, or a quotient equal thereto.

For until we shall have thus settled the changes that a biradial

figure may undergo, without ceasing to represent the same quotient

or equal quotients, we shall not be prepared to decide, by the con-

sideration of this mode of representation, in how many distinct

ways a biradial may be changed, so as to make it represent new
and unequal quotients, or new and varied relations ofthe metro-

graphic kind, of one ray to another. And the number of distinct

ways of varying this last sort of relation must be investigated in

order to confirm (as we proposed at the commencement of art. 92),

or else to correct (if correction shall be found to be necessary),

that conclusion of article 91, in virtue of which we have been led

to regard such a quotient, or such a relation, or at least the geo-

metrical factor which synthetically corresponds thereto, as in
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general depending essentially onfour distinct numerical elements,

and as being, in that sense, a Quaternion. In short, we are

led to seek now to determine the conditions of equality oftwo
quotients, or the degree of restriction imposed on the four rays

a j3 7 S, or on any one or more of them, and also the degree of

liberty allowed to them, when an equation such as

S-f-7 = /3 -^- a

is given ; in order that we may afterwards enumerate the modes
OF inequality of any two such quotients, or the ways in which

one quotient, 8 -=- 7, may of(^f/- from another quotient, ]3-^ a: and

in this determination and enumeration, it is a part of our present

plan that we should assist ourselves by the conception and con-

struction of those biradial figures, of which the nature has been

already explained.

96. As preliminary and analogous, but easier and less complex

investigations, we may here inquire, first, what are the conditions

ofequality oftiuo geometrical differences ofpoints; and secondly,

how many are the distinct modes ofinequality, which may subsist

between one such difference and another? And because these

differences of points have been already represented ox constructed

by straight lines, or vectors, we may now propose also two other,

but closely connected questions respecting such lines, which shall

bear a still more strict analogy than the questions just now men-

tioned, to those inquiries respecting ftzVarfio/.s that were suggested

in the foregoing article: namely, 1. How may we change a line,

or vector, such as that above denoted by the symbol a, without

its ceasing to represent a given or particular difference, such as

B - A ; or at least some difference of the same general kind, such

as D - c, which shall be equal to the given difference b - a? and

II. How many distmct modes ofchange ofa line, or vector, cor-

respond to real (and not merely apparent) alterations, in such

a geometrical difference of points ; so that the varied lines shall

represent unequal differences, or varied relations between points

in space, belonging to what we have already called the ordinal

class ? These questions might indeed have been proposed and

resolved, so early as in i\ie first oi the%e Lectures on Quater-

nions, if it had not seemed convenient to reserve them for the
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present portion of the Course, at which their signification and

importance may be more fully felt than it might then have been.

For we may now see, that by their leading to the determination

of the NUMBER (namely three) of distinct numerical elements,

which are involved in the conception of an ordinal relation be-

tween two points, when that conception is closely enough con-

sidered, and unfolded fully enough, they are adapted to assist us

to determine also the number {aa.me\y four) of those other dis-

tinct numerical elements, which enter into, or are essentially

included in, the conception of a cardinal relation between two

rays, when the notion of this cardinal relation is likewise suffi-

ciently developed. By confirming in a new way the conclusion

of art. 17, that a Vector is a natural Triplet, they may pre-

pare for confirming also the conclusion, more lately proposed for

discussion, that a Biradial represents a Quaternion.

97. Of the problems (if they may be so called), which were

proposed in the foregoing article, the first related to the determi-

nation of the conditions ofequality of two geometrical differences

of points, such as B -A and D-c, In other words, we were to

determine the degree of restriction imposed on any one or more

of the four points a b c d, and also the degree of liberty allowed

them, when the equation

D - c= B - A

is given. It resulted, however, from what was remarked in the

same article, that this problem admits also of being proposed

under the following other but connected form : To assign the

various modes ofchanging one line, a, into another line, b, so

that these two different lines, a and b, may represent equal dif-

ferences of points ; or may satisfy the two equations,

a= B - A, b = D- c,

when the difference d - c is still supposed to be equal to B - a
;

or when the ordinal relation in space, of the point d to the point

c, is the same relation with that of the point b to the point a :

although the two points themselves of the one pair have not (in

general) the same positions as the points of the other pair. Now
a little consideration suffices to shew, that this sameness ofordi-
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nal relations between two pairs of points, ab and CD, which is

denoted as above by the equation d - c = b - a, may and ought

to be considered as holding good, when the four points taken in

the order a B D c, are, in this order, the four successive corners

of a parallelogram, as in the diagram annexed (figure 19). For

when the four points are so arranged, then whatever is the dis-

tance of b from a will Pi ]9

also be (in length, ^'
.,

raagnitude, orquan-

tity) the distance of

D from c; and what-

ever is the direction

of the one distance, /
will also be the di-

rection of the other

But if, after once

constructing such a parallelogram, a b d c, we were to alter any

one alone of its four corners, for example, the corner D, we should

thereby violate at least one, if not both, of the two foregoing

conditions for the identity of the two ordinal relations, of d

to C, and of b to a. If, for instance, we prolonged cd to e,

the point e would be more distant from c than b is from a ; it

would not therefore have, in a sense so full as that which we are

entitled to demand that it should have, the same ordinal rela-

tion to c as that which b has to a ; and therefore the equation

E-c=B-A would no^ hold good, in the sense of expressing a

complete agreement between two ordinal relations. Again, if,

with c for centre, we were to describe, in the plane of abc, an

arc of a circle from d to r, and then to join cf, this joining line

would indeed be as long as CD or as ab, but its direction would

be different ; including then, as we do, the conception of direc-

tion ofdistance, in the conception of the ordinal relation of one

point to another, we cannot say that the new point f is ordinally

related to c as b is to a ; and must not assert the equation f - c

= B - a. Still less should we be permitted to assert the equation

G -c = B - A, if the point g were obtained by prolonging cf, or

by causing CE to revolve round c; for now both the length and

direction of the line cg would differ from those of the line ab,

H
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and, tliereforc, in both of these two respects, the ordinal relation

of G to c would be different from the ordinal relation of B to a.

And a point h, if assumed out oj"the plane of the parallelogram

(and consequently out of the plane of the figure), might be re-

garded as being, if possible, still more unfit to be substituted for

D in the equation d - c = b - a ; because the directional relation

of this point h to c would be still more unlike to that of B to a ;

or at least would be unlike in another and in a somewhat less ele-

mentary way, since the passage from the direction of cd to that

of CH would be made by a rotation which was not even contained

in the given plane of abc. If, then, the three points abc be not

all situated upon one common right line, we can always find one

definitepoint d, and only one, which shall (in theJiiU sense above

considered) be ordinally related to c as b is to a, or which shall

satisfy the above written equation between differences,

D - c = B - a;

namely, the corner opposite to a, in the parallelogram ofwhich

two adjacent sides are the lines ab and ac. And the only other

case in which, with the foregoing general view of an ordinal re-

lation of point to point in space, the required sameness of rela-

tions can ever exist, or in which the lately written equation can

be satisfied by any two distinct pairs of points ab and cd, is when
these Jour points are on one common right line ; d being also as

far removed from c upon that line, as b is from a, and towards

the same (infinitely distant) parts ofspace, but not in the oppo-

site direction, as is represented in the subjoined diagram :

Fig. 20.

A B C D

In this remaining case, then, also (which case may indeed be re-

garded as a limit of the more general case of the parallelogram,

the altitude thereof being conceived to diminish indefinitely in

passing from the one figure to the other), the position of the

fourth point d is entirely fixed, when it is obliged to satisfy

the equation already several times written, and when the other

three points abc have given or fixed positions. The geometrical
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SIGNIFICATION of this cquatioii, at least as thus interpreted, is,

therefore, itself perfectly determinate : for it suffices to fix the

position of d, and, in like manner to determine the position of any

one of the^oMr points a, b, c, d, when the positions of the three

other points are known. It is evident, from inspection of the two

last figures, that this equation,

D - c = B - A,

interpreted as above, gives, as a necessary consequence of its sig-

nification, the inverse equation,

D = A- B

;

and also the alternate equation,

98. Such being the restriction imposed on the four points by

the lately written equation, in virtue of which «o owe of those four

points, taken separately, can vary its position in space, we see, at

the same time, as regards the liberty allowed them, that czn^ two

of the same four points may vary their positions together, and even

that they may do this in indefinitely many ways, though all in-

cluded in one common class. For while the two first of the four

points remain _^a;ed at a and b, the third point may be removed

from its original position c to any other position e, provided that

i\\efi}urth point is, at the same time, removed to a certain corres-

ponding position F, as in the annexed figure 21

.

And it is clear that the condition or law of this b
correspondence, or connexion, between the two

new and variable points, e and f, which are

thus substituted for the two old and fixed points, a|

c and D, is that the ordinal relation f - e of the

two points of the new pair ef, should be the

same with the ordinal relation d - c of the two AT

points of the old pair cd, or that the equation

Fig. 21.

D- C

should be satisfied,

equations.

For then, as in ordinary algebra, the two

c, D-

H 2

C = B -A,
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will conduct to the required equation,

F -E = B - a;

because two ordinal relations, which coincide each with the same

third ordinal relation, as here with d - c, must also coincide with

each other. In fact, it is proved in Euclid's Elements (Book xi.

Prop. 9), that if two straight lines, as here ab and ef, be both

parallel to any third straight line, as here CD, then, although

they be not contained in any one common plane with that third

line, they will be parallel to each other ; the three lines (if

equally long) being edges of a triangular prism. We may enunciate

otherwise this principle of the elimination of an ordinal rela-

tion D-c between two equations into which it enters as above,

by saying that " if any two vectors (as a and c in fig. 21) be equal

to the same third vector (as in that figure to b), they are also equal

to each other:" at least if we now adopt, as the considerations of

the preceding article lead us to do, the conclusion, or the defini-

tion, that two VECTORS are equal (as representing equal differ-

ences of points), when, and only when, they are opposite (but

similarly and not oppositely directed) sides ofa parallelogram

,

or else are equally long and similarly directed portions of one

common indefinite right line (the latter case being a limit of the

former). Indeed this use of the />a;'a//e/oj7raOT to construct the

relation oi equality between directed lines, is one of those elements

of the present theory which it shares with several others. We
may also say that a line, a, may be changed to another line b, as

in figures 19, 20, 21, without ceasing to represent the same ordi-

nal relation, or the same difference of points as before, or at least

an equal difference, if it be merely made to iMovE,or to change its

situation in space, without change of length or ofdirection : and

thus another of the questions lately proposed is simply and fully

answered. In fact, we may be considered to have already adopted,

at least tacitly, this view of equal vectors, when, in the foregoing-

Lecture, we abstracted from the situation of a line, or treated

that situation as unimportant, while comparing length with

length, and direction with direction.

99. An easy consequence or two of this conception of equa-

lity of vectors may be conveniently here mentioned. Thus hav-
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ing once established (with the signification already explained)

the equation d - c = b - a, we may naturally be led, by the known
analogies of algebraical notation, to write also (under the same
conditions of relative position of the four points compared) this

otherform of the same equation,

D = (b - a) + c
;

or even this slightly simpler form (omitting the parentheses),

D = B - A + c.

And then, returning from notations to conceptions, from signs

to thoughts, from symbolical expressions to geometrical inter-

pretations, we may regard ourselves as having thus been led to

enlarge that notion of the addition ofa line to a point, which

was proposed in the first of these Lectures. For whereas we
there employed only the idejitity b = n - a + a, or considered only

that primary case of addition of a vector b - a to a vehend a, in

which this '' jmnclum vehcndum," \, was, already gicen as ihc ini-

tial point of that " linea vector," B - a, which was to be a]>plied

or (in the language of these Lectures) added to it; and regarded

ourselves as thus obtaining the Jmal point n of the proposed line,

as (what we called) the sum, or as the geometrical result of this

conceived addition : we now, on the contrary, employ the equa-

tion above written, namely, d = b - a + c, and thereby enlarge

our view, so as to include the more general case, where the pro-

posed line B-A does not already begin at the proposed point c, to

which it is to be added or applied, but is made to move, without

change of length or of direction, until, in its new and altered

situation, denoted by d - c, it comes to begin there ; the point d,

in which it thus comes to end, being now the result of this pro-

cess, or the geometrical sum required. From the remark made

at the end of article 97, it is clear that with this notation, thus

interpreted, we shall have also, by alternation, for the same sup-

posed arrangement of the points, this other connected equation,

D= c- A + B

;

and, therefore, that for any three points of space, a b c, we may

write (as in algebra) the identity.
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C-A + B = B-A + C,

each member being a symbol for one common fourth point d.

100. The same conception of equal vectors conducts also to

several useful results respecting the addition of directed lines.

Thus, in connexion with fig. 21, we may write

D - A = (d - c) + (c - a) = (b - a) + (c - a)
;

and again, by the last formula of art. 97, or by the principle of

alternation of an equation between differences of points, we have

D - A = (d - b) + (b - a) = (c - a) + (b - a);

the sum, therefore, of two directed and coinitial lines, such as

the vectors b - a and c - a, is the intermediate and coinitial

diagonal, d - a, of the parallelogram abdc, described with those

two lines as sides ; as, in several other modern systems (resem-

bling so far the present theory), it has been inferred or defined to

be. And we see that this sum oftwo vectors is independent of
the order of the summands, so that we may write, generally, as

in algebra,

and may say that the Addition of Vectors is always a commuta-
tive operation. It is also an associative operation ; that is to

say, we may write, generally,

(7+/3) + a = 7 + (/3 + a).

For if we make, in connexion with the same figure 21,

a=a=B-A=D-C=F-E;
/3=C-A = D-B; 'y = E-C = F-D;

we shall then have the two partial sums,

/3 + a = D-A;y + j3 = E-A = F-B;

and the total sum of the three successive vectors a /3 y, whether

they be associated (or grouped) in one way, by adding y to (i + a,

or in another way by adding y + j3 to a, is still, in each case, the

same final vector, f-a; since
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7 t (/3 + a) = (f - d) + (d - a) = f - a,

and

(7 + /3) + a = (f - B) + (b - a) = F - A.

We may therefore omit the parentheses, and write simply, here,

the equation

7 + j3+a = F- A.

Or if we attend only to the gauche quadrilateral acef, with

/3, 7, a for three of its successive sides, and with ae for one

diagonal, and cf (not marked in fig. 21) for the other, we shall

have

7 + |3 = E-A, a + 7 = F-c;

and therefore, without introducing the points a and n,

a + (7 + /3) = (F - e) + (e - a) = F - a
;

(a + 7) + /3 = (r - c) + (c - a) = F - A
;

so that the associative principle of addition is again seen to hold

good, and we may write

(a + 7) + /3 = a + (7 + /3) = a + 7 + /3.

We see, at the same time, that

a+7 + /3 = 7H/3 + a,

the common value of these two sums being the vector f-a; and

generally it is clear, from considerations such as the above, that

in the addition of any number of directed lines in space, those

summand lines may be in any maimer grouped and transposed,

without altering thefinal result, provided that no one of the given

lines is changed in length or in direction ; and also that this sum

ofany set ofvectors is simply that one resultant vector which

represents or is the instrument of a vection or motion in space,

equivalent, as to its total or final effect, to all the proposed com-

ponent or partial motions, simultaneously or successively per-

formed. In short, the addition of vectors still answers to the

composition ofvections.

101. We have now completely resolved Vne first problem of

article 96, under the two aspects of the question which were

mentioned near the commencement of art, 97 ; the restriction,
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there spoken of, having since been pictured by a parallelogram,

and the liberty having- been constructed by a prism. And there

can now be no diflBculty in resolving also the second problem of

art. 96, with the help of the remarks which have been made in

art. 97, in connexion with figure 19. For, after constructing, as

in that figure, the parallelogram abdc, to represent (as above)

the equality

D - c = B - A,

we see, by the remarks just now referred to, that we shall {really)

change the value of one of the two equated vectors, or make it

(really and not merely in appearance) cease to be equal to the

other vector, if, by any one of three distinct sorts ofchanges of

the position of the sought point d (the three other points abc re-

xawamgfixed), we either first, lengthen (or shorten) the line CD,

as by removing d to e ; or, secondly, turn that line cd, in the

plane of abc, as by chang^ing d to f ; or else, and thirdly, turn

that line CD out of the plane h^c, into some other position, which

is not represented in the figure. Conversely these three distinct

and elementary modes, of change of the vector d - c, exhaust all

the possible varieties of real alteration of that vector. For what-

ever position in space may be denoted by the letter h, we may
always conceive that the point d comes to be removed to this

new position h, and that the vector cd is therebv changed to the

vector CH, or that the diiference d — c is changed to h — c, by three

successive and component alterations of the kinds enumerated

above: namely, by first lengthening (or shortening) CD to CE;

then turning ce, in the plane abc, till it becomes cg (in fig. 19) ;

and finally causing cg to revolve, in a plane perpendicular to

the plane of the figure, till it takes the position ch. In fact we
could always, by an opposite rotation, in such a perpendicular

plane, bring ch to coincide with some such line as cg, in the

given plane of abc; then, in that plane, turn cg till it became,

like CE, a line in the same direction as cd ; and finally shorten

(or lengthen) ce, till it became the line cd itself But each of

these three operations would make a real change in the vector on

which the operation was performed, since it would alter either

the direction (in one or other of two different ways), or else the
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length of that line; and to these three distinct modes ofchange
'

ofa vector d-c, we see that all others may be reduced. A
Vector, such as h - c, is therefore, in this sense, a Triplet,
since it depends upon three distinct elements, which admit of

beiiig expressed numerically ; namely one to tell us in what ratio

the length of cd has been changed, in order to muke it become

CE (in the foregoing process) ; another, to express, in degrees

or quadrants, &c., the angle ecg, through which the line ce has

been turned, in the given plane abc ; and iinaWy s. third number,

to record the magnitude of that other angle gch, through which

CG has been caused to revolve, in a new and perpendicular plane,

that it might take the position ch. In astronomical language,

if ABC be the plane of the horizon ; and if cd be a line whose

length is unity, directed towards the south, while c is some
known origin or post of observation ; then the vector CH (or the

position H of its extremity) will be entirely known, if we know,
first, hslength, or thenumber oflinear units, such as the length cd,

which are contained in what is often spoken of, and tabulated, as

the radius-vector of the point (or celestial body) h ; secondly,

the azimuth, egg, of that point or body ; and thirdly, the alti-

tude, GCH : but the knowledge of any two of these tliree data

cannot, in general, dispense with knowing the third. All must

be known, if we would fully know what particular vector the

line CH is, or where in space the point or body h is situated

;

unless we should employ the aid ofdataof some other hind, which

would however always be found to furnish, when sufficiently

discussed, a triplk variety, and one not more than triple, as

answering, in fact, to the tridimensional character of space.

Indeed we have of late been merely reproducing, under a some-

what different aspect, and in a somewhat greater detail, con-

siderations which were briefly stated, or suggested, in article 17

of the first of these Lectures on Quaternions ; and there can now

be no difficulty in distinctly seeing that (as was stated by antici-

pation in that earlier article) any vector whatever may be re-

presented by the trinomial form,

p = ix +jy + ks ;

where ijk retain their significations as unit lines, while the scalars

X y z are simply Cartesian co-ordinates.
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102. Resuming now the consideration of the questions pro-

posed in art. 95, it is easy to see that equal quotients are

represented by equivalent biradials ; and conversely, that

whatever change of a ray disturbs the latter equivalence, dis-

turbs also the former equality ; whereas, so long as the equiva-

lence of the biradials remains, adequation between the quotients

holds good. Thus, for example, in fig. 18, art. 94, the five bira-

dials HAE, KEC, FAC, DBA, ECB, have been seen to be all mxx-

iMdWy equivalent, in the sense defined in art. 93; and accordingly,

if the final ray of any one of these five biradials be divided by the

initial ray, as for instance ae by ah, or e-a by h-a, the quo-

tient is, for each of these five divisions, expressed by one common
symbol, namely by 2A^, if the figure be conceived to be laid

upon a table, and looked at from above. That is to say, we
have the five following formulae, to be interpreted on the plan of

art. 86, in connexion with figure 18:

(E-A)

(C-E)

(c-a)

(A - b)

(B-C)

(H - a) = 2/£5

;

(k-e) = 2A*;

(f - a) = Ih^

;

(D -b) = 2P;
(E - c) = 2k^.

And again, whereas the three other biradials fbc, dca, eab,

were seen (in art. 94) to be indeed similar to the five biradials

just now mentioned, but not equivalent to them, because the di-

rection of the rotation from one ray to another is reversed, or

because the aspects are opposite ; while yet the three biradials

last named are at least equivalent to each other: we have ac-

cordingly, for them, these three other formulae, in which the sign

alone of the exponent § is changed from what it was in the five

formulae last written

:

(c-b) -H (F-B) = 2A"t;

(a-c) -=-(d-c) = 2A"^;

(b-a) -^(E-A) = 2^"i

103. The same conception of equality oj" quotients may be

illustrated by the following simpler figure (fig. 22) ; in which

aob and cod are halves of equilateral triangles, if the closing
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lines AB, CD be drawn, but may also be conceived to be two bi-

radial figures, with a common vertex at o, and with one common
upward aspect, and one Fig. 22.

common shape; the se- B c D

cond biradial being ob-

tained from the first, by

first causing it to revolve

through a certain amount

(in the figure, a quadrant)

of right-handed rotation, in its own plane, round its own vertex,

till it takes the position eof, and by then increasing the length

of each of the two rays oe and of, in one common ratio (namely,

in the figure, the ratio of ^ 3 to 1) : the pair of rays a, j3, being

thus changed to a new pair of rays, y, S, but so that the quotient

of the new pair is equal to the quotient of the old pair (each

being still, in this case =2A^), and that thus the equation of art.

95 is satisfied, namely

In fact, when a biradial is thus merely turned round in its plane,

and when its legs are altered proportionally, so that it is, in its

new state, equivalent, as a biradial, to what it was in its old

state, according to the definition of such equivalence in art. 93,

it is clear that neither the relative length, nor yet the relative

direction, of the second ray of the pair to the first ray of the

same pair, is altered ; but (by art. 40 of the second Lecture)

the QUOTIENT of the division of the second ray by the first ray

depends only on this relative length, and upon this relative direc-

tion : the quotient itself therefore remains unaltered, during these

changes of the rays which are compared.

104. It might, at first sight, appear to be enough, in estima-

ting the relative direction oftwo rays, to attend simply to the

ANGLE between them, considered as to its magnitude or quantity,

and without any attention being paid to its plane. But a little

reflection will suffice to show that this would not be sufficient, in

the study and comparison of directed lines in space. For if, for

example, in fig. 22, after multiplying the length of the ray a by

v/3, and causing it to revolve right-handedly through a quadrant
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in the plane of a and /3, so as to make it take the length and di-

rection of y, we were to imagine that it was enough to multiply

in like manner the length of j3 by the same incommensurable

tensor y/Z; and then simply to set off some fourth line S, with a

length thus obtained, at an angle of sixty degrees to -y, such

having been the angle of inclination of j3 to a; and if we were to

suppose that thus we should satisfy the condition of the equality

of quotients, or the equation

8-f-7 = /3 -r a ;

the consequence would be that we should find, for the ray S, no

ONE determined direction, but merely a conical locus, even if

its initial point or origin o, were regarded as given and fixed

:

namely that right cone, or cone of revolution, which would be

described round the ray -y, or round the line oc as axis, with the

point o for vertex, and with a semi-angle of sixty degrees. We
should therefore be led into a vagueness, and an indetermina-

iion, which it is very desirable to avoid, if it be possible to do

so ; and which indeed, it would be inexcusable to introduce, or

tolerate, if by a better choice of definitions we can avoid it: as

we can, in fact, avoid it, by taking plane and hand into ac-

count. Neglecting these, and attending merely to the magni-

tude of the angle, we could no longer say, definitely, that the

identity

(/3-=-a)xa = /3

held good ; we could only say thiit the simple symbol in the se-

cond or right hand member, namely j3, denoted one among the

infinitely many values of the complex symbol in the first or left

hand member, namely (j3 -=- a) x a ; that is, geometrically speak-

ing, j3 would denote one of the infinitely many directions of the

sides of a certain right cone, all which directions would be in-

cluded among the meanings of the (on this plan) comparatively

indeterminate symbol (/3 -4- a) x a. But when plane and hand
are attended to (by our considering towards which hand and in

viHMl plane the rotation is to be performed), this indetermina-

TiON entirely disappears. There is, therefore, a good and suffi-

cient reason for our taking them into account, as we have done,

and as we shall continue to do.
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105. On the other hand, if any one were to deny to us the li-

berty of turning the proposed angle about, even in its ownplane;

or were to require that we should not alter, even proportionally,

the lengths of its legs at all ; if, in short, conceding that when

the quotients are equal, the biradials must be equivalent, he were

to refuse to admit, conversely, that equivalent biradials represent,

in all cases, equal quotients: we might remind this supposed ob-

jector, that in studying the quotient of two rays we have (in

art. 40) proposed to study only a certain complex relation, of

(what we called) the metrographic kind: not lengths themselves,

nor directions themselves, as his objection would require us to do,

but a relation between lengths, combined with a relation between

directions. We must, therefore, tiotjbrego the liberty above de-

scribed, while we submit to the restrictions which accompany it.

Indeed, before the invention of the quaternions, the same inter-

pretation of the EQUATION h-7-y = ^-r-a, as expressing a pro-

portionality of lengths, and an equality of angles, directed towards

one hand in onefixed plane, had been published by other writers

with whom I am happy so far to agree : although my view of

either of the two equated quotients, separately taken, appears to

be in many respects peculiar to myself; as also does my mode of

passing /'/•om plane to plane.

106. Having thus come to understand fully the conditions of

equality of two quotients, j3 -f- a and 8 -f- y, we are next to enu-

merate their modes ofinequality, as, towards the end of article

95, it was proposed to do. And this enumeration is easy : for if

we regard the rays a and j3 as given and fixed, and retain also y,

at first, as an unaltered vector, we know, by the discussion in

article 101, that the remaining vector S may be changed in three

distinct ways, or admits of a triple variety. And if we next con-

ceive the new biiadial, whose rays are the old y and the new S,

to turn (not in but) with its own plane, preserving its new incli-

nation to the old plane of a and /3 unchanged ; we shall thereby

alter, in a new and fovrth way,thebiradial {y,S), or the quotient

d-^y; because we shall alter its plane. You see this little,

moveable, reading-desk, upon the table before us: the line or edge

where its slope meets the table is, at this moment, in a meridional

direction, or in the Hne of north and south ; but it is obvious that
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I can move it, as I now do, by making the desk turn, while it

still rests upon the table, till the same edge comes to be inclined,

or (if I choose) perpendicular to the meridian. (See figure 23,

where two positions of a prismatic desk abcdef on a rectan-

gular table GHiK are represented.)

Fig. 23.

And thus I have altered the aspect of the desk, and therefore

(by art. 93) the value of any biradial, which might have pre-

viously been traced upon it ; the 7iew biradial, after such a turn-

ing OF and WITH its own plane, being no longer equivalent to

the old one. In astronomical language, it is )iot enough that we
know the perihelion distance of a comet, the distance o(perihe-

lion from node, and the inclination of the orbit to the ecliptic
;

the ORBIT, as a. plane, remains in part unknown, until we know
also the longitude of the node, or the line in which it intersects

the ecliptic. The required enumeration of elements has

therefore been effected ; and we become aware that the quotient

of two rays involves, when thus geometrically and numerically

analyzed, a quadruple variety : it is, therefore, found again,

by this way of examination, as well as by the method of article

91, to include within itself a system of four numbers, and to

be, in that sense, a Quaternion.

107. The following additional remarks on this important con-

clusion may not be wholly useless. If the situations of the two

extreme points a and b, of the vector b-a, were attended to,

that vector would depend on six distinct numerical elements

(such as the six co-ordinates of the two points) ; because the

situation of each point, in particular, depends on, and involves,
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three numbers, by the tridimensional character of space. Again,

if a quotient of two such vectors, expressed under the form

(d-c) -i-(B-A), depended essentially on the situations of the

four points a b c d, it would, for the same reason, involve no

fewer than th'elve numerical elements; namely three for each

of these four points. But because the vector, denoted by the

symbol b - a, is conceived to depend, essentially, only on the

RELATIVE and not on the absolute positions of the points a and

B, we are allowed, in examining the degree of essential variety

of which a vector, so regarded, is capable, to abstract from all

that seeming or merely apparent variety, which the mere change

of situation of the pair of points can produce. We may, there-

fore, conceive the initial point a bsfixed, and attend only to the

change of the position of the final point b ; and then we find

that the vector b-a depends essentially upon three numbers

only, and is, in that sense, a triplet. And here we might

already see that the quotient of two vectors such as

(d-c)-=-(b-a),

may be put under the form

(e-a) -r-(B-A),

by shifting merely the situation of the line CD, till it comes to

coincide with a new line ae, commencing at, or radiating from,

the point a, without its length or its direction having been al-

tered, so that the equation

e- a= D-c

shall be satisfied. And thus, by treating a as a known and fixed

point, or origin of vectors, we should, in studying the amount

of possible variety ofa quotient of the kind above considered, be

only obliged, at most, to consider that degree of variety which

might arise from changes of the tv/o points b and e; so that the

Quotient in question could not involve more than six distinct

numerical elements. Considering, next, that it is not on the

actual or absolute lengths of the two vectors that their quotient

depends, but rather on their relative length, or on the ratio of

the one length to the other, we see that the divisor-line b - a
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may be treated as liaving its length equal to some one fixed

standard, or unit, provided that we suitably, that is to say pro-

portionally, change the length of the dividend-line e - a ; and

thus the NUMBER of distinct numerical elements, in the concep-

tion of the quotient, is reduced at least as low as five ; because

the point b may be conceived to be situated upon the surface of

a sphere, with its radius equal to the unit of length, described

about the fixed point a as centre : so that its degree of possible

variety is reduced from a (iependence on three numbers to a de-

pendence on TWO only, while the other variable point E continues

to furnisli only three numbers. But again, it is not absolute, but

relative diuections with which we have to deal; we must there-

fore allow the angle bae to turn in its own plane, round its own

vertex a, and must exclude, as merely apparent, whatever dis-

tinction or variety seems to result, from the comparison of any one

such position of the angle (or biradial) so revolving, with another

position thereof. We may then conceive the unit-vector ab to

be brought, by this sort of rotation, into owe fixed plane, such as

the horizontal plane drawn through the fixed point a ; and then,

although the possible variety of the point E will still remain nu-

merically triple, yet the variety allowed to the point b will be re-

duced to a dependence upon a single number, such as that which
would express the azimuth of this point B, or generally a single

angle in the horizontal plane. The whole possible variety

OF the quotient or two vectors, or of one directed line in

space divided by another, is found, therefore, by this mode of

examination or analysis, to involve a dependence upon not more
THAN Four distinct numerical elements. And that it in-

volves not fewer than Four such elements appears from con-

siderations stated above. It may therefore be properly called (as

in fact I do call it) a Quaternion. In short, when such a

quotient is pictured by a biradial, it is found to involve two nu-

merical elements for species, and two others for aspect ; or more

concisely, two for shape, and two for plane : but two and

two make Four.

108. It is easy now to answer the last of the questions (80,

IX.), which were proposed at the commencement of this Lecture

;

or to shew, generally, what ought to be understood by the mul-
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tiplication o/'one Quaternion hy another. For we need only

conceive the twofactor quaternions as being represented or con-

structed by two biradial figures, having, for greater simplicity,

one common vertex; to inquire next in what line ^ the planes of

these two figures intersect each other ; to determine thence two

other lines a and y, so that the quotient |3 -f- a may be equal to the

multiplicand quaternion, and that 7 -r- /3 may be in iiite manner

equal to the multiplier, according to the notion of equality be-

tween quotients, which has been already fully explained: and finally

to determine the product quaternion, namely, the new quotient

y -=- a, according to the identity in art. 49, by completing a tri-

angular pyramid, or at least by closing a trihedral angle. That

the process, thus sketched out, is an absolutely definite one,

and altogether free from vagueness, you may already see.

You cannot, therefore, be surprised to have it shewn to you, as

I hope in the next Lecture to shew it, that the results of such

MULTIPLICATION OF QUATERNIONS Constitute, in many remark-

able instances, or classes of cases, connected with useful geo-

metrical interpretations and applications, the subject-matter of

THEOREMS.

For example, the associative principle oftlie multiplication of

quaternions, or the equation

q q .q = q" . q q,

(where the point is used as a mark of multiplication), will be

found to be such a theorem. It will be shewn to be a truth, but

not a truism ; corresponding, in this system of symbolical geo-

metry, to certain properties of spherical figures, which are indeed

important, but are not obvious: and which cannot probably be in

any other way so simply expressed.

109. But while thus reserving for another occasion any such

investigations as these, respecting tlie theory of Operations on

Quaternions, with the geometrical constructions and conse-

quences that pertain to them, a few remarks may usefully be

added here as illustrations of, or corollaries from, some things

which have been already stated in the present Lecture, respect-

ing operations on lines and numbers. Thus, without entering

yet on the general operation of tnhing the tensor, we may at

I
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least consider here the two particular but useful cases, where the

general quaternion, on which it is proposed to operate, reduces

itself, first, to a number, and second, to a linei and so may at

present inquire only, in the first place, what is the tensor ofa

scalar; and, in the second place, what is the tensor ofa vector ?

And then we may observe, that whereas every tensor is (by art.

63) to be regarded as a signless number, which denotes gene-

rally (by 90) the metric element of a factor, the/on«er of

the two tensors just now mentioned expresses that factor-element

of the scalar, namely, its absolute value, or arithmetical magni-

tude, which is independent of algebraical sign ; while the latter

of the same two tensors expresses that analogous factor-element

of the vector, namely, its length or geometrical magnitude, which

IS independent of geometrical direction. As examples of such

tensors of scalars, we have the values,

T(±3) = 3; T(+t/2)=v/2;

and as examples of such tensors of vectors, we have the equa-

tions,

Ti = T;-TA = l.

110. In fact, by prefixing the characteristic T to any sym-

bol p ofa vector, or directed line in space, regarded as being itself

a geometrical factor (on the plan of art. 82), we imply (see art.

i)0) that we abstract from the graphic operation of this factor-

line, and attend only to its metric effect ; which comes to

abstractingfrom the direction of the line p, and attending only

to its length. This length of any vector p may hence be de-

noted by the symbol Tp, and may be called, as above, on the

general plan of these Lectures (see in particular the latter part

of art. 90), the tensor of that vector p. In other words, the num-

ber Tp is to be conceived to denote the answer to the question,

How many linear units (of a length previously assumed as the

standard of length) are contained in the line p? For when the

tensor Tp is considered (on the plan of same art. 90) as one ele-

ment ofthe factor p (the other factor-element being the versor

Up), it must be supposed to answer this other but connected

question : In what ratio does th<> jiroposed vector p, rerjarded \s
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a MULTIPLIER-LINE, alter the length ofany other vector a,

perpendicular to itself, on which it operates, in the way explain-

ed in the eighty-second article?—that is to say (ct being still sup-

posed perpendicular to p), What is the ratio of the length of the

product -line po- to the length of the mvltiplicand-line a ? On
the one hand, by art. 90, this ra'jio must be that of Tji to 1,

because it is, in general, the ratio of Tg to 1, it' fj be the factor

of the multiplication, whatever that factor may be; while, on

the other hand, by art. 82, the same ratio is expressed by the

number of linear units in p, because the length of the product-

line po-was found, in that article, to he the product o( the lengths

of the two factor-lines, in the sense that the number denoting the

length of per is the product of those which denote the lengths of

p and <T. We must, therefore, conclude, as before, that the num-

her Tp expresses the length of the line p ; or that " the tensor

of a vector is the number denoting its length."

With this signification of a symbol such as Tp, it is clear that

the equations of art. 90,

T . kX = he, T(X -7- (c) == c -:- b,

may be written as identities thus,

T . K-A = Tk . TA, T(A - k) = 'I'A ^ Tk ;

where k and A are symbols oiany two vectors: and indeed it will

be found that analogous identities exist, for the more general

case where those symbols under the characteristic V are supposed

to represent two quaternions.

111. There is, however, a?io<^e/- mode of er/jress/;**; the length

of a line p, on the principles of the present theory, witliout em-

ploying the characteristic T, which mode it may be proper here

to mention, and which depends on the principle enunciated at

the beginning of art. 85. It was there shewn, as a particular

case of the multiplication of parallel vectors, that the square of

every vector is a negative scalar, of which the positive opposite

expresses the square of the length of the vector; that is, the

square of the number which denotes that length, by denoting (as

usual) the number of linear units contained in it. Hence, for

I 2
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example, if r be the number which thus denotes the length of

the vector p, we shall have the equations,

which give also these others,

the expression - p^, under this last radical sign, being here a posi-

tive number, because the square p^ of the vector p is itself (hy

the lately cited article) a negative number. The radical V{-9^) is

therefore, in this theory, another SYMBOL/or the length o/f/ie

line p ; and by comparing the results of the present and of the

foregoing article, we arrive at this important symbolical equality,

where p may represent any vector,

Tp= V(-r);

giving also this equation freed from radicals,

(Tp)2 + p2 = o.

If ?^ be a scalar, then, by what was shewn in art. 109, its tensor

is, on the other hand,

Tiv = v' (+ w-'^),

where the positive or absolute value of the radical is to be taken
;

and we may just mention by anticipation here, that when a. qua-

ternion q shall have been put under the general form already

referred to in art. 78, namely,

q = w + ix +jy + hz,

or, more concisely,

q = W + p,

where z^; is a scalar, and p is a vector, the tensor of this quater-

nion will be found to admit of being so expressed as to include

the two radical forms lately written; namely, in the following

way

:

T9 = l>- + p)=v/(«^-=-p=).

112. It may be instructive here to remark, that because when
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p and a are any two perpendicular lines, their product pa is itself

another line, the tensor of this product may, by the last article,

be thus expressed

:

T p(T = V (- ((><r)-), if (T -L (,.

And because the length of this product line pa is the product of

the lengths of the two factor lines p and a, we have also (com-

pare art. 1 10),

T . ptT = Tp . T(T.

Eliminating, therefore, the characteristic T, by the principles of

the preceding article, we arrive at the equation,

V (- (o<t)-) = V {- P-) V {- -). if <T X p ;

which must no doubt seem strange to those who are accustomed

only to the expressions of ordinary or commutative Algehrn. But

in the present Geometrical Calculus, by the equation ofperpen-

dicularity assigned in art. 82, the formula last written, when

cleared of radicals, expresses simply that

— por . p(T = pp . (7ff, it - o-p = + p(T

;

and since this last condition gives evidently,

- p . (jp . (T = + p . per . <T,

we see that we have only to remove the points, regarded as marks

of multiplication, which serve to (jroupe (and, at the same time,

to separate) the factors, in order to arrive at the expression of

the equality asserted in the formula. Now such removal of

POINTS, or of other separating and associating marks inserted be-

tween factor-symbols, is precisely what is allowed by that Asso-

ci.\TivE Principle of multiplication, which was stated, in art.

108, to hold good for quaternions generally. We have, therefore,

not only explained what might for a moment appear a dijficulty,

but also have verijied, in one useful case of application, that <je-

neral associative principle, which will be found to be among tiie

most important links of connexion between .^LGTSiiii^ and the

CaLCI'LL'S of QrATEliMONS
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113. The versor of a scalar is simply the sign +, if the scalar

be positive, or the sign -, if the scalar be negative; but because

these SIGNS, regarded as factors, have respectively the same ef-

fects as the factors + 1 and - 1, we may write for any scalar w,

the formula,

Uif'=+1, according as w "^ 0.

For example,

U (+ 3) = + = + 1

;

U(- V2) = - = -l.

The versor of a vector o is the vector-unit in the direction of

that vector ; for such is the other factor of p, in the identity

(' = Tp . Up ;

the factor Tp having been seen (in art. 110) to be the number

which denotes the length of the line p, so that on dividing the

line by this number, the quotient

Up = p -^ Tp

must be in general a tieic line, with the sayne direction as p, but

with its length reduced to unity. For example

U(30='; U(-7V2) = -/

We may also write (in virtue of the value of Tp, assigned in art.

Ill) this general expression,

Up = p -I- -v/ (-p^),

where p may denote anjj vector ; and we shall have, with the

same generality, the equation (compare arts. 75, 77),

(Up)2 = -1.

The versor ofzero must be regarded as indeterminate, unless the

zero be supposed to be the limit of some known process, in which

case we may be induced to treat it as an infinitesimal scalar with

known sign, or (according to the case) as an infinitesimal vector

with a known direction; and then this sign, or this direction,
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may be considered as the particular value of the symbol UO, for

that particular question. And for the same reason that +1 or- 1

may be substituted for + or -, as the value of the versor of any

scalar different from zero, we may also, whenever we think fit,

equate a tensor to a positive scalar, although it was seen (in art.

63) to be more properly asiynless number, or one unaccompanied

with algebraic sign.

1 14. The corijuyate ofa scalar is simply that scalar itself; but

the conjuyate of a vector is the vector reversed, or taken with a

direction opposite to the original, without any change of length;

because in general (by art. 89) conjugate factors produce the

same effects in the way of tension, but produce opposite effects

in the way of version : and opposite lines (by same art. 89) pro-

duce such opposite effects, when used as axes of right-handed

rotation, to operate on any other line to which they are both per-

peiiiliculiir. Thus with the recent significations oi w and (>, and

with the characteristic ofcunjuyatiuii K, we have generally,

Kw= + 'w; Kp = -p ;

and it may be stated by anticipation, that «hen any quaternion

q is put under the form (see art. Ill) q = w-\-Q, its conjugate is

Kq = K{w + p) = ic - p.

1 15. P'inally, as regards powers of lines, with positive or ne-

gative numbers for their exponents, it is easy to give a clear and

simple interpretation to any symbol of such a power, by an ob-

vious extension of what was shown in art. 86, respecting powers

of unit-vectors. We saw, when considering such powers, that

whereas the unit-line k, for example, if regarded as a factor,

would have the effect oi turning any horizontal vector on which

it operates, horizontally and right-handedly through a quadrant,

or of causing this multiplicand vector to advance through 90° of

azimuth, the power B with the fraction ^ for its exponent, would

only cause the vector to turn, in the same plane and towards the

same hand, through half 'a quadrant, or would make it advance

through 45° of azimuth. The operation of which the factor Ai is

the agent, is therefore Itaf of that other operation, of which the

agent is the factor k itself; in the sense that two operations of
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the one kind are equivalent to one of the other. In symbols we

have, therefore, here, as in common algebra, the equation or

identity,

k^ ki = k.

Suppose now that (j is some other upward vector,

where 2 is a positive number different from unity; for instance

let

r = 2 V 2, p = k v/8.

To interpret, then, the symbol p*, we have only to combine, with

the recent act of version through halfa quadrant, an act of ten-

sion, which shall, in like manner, produce halfthe effect of mul-

tiplying by the number z : in other words we are to multiply the

square-root A* of the given versor k, by the square-root 2* of the

given tensor z. For the product thus found, namely,

f.i = zUJ = 8' hi,

where 8* has its usual arithmetical signification, is a symbol satis-

fying the analogous identity,

and the symbol p*, when thus interpreted, represents a factor

which is the agent of a certain complex operation, on length and

on direction, whereof the metric and the graphic elements are

respectively, as operations, the halves of the corresponding ope-

rations of tension and version, which are the elements of that

other operation, whereof the given factor p is the agent. In fact,

if we twice successively multiply the length of any proposed hori-

rizontal line by the new incommensurable tensor ^ \/ 8, we shall

thereby, upon the whole, have multiplied that length by the ori-

ginal number V 8 or 2 ; that is, by the proposed tensor of p. And
if, in like manner, we twice successively operate on the direction

of the same horizontal line, by the versor k'', regarded as a gra-

phic factor, we shall, on the whole, have caused the line to

advance through two octants, or through one quadrant ofazi-
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mutb, which is precisely the effect of operating once by the pro-

posed versor k of the factor p itself. Again, with the same base

p=k \/ 8, but with the fraction ^ for the exponent, we obtain on

the same plan the power,

p^ = ki ^/ 2,

which satisfies the identity,

pT pJ^ pa- = p

;

and, as a factor, has the effect of turning any horizontal line on

which it operates through 30° of azimuth, and of increasing the

length of that line in the ratio of the diagonal to the side of a

square, or in the ratio of the cube root of the number z to unity.

And the power

pi = 2A5,

when used as a factor, changes the half base to an adjacent side

of a horizontal and equilateral triangle, in such a manner that

this last-mentioned power of p coincides with that quaternion

which has been already considered in articles 102, 103 of the pre-

sent Lecture, and is represented or constructed by any one of

the five equivalent biradials DBA, &c., of the figure 18, or by any

one of the three other equivalent biradials, aob, cod, eof of fig.

•22.

1 16. More generally, for the same base p, and for a7it/ nume-

rical exponent t, we may write, as in ordinary algebra, the fol-

lowing expression for the power

:

p'={kz)'^k'z'.

That is to say, the tensor z', of the power p', is the corresponding

power of the tensor z ; and the versor k' of the same power p', is

the power of the versor k. It is evident that analogous results

must hold good for the powers of all other vectors, and that we

may write generally, for any such power, with a vector for base,

and a scalar for exponent, the formulte,

T.o' = (Tpy;

r.p'=(Up)'.
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A POWER of this sort is, therefore, in general a quaternion,

of which the tensor and the versor can be assigned by the fore-

going rules : but this quaternion may, in certain particular cases,

degenerate into a line or a number. In fact, since, with the in-

terpretation assigned above, the power p', regarded as a factor,

has, in general, the eifect of causing any line a, perpendicular to

the base-line p, to revolve round that base through an angle =t

X 90°; while it multiplies the length of the same multiplicand

line by the t"' power of the number Tp, which expresses the length

of the base ; we see that in the equations,

p'(T = T, p' = T -=-
(T,

where r denotes the product-line, or the result of the multipli-

cation thus conceived, this line r will not only be perpendicular

to p, but also to <T, if the exponent t be any odd whole number ;

in this case, therefore, the power p', being equal to the quotient

of two rectangular lines, will be itself a line or vector. For ex-

ample, the power p^ is evidently the base-line p itself. On the

other hand, if the exponent t be zero, or any positive or negative

multiple of 4, the direction of the product line r comcicZes with

that of the multiplicand line a, and the power p', regarded as the

quotient t -i- a, is seen to be a ])ositive number ; for example, we
have, as in algebra, the value

p''=l.

But if the exponent t be any positive or negative multiple of 2.

loithout being a multiple of 4, then the direction of r is opposite

to that of (7, and the power p' isdinegative number: and, in fact,

we saw, for example, that the square p"^ of every vector p is equal

to a negative scalar, or that (by arts. 85, 11 1),

p^ = -(Tp)^.

117. Another useful though particular case, in this theory of

powers of lines, is the power with negative unity for exponent.

This power p"' is itself, by the last article, a line, because the

exponent is an odd whole number ; and this new line may be
failed the RECiritocAL of the old or given line p, on account of

tlio relation
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PP" = pl-l = pO.
1;

which is included in the more general formula (common to alge-

bra and to quaternions),

p'" p" = p'"*",

where m and n are any scalar exponents. The tensor ofthe re-

ciprocal oi any vector is evidently the reciprocal of the tensor of

that vector ; and, in like manner, the versor of the reciprocal is

the reciprocal of the versor. The factor p"' has, therefore, the

effect of dividing by Tp the length of any line o- perpendicular to

p, on which it is conceived to operate, and also of turning that

line CF left-havdedly through a quadrant round the direction of

+ p, or right-handedly through a quadrant round the opposite di-

rection of-p as an axis. We may then write

U(p-')=(Up)-i = -Up;

which result evidently agrees with the formula of art. 113,

(Up)= = -1;

and gives the general expression

p-i = -Tp-MJp.

Any two reciprocal vectors, such as p and p"^, have, therefore,

their directions opposite, and their lengths reciprocal ; in such a

manner that the rectangle con-

structed with those lengths fov
'^' ' '

its sides is equal in area to the

square described upon the unit

of length. For example, if

AOB, in fig. 24, be a diameter

of a circle, and if the ordinate

or half chord oc or od, per-

pendicular to that diameter, be

taken for the unit of length,

then the two oppositely direct-

ed segments of that or of any

other chord through o, for in-

stance the two opposite j)arts or segments e - o and f - o ol the
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chord EOF, are, in the sense above explained, reciprocal vectors,

so that

if E - o = p, then f - o = p"*-

118. If we combine this notion of a reciprocal with the rule

for forming generally the product of any two vectors, which rule

was deduced in art. 88, we shall infer easily that "to divide one

vector j3 by another vector a, and to multiphj the former vec-

tor j3 into the reciprocal a'^ of the latter, are operations which

give generally one common quaternion as their result:" or that

we may write (in quaternions as in algebra),

P-^a = /3xa-i.

In fact, the quotient in the one member, and the product in the

other, have one common tensor, namely T/3 -;- Ta, or the quo-

tient of the length of j3 divided by the length of a. Again, the

axis of the versor of the quotient j3 -=- a, regarded as a graphic

operator, is perpendicular to the plane which contains both a and

j3, or to which they both are parallel ; and the rotation round this

axis from the divisor a to the dividend j3, is (by our general con-

ception of a geometrical quotient) right-handed ; such then is also

the character of the rotation round the same line, from /3 to - a,

or from fi to a"i, and, therefore (by 87, 88), this line is also the

axis of the versor ofthe product, /3 x a" ', or j3a"i. And finally,

the angles ofrotation are the same ; for the angle of the quotient,

/3 -^ a, which angle may be thus denoted,

^ (i3 ^ a),

is simply the angle between the directions of a and /3 ; while (by

the same arts. 87, 88) the angle of the product, j3xa"', which

may, on the same plan, be denoted thus,

z(/3x„-i),

is the supplement of the angle between /3 and a "^ or between /3

and - a, or is equal to the angle between the directions of a and

/3 themselves. We may also agree to denote occasionally the

reciprocal vector a ' bv iha fractional symbol -
; and to repre-

a
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sent the quotient /3-^a, or the product /3o"i, by the analogous

symbol —

.

a

1 19. Those who are acquainted with the properties of loga-

rithmic SPIRALS may employ them with advantage to illustrate

the whole preceding theory oipowers of lines. In figure 25, let

ABCDEFG be one half-spire of such a curve, subtending two right

angles at the pole o; while another half spire, proceeding in the

opposite direction from a, passes through the points uvwxyz.

Fig. 25.

U yW

Let the six transversals through the pole, aozg, boy, cox, dow,

Eov, FOU, be conceived to succeed each other at equal angular

intervals of thirty degrees each ; and of the two rectangular rays,

or vectors from the pole to the curve, oa and od, let it be sup-

posed that the latter is to the former in the ratio of \/8 to 1.

Then if the figure be laid upon a table, with its face upwards,

the quotient of the ray od, divided by the ray oa, will be (by

principles already explained) the same upward vector, p = ky/8,

which was considered in a recent article (1 15); and, in general, the

power p* of this vector or base-line p, with the scalar exponent t,

will be equal to the quotient of some one ray t of this spiral, di-

vided by another a ; the condition being that t shall be wore ad-

vanced tljan (T, in the order of progression from a to g, by an

angle at the pole o, which shall be =< x 90°, if the scalar t be

positive ; or else that r shall be less advanced than tr, in the same

order of rotation, by the amount so expressed, if the exponent I
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78 =

be negative. Thus we may form, for some of the positive powers

of p, the table:

(a-o) ^(A-o)=p°=l;

(b-o)-h(a-o) = p^=At V2;

(c - o) -^ (a - o) = p* = 2/i*

;

(D - o) -f ( A - o) = pi = A V 8 ;

(e - o) -r (a - o) = p* = 4^^

;

(F-o) -f (a-o) = p*=4A* V2;
(g - o) -f- (a - o) = p- = - 8 ;

with this other table of negative powers :

(u-o) -H (a-o) = p"5^ = A"* Vi;

(v-o)^(A-o) = p-t = iA-?^;

(W-O) -H (A-0)=p-l=A-l y/l

(x-o)^(A-o) = p-* = iA-f;

(Y-o)^(A-o) = p-t = iA-^ Vi;
(z_0)-H(A-0) = p-2=-|.

The equation of the spiral may, therefore, be said to be the fol-

lowing :

<T = p' a,

if a be some fixed ray, such as a - o, while <t is a variable ray

(from pole to spiral), and ^ is a variable scalar. If

T =(>'•'' a

be the analogous expression for another variable ray of the same

spiral, and if, while the exponents < and h+t both vary, their

difference h jem-dm?, fixed, the quotient of the two variable rays,

namely,

--(r=p",

will then remain also fixed, being equal to one constant quater-

nion : and the triangle, whose sides are the two rays o- and t and

the chord r-a, will be of a constant species, depending on the

length of the base-line p, and on the scalar exponent //. Thus, in

fig. 2.5, making A = S, or conceiving r to be more advanced than
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ff by 60° of rotation, that is, by two-thirds of a quadrant, we find

the fixed quaternion quotient p'' = 20; and the triangle, as for

example aoc, or bod, &c., becomes, in this case, the half of an

equilateral triangle. If the difference h of exponents be chosen

continually less and less, so as to tend to zero, the vertical angle

of the triangle tends to vanish ; and its base-angles tend to be-

come the constant acute and obtuse angles which a variable ray

(from the pole) makes with the spiral. In the case of fig. 25, this

acute angle between ray and curve, which may be called the an-

gle ofthe spiral, suppose the mixtilinear angle at g, is nearly

= 56°| ; and in general it can be computed without difficulty,

either by the theory (not yet stated) of differentials of qua-

ternions, or by methods otherwise known.

120. I shall conclude this Lecture, which has already ex-

tended to a greater length than I could wish, by observing that

(if we set aside, for a moment, the case of numerical quotients or

parallel lines), every quotient of two rays may be regarded

as a POWER OF a vector, with a scalar for the exponent of this

power; and even that we are at liberty to assume that this scalar

exponent is confined between the limits and 2 ; so that we may

write generally, as an expression for any such geometrical quo-

tient, the formula,

i5^a = Q', t>0,t<2:

just as the particular quotient 2/,5, which presented itself in some

former articles of this Lecture, has been seen to admit of being

put under the form pj, where p = A ^8. In fact, any given bi-

radial, such as aoc in fig. 25, with any actual angle, whether

acute, or right, or obtuse, may always be conceived to be in-

scribed in a dejinite spiral [oi' the logarithmic kind), in such a

way that the vertex of the given biradial shall be the pole of the

spiral, and that the two given legs or rays of the biradial shall

also be two rays of the same spiral, while the arc intercepted be-

tween them shall be less than a semi-spire. And, then, by tak-

ing any tico rectamjular rays of the spiral, including between

them what may be called a quarter- spire, we shall form a new

and quadrantal biradial, sucli as aod in the same figure 25,

whereof the second ray, divided by tiie first, shall gni', as the
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quotient, a certain vector p, perpendicular to the plane of the

curve, which vector is to be taken as the base of the sought

power p' ; while the exponent of that power is simply the num-

ber obtained by dividing the angle of the biradial by a quadrant,

and therefore is (on this plan of construction or representation)

greater than zero, but less than two. Or, without thinking of

spirals, we may conceive that after determining, by the last-men-

tioned division, the numerical exponent t of the power p', which

power is to be made equal to the given quotient /3 -^ a ; and after

fixing the direction of the base-line p, by the condition that it is

perpendicular to the plane of the two given rays a and j3, and

that the rotation round this base-line p, from the divisor-line a to

the dividend-line j3, \% positive, or right-handed: we then proceed

to determine the length of the same base p, or the number Tp,

which expresses this length, by the condition that the <" power

of this sought number Tp shall be equal to the quotient Tj3 -i-

Ta, which is obtained by dividing the length of the ray /3 by the

length of the other given ray a. At the limit t = Q, this process

may be said to fail, for it would require us then to take an infi-

nitely high power of a number which would generally differ from

unity ; but at this limit the angle of the biradial vanishes, and

the quotient /3 -^ a becomes simply a. positive number. And, on

the other hand, at the limit f = 2, although the process cannot

precisely be said to Jail, since it still allows & possible construc-

tion, yet this construction becomes now partially vague, for it

conducts to a. semi-spire, in an indeterminate plane ; and the quo-

tient is, in this case, a negative number, which is indeed the

square of a vector, but of a vector with an indeterminate direc-

tion. But whenever the quotient of the two rays does not thus

reduce itself to a scalar, that is, whenever (as above said) the two

rays contain between them any actual angle, whether acute, or

right, or obtuse, the process then does not merely succeed, but

gives a perfectly determinate result; at least if, for the sake of

simplicity and definiteness, we still exclude the supposition of a

rotation through any greater angle. We may then regard the

expression assigned above, namely, the scalar power p', or

more fully, the power, with scalar exponent, of a vector base,

as a general expression for the quotient of one ray divided by ano-
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ther, at least if the two rays do not happen to have one common

direction. And because the base p, being a vector, depends (by

arts. 17, 101), on a system of three numbers, serving here to

fix the aspect and angle ofthe spiral; while the exponent t is

itself another number, serving to mark the^ac<ion o/a muui

fi I
ijii'in. we are thus conducted anew to that important and

fundamental conclusion, from which the present Calculus may

be said to derive its name. For we thus are led to conclude again,

that the Quotient of two Rats, when directions in space, as

well as lengths of lines, are attended to, depends generally on a

System of Four Numbers, which result confirms, in a new

way, the propriety of our caWing such a quotient & Quaternion.

But the general theory of Operations on such Quaternions must

be reserved for the following Lecture.
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121. Although the last long Lecture, Gentlemen, has gone

far towards a statement of the chief notations of that Calculus to

which the present Course relates, yet a few other general signs,

or characteristics of operation, require to be still explained. And
although the chief operations on lines, regarded as having direc-

tions (as well as lengths) in tridimensional space, and called

sometimes by us, for that reason, rai/s, or vectors, have been

considered, and some leading problems respecting them resolved,

at least for the cases in which not more than two lines at any

one time were to be combined among themselves in the way of

multiplication or division, yet even for lines it has not hitherto

been distinctly shewn how to combine, in that way, even so many
as three with each other. The quotient of any two such rays has

been proved to be in general a Quaternion ; and so have also

the product of any tivo rays, and the power of any one ray or

vector, with any scalar or numerical exponent ; in the sense that

each such quotient, or product, or power, denoted by any one of

the three symbols,

fi-T-a, kX, p',

and interpreted on the principles of the present system, has been

found (in the last Lecture) to involve generally a dependence on

a system ofyoar distinct and numerical elements; but we have

done little more than hint, as yet, at the methods of combining

such quaternions among themselves by operations of one on ano-

ther. The operation of such a quaternion, as & factor, on a line,

has indeed been seen to involve generally a metric and a graphic

element; a stretching and a turning of the line thus operated

upon ; or in other words a tension and a version: to e?e«o<e which

elements separately we have introduced (in art. 90) the two cha-
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racteristic letters T and U, as signs of the operations of what

we have called taking the tensor and taking the versor respectively.

But while thus decomposing generally a quaternion into /actors,

or into elements to be combined by multiplication, we have as

yet proved nothing respecting the equally general and equally

important decomposition of a quaternion into parts, or sum-

mands, to be combined with each other by addition ; and in par-

ticular we have only alluded, by anticipation, to the separation

of the scalar and vector parts, such as the parts w and p in the

expression

q = w + p,

of articles 111, 114; to denote generally which new sort ofde-

composition of a quaternion, it will be necessary to introduce (as

above hinted) two new signs, such as the two new characteris-

tic letters S and V, not yet submitted to your notice, for the

purpose of indicating the operations of taking the scalar, and

taking the vector, respectively, of any proposed quaternion. To
express that in passing according to a certain law from one pro-

duct of lines or from one quaternion to another, we have con-

ceived or found (as for example in passing from kX to Xk), the

tensor element of the quaternion, as a factor, to remain unchanged,

but the versor element to be reversed in its effect (114), or to be

made to turn the line whereon it operates in a direction contrary

to that in which it turned the line before, but through an equal

amount of rotation, and in one common plane, we have introduced

(in art. 89) the denomination of conjugate products, or factors, or

quaternions, and have employed the letter K as the sign of such

conjugation, or as the characteristic of the operation of taking

the conjugate of a quaternion ; but we have as yet said nothing

respecting the conjugate ofa product of quaternions; and no-

thing has yet been proved respecting the tensor or the versor

of such a product. The outline of a general construction for the

multiplication of any two quaternions, by means of a trihedral

angle, has indeed been given (in art. 108); and the correspond-

ing construction for the division of quaternions may have easily

thence suggested itself: but the simplifications and transforma-

tions of the constructions, which spherical geometry affords, have

k2
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not yet been touched upon. The multiplication of lines among

themselves has been shewn to give different results, according as

the factors have been taken in one or in another order ; from

which it follows, by still stronger reason, that the multiplication

ofquaternions is not generally a commutative operation ; but it

has hitherto been only stated, and not generally proved, that the

same new and enlarged operation agrees with the process of the

same name in ordinary arithmetic and algebra, by its possessing

another general property, which is at least equally important,

namely,by its being an associative operation (108) ; much less have

the geometrical signijications of this general result been brought

as yet before your notice. Another great link of connexion be-

tween quaternions and ordinary algebra, I allude to the distribu-

tive property of multiplication, has not hitherto been so much as

mentioned in these Lectures. And while the product or the quo-

tient of two rectangular lines has been represented or constructed

by a third line rectangular to both, yet it may be admitted that

the motives for adopting such a representation or construction,

which were suggested towards the close of the second Lecture of

this Course, even when combined with the degree of success

which may be supposed to have been since attained in unfolding

the consequences of this geometrical construction or conception,

may still leave room for a not unreasonable demand, on the part

of a severely logical inquirer, that some new and more stringent

TEST should be applied, as a check on the consistency of this

view, respecting perpendicular lines, with principles which have

been judged, in these Lectures themselves, to possess a character

still simpler, earlier, and more fundamental.

122. To examine then, first, in a new way, the views already

propounded respecting the multiplication and division of perpen-

dicular lines, as regards the consistency of those views with each

other and with still more general principles, let me once more

remind you that the quotient j3 -i- a ofany two rays in space has

been found to be, generally, in our system of interpretation, a

Quaternion (see articles 91, 106, 120) : this being indeed that

main and fundamental conclusion, from which the present Cal-

culus derives its name. But we have also seen that this gene-

ral quaternion may, in certain particular cases of relative direc-
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tion of the two rays, degenerate into a scalar or into a vector, that

is, into a number or a line : namely into a scalar (by articles 59,

64), when ^ || a, that is when the two rays compared -dre parallel

to each other, or to any common line ; and into a vector (by art.

82), when j3 J. a, that is when the two rays are perpendicular

to each other; so that numbers and lines are both inclu-

ded 8H the conception o/'quaternions, and a complete theory

of the latter must consequently include the theories of both the

former. As an example of a quaternion thus degenerating into

a vector, we had, in article 83, the equation

-6A-^3; = -2?;

and other examples, where the quotient of two rectangular lines

has been already treated as a third line rectangular to both, cannot

fail to have been observed by you. In fact it was shewn generally,

in art. 82, that the product aj3 of any two perpendicular lines is

equal (in our system) to a third line; namely, to one which is

perpendicular to both the factors, having also its length equal to

the product of their lengths, and having its direction distinguished

from its own opposite, by a simple rule of rotation, assigned in

the last quoted article; a conclusion which is also deducible (by

making 1=1) from the more general theorem of art. 88, respect-

ing the multiplication of any two lines. Hence, by the general

relation ofmultiplication to division, or immediately by the same

art. 88, we may write an equation of the form,

A -H K = ju, if X _L k-

;

the new vector fi being so chosen, as to satisfy the connected

equation,

X = ^ X K,

with the signification already referred to. That is to say, the

length of the quotient-line fi is to be equal to the quotient of the

lengtlis of the two given lines X and k, with the usual reference

to an assumed unit of length ; or in symbols (compare art. 1 10),

Tf«=TX-=- Tk.

The direction of the quotient line /i is to be perpendicular (as
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above noticed) both to the dividend-line X and to the divisor-line

K ; or in symbols,

And finally this perpendicular direction of the quotient line is

distinguishedfrom its own opposite, by the rule that the rotation

round n from k to X is positive ; or more fully, that the rotation

round the quotient-line, from the divisor-line to the dividend-line,

is right handed. In short a quadrantal quaternion, or a

quaternion with & quadrantal versor, is in our system constructed

by a LINE, which is drawn in the direction of the axis ofthe ver-

sor, and of which the length represents the tensor of the quater-

nion. All this may indeed have been collected from what was

said in former Lectures, but it seemed worth while to state it for-

mally and explicitly here : since it is in fact one of the chief fea-

tures or main elements of this Calculus, as Tegavds geometrical

interpretation.

123. Conceive now, as an application of the foregoing rule

for constructing the quotient of two rectangular lines, that a line

£ is drawn from the point o of figure 22 (art. 103), perpendicular

to the plane of that figure ; and more particularly, let this new
line £ be directed vertically wpwarefe, if the figure be laid horizon-

tally with its face upwards on a table. Let the length of this

upward line e be equal to the length of the halfbase oa of the

equilateral triangle of which ob is a side ; and let the altitude

ab of that triangle be assumed as the unit of length. Then, by
the general process of construction above explained, if this new
and vertical line t be employed as a divisor, and if the horizontal

ray a or oa of the figure be taken as a dividend^ the quotient will

be the ray 7 or oc of the same figure; and we may write the

equation

a -^ £ = 7.

For the tensor of the quadrantal quaternion a -^ t will here be

equal to unity, on account of the equality of lengths subsisting

between the divisor and the dividend ; and the length of the line

oc is the same as that of ab, which has been taken as the unit of

length, so that we have, in conformity with the first part of the

general rule in art. 122,

T7 = Tn--Te=l.
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Again the (horizontal) direction of y is perpendicular to the (ver-

tical) plane of a and c, so that we have here

y ± a, y ± s,

as is required by another part of the same general rule for the

construction of the quotient-line. And finally the only remain-

ing part of the same rule is also satisfied ; for the rotation round

y from £ to a is right handed. In an exactly similar way we shall

find that, with reference to the same figure 22, and with the sig-

nifications of (5 and S in that figure, as denoting the rays ob and

OD, while £ denotes the same upward vector as before, we may
write the equation

for now the dividend-line /3 is in length double the divisor-line t,

and the length of the line S is double of the assumed unit of

length, so that

T/3-^T£=TS=2;

we have also the perpendicularities,

8l|3, Sit;

and the rotation round 8 from e to /3 is positive.

124. To test now the consistency of these results with other

principles, which we regard as being even more essential, and

which had in fact been laid down in the Second Letture, as go-

verning ^cweraWy the composition and decoinposition offactions,

before we proceeded to consider specially the case of rectangular

lines, let us resume the general conclusion of articles 50 and 56,

namely, that in every such " analysis of faction," the "transfac-

tor divided by the factor gives the profactor as the quotient ;" or

in symbols, the formula,

y--/3 = (7-a)-^(/3-a),

where a, j3, y may denote any three rays in space. The identity

last written gives evidently this other equation of the same form,

(i3^£)^(a-=-£) = /3--a;

where a, /3, i may be supposed to have the significations which
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were assigned to them in the foregoing article (123). But it

was shewn there that our plan for constructing the quotient of

two rectangular lines conducts to the two equations,

Substituting then these values for these two quotients in the

identity written above, we eliminate the symbol e, but introduce

y and S instead, and arrive thus at this other equation, which

also ought to be true,

S -^ y = (3 -~ a.

Here then is a test whereby to judge of the consistency of our

principles, notations, and rules ; for we know by the Third Lec-

ture how to interpret an equation between quotients, such as the

one just now obtained ; and indeed <Aa< particular interpretation

had been perceived by others, or at least one partially agreeing

therewith had been so, before the quaternions were thought of.

And accordingly the test is borne; for this very equation S ^ y =

/3 H- a was shewn, in art. 103, to hold good, with reference to

figure 22, in the sense that the biradial (y, S) may be formed
from the biradial (a, (i) by merely turning the latter biradial

round in its own plane, and altering the lengths of its two legs

proportionally.

125. There are therefore at least tv/o essentially distinct

interpretations (without counting the distinction between ana-

lytic and synthetic views), which may thus be given, on our

principles, to the equation,

S -7- 7 = /3 -r a,

taken in connexion with the figure 22 of article 103 ; and which-

ever of these two we adopt, that equation is found to be true.

According to the interpretation which was given in that former

article itself, we analyze the lengths and directions of /3 and S,

by comparing them respectively with those of a and y ; we find

thus that while the line /3 is twice as long as a, S is at the same

time twice as long as y ; and that while j3 is advanced beyond a

by sixty degrees of azimuth, S is also advanced beyond y by the

same amount of rotation, in the same horizontal plane ; and
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hence we infer that the quotients |3 h- a and S -^ y are equal, be-

cause they correspond to one common relation oj" lengths, and to

one common relation 0/ directions. Or if we regard the quater-

nions /3 -f-a and S-i-y as/actors, then these two quaternions are

equal, because they have equal tensors and equal versors ; namely,

in symbols, in the present example,

T(S---y) = T(/3--a) = 2,

and

U(S--7) = U(i3H-a) = A*;

so that they answer to precisely similar acts of tension and of

version, performed respectively on a and on y, in order tojaro-

duce the rays j3 and S. This is the^V^^ interpretation (analytic

or synthetic) of the equation between the quotients ji-i- a and

S -t- 7 ; it is the one which agrees most closely with views already

published, and which flows most naturally from the principles of

the foregoing Lecture ; and in adopting it, we have at the same
time (by the -conception of a quaternion) an interpretation for

each quotient separately, which was alluded to at the close of ar-

ticle 105, and which involves only the consideration of a single

version (or angle), combined with that of a single tension (or

ratio), or the comparison oftwo rays Wuh each other.

126. But there is also a second interpretation of the equation

S -H 7 = j3 -H a, or of the quotient S -4- 7 itself, which is suggested

by the process in art. 124, and is derived from general principles

respecting decompositions of/actions, or of acts of tension and

version, combined with the construction in art. 122 for the quo-

tient of two rectangular lines, or with the earlier construction in

art. 82 for the product of any two such lines, as being itself

another line. According to this other interpretation, we consi-

der 7 and 8 as being themselves quaternions, namely quadrantal

ones, equivalent respectively to the two quotients a -^ t and fi-i-i

of article 123 ; and then the act of dividing the line S by the line

7 comes to be considered as a particular case ofthe general ope-

ration ofdividing one quaternion by another. In this view 7 is

a factor, which operates on the line i as on what was called in

the Second Lecture afaciend, io produce what was there called

a factum, namely (at present) the line « ; /3 -f- a is theprofactor.
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which operates anew on a, as on a profaciend, to produce /3 as a

prqfactum ; and S is the transfactor, which operates on the ori-

ginal subject £, as on a transfaciend, to produce immediately, by

a sort of short cut, or (technically speaking) by an act oftrans-

faction, the samefinal result, namely the line j3, regarded now as

a transfactum. And then the result that /3 -^ a is thus the pro-

factor, or is found to be the agent in that successive act offaction

which, hy following the operation of 7 as a factor, produces, on

the whole, the same effect as that which is produced by S as a

transfactor, is precisely the result expressed by the equation

according to the second mode of interpretation above alluded to.

But we see that (even if we abstract for the moment from any

comparison of the acts of tension among themselves) this latter

interpretation of the division indicated by the symbol 8 .^ y in-

volves not merely (as at the close of article 125) the considera-

tion of a single version, namely the rotation from the ray y to

the ray 8, but the consideration and comparison of three different

versions, or rotations, performed in three different planes;

namely the version from e to a; the proversion from a to j3 ; and

the transversion from e to |3. Yet we see that the results ofthese

two distinct iriterpretalions harmonize, in the sense that each

conducts to one common quaternion, as the value ofthe quotient

S -7- 7 ; and also that each conducts to the equation S -4- 7 = /3 -i- a,

under the conditions already supposed. All this may be illus-

trated by what was said in art. 76, respecting the double signifi-

cation of the equation

ixj = h,

as being the common expression for two distinct but connected

results. It may also be usefully compared with the still earlier

and more elementary remarks in article 57, respecting the double

view which may be taken of the arithmetical formula

6--2 = 3;

as expressing at one time that on measuring a line =6 a, suppose

a fathom, bp another line = 2 a, suppose by a two foot rule, or on
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measuring any other concrete magnitude called 6, by a magni-

tude of the same kind, called 2, we find the number 3 as the re-

sult of this measurement, or as the quotient of this division ; and

as expressing, at another time, that if vpe analyze the act ofsex-

tupling, so as to decompose this act into two other acts, oi^hich

one shall be the act ofdoubling, then the other component act is

found to be the act of tripling. But it cannot be necessary, at

this stage, to carry these particular illustrations any farther, as

regards equations between quotients.

127. There is however one other test, which, although inti-

mately connected with the foregoing, it may still be satisfactory

to consider; and which will have, besides, the advantage of

tending to render us familiar with the geometrical signification

of a certain symbol, which frequently occurs in the applications.

I refer to the symbol

/3 -f- a X y,

in which a, /3, 7 are, for the present, supposed to denote some

three coplanar rays, that is, rays in or parallel to one common

plane, and which maybe interpreted in either of the two follow-

ing ways: the test above alluded to being the coincidence be-

tween the results of these two distinct processes of interpretation.

I. We may determine &fourth ray S, in the same plane, or

parallel thereto, so as to satisfy the equation

S -f- 7 = /3 -4- a,

in the way which has been already fully explained (in art. 103,

&c.) ; and then, on substituting for /3 -=- a, the equal quotient S -7-7,

the symbol to be interpreted becomes (compare articles 40, 99),

)3-i-aX7 = S-4-7X7 = S.

II. Or we may turn about the rays a, /3, or others equal to

them, by t)ne common amount of rotation in their own plane,

until a comes to be perpendicular to 7 ; after which it will

always be possible to determine a new ray i, perpendicular to

both a and 7, and such as to satisfy the equation

7x6 = 0,

with that interpretation of a product of two rectangular lines
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which was assigned in art. 82. We shall then have also the con-

nected equation

7 = a -^ E,

with that connected interpretation of a quotient of two perpendi-

cular lines which was given in article 122. And on substituting

this value for y, in the symbol lately proposed for interpretation,

that symbol becomes (compare article 49),

/3--aXY = (i3-ha)x(a-^£)=|3^t.

But £ being perpendicular to both a and y, by construction, is

necessarily perpendicular also to the ray j3, which is supposed to

be coplanar with those two other given rays; or in symbols,

£ ± i3,
because e J. a, e _L y, and 3 ||| a> f,

if we agree to use the mark
|||

as a sign of coplanarity.

Hence the quotient P -=- e may itsel/he interpreted, on the plan

of art. 122, as a certain determined line 8', which will evidently

be in (or parallel to) the plane of the given rays, because

if S'= j3 -^ E, then S' J. j3, and g'_L e,

so that the quotient S' is perpendicular to the line t, which is

itself perpendicular to that given plane. And by equating the

two foregoing values of the quotient |3-^e, we find for the pro-

posed symbol this second interpretation, or value,

j3 -^a X 7 = 8'.

128. Now the test to which it still remains to submit the

whole foregoing theory, as regards the consistency of its parts

among themselves, is to be applied by our examining whether

the line 8', thus determined, coincides with (or is equal to) the

line S which was found above, by the other method of interpre-

tation, as being at least one value of the symbol j3 -f- a x y.

Have we or have we not (in the present question) the equation

S' = 8?

for if not, we shall have not merely two different processes of in-

terpretation for the important symbol (3 -I- a x -y under e.xamina-

tion (which might not be, of itself, a disadvantage), but also two
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different values for that symbol, both equally valid on our prin-

ciples, and scarcely to be distinguished from each other by any

new care in the notations : which would produce an intolerable

confusion, or at least a very inconvenient ambiguity, occurring,

as it would do, in a symbol so elementary. And happily the

equation 8'= S is found, in fact, under the conditions above sup-

posed,, to be true : so that the ambiguity does not exist. For the

equations

S' = /3 -H £, 7 = a -^ £,

give

S'-H y = (5-i-a=S-^y;

but it has been shewn that the quotient of two given rays is a

given quaternion, and conversely that any essential change in

either of those two rays, the other ray remaining unchanged,

makes a real alteration in this quotient; consequently the quo-

tients S" -i- 7 and S-i- j could not be equal, as we have just now

found that they are, if the rays S' and S were unequal, that is if

they differed from each other either in length or in direction.

All this may be illustrated by a reference to figure 22 of arti-

cle 103, in connexion with the remarks which were made in the

more recent article 123 ; where, with the same significations of

the letters, the value of the quotient j3 -r- e, that is (by art. 127),

an equivalent for the line S', was found in fact to be 8.

129. Thus the two methods of interpretation of the symbol

/3 -^ a X -y, where -y |||a, /3,

conduct to one common result, namely to the determined line S;

although one of these methods introduces only the consideration

of a single rotation, namely that from a to /3, or from y to S,

while the o<Aer introduces (as in 126) the consideration oi two suc-

cessive rotations, performed in two different planes, namely the

rotations from t to a and from a to j3, compounded together into a

third rotation in a third plane, namely the rotation from s to /3,

performed round S as an axis. And with respect to this value

of the above written symbol, or the length and direction of the

line 8 which thus satisfies the equation
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or the proportion

a : /3 : : 7 : S»

by which that equation may be replaced, vpe see, first, that this

fourth line S is coplanar with the three given lines a, |3, 7, which

were supposed to be coplanar with each other. We see also that

its length is (in the old geometrical sense) &fourth proportional

to their three lengths ; so that, by art. 110, we may write the

following proportion between tensors,

Ta : Tj3 : : Ty : TS.

We see too that its direction also is, in a certain modern sense {not

hoviever peculiar to quaternions), a fourth proportional to their

three directions ; meaning hereby that the rotations from a to j3

and from 7 to S are equal in amount, and similar in direction

:

which relation, at least when combined with the two relations of

coplanarity, namely with the following,

7 111
a, /3, and Sill a, ^,

may conveniently be symbolized in this calculus, by the follow-

ing proportion between versors,

Ua:U/3::U7:US.

Indeed this interpretation of the symbol ^ -~- axy, for the case

ofcoplanar lines, had been familiar to a certain class of thinkers,

and had been well known to myself, before the quaternions were

perceived, although some of the foregoing notations connected

with it are new. But on account of my having departed from

many other usages, and having found myself obliged to give up

(as unsuited to my purposes) many other results, of those who

had thus speculated before myself, even as regards combinations

of lines in one plane, it became necessary, for the sake of clear-

ness, and even for the sake of logic, that I should explain dis-

tinctly on what grounds I retain the previously proposed signi-

fication of the symbol j3 -h a x -y, as denoting a certain definite

fourth line S, at least when the three given lines a, /3, 7 are in one

common plane : together with the equation /3 h- a x y = B, and

with the proportion a : /3 : : 7 : 8.
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130. As additional examples of such signification, wc may
remark that if, in fig. 25 (art. 119), we make

a = A-0, |3 = B-0, 7 = 0-0,

we shall then have

8 = /3-T-aX'y=D-0;

and that, generally, the fourth proportional to any three rays of

a logarithmic spiral is (in length and in direction) that fourth

ray of the same spiral, which is angularly related to the third

ray as the second is to the first. It is evident that whenever the

equation

S = /3H-ax'y, or8H-7 = /3-Ha,

interpreted as above, holds good, we then have also the inverse

equation

7 -7- 8 = a -i- /3,

and the alternate equation

8 -T- ^ = 7 -7- a

;

results which may also be expressed as inversion and alternation

oi & proportion, and from which it follows (compare art. 99) that

j3 -^ a X 7 =7 -7- a X j3, if 7 III
a, /3,

the line S, above determined, being the common value of the two

members of this last equation, under this condition of coplana-

rity. We may also write more concisely (see art. 118),

a = /3a-i.7 = 7a-^/3.

What happens when the three lines a, /3, 7 are not in nor pa-

rallel to any one common plane ; or in other words, what is to

be regarded as being the fourth proportional to three lines not

coplanar, is a question which must be reserved for investigation,

at a stage a little more advanced. But at least we may already

see that in this more general and reserved case of non-coplana-

rity, the sought fourth proportional /3 -^ a x 7, cannot (con-

sistently with the foregoing theory) be equal to any fourth

LINE 8 : for the equation 8 -^ 7 = /3 -=- a requires, by the princi-

ples already laid down, that thefour rays compared should be
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coplanar, and by still stronger reason that the three rays a, /3, y
should be so. In fact it was this very difficulty, respecting the

interpretation of the symbol /3 -^ a x y for the general case of

non-coplanarity which had pressed most upon my own mind, as

seeming to be insoluble upon known principles, before I was

led to conclude (what will soon be proved) that " the Fourth Pro-

portional to three Lines which are not coplanar is generally a

Quaternion."

131. When the three lines a, /3, 7 are coplanar, the following

is a simple and somewhat neat construction, for that fourth line

S which is then their fourth proportional. As there is never any

difficulty about the length, or tensor, of this fourth line, since we

have always the arithmetical equation,

TS = T/3 -f- Ta X Ty,

we need only attend to the direction or to the versor of S; and

in seeking this fourth versor, US, may dispose at pleasure of the

lengths or tensors of a, (3, y, provided that we leave unaltered

their directions, or their three versors Ua, Uj3, Uy. It is ob-

vious also that a reversal of any one of these three versors, or

directions, merely reverses the direction of the result. Conceive

then that the three proposed lines a, j3, y are made the successive

sides of a triangle, bca, by some suitable changes of their

lengths, without any change in their directions, or at most with

simple reversions ; so that we shall have the values,

a=C-B, j3 = A-C, y=B-A,
with the relation

y + /3 + a= 0.

Circumscribe a circle about this trian-

gle, as in Fig. 26 ; take the arc ad

equal to the arc ac, and prolong the

chord BD to meet in e the tangent to

the circle at a ; take also on the same

indefinite tangent the portion af equal

in length to the portion ae, but lying

to the other side of the point a of con-

tact. Or draw the chord bg parallel to

the tangent at a, and prolong the chord
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GC to meet that tangent in f. Then if we denote by S and s the

lines

S = F-A = A-E, E=E-B,

we shall have not only the relation

g + E + Y = 0,

but also the values

S = /3a''.7; i = ya'^.y.

For it results from the similarity of the two triangles bca, bae,

and from the equality of ea and af, that the proportions

BC : CA : : BA : AE : : AB : af, and bc : ab : : ab : be,

hold good, even when the directions as well as the lengths of the

lines are compared ; that is, we have here theproportions bettveen

vectors,

a : (i : : y : S, and a : y : : y : t.

The curved arrows in the figure may assist the perception of the

relations between the directions of these lines ; and a student

might find it worth while to vary this figure 26, by supposing the

angle abc to be obtuse instead of acute, or by placing b between

a and c, leaving those two points unaltered in the figure. In this

new case, the chord bd would require to be prolonged through b,

in order to meet the tangent at a in a point which might still be

called E, but which would now lie at the other side of the point

of contact a, or at the same side as the old point f ; while the

new point f would thus come to lie at the same side of a as the

old point E. But the new triangles bca and bae would still be

similar to each other, and the requisite relations between direc-

tions, as well as between lengths, would still be found to hold

good. We should therefore still have the proportion between

four vectors,

c-b:a-c::b-a:f-a;

as also the following continued proportion between three vectors,

c-b:b-a::b-a:e-b;

although the positions of the points b, e, f would (as above ex-

plained) have, all thref, changed together. And if the angle

I.
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ABC were right, the only modification of the construction would

be that the points c and d would coincide. We may then enun-

ciate generally this result, which it will be found advantageous

to remember :
" The Fourth Proportional to the three succes-

sive sides of a Triangle inscribed in a Circle is equal to a fourth

Line, which touches the circle at the corner of the triangle oppo-

site to the^)«^ side." Or somewhat more fully, we may say

that the fourth proportional to the base BC and the two successive

sides CA and ab, of any plane triangle bca, regarded as three

vectors, is equal to a. fourth vector af, drawn from the vertex a,

so as to touch, at that vertex, the segment bca of the circle

which circumscribes the triangle. In the figure 26 itself, this

segment does not contain the point d, and the tangential vector

AF touches the shortest (rather than the longest) arc of the circle

from A to c ; but if b were placed upon that shortest arc ac, as

in a recently suggested variation of that figure, the segment bca

would then contain the point d, and the required tangent at a

would take (as was above observed) the opposite direction, so as to

touch the shortest arc from a to d, rather than that from a to c.

In each case, however, in conformity with the last enunciation of

the rule for constructing the direction of the fourth proportional

AF, or S, or j3a"'. 7, to the three directed sides c - b, a- c, and

B - A, that sought direction of the line af may be found by the

condition of touching the segment bca, or of coinciding with the

initial direction of motion along the circumference, y}-o»J a to b,

through c. If we had adopted the plan of determining the point

F from the point g, without empjoying e or d (namely, by draw-

ing, as above suggested, the chord bg parallel to the tangent at

A, and by prolonging the chord gc to meet that tangent in f),

the similar triangles to have been compared would then have

been the original triangle bca and the triangle acf: and the

figure might have suggested the proposed proportion under the

form

a :-7 : : -/3:S;

which is in fact (see 130) a legitimate transformation of it, in

quaternions as in ordinary algebra.

132. All the remarks which have been made in the foregoing
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article, so far as they regard only proportions ofdirected lines in

one plane, depend (as it has been already stated) on principles

which are not peculiar to the theory of quaternions, but are com-

mon to some other modern systems also. Yet it appeared useful

to introduce them in this place; and before we resume the con-

sideration of things peculiar to quaternions, it seems worth while

to mention here another construction, depending on the same

principles, and involving only (like the former) some elementary

properties of the circle, which construction serves to form a geo-

metrical representation for the fourth proportional to any three

coplanar lines, when directions as well as lengths are attended to.

Let the three given coplanar lines a, j3, y, to which we wish

to construct the fourth proportional j3a"^ .7, be conceived to be

respectively arranged as the second, first, and third sides, BC, ab,

CD of a quadrilateral abcd; and let it be at first supposed that

this quadrilateral is inscribed in a circle, as in figs. 27, 28.

Fig. 28.

Draw the chord be parallel to the fourth side da, and prolong (if

necessary) the new chord CE, to meet this side da in f ; and de-

note the line df by S, so that

a = C-B, /3 = B-A, •y=D-C, S=F-D.

Then by the similar triangles cba, cdf, and by the curved arrows

in the figures, we have the required proportion,

c-b:b-a::d-c:f-d, or a: [3 ::y : S;

so that the line df or S is the sought fourth proportional, or is

L 2
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the result obtained when thefrst side (5 or ab of the inscribed qua-

drilateral is divided by the second side a or bc, and the resulting

quotient or quaternion, /3a'S is then multiplied as a factor into

the third side j or cd. And according as the inscribed quadrila-

teral ABCD is an uncrossed one (as in fig. 27), or a crossed one

(as in fig. 28), we see that this resulting line 8 is in the direction

opposite to the fourth side da, or in the direction of that fourth

side itself. And if for greater generality the third of the given

lines be now supposed longer or shorter than the third side cd of

the quadrilateral inscribed in the circle abc, or even opposite in

direction to that side, we may still conceive it placed so as to

begin at c, and may represent it by

y = d' - c ;

and then by drawing from its final point d' a parallel to ad or to

BE, so as to meet the old chord ce in a new point f', we shall

find a new line

8' = f'-d',

as in the same figs. 27, 28, which will be the new fourth propor-

tional sought, or will satisfy the equation

8' = /3a-l.y'.

For example, in fig. 27, if g be the intersection of the lines cd

and BE, then ge is, in length and in direction, the fourth propor-

tional to BC, AB, and cg.

133. The same principles give easily, as has been seen, a

simple construction for the third proportional to any <wo directed

lines, such as a and y in fig. 26 (art. 131); and the inspection

of the same figure shews easily, as was to be expected, that the

line £ so found is the third proportional also to a and-y; for in

that figure it is evident that

c-b:a-b::a-b:e-b.

But it is important to observe that when we have thus a conti-

nued proportion between three vectors,

a : y : : Y : E, or a : - y : : - y : £,
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we must not in quaternions write generally, as in ordinary alge-

bra, an equation between square and product, such as

7^ = OE, or y"^ = ia;

for -y^ is, in our system (see art. 85), a negative scalar, while at

and fa are in general (by arts. 89, 91) two conjugate quaternions,

of which neither reduces itself to a scalar, positive or negative,

unless the vectors a and e have coincident or opposite directions.

This new departure from ordinary usages (from which it may be

noticed that 1 aim at departing as seldom as I can), arises from

that fundamental peculiarity of quaternions whereby they, and

even the vectors which they involve, are not generally commuta-

tive as factors (arts. 74, 82, &c.) In fact if we could infer gene-

rally the equation 7^ = at, from the continued proportion between

three vectors a : 7 : : 7 : e, then since this proportion may be in-

verted (art. 130), or written thus, e : 7 : : 7 : a, we should be equally

well entitled to conclude the equation 7^ = £a, and therefore also

f.a = ai ; which (as a general inference) would contradict the non-

commutative principle, respecting the multiplication of vectors.

It is therefore satisfactory to know, what is easily shewn on our

principles, that the continued proportion above supposed, between

three vectors a, 7, e, gives still, as in ordinary algebra, and as in

those other and more modern systems also to which allusion has

been made, the equations,

Ea-^ = (7a-')^ «£"' = (76-1)^
;

provided that we retain in quaternions, as the definition of a

square, or secondpower, the formula

q^ = qxq;

which will agree with what has been already laid down respect-

ing the squares or second powers of vectors. In fact if we make

we shall then
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134. Conversely, by an introduction of the notion of the

power of a quaternion, with an exponent = |, which includes what

has been shewn respecting such a power of a vector, I should sfe'//

write generally,

ya'^ = ± (ta"^)^, when a : y : : -y : £

;

although I am not at liberty to write generally, under the same

condition of proportionality, the equation

y = + y/{ai),

as might be done in commutative algebra. Thus the mean pro-

tional y between any two proposed vectors, a and t, is not (with

me) equal generally to the square root of their product ; but if

this mean y, and the third vector t, be each divided by the first

vector a, theformer of the two quotients (or quaternions) so ob-

tained is STILL (as in algebra) a species of square-root of the

latter. And accordingly I write, as an expression for this mean,

the formula

7 = + (£a"i)«a;

where, to remove generally the ambiguity of sign, I may here

state that I take the upper sign (+) when y has the direction of
the bisector of the angle between the directions of a and e; but
the lower sign (-), when, as in figure 26, -y has the opposite of

that direction. And when I have occasion to speak definitely

of THE MEAN proportional between two given vectors a and i, I

adopt then the upper sign in preference, or take the bisector it-

self oi the angle between the two extremes, in preference to the

opposite of that bisector. There is thus only one case left, in

which the direction of the mean remains ambiguous, or rather in-

determinate, if the directions of the extremes be given, namely,

the case when those two given directions are opposite to each

other: for then the resulting symbol, suppose

y = {- x^a . a-y^ a, OTy = {-x^)ia,

where x represents some positive scalar, may on the foregoing

principles, denote' awy line y which satisfies the two conditions,

T-y = x'Va, 7 -L a
;
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SO that THIS MEAN •y may have any direction in a plane per-

pendicular to a. Accordingly it is evident tliat the third pro-

portional to any two rectangular vectors is a third vector with a

direction opposite to the first, whatever the plane of the two vec-

tors may be. It is obvious also that the third proportional to any

two parallel vectors is a third vector, whose direction coincides

with that of the first given vector. And there can be no diffi-

culty in perceiving (what indeed does not depend on anything

peculiar to quaternions) that the mean proportional between any

two rays of a logarithmic spiral, at least if they be taken, for

simplicity, as belonging to one common semispire, is constructed,

in length and in direction, by that other ray of the same half-

spire which bisects the angle between them.

135. It is natural to interpret, on the same general plan, the

symbol

(/3^a)*xa, or(/3a-l)*a,

as denoting thefirst of two mean proportionals (in length and in

direction), inserted between the two lines a and /3; the second oi

these two mean proportionals, thus inserted, being denoted by

the analogous symbol,

(/3 -^ a)^><a, or(j3a-')*a.

For example, if a and j3 should be chosen so as to denote the

rays oa and od of the logarithmic spiral in fig. 25 (art. 119),

then the tiuo ineans, symbolized above, would be the two inter-

mediate rays of the same spiral, ob and oc. In symbols, the

two means between i and j ^8 are k^ i y' 2 and 2 A5 1. (Such is

at least the simplest pair ofmeans between the given extremes;

for we shall soon see that is possible, although in a less simple

way, to insert other pairs.) Indeed this notation is, so far, con-

sistent with the principles oi other systems also ; but it is impor-

tant to observe that in our system of notation we must not de-

note these two means between a and j3 by the symbols

which would, in common or commutative algebra, be merely

transformations of the foregoing ; whereas they denote, on the
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principles of the present theory, no two lines whatever, unless

the directions of a and j3 should happen to coincide, but two
quaternions, of which the tensors and versors shall be assigned

hereafter. Meanwhile it is clear that since (by what precedes),

(/3 -^ a)* = y ^a, (/3 -^ 0)^=7' -H a,

if y, y' denote the two means above considered, so that

a : y : : y : y' : : y : (5,

the powers of any proposed quaternion
ft -i- a with the exponents

^ and |, or in other words the cube-root oi fta'^ and the square

of that cube-root, are generally themselves quaternions ; whose

tensors are the corresponding powers of the tensor of the given

quaternion,

T .
(j3a-i)* = (T .

j3a-i)i = (T/3 ^ Ta)^,

T.(j3a-')* = (T.j3a-i)* = (T/3-|-Ta)*;

while the axes of the new versors are the same with the axis of

the given versor of jSa'S and the angles of those versors are re-

spectively equal to one third and to two thirds oii\ieg\ven angle

between a and
ft : so that we may write, with reference to the

versors, in consistency with former results,

U . (i3a-i)^ = (U .
^3„-i)i^ (U/3 -f- Ua)*,

U . (i3a-i)* = (U . /3a-l)* = (U/3 -^ Ua)*,

and also, with reference to the angles, the equations,

Z.(/3a-l)* = i^0a-l),

z.(j3„->)J = fz(/3a-i).

136. More generally we may now interpret the symbol q', or

the POWER or a quaternion q, with any scalar exponent t,

as denoting a new quaternion, of which the tensor and the ver-

sor are respectively the same (<") powers of the tensor and ver-

sor of the old or given quaternion ; in such a manner that we
may write, generally (compare art. 116),

T.5' = (T^)'='1Y;
U.?' = (Uy)'=U./;

the points and parentheses being omitted in these last symbols,
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T^' and U*^',

as being not required for the prevention ofambiguity. The ten-

sors being simply positive or (more properly) signless numbers

(by articles 63, 113), their powers are to be formed by the or-

dinary rules of algebra, or rather of arithmetic. And with re-

spect to the formation of powers of versors, or the interpreta-

tion of the symbol U^', it is natural to consider each such power

as being a new versor, which has the effect of turning any line

a, in a plane perpendicular to the axis of<7, through an angle, or

an amount of rotation round that axis, which is represented by

the product

ty. Lq;

the rotation being right-handed or left-handed, according as this

product is a positive or a negative number. All this is evidently

consistent with, and includes, what has been already laid down
respecting /?ower* of vectors, or of quadrantal versors {in articles

86, 1 15, 1 16, &c.) ; and it enables us to write, in the calculus of

quaternions, as well as in ordinary algebra, the formula,

where tn and n are any positive or negative whole numbers, or

zero. For example, we have the identities

q .q-^=q-^q = q^'^=q°=\;

so that (compare arts. 44, 117), we may call the power y"',

with negative unity for its exponent, the reciprocal of the qua-

ternion q. We have also, for any such ivhole values of m and n,

the usual algebraic identity,

But before we can decide whether these two last formulae (with

m and n) are true generally for all scalar values of the expo-

nents m. and w, inc\\idi\ng fractions and incomniensurahles, we

must consider more closely, and define more precisely, than has

yet been done, what is to be understood in general by the angle,

or AMPLITUDE, Z g, of a quaternion, or of a versor.

137. It will be remembered that whenever we have supposed

that an equation of either of the two following forms.
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q = (5-ra, oryxa=j3,

holds good, we have always conceived (see arts. 40, 90, &c.)

that the quaternion q, regarded as a metrographic operator,

produces the complex (metrographic) e/fec< of changing_^r«^ the

length of a to the length of j3, according to the rule expressed

by the formula (compare art. 110),

TyxTa=T/3;

and also of changing, secondly, the direction of a to the direction

of j3, as is expressed by this other formula (compare art. 113),

U^x Ua=U^:

and this change of direction, of the line a thus operated upon,

has been always supposed to be accomplished by a rotation in

THE plane of the two rays a and (3, round an axis perpendicular

to that plane, but coincident with (or parallel to) the axis ofthe

operating quaternion q. Now it is evident that if we only care

for obtaining, in some way, the direction oi ihefnal ray j3, re-

garded as the RESULT of such a rotation, we may add (or sub-

tract) any whole number of complete REVOLUTIONS (per-

formed in the same plane) ; because each such revolution, forward

or backward, restores the direction of the revolving line or

ray. For example, a rotation through + 60° in any plane is equi-

valent, as far as regards only its final effect, to a rotation

(round the same axis) through + 420°; or through - 300°; or

through + 780°, &c. Conceive then that we wish to form, on

the general plan of the foregoing article (136), the power qi with

exponent I of the versor 9 = /3a"*, where a and /3 shall be sup-

posed to denote, as in fig. 29, two coinitial sides oa and ob

of an equilateral triangle AOB in a „. ,„

horizontal plane, the side ob lying

towards the right hand, with refe-

rence to the side oa. If we select,

for the present pair of rays, the sim-

plest value for the angle between o°f

them, and the one which agrees best

with ordinary geometry, and with

the analogy of former articles, \
namely, the following value of the
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rotation (round an upward axis) from the direction of a to that

of/3,

-^9 = Z(j3-=-a) = + 60%

the general expression in article 136 for the amount of the rota-

tion performed by the power q*, considered as a new operator

on a, will then supply us with the following value for this new

rotation (round the same upward axis) :

<xZ^ = ^x(+60°) = + 20°.

We shall thus be led to write the equations

9* a = 7, (/3o'i)* = 7a"^ 7 = 0-0;

where c is conceived to denote the point on the circumference

AB (with the origin o for centre), which is advanced by 20° be-

yond the point a in the order of right handed rotation; and this

result will agree perfectly with article 135, because it will give

the ray y as the first of two mean proportionals, 7 and 7', inserted

between a and /3 ; so that

a : 7 : : 7 :

7'
: : 7' : /3, where 7' = c' - o,

c' being the_^wa/ point of a positive arc of 40°, measured from

the point a of the circumference, which latter is assumed as the

initial point : thefour rays,

A-O, c - o, c'-o, B-O,

thus forming, by their directions, a continued proportion.

138. But we might also, although less simply, have supposed

that after turning the radius oa, as above, through an angle of

60°, and so bringing it to coincide with the position of OB, we

then continue the rotation through an additional and complete

revolution, passing successively through the points de', ed', acc'

in the figure, and thus returning to the position ob again.

And if we adopt this supposition, respecting the amount of rota-

tion performed, that is, if we suppose it to be =+420°, we shall

then have, by the general formula of art. 136, the following value

for the corresponding rotation effected by the required power qi:

<xz:9=ix(+420°) = +140°.
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In this manner we shall be led to consider the point d in the

figure, namely, the termination of a positive arc of 140° from a,

together with the connected point d' which is the termination of

the same arc doubled, as the extremities of two new rays,

S=D-o, andS'=D'-o,

which are, although in a less simple sense than before, two mean

proportionals inserted between a and )3, and satisfy the conditions

of the formula,

aa-.-.l-.^-.-.i'-.fi;

while the first of these two new means satisfies also, inthesame

sense, the equations,

7*a = S, ()3a-i)^ = So-i.

139. Or again we might conceive ourselves as passing from

a to /3, or from a to B, by a rotation in the opposite order, through

the points d'e, e'd of the figure ; which new rotation would thus

be expressed by the symbol - 300° : and then the general formula

of art. 136 would give, for the rotation caused by the operation of

the iOMghi power qi of the versor q, the value

txz.q = ix (-300°) =-100°.

And thus we should be led to consider the two new points e and

e' in the figure, which are the extremities of two negative arcs

from A, namely, arcs of 100° and 200° respectively, measured in

an order opposite to that adopted in recent articles. In fact if,

after finding these two new points (or at least conceiving them

to be found), we write

£ = E - o, £' = e'- o,

we shall have the new continued proportion,

a :£::£: e' :: e' : j3 ;

and shall be led to write, in connexion therewith, the new equa-

tions,

q^a^i, (|3a-i)*=£a-'

140. And NO new variety ofpositions for the line q^a would

be obtained hy ?iny further addition or subtraction of revolutions,
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in estimating the amount of the rotation from a to |3; because a

change of three such revolutions, in the estimate of that rota-

tion, produces merely a change of one complete revolution when

we come to trisect the whole angle (or at least to conceive it as

trisected), or to multiply I. q by the given exponent ^. For ex-

ample, if, instead of treating the rotation from a to j3 as being

= the negative arc - 300° (as in the preceding article), we were

to treat it as equal to the positive arc + 780°, which is greater by

three circumferences, we should be led, by the supposed trisec-

tion, to conceive an arc of + 260°, which would still conduct us

from A to E (in fig. 29), although by an order or direction ofro-

tation, opposite to that which was considered in the foregoing

article.

141. It appears then that j/we allow the symbol

L q, orz(/3-=-a), orz(/3a-i),

to represent not merely 60° (in the example recently discussed),

but any one of the angles or rotations which differ from this by

multiples of 360°, the power qi, or the cube-root of the quater-

nion q, may represent, or be interpreted as being equal to, any

one o/'three distinct quaternions; namely (with the recent

significations of the letters), by arts. 137, 138, 139, any one of

the three following :

(/3a"')'^='y« ^ or=Sa"', or = £a"';

but not (by art. 140) any other quaternion, distinct from these.

In fact if we define the cube or the third power of a quaternion

by the formula

q^^qqq,

which agrees not only with common algebra but with the general

definition oi g' in art. 136, we shall have, in the recent example,

the equations,

(ya-')3 = (ga-')^ = (£a-')^ = i3a-i.

In short, we reproduce here, by this way of viewing the subject,

precisely that kind and degree of multiplicity of value,

which is so well known to present itself in the ordinary algebra

of imaginaries, and indeed in some known systems of geometrical
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interpretation also, in connexion with the roots of unity :

although it was necessary, for the purpose ofa logical developement

of the present theory, that I should not assume, without a new

and independent investigation, so important an element of any

other system, with which the principles of the Calculus of Qua-

ternions come on some points into opposition. It would not have

been a legitimate process for me to have borrowed, without in-

quiry, the Theorem that " three distinct and unequal ex-

pressions (as here 7a"*, Sa'S and ta'^) may have one common

CUBE," from any system of calculation in which the order oftwo

factors is supposed to be generally indifferent to the result ; nor

from any system of interpretation, in which the three distinct

cube-roots of one common expression (as here of |3a"^) are sup-

posed generally to represent three lines, having directions in one

plane, instead of representing (as with me) three quaternions.

142. Had the exponent t denoted any other fraction,

n

m

where m is supposed to be prime to n, so that the fraction t is

expressed in its lowest terms, there would have been no difficulty

in proving, in like manner, what is analogous to known results

in other systems, that m distinct quaternions, that is, as many as

there are units in the denominator of the fractional exponent t,

might all be considered as values of the <"' power of any pro-

posed quaternion q, or as included among the different interpre-

tations of the symbol q' ; provided that in calculating the rota-

tion denoted (see 136) by the general expression

ty.lq,

we still allow (as was lately done) the symbol iq io denote ant

one of those infinitely many angles, or rathev amounts of rota-

tion about a given axis, which can be formed as above, by addi-

tions or subtractions of circumferences, or complete revolutions.

For example, the square-root q' of a given quaternion q would,

on this plan, be found to have in general two values, of which

one would however be merely the negative of the other, or might

be formed from that other by multiplying it by - 1 : which re-
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suit is seen, of course, to bear the closest possible analogy to

algebra. And if the exponent t were incommensurable, the

values of the power y' would then, on the same plan, be found

to be INFINITELY MANY. But a power of a given quaternion,

with a given whole number for its exponent, such as the square,

cube, reciprocal, &c., is still, even on this plan, itself a deter-

mined QUATERNION ; in the sense that by operating as a factor

on any given line, in a plane perpendicular to its axis, it produces

a DETERMINED LINE in that plane as the result.

143. If then we were to adopt the plan mentioned in the last

few foregoing articles (137, &c.), for estimating the angle of a

quaternion, whereby the symbol L q for that angle, or for that

rotation, should not be confined to its simplest and most geo-

metrical value or signification, as denoting generally some

acute, or right, or obtuse angle, such as are treated of in Euclid's

Elements, and which for the moment we may here denote by this

other symbol 9 : we might then write generally

where / is employed as a sign for any positive or negative whole

number, or zero, and the angular value of tt is (as usual) 180°.

And then, on the same plan, we might write (see art. 136),

L (q') = tx{q +2lTr) + 2l'Tr = t.q+2{lt + l')Tr,

where i denotes any new whole number, whether positive or

negative or zero. In the same manner we might write

I (q") =u.q+2 (mu + m') n;

where m and m would be allowed to denote any new pair of

whole numbers ; the new exponent u, like t, being still supposed

to be scalar; but being still allowed, like it, to become fractional

or incommensurable. And if we seek, on the same plan, the

angle of that other power of q, which shall have u + t (or t + u)

for its exponent, we find this other expression,

/. .
q"*' = {u + t) q + 2p (u + t) TT + 2 p tr,

where /3 and/?' are two new arbitrary integers.
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144. This being perceived, there can be little or no difficulty

in seeing that because generally the multiplication qfversors cor-

responds in the theory of quaternions to the composition ofver-

sions (see art. 65), and because the axes of the rotations answer-

ing to \}s\e. powers q* and <f may be regarded as coinciding with

the axis of the base, or with that of the given quaternion q, we

may form (on the present plan) a general expression for the

angle of the product oftwo powers,

by adding the two separate expressions (found as above) for the

angles of the factors, and afterwards admitting or introducing a

term which shall be some multiple of a circumference. In this

way we should be led to infer that

L (5" X q') = {u + t) q +2{lt+ )nu + n)Tr,

where n denotes some new positive or negative whole number or

zero : provided that in interpreting the symbol for the angle of

the product we allow every value of the one factor power to be

combined with every value of the other.

145. Comparingnow the results of the two foregoing articles,

we find that in order to justify our establishing the following

equation,

q-q'^q-^',

where the exponent of the product is represented as being equal

(as in arithmetic) to the sum of the exponetits of the factors,

we must endeavour to select the five whole numbers l,m,n,p,p"\r\

such a way that the part independnet of q, in the difference of
the angles of the two equated quaternions may either vanish, or at

least be equal to some multiple of the whole circumference ; or that

the coefficient of 27r in the expression of this difference may be

equal to some whole number p", whether positive or negative, or

zero ; since otherwise the two compared quaternions would not

be equal, because they would give unequal vectors as the results

of their operating as versors on one common vector, perpendicu-

lar to the axis of 5'. In this manner we are led to the condition,

p{t + u) - {It + mu) +p -n= p"
;
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or more concisely,

(p- l)t+{p-m)u = n,

n denoting some new whole number which may be chosen at

pleasure.

146. Now without entering here into a minute discussion of all

the CASES which may arise from varieties of selection of the sca-

lar exponents t and u, it may suffice to observe that for general
and INCOMMENSURABLE values of those two scalars, not con-

nected by any relation with each other, the condition recently

written can be satisfied only by supposing that/>-/, p-m, and

n all separately vanish ; or by our establishing the equations,

p = l = m, and n = 0.

For example, if we assume

t= y/2, M = v'3,

we shall find that the equation

0^/2 + 6^3 =

cannot be satisfied by any scalar and whole values of a, b, c, dis-

tinct from zero. We are therefore led to conclude that the pro-

duct of the two powers q' and q^ will not generally (on the

present plan) be equal to that other power (/'*', of which the

exponent is the sum of the exponents of the factors, unless the

three whole numbers, denoted above by /, m,p, are equal to each

other; that is, unless, informing the three powers,

q', q\ q"*',

by the three multiplications (see art. 136),

t Lq, uLq, {u + t) Lq,

we assign one common value, such as

Lq = q + 2lw,

to the angle of the base, or to the amount of the rotation

which is conceived to be produced by the operation of the qua-

ternion q. But if, conversely, we do thus choose m = l and^ = /,

that is, if we do thus assign one common value to /L q, in form-

ing the three powers to be compared, we shall then have
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p (t + u) =lt+mu,

independently oft and u; and the expression for the angle of the

product, assigned in art. 144, can only differ from the last ex-

pression in art. 143 by some whole multiple of the circumference.

And therefore, even if the quaternion q were not a simple versor,

but had a tensor different from unity, we should be able to infer

from this supposed Jixity of its angle Lq, for any two scalar ex-

ponents t and u, the equation

q^(^ = q>'-t,

which was proposed for investigation near the beginning of the

foregoing article; and also, under a slightly different form,

towards the end of article 136.

147. With respect to the equation

which also was proposed for investigation in the place last re-

ferred to, the e.xponents t and u being still scalar, but otherwise

general, if we adopt, for the angle of 5*, the value assigned in art.

143, we shall have, on the plan of that article, the expression

L . {<jtY = ut.q + 2 (lut + I'u + I") w,

where /, l, I" are any three whole numbers. And on the other

hand we have, on the same plan,

/. .q'" = ut .q+2 {tnut + ni) w

;

where m and m denote some two new whole numbers. Equating

then the difference of these two last angles to a multiple of the

circumference, we find, as the condition for the correctness of the

equation above proposed,

(/-»».) ut + l'u = m'

,

where m is a new whole number, which may be chosen at plea-

sure. But because the scalar exponents u and tit are supposed

to be generally incommensurable, and not to be connected with

each other by any such relation as the foregoing, we can only

satisfy the recent condition by supposing that we have separately,

m = 1, and Z'=0.
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We are therefore still to suppose the angle of the original base

q to be FIXED, as in the immediately foregoing article; or to con-

ceive that one common value of z 9 is employed, in forming the

two powers,
q' and 9'".

But besides this supposition, which answers to the condition

}n = l, the other condition recently found, namely, the equation

Z' = 0, shews that in proceeding to form the power (9')" from the

power 9' as a base, we must in general retain that value of the

angle of q* which is immediately given by the rule of art. 136,

namely, the value (compare 143),

L . q^ = t X L q= t (jq +^1-!^);

and must not (generally) add to this value any multiple (diiferent

from zero) of the whole circumference, such as the multiple 2 ZV

which was added in art. 143, before proceeding to multiply by

u; at least if we desire to obtain generally anetv power (j*)", of

the intermediate base q', which shall be equal to the power q"' of

the given quaternion q.

148. But on reviewing the whole investigation contained in

the eleven foregoing articles (137 to 147), it appears to me

that you are likely to admit that although it was perhaps useful

ihus to studyyor a while son.'e of the ways in which the theory

of Quaternions might have led to symbols with multiple

VALUES, analogous to the known roots of unity (compare art.

141); yet it may now be desirable, with a view to simplicity

and clearness in our future researches, that we should call in the

aid of definition to fix, as precisely as we can, which one sig-

nification, or value, out of all the possible values or interpreta-

tions recently considered, we shall hereafter choose to adopt, in

preference to all the others, and indeed to theix future exclusion,

in the further developement of this Calculus. And I conceive

that we cannot better attain this object, than by adopting hence-

forth EXPRESSLY what has indeed been often adopted already, at

least tacitly and by anticipation, in earlier articles of these Lec-

tures, namely, the SIMPLEST valve ofthe angle of any proposed

quaternion q, or in other words the one which most conforms to

ordinary geometrical usage ; that is to say, an angle in the first

>i 2
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positive semicircle: and by regarding this as the value of tlie

symbol z q. This comes in the notation of art. 143, to suppos-

ing that I is zero, or to establishing generally the equa-

tion,

^q=q;

or (more fully), it comes to assigning the limitations,

iq>0,<Tr,

where > and < are, as usual, signs for " greater than" and " less

than" (compare art. 113); which will dispense with thefuture use

of the recent symbol q , and will allow us to consider the prefixed

mark L as being (in quaternions) the characteristic of a cer-

tain DEFINITE operation, which maybe called the operation of

TAKING THE ANGLE of any proposed quaternion. And the sym-

bol Z. q will thus denote, with us, henceforth, simply an acute or

right or obtuse angle, such as Euclid usually treats of, to the

exclusion oi negative values, and of values greater than two right

angles : although null angles, and angles equal to two right

angles, shall still be admitted as limits.

149. It was thus that (in art. 77) we regarded unit-vectors,

such as i,j, k, &c., as being simply quadrantal versors, and not

as operating to turn a perpendicular line through _/jDe nor nine

positive quadrants, nor through three nor seven negative quad-

rants, &c., round the given unit-vector as an axis : and that

accordingly we regarded (in art. 86) the symbol i' as denoting a

versor, which turns a line k, perpendicular to i, through a defi-

nite amount ofrotation, and in a definite direction, which were

expressed (in quantity and sign) by the product t x 90°. It was

thus, again, that (in art. 116) we interpreted more generally

the symbol p' as denoting a quaternion, which multiplies the

length of a line a perpendicular to the base-line p by the tensor

Tp', and turns that perpendicular line a round p as round an

axis, through the same definite rotation t x 90° as before, but not

generally through any of the following odd multiples thereof,

-3t X 90°, +5tx 90°, &c.:

which came to establishing the equation
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IT

^,0 = 90° = -,

as holding good for eve7-y vector p, to the exclusion of the less

simple values, - 270°, + 450°, &c., which the angle Lp ofthe vec-

tor might otherwise have been supposed to receive, when this

vector p is regarded as being in part a versor also. It was thus,

once more, that (in art. 134) we proposed to remove the ambi-

guity of sign in the expression for a square root of a quaternion,

by interpreting the symbol (ta'^)* as equivalent generally to one

definite quotient, such as jja'^ ; where the symbol r\ (not expressly

introduced in 134) denotes that definite vector which bisects the

(acute or right or obtuse) angle between a and e, and not the op-

posite of that bisector (in fig. 26 the line —y, and not the line + y).

And a leaning towards the same view may have been observed

in art. 135, and in other earlier articles. But I now propose to

FIX it, by DEFINITION, as what I shall henceforth always adopt,

in these Lectures, unless and until some special notice shall be

given, of the temporary adoption of any other and less simple mode

of estimating the angle of a quaternion, and of calculating its

powers thereby. And then the power q\ so calculated, by com-

bining this value oi Lq with the rule in art. 136, will be always

A DETERMINED QUATERNION, if the quatemioH q and the scalar

exponent t be themselves determined : with the single exception

of that limiting case (to be afterwards more closely considered),

where the base q becomes a negative scalar, by its angle taking

the limiting value,

lq = v;

in which case the axis ofthe power (like the axis of the base) has

an entiTe\y indeterminate direction; although the angle of the

power will still have a determinate value.

150. From the fixity of value which we have now assigned

to the symbol l q, when q is any fi.xed quaternion, we may see

at once, by the considerations of art. 146, that the formula

q" q'^q"*;

which^was lately proposed for discussion, does in fact hold good

generally, or as an identity, in quaternions as well as in alge-
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bra : the exponents still being scalars, and the case where the

base is a negative number being still excepted or reserved. And
we see that (abstracting from tensors, respecting which there is

never any difficulty), this formula simply expresses, that whether

we cause a line perpendicular to the axis of q to turn round that

axis, from some given initial position, through two successive

amounts ofrotation, denoted as to their quantities and directions

by the symbols

t Lq and u Lq,

or through a single resultant rotation round the same axis, de-

noted by the symbol

{u + t) L q,

the final position of the revolving line will be the same, for the

one process as for the other.

151. It is important to observe, however, that although the

rotation round the axis of the base q, produced by the operation

of the power q^, is correctly expressed (on the plan which we

have adopted in recent articles) by the symbol t Lq, yet the

angle of that power cannot now be generally expressed by the

same symbol : because the value of the product,

t X Lq,

is not generally confined between the limits and tt, between

which limits it has been thought convenient to confine the angle

of any quaternion or power (art. 148). It may (and often will)

be necessary, in the applications, to add or subtract some whole

number ofcircumferences, or in other words some multiple of 2ir,

to or from the product tLq, in order to obtain hereby a result

which shall be comprised within ihe first positive or negative

semicircle. And if the result of such addition of the multiple

2n7r, where n is some positive or negative whole number, shall

be an arc different from zero, and contained in the first negative

semicircle, so that

^nir + t L q <0,>-TT,

we must then change the sign of this result, in order to get a

positive angle : taking care, however, at the same time, to reverse
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the axis, in order that the rotation may still be right handed.

We must therefore not write, as a general formula,

t (r/) ^tlq,

although this equation will o/ten be true: but we may write ge-

nerally,

L (<?') = Imr + t tq,

the ijiteger n and the sign + being determined (when the angle

L q and the exponent t are given) by the conditions that

IniT +t lq>0, <Tr;

and the axis ofthe power q* being in the same direction with the

axis ofthe base q, or in the opposite direction, according as it is

necessary to take the upper or the lower sign (+ or -), in con-

formity with the foregoing conditions.

152. For example, if the exponent t be \, or ^, or f, or ge-

nerally if it have any value between and 1, whether commen-

surable or incommensurable, the product t Lq will then be con-

fined between the same given limits (0 and tt) as the angle L q

itself; and therefore this product j'i^e/fexpresses the angle ofthe

power (f
: while the axis of this power coincides with the axis of

the base. The formula? at the end of art. 135 remain therefore

undisturbed ; and the square-root of any proposed (non-scalar)

quaternion has always its angle acute, as being the half of an

angle in the first semicircle,

l(qi) = k^q<Y,

while the direction of the axis of this square-root gi h coincident

with {not opposite to) the direction of the axis of q.

153. In like manner the square ofan acute-angled quaternion

has, as compared with that quaternion itself, a double angle and

a coincident axis; so that,

\iLq<'^, then I ('/) = 2 z y, and Ax
.
^^ = Ax . q,

where Ax . <? is used as a (temporary) symbol for the unit-vector

which is drawn in the direction of the positive axis of ^. And the

square of a right-angled quaternion is a negative scalar (compare
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arts. 75, 85, &c.), which must be regarded as having its angle = n,

and its axis indeterminate; or in symbols,

if Z 9 = -, then L (q^) = tt, 5'* < ; Ax . q^, indet.

But the square of an obtuse-angled quaternion q is another qua-

ternion, with an opposite axis, and with an angle which is the

double of the supplement of the given obtuse angle ; or in symbols,

li Lq>^, then L (q^) = 2ir-2 Lq; Ax.q^ = - Ax.q.

154. For example, in fig. 29, art. 137,

if<7 = 8a"S then ^2_g'„-i.

but while the angle of 8a' ^ is 140°, and the axis of the same qua-

ternion is upward (by 137, 138), the angle of the square, or of

the quaternion 8'a "^ is (on the plan of recent articles) regarded

as being not the double (namely 280°) of the angle 140° itself,

but the double (namely 80°) of its supplement (namely 40°) ; the

axis of the new or squared quaternion being at the same time

treated as a downward line ; because when we compare imme-
diately the ray S' with the ray a, without introducing the conside-

ration of any other ray, such as S, we find it simpler to conceive

a right handed rotation of 80° from a to S' round such a down-
ward axis, than to conceive another rotation, also right-handed,

although round an upward axis, but extending through a more

considerable amount, namely 280°, from the same initial to the

same final ray. In fact we do not now regard 280° as being, in

a sufficiently simple sense for our present purpose, an angle at

ALL ; and therefore we adopt, instead of it, what it wants offour
right angles, taking care, however, at the same time, to reverse

the axis.

155. Again, we saw (in art. 141) in connexion with the same

fig. 29, that the three quaternions,

ya'^, Sa'^, fa'',

had all one common cube, namely the quaternion
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and the values of the angles of the three quaternions just men-

tioned may now be definitely stated as follows (see arts. 137,138,

139):

Z(7a-i) = 20°; /:(Sa-i) = 140°; ^(£a-i) = 100°;

their axes being respectively M/)z<?arrf, upward, and downward;

while the axis of their common cube is upward, and its angle has

(by 137) the following value

:

zOa-i) = 60°.

We have then, indeed, in this example,

Z.(7a-i)3 = 3z(-ya-i);

but we have also,

z.(8a-i)' = 3/(So-i)-2 7r;

and

Z.(Ea-l)» = 27r-3z(£a-l);

all which illustrates and exemplifies what was said in art. 151.

156. If with the recent significations of a, j3, y, S, £ (in con-

nexion with fig. 29), we denote as follows the four quaternions

considered in the foregoing article,

|3a-i = 7, ja-^ = r, la-^ = r, ia''^ = r",

we shall have (by art. 141), the equations,

^ = r^ = r'^ = r"^

;

and, by what has just been shewn, we shall have also,

iq = 3/.r = 3/.r'-2n=2Tr-3^r"-

These last expressions for L q give,

, 27r , „ 27r ,

Lr = ^lq; ^r=:— + ^/.q; Lr=—-iLq;

but (by 135, 152) we have, generally,

^(g^)=i^?;

and the only one of the three distinct quaternions r, r, r", with

q for their common cube, which satisfies this last condition, is r.

We must, therefore, by our recent definitions, regard r as the
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{unique) cube-rout of q, 'n his example; and accordingly must

establish the equation,

to the exclusion of the two other equations,

qi=r', gi = r",

these last being inconsistent with that definite signification of a

power (or root) of a quaternion which has been recently assigned
;

although, in that vaguer sense which was considered by us not

long ago, each of these two other quaternions, r and r", might

also, as well as r, have been regarded (see arts. 138, 139) as being

among the values of the cube-root of the quaternion q, or as being

one of the interpretations of the symbol i^^.

157. Continuing then to adopt that definite interpreta-

tion of a symbol such as 5', which was assigned in articles 148,

149, we see that (with the recent significations of the symbols)

we MAY write, definitely, for the particular quaternion lately

denoted by r, the equation

but must not regard this equation as being an identity, since

it will not be true to assert that, for the two other particular

quaternions r and r", either one or other of the two following

equations, as at present interpreted, holds good;

{r'^)i=r; (r"3)*=r".

On the contrary it is easy to see, with the help of fig. 29, that in

the present example, vve have (compare art. 86),

(r'^)^ = r = k'i r
; (r"^)^ = r = k^ r";

(results which will soon be generalized :) because the line y, or

qia, or ra, is /e.j5 advanced by 120° (in the figure) than the line

8, or r'a ; but is more advanced, by the same angular amount,

than the line a, or r"a. The cube-root of the cube of a quater-

nion is therefore not generally equal to that original quater-

nion itself; although it may well be suspected, from the recent

example, to have at least (what it has in fact) some simple rela-
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tion thereto: and although a quaternion is always (like a

number) the cube of its own cube-root. In short, the pro-

perty of having a given cube q, is shared in common (see art.

141) by three distinct quaternions; of which one alone is, by

our recent definitions (see arts. 148, 149, 152), regarded as being

THE CUBE-ROOT.

158. With the same definite interpretation of q', it is still more

easy to see that the square-root of the square ofa quaternion

is not necessarily equal to that quaternion ; since it may just as

often happen to be the negative thereof (- q instead of + g') ; be-

cause the original quaternion q may be as often oi<M«e-angled as

ocM^e-angled. In fact, by the foregoing principles,

\i Lq<-, then {q^y = q ;

but if / 9 > ^, then (q^y = -q-

For example, in fig. 29,

but, in the same figure,

{(Sa-')2)^=(S'a-i)* = -Sa-i;

because the bisector of the angle of 80° between a and S' is not

the line S itself, but the opposite line - 8 (terminating at the ex-

tremity of an arc of - 40°, instead of an arc of + 140° from a) ; or

because (see 153, 154) the half of 2ir -2 iq h =ir-A q, and not

= cq: while a rotation from a, round an axis opposite to that of

q, and through an angle supplementary to L q, conducts to a line

which has a direction opposite to that which would be attained

by revolving towards the same hand round the axis of q itself,

through the angle itself of q. At that intermediate stage, where

q is n^^f-angled, and therefore equal to some vector p, it follows

from what has been shewn in several former articles that the

square-root of its square is a vector, with an entirely indetermi-

nate direction : thus we may write,

(^2)* = (T ; Tct = Tp ; Ucr, indeterminate.

159. We see then that ue are by no means at liberty to
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establish generally, in quaternions, at least with the definite

signification lately assigned to a power, and when versors as well

as tensors are considered, the arithmetical equation

which was one of those proposed (art. 136) in the present Lec-

ture for discussion. For we have found that even the less gene-

ral formula,
il 1

(
J")" = gr, or (r")" = r,

which is included in that equation, and in which n may be con-

ceived to represent some positive whole number, is an equation

not generally true (see arts. 157, 158), for the values n = 3, w = 2 ;

and the same formula may be easily shewn io fail (generally

speaking) for all higher whole values of n. In fact, the equation

is satisfied generally, in quaternions as in algebra (compare art.

142), by n distinct values of r, when the quaternion q is given :

but only one of these n values of r, suppose the unaccented r

itself, coincides with the value (compare 156, 158), of 5". If we
start with aiiy other, suppose /, of these n values of r, which all

agree m satisfying the equation r^ = q; if we raise it to its w'*

power; and if we afterwards extract the n"^ root ofthis power,

namely, of the quaternion

which shall have been so obtained : we shall not hereby be

brought back to the value r itself, but to that other value r,

which has indeed the same n"' power, namely, q, but is, notwith-

standing, a quite distinct quaternion. By still stronger reason,

therefore, we must reject, as a general conclusion, in this

Calculus, the equation cited at the beginning of the present ar-

ticle. Indeed if we remember the conditions for the general vali-

dity of that equation, which were assigned in art. 147, we shall

see that in the very act of our since satisfying one of those con-

ditions, hy fixing (in what appeared the simplest way) the value

of the angle of a quaternion, and thereby satisfying the equation
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which (in the article referred to) was written as m = /, we have
made it impossible for us also to satisfy (generally) that other
condition of the same article 147, which was there written under

the form ^' = 0. For it is no longer possible for us, since our^x-
ation of the value of the angle of a given quaternion, through

the limitations of art, 148, to escape the necessity (art. 151) of

in general adding some multiple of 27r to the product tx Lq,
and even of often changing the sign of the result, in order to

obtain a duly limited value of the angle of the intermediate power

g*, before proceeding to raise this power, as a new Lose, to the

new power denoted by the symbol {q'Y-

160. A little consideration, however, will suffice to shew,

that although the arithmetical equation

(q'Y = q"'

is thus not generally true in this Calculus, yet a power ofa
power ofa quaternion bears generally a simple relation to that

other power of which the (scalar) exponent is the product of the

proposed exponents, and that we may write, as a generalfor-

mula, the following,

(^')"=(Ax,9)*''".^'",

where t and u are still two arbitrary scalars, and q an arbitrary

quaternion, while n is some integer number, positive or negative

or null, of which the value depends upon and varies with the va-

lues of q, t, u, but which can always be so chosen as to make the

formula true, in each particular case, with our present significa-

tion of a power. For example, if we remember that generally

(compare 75, 77, 153) the square of the unit-axis Ax . y is equal

to negative unity, so that the equation

(Ax. ?)= = -!

holds good, independently of the particular value of the quater-

nion q ; while, for whole values of the exponents, the simple law

of transformation, above discussed, holds good (compare art.

136), and consequently,

(Ax.^)^" = (-1)" = +1 ;
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we shall perceive that the formula above written is true for the

case M = 5, and that it gives, for that case, the expression,

where the choice of the sign is to be determined, for any pro-

posed values of q and t, by considerations of a kind already and

recently explained. And it will easily be found that when u-^
the same general formula is true, becoming then,

{q')i= (Ax .qY^ .qi.

161. For example, with the particular significations of r, r',r",

in recent articles (156, 157), vve have for the unit-axes of these

three quaternions the expressions :

Ax .r = k; Ax . r' = k; Ax .r" =- k;

k still denoting an upward vector-unit ; and if we observe (com-

pare arts. 116, 89) that

P=l, and(-)i)-*=JiT,

we shall see that the results, obtained in art. 157, may be thus

written :

and that they agree with the general expression, assigned in the

foregoing article, for a power ofa power of a quaternion. But I

leave you to supply the general demonstration for yourselves,

through fear of being tedious on this subject. I may however

add here that the new symbol

(Ax .qy.q',

where / denotes an arbitrary integer, has precisely that kind and

degree oi multiplicity of value, with our present definite signifi-

cation of a power of a quaternion, which was attributed provi-

sionally, in article 142, to the simpler symbol

before the fixation (in articles 148, 149) of the value ofthe angle

Lq.
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162. After these general remarks on powers, let us consider

more particularly the important and useful case where the expo-

nent is negative U7iity, and where therefore (see arts. 44, 117,

136) the power to be studied is the reciprocal, q'^, of the origi-

nal quaternion q. There is no difficulty in seeing that the tensor

of the reciprocal of a quaternion is equal to the reciprocal of the

tensor; and that in like manner the versor of the reciprocal is

the reciprocal of the versor ; or in symbols (compare 117), that

T(?-i) = (T7)-i=T<7-i,

U(^-') = (Uy)-i=U<z-^;

because an act of refaction (44) is generally compounded of two

other acts, of retension (63) and reversion (89) respectively.

Indeed these last formulae are included in the corresponding and

more general ones of article 136, which still hold good, for any

scalar exponents, with our present defnite signification of ^.

We have also evidentlv,

/.{q-^)=Lq; Kx .

q''^ = - Kx . q;

because the reciprocal, q''^, considered as a re-versor, and com-

pared with the original quaternion q, has simply the effect of

turning the line on which it operates, through the satne angle,

but round an opposite axis. And because (by art. 89) the con-

jugate ofa versor is exactly such a r-e-versor, so that generally,

LK\Jq = L\]q, Ax . KU? = - Ax . U^,

and therefore also (returning from versors to quaternions),

L'Kq=Lq, Ax.Kq=- Ax .q,

we see that the conjugate and the reciprocal of a quaternion can

differ only by their tensors, which are mutually reciprocals of

each other, because generally (see arts. 89, 90, 114),

TKq = Tq.

Thus we may write, as a generalformula for quaternions,

Uq-^ = K\Jq;

and may derive from it this general expression for a reciprocal.
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which includes the formula of art 117 for the reciprocal ofa vec-

tor, namely
p-i=-Tp-i.Up,

because, by 114,

KUp = -Up.

163. We see at the same time that the following is ^general

expressionfor the conjugate of any quaternion,

Kq=Tq.K.\jq;

which may also (by the foregoing article) be written thus

:

Kq = Tq.\Jq-\

And because the quaternion q itself may (by art. 90) be expressed

as follows,

q=Tq. \}q,

where the tensor Tq is still (by 63, 113) a positive or absolute

number, and is therefore commutative as & factor with all other

factors, 80 far as the order of their multiplication is concerned,

we see that this other general formula holds good, as an identity

in the present Calculus :

qKq=Tq-^;

so that the product of two conjugate quaternions is always

a positive scalar, namely the square of the common tensor. In

fact, when we proceed to compound with each other the two con-

jugate acts offaction, of which the agents or operators are the

two conjugate factors q and Kg', we find that we have to repeat

a tension, and to undo a version, producing thus, upon the whole,

a double act of tension, or multiplying by the square of T^q,

without any ultimate turning of the line on which we have thus

operated. We arrive then at the following general expression of
the tensor of any proposed quaternion :

Tq=,/{qKq) = {qKq)^;

which gives (see 90, 113) this connected expressionfor the versor,

lJq-q^V{qKq)=q(qKqyi;
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where it may be observed that, for reasons assigned in recent

articles, I abstain from writing, as a general transformation, the

expression

although we are at liberty to write, generally, or as an identity

in this Calculus, the formula,

{\Jqf = q^Kq.

164. In fact, when q, and therefore also Kg, is an acute-

angled quaternion, the quotient q -^ Kq is a quaternion with the

same axis, and with a double angle ; or in symbols,

L{q^Kq) = 2/.q, Ax . (q -i- Kq) -= Ax . q, iUq<'^.

But when q and Kq are ohtuse-a.ng\eA quaternions, then the quo-

tient q -T- Kq is a quaternion with an axis opposite to that of q,

and with an angle equal to the double of the supplement o[ /. q
(compare art. 153) ; that is, in symbols,

l{q ^Kq) = 2Tr-2/.q, Ax.{q-^Kq) = - Ax.q, ifZ5'>^.

We may therefore, generally, establish the formula,

(q -i- Kq)i ^'± U q, according SiS I q ^w-

For example, in fig. 29, art. 137, we have the two following re-

lations of conjugation,

yY^ = K.ay-^; S'S"! = K . aS"'

;

and therefore, by the general formulae for multiplication and divi-

sion in arts. 49, 56, and by the property of a reciprocal (118), we

have the two quotients,

ay-i-T-K . 07-1= (a -^7)-T-(7' -r 7) = a -r- 7' = a7-» .
77''! = {ay-^Y,

and

because here

0^7 = 7-^7', a -^ S = S -j- S'.

But when we come to extract the square-roots of the two squares

N
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ofversors, obtained by these two divisions, wc find (art. 158) that

because the angles of the two quaternions a-y'^ and aS"' are re-

spectively acute and obtuse, we have, indeed,

((a7-W = + °7-';

but also,

((aS-i)2)i = -ag-i:

and similarly for all other cases of acute-angled and obtuse-

angled quaternions, when they are divided by their respective

conjugates, and the square-roots of the quotients taken.

165. If the quaternion 5' should happen to be 7•7^A^angled,

and therefore (art. 122, &c.) to become a vector, we should have

(compare 114) the equations,

^9 = \-' ^q=-9> q^^q = -\;

and the square-root of the quotient of these conjugates, although

it might be expressed by the symbol,

(?-K# = (-l)i=v/(-l),

would represent, or signify, on the principles of the present Cal-

culus, an INDETERMINATE VECTOR-UNIT, or an unit-vector with

indeterminate direction. We should, liowever, still be allowed

to write, in conformity with what was remarked at the end of art.

163, the equation

the common value of each member being, in this case, negative

unity.

166. This seems to be a natural occasion for introducing

some additional remarks on that important case of indetermi-

NATION, in the theory of powers of quaternions, which we have

already several times found to present itself, when the base is a

negative scalar. And as the only difficulty (if any) in the ques-

tion arises from the power of the versor (see art. 136), which ver-

sor is here equal (by art. 113) to the sign minus, or to the num-

ber negative unity, we have only to consider the powers of this

sign, or of this number, or the interpretation of the symbol
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(-)' or (- 1)',

where i is still supposed to denote a scalar. And because when
this exponent t is an odd number, positive or negative, the power

is evidently (compare art. 60) itselfequ&l to - 1 ; while, when t

is an even number, positive or negative or zero, the power be-

comes = +1 (as in ordinary algebra) ; we need only attend to the

cases where t isfractional, or incommensurable. Now because,

when the base (-) or - 1 is regarded as a versor, namely (by 60)

as an I'w-versor, its angle is tt, and its axis is indeterminate (com-

pare articles 149, 153), we may write,

l{-\) = ir; Ax. (- 1), indeterminate.

The power under discussion, namely

(-1)',

must therefore, on our general principles, be conceived to be a

quaternion, of which it will soon be proved that the tensor is

unity ; and which, as a versor, has the effect (compare the end

of art. 149) of producing a given rotation - tw, but in a wholly

arbitrary plane.

167. The symbol

Vrr, or(-l)^

regarded as a particular case of the foregoing more general power,

comes thus anew to be regarded (compare art. 75) as a quadran-

tal versor, with an arbitrary axis, or as operating in an arbitrary

plane ; so that we may write,

^•v/I~l=-; Ax .V- 1, indeterminate :

at least until some special circumstance, oi any particular inves-

tigation, by introducing some new condition, shaWJix or limit the

direction of this otherwise arbitrary line. However, the tensor

of this power is give7i, being always equal to unity, because such

is (more generally) the value of the tensor of the power (- 1)'.

In fact, such a power is simply a versor, because its base is such

(compare art. 136) ; and we have generally, by art. 90, the equa-

tion

N 2
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Thus we may write, generally,

T.(-1)'=I;

and in particuliir,

Tv/-l = l.

We are then led to regard this symbol V - 1 as having, in the

theory of quaternions, a perfectly real, but also a par-

tially INDETERMINATE, INTERPRETATION; namely as denoting

an ARBITRARY VECTOR-UNIT, or directed unit-line in tridimen-

sional space. This conclusion indeed agrees with what has been

already said in several former articles ; but it appeared impor-

tant enough to be reproduced in a new way here : since it is in

fact ONE OF THE CHIEF PECULIARITIES OF THE PRESENT CAL-

CULUS, in so far as its connexion with Geometry is concerned.

And if we denote by i the particular vector unit which in any

particular question is the value of ^-l, and at the same time

the axis of - 1, we shall obviously have the transformation,

for we shall now have

(-iy=««;

^^ = |, T.= l,

and therefore the power denoted by i^' is (by art. 86, or by our

more recent and more general theory of powers of quaternions)

a versor, which, like the power (- 1)', turns a line ic, perpendicu-

lar to I, through an amount of rotation expressed by the product

TT
2t X -, or by tir, round the particular unit-axis i. Indeed, be-

cause i^=-\, the recent equation (- 1
)' = i^' may be thus written,

which last equation, although not an identity in this calculus

(see article 159), is, notwithstanding, true, with the present par-

ticular interpretation of the symbols.

168. To give now a notion how such powers of- 1, although

partly indeterminate in their signification, may come to be useful
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in the geometrical applications of this Calculus, 1 shall shew

how its very indetermination renders such a symbol adapted to

assist in forming expressions for a few simple but important loci

in geometry. And first let us suppose that we meet the equa-

tion

10 = ^-1, where p = p - o
;

p being thus the vector of the point p (see art. 15), drawn^^-owi a

given point o as from an origin. Had the equation proposed for

interpretation been of the form p = a, where a is conceived to de-

note some given and determined vector, the inference would have

been that the sought point p had itself a determinedposition, de-

noted thus (see art. 19) :

p = a + o.

But precisely because the symbol -vZ-l denotes an arfitYrary vec-

tor-unit, the equation

p-o = (0=v'-l, orp = 'V^-l+o,

leaves the position of p partly arbitrary ; and only obliges that

point to be situated somewhere upon a (jiven spherical locus,

namely, on the surface of the sphere described about the given

origin o as centre, with a radius equal to the unit of length. Call-

ing then this surface, for shortness, the unit-sphere, and regard-

ing jo as the variable vector ofa point upon a locus, we see that the

equation of the unit-sphere is simply, with our notations,

p=^-l, or(3"^ + l = 0:

a remarkable yd/-///, peculiar (so far as 1 know) to the Calcu-

lus OF Quaternions, and one which appears to me to be very

extensively useful, in connexion with spherical geometry.

169. Had we chosen to form, on the same plan, the equation

ofany other sphere, with its centre at any other given point B

(and not at the given or assumed origin o), and with any other

radius, such as 6; we might have denoted the vector of the cen-

tre by |3, or might have assumed

j3 = B-o;

and might then have written the equation,
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(0-/3 = 6^-1, oTip-(3y + b^ = 0.

Thus the symbol,

ji + bv-h
is seen to be, in this calculus, adapted to represent the variable

vector p, or p - o, of a variable point p, situated aK«/wAere on

the surface ofthe new sphere, and referred to the old point o, as

being still the assumed origin of vectors. And accordingly, by

art. Ill, the recent equation

is seen to be equivalent to the following,

T(p-i3) = 6;

"where the symbol,

T(p-/3) = T(p-B)=i?,

denotes the length of the right line from b to p, that is here, from

the centre to the surface : which length is thus seen, in the pre-

sent question, to be constant, and equal to b.

170. The equation,

where it may be supposed that a is the known vector of a given

point A, so that

a=A-o, jO = P-o,

would require a different (although an analogous) interpretation,

and would represent a different locus. For now the unit vector,

denoted by the symbol y/ -\, being equal (by 1 18) to the quo-

tient of the two other vectors p and a, must (by art. 122) he per-

pendicular to each ; and they (by the same article) must be per-

pendicular to each other : we must also have (by same art. 122),

the equality

T|0 -^ Ta = 1, or Tp = Ta.

The line p or op must therefore now be equal in length to the

line a, or oa, and perpendicular to it in direction : that is to say

the locus of the point v is now a cikcular circumference
;

namely a certain great circle, or diametral section, of the surface
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of that new sphere which is described about the origin o as its

centre, so as to pass through the point a ; this section being made

by a plane through o, which is at right angles to the given ra-

dius OA. Such therefore is the locus represented by the equation,

|ua-'=v/-l,

when interpreted on the principles of the present theory, in con-

formity with the notations of this Calculus.

171. Another mode of arriving at the same geometrical sig-

nification of this last equation would have been to put it first

under the form

(pa-y- = -\,

and then to multiply each number into the given vector a; for

thus we should have found the transformation,

pa'^ .p = - a,

which would have shewn that the third proportional to a and p
is - a : and consequently (compare art. 134) that the symbol p
must here denote a line which is equal in length to the line a,,

but perpendicular to it in direction.

172. If we wish to remove all restriction on the length of the

variable vector p, or to eliminate whatever depends on its tensor

Tp, we need only take the versors (art. 90), or write this other

equation

\}.pa-'= V-1 ;

which latter equation therefore represents, on the same princi-

ples, a new and different locus, namely, that indefinite plane

which is drawn through the point o, j)erpeniiicular to the line

OA. And if we wished to form, in like manner, the equation of

any other plane, which might be supposed to he parallel to the

former plane, but to pass through some other given point, such

as B, we should only have to write the analogous formula,

U.(,.-i3)a-'= V-1-

In short, the two equations of the present article may be trans-

lated into the two following formulie :

f, ^_ a
; p -ft 1 a.
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173. It may be here remarked, as an example of the use in

geometry of other powers ofnegative unity, that the equation

pa-i=(-l)i,

interpreted on the foregoing principles, is easily seen to be the

equation ofanother circle : namely (if p and a be still conceived

to denote two co-initial vectors), the circle which is the locus of

the summits of all the equilateral triangles which can be de-

scribed upon the given base a. And if, taking the versors, we

write this other equation,

U.pa-i = (-l)*.

we shall thereby express or denote one sheet of aright cone,

or cone ofrevolution, described about the line a as its interior

axis (or semi-axis), and with a semi-angle of sixty degrees. In

fact the second equation of the present article is equivalent to

the following angular or graphic formula,

while the first equation includes also the metric relation,

Tp = Ta.

174. It is with some regret that I leave, for the present, this

class of speculations and inquiries, to which already might be

annexed several remarks on equations of straight lines and cy-

linders, and also on conic sections, and which would tend to

shew that you are already in possession of an organ, or of a

language, which enjoys no inconsiderable power of geometri-

cal EXPRESSION. But for the sake of method, 1 think it better

to reserve the remainder of these applications for a later period

of our Course. You see, at least, already, that the degree of In-

determination of the Powers of Negatives (which powers

alone our definitions suffer to be indeterminate), is rather a re-

source than an embarassment, when properly managed in this

Calculus. I may also just remark (see art. 150), as regards the

theory of these powers, that the equation

(-1)"(-1)'=(-1)-'
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is only then to be generally regarded as true, when the cfenerally

indeterminate directions of the axes of those three quaternions,

which are here each denoted by the common symbol - 1, are

considered as coinciding with each other. But with these re-

marks on powers I must conclude the present Lecture, being

obliged to reserve for the next any such remarks as 1 had hoped

to make in this one, respecting the general multiplication and

division of quaternions, and especially respecting the associative

property of such multiplication.
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175. Resuming without preface, Gentlemen, those investiga-

tions which were proposed near the beginning of the foregoing

Lecture, and which have already been partly entered upon, let

us proceed to examine whether the Associative Principle of the

Multiplication of Quaternions (mentioned in arts. 108, 112, 121)

holds good for the case of the multiplication ofthree vectors, which

we shall at first suppose to be coplanar. And because (by 117)

the reciprocal of a vector is itself another vector, with a recipro-

cal length, and with an opposite direction, the question at pre-

sent for consideration may be stated thus:

is j3 .a"'Y = (3a"' . y, when a
||| /3,7 ?

176. If we retain the significations of a j3 7 S, with which
those letters were used in fig. 22 (art. 103), and assign to the let-

ter £ the same signification as in articles 123, &c.j in connexion

with the same figure, we shall have on the one hand (by 127,

&c.) the equation (compare 130),

i3a-'.-y=S;

and on the other hand (by 123, 118) we shall have

whence it follows (see 117) that we have also,

a-i7=£-', i3.a-'7 = /3£-' = g.

It is then proved that the associative principle of multiplication

holds good, at least for these throe vectors, a, j3, 7 ; the common
value of the two symbols jSa'.yand |3.n"'y, being (in this

case) equal to ihe fourth coplanar vector S.

177. It is easy now to see that the same rcuaoning may be
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employed to establish the same result, for every other case where

the two following conditions, of coplanarity and perpendicularity,

aj||/3,y, and 7X0,

are satisfied : it being only necessary to introduce, on the same

plan, the consideration of a new vector e, perpendicular to the

plane of a, |3, 7, and determined by the equation (compare 127),

= 76, or 7"ia = t :

which will give (compare 43),

oe"^ = 7, a"^7 = E"^

For, by taking S to denote the fourth proportional to the three

given vectors a, /3, 7, so that the proportion and equation (129,

130),

a : j3 : : 7 : S, S = /3a'*.7,

shall still hold good, we shall also have, by inversion and alter-

nation (art. 130), this other proportion and equation,

7:a::8:j3, or j38-> = a7-'.

Taking then the conjugates of these two last equal quaternions,

we find (see 89),

g-i/3 = Y-ia = E;

whence

/3 = Se, and, as before, jSe"^ = S.

But t"i was seen to be equal to a'^y ; therefore we have still,

/3.a-»7=S = /3a-i.7.

178. It is still more easy to perceive that when a is parallel

instead of being perpendicular to 7, so that (see 59, 64, 83),

all 7, 7 = ca = ac, a"'7 = c,

c being some scalar coefficient, the associative property holds

good, and the equation of art. 175 is satisfied. For we have, in

this case,

/ja-> . 7 = c 0"" ' . n) =c/3 = Pc = fi . a-' 7.
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When we come to establish, independently, the distributive pro-

perty of the multiplication of quaternions, we shall be able to

infer, from the results of this article and of the one immediately

preceding it, that even when a is neither parallel nor perpendi-

cular to y, the equation of art. 175 still holds good : for we shall

only have to decompose -y into two parts, or component vectors,

thus separately parallel and perpendicular to a, or to write,

7 = 7+ 7"> i II "' 7" -L a

;

and then we shall have, by the distributive principle thus here by

anticipation spoken of, in combination with what has been re-

cently proved, for any three coplanar vectors, a j3 y,

fia' . 7 =^a-i
. y' + jSa"! •

y"= ^ • a-^y'+(3 . a'^y" = /S . a'^y.

179. Without assuming any knowledge of the distributive

principle, if the vectors a and y, although still supposed to be

coplanar with j3, had not been perpendicular nor parallel to each

Other, we might then have proceeded as follows, in order to de-

termine the value, or the geometrical interpretation, of the sym-

bol (i -a'^y, and to prove that this value is equal to the already

known value S, of /3a"^ .y- The symbol here to be interpreted is

seen to be expressed as a product ; namely, as the product of the

quaternion a'^y, multiplied by the vector /3 ; which last we

know to admit of being considered as being itself equal to a cer-

tain other and quadrantal quaternion (art. 122, &c.). We have

therefore here to resolve a particular case of the general problem

considered in art. 108, namely that of multiplying one quaternion

by another. Now the general rule, or process, for effecting such

a multiplication, which was assigned in the last-mentioned arti-

cle, may, with a slightly altered notation, be thus re-stated here.

To multiply one given quaternion q, as a multiplicand, by ano-

ther given quaternion r, as a multiplier, we are in general to

find three vectors, suppose k, A, fi, which shall satisfy the two

conditions,

7=Ak"'; r = fi\-^;

and then the sought product-quaternion will be the following :

rQ =q = fxK
1
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In other words, we are to avail ourselves of the identity (com-
pare 49,118),

Or because k"' and X"' may represent any two vectors, we may
present the same identity under this other form, which is some-
times a more convenient one :

That is, we may put the given /actors, gand r, under the forms,

and shall then be able to infer, for quaternions as for ordinary

algebra, that the product sought is

180. Applying therefore this last form of the rule to the

case where a"'y is the multiplicand, and /3 the multiplier, we
are led to seek for some three vectors, ^, ij, 0, which shall satisfy

the two conditions,

after which we shall have the expression.

The conditions just written give (by the last Lecture),

01||a,7; »,|l|a,7; »,J./3; ^±„; 2 ± /3 ;

they give also,

0,-i = ya-i; = 7a-'.„; T^=T/3--T„;

thus rj is a line perpendicular to |3, but coplanar with a and y, and

thence also with /3 and d ; while ^ is a line whose length is the

quotient of the lengths of /3 and jj, this line ^ being also perpen-

dicular to the common plane of these five vectors, a, /3, 7, t), 0,

and being directed so that the rotation round it, from t) to /3, is

right-handed (122) : and 6 is the fourth proportional to a, 7, rj.

These conditions allow us to assume an arbitrary length, and

either oftwo opposite directions, for the auxiliary vector ^ ; but

when once these selections have been made, they serve to_^a;
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the lengths and directions of the two other auxiliary vectors, tj

and d. But in whatever way we assume Z,, consistently with the

foregoing conditions, we shall have

and the product Z,Q will denote a certain determined vector i, co-

planar with a, /3, 7, Jj, ; for if we double (for example) the length

of ^, we shall be obliged to halve the length of tj, and therefore

that of also, leaving the length of^0 unchanged; and if we

reverse the direction of ^, we must at the same time reverse

those of ») and of also, so that we shall not alter the direction

of the line t,Q, or i. We may then write

i3.a-'7 = ,;

and it only remains to examine whether this line i is equal to the

vector, obtained by the other mode oi associating (or grouping)

the factors, namely, to the line

i3a-i.7 = S.

181. To render manifest this last equality, or to prove that

we have (under the supposed conditions) the equation,

we have only to construct a figure,

suppose the annexed (figure 30), in

which no essential generality is

lost by supposing every tensor to

be unity. The unit vectors, a, ]3,

y, from the centre o of a horizon-

tal unit-circle, may be supposed, -loV

as a sufficient exemplification of _3px.

the nature of the question, to ter-

minate (as in fig. 29, art. 137), at

points on the circumference which are respectively graduated as

the extremities of three arcs of 0°, 60°, and 20°, in the direction

of right-handed rotation round an upward axis, from the initial

point A of that circumference. It is required, with these data, to

construct the vector i, which is the value of the symbol /3 .a'^y.

By the preceding article, we might choose Z, so that ij should be
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directed either towards the extremity of an arc of+ 150°, or of an

arc of - 30°, from a ; but there may be considered to be a slight

convenience in adopting the latter alternative, because then the

direction of Z will be upward, instead of being downward, the

figure being looked at from above. Taking then for Z an upward

vector-unit, or assuming

Z = + k, (and not Z=- ^Oj

with that signification which we have hitherto usually attached

in these Lectures to this last letter A, we find that ») is the radius

terminating at the point graduated as -30°; because this, but

no other value of ij, gives (compare art. 70),

The proportion (180),

a : 7 : : T) : 0,

shews next that 6 is the radius terminating at - 10° from a. And
when we come to effect finally the multiplication ^0, or kd, in

order to obtain the vector

j3.a-i7=^0=<,

we find that in thus forming « from 0, we must cause the extre-

mity of this last-mentioned unit-vector to advance through a

quadrant on the circle, namely from - 10° to +80°. But this last

point of the circumference is also the termination of the line S,

or |3a"' . 7, because the vector t, which is drawn to it from the

centre, is evidently such as to satisfy the proportion,

a : j3 : : 7 : t, or a : 7 : : |3 : t.

In short, instead of at once going forward, in this example,

through an angle of 20° from /3 to S, as from a to 7, we have

merely gone backward through 90° from /3 to jj ; then forward

through 20° from ij to ; and then again forward through 90°,

from to (, which line i is thus found to coincide with S.

182. In fact we have here

a : y : irf. 9 : : ki} : kO : : (5 : t;

and it is clear that the same process of reasoning applies to all
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Other cases of the same kind : the general principle on which it

depends admitting of being thus expressed in symbols,

n-.e-.iZn-.ze, if?±»,, andz±e.

In the language of a former Lecture, a biradial (v, 6) is only

changed to an equivalent biradial (^ij, Zd), when both the rays

are caused to turn together in their own plane through a qua-

drant, their lengths being at the same time either left unaltered,

or changed proportionally. We have then generally, for any

three cdplanar lines, a (3 y, the equation which was proposed for

discussion at the beginning of the present Lecture, and may

write, as the answer to the question proposed in art. 175, the for-

mula,

/3a-i.Y = /3.a-i7, ifal||i3,y.

183. The following investigation will confirm in a new way

this result, and will (it is hoped) be found in other respects in-

structive.

It can scarcely fail to have been already collected, from what

has been said in former articles (142, 158, 164), that the symbol

- g, or the negative of a quaternion, is regarded, in this calculus,

as being equivalent to the product of that quaternion q itself, as

one factor, and of negative unity (or the sign minus), as another;

or, in symbols, that the following identity holds good in quater-

nions as in ordinary algebra,

-q={-l)xq;

or, if we choose to write it so (compare art. 60),

With this definition of -5', th^ negative of a quaternion y is

another quaternion, such that,

if 9 = |3 -^ a, then - gf = - 13 -r a.

In fact we have only to treat the three symbols,

q, -1, and -5',

as representing respectively (see Lecture II.) a factor, profactor,

and transfactor, while a is the faciend, (3 the factum or profaciend,
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and - /3 the profactum, or transfactum, in order to arrive at the

conclusion just now expressed. With this signification of the sym-
bol -gfjit is evident (compare 158) that p.

T{-q) = Tq; l{- g) = n - Iq ;

Ax .{-q) = -Ax.q.

See figure 3 1 , where g (or + g) and

- q are pictured as two biradials. *— yST

184. This being perceived, as regards negatives of quater-

nions, and what was lately said respecting conjugates being re-

membered, it will be seen that because, on the one hand, the

angle and axis of the negative are such as they were.just now

stated to be, while the angle and axis ofthe conjugate Sixe such as

was set forth in art. 162, the following general relations exist be-

tween them

:

/.{-q) = Tr-l.'K.q; Ax . (- 5) = Ax . Kg'.

In words, the axes ofthe negative and of the conjugate (of

any quaternion) coincide ; but the angle ofthe one is supple-

mentary to that of the other.

185. Hence, as respects the negative of the conjugate of a

quaternion, or the symbol

-Kq,

we easily perceive that its tensor, angle, and axis are as follows :

T(-Kg) = Tq; a(- Kq) =7r- Ig ; Ax .(-Kq) = Ax.g;

so that this negative of the conjugate has the efiect of turning

the line on which it operates, round the same axis as the quater-

nion g itself, but through a supplementary angle. In fact, as re-

gards the angle and axis, we have only to change q to Kq, in the

formulae of the foregoing article, and therefore also Kq to q, be-

cause the conjugate of the conjugate of a quaternion is that ori-

ginal quaternion itself, in order to transform those earlier into

these more recent equations. In symbols,

KKq = q;

or more concisely, and in still more characteristically symbolical

language, the formula.
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K2=l,

holds good, whatever may be the quaternion j which is supposed

to be the subject of the operations. Or we might have changed

g to Kq, in the formulae of art. 183, and have then employed the

values, assigned in art. 162, for the tensor, angle, and axis of a

conjugate.

186. To illustrate these conclusions respecting the negative

Fig. 32.
of a conjugate by a diagram, conceive, in

figure 32, that the three lines ob, oc, od are q
equally long, and that the third is opposite

in direction to the second ; let also the line

OA be supposed to bisect the angle boc be-

tween the two first of the three lines just

mentioned ; and let us write,

A-0 = a, B-0=j3, C-0=y, D-0 = 8,

so that, by the construction, the following

relation shall hold good,

o = - y.

Then writing, for abridgment,

/3 ^ a = y,

we shall have the two other and connected equations,

7 -j- a = Kq, S-^a = -Kq;

which are seen at once to exemplify the results of the foregoing

article, so far as axes and angles are concerned.

187. It is easy to prove, on the same plan, that the conjugate

ofthe negative of any quaternion is at the same time the negative

of the conjugate ; or that, in symbols,

Ki-q) = -Kq.

Thus if we conceive, in the recent figure 32, a point E so chosen
that the line be shall be bisected by o, or that

E-0 = £ = 0-B=-/3,

we shall then have,

£ -7- a = - ^, and S -^ a = K(£ H- a).
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It may also be just noted here that the negative of the conjugate

of a vector, regarded as a quaternion, is equal (by 114) to the

original vector itself; or in symbols, that

And it follows, conversely, from art. 185, that if a. quaternion q
satisfy the equation,

-Kq = +g,

then that quaternion must be a vector ; or that its angle must

have (compare 122, 149, 168, 165) the value.

It

^<? = 2'

because thus only can we satisfy the condition,

Lq = Tr- Lq.

188. It was shewn in art. 110, that the tensor of the product

or quotient of any two vectors is the product or quotient of their

two tensors; and hence, or from articles 87, 88, 90, 113, it is

easy to infer that the versor of any such product or quotient of

two vectors is in like manner equal to the product or quotient

of their versors ; or in symbols, that

U.kX=U.c.UX; U(Xh-k) = UXh-Uk.

Since then (by 49, 113),

Uy -f- Ua = (Uy h- U/3) x ( U/3 -=- Ua),

\thile it is still more obvious, from the numerical significations of

the symbols, that

Ty -- T« = (Ty -- T/3) X (T0 H- Ta),

we see by the last cited articles, that for any two quaternions, q

and r, the following relations hold good :

T . ry = Tr . Ty ; \] .rq- XJr . Uq.

And in a way quite similar it may be shewn (by 50, 56) that

T{r^q) = Tr^Tq; \]{r ^q)=Vr ^\5q.

189. We see then that for any two quaternions, as well as for

o 2
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any two vectors, the tensor of the product is equal to the product

of the tensors; the tensor of the quotient is equal to the quotient

of the tensors ; the versor of the product is the product of the

versors; and the versor of the quotient is the quotient of thever-

sors. And when we come to inquire into the meaning or inter-

pretation of these four symbolical results, we easily perceive that

their validity depends ultimately on the mutual independence of
the two acts, or operations, of tension and of version ; in virtue

of which independence, we may compound two successive acts of

faction into one, or may decompose one such act into two, by

compounding separately, or by separately decomposing, the cor-

responding and component acts of tension and of version (com-

pare arts. 54, 56, 63, 65, 90).

As a corollary it may be remarked, that we may always

write,

(T . rqf = (Tr . Tqf = Tr^ . Tq'

;

a tensor being subject to all the ordinary laws of arithmetic : but

that we have not always, nor generally, for two quaternions q
and r, the analogous formula for the square of the versor of their

product,

(U.rj)2 = LV.U!?=;

because we have not, generally,

Vq.\Jr= LV . Ug,

these versors being not in general commutative with each other

as factors.

190. The conjugate of the product of any two quaternions is

equal to the product of their conjugates, taken in an inverted

order ; or in symbols,

'iL.rq=Kq. Kr.

To prove this theorem, let a j3 7 be three lines chosen so that

(as in arts. 40, 46, 49) we may have the relations,

qa = f3; 'j3 = 7 ; and therefore, rq . a = y.

We shall then have also (see art. 163),

Kr.7 = K/•.r/3 = Tr^j3,
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and (compare 49, 189),

{Kq . Kr) .y= Kg . (Kr .y) = Tr^ {Kg . /3)

= T>-2
(
Kg . qa) = T;-^ Tg^ . a = (T . rqY . a

= (K.rqx rq) .a=K .rqx{rg .a)=K.rq .y;

whence, as above,

K<? . K;- = K . r^ :

these two quaternions being thus proved to be equal, by its being

shewn that when tliey operate separately, asfactors, on one com-

mon line y, they conduct to one cominon result, namely, to the

line denoted by the symbol

T/-2 . T^2 . «.

191. The rationale of the foregoing process may be said to

consist in this : that it puts in evidence, through the notations of

the present calculus, the conception, that if by any two sucees-

sive acts of faction, whose agents or operators are here the two

quaternions q and r, we pass from an initial line a to a final line

•y ; and if we then perform, in a contrary order, the two respec-

tively conjugate acts, whose operators are, in this new order, Kr
and Kg' ; we shall hereby have repeated each factor act of ten-

sion, but shall have reversed (and thereby annulled, as to their

effects) each of the two component acts oi version (compare art.

114): and shall thus, upon the whole, have merely multiplied the

original line a by the product of the squares, Tq- and Tr^, of

the tensors of the two proposed quaternions q and r, or by the

square of the tensor T . rq of the product of those two quater-

nions. But in thus passing from y, or from rq . a, to (T . rqY . a,

after passing from a to y, we have, upon the whole, repeated the

act of tension denoted by T . rg, and reversed the act of version

denoted hylJ rg; that is, we have multiplied y, upon the whole,

by the conjugate K . rq, of the product rg of the quaternions.

192. A reasoning nearly similar would shew that the recipro-

cal ofthe product of any two quaternions is equal to the product

of the reciprocals, taken in an inverted order: or, in symbols,

that

{rq)-^=q-^rK
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Accordingly, with the recently supposed choice of the lines a, /3, y,

we have (see 44, 136),

ry = 7 -i. a, (rq)-^ = a-i-y,

and the recently written relation of product to factors is seen to

hold good, in virtue of the general formula of multiplication in

art. 49. It was thus, for example, that in art. 177 we had the

two connected equations,

E = y'^a, «"' = a'^y.

193. The formula of art. 190 includes the equation of the same

kind which was established, as a definition, for the conjugate pro-

ducts of any two vectors k and X, in art. 89, namely

K

.

kX = Ak ;

because (by art. 114),

Kk = -ic, KX = -X.

It enables us also to infer, for any three vectors a, j3, 7, the equa-

tion,

K(7a-i./3)=-^.a-i7;

because

K/3=-/3, and K.ya-^=a-^y.

Whenever, therefore, the three lines a, /3, 7 are coplanar, so that

(by arts. 129, 130) & fourth line S may be so chosen in the same

plane as to satisfy the equations,

/3a-i.7=S, 70-1. /3 = g,

we see that we shall have also

/3.a-i7 = -KS = +S = /3a-i.7;

and thus we are conducted anew to the result obtained before, in

art. 182 ; while, in arriving at it, by this new train of investiga-

tion, we have had occasion to develope some useful principles and
general results of this Calculus.

194. It is therefore immaterial where weplace the point (or

other mark) 0/multiplication, in combining any three coplanar

lines, such as here 7, a"', and fi, as factors, in one determined
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order, or in the order opposite to this ; the result being still equal,

when interpreted on our principles, to one definite vector, or

fourth directed line in the same plane, whichever place we choose

for the multiplying point or mark, and whichever of the two op-

posite orders of factors we may adopt. The associative prin-

ciple OF MULTIPLICATION (referred to by anticipation in several

former articles) is therefore here seen to hold good ; together

with at least a partial validity of the commutative principle also,

for the same case here considered : that is to say, for the case of

the multiplication ofany three coplanar lines. And we may now

proceed to pro/it by it (compare art. 136), by dismissing, as wn-

necessary, the point, or other multiplying mark : and by thus

writing simply, under the conditions of articles 129, &c., the

equation,
g=/3a-i7, or 8 = 70-1/3:

because, whether we multiply the quaternion fia'^ into the vec-

tor y, or the vector |3 into the quaternion a'^y, or ya'^ into /3,

or y into a"'/3, we obtain, by each of these four processes, one

common line 8 as the result ; namely, the fourth proportional to

fl)
i3j 7j or to a, 7, |3, determined as in those former articles. And

we may call this fourth proportional the continued product of

the three vectors y, a'^, and |3; or of /3, a'^ and y.

195. If we should meet with a symbol of the form

juXk, where ju 1|| X, k,

without negative unity occurring as an exponent of the middle

factor, we might still speak of this symbol as denoting a conti-

nued product ofthree vectors, namely k, X, /u; that is, the pro-

duct-line obtained by multiplying k by X, and then multiplying

the product Xk by ft; or we may read the product thus : /u into

X into K. We might also, by the recent associative principle, in-

terpret the same symbol juXtc as denoting the product-line obtained

by multiplying first fi into X, and then the product fiX into k. Or

again we may regard the symbol juXk as being equivalent to the

continued product of the same three coplanar vectors, taken in

the contrary order, namely the order ju, X, k ;
or may interpret

it as being equal to the product " k into X into n ;" because it fol-

lows from what has been already shewn, that under the supposed

condition of coplanarity, the equation
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is satisfied. We may also, by the last article, speak of either of

these two last equated symbols as denoting t\\e fourth propor-

tional to X"^ ju, and k, or to X"\ k, and ju; because, by a princi-

ple which has indeed been already tacitly employed, the recipro-

cal of the reciprocal of a vector, or of a quaternion, is that vector

or quaternion itself; so that (compare 117, 136),

X=(X-i)-i; q={q-^)-K

196. Since (by 117),

a? .a'^ =a^ = a,

while the square a^ of a vector is (by 85) a scalar, namely, a ne-

gative number, and the place of a scalar factor among other fac-

tors is (compare 83) indifferent to the value of the product, we

see that the following general relation between the two products

/3a '^ 7 and /Say,

which are of the forms considered in the two foregoing articles,

holds good in quaternions as in algebra :

/3ay = a^ . j3a"'y.

If then we wish to construct the continued product /3ay of any
three given coplanar lines, y, a, /3, we see that we may first con-

struct, on the plan of either of the two articles 131, 132, the

fourth proportional S, to the three lines a, /3, j, and afterwards

multiply the line S, so constructed, by the negative scalar a^ ; that

is to say, reverse its direction, and multiply its length by Ta' : be-

cause (by 111, 116, 136),

a^ = - Ta^.

In symbols,

if a : /3 : : 7 : S, then /Say = - Ta^ . S.

197. Thus, for example, if a, /3, y denote, as in fig. 26, art.

131, the three successive sides of a triangle bca inscribed in a

circle, the continued product /3ay, or ya/3, denotes a vector which

has the direction of the tangent ae at a to the segment abc, and

not the direction of the tangent af to the segment bca; because,

in the article just cited, it was shewn that this last is the direc-

tion of the fourth proportional S, to a, /3, y. As to the length
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of the line which is denoted by the symbol /3ay, it bears to the

length of the line af, in the same figure 26, a ratio which is the

duplicate of the ratio of the length of the side bc or a to the as-

sumed unit of length ; or in other words, this length of the line

/3ay bears to this unit of length the same ratio which the right

s.olid, constructed with the three sides of the triangle bca as

edges, bears to the unit of volume, or to the cube constructed

with the unit of length for its edge. In symbols (compare 110,

188),

T.j3ay = Tj3.Ta. Ty.

198. We know then how to interpret the symbol,

(a -c) (c-b) (b -a), or (b-a) (c -b) (a- c),

for any three points of space a, b, c, supposed at first to be not

situated on one straight line, but to be the corners of a plane

triangle; namely, as denoting a certain line or vector, whose
length represents the product of the lengths of the sides of that

triangle, while its direction is that of the tangent at a to the seg-

ment ABC, of the circle circumscribed about it. This remarkable

interpretation, or construction, for the symbol (a-c) (c-b)

(b-a), appears to me to be frequently useful, in the applications

of the present Calculus to Geometry ; and it is one of those

which are, so far as I have hitherto been able to learn, peculiar

TO QUATERNIONS, from the principles of which we have seen that

it is a necessary and inevitable consequence.

199. If the three points abc should happen to be situated on

one straight line, the interpretation of the recently assigned sym-

bol would in that case be still more easy. For because the pro-

duct of two vectors which have the same direction is in this

theory (by art. 84) a negative scalar; while the product of two

vectors which have opposite directions is on the contrary (by the

same article) with us a positive scalar ; it follows that if the

point A be intermediate between b and c, as in fig. 33,

^ig.33.j.Fig.

the continued product,
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/Say = (a - C) (C - b) (b - a),

is constructed in this case by a line, which has the direction of

either of the two extreme factors b - a or a - c. But in the case

represented by this other figure,

Fig. 34. J c .

—

—a ^

( T~ B y
/Bay

in which the intermediate point is B, the same symbol of a con-

tinued product denotes a line, which has indeed the direction of

B - A, but not that of a - c. And on the other hand, in the case

where c is the intermediate point, as in the figure subjoined,

Fig. 35. < B . —

—

A —

^

I a" C
fi

I3ay

the same continued product has the direction of a - c, but not

that of B - a. In each of these three cases, therefore, the pro-

duct fiay is constructed by a vector, which has the same direction

as the segments of the finite straight line on which the three

points ABC are situated, some two of them being at its extremi-

ties, and the third being in some intermediate position ; and in

each case, the solid under the whole line and its two segments

has the same numerical expression as the length of the product-

line. But it must again be observed that the direction thus as-

signed to this product-line appears to be peculiar to the present

calculus, or to its modes of geometrical interpretation.

200. Again, if we suppose that abcd is, as in figures 27 and

28, a quadrilateral inscribed in a circle, then because, with the

significations of the letters in those figures, we have (see 132),

Yaj3 =i3a7 = a^.^a-'y = a^S = - Ta« . g,

it follows that the continued product,

70/3 = (d - c) (c - B) (b - a),

is constructed by a line which has its direction opposite to that

of 8, and therefore similar to that of a - d in fig. 27, but opposite

to the direction of a - d in figure 28. Hence the continued pro-
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ditct of three successive sides, ab, bc, cd, of a quadrilateral

inscribed in a circle, is (in this theory) a line, which has the di-

rection ofthe FOURTH SIDE, DA, or else a direction opposite to

thefourth side, according as the inscribedfigure abcd is an un-

CEOSSED or a crossed quadrilateral (compare 132). In symbols,

for every quadrilateral in a circle, we have

U . (d - c) (c - b) (b - a) = + U(a - d) ;

the upper or the lower sign being taken, according as the figure

is uncrossed, as in fig. 27, or crossed, as in fig, 28. And from

what was shewn in art. 132, in connexion with those two figures,

it is easy to infer that the recently written formula of versors

would not hold good, if d were changed to any other point on

the third side cd, or on that side prolonged, such as g or d' or d",

within or without the circle; because the versor of the continued

product in the first member of the formula would then either re-

main unchanged, or merely change its sign, while the versor of

the fourth side, in the second member of this same formula,

would be multiplied by a non-scalar quaternion. No plane qua-

drilateral, therefore, can satisfy the condition expressed by the

recentformula, unless it be inscriptible in a circle: for if it cannot

be so inscribed, the two members of that formula will represent

two different vector-units. And if the quadrilateral abcd were

what is called a gauche (or twisted) figure, that is, one not con-

tained in any signle plane, we shall soon see that the formula

would in that case fail, from the first member becoming a non-

quadrantal versor, while the second member would still represent

a vector-unit as before. It follows then that the recent equation

between versors expresses, in what may be regarded a remarkable

way, a property which belongs to inscriptible quadrilaterals alone;

and consequently that it expresses, at the same time, a characte-

ristic property of the circle, by assigning, with the notations of

this calculus, a general relation which exists between four con-

circular POINTS, and between four such points exclusively.

201. It is time to consider now, what a recent remark may

remind us of, the continued products and fourth proportionals of

three lines not coplanar.

Suppose then that it is required to assign the value of the
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symbol /3a "i.y, where the line -y, although not now coplanar with

a and /3, shall be supposed at first to be perpendicular to a, so

that we shall have

y not
III

o,j3, but y J_ a.

Under this last condition, we can, as in the second section of

art. 127, determine a line e, such that

y =a -i- £ = at"^ ;

and shall then have, as in that article,

/3 -H a X -y =/3 -=- E, or j3a"^ .7 =/3£''.

But whereas vie formerly concluded (in 127, II.)) that the quo-

tient j3 -^ £, thus obtained, was equal to a line, because t was

found, in that former investigation, to be perpendicular to /3, on

account of its being perpendicular to both a and y, with which

lines j3 v/as/onnerly coplanar ; we must now, on the contrary,

infer, from the present non-coplanarity of a, [3, 7, that the line e,

which is still perpendicular to both a and 7, by its construction,

cannot also be perpendicular to ji; or in symbols (contrast the

corresponding expressions in 127), that

£ not J_ /3, because e J. n, e ± 7, and /3 not
||| a, 7.

202. We are not therefore now to consider any line, such as

the S' of 127, but a certain non-quadrantal quaternion, to be the

value of the symbol jSe'^ or /3 -H £, and therefore of ^a'^.y-

And if we still agree, from the analogy of former investigations,

to call this last symbol, namely,

/3a"' .7, or /3-^ a X 7,

a symbol for the fourth proportional to the three lines a, (3, 7,

we find ourselves obliged to admit the following conclusion,

already mentioned by anticipation in art. 130, namely, that ^'The

Fourth Proportional to three Lines not coplanar is not

A Line, but a Quaternion;" at least when the first line a is,

as above, perpendicular to the third line 7. But we shall soon

see that this last condition of perpendicularity is not essential to

the correctness of the conclusion.
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203. Retaining, however, a little longer, this condition of

perpendicularity, there is no difficulty in proving, for the three

lines of art. 201, or rather for the three lines y, a'^, and (i, the

associative property o/multiplication, or the equation,

/3 .
a'l-y = /3a'^ . Y, at least if y J. a

;

each member of this last formula being here = /Se'^, because, as

in 176, 177, the equation

y = aE'^ gives a"'7 = E"'.

And if we were now again, for a moment, to suppose known the

distributive principle o/"multiplication, already more than once

alluded to (121, 178), and of which an independent proof viiW be

given in the ensuing Lecture, we should be able to infer, by the

process described in art. 178, that the same associative property,

or the equation /3 . a'^-y = /3o"i . y, holds good for any three vec-

tors : namely, by decomposing y into two parts, or component
vectors, y' and y", of which y' shall still be parallel to a, and y"

still perpendicular to a, although this last component y" would

not now be supposed (as in 178) to be in general coplanar with

a,/3.

204. If instead of supposing y JL a, we had supposed

(5 ± a, and therefore j3 = \a, j3a'^ =\,

where X is some new line, the same associative property might

easily have been inferred. For in this case we should have (com-

pare 179),

^ . a'^ y = \a , a'^ y = \y =/3a"' . y.

And hence by distributing any other vector |3, into two parts

respectively parallel and perpendicular to a, we might again infer,

in a way quite analogous to that mentioned in the foregoing ar-

ticle, that the expressions j3 . a"'-/ and j3a'^ -y are equal, for any

three vectors, if the distributive principle, for the multiplication

of quaternions, had been already proved. But we shall soon

prove generally this associative property of the multiplication of

vectors, without assuming any knowledge of the distributive prin-

ciple, as regards the multiplication of quaternions. Meanwhile

we see that the common value just now found for the two equal
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expressions, j3.a'^7 and /3a''. y, in the case where /3 ± a,

namely the value X7, is (like the value /3e"', found for the case

y ± a) not equal to a line,but to a quaternion ; because X, being

perpendicular to a and /3, cannot be also perpendicular to y, when

the three lines a, /3, 7 are supposed to be not coplanar with each

other.

205. If it happen that the three lines a, /3, 7 compose a rect-

angular SYSTEM, so as to be perpendicular each to each,

/3±o, 7±a, y±^,
then the line c, determined as in 201, will have its direction co-

incident with, or opposite to, the direction of /3, according as the

rotation (compare 122) round 7, from /3 to a, is positive or nega-

tive ; or, in other words, according as the rotation round a from

/3 to 7 is negative or positive. And because the symbol j3e'^,

which has been found (201, 203), to be the value of |3o'^ . 7, or of

/3 . a'^y, denotes in the first case a positive, but in the second case

a negative scalar, we see that " TTie Fourth Proportional (fia'^y),

to any three mutually Rectangular Lines a, j3, 7, is a Negative or

a Positive Number, according as the Rotation round thefirst (a),

from the second (fi),
to the third (7), i* oj'a Right-handed or of

a Left-handed character" We might also prove this Theorem
otherwise, by observing that in the first of these two cases the

line \, of art. 204, has the same direction as 7, but in the second

case the opposite direction (compare 82, 84).

206. For example, with the significations assigned in,the

Second Lecture (art. 77) to the symbols i,j, k, those symbols

denote three rectangular vector-units, such that the rotation

round t bomj to h, and therefore also round^ from k to t, is posi-

tive or right-handed. We may therefore expect, in virtue of the

Theorem enunciated in the immediately preceding article, to find

that the fourth proportional toj, Jc, and t, is a negative number,

which (from the value of its tensor) can be no other than nega-

tive unity ; or in symbols, that

k -i-j Ki = -\.

And accordingly we saw (in 76 and 75) that

h -i-j = I, and t x t = - 1

.
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On the other hand, the rotation round the samej from 2 to A is

negative ; and we have accordingly, as another example of the

truth of the theorem in 205, the equation

i-T-jxk = +l;

because (compare 74 and 75),

i-r-j=-k, -AxA = +l.

207. Since we have still (as in 196)

a = a^.a'^, and a^=- Ta^ < 0,

we see that the continued product /Say (compare 194, 195) of the

three vectors y, a, /3, namely, the product obtained when y is

multiplied by (not into) a, and the partial or intermediate product

ay is again multiplied by /3, may still be formed from thefourth

proportional to the same three vectors taken in the order a, (3, y,
that is to say, from /3a"^ .y, by multiplying this last quaternion

by the negative scalar a^. The theorem of art. 205 may there-

fore be thus enunciated: " The continued product jiay, ofany

three rectangular vectors y, a, /3, is a positive or a negative

number, according as the rotation round the first, y, from the se-

cond, a, to the third, j3, is itself positive or negative" (that is,

right-handed or left-handed). For this rotation, round y from a

to j3, has necessarily the same direction as the rotation round a

from j3 to y ; while the values of |3a"^y and |3ay are scalars with

opposite signs (as positive or negative), when a, /3, y compose a

rectangular system.

208. With respect to the tensor of the continued product, it

is obviously equal to the continued product of the tensors ; for

in general it is an evident consequence of the conceptions and re-

sults explained in former articles, that j/'any number of qua-

ternions be multiplied together, in any order, and with any

mode ofassociation (or of grouping) among themselves asfactors,

the TENSOR OF THE PRODUCT IS olways equal to the product of

THE TENSORS (comparc 188, 197). We may agree to denote this

general principle, or theorem, by writing concisely the formula,

Tn=nT;

where the Greek capital letter n is used as a symbol for a pro-
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duct. And on applying it to the case of the last article, we find

that the number, which is the value of the continued product /Say

of three rectangular lines, must, if we abstract from its sign, de-

note the product of the lengths of those three lines.

209. Thus,

/Say = - 7a(3 = + T/3 . Ta . T7, if /3 ± a, 7 ± a, 7 ± /3 ;

and if da, db, dc, be three co-initial edges of a right solid (or

rectangular parallelipipedon), the continued product

(c - d) (b - d) (a - d) = + volume of solid

;

the upper or the lower sign being taken, according as the rota-

tion round the edge da, from the edge db to the edge dc, is di-

rected towards the right hand, or towards the lejt.

210. For example, the lines i, j, k may be regarded (by 77)

as three conterminous edges of the unit-cube, if we give this

name to the cube of which three co-initial edges are three vector-

units, drawn in three rectangular and standard directions from a

point assumed as origin of vectors ; and the rotation round i from

y to k is positive, but the rotation round k from ^' to i is negative.

And accordingly we find, in consistency with the foregoing the-

orem, the two following continued products (compare 206) :

kji=j'^ X hj'^i = — kj'^i= + 1

;

ijk=_p X ij'^k = - ij-'^k = -\.

This last result, in connexion with those of art. 75, gives the

continued equation,

i^=f^k^ = ijk = -l;

and I cannot forbear to notice, by anticipation, here, that all the

rules respecting the multiplications ofi,j, k, will befound to be

included in this simple formula.

211. When the following conditions concur,

7 not
III a, j3, and 7 not JL a,

we may conceive, as in 127, II., that the rays a and /3 are made
to turn together in their own plane, without any alteration of

their relative lengths, or of their relative directions, till a comes

to be, in its new position, perpendicular to 7 ; while j3 will, at
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the same time, come to assume a certain o<Aer new position ; and

then these tico new positions (or directions) of a and |3 may be

substituted for the two old or given ones, in order to determine,

on tlie plan of 201, a certain line e, perpendicular to the given -y

and to the new a, but not to the new ]3, and such that this new

j3, divided by e, shall still give, as the quotient, a non-quadran-

tal quaternion f3e'^, which shall be, in the present question, the

value of the fourth proportional |3a"'. 7, whether both the old or

both the new values of a and /3 be employed, in interpreting this

last symbol.

212. To avoid any possible confusion which might arise from

the use (in the last article) of one common pair ofsymbols a and

/3, to denote two distinct pairs of lines, although these latter

pairs are merely the rays of two equivalent hiradials (93, 94), it

may be useful to employ one of the identities of art. 179 ; and

for that purpose, retaining the given pair of lines u, /3, whereof

the first is not perpendicular to the third given line -y, we may
advantageously seek to assign three other lines k. A, n, such that

for then we shall have the following expression for the fourth

proportional sought,

/3a"' . 7 =/uk''

It is easy to see that this la!?t symbol, ^k'^, denotes here a non-

quadrantal quaternion ; as, for consistency with the result of the

last article, it ought to do. For if k, which is perpendicular to

both -y and X, could also be perpendicular to fi, then y would be

coplanar with X and fi, and therefore also with a and /3 ; but this

would be contrary to the hypothesis which is at present under

consideration. It may be remarked tliat the three lines k, X, ju,

of the present article, may be conceived to coincide respectively

with the line e, and with the neiv (or altered) lines a and j3, of

the article immediately preceding.

213. With respect to that other and at least apparently diffe-

rent e.xpression, which is formed from the expression j3a"' .7 for

the fourth proportional, by displacing the point of multiplication,

we may still write (as in 180, only changing ^ to <)>

y
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but we shall now have

I not J_ 6,

and therefore the value i6, of (5 . a'^y, will not now represent a

li9}e, but (as in recent articles) a non-quadrantal quaternion. In

fact, since i is here perpendicular to both (3 and »;, if it could be

also perpendicular to 6, we should have j3 coplanar with rj and 6,

and therefore also with a and y ; but such a coplanarity of a/B-y

is 7iot at present supposed to exist. Thus generally, or (more

precisely) with the exception of the case of coplanarity, the

expressions /3 . a"' y and |3a'i
. y denote, each, a quaternion,

but not a line. (Compare 202, 130.) But it remains to prove

that these two quaternions are always equal to each other ; or

that, in the notation of the present article, and of the one im-

mediately preceding it, the following equation holds good :

id = fJLK'^.

214. It may first be proper to shew distinctly that this ques-

tion is quite ^ee/ro?rt m^wene**; or that the two quaternions,

here to be compared, hiive separately determinate values, whether
these be equal or unequal to each other. Now with respect to

the quaternion id, it is obvious (from principles respecting ten-

sors, already laid down) that its tensor is,

T.,0 = Tj3 Ta-' Ty;

while its versor is (by 188),

U.,0=Ut.UO;

where Ut and Ufl are allowed no variety of values, except that

which arises from their freedom to change their signs (or to re-

verse their directions) together, a change which will not alter

their product. For jj (by 213) is coplanar with a, y, and is also

perpendicular to /3 ; and /3 is not perpendicular to the plane of 0,7,
because it is not now supposed to be perpendicular even to a,

since otherwise we might at once employ the reasoning of art.

204, to establish the associative property : whence U») must be

equal to one or other of two determined and opposite vector-
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units, because it must be parallel to the intersection of a plane

perpendicular to fi, with a plane parallel to both a and -y. But

< =/3 -H ij; 6 = 70"' . ij;

and therefore (see 188, 129),

U«=U/3--U„; U0 = (Uy-^Ua)x U„;

whichever, then, of the two determined values just now men-

tioned, we assume for Uij, vve get a corresponding pair of deter-

mined values for Ut and U0 ; and these three last vector-units

can do no more than change all their three signs together. The

value of the quaternion iB is therefore entirely determined, because

the values of its tensor and its versor are so. This reasoning may

be usefully compared with the corresponding process in art. 180;

and it may serve to illustrate and confirm a remark made in art.

108, respecting the determinate nature oi quaternion multipli-

cation generally.

215. By a process quite similar, but applied to the equations

of 212, or to the quaternion fXK'^, we find first that the tensor of

this quaternion is determinate, because its value is

T.;iK-> = T/3Ta-iTy;

and that its versor is also determinate, as being the quotient of

two other versors, U/x and Uk, which can only change their

signs together. For X is coplanar with a aiid/3, and is also per-

pendicular to y, which is not now supposed to be perpendicular

even to a, and therefore not to the plane of a and ]3 ; UX must

therefore (like U?)) be equal to one or other of two determined

and opposite vector-units ; but whichever of these two values we

select for UX, the equations

Uy = UX -4- Uk, U/3 - Ua = U^ - UX,

derived from 212, will assign connected and determinate values

for Uk and U|u ; and the three vector-units Uk, UX, U//, are

only free to change their signs together. The versor and qua-

ternion,

U/i -f Uk, and ;u -r k,

are therefore entirely determined, under the conditions here sup-

r 2
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posed. And there would be no difficulty in adapting (if required)

the reasoning of the two last articles to the cases (recently ex-

cluded), where

y J. a, or /3 ± a

;

which cases admit, however, as we have seen (in 203, 204), of

being each treated in a simpler way, as regards the proof of the

associative property.

216. The quaternions juK"^ and 40 (of arts. 212, 213) having

thus been seen to be each separately determinate, and to have

their tensors equal, it remains to shew that their versors are also

equal, in order to establish generally this associative property of

multiplication, so far as any three vectors are concerned. And

for this purpose it is clear that we need deal only with vector-

units ; or that we may assume,

Ta = T/3 = T-y = Tt = T„ = T0 = Tk = TX = T^ = 1.

We may therefore regard these nine vectors,

a, /3, y, I, »), 9, K, X, IX,

as being so many radii ofone common unit-sphere ; because they

may be conceived to begin all at one common origin o, namely,

at the centre of the sphere (compare 168); although they must

then in general be supposed to terminate at nine different points,

upon the common spheric surface, which points we shall here

mark, respectively, by the nine letters,

A, B, c, I, H, G, K, L, M :

in such a way that (for example) the angles of the versors (or

quaternions) /3a"^ and juk'I shall (by this construction) coincide

with the angles aob, kom, at the centre of the sphere ; and shall

be represented, as to the corresponding amounts and directions

of rotation, by the arcs ofgreat circles, ab and km, upon the

surface. Let us then proceed to construct the versor juk"', by

constructing its representative arc, km, with the aid of some

simple principles of spherical geometry.

217. In general let p, q, r, s denote any four points upon the

surface of the unit-sphere, o being still the centre; and let q, r
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denote the two following quaternions, or versors, with pq and rs

for their representative ares,

y=(Q-o)^(p-o), r = (s-o)-4-(R-o).

Then in order to construct, by a new representative arc, tc, the

product, rq, which is obtained when the former of these two ver-

sors is multiplied by the latter, we may (compare 49, 108, 179)
proceed as follows. Prolong if necessary, as in fig. 36, the

two given representative

arcs, PQ, RS, till they Fig. 36.

meet in a point l upon

the surface of the sphere.

On the great circle pql

take a new point k, so

as to satisfy the equa-

tion

^ KL = '-- PQ,

which is designed to denote that the arc from k to l has not only

the same length, but also the same direction, as the given arc

from p to Q : this sameness ofdirection of two arcs being con-

ceived always to include the condition of their being parts of one

great circle. Again, on the great circle rls take another new

point M, such that

-. LM = -^ RS,

with the same full signification of equality of arcs as before.

Finally join the points k, m, by a great circle, and take thereon

at pleasure any two new points t and u, such that

^TU =-KM.

Then we shall have the equation,

rq={v-o) -1- (T-o);

or in other words, the arc km, or its equal TU, may be taken as

the representative arc of the required product, namely, the ver-

sor or quaternion rq. In fact either of these two equal arcs, km

or TU, may represent in this question (compare 65) the tra?isver-

sor, rq, the arcs kl and lm at the same time representing re-



214 ON QUATERNIONS.

spectively the versor, q, and the proversor, r, in this multiplica-

tion ofversors, or composition of versions or rotations. And it

seems that we may not inconveniently say, that the versor, pro-

versor, and transversor, of the Second Lecture, are now repre-

sented on the unit sphere, bj' a vector arc, kl, a protector arc,

LM, and a transvector arc, km, respectively. (Compare Lec-

ture L)

218. It may be noticed here that the foregoing process, when

combined with the principle (188) respecting the tensor of a pro-

duct, serves to accomplish generally, by the aid of arcs upon a

sphere, the multiplication ofany two quaternions. Indeed if we

compare the recent figure 36 with fig. 7 of art. 53, we find that

we have only to conceive the centre o of the sphere to coincide

with the vertex d oi the pyramid, and the edges da, db, dc, of

the pyramid to meet the spheric surface in the points k, l, m.

And the recently suggested analogy of multiplication ofver-

sors, to what may be called addition of arcual vectors, appears

to be well worthy of attention; a quaternion product being (as

we have seen) represented by an arcual sum, if we agree to say,

for arcs as for lines (see 31), that " Pro vector, plus Vector,

equals Transvector."

219. The construction in art. 217 may serve to illustrate

some general properties of quaternion multiplication. Thus, if,

as in fig. 37, we pro-

long the arcs kl and *"'? 3^-

ML to k' and m', so

as to have the equa-

tions,

^ KL ='- lk',

-^m'l = '-lm,

the arcs kk' and mm
thus bisecting each

other in the point l;

and if we still conceive that kl and LMare representative arcs of

the versors q and r, so that lk' and ml shall also admit of being

regarded as representative arcs of the same two quaternions

:

then, while the arc km will still represent the former product r^?,
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it will on the contrary be the arc m'k' which shall represent, on

the same plan, the product qr, of the same two factors, r and q,

taken now in the contrary order. And because the two arcs km
and m'k', which thus represent these two products, rjand qr, are

indeed equally long, but are portions of different great circles, we

must not assert that they are equal, in that iull sense of ar-

CUAL EQUALITY, which was employed in art. 217. We have,

therefore, the following inequality ofarcs ;

- m'k' not = '- KM,

under the circumstances of fig. 37, when the directions, and con-

sequently the PLANES, of the arcs are to be compared ; or when

(see 93, 94) the aspects of the two corresponding biradials,

m'ok' and kom, are taken into account, o being still the centre

of the sphere. We arrive then thus anew at the following in-

equality of versors, which involves, as a consequence, the cor-

responding inequality of the two quaternions, which are denoted

by the same two symbols :

qr not generally = rq.

And thus we are conducted again to the important and remark-

able conclusion, that the multiplication of quaternions is not ge-

nerally a commutative operation : which result has, at least par-

tially, presented itself in many former articles. (Compare 74,81,

82, 89, 112, 121, 133, 134, 135, 189, 207, 209, 210.)

220. In the same figure 37, the arc lk, or k'l, will represent

the reciprocal, q'^, of the quaternion or versor q, this reciprocal

being regarded as a reversor (compare 44, 89, 136); while k'm

will represent the product rq'^, on the recent plan of construction

for multiplication of quaternions ; and the triangle k'lm shews,

when employed on the same general plan of art. 217, that (as in

algebra) the following identity holds good :

rq'^ .q = r.

But also, by art. 50, we have, as an identity,

{r^q)^q = r\

equating then these two last expressions for r, we arrive at this

other identity (compare 118) ;
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We know then how to construct the quotient ofany two versors,

and therefore also (by the principle respecting quotients of ten-

sors in art. 188) the quotient ofany two quaternions ; namely, by

constructing its representative arc upon the unit-sphere : which

may be done (as we see) by first representing the dividend r, and

the divisor q, by two co-initial arcs of great circles, such as lm

and lk'; and then drawing a third arc k'm, to represent the quo-

tient, from the end of the arc which represents the divisor, to the

end of that other arc which represents the dividend. In short we

can thus (compare 36) recover the provector arc k'm, by a spe-

cies of ARCUAL SUBTRACTION, from the given vector and trans-

vector arcs, lk' and lm; and can thereby recover the pro-

VERSOR, rq'^, considered as a profactor, when the versor and

transversor, which are here q and r, are given asfactor and trans-

factor. But such a RETURN TO THE MULTIPLIER (in this case a

proversor, rq'^, regarded as a profactor), when the multiplicand

(in this case, q) and the product (in this case, r) are (/iven, is pre-

cisely that OPERATION, to which, in this calculus, by an extension

of a received phraseology, the name of Division has been as-

signed : whether the proposed multiplicand and product, regarded

thus as divisor and dividend, be simply vectors (as in 40, 41), or

quaternions, considered as factors (as in 50, 54, 56).

221. It must not be forgotten tliat in consequence of the (ge-

nerally) non-commutative property (210, &c.) of quaternion mul-

tiplication, the product q-'^r is not to be confounded with the

product rq-^
; and is therefore 7iot to be equated generally to the

quotient r -=r q, to which the last mentioned product {rq-'^) has

recently been seen to be equal. In fact, this new product, q-^r,

would be represented, in fig. 37, by the arc m'k; but this latter

arc does not generally belong to the same great circle as the arc

k'm, which has been seen, in art. 220, to represent rq-^, or r -r-q.

(Compare 219.) What is to be understood generally, by such

symbols as q-^r .q, or rqr-\ will be an important subject for

discussion, at a subsequent stage of our inquiries.

222. The two co-initijil arcs kl and km, in the same figure

37, might be employed, by the recent construction (220) for di-
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vision of quaternions, to put in evidence this other general rela-

tion between multiplication and division (compare art. 50):

rq -^ g = r.

The identity of art. 192, namely,

may be illustrated by considering ml, lk, and mk, as an arcual

system of vector, provector, and transvector. Or if we choose to

consider conjugates rather than reciprocals of quaternions, we can,

easily employ the construction of art. 217, to prove anew the

analogous theorem of art. 190, as in the annexed figure 38, where

the curved arrows are de- j.- gg

signed to remind us that (ab-

stracting from the tensors) the

conjugates Kq and Kr may
be regarded as equivalent (by

89) to the reversors, which

answer to the two given ver-

sors, q and r. For the figure

shews that ¥^q . Kr, or that

the product of the two conjugates, taken in an inverted order,

is represented by an arc mk, which has the same length as the

arc KM, and is part of the same great circle, but has an exactly

opposite direction, and represents therefore the conjugate of the

product rq, which latter product is represented by the arc km it-

self. We are therefore again led to write, as in 190, the gene-

ral equation, or identity,

K .rg'= Kj . Kr,

which is frequently useful in this calculus.

223. After these remarks on certain modes of representing

generally, hy spherical constructions (compare 121), the products

and quotients of quaternions, and some other things connected

therewith, let us now resume the problem proposed at the end of

art. 216 ; namely, to construct the representative arc km, of that

particular fourth proportional, or quaternion product, ^a'^.y,

which was considered in 211 and 212; the three unit-vectors a,
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/3, -y, that enter into its composition, being supposed (as in 216)

to radiate from a known and common origin o, and to terminate

at three given points, a, b, c, upon the surface of the unit sphere.

And whereas, we have already considered specially, in connexion

with the associative property, the cases (203, 204) where a is

perpendicular to /3 or toy, or, in other words, where one of the arcs

AB, AC is quadrantal, we shall now begin by supposing, for the

sake of simplicity, and in order to fix our thoughts, that each of

the three sides of the spherical triangle abc is an arc less than a

quadrant. Let us also imagine, for the purpose of making our

conception of the question still more completely definite, with

the aid of astronomical illustrations, that a and b are points on

the ecliptic of an ordinary celestial globe, with longitudes respec-

tively equal to 100° and to 70°; while c shall be that point of

the equator of the same globe, which has its right ascension

equal to six hours, or to 90°, as in the following diagram (fig. 39).

It is required then, under

these conditions, to con-

struct an arc km, which

shall represent, as to

amount and direction of

rotation, that sought qua-

ternion, or versor, which is the fourth proportional to tlie three

directed radii, or unit-vectors, oa, ob, oc ; o being the centre

of the globe, and the length of each radius being unity.

224. For this purpose, I form the annexed figure 40, which

is designed to be an ortho-

graphic projection of one

quarter of the globe, on

the plane of the equinoc-

tial colure; a, b, c being

still placed at points cor-

responding to those of the

recent and simpler figure

39 ; but the letters, l, q, L' DC E N L

and l' being now written, for convenience, instead of the as-

tronomical marks =2=, 25, and V in that figure; and the letter

K being employed to mark the place of the north pole of the
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equator, so that cl, ck, and kl are quadrants, respectively, of

the equator, and of the solstitial and equinoctial colures. Now
this latter quadrant, kl, may be taken as the representative arc

of the multiplicand, j, in the proposed product (5a'''-. y, this

vector y, or oc, being regarded, by our general principles (art.

122, &c.), as a quadrantal quaternion ; while the arc ab repre-

sents, on the same general plan of art. 216, the multiplier, ]3a"',

or OB -r- OA, regarded as another quaternion. And although this

last mentioned arc, ab, does not immediately, or in its actual and

present situation, begin where the arc kl ends, yet it can easily

be made to begin there (compare 99), without any alteration of

its value, or significance, as representing one definite versor

:

namely, by causing (or conceiving) it to turn in its own plane,

or on the great circle to which it belongs, till it comes to take a

new position, such as that denoted in the figure by lm, begin-

ning now, as a proveclor arc (217), at the point I., where the

vector arc kl ends, and satisfying the arcual equality,

'-LM = -- ab.

And then by simply drawing the transvector arc of north polar

distance, km, from the point k where the vector arc kl begins,

to that new point M where the new or prepared provector arc lm

ends, we shall have accomplished the construction which it was

required to effect. For the arc km, thus drawn, will represent,

on the general principles already explained, that sought quater-

nion, fiK''^, which is, with the here supposed directions of the vec-

tor-units, the value of the product /3a"' . y, or of what we have

already called, by analogy, the/ourth proportional to the three

vectors, a, (5, y-

225. Before proceeding to compare this arc km with any other

arc, as respects their equality or inequality, it will be useful to

determine its pole, and to construct thereat an equivalent sphe-

rical angle; because we shall thus, in a new way, have con-

structed or determined the quaternion, or versor, /3a-i
. y, by as-

signing its axis, and its angle. For this purpose we need only

prolong (in fig. 40) the arc of north polar distance, km, till it

meets the equator in n ; and then take a new point d on the
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same equator, which shall satisfy the arcual equality (compare

217),

^CD = ^LN ;

for then the arc nd will be a quadrant, and D will be the sought

pole of KM. The arc md being thus another quadrant, if we

oblige MR to become a quadrant also, by taking the point R upon

the ecliptic so as to satisfy the equation

^ QR = ^ LM,

M will be the pole of the arc dr, and the angles mdr, mrd will

be right. But kdn is also a right angle, kd being a quadrant of

north polar distance ; wherefore

RDK = MDN, and l'dR = KDM.

We may then take the spherical angle l'dr, or its equal, kdm,

as the REPRESENTATIVE ANGLE of the quatcmion /3o"'.7, or of

its equal juic"^ ; because not merely is each of these two spherical

angles equal in amount to the angle or amplitude of the quater-

nion, so as to satisfy the quantitative or metric equation,

L {(5a'^ . y) = l'dr = KDM,

but also the axis of the same quaternion is the radius od, drawn

towards the vertex d of the same angle on the spheric surface,

in such a manner that we may establish also the following direc-

tional or graphic formula,

Ax . (/3o"i .7) = D -o.

226. Let E be a new point on the equator, such that

'-EC='-CD,

and from this point e let there be drawn the arc of latitude, or

perpendicular on the ecliptic, Es. The right-angled triangles,

LSE, LRD, shew evidently that the arcs es and dr are equally

long, or that the points e and d have their two south latitudes

equal ; they shew also that

" LS = ^ rl' ; and - sq = - qr.

But by 225, 224,

-• QR = " LM =" AB ;
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Fig. 41.

may be investigated in the following way. Let figure 41 be con-

ceived to denote the southern hemisphere

of latitude (ofa celestial globe), projected

orthographically upon the plane of the

ecliptic, of which great circle the south

pole is denoted in the figure by p ; a', b',

f', in the same figure, denoting the points lit

diametrically opposite to a, b, f ; and

the other letters, a, b, c, d, e, l, l', q,

R, s, retaining their recent significa-

tions. Then, because the three points D,

E, f' have equal southern latitudes, they are all contained on one

small circle, described about p as a pole, and parallel to the

ecliptic, or (in the figure) concentric therewith. We wish to ob-

tain some simple and convenient expression for the angle l'dr,

or for its vertically opposite angle, cdp. Now this last is one of

the base-angles of an isosceles spherical triangle, namely, of the

triangle dpe ; and each of the adjacent triangles, dpf', epf', is evi-

dently also isosceles. If then, in the triangle def', we deduct the

angle at f' from the sum of the two angles at D and e, the half

of the remainder will be the angle required. But in the lune ff'

(only partially pictured in the figure), the opposite angles at f

and f' are equal; so that the angle at f, in the triangle def,

is equal to the angle at f', in the triangle def'. On the

other hand, the angles at d and e, in one of these two tri-

angles, are supplementary to the angles at the same two points

in the other. We are then to subtract the sum of the three an-

gles of the triangle def from yowr right angles, and afterwards

to halve the remainder. And thus we find that the angle l'dr

or CDP, of the quaternion which is the fourth proportional to the

three unit-vectors, oa, ob, oc, which respectively bisect the three

sides, EF, fd, de, of a spherical triangle def, is equal (at least

under the conditions lately considered) to the supplement of

THE SEMisuM OF THE ANGLES of the triangle whose sides are so

bisected: or in symbols that (in this recent case),

Z(/3a-' .y) = 7r-^{D+E + F).

228. It must however be observed, that by arranging the
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three points, a, b, c, as in the recent figures, we have tacitly

supposed that the rotation round a from /3 towards y, or that the

rotation round OAfrom ob towards oc, is negative or left-handed.

And thus it happened that, in fig. 40, after going by a vector arc,

KL, from the north pole of the equator to the autumnal equinoc-

tial point, we went next along the ecliptic, by a provector arc,

LM, through thirty degrees of longitude, but in a direction con-

trary (in astronomical parlance) to the order oftlie signs, thereby

RETROGRADING from Libra to Virgo, and consequently approach-

ing to the north pole k of the equator, from which we had at first

set out. This was the reason for the transvector arc, km, being

found to be less than a quadrant, under the conditions lately con-

sidered. Had the rotation in the ecliptic, corresponding to the

proversor, /3a'S been supposed to he direct, instead of being re-

trograde, the result would, in this respect, have been different

;

for we should have gone, in the arcual provection upon the

spheric surface, still farther from the north pole than we had

done, in arriving, by the first vection, at the autumnal equinoc-

tial point ; and the arc of transvectton would have been found to

be, in that case, greater than a quadrant.

229. For example, if, without making any change in the sig-

nifications of the letters lately employed, we now propose to our-

selves to determine the axis and angle of the following new qua-

ternion,

or if we seek the fourth proportional to the three former unit-

vectors, in the 7iew order /3, a, y, and not now in the order

a> i3) 7 : we shall be led to advance (according to the order of

the signs of the zodiac) from Libra to Scorpio, or (by the provec-

tion) from L to a new point m', not opposite on the sphere to m,

but such that (compare fig. 37),

" lm' = - bil = " ba ;

and the transvector arc will now be

km'>-, although km<— .

In fact it is clear that the two transvector arcs, km and km',

which are also the representative arcs of the two quaternions



224 ON QUATEUNIONS.

/3o"' .7 and ajy-' .7, are, in amount, supplementary to each

other ; so that if we attend only to the rnagnittides of these two

arcs, we may write

KM' = 7r- km;

or, passing to the angles of the two quaternions which corres-

pond,

Z(a|3-i.7)=7r-Z(i3a-1.7).

But if we attend also to the planes, or poles of the arcs, or to the

axes of the two quaternions, we see easily (on the plan of art.

225), that the pole of the arc km' is the point e, and that, there-

fore, we may write,

Ax . (a/3"i . 7) = E - o.

230. Still we perceive that the rule of art. 226 holds good,

since the pole or point e, thus determined, is (as the rule re-

quires) that corner of the circumscribed triangle def, the side

opposite to which (namely fd) is bisected by the extremity (at

present b) of what is now the first (namely j3) of the three given

unit-vectors (/3,a,7). That rule of 226, for the direction of the axis

of the quaternion, is therefore seen to be independent of the order

of the rotation of those vectors among themselves : although, as

we shall presently see, this order of rotation is not in all respects

indifferent to the result. For it is easy to perceive, from what

has been already shewn, that the spherical angle ces, in fig. 40,

may be taken as the representative angle of the quaternion

a/3"^ . 7 ; and hence it follows (by the reasonings in 227) that we

may write,

z(a/3-i.7) = i(Z) + i'+^);

the SEMISUM ITSELF of the angles of the triangle def, or the

SUPPLEMENT of that semisum, being thus equal to the angle of

THE FOURTH PROPORTIONAL to the three bisecting vectors, ac-

cording as the ROTATION round the first of them (in the recent

case (i),from the second (in this last case a), towards the third

(7), is POSITIVE or NEGATIVE. It is to be remembered thiit the

arcs AB, Bc, CA, or the angles between a, /3, 7, have been sup-

posed (in art. 223) to be all less than quadrants, or than right
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angles, with a view to avoiding, at first, any complex modifica-

tions of the figures.

231. Retaining still for simplicity this restriction on the

sides of the given triangle abc, we may proceed to prove, as

follows, that the problem of circumscribing about it another tri-

angle DEF, whose sides shall be bisected by its corners, is not

merely (what has been already proved, in arts. 225, 226) a pos-

sible problem, but also one entirely determinate, at least if we

attend only to those spherical triangles which have (as is usual)

their sides each less than a semicircle. Conceive then, conversely,

that three points a, b, c, at distances from each other which are

each less than 90°, are given as the middle points of the sides

EF, FD, DE, of a triangle def ; and let us study some of the re-

lations which connect the two triangles abc, def together, with

a view to inquiring whether any other triangle, such as d*eV\

would admit of being substituted for the given def, without

change of abc.

232. Now, for this purpose, it seems sufficient to observe,

that if f' be the point diametrically opposite to f, the small cir-

cle def' must always (as in fig. 41, art. 227) be parallel to the

great circle ab, having a common pole therewith, which pole we

may still call p ; and that, therefore, the bisecting perpendicular

PC, of the arc de, must always cross the great circle ab likewise

at right angles. For hence it follows, that if we let fall a per-

pendicular arc CQ on ab from c, and then through c draw a great

circle perpendicular to cq, this last great circle must contain not

merely (as in figs. 40, 41) the points d and e already considered,

but any others, if such there be, which can be substituted for

them. In like manner the points e and f, or any substitutes for

them, must be situated on that great circle through a, which is

perpendicular to the arc let fall perpendicularly from a on bc
;

and F and d must be on that other great circle, which is drawn

through B, at right angles to the perpendicular arc let fall on ca

from B. Thus we have three great circles, entirely determined

in position, which must intersect, two by two, in the three points

D, E, F ; and if any other points admit of being substituted, in

whole or in part, for these, as corners of the triangle whose sides

are to be bisected, they can only be the opposite intersections of

«
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the three great circles found as above, or the points d', e', f',

which are diametrically opposite to the former points d, e, f.

233. But two successive and supplementary arcs of the same

great semicircle cannot both be bisected by any common point

;

we cannot, therefore, make any partial change of the given

points, D, E, r, to their opposites, consistently with the conditions

of the question : for example, the arcs df', ef', in fig. 41, are not,

like the arcs df, ef, of fig. 40, bisected by the points b, a. And

if we make a total change of d, e, f, to the three opposite points,

d', e', f', we shall indeed have altered the triangle def to another,

namely d'e'f', such that the three following arcual equations shall

hold good :

^ e'a = " af' ; - f'b = " bd' ; - d'c =-€£';

but the sides e'f', f'd', d'e', of this new triangle, if, as is usual

and as we lately (in 231) agreed to do, we measure these three

sides so as to be each less than a semicircle, will not (in the

strictest and simplest sense of the words, which is the sense at

present under consideration) be bisected by the three points a,

B, c, BUT by the three respectively and diametrically opposite

points, that is, by the three points a', b', c'. The triangle abc
being then given and fixed, the triangle def is also deter-

mined, tcithout any ambiguity whatever, under the conditions

lately supposed. Under certain o^Ae*" conditions, it will be shewn

hereafter that a different result may take place.

234. If then we were to propose to ourselves to investigate

the value of the fourth proportional to the same three given

unit-vectors as before, but taken now in the new order, a,y, /3;

or (in other words) if we should seek to construct the represen-

tative arc, or representative angle, of the following new quater-

nion,

it is clear that we should be led, on the plan of recent articles

(225, 226, 229, 230), to circumscribe, about the same given trian-

gle ABC, the SAME auxiliary triangle, def, as before. And be-

cause what is now ihejirst of the three given vectors, namely a,

or OA, bisects that side, namely ef, of the auxiliary (or circum-

scribed) triangle which is opposite to the point d ; while the ro-
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tation round a from y towards /3 is positive ; it follows, from the

rules laid down in articles 226, 230, that the axis of the new
quaternion, proposed for consideration in the present article, is

directed towards the point D, and that the angle of the same qua-

ternion (ya"! . /3) is equal to the semisum itself {ai\d not to the

supplement of the semisum) of the three angles of the spherical

triangle def. In symbols, under the conditions supposed, the

two following equations, or formulae, hold good ;

Ax. (ya-i ./3) = D- O ;

L{ya-'.(3)^^{D + E+F).

As the representative angle of the new quaternion ya'^ . (3, we

may take the spherical angle udc in fig. 40 (art. 224) ; and there

would be no difficulty in hence constructing, if it were required,

the representative arc also.

235. Comparing now the expressions (in 225, 227, 234), for

the axes and the angles of the two quaternions,

|3a"i .y, and ya"' . /3,

we find that there exist the following relations between them,

Ax.(7a-'.i3) = Ax.(/3a-i.7);

Z(ya-i./3)=7r-Z(j3a-i.7);

the axes being thus coincident, and the angles being supple-

mentary. But these are the very relations which, as was shewn

in art. 185, and as was illustrated by figure 32 of art. 186, exist

generally between

g and - Kg,

or between a quaternion and the negative ofthe conjugate thereof,

so far as axes and angles are concerned. And the only remain-

ing relation, between two such quaternions, namely the equality

of their tensors (185), exists here also, because each tensor is

unity. We are then entitled to establish, at least under the con-

ditions above supposed, the formula,

/3a-'.7 = -K(ra-'.i3).

q2
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But when we come to transform the second member of this for-

mula, by the principles of art. 193, we find that it becomes,

We are then led to establish anew, under circumstances more

general than before, that ./associative formula of multiplication

of three vectors, which has been the principal subject of investiga-

tion during the whole of the present Lecture : namely,

^a -1
^.

236. In this method of treating the question, we have not

found it necessary to construct that other quaternion, or its re-

presentative arc, which was mentioned in art. 213 ; namely the

quaternion denoted in that article by the symbol lO. There would,

however, have been no difficulty in constructing its arc also, if

required. To shew this, conceive that the annexed diagram (fig.

42) is an orthographic projection of a he-

misphere with B for its visible pole, while

X denotes the pole of the great circle ac
;

the letters a, b, c, d, e, f, still denoting

the same points as before, and i, i' being

the positive and negative poles of the cir- hJ^-t-

cle FED, while h, h' are the two poles of

the circle i'bxi ; let us also conceive the

arc EX to be prolonged, till it terminates,

on the other hemisphere, in a point e',

diametrically opposite to e : and let the arcs xb, xd, prolonged,

meet the great circle hach' in two other points, Y and z. Then
taking another new point g on the circle AC, such that

^ GH = - CA,

we shall be at liberty to write, on the plan of 216,

G-o = 0; H-o = ,,; o = £;

and may (by 213, &c.) regard the arcs gh and ih (or hi') as re-

presenting, respectively, the versor rj-'fl (or a'^y"), and the pro-

versor trj (or j3) ; whence it will follow that the transversor, i9

(or j3 . a'^y), is represented, in the same construction, by the arc
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Gi'. But it is easy to prove, by methods recently explained, that

the pole of this new arc gi' is the point d, and that the amount of

the equivalent angle gdi', or zdh', or xdb, at that pole, is equal to

the supplement of the semisum of the three angles of the spheri-

cal triangle def; which last equality may be established by the

help of the lune ee', and of the three isosceles triangles fxd, dxe',

e'xf; the quadrant I'j through c is also useful. Hence by com-

parison vpith fig. 40, and with the results of arts. 225, 227, we

should find ourselves entitled to infer the arcual equation,

- Gl' = - KM ;

and on passing from these representative arcs to their versors,

we should thus have proved the equation proposed for inquiry at

the end of art. 213, namely,

or, by that article, and by the one immediately preceding it, we
should have thus arrived anew at the associative formula of mul-

tiplication of three vectors,

237. The case where ab is a quadrant, or where /3 _L a, has

been considered in 204 ; yet, if we wished to examine how our

recent and more general investigations may adapt themselves to

that case as a limit, we might conceive, in fig. 40, that the equal

arcs AB and lm are each only a very little less than 90°. Under

this supposition, the point m would almost coincide with q ; n

with c ; D and r with l' ; e and s with i. ; and f with t, this new

point T being such as almost to satisfy the connected equations,

'-LA = '-AT, -TB = -BL'.

At the same time the triangle def would tend to coincide with

the lune l'l ; the angle at f would be almost = w, and each of

the angles at d and e would almost coincide with an angle of

that lune ; and therefore the supplement of the semisum of the

three angles of the triangle would tend to become equal to the

complement of the angle of the lune. We may therefore expect,

from our recent results, to find that as /3 tends to become per-
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pendicular to a, the fourth proportional fia'^y (in which symbol

we do not here think it necessary to write the point) tends to be-

come a quaternion, whose axis is directed towards the point l

(in fig. 40), and whose artffle is the complement of the angle

ql'c ; or in other words that the angle kl'q, or the arc kq, re-

presents this limit-quaternion. And accordingly it may easily

be shewn that this result agrees perfectly with the conclusions of

art. 204 ; the line, which was there called A, being now conceived

(in connexion with fig. 40) to be directed towards the north pole

of the ecliptic; and the rotation from tliis pole to the point c

being similar in direction, and supplementary in amount, to the

rotation from k to q, as by our general principles of interpreta-

tion of the quaternion product Ay, obtained in 204, it ought to

be. (Compare the general construction for a product of two vec-

tors in 88; also the value of the product i9, in the recent article

236.)

238. Let us now consider (although more briefly) the case

where the arc ab is greater than a quadrant; this arc being still

conceived to form part of the semicircle i/ql, in fig. 40, and the

point A being still advanced beyond b, in the order of right-

handed rotation round c. We may conceive, for instance, that

the longitudes of a and b are wom' respectively, 160° and 40°;

the points c, k, l, l', q, retaining their positions in the figure.

The points m and n, determined on the plan of 224, 225, will

now fall in the Jirst quadrants (instead of the second) of the

ecliptic and equator; and the points d, e will fall in ihe fourth

and third quadrants of the latter circle (instead of falling in the

first and second), so that they are now outside the hemisphere

depicted in the figure, as also are the new points r and s. The
latitudes, dr, es, are northern now ; but the arc km, or the angle

KDM, or l'dr, still represents, by its new position and magnitude,

the new value of the quaternion j3a"' .j ; while the angle l'es

still represents this other quaternion, aj3"^ . 7. The point f takes

now a southern latitude, while the arcs ef and df are still bi-

sected by A and b ; but the new arc de is bisected rather by a

certain new point, c', diametrically opposite to c, than by the

point c itself. Taking still a point f' diametrically opposite to

F, the small circle def' is still parallel to the ecliptic as before,
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but is now situated in the northern hemisphere of latitude. If

p' be the north pole of the ecliptic, the three triangles, dp'e,

epV, f'p'd, are each isosceles ; but the angle edp', which is a base

angle of the first of them, and may serve, instead of the vertically

opposite angle l'dr, to represent the quaternion jSa'^ . 7, is equal

now to half the excess of the angle at f' over the sum of the two

other angles in the triangle def' ; whereas in fig. 41, art. 227,

that excess was in the contrary direction. Considering then the

lune ff', we see that we are now to subtract two right angles

from the semisum of the angles of the new triangle def, whose

sides ef, fd, de, are bisected by the points a, b, c', instead of

subtracting in the opposite way ; so that while the axis of the

quaternion j3a'^. y is still given by the formula.

Ax. (/3a-i.7)=D -o,

as in 225, the angle of the same new quaternion is now to be ex-

pressed as follows, and not as in 227 :

The relations,

Ax.(aj3-^7) = E-0,

and

Z(a/3-i.7) = 7r-Z(i3a-i.y),

Still hold good, as in 229 ; but this last angle now becomes.

All this will easily become clear, after what has been said in re-

cent articles, at least with the aid (if it be thought necessary) of

a common globe. (See also figures 47, 48, 49.)

239. If then it be required to determine the axis and angle

of a quaternion, such as

where a, |3,
7' are the vectors of the three points a, b, c', considered

in the foregoing article, the arcs ab, bc', c'a being thus each

greater than a quadrant (and not now each less, as was the case

with AB, bc, ca, in 223, &c.), we may proceed in the following

way. Since we have here
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fia-^ • y = - |3a"' . y, because 7' = - 7,

and have just now determined (in 238) the quaternion j3o"^ . 7,

we need only take the negative of that quaternion, on the plan

of art. 183. Reversing then the axis, and taking the supplement

of the angle, we find, in the present question,

Ax . ( j3a"
1

.

7') = d' - o = o - D,

and

L{(5a-'.y)^27r-i(D+E+F),

where d' is the point diametrically opposite to d. But by a simi-

lar process, attending (as in 228, 229) to the changes in the cha-

racter of the rotation, which was right-handed round a from ]3

towards 7', and is consequently left-handed round the same a,

when measured from 7' towards j3, while D is still (compare 226)

the corner opposite to that side ef of the triangle def which is

bisected by a, we find, without diflBculty, that the following re-

lations hold good

:

Ax . (y'a'^. j3) =d'- = 0- d;

i (7'a- ' .(3) = i{D + E + F)-Tr.

In fact this triangle def, when combined with the results of 238

respecting the quaternion aj3"^ . 7, gives the following values for

the axis and angle of the quaternion 70"^ . /3 :

Ax. (70-1 .j3) = D-o ;

by taking the opposite of which axis, and the supplement of

which angle, the recent results respecting y'a'^ .(5 may be ob-

tained. And on comparing the conclusions of the present article,

respecting the two fourth proportionals,

(3a ^ .7' and y'a'^ . /3,

we find, by the general results of 185, that each of these two

quaternions is the negative of the conjugate of the other. But

hence again we infer, by the reasoning of 193, 235, that

/3a-'.7' = -K(7Vi./3)=/3.a-i7';
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or in words, that the associative property holds good, for the

multiplication of any three vectors, a, /3, 7', which make obtuse

angles with each other. And we had proved (in 235) that the

same property holds also, when the angles between the three

vectors to be combined are all acute. But to these two principal

cases it is easy to reduce all others, by a suitable use of negatives

and oi limits; for example, we can at once infer, from the pre-

sent article, by returning from y' to its opposite, that

/3a-i.7=/3.a-iy,

when y makes acute angles with a and /3, while they form an

obtuse angle with each other.

240. The associative property of the multiplication o/'three

VECTORS is thereforefully proved, with the assistance of a little

spherical geometry ; and although it will be seen in the next
Lecture (compare what has been said in arts. 178, 203, 204), that

the same important property admits of being independently (and
even more simply) established, by the aid of other principles, in-

volving the Addition and Subtraction of Quaternions, on which

we have hitherto forborne to touch, yet it was judged proper to

develope the method of the present Lecture also, as an exercise

in their Multiplication and Division, and as being connected

with some interesting geometrical constructions, and with what

will be found useful interpretations of some fundamental Sym-

bols of this Calculus.

241. An allusion has been made (at the end of art. 233) to a

particular but remarkable case of the general construction, on

which it may be well to say a few words, on account of a diffi-

culty which it might present, in the way of indetermination, and

also in order to illustrate by it the theory already given (in 205,

207), respecting the fourth proportionals and continued products

of systems of three rectangular vectors. Suppose then that the

three sides of a given spherical triangle abc are all equal to

quadrants (instead of being all less, or all greater) ; and let us

seek to circumscribe about this triangle another, such as def,

which shall have its sides bisected by the given points a, b, c

(as in arts. 226, 231, &c.) ; in order that we may thus, by some

suitably limiting form of a more general process already ex-
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plained, determine, if it be possible to do so, the axis and angle

of that (sought) quaternion which is the fourth proportional to

the three given rectangular unit-vectors, oa, ob, oc, by deter-

mining the limiting values of the expressions found in 225 and

227 ; namely, the following,

CD (or D - o), and tt -^ {D + E + F).

Now the three perpendiculars from the three given points, a, b, c,

which are to be let fall (by the general rule of 232) on the opposite

sides of the given triangle abc, become, at present, indetermi-

nate, in virtue of its triquadrantal character : so therefore do the

three great circles also become, which are to be drawn through

those three given points (by the same general rule of construc-

tion), perpendicular to these perpendiculars ; and consequently

the triangle, def, which (in the general process here referred to)

was to be found by suitably connecting the points of intersection

of those great circles, becomes, in this case, itself also indetermi-

nate. We cannot then assign, in the present question, by any

limiting form of the general rule, the position of the point d, nor

specify the particular unit-vector od, which is to be the axis of the

sought quaternion. Nor is it wonderful that the rule should fail

to do so, since it was proved, in art. 205, that thefourth propor-

tional to three rectangular vectors is a scalar : that is to say, a

positive or negative number, which is indeed conceived to admit

of being laid down (64) on a scale extending from - oo to + oo,

but which has no one axis in space, to be preferred to any other

axis. If a scalar be positive, and if we abstract from its tensor,

or disregard its metric effect, as multiplying a line on which it

operates, we can only consider it as a non-versor (60) ; if, on the

contrary, the scalar be negative, it is, on the same plan, to be re-

garded as an inversor (see same art. 60) ; but the nonversion, in

the one case, and the inversion in the other, may both alike

be conceived to be performed round any arbitrary axis ofrota-

lion, perpendicular to the line on which it operates, and which

line itself is arbitrary. (Compare the results of 167, &c., respect-

ing the indeterminate axis of the semi-inversor •v/(- 1), and ge-

nerally oi ihe power (- 1)', considered in 166.)

242. To render still more clear, by the help of a geometrical
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diagram, and of an astronomical illustration, the indetermination

of the circumscribed triangle def, for the case where the given

triangle abc is triquadrantal, and at the same time to shew how
the scalar nature of the quaternion, ob -7- oa x oc, may yet be

deduced from that very triangle def, by means of the semisum

of its angles employed in art. 227, let us conceive that the an-

nexed figure 43 represents an orthogra-

phic projection of the western hemisphere

of a globe on the plane of the meridian ; c

being supposed to represent the (projec-

tion of the) west point of the horizon, while

A denotes the south point itself, and b the
|

zenith ; the letter o being still conceived

to denote the (unseen) centre of the sphere.

Let D denote the (projection of) some point

chosen arbitrarily upon the surface of the globe, except that (to

fix our conceptions) we shall suppose it to be above the horizon,

with some north-western azimuth ; and then let E represent, on

the same plan of projection, another point, deduced from d, by

the conditions that it shall deviate as much in azimuth from the

south point towards the west, as d deviates from the north point,

and shall be as much depressed below, as d is elevated above the

horizon ; under which conditions it is clear that the west point

(represented by c) will bisect the arc de. Again conceive a new

point, F, to be so taken on the remote (or eastern) hemisphere,

that it may deviate as much to the east, from the south, as e has

been made to deviate from the west, and that this new point f

may also have the same altitude above the horizon, which was

arbitrarily assigned to d. The figure having been thus conceived,

it becomes evident that the arcs ef and fd are bisected respec-

tively by the points a and b, at the same time that the arc de

was seen to be bisected by the point c, while yet the altitude

and azimuth of d were chosen at pleasure. It is true that we

might have so selected d, as to render it necessary (compare 238)

to change the given points A, B, c (or some of them) to points dia-

metrically opposite, in order that the corners of the one triangle

might bisect the sides of the other; but this circumstance cannot

be considered as affecting the essential indetermination of the
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circumscribed triangle def, when the given triangle abc is tri-

quadrantal.

243. On the other hand, if we conceive a new point G, which

shall have the same altitude as d, and the same azimuth as e, and

of which therefore the projection, as indicated in the figure,

would be exactly superposed on that of f, the point g belonging

to the near half, and the point r to \hQ far half of the globe;

and if we suppose arcs of great circles to be drawn, upon the near

hemisphere, from this point g to the three given points a, B, c : we

shall see that the three new spherical angles, bgc, cga, agb,

which evidently, when taken together, make up^oKr right angles,

are respectively and exactly equal (in their amounts or magni-

tudes, though differently pos?Yerf) to the angles bdc, cea, afb
;

which latter are precisely the angles at the three corners, d, e, f,

of the triangle def. It follows then that, although the circum-

scribed triangle, def, is allowed (in the present question) to as-

sume indejinitely many positions, and although its angles may

separately vary, yet, in each of these differentforms and posi-

tions, the SEMisuM of its three angles is equal to two right an-

gles ; or in other words, the supplement of that semisum va-

nishes. We have then here (by 227) the following determinate

value for the angle ofthe sought quaternion, or of the fourth

proportional to da, ob, oc :

This sought quaternion is therefore definitely found, by the

foregoing process (compare 205, 206), to reduce itself to a posi-

tive scalar ; its axis being of course, for that very reason, in-

determinate, as it was otherwise found, in recent articles, to be.

244. As to the positive character of the scalar thus deter-

mined, or the evanescence of the angle of the quaternion, we

must not forget that, in the recent figure (43, of art. 242), the

rotation round a from b to c, or round oa from ob to oc, that is,

round the first oi the three given unit- vectors, y/'ow? the second

to the third, has been tacitly supposed (by the arrangement

chosen for the figure) to be left-handed, or negative. If, retain-

ing the figure, we alter only the order of the vectors, and seek

now the fourth proportional to ob, oa, oc (instead of oa, ob,
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oc), we shall thereby reverse the order of the rotation, as esti-

mated still round first from second to third. And then the con-

sequence will be, that instead of the rule of art. 227, we must
employ the rule of art. 230, to estimate the angle of the sought
fourth proportional ; or must take, for this angle, the semisum
itself, and not the supplement of the semisum, of the three angles

of the triangle def. When therefore the last mentioned order of

the vectors is chosen, or when the rotation round the first from
second to third is positive, the angle of the fourth proportional

is found, by the geometrical reasonings of the last article, /ns^earf

ofvanishing, to become equal to two right angles ; for it acquires

in this case the value

For this case, then, oi positive rotation among the three vectors

(estimated in the way just now explained), the quaternion which
is their fourth proportional reduces itself not (as in the contrary

case) to a positive, hut to a negative scalar; because (com-
pare 166) its angle is now = tt. It is obvious what a satisfactory

confirmation is thus given to the two contrasted results of art.

205 ; and thereby to the two connected and similarly contrasted

conclusions, respecting continued products of three rectangular

vectors, which were obtained in 207.

245. As particular (but important) cases, of such contrasted

results, respecting products of three rectangular lines, the for-

muliE

kji^+], ijk=-\,

were given in art. 210 ; and since the course of our investiga-

tions has suggested those formulse to us again, it may not be in-

appropriate to ofl^er here a remark or two upon them, not as a

new proof oi their correctness (which has been perhaps suffi-

ciently proved already), but rather as a new interpretation of

whatever may appear at first to be all strange in their symbolic

FORMS, especially when looked at in connexion with each other,

and with the continued equation.

Any such illustration of the foregoing formulae appears to be
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SO much the more natural in the present Course of Lectures, be-

cause the three italic letters, i,j, k, used with their own appro-

priate LAWS OF COMBINATION, by multiplication among them-

selves, which laws were communicated (as was stated in art. 2) to

the Royal Irish Academy in the year 1843, and which (as it has

been already noticed in article 210) are all substantially included

in the formula recently written, were originally the only pe-

culiar Symbols of the Calculus of Quaternions.

246. With respect then to the formula,

kji = +l,

I wish you to remember that ever!/ multiplication of versors

(and as denoting versors it was, that the symbols i,j, k presented

themselves in the Second Lecture to our notice) has hitherto been

conceived by us (see 65) to correspond to some combination

of versions, or composition of rotations. It is natural there-

fore that in proceeding to study the proposed continued pro-

duct, kji, we should look out now for some original vertend;

that is (compare same art. 65) for some line on which we may
begin to operate by turning it, and which is to be thus operated

on, in succession, by each of the three versors, i,j, k; one
line, at each of the three stages, being the subject, and another

line being the result of the operation. For when such an origi-

nal line, suppose X, shall have been found, and such a series, or

succession of three other lines, suppose ju, v, £, shall have been

derivedfrom it, by the three successive turnings here con-

ceived ; so that, in symbols, we shall have the following expres-

sions for the 7-elations between these^owr lines,

fi=i\; v=j(i- ji\ ; % = kv = Jtjfi = hji\ ;

it will then only remain to compare, as regards their directions,

the fourth with the first of these lines, in order to discover, or

to investigate anew, what effect theproposed continuedproduct,

kji, produces, when it is regarded as being itself a sort of resul-

tant VERSOR, or an instrument of compounded rotation; and

when, by operating on the initial direction (of X), as its sub-

ject, it gives thus, as its result, the final direction (of?).

247. Now all this can, with the greatest ease, be done, if we
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observe that, in the recent figure 43 (art. 242), the three rectan-
gular radii, oa, oc, ob, which are conceived to be drawn from
tiie (unseen) centre o of the globe, and are supposed (as in

former articles) to have their lengths each equal to unity, may
be regarded as consh-uclions, or representations, in the order ]mi
now written, of the three successive and quadrantal versors, or

rectangular vector-units i,j, k (compare 77) ; and that the sought
vertend, X, of the last article, may be assumed to coincide with
the radius oc of the same figure, or with the vector-unit j.

Writing then (with this reference to fig. 43) the equations,

A-o = t; B-o=/c; c-o=y=A;

and remembering the nature of the rotations which the three

successive versors separately produce ; namely, that each (sepa-

rately) has the effect (77) of causing a line, in a plane perpendi-

cular to itself, to turn in that plane, through a right angle, right-

handedly round itself as an axis ; we find the three following

lines, as the results of the three successive versions :

fi = i\ = ij-k = B -o;

^=kv = ki=j= c-o.

248. In words, the line (X or oc), which was taken as the

original vertend, and was directed towards the west, is changed by

thejirst version, performed round a southward axis {i or oa), to

a line (/x or ob), which comes thus to be directed to the zenith.

This upward line {fi or k), regarded as a new vertend (or as what

was called, in 65, a provertend), is operated on by a new versor

{j or oc), which is an axis directed to the west ; and it is thereby

brought into another position (denoted by v or oa), becoming

thus a line directed to the south. And finally this southward

line (v or i), as a new subject of the same sort of operation, is

made to turn round an upward axis {k or ob), till it takes the

Jinal position (5 or oc), of a line directed to the west. But by

this TRIPLE version, di filial line (5 = oc=J) is attained, which

has the same westward direction as the initial line (X = oc =

_;). And hence we find that (with the lately assumed initial direc-

tion) the three successive versions {i,j, h) have neutralized or
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annulled the effects of each Other ; or that their final product

(?X"i= l)isa NONVERSOR (60); which result not merely jMs^j^es

in a new w^ay, but at the same time serves to interpret, or

explain, that symbolic equation or formula, namely, kji = +\,

which was proposed anew for consideration, at the commence-

ment of the foregoing article.

249. The only oi^er direction which it would have been pos-

sible to assume for the original vertend X, consistently with the

conditions of 246, would have been an eastward (instead of a

westward) direction ; and if we had so chosen X, and had sub-

mitted it to the same three successive versions {i,j, k), we should

have obtained, as the three successive results, a downward line

for fx, a northward line for v, and finally an eastward line for %.

We should therefore still (compare 71) have been brought back,

by this triple version, to the direction originally chosen (whe-

ther that had been west or east) : and should thus have been

still led to establish, with this sort of interpretation, the same

formula of art. 210, kji = 1, as before.

250. On the other hand, if we had taken the operators in the

opposite order, h,j, i, with a view to find, on the same general

plan, the value of the product ijk, we might have begun as in

247) with a westward line _;', as the original vertend; but we
should then have deduced from it, successively, by the three suc-

cessive versions, in their new order, a northward line (kj=-i), an

upward line {-ji = k), and finally an eastward line {ik = -j) ; so

that the Jinal direction would have been opposite to the initial

direction, and we should have found anew, in this way, and with

this interpretation, that this other formula of the same art. 210,

ijk = -l,

holds good. Or this last formula might, on the same plan, have

been obtained, if we had beg?m by operating on an eastward

line, which would have been changed at last to a westward one;

the three successive and rectangular rotations, whose axes

are the three lines k,j, i, being thus found again to be, in their

combined effects, equivalent to an inversion. But with these

new interpretations of these characteristic formulae, it appears

that we may conveniently conclude the present Lecture.
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251. Although, Gentlemen, an intention was more than

once announced, in the foregoing Lecture, of proceeding, in

the present, to the consideration of the Addition and Subtraction

of Quaternions, and to the proof of the Distributive Principle;

yet the subject has so much grown under our eyes, and so much
still remains which it appears to be interesting or instructive to

contemplate, respecting the Operations of Multiplication and

Division, considered in themselves, and without any express re-

ference to those otlier operations of Addition and Subtraction,

that I scarcely at this moment hope, without extending this

Sixth Lecture to a length inconvenient and unreasonable, to

escape the necessity of once more postponing that promised proof

of the Distributive Principle of the Multiplication of Quater-

nions : in order that we may the more fully occupy ourselves, for

some time longer, with the study of the Associative Principle, in

connexion with some constructions of spherical geometry, and

some expressions for rotations of solids, or of systems of points

and lines in space, which will, however, be more of a geometrical

than a physical character. 1 shall proceed, then, without fur-

ther present preface, to complete, or at least to develope more

fully than before, that account of certain general processes and

results, connected with midtiplkation, but not immediately with

addition of Quaternions, to which the foregoing Lecture related.

252. After the recent remarks on systems of three rectangular

lines, and on their continued products, with which we know (194,

207) that their fourth proportionals are connected, we might,

as another verification oi \.\w ycnernl tlu^oxy oifi\ich proportionals

which has been given in the foregoing Lecture, proceed now to

apply that theory (but it would be tedious at this stage to do so

R
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with any fulness of detail) to the case of three co})la7iar vectors,

which case had been previously and separately examined by us,

and indeed by others also. In returning, for a moment, to the

consideration of this particular case, and treating it as a limit of

the more general case where the lines axe not coplanar, we should

now be led to conceive that the three proposed vector-units,

a, (3, y, the fourth proportional to which is required, are radii

drawn to three given points, a, b, c, of some one great circle on

the unit-sphere ; and we should have to seek for a system of three

other points, d, e, r, arranged upon the sawe great circle, in

such a way that the three arcs ef, fd, de may be respectively

bisected by the given points a, b, c; or at least by these in part,

and partly by the points a', b', c', which are diametrically oppo-

site to these. Supposing for simplicity that the distances of the

given points a, b, c from each other are each less than a quadrant,

we may denote their yive?! (positive or negative) aicual distances

from some assumed initial point i of the circumference by the

letters a, h, c: and may denote the sought distances of the

points D, E, F from the same initial point by the letters x,y,z;
so as to have the equations,

lA = a, iB = ^, ic = c; iT) = x, iE=y, iv = z;

where ia, &c., are arcs, each less than a semicircle. The relations,

1a=y + z, 2b = z + X, 2c = x + y,

will then hold good, in virtue of the supposed bisections, if i

have been suitably chosen, and will give the values,

x = i' -a + c; y=c-b + a; z = a-c + b;

such then are the distances of d, e, f from i. If then we denote

by S, e, Z tfie unit-vectors drawn to these points d, e, f, regarded

now as limiting positions of the corners of a certain circumscribed

triangle (226), of which triangle the spherical excess vanishes, at

the limit here considered, so that the semisum of its angles, and

the supplement of that semisum, are now each equal to a right

angle ; we find now (as limiting cases of other and »«o»'e general

results) that, for the present system of coplanar lines, the follow-

ing expressions hold good :
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S = /3a-i7 = 70-1/3; E = 7/3-ia = o/3-'7; Z-ay-'(i^^y-'a.

And these expressions agree perfectly with the conclusions pre-

viously drawn from simpler and earlier considerations.

253. For example, if we assign to a, /3, j, S the same signifi-

cations as in fig. 30, art. 181, placing (as in that figure) the ini-

tial point of the circumference at a, and measuring the arcs by

degrees, we shall have,

a = 0, 6=60, c = 20; x=b-a + c = 80.

The same values of a, b, c give

y = c-b + a = -40; 2 = a-c + 6 = + 40;

and accordingly while the points a, b, c, d fall at the extremities

of the radii a, /3, y, d, the points e and f will fall at the extremi-

ties of E and 2, if these last radii be the fourth proportionals to

/3, y, a and to y, a, (3, respectively, and if we take the point e

at 40° behind a, but the point f at 40° beyond the same initial

point A, with reference to the assumed order of rotation on the

circumference. All this may be illustrated by figure 44, where

the points and lines connected with the p. ^^

present example are inserted, and others x,

are suppressed as being not now required ; -p /\ \
^\

and where you may observe that a, d, c /Xj.W \
cZ ^\ \ \ \

bisect, respectively, as by the general /""^jCNNA \

theory they ought to do, the arcs ef, fd, •'^f
~ yo j

DE : while od is seen to be the fourth pro- \ £/ /

portional to oa, ob, oc ; oe to on, oc, oa
;

g/" /
and OF to oc, oa, ob. Or we might con- ^ -—"^

ceive, in fig. 40 (art. 224), that c came to coincide with q (by

the obliquity of the ecliptic vanishing), and we should find then

that the points D, e, f would come to coincide respectively with

R, s, T ; while the relations of art. 252, between a, b, c and

X, y, z, would be found to be satisfied by the values of those let-

ters, which values would become, in this example,

a= 100, i = 70, c = 90; .t = GO, j/=120, c=--80:

the assumed initial point being here the first point of Aries, so

R 2
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that the arcs are, in this example, expressed in degrees of longi-

tude.

254. To illustrate similarly, by the limiting case of coplana-

rity, the theory given in 238 and 239, for the fourth proportional

to three vectors which make three obtuse angles with each other,

let us conceive that the distances id, ie, if are now assumed re-

spectively equal to 1G0°, 320°, and 80°, as in the annexed figure

45, being thus each positive now, but

not each less than a semicircle. The

points A, 13, c, bisecting respectively the

arcs EF, FD, and de, will thus be such ,
\ / ,- xicn

20 ^-^^^

that lA, IB, ic shall be respectively equal

to 20°, 120°, and 240°; and their mutual o°\

distances will be, 54o\

AB=100°; BC=120°; ca=140°;
260

each of these distances, as also each of the bisected arcs, being

treated as an arc less than a semicircle. Regarding then the

circwujerence as the liinit of a spherical triangle, def, whose

sides EF, fd, de are (as above) bisected by the points a, b, c,

which are themselves to be considered as the limiting posi-

tions of the corners of another spherical triangle, we see that

the sides of tliis last mentioned triangle, abc, are eac]i greater

than a quadrant ; and that the angles of the former triangle,

DEF, are each (at the present limit) equal to two right angles ;

so that we have the values,

and

27r-\{D^E^F) = \{D + E + F)--!r = '^.

The angle of the fourth proportional to the three coplanar vec-

tors OA, OD, oc, taken in any order, is therefore here again found,

by the rule in 239, to be a right angle ; and thus (compare 122,

149) we find again that, in this case of coplanarity, the quater-

nion, which is (compare 130, 202, 204, 211, 213) the general

value of the fourth jn-oportional to three lines, degenerates into a

line, or becomes a vector (as in 129, &c.).
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255. As regards the directions of these various vectors, which

are thus the fourth proportionals to the three coplanar lines,

OA, OB, oc, taken in different orders, we are, by another part of

the same rule of art. 239, to change now the points d, e, f, to the

points respectively and diametrically opposite, namely to d', e', f',

in the figure; and so to form the equations,

OD
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pole of hd; g is supposed to be so chosen on the great circle

through c and a, that the arcs h'g and ca are similar in direc-

tion, and supplementary in amount ; finally i'g, prolonged, meets

DB prolonged in j ; and k' and x' are the points diametrically

opposite to K and x. Hence, as in fig. 40, the arc km, and the

spherical angle l'dr, are representations of the quaternion

/3a"i . 7 ; and, as in fig. 42, the arc gi', and angle zdh', represent,

in like manner, the quaternion fi.a'^'y. But the points j, g, i'

are easily shewn to be on the great circle through kmn ; there-

fore the arcs km, gi' have the same positive pole at d ; and the

spherical angles l'dr and zdh', subtended by these arcs at that

pole, are equal to each other, as being each equal to the sup-

plement of the semisum of the three angles of the triangle def ;

we have therefore the arcual equality (compare 217, 236),

- Gl KM.

Hence, as before, we gather the associative principle, for the

multiplication of three vectors, '^, a"', ]3 (compare 194), at least

as at present arranged ; or the formula,

i3a-i.7 = i3.a-'7-

It would have been possible to have gone through all the rea-

sonings of several former articles upon this single Jigure 4G, at

least with the aid of a few additional lines and letters; but it was

judged expedient, for the sake of clearness, to break up the in-

quiry into parts, and to employ more figures than one for that

purpose.

257. The reasonings of article? 238, 239, and therefore also

those of 254, 255, may be illustrated by the three following

figures,

Fig. 47. Fig. 48. Fig. 49.

K „- K



LECTURE VI. 247

to which allusion has already been made (at the end of 238),

and of which it seems to be almost sufficient to observe here that

the two first of these new figures (47, 48) are designed to be or-

thographic projections of two opposite hemispheres, with c and

c' for their poles, namely, of those two which may be called the

hemispheres ofsummer and winter, on the plane of the equinoc-

tial colure ; while the third new figure (49) is the corresponding

projection of what may on the same plan be called the hemisphere

ofspring, on the plane of the solstitial colure. It may be noticed,

however (compare art. 225), that m is now the negative pole of

DR ; and that the angles kdr, mdn, are now supplementary

;

which diiferenceg from fig. 40 arise from the circumstance that

the point D has now (as in 238) a northern latitude. We may
add (compare 227), that the angles l'de, cdp are now not oppo-

site, but coincident ; and that in employing, with reference to

the new figures, the arcual equation

- SR = 2 X " AB,

of art. 226, we are now to conceive that, as in fig. 40, the arcual

motion from s to r is measured in the same direction as that

from A to B. Finally, the arc kn'm', or the angle kem' (= l'es),

in fig. 48, represents the quaternion ajS'^.y; the point m' an-

swering to the one which was so named in art. 229 ; and n' being

so situated as to satisfy (compare fig. 47) the arcual equality,

" NL = - ln'.

258. Before dismissing figure 40, we may observe that it

leads to a simple and remarkable expression for the halfof the

spherical excess of the spherical triangle def, considered as the

angle ofa certain quaternion. In fact it is clear, from what has

been already shewn, that the angle mdn in that figure, being the

complement of the angle l'dr, which last has been seen to be the

supplement of the semisum of the angles of the triangle def,

must be itself the amount whereby that semisum exceeds a right

angle ; and therefore must be equal to the half of what is usually

called the spherical excess of that triangle. In symbols (for this

case of fig. 40, art. 224),

MDN = ^{D + E + F-tt).
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But the arc mn is (in degrees) equivalent to the angle mdn, and

has the vertex d of that angle for its pole. If then we write (as

has in part been done already),

X = L-0, jU = M-0, v = n-o,
as well as

a = A-0, (3 = B-0, ^ = €-0,
and

S = D-0, £ = E-0, ? = F-0,

the arc mn, and the angle mdn, will be the representative arc and

angle of the quaternion v/z"^; which quaternion may easily be

transformed as follows :

r//-i=vX-i.A,x-i = g7-i. a/3-1;

where

a/3-1 = a2:-i.^/3-i.

But by the theory of square roots of quaternions, explained in

the Fourth Lecture, we have, for the present figure

:

8y-i = (8£-i)i-; uZ-' = {et:-^)i; ^(5-^ = {a-%
If then we denote the recently considered quaternion by q, so

that

(7 = (Se-l)i.(.^-l)i (?g-l)*,

we shall have, for the axis and angle of q, the expressions :

Ax . (7
= S = D - o

;

and

iq=i{D + E+F-n);

this angle of the quaternion, q, being thus the semi-excess of

the triangle.

259. If it were proposed to interpret on similar principles

this other equation,

/=(Sri)i.(?3-i)i (fS-i)*,

the symbols 8, t, ? being supposed to retain their recent signifi-

cations, we might proceed as follows. By figure 40, and by the

theory of square-roots of quaternions,

(a8-')^-,7 'i (?. i)i=.,u '; (?^-')'-S|3 ';
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hence

and

5' = g/3-i.a7-i.

We are then to go first along the arc ca, which represents the

factor ay'^, or along one arcually equal thereto, as along a vec-

tor arc ; and then along the arc bd, or some equivalent, as a pro-

vector arc, to represent the profactor S/3"^ ; after which we are to

determine the transvector arc, in order to obtain an arcual repre-

sentation of the sought transfactor, or product, q. That is, in

fig. 42, we are to go first from g to h, and then from h to j,

which will bring us, upon the whole, from g to j. The arc gj,

in fig. 42, or 46, is therefore the sought transvector arc, and re-

presents the required quaternion q. We see then that it follows

(from what has been already shewn respecting those figures), that

the point d is the negative (and not the positive) /joZe of the sought

representative arc, or that the axis of q is directed awaij from d ;

while the angle of this new quaternion q is seen to be still equal

to the seini-excess of the spherical triangle def. In symbols,

Ax.9' = d'-o = -S; Lq = h{DA-E^F--K).

And the distinction between the two cases, considered in the pre-

sent article and in the foregoing, is seen to arise from or to con-

sist in this ; that the rotation round o from Z, towards i is positive,

but the rotation round the same 8 from e towards Z is negative.

260. If, instead of the arrangement in fig. 40, we adopt that

described in art. 238 ; and propose, on the general plan of 258,

to express, still, by means of square-roots, the quaternion which

has MN and mdn for its representative arc and angle ; we shall

still have for this quaternion, as in 258 (see figs. 47, 48, 49),

= Sy-l . (a?-' . S/3-l) = S7-' . (E^-')i (SS->)^,

because (238) the arcs ef and fd are still bisected by the points

A and B. But because the arc de, when treated as an arc less

than a semicircle, is (by same art. 238) bisected notchy the point

c' 02-iposite to c, and not by the point r itself; or because the are
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CD is, with the present arrangement, greater than a quadrant, and

therefore the angle between y and S is obtuse ; we must (by 158)

write now,

prefixing thus a negative sign to the square root. Thus, in the

case here considered, the expression for the sought quaternion be-

comes,

instead of the expression which was found in 258, and which

differed from this one in sign. And if we still denote by q the

product of the three square roots, written (as in 258) without the

negative sign, we shall now have the equation,

vfi-^=-q.

261. But we have still,

Ax.v//"i=S; Z(v/x"i) = mdn;

therefore, by the general theory oi negatives of quaternions (in

183), we have

Ax.5'=-S; lq = TT -UD^.

Now on considering the construction described in 238, we easily

perceive that the angle mdn is still (see fig. 49) the complement

of the angle kdm, which represents the quaternion j3a"* . y ; but

this representative angle was found in 238 to be,

KDM = Z(/3a-' .7) = i(Z) + £+ J')-7r;

its completnent is therefore (in the present case)

MDN = I :r - i (D + £+ jF) = ^—

^

'

and the supplement of this angle is evidently,

Lq^^iD+E + F-'^r).

The angle ofthe product (q) of the square-roots of the three suc-

cessive quotients (^8'^ tZ~\ Se'^), of the vectors (S, Z, t) of the

three corners ofa spherical triangle (dfe), is therefore HTiLLfoiind

to be equal to the semi-excess of that triangle. And whereas

the axis of this product q is now = - 8, like the axis of </' in 259,
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and not = + 8, as it was in 258, this difference of sign, or of direc-

tion, arises simply from the circumstance, that in the construc-

tion of art. 238 the rotation round d from f towards e is nega-

tive, whereas that rotation was positive in fig. 40. Accordingly

it is easy to prove that if we still denote by q the same product

of square-roots as in 259, we shall have, for the case of art. 238,

the values (compare that of the arc m' n' in figure 48) :

Ax.g'= + S; Lq =\{D + E+ F-ir).

I leave it to yourselves, as an exercise, to apply these principles

to the two chief limiting cases, where the three bisecting vectors

compose, yirsi (as in articles 241, 242, &c.), a rectangular, or

secondly (as in 252, 253, &c.), a coplanar system ; and to shew

that each of the recently considered products of square roots

reduces itself, in the Jirst case, to a vector, and in the second

case to a scalar.

262. In general, the two lately studied quaternions q and q'

are versors, with opposite axes, but with equal angles ; so that

T^'' = T^ = 1 ; Ax .q'=- kx.q; Lq=Lq.

They are therefore (by principles and definitions already fully

explained) two conjugate versors, and are each the reciprocal of

the other ; each, as an operator, undoing what the other does.

(Compare 1G2.) We have therefore here the formula,

q = Kq = q-'.

Now if we write, for conciseness,

r=(£8-i)i; /•'=(?£-')*; r"=(SS-')4;

we shall have, by 259,

q = r" . r'r
;

and therefore, by 190 and 192,

q=Kq = Kr Kr'.K/',

and also,

q = q'^ = >•"' ?'"'
• r"'\

But, as in algebra, by the Fourth Lecture, the two square roots,

(£§-1)4 and (g£-i)i,
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are always reciprocals of each other; they are also, as quater-

nions, conjugate, if S and t be both unit-vectors, or even if (as

lines) they be equally long, that is (by 110), if their tensors be

equal. Admitting then this equality of lengths of the vectors

8, £, Z„ which will not essentially aflfect the generality of the final

conclusion, we have,

Kr-=r-' = (gE-')i; Kr' = ?•'-' = (e?"')^; K/' = r'-' = (?S-')i

263. Thus, by the foregoing article, we have the expression,

y=(SE-')* (.^)i.(S8-j*.

And we had, in art. 258,

These two expressions, for the quaternion q, differ only by

THE PLACE OF THE POINT, which is used as the mark of multipli-

cation ; in this new case, therefore, the associative /)rz?iC!/»/e

STILL AoZc/s good; the three successive factors being now

NOT vectors, but QUATERNIONS. In exactly the same way we

should prove that the expression (in 259) for q does not change

its value, when the place of the point is changed; or that with

the recent significations of r, r', r", the following equation holds

good :

/• f . r = r . r r.

Yet because these three successive factors, r, r', r , are connected

with each other by the relation,

we cannot assert that we have as yet done more, in these Lec-

tures, as regards that general associative principle of mul-

tiplication of quaternions, which was enunciated, without

proof, in art. 108, under the form of the equation

q" q'.q = q .q q,

than to raise, perhaps, a sort oi presumption in its favour, not yet

converted into certainty.

2G4. Before entering on the general demonstration of this im-

portant proposition, it ma\- be useful to describe here a new and
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Fig. iO.

R..V

GENERAL CONSTRUCTION fay the MULTIPLICATION OF ANY TWO
QUATERNIONS, (/ and r, of which the representative angles

are given upon a spheric surface, in position as well as in mag-

nitude.

Suppose then, at first, that these two angles of the factors, q

and r, are given as the base angles, at the corners q and r of a

spherical triangle, qrs, as in the annexed figure 50 ; and let it

be required to find the representa-

tive angle of the product, rq. For

this purpose we may employ the

identity of art. 49, namely,

7 - a = (7 - i3)
V O ^ „) ;

aiming, as in the article just cited,

to put the proposed quaternion

factors, q and r, under the forms

/3 H- a and y -=- /3, respectively. The line j3 must be situated in,

or parallel to, the planes of both the factors ; and these two planes

are constructed by the two tangent planes to the sphere, at the

points Q and r. Conceive a cylinder circumscribed about

THE SPHERE, SO as to toucJi it aloTKj the great circle which passes

through these two points; then every tangent plane to the

sphere, at any point of this circle, is also a tangent to the cylin-

der, and is parallel to the axis thereof; the line of intersection

of any two such tangent planes must therefore be itself also pa-

rallel to this a.xis, and consequently /)e/-/^e?;,(/iCM^fl^ to the plane of

the great circle of contact qr : we know then the direction of

the line /3, namely that of this lust-mefitioned axis, or perpen-

dicular ; and may proceed to deduce from it, as follows, the two

other sought directions, of the lines « and y. Imagine that, at

each of the two given points, q and k, that is at each extremity

of the base, a normal arc is erected, perpendicular to that given

base, but contained upon the spheric surface, and situated (to

fix our conceptions) on that hemisphere which contains the given

vertex s. The common initial direction of these two perpendicular

arcs, or (in other words) the common direction of the two corres-

ponding and rectilinear tangents to the sidiere, may (on the plan

just now mentioned) be denoted by the letter /3, regarded as sig-
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nifying a certain vector, to which both these tangents are paral-

lel, and which is (as has been seen) perpendicular to the plane of

the base. And then by suitably erecting (as suggested in fig. 50),

at Q and r, two other normal arcs, perpendicular to the two given

sides, QS and us, we shall obtain, by their initial directions, the

two other required vectors, a and j, as the initial tangents to

these new normal arcs, or at least lines parallel thereto.

265. But these two new perpendiculars have the directions

respectively of the axes oftwo new cylinders, circumscribed about

the sphere so as to touch it alomj the two sides of the triangle;

and the tangent plane to the sphere at the vertex s of the trian-

gle, being a common tangent to the sphere and to these two

cylinders, contains two lines tangential to the sphere, and parallel

respectively to the two axes of the two new cylinders, or parallel

to a and y. The plane of the quaternion 7 -r a, which is, by the

general theory of quaternion multiplication, the plane 0/ the

sought product, rq, is therefore parallel to, and may be assumed

as coincident with, this last tangential plane at the vertex s. And

this point s itself, as distinguished from its own opposite upon

the sphere, is the positive pole of the required resultant rota-

tion, or of the sought quaternion product, at least with the ar-

rangement in fig. 50 ; while the angle ol th\i product is equal

(as the same figure shews) to the supplement ofthe vertical an-

gle, at s, of the given triangle qes. We have therefore only to

prolong one side of that triangle, suppose qs, to some point t,

and to take then the exterior \ertical angle, tsr, as the

representative angle of the sought quaternion product, rq, if the

two quaternion factors^ q and r, regarded as multiplicand and

multiplier, be, as above, represented hy the two base angles, sqr,

and QRs, of the same given triangle, and if the arrangement of
the points be such as we have lately conceived it to be; that is,

more fully, if the rotation round the vertex (s) of the triangle,

from the base angle (r) which represents the multiplier (/•),

towards that other base angle (q) which represents the multipli-

cand (q), he positive, as in the recent figure.

2G(i. Many conclusions may be drawn from the foregoing

general construction for a product ; but it seems to be proper

previously to exhibit the agreement of this method of employing
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representative angles, with another general metliod of multipli-

cation, which was explained in the foregoing Lecture, and which

made use of representative arcs ; namely the construction in

art. 217. To make this agreement evident, 1 have drawn the

annexed figure 51, where qrs is the same spherical triangle as in

the recent figure 50 ; p is the

middle point of the base qr, ^'e- ^i-

and the hemisphere with p for L'

pole is supposed to be ortho-

graphically projected ; qs pro-

longed meets the bounding

circle in t ; and k, l, m, are

respectively the positive poles

of the arcs qs, qr, sr, while i/

is opposite to l. The new
figure shews, reciprocally, that

Q, R, s are the positive poles,

respectively, of the arcs kl,

LM, KM ; and that the arcs kl,

LM, represent the same two gi-

ven quaternion factors, q and r, as the amjles sqr, qrs. Hence by

the rule of art. 217, and by the present figure, the arc km, or the

angle ylsw, represents the sought quaternion product ry (abstract-

ing still from tensors). But we have the equation between angles,

KSM =TSR,

even when planes and directions are attended to ; consequently

the EXTERNAL VERTICAL ANGLE, TSR, of the triangle whose base

angles represent the factors, is seen anew to represent Xhe pro-

duct sougiit. It will not fail to be noticed that the triangle ml'k,

as compared with qsr, is merely tlie well-known polar, or sup-

plementary TRIANGLE, Considered often in spherical trigono-

metry; but it may be observed that I have hitherto made no use

ofany trigonometrical formula. It may also be remarked that

the quadrants kq, ks, prolonged, arc touched by the two lines

which lately received the common designation of a ; L(J, lr, by

the two lines named j3 ; and mr, ms, by the lines which were

denoted by y.
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267. Resuming figure 50, we may notice that the operation

of the multiplicand q, regarded as a versor, has the effect of caus-

ing the line a, and the tangent to the side qs, to turn together in

the plane which is tangential to the sphere at q, till they take

respectively the positions of the line /3, and of the tangent to the

base QR. We may therefore conceive the same act of version to

cause the side, qs, itseli', together with its prolongation sT, to

turn upo7i the spheric surface, round the point q as a pole, till

this arc qst comes to coincide, at least in part, with the original

position of the base, qr, and of that base prolonged. Again the

act o{ proversion, of which the multiplier, r, is the agent, turns

the other line marked /3, in the tangent plane at R, till it takes

the position of y ; and at the same time obliges the base rq to

take the position of the side RS ; or causes the prolongation of
the base, which had originally the direction of qr (and not the

opposite direction of rq), to turn upon the splicric surface, round

the pole R, till it takes the direction of the side rs reversed, or in

other words the direction, sit, of that side measured yrowj the ver-

tex. We may then say that, in this example, which may repre-

sent genoridly (at least with some easy modifications) ' euez-e/

case of multiplication of two quaternions, the versor {q) has

changed the arcual direction, st, of one side prolonged through

the vertex, to the direction of the base, qr, or of that base pro-

longed ; and that the proversor {r) has afterwards c/iani/ed ^A^'s

direction affile base, qr, to the direction of the other side, sr,

measured now from vertex towards base. But we have seen that

our principles establish a geiiercd connexion between multiplica-

tion ofvcrsors and composition of rotations; so that while we
have generally the formula (65),

Transversor = Proversor x Versor,

the effect of a transversion is always conceived to be equivalent

to the two successive effects of the corresponding version and pro-

version conihined. It is therefore natural to expect, in the re-

cent example, that (by a sort of elimination of the intermediate

direction of the base) the transversor, rq, should be found to

have tiie effect o{ causing the direction, st, of as v. side pro-

longed throuijli the vertex, to turn upon lite spheric surface
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ROUND THAT VERTEX s US a POLE, till it assumts the direction,

SR, ofthe OTHER side ofthe triangle unprolonged ; or at least

not prolonged through the vertex, but measured towards (and

not away from) the base. And such accordingly has been found,

in fig. 50, to be precisely the effect of the transversor;

for the external vertical angle, tsr, has been seen in that

figure to represent the sought product, rq ; although the proof
of this result, which was given in recent articles, did not involve

the consideration of any rotation of arcs, but only introduced

and combined rotations ofstraight lines.

268. It was remarked in art. 218, that there exists a remark-

able analogy between the multiplication oiversors, and an opera-

tion which may be called the addition of their representative

a/'cs. And at this stage I do not think that it will appear to be

altogether fanciful, or useless, if I call your attention to another

analogy of the same sort, connecting multiplication and addition.

For we have recently seen that while the factors q and r are

represented by the base-angles of a spherical triangle, their pro-

duct, rq, is on the same plan represented by the exterior and ver-

tical angle. Now, if this spherical triangle should happen to be,

in all its dimensions, a small one, and therefore nearly plane, it

is obvious that this angle of the product would be, in the most

simple and elementary sense of the words, equal (at least nearly)

to the sum of the angles of the factors. If then we agree to

say, by analogy, even when the sides are not small, that " the

exterior vertical angle ofa spherical triangle, is the sphe-

rical SUM of the two base angles" (taken in a certain order, to

be considered presently), and remember the law of the tensors

(188), we shall find ourselves able to enunciate, generally, the

following Rule for the Multiplication of any two Qua-

ternions: " The tensor of the product is equal to the pro-

duct of the tensors ; and the angle of the product is equal to

the spherical sum of the angles ofthe factors."

269. It was observed, just now,that in taking this spherical

sum, the order of the summands must be attended to. In fact

if this were otherwise, the spherical addition of angles would

be a commutative operation ; and would therefore be unjlt to re-

present generally the multiplication ofquaternions, or of versors,

s
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which we know (arts. 219, &c.) to be a non-commtitafive one.

Accordingly it was observed, at the end of art. 265, that in ob-

taining the external vertical angle tsr as a representative of the

product, rq, we had assumed the arrangement of the factors, q
and ;•, to be such as is indicated in fig. 50; the rotation round s

from R towards q being positive. Had we wished to construct,

on the same plan, the product, qr, of the same pair of factors,

taken now in an opposite order ; and to contrast, as to their /)ro-

sitions on the sphere, the representative angles of these two pro-

ducts ; we should have been led to form a figure such as the fol-

lowing. In this new figure, 52, the angles rqs, rqs' are equal

in amount, but lie at opposite sides of

the common base, qr, of the two tri-

angles, QSR, qs'r ; and a similar rela-

tion connects the angles qrs, qrs' ;

whence the old and new sides qs, qs'

are equal to each other in length, and so

are the sides RS, rs', compared among '''

V? L , ,^
themselves. The vertical angles of .y'-'" ^

'*^

these two triangles are therefore also nr^ '•

equal to each other in amount, whether

both the interior or both the exterior be compared ; but the two
vertices, s, s', are situated at opposite sides ofthe base, although

with a certain symmetry of situation respecting it ; in such a

manner that the arc ss', connecting these two vertices, '\s perpen-

dicularly bisected by this common base, or by the great circle of

which it is a part. And while the one exterior vertical angle, tsr,

still represents, as before, the product rq lately considered, it is

the other exterior angle, RsV, at the other vertex, s', which re-

presents the new product qr. These two products,

rq and qr,

are therefore again found, by this new construction, to differ ^e-

nerally among themselves; because although their tensors and

angles are equal (in amount), their poles, s and s', have diffe-

rent POSITIONS ON THE SPHERE.

270. As to the reasons for this difference of positions, and

the rules by which it may be remembered or recovered, it might

perhaps be sufficient to observe that while the rotation round s
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from a towards q is positive, as before, the rotation round the

same pole s, from q towards r, is, for that very reason, negative

;

while it is, on the contrary, from q towards r, that the rotation

is positive round s'. For thus we may perceive that the general

relation ofpositions between the three poles, of multiplier, multi-

plicand, and product, with respect to their arrangement on the

sphere, or to the character ofthe rotation from first towards se-

cond round third, which in our former construction (264, 265),

for the multiplication r x y, was in fact satisfied by the points R,

Q, s' is now, for that very reason, not satisfied also by the same

three points, in their new arrangement, q, r,s; whereas it is sa-

tisfied by the three points q, r, s'. In short we are now obliged

to look out for some neiv point on the sphere, distinct from s,

and adapted to be the pole of the new product, qr; because that

old pole s does not possess, with respect to q and r, regarded

now as poles respectively of multiplier and multiplicand, the re-

quisite relation of arrangement ; or (in other words) is not situa-

ted in what is now the proper hemisphere, with respect to the

great circle through q and r. And in the other hemisphere, which

is now the proper one, we find a point, namely the one called

lately s', which does in fact satisfy not only this condition, but all

the other conditions of the problem, and is therefore of course to

be adopted, as the pole ofthe new product, qr, to the exclusion

of the old pole, s.

271. We might also reason on the lines a, j3', 7', of fig. 52,

as we did on the lines a, /3, 7, of fig. 50. Or we might construct

a new diagram, in connexion with the new order of the factors,

but on the same general plan as fig. 51, which would enable us,

by comparison and contrast with that figure, to bring into play

again an earlier construction (fig. 37, art. 219), whereby we ex-

hibited, in the foregoing Lecture, the general non-commutative-

ness of quaternion multiplication, or the non-coiiicidence as to their

planes, and therefore also as to their poles, of the two arcs (in

that former figure, km and m'k'), which were obtained when the

two summand arcs (kl and lm) were combined in two opposite

orders. Or, in fig. 51 itself, we might construct three wet^ points,

k", m", s', which should be, respectively, the refiexions of the

three old points, k, m, s, with respect to the base qr, as l' is

s 2
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already, in the same figure, the analogous reflexion of L ; and

then, while the new versor r would be represented by the new

arcual vector m"l', and the new proversor q by the new arcual

provector i/k", the new and sought transversor qr would be seen

to be represented (on the plan of 217) by the new arcual trans-

vector m"k", of which the pole would be at the new vertex $', and

the length would be equivalent (in degrees) to the supplement of

the new vertical angle qs'r, or of the old vertical angle rsq ;
so

that by prolonging the new side Qs' to t', we should again be led

to construct the new exterior and vertical angle RsV, as a repre-

sentation of the new product, qr. Or finally we might employ the

same general mode of illustration as in the more recent article

267 ; and observe that in performing the new multiplication, ^ x r,

after the new versor (r) has changed the direction of rs' to that of

RQ, or the direction of s'r to that of qr, the newproversor q changes

this last direction of qr to that of qs', or of sV ; whence it is natu-

ral to suppose (what in fact has been otherwise proved) that the

effect of the new transversor {qr) must be to produce at once that

change which the two other versors have thus done successively,

and upon the whole ; namely, the change of the direction of the

arc s'r to that of the arc sV. For thus it might be seen again

that the angle rs't', in fig. 52, may naturally be supposed to

represent the new product, qr, as in fact we have found it to do.

272. As furnishing another general rule for remembering or

recovering, if we should ever happen to forget, the distinction

between the two positions of the vertex, s and s', which thus cor-

responds to the distinction between the two arrangements of the

two factors, q and r, we may employ the following Theorem,

which is easily derived from remarks lately made, and includes

several earlier results: "In any Multiplication of two Qua-

ternions, the ROTATION round the Axis of the Multiplier, from

the Axis of the Multiplicand, towards the Axis of the Product,

is POSITIVE." With the help of this theorem, or rule, there can

never be any difficulty experienced, in forming at least a distinct

CONCEPTION of the result of the multiplication of any two
QUATERNIONS, whose representative angles are given, as two

determined spherical angles (their order being also given) ; even

when these two angles do not happen to be given, as in 204 they

were supposed to be, as being already the two base angles of a
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spherical triangle, whose vertex was moreover there conceived to

be given as having (as supposed in fig. 50) a certain relation to

the base, depending on the order of the factors, and on the cha-

racter of a certain rotation. To shew this clearly, let us imagine

that the two arbitrary spherical angles kql, mrn, in fig. 53, re-

present respectively any given multiplicand

q, and any given multiplier r; and let us

seek to construct another spherical angle,

which shall represent the sought product,

rq. For this purpose we have only to sup-

pose the vertices q and a of the two given L

angles to be connected by an arc of a great /?X
circle qr, and then to conceive a new ver- ^

tex s determined in that hemisphere towards which the rotation

round r from q is positive, by the conditions that it shall satisfy

the two following equations between angles

:

sqr=kql; qks = mrn.

For then by prolonging qs to t, or rs to u, we shall obtain an

angle tsh, or Qsu, which shall be, on principles recently explained,

the required representative angle of rq, or at least of the versor

of this sought quaternion product, while the tensor is simply still

the arithmetical product of the tensors.

273. A few corollaries from this gpieral construction for mul-

tiplication, which is for angles what the construction in art. 217

was for arcs, may be usefully inserted here. And first we shall

employ it to illustrate, and to deduce anew, the general signifi-

cation of the symbol aj3, where a, /3 are supposed to denote two

unit-vectors oa, ob, terminating at two given points a, b, of the

surface of the unit-sphere. For this purpose, I conceive that q,

in fig. 54, is the pole of the

arc AB, and of the semicircle

aa'; and then because baq

and QBA are evidently repre- /^'
' / A -i \ ^

sentative angles of the multi-

plier a and the mutiplicand

/3, considered as quadrantal

versors (122, &c.), it is clear

(from recent results) that A' D
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BQA must represent theproduct a/3. The axis o/theproduct oftwo

vectors is therefore seen anew to be perpendicular to their plane,

and to be such that the rotation round it from multiplier to mul-

tiplicand is positive ; while the anc/le of the same product is seen

to be, in amount, the supplement 0/the angle between the/actors

;

all which agrees with the earlier conclusions of art. 88. (See also

122, and compare 236, 237.) If b take the position p, in the

same new iig. 54, the angle between the factors is right, and such

therefore is also its supplement, namely, the angle of the pro-

duct ; the product oftwo rectangular lines is therefore seen anew

to degenerate from a quaternion to a line, because, as a versor,

it is quadrantal (compare again 122). On the other hand if b

approach to a, the angle bqa' tends to become equal to two right-

angles ; and the product of two coincident lines is thus anew

perceived to reduce itself to a negative scalar (as in 84), because

its angle is =7r (compare 149, 153). And finally, when b ap-

proches to a', the angle bqa' tends to vanish ; from which we

might again infer (as in same art. 84), that the product oftwo

opposite lines is a positive scalar, its angle being = 0.

274. The same figure 54 illustrates also the general signifi-

cation of some other useful symbols, for example, the symbol
^a"'. The right angle qa'b, at the opposite corner a oi the

rectangular tune kk (or more fully, the lune aba'qa), represents

evidently the reciprocal a"' of that given vector a, which was
itself represented by the other right angle ofthe lune, namely by
BAQ ; because it is obvious that two quadrantal and right-handed

rotations, round the two opposite poles a and a', destroy the

effects of each other ; or because (see art. 1 1 7), if a be an unit-

veetor, its reciprocal is equal to its negative : in symbols,

n'' = -o, if Ta= 1.

Hence the product j3a"i is represented, in the recent figure 54,

by the angle aqb. And hence again we might conclude (as in

118), that the following equation or identity holds good :

/3a-i = /3-=-o.

For we see anew that the product /3 x a"', as well as the quotient

P -i- a, has its angle equal to the angle between the lines a and
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j8, and has its axis perpendicular to the plane of those two lines,

this axis being also such that the rotation round it from the divi-

sor a to the dividend /3 is positive. The vector character {122, he.)

of the quotient of two rectangular lines, and the scalar character

(59, &c.) of the quotient of two parallel lines, together with the

circumstance of this last quotient becoming positive or nega-

tive, according as the directions of the two lines compared are

similar or opposite, whereas, for a product, this rule ofsigns

is, as we have lately seen again, reversed, would also offer

themselves anew, as obvious consequences, from the recent con-

struction for/3a'^, regarded as being at the same time a construc-

tion also for /3 -7- a.

275. Again we may employ the same fig. 54 to interpret in

a new way another symbol, which often occurs in this calculus,

namely the symbol /3a"' ./3. Conceive the point c so chosen on

the arc ab prolonged, that we may have the arcual equality,

" AB = — Bc;

then the angle bqc will be a new representation for /3a"', re-

garded now as a multiplier ; and the triangle bqc, considered as

having bq for its base, and c for its vertex, will shew, by the

general rule of art. 265, that its external vertical angle a'cq re-

presents the sought product, /3a"' ./3. But this latter angle is

right; therefore the corresponding prorfwcf, in writing which we

may (by the last Lecture) omit the point, is a line: namely, the

unit-vector y or oc, drawn from the centre o of the sphere to the

point c. We may therefore write, under the conditions lately

supposed, the equation,

/3a-'/3 = 7;

and we see that the line j, thus found, is simply what may be called

the REFLEXION of the line a, with respect to the line/3; in such

a manner that /3 bisects the angle between a and y. Indeed

this result obviously agrees with what was shewn, in arts. 133,

134, respecting the third proportional to two directed lines. Of

course you do not require to be told, that from the way in which

the figure has been put into perspective, by the principles of or-

thographic projection, the supposed equal arcs ab and bc (which
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I happened to take as each = 60°) are represented hy unequal

lines ; and that, in all the other orthographic projections sub-

mitted to you, results of the same sort occur.

276. It was remarked in the last-cited article (134), that the

square root of the product of two vectors is not generally equal

to that other vector, which thus bisects the angle between them,

and is in a certain sense their inean pi-oportional. Accordingly,

with the help of the recent figure 54, we can easily assign a repre-

sentation for the value of the symbol

(«7)*.

and thereby shew distinctly, in a new way, that this symbol de-

notes generally a quaternion, but not a line. In fact, in fig. 54,

the product ay is represented by the angle cqa', and its square

root is therefore represented, on the principles of the Fourth

Lecture, by the half of that angle, namely by cqd (or dqa'), if

we conceive the point d to bisect the arc ca'; but this new re-

presentative angle, cqd, is acute, and, therefore, is not fit to be

the angle of a vector, regarded as a (quadrantal) versor. It is

true that this process of construction and of reasoning admits of

some limits and modifications, connected with changes of the

value of the arc ab ; but these do not affect the general result,

nor does it seem that, at this stage of our course, they can occa-

sion to you any difficulty. It may, however, be noticed here that

the same figure 54 may serve to illustrate, for the case where the

arc AB is less than a quadrant, or where the angle between the

two vectors a and j3 is acute, the conclusions that

{ya-^)i = (ia-\ Uy = fia-'(i,

and that under the same conditions the symbol

(•yn"')^ a

denotes the line j3, namely, the mean proportional between a and

y ; both which conclusions agree with ordinary algebra, and with

what was shewn in art. 134.

277. The foWowing product ofsquare roots

/3Ui
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is again not to be confounded in this Calculus, with the line,

(/3a-i)4a,

nor with either of the two quaternions,

(/3a)i (a/3)*;

although, in common or commutative algebra, these four symbols

might be treated as being only transformations of each other.

It is easy, however, to shew what is, on our principles, the sig-

nification of the symbol recently written (j3*ai). For this pur-

pose we may conceive that a and j3 are unit vectors, directed to

A and B in the annexed figure 55 ; and that on the arc ab as base,

a spherical isosceles triangle adb is con-
1 Fig 55

structed, with its base angles at a and B ^'

each equal to half a right angle, and with a //^°'V'y3^a^
positive direction of rotation round B from '/i<l/iSxJ-<Ta"f" "r

a towards d ; for then the external vertical ^///C^^\^^-~y^:
angle, at the new point d thus found, will i^^

\
^^^

represent (by 265, &c.) the product of

square roots required ; because these two square roots them-

selves, namely a* and ]3*, are represented, in this construction,

by the two angles, of 45° each, dab and abd.

278. Again, it was remarked, in art. 135, that the following

other products of fractional powers of vectors,

/3Ja* and /3*a*,

denote, generally, in this calculus, not the two lines which may

be supposed to be inserted as two mean proportionals between the

lines a and j3, but tivo quaternions, of which we promised to as-

sign afterwards the tensors and the versors. Accordingly we

know now that their tensors are simply,

T/3^ Ta* and T/3* TaK

namely the two mean proportionals which are in fact inserted

between the two tensors Ta and Tj3. And with respect to the

two versors, the recent figure 55 enables us to construct them,

or their representative angles, by merely erecting on the base ab

two new spherical triangles, as indicated in the figure, with the
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base angles eab, abe of one triangle respectively equal to 60°

and 30°, while those of the other triangle, namely, fab and abf,

are on the contrary 30° and 60°, and directions of rotations are

attended to. For then these four base angles will represent re-

spectively the four fractional powers of vectors,

a», I5i, and ai, /3*;

and the two products required will be represented by the exter-

nal vertical angles at e and f.

279. More generally, if a and /3 be two unit-vectors oa and

OB, and t a scalar exponent which we may conceive to vary from

to 1, then the quaternion

is a versor, of which the unit axis, Ax .g= op, if drawn from a

fixed origin o, describes, by its extremity p, a certain curve apb

upon the unit sphere, from the point a to the point b ; and this

curve is such that in each position of the spherical triangle apb,

the two base angles at a and b are complementary to each other,

while the exterior and vertical angle at p is equal to the variable

angle of the quaternion g. It is clear that if the given base ab
be a smalt arc, the curve apb thus described, approaches to a

semicircle, and the quaternion q does not much differ from a vec-

tor, because its angle is not much less than a 7-ight angle ; and

those persons who are familiar with the doctrine of spherical co-

nies may easily convince themselves that in general this curve

APB is what is called by geometers a spherical semi-ellipse, de-

scribed on the arc ab as its major axis, and projected orthogra-

phically into the plane semi-ellipse aedfb of the recent figure

55, in which figure the major axis becomes the line ab. Indeed

it is known (and quaternions will be found to furnish a new and

simple proof of the result), that if the base of a spherical triangle

be given, and also the sum of the base angles (this sum being

taken in the usual sense, by mere addition of magnitudes), then,

whether this sum be or be not a right angle, the locus of the ver-

tex is still a spherical conic.

280. Combining the same general conceptions of fractional

powers of vectors, and of products of versors constructed by their
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representative angles, but not obliging now (as in the last figure)

the angles of the factors to be complementary, we may easily

see that for any spherical triangle abc, of which the corners a,

B, c, conceived still to be situated on the surface of the unit-

sphere, have a, j3, 7 for their vector units, while the magnitudes

of the angles at those three corners are supposed to be expressed

as follows

:

A-'^'^ n-y^ r-^"^
^'Y' ^'Y' ^~Y'

the three following relations exist

:

78-^ = /33'a^; a2-' = 7^/3*; li^'" = a^y'

;

provided that, as in fig. 56, the rotation round c from b to a is

positive. And hence it follows that, under

this last condition, we have also,

7^ /3i' . 0-^= a2-'a' = a2 = - 1.

The associative principle holds, therefore,

here agaiii ; and, omitting the point, we -2-

may write, /or evkry spherical triangle

ABC, whose corners are arranged in the lately mentioned order

ofrotation, the simple but important formula

:

And hence, either by permuting cyclically the symbols a, /3, y
on the one hand, and x, y, z on the other, or by a direct per-

formance of calculations similar to the foregoing, we are con-

ducted to the analogous formulae

:

It might not be too much to say, but I cannot expect you yet to

feel the full force of the remark, that the whole doctrine o/sphe-

RiCAL TRIGONOMETRY is INCLUDED in any ONE ofthese three

lastformula ; at least when they are interpreted and developed

according to the principles and rules of the Calculus of Quater-

nions. Meanwhile it may be observed that by combining the

results of the present article with the phraseology proposed in
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Fig. 57.

art. 268, or even from the principles of that former article alone,

•we are naturally conducted to enunciate the following general

proposition :
*' The Spherical Sum of the three Angles ofany

Spherical Triangle, taken in a suitable Order of succession,

is always equal to Two Right Angles."

281. The general signification of the symbols

q'^r q and rqr'^,

which, in virtue of the non-commutative character of quaternion

multiplication, cannot generally be reduced to the simpler forms

r and q, was proposed in 221 as a subject for our future discus-

sion. It is easy now to interpret either of these two reserved

symbols, for example, the latter of them, as follows. Construct,

as in figure 57, a spherical triangle abc, of which the base angles

at A and b represent the

factors q and r, while the y
rotation round b from a

towards the vertex c is

positive ; and let b' be the B

point diametrically oppo-

site to B. Then the ex-

ternal vertical angle, acb',

will represent the product rq ; and the angle cb'a will re-

present the reciprocal r-i. To construct next the new product

rq.r'^, we are to reflect the triangle cab', with respect to its

base cb', so as to change it to a new triangle ceb', such that

cb'a = EBc, and acb' = b'ce
;

for then these new or reflected base angles, eb'c and b'ce, will

represent the new multiplicand r'^, and the new multiplier rq;

and the new external vertical angle, bec, will represent the new
product, rq.r-^. Again, in the same figure 57, if we determine

a point D on the semicircle bb' by the condition that

b'ad = cab,

the angles b'ad and db'a may represent q as a multiplier and r"'

as a multiplicand; and therefore the angle cda, or its equal edb,

will represent their product, qvK But dbe is a representation
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forr; and therefore deb' represents r.y9--i. And since it is clear
from the construction, that

deb' = bec,

we see that we may write

r.qr-^=rg .r-i,

the associative principle being thus seen to hold good here again.

282. We see at the same time (omitting the point), that the
above proposed symbol rqr-'^ denotes a quaternion which is^ene-
rally distinct from the quaternion q, but which bears a very sim-
ple relation thereto. In fact, we perceive, first, that not only
the tensors but also the angles of these two quaternions are equal
(in amount)

; or in symbols, that

T .rqr-'^ = Tq; L.rqr-^^ iq.

And in the second place we see that (if o be still the centre
of the sphere) the axis oe of the new quaternion, rqr-'^, may be
geometrically derived from the axis oa of the old quaternion q,
by a CONICAL and positive rotation, round the axis ob of the

Other given quaternion r, through an angle equal to double the
ANGLE of that other given quaternion. In fact we may pass, upon
the surface of the sphere, from the pole a of y to the pole e of

rqr-'^, or from the vertex oi l\ie given representative angle of the

one quaternion, to the vertex of the sought representative angle

of the other, by moving along an arc of a small circle, which is

projected in the figure into the dotted line ae, and which has its

positive pole at the pole b of r, while it subtends at that pole an

angle expressed as follows :

ABE = 2zr.

283. An analogous interpretation may be obtained, without

any new difficulty, for the symbol q'^rq; since we have only to

conceive that q'^ and r are written, in fig. 57, instead of r and q,

and consequently that q is substituted forr"', in the same recent

figure. For thus we shall see that while the tensors and angles

of the two quaternions y"ir^ and rare equal {Ai least in amount),

the axis of the former may be obtained from the axis of the lat-

ter, by causing this axis of r to revolve conically, in a negative
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direction, round the axis of q, through an angle equal to double

the angle of q. And generally, if t be any scalar exponent,

it will be found, with the help of the theory ofpowers which

was explained in the Fourth Lecture, that the symbol

J*
rq''

denotes a quaternion formed from r, by causing the axis of this

operand quaternion r to revolve, conicallt, round the axis of

the operator quaternion q, through a (positive or negative) ro-

tation, expressed by the product

2tx/.q.

Thus conical (as well as plane) rotation is easily symbolized

by quaternions.

284. Another construction, in appearance different from the

foregoing, but in reality connected with it, for a symbol of the

class recently discussed, may be obtained as follows, from the

consideration of fig. 37, in art. 219. In that figure, let us sup-

pose that

q-^r = s,

so that s denotes a new quaternion, or versor, represented by the

arc m'k. Treating that arc as a vector, and the arc kl as a pro-

vector, the arc m'l is seen to be the transvector (on the plan of

217, 218) ; and thus, or immediately from the equation just now

written, we derive this other equation,

qs = r.

Hence by the arcs k'l, lm, treated as a new system of vector

and provector, or by the construction already assigned for rq'^,

in the same figure 37, we see that the arc k'm represents the pro-

duct,

qs.q-^;

in which latter symbol it is easy to prove anew, by an analogous

construction with arcs, that the /»oin^ may be omitted. But the

arc k'm which thus represents the resulting quaternion qsq
~

',

has the sa7ne length as the arc m'k which represented the original

quaternion s, and is inclined at the same angle as that former arc

to the great circle of which kl, or lk', namely, the representative
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arc of the operating quaternion q, is a part. And the double of

this latter part, namely, the arc

kk' = 2 " KL,

exhibits the distance along which the arc m'k itself, or its inter-

section K with the great circle klk', has to be transported along

that circle, as bj' a motion of a node, without any change of the

incliiiation of the moving arc thereto, or of the length of the

same moving arc, in order to take that new position on the

sphere, wherein the intersection or node comes to be placed at

the point k'. The interpretation of the symbol

qsq--',

or of any other symbol of the same general form, may therefore

on this plan be easily and fully accomplished.

285. We know then how to interpret, in two apparently dif-

ferent ways, which are, however, easily perceived to have an

essential connexion with each other, the following symbol of
OPERATION,

where q may be called (as before) the operator quaternion,

while the symbol (suppose r) of the operand quaternion is con-

ceived to occupy the place marked by the parentheses. For we

may either consider the effect of the operation, thus symbolized,

to be (as in 282, 283) a conical rotation ofthe axis of the oper-

and round the axis of the operator, through double the angle

thereof, in such a manner as to transport the vertex of the re-

presentative angle of the operand to a new position on the unit

sphere, without changing the magnitude of that angle, nor the

tensor of the quaternion thus operated on : or else, at pleasure,

may regard (by 284) the operation as causing one extremity of

the representative arc of the same operand (r) to slide along the

doubled arc of the same operator (q), without any change in the

length of the arc so sliding, nor of its inclination to the great

circle along which its extremity thus slides. But it is clear that

these two conceptions are merely transformations of each other

;

since they are evidently related, as, in astronomy, the rotation

OF THE POLE OF THE EQUATOR round the polc of the ecliptic is
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related to the precession of the equinoxes. Still, it is satis-

factory to observe the complete consistency between the results

of the two different processes qfinterpretation of a symbol of the

form qrq'\ which have been employed in recent articles; and it

may just be noticed here, that, whichever of those two processes

we adopt, the principles of the Fourth Lecture respecting powers

conduct to the following important equation,

(grq-^y = qr' q-\

as holding good in the Calculus of Quaternions, as well as in

ordinary Algebra, if t be any scalar exponent.

286. When the operand quaternion r of the last article re-

duces itself to a vector p, then the result, qpq~^, of the operation

of q{)q'^, becomes itse\f another vector; for, by 149 and 282,

l.qpq-^ = ^p = '^:

and this new vector qpq'^ may, by the article just cited (282),

be derived from the old or given vector p, by simply causing it

to revolve conically round the axis Ax . q, though the doubled

angle 2 Z.^, whatever the direction ofp may he. Assuming, then,

as in several former articles, some one fixed point o, as the com-

mon origin of all the vectors p, which may be conceived to ter-

minate at the various points of some system, or body, B ; we

may regard the recent symbol of operation, 9 (
)§''', as signify-

ing that we are to cause this body to revolve, through the angle

1 Lq, round an axis Ax . q, which is drawn from or through the

fixed point o : and the new symbol,

q^q-\

may be conceived to denote the position of the body B, after

this finite rotation has been performed. In like manner the

symbol,

r .q^q-'^ . r'^,

may consistently indicate that new position of the saine body B,

into which it is brought by performing a new and succesive rota-

tion, through the angle 2lr, round the new axis Ax . r ; while
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the result of still a third finite rotation, through a third angle

2 Ls, round a third axis Ax .s, will be denoted by the symbol,

s (r .yB^"! . r"') s'^\

and similarly for any number ofsuccessive andfinite rotations of

a body round any arbitrary axes, which are, however, here sup-

posed to be all drawn through or from one common point or

origin o.

287. The symbol

q{a + p)q-\

where a is supposed to be a constant, and p a variable vector,

may easily be interpreted as follows. Let

a = A-o=o-B, p=p-o;
then

a+p=p+a=P-B=Q-0;

where a, b are fixed points, at opposite sides of o, but p and q

are points which vary together. Conceive that a rotation round

the axis Ax . q, through an angle = 2z ^, causes the line oq to

take the position oq' ; then, by what precedes,

5(a + p)?"> = Q'-o:

and the point p is to be conceived as having been transferred,

upon the whole, through the point Q as an intermediate position,

to the final position q'. The axis of the last rotation, as of the for-

mer ones, is here conceived to pass through, or to be drawn from,

the given point o; but if, from the point B, we draw ^parallel

axis,

c -B = Ax .q,

and denote by bp' the position into which the line bp is brought,

by revolving, through the same angle 2lq as before, round this

new axis bc, we shall have

p'-p = q'-q, q'-p' = q-p = o-b = a-o;

so that the point q' may be obtained also from the point p',

namely, by adding or applying (see Lecture L) the constant

vector OA, or a. It follows that the symbol

T
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is adapted to denote that final position into which the body B is

brought, when it is first made to revolve (sis above) through a

finite angle round the recent axis bc, which axis does not (in

general) pass through the given origin of vectors o ; and when

the body is afterwards made to move, without revolving, through

a finite amount of translation, expressed both in length and

direction by the line bo or oa, or by the vector of transla-

tion a. We see, however, that the same symbol may also be in-

terpreted as denoting a translation represented by the line a, fol-

lowed by a rotation round an axis Ax . q, which axis is here again

supposed to be drawn from the origin o ; this latter point being

regarded a&fixed in space, and as not participating in any motion

of the body. By adding any other constant vector, such as /3, we

form an expression for the result of the foregoing operations, suc-

ceeded by a new translation of the body in space ; for example,

if we wish to neutralize the recent translation a, and thereby to

express that the body has only revolved round the axis bc,

through the angle 2 z. y, but has not otherwise changed place, we

may write the expression,

- a + q (a+ B) 7-'.

288. If we wish to express that a vector or body is made to

turn round an axis Ax . q which is drawn from the origin o,

through an angle of finite rotation expressed by L q, that is

through the angle itself oi the quaternion q, and not through

the double of that angle, we need only (by 283) employ this

other symbol of operation,

Hence, by conceiving q to be the quotient of two given vectors,

for instance, by supposing

and therefore

ry-i = „^/3 = a/3-1,

we find that the symbol

(i3a-i)i B(ai3-i)i

denotes that new position into which the body B is brought.
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when it is made to revolve round an axis drawn from o, perpen-

dicular to both a and /3, through that amount and in that direc-

tion of finite rotation, which would bring the vector a into the

direction of the vector ^ by a rotation in one plane ; namely, in

ihe plane through the origin o, perpendicular to the last men-

tioned axis.

289. On the other hand, if we omit the fractional exponents,

and so form this other symbol,

/3a-'.B.ai3-i,

we find, on the same general principles of interpretation, that

this symbol denotes the result of the rotation of the same body

round the same axis, through double the angle of the quaternion

/3a"', or through an amount which is the double oj" the plane ro-

tation from a to /3. For example, in fig. 40, art. 224, where

A, B, c, D, E, F are supposed to be six points upon the unit

sphere, with a, /3, 7, S, £, Z for their six unit-vectors ; while the

three arcs ef, fd, db have been shewn to be bisected by the

three points a, b, c ; and (compare fig. 41, art. 227) the conical

rotation from e to d, round the axis or pole of the arc of a great

circle from a to B, is equal to the double of that arc ab, namely,

to the plane rotation from s to E ; we may infer, from the result

just stated, respecting the interpretation of the symbol

that the following equation holds good :

j3a-i.f. a/3-1 = S.

290. If the operating quaternion q reduce itself to a vector,

suppose y, then since its doubled angle is equal to two right

angles, or in symbols,

2 Z 7 = TT,

the operation symbolized by

7()7-'

is seen to have the effect of simply reflecting the vector or

body on which Lt operates, with respect to the operating vector,

y. That is to say, this operation causes each operand vector,

t2
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suppose p, drawn from the common origin o, to t?/rn conically

through two right angles round tlic line 7, which is here con-

ceived to be drawn from the same origin ; and thereby brings

this operand p, without change of length, into a new position p,

such that while we have the equation between tensors,

'Yp =Tp,\{ p' = ypy-',

the line ± y at the same time bisects the angle between p and p'

:

and consequently the following equation between versors also

holds good

:

U .p'y-'^U .yp-'.

For example, in fig. 40,

767-' = S;

also, in same figure,

^2i3-'=8; anda6a-' = a-i£a = C

291. Another mode of interpreting the symbol

is the following. We may observe that, by 111,117,

p = -p-> T^'; 7-' = _7T7-=';
and that therefore

ypy-^ = Tp^Ty-2 .yp-^y.

Now we know (133, 194) that the symbol 7^*7 denotes the

third proportional to the two vectors p and 7 ; and therefore that

(see 134) the vector + 7 bisects the angle between the directions

of/) and yp'^y ; or by the recent transformation, the angle be-

tween p and 7P7"' : which was the graphic part of the result of

the last article. And with respect to the metric part of that re-

sult, we know (by 129, &c.) that the tensor of a third propor-

tional is the third proportional to the tensors, and therefore that

T.7/)-i7 = T72.Tp-i;

an expression which reduces itself to Tp, when it is multiplied

by Tp^, and divided by T72. Indeed it is clear from the more
general principle of art. 188, respecting the tensor of a product,

that
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T yp7"' = Ty Tjo Ty '
' =Tf>.

292. With reference to fig. 40, we have, by articles 289, 290,

/3.a-i£a./3-i=/3a-'.£.a/3-';

the common value of both members being here the vector S : so

that the removal ofpoints is here again permitted ; and the asso-

ciative principle of multiplication is, at least so far, here seen

once more to hold good : while the geometrical interpretation of

this result shews that the equation thus obtained is by no means

a TKUiSM in this Calculus (compare 108); but expresses that a

certain conical rotation is equivalent in its effect to two suc-

cessive and PLANE rotations. In the astronomical illustration

here referred to (see the last Lecture), the conical rotation was

performed round the axis of the ecliptic, from e to d in fig. 41,

through an amount represented by the double of the arc ah of that

great circle; while the two plane rotations were performed across

the ecliptic, namely, from e to r, and from f to d, in fig. 40, the

points a and b being employed as two successive reflectors. Now
it was by no means obvious that these two different geometrical

processes must conduct to one common result. Yet they have

been proved in the last Lecture to do so : and the conclusion ar-

rived at, by this geometrical demonstration, is now seen to be

symbolically expressed, by the very simple and apparently obvious

formula, which has been given in the present article.

293. It is now time to enter on the proof already promised

(in arts. 108, &c.), that the Associative principle of Multiplica-

tion of Quaternions is valid generally, in this Calculus : and first

to demonstrate generally, what indeed is the chief, and (we may

sav) the only real diflBculty in the required proof, that for any

three versors the asserted principle holds good. Conceive then

that any three proposed versors, q, r, s, are represented by some

three given arcs, qq', rr', ss', upon the surface of the unit-sphere:

and that it is required to construct, on the same spheric surface,

another arc tt', which shall be the spherical (or arcual) sum of

those three given arcs, or shall represent the product, s . rq, of

the three given and corresponding versors, when the arc rr' is

first arcually added (on the plan of art. 218) to the arc qq', and
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the arc ss' is afterwards arcually added to the result, so as to con-

duct to and determine a fourth arc tt': or when the versor of q is

first multiplied by the new versor r, and then the product, rq, is

again multiplied by the third given versor, s, so as to conduct to

a fourth versor, s . rq, or t. And let us afterwards proceed to

COMPARE this process, as to its result, with that other combi-

nation of arcs, or of versors, in which the arc ss' is first added (on

the same plan) to the arc rr', and the resulting arc then added

to qq', so as to form a new and Jifth arc, uu': or when the versor

s is multiplied into r, and the product, sr, is then multiplied into

q, so as to conduct to a new final and Jifth versor, sr.q, which we

may for the present call u. In other words, let us examine whe-

ther it be true that, under these conditions, we have the follow-

ing equation between arcs (to be interpreted in the sense of art.

217),
„ uu' = ^ tt' ?

Or that we have the corresponding equation between versors,

u = t?

In short, let us inquire (compare 108) whether the following

formula is, in this calculus, as well as in algebra, an identity,

sr .q = s .rq?

294. After what has been already said, and illustrated by ex-

amples and by diagrams, it can scarcely need to be now formally

shewn, that instead of the three given but who'll.y arbitrary
arcs, qq', rr', ss', from which two others, tt' and uu', are to be

derived (as stated in the foregoing article), we are at perfect

liberty to substitute any three other arcs, to which those three

given arcs are equal (217). We may
then suppose, without any real loss of

'^'

generality, that the frst and second ___^ T /
—'"^—-.^

are two successive arcs, such as ab '•. / /'^
Fv R .^

and BC in the annexed figure 58 ; and ..- '/•'""yr--.

that the third given arc is the arc ef ,'

/ /^ /

in the same figure, which has its ini- '••-,. /x \

tiat point e on the great circle ac, yf^ A'^

connecting the initial point a of the ~^^^^ / \ '

first with the final pointc of the second ^ A D



• LECTURE VI. 279

arc. Then the arcua I addition (218) of the second to the first

given arc produces, as their sum, or as the representative arc of

the product, rq, of the two first given versors, the arc ac; for which
we may substitute an equal arc, such as de in the figure, which

shall end at the point E, where the third given arc ef, representing

the third given versors, begins: so that the subsequent addition

of this third arc, or the multiplication by tliis third versor, con-

ducts to the fourth arc df (which here takes the place of the arc

tt' of the last article), as representing the product s .rq. Again,

in order to add the third given arc to the second, or to represent

the product sr, we are (by 217) to find the point h where the arcs

BC and EF intersect, and then to determine two new points, g

and I, such that gh and hi shall be arcually equal to bc and ef,

and shall therefore be fit, liiie those given arcs, to represent the

given versors r and s ; for then the joining arc gi will repre-

sent, as required, the product of those versors, namely sr.

And, finally, in order to multiply this last product, sr, into q,

we are to find the point l where the arcs ab and gi, representing

respectively the multiplicand q and the multiplier sr, intersect

;

and to determine afterwards two other new points, k and M, such

that the arcs kl and lm may be respectively equal to those two

representative arcs, of the new multiplicand and multiplier ; for

then, by merely joining these two last points, we shall obtain an

arc KM (the uu' of the foregoing article), which shall, by the

general construction in 217, represent that other sought product

of versors, of which the symbol is sr.q.

295. It was proposed in 293 to examine whether the products

of versors, denoted there by the two symbols u and t, or by

sr. q and s.rq,

were equal. And we now perceive that this question may be

thus expressed, in connexion with the recent figure 58 : are we

entitled to establish the arcual equation,

- KM = - DF, (S»7)

in the full sense of article 217, when, in the same full sense, wc

are given these /lye other equations between arcs,
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-^ AB =" KL, (<7)

-- BC = -, GH, (r)

"EF = ^HI, («)

- AC = '- DE, {rq)

'-GI ='-• LM. {sr)

You will observe that at the margin of each of the six last lines,

expressing arcual equalities, I have written, within parentheses,

the symbol of that particular versor, which the two equated arcs

are given, or are to be proved, to represent.

296. To those students who are acquainted with the theory

of the spherical conies, and I know that here, through the ex-

ertions of the late and present Professors of Mathematics in this

University, an acquaintance with that doctrine has come to be

widely diffused, the following brief process may be sufficient for

the establishment of the result in question. Let such a conic be

conceived to be described upon the surface of the sphere, passing

through the three points bfh, with the arc ce for part of 07ie of

its two cyclic arcs ; then the two equations, between the arcs uc,

GH, and between ef, hi, suffice to shew that the arc gi is part of

the other of those two cyclic arcs ; and the equation between

AB, KL, where a is on the first and l is on the second of the same

two arcs, shews next that the same conic passes also through the

point k; or that (if f, k be joined) this conic is circumscribed

about the quadrilateral kbhf : because it is known that " every

arc of a great circle intersects a spherical conic in two points

which are equally distant from the points in which this arc re-

spectively cuts the two cyclic arcs," if the transversal arc inter-

sects the conic at all. (See Section II., article 13, of a Memoir

by the celebrated Chasles, on the general properties of the sphe-

rical conies, as given at the foot of page 46 of the translation of

that Memoir by our present Professor of Mathematics, the Rev.

Charles Graves, which translation was published in Dublin in

the year 1841.) Conceive, in the next place, that the arc fk is

prolonged to meet the cyclic arcs ; it will meet the first of them

in D, and the second in m, in virtue of the equations betvveen the

arcs AC, DE, and between gi, lm : because it is known that " if

through two fixed points on a spherical conic two arcs be drawn



LECTURE VI. 281

which intersect in any third point of the curve, the segment

which they will intercept upon a cyclic arc will be of invariable

magnitude." (See Section III., art. 29, of the same memoir by

Chasles, page 50 of the translation by Graves.) Thus thefour

points D, K, F, M, are situated on one common great circle, or trans-

versal arc; and therefore, by the principle before referred to, the

intercepted portions dk and fm, orOF and km, are equal in length,

while it is evident that they are similarly directed. It is there-

fore proved to be a consequence of these few and known pro-

perties of spherical conies, that, under the conditions of the pre-

sent inquiry, the arcual equation,

— KM = -^ DF,

which was lately proposed for investigation (in 295), does in fact

hold good (in the full sense of art. 217) : or that the two equa-

ted arcs are equally long and similarly directed portions of one

common great circle of the sphere.

297. Although the properties of spherical conies, which liave

been referred to in the foregoing investigation, are well known to

a large number of students, yet as there may be others to whom

they are not familiar, it appears to be useful to offer now an in-

dependent and more elementary proof of the result to which they

have conducted us. Indeed it would be doing a grave injustice

to the Calculus of Quaternions, and conveying a false notion of

the nature of its principles, if you were to be allowed to suppose

that, for so important and essential an element as the associative

property of multiplication, this Calculus was dependent on the

doctrine of spherical (or even of plane) conies. On the contrary,

I believe that the easiest and most elegant method, in the present

state of science, of treating those and other spherical curves by

calculation, will be found to be that method which is furnished

by the Quaternion Calculus. In order, then, to prepare for legi-

timately so applying this Calculus, it seems to be necessary, in

point of logic, that we should seek to establish the arcual equation

of article 295, namely
'- KM = - DF,

on which (by 294) the equation between quaternions, or between

versors,
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sr .q = s .rq,

has been made to depend, by some process of geometry, which

shall be of a comparatively elementary nature; and which shall

therefore not introduce the conception of a spherical conic (nor

even that of an oblique cone) at all : although there is no reason

why, at this stage, we should scruple to use the notions oi plane

and sphere, as freely as those of the right line and circle. The
persons who have aZrearfy studied the theories of cones and conies

must of course have an advantage thereby; but the object, which

we at this moment propose to ourselves, is to render thoroughly

intelligible, to persons who have not studied those theories, so

much as may be necessary for perfectly understanding the force of

the demonstration, which was given in the foregoing article : or

of that apparently longer, but essentially equivalent proof, which

we are now about to give.

298. Conceive then that, in connexion with the recent figure

58 (o being still supposed to be the centre of the sphere), the three

radii ob, oh, of, are prolonged to meet, in three points p, Q, R,

a plane pqr, which is drawn (as we shall suppose) outside the

sphere, but parallel to the plane of the great circle daec ; con-

ceive also that these three prolonged radii op, oq, or, are cut in

three other points, p', q', r', by another plane p'q'r', which shall

be drawn parallel to the plane of the great circle glim. Round
the four points o, p, q, r, circumscribe a new sphere opqr, which

we shall call, for the present, the diacentric sphere, because its

surface passes through the centre o of the original or unit sphere,

whereon the former figure 58 has been conceived to be traced.

Let these two spheres be conceived to be cut by the plane of the

great circle gbhc, which circle

thus becomes itself one of the two

sections hereby formed, as in the ^.^-^ /^\^"\

annexed figure 59, the other sec- / / 1\ n

tion being the circle opq. Then, j / \\ \^
because the comparison of the two / / ; ,7

representative arcs of the versor 1/ —

—

^C
r gave us (by 295) the equation vCT \/
- Bc=-GH, we have also the \ /

equation between angles, ^-.^^^^^_^„.,^
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COB = HOG, OrCOH = POG.

But oc is parallel to pq, because these two lines are the inter-

sections of two parallel planes, namely, of daec (in fig. 58) and

PQR, made by one common secant plane, namely, by the plane

of the recent figure ; and (compare fig. 58) the direction of oc is

evidently not opposite, but similar to that of pq: we have there-

fore this other equation between angles,

PQO = COH;

and consequently also, in virtue of the last equation,

PQO = POG.

The radius og of the unit sphere is therefore a tangent to the

circle opq, and consequently it is a tangent also to that diacen-

tric sphere, opqr, whereof this circle is a section. And because

the line q'p' is parallel to this radius og (on account of the pa-

rallelism of the two planes fVr' and glim), and has a similar

(not opposite) direction, we have this other equation between

angles,

op'q' = PQO

;

which shews that the four points p, q, q', p' are on the circum-

ference of one common circle, and that therefore the following

equation between rectangles subsists

:

pop'=qoq'.

299. By a reasoning exactly similar it may be shewn, that if

the two foregoing spheres, and the two
'^'

planes pqh, p'q'k', be cut, as in figure 60,

by that new secant plane which is the

plane of the great circle ehfi in fig. 58,

I

then the equation

- EF = " HI,

which was obtained (in 295) as the result

of the comparison of the two representa-

tive arcs of s, when combined with the

parallelisms between rq, oe, and between q'u , oi, conducts to the

angular equalities.
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UQO = EOQ = noi = OR Q ;

and to the following equation between rectangles,

qoq' = ror'.

The radius oi of the unit sphere is therefore a tangent to the cir-

cular section oqr of the diacentric sphere, and to that sphere

OPQR itself; and the four points r, q, q', r', are situated on one

common circular circumference. And by combining the results

of the present article with those of the foregoing one, it becomes

clear that the plane glim (see fig. 58) of the two radii OG, oi, of

the unit sphere, touches at o the diacentric sphere opqr ; and

also (from the equalities of rectangles), that the six points p, q, r,

p', q', r', are situated on the surface of a third sphere, pqrp',

whereof the circles pqqV and rqq'r' (in figures 59 and 60), as also

the circles which may be conceived to be circumscribed about the

triangles pqr and p'q'r', are sections.

300. Conceive, in the next place, that the radius ok of the

unit sphere is prolonged to meet respectively the diacentric

sphere and the plane p'q'r' in two new points, s and s'; and let

the given and diacentric spheres be supposed to be both cut by

the plane of the great circle akbl (see fig. 58) ; the section of

the unit sphere being that great circle itself, but the section of

the diacentric being a new circle, ops. A new figure will thus

be constructed, so similar to those of the two last articles that it

seems to be almost unnecessary to write it here ; for all essential

purposes you may form it, or conceive it to be formed, by merely

changing, in fig. 59, the letters c, g, h, q, q', to a, l, k, s, s',

respectively : still for more perfect clear-

ness I shall give it to you as figure 61.

But whereas, in each of the two figures

of the two last articles, we inferred a

tangency yroff? a parallelism, we have

now, on the contrary, a tangencyg'fijen,

and a parallelism is thence to be infer-

red. For we now know that the radius ^^

OL of the unit sphere touches the sec-

tion OPS of the diacentric, because (by

fig. 58) this radius is contained in the
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plane glim, which plane was seen (in art. 299) to touch the dia-

centric sphere at o. Hence the angle bol or pol, in fig. 61,

between chord and tangent of the section of the diacentric, is

equal to the angle pso in the alternate segment; but it is a/so

equal to aok or aos, on account of the equality of the angles aob,

KOL, orof thearcs AB, kl, which last equality of arcs was deduced

in 295 from the comparison of two different representations of the

versor q : we have therefore the following equation between

angles,

PSO = aos,

and may infer from it that the chord rs of the diacentric is joa-

rallel to the radius oa of the unit sphere. But (see again fig. 58)

this latter radius is contained in the plane of the great circle

CEAD, to which (by 298) the plane pqr is parallel ; this latter

plane must therefore contain the chord ps : or in other words, the

four points p, q, r, s are all situated in one common plane. And
because by the construction they are also situated on the surface

oi one common sphere (the diacentric), they must he four concir-

cular points : they are in fact all situated on the circumference

of that common circle, in which the diacentric and third spheres

intersect each other. Again, in fig. 61, the lines s'p' and ol are

parallel, as being the traces, on the plane of the figure, of the

two parallel planes (see 298), p'qV and glim ; these lines are

also similarly directed : thus the four points p, s, s', p' are con-

circular; and we have the following equation between rectangles,

sos' = pop'.

In fact the circle pss'p' is contained on the third sphere ; and

another circle of the

same third sphere con-

tains the four points p',

q', r', s'.

301. Comparing next,

as in the annexed figure

62, the circle pqrs of

the diacentric with the

parallel and great circle

CEAD of the unit sphere.

Fig. 62.
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Fig. 63.

and attending to the arcual equation "^ AC = " de, which was ob-

tained in 295 by the comparison of the two representative arcs of

the quaternion rq, we see that because (by the three last figures)

the three chords pq, rq, ps have respectively the directions of the

three radii oc, oe, da, therefore the fourth chord rs must have

the direction of the fourth radius od, on account of the equality

of the angles spq, srq, on the one hand, and aoc, doe, on the

other. The point d of the unit sphere, or the corresponding

radius od, is therefore contained in the plane ors, which coin-

cides with the plane ofk ; that is to say (see fig. 58), the three

points F, K, D are on one common great circle of the unit sphere. In

a similar way by comparing, as in fig. 63, the two parallel circles

p'q'rV and milg, it may

be shewn that, because

the three chords q'p',

q'r', s'p', of the one

circle, have respectively '^

(seefigs.59, 60,61)the

same directions as the

three radii og, oi, ol, of

the other,while (by 295)

the arcs gi and lm are

equal, as both representing the quaternion sr; and the angles

p'q'r' and p's'r' are also equal to each other, as being in one com-

mon segment of a eifcle: therefore the fourth chord s'r' must have

the same direction as the fourth radius cm. This radius is there-

fore contained in the plane orV, or in the coincident plane ofk;

or, in other words, the point m, like the point o, is situated on the

great circle fk (fig. 58). And
if we finally cut the unit and

diacentric spheres by the plane

of this great circle, we obtain /
a new figure 64, wherein, by /

the present article, the radius
|

CD of the section dkfm has the \

same direction as the chord rs \
of the section ors, while this

latter section is touched at o by

Fig. 64.
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the radius om of the former. The angles fom and dok are con-

sequently equal to each other, as being each equal to the angle

Rso ; and therefore an equality subsists between the angles dof
and KOM, or the arcs df and km. These latter arcs are there-

fore equal to each other, in the full sense of article 217 : which

was (in 295) the thing proposed to be proved.

302. After the elementary investigation contained in the four

foregoing articles, which has established the associative principle

of multiplication for any three versors (compare art. 293), with-

out introducing (see 297) even the conception of a cone, by em-

ploying certain combinations of representative arcs, together with

some evident or well-known properties of planes and spheres, it

may be considered unnecessary now to establish the same prin-

ciple by means of representative angles also. Yet, for the sake

of those students who are already familiar with the properties of

spherical conies, or even with a few of the best known among

those properties, I shall give rapidly a proof, by them, of the

same general and important result {sr .q = s. qr), in which proof

angles, instead of arcs, shall thus be employed to represent the

versors.

Let then, in figure 65 (in which it has been thought, sufficient

to draw straight

linesinstead of arcs

of great circles ),

the versor q be re-

presented by the

spherical angle

EAB ; r by abe,

and also by fbc ;

and s by bcf and

ecd: moreover, let

the angles dec and

BEA be supposed to A.

be supplementary.

Then (see 264) the angle dec, and the supplement of cfb, will

represent respectively the two binary products, rq and sr ; and the

supplement of cde will represent on the same plan the ternary pro-

duct s . rq. But to shew that this latter is equal to the other ter-

Fig. 6.')
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nary product sr . q, it is necessary and sufficient to prove that the

angles daf and fda are respectively equal to eab and cde; and

also that the angles afd and cfb are supplementary : because

we have to prove that the angles daf and afd represent re-

spectively q and sr, and that the supplement of fda represents a

ternary product sr . q, which is equal to the former product s . rq.

For this purpose, conceive a spherical conic described, with b

and F for foci, so as to touch the arc ab ; this conic will also

touch the arcs bc and cd, on account of the equalities of the two

angles at b which represent r, and of the other two angles repre-

senting s at c ; while by the supplementary character of the angles

at the focus e, it will touch also the arc ad, and therefore will be

inscribed in the spherical quadrilateral abcd. (See the Memoir

of M. Chasles already cited, at the same pages as before of the

translation by Professor Graves.) But this inscribed conic gives

the two required equalities of angles, at the corners a and d,

and the supplementary character of the angles at the focus F :

and thus the theorem is established, or the associative property

of the multiplication of three versors is proved anew.

303. It is therefore demonstrated, in several different ways, of

which some are shorter while others are more elementary, that

the equation already often mentioned (see 293, &c.), namely,

sr . q = s . rq,

is in fact an identity, although by no means a^rMis?n (compare

108, 292), in this Calculus, when q, r, s denote any three ver-

sors; from which, by the properties (188, 208) oi tensors ofpro-

ducts, it follows at once that the same equation is identical when

the three factors denote any three quaternions. We may
therefore omit generally (compare 136, 194) the point or

other mark of multiplication, in the expression of any such ter-

nary product, and may denote that product by writing simply the

symbol
srq.

We see also that when we introduce (as in 296, 302) the con-

sideration oi spherical conies, which, however (by 298, 299, 300,

301), it is not necessary for us to do, then the two partial or bi-

nary products, rq and sr, are represented either by portions of
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the two cyclic arcs of a conic circumscribed about a quadrilateral,

or else at pleasure by angles at the two_^c? oi another conic, in-

scribed in another quadrilateral : and that certain portions of the

sides of the one quadrilateral, or certain angles at the corners of

the other, represent the three ^xven factors, q, r, s, regarded as

versors, and their ternary product, srq. It may be allowed me
here to state that this focal ueprksentation of the geome-

trical relations between the six quaternions q, r, s, rq, sr, srq,

was perceived by me almost immediately after the notion itself

occurred of quaternions generally ; and was exhibited at a gene-

ral meeting of the Royal Irish Academy, in November, 1843,

together with various geometrical corollaries, deduced from the

same construction.

304. It is easy now to establish the associative principle of

multiplication generally, for a.ny four or more quaternions. For

if t denote a fourth given factor, we shall have

t . s {rq) = ts.rg= (ts) r . q,

by treating alternately the binary products rq and ts as if each of

them were a single given quaternion, and by employing what has

been already proved respecting the multiplication of any three

factors; thus we may write,

t . srq = ts .rq = tsr.q= tsrq,

the points being again found to be needless. And on the same

plan we should pass, with the utmost ease, from the case oi'Jbur

to the case of Jive given factors, and so to that of any greater

number of quaternions to be multiplied together: the order of the

factors being still, however, in general essential to be preserved,

because the multiplication of quaternions has been seen in former

articles to be not a commutative operation, though it has since

been proved that it is an associative one. We may for the same

reason now assert, generally, if we retain the phraseology of

articles 218, &c., respecting the operation of arcual addition,

that this operation also, like the multiplication of quaternions

which it represents, is associative, although fiot generally com-

nndative. A similar assertion may be also made respecting

the operation of angular summation, if we understand by the
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spherical sum of two angles on a spheric surface what was de-

fined in article 2G8. And it is important to observe that even

the commutative property holds good, whenever the quaternions

which are to be multiplied are coplanar, or co-axal; that is

(see 93) when their representative biradials are parallel, even

though they may have opposite aspects, or although the axes of

the factor quaternions may have their directions opposite. For

the same reason, the addition of vector arcs is a commutative

operation, when the arcs to be added are portions, whether simi-

larly or oppositely directed, of owe fjreat circle; and the summa-

tion ofspherical angles is in like manner commutative, when their

vertices either coincide, or else are diametrically opposite.

305. Regarded as a theorem of spherical geometry, the asso-

ciative property of multiplication, for the case of three versors,

was seen in art. 295 to admit of being stated under the following

form : that a certain arcual equation,

- KM=-- DF,

interpreted as in 217, v/as a. consequence offive other arcual equa-

tions of the same sort, namely (see fig. 58), of these five :

-- AB = " KL, --~ nC = '^ GH, -^ EF = " HI, -^ AC = — DE, -- GI = -^ LM.

To assist ourselves in remembering this result, we may state it as

follows, in connexion with the same figure 58: \ifive out of the

six arcual equations,

~ KL = - AB, - GH = ^ BC, '- ED = - CA,

" LG = - MI, - HE = -^ IF, " DK = - FM,

be given, the sixth may be inferred. Here abc and mif are

triangles, and klghed may be considered as a hexagon, al-

though its sides kl and gh cross ; and if we suppose this hexn-

gon to be given, we can always choose the two triangles, so as

to satisfy the two first out of the three equations on each of the

two foregoing lines ; namely, by the process which would be em-

ployed (see 217, 218) for arcually adding gh to Ki,, and he to

lg: but if the hexagon have been arbitrarily taken, neither of

the two remaining equations (between ed, ca, and between dk,

fm) can thfji be expected to hold good The fhrnrem involved in
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the associative principle shews, however, that ifone of these two

remaining equations between arcs be satisfied, the other will be so

too. We may then state this associative theoiiem as follows :

—

" If the first, third, andfifth sides (kl, gh, ed), of a spherical

htxayon (klghed) be rtspeclively and arcually equal to the

first, second, and third sides (ab, Bc, ca) o/one spherical triangle,

then the second, fourth, and sixth sides (lg, he, dk) ofthe same

hexagon are respectively and arcually equal to the first, second,

and third sides o/'another spherical triangle (mif)."

306. We might also, although less simply, conceive the six

points A, M, B, I, c, F, as being the six successive corners of

another spherical hexagon ; the arc ab, drawn from the first of

these corners to the third, might be called the first diagonal of

this new hexagon ; the arc mi, from second to fourth corner,

might be called the second diagonal; and in like manner the

arcs BC, IF, CA, fm would come to be called the third, fourth,

fifth, and sixth diagonals, respectively, of the same second hexa-

gon AMBICF. And then the as«oc!a^?2;e /)?'!nc?p/e for the multipli-

cation of three versors might be expressed as follows: " //"five

successive sides o/one spherical hexagon be respectively and ar-

cually EQUAL tofice successive diagonals o/another spherical

hexagon, the sixth side of theformer hexagoii will in like man-

ner be arcually equal to the sixth diagonal of the latter.'' I

once proposed to call this result ihc theorem oftlie two hexagons;

but perhaps the comparison which afterwards occurred to me, of

one hexagon with two triangles (305), is simpler and more na-

tural.

307. The enunciation of the same fertile principle may be

varied in many ways. For example, since the arcual sum of the

three successive sides of any spherical triangle (third plus second

plus first) must be considered as equal to zero, on the plan of ar-

cual addition adopted in former articles (218, &c.), we may ^tate

the result of art. 305 as follows :
—" Ifthe arcual sum o/one set

of three alternate sides ofa spherical hexagon vanish, when

taken in a suitable order (fifth plus third plus first), then the

arcual sutn of the other set of three alternate sides ofthe same

hexagon (supposed to be suitably and similarly taken, as sixth

plus fourth plus second) icill likewise be equal to zero." If

V 2
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then we allow the mark ^ to remind us that + signifies arcual ad-

dition, when interposed between two symbols of arcs so marked,

we may write the following formula

:

if -- ED + - GH + - KL = 0,

then -- DK + '- HE + - LG = 0.

The first of these two equations expresses a certain relation be-

tween the positions of the six points k, l, g, h, e, d, upon a spheri-

cal surface ; the second equation expresses another relation of posi-

tion between the same six points ; and the theorem is, that these

two relations are so connected, that each involves the other. It

seems to me that we might also employ, not inconveniently, the

symbol d-e to denote the same directed arc, or arcual vec-

tor (217), as that already denoted by '^ ed ; in such a manner

that we might write, generally, by a comparison of these two no-

tations, the identity,

B - A = --^ AB.

And then the recent formula would come to be thus expressed,

perhaps more clearly than before :

ifD-E + H-G+L-K=0,

then K-D + E-H + G-L = 0.

We may also write.

E-H + G-L = D-K, ifH-G + L-K = E-D.

308. If we denote respectively by

a, /3, 7; S, £, Z|; 0, 7), t; K,\, fi,

the twelve unit vectors drawn from the centre o of the unit sphere

to the twelve points

A, B, C ; D, E, F ; G, H, I ; K, L, M,

upon its surface, then we may consider the three versors q, r, s,

with their binary products rq, sr, and their ternary products

s . rq, sr . q, as equal to certain quotients of these vectors : for

we shall have by 294, 295, and fig. 58, the equations.
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<? =—=-; '•=-3=fl-;
«=-=-;OK P " t V

ft I fl

*-''? = t; sr.q = ^.
O K

To justify, therefore, the omission of the point in the symbol

srq,

or to establish the associative principle, comes to shewing (com-

pare art. 295), that the equation between quotients,

IL-L

is a consequence of five other equations of the same sort, namely,

b--§.. JL-1^. JL-A- J_-X- JL- '

t- a ' 0/3' rt e' S o'A 0*

And this consequence respecting quotients may now be con-

sidered as having been already projjerf, through the investiga-

tions respecting ares and angles, which have been given in recent

articles. Indeed, we lately spoke of a, /3, &c., as being unit vectors

;

but on inspection of the six foregoing equations, it is evident that

their lengths may be arbitrarily chosen, without disturbing the

result : because the five equations,

TXT^ T^^T^ JL-I^ Jl-Jx IE-Il
Tk ~ T^' to ~ T^' T„ ~ Te ' TS~ Ta' TX ~ T0'

conduct by ordinary algebra to the sixth equation,

Tk~T8'

since the twelve symbols Ta, T/3, &c., denote (by 110) twelve

positive or absolute numbers, which represent the lengths of the

twelve vectors. We may therefore dismiss any restriction upon

those lengths, in inferring the equation

K S
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from the five other equations between quotients of vectors, which

have been written above.

309. The six connected equations between quotients ofvec-

tors, which have been assigned in the foregoing article, might

have been suggested by our general conception (art. 108) of the

operation of multiplication ofquaternions, without any such con-

struction by representative arcs upon a sphere, as was given in

figure 58. To see this clearly, it may be useful to refresh, as

follows, our recollection of that earlier and (in some respects)

more general conception.

To multiply any one quaternion, q, by any other quaternion,

r, it was shewn, in the article just cited (108), that we are in ge-

neral toprepare for the employment of the earlier formula of art.

49, namely,

Transfactor = Profactor x Factor,

by ma/ting the given multiplicand quaternion, q, and the given

multiplier quaternion, r, assume the forms of a factor, /3 -t- a,

and of a successive factor, or profactor, 7 -t- /3, respectively ; in

order that the sought product quaternion, rq, may then emerge,

under the form of a transfactor, or as equal to the new quo-

tient, -y -1. a. In this preparation of the two given factors, the

symbols a, j3, y are supposed to denote three lines, or vectors;

and the conception of equality or quotients, which was de-

veloped in arts. 102, &c., is employed, in order to transform (ge-

nerally) the given quaternions, q and r, into two others, which

shall be equal to those given ones, but shall be better suited for

combination among themselves, according to the general anA fun-

damental relation, above cited, between factor, profactor, and

transfactor. In other words, it had heen fixed by definition,

for reasons assigned in the Second Lecture (arts. 49, &c.) that

the two equations,

^ = ?xa, y = rx(3,

conduct to an equation of the form

7 = 5 X a, where s = ryq;

prodded that a, /3, y denote three vectors, whereof a at least is

supposed to be not a 7udl one. This was indeed the very foun-
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dalion of our interpretation of the symbol, /• x q, or r . q, or

/•(/ ; it was by this conception of transfaction that we gave a

meanijig, a distinct dgnijication, to the general expression

:

Product of two Quaternions. Thus, not indeed without rea-

son* assigned, but still at last by definition, we agreed to fix,

generally, that

7 =
/-J . a, if /3 = 5a, and 7 = r/3

;

or, eliminating the symbols j3 and 7, we so interpreted the pro-

duct, rq, ofany tu-o quaternions q and r, as to make true the
associative formula,

rq . a = r. qa,

UNDER THE CONDITIONS THAT THE THREE SYMBOLS,

a, qa, and r. qa,

SHALL DENOTE SOME THREE VECTORS.

310. We may also say that we have chosen so to interpret

the product rq, as to render (compare 87) the following formula

an identity, for quaternions as for ordinary algebra :

rq - rqa ~- a ;

where rqa is written for r .qa; and where it is still supposed that

a is a LINE (not null), and that this line is so selected, that when,

according to the simpler and earlier conception of the

MULTIPLICATION OF A LINE BY A FACTOR (arts. 40, &c.), Com-

bined with the notion of equalities of quotients, or of factors

(103, &c.), this line a is multiplied ^»'si by q, and the product

again multiplied by r, the two successive results, qa, and 7'qa,

shall likewise both be lines. Now such a selection of the line a

has been seen to be always possible : namely, by taking (see

again 108) for the line qa, or j3, a line situated (generally) in the

intersection of the planes of the two given quaternions, q and r,

with any arbitrary length, and with either oftwo opposite direc-

tions. If the two given planes coincide, or are parallel to each

other, then any line, in or parallel to either plane, may be selected

for /3, or for qa ; but, in every case, what we may call the Defi-

nitional Associative Formula of Multiplication of Qua-

TiiKNioNS, namely, either of the two following, in wliich a, ya,

and ;
, qa (or rqa) arc still supposed to be lini^.
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rq.a-r . qa, or rq = rqa -^ a,

gives a definite meaning and determinate value to the symbol

rq, when that symbol is interpreted hereby. Andy?;?- this very

reason, as was remarked in art. 108, we were not at liberty,

after establishing these formulae of association, for the case

where n, qa, and rqa were lines, to establish also, without

T'ROOF, this OTHER and MORE GENERAL FORMULA of the same

associative kind,

q"q . q = <f . qq, or sr . q = s . rq,

which has been the subject of our discussion in several recent ar-

ticles. For we knew already how to interpret definitely the

four symbols rq, sr, s . rq, and sr . q; and //"such definite inter-

pretations of the two last of these symbols v/eie found (as in fact

they have been found) to give tico equal values, or to conduct to

the general associative equation above-mentioned, this equation

was (as stated in 108) to be considered as a theorem, sanAtiutasa

definition. It seemed useful, at this stage, to bring this view dis-

tinctly before you, although it was partially noticed before; lest

it might for a moment be thought that in all our investigations,

past or to come, respecting the general associative property
of multiplication oi quaternions, we were merely ^roww^, with

more or less of pains, what had been previously assumed. We did

indeed avail ourselves of definition, so far as vie logically could,

to assimilate, in this important respect, the calculations of qua-

ternions to the operations of ordinary algebra ; but this aid was

only valid up to a certain point : and beyond that point it be-

came necessary to have recourse to proof, and to employ geome-

trical demonstration.

311. But we proposed (in 309) to shew how the six con-

nected equations between quotients, of art. 308, might present

themselves, without any consideration of arcs or angles on a

sphere, and simply as consequences of that general conception of

multiplication of quaternions which has been discussed in the

two foregoing (as well as in some earlier) articles. Now by the

nature of that general conception we are immediately conducted,

as we have seen, to the establishment of the three equations,

q = (5^a, r = y^li, rq^y ^u;
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when a, /3, 7 denote as before, three lines ; such being the very

TYPE of the multiplication, by which rq is conceived to be pro-

duced. But when we come to multiply this product, rq, as a

7iew multiplicand, by the tiew given multiplier, s, we cannot,

without danger of confusion, continue to use the same three let-

ters, a, /3, y, although the type is still to be preserved. We must

conceive in general, that some new line, denoted by some new
letter, such as e, is found as the intersection of the two new

planes of rq and s, in the same way as j3 was conceived to be

found as the intersection of the two old planes, of q and r ; and

must then derive, or suppose to be derived, from this new line e,

two other new lines, S and J, the former in the plane oi rq, and

the latter in the plane of s, just as a was taken in the plane of q,

and /3 in the plane of r; these new lines being moreover such as

to satisfy the equations,

rq=£ -i- B, s = Z -r- s, and therefore, s .rq=Z -^ S.

For the multiplication sx r, we must in general employ another

line I), namely, the intersection of the two planes of r and s ; and

also two other lines, and i, taken in those two planes respec-

tively, in such a way as to satisfy these other equations,

r = i) -r- 9, 5 = t -=-
7j, sr= I -i- 6.

And finally, to effect the multiplication sr x q, we are to take

two lines k and fx, in the respective planes of q and sr, and a line

A in the intersection of those two planes, so as to give the equa-

tions,

J = A H- K, sr = fi -i-X, sr . rj = fx -i- K.

312. This process shews then how, without arcs or angles on

a sphere, and even without any preliminary restriction on the

lengths of the lines compared, we might be led, by our general

conception of multiplication, to establish twelve equations between

quaternions and quotients ; which, by comparison of the two

values thus assigned for each of the five quaternions,

q, r, s, rq, sr,

w ould conduct (as in 308) to the^ft'e following equations between

i/iiotienls of vectors, which are true by the foregoing construc-

tion :
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A^ic = /3-^a; i|-r-0 = 7-7-j3; i -i-n = Z -i-n

It shews also how we may be led, on the same plan, to inquire

whether these five equations involve, as a consequence, that sixth

equation between quotients, namely the equation

fi -7- K = ^ H- S,

which is found by comparing the values oi sr. q and s . rq. For

unless this sixth equation can be shewn to be a consequence of

the other five, we shall not have proved the general associative

principle of multiplication of three quaternions, at least on the

present plan ; and if it could be shewn that the above-mentioned

consequence did not exist, this associative principle would be

overthrown. But if, conversely, this consequence shall 6e shewn

to be valid, we shall thereby have proved the truth of that as-

sociative principle; for the five equations give, as expressions for

the two members of the sixth, if we adopt for shortness the no-

tation effractions (118)

:

K Xk a f] a B j3 a'

S tS i a e (3 a'

comparing, therefore, these values, we shall have, generally, by

the sixth equation, the formula,

where the three quotients

may represent any three quaternions,

q, r, s,

notwithstanding that £ has been supposed to be coplanar with a

and J. To assert then that the sixth equation of the present

article is a consequence of the former five equations, is merely to
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ENUNCIATE, 38 & theorem about certain quotients of twelve vec-

tors, the principle that

sr .q = s .rq.

But having thus shewn that the enunciation (or expression) of

this associative principle might naturally conduct, without any

reference to a sphere, to form the foregoing system ofsix con-

nected equations between six quotients of twelve lines in space, I

shall be content to allow, for the present, the demonstration of

the same associative principle to rest on what has been shewn in

the present Lecture (296, 302), in connexion with certain curves

upon a spheric surface ; or on the comparatively elementary in-

vestigation with spheres and planes, in arts. 298 to 301 : although

(as has been several times said) a new and independent proof of

the same general and important result will offer itself to our no-

tice hereafter, in connexion with the distributive principle.

313. The same associative principle may be stated in other

ways by means of quotients of vectors, and of binary products

thereof, without its being necessary to employ so many as twelve

lines, or so many as six equations. For example, this principle

will be sufficiently stated, if we in any manner express that the

following formula is in the present calculus an identity :

£ o |3 £ a /3

because any three given quaternions may be put under the forms

of the three quotients,

a y K
/J' ~' ~p a I

and no essential generality will be lost, if we assume at the same

time the coplanarity,

£
II!

a, 7-

But this last relation allows us to introduce another vector ^, co-

planar with a, 7, e, and such as to satisfy the following relation

(which is in fact the fourth of the five given equations between

quotients, in 308 or in 312) :

\=-; or by alternation (130), 5=-.
c a o £
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And since this relation conducts to the value,

£ a
"g'

we see that we may express the associative principle by stating

that

i°_?Z if--l

The PRODUCT OF TWO QUOTIENTS o/vectors remains therefore

UNALTERED IN VALUE, when the dividend vector (y) of the mul-

tiplicand quotient {y -^ /3), and the divisor vector (t) of the mul-

tiplier quotient (^ -f- e), are changed together, to any two new

vectors (a and S), to which they are proportional (in the Jull

sense of arts. 103, 129, &c.). And we see that in this Jorm of

symbolical expression of the associative principle, only six vec-

tors (a . . . K) are introduced. If we choose here to bring in

again the quaternions, q, r, s, it is easy to see that we have

merely been expressing, by the last formula, the following asso-

ciative identity

:

(s.rq) q-^ = s {rq . q-^) ;

whereof each member = sr. Or if we prefer to employ sums of
arcs, we may say that, in fig. 58,

^ DF + -- BA = '^ EF + - BC, if - da = " EC.

And it would be easy to assign a geometrical interpretation for

this result, by means of spherical conies.

314. In the notation oi reciprocals (117, &c.), and with the

aid of a few inversions and alternations (130), the six equations

of recent articles may be expressed and arranged in two sets of

three, as follows

:

0»}-' = /37-i;
KX-' = a/3-'; S£-i = a7-i;

the sixth being still that one which is to be a consequence of the

other five. Now whatever arbitrary vectors may be denoted by

the jive symbols i, ?j, Q, k, X, we can always find ttvo other vec-

tors, /3 and t, which shall satisfy the four conditions of coplana-
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ii\\\r,,e; /3|||k,X; .III^.'j; *I1|0,X;

and can afterwards determine^wr other vectors, a, y, Z,, fi, so as

to satisfy the two first of the three equations of each of the two

sets lately written. In this manner we shall have the two follow-

ing values of two binary products of quotients :

and /our of the five given equations will be satisfied, without any

restriction being imposed on S, or on the five vectors e, ij, 9, k, X,

from which the six other vectors a, (5, y, ^, i, fi, have been de-

rived. But if we are to satisfy also the remaining given equation,

namely, the third of the first set, as written in the present article,

the comparison of the two values of ay"^ shews that the six vec-

tors S, E, ri, 6, K, X, are then not wholly arbitrary, but are con-

nected by the following relation (restricting indeed partly even

theJive vectors e, t|, 9, k, X)

:

KX-i.0,,-i = gE-i.

Conversely, if these six vectors be connected with each other bv

this relation, we see that we can choose the six other vectors

a> /3, 7, t, I, jUj so as to satisfy the whole system of the Jive given

equations between quotients ; and then, by the associative prin-

ciple (supposed to be now known), we can injer that the sixth

equation also is satisfied. Hence, by comparison of the two va-

lues of ?ju"^ we are conducted to the following formula, involving

only six vectors

:

ifS£-i=KX-i.0»)-', then SkI = e»,-i . flX'^

315. It follows then from the associative principle that when-

ever one quotient of vectors (such as S -^- e) is given equal to the

product of two other such quotients, taken in a determined order,

we are at liberty to interchange the divisor line (e) of this pro-

duct with the dividend line (k) of the multiplier (k -f- X), provided

that we at the same time interchange the divisor line (X) of the

same multiplier with the divisor line (t;) of the multiplicand

{0 -^ r,), leaving unchanged the two remaining dividend lines

(S, 9), namely, those of the product and multiplicand. Recipro-

call y we may perceive that the assertion of the right to make
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these interchanges, without disturbing the equality between one

quotient and the product of two others, is a mode of enuncialitir/

the associative principle. For by a process which would simply

be the inverse of that adopted in the foregoing article, we migiit

shew that the final formula of that article is equivalent to the

assertion that one of the six equations between quotients is a con-

sequence of the other five; but the assertion of this consequence

was shewn (in 312) to involve an enunciation of the principle re-

ferred to. In the notation of sums of arcs, the same final for-

mula of 314 may be stated (compare 307) as follows :

if -- LK+ " HG = -ED,

then '- HE + '^ LG = " KD ;

or thus

:

E-H+G-L = D-K, ifK-L + G-H = D-E.

316. The final formula of 314 may also be thus written :

if (kX-1 . 0,}-') E= 8, then (e^-i . 0X-i) ic= S.

That is to say, if the^iue vectors e, jj, 6, X, k, be so related that

the multiplication of the vector e by the quaternion kX"' . Or}''^ (or

by the product effractions, ^ -) gives any one line (g) as the re-

suit, then the multiplication of the vector k by the quaternion

Ej}"' . 0X'' will give the same line (c) as the product. Under this

form, with the points and parentheses above written, we may be

considered as still only expressing in a new way the associative

principle of multiplication, for any three quaternions ; but if we

now regard that principle as having been already proved (by any

of the methods given in arts. 293 to 303), and remember that in

304 the same principle was extended to any number of factors,

we see that, as an inference from the associative principle, we

may omit those points and parentheses, and may write simply,

e»,-'0X-1k = S, ifK-X-i0,,-iE = S.

Or because the five factors here considered, including the reci-

procals oi f\ and X, may denote any jive vectors, subject only to

the condition which the formula 2<«e//' expresses, we may take

any other six Greek letters as symbols of these factors and their
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product ; and may, therefore, write, with equal generality, and

with somewhat greater simplicity, the formula,

e^y^a = Z, if ajSySs = ^.

In words, " if the continued product of five vectors be a

VECTOR, when they are taken in any one order, their continued

product will be equal to the same vector, when they are taken

in the opposite order."

317. It is obvious that this last result is analogous to the

equation of 195,

juXk = K\fi, if fi 111
A, K ;

or to the two connected equations of 194,

where a, j3, y were three coplanar lines ; under which condition

ofcoplanarity alone (by the preceding Lecture), either the con-

tinued product of three lines, or thefoiirth proportional to them,

can be itselfa line. But we are now prepared to prove, more

generally, that ^^ if the continued product ofahy odd number

OF vectors be a line, it is equal to the product of the same

vectors, taken in an inverted order; for example, for seven

such factors, we have the formula,

rj^ESyjSa = ajSySf^tj, if either = 9.

In fact, the equation (190, 222),

K.rq=Kq.Kr,
gives evidently

K{s .rq) = K.rq .Ks = {Kq .Kr) Ks;

or simply, by the associative principle,

K.srq^ Kq Kr Ks

;

the points being omitted as unnecessary between the symbols of

the three /actors K*, Kr, K.^, in the second member of this last

equation ; but one point being retained in the first member, to

express that the characteristic K operates on all that fol-

lows IT in that member, namely, on the ternary product srq.

In like manner, if t he any fourth quaternion, we have



304 ON QDATERNIONS.

K {t . srq) =K.srq . Kt;

that is

K . tsrq = K^ Kr K« Kt

:

and 80 on, for any number of factors. The result of 190 may,

therefore, be thus extended :
—" The conjugate of the product of

any number of quaternions is equal to the product of the conju-

gates, taken in an inverted order." But also (by 1 14) the conju-

gate ofa vector is equal to the negative of that vector; thus,

Ka = - a, K^ = - /3, &c.

We have, therefore, not only the formula (see 89, 193),

K./3a = + a/3,

for the case of two vectors, but also these others :

K . 'f^a = - af3y,

K.Syj3a=+aj37S,

K . tSyjSa = - ajSySe, &C. ;

the sign + or - being used, according as the number of the vec-

tor factors is even or odd. Hence,

if 7/3a = S, then aj3y = - KS = S ;

if eSyfta = Z, then a^ySa =-KZ = Z;

if riZeSyfia = 6, then afiyStZv = - K = ;

and so on, for any odd number of vectors. The theorem enun-

ciated in the present article, respecting- any such product of vec-

tors, is therefore proved to be true; and we see, conversely, by a

principle stated in 187, that " if the product of any odd number

of vectors be equal to the product of the same vectors taken in an

INVERTED ORDER, this product is ITSELF a vector :" because it is

equal to the negative of its own conjugate.

318. On the other hand, if the number of the vectors be

even, the same reasoning proves that their continued product is

changed to its own negative, if this product be a line, and if the

order of the factors be inverted : thus, not only have we the for-

mula (compare 82) for two vector factors,

a/3=K./3a = -Pa, if3a = 7,

but also, in like manner.
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ajiyS = - Syfia, if 8y/3a = t,

a^ySf^ = - ZeByfia, if !^tBy[3a = »), &C.

And conversely, i/the continued product of any even number of

vectors be equal to the negative of the product of the same vec-

tors taken in an inverted order, then each of these two products

is equal to a line. I may just notice here, what you will have

no diflficulty now in proving for yourselves, as an extension of

the result of art. 192, that whatever the number offactors may
be, and whether they be vectors or quaternions, the reciprocal

of the product is always equal to the product of the recipro-

cals, taken in an inverted order.

319. Again, the property of being equal to their own conju-

gates is one which belongs (1 14) to scalars, and to no other quater-

nions ; for it is only when the angle of a versor vanishes, or be-

comes equal to two right angles, that no real change in the final

direction of the turned line, or versum (65), is produced by re-

versing the direction of the rotation (89), in order to pass to the

conjugate versor. We have then not only (compare 85) the for-

mula,

a|3=K./3a = /3a, if/3a = a,

but also

a/ByS = K . gyjSa = SyjSa, if S-y/Ba = b,

and in like manner,

ajSySt^ = ^eSyjSa, if this = c, &c.

;

a, h, c being here used to denote some scalar values. And con-

versely, ifa^ = /3a, or if ajSyS = Byjia, &c., then each of these

two equated products of some given and even number of vectors,

in which the order of the factors is inverted in passing from one

product to the other, must be equal to some scalar value, such as

a, or b, &c.

320. Some interesting examples ofcontinued products ofvec-

tors are supplied by the consideration of rectilinear /jo/^/^ons, ifi-

scribed in a circle, or in a sphere. And first, for the case of a

plane triangle, abc, we know (by 197, 198) that the product

CA X BC X AB, or (a - c) (c - h) (l3 - a),
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of its three successive sides, regarded as three vectors, is another

sector, whicli has the direction of the tangent at the first corner,

A, to the circle circumscribed about the triangle, or more parti-

cularly, the direction of the tangent to the segment abc of this

circle; namely, the tangent at in the annexed figure 66: so that

the product line thus found represents
Fig. 66.

the initial direction ofthe motion along

the circumference,from a through b to c. ^^d T'^^v

(Contrast with this the direction found /f \ '
/~"^~^ti

in 131, for the fourth proportional to -q'({) \ /T\

BC, ca, and ab.) Let d be a fourth
( Y """A-. ; / '

point upon the same circumference, \ / '\ \ ;
" /- . /

taken (as we shall at first suppose) be- Bvl \ \<iV //

^

tween c and a, on the continuation of ^^^i-^ /vOf^
the arc abc ; so that abcd is (compare A
fig. 27, art. 132) an inscribed and uncrossed quadrilateral; then

the continued product,

DA X CD X AC, Or(A-D) (D - c) (C - a),

by the same principle respecting an inscribed triangle, is con-

structed by a new line, which has the direction of the same tan-

gent at to the circle as before. If, on the other hand, a point d'

be taken on the arc abc itself, so that (compare fig. 28, art. 132)

the inscribed quadrilateral abcd' is a crossed one, then the mo-

tion along the circumference from a through c to d' is opposite

to that from a through b to c ; and the continued product

d'a X cd' X AC, or (a - d') (d' - c) (c - a),

is represented, as to its direction, by the opposite tangent, at', in

the recent figure 66. Multiplying, then, with the help of the

associative principle, the product of the sides of the first triangle,

ABC, by the product of the sides of the second triangle, acd, and

observing that the product oftwo opposite vectors,

AC X CA, or (c - a) (a- c),

is always (by 84) 2i positive scalar, we see that the continued

PRODUCT,

DA X CD X EC X ab, or (a - d) (d - c) (c - b) (b - a).
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ofthe FOUR SUCCESSIVE SIDES ofan uncrossed quadrilateral
IN A CIRCLE, abcd, is equal to a negative scalar ; because it

can only differ by a scalar and positive coefficient, or multiplier,

from the product at x at, or from the square of the tangential

vector at, which square (by 85) is negative. On the other hand,

for the inscribed but crossed quadrilateral, abcd', the product

of the four successive sides,

d'a X cd' X bc X ab, or (a - d') (d' - c) (c - b) (b - a),

may be shewn, by the same mode of reasoning, to be a positive

scalar ; because the product of the two opposite tangential vec-

tors, at and at', is positive. "We have, therefore (by 113), the

following values for the versors of these two quaternary pro-

ducts :

U . (a - d) (d - c) (c - b) (b - a) = - 1 ;

U . (a - d') (d'- c) (c - b) (b - a) = + 1

.

321. We see then that the continued product of the four suc-

cessive sides of a quadrilateral inscribed in a circle is always

equal to a scalar ; a conclusion which, geometrically considered,

contains a characteristic property of the circle (compare 200)

;

and, which as a symbolic result, appears likewise to be peculiar

(compare 198) to the calculus o£ quaternions. The formulae re-

cently written to express it may also (by 1 13) be thus trans-

formed (compare again 200) :

U.(D-c) (c-B) (b-a)=U(a-d);
U.(d'-c) (c-b)(b-a) = U(d'-a);

or thus

:

U . (c -b) (b - a) = U . (c - d) (a - D) = U . (c - d') (d'- a)
;

or finally thus

:

j^c-b^^c-d^^c-d'
D-A A-D

And under this last form, you will easily find that the result ex-

presses, in the notation of this calculus, the well-known supple-

mentary relation between opposite angles (abc, cda) of an un-

crossed quadrilateral in a circle, and the equally well known

relation oi equality between angles (abc, ad'c) which are in one

X 2
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common segment. See the curved arrows in the recent figure 66.

And the equality of the angle abc to the angle t'ac (between

the chord ac and the tangent at' to the alternate segment) may
be expressed by writing, as the calculus allows us to do, with the

help of the associative principle,

U.(c-b) (b-a)=U{(c-a).(a-c) (c-b) (b-a)j

= U . (c - a) (t - a) ; that is,

A-B' T-A

In several recent transformations, we have employed the princi-

ple, that the versor of the product ofany number offactors

(whether they be vectors or quaternions) is equal to the product

OF the versors ; which is an extension of the corresponding

result of art. 188, respecting the versor of a product oi two qua-

ternions, and may be expressed symbolically by the formula,

un=nu:

this latter being analogous to the formula Tn = IlT of art. 208,

which denoted the analogous extension of the result of 188, re-

specting the tensor of a product.

322. In the same figure 66, let e be a new point, on the arc

ABCD prolonged ; and complete the inscribed and uncrossed pen-

tagon, abcde. The ternary product,

ea.de. ad, or (a - e) (e - d) (d - a),

is a line in the direction of at ; multiplying this line, therefore,

into thequaternary product of the sides of the quadrilateral abc d,

which has been found to be a negative scalar,

(a - d) (d - c) (c-b) (b - a) < 0,

and remembering that the following product of two opposite

lines is positive,

(d- a) (a- d) >0,

we find, by the associative principle, that the following quinary

product of vectors,

ea DE . CD . bc . ab = (a - e) (e - d) (d - c) (c - b) (b - a),
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namely, the product oftheJive successive sides of the inscribed

and uncrossed pentagon abcde, is a line having the direction of

the opposite tangential vector, at'. Had we chosen to consider

either of the two inscribed and crossed pentagons, abcde', abcd'e,

in the same figure 6&, we should have found by similar reason-

ings, that the product of the five successive sides of each penta-

gon was equal to a line in the direction of the original tangent

AT itself, and not in the opposite direction. For an inscribed

hexagon, the product of sides would be found to be again a sca-

lar. And so proceeding, we might shew with ease that " the

product of the successive sides ofa polygon inscribed in a circle

is equal to a scalar, if the number of the sides be even; but to

a TANGENTIAL VECTOR, drawn at the first corner ofthe polygon,

if the number of sides be odd." It is worth noticing that in each

of these two cases the product remains unchanged (by 317, 319),

when the order of the factors is inverted.

323. Passing now from plane to gauche polygons, that is to

rectilinear and closed figures which are not contained in any sin-

gle plane, let us consider in the first place a gauche {ox bent)

QUADRILATERAL, ABCD, inscribed in a spheric surface. The
planes of abc and acd being now, by hypothesis, distinct, they

cut the sphere in two different circles, which may be conceived

to be projected orthographically, in fig. 67, into two ellipses, on

the tangent plane at a : and

the same two secant planes cut

also this tangent plane in two

different straight lines, at and

AU, neither coincident with nor
|

opposite to each other in direc-

tion, but touching respectively

the two circles (or the two el-

lipses) just now mentioned.

We may also conceive that these

tangents are so chosen as to touch the segments, abc, acd,

themselves, rather than the alternate segments of the two cir-

cles just now mentioned; and then (320) the two ternary pro-

ducts of vectors,

(a - c) (c - b) (b - a), and (a - d) (d - c) (c - a),

Fig. 67.
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will be lines, in the directions, respectively, of these two tan-

gents, AT and AU. Hence by a process the same in principle as

that of art. 320, and only slightly modified to meet the present

question, we find that the quaternary product,

(a - d) (d - c) (c - b) (b - a),

of the four successive sides of the gauche quadrilateral, diflFers

only by a scalar and positive coefficient from that quaternion

which is the product of the two tangential vectors; so that the

versors of these two products must be equal, and we may write

the following equation :

U.(a-d) (d-c) (c-b) (b-a) = U.(u-a) (t-a).

324. The radius oa (if o be the centre of the sphere) is of

course perpendicular to both the tangents, at and au ; it is evi-

dent, therefore, from our general principles respecting the multi-

plication of any two lines (88, 273) that the unit-axis of the

recent quaternary product must either coincide with, or be op-

posite to, the direction of this radius, accordinjj as the rotation,

round the radius prolonged, from au to at, is positive or nega-

tive; we may then write.

Ax . (a - d) (d-c) (c-b) (b - a) = + U (a - o).

With respect to the angle of the same quaternary product, con-

sidered as a versor or as a quaternion, it is equal, by the same

general principles, to the supplement of the angle uat at a, be-

tween the two tangents au, at ; or to the angle between at and

au' (ua prolonged through a) ; or finally, to the angle at a, upon

the surface of jthe sphere, between the two small circle arcs,

ABC and ADC, as suggested in the anne.xed

figure 68. We know then perfectly how to

interpret the continued product offour suc-

cessive sides of any gauche quadrilateral

:

namely, by circumsci'ibing a sphere about it,

and then proceeding as above. For the axis

of the product is a normal to this sphere at

the first corner a of the quadrilateral ; the out-

ward or inward direction of this normal being

determined, as above, by the character of a

certain rotation : and the amfe of the same U,

•u'
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product is the angle ofthe lunule abcda, if we agree to give this

name lunule to thejigure bounded (generally) by two portions of
smallcircles on a sphere (as here by abc and adc), which portions

may be greater than halves of those small circles. With respect

to the tensor of the product, it is of course still equal to the pro-

duct of the tensors, or to the product of the numbers which ex-

press the lengths of the four sides of the quadrilateral. When the

point D approaches indefinitely to the plane of abc, the inscribed

quadrilateral tends indefinitely to become a plane one ; and the

angle of the product of its sides, being still equal to the angle of

the lunule, tends to vanish for the case of a crossed figure, but to

become equal to two right angles for the case of an uncrossed

one ; and thus the results of 320, respecting a quadrilateral in a

circle, are reproduced as limits of more general conclusions, re-

specting quadrilaterals in a sphere.

325. If we pass from the gauche quadrilateral abcd to a

gauche pentagon, such as abcde, inscribed in the same sphere,

and draw a line av at a to touch the circle or rather the segment

ADE, this new tangential vector av will have the direction of the

vector which is equal to the ternary product,

(A- e) (e-d) (d-a).

Again, the following product of opposite lines is positive,

(d-a) (a - d) > 0;

and the ternary product,

AV X AU X at,

of three coplanar tangents to the sphere at a, is another line in

the same tangent plane ; hence the quinary product of the five

successive sides of the inscribed pentagon,

(a - e) (e - d) (d - c) (c - b) (b - a),

is a line, having this last mentioned diiection in the tangent

plane to the sphere at a. We may, therefore, write,

U . (a - e) (e - d) (d - c) (c - b) (b - a) =

U.(v-a)(u-a)(t-a);

and may construct the direction ofthe line, which is the value of

this quinary product, by means of a tangent aw at a to a new
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circle ; namely, to one situated (see the annexed figure 69) in the

same tangent plane to the sphere,

and cutting the lines at and av in

two points t' and v', such that the

joining line, or chord t'v', of this

new circle, may be parallel to the y'/

line AU, or to the plane acd. And

so proceeding, for hexagons, hepta-

gons, &c., inscribed in the same

sphere, and having their first corners

at A, we should always find reductions of the same general charac-

ter ; namely, to products of four, five, or more tangential vectors,

all situated in the plane which touches the sphere at a. But in ge-

neral it is easy to shew that not only for three coplanar lines, but

for any odd number of such vectors, the product is a line, in the

same plane ; and that not only for two, but for a7iy even number

of coplanar vectors, the product is in general a quaternion whose

axis ii perpendicular to the common plane. If then we inscribe

in a sphere a rectilinear polygon with any odd number of sides,

for example, a gauche heptagon Abcdefg, the product

(a - g) (g - f) (f - e) (e - d) (d - c) (c - b) (b - a)

of its successive sides will always be a line, constructed by a rec-

tilinear tangent to the sphere at the first corner a of the polygon ;

but if we inscribe in the same sphere a polygon with an even

number of sides, suppose a gauche hexagon, abcdef, then the

product of its successive sides,

(a - f) (f - e) (e - d) (d - c) (c - b) (b - a),

will be in general a quaternion, of which the axis will be nor-

mal to the given sphere at the point a, while the plane of the

same quaternion will be tangential to the same sphere at the

same point ; or at least parallel to the tangent plane at that

point, a distinction which, however, is unimportant in the present

theory.

326. The theorem respecting a pentagon in a sphere,

which was proved in the last article, namely, that the product of

its five successive sides is a line, or a vector, involves a property
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which is characteristic of the sphere, and suffices to distin-

guish thisfrom every other curved surface. In fact i/the
quinary product of the sides ab, . . . ea, be equal to any line aw,
so that

(a - e) (e - d) (d - c) (c - b) (b - a) = w - A

;

and if, as is allowed, we conceive the same three ternary pro-

ducts, as before, of sides and diagonals, to be constructed, in

lengths as well as in directions (see 198), by three other lines,

AT, Au, AV, which shall touch respectively the three circles abc,

ACD, ade, and shall give the three equations,

(a - C) (C - b) (b - a) = T - A,

(a - d) (d - c) (C - a) = U - A,

(a - e) (E - d) (d - a) = V - A,

we shall then, by the associative principle, have the expression,

^, J,-
(v-a)(u-a)(t-a)

(d - a) (a - d) . (c - a) (a - c)'

in which the denominator is a positive scalar (as being the pro-

duct of two such scalars), and therefore the numerator, like the

fraction, must denote a line. The three lines at, au, av must,

therefore, be coplanar ; because three lines which are not con-

tained in any common plane have (as has been shewn) a quater-

nion, but not a vector, for their product. The three lately men-

tioned circles, namely, abc, acd, ade, have therefore their tan-

gents at A contained in one common plane ; which (if their own

three planes be distinct) is evidently the tangent plane at a to

the sphere abcd, circumscribed about the two first circles, or

about the gauche quadrilateral, abcd. Thus the third tangent

AV must be the intersection of this tangent plane with the plane

of the third circle, ade ; and (/"this third circle could differ from

the circle in which its plane ade cuts the sphere abcd, we should

have two distinct circles, in one common plane, intersecting each

other in the two points a and d, and yet having a common tan-

gent AV, at one of those two points of intersection ; which would

evidently (by Euclid) be absurd. The circle ade is therefore

not distinct from the intersection of its plane with the sphere

ABCD ; or, in other words, this sphere contains that circle. That
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\s to say, the gauche pentagon abcde, of which the product of

the five successive sides has been given (in the present article)

to be a line, is, for that reason, a pentagon inscriptible in

A SPHERE : and its corners, a, b, c, d, e, are five HOMOSPHiERic

POINTS.

327. The existence therefore of such a homosphceric relation

between any five points a, b, c, d, e, or the condition required

for those five points being situated upon one common spheric

surface, may be expressed in this Calculus by the following

EQUATION OF HOMOSPHjERICISM :

AB . BC . CD . DE . EA = EA . DE . CD . BC . AB
;

where ab is used as a symbol for the vector b - a, &c. ; because,

by 317, if the product of five vectors remain thus unchanged

when the order of the factors is inverted, that product is itself a,

vector. And that other condition which is required for four

points A, B, c, D, being situated upon one common circle (or

rather on one circular circumfeience), or the general equation

OF concircularity, may (by 319, 320, 321) be written under

the closely analogous form :

AB . BC . CD . DA = DA . CD . BC . AB.

328. Indeed we might deduce this latter equation for the cir-

cle, from the former equation for the sphere. To shew this, con-

ceive first that ABCD is a gauche quadrilateral, and that e is a

point upon the circumscribed sphere, extremely near to a. The
vector DE, or the fourth side of the inscribed pentagon abcde,
will then almost coincide with the vector da, or with the fourth

side of the gauche quadrilateral ; but the vector ea, or the fifth

side of the pentagon, will be a very short line, almost tangential

to the sphere at a, but otherwise arbitrary in its direction, even

when the quadrilateral is given. Passing then to the limit, or

supposing that (according to a phraseology often used) the point

E is infinitely near to a, we see that the plane of the quater-

nion, which is equal to the product

da
. CD . BC . AB, or (a - d) (d - c) (c - b) (b - a),

must coincide with (or be parallel to) the tangent plane at a to the
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sphere abcd ; because its conjugate quaternion, ab . bc . cd . da,

when operating as a multiplier on a line e a of arbitrary direc-

tion in that plane, produces a line. This result is indeed iw-

cluded in what was found, at the end of art. 325, respecting in-

scribed gauche polygons with any even number of sides ; and, as

relates to the inscribed and gauche quadrilateral, it agrees with

what was shewn in 324, respecting the normal character of the

axis of the quaternion da.cd. bc .ab. Still it appeared to be

instructive to shew how this property of the quadrilateral could

be obtained as a limit from the property of the pentagon in a

sphere : and if we now suppose the gauche quadrilateral toflat-

ten gradually into & plane one, without ceasing to be inscribed

in a sphere, it will come at last to be inscribed in a circle,

through which indeflnitely many spheres may be conceived to

pass, so as to have this circle abcd for the common intersection

of all of them. There would, therefore, be found, in this way,

indefinitely many planes, intersecting each other in the tangent

to the circle at the point a, any one of which planes would have

as good a title as any other to be regarded as the (indeterminate)

tangent plane at a to the (indeterminate) sphere abcd ; and con-

sequently as the plane of the product, d a . CD . bc . ab. But the

only case in which the plane of the product of given and deter-

mined factors, all different from zero, and taken in a given order,

can (in this calculus) be indeterminate, is the case where this

product degenerates (122, &c.) from a quaternion to a scalar.

The scalar character (321) of the product of thefour successive

sides of a quadrilateral inscribed in a circle, is therefore found,

by these considerations of limits, and by the rules of the calculus

of quaternions, to be deducible from the vector character (325) of

the product of the five successive sides of a pentagon inscribed

in a sphere.

329. From what has thus been shewn respecting quadrila-

terals and pentagons in spheres, several consequences may be

drawn, a few of which shall be stated here. Suppose then, first,

that it is required to express that the point p is on the plane

which touches at a the sphere abcd; we may do this by express-

ing that the quaternion product of the four successive sides ab,

&c., of the quadiilateral abcd, when multiplied by the tangent
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AP, or that this latter tangent multiplied by the conjugate of that

quaternion, produces another line; or (see 317) that these two

multiplications conduct to one common result : that is, in sym-

bols, by the formula,

AB . BC . CD . DA . AP = AP . DA . CD . BC . AB.

Such, therefore, relatively to the point p, is one form of the

EQUATION or THE TANGENT PLANE tO the Sphere ABCD at A.

We see then that if the sphere hejinite and determinate, or in

Other words if the quadrilateral abcd be gauche, so that the fol-

lowing EQUATION OF COPLANARITY of thc^Wr pointS A, B, C, D,

AB . BC . CD = CD . BC . AB,

is not satisfied, the two following equations between the Jive

points A, B, c, D, E,

AB . BC . CD . DE . EA = EA . DE . CD . BC . AB,

AB . BC . CD . DA . AE = AE . DA . CD . BC . AB,

must be incompatible, except under the supposition that

E = A, or AE = a null line

;

that is (when abcd are not coplanar) the two last equations be-

tween the five points A . . . e can only co-exist under the suppo-

sition that E coincides with A. In fact the first of those two

equations expresses (by 327) that e is on the spheric surface

abcd; while the second equation expresses (by the present arti-

cle) that the same point e is on the tangent plane to the same

sphere at a. When we come to establish and develope, in the

next Lecture, the distributive principle of multiplication of qua-

ternions, we shall be able to confirm this result by a simple pro-

cess of calculation.

330. Again, let it be required to inscribe, in a given sphere,

a gauche quadrilateral, abcd, whose four successive sides,

AB, . . . DA, shall be respectively parallel to four given radii,

CI, OK, OL, CM. In the an-

nexed figure 70, let g be a

point of crossing of the arcs

IK, LM, and take two other P— - -/'..-T...'^^... p

points F, H, such that j.

" FG = -- IK, - GH = - LIM
;

II
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then either pole of the great circle fh may be taken as the sought
position ofthe first corner a of the quadrilateral to be inscribed.

For the quaternion da . en . bc . ab can only differ by its tensor
from the product of the four parallel radii, OM . OL . ok . oi, or
from the product of the two quotients of radii,

OM -r OL X OK -f- OI = OH -i- OF
;

the tangent plane at the sought point a is therefore ;?ara/M (by
328) to the plane of this last quotient of radii, that is to the

plane of the two radii of, oh themselves. And as to the ambi-

guity ofpole of the great circle fh, giving two opposite points

upon the surface, either of which may serve as the position of

the first corner a, it is evident that such an ambiguity ought, by
the very nature of the problem, to exist ; for if there be any in-

scribed polygon, ABC . . . z, and if we pass from each corner to

the point diametrically opposite thereto, upon the spheric surface,

we shall thus form a new inscribed polygon, a'b'c' . . . z', of which
the sides shall be respectively parallel to the sides of the old one,

a'b'
II
AB, b'c'

II
BC, . . . z'a'

II
ZA.

331. The process of the foregoing article, for inscribing a

gauche quadrilateral with sides parallel to four given radii, was

properly an analytic process ; in the sense that it assumed the

possibility of the required inscription ; or that it only proved that

if any quadrilateral could be inscribed, according to the given

conditions, then the first corner must have one of those two dia-

metrically opposite positions, A and a', which are the poles of the

great circle fh. A converse and synthetic process has still to be

assigned, which shall shew a posteriori, though still (if we think

fit) with the help of the principles of quaternions, that each of

the two points a, a', is in fact fit to be the first corner of an in-

scribed quadrilateral, abcd or a'b'c'd', which shall satisfy all the

conditions of the question. And for this purpose it appears to be

useful to consider here another problem, which is also otherwise

interesting, respecting rectilinear polygons in spheres : namely,

to assign an expression for the w"" radius, op„, belonging to a

system of n radii,

OPi, OP.j, . . . OP„,
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Fig. 71.

which are formed or derived in succession from a given initial

radius or, by inscribing a system of w rectilinear chords,

PPlj Pi Pas • • • Pm-l Pn,

respectively parallel to n given radii of the same sphere, which

may be thus denoted,

oil, 012, . . . oi„;

or to any other n given lines in space.

332. Consider for this purpose any two radii OA, ob, of a

circle (a great circle of the sphere), and draw, as in the annexed

figure 71, the diameter coc' parallel to

the chord ab ; draw also the diame-

ter bob': and let it be required to ex-

press ob, or its opposite ob', by means

of OA and oc (or oc'). Here, because a

conical rotation through two right an- Cl-

gles, round either oc or oc' as an axis,

would bring the radius oA into the

position ob', it results from the pre-

sent Lecture (arts. 290, 291) that this

radius ob' may be expressed as follows :

0b'= oc X OA -H oc = oc' X OA -1- OC'.

But OB is opposite to ob'; wherefore

OB = - OC X OA -f- OC = - oc' X OA -^ OC'.

Or writing for conciseness,

OA = a, OB = /3, OC = y,

the expression for /3 as a function of a and y is found to be

:

/3 = -ya7"'.

333. It is worth observing that this expression holds good,

whatever arbitrary length may be assigned to the radius of the

circle, or to the two equally long lines a and j3. The same

expression is valid also independently of the length of y, which

symbol may denote any line parallel to the chord ab, with either

of two opposite directions, or any portion of that chord. So that
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if AOB, in fig. 72, be any isosceles triangle on the base ab, and if

D, E, F be any points on that base,

or on its prolongations, we shall have ^'s* '^•

the expressions

:

OB = - AD X OA H- AD

= - AE X OA -^ AE = - AF X OA — AF.

334.
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on the n chords ppi, PiPg, &c., or on those chords prolonged

;

and let us write,

OAi = ai, OA2 = a?, . . . OAn = Off

Make also,

91 = ai- p,

g'2 = (o2-pi) ?1>

93 = ("3 - P2) <J2,

Qn = {an- pn-l) Qn-l >

we shall have the following system of expressions for the n suc-

cessive radii, from oPi to op^, or from pi to p„, considered as de-

rived (see the annexed fig. 73) in succession from the initial ra-

dius op or p, and from the n points, Ai to a„, through which the

n chords, ppi top„.iP„,ortheir prolongations,
. Fig. 73.

are to pass

:

"

^

pi^-qipqi-\

P2 = + 5'3|05'2"'j

/03
= - q^pq^i ,

Pn = {-y qnpqn'^ 5

this last expression being thus of the same form as that found in

the foregoing article.

336. We see then that whether the n chords pPj, . . . Pn-i Pn

be parallel to n given lines, or pass through n given points, there

is always a certain quaternion, q„, which can be formed by suc-

cessive multiplication of those n lines, or of n segments of the

chords parallel thereto, and which is such that the final radius p,,

itself, if w be even, or the opposite radius -pn> if w be odd, shall

admit of being derived from the initial radius p, by a conical ro-

tation (286, &c.) through double the angle of this quaternion,

performed round the axis thereof. In order, then, that the points

p, p,, &c., may be the corners of an inscribed and closed poly-

gon of n sides, or in order that the following coincidence of points,

or equality of vectors, may hold good,

p„ = p, or pn = p,

it is necessary and sufficient, if n be evrn, that the quaternion q„
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should either degenerate into a scalar, or else have its plane per-

pendicular to the initial radius p, or its axis coincident there-

with, 80 that the conical rotation may leave that initial radius un-

changed. And if the number n be odd, then, for the closure of

the polygon, it is necessary and suflBcient that the quaternion q^

should degenerate into a vector, perpendicular to the same initial

radius p ; in order that the reversal of this radius may be effected

by a plane rotation through two right angles : into which

plane rotation, or semi-revolution, the conical rotation through

2 Z. qn, round Ax . g^„, will under these conditions degenerate. In

symbols, for an even-sided polygon, the equation of closure

will be,

p = qnpqn'\ 01 pq„ = qnp;

which gives generally the parallelism.

Ax . qn II p,

with inclusion of that limiting case for which the quaternion be-

comes a scalar, and its axis becomes indeterminate. But for an

odd-sided polygon the equation ofclosure is,

P^-QnPQn.i, or pqn=^-q„p;

which can only be satisfied by supposing

qn = - Kg'n ± p.

And from the composition of qn as a product of n lines, which are

respectively parallel to or coincident with the n successive sides

of the closed figure, or at least with segments of those n sides,

it is evident that the general results of art. 325, respecting odd

and even-sided polygons inscribed in a sphere, are thus confirmed

and reproduced. For we see that the quaternion product ^„

either reduces itself to a tangential vector at p, or else is repre-

sented by a biradial (93, &c.) in the tangent plane at that point,

according as n is an odd or an even number.

337. It is easy now to prove, synthetically (or a posteriori)

by quaternions, as was proposed in 331, thaX either ofthe two

poles of the great circle fh in fig. 70, which vierefound analyti-

cally (or a priori) in 330, is in fact adapted to be the first corner

A of an inscribed and gauche quadrilateral abcd, whose sides

Y
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shall be respectively parallel to the four given radii drawn to the

points I, K, L, M, in the same figure 70. For if we start with

any point p upon the same spheric surface, and draw from that

point four successive chords,

PPl
II
OI, P1P2

II
OK, P2P3

II
OL, P3P4

II
OM,

then the radius 0P4 may be derived from the radius op by the

formula,

where the quaternion g'4, when reduced to its own versor, admits

(by 330, 334) of being thus expressed, with reference to fig. 70 ;

(74 = OH H- OF.

That is to say, the point P4 may be obtained from the point p,

by a rotation in a small circle, parallel to the great circle fh,

and through an arc PP4, which in direction is similar to, but in

number of degrees is double of the arc fh. Now not only will

such a rotation eifect an actual change in the position of every

Other point on the surface, except the poles of fh, but also it will

leave those two points unchanged ; so that if we set out with one

ofthem as the point a, and draw three successive chords parallel

to three of the given radii,

AB
II
01, BC

II
OK, CD H OL,

we shall have also this Jburth parallelism,

DA
II
om;

but if we start with any other point for a, the three first paral-

lelisms will not conduct to the fourth (P4 being then different

from p). We have, therefore, not merely confirmed the analysis

of 330, but also have supplied the synthesis which was required

in 331.

338. From what has just been shewn, it follows that, if we

start with any point a on the sphere, which is not one of the

poles of FH, in fig, 70, and drawbar successive chords, parallel

to the four given radii,

AB
II
01, BC

11
OK, CD

||
OL, DE

||
OM,

the point e thus obtained will not coincide with a. We may,
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however, _;o/m it to a by 2kfifth chords and so close the inscribed

pentagon, abcde; and may then draw &fifth radius, on, parallel

to the^iA side of this pentagon, or to the fifth chord just men-

tioned, so as to have

EA
II
ON.

But on account of the conical rotation by which the point e can

be derived from a (like P4 from p in 337), we see that this fifth

side or chord ea must be perpendicular to the axis of that rota-

tion, or parallel to the plane of the great circle fh ; and conse-

quently that the fifth radius on must terminate in a point n

situated somewhere upon that great circle. Now in fig. 70, art.

330, we have

n FH = '^ LM + ^ IK ;

and the arcs ik, lm are the first and third sides of the spheri-

cal or SUPERSCRIBED (not rectilinear and inscribed) pentagon,

IKLMN. Conversely, we might have started with an arbitrary

and inscribed gauche pentagon abode, and have derived from its

five successive sides the five respectively parallel radii, or the five

points I, K, L, M, N upon the sphere ; after which we might

have formed the arc fh, as in fig. 70, and have shewn, as above,

that the point n is situated somewhere upon that arc, or on its

prolongation. We arrive then at the foUov/ing graphic properly

of the inscribed gauche pentagon, which might however have

been deduced more directly from the equation of homosphctricism

(in 327), and maybe regarded as a geometrical interpretation of

that equation : ^^If, in a sphere, the five successive sides o/a7i

INSCRIBED gauche PENTAGON (abcde) be respectively parallel

to thefive radii drawn to the five corners ofa superscribed

SPHERICAL pentagon (iklmn), then the fifth corner (n) of

the second pentagon is situated somewhere upon that great

CIRCLE (fh) ofwhich a portion coincides with the arcual sum

(^ LM + ^ ik) ofthe FIRST AND THIRD SIDES ofthat sccond pen-

tagon ;" those sides being taken in a suitable order (third plus

first). And this relation between the directions of the five sides

of an inscribed gauche pentagon may also be regarded as a gra-

phic PROPERTY OF THE SPHERE ITSELF ; by whlch property that

surface (compare 326) is sufficiently characterized, and dis-

Y 2
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tinguished from all other curved surfaces. In fact this relation

ofdirections is for space and for the sphere, the analogue of

the well-known and elementary relation for the plane and for the

circle, between the directions of the sides of an inscribed quadri-

lateral, which is given in the third Book of Euclid. And accord-

ingly the last-mentioned relation may be deduced, as a limit, from

the former ; because (as we have seen in 328) the equation of

concircularity may be obtained, as a limiting form, from the

equation of homosphaericism.

339- After what has been said respecting inscribed polygons,

you can have no difficulty now in proving that if a gauche hep-

tagon, ABCDEFG, and a gauche hexagon, a'b'c'd'eV, be both in-

scribed in the same sphere ; and if the Jirst six sides of the hep-

tagon be parallel respectively to the six successive sides of the

hexagon,

AB
II
a'b', BC

II
b'c', CD

II
c'd',

DE
II

d'e', EF
II
e'f', FG

II
fV,

then the seventh side, ga, of the hexagon will be parallel to the

tangent plane to the sphere, at the first corner, a, of the hexa-

gon. If, then, we draw successively, from the seventh corner, g,

of the heptagon, six new chords of the sphere, respectively pa-

rallel to the same six successive sides of the hexagon, and in the

same order, namely,

GH
II
a'b', hi

II
b'c', IK

II
c'd',

KL
II
d'e', LM

II
e'f', MN

II
f'a',

we shall have, in like manner, the closing chord or^na/ side, ng,

o/the new inscribed heptagon, ghiklmn, parallel to the same

tangent plane at a'. And hence it follows evidently, that the

plane, agn, ofthe extreme and middle corners (first, seventh

and thirteenth) of the inscribed polygon of thirteen sides,

abcdefghiklmn,

is parallel to the same tangent plane, at the first corner

a' of the hexagon: because it contains two lines, or chords, ga,

NG (and of course also the third chord na), which two lines have

been seen to be parallel to that plane.

340. An obvious generalization of the reasoning in the fore-
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going article, conducts to the following Theorem:— «« If any
even-sided polygon of 2n sides,

Ai As . . . A2„,

be given as inscribed in a sphere ; and if, starting from any arbi-

trary point p on the same sphere, we draw In successive chords,

parallel respectively to the 2w sides of this polygon,

PPl
II
A1A2, P1P2

II
AgAs, . . . P2n-|P2n

II
Ao„Ai ;

and then again start from the last point v.^ thus obtained, and

draw In other successive chords, parallel to the same 2« succes-

sive sides of the given and even-sided polygon,

P8nP8n*l
II
AiAg, . . . P4n-lP4n

II
AqhAi ;

and finally join the new point P4„ to p: the plane ofthe extreme

and middle comers PP2„P4n, of the inscribed polygon ofAn+ 1

sides,

PP1P2 . . . P2n-lPSBP2n+l • • • P4n-lP4in

will be parallel to the plane which touches the sphere at thefirst

corner, K\, of the inscribed polygon of2n sides." For example,

we might assume n = 2 (instead of 3, which was its value in the

last article) ; and then we should have a parallelism between a

certain diagonal plane of an inscribed enneagon, and the tangent

plane at a corner of a gauche and inscribed quadrilateral.

341. One of the most important applications of the associa-

tive principle of multiplication is to the composition of coni-

cal ROTATIONS, whose axes are supposed (at first) to pass all

through one common point, which may be taken for the origin

of vectors. In fact, by 192, 286, and by the associative princi-

ple, we see that the following symbols are equivalent,

rqB{rq)-'^ = r.q'Qq-'^ . r"' ;

and that they both denote one common position, into which a

body B is brought, by either of the two following processes. The

first process, represented by the right hand member of the last

equation, consists in making this body B revolve successively,

through the angles 2 / 7 and 2 Z. r, round the two successive axes,

Ax . q and Ax . /•, which are both supposed to be drawn through
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or from the common origin o. The second process, represented

by the left hand member of the same equation, consists in making

the same body revolve round a single resultant axis, Ax . rq

(drawn from the same point o), through one resultant angle,

namely, 2 Z. . rq. The operation performed in this latter process

is therefore equivalent, as regards its effect, to the system

of the two successive operations, which are accomplished in the

former process. And thus any two successive andfinite conical

rotations, round two axes passing through one point, are with

the greatest ease compounded, by the multiplication of two

quaternions, into a third and single conical rotation, round an

axis through the same point o. And in like manner may any
number of such given successive and conical rotations be com-

pounded into one, with a (generally) determined axis and angle,

by first multiplying together, in the given order, the quaternions

q,r,s, . . . , which represent, by their axes and angles, the halves

of the given rotations, and then taking the axis and the doubled

angle of that quaternion product,

p = . . .srq,

which is obtained by the foregoing multiplication. For example,

by art. 286, and by the associative principle, the symbol

srq B (srq)'^

denotes that position into which the body B is brought, by three

successive conical rotations round the three successive axes.

Ax .q, Ax . r. Ax . s, all drawn from the origin o, and through

the three successive angles denoted by 2Aq, 2 Lr, 2 is; and the

composition of this symbol indicates that the same final position

of the body B may be obtained from the same given initial posi-

tion (whatev erthat may be), by a single resultant rotation round

the axis

Ax . ;? = Ax . srq,

through the angle

2ip = 2l.srq.

342. As an instance of the general correspondence, between

the multiplication of two quaternions, and the co7nposition of two
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conical rotations, let us consider first the following very simple

formula of art. 118 :

/3-T-a = ^xa-».

This formula gives, by taking the reciprocals (see 44, 192),

a-7-/3 = ax/3-i;

and therefore, by the associative principle,

(j3-Ha)p(aH-/3) = /3.a-Va./3-'.

Hence, on the plan of the foregoing article (341), we may infer

that a conical rotation through two right angles round a'^, or

(what comes to the same thing) round the oppositely directed

axis a, being followed by another such rotation through the same

amount round /3, produces on the whole the same effect as a co-

nical rotation round the axis of the quaternion quotient j3 -h a,

through the double of the angle of the same quaternion, that is,

through twice the angle between a and |3, whatever the original

direction of the operand vector p may be. Or if, as in the an-

nexed figure 74, we first reflect any arbi-

trary point p upon the sphere, with respect

to a given point A, till it takes the position q/

Q, and then again reflect the point q with Ti' b/Tj"-"^a p'
i

respect to another given point b, till it ac- g\/^.......J.. .J\J'

quires the new position r, so that

^ PA = r. AQ, aQB = aBR;

the passage on the spheric surface, from the first position p to the

third position r, may be made along an arc of a small circle, pr,

which in direction is similar to, and in number of degrees is

double of, the arc of a great circle ab. We have already had an

example of the truth of this theorem in art. 292, where the points

E, F, D, of fig. 40, art. 224, took the places of the recent points

p Q R. But lest it should appear that this case was in some

way a particular one, on account of the comparative complexity

of fig. 40, and the number of other considerations which that

figure was designed to illustrate, let us conceive that, in the

simpler figure 74 of the present article, the arcs pp', qq', rr',

are perpendicular to the great circle through a, b, and are let
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fall thereon as such from the three points p, q, r. We shall

then have evidently, by the construction, the two arcual equa-

tions (217),

'^ p'a = ^ AQ', r\ q'b = /> BR'
;

and the three perpendiculars pp', qq', rr', will at least be equally

long, although not arcually equal, in the same full sense of art.

217. Hence the points p and r are equally distant on the sphere

from the positive pole of the arc ab ; and, therefore, we can pass

from the former point p to the latter point r, by a rotation round

that pole, along an arc of a small circle pr (represented In the

figure by a dotted line), which is parallel to the arc of a great

circle ab, having also the same direction therewith, and the

same number ofdegrees as its own projection p'r' thereon, which

projection is seen to be the double of the same arc ab,

/> p'r'= 2 <^ ab.

The theorem of the present article is therefore proved, or con-

firmed, by this simple geometrical reasoning ; and you perceive,

of course, conversely, that any proposed rotation pr in a small

circle, of any given amount and round any given positive pole,

may be decomposed into two rotations, performed along two
small semicircles ; or still more simply, into two successive

REFLEXIONS with respcct to two points a, b, assumed anywhere

on a great circle round the given pole, at an interval ab which in

direction is similar to the proposed conical rotation, and in amount

is equal to the halfof it.

343. Consider next the fundamental multiplicational identity

of art. 49,

7-a = (y^^)x(/3^a).

On the general plan of art. 341, we can infer from this equation,

or may interpret it as signifying, that a conical rotation repre-

sented by the double of any arc of a great circle ab, being fol-

lowed by a second conical rotation which is represented in like

manner by the double of any other and successive arc, bc, of

another great circle, produces on the whole the same effect as

that third and resultant conical rotation, which is (on the

same general plan) represented by the double of the arc ac;
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that is, by the dodblb of the sum of the halves ofthe arcs

which represent the two component and conical rotations.

When a conical rotation is thus said to be represented by a given

arc of a great circle, we are to understand that the axis and

angle of the rotation in question are such, that they would cause

the initial point of the arc to revolve, in one plane, till it should

take the position of thefinal point of the same given represen-

tative arc. This being clearly understood, there is no difficulty

in confirming, by a simple geometrical diagram, the theorem of

composition just now stated (which perhaps may have long been

known), with the help of what was established in the preceding

article. For let abc, in the annexed figure 75,

be any spherical triangle, and p any point upon

the sphere. Reflect p with respect to A, to the A

position Q ; and again reflect q to r, with re- / L,

spect to the point b. An arc of a small circle, r ^p^^:^^^.-^̂ ^-g_

PR, can (by 342) be drawn, which shall be pa-

rallel to the arc of a great circle ab, and simi-

lar to it in direction, but double of it in amount. Thus r is

the position to which we pass from p, in virtue of ihe first com-

ponent and conical rotation, considered in the present article.

To accomplish the second component conical rotation, repre-

sented by the double of the arc bc, we may, in like manner, first

reflect r, with respect to b, back again to the position q, and

then reflect q, with respect to c, to the new position s. On the

whole, then, the point which was at p will have been brought to

s (through Q, R, and q again, as intermediate positions on the

sphere). But it is clear that this complex process has (in a cer-

tain sense) geometrically eliminated the point s. For we may

pass, without using that point B (or r) at all, from the position

p to the position s, by first reflecting p to q through a, and then

reflecting q, through c, to s. But, by the foregoing article, the

process of double reflexion last described is equivalent to a

single conical rotation, represented by the double of the arc

AC This one rotation is therefore seen, by this geometrical con-

struction, to be the resultant of the two successive rotations, re-

presented by the doubles of the arcs ab and bc ; which illustrates.



330 ON QUATERNIONS.

and (if it had been necessary) would confirm, the theorem stated

at the commencement of the present article.

344. It is extremely easy to infer, from what has just been

proved, the following theorem, namely, that three successive

and conical rotations, represented by the doubles of the three

SUCCESSIVE SIDES OF ANY SPHERICAL TRIANGLE, produCC OH THE

WHOLE, NO EFFECT. In symbols, on the plan of art. 341, this

theorem is expressed by the identity, written here in a fractional

form,

Geometrically considered, and with reference to the recent fig.

75, it comes simply to observing that we can pass back from s to

p by reflecting s to Q through c, and q to p through a. Fig.

40 might also be used to illustrate this, and several other con-

nected conclusions.

345. You can have no difficulty now, in interpreting simi-

larly the more general identity, for any number of successive

quotients multiplied, which may be thus denoted

:

a K I

K I 6 t) 7/3 a

Dor in proving that it expresses (on the same plan of art. 341)

that whatever spherical polygon may be pictured, in the annexed

figure 76, by abcd . . . g, the

double of the rotation ab, fol- ^'8- 76.

lowed by the double of the rota-

tion BC, followed again by the

double of the rotation cd, and so

on, till we come at last to the

double of the rotation ga, re-

stores the revolving or rotating

point p to its original position

In fact the rotation represented

by 2 ^ AB would be equivalent

to reflecting any point f, on the

spheric surface, first through a to q, and next through b to R

;

the rotation 2 ^ bc would be equivalent to reflecting r back to
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Q, and then reflecting q through c to s ; this last point s would be

brought by the rotation 2 '^ cd to the position t, namely the re-

flexion of Q with respect to d ; and so on, till after arriving at the

reflexion w of q, relatively to the last corner g of the given po-

lygon, we should be brought back from w to the original posi-

tion p, by the final rotation 2 /-> ga ; because p is the reflexion

of Q, with respect to the first given corner a. (Arcs of small

circles are denoted in the present figure by straight and dotted

lines ; arcs of great circles by lines without dots, but still, for

simplicity, straight.)

346. Again consider the equation of art. 280,

-f^oF^- 1,

which gives,

and, therefore, by the associative principle, and by the property

(192) of the reciprocal of a product,

In interpreting this equation, in connexion with fig. 56, of art.

280, on the plan of art. 341, we are led to introduce, what it is

extremely easy to form, the conception of spherical angles as

REPRESENTING CONICAL ROTATIONS. In fact, if ABC be any

spherical angle, it is natural, when once we combine the concep-

tion of such an angle, with the conception of a conical rotation,

to regard the latter as being the operator which would change,

by a plane rotation, the tatigent to the side ba of the given angle

ABC, to the tangent to the other side bc of the same spherical

angle. Now the last written formula of the present article is

easily seen to express, that if the rotation round the pole a (in

the lately cited fig. 56), through the angle xir, be followed by a

rotation round the pole b (in the same figure) through an angle

= i/TT, the result will be equivalent to a rotation round the pole c,

through an angle =-ZTr. But the angles of the triangle abc (in

the same figure) were :

A = ^xn; B^^yir; C = i^7r.

If then, for any spherical triangle, abc, the double of the rota-
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tion represented by the angle cab be followed by the double of

the rotation represented by the angle abc, the result will be the

double of the rotation represented by the angle acb (which latter

is the opposite of the rotation bca).

347. To shew this geometrically, let d and e be chosen so

(see the annexed figure 77) that we may
have the following equations between an-

gles, /K

DBA = ABC = CBE, CAB = BAD, ACB = BCE
; / V\\

and let us take as two operand points, to / ,,,-^y^~'~A^\
be separately and successively employed, ^^t j (^-^^
the vertex c, and the base corner a, of the ^\i^^^
spherical triangle abc. Operating then

first on the vertex c, by the two successive rotations,

2x CAB, and 2 x abc,
or by

cad and dbc,

we change c first to d, and then back to c again ; but such

would have also been the final result, so far as the operand point

c is concerned, of any rotation whatever round that point c itself

as a pole ; and, therefore, in particular, such would have been

the result, relatively to this operand c, of the rotation repre-

sented by

2 X ACB.

Again, as a new and independent process, let us begin with the

base-corner A as an operand point. The first component rota-

tion,

2 X CAB,

being performed round this point a as a pole, leaves its position

undisturbed. The second component and conical rotation, re-

presented by

2
A

X ABC,

transfers the new operand point a to e. But it is clear, from the

figure, that the same transference might also be eflected, by a ro-

tation round the vertex c as a pole, represented by
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2
A

X ACB.

The theorem of the last article is therefore seen to be true, for

the TWO different operand points, c and a : whence it is easily

seen, by the general conception of rotation, to be valid for all

others also. (An inspection of figs. 52, 57, of articles 269, 281,

may serve slightly to illustrate this result.)

348. An important although particular case, of the general

theorem of rotation contained in the two last articles, is illus-

trated by fig. 43, of art. 242 : namely, the case where the trian-

gle ABC is triquadrantal. In such a ease, because a conical ro-

tation through a doubled right angle is equivalent to a reJlexio7i

with respect to the axis or pole, we may expect to find from the

general theorem, that "two successive reflexions, relatively to

TWO rectangular axes, are equivalent to a single reflexion, with

respect to a thikd axis perpendicular to both theformer." And
accordingly we see in fig. 43, that if e be first reflected with re-

spect to A to F, and if f be then reflected with respect to b to d,

the final result is the same as if e had been at once reflected with

respect to c (to d). It is clear also that, in this case, of tri-

RECTANGULARITY, three successive reflexions (with respect to

any three rectangular axes), produce, on the whole, no change:

a conclusion which answers geometrically to the formulae (210),

ijk = - I, kji=+ 1

;

because these give, for any operand vector p, the identities,

ijhpk'^j'^ i'^ = kjipi'^j'^k'^ = p.

349. More generally, from the results of the two foregoing

articles, or from the lately cited formula of art. 280, namely

which gives the equation,

we may infer, on the same general plan of interpretation (341),

that three successive rotations, represented respectively by the

DOUBLES of three successive angles ofany spherical triangle, for

instance (see fig. 56), by

2cAB, 2abc, 2bc;a,
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produce, on the whole, no effect. And it is easy to generalize

still farther this result, so as to prove the following theorem

:

" If a body B be made to revolve through any number ofsucces-

sive andfinite rotations, represented as to their axes and ampli-

tudes by the doubles of the angles, ai, Aj, . . , a„, ofany

sphericalpolygon, this body B will be brought back, hereby, to

its own original position." You will find, by the printed Pro-

ceedings of the Royal Irish Academy, that I stated this The-

orem (with only a slight difference in its wording), at a general

meeting of that Academy, in November, 1844, as a consequence

of those principles respecting Quaternions, which had been com-

municated to the Academy by me, about a year before. The
theorem, at that time, appeared to me to be new ; nor am I able,

at this moment, to specify any work in which it may have been

anticipated : although it seems to me likely enough that some

such anticipation may exist. Be that as it may, the theorem

was certainly suggested to me by the quaternions ; nor can I

easily believe that any other mathematical method shall be found

to furnish any simpler form of expression for the same gene-

ral geometrical result. For there is little diflBculty in seeing

that the theorem coincides substantially with the conclusion of

art. 345 ; and may, therefore, be expressed in this calculus by
the same identity,

a K ^ y (^ _ 1

K I y l^ "

350. But it is worth while to inquire what will happen, if

instead of compounding, as in some recent articles, rotations re-

presented by the doubles of the sides of a spherical triangle, or

polygon, we compound rotations represented by the sides them-
selves of the figure; and with respect to this inquiry, the Cal-

culus of Quaternions has conducted to results which, although

not very difficult otherwise to prove, appear to me less likely to

have been anticipated.

It has been shewn, in the present Lecture (arts. 258 to 263),

that the product

of the square roots of the successive quotients,
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28-', tS-i, Sb-\

of the radii od, of, oe, drawn to the three comers of a spherical

triangle dfe, is a quaternion of which the angle is equal to half

the spherical excess of that triangle,

while the axis of the same quaternion q is directed to orfrom the

corner d,

Kx.q = ±^,

according as the rotation round od, from of towards oe, is po-

sitive or negative. Hence, by our general principles respecting

rotations, if q still denote the recently mentioned product of

square roots, the symbol

qpq-^, or q'Qq-\

denotes the position into which the vector p or the body B is

brought, when it is made to revolve round ± S as an axis, through

an angle expressed by

D + E^F-tt;

that is, through the whole spherical excess of the triangle

DFE (and not through the halfof that excess).

351. But also, by the associative principle of multiplication,

we have

qpq-'^^p",

if we make

p"=(eK-')ip{t:r')i,

p"' = (ga-i)ip"(£S-i)*-

Hence (compare 288), the recently described rotation round

+ OD, through this whole spherical excess of the triangle dfe, is

equivalent to the system of three successive and conical rota-

tions, represented respectively by the three successive sides of

that triangle,

df, fe, ED :

a result which appears to me interesting. It may also be stated
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thus, if we adopt the phraseology (218, &c.) of sums of arcs:

" The arcual sum,

^AED + ^'NFK + i'> DF,

of the HALVES of the three successive sides ofa spherical trian-

gle DFE, is an ARC, which has thefirst corner d ofthat triangle

for its positive or negative pole, according as the rotation round

D from F towards e is positive or negative ; while the length of

the same sum-arc represents the spherical semi-excess of the

triangle."

352. To illustrate this conclusion geometrically, vie may ob-

serve first that the three successive rotations, represented by the

three successive arcs df, fe, ed, produce evidently nofinal effect

on the point d ; since they merely transfer that point upon the

spheric surface, first to f, then to e, and then back to the old posi-

tion D again. Whatever finite rotation of a body, or of a system

of vectors all drawn from the centre of the sphere, may be the joint

or combined result of these three successive rotations, the resul-

tant rotation so obtained must therefore have the point d for one

of its poles. Again, it is clear, from what has been shewn in re-

cent articles (342, 343), that if, as in fig. 40 (art. 224), the sides

DF and FE of the triangle dfe be bisected respectively in the

points B and a, then, not merely for the point D, but also for any
other operand point on the same spheric surface, the combined
effect of the two rotations, represented by the two successive

arcs df and fe, is equivalent to a system of two successive re-

flexions of the operand point in question, first with respect to b,

and afterwards with respect to A. That is to say (see again art.

343), " the system oftwo successive rotations represented by the

two successive sides df, fe ofany spherical triangle, is equiva-

lent to a single rotation, represented by the double (2 -^ ba) ofthe
arc which is the common bisector ofthose two sides." This sys-

tem of rotations would therefore carry, for example, the point m,

of the recently cited figure 40, to that other position m', which
was spoken of in arts. 229, &c. ; or in the astronomical illustra-

tion used in those articles, it would, on the whole, transport a

point of the celestial sphere from the position Virgo to the posi-

tion Scorpio. The remaining rotation represented by the arc
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ED, would then carry the same moveable point backwards in right

ascension, till it came to a position m\ which should be situated

on the arc of north polar distance km prolonged, but should have

the same south declination as m', that is as Scorpio (or what is

called ihejirst point thereof) : this new point m' being such as to

satisfy the arcual equation,

/\ MN = r\ Nm\

and therefore also such that

^ mm' =2 '-' MN.

But MN was seen (in art. 258) to represent half the spherical

excess of the triangle dfe ; therefore mm* represents the whole

of that excess. And the positive pole of this new arc mm' is the

point D : the theorem of the last article is therefore, in all re-

spects, confirmed.

353. You are, no doubt, familiar with the well-known theo-

rem, so easily and elegantly proved by lunes, and by the value

of the whole surface of the sphere, that the area of a spherical

triangle is proportional to the spherical excess, and that it has

th.e same numerical measure, when units are suitably chosen

:

the excess, when treated as an arc, bearing the same ratio to the

length of the radius, which the area of the triangle bears to the

square upon that radius. And you see that this justifies us in

now asserting, that three successive conical rotations, repre-

sented by the three successive sides of any spherical triangle (and

not now by the doubles of those sides), compound themselves

into a rotation round the first corner, which is (on the plan just

mentioned) numerically equal to the area of the triangle. Nor

is there any difficulty in extending this result, so as to meet the

case 6i any other spherical polygon. Thus in the case of the

pentagon abcde, of fig. 78, the five

successive rotations represented by

the arcs or sides, ab, bc, cd, de, ea,

are equivalent to three sets of three

rotations,

AB, BC, CA ; AC, CD, DA;

AD, de, EA
;
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each set being represented by three successive sides of a trian-

gle, with A for its first corner. Hence, by the three last articles,

any revolving body B, or vector op, is made hereby to revolve suc-

cessively round this point A as a pole, or round the radius oa as

an axis, through three successive amounts of conical rotation,

equivalent to, or measured by, the respective areas of the three

spherical triangles, abc, acd, ade, into which the spherical pen-

tagon has been divided, by the diagonals, ac, ad ; and it is clear

that a similar process might be applied to any spherical polygon.

We are then entitled to infer the following Theorem, which was

communicated by me to the Royal Irish Academy in January,

1848 :
—" If a solid body" (or system of vectors) " be made to

revolve in succession round any number of different axes, all

passing through one fixed point, so as first to bring a line a into

coincidence with a line j3, by a rotation round an axis perpen-

dicular to both ; secondly, to bring the line /3 into coincidence

with a line -y, by turning round an axis to which both j3 and y
are perpendicular ; and so on, till, after bringing the line k to

the position X, the line X is brought to the position a with which

we began ; then the body will be brought, by this succession of

rotations, into the same final position as if it had revolved round

the first or last position of the line a, as an axis, through an an-

gle of finite rotation, which has the same numerical measure as

the spherical opening of the pyramid (a, j3, 7, . . k. A) whose

edges are the successive positions of that line." For, by the

^^ spherical opening ofa pyramid," is understood that portion of

the area of the unit sphere, described about the vertex as its

centre, which is bounded by the spherical polygon, whose corners

are the points where the spheric surface is met by the edges of

the pyramid.

354. In symbols, this theorem comes to the following, which

it may be sufficient to state for the recent case of the pentagon :

if q denote that quaternion which is the product of the succes-

sive square roots of five successive quotients of vectors,

'=)*
(i)* (D' iS"

''

where
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a = A-0, /3 = B-0, ..£ = E-0;

and if the rotations round a from /3, 7, B, respectively, towards

y, S, e, be positive ; then

Tq=\; Ax.q = a; ^q = i{A+ B+ C+ D + E-Sn);

where A, B, C, D, E denote the five internal spherical angles at

the corners of the pentagon abode. Any changes of the lengths

of the vectors, n, (3, -y, 8, i, will not affect this theorem, at least

if we write

Ax.9'= Ua.

If instead of a pentagon, we take a polygon of n sides, it will

evidently be (re - 2) w, instead of Stp, which will have to be sub-

tracted, before halving, from the sum of the angles. And if any

one of the rotations round the first corner, from any other corner

towards the one which succeeds it, in the order of passage along

the perimeter of the polygon, be negative, the corresponding

semi-excess or semi-area of the triangle, whose corners are those

three points, is also to be treated as negative, in the summation.

With these precautions we may assert generally, that the arcual

SUM (218) ofthe halves ofthe successive sides, o/"any closed

polygon on the unit-sphere, is equal to an arc, whose pole is at

the FIRST corner of that polygon, and whose length repre-

sents the SEMI-AREA.

355. We may even conceive, as a limit, that the number of

these sides is infinitely great, while their lengths are infinitely

small, or that the polygon becomes an arbitrary but closed curve

upon the sphere; and then the arcual sum of the halves of

ALL the successive elements of the perimeter will still, in a

perfectly intelligible and definite sense, represent the semi-

area OF THE FIGURE. Hence also follows, on the symbolical

side of this whole theory, a mode of conceiving, in an extensive

class of cases, a (generally) definite value, for the product ofan

infinite number of square roots of quaternions, each infinitely

little differing from unity, and succeeding each other by a deter-

mined law ; namely, in such a way that, in the class of cases here

considered, the product of all those successive quaternions them-

selves is unity; just as (compare 307) ihc sum of all the suc-

z2



340 ON QUATERNIONS.

cessive elements themselves (though not the sum of their Aa/yes),

for the perimeter of any closed figure, vanishes. And on the

physical or rather the geometrical side, so far as regards the ge-

neral theory of compositions ofrotations, we arrive (on the plan

of recent articles) at this remarkable theorem, that the infinitely

many infinitesimal and cortical kotations, represented by the

successive elements {themselves now, and not their halves) of

the PERiMETEK o/"any closcdfigure on a sphere, compound them-

selves into a SINGLE resultant and finite rotation, represented by

the TOTAL AREA of the figure; it being still understood that ele-

ments of this area may become negative. It would also be easy,

if it were thought useful, to transform most of the results of the

few last articles into others, which should employ external angles,

and their halves, instead oi sides and half sides of a polygon.

350. Although we know that the product and sum,

--k • 3nri ^ CA + A RC + ^ AR,
7P "

are respectively equal to unity and to zero (compare 344, 307),

yet on account of the general non-commutaliveness (304, &c.) of

the operations of multiplying quotients (or quaternions), and of

adding their representative arcs, we are not entitled to infer that

the same values hold good, for this other quotient, and this other

sum

i3 7 « 1— -~ — , and '^ AH + 'v Hc + ^ CA.

"P 7

It is, therefore, worth while to inquire, what quaternion is equal

to the former product, and what arc is equal to the latter sum.

And it is easy now to answer these questions, without construct-

ing any new diagram, if we merely conceive the point m\ de-

scribed in the recent art. 3,52, to be introduced into the often

cited fig. 40, of art. 224 ; and if we at the same time conceive

that A and b are reflected, with respect to c, to new positions

which we shall denote by a' and b' ; in such a manner that we

shall not only have the equation of 352,

^ MN = ^ NM\

but also these two other equations.
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For this being understood, we see that to add the arc bc or its

equal cb\ as aprovecCor arc (217, 218), to the vector arc ca or

a'c, answers to going, on the whole, along the transvector arc,

/^ a'b'= a bc + /n ca.

(Compare fig. 37, art. 219.) But from the position assigned to the

point m', we have the equation (see again fig. 40),

r\ a'b^ = r\ M*L.

Adding then to this as a new vector arc, the new provector arc

(compare 224),

^ AB = ^ LM,

we go on the whole from m^ to m, or move (compare again 352)
along th.\% final transvector arc, representing that ternary sum
which was inquired of in the present article:

r\ K^ + r\ BC + r\ CA = 'v M^M = 2 ^ NM.

That is, we move along an arc of which the point d (in fig. 40) is

the negative pole, because this point d is (by 225) the positive

pole of the arc km, and, therefore, also of the arc mn; and the

arc 2 /^ NM, along which we thus move, represents, in amount,

the area of that triangle efd whose sides are bisected respec-

tively by the corners of the triangle arc: because (by 258) the

arc MN, or the angle mdn, represents the semi-excess of the tri-

angle whose sides are so bisected.

357. Knowing thus perfectly what arc (namely, m'm, or

2nm) is equal to the ternary sum of arcs, which was proposed

for discussion in the present article, it is easy to infer (as also

proposed therein) what quaternion is equal to the connected

and ternary product of quotients ; namely (see again 258), the

following :

/3 7 5. ^ (i^

And in fact we might have more rapidly arrived at the same re-

sult, with the help of the associative principle of multiplication.

For by treating (for simplicity) a, /3, y, asunit vectors, so that

2
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we have

but the fourth proportional jia-'y, to a, /3, y, was shewn in the

Fifth Lecture, in connexion with the above cited fig. 40, to have

its axis directed (225) to the point d, and to have its angle (227)

equal to the supplement of the semi-sum of the angles of the tri-

angle DEF ; that is (compare 258), to the complement of the half

spherical excess ; or finally (353), to the complement ofthe semi-

area of that triangle. H,ence, by the Fourth Lecture, the square,

namely ((5a'' yY, of the same fourth proportional, is a quaternion

which has still its axis directed to d, but has its angle equal to

the supplement of the whole splierical excess, or to the supple-

ment ofthe total area of the same spherical triangle def. But

since we are to take the negative of this square, in order to ob-

tain the sought quaternion

^y a

a^y
we must (by 183) reverse the axis of that square, and take the

supplement of the angle thereof. And thus we are led again to

conclude, that (under the conditions of fig. 40) the lately written

ternary product is a quaternion which has its axis directed away
from D, or has d for its negative pole ; while its angle is simply

equal to the total spherical excess, or is equivalent to the total

area of the triangle efd, whose sides ef, &c., are bisected (as

above) by the corners, a, &c., of the given triangle abc. And

hence we may (on the plan of 341) infer the following theorem

ofrotation, with which we shall, for the present, conclude our

account of the applications of quaternions to theorems of this in-

teresting class :
—" If a vector p, or body B, be made to revolve

in succession, through three finite and conical rotations, repre-

sented respectively by the symbols,

2 r, CA, 2 /^BC, 2/-> AB,

or by the doubles ofthe three sides of a spherical triangle, abc,

taken in an inverted order, as third, second, and first; and if ano-

ther triangle def be so constructed, that the sides ef, fd, de,
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respectively opposite to its three successive corners d, e, f, shall

be bisected by the three successive corners a, d, c, of the old or

given triangle ; then the vector or body (p or B) will, on the

whole, have revolved round the corner d of the new triangle, as

a negative pole, or round the radins od' which is drawn to the

diametrically opposite point upon the sphere, as round a positive

axis, through an angle which is numerically equivalent to the

DOUBLED AREA of the Same new triangle, def." Indeed this

theorem (like some others of recent articles) has been above de-

duced with a reference to figure 40, in which the sides of the

triangle abc were supposed to be each less than a quadrant: but

you will find no diflBculty now in adapting the reasonings and

their results, to cases in which this particular condition is not sa-

tisfied.

358. It may have seemed remarkable, that in arts. 295 to 301

we treated the proof oi the associative principle, for the multipli-

cation of any three versors, as depending on the deduction of one

arcual equation from five others ; whereas, in art. 302, we made

the proof of the same principle depend on the deduction of three

equations between angles, from three other equations of the same

sort. However, a little consideration shews that this diiFerence

is only apparent, so far as respects the numbers of the things

given and inferred; and that^r arcs, as well asfor angles, we

may prove the associative principle, by deducing three equa-

tions from three others. In fact, after representing, as in art.

294, and fig. 58, the six versors q, r, s, rq, sr, and s . rq, by the

six arcs ab, bc, ef, ac, 91, and df, respectively, the theorem

which was to be proved, or the associative equation sr.q = s. rq,

may be thus expressed, in the notation of sums of arcs :

/-> Gl + ^ AB = -^ DF.

Here, it may be considered that there are given us, by construc-

tion, the three double co-arcualities (each involving /owr points

upon the sphere),

DAEC, CHBG, and EHFI,

together with whatever additional information is contained in the

three equations,

-~AC=-DE, -BC = "GH, -EF='-HI,;
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that is to say, in the three middle equations of the five which

were regarded as the data in art. 295. And the theorem to be

proved may be thus stated : that if we determine three additional

points, K, L, M, so as to satisfy the three other double co-arcuali-

ties (see the general construction for arcual addition in 217),

AKBL, GLIM, DKFM,

and suitably distinguish each of these three new points from the

diametrically opposite point upon the sphere, we shall have a/so

the three arcual equations,

"AB = -KL, ^GI = '-LM, ^DF="KM;

namely, the tico other given equations of 295, and the one sought

equation of that article. In other words, the six double co-ar-

cualities being now supi'dsed to exist, we are to shew that the

three last equations between arcs are consequences of the three

others, which were written a little before them in the present

article. And this inference, of the three last arcual equations

from the three others of the same sort preceding tliem, under the

six conditions lately indicated of double co-arcuality, may be es-

tablished, not only by the doctrine of spherical conies, in a way
differing little from that of art. 296, but also by a more elemen-

tary process, with the help of the figures used in arts. 298 to

301, through a modification of the method of those articles which

may be briefly described as follows.

359. The constructions of 298, 299 being retained, we may
prove, as in those two articles, with the help of figs. 59, 60, that

the plane of the great circle glim, in fig. 58, touches at o the

diacentric sphere opqr, in virtue of the two given equations, be-

tween the arcs bc, gh, on the one hand, and ef, hi, on the other.

The other given equation, between the arcs ac, de, will shew,

by fig. 62, that the four points p, q, r, s, are concircular, on ac-

count of the parallelisms of PQ,RQ,ps, RS to oc,OE, OA,OD, if sbe

now defined to be the point where the radius ok prolonged meets

the plane pqr ; and, therefore, W\\\ prove that this point s is also,

with this new definition of it, what it was before defined to be, in

the method of art. 300: namely, the second intersection of the

line OK with the diacentric sphere opqr. The three given equa-

tions having been thus made use of, we may infer i\\Q first of the
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three sought equations, namely, that between the arcs ab, kl,

from a parallelism and a tangericy, with the help of fig. 61, of art.

300 ; although in the process of that former article, the equa-

tion as well as the tangency was given, and the parallelism was

thence to be inferred. Again, if we retain the definitions of the

points p', q', r', s', which were given in 298 and 300, those points

may easily be proved, as before, to be on one common sphere,

and therefore on one common circle, because they still are, by

construction, upon one common plane; which proof may still be

made to depend on the equalities of the four rectangles,

pop' = qoq' = ror' = sos'

;

and thus the second sought equation, between the arcs gi, lm,

may be proved, with the assistance of fig. 63. And finally, a

parallelism and tangency will enable us, as in 301, with the help

of fig. 64, to infer the third and last sought equation between

arcs, namely, that between df and km.

360, Although it can give you no trouble to fill up the

sketch of an elementary demonstration contained in the fore-

going article ; nor thus to prove anew the associative formula,

sr .q = s. rq, with the help of art. 358, by shewing, in a new way,

that these two products of versors are represented by egrial arcs,

namely, by -^ km and ^ df, as before; yet it may not be useless

to offer here the following remarks respecting the numbers of the

things given and sought. Every assertion, then, o{ a co-arcuality

existing between three points upon the surface of a sphere, may

be observed to involve a condition, which can always be con-

ceived to be expressed by a single numerical equation ; for

such an assertion is equivalent to stating, that the perpendicular

distance of one of the three points, from the great circle through

the two others, vanishes. A statement of a double co-arcuality,

or an assertion that four points of the sphere are situated upon

one common great circle, is therefore equivalent, generally, to a

system of two such numerical (or scalar) equations. Now what

we have called (in 217, &c.) an arcual equation, is understood to

involve such a double co-arcuality, and also to include another

numerical or scalar equality besides ; for the lengths of the two

equated arcs are to be equal, and their directions are not to be
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opposite. Hence an arcual equation of the foregoing sort is ge-

nerally equivalent to a system ofthree scalar equations; which

accordingly it ought to be, because it represents an equation be-

tween versors, and a versor (see 91) depends generally on a sys-

tem o/three numbers. We might then, in the investigation of

295, &c., have conceived ourselves as proving that a certain sys-

tem of three scalar equations could be deduced from a system of

fifteen such equations ; because one arcual equation was to be

deduced hom five equations oithat class. And when we after-

wards came, in 358, 359, to treat six double co-arcualities as

given, or known, we tacitly used thereby (or, if I might venture

80 to speak, we absorbed) no less than tivelve out of thefifteen

numerical data of the question. It was therefore quite natural

that there should remain only three other data, to be still ex-

pressly marked by equations, and from which it was still required,

as in the two last articles, to shew that three other numerical equa-

tions yoWo2i;ed It may also be noticed, that every proof, or (tacit

or expressed) assumption, of any co-arcuality of (three or

more) points, in fig. 58, is equivalent (on certain known princi-

ples of reciprocity) to some corresponding proof or assumption,

in fig. 65, of what may be called a co-punctuality of (three or

more) arcs : or, in other words, a meeting of three or more arcs in

one point ; or rather (of course) in one pair of diametrically op-

posite points.

361. The construction given in the last cited fig. 65 (of art.

302), may be generalized or extended as follows. Instead of con-

sidering only three given factors, q, r, s, let us now consider_/?)Mr

such factors, q, r, s, t ; let us denote their total product by u,

so that

u = tsrq

;

and in studying the derivation of this total product from its fac-

tors, let us denote for conciseness, the iive partial products of the

same four factors by the letters v, w, x, y, z, writing

v = rq, w = sr, x = ts, y = srq, z = tsr.

Let also the ten representative points, upon the unit sphere, for

these various factors and products, q, r, s, t, u, v, w, x, y, z, be

called, in the corresponding order, a, b, c, d, e, f, g, h, i, k, as
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Fig. 79.marked in the annexed fi-

gure 79, which may be con-

ceived to be constructed as

follows. Regarding the

four original factors q, r, s>

t, as entirely given and

known, we may suppose

ourselves to know their re-

presentative points, A, B, c,

D, and also the angles which

represent them at those

points. Then the two an-

gles,

Z5' = FAB, ^r = ABF,

may be conceived to determine the point f ; and in like manner,

G may be found by

Z.r = GBC, /.s = bcg;

and H, by

JLS = HCD, /.< = CDH.

At the same time we shall have, by principles already explained,

ZU=7r-BFA; /w = fl--CGB; /a; = 7r-DHC.

The three binary products v, w, x being thus determined, to find

next the two ternary products, y and z, we may observe that the

equations,

y = sv, z = tw,

enable us to construct the two points i, K and the two angles

/.y, Lz, by two new triangles, thus

:

jiv^iFC, z.5 = FCi, zy = 7r-ciF;

IW=KGD, Lt=GDK, LZ = IT - DKG.

And finally, to construct the one quaternary (or total) product,

u or tsrq, we may employ the equation

u = ty,

which leads us to determine the point e, and the angle /. m, by a

new triangle, as follows :
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/^2/ = EID, /« = IDE, lU = TT -OEl.

362. In this manner, then, with the help of six triangles,

answering to six binary multiplications, we can gradually and

successively construct the six points, f, g, h, i, k, and e, which

represent the products, partial and total, of theyowr given jfec-

tors, represented themselves (as to their positions or the direc-

tions of their axes) by the four given points, a, b, c, d ; and can

also determine the angles of these six products, the angles of the

factors being supposed known. And in this process it is impor-

tant to observe that we have been led to construct or represent

/. r by two different angles, namely, abf and gbc, at the point

B ; Z s by three different angles at c ; and / t, by three other an-

gles at D. The comparison, therefore, of these various repre-

sentations for the angles of these three latter factors r, s, t, con-

ducts to Jive equations of condition, or to Jive relations between

the angles ojthefigure, which are true by the foregoing con-

struction ; namely, to the five following equations:

ABF = gbc; (zr)

BCG = HCD = rCI; (z *)

cdh = gdk = ide; (z ^)

Z q occurring only in one of the six triangles, and therefore not

furnishing any equation. Again the binary product v occurs in

two triangles ; w in two others ; but x in only one ; we have,

therefore, from the comparison of the representations of the an-

gles of the binary products, two other equations between the

angles of the figure, namely

:

7r-BFA = IFC; {Lv)

W-CGB = KGD. (ZW)

Finally, the ternary product y occurs in two triangles ; but the

other ternary product z, and the quaternary product u, occur

each only in one triangle; we have, therefore, one more, equa-

tion, and only one more, between the angles of the figure 79, as

true by the foregoing construction, namely the equation,

7r-CIF=EID. (z ?/)

And conversely the establishment of these eight equations of
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CONDITION, between the angles of the figure 79, at least if com-
bined with attention to the signs or directions of rotation, is suffi-

cient to entitle that figure to be regarded as a correct representa-

tion of the process recently explained, for constructing, through

representative angles, and with regard had to the order of the fac-

tors, all the products, partial and total, of any ybwr given versors,

or quaternions (with the help of the general method of 264, 265,

272).

363. If then we take care to establish by construction, or if

we simply conceive as so established, the eight equations ofcon-

dition assigned in the foregoing article, in connexion with fig.

79, we may regard that figure as being consistent with, or as

furnishing, all those other angular relations which ihe associative

principle of multiplication involves. Thus whereas we only

used, in 361, the six binary products,

rq = V, sr = w, ts^x, sv^y, tic = z, ty= u,

constructing each by a spherical triangle, on the plan of art. 264,

we may now employ thesefour other binary products, which will

conduct to so many new triangles

:

wq = y, xr = z, xv = u, zq = u.

The six former triangles (for binary multiplications) were,

ABF, BCG, CDH, FCI, GDK, IDE
;

the four latter triangles are,

AGI, BHK, THE, AKE.

They give two new representative angles for q; one for r; none

for s nor for t ; one for v, another for w, and lu:o for x ; one for

y, and two for z ; and finally, two for u. On adding these num-

bers of new representations for the angles of the factors, y, r,s,t;

of the binary products v, w, x ; of the ternary, y, z ; and finally,

of the quaternary product, u; namely, the numbers,

2, 1, 0, 0; 1, 1, 2; 1, 2; and 2,

to the corresponding numbers of representations for the same ten

angles, which were obtained from the six old triangles, namely,

to the numbers.
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1, 2, 3, 3; 2, 2, 1 ; 2, 1 ; and 1 :

we find in each of the ten cases, a numerical sum =3.

364. In fact, as an inspection of the recent figure 79 may

shew, although perhaps the foregoing enumeration shews it more

clearly, each of the ten points of the figure, from a to k, is a

common corner q/" three out of those ten triangles, of

which each has lately served to construct a process of binary

multiplication, by combining (as multiplier and multiplicand)

some two (suitably chosen as to their order") of the factors q, r, s, t,

and of their partial products v, w, x, y, z; and each of these

processes gives, as its result, either some one of those partial

products, or else the total product, u. Thus taking always sup-

plements of vertical angles as representations of binary pro-

ducts, we have for each of the ten angles L q, &c., three dis-

tinct REPRESENTATIONS, at its own point of the figure: and

consequently, we arrive, by comparison of values, at two equa-

tions between angles, for each of the ten points, making a sys-

tem OF TWENTY EQUATIONS in all. But of these twenty equa-

tions, it was seen (in 362) that eight were true by construction,

if the figure 79 were rightly formed : and that, conversely, these

eight equations sufficed (with attention to signs) to justify the

construction of the figure. We must, therefore, conclude that the

TWELVE new equations, which we shall here write down,

IAG = EAK=FAB, kbh=abf; (z y, Z r)

EFH=irc, agi = kgd; {lv, Lw)
Tr-DHC = BHK= FHE ; (Z a)

ir-GiA = EiD; (z.2/)

AKE =7r-HKB = 7r-DKG; (Z z)

and finally,

kea=hef=dei, (tt-Zm)

are consequences of the eight former equations, of art. 362 : just

as in art. 302, and in connexion with fig. 65, it was seen that

three relations between angles were consequences of three other

equations. In fig. 79, the line ke is prolonged, to exhibit the

angle tt-kea, which is one of the three representations of the

angle of the final or total product, u, regarded as equal to tsr.g ;

and the apparent co-punctuality of the three arcs, ai, bk, ef, is

accidental.
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365. More generally, let there be any number, n, of versors,

ffl. 92, 93, . . . Qn,

which it is required to multiply together, in their given order of
succession, the first by the second, the second by the third, the
product of second into first by the third, and so forth. We shall

form hereby n - 1 binary products,

ri = g2qi, rt^qzqi, . . r„.i = g„q„.i;

« - 2 ternary products,

Si = qsq2qi, S2 = qiq3q2, . . . Sn-2 = ?«?,-! g-n.g;

w - 3 quaternary products

'l = g'lMa?!) • • • . tn-3 = qnqn-iqn-2qn-3;

and so on, till we come to two partial and penultimate products,

«1 = gn-l qn-2 ys^l, Z2=gngn-1 • qjq2,

and at last to one final and total product, which we shall here de-

note by q, so that

q = qnqn.iqn-2, • ' M2?l-

The number oi all these products, partial and total, will be,

(n - 1 ) + (n - 2) + (w - 3) + . . + 2 + 1 = i w (« - 1 ).

And the number of given factors was=n; the entire number,

therefore, of factors and products taken together, or collected

into one system, is

^»(m+1).

For each of these various versors there will be a representative

point on the sphere, depending on two spherical co-ordinates, or

determining numbers of some sort : the whole number of such

co-ordinates, for the present system of factors and products, is

therefore,

w(«+ 1).

But again, each of the n proposed versors, from q\ to qn, depends

(by 91) on three numbers, suppose on two co-ordinates and an

angle ; and conversely, if these 3n numbers be given, all the

points of the sphericalfigure (representing products as well as
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factors) will be (in general) determined. Thus, the n (w 4 1

)

numbers recently mentioned, will all be determined if 3w of them

be so ; and consequently there must in general exist

«(«+1)-3« = k(«-2)

RELATIONS, between the n{n+ 1) co-ordinates of thefigure.

366. It was thus, for example, that when we were merely

constructing, as in art. 264, a triangle ofmultiplication, to exhi-

bit (by fig. 50) the relations which exist between two factors,

q, r, and their product rq, the number which we have lately

called n was = 2 ; « (w - 2) and n (w + 1) were respectively and

6 ; and there existed no quantitative relation between the six co-

ordinates of the figure ; or in other words, the spherical triangle

was allowed to be arbitrarily assumed, if we merely wished it to

serve as an example of the multiplication of two versors ; because

the angles of those two versors, and, therefore, also the base an-

gles (as well as the base) of the triangle itself, might then be

chosen at pleasure. Again, when there were three factors, y, r, s,

as in 302, and when it was required to exhibit the relations be-

tween those three factors, their two partial products, rq, sr, and

their total product srq ; we had a figure (65) with six points,

between the 3.4=12 co-ordinates whereof there existed 3 (3 - 2)

= 3 relations, or quantitative conditions ; because those co-ordi-

nates all depended on 3 . 3 = 9 numbers, answering to the three ar-

bitrary versors, q, r, s. Accordingly, in fig. 65, after assuming

(suppose) the four corners a, b, c, d of the quadrilateral, we were

not free to assume arbitrarily even one of the two other points

E, F, between the four co-ordinates of which pair of points it is

manifest that there exist some three relations (although with the

preciseydrms of those relations we are not now concerned) ; at

least if we grant the conclusion of art. 302, that these two points

Site foci oi z. conic, inscribed in the quadrilateral. Or, without

introducing any such doctrine of spherical conies, if we only

grant the associative principle of multiplication of quaternions,

as proved by the elementary investigation of arts. 298 to 301, or

by the more recent but not less elementary modification of that

proof, which was given or sketched in 359, we can still shew

easily that three relations must in fact exist between the twelve
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spherical co-ordinates of the six points of fig. 65 ; because after

assuming the four points a, b, c, e, of that figure, the angular

equation,

ABE = FBC,

in which both members represent the versor r, assigns a locus

(namely, a great circle) for the point f ; and after we have

chosen the position oi this point f, on this locus, the position of

the remaining point d becomes determined. In short, the three

equations between angles, which were employed in constructing

this figure 65, and from which three others were afterwards de-

rived., may be regarded as being themselves (indeed under the

very form most suited to our present purpose) the system of

three relations between co-ordinates, which was spoken of above.

And in like manner, when there were, as in some later articles

(361, &c.),Jhur factors, q, r, s, t, to be multiplied together, so

that n was = 4, we found (362) that there existed n (n - 2) = 8

equations between the angles of the figure 79, as necessary for

the justness of that figure, and to be considered as true by its

construction.

367. In general, it is not difficult to prove directly, without

any reference to co-ordinates as such, and by a process analogous

to that of arts. 361, 362, that whatever the number n of factors

may be, there must, by the very construction of the figure which

represents those factors and their products, exist w (n - 2) equa-

tions of condition between the angles, which sufBce to determine

the positions of its various points, or at least to fix their relative

positions on the sphere. For this purpose, in 365, suppose that

the n factors ^i, . . . qn are represented by the n points Qi, . . q„;

the w- 1 binary products, r\, &c., by the n- 1 points Ri, &c. ;

the ternary products, S\, &c., by the points Si, &c. ; and so on,

till the two penultimate products, Zi, z-i, are represented by Zi,

Z2; and the one final or total product <7 is represented by the

one point Q. We may then conceive that all these \n (n - 1)

products, partial and total, are gradually and successively de-

duced, without repetition, by a certain spheuical tiiiangula-

TioN, from the n given factors ; or that the representative points

of the one set are gradually constructed from those of the other

2 A
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(the angles of the factors being known) ; for which purpose it

may be convenient to adopt, as in 361, 362, the rule of employ-

ing no other multipliers, except those proposed or given factors

q-i, . . . qn, yihich follow the first of them. For in this way we

shall form a system of\n{n-\) triangles, each serving to

construct the position of one of the equally numerous sought

points, and also the angle of the corresponding product ; and

accomplishing this double object for every one of those sought

points ; namely, that system of triangles, which answers to and

constructs the following system of binary products

:

ri = q2qv, • • '"n-i -qnqn-i ',

«l = 5'3n, • • • S„.2 = qnTn-2;

'l = <74*1» • • • tn-3= qnSn-Z\

z\ = qK-\yu Z2 = qnyi;

and finally,

q = qnZ\.

It is clear, in fact, that every one of the sought things will be

successively constructed thus, without any defect or excess.

Each will hefound once, and only once, although it may be after-

wards used.

368. But if we now inquire how many and what cases occur,

in this construction, of a point, whether it be a given or a sought

one, being used as a common corner for more triangles than one,

although, in general, no point will offer itself as a common vertex,

for any two triangles, because none (as we have seen) isfound

twice; we perceive that each partial product, except the last in

its own rank, presents itself _^r«^ as such a product, and after-

wards again as a multiplicand, but not in any other way.

Hence, eaoh of the w - 2 representative points Ri, . . . R„_2, is

a common corner oi two and only two triangles; whereas r„.i is

a corner (namely the vertex) of one triangle, and not a corner of

any other. In like manner, each of the w-3 points Si, . . . s„.3

is common to two triangles ; but s„.2 belongs to one triangle

only. And so on, till we come to Zi, which point (though not

Zz) is a common corner of two triangles. Finally, the point q,

representing the total product, belongs only to one triangle. Now
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every point, which thus belongs to two triangles, gives, on the

same general plan as in art. 362, one equation between two angles

:

so far then as the ^n(n- 1 ) products, whether partial or total,

are concerned, there arise, out of this construction, equations be-

tween angles, of which equations the number is the following

:

(n-2) + (w-3)+. .+2 + l=i(n-l)(n-2).

369. But the n given points, or the n original ^c^ors, must

also be attended to. Now although the first given factor, qi,

does not occur as a multiplier, and although no one of the n given

factors occurs as a product at all, yet g'2 occurs once as a multi-

plicand, namely, in q^q-z, and once as a multiplier, namely, in

q^qi ; thus the point Qj is common to two of the triangles, and

furnishes one equation of condition. The factor qs occurs once

as a multiplicand, in q^q-j, and twice as a multiplier, namely, in

g-^q-i and in q3ri ; the point Qs is therefore common to three tri-

angles, and gives iwo equations of condition. In like manner,

qi occurring once as a multiplicand (in q^qi), and three times as a

multiplier (in q^q^, qiV-i, q^S]), on is a common corner of/our

triangles, and we can derive from it three equations between an-

gles. And so proceeding, we find easily that each simple or

given factor supplies us with one more equation than the factor

preceding it had done, with the sole exception of the last factor

of all, qn, which nowhere enters as a multiplicand, and therefore

occurs no oftener on the whole than the penultimate factor q„.i,

although it is true that qn does occur once oftener than g'„.i as a

mnltiplier. Hence, q„, like q„.i, belongs only to m- 1 triangles,

and supplies only w - 2 equations. Thus the n - 1 given factors,

previous to the last, furnish

0+l + 2+..+(n-3) + (w-2)=i(n-l)(n-2)

equations ; and the last given factor furnishes n - 2 other equa-

tions : the n given factors, taken together, supply, therefore,

upon the whole,

i(n+l)(w-2)

equations of condition. But iheir products were shewn, in the

last article, to supply
i («-!)(«- 2)

2 a2
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such equations. The factors and their products, or the given

and sought points taken altogether, furnish therefore, upon the

whole, as relations between the angles of the figure, or as condi-

tions for the correctness of its construction, the number

w (» - 2)

of equations. It is evident that this general result includes (as

before) the particular case of three equations of condition between

the angles, when there were (as in fig. 65) three factors ; and

also the case where (as in fig. 79) there vfere Jour factors, and

eight equations of condition.

370. The spherical triangle, qrs, in fig. 50, or 53, was

called in a recent article (366) a triangle of (binary) multi-

plication, because it serves to construct the binary product, s

or rq, of two given quaternion factors, q and r. In like manner

the spherical quadrilateral abcd, of fig. 65, may be called a qua-

drilateral OF (ternary) multiplication, since it serves to

construct, by its fourth point d, and by an angle thereat, the

ternary product, srq, of three given factors, q, r, s, which were

themselves represented by the three points a, b, c : while the

two inserted and auxiliary points, e, f represent (as we have
seen) the two partial products, rg and sr. On the same plan,

the spherical pentagon, abode, of the more recent figure 79, might
be named a pentagon or (quaternary) multiplication, be-

cause it constructed, by an angle at its fifth corner e, the qua-

ternary product, tsrq or u, offour given factors, q, r, s, t, which
were themselves represented (as we lately saw) by angles at its

four other corners, a, b, c, d : while the five partial products of

the same four factors, namely, rg, sr, ts, srq, tsr, were repre-

sented (as we have also seen) by the five auxiliary and inserted

points, F, G, H, I, K, or by certain spherical angles thereat. More
generally we may now form the conception of a (spherical) po-
lygon OF continued multiplication,

Q1Q2Q3 . . . Qn.lQnQ,

constructed on the plan described in the recent art. 367, so as to

represent, by an angle at its last corner q, the continuedproduct
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ofn given quaternionfactors, qu . . . q„, which are themselves
represented by certain angles at its w first corners, Qi to q„.

371. h is essential, however, to the complete conception of
such a polygon ofmultiplication, to remember that the partial
products of the same n factors, whose number is, in general,

(n-l)+(n-2)+. ..+2 = i(«+l)(„_2);

namely, those denoted in art. 365 by the symbols

r\, . . r„. 1 ; «i, . . «„.2 ; ... zi, Zi

;

are to be represented, in the same (conceived) new and more
complex figure or construction, by those other points (or by an-
gles at them) which in art. 367 it was proposed to name, respec-
tively, the points

Ri> • Rn-i ; Si, . . s„.2; . . . zi, Zj;

and of which the number is expressed (as above) by the formula

i(»+l) («- 2), or, ^p(p- 3),

if the number of the sides or corners of the polygon itself \,q de-

noted more simply by the symbol,

p-n-v 1.

For without the consideration of these inserted or auxiliary

points, Ri to Z2, there would be nothing peculiar to the theory of

quaternions, in the construction or study of the polygon QjQg . .

Q„Q itself; which might in that case be confounded with any

other spherical polygon, having the same number (w+ 1) of cor-

ners. Thus the spherical triangle qrs of figures 50, 53, was

(as we have seen in 366) an arbitrary triangle, in the sense that

there existed no conditions limiting its three corners, except what

were involved in a certain supposed direction of rotation (265,272),

which conditions, however, might be eluded, if we chose to consi-

der negative angles. Again, the spherical quadrilateral abcd,

of fig. 65, remains an arbitrary quadrilateral, unless we take ac-

count of at least one of the two inserted points e, f, which in-

troduce certain equations of condition. And in like manner the

spherical pentagon abcde of fig. 79 would be arbitrary, if we did
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not consider it in connexion with two or more of the five inserted

points, F, G, H, I, K, of the same recent figure.

372. But when we do thus take account of the inserted

points, then every polygon of multiplication (after the triangle)

constructed as above, possesses several interesting geometrical

properties, suggested by the theory of products of quaternions,

as has already in part been seen. The property which it seems

most useful to investigate at this moment, as illustrating some

recent but less general results, is that which regards the depen-

dence of one set ofequations, between certain spherical angles of

thefigure, on another set ofequations between those angles; the

latter set being usually (indeed always, when we once pass the

quadrilateral, and proceed to pentagons, &c.) less numerous than

that other set, which is shewn to be dependent upon it. To
prove this, I observe that when the triangles of construc-

tion, employed in the process which was described in art. 367,

are combined (as in the case of art. 363) with those others which

are suggested by the associative principle of quaternion multipli-

cation, and which may perhaps, for that reason, be properly

called associative triangles, then every point ofthefigure
is a common corner ofn - 1 different triangles; or the quater-

nion which is represented by it enters, in « - 1 different ways,

whether as factor or as product, into formulae of binary multipli-

cation, of the kind admitted in the present plan. In fact, the

first factor q\ occurs as a multiplicand in w - 1 such formulae,

namely (see 365) in the following,

q2q\ = ri, r-zqi = Si, Sa^i =ti, . . . z^qi = q,

which are all true by the associative principle, although only the

first of them was used, in the construction described in 367. Thus

the point Qi is a common corner of w- 1 triangles, each repre-

senting a binary multiplication, although only one of these tri-

angles was constructive, and the rest of them are all associative

(in the sense of the present article). The angle L q\ is therefore,

in the completed figure, represented by n - 1 different but equal

angles at the point Qi ; and the comparison of these different re-

presentations, for the common value of the angle of the factor yi,

conducts to ?i - 2 angular equations, namely,
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RlQlQj = S1Q1R2 = T1Q1S2 = . . = QQ1Z2.

In like manner (see 369), ^2 was used twice only, in the con-

struction, namely, as a factor in q2qi and in qsq.^ ; but by as-

sociation it is introduced also as a multiplicand into ra-3 other

binary products, namely, into the following

:

r-^qi = Si, Ssqi = <»,.. ys^j = z^.

Thus the point Q3 (like qi) is, when all are taken into account, a

common corner of w - 1 triangles, and gives, on the whole, n-2
equations between angles. More generally, the m"" given factor,

q^, enters, on the whole, m - I times as a multiplier, into binary

products, as follows,

?m qm-U ?m • 5'm-l qm.2, &C.
;

and n-m times as a multiplicand into such products, namely,

into the following

:

while it nowhere enters as a product : it enters, therefore, on the

whole, as before, into n-l formulae of binary multiplication, so

that Qm is still a common corner of n-l triangles, and supplies

still n-2 equations between angles.

373. It is true that we have here been considering only the

n given factors. But if, instead of a givea /actor, qm, we consider

a partial product, such as

qm qm-l qm-2 ?w-3 = ^in-3,

we find that although this quaternion enters still only n-m
times into a binary product as a multiplicand, namely into the

following,

qm,\ • tm-3, 9171 + 2 Jm + l • 'm-3» &C.,

and enters only m - 4 times as a multiplier, namely, into the bi-

nary products,

^M-3 • 5'»i-4i 'm-3 • Qm-i qm-'Ji &C.,

and so only enters k-4 times as a factor, into binary products,

yet it enters three times, as a product, into formulae of binary

multiplication; for by the associative principle, we may place the

point or other mark of multiplication, in the expression for<,„,3.
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after g„„ or after qm-i, or after ^m-j. And generally if we consi-

der the product,

Qm^m-l Qm-2 • ' ^m-Ul^m-h

we find with the greatest ease that this quaternion enters only

n~m times as a multiplicand, and only m-l-l times as a mul-

tiplier, into the composition of binary products ; but that it occurs

also I times, under the form of such a product. It occurs then,

still, n - 1 times in all, and gives still w - 2 angular equations.

374. It is then proved (as was asserted in 372), that each

point ofthe whole complexfigure is, in general, a common corner

ofn-\ different triangles; and, therefore, that it conducts to

n-2 equations between angles, by comparisons made as above.

And the number oi all the points has been seen (in 365) to be

= ^n(«+l); the entire number of the angular equations, thus

obtained, is therefore expressed by the formula,

\n{n+\) (n-2).

But the number of such equations which are true by construction,

has been found to be (see 369),

= n (n - 2) ;

subtracting therefore this expression from the one preceding it,

we find that the number of the angular equations which are true,

as depending on the « (w - 2) equations ofconstruction, is

iw(n-l)(n-2).

And this is the general property ofpolygons ofmultiplication,

which it was lately proposed (near the beginning of 372) to in-

vestigate. We see that it includes the two cases lately considered,

of dependencies ofequations derived from the associative princi-

ple, on equations which were true by construction; namely, the

case (302) oi three factors, n = 3, where three equations were de-

pendent on three others; and the case (364) oi four factors,

where twelve equations were dependent upon eight. For the

hexagon of multiplication, where there are five factors, and
^5 (5 + 1) or fifteen points altogether, there are fifteen (=5.3)
equations true by construction, and 30 (= ^ . 5 . 4 . 3) equations

dependent on them. And in general we sec, by the present arti-



LECTURE VI. 361

cle, that, in any such polygon, the number of the equations which

are derived by the associative principle, is to the number of those

other equations from which they are derived, as n - 1 to 2. The
equations of association are therefore more numerous than the

equations of construction, whenever the number of w of factors

exceeds three; or when the number n + 1 of corners of the poly-

gon of multiplication is greater ih&nfour ; a result which agrees

with what was stated by anticipation, in art. 372.

375. Since each of the \n{n + \) points of the complex figure

has been seen to be in general a common corner of n - 1 different

triangles, constructive or associative, we have only to multiply

these two numbers together, and then divide by three, in order

to find the number of all those triangles of multiplication

;

namely,

\{n+\)n{n-\).

There is however another process, distinct from the foregoing,

by which the same result may be obtained, and which it may be

useful briefly to consider. Let us then remember that (as in 373)

each product, partial or total, of / + 1 successive factors, may (by

the associative principle) be presented under the form of a binary

product, in / diiferent ways, according to the various positions

which may be assigned to the point, or other mark of multiplica-

tion. Hence, while each of the n - 1 binary products ri, . . r„.i

gives immediately one triangle of multiplication, each of the

w - 2 ternary products, Si, . . Sn-2 gives two such triangles, and

so on. We are then to take the sum of the series,

1 («-l) + 2(n-2) + 3(n-3)+. .+/(m-0>

if we wish to find how many triangles are given by all the pro-

ducts r,, &c., si, &c., which contain l+\ or fewerfactors. But

this sum is, by well known principles, equal to the following

:

(H + 1) (1 + 2+3 +. .+0- fl -2 + 2.3 + 3.4 + . . + /(/+!))

= h{n+\){l+\) l-iil+2){Ul)l
= ^{Sn-2l-l){l+\)l.

And if we now make l=n-\, we find, for the total number of

the triangles, involved in the whole complex Jiyure, the same

expression as above, namely,
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^(w+ 1) n{n-l).

For example, when there were only two given factors (as in 264),

there was only one triangle (the qrs of fig. 50) ; when there

were three given factors (as in 302), there were four triangles

(the ABE, BCF, ECD, and afd of fig. 65); when there werefour

given factors (as in 361), there were ten triangles (those enume-

rated in 363) : and when we consider the case oifve given fac-

tors, and construct a hexagon ofmultiplication (see 370), there

are then found to be twenty triangles, answering to so many

auxiliary processes of formation of binary products. Accordingly

in this last case, the figure has been seen (374) to con tain ^^ifeew

points, of which each is a common corner offour triangles of

multiplication.

376. Instead of seeking how many triangles may thus

be formed, from a quadrilateral, pentagon, &c., as representing

multiplication of quaternions, we may inquire how many auxi-

liary QUADRILATERALS may be deduced from, or are to be con-

sidered as involved in, the complete construction (371, &c.) of a

pentagon, hexagon, or other polygon of multiplication. For this

purpose we are to determine how many products of ternary (in-

stead of binary) forms, can be composed from a given set of fac-

tors qi, . . . q„, without transposition, repetition, or hiatus. Or
we may seek, in how many ways the various partial and total

products, Si, &c., <i, &c., and q = q„ . . . qi, can be decomposed,

each into three factors: for there is evidently no use in seek-

ing so to decompose any one of the n given factors, qi, &c., or

any of their n - 1 binary products, t-j, &c. It is clear also that

each of the n - 2 ternary products, si, &c., gives only one decom-

position, of the kind now sought ; but that each of the n - 3 qua-

ternary products, ti, &c., gives 1 + 2 = 3 such decompositions,

because we may write, by art. 365, and by the associative prin-

ciple,

ti = q\q3 q-zqi = qi • q-iqiqi ;

where q-zqx may be treated as a binary product in only one way,

but qj,q2q\ in two ways. In like manner a quinary product admits

of ternary decompositions in 1 + 2 + 3 = 6 ways ; and generally the
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number ofways, in which a product of / + 2 factors may be put

under the form of a ternary product, is

1 + 2 + 3+. .+l=\l{l+\):

while the number of products of this order or dimension is

= n -/- 1. If then we wish to know how many ternary forms

can he obtained, by suitably placing the points of multiplication,

from all the products S\, &c., t\, &c., which involve not fewer

than / + 2 given and successive factors, we are to calculate the

sum,

1 («-2) + 3(n-3) + 6(n-4)+. .+i/(Z+l) (w-Z-1)
= (w+l) {1 + 3 + 6+ . . + iZ(Z+l))

-{1.3 + 3.4 + 6.5 + ..+i/(/+l) (/+2)j

= i(«+l)/(/+l) (/+2)-iZ(/+l) (/+2) (/+3)

= ^V(4n-3/-5) (/+2) {U\)l.

And finally, by making Z = m-2, we find for the whole number

of such ternary products, or of the quadrilaterals by which they

are constructed on the sphere, the expression,

t\ (n+l)n(K-l)(n-2).

Thus, the pentagon of multiplication (fig. 79), for which the

number n of given factors is ^m/-, is connected with 7?ye auxiliary

quadrilaterals, namely,

ABCI, BCDK, FCDE, AGDE, ABHE,

answering (in the notation of art. 361) to the five products of

ternary form,

s .r .q, t .s.r, t .s .rq, t . sr .q, ts .r. q ;

and the complete construction of the hexagon of multiplication,

for which n = 5, must involve the construction oififteen such qua-

drilaterals.

377. If we seek on the same plan, how many auxiliary pen-

tagons are connected with the hexagon, heptagon, &c., or how

many products of quaternary form can be composed out of n

given factors (without transposition, &c.), we find that the num-

ber of quaternary decompositions of each product of J + 3 fac-

tors is
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|/ (/+!)(/+ 2);

and that the number of such products is

(«+!)-(/+ 3).

Multiplying these two numbers, and summing with respect to I,

we obtain the expression,

which when we make /=n-3, reduces itself to

^i^(w + I)«(«-l)(w-2)(«-3).

Such then is the required number of auxiliary pentagons in ge-

neral ; in the construction of the hexagon, there would therefore

be involved six such pentagons; and twenty-one in the construc-

tion of the heptagon. More generally still, the same analysis

shews that in the complete construction of \t^y spherical poly -

GON oj"multiplication (370), with p (=n+ 1) corners (or sides)

and with \p (p - 3) inserted points (371 ), to represent partial

products, is involved the construction of a number o/auxiliary

SPHERICAL POLYGONS of inferior degree, which number is ex-

pressed by theformula,

p(p-l)(p-2). . . (p-p'+l)
1.2.3... p

Up' he the number of sides of the auxiliary and inferior polygon.

378. You will not have failed to observe that I am far from

admitting, in the construction of these inserted or auxiliary poly-

gons, all possible arcs of great circles which could be drawn,

connecting two points taken arbitrarily in the figure. U that

were done, the results would of course be much more numerous:

but you see that I retain only those connecting arcs which are

required, or are useful, for constructing some of the products,

partial or total, of the given quaternion factors. It was thus

that in fig. 65 (as was remarked in art. 375), only four auxiliary

triangles were employed, because we had no occasion for the

arcs AC, BD, EF ; which again arose from the circumstance that

we were not seeking to connect q with s, nor r with srq, nor rq

with sr, by any process of binary multiplication. It would cer-
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tainly have been unnecessary to have had recourse to any such ana-

lysis as the foregoing, if our object had been to prove, what every

body knows, that a set of ^' things can be taken out ofp others,

in a number of ways expressed by the formula recently written.

But the question which we had to investigate was an entirely

different, and (it will perhaps be felt) a much less easy one. Even

for so simple a case as that of the hexagon and its quadrilaterals,

the distinction is sufficiently striking. Of course it is very

well known, from elementary principles of combination, that a

set of four things can be taken in fifteen ways out of a given set

of six things; and in so many as 1365 ways out of a set of fifteen

things, the arrangement of the things among themselves being

supposed to be unimportant. It would, therefore, have been use-

less to offer any proof, that after constructing a spherical hexagon

ofmultiplication, to represent five given quaternion factors and

their total product, and then inserting also nine other representa-

tive points upon the spheric surface, for the various partial pro-

ducts, fifteen sets of four points could be chosen out of the six

corners of the hexagon, and 1365 such sets out of the whole sys-

tem of the fifteen points of the figure, arrangement being still

abstracted from. But it was not obvious that when /owr points

were to be selected out of theseffteen, so as to be corners of some

auxiliary quadrilateral of multiplication, connected with the re-

presentation (on the principles and plan already explained) of

some ternary multiplication of the five given factors or of their

products, the rejection of all useless quadrilaterals would reduce

the larger number 1365 to the smaller number fifteen, which last

was obtained at the end of art. 376, and may be derived also from

the more comprehensive formula of art. 377. Still less is it evi-

dent, without some such investigation as that lately instituted,

that so great a reduction as is expressed by the same formula takes

place, by rejection of useless combinations, when we seek the

number of all the auxiliary and />'-sided polygons of multiplica-

tion, which are connected with and involved in the construction

of a polygon of multiplication of superior degree, having /? sides

or corners, but having also |p(p-3) inserted points, which

(under certain restrictions as to the mode oi combining them) co7i-

cur with the p points themselves, in the formation of the auxiliary
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and inferior polygons, according to the laws of the multiplication

of quaternions. Perhaps this may be as fitting an occasion as

any other to remark, that the process ofbuilding up a complete

polygon of multiplication, of any given degree, with all its auxi-

liary points, may be in many ways varied from that stated in art.

367, and exemplified previously in 361, without disturbing any

of the results above obtained, respecting the number of the equa-

tions of condition necessary for the correct construction of the

figure ; or the number of the equations which follow from these

by the associative principle, or the number of inferior and auxi-

liary polygons, &c. For instance, in constructing the figure 79,

for the pentagon, we might have begun by assuming as known

the six points, a, b, f, and c, d, h, in connexion with the two

pairs of given factors, q, r, and *, t ; and might have thence con-

structed the four other points c, i, k, and e; but we should «<87/

have had eight constructive equations between angles, and have

still been conducted to twelve associative equations, as following

from them.

379. The foregoing investigations (361 to 377) respecting

polygons of multiplication have been conducted quite indepen-

dently of the doctrine of spherical conies, although a passing

allusion was made to that doctrine (in art. 366), and in particu-

lar to the focal character of the two auxiliary points e and f, in

fig. 65. But if we now admit that focal character of those two
points, namely, that they are (as was proved in art. 302) the two

foci of a conic inscribed in the quadrilateral ofmultiplication,

namely in abcd of fig. 65, and if we agree to denote thisfocal

relation of two points tofour others, by writing, for conciseness,

any one of the following formulae,

EF (. .) ABCD,
or

FE (. .) ABCD, or EF (. .) BCDA, Or EF (. .) DCBA
;

but not the formula,

EF (. .) ACBD,

since this would come to substituting diagonals for sides, and

would require a change in the inscribed conic ; we shall then be

able to derive and to enunciate briefly a series of theorems, re-
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specting inscriptions of systems of spherical conics in

CERTAIN SYSTEMS OF SPHERICAL QUADRILATERALS, and the COn-

SeqUentENCHAINMENTS OFCERTAIN SPHERICAL POLYGONSamong
themselves ; of which theorems the suggestion is due (so far as I

know) to the Calculus of Quaternions. For since every case

of a ternary product may be represented or constructed, on the

plan of fig. 65, by a conic thus inscribed in a quadrilateral, we
see by recent articles that every /?-sided polygon of multiplica-

tion is connected with a system of such conics, whose number is

expressed by the formula

^^p{p-\){p-2)(p-3),

while their foci all belong to the system of those points, in num-
ber

which represent the partial products of those p - I quaternion

factors, the representative points of which factors themselves,

and of their total product, are the successive corners of the poly-

gon in question ; and out of this system oifocal points, another

polygon or polygons may generally be conceived to be formed;

which will be connected with the^rmer polygon, and with each

other, by a species of focal enchainment. (It will be remem-

bered that the insertion of these focal points is not an arbitrary

process, but is subject to certain laws derived from the nature of

quaternion multiplication; in fact there exist, by art. 369, (p- 1)

(p -3) equations ofconstruction, between the angles of the com-

plex figure; and from these, by art. 374, there follow ^(p-1)

(p - 2) (p - 3) other equations between angles, in virtue of the

associative principle.)

380. If, for instance, we adopt the notation of art. 367, and

take the case of the hexagon,

QiQ2Q3Q4Q5Q>

we may conceive the six points

R1R2R3R4T1T2,

which represent the four binary and the two quaternary products,
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to be, in their order, the corners of a second hexagon ; while the

three points

S1S2S3,

which"represent the three ternary products, may be considered as

the corners of a <nan^/e. And then, for this system of two
HEXAGONS AND A TRIANGLE upov, a Sphere (not now, as in 305,

one hexagon and two triangles), we shall have an example of the

lately mentioned enchainment ofspherical polygons ; which en-

chainment is here performed through a system of fifteen

SPHERICAL coNics, inscribed in certain quadrilaterals of the

figure, and having their foci ranged at the corners of the auxi-

liary hexagon and triangle, as is expressed in the following Table.

Table of Focal Relations.

RiRa (• ) Q1Q2Q3S1

Ii,R3 (. .) QjQjQiSo

R3l!4 (• •) Q3Q4Q5S3

KiTi (..) Q4Q5QS1

Ti Tj (. .) QsQ QiSj

T2R1 (. .) Q QiQaSa .

RiSj (. .) Q1Q2R3T,

R2S3 (• .) Q2Q3R1T2

R3S, (..) QsQiTiR,

RjSj (. .) Q1Q5T2R2

T1S3 (. .) QsQ RiRj

T2S, (. .) Q Q1R2R4
,

SiS2 (. .) Q1R2Q4T1

S2S3 (. .) Q2R3Q0T2

S3S1 (. .) Q3R4Q Ri

(I-)

(II.)

(III.)

And 1 think that any attempt to sketch, in its general state, the

complex figure here referred to, with its fifteen conies of inscrip-

tion, and its numerous connecting arcs, could only impair theclear-

nt'ss and symmetry of the foregoing symbolical statement.

381. There is, however, one particular or rather //mjimf/ca^e,

of the general construction described in the last article, which it
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may be interesting here to consider, and which admits of being

illustrated by a diagram suffiqiently simple.

Round any point s of the surface of the unit-sphere, as a pole,

with any arcual radius sq, conceive a small circle to be described.

Let this small circle be cut into six successive and equal portions,

in the order of left-handed rotation, by live other and successive

arcual radii,

SQi, SQ2, SQ3, SQi, SQ5,

making with sq and with each other successive angles of sixty

degrees, at their common point s, as in the annexed figure 80.

Let six connecting arcs
Fig. 80.

of great circles be drawn,

QQi, Q1Q2, Q:Q3>

QsQu Q4Q5) QoQ;

which will thus become

the sides of (what might

perhaps be called) a re- •

gular spherical hexagon

:

or at least of one which

will be at once equi-

lateral and equiangular.

Draw also the six suc-

cessive diagonals,

QQ2J Q1Q3) Q2Q4) Q3Q5) Q4Q, Q5Q1

;

and name, as follows, the six successive intersections of these

diagonals

:

Ri the intersection of q Qj and Q1Q3

;

R2
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points Qi, Qj, Q3, Q4, Q5, of the hexagon ; each of these five angles

being equal in magnitude to the spherical angle iiiQiQa, between

a diagonal and a conterminous side of the hexagon. The four

successive binary products of the five factors, namely, q,.qi, q^q^,

qiqz, q^gu will then be represented by angles at the four points

Ri, R2, R3, R4, of which the common magnitude is that of the angle

Q3R1Q2, or the supplement of the spherical angle QjRiQi. The con-

struction, so far, being seen to be entirely rigorous, and indepen-

dent of everything like approximation, let us conceive next that

the arcual radius sq becomes a swjaZ/ arc, although remaining still

an arc of a great circle ; so that the spherical hexagon becomes,

in consequence, a nearly plane one, and approaches to coincidence

in shape with the regular hexagon of Euclid. The angle of each

of the five quaternion factors will then differ very little from thirty

deo-rees ; and the angle of each binaryjoroduct will be nearly equal

to sixty degrees. The three ternary products, q^q2qi, qiqiqi, ^s^i^ai

which are in general (see 380) represented by three distinct points,

Si, S2, S3, come now to have their three representative points very

nearly coincident with each other, and with the centre s of the

figure ; the angle of each becoming at the same time nearly right.

The two quaternary products, qiq^q^q-i and qoqiqzq^, will be very

nearly represented by angles of 120° each, at the two remaining

corners, Ti and Tj, of the interior hexagon, namely R1R2R3R4T1T2.

And finally the one quinary or total product of the five given fac-

tors, namely q^qiqiqiqu will be nearly represented by an angle of

150°, at the one remaining corner Q, of the outer or original hexa-

gon, described in the present article. All this follows easily from

the most elementary properties of a plane and regular hexagon,

considered here as the limit to which a certain spherical hexagon

approaches, and combined with one of our general constructions

(264, &c.) for the multiplication of any two versors.

382. We may then, at the limit, where the general &x\ A sphe-

rical hexagon of multiplication becomes the plane and regular

hexagon of elementary geometry, conceive that hexagon, with

its inserted or focal points, to be constructed as in the recent

figure 80 ; the various letters Q, R, s, t retaining, at this limit,

the general significations of art. 380, except that the one letter s

(at the centre of the figure) now takes the place of each of the
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three symbols, which were before written as Si, s,, S3. We have

then only this last change to make now, or to conceive as made,

in the recent Table of Focal Relations ; that is to say, so far as

concerns the twelve first of those relations, we are simply to sup-

fress the indices, which were (in art. 380) suffixed to the letter s :

and as regards the three last of the same system of fifteen focal

relations, we are to remember that an ellipse becomes a circle,

when its two fijci coalesce. Thus, at the limit here considered,

the three conies of the third system degenerate into circles ; or ra-

ther (as it is very easy to see) they coalesce into one situjle circle,

concentric with the original circle, and inscribed in the interior

hexagon, as indicated in figure 80; wherein also two conies of

each of the two former systems are pictured. And an inspection

of the same recent figure, combined with some simple geometri-

cal considerations, shews easily that each of the six ellipses of

the first system, as, for example, the ellipse inscribed in the equi-

lateral quadrilateral Q1Q2Q3S, or the one which is inscribed in the

other and similar quadrilateral Q4Q5QS, has its major axis equal

in length to a side of the original hexagon ; while each of the six

ellipses of the second system, such as the one inscribed in the rec-

tangle Q3Q4T1K1, or that in the other rectangle QQiR2n4, has its

minor axis equal to a side, suppose Q3Q4, of the same original or

outer hexagon. And finally, the one interior circle, to which the

three ellipses of the third system reduce themselves, and which

is inscribed in the interior hexagon, has its diameter equal in

length to a side of the same outer hexagon ; to which side we

have just seen that a major or a minor axis, of each of the twelve

ellipses of the two former systems, is equal. The diagram may

also suggest, what a very simple reasoning proves to be true,

that the eight points of contact, of the two ellipses of the first

system in it depicted, with the eight sides of the two equilateral

quadrilaterals in which they are inscribed, are ranged on the two

diagonals, R2R4 and RiTi, of the interior hexagon ; that is, upon

the minor axes of the two ellipses of the second system in the

figure: or on ihe parameters of the ivioformer ellipses.

383. All this being sufficiently obvious for the case of the

plane and regular hexagon, it may be worth while to inquire

briefly in what manner the results are modified, when the arcual

2 B 2
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radius sq is treated as only moderately (but not as infinitely)

small, so that the sphericity of the figure is sensible. Conceiv-

ing, therefore, that figure 80 represents an equilateral and equian-

gular but spherical hexagon, constructed according to the direc-

tions of art. 381 ; and supposing that the five given versors, qi to

^5, are represented, as in that article, by the five spherical angles,

lq\ = Q3Q1Q2, ^ q-i = ft4Q2Q3) • Lqi = QiQsQ ;

the general construction for a spherical triangle of multiplication

shews still that the four binary products, q-iqx, &c., are represented

by these four other spherical angles in the figure :

L qiqi = Q3R1Q2 ; ^ q^qi = Q4R2Q3

;

^ qiqi = Q5R3Q1
; ^ q^qi = iriQs-

But the three ternary products, qzqzqx, &c., will no longer be

(rigorously) represented by right angles at the centre s of the

figure ; nor will the two quaternary products be represented by

angles of 120° at the points Tj, t. ; nor the quinary product by an

angle of 150° at the sixth corner q of the equilateral and equian-

gular hexagon. We may then ask, for the ternary products, in

what directions do their three representative points, Si, 82, $3, de-

viate from the centre s ? And if the two quaternary products

be now conceived to have their representative angles at some two

new points, t'i, and T'2, since Ti and T2 are (by art. 381) already

appropriated in the figure to denote certain intersections of dia-

gonals, we may inquire what are the directions ofthe deviations,

Tit'i and TjT'j ? Again, if the quinary product be supposed to be

represented (accurately) by a spherical angle at some other new

point q', while G shall still denote, as in the figure, a corner of

the equilateral hexagon, we may demand what is the directionoi

the deviation or displacement, <jq'? And with respect to the

magnitudes of the various representative angles, we may inquire

whether Z qi is now less or greater than 30° ? is Z qiqi less or

greater than 60°? is Iq^qiqi acute or obtuse? does Lq^q-^q^qx ex-

ceed or fall short of 120° ? And finally, for the quinary product,

is Z q!,qiq:tqiqi less or greater than its limiting value of 150°, when

account is taken of sphericity ?

384. By the construction which is to be conceived as being
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employed, for determining the new spherical angles at Si, s,, S3,

t'i, t'j q', we have the angular equations

:

R1Q3S, = Z ^3 = Q2Q3R1 ; SiQiR, = lqi = RjftiQa I

because, by the associative principle, the ternary ^YoAacl, q^q^q^,

may be put under either of the two forms, q^ q^q^, q^qz-qi. It

is clear, therefore, that if we denote by Mj the point where the

arcual radius, SQj, bisects perpendicularly the diagonal Q1Q3 of the

outer, or the side RiRo of the inner hexagon, the sought point

Si will simply be the reflexion of Q2 with respect to m™; in such a

manner that the following arcual equation will subsist:

— Q2M2 = r\ M2S1.

The direction of the deviation ssi must, therefore, be either to-

wards or from the corner Q2 of the outer hexagon, according as it

shall be found that the arc SM2 is greater or less than halj'oi the

arcual radius SQ2. To decide this question, let us observe, that in

virtue of the tendency of the radial arcs to meet again upon the

sphere, in the point diametrically opposite to the point s from

which they diverge, each side, such as QiQj, of the hexagon, is

shorter than the arcual radius SQi. Comparing, therefore, the two

right-angled triangles, Q2M2Q1 and Q1M2S, which have a common al-

titude CI1M2, we see that the hypotenuse of the former triangle is

shorter than the hypotenuse of the latter, and consequently

that the base Q2IM2 of the fine triangle must also be less than the

base M2S of the other. We have then the inequality,

r\ U2M2 < '^ M2S

;

and by combining this inequality with the equation written above,

we can at once infer this other inequality,

r~ M^jSi < ^ MjS.

We know then definitely the direction ofthe deviation ss, ; and

are entitled to assert that this deviation is directed y}-om the centre

s, towards the corner Q,, and not in the opposite direction. And

it is evident that reasonings exactly similar would prove, that the

two other deviations ssj, ssj, of the two other representative

points of ternary products from the centre, are directed, respec-
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tively, towards the two other and successive corners, Qs, Q4, of

the same original hexagon ; while the lengths of these three de-

viations are at the same time evidently equal. When the arcual

radius is assumed as 10°, I find that the common value of these

three deviations amounts to about 4' 36" ; and that when the size

of the figure is diminished, the deviation diminishes nearly in

the same ratio as the cube of the radius. It is less than three-

tenths ofa second, when the arcual radius is a degree.

385. As regards the aiigles of the factors, and of their binary

and ternary products, we may see first that if Pi denote the mid-

dle point of the^side Q1Q2, the two right-angled triangles Q1Q2M2

and PiQoS have a common base angle at Q2, but that the hypote-

nuse of the former is less than the hypotenuse of the latter. The

area of the former triangle is therefore also less than the area of

the latter ; so therefore likewise is the spherical excess; and so

must be the vertical angle. That is to say, the angle M2Q1Q2 is

less than the angle Q2SP1 ; or in symbols,

Lq,< 30°.

We have then answered another of the questions proposed in art.

383; for we have come to conclude that the angle of each of the

g\ven factors, in the construction here considered, is less than

30°. It is, however, only a very little less than this limit-angle,

if the size of the hexagon be small (the sphere being supposed to

be fixed). Even when the arcual radius is assumed so great as

10°, I find that this representative angle oi q^ falls short of 30°

by only about ten seconds and a half; and this defect is reduced

to about the thousandth part ofa second, when the radius is taken

as one degree ; for it can be proved to vary nearly as the fourth

power of the radius, so long as the figure is moderately small.

386. The angle of the binary product q^qi, being equal to

QsRiQs, is the supplement of the double of the angle PiRiQi ; but

this last angle is equal to its vertically opposite sRiMj, and there-

fore exceeds the complement of the angle MoSRi, in the right-an-

gled triangle so denoted, by the spherical excess of that triangle.

But the angle MoSRi is exactly equal to thirty degrees ; there-

fore, PiRiQi is greater than 60° ; its double is, therefore, greater

than 120°, and the supplement of its double is less than sixty de-



LECTURE VI. 375

giees. We arrive, then, for the angle of the binary product, at

the inequality,

which contains the answer to another of the questions proposed

in art. 383. It must be observed that the defect, thus proved to

exist, of the angle of the binary product from sixty degrees, is

much more considerable than the defect, investigated in the im-

mediately preceding article (385), of the angle of a factor from

30°. For the defect of the angle of the binary product q^^q^ is re-

presented by the doubled area of MjSRi, or by the <oto/ area of

the triangle sRiR.; whereas the defect of the angle of the factor

(^1 was seen to be constructed by the difference of the two small

and nearly equal areas, of the triangles QoMjQi and sPiQ,. When

SQi is taken as 10°, the defect of the angle of the binary product

from G0° amounts to so much as about 15' 20"; and even when

the arcual radius in the construction is assumed so small as 1°,

this defect is still not less than about nine seconds ; varying

nearly as the square of this radius, so long as the dimensions of

the figure are small.

387. The angle of the ternary product, g's^'o^^i, being equal to

the supplement of QaSjRi, is in amount the supplement also of

R1Q2Q3 ; or of Q1Q0Q4 ; or of P1Q2M3, if M3 be the bisecting point of

the diagonal Q2Q1, as m, was of Q1Q3. But in the quadrilateral

P1Q.5I3S, all the angles except that at Q2 are right angles ; there-

fore this angle P1Q2M3 exceeds a right angle by an amount repre-

sented by the area of this quadrilateral ; and consequently its

supplement falls short of a right angle by the same amount. The

angle of the ternary product is therefore acute,

L q^q^qi < 90°

;

and thus another of the questions of art. 383 is answered. This

defect from 90° varies nearly as the square of the arcual radius ;

when that radius is 10°, the defect is about half a second more

than 45' 34"; and it is reduced to about twenty-seven seconds,

when the radius is assumed to be a degree.

388. Proceeding to consider the quaternary products, 7,7 ,'/:?!,

<l>'h'M--i "'S ^'^y P"' t'"^ latter under the form '7,7,
. 7.7,, and are

then led to assign the following conditions for the construction
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of its representative point t'j (see art. 383), and for its representa-

tive angle at that point

:

T'aRjRj = / q^qi = Q2R2Q1

;

RzRit'j = L q^qi = Q4R4Q3

;

I q^qifliqi = t - Rit'jRj.

Tlie point t'j is therefore situated somewhere on the arc sTj

itself, or else on that arc prolonged. To decide which of these

two conclusions is to be adopted, we need only observe that each

angle of the equilateral and spherical triangle T2R3R4 must exceed

60°, while the angle of the binary product q^qi has been seen to

fall short of 60° ; thus

t'2R2B4 < T2R2R1, and st'j < sTj
;

the displacement TiU'i, of the representative point of a quaternary

product, is therefore directed towards s : and another question

of art. 383 is answered. Another problem of the same article is

solved, by observing that, in consequence of what has just been

shewn, the angle Rjt'jRz is greater than R4T2R1, which has been

seen to be greater than 60°; therefore, by still stronger reason,

the angle Rit'jRj exceeds 60°, and its supplement fialls short of

120° ; so that we have the inequality,

^MjS's?^ < 120°

When the radius is 10°, this defect of the angle of a quaternary

product from 120° amounts to about 1° 15' 50"; it varies nearly

as the square of the radius, and reduces itself to about 45"

when the radius becomes a degree. On the other hand the dis-

placement TjT'z or TiX'i of the representative point varies nearly

as the cube of the radius; it is found to be about 10' 32", or only

about six-tenths of a second, according as we assume 10° or 1°,

for the value of the arcual radius.

389. As regards the quinary product, and its representation

at the new point q' (art. 383), since the associative principle

allows us to regard this product as obtained in two different ways

through the multiplication of a binary product into or by a ter-

nary, because it gives

'hM^M^ = 'M4 ?3?2'/i = iMi^i 'Ml,
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we may employ either or both of the two following systems of

equations for the construction of the point and angle sought

:

TSiRjq' = L q^qi = QR4Q5

;

.{ q'SiRi = Z q^qiqi = 7r - QsSiR,

;

\j- 5'5?i?3g'2?i = n- - RiQ'Si ;

and

Tq'RiSs = / q^qi = Q3R1Q2

;

-I RjSsQ' = Z qtqtq^ = tt - QJS3R3

;

1

[^ qiqiq^q^qi = tt - SjQ Ri.

But the angles of the binary products are equal to each other in

amount, and so are the angles of the ternary products, in the sys-

tem of factors at present under consideration. Hence the angles

S1R4Q' and q'RiSs are equally large ; and so are q'SiR4 and R1S3Q'.

But also the deviations ssi and SS3 are equal in amount ; and so

are the angles which they subtend, respectively, at the points R4

and R,. Hence the angles SR4Q' and q'RiS are equally large;

and the point q' is either on the arc SQ itself, or else on that arc

prolonged. But the former of these two alternatives is to be

adopted, because the angle SR4Q' is less than SjRiq', or than the

angle of a binary product, which is itself less (by art. 386) than

60° ; and therefore less than SR4Q, which is greater than 60°.

Thus the deviation qq' is directed towards s, and another of the

questions of art. 383 is answered. This deviation or displace-

ment, like those already considered, varies nearly as the cube of

the arcual radius sq; it is nearly equal to 17' 37", when that ra-

dius is 10°
; and is only about one second, when the radius is so

small as a degree.

390. It only now remains to inquire whether the spherical

angle of the quinary product at q' is greater or less than the

limiting value of 120°, which it takes when the figure becomes

plane. The supplement of this quinary angle has been seen to

be equal to BiQ'si or Sjq'Rj ; it is therefore greater than R4q's, or

than sq'Ri ; but each of these two last angles, in virtue of the

direction just now determined of the displacement qq', is greater

than the angle RiQS, or sqr„ which is itself greater than 30°.

Therefore, by still stronger reason, the supplement of the angle
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of the quinary product is itself greater than 30°; and conse-

quently, that quinary angle is itself less than 150° ; or, in sym-

bols,

/. qsqiQaqiqi < 150°.

When the radius sq is ten degrees, this defect of the angle of the

quinary product from 150° amounts, very nearly, to 1° 31' 0"; it

varies nearly as the square of the radius, and is reduced to be

only fifty-four seconds and a fraction, when that radius is assumed

as a degree.

391. Although the foregoing numerical values have been

calculated with some care, yet they are here offered merely as

approximations, which may assist in forming a more clear and

distinct conception than might easily be otherwise obtained, of

the process of constructing the spherical hexagon of multiplica-

tion QiQoQsQiQsQ', together with its nine inserted or focal points,

RiRjRjRi, S1S2S3, t'iT'z, under the conditions lately considered

When this construction shall have been in any manner correctly

completed, it may be followed by the inscription of a system of

fifteen new spherical conies, according to the table oifocal rela-

tions in art. 380 ; in which I'able it will however become neces-

sary, for conformity with the recent notations, to change q, Ti, t,

to q', t'„ To, leaving the other symbols unaltered. It has not

seemed proper to complicate figure 80, by inserting in it any of

these new conies, or even any one of the nine new points,

Si, 82, S3, t'i, x'n, q', Mo, p,, M3, which have been employed in recent

articles.

392. For the pentagon ofmultiplication, represented by fig.

79, of art. 361, if we use the notation of that article, the five pro-

ducts of ternary form,

s . r .q, t .s.r, t .s .rq, t .sr .q, ts .r . q,

which were enumerated in art. 376, conduct, as in the last cited

article, to a system oi five auxiliary quadrilaterals; and, there-

fore, also (by 379) to a system offive inscribed conies, and to a

corresponding system offivefocal relations, which may be tabu-

lated as follows :
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Focal Relationsfor the Pentagon.

F, G (. .) ABCI.'

G, h(. .)BCDK;

H, I (. .) CDKF ; .

I, K (. .) deag;

K, F (. .) EABH.

Although I thought that it would too much complicate figure

79 to insert in it these five ellipses, yet I may be permitted to

mention that this species of focal ekchainment (379) oftwo
SPHERICAL pentagons, namely, here, abcde, and figkh (or

fghik), with each other, through a system of five sphebical
coNics, of which each has its foci at two corners of the second

pentagon, and touches two sides of the first, was among the ear-

liest of those geometrical results, referred to in art. 303, which oc-

curred to me so long as 1843, and were in that year communicated
to the Royal Irish Academy, as corollaries from the associative

principle of multiplication of quaternions, and from the general

focal representation, illustrated by fig. 65, of the relations be-

tween any three-quaternions and their products, partial and total.

393. I shall conclude this long Sixth Lecture, by devoting

one more of its many articles to the statement of one other geo-

metrical deduction from the associative character of the opera-

tion of multiplication of quaternions, and from its focal represen-

tation. The deduction alluded to is no doubt a very easy one,

and has been long since published by me, on the same occasions

with the more general theorem of the foregoing article, respect-

ing pentagons and conies on a sphere, of which theorem it is a

particular or rather a limiting case. Yet as it may serve to throw

some little additional light on what has been already said, and

as it admits of being illustrated by a sufficiently simple diagram,

I shall therefore state it here. Suppose then that the four given

versors, q, r, s, t, are represented respectively by four angles, of

36" each, whose vertices a, b, c, d succeed each other at inter-

vals of 72°, in a left-handed order of rotation, on the circum-

ference of a circle so small that it may be treated as plane. Com-

plete the plane and regular pentagon, abcde ; and draw its five
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diagonals, ac, bd, ce, da, eb, intersecting each other, as in the

annexed figure 81, in five

new points as follows :

EB and AC, in f;

AC and BD, in g;

BD and CE, in h;

CE and DA, in i
;

DA and EB, in k.

Then the three binary pro-

ducts rq, sr, Is, at the limit

here considered, will be re-

presented by angles of 72°

each, at the points F, g, H

;

the two ternary products,

srq and trs, will be represented by angles of 108° each, at the

two remaining corners, i, k, of the inner pentagon, fghik ; and

the one quaternary product, tsrq, by an angle of 144°, at the

fifth corner e of the outer pentagon. The present figure 81 is

therefore a limiting form of the more general and spherical con-

'^ww}CRni,-vh'i(ihi ^fg.''i'h was hes'igneri to il'lustrate ; ancl as the

significations of the letters correspond, the system oiJive focal

relations, which was tabulated in the preceding article (392),

must still hold good. Thus the two points f, g are, at this limit,

the two foci oi a plane ellipse, inscribed in the plane quadrilate-

ral ABCi ; namely, the ellipse ll'hk in fig. 81, whose points of

contact with the four sides of the quadrilateral are marked with

these four letters. In like manner the two points g, h are foci

of the ellipse mm'if, inscribed in the parallelogram bcdk; h, i

are foci of the ellipse nn'kg, inscribed in cdef ; i, k are foci of

oo'fh, inscribed in deag; and k, f foci of pp'gi in eabh. Ac-

cordingly these five focal relations can all be established geome-

trically, at this limit, by very simple considerations ; and it may
be noted that, for the same limiting case of the general construc-

tion of a pentagon of multiplication, with its five focal points, two

of the four points of contact for each of the five quadrilaterals are

corners of the interior pentagon ; and that the major axis of each

of the five inscribed ellipses is equal to a side of the exterior

figure.



LECTURE VII.

394. If, at the stage to which we have now arrived, we cast

back a rapid glance on the ground over which we have passed,

and call our chief steps into review, we shall find them to have

been nearly the following.— In the First Lecture of this Course,

we considered the primary significations which it appeared con-

venient to attach to the marks + and -, or to the operations of

addition and subtraction in geometry ; we interpreted, in con-

sistence with the views thus introduced, the identities,

B-A+A = B, a+A-A = a,

and some others connected with these ; and established the fun-

damental relations between vector, provector, and transvector,

for any imagined vection (or rectilinear transport) of a point, or

any composition or decomposition of such vections. After which,

in the Second Lecture, we proceeded to study, on similar prin-

ciples, the marks x and -^, or the operations of multiplication

and division in geometry ; we interpreted the fundamental iden-

tities,

/3-^axa = /3, qx a -^ a = q,

and others therewith connected ; we developed the notions of a fac-

tor as a metrographic agent, and of a quotient as a metrographic

relation, of which each involves generally a reference to the

length and also to the direction of a line ; established the funda-

mental formula which connects factor, profactor, and transfactor,

in any composition of successive acts of faction ; and illustrated

these general principles, by applications to the cases where the

factors to be combined were: 1st, tensors; 2nd, scalars ; 3rd,

signs; and 4th, quadrantal versors, such as i,J, k; which last

we saw reasons for constructing by a certain system of rectangu-
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lar unit-lines, and assigned their squares and products, by com-

pounding certain versions or rotations; these compositions being

found to conduct to the important symbolical results,

ji = -k, kj=-i, ik=~j,

i^ =/- = A-= = - 1

.

395. In the Third Lecture, we examined the cases where the

multiplier was a vector, but not a vector-unit, or where it operated

on a line which was not perpendicular to itself; the product

of two perpendicular lines was shewn to be a third line perpen-

dicular to both, and such that its direction was reversed when

the order of the factors was changed ; on the other hand the

product " vector into scalar" was found to be the same line as

that given by the multiplication " scalar into vector," and the

product of two parallel lines was seen to be a positive or nega-

tive number, the square of every vector being negative ; other

powers of lines were studied, and the product or quotient of two

inclined lines was decomposed into two factors, namely, a tensor

and a versor, and was found to involve a dependence on a system

of four numbers, entitling it to be called a Quaternion ; while,

by the help of their representative biradials, a general construc-

tion was given for multiplying (and therefore also for dividing)

any one such quaternion by any other ; conjugates and recipro-

cals were considered, and the signs K, T, U were introduced, as

characteristics of the operations of taking, respectively, the con-

jugate, the tensor, and the versor, of a scalar, or vector, or qua-

ternion.

396. The Fourth Lecture related chiefly to proportions of

lines in one plane, and to powers of quaternions, the exponents

of those powers being scalar ; it assigned constructions for

/3a"^ . y, and introduced the symbols Z q and K\.q; in it were

also pointed out some of the uses which might be derived in

geometry, for the expressions of certain loci, from the partial in-

determination of the signv-1, when interpreted according to

the principles of the present Calculus. In the Fifth Lecture,

the consideration of the line which is a fourth proportional to

three coplanar lines was resumed ; and the continued product of
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three such lines was shewn to be, in this theory, a fourth line in

the same plane, in the symbolical expression for which product

the place of the mark of multiplication is immaterial ; the direc-

tion of this fourth line was seen to be that of the fourth side of

an uncrossed quadrilateral inscribed in a circle, if the three first

sides of that figure have the directions of the three successive

factors ; while the fourth proportionals and continued products

of three lines which are not in any one plane, were found to be

not lines but quaternions.

397. In the same Fifth Lecture we proceeded to study this

last-mentioned quaternion product, of three lines not coplanar,

with a view chiefly to ascertain whether in its symbolical expres-

sion the point or other mark of muliplication might be omitted;

or in other words, whether the associative principle still held

good, in the multiplication of three vectors, which were not in

nor parallel to any one common plane. This question was de-

cided in the affirmative ; and in deciding it, we had occasion to

introduce and to apply some general spherical constructions, re-

presenting versors by arcs upon a sphere, and the multiplication

of any two versors by a process which was called, by analogy,

the addition of their representative arcs ; which arcual addition

is merely the composition of arcual vections, and corresponds to

the composition of successive versions, or plane rotations, of a

moveable radius of the sphere : while division of versors, or de-

composition of versions, is represented on the same plan by a

sort of arcual subtraction. The generally non-commutative cha-

racter of the multiplication of versors, or the dependence of the

product on the order of the factors, was illustrated by the cor-

responding character of the addition of arcs, which belong to

different great circles ; and the same general spherical construc-

tion served to illustrate other results, as for instance, that the

conjugate or the reciprocal of a product of quaternions is equal

to the product of the conjugates or of the reciprocals, taken in

an inverted order.

398. On applying this general construction to the symbols

/3a"' . 7, ^ • a'y. in the case where the three vectors a, /3, 7 are

not coplanar, it was found that both these symbols represent one

common quaternion, which may still be called (as above) the
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fourth proportional to those three lines, or the continued product

of -y, a"', and /3; and of which the axis is directed to the corner

D of an auxiliary spherical triangle def, whose sides, respec-

tively opposite to the points d, e, f, are bisected by the three

given vectors a, /3, 7, at least if those three lines make acute

angles with each other ; while the angle of the same fourth

proportional to them is the supplement of the semisum of the

angles of this auxiliary triangle, or is equal to that semisum

itself, according to the character of a certain rotation. The mo-

difications of these results were inquired into, which take place

when the angles between a, j3, y, or some of them, cease to be

acute ; and the associative principle of multiplication was still

found to hold good. When the three angles just mentioned were

all supposed to be right, a curious case of indetermination arose

in the construction of the auxiliary triangle, which however was

shewn to be connected with, and to illustrate, the scalar charac-

ter of the fourth proportional to three rectangular lines, and also

that of their continued product. And as the values,

i= = -I,/ = -l, A^ = -l,

of the squares oii,j, k, had each been deduced from the consi-

deration of two successive and quadrantal versions in one plane,

so the value

ijk = - 1,

which serves to complete the continued equation

i^ =j'' = k' = ijk = - \

,

wherein all the rules respecting the multiplication of ijk are con-

tained, was shewn to admit of being interpreted as expressing

the result of three successive and quadrantal versions, or rota-

tions, in three successive and rectangular planes.

399. Such having been the chief subjects of the five first

Lectures of this Course, we proceeded in the Sixth, after some

supplementary remarks on the subjects lately considered, and

especially after shewing how the semi-excess of a spherical trian-

gle might present itself as the angle of a certain product of

square roots, to examine whether the associative principle of mul-

tiplication held good for any three or more quaternions generally,
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and not merely for any three lines. To inquire whether it were

universally true, in this Calculus, that

s .rq = sr . q,

and to draw forth some of the chief consequences of the truth of

this simple but important formula, was indeed the guiding con-

ception, the leading aim, of the whole of that long Sixth Lec-

ture, of which, in this recapitulation, 1 shall speak with greater

relative brevity than of the ones preceding it, because it may be

supposed to be more fresh than they in your remembrance. You
know that a new spherical construction, by means of represen-

tative angles, was given in that last Lecture, for the multiplica-

tion of versors, distinct from, although intimately connected with

the construction by representative arcs, which had been pre-

viously offered to your notice ; the product of two versors being

now represented by the external vertical angle of a spherical tri-

angle, whose base angles, taken in a determined order, represent

those two versors themselves; and you remember that this con-

struction by angles was employed to illustrate anew some gene-

ral properties of the multiplication of quaternions. The equa-

tion

for any spherical triangle, was established, with the help of the

same construction : and the symbol

qrq-'

was interpreted, as denoting a conical rotation of the axis ofr

round the axis of 9, through double the angle oi q; or else, at

pleasure, the equivalent amount of the turning of one plane upon

another, in a mode entirely analogous to the precession of the

equinoxes ; and thus a preparation was made for symbolizing the

rotations, as well as the translations, of a body, or system of vec-

tors, and for expressing the composition of such rotations.

400. This having been done we proceeded to translate, with

the help of diagrams, very copiously employed in that Lecture

which we are now reviewing, the statement of the Associative

Principle, for the case of three versors, into the language of re-

presentative arcs, and also into that of representative angles: and

2 c
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proved it, for each of these two connected forms of construction,

by means of some simple and known properties of conies upon a

sphere ; giving however also a more elementary proof, although

a somewhat longer one, which did not assume any acquaintance

with the doctrine of those conies, and indeed did not introduce

the conception of a cone at all. The associative principle of

multiplication having been thus established for three versors, it

was extended without any difficulty to the case of three or more

quaternions, and so shewn to be general in this Calculus: and

its expression was in several ways varied, by means of spherical

figures, and by relations between quotients of lines. The same

fertile principle conducted us also to many conclusions respect-

ing continued products of vectors, especially when the factors

were supposed to be the successive sides of a rectilinear polygon,

plane or gauche, inscribed in a circle or in a sphere; among

which it is worth while to remember, that the product of the

successive sides of any even-sided polygon in a circle, is a sca-

lar; but that the product of the successive sides of any odd-sided

polygon in a sphere, is a tangential vector. Cases of these last

theorems were made to furnish equations or conditions of con-

circularity for four points, and of homosphsericism for five : and

the latter equation, which includes the former as a limit, was

shewn to furnish a graphic property of a sphere, in relation to

an inscribed gauche pentagon, which property is, for space, the

analogue of the elementary relation between the directions of

the sides of a quadrilateral inscribed in a circle. A problem re-

specting the inscription of a gauche quadrilateral in a sphere

was also easily resolved, and might with equal ease have been

extended. Finally, the two other chief classes of geometrical

applications of the associative principle of multiplication, which

were considered in the foregoing Lecture, may be said to have

been those which related to the compositions (above alluded to)

of conical rotations ; and to the superscription on a spheric sur-

face of certain polygons of multiplication, with certain connected

systems of focal points, and of inscribed spherical conies ; in-

cluding some limiting cases, where the polygons and conies be-

come plane. But these have been so recently treated of, that

we may now pass to other things.
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401. The object which we propose to ourselves in this Se-

venth Lecture, being chiefly to treat of the Addition and Sub-

traction of Quaternions, and in connexion therewith to prove and

to apply the Distributive Property of their Multiplication ; as also

to introduce and exemplify the Notations S and V, which were

mentioned by anticipation in art. 121, and which serve to sepa-

rate a quaternion into its scalar and vector parts: we may here

begin by observing, that since we already know how to add sca-

lers among themselves (by the ordinary rules of algebra), and

also how to add vectors to each other (by the laws of the compo-

sition of vections), it is natural now to consider what interpreta-

tion can consistently and usefully be assigned to the analogous

operation, not hitherto studied by us, of adding a scalar to a

vector. To take what seems the simplest case of this inquiry, we

may ask, what are we to regard as the meaning, and what as the

result, of the addition of a scalar unit to a vector unit ? Can we,

for instance, interpret the sum 1 + A, as bearing any clear and de-

finite signification, if k continue to denote, as it has hitherto

usually done with us, an upward unit line?

402. For this purpose 1 look out for some common operand,

on which I can operate separately, by eacA of the two proposed

symbols 1 and k, and afterwards add the results, in order to com-

pare their sum with the operand thus assumed. Such an operand

at once presents itself in the vector unit i ; for we know that

1 i=i, and that ki=j ; and although it may seem at first difficult

to add, in any intelligible sense, the number, 1, to the line, k, there

is no difficulty in adding the southward line, i, to the westward

line,j, by drawing, as in fig. 82, the diagonal

OP of a square, constructed with os and ow, ^'S- ^^•

or with the lines i and 7, for two contermi-

nous sides. And then by comparing this

south-westward diagonal, i +j, whose length

is = V 2, with the original operand, or side,

or southward unit i, we obtain the equa-

tion : w j^^,^

1 + A = (i 4 ki) -H i = (t +j) -i- i

;

80 that the required sum, 1 +A, is thus put under the form of a

2 c 2
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quotient of two lines ; and therefore (by our general principles),

it is hereby found to be a quaternion, of which the tensor and the

versor are as follows :

T(l+A)=2*; U(4+A)=A*.

(In the annexed sketch, fig. 82, I observe that {l + k) i has been

inadvertently written, instead of (1 + A) i.) We may also, for the

same reason, write more concisely this equation,

1 + A = 2i A* = V¥h.

And it is clear that the same quaternion would have been ob-

tained, as the value for this expression 1 -\- k, if we had set out, on

the same general plan, with any other horizontal line, a, instead

of i, as the original operand. We should still have been led to

construct a square in the horizontal plane, and to compare a

diarjonal with a side ; or more fully, to divide (in the general

sense already explained) the one line by the other; and to take

the resulting quotient, V (2 k), as the value ofthe sum in question.

403. Those who are familiar with the principles of the Cal-

culus of Finite Differences, may find the following remarks throw

some light on the foregoing process. We were to add the num-

ber 1 to the line k ; and there seemed for a moment to be a diflS-

culty in so doing, on account of the heterogeneity of the two

summands. But in the Calculus of Differences an exactly ana-

logous difficulty presents itself to the learner, when he first meets

the symbol

1 + A,

where the number 1 appears as added to the characteristic A,

which is not a number at all, but the sign of the operation of
taking a finite difference. How is this difficulty removed? A.

function of x, suppose x^, or more generally y(a;), is taken as the

common operand; it is operated on by each separately, of the two

proposed things or signs, 1 and A; the two results, namely,

I x^= x^, and A • a;' = 3 a;^ + 3 ,r + 1

,

or more generally,

1 /(^) -/(«), and Afix) =f(x + 1) -/(.r),
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are added to each other, by the previously known rules of ordi-

nary addition in algebra ; and their sum is then, by a definition

suggested by analogy, and found by experience to be useful, con-

sidered &% being the result which wouldh&ve been obtained, if the

same function of a; had been at once operated on, by the sought

symbolic sum, 1 + A. In this way it has come to be agreed on to

write,

(1 + A) • a;' = 1 o;^ + A • ;c^ = a:' + (3 x= + 3 X + 1) = (a,' + 1)',

and more generally,

(l + A)/(.T)=/(a;4l);

and then, by abstracting from the operand, it has been inferred

that 1 + A is, in the Calculus of Differences, the symbol ofan
OPERATOR, which changes any given function of x to the same
function ofx+ 1. We come to learn then, in that Calculus, what
the proposed sum 1 + A is, by learning what it does ; the ope-

rator becomes known, through the knowledge which is acquired

of its operation. And similarly, in the foregoing article, the ope-

rator 1 + A has been considered as determined, when it has been

found to produce the determined effect, of changing the side to

the diagonal of a square in the horizontal plane, exactly as is done

by the quaternion V2k; to which quaternion the sought sum

\+k has therefore been concluded (in art. 402) to be equal.

404. As it is perhaps impossible to be too clear on funda-

mental points, and as the addition ofa scalar to a vector is thus

fundamental in quaternions, I shall venture here to submit to

you, for a moment, a far more elementary illustration. Suppose

then that you wished to shew to a child that two and three made

five, or to teach him how to interpret the symbol 2 + 3, you might

of course, for that purpose, put down first two dots &% one group,

and then M?'ee dots as another, and afterwards combine these two

groups into a single one, as indicated in this

.•If 7 J L • I.
Fig. 83.

little diagram; on counting the dots in wnicn
^

one resultant group, the child would find them

to he five. Now in this simple and obvious

process, the dot is the original operand: ihe partial groups, of

two dots and three dots respectively, are the results of the two



390 ON QUATERNIONS.

Fig. 84.

partial operations ; the proposed numbers, 2 and 3, correspond

to the two partial operators (being thus analogous to the sym-

bols 1 and k in article 402, or to 1 and A in art. 403) ; the total

group, of five dots, is the sum ofthe two partial results (answer-

ing toll +Ai, or to \fX + £^fx) ; and when at last the young

arithmetician comes to count the dots, in this final or total group,

he executes, on a small scale, that sort oi abstraction from the

operand, which leads, in the Calculus of DiflTerences to the in-

terpretation of the symbol 1 + A, and in the Calculus of Quater-

nions to the conclusion that

l+h = (li + ki) -r- i = (i+j) -T- i = 2iAi

405. More generally, let it be now required to add any pro-

posed scalar, w, to any proposed vector, p, or to interpret gene-

rally the symbol w -^ p. We have only (see fig. 84) to assume

any line a, or OA, in a

plane perpendicular to

p, as the original and

common operand ; to

operate on this sepa-

rately, by the scalar w
and by the vector p, and

so to produce, as the

two partial results, two

mutually perpendicular lines, namely, wa or ob, and pa or

oc ; to form next the sum of these two lines, by completing

the rectangle, and drawing the diagonal ; and finally, to di-

vide this diagonal wa + pa or od, by the assumed operand line a,

and to equate the required sum, w + p,to the quaternion which is

obtained as the quotient of this division. In short we have only

to employ the very simple formula,

w + p = (wa + pa) -7- a, where a ± p :

or (under the same temporary condition of perpendicularity) to

make use of the identity,

(w + p) a = Wa + pa.

So FAR, then, the distributive property ofmultiplication holds

good BY DEFINITION in quatcmions, as serving to interpret
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(in the foregoing way) the symbol w + p, by first introducing,

and afterwards abstracting from, an auxiliary and perpendicular

line a, as a subject to be operated upon : and it is clear that a

similar process would lead to the same construction, and to the

same final result, if we had sought to add p to w, instead of

adding w to p. We know therefore how to give, by quaternions,

in every case, a complete and definite interpretation to the ope-

ration of adding together a scalar and a vector; and we see that

such summation is commutative; or in symbols, that (because

wa + pa = pa + Wa) we may write,

W + p-p + W.

406. Conversely, let aob be any proposed biradial, repre-

senting an arbitrary quaternion,

9 = /3 -^a = OB -1- oa;

and conceive that from the extremity b of the final ray ob, a

perpendicular bb' is let fall, on the initial ray oa, or on that ray

prolonged. The vector /3 or ob will thus be decomposed into

two partial vectors, /3' and /3", or ob' and bb, of which the for-

mer
(P')

has either the same direction as a, or else the opposite

direction, unless it happens to vanish ; while the latter
(J3")

has

a direction perpendicular thereto : and consequently, if these

two components of /3 be respectively divided by a, the two

partial quotients will be respectively equal to some scalar, such

as w, and to some vector, such as p, this latter vector being per-

pendicular to the plane of the biradial. In symbols, see the an-

nexed figure 85, we may

write,

a = A-o, /3=B-o =

(b - b') + (b' - o) =

/3" + j3', |3'||a, fi"A.a;

and therefore shall have two

partial quotients of the

forms,

/3' -=- a = m;, /3" -^- a = p,

where p 1. a, p JL fi-

Hence, if we seek, by the

JFig. 85.
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principles of the foregoing article, to form the sum, w + p, of

these two partial quotients, we find,

tva=j3', pa^Pi', (w + jo) a = /3'+/3" = /3,

and finally,

w + p = P-r- a = q.

Not only then may we always compound, by addition, any pro-

posed number w with any proposed line p into one quaternion

sum, but also reciprocally, we can decompose any proposed qua-

ternion, q, into two parts, of which one shall be some scalar

such as w, while the other part shall be some vector as p : and

it is clear from the foregoing remarks that this decomposition is

perfectly definite ; any change, whether of number or of line,

making a real and not merely an apparent change, in the quater-

nion which is their sum.

407. We may therefore speak definitely of the scalar part,

and the vector part, or more concisely we may speak oi the

scalar and the vector, of any proposed quaternion. And

these two parts of a quaternion (already alluded to, near the

commencement of the Fourth Lecture) will be found to present

themselves so often, in the developements and applications of

this Calculus, that it becomes almost necessary to agree on some
NOTATIONS, by which they may be separafeZy indicated. Accord-

ingly I have for a good while accustomed myself to employ, as

among the main elements q/'^Ae notation of quaternions (see

arts. 121, 401), the two letters,

S and V,

as CHARACTERISTICS of the twofundamental operations, of what

I call, respectively, taking the scalar, and taking the vec-

tor, of a quaternion. More fully, I denote separately, by the

symbols,

Sq and Yq,

the scalar part and the vector part of any proposed quaternion,

q. Thus

S (w + p)=w; Y (w + p) = p ;

and with the recent significations (406) of a, /3, /3', /3", we have,
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In general for any quaternion q, we have the identities,

q=Sq+Yq=Yg+Sq,

which may sometimes be abridged as follows

:

1 = S + V = V+S.

With the same significations of the letters, it is clear that we

have also,

Sw =w; Sp = ; Vw = ; Vp = p;

that is, identically (compare 90),

SSq = Sq, SYq = 0, VSq = 0, VYq=\q;

or more concisely,

s^ = s, sv = vs = o, v^=v.

408. Conjugate quaternions have equal scalars, but opposite

vectors ; as will at once appear, if we compare the general de-

composition into scalar and vector parts, constructed by the re-

cent figure 85, with the equally general representation of two

conjugate quaternions, which was illustrated by the earlier fig.

32, of art. 186. In the figure last cited, we had

(^ =^ ^ a = OB -i- oa; Kq-f-^a = oc-~o\;

and it is evident that if the right line BC were drawn, connecting

the extremities of the two dividend vectors /3 and 7, it would be

perpendicularly bisected by the divisor line a, or by that line pro-

longed, in a point which might be called b'. In this way we

should not only have, as in 406,

/3 = /3"+i3', i3'||«, ^"J.a,

but also,

7 = 7"+ 7' 7'
II "»

7
"
-L °'

where

y = OB'= + /3', but 'y" = B'c = -B'B = - /3"

;

thus the scalar and vector of the conjugate are, respectively,

S (7 -1- a) = 7' H- a = /3' -^ a = + S O ^ a),

V (7 -- a) = 7" H- a = - ^" -^ a = - V O -H a) ;
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or more concisely,

SKq = +Sq, VK^ = -V?; or, SK=S, VK = -V.

If then, as in 406, we adopt the expression,

g = w + p,

for the proposed quaternion, we shall have also, as was stated by

anticipation in art. 114, this connected expression for the conju-

gate :

Kq=w- p;

which includes the two particular expressions there given,

Kw = + w, Kp = - jO.

We may also write, as an identity in this calculus, the formula,

Y.q=Sq-\q;

which may be abridged to the following

:

Kq = {S-\)q; or K=S-V.

409. It has been seen (114, 162) that conjugate quaternions

have always one common tensor, or that

TKq=T:q;

we have therefore the equation,

T{w-p)=T{w + p).

Again, it was shewn in 163 that the product of two conjugate

quaternions is equal to the square of their common tensor,

q'Kq^Tq'';

we have therefore the following expression for this square,

T (w + py = {w + p)(w-p);

whence, if we had already established generally the truth of the

distributive principle of multiplication, we might at once con-

clude, what was stated by anticipation at the end of art. Ill,

that

Tq=T(w + p)= v/K-|o')-

But since that principle has not yet been generally established, I
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must take at this stage another mode of proving the correctness

of this last expression, for the tensor of any quaternion. And
this is easily done with the help of the recent figure 85. In fact

since the square on the hypotenuse ob is equal to the sum of the

squares on the two sides about the right angle, we have evidently

the equation,

Tj3'=T/3'^+T/3"^

therefore also, by general properties of tensors already esta-

that is

but it was proved in 1 1 1 that

Ilw' = + w"^, and that T/o^ = - p''-\

we arrive then thus at the formula which includes these two last

results, namely,

Tj^ = w^ - ([)^

410. It is evident (see fig. 85, art. 406), that if the quaternion

gi, or j3 -^ a, be multiplied by any scalar x, by changing /3 to x/3,

the projections, /3' and /3", of the vector j3, are at the same time

multiplied by the same scalar ; or are changed, respectively, to

xp), and to a:/3". Hence the two partial quotients, /3' -r- a and

/3" ^ a, or w and p, are changed, by this multiplication, to xw

and xp respectively. Such then are the scalar and vector parts

of the product xq; or more concisely,

^.xq = x?>q, and V .xq = xYq, if Va; = 0:

this last formula expressing, evidently, in virtue of the principles

and notations explained in art. 407, that x is here supposed to be

a scalar. In particular, by making x = -\, we have the identi-

ties,

And, passing from the quaternion q to its conjugate, and attend-

ing to the results of art. 408, we find that



396 ON QUATERNIONS.

Si-Kg) = -Sq; Y(-Kq) = +Vq;

or that

-Kq = -Sq+Yq,
-K = V-S.

In general we have, in this calculus, as in algebra, with the fore-

going significations of the symbols,

x{w + p) = xw + xp ;

-(w + p) = -w-p;
-{w-p)=~w + f};

the two latter identities being included in the former.

411. It was seen (in 113) that a tensor such as T^, although

first conceived (see 63) as a signless number, might be equated

to a positive scalar; whence it follows that we may now write,

ST^ = + Tq= Tq, and VT<7 = 0.

But also we have generally the decomposition (90) of a quater-

nion into factors,

q^Tq.Vq;

where the point or other mark of multiplication may be omitted.

Hence (by 410) we have the two identities,

Sq=Tq.SVq, Vq=Tq.yUq;

when the points may again be omitted without confusion. It is

also allowed (see 113), and is indeed only a particular case of

the more general decomposition just now mentioned, to decom-

pose any vector into its own tensor and its own versor, as fac-

tors ; thus we may write,

WlJq=TYUq.UV\jq;

where, by the present article, and by 113, 153,

UVU5=UVy=Ax,^.

The temporary symbol Ax . q, employed in the three preceding

Lectures, may therefore now be replaced by this other symbol

UVy, which is perhaps only about as easy to be written or

printed as the former, but which has the advantage oi connect-

ing itself better with the system ofsymbols employed in the pre-
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sent Calculus ; and we may establish the following symbolical

equation, between two different characteristics of two equi-

valent operations :

Ax. = UV.

We have also these general transformations of any proposed

quaternion q :

q=Tq{^\]q+\\]q)
= T5(SU^+UV(?.TVUy):

in which there is no difficulty in seeing now that

SU§' = cos Lq, TVUg'=sin l q,

if we merely admit the well-known meanings of the words " co-

sine" and " sine," and their abridged notations, " cos" and " sin,"

without assuming here the knowledge of Anyformula of trigo-

nometry. At the same time it results from art. 1 13, that

{\JYqy = -l;

and thus a celebrated expression is reproduced, as a general form

for the versor ofa quaternion, namely the following :

U^ = cos Lq+ \/ -\ ^\n Lq\

in which, however, on the plan of interpretation adopted in these

Lectures, the square root ofnegative unity that occurs is not to

be regarded as having any imaginary character in geometry; but

simply as denoting a certain vector unit : namely, that particular

unit-line which is more fully denoted by Ax .q, or by UVg, and

of which the direction is perpendicular to the plane of the pro-

posed quaternion q.

412. Without inquiring farther, at present, into this co7i-

nexion ofquaternions with trigonometry, it may be instructive

to exhibit, at this stage, a few of those expressions for geo-

metrical LOCI, which the recent symbols S and V supply, or

assist in supplying, when used in consistency with the principles

of the present Calculus.

It is evident, from recent articles, that the scalar part of a

quaternion is positive, or null, or negative, according as the angle

of that quaternion is acute, or right, or obtuse : in symbols.
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aq = Oj according as iq =-.

In fact, without assuming any thing as previously known re-

specting the trigonometrical character of the function " cosine,"

or even requiring, at present, the admission of the recent formula

SUi^ = cos L q, the equations,

S (OB -h da) = OB' -r- OA, S (OC -H OA) = Oc' -=- DA,

taken in connexion with fig. 85, establish at once the positive

character of the scalar of an acw^e-angled quaternion, and the

negative character of the corresponding part of a quaternion

which has its angle obtuse ; while the evanescent (or null) cha-

racter of the scalar part of a W^A^-angled quaternion, may be

made obvious to the eye by this other and very simple figure,

where the projection d' of d on ao coin-

cides with o, and the line od' or 8' va-

nishes, making at the same time null the

quotient,

Fig. 86.

S' -;- a = S (S -r- a) = S (OD -r- oa) =

od' -j- oa = 0, if S _L a.

= 6

And conversely, if a and p be any two ac- I

tual (or non-evanescent) straight lines, <
—

vvhich do not make a right angle with each

other, the scalar part of their quotient ca?2wo< be equal to zero; for

it will be (as above) either a positive or negative number, accord-

ing as the angle between the two lines is acute or obtuse. To
write therefore the equation

S(p-Ha) = 0,

under this supposition of the actuality of the two lines compared,

is equivalent to writing theformula ofperpendicularity,

p ± a.

And it is clear that, on the other hand, with the same condition

of the non-evanescence of the lines, to write this other equation,

VCo^a) = 0,
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is to assert that the directions of a and p are either similar or op-

posite; and is therefore equivalent to the establishment of the

formula ofparallelism,

plla.

In short, the quotient of two parallel lines, being a scalar, has

no vector part; and in like manner, the quotient o( two perpen-

dicular lines, as being (in this whole theory) equal to a vector,

has wo scalar part different from zero.

413. This being clearly seen, suppose that a, /3, p denote

some three vectors, OA, ob, op, which have a fixed and common

origin o, and of which the two former terminate at two fixed and

known points a, b, but the latter at an unknown or variable point,

p. Then, using the notation of fractions (118), the equation

s^-o.

expresses that p _L a, and therefore that the locus of the point p

is the PLANE THROUGH THE ORIGIN o, which IS perpendicular to

the given line oa. In like manner, the slightly more complex

equation,

expresses the perpendicularity,

p-/3 ± a, or BP J. oa;

and gives therefore, as the locus of p, the plane which is drawn

through the given point B, perpendicular to the same given line

OA, and consequently parallel to the former plane. Another ex-

pression for a plane parallel to the first plane is the following

:

where a is supposed to denote some constant and given scalar;

for this equation expresses (by 406, 407) that the projection p of

the vector p on a is the constant line aa, or that the projection

p' of the point p on oa is constant,

p = op' = aa-
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And I may just mention by anticipation here, that when the de-

finition of the difference of two quaternions shall have been as-

signed, and the distributive property of the operation of taking

the scalar proved, the third equation of the present article will

be seen to result from the second, under the form

a a

414. If, inverting the fraction, we were to write the equa-

tion

sr»'
it would still express merely that p was perpendicular to a, and

would still give the first plane of the foregoing article, as the

locus of the extremity of p ; and in like manner, the equation,

,
= 0.

Fig. 87.

would give still that second or parallel plane which was drawn

through the end of j3, at right angles to a. But if we write

we express (see the annexed figure 87) that the projection of a on

p is the line p itself, or that the angle opa

is right ; and therefore that the locus of p is

now the surface of the sphere, described

with the given line OA as diameter. With-

out assuming as known those general prin- /^^^ y/ '"4~\

ciples respecting difference and distribu- ^

tion which were recently by anticipation

alluded to, we may easily see that this last spheric locus may

also be represented by the equation

for this evidently expresses the perpendicularity,

a- p ± p, or PA _L OP.
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We may therefore already perceive, by this simple geometrical

construction, although the mode of proving it as a transforma-

tion in this calculus is for a while reserved, that either of the two

last equations must be equivalent in its import or signijicatioii to

the following:

T(p-|) = iTa;

because if we bisect OxV in c we shall have,

oc CP^ P-2'

Fig. 88.

and these two last lines are obviously equal to each other in

length, the point c being the centre of the sphere.

415. More generally, there is no difficulty in seeing, wliat

indeed is not peculiar to the theory of quaternions, that the

semisum, i(a+/3), of any two co-initial sides oa and ob, of any

plane triangle aob, represents in length and in direction, the co-

initial bisector oc of the third side ab ; for it is (see fig. 88) half

of the co-initial diagonal

OD, of the completed pa-

rallelogram (compare art.

100); and in like manner

the line ca, which is the

half of the other diagonal,

is represented by the semi-

difference \{a- ft).
If then

we meet the equation,

which expresses (see fig. 89) that cp is equal

in length to ca, or that the locus of p is the

sphere with ab for diameter, the right angle

in the semicircle apb will enable us to infer

that pa ± BP, or that a - p J_ (0 - j3, and so

will give this other equation.

•/3

' p-\i
= 0;
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which we thus see, must be a valid transformation of the former,

although the rules for passing-, by calculation, from either of

these two last equations to the other, have not as yet been

given. Meanwhile it is evident that if we make /3 = 0, we shall

thereby place the point b at the origin o, and so change the last

figure 89 to the figure 87 of the preceding article, returning

thus to the particular spheric locus there constructed, from that

more (jenerally situated sphere which has been since expressed.

416. From planes and spheres we can of course pass to cir-

cles, &% iheir intersections ; thence to the cone, which has a

circle for its base : and from this ajrain to the well-known curves

of intersection of such a cone with a plane, or to the conic sec-

tions commonly so called, which form so important a link be-

tween the ancient and the modern mathematics. It is also almost

or altogether equally easy, so far as mere expression is con-

cerned, to deduce, from the same principles, equations which shall

represent those spherical curves, which, under the name of SPHE-

RIC AL coNics, have attracted so much notice from geometers of our

own times ; and of which some mention has already been made, by

anticipation, in these Lectures : namely, the curves of intersec-

tion of a co)ie which has a circular base, with a sphere which has

its centre at the vertex of the cone.

417. Thus if we conceive that r, q, r, s are four points on

the circumference of a circle, the point r being variable, but the

other three points being fixed ; while o is any other given point of

space, which we shall suppose to be outside the given plane qrs,

and A the foot of the perpendicular upon that plane, let fall from

o, so that OAP, OA(j, oar, oas, are right angles; if also we denote

OA by a, and op by p; we shall then (by 413) have the follow-

ing equation,

a

to represent the pla))e of the circle
; and in order to complete the

expression of the circimferince, it only remains to assign the

equation of some sphere, on which the same circle shall be con-

tained. Now we can always conceive such a sphere, oqrs, de-

termined so as to contain the given origin o, which has been
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supposed external to the plane of the circle qrs ; and can then,

at least in thought, draw the diameter ob of this sphere, and de-

note the diameter so drawn by j3. Thus opb will be a right

angle, and (compare 414) the sphere oqrs will consequently be

expressed by the equation,

P

The SYSTEM OF THESE TWO EQUATIONS,

S^ = l, S^=l,
a p

will therefore represent the circle qhs ; which may, by a suitable

choice of the two vectors a and /3, be made to coincide with any

proposed circle in space, under the condition that its plane shall

not pass through the origin o. This mode of representing a cir-

cle is indeed far from being the only one which the principles of

quaternions supply ; but it is one of those which seem to suit best

our present stage of the developement of this Calculus.

418. If now we multiply together the two equations just

found for the circle (supposing o external, as before), their pro-

duct, namely, the new equation

a p

may easily be proved to represent the cone, which has the point

for its vertex, and the circle qhs for its base. For first, that

the locus represented by this equation is a cone of some sort,

with the origin of vectors for its vertex, appears from the circum-

stance that if the equation be satisfied by any one value of the

variable vector p, it is satisfied also by every other value xp of

that vector, which can be derived from the former value p by

multiplying it by any scalar x; since the recent equation may

be written thus,

xp
S''

we may therefore at pleasure shorten, lengthen, or reverse (lie

vector OP of any point P of the locus, and the new point v' thus

2 D 2
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obtained, on the indefinite right line op, will still be situated upon

the locus. And in order to determine, next, what particular

cone, with o for vertex, is represented by the equation of this ar-

ticle, we need only determine the form and position oi some one

plane section, such as that made by the plane whose equation is

a

Now it is clear, from comparison of the equations, that this sec-

tion must be entirely contained upon that other locus, of which

the equation is

P

that is (see 4 14, 417), the sphere through the origin, of which one

diameter is the vector (3: but the intersection of this s})here with

the last-mentioned ])laiie is precisely that circle which was con-

structed in the article immediately preceding. We see therefore

that this circle is one section, and consequently that it may be

regarded as the base, of the cone whose equation has been as-

signed in the present article.

419. If then with that equation, namely, with

a p

we combine this other equation,

7

which represents generally a new plane, if y be a new constant

vector, we shall hereby express that the cone with circular base

is cut by a plane not passing through its vertex ; and the system

of these two equations will represent (416) a co?iic section:

which may be a circle, ellipse, parabola, or hyperbola, according

to the values assigned to the three constant vectors, a, {i, 7.

Conversely, if there be amj conic section, whose form and posi-

tion are given in space, and if any origin o of vectors be assumed
outside its plane, the expression of the curve may be reduced to

the form of this system of equations.
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where y may be regarded as an entirely known and Jixed vector,

namely, the perpendicular from the assumed origin on the given

plane of the section ; but in which the two other constant vec-

tors, a and /3, may be chosen with some degree of arbitrariness;

since it is clear, for instance, that they may both be multiplied by

any common scalar, such as t, because the equation of the cone

may evidently be written as follows (compare 418):

la p

And it is not difficult to see that the cone remains in all respects

unaltered, when a and j3 are changed to j3"' and a"' respectively.

420. This last transformation of the equation of the cone de-

serves however to be more closely considered, both as an exercise

in calculation, and for the sake of its geometrical signification.

For this purpose I observe that, by principles already explained,

we have the transformations (see 1 18, 89, 408, 410, 85),

Q- = S . pa"' = SK.a''p=S.a''p = P'S •

a
'^

p

and

^.S^ = S./3p = S.p/3 = S^.;

whence it follows that we have, identically, for any three vec-

tors a, /3, p,

p B a P
""'

and consequently that the equation of the cone, employed in the

two preceding articles, may be put under the form,

thus justifying the remark which was miule at the end of 419.

The same new form of the equation shews that the same cone is

cut by the plane



40G ON QUATERNIONS.

«#. = •

in a NEW CIRCLE, contained upon the sphere

the plane of this new circle being not cjenerally parallel to the

plane of that other circle (417), which was made (in 418) the base

of the cone here considered. In short we find ourselves con-

ducted anew, by this easy process oi calculation with quaternions,

to the recognition of that antiparallel or subcontrary sec-

tion of an oblique cone with circular base, of which the existence

was geometricalhj demonstrated by Af)ollonius of Perga, more

than two thousand years ago (in the Fifth Proposition of his First

Book upon Conies). And the equation found in the present ar-

ticle, for the plane of such a subcontrarv section, expresses ano-

ther known and remarkable property of that section, or of the

cone to which it belongs ; namely, that this subcontrary plane is

parallel to the plane

s^ = ..

which touches at the vertex o, the sphere oqrs, circumscribed

about that vertex o, and about the given circular base qrs (see

arts. 417, 418).

421. Again, let the same cone be supposed to be cut by a

concentric sphere ; that is (41G), by a sphere whose centre is at

the vertex of the cone, and therefore (here) at the origin o of

vectors; while the length of its radius shall be represented by
some given and constant number, c. One form of the equation

of this sphere is (see 110),

Tp = c;

another form (by 111) is,

p- + c- = ;

and another is,

fi \ y
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if Y be the given vector of some one point upon the spheric sur-

face, as appears by changing a to y, and
f3 to - y, in the last

equation of 4 15. If then we combine any one of these three

forms for the equation of the sphere, with any one of the forms

lately given for the equation of the concentric cone, or any legi-

timate transformation of the former with any such transformation

of the latter, we shall obtain a system of two (scalar) equations,

which will represent a spheuical conic (see again 416). The
two platies throu/jli the vertex, or centre, o, which are pa-

rallel respectively, to the two sets of circular sections of the

oblique cone, have been named by M. Chasles the two cyclic

PLANES of that cone; thus, for the cone whose equation is

a p

the two cyclic planes have for equations

a ji

which may also be thus written (compare 420),

S.flp = 0, S.|3p = 0,

or thus,

S.pa = 0, S.p|3 = 0.

The same eminent geometer has given the name of cyclic arcs

(compare 29(7), to the two great circles, wherein the sphere

round the vertex is cut by the two cyclic planes; the equations

of o?ie cyclic arc may therefore here be written thus,

S . ap = 0, Tf) = c ;

and those of the other cyclic arc as follows,

S./3|0 = 0, Tfj = c;

but these equations admit of various transformatioiis, which have

in part been indicated already. The results of this article and of

the one preceding it may be illustrated by leferonce to the figures

58, . . . 64, of arts. 29 1, ... 301.

422. As another geometrical example of the utility of consi-

dering the scalar parts, of the quotients or products of any two
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Fig. 90.

directed lines, and of employing the notation Sq, let us propose

to draw from a given external point s, a rectilinear tangent sr,

to a given sphere round o,

as in the annexed figure

90. Let o be origin of

vectors, and let

OS = ff, OT = r,

OA = a, Ta = a,

A being the point where

the line os crosses the

given spheric surface
;

then, either because the

sought point of contact t

must be situated at once

on the given sphere round o, and also on that other known sphere

through o, which has tlie bisecting point c of the given line os for

centre, or has that line os for a diameter ; or because the length

of OT is =a, and the angle ots is right; vve have the two equa-

tions of condition (compare 421,414),

T- = ~a-, S. (TT"' = 1 ;

and therefore, by multiplying them together, we obtain this third

equation,

S . (TT = — a-

;

which gives,

r a^

and expresses therefore (see 413) that the sought point t is

situated on a certain known plane, perpendicular to <r or to os,

and crossing that known line in a point m, of which the vector is

(u = OM = -a-(7''.

Conversely, if the point t be taken anywhere on the circumfe-

rence of that circle, in which this plane intersects the given

spheric surface, and of which intersection the equations are

T-- = — ft- S . (TT = — Or,
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then that point t will also satisfy the condition,

S . (TT = T-, or S - = 1

;

r

but this last equation gives, by 414, the perpendicularity,

CT-T _L T ; and thus, the angle ots being right, the line st will

be, as was required, a tangent to the sphere round o. We are
therefore led, by this easy process of calculation, to recognise

the well-known cone of tangents, drawn from the external point

s, and the circle ofcontact (with m for centre), along which that

cone envelopes the given sphere. And as regards ihe plane of

this circle, the equation of that plane may be thus written (with

the recent signification of /j),

where, because fi = -a-a-'^, we have (by principles already ex-
plained, respecting tensors, versors, and reciprocals),

\Jlx = +Va; Tfi=a-Ta-\

That is to say, om has the same direction as os ; and the rectan-

gle under om and os is equal to the square of the given radius

OA : in fact we may write,

fxa = (- a^ =) a-.

423. Whether the given point s be (as above) an external,

or a superficial, or even an internal point, with respect to the

given sphere, provided that it be not actually at the centre o,

we can always deduce from its vector a a finite and connected

vector, ^ = -a-(T"', or, in other words, we can determine a con-

nected point M, which shall satisfy the conditions recently as-

signed, respecting distance and direction ; and then the plane

which is drawn through this point m, perpendicularly to cm or to

OS, is said to be the polar plane of the point s, with reference

to the given sphere; while this point s is said, conversely, to be

the POLE of that plane: and any point p, upon the polar plane,

is said to be conjugate to s. To express these conceptions with

the notations of tiie present calculus, we may denote op by ,u,

and then shall have the following equation of the polar plane:
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§-= 1 ; or S. p(T = -a-;
/^

such tlien is the condition for the variable vector p (from the

centre o) terminating in a point p, which is conjur/ate to the

given point s, wherein the given vector a terminates. And be-

cause we may also write the last equation as follows

:

S . (7p = - a-,

we see that the relation of two conjugate points is one of reci-

procity, or that the polar plane of p passes in turn through s,

as is exhibited in figure 90. It is true that this reciprocal rela-

tion between tvvo conjugate points is perfectly well known to all

who are even moderately acquainted with geometry; but it

seemed to be useful to reproduce it here, as being a consequence,

or an interpretation, in this calculus, of the identical equation,

S . pa = S . <TjO,

which expresses that any two conjugate prodvcts, such as pa and

ap, have a common scalar part (compare 89, 408). And this

seems to be a convenient opportunity for remarking, that each of

these two equivalent symbols, S . po- and S.ap, may be inter-

preted as denoting the rectangle under the two lines, p and a, mul-

tiplied by the cosine of the supplement of the angle between

them ; or that, in symbols,

S . (OCT- = Tp Ttr cos (Tr - pSj),

if pa denote the angle between the directions ot p and a. In fact

this last formula may also be thus written,

SU . per = cos (tt - pa) ;

and accordingly, we have seen (in 411) that in general, for any

quaternion q,

S \]q = cos Z q,

and also (in 88, 118) that

L pa = -K - L . pa'' = tt - pa.

(In the Fourth Lecture the symbol q was used in a somewhat

different sense, but only as a temporary notation.)
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424. The geometrical signification of the scalar part, S . |3a,

of the product of any two inclined vectors; a and /3, may also be

deduced as follows, from principles already laid down, without

any reference to cosines, or polars, or circles : and may afterwards

be applied to form expressions for certain other geometrical loci.

Since a^ is a (negative) scalar, we have by 407, 410, and by
the properties (118) of reciprocals of vectors, the transforma-

tions (compare 420) :

S . /3a = a^S . fta-' = a' . (B'a" =/3'a ;

if /3' denote, as in fig. 85, art. 406, the projection of/3 on a, or

the part or component of the given vector |3, which has either

the same direction as the other given vector a, or else the oppo-

site direction, according as the angle /3a, between a and j3, is

acute or obtuse; while this projection vanishes, like the S' of fig.

86, art. 412, when the angle between the two given vectors is

right. But, by art. 84, the product of any two similarly directed

lines in space is (in this whole calculus) a negative number, while

the product of two oppositely directed lines is equal, on the con-

trary, to a. positive number; and when one of the lines vanishes,

their product vanishes also. With respect then to the sign of the

scalar part of j3a, since this part has been just now shewn to

be equal to the product j3'a, we may establish the formula :

< ^ < 7r

S . /3a == 0, according as /3a = -
;

the contrast of which to the first formula of art. 412, or to the

following,

> ^ < TT

S . /3a"' = 0, according as /3a = x,

is remarkable, but is a necessary consequence of our principles.

In fact, as we have seen, the product /3a may be formed from

the quotient /3a"', by multiplying the latter by the square ofthe

vector a, which square (by 85) is always a negative scalar; the

versor of the product (3a is therefore simply the negative ofthe

i;cr«or of the quotient /3a"' (see 188, 113); and consequently we

may write,

U./3a = -U./3a"',
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which gives immediately this other relation,

SU.j3a = -SU.^a-'.

The supplementary character (referred to at the end of the last

article), of the angle of the product, (Ba, as contrasted with the

angle of the quotient, /3a"', which it is of great importance to

remember, in the geometrical applications of this calculus, may

also be deduced anew, or if it had been forgotten it might be re-

covered, from the consideration that since (by 111) a- = - Ta% we

have the transformation,

Ta ^j3a = -i3a-',

which shews that the two quaternions /3a and -/3a"', or the pro-

duct and the negative of the quotient of any two vectors, since

they differ only by the scalar and positive factor Ta-, must have

one common angle ; while the angle of the negative of any quater-

nion q, is (by 183) the supplement of the angle of that quater-

nion itself. Thus the last formula ofthe foregoing article is re-

produced, under the form,

/ . /3a = ^ (- /3a" ') = 7r - Z . /3a" ' = 77 - /3a.

And with respect to the magnitude, or numerical amount (ab-

stracting from the sign), of the scalar part ofthe product j3a, we
have, by the present article (compare 109, 110):

TS./3a = T./3'a=T/3'.Ta;

this sought numerical amount is therefore simply the numerical

value or expression for the rectangle under the one given line (a)

and the projection (/3') ofthe other line (/3) thereon. It is clear

that since the two conjugate products, /3a and a/3, have always

(89, 408, 423) the same scalar part, so that

S . a/3 = S . /3a,

we must, by the present article, have the equation (see also 85),

a'/3 = /3'a, or /3a' = a/3',

if a' denote the projection of a on /3. And in order to express

the projectio7i /3', of any one line /3 on any other line a, we see

that we may write (compare 407),
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i3'=S./3a-^a; or, /3'=S./3a-'xa;

or any legitimate transformation of either of these two expres-

bions, such as the following :

/3' = a->S./3a; or, /3' = aS./3a-'

425. As a new apjjlication of these princij)k-s respecting the

scalar part of a product of two vectors, lot us resume fig. 90, of

art. 422. In that figure, by the rudiments of geometry, the

square on the line ST is equal to the rectangle under so and sm ;

which last line, sm, is the projection of ST on so. ^'ow, when

directions are attended to, we have (by 422) the expressions,

so =-(7; ST = r-(T; sm=ju-it;

and therefore (by recent results),

S . (cr - t) <T = S (ST X so) = SM X so = (o- - ;u) <T
;

in which last product of lines the directions of the two factors are

similar, and therefore (by 84) the product itself is negative ; as is

also, for the same reason (85, 111, &c.) the square of r- cr. This

product and this square agree therefore in \\w\\- signs, being, loth

of them, negative scalars ; and their numerical magnitudes also

agree, because one expresses the area of the rectangle osm, and

the other the equivalent area of the square on the tangent st ;

we may therefore equate them to each other, or may write,

{a - \i) a -^ {p - t)- :

or, by the formula immediately preceding,

S . (cr- r) (T = ((r - t)-.

In fact this is equivalent to the following,

S = 1, or S =1;
(7 - T r - cr

and when put under this last form, it expresses (compare 414)

that the projection of so on ST coincides "ilh sT itself, or that

the angle sto is right. But also, in the right-angled triangle

STO, the square of the hypotenuse is equal to the sum of the

squares on the two other sides, or, in symbols,
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that is, by art. 422, and by principles with which we have now

become familiar,

- tr- = - (or - r)- + «-, Or (r - a)- = a- + a'.

Again, by what has been shewn in the present article, we have

(S.a(7-<T)r-=(r-<7y;

we may therefore write the equation,

{ S . (T (t - (t) j
- = (t= + «') (r - a)- :

which must hold good, not merely for the particular point of

contact T in fig. 90, whose vector from o has been above denoted

by T, but for eccrij other point, such as u in the same figure,

which is contained upon the circle of contact (perpendicular to

the plane of the figure). And because the formula last written

remains essentially unchanged, when --ct is multiplied by any

positive or negative scalar, we see farther (compare the reason-

ing in art. 418), that if, to mark more clearly that 7 is now

treated as a variable vector, we change that symbol to p, as in

some former expressions for geometrical loci, the resulting equa-

tion, namely,

{ S . (T (p - tr) j
- = ((7- + a-) (p - a)-,

is the EQUATION OF THE ENVELOPING CONE, which has the ex-

tremity s of the vector cr for vertex, and touches the sphere, with

radius «, described round the origin o, along that circle of con-

tact of which one diameter is the chord tu. It is still more easy

to see, by analogous but shorter calculations, that if we conceive

a 7ieiv cone, which shall have its vertex at the centre O of the

same enveloped sphere, and shall pass through the same circle of

contact (cutting the former cone perpendicularly along that cir-

cle), this new cone will have for its equation, if p be its variable

vector,

(S . T/))--^ a- fi'-
= 0.

42'J. The symbol S enables us also to form with oa^e expres-

sions for RIGHT LINES ill spacc, considered a-; being each the in-

tersection of t ICO plants. Thus the intersection of the two cyclic
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planes of the oblique cone (418) with circular base, of which cone

the equation may be thus written,

S.,oa-'.S./3p-'=l,

or the right line throiifjh the i-ertex of this cone, which is called

by Ciiiisles the ma.tor axis, has its direction and position repre-

sented (see 421) by the system of the two equations,

S.ap = 0, S./3p = 0.

Or to take a more elementary example, let it be required to re-

present by equations, on a similar plan, the polar ofa given

RIGHT LINE, taken icith respect to a given sphere, such as that

of which the equation is

|0- + a- = ;

namely the sphere which has its centre at the origin o, and has

its radius =a. Supposing the given line to be determined by two

given points s, s' through which it passes, and writing

OP = jO, OS = (7, os' = cr',

we may suppose that p is a variable point on the sought polar of

ss', and are to express that this point p is conjugate to both s and

s', or that it is situated in the intersection of their polar planes

(423); we have therefore, as the required equations of the polar

of the line ss', the following (see again 423) :

S . per - - «-
; S . f}cr = - a-.

Let p' be another point on Uiis polar line, and let oi>' = p'; then

in like manner,

S . pa = - a', S . |U (7 = - U'
;

we have therefore,

S . ;0(T = - «- = S . pa, and S . pa =-a- = S . pa ;

and consequently we see that the two given points s and s'are (as

is well known) each situated on the polar of the 7iew line pp'
; or

in other words, the continued equation,

S . per = S . pa = S . pa = S . pa = - a\

expresses that the two lines, pi-' and ss', are reciprocal po-

LARS of each other. (In tig'. 90, the polar of I'.s would be a right
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line NN', drawn througli the point n, at right angles to the plane

of the figure; and if n' be conceived to be on the surface of the

given sphere round o, the tangent plane to that sphere at that

point will pass through the right line PS.)

427. But however useful the symbol S may be, in thus form-

ing equations of loci, and otherwise applying the calculus of qua-

ternions, it is important to be familiar also with the signification

and employment of the connected symbol \'
: and indeed the

treatment o( vcctojs is even more peculiarly the business of this

calculus, than operations upon scalars, although both must often

be combined. The signification of the vector part of the quo-

tient of two lines having been sufficiently explained in art. 407,

we can have no difficulty in interpreting now the vector part of

the'u product, on the same general plan as that by which we have

passed from the scalar of a quotient to the scalar of a product of

two lines. If j3 be, as in fitf. ^5, that part ov component of the

vector [3 which is jjtrjiendicular to another gi\ en vector a, then

since, by 407,

we need only multipU both numbers by the scalar a-, and we fijid

the expression :

V./3a = /3"a;

where the symbol /3"a can at once be interpreted, by principles

laid down in former Lectures, respecting a product of two rect-

angular vectors. To make more clear the application of those

earlier principles to the present question, conceive that after

letting fall from b the perpendicular bb'oii oa, as in the recently

cited figure 85, we then, as in the

annexed figure 91, erect at o another

perpendicular ou" to the same line

OA, which new line ob'' shall be pa-

rallel and equal to b'b, and shall have

the same (not the opposite) direction,

and may therefore (97, 9S) be de-

noted by j3", as well as tlie former

line b'b itself; just as /3 may denote

AD as well as on, if d be the point on if jj jj"



LECTURE VII. 417

b"b which completes the parallelogram aobd : although it ap-

pears more convenient here to make ji still denote the final ray

OB of the biradial aob, which represents the quotient /3o"', or q.

If now we conceive this figure 91 to be laid horizontally on a

table, with its face upward, it is clear that a right-handed and

quadrantal rotation, round the new multiplier line j3", would

cause the co-initial multiplicand line a to assume ddovnward di-

rection ; such therefore, by the rule of art. 82, must here be the

direction of the product line, (3"a, or V . /3a ; while the length of

that product line is, by another part of the same rule of 82, the

product of the lengths of the two factor lines, or is numerically

equivalent to the rectangle under oa and ob", or to the area of

the lately-mentioned parallelogram, aobd. On the other

hand, the axis of the quotient, namely Ax . /3a"', or U Vg (411),

is, for the same supposed position or aspect (93) of the figure, a

line directed upward; and generally we see that the vector

PARTS of the product /3a and quotient /3a"' of any two
LINES, a and /3, have their directions opposite. In symbols,

if y = /3a"' = OB -f- OA, then

UV./3a = -UVg; TV./3a=OA0B;

this last symbol being employed to denote the area of the com-

pleted parallelogram, aobd, or the doubled area ofthe trian-

gle, aob.

428. We know then perfectly how to interpret the symbol

V . /3a, or the vector of the product of any two lines proposed ;

and with respect to the recently noticed relation of opposition,

between the versors of the vectors of product and quotient,

UV./3a = -UV./3a-',

we may regard this as connected with the analogous opposition of

signs (in art. 424) between the versors of the product and quo-

tient themselves, namely,

U./3a=-U./3a-':

or with the circumstance (see again 424) that /3a only differs by

the positive factor Tar from the negative of /ja"'; at least if we

combine this circumstance with the formula of art. 183, for the

axis of the negative of a quaternion, namely,

2 E
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Ax .{-q) = -Ax.q.

Or we may consider the opposition ofthe axes (or of the versors

of the vector parts), of the product and quotient of two lines, as

being a consequence of the opposite characters of the two corres-

ponding rotations, from the multiplier (i to the multiplicand a, in

the product (3 x a (arts. 87, 88, &c.), and from the divisor line a

to the dividend line j3, in the quotient |3 -h a (40, 118, &c.); or

in the two quaternions, which are equal to this product and this

quotient respectively, when those quaternions are regarded as

operating in the way of version. And in the geometrical appli-

cations of this calculus, it will be found important to remember

that the rotation round the line V . j3a from j3 to a is positive;

whereas the positive rotation round V . /3a"^ conducts on the

contrary from a towards j3. Observe the contrasted directions

oi those tv/o curved arrows in the recent figure 91, which are

marked respectively, q and j3"a ; also the similarity of the direc-

tion of this last arrow to that which corresponds to K5'. It may

also be noticed here, as one of the connexions of quaternions

with trigonometry, that whereas, by 423,

S . /3a = - T/3 Ta cos /3a,

we have now,

TV . /3a = + T/3 Ta sin ^a,

j3a still denoting the acute or right or obtuse angle between the

two lines a and )3. Or we may write more simply the two trigo-

nometrical transformations,

SU./3a = -cos|3a; TVU./3a = + sin/3a;

and may regard these expressions as being connected with the

corresponding ones of art. 411, through the supplementary cha-

racter (118, 423) of the angle ofthe product of two lines, as com-

pared with the angle ofthe factors.

429. It is evident from the two last articles, and especially

from the formulae,

V./3a = /3"a; /3"±a; /3" 111/3, a,

when combined with our general principles respecting products of
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rectangular lines, that the vector of the product, as w«ll as the

vector of the quotient, ofany two inclined lines a, /3, is perpendi-

cular to both those lines, and therefore to their plane : thus ge-

nerally,

V . /3a ± a ; V . /3a ± /3.

Hence, although we may write (compare the two first expressions

for
J3',

towards the end of art. 424), the two following general ex-

pressions for the part )3 " of any vector /3, which is perpendicular

to a given vector a,

/3"= V./3a-T-a = V./3a->xa,

yet we must not transform these expressions into the following,

/3"=a-'V.j3a, j3"=oV./3a-':

because the two products of rectangular vectors,

a-'y V.j3a, and a x V . jSa"',

undergo each a change ofsign (by 82), when the order of their

factors is changed. For the same reason, however, we 7nay write

the two following general expressions for the component |3" of j3

(contrast with these the analogous expressions for the other com-

ponent /3', given at the end of 424) :

/3"=-a-iV.|3a = -aV./3a->.

Again, the vector part of the product of any two lines

a, /3, changes sign when the two factors are inter-

changed ; or in symbols,

V.a/3 = -V.i3a,

whatever may be the angle which a and /3 make with each other

:

in fact, by 89 and 408,

0)3 = K. /3a, andVK = -V.

This conclusion may be illustrated by the recent figure 91, in

which the three points c, e, c", and the two vectors y, y", may

be said to be the reflexions of the three other points b, d, b", and

of the two other vectors /3, /3", with respect to the line oa, or a.

For, in this figure 91, without at present assuming any know-

ledge of the formula

2 E 2
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which would be given by the principles of the Sixth Lecture

(see arts. 290, 291), we may see that we must have the equation,

for these two last products are quaternions with equal tensors,

and with equal versors; because the two parallelograms, ecoa

and AOBD, have equal areas and angles, and have also one com-

mon aspect ; or because the rotation from y to a is equal in all

respects to that from a to /3, while the lengths of the lines j3, 7
are equal, so that

U.ya^U.aji, T . ya = T . aj3.

Hence,

V.ai3 = V.Ya = 7"a = -|3"a = -V.i3a,

because y"^-fi", in the same fig. 91. We have therefore also,

V.a-'/3 = -V./3a-',

because (by 117) the reciprocal of a vector is itself another vec-

tor ; and therefore are at liberty to establish the two following

formulae, as general expressionsJor the component /3" of /3, which

is perpendicular to a

:

/3" = a->V.a/3 = aV.a-'/3;

in addition to the two other expressions for the same component

i3"=V.j3a.a-'= V.j3a-'.a,

which agree with the two first of those considered in the present

article.

430. Let p, in fig. 91, be any arbitrary point on the indefi-

nite right line, which is drawn parallel to a or to oa, through the

point B ; and let its vector op be denoted by p. Then the com-

ponent of this vector p, which is perpendicular to a, is still ob",

or /3"; and consequently we have the equation,

V.pa = i3"a = V.|3a.

Conversely if we meet the equation,

V.pa= V./3a,



LECTURE VII. 421

where a is still supposed to denote some given and actual Cor

non-evanescent) line, we can infer from it, by the foregoing arti-

cle, that the components of /3 and p which are perpendicular to

a are equal ; and therefore that these two vectors, (5 and p, can

only diifer in their components parallel to a; or more concisely,

we can, from the last written equation, infer the parallelism,

p-/3|la;

which may also be thus denoted, under the form of another equa^

tion, freedfrom the symbol ofoperation V, but introducing in

its stead another letter x, to denote an arbitrary scalar co-effi-

cient,

p = ^ + xa.

Any one of the formulae involving p, in the present article, will

therefore express that this variable vector p terminates in a point

p, of which the locus is the right Line, drawn through the ex-

tremity of the vector /3, and parallel to the other given vector a :

or in connexion with figure 91, it will express that the locus of p

is the indefinite right line which is drawn through b and b". And

because the product of two parallel lines is (by 84) a scalar,

which has (407, 412) no vector part, we may substitute for the

recent formula of parallelism, this other equation :

V.(p-^)a = 0;

which will therefore serve to express the same rectilinear locus

as that expressed by the former equation,

V.pa = V./3a,

whereof indeed it will soon be found to be, by the distributive

principle, a transformation. It may here be noted that, by

making |3 = 0, we obtain the following equation for the indefinite

right line, whereof oa or a is a given part,

V.pa = 0.

The equation

V(pV./3a)=0, orV.;,V./3a = 0,

would express that p had the direction of + V. /3a, or (by 429)
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that it was perpendicular to the plane of a and |3 ; whereas this

other equation,

S.pV./3a = 0,

would express that p was perpendicular to that perpendicular,

or that the three lines a, /3, p, were coplanar. In general, the

two symbols,

V.pV.j3a H-V./Sa, and S.pV./3a -^V.|3a,

denote those two parts or components of any proposed vector p,

which are respectively coplanar with a, j3, and perpendicular to

the plane of those two lines.

431. If with the recent significations of a, |3, (3", y, y", we

oblige the variable vector p to satisfy this other equation,

V.pa = -V.|3a,

we shall then have (by 429),

V . pa = V . aj3 = V . 7a = j"a,

and the component of p, perpendicular to a, will coincide with

the corresponding component y" of -y ; we shall therefore have

(by the principles of the last article) the formulae,

p-y\\ a, p = y + a:a, V . (p - y) a = 0,

where x is still an arbitrary scalar. The locus of p will, therefore,

in this case, be the indefinite straight line through c, in fig. 91,

which is parallel to the given line oa. And if, instead of equat-

ing \ . pa to + V.j3a, we should equate only their squares or

their tensors, writing,

{y.pay={v.fiay,

or,

TV. pa = TV. /3a;

we should then express merely that the length of the component

of p, perpendicular to a, was equal to T/3" ; or that such was the

length of the perpendicular from the point p on the indefinite

right line through oa : or finally, that the locus of p was a cy-

linder OF revolution, with that line oa for its axis, and with

B for one of the points upon its surface. Another mode of ar-
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riving at this cylindrical locus for p, as the geometrical interpre-

tation of the last written equation in p, is to observe that this

equation shews (by 427) that the two triangles, aob, aop, with

the common base oa, have their areas (or more immediately

their doubled areas) equal in amount; from which it follows that

their altitudes must be equal, at least in length : or that their

two vertices, b and p, are at equal perpendicular distancesfrom

the common base, oa. In fig. 91, the cylinder in question would

be generated by the revolution of the indefinite right line bb",

round the line oa as an axis. And if we choose to leave the dia-

meter, or the thickness, of the cylinder round this axis undeter-

mined, we have only to assume that 2aTa"' is equal to some po-

sitive and constant although arbitrary scalar, denoting the length

of the diameter, and to write the equation,

TV.pa = a; or, ( V. pa)»+ a^= 0.

For the same reason the equation,

TV.p^-^ = 6, or(V.p/3-0'+^' = 0,

will represent another cylinder of revolution, whose radius is

= iT|3, and whose axis, passing through the origin, coincides in

position with the given vector j3, while p denotes the variable

vector of an arbitrary point upon this new cylindrical surface.

432. If this last cylinder be cut by the plane

S.p/3-' = a,

which is perpendicular to its axis of revolution, the section must

evidently be a circle; and accordingly the present calculus re-

cognises this result, by giving, as a consequence of the two equa-

tions last written, another equation representing a sphere, on the

surface whereof this intersection of the plane and cylinder must

be contained, namely,

T.p/3-'=(a^+6')*:

because we have, in general, by 409, for the tensor oi any qua-

ternion q, the expression,

Tq= {(S(?y-(Vj)^ji= j(S^)^ + (TVy)=|*.

Conversely, if we cut the sphere
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T . p/3-' = 1, or Tp = T/3,

by the plane

S.joj3"' = a;, where a;>- 1, a;< 1,

the circle of intersection will be contained upon that cylinder of

revolution which has for its equation,

TY.p(5-' = {l-x')i, or, (V.pj3-0'=a;^-l.

Or if (under the same supposition as to the limiting values of the

scalar a;) we conceive the last-mentioned sphere, whose equation

may be thus written,

to be cut by the last-mentioned cylinder, their intersection will

be a system oftwo circles, at equal distances from the centre,

which are situated in two parallel planes, represented by the

equation,

{S.p(5-'y- = x\ or S.pft-' = ±x.

And the surface of the sphere itself may be regarded as the locus

of the variable circle, which has for its equations,

S.p/3-> = a;, TV.p/3-'=(l-a;=)*;

and which is (by what has just been seen) a perpendicular sec-

tion of a certain varying cylinder made by a certain connected

and varying plane.

433. This being distinctly seen, let us next conceive that the

last cylinder in art. 431 is cut obliquely, by a plane perpendicular

to some new given vector a, which is inclined at some acute or

obtuse angle to the axis /3 of the cylinder; we shall then have a

system of two equations, of the forms,

S.pa-' = a, TV.pj3-' = 6;

and the curve of intersection, which those equations represent,

will evidently bean ellipse. Now that important surface which

is called by geometers an ellipsoid may be generated by the

motion of such an ellipse, if this curve be regarded as variable in

magnitude, as well di%ir\ position: and the following is one mode
of accomplishing such a generation, or of obtaining a a'^a^chj o/
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ellipses, whereof the ellipsoid shall be the locus : just as the

sphere has recently been regarded as the locus of a system of

circles.

434. In figure 92, let oa, ob be two given lines drawn from

Fig. 92.

a given point o, and making a given acute or obtuse ancrle with

each other. In the plane of these two lines, and at their re-

spective terminations a and b, let two perpendiculars ac, bc be

drawn, meeting in a known point c, and join oc; also let ob and

CA (prolonged if necessary) meet in another fixed point b' : and

let F, f' be such that o shall bisect bf, bV. In the same given

plane describe the circle dbef, with o for centre, and with the

diameter de parallel to the tangent cb ; draw also two other tan-

gents at D and e, and let them meet, in the points d' and e', a

right line drawn through o, perpendicular to oa, or parallel to

the line cab'. From any point g on the finite line oc, let a pa-

rallel to DE or CB be drawn, cutting the semicircle in l and n,
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and the radius ob in m ; take also any other point Q upon the

chord ln; through the three points l, q, n draw three lines

parallel to ob, and let these three parallel lines be cut respec-

tively in the three points l', q', n', by a new line from g, which

new secant shall be drawn parallel to d'e', or to cb', and shall

also cut the line ob or om in a new point m'. The figure

being thus constructed in the plane, conceive next that the

indefinite right line through d and u turns round ob as an

axis, till it takes the position of the indefinite line through e

and e', describing thus a semi-cylinder of revolution ; and con-

ceive, in like manner, that the indefinite line ll' turns round the

same axis ob, till it assumes the position of nn', describing thus

another semi-cylinder of revolution, co-axal with the former, but

having a smaUer radius (namely ml, instead ofoD). Imagine

that the first semi-cylinder is cut by a pair of planes, perpendicu-

lar to the plane of the figure, and passing through the lines de,

d'e'; and that the second semi-cylinder is cut by another pair of

planes, which shall be parallel to the former pair, and shall pass

through the lines ln, l'n'. And finally, let the second semi-cy-

linder be also conceived to be cut in two points p, v, by two

right lines qp, q'p', which are erected at q and q', perpendicu-

larly to the plane of the figure : and let us consider what the

LOCI of these two new points, v and p', not expressly marked in

the diagram, or what the loci of the two sections of the second

and varying semi-cylinder must by this construction be.

435. I say then that while the locus of the point p, con-

structed as abovcj is very easily found to be the quarter of the

surface ofa sphere, resting upon the semicircle dlbne (if we

still oblige the auxiliary and variable point q to be inside that

semicircle, and employ still only sewii-cylinders), the locus of the

connected point p' is (under the same restrictions) the quarter of

the surface ofan ellipsoid, resting on the semi-ellipse d'l'b'n'e',

and having the same point o for its centre. In other words, I re-

mark that as the above-mentioned portion of the sphere is (com-

pare 432) the locus of the varying semicircle which has ln for its

varying diameter, while the centre m of that semicircle moves from

o to B, so the corresponding portion of a certain derived ellipsoid

is (compare 433) the /ocu* of the vanjimj semi-cUipse, which rests



LECTURE VII. 427

on l'n' as its variable major-axis, while its centre m' changes its

position, from o to b' : each of the two last-mentioned curves being

a section ofthe inner and varying semi-cylinder made by a vary-

ing plane, which moves so as to be always parallel to itself, or to

a fixed plane, and perpendicular to the plane of the figure. In

fact, for the point p we have evidently, by the circular section of

the inner cylinder,

MQ= + QP^ = MP* = ML* = OL* - OM%

and therefore

OP* = OM* + MQ* + QP^ = OL* = OB*,

so that the locus of p is (as above stated) a portion of the sphere

round o, with ob for its radius ; or is simply the whole surface

of that sphere, if we now allow it to belong at pleasure to the

other variable semi-cylinder, at the other side of the plane of the

figure, and to have its projection q, on that plane, situated within

the other semicircle, dfe, which is described on de as diameter.

And (with the analogous removal of restrictions) the locus of the

connected and variable point p' is almost as easily shewn to become

(as above asserted), after the foregoing process oi deformation of

this spheric surface, what is called by geometers an ellipsoid.

For we have, by similar triangles in the plane of the figure, the

relations,

cm' og om m'q' mq
ob' oc ob ' od' CD

'

and, by the rectangle qpp'q' perpendicular to that plane, we have

an equality between the two ordinates qp and q'p', which termi-

nate on one common side, or rectilinear generatrix, pp', of the

inner cylinder; hence

q'p' -;- oc' = QP -T- oc',

where oc' may be supposed to be an ordinate or perpendicular to

the plane of the figure, erected at the centre o, and terminating

on the sphere, or on the outer cylinder, at a new point c'. Hence

p' must satisfy the equation,

o_m;\* /May /«;p;y^,^
OB / VOD y VOC/
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because the point p, on which it depends, is subject to the analo-

gous equation,

''omV /mqV /qpY_,
^OB / \odJ Voc'/

I suppose that many of you may have already perceived that

b', c', d' are three conjugate summits of the ellipsoid, or that ob'^

oc', OT) are three conjugate semi-diameters thereof : oc' being the

mean semi-axis, and ob', od' being contained in the principal

plane, or in the plane of the ^oca^ hyperbola, whereof one asymp-

tote coincides in position with ob'; because this last line is the

axis ofa cylinder of revolution, circumscribed about the ellipsoid,

namely, the outer cylinder in our construction : but it is by no

means necessary to be acquainted with these latter properties of

the ellipsoid, in order to understand that translation of the con-

struction of the foregoing article into the language of quater-

nions, which we are now about to give.

436. The two lines oa, ob, in fig. 92, from which, as data,

everything else in the figure has been constructed, being treated

as two given vectors a, (3, it is clear from the principles of

this calculus (see art. 413, and other recent articles), that the two
planes through o which are respectively perpendicular to these

two lines, and which cut the plane of the figure along d'e' and

DE, have for their respective equations :

S.pa-' = 0; S.pj3-'=0;

while the two planes parallel to these, which have CB'and CB for

their traces on the same plane of the figure, have for their equa-

tions the following :

S.pa-'=1; S.(0j3-'=1.

In like manner, if we make for abridgment, in reference to the

same fig. 92 (compare 435),

a; = OG -i- oc = OM -i- OB = om' -7- ob',

the equations

S . pa'^ = x, S . p^'^ = x,

will denote those two other planes, which cut the plane of the

figure perpendicularly along the lines oiNi', c;m ; or which cut oa.



I-ECTURE VII. 429

OB perpendicularly at points whose vectors are xa,xfi (the latter

of these two points being m). Again the equations of the outer

and inner cylinders (through DD'and ll'), which have the line ob

or j3 for their common axis, are respectively, by the principles of

431, 432,

TV.pj3-' = l; TV.p/3-' = (I-a;^)*;

or

(V.pi3- >)' = -!, {V.p(i-'y=x'~l:

because the radius od of the former has the same length as ob

or as j3; while the radius ml of the latter, when divided by od,

gives (l-.r-)i for the quotient. Thus whereas the Jixed cir-

cle on DE, perpendicular to the plane of the figure, in the con-

struction of art. 434, is represented by the two equations,

the corresponding_/?xe<i ellipse on d'e', in the same construction,

is represented by this other pair of equations,

S.pa-' = 0, TV.p/3-'=l;

which are included in the general equations of art. 433. And

while the varying circle on ln is represented by the two last

equations of art. 432, or by the following,

S.pp-^ = x,{W.p(3-'y = x'-l,

the equations ofthe varying ellipse on ln' may be thus written

:

^.pa-' = x; (V.pj3-')- = a;^-l.

Finally, as one form for the equation of the sphere, which is

the locus of the system of circles, may be obtained by elimina-

tion of X between the two equations of a variable circle of that

system, and may (as in 432) be written thus,

(S.p/3-y-(V.p/3-0^=l;

so may the corresponding form of the equation of the ellipsoid,

which is the locus of the system of ellipses (in the recent con-

struction), be obtained by an analogous and equally easy elimi-

nation of the same variable x, between the two equations of a
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variable ellipse: and this equation of the ellipsoid is in this

way found to be,

(S.pa-0'-(V.pi3-0'=l;
or,

And we may here remark that another/orm of this important

equation is the following

:

T(S.pa-> + V.pi3-0 = i;

because (by 409, or 432) the square of the tensor of the quater-

nion, whose scalar and vector parts are, respectively,

S. pa-' and V.pjS"',

is equal to the square ofthe scalar, minus the square ofthe vec-

tor part. When the distributive principle of multiplication of

quaternions shall have been established generally, it will be

found that this last form of the equation admits of a new and in-

dependent geometrical interpretation ; and that it conducts

thereby to an entirely new mode ofconstructing (or generating)

the ellipsoid.

437. After the foregoing pig. 93.

details respecting one mode
of constructing the ellipsoid,

and of expressing that con-

struction by quaternions, it

may suffice to state moreG.

briefly the analogous methods

ofconstructing and expressing

certain other surfaces of the

second order, especially the

hyperboloids and the cone,

and of connecting each of

these surfaces with the sim-

plest surface of its own spe-

cies. In the annexed figure 93,

although for the sake of con-

venience reduced in size, the

letters 0, a, b, c, d, e, f, b', d'.
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e', f', may be conceived to denote the same points which were so

marked in the recent diagram 92 ; the point g is now taken on

oc prolonged, and h is such that o bisects gh ; lbn is an arc of

an equilateral or rectangular hyperbola, with bf for its transverse

axis, and zox, woY for asymptotes; the two secants from g,

which are now the lines gxlmqnv and gx'l'm'q'n'y', are still pa-

rallel to the two fixed lines cb, cb', to which the lines hzw,

Hz'w' are also parallel ; q is still an arbitrary point on the chord

LN, and the lines ll', qq', nn' are still perpendicular to de, or

parallel to f'fobmb'm', as also are the new lines ww', xx', yy',

zz' ; ll' is still imagined to generate a cylinder of revolution, by

turning round ob as an axis, and qp, q'p' are still supposed to be

ordinates, perpendicular to the plane of the figure, and terminat-

ing on one of the generating sides pp'of this cylinder ; oc'is still

conceived to be a parallel ordinate, which terminates on the co-

axal cylinder described by the revolution of dd', or on the sphere

with DE for diameter; finally we are to conceive that Qii, q'r'

are two other ordinates to the same plane of the figure, termi-

nating on a side rr' of the cylinder formed by the revolution of

xx' round the same axis ; and the two infinite branches of the

hyperbola lbn, together with its asymptotes zox, woy, are sup-

posed to turn through 180° round the same line ob, and so to

generate the two sheets of an equilateral hyperboloid of

IIEVOLUTION, together with the two corresponding sheets of its

ASYMPTOTIC CONE. This process (which closely resembles that

of art. 434) being once distinctly conceived, and combined with

elementary properties of the hyperbola, it becomes clear that the

hyperboloid and cone, thus formed, are respectively the loci of

the points p and R, and that these two points satisfy respec-

tively the two equations,

MQ^ + QP'' = 0M= - OB* ;

MQ* + QR= = OM= :

whence the two connected or derived points, p' and r', must sa-

tisfy the two connected equations,

m'q' Y /'ftp Y

-

(^\

-

1

od'/ \oc'/ V""7
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m'q'Y /q'r'Y_/om'

od'/ \oc'/ \ob'

And hence again it follows, if we here admit as known some ge-

neral and simple results respecting surfaces of the second order,

that the locus of p' is another hyperboloid of two sheets,

and that the locus of r' is another cone of the second de-

gree, namely the asymptotic cone of the new hyperboloid

;

although neither of these two new surfaces, produced by this sort

of deformation, will be (with the construction here employed) a

surface of revolution. A section of one sheet of the new hyper-

boloid is the hyperbolic curve l'b'n'; and two sides of the new

cone are the two asymptotes to this curve, namely the lines z'ox'

and w'oy'. The hyperboloid, which is in this article the locus of

p', touches the ellipsoid of art. 435, at the two points b' and f';

as the other hyperboloid of two sheets touches the concentric

sphere, described on de as diameter, at the points b and F.

438. To translate now the foregoing construction into the

language of quaternions, we may adopt nearly the same plan as

in art. 436. The varying circle in which the hyperboloid of re-

volution LBNP, or the cylinder ll'nn', is cut by the plane lpn,

has for its equations,

S . jo/3"' = a;, TV. /3j3'' = (a:^ - 1)^, where a; = og -;- oc ;

and the varying ellipse in which the same cylinder of revolution

through ll' is cut obliquely by the plane l'p'n', has for equations,

S.pa-> = a;; TV. ,0/3-1= C^^- l)i.

Eliminating therefore the variable scalar x, between the two

equations of the circle, we find for the hyperboloid of revolu-

tion, or for the locus of that circle, the equation,

(S.p/3->)'=(TV.p/3-0^+l;

or

And in like manner, if we eliminate x between the two equations

of the oblique section, we find for the derived hyperboloid of two

sheets, considered as the locus of the varying ellipse, the ana-

logous equation,
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(S.pa-')=+(V.p^-i)'=l.

In a similar way, the equations of the right and oblique cones,
which enter into the construction of the foregoing article, are

found to be, respectively, in quaternions,

(S.pi3-0-^ + (V.p/3-')- = 0,

and

(S.pa-')=+(V.p/3-)-0.

439. By a quite analogous deformation of the equilateral
HYPERBOLOiD OF ONE SHEET, which has for its equation,

(S.pi3-0^+(V.p/3-')^ = -l,

and is generated by the revolution round ob of that other equila-

teral hyperbola (not traced in fig. 93) whose transverse axis is

DE, we should obtain another hyperboloid or one sheet,
which would not be a surface of revolution, and whose equation

would be,

(S.pa-)=+(V.pi3-)= = -l-

In fact, each circle on iheformer of these two last hyperboloids

will (as in the recent constructions) correspond to an ellipse on

the latter; these two curves being still sections of one common

cylinder of revolution ; and their planes being s\\\\ parallel to two

given planes, and intersecting each other on a thirdfixed plane

(these three planes being those which are drawn through the

three lines gl, gl', go, and are perpendicular to the plane of the

figure). Hence with the recent (or analogous) significations of

the letters, the variable points p and p' of the two hyperboloids

of the present article must respectively satisfy the two conditions

:

MQ' + QP' - OM^ = OB= ;

Od'/ VoC / \0B /

which are forms familiar to geometers, but are (I think) in some

small degree less simple than those equations in quaternions, to

which the present calculus conducts as above. It may be noticed

that this new oblique hyperboloid (if we may venture so to call it)

would still have, as asymptotic to itself, the last-mentioned ob-

2 F
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lique cone : and that it would touch the ellipsoid (of arts. 434,

&c.), and the circumscribed cylinder dd', along the ellipse de-

scribed on d'e' as major axis, in a plane perpendicular to the

plane of the figure ; that is to say, along the oblique section of

this cylinder dd', for which section the following equations were

assigned in art. 436 :

S.pa-' = 0; TV.p/3-'=l.

The equations of the varying circle of the present article would

be,

S.p^-' = x, TV.p/3-'=(a;=+l)T;

and the corresponding equations of the varying ellipse would be-

come,

S.pa' = x, TV.pfi-'={x^+l)i.

440. These results, so far as they are geometrical, require

for their proofs only a moderate acquaintance with the theory

of surfaces of the second order ; they have here been brought

forward, chiefly for the purpose of exemplifying some of those

MODES OF EXPRESSION, for geometrical loci, &c., which the cal-

culus of quaternions suggests; and it would be easy to extend

them, so as to obtain analogous expressions for non-central sur-

faces, whether those be or be not of revolution. For example,

two ELLIPTIC PARABOLOIDS, Connected with each other on the

same general plan, whereof the former is, and the latter is not

a surface of revolution, may be represented by the two equa-

tions,

S.pi3-' + (V.pj3->)^=0;

S.pa-'+(V.p/3-0'=0:

their tangent planes, at the origin of vectors, which is a point

common to both of these two paraboloids, being represented by

these other equations,

S.pj3-' = 0; S.pa-'=0:

while the following equation, which does not involve the sym-

bol V,

S.pa-' S.pj3-'=S.p7-',
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may be without difficulty proved to represent an hyperbolic
PARABOLOID. In general, the formula,

TV.p/3-'=/(S.p/3-'),

where/is used as the characteristic of an arbitrary (but sca-

lar) FUNCTION, represents an arbitrary surface of revolu-

tion round the axis /3; and the circular sections of this surface

are changed to a corresponding system of ellipses, when the

equation is changed to the following

:

TV.p/3->=/(S.pa-);

where a is still supposed to make some acute or obtuse angle

with j3. If, on the contrary, we were to assume a in the same

direction as /3, but different from it in length, then the equations

lately found, and involving a, /3, p, would come to represent an

ellipsoid, a double-sheeted hyperboloid, a cone, a single-sheeted

hyperboloid, and a paraboloid, which would all be surfaces of re-

volution, like the sphere, &c., from which they might still be geo-

metrically derived, although not without a modification of that

process oi deformation which has been employed in recent arti-

cles ; while their equations in quaternions would retain the same

forms as before.

441. It was shewn by the late Professor Mac Cullagh, that

a surface of the second order, generally, may be regarded as

the locus ofa point, whose distance from a given poiiit, or focus,

he&ri 3i given modular ratio to the distance of the same variable

point from a given right line, or directrix : this /a^^e/- distance

being measured parallel to a given directive plane. Let us

now seek to express by quaternions this method of modular ge-

NKRATioN : and for that purpose, let us place the origin o of

vectors on the given directrix, and denote by a the given focus

corresponding, supposing also that b is another point on the di-

rectrix, and that the line oc is perpendicular to the given direc-

tive plane ; let also p denote a variable point of the surface, and

s the point where the directrix is crossed by a plane through p,

drawn parallel to the directive plane ; finally let the modular

ratio be that of w to 1, and let us write for abridgment, as we

have often done before,

2 F 2
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OA = a, OB=/3, 0C = 7, OP=p, OS = ff.

Then one form for the equation sought is evidently the follow-

ing-

T (p - a) = JwT (p - <t) ;

in which, however, we must seek to express a, in terms of the

variable vector p, and of the constant vectors j3, 7, by the help

of the two conditions,

<r
II /3, p - <T ± y-

The latter of these two conditions shews that the two variable

vectors p and a must have one common projection on the line

y, or (by 424) that

S . ytr = S . yp.

The former condition shews (compare 430) that a must be of

the form a:/3, where x is some scalar coefficient ; and therefore

(by 410) that

(TS.y|3 = («i3S.y|3=)|3S.7<T.

Hence the required expression for a, in terms of /3, y, p, is,

(T = /3 S . yp -i- S . 7/3.

Now it is easy to see, by a simple use of similar triangles, that

any difference of two vectors is multiplied by a scalar, when
each vector separately is multiplied thereby, and the difference

afterwards taken; for example, in fig. 88, if a line were drawn

from the middle point of OB to the middle of oa, this line would

have for its immediate expression \a-\fi, while it would be

equal in all respects to the line ca, which has been seen to have

i (a - /3) for its expression. Hence

mT (p - (x) = T . »2 (p - ct) - T {mp - ma)

where nothing hinders us to assume

7W = S . y/3,

because we may multiply the line /3 or 7 by any constant scalar,

without violating the conditions of the construction. Mac Cul-

lagh's method of modular generation of surfaces of the second
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order may, therefore, in the present calculus, be expressed by
the equation :

T(p-a) = TipS.yli-l3S.yp);

or by this other,

{p-ay=ipS.(iy-(iS.ypy.

It will be found that the equation thus obtained may also be

written as follows

:

T(p-a) = TV(yV.(3p);

or,

(p-a)^=(V.yV./3p)-

and in fact we may already see that the two symbols,

V.yV.fip, andpS.fiy-pS.yp,

as applied to the geometrical generation above mentioned, agree

with each other, and with the product m (p-o-), in representing

each a vector, which (by the beginning of art. 429) is at once

perpendicular to y, and coplanar with j8 and p ; being also mul-

tiplied by any scalar coefficient x, when p is multiplied thereby

;

and remaining unchanged, when the extremity p of p moves pa-

rallel to the given directrix, namely to the line /3 or ob. Ano-

ther known method, which has been named the method of umbi-

licar generation of surfaces of the second order, is expressible

with even greater ease, by the notations of the calculus of qua-

ternions.

442. The symbol,

V(V.a^.V.'y8),

denotes (by the lately cited art. 429) a line, which is at once per-

pendicular to V. a/3 and to V. yS ; and is therefore (by the same

article) at once coplanar with the two lines a, j3, and with the

two lines y, i; or is a line situated in the intersection ofthe two

planes of a, /3, and of 7, S, if all these vectors be conceived to

diverge from one common origin. If then six such diverging

lines be denoted by the symbols,
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and if three others, diverging still from the same origin, be de-

duced from them by the three formulse,

^ = V(V.aa'.V.a"'a""),

/3' = V(V.a'a".V.a""a""'),

/3"=V(V.a"a"'.V.a""'a);

these three new lines will be respectively the intersections of

three pairs of opposite faces of the hexahedral angle, whose edges

are the six former lines : and if we then establish the equation

= S.j3V.i3'^",

it will express (by 430) that these three lines /3|3'/3" are in one com-

7non plane. Hence by an easy application of the celebrated Theo-

rem of Pascal, respecting a Aea;a^on in a plane conic ; namely, that

its opposite sides meet by pairs on three points which are on one

straight line (at a finite or infinite distance), and conversely that

(/'the sides so meet, the hexagon can be inscribed in a conic; we

may infer that the equation last written, which will be found to

admit of being reduced to the following still simpler form,

= S.j3/3'i3",

expresses the condition for the six lines, a, d, . d"", being

sides q/'oNE common cone ofthe second degree (a cone with a

plane conic for its base). On this account I have been induced

to call this equation, namely

= S./3V.j3'/3", orO = S.i3P'P",

the equation of homoconicism, relatively to the six lines

a, . a"" : and when this equation is not satisfied, or in other

words, when the scalar function S . /3V. j3'/3"does not vanish, in

consequence of the six lines a . . not belonging to any one cone of

the second degree, 1 have been led to call this scalar the aconic

function of those six aconic lines (using the alpha privativum),

or of those six heteroconic vectors. And this aconic function has

again served me to form a sufficiently simple expression, by quater-

nions, for what I call the adeuteric function often vectors,

a, a, . . a"^, for tlic case when those ten diverging lines do not

terminate on ani/ one surface of the second order; and then to
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express the case where the ten vectors do so terminate, or to

form what may by analogy be named the equation of homo-

DEUTERisM, or the condition /or TEt^ powts being situated on

ONE COMMON SURFACE OF THE SECOND ORDER, by Simply equat-

ing the adeuteric function to zero.

443. But it is time that we should proceed to consider, ^e«e-

rally, the operation of addition of quaternions; or to assign

what, in the presentCalculus, is to be regarded generally as the in-

terpretation of a sum. And for this purpose, we shall find that

it is only necessary to introduce a very slight and obvious exten-

sion of principles which have already been employed by us, near

the beginning of the present Lecture, for the addition ofa scalar

to a vector. In short, we have only to continue to apply the

notion of a common operand. But it may not be useless, pre-

viously, to examine whether and how this notion adapts itself to

those easier cases of addition, what had been ear/«e/' considered
;

namely, to the case of the addition of a scalar to a scalar, and to

the case of the addition of a vector to a vector.

444. With respect, indeed, to the addition of one scalar y to

another scalar x, it can scarcely at this stage require to be for-

mally proved, that the received and usual algebraical sum,

y + X, oi these two scalars, satisfies the general condition,

(y + x) a = ?/a + Xa,

whatever vector the letter a may denote : and that thus any arbi-

trary line a may be assumed as the common operand, and the

symbol y + xhe then, consistently with received usage, interpreted

(compare 405) by the formula,

y + x = {ya + Xa) -f- a-

In fact it is clear that whatever rectilinear step in space may be

denoted (art. 18) by the symbol a, and whatever positive or ne-

gative numbers (whether integral or fractional, and whether com-

mensurable or incommensurable) may be denoted by x and y, it

will always be true that x such steps, followed by y such steps,

are on the whole, equivalent to a positive or negative number of

steps of the same sort (each = o), which resultant number may be

denoted by the symbol of the algebraical sum. y . x. Threefor-
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ward steps, followed by Jive backward ones, are on the whole

equivalent to two backward steps, of the same common length,

and on one common axis ; and this very simple conclusion may

be expressed by writing (as usual),

- 5 + 3 = - 2, or more fully, - 5o + 3a = - 2a

;

so that the algebraical sum -5 + 3, may be interpreted (if we

think fit) by the help of the identicalformula :

- 5 + 3 = (- 5a + 3a) -h a.

And generally, we see already, by writing (5 and y for the lines

xa and ya, that

(^^a) + (i3-a) = (7 + /3)--a, if/3|la, 7||a.

445. It is not quite so obvious, on the principles of the pre-

sent Calculus, so far as they have been hitherto laid down, that we

must have also,

(y -r- a) + (j3 -^ a) = (y + j3) -7- a, when /3 ± a, 7 ± a ;

under which conditions of perpendicularity, of the common divi-

sor line a to the two dividend lines /3 and y, we know (122) that

the two quotients to be added, namely /3 -=- a and -y _i- a, repre-

sent, in this calculus, lines. Yet there is little difficulty in prov-

ing, for this case also, that the lately written formula of addition

still holds good. Conceive, for example, that, in the annexed

figure 94, the sides ob and oc of the

parallelogram bocd are the two vec-

tors (3, y, and therefore (by 100) that

the diagonal od is the sum 7 + /3 ; and

because the vector a is to be perpendi-

cular to both j3 and y, let us conceive

it to be constructed by a line oa, which

shall be erected at the point o, at right

angles to the plane of the figure Suppose also (to fix our con-

ceptions), that this plane is horizontal, and that the line a is di-

rected upwards; and let its length be double the unit of length :

we shall then have this particular value for the divisor line,

Fig. 94.

n = OA = 2k,
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while the two proposed dividend lines, as also their sum y + (i>

will be horizontal. Then, by the principles explained in art.

122, we'shall have the two following quotients,

/3 -f- a = £ = OE, y -H a = ? = OF,

if we suppose that the vectors e and ^, or the lines oE and of,

are sides (as in the figure) of a new parallelogram eofh, which

is derived from the former parallelogram bocd, by turning that

former one round o, right-handedly, through a right angle, and

halving each of the sides. But, in this process, the diagonal OD

is also made to turn in the same direction, and through the same

amount of rotation, and is also halved in length, in becoming the

diagonal oh. Denoting therefore these two diagonals by S and

T], so that

7 + i8
= S = OD, ^+£ = T} = OH,

we have (see again 122) the quotient,

and therefore, by substituting the values of S and tj,

(y + /3)-a = ?+£ = (7.-a) + (/3-^a).

The proposed ^r7«M/a ofaddition is therefore verified for this

example; and it is evident that an exactly similar construction

would prove it to be true, for every other case where a was per-

pendicular to /3 and -y. We see, at the same time, that because

(with the recent significations),

/3 = £xa, 7 = ?xa, -y + j3 = S = t}X a= (^+£) X a,

we may also write,

{Z+ i)a = Za+ £a, when a X £, a i. ^.

446. The^two connected formulae,

(y--a) + (i3-a)=(7 + ^)^a,
r+q = {ra + qa) -r- a,

are therefore true for the two cases, where

1st, a
II j3, a

II 7 ; or, 2nd, a X ^, a ± y,

that is, for the two cases where (see 407, 412) we have,
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1st, V<7=0, Vr=0; or 2nd, Sg=0, S/-=0.

The same two formulae hold good also (by 405) for two other

cases of addition, namely, the case where, 3rd, a scalar is added

to a vector, and that where, 4th, a vector is added to a scalar-:

or, in symbols, where

3rd, a± (3, a\\y; or 4th, aWji, a ± y;

or for the cases where

3rd, Sq=0, Yr = 0; or 4th, Vg = 0, Sr=0.

In all these various cases, we have had the two products qa and

ra equal to two lines, namely, to those denoted above by (3 and

-y ; or in symbols, we have had, so far,

S . 5'a = ; S . ra = 0.

If then we wow establish, as a definition, of the operation oi

the ADDITION OF QUATERNIONS, that whenever a non-evanescent

and COMMON operand line, a, can be found, which shall satisfy

these two last conditions; or shall give two lines, j3 and y, as

the results of the two separate multiplications of the line a by

the two proposed quaternions, q and r, then the sum (7 + /3) of
these two separate product-lines, divided by the original operand

line (a), shall be regarded as the sum of the two proposed

QUATERNIONS, Or as EQUAL to r + q : if, in a word, we establish

now the formula that (a denoting still some non-evanescent

vector),

r + q'^ {ra + qa) -7- a, when S . 5a = 0, S . ra = ;

or (which comes to the same thing) if we now agree to define that

the DISTRIBUTIVE PRINCIPLE of multiplication,

(r+q)a=ra + qa,

holds good whenever the two partial products, qa and ra, are

LINES : we shall have established a definition of addition,

which embraces every case that has been hitherto considered in

these Lectures; and which will be found to give, in every

OTHER CASE, ivithout ambiguity, a value for the sum of any two

quaternions: while the distributive form of the equation is ob-

viously consistent with the results and usages of common algebra'



LECTUKE VII. 443

447. It may be well however to offer here a few remarks, for

the purpose of making more clear the universal applicability of

the foregoing definition of the addition of quaternions, and the

perfect unambiguousness of the results. Consider then the gene-

ral case, where neither of the two quaternions to be added reduces

itself to either a scalar or a vector : and let us also suppose, for

the sake of additional generality, that their axes are not parallel

to any common line. Constructing them then by two biradials

(art. 93), with their common vertex at some assumed origin o of

vectors, their planes will necessarily intersect each other along

some right line, of which any finite portion OA may be taken for

the vector a, and employed as the common operand, to give ge-

nerally (compare 108, 309, 310) two transformed ox prepared bi-

radials, such as AOB, Aoc, and thereby two new lines,

qa=(i = OB, ra = y = OC,

in the respective planes of the two proposed siimmand quater-

nions, q and r : after which it will only be necessary to complete

the parallelogram, bocd, and to draw the diagonal, od or g, in

order to obtain a third biradial, aod, which shall represent the

required sum, namely,

r + 5' = 8 H- a = OD -f- OA,

in virtue of the general definition of a sum of two quaternions,

adopted in the preceding article. Conversely, in order that a

line a may be properly assumed as the common operand, in the

process of that article, it must be taken in or parallel to both the

planes of the two proposed summands; and consequently, when

transported to the assumed origin of vectors, it can only differ from

the lately assumed line oa in length, or by its having an exactly

opposite direction : but the new parallelogram, constructed with

reference to this new line a, will have its new diagonal S altered

at the same time, in the same (positive or negative) ratio. In

other words, the only permitted variation in the recent construc-

tion will consist in multiplying each of the four lines, a, j3, 7, S,

by some common scalar coefficient, such as x; but tliis will not

alter the quotient of any two of them, and we shall have still, by

the definition of a sum, given in the last article, the viilue.
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r + q = xS -^ Xa = S -i- a.

In the less general case, indeed, where the planes of the two

proposed summands are parallel to each other, so that they coin-

cide when transferred to the assumed origin, the recent rule fails

to assign any one determinate position for the line a, regarded as

the intersection of those two planes ; but in this case it is allowed

to assume, for the common operand a, any line in the common

plane, and to use it in constructing a parallelogram, on the same

general plan as before ; and no ambiguity can result, because if a

be turned about through any angle in the plane, or in any man-

ner lengthened or shortened, the parallelogram will at the same

time turn through exactly the same angle and towards the same

hand, while the length of each side and diagonal will be changed

in the same ratio. And similar remarks apply to the case where

one of the two summands reduces itself to a scalar, and may

therefore be regarded as having an indeterminate plane, in which

case any line a may be assumed, that is in or parallel to the plane

of the ofAer summand. In every case, therefore, the rule of

THE COMMON OPERAND, as laid down in the foregoing article, is

applicable without ambiguity.

448. The sum of any two proposed quaternions having thus

a perfectly definite and known signification, may be expected

also to have discoverable properties, and to be adapted to become

the subject matter of Meorewjs. (Compare again the analogous

remarks on products, in arts. 108, 309, 310.) And accordingly,

in the first place, because (by art. 100) we have

7 + /3 = /3 + 7, or, 7-a + ya = ya + ra,

when a is, as above, so chosen that qa and ra are lines, we have

therefore, as a corollaryfrom our definition of the sum of two

quaternions, combined with an earlier result respecting the sum

of any two lines, this simple but useful property

:

r + q = q+r;

or in words, the addition of two quaternions is always a commu-

tative OPERATION. Again, if the two sides /3, 7, and the dia-

gonal c, of the parallelogram in the recent construction, be sup-

posed to be projected 011 a into three other lines, /3', 7'. S', or ob',
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oc', od', by letting fall the perpendiculars bb', cc', dd' on the in-

definite line through the points o and a, then thefour points

o, b', c', d', will be arranged on that line in a way analogous to

the four points a, b, c, d of fig. 20, art. 97, and we shall have the

relation,

od' = oc' + ob', or, S' = y' + /3'.

We shall therefore have also, by our recent definition of a sum of

two quotients,

S'^a = ('y'-Ha)+03'-a);

where, by the construction in art. 407 for the scalar of a quo-

tient,

/3' -f- a = S (/3 -i- a) ;
y' -^ a = S (y -i- a) ; S* -r- a = S (S -j- a) :

but also, because S is here equivalent to y + /3, we have

S ^ a = (y ^ a) + (jS - a) ;

where (by what has been lately shewn) the quotients /3 -e- a and

y -T- a may represent any two quatertiions, q and r. We have

therefore generally the formula,

S(r+9) = Sr+Sg;

or in words, the scalar of the sum of any two quaternions is equal

to the sum ofthe scalars. Again, if we let fall perpendiculars,

bb", cc ', dd", from the three points b, c, d, on the plane which is

drawn through o at right angles to the line oa, we shall obtain

those three other components of the vectors j3, y, S which are

perpendicular to a, namely

/3" = ob", y" = oc", Z" = OD",

and the projected parallelogram b"oc"d" in this new plane will

give the relations,

S"= y"+ /3", S" - a = (y" - a) + (/3" - a),

where (by 407),

/3"--a = V(/3-Ha), y"^a = V(y^a), S" -r- a = V (g - a) :

the vector of the sum of any two quaternions is therefore equal

to the sum ofthe vectors, or in symbols
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And hence, by the formula

K=S-V,

of art. 408, or more immediately by reflecting the parallelogram

BOCD, with respect to the line oa (compare fig. 32, art. 186), we

may infer that

K{r + q)-=Kr+Kq:

or in words, that the conjugate of the sum of any two quaternions

is equal to the sum of their conjugates.

449. It can give no trouble now to extend these results, from

the case of two summands, to the more general case where it is

required to accomplish the addition o/any number ofquater-

nions. We can easily prove, for example, that the addition of
three quaternions is always an associative operation, or that

(« + r) + J = s + (r + j),

by shewing that each of the two processes of summation here in-

dicated conducts to one common quaternion, whereof the scalar

part is the sum of the scalars, and the vector part is the sum of
the vectors, of the three summand quaternions, q, r, s. In general,

for atiy number ofsummands, the addition of quaternions, like

that oi lines (see 100), on which it has been found in great part

to depend, is in all respects subject to the associative and com-

mutative laws : for example we have, as in algebra,

(s + r) + q = s + {q + r) = (q + s) + r;

t + s + r-i q = r + s + q+ t, &c.

We may also write, generally,

SS = SS, VS = SV, KS=SK,

using S as the characteristic of the operation of taking the sum

of any number of proposed summands, which are here supposed

to be quaternions. With respect to the subtraction of one qua-

ternion from another, you anticipate, of course, that this is to be

effected by adding the quaternion from which the subtraction is

to be made, to the negative of the subtrahend : or that the diffe-

rriire r- q \s interjweted, in this calculus, by the identity.
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(r-q) + q = r, or r-q = r+{-q).

This operation, therefore, requires no special rules : yet it may be

worth while to note here, what you can have no difficulty in

proving for yourselves, that

Sir-q) = Sr-Sq; Y {r-q)=Yr -Vq ; K {r - q) =^Kr-Kq ;

or more concisely, using A as the characteristic of the operation

of taking a difference, that

SA = AS; VA = AV; KA = AK.

The Slim of any two conjugate quaternions is the double of their

common scalar, and their difference is the double of the vector

part of one of them (see 408) ; thus

i (a/3 + j3a) = S . a/3 = S . (3a, i (a/3 - /3a) = V . ajS = - V. (3a,

whatever two lines may be denoted by a and /3 ; and in fact

I was accustomed to employ these symbols, ^(a)3 + /3a) and

i (aj3 - /3a), to denote respectively the scalar and vector parts

of the quaternion product aj3, before I ventured to introduce the

notations S and V-

450. 1 shall take this occasion to remark that a quaternion,

generally, may noio be seen, more clearly perhaps than at any

former stage of the present Course, to admit of being expressed by

the QUADRINOMIAL FORM,

q = w + IX +jg + kz
;

where the sum of the three terms ix,jy, kz composes (compare

407) the vector part, while the remaining term w denotes the

scalar part of the quaternion : so that we may write, in con-

nexion with the recent form,

Sq = w, Vq = ix +jy + kz.

Indeed this quadrinomial form for a quaternion, which may

(compare III) be regarded as an expansion of the shorter form

w + p, where p denotes a vector, was communicated by me, so

long ago as 1843, to the Royal Irish Academy, along with the

values above assigned (in arts. 394, &c.) ior t\\& squares a.nA pro-

ducts oii,j, k ; and it has been referred to by anticipation, in

this Course, so early as at the close (art. 78) of the Second Lee-
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ture. But the signification of this quadrinomial form may be now
more fully understood, in consequence of the recent remarks on

sums ofseveral summands. We may now see, for instance, by the

associative property (449) of such summation, that although we

may interpret this quadrinomial form as simply equivalent to the

6mo»wja//brmM; + |0, or NUMBER PLUS LINE, to which in an earlier

part of the present Lecture a quaternion was proved to be redu-

cible ; and may with that view write the expression for q as fol-

lows:

q-w + {ix +jy + kz)
;

yet we may also otherwise combine the four terms, w, ix,jy, kz,

into partial groups, writing, for example,

q = {w + ix) + {jy + kz),

where the partial sum w + ix is itself a. certain quaternion, which

is to be added, according to the general rule of arts. 446, 447, to

the linejy+ kz. Again, if we write, as the analogous quadrino-

mial expression for another quaternion,

q'=w'+ ix +jy' + kz,

we shall have no difficulty now in establishing the following ex-

pressions for the sum and difference of these two quaternions :

9 + y = w' + w + t (x' + x) +_; {y ^ y') -^ k (z + z')
;

q'-q=w'-w + i{x'-x) +j {y -y) + k(^z' - z).

The FOUR SCALARS, w, X, y, z, are called (78) the four consti-

tuents of the quaternion w + ix+jy + kz; and a quaternion q

cannot vanish, or become equal to zero, without each of these

four constituents separately vanishing : that is, in symbols,

li q = Q, then w = Q, ar = 0, y-Q, z = 0.

In fact, if a be any actual divisor line, the quaternion q, regarded

as the quotient /3 -r- a, cannot be considered as vanishing, so long

as the dividend |3 is an actual (or non-evanescent) line ; but when

|3 vanishes, its two components j3'and j3" (see fig. 85, art. 406),

respectively parallel and perpendicular to a, must also vanish

:

so therefore do the txoo partial quotients, obtained by dividing

these two components by a. In symbols,
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if ^ = 0, then Sy = 0, Yq^O;

but the scalar Sq has been above denoted by w, and a vector

such as V^, or ix+jy + kz, cannot vanish, v?ithout its three pro-

jections, on any three rectangular axes (such as the axes of i,j, k),

all vanishing together, that is, without our having separately,

ix = 0, jy=0, kz = 0; or a; = 0, y = 0, z = 0.

For the same reason, the difference q'-q cannot vanish, except

by our having the four separate evanescences,

w -ic = Q, x - x = Q, y' -y = 0, z - z = ;

or, as v/e may otherwise state the same result,

ilq' = q, then w'=w, x'=x, y' = y, z'=z.

Am equation between two quaternions is therefore equiva-

lent to a system of four equations between scalars; or in

other words, two quaternions cannot be equal, unless each consti-

tuent of the one be equal to the corresponding constituent of the

other. The importance therefore of the number Four in this

whole theory, from which indeed (compare 91, 106, 107, 120)

the present Calculus derives its«a/«e, exhibits itself here again.

451. The distributive principle, or property, of the multipli-

cation of quaternions, has (in the present Lecture) been in part

already established by dejinition, and has been used as the chief

element (446) in the general interpretation ofa sum: just as

the associative property of multiplication of quaternions had

been previously established, in these Lectures, to some extent,

by definition, for the sake of interpreting a product (compare

309, 310). We have lately defined that

{r^q)a^ra-^ qa,

as we had at an earlier stage defined that

rq. (i = r .qa,

whatever two quaternions may be denoted by q and /•, provided

that the symbols a, qa, and ra denote three lines. But pre-

cisely because we are thus enabled to give now (see 447) a defi-

nite interpretation to the symbol of a sum, r + q, of any two sum-

2 G
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mands, as we could earlier give (see 108) a definite interpretation

to the symbol of a product, r x q, ov r . q, ov rq, ofany two fac-

tors, we are not now at liberty to assume, without proof,

that the general distributive principle,

(j- -\- q) s = rs + qs,

holds good, for three arbitrary quaternions, q, r,s: just as we were

not at liberty to assume, without proof, the general associa-

tive principle of multiplication of any three quaternions,

s .rq = sr .q,

which has already been discussed in former parts of this Course,

but of which we have promised to give, in the present Lecture,

a new and independent demonstration, founded on an independent

proof of that other or distributive property, to the general and

rigorous examination of which it is necessary that we should now
proceed.

452. An important case in which we can already prove with

ease the truth of the lately written distributive formula,

{r+ q)s = rs + qs,

is the case where the planes of the th?-ee proposed quaternions

q, r, s contain, or are parallel to one common line, such as a. For
in this case we can find three other lines, such as j3, y, t, in those

three planes, so as to satisfy the three equations,

q = (i -i- a, r = y-T-a, s = a -i- c ;

and then if (as in 447) we denote -y + ^ by S, and employ the ge-

neral formulae of multiplication and addition (arts. 49, 446),

(y-/3)x0^a) = 7-a,
(-y^a) + (/3-^«) = (7 + /3)^a,

we shall have the values,

r + 9 = 8 -H a, y5 = j3 -H £, rs = -y H- £,

and therefore

(r + q) s = S -7- t ^ iy -^ i) + (j3 -^ () = rs + qs.

But the condition for the thvee 2)la7ies of q, r, s being thus pa-
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rallel to one common line, a, is the same with the condition for

the coplanarity of their three axes, or of their vector parts, or

with the followina'

:

Vi'
111 \q, \r.

We know, therefore, already, that whenever this condition of co-

planarity is satisfied, the distributive formula

(;• + q) s = rs + qs

holds good, whatever it may yet be found to do in other cases.

l^Jow the vector part of a scalar is a null line (compare 407),

which may be regarded as having an indeterminate direction

(compare 149,153,166,167,447) ; it may therefore be considered

as copianar with ayiy two lines. And hence, or more directly

by choosing a so as to be perpendicular to both of the two re-

maining vectors, and reasoning then as in the present article, we
can prove that the recent distributive formula holds good, when
anz/ o?Je of the three quaternions, q, r, s, reduces itself to a scalar.

For example, let

q = p, r=w, or let 8^ = 0, Vr = 0;

then whatever scalar, vector, and quaternion may be respectively

denoted by w, p, s, we shall have

(w + p)s= ws + ps :

which is already a more general result than that of art. 405,

where instead of 5 was written a, and a was supposed to denote

a vector perpendicular to p.

453. Again we know (by 448) that the conjugate of a sum is

the sum of the conjugates, and (by 190, 222) that the conjugate

of the product of any two factors is equal to the product of their

conjugates, taken in an inverted order. Hence, at least if we still

retain the recent condition of coplanarity of axes, and denote the

conjugates of the three quaternions q, r, s, by q', r, s respec-

tively, we shall have the equation

s {r + q) = s'v + s'q ;

or by omitting the accents, which here involves no loss of gene-

rality,

2 G 2
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f {r + g) = sr + sq, if Vs
\\\

Vq, Vr.

This condition of coplanarity will again be satisfied by supposing

q a vector, such as p, and r a scalar, such as w ; and thus we

may obtain the formula,

s (w + p) = sw + sp.

It is easy hence to infer that for any two scalars a, b, and any

two vectors a, /3, we have, as in algebra,

{b + j3) (a + a) = ba + ba + (ia + (3a ;

where (by 83) /3a=aj3, and ba = ab, as well as ba = ab; but

where (by 78, 89, &c.), /3a is no« generally = a/3. And hence

again we may infer that

S.(i + /3) {a + a) = ba + S.fia;

V.(6 + /3) {a + a) =a/3 + 6a + V./3a;

or that the product of any two quaternions, q and r, may have

it8 scalar and vector parts expressed separately as follows :

S.rq = SrSq + S.Yr\q;
V. rq = Yr Sq +VqSr + V. Vr Vq.

454. Another important case, in which we can easily esta-

blish the truth of the distributive principle of multiplication, is

that where we have to deal with vectors only. In fact, the for-

mula above established for the addition of two quotients, /3 -=- a

and y -^ a, may be written as a formula for the addition of two

products, by the help of the properties of reciprocals of vectors

(see 117, 118), as follows:

(7Xa-) + (/3xa-') = (7 + j3)xa-';

or more concisely thus,

70 + /3a = (7 + /3) a,

since a"' may represent any vector. This result is more general

than that given at the end of art. 445, because no condition of

perpendicularity is now assumed : and by taking conjugates (as

in the foregoing article), we may already infer from it that

ay + a/3 = a (7 -f- /3),
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whatever three vectors may be denoted by a, /3, y. Hence for

anyfour vectors a, (5, y, B, it follows easily that

For example,

(S + y) (/3 + a) = S/3 + Sa + y/3 + ya.

(/3-a)^=/3— i3a-a/3+a^;

or more concisely (see the end of art. 449),

(ft + ay =
ft' + a' ±2S. pa.

As another example, we have

(/3 + a)(i3-a) = /3=-/3a + a^-a-

and therefore (see again art. 449),

V.(/3 + a)(/3-a) = 2V.aj3.

And these symbolical results will be found to admit of simple

geometrical interpretations.

455. We know now (by 453) that in the multiplication of

any two quaternions, eachfactor may be distributed into its own

scalar and vector parts; and we have just seen (Ih 454) that in

the multiplication of any two vectors, each factor may again be

in any manner distributed into two partial or component vectors,

whereof it is the geometrical sum. A vector may also, by si-

milar parallelograms, be distributed into such partial vectors,

when it is to be multiplied by or into a scalar : see, for example,

art. 441, where we had m (p- a-) = tnp -ma. It is still more easy

to see, as in 444, that a scalar may be distributed, as a factor,

into any parts of which it shall be the algebraical sum, when it

is to be multiplied by or into a vector. And the permission so

to distribute scalars, when they are multiplied among themselves,

is manifest from common algebra. There remains, therefore, no

difficulty in establishing, as we proposed to do, the distributive

principle generally, for any multiplication of two sums ofquater-

nions. Resuming with this view the comparison of the product

(r+q) s and of the sum rs + 17s, we may employ the decomposi-

tions.
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gs=SqSs+ Sq Vs + Vq Ss + VgVs,

rs = St- S« + Sr Ys +YrSs+ Vr Ys,

(r+ q) s= S {r + q) Ss + S {r + q) Ys + Y (r + g) Ss + Y (r + q) Ys;

and we see that the last of these three expressions is the sum of

the two preceding it, because

S(r+g) Ss = (Sr + Sq) Ss = Sr S« + S^ Ss,

S{r+g)Ys = (Sr + Sq) Ys = Sr Vs + S^ V*,

V(r+^) Ss = {Yr + Yq)Ss = YrSs + YqSs,

Y(r+q)Ys = {Yr + Yg) Ys = Vr Ys + Yq Ys ;

it is then proved, as was required, that,yor any three quaternions,

we have

(r+q) s = rs + qs

:

the conjugate of which general equation gives (on the plan of

453) this other and analogous formula

:

s {r + q) = sr + sq.

By combining these two results, or more immediately by decom-

posing the factors into scalar and vector parts, and then proceed-

ing as above, we find that for anyfour quaternions, q, r, s, t, the

analogous formula of distribution,

(r + q) (t + s) = rt + rs + qt + qs,

holds good ; and indeed it is obvious now that the distributive

PRINCIPLE holds good generally, in the multiplication of ant
TWO SUMS of quaternions, whatever the number ofthe sum-

mands may be, into which either factor is distributed. In other

words, the product of the sums will still, as in algebra, be equal

to the sum of the partial products : or in symbols,

2r . Sg' = S . rq.

With respect to some of the notations recently used, it may be

remarked that the symbols,

Sr S^, Sr Yq, Vr Sy, Vr Yq,

are designed to be respectively equivalent to \he products,

Sr.Sy, Sr.Vy, Yr.Sg, Vr Yq;
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whereas the symbols

S.VrVjand Y.VrVq

denote respectively the scalar and vector parts of the last of these

four products, and are equivalent to

SiVr.Yq) and V(\>.V5).

456. I need not now delay to point out the instances which

have already occurred to us, containing-, by a sort of anticipation,

some part at least of what is involved in the ffeneral principle

recently established ; for example, the equation,

(w + p) {w-p)-w''- p',

which was proved on other grounds in art. 409, and which en-

ables us to express the tensor of a quaternion, in terms of the

scalar and the vector (compare 432, 436). But it may now be

proper to shew how the general distributive principle, or even so

much of it as was established in art. 454, with respect to the

multiplication of vectors, enables us to eiFect some transforma-

tions of equations, which have already been proved from geome-

trical considerations to be valid, without its having yet been

shewn how to accomplish them by any process of calculation.

Take, with this view, the three following equations,

S.ap-'=1; S.(a-p)/J-'=0; T(p-ia)=iTa;

which are already known (by art. 414) to represent one common

spherical locus for the extremity of the variable vector p, but

which it is now required to exhibit as equivalent formulcE in this

calculus. The passage from the first to the second of these forms

cannot cause a moment's difficulty at this stage ; for we know

now that

S.(a-p)p-'=S(ap->-l)=S.ajo-'-l:

but in order to transform the third of the above written equations,

it is convenient to proceed as follows. Squaring both members,

we have, by 111,

-{p- \af=- (ia)= : or, {p~\ay = W-

Developing the square of the binomial by 454, we find,
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so that the equation to be transformed becomes, by transposition,

p' = S . ap ; or, S . ap'^ = 1 :

which latter form is thus shewn, as was required, to follow by

calculation from the third form written above, or from the equa-

tion between tensors,

Tip-ia)=hTa,

without reference to any conception of a spherical surface or

locus.

457. Again, let us take the following equation of art. 415, re-

presenting a certain other sphere,

r{,.'^).T{^y.

and let us seek to transform it, by calculation alone, into that

other form of the equation of the same locus, which was given in

the same article, namely,

^P-13

Taking again the negatives of the squares of the tensors, we
have, by 454,

p'-S.(a + i3)/> + i(a + /3)' = i(a-/3)=;

where (by the same art. 454),

H«±/3)'=i°'±iS.ai3 + i^^:

hence

= p'-S.(a + (3)p + S.afi

= S(p=-ap-pi3 + ai3)

= S.{p-a)(p-(5),

= T(p-(iyS.{a-p){p-l3y\

and the required transformation is effected. We see at the same

time that the following equation holds good, as an identity, for

any three vectors, a, /3, p :

4S.(p-a)(p-0)=(2p-a-/3X--(a-/3)S
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which may, by principles already laid down, be interpreted as

expressing (compare fig. 89, art. 415), that if c be the middle of

the base ab of any plane triangle apb, as in

the annexed figure 95, then,

S (ap . Bp) = cp^- CA^;

or, in a notation more received,

AP . BP . cos APB = CP- - CA*,

where the symbols ap, bp, cp, ca, marked for distinction with

upper bars, denote merely the lengths of certain lines, or the

numbers expressing those lengths, and therefore their squares

are (as usual) positive. Accordingly this last equation is a known

result of elementary principles : but in comparing it with the

quaternions, it is proper to remember that (see 111) the lengths

ap, &c., which thus have positive squares, are with us merely the

tensors of the corresponding vectors, ap, &c., of which last,

when regarded as directed lines in space, the squares with us are

NEGATIVE. Thus, in the present calculations, we pass from the

first to the second of the two equations last written, hy changing

the signs of all the terms : or by employing the relations,

S (ap . BP) = - ap . BP . cos APB,

cp2=-cp-, ca' = -ca^

On the same plan, the equation,

of art. 454, is equivalent to the well-known and fundamentalfor-

mula ofplane trigonometry,

BA^ = OA^ - 20A . OB COS AOB + OB'
;

where o, a, b may denote any three points of space.

458. Some other known and elementary theorems, respecting

centres of mean distances, may be expressed, and might be

proved, by equally easy processes in this calculus. For exam-

ple, whatever three scalars and four vectors may be denoted by

a, b, c, a, (5, y, p, we have identically,
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where,

and

tp''-2S.Tp + u = t(p-fjLy + t-'v,

t = a + b + c,

T = oa + 6/3 + cy,

u = aa? + 6/3^ + cf ;

T aa+h^ + cy

< a+6+c

v = tu-T- = ab (/3 - a)- + 6c (y - /3)' +ca(a- yY-

Thus for any four points a, b, c, p, and any three coeflBcients

a, b, c, we have

a.AP^ + b. BF^ + c . cp^ - (a + 6 + c) mp' =

(a + b+ c)-' (ab . ab^ + be . Bc* + ca . CA^),

if M be the point which satisfies the equation,

a . AM + 6 . BM + c . CM = 0,

when directions of lines are attended to ; but this is precisely

the essential property of the central point above alluded to, or of

what is called in mechanics the centre of gravity of the system

of the weights a, b, c, placed at the points a, b, c, respectively.

And it is evident that analogous results would be obtained on

the same plan, for any number ofgiven points of space a, a', &c.,

with the same number of given coefficients, a, d, &c. ; or in

symbols, that we should find, in like manner,

S (a . AP=) - Sa . MP^ = 2 {ad . aa'^) -^ Sa,

if M be a point such that

S(a . am) = 0,

while p is an arbitrary point. For we should have,

2 . a (/o - ay= (p' - 2S . p;u) Sa + 2 . aa\

= (p - ^)' 2a + 2 . aa'' - fi' 2a,

if ju = 2 . aa -T- 2a, or = 2 . n (a - ju) ;

while 2a 2 . aa= - (2 . aay =^.aa' (a - a)=.

459. Apollonius found, and the ancient result has acquired
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fresh interest in our own days by a remarkable application of it

to electricity, that the locus of a point whose distances from two
given points are in a given ratio of inequality, is (in the plane) a

circle. To investigate this locus by quaternions, let the two
given points be o and a, and the variable point p; also let the

ratio of ap to op be that of n to 1, and suppose w > 1 : then,

making oa = a and op = p, the equation of the locus is,

T (jO - a) = nTp, or (p - a)" = ri" p\

Developing, transposing, &c., we find successively,

T{(n''l)p + a) = nTa,

and finally. Fig. 96.

T(p-I3) = c,

if we make, for abridgment,

nTa

71'

SO that

^" -^ r '^"w^-r

f3-a = n% c^ = -w=/3^ = /3(a-/3).

Hence follows this construction, which agrees with known re-

sults. Cut the given line ao externally at b, in the duplicate

of the given ratio of the sides, so as to have ab = w^ob ; take bc

a geometrical mean between the segments eo, ba; and with cen-

tre B, and radius bc, describe a spheric surface; it will be (in

space) the required locus of all the points p, for which

AP = w . OP.

As a verification, let c - b =7, p - b = <t; we shall have

A-B = }ly, 0-B = M"'7, P-A = (T-Ky, P-0 = (T-n-^y;

it ought then to turn out that

T ((T - ny) = T (Kct - y), if Tit = T^y
;
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and accordingly,

((T - nyY = {na - yY = (n^ + 1 )
y' - 2«S . ya, if a^ = y\

It is evident from elementary geometry that the fixed locus of p,

constructed as above, cuts perpendicularly the circle circum-

scribed about the variable triangle aop, or that its radius bp is a

tangent to this circumscribed circle : and this result also might

be confirmed by calculation with quaternions, if we chose to use

here the conclusion of art. 198, respecting the construction by a

tangential vector, of the continued product of the three sides of

a triangle inscribed in a circle.

460. As another example of the present processes of calcula-

tion, let us investigate the intersections of the right line and

sphere, whose equations are respectively (see 430, 421),

V.pa = V./3a; p'+c==0.

The latter equation gives (by principles lately employed),

and therefore the former equation gives,

S.pa = + (c=Ta'+(V.j3a)2J*.

But pa = S . /oa + V. pa (by 407) ; therefore the required expres-

sion for the vectors of intersection is the following :

jO = V. /3a . a-'±[c' Ta' - (TV. /3a)=)* u"'.

If for abridgment we write

p = ^" + p\

the part p", independent of the ambiguous sign +, is equal (by

429) to that component of the given vector /3, which is perpendi-

cular to a ; or to the vector ob" in fig. 91, art. 427, where dbb"p

represents (by 430) the indefinite right line V.pa = V./3a, of

which it was required to find the intersections with the sphere,

of radius c, described about the origin o: and accordingly this

foot b" of the perpendicular ob", must evidently (by elementary

geometry) be the middle point of the intercepted and finite chord.

We have also, for the other part p", or for the semichord itself,

by the expression recently found for p,
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Up"=Ua, Tp"=(c'-T/3"^)*;

and accordingly it is clear that these expressions, when inter-

preted in conformity with our notations, agree with elementary

results. The value of p or of Tp" shews also, as was to be ex-

pected, that the problem '\% geometrically impossihle, or imaginary,

or that the line does not really meet the sphere at all, if the ra-

dius be shorter than the perpendicular, that is, if c < T|3" : or, as

our symbols allow us to express the same condition,

ifc= + /3"'<0, or ifc'a=+(TV.j3a)=>0.

In fact, for any two real vectors a and p, representing any two

actual lines in space, we have, in this calculus, the identity,

461. The calculation may be usefully varied by taking, from

art. 430, this other form of the equation of the secant line, p = /3

+ xa, and seeking to determine the scalar coefficient x. Sup-

posing for simplicity that a is an unit-vector, or that d' = -\, we

have now,

c^ = - p2 = _
(|3 + -c„)2 = 3,2 _ 2^S . a^ - (3=

;

and therefore, by the ordinary theory of quadratic equations.

Here

/3^ = - a^ ^^ = - (T . ai3)' = ( V. ajS)^ - (S . ai3)S

and

/3 + aS . ajS = a (-ajS + S . a^) =- aV. a0 ;

therefore

p = -aV.a/3+(c'+(V.a/3)=)*a:

and this expression for p agrees perfectly with that which was

found in the foregoing article, when we suppose, as we now do,

that

Ta=l, a= = -l, a = -a-K

In fact we found, in 429, that the symbols,

a-'\ .a^ and V.jSa.a',

were equally fit to represent that component fi"
of ^, which is
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perpendicular to a. Whichever method we employ, we see that

the equation,

c^Ta^ = (TV . /3a)^ ovc'a'={V. i3a)S

expresses the limiting condition, which the direction of the secant

line, or of the line a to which it is parallel, must satisfy, in order

that the ttvo points of intersection may coalesce into one point of

contact. If then we multiply by x-, and change xa to p- j3, ob-

serving that

V.^(p-^)=V(/3p-/30=V./3p,

because j3'' is a scalar, we find the following form for the equation

of the enveloping cone, which is the locus of all the tangents that

can be drawn to the sphere p'+ c*=0, from the extremity of the

given vector /3 :

cHp-(3y = {y.ftpy.

This is a simpler form of the equation of the enveloping cone

than that which was found in 425, and which becomes, by chang-

ing a and o- to c and j3,

{S./3(p-/3)) = =(c^ + /30(p-i3)^

Yet the two equations agree : for we now see that

(S./3(^-/3)) = -/3Hp-i3)'={V./3(p-/3))^ = (V./3p)=.

462. Each of the two preceding articles conducts to the ex-

pression,

p = ^-a-'S.a/3,

for the vector of the point of contact; in connexion with which,

it may be well to note that (by 424, 429) we have, for any two

vectors a, /3, the equation,

i3
= V.j3a.a- + S.j3a.a-';

because the two terms of the second member denote the two com-

ponents of j3 which are respectively perpendicular and parallel to

a. But also, for the tangents,

(S . Pay- = (iW + ( V . j3a)"- = (c= + /3=) a- ;

therefore each vector p of contact must satisfy the equation,
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S.j3p=/3'-a-^(S.i3a)' = -c^ orS./3/o + c» = 0.

This equation of the polar plane agrees with art. 423 ; and we
may now propose to shew by calculation that it involves the well-

known harmonic property of the plane which it denotes. For

this purpose we may employ the following form of the equation

of a secant of the sphere drawn still from the extremity of /3 :

and may propose to substitute for y the semi-sum (z) of its two

values, as given by the quadratic equation,

= c' + (/3 + y-'aY, or, y= (C + /30 + 2yS . q/3 + a' = 0.

In this manner we find

2 = -S.a/3(c^ + /3=)-'; p = /3-a(c' + /3') h- S.a/3;

and consequently.

The polar plane therefore cuts harmonically (as it is very well

known to do) every secantfrom the pole : or in other words the

pole (whose vector is
fl),

and the point of intersection with the

polar plane (of which the equation is S . (ip = - c^), are harmonic

conjugates, with respect to the two points in which the secant

(p =fi + y'^a) intersects the sphere (jo^+ c^ = 0).

463. In general it may be said, in conformity with the re-

ceived notion of harmonic progression, that the harmonic mean

between any two vectors, such as aa, ca, which have one com-

mon direction, or opposite directions, is = ba, if 6'' = ^ (a"' + c')
;

and I think that we may with convenience extend this notion of

the harmonic mean in geometry, by establishing, as a more gene-

ral definition, that the harmonic mean between any two vectors,

a and y, is a third vector, (3, which satisfies the analogous condi-

tion,

j3-' = i(y-> + a-');

whether the vectors be or be not parallel to any common line. You
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Fig. 97.

will easily find that if oa and oc be any two diverging lines

(a and -y), between which it is re-

quired to insert a third line, ob

or j3, which shall, in this new or

extended sense of the words, be

their harmonic mean, the problem

may be thus constructed. Circum-

scribe a circle about the three

given points aoc ;
prolong the

chord AC to meet in d the line od ^T"

which touches the circle at o ;

and draw the other tangent db,

and the chord of contact ob.

Quaternions offer many modes of proving the correctness of this

construction, for the reciprocal of the semi-sum of the reciprocals

of two diverging vectors : one of the most elementary, as regards

geometrical principles, consists in cutting, as in fig. 97, the three

chords OA, OB, oc, or rather their prolongations, by a transversal

a'b'c', parallel to the tangent od, and then shewing that b' bisects

a'c', and that the rectangles aoa', bob', coc' are equal. In the

same construction, the two points o and b may be said (by an

analogous extension of received language) to be harmonically

conjugate to each other, with respect to a and c : and it is not

difficult to prove that a and c are in like manner harmonic con-

jugates with respect to o and b : so that the^wr points oabc

may conveniently be said to compose a circular harmonic

GROUP. In symbols, if /3 be, in the sense above assigned

the harmonic mean between a and -yj then - /3 is in the same,

sense the harmonic mean between a - /3 and 7 - j3 ; 7 - a between

- a and /3 - a ; and a - 7 between - 7 and /3 - 7. The rectangles

under opposite sides of the inscribed quadrilateral, oabc, are

easily proved to be equal; and the diagonals, ob and ac, are

related as conjugate chords, each passing through the pole of the

other.

464. The same harmonic relation between a, j3, 7 may also

be expressed by writing, as in algebra.

/3 ' = /3-'-a-
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where, it' the rectangle AOA'in the recent figure be unitv, we have

the following geometrical constructions,

/3-'-a-' = B'-A'; -y-'-p-' = c'-B';

so that the difference /J'' - a"' ofthe rcci/iroca/s ofany two diverg-

ing vectors, a, /3, coiisidererl as tico co-initial chords, oa, ois, ofa

circle oab, is a vector which has the direct/on of the tangent, do,

or od', to that circle, drawn at their common origin o. We may also

say (comj)are 131, H)8), that this direction is that of tiie tangent

at o to the segment oab, rather than to the alternate segment of

the circle. As regards the length oi\\\\% tangential vector, which

thus constructs the difference of tlie reciprocals of a and /3, it is

easy to prove by similar triangles that, in the recent figure,

AB -^ AB = OA ^ OB = OB -i- OA ;

or with our symbols, that

T(/3-'-a >)=1'""''i"i3"'T(a-^). .

In fact, without referring to the figure, we have

/3-^-a-'=/3-' (l-/3a->) = /3-'.(a-/B)a-',

whence the recent expression for the tensor follows. We see also,

by taking the reciprocals, that

03'--a-')-'^.a(a^/3)-'.i3;

or that the reciprocal of the dij)ere)ice /3"'- a"' ofthe reciprocals

ofany two vectors, is, both in length and in direction, the fourth

proportional to the negative {a - (5) of the difference (5 -a ofthose

two vectors themselves, and to the same two vectors, a, (5. The

difference of reciprocals, /3"'-a"' itse/f has therefore the oppo-

site direction; or in other wor<ls it has the direction of the fourth

proportional to a-ji, -a, and ji ; or in fig. 97, to ba, ao, and

OB. Accordingly we know that this fourth proportional to three

successive sides of a triangle bao inscribed in a circle must have

the direction of the tangent at o to the segment bao, or oab
; as

appears from art. 131, by changing in that article, or in fig. 26,

the letters c and a to a and o. It is equally easy to shew in

connexion with art. 463, that
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i3
= 2(7- + a-0-' = a(^J'.y =

,

if £ = 1 (y + a) = OE, the point e being thus supposed to bisect the

chord AC in fig. 97; so that the harmonic mean, /3, between

any tico diverging vectors, a and y, is still, as in algebra, the

FOURTH PROPORTIONAL to their arithmetical mean, or semi-sum,

£, a7id to the two vectors themselves ; or in other words, the

triangles eoa and cob (in fig. 97) are similar : a result which

may be confirmed by elementary geometrical reasonings.

465. The geometrical interpretation of the sum and diffe-

rence oi ihe reciprocals of two vectors being thus sufficiently

known (although they suggest several inquiries of interest, on

which we cannot enter now), let us resume the last form given

in art. 436, for the equation ofan ellipsoid, namely :

or (because

TK=T, K = S-V, S.a/3 = S.|3a, V. a/3 = -V./3a),

this slightly modified equation,

T(S.a-'p + V./3-» = l;

in which (by 449),

S.a-> = i(a-p + pa-'); V. /S" 'p = i(i3-> - pj3-').

Make, for conciseness,

a' = i(a- + /3-');
i3'

= i(a--/3-);

the last equation of the ellipsoid takes then this very simple

form :

T(a> + pi3') = l;

where p is the variable vector of the surface, while a and /3' are

two constant but otherwise arbitrary vectors, of which, however,

we can prove that d is longer than j3', if we continue to suppose,

as in fig. 92, that the angle between a and /3, or that the verti-

cally opposite angle between a"' and j3"' is acute: because we

shall then have,

Ta'-' - 'VP''= /3'^ - a'= = - S . a- /3
-

' > 0, 'Va > T/3'.
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It may also be observed, that if we still suppose, as in fig. 92,

To> Tj3, we shall have (by 454),

4S.a'i3' = a-'-/3-=>0; a'/3'>|;

so that the angle between the two new lines, a', /3', will be, on this

supposition, obtuse. Make also,

/3'

^'=

and therefore

we shall have

"/3'=-a'='

K* - r = (j3'- - a.-)
"

' > 0, Tt > Tk, (k > -
;

a' = i(K^-t»)-', /3'=ic(K'--r)'';

and the equation of the ellipsoid will acquire the form,

T ((jo + pic) = K° - r ;

which is indeed not quite so short as the form last assigned in the

present article, but has the advantage of a greater homogeneity,

and lends itself with ease to the purposes of geometrical inter-

pretation and constructio7i, as, for example, in the following

way.

466. From any assumed point c draw two right lines, ca,

CB, as in the annexed figure 98, to repre-

sent the vectors k, t of the foregoing ar-

ticle, in such a manner as to have

7r

and with c for centre, and ca for radius,

conceive a sphere to be described, cutting

AB in g; so that

^2_j2=Xt^- Tk^ = CB=-CA= = BA . BG.

Fig. 98.

Let E be supposed to denote some vari- pi

able point on the ellipsoid, of which the

equation is (by the last article),

2 H 2
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T {ip + |0k) = k' - t',

and let the fixed origin of the variable vector p be placed at the

point a; let d denote the second point where the line ae meets

the sphere ; finally let us conceive the lines bd, cd, to bo drawn,

and denote the latter by (t: so that we shall have

AE = jO, CD = (T, DB = I - (7.

Then (7 ma\' he regarded as the rtjiexion of that fixed radius of

the sphere which is the prolongation of AC, and which may

therefore be denoted hv - k, tiiis reflexion being performed with

respect to anotiier and variable radius which has the direction of

+ p; and hence it follows, by reasonings similar to tliose of art.

429 respecting the equation ya = a/3, even icithout here assuming

the knowledge of what was shewn in the preceding Lecture re-

specting the symbol 7(07"' (arts. 290, 291), or the connected

symbol -707"' (art. 332), that

<'P
= p(-i^)i pi-" = -'Tp, tp + pK={i- g)p;

and therefore the equation of the ellipsoid becomes

T (i - (t) Tp = (c- - r ;

that is

BD . AE = BA . BG = BD . B d',

or simply,

ae = bd',

if d' be the second point where the secant bd meets the sphere.

Conversely, if any secant bdd' (or bd'd) be drawn to the sphere

round c from the txtentul point b, and if from {\ni sujjerjicial

point A of that sphere there be taken, on the (juide-cliord ad,

or on that chord either way prolonged, a portion AE which in

lenffthi» equal to bd', the /ocu.i of the point E, constructed thus,

is an ellipsoid. This very sim]>le mode of generating that im-

portant surface is due (so far as 1 am aware) to the quaternions,

and was communicated as s'ich to the Royal lii-h Academy in

184f), having been deduced nearly as above from an equation pre-

viously exhibited in l&-i5, which agreed substantially with that of

art. 430, namely, with the following,

t.S.p„-')-^-(V.p/3-')-l.
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The same ellipsoid will evidently be the locus of the points r, f',

if the diameter ff' coincide in position with the covjnyate guide-

cliord ad', and if

AF = AF = DU.

407. 'J'he equation ae = bd of the eliipsoid is ver)' fertile of

geometrical conse(juences, a few of which may properly be stated

here. Firxt, then, it shews that (as indicated in Hi;-. 98) tiie

point B is itself d point on the e/lijisuiil ; because when the

GUIDE-POINT D takes the position g, then the connected point

d', which may in this construction be called the conjiKjate <juide-

point, comes to be placed at a ; so that bd' becomes ba, and this

lenj^th of one side of the generating triangle abc is to be set

off from the centre a of the elli|)soid, either in the direction of the

side AB itself, or else in the opposite direction : but one of these

two modes of settins? oW that length conducts to the point b.

Secondlij, if we draw, as in the figure, from b through c, a secant

BKCk', to the sphere which is dc'-cribed round i. through A, and

which from its relation to the ellipsoid whose centre is at a may

be called the diacentric sphkhe. then the length a li of the

semi-diameter of the ellipsoid, as being b_\' our equation always

equal to bd', will become a inaximum when d' coincides with k',

and therefore D with K; if then ve set off a line al in the direc-

tion of AK, and conceive another line al' to be set off in the op-

posite direction, the:-e two o|>posile lines al, al' will he the major

semi-axis of the ellipsoid; or in other words, the points l, l'

will be the two major sininiiits of that suriace. Tkirdlij, to find

the niinimian value of the semi-diameter, we must evidently

place the ouide-})oint D at k', and the conjugate guide-point d' at

K- that is, we are to set off from a, on the guide-chord ak', two

opposite lines am, a.m , whose common length is bk : and then

these lines will be the two minor semi-axes, and the points si,

U the two minor sunrmils ot the ellipsoid ; while the anyle in

the semicircle, kak' (or la.m ), e.xhihii- the well-known perpendi-

cularity of the minor axis .m.m' to the major a.xis ll'. loiirtlili/,

let the ellip'-oid be cut bij any ijiveii concentric spliere, of which

the radius ae is intermediate in length between bk and bg, or

else between bg and bk': the length of bd' will then (by our
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equation) be given, and so will therefore the length of bd, and

this latter length will be different from ba ; hence the locus of d

will be a circle of the diacentric sphere, in a plane perpendicular

to BC, which plane will not pass through the point a: the cur-

vilinear locus of E on the ellipsoid will therefore be (as is other-

wise known) a spherical conic, since it will be contained at

once on the given concentric sphere, and on the cone which has

the centre a for vertex, and the circular locus of the guide-point

D for base : and the construction sliews (compare 420) that the

two cyclic planes of this cone are the two planes through a, which

are perpendicular respectively to the two sides cb, ca (on and k)

of the generating triangle abc. Fiflhly, these two diametrical

planes themselves cut the ellipsoid in circles, or &xe cyclic planes

of that ellipsoid ; for if d move in the circle which has ah' for

diameter, in the larger figure 99 annexed, and is perpendi-

cular to the plane of that

figure, as being perpendi-

cular to the side uc of the

triangle, the conjugate

guide-point d' will move

in that other and parallel

circle which has gh in the

same figure for its diame-

ter ; so that the length of

bd', and therefore also (by

the equation) the length

ofAE, will remain constant

and=BG, and e will de- S

scribe a circle on the ellip- Q'

sold, whose diameter in i

fig. 99 is qq' : and again,

if D approach indefinitely

to A in any direction on

the sphere, d' will at the

same time approach inde-

finitely to G, and the length

bd' or AE will tend to be-

come BG, and a circle <ie-
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scribed with this radius, in the tangent plane at a to the diacen-

tric sphere, of which plane the trace in fig. 99 is the line nn',

will be the intersection of that plane with the ellipsoid. Sixthly,

the sphere with a for centre, and with a radius = bg, cuts the

ellipsoid in tlie system of these two circles, which are thus

a sort oi limit of the spherical conies recently considered; and

this sphere may be conveniently called the mean sphere, be-

cause if we conceive a perpendicular to the plane of the figure

(answering to the line oc' of art. 435), which shall be equal in

length to BG, and therefore intermediate in length between the

greatest and least semi-axes lately determined, but, like them, a

semi-diameter normal to the surface, this normal semi-diameter

will be one of the two mean semi-axes, and its termination will

be one of the two mean summits of the ellipsoid. Seventhly, if

we denote (as is often done) by a, b, c the lengths of the major,

mean, and minor semi-axes, we can express, in terms oj these,

the lengths of the sides of the generating triangle, as follows :

BC=f(a + c); CA = -J(a-c); ba = ac/>i"';

because

a = BK', C = BK, 6 = BG.

Eighthly, since

BD . AE = ]JD . BD'= bg . BA,

while the angle adb is not in general right, the double area of

the triangle aeb is in general less than this last rectangle, and

the perpendicular distance of e from ab is in general less than

bg; but for a similar reason this distance is equal to bg, for the

particular system of those points e of the ellipsoid, which answer

to those points o of the diacentric sphere for which adb is a right

angle; draw therefore as in fig. 99, the diameter acr of that

sphere, and the secant brr', and conceive a circle described on ar'

as diameter, in a plane perpendicular to that of the figure; this

circle will be the intersection of the diacentric sphere with another

sphere whose diameter is ab, and will therefore be the required

curvilinear locus of those points d, for which the angle adb, like

ar'b, is right ; and the corresponding points e of the ellipsoid

will be at once situated in the plane of this new circle, and on
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the cylinder of revolution wliich has ab for axis, and bg tor ra-

diu;* ; they will therefore be situated on an elliptic nection of this

cylinder, whose iniijor axis is tt' in the figure ; and every other

point E will lidl within the cylinder : that is to say, the ellipsoid

is enveloped, alovrj this ellipse on tt', by the cylinder whose axis

IS the side ab oJ the yeneratiny triaiiyle abc, and whoi>e radius

is equal to the mean senii-a.ris (b) of the ellipsoid ; so that the same

cylinder envelopes also the mean sphere, namely, along a circle,

whose diameter in fig. 99 is ss . (The ellipsoid and mean sphere

have also anotlier common enveloping- cylintier, of which, in the

same figure, the axis of revolution is i>i' ; the angle BAP being-

bisected iiy the major semi-a.\is of the ellipsoid, al.)

4(J8. 1 he foregoing account b) no means exhausts the ^eo-

mctrical (nor even the easy) consequences of the equation

ak = Bi)
;

which mnst indeed be conce/nd to admit of being developed, so

as to conduct to every jiossiblc jyoperty of the ell/psvid. We may
for instance, apply that equation to deducing the difference of
the squares of the reciprocals of the semi-axes of an arbitrary

diametral section, and the law oJ the variation of that difference,

in p;issing from one such section to another. Conceive for this

pur[)ose, that the ellipsoid and the diacentric sj)here are both cut

by some plane ab'c' ; b' and c' being the projections on it of the

points B and c. l"he guide-point d thus moves along a circle

with the projection c' for its centre, and jiassing through the

point a; and because ah varies inversely as bi), we are to seek

the difference of the squares of the extreme values ofBD, or of

b'd, since bb' is given, and

BD-= bb'- + b'd".

Let b'c' cut the circular Iocik of d in tuo points Dj, Dj, the one

nearer to b' being Dj
;
the hist-meiitioiied difierence of squares

is then,

b'd/ - b'di'- = 4 ij'c" . c'a
;

it is therefore equal to four Units the rrc/anyle under the projec-
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tions ofthe tu-o sides \ic, ca of the yenerating triangle on the

plane of the diametral section of the ellipsoid. And because

4bc . CA = a=-c=, and Bu . AE = ac,

while BC and CA are perpendicular respectively to the two cyclic

planes of the ellipsoid (and we now see that there are no more

than two such planes), the expression for the difference of the

squares of the semi-axes of a diametral section is found by this

method to be of the known form,

AE^'=- AEi"-= (c"' -a'-) sin v sin v ;

El, E; being the points which correspond to n,, Do, and v, t;' being

the incUnalinns oj the cutting plane to the two cyclic planes. It

may be proper to note that the same construction exhibits, in a

very elementary manner, the known mutual rectangularity of the

two extreme diameters of a section; because ae,, ae., have the

directions of ad., aDj (or the o[iposite directions), and UjAD, is

an angle in a semi-circle. 'i\\e fact and the law of the gradual

diminution of the semi-diameter of a section, in passing from its

greatest to its least value, mij;ht also easily be put in evidence, by

following out the same method of construction.

469. But however simple may be these geometrical deduc-

tions from the equation ae = bd', yet many of the same and other

consequences may be obtained with even greater ease by calcu-

lation with qualer)iions. To shew, for example, that the ellip-

soid is cut in circles by the two diametral jjlanes perpendicular

to CB, ca, or to t, K, that is, by the two cyclic planes whose equa-

tions are,

S.(p=0, S.K:;0=0, OTip = -fJI, pK=-Kp,

we have only to substitute these last values for ip and pK in the

equation T {tp + pic) = k' - r, and we find that each of the two

planes cuts the surface in a curve, which is contained on the

mean sphere, whose equation is

To = I), where b = ,^, r = uc l {i - k)'',

if we make for abridgment.
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a = T( + Tk, c = Ti - Tk,

so that

Ti = ^{a + c), TK = i(a-c), K^-i-^ac, T (i-k) = acb-^

:

and it admits of being shewn, by calculation with quaternions,

that the a and c, t/ius determined, are respectively (as in 467)

the greatest and least semidiameters of the ellipsoid, or the max-

imum and minimum values of Tp. To shew that b is a point

upon the ellipsoid, it is sufficient to shew that its vector ab or

I
- K may be substituted for p in the equation of the locus ;

which appears from the identity,

t (t - k) + (t - k) K = - (k- — r),

because the tensor of a negative scalar is (by 109,1 13) the positive

opposite thereof. One form of the equation of the cone ofsemi-

diameters p, which have a given and common leiujtii =r, inter-

mediate between a and h, or between b and c, is the following,

T(t + |0k-./3"') = acr~^;

and the corresponding spherical conic on the ellipsoid may be

expressed by combining this equation of the cone with the equa-

tion,

Tp = r,

of the sphere on which the conic is contained. This conic con-

sists in general of two separately closed and diametrically oppo-

site branches ; but when the radius r = b, that is, when we cut the

ellipsoid by the mean sphere, the conic takes (as we have seen)

the limiting form of a system oftwo circles. In fact it will be

found that the equation

T(( + pK.|0-^)=T(t-K),

or the following, which is a transformation of it,

'&.l{pK.p-' + K) = (i,

may be still farther transformed, as follows :

S . (jO . S . KjO = ;

and therefore that it represents the system of the two cyclic

planeif, which system is thus a sort of limit of the cone.
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470. It may have been noticed that the ellipse and concentric

circle in fig. 99 are precisely the same as those in the earlier

figure 92 (art. 434), although new lines and letters have been

employed in the more recent of these two diagrams, and a dia-

centric circle introduced. Accordingly, this agreement was de-

signed, and it may be useful to shew how it was attained, by

means of the relations of art. 465, which connect the two new

vectors t, k, with the two old vectors a, /3, through two other

constant and auxiliary lines, a', ]3'. The article just cited gives,

by elimination of a, /3',

a-' + 3-' a-'-/3-'

'""'2S.a-')3-''
""

2S.a-' j3-''

whence
-|3-' -^

.

' " S.a-'/3-' S.i3a->'

- a"' — a

'^""S.a-'/S-^'S.ajS-' '

such then are the expressions for the two vectors i - k and i + k,

or AB and rb of fig. 99, considered as functions of a and /3, that

is, of the two vectors oa and ob of fig. 92. These expressions

give,

S.0-K)a-> = -l = S.(t+K)(3-';

V.(t-K)/3-' = = V.(i + K)a-';

whence it was easy to infer, by combinations of plane and recti-

linear loci, on the plan of former articles, that i-k and -(i + k)

were equal respectively to the lines of' and oa' in fig. 92, if a' be

supposed to denote, in that figure, the intersection of oa and bc.

I therefore placed the new a and b of fig. 99 at the points o and

f' of fig. 92, and the new point c at the middle of the old line

aV (after inserting a' as just now explained); because, in figs.

98 99, the origin of p is a (not o), and ab, ac are (in these lat-

ter figures) the vectors i-k and -k: and then proceeded as

above. 1 shall not delay you by proving here that a given ellip-

soid may be constructed in }nore ways than one, by means of

diacentric spheres; and that it is not indispensable to the con-

struction to have the fixed point u external to the sphere
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471. Since kjo + jok is a scalar, we have, as an identity in this

calculus, holding good for any three vectors, the equation,

ip + pK = {i- k) [p -
^_^ j.

Intvoduciiiir therefore a 7iew and variable vector X, determined

by the expression

the equation of the ellipsoid takes the form,

T {p-\) = h, because b = (k- - r) T (t - k)" '

;

where

X = A ((-k-), if A = 2S.Kf>.T((-K-)- =

If we assign any given scalar value to this co-efjicient h, we get

on the one hand a given value for the vector X,

X= AL = /( . AB,

where L is a new and variable point, situated on the indefinite

line AB, and not now (as in figures 98, 99) a 7vajor suniwit of the

ellipsoid ; and on the other hand we obtain a giveii jilajie, [ler-

pendicular to k or to AC, as 09ie locus of the extremity e of p;

while the recent equation,

T(p - X) = i, or LK = b,

shews that another locvs for the same point e is a given sphere,

with centre L, and with radius b. If then this plane intersect

the ellipsoid at all, that is, if the value which it gives for S . Kp

be not too great numerically (by h being assumed too large),

the curve of intersection will be a circle. It follows then that

indefinilehj many circles can be traced on the ellipsoid, with their

planes parallel to one of the two cyclic phines through the cen-

tre: a well-known theorem, indeed, but one which it seemed

worth while to reproduce by the foregoing calculation with qua-

ternions.

472. Again let jll be anolhtr new variable vector expressed

as a function of p by the formula,

/n= (ip + pi) (i- kY'^ h' (k- i), wherr /(' = 2S . ip . T (i - k-)" =
.
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TIjen, because

ip + pK = {ip + pi)-p{i-K) = (iu- p) (t - k),

the equation of the ellipsoid will take this new form

:

T{p-^,) = b^

aiirl to each assumed value of the scalnr coofficipiit k, which is

not numerically too 2;'reat, will answer a plane perpendicular to

(, or parallel to the otiitr cyclic plane of the ellipsoid, and cut-

ting'that surface in another circle, contained npoii anotlier spliere,

which has the same rudlys h, but has a differdit centre from the

sphere of the last article : namely, a new point m on the same

indefinite line ab as before, which point is the variable extre-

mity of the new vector fi (and is not now a minor summit of the

ellipsoid) ; so that

AM = jU = - li . AB, u E = h.

The ellipsoid is therefore (as is well known) the locvs oftwo

distinct systems of circles, whose planes are parallel to the two

cyclic planes drawn through the centre ; and we see that the

planes of these circles are perpendicular to the two sides, ca, cb,

of the generating triangle abc, in the construction of art. 466.

473. Any two such circles, belonging to diffrrent systems, or

as we mav by analogy say (compare art. 420), any two suh-con-

trary and circular sections of the ellipsoid, are known to be con-

tained upon one common spheric surface ; and accordingly it can

easily be shewn by quaternions, that whatever two subcontrary

circles may be thus selected, with their own corresponding values

of the scalars h and /*', those two circles {h, h') are both contained

upon that new sphere whose equation is

T((0 - 2) = n, or NE = n,

where the new point n, the vector ?, and the scalar n, are such that

an = 2 = At + A'k = - 2 (( - /c)"= (t S . Kf) + kS . Lp),

and

n = ^{b'--(h + h') OiL^+liKr)] :

and where it is important to observe that N is situated in the
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plane abc, because ?||| (, k. In fact, this new sphere, with cen-

tre N and radius n, may have its equation thus expanded

:

0={p-^y + 7f- = p"--2{hS.ip + h'S . Kp) - hh' {i - Ky + b'

;

and this condition is satisfied, whether we suppose that p satis-

fies the equations ofthe^rst circle {k), which maybe written

thus :

^ p- - 2hS . ip + 2hS . Kp + h-{i- k)" + b-,

0=(/i-ih')\2S.Kp + h{i-Ky];

or the equations o( the second circle (/*'), under the forms,

= p= - 2/i'S . kyj 4 2h'S . ip + /t'- (t - k-)- + b-,

= (/i + h')[2S.tp + h'(i-Ky].

474. If these two circles, in planes perpendicular respectively

to K and (, be supposed to intersect each other on their common

sphere in any o?ie point e of the ellipsoid, it is clear that they

must also intersect each other in another point Ej of that surface,

which point is such that the common chord eEj is perpendicular

to both K and i, or to the plane of the triangle abc ; this chord is

also evidently bisected by that plane in a point e\ which is the

common projection of the two points e, Ej, thereon ; because this

plane contains, by the foregoing article, the centre n of the

sphere (which is not to be confounded with any of the points so

marked in recent figures). It is evident also that this sphere

round N is doubly tangent to the ellipsoid, touching it both at e

and at Ei ; because, at each of those two points, the sphere and

the ellipsoid have two rectilinear tangents in common, namely,

the tangents to the two circles (A, K). Hence the radii ne, nEi,

of the sphere must be normals to the ellipsoid, at the points E

and El respectively ; or, in other words, the point n is the com-

mon foot of the two normals en, EjN, which are drawn to the

ellipsoid at those two points, and are continued to meet the plane

of ABC. With regard to the common length of these two normals,

since it is equal to the radius of the new sphere, it is expressed by

the recent radical, n ; while the normal en thus drawn to the

ellipsoid at e, and continued till it meets the plane of the gene-

rating triangle, that is (by art. 4()7) the plane of the greatest and
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Uast axes, is expressed, both in length and in direction, by the

formula,

where ^ has its recent value (assigned in art. 473). Operating

by S . jO, we find,

S . p (^ - p) = - 10= - 4 (t - k)-- S.tpS .Kp = b\

because, by 471,

// = - (p - X)- = - p= + 2S . pA - A% A= = 4 (( - k)- = ( S . KpY,

2S . joA = 2/t (S . <p - S . K/j) = - 4 (( - k)-'- S.Kp(S.ip-S. Kp) ;

or because, by 472,

b' = -(p-py = -p^-+2S.pfi-p\ ^'-=4(<-0-(S.,p)^
2S • pfi= 2A'(S . Kp - S . tp) = - 4 (i- k)~- S . ip (S . Kp - S . ip").

If therefore we now introduce a new vector v, determined as a

function of p by the equation

^-p = h-v,

or (see the values already found for b and 5),

(k^ - r)^v = (( - k)-/o + 2 (tS . k-jO + icS . (|o),

this vector v will at once be perpendicular to the plane which

touches the ellipsoid at e, and will satisfy this very simple con-

dition :

S . vp = 1

.

And we see, at the same time, that the equation of the ellipsoid

may be put under this new form,

p' + b- = A(u,

where A, p. are those two functions of p which were so denoted

in 471, 472; whence we perceive anew that the mean sphere,

whose equation may be thus written,

p'- + ft^=0,

intersects the ellipsoid in the system of those lu-o circles which

are contained in the two diametral planes,

A = 0, |u = 0; orS.Kp = 0, S.(p = 0.
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475. The vector v, thus lately introduced, is an important

one in the theory of the ellipsoid. Suppose, for example, that

we wish to circumscribe about that surface a cylinder (not gene-

rally of revolution), with its generating lines in the direction of

some given vector sr ; to find the curve of contact we have im-

mediately the equation,

S . CTi' = 0, because v ± ~

;

the normal to the ellipsoid, at any point of this sought curve,

being normal also to the enveloping c_\ Under, and the normal to

a cylinder being everywhere |)erpendicular to the common direc-

tion of all its rectilinear (/eneratrices. And then, on substituting

for V its value as a function of p, we obtain the condition,

--= (( - k)- S . ?5|f» + 2 (S . TOi S . k-p + S . Z-jK S . ip).

Let us vvrite, for abridgment,

v = <j>{p), or dimply I' = 1^^,

using (p as 'Afunctional sign ; '-vo shall have, in like manner,

o) = ^ (^), or til = ^T7,

if oi be a new vector such th;it

(k- - r)- ^TO = (k- - (-)- w = (( - k:)-ct + 2 (iS . ict3-f kS . fsj) :

and then the recent condition of contact with the cylinder be-

comes simply,

S . pw = 0.

The curve ofcontact is therefore plane and diametral (as indeed

it is otherwise known to be) ; and we see that the perpendicular

to the plane ofcontact has the direction of the vector w, or dnz,

determined by this easy calculation.

476. If we introduce for conciseness another functional sym-

bol, f{p, zj), defined by the equation,

J(p, ^) = S . pcpzj,

or more fully,

(k---r)'./'(p,^) = ((-«)- S .p7^ + 2(S.ipS, .Kz:+ H.Kp S.m),
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we see, on the one hand, that this new function is symmetric

with respect to the two variable vectors, p and w, or that

and on the other hand that when w has, as above supposed, the

given direction of the sides of a cylinder enveloping the ellip-

soid, the equation of the plane ofcontact takes the form,

f{^,p) = Q.

If we farther agree to write for conciseness,

whatever vector p may be, then, because v = 0p, and S .pv = 1,

the equation ofthe ellipsoid reduces itself, in this notation, to the

form,

/P = l-

477. These^wc<Jon« ^ and/, which are respectively equal

to a vector and to a scalar, are of great utility in calculations

concerning the ellipsoid ; and indeed analogous functions present

themselves usefully in investigations with quaternions, respect-

ing other surfaces ofthe second order; and even in some more

general inquiries. The vector function <j> (from which the scalar

function / is formed) has, relatively to the vector p on which it

depends, the distributive character expressed by the for-

mula,

(p + p) =
i>p + <pp', or, A0P = 0(Ap),

if A be still the sign of the operation of taking a difference

:

connected with which is the property, that if x be any scalar co-

efficient,

^ (xp^ = X(pp.

It follows hence that the scalar function /(p, w) is distributive,

with respect to each separately of the two vectors on which it

depends ; or that

f{p + p',-ss+ -a) --f{p, ro + to') +f{p', TO + to')

=/(p, to) +/(p, to') +/(p', to) +/(p', to') :

and that

2 I
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f{xp, yB!) = xyf{p,is).

Abridging therefore, as above, the symbol /(|0, p) to J'(p), or to

Jp, we find that

/(xp)==x'/p;

and that

/(p + p')=/p + 2/(p,p') +//>':

which last equation may also be thus written,

Afp = 2f(p,Ap)+f{Ap).

It is easy to foresee, that when a theory of differentials of

QUATERNIONS shall have been established, but before these Lec-

tures close I hardly hope to give even a sketch or beginning of

such a theory, there will result an expression of the following

form for the differential of the function/:

d/p=2/(p, dp) = 2S.^/.dp.

478. Without yet introducmg differentials, let a + r and a-r

denote two different directed semi-diameters, or two values of p
for the ellipsoid ; so that a is the vector of the middle point of

some (rectilinear) chord; while r denotes one of the two directed

semi-chords, or a vector equal thereto. Then, by 476,

l=/(<x + r)=/(,T-r);

and therefore, by 477,

l=/<T+/7-+2/(<T, r);

l=/<T+/r-2/(<T,r).

The semi-sum of these two equations gives the relation

l=A+/r;

and their semi-difference conducts to this other formula,

0=/(<T, r):

which last may be called the equation of conjugation, be-

tween THE two directions of the two vectors, a- and r

;

namely, between the directions of a diameter of the surface, and

a chord which is bisected by that diameter. In fact it is usual

to say that two such directions are conjugate, with respect to the



LECTURK VII. 483

ellipsoid, or other surface of the second order, for which this re-

lation of bisection exists : and as regards the known reciprocal

character of the relation, it is expressed in our symbols by the

formula (see 476),

f(r,a)=f{(T,T).

Or we might observe that, by 477,

/(-p) = (-i)Vp=/p;

and therefore that if we suppose, as in the present article,

l=/(<T + r)=/(<T-r),

we shall hare also

!=/('• + <^)=/(r-<r),

when <T and t have been interchanged. Our symbols might

therefore in this other way serve to remind us, that if a diameter

in the direction of a bisect a chord of the ellipsoid parallel to r,

then reciprocally the diameter in the direction of i- bisects a

chord parallel to cr.

479. We are not pretending to offer here a systematic trea-

tise, nor even an elementary essay, on the properties of the el-

lipsoid themselves ; but rather are employing, in parts of this

Lecture, a few of those properties, without much concerning our-

selves whether they be already known, or in some cases new, in

order to illustrate the method of quaternions. The known and

familiar character of some of these conjugate relations need not

therefore prevent us from discussing them a little farther here,

in connexion with the present calculus. Thus we may notice,

that since the equation of conjugation between directions, as-

signed in the foregoing article, namely,

0=/(<r,r), orO=/(r, (T),

becomes, by 476,

= S . T<}><T,

it follows that the diameter in the direction of a bisects all the

chords which can be drawn across it, parallel to (or contained

in) a given diametral plane, to which the normal has the direc-

tion of ^(T. Hence this diameter in the direction of a may, con-

2 I 2
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sistently with usage, be said to be itself conjugate to this diame-

tral plane; and by comparing this conclusion with that of art.

475, we should arrive in a new way at the known result, that the

axis of any cylinder, circumscribed about an ellipsoid, is conju-

gate to the plane ofcontact. It would also be easy to prove, by

our formulae, that a chord, parallel to a given diameter, is bisected

by the diametral plane which is conjugate thereto.

480. The equation of 478,

shews that while the abscissa a, as measured from the centre on

a given semi-diameter p, increases from to p, the ordinate t at

the same time diminishes (in length) to 0, according to a law

easily assigned, from the value which it had when it at first co-

incided with some given and conjugate semi-diameter p of the

ellipsoid, which new semi-diameter p thus satisfies the two con-

ditions (see 476, 478),

/p'=l;/(p,p') = 0.

In fact if we make

n = xp, T = yp,

where x and y are scalar coefficients, we shall have, by the equa-

tion of the ellipsoid, and by the properties of the function _/",

\=f{xp + yp')

=f{xp) + 2/(xjo, yp) +f{yp')
= x"fp + 2xyf{p, p) + y^f (p) ;

or simply,

1 = a?' + 2/"

:

so that while x increases from to 1, y decreases from 1 to 0.

More generally, let p, p\ p" be any three conjugate semi-diame-

ters, so that

' =fp -fp -fp'i

o=f(p,p')-/{p',p")=fip\p);

and let w denote any other semi-diameter : we can always con-

ceive this vector w decomposed by projections, so as to take the

form,



LECTURE VII. 486

w = xp + yp + zp"
;

and then the equation of the ellipsoid will give, by calculations

of exactly the same form as those just now made use of, this very

simple relation between the three scalar coefficients, which agrees

with known results, although the scalars x, y, z which it involves

are not precisely the same as the usual co-ordinates of the ellip-

soid :

1 = a;' + y' + z'.

(Compare the equation satisfied by the point i>', in art. 435.)

481. The foregoing results might be employed to prove anew,

in various ways, by limits, the known theorem that the tangent

plane, at the extremity of any given semi-diameter p, is parallel

to the diametral plane, which is conjugate to that semi-diameter

:

and consequently that the normal to the ellipsoid, at the extre-

mity ofp, is perpendicular to both of the tu)o conjugate semi-

diameters, p and p", lately considered. But

^=f{p> p')= S- p'<j>p;

0=f(p", p) = S .p"<j,p ;

this common perpendicular, or normal, must therefore have the

direction of + (pp. And accordingly, we had, in 475, the equa-

tion

v = <j>p;

where v, by 474, was a vector perpendicular to the plane which

touched, at the extremity e of p, a sphere which there touched

the ellipsoid. If then we denote by ra, the vector drawn from

the centre a of the ellipsoid to any point p of the tangent plane

at E, so that ot -p is (or is equal to) a tangential vector at e, and

is therefore ± v, we shall have on this account the condition,

S . V (-sj - p) =0.

But also we have, by 474,

S . vp = 1

;

hence the equation of the tangent plane, with ra foraz^an-

able (while v is &fixed) vector, is found to take this simple form :

S . vra = 1
;
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or if we choose to write it so,

S. v(w-v-')=0.

And hence again it follows, by the principles of the present Lec-

ture, that the rec2]procaZ v'", of the foregoing normal vector v,

represents, in length and direction, the perpendicular letfallfrom

the centre of the ellipsoid upon the tangent plane. On this ac-

count I have been led, in imitation of a phraseology of which a

happy use has been made by Sir John Herschel, in connexion

with other researches, to call the vector v itself \he vector of

PROXIMITY of the ellipsoid: because it serves to mark, by its

direction and its length, the direction and the nearness (to the

centre) of the superficial element of the ellipsoid, or of the tan-

gent plane; since it is the reciprocal of the perpendicular let fall

on that plane from the centre.

482. The equation of the tangent plane, assigned in the last

article, may, by the value v = <j>p, and by the relation between

the functions ^ and /, be also written thus

:

l=/(p, ot);

Ej being still the variable vector, terminating at a variable point

p on the plane, and p being the fixed vector, terminating at the

given point e of contact. But let us now conceive that an ex-

ternal point P, with vector th, is given, and that we wish to find

the point ofcontact e, or to find its vector p. For this purpose

we may still employ the last written equation ; and it gives now

a plane locus for the point of contact, which plane evidently

must be precisely that one which is called the the polar plane

of p, with respect to the ellipsoid (compare 422, 423). Every

point on this plane is said to be conjugate to the point p, with

respect to the given ellipsoid; and the form of the function/

shews (by 476) that this relation between two conjugate points

is (as it is known to be) a reciprocal one (compare again 423).

We may therefore say that the equation

l=/(p.'')>

expresses the condition necessary in order that the two vectors

p and OT (both drawn from the centre) may terminate on two
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conjugate points : and for the same reason we may call this for-

mula the EQUATION OF CONJUGATION BETWEEN THE TWO VECTORS,

p and w, or between their terminations, e and p. If we change

7s to pw, where
J) is a scalar coefficient, the equation of conjuga-

tion is changed to the following

:

1 =/(/>. P^)y or p-' =/(p, w) ;

and then by supposing the number p to increase without limit, or

the point p to go off to infinity, the equation takes the form,

0=/(p,^):

which was found by a different process in art. 476, as the equa-

tion of the ^Zane of contact of the ellipsoid with an enveloping

cylinder, whose generating right lines have the direction of zs

;

or as the condition for the tangent plane at the extremity of the

semi-diameter p being parallel to that given vector jct. Accord-

ingly, this last equation, =f(p, in), or at least one of the same

form, was assigned in 478, as expressing a relation of conjuga-

tion between two directions, and not between two points, at

least if the points be supposed to be both at jinite distances from

the centre.

483. An external point p being given by its vector w, we

may propose to find the equation of the cone of tangents

to the ellipsoid, which can be drawn from this point p (compare

425, 461). If jo be still the vector of a point e of contact, we

shall have the conditions,

1 =fp ; 1 =/(p» ^)

;

and if in these we make

where ^ is a scalar, and t a vector drawn in the direction of one

of the tangents from p, we find

l=/t3 + 2(/-(^,r)+i=/r,

l=fos + tf(z!, t);

and therefore also (subtracting, and dividing by t),

0=/(^, r) + (/V.
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Eliminating t between the two last equations, we get

and this is one form of the equation of the cone, with the vertex

taken for the origin of the variable vector r : because t in it

may be changed to tr, each member being then multiplied by t^.

Changing, therefore, t io p- zs, and observing that

/(to, (O - to) =f{p, ro) -fm,

f{p--a) =fp +fa - V(p, w),

the lately written form becomes, after a few very easy reductions,

{/(p,to)-1J^=(/p-1)(/to-1);

such then is another form of the equation of the enveloping

CONE, with the origin at the centre of the ellipsoid; the given

vector of the vertex being tct, and p being the variable vector of a

point upon the conic surface.

484. Another mode of obtaining the same equation of this

enveloping cone, is to change p to z! + t(p-z!), or to tp + uw,

where t + u = \, in the two first equations of the foregoing article

;

and then to eliminate t, or to eliminate ut'^, between the two re-

sulting equations,

t' + ItU + M« = Ofp + 2^M/(p, to) + ufTS,

t + u = tf{p, -ss) + ufzs ;

which give, by easy combinations,

<(/(p,TO)-l)+«(/t^-l) = 0,

u[f{p,z^)-\]+t{fp-\) = Q:

and therefore, as before,

(/(p,TO)-lp=(/p-l)(/TO-I).

By changing zs, as in the last article, to pzs, and then supposing

p infinite, the enveloping cone becomes an enveloping cylin-

der, whose generating lines are parallel to zs: and the equation

of this cylinder is thus found to be,

f{p,^y={fp-\)fzs.
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Accordingly we know (by 476) that the curve ofcontact along

which this cylinder envelopes the ellipsoid, has for equations,

f{p,^) = 0;fp = l;

as, for the curve of contact with the cone, the equations were,

/(|0.w) = l, //o=l.

485. As verifications of these results, let us suppose the ra-

dius Tk of the diacentric sphere, in the construction of art. 466,

to vanish; the ellipsoid will evidently then degenerate into a

sphere, with Tt for its radius : and accordingly the equation of

art. 465,

T («jO + jOk) = k' - jS

reduces itself to

T(0 = Tj, whenK = 0.

Under the same condition, the equation which determines v in

art. 474 as a function of p, or which assigns the form of ^p in art.

475, becomes

L^v = i^p, or V = (pp = r'/o ;

hence by 476, we have (if k still = 0),

/(jo, TO)=t7S.pCT; fp = i-^ p'';

and the equation/p= 1 of the ellipsoid becomes that of a sphere,

l=/p = rVS or. p' = ''-

The equation of the cone enveloping the ellipsoid becomes, when

we thus pass to the sphere,

{^.p7,-iy={p'-i'){z:''-i'),

or

(S . p-!^y-p^ w' = - (^ ((o'+ ro^- 2S . pz!) ;

that is (compare 460),

{Y.p^y=-iHp-r^y,

which coincides with one of the equations in 461, when we

change ot to j3, and i' to -c". For the cylinder enveloping the

sphere, we should find by recent methods the equation :

(V.pt^)' = -i'OTS orTV.pw = T,.T^;
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and accordingly we saw, in 431, that the equation,

TY. pa = a,

represented a cylinder of revolution, with the vector a for its

axis, and with aTa'^ for its radius.

486. The equation of conjugation between two directions,

assigned in 478, or the formula

/(or, r) = 0, becomes S . trr = 0, when k = ;

and thereby reproduces the known result that any two directions

which are conjugate relatively to a sphere are rectangular with

respect to each other ; while the more general equation of con-

jugation between two vectors p and w, or between the two points

where those vectors terminate, which was assigned in 482,

namely,

jTip, ra) = 1 , becomes S . pro = i'

:

and therefore agrees with the equation

S . joff = - a^,

of art. 423, when we change zy to a, and denote the radius Ti

by a. And if we wish to shew by calculation, from the proper-

ties of the function^, that the harmonic section by the polar

plane holds good (as it is well known to do) not only for the sphere

but for the ellipsoid, we have only to imitate the process of art.

462, by making

p = OT + <"' T,

and then substituting for t the semi-sum of the two roots of

the following quadratic equation in x

:

l=/(ro+a;-'r)

=/j+ 2a;-i/(ro, r) + aj-^/-,

or

a;^(/ro-l)+2x/(ro,r)+/r = 0.

For this semi-sum is evidently

<=/(ro,r)(l-/^)-',

and therefore the vector p of the point of harmonic section of a
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variable secant of the ellipsoid, drawn from the extremity of the

given vector w, is (if the centre a be still the origin of p),

but if we operate on this expression by the functional characte-

ristic, /{z:, ), or by the characteristic of operation, S.to0, we
obtain (by 476, 477) the result,

/(p, ^) =f{-^, p) =/^ + ( 1 -/w) = 1 :

that is, by 482, we obtain the equation of the polar plane.

487. The expressions in 471, 472, 473, for X, n, ?, give the

equations

:

where X, /u, ^ are the vectors of the three corners, L, m, n, of a

certain variable triangle, in the plane of the fixed triangle abc.

If then we observe that 0, i- k, and - k are (by 466) the vectors

of the three corners, a, b, c, of that fixed or generating triangle

which was described in our construction of the ellipsoid, when the

centre a is still made the common origin of vectors, we shall see

that the equations,

NL -^ CA = MN H- BC = LM -4- AB = - (A + h'),

hold good ; and that therefore the new and variable triangle lmn

is SIMILAR to the old and fixed triangle abc; while it is also

SIMILARLY SITUATED, in One common plane therewith, namely,

in the plane of the greatest and least axes of the ellipsoid ; the

sides LM, MN, NL of the one triangle hemg parallel and propor-

tional to the sides ab, bc, ca, of the other ; while it follows from

471, 472, that the two variable points l and m are situated on

the same indefinite straight line as the two fixed points a and b:

that is, on the axis of that circumscribing cylinder of revolution,

which has been considered in former articles. The two vectors

AD, AE, of the two points d, e, in the same construction of the

ellipsoid, being, by 466, respectively equal to ct-k and p, where

ap=- pK, and therefore

(tr - k) jO = - jOK - Kp = - 2S . K/3 ;
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we have, by 471,

((t-k)p = A(i-k) = A(i-k)'.

But in general if two pairs ofco-initial vectors, as here a-K, p,

and A, i-k, give, when respectively multiplied together, one com-

mon scalar product, they terminate m four concircular points :

the four points d, e, l, b, are therefore contained on the circum-

ference oi one common circle: and consequently the point l, of

recent articles, may be found by an elementary construction, de-

rived from this simple calculation with quaternions : namely, as

the second point ofintersection of the circle bde with the straight

line AB, which is situated in the plane of that circle,

488. Again, by 471, 472, we have

T(p-X) = T(p-;u) = 5;

therefore the point e of the ellipsoid is the vertex of an isoceles

triangle, constructed on lm as base ; and the point M may thus

be found as the intersection of the same straight line ab (or al)

with a circle described round the point E as centre, in the plane

of ABE, and having its radius equal to the mean semi-axis of the

ellipsoid. When the two points l and m have thus been found,

the third point N can then be deduced from them, in an equally

simple geometrical manner, by drawing parallels, ln, mn, to the

sides AC, Bc of the generating triangle abc, from which the ellip-

soid itself has been constructed. It is clear, from what has been

already shewn, not only that these two sides ln, mn, of the new

and variable triangle lmn, are parallel to the two cyclic nor-

mals of the ellipsoid, but also that they are portions ofthe axes

ofthe two circles which are contained upon the surface of that el-

lipsoid, and pass through the point e on that surface; l andw being

points on those two axes, because they are the centres of two

spheres, \^h.\c\i contain thetwo circles respectively; while the point

N of intersection of those two axes has been seen to be the centre

of that common sphere (473), which contains upon itself both

those two circular sections, and is doubly tangent (by 474) to the

ellipsoid, namely, at the two points of intersection of the two cir-

cles. Some ofthese results, with others yet to be established, will

be illustrated by a new diagram (figure 100), which is reserved

for a future article (art, 493).
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489. In the present Lecture we have not as yet assumed
the Associative Principle of Multiplication, although it has been

several times alluded to ; but there will be found no difficulty

now in proving anew that associative property, as we have pro-

mised to do, with the help of the distributive principle. For this

purpose, let us make

then

g=a + a, r = b + (i, s = c + y,

= Va = V6 = Vc = Sa = S/3 = Sy

;

s . rq = {c + y) . (b-^ (3) {a + a)

= (c 4 y) . (ba + ba + l3a + /3a)

= c .ba + c .ba + c . fia + c . /3a

+ y . ba + y . ba + y . (ia + y . j3a ;

and in like manner

sr . q = cb . a + cb . a + c(i . a + cfi . a

+ yb .a + yb .a + y(i .a + yfi . a;

where c .ba^cb.a by algebra, because a, b, c are scalars ; and

for the same reason, by comparatively easy principles of this cal-

culus (see the Third Lecture), we have c.ba = cb.a, c.jia^

C^ a, c . fia = cP . a, y .ba = yb .a, y .ba = yb .a, y . (3a = yli .a.

It remains then only to prove the associative formula for the

MULTIPLICATION OF THREE VECTORS, namely the equation,

7 . /3a = 7/3 . a ;

which has indeed already been discussed at some length in the

Fifth Lecture, in connexion with spherical constructions, but

which we now desire to establish anew, independently offigures

on a sphere. Make for this purpose, as in art. 406,

/3 = /3' + /3", /3'||a, 13" ± a;

make also, as we are evidently allowed to do, by projections on

three rectangular lines,

7 = 7+7+7, 7 II
u, 7 II /j, 7 ±a, 7 ±p;

we shall have, by the distributive principle,
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7 . /3a = y . /3'a + 7'
. /3"a + 7" . j3'a + 7" . /3"a + 7'"

. fi'a + 7'" . /3"a,

7/3 . a = 7'/3' . a + 7'/3" . a + 7"/3' . a + //S" . a + 7"'/3'
. a + 7"'/3" . a ;

and are to shew that each term of the one expression is equal to

the corresponding term of the other; in which comparison of

term with term, we may obviously introduce or suppress any

scalar coefficients, and so may assume, without any real loss of

generality, the values,

7' = /3' = a, 7" = /3" = a, 7'" = aa, Ta' = Ta

;

a being a new line perpendicular to a, in the plane of a and /3.

We may even conceive that the system of three rectangular lines,

a, a, aa, coincides with the system i,j, k (compare art. 77);

and then the six equations to be proved are seen to be true,

under the forms,

i . a = - i- ii . i ; i .ji = - I'A = ki = ij . i,

j . ii=-j= - ki =ji .i; j .ji=-jk = - i =jj . i;

k . ii = - k =ji = ki .i; k .ji = -kk = l =-ii = kj . i.

It was nearly thus that I was originally led to perceive the truth

of the associative principle of multiplication of quaternions, after

having established as definitions (though not as wholly arbitrary

ones) the fundamental formulae respecting the multiplications of

ijk, and having assumed (as I at first did) from algebraical analo-

gies, the truth of the distributive principle ; although I found my-

self compelled to reject the commutative property of multiplica-

tion, as not generally truefir quaternions.

490. It was shewn, in the two preceding Lectures, that the

investigation and employment of the associative principle of

multiplication, without the distributive, led to many inte-

resting inquiries and results, especially as regarded spherical

geometry : and the present Lecture may have already sufficed to

shew that many other geometrical inquiries of interest may be

suggested and assisted, by the distributive principle, without

the associative, for instance, as Teg3,Tds the generation 0/ the

ellipsoid. The Calculus of Quaternions would, however, be ex-

tremely incomplete, if it were permanently deprived of the use of

either of these two important principles : and indeed the combi-

nation ofboth is essential, in many of its more advanced applica-
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tions. Without entering at present on any question which could

seem to you diflScult, I shall resume the discussion of the equa-

tion of the ellipsoid, employing both principles freely.

49 1 . Resuming therefore the equation of art. 465 for the el-

lipsoid, namely,

T {l.p + (Ok) = k* - 1^,

let us introduce two new constant vectors t' and k', connected

with the two former constant vectors i, k, by the relations,

IK = IK=T . i

K
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cess already assigned, but which employs (compare the end of

art. 470) a new diacentric sphere, whereof the centre is at

the new point c' while its radius (= Tk'= Tk) has the same

length as in the former construction. For instance, the two new

sides, b'c' and Ac', or -
1 and - k', which indeed have (by the

present article) the same directions as k and i, or as the two old

sides CA and CB, must have (like them) the directions of the two

cyclic normals : and the third new side, ab' or i - k, must be the

axis of a second cylinder ofrevolution, circumscribed round the

same ellipsoid, and enveloping also the mean sphere. In fact

this new side ab' is that semi-diameter of the ellipsoid which

was denoted by ap in fig. 99, art. 467 ; and it was remarked, at

the end of that article, although only by a sort of anticipation,

now justified, that the diameter pp', in that figure, was thus the

axis of revolution of a second cylinder, enveloping both the mean

sphere and the ellipsoid. It may be noticed here, that the new

generating triangle ab'c' is simply the reflexion of the old gene-

rating triangle abc, with respect to the major axis.

492. If we determine, on this new axis ab', two new points

l' and m', with two new vectors, X' and fx, analogous to the lately

considered vectors X and fi, and assigned by similar equations,

namely by the following,

X' (k - ~ */" + pi'' H- (' ~ "O - 'P + pt',

we shall have results analogous to those of articles 471, 472,

namely,

where b still denotes the length of the mean semi-axis of the

ellipsoid. Again, the relations between t, k, i, k, give

iS.Kp + kS . ip = (T. j'jcOMk'-'S . t'->p + I'-'S. K-'p}

= t'S . Kp + k'S . I'p,

because

one of the expressions for 5 in 473 becomes therefore

an = ? = - 2 (i' - k') -^ {t'S . k'p + k'S . (»,

5 being still the vector of the same point n as before, namely (by
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474) the/oot ofthe normal to the ellipsoid, which is drawn at

the extremity of p. But by the recent values of X, ft, we have

consequently

(t' - k')- A' = - 2 (t' - k') S . Kp,

0'- «')>'= + 2 (£'-k')S.<>;

K I I - K

if we make for abridgment,

_ 2S . (i' + k'} p

and hence it is easy to infer, by reasonings similar to those of

art. 487, that the nevv variable triangle l'ri'n is similar to the new
fixed triangle ab'c', and similarly situated in one common plane

therewith ; namely in the common plane of the old and new ge-

nerating triangles, which is also that of the greatest and least

axes of the ellipsoid. We have also, by the equations last esta-

blished, combined with the analogous equations of 487, and with

the relations (491) between i, k, t', k', the following formulae :

which may also be thus written,

£-^ ' 5-A

where the symbol

V'O

may represent any scalar : as the analogous symbol,

S-'O,

may represent any vector. We have therefore equations of

the forms,

g-A' = x(?-|u); ?-/x' = y(S-A);

where x and y are scalars : in fact, with the recent meaning of

the scalar z, we have (by the articles just cited),

2 K
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ZK Z k - Z rpK

E- fi h + h' I h + h' I

Zl Z I - Z ry I

' l-\ h + U K h + Ji

Now the ipxaternion quotient of the two vectors ^-X and

^-/.( could not reduce itself to a scalar, if those vectors were not

parallel to each other, or to some common line (compare 122,

407); the recent equation,

shews therefore that the three co -initial vectors, X', fx, S, must

terminate upon one common ri(jht line, or that their three ex-

treme points, l', m, n, are collinear. In like manner the equa-

tion,

shews that the terminations, l, m', n, of the three vectors X, fi, ^,

are situated on one straight line : so that the two straight lines,

l'm, lm', or their prolongations, must cross each other in the

point N. Indeed, if it bad not been designed to exemplify some
processes of calculation , we might have more rapidly inferred the

fact of this intersection from the parallelisms,

LN
II
AC

II
c'b'

II
nm', and mn

||
bc

jj
c'a

||
nl'.

But the two lines, lm', ml', may be regarded as the diagonals

of a certain quadrilatei'al inscribed in a circle ; namely, the

plane quadrilateral lmji'l', of which the four corners are, by what

has been already siiewn, at one common and constant distance

= b, from the variable point e of the ellipsoid. (Or the cnncircu-

larity of the four points l, m, m', l', might be established on the

plan of 487, by means of the equation, n'X = Xfi = p- + I/-.) If

then we here content ourselves with assuming it as known, that

when a straight line af (= i-i^ = en) is drawn from the centre a of

an ellipsoid, so as to be in direction opposite, and in length reci-

procally proportional, to the perpendicular let fall from the same

centre a o?i the tangent plane at e, this line must terminate in a

point F on the surface of another ellipsoid; which new sur-

face is concentric with, and is (in a certain well-known sense)
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RECIPROCAL to that/bnner ellipsoid, which contains the point e
itself (or the termination of the vector p) : we may combine the
recent results, so as to obtain the foWowing f/eometrical co7istruc-

Hon, which serves to (jenerate a system of two iiEcirROCAL
ELLIPSOIDS, by means of a moving sphere.

493. Conceive then a sphere, with constant radius = h, but
variable centre e, of wliich e' represents the projection, on the
plane of the annexed figure 100; let this sphere be supposed to

move, so that it always

intersects two fixed *''S. ifio.

and mutually inter-

secting straight lines,

AB, ab', \n four points

L, M, l', m', of which

L and M are on ab,

while l' and m' are on

ab'; and let it farther

be supposed that one '

diagoiial, lm', of the

inscribed quadrilate-

ral lmm'l', is con-

stantly parallel to a

third fixed line ac,

which will oblige the other diagonal l'm of the same quadrilate-

ral to move parallel to a fourth fixed line ac'. Let n be the

point in which the diagonals intersect; and conceive a line af

so drawn as to be equal in length and similar in direction to en
;

or so that aenf shall be a paralltloijram, projected into ae'nf'

in the figure. Then tlie locus of the centre e of the moving

sphere is one ellipsoid; and the locus of the o})posite corner f of

the parallelogram is anotlier ellipsoid reciprocal tlicreto. I'hese

two ellipsoids have a common centre a, and a common mean axis,

which is equal to the diameter {2b) of the moving sphere, and is

a 7nean proportional between the greatest axis of eitlicr ellip-

soid and the least axis of the other ; of which two last-mentioned

axes the directions coincide. Two sides, ae, af, of the parallelo-

gram aenf, are thus two semi-diameters which may be regarded

2 K 2
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as mutually reciprocal, one of the one ellipsoid, and the other of

the other; but because they fall at opposite sides oi the princi-

pal plane (containing the four fixed lines and the greatest and

least axes of the two ellipsoids), it may be proper to call them,

more fully, opposite reciprocal semi-diameters ; and to call the

points E and f, in which they terminate, opposite reciprocal

points. The two other sides, en, fn, of the same variable pa-

rallelogram, are the normals to the two ellipsoids, meeting each

other in the point N, upon the common principal plane. In that

plane, the two former fixed lines, ab, ab', are the axes of two

cylinders of revolution, circumscribed about the first ellipsoid
;

and the two latter fixed lines, ac, ac', are the two cyclic normals

of the same first ellipsoid : while the diagonals lm', ml',- of the

inscribed quadrilateral \n the construction, are the axes of the

two circles on the surface of that first ellipsoid, which circles

pass through the ]ioint e, that is, through the centre of the

moving sphere; and the intersection N of those two diagonals is

the centre of another sphere, which cuts the first ellipsoid in the

system of those tico circles ; all which is easily adapted, by suit-

able interchanges, to the other or reciprocal ellipsoid, and flows

wit!) facility from the quaternion equations above given, and

from the remarks that have been made in recent articles.

494. If we introduce five new vectors, X,, (u,, \', f.i', ^,, of

five new points l , m , l', m/, h, connected with those lately con-

sidered by the relations :

\=Ah=hE=p~X; (U = AM,= ME=|0 -)U
;

A/ = al' = i/e = p-X- fji'= AIM ' = ji'e = p-fi ;

?, = All = NE =|0 -%{=-b'v = VK);

then, by 471, 472, 492,

TA = T^,= TX;=T^;=i;

p-\ X

I- K I -

K

K- I K-

I

^-' = ^ = -i.V-0;

= A = V->0:

= h=Y-'0:

P - f, M h'
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and because

we shall have, by 487, 492,

K L I - K

^'-=^' =^' = z = V-' :

K i I — K

whence again it follows, by 491, that

because

i
II

ic, k' 11
I.

Hence, on the plan of recent articles, we may infer that the five

new points are all situated in one common plane, which is parallel

to the principal plane (493), and contains the point e of the ori-

ginal ellipsoid ; while H is the point reciprocal to e, upon the

second or reciprocal ellipsoid, and is diametricidly opposite to

the point r thereon. In fact, so much as this might at once be

inferred from the circumstance, expressed by the five equations,

AL=LE, AM^=ME, AL'=l'e, All/ = m'e, AH = NE,

that the five lines ll, mji^, l'l', m'ji', nii, bisect and are bi-

sected by the line ae ; or that alel,, &c., are parallelograms.

The equations above written also shew that the four new points,

L, w^, l/, w/, are situated on one common circle of the mean
sphere, namely, its intersection with the above-mentioned paral-

lel plane ; that the lines l m^ and l'm' are parallel respectively to

the lately considered lines ab, ad', and intersect each otlier in the

point E of the o/vyyz;irt/ ellipsoid ; and that the lines i.si' and l'm

are parallel respectively to ac, ac', and cross in the correspond-

ing point H, of the reciprocal ellipsoid. And hence we may
derive the following method oi generating a system oftwo reci-

procal ellipsoids by means of a iixED spin:iit:, which seems to
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])ossess some advaiUages over the process lately given, for the

generation of such a S3'stem by means of a moving sphere, but is

intimately connected therewith.

495. In ihcjixed sphere (of which the centre is a, and the

radius b), inscribe a plane quadrilateral, l m^l'm/, of which the

four successive sides, lm,, m,l', l'ji', m'l, shall be respectively

parallel to four fixed right lines, ab, ac', ab', ac; and then pro-

long, if necessary, tlie first and third sides till they meet in a point

li, and denote by 11 the intersection of the second and fourth sides.

Then these two points of intersection, E and n, oftlie ttco pairs of

opposite sides of this inscribed quadrilateral {which sides movepa-

rallel to themselves), ivillbe two reciprocal points on two recipro-

cal ellipsoids : namely, the same system of ellipsoids which was

otherwise generated in 493, if the centre a, the radius (or com-

mon mean semi-axis) b, and the directions of the four fi.xed lines,

be the same in the two constructions. The relation 0/ recipro-

city between the two ellipsoids, wiiieh was bejbrc assumed as

known, is made very evident by the present process ; being seen

to be connected with the passage from one pair of opposite sides

of an inscribed quadrilateral to the other pair. The same con-

sideration shews also clearly (what however is otherwise known),

that the cyclic normals ac, ac', of the first ellipsoid are the axes

of the cylinders ofrevolution circumscribed about the second
;

and that, conversely, the axes ab, ab', of those two cylinders of

revolution, which have been seen to envelope the original ellip-

soid, are the normals to the two cyclic planes of the second or

reciprocal surface.

49G. Another mode of generating the original ellipsoid is

easily derived from the relations established in some of the re-

cent articles. Conceive two equal spheres to slide within

TWO cylinders of revolution, whose axes intersect each other,

in such a manner that the right liiie joining the centres of the

spheres shall be parallel to a fixed right line; then, the locus

OF the varying circle in tvhich the two spheres intersect each

other will be an ellipsoid, inscribed at once in both the cylin-

ders, so as to touch one cylinder along one ellipse of contact,

and the other cylinder along another such ellipse. And the saine

ellipsoid may be generated as the locus of another varying cir-
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cle, which shall be the intersection of two other equal spheres

sliding tuithin the same two cylinders of revolution, but with a

connecting line of centres which now moves parallel to another

fixed right line; proviiied that the angle between these two fixed

lines, and the angle between the axes of the two cylinders, have

both one common pair of (internal and external) bisectors, which

will then coincide in direction with the grtalest and least axes

of the ellipsoid : while the diameter of each of the four sliding

spheres is equal to the mean axis. In fact, we have only to con-

ceive (with the recent significations of the letters), that four

spheres, with the same common radius, = h, are described about

the points l, m', and l, m, as centres ; for then the first pair of

spheres will cross each other (if they cross at all), in one circular

section of the ellipsoid ; and the second pair of spheres will cross

(if at all) in another circular section of the same surface. We
might also conceive an arbitrary curve on the ellipsoid to be de~

scribed by the vertex E of an isosceles triangle lem' (or l'em),

the common length of whose two equal sides is constant, and

= b, while the base lm' (or l'm) varies indeed in length, but

moves parallel to one fixed right line ac (or ac'), and is con-

stantly inscribed in a given angle bab', l (or ji) moving along

the given right line ab, and m' (or l') moving along another

given right line ab'. Or, we might conceive the two equal sides

of the triangle to be two adjacent sides of a rhombus ofconstant

periineter, of which one diagonal moves parallel to itself within

a given rectilinear angle, while the plane of the rhombus turns,

according to an arbitrary law, and the extremities of the other

diagonal describe two curves on the ellipsoid, each separately

arbitrary, but not entirely unconnected with each other.

497. With the recent significations of the letters, we have,

by 492, 491, 472,

x'=l;^i^=(„.,oo-vo-
£ - K

= ((p + ioO (« (k - K" '!"' = (</> + |oO K (iv- -<)"'
t"'

= -/tV(K-()''' = /''U-K-V');

and

^1 = A' (k- - ()•
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If then we make for abridgment,

,,rp i - K

and employ two new fixed vectors, r) and 6, defined by the equa-

tions,

„ = TtU (i - k), e = Tk-U (..-> - rO = Tk U (c- k),

which give

t-K=T(i-K-)U(i-K) = r,T5:p,

and also (compare 4G4),

along with other analogous or connected expressions, some of

which will offer themselves to our notice afterwards : we shall

have the values.

Hence the equations,

T{p-,.{)-b, T(p-X) = b,

of one of the two pairs of sliding spheres, may be made to assume

the forms

:

T(p-gr,) = b; T{iy-g6)^b;

between which it remains to eliminate the scalar coefficient g, in

order to find in a new way an equation of the ellipsoid, regarded

as the locus of the circle in which the two spheres intersect each

other. And it will be useful here to effect this elimination, both

as an exercise in the present Calculus, and for the sake of the

results to which it leads.

498. Squaring for this purpose the two last written equa-

tions, we find, for the two sliding spheres, the two following

more developed equations :

Q = b- + p- - ^gS . r]p + g"- rf ;

0=b' + p'-2gS.ep+g^e\

Taking then the difference, and dividing by g, we find tlie equa-

tion,
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which, relatively to p, is linear, and may be considered as the

equation of the plane of the varying circle of intersection of the

two sliding spheres ; any one position of that plane being dis-

tinguished from any other by the particular value of the variable

coefficient g. Eliminating therefore that coefficient by substitu-

ting its value, namely,

i7=2(6»^--„=)-'S.(e-»,)p,

we find that the equation of the ellipsoid, regarded as the locus

of the varying circle, may be presented under either of the two

following new forms

:

^[p—-~w—;=*•

And we may verify that these two last equations of the ellipsoid

are consistent with each other, by observing that the semisum of

the two vectors under the signs T is perpendicular to their semi-

difference (as it ought to be, in order to allow of those two vec-

tors themselves having any common length, such as h) ; or that

the condition of rectangularity,

{6 + yi)^.{±-r,)p

0'P - '

-jT, Z ± 9-ih

is satisfied : which may be proved by shewing (compare 454),

that the scalar of the product of these two last vectors vanishes.

We may also verify the recent forms of the equation of the ellip-

soid, by remarking that they concur in giving the mean semi-

axis b, as equal to the length Tp of the radius of that diametral

and circular section, which is made by the cyclic plane having

for equation,

S.(0-„)p = O;

this plane being found by the consideration that ?; - has the di-

rection of the cyclic normal i, because (by 497),
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(r,-6)'T'—^ = l-k' 1.-' = {I- KW)i

= - t- ' (k— r) = Vi Tt-' . iT (t - k),

so that

or by making the coefficient g = 0, in the linear formula of this

article.

499. If we observe that

6- - 1)- = K- - 1- = ac> 0,

and that

T(r,-0) = 6,

while the vector expression (0^ - r)^) p - 2riS . {6-ri)p is equal to

its own vector part; we shall easily see that the first of the two

lately obtained equations of the ellipsoid may be successively

transformed as follows

:

T(,-0)(0'-,o = i(r--r)

= T{{e^-n-)p-2r,S.{9-v)p]

= TV{(0=-^=)p-2„S.(0-„)pl
= TV((e=-„=)p-„(0-^)p-„p (©-„))

= TV{e^-p-v{ep + pO) + np,j]

^TY{(e-r,)Op-vp{e-v)}-
But

Y.(e-n)ep=v.pO{e-v),

because in general for any three vectors a, j3, 7 (compare 317),

the following relations hold good,

a(3y = - K . yfia, S . ajSy = - S . yjSa, V. aj3y = +V. yjSa ;

hence

(0= - n') T („ - 0) = TV. (pd - vp) (e - .1)

= TV.(np-pe)(r,-0);

or, more concisely,

TY.{r,p-pe)\J(v-e)=0'-if:

and the same transformation may be obtained with equal ease,
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from the second form of the equation of the ellipsoid, which was

deduced in the foregoing article. Again, the versor of every vec-

tor has, in this calculus, & negative square (see 113); we have

therefore, in particular,

and under the sign TV, as under the sign T, it is allowed to di-

vide by - 1, without affecting the value of the tensor ; it is there-

fore permitted to write the equation of the ellipsoid under the

form:

and this form seems to me to be deserving of attention, on ac-

count of the simple and remarkable geometrical relations to the

surface, which the twofixed vectors, r\, 6, will be found to possess.

500. The last form of the equation of the ellipsoid, which

may also be thus written.

v-D T(n-e)'

may be deduced in another way, as follows, from the equation,

T (((0 + pk) = k~ - t~,

of articles 465, &c. : and the deduction will be an useful exer-

cise. Writing the cited equation thus,

we may observe that while the denominator of the fraction in the

first member is a pure scalar, the numerator is a pure vector;

for the identity,

ip + pK = S .{i + k) p +y . {i - k) p,

gi ves

S-Op + pic) U-k) = S.{i-k) V.(t-K)p = 0;

because generally, for any two vectors a and /3,

j3±V./3a, S.fjV./3c, = 0:
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indeed we may easily now see (compare 442), that for any three

vectors, a, /3, y, we have the identity,

S.7V./3a = S.7/3a;

which last expression reduces itself to 0, when y = (5, because

(i-a is a vector. We may therefore change Tto TV, as operating

on the last written fraction ; and, under the sign V, may substi-

tute (t - k) pi for ip (i - k), on the principle referred to in the last

article ; namely, that the vector part of the product of any three

vectors remains unchanged, although the scalar part of it changes

sign, when their order is reversed : which principle indeed is

easily seen to hold good for any odd mnnher of vectors, because

the neic product, thus reversed, is the negative of the conjugate

of the old product. (Compare again art. 317 ; see also 408,

410.) Again, it is always allowed in this calculus to divide

(although not generally, to multij^ly) lioth the numerator and de-

nominator of a quaternion fraction by any common vector or

quaternion (different from zero) ; that is, to multiply both numera-

tor and denominator i)ito the reciprocal ohuch common vector or

quaternion : namely, by writing the symbol of this new factor,

or reciprocal, to the right (bui not generally to the left) of the

symbols of numerator and denominator, above and below the

fractional bar. Dividing therefore thus above and below bt/ i, or

multiplying into r', after that permitted transposition of factors

which was just now specified, and after the change of T to TV,
we find that the last written equation of the ellipsoid assumes the

form,

{i-k) p + pJK-K- C^)

(l - (C) + (iC- K- t ')

the new denominator indeed at first presenting itself under the

form K- C^- I, but being changed for greater symmetry to the de-

nominator just now written, which we are allowed to do, because

under the sign T, or under the sign TV (though not under V
itself, nor under S, U, or K), we may multiply by negative

unity. Substituting finally for i-k and k-k-C^ their values

given near the beginning of art. 497, and suppressing, above and

below, the common factor T . ((-k) l~\ we find as a transformed

eiji/ation of the ellipsoid

:
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TV—-^=T(.-.);

where

T(t-K) = 6-' (k= - r) = (0= - „=) T („ - «)->.

The form written at the commencement of the present article is

therefore deduced anew.

501. The geometrical construction already mentioned (in art.

496), of the ellipsoid as the locus of the circle in which two

sliding spheres intersect, shews easily (see art. 497) that the sca-

lar co-efficient g, in the continued equation,

of that pair of sliding spheres, becomes equal to the number 2,

at one of those limiting positions of the pair, for which, after «/<-

tinff, they touch, before they cease to meet each other. In fact,

if we thus make £7 = 2, the values fi = </,, X = (jQ (see the last cited

article) of the vectors of the centres of the sliding spheres will

give, for the interval between those two centres, the expression,

this interval will therefore be in this case double of the radius of

either sliding sphere, because it will be equal to the mean a.xis

of the ellipsoid, and the two equal spheres wilUoMc// one another.

Had we assumed a value for g, less by a very little than the num-

ber 2, the two spheres would have cut each other in a venj small

circle, of which the circumference would have been (by the con-

struction) entirely contained upon the surface of the ellipsoid
;

and the plane of this little circle would have been parallel and

very near to that other plane, which was the common tangent

plane of the two spheres, and also of the ellipsoid, when g re-

ceived the value 2 itself It is clear, then, that this value 2 of

g corresponds to an umbilicar point on the ellipsoid; and

that the equation,

S.(0-„)p = O=-r,

which is obtained from the more general equation in 498, of the

plane of a circle on the ellipsoid, by changing j- to 2, represents

an UMBILICAR TANGENT PLANE, at which the normal has the di-
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rection of the vector jj - : and accordingly it has been seen tiiat

this last vector has the direction of the cyclic normal i ; in con-

nexion with vvliich circumstance it may be remarked that tlie vec-

tor 0''- J)"' has the direction of the other cyclic normal, k- In

fact, it is not difficult to prove from the expressions in 497, that

r,^-=r-, e---=K-, r,-'T{l-Kr') = i-'-Kr", 0-'T(l-Ki->) = r'-K-',

I = T„U („ - 0), K = TOU(0-' - .,-')

;

from which, or immediately from the expi;pssions just cited, it

follows (compare 4C9) that

T») = Tt = ^ (a + c) ; TO = Tk = i (a - c).

The lengths of the three semi-aaies oi the ellipsoid admit there-

fore of being very simply thus expressed, 171 terms of the new

fixed vectors, tj, d :

a = Tr,+ TO; i = T („ - 0) ; c = T,,-T0.

We have also the formulas :

Ut-L\=U(„-e)+u(„->-0-') Iiu„+U0;
U(+U^ = U(,,-O)-U(»,->-0-')||U„-UO;

the members of the first formula having each the direction of the

greatest axis of the ellipsoid, and the members of the second for-

mula having each the direction of the least axis; as may easily

be proved, for the first members of these formulae, by the con-

struction with the diacentric sphere, already given in articles

4G6, &c.

502. The recently obtained equation ofan umbilicar tanfjent

plane may also be verified by observing that it gives, for the

lencjth of the perpendicular (p) let fall from the centre of the

ellipsoid on such a plane, the expression

which agrees with known results. And the vector w of the um-
bilicar point itself must be the semi-sum of the vectors of the cen-

tres of the two equal and sliding spheres, in xha.i limiting posi-

tion of the pair in which (as above) they touch each other; this

UMBILICAR VECTOR «D is therefore expressed as follows :

(I) = ») + ;
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because this is the semi-sum of;/ and X, or of gr, and ^6, when
ff = 2. As one verification we see that r,+ e may be substituted
for p, without violating the equation of the ellipsoid, because
this substitution gives,

vp - p6 = rt- - 6-
;

and as another verification, we may observe that the same ex-

pression j)+ for oj conducts to the followiug known value for

the len//th {u) ofan umhllicar semi-diameter of the ellipsoid :

M = T(o = T („ + 0) = v/ («= - h' + c"-)

because for any two vectors jj, d, we have the identity,

T („ + ey + T („ - ey

=

(t„ + Tey- + (t„ - tqy

503. By similar reasonings it may be shewn that the expres-

sion,

w'=T,,U0 + T0U„,

which may also be thus written,

ai'=-T.„0.(„-i+0->),

represents another umbilicar vector ; in fact, we have,

w' = (?) 4 Oy = w', T(t) = Toj,

and

a> + a,'=(Tt, + T0) (Un+VO),
to-w'=(T,,-T0) (U»,-U9);

so that the vectors w, w are equally long, and the angle between

them is bisected by U») +U0, or by U((-k) 4 U(('-ic'), that is

by the direction of the axis major of the ellipsoid ; while the

supplementary angle between w and - w' is bisected by Uij -UO,
or by U(t - K)-U(i'-k-'), and therefore by the axis minor. It

is evident that - w and - w are also umbilicar vectors; and it is

clear, from what has been shewn in former articles, that the vec-

tors I) and have the directions of the axes of the two circum-

scribed cylinders of revolution.

504. A few additional remarks may assist to render evident

the utility, and to illustrate the significations, of the two fixed vec-

tors T}, 0, although our remaining time will not allow us to enter
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largely into the subject. And first we may observe that the va-

lues for abc, in terms of jj, 6, give

(a' - c^y^ = 2T y/ ri9, {b'-c"-)i=2Sv'nO;

in obtaining which expressions we have employed these other

values :

a^ = (T„ + Tey = T„^ + 2T„ T0 + TO'

= - „^ + 2T . „0 - 0=

;

c==(T„-T0)= = -,r-2T.„e-0^-;

and

6==T(r,-0)^ = -(»,-0)= = -»)"- + 2S.„e-0^;

observing also that for any quaternion, such as here

we have

(/- = (Sg + Vry)= = S<7= + 2 V^ Sg+yq\

\.q"-=2\qSq,

T.q^-=Tf^Sf~Yq\
2(S.9= + T.9'-) = 4Sg'- = (2S^y-;

so that generally the scalar of the square root of any qua-

ternion q' (in the present instance, rjO), which square root (by

152) is considered as being generally an acM^e-awgr&rfj'Ma/ernzow,

admits of being expressed by the formula.

And here it may be noted that this is only one out of a vast

number o/general transformations, with which the present

calculus abounds : and which may be deduced, with more or less

facility, from the laws of the symbols, S, T, U, V, K, by the

principles already laid down.

505. If then, retaining the centre as the origin of vectors, we
change at once to tO, and rj to <"'t), where t is any positive sca-

lar, since we shall not alter thereby any one of the three functions,

we shall leave unaltered the three following things, namely : 1st,

the directions of the axes of revolution of the two circumscribed
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cylinders; 2nd (in connexion with these), the dtrectiotis of the

three principal axes of the ellipsoid ; and 3rd, the differences of
the squares of the semi-axes, a, b, c. To those then who are at

all acquainted with the theory of the focal comics, or focal

curves, which have in modern times been made to play so impor-

tant a part in the theory of surfaces of the second order, and who
have attended also to the foregoing calculations with quaternions,

it will be evident that these simultaneous changes of

T) and 0, to ^'^ri and tQ,

can merely cause -a passage to a confocal surface : leaving the

FOCAL ellipse, and the focal hyperbola, unchanged. The

latter curve (the focal hyperbola), which is known to have the

axes of the cylinders for its asymptotes, and to cut the ellipsoid

(perpendicularly) in the four umbilicar points, will be found to

be adequately represented, in our calculus, by the single equa-

tion,

V. „p.V.p0 = (V. r,0)=.

For the former curve (the focal ellipse), it is convenient to em-

ploy a system of tu'O equations : the first of which may be that

of its plane (perpendicular to the minor axis of the ellipsoid),

namely, the equation,

S.pUv = S.pU9;

while the second may be at pleasure either of two equations, re-

presenting two cylinders of revolution, with a common radius

= (6^ - c-)i, on each of which cylinders the focal ellipse is situated
;

namely, either of the two equations following,

Ty.pVv=2S\/^,
and

Tv.joue = 2S/;;^.

The foregoing will perhaps be considered as expressions suffi-

ciently simple for these two known and important conies, and

for their connexions with a system ofconfocal surfaces.

506. It may, however, appear strange that in this species of

SYMBOLICAL GEOMETRY OF THREE DIMENSIONS it should be

said, that a curve in space, as here the focal hyperbola, may
2 L
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admit ofbeing adequately represented by a single equa-

tion, such as the equation,

V. „p.V.|O0 = (V.»,6l)=;

whereas we have repeatedly seen, in the present Lecture, that a

curve may be not more than adequately expressed by a system

OF two equations, representing a system oftwo surfaces. For

example, the focal ellipse of the last article was represented by

the system,

which denoted separately a plane and a cylinder; the spherical

conic of art. 421 by the system,

Tp=C, S . /jo"' S ./3/3'' = 1,

representing separately a sphere and a cone ; iis cyclic arcs were

each represented, in the same article, by a system of two equa-

tions, denoting a plane and a sphere; an analogous system served

to represent the circle of contact in 422; the ellipse of art. 433

was represented by the two equations,

S.f,a-> = a, 1V.p^-' = b,

denoting again a plane and cylinder; while another plane, com-

bined with the same cylinder, was used to express a circle in

432 ; a plane and sphere gave in art. 417, the equations

S.pa-'=1, S.i3p-'=1,

which jointly represented the circular base of a cone; and the

major axis of the same cone, in art. 426, when regarded as an

indefinite right line, had its position expressed by the two equa-

tions,

which, separately taken, denoted the two cyclic planes. Nor could

we, in any one oi these examples, which might easily have been

made more numerous, have rightly contented ourselves with re-

taining one alone out of the two equations, although the system

might in each case have been varied.

507. But it is to be observed that, in all these cases, each

separate equation has been of scalab form, and therefore quite
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analogous, in tliis new symbolical geometry, to the usual Carte-

sian expression for a surface, by an equation between its co-or-

dinates X, y, z, which with us are regarded as three scalars.

In general, if p be still regarded as a variable vector, and if^

denote any scalar function of it (whether this function be of the

second or of any other dimension), then, on substituting for p its

value ix+jy+hz (101, &c.), the equation

_/p=0, oryp = constant,

where the constant is still a scalar, will take, by the rules of this

calculus, the form of an ordinary algebraic equation between

X, y, z, and may be interpreted as expressing a surface, on the

usual plan of the Cartesian co-ordinates. Thus if we did not

otherwise know (by 168, &c.) the signification, in the present

Calculus, of the equation

p= + 1 = 0,

as representing the unit-sphere round the origin, or if we had

forgotten that signification, or desired to deduce it anew, we

might write the equation under the form,

{ix +ji/ + kz)- + 1=0,

and then perform the operation of squaring the trinomial as fol-

lows :

ix +jy + kz

ix +jy + kz

-X-
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where a is a given and p a variable vector. Here, instead of em-

ploying the principles of articles 413, 420, 421, we might write,

a = ia +jb + kc, p- ix +jy + kz,

and should then find, by distributive multiplication,

ap = {ia +jb + kc) {ix +jy + kz)

= -ax + hay -jaz

— by- kbx + ibz

- cz +jcx - icy

= - {ax + by+ cz)

+ i {bz - cy) +j {ex - az) + k {ay - bx)

;

this product is therefore seen anew to be a quaternion, as in the

Third Lecture it was otherwise shewn to be : because it is now

found to be reducible by actual multiplication to the standard

quadrinomialform of arts. 450, &c., namely, to the form,

w + ix +jy + kz.

At the same time the scalar and vector parts, taken separately,

of this quaternion product ap, are seen to be,

S . ap = - {ax + by + cz),

V. ap = i {bz - cy) +j {ex - az) + k {ay - bx)
;

to assert then the evanescence of the scalar function S . ap, is

equivalent to establishing the following ordinary equation be-

tween x, y, z,

ax + by + cz = 0;

and thus a person familiar with the usual method of co-ordinates

might recover for himself the interpretation of the equation of

this Calculus,

S . ap = 0,

as denoting a plane through the origin perpendicular to the line

a, b, c : namely, to the line drawn from the origin (0, 0, 0) to

the given point {a, b, c).

509. Again, let it be proposed to interpret, by the assistance

of co-ordinates, and by the relations between the symbols i,j, k,

without using the transformation S . a'ap = S . a' V. ap of art. 500,
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or the condition of coplanarity assigned near the end of 430,

this other scalar equation :

S . aap = ;

in which we may suppose that

a = id +jb' + kc',

while a and p are still expanded into the two trinomials which

were substituted for them in the preceding article. The actual

process of multiplication gives immediately, on the plan recently

employed, the following developement for the ternary product of
vectors, at present under consideration,

aap = - a (bz - cy) - V (ex - az) - c' {ay - hx)

- {ia' +jb' + kc') {ax + by+ cz)

+ i [b'{ay- bx) - c' {ex - az)]

+j I
c'{bz - cy) - a' {ay - bx)

]

+ k
(
a'{cx - az) - b' {bz - cy) ]

.

The scalar and vector parts admit therefore of being respectively

and separately expressed as follows :

S . aap = a (cy - bz) + b' {az - ex) + c' {hx - ay)

= X {be' - cb') + y {cd - ac) + z {aU - bd)

= a {b'z - c'y) + b {e'x - a'z) + e {ay - b'x) ;

V . aap = {ia +jh + kc) {dx + b'y + c'z)

- {id +jb' + kc') {ax + by + cz)

- {ix +jy + kz) {da + b'b + c'c).

To establish the equation S . dap = 0, is therefore equivalent to

establishing that ordinary equation between x, y, z, which (as is

well known to all persons familiar with the method of co-ordi-

nates) expresses the coplanarity of the three lines xyz, abc, db'c,

or the condition for the variable point {x, y, z) being situated

somewhere upon the plane which is drawn through the origin

(0, 0, 0), and through the two other given points, {a, b, c), and

(a, b', c).

510. We see, at the same time, that the sc-Aat function

S . dap admits of being expressed, in the modern notation of de-

TEiiJiiNANTS, as follows

:
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S . a'ap = o., b, c,

a, b', c',

and that thus (as also in other ways) there exists a connexion

between the theories ofquaternions and of determinants ; or of

ELiMiNANTS, as some prefer to call them. In the recent question,

or example, this connexion of the proposed equation,

S . dap = ,

with an elimination, might easily have been foreseen. For, with-

out the use of co-ordinates, by principles of the present calcu-

lus above cited, we might have seen that this equation is a for-

mula or coPLANARiTY for the three vectors a, d, p; and that it

is therefore equivalent to a system of three perpendiculai-ities,

since,

p III
a, d, gives X _L u, A i. a', X J_ p,

if A be a vector perpendicular to the plane of a, a. The pro-

posed equation might therefore thus have been seen to be equi-

valent to the system of the three following,

S . Xa = 0, S . Xa = 0, S . Xp = 0,

and to be conversely derivable from them, by some process of

elimination of X. And if we now introduce co-ordinates and

i,j, k, making,

X = il +jm + kn,

and employing for a, a, p the same three trinomial expressions

as before, we see that this process must answer to eliminating the

three scalars /, m, n, or their ratios, between the three following

equations of the 1st degree,

la + mb + nc = 0, la + 7nb' + nc =0, Ix + my + 7iz = :

which conducts to the lately mentioned detenninant. Indeed, it

will be found that processes more peculiarly belonging to the cal-

culus ofquaternions give, generally, for any rouu vectors, a,

ft, y, p, the two following identities, which are frequently useful

in the applications

:
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joS . yf5a = aS. y/Bp + jSS . ypa + 7S . jOj3a

;

pS . Y/3a =V. -yj3 . S . ap +Y. ay . S . (ip +V . j3a .S . yp ;

and hence, without any use of xyz, or ijk, we might infer that if

p be supposed to denote any vector different from 0, its elimina-

tion between the three equations of either of the two following

systems,

1st, S.7|3p = 0, S.ypa=0, S.pj3a=0,

or 2nd, S.ap = 0, S . /3,o = 0, 8.7^ = 0,

conducts alike to the final equation,

S.7j3a = 0,

as the result.

511. We may take this opportunity to remark that the ffeo-

metrical significations not merely of equations, but also oifunc-

tions in this calculus, may be investigated (if not otherwise

known) by the same or similar transformations with co-ordinates:

and that on the other hand a person who was alreadyfamiliar with

quaternions might conveniently employ them to deduce or recover

many of the most important formulffi in the method of co-ordi-

nates, by introducing (as above) trinomial forms for the vectors,

and employing the properties of the symbols ijk. As an exam-

ple of this last sort of process, if it were required to find an

expression for the distance of the point {xyz) from the origin

(000), or more generally from the point {ahc), we should have

(by 111, 507) the transformations,

T:p=y/{-p-) = {x-^y-' + z-)i;

i:{p-a) = [-{p-ay]^- = {{x-ay-+{:y-by^{z~cy\i;

and thus the known results would be reproduced. Again let it

be required to express the rectangle under the two lines from

the origin to the points {ahc) (xyz), multiplied by the cosine of

the angle between them; this product would be, by 423, 508,

as by other and more usual methods,

-S .ap = ax-^ by+ cz.

Again, if it were required to find the co-ordinates of the extre-

mity of a line drawn from the origin, so as to be perpendicular to
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the plane of the two lines drawn to the points (abc) {xyz), and

numerically equal (in a well-known sense) to the area of the pa-

rallelogram under those two lines; while the rotation round this

sought perpendicular from the first to the second should be re-

quired to have the same character as the rotation round + z from

+ X to + y ; we should only have (by 427) to take the coefficients

of i, j, k, in the recent developement (508) of V. ap ; and thus the

required co-ordinates, or the three co-ordinate projections of the

area of the parallelogram, on the planes perpendicular to x, y, z,

would be found in a new way to have the well-known values,

bz - cy, ex - az, ay- bx ;

while the area itself, considered as a magnitude, would be de-

noted by TV. ap, and would be seen anew to be equal to the

square root of the sum of the squares of these three last ex-

pressions. Finally, to find, hy the htlp of quaternions, that

function of the co-ordinates (abc) {a'b'c') (xyz) of three points,

which expresses the volume of the parallelejjipedon, having for

three of its edges the lines a, a, p, which are drawn to these

three points from the origin, we might first denote this volume,

as being the product of base and altitude, by the scalar pro-

duct of the two parallel vectors V. ap, and S . a' V. ap -=- V. ap,

whereof the latter denotes (by 430) the component of a' which is

perpendicular to the plane of a and p ; and then we should find,

for tl'.e required volume, the expression S . a'V. ap, or simply (by

500), S . a'ap : and this last expression, thus deduced without co-

ordinates, might then be transformed, by the process of 509,

510, into the determinant lately considered.

512. In this way we should also be led to see that the deter-

minant (or eliminant) just cited, or the expression S . aap of

which it is an expansion, represents a positive or a negative

volume, according as the rotation round a from a towards p is

opposite or similar in character to the rotation round z from x

to y. And thus we might perceive, what we can, however, other-

wise prove, \.\\'Al the scalar of the product of three vectors changes

siijn, zchen any two of its factors are interchanged : or that

S . ylBa = - S . a\iy = S . /3ay = - S . jSya = S . o-yj3 = - S . yn/B.
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In fact, we saw in 499 that S . yfia = - S . ajiy, and in 500 that

S
.
7j3a =S ,yV. j3a; which last transformation gives also,

S . 7/3a = S ( V. /3a . 7) = S . jSay = - S . yajS, &C.

If we take any four vectors a, /3, y, 8, the scalar S . Sy(3a of

their continued product may be decomposed into two parts, of

which one vanishes, by decomposing the product y(ia into its

own scalar and vector parts ; thus

S . gyiSa = S . SV. yfia = S (V. y/Ba . S) = S . y/BaS;

the same scalar is therefore also equal to S . fiaSy, and to

S . adyj3 ; and a similar process shews that in general, under the

sign S, any number of vector factors may have their order cycli-

cally altered. The same cyclical permutation is therefore

also permitted, for any number of quaternion factors, under the

same sign S, because each quaternion may be treated as the pro-

duct of two vectors : we have therefore generally

S . srq = S . rqs = S . qsr,

S . tsrq = S . srqt - Sac,

where q, r, s, t, represent quaternions arbitrarily chosen.

513. We have seen (507, 508, 509) that a scalar equation,

such as /p = constant, gave generally a surface as the locus of

the extremity of p. But let us now suppose that we meet a vec-

tor EQUATION, such as

<pp = \,

where is supposed to be the characteristic of a vector func-

tion, such asV. a'ap, &c., of the first or of any other dimension,

while X denotes a constant and given vector. If we here change

again p to ix+jy + liz, and developeby the rules of this calculus,

the one proposed vector equation will generally break up into

three scalar equations, which are in general sufficient (theoreti-

cally speaking) to determine, or at least to restrict to &finite va-

riety of (real or imaginary) values, the three co-ordinates x, y, z,

and therefore also the vector p. For instance, if, with the recent

values of the symbols, the vector equation,

V, dap = X,
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were proposed, it would be found to give, by comparison of the

coefficients i,j, k, the following system of three scalar equations

of the first degree :

l = -x (aa'+ bU + cc') + y {aU - bd) - z (cd - ac'),

m--y (ad + bb' + cc) + z (be - ch') - x (aU - bd),

n = -z {ad + bb' + cd) + x (cd - ac) -y (be - cb')
;

which might be treated by ordinary elimination, so as to give ex-

pressions for X, y, z, and therefore also for ix +jy + kz. I regard

it, however, as an inelegance and imperfection in this calculus,

or rather in the state to which it has hitherto been unfolded,

whenever it becomes, or seems to become, necessary to have re-

course, in any such way as this, to the resources of ordinary

algebra, for the solution of EaUATioNS in quaternions.

Indeed, very much remains still to be done towards the attain-

ment of anything approaching to perfection in the establishment

oi genet-al methodsfor such solutions ofequations, and for qua-

TEiiNioN ELIMINATION generally. But so far as regards equa-

tions OF THE FIRST DEGREE in quatemions, 1 have been for

some years in possession of what appears to me to be such a ge-

neral method of solution.

514. Without entering at this moment on the exposition of

that general method, I may remark, that it is allowed to write the

last proposed equation as follows,

\.qp = \, OT gp+Y.yp = \,

if we make for conciseness

q = a'a, g=S>q, y=yg.

Operating by the characteristic of operation S . -y ( ), or more

concisely by S . 7, that is to say, multiplying by y, and taking

the scalar part of the product, we get (compare 500),

c/S .yp = S .yX, S .yp=g-^S .y\;

but (by 407),

S . yp +\ . yp = yp ;

hence

{f/
+ y)p = \ + g-'S .y\;
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SO that, without the use ofco-ordinates, the solution of the pro-

posed equation is obtained, under the sufficiently simple form :

Hence also, in this example,

d-a-p = TqKp = {g'--y')p = (g- y) (X + g-'S. yX)

= g\ — yX +S.'yX-^"''yS. y\
= 9' ' (f^ -gy.y\-yS.y\)

and therefore

gp = X--U-=\+(g+yyiV.\y.
9-y

that is, re-introducing the quaternion q,

pSq = X + q-'V.\Vq.

Accordingly, if we operate on this equation by V. q, or more fully

by V. 9 ( ), we get

S^ . V. qp =V. qX+y. XYq =Y[{Sq+Yq}X} -Y{\q .X) = Sq.X,

and therefore V. qp = X,

as was required. I leave it to yourselves to verify the agreement

between the results of this and the preceding article. When you

shall have acquired a little practice in the use of the notations of

this calculus, and in the applications of its principles, you will

find, of course, that fewer steps of quaternion transformation will

suffice.

515. As respects notation, I take this opportunity to re-

mark, that I have frequently found it convenient to employ a

new SY.MBOL, not yet introduced in these Lectures, to denote the

quotient of the vector part divided by the scalar part ofa qua-

ternion; which quotient is evidently (by our principles) itself a

vector: and is quite as important and useful, in the applications

of this calculus, as the function tangent is, in trigonometry,

with which indeed it has a very close connexion. This new

symbol is the following

:

-q=Yq - Sy.
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On the same plan 1 write,

-q=Sq-^\q; — q^TVq ^ Sq; 8ic.;

and thereby obtain the general transformations,

TV s— o = tan ig ;
— g = cotan Z a.

I do not lay so much stress on these notations as on others

already mentioned, but must repeat that I have often found them

useful. If they shall come to be adopted by other writers, it will

be necessary to distinguish between the symbols ^ and S"\ and

similarly in other instances. In fact, I do not see why trigonome-

tricians might not have agreed to denote the secant of x by the

, , 1
, ^

.sin cos
,

symbol— x ; the tangent by — x ; the cotangent by -r- x ; and
coo COS oin

so forth, without the slightest prejudice to the modern mode of

denoting the inverse functions, cos"'a;, &c., ofwhich x is the

cosine, or other direct function indicated. In this mode of nota-

tion, the vector equation of the foregoing article, V. qp = \, would

have its solution expressed as follows

:

516. Again, let there be proposed the following vector equa-

tion ofthefrst degree,

V.fipj = \.

As this is of the form,

V. a pa = X,

it would be easy to break it up, on the plan of 509, 513, by in-

terchanging a and p, or {ahc) and (xyz), into three scalar equa-

tions of the first degree, between the three co-ordinates of p,

which might then be treated by ordinary elimination. We might

also see, by the developements already effected in art. 509, that

generally, for any three vectors, the following identity holds

good

:

V. aap - a'S . ap - aS . a'p 4 jO S . aa
;
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and therefore that, in the present question,

X = (5S . yp - pS . (ij + yS . /3jO.

Hence,

S./3X = ^»S.7p, S.y\ = y'S. f3p;

S.yp = S.fi-'\, S.^p = S.y-'\;

pS . jiy = j3S . fi-'X + y& . y-'\-\;

and finally (by 449), the required expression for p, or the solu-

tion of the equation proposed in the present article, may be

written under the form

:

I3y + yl3

517. This last symbolical expression admits of a very simple

geometrical interpretation, which it may be worth while briefly

to consider. Suppose, to fix the conceptions, that the angle be-

tween /3 and y is acute; suppose also that /3 and y are unit lines,

and make a = /o"', UX=S. Then,

i3y + 7|3 = -2cos|37<0;

Ua = -Up=U(i38i3->+7S7-0;

V.j3a-'7 = X; UV./3a-^7=8.

Reflect the unit-vector S, separately and successively with re-

spect to 7 and /3, into two positions, e and ^, such that

,=yh-\ ? = i3Si3-;

we shall then have

U«=U(? + a);

the line a will therefore bisect the angle between the two unit

lines, E and Z- Now this result exactly agrees with the conclu-

sions of the Fifth Lecture (art. 224, &c.), respecting the direc-

tion of the axis S, of the quaternion which is the fourth propor-

tional to three given lines, a, j3, 7. In fact, if in fig. 40 (of the

article just cited) the points b, c, d were given, and a sought, we

might first double the arcs DC, db, and then bisect the arc ef.

The direction of the vector p, as determined by the last formula

of art. 516, agrees therefore with earlier results.
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518. With respect to the length of the same vector p, the

same formula gives, with our recent notations, the expression,

Tp = TA.^^^; andATa=VU./3a-'-y;
cos jSy

therefore,

P cos \ it COS at

whence (by 227, 411) we may derive the following theorem of

spherical trigonometry, in connexion with fig. 40 :

• > ,-r^ n T.\ cos BC cos CA cos AB
sm \(D + E + F) = = =

.
^ cos AE COSBF COS CD

In fact, in that figure, the arc ab is equal (by 224) to the hypo-

tenuse LM of the right angled triangle lnm, while cd (by 225) is

equal to the base ln of the same triangle, and the altitude mn
(by 258) represents the semi-area, or the semi-excess, of the tri-

angle DEF.

519. This appears to be a convenient opportunity for offering

a few remarks, on some general transformations of scalars and

vectors of products, and on their connexion with spherical trigo-

nometry.

Since, by 317, the conjugate of a product of any number of

quaternions is equal to the product of the conjugates taken in an

inverted order, a principle which we may agree to denote con-

cisely by writing the formula

Kn = n'K;

and since the symbolic equations of 407, 408,

1 = S+V, K = S-V,

give, with analogous interpretations, these other general for-

muise,

S = i(l + K), V=i(l-K);

we may write, on the same plan, the following abridged but ge-

neral equations

:

sn = in + in'K; vn = in-^n'K.
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More fully, we have, for any set of quaternion factors, qi^qi, q„,

the two identities,

(S+V){q„ . . . q,g,}=(Sq„+Vq,) . . {Sq,+Yq,) (Sq^+VqC);

(S-V){y„ . . . q..q,] = {Sq,~yq,) {Sq,-Yq,) . . . (S?„ -V^^)
;

by taking- the semisum and semidifference of which, expressions

can be obtained for the scalar and vector of a product of any

number of quaternions. For example,

S . q.q^ = S^o Sq, + i (V^jVy, +Vqt\q;) ;

V. q, q, = ^q,\q, +Yq, Sq, + i {Yq,Yq, ~Vq,Vq,).

520. As a case of the application of the foregoing general

method, let there now be proposed any number of vectors,

oi, an, . . . On) and let us investigate expressions for the scalar and

vector parts of their continued product. Here (see again 317),

Koi = - oi, K . osOi = + aia2, K . aaOgai = - aiOiOs, &c.

;

and therefore the formulae 2S = 1 + K, 2 V= 1 - K, give

2S . Oi = Oi - a = ; 2 V. oi = ai+ Ui = 2ai ;

2S . ooQi = ajQi + aiOo

;

2 V. a«ai = Ojai - QiOa

;

2S . asOoai = a^Qotti - OiOoas

;

2 V. aza^ai = osanOi + aiOoa^
;

&c. &c.

results of which the law is evident, and of which the few first (or

others equivalent to them) have been already found, in 407, 449.

The formula just obtained for the scalar part of a ternary pro-

duct of vectors gives evidently the transformation,

S . 7j3a = ^ (7j3a - a(3y) ;

and thus, as we may now perceive, a connexion is established be-

tween Uvo forms for the equation ofcoplanarity of three lines

K, X, ju, which were separately and independently deduced in

former articles : for we had found in 195, that

/zXk = k-Ayu, when fx \\\
A, k ;

and knew also, by 430, 500, or by 51 1, that

S.7/3a = 0, when 7 |||
/3, a.

And the recent formula respecting the vector of a ternary pro-

duct gives,
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V. y(3a = i (7/3a + a/Sy)

= iy (/3a + ajS) - i (T" + °y) /3 + ia (7)3 + /3y)

= yS . |3a - /3S . -ya + aS . /Sy ;

an expression which obviously agrees with one already used in

516, but which is here deduced (compare 513) without any refe-

rence to co-ordinates, or any use of ?jk.

521. Another mode of investigating a transformation equiva-

lent to that last written, and like it extensively useful in the ap-

plications of the present calculus, is the following. We are

allowed to write, generally, for any three vectors, a, a, a",

V (V. aa . a") - ^ (V. aa . a" - a"V. aa) = i {aa . a"— a" . aa)

= '^a\aa+aa)—2 \oo- + a a) a = ao . aa — ao . a a;

whence also generally (compare 441),

V. a"V. aa = aS . a'a"- a'S . aa".

Thus we have the two equations,

Y(V.y(i.a) = yS.fia-fiS.ya,
V.'yV./3a = aS./37-/3S.ay;

and by adding respectively to these the two identities,

V(S.y/3.a) = aS.|3y, V. yS . /3a = 7S . a)3,

the recent formula of transformation for V. -y/Ba is, in two ways,

reproduced.

522. Let there be now four proposed and arbitrary vectors

a, a, a", a". Operating by the characteristic S . a", on the iden-

tity,

V. a'a'a = aS . aa"- a'S . a'a + a"S aa,

we obtain the expression :

S . a "a a'a = S . a" a S . a'a"- S . a" a. S . a'a + S . a'a". S . aa".

But

aa = o.aa + V.aa, a a =0 a a + \ . a a ;

therefore

S . o'Va'a = S . a"a".S . a"a + S (V. a'V . V. n'a).

Comparing then these two expressions for S . a'"a"a"a, we obtain
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the following general expression for the scalar part of the pro-

duct of the vectors of any two binary products of vectors

:

S ( V. a"a .V . a'a) = S . a"a . S . a'a"- S . a"'a' . S . a"a ;

which may be also otherwise deduced, and is occasionally useful.

523. The vector part of the same product of vectors is easily

found, by similar processes, to admit of being expressed in either

of the two following ways :

V (V. a"'a" -Y. a'a) = a^S . a"a'a — a"S . a'a'a

SI" II ' /O 'II It ,

a a a — aa . a a a,

of which the comparison conducts to one of the identities men-

tioned (without proof) towards the end of article 510 ; or to this

general expression for any fourth vector p, in terms of any three

given vectors a, a, a", which are not parallel to any one common
plane, the laws (512) of permutation of three vector factors under

the sign S being remembered :

joS . a'a'a = aS . a'a'p + a'S . a'pa + a"S . paa.

And if we here suppose that

a' = V. a'a,

we shall have

S . a'a'a = ( V. a'aY = a"'

;

and after dividing by a"', the recent formula will become,

p = ao —;r + a b —7, + -

op ,- joa S . a"p

whereby an arbitrary vector p may be expressed in terms of any

two given vectors a, a', which are not parallel to any common

line, and of a third vector a", which is perpendicular to both of

them.

524. If, in the last equation of 522, we change a, a, a", a" to

y, i3. |3. O) we find that, generally, for any three vectors a, ji, y,

the following equation holds good :

S ( V. ajS . V. /By) = /3^S . -ya - S . ajS . S . /3y.

To shew the geometrical meaning of this formula, let us divide

both members by T . (i^ya, and transpose ; it then becomes,

2 M
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-SU.7a=SU.a^.SU./37 + S(VU.a/3.VU.j37);

or simply,

-S .ya = S . ajSS . j3-y+ S ( V.a^ .V. |37),

if we treat a, /3, 7, as unit vectors, which may be conceived to

terminate at three points a, b, c upon the unit-sphere. Here,

by the principles established in the present Lecture for the in-

terpretation of the scalar and vector parts of the product of any

two vectors, we have the values,

S . 7a = - cos J, S . aj3 = - cos c, S . 187 = - cos a,

if a, b, c denote the arcs or sides of the spherical triangle abc,

respectively opposite to the points a, b, c. By the same princi-

ples,

TV. a/3 = sin c ; TV. j37 = sin a
;

while UV. aj3, UV. jSy, are vector units directed respectively

towards the positive poles of the rotations ab, bc, and are there-

fore inclined to each other at an angle which is the supplement

of the spherical angle abc, or fl; so that the scalar of the pro-

duct of these two last vector units is the cosine of that angle

itself,

SU(V.ap.V./37) = + cosA
and

S ( V. aj3 .V. fiy)- sin c sin a cos B.

The equation to be interpreted takes therefore the form,

cos b = cos c cos a + sin c sin a cos B

;

and thus is seen to coincide, as regards its signification, with a

well-known and fundamental formula o( spherical trigonometry.

525. More generally, if we divide the expression lately found

for the scalar part of the product of the vector parts of two binary

products of vectors, by the tensor of the product of the four pro-

posed vectors themselves, we obtain the equation,

S (VU . a'V.VU . aa) = SU . a"a . SU . aol'

- S LJ . a"V. SU. a"a ;

which signifies, when interpreted on the same principles, that
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sm aa. Sin aV". COS {ada'a") = COS aa". COS da"

- COS ad". COS a'a"

;

where the spherical angle between the two arcs from a to d and

from a" to d" may be replaced by the interval between the poles

of the two positive rotations corresponding. The same result may
be otherwise stated as follows : If l, l', l", l'" denote any four

points upon the surface of an unit-sphere, and A the angle which

the arcs li/, l"l"' form where they meet each other (the arcs

which include this angle being measured in the directions of the

progressions from l to l', and from l" to v!" respectively), then

the following equation will hold good :

cos ll". cos l'l'"- cos hi!" . cos l'l"

= sin ll'. sin l'l'". cos A.

Accordingly, this last equation has been given, as an auxiliary

theorem or lemma, at the commencement of those profound and

beautiful researches, entitled Disquisitiones Generales circa Su-

perficies Curvas, which were published by Gauss at Gottingen

in 1828. That great mathematician and philosopher was con-

tent to prove the last-written equation by the usual formulae of

spherical and plane trigonometry; but, however simple and ele-

gant may be the demonstration thereby afforded, it appears to

me that something is gained by our being able to present the re-

sult under the form recently assigned (at the end of art. 522), as

an identity in the quaternion calculus.

526. The following is a still easier way than that adopted in

art. 524, of deducing from quaternions the fundamental formula

•which expresses the cosine of the side of a spherical triangle, in

terms of the two other sides, and of their included angle. Taking

the scalars of both sides of the identity,

^^„ = (y^/3)x(/3^a). or^ = ^.^,

we find at once, by this calculus, the equation (compare 519,

520),

S2=S1S^+S.VJV^;
a p a P «

2m2
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where, by our principles of interpretation,

S ^ = cos a, S - = cos 6, S - = cos c,

p a a

TV ^ = sin a, TV^ = sinc,

P "

SU.V^, V^ = cosJS;

P °

so that we still arrive, as before, at the well-known result,

cos b = cos a cos c + sin a sin c cos B.

It may be added that, with the same meanings of the symbols,

the following equation in quaternions holds good, and admits of

being extensively applied to questions of spherical trigonometry :

V. Yj3 .V. j3a = sin a sin c (cos + |3 sin) B;

where it is understood that

(cos + /3 sin) B = cos i? + j3 sin i? :

and the rotation round /3, from a towards y, is supposed to be

positive. If, on the contrary, the rotation round /3 from -y towards

a were positive, we should then be obliged to change the sign of

/3 (or of B) ; for we have generally, by 523, 512,

V(V 7^.V./3a) = -/3S.-y/3a = /3S.a/37,

and this last scalar factor S . aj3y would be negative (by 512) in

the case last considered. At the same time we see that we may

write, subject to this last condition respecting a change of sign,

S . a/3y = sin c sin a sin B,

which expression for the scalar part of the product of three unit

lines might be employed to reproduce (by 51 1) a known value of

the volume ofan oblique paraUelepipedon. We find also the

following expression for the trigonometric tangent of an angle of

a spherical triangle, in terms of the vectors of the three corners,

tan a/^7 = tan;3 = /3-'-(V.Yj3.V./3a).

527. Another fundamental connexion of quaternions with

spherical trigonometry may bo more clearly understood after a
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few observations on their connexion with plane trigonometry, or

rather with that well-known doctrine of /unctions of angles,

which some writers have named goniometry.

Suppose then that we had not yet heard of the functions

cosine and sine, but had in other respects acquired a knowledge

of the principles of the present calculus, as hitherto set forth in

these Lectures : and let a, /3, 7, . . . t, denote any unit vectors,

and t any scalar exponent (positive or negative). The powers a',

|3', . . • are seen (by the Third Lecture) to be all versors, and

by the symmetry of space their scalarparts must be equal ; thus

we may write,

s.a'=s.^' = s.y = . . . = s. <'=/(<),

f{t) denoting here some scalar function of t. In fact, by articles

86, 407, if

X = t'K = X' + X", where i J. k, X' || k, X"J_ t, X"j. k,

we have

S.t' = X'K-', V. j'=XV';

and the scalar quotient X' -^ k depends only on the angle

(= f X 90°) through which X has revolved from k in a plane per-

pendicular to I, and not at all on the plane of this rotation,

nor on the initial direction of the line. We see at the same

time that because i, k, X" compose a rectangular system, or be-

cause the rotation from k to X has been performed round j as an

axis, we must have

V. t'llt, 0=V.iV.i'.

Hence

V.i'^> = jS.«', V.,'=«S.t'-' = i/(<-l);

and we have the general transformations.

Also, by 89, i' and i"' are conjugate versors, and by 408, K = S-V

;

hence

Thus/is an even function,
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as indeed its geometrical nature as the quotient X' -4- k might at

once shew; also because 1° = I, 1^ = 1, i' = -l, we have

/(0) = l,/(l) = 0,/(2) = -l;

and more generally

/(2 + o=/(2 -<) = -/«;

it is therefore sufficient to know the system of the positive and de-

creasing values of the function yj from t = to t=l ; or even from

i = to t = ^, because by multiplying together the two conjugate

versors i', i'\ or by taking the tensor of either of them, we are

conducted to the functional relation,

{/W)'+(/('-i))^=i-

But again, if m be any other scalar, we have, by 117, 150, t"i' =

i"*', and therefore the two functional equations hold good,

/(u+t) -/(u)f{t) -f(u - !)/(< - 1),

of which indeed the latter can be derived from the former, by the

consideration that/(t - 2) = -f(t). Hence

/(20 = (/(0)^-(/(«-l))S 2(/(0J = =l+/(2/);

and, therefore, at least within that range which gives a positive

value to/Lj,

Thus, from /(2) = - 1, we might infer /(1) = 0, as before ; and

thence,

/(i)=vi,/(i)=va+iv/i), &c.,

and might so calculate and tabulate a system oi approximate nu-

merical values of the function : in doing which we might assist

ourselves by many artifices, not necessary to be stated here.

And thus the function y(f), or S . i\ would come to be numeri-

cally known. You will easily see that the same principles give

expressions for functions of multiples, analogous to the usual

formulae for cosines and sines of multiple arcs : the principle
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being here that at least for any whole value of n (compare the

Fourth Lecture), (t')"= »"'» and therefore

(S.j'+V.i')'' = S.t"'±V. t»'.

528. If the increment u of the exponent t be treated as a

very small angle, the geometrical consideration of the small ro-

tation answering to the versor i" would give the two following

limits :

lim. M-'(1-S.t") = 0, and lim. m-'V. t"=|t;

where tt denotes as usual the semi-circumference of a circle of

which the radius is unity. Hence

lim. M-i(t«^'-i') = liin- w'O"- l).£' = ^t'*';

or in the notation of differentials,

d.i' = '^i'*'dt.

Taking the scalars and vectors of the members of this formula,

we have the two following separate equations, of which indeed

the one includes the other

:

and because /(< + 2)= -/(«), we have this differential equation

of the second order,

/"(0 + (0/(0 = 0.

with the initial conditions,

/(0)=l,/'(0) = 0:

from which might be inferred the developements,

S.c'=/(0=l-(-2j-2+(iJ-23-4-^"'

If then we suppose it known from algebra (by an investigation
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conducted without any use of trigonometry), that for every real

value of X, of the ordinary algebraical kind (any positive or nega-

tive number or zero), the series

is equal to the x"* power of the base F (0), or of the known con-

stant,

e = l + l + ^ + 5—5 + &c.

we may thus be led to establish, by analogy, and as a definition,

the equation

t' = e^

where the second member is merely employed as a concise ex-

pression for the developement,

1 + C^wtt) + i {^nUy + 2^ (iTT^O' + &c.

And to effect a complete agreement between the results of the

investigation thus sketched, and the usual language of trigono-

metry, it would only be necessary to write (compare 411),

S..'=/(<) = cos ^', r'V.t'=/(«-l) = sin^^

or,

Trt . Ttt
i' = cos— + t sin —

.

529. Consider now the formula of article 280,

y'ii^a^ = -l, or-y=-«=/33'a^.

Making, as in that article,

A = ^XTT, B = \yir, C - ^zn,

we have the transformations,

a^=co9A + a sin A, /S* = cos 5 + j3 sin B,

and

y=-=^ = cos(7r-C) + y sin (w-C) ;

the formula becomes therefore the following :
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COS (tt - C) + y sin (tt - C) = (cos jB + /3 sin B) (cos ^ + a sin A)
;

and is now seen to include (as it was earlier stated to do) the

whole doctrine of spherical trigonometry. In fact, if we merely

take the scalar parts, and remember that S. a/3 = - cose, we

obtain the equation,

- cos C - cos A cos B - cos cs\n A sin B,

from which everything else could be deduced. The formula

however gives also, by taking the vector parts,

•y sin C= a sin A cos B + fi cos A sin B +V. (5a . sin A sinB;

from which it follows that if three vectors be drawn from the

centre of the sphere, one towards the point a, with a length

= sin A cos B, another towards the point b, with a length

= sin B cos A, and the third perpendicular to the plane of the

arc AB, and on the same side of it as the point c, with a length

= sin A sin B sin c, and if with these three lines as edges we
construct a parallelepipedon, the intermediate diagonal will be

directed towards the point c, and will have its length = sin C.

The addition as well as the multiplication of quaternions, and

the distributive as well as the associative character of such mul-

tiplication, may also be illustrated generally by spherical trigono-

metry, and may be employed to furnish theorems therein.

530. Perhaps it may not be improper here to mention the

process by which, so long ago as in October, 1843, I was con-

ducted to results substantially agreeing with those of the fore-

going article, but obtained in a quite different way.

At that time I had been led, by a train of speculation too long

to be here described, to establish : 1st, The fundamental g«a(/ri-

notnialform of the quaternion (see art. 450, &c.),

q = io+ ix +jy + kz,

with the geometrical interpretation of the trinomial part, ix +jy

+ kz, as denoting (see arts. 17, 101, &c.), a directed right line in

space ; 2nd, the squares and products ofi,j, k (see articles 75,

76, &c.), which may be collected as follows in a symbolical mul-

tiplication table, and illustrated, as regards the cyclical character

of the products, by a diagram, fig. 101, as follows :
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vj' = ww' - xx' - yy - 22!,

x" = wx + xw + yz - z]/,

y" = wy + yw + zx - xz,

z" = itfz' + zw + xy' - yx.

These gave, by ordinary algebra, the equation,

w""- + 3!"^ + y"'- + z- = (m;^ -^x' + y'^ z') (w'' + x"' 4 y' + z"')
;

which, as a decomposition ofa sum offotir squares into two fac-

tors, ofwhich each is itself the sum offour squares, had been

(I believe) anticipated by the illustrious Euler, although I

had not then heard of its being known, nor have 1 since met

with the paper, or passage, in which the theorem was given by

him. This opened a connexion between quaternions and the

THEORY OF NUMBERS, by means of sums of squares, which was

soon happily followed up by my friend John T. Graves, Esq.,

with whom I had long been engaged at intervals in a corres-

pondence on the subject of imaginaries, and to whom I had re-

cently communicated my results respecting quaternions. He
found, for sums of eight squares, and for certain octaves, or octo-

nomial expressions, connected with a system of seven distinct

imaginaries, results which he sent to me in return, about the end

of 1843, and beginning of 1844, as a sort oi extension of my own

theory, in letters of which 1 have elsewhere placed the substance

upon record. But it is impossible for me here to attempt to do

any kind of justice to the talents and candour of the many able

and original mathematical writers in these countries, who have

been pleased to acknowledge that some subsequently published

speculations of theirs, on subjects having some general connexion

with or affinity to the present one, were, more or less, suggested

or influenced by the quaternions.

532. Resuming the account of my own investigations, I may

mention that I was led, by the lately mentioned relation between

sums of squares, to assume a system of expressions for the consti-

tuents of a quaternions of the forms,

w= fi cos d,

X = ju sin cos (p.
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y = fisinO sin <p cos \p,

z = ju8in flsin ^s\n\p,

and to call /u the modulus, the amplitude, the colatitude, and

;// the longitude, of the quaternion w + I'x +^2/ + kz. The words

" modulus" and " amplitude" were suggested by the correspond-

ing phraseology of M. Cauchy, respecting the ordinary imagina-

ries of algebra ; 1 have since come to use habitually, as in this

Course, these other names, " tensor," and "angle." With re-

spect to the two angular or spherical co-ordinates, f and Tp, which

mark the direction of the axis of the quaternion, or of the vector

part IX +jy+ kz, the motives for calling them as 1 did are evident.

The suggestion of calling the four reals, w, x, y, z, " consti-

tuents" of the quaternion, I took from Mr. Graves : the interpre-

tation of the three co-efficients oii,j, k, as co-ordinates, was one

which, from the first conception of the theory, occurred to my-

self Thus the modulus (or tensor) was the square root ofthe

sum of the squares ofthefour constituents ; and the relation be-

tween such sums of squares came to be expressed by the foUow-

ing very simple formula,

m" =W

.

which I called the law of the moduli. It has presented itself

in these Lectures (see arts. 188, 208), under the form of the

theorem that the " tensor of the product is the product of the ten-

sors" as expressed by the formula, Tn = IlT : for, by 409, 507,

T^ = T ( w + jx ^jy + kz) = {w^ + x^ + y'^ + z"-)^.

533. Introducing the recent expressions for the constituents

oi q, with analogous expressions for those of ^' and y", and divid-

ing by fifi or by ju", the expression for w" (in 531) gave me,

cos &' = cos Q cos 0'- sin sin ff {cos ^cos 0'

+ sin sin 0' cos (i// - i//') )

.

But also the expressions (in same art. 531), for w", x, y", £',

gave

w'w" + xx + y'y'' + zz = w (w'"^ + x- + y- + z-),

ww" + xx" + yy" + zz" =w'{w' + .v' + if + x-)
;

and therefore
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COS B = COS 0' COS 6" + sin ff sin d" j cos 0' cos <j)"

+ sin 0' sin 0" cos (t//' - x^")
)

,

cos 0' = cos 0" cos + sill 6" sin 6 (cos 0" cos f
+ sin 0" sin cos (;//" -!/<)).

And hence, by using as known the two equations of spherical

trigonometry,

cos b - cos c cos a + sin c sin a cos B,

- cos C= cos ^ cos 5 - sin ^ sin B cos c,

(which, in this Lecture, have been on the contrary deducedfrom
quaternions, in articles 524, 526, 529), I concluded that if 0,
ip were regarded as the spherical co-ordinates of one point r on

the unit sphere
;

0', i^', as those of a second point r' ; and 0", »/-"

as those of a third point r"; which three points r, r', r" might
be called (compare 225, 264, 361, &c.) the representative points

of the three quaternions q, q', q" : then, in the spherical triangle

rr'r", the angles were respectively equal to the amplitudes ofthe
two factors, and to the supplement of the amplitude of the pro-
duct : or that in symbols (compare 265),

R = u, R' = ff, R" = TT - 9"

:

the rotation round r from r' towards r" being also found to he posi-

tive (272). At the same time, or rather indeed a little earlier, I per-

ceived that the three relations between the nine angles 0, 0, \p, ff, <p',

i//', 6", 0", }p", might be interpreted, on similar principles, as signify-

ing that if, with the amplitudes, 0, ff, 6", of any two factors and

their product, as sides, we construct a spherical triangle, the

angle opposite to the amplitude of the product will be the

supplement of the inclination of the factors (or of their axes, or

vector parts) to each other ; and that the angle opposite to the

amplitude of either factor will be the inclination of the other

factor to the product. These and other connected results were

communicated by me to the friend already mentioned (Mr. J. T.

Graves), in letters of October 17th and October 24th, 1843,

which have since been printed in the Supplementary Number of

the Philosophical Magazine, for December, 1844, and in a note

appended to the Essay, entitled " Researches respecting Qua-

ternions, First Series," in the Second Part of the Twenty-first

Volume of the Transactions of the Roval Irish Academy- (The
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theorem last stated may be illustrated by inspection of the tri-

angle KLM, in figure 51, article 266.)

534. Another early and more general result of this Calculus,

connected with spherical polygons, was obtained nearly as fol-

lows. Let R, r', r" be any three points on the sphere, for which

the rotation round R from r' towards r" is positive, and may be

denoted by R. Then the rotation R round r would bring the

arc er' to coincide in direction with the arc rr''; and the supple-

mentary rotation, tt-R, round the same pole R, would bring the

prolongation of the arc r"r to coincide in like manner with the

arc rr' in direction ; or would bring the positive pole p' of the

arc r"r to coincide with the positive pole p" of the arc rr'; that

is, the pole p' of the preceding side of the triangle r"rr' to coin-

cide with the pole p" of the following side. Hence it was easy to

infer, that if 2r, z,', j'p", denoted the three unit-lines, drawn from

the centre of the sphere to the points R, p', p', we must have the

equation,

?p . fp" = cos ii + i'b sin R
;

the amplitude of the quaternion product of any two such unit-lines

having been previously seen to be the supplement of the angle

between them (compare 87) ; and the axis of the same product,

or the part of it involving i,j, k, having been also seen to be di-

rected towards the positive pole (in this case n), of the arc drawn

from the representative point (p') of the multiplier line, to the

representative point (p") of the multiplicand line (compare again

87). In like manner, if rr'r"r"' . . r'"-!' be any spherical ^jo/y-

gon, and if the positive poles of its n successive sides rr', r'r",

. . . r'""^' r'"-'', r'""'' r be denoted by p", p'", . . . p, p', while the

angles R, R' . . and 72'""" denote respectively the rotations at

the corresponding points, from rr' to rr<""", from r'r" to r'r, . .

.

and from r<"""r to r'"-" r'""'", which rotations may be conceived

for simplicity to be each positive and less than two right angles

:

then the same reasoning shews that, besides the lately deduced

equation, we have also these others,

ip„ ip,„= cos R' +iu,sin R', . . . ?p?V'=cos iZ''"'' + 8V"-i) sin -R'""'';

and therefore, by the associative principle of multiplication.
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(cos R + »„ sin R) (cos R' + \, sin 7Z') . . . (cos fl'"-"

+ e„(„. „ sin 7J(" -'))=(-!)",

because I'^p = i^p, = i-p/' = ... = - 1

.

535. We have assisted our conception of the foregoing pro-

cess and result, by supposing that the n rotations, R, R', &c.,

are each positive, and less than tt; but it is not difficult to inter-

pret the formula above obtained, when those conditions are not

satisfied. Thus, for a spherical triangle, the theorem is, that

(cos R + i'b sin R) (cos R' + i^> sin R') (cos R" 4 v sin R") = - 1

;

where if we change R", R', R to A, B, C, and the corresponding

unit-lines ?„•, 4-, ?„ to a, /3, y, the formula becomes

:

(cos C + y sin C) (cos B + /3 sin B) (cos ^ + a sin >4) = - 1

;

the rotation round y from /3 to a being here supposed positive, so

that we fall back on the case of figure 56, art. 280, and through

such transformations as those of art. 529, on the formula,

But if we suppose that a, /3, y take the places oi i\, v, V', in

the formula of the present article, the rotation round y from /3 to

a being still positive, and therefore that round a from j3 to -y

being negative, we must substitute, for the rotations, R, R', R",

either values greater than two right angles, such as

R=2Tr-A, R' = 27r-B, R" = 2tt-C;

or else negative values, such as

R = -A, R'=-B, R'^-C,

R still denoting the rotation round the point R from rr' to rr",

&c. Thus, in this case, the general formula becomes,

(cos A- asm A) (cos B - /3 sin B) (cos C- y sin C) = - 1,

or
a--'/3-i'y-^ = - 1;

but these last equations are equally true with the foregoing, and

are indeed consequences of them. When the theorem has been

in any manner established for a triangle, it is easy to extend it

to a polygon, by breaking up that polygon into triangles, having
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any common vertex on the sphere ; and in fact it was thus that I

was first led to perceive it.

536. With the same sort of use of scalar exponents, and of

powers of unit-lines, we may express the general theorem as

follows

:

a"-' . . .a2"ai'"a" = (-l)";

where the scalars a, Oi, . . a„.i, represent the positive or nega-

tive numbers of right angles contained in the respective rotations,

round a from a„., towards Ai, round Ai from a towards A2, &c.,

and finally round a„.i from a„.2 towards A. It is not difficult to

findapotor transformation of the theorem, in ^hich supplements

of sides shall take the place of angles : nor again to transform the

result so obtained into another involving the sides themselves,

which also holds good for any spherical polygon, and may be

otherwise and more immediately deduced from the identity of ar-

ticle 345, or from the following :

a an-\
5? ^ _ 1

0)1-1 a»!-2 Oi a

In fact, if we make

/3=UV^,/3, = UV^, . . /3„.,= UV-^,
and

2 ui 2 02
o=— z. — , Oi = — Z. —, &c.

Tt a TT Oi

where a, oi, a^, . . . may be conceived to be n unit vectors,

terminating at the corners a, Ai, Aj, . . of a polygon, of which

the sides aa„ AiAj, . . contain respectively b, bi, . . quadrants,

while |3,/3i, . . are n other unit-lines, terminating at the positive

poles of those n successive sides, we shall have the transformations,

a Oi

and finally the equation :

/3'"-^
. . .l3'2 J3"/3''=1.

Indeed an equation with the same geometrical signification

might have been obtained from the first formula of the present

article, by transforming it as follows

:



LECTURE VII. 545

2 - a *i - 1 1

•"«- =1-

But I leave it to yourselves, as an exercise, to demonstrate this

agreement of meaning.

537. All the powers that have been hitherto considered in

these Lectures have had scalar exponents, with the single ex-

ception of the power in article 528, which had e for its base, and

a vector, namely, \Trti, for its exponent. But if we now define

that for the same hose, e, and for any quaternion, q, as expo-

nent, the symbol ei of the power sliaW be interpreted as a con-

cise expression for the series,

e,= F(,)=l.f.j^^.^3.&c.

we shall not violate any conditions hitherto established, but shall

on the contrary be able to give useful extensions to results

already obtained. It may be proper however here to shew that

this series, so well known in the algebra of ordinary reals and or-

dinary imaginaries, is, in this calculus likewise, convergent ; and

that it gives an absolutely definite quaternion as its value,

or as the limit to which it tends, when continued indefinitely far,

the quaternion q being supposed given. In other words, if, in-

stead of the infinite series above written, we consider t\\& finite

developement,

it is to be shewn that, for sufficiently large and increasing values

of the number m, the function F (q) is very nearly equal to a

certain definite limit, which may be denoted by F(x(5') or by

F (q) ; or that the scalar, vector, and tensor, of the variable qua-

ternion F {q) - Fm {q), where F {q) is a certain ^a;efi? quaternion,

converge each separately to zero : in such a manner that

S(F?-F,„j)and V{Yq-Y,nq),

may be made, respectively, as small a number and as small a

line as we may desire, by taking for m a sufficiently large whole

number.
•2 N
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538. Let there be any two quaternions, q and r, and let us

seek the tensor of their sum. By principles of transformation

already explained, we have

T{r+qY={r-vq) (Kr+ Kg) = Tr'- + Tg^ + 2S . rKry

= Tr' + Tq^ + 2Tr1q SU . rKq
= {T:r+T:qy-2TrTq{\~S\].rKq)
= {Tr-T:qy+2TrTq (1 + SU. rKy);

and the scalar of the versor of a quaternion, being equal to the

cosine of its angle, cannot fall outside the limits ± 1 ; whence we

derive these two important inequalities,

T (r + ^) > Tj-+ Tq, T (r + q) <\l Tr - Tq.

In words, the tensor of the sum ofany two quaternions cannot

be greater than the sum, nor less than the difference, of the tensors

of those two quaternions themselves. Hence for any number of

quaternions, the tensor of the sum cannot exceed the sum of the

tensors; or in symbols,

539. It follows hence that, in the notation of 537,

T{F„,„(9)- F™(9)j> F,„V„ (Ty) - F„, (Ty)

;

but if we take

m>2Tq - 1

,

we shall have

because

i + (i)' + (i)'+-. + (i)"<l.

Again, let a new whole number m" be taken, greater than 2Tq - 1,

and let us write

\.2..mC^'

then for any whole number m! > m' we shall have

Tg"' a

1 . 2 . . . to'
"^ 2'"'-"'"'
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SO that this term of the series F„ (Tq) will be less than any
GIVEN positive quantity, b, however small, if the number m be
so taken as to satisfy the inequality,

and every following term will evidently be still less, because

Tr b
1

—

n < n„ „„ if m > m.1.2..W 2™-™'

Hence, by the arithmetical properties of the series, we have

Fm + n (Tg') - Fm (Tj) < 6, if TO > wj';

and therefore, by what was shewn in the foregoing article re-

specting the tensor of a sum, and by the inequalities m> m'

> V^Tq - 1, we have, in passing to quaternions, the inequality,

T(F„^„(5')-F„(j))<i, \im>m',

however large the number n and the tensor Tq may be, and

however small the given and positive quantity h. Thus if the

number m be taken sufficiently great, that is, ifwe take a term

sufficiently advanced in the series, but always at a finite distance

from the beginning, the sum ofany number (n) of the quaternion

terms whichfollow it will have its tensor less than any given

small quantity (b) : and consequently the scalar and vector parts

of the same quaternion sum of these w following terms, however

numerous, will each separately and independently approach inde-

finitely to zero, since we shall have

S{F„.„(?)-F„(j))>-J, < + 6; TV{F„,„(g)-F„,(y))<*.

The series does therefore converge, as was asserted, to one defi-

nite quaternion, Foo (y) or ¥q, as a limit ;
of which quaternion

the scalar part &¥q, must lie between SFm (5') - b and SF^ (y) + b,

and can therefore (theoretically speaking) be calculated within

any required degree of numerical accuracy, by calculating

SF„(7); while the vector part VF^, of the same quaternion

limit, ifdrawn as a right line from the origin of vectors, must

terminate on some point in the interior of a very small

2 N 2
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SPHERE ; the vector of whose centre would be the assignable line

VF,p {q), while its radius would be theproposed small quantity, b.

540. Consider next the the function,

F„ (r + q), supposing rq = qr.

Under this condition ofcommutativeness, we shall have as in al-

gebra,

(r+g)" / rv g" \

1.2.3. .»i \\.1..p'\.2..nP

where the exponents n and p are each <^Q,'^m, and p + n = m.

Hence, if we write

F„ (r) F;;, (q) -F^{r+q) = s„,

the diflference «„ will be developed into a polynome containing

^n {m + 1) terms of the form just written, but with the conditions

that each of the exponents n and p shall now be > 0, :}> m, and

that p + n>m. By 538, the tensor of this polynome cannot ex-

ceed the sum of the tensors of its terms ; and therefore

T5„^ F,„ (Tr) F„ (Tg) - F„ (Tr + Tg),

because T (rPg") = (Tr)? (Tg)". Again the developement of

Fam (Tr + Tg) contains all the terms of the developement of the

product Fm(Tr) . ¥„ (Tg), and other positive terms, in number
= m{m+l), besides ; therefore

Ts^ < F,„ (Tr + Tg) - F„ (Tr + Tg).

Hence, by the foregoing article,

Tsm <b, \{ m>m';

that is, by the present article,

T(F„(r)F™(g)-F„(r+g))<6,

however small the given and positive quantity b may be, if the

number m of the terms in each of the three finite series F,„ (g),

Fm (r), Fm (r + g), be taken large enough. But the smallness of

a tensor infers the smallness of the scalar and vector also ; thus,

at the limit m-ao, we find, rigorously, for quaternions as for or-

dinary algebra, but still subject to the condition o/commutative-
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ness, that the well-known series above mentioned possesses the

EXPONENTIAL CHARACTER : OF in symbols, that

F(r + q) = F(r) F (q), if rq = gr.

541. If this last condition were not satisfied, the foregoing

process would be inapplicable, and the result would cease to be

true. We should find, for instance,

F2 (/•) Fo (5) = 1 + r + 5 + 1 (r' + 2rq +g') + i (r^q + rq'') + ^rY I

F. (r + q) = I + r + q + ^ {r- + rq + qr + q-) ;

Si = Fj (r) F, (q) - F^ (r + y) = i {rq -qr) + ^ {r'q + rq') + ^Vq"
;

but this expression for the difference s^ contains a part, namely,

\{rq-qr)=Y.YrYq,

which had not previously presented itself, but which we are not

at liberty in general to reject. We cannot therefore say, without

restriction, in quaternions, that

e'e? = e''*9

;

we must add, as before, the condition,

if rq = qr, or if V( Vr . Yq) = 0.

It is worth noticing, however, that although the expressions,

r+q, rH 2rq + q'^, r' + Sr'^q + 3rq' + q^, &c.,

do 'SOT generally, in quaternions, form a series of powers of
a quaternion, such as

{r + q)\ {r+qf, (r + q)', &c.,

(with the exception of the first), yet they are, generally, the co-

efficients ofx^, — ,
-

—

- &c., ifi the developement ofa certain pro-

duct OF TWO exponentials, namely, the product e^"" e-*', if a;

be a scalar. Thus, under this last condition, we may write, as

in the ordinary differential calculus, for any positive whole num-

ber n, if a; be supposed to vanish after the differentiations,

j .

e^'"- e-i-9= r" + nr"-'q+^^ ?•""'?' + . . + 9"

;
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although the second member of this formula is not, in quater-

nions, a general expansion for the power (/• + q)".

542. A scalar w being always commutative in multiplication

with a vector p, the theorem of art. 540 gives the following gene-

ral decomposition of the function F into two factors,

F (y) = F (m; + p) = Ft« Fp = FSy . F Vy.

Here the factor FS17 is always a positive scalar (as appears from

the ordinary algebra of reals), and is greater or less than unity

according as S^ is positive or negative ; in fact,

FS^ = e^9, S5 = 1FS5,

the letter 1 being here used to denote a logarithm of the natural

or Napierian kind. On the other hand, because ( V5')^ = - (TV^)\

the other factor FVq is always a pure versor : for we have the

following scalar and vector parts of its developement,

SF V^ = 1-1 {TYqy + -l- {TYqy - &c. = COS TV^
;2.3.4

273'
VFV9=UVg.{TV<7--L(TV^)^ + &c.) = UV^.sinTVfl;

whence

FV2'=(cos + UVysin) TYq= {U\qy'''''''i

;

so that

TFVy = l.

Hence also generally,

TF7=FS^; VFq=¥Vq; lTF^ = Sg.

543. The function FVq is aperiodic one, in the sense that

generally,

F(V(^+i:rUV^)=UV,7.FV7;
which gives

F(Vq + Tr\JVq) = -FYq.

In fact UVq is commutative in multiplication with Vq, and

F(A7rUVy) = cos^ + UV<7sin^ =UVy.

We have then, for any whole number w.
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F (Vq+ nvVYg) = (- 1)" FVg ;

F(Vq+2mr\JVq) = Fyq.

We may therefore add or subtract, under the functional charac-

teristic F, any even multiple of TrUVg-, without making any
change, and any odd multiple of the same vector, if we merely

change the sign of the result. But by these operations, we may
be considered as merely adding some even or odd multiple, posi-

tive or negative, of n- to TYq. We have also,

- FYq = ~ cos TYq-VVq sin TYg = (cos -U V^ sin) (tt - T V^).

If, then, any proposed versor, Ur, have been in any manner
found, or put, under the form

\]r=FYq,

and if the vector Yq do not already satisfy the condition TYq
p-ir, we can always prepare or transform the proposed expres-

sion, so as to obliffe that condition to be satisfied by a certain new
and substituted vector, Yq; namely, by subtracting n a sufficient

number of times from TYq, and then subtracting the remainder

from TT, if this number have been odd. In this manner we shall

have,

Ur = F\Y, TVj>,r, UYq'= + \JYq;

the upper or the lower sign being taken, according as we have

been obliged to assume

TYq = TYq - 2mr, or = (2w + 1) tt - TYq.

And in this prepared state, if not in the proposed one, we are

allowed by the foregoing article, and by the definition of the

angle of a quaternion assigned in art. 148, combined with the

usual reference to a well-known theoretical unit ofangle (which

gives, as usual, 180° = 7r = 3'14159), to write

Lr = LVr^LFYq'=TYq'.

544. From the periodical character of F V^", which allows us

(as we have just seen) to write

\]r=FYq=FYq',

without Yq and Y<][ being equal, it might seem that the inverse
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function, F->Ur, admits of more values than one, or indeed of

infinitely many values, which would all equally well satisfy the

Junctional equation,

FF-Ur = U/-.

And this is true : but for this very reason, I propose to include

by definition, m the signification of this inverse function, F'S

something more than merely its being obliged to verify the last

written equation. And the last article sufficiently explains my

motives for making the additional condition to be,

TF-'Ur>7r.

For thus we may write generally, without violating that definite

signification of the symbol I q which was agreed on in the Fourth

Lecture, the equation,

zr=zUr=TF-'Ur.

Under the same conditions we shall have also, definitely,

UF-iUr = UVr=Ax.r;

and therefore (compare 542),

VF-'r=F-'U;- = UVr.zr; SF-'r= P-'Tr = ITr;

and finally,

F-'r=lTr + UVr.Zr.

It will be remembered that the tensor of a quaternion is never

negative in this calculus ; and therefore that the recent expression

for L r will never give a negative angle : a condition which was

in fact required, by the definition in 148.

545. The function, F"'r might be called the imponential

of r, because it is the inverse of the exponentialfunction F (or at

least an inverse thereof) ; but it may be simpler, and more con-

formable to analogy, to call it still, as in 542, the logarithm,

or more fully the natural logarithm, of the subject on which it

operates, although that subject of operation is now a. quaternion;

and to write generally,

F''?'.- log ?• ; or simply, F''/' = l/-.
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With this extended notation, the equations of the last article will

give,

Sl/-=lTr; UVlr = UV/-; TVl/- = Zr;

and thus the logarithm of a quaternion comes to receive (by

the foregoing conventions) the following generally definite value :

lr=lTr + UVr.^r;

where it may be observed that

VYr.ir^Wr^Wr; and that lr=lTr+lUr.

Indeed the only exception to the definiteness of this expression

may be said to be the case where the quaternion r degenerates

into a negative scalar, in which case (as in 149, &c.), its angle

is = TT, and its axis has an indeterminate direction ; so that if x be

any positive scalar, and r= - a:, we have, as in older theories, the

formula

:

lr=l(-x) = lx+7rv/(-l) :

but the symbol ^J - 1 is here, as in arts. 167, &c., to be interpre-

ted as denoting an arbitrary unit-line in space. I am of course

aware that logarithms are by many writers interpreted as having

generally a certain degree of indetermination ; but it has been

my object, in the present theory, to preclude, so far as I could,

that indeterminateness by definition: as has been done, in some

analogous questions respecting ordinary imaginary expressions,

by M. Cauchy and Professor De Morgan. And I scarcely count

the logarithm ofzero as a case of indetermination, because its

scalar part is negative infinity,

SIO = - 00,

although no doubt its vector part is undetermined.

546. To exemplify the convenience of this generally definite

interpretation of a logarithm, 1 resume the consideration of

powers with scalar exponents, which were discussed in the Fourth

Lecture. You will find that we may now write, with the recent

signification of the symbols, for any such power, as in algebra,

the expression :

/•'=F(((F-'/-) = e"'--
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In fact

t\r=tlTr + \jyr.tlr;

therefore

T.e«'- = e"^'-=(Tr)'=T.rS
and

U. e"'"=(cos + UVr.sin) {t /.r)=\J .r',

with that definite meaning of such a power a sr' or q', which was

assigned in the Fourth Lecture. Again, if we treat the positive

number e (more often perhaps now written e) as a quaternion

with a null angle, and submit it as such to the foregoing gene-

ral rules, we shall have / e = 0, le = F"'e = 1 ; and therefore the

equation e^ = Fq, may now be written as follows

:

ei = V{qF-'e).

Thus all the powers hitherto considered by us are seen to be con-

sistent v/'ith the first formula of the present article : ahdifwenow

extend that formula by definition, so as to write, generally,

q'-= F{rF-'q) = e''^'',

we shall hereby violate no condition already established : and

shall be able to interpret every such symbol as q^, or to assign,

generally, a definite signification to a power, even when both
exponent and base are quaternions.

547. As an example, if it be required to interpret the symbol

f, we have

T> = 1 , ^j = -^, U V;' =j, and therefore I;' = ^ttj ;

whence the required value of the power is,

ji _ gilj _ gjiry _ gjiri _
j^_

More generally, if a and ]3 be any two rectangular vector units,

then

la = ^a, anda^ = e2 ° = /3a.

Again,
IT

i' = e''' = e"i =j> = ft*.

But the results will not usually be so simple as these : and it may
suffice to remark here that
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T.(f = Tq^'-.¥(/.q.S.rUYq),

\J.q'-^F{lq.y.rVVq + Vr.\Tq).

It once occurred to me that the logarithm of the tensor of a qua-

ternion might be conveniently called the mensor of that quater-

nion, and denoted by the symbol,

Mq = \Tq

but I do not desire to introduce any unnecessary innovation of

language, nor to complicate the calculations with any new sign,

which does not appear to me to be of real and extensive utility.

The recent use of the notations F^, F'^q, for e', \q, has been

merely for temporary convenience.

548. We have seen (in art. 545) that the logarithm of the

versor of a quaternion, which is also the vector of the logarithm

of the same quaternion, is the product of axis and angle ; it

is therefore the representative arc (namely, by 216, a certain

portion of a great circle of the unit-sphere')., rectified, and

placed perpendicularly to the plane of the arc. The
same construction for the logarithm of the versor of a

quaternion has been suggested to me by a certain process of de-

finite integration, on which I cannot enter here. I must also

suppress all notice in this place, oi \\\^ develo'pements of loga-

rithms of quaternions by series, and of their other transforma-

tions.

549. But it may be proper here to shew how, on the fore-

going principles, a definite interpretation may be assigned to such

a symbol as log, . ^'; or to the logarithm of a given quaternion,

q, referred to a given quaternion base, q. For this purpose,

I propose to adopt from algebra the formula,

log,.?'=l?'-H \q;

retaining still the recent and definite significations of the sym-

bols \q, 1^. In fact, if we call this quotient r, we shall have

qr ^ e^^i = e^'i' = q .

Indeed it is true ihat this equation, q'' = 7', is satisfied, not only

by the recent value of the exponent, r, but also by all those other

exponents, ?•', which are included in the formula,
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For if we substitute any such value for r' (n being any whole

number), we shall have

as before. And if we should content ourselves with establishing

the formula log. 5'=-, where e»=g, e'''=<7', without otherwise

restricting the exponents s and s', we should thus obtain, as the

general value for the logarithm of a quaternion q, to a quater-

nion base q, an expression of the form,

, l9'+2n'7rUV7'

involving a double indetermination, and introducing a pair 0/ar-

bitrary integers, as in the results of Graves and Ohm, respecting

the general logarithm of an ordinary imaginary expression re-

ferred to an ordinary but imaginary base. I prefer, however, in

this calculus, to exclude this indetermination by definition, as in

some earlier and easier questions : and therefore AiteTfixing (as

in 545) the signification of the natural logarithms, \q, \q', 1 pro-

pose to write definitely, as above,

Comparing the two notations, we might also write,

o

log,. 9'= log,. 9'.

o

550. If we adopt as definitions the developements,

COSg=l-| +
^ 3 ,^

-&C.; sin((r=^-^ + &c.;

and observe that

- q'= ([JYqY q"^ {q\JVqy,

because q is commutative as a factor with UVg:; we shall easily

find that whatever quaternion q may be, the two following ex-

pressions hold good, with the recent meaning of the function F :
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2 COS ^ = F (qHVq) + F (- qUYq)
;

2smq.VVq=F (q.VYq)-F{~ qVYq).

These finite expressions suffice to define the sine and cosine of a

quaternion : and on the same plan we may write, as a definition

of the tangent of a quaternion, the formula,

^^,, F(oUVo)-F(-9UVo)

with other analogous expressions, on which it seems needless

here to delay.

551. When a quaternion function (Jq), of a sought quater-

nion {q), has a givenform (f), and a ^luew i^o/we (r), so that we

have the quaternion equation,

we can always break up, or at least conceive as broken up, the

one proposed equation in quaternions, into four equations of an

ordinary algebraical kind, involving the^wr sought constituents,

w, X, y, z, of the sought quaternion q : and may then eliminate,

or at least conceive as eliminated, the three scalar co-ordinates,

X, y, z, between those four equations, in such a way as to con-

duct to one final and scalar equation, involving the 07ie sought

scalar, w, or Sq: after resolving which (if we could in all cases

do so), we might then proceed to determine x, y, z, and therefore

finally q- Or we may conceive that after forming the two sepa-

rate equations,

S/5 = Sr,V/9 = V/-,

we deduce /o = Vy from the second equation, in terms oiw = ^q,

and substitute its expression in the first equation, which is then

to be resolved with respect to u'. Or the first equation may be

supposed to hepreviously resolved for w, and the value of i<; sub-

stituted in the second equation, which thus becomes a vector for-

mula, involving one sought vector p. And instead of the single

vector equation \fq = Vr, we may, either before or after the eli-

mination of w, employ the following system of three scalar

equations,

S . Kfq = S . K/- ; S . \fq = S . Xr ; S . fifq =S . jur;
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when K, X, fi may denote any three assumed vectors, whicli do not

vanish, and are not coplanar with each other.

552. To fix more fully our conceptions, let the quaternion

function /ly be supposed to consist of some finite number of terms,

in each of which the sought quaternion q shall enter only as a

factor, some finite number of times repeated; and let the highest

number of those times be n. The equation /iy = » may then be

called an equation ofthe w"' degree in quaternions. For example,

bqa + b'qa! + b"qa" + &c. = c, or 2 . hqa = c,

will be an equation of thefirst degree, or, as we may agree to

call it, from analogy, a linear equation in quaternions, what-

ever given quaternions may be denoted by a, a', a", . . b, U, b", .

and c. Again the formula

"2 .an_qa^qa+'2, .biqb= c,

or more fully,

aiqOiqa-^ a'2qa\qa' + a"2qa!\qa" + . . + biqb+ b'lqb' +b"iqb"

+ . . . = C,

will represent an equation of the second degree, or a qua-

dratic equation in quatertiions : and soforth.

553. Now, upon substituting, on the plan of 551, in that

form of the equation of the w"' degree wliich is described in the

last article, for the sought quaternion q, its quadrinomial value

w + ix+Jy + kz, with analogous values for the ^?we« quaternions,

a, b, c, &c., we shall evidently break up that Ofie proposed equa-

tion intoyoMr others, between the four sought scalars, w, x, y, z,

and some number oi given scalars, which will not generally be

identical equations, and will in general be each oi the proposed

(n"") degree. Elimination between them will therefore generally

conduct, by known principles of ordinary algebra, to an algebraic

equation in w, which has n*'for the exponent of its degree : and

such will generally be the exponent also of the degree of the final

equation in any one of the three other required scalars, x, y, z.

Thus a linear equation in quaternions has generally only one root;

but a quadratic equation may be expected to have generally six-

teen roots (real or imaginary): a cubic equation in quaternions

must, on the same plan, be supposed to have in general eighty-one
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quaternion roots : and so on. It is, however, as we shall see,

quite possible to meet with particular equations of these degrees

which shall h&ye fewer quaternion roots, or at least %hsM appear

to have fewer, in consequence of the absence ofcertain terms in

the component scalar equations. "Yhns ihe particular class of

quadratic equations in quaternions, which is of the form

q- = qa + b,

and which hitherto I have chiefly studied, appears to have only

six roots (two real and four imaginary), as will be soon ex-

plained : but probably it should be said that the ten missing roots

are, for this particular equation, infinite.

554. Confining ourselves for the moment to linear equations,

or equations of the^first degree, let us resume the general type of

such equations assigned in art. 552, namely the form,

S

.

bqa = c

;

where a, b, a, b', . . . and c are given quaternions, but q \s a.

sought quaternion. Taking separately the scalar and vector

parts, we obtain the two following equations

:

M;A + S.Vp=Sc;M;r)+V.(/i' + 0)p + S(VaS.6p + V6S.a/))=Vc;

where

w=Sq,p= \q; A= SS . 6a, ?) = SV .ba, rl='2N .ab;

A' = S(S6Sa- S . VbYa)^ SS . 6 Ka; 0= 2 (V6 Sa- SbYa)
;

in deducing which expression for Vc, we have employed the for-

mula (520), with which it is important to be familiar,

V Yj3a = 7S.j3a-i3S.7a + aS.j3y.

Eliminating w, and making for abridgment,

h (h' +6) = r, hYc - tj Sr = tr,

we find an equation of the form,

S./3S.ajO + V .r/3=(T,

where a, a, . . j3, fi',
and a are given vectors, and r is a given

quaternion, but p is a sought vector : and this appears to be

the most general possibleform for a linear and vector equa-

tion (or to include all possible forms of such an equation). We
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shall now proceed to resolve it, by means of that general method

which was alluded to at the end of article 513.

555. Operating by S . X, where A is an arbitrary vector, we

obtain the result

:

SX<T = S.X>, if X' = S.aS.i3X + V.«X, and«=Kr.

In like manner,

S . ju(7 = S . up, if ;u' = S . a S . j3/x + V . s,u.

Hence, if we so assume X and fx as to satisfy the condition

V . XjU = CT,

we shall have

S . X'p = 0, S . fi p = 0, and mp=Y . X'p.',

where m is some scalar coefficient. Now on developing this last

vector of a product, and replacing V . Xju by a, we find,

V (aa'S . /3XS . (i'fi + a'aS . /3'XS . /3|u) = V . aa'S . j3'/3<t ;

V (aV . s^S . j3X + V . «X . a S . /3/x) = V . aV . «V . ^<7 ;

Y{Y.s\.Y.Sfi) = BsY.s^-Ys8.s<y;

which last transformation may be obtained in various ways, serv-

ing as useful exercises in this calculus. For example, we may
observe that generally, for any two quaternions q and r, we have

rq-qr = 1Y . YrYq ;

and that

^ (sX .Sfi- Sfi. sX) - is QiSfi - fisX) = ^« (S 4 V) (X«^ - fisX) ;

where (because (t = V. Xju),

^S {\sfx - fisX) = ^S .s (juX - X;u) = - S . so-,

iV (XsfjL-fjisX) = iV. X (s+ Ks) ^ = <7 Ss

;

so that

V (V . sX . V . Sfi) = s (a .Ss-S . So) = Y . scrSs -Ys S . S(T,

as above. Or we might write,

V . sX = sX - S . sX, V . sju = S . sju - K . s;u = S . s^ + (u Ks,

and observe that

V . sXfi K.« = saKs, because V . sKs = 0, S . sctKs = ;
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and that

V .sXS.Sfi-V .i^KsS.sX=y.s(XS.Sfi-^S. sA) = *V. <tV«,

it being unnecessary to prefix the sign V to this last expression.

For thus the proposed expression would be found to become,

s((tK* + V.<tVs) = 5(S.(tK5+V.<t(Ks+ Vs)) = s {aSs - S . Sd),

and therefore equal to the expression already written. We have,

therefore, by summing the terms, and changing s to Kr, the

formula

:

p = »»-' V . XV= '«-> (SV . aa' S . (3'li<7 + SV . aV ( V . (i<, . r)

+ SrV.<T?--VrS.(Tr);

and it only remains to determine the scalar coefficient m, in terms

of a, a, . . j3, /3', • . and r, by substituting this expression for p
in the linear equation of the foregoing article, namely,

S . /3S . ap + V . rp = <r.

556. Effecting this substitution, with analogous reductions,

and employing the first or both of the two identities of article 510,

of which the latter may be proved to be correct by operating on

it separately and successively with the three characteristics S . a,

S./3, S . y, the four following transformations are obtained, of

which it will be found an instructive exercise to examine and to

prove the validity

:

I., /3S . aaVS . /3"^'(T + i3'S . aaa"S . |3"/3<r + /3"S . a'aa'S . /3'/3<t

= aS . aaVS • ^"(i'ji ',

II., /3S . aa'Y (V . ji'cT . r) + /3'S . a'aY (V . 0<7 . r) + V . rY

aaS . i3'/3(r = aS {rY . aa.. Y . jS'^)

;

III., /3 (SrS . a<rr - S . arS . ar) v Y . rY . aV {Y.^c. r) =--

a (S/-S . rajS - S . raS . r/3) ; and

IV., V . r(SrV . ar - VrS . ar) = a^rTr\

The coefficient m has, therefore, the following value:

m = S (S . aa'a"S .

/3"i3'/3)
+ SS {rY .aa'.Y.

ft'ft) + SrSS . raft

-S(S.raS.r/3)+SrlV-

And the recent transformations suffice to prove, a posteriori, or

synthetically, that with this value of m, the linear equation,

2 o
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S . /3S . ap + V . rp = (7,

of article 554, is, in fact, satisfied by the expression assigned for

p in art. 555, as the analysis of the last-cited article had given

us reason to foresee that no other value of p (generally speaking)

could satisfy the same linear equation.

557. It is important to attend, in all such formulae as these,

to the notation ofpoints employed; in virtue of which, we have,

for example, in the foregoing article,

V. rV . aaS . i3'|3<T = V [rV {aa'S O'jScr) )] :

while such symbols as Sr, Yr, Kr, Tr, Ur, &c., when thus writ-

ten without points, are treated, in their combination with others

or among themselves, as if they were single letters ; so that, for

instance, in the last article, the expression SrV . ar does not

mean S (rV {ar)], but Sr x V {ar) : also Sr- denotes {Sr)-, while

S {r^) may be written as S . r-. (See the remarks made at the end

of art. 455 ; and the examples of transformation in art. 504.) Still,

from the properties ofscalars, this plan of notation allows us to

write,

S . raS . r/3 = S (ra) x S (r^), and V . raS . r/3 = V (ra) x S (r-]3) :

though not, in general,

S . raV . r/3 = S {ra) x V (r/3), nor V . raV . r/3 = V (ra) x V (r/3).

A very experienced calculator might, perhaps, safely trust to his

recollection of his own meaning, in any particular question, and

dispense with some of these precautions : but I do not advise the

attempt. The mixture ofmultiplication with other operations of

this calculus might in that case produce a confusion, against

which it is prudent to guard, by using a notation exemptfrom

ambiguity, such as I think the one above proposed will be found

in practice to be. It is perhaps unnecessary to state, that in the

sum SS (rV. aa'. V.j3'j3), each combination of two pairs of vec-

tors, a, j3, and d, /3', is to be only once employed ; and that, in

like manner, each combination oi three such pairs is to be only

taken once, in another sum which enters into the expression

of m.

558. To exemplify the general process above given, for the
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solution ofa linear and vector equation, let us resume the equa-

tion of art. 516, under the form,

V . /3|0a = ff ; or, /3S . a/9 + aS . /3p - pS . a/3 = it.

Here

a' = /3, i3'
= a;a"=. = /3" = . =0;r = -S.a/3;

and the general formula of article 555 becomes

»»jo = V . ai3S . 0/3.7 -V (aV . i3(r + j3V . a.T) S . aj3 + <T (S . aj3)'

= V . a^S . ajScr + (aS . /3(T + /3S . a<T - (tS . aj3) S . aj3

= V . /3aS . a(T^ +V . a(Tj3S . /3a = ^a'^'' {a^ra' + ^<r/3 "O,

because in general,

YqSr + VrSy = i ((?r - K^Kr),

and

K.^a = a/3, K.a<T/3=-/3ffa.

But also in the general formula of 556, we have now,

SS . aa'a'S . /3"/3'/3 = ; SS (rV . aa .V . /3'/3) = - S . a/3 (V. a/3)'

;

SrSS . ra/3 = 2 (S . a/3)^ ; S(S . raS . r/3) = ; SrTr- = - (S . a/3)^

therefore

m = S . a/3 ((S . a/5)^ - (V . a/3)' j = a'/3-S . a/B = ia'/3= (a^ + /3a).

Thus in the present question, our general method gives,

a(Ta-' + /3j^-'

'' "
a/3 + /3a '

which may be verified by comparison with the result of art. 516.

As another verification, we may observe that this expression for

P gi^es

and that

V (craP + a/3(r) = V . <t (a/3 + ^a) = <t (a/3 + /3a);

so that

V. /3pa =V . a/3/3 = (T, as was required.

559. Again, let each a and /3 vanish, in the general form of

recent articles, so that the linear equation becomes simply,

Y .rp = a.

2 2
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The general solution gives then,

pSrTr' = S;-V . ^r - V;S . <jr

;

or, making Sr =
ff,
Yr=y,

which agrees with a result already obtained in art. 514, where A

and q were written instead of ct and r.

560. As an example of the general process of art. 554, let

there be proposed the linear equation in quaternions,

bq + qb = c.

Here

a=\,b'=\,a:=b, a" = . . =i"= . .=0,

h' = h = 2Sb,r,' = ri
= 2Yb,e = 0;

and the two equations between which w is to be eliminated

become,
m;S6+ S.6p = |Sc, wVb + pSb=^Vc,

giving

V, \cSb-YbSc
p-ao .ap = a^ where a = -b, a = r^Tr •

Comparing this last linear and vector equation in p with the ge-

neral form of art. 554, we have

|3 = -a, a'= . =j3'= . . =0, r=l;

and therefore, by 555, 55G,

p = m-' ((7 - aV . au) = (1 - a^)"' ((t - aV . ad) ;

an expression forp, which in fact is seen to satisfy the last linear

equation, and which gives,

2pSb{Sb'-\b') = Sft (VcSb-YbSc)-YbY. YbYc
= {Sb' - Yb=) Vc - Yb {SbSc - S . YbYc)

;

or because Sb' - Yb' = T6= = bKb, and SbSc - S . VbYc = S.cKb,

2pSb = Yc-YbS.cb-K

Hence

2S6S .bp=S. YbYc - Yb'S . cb-'

;

2m;SZ.'= S6Sc - S . YbYc + Yb'S .cb-_' = (TSH Yb') S . ch-\

and finally,



LECTUKE VII. 565

w=^S. cb-\ because Tb'^ + Yh'^= Sb\

Thus the solution of the proposed equation hg + qb = c (where 7
= w + p) may be thus written :

2gSb = yc+KbS.cb-\
Accordingly,

6Vc + Vc6 = 2S6Vc+2S.VcV6=2cS6-2S.cKZ»;
and

{bKb + Kbb) S . ci-' = 2Tb'S . cJ-' = 2S . cKb
;

so that the expression found for the quaternion q does, in fact,

satisfy the linear equation proposed.

561. Or we might have beffun (compare the general remarks

of art. 551) by eliminating p instead oiw, between the two equa-

tions,

wSb -¥S.bp = iSc, wVb + pSb= iVc

;

and thus have found, more rapidly,

2wTb'- = SbSc - S . VbYc = S . cKi, m; = IS . ci-'

;

after which -we might at once have inferred that, as above, the

linear equation bq + ql) = c gives,

2pSb=Yc-YbS.cb-\2qSb=Vc+ KbS . cb-\

562. When an equation is so simple as the one last treated,

less general methods may often be conveniently employed. As

an example, let us take this other linear equation,

aq + qb = c,

where abc are three given quaternions, and 9 is a sought one.

Multiplying separately by Ka, and into b, it gives,

Kaaq + Kaqb = Kac ; aqb + qb'^ = cb ;

therefore adding and observing that Kaa = Ka . a - Ta% Ka + a

= 2Sa, we find, after a division,

Kac + cb

^ " Ta= + 2bSa + b-'

And if vve here change a to b, we fall back on the equation bq +

qb = c, and obtain, as a new form of its solution, the expression,
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q = ^^^^, because Ti» + 6» + 26S6 = 6 (K6 + 6 + 2S6) = 46S6.

Accordingly,

i(K6c + c6) = cS6 + V. VcV6 =VcZ> + S.cK6 = ( Vc + KSS . ci->)J

;

80 that this article, like the two foregoing ones, gives

2986 = Vc + K6S . cfi-i, if bq + qb = c.

Or, again, we might infer from this last linear equation, that

bc-cb^ h'q - qb' = 2Y (V .bK Yq) = 4S6V . YbYq,

and therefore that

{bq-qb)Sb = Y YbYc;

whence 2qbSb = cSb+Y .YcYb = ^(cb+Kbc), as above. And

other modes of solution, and forms of expression, may be assigned

with nearly equal ease. Of course it is only practice which can

render you expert in such transformations as these : of which,

however, the principles have all been stated already in the pre-

sent Course of Lectures.

563. The general linear and vector equation of article 554

may also be treated as follows. Making, as in 559, S7' = ^, Vr
= y, and writing, for abridgment,

S./3S .OjO + V .y|0 = ^jO,

where ^p is a new distributive and vector function of p, the equa-

tion to be solved becomes

(j>p + gp= <T, or more concisely, (<p + g) p = a;

and we are to seek the form of the following inversefunction,

Operating with (p, and making reductions analogous to those of

recent articles, we find,

^|0 = p'+/oSS.aj3, if p'= V. yp-SV.aV . (ip ;

i,p=p"+pl'2S(Y.aa V./^jSO+SS.ayiS + Y^i,

where p" = SV . aa'S . fi'jip -1Y .aY .yY . (5p -yS .yp;

and finally <j>p"= -np, if we write

w = SS . aaV'S . j3/3'|3" + SS (yV . aa V . jS^') 4 2S . ayS . (3y.
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If, then, we also write,

ri = SS (V . adN . j3'/3) + SS . a/Sy - 7% n = - SS . a/3,

we shall have,

(pp = p'- n"p ; tpp = p" - n'p ; ^p" = -np;

and therefore,

^-p = p" - n'p — n"(pp, ^'p = - np — n'lpp - n"(p'p ;

or, abstractingfrom the operand vector p,

= n + n'^ + n"(j>^ + (p^.

564. Here, then, is a certain symbolic and cubic equa-

tion, which the /uncttonal characteristic ip must satisfy : and it

is clear that the connected characteristic '<p {= ^ + g) must satisfy

the connected cubic,

Q =
\l/

- }n"\p- + m'\p - m,
or

mip' ' = »w' - »i"i// + i//^

;

where
m = g^- ng'^ + n'g — n ;

m' = 3^' - 2n"g + n ;

m"= 3g - n".

And thus the proposed linear equation in p is resolved anew, by

the assigning of the soughtybrwi of the inverse function, 1//"' ; or

by shewing what the direct operations are, of which that inverse

operation is compounded.

565. The method of the two foregoing articles gives,

nip = 7n\p''<T = {m - m't^ -¥\p-) (t = <t" - ga + g'a,

where (by 563),

a" = {n + n"(j) + f) a

= SV . aa'S . /3'/3<T - SV. aV. 7V. fia - jS . y<T

;

<r' = (tt" + ^) tr = V. 7<T - SV. aV. (3<t.

And accordingly these results agree exactly with those which are

obtained from the earlier expressions for mp and for m, in articles

555, 556, when the quaternion r is expanded into g + y.

566. The recent results of our analysis, respecting the exist-

ence of a symbolic and cubic equation in i//, where i/-/o = 2 . /3S . ap

+ V. rp, admits of the following ^^eowe^/vca^ interpretation, which



568 ON QUATERNIONS.

appears to me to furnish a somewhat remarkable and possibly

new THEOREM. "If by any one fixed mode of linear de-

formation (represented here by the operation
-^f)

we pass from

a variable vector p to another co-initial and dependent vector \pp,

which may be called the First Derivative; if we then pass by

the same fixed mode of deformation, from this first to a Second

Derivative, \p'p ; and thence, by still the same mode of change, to

a Third Derivative, i/-^p; and if (by constructing a parallelepi-

pedon) we decompose the original line p into t/tree others, in the

directions respectively of these three successive derivatives (or in

the opposite directions): then the ratio of each component to

the corresponding derivative line, or the ratio of each projection to

the line on which it is projected, will be expressed by a constant

SCALAR {m'hn, OT -m'^m", or W'), which depends only on the

mode of deformation (or on the^rm of the linear and vector

Junction \p), but not at all on the length, nor on the direction, of

the original and variable line p, thus operated upon." It is clear

that we should equally be permitted to decompose any other of

the four lines, p, \pp, i^^p, ^^p : and that we should still obtain,

from the cubic equntion in >//, three constant scalar ratios.

567. If none of the given vectors a, j3, a, /3', . . 7, nor the

given scalar g, be infinite, then neither will any one of the three

scalar coefficients w, m, »«", be so, in the cubic equation of art. 564 ;

and because i//0 = 0, i/.'0 = 0, we shall have also the formula,

»?;/,- '0 = 0,

which will generally give

i/,-'0=0; orp=0, if>/,p = 0.

There is, however, a remarkable exception (or class of excep-

tions) to this general result. For if the scalar g be so chosen as

to be A root of the cubic equation,

m = Q, or g^- n'g'^ + n'g -n = 0,

we shall then not be able to infer that the factor \p~^0 vanishes,

from the fact o{ the p7oduct nii//"'0 vanishing; und values ofp

different from zero, or, in other words, actual lines, instead of

nufl lines, may in this case satisfy the condition,
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\pp = 0, or ^p = -gp.

In tact if we suppose that g-,, g^, g^ are three distinct scalars, any
one of which, when substituted for ^, satisfies the ordinary cubic

equation lately written, or renders m = Q, for some given system
of values of the vectors a, /3, a',j3', . and 7, and therefore for

some given form of
; and if, after assuming any arbitrary vec-

tor, (T, we derive from it three others, p„ p., p^, by the formulae,

p, =a" -g^a -^g-^ty.

Pi = <t" - g-i<j' + g^^a,

Ps = <t" - gaa' + g^<s,

where ct', <y" are vectors derived from <t, by the formulae of article

565 : we shall then have, by that article,

where

i'i = <P + 9i> ^2 = f+g2, 4'i = <t>+ 9^-

In other words, /or these three directions, pi, pi, p,, we have,

respectively,

<t>pi
= -gipi; <ppi = -giPi; f^p^^-g^pi.

This opens a very interesting train of research, analogous to, and

including, several known investigations respecting the principal

axes of a surface of the second order, and the axes of inertia of
a body, on which I cannot enter here.

568. Although, as already remarked in art. 477, it will not

be possible in this Course to do much more than allude to the

DIFFERENTIAL CALCULUS OF QUATEUNiONS, yet I Cannot forego

the opportunity of giving here at least some general notion of the

connexion of that differential calculus, with such linear equations

in quaternions, as have been lately discussed. For this purpose,

it is necessary first to define the differential, ^fq, ofa func-

tion OF A QUATERNION ; and I do so by the following formula

:

(]fq = lim. n \f(q + - (^q) -fq};
n = 00 '*

where q and dq are any two proposed quaternions, and w is a po-

sitive whole number, which, as the formula expresses, is con-

ceived to increase without limit. In fact this formula is evidently
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true, in the ordinary differential calculus ; and because it does

not involve the commutative principle of multiplication, it is fit to

be extended, as a definition, to differentials of quaternion func-

tions. (Compare the calculation of d . t', in art. 528.)

569. For example, let /y = y^. Then the general definition

gives, for the differential of the square of a quaternion, the ex-

pression,

A.q- = \\m.n[{q + -Aqy-q^\
n= CO /J

= lim. {gAq + Aqq + - dg'-) = qdtq + Aqq ;

where iq is treated as a simple symbol, or as if it were a single

letter, denoting an arbitrary quaternion ; so that the symbol 6qq

is interpreted as being equivalent to this other and fuller symbol,

Aqy. q: while d^^ denotes (dg')'- In like manner, the definition

gives, for the differential of the cube of a quaternion, this other

expression,

d . q^= q^Aq + q^qq + Aqq^.

And similarly for the differentials oi other powers of quaternions,

with whole and positive exponents.

570. Again, if a, b, c, . . . be treated as constant quaternions

independent of q, so that da = dZ> = dc = 0, then A .aq = aAq ; A . qb

= Aqh ; A . aqb = aAqb\ A . aqbqc = aqbAqc + aAqbqc, &c. : the only

distinction in such cases between these results and those of the

ordinary differential calculus, being that each quaternion factor

is to be differentiated in its own place (or as we might say, in

sitH); commutation offactors being here (as elsewhere in this

calculus) not generally alloioed.

571. As one other example of this sort of differentiation, let

us seek the differential of the reciprocal of a quaternion, or let

us suppose,^ = (7"'. Here,

/(? + '•) -A =(7 + ')"-'?"'

= (? + r)-' {q-{q + r)lq-' = - (q + ?)"' rq '

;

therefore, by the definition in art. 568,

d .<?"' = - lim. {q+ - Aq)-' Aqq-' = - q ' (\qq''
;

n = 00 n

a result which I have often found useful.
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572. It is easy to shew that if we suppose Tr <T5', we shall

have the following developement, in a converging series, for the

reciprocal of the sum of two quaternions :

(q + ry^ = q-^ - q-^rq'^ + g'^rq'^rq-^ -&.C.;
in fact

y (5' + r)-' = (l + rj-')-'= 1 -rq-' + (rq-'y-{rq-y+8ic.;

the convergence of this last series (in the case proposed) being

proved almost as easily as in ordinary algebra, with the help of

the principle established in art. 538, respecting the tensor ofa

sum. Here, then, we have an example of the truth of the follow-

ing theorem, which can generally be shewn to hold good for qua-

ternions, as well as for algebra, in virtue of the definition recently

assigned : " whenever the function /"(y + Aq) can be developed in

a series, involving terms or parts of successively higher and

higher dimensions, with respect to the proposed differential Aq,

the part of the developement which is of the first dimension,

with respect to it, is the required differential, Afq, of the ^xo-

posed function,fq." Indeed, it has not been uncommon, in other

works, to propose this result, or a result of this form, as a defini-

tion, rather than as a theorem. But there are many cases, in which

the definition (568) of the differential ofa function of a quater-

nion can be more easily applied, than the developement of the

function can be found. A case of this sort will after a while

be pointed out. I have also other reasons for preferring my own

definition.

573. Meanwhile I may state that the theorem or Series of

Taylor may be extended to quaternions (with analogous cases of

apparent failure), under the form:

f(q+Aq)=fq+Afq+^d^fq + ^d^fq+..;

or more concisely and symbolically,

f(q+dq)=e^fq;

d-fq denoting here that value for ddfq which is obtained by treat-

ing dq as constant. For example, it'fq = q', then, by 569,

dfq = qClq + dqq, d\fq = 2dq\ d^q = 0, &C.,
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and

fin + ^l) =1'' + i9^9 + ^99) + <^!/'-

Again, the value of d . g', in the same article 569, gives

id* .q'=qAq' + AqqAq + dq'q,—5 A' .q'= Aq\

and

(q + Aqy =q^+ {q-Aq + qAqq + Aqq') + {qAq- + Aqqdq + Aq^q) + Aq^.

In like manner, by 571,

|d* . y"' = + q~^Aqq-^Aqq-\

—— d' .
5'-! = -q-'Aqq-' Aqq' Aqq-\ &c.

;

and the developement of {q + r)-\ which was given in art. 572,

might in this way be reproduced.

574. When a quaternion ris treated as a function of a scalar

t, r=ft, then the general definition gives a result of the usual

form,
dr = dft=ft.dt,

At appearing here as a simple^cior (of the usual kind), with a

coefficient ft, which may be called (as usual) the derivedfunc-

tion, because the differential At is here supposed to be a scalar,

and, as such, commutative in multiplication. In particular if a

vector {p) be regarded as a given function (ipt) of a scalar varia-

ble (t), so that the extremity of p describes (generally) a given

curve 171 space while the value of t varies, we have an expression

of the form,

Ap = A^t = (p't . At = p'At,

where <f>t or p is a new vector, tangential to the curve at the

extremity of p, or parallel to such a tangent, and having its

length equal to unity, li t denote the length of the arc of the

curve, measured from some fixed point thereon. In mechanics,

if t denote the time, in any motion ofa point in space, p may be

named the variable vector of position, and p may be called

the vector of velocity ; and when, by another differentiation,

we obtain a new result, of the form,

Ap = (f,"t . At = p" At,



LECTURE VII. 573

then the new vector p may be said to be the vector of acce-

leration. In geometry, \it be still the arc of a curve, p" may

be called the vector of curvature : for p—7, can be shewn to
P

be then the vector of the centre of the osculating circle.

575. When the equation of a surface is expressed, as in 507,

under the form,

fp = 0, or_^ = const.,

where^ is a given scalar function ofa variable vector p, we may
always, by cyclical permutation (512) under the sign S, express

the differential of this function under the form :

(\fp = 2 S . vdp ;

and if, by a suitable use of an arbitrary scalar coeflScient, we
oblige the new vector v to satisfy the condition (compare 474),

S . vp= I,

then, by reasonings similar to those of art. 481, it may be shewn

that v'^ represents, in length and in direction, the perpendicular

let fall from the origin of vectors on the tangent plane to the sur-

face, which is drawn at the extremity of p : and therefore that

(in the sense of the last-cited article) the vector i' itself may be

called the vector of proximity, because it represents the near-

7iess of the surface, or of its element, to the origin.

576. Without restricting i' to satisfy the equation S. vp= 1,

if we merely choose it so as to give

S . vdjO = 0,

as the differentiated equation of the surface, v will still denote a

normal vector ; and genkr.^l equations for classes of sur-

faces may be formed by the iielp of this symbol. Thus an ar-

bitrary conical surface, with its vertex at the origin, maybe

denoted by the equation

S . vp = ;

because, for such asurface, v±p. For an arbitrary cylindric

SURFACE, with its generatrices parallel to a, we have i'± a; and

the equation of this family of surfaces i«, therefore,

S.ra = 0.
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For an arbitrary surface of revolution, with the line /3

from the origin as axis, we have the following general equation

(because v\\\p, /3),

S.(ivp = 0.

Now in the problems of forming and transforming such general

equations of surfaces as these, so as to prove, for example, that

the last-written equation agrees with the formula,

TV.p/3-=/(S.p^-),

of article 440, we have the germs of a future Calculus of

Partial Differentials in Quaternions, and the indications

of future researches, analogous to those of Monge.

577. To exemplify the possibility of such transformations,

let the scalar and vector of the quaternion jo/3"' be denoted thus,

S.pj3-'=«; V.(0/3-i = a;

so that the formula of 440 assumes the form

T(7=/s, or (tH (/«)' = 0.

Diflferentiating, and observing that

d . (T^ = o-do- + d(T(T = 2S . ffdiT,

we obtain the equation,

S.(jA(j+fs.fs.As= 0,

where
da=V.dpj3-', ds=S.d,o^-.

Hence
S.vdp = 0, ifv = /3-i<T + ^-'/s/"s.

But this expression gives,

fivp=<xp + pfsfs = S-'0;

the arbitrary function, f is therefore in this way elimi-

nated, and the equation

S . /Svp = 0,

of article 576, is obtained, as the general representation of a cer-

tain class ofsurfaces, namely, of those which are of revolution

round the axis j3.

578. Again, let us suppose that this last equation has pre-
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sented itself, as the expression of the geometrical property, that

the normal to a certain surface, otherwise as yet unknown, inter-

sects a fixed vector, ji, or that v is coplanar (see 509, &c.) with

/3 and jO. To integrate the equation

S . J3vp = 0,

which is analogous to an equation in partial differentials, we may

first write it under the form,

V = a;j3 + yp, giving xS . jiAp + yS . pi\p = 0,

where a; and y are scalars. Hence the two Junctions S . j3p and

p- are together constant, or together variable ; and one must there-

fore he a function ofthe other. That is, we have

which is accordingly one form of the integrated equation

ofan arbitrary stirface ofrevolution. To obtain hence the form

of article 440, it is sufficient to observe that

p=^- = (S.p/3-T-+(TV.p/3->)%S.i3p = /3=S./3-V;

for thus we obtain this other functional equation,

TV.p/3-'=/(S.p/3-0,

which was the one required.

579. The symbol v is useful in many other geometrical in-

vestigations, for instance, in those which relate to geodetic

LINES, or curves,°on any proposed surface. One known and fun-

damental property of such a curve is, that its osculating plane is

always normal to the surface ; which may be expressed in our

notations by the formula (compare 574),

S . vdjO A-p = 0, or S . vp'p" = ;

the vector p being regarded as a function of some scalar variable

t. If this scalar variable be the arc of the geodetic, then (by what

was remarked at the end of the last-cited article), p" is the vector

ofcurvature, which must (by the known property just mentioned)

have the direction of the normal to the surface : and therefore in

this case we may reduce the formula to the following

:

\.vA-p = 0; or V 17/'- 0.
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In general, whether the arc be or be not the independent scalar

variable, Udp is a tangential vector, and its differential, dUdjo,

is a vector having the direction of the vector of curvature, which

is drawn in the osculating plane^-o;« the proposed point of oscu-

lation, towards the centre of the osculating circle : thus, for the

geodetic lines on any surface, the general equation may be writ-

ten as follows :

V.vdUd|O = 0.

Accordingly, since Udp = dp -^ Tdp, when we suppose Td,o =

constant, we fall back on the less general formula, lately written,

V.i-dV=0.

580. For a spheric surface, round the origin of vectors as

centre,

p2 = const., S . pAp = 0, vlljo, V. VjO = ;

hence, for this surface, the general equation of the geodetic lines

becomes, by elimination of v,

V.pdUdp = 0;

therefore, because for any curve on a sphere round the origin,

jO J_ Ud|0, or because ( UpY = - 1 , and S . p Udp = 0, we have

d , p\]Ap = d V . pUdp =V. dpUdp = -V.Tdp = ;

and consequently an immediate integration gives, for the geo-

detic on the sphere, z: being here an arbitrary but constant

vector,

p\Jdp = ro, and S . zjp = :

the curve being thus seen to be (as is very well known) a great

circle. As a verification, we have also

S.'sjUd/3 = 0,

of which equation the signification is manifest.

581. Again, let there be an arbitrary cylindric surface, for

which (compare 576) we have the equation

S.va = 0.

Eliminating the symbol v, by substituting for it the differential
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dUdp, to which (by 579) it is, for any geodetic, parallel, we ob-

tain the equation

S.adUdp = 0,

which gives, by an immediate integration,

S . aJJAp = c = constant,

and expresses that the geodetic on a cylinder is always a helix,

making a constant angle with the generatrices of the surface.

582. For a geodetic on an arbitrary conical surface (see the

lately-cited article 576), with vertex at origin, we have the equa-

tion,

S . vp = 0, and therefore S . pdUd/o = 0,

that is,

dS . pUdp = S . ApUAp =- TAp,
or finally,

^1^;^ = ""^'^^^'"

where c is a scalar constant. This result expresses that the

length of the projection ofthe vector p, on the rectilinear tumjent

to the geodetic on an arbitrary cone, differs only by a constant

quantity c, from the length of the arc ol:' the curve: and hence

might be deduced the known rectilinear developement. But the

following process is perhaps still more simple. Multiplying the

differential equation

dS.joUdp + Tdp = 0, by 2S.pUdp,

it becomes

0=d((S.pUdp)= + p=) = d.(V.pUdp)%

and gives, by an immediate integration,

(V.pUdp)2 = const., or TV. pUdp= const.,

so that the length ofthe perpendicular let fall from the vertex of

the cone on the tangent to the geodetic is constant; or, in other

words, the rectilinear tangents to any such curve are tangents

also to afixed sphere, described about the vertex as centre. This

gives again the rectilinear developement: and for the case of an

Apollonian cone, or cone of the second order, it agrees with a

theorem of M. Chasles, namely, that the tangents to a geodetic

2 p
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on a surface of the second order are tangents also to another sur-

face confocal therewith.

583. Again, consider the geodetics on an arbitrary surface of

revolution. Here, by 57(3, &c., we have the equation,

S.j3|ov=0,

and therefore by 579,

0=S./JpdUdp = dS./3(oUdp,

because /3d(oUd|0 = - /STdjo = S''0. Hence integration gives,

const. = S . /3/5Udp = TV. /3p . SU (V. j3p . dp)

;

and thus it may be seen (what indeed is otherwise known) that

the perpendicular distance of a point on the geodetic, /ro?n the

axis of revolution of the surface, varies inversely as the cosine of

the angle under which the geodetic crosses a parallel. Or we

may interpret the integral as follows: Up be conceived to be a

function ofthe time t, then the projected areal velocity, ^S . ^pp,

in a ^\&m perpendicular to the axis of revolution, bears a con-

stant ratio to the unprojected linear velocity, Tp, where p' = ip

-i- dt, as in 574. In fact it is well known that each of these two

velocities would be constant, if a point were to describe the curve,

subject only to the normal re-action of the surface, and not ex-

posed to any foreign force : and indeed this very illustration, from

mechanics, has been elsewhere given by an author whom I should

think it an impertinence to cite upon so slight an occasion. It

may be noticed that the differential equation S . j3pd Udp = 0, is sa-

tisfied, not only by the geodetics, but also by the parallels (or cir-

cles) on the surface : which fact of calculation is connected with

the obvious circumstance, that the normal plane to any such

circle coincides with the plane of the meridian of the surface of

revolution.

584. Geodetics furnish perhaps the simplest example of what

may by analogy be called the Calculus of Variations in

Quaternions. We have, by 577, for the differential of the

tensor of any arbitrary vector a, the formula,

dT(7 = iTa-M (TaO = - ilVM . <T^ = - S . U<7d<T = S . Ua-> dff

;

whence we may write,

S 1 (T = - S . U(tS(7
;
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STdp = - S .UdpSdp = - S .VApABp

= -dS.VdpBp + S.dlJApSp,

where dUdp is treated as a simple factor, multiplying Sp; and

therefore,

gJTdp = JSTdjo = - AS .UdpSp + |S . dUdpV

Comparing this expression for the variation of the length of the

arc ofa curve, traced upon any proposed surface, with the varied

equation of the surface, namely (compare 576) with this formula,

S . vS/> = 0,

we are conducted, as before, to the general differential equation

of a geodetic (579),
V.vdUdp = 0,

and also to the two following equations of limits.

S . Udp„gp„= 0, S . Udp.gp, = 0,

which express that the sought shortest line is perpendicular, at

its extremities, to any two given curves upon the surface, between

which^itMs required to be drawn. You see that, in these later

articles of this Lecture and this Course, I leave many hints to be

unfolded by yourselves, respecting the working of this new Cal-

culus, both for the sake of brevity, and because it seems that at

this stage I may very safely do so.

585. Let the surface be an ellipsoid, or more generally a cen-

tral surface of the second order, with its centre at the origin of

vectors, and having its equation of the form

fp=\, where fp=^ .vp, v = ^p;

the functions <j> and / having those general properties which

were treated of in earlier articles (475, &c.) of the present Lec-

ture, and which give (compare 477),

dv = dfp^,i>dp,fdp = S . dvdp, dfp = 2S . vdp, d/dp = 2S . dvd'p.

Now in general if the length of the arc of a geodetic be assumed

as the independent variable, and if the differentiated equation of

the surface be written (as in 576) under the form

S . I'djO = 0,

2i>2
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then, by a second differentiation, and by the last formula of 579,

wt" have

vd=p + S.di^dp =0, d> = -v-'S . dvdp.

For a shortest line on the central surface of the second order we

have, therefore, by the present article,

=^ + S— , or const. = Tv v/ (/Udp) ;

where Tv denotes the reciprocal of the length ofthe perpendicu-

lar P let fall from the centre on the tangent plane to the surface,

and \//{\]ip) denotes the reciprocal of the length of the semi-

diameter D which is parallel to the element dp. We find our-

selves then reconducted, by this analysis, to the theorem of

Joachimstal for geodetics on a7i ellipsoid, or other central surface

of the same order, expressed by the well-known formula,

P . D = const.

586. Consider next a geodetic line on an arbitrary deve-

lopable SURFACE. Let « be the arc of its cusp-edge (or of

its arete de rebroussement), regarded as a positive scalar, and as-

sumed as the independent variable ; and let us make (compare

574).

^ ( )
= ( )', that is, more fully, -^ = p, &c.

Then if ^ («), or more concisely ip, be the vector of a point on

this edge, we shall have Tdy. = d*, T^' = 1 , f^ = - 1 , S . <j>'<p" = 0,

S .
(j>'<p"' = - tp"- = T^"^ Let + ^ be another scalar variable, repre-

senting the length of a tangent to the edge; then the expression

for the vector of an arbitrary point on the developable surface

will be,

p = <p + t<j,'; giving p'= (1 + <') ^' + tf.

Hence the angle x under which the curve (geodetic or other),

whereof p is the variable vector, and whose form and position de-

pend on the forms of the vector function f, and scalarfunction t,

crosses a generating right line of the developable, is determined
by the formula :

/Td,"
tan x =—T-r.

\ + t



LECTURE VII. 581

We may assume v = ^'0"', whereby the vector v will become in

length the radius of curvature of the cusp-edge, and in direction

the normal to the developable surface: and shall then have

V=(i + O0'-' + <0',

because

But for a geodetic on any surface, we have, by 579, the general

equation,

S . vp'p" = ;

whence, in the present case,

O = (l + OS.pV'-'+<S.0'p".
Again, we have here,

p"=t"<j>' + {\+2t)^"+t<p"';

whence, by the above written properties of the function 0,

S . ,p'p" = -t" + tTf^ ;

and

S . pY'-' = 1 + 2«'+ <S . 0'Y" =! + «'+ {tTf)'T,i>'-\

because S. ff'-' = (Tf)'Tf-'. We are then led to the diffe-

rential equation,

= (I + ty +{\+f) (t'TfyTf-' - tt" + (tT,p"y- -,

which, when we multiply by

|(i + 0^+(n>")=j-i>",

and employ the lately-mentioned angle x, becomes simply

T^" + x' = 0, or
J
Td^' + x = const. :

a formula which exhibits the known rectilinear developement of

the geodetic, because Td^'may here be regarded as denoting the

angle between two consecutice generatrices of the developable sur-

face, if for convenience we here (as in many other geometrical in-

vestigations) treat the differentials as infinitely small quantities;

although i\ie definition assigned in art. 5G8 by no means requires

that we should generally do so, in dealing with differentials

OF QUATERNIONS.

587. It is quite possible, as I may soon shew, to employ

a somewhat similar analysis, so as to deduce anew the very ge-
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neral and beautiful theorems of Gauss (published in the Essay

referred to in art. 525), respecting geodetic triangles on ar-

bitrary surfaces: especially those which relate to what may be

called the spheroidical excess (or defect) of such a triangle.

But, for the sake of variety, I prefer to indicate briefly here

another application of the calculus of variations in quater-

nions, whereby we can reproduce some remarkable results of

M. Delaunay, respecting the curve which, on a given surface,

and with a given perimeter, contains the greatest area; and

which curve, from the well-known classical story suggested by

its definition, I propose to name a Didonia. Beyond the mere

suggestion of this name, and the quaternion analysis of which I

proceed to submit to you a rapid sketch, it will (I hope) be clearly

understood that I have no claim to make, on the subject of this

curious class of curves : of which the following geometrical pro-

perties have all, so far as I am aware, been discovered by M. De-

launay.

588. For such a Didonian curve, we have, by quaternions,

the isoperimetrical formula,

JS.UKdpS/o + cSJTdp = 0,

where c is an arbitrary and constant scalar : and hence may be

deduced, by the rules of variations in this calculus (compare

art. 584), the differential equation,

c-'dp = V.UvdUdp;

which shews that geodetics are that limiting case of Didonias, for

which the constant c is infinite. On a plane, the Didonia is a

circle, of which the equation, obtained by integration from the

last-written general form, is

(O = OT+ cU. vdjo,

zs being the vector of the centre, and c being the radius of the

circle.

589. Operating by S .Udp, the general differential equation

of the Didonia takes easily the following forms:

c->Tdp = S (U. vdp . dUdjo) ; c-'Tdjo= = S (U. vdp . d=^)

;

c-'Tdp^' = S .U..df,d> ; c-> = S -^^.
U. vap
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But in general (compare 574), the vector w of the centre of the

osculating circle to a curve in space, of which the element Tdp
is constant, has for expression,

Hence for the general Didonia,

U . vdp ' vdp

so that the radius of curvature of any one Didonia varies, in ge-

neral, proportionally to the cosine of the inclination of the oscu-

lating plane of the curve to the tangent plane of the surface.

And hence, by Meusnier's theorem, the difference ofthe squares

ofthe curvatures ofcurve and surface is constant : the curvature

of the surface meaning here the reciprocal of the radius of the

sphere, which osculates in the direction of the element of the

Didonia.

590, In general, for any curve on any surface, if ^ denote the

vector of the intersection of the axis of the element (or the axis

of the circle osculating to the curve) with the tangent plane to

the surface, then

S.(£-(o)v = 0;S.(?-p)dp = 0; S.(?-p)d> = dp^

and therefore,

K = P +
S . vdpd^p

Hence, for the general Didonia, with the same significations of

the symbols,

5 = jO -cU. vdjo;

and the constant c expresses consequently the length of the in-

terval p-K, intercepted on the tangent plane, between the point

of the curve and the axis of the osculating circle. If, then, a

sphere be described, which shall have its centre on the tangent

plane, and shall contain the osculating circle to the curve, the

radius of this sphere shall be constant, and equal to c. The re-

cent expression for ^, combined with the first form of the gene-

ral differential equation of the Didonia, gives also

d? = -cV. dUvUdp; and therefore V. i.dS = 0.
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And hence, or from the geometrical signification of the constant

c, the known property may be proved, that ifa developable sur-

face be circumscribed about the arbitrary surface, so as to touch

it along a Didonia, and if this developable be then unfolded into

a plane, the curve will at the same time he flattened (generally)

into a circular arc, with its radius = c. We might also have

written

+ JT . djoSp, instead of | S .UvdpSjO,

in the isoperimetrical formula of art. 588, with the condition

S/u±d|0, and have then proceeded nearly as above.

691. It will be admitted that the mechanism of these new

calculations is sufficiently simple and rapid : and it can scarcely

be expected that, at this nearly closing stage of a long Course,

the logic of them should hejully developid. Yet it may be pro-

per to say a few words on somefundamental j)oints of the theory

of differentials of functions of quaternions. And especially you

may expect me to shew distinctly that, without necessarily treat-

ing those differentials as small, or their tensors as nearly null, we

can yet rigorously deduce a differentiated equation, of the form

S . vAp = 0, from an equation ofa surface, proposed under the

form /)b = const. ; and may then infer with certainty (compare 575,

576, &c.), that v is a normal vector. From the definition (568)

of a differential of a function of a quaternion, we can, no doubt,

very easily prove (compare 569, 577), that

d . /3^ = p . djo + dp . p = 2 S . pdp
;

f)-
being here regarded as a fmiction of p, and dp being an arbi-

trary vector. And again, if the vector p be regarded as & func-

tion of a scalar, t, the tangential character {514) of dp, with

respect to the curve which is the locus of the extremity ofp, may
be regarded as an easy consequence (compare 528) of the same

general definition. Yet it may not be captious to call for proof,

that when p' is considered as he'uig afunction oft, in consequence

of its being a function of p, which is itself a function oi t, the

differential of this function of a function ha% still the same

form as before. And such a proof is necessary, to justify our in-

ferring (for example) that the equation p" = - 1 gives p_Ldp,yor
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any curve upon the unit-sphere : or for proving, by quaternions,

that the normals to a sphere are its radii.

592. I take, therefore, the function of a function,

^ =fyq =fP' where p = ipq,

and seek its differential, by the definition in article 568. That
definition gives, immediately,

dr = (\fyq= lim . n [/(/> (q + «-' d^) -f<t>q).

But we have also, by the same definition,

d^(7= lim . n{0 (y +w"' d*^) -^g}.

If, then, we make, for a moment,

(q + n-' dq) = ,j,q + n-'xp (n, q, dq) = p + n-'
\Ij„,

we shall have

xP = \P{cx,,q, dq) = d^q = dp;

and
dr = dfyq = lim . « (/(p + «-'

^p„) -fp] = dfp.
n= (»

That is to say, we arrive by the definition at one common qua-

ternion, as the value of dr, whether we differentiate ita* a func-

tion (/) of the quaternion p, which is itself a function {(p) of

another quaternion q ;ot whether we differentiate r immediately,

as a compoundfunction {f(j>), of this last quaternion, q. In sym-

bols, we may express this general result by writing

^A<Pq) = 'i{/<P)q;

and we see that it includes the result proposed for investigation

in the foregoing article, where the independent variable q was a

scalar, t, while (j> was a vector function, andya scalarfunction.

The first statement of art. 576 has, therefore, been fully justified.

And I think that analogous reasonings will convince you that

other and connected results have not been stated without war-

rant, nor at random, although briefly, and perhaps informally, in

recent articles.

593. To exemplify in a new way the process of differentiat-

ing the equation of a surface, let us take the form

T (ijO + pk) = K- — r.
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which was assigned in article 465, for the equation of the ellip'

sold. Since Tq'' = q^q, &c., this equation easily gives

(k=-0»=(jP + Pk) (pi + Kp)

= p^ {l^ + K^) + l/OK/3 + jOKjOt

= (i'+K')p^+2S.ipKp

= (t - k)^ |0- + 4S . t|0 S . K/O = &C.,

a long series of transformations being allowed (compare 499),

on the principles of the present Calculus. Thus (compare 476),

we may write the equation of the surface as follows :

l=fp={K'-i')-'[{i-KYp' + iS.tpS.Kp].

Differentiating relatively to p, we find (compare 575),

0=d/p = 2S.vdp

= 2{K'-i'y' (O-k)' S.pAp + 2S.iApS.Kp + 2S.ipS.Kdp} ;

and finally, as in 474,

v= (k^-O"' [(i - k)- p + 2iS . kp -^ 2kS . tp]

= (K^-0"M('' + K')p + «iOK + Kptj

= (k^ - I'YM 0' + k') p + 2V. (^K ) = &c.

Such then is the expression found, by this process of differentia-

tion, for the normal vector to an ellipsoid.

594. The following very general transformations come natu-

rally to be mentioned here. By 568, the differential of the

TENSOR OF A QUATERNION IS, if We make for the moment, dy = r,

dTj = lim. w(T(y + n-'r) - Ty),

where, by 538,

T {q+n-'r) = V lTq'+2n-'TqTrS\J.rKq + n-'Tr']
;

thus

dTq= TrSU. 7-Ky = S . rUq-' = S . dq\Jq-\

We may deduce from this result an expression for the differen-

tial of the logarithm of the tensor (or for the differential

of the mensor, 547), of any proposed quaternion ; and may write

that expression as follows :

dlT<?=^^ = S^.
^ Iff n
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We may also write, generally,

dTq = S.dgKVq^S.dqVKg.

595. Again, since q= Tq .Uq, we have this general expres-

sion, for the differential of any quaternion :

dq^ATq.Vq+Tq.dlJq.
Hence

dg.Vq-'^dTq+Tq.dUq.Uq-K

But it has just been seen (594) that

S{dq.Uq-') = dTq;

it follows then that

V.dq\Jq-'=Tq.d\Jq.lJq-';

or that we may write (compare 545),

diUy=lH?=v^.
Ug- q

This vector quotient is therefore an expression (compare 548) for

the differential oj" the logarithm ofthe versor of any proposed qua-

ternion, q. There exists no very close connexion between the

foregoing general transformations and the following, which yet I

may not find any other and more natural opportunity of men-

tioning :

r-i (^r'q'-^i q-' = U (Sr S^ +Vr Yq) = \J{rq+ Kr K^)

;

where q and r may denote any two quaternions.

596. To exemplify the general transformationof art. 594, let

us resume the equation of the ellipsoid, cited in 593, namely,

T ((/) + pk) = k* - 1^ = constant.

Differentiating, we find, by 594,

= S . (tdp + dpK) (ip + jok)' '

;

or, because K (ip + /ok) = jOt + k/o,

= S . (tdp + dpK) (pi + Kp)

= {t'' + K')S.pdp + 2S.Kpidp

= S.{{i' + K-)p+2Y.Kpt]dp;
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SO that

(r + k')p + 2V. Kpt, or (i^ + k^) p + 2 V. ipK,

is a normal vector as before.

597. When in any of the ways above explained, we have

found for the vector ofproximity, v, of the ellipsoid, considered as

a function of p, the expression given in 593, or any equivalent

expression, we can then, by the general method of articles 555,

&c., or even by less general processes, deduce this converse ex-

pression for p, regarded as a function of v '.

p = {l^ + k') V - 2V. IVK + 4 (t - k)-^ V. IkB . IKV.

And then by substituting this last expression in the equation

S . VjO = 1

,

we obtain the following equation of that known and reciprocal

ellipsoid, which is the locus ofthe termination of the vector v, or

of the reciprocal of the perpendicular from the centre on the

tangent plane :

1 = (iH kO v^ - 2S . ivKv + 4 (i - k)-^ (S . iKvY-

It is to be observed, however, that this latter is not in general

coincident with the reciprocal ellipsoid mentioned in 492, 493,

494, 495, of which the vector was £, or b^v, and of which the

mean semi-axis was taken = b, not Ir^. With respect to the known
and general relation ofreciprocity, for any two surfaces, of which

one is derived from the other by thus taking reciprocals ofper-

pendiculars, we can easily prove it with our present symbols, by

merely remarking that the equations

S . vp = c, S . vdp = 0, give S .pv=c, S . judv = 0.

598. The lately cited equation of the original ellipsoid offers

us an useful illustration of that extension of Taylor's Theorem

which was mentioned in article 573. For if we treat in it the dif-

ferential dp as constant, we shall have d^ = 0, and

f(p + <^p)=fp + ^fp + ^i'fp;

which last equation is accordingly found to be rigorously correct,

where for the first differential dfp we substitute its value given

in 593, and for d-/the derived value,
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d^p = 2 (k» - «')-»
{
{i - k)» dpH 4 S . lApS .Kip].

And, in this example, it may be regarded as clear, that nothing

whatever is neglected, and that dp is not necessarily smaW (com-

pare 591). Thejinite developement recently given iorf{p + Ap)

is here seen to be absolutely accurate, whether the chordal vector

dp be supposed to be short or long.

599. More generally, let us assume the existence of the fol-

lowing developement where x is a scalar variable,

/ (7 + xr) =/o + xfi + x'/j + &c.,

and seek, on that hypothesis, to determine the law of the forma-

tion of the successive terms of the series. We shall have,

/(9 + Or)=/?=/o;

f{q + \r) =/o +/i +fi + &c. ;

f{q + 2r) =/„ + 2/, + 2^/, + &c.

;

f{q + 3r) =/o + 3/, + ?,% + &c
;

Hence,

/(7 + lO -/(y + 0/-) = l/i + l=/2 + l'/3 + &c.

;

/(9 + 2r)-/(<7+10 = (2-l)/> + (2=-l=)/. + &c.;

/(? + 3r)-/(9 + 2r) = (3-2)/, + (3^-20/. + &c.;

and by pursuing this analj'sis, it is found, with ease, that, in a

known notation, if we make r= Ay, then

Ayy = ^}OKf^ + A^O' ./3 + &c.

;

A='/y = A'0'./3+&c., &c.;

and generally,

A"/?= A"0" ./„ + A'-O"*' /„.! + A'-O"*^ ./„.j + &c.

If then we make r = 6iq, and consider that by the very process

OF SUCCESSIVE DIFFERENTIATION, as thus extended to quater-

nions from common algebra, or from the ordinary form of the

differential calculus, the n"" differentiatial, A"/q, is necessarily

that part of the n'* difference which is of the n"" dimension, we

shall see that we may write,

dy^ = A"OV:„ ; or/„ = ^„ =j-^.
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And hence may be obtained the developement (compare 573),

f{q + Aq) = (\ + A+\A- + ~A^ + ...)fq^e'fq.

600. Another method of conducting the analysis is the fol-

lowing. Assuming still the existence of the series, and seeking

only its e.x-dci form, we may regard the differential d/(g' + r) as

the coefBcient of a;' in the developement oif (jj+r + xAq^, if dr = 0.

Making then r = Aq, and ddy or d''*^ = 0, we shall have d/(g + d^')

= coefficient of x', in the developement of /{5' + (1 + a;) d^j
;

that is,

4/0 + <i/i + d/j + . . d/„., + &c. =/i + 2/2 + 3/3 + . . + n/„ + &c.,

if

f{q + xAq) =/„ + a;'/, + x'fi+ . . .+ x"f„ + &c.

Comparing then the terms of corresponding dimensions, we find

the general relation,

nfn = Afn-i;

which gives,

/. = 'j/o;/. = icl/. = id%;/3 = ^d3/„;&c.:

and therefore

f{q + xAq) = e"fq, f (q + dq) = e'/q,

as before.

601. The following process may, however, be considered

more satisfactory, as not setting out with any assumption re-

specting the existence of a developement, and as extending even

to cases where, at a certain stage, the successive differentials of

the function become infinite. The definition (568) gives the fol-

lowing expression for what may be called a differential quotient,

although I prefer not calling it generally a differential coefficient,

because it is not generally independent of \JAq

:

M = lim fJlll^llz/l

.

dq 1=0 xdq

where x is still an auxiliary and scalar variable, but dq, like q, is

an arbitrary and f/iven quaternion, which may or may not have

Si small tensor. If then the ////«?V just expressed be ^W27e (as it
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will usually be), and if we assign any small value to x, which
may be said to be of Xhejirst order, we shall have the equation,

lim .x-'{f{q + xdq) -fq -xdfq]=0;

and the expression within the brackets may be said to be small,

ofan order higher than thefrst. More generally, let d'5'= 0, and
let the successive differentials oifq, as far as d^/y, be supposed

finite ; I say that the expression,

*„ =/(<? + xAq) -fq - xdfq - ^x'd'fq - ... - j^-^ d-fq,

is small relatively to the small scalar x, of an order higher than

the n'^; or that if we make D = -j-, we shall have not only *„ = 0,

but

Dsn = 0, D's„ = 0, . . . X)»*„ = 0, when a;=0.

In other words, it is asserted that, if a; be thus made to vanish

after the differentiations, we shall have,

Dfiq + xdq) = dfq, D'f{q + xAq) = d^/y, . . .

and finally,

D«/(l7+a;dg) = d"^.

In fact the general definition of article 568 gives here,

7H dx
Dfiq + sr-dq) = lim . -T-{f{q +^^9 +— ^q) -/(Q + ^Aq)

}

fit = 00 IIX t/t

= lim .y-^f{q+ xdq + ydq) -f{q + xdq)] ;

but by the same definition, this latter limit is also the value of

the differential df (q + xdq), if d be supposed to operate only on

q, but not on dq, nor on a;. With these suppositions, we have,

therefore, the equation

Dfiq + xdq) = df(q + xdq)
;

and consequently (dy being still treated as constant),

D'f{q + xdq)=d^-f(q + xdq), . . . D''/{q + xdq) = d"f{q ^ xdq).

Making then .r = after the differentiations, we see that the first

71 differential coefficients of the polynome s,„ taken with respect
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to X, vanish as was asserted, at least if the first n diflPerentials of

the function /y are finite : or that this polynome «„ is small of

an order higher than the w"", if sc be considered as small of the

first order: which is one form of Taylor's Theorem as extended

in this calculus to quaternions.

602. From the remarks in recent articles (591, &c.) it appears

that the symbol dp may be used in at least two principal senses,

in connexion with the theory of surfaces : for it may represent a

TANGENT, OF it may represent a chord, according as we choose

that it shall be regarded as a function, ipt, ofa scalar variable, t,

or as a vector satisfying the differenced (not differentiated) equa-

tion of the surface, which may be written thus,

f{p + Ap) =fp ;

or thus,

6fp = 0, where Ap = dp.

When used in the first sense, we have, rigorously, by the demon-

stration in 592, and by our use of the symbol v,

0=d/p = 2S.vdp;

and it would be improper to add any other term, by way oi im-

proving the approximation : for such addition would change the

meaning of the symbol, dp, and would preiient it from being truly

that which it was designed to be. But, at another time, it may
be convenient, after warning given, to use the symbol dp in that

second sense, in which it denotes a chordal (and not a tangential)

vector, drawn from the extremity of some given vector p, to the

extremity of some variable vector p + dp, these two vectors being

here obliged only to terminate each somewhere on the surface,

and the second being otherwise arbitrary. And then the recent

equation of linearform (0 = 2S . vdp) will not in general be ac-

curate. We must, then, add other terms, more or fewer accord-

ing to the degree of approximation required, and obtained from

the extended form of Taylor's theorem, or from some other mode
of developing the function /(p + dp). Of these new terms, the

first, by that extended theorem, may be thus written; with the

same signification of v as before :

i(l^/p = S.dpdp;
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where dv is a linear function of dp. If we go no farther than

this new term of the developement, we shall have the following

equation :

= 2S . vdp + S . di^OjU,

which would be rigorously true (compare 598) with the present

sense of dp as a finite and chorda! vector, if the surface were one of

the second order only. For example, if /jo = - p- = a\ so that the

surface is a sphere round the origin, with a radius = a, we find by

differentiation that v = - p, dv = -dp, and the recent formula be-

comes,

0=:-2S.pdp-d/)-, or S^=l, ifAp = dp;

which is accordingly true (compare 414), for any chord Ap or dp

whatever of the sphere, drawn from the extremity of ^, t)ecause

the projection of the inward diameter - 2p on the chord Ap coin-

cides with the chord itself. But if the given surface be of an

order higher than the second, then wc can only say that it ap-

proximately satisfies, by its chords, the equation

= 2S.vdp+S.dvdp,

namely, by those chords which are drawn to points upon the sur-

face, not far from the given extremity of p. In rigour, for the

given surface itself, we must add, or conceive added, an " &c."

after the term S . dvdp, or must actually append some additional

terms, of the third or higher dimensions : all singularities of

form being at present kept out of view.

603. It is not difficult to see, however, that when djQ is thus

treated as a finite vector, drawn from the extremity of p, the last

written equation represents an osculating surface of the se-

cond ORor-R, wliich has contact of that orrfcr with the proposed

surface, i?J every direction, at the same termination of p. Indeed,

if it be only required to secure this sort of osculation, or this

complete contact of the second order, we may introduce, at plea-

sure, as follows, another arbitrary term into the equation, and

may write it thus:

2S . I'dp + S . dvdp = S . j'dpS . -mdj,
;

2
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where w is any arbitrary, but constant, vector. Accordingly, in

co-ordinates, the nine disposable constants, or coefficients of the

equation of a surface of the second order, are not allfixed by the

six conditions of the contact recently considered: there still re-

main three constants of the ordinary (or scalar) kind disposable,

which are here all included in the one vector constant, ot.

604. The given and osculating surfaces being seen to have,

relatively to each other, the same curvature in eve7-y direction,

we may proceed to inquire what this common curvature is, for

any one proposed direction. Dividing, for this purpose, the

double of the perpendicular distance from the tangent plane, by

the square of the length of the chord, and taking the limit of the

quotient, we find,

curvature of section = lim (- 2S .Uvdp -4- Tdjo^)

,. 2S.vdp ,. /- S . dvdpV
= lim.-;y;—-!; = hm ?v—^ J.

But also, if <T denote the vector of the centre of the osculating

circle, for any proposed and normal section of the surface, we
have,

curvature of section =
.

a-p

Comparing these expressions for the curvature, of which each is

positive or negative, according as the deviation from the tangent

plane, for any near point of the supposed normal section, has the

direction of + v or of - v, we arrive at the following formula,

which appears to me an important one,

V
S —

•

p- a Ap'

the second member being understood to denote a limit, ifdjo still

denote a chord.

605. The following is another way of arriving at the same
result. The equation,

= 2S. vdp+^dp^

may represent any sphere, touching the given surface at the given

point, by a proper choice of the scalar coefficient (j, regarded as
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an arbitrary constant. If we now inquire in what directions
does this tangent sphere cut the given surface, or its osculatrix
of the second order, we are conducted to the equation,

<7djO= = S . dvdp, oro=S-r-,
dp

with the condition that dp is ultimately a tangential vector. This

last equation may be regarded as immediately determining a cone

of the second degree; and the two (real or imaginary) directions,

in which this cone is cut by the plane

S . vAp = 0,

that is, by the tangent plane to the given surface, are precisely

the two (real or imaginary) directions of intersection of the

sphere with the surface, or the two directions of osculation of

that sphere. Conversely, if the sphere be required to osculate

in a given direction, Udp, we have only to deduce the value of^,

by the recent formula, as afunctio7i of Udp, and then substi-

tute the g, thus found, in the equation of the sphere, which may
be written thus,

Ap being here used, for the sake of greater clearness, to denote

a chord of the sphere, drawn from the point of osculation. Eli-

minating in this way the coeflBcient g, we obtain the following-

equation of the sphere :

Ap dp

And by then making Ap = 2 ((t - p), to express that Ap is a dia-

meter of the sphere, <t being still the vector of its centre, we are

again conducted to the important and general formula,

V Av

p - <T dp

in which the second member is generally a function of Udp, and

so depends on the direction of osculation.

606. To exemplify this formula, for the case of a given ellip-

soid, or other central surface of the second order, let its equation

•2q2
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be/Cp)=l, where v = f{p), &c., as in several former articles.

Then (see 585) dv=0(dp); S.dvdp=fidf,)=Tdp'f{Udp);

and the general formula becomes =f(lJdp), giving a-- p =
a-p

rjjTj-^- But (see again 585) we have Tv = P'^, /{Udp) =

D'^; therefore the radius of curvature of a normal section

= T(<T-/o) = D^ . P'^ : that is, it is, as is well known, the square

of the semi-diameter parallel to the direction of osculation, di-

vided by the perpendicular let fall from the centre on the tan-

gent plane.

607. In general, for any surface, it may be shewn by one

process, that one member, and by another process that the other

member, of the equation

SS.dvdp = 2S.dvSc^f,,

is the coefficient of a;'</' in the developement of the function,

f(p+xdp + ySdp).

It follows therefore that these two members are equal, or that

we have,yor any surface, the equation,

S . SdvdjO = S . dvSdp.

It is necessary to observe, as concerns the notation employed,

that the vector v being regarded as a function of p, its diffe-

rential dv becomes a linear and vector function oi dp, which may
however involve p also: but that in passing to the variation Sdv,

of this differential of v, we here conceive the symbol S to operate

only on dp, and not on p. Thus having found, 1st, dfp - 2S . vdp,

as in 575; 2nd, from this, an expression of the form v=<l>p;

and 3rd, dv = i^ (dp, p) ; the plan of the notation, and the linear

form of the function \p, so far as it depends on djo, enable us

to write, 4th, Sdv = Tp (8dp, p). And then the theorem of the pre-

sent article is, that

S . dp-\p (Sdp, p) = S . Sdpip (dp, p) ;

or that for any two vectors, a and r, and for anyform of the sca-

lar function, f, the vectorfunction ip must satisfy the condition,

S . ri/- (ct, p) = S . (T\P (r, p).
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In the example of the ellipsoid, (j>p was itselfa linear function of

p, so that t// {dp, p) was = fdp and accordingly, for this surface,

we found, in 470, a formula which may be written thus:

S . T^(T = S . (70T =y((T, r).

608. By operating, as above, with S only on dp, and on dv so

far as it involves dp, but not as it may involve p also, we find,

with the help of the general formula of the last r,:ticle,

dp' SS^ = S . dv {Sdpdp - dpSdp) Ho

;

remembering that (compare 571), by the anal'^gy of the opera-

tions d and S, the variation of the reciprocal ofa quaternion is,

generally,

so that we have here,

S.dp-'=--dp-' .Sdp.dp-K
But

Sdpdp - dpgdo = 2 V. ddpdp = 2dp^V ^;
dp

therefore (permuting cyclically under S, and dividing by dp*) we

have

gS^=2S.dp-'dvV^.
dp dp

It may be noted that (compare 595),

and that therefore the recent formula may be thus written,

gS$! = -2Tdp-'S.dv8Udfl, because dp'Tdp^-TdpK
dp

609. To interpret these results, I observe that because v is

perpendicular to both dp and Sd|0, therefore V. Edpdp'^ must have

the direction oi ±v; and that consequently the supposition

^^S-f^ = 0, gives 0=S. vdvdp.
dp

Of these two formuise, the former, by C04, expresses the condi-
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tion for the osculating sphere being the greatest or least possible :

or, more accurately, for the centre of that sphere attaining for a

moment a stationary position, v/hWe the direction o/ osculation

varies. The latter formula expresses that Av, or that v+dv, is

coplanar with v and with Ap ; or that two near normals intersect.

And thus is reproduced the well-known theorem, that the ^reato^

and least spheres which osculate to a surface, do so in the direc-

tions of the LINES OF CURVATUEE. We might derive the same

interpretation from the formula,

= S.dvSUdp,

by considering that the tangential vector SUdp is perpendicular

at once to the normal v, and to the tangent Udp ; since then it is

perpendicular also to Av, we must have

dv
III

V, Ap,

as before.

610. The form recently found, for the differential equation of

the lines ofcurvature, namely,

= S . vAvAp, gives Ap J_ V. vAv
;

and thereby reconducts to a theorem of Dupin, that the tangent

to a line ofcurvature is perpendicular to its conjugate
TANGENT. For, in general, the vector V. vAv, as being perpen-

dicular both to V and to i^ + dv, has the direction of the intersec-

tion of the two consecutive tangent planes, whose points of con-

tact with the given surface have for vectors p and Ap ; or in other

words, it has the direction of the rectilinear generatrix of

THE ciRCUJiscRiBED DEVELOPABLE, which touches the surface

along the element Ap : it has, therefore, in Dupin's phraseology,

the direction of the tangent conjugate to this element, or to the

corresponding tangent, \]Ap. It may be noted here, that the

curve of the second order, which has been called by the same

eminent geometrician the indicatrix oi the curvature of a given

surface, at a given point, may be expressed, in our symbols, by

the system of two equations,

S . vAp =0, S . AvAp = constant.

The diiferential equation of the lines of curvature may also be

thus written,
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= V.dpdUv;

and, under this last form, it is easily seen to contain a theorem

of Mr. Dickson, namely, that if two surfaces cut each other

along a common line of curvature, they do so under a con-

stant ANGLE : for the differential of the cosine of this angle is

dSU.vv'=S.UvdUv' + S.dUvUv' = 0,

each term here separately vanishing.

611. In obtaining (see 602) by the extension of Taylor's se-

ries, the term S . dvdp, of the developement of/(|0 + d|o), as the

half ofthe differential of the preceding term 2S . vdp, we treated

djo as constant, according to the general rules of articles 573, &c.

But when this term has been thus obtained, it is allowed to trans-

form it as follows, treating p now as the vector of a curve upon

the surface, or as a function of a scalar variable (compare 574,

591):

= dS . vdp = S . dvdp + S . vd'p ; S . dvdp = - S . vd^p.

The formula (605) for the centre of an osculating sphere comes

thus to be transformed as follows :

t> „ vd'p „ V
= o -j-— = o ;

(T - jO CljO'' tt) - jO

if w be (as in 589) the vector of the centre of the osculating cir-

cle to the curve in which p terminates, and which may be here

conceived to be a plane and oblique section of the surface. The

logic of this very simple process oi calculation might deserve, and

would support, a stricter scrutiny. For the present I content

myself with observing that the result is an expression for the

theorem of Meusnier, referred to in the article last mentioned
;

since it shews, on multiplying by the scalar {a-p) v'\ that

1 = S —, = b , a- <u±w - p,
(1)- p w - p

and therefore that the centre of the osculating circle (to the ob-

lique section) is the projection of the centre of the osculating

sphere (to the surface), on the absolute rionnal to the curve.

612. The formula of 604, or 605, for the curvature of any
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normal section, may be verified, and might have been derived, by

the following geometrical considerations. It is permitted, in that

formula, to change v to iiv, where n is any scalar multiplier; be-

cause S . i'd«d^"' = 0, if dp be a tangential vector. We may

therefore dispose of the length of v at pleasure, provided that we

retain its normal direction; and, for the purposes of the present

inquiry, we may transport it, parallel to itself, to any position we

choose. Thus, we may suppose v to denote here that portion of

the normal which terminates at the surface, but begins at any as-

sumed transversal plane, and the formula of G04 will still hold

good. Now let this plane be drawn through the centre c of the

sphere which osculates at a given point p, in the given direction

of an element pp'; and let it be parallel to the tangent plane at

p. Let also the normal to the surface at the near point p' of the

section be cut by this transversal plane in the point c', near to c.

Then, considering the differentials as infinitesimals, or suppress-

ing what must disappear at the limit, and denoting by cr+ d'a the

vector of c', as c in the formula denotes the vector of c, we shall

have

v=CF = p-a,dv= c'p'- CP = pp'-cc' = d(0- d'tr;

therefore, with this construction for v, the formula becomes,

= ^L-_S^ = l-(l-s£?Vs?.
p-(T tip \ Op J dp

and shews that

d'(T ± dp, or cc' J_ pp'-

But we have also, by the construction,

cc'i. cp; therefore cc'j. cpp';

that is, the point c is the projection of the point c', and the line

cp' is the projection of the line c'p', on the plane cpp'. In other

words, this interpretation of the formula shews, that " if the nor-

mal to the surface at a near point (p') ofthe section be projected
ON THE GIVEN NORMAL PLANE (CFP'), this projection (cp') will

CROSS THE GIVEN NORMAL (CP) ?M the Centre (c) ofthe SPHERE

which osculates in the direction of the section." Now this result

might have heau foreseen, by a very simple geometrical reason-

ing. For if, at any point i''. near or fir, upon the section, wc
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draw, 1st, the tangent to that section; 2nd, the normal to that

curve in its own plane; and 3rd, the normal to the surface, then

these two latter normals will bolh be perpendicular to the tan-

gent, and therefore their plane will be so; and the normal to the

surface, when projected on the plane of the section, will become

the normal to the curve. Hence, it is easy to see that when p'

is infinitely near to a given point v of the same section, the nor-

mal to the surface at p' intersects the axis cc' of the circle which

osculates to the section at p ; or that its projection crosses the

normal cp in the centre c of that circle. Conversely if we had

begun by seeing, geometrically, that this projected and near nor-

mal thus crosses the given normal in this centre, we might have

inferred that, in the notation of the present article, cc'Jl pp', or

d'(T J_ dp, and thence have obtained the formula of 604, at least

for the case when m is supposed to be bounded as above. But

this restriction would be removed by changing v to nv, as before.

The formula might therefore in this way have been proved to be

generally true. I shall not delay you by pointing out the man-

ner in which it may be employed, to assign the known law of the

variation of curvature in passing from one section of a surface to

another.

613. Suppose now that the vector of the given surface is ex-

pressed as follows

:

p^4,{x,y);

namely, as some known vector function of some two scalar varia-

bles, X and y, which may or may not be the two rectangular co-

ordinates, usually so denoted. We shall then have expressions of

the forms,

Ap = p'Ax + piy, Ap = p"Ax + p'Ay, dj9, = p'Ax + pAy,

p, p^.p", p,', p_,
being five new vectors, of which the two first are

tangential to the surface, so that we may write,

v = Y.pp,,S.vp=0,S.vp = 0.

Hence

d-p = p'Ax- + 2p/da:dy + p, d^- + p'd- .r + pd-y,

d-x and d-y being introduced, to express that x and y are consi-

dered as being, for any one curcc u])on the surface, functions of
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sorae one independent variable, which may (if we think proper)

be supposed to be the arc of that curve. Operating by S . v, we

find,

S . vd^p = S . vp". da;2 + 2S . rp/ . dxd^+ S . vp„ . dy\

A'x and d'y going off. Making then

<T-p

SO that R is, by 604, the radius of curvature of a normal section,

and is positive when the deviation of a near point of that section

from the tangent plane has the same direction as v ; and observ-

ing that, by the present article,

dp= = p'-' dx^ 4 2 S . p'p,dxdy + p/ dy' ;

we find that the formula of 611, or the following,

R''dp-=S.Uvd-p,

becomes

= Adx- + 2Bdxdy + Cdy\

where A=R-'p--S . p"Uv, B=R-'S. pp, - S . p/Uy,

For the lines of curvature,

Adx + Bdy^O, Bdx + Ci\y = 0;

and, therefore, to determine the extreme curvatures /Zf', Ri'^,

we have the quadratic equation,

&-AC=0.

Hence what is called by Gauss the measure of curvature of

the surface, namely, the product of the reciprocals of its two ex-

treme radii of curvature, being the product of the roots of this

quadratic equation, has for expression, in our present symbols,

j?r' Ri' = v-H{S . p;Uvy - s . p'VvS . p„Uv)

;

because

v^ = (v.ppy=is.p'py--p^p;.

We may also write, with equal generality, because v'' = - Tv"^,

this still more simple expression,
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V V \ V
^

614. To exemplify this general process, and to compare it

with known results, let us take the expression for p which has so

often occurred already, namely, p = ix+jy+kz, in which xyz de-

note three rectangular co-ordinates, and z is now regarded as a

function of x and y. Then making, as is commonly done,

dz = pdx + qdy, dp = rdx + sdy, dq = sdx + tdy,

we find for the five vectors, p . . p,, the expressions

:

p'=i + hp, p=j+kq; p" = kr, p'=ks, p,=kl.

Hence, by the foregoing article,

v = V. p'p, = k-ip-jq; V-' = ( 1 + jtJ' + f)-^ {ip +jq - h)
;

^P_^ ^
• S ^ = —— • S ^' = ——

'^

V l+p'' + q^' V l+p'+q''' V l+p'+q-'

so that we are conducted finally to the known value,

rt-s'
B,-' Ri^ =

{l+f+q'Y

615. The general formula of article 613 may be thus written :

- v'R.-'Rz-' = (s . vp;y - s . vp"s . vp„\

where if we make for abridgment,

e = - p\f= - S . p>,, <7 = -
pf,

and denote the partial differential coefficients of these three sca-

lars, taken with respect to x and y, on a plan similar to the fore-

going, as follows,

e' = - 2S . p'p",f'
= ~ S . p'p!-S.p"p,,ff'=-2S.pfi;,

e, = - 2S . p'p,',f,
= -S . pp',- S . p>„, ^, = - 2S . p,p„,

we shall have, by the general principles of this calculus, because

V =V. jo'p,, the transformations

:

2 (S . vpj = 2v'p'; - e S . vp,p', +g'S. vp'p; ; v' =/' - eg ;

2S.vp"S. vp„ = 2v^ S . p"p„ + {g - y) S . vpp" + g,^. vp'p ;

2S.vp, p', =ge, -fg' ; 2S . vp'p', =fe, - eg
;
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2 S . vp,p" = ge +/ (e - 2/') ; 2 S . vpp" =fe+e(e,- 2/")

;

and finally,

2 (S . p"p, - p'r)
= e ,

- 2/' + ^",

if, by the same analogy of notation, we write,

- e„ = 2S . p>„' + 2p/, - g" = 2S . pp'' + 2p',-,

and -//= S . |o'/3„' + S . p,/3," -^ p','- + S . ,o"p„.

It follows then that \hemeasure ofcurvature, Ri'lh', dhpends

ONLY ON THE THREE SCALARS, e,f, g, which enter as coefficients

into the following expression for the square of the length

OF A LINEAR ELEMENT,

Td|U- = edx- + 2fdxdy + ffdg-,

and on their VART \\L differential coefficients, ofthe first

and second orders (namely, on all of the first, but only three of

the second order), taken with respect to the two independent

and scalar variables, x and y: that is, altogether, on the twelve

scalars,

e,f,g; e,f, g'
; e,,/,, g, ; e,,,/', g".

And thus is reproduced, in a diiFerent notation, and by adiiferent

method, but with perhaps sufficient simplicity, regard being had

to the difficulty of the subject, what has been justly called by

Gauss, a most important theorem (theorema gravissimum^ :

namely, that Theorem which was discovered by himself, respect-

ing the constancy of what he has named (as above) the mea-

sure of curvature ofany surface, at any point, when the sur-

face is treated as an infinitely thin, and flexible, but inex-

TENsiBLE solid, and is conceived to be unrolled, or otherwise

transformed, as such; each linear element of the surface

retaining its length during the process. The letters e, f, g, of the

present article, answer to the symbols E, F, G, in the notation

of the Memoir referred to : in which also the two independent va-

riables are denoted by p and q, instead of x and y.

til6. Conceive now that x denotes the length of the geodetic

line drawn to the end p of p, from some fixed point a upon the

surface ; and let y be the angle which the line so drawn makes, at

that fixed point, with n fixed tangent to the surface there; the
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suggestion of these two scalar co-ordinates being taken from the

Memoir of Gauss. By retiiiningy unchanged, but infinitesimally

altering x, we move along the geodetic line ap, through a linear

element, pi\x, of which the length =dx; thus

T|o' = 1 ,
p'- = - I ; e = 1, e' = 0, e = 0, e , = ;

and p is seen to be an unit vector, in the direction of the last-

mentioned element. Again, by infinitely little altering y, without

making any change in x, we move from p along a trajectory

which cuts perpendicularly the various geodetics issuing from a,

through a linear element p di/, of which the direction is perpen-

dicular to that of the element p'Ax ; thus

p,Xp', S.p>,= 0;/=0,/' = 0,/ = 0,/; = 0;

and instead of the expression v=V.p'p,, we may write simply

1' = pp. As a verification we have now,

= S .
p'p" = S . p'p[ = S . p"p, ; p ± p, p"X p,,

p"
II

1'

;

and finally,

Y.vp"=0,

as, by the supposed geodetic character of the lines for which y is

constant, and the constant length of the element p'da;, vic ought

(by 579) to find. Now, without any restriction on e, /, g, or on

their partial diflFerential coefficients, the calculations of the pre-

ceding article give this equation (differing only in notation from

the formula obtained by Gauss), to determine the measure of

curvature

:

4 (eg -f-y- E,-^K,-' = e {g'^ - 2gJ' + ge)

+f{eg,-e,g'-2e,f,-2g'f+4fX)

+ g (e; - 2ef, + eg) - 2 {eg -p) (e, -2/,' + g").

Introducing then the values of the present article for e, /, &c.,

and making also

g = m}, g'=2mm', g" -2mTn' +2m'\

we find that the measure of curvature comes to be expressed as

follows (agreeing again substantially with an important result of

Gauss)

:

i^r' /?,-'=( —) -—=->«' m", where m = Tp.
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The same conclusion might of course have been more rapidly

obtained, by using earlier the special system of co-ordinates em-

ployed in the present article.

617. With the recent significations of x and y, let us now

conceive that those two scalar co-ordinates belong to a variable

point of some new geodetic curve on the same surface, not pass-

ing through the given point a ; and let s be the arc of that curve,

measured from some assumed point b thereon. Then, by 613,

if we write,

da: = x'ds, dy = yds, d-s = 0, d^a; = x"ds-, d^-y = y"ds^,

we shall have

d^/o = (p"x' + ^pix'y + p^y"^ + px + py"^ ds-
;

where by 579, 613,

d^p
II
V ± p, and therefore S p'd-p = ;

but we have now,

p' = -l, S.p'p^ = 0, S.p'p"=i), S.pp'=Q,

S . p'p^^ = - S . pfl'
= mm

;

thus the general diiferential equation of a geodetic on the surface

becomes

x" = mmy'-, or u' = - /wy,

if we write, as we may,

a;'=cost;, y =m~'^ ^\nv, a; " = - v' sin v,

•where v is the angle apb or qpp', between the direction of the

element pp' or d* of the geodetic curve bp prolonged at the

point p, or (x, y), and the element pq or da; of the other geodetic

line AP, prolonged at the same point. We may also express the

last result as follows

:

dy = - m'dz/ ; or thus, tv = - ni'^y,

if we employ the symbol 8 to denote the passage from the first

geodetic line (j/) to a near geodetic line (y+Sy), and reserve d

to signify motion along the line ap or (y) itself In whatever no-

tation the result may be expressed, it is essentially equivalent to

one which Gauss obtained, by an entirely different process of cal-
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culation, in the Memoir already referred to : which was pre-

sented, in 1827, to the Royal Society of Gottingen, and has re-

cently been reprinted, with very valuable comments and addi-

tions, by M. Liouville (Paris, 1850), in the Second Part of a

work, entitled " Application de 1' Analyse a la Geometric ;" the

First Part of the work being, in fact, a Fifth Edition of the ce-

lebrated Treatise of that name by Monge.

618. To see clearly the geometrical signification of the re-

sults of the two last articles, let us conceive that np and pq are

two small, successive, and equal elements of the geodetic line

AP; and that nNi, pp„ qQi, are three small geodetic perpendi-

culars to that line (y), erected at the three successive points n,

p, Q, and continued to meet, in Ni, Pi, Qi, a near geodetic line

(y + By), which issues from the same fixed point a. Then

mSy = ffiSy = Tp^Sy = pPi ;

and the expression found in article 616 for the measure of curva-

ture becomes,

NP.PQ.PPi

it being understood, of course, that the ultimate value of this quo-

tient is to be taken. Again, with respect to the last formula of

617, we may conceive that pp' is an element of the new geodetic

considered in that article, intercepted between the lines (y) and

(y + By); and then, if pq be still an element (da;) of the line ap

or (y) prolonged, the theorem expressed by that formula is, that

QPP'- AP P = (QQi - PPi) -H PQ

;

the recent significations of Pi and Qi being retained. With qua-

ternion symbols, the two results may be denoted as follows :

^' ^^ =dpmp'^"-~ 'nip
'

where d still refers to motion along the original geodetic line

AP, and 8 to passage /row that line to a near one. The results

may also be interpreted as relating to tico near normal sections

of a surface, npq and Ni p, Qi, considered as cut, in p and p',
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by a third normal section, or new normal plane to the surface.

And there are other modes o^ illustrating and even oi deducing

the same results geometrically, on which it is impossible here to

delay.

619. Conceive now that qq' is another transversal and geo-

detic element, intercepted between the lines («/) and (j/ + Sy), and

very near to pp' : so that pqq'p' is a little geodetic quadrilateral,

whose opposite angles are almost, but not quite, supplementary.

If we denote those angles at its corners simply by the letters

Pi Q) Q) P^i we shall have by the foregoing articles,

F + P=ir-lv = ir + m'hj,

Q' + Q = 77 + Si> + dSu = Tr- (ni' f m"^x) Sy ;

and the spheroidical excess of the quadrilateral (compare

587) is therefore expressed as follows:

P4 Q+Q'+F-2Tr = dSv = -m"AxSy;

at least if we neglect all terms of the third and higher dimen-

sions. But, to the same order of accuracy, the area of the same

quadrilateral is

pPi . PQ = m8y . (\x.

If, then, the spheroidical excess ofthis (and therefore ofany other)

smallfigure be divided by the area, the quotient is ultimately

equal to the measure of curvature ofthe surface; or in symbols,

^'^v „ „ „
^ ,

=-?n"m-' = 7?i-'i?,-V
mhyax

But again, either by observing that, with the notations of the last

few articles, we have the expression,

or by using the less general formulse of article 614, it may be

shewn that

V. dUv8Uv= 22r' i?2-' V. Aplp ;

and therefore that the measure of curvature ofany surface at any

point, multiplied into the area ofany infinitely small figure on

that ])art of the surface, gives, as its product, what has been
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named by Gauss) the total curvature of that superficial ele-

ment: namely, the area of the corresponding portion of the unit-

sphere, this correspondence consisting here in the parallelism of

the radii (Uv) of the sphere, to the normals {v) of the surface.

Hence the total curvature of any such quadrilateral element as

has been considered in the present article, and therefore also the

total curvature of any geodetical triangle, or indeed oiany closed

figure on any surface, Ubounded by geodetic lines, is equal to its

SPHEROIDICAL EXCESS : in such a manner that if ab, bc, ca, be

geodetic lines, then,A + B + C-tr= total curvature of geodetic tri-

angle ABC = area of the corresponding triangle on the unit-sphere

;

which latter triangle will not in general be what is called a sphe-

rical triangle, because it will not generally be bounded by arcs of

great circles. In applying this very remarkable and beautiful

theorem of that great mathematician, Gauss, whose name we have

so often mentioned lately, we are to remember that (as he pointed

out) the elements of area on the unit-sphere must be supposed to

change their algebraic sign, when the measure of curvature passes

from being positive to negative, that is, when the surface changes

(if it anywhere change) from being convexo-convex like an ellip-

soid, to being concavo-convex like a single-sheeted hyperboloid

:

also that all singular points, like the vertex of a cone, are excluded

from those portions of the surface to which the investigation

refers.

620. These specimens of the application of the differential

calculus ofquaternions to geometrical investigations might easily

be greatly multiplied : but perhaps they are already too nume-

rous. Were it not for this apprehension of being tedious on the

subject, I might shew you that a variety of problems respecting

the osculating and normal planes, and the torsions, evolutes, &c.,

of curves of double curvature, in space or on a surface, may be

treated by processes analogous to those which have been already

explained. For example, what is called by M. Liouville the ra-

dius ofgeodetic curvature of a curve upon an arbitrary surface

may be expressed, in our notations, by any one of the values

which were assigned, in article 589, for the constant c of the

curve there called a Didonia. But I prefer to mention here a

2 R
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stantially reprinted (with the foregoing formulae of this article)
in the Philosophical Magazine for October, 1847 :

d.r '' dy dz' \dx' dy- dz^'

so that, if i; be any scalar or vector or quaternion function of the
three independent and scalar variables x, y, z, we have this im-
portant formula:

d^u d^v d^n

d^'^dp + dl^^'"^'*'-

The bare inspection of theseyb««« may suflSce to convince any
person who is acquainted, even slightly (and I do not pretend to

be well acquainted), with the modern researches in analytical
PHYSICS, respecting attraction, heat, electricity, magnetism, &c.,
that the equations of the present article must yet become (as
above hinted) extensively useful in the mathematical study of na-
ture, when the calculus of quaternions shall come to attract a
more general attention than that which it has hitherto received,

and shall be wielded, as an instrument of research, by abler hands

than mine. Meanwhile I may remark that if u denote tlie tem-

perature of the point whose rectangular co-ordinates are x, y, z,

in a solid body, then the symbol - <\v may denote the flux of
HEAT at that point. Again, if u be what is called the potential
of a system ofattracting bodies (with the Newtonian law), or the

sum of their masses divided respectively by their distances from

a variable point xyz, then o ?' is a vector which represents the

amount and the direction of the acceleiiating force at that

point, produced by the actions of these bodies. And if we simply

consider v as some scalarfunction of the three rectangular co-

ordinates X, y, :, then the symbol ± <iv denotes a iiormal vector

to the surface, of which the equation is

V = constant

;

in which latter view, we have also this symbolical equation,

<J = -(S.dp)->d.

621. Since I have been led to mention physical applications,

I shall devote an article or two to some methods of expressing

2r2
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by quaternions the attraction of the Sun upon the Earth, aTid

the disturbing force of the Sun upon the Moon, or of a superior

on an inferior planet, which occurred to me in 1845, and were in

part communicated to the Royal Irish Academy in that year, but

more fully in the two years following.

If we conceive an unit of mass to be concentrated at any

fixed or moveable point, from which the vector to some other

physical point is a, then the accelerating attraction which this

mass exerts on this latter point, according to the Newtonian law,

is represented, in length and in direction, with the notations of

the present calculus, by the symbol,

^(a) = a-'Ta-';

which vector-function, <j) (a) or (j>a, I for this reason propose to

call the TRACTOR, corresponding to the vector of position, a; or

more concisely, the tractor of a. With this signification of^a,

if we now suppose that the two points compose a binary system,

with a sum of masses denoted by M, the equation of the relative

motion of the latter about the former may be thus written :

where a" is the second differential coeflBcient of a with respect to

the time t, and therefore (by 574) the vector of relative accelera-

tion, while thefirst differential coeflScient a is the vector of rela-

tive velocity. An immediate integration, containing the laws of

constant plane and area, is obtained by observing that the re-

cent equation gives,

V.ao" = 0, and therefore V. aa'=y,

where -y is a constant vector, perpendicular to the plane of the

orbit, and representing the doubled areal velocity. Again, the

tractor is a function which, in virtue of its mere form, and inde-

pendently of any physical supposition, admits of being thus ex-

pressed :

,^a= dUa ^ V. ada = (Ua)'^ (V. aa')
;

one way, among many, of obtaining which transformation, is to

observe that, by 595,
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d Ua = dl Ua .Ua = V (da . a") .Ua =UaV. a'Aa
= aTa-' V. a-da = a'Ta' V. ada = 0a .V. ada.

For the relative orbit of the binary system we have, therefore,

this otiier integral,

a + M'y"'Ua = constant, or Ua+ M'^ya = e,

c here denoting a second constant vector. Thus, in the undis-

turbed motion of a planet or comet about the sun, the whole va-

rying tangential velocity, a, may he decomposed into two partial

velocities, My-'^s, and - ilf'y-'Ua, of which both are constant in

magnitude, while one of them is constant in direction also. The
component velocity (-ikfy-'Ua), which is constant in magni-

tude, but not in direction, is perpendicular to the heliocentric

vector (a); the other component (My-^t), which is constant in

both magnitude and direction, is parallel to the velocity at peri-

helion ; and the fixed component bears to the revolving one, in

amount, the ratio of Te to 1, where Te is the exccntricity of the

orbit. For if we operate by S . a on the integral equation last

obtained, and observe that

S . aUa = - Ta, S . aya = - S . yad - - y-,

we find, as the completely integrated equation of the relative or-

bit, the following:

= Ta + S . a£ + M'^y-, OT r'^ = p~' (I + e cos v),

where

r = Ta,p = M-'Ty\ e=Te, v^TT-ae, so thatc' = ilfp, ifc=T7;

the well-known character of the orbit as a conic section, with the

sun as one focus, being in this way reproduced with ease. At

the same time we see that if from the sun, or other point taken

as origin, we draw a series of vectors a to represent the heliocen-

tric velocities, and give the name of Hodoguai'h to the curve

which is the locus of their extremities, this curve wilt always be

(with Newton's law) a circle ; of which the vector ofthe centre

is the constant compone7it of velocity, My'e ; while the radius is

the constant magnitude Mc~\ =cp'\ of the component which

varies in direction, namely, the sum of the masses divided by
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the constant ofdouble ureal velocity ; or the constant c divided

by the semiparameter p ; or the square root {Mp~^)i of the quo-

tient obtained, when the same sum of masses is divided by the

semi parameter of the relative orbit. But I cannot enter here

into the details of that theory of the Law or the Circular Ho-

DOGRAi'H, which was communicated to the Royal Irish Academy

about the end of 1846, with some additions shortly subsequent, as

printed in the Proceedings of the body ; from which (for March,

1847) I shall merely extract the following theorem of hodogra-

phic isochronism, equivalent virtually to a celebrated theorem of

Lambert, but presenting itself under a different form, and ob-

tained by a quite different process :
" Iftwo circular hodographs,

having a common chord, which passes through, or tends towards,

a common centre offorce, be both cut perpendicularly by a third

circle, the times ofhodographically describing the intercepted arcs

will be equal." 1 am anxious to acknowledge here, that in the

general conception of connecting by some curve or line (by me
called as above the hodograph) the terminations of lines drawn

from one common point to represent the varying velocities of a

body, I have found myself anticipated by Moebius, who has in-

troduced that conception (but not, so far as I have noticed, the

theorems above referred to), in his clear and valuable book on the

elements of physical astronomy, entitled " Mechanik des Him-
mels" (Leipzig, 1843). The inverse curve, which connects the

extremities of what may be called the vectors of slowness, or

the locus of the extremity of the rectilineal vector a'-\ has also

been the sul)ject of some researches of my own, and I have ven-

tured to pro|)ose for il the name oi anthodograph, or, more con-

cisely, that of Anthode.

G22. Suppose now that a is the heliocentric vector of the

earth, and /3 the geocentric vector of the moon ; also let M now
denote the mass of the sun alone. Then, because (3 + a denotes

the moon's heliocentric vector, the accelerating actions of the

sun on the earth and moon are, respectively, in the notation of

the foregoing article,

Mf (a) and Mq,
(ft + a)

;

from which it iollows that the DibiiRBJNCi iOKL£, exerted by the
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sun upon the moon, in her motion about the earth, is represented

by the expression,

M(p (/3 + a) - M^a, or MA(j,a, if we make j3 = Aa :

that is, the sun's disturbing force is the difference of the two he-

liocentric tractors, multiplied by the mass of the sun. It be-

comes therefore an object of great importance, in the applications

of quaternions to physical astronomy, to develope this difference of

tractors, ^<^a, which might perhaps be named the turbator.

An obvious mode, but not in this case the easiest one, of effect-

ing this developement, is to differentiate the tractor, (j>a, regarded

as a function of the vector of position a, and to employ the ex-

tended form of Taylor's series (arts. 573, 599, &c.). A first dif-

ferentiation of this function gives, when we make da = |3,

d0a=d.a-'Ta-' = -a-'daa-'Ta-'-a-'Ta-MTa
= (a^ + S . a/3) . a' Ta' = - (a-'/3 + S . a-'/3) . <pa;

and a second differentiation, after a few analogous reductions,

would be found to furnish the expression,

id>a=|{(a-/3)^ + (S.a-^)M^a;

so that we have thus the terms of the first and second dimen-

sions relatively to /3, or those which are of the same order as

I3a'\ /3-a"S in the required developement of the new tractor

ip{a + 13), or of the disturbing force A^a. But the following

process is, in this question, simpler, and conducts to results

which are more easily and interestingly interpretable. We have

^(/3+a) = T(|3 + a)-^(i3 + a)-' = |-(/3 + a)=i-^(^^a)-'

= i-aHl + «-'/3) (l + /3a-)i-* {a(l + a-^))"

= (l + ^a-')-*(l+a-'/3)-*a-'(-«=)-*

:= (l + q)-i (I + q'yi <pa,

where

But, as in ordinary algebra, we have the dcvclopements,

(i-f^)-* = i -k^ ir-- •'

whence wc mav write,
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ij) {p + a) = Sn, n' 011) n't

where

<t>n, n- = ni,„ „, (/3a)» (a/3)"' a- ' (- aO"*-"-"',

_ 1 .3...(2w-l) 3.5...(2n'+l)
it»K«.»'-2.4...

(2n) ""2.4... (2n') '

Supposing therefore still that Tj3 < Ta, we see that the attrac-

tion (p (ji + a), which a mass-unit, situated at the beginning of the

vector /3 + a, exerts on another mass-unit situated at the ewrfof the

same vector, is thus decomposed into an infinite but convergent

series ofother forces, 0„, „, of which the intensities are determined

by the tensors,

T0„,„=»J„,„.(T.i3a-')''*"'Ta-%

while the directions of the same partial forces are determined by

the versors,

U0„, „. = (U . 0a)'-"'Ua-> = (- \]qf--V (- a),

of the expressions recently given. Let a, b, denote the lengths,

or tensors, of the vectors -a and +]3, and let C be the angle be-

tween them ; so that, in the astronomical example lately men-

tioned, a and b are the geocentric distances of sun and moon, and

C the geocentric elongation of one of those two bodies from the

other; then

angle from - a to component force <j>n, n' is = (w - n')C;

and intensity of same partial force = >w„, „, (6a" ^)"*"'a"^;

where ?«„, „. is tlie same numerical coefficient as before.

023. Let A, B, c, denote respectively the positions in space

of the centres of the moon, the sun, and the earth ; so that

a = BC, (3 = CA, a + j3 = BA ; a = Bc, 6 = CA
;

then the sun's disturbing force on the moon, if his mass be still

treated as unity, may be, by the foregoing analysis, decomposed

into a series ofgroups ofsmaller and smaller forces, of which

groups it may here suffice to consider the two following. The
symbol (p,,, „ denoting here the sun's attractive force tpa on the

earth, the first and principal group consists of the two disturb-

ing forces, (p^, c and i/)„, i; and of these [.he frsi is \n\xc\y ablati-
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tious, or is directed along the prolongation of the side of the tri-

angle ABC, which is drawn from c to a, and it has its intensity

denoted by the expression ^ 6a"S; since we have for this force, and
for its tensor and versor, the expressions

0»„ = ii3(-aO-*; l>,„ = i6a-^ U^„o = U/3.

The secowd disturbing force, of this_^r*/ grroMp, has for expres-

sion,

^0, 1 = ia/3a-' (- a^yi = ^afia' G"',

where afia-' denotes (by 290, 429) the reflexion of the line /3

with respect to a, or to - a ; its intensity is exactly triple of that

of the former force, being represented by ^ba'^ ; and its direction

is the same as that of a straight line drawn from c to a', if a' be

a point such that the line aa' is perpendicularly bisected by
the line bc (prolonged through c if necessary). Of these two
principal disturbing forces, in the case here considered of our own
satellite, the first may therefore be said to be directed towards

the geocentric place of the moon; while the second is directed

towards what may be called afictitious moon, namely, to a point

in the heavens which is to be conceived to be s&farfrom the sun

on one side, as the actual moon is on the other side, but in the

same great circle ; so that it may be imagined to be a sort of

reflexion of the moon, with respect to the sun. If we now ex-

tend the same conception and phraseology, so as to imagine a

similar reflexion of the sun with respect to the moon, and to call

the point in the heavens so found the first fictitious sim, the

moon being thus imagined to be seen midway among the stars

between the actual and this fictitious sun ; and if we farther ima-

gine a secondfictitious sun, so placed that the actual sun shall

appear to be midway between this and the first fictitious sun

;

we shall then be able to describe in words the directions of the

three disturbing forces of the second group, and to say that those

directions tend respectively, for the case of our own satellite, to

these three (real or fictitious) suns. For these thxce forces will

have, for their respective expressions, the three corresponding

terms of the deveiopement of the tractor assigned above, namely,

the three following terms :
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\-4
0j,o=fi3a/3(-a=)-

of which the intensities are, respectively,

fft'^a-*; l^'a'; V'6'a'';

so that they are exactly proportional to the three whole numbers,

1, 2, 5 ; while they are directed, respectively, to ihejirst fictitious

sun, the actual sun, and the second fictitious sun. In fact the line

U./3a/3, = U./3( -a) /3"S has the direction of the sun's geocentric

vector ( - a) reflected with respect to the moon's geocentric vector

03) ; U . /3'a, = U (- a), has the direction of the sun's geocentric

vector itself ; and the line U . a/3a/3a"' has the direction of the re-

flexion of U . /3aj3 with respect to + a. The disturbing force of

a superior planet, exerted on an inferior one, may be developed

or decomposed into a series of groups of lesser disturbing forces,

the intensities of the several forces in each group being con-

stantly proportional to whole numbers, in an exactly similar way

;

nor does the application of the principle and method of develope-

ment thus employed terminate here. Nothing depends, in the

foregoing investigation, on any supposed smallness of excen-

tricities or inclinations : the actual (and not the mean) dis-

tances of the points b and a from c are those denoted above by

a and b; and the great circle in which the above-mentioned re-

fleximis, and all the subsequent ones which would be found by

taking higher terms of the developement of 0(/3 + a), are per-

formed, is the actual or momentary plane ofthe three bodies, with-

out any reference to an approximate or momentary orbit,

624. 1 have made several other applications of quaternions to

various departments of mechanical or physical science, of which

applications some have been published. Among them, 1 shall

just mention here, that it was shewn to the Royal Irish Aca-

demy in 1845, that the known integrals of the equations of mo-

tion of a system ofbodies, attracting according to Newton's law,

or of the system of equations included in the following formula

(where the recent notation (/> is employed),

d=n ,-. . ,

^j -^ i. )H0 (a- a),
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the accent here leforring to the passage from one body to another,
might easily be deduced, by the principles of the present calcu-

lus; and that a formula including those differential equations,

which becomes with our abridged notations,

0=2. ?«S . ga ^+ 8S . mmT {a'-a)-\

might (theoretically speaking) be integrated by an adaptation of

that general method in dynamics, which had been previously

published by me in the Philosophical Transactions of the Royal
Society of London, for the years 1834 and 1835 ; and which de-

pend on a peculiar combination of the principles oi variations diuA

partial differentials, already illustrated by me, in earlier years,

for the case of mathematical optics. It was also shewn to the

Royal Irish Academy, in 1845, that the general conditions of
equilibrium ofa rigid system admit of being concisely expressed

by the formula,

S . a|3 + c = ;

where a is the vector ofapplication of a force denoted by the

other vector j3 ; and the scalar, - c, which is thus equal to the

sum of all the quaternion products, a/3, a'j3', &c., is, in the case

of equilibrium, independent oftheposition of the point from which

all the vectors a, a, . . are drawn, as from a common origin, to

the points of application of the various forces j3, /3', . . . In

fact this independence requires the existence of the tivo separate

equations ofcondition (each of which is equivalent to thi-ee equa-

tions, when translated into ordinary algebra),

Sj3 = 0, 2V.a/3 = 0;

whereof the former expresses that all the applied forces would

balance eacli other, if they were all transported, without any

change of length or of direction, so as to act at any common

point, such as the origin of the vectors a ; and the latter equa-

tion expresses that all the statical couples (in Poinsot's sense of

the word), arising from such transport of the forces, /3, or from

the introduction of a system of new and opposite forces, -/3, all

acting at the same common origin, would also balance each

other : the axis of any one -uch couple iicing denoted, in mag-
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nitude and in direction, by the symbol V. afi. When either of

these two vector sums,

2j3 and SV. aj3,

is dilFerent from 0, the system cannot be in equilibrium, at least

if there be no fixed point nor axis; and in this case, the qua-

ternion quotient, which is obtained by dividing the latter of these

two vectors by the former, has a remarkable and simple signifi-

cation. For it was shewn to the Royal Irish Academy, in 1848,

that the scalar part of this quaternion quotient,

S(SV.a/3-=-S^),

represents the quotient obtained by dividing the moment of the

principal resultant couple by the intensity of the resultantforce;

with the direction of which force the axis of this principal couple

is known to coincide, being the line which is distinguished (in

Poinsot's justly celebrated theory) by the name of the central

axis oi the system. And the vector part of the same quaternion

quotient, namely, the line

V(SV.ai3-S/3),

is the vector ofthe foot ofthe perpendicular, let fallfrom the as-

sumed origin, on that central axis of the system. But I cannot

enter here into any further account of any such applications of

quaternions. I shall merely state that I have found these new
methods of calculation appear to work well, as applied to some

other problems oi physical astronomy, and also oi physical op-

tics : and even to a practical subject of so excessively dissimilar

a kind, as the construction of skew bridges in engineering. In-

deed it is obvious that i/thc method of quaternions be fitted to re-

place (though perhaps not in every instance with advantage) the

Cartesian method of co-ordinates, the one method must, like the

other, be available in every case of the application of calculation

to geometry ; and therefore to all those mechanical or physical

sciences to which geometry itself can be applied.

625. It appears to be proper and almost necessary to say a

few words here, but they must be very few, on the subject of de-

finite INTEGRALS IN QUATERNIONS. Wherever we meet with

an expression of the form,
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where <o> <i are scalars, and F(t) is a given quaternion function

of a scalar variable, t, which we shall suppose, for simplicity, to

remain finite, while t varies from to to ti, there is no difficulty in

interpreting the symbol, in conformity with well-known analo-

gies, as equivalent to the following limit of a sum :

R = ][m.^.*-l^Flto + -{t,-t„)\;
»!=» ni w n

the summation relatively to m extending from m==0 to m = n-l,

or, if we choose, from m- \ to m = n. Or we may write this

other formula, which expresses a slightly more symmetric sum-

mation :

ct\ m = n

F (t) d^ = lim . S .
«-' {t, -to)F{t,+ (m-- i) n' (t, -t,)].

J to n = (» m = 1

Thus the symbol jTdjo, of 582, 584, 588, would come, as in those

articles, to be interpreted as denoting the length of an arc, s, of

the curve which was the locus of the extremity of the variable

vector p, regarded as a function of a scalar variable t: for we

might thus transform it,

JTdp = f'Tjo/d<;
Jto

and might then regard it as the ultimate value of the sum of an

indefinitely great number (?i) of indefinitely small elements of

length, of which the general expression would be

?r' {ti - to) Tpt, where f = ^„ + (»w - i) w' (<, - <„).

In fact, if the arc (s) be itself the independent and scalar varia-

ble, then (compare 574) T|o'= 1, and h''(^, -<„) becomes the

little element of arc: or if (see again 574) t denote the time, in

the motion of a point, then Tpt denotes the velocity ; and,

when multiplied into the time-element w"'(^i-<„), gives still

a product which is ultimately the element of arc. On the other

hand the symbol fd/o, or p'At, would denote the chord of the
Jtu
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same curve, Ap = pi-po, because this chord is ultimately the

vector sum of all the directed or vector elements {tangential,

while n is finite, but at last chordal), which are of the form

w-^ (^1 - to) pi, and are taken between the two proposed limits

of integration. And similarly in other cases, where the proposed

expression of the definite integral is given, or can be prepared, so

as to have, in a known way, the differential ofa scalar under

the sign of integration, although with a vector or quaternion for

its coefficient : all difficulties from singular forms, or injinite va-

lues of that coefficient, being for simplicity kept out of view.

626. But when the differential yhc/or under the sign of inte-

gration is itself, essentially, the differential of a quaternion,

then difficulties arise, of a sort which seems to be quite new, and

which do not appear to offer themselves in the usual differential

and integral calculus. Take even the following very simple form

of a definite integral.

.1170J?o

where qa and y, denote some two given quaternions, and Q a

variable quaternion. What quaternion is this integral Q to be

conceived to be ? It seems to me that this must dcjtend on the

assumedform of the function which the variable quaternion q is

supposed to be, of some independent and ^caZa/- variable t, wliicl)

changes value from some t^ to some <,, while q, as depending in

some way upon it, changes from q^ to ^i. The simplest of all

such laws of dependence appears to be the following linearform:

q = qo+ t (qi- qo), with the values, ^o = 0, ti = l.

With this assumed law, or functional ybr?n of q, we find

Q = t{(^-i)io + tq^]{qi-q<d^t

= i (9i + ?o) {qi - 7o) = i (?i' - ?oO + i C?"?! - '7''7.0-

But we may also assume a different latv, for example, the fol-

lowing:

q^qa + t {qi-qo) + t {\- t)p,

^ being here an arbitrary quaternion, which may be supposed to

be constant : the limits of the scalar variable t being still and 1.

And then we have,
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and the definite integral acquires this new value

.

f•'Oil
qdg = Q + SQ;

•'qo

where Q denotes the/o/-mer value of the integral, but SQ is the

following new quaternion :

SQ=iP (9i - 90) - i (yi - -Zo);? = i V.VyjV (7, -
<7„)

;

the term involving p^ going off) because tlie usual theory of defi-

nite integrals gives,

1:
t{l-t)(l-2t)dt = 0.

627. More generally, if we make

wheiefq denotes some given and finite function of the variable

quaternion tj, we may interpret this integral in various ways, con-

ducting to different results, according as we attribute one form

or another to the supposed'dependence of this quaternion (7 on an

assumed and variable scalar t, in order to accomplish the definite

integration, on the plan of 625. For let this quaternion func-

tion of t be more fully denoted by 5,, and let it receive some

small variation Sqt, which vanishes for each of the two extreme

values of t, so that if these be still and I, we shall have

S<jo=0,Bq, = l.

Then the original and the varied integrals become,

Q=\/gtgtdt,

Q + SQ =Q+( Sfqtqt'dt+f/qtSq/dt.

But

Sq^dt^dSqi;

therefore, integrating by parts, and attending to the limiting va-

lues of Sq, we find that
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^yqtSqtdt = -^'yq,)'Sqt<^t.

Hence we obtain the following formula for this new sort of va-

riation ofa definite integral:

lCl = \mt.ql-{fqt).lq^^t;

or more concisely,

lQ. = mq^q-Afqlq);

an expression which, as here interpreted, does not in general va-

nish. In the example of the foregoing article,

fq = q = {\-t)qo + tq„ Efq = Sq^t (\ - t)p,

and the recent formula becomes,

SQ = ^'j{l-t){p(q,-q,)-(q,-qo)p]dt

= c{p(9i-'7o)-(?i-yn)p).

as before.

628. More generally still, if jF(5', r) denote any function of

the two quaternions q and r, which is distributive with respect

to the latter, so that

F{q,r+s) = F(q,r) + F(q,s),

we are naturally led to adopt the following transformation,

Q=^l'^F{q,dq)=^y{q„q,')dt,

with an interpretation for the latter of these integrals, of the

kind assigned in 625 ; but when we come to apply this expres-

sion, we shall still, in general, be conducted to different values,

according to the different forms, which may be assumed for the

function qt, even if thisfunction remain always finite, between the

two given quaternion limits of integration. For if we write

iF{q,r)-F{q,^r)^l,F{q,r),

and similarly,

AF{q,r)-F{q,Ar)=A,F{,i,r),

we shall have
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SQ = S\l F(q, dq) =1^' S,F(q, q) dt+^^F{q, Iq) At;

where

F (q, Sq) dt = F(q, Sq'dt) = F(q, Sdq)

= F(q, dS?) = dF(q, Sg) - d,F(q, Sq) ;

but F (q, 0) = 0, and therefore F {q, 8j„) = 0,F {q, 8y,) = 0,

because the limits of integration, q^, q^, are not supposed, in this

investigation, to vary ; hence, with these limits,

\F(q,Sq')dt=-ld,F(q,Sq);

and the recent formula becomes,

S f'Fiq, dq) = hS,F{q, dq)-d,F{q, Sq)],

an expression which does not ffenerally vanish. As an example,

making 2^ (g', r)=f(q)r, we recover the formula of the foregoing

article; and by supposing F{q, r) = r/qj-we obtain this analogous

formula,

B\yqfq^j(dgSfq-Sqd/q).

629. There is, however, an extensive case in which this new

variation of an integral does vanish, the limits being still given,

and the function being still known and finite, namely, as might

have been expected, the case where the subject of the integration

is an exact differential of some function of a single quaternion.

In fact if we suppose, in the last article,

F{q, dq) = dfq, and therefore F{q, dq) = Sfq,

then, by the definition of a differential in 568, combined with the

analogous definition of a variatioti of a function, namely,

Sfq = lim.m[f(q + m-'Sq)-fq],
m = ^

we shall have

Sqdfq = lim . mn[f(q + m-'Sq + n'di/) -f(q + n-^dq)

-f(q + 7n-^Bq)+fq\,

d,8/5' = lim . nm{f(q+n-'dq + m'8'7) -fiq + tn'Sq)
71 = X
in m X

2 s
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and, therefore, with these significations of the symbols,

whatever the form of the quaternion function /may be. Hence,

with the form of the function i^ considered in the present article,

we have

and, therefore, viith thisform ofF, we have also,

\\^'F{q,Aq)=(i.
J 90

For example, \iF {q,Aq) = A .q- = q . Aq + Aq .q, then, by the two

foregoing articles,

^qiq^\ (Sqdq - AqSq) ; Sjdqq = | {dqSq - Sqdq) ;

and although these two integrals do not separately vanish in this

calculus, yet their sum does, so that

J 10

Thus, by whatever law we conceive g to vary from qo to qi, re-

ceiving always finite values, we have, in quaternions as in al-

gebra,

(qdq ^ Aqq) = q,' - q,\

630. You will conceive that analogous interpretations may

be assigned for double (or triple, &c.) definite integrals in quater-

nions; or that such an expression as

n = H''F{q,r,dq,Ar),
JroJlo

where the function F is distributive with respect to each of the

differentials d^', dr, can be treated generally as the limit of the

result of two successive summations. But besides all difficulties

arising from injinite values of the function to be integrated, there

would be found, in this calculus, new sources of indctermination or

variation, arising from the NON-conniuTATivE character o{mul-
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tiplication, and analogous to those considered in the few preced-

ing articles, but on a more extensive scale, in consequence of the

doubly (or triply, &c.) arbitrary mode ofpassage, from one given

system of limiting values of the varying quaternions, to the other

given limit-system. If this difficult subject shall be pursued, it

will probably be useful, or even necessary, to consider it in con-

nexion with the important researches of M. Cauchy, on definite

integrals taken between imaginary limits, when those imagina-

ries are of the ordinary kind.

631. When I began (in article 568) to speak of the differen-

tial calculus ofquaternions, I had no expectation of being led t.o

enter into it at so great length, although you cannot fail to per-

ceive that only the merest sketch (compare 477), of that calculus

and of others allied with it, has been given. But I was anxious

to point out (see again 568) the connexion between this differen-

tial calculus and linear equations in quaternions, or equations of

t\iefirst degree, such as were discussed in articles 654, &c. Let us

consider, with this view, the problem, to differentiate the square

root of a quaternion. Let r and dr be any two given quater-

nions, from the former of which its own square-root q = r^ can in

general be definitely inferred, by the rules of the Fourth Lecture

;

then the present question is to deduce from these another quater-

nion Aq, by the application of the definition in 568, which gives

d(7 = d.r* = lim . n[{r + n 'd/-)l - rij;

n- i

q =\\m .?i((r+ ?r' r')i -?*), \i q ^Aq,r =Ar:,

or,

or finally,

q'=p^ =lim .p„, if (/• + «" 'r')»-ri = w-'/)„.

n = ac

This last equation gives,

r' = n{(r4 + n"'/>„)2-/-) = r*p„+p„'-^ + n-';V;

and therefore, at the limit, where n is infinite,

r = qq + q'q ; or, dr = qAq + Aqq.

In fact, we might at once have obtained this last equation,

2 s 2
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by differentiating one wliich is supposed to connect q and r,

namely, r = q'^; for this simple process would have given (com-

pare 569, 592),

Ar = qdiq + Aqq.

Now the recent formulae are equations of the first degree, rela-

tively to the differential, Aq or q', considered as a sought quater-

nion; and more particularly, they are of the form discussed in

articles 560, &c., namely,

bq + qb = c :

and consequently are soluble as such, so as to conduct to a great

variety of forms, for the required Differential of a Square

Root. One form, for instance, is the following (see again 560)

:

d^ = d.H = ^Sy-i(Vd/-+ K^S. dr^-');

where (compare 455, 504, 557), the symbol Sy"' is treated as

equivalent to this fuller symbol, (Si/)"'.

632. With the same mode of notation, we have also (compare

562), these other forms, which might be further multiplied, for

the double of the differential of the square root, q, of a quater-

nion, r

:

2dy = 2d . r* = i (dr + Y^qArq-') S^"' = ^ (dr + q-^Ar^q) S^"'

= (d/-g+K^d/-) ?-'(?+ K9)-i = (drg+K9d/-)(r+Tr)-'

Ar + Ug-'drUy-' ArViq + Ug-' Ar y-'(Ugd?- + d/-Uy-')

~T5(U,?+Uy-') " ^(U^+UTT ~ U(7+ U-/'

q-'^iqAr-^ Trdr(7"') ArViq+Viq'^Ar _ ArY,.q-^ +'q-^Ar

Tg(U<?+U(?-') " Ty(l+Ur) ~ TTDT

= {dr + V(Vdr-9))^-'= (dr-V ( Vd/-- . ,7-'))'/'

dr drv dr dr v
=— +V(V 0) = V (V .0"')

q q S^' q q s

= Arq-^ + V (V.<7-'.Vdr) (1 +- . q'').

For some of the foregoing forms I have found geometrical inter-

pretations and applications ; for instance, in connexion with an
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investigation, on which 1 cannot here delay, of the angle of the

following quaternion product of square roots,

(Sr')*(E2-')M28-')».

and which led me, by a process quite diflferent from that of the

Fifth and Sixth Lectures, to perceive that this angle represents

(compare 258, and the formula given at the end of 595) the semi-

excess (or semi-area) of a certain spherical triangle def, the vec-

tors of whose corners are, respectively, 8, £, ^: but the recent

expressions are at present offered only as exainples of transfor-

mation in this calculus, which may serve also as exercises therein.

633. In general, if we are given an equation of the form,

F{q,r)=0,

where q and r are two variable quaternions, and J" is a function

of known form, we may regard one of these two quaternions, r,

as an implicit function of the other, q, of which the differential

dr may be had, by first differentiating the equation, and then re-

solving the result, as an equation ofthe first degree, on the gene-

ral plan of articles 554, &c. (Compare again the reasoning in

592.) For example, to differentiate the reciprocal of a quater-

nion, we may differentiate the equation, rq= 1, and thus obtain,

drq + rdq = 0, dr = d . 5-' = - q-^dqq-\

as in 571. Again, to differentiate a cube-root, r = qi, we may

employ the equations (compare 569),

q - r^, (\q = r'dr + rdrr + drr^,

and resolve the latter as a linear equation in dr: a process which

will be found to lead, after reductions, to this among other forms :

dr=d.qi=p + {Y.r' + rYr) Yq' (rp -pr) ; where p= ir-^dg-.

634. The following is a theorem of some generality, respect-

ing differentials of functions of quaternions. Let^ denote a

power, or other ordinary and scalar function, of an ordinary and

scalar variable, x ; and let the differential coefficient of this sca-

lar function be denoted (compare 574) by/'.r. Then, supposing

q to be a quaternion, and the functions /,
/' to retain the same
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forms as before (so that if, for instance, fq = q"-, ihenf'q = 2q),

we shall have the expression,

6fq =f'q .Sq + TVfq. dUYq, if Sq = Sd<7 + S {dqYq-') Yq ;

so that

dq-Sq=y^Yq=TYq .dUVq,

= that jyart of dq which is a vector perpendicular to Vq. Our

time will not admit of entering into the investigation of the

general theorem, enunciated in the present article. I can only

observe here, that one of the many transformations of expression,

of which the theorem admits, is easily seen (by what has been

already observed) to be the following :

¥q =fq^g + (TV/*? -fqTVq) dVYq -,

and that one of the chief elements in the investigation is supplied

by the relation,

V.YqYfq = 0, or UYfq = ± UVg

;

combined, for simplicity, with the supposition that the upper

sign is adopted, or that the axes of the quaternions q and fq
have similar (and not opposite) directions. One general corol-

lary is, that

Vgd/g4d/^Vg
•' ^ Yqdq + dqYq'

For example, when fq = y% fq = 2q, the general formula be-

comes,

Yqd .q
'^ + d.q' Yq

'^~^Tqdq + dqYq '

a result which may easily be verified by shewing that

Yqd . q^ = IqYqdq -Yq (Yqdq - dqYq),

d .q-.Yq = 2qdqYq+Yq {Yqdq-dqYq).

635. The- process by which, in 631, we calculated the diffe-

rential of a square root of a quaternion, did not require (com-

pare 572) any previous developement in series ; nor did it even

assume the existence of any such developement, for the square

root of a Slim of two quaternions. But if we now propose to
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ourselves to develope such a square root, we may proceed as fol-

lows. Assuming that

{b' + c)J = 6 + g, + 5^2 + ^3 + (jTji + &c.,

and supposing that Tc is small, with respect to Ti', we may de-

termine successively the various quaternion terms of this series,

by means of a corresponding series of linear equations, namely,

the following, which are all of the form considered and resolved

in 560:

bqi +qib = c;

bq, + qib=- qi"

;

bq3 + q^b = - qiq-i - q2qr,

bqi + qib = - q^q^ - qi^ - q^q^ ; &c.

It is evident that the square-root ofa polynomial, such as (i^ + c

+ e +f . . .)*, may be developed on a similar plan, the question

of the convergence or sign of the series being not at present dis-

cussed : and that a great variety of more general problems, re-

specting DEVELOPEMENTS OF FUNCTIONS OF POLYNOMES, is in

like manner reducible to the successive solution ofa series of

equations of thefirst degree, on the principles of former articles.

In practice such a process of developement would be, it may be

admitted, a tedious one ; nor had even the notion of so develop-

ing the square root of a sum occurred to me, when I found and

applied, some years ago, on the plan of article 631, an expres-

sion for the differential, d . g*, of the square root of a varia-

ble quaternion : although, no doubt, if any shorter or other way

of effecting the developement of {q + Aq)i shall be hereafter dis-

covered, it will then be possible to calculate in a new way that

diflferential of q^, by selecting the term or terms of the first di-

mension relatively to Aq. (Compare again the remarks of article

572.)

636. Let there be now proposed a quadratic equation in

quaternions, of the form mentioned in art. 553, namely,

q- = qa + b;

where a and b are two given quaternions, and j is a sought qua-

ternion. Writing
7 = i (a 4 w + p),
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where w and /o are supposed to denote the scalar and vector parts,

not here of q, but of the new quaternion, 2q-a; making also,

for conciseness,

ya = a, S(a^+4i)=c, V(aH4^.) = 2y;

the proposed quadratic becomes,

{w + py + ap - pa = c + 2y;

and breaks up into the two following equations, which are re-

spectively of scalar and vector forms (c being here a. given scalar,

and a, 7 being two given vectors)

:

w^+ p- = c; y. {iv + a) p = y.

The latter equation, so far as relates to p, is of the form consi-

dered in 514 (or in 559), and gives, with the present symbols,

lVp=y + {w+ a)''V. ya = {w + a)"' {wy + S . ay);

whence, after a few reductions, it is found that

wy=y'-{w'-a')-'{V.ayy = {w'-a')-'{wY-(S.ayy].

Substituting for p- its value in terms oi w, namely, the value

p'= c — w', we are led to the following scalar equation of the
SIXTH DEGREE in w, which is, however, only of cubic form,

=f(w') = (w^ - a"-) (w' -cw' + y')-(V. ayy ;

or, as it may be also written,

=f{w^) = w^w'-(c+a')w^ + ca' + y'}-{S. ayy.

And when a scalar root w of this equation has been found by or-

dinary algebra, we may then in general easily determine the

corresponding value for the vector p, by the linear expression

assigned above : after which it will only remain to substitute

these values in the formula above written, namely,

q = iia + w + p),

in order to obtain a quaternion q, which shall satisfy the pro-

posed quadratic equation,

q' = qa\ h.
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637. Now because 7'=-T'y''<0, the ordinarij quadratic

equation,

x" -cx +
'f^

= 0,

has two real roots, one positive, suppose = + p', and the other ne-

gative, suppose = - h', where g and h are reals, of the ordinary

and scalar kind. Hence, making

Ta = /, T V. ya = m,

we have

fix) ={x- y') {x + h') ix + P) + m' ;

so that, in general,

fif) =/ (- h') =/(- n = »i^ > ; and/(0) = - (S . yaY < 0.

Since then/(-«) = -», it is clear that the cubic equation,fx = Q,

has in ffenera I THREE real and unequal roots : namely, one
root (Xi), which is positive and <(/'; another {x^), which is nega-

tive, but algebraically greater than each of the two negative

numbers - A= and - 1'^
; and a <A?>rf (a^j) also negative, and alge-

braically /e5« than each of those two numbers. The algebraical

equation of the sixth degree in w has therefore two real awAfour

imaginary roots (+ y/ Xi, + \/ x,, ±s/ x^), to each of which may in

general be considered as corresponding, kT least symbolically,

by formulae given above, one determined value of p, and thence

also one determined value of ^. Thus (compare 553) the pro-

posed quadratic equation in quaternions, q^ == qa + b, is

proved to have in general six roots ; of which, however, only

two (suppose qi, q^) are real quaternions, such as have hi-

therto been considered in these Lectu7'es : while the other four

roots (^3, qt, qi, Qi) may be said, by analogy and contrast, to be

four imaginary quaternions. For although these^owr latter

expressions sytnbolically satisfy the proposed quadratic equa-

tion, as ivell as the two former ones, yet the parts which by

analogy are to be called their scalar parts are not any real num-

bers (positive or negative or null) ; nor do those other parts of

these new roots, which must be called their vector parts, repre-

sent in general any real lines in space.

638. To illustrate this distinction between real and imaginary

quaternions, and generally to throw additional light on the pre-
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ceding investigation, let it be now supposed that the two vectors

a and y of art. 636 are rectangular ; so that

S.ay=0,/(0) = 0.

At this limit, one of the roots of the cubic equation (fx=^0) va-

nishes; and therefore two roots of the equation in w vanish also.

The general and linear expression for p in terms of tv becomes in

this case illusory ; but on going back to the two original equa-

tions between w and p, and making w=0, we find that they give

here,

p^ = c; V. ap = 7;

and that therefore (compare 460) they conduct to the two follow-

ing values of the vector p :

pi = a-' (j-t), p2 = a'- (y + t);

where ^ is a scalar, namely,

t=S.ap={ca'-+y')K

The two corresponding values of the quaternion q are in this case,

?! = i (a + iOi) ; ^2 = i (a + ps)

;

or more fully,

qi=ia + ia-'y-ia't;

639. To shew, d posteriori, that these two values of q do in

fact satisfy the proposed quadratic equation, which may be writ-

ten thus,

(2q -ay +2 {aq - qa) = a- + 4b,

or thus, on account of the values (636) of a, y, c,

(2q-ay + a{2q-a)-(2q-a)a = c+2y,

we are to shew that this equation is satisfied by the substitution,

2q-a=a^y + a^t, where t' = ca' + y';

a and y being treated as two rectangular vectors, but c and t as

two scalars, so that

(ly = _ ya, but uf = ^ ta, yt = + ty.
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And because these suppositions give,

= -a-y- + ta' {ya' + a"' y)+t-a- = a' (<= - y-) = c,

a(a"'7 + a-'<) -{a'^y + aH) a = {aa^ + a' a) y = 2y,

we see that the substitution succeeds, without restriction on the

sign of t : so that we have both

</i^ = »/i a + b, and q^- = q.ia+ b,

if qi, q^ have the values assigned in the foregoing article. And
il is important to observe that, in the preceding verification, we
have made no use ofany supposition respecting the keality of
the scalar t, but only of its commutativeness with otherfactors,

as regards arrangement in a product {ta = at, ty = yt).

640. If we now suppose that t is real, and different from

zero, so that

t'=ca' + y'>0, -c>(T.a-'-y)'-, C < - (T . a^yY;

then c and c + a- are negative scalars ; and the quadraticfactor

(see 636, 637, 638),

x^-{c + a')x + t^ = 0,

of the cubic equation in x, has two real and negative roots (one

algebraically greater and the other less than the negative scalar

a-), givingybwr imaginary values for the scalar to, qtfour ima-

ginary roots of the biquadratic equation,

w*-(c + a-) w' + t'' = 0,

which is here the remaining factor of the equation of the sixth

degree. Let the two roots of the quadratic in x be denoted by

where u and v are reals, and may be supposed to be positive

scalars, such that

m2 + i;2 = - (c + a-), uv-t;

then the four roots of the biquadratic in w may be thus denoted

:

Wi^ + uV-'i-, Wi^-u \/-\, Ws = + v^-l, Ws = -v^-l;

where it is very necessary to observe that the symbol ^/ -\ de-

notes the old AND ORDINARY IMAGINAUV OF CO.MMON ALGEBRA,
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and NOT ANY ONE ofthose square roots of negative unity which

have HITHERTO occurred in these Lectures, and have been con-

structed by vector units, or by directed unit-lines in space. The

symbol v - 1 , as here employed, in these last expressions for the

four new values of w, denotes an imaginary scalar, instead of

denoting a real vector : and it admits, as in algebra, of being

COMMUTED with all other factors, as regards arrangement in a

product; which our peculiar roots of negative unity do not.

641. The linear equation of article (J36,

V. {w + a)p = y,

may have its solution thus expressed (compare 514, 559)

:

V. -ya w'^y-aS.ay

In general, therefore, the six roots of the equation q^ = qa + b,

which were spoken of in art. 637, are the six values of the ex-

pression,

9 = +
V. ya M) , y-W-"~aS .ay

2 2{w-- a-) 2
^ w'-a'

where w is some one of the six roots of the equation / (zt;^) =0,

in article 636. When we suppose S.ay=0, as in 638, then (by

that article) two of the six values of w vanish, and the recent

expression for q becomes, for each, illusory; but the same article

assigns the two values qi, q^, of q, which answer to that case.

Under the same supposition (S.a-y = 0), if the recently consi-

dered scalar t be real, the^wr other values of w give, by 640,

these four other and imaginary values of q :

?3 = (z'a + V- 1 </'3 ; <7i = q\ - /- 1 f/3

;

(Zs = qU + /- 1 q'i ; qs = q\ - /- I q",

;

where (/a, ^"3, q's, q'\ are four real quaternions, namely :

"
.

"y '' '' / 1 y \
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642. It may be interesting and useful to prove, a posteriori,

that these four imaginary quaternions, just assigned, are in fact

symbolical roots of the proposed quadratic equation. And this is

easy. For since, by 640, the symbol V~\ is here commutative
as a factor, and is distinct from all those square roots of negative
unity which enter into the expressions oi real quaternions, such
as a and b are at present supposed to be, the equation

(</+ /^ /)' = (g'+ V^ q") a + b

breaks up into 'he two Jbllowitig real equations, or equations be-

tween reals, which it is necessary and sufficient to verify :

q'^ - q"' = q'a + b;

q'q" + q"q = q"a.

And there is no difficulty in proving that these two equations are

satisfied, when, retaining the recent significations of the other
symbols, we suppose

and treat vy as a new scalar, or commutative symbol, such that

= y"-+{c + a')y+ f- = {y+ a^) (y + c)+y':

the reality of this scalar V'y being here again unimportant.

643. If we now choose to consider the following supposition,

«^ = cV+7^<0,

instead of that opposite supposition of inequality, which was con-

sidered in 640, t becomes an imaginary scalar of the form ty- 1

where t' is real ; and the two expressions of 638 for qi and q^ be-

come imaginary quaternions, but are still, by 639, symbolical

solutions oi the quadratic equation proposed in 636. At the same

time the ordinary quadratic equation referred to in 640, namely,

a:' - (c + a') x + ca'' + y' = 0,

has one of its two real roots positive, the other root being still

negative; thus one of the two roots of the lately mentioned equa-

dratic in y, namely.
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y= + (c + a^) ?/ + Ca'' + 7^ = 0,

remains still positive, as before, but the other becomes now ne-

gative; one value oi y has therefore still a real square root, as

when t was real, but the other value oi ^J y becomes imaginary

:

and finally, in 641, we may still suppose that the scalar u is real,

but must then treat v as an imaginary scalar of the form

v' y/ -1, v' being supposed real. Thus, with the present suppo-

sitions, the six roots of the quadratic equation q-= qa+ b may be

collected into the following table:

9i = y'l + n/- 1 q"i, g'2 = j'l - /- 1 q\,

qs = q'i + a/- 1 q"3, qi = q\ - V- 1 q''^,

qb = q'i + ?'g) qe = q's - q'e ;

where q\, q'\, q',, q\, q\, q'^ are six real quaternions, expressed

as follows

:

q\^\ {a + a''y); q'\-^\aH'

;

,
a ay „ _U , y__\

t', <J y, and ?;' being three real scalars, namely,

<'= V (- ca= - 7=),

where the quantity under the radical sign is now a positive sca-

lar; u ~
•J y^, if y, be the positive root of the lately written qua-

dratic equation in y; and v =s/-y^, if 7/2 be the negative root of

that quadratic.

644. We see, however, that the imagitiary solutions of the

proposed equation in quaternions still present themselves under

the GENERAL FORM,

q=q'+\/-l q",

where q and 9" are real quaternions, while V- 1 is still, as in 627,

the old and ordinary imaginary of algebra, and is distinguished

from all those other roots 0/ negative unity which are peculiar to

the present calculus, P', by its not denoting any real line, on the

plan of interpretation which we adopt; and II"'', by its beinr/,iis
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a factor, commutative with every other. An expression of this

general form is called by me Biquaternion. The theory of such

biquaternions is as necessary and important a complement to the

theory of single or 7'eal quaternions, as in algebra the theory of

couples, or of expressions of the form

x' + V- 1 oi'

,

where x'and x denote some two positive or negative or null num-

bers, is to the theory ol single or real numbers or quantities. It

is admitted that the doctrine of algebraic equations would be en-

tirely incomplete, if their imaginary roots, or solutions of the

above written and well known couple form (x + v - 1 y), were to

be neglected, or kept out of view. And in like manner we may al-

ready clearly see, from the foregoing remarks and examples, that

no theory of equations in quaternions can be considered as com-

plete, which refuses or neglects to take into account the biquater-

nion solutions that may exist, of the form above assigned, in any

particular or general inquiry. The subject indeed is one of vast

extent, and of no little diflficulty : but it appears to me to be one

which will amply repay the labour of future research.

645. To give a numerical example, or at least an example

with numerical coefficients, let us take the quadratic equation,

q- = 5qi + 1 0;'.

Here (see 636), we have the values, a = 5i, /; = lO;', and there-

fore a = 5i, c = - 25, y = 20j. These values give (compare 638),

ay=lOOk- S.a7 = 0; a^ = - 25 ;
72=-400; a'y=-4ij = -4k;

<2 = Co' + 7' = 625 -400 = 225; /= 15; a"'/ = -3?:

y, = 1 (pi -4k + 30 = 4i - 2k ;

q, = ^ {5i-4k-3i)=i-2k.

Such then are, in this example, the two real roots of the qua-

dratic. Accordingly we have, by the values of the squares and

products of ijk,

(4i - 2ky = - 20 = 5 (4z - 2k)i + I Qj,

(i -2ky = -5 = 5(i- 2k)i + 1 Oy

;

and therefore, with the recent expressions for q^, q.,

qr = 5q,i + 1 0; ;
q," = 5q.i + 1 0/'.
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646. Proceeding to investigate theJour imaginary roots of

the same quadratic, ox the four different biquaternions which sa-

tisfy it, we are (by 640, 641, 642) to seek the two real and posi-

tive numbers, u"; w% which are the values of y in the ordinm-y

quadratic equation,

= ^' + (c + a?)y + Co} + y-,

that is, here,

= 2/3- 50y + 225 ; giving u' = 5, u- = 4 1

.

Hence

MM a^ = -20; 1)2 +0'^ = + 20; and byG41,

?a = 2(« + A);!?5=-2-(i-.;);

and finally the four biquaternion solutions of the equation q^ =

5qi+ lOj may be thus written :

5,. ,,
\^~5

,, .,

5 v'—

5

5-1 = 2
('-*) 2~^'"^'^^'

5.. ,, 3\/r5^,
.^

!?5 = 2(* + ^-) +—2— (1-7);

5.. .. 3a/=5,, ..

q. = ^(i+k) ^—(1-^);

where V - 5 is to be treated as an ordinary or scalar imaginary.

647. To verify that each of these biquaternion expressions

does in fact satisfy the proposed quadratic equation, it is suffi-

•ient to shew, on the plan of 642, that the four real or single

quaternions, q\^ q\, q\, q'\, satisfy theybwr following equations

:

?V - q"3 =5q\i+\ Oj ; q'^q\ + q\ q\ = dq^ i

;

yV - <?"5' = 5^5 1 + 1 0;' ; ^5 /s + ^5 q\ = oq\ i.

And accordingly it will be found that the common value of each

5
member of the first of these equations is--(5+j); of the se-
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5 1/5 -5
cond, ——-(i-A); of the third, -jr- (5 - 9^) ; and of the fourth,

—-— (i + A). We find, therefore, a posteriori, that

qi = 5^3 i + 1 OJ ; q^- = 5q,i+\0j;

'7 r = 5(75 i +10;"; ^6= = bq^ i + 1 0/'.

648. To exemplify the case of 643, let us consider tliis other

quadratic equation,

'/ = qi +J-

Here a= i, b =j, and therefore a = i, c = - \, y =
2J, a' = -l, 7' =

-4, ay = 2k, a-> = -(, a-'y = -2k, ca' + y- = 1 - 4 = - S = P =- t'^

;

so that < becomes imaginary, and = v^- 3, but t' real, and = y/3.

At the same time, c + a- = - 2, and the quydratic in y becomes

0=^=-2y-3 = (y-3)(y4 1); we have thus ^^= ^3, v=\/^,
v'= 1, M^ + a^ = 2, v'=- a' = 2. Thus the six real quaternions, 5',,

&c., of the article above cited, become, in this example,

{

•Z'l = 2
" ^

' (?"i = -
i*' V 3 ;

The two real roots of the proposed quadratic are, therefore,

«7 = iO'-'«)±i(i+;);

and the four imaginary roots, or the four biquaternion solutions,

are given by the expressions :

y = i,(l+ V-3)-A; q = i{i + k)±U^-jW^l

where V'^ is the old imaginary so denoted, and is not here to

be interpreted as any real line. It is easy to verify the fact of

calculation, that each of these six values of q gives q- = 7/ ^

/

649. More generally let

(/ = qu + fi,

where a an.i |3 shall be supposed to denote any two rectangular
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vectors. Then a = a, 6 = /3, c = aS 7= 2j3, <- = a* + 4/3% {y + a'Y

+ 4/3' = 0, M' = IV + 2T)3, V' = To' - 2T/3, and the six values of

q are included in the three expressions following

:

I.

J
+ a->p + K'(«*+4/30*;

ii.i(l + U/3)(a±(a' + 2T/3)M;

III. Hl-U/3){a±(a'-2T/3)^).

Of these expressions, the third gives always two imaginary qua-

ternions, because a--2T/3 is always negative; and according as

T!a^ is < or > 2T/3, and therefore a*+ 4/3'< or > 0, we shall have

two real quaternions from the second expression, and two imagi-

nary vectors from the first ; or else two real vectors from the first

expression, and two imaginary quaternions from the second. It

may be noted that when a^ + 4j3- < 0, the two real quaternion roots

of the quadratic equation have a common tensor, = 1/ T/3

;

whereas, when a* + 4/3- > 0, the two real vector i'oots have unequal

tensors, or lengths, one tensor being greater and the other being

less than VT/3; which is, however, still the geometrical mean
between them. And it is easy to see that the distinction between

these two cases corresponds to the imagiiiariness or reality oi iha

intersections of the sphere and right line, whose equations are,

respectively,

p' = S . ap, and V. ap = /3.

650. It may also be worth while to observe, that since

q'-qa = -q(a~q) = (r-a)r,i{r = a-q,

the method given in the foregoing articles (G36, &c.), for resolv-

ing a quadratic equation in quaternions of the formo= = oa + i,

serves also to resolve a quadratic of this other form, r-=ar+b;
and that if a and b be the same given quaternions in these two
equations, each of the six roots, q, of one, will be coniiected with

a root, r, ofthe other, by the relations,

q+r = a; qr = -b.

Conversely, this last system of two equations between two qua-

ternions, q and r, in which their sum and product are given, may
be resolved by the foregoing methods. And we sec that there
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will be, in general, two real systems, andJour imaginary systems,

or pairs, of quaternions satisfying the conditions.

651. One way in which such a quadratic equation may pre-

sent itself in a research is the following. Let it be required to

estimate the value, or to change the form, of the following con-

tinued FRACTION,

— Mo;
a+J

the notation implying that

b b .

-,Ui = , &c.

;

a + Uo a + «i

and a, b, Uo being here any three given quaternions, but x being

a positive whole number. Assume at pleasure any two quater-

nions, qi, g^; then because, by supposition,

M^^ 1 = 6 (a 4 Uj-)-',

we shall have

Ux*i + <]i = {b + q^a + qiUa) {a + u,)- ',

Mx^ 1 + ^2= {b + 72« + ?2«.r) (a + «,)"',

and therefore,

Ujrti + qi b + q2a+ qiUj; _ q{ ^b + a + Ux _j

Ux^i + qi~ b + qia + qiUx ' qi'^b + a + u^

If, then, we suppose that q^ and q,. are any two roots {real or

imaginary) of the quadratic equation in quaternions,

q'^ = qa + b, or q = a + q'^b,

so that

qi-^b + a= qi, qi^b + a = q^,

and if we make, for abridgment,

tv = —, so that v„ = ,

Ux + qi w„ 4 qi

we shall have

v.r,^ = q2VJ:qc\ and therefore i'., = y/t'ui/f^;

which is the transformation that we desired to effect, and from

2 t2
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which the continued fraction Ux can easily be deduced, by the

formula,

652. A less elementary mode of accomplishing the same

transformation, but one which it is instructive to notice, is the

following. Assuming

J, h. hj: Nj- _ N'j. (ffj + c) + 2V".,.ia-

«! + a, + ' ' Ox + C Djr D.r (Oj. + c) + D'J'J

and changing c to hx,\ (oj+i + c)"', and Mj. to Mjvi, we obtain the

following equations infinite differences, with quaternion coeffi-

cients and variables :

D'x,, = D,a, + D\h., D", . 1
= £>,,.

:

together with the initial conditions,

N\ = Q,N-\ = l,D\=],D'\ = 0,

which allow us to suppose

Making next

Ox = a, bx = h, c= ic,„

we have

Nx = N'x (a + Uo) + N'x.i h, Dx = D'x (a + ?/„) + Z)'.,.. , f),

N'x, i = N'xa + A^'x. 1 b, D'x, i = D'^a + D'x- 1 f>
;

and may thus be led to assume

A":r = Iqi"" + »«<?/, D'x = I'q,'^ + mqf,
qi = a + qc^b, q2 = a + qi^b,

l+m=\, lqi + mq. = Q, I' + /«'= 0, I'q^ + m'q. =
1

;

whence are obtained the values,

m = - (q,-^- qi^y 'qi^^ + q, {q, - y,)->,

l' = -,n'=(q^-q,yK

Hence we are conducted to e.xpress the continued fraction Ux as

the quotient of the two following expressions,

-^"^r = Iqi' (<7i + Wo) + mq.^' {q. + u„),

Dx=l'qf (r/i + M„) + inqi"' (r/j + M„)

;
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and this may suggest the consideration of another and auxiliary

quotient, Uj-, which in this process is defined by the formula

(which in the foregoing article was deduced),

for thus we deduce, by the present process, a relation between Uj.

and jv (which in the former article was defined to exist), since

we find that

-(—X _ -^r _ ^ + mVj: ^ -q^ (gi - ga)-' + gi (yi - t^;)-' t;^

•^ ~ \a + / "
~

Z)x r + Wi'Vx (yi - qiy (1 - w^)

= - yi + (1 - Vj:)-' ((7, - y,) = (1 - 7;^)-' (d^5'i - ^2),

as before.

653. As an example, let a = i, b=j, Mo=0, so that the con-

tinued fraction becomes

«a-=f^) 0.

Here the quadratic equation becomes q^ = qi +j, as in article

648 ; and by that article, its two real roots are the following :

5, = i(l4 i+j-k); q.^^(-l + i-j-k);

whence, by 651,

v^={- 1 + i -j-ky*' (1 + i +j-ky^-K

To transfjrm these powers, or the corresponding powers of the

two quaternion roots of the quadratic, 1 observe that those two

roots are versors, the tensor of each being unity, Tq^ = Tqi= 1

;

which agrees with a remark made in 649, the j3 of that article

being here a vector-unit, namely, J. We have also,

.y.=5=^(-?.); uv,.=':^^ uv(-,..)=lilf-^

and, therefore,

, ,. / ZTT k-i+J . a;7r\

5/ = (-l)^(cos-+-^^s.n-),

XTT k -i -j . Xtt
,^^-.=cos-+—3-sm-,
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-r=(_ l)-rMcOS—
I +—r:z sin -;;-

2i + 2k-l / . a;n-\^i

xirY k-i . Ixir

t;.-.=?/yi-=(-iru'=°«-3J +-73

+
3

Thus

i?o = - A, v^^i, Vi = -\ \ Vi = + k, Vi = -i, Ws = + 1 ;

Vf, = - /c, v~ = i, Ve=-1; &c.

;

and generally,

Hence, as a verification, by the last formula of 651,

Mo= (1 - VoY' (m. - 32) = - (1 + k)-' {kg, + q,) = 0;

and by continuing to apply that formula, we find

M, = (1 - i)-' {iq, - ^2) = i (I + 0'+ A) = ^

;

Mj = (1 + 1)-' (- ^1 - ^r^) = - i
(ji + ^2) = 1 (A - 1)

;

m3=(1 - A)-i (Ag',-9'2) = -(l + i)5'2 = A-«;

M4 = (1 + «)"
' (- iqi - ^2) = - i (1 - («'

-
1) = -

«

;

M,= (l-l)-'(^.-j3) = 0-'(l+y) = Qo;

after which the values of the continued fraction recur, in Xhe pe-

riod,

0, k, ^{k- i), k-i, - i, 00,

because we have here

Accordingly, division gives, directly,

M^ =
f
= -i^ = -«;

03 Z
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G54. To exemplify now the use of the imaginary roots of

the same quadratic equation,

q' = qi + j,

let us suppose, as by 048 we are allowed to do, that 71 and q,

are the two following' imaginary vectors

:

fji = zi-k, qi = z-H-k;

where z = i(l+ ^-3) =(- l)*= (cos + 's/^sin) \;

the old imaginary of algebra being here the one employed, so

that z is commutative in multiplication (compare 640, 644). As

a preliminary verification, we have,

{zi-ky = -z'^-\ = ~z- {zi - k) i +j,

(z-U - ky = - z-' - I =-z-^ = {z-H-k)i+j,

so that the recent expressions 7,, q^ do in fact satisfy the quadra-

tic. They give

9i'=-2'-l = -z, g'/ = -s-' = z% Vi = q2^q^-'=-z;

\ / /—; . , 4n7r
w«-i = ?3'" qi""" = (- 2)" = (cos +V - 1 sin)—

;

(1 - i^2n-i)-' = 2^ (cos - V- 1 sin)— '

2sin_

(1 - V,„,,y' t>,„.,= 2^ (cos + V- 1 sin)—

'

2 sin—
and therefore by the last formula of 651, with the present values

of qi, qi, we have

, , , V~\
,

. In-w

2<.«-i=-i(^. + ?i) + —2" (!?i - 5») cot -^

. (H-l)7r
sin -^: —'—

T .
«T , , . 3

= A + 2(-| + \/f cot -^) = A-e

sin-5-
o

an expression from which the imaginary symbol has disappeared,
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and which gives the following real values of the continuedfrac-

tion, Ux, for odd values of x :

Ui = k, Us = h-i, Us,= cc,

M, = A, W.J = A - i, Mil = CO, &c. ;

agreeing perfectly with the results of the foregoing article,

although here deduced by the help of the two imaginary vectors

{zi-k, z~^i-k), which have been taken as the two values of q,

and which may be said to be the vectors of the two imaginary

POINTS OF INTERSECTION oj the Sphere p- = S . if), and the right

line V. ip-j, which line is situated wholly exterior to the sphere

(compare 649).

655. Again, to calculate the values of the same continued

fraction, u„ for even values of x, by the help of the same two

imaginary vectors, q^, q.^, we may proceed as follows. Since, by

651,

("x + q.) {Ux + q,)' ' = tv = q-i'' v„ 7,-^

;

and

i-o = («o + gi) («o + ^i)"' = 'Z/yf', because Mo = ;

we have therefore

gi~^' iq2'' + Ux-') = qi-"" {qi'' + Ux'),

ux' = - (<72-^-?i- ")-• (92-^- '-yr^-'),

and finally

«.= (7."^"' - y^--^-')-' (y^-- - (?!-),

as a general expression for the value of the continued fraction

a +/

91 and qr. being still any two roots of the quadratic equation,

q- = qa + b.

In the present example,

?r' = -^''. qr- = -'^, q{' = kz-'-i, qi' = kz-i,

and the formula gives,

u]l = i - (z" - z-")- ' (e" > - :-"

-

') k

, . (?e + 1 ) TT «7r
= ! - A sin -^^——^— cosec -;—

,
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the imaginary symbol disappearing here again. And accord-

ingly, this last expression gives the values,

W„" 1 = 00, U{ ^ = i- k, Ui ' = i, Me"' = 00, &c.,

or,

tto = 0, lU = 1 (A - i), Vi = - i, Me = 0, &c.,

as found in article 653. The method of the present article may
also be applied to the case of odd values of x, and gives, for such

values, the expression,

M2«-i = - (2" - 2-")-' (2" 5-2 - 2-" g',)

. . (W - 1 ) IT

I sm-^^—5-^—

= k-i (2" -2-")-' (2"-' -2-"*') = A
. mrsm-

as in 654. And the other pair ofimaginary roots of the quadra-

tic, which was determined in 648, would be found to give still

the same real results.

656. It may be considered as still more remarkable that we
are even at liberty to employ one real and one imaginary root of

the quadratic, in order to calculate the real values of the conti-

nued fraction : the imaginary symbol still disappearing, when the

prescribed operations are performed. For example, if we sup-

pose, with the recent signification of z, but with a new selection

o( the pair of roots employed,

yi = zi -k, q,= ^{-\+ i -j-k),

we shall have,

,— . , 2n7r

yf-" = (- 2)-" = (cos + V- 1 sin) —g-

;

y,-2«-i = (- 2)-" (kzr^ -i) = k (cos + \/n^ sin) ^
"~ '^

O

/—; . s 2n7r
-I (cos+ V -Isin) —-;

^,-. = cos-^-+-^s.n-;

y,..= eos— + -^sin—

;

2(M-l)7r i-J-lt .^2{n-\)Tr

^3
fj,-"'-'=COS :;

— + '-TTT- Sin
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But by G55, we have the formula,

\1l - 72 J "27! —<li <J\ 3

comparing then the coefficients of y/ZY we find

. , . (2M-l)7r 2n7r
Mj„-' =.t-k sm — cosec -—

. , . (n+ 1) TT ntr
= t - « sin ^^—5-^— cosec —

,

o o

as in the article just cited. Or we might have compared the real

parts (those independent of the ordinary \/- 1), in the same ge-

neral formula, and so have obtained the same result, under the

form,

k-i + j , Inir k-i+j,. . 2mr , . 2(w-2)7r,
-^.«2„-'s,n— =-^{»sin— +Asm^^— );

because this last product would easily be found to be

= qi'^'^ - (real part of) 5'^^''-^

Or we may write, at once,

and the imaginary symbol will still be found to disappear, and

the same real result as before be obtained, when the proper re-

ductions are made, in the manner indicated above.

657. It must, however, be confessed that such calculations as

these with biquaternions, or with mixed expressions involving

ijk and \/-\, are sometimes very delicate, and require great cau-

tion, from the following circumstance, to which nothing analo-

gous occurs in the theory of pure or single or real quaternions.

This circumstance is that the product of two biquaternions

7nay vanish, without eitherfactor separately vanishing. To give

a very simple example, the product

{k+ y/-\)(k- V-1) = A'+1=0.

While A + v/- 1 and k- vZ-l must eacA be considered as different
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from zero, if k be still one of the peculiar symbols of this calcu-

lus, while v'-^ is the old imaginary. We might therefore write

(k + \/^)- ' = (A - \/^) q,

where ly is an arbitrary quaternion, not necessarily equal to zero.

In the recent question, we might in like manner have written,

q being an arbitrary quaternion, reducible to the real kind : be-

cause, by the rules of this calculus, we have

^k - i +yY
V3

= -1.

And thus it might appear that an arbitrary addition would be

made to the value lately found for M2„"'. Such arbitrary addition

might indeed present itself, in some other investigation with bi-

quaternions. But in the example of the foregoing article, we
knew, by the nature of the question, that ihe final and reduced

expression for the continued fraction, w„ could contain no ima-

ginary term. We were therefore, in this case, justified in adopt-

ing those reductions, which caused the symbol \/-l to disappear,

and which we found to be consistent among themselves. Still

the remark of the present article may shew, how cautiously it

might become needful to proceed in other cases, where no such

check was previously known to exist, on the results of operations

with biquaternions, in which anything like division is involved.

658. In the example of art. 653, it was supposed that Uo = 0.

But if we had considered, more generally, the continued fraction,

-(A
where c = Mq = any real and given quaternion, while qi and q^

shall still be supposed to denote, as in 653, the two real roots

of the quadratic equation q-=qi+j, we might then calculate the

value of Mj; by the two last formulae of 651, combined with the

following initial value of r, :

r„ = (7, + c) (y, -i c)-'.
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And because the quadratic gives,

<f
= qH + qj = (qi +j) i+qj=q(j-l)- k,

and in like manner,

q* = qHJ- ^)-qk=-qi-l-j,

q' = -q'i-q(i+j) = -qj+/c,

q'^ = -,fj+qk = -j-=\,

we see that the common value of the sixth powers of all the six

roots q is unity, a result which may easily be otherwise proved,

from the expressions assigned in former articles, for each of those

roots in particular. Thus,

?i' = f// = 1, J'xte = Vj:, Mx*6 = Wx ;

and the values of the continued fraction form still a period of six

terms. Indeed if it happen that the quaternion c is a real root

of this other quadratic equation,

c^ + ci =j,

so that either

c = -^i = --|(l + i+>-A),

or

c = - ?2 = - i (-
1 + * -i - ^)'

we shall then have

i+c \i+J

and the value of the continued fraction will become, in this case,

constant. But for every other real value of c, the fraction circu-

lates, as above.

659. The following is an example of a continued fraction of

the foregoing form, which converges generally to a limit, instead

of circulating in a period. Let there be now,

c still denoting some real and given quaternion, as the initial va-

lue of the fraction. The quadratic in q becomes now

q''-=ijqi ¥ \0J,
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of which the two real and the four imaginary roots have been al-

ready assigned. Attending only to the former, we have by

645, 651,

gi = 4i - 2A, 92=1- Ik,

Vo=(c + i-2k){c + 4i-2k)-',

V:,= {i-2kYvo{M-1k)--,

Here

T(4i- 2A)= 2^/5; T(e-2A-)= V5;
and therefore

Tq,= 2Tq,; Tv^. = 2-^Tvo.

If we suppose that c is a real root of this new quadratic,

c'' + 5ci= \0j,

so that either

c = -qi = 2k — 4i, or c = - (/2 = 2^- - i,

then in the first case we shall have

Vo = 00 , Vj = 00 , Ux=-qi=2k- Ai,

and in the second case,

«'o=0, Wx=0, Ujr = -qi = 2k-i.

In these two cases, then, the value of the continued fraction re-

mains constant (as in the example at the end of 658) ; in fact

these two real values of the initial quaternion c give

In fact if we assume Uo = 2k- 4i, we find

ti,= l Oj {5i + Mo)- ' = lOj{2k + i)- ' = -2j {2k + z) = 2A - 4 i,

and similarly for all subsequent values of m^ ; or if, on the other

hand, we assume the initial value, Uo = 2k-i, we find

Ml = 1 0;- {2k + 41)- ' = 5j {k + 2i)- ' = -j {k + 2i) = 2A - i,

and the fraction will still be constant. In every other case,

that is, for every other assumed and real quaternion value of c,
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the value of the fraction will vary, u^^i being always different

from Mj; but this value will conyez-^e to a definite quaternion,

namely, to 2k -i, as its limit: for we shall have,

Tt;„ =2-"T?;o=0, v^=0, u^ =-q, = 2k-i.

It might then, perhaps, seem not too fanciful to say, that these

two values,

2k - i._ and 2k - 4i,

correspond respectively to positions of stable and unstable equi-

librium, for the continued fraction u^ which has been the subject

of the present article. If we set out with assuming either, we

shall never leave that assumed position, or value : but if we begin

with any other Uo, the fraction will tend indefinitely to become

equal to the stable value, 2k - i, and will not tend to equality with

the unstable value, 2k - Ai.

660. If the initial value c, of the fraction considered in the

foregoing article, be assumed equal to a vector jOo perpendicular

to^y, so that

Mo = C = /Oo = iXo + kZf,,

where Xo and z^ may be regarded as the rectangular co-ordinates

of a point Po in the plane of xz ; then

,„.,,- ,. ,, , \0\{5 + Xo)k-zJ\
«.= 10;((5 + Xo)e.Zo^.j--=

'(L.o)'h-V
'

so that we may write.

Ml = pi = iXi + kzi = the vector of Pi,

the new or derived point Pj being, like the assumed point Po, in

the plane of a;^ or oi ik, but having its coordinates therein deter-

mined by the two expressions,

- -iQ^o _ 10 (5 + Xo)
*' ~

(5 + x;f + z^'
'^' ~

(5 + x^fTz}'

In like manner, from this^^rs^ derived point Pi, we may pass to

a second derivedpoint Pz, of which the vector and the co-ordinates

are, respectively,

Mj = jOj = ix-i + Ar,,
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-10^1 10(5 + a;i)

so that, by substitution of the recent values for Xi, z^, we have

these other values

:

-4(xo + 5) ^
4 (zq - 2)

If we assume Xo = -4, z^ = 1, we shall have, by these formulae,

a;i = -4, Zi = 2, a;2 = -4, ^2 = 2, &c.; or if we assume Xa--\,

2o = 2, then a;i = - 1, 2i = 2, a;2 = -l, 22 = 2, &c.; but ifwe begin

with any other initial values of x and z, the results of the suc-

cessive substitutions will give a series of varying values for those

co-ordinates : for the equations

-102 10 (5 + a;)
•>• z =

(5 + a;)^ + 2'-' {b + xy+z-"

give

(5 + a;)a;+2= = 0, (5 + a^ + 2» = 5 (5 + a-).

and therefore

= 2, xH5a; + 4 = 0, x=~\, or = -4.

We may however prove, even without quaternions, what the

analysis of the foregoing article enables us at once to foresee,

namely, that if Fi and Fa be the two fixed points whose co-ordi-

nates are respectively (-4, 2) and (- 1, 2), then any other as-

sumed initial point Po will have its ultimate derivative at the lat-

ter of the two fixed points, as a limiting position : or in symbols

that

p = Fj.

In fact we have

^,^ = {xo + 4)^ + (z„ - 2)S ^^^ = (xo + 1)^ + {z, - ly,

and similarly,

p^^F.'

=

{x, + 4)»

+

{z, - 2y, p^a" ={x, + \y+ (z, - 2y.

But

x,' + z,^=\00[{5 + Xoy + Zo'']'';

and hence, after a few other easy reductions, we find that
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(x, + iy+(z,-2y=

{Xo + 5)- + Zo'

5{(xo+ \y + {zo-2y

{x„ + 5y + zo'

and therefore that

PiF2-f-P,F, = ip„F2 -^ P„F,

Hence

PnF2 -^ P„Fi = 2-"PoF2 -H PoF,;

and therefore, unless it happen that the assumed initial point co-

incides with the fixed point Fi, the derived point p„ must tend to

coincide with the other fixed point F2; or in symbols, at the limit,

p^f, = 0, and p^ = F2, as above.

And the law of this approach, of the point p„ to its limiting po-

sition, is at the same time seen to be the continual bisection of

the quotient, of its distances from the two fixed points.

661. The recent calculations with co-ordinates, by which

this law and limit have been established, are no doubt sufficiently

easy : yet 1 think that they cannot compete in simplicity with

the quaternion method, which expresses both (and indeed also

other and more general results, depending on other suppositions

respecting the initial value c), by the formula of 659,

Ti;, = 2-Tt;„;

where the quaternion Vo is the initial quotient, and v^ is the va-

riable quotient, of the two vectors drawn from the fixed points

to the point p. The formulae of the article just cited give also

easily,

and therefore

An interesting geometrical interpretation may be assigned to

these last results. For, from the geometrical significations just

now stated, of the quaternions Vo, v^, combined with the princi-

ples of art. 321, &c., it may be easily inferred that the alternate
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points, Po, Pj, Pi, . . Pjfl, . . are all situated on one common circle

passing through the two fixed points ; and that in like manner,

the other series ofalternate points, Pi, Pj, Pj, &c., are all situated

on another circular circumference, which contains also the two

fixed points Fi and Fj. Accordingly, we may confirm this result

by the method of co-ordinates, by shewing that the values found

in 660 for x^ and Zi give,

Xj^ + 2;' + 5Xi _ Xo^ +V + 5x„

Zi-2 Zo-2
'

As a numerical example, if we place the initial point Po at the

origin of vectors, we shall have the following co-ordinates, for

points of the two alternate series:

/n n^ /-20 50\ /-500 1050\

80 that Po, Pj, and P4, are situated on the circle of which the

equation is

x^ + z^ + 5x = 0,

and which evidently passes through the fixed points (- 4, 2) and

(-1,2); while Pi, Ps, and P5 are on the straight line

2 = 2,

which passes through the same pair of fixed points, and must be

regarded as the limit of a circle.

662. As regards the general relation between the two circu-

lar loci, considered in the preceding article, it may suffice to

observe that if o be the origin of vectors, and if we introduce the

symbols ki and ki to denote the vectors of the two fixed points,

making

K, = OFi = 2A - 4i, Kj = oFj = 2A - I,

we shall have, by 659, 660,

Vo = (po - K2) (po - Kl) "S Vi = ICjl^oKr' = Kf *
. KjUoKl,

and therefore,

2 u
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UUi = -UiCa U. UoKi =U. ICiXo'S

where Xo= Woki= a certain vector oLo in the plane of «A, namely

(see the Fourth Lecture) the fourth proportional to the three

vectors /oo-ki, jOo-kj, and ki, or to ki -po> ic2-po> and ki, that is,

to PoFi, PoF,, and OFi, which are lines in the same given plane.

But we have also (compare 651, 661) in the present question,

I'l = (|0i
- Ko) (pi - K,)-' = (lC2 - p,) (k, - p,)-' = PiFj -f- PiF, ;

thus, equating the angles of the two quaternions Dj and kjXo"',

which have been proved to have equal versors, we find that the

angle FiPiFj in the second circular segment, or the angle sub-

tended at the derived point Pi by the fixed line f,F;, or the rota-

tion from PiFi to PiFj, is equal to the rotation from Xo to kz, or

from OLo to 0F2 ; while the rotation from k-i to Xo, or from ofi to

OLo, is equal (by the above-mentioned /jropor^eona/iY?/) to the ro-

tation from (ci -po to K2 -po. or from PoFj to PqFo, or to the angle

F1P0F2 in the Jirst circular segment, which the same fixed line

F1F3 subtends at the assumed point Pq. But the sum of the two

rotations, from ki to Xo and from Xo to kj, is equal to the rotation

from Ki to Kj, or from oFj to gFj, or to the fixed angle FiOFj which

the same fixed line subtends at the origin o. The following is

therefore the required relation between the two circular loci, or

between the angles subtended therein, by the common chord

F1F2 : " the sum of these two angles, in the two circles, or in those

segments of them which contain alternately the successive and

derived points p, is equal to thefixed angle at the origin ;" or in

symbols,

F1P0F2 + F1P1F2 = FiOFj.

If this formula should give a negative value for an angle, the

fixed angle F1OF2 being considered as positive, it would imply

that the derived point which is the vertex of that angle lies in a

segment situated at the opposite side of the fixed line FiFj.

663. The following is a shorter mode of obtaining the same

result. In general, let k, k be any two vectors, and v any qua-

ternion coplanar with k, so that

S . uk = 0, vk = -K.vk = kKv.

Then
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ic'Pic-> = KK-iKp ; U. k'pk-' = TJ (k K- Ur-'

;

and therefore, if tc'be also a line in the plane (or perpendicular to

the axis) of v, so that S . »«'= 0, we shall have the formula,

L .•c'»ic"'+Z» = Z..ic'ic-',

where the angles are to be interpreted as rotations, and added

with their proper siffns, as such. Applying this result to the

expressions for to, Vi, assigned in the foregoing article, we might

infer at once, that (with this interpretation of the angles, as ro-

tations, which will not always coincide with that adopted in the

Fourth Lecture) the following relation holds good

:

which agrees with that recently found. As an example, when
we suppose that Po is at o, or that p„ = 0, then To = KjicfS and the

last formula gives Zfi = 0; and accordingly we saw in 661 that

in this particular case the alternate derived points p,, P3, P5, are

situated on the straight line FiFj, prolonged through Fj, since

we had, for the co-ordinates of each of them, x>-\, 2=2. But

I cannot say that such confirmations by co-ordinates add any-

thing to my own conviction of the truth of a conclusion obtained

by calculation with quaternions.

664. It may be satisfactory, however, to generalize the con-

struction of art. 660, for deriving the point Pi from Po, or Pj from

Pi, &c., and at the same time to state it, and its results, under a

more purely geometricalfi)rm, and one which shall be indepen-

dent, as to its expression, of both co-ordinates and quaternions.

And you will (I think) have little diflSculty in now perceiving how

the consideration of the continued fraction

3. = (^)po,

where a, /3, po, px are real vectors, /3 being perpendicular to the

other three, and the condition a* + 4/3' > being satisfied (see

art. 649), conducts to the following results, under the form of a

geometrical theorem, or rather series of theorems, which seem

to be somewhat new in their kind.

665. Let c and d be two given points, and p an assumed

2 u 2
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point. Join dp, and draw cq perpendicular thereto, and towards

a given hand, in the assumed plane cdp, so that the rectangle

CQ . DP may be equal to a given area. From the derived point

Q, as from a new assumed point, derive a new point r, by the

same rule of construction. Again conceive that s is derived from

R, and T from s, &c., by an indefinite repetition of the process.

Then, if the given area be less than half the square of the given

line CD, and if a semicircle (towards the proper hand) be con-

structed on that line as diameter, it will be possible to inscribe a

parallel chord ab, such that the given area shall be represented

by the product of the diameter CD, and the distance of this chord

therefrom. We may also conceive that b is nearer than a to c,

so that abcd is an uncrossed trapezium inscribed in a circle, and

the angle abc is obtuse. This construction being clearly under-

stood, it becomes obvious, P', that because the given area is equal

to each of the two rectangles, CA . da and cb . db, while the an-

gles in the semicircle are right, then, whether we begin by assum-

ing the position of the point p to be at the corner a, or at the

corner b, of the trapezium, every one of the derived points, q, r,

s, T, &c., will coincide with the position so assumed for p, how-

ever far the process of derivation may be continued. But I also

say, 11°*, that Many other point in the plane, except these two

fixed points, a, b, be assumed for p, then not only will its suc-

cessive derivatives, q, r, s, t, . . be all distinct from it, and from

each other, but they will tend successively and indefinitely to

coincide with that one of the two fixed points which has been

above named b. I add, III''*, that if, from any point t, distinct

from A and from b, we go back, by an inverse process of deriva-

tion, to the next preceding point s of the recently considered se-

ries, and thence, by the same inverse law, to b, q, p, &c., this

process will produce an indefinite tendency to, and an ultimate

coincidence with, the other of the two fixed points, namely, a.

lyth^ The common law of these two tendencies, direct and in-

verse, is contained in the formula,

qb . pa cb
=— = constant

:

QA . PB CA

which may be variously transformed, and in which the constant
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is independent of the position of p. V"" The alternate points, p,

R, T, &e., are all contained on one common circular segment apb
;

and the other system of alternate points, q, s, &c., has for its

locus another circular segment, aqb, on the samefixed base, ab.

VI"". The relation between these two segments is expressed by

this other formula, connecting the angles in them,

APB + AQB = ACB J

the angles being here supposed to change signs, when their ver-

tices cross the fixed line ab. The symbols A, b, c, p, q, r, s,

T, of the present article correspond evidently to the less general

Fi, Fj, o, Po, Pi, Pj, Ps, Pi, Pj, of 660, &c. It has not been thought

necessary, at this stage, to draw any illustrative diagram.

666. If the given area under dp and cq were greater than the

halfsquare of the given line cd, there would then be no tendency

of the derivative points to converge to any limiting position ; the

points A, B, of the recent construction becoming then imaginary:
or the right line ab no longer intersecting the semicircle on CD
(compare 649). This answers to the case where a*+4/3'<0,

Ta'<2T/3, for which we saw (in 649) that the two vector roots

of the quadratic equation q^ = qa + ji became imaginary ;and it may

be exemplified by the continued fraction of art. 658, for which it

was shewn that there is circulation instead of convergence. Geo-

metrically, if the rectangle cq . dp be equal to the square on cd,

instead of being less than its half, the construction of the forego-

ing article gives a period of six points (of which one may go off

to infinity), instead of giving a series of points, tending to a li-

mit. In the case of transition from real to what may be called

imaginary convergence, namely, in the case when aH 4/3'' = 0, or

when the rectangle is just equal to the half square, so that the

line AB touches the semicircle, some difliculties of a peculiar kind

present themselves, on which I cannot enter now.

667. But in connexion with them, and with the whole sub-

ject recently discussed, I may remark that the quadratic equa-

tion q' = qa+(i of 649, where a and /3 denote two real and rect-

angular vectors, will be found to conduct (compare 658) to the

following biquadratic equation,

?* = ?V4/3S
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which is satisfied by the imaginary as well as by the real quater-

nion roots q of the former quadratic equation. In fact, the qua-

dratic gives,

q^^q'a + q^ = (qa + j3)a + qfi = q (a» + /3) + /3a

;

?« = ?^ (a» + /3) + g-jSa = g' (a' + a/3 + /3a) + /3 (a^ + /3)

= qa^+(ia^ + j3^ = a^ (g'a +/3) +/3' = a^f +/3^

This new and biquadratic equation in q is only of quadraticform,

relatively to 5' ; and on account of the scalar character of its co-

efficients a' and (i', it gives, as in algebra,

{2q'-a!'y = a' + 4p\

But in the critical case just mentioned, where

a* + 4/3^ = 0, or Ta' = 2T/3, a" = - 2T/3,

we are not to infer that

2q^-a'=0,

except for the real roots of the original quadratic, which roots may
in this case be said to hefour real and equal vectors ; namely,

by the formulae I. or II. of the lately cited article 649,

,7
= ia+a-'/3=i(l + U/3)a,

these two last expressions becoming equal here, because

a-'/3 = - /3a- ' = - a-'' T/3 U/3a = i U/3 . a.

For besides these real and equal roots, the formula III. of 649

affords also in this case the two imaginary or biquaternion solu-

tions included in the expressions,

5 = (l-U/3){ia±/^/T^) = Sy + V5;

Sq being a pure imaginary scalar (compare 637, 640), namely,

S^ = + /"l \/T^, giving Sj» = - T/3 = ia^

;

and V^' a mixed imaginary vector, of the form

while p'and p'are two real and rectangular and equally long vec-

tors, namely,
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p'=i(l-U/3)a,p" = -U/3A/Tp;

so that

p'^ = ia^=-T/3=AS.p>" = 0.

Hence, for these two biquaternion values of y, we have

= Vj» = (p'±\/rip")2.

and finally

(25'''-a0''=0, as above,

tvithout "iq^ - a? itself here vanishing. These results, so far as

they relate to biquaternions, will soon be stated more generally.

668. The analysis of articles 651, 659, &c., enables us easily

to prove the following general theorem : if a and b denote any

two real quaternions, and if c be any other real quaternion, which

is not a root of the quadratic equation

€^+€0 = b,

then

b_

a +

c being that real root of the last-mentioned quadratic, which has

the lesser tensor. In the case of the continued fractions consi-

dered in 653, 658, the two real roots of the quadratic in c had

equal tensors (each = 1) ; and the recent theorem of convergence

was therefore in that case inapplicable, being replaced (as we

have seen) by a certain circulating property. In the more ge-

neral case, when such equality of tensors does not exist, if we

change a, b, c, respectively, to

a + ia' +jd' + ha", b + ih +jb" + kb'", c + id +jc" + kc'",

where the twelve new symbols aaa"a"'bb'b"b"'cc'c"c"' are supposed

to denote so many real scalars, whereof a. .b . . may be supposed

to be given, and c . . to be assumed ;\i we also make, for abridg-

ment,

e' = (a + cf + (a' + cj + (a" + c"Y 4 (a"'+ c'Y,

and then derive four new scalars c^ ... from c ... by the formulce,
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c,= e'^b{a + c) + b' {a + c') + b" (a' + c") + b'" (a'" + c")
)

,

c: = e-'{b'{a + c)-b(a' + c') + b'" (a" + c") - b" {a" + d")

]

,

c," = c- =>

{
*" (a + c) - V" {d + c') - i (a" + c") + b' (a"' + c'") )

,

ci"= c- ' [
i'" (a + c) + 6" (o' +O - *' (a" + c") - ^ («'" + C") )

;

and so proceeding, derive a new system offour scalars, Ca . . .

from a . . 6 . . Ci . . , as Ci . . have been derived from a . .b . .c , ,

,

and another new system from this, &c.,arf infinitum, we have the

following Theorem: ^^ the ultimate result of the process thus de-

fined will generally be one fixed and limiting system offour

values,

namely, that one ofthe two real systems of values of these last

symbols, satisfying the system of the four equations

C= £ -

=
{ i (a + C) + i' («' + C) + b" (a" + C") + V" (a'" + C")

)

C' = &c., C" = &c., C"' = &c.,

where £ ^ = (a + C)= + (a' + CJ + (a" + C'J + {a" + C"')S

which gives the lesser oftwo real values to the following other

sum offour squares:

C>+ C'^+C"''+ c"'\"

669. We may here dismiss the consideration of that class of

continued fractions which has been the subject of several recent

articles: but a few more words must be said on the theory of the

biquaternions. In general (see again 637, 640, 644) a biquater-

nion, such as the following,

Q. = q+\/~\q[,

may be decomposed into a scalar part, of the form

S Q = t« +V^ w,

and a vector part, of the form (compare 667),

where

w = Sg-, w = Sg-', p = Yq, p'= Yq'

;

w and w denoting here two real scalars, p and p two real vec-
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tors, and q, q^ two real quaternions. And by the same analogy

of nomenclatute, we may agree to call an expression of the form

w + vZ-l i^'aBisCALAR; and an expression of the form p+\^-l p'

a BivECTOR ; so that we shall have this general formula of

decomposition

:

BiQUATERNION = BiSCALAR + BlVECTOR
;

the grand distinction, in calculation, between these two compo-

nent parts of a biquaternion being, that a biscalar, although

imaginary as a number, is yet commutative in multiplication with

every other factor, so far as regards arrangement in a product

(like the ^-\ oi 644, or the z of 654) ; whereas a bivector, al-

though it may be said to denote an imaginary line in space (an-

swering, for instance, as in 649, 654, to geometrically unreal in-

tersections of loci), is yet (like the real vectors of the present

calculus) in general non-commutative as a factor. We may also

write, by analogy to a formula of 408,

KQ=SQ-VQ;
and may say that the conjugate, or, more fully, that the Biconju-

gate of a biquaternion is equal to the biscalar, minus the bivector.

With these enlarged meanings of the symbols S, V, K, it is easy

to extend to biquaternions a great variety of formulse, already es-

tablished for quaternions ; for instance, those of art. 499, all of

which are frequently useful; and the following (compare 190,

519), which we shall shortly have occasion to employ :

K.iZQ = K(2.Kii; Kn = n'K.

670. Pursuing the same train of notation and nomenclature,

1 propose to write, by analogy to a formula of article 409 (or

432),

TQ^=SQ^-V(3S

and to call the TQ thus found the tensor, or more fully the Bi-

TENSOR, of the biquaternion Q; so that we shall have the gene-

ral relation,

Bitensor squared = Biscalar squared - Bivector squared.

It is to be observed that the square of a bivector, like that of a
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biscalar, is generally a biscalar ; the square of a bitensor is there-

fore also in general a biscalar, or of the mixed imaginary but or-

dinary form,

where u and u' are reals, of the ordinary algebraic kind; it is

therefore always possible, by the usual rules of algebra, to ex-

press the bitensor itself under the analogous form,

where t and i are reals, satisfying the two conditions.

And because these two conditions admit generally two solutions,

or leave the signs of t and t' ambiguous, although related, I pro-

pose to remove this ambiguity, for the purposes of our calculus,

by defining that the real part ofa bitensor is never to be nega-

tive. Indeed it may happen that this real part vanishes, by the

square of the bitensor becoming equal to a real and negative

scalar; to meet which case, I propose to define that the coeffi-

cient of \/- 1 in the imaginary part ofa bitensor is to be taken

positively, when the real part of the bitensor vanishes. For in-

stance, the biquaternion expressions of article 646 give,

Tg^=iiV~5y-(^^i-lk + ijx/—5j

-H
-25 25 5> ,„

--r + 7 =10.
4 4 4^

and therefore (v 10 being regarded as positive),

Tq, = Ty4 = ^10, Tq, = Tye = \/ri / To".

In general the notations of the present and preceding articles

give,

TQ'={w+ V~i w'y -(p + v^^p'y = (f + /^ 0'

= W» - p'- w'' + p" + 2\^^ (ivw'-S . pp) ;

that is (compare 538),
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{T(y+\/rTy'))2=T9'-Ty^+2l/~i S.qKq,

because

g--iv + p, g' = w' + p', K^=u/-p'.

We may then write, generally,

T (j+ v/^g,')=<+ /ir<-i S . qKq', t>0;

and shall have, to determine this real and positive scalar t, the

formula,

2t' =Tq'-Tq'*+{ (Tq^ - Tqy + 4(S . gKgy] K

We have also, generally, this other and simpler equation,

QKQ = (TQ)»,

so that the product of two conjugate biquateiTiions is equal to

the square of their common bitensor : which may be compared
with a result of the lately quoted article 409, or of the earlier

article 163. We may also agree to write (compare 90) the ge-

neral formula,

Q=TQ.UQ=UQ.TQ;
and to say that the quotient of a biquaternion, divided by its bi-

tensor, is generally the versor, or, more fiilly, the Biversor, of

that biquaternion.

67 1 . A large number of other general formulae may be ex-

tended in like manner to biquaternions ; especially all those which

depend only on the symbolic rules for calculating with scalars

and vectors (V - 1 being still treated as a scalar), including the

commutative and associative principles of addition, and the dis-

tributive and associative principles of multiplication; which prin-

ciples have been so fully illustrated, and indeed proved (as theo-

rems) in earlier articles, in connexion with their geometrical

signijications, while only real (or geometrically interpretable)

quaternions were involved : whereas they are now defined to hold

good also, for certain new or extendedforms, considered as crea-

tures and subjects of calculation. Among these extended results,

or generalized ^r»2?<te, it seems worth while to notice here the

following

:
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(T.RQy = (TRy(TQy;

where Q and 22 may deDote any two biquaternions. When a

corresponding formula was proved in article 189, for any two

real quaternions, it was done, at least partly, by an appeal (as

just now hinted) to the geometrical meanings of the acts of ten-

sion, which were to be compounded and compared. But because

the acts ofbitension, to be now combined, are geometrically ima-

ginary (or at least hitherto uninterpreted), we must employ some

symbolical process, such as the following, which depends upon

the final formulae of the two foregoing articles,

(T..RQ)»=iiQ.K.iiQ=.R.Q.KQ.Ki2
= i?(TQ)' KB = 2iKjR . (TQ)»= (Ti2)^(TQ)^

Or we might observe that

(T . i? Q)=' = (S . B Qf - (V. i2 Q)%

and that

S.i2Q=Si?SQ + i(Vi?VQ+V(3VB),
V.iJQ = Si2VQ+Vi2SQ + i(Vi2VQ-VQVi2);

whence

(S .ieQy= Sie*SQ»4 2Si2SQS.Vi2VQ
+ i (VRYQy + i (VQYRy + iV72'V Q^

;

(V.2?Qy=SJS''VQ> + V^'SQ"+2Si2SQS.Vi?VQ
+ i (VijV Q)^ + i (VQVRy - iVii'V Q^

and therefore,

{T .RQy = (SR' - YR') ( S Q» -VQO = (Ti?)' (T Qy, as above.

Hence, taking on both sides the square-roots, but prefixing now
an ambiguous sign, which it was unnecessary to do when we
were dealing only with real and positive tensors, we have, for

any two biquaternions, the formula :

T.i?Q = + Ti?.TQ;

and more generally, for any number of such factors, we may
write (compare 208),

TnQ = + nTQ.
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For instance, the bitensor ofa power of a biquaternion can only

differ in sign (at most), from the corresponding power of the bi-

tensor. But such differences of sign may arise, in the applica-

tions of the definition given in article 670, which will occasion-

ally require us to take the negative of a product of bitensors, in

order to obtain a new bitensor, with a real and positive part.

672. We saw in 667 that the square of a certain bivector va-

nished, without that bivector vanishing itself. It must then be

possible (as in the case of that bivector for example), to have a

null bitensor of a biquaternion which is not itself equal to zero.

And it is easy to assign the conditions under which such a result

will take place. For by 670, if the biquaternion be Q = 5'+ V -1

q', where q and q are real quaternions, its bitensor will vanish

when, and only when, the two following equations are satisfied

:

Tq = Tq'; S.qKq' = 0.

But q'TLq'=Tq''; thus, if we still suppose that Q itself does not

vanish, we are to make

y5'-> = S->0=T-M=(, 5=j<^',

and the expression for the biquaternion becomes,

Q=(,+ v/^)y',

I here denoting some real unit-vector. We may, however, trans-

form this expression, by writing

K = q-Uq',iq=^K, Q = ?'(«+ •/"!);

where k, by 286, will denote another real unit-line. It is easy

to infer, as a corollary from this general theorem, or to prove by

a process more direct, that a bivector p + l/- 1 p will have a

null bitensor, when the two real vectors p and p on which it de-

pends represent lines whose lengths are equal, and whose direc-

tions are rectangular ; or that

T (p + v/r[ p-) = 0, if Tp = Tp', and S . pp'= 0.

Accordingly these conditions were satisfied in the case of article

667.

673. The following appears to be a remarkable example of
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the occurrence of biquaternions whose tensors are null. Sub-

tracting the expression in 64 1 for a root q of the quadratic equa-

tion q^ = qa+ b, from the analogous expression for another root

^, which answers to another value w of w, supposed to corres-

pond to a different root of the cubic equation (636) in iv^, and

dividing the remainder by ^(w'-iu),yie find, after some easy re-

ductions, the following biquaternion value,

^ {w'-w) {w'-a'){w"-a') ^'

where X is an imaginary vector (or bivector), namely,

X=(w + w') V. ay - 7 (ww' + a')

+ w'^ w' ' {w^ + WW +10^- a') aS . ay;

and ju is another bivector, on account of one only of the scalar

values of w, w' being real. Squaring and reducing, we obtain

the equation,

But if we denote by w'"' the third root of the equation =/{w')

of article 636, regarded as a cubic, we have

w^ + w'' + w"' = c + a' ; (w'' + w'^) w"' + w' w'^ =ca'+y';

w' w'^ w'"' = (S . ayy.

Eliminating therefore w"^ and c, we are conducted to the rela-

tion,

tv' w' (w' - a') {w^ - aO ^W^uPy^- {w' +w'^-a'){S. ayY-

Comparing, we perceive that

X^ = (w' - a'y {vP - o^y ; or, ;t' = 1

.

Thus,

TQ^=SQ^-VQ^=l-/u'=0;

and finally

TQ = 0;T(^'-y) = 0.

If, then, q and (( be (as above) two different roots ofa quadra-

tic equation in quaternions, of the form q^=qa + b, which corre-

spond to two different roots of the auxiliary and cubic equation
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(636, 637), their difference^ q-q, is a biquaternion with an

evanescent tensor. For example, if we take the six roots as-

signed in 645, 646, of the particular quadratic ^ = 5qi + 10/, we
shall easily find that the twelve following diflFerences,

^3 - ?!. qi - q2> q* - q\, q* - qi,

Js - qi, qt - qz, q^ - qi, qs - qt,

qs - qi, qi - Ji, qe - qs, qt - qi,

are biquaternions of this particular kind ; thus

-^ (-
1
J ^BJ

-^ (tXt) - «' '^ (^- ?') = 0.

But the tensors of the three following differences of pairs of

roots of the quadratic (each pair answering to only one root of

the auxiliary cubic),

qi - qi, qi - q^, ge - q^,

will be found to be different from zero. A more general verifi-

cation may be had from the formulae of 649.

674. We saw, in 657, that the product of two biquaternions

might vanish, without either^cfor vanishing separately. If we
now propose to inquire into the general conditions under which

such a result may occur, we may proceed as follows. Breaking

up the imaginary (or biquaternion) equation,

(r+ V^O {q+ /^ j') = 0,

into the two real equations,

rq - /}' = 0, rj' + r'q = 0,

and making for a moment r'q = s= a real quaternion, which in

the present question is different from zero, we find,

g = r'-^s, q=- r'i, (rr'"^ + r'r^) 5 = 0,

(rV-i)^ = -l, r' = tr, St = 0, Tt = l,

r+rV_l = (l+tV-l)r, y + gV-1 =-'•"'('+ V-l)«;

so that the evanescence of the product may be said to depend on

the identity,
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(i + cv/-i)0+ v'-i) = (i+iOV-l + t(i + v/^') = o,

where V -1 is still the ordinary symbol of that form, and i is a

real unit vector, of which, by the principles of the present cal-

culus, the square is negative unity. We may, however, also

write (compare 672), ir = ric, where k denotes another real unit

vector ; and therefore, with equal generality, under the conditions

of the present investigation,

r+/^/-l = »•(l+lcV-l).

and we see that when two biquaternion factors thus give a null

product (of the form + 0\/-l)» ^'''^°"* either separately va-

nishing, the tensor ofeach is zero. Conversely, it is obvious now

(see again 672), that when the tensor of a biquaternion vanishes,

that biquaternion may always be associated as a factor, whether

as multiplier or as multiplicand, with another, in such a way that

their product may be zero; and indeed that this may be done in

indefinitely many ways, because an arbitrary but finite biquater-

nion factor may be introduced at pleasure. It seems convenient,

therefore, to call biquaternions of this class nullific, or to say

that they are nullifiers ; and it is worth observing, that the

reciprocal of such a nuUifier is infinite. For in general we may
write, as a formula for the reciprocal ofa biquaternion, the fol-

lowing :

(q + ry/-l)-^ = (q + r<f^ry^-(r + qr^qy^^-l;

where, by 672, we have now,

qr^ = i, rq-^-i, qr'q = ~r, rq;^r = -q\

and therefore,

(5' + r V-1)-' = 00 + 00 v'-l, if T (g + r V-1) = 0.

We may also write this other general expression,

(,+rv-i)-= '-"r'^;' ;

where, when the tensor oi q-vr ^J-\ is zero, the denominator of

the fraction vanishes, without the numerator vanishing generally.



LECTURE VII. 673

It is scarcely necessary to add, after what has been shewn above,
that whenever (as in 667) the square of a biquaternion vanishes,

the biquaternion itself must belong to the nuUific class. But it

may be noted here that the equation

where y is a given and real quaternion, admits generally of the

following imaginary or biquaternion pair of solutions,

Q=+/IT(SgUVy-TVy),

in addition to the obvious and real pair,

675. To give now, although very briefly, for the subject is

of great extent, some notion of the manner in which biquater-

nions may be useful in geometry, let us resume the equation of
the unit sphere (168), (0^+ 1 = 0, and change the vector p to a bi-

vector form, such as a+T^/-\. The equation of the sphere then

breaks up into the system of the two following,

ff^i-rHU 0, S.(TT = 0;

and suggests our considering a and t as two real and rectangular

vectors, such that Tr = (Tit'' - 1)*. Hence it is easy to infer that

if we assume a
||
X, where X is a vector given in position, the new

real vector a + r will terminate on the surface of a double-sheeted

and equilateral hyperboloid; and that if, on the other hand, we

assume r
||
X, then the locus of the extremity of the real vector

ff + r will be an equilateral but single-sheeted hyperboloid. The
study of these two hyperboloids is, therefore, in this way con-

nected very simply, through biquaternions, with the study of the

sphere : and thus it may be understood that the eminently simple

equation, p'=-l, of the latter surface, may be made to furnish

the solutions ofmany difficult problems, respecting other surfaces

of the second degree. 1 intend to reprint, as an Appendix to

this Course of Lectures, the abstract of a communication made

by me to the Royal Irish Academy in May, 1850, on the sub-

ject of the inscription ofa gauche polygon in an ellipsoid, or in

a hyperboloid, when the n successive sides of the polygon are re-

quired to pass through the same number of given points of space,

2x
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distinguishing between the two great cases, where the number of

the sides is odd, and where it is even. The Abstract referred to

has been drawn up in a geometricalform, but it is altogether a

translation into geometrical language of investigations conducted

with quaternions, and extended by the aid of biquaternions on

principles already indicated. I may just remark here, that cer-

tain formulae of the Sixth Lecture (in particular those of articles

335, 336) played an important part in the quaternion analysis

employed. Other geometrical uses of biquaternions will suggest

themselves to any one who will take the trouble to compare (for

example) the equations of 436 and 438, for the ellipsoid and dou-

ble-sheeted hyperboloid, namely,

(S.pa-')^+(V.pi3-)'=l,

and to see how the one passes into the other, by merely changing

/3 to /SV-l ; or to compare on the same plan either of the two

equations just cited, with the equation of the single-sheeted hy-

perboloid in 439, namely, with the following,

(S.pa-0^+(V.pj3-0= = -l.

In general all such investigations as those of Poncelet, respect-

ing ideal secants in geometry, admit of being conducted by bi-

quaternions.

676. Without longer dwelling at present on the general

theory of biquaternions, it may be proper to give here some ra-

pid sketch of the manner in which the present calculus applies to

the inscription ofa gauche polygon in the unit sphere, under con-

ditions of the sort alluded to in the foregoing article. I observe,

then, P', that when the number of the sides of the polygon is

even, n = 2m, the equation of closure in article 336 becomes,

pqzm = qzmp, or 0=V.pVyj„;

but, 11"*, that when the number n is odd, =2m + l, the equation

of closure in the same article becomes,

pq%m*i = -q%m*ip, giving = S5'2m^i, and = S. js„+i|0.

Iir% that from 335, we easily infer that it is allowed to write

generally, whether n be even or odd,
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where q^ and q\ are two real quaternions independent of p, and
satisfying the two equations in finite differences,

^n = a„9'„,i + g^'n.i, q"n = q'n-i- anj"n-l ;

which may be collected into the single formula,

?'n±V'-l ?"n = (a„±V-l) (g'n-i + '^^q'n.i),

and are to be combined with the initial conditions,

9'o = 1, /o = 0, or q\ = oi, q"i = 1

.

I V"*, that these equations give, by a species of finite integration,

the two following among other relations,

TqV - TqV = (-1)" ia„' + 1) (a\., + 1) . . . (a^ + 1),

and = S . q'n^q"n = ab-S . aj^,

if a = Sq„, b = S/„, a=Vq'n, /3 =Vq"„.

V'\ that if n be oc/rf, n = 2iw + 1, the equations of closure in II.

take thus the forms,

= a-S./3p, 0=b+S.ap;

which are both included in the single equation,

V. py = aa+ 6/3, where y =V. /3o.

VI"", that this equation determines the position of a certain real

right line, or chord ofsolution, which cuts the unit sphere p'+l

= in two points (real or imaginary), whose vectors are given by

the formula,

p = {aa + 6/3) 7"' ± (a' + (i^Y (6^ + a^* y',

and which are adapted, and are alone adapted, to be the positions

of the initial point p of the inscribed and odd-sided polygon,

VII'\ that if w be even, n = 2m, the equation of closure in I.

assumes then a form essentially different from the forms in V.,

namely, the following,

V.pa = pV.pi3,

which, when combined with p'' = - 1, conducts to one or other of

2x 2
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the two following systems of scalar equations of the first degree

in p,

(VII.)'. . .S.7p = a'-a;-iS.|3a, S.(i3-xa)p = 0,

(VII.)". . .S.-yp = a'-+a:S./3a, S . (/3 + a;-'a) p = 0,

where 7 still denotes V. /ja, and a; is a real scalar satisfying the

condition,

(a;-a!-')S./3a = /3^-a^

VIII"', that these two systems of equations represent two real

right lines, which relatively to the sphere are reciprocal polars

of each other, because

(a» + xS . /3a) (a' - «-> S
. /3a) = - 7% and S . (j3 - xa) (j3 + a;-' a) = ;

and these two lines may be said to be chords of real and imagi-

nary solution, of the problem of inscribing the sought even-sided

polygon, one of them giving two real positions of the initial point

V, and, consequently, two real inscribed polygons, while the other

line, which is wholly external to the sphere, may yet be said to

give two imaginary positions of that point, and therefore two

imaginary polygons: which latter may, however, became real

when we pass, by imaginary deformation, from the sphere to a

single-sheeted hyperboloid. I X"", that, for ejcample, we can ge-

nerally, by VIII., inscribe (or conceive inscribed) in a given

sphere two real and two imaginary gauche quadrilaterals, whose

sides shall pass successively through any four given points of

space; but X"', that we can on the other hand, by VI., inscribe

generally in the given sphere two real or two imaginary gauche

pentagons, but not two of one kind, and also two of the other,

whose sides shall pass through ^tJe such points. No account is

taken here of any exceptional or limiting cases, such as might

arise, for instance, from the supposition that the given points, or

some of them, were situated on the given spheric surface.

677. If instead of conceiving, as above, a polygon pPiPj . .

Pn-iPj whose n successive sides pPi, &c., are required to pass

through n given points, Ai, &c., we now conceive a polygon

pPi . . p„ of w + 1 sides, whereof only the n first are obliged to

pass through those n points, while the last side p„p isfree, then

it is clear that the initial point p of this new polygon is alsofree.
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or may be taken at pleasure anywhere upon the spheric surface

:

but that when this initial point p is once assumed, they?na/ point

p„, and the closing side PnP, become entirely determined. There

will thus be a determined system of such closing chords in the

sphere, namely, one for each point of its surface assumed as the

initial corner of the polygon: and a variety of interesting ques-

tions may be proposed, respecting the arrangement of those

chords, considered as lines hzxing position in space. For some

results respecting such arrangement, with extensions to other

surfaces of the second order, I may refer to the Numbers of the

Philosophical Magazine for September, 1849, and April, 1850, in

which Magazine a number of other papers on Quaternions, and

on connected subjects, by myself and others, have within the

last few years appeared ; also to the Abstract printed in the Pro-

ceedings of the Royal Irish Academy, ofthe communication made

by me in June, 1849, which, together with that already mentioned

of May, 1850, will perhaps appear in a fuller form, after no long

time, in the Transactions of that Academy. Meanwhile, 1 may
remark, Xl"", that a very useful formula, for the case of the unit

sphere, is the following, which assigns the vector |0„ of the final

point p„ as a function of the assumed vector p of the initial

point p, and is easily deduced from the principles of335 and 676 :

-g"^+(-0"?'nP
''"'

?'n + (-!)"?> '

but XII"', that, even without employing this expression XI. for

pn, the formula VI. of 676 enables us to infer that when the num-

ber of the given points Aj . . or of the given vectors ai . . is even,

= 2m, so that the number of sides of the variable polygon is odd,

the final or closing side touches two distinct surfaces ofthe second

order, represented by the two separate equations,

a^ + /3^ = 0, iHa^ = 0,

in which a, b, a, /3 are regarded as linear functions of the vector

uzm+ii a"fl which will be found to represent an inscribed ellipsoid,

and an exscribed and double-sheeted hyperboloid, having double

contact with the sphere and with each other, at two real points

which on them -dre umbilics, and being also otherwise remarkably
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related; whereas, XIII*'', if the number of the given points be

odd, = 2m -
1 , or of the sides even, = 2m, then, by making the roots

equal in the quadratic equation YII. for x, or by other processes

unnecessary here to be described, we are conducted to an equa-

tion of the fourth degree in am, which breaks up (for the case of

the sphere) into two imaginary and quadratic factors, of the

forms,

/3'-a^ = ±2/^S./3a, or(/3 + aV-l)' = 0,

representing two imaginary cones, which jointly compose the en-

velope of the closing side, or are the surfaces which are both

touched by it in all its varying positions; XIV*, that these ima-

ginary cones may become real, namely, by changing the sphere

to a single-sheeted hyperboloid, in which case the bases of the

developable surfaces, composed by mutually intersecting chords,

which bases are analogous to lines of curvature, are real right

lines (the generatrices), although for the sphere they are imagi-

nary lines, represented in the present analysis by the equation

which admits of being solved (compare 667, 672, 675) by biqua-

ternions, without our supposing Ap itself to vanish ; X V'^, that

for the case XII. the two analogous curves through any point p

have their tangents parallel to two conjugate semidiameters of
the surface, in which the variable and odd-sided polygon is to be

inscribed ; so that these curves everywhere cross each other at

right angles when that given surface is a sphere. Finally it may
be noticed, XVl"", that in the case XIII. the two imaginary

cones touch the given sphere along two imaginary circles, the

equations of whose planes are,

a + Jv'-l = 0, a-b^/-\ = 0,

and which may become two real and plane conies, by that imagi-

nary deformation which was referred to in XIV.; their planes
being, in all cases, harmonic conjugates with respect to the pair

of planes represented by the equations a = 0, b = Q, which latter

planes are also otherwise important in these investigations.

678. Reserving for another occasion (as has been hinted) the

fuller developement and elucidation of this whole theory of the
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inscription of polygons in surfaces, with the corresponding tlieory

of the circumscription qfpolyhedra, and some comparisons of the

results so obtained with other and better known ones, which have

been discovered by geometers for plane polygons, inscribed in or

circumscribed about plane conies, I wish to offer here a few re-

marks on the geometrical signification of the equation

V.pa=pV.p/3,

which occurred in 676, VII., and might give occasion for a

longer discussion than we can at present afford to bestow. Sup-

posing still, as in the recent investigations respecting inscriptions

of polygons in a sphere, that a and |3 denote two real and known

vectors, while p denotes a sought vector (real or imaginary), we

may endeavour to find this last vector by resolving the last-cited

equation, without any reference now to any other equation in-

volving p, such as the equation p' = - 1, of the unit sphere. And
it might atfirst sight appear that, even without any such em-

ployment of any additional equation, the problem was more than

determinate. For if we should choose to substitute, in both mem-

bers of the equation, for the sought vector p a trinomial expres-

sion of the form ix +jy + h (as in 507, &c.), with analogous re-

presentations for the given vectors a and /3, and then equate the

two resulting expressions of the standard quadrinomial form,

namely, w + ix+jx + kz (arts. 450, &c.), it might seem that we

should have to satisfyfour equations, of the ordinary algebraical

kind, with only three disposable quantities, real or imaginary.

And even after perceiving, as we should soon do, from inspection

of the formula itself, that neither member contributes any scalar

term, and therefore that only three ordinary equations (at most)

are to be satisfied by the three sought co-ordinates, x, y, z, on

which the vector p depends, it might still seem that (as in 513,

&c.) these three equations should suffice to determine those three

co-ordinates. But because a closer inspection of the formula

would shew that each member represents" not only some vector,

but a vector perpendicular to p, we might thence perceive that

after expanding the equation into the trinomial form,

iX+jY+kZ=0,

the coefficients X, Y, Z, which would be certain scalar functions
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of the second degree of the sought co-ordinates x, y, z, must be

connected by the relation,

xX+yY-vzZ = 0;

and therefore that the three scalar equations,

X=0, r = 0, 2 = 0,

are not independent of each other. Accordingly, without resort-

ing to co-ordinates (compare again 513), we may perceive,

merely from the principles ofthe present calculus, that the equa-

tion in question may be thus written :

V.p(V./3p + a) = 0;

or thus

y.qp^- a, where q = g+ fi,

g being here an arbitrary scalar. Hence, by 514 (or by 559),

we satisfy the equation by making

/» = -(^-^/3)-(a+rS.i3a);

or, as it may be also written,

^ (^' - /3') P = /3S
. /3a + ^V. )3a - p=a.

To each assumed value of the scalar g corresponds a certain de-

rived value of the vector p ; and the locus of the termination of
this variable vector, p, it a curve ofdouble curvature, which is of
^Ae THIRD ORDER, In the sense that it is cut by an arbitraryplane

in three points, real or imaginary ; because if the equation of the

assumed plane be thus written,

S .fip = m,

the condition for determining its points of intersection with the

locus is the following

:

mgig'-l^') = S .)u^S . (ia+gS . ^j3a - g'S .
^a

;

which is an ordinary cubic in g. The curve just mentioned has

some interesting properties, respecting which it may suffice to

mention here that it is the common intersection ofall the surfaces

of the second order, which are jointly represented by the equa-

tion.
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S.a\p = p'S.(i\-S.fipS.\p,

obtained by operating on the proposed equation with the symbol

S . A, where X is an arbitrary vector ; and that by making suc-

cessively, and separately, X = a, X = /3, and X = 7, where y =V. /3a,

we obtain, in particular, the three following surfaces of the second

order, whereof the curve is the common intersection :

p* S . aji = S . QjoS . |3/o

;

(V.(ipy=S.yp;

S . yap = S . fipS .yp;

of which three surfaces the first is a cone, the second a cylinder,

and the third an hyperbolic paraboloid ; while the cone and cy-

linder are connected as having a common rectilinear generatrix,

represented by the equation

V./3p = 0,

which right line is contained in one ofthe two asymptotic planes,

S./3p = 0, S.yp = 0,

of the paraboloid, namely, in the second of them, but is not a

part ofthe sought locus, or of the curve of the third order, here

considered (compare the Paper by the Rev. George Salmon, on

the classification of curves of double curvature, published in the

Cambridge and Dublin Mathematical Journal for February,

1850). As to the intersections of this curve with the unit sphere,

I obtained the formulae (VII.)', (VII.)", of art. 676, by seeing

that when p'^-l the equation gives,

S.yp = (V. j3p)^ = (V. ap)» = (S ./3p)' + /3»= (S . apy + a\

and

-S./3a= S.apS .Pp = x{S.apy^x-HS.Iipy,

if we make for abridgment x = S.f5p -;- S . ap ; whence,

(a; - ari) S . /3a = (S . apY - (S . /3p)^ = /3^ - a\

as in 676, (VII.); and

S . yp = a- - a;"' S . /3a, S . (/3 - Xa) p = 0,

as in the equations (VII.)'; from which those marked (VII.)"
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were derived, by simply changing x to -a;"'. But conditions es-

sentially equivalent, for determining the intersections of the

sphere and curve, might be deduced in quite another way, namely,

hy squaring the expression of the present article for p in terms of

g ; which process, after suppression ofa commonfactor, namely,

g'^ -
fi",

would give (compare 636),

p'={g^-l5^y^{a^-g-'(S.fiay};

and therefore would lead, for p' = - 1, to the following biquadra-

tic equation in g, which is, however, only oi quadraticform rela-

tively to g'

:

0=g'-fi' + a'-g-"-{S.fiaY; or, p* - ^^ (/3^ - a^ = (S . /3a)^

In fact, the positive value of g^ would give the two real values of

p, answering to the two real intersections of the sphere with the

curve, or with the chord of real solution in 676, VIII.; while

the negative value of g' would give the two imaginary values ofp,

answering to the two imaginary intersections of the sphere with

the same curve, or with the chord of imaginary solution, men-

tioned in the same paragraph 676, VIII., which was there shewn

to be the reciprocal polar of the former chord, and to lie wholly

outside the sphere. It must be remarked that the common fac-

tor g'^ - /3% which was suppressed in the recent process, and

which cannot vanish except when g takes one of the two imagi-

nary values,

^ = ±T/3v/-l,

appears to indicate two imaginary and infinite values for p, or

two imaginary points at infinity, as two other intersections of the

sphere with the curve of the third order (compare the remark

made at the end of 553) : but I do not at present see of what geo-

metrical utility these two new points can be, even when we pass

by imaginary deformation from the sphere to the single-sheeted

hyperboloid.

679. Without introducing the consideration of any but real

quaternions, a variety of new forms might be assigned, in this

calculus, for the representation oi real loci, in addition to those

which have been already pointed out, and of which some appear

to be remarkable. Thus if we assume any fixed vector oa = a,
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and denote (as usual) by p another and generally variable vector

OP, drawn from the same fixed origin o to a point p of which the

locus is required, introducing also for abridgment the following

symbol of a certain quaternion which depends on the position

of p,

? = (/»a-%

then the equation

[l]--?=0,

as giving p=0, expresses that p coincides with o ; but the equa-

tion

[2].. 9=1,

which gives p = ±a, expresses that p is situated either at a, or at

another fixed point a', such that o bisects aa'; while this other

equation, of almost the same apparent form,

[3]..?=-l,

gives, as the locus of p, a circular circumference (compare 170),

namely, a great circle with a for pole, on the spheric surface,

with o for centre : and this spheric surface itself is represented

by the equation,

[4]..Tj=l.

The indefinite right line through o and a is denoted by writing

[5]..U? = 1;

and the indefinite plane through o, perpendicular to this line, is

represented (see 172) by this other formula,

[6]..U<7=-1;

while the system of this line and plane may be expressed by the

equation

[7]..V^ = 0,

since this requires (compare 504) that we should have either

VV?=0, or SV? = 0.

To write on the other hand,

[8]..S? = 0,

is to express (see again 504) that
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(S.pa-')'+(V.pa-')'=0;

and therefore (by 438), this locus [8] is an equilateral right cone,

containing all the indefinite lines of which are inclined at 45° to

the fixed line OA. The equations

[9] . .Sy=l, and [10] . .89 = -!,

represent respectively (by 438, 439) a double-sheeted and equi-

lateral hyperboloid of revolution, and the conjugate and single-

sheeted hyperboloid ; their common axis of revolution being the

indefinite line oa, and the finite line oa itself being the real semi-

axis of the former. Any other assumed and constant scalar va-

lues of S5' would give other, concentric, similar, and similarly

placed hyperboloids; and if, on the contrary, we assign a con-

stant vector value |3 to Vj, where |3 = OB = a fixed line perpen-

dicular to a, writing thus,

[11]. Vj=/3, /3j.a,

the locus of p will be found to be no surface, but a curve, namely,

an equilateral hyperbola, in a plane perpendicular to ob, with o

for centre, and oa for one of its asymptotes. Another mode of re-

presenting an hyperbola by a single equation in this calculus oc-

curred in 505, and will be more fully discussed in the next arti-

cle. Meanwhile, I observe that an ellipse may in like manner

be represented in various ways by a single equation in real qua-

ternions, for instance, by the following,

[12]..(yV.„p)'+(^V.|3|.)^=l,

in which a, /3, 7 denote any three real and rectangular vectors

;

because on developing the squares of the two quaternions,

7 V. OjO = S . yap - aS . 7/0, 7V. j3jO = S . 7/3/0 - /3S . yp,

it will be found that the only way of making the sum of those

squares equal to unity, by any real vector p, is to suppose that

this vector satisfies the system of the two scalar equations,

[\3]..(S.yapy+{S.yiBpy=l,S.yp = 0,

whereof the latter represents a. plane, and the former an elliptic

cylinder: the locus of the termination of p is therefore (as just
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now asserted) an ellipse, which has its centre at the origin, and
its axes in the directions of the two lines a and /3. For example,

the equation

[14] . . {a-'kY.jpy^{b-' AV. ipy = 1,

where p = ix -yjy + kz, can only be satisfied, for real co-ordinates

xyz, by supposing that those co-ordinates satisfy the two equa-

tions,

[15] ..ar^x^ + b-^y^=l,z = 0.

On the other hand the equation,

[l6]..{S.apY+iyY.apy=l,

where 7 is still supposed J. a, admits of an alternative oftwo so-

lutions, and conducts to the following system oftwo real curves:

[17]..S.7p = 0,(S.ap)'+(S.7ap)^=l,

[18] , . S . 7ap = 0, (S . apY - Ta^ (S . jpY = 1,

whereof the former represents generally an ellipse, and the latter

an hyperbola, these two curves having one common axis, and one

common pair of summits, but being situated in two rectangular

planes. For example, the circle and equilateral hyperbola, which

have their equations in co-ordinates as follows,

ar'' + 2/='= l,z = 0, andx'-2== l,y = 0,

and of which the consideration has presented itself to some for-

mer writers, in connexion with modes of interpreting certain re-

sults respecting the ordinary y/-l, are jointly represented in

this calculus by the one equation,

[i9']..{S.ipy+{kY.ipy=\.

Again, the equation,

[20] ..p^ + b' + {ekY.jpY = 0, where c^ < 1,

represents a system of two ellipses, in two rectangular planes, but

having in like manner two common summits; namely, the two

principal sections through the mean axis ofthe ellipsoid, of which

the equation in co-ordinates is,

[21] . . (1 - e') x' + /+ (1 + e=) z'- = b-.
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Again, if i and k denote any two fixed vectors from the origin,

the equation

[22] . . ipKp = pKpi, or = V. ipKp,

may easily be shewn to represent a system of two rectangular

right lines, bisecting the angles between i and k ; whereas this

other equation, of nearly similar form,

[23] . . (jOKjO = jOl/OK, or V. jOV. ipK = 0,

which may also be thus written (compare 520),

[24] . . V. ,pS . K|0 + V. K|oS. ip = 0,

or thus,

l25]..(Lpy=(pKy,i{L'=K\

represents a system of three rectangular right lines,

namely, the two bisecting lines just mentioned, in the directions

of Ut + Uk, and also a third line, perpendicular to the given plane

of the two given lines i, k, and having therefore the direction of

V. IK. Accordingly, if we seek the directions of the three axes of

an ellipsoid, by inquiring where the diameters are normals, or by

making, in 474,

[26] .. V.vp=0,

we are conducted precisely to the recent equation [24]. Or we
might, on the same principle [26], have deduced the equation

[23] from the last formula of 593 or of 596. This seems to be

a natural occasion for remarking, that the general equation of

surfaces of the second order may in this calculus be written thus

(compare 476, 552),

[27] . . 1 =f(p) = gp'+2-S.S . apS.fip +S.yp,

giving for the vector ofproximity (compare 474, 475, 481, 575)

the expression,

[28] ..v=^(|9)=5'|0+S(aS.)3p+ [3S.ap) + y;

and that when, by suitable reductions, the sign ofsummation is

removed, the two cyclic normals of the surface, or the normals to

what have been called by MacCullagh the two directive planes,

have the directions of the two constant vectors a and j3, in the

one remaining term of the form 2S . ap S . fip (compare 469,

593). As regards curves and surfaces of higher orders, it may
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suffice for the present to observe, in addition to what is sug-

gested by the remarks in 552, that any proposed equation in x,

y, z, may he transformedfrom co-ordinates into quaternions^ by
simply making the substitutions,

[29] . .0; = j"' S . ip,y=j'^ S .ip,z = k'^ S .kp,

or

[30] . .x = -iS.ip,y = -jS .jp, z = -kS .kp;

for instance, oneform of the quaternion equation of Fresnel's

Wave, obtained on this plan, is the following :

jS. apf (S.fipY (S.ypy_

But it is usually possible, in interesting questions, to obtain ex-

pressions more elegant, or at least better adapted to be treated by

the peculiar methods of this calculus, than the forms which result

immediately from the foregoing very general substitution : and

accordingly I have been able to obtain other expressions by qua-

ternions for the lately mentioned wave surface, which put in

evidence those conical cusps, and those circles of contact there-

upon, on which appear to depend the optical phenomena of co-

nical REFRACTION in Crystals with two axes, that were ex-

perimentally observed by the Rev. Humphrey Lloyd about the

end of the year 1832, with a carefully cut specimen of arrago-

nite. Finally, as additional illustrations oi theflexibility, combined

with distinctness, of the symbolical language of the present cal-

culus, it may be noticed that by subjecting a variable quaternion,

q, instead of merely a variable vector, p, to satisfy a given equa-

tion, and allowing the scalar part to vary, new sources of expres-

sion arise. For example, if we write (as we have often done)

q = w+ p, and regard the part w as arbitrary, and p as variable,

but both as real, while a and /3 are any two given and constant

and real vectors from the origin, the equation,

[S2]..(t.)-=-,,

will be found to represent a full circle, inasmuch as the va-

riable vector p will now be free to terminate at any one of all

those points of space which are contained upon, or Included
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within, that circular circumference of which the vector of the

centre is a, while /3 is perpendicular to its plane, and its radius is

= T/3 : because the quaternion analysis shews that we have here,

[33] . .S.(p-o))3 = 0, T(p-a)' = T/3^-M;^

The equation

would represent, on the same plan, the system of a full circle

and oftwo points, related to each other as the equator and poles

of a sphere. And the very simple equation,

[35] ..Ty=l, or T(w + p)=l,

represents in like manner a full sphere, namely, the unit-

sphere, regarded now as no mere surface, but as a solid locus,

whereof aW the internal points are here to be taken into account,

as being all included in the formula. Results of the sorts as-

signed in the present article might be almost indefinitely multi-

plied : and if the subject shall be hereafter pursued, the difBculty

will much less be to interpret than to class the expressions.

680. After these general remarks on equations in the present

calculus, let us resume the particular equation of art. 505,

V.flp.V.p0 = (V.„6»)»,

and treat it as if it had now for the first time presented itself, in

some geometrical investigation. One general and always per-

mitted process of transformation, of any equation in quaternions,

has been seen to be the taking separately the scalar and the vec-

tor parts of the two members, and then equating them respec-

tively. Taking therefore the vector parts, the first member of

the equation gives,

V(V.„p.V.p0) = pS..,0p;

but also by the scalar character of the square of a vector,

(V.„0)^=V-'O, V.(V.„0)^=O;

and the proposed equation forbids us to suppose jO = 0, it being

understood that ij and d are not parallel ; we are therefore con-

ducted to this other equation,
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S.r,ep = Q.

Thus,

p|||j?,e; p = xr, + y9;

V.„p = 7/V.„0; Y.pe = x\.r,e;

and finally the equation of condition, which the two variable

scalar coeificients x and y are obliged to satisfy, is found to be

the following

:

xy=l.

It is therefore necessary and sufficient to admit that the variable

vector p has some one of the values included in the expression,

p = xi) + x'^9,

where x is an arbitrary scalar. The locus of the extremity of p
is consequently a (plane) hyperbola, having its centre at the origin

of vectors, with tj and for portions of its two asymptotes, and

with ij + for one of the values of p, or for the vector of one point

of the curve. But -q and have been seen in earlier articles

(compare 497, 503), to be portions of the axes of the two cylin-

ders of revolution, within which the two spheres slide, in one of

our modes oi generating the ellipsoid (art. 496), and within each

of which two cylinders the ellipsoid itself is inscribed. We saw

also (in 502) that i) + is an umbilicar vector of the ellipsoid.

No uncertainty therefore can now remain, respecting ihefitness

and adequacy of the equation assigned in art. 505, to represent,

in this calculus, that known curve which has been named the

focal hyperbola, of a certain ellipsoid, and of its confocals. In-

deed, that the equation expressed, among other things, the co-

planarity of ?», d, p, might have been more rapidly inferred

from the consideration that because the vectors V. np and V. pO

are asserted to have a scalar product, they must be supposed to

be parallel to some one line ; to which one line therefore the three

lines J}, 6, p must be perpendicular, and consequently must be

coplanar with each other.

681. Let p and p', expressed as follows,

p = Xr) + X'^0, p =x'n+x''^d,

be any two vectors, ap, ap', of the focal hyperbola; their diffe-

rence is evidently,

2y
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pp' = p' - p = {x -x)r) + (x'-^ -x-^)0;

and if this difference, or the cAord joining the extremities of the

two vectors, is to be parallel to jj - 0, we must have

x'+x''^ = x + x~^,

and therefore generally

xx'= 1, p'=x'^ri+xd,

the scalar difference a;'- a; being supposed not generally to vanish.

The same chord pp' meets the asymptotes ij, 0, in two points q,

q', of which the vectors are,

AQ=-£ ^ = (x + x-^) ri ; AQ.'=(x+ x-^)d;
x-x'^

whence,

PQ = a;-'(,,-0); PQ' = -a;(r,- 0); pq .pq'= T(„- 0)^

and, as is known,

PQ = q'p, p'q' = QP.

But as X approaches to 1, or as the variable vector p approaches

to the particular value ij + 0, or w (art. 502), the chord p- p tends

to vanish in length, and to become in direction tangential to the

curve ; and the portion of the tangent intercepted between the

asymptotes is seen, by the recent analysis, to be (as is well

known) bisected at the point of contact. Thus, at the umbilic

of the ellipsoid, which is (by 502) the termination of the vector

w, the tangent to the focal hyperbola has the direction of ij - 0, or

of I (art. 498) ; that is (as is known), of the umbilicar normal

(compare 501) to the ellipsoid. Or we might have differentiated

the scalar variable x in the expression for p, and then made x = \;

which would have given dp -r- dar = t) - 0, when p = »j + 0, and

would have conducted to the same conclusion respecting the di-

rection of the tangent to the hyperbola, at the same umbilic of

the surface. And hence we may prove, by quaternions, the

known theorem already alluded to (505), that the focal hyper-

bola cuts the ellipsoid perpendicularly, at each umbilicar point.

Combining the recent results with others somewhat earlier ar-

rived at, we are conducted without difficulty to the following con-

struction. At an umbilic u, draw a tangent tuv to the focal hy-
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perbola, meeting the asymptotes in T and v, as in the annexed

figure 102. Then the sides of

the triangle tav are, as res- ^^'

pects their lengths, av = 2T»|

;

aT = 2T0; TV = 2T (.j-0);

that is, by 501,

AV = a + c ; AT = a - c ; TV = 26.

And the ») and 9 of this Lec-

ture are precisely the halves

of the sides av and at of this

triangle ; or they are the two

oblique co-ordinates ay, ax of

the umbilic u, referred to the asymptotes of the hyperbola, when
directions as well as lengths are attended to.

682. It has been so much my wish, in the presentCourse of Lec-

tures, now drawing rapidly to its close, to lay a sound and strong

geometrical foundation for future applications of this Calculus

;

and 1 so well foresee that through necessary future extensions of

the theory, such as the introduction, already sketched, of what I

have called Biquaternions, many difBculties as yet unapproached

will arise : that I have anxiously sought to provide a large

amount of what might become, through the united exertions of

myself and others, a settled, established, and common ground,

respecting the validity of which no diversity of opinion could

ever afterwards occur. And, in this spirit, I ask you now to allow

me to state a few geometrical reasonings, of a very simple kind,

by which the recent results, and some earlier geometrical conclu-

sions, of this new mode of calculation may be confirmed.

The sum of the squares of any three conjugate semi-diameters

of a given ellipsoid being known to be a constant quantity (=a^

+ i'' + c'), while the umbilicar vector au (= u), and any two rect-

angular radii (each = b), of the circular and diametral section

made by a plane parallel to the umbilicar tangent plane, coiiipose

a conjugate system, we are to subtract 26'' from o'' + 6^+ c', and

shall thus obtain the value vr = d^ - b'' + c\ as in art. 502. Again,

the parallelepipedon under any three conjugate semi-diameters

2y 2
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being known to be constant, and =abc, we are to divide this by

f, and so obtain ab'^c (compare 501), as an expression for the

perpendicular let fall from the centre A on the umbilicar tangent

plane; or for the projection su, of the umbilicar vector au (in

fig. 102), on the umbilicar normal tuv to the ellipsoid, which

normal is known to coincide with the tangent to the focal hyper-

bola (as proved by quaternions in the foregoing article). Thus

.y {a'^ - h'' + c^) is the hypotenuse au, and b'^acis one side su

about the right angle, in the triangle asu ; so that the other side,

AS, must be = &"'(a'' - 6^)^(6'' - c^)». Such, then, is the altitude of

the triangle tav, if the centre a of the ellipsoid, or of the hyper-

bola, be considered as the vertex. But, by the properties of the

curve, this area does not vary when we change the point of con-

tact V ; it is therefore equal to the rectangle under the semiaxes

of the focal hyperbola, or to the product (a- - l>')i (6^ - c'')i ; and

it is known that the tangent xv is bisected at the point of con-

tact; the semibase, tu, or uv, of the triangle tav, must therefore

be = 6 : which would be a geometrical confirmation, if such were

needed, of the proof previously given by quaternions (see 498,

499), that T(r) -6) = h. To find the lengths of the sides, av, at,

of the last-mentioned triangle, we have, as before, the altitude as

= b''(a' - b')i (b' - c^)i, and the segments,

sy = sv + vv = b'^ac+ b = b'^ {ac + b^),

ST=so-uv = 6"'ac-6 = b'^(ac - b'^);

whence by two right-angled triangles,

AV = (a' + c' + 2ac)l = a + c,

at = (a' + c'- 2ac)i = a - c

;

these sides are therefore the sum and difference of the two ex-

treme semi-axes of the ellipsoid: a result which agrees with the

values found otherwise in article 501, namely, Tj) = ^ (a + c), T6>

= ^{a-c). It maybe remarked that the triangle bcg of figure 98

would admit of being superposed on the triangle tax of fig. 102,

if both triangles were constructed for one common ellipsoid,

683. Resuming (partly as an exercise) the calculations with

quaternions, it is easy to see that
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S
. (p„ - Op) (r, - 0) = S {pn'-pr,B - Bpn+Ope) = - 2S . r,Op,

because

= S.pr,^=S.9pe, and S . pt,e= S .epn = S -vOp.

Hence generally, for any <Aree vectors, ij, 0, p, we have the
transformations,

T.(p,-0p)U(,-6)) = T(p,-0p);
S.(p^-0p)U(„-e) = -2T(n-0)-'S.„6>p;

TV . O>„-0p) U(„-6I) = V {T(;<„,-6»p)»-4T(,-e)-»(S.,ep)'}

= V {
(pi? - »/,) („jo - pQ) +{n- ey^ (nOp - pdvY)

;

also for ani/ two conjugate quaternions, q, q", and any vector a,

we have the identity,

TV.qa = TV.^a=Vl{TV.ayqy + (TaSqy]l

and therefore,

TV. (vp - pB) U(r,-B) = TV. (pr, - Bp) U (, - B).

For the ellipsoid, by 499, we have the equation,

TV.(„p-p0)U(^-0) = 0^-,-

and hence, by squaring, we obtain this new form of the equation

of that surface

:

{B^ - v^y = (pv - Bp) (np - pB) + (n - By^ {r,Bp - pBr,y.

Or, by a partial re-introduction of the signs S and T, we find

this somewhat shorter form :

T(p, - Bpy + 4(„ - 61)-= (S . nBpy = (0* - rfy ;

of which we shall presently assign the interpretation, and in

which, instead of the square of the tensor of the quaternion

pt} - Bp, we may write any one of several general expressions for

that square, of which the proofs will easily suggest themselves

to those who have studied with attention the transformations

already given, and the principles of the present calculus; for in-

stance, any of the following :

1{pr^-Bpy = T{np-pBy
= (/o»i - Bp) (vp - pB) = (»)p - pB) ipri - Bp)

= ir,'+ B-) p^ - pripB - Bpvp = W + fl') P^ - W^P - P9PV
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= (»,+ 0)V-4S.r,/>.S.6'|O

= (i, - 0)»p' + 4S (V. j,p .V. p9).

All these transformations, it must be remarked, hold good, inde-

pendently of any relation between the three vectors jj, 6, p.

684. To interpret that form of the equation of the ellipsoid,

which was assigned at the beginning of article 500, we may ob-

serve that

if for conciseness we write,

p, = („-0)-'S.(„-e)p; p,=V.(„-0)->V.p(, + 6l).

But pi is the perpendicular from the centre a of the ellipsoid on

the plane of a circular section, passing through the extremity of

the vector or semidiameter p, and perpendicular to the cyclic

normal j)-0; and p^ may be easily shewn (compare 441) to be

a radius of the same circular section, multiplied by a scalar co-

eflBcient, namely, by

If then, from the foot of the perpendicular, let fall (as above) on

the plane of a circular section, we draw a right line in that plane,

which bears to the radius of that section the constant ratio of the

rectangle ac under the two extreme semi-axes to the square i' of

the mean semi-axis of the ellipsoid, the equation for that surface,

which was given at the beginning of article 500, expresses that

the line so drawn will terminate on a spheric surface, which has

its centre at the centre of the ellipsoid, and has its radius =—

.

b

It was thus, in fact, that I happened to perceive this property of

the surface, by interpreting as above one of the quaternion forms

of its equation ; but it is not difficult to prove geometrically that

the described construction conducts to the last-mentioned spheric

locus ; namely, to the sphere concentric with the ellipsoid, which

touches at once the four umbilicar tangent planes.
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685. Proceeding to the interpretation of the equation of the

ellipsoid, which was arrived at in 683j we may remark that since

P„-0p = S.p(q-0)+V.p(n + 0),

the quaternion pt) - Bp gives a pure vector as a product, or as a

quotient, if it be multiplied or divided by the vector rj + O (com-

pare 500) ; we may therefore write

pv-Op = Xi{r, + 0),

Xi being a new vector symbol, of which the value may be thus

expressed

:

Xi = p-2(r, + e)-'S.0p.

This vector Aj is evidently such as to give,

T(pr,-ep)=T\,.T{r,+ e);

Tipti-Opy^Xi^iv + ey.

We have also the identity,

(d^-v'y=(r,-ey(r,+9y+(r,9-evy;

which may be shewn to be such, by observing that

(,,
- ey (rj+oy = (7,^+0^-28 . „0) (.,h 0^+ 2s . nO)

=w + 0"-? - 4 (s . noy = i-n'
- e^y + 4 (t . ^ey - 4 (s . noy

= (1,= - 00'- 4 (V. 1,0)^= (0=- »,=)^ - {t,9-eny;

or by remarking that (campare 454),

,r-0^=S.(„-0)(7,+ 0), fl0-0,=V.(„-0)(„ + 0),

and(„-0)^(fl + 0)» = {T.(,-0)(, + 0))^

or in several other ways. Introducing then a new vector e, such

that

„0-0„ = eT(„ + 0), or£ = 2V.„0.T(, + 0)->;

and that therefore

ir,d-er,y^-e'{r, + 9y,

and

2S.„0p = s.ep.T(„+0), i{s.r,9py=-is.tpy.(r,+ey;

while, by 498, or 499,

Tir,-9) = b, (r,-Oy = -b';
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we find that the equation of the ellipsoid above referred to,

namely,

T (p„ - OpY + 4 (^ - 0)-» (s . r,epy = (0^ -v%
after being divided by (ij + Of, assumes the following form

:

\i''+b-'(S.fpY+b^ + B^ = 0.

But also, by the recent values of Xi and t,

S . iXi = S .tp ;

the equation just found may therefore be also written thus :

= {\,-i)' + (b + b-'S.ipy;

and the scalar b+b'^ S. sp is positive, even at an extremity of the

mean axis of the ellipsoid, because

(0= - ri'^y =-(&'+ eO {n + oy = {b' - Ti') T (i, + ey,

and therefore

Ti<b.

We have then this new form of the equation of the ellipsoid, de-

duced by transposition and extraction of square roots, according

to the rules of the present calculus

:

T(\,-t)=b+b-'S.ep.

By a process exactly similar to the foregoing, we find also the

form

T(\i+i) = b-b-'S.tp;

which differs from the equation last found, only by a change of

sign of the auxiliary and constant vector £ ; and hence, by addi-

tion of the two last equations, we find still another form, namely,

T(Ai-«) + T(Ai + «) = 26;

or substituting for Xi, e, and b their values, in terms of tj, 0, and

p, and multiplying into T (i( + 0),

= 2T.(„-0)(, + 6l).

G8G. The locus of the termination l, of the auxiliary and
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variable vector Xi, which is derived from the vector p of the ori-

ginal ellipsoid by the linear formula of the last article, namely,

h = p-2{n + ey'S.0p,

being thus represented by the equation of the same article,

T(Xi + £) + T(X.-£) = 26,

is evidently a certain new ellipsoid ; namely, an ellipsoid of
revolution, which has the mean axis 26 of the old or given ellip-

soid for its major axis, or for its axis ofrevolution, while the

vectors of its two Jbci are denoted by the symbols + 1 and - 1,

In fact if we still place the origin of vectors at the centre a of the

ellipsoid of arts. 466, &c., and make

Xi = ALi, E = AFi = FjA,

we shall have, for the locus of the point Lj, the following equa-

tion of a very simple and well-known form :

F2L1 + FiLi = 2b.

We have also, by the foregoing article, combined with 501, 502,

Tt' = b- + (0' - ri^y {n + 0)-' = 6' - a'c'u-^

;

or

a'-b' + c" a^-b^ + c^
'

Such then is the expression for the square of the distance (e) of

either focus (Fj or f,) of the new or derived ellipsoid, which has

Xi for its varying vector, from the common centre a of the new

and old ellipsoids, which centre is also the common origin of the

vectors Xi and p : while these two foci of the new ellipsoid are

situated upon the mean axis of the old one. There exist also

other remarkable relations, between the original ellipsoid with

three unequal semi-axes a, b, c, and the new ellipsoid of revolu-

tion, of which some will be brought into view, by pursuing the

quaternion analysis in a way which we shall proceed to point

out.

687. Combining the recent expression for Xi with three other

analogous expressions, as follows

:

pri-dp . pO - TIP
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^'~ „-'+»-> '
^'~

r' + e-'
'

it is easy to prove (compare 494) that

TAi=TX2 = TX3 = TX4;

and that

S . jjflXi = S . tjOXj = S . jjflXs = S . 1)6X4 = S . ri9p

;

whence it follows that the four vectors Xi, X2, X3, Xi, being sup-

posed to be all drawn from the centre a of the original ellipsoid,

terminate in four points, Li, L2, L3, L4, which are thenar cor-

ners ofa quadrilateral inscribed in a circle ofthe lately derived

ellipsoid of revolution ; the plane of this circle being parallel to

the plane of the greatest and least axes of the original ellipsoid

(aZic), and passing through the point e of that ellipsoid, which is

the termination of the vector p. We shall have also the equa-

tions,

Xa-p
^
S.rip y.,p, Xaj^P^S^J^rV^y.iQ.

Xi-p S . 0p X4-P S.0''p

which shew that the two opposite sides L1L2, L3L4, of this in-

scribed quadrilateral, being prolonged if necessary, intersect in

the lately mentioned point e of the original ellipsoid. And be-

cause the recent expressions give also

these opposite sides LjLb, L3L4, of the plane quadrilateral thus in-

scribed in a circle of the derived ellipsoid, are parallel respectively

to the vectors rj + 0, rj"'+ 0"S or (by 502, 503) to the two umbi-

licar vectors w, (J, of the original ellipsoid, constructed with the

semi-axes abc. At the same time, the equations

v^i:i^^ = o, v^* = o,

hold good, and shew that the two other and mutually opposite

sides of the same inscribed quadrilateral, namely, the sides LzLj,

L4L1, are respectively parallel to the two vectors jj, 0, or to the

axes of the two cylinders of revolution which can be circum-

scribed about the same original cl!ii)soid.
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688. Hence it is easy to infer the following Theorem, else-

where already published by me as a result of the Calculus of

Quaternions : ^^Ifun the mean axis, 26, ofa given ellipsoid, abc,

as the major axis, and tcith twofoci Fj, Fj, of which the common

distance from the centre a is

we construct an ellipsoid of revolution ; and if, in any circular

section ofthis new ellipsoid, we inscribe a quadrilateral, L1L2L3L4,

ofwhich the two opposite sides L1L2, L3L4 are respectively paral-

lel to the two umbilicar diameters of the given ellipsoid; while

the two other and mutually opposite sides L-Lg, L4L1, ofthe same

inscribed quadrilateral, are respectively parallel to the axes of

the two cylinders ofrevolution which can be circumscribed about

the same given ellipsoid; then the point ofintersection e ofthe

first pair of opposite sides (namely, of those parallel to the um-
bilicar diameters) tcill be a point upon that given ellipsoid." It

seems to me that, in consequence of this remarkable relation

between these two ellipsoids, the two foci Fi, F2 of the above-de-

scribed ellipsoid oi revolution, which have been seen to be situated

upon the mean axis of the original ellipsoid, may not inconve-

niently be called the two medial foci of that original ellipsoid

{abc) ; and that the new or derived ellipsoid ofrevolution itself may

be called the mean ellipsoid ; but 1 gladly submit the question of

the propriety of these designations, to the judgment of other and

better geometers. Meanwhile it may be noticed, that the two

ellipsoids intersect each other in a system of two ellipses, of

which the planes are perpendicular to the axes of the two cylin-

ders of revolution above mentioned ; and that those four common

tangent planes of the two ellipsoids, which are parallel to their

common axis, that is to the mean axis of the original ellipsoid

abc, are parallel also to its two umbilicar diameters. It may be

added that if 6' denote the minor semi-axis {={b'^-e'^f=acu-^) of

the above-mentioned mean ellipsoid, and if we construct another

concentric ellipsoid, ab'c, which will thus not be of revolution, the

equation of this third ellipsoid may in our symbolsbe written thus

:

T(,,p-p0) = O"--r;
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and that its cyclic normals have the same directions as those of

that fourth ellipsoid dbc, for which ac =lP = cd, and which is, in

a well-known sense, reciprocal to thefirst or given ellipsoid,

abc, having also the same mean axis, but having its major axis

in the same direction as the minor axis of the other. As to the

intersection of the other pair of sides L2L3, L4L1, of the inscribed

quadrilateral, it is easy to see (compare again 494) that if we

call this point s, and denote its vector as by a, we shall have the

expression,

80 that (compare 597) the locus of the point s is a certain ^/fA

ellipsoid, on the properties of which I cannot enter here.

689. The same general methods of calculation (compare the

remarks made at the end of 624) admit of a vast variety of other

geometrical applications. For instance, if we combine the for-

mula S.vdvd(o = 0, of article 609, with the last expression for

V in 593, we find, for the lines of curvature on an ellipsoid, the

differential equations,

= S . vd/o, = S . vdpidjOK, or = S . vtitk, = S . vt,

if r be a vector parallel to the tangent to such a line; and then,

by combining these two last equations, we find that t may be

expressed as follows, r = UV. i/j+UV. vk; which reproduces the

theorem, discovered (I believe) by M. Chasles, that the lines of
curvature on an ellipsoid (or other surface of the second order)

bisect at each point the angles between the two circular sections

ofthe surface. Again, if the last formula of 604, or of 605, be

suitably combined with quaternion forms of the equation ofa cone

of the second degree, such as those assigned in 438, where |3 is

afocal line, and in 678, where a, |3 are cyclic normals, those theo-

rems may be deduced, respecting the curvature of a spherical

conic, which have been published by me in the Cambridge and

Dublin MathematicalJournal, as part ofa Paper entitled " Sym-

bolical Geometry." But it is manifestly impossible, in any sin-

gle Course of Lectures such as the present, to include all such

applications : and with thanks to those persons who have favoured

me so far by their attention, I now heartily bid them farewell.

END OF THE LECTURES.
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[The following is the Abstract of a Communication by the Author to the

Royal Irish Academy, which was referred to in article 675, page 673, of the

foregoing Lecture, and is reprinted here from the published Proceedings of

the Academy.]

Royal Irish Academy, May 13, 1850.

Sir William Rowan Hamilton gave an account of some

geometrical reasonings, tending to explain and confirm certain

results to which he had been previously conducted by the

method of quaternions, respecting the inscription of gauche

polygons in central surfaces of the second order.

1. It is a very well known property of the conic sections,

that if three of the four sides of a plane quadrilateral inscribed

in a given plane conic be cut by a rectilinear transversal in

three given points, the fourth side of the same variable qua-

drilateral is cut by the same fi.xed right line in a fourth point

likewise fixed. And whether we refer to the relation of invo-

lution discovered by Desargues, or employ other principles,

it is easy to extend this property to surfaces of the second

order, so far as the inscription in them oi plane quadrilaterals

is concerned. If then we merely wish to pass from one point

p to another point R of such a surface, under the condition

that some other point q of the same surface shall exist, such

that the two successive and rectilinear chords, pq and qr,

shall pass respectively through some two given guide-points,

a and B, internal or external to the surface ; we are allowed

to substitute, for this pair of guide-points, another pair,

such as b' and a', situated on the same straight line ab ; and

may choose one of these two new points anywhere upon that

line, provided that the other ha then suitably chosen. In fact.
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if c and c' be the two (real or imaginary) points in which the

surface is crossed by the given transversal ab, we have only

to take care that the three pairs of points aa', bb', cc', shall

be in involution. And it is important to observe, that in

order to determine one of the new guide-points, b' or a', when

the other is given, it is by no means necessary to employ the

points c, c', of intersection of the transversal with the surface,

which may be as often imaginary as real. We have only to

assume at pleasure a point p upon the given surface ; to draw

from it the chords paq, qbr; and then if a' be given, and b'

sought, to draw the two new chords ra's, sb'p ; or else if a' is

to be found from b', to draw the chords pb's, sa'r. For ex-

ample, if we choose to throw off the new guide-point b' to in-

finity, or to make it a guide-star, in the direction of the given

line ab, we have only to draw, from the assumed initial and

superficial point p, a rectilinear chord PS of the surface, which

shall be parallel to ab, and then to join su, and examine in

what point a' this joining line crosses the given line ab. The
point a' thus found will be entirely independent of the assumed

initial point p, and will satisfy the condition required : in

such a manner that if, from any other assumed superficial

point p', we draw the chords p'aq', qbr', and the parallel

p's' to ab, the chord rV shall pass through the same point a'.

All this follows easily from principles perfectly well known.

2. Since then for two given guide-points we may thus

substitute the system of a guide-star and a guide-point, it

follows that for three given guide-points we may substitute a

guide-star and two guide-points; and, therefore, by a repeti-

tion of the same process, may substitute anew a system of two

stars and one point. And so proceeding, for a system of n

given guide-points, through which n successive and rectilinear

chords of the surface are to pass, we may substitute a system

of M- 1 guide-stars, and of a single guide-point. The pro-

blem of inscribing, in a given surface of the second order, a

gauche polygon of n sides, which are required to pass succes-

sively through n given points, is, therefore, in general, redu-

cible, by operations with straight lines alone, to the problem
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of inscribing in the same surface another gauche polygon, of

which the last side shall pass through a new fixed point, while
all its other (w - 1) sides shall be parallel to so many fixed

straight lines. And if the first n sides of an inscribed poly-
gon of « + 1 sides, ppi P2 , . . p„, be obliged to pass, in order,

through w given points, ai aj . . . a„, namely, the side or chord
PPi through Ai , &c., it will then be possible, in general, to

incribe also another polygon, pqi Qs . . . p„, having the same
first and wth points, p and p„, and therefore the samefinal or

closing side p„p, but having the other n sides different, and
such that the n- 1 first of these sides, pqi, q, qs, . .. q„.o

On - 1 , shall be respectively parallel to w - 1 given right lines,

while the nth side Q„., p„ shall pass through a fixed point b„.

The analogous reductions for polygons in conic sections have
long been familiar to geometers.

3. Let us now consider the inscribed gauche quadrilateral

PQi Q2 Q3, of which the four corners coincide with the four

first points of the last-mentioned polygon. In the plane

Qi Q2 Q3 of the second and third sides of this gauche quadri-

lateral, draw a new chord Qi R2, which shall have its direction

conjugate to the direction of pqi , with respect to the given

surface. This new direction will itself be fixed, as being pa-

rallel to a fixed plane, and conjugate to a fixed direction, not

generally conjugate to that plane ; and hence in the plane in-

scribed quadrilateral R2QiQ2Q3> the three first sides having

fixed directions, the fourth side Q3 R2 will also have its direction

fixed : which may be proved, either as a limiting form of the

theorem referred to in ( 1
), respecting four points in one line,

or from principles still more elementary. And there is no diffi-

culty in seeing that because pqi and Qi R2 have fixed and con-

jugate directions, the chord PR2 is bisected by a fixed diameter

of the surface, whose direction is conjugate to both of their's ; or

in other words, that if o be the centre of the surface, and if we

draw thevariable diameter pon, the variable chord nrj will then

be parallel to the fixed diameter just mentioned. So far, then,

as we only concern ourselves to construct the fourth or closing
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side Q3 p of the gauche quadrilateral pQi Qq Qs, whose three first

sides have given or fixed directions, we may substitute it for ano-

ther gauche quadrilateral pnr2 Qs, inscribed in thesame surface,

and such that while its first side pn passes through the centre

o, its second and third sides, NRg and Kg Qs , are parallel to

two fixed right lines. In other words, we may substitute, for

a system of three guide-stars, a system of the centre and two

stars, as guides for the three first sides ; or, if we choose, in-

stead of drawing successively three chords, pqi, Qi Q2, Q2Q3,

parallel to three given lines, we may draw a first chord PR2,

so as to be bisected by a given diameter, and then a second

chord R2 Q3 ,
parallel to a given right line.

4. Since, for a system of three stars, we may substitute a

system of the centre and two stars, it follows that for a system

of/our stars we may substitute a system of the centre and

three stars ; or, by a repetition of the same process, may sub-

stitute a system of the centre, the same centre again, and two

stars ; that is, ultimately, a system of two stars may be sub-

stituted for a system offour stars, the two employments of the

centre as a guide having simply neutralized each other, as

amounting merely to a return from n to p, after having gone

from p to the diametrically opposite point n. For five stars

we may therefore substitute three ; and for six stars we may

substitute four, or two. And so proceeding we perceive that

for any proposed system of guide-stars, we may substitute two

stars, if the proposed number be even; or three, if that num-

ber be odd. And by combining this result with what was

found in (2), we see that for any given system ofw guide-points

we may substitute a system of two stars and a point, if n be

odd ; or ifw be even, then in that case we may substitute a sys-

tem of three stars and a point : which may again be changed,

by (3), to a system of the centre, two stars, and one point.

5. Let us now consider more closely the system of two

guide-stars, and one guide-point; and for this purpose let us

conceive that the two first sides pQi and Q1Q2 of an inscribed

gauche quadrilateral PQ1Q2P3 are parallel to two given right
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lines, while the third sitle Q2P3 is obliged to pass through a

fixed point B3; the first point p, and therefore also the qua-

drilateral itself, being in other respects variable. In the plane

PQi Q2 of the two first sides, which is evidently parallel to a

fixed plane, inscribe a chord q^s, whose direction shall be

conjugate to that of the fixed line 0B3, and therefore shall

itself also be fixed, o being still the centre of the surface; and

draw the chord PS. Then, in the plane inscribed quadrilateral

PQi Q2S, the three first sides have fixed directions, and there-

fore, by (3), the direction of the fourth side sp is also fixed.

In the plane SQ2P3, which contains the given point B3, draw

through that point an indefinite right line B3C3, parallel to

SQ2; the line so drawn will have a given position, and will be

intersected, at some finite or infinite distance from B3, by the

chord SP3, which is situated in the same plane with it, namely,

in the plane SQ2 Ps- But if we consider the section of the sur-

face, which is made by this last plane, and observe that the

two first sides of the triangle sQj P3 pass, by the construction,

through a star or point at infinity conjugate to B3, and through

the point B3 itself, we shall see that, in virtue of a well-known

and elementary principle respecting triangles in conies, the

third side P3S must pass through the point D3, if D3 be the pole

of the right line B3C3, which contains upon it the two conju-

gate points; this pole being taken with respect to the plane

section lately mentioned. If then we denote by D3E3 the in-

definite right line which is, with respect to the surface, the

polar of the fixed line B3C3, we see that the chord SP3 must in-

tersect this reciprocal polar also, besides intersecting the line

B3C3 itself. Conversely this condition, of intersecting these

two fixed polars, is sufficient to enable us to draw the chord

SP3 when the point s has been determined, by drawing from

the assumed point p the chord PS parallel to a fixed right line.

We may then substitute, for a system of two guide-stars and

one guide-point, the system of one guide-star and two guide-

lines; these lines being (as has been seen) a pa.iT oi reciprocal

polars, with respect to the given surface.

2z
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6. If, then, it be required to inscribe a polygon ppi p^ . . p^n

with any odd number 2« + 1 of sides, which shall pass suc-

cessively through the same number of given points, ai Ag .

.

A2B4-1, we may begin by assuming a point p upon the given

surface, and drawing through the given points 2w + 1 successive

chords, which will in general conduct to a final point P2n*i,

distinct from the assumed initial point p. And then, by pro-

cesses of which the nature has been already explained, we can

find a point s such that the chord ps shall be parallel to a fixed

right line, or shall have a direction independent of the assumed

and variable position of p; and that the chord SPjn + i shall at

the same time cross two other fixed right lines, which are reci-

procal polars of each other. In order then to find a new point

p, which shall satisfy the conditions of the proposed problem,

or shall be such as to coincide with the point P2n*i) deduced

from it as above, we see that it is necessary and sufficient to

oblige this sought point p to be situated at one or other ex-

tremity of a certain chord fs, which shall at once be parallel

to a fixed line, and shall also cross two fixed polars. It is

clear then that we need only draw two planes, containing re-

spectively these two polars, and parallel to the fixed direction
;

for the right line of intersection of these two planes will be the

chord oj"solution required ; or in other words, it will cut the

surface in the two (real or imaginary) points, p and s, which

are adapted, and are alone adapted, to be positions of the first

corner of the polygon to be inscribed.

7. But if it be demanded to inscribe in the same surface a

polygon ppi P2 . . P2„ . 1, with an even number 2n of sides, pass-

ing successively through the same even number ofgiven points,

A] A2 . . A2n, the problem then acquires a character totally dis-

tinct. For if, after assuming an initial point p upon the sur-

face, we pass, by 2n successive chords, drawn through the

given points Ai, &c., to a final point P2n upon the surface,

which will thus be in general distinct from p ; it will indeed be

possible to assign generally two fixed polars, across which, as

two given guide-lines, a certain variable chord SP3„ is to be
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drawn, like the chord sp.>„^ , of (6); but the chord PS will not,

in this question, be parallel to a given line, or directed to a

given star; it will, on the contrary, by (3) (4) (5), be bisected

by a given diameter, which we may call ab ; or, if we prefer to

state the result so, it will be now the supplementary chord ns

of the same diametral section of the surface (n being still the

point of that surface opposite to p), which will have a given

direction, and not the chord PS itself. In fact, at the end of

(4), we reduced the system of 2n guide-points to a system of

the centre, two stars, and one point; and in (5) we reduced

the system of two stars and a point to the system of a star

and two polars. In order then to find a point p which shall

coincide with the point P2„ deduced from it as above, or which

shall be adapted to be the first corner of an inscribed polygon

of 2m sides passing respectively through the 2m given points,

Ai .. A2n, we must endeavour to find a chord ps which shall be

at once bisected by the fixed diameter ab, and shall also inter-

sect the two fixed polars above mentioned. And conversely,

if we can find any such chord ps, it will necessarily be at least

one chord ofsolution of the problem ; understanding hereby,

that if we set out with either extremity, p or s, of this chord,

and draw from it 2n successive chords pPi, &c., or ss,, &c.,

through the 2n given points Aj, &c., we shall be brought back

hereby (as the question requires) to the point with which we

started. For, in a process which we have proved to admit of

being substituted for the process of drawing the 2w chords, we

shall be brought first from p to s, and then back from s to p

;

or else first from s to p, and then back from p to s : provided

that the chord of solution ps has been selected so as to satisfy

the conditions above assigned.

8. To inscribe then, for example, a gauche chiliagon in an

ellipsoid, ppi .. P999, or ssi .. S999, under the condition that its

thousand successive sides shall pass successively through a

thousand given points Ai .. Aimo, we are conducted to seek to

inscribe, in the same given ellipsoid, a chord ps, which shall

be at once bisected by a given diameter ab, and also crossed by

2z2
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a given chord cd, and by the polar ofthat given chord. Now
in general when any two proposed right lines intersect each

other, their respective polars also intersect, namely, in the

pole of the plane of the two lines proposed. Since then the

sought chord Ps intersects the polar of the given chord CD, it

follows that the polar of the same sought chord PS must in-

tersect the given chord cd itself. We may therefore reduce

the problem to this form : to find a chord PS of the ellipsoid

which shall be bisected by a given diameter ab, and shall also

be such that while it intersects a given chord cd in some point

E, its polar intersects the prolongation of that given chord, in

some other point f.

9. The two sought points E, f, as being situated upon two

polars, are of course conjugate relatively to the surface ; they

are therefore also conjugate relatively to the chord cd, or, in

other words, they cut that given chord harmonically. The
four diametral planes abc, abe, abd, abf, compose therefore

an harmonic pencil ; the second being, in this pencil, har-

monically conjugate to the fourth ; and being at the same

time, on account of the polars, conjugate to it also with re-

spect to the surface, as one diametral plane to another. When
the ellipsoid becomes a sphere, the conjugate planes abe, abf
become rectangular ; and consequently the sought plane abe

bisects the angle between the two given planes abc and abd.

This solves at once the problem for the sphere ; for if, con-

versely, we thus bisect the given dihedral angle cabd by a

plane abe, cutting the chord cd in e, and if we take the har-

monic conjugate f on the same given chord prolonged, and

draw from e and f lines meeting ordinately the given diame-

ter ab, these two right lines will be situated in two rectangu-

lar or conjugate diametral planes, and will satisfy all the other

conditions requisite for their being polars of each other; but

each intersects the given chord cd, or that chord prolonged,

and therefore each intersects also, by (8), the polar of that

chord ; each therefore satisfies all the transformed conditions of

the problem, and gives a chord of solution, real or imaginary.



APPENDIX. 709

More fully, the ordinate ee' to the diameter ab, drawn from

the internal point of harmonic section e of the chord cd,

gives, when prolonged both ways to meet the surface, the

chord of real solution, Ps ; and the other ordinate ff' to the

same diameter ab, which is drawn from the external point of

section f of the same chord cd, and which is itself wholly ex-

ternal to the surface, is the chord ofimaginary solution. But

because when we return from the sphere to the ellipsoid, or

other surface of the second order, the condition of bisection of

the given dihedral angle cabd is no longer fulfilled by the

sought plane abe, a slight generalization of the foregoing

process becomes necessary, and can easily be accomplished as

follows.

10. Conceive, as before, that on the diameter ab the or-

dinate ee' is let fall from the internal point of section e, and

likewise the ordinates cc' and dd' from c and d ; and draw also,

parallel to that diameter, the right lines cc", dd", ee", from

the same three points c, d, e, so as to terminate on the dia-

metral plane through o which is conjugate to the same dia-

meter; in such a manner that cc", od", oe" shall be parallel

and equal to the ordinates c'c, d'd, e'e ; and that the segments

CE, e d of the chord cd shall be proportional to the segments

c'e", e "d" of the base c"d" of the triangle c"od", which is

situated in the diametral plane, and has the centre o for its

vertex. For the case of the sphere, the vertical angle c"od" of

this triangle is, by (9), bisected by the line oe"; wherefore

the sides oc", od", or their equals, the ordinates c'c, dd, are,

jn this case, proportional to the segments c"e", E"D"ofthe

base, or to the segments ce, ed of the chord : while the

squares of the ordinates are, for the same case of the sphere,

equal to the rectangles ac'b, ad'b, under the segments of the

diameter ab. Hence, ^r the sphere, the squares of the seg-

ments of the given chord are proportional to the rectangles

under the segments of the given diameter, these latter seg-

ments being found by letting fall ordinates from the ends of

the chord ; or, in symbols, we have the proportion.



710 APPENDIX.

CF^ : DF* : : ce^ : ed* : : ac'b : ad'b.

But, by the general principles of geometrical deformation, the

property, thus stated, cannot be peculiar to the sphere. It

must extend, without any further modification, to the ellipsoid;

and it gives at once, for that surface, the two points of har-

monic section, e and f, of the given chord cd, through which

points the two sought chords of real and imaginary solution

,are to pass ; these chords ofsolution are therefore completely

determined, since they are to be also ordinates, as before, to

the given diameter ab. The problem of inscription for the

ellipsoid is thereforefully resolved ; not only when, as in (6),

the number of sides of the polygon is odd, but also in the

more diflScult case (7), when the number of sides is even.

11. If the given surface be a hyperboloid oi two sheets,

one of the two fixed polars will still intersect that surface, and

the fixed chord cd may still be considered as real. If the

given diameter ab be also real, the proportion in (10) still

holds good, without any modification from iraaginaries, and

determines still a real point e, with its harmonic conjugate f,

through one or other of which two points still passes a chord

ofreal solution, while through the other point of section still

is drawn a chord of imaginary solution, reciprocally polar to

the former. But if the diameter ab be imaginary, or in other

words if it fail to meet the proposed hyperboloid at all, we

are then led to consider, instead of it, an ideal diameter a'b',

having the same real direction, but terminating, in a well-

known way, on a certain supplementary surface; in such a

manner that while a and b are now imaginary points, the

points a' and b' are real, although not really situated on the

given surface ; and that

oa" = OB^ = - oa'* = - ob'*'.

The points c' and d' are still real, and so are the rectangles

ac'b and ad'b, although a and b are imaginary ; for we may
write,

ac'b = oa'* - oc''', ad'b = oa'^ - od'2,
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and the proportion in (10) becomes now,

cf2 ; DF^ : : ce2 : ed^ : : oc'^ + oa'^ : od'^ + oa'^.

It gives therefore still a real point ofsection e, dinAdi real con-

jugate point f; and through these two points of section of cd

we can still draw two real right lines, which shall still ordi-

nately cross the real direction of ab, and shall still be two re-

ciprocal polars, satisfying all the transformed conditions of the

question, and coinciding still with two chords of real and

imaginary solution. For the double-sheeted hyperboloid, there-

fore, as well as for the ellipsoid, the problem of inscribing a

gauche chiliagon, or other even-sided polygon, whose sides

shall pass successively, and in order, through the same given

number of points, is solved by a system oi two polar chords,

which we have assigned geometrical processes to determine

;

and the solutions are still, in general, ^wr in number; two of

them being still real, and two imaginary.

1 2. If the given surface be a hyperboloid of one sheet, then

not only may the diameter ab be real or imaginary, but also

the chord cd may or may not cease to be real ; for the two

fixed polars will now either both meet the surface, or else both

Jail to meet it in any two real points. When ab and CD are

both real, the proportion in (10), being put under the form

CF^ : DF^ : : ce* : ed^ : : oa^ - oc'* : oa^ - od'^,

shews that the point of section e and its conjugate f will be

real, if the points c' and d' fall both on the diameter ab itself,

or both on that diameter prolonged ; that is, if the extremities

c and D lie both within or both without the interval between

the two parallel tangent planes to the surface which are drawn

at the points a and b: under these conditions therefore there

will still be two real right lines, which may still be called the

two chords ofsolution ; but because these lines will still be

two reciprocal polars, they will now (like the two fixed polars

above mentioned) either both meet the hyperboloid, or else

both fail to meet it; and consequently there will now be either

four real, or e\ie four imaginary solutions. If ab and cd be

still both real, but if the chord en have one extremity within
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and the other extremity without the interval between the two

parallel tangent planes, the proportion above written will

assign a negative ratio for the squares of the segments of cd ;

the points of section e and f, and the two polar chords of so-

lution, become therefore, in this case, themselves imaginary ;

and of course, by still stronger reason, the four solutions of

the problem become then imaginary likewise. If cD be real,

but AB imaginary, the proportion in (11) conducts to two real

points of section, and consequently to two real chords, which

may, however, correspond, as above, either to four real or to

four imaginary solutions of the problem. And, finally, it will

be found that the same conclusion holds good also in the re-

maining case, namely, when the chord CD becomes imaginary,

whether the diameter ab be real or not ; that is, when the two

fixed polars do not meet, in any real points, the single-sheeted

hyperboloid.

13. Although the case last mentioned may still be treated

by a modification of the proportion assigned in (10), which

was deduced from considerations relative to the sphere, yet in

order to put the subject in a clearer (or at least in another)

point of view, we may now resume the problem for the ellip-

soid as follows, without making any use of the spherical de-

formation. It was required to find two lines, reciprocally

polar to each other, and ordinately crossing a given diameter

AB of the ellipsoid, which should also cut a given chord cd of

the same surface, internally in some point e, and externally

in some other point f. Bisect cd in g, and conceive ef to be

bisected in h ; and besides the four old ordinates to the dia-

meter AB, namely cc', dd', ee', and ff', let there be now sup-

posed to be drawn, as two new ordinates to the same diameter,

the lines gg' and hh'. Then g' will bisect cd', and h' will

bisect e'f'; while the centre o of the ellipsoid will still bisect

AB. And because the points e' and f' are harmonic conju-

gates, not only with respect to the points a and b, but also

with respect to the points c' and d', we shall have the follow-

ing equalities

:
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that is,
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H'f'2 = h'e'* = h'a . h'b = HC' . h'd',

= h'o^ - OA^ = h'g'* - g'c'*.

OH'2 - g'h'2 = OA^ - c'g'2.

, OA'' + OG^-CG-* OA-' + OC.OD'
OH =

J5 ;
=

;
-,— .

20G OC + OD

Now each of these two last expressions for oh' remains

real, and assigns a real and determinate position for the point

h', even when the points c', d', or the points a, b, or when

both these pairs of points at once become imaginary ; for the

points o and G'are still in all cases real, and so are the squares

of OA and c'g', the rectangle under oc' and od', and the sum

oc'+od'. Thus h' can always be found, as a real point, and

hence we have a real value for the square of h'e', or hV, which

will enable us to assign the points e' and f' themselves, or else

to pronounce that they are imaginary.

14. We see at the same time, from the values h'o^-oa*

and h'g'^ - c'g'^ above assigned for h'e'^ or h'f'^, that these two

sought points e' and f' must both be real, unless the two fixed

points a and c' are themselves both real, since o, g', h', are, all

three, real points. But for the ellipsoid, and for the double

sheeted hyperboloid, we can in general oblige the points c, d,

and their projections c', d', to become imaginary, by selecting

that one of the two fixed polars which does not actually meet

the surface ; for these two sorts of surfaces, the two polar chords

of solution of the problem of inscription of a gauche polygon

with an even number of sides passing through the same num-

ber of given points, are therefore found anew to be two real

lines, although only one of them will actually intersect the

surface, and only two of the four polygons will (as before) be

real. And even for the single sheeted hyperboloid, in order

to render the two chords of solution imaginary lines, it is ne-

cessary that the two given polars should actually meet the

surface ; for otherwise the polar lines deduced will still be

real. It is necessary also, for the imaginariness of the two
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lines deduced, that the given diameter ab should be itself a

real diameter, or in other words that it should actually inter-

sect the hyperboloid. But even when the given chord CD

and the given diameter ab are thus both real, and when the

surface is a single sheeted hyperboloid, it does not/ollow that

the two chords of solution may not be real lines. We shall

only haive failed to prove their reality by the expressions re-

cently referred to. We must resume, for this case, the reason-

ings of (12), or some others equivalent to them ; and we find,

as in that section of this Abstract, for the imaginariness of the

two sought polar lines, the condition that one of the two ex-

tremities of the given and real chord cd shall fall within, and

that the other extremity of that chord shall fall without the

interval between the two real and parallel tangent planes to

the single sheeted hyperboloid, which are drawn at the extre-

mities of the real diameter ab. Sir W. R. Hamilton confesses

that the case where all these particular conditions are com-

bined, so as to render imaginary the two polar lines of solu-

tion, had not occurred to him when he made to the Royal

Irish Academy his communication of June, 1849.

15. It seems to him worth while to notice here that instead

of the foregoing metric processes for finding (when they exist)

the two lines of solution of the problem, the following^^-opAic

process of construction of those lines may always, at least in

theory, be substituted, although in practice it will sometimes

require modification for imaginaries. In the diametral plane

ABC, draw a chord kd'l, which shall be bisected at the known

point d' by the given diameter ab ; and join CK, cl. These

joining lines will cut that diameter in the two sought points

e', f'; which being in this manner found, the two sought

lines of solution ee', ff', are constructed without any diffi-

culty. For the sphere, the ellipsoid, and the hyperboloid of

two sheets, although not always for the single sheeted hyper-

boloid, this simple and graphic process can actually be applied,

without any such modification from imaginaries as was above

alluded to. The consideration of non-central surfaces does
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not enter into the object of the present communication ; nor

has it been thought necessary to consider in it any limiting

or exceptional cases, such as those where certain positions or

directions become indeterminate, by some peculiar combina-

tions of the data, while yet they are in general definitely as-

signable, by the processes already explained.

16. Sir William Rowan Hamilton is unwilling to add to

the length of this communication by any historical references;

in regard to which, indeed, he does not consider himself pre-

pared to furnish anything important, as supplementary to what

seems to be pretty generally known, by those who feel an in-

terest in such matters. He has however taken some pains to

inquire, from a few geometrical friends, whether it is likely

that he has been anticipated in his results respecting the in-

scription of gauche polygons in surfaces of the second order

;

and he has not hitherto been able to learn that any such an-

ticipation is thought to exist. Of course he knows that he

must, consciously and unconsciously, be in many ways in-

debted to his scientific contemporaries, for their instructions and

suggestions on these and on other subjects ; and also to his

acquaintance, imperfect as it may be, with what has been done

in earlier times. But he conceives that he only does justice

to the yet infant Method of Quaternions (communicated to the

Royal Irish Academy for the first time in 1843), when he

states that he considers himself to owe, to that new method

of geometrical research, not merely the results stated to the

Academy in the summer of 1849, respecting these inscriptions

of gauche polygons, and several other connected although

hitherto unpublished results, which to him appear remarkable,

but also the suggestion of the mode of geometrical investiga-

tion which has been employed in the present Abstract. No

doubt the principles used in it have all been very elementary,

and perhaps their combination would have cost no serious

trouble to any experienced geometer who had chosen to attack

the problem. But to his own mind the whole foregoing in-

vestigation presents itself as being (what in fact in his case it
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was) a mere translation ofthe quaternion analysis into ordi-

nary geometrical language, on this particular subject. And

he will not complicate the present Abstract by giving, on this

occasion, any account of those other theorems respecting po-

lygons in surfaces, to which the Calculus of Quaternions has

conducted him, but of which he has not yet seen how to

translate the proofs (for it is easy to translate the results) into

the usual language oi geometry.*

* It will not have escaped the notice of geometrical readers of the fore-

going Abstract of May, 1850, that, instead of the centre and guide-s<ars, we

may as easily conceive any fixed point o, with points in its polar (or conju-

gate) plane Q ; and that then, by using the two principles : I", that for any

two guide.points two others on the same right line may be substituted,

whereof one may be assumed at pleasure ; and, II"'', that a system of two

conjugate guide-points is equivalent to a system of two conjugate guide-lines,

namely, the line of the two given points, and its reciprocal polar, and there-

fore also to a system of two other conjugate points, on this latter polar line

;

we may first transform any proposed system of n guide-points into another

system of which all but the last shall be contained in the assumed plane Q ;

and may then substitute for any three points in that plane the system of the

assumed pole o, and of two points in Q. In this way, by an easy extension

of the process employed in the Abstract, we may transform any proposed

odd system of n guide-points into a system of thbe£ such points, which will

then give easily (as in the plane problem) one right line, as the unique chord

of real or imaginary solution, for the problem of the inscription ofan odd-sided

polygon, whose sides shall pass in order through the n given guide-points.

But in the contrary case, namely, when n is even, the same general process

conducts to a transformed system of four guide-points, conjugate two by

two ; namely, the assumed pole o, a point in the plane Q, and a second pair

of mutually conjugate points, which may all be replaced by two polar pairs

ofguide-lines ; across whichfour lines there may generally be drawn (as in

the Abstract) two polar chords of solution (real or imaginary), for the prob-

lem of the inscription ofan even-sided polygon : this latter problem being thus

again reduced (by a slight modification ofthe process in art. 13) to the well-

known one of finding two points on a given line, which shall be at once har-

monically conjugate with respect to two given pairs of points thereon. The
writer is still unable to say whether these general reductions, of the problem

of inscribing a gauche polygon in a surface ofthe second order (or even in a

sphere"), involving as they do a proof of the essential distinction (in results,

and not merely in methods) between the odd and even cases, have hitherto oc-

curred to geometers. (April, 1853.)
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APPENDIX B.*

[Reprinted (with Notes) from the Proceedings of the Academy.]

Royal Irish Academy, June 25, 1849.

Sir William Rowan Hamilton communicated to the Aca-
demy some results, obtained by the quaternion analysis, re-

specting the inscription ofgauche polygons in surfaces ofthe
second order.

If it be required to inscribe a rectilinear polygon p, p„
Pj . . . P„-i in such a surface, under the conditions that its n
successive sides, ppj, Pj Pj, . . . p„.iP, shall pass respectively

through n given points, Ai, Aj, , . . a„, the analysis of Sir W.
R. H. conducts to one, or to two real] right lines, as contain-

ing the first corner p, according as the number n of sides is

odd or even : while, in the latter of these two cases, the two

real right lines thus found are reciprocal polars of each

other, with reference to the surface in which the polygon is

to be inscribed. Thus, for the inscription of a plane triangle,

* It had been designed that with the foregoing Appendix, which has been

reprinted without any alteration from the Proceedings of the Royal Irish Aca-

demy, of the date already mentioned (May 13th, 1850), the present Volume

should conclude. But it has since been thought that those persons who may
have done the author the honour to read so far, might like to have at hand a

copy ofthe published Abstract of an earlier communication to the Academy,

made at the Meeting of June 25th, 1849, which is intimately connected with

the subject of the foregoing Appendix, and is indeed referred to in it (at

page 714), and also in Lecture VII. (at page 677). It is therefore now

thought useful to reprint that earlier Abstract, with a few notes annexed,

as a second Appendix to this work : and indeed to follow it up by another

short and appended paper.

f For a case in which the two lines become imaginary, sec the foregoing

Appendix, Art. 14 (page 714).
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or of a gauche pentagon, heptagon, &c., in a surface of the

second order, where three, five, seven, &c. points are given

upon its sides, a single right line is found, which may or may
not intersect the surface ; and the problem of inscription ad-

mits generally of two real or of two imaginary solutions.

But for the inscription of a gauche quadrilateral, hexagon,

octagon, &c., when four, six, eight, &c. points are given on

its successive sides, two real right lines are found, which (as

above stated) are polars of each other ; and therefore, if the

surface be an ellipsoid, or a byperboloid of two sheets, the

problem admits generally of two real and of two imaginary

solutions : while if the surface be a hyperboloid of one sheet,

the four solutions are then, in general, together real, or toge-

ther imaginary.

When a gauche pentagon, or polygon with 2»8 + 1 sides,

is to be inscribed in an ellipsoid or in a double-sheeted hyper-

boloid, and when the single straight line, found as above, lies

wholly outside the surface, so as to give two imaginary solu-

tions of the problem as at first proposed, this line is still not

useless geometrically; for its reciprocal polar intersects the

surface in two real points, of which each is the first corner of

an inscribed decagon, or polygon with 4m + 2 sides, whose

2ff» + l pairs of opposite sides intersect each other respectively

in the 2m + 1 given points, a,, Aj, . . . Ajmti- Thus when, in

the well-known problem of inscribing a triangle in a plane

conic, whose sides shall pass through three given points, the

known rectilinear locus of the first corner is found to have no

real intersection with the conic, so that the problem, as usually

viewed, admits of no real solution, and that the inscription

of the triangle becomes geometrically impossible; we have

only to conceive an ellipsoid, or a double-sheeted hyperboloid,

to be BO constructed as to contain the given conic upon its

surface ; and then to take, with respect to this surface, the

polar of this known right line, in order to obtain two real or

geometrically possible solutions of another problem, not less

interesting : since this rectilinear polar will cut the surface in
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two real points, of which each is the first corner of an inscribed

gauche hexagon whose opposite sides intersect each other in the

three points proposed. (It may be noticed that the three

diagonals of this gauche hexagon, or the three right lines

joining each corner to the opposite one, intersect each other in

one common point * namely, in the pole of the given plane.)

If we seek to inscribe a polygon of 4m sides in a surface of

the second order, under the condition that its opposite sides

shall intersect respectively in 2m given points, the quaternion

analysis conducts generally to two polar right lines, as loci of

the first corner, which lines are the same with those that would

be otherwise found as loci of the first corner of an inscribed

polygon of 2m sides, passing respectively through the 2;«

given points. Thus, in general, the polygon of 4m sides,

found as above, is merely the polygon of 2m sides, with each

side twice traversed by the motion of a point along its peri-

meter. But if a certain condition be satisfied, by a certain

arrangement of the 2m given points in space; namely, if the

last point Aam be on that real right line which is the locus of

the first corner of a real or imaginary inscribed polygon of

2m- 1 sides, which pass respectively through the first 2m -I

given points Ai, . . . Aam.i; then the inscribed polygon of 4ot

distinct sides becomes not only possible but indeterminate,

its first corner being in this case allowed to take any posi-

tion on the surface. For example, if two triangles p'
p'l p'j,

p"
p"i p"j be inscribed in a conic, so that tiie corresponding

sides p'p'i and p" p"i intersect each other in a,; p'i p'2 and

p", p"2 in Aj ; and p'2 p', p"2 p", in A3 ; and if we take a

fourth point A4 on the right line p' p", and conceive any sur-

face of the second order constructed so as to contain the given

conic ; then any point v, on this surface, is fit to be the first

corner of a plane or gauche octagon, p p, . . . p„ inscribed in

the surface, so that the first and fifth sides P Pj, P4 P5 shall

• More generally, if the opposite sides of an inscribed gauche polygon of

4m + 2 sides intersect upon one common plane, the lines connecting opposite

corners intersect in the pole of that piano.
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intersect in a,; the second and sixth sides in Aj; the third and

seventh sides in a,; and the fourth and eighth in A4. And

generally if 2m given points be points of intersection of oppo-

site sides of any one inscribed polygon of 4m sides, the same

2m points are then fit to be intersections of opposite sides of

infinitely many other inscribed polygons, plane or gauche, of

4m sides. A very elementary example is furnished by an in-

scribed plane quadrilateral, of which the two points of meet-

ing of opposite sides are well known to be conjugate, relatively

to the conic or to the surface, and are adapted to be the points

of meeting of opposite sides of infinitely many other inscribed

quadrilaterals.

When all the sides but one, of an inscribed gauche poly-

gon, pass through given points, the remaining side may be

said generally to be doubly tangent to a real or imaginary sur-

face of the fourth order, which separates itself into two real

or imaginary surfaces ofthe second order, having real or ima-

ginary double* contact with the original surface of the second

order, and with each other. If the original surface be an

ellipsoid (e), and if the number of sides of the inscribed po-

lygon, pp, . . . PjOT, be odd, = 2m + 1, so that the number of

fixed points Ai, . . . Ajm is even, = 2m, then the two surfaces

enveloped by the last side Pa^ p are a real inscribed ellipsoid

(e'), and a real exscribed hyperboloid of two sheets (e") ; and

these three surfaces (e) (e') (e") touch each other at the two

real't points b, b', which are the first corners of two inscribed

polygons BBi . . . Bjm-i and b' b'i . . . B'jm.j, whose 2m sides pass

• It will be seen below that this contact may become quadruple, namely,

for the case of an even-sided polygon, in accordance with an acute remark

which wag made in 1849 by Arthur Cayley, Esq., in a letter to the Kev.

George Salmon, F. T. C. D. Perhaps I may be permitted to add, that be-

fore I saw Mr. Cayley's letter, I had been conducted to the same result in

my own unpublished researches.

t The three surfaces must be considered to touch each other also at the

two imaginary points which are situated on the polar of the chord bb' : and the

four points of contact become all real, or all imaginary, when the original sur-

face becomes a single-sheeted hyperboloid.
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respectively through the 2m given points (a). If these three

surfaces of the second order be cut by any three planes pa-

rallel to either of the two common tangent planes at B and b',

the sections are three similar and similarly placed ellipses

;

thus B and b' are two of the four umbilics of the ellipsoid (e'),

and also of the hyperboloid (e") when the original surface e

is a sphere. The closing chords Fjot p touch a series of real

curves (c') on (e'), and also anq^her series of real curves (c")

on (e"), which curves are the aretes de rebroussement of two

series of developable* surfaces, (d') and (d"), into which latter

surfaces the closing chords arrange themselves ; but these two

sets of developable surfaces are not generally rectangular to

each other, and consequently the closing chords themselves

are not generally perpendicular to any one common surface.

However, when (e) is a sphere, the developable surfaces cut

it in two series of curves, (f'), (f"), which everywhere cross

each other at right angles ; and generally at any point p on

(b), the tangents to the two curves (f') and (r") are parallel

to two conjugate semidiameters.

The centres^ of the three surfaces of the second order are

placed on one straight line; and every closing chord P2,„p is

cut harmonically at the points where it touches the two sur-

• Malus discovered that right lines proceeding from any surface, accord-

ing to any law, arrange themselves into two series of developable surfaces,

and touch two series of curves (the aretes), which are contained upon two

other surfaces, or rather generally upon two sheets of one common surface.

What seemed to me remarkable in the present question, independently of the

non-rectangularity of the developables, was chiefly the separability of the two

superficial envelopes, in both the odd and even cases, and their imaginariness

for the latter case ; at least if the original surface, in which the even-sided

gauche polygon is inscribed, be not a ruled one.

( Mr. Cayley observed, in that letter of his to Mr. Salmon which has

been mentioned in a former note, that this statement of mine, respecting the

collinearity of the three centres, ought to be replaced by the more general

one, that the three poles of any arbitrary plane, with respect to the three

surfaces, are situated on one straight line. In general, as it was well re-

marked by Mr. Cayley, the relations between these three surfaces are merely

those between three which hsive four generating lines in common.

3 A
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faces* (e'), (e"), or the two curves (c'), (c"), which are the

aretes of the two developable surfaces (d'), (d"), passing

through that chord PamP. In a certain class of case* the three

surfaces (e), (e'), (e") are all of revolution, round one common

axis ; and when this happens, the curves (c'), (c"), (f'), (f")

are certain spires] upon these surfaces, having this common

character, that for any one such spire equal rotations round

the axis give equal anharmonic ratios; or that, more fully, if

on a spire (c'), for example, there be taken two pairs of points

c'j, c'2 and c'3, c'4, and if these be projected on the axis b b'

in points g'i, g'j and G'3, g'i, then the rectangle bg'j . g'jB'

will be to the rectangle bg'z . g'i b', as bg's . g'jB' to BG'4 . G'3 b',

if the dihedral angle c'l bb' c'2 be equal to the dihedral angle

c'3 bb' c'4. In another extensive class of cases the hyperbo-

loid of two sheets (e") reduces itself to a pair of planes, touch-

ing the given ellipsoid (e) in the points b and b' ; and then

the prolongations of the closing chords, PzmP) all meet the

right line of intersection of these two tangent planes : or the

inscribed ellipsoid (e') may reduce itself to the right line bb',

which is, in that case, crossed by all the closing chords. For

example, if the first four sides of an inscribed gauche penta-

gon pass respectively through four given points, which are

all in one common plane, then the fifth side of the pentagon

intersects a fixed right linej in that plane.

An example of imaginary envelopes is suggested by the

• In general, if any two points be conjugate relatively to any two of the

three surfaces, they are conjugate also relatively to the third; so that the

three polar planes of an arbitrary point, taken with respect to the three sur-

faces, intersect in one right line.

f In this case, if the surface (e) be a sphere, the spires (f) (f") may be

stereographically projected into two sets of logarithmic spirals, which cross

each other at right angles.

J This little theorem is perhaps well known ; it may, among other ways,

be obtained by projection from a property which is proved by quaternions

in Lecture VI., namely, that if the four first sides of a gauche pentagon in-

scribed in a sphere be respectively parallel to four given lines, the fifth side

will then be parallel to a given plane.
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problem of inscribing a gauche quadrilateral, hexagon, or po-

lygon of 2m sides in an ellipsoid, all the sides but the last

being obliged to pass through fixed points. In this problem

the last side may be said to touch two imaginary surfaces* of

the second order, which intersect each other in two* real or

Soon after this Abstract had been printed, I perceived, by continuing

the calculations with quaternions, that these two enveloped surfaces of the se-

cond order were two imaginary cones, which touched the original ellipsoid (e)

along two imaginary conies, and might be considered to have double contact

with it and with each other (in agreement with an earlier passage of the

Abstract) ; namely, at those two paints where the two imaginary conies of

contact, just now mentioned, crossed each other, and which were also si-

tuated on the real line of intersection of the planes of the two conies of inter-

section (mentioned in the text) : the^bur (real and imaginary) planes through

that line composing an AarmoBi'c penet/ ; and the line itself being the chord

oj" solution, of the problem of inscribing a polygon of 2m ~1 sides, passing

through the 2m — 1 given points. The developable surfaces were at the same

time found to become imaginary planes, touching the cones, and resting on

t^ie imaginary generatrices of the original surface (e), as what might be called

their bases on that surface : so that the cones, planes, and lines became all

real, when the surface (e) became a single-sheeted hyperboloid. (Compare

art. 677, page 678, of the Lectures.)

These geometrical results, at least so far as related to the conical enve-

lopes, and to the generatrices ofthe original surface, were communicated by

me, without demonstration (in letters of October, 1849), to my friends

Mr. Townsend and Mr. Salmon. A short sketch of the analysis by which

those results were perceived will perhaps be given in a subsequent Appendix :

but in the meantime I may mention an easy geometrical confirmation of some of

them, which has only recently occurred to me, while reprinting the Abstract

as above. Let there be any four assumed points p, Q, R, 8, on some one pri-

mary {generatrix) of a given and single-sheeted hyperboloid ; that is on a line

belonging to one given system, which we may call the primary system, of ge-

neratrices of that surface: and let four chords pPi, Qfti, bbi, ssi, be drawn

from these four points, through some one given guide-point Ai. In like

manner, let the chords Pi Pj, &c., be drawn through another given point A;

;

P2 P3, &c., through A3 ; and so on for any odd number = 2m + 1 of guide-points,

till a final set of four points on the surface is obtained. Then the four points

Pi <li Bi 8i will be situated on some one secondary {generatrix), and their an-

harmonic ratio will be the same as that of the points pqbs. Hence, on ac-

count of the supposed odd number of the guide-points Ai A2 A3 . . ,
the four

initial and four final points, pqbs and p»,i «2."ti R2".*i e,.™-!, are arranged

on two generatrices of opposite systems, which tliorcfore meet in some point

'

.3 a2
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imaginary conies, situated in two real planes ; and when these

two conies are real, they touch the original ellipsoid in two

real and common points, which are the two positions of the

first corner of an inscribed polygon, whose sides pass through

the 2m — 1 fixed points. Every rectilinear tangent to either

conic is a closing chord Pzm-iP j but no position of that clos-

ing chord, which is not thus a tangent to one or other of these

conies, is intersected anywhere* by any infinitely near chord

T; and they hare the same anharmonic ratio: consequently (by a known

theorem) the four connecting lines (or closing sides of the inscribed and

even-sided polygon), namely, Pjm+i p, Qzm+iQ, &c., envelope a conic (ci) in

their common plane ; and this conic touches each of the two generating lines tp,

TPjm+i of the surface; one in some point cr, and the other in some point y.

In like manner, if q' be an initial point taken on the secondary through p,

then the final point Q'2m,i will be on the primary through Pzm+i ; and if t' be

the point of meeting of these two generating lines, then the new closing

chords P2m+i P, ft'im+i Q'i &c., envelope a new conic (C2) in their own plane,

which conic touches also the generating lines tp, T'pjm+i, the 1" in some

point tf, and the 2°'' in some other point v'. Thus the original hyperboloid

being called (e), its generating lines pt, pt', maybe called (fi) (Fj), by ana-

logy to a notation in the Abstract ; the developable surfaces (di), (dj), which

rest on these two lines, are seen to be the two planes ptv, ptV, touching the

hyperboloid (e) at T and t' ; while the two conies (ci) (Cj) must be consi-

dered as their respective aretes; the first superficial envelope, (ei), is the

locus of the conic (ci), and is at the same time the developable surface cir-

cumscribed about the hyperboloid (e), along that curve of contact which is

the locus of the point x' thereon; and the second superficial envelope, (E2),

of the closing chords P2m+i p> is at once the locus of the conies (C2), and the

developable circumscribed about (e) along that other curve of contact which

is the locus of the point T. All these geometrical constructions agree per-

fectly with the results of calculation stated above : the two last developable

surfaces (ei) (Bj), which thus contain each indefinitely many plane conies,

whereof each is touched by indefinitely many positions of the closing chord,

being evidently the two conical envelopes, which have been mentioned in the

present Note. We see, at the same time, that the reciprocal polar of the

closing chord F2„iti P is always another chord drawn from some point t of

the one plane conic of contact, to some point T* of the other : this polar, and

these two conies of contact, as well as the enveloping cones, becoming thus

together imaginary, when the surface (e) becomes an ellipsoid or a double-

sheeted hyperboloid. (April, 1853.)

• That is to say, in any real point : for the analysis which was employed

did not fail to recognise the existence of two imaginary intersections.
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of the system. These results were illustrated by an example,*
in which there were threet given points ; one conic was the

known envelope of the fourth side of a plane inscribed qua-

drilateral ; and this was found to be the ellipse de gorge of a

certain single-sheeted hyperboloid, a certain section of which

hyperboloid, by a plane perpendicular to the plane of the el-

lipse, gave the hyperbola which was, in this example, the other

real conic, and was thus situated in a plane perpendicular to the

plane of the ellipse. And to illustrate the imaginary charac-

ter of the enveloped surfaces, or the general non-intersection

(in this example) of infinitely near positions of the closing

chords in space, one such chord was selected ; and it was
shewn that all the infinitely near chords, which made with this

chord equal and infinitesimal angles, were generatrices (of

one common system) of an infinitely thin and single-sheeted

hyperboloid.

Conceive that any rectilinear polygon of n sides, bBi . . .

B„.i, has been inscribed in any surface of the second order,

and that n points Ai . . . a„ have been assumed on its n sides,

BBi, . . . B„.iB. Take then at pleasure any point p upon the

same surface, and draw the chords pAjPi, . . . p„.iA„p„, passing

respectively through the n points (a). Again begin with p„,

* In the particular example which was thus used as an illustration, in the

communication of 1849, the polygons were quadrilaterals inscribed in a sphere;

and the particular closing chord, which was compared with infinitely many

others infinitely near to it, was a diameter : some degree of symmetry being

also introduced into the selection of the three fixed points, which rendered

the results slightly more simple than they wonld otherwise have been, with-

out essentially altering their character.

f Any odd number of guide-points may be reduced to three, as is shewn in

the Note to Appendix A (page 7 1 6) ; and then the system of these three

points may be indefinitely varied, according to fixed laws, not only within

their own plane, but also (by the principles of the same Note) in a certain

other and conjugate plane, which passes through a certain chord of solution

determined by the given guide-points : and thus is furnished a geometrical

explanation of the existence of the second plane conic mentioned in the text,

as being enveloped by one set of closing chords, and as being real if the first

plane conic be so, even when the enveloped cones are imaginary.
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and draw, through the same n points (a), n other successive

chords, p„AiP„+i, . . .P2«-iA„Pj„. Again, draw the n chords,

PjnAiPjn+i, . . . Psn-i AnPsn. Draw tangent planes at p„ and Ps„,

meeting the two new chords pPjb and p„P3„ in points r, b';

and draw any rectilinear tangent bc at b. Then one or other

of the two following theorems will hold good, according as

n is an odd or an even number. When n is odd, the three

points brr' will be situated in one straight line.* When n is

even, the three pyramids which have BC for a common edge,

and have for their edges respectively opposite thereto the three

chords PPan, PjnPn, PnPanj being divided respectively by the

* It is clear (as was remarked in the Philosophical Magazine for April,

1850, page 306), that this colUnearity enables us, by the help of two points R

and k' thus found, to determine the unique chord of solution bb', connecting

the two positions of the initial corner of an inscribed polygon, whose sides

are required to pass successively through the n given guide-points (a), b

being an odd number. More generally, if we pass, by means of chords drawn

tlirough those points from q to (j,„ as we have done from p to p,„ p and q
being both assumed at pleasure on the surface (provided that they be not

taken on one common generatrix) ; and if the transverse chords, p„ Q, Q„ p,

intersect in any point B ; it will be found to follow, as a sort of converse of a

theorem of the present Appendix (see page 719), that this point of intersec-

tion R must be situated upon that souyht chord ofsolution, bb'. The connexion

of this new theorem with the one above referred to is easily seen to consist

in this : that if we take R as a new guide-point, following the n = 2m — 1 given

ones, we shall be conducted, by the repeated employment of this system of

2m points, first from p to Q, and then back from (j to p, describing thus a

closed and doubly even polygon (quadrilateral, or octagon, &c.) of 4m sides,

whereof the opposite sides intersect in the 2m — 1 given points (a), and in the

new point B. The ease of exception to the converse of the theorem of page

719, or the case of possible inscription of a gauche polygon, whose opposite

sides shall intersect each other two by two in an even number of points, with-

out those points being obliged to satisfy the condition mentioned in that

page, namely, the case where opposite corners of the polygon are situated on

one common generatrix of the surface, at first escaped my notice, when inves-

tigating the theorem itself by means of my own analysis : which arose chiefly

from the circumstance that in representing by calculation with biquaternions

the passage from a ruled surface to a sphere, any portion of a generatrix was

replaced by an imaginary vector, or hivector, of which the square was null.

(Compare the interpretation of the differential equation dp' = 0, as repre-
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squares of those three chords, and multiplied by the squares

of the three respectively parallel semidiameters of the surface,

and being also taken with algebraic signs which it is easy to

determine, have their sum equal to zero. Both theorems con-

senting the two systems of generatrices, in art. 677 of the Lectures.) And

in fact the exception exists only in an imaginary sense, for polygons in a

sphere, ellipsoid, or rfoui^e-sheeted hyperboloid. But, for a sm^fe-sheeted

hyperboloid, the geometrical reasoning of a, recent Note shews easily,

that if the two initial points p and q be assumed upon one common ge-

neratrix TB (the number n of the given guide-points being odd), the

transverse chords pq„, qp„ are then both situated in a certain common plane

UTV, and may cross each other anywhere on a certain chord uv, which is not

in general coincident with the unique chord of solution, ofthe problem of in-

scription of an odd-sided polygon. However, the theorem of the Appendix,

to which the present Note relates, and which may be thus stated, that "the

chord PP2M (if » be odd) intersects generally the chord of solution bb' in a point

R, which is situated on the tangent plane to the original surface at P„," receives

a satisfactory verification by the same geometrical reasoning. For if, in the

construction just referred to, and with the letters therein employed, we

place the point P at n, then p„ will be at T, and P2„ at \; and the chord nv,

or the polar of the point t with respect to the conic (ci), that is with respect

to the section of the cone (ei) made by the tangent plane otv to the given

hyperboloid (e) at T, passes through the point x where that tangent plane in-

tersects the chord of solution bb'. In fact, by the theory sketched in this

Appendix, and in its Notes, this chord of solution (for an odd system of given

points) is the polar, relatively to the given surface (e), of the line connecting the

two (real or imaginarj') vertices, of the two circumscribed cones (ei) (E2) ; and

therefore the point x of this chord, as being situated in the plane of contact

of (e) (Ei), has the same polar plane with respect to those two surfaces; but

the point T is conjugate to it relatively to (what is here) the hyperboloid

(e), and therefore also relatively to the cone (ei), or to the conic (cj), so

that the three points v, v, x are coUinear. The same polar relation of the

chord of solution to the line of vertices gives obviously a geometrical confir-

mation of an earlier theorem of the same Appendix (page 718), respecting

the inscription of a gauche polygon of 4m + 2 sides, which sides intersect their

respective opposites in 2»j + 1 given points : of which polygon that line is

(in position') a diagonal.

It may be here remarked that, ifwe attend only to position in space, there

is in general only one such polygon, which however counts as two, in confor-

mity with the general theory, because either of two opposite corners may he

taken as the initial point upon the surface. Thus the two gauche hexagons

of page 719 are wholly superposed on each other. (April, 1853.)
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duct to a form of Poncelet's construction* (the present writer's

knowledge of which is derived chiefly frond the valuable work

on Conic Sections, by the Rev. George Salmon, F. T. C. D.),

when applied to the problem of inscribing a polygon in a plane

* My acquaintance with the great work of M. Poncelet (Traite des Pro-

priet^s Projectives, Paris, 1822) is very partial and imperfect : but I believe

that I am safe in stating, that after shewing {Traite, p. 307) that thefree

tide of any polygon, inscribed in a plane conic, took in succession the same

positions as the free side of a triangle, and therefore (p. 245) that it enve-

loped a second conic having double contact with the given one, because it was

projectively equivalent to a chord of given length inscribed in a circle, and

touching another concentric therewith (pp. 65, 69), Poncelet inferred (p. 352)

that the lines (aA', alt), joining opposite extremities of any two such posi-

tions (ak, a'k'), intersected on the chord ofcontact, on account of the parallelism

of the lines oppositely joining the extremities of two equal chords in a circle

(pp. 248, 249) : and thence concluded that the chord ofsolution of the problem

of inscription of a polygon in a given conic, whose sides should pass succes-

sively and in an assigned order through the same number of given points,

was the PascaFs-line of a certain hexagon {ak'a'ka'k'), obtained by assuming

(,p. 352) any three points (a, a, o") on the conic, and thence deriving three other

points (k, k', A"), by drawing lines through the given guide-points. A sort of

extension of this beautiful construction to space, for the case of an odd system

of given points, has been given in a recent Note : the second and third trials

being supposed to begin where the first and second efid, and tangent planes

being employed. It might at first sight seem that the rule thus stated should

apply, for space, as well as for the plane, not only for an odd, but also for an

even number of given points : but 1 have found that the locus of the point B,

in which the chord ppj™ intersects the tangent plane to the given surface at

p,„ is not a right line, but a surface of the second order (a double-sheeted hy-

perboloid, if the given surface be an ellipsoid), when the number n is even.

However, when the given points are all situated in one common plane, this

superficial locus of R is found to dwindle into a right line, namely, the one as-

signed by Poncelet's construction. A very elegant proof of that celebrated

construction was proposed some years ago by Mr. Townsend, who has

remarked that the same problem of inscription of a polygon in a conic may be

reduced to finding a point upon the latter, which shall have the same anhar-

monic ratio with three initial as with three final points thereon : or which

shall be, in the language of Chasles, one of the two double points oftwoAo-

mographic divisions on the curve. This has suggested to me some researches

respecting a new sort of syngraphy in geometry, and of tyngraphicalfigures,

direct and inverse, on surfaces of the second order; with determinations of the

TWO POINTS (real or imaginary) on such a surface, of which each is its own

INVERSE SYNORAPH, and of the fodr points of which each is its own DIRECT



APPENDIX B. 729

conic : and the second theorem may easily be stated generally

under a graphic* instead of a metric form.

The analysis! by which these results, and others connected

with them, have been obtained, appears to the author to be

sufficiently simple, at least if regard be had to the novelty and

difficulty of some of the questions to which it has been thus

applied ; but he conceives that it would occupy too large a

space in the Proceedings, if he were to give any account of

it in them : and he proposes, with the permission of the Coun-

cil, to publish his calculations as an appendage to his Second

Series of Researches respecting Quaternions, in the Transac-

BVNGRAPH, relatively to THREE GIVEN PAIRS of points on the same surface:

respecting which researches I shall only at present say, that they confirm in

a, new and satisfactory way some of the main results of this Appendix.

It may, however, be here added, that it is in general possible to pass, by three

or by four reflexions (through so many fixed points), from one of any two
given syngraphical figures to the other, according as the syngraphy is in-

verse or direct : but that the one or the other sort of syngraphy exists, with

the proposed signification of the words, when any odd or any even number of

reflecting points is thus employed. (April, 1833.)

• The graphic form thus referred to, of this second theorem, was ex-

pressed by me as follows, in the lately cited number of the Philosophical Ma-

gazine (for April, 1850), having been also previously communicated in an

imprinted paper, which was read in the Mathematical and Physical Section

of the British Association for the Advancement of Science, at Birmingham,

in September, 1849 :
—" If n be even, and if we describe two pairs ofplane co-

nies on the surface, each conic being determined by the condition of passing

through three points thereon, as follows : the first pair of conies passing

through BPP2„, and p„ P2„ P3„ j and the second pair through bp„ P3„ and pp„ Pj,. j

it will then be possible to trace, on the same surface, two other plane conies, of

which the first shall touch the two conies of the first pair, at the two points B

and P„ ; while the second new conic shall touch the two conies ofthe secondpairt

at the two points B and Pjn." In other words, the tangent at B to the section

BPP2n intersects the tangent at p„ to the section p„P2„P3n ; and the tangent at

the same point b to the section bp„P3„ intersects the tangent at p^n to pp„P2,i :

the existence of both which intersections is proved by quaternions in the fol-

lowing Appendix C (with a slightly different notation), for the case of an

original sphere, and therefore generally.

t Some sketch (or at least some specimen) of this analysis, in addition to

what has been given in articles 676, 677 of the Lectures, will be found in the

following Appendix.
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tions of the Academy. He would only further observe, on the

present occasion, that he has made, in these investigations, a

frequent use of expressions of the form q+v/(-1)q', where

V(-l) is the ordinary imaginary of the older algebra, while

Q and q' are two different quaternions, of the kind introduced

by him into analysis in 1843, involving the three new imagi-

naries, i,j, k, for which the fundamental formula,

holds good. (See the Proceedings of November 13th, 1843).

And Sir W. R. Hamilton thinks that the name "Biqua-

TEiiNiON," which he has been for a considerable time accus-

tomed to apply, in his own researches, to an expression of

this form q+ ^ {-\) q', is a designation more appropriate to

such expressions than to the entirely different (but very inte-

resting) octonomials of Messrs. J. T. Graves and Arthur Cay-

ley, to which Octaves* the Rev. Mr. Kirkman, in his paper

on Pluquaternions,^ has suggested (though with all courtesy

towards the present author), that the name of biquaternion

might be applied.

• Mr. Cayley was the first to publish (Phil. Mag., March, 1845, p. 210)

an octonomial expression of the form here referred to, namely, x,, + Xi ii + . .

.

Xt i7, where ti, ... (7 were seven imaginary square roots of - 1, grouping ac-

cording to seven ternary types, or forming seven triads analogous to the triad

ijk : and he shewed that the product of two such octonomials was another of

the same form, having a certain modular relation to the factors. Results es-

sentially the same had been previously communicated to me (compare Lec-

tures, p. 539), by Mr. J. T. Graves, in letters of December 26th, 1843, and

January 4th, 1844 ; his octave being of the form

a + ib +jc + Acf + ?e + mf+ ng + oh,

with the same modular property as Mr. Cayley's ; and the relations between

his seven imaginaries, ijklmno, admitting of being thus summed up (compare

a formula above) :

- I = ;2 =j2 = A2 = i2 = m2 = n2 = 02 =

ijk = ilm = ion =jln =jmo = klo = knm.

(See Trans. R. I. A., Vol. XXI., Part 11., pp. 338, 339.) But in these octo-

nomial forms, no natural separation into two sets offour takes place, as it

does in what I call on that account a biquaternion : namely (if h denote here

the ordinary imaginary of algebra), an expression of this other form,

(w + ix +jy + kz) + h (w + ix +jy + kz).

•f
Phil. Mag. for December, 1848, p. 449.
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APPENDIX C.»

I. If we suppose that p is an unit vector derived from a

proposed but variable unit vector p, by the process of drawing

n successive chords from an assumed point p of the unit sphere,

through a system of n given guide points, Ai, . . . a„, to a de-

rived point p', then, by principles already explained, in the

text of the present work, we shall have not only the equations,

p' = -\,p'' = -\> (1)

but also a relation of the form,

p={~yqpq-\ (2)

where ^ is a quaternion, involving the variable vector p only

in the first degree, and including two constant quaternions in

its expression. Let Q be that biquaternion, which is formed

from g, by changing p to the ordinary square root of -1 ; and

let A and p. be two constant and real vectors, entering into the

following expression of a certain derived bivector

:

^ + Xv/-1 = ^Q. (3)

Then, instead of the relation (2), which involves (as has been

said) two constant quaternions, we shall have this other or

transformed relation, which is equally real with the former,

but is in some respects simpler, as involving only two constant

IjBCtOTS

p=(-r{l+p + \p)p{l+,M + \py^; (4)

or, as by (1), it may also be written :

•^ l+p + Xp ^ '

the upper sign answering to the case where the number n of

• This third Appendix contains a rapid outline of the quaternion analysis

by which some of the foregoing results were obtained, and is designed as a

sort of supplement to articles 676, 677 (pages 674 to 678), of the Lectures.
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the guide points is odd, and the lower sign to the case where

the number of those points is even. And for conciseness, we

shall sometimes call the former the case ofan odd system, or

simply the odd case; and the latter the case of an even sys-

tem, or simply the even case. So far, these two great cases

appear to have much in common ; but the distinction of sign

(+) will be found to lead to an important difference oi proper-

ties. It may, however, be here noted that the formula (5)

conducts to this inverse formula, in which the ambiguous sign

is retained, bo as to comprehend both cases:

X+(l- ;u)p'.

and which may be also thus written,

. A + (l-ju)p
(7)^'~ l-ju±Ap '

by changing p and p to p and p respectively, so that the unit

vector jo' shall be derived from p, or the point p' from p, by

drawing n chords backwards, ihvong\i the system of the n guide

points reversed, or taken in the contrary order, as Aa, , . . Aj.

II. Considering now specially the odd case, we find that

we may write,

where

h'=2S.Xnp, r,'=2y.fi{\-p), (9)

but the scalar h and the vector i; are independent of the sign

of ju ; so that

S . pj}' = - A' = S . Xij', S . /Mti = ; (10)

and S.p| = -l = S.X?, S.;u? = 0, if A'?=V. (H)

Now the equations,

S.Ap+l = S.|up = 0, (12)

are precisely those which belong to and determine that (real)

straight line, or chord ofsolution, which satisfies, for the odd

case here considered, the condition of closure,

p'-p, (13)



APPENDIX C. 733

or the equation,

p(\+fi + \p) + {\+^)p-\ = 0. (14)

Hence it is easy to infer that this chord of solution (88*) is the

rectilinear locus ofthe terminal point r of the vector Z, which

point is, by (8) and (11), the intersection ofthe chord p'p'

with the tangent plane at p ; and thus is proved for the sphere,

and consequently (by obvious deformations) for other surfaces

of the second order, a theorem of Appendix B for the odd case,

or rather a theorem somewhat more general.

III. On the other hand, in the even case, by taking the

lower signs in (5) and (7), and attending to (1), we find that

\p + ^ = (p'-p'y'(p'+p'-2p); (15)

and therefore that

\p+fi = (p-p")-^(p + p"-2p), (16)

if jo" be formed from p', or p" from p', by going againforward

through the same even number of given guide points, as p'

was formed from p, or p' from p. Hence the two constant

vectors, X and fi, admit, in this even case, of being thus ex-

pressed, in terms of the four successive unit vectors, p p p p":

X =-r^+-^ +^; (17)
p -p p-p p -p

p = EL±£,^P±P^^PL±£, (18)
p-p p-p p -

p

If a be the unit vector of a point b, which admits of being

taken as the first corner of an inscribed and even-sided poly-

gon, whose sides pass respectively and successively through

the given guide points, so that

<r' = ff, and <r' = - 1, (19)

tr' being formed from a as p from p in (5), where the lower

sign is to be taken ; or if, with <t*= - 1, we have also

<T(l + /a + X(7) = (l+iu + X(T)<r: (20)

we find then that

= V.ffju-<TV.ffX = V.ffV(^-(TX); (21)

and therefore that

<t| V(;/-ffX), rXVOu-ffX), ifr±<T; (22)
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or that

= S.rOu-<TX), if S.ffr = 0, (23)

that is, if T have the direction of any tangential vector bc, at

the point of solution b (real or imaginary). But if we make,

for abridgment,

X' = p -<T, X = p-<^' X=/°'-'^' x" = p"-<^> (24)

so that X* • • X ^""^ '^^ ^°"'' chords from b to p\ .
p", we have,

by (17) (18),

^_,x=>Cii<+2L±x;+_x;±X; (25)
x-x x-x X -X

and consequently, by (23),

This result of calculation with quaternions gives, by an imme-

diate and easy interpretation, combined with a passage from

spheres to other surfaces of the second order, of which the

geometrical principles are obvious, that metric theorem for the

even case, which was enunciated in Appendix B. And to de-

duce, from the same formula (26), that graphic theorem, for

the same even case, which has been stated in a Note (p. 729)

to the same Appendix, we have only to observe, that the for-

mula gives these two others

:

= S . rx (x - X) (X - X") (x" - X)> ^hen = S . rx^ x'
! (27)

and

= S
. rx' (x' - X) (X - X ) (X -

X').
when = S

. rxx" = (28)

whereof the former (27) shews that the tangent at b to the

section bp'p' intersects the tangent at p to the section pp'p";

and the latter (28) shews that the tangent at B to bpp" inter-

sects the tangent at p' to p'pp\

IV. Let a, b, a, /3 retain the same significations as in 676,

IV. of the Lectures, n being now supposed even, and = 2m;
let the corresponding things, for w=2»z + l, be denoted by
d, b', a' j3'; and write for shortness, oj instead of ozm+i. We
shall then have, by 676, III., the values,
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a'= b + S . abi; a' = j3 + aw - V. aw ; ) .

6'=a-S./3w; /3' = a-Jw+V.0w: ^ ^^
which are to be substituted in the equations of the two enve-

loped surfaces of the second order, assigned in 677, XII., or

rather in the two following (obtained by accenting the letters),

a'» + /3'' = 0; b'^ + a'^O. (30)

Let (Ti, <T2 be the two real, and er'i, a'l the two imaginary unit

vectors which satisfy the equation of closure in 676, VII.;

then, by the principles of that article and paragraph, and ge-

nerally of the present calculus, it will be found, after some

reductions, that if we make

pi = 1 + S . (Ti w, jOj = 1 + S . 0-2 w, p'l = 1 + S . tr'i w, /)'2 = 1

+ S . (72 W,

7=V./3a, i = a^ + /3^-2S.7w + (S.aw)'' + (S./3w)S j- (31)

c + c'=a'' + ]3^ cc' = - 7^ c> c',

U = w'+l,u=a'' + /3'S u" = b"" + a'S

then L = cu + c'pipt = c'u + cp\p\,
? ^32^

M' = i+(i^-/30M, M"=i:+(a^-a^)M. \^ '

The original surface (e) being supposed to be the unit-sphere

M = 0, the two enveloped surfaces (e') (e") have for their equa-

tions u' =0, m'' = ; their three centres are seen to be collinear,

because they have for their respective vectors, 0, (6^-/3')' 7)

(a^-a^y^y : and other geometrical relations, already mentioned,

may be deduced from the same equations. In particular, the

four imaginary right lines, for which pi . />2 = 0, p\ p'i = 0, are

seen to be common to the three surfaces, because the equations

of these surfaces may be written thus :

cp'ip'i = c'pipi ; cp'ip'i = c'e'pipi ; cp'ip'i = c'e'p^p^ ; (33)

where

c'(62-/3''+c)=6»-/3^ + c'; e"{a^-a^ + c)^a^-a} + c; (34)

and consequently,

&-^e' (6^-/3'' + c)^=-a-^e"(a^-a'+c)' = i^-j3^ + a^-a». (35)

If this last constant be positive, then e'>0, e"<0; and the

surfaces (e') (e") are respectively an ellipsoid and a double-
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sheeted byperboloid, the surface (e) being still, for simplicity,

a sphere: but (e') and (e") interchange characters, when 6* - /S"

+ 0^-0' changes sign.

V. The vectors X, fi of the present Appendix are con-

nected with a, b, a, /3, for an even system, by the relations,

a = afi- b\;P = bn + a\; (a' -b')S.Xn = ab{l + \'-ix'y, (36)

and for an odd system by these others,

a' = ay + b'X
;
/3' = b'fi - ay ;

(6'^ - a") S . XV = a'b'

(l+\--^'^): (37)

among the consequences of which it may suffice to mention

here, that when an even number of guide-points is given, the

equations of the two enveloped surfaces (e') (e") are jointly

included in the formula, ;ti'' = (V. X'/u')" ; and that when the

number of given points is odd, the vectors of the summits of

the two imaginary cones, which are then touched by all the

closing chords, have for their joint expression, X' + ju' v^- 1.

VI. Finally, as regards the conception of syngraphical

FIGURES ON A SURFACE of the sccond Order, mentioned in a

note (pp. 728, 729) to the preceding Appendix B, it may be

briefly remarked, in conclusion, that when the surface is the

unit-sphere, two constant vectors, X and /i (or X'and fi) admit

in general of being dejinitely determined so as to satisfy three

conditions of the form (5), prepared so as to be equivalent to

six scalar equations, with one definite selection of the alge-

braical signs (+) ; three unit-vectors pi, p^, p^ being assumed

or given as initial, and three others, p\, p\, p'3, a.% final; and

that then each new initial unit-vector p will give one new

final unit-vector p' ; or, in other words, each superficial point

p will give another such point p' as its syngraph : this syn-

graphy being inverse or direct, according as upper or lower

signs are taken in the formula.

the end.



ERRATA.*
ImPbeface:— ., ,, ,i »

Page (4), line 7 from toot, fir than read Mcompared »ith— (24), line 8, for not read nor

In C0NTBNT8 :

—

Page ix., line 14 from foot, for vector mintu Tehend rnuf vectum minut vehend
— XV., line 4 of § xxrv., for = Tp, read= Tp',

— xvii., line 10 from foot, for bisects the supplement read is oppotite to the

bisector

— xviii., line 11 of § xxzi., for q + 'ilir read q + 2Z7r

— xxxii., line 7 from foot, for y'^Va' read y'j3>a'

— xxxviii., line 4 of § LZiy., for according as ap read according as ap

In Leotdrks :

—

Page 76, line 7, dele " perpendicular thereto"

— 85, line 1, forJa^ readJ^a— 129, lines 6, 6, for quarter spire read quadrant at the pole— 174, line 15, the exponent of— A shonld be - ^
— 177, line 18, read {q ^Kq)^= + Vq,— 208, line 8, for parallelipipedon read parallelepipedon— 211, line 5, read V9 - (JJy -~ Ua) x Uij

;

— 262, line 14 from foot, /or aba'qa read aqa'ba— 321, line 19, for qn-\ read 5„-l

— 366, line 15,fore read a— 377, line 7 from foot, /or 120° read 150°
— 379, line 15, /or so long read so long ago— 408, lines 5 and 9 fh>m foot, for a read a— 460, line 10 from foot, /or p" read /S"

— 469, line 13 from foot, after ellipsoid iyuert if al = al' = bk'

— 608, line 3 from foot, for bcginmng read middlf— 545, line 9 from foot, for F read Fm
— 546, line 10, for inequalities read formnls
— 560, line 5,/or 8\a read 8 . \a

iv— 595, line 9 from foot, insert + before —

-

dp

— 603, linel, reorf S— S— -S| -^l.V V \ V J— 612, line 10,/or length read amount
— 622, line 18, /or and Q read and q— 629, line 7 from foot, for q^ read qk

— 638, line 18, /or Vy read u
— 640, line 8, for e>= 41 read r'= 45
— 665, h'ne 22, /or 499 read 449
— 672, line 7 from foot, /or rq-^— t readrq-l = — i

— 687, line 5,forj-i8.ip readj-^S.jp

• A few other trifling typographical errors have been detected, which however (like most of tho«e
in tlie present list) conld not possibly embarrass a reader. No pages have been printed, answering
to the numerals L to vlii. of the Contents. As regards the astronomical allusioDS in the First Lecture,
see a Note to page (63) of the Pre&oe.
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