		FIRST CYCLE		
	F	TARGET SEQUENCE	F	F = FLANKINGI SEQUENCE
	F	TARGET SEQUENCE	F	
		ALL FOUR HEAT STABL	E DNA	HOLYMERASE E THE STRANDS.
Ţ	F	TARGET SEQUENCE	F	P = PRIMERS
	P		Р	STRAND SEPERATION DUE TO HEAT PRIMERS HYBRIDIZE TO
	F. F.	TARGET SEQUENCE	F	FLANKING SEQUENCE
			,	TARGET SEQUENCE THE NEWLY SYNTHESIZED
	F	TARGET SEQUENCE	F	F= NEWLY SYNTHESIZED
	P	TARGET SEQUENCE	F	FLANKING SEQUENCE
\leftarrow	F	TARMET SEQUENCE	P	THESE 2 NEWLY SYNTHESIZED STRANDS ARE LONGER THAN
	F	TARGET SEQUENCE	F	THE PARENT TEMPLATE.

POLYMERASE CHAIN REACTION DIAGRAM

POLYMERASE CHAIN REACTION (CON'D)

THIRD CYCLE

F	TARGET	SEQUENCE	F	
F	TARGET	SEQUENCE	F	

F	TARGET	SEQUENCE	F
F	TARGET	SEQUENCE	F

NEWLY SYNTHESIZED SHORT STRAND AT THE END OF SECOND CYCLI

FROM THIS CYCLE FORWARD
THESE SHORT STRAND OF TARGET SEQUENCE
WILL BE REPLICATED EXPONENTIALLY.