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A direct conversion of piperazinyl ethanols into chlorides via a

classical O-tosylation protocol is observed. The acceleration of

the transformation by the piperazine unit is demonstrated.

It is found that the reaction goes via the corresponding

O-tosylate, which converts spontaneously into chloride with

different rate depending on the substrate structure. In the

case of pirlindole derivative, partially aromatized chloride

formation was observed upon prolongation and/or increased

excess of tosyl chloride.
1. Introduction
The tosylation is a classical way to convert a hydroxyl function

into a better leaving group, which is widely applied as a step in

various synthetic protocols [1–10]. O-tosylates are usually stable

at low temperature [11] and the side-products are associated

mainly with their moisture sensitivity. However, several

alternative products are isolated from the reaction at high or

room temperature. Dehydrotosylation at 150–1858C is

frequently used to introduce unsaturation in steroids [12–15].

A substituent-dependent formation of tosylates versus ethers

has been reported [16]. Spontaneous transmutation of activated

1-phenylethyl tosylates into ethers has been explained by an

attack of the alcohol hydroxyl function on the tosylate arylethyl

carbocation. Replacement of steroidal O-tosyl group with

chlorine has been achieved by heating at 80–908C with
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pyridinium chloride in pyridine, so-called pyridinium chloride method [17–19]. The transformation of

3-phenyl-1-propanol into tosylate or chloride by reaction with tosyl chloride in pyridine has been

accomplished and adapted to laboratory classroom [20]. It was demonstrated that the reaction

outcome is controlled by the reaction temperature and duration; tosylate was isolated after 2 h at 08C,

while chloride was the product after more than 24 h at room temperature. Recently, it has been

demonstrated that benzyl chlorides can be obtained as single products by using 4-

dimethylaminopyridine as catalyst and trimethylamine as a base at 158C and that the reaction output

is driven by the substituents at the alcohol aryl moiety [21].

Piperazine derivatives are of great importance as they exist as structural subunits in a wide range of

pharmacologically active compounds [22–30]. The indispensability of new and more efficient

pharmaceuticals provokes enormous synthetic efforts on generating libraries of target molecules

possessing piperazine unit [31–37]. In particular, the relevance of compounds build of variable units

ethylene bridged to piperazine is exemplified by numerous frequently prescribed synthetic drugs like

the antihistamine agents cetirizine and hydroxyzine, antidepressant agents trazodone and flesinoxan,

antipsychotic agents fluphenazine and perphenazine, etc. To the best of our knowledge, there is only

one record [38] in the literature on the conversion of piperazinyl ethanols into chlorides via a

tosylation reaction; 70% yield of a particular example by using tosyl chloride and triethylamine in

dichloromethane at room temperature.

Herein, we report on the direct chlorination of 2-piperazinyl ethanols by tosyl chloride/pyridine

system. A comparison with the reaction of 2-aryl ethanol is also performed.
1840
2. Results and discussion
8-Methyl-2,3,3a,4,5,6-hexahydro-1H-pyrazino[3,2,1-jk]carbazole hydrochloride (1) is an antidepressant

drug [39–46] prescribed mainly under names pirlindole and pyrazidole. In a search of novel efficient

biologically active compounds, several pirlindole derivatives were designed in the group; some based

on further functionalization of 2-hydroxyethyl derivative 2a. The latter was obtained in two steps by a

literature procedure [47] and was then submitted to O-tosylation with tosyl chloride in pyridine at

58C, a classical protocol [48–51]. Surprisingly, the chloride 4a was isolated instead of the desired

tosylate (scheme 1). The reaction was repeated with four different lots of tosyl chloride, including

freshly recrystallized from hexane reagent, but the reaction output was always the same.

The structure of the chloride 4a was assigned on the basis of NMR spectra. The latter are almost

identical with those of the alcohol 2a. Only the signals for the side-chain methylene groups are

partially shifted. One of the protons of CH2 neighbouring to nitrogen, numbered as 20, is shifted

downfield in 4a and both protons for CH2 connected with chlorine (30) give common signal at

3.62 ppm, while the group gives separate signals at 3.61 and 3.69 ppm in the proton spectrum of 2a

(figure 1). The most significant is the difference in the chemical shift of the carbon-30 resonance, which

shifts from 58.6 to 41.6 ppm upon replacement of oxygen with chlorine. The structure of 4a was

additionally confirmed by single crystal XRD (figure 2).1 A comparison with the molecular structure

of 2a (figure 3) (see footnote 1) shows that the main difference is in the side-chain orientation, while

pirlindole skeleton possess identical geometry (figure 4).

The reaction was further carried out at room temperature and the conditions were optimized. As seen

in table 1, the yield is not significantly influenced by the temperature (entry 1 versus entry 2). The

attempts to increase the yield by prolongation of the reaction were not successful and the yields were

always commensurable (entries 2–4). However, a secondary product formation was detected upon

prolongation. The latter was isolated and analysed by NMR spectroscopy. The spectra show

disappearance of the signals for CH-3a and three methylene groups compared with 4a and

appearance of three additional signals for aromatic CH in both proton (electronic supplementary

material, figure S1) and carbon spectra (electronic supplementary material, figure S2). On that basis

and by analysing the specific interactions in two-dimensional experiments, the structure of the

secondary product was assigned as the partially aromatized derivative 5, and was confirmed by

single crystal XRD (figure 5) (see footnote 1).
1Crystallographic data (with structure factors) for the structural analysis have been deposited with the Cambridge Crystallographic

Data Centre, nos. CCDC- 1856018 (2a), 1555951 (4a), 1555952 (4b) and 1555950 (5). Copies of this information may be obtained

free of charge from: The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: þ44(1223)336-033, e-mail:

deposit@ccdc.cam.ac.uk, or www: www.ccdc.cam.ac.uk.

http://www.ccdc.cam.ac.uk
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Scheme 1. Synthesis of chloride 4a from alcohol 2a.
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The experiment with 2.2 equivalents of tosyl chloride led to increased yield of the derivative 5 (entry 5

versus entry 4). On the other side, compound 5 was not detected by proton NMR spectra of the crude

reaction mixtures before 48 h, where its content is less than 1% in respect to 4a. So, it can be
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Figure 3. A view of the structure and the atom-numbering scheme of the independent molecule of 2a showing 50% probability
displacement ellipsoids; hydrogen atoms are shown as small spheres of arbitrary radii.

Figure 4. Relative orientation of the side-chain in 4a (yellow) versus 2a (grey).
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Figure 2. A view of the structure and the atom-numbering scheme of the independent molecule of 4a showing 50% probability
displacement ellipsoids; hydrogen atoms are shown as small spheres of arbitrary radii.
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suggested that the derivative 5 is generated by tosyl chloride or its hydrolysed derivative

p-toluenesulfonic acid-assisted aromatization of 4a. To confirm this assumption, compound 4a was

submitted to reactions with tosyl chloride and with p-toluenesulfonic acid in the same conditions. The

reactions output were followed by proton NMR spectra of crude mixtures after 1, 2, 3 and 6 days. It

was observed that the tosyl chloride catalysed formation of 5 is relatively fast at the beginning, 22% 5

within 24 h, and slows down afterwards; 23%, 24% and 26% 5 within 48, 72 and 144 h, respectively.

On the contrary, p-toluenesulfonic acid does not catalyse the transformation in general; less than 1%

of compound 5 was formed even after 6 days.

Further variation in reaction duration showed that the transformation is completed within 8 h

(entry 7). No 4a formation was detected in the spectrum of the crude product after 0.5 h (entry 11).

The latter showed one main component, probably the corresponding O-tosylate 3a (CH2-30 at

68.50 ppm; 70.89 ppm for 3f; electronic supplementary material, figure S3), which transformed with

the prolongation leading finally to the chloride 4a (electronic supplementary material, figure S4). The

assignment of the structures of the intermediate products was not reliable in the mixtures due to

significant overlapping of signals. From the other side, decomposition took place during

chromatography separation and pure samples were not obtained.



Figure 5. The structure with NMR numbering scheme and a view of the independent molecules of compound 5 showing 50%
probability displacement ellipsoids; hydrogen atoms are shown as small spheres of arbitrary radii; the minor disorder
component is shown as dashed bonds.

Table 1. Synthesis of the chloride 4a.

entry conditionsa results

1 58C, 48 h 42% 4a

2 48 h 44% 4a (0.5% 5 in respect to 4a b)

3 69 h 46% 4a (2% 5 in respect to 4a b)

4 87 h 46% 4a (7% 5 in respect to 4a b)

5 87 h, 2.2 eq. TosCl 33% 4a; 9% 5 (27% 5 in respect to 4a b)

6 20 h 44% 4a

7 8 h 43% 4a

8 6 h 4a and unidentified componentsb

9 4 h 4a and unidentified componentsb

10 2 h 4a and unidentified componentsb

11 0.5 h no 4a
aA solution of 2a (10 mmol) and TosCl (11 mmol) in pyridine (15 ml) was kept at room temperature or in the refrigerator (58C;
indicated). The reaction mixture was poured into water. The solid phase formed was filtered off, washed with water, dried in
desiccator, and purified by flash chromatography on silica gel.
bDetermined by 1H NMR spectra of the crude products.
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The reaction was performed with the simplified pirlindole analogues 1-(2-hydroxyethyl) piperazine

(2b), 1-(2-hydroxyethyl)-4-phenylpiperazine (2c), 1-(2-hydroxyethyl)-4-benzylpiperazine (2d) and

1-(2-hydroxyethyl)-4-methylpiperazine (2e), in the optimal conditions for 4a in order to check its

scope. As shown on table 2, the reactions with ethanols 2b and 2c were completed within 8 h and the

corresponding chlorides 4b and 4c were isolated as single products in 47% and 46% yields,

respectively (entries 1 and 2). In the case of alkyl-substituted piperazine ethanols 2d and 2e, low to

negligible amount of crude products were isolated by organic solvent (entries 3 and 4) due to partial

or better solubility in water-pyridine system, as detected by TLC. Benzyl-substituted chloride 4d was



Table 2. Synthesis of the chlorides 4b – 4g.

entry starting alcohol products RTa results

1
2b 4b

8 h 47% 4b

2
2c

4c

8 h 46% 4c

3
2d 4d

8 h 28% 4d

4
2e

4e

8 h – 4e b

5

2f
X = OTos (3f), Cl (4f)

8 h 52% 3f, 32% 4f; 3f : 4f 1 : 0.6c

6 40 h 11% 3f, 45% 4f; 3f : 4f 1 : 3.8c

7 72 h 3f : 4f 1 : 24c

8 96 h 3f : 4f 1 : 83c

9 103 h 49% 4f

10
2g 3g

8 h 3g c,d

aA solution of 2 (10 mmol) and TosCl (11 mmol; 22 mmol for 2b) in pyridine (10 ml) was kept at room temperature. Isolation
by flash chromatography.
bTraces of crude mixture. Not identified.
cDetermined by 1H NMR spectra of the crude products.
dNot isolated.
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isolated in less than 30% yield, while only traces of crude mixture were isolated from 2e, for which

purification and identification were not reasonable.

These results show that piperazine ethanols can be easily converted into the corresponding ethyl

chlorides independent of the piperazine substitution pattern but the protocol has no practical value

for water-pyridine soluble products.

Homoveratryl alcohol (2f ) was further used in order to study the role of piperazine unit on the

transformation. As seen, the reaction within 8 h led to 32% chloride 4f and 52% of tosylate 3f (table 2,

entry 3). The reaction was prolonged and ca 1 : 4 3f : 4f mixture was obtained after 40 h (entry 4),

while full conversion of tosylate into chloride was achieved within 4 days (entries 5–7, electronic

supplementary material, figure S5). This fact confirms the suggestion that the conversion of alcohol

into chloride is going via the corresponding O-tosylate. The results also show that piperazine unit

speeds up the reaction (entry 2 versus entries 5–9) most probably due to anchimeric assistance caused

by nitrogen.

It has to be noted that the reaction yield is always below 50% when the conversion is complete,

independent of the reaction conditions, and that the chloride 4 presents the major content of the solid/

organic phase; the weight loss during the purification is less than 10%. On the contrary, when tosylate

3f exists in the reaction mixture, the total yield of 3f and 4f is much higher and decreases with the

consumption of tosylate; from 84% when containing 52% tosylate (entry 5) via 56% with 11% 3f (entry

6) to 49% pure 4f (entry 9). At the same time, the corresponding alcohol 2 was always detected in

water-pyridine phase indicating that it is a reaction by-product or result of tosylate hydrolysis. However,

the tosylate 3f is stable enough to be isolated by flash chromatography on silica gel, which eliminates

the assumption that the reaction yield is reduced due to tosylate hydrolysis during the water work-up.

Based on these observations, it can be suggested that most probably two molecules of the initially

generated O-tosylate are involved in the transformation leading to chloride 4 and alcohol 2 formation.

Finally, the behaviour of the propanol 2g was examined in an attempt to check the dependence of the

reaction output on the side-chain length. The crude mixture within 8 h contained several compounds.

The main component could be assigned as tosylate 3g based on the observed signals in the proton

spectrum for methyl group and two doublets in aromatic area for two protons each (entry 10,

electronic supplementary material, figure S6). Unfortunately, the product was not stable enough

during chromatography purification to be explicitly characterized. This result shows that the

particular protocol does not operate with piperazinyl propanols.



Figure 6. A view of the structure of the independent molecule of 4b showing 50% probability displacement ellipsoids; hydrogen
atoms are shown as small spheres of arbitrary radii; the methyl group hydrogens are disordered over two positions (represented as
dashed lines).
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The structures of the products were assigned by one- and two-dimensional spectra (see electronic

supplementary material) and were confirmed by single crystal XRD of the chloride 4b (figure 6) (see

footnote 1).

3. Experimental
3.1. Synthesis
All reagents were purchased from Aldrich, Merck and Fluka and were used without any further

purification. Fluka silica gel/TLC-cards 60778 with fluorescent indicator 254 nm were used for TLC

chromatography. The melting points were determined in capillary tubes on SRS MPA100 OptiMelt

(Sunnyvale, CA, USA) automated melting point system with heating rate 18C min21. The NMR

spectra were recorded on a Bruker Avance IIþ 600 spectrometer (Rheinstetten, Germany). The

chemical shifts are quoted as d-values in ppm using as an internal standard tetramethylsilane (TMS)

and the coupling constants are reported in Hz. The assignment of the signals is confirmed by

applying two-dimensional COSY, NOESY, HSQC and HMBC techniques. The spectra were processed

with Topspin 3.5.6 program. The turbo spray mass spectra were taken on API 150EX (AB/MAS Sciex)

mass spectrometer.

Synthesis of starting alcohol 2a. Pirlindole hydrochloride was partitioned between 10% aq. NaOH

and DCM to obtain the free base. To a solution of 1 (0.1 mol) in dry acetonitrile (300 ml), K2CO3

(0.15 mol) and then ethyl bromoacetate (0.11 mol) were added and the mixture was stirred at room

temperature (rt) for 15 h. The solid phase was filtered off and washed with acetonitrile and then with

acetone. The combined organic solutions were dried over MgSO4 and evaporated to dryness to give

the ester derivative, which was used without purification: Rf 0.42 (1% acetone/DCM); 1H NMR, 1.300

(t, 3H, J 7.1, CH3 ester), 1.527 (qdd, 1H, J 13.7, 11.4, 2.5, 1
2 CH2-4), 1.836 (dddd, 1H, J 13.5, 11.5, 6.2,

2.1, 1
2 CH2-5), 2.168 (m, 1H, 1

2 CH2-5), 2.217 (m, 1H, 1
2 CH2-4), 2.434 (s, 3H, CH3), 2.634 (dddd, 1H, J

14.4, 11.7, 6.0, 2.5, 1
2 CH2-6), 2.751 (ddt, 1H, J 15.6, 6.2, 1.3, 1

2 CH2-6), 3.208 (td, 1H, J 12.1, 4.1, 1
2 CH2-2),

3.320 (ddd, 1H, J 12.0, 4.8, 1.1, 1
2 CH2-2), 3.403 (d, 1H, J 16.7, 1

2 CH2-20), 3.624 (d, 1H, J 16.7, 1
2 CH2-20),

3.753 (m, 1H, CH-3a), 3.843 (ddd, 1H, J 12.1, 11.1, 4.8, 1
2 CH2-1), 4.102 (ddd, 1H, J 10.9, 4.1, 1.2, 1

2 CH2-

1), 4.221 (qd, 2H, J 7.1, 1.2, CH2 ester), 6.9790 (dd, 1H, J 8.2, 1.3, CH-9), 7.124 (d, 1H, J 8.2, CH-10),

7.238 (d, 1H, J 1.4, CH-7); 13C NMR 14.30 (CH3 ester), 20.49 (CH2-6), 21.52 (CH3), 22.66 (CH2-5), 27.83

(CH2-4), 42.60 (CH2-1), 51.25 (CH2-2), 54.23 (CH2-20), 57.57 (CH-3a), 60.72 (CH2 ester), 107.74 (Cq-6a),

108.78 (CH-10), 118.31 (CH-7), 122.39 (CH-9), 128.528 (Cq-6b or Cq-8), 128.58 (Cq-6b or Cq-8), 134.60

(Cq-3a1 or Cq-10a), 134.96 (Cq-3a1 or Cq-10a), 170.57 (C¼O).

To a solution of the crude ester (0.1 mol) in THF (300 ml), LiAlH4 (0.2 mol) was added and the

suspension was stirred at rt for 2 h. The excess of LiAlH4 was quenched with water. The solid phase

was filtered off, washed with THF, dried over MgSO4, and evaporated to dryness. Recrystallization

from i-PrOH gave the pure alcohol 2a as colourless solid: 78% overall yield; Rf 0.27 (5% acetone/

DCM); recrystallization from i-PrOH: m.p. 127.8–128.18C (lit. [47] 121–1228C); 1H NMR 1.430 (qdd,

1H, J 13.6, 11.7, 2.6, 1
2 CH2-4), 1.810 (dddd, 1H, J 13.9, 11.7, 6.2, 2.5, 1

2 CH2-5), 2.163 (m, 1H, 1
2 CH2-5),

2.277 (m, 1H, 1
2 CH2-4), 2.333 (dt, 1H, J 13.0, 3.6, 1

2 CH2-20), 2.438 (s, 3H, CH3), 2.632 (dddd, 1H, J 14.3,
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11.6, 6.0, 2.4, 1

2 CH2-6), 2.767 (m, 3H, 1
2 CH2-6 þ 1

2 CH2-2 þ OH ), 3.125 (ddd, 1H, J 13.3, 9.5, 4.9, 1
2 CH2-20),

3.261 (ddd, 1H, J 12.2, 4.6, 0.8, 1
2 CH2-2), 3.493 (ddd, 1H, J 10.6, 4.5, 2.2, CH-3a), 3.575 (ddd, 1H, J 11.1, 4.7,

3.8, 1
2 CH2-30), 3.712 (m, 2H, 1

2 CH2-1 þ 1
2 CH2-30), 4.069 (ddd, 1H, J 11.0, 3.9, 0.9, 1

2 CH2-1), 6.979 (dd, 1H, J

8.2, 0.9, CH-9), 7.114 (d, 1H, J 8.2, CH-10), 7.250 (d, 1H, J 0.9, CH-7); 13C NMR 20.45 (CH2-6), 21.52 (CH3),

22.15 (CH2-5), 28.37 (CH2-4), 42.68 (CH2-1), 50.20 (CH2-2), 53.52 (CH2-20), 58.58 (CH2-30), 59.11 (CH-3a),

107.87 (Cq-6a), 108.79 (CH-10), 118.34 (CH-7), 122.52 (CH-9), 128.20 (Cq-6b), 128.72 (Cq-8), 134.81 (Cq-3a1),

135.76 (Cq-10a).

Synthesis of starting alcohols 2c–2e. A suspension of 1-phenylpiperazine (10 mmol), 1-

benzylpiperazine (10 mmol), or 1-methylpiperazine (10 mmol), 2-bromo ethanol (11 mmol), and

K2CO3 (15 mmol) in dry acetonitrile (40 ml) was stirred at 908C in closed vessel for 20 h. The solid

phase was filtered off and washed with acetonitrile. The solvent was removed in vacuo. The product

was purified by flash chromatography on silica gel by using 2% methanol in DCM as a mobile phase.

2c: 86% yield; Rf 0.38 (10% methanol/DCM); recrystallization from heptane: m.p. 79.6–79.88C (lit.

918C [52], 82.5–838C [53], 848C [54]); 1H NMR 2.610 (t, 2H, J 5.4, CH2-N), 2.680 (t, 4H, J 5.0, CH2-2 þ
CH2-6 piperazine), 3.211 (t, 4H, J 5.0, CH2-3 þ CH2-5 piperazine), 3.664 (t, 2H, J 5.4, CH2-OH), 6.867

(tt, 1H, J 7.3, 0.9, p-Ph), 6.935 (dd, 2H, J 8.8, 0.9, o-Ph), 7.271 (dd, 2H, J 8.7, 7.3, m-Ph); 13C NMR 49.22

(CH2-3 þ CH2-5 piperazine), 52.88 (CH2-2 þ CH2-6 piperazine), 57.74 (CH2-OH), 59.29 (CH2-N), 116.09

(o-Ph), 119.82 (p-Ph), 129.12 (m-Ph), 151.19 (i-Ph).

2d: 88% yield; Rf 0.36 (10% methanol/DCM); colourless oil (lit. [55] colourless oil); 1H NMR 2.37–

2.66 (bs, 8H, 4 � CH2 piperazine), 2.536 (t, 2H, J 5.4, CH2-N), 3.511 (s, 2H, CH2-Ph), 3.601 (t, 2H, J 5.4,

CH2-OH), 7.251 (m, 1H, p-Ph), 7.313 (m, 4H, o-Ph þm-Ph); 13C NMR 52.85 (2 � CH2 piperazine),

53.05 (2 � CH2 piperazine), 57.70 (CH2-OH), 59.29 (CH2-N), 63.00 (CH2-Ph), 127.06 (p-Ph), 128.20

(o-Ph or m-Ph), 129.19 (o-Ph or m-Ph), 137.95 (i-Ph).

2e: 86% yield; Rf 0.19 (25% methanol/DCM); colourless oil (lit. [56] colourless oil);1H NMR 2.297 (s,

3H, CH3), 2.35–2.71 (bs, 8H, 4 � CH2 piperazine), 2.556 (t, 2H, J 5.4, CH2-N), 3.627 (t, 2H, J 5.4, CH2-OH);
13C NMR 45.97 (CH3), 52.80 (2 � CH2 piperazine), 55.06 (2 � CH2 piperazine), 57.78 (CH2-OH), 59.38

(CH2-N).

Synthesis of alcohol 2 g. A suspension of 1-phenylpiperazine (10 mmol), ethyl 3-chloro propionate

(10 mmol), and K2CO3 (10 mmol) in dry acetonitrile (40 ml) was stirred at rt for 20 h. The solid phase

was filtered off and washed with acetonitrile. The solvent was removed in vacuo. The product was

purified by flash chromatography on silica gel by using a mobile phase with a gradient of polarity

from DCM to 10% acetone in DCM: 61% ethyl 3-(4-phenylpiperazin-1-yl)propanoate [57]; colourless

oil; Rf 0.38 (10% acetone/DCM); 1H NMR 1.258 (t, 3H, J 7.1, CH3 ester), 2.532 (t, 2H, J 7.4, CH2-

COOEt), 2.621 (t, 4H, J 5.1, CH2-3 þ CH2-5 piperazine), 2.752 (t, 2H, J 7.4, CH2-N), 3.181 (t, 4H, J 5.1,

CH2-2 þ CH2-6 piperazine), 4.146 (t, 2H, J 5.4, CH2 ester), 6.846 (tt, 1H, J 7.73, 0.9, p-Ph), 6.917 (dd,

2H, J 8.7, 0.9, o-Ph), 7.253 (dd, 2H, J 8.7, 7.3, m-Ph); 13C NMR 14.23 (CH3 ester), 32.32 (CH2-COOEt),

49.06 (CH2-2 þ CH2-6 piperazine), 52.91 (CH2-3 þ CH2-5 piperazine), 53.54 (CH2-N), 60.41 (CH2 ester),

116.01 (o-Ph), 119.68 (p-Ph), 129.06 (m-Ph), 151.22 (i-Ph), 172.41 (C¼O).

To a suspension of ethyl propanoate (5.7 mmol) in dry ether (50 ml), LiAlH4 (22.8 mmol) was added

portionwise and stirred at rt for 30 min. The excess of hydride was quenched by slow addition of water.

The solid phase was filtered off and washed with ether. The solvent was removed in vacuo to give pure

2 g: 79% yield; m.p. 75.4–75.88C (lit. [58] 73–748C); Rf 0.18 (5% MeOH/DCM); 1H NMR 1.763 (m, 2H,

CH2-CH2-CH2), 2.669 (t, 2H, J 5.9, CH2-N), 2.686 (t, 4H, J 4.9, CH2-3 þ CH2-5 piperazine), 3.195 (t, 4H, J

5.1, CH2-2 þ CH2-6 piperazine), 3.819 (t, 2H, J 5.3, CH2-OH), 6.864 (tt, 1H, J 7.3, 0.8, p-Ph), 6.919 (dd, 2H, J

8.7, 0.8, o-Ph), 7.261 (dd, 2H, J 8.7, 7.3, m-Ph); 13C NMR 27.07 (CH2-CH2-CH2), 49.21 (CH2-2 þ CH2-6

piperazine), 53.30 (CH2-3 þ CH2-5 piperazine), 58.74 (CH2-N), 64.50 (CH2-OH), 116.16 (o-Ph), 119.94

(p-Ph), 129.11 (m-Ph), 151.06 (i-Ph).

Synthesis of chlorides 4a–4e. Version 1: A solution of 2a or 2b (10 mmol) and TosCl (11 mmol for 2a

or 22 mmol for 2b) in pyridine (15 ml for 2a or 10 ml for 2b) was kept at rt. The reaction mixture was

poured into water. The solid phase formed was filtered off, washed with water and dried in

desiccator. Flash chromatography purification on silica gel by using a mobile phase with a gradient of

polarity from DCM to 2% acetone in DCM gave:

4a: colourless solid; recrystallization from i-PrOH: m.p. 124.8–125.28C; Rf 0.29 (DCM); 1H NMR 1.503

(qdd, 1H, J 13.6, 11.6, 2.5, 1
2 CH2-4), 1.830 (dddd, 1H, J 13.8, 11.7, 6.3, 2.5, 1

2 CH2-5), 2.178 (m, 1H, 1
2 CH2-5),

2.262 (m, 1H, 1
2 CH2-4), 2.434 (s, 3H, CH3), 2.641 (dddd, 1H, J 14.2, 11.6, 6.0, 2.4, 1

2 CH2-6), 2.744 (m, 2H, 1
2

CH2-6 þ 1
2 CH2-20), 2.978 (td, 1H, J 12.1, 4.1, 1

2 CH2-2), 3.212 (ddd, 1H, J 13.8, 8.4, 7.0, 1
2 CH2-20), 3.273 (ddd,

1H, J 11.9, 4.6, 1.1, 1
2 CH2-2), 3.545 (ddd, 1H, J 10.7, 4.6, 2.4, CH-3a), 3.613 (m, 2H, 2 � 1

2 CH2-30), 3.777

(ddd, 1H, J 15.8, 11.1, 4.7, 1
2 CH2-1), 4.094 (ddd, 1H, J 10.9, 4.1, 1.1, 1

2 CH2-1), 6.970 (dd, 1H, J 8.2, 1.3,
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CH-9), 7.116 (d, 1H, J 8.2, CH-10), 7.241 (d, 1H, J 1.3, CH-7); 13C NMR 20.50 (CH2-6), 21.54 (CH3), 22.26

(CH2-5), 28.35 (CH2-4), 41.57 (CH2-30), 42.35 (CH2-1), 51.30 (CH2-2), 54.48 (CH2-20), 58.71 (CH-3a), 107.84

(Cq-6a), 108.75 (CH-10), 118.32 (CH-7), 122.44 (CH-9), 128.27 (Cq-6b), 128.64 (Cq-8), 134.69 (Cq-3a1), 135.86

(Cq-10a); ESI (TIS)-Q m/z 291 [M þ 1]þ (34), 289 [M þ 1]þ (100), 240 [M-CH2Cl þ 1]þ (14), 226

[M-CH2CH2Cl þ 1]þ (9), 212 [M-NCH2CH2Cl þ 1]þ (58), 198 [M-CH2NCH2CH2Cl þ 1]þ (28), 184

[M-CH2CH2NCH2CH2Cl þ 1]þ (51).

5: colourless solid; recrystallization from i-PrOH: m.p. 128.1–128.48C; Rf 0.77 (DCM); 1H NMR 2.527

(s, 3H, CH3), 3.721 (dd, 2H, J 5.1, 4.9, CH2-2), 3.788 (m, 4H, CH2-20 þ CH2-30), 4.309 (dd, 2H, J 5.1, 4.9,

CH2-1), 6.605 (d, 1H, J 7.6, CH-4), 7.066 (t, 1H, J 7.7, CH-5), 7.245 (m, 2H, CH-9 þ CH-10), 7.460 (d,

1H, J 7.9, CH-6), 7.851 (d, 1H, J 1.4, CH-7); 13C NMR 21.46 (CH3), 40.44 (CH2-30), 41.27 (CH2-1), 48.01

(CH2-2), 52.41 (CH2-20), 104.64 (CH-4), 108.03 (CH-10), 110.65 (CH-6), 119.67 (CH-5), 120.98 (Cq-6a),

121.05 (CH-7), 123.72 (Cq-6b), 126.52 (CH-9), 128.21 (Cq-8), 129.29 (Cq-3a1), 132.03 (Cq-3a), 137.36

(Cq-10a); ESI (TIS)-Q m/z 287 [M þ 1]þ (31), 285 [M þ 1]þ (100), 236 [M-CH2Cl þ 1]þ (18), 222

[M-CH2CH2Cl þ 1]þ (6), 208 [M-NCH2CH2Cl þ 1]þ (72), 194 [M-CH2NCH2CH2Cl þ 1]þ (43), 180

[M-CH2CH2NCH2CH2Cl þ 1]þ (66).

4b: colourless solid; recrystallization from i-PrOH: m.p. 136.1–136.38C (lit. [59] 139–139.58C); Rf 0.34

(1% acetone/DCM), Rf 0.68 (5% acetone/DCM); 1H NMR 2.433 (s, 3H, CH3 Tos), 2.605 (bs, 4H, CH2-3 þ
CH2-5 piperazine), 2.725 (t, 2H, J 6.6, CH2-N), 3.039 (bs, 4H, CH2-2 þ CH2-6 piperazine), 3.526 (t, 2H, J

76.6, CH2-Cl), 7.326 (d, 2H, J 8.1, CH-3 þ CH-5 Tos), 7.632 (d, 2H, J 8.2, CH-2 þ CH-6 Tos); 13C NMR

21.52 (CH3 Tos), 40.71 (CH2-Cl), 45.87 (CH2-2 þ CH2-6 piperazine), 52.13 (CH2-3 þ CH2-5 piperazine),

59.19 (CH2-N), 127.87 (CH-2 þ CH-6 Tos), 129.69 (CH-3 þ CH-5 Tos), 132.16 (Cq-1 Tos), 143.80 (Cq-4 Tos).

Version 2: A solution of 2c, 2d, 2e or 2 g (10 mmol) and TosCl (11 mmol) in pyridine (10 ml) was kept

at rt. The reaction mixture was poured into water. The products were partitioned between water and

ethyl acetate. The organic phase was dried over MgSO4 and evaporated to dryness. Flash

chromatography purification on silica gel by using a mobile phase with a gradient of polarity from

DCM to 2% acetone in DCM gave:

4c: colourless solid; recrystallization from heptane: m.p. 57.6–58.28C (lit. [60] colourless oil); Rf 0.26

(1% acetone/DCM), Rf 0.58 (5% acetone/DCM); 1H NMR 2.653 (t, 4H, J 5.0, CH2-2 þ CH2-6 piperazine),

2.766 (t, 2H, J 7.0, CH2-N), 3.188 (t, 4H, J 5.0, CH2-3 þ CH2-5 piperazine), 3.600 (t, 2H, J 7.0, CH2-Cl), 6.847

(tt, 1H, J 7.3, 0.8, p-Ph), 6.908 (dd, 2H, J 8.8, 0.9, o-Ph), 7.248 (ddt, 2H, J 8.7, 7.3, 0.7, m-Ph); 13C NMR 40.89

(CH2-Cl), 49.07 (CH2-3 þ CH2-5 piperazine), 53.16 (CH2-2 þ CH2-6 piperazine), 59.80 (CH2-N), 116.10

(o-Ph), 119.76 (p-Ph), 129.08 (m-Ph), 151.23 (i-Ph).

4d: colourless oil (lit. 40–418C [61]); Rf 0.24 (5% acetone/DCM); 1H NMR 2.49 (bs, 4H, 2 � CH2

piperazine), 2.54 (bs, 4H, 2 � CH2 piperazine), 2.722 (t, 2H, J 7.0, CH2-N), 3.569 (t, 2H, J 7.0, CH2-Cl);
13C NMR 40.83 (CH2-Cl), 52.72 (2 � CH2 piperazine), 52.89 (2 � CH2 piperazine), 59.70 (CH2-N), 62.85

(CH2-Ph), 127.23 (p-Ph), 128.26 (o-Ph or m-Ph), 129.33 (o-Ph or m-Ph), 137.38 (i-Ph).

Version 3: A solution of 2f (10 mmol) and TosCl (11 mmol) in pyridine (10 ml) was kept at rt. The

reaction mixture was poured into water. The products were partitioned between water and ethyl

acetate. The organic phase was washed with 5% aq. HCl, and then with brine, was dried over MgSO4,

and evaporated to dryness. Flash chromatography purification on silica gel by using a mobile phase

with a gradient of polarity from DCM to 2% acetone in DCM gave:

4f: colourless oil (lit. m.p. 37.5–39.58C [62], colourless oil [63]); Rf 0.45 (DCM); 1H NMR 2.996 (t, 2H, J

7.5, CH2-20), 3.679 (t, 2H, J 7.5, CH2-30), 3.848 (s, 3H, OCH3-4), 3.866 (s, 3H, OCH3-3), 6.733 (d, 1H, J 2.0,

CH-2), 6.754 (dd, 1H, J 8.1, 1.9, CH-6), 6.810 (d, 1H, J 8.1, CH-5); 13C NMR 38.78 (CH2-20), 45.21 (CH2-30),

55.81 (OCH3), 55.85 (OCH3), 111.19 (CH-5), 111.98 (CH-2), 120.80 (CH-6), 130.62 (Cq-1), 147.89 (Cq-4),

148.87 (Cq-3).

3f: colourless solid; recrystallization from hexane: m.p. 46.1–46.78C (lit. 48–508C [64], 49–508C [65]);

Rf 0.16 (DCM); 1H NMR 2.419 (s, 3H, CH3 Tos), 2.887 (t, 2H, J 6.9, CH2-20), 3.797 (OCH3-3), 3.845 (OCH3-

4), 4.189 (t, 2H, J 6.9, CH2-30), 6.591 (d, 1H, J 1.9, CH-2), 6.654 (dd, 1H, J 8.1, 1.9, CH-6), 6.745 (d, 1H, J 8.1,

CH-5), 7.265 (d, 2H, J 8.1, CH-3 þ CH-5 Tos), 7.660 (d, 2H, J 8.3, CH-2 þ CH-6 Tos); 13C NMR 21.61 (CH3

Tos), 34.91 (CH2-20), 55.73 (OCH3), 55.88 (OCH3), 70.89 (CH2-30), 111.16 (CH-5), 111.90 (CH-2), 121.00

(CH-6), 127.79 (CH-2 þ CH-6 Tos), 128.74 (Cq-1), 129.74 (CH-3 þ CH-5 Tos), 132.85 (Cq-1 Tos), 144.71

(Cq-4 Tos), 147.91 (Cq-4), 148.84 (Cq-3).

3.2. Crystallography
The crystals of 2a, 4a, 4b and 5 were mounted on a glass capillary and all geometric and intensity data

were taken from these crystals. Diffraction data were taken on an Agilent SuperNova Dual diffractometer



Table 3. Crystal data and the most important structure refinement indicators for compounds 2a, 4a, 5 and 4b.

identification code compound 2a compound 4a compound 5 compound 4b

empirical formula C17H22N2O C17H21ClN2 C17H17ClN2 C13H19ClN2O2S

formula weight 270.36 288.81 284.78 302.81

temperature (K) 150 290 290 290

crystal system monoclinic monoclinic triclinic monoclinic

space group P21/c P21/c P-1 P21/c

a (Å) 10.2941(4) 11.3939(8) 8.7370(7) 10.3493(3)

b (Å) 17.0333(5) 13.0803(9) 11.4112(8) 8.5753(2)

c (Å) 8.0847(3) 10.4613(5) 15.0514(11) 17.1092(5)

a (8) 90 90 87.907(6) 90

b (8) 102.211(4) 101.461(5) 89.359(6) 102.100(3)

g (8) 90 90 80.105(6) 90

unit cell volume (Å3) 1385.51(9) 1528.02(17) 1477.29(19) 1484.68(7)

Z 4 4 4 4

rcalc (g/cm3) 1.296 1.245 1.270 1.344

m (mm21) 0.081 0.204 0.211 0.358

F(000) 584.0 616.0 600.0 640.0

crystal size (mm3) 0.25 � 0.22 � 0.20 0.25 � 0.2 � 0.15 0.25 � 0.2 � 0.18 0.35 � 0.2 � 0.19

radiation MoKa (l ¼ 0.71073) MoKa (l ¼ 0.71073) MoKa (l ¼ 0.71073) MoKa (l ¼ 0.71073)

Q range for data

collection (8)

6.268 – 58.77 6.676 – 50.04 6.412 – 50.046 5.63 – 65.026

index ranges 211 � h � 14,

215 � k � 23,

210 � l � 8

211 � h � 12,

215 � k � 9,

212 � l � 11

210 � h � 10,

213 � k � 11,

217 � l � 17

215 � h � 14,

212 � k � 12,

224 � l � 25

reflections collected/

independent

8495/3318 8729/2588 8058/4890 16572/4975

Rint/Rsigma 0.0252/0.0297 0.0375/0.0328 0.0300/0.0406 0.0234/0.0229

data/restraints/

parameters

3318/0/296 2588/0/187 4890/0/423 4975/0/172

goodness-of-fit on F2 1.056 1.015 1.076 1.082

R1, wR2 indexes,

I � 2s (I )

0.0447, 0.1101 0.0649, 0.1638 0.0683, 0.1631 0.0496, 0.1306

R1, wR2 indexes, all

data

0.0527, 0.1169 0.0869, 0.1817 0.0955, 0.1819 0.0727, 0.1469

largest diff. peak/

hole/e Å23

0.28/20.27 0.27/20.25 0.27/20.23 0.35/20.47

CCDC number 1856018 1555951 1555950 1555952
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equipped with an Atlas CCD detector using micro-focus Mo Ka radiation (l ¼ 0.71073 Å) at room

temperature. The determination of the unit cell parameters, data collection and reduction were

performed with Crysalispro software [66]. The structures were solved by direct methods and refined

by the full-matrix least-squares method on F2 with ShelxS and ShelxL 2016/6 programs [67]. All non-

hydrogen atoms, including solvent molecules, were located successfully from Fourier maps and were

refined anisotropically. The H atoms were placed in idealized positions (C–H ¼ 0.86 to 0.97 Å) and

were constrained to ride on their parent atoms, with Uiso(H) ¼ 1.2Ueq(C). The most important

crystallographic and refinement indicators are listed on table 3.
4. Conclusion
A direct conversion of ethanols into chlorides via a classical O-tosylation protocol is observed. It is

found that:



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181840
11
— 2-Substituted ethanols can be easily converted into the corresponding ethyl chlorides via a simple

cheap protocol.

— The reaction goes via initial O-tosylate formation.

— The presence of piperazine fragment at the end of ethanol unit speeds up the conversion. The

transformation of O-tosylate into chloride is very fast in piperazinyl ethanols and slower in

aromatic ethanols.

— The protocol has practical value only when the product possesses limited solubility in water-pyridine

system.

— The prolongation of the reaction and/or increased excess of tosyl chloride lead to partial

aromatization of pirlindole chloride. Tosyl chloride catalyses the transformation.

— The particular conditions are not applicable to piperazinyl propanols.

This study aims to warn the synthetic community about the eventual problems if trying to tosylate

2-hydroxyethyl derivatives, especially piperazinyl ethanols, and to inform on the possibility to convert

directly ethanols into ethyl chlorides.
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