7 GESTION DES MOYENS DE MESURE 2 VERIFICATION PERIODIQUE

INSTRUCTION N° **2372 10PC**

PIEDS A COULISSE

0. PRESENTATION

Quel que soit le type de pied à coulisse, les vérifications périodiques s'appuieront sur la norme NF E 11-091 pour déterminer la classe de l'instrument et sur la norme interne 2361 pour en déterminer l'incertitude d'utilisation. Les enregistrements seront effectués sur les imprimés 237210PC.

1. CONDITIONS PRELIMINAIRES

1.1. CONDITIONS DE REFERENCE

(toutes les rubriques sont à remplir obligatoirement)

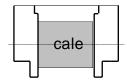
suivant NF E 10-100:

- 1 Température : référence 20°; si température différente et matériaux influents : correction.
- 2 Stabilisation thermique: entre la pièce et le matériel (12h mini souhaitables).
- 3 Nettoyage : dépoussiérage, dégraissage, examen viso-tactile, pierrage éventuel.
- 4 Désaimantation : si nécessaire.
- 5 Déformations : attention aux flexions, efforts de mesure.

1.2. CONTROLES PRELIMINAIRES

- 1 Code marqué : conforme au code interne.
- 2 Référence : si absence de code marqué.
- 3 Essai de bon fonctionnement : ajustage du jeu : à effectuer impérativement si nécessaire, ...
- 4 Contrôle du zéro : affichage du zéro (moyenne de 5 essais) ou coïncidence des traits du vernier.
- $5 \underline{\text{Cales}} : \underline{\text{classe}} + \underline{\text{code}} : \underline{\text{IU}} \le 1/4 \text{ max. de l'incertitude de l'instrument, soit } \le \underline{\text{Classe }} 3_{\text{cales}}.$

2. DETERMINATION DE LA CLASSE DE L'INSTRUMENT


2.0. CONDITIONS DE MESURE

- -<u>Cibles</u>: 3 mesurandes-cibles Pi: cibles espacées régulièrement sur l'étendue de mesure de l'instrument, avec empilement minimum de cales (3 maxi); pour une étendue $L > 300 ==> Pi \ge L/100$
- Effort : constant, faible, 5 N maxi; opérateur fortement accoutumé : 10 mesures d'accoutumance.
- Position : pied à coulisse sensiblement à plat.

2.1. ERREUR DE JUSTESSE

(erreur systématique pour mesure entre becs : int becs)

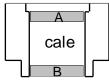
- Cales à plat au milieu des becs,

- 5 mesures en chacun des 3 points précités : de Xi_1 à Xi_5 de moyenne X_{bar}
- Erreur de justesse en chacun des 3 points de mesure : écart entre la moyenne et la cible visée.

 $. E_j = Xbar - P_i .$

Ej doit être < en chaque point aux valeurs de justesse normalisées de la <u>classe</u> de l'instrument.

 CREATION: 11/02/94
 par: xxx
 visa :
 APLS


 A JOUR (2): 2/1/2015
 par: xxx
 Page - 1
 visa Q: zzz

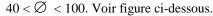
PIEDS A COULISSE

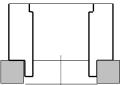
2.2. ERREUR DE FIDELITE

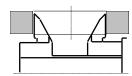
(erreur aléatoire pour mesure entre becs : int becs)

- \rightarrow ATTENTION : Au point *Pi* de plus *grande erreur de justesse* :
- Cales debout en 2 positions : A et B,

- 5 mesures Yi en chaque position : de moyenne Ybar. Soit Ymax la valeur la plus éloignée de Ybar,
- Erreur de fidélité pour chaque série de mesure :

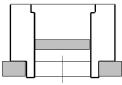

.
$$\mathbf{E}f = |\mathbf{Y}max - \mathbf{Y}bar|$$
.


Ef doit être < en chaque position aux valeurs de fidélité normalisées de la classe de l'instrument.


2.3. ERREUR DES BECS PARTICULIERS

ERREUR DE JUSTESSE ET DE FIDELITE

- 5 mesures avec un étalon de dimension quelconque adapté aux becs .
- les erreurs se calculent comme en 2.1 et 2.2.
- pour des mesures à l'extérieur des becs, choisir si possible une bague étalon (suivant NF E 11-013)


L'instrument appartiendra à une classe si chacune de ses caractéristiques reste dans les limites fixées

3. INCERTITUDE "METROLOGIQUE" D'UTILISATION

(méthode rapide et grossière)

Pour chaque type de becs : mesures si possible "en aveugle" :

- 1 étalon de dimension quelconque, adapté comme ci-dessous, 2 opérateurs accoutumés A et B,

- 10 mesures effectuées en alternance par 2 opérateurs définissent l'étendue R et 1' écart moyen Xbar.
- Calculer l' écart-type *U*a :

Ua = R / 3,08 ou Ua =
$$\sqrt{\left[\sum (Xi - Xbar)^2 / (n-1) \right]}$$

- Si $|Xbar| < 3 \text{ Ua} / \sqrt{10}$ pas d'erreur de type B due à la justesse, sinon calculer : Ub = Xbar / 3.
- Calculer Uc² = Ua² + Ub²; en déduire Uc (les autres composantes de type B sont négligées à priori).
- Calculer l'intervalle d'incertitude $IU = \pm U \ (\pm 2k)$ pour une mesure :

 $. IU = \pm 2 U .$

 CREATION: 11/02/94
 par: xxx
 visa:
 APLS

 A JOUR (2): 2/1/2015
 par: xxx
 Page - 2
 visa Q: zzz