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ABSTRACT

A deterministic analysis of the limit cycle oscillations

which occui* in fixed-point implementations of recursive

digital filters due to roundoff and truncation quantization

after multiplication operations, is performed. Amplitude

bounds , based upon a correlated nonstochastic signal approach

and Lyapunov ' s direct method, as well as an approximate

expression for the frequency of zero-input limit cycles,

are derived and tested for the two-pole filter. The limit

cycles are represented on a successive value phase-plane

diagram from which certain symmetry properties are derived.

Similar results are developed for other second-order digital

filter configurations, and the parallel and cascade forms.

The results are extended to include limit cvc3 ps under in-

put signal conditions. A basic design relationship between

the number of significant digits required for the realization

of a filter algorithm with a desired signal-to-noise (limit

cycle) ratio is stated.
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I . INTRODUCTION

A. INTRODUCTORY REMARKS

When a digital filter is implemented on a general or

special purpose computer, errors due to finite precision in

the representation of numbers are unavoidable. The finite

arithmetic in the computer generates roundoff or truncation

errors which are due to the quantization nonlinearities in-

troduced when implementing a digital filter algorithm. They

give rise to nonlinear effects such as limit cycle oscilla-

tions as well as approximations in a filter realization.

This dissertation is mainly concerned with the type of error

which has been called by various names in the literature,

such as ;ideadJDand effect" T241 "auan+--' 5"*-r--5 nr» *?-*-'.f^-.T.-'.-l 1 -Ir.

cycle oscillations" [26], or "low-level correlated noise".

The analysis of quantization noise on a statistical basis

has been discussed by many authors. This approach is approxi-

mate and is based on the assumption that quantization errors

occur in a random manner. In this dissertation the genera-

tion of spurious signals generated by quantization is analy-

zed from a correlated, deterministic point of view in an effort

to determine: 1) bounds on the limit cycle amplitude, 2) ex-

pressions for the limit cycle frequency, and 3) existence

conditions

.

A digital filter is defined as a time-invariant, discrete

or sampled-data system with finite accuracy in the represen-

tation of all data and parameter values. More formally, any





time-invariant linear operation on discrete time signals may

be classified as a digital filter [1] . Such an operation is

defined by the process by which a discrete time output sig-

nal is determined from a discrete time input signal.

A digital filter can be viewed as a computer which is

programmed to operate on the incoming sequence of numbers in

a specified way so as to generate the desired output sequence

of numbers. A schematic representation of a low-pass digi-

tal filter is depicted in Fig. 1.1. The input x„(nT) to the

filter is a sequence of numbers, equally spaced in time and

separated by the sampling time T. If a continuous signal

x, (t) is the input, then an analog to digital (A/D) conver-

sion has to be performed first to generate the required

ppquenrp of nijmhprs = Similar"! v. if a continuous sicrnal is

needed as -che output, a digital to analog conversion (D/A) ,

by using, for example, a zero-order hold, has to take place.

Sampling and processing of data in discrete time is analogous

to a filtering operation in continuous time. The synthesis

or the development of the discrete time algorithm to meet a

filtering specification is amply discussed in the literature

and is not considered in this dissertation [4,5,30].

Initially, digital filters were applied to the simula-

tion of analog systems or off-line signal processing of

such signals as seismic data. In recent years, digital fil-

ters have been used mere and more for real time signal pro-

cessing. By real time, it is implied that digital processing

takes place fast: enough so that the output: of the die . tal

filter is available for direct control or observation in





a larger system. Digital filters are constructed using digi-

tal logic components as their basic building blocks and the

rapid advance in the development of solid-state devices has

made such digital filters practical. The development of

large scale circuit integration (LSI) promises to make these

systems even more economical.

The advantages of digital filters over their analog

counterparts are numerous [1] . Some of the advantages are

a) arbitrary high precision in the computational process,

b) no parameter or component value drifting,

c) flexibility in the processing procedure, which allows
the construction of adaptive filters,

d) no necessity for impedance matching,

e) possibility to use time-sharing techniques,

f) easy realization of complex circuits,

g) high reliability,

h) small circuit size,

i) decreasing costs for mass-produced basic building
blocks

.

One of the inherent limitations of digital, filters is

related to the fact that all numbers representing either data

or filter coefficients are expressed with a finite number of

significant digits.

In order to realize digital filters , two distinct problems

have to be solved. The first represents the approximation

problem, i.e., the filter design required to realize a ratio-

nal transfer function of finite order which approximates in

some sense either a desired frequency response characteristic

or a desired time domain response. This approximation pro-

blem is not considered here and it is assumed that a

desired rational transfer function already exists.

9





The second problem is concerned with the implementation

or synthesis of the filter, i.e., the filter algorithm and

a filter configuration which efficiently implement the

transfer function. Jackson [2] has discussed these two

phases and their interdependence in detail. In this dis-

sertation those special aspects of the implementation phase,

pertaining to the generation of limit cycle oscillations

are investi.gated in detail.

Four factors have to be considered when implementing a

filter. These are:

a) choice. of a numerical algorithm,

b) selection of a specific configuration for the
filter,

c) choice of the arithmetic mode, i.e., the number sys-
f-om +""-> Vio ncorl

d) specification of the number of significant digits.

Since limit cycle oscillations occur mainly in fixed-

point implementations of recursive digital filters, the

other possible computational algorithms , such as non-

recursive digital filters and Fast Fourier Transform (FFT)

filters are not considered. A recursive digital filter is

defined as a filter in which the present output depends on

the present input and past inputs and outputs , while for a

nonrecursive filter the output depends on past and present

inputs only. It should be noted, that most digital filters

are of the fixed-point variety because floating-point

10





arithmetic involves more hardware. Also, most filters are

recursive because for the same degree of approximation, re-

cursive filters are generally simpler than nonrecursive

forms. A discussion of fixed-point versus floating-point

arithmetic, together with considerations of the number of

significant digits required for a given precision and signal-

to-noise ratio, appears in the next section.

For a given filter transfer function many equivalent

configurations, i.e., different arrangements of the arithme-

tic functions or elements of the filter (such as delays,

adders and multipliers) can be devised. Kaiser [3] has shown

that a cascade or parallel form composed of first and second-

order subfilters is preferable over any direct realization

of a higher order digital filter. Thus, a higher order fil-

ter is obtained by combining second-order sections. For

this reason, second-order filter configurations with the re-

striction of finite precision in the arithmetic are studied.

It should be noted that several different configurations can

be derived for the same transfer function. Despite the

fact that the configurations have an identical transfer func-

tion, their generation of limit cycles and noise due to

quantization may be different.

This section is now concluded with a review of those

references from the literature which describe several gen-

eral aspects of digital filtering. Kaiser [4] has reviewed

the history of digital filters and presents an extensive

bibliography which references work published before 1966.

11





He discusses various filter design techniques, including non-

recursive filters and the application of the Fast Fourier

Transform. A book by Gold and Rader [5] presents a thorough

introduction into digital signal processing. The book starts

with a development of the basic theory for analysis of lin-

ear digital filters, introduces design techniques for digi-

tal filters employing the frequency domain and presents some

basic concepts of quantization errors. The FFT algorithm is

explained and in a separate chapter, written by Stockham,

the application of the FFT to implement convolution is de-

scribed. Oppenheim [6] has edited a collection of 20 impor-

tant research papers which cover the topics of z-transform

theory, digital filter design, nonrecursive digital filters,

and tne application of the FFT and hardware design for taigi —

tal filters and FFT implementations. These papers are selec-

ted to complement the book by Gold and Rader mentioned above.

A comprehensive bibliography of 142 papers and 41 books pub-

lished before 1970 is included. Some important current re-

search about digital filters is also published. in two special

issues of the IEEE Transactions on Audio and Electroacoustics

[7,8] .

B. SOURCES OF ERRORS IN DIGITAL FILTERS

In practical digital filters finite number representation

of coefficients and data is required. Theoretically, accura-

cy could be maintained arbitrarily high, but in the process

of implementing a particular filter structure a tradeoff

between accuracy, signal-to-noise ratio and overall system

12





cost has to be performed. Three sources of error have to

be considered. They are

a) analog to digital (A/D) conversion errors,

b) errors because of finite representation of the digital
filter coefficients,

c) quantization errors, due to rounding off or truncat-
ing the result of multiplication of data with filter
coefficients

.

The first source of error, A/D conversion, is studied

extensively by Bennett [9]. Its effect is normally taken

into account by placing a noise source at the input of the

filter. This noise represents the error generated by the

quantization process on the input signal. In this disserta-

tion it is assumed that the sampled data already exists in

a form suitable for processing in a digital filter, i.e.,

<.-ta.cli da La sample is represented by a finite number of signi-

ficant digits.

The second source of error, finite representation of

filter coefficients, is a deterministic effect. It can be

taken into account by recomputing the eigenvalues of the

filter with the truncated coefficients. The small changes

in the filter coefficients due to finite number representa-

tion results in a corresponding change in the eigenvalues.

Kaiser [3] has studied the sensitivity of the eigenvalues or

pole positions of an n order digital filter due to coef-

ficient quantization. In this approximate analysis, he

concludes that for a direct filter realization, the sensi-

tivity of the pole positions increases with the order n of

the equation. This result has been corroborated in work

13





reported by Knowles and Olcayto [10]

.

In this paper several numeri-
cal results from the simulation of practical filters are

stated and compared. Rader and Gold [12] have studied the

coefficient quantization problem for second-order digital

filters. They conclude that a realization via a pair of

coupled first-order sections is less sensitive to coeffi-

cient changes than a single second-order form. Mantey [13]

has studied the coefficient quantization problem by select-

ing a state variable representation for the digital filter.

His results , as well as the results from the other workers

mentioned before, indicate that a digital filter should be

realized by a parallel or cascade connection of first or

sponnd order subf i Iters instead of a direct n order

realization

.

The third source of error occurs with quantization after

arithmetic operations. The two most often employed quanti-

zation procedures are roundoff to the nearest integer and

truncation. They are described in more detail in Chapter III

The effects of quantization after arithmetic operations can

be demonstrated with the example of a first-order digital

filter described by the following difference equation :

x(n) = -a x(n-l) + u(n). (1.1)

1
^ In this dissertation the simpler notation x (n\ instead

of x(nT) will be employed. Some authors also use x
n

for
x (nT) . Furthermore, the circumflex is used to designate the
results of finite precision arithmetic, i.e., quantized
numbers

.

14





Suppose that all numbers x(n), a, u(n) are expressed initially

with k significant digits and that fixed-point arithmetic is

employed for the implementation of the difference equation

(1.1). Calculation of the filter response shows that after

n iterations x(n) is expressed by numbers with (n+l)k signi-

ficant digits. The foregoing example indicates that the

number of significant digits, needed to compute the filter

response precisely, increases linearly with each iteration.

Any practical filter, realized with k significant digits,

has to include quantization after each arithmetic operation

to keep the results at a specified finite precision.

The choice of the arithmetic mode influences the quanti-

zation noise. Most noise analyses have been carried out for

fixed-point arithmetic, because this arithmetic mode is

easier to realize than the other modes. If fixed-point arith-

metic is employed, the number of significant digits deter-

mines the dynamic range of the filter. Since the signal

levels in the filter may change drastically from one sub-

section to the next, scale factors fire included at each sec-

tion to allow use of the full dynamic range available. On

the other hand, floating-point arithmetic is more complex, but

provides a means of automatic scaling. Since all numbers are

represented by a mantissa and an exponent, the exponents re-

present the scale factors. Block floating-point arithmetic

is an intermediate mode, where a single exponent is specified

for an entire block of numbers. Weinstein and Oppenheim [14]

have performed a comparison of the signal-to-noise ratios

15





for filters with fixed-point, block floating-point, and

floating-point arithmetic. It is shown there that the float-

ing-point arithmetic mode is generally less noisy than the

fixed-point mode. As expected, the block floating-point

arithmetic mode lies between the other two types as far as

quantization noise is concerned.

The analysis of the quantization noise has been attempted

from two different points of view. The first results in a

stochastic approach. It is based on the necessary assumption

that the quantization noise sequences from different multi-

pliers in the filter are statistically independent and un-

correlated with each other and with the processed signal.

The quantization noise is described by a uniform probability

density function. Tne assumption leads to acceptably accurate

results for most applications with high signal level and

sufficient spectral content. Although the simple noise model

presented above has been applied successfully in many cases,

there exist counterexamples for which the assumptions do not

hold. Among these are the limit cycle oscillations which

are studied in the next chapters. Ultimately, one must re-

sort to experiment to verify the predictions based on the

statistical model. Jackson [2,15,16] has performed a com-

prehensive study of roundoff noise in digital filters for

the fixed-point arithmetic mode using the stochastic approach

His results show excellent agreement between theory and ex-

periment. Using the same stochastic approach Kaneko and

Liu [17] have analyzed the quantization noise properti.es of

16





floating-point digital filters and Weinstein [18] has re-

ported on the noise properties of block floating-point digi-

tal filters.

By contrast, the other approach to the. analysis of quan-

tization noise is a deterministic one. Bertram [19] and

similarly Slaughter [20] have derived an upper bound on the

quantization error in sampled-data control systems which is

independent of the forcing function.. Johnson [21] and Lack

[22] apply Lyapunov's direct method to derive an upper

bound on the quantization error in sampled-data control

systems which is shown to be tighter than the bound reported

by Bertram. The results from Johnson and Lack have been re-

formulated in Appendix A of this dissertation to apply to

fixed-point digital filters. Sandberg [23] has presented

an analysis of quantization errors due to roundoff in

floating-point recursive filters. The difficulty with the

deterministic bounds is that they apply to the situation

where all errors add up in the worst, possible way. Thus,

the deterministic bounds are in general overly .pessimistic

compared with the bounds from the stochastic approach and

with experimental results.

However, in situations where the assumptions of the

stochastic approach fail to apply, the deterministic approach

is the only method of attack which leads to useful results,

This is the case when limit cycles occur which, by their

very nature, are generated by quantization error sequences

which are highly correlated, The existence of low-lc Tel or

zero-input correlated noise was first reported by Blackman

17
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124] f who called it the "deadband effect". Betten [25]

analyzed the limit cycles using the describing function tech-

nique for higher order sampled-data systems and the phase-

plane technique for second-order unity feedback control

systems with one roundoff quantizer in the forward path of the

feedback system. Similarly, results reported by White [26]

are derived from the work of Betten. However, these results

cannot be generalized to digital filters where several quan-

tizer nonlinearities in the feedback structure complicate

the analysis. Jackson [27] linearized the quantized digital

filter and derived bounds on the amplitude of zero-input

limit cycles which are close to the value which are obtained

by experiment. Since his model is not exact, there exist

important nontrivial exceptions to the derived bounds.

Bonzanigo [28] derived bounds for the amplitude of some sim-

ple limit cycles which are essentially the same as those

derived by Jackson. Pfundt and Todtli [29] recognized the

existence of limit cycles for the special case of a digital

oscillator realized with finite precision arithmetic. How-

ever, their major contribution consists of one hardware

realization of such oscillators. They do not discuss the

theory of limit cycle generation.

C. PREVIEW OF RESULTS

From the remarks of the preceding section it follows that

the limit cycle oscillations occuring in fixed-point imple-

mentations of recursive digital filters can be analyzed

using the deterministic approach. In this section the major

18





results of the following chapters ars previewed.

In Chapter II, a linear model for digital filters is

developed. It is shown that the second-order digital filter

emerges as the basic building block for the realization of

higher order digital filters. Using the state description

of digital filters, the existence of 24 canonical forms for

second-order digital filters implemented with finite pre-

cision arithmetic is presented. Twelve of these forms, to

the author's knowledge, have not appeared in the literature

before

.

In Section II. D, the influence cf coefficient accuracy

on the response of a second-order digital filter is con-

sidered. A new general expression for the shift of the pole

locations due to truncation of the filter coefficient of the

second-order digital filter is derived. The poles or char-

acteristic values are expressed in polar coordinates to

correspond to damping factor and resonant frequency of the

filter. Using two examples it is demonstrated that not only

sampling too slow, but sampling too fast also may result in

an undesirable response.

In Chapter III, limit cycle oscillations caused by

quantization after multiplications are investigated using

the simple model of a zero-input second-order digital filter

with two poles and no zeros. The investigation is performed for

magnitude truncation and roundoff quantization. As a new

result, it is shown that with magnitude truncation quantization in

general no zero-input limit cycles can be sustained. On

the other hand, zero input limit cycles of all frequencies

19





are possible with roundoff quantization. A general matrix

formulation of these limit cycles is presented. In general,

there exists no known way to evaluate amplitude and fre-

quency of the self-oscillations exactly. However, five ampli-

tude bounds and an approximate expression for the frequency

of the limit cycles are derived. Three of the amplitude

bounds are new. Two of these three are exact bounds, which

is in contrast to the previously known results which are

based on an approximate analysis. Chapter III closes with

the proofs of three new lemmas which describe some basic

symmetry properties of the limit cycles if they are dis-

played in a specially defined phase-plane diagram, called

successive value phase-plane plot.

The conclusions of Chapter III are verified in Chapter

IV, where experimental results are reported and compared

with the theory. For this purpose three computer programs

have been written. The first program is an analysis program

for zero-input limit cycles in second-order digital filters

employing roundoff quantization. For a choice of values for

the filter coefficients, all possible limit cycles are

evaluated in a given area of search and displayed in the

successive value phase-plane. With the numerical values for

the limit cycles available, it is then easy to compare the

actual amplitude of the limit cycle with the predicted ampli-

tude obtained from the derived bounds. In this way, limit

cycles have been detected which exceed the previously pub-

lished amplitude bounds considerably.

20





The second program implements two of the five amplitude

bounds derived in Chapter III so that a comparison between

the different bounds is possible. One bound is shown to be

impractical because it is overly pessimistic. For the

remaining four bounds, the region of applicability and their

advantages are discussed and compared.

The third program is a simulation of an important special

case, the digital oscillator. It is shown that any degree

of approximation for a specified sinusoidal oscillation can

be achieved by either increasing the amplitude if the quanti-

zation step-size is constant, or by decreasing the quanti-

zation step-size if the amplitude is constant. In addition,

it can be deduced that roundoff is preferable over truncation

because a better degree of approximation cn-n he obtained.

The existence of constant amplitude limit cycles is contrary

to a conclusion reached by Rader anc Gold [12] where it is

claimed that the output noise of the digital oscillator in-

creases linearly with time. The digital oscillator is an-

other important example where the assumptions of the stoch-

astic approach for the analysis of quantization noise fail

to apply.

The results of Chapter III and IV are generalized in

Chapter V. The forced response of general digital filters

with both poles and zeros is analyzed with regard to possible

limit cycle oscillations. First, the forced response of the

two-pole filter is investigated for deterministic inputs.

As a new result, it is shown that the driven case can be

21





reduced to a zero-input case if the difference between the

response of the quantized digital filter and the corres-

ponding linear digital filter is considered. This difference

signal is described by a limit cycle oscillation whose ampli-

tude is estimated by the same bounds which have been derived

in Chapter III for the zero-input response. Next, the gen-

eral second-order digital filter with both zeros and poles

in the transfer function of the equivalant linear filter is

studied. The zeros are shown not to change the nature of the

limit cycle, but to influence the magnitude of the limit

cycle amplitude. As a new result it is derived that for

specified zeros the magnitude of the limit cycles in the

output of the digital filter can be minimized through a proper

choice of the filter conf iquration . Finally, hiqher order

digital filters of the cascade and the parallel form are

considered with regard to limit cycles in their output.

In Chapter VI, the derived bounds on the limit cycle am-

plitude are applied as a design guide to study tradeoffs be-

tween the required number of significant digits and the

specified signal-to-noise ratio of a digital filter. The

chapter concludes with an indication of those problems which

remain subject to further research.
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II. SECOND-ORDER DIGITAL FILTER MODELS

WITH FINITE PRECISION ARITHMETIC

A . INTRODUCTION

The realization of a linear digital filter requires per-

fect arithmetic to perform the necessary additions and multi-

plications with infinite precision; that is, an infinite num-

ber of significant figures must be available. For practical

realizations of digital filters, however, finite precision

arithmetic has to be used. The linear, infinite precision,

digital filter is thus an idealization which can never be

fully realized by a digital computer. However, it is im-

portant to consider this type of digital filter to develop

an understanding of the inherent nonlinear effects which are

studied in this and in later chapters.

First, a linear model for digital filters is developed.

It is shown that the second-order digital filter emerges as

the basic building block for the realization of higher-order

digital filters. Starting with the state description of

discrete systems, the existence of 24 canonical forms for

second-order digital filters implemented with finite pre-

cision arithmetic, (i.e., a finite number of significant

figures) is presented. The development is based on the con-

cept of transpose configurations of digital filters as de-

vised by Jackson [2] . This method is extended to show the

existence of a finite number of canonical forms and twelve

new, previously unpublished, canonical forms are derived.

The development indicates that 24 canonic forms are pc ssible

which have identical transfer functions , even under the
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assumption of finite precision arithmetic. However , their

error properties are, in general, different.

Second, the influence of coefficient accuracy on the re-

sponse of a second-order digital filter is considered. A

change in a filter coefficient does not affect the linear

nature of the digital filter, but simply shifts the pole-

zero locations of this filter. A new general expression for

the shift of the pole locations, due to truncation of the

coefficients of the second-order digital filter, is derived.

The poles or characteristic values are expressed in polar

coordinates to correspond to damping factor and resonant

frequency of the filter. The validity of the result is

tested using some examples. The examples show that the posi-

tioning of the poles and, thus, the performance of a digital

filter, is influenced by the choice of the particular filter

structure and the sampling interval. It is generally known

that sampling too slow may result in a deteriorated response

of a digital filter. On the other hand, it has also been

demonstrated before that sampling too fast may also result

in an undesired response [4].

B. MODELING OF DISCRETE SYSTEMS

Discrete systems can be implemented using the operations

of delay, multiplication and addition. The interconnection

of these elements will be represented by a directed graph.

Following Gold and Rader [30] , the rule or operator

by which a discrete time output signal is determined from a

discrete time input signal is expressed as





N
) a . z

H(z) = 1==0 = *-£) (2 1)" VZ; N . U(z) * U - JJ

1+ T b.z 1

1= 1

In (2.1) z stands for the delay operator of interval

T, and the a. and b. are constant coefficients. N determines

the order of the system (assuming either a„ or b to be un-

equal to zero) . The z-transform calculus, used to describe

H(z), plays a useful role in the analysis and synthesis of

linear discrete systems similar to the role of the Laplace

Transform calculus in the analysis of linear continuous sys-

tems. H(z), above, is the transformed equivalent of the fol-

thlowing N order difference equation [30], where x(nT) de-

notes the output and u(nT) denotes the input:

N N
x(nT) = I a. u[(n-i)T] -

I b.x[(n-i)T] (2.2)
i=0

1
i=l

1

or in the notation which is used throughout this dissertation

N N
x(n) = £ a. u(n-i) - J b. x(n-i). (2.3)

i=0
1

. i=l
1

Since the present value of x(n) depends on (N+l) or fewer

values of the input u(n-i) and N or fewer values of the sig-

nal x(n-i) the transfer function (2.1), or difference equa-

tion (2.3) is of the recursive type. In this dissertation

only recursive digital filters are considered because the

inherent feedback causes the interesting oscillation pheno-

mena studied in the later chaoters.
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rt should be noted that recursive digi-tai filters are

often preferred over nonrecursive types , because the former

allow for a simpler realization in that lower order forms

provide the same degree of approximation [4],

In the last paragraph, no mention has been made of the

approximation problem, i.e., the problem of how the transfer

function H(z) is obtained from the specifications for a

digital filter. For the purpose of this dissertation, it is

assumed that the approximation problem is solved previously

and that a particular II (z) is given.

There exist a multitude of forms for realizing linear

discrete systems. However, three canonical forms have been

defined in the literature (see for example Gold and Racier

[5]). These are the direct, the parallel and the cascade

forms. No formal definition has been given in the literature

for a "canonical form". The following intuitive definition

has to be sufficient for the present- A realization is con-

sidered canonical if the discrete system is implemented with

the minimum number of delays, multipliers and adders. Can-

onical forms with respect to second-order systems are studied

in the next section.

A realization of the direct form is shown in Fig. 2.1.

On the other hand, the transfer function H(z) can be parti-

tioned into second-order sections and then be realized in

either parallel or cascade form. Second-order sections have

been chosen because this is the minimum order for realizing

a pair of complex conjugate roots such that the polynomials

of the numerator and denominator of the transfer function
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have real coefficients. Real roots can then be realized in

pairs also, except for the case where N is odd, in which

case use of a first-order section becomes necessary.

The parallel form corresponds to a partial fraction ex-

pansion of H(z) in the following way (assuming no multiple

roots)

a.. M c. . z +c .

tt t \ N . v li 01 ,~ . .H(z} = r— + I ^2 =1 ' < 2 - 4 )

N i«l a„ . z +d, . z +1
2i lr

where M = [—k—] , indicating the integer part of C—5—) • A

configuration of the parallel form is shown in Fig. 2.2.

The cascade form corresponds to factorization of H(z) into

the product of second-order polynomials, where

M e .z~
2

-!-c . z"
1

-'-].

H(z) = a
Q

n
- 1

-

_ 2 ^—ii— . (2.5)
i=l d- . z +d, . z +1

2.1 li

A configuration for the cascade form is shown in Fig. 2.3.

Kaiser [3] has shown that the direct form should be

avoided because of coefficient sensitivity, i.e., the effect

of changes of the numerical coefficients of the filter causes

large variations in the filter response.

Also, Knowles and Edwards [311 have concluded that the

direct form is inferior to both the cascade and parallel

forms when the effect of roundoff errors after arithmetic

operations are considered. In a recent paper by Edwards,

Bradley and Knowles [11] the above mentioned conclusions

have been tested using the 11th order elliptical bandstop

filter. Taking scaling into account to assure the proper
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dynamic range for the filter, the ratio of the rms noise

level due to roundoff after multiplication for the direct

form, to the rms noise of the parallel or the cascade form,

12
was about 10 :1.

Since the direct form is impractical, and higher-order

digital filters will be realized as cascade or parallel

form, the second-order system (with the first-order system

considered a degenerate case) emerges as a basic building

block from which all higher order systems can be synthesized.

It is for this reason that the study of oscillations in

discrete systems will be restricted to the second-order

case .

C. STATE SPACE DESCRIPTION OF SECOND-ORDER DIGITAL FILTER
MODELS

In this section the state description of discrete sys-

tems is used to develop 24 second-order digital filter models

under the restriction of finite precision arithmetic. Let

a linear discrete system be described by the following set of

state equations

x(n+l) = A x(n) + B u(n),

y(n) = C x(n) + D u(-n), where (2.6)

u(n) denotes the input, y(n) denotes the output and x(n)

describes the states of the system. A, B, C, D are con-

stant coefficient matrices for the case of a linear, time-

invariant system. Equation (2.6) can be expressed by one

matrix, called the system matrix S.
T

, such that
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x(n+l)

y(n)

= S
N

x(n)

u(n)

(2.7a)

The system is then completely defined by the matrix S which

is given by

S
N

"

A B

D

(2.7b)

where N denotes the order of the system.

The transfer function H(z) for a single-input single-

output system, is defined to be

Y(z) = H(z) U (z). (2.8)

1
Then, from (2.6) and (2.8) ,- H(z) can be evaluated as

HCz) = CCzI-A)
-1

B + d. (2.9)

In (2.9), I represents the identify matrix. As was pointed

out in the previous section, digital filters are usually

realized by either cascade or parallel second-order forms,

so that x(n) is a 2 x 1 state vector. The most general

S-matrix for a second order digital filter is the following

(where the subscript N = 2 is dropped, since the second-

order case is the only case considered)

:

(2.10)

—

A B
a
ll

a
12

b
i

= a
21

a
22

b
2

C d
c. C-, d
1 2

In matrix equations lower case letters denote scalars.
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Let a filter transfer function with coefficients a, b, c,

d , e be given as

-2 -1
H(z) = d + —§| --^y . (2.11)

bz + az +1

From (2.9) •- (2.11) the filter coefficients, in terms of the

transfer function coefficients of (2.11), are given by

a = -^n + a 22^ ' (2.12a)

b = a
ll

a
22

~ a21
a12' (2.12b)

c = tsc + b
2
c
2

, (2.12c)

e = a
12

b 2C;L + a
21

b lC2 - a^b^ - a^b^. (2.12d)

If infinite precision arithmetic is used, many canonical and

noncanonical configurations can be found to realize a parti-

cular H(z). Since the coefficients a, b, c
f
e are given by

the transfer function as determined from the solution of the

approximation problem, it is necessary to find a,,, a, ~ , ...,

etc., so that a state variable synthesis of the digital fil-

ter becomes possible. Any combination of a. ., b, and c ,
.

2 13 k m'

which yields the given values of a, b, c and e is a valid

realization

.

However , for any practical implementation finite arith-

metic multipliers and adders have to be used. Suppose that

the filter is realized using binary arithmetic elements

with k-bit accuracy, then (2.12a-d) have to be rewritten as

a = -(a.,, + a
?? ), 2 .13a.)
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b = [a
ll

a
22 ]

q - fa2l
a
l2 ] q'

c = [b lCl ]

q
+ [b

2
c
2

] q/

e = [a
12

b 2C;L ]

q
+ [a

21
blC2 ]

q

~ [a
22

b
l
ClV

(2.13b)

(2.13c)

[a
ll

b
2
C
2

]

q

(2.13d)

The operation [ . . . ] denotes quantization (roundoff or

truncation) to preserve the finite precision of the results

of the multiplication.

Given H(z) with coefficients a, b, c, d and e, a general

solution of (2.13a-d) is not obvious for the coefficients

a. ., b. , c , in terms of a, b, c, d, e, because there are
ij k m

four equations in eight unknowns , which leaves an infinite

variety of choices to be made for four of the eight un-

knowns . Furthermore, the existence of a t>oluLioii fui. (2.13a—d)

is not guaranteed at all.

The validity of the latter conclusion can be demonstra-

ted with the simple example of a digital oscillator, reali-

zed by two coupled first-order sections. The example is

presented in the next paragraph.

Consider a digital oscillator realization with an S-

matrix of the form

S =

cos to T sin to T
o o

-sin w T cos to T
o o

(2.14)

The z -transformed response of this section to initial

conditions x, (0) = 0, x„(0) = 1 is given by
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Thus

z sin a) T
Y(z) = -^ Z]

~ ' (2.15)
z -2z " cos co T + 1

o

a = -2 cos 03 T,
o

b = 1,

and the poles of the response have magnitude one (because

b = a, , a„„ *~a i? a o-i
= 1) ' which is the necessary and suf-

ficient condition for oscillation.

The filter coefficients a. . are specified by binary num-

bers with k bits. Therefore for a specific w T
o

P l
a
ll

= a
22

= COS W
o
T =

pt (2 ' 16)

p 2
"L4.-i« — a^i — t>j.ix uj x — —;

—

\ <£. . -L / /±- C
2
K

where p. and p_ are the decimal representations of a, , and

y
a

?
, both of which must be divisible by 2 . From (2.15) and

(2.12b) it follows that

H^P + C-4) - 1. (2.18)
2
K

2
K

This requires that

p l
+ p 2

= 22k
* C2 * 19)

In general, for a given 03 T, the numbers for p, and p 2
which

satisfy (2.19) may not exist. Actually, as will be seen

later, only a finite set of frequencies can be realized if

finite arithmetic is used.
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Returning to the set of equations C2.13a"-d), it remains

a problem for further research to investigate the existence

and nature of a general solution for this set of equations,.Following a suggestion or Jackson [2J ,

the solution for (2.13a-d) will be simplified by the

somewhat restrictive, but intuitively plausible assumption

that quantization of product terms can be avoided if the pro-

ducts in (2.13b-d) contain at most one noninteger coefficient.

If two terms are contained in the product (for example, see

(2.13b)), a necessary condition is that one of these be an

integer. If three terms are contained in the product (for

example, see (2.13d)) a necessary condition is that two of

them be integer or one of them be zero. With this assumption

in mind, four integer coefficients have to be selected to be

able to evaluate the remaining four coefficients. By in-

spection of (2.13b) and (2.13c), it can be deduced that two

of the a. . coefficients and two of the h./c. coefficients

have to be selected as integers.

The resulting sixteen possibilities (for example select

a,,, a, _ , b, , c, or a,,, a~, , b, , c. as integers) are investi-

gated separately by substitution of each set of selected

integer coefficients into (2.13d) and application of the

following set of rules

:

a) An individual product term in (2.13d) is formed without
quantization error, if either two multiplier coefficients
are integers or one multiplier coefficient is zero.

b) It is impossible to have b, = b = 0, or c = c = 0,
because these conditions imply no provision for input
and output.

c) Neither a,
2
nor a 21

are allowed to be zero, because then

(2.13b) cannot be solved unambiguously for a, 2 or a
2i*
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d) If a nonzero multiplier coefficient is required to be
an integer, then the integer i is chosen, because in
in this case no muliplier is needed in the practical
realization

.

As a demonstration of how the above rules are applied,

consider the choice of a„,, a
?
„, b, , b~ as integers. Sub-

stituting these integers into (2.13d) shows that the terms

(a,
2

b„ c, ) and -(a,. b_ c„) contain only one integer coef-

ficient, namely b„ and by rule (a), it is required that

bp = . From rule (b) and (d) this requires that b, = 1.

Since, except for rule (d) , no further restrictions exist

the remaining integer coefficients a~, and a,.- can either

be chosen as a--. a~~ = 1 or a^-i = 1 and a„~ = 0. (the case

where a
21

and a
22

1 yields no new result) . Substi-

tuting the selected coefficients into (2.13 a-d) yields the

>- <"> ty> g w
* r> i *-> rr -FQliV CO^ ^~ ^ 3.C "* €£ *"itS '*"'

11' ~12'

two distinct S-matrices result. They are

ar^rJ /*< nn^ flint;
1

an 2

-a -b

e d

'b

-(1+a) -(1+a+b) 1
.1

(e+c) d

(2.20)

Another choice is to select a., , a^, b. , c„ as integers.

However , from (2.13d) it is seen that the term (a, « b„ c, )

contains no integer coefficient at all and by rule (a) the

above selection does not lead to a solution.

Working through the remaining 14 possible selections for

integer-coefficients, six more S-matrices are obtained. They

are
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-a 1 c

s =
c

-b e
•

S
d

=

1 d

Cl+a) 1 c

(1+a+b) 1 (e+c)

1 d

, (2.21)

1

s =
e

-b -a 1

e c d

s^ =

1 1

Cl+a+b) -(1+a) 1

(e+c

)

c d

"1

(2.22)

S =
Q

!

° -b e

i -a c

o 1 d

s
h

1 -(1+a+b) (e+c)

1 -(1+a) cOld (2.23)

Using linear row and column operations it is possible to

transform S into S , S into S , S,. into S, , and S, into
e a g c ' f b ' h

ff 1 nHi ppf i nn f-Vi a -h on 1\r fnnr uninno r'i rnin + CTiTl "Fl fill T*3+ 1 OTi <5

can be derived from the eight S-matrices. Furthermore

,

T T
S = S and S, = S . Jackson [2] has shown that for a parti-cade
cular configuration for a digital filter, S., a unique

T
"transpose configuration" for the transpose system, S., is

derived from the given configuration for S . by

a) reversing the direction of the signal flow in the

given network, and

b) changing all summation nodes in the given configura-

tion into pickoff nodes in the transpose configuration, and

changing all pickoff nodes into summation nodes.

Jackson has also shown that a single S . matrix and its

Ttranspose S . can be realized by twelve different configura-

tions , because the elements of the S. matrix are not
3
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necessarily in one-to-one correspondence with the multi-

pliers in the flowgraph for the filter realization.

Since there are only two uniquely different S. matrices,

S and S, , and each has 12 different realizations, there are
a b '

24 different configurations for a given transfer function

H(z), if the restriction of k-digit arithmetic is imposed.

These 24 configurations are given in the next paragraph.

Two parallel forms for d = 0, and two cascade forms for

T
d = 1 are derived from S and S = S . It should be noted.

a c a '

by comparison of (2.11) with (2.4) and (2.5), that a second-

order section becomes a parallel form (compare with (2.4))

when d = 0. Similarly, a second-order section becomes a

cascade form (compare with (2.5)) when d = 1.

T T
The four forms are desianatpcl s . S , S , S They

a l '

a 2
'

a l a 2

are described by the following S . matrices and drawn in Figs

2.4-2.5.

a l

-b

e d=0

(2.24)

-a -b

e d=l

(2.25)

The next eight configurations are cascade forms with

T
d = 1. Two direct forms are derived from S and S__ ,

a 3
a 3

where
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-a -b

(g-a) (f-b) 1

(2.26)

Here, g = (a+c) and f = (e+b) . Their configurations

are displayed in Figs. 2.6-2.7. The new multipliers g and

f are obtained by shifting the first pickoff node in Fig. 2.5

to a position after the first summation node (compare Fig.

2.5 with Fig. 2.6). That a new configuration results is

due to the fact that the elements of the S . matrix are not
3

in one-to-one correspondence with the actual multipliers in

the flow graph representing the configuration. The forms

T T T1

for S , S , S , S and S , S~ are shown by Jackson to
a4 a^ a$ a^ ag ag

be of minor importance . Tliey will nol be repeated heie.

Twelve new configurations which have not appeared in the

literature before are now derived from S, . Two parallel

forms , with d = , and two cascade forms , with d = 1 , are

T T
derived from S, , S, , and S, , S

bl' *>1 b 2

^1

-(1+a) -(1+a+b)

(e+c) d=0

(2.27)

S,

-d+a) -d+a+b) 1

(e+c) d=l

(2.28)
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Their configurations are displayed in Figs. 2.8-2.9.

The remaining eight cascade forms require that d = 1. Two

Tdirect forms are obtained from S, and S, , where
b
3

b
3

(1+a) -(1+a+b)

g-(l+a) f- (1+a+b) 1

(2.29)

Here, g = (1+a+c) and f = (1+a+b+c+e) . Their configurations

are shown in Figs. 2.10 - 2.11. The other forms are obtained

from

c-h (e+c)-r 1

b.

c C / u

(2.30)

c-h -(1+a+b) 1

f- (1+a+b) 1

(2.31)

(1+a) (e+c)-r

g-(l+a) (e+c)

(2.32)

where h - (1+a) + c and r = (1+a+b) + (e+c) . Some of their

configurations are shown in Figs. 2.12-2.14. As was pointed

out earlier, the transpose configurations can be obtained

jy





reversing the signal flow and replacing summing nodes by

pickof f nodes

.

It is worth noting that all of the derived 24 configura-

tions have two delays and four multipliers. However, the

number of summing nodes and pickoff nodes varies between

two and four. This is summarized in the following table:

Suinrning Pickoff Configuration
Node Node

2 2
ai'

T
S
a l

2 3 s ,a 2

m
S
a 3 '

S
a 4

'
S
bi

3 2
T
K >

a2

rn n

a^ a^ b
x

T T n T

a 5 a
5

a6 a6 b
n b4

l>2 t>2 b 3 °3

S
b
5

'
S
b 6

T T

d
5

b 6

In a theoretical sense only forms S and S are canonical. In a
ai a2

practical sense a tradeoff between hardware requirements (number of

multipliers and adders) and noise performance has to be found.

It remains a subject of further investigation to evaluate the

noise performance of the newly derived twelve forms using the

methods devised by Jackson [2] . Furthermore it remains to formally

define a 'Icanonical form" and relate the order of the difference

equation to the necessary number of delays, multipliers and nodes

in the actual realisation of a digital filter.

40





D. THE EFFECT OF COEFFICIENT ACCURACY ON THE POLE POSITIONS
OF SECOND-ORDER DIGITAL FILTERS

The poles or eigenvalues of a given transfer function

H(z) can be evaluated from the characteristic equation of

H(z) which is given by

z
2

+ az + b = (z-z ) (z-z ) - 0. (2.33)
1 ^

The roots of the characteristic equation or its eigenvalues

are found to be

(2.34)

This pair of complex roots is expressed in polar coordinates

as follows:

= T* = If b t1~>K\
'1 31 r

I ' I*"33 '
j. r _

Arg z, = = cos
1

(-^-) . (2.36)

At this point let us digress to find a relation between

magnitude and argument of the poles z,
9
and the notions of

damping and frequency, as they are defined for linear, con-

tinuous systems

.

For a second-order continuous filter with a damped sinu-

soidal impulse response of the form e sin u t, for t >^ o,

the roots of the characteristic equation are located at

s = - a ±jco , where s equals the Laplace transform variable.

If this response is sampled at intervals T, the poles of

the z -trans formed version of the response are given by

z
2

- 2ze"
aT

cos a) T + e
'" 2ciT = . (2.37)

o
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Comparing (2.37) with C2.33) it follows that

a = -2e~aT cos w T, (2.38)o

b - e~2aT
f (2.39)

so that from (2.35) and (2.36)

I*! 2 I

= r = e ' (2.40)

Arg z, = = w T. (2.41)1,2 O

Thus (2.40-41) can be used to compare the impulse response

of the digital filter with the sampled impulse response of

a continuous second-order filter. It can be deduced that the

polar coordinates r and of the pole positions z, „ are a

measure of the damping factor u and Lhe j_tr. ^onaiiL riequeiiuy

oj of the equivalent continuous filter. The position of a

pair of complex roots which would result in a stable digital

filter response is shown in Fig. 2.15. The stability boun-

dary is given in the z-plane by the circle described by

|z| = 1.

Let us now turn our attention to the effect of coef-

ficient accuracy on the pole positions. Expressions are now

developed which show the deviation of r and co from the1 o

nominal values if a second-order digital filter is realized

with coefficients represented by finite computer word lengths

Let a. . = nominal filter coefficient,
ID

a... 1 - coefficient expressed by a finite computer
J word

.
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The deviation from the nominal coefficient is then expressed

by

A a. . = a. .
- a. .

'

.

(2 .42)
3-D iD ID

Note thatAa. . = . if a . . = or 1 . For small chanqes in

the coefficients a. . as given by (2.42) the changes in

r and q depend only upon the A-matrix from (2.10). These

changes can be approximated by

Ar =

^IT
Aai1 +

^"2 Aai2 +
^2T

Aa21 +
^2

A*
22 '

(2 * 43)

and

Ae = ^ Aa in + e-M. Aa 10 + ^-^i Aa 01 + ^-li Aa„ 9 . (2.44)
9a,, 11 3a,. 12 3a„, 21 da^ 22

The partial derivatives are evaluated using (2.35) and (2.36)

which are repeated here for convenience

:

r
=-,

/b
1

=Ya11
a
22

-a
12

a
21 \ (2.45)

cos = cos 03 T = —— = -

—

. (2.46)

2fb 2 Y an a
22

a
21

a
12

These partial derivatives are

9r
a
22

9a, , 2r

9r
a
21

9a
12

2r

9r
a
12

(2.47a)

(2.47b)

9a
21

2r /

(2.47c)
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With these expressions substituted into (2.43) and (2.44)

the followinQ crer,ieTsl result i^ obtained *
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2F (a

22
Aa

ll " a
21

Aa
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+
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12

a
21

- a^^Aa^] . (2.50)

This general expression for the shift in pole positions

of the second-order digital filter due to finite accuracy in

the representation of the filter coefficients is a new

result

.
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From (2.40-^1) it follows that

Aa = -
Ar <xT,

T
e (2.5D

Aco | AG (2.52:

The Eqs. (2.51-52) Indicate how a change in the pole position

of the digital filter is reflected in terms of a corresponding

change in damping and resonant frequency of the sampled continuous

filter. The significance of the derived results are now tested using

two examples:

1 . Osci llator Realized by Two Coupled First-Order Difference
Equations

The S-matrix for this type of oscillator is

1

S =

O.OR ft) T sin m T
'

sin co T COS CO T

1

(2.53)

Assuming all Aa. . to be bounded, it is possible to define a A such

that

I *J < A. (2.5*0

The changes in r and 6 are bounded by

Ar < A. (sin CO T + cos CO T) ,

A9 < A. (cos CO T - sin CO T) .— o

(2.55)

(2.56)

From (2.55), it can be seen that through proper choice of the ratio

2?T
between oscillation frequency co and sampling frequency co

c
,
= — , A9

can be made almost zero. Thus if

^





0) ,

AG ~ from (2.56), u T = 4- and — = ^-. However, for this
s

ratio the change of damping from the desired value of 1 for

an oscillator is a maximum as indicated by (2.55) when

u T = |- . Conversely, if Ar ~ 0, from (2.55), w T = ^~
w
o 3

and — = ~- . However, for this ratio the change of fre-
ed s 8 y

quency is a maximum as indicated by (2.56).

This result would indicate that, if one desires an oscil-

lator with exact frequency (AG = 0) , then the realization by

(2.53) shows a damped response because of finite precision

in the coefficients. Alternately, it would indicate that a

sinusoidal oscillator is possible (Ar = 0), but the frequency

would not necessarily be at its nominal value. This pro-

blem is discussed further in Chapter IV, where it is shown

that the effect of quantization errors after nrn.i
.
t.rpiication

of data samples with coefficients is to introduce nonlinear

limit cycles, so that a constant amplitude oscillation

(Ar = 0) can be generated in practice.

2. Oscillator Realized by One Second-Order Difference
Equation

S =

2 cos w T -1
o

(2.57)

Using the inequality (2.54) the changes in r and co are then

bounded by

Ar = (because a„„ = 0) ,
(2.58)
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A% 1 - 2T sin a) T
• (2 ' 59 >

o

As can be seen from (2.59) sampling too fast (T and sin oo T
o

are small) may have a deteriorating effect, because Aoo

can get intolerably large.

Equation (2.57) is of the same form as the S-matrix

(2.24), which has been used previously to derive configura-

tions for second-order filters. For the S-matrix given by

(2.24) , the changes in r and are bounded by

Ar < A • -i- = ^ f (2.60)
2Yb

2r

a - a
~ 2b-a A , 1 1 .

Aoo < A* . _ .,
- = — . {= :

— + —^
) .

o — omwTfTZ ^ T 2r sm oo T „ 2, _2Tb V 4b-a o 2r tan oo T
« o

Again, from (2.61), it can be seen that sampling too fast

can have a deteriorating effect on the digital oscillator,

or in general on a digital filter. This may become especially

critical for narrowband low-pass filters, where both w and

T are small.

It is instructive to show the distribution of the actual

pole positions in the z-plane .for the digital filters of

examples 1 and 2. Suppose that a digital filter is realized

by fixed-point arithmetic using 3 bits without sign-bit

3
to realize the filter coefficients. Thus there are 2 =8

possible coefficient values for the a. . terms. The set of
ID

realizable pole positions for the digital filters of examole

1 and 2 are displayed in Fig. 2.16 [18].
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Comparing examples 1 and 2 , it can be seen that for a

nominal set of pole positions, the effect of finite word

length for the a. . is to cause a uniform change in the pole

locations over the z-plane for the realization of example 1.

This is in contrast to the nonuniform change for example 2,

where the possible pole positions are crowded around

n
w

1
a) T = -T , which corresponds to — = -r-. If the nominal valueso 2 c u 4

for the a.. : s places the pole locations in a region around

to T z or n , then the effects of a finite number of digits

is to cause a large effect with the realization of example

2.

E . SUMMARY

The purpose of this chaper is twofold. First, some

concepts about linear discrete systems were introduced, which

are needed for the understanding of later chapters.

Second, two new results were derived. The linear model for

second-order digital filters was described and 24 canonical

circuit representations, under the assumption of k-digit

accuracy, were shown to exist. It is important to note that

all 24 configurations have identical transfer functions,

even under the assumption of k-digit accuracy. However , their

error properties are, in general different. Furthermore, a

general formula to predict changes in pole positions due to

changes from the nominal values of coefficients because of

finite representation of numbers was derived.
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Some examples were used to demonstrate that with finite

arithmetic the linear digital oscillator cannot always be

realized to meet a given specification. Also, the sampling

frequency, w , effects the pole locations of the digital fil-

ter realization.

There remain three problem areas for which further re-

search is necessary. The first is a topological problem. A

formal definition for a "canonical form" is needed. Also,

a relation between the order of a difference equation and

the minimum number of delays, multipliers, summers and pickoff

nodes constituting a canonical form should be found. It is

well known that the order of the difference equation corres-

ponds to the number of delays and that the number of non-

zero and nonunity coefficients in the difference equation

corresponds to the number of multipliers needed. However,

a similar correspondence is not clear for the necessary num-

ber of adders and pickoff nodes.

The second problem concerns the general solution for the

set of equations (2.13a-d). Conditions for the existence

and the form of a possible solution need to be investigated

in more detail.

As a third problem, an investigation of the roundoff

noise properties of the twelve newly derived second-order

digital filter configurations is necessary.

After modeling of the second-order digital filter under

the restriction of k-digit accuracy, and after investigation

of the effects of finite precision arithmetic on the pole

positions of a digital filter, quantization of products of
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data samples with filter coefficients is considered in the

next chapter.
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Fig. 2.14: A Realization of the Second-order
Digital Filter Using Form S

b
.
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III. ZERO-INPUT LIMIT CYCLE OSCILLATIONS
IN DIGITAL FILTERS

A, INTRODUCTION

Initial experiments performed with digital filters

showed, to the surprise of the designers, that these filters

went into selfsustained oscillations, if spurious input

signals or no input at all was applied.

The stability properties of linear first and second-

order digital filter subsections are well known. However,

the implementation of these systems with digital hardware

introduces inherent nonlinear ities which tend to make the

'original stable system unstable. While the finite dynamic

range of the implementation assures bounded -input bounded-

output stability, an asymptotically stable linear digital

filter may, after the introduction of the nonlinearities

become marginally stable (the oscillations are bounded)

but not asymptotically stable (the natural response does'

not approach zero)

,

To be able to analyze the nonlinear effects on the re-

sponse of digital filters, it is necessary to consider the

type of arithmetic used, and the type of nonlinearity in-

troduced into the digital filter through finite precision

arithmetic

.

One type of nonlinearity is connected with the adders in

the digital filter realization. If numbers are add

sum exceeds the dynamic range or the adder "overf lo.;
;: occurs,





thereby creating a severe nonlinearity . Limit cycle oscil-

lations due to overflow have been investigated by Ebert

,

et al [32] . One of their important conclusions is that

selfoscillations will not be present if the adder is modi-

fied so that it saturates when overflow occurs. For the

purpose of the following chapters, it will be assumed that

the adders in the digital filter are linear and overflow

effects can be neglected.

The other type of nonlinearity is connected with the

multipliers in the digital filter. If two numbers are multi-

plied the product has to be rounded off or truncated in or-

der to preserve the finite representation of all numbers in

the digital filter. This quantization of the results of

multiplication of data samples with filter coefficients can

also cause selfoscillations. For floating—point arithmetic

Sandberg [23] has shown that a digital filter realization

will be asymptotically stable if the damping of the infinite

precision counterpart of the digital filter is sufficiently

"large" relative to the number of bits allotted to the man-

tissa of the data. Under these conditions limit cycle re-

sponse to a zero-input or to an input sequence that approaches

zero is also ruled out. Thus limit- cycle oscillations are

not a problem when floating-point arithmetic is used. How-

ever, as pointed out in Chapter I, digital filters generally

employ fixed-point arithmetic for which limit cycle oscil-

lations may occur

.
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Therefore, in this chapter, selfoscillations caused by

quantization after multiplications are investigated. The

simple model of a zero-input second-order digital filter with

two poles and no zeros is used. This simple model is employed

because it allows the study of the natural response of the fil-

ter without the distracting influence of zeros in the transfer

function.

The chapter begins with the description of the two most

often used quantization procedures in Section III.B. These

are roundoff and truncation. Their input-output character-

istics are presented in this section.

In order to develop some of the analytic techniques to be

used in later chapters the effects of quantization are demon-

strated with the example of a first-order digital filter.

This case of the first-order section with roundoff quanti-

zation has already been investigated by Blackman [24]. As a

new, additional result it is shown that a first-order digi-

tal filter with truncation is always stable. The second-

order filter is then investigated.

First, roundoff quantization is considered in Sections D,E,P;

then magnitude truncation quantization is investigated in the

last section. There exists a fundamental difficulty in the

analysis of quantized second-order digital filters. The

fact that there is one nonlinearity connected with every

multiplier in the feedback paths of the filter complicates

any analytical investigation of the nature of the limit cy-

cles. There exists, in general, no known way to evaluate

amplitude and frequency of the selfoscillations exactly.
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As pointed out in the introductory chapter, a good deal

of literature is available where the effects of the quanti-

zation nonlinearities are investigated from a statistical

point of view. However, the necessary assumptions of

statistically independent and uncorrelated quantization

noise sources are no longer valid if limit cycles are con-

sidered. For this dissertation the effects of the non-

linearities are investigated from the point of view of cor-

related signals and a deterministic analysis applies.

If selfoscillations are a problem and if it is necessary

to keep the magnitude of the limit cycles below a specified

signal level, bounds on the amplitude and approximate ex-

pressions for the frequency are desirable. Therefore,

several amplitude bounds are presented in Section XXX. D and

an approximate expression for the frequency of the limit

cycle is presented in Section III.E.

The first amplitude bound is a new result and is derived

using Lyapunov functions to estimate the magnitude of the

dynamic response of discrete systems with bounded input.

The applied analytic technique first appeared in a paper by

Johnson [2] devoted to the stability of a class of sampled-

data control systems. For the purpose of this dissertation

Johnson's technique is modified in Appendix A. The theorem

proven in Appendix A is applied in Section III.D of this

chapter to estimate the bound on the amplitude of the limit

cycles. The importance of this bound rests in the fact that

it is obtained without reference to the specific nature of
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the roundoff error. It is only necessary to know that the

roundoff error is bounded. Furthermore, it is proven that

limit cycles always exist if roundoff is employed and the

poles of the infinite precision digital filter are inside

an annular region in the z-plane which is defined by

J2 <_ |z| <_ 1.0.

After the treatment of the Lyapunov bound, a general

matrix formulation for the limit cycle and its amplitude

bound is presented. These results are new and complement

the previously mentioned bound. They also serve to provide

a better understanding of the nature of the limit cycle.

Both of the mentioned bounds are important because they are

absolute bounds. However the Lyapunov bound is pessimistic.

This will be demonstrated in the next chaoter where numeri—

cal values for the two bounds are compared.

A third bound is demonstrated to exist. It is an approxi-

mate bound. Its derivation is based on the postulate that

roundoff quantization moves the poles of the digital filter

onto the unit circle, thus providing a sufficient condition

for oscillation. The underlying model has been first re-

ported by Jackson [27] , who called it the effective value

linear model. The importance of this third bound rests in

the fact that the bound is rather tight and easily appli-

cable in a practical sense. Its disadvantage lies in the

fact, that the derivation of the bound is based on a suf-

ficient, but not necessary, condition. Examples are stated

where the bound obtained from the linear model is exceeded

by two or more quantization steps. This is contrary to the
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findings reported by Jackson. Therefore t compared with the

first two bounds, this amplitude bound is only a rule-of-

thumb which is convenient to apply.

In Section III.E some results about the frequency of

the limit cycles are developed. Since the frequency is a

highly complicated nonlinear function of the argument of

the complex conjugate poles of the filter transfer function

and the resulting amplitude of the oscillation, it is only

possible to formulate an approximate expression for the fre-

quency , based again on the linear model

.

A new result about the symmetry of a specially defined

successive value phase-plane plot of the limit cycle oscil-

lations is presented in Section III.F. The lemmas proven

in this section assert that any limit cycle oscillation from

a filter with poles in the right half of the unit circle in

the z-plane is equal in magnitude to the response obtained

from a filter whose poles are the mirror image of the origi-

nal poles projected into the left half of the unit circle

in the z-plane.

Finally, in Section III .G, magnitude truncation quantization is con-

sidered. As a new result it is shown, that no zero-input

limit cycles with intermediate frequencies other than

f b 0. rf can be sustained.
o 2 s

In summary, then, the results of this chapter describe

some theoretical aspectsabout selfoscillations in digital

filters due to quantization after multiplications. The

conclusions of this chapter are verified in the next chapter,

where experimental results are reported and compared.
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B. DESCRIPTION OF THE QUANTIZER NONLINEARITIES USING A
FIRST-ORDER DIGITAL FILTER

The two most often used quantization procedures are

a) rounding to the nearest integer, and

b) truncation, where the least significant digit of a
number represented by sign and magnitude is dropped.

Other quantization procedures are possible. However,

they are not used often in practice and are not considered

here. First, let us study roundoff quantization.

1 . Firf;t-order Deadbands (Case of Roundoff) .

As an example to develop some of the analytic tech-

niques used in later sections consider a first-order digital

filter as shown in Fig. 3.1. For zero-input (u(n) = 0)

this system can be described by the difference equation

x(n) = ax(n-l). (3.1)

In Fig. 3.1 the roundoff quantizer Q is inserted into the

system. The input-output characteristic of this type of

nonlinearity is displayed in Fig. 3.2. Assuming a normali-

zed quantization step-size of q = 1 , (3.1) has to be re-

written as

x(n) = [a x(n-l)] = a x(n-l) ± 0.5 + 6 (n) , (3.2)

where [...] denotes roundoff to the nearest integer, x(n)

denotes the nonlinear response of the filter and 6 (n) is any

number such that <_ 6 (n) < 1.0. Blackman [24] first re-

ported on the nonlinear effect of roundoff in first-order
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filters and called the phenomenon "deadband-ef fect" . The

following examples illustrate this.

A
For a = 0.9 and an initial condition of x(0) = 10 the

response is computed from (3.2) as shown below.

computed error rounded

n x(n) = 0.9 x(n-l) |<5(n) - .5 1 x(n) = [0.9 x(n-l)]
.

- 10

1 9.0 9

2 8.1 0.1 8

3 7.2 0.2 7

4 6.3 0.3 6

5 5.4 0.4 5

6 4.5 0.5 5

A similar result with changed signs is obtained for the ini-

tial condition x(0) = -10. For the initial condition

x (0) =4 the following response is calculated.

computed error rounded

n x(n) = 0.9 x(n-l)
|

. 5 - 6 (n)
|

x(n) = [0.9 x(n-l)]

- 0.4 4

1 3.6 0.4 4

2 3.6 0.4 4

As the examples suggest, the system. response for a = C.9 does

not go to zero but remains at steady-state values between

-5 and +5 depending on the initial conditions used. It was

for this reason that Blackman coined the term "deadband-

ef feet" for this kind of response. For a = 0.9 the first

order deadband is within the limits x(n) = ± 5.
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The existence of a deadband is defined by the equation

|x(n)
|
= |x(n-l)

| , (3.3)

for all n greater than some integer N . Depending on the

sign and the magnitude of the filter coefficient a, three

possible cases have been considered in the literature to

derive the first-order deadbands

.

a) < a < 1.0:

If a is positive one finds by inspection of (3.2)

that the sign of x(n) is equal to the sign of x(n-l) and the

existence condition (3.3) for the deadband can be written

as

x(n) = x(n-l) , n > N. (3.4)

Thus a zero-frequency limit cycle results. Substituting

(3.4) into (3.2) together with <_ |
<5

j
< 1.0, the bound on

the amplitude is evaluated as

|x(n)
|

< f^- . (3.5)— jl a

b) -1.0 < a < 0:
As

If the coefficient is negative the signs of x(n) and

x(n-l) alternate and the existence condition (3.3) for the

deadband can be written as

/\ /\

x(n) = -x (n-]}, n > N. (3.6)

Here, a limit cycle results where the ratio of oscillation

frequency f to the samoling frequency f is f /f =
o sos
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because two samples are contained in each period of the limit

cycle. By the same method as above the amplitude bound is

evaluated as

Ir_ \ 1 . . • 5 0.5 / -> »i \x(n) < t— = r— , . (3.7)— i+a i-
|
a

|

c) a > 1.0 or a < -1.0 :

For these values of the coefficient a the corres-

ponding linear system is unstable. Depending on the initial

condition an increasing response or a deadband can exist.

If a deadband exists then its amplitude bound, as in the pre-

ceding sections, is found to be

|x(n) |<
°' 5

. (3.8)
la |-1

At this point an interesting observation (first reported by

Jackson [2]) can be made. The existence condition (3.3) im-

plies that

x(n) = a' x(n-l), (3.9)

where a 1 = ± 1. If (3.9) is z-transformed and an initial

condition x(0) is assumed, then

X(z) = ^1 . (3.10)
1-a ' z

Here X(z) denotes the z-transform of x(n). From (3.10) it can

be seen that the limit cycles due to rounding seem to be

caused by an effective pole at a ' = ± 1 . This observation

leads to the assumption of an effective value linear model

which forms the basis of Jackson's heuristic approach for
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derivation of the amplitude bound for the second-order deadbands [27].

2. First-Order Deadbands ( Case of Magnitude 'Truncation).

The input-output characteristic cf the magnitude truncation

nonlinear!ty is drawn in Fig. 3.3. Depending on the negative number

representation used, there exist two types of truncation. Magnitude

truncation results when a one's complement number representation is

used. It is the type of truncation considered here.

Value truncation results when a two's complement number

representation is used. It is not considered in detail because the

results are similar to the ones for rounding with a constant input

added as value truncation introduces only a bios of l/2q for every

quantizer. In comparison with the roundoff quantizer the characteristic

for magnitude truncation has a deadzone a~: the origin, which is twice as

large as the one for roundoff. From control system theory, it is known

that a deadzone stabilizes the system response. Intuitively one would

therefore expect that a system with magnitude truncation is "more" stable

than the corresponding system with roundoff. On the other hand, since

magnitude truncation introduces errors, which can be twice as large as

those for roundoff, the latter seems to be preferred.

The first-order filter section including a magnitude truncation

quantizer is described by the difference equation

x(n) = a x(n-l) + 6(n)

,

(3.11)

where < 6(n) < 1.0. It will now be proven by contradiction that

no stable zero-input limit cycle can be sustained with this kind of
a*

system. To be specific, assume < a < 1.0 and x(n) > 0, (the proof for

the other possibilities follows along similar lines) . Suppose a steady-

state limit cycle exists. Then, from the existence condition x(n) - x(n-l)

one obtains

;(n) = 4ini> (3.12)
1-a
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For 6(n) = 0, x(n) = 0. For < 6(n) < 1.0, x(n) < 0. Tnis

conclusion is contrary to the hypothesis made above. There-

fore , in steady-state x(n) = 0, which completes the proof.

This simple demonstration has . surprisingly , not appeared in

the literature. After this introductory study of the first-

order digital filter let us turn our attention to the

second -order digital filter.

C. MODEL FOR THE ZERO-INPUT SECOND-ORDER DIGITAL FILTER
WITH QUANTIZATION

For the study of the natural response (zero-input, ini-

tial conditions only) of the second-order digital filter

section a configuration with two poles and no zeros is

desirable to avoid the distracting influence of the zeros

on the response. A survey of the second-order filter con-

figurations from Chapter II shows that the only possible •

canonical configuration of this kind is the one depicted in

Fig. 3.4. That this assumption is not too restrictive will

be shown in Chapter V.

The twc quantization nonlinearities Q, and Cu , each con-

nected with one of the two multipliers in the feedback paths

,

are included in Fig. 3.4. The fact that there are two non-

linearities in the loop complicates the analysis of the

limit cycle response considerably. The system of Fig. 3.4

is described by the difference equation (where u(n) = 0)

x(n) = -[a x(n-l)] - [b x(n-2)] , (3.13)
y q

where [...] denotes quantization of products, either

through roundoff (q = r) or truncation (q = t)

.
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If roundoff quantization is considered, the block dia-

gram of Fig. 3.4 can be rearranged into a form which is

needed in the later sections of this chapter. Separating

the roundoff quantization nonlinear:.ty into a linear char-

acteristic and a new, sawtooth-shaped ncnlinearity as de-

picted in Fig. 3.6 allows one to perform a block diagram

manipulation which results in the diagram shown in Fig. 3.5.

The error sequences due to roundoff are designated by e
a

and e, and can be viewed as input to the digital filter.

D. BOUNDS ON THE AMPLITUDE OF LIMIT CYCLE OSCILLATIONS IN
SECOND-ORDER DIGITAL FILTERS (CASE OF ROUNDOFF)

In this section three different kinds of amplitude

bounds for the limit cycles of the system described by (3.13)

are presented. Their deprivation is based on

a) the use of Lyapunov functions to estimate the region
of boundedness of the natural response of (3.13),

b) the use of a special technique assuming that a limit
cycle of period qT exists, and

c) the application of an effective value linear model.

1. An Amplitude Bound Using Ly apunov' s Direc t Method

For roundoff after multiplications the difference

equation (3.13) has to be rewritten as

x(n) = -a x(n-l) ± [0.5 - S(n-l)]

-b x(n-2) ± [0.5 - 6(n-2)], (3.14)

where <5 (n) is any number such that <_ |<$(n)| < 1.0. The

roundoff noise sequences £ = [0.5 - o(n-l)] and
a

G
b
= [0*5 -6(n-2)] can be considered as driving funct ' to
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the difference equation (3.14) as indicated in the block

diagram of Fig. 3.5. Then, if this kind cf input is de-

noted by u(n), one finds that |u(n)| <_ 1 . , because

u(n) = ± [0.5 - <S(n-l)] ± [0.5 - 5{n-l)]. Rewriting (3.14)

in state form, using state variables

x
1
(n) = x (n-2) ,

x
2
(n) = x (n-1) ,

one obtains from (3.14)

x(n+l) -

-b

x (n) u(n) (3.15)

M/^,-1-^ 4-1- -i 4- r^ •v/f^^ -I Y-» ( *3 ~l^^ ^-v-r^fO-vIX rr-4-^4-^^ T T
- £} /"• 4- o ">~ O u-'p i

n

and b < 1.0, the magnitude of the eigenvalues of the corres-

ponding linear system is less than 1.0 and the homogeneous

system is asymptotically stable in the large (ASIL) . In

addition, the input. u(n) of (3.15) is bounded for all n >^ .

Therefore the theorem given in Appendix A is applicable.

Theorem: For the system x(n+l) = A x(n) + B u(n),

if the homogeneous system is ASIL and has a

T T
Lyapunov function V = x Qx with V = -x Cx and

|u(n)
| <_ k, for all n >_ , then the system is

stable and the states are certain to enter a

region defined by jjxjj <_ r~, where

v 1/ * max(O)
x
2

K
l|/ X min(O)

I \' T
1IA-QB H

A minlcT . . ,_, n (C)
A mm (C

)

(3,16)
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Identify the terms of the theorem as follows:

k, = 1.0, because |u(n)j < 1.0,

1

a -b

B = (3.17)

X min/max(Q) = min/max. eigenvalue of the matrix Q,

defined by the Lyapunov function

V = X
T
Qx

,

(3.18)

A min(C) = min. eigenvalue of the matrix C, de-

fined to be any real, symmetric and positive

Tdefinite jnatrix such that -C = A QA-Q, (3.19)

|jx|| = norm of the state vector x, defined as

max | x
.

J

(3.20)
i

T !| T
A QB||= norm of the matrix product A QB, defined

as max^x I
a
ii/

whe
1

3

re a. . are the elements of A" OB. ('A. 21)
13

Since the choice for C is arbitrary as long as C is real,

symmetric and position definite, let us choose for simpli-

city

C =

.

(3.22)

1

Now (3.19) is written as

-a

-b

qli

qo21

L12

22
-a

qli

! 21

12

2 2

(3.2-- v
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To solve for the elements q.. . of the matrix Q, the following

four equations result

:

2
-1 = b q22

- q-Qf (3.23b)

= ab q ??
- bq

?
, - q,„, (3.2 3c)

= ab q 22
- bq

12
- ^l' (3.23d)

~1 = qll ~ aq
12 " aq

21
+ (a " 1)c322

T (3.23e)

Equations (3.23c) and (3.. 23d) show that

q12
= q 21

- (3-24)

The remaining solutions for q,,, q,., and q ?0 in terms of

a and b are

n ,
2b

2
(1+b) ,, „ rq,, = 1 + '-~ y~ , 13.25a.!

(1-b) [(1+b) -a^]

q 19 = q 91
= 9

—

t~ ' (3.25b)
xz z±

(l-b) [ (1+b) -a ]

2 (1+b) , oc ,

q 99 = i -^ ~ . (e.25c)
(l-b) [(1+b) -a

Z
)]

Note that Q is real, symmetric and positive define as re-

quired, if and only if

(1+b) > |a| . (3.26)
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This is just another way to state the range of values for

the coefficients a and b for which the homogeneous system

of (3.14) or (3.15)is ASIL.

To evaluate the bound (3.17) define

m
w =

||
A QB

|I
= max (|bq

22 |
,

l

(312
~ag22^' (3.27)

and evaluate

A min (c) = 1, and (3.28a)

B
T
QB =q22

. (3.28b)

Then from definition (3.20) the upper bound on the amplitude

of the limit cycles for (.3.14) can be written as

x i \ i ^ 1M max(Q) r , "if 2 , , /r> on .

tn)
l i U min (Q) *

[W +
f
W H

' q 22 ] ' (3 ' 29)

The bound (3.29) is pessimistic as can be seen from

the numerical values presented in Chapter IV. This may

stem from the fact that the choice of the matrix C and thus

Q is arbitrary and therefore it is not guaranteed that the

"best" upper bound has been found. The latter is a well

established disadvantage of Lyapunov ' s direct method. How-

ever the bound is derived without any specific assumption

about the roundoff sequences e and c. , except for the fact

that they are bounded.

It is now shown that limit cycles always exist if

roundoff quantization is employed and the filter coefficient

b has values such that b > 0.5. Previously it has been

shown that the system (3.14) is stable. Let us now w by
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contradiction that the zero-state cannot be reached for any

(n-1) greater than some value N, if b > 0.5. Suppose the

zero-state is reached and maintained for some (n-1) >_ N.

Then x(n) = x(n-l) = and |x(n-2) | > 1.0. Substituting

this into the difference equation (3.14) one obtains

bx(n-2)= ±[0.5 - 6(n-2)]. (3.30)

/\

Since |bx(n-2)| >0.5 by hypothesis and |0.5 - 6(n-2)| <_ 0.5,

(3.30) cannot be satisfied. This is contrary to the hypo-

thesis .

It follows that the zero-state cannot be reached for

b > 0.5 and the system is marginally stable. Thus, limit

cycles always exist if roundoff is employed and 0.5 < b < 1.0,

which is equivalent to stating that the poles of the z-trans-

formed equivalent of (3.14) are inside an annular region

in the z-plane defined as Jz < r < 1.0, where r is the magni-

tude of the poles. This conclusion has been reached before

by Jackson [27], however without the exact proof as out-

lined in the above paragraph.

2. A General Expression for Zero-Input Limit Cycles .

The periodicity of the limit cycle oscillations can

be used to develop a general expression for the limit cycles

in matrix form. Let us assume, that a limit cycle of period

qT exists. From the definition of a limit cycle and its

periodicity it follows that

x(n) = x(n-q),

x(n-l) = x(n-q-l) ,
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and so on. Let us redefine the roundoff sequences from

(3.14) as

£-. = ± [0.5 - S(n-i)] ± [0.5 - S(n-i-l)]. (3.31)
l

Then, from the difference equation (3.14) a set of equations

can be written as

x(n) + a x(n-l) + b x(n-2) - £-,,

x(n-l) + a x(n-2) + b x(n-3) 2'

(3.32)

x(n-q+2) + ~a x(n-q-l) + b x(n-q) = £ , ,q—

I

x(n-q-rl) + a x(n-q) + b x (n-q-1 ) = E »

Substituting (3.30) into the system of equations (3.32) and

using matrix notation one obtains

labOO 000
1ab0...0

noiab 000

b

a b

lab
Ola

1

x(n)

x(n-l)

x (n-2)

x (n-q+3)

x (n-q+2)
-A.

x (n-q+1)

q-2

q-1

(3.33)
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In shorter notation (3.33) is rewritten to yield

Ax - e, (3.34)

where A is a square matrix of dimension q x q and x and e

are the vectors constituted by the limit cycle points and

the roundoff error sequence respectively.

As a special case, to simplify the algebra involved^

consider a symmetric limit cycle whose samples in the first

half-period are equal in magnitude but opposite in sign to

the samples in the second half-period. This type of limit

cycle can ba described by

(x
l'

X 2' •**' X
q/2' X

l+q/2' **•' X
q

}
'
where

X
l

= ~ *l+q/2*
(3 ' 35)

q/2 q

Thus, q has to be an even number.

The set of Eqs . (3.33) or (3.34) can be partitioned a:

follows

:

8<5





1 a b

1 a b

1a
1

b

a b

b

a b C

1 a b

1 a b

1a
' 1

x.

x,

x

X

X

l+q/2

2+q/2

x

q/2__
: l+q/2

:

2+q/2

. (3.36)

In a more compact notation (3.36) can be written as

B C

C B

"~ ~ - — —

X- E
i

s\
=

-X r,
2

m— « —. —

(3.37)

From above it is deduced that E, = -E^ . Furthermore, in-

stead of solving the system of q equations, it is only

necessary to solve the set of q/2 equations.

Instead of (3.34) one now solves

[B-C] x = e , where (3.38)

[B-C] is a square matrix of dimension (q/2 by q/2). Note

that there is a difference between the matrix A for a limit

cycle of length a = m and the submatrix [3-C] for a

limit cycle of length a = 2m, in that the signs of the

87





three elements in the lower left hand corner of [B-C] are

the negative of the terms in the lower left hand corner of

A.

From the initial assumption, that a limit cycle

(not necessarily symmetric) of length qT exists, it follows

that A has to be nonsingular, if and only if at least one

e. f 0. Furthermore, A has to be singular, if and only if

all e. =0. The latter condition signifies those values of
1 J

the coefficients a and b for which a linear response (no

roundoff quantization) is possible, whose samples in the

period of oscillation are all integers. It is easy to see

that this requires "that b = 1 and therefore A cannot be

•singular for b < 1.0.

From (3,31) it is seen that foi roundoff Quanti-

zation < < 1.0, and assuming that not all e. = 0,
l '

— -' l

a bound for the x(n-i) can be found by solving (3.34) using

one of the many methods of solution available.

Using Cramer's rule a solution for x(n-i) is found

from (3.34) as

x(.n-i) =
det A

lab
Ola

1

(column i)

b

a b * * * e

•q-1 1 a

1

e,det A,. + £„det A„ . +...+ £ cic'
1 li 2 2jl £ £

det A
. C3.3S
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The expressions det A . denote the cofactors of £
.

, that is

o+i
the determinant with sign (-l)^1 of the matrix formed by

-'.. i-'

deleting the row and column of A which both contain £
.

.

- /• 1

Using the bound on e . , (3.39) is rewritten to yield a bound

on | x (n-i) | .

|x(n-i)| =
I e , det A , . +. . .+ z det A .1
1 1 li q qi 1

| det A

|

q
y i det A.

.

3-J: . (3.40)
I det A

Due to the cyclical nature of the equations (3.33) , it is

possible to show that the bound from (3.40) has the same

numerical value for all i = 0, 1, 2, ..., q- 1 and is thus

the only bound for the samples contained in the assumed

limit cycle.

To show this, it is noted that for every square

matrix A with elements a.

.

JO

det A = 7 ± [a, , a a_, ... a , ,., . -, .L lpl 2p
2

3p
3 qp

g
] . (-3.41)

The sum is extended over all permutations p = qi of the

integers 1, 2, 3, ..., q and where a + or - sign is affixed

to each product according to whether p is an even or an

odd permutation. In the expression (3.41) the indices

P-.P 2Po ... p are the permutations of the integers

--f ^ / ~> f . . . r q.

See for example Z^yres [33], p. 20.
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Consider now (3.39) for the q values of x(n-i).

The matrix A is used to form q new matrices A., by replacing

the i column of A with the column vector e . Those mat-

rices are then used to compute the cofactors of £ . and are

of the form

.th
A . . = j row
32.

deleted

lab
Ola

1

b
1

1 a

a b

.th.

del

1

r
!

1

1 COXUllUl

eted

1

(3.42)

Regardless of which row and column are deleted the matrix

A., will contain the same elements 0, 1, a, b which make up

the products in (3.41). Since sign-changes are of no con-

cern the summations

j=l
det A.

.

are equal for all i = 0, 1, 2, ..., q-1 and the bound (3.40)

has the same value regardless of i. Thus the bound on the

amplitude of a limit cycle with period qT is given by

? I

x(n) <
j=l

det A.

.

3i
(3.43)

det A
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Note that this bound is different than the Lyapunov bound,

because the period of the limit cycle qT has to be specified

The evaluation of (3.43) gets rather complicated for large

q, even if the assumption of symmetry in the limit cycle

can be made.. Some simple, but important examples will serve

to illustrate the use of the developed bound. For q - 1,

one obtains by inspection

x(n) =
1+a-i-b - l+a4b * (3.44)

For q = 2, (3.33) can be. written as

d+b)

(1+b)

" r~ —

x (n) e
o

•\

x(n-l)
J-

(3.4 5a)

It follows that

e (1+b) - ae,
x(n) = ^ ~—— and

l+2b+b -a

x(n) |<
1+b + -a

1+a+b 1-a+b 1-a+b
(3.45b)

The cases q = 1 , 2 correspond to limit cycles with frequency

1
f = 0, y f . From the knowledge about the signs of a and

b, the expressions (3.44) and (3.45) can be combined to

yield

x(n) <_ (3.46}
1- | a | +b

The bound (3.46) has been reported by Jackson [27] a
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and Bonzanigo [28] before, however not as the result of a

general derivation as presented here. For q = 4, (3.33)

can be written as

] a b

1 a b

b 1 a

a b 1

x(n)

x(n-l)

x(n-2)

x(n-3)

—r*. «

O

C
l

—
e
2

e
3

(3.47a)

It follows that

t; (l+a
2
b-b

2
)o

x(n)

For a = , one gets

2 2 ° 2
*e, (a+ab ) + e- (a ~b-hb

J
) -e. (a -2ab)

2 2 4 4
l+4a b-2b -a +b

(3.47b)

(n) < 1-b
2

|
+ |b[ |b

2 - l

i 2 4!
l-2b +b 1-b

(3.48)

The bound (3.48) is larger than what it should be by a

factor of 2, because it is assumed that |c. ! < 1.0. How-

ever when a = 0, I e . I < 0.5.
1 l 1 —

Another method of solution for (3.33) is based on

the use of a flow graph and application of Mason's gain

rule. Since the flow graph demonstrates the continued de-

pendence of each limit cycle point on the previous limit

cycle points and the roundoff samples, the flow graph repre-

senting (3.33) is included in this chapter as an interesting

graphical representation of the generation of limit ycles.

The flow graph is shown in Fig. 3.7.
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The importance of the derived bound (3.43) lies in

the fact that this is an absolute bound. However, the

bound is not easy to compute. Numerical values for some

representative values of a, b, and q are presented and

compared with the other bounds in Chapter IV.

3 . The Effective Value Linear Model .

Consider the system depicted in Fig. 3.4 without

the quantizers in the feedback loop , The transfer function

of this linear system is

2

HCz) = ~2 . (3.49)
z + az + b

From Chapter II, we know that stability (ZiSIL) is

assured, if and only if < b < 1.0. The Cd.se of b — 1.0

describes a digital oscillator and is the limiting case

between stable and unstable response.

For the nonlinear system (roundoff quantization

included) Jackson [27] postulated that limit cycles occur

(the system is marginally stable) if, in effect, b = 1.0.

Define an effective value for b as b* using the difference

equation (3.14), which is repeated here for convenience:

x(n) = -[ax(n-l)] - [bx(n-2)] ,
(3.50a)

x(n) = -[axCn-1)] - b'x(n-2). (3.50b)

Then, by equating (3.50a) and (3.50b), one gets

[bx(n-2)] = bx(n-2)± [0 . 5 -5 (n-2 ) ] =b'x(n-2). (3.51)
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The sufficient, but not necessary, condition for a limit

cycle response is, according to Jackson r that b 1 =1.

Roundoff effectively moves the poles of the digital filter

described by (3.50a) from inside the unit-circle in the

z-plane onto the unit-circle.

If b' = I, then from (3.511

c„_2] = _ijo -5 -*fo-2n
_ (352)

j.~n

Since x(n-2) is equal to x(n) delayed by two time-units T

and
|
0.5 - 6(n-2)

|
.'5 , the bound on x(n) is described

by

|x(n)
| <_ JjL| . (3.53)

The consequences of the postulate are now demon-

strated with the example of a digital filter with a = -1.9,

b = 0.9474 and initial conditions (0,3). The limit cycle

response is computed from (3.50). In addition, the values

for c and s, are displayed in Fig. 3.8. The bounded nature

of e and e, is corroborated by Fiq,, 3.5.
a b * 3

94





computed rounded roundoff e roundoff e,
^ *> A A

n x(n) x(n) from [ax (n-1) ] from[bx (n-2 ) 1

1 —

2 - 3

3 5.7-0 6-0 = 6

4 11.4-2.8442 11-3 - 8

5 15.2-5.6844 15-6 = 9

6 17.1-7.5792 17-8 = 9

7 17.1-8.5266 17-9 = 8

8 15.2-8.5266 15-9 = 6

9 11.4-7.5792 11-8 = 3

10 5.7-5.6844 6-6 =

11 0-2.8422 0-3 ---3

12 - 5.7-0 - 6-0 =--6

Q.3

-0.4 -0.1578

^0.2 -0.3156

-0.1 -0.4208

-0.1 -0.4734

-0.2 -0.4734

-0.4 -0.4208

0.3 -0.3156

-0.1578

--0.3

and so on.

The missing samples of the limit cycle for n = 13

to 18 are equal to the negative of the samples for n = 4 to

9. An inspection of the term £., reveals that

je, | = (1-b) x (n-2 ),. which is equivalent to the statement

above , that b ' = 1

.

Returning to (3.53) and noting that the smallest

amplitude for a limit cycle is unity, it seems reasonable

that no limit cycles are possible if b < 0.5. This state-

ment about the existence of limit cycles has been proven

rigorously, without recourse to an effective value 1' ^del

in paragraph D.l. The bound (3.53) is easily applicable.





However , since it is based on the assumption that the non-

linear system oscillates if b ' = 1 (which is a carry-over

from linear theory) , there exist exceptions from the bound

(3.53). Consider another numerical example for a = -1.6,

b = 0.9474 and initial conditions (3^9)

.

computed rounded

n x(n) x(n) ea £b

1 »» 3 - -

2 - 9 - -

3 14.4- 2.8422 14-3 = 11 -0.4 -0.1578

4 17.6- 8.5.266 18-9 = 9 0.4 -0.4734

5 14. 4-10. 4214 14-10= 4 -0.4 0.4 214

6 6.4- 8.5266 6-9 =- 3 -0.4 -0.47 34

7 - 4.8- 3.7896 - 5-4 =- 9 -0.2 -0.210 4

8 -14.4+ 2.8422 -14+3 =-11 0.4- 0.1578

9 -17.6+ 8.5266 -18+9 =- 9 -0.4 0.4734

10 =14.4+10.4214 -14+10=- 4 0.4 -0.4214

11 - 6.4+ 8.5266 - 6+9 = 3 0.4 0.4734

12 4.8+ 3.7896 5 + 4 = 9 0.2 0.2104

13 14.4- 2.8422 14-3 = 11 -0.4 -0.1578

The values for e, are also displayed in Fig. 3.9.

An inspection of e, reveals that for n= 3, 4, 6, 7, 8, 9,

11, 12, it is still true that
| e, |

= (1-b) x (n-2 ) . However,

at n = 5 , 10, a discontinuous jump occurs and for this rea-

son the effective value linear model is not valid any longer

For the exceptional class of limit cycle re?
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a new bound is now developed. If a discontinuous jump of

an e, value occurs, then

|e
b|=

Cl-b) x(n-2) -1. (3.54)

/. ^

Because x(n--2) is a delayed version of x(n) and
j
e,

| <_ . 5 ,

(3.54) can be used to evaluate a bound , such that

|x(n)
|

< \£- . (3.55)
1

' — 1-b

Experiraental data (see Chapter IV and Appendix B) indicates

that there exist limit cycles whose amplitudes deviate from

the bound (3.53) (but always remain inside the bound (3.55))

as much as 6 quantization step-sizes (i.e., 6 units).

Clearly then, the bound (3.53) derived from the effective

value linear model is only a rule-of-thumb. The preceding

example and the existence of the bound (3.55) is also con-

trary to a statement made by Jackson [2] , that "seme of the

observed limit cycles for b > 0.9 have exceeded the limits

... as given in (6.4) by ± 1 (i.e., by one quantization step),

but never more .

"

The available numerical data indicates that excep-

tions from the effective value linear model occur for

5 ^
b >^ £- = 0.83... and for values of a around ±1,5, ±1.0, ±0.5.

E. AN APPROXIMATE EXPRESSION FOR THE FREQUENCY OF LIMIT
CYCLE OSCILLATIONS (CASE OF ROUNDOFF)

The limit cycle output of any quantized second-order

Jackson's formula (6.4) corresponds to (3.53)
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system is periodic. The condition for periodicity is given

as

x(n) = x(n~q) f for all q = 1,2,3. .. (3.56)

The period of the limit cycle qT must contain an even num-

ber of sign-changes between successive samples. Because of

the discrete nature of the response with equally spaced

samples the number of sign-changes per limit cycle period

qT is adopted to define the frequency f of a limit cycle

response. Let the number of sign-changes per limit cycle

period be 2p . There are two sign-changes per individual

oscillation, therefore frequency is defined here as

f
o = qT •-

or (3 ' 57a)

since f = =r. one gets
s T ^

f
° = P

. (3.57b)
f q
s *

The limiting case where all limit cycle points have equal

value is defined with p = and q = 1, such that the fre-

quency of the constant case is

f
~- = 0. (3.57c)
s

The other limiting case occurs at the Nyquist-frequency

,

where the samples change sign after every sample (p = 1) and

the limit cycle repeats itself after two samples (q = 2) .

For this case, the frequency is given by

93





f ,

j
2 -- j • (3.57d)
s

From the limiting case (3. 57c) and (3.576.) , it is concluded
. f

that 2p <_ q , and since p and q are integers, -^— is always a

s

rational fraction.

Inspection of experimental data shows that the frequency

is a highly nonlinear function of the filter coefficients

a and b and the amplitude of the particular limit cycle.

Only for a few exceptional values of the coefficient a can

the frequency f be determined analytically. Among these

are the cases, where a = -1, 0, +1. The frequencies f /f

, 1 1 ., 1 , . ,

tor tnese are ?-, j- ana ~- respectively.

In Chapter II, the expression for the frequency of the

linear digital filter is stated. Using this expression, an

approximate expression for the frequency of the nonlinear

system is at hand. This approximation is given by

f , ,

^ = _L Cos (~-^-) (3.59)
f
s

2TT
2YF

or, if the effective value of b 1 = 1 is substituted for b,

then

r-- 2F cos_1 t-f>- (3 - 60)
s

How well (3.59) describes the. actual frequency of the

cycles is displayed in Fig. 3.10-12 for values of b
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0.75 and 0.&6 respectively. As can be seen from the graphs

the approximation gets better for higher-Q filter sections,

i.e., for b close to 1.0. However, it should be noted

(see for example Fig. 3.12, a = ± 0.3) that for many values

of a two or more oscillation frequencies may exist, depend-

ing on the particular set of initial conditions used. This

is not surprising for nonlinear systems.

F. PHASE-PLANE PLOTS OF LIMIT CYCLES AND SOME OF THEIR
SYMMETRY PROPERTIES

Phase-plane plots are a useful technique for the graphi-

cal analysis of second-order differential equations. For

the study of difference equations a similar technique is

•developed here. A special plot (herein referred to as the

successive value phases-plane plct) results ."if successive

states of a second-order discrete system are recorded on a

cartesian plane with axis x(n) and x(n-l). In the usual

phase plane x is plotted versus x with time as a parameter.

The natural extension of this to discrete time would be to

plot the first forward difference Ax(n) = x(n) - x(n-l)

versus x(n), but experience has shown that meaningful re-

sults for the digital filter are obtained only if x(n) and

x(n-l) are plotted instead.

It is generally not too useful to employ the successive

value phase-plane with axis x(n) and x(n-l) for the analysis

of quantized second-order systems because the existence of

two nonlinearities complicates the graphical analysis. Hovz-

ever , it is instructive to display the limit cycle >onses
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to exhibit their characteristic features graphically. The

results of this analysis are presented in Chapter IV for

comparison purposes. In this section some new results are

introduced concerning the symmetry of limit cycles. It is

shown that the successive value phase-plane plots for two

systems with parameters a and -a are identical except for a

change of ODfientation of a symmetric axis. The latter con-

clusion is also important, because it asserts that any bound

on the magnitude of a limit cycle response evaluated with

the assumption that a < , b > is equally valid for

a > , b > . From experimental data it is known that three

types of limit cycles exist. They Eire, classified as:

a) Type A: The limit cycle has half-wave symmetry, i.e.,

half-waves equal each other in magnitude and differ in size.

Two samples per cycle are zero. This response is described

by

[x(l), x(2),..., x(i-l), x(i), x(i+l},..., x(2i~l), x(2i)],

(3.61)

where x (1 ) = x(i+l) = 0, and

x(k) = -x (i+k) , for k = 1,2,..., i.

b) Type B : The limit cycle has half-wave symmetry, however

no zero-samples exist. The respons'e is described by (3.61),

except that

x(l) = x(i+l) ? .

c) Type C : The limit cycle is unsymmetrical . This response

is described by

[x(l), x (2 ),..., xCi), ..-, x(q)],

where q is always odd.

101





Three lemmas are nov; presented about the three types of

limit cycles .

Lemma 1: Given a digital filter with roundoff quantization

and a defining equation

x(n) = -[a x(n~l)]
r

- lb x(n-2)]
r

. (3.63)

Assume that the digital filter has a limit cycle

response of type A. If the sign of the filter

parameter a is changed then two new limit cycles

are possible t where the two new limit cycles

equal either half-cycle of the original limit

cycle in magnitude, but differ in sign after every

second sample

.

Proof : Suppose a limit cycle of type A exists = This re-

sponse is described by (3.61). Let the .sign of the coef-

ficient a be changed and evaluate the filter response for

initial conditions y(l) = x(l)
; y(2) = -x(2). From the

difference equation above, one obtains successively

y(3) = -[(-a) (-x(2))J
r

- [b x(l)] - x(3), (3.64)

y(4) = -[ (-a) (x(3))]
r

- [b(-x(2))J = -x(4), (3.65)

and so on. Thus a new sequence of samples result which has

the form

[x(l), -x(2), x(3), -x(4),..., xCi-D, -x(i), x(i+l),...

. . . , x(2i-l) , -x(2i)] . (3.66)

Furthermore for type A limit cycles i is an even r r and
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A
the sign of x(i) is changed, as are all other samples with

even indices. From the conditions stated by (3.61) it is

seen that the sequence (3.66) consists of two repetitions of

the one new limit cycle

[x(I), ~x(2), xC3), -x(4),..., x(i-l), -x(i)]. (3.67)

Using the same procedure as above for the initial condition

[-x(l), x(2)] another new limit cycle is obtained which has

the form

[-x(l), x(2), -xC31 r x(4),..., -x(i-l), x(i)]. (3.68)

It should be noted that the initial conditions [x(l), x(2)]

and [-x(l), -x(2)J lead in general to completely new limit

cycles which bear no resemblance with the sequences given by

either (3.61) or (3.67) and (3.CG).

Lemma 2: Given the same system as for lemma 1, let the

digital filter have a response of type B. If the

sign of the filter parameter a is changed, then a

new limit cycle is possible, where the new limit

cycle equals the original one in magnitude, but

differs in sign after every second sample.

Proof : The proof for lemma 2 is identical to the proof

for lemma 1, except that only one new limit cycle of the

form (3.66) results, because both initial conditions

[x(l), -x(2)] and [-x(l), x(2)] lead to the same result.

Lemma 3 : Given the same system as for lemma 1. Let the

digital filter have two responses of type C tfhere

the one is the sign-inverted version of t'r her.
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If the sign of the filter parameter a is changed,

then one new limit cycle is possible, where either

half-cycle of the new limit cycle sequence equals

either of the two original limit cycles in magni-

tude, but differs in sign after every second sample.

Proof : The two limit cycles of type C are given by (3.62'.

The first limit cycle and its sign-inverted version are con-

catenated to yield

[x(l), x (2 ),..., x(q), -x(l), -x (2 ),..., -x(q)].

(3.69)
S\ /\ /\ /s

Applying initial conditions y(l) = x(l) and y(2) = -x(2) to

the difference equation one obtains successively

y(3) = -[(-a) • (-x(2))]
r

-[b x(l)]
r

= x(3) f (3.70)

y(4) = -[ (-a) •x(3)]
r

-[b(-x(2))J
r
= x(4), (3.71)

and so on.

Since q is odd one gets

y(q+l) = ~[(-a)x(q)]
r

-[b (-x (q-1) ) ]^ = -x(l), (3.72)

y(q+2) = -[ (-a) (-x(l))]
r -fb x(q)]

r
= x?2) , (3.73)

and so on

.

A new sequence of samples results which has the form

[x(l), -x(2),..., x(q), -x(l), x(2),..., -x(q)J. (3.74)

This is the new limit cycle. Application of the initial con-

ditions -x(l) and x(2) yields the same result as above.

The conclusions of the three lemmas are demonstrated with

the following examples:
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The limit cycle sequence of type A for a =-1.8,

b = 0.9474 results in two new limit cycles for a = 1.8,

b = 0.9474 of type C as stated in the following table:

n x(n)=1.8 x.(n-l) x(n)=~1.8 x(n-l) x(n)=-1.8 x(n-l)

-0.9474 x(n-2) -0.9474 x(n-2) -9.474 x (n-2

)

14 -4 4

2 7 7 -7

3 9 • -9 9

4 9 9 -9

5 7 -7 7

6 4 4 -4

7

8 -4 -4 49-7 7 -7

10 -9 -9 9

11 -9 9 -9
.

12 -7 -7 7

13 -4 4 -4

The limit cycle sequence of type B for a = -1.8,

b = 0.9474 results in a new limit cycle of type B for a = 1.8,

b = 0.9474 as given in the following table:
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/\ /N /\ /\

n x(n) = 1.8 x(.n-l} xCn) = -1.8 x(n-l)

-0.9474 x(n-2J -0.9474 x(n-2)

1 113 -3

2 4 4

3 4 -4

4 3 3

5 1 -1

6 -1 -17-3 3

8 -4 -49-4 4

10 -3 -3

11 -1 1

The two limit cycle sequences of type C for a = -1.8,

b = 0.9484 and its sign-inverted complement result in a new

limit cycle for a = 1.8, b = 0.9474 of type B. The original

and the new limit cycles are presented in the following

table

:
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n x(n}=1.8 x(n-l) x(rQ = 1.8 x(n-l) x(n}=-1.8 x(n-l)

-0.9474 x(n-l) -0.9474 x (n-2 ) -0 . 9474 x (n-2

)

1 1 -1 1

2 5 -5 -5

3 8 -8 8

4 9 -9 -9

5 8 -8 8

6 5 -5 -5

7 1 -1 18-3 3 3.9-6 6 -6

10 -8
t

8 8

11 -8 8 -812-6 6 6

13 -3 3 -3

14 1 -1 -1

15 5-5 5

16 8 -8 -8

17 9 -9 9

18 8 -8 -8

19 5 -5 5

20 1 -1 -1

21 -3 3 -322-6 6 6

23 -8 8 -824-8 8 8

25 -6 6 -626-3 3 3

Many more examples of the presented three types can be con-

structed from the tables of Appendix B.
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If these limit cycles are drawn on the successive value

phase-plane as defined in the preceding paragraph, it is

seen that the phase-plane plots are identical except for a

change in their symmetry axis. The experimental verification of

this is delayed until the next chapter.

After the study of limit cycles because of roundoff

quantization let us turn our attention to magnitude truncation quanti-

zation in second-order digital filters.

G. LIMIT CYCLE OSCILLATIONS IN SECOND-ORDER SYSTEMS
(CASE OF MAGNITUDE TRUNCATION) .

The second-order system to be studied in this section

is the same as the one depicted in Fig. 3.4. However the

two nonlinearities in the feedback paths now have the in-

put-output characteristic of the magnitude truncation quantizer as

shown in Fig. 3.3.

As might be expected from the result of paragraph B.2,

where it has been shown that the first-order section with magnitude

truncation is ASIL, little or no limit cycle oscillations

can be observed in the second-order case. However , it can

be demonstrated that some limit cycles exist. For initial

conditions (1, 1) or (0 r 1) a limit cycle with jx(n) |
= 1

will always result if |a| > 1.0. '

For complex conjugate poles of the second-order system

one predicts with the help of the effective value linear

model that no limit cycles with frequencies f /f between

and 1/2 are possible, because in no way can an effective

value of b = 1 be obtained frc '

" r^-<
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equation for a zero-input digital filter with truncation

is given as

x(n) = -a x(n-l) ± 5(n-i) - b x(n-2) ± <5 (n-2), (3.75)

where 5 (n-1 } or 6 (n-2) are numbers r such that <
|

<S
|

< 1.0.

For the purpose of this demonstration suppose that

x(n-2) > 1. Since < b < 1.0 it follows that

<". /\ /\

b x(n-2) ~ <S(n-2) <_ b x(n-2) < x(n-2). (3.76)

However, this is contrary to the condition for an effective

value of b = 1 which would require that

b x(n-2) - 6Cn-2) = x(n-2). (3.77)

Therefore, an effective value of b = 1 is never possible

for truncation quantization.

The situation is different for pole locations of the

effective value linear model which are real. Then self-

oscillations are possible. Consider the case where

x(n) = x(n-l) = x(n-2). The frequency of this limit cycle
f

is 2— = . Applying the above condition to the difference
s

equation (3.75) requires that a < 0. Furthermore from (3.75)

and assuming that x(n) > one obtains

w^\ - -fr(n-l) + 6 (n-2 ) ,-. 7P *

X(n)
1 + a + b '

(3 ' 78)

Assuming that x(n) <^ yields a similar result, such that

the bound can be written as

l* {n)
l i-m-Tf • (3 -' 9>
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Consider the other possible case, where x(n) = -x(n-l).
f

x
The frequency of this limit cycle is ^— = ~-. Applying the

s

preceding condition to the difference equation (3.75) re-

quires that a > 0. Following the Scime steps as in the

proof above yields the bound

|x(nl| <
r _ I + b

. (3.80)

Since in the first case a < and in the second case a > 0,

the expressions (3. 79) and (3.80) are identical and the

common bound is given by

|x(n)|.< —-
. (3.81)

- 1- a
J

+ b

It remains to evaluate the regions of stability for

the second-order digital filter with truncation quantization

The smallest possible value for a sample in the limit cycle

is one or

|x(n)
|

> 1. (3.82)

Using (3.81) together with (3.82), this requires that

|a| > b. (3.83)

For limit cycle oscillations, it is therefore simply required

that

|a| >_ 1. (3.84)

The condition (3.84) is shown in the parameter plana

Fig. 3.13, v/hich depicts the regions of stable (|a| l.C

110





and unstable (a >_ 1.0) response.

Computer simulation for a wide variety of a, b values

and representative initial conditions has verified the

above stated results. Roundoff quantization seems to be

favored in the literature because i ~s quantization errors

are smaller by a factor of two if compared with truncation.

However, it might be advantageous to use truncation quanti-

zation if zero-input limit cycles are a problem.

H . SUMMARY

The purpose of this' chapter has been to investigate

zero-input limit cycle oscillations in second-order digital

filter sections. Since this response depends on the initia.'

conditions only, it is the natural response of these filter

sections. The limit cycle oscillations are caused by

quantization (either roundoff or truncation) of the results

of multiplication of data samples with filter coefficients.

The filter sections are assumed to be realized with finite

precision, fixed-point arithmetic. The deterministic analy-

sis of the limit cycles is complicated by the fact that

there are two quantizer nonlinearities in the filter struc-

ture. Since the limit cycles are mostly unwanted noise,

it is important for the engineering design of digital fil-

ters to provide expressions about bounds on the amplitude

and frequency of these limit cycles.

After description of the nonlinearities and the filter

models used in this cnapi.er , several new results abc

limit cycles were presented. ,. was shown that a 3
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expression for the generated limit cycles is

Ax = e, (3.85)

where x is a column vector whose q elements are the limit

cycle points , e is the vector representing the roundoff

noise sequence and A is a q x q matrix. This equation was

used to derive an absolute bound for the amplitude of the

limit cycle. Employing Lyapunov functions, another abso-

lute bound on the amplitude was derived. Both bounds are

conservative. However, they are absolute bounds, which is

in contrast to the bound derived for the effective value

linear model

.

For complex conjugate poles of the filter transfer

function Jackson [27] has shown that the sufficient condi-

tion from the effective value linear model yields an ampli-

tude bound, which is given by

|x(n)
| <_ ~~ . (3.86)

This bound is a function of the filter coefficient b only

and therefore much easier to apply than the previously

presented amplitude bounds. However, it was demonstrated

that this bound can be exceeded by several quantization units

The bound should therefore be applied with care. The de-

rived different bounds are evaluated for representative

values of the filter coefficients a and b in the next chap-

ter. A detailed comparison of the three bounds is therefore

delayed until the next chapter.

As a new result., some lemmas about symmetry p:
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of state trajectories in a specially defined successive

value phase-plane were introduced. The results are impor-

tant because they show that any amplitude bound evaluated

for specified filter coefficients e and b is equally valid

for -a and b

.

Finally, it was shown that magnitude truncation quantization can-

not sustain a zero-input limit cycle with intermediate fre-
f f

io oquencies ^— , such that < ^— < ^-. However zero-input
s s f ,

limit cycles with frequencies ^— = or y are possible.
s

Since it is only possible to state an approximate ex-

pression for the frequency of the limit cycles , an impor-

tant problem remains still open for further research.

Frequency is a complicated function of the filter coeffi-

cient and the amplitude of the particular limit cycle. It

would be useful to, at least, formulate some bounding

expressions in order to be able to judge the deviations of

the limit cycle frequency from the natural frequency of the

corresponding linear filter.
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Fig. 3.7; Flov: Graph for Lim.it Cycle Oscillatj
with Period gT.
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IV . PRESENTATION OF EXPERIMENTAL RESULTS

A. INTRODUCTION

The analytical results derived ir the preceding chapters

are now tested and compared. For this purpose three computer

programs have been developed. These programs are written in

PL/1 and FORTRAN IV and have been run on the IBM 36 0/6 7 of the

W. R. Church Computer Center of the Naval Postgraduate School.

The first program is an analysis program for zero-input

limit cycles in second-order digital filters employing round-

off quantization. Given a particular choice for the filter

coefficients a and b, all possible limit cycles within a speci-

fied area of search are evaluated and displayed in a successive

value phase-plane plot. The important feature of this pro-

gram is that all possible limit cycles are enumerated by

solving the filter response for all reasonable choices of

initial conditions. With the numerical values for the limit

cycles available, it is then possible to compare the actual

amplitude of the limit cycle with the predicted amplitude,

obtained from the derived bounds. Furthermore, from the re-

sulting successive value phase-plane plots, it can be dedu-

ced how closely the limit cycle trajectory fits the elliptical

trajectory expected for a nearly sinusoidal response.

The second program implements two of the five amplitude

bounds derived in Chapter III, such that a comparison between

the different bounds on the basis of numerical results is

possible. The five bounds compared in this section are re-

peated from Chapter III and summarized in the following table.
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The bound (4.1) is shown to be the most pessimistic one.

For values of |a|, such that|aj approaches (1+b) , it is

shown that the bound (4.1) gets so pessimistic that it is

useless for practical applications. The bound (4.2) has the

complication that the period qT of the limit cycle has to be

specified as an additional parameter

.

The bounds (4.3) and (4,4) are not exact, because they

are based on the assumption of an effective value linear

model. However the numerical data indicates that (4.3) is

exceeded only in some exceptional esses. For those cases the

bound (4.4) is valid. A comparison between the actual limit

cycle amplitudes and the numbers obtained from (4.4) shows

that the bound (4.4) is never exceeded. However its deri-

vation is not exact and an exception of (4.4) mav exist.

The bound (4.5) is again an exact bound. It applies

to limit cycles with zero-frequency and with the Nyquist

freouency (f /f = „-) only.2 o' s 2 2

The third program is a simulation of an important special

case, the digital oscillator, as first considered in example

2 of section II. D. The difference equation for this kind of

digital oscillator is given by

x(n) = -[a x(n-l)] - x(n-2). (4.6)

The nonlinear Eqn.(4.6) is linearized by assuming that

/\ /\

[a x(n-l)] = a'x(n-l), (4.7a)

and

a 1 = a + e. - .7b)
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The coefficient a 1 is approximately constant if e approaches

zero. This is the case if x(n-l) is made larger and the

quantization step-size is constant or if the quantization

step-size is made smaller and x(n-l) is kept below a speci-

fied constant. Equation (4.6) is rewritten as

•n. y\ /\

x(n) = -a'x(n-l) -x(n-2). (4.8)

Equation (4.3) is the linearized version of (4.6). Its poles

are located on the unit-circle in the z-plane, as given by

the characteristic equation

z
2

+ a'z + 1 = 0. (4.9)

From (4.9) it is deduced that (4.6) indeed describes an

As a new result bounds on the frequency of the digital

oscillator are derived from (4.7b). The result is not exact,

however a comparison between the observed frequencies of the

limit cycle oscillations and the computed values for the

bounds indicates that the bounds are not exceeded for those

examples considered in this section.

For a given initial condition,, the response of the oscil-

lator defined by (4.6) (either with magnitude truncation or with round-

off quantization) is compared with the response expected

from an infinite precision linear oscillator. The compari-

son is done by approximating the limit cycle oscillation with

a sinusoidal oscillation employing a least-square criterion.

Experiments show that the oscillator with quantizatj
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exhibits limit cycles v.
7ith periods which can be as large

as several thousand or more samples. Therefore, the aver-

age deviation of the limit cycle from the ideal sinusoid is

constant over each period of oscillation. This is contrary

to a result reported by Rader and Gold [12] . Their formula

indicates that the average deviation increases with time.

The latter conclusion is not verified by experiment. Their

underlying assumption of uncorrelated quantization noise does

not hold for the digital oscillator.

Comparison of experimental results with the linear oscil-

lator indicates that a small offset in frequency and ampli-

tude is present. It is verified that the limit cycle oscil-

lations are nearly sinusoidal because the average deviation

from the predicted amplitude is small.

For those examples tested , the offset in amplitude and

the average deviation from the amplitude are practically con-

stant for a large range of initial conditions. The offset in

frequency decreases linearly for an increase of the initial

conditions. This important conclusion indicates that any

degree of approximation for a specified sinusoidal oscil-

lation can be achieved by either scaling the amplitude if the

quantization step-size is constant, or by decreasing the

quantization step-size if the amplitude is constant. The

rules, deduced from the strictly experimental data, are im-

portant- if the accuracy of digital generation of sinusoidal

oscillations is considered.

Comparison of experimental data obtained for ras le on
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quantization with the experimental data obtained for round-

off quantization shows that roundoff should be preferred over magni-

tude truncation. With roundoff quantization a better degree

of approximation of a sinusoid can be achieved.

B. AN ANALYSIS PROGRAM FOR ZERO-INPUT LIMIT CYCLES.

The analysis program for zero-input limit cycles in

second-order digital filters with roundoff quantization is

based on the filter configuration presented in Section III.C

and depicted in Fig. 3.4. The difference equation repre-

senting this model is repeated here for convenience:

x(n) = -[ax(n-l)]
r

- [b x(n-2)]
r<

(4.10)

To compare the analytical results of Chapter III with

the actual limit cycles it is desirable to enumerate all

possible limit cycles for a specified set of filter coef-

ficients a and b.

The algorithm for the program is based on the following

lemma.

Lemma : Given the difference equation (4.10), the response

of this nonlinear difference equation is uniquely

specified for any choice of initial conditions.

Proof : Specify any initial condition x(l) and x (2 ) . The

input-output characteristic for a roundoff nonlinearity as

depicted in Fig. 3.2 establishes a single-valued relation-

ship between the input values to the nonlinearity and their

output values. Thus x(j5) is uniquely defined by (4.10).

Using x(2) and x ( 3) the value for x(ii) is uniquely

1 3 2





defined by (4.10). Repeating the iterative process to time

nT, where n is any integer greater than two, establishes the

unique response of (4.10). As an additional observation,

it is noted, that uniqueness of solutions for an equation of

the type (4.10) is always assured if the nonlinearities

define a single-valued relationship between the input and

the output.

Consider the result of the lemma in a different context.

Let the successive value phase-plane for second-order digi-

tal filters be defined in a cartesian coordinate system with

the x-axis representing x(n) and the y-axis representing

x(n-l) (compare with Section III.F) . Once a state-point is

chosen in the phase-plane, the resulting state-trajectory

is uniquely specified. A limit cycle is recognized by the

observation that the sequence of state-points constituting

the limit cycle is represented by a closed curve if the

limit cycle state-points are connected by straight lines.

In order to enumerate all possible limit cycles in a

specified area of search for a given set of filter coef-

ficients, it seems necessary to apply all possible initial

conditions or to start the state-trajectory from all possi-

ble state-points in a phase-plane which extends to the largest

possible number specified by the dynamic range of the re-

spective filter in either dimension. However ,
this is

neither realistic nor necessary.

After some initial experimentation if has been found

that only those initial conditions or state-points r
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be applied to the difference equation which lie inside the

square delineated by

|x(n)
|
= |x(n-l)

|
= k, (4.11)

The limit k is constructed from the bounds (4.3) and (4.5)

as

k - max [t-^tt + a, ] . (4 .12)1_b l-|a|+b

The constant a is a safety factor, which is included to in-

vestigate all possible limit cycles. For the computer runs,

values of a between 5 and ,
* have been tried. If the initial1-b

conditions are chosen as described above, it then remains

to count and record the different limit cycles.

Another very important consideration about the experimen-

tal implementation of the filter algorithm has to be stated.

The solution of the difference equation (4.10) for given

filter coefficients a and b and a given state-point x(n-l)

and x(x-2) has to be free of any conversion errors if the

decimal numbers a, b, x(n-l) and x(n-2) are converted to

machine numbers as they are represented internally in the

computer

.

For example, assume that a = -1 . 2 . If binary represen-

tation of numbers is employed in the computer, the coefficient

cannot be stored as a computer number, because

(1.2)
10

= (1.0011. ..)
2

.

Therefore a has to be stored in the computer as
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a' = a i A f (4.13)

where A = conversion error.

It has been shown in Chapter TI, that the result of in-

exact representation of filter coefficients amounts to a

shift in the pole positions of the digital filter. For the

present investigation such errors must be avoided. Exact

representation of numbers is one of the chief reasons why

the analysis program for zero-input limit cycles is written

in PL/1 [34]. This computer language allows the use of a

decimal arithmetic mode , where numbers are stored and opera-

ted on in "packed decimal form" and no conversion errors of

the above described type can occur. Another reason for the

choice of PL/1 is the relative ease with which the delicate

array manipulations for the analysis program can be handled.

The analysis program is listed at the end of this disser-

tation .

A wide variety of values for the filter coefficients a

and b have been used for computer runs with the analysis

program. For Fig. 4.1 those representative values of a and

b are indicated by an X for which the results of the compu-

ter simulation are compiled in Appendix B. As an example,

the computer results for a = -1.8 and b = 0.937 are dis-

played in Table 4.1 and Fig. 4.2 at the end of this chapter.

In Table 4.1 all possible limit cycles in the area of search

1
See reference [34], p. 27, 28
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are enumerated. They are labelled by an identification

number and the frequency F = f
Q
/f

s
and the values of the

limit cycle points are printed. Furthermore, the approximate

frequency f /f = 0.006 (see formula (3.59)) and the ampli-
v_ 1 O

tude bounds

A ^ °- 5 = 7.937. from formula (4.3)
1 1-b

A, = 7.299, from formula (4.5),
2 l-|a|+b

are stated. Limit cycle #1 exceeds the bound given by (4.3),

while limit cycles #2 to #5 stay below this bound. The

zero-frequency limit cycles #6 to #10 (including the trivial

case where x(n) = x(n-l) = 0) stay well inside the bound

(4.5), which is expected, because this bound is exact.

The corresponding state-trajectories are displayed in

Fig. 4.2. The x-axis represents x(n) and its values are

labelled in the top line. The y-axis represents x(n-l) and

its values are labelled in the left column. A state tra-

jectory is constituted by those state points which are de-

signated by the same number. This number is identical with

the limit cycle identification number given in Table 4.1.

For example, consider limit cycle #2. Its state tra-

jectory is formed by the 14 state points designated "2",

such as (3,0), (5,3), (6,5), (6,6) and so on. The trajec-

tory is 'very close to an ellipse, which indicates that this

limit cycle is nearly sinusoidal in nature. This is not

true for limit cycle #1, which shows some deviations
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elliptical shape at the state points (6,7) and (-6,-7). A

close inspection of all the data compiled in Appendix B

results in the following conclusions:

a) The amplitudes of limit cycles with frequency
f
o 1
j— = or y are well inside the bounds as given by (4.1) and
s

(4.5). The amplitudes of limit cycles with frequencies such
f
o 1

that < 7r— < y- are well inside the bounds given by (4.1)
s

and (4.2). This is expected, because these bounds are exact.,

b) Most, but not all, amplitudes are below the value

given by (4.3). The severest deviations from (4.3) which

have been found are 5 and 6 quantization units. The re-

spective limit cycles are exhibited in Table B.15 and B.16 of

Appendix B. This result is summarized in the following

table

:

Value of Limit cycle Amplitude of Bound
a and b Number Limit Cycle from (4.3)

a - -1.4
,

b = 0.973

2

3

4

6

7

8

9

10

2 3 [18.519]

19

19

20

22

21

20

20

17 [11.999]a = -1.74,

b = ' 0.95833
t

11

The reported exceptional cases have amplitudes which a:
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inside the bound given by (4.4). It is worth noting that

without the analysis program for zero-input limit cycles ,

the exceptional limit cycles reported above would probably

have been overlooked.

c) A comparison of the successive value phase-plane

plots from Figs. B.l-5 with the ones from Figs. B.7-11

shows that they are symmetric around a straight line at an

angle of 45 for the former and around a straight line at

an angle of 135 for the latter. The distinguishing factor

between the two sets of phase-plane plots is, that a < in

the first case, and a > in the second case. For a = 0,

no symmetry axis can be determined (compare with Fig. B.6).

The change in the symmetry axis with the change of sign for

the coefficient a has been predicted in section III.F. In-

spection of the limit cycle sequences in the corresponding

tables B.l-5 and B.7-11 shows that the three lemmas from

that section apply.

d) The parameter plane from Fig. 4.1 shows the regions

of stability for the digital filter with roundoff quantiza-

tion. The region for those limit cycles with frequencies,

such that < f /f < t^, has been derived in section III.D.
o / s 2

'

The remaining regions for limit cycles with frequencies at

zero or at the Nyquist frequency (everything inside the

triangle except the shaded region for asymptotic stability)

and for • asymptotic stability have been derived by Jackson

[27] . The boundary of the triangle is obtained if the unit

circle in the z-plane is mapped into the parameter pi

138





with, the help of the equations

< b <_ 1.0, (4.14a)

1 + b > |a|

.

(4.14b)

In Fig. 4.1, the limit between complex conjugate roots

2 2
(a - 4b < 0) and real roots (a - 4b > 0) for the linear

filter is shown also.

C. COMPARISON OF THE AMPLITUDE BOUNDS

For comparison of the different amplitude bounds de-

rived in Chapter III, a FORTRAN IV program has been written

to compute the bounds given by (4.1) and (4.2) for repre-

sentative values of a and b. The program is listed at the

end of this dissertation. Since the bound given by (4.3),

(4.4) and (4.5) can be easily computed by hand, Lheir evalua-

tion is not included in the computer program.

The bound given by (4.1) is based on the application of

Lyapunov functions. The formulas derived in section III.D

are directly applicable. They are used to compute the bound

for values of b = 0.5, 0.75, 0.83 ..., 0.875 and 0.9 and

varying values of a, such that |a| < 1 + b. The results of

this computation are displayed in Fig. 4.3.

The bound given by (4.2) is difficult to compute, be-

cause several determinants have to be evaluated. To avoid

the awkward evaluation of determinants, a different algorithm

than the one given by (4.2) is employed in the computer

program. The bound (4.2) has been derived from the matrix
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equation (3.34) which is repeated here.

Ax = c. (4 .15)

If this equation is solved for x, such that

x = A~1
e = Be, (4.16)

the bound on x can be written as

q
xl < I |b.

.
| , (4.17)

because

|

e.
| <_ 1 . for all i = l f 2, . .., q. The elements

b. . of (4.17) are the elements of the matrix inverse B = A~
ID

of (4.16). The formula (4.17) is identical to (4.2).

Equation (4.17) has been used for the evaluation of the bound

instead of (4.2) because matrix inversion requires less

computation than the evaluation of determinants. The re-

sults of the evaluation of (4.17) for the same values of a

and b as used for the evaluation of the previous bound, are

displayed in Figs. 4.4-4.8. The difference between the

figures results from the different choices for the period of

the limit cycle qT, where q is chosen such that q = 4, 5,

6, 7, 8. A closer inspection of the curves of Figs. 4.4-4.8

reveals some very peculiar characteristics. For some values

of the coefficient the curves for different values of b

merge. For example, in Fig. 4 .

6

, the value of the bound

is about equal for values of a around zero. For other

values of a the bound peaks, exhibiting mostly two pro-

nounced maxima, which are well apart for the differ?

values of b.
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This behaviour is explained if one realizes that limit

cycles occur only for those values of a which are around

the peaks of the curves exhibited in Figs. 4.4-4.8. That

this is true can either be verified with data obtained from

the analysis program of the preceding section or by calcu-

lating the approximate values of a which correspond to the
c
J.

limit cycle frequencies ^— and which are possible for a
s

specified period of qT. If q is specified then, from section
f

III.E, the frequencies ^— = — are possible, where
s ^

2p < q, (4.18)

and both p and q are integers. Using the approximate ex-

pression for the frequency (2.60) the values of ^ and p/'q

are related by

a = -2 cog (^nE)
. (4.19)

For p = and 2p = q, one obtains a - -2 and a = +2 . These

values of a are outside the graphs of Figs. 4.4-4.8. How-

ever for q = 8 (compare with Fig. 4.8) one obtains the fol-

lowing values of a for which limit cycles can occur:

p f /f
o s

a

~2

1 1/8 --1.4

2 1/4

3 3/8 + 1.4

4 1/2 + 2
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These values are in acceptable agreement with the location

of the peaks exhibited in Fig. 4.8.

There remains an obvious question to be answered. What

meaning does the bound (4.14) have for those values of a

which are between the locations of the maxima? The answer

is that for these values of a the bound (4.14) has no mean-

ing for the zero-input limit cycles, because there are none.

This portion of the curve representing (4.17) is valid for a

sequence of the c in (4.15) for which a solution of the x,

according to (4.16) is possible, but this solution does not

represent a valid zero-input limit cycle. In other words,

if an arbitrary sequence e (which is not the result of

quantization by roundoff) is used as the driving function

for the second-order system (4.10) a limit cycle results

for a proper choice of the coefficient a. This limit cycle

is not a valid zero-input limit cycle.

The different bounds are now compared. This can be

done directly from the graphs for the Lyapunov bound (see

Fig. 4.3) and the bound defined by (4.2) (See Figs. 4.4-4.8)

It should be noted that the scales for the x-axis of the

graphs in Fig. 4.3 and Figs. 4.4-4.8 are different, while

the scales for the y-axis are equal. The comparison of the

graphs shews that the Lyapunov bound is always greater than

the bound (4.2) regardless of the choice of q. Both types

of bounds generally approach infinity for ja| approaching

(1+b) , however the Lyapunov bound approaches infinity much

faster than does the other bound. It should be no1 how-

ever, that Fig. 4.5 (q = 5 ) and 4.2 (q = 7 ) do not show the
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(4.4/ wxll no'i_

rapid increase for a ~ Cl+b) , because for q odd , a value of

p, such that 2p ~ q, does not exist and therefore no other

peaks than the ones on the graph are expected.

The two bounds based on the effective value linear

model are given by (4.3) and (4.4). Evaluation of these
A

bounds for b = 0.5, 0.75, 0.83 ..., 0.875, 0.9 yields

1, 2, 3, 4, 5 for the bound (4.3) and 3, 6, 9, 12, 15 for

the bound (4.4). Comparing the latter bound with the curves

on Figs. 4.4-4.8 shows that the bound (4.4) is below the

values for the bound (4.2) in the region of interest for

q = 4, 5, 6 and above the values for the bound (4.2) for

q = 7,8. However ,- from the dat£i of the preceding section

one can be reasonably sure (but not certain) that the bound

>t be exceeded.

In summary then, the following rules and observations

are pertinent:

a) The Lyapunov bound from (4.1) is exact, but overly

pessimistic. For this reason, the bound seems to be of

little value for practical applications.

b) The bound from (4.2) is exact, reasonably close to

the observed limit cycle amplitudes, but not easy to com-

pute, especially if q is large.

c) The bound from the effective value linear model

(4.3) is easy to compute, but is not exact. This bound and

its companion for the exceptional case given by (4.4) are

most readily applicable. If an exact bound is needed a

check calculation using the bounds (4.1) and (4.2) c

performed

.
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D. THE DIGITAL OSCILLATOR

In example 1 and 2 of section II. D, two digital oscil-

lator* realizations are investigated with respect to coeffi-

cient accuracy due to finite representation of numbers.

For this section, the digital oscillator defined by the

difference equation (4.6) is again considered, this time

with respect to quantization errors introduced through round-

off or truncation of the product-term ax(n-l). Because

b = 1.0, the effective values of the. poles of the linearized

version of (4.6) are always on the unit-circle in the z-

plane, regardless whether roundoff or magnitude truncation is employed,

It has been discussed earlier that (4.6) indeed describes

an oscillator. The oscillator defined by (4.6) has been

investigated by Rader and Gold [12] . Assuming that the

errors introduced by quantization of the product from

ax(n-l) are statistically independent and its probexbility

density function is uniform they evaluate the mean squared

noise in the output signal caused by roundoff as

E
2

°
2

° if • .2"
T ,

'
(4 - 20)

sin (co T)
o

where E = quantization step-size.

Equation (4.20) indicates that the mean squared noise

increases linearly with time nT. It is therefore expected

that the sinusoidal output of the digital oscillator gets

contaminated by roundoff noise until the output is no 1<
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recognizable^ as a sinusoidal signal.

The conclusion above is unreasonable from a physical

point of view. Consider the linearized version (4.8) of

the difference equation (4.6). Together with (4.7b) it is

deduced that the solution of (4.6) must approach the solution

of the equivalent linear difference equation (which is a

sinusoid) if the quantization step-size and thus e in (4.7b)

decreases to zero. From (4.20), however, it is concluded

2
that the mean squared quantization noise o increases with-

out bounds regardless how much the quantization step-size

is reduced.

In contrast, the simulation of (4.6) shows that for

either roundoff or magnitude truncation, limit cycles with periods

up Lo several thousand samples are produced . ^inrp the

shape of these limit cycles, except for small offsets in

frequency and amplitude and a small deformation of the

samples, is essentially sinusoidal and the mean squared

noise is independent of the time nT the result of (4 .20 ) is

not verified by the available experimental data. For the

oscillator defined by (4.6) - as for any other limit cycle

oscillation due to quantization - the stochastic approach

is not applicable because the roundoff noise is correlated

with the output signal and the different noise sources are

not statistically independent. Therefore, only a coherent

analysis is applicable.

The existence of limit cycles for (4.6) has been





1
suggested to the author by J. F. Kaiser in a private com-

munication. Recently,. Todtli and Pfundt [29] have reported

about limit cycles from digital oscillator realizations.

Their work, however, emphasizes the hardware realization

of a digital oscillator using logic circuits.

As a new result a heuristic bound on the frequency of

the digital oscillator is now derived. If the difference

equation (4.G) is linearized and roundoff quantization is

assumed, then from (4.7a) and (4.7b) one obtains

ax(n-l) ± 0.5 + 6 (n-1) = ax(n-l) + ex (n-1). (4.21)

Since 5 (n-1 ) is bounded by 1.0, a bound on e is evaluated as

|e| 1 x
°' 5

• (4.22)
" x (n-1)

For magnitude truncation quantization the bound on c is large?.'' by a

factor of two, such that

|e| < x-^°- . (4.23)
x(n-l)

The coefficient a" of (4.7b) of the digital oscillator can

now be used together with (3.59) to compute upper and lower

bounds on the frequency of the limit cycle oscillations.

This estimate is given by

o 1 -1 ,-a ± e 1 . / A 0/1 \^— = ~— cos ( n—L—L
) . (4.24)

f 2tt 2

J. F. Kaiser, Bell Telephone Laboratories, Inc.,
Murray Hill, New Jersey 07971.
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Up to this point the derivation of (4.24) has been exact.

However, for the calculation of the bounds on the frequency

a choice has to be made about which x(n--l) should be used

for the calculation of e from (4.22) or (4.23). If

x(n-l) = , no roundoff or truncation occurred and e = 0.
.A.

In general x(n-l) can have values between 1 and the maxi-

mum value of x(n). The difference in frequency between the

linear oscillator and the quantized oscillator does not

depend on the e: evaluated for one specific sample x(n-l)

but on the average e evaluated from all the samples in the

limit cycle. For this reason x(n-l) in (4.22) or (4.23) has

been chosen here as the average amplitude of the limit cycle

which is estimated by

x(n-l) = - • A, (4.25)

where A is the amplitude of the limit cycle. From (4.22) -

(4.25) it follows that the frequency of the quantized

digital oscillator is bounded by

f
1 -1 , a A?r , , , o, , 1 -1 , a Att ,

2¥ COS ( ~2 +
TfA

} K ( f">
< 2? COS { ~2 " M '

'

s q

(4.26)

where A = 0.5 for roundoff and A = 1.0 for magnitude truncation.

The heuristic derivation of the frequency bounds has

been verified by experiment. A comparison between the

observed frequencies of the limit cycle oscillations and

the computed values for the bounds indicates that the bounds

are not exceeded for those i >les considered in t;
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section. Next the simulation program for the digital oscil-

lator is considered.

For the purpose of this section the difference equation

(4.6) is implemented by a computer program, called Analysis

Program for a Digital Oscillator. It is listed at the

end of this dissertation. The program is written in FORTRAN

IV. To avoid any errors due to number conversion from

decimal to binary representation (compare with section IV. B)

,

all arithmetic involved with solving (4.6) is done in an

integer mode. This is achieved by scaling all decimal frac-

tions until an integer results. By proper bookkeeping of

the scale factors the correct arithmetic result is obtained.

Another important aspect of the computer implementation

LO UljL\_

programming purposes it is easier to keep the quantization

step-size constant and increase the initial conditions and

thus the dynamic range of the oscillator response. That

this kind of scaling is equivalent to varying the quanti-

zation step-size can be seen from the following simple

example. Suppose (4.6) is solved for a = -1.86, x (1 ) =

and x(2) = 1 with roundoff at the second digit after the

decimal point. Then x(3) = -[1.86] = -1.9. Now, (4.6)

is again solved for the given a and x(l) , but for x(2) = 10

and with roundoff at the first digit after the decimal

point. 'Then x0) = [18.6] = -19.0, and, after scaling

down by a factor of 10 , the result from the second example

equals the result from the first example.
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After this introductory description of the program

algorithm, the mathematical model used is now presented.

Given values for the coefficient and the initial conditions

x(l) = and x(2) = M, the program performs a comparison

between the responses of a linear, infinite precision digi-

tal oscillator and a quantized digital oscillator.

The pertinent

characteristics of the linear oscillator, amplitude and

frequency, are computed from the results of Chapter II as

f , ,

_2_ = _£ cos L
C. - |), (4.27)

s

and

M
A = , t A OQ1

sin C-j—

)

s

To be able to compute frequency and amplitude of the

quantized version of the digital oscillator some choices

about the necessary approximation for the limit cycles have

to be made. Since the resulting limit cycles are nearly

sinusoidal a polynomial approximation has been ruled out

immediately. A least square approximation has been prefer-

red over a discrete Fourier series expansion because the

first is easier to calculate. A discrete Fourier series

expansion of the limit cycle is expected to show a broaden-

ing of the spectral line which represents this limit cycle.

The width of the spectral line may then be a measure of
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deviation from the ideal sinusoidal response. This subject

has to be left for further research.

The least square approximation for the generated limit

cycles is now considered. It is assumed that the samples

of the limit cycle with period qT and frequency f /f

[x(l) = 0, x(2) , ..., x(q)] (4.29)

are deformed versions of a sinusoidal response, described

by

[0, A sin a) T, A sin co
2 T . A sin co qT] . (4.30)

' o o o^

Then, the amplitude A of the sequence (4.30) can be esti-

mated by minimizing the following cost function I, which

corresponds to the sum of the squared differences between

the members of the sequences (4.23) and (4.30),

I=J t x (i) ~ A sin Ci-D w T] . (4.31)
i=l

°

I is minimized, if

2J= 0, (4.32)

and

3A

9
2
T

> 0. (4.33)
2

9A^

~=
I [2A sin

2
(i-l)w T - 2x(i) sin (i-l)ci) T] .

•8A i=l

(4.34)

~2 q

^rr = 2 I sin (i-l)o) T > 0. (4. 35]

3A 1=1
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From (4. 35} it is seen that I is indeed minimized if the

condition (-1.32) is applied to (4.34). The estimated

amplitude A obtained from (4.34) is

>' x (i) sin (i-1 ) to T
i=l

°
A = — . (4.36)

2
> sin (i-l)io T

i=l

The denominator of (4.36) can be simplified , such that

q

A = - J x(i) sin(i-l)o) T. (4.37)a .
L . o^ r=l

As is expected from a least square approximation, A is a

weighted average. The average deviation fi'om the ampli-

tude, or the measure of deformation, is obtained by com-

puting I from (4.31) and defining the measure of deforma-

tion as

6A =*U - » (4.38)

With the numbers from the least square approximation of the

limit cycle available, it is now possible to compare the

ideal response from the linear digital oscillator with the

limit cycle response from the quantized digital oscillator.

For a specified coefficient a and initial conditions

See, for example, Hildebrand [35] , p. 27 3.
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x(l) = and x(2) (where x(2) varies between 1 and 120 0)

the absolute differences in frequency and amplitude are

computed as

f

FDIFF = I (~) , . - -| , (4.39)
1 f linear q

'

' '

s ^

/\

AD IFF = | A - A
|

. (4.40)

f

For the expression (4.39), (t— )
-> • is computed from^ ' f linear ^

s

(4.27), and p and q are integers obtained from the actual

limit cycle by counting the number of sign-changes 2p be-

tween samples, and the period of the limit cycle q. For

the expression (4.40), A is computed from (4.28) and A is

computed from (4.37).

Computer runs have been performed fur values of a be-

tween -1.10 and -1.90 and initial conditions where x(l) =

and x(2) v?iries from 1 to 1200. For each specified set of

numbers a, x(l) and x(2) the limit cycle response is ob-

tained for roundoff quantization first and for magnitude truncation

quantization second. The data is collected in tables B.17-

B.32 in Appendix B. For explanatory purposes, the data for

a = -1.1 is presented in Tables 4.2 and 4.3 at the end of

this chapter. The columns in the tables are labelled as

follows

:

AMP = amplitude A of linear oscillator,
evaluated from (4.28)

Q = period of limit cycle,
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FDIFF = absolute difference in frequency

,

defined by (4.39) ,

AD IFF = absolute difference in amplitude,
defined by (4.40),

DELTA = measure of deformation <$A, defined
by (4.38).

If a limit cycle period qT is larger than q = 5000, the

evaluation has been stepped and the entries in the table are

arbitrarily set to q = 5000 and zerc for the other variables

A numerical example is now considered to illustrate the

use of the tables B.17 - B.32. Suppose the following speci-

fications for a digital oscillator are given:

f = oscillator frequency 1000 Hz ± 1Hz,

— diupxx i_u«.j.e -L — <J . ux ,

q = 16 samples per oscillation period.

First the sampling frequency f is determined from (3.57b),

f
oq 1000-16 1C .

„

f = =
t

= 16 kHz.
s p 1

Then the oscillator coefficient a is computed using

o _ p _ 1

f q ~ 16
s ^

and

a = -2 cos —*- = -1.85

If the oscillator is realized using roundoff quantization

tables B.29 and B.31 apply. FDIF computed as
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FDIFF = =—- = 0.625-10 4
.

16.10

Entering table B.31, (a = -1.9), it is found that for

-4
A - 1000, FDIFF = 0.2*10 and the frequency specification

is met, even considering a margin of safety. The corres-

—3
ponding value computed from the bound (4.26) is 0.16*10

-3
Scaling the amplitude by a factor of 10 , it is found that

the amplitude specification is met, because the average

deviation from the amplitude from t£ible B.31 is 4.7 for

A ~ 1000 or 0.0047 < 0.01 for A ~ 1 .. For an amplitude of

-3
A = 1, the required quantization step-size is 10 . This

is obtained from scaling the quantization step-size 1,

on which the results in the table are based , by a factor

of 1000. This corresponds to 3 significant digits if

3decimal arithmetic is employed or to ^ ^- ~ 10 significant

bits if binary arithmetic is used. A check in table B.29

(a = -1.8) verifies the preceding approximate calculation.

A check in tables B.30 and B.32 for magnitude truncation shows that

more bits are needed to meet the frequency specification.

For A ~ 3000 both the frequency and the amplitude specifi-

fications are met. This corresponds to 3.477 significant

decimal digits or 12 significant bits if binary arithmetic

is employed.

From the preceding discussions it is now possible to

draw the following conclusions:
f

a) The frequency -~— = — of a practical digital :
; 1~

lator realization can only be realized in discrete steps.
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This is due to the fact that the coefficient a, which deter-

mines the frequency, is represented by a finite number of

digits (compare with Ch. II). In addition, a small offset

from the nominal frequency is present due to quantization

of product- terms . This offset is tabulated under FDIFF.

The offset in frequency decreases approximately linearly

with a corresponding increase in amplitude. This decrease

is more rapid for roundoff than for magnitude truncation. For

A 1000 and a quantization step-size of 1, which corresponds

-3
to a quantization step-size of 10 if A is scaled down such

-5
that A - 1.0, the offset in frequency is about 10 for

-4
roundoff and about 10 for magnitude truncation as obtained from the

tables of Appendix B. The corresponding values computed

-A
from the bound (4.2C) arc around 10 for roundoff and about

-3
0.5*10 for magnitude truncation.

b) The offset in amplitude is practically constant over

the range of amplitudes considered. The corresponding-

offset, expressed in percent of the amplitude, decreases by

a factor of 10 for every increase of the amplitude by a

factor of 10.

c) The deformation of the limit cycle compared with

the ideal sinusoidal response is, again, practically con-

stant over the range of amplitudes considered. The small

numerical values for the deformation verify the initial

choice of a least square, approximation for the limit cycle.

d) • In summary, and as a consequence of the preceding

remarks, it can be concluded that any degree of ap
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to an ideal sinusoidal response can be achieved with the

quantized oscillator defined by (4.6). Thus, any elaborate

scheme to reduce the deformation of the response (for ex-

ample, resetting the oscillator as proposed by Gold and

Rader [5]) is unnecessary.

E . SUMMARY

The results from three computer programs have been

presented to verify the analytic results of the preceding

chapters with experimental data.

The analysis program for zero-input limit cycles, i.e.,

the natural response of a two-pole digital filter, enumerated

all possible limit cycles for specified filter coefficients

a and b for the initial conditions studied which have been

chosen to cover a broad practical range .
Thp. limit cycles

are tabulated and plotted on the successive value phase-

plane. This data is compiled in Appendix B. The phase-

plane plots showed a symmetry axis at 4 5 or 13 5 , depending

whether a < or a > . The phase-plane plots of the two

sets of limit cycles for coefficients -a and b- and coeffi-

cients +a and b are equal in shape. It is thus concluded

that a bound computed for the first set of coefficients is

equal to the bound computed for the second set of coeffi-

cients. In other words, a change in sign of the coefficient

a does not change the value of the respective amplitude

bound

.

The recorded amplitudes of the limit cycles stay inside

the bounds defined by (4.1), (4.2), and (4.5) as expected
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because their derivation is exact. Exceptions for the

bound (4.3) are presented. It was concluded that the bound

(4.2) should be used if worst-case information about the

limit cycle amplitude is needed. The bound (4.4) is most

easily applicable. However this bound can only be considered

a rule-of-thumb . The numerical comparison of bounds (4.1)

and (4.2) , using data computed with the comparison program

for the above mentioned bounds, shows that the bound (4.1)

derived from one Lyapunov function of the digital filter,

is primarily of theoretical interest because of its broad-

ness. The results from the digital oscillator simulation

program were employed to demonstrate that the stochastic

approach for estimating the quantization noise due to round-

off or truncation after multiplication as discussed by Rader

and Gold [12] fails to agree with experiment. The inter-

pretation of the experimental data shows that only a co-

herent or deterministic analysis can lead to useful results.

The data also shows that any degree of approximation of

an ideal, i.e., infinite precision, digital oscillator can

be achieved by reducing the quantization step-size. This

is equivalent to specifying more significant digits for

data and filter coefficients.

It seems appropriate to comment about the relation be-

tween sampling time T and the number of significant digits

used to represent sampled data [40] . This was first

mentioned in Chapter II, where finite representation of fil-

ter coefficients was studied. It was shown there J
.
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sampling too fast may result in an undesirable response.

Consider two neighbouring samples of a function f (nT)

.

Connect the sample values by a straight line with a slope

given by

Af (n)

T
= K = constant, (4.41)

where Af(n) = f (n) - f(n-l) denotes the first forward

difference of the function f (nT) . If finite representation

of numbers is used, only those changes in the functional

values can be distinguished which are larger than the

quantization step-size determined by the number of signi-

ficant digits. Denote the quantization step-size by A . It

is reasonable to require that

A < Af (n) . (4.42)
max

For a sinusoidal signal with amplitude A = 1, and

(

A
-

f
i
n)

) = 1. it follows that A< T or f < i. From this
T max ' s A

simple calculation it can be concluded, that it is useless

to sample a normalized sinusoid faster than with sampling

frequency f = j- . The general relation between sampling

frequency f and quantization step-size A
j_ s derived from

(4.51) and (4.42) as

f = £, (4.43)
s A

'

where K'= maximum slope between samples. The quantization

step-size chosen is inversely proportional to the sampling

frequency

.
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As an area for further research reconsider the approxi-

mation problem for the limit cycles generated by the digi-

tal oscillator. For the treatment of this chapter a least

square approximation has been chosen and the numerical

results have verified this choice. However, it v;ould be

interesting to represent the limit cycles by discrete Fourier

series and relate the expected spectral broadening to the

deviation of the observed limit cycles from an ideal sinu-

soidal response.
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LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A=-l. 800000000, B= 0.937000000, APPROXIMATE FREQUENCY F= 0.060006
THE AMPLITUDE BOUNDS ARE A 1= 7. 937, A 2 = 7.299

LIMIT CYCLE # 1WITH FREQUENCY F= 6.25000CE-02 IS
4 1-2-5-7-0-7-6-4-1 2 5 7 8

LIMIT CYCLE # 2WITH FREQUENCY F= 7.142857E-02 IS
-6 -5 -3 3 5 6 6 5 3 0-3-5-6

LIMIT CYCLE # 3WITH FREQUENCY F= 7.142857E-02 IS
-5 -4-2 2 4 5 5 4 2 -2 -4 -5

LIMIT CYCLF >' 4WITH FREQUENCY F= 8.333333E-02 IS-4-3-1 1 3 4 4 3 1-1 -3 -4

LIMIT CYCLF fl 5UITH FREQUENCY F= 7.142857E-02 IS-3-2-10123321 -1 -2 -?

LIMIT CYCLE # 6WITH FREQUENCY F= O.OOOOOOE+CO IS -2

LIMIT CYCLE ' 7WITH FREQUENCY F= O.OOOOOOE+00 IS -1

LIMIT CYCLE V 8WITH FREQUENCY F= O.OOOOOOE+00 IS

LIMIT CYCLE # 9WITH FREQUENCY F= O.OOOOOOE +OO IS 1

LIMIT CYCLE H 10WITH FREQUENCY F= O.OOOOOOE+00 IS 2

Table 4.1: Zero-input Limit. Cycle Oscillations
for a =-1.8, b - 0.937.
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LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A=-l. 800000000 i B= 0.937000000

-1C -9 -8 -7 -6 -5 -4 -3-2-10123456789 10

10

9 .

8 1

7

6

5

4

3

2

1

-1

-2

-3

-4

-5 1

-6

-7 1

-8 1

-9

-10

Fig. 4.2: Phase-plane Plot for Digital Filters
with a = -1.8, b = 0.937.
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Fig. 4.3; Amplitude Bound (Lyapunov)
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x-axis = a, 0.6 units per inch

Fig. 4.4: Amplitude Bound for Period of Limit Cycle q = 4

(See Eqn. (3 . 43 J >
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x-axis = a, 0.6 units per inch

Fig. 4.8: Amplitude Bound for Period of Limit Cycle q

(See Eqn. (3.43)

)
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ROUND'-OFF QUANTIZATION ANALYSIS, . A = -ioli

AMP Q FDIFF AD1FF DELTA

1.15 6. G.935E-G2 0.954E-- 6 0.120E--0 5

2.31 6. 0.935E-02 0. 191E-- 5 0.26GE--C5

3.46 6. 0.935E-02 0.236E--05 Q.379E--05

4.6? 6. 0.935E-C2 D.572E-.ft r 0.565E--f 5

6o.r>8 13. 0.347E-02 D.142E 00 . 2 3 8 E OG

7.29 13. 0.347E-C2 G.426E 09 0.275E 00

8,46 58. 0.214E-02 0.74CE 00 G.349E co

9.62 32. 0. 106E-02 0.498E 00 0.330E 00

10.78 70. 0.171E-03 0.721E (

• C.315E r q

11.95 19. 0.581E-03 0.487E 00 0.300E 00

23.96 ( W ; e 0.171E-C3 0.910E 0.466E £>r

35. 9Q 51. O.451E-03 0. 144 E. 00 0.332E 00

47.96 172. 0^337E-03 0. 11 4E oo 0.515E 00

59.91 70. 0.171E-G3 0.396E 00 0.475E 00

71.89 70. 0.171E-G3 0. 834F 0.483E 00

83.81 286; 0. 287E-04 0. 100

E

•

'

c 4 8 6 F , > ' .

95.86 7 Go G.171E-G3 « 1 3 3 E .398E

10 7*84 70, 0.171E-03 0. 393E 'J 'J 0.33 2E oo

119. 78 159c 0.812E-04 C.4 51E G 0.807E

239.51 426. G.369E-04 0.961E 00 C.723E 0(3

359.23 178. 0.106E-04 0.225F--01 0.637E

47 8.9 8 2918. 0.144E-O4 0. 129E 01 0.256E 1

598.72 2918. 0.144E-04 0.472E (
1

1

0.315E 01

718.45 1246. 0.106E-04 0.369E 01 C.233E 01

838.19 8 9. 0.106E-04 0.408E 0.426E

0.0 5000. 0.0 0.0 0.0

1077.6 8 89. 0.106E-04 0.927E 0.651E

1197.39 1888. 0.459E-05 0.477F 01 e 270E 01

1317.13 3420. 0.3 99E-05 0.946E 01 C.72CF Q 1

1436.91 178. 0.106E-04 0.146E 01 .99 8E

Table 4.2: Diaital Oscillator Analysis





TRUNCATION

AMP Q

1.15 6.

2.31 6.

3.46 6.

4.62 6.

5.77 6«

6o93 6c

8.08 6.

9.24 6.

10o39 6c

11.81 56o

23.77 44.

35.71 63c

47.62 63.

59.67 2 3 4.

71.67 114.

3.62 114.

95 56 19.

107. 51 19.

119.45 38.

239.2 6 146.

358.97 3372.

47 8.72 440 2.

598.45 972.

718.20 1042.

837.93 1328.

957.67 3514.

1077.42 394.

1197.14 394.

0.0 5000.

0.0 500Q.

QUANTIZATION

FDIFF

0.935E-02

0.935E-02

0.935E-02

0.935E-H2

O.935E-02

0.935E-02

0.935E-02

0.935E-02

0.935E-C2

0.340E-02

C.178E-02

0.142E-02

0-.142E-Q2

0.806E-03

0.581E-O3

. 5 8 1 E- 3

0.581E-Q3

0.581E-03

0.581E-03

0.220E-C3

0.159E-03

0.115E-03

0.935E-04

C.757E-C-4

0.656E-04

O.566E-04

0.465E-O4

0.465E-D4

0.0

0.0

ANALYSIS, A

ADIFF

0.954E-06

0.191E-05

0.286E-05

0.572E-05

0.763E-05

0.572E-05

0.134E-Q4

0.114E-04

0.143E-G4

0.303E 00

0.311F 00

0.308E 00

V<, 889E 00

0.392E 01

. 1 5 5 E 01

0.204E 01

0.808E I

0. 129E 01

0.298E 00

0. 176 E I

0.610E 00

0.356E 01

0.757E

0.392E 01

0.158E 00

0.135E 01

o.2«ie ei

0.684E-01

o.c

0.0

=-1.10

DELTA

G .120E-Q5

Q.260E-O5

O.379E-05

0.565E-05

0.728E-05

0.781E-05

0.108E-04

0.107E-Q4

0.127E-04

0.344E 00

0.23 IE 00

0.516E Cc
<

%

0.446E OD

. 1 8 1 E 1

0.829E 00

UoVOOE 00

0.390E •

<:c5?6E

G.814E 00

O.5C0E

0.156E 01

C.445E 01

0.138E 01

0.152E 01

0.108E 01

0.214E 01

0.1 31E 01

• 1 1 1 E 01

.

0.0

Table 4.3: Digital Oscillator Analysis
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V • THE FORCED RESPONSE

A. INTRODUCTION

The natural or zero-input response of the quantized

digital filter from Fig. 3.4 has been evaluated in the pre-

ceding chapters. The linear equivalent of this filter has

two poles and no zeros in its transfer function. The forced

response of general digital filters with both poles and

zeros is now analyzed with regard to possible limit cycle

oscillations. This analysis is performed in several steps.

First, the step response of the two-pole digital filter

is considered. As a new result it is shown that- the forced

steady-sta-'ie response contains two components. The one

component is a constant which is determined by the size of

the step input and the loop gain of the filter. Tne other

component is a limit cycle oscillation which is related to

the zero-input limit cycles described in section IV, B.

Next, the forced response of the same filter type is

considered for general, deterministic input signals. As

an important new result it is shown that the driven case

can be reduced to a zero-input case if the difference be-

tween the response of the quantized digital filter and the

corresponding linear digital filter is considered. This

difference signal is described by a limit cycle oscillation

whose amplitude is estimated by the same bounds which have

been derived in Chapter III for the zero-input response.

In the same context it is shown that both roundoff i

truncation quantization lead to limit cycle oscili
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Using this result, it is concluded that roundoff should be

preferred over magnitude truncation because the errors due to magnitud3 trun-

cation are up to twice as large as the errors due to roundoff.

The conclusions of this section are tested by computer simu-

lation of a quantized digital filter with sinusoidal inputs

of varying amplitude and frequency. As expected, the ampli-

tude of the limit cycles is independent of the sinusoidal

input and remains inside the bounds derived in Chapter III.

The frequency of the limit cycles is unpredictable, but

seems in most cases to stay inside a band determined on the

one end by the resonant frequency of the filter and on

the other end by the lowest zero-input limit cycle frequency.

The second-order digital filter section with both zeros

and poles in the transfer function of the equivalent linear

filter is studied in the following section. This general

case is important because all practical filters have zeros

in their transfer function. The zeros are shown not to

change the nature of the limit cycle. However, they in-

fluence the magnitude of the limit cycle amplitude. As a

new result it is shown that for specified zeros the magni-

tude of the limit cycles in the output of the digital fil-

ter can be minimized through a proper choice of the filter

configuration. If the zeros are located in the right half

of the unit circle in the z-plane then the configurations

S , S , S are to be preferred over their transpose
a -. a ^ a -5

^- *• T 'V T1

counterparts S , S , S . If the zeros are in the left
a
l

a
2

a
3

half of the unit circle the reverse is tru
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Finally, higher order digital filters of the cascade

and the parallel form are considered with regard to limit

cycles in their outputs. A bound on the amplitude of the

limit cycles in the output of the parallel form is stated.

A similar result for the filter of the cascade form can be

formulated. Each limit cycle output from one filter sub-

section is the input to the next subsection and is fil-

tered there and in the subsequent sections. To estimate

the filtering action of the different stages in the filter

cascade to which the limit cycle is input, it is necessary

to know the frequency of the limit cycle with sufficient

accuracy. This information about the frequency is only

available for zero-input limit cycles. For limit cycles

t-tV* i *•*« V\ —» >» /-\ /-»^n *"» **"\ v "» 4" ^^n *5 *"* "^ *a **" 4" «>£ 4- 1-\ ^ •£ *•* >» *~» ^v ^ -^ ^-* <•* -v-> ^ »^ ^-» ^*. -. a-
niixvii CilC ^L.uOj.Uu^u do (vuj. w o a- v,Xi.<— x. <J i. \^ o <~«. jL^O^^/ns^f jl. i-

has not been possible to estimate the frequency with rea-

sonable accuracy. This problem remains for future considera-

tion.

B. STEP INPUT TO THE TWO-POLE DIGITAL FILTER

As an introductory example, the step response of the

two-pole digital filter from Fig. 3.4 is now considered.

It is shown in the later sections that the result obtained

for this simple filter configuration can be extended to

more complex configurations , including those with zeros in

the transfer function. The difference equation defining

the digital filter from Fig. 3.4 is repeated here for

convenience

:

x(n) = [a x(n-l)] - [b x(n-l)] + u(n). (5.1)
Si Si
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For a step input

u(n) = c, (5.2)

where c is a signed constant.

The response of the corresponding linear infinite pre-

cision digital filter is composed of a decaying sinusoid,

superimposed on a constant, whose value is determined by

the loop gain ( -,,
, h

-) of the filter. It is therefore rea-

sonable to expect that the step response of the quantized

digital filter is composed of a constant amplitude limit

cycle superimposed on the above mentioned constant value.

That this is indeed the case is shown theoretically and has

been verified by computer simulation.

First, Lhe s Lep response of (5.1) is evaluated for

roundoff quantization. Then, a similar development is out-

lined for magnitude truncation quantization. For simplicity, assume

that a < , b > . The development for a > , b > leads

to the same result. Furthermore, assume that the steady-

state response of (5.1) contains two separate components,-

such that for some integer N

/\

x (n) = A + x (n) , n >^ N. (5.3)

Here the finite precision components of x(n) are defined

as

A = constant '

x (n) = samoles of the limit evele around A.
o 2

Substituting (5.3) into (5.1) yields
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A + x (n) = -IaCA+x (n-1))] -[b(A+x (n-2))] +c

= -a[A+x (n-1)] :- (0.5-5 (n-1) )

-b[A+x (n-2) ] ± (0.5-6 (n-2) )+c. (5.4)

Separating the constant response from the limit cycle re-

sponse in (5.4) results in two equations. They are:

A =
1+a+b ' (5 * 5)

x (n) = -a x (n-1) ± (0.5- 6 (n-1)) - b x (n-2)o o o

± (0.5-6 (n-2) ) . (5.6)

Equation (5.5) is recoqnized as the steady-sLaLe response

of the corresponding linear filter. Equation (5.6) de-

fines a limit cycle which is equivalent to the zero-input

limit cycles discussed in Chapter III and, therefore, all

the amplitude bounds discussed there apply to the limit

cycles defined by (5.6). It is important to note, however,

that the roundoff sequences 6 (n) are not only a function

of x (n) , but also a function of A, however, they are

always bounded by 1.0. The frequency of the limit cycle

defined by (5.6) is therefore a nonlinear function of the

digital filter coefficients a and b and of the input and

output of the filter.

The computer simulation of the digital filter (5.1)

has verified these results. Lmii r,
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together with the constant bias (5.5), are essentially but

not exactly the same as those which occur for zero-input to

the filter.

It has been impossible to predict the limit cycle num-

ber, as defined for the zero-input case, for a limit cycle

in the output of the filter for a given constant value c

of the input u(n). For a variation of the input value c

over a range of several hundred units a weak pattern in

the repeated occurance of certain limit cycles is visible.

However, due to the many exceptions from this pattern, it

has been impossible to postulate any law relating the in-

put value c to the occurrence of a particular limit cycle.

The development stated for roundoff quantization is. now

repeated for magnitude truncation quantization. Using identical

assumptions as for roundoff, (5.4) is changed to

A + x (n) = -a [A + x (n-1)] - 6(n-l)
o o

-b[A + x (n-2)] +6(n-2) + c. (5.7)

Separating the constant response from the limit cycle re-

sponse results in similar equations as derived for round-

off. The nature of the step response of a digital filter

employing magnitude truncation is equivalent to the step response

of the same filter employing roundoff. The amplitude

bounds discussed in Chapter III are again applicable.

C. GENERAL INPUTS TO TWO-POLE DIGITAL FILTERS

The forced response of the two-pole digital f :
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Fig. 3.4 for a general input signal u(n) is studied in

this section. The analysis of the forced response is re-

duced to the analysis of a zero-input response by subtract-

ing the forced responses of the quantized and the linear

digital filter and studying the resulting difference signal,

The forced response of the linear digital filter is given

by

x(n) = -a x(n-l) - b x(n-2) + u (n) . (5.8)

The forced response of the quantized digital filter employ-

ing roundoff is given by

x(n) = --a x(n-l) ± [0.5 - 6(n-l)]

-b x(n-2) ± [0.5 - 6(n-2)] + u(n). (5.9)

The difference signal d(n) between x (n) and x(n) is de-

fined as

d(n) - x(n) - x(n) . (5.10)

Subtracting (5.8) from (5.9), one obtains for d(n)

d(n) = -ad(n-l) ± [0 .5-6 (n-1) ]

-b d(n-2) ± [0.5 - 6(n-2)], (5.11)

where 6 (n-1) and 6(n-2) are numbers, such that C <_ |
6

|
< 1.0

Equation (5.11) is identical in form to (3.14), which de-

fined the zero-input limit cycles studied in Chapter III.

However, the roundoff sequences 6 (n-1) and 6(n-2) are not

only a function of d(n), but also a function of >
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This can be seen from (5,9). The latter conclusion has no

bearing on the amplitude bounds, which were derived for

(3.14) in Chapter III. Their derivation did not include

any assumption about the specific nature of the roundoff

sequences. The only condition used is stated with (3.14)

and requires that the roundoff sequences are bounded.

Thus, the amplitude bounds derived for (3.14) are directly

applicable to the limit cycles defined by (5.11). How-

ever, the above mentioned conclusion influences the fre-

quency of the limit cycle because the frequency is now a

nonlinear function of the digital filter coefficients a

and b, the amplitude of the limit cycle and, additionally,

the input signal u(n) . For zero-input limit cycles the

fr^qnen^y has hppn approximated by the expression (3.59) ,

derived from the corresponding linear filter. This approxi-

mation is no longer valid for the limit cycles contained ir.

the forced response due to the nonlinear dependence on the

input signal u(n).

The foregoing development is now repeated for magnitude trun-

cation quantization. The forced response of the quantized

digital filter employing magnitude truncation is given by

x(n) = -a x(n-l) ± 6 (n-1)

-b x(n-2) ± 6(n-2) + u(n). (5.12)

Subtracting (5.8) from (5.12) to obtain the difference sig-

nal d(n) as defined by (5.10) yields
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d(n) = -a d(n-l) ± 6 (n-1)

-b d (n-2) ± <5 (n-2)

,

(5.13)

where 6 (n-1) and 6 (n-2) are numbers, such that < |s| < 1.0.

Equation (5.13) is identical in form to (3.68). However,

the truncation noise sequences 6 (n) are a function of x(n),

as can be seen from (5.12).

For the zero-input case (3.68) it has been shown in

Chapter III that limit cycles with frequencies f /f , such

that < f/f <: 2' cannot exist for magnitude truncation quanti-

zation. On the other hand, such limit cycles can exist in

the driven case. This is now demonstrated by showing that

the coefficient b of (5.13) in general has an effective

value of fa — 1 and limit cycle osciX3.9ti.ons r^n be sus-

tained. Suppose d(n-2) in (5.13) is a negative number

and x(n-2) in (5.12) is a positive number. The coeffi-

cient b has in general values, such that < b < 1.0.

It follows from (5.12) that 6 (n-2) must be a positive num-

ber. From (5.13) the effective value for b is defined as

b ' , such that

-b d(n-2) + 6 (n-2) = -b'd(n-2). (5.14)

From (5.14) it is seen that there are many values < b < 1.0 /

|d(n-2)| >_ 1.0 and <_ 6 (n-2) < 1.0 which satisfy (5.14)

such that b' = 1. In other words, from (5.14) and using

the bound on 5 (n-2), it is deduced that b 1 = 1 for values

of d(n-2) (and therefore, ince d(n-2) is jus
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delayed version of d(n))such that

1.0 < |d(n-2)
|

< if£ . (5.15)

If (5.15) is satisfied limit cycles have to be expected.

The same conclusion is reached for the case where d(n-2)>
A

and x (n-2) < .

That this is indeed the case has been verified by

computer simulation. While it has been impossible to pre-

dict the frequency of the limit cycle defined by (5.13),

the amplitude bounds derived in Chapter III still apply,

if a multiplication factor of two is included. This is

necessary because "the magnitude truncation error sequences are up

to twice as large as the corresponding roundoff error

sequences. The preceding discussion shows that magnitude truncatioi

quantization offers no advantages over .roundoff quantization

if suppression of the possible limit cycles is contemplated.

The results of this section were tested for sinusoidal

inputs of various amplitudes and frequencies. The linear

operation of the digital filter is approximated in the

simulation program by employing double precision (16 signi-

ficant digits), floating-point arithmetic. The difference

signal d(n), defined by (5.10), is recorded for n - 1 to

4608. After computation of 512 samples for d(n), it is

assumed that the steady-state condition has been reached

and the following 4096 samples are then used to compute

an estimate of the discrete Fourier Transform for C1

by employing the Fast Fourier Transform (FFT) ale;
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[36]. The discrete Fourier spectrum of d(n) has been

computed because initial experiments indicated that it is

impractical to deduce the several possible frequency com-

ponents of the generated limit cycJ.e by counting the num-

ber of sign-changes of the samples and the period of

limit cycle.

For roundoff quantization and one set of filter coef-

ficients a = -1.87, b = 0.95, results concerning the ampli-

tude of the limit cycles are recorded in the following

table. The input signal to the digital filter is described

by u(n) = A. sin 2IIf.nT.J l i

A. Range of Range of Median of |d(n)

|

f /f |d(n)| for 11,13 or ]

4

max
v\ 3.y

different input

frequencies

1 0.000977 to 0.23 2.56 to 12.14 7.1

10 0.000977 to 0.25 1.79 to 15.34 10. C

10 0.038 to 0.051 3.14 to 14.76 8.6

100 0.000977 to 0.25 3.13 to 13.39 9.8

1,000 0.000977 to 0.25 4.38 to 15.01 8.5

1,000 0.036 to 0.050 6.14 to 12.19 10.9

100,000 0.000977 to 0.25 1.78 to 13.90 9.6

As expected, the amplitude of the limit cycles is in-

dependent of the input signal. Using the two most easily

computable amplitude bounds from Chapter III, (3.53) from

the effective value linear model yields

|d(n)
|

< 10, (5.J r '

and (3.55) for the exceptions from the effec
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linear model yields

|d(n)
| <_ 30. (5.17)

The available data, obtained for various representative

values for the filter coefficients a and b, indicates that

the experimental and theoretical results for the amplitude

of the limit cycles are verified.

The experimental results for magnitude truncation are summarized

in the following table:

A. Range of Range of Median of d(n)
1 ^ J

'
' max

f /f |d(n)

I

for 11 differentos ' 'max
input frequencie:

10 0.000977 to 0.25 0.86 to 11.33 9.3

1,000 0.000977 to 0.25 3.20 to 11.39 8.8

The experimentally obtained amplitudes of the limit cycles

are well within the computed amplitude bounds, which are

20 (computed from (3.53)) and 60 (computed from 3.55)).

The inspection of the data representing the discrete

Fourier spectrum of the difference signal d(n) presents

a confusing picture. One or many spectral lines may re-

present a limit cycle without any apparent pattern concern-

ing the appearance and number of recognizable spectral com-

ponents. Most, but not all of the frequency components in

the spectrum, appear to be within a band defined by

f f f p r*r . o . >c

f-if-if- '
(5 * 18)

s s s
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f^-= I, • (5.19)

where

f = resonant frequency of the digital filter,

f •- frequency component in the spectrum re-
presenting d (n) ,

f. = lowest limit cycle frequency from the
zero-input case.

Furthermore, if the frequency of the input signal, f .
, and

the sampling frequency, f , are related by an integei* I,

such that

f

l

then a limit cycle containing only one strong spectral com-

.ponent can be expected most of the time (but not always).

In addition, harmonics of either the input or the dominant

component of the limit cycle can sometimes be observed.

It has to be left for further research to develop a better

understanding of the frequency of the limit cycles generated

by either truncation or roundoff quantization in the pre-

sence of a forcing function to the digital filter. Despite

the lack of understanding of the frequency of the limit

cycles in the forced response, a new result about the ampli-

tude of the limit cycles has been formulated in this section

If limit cycles are considered unwanted noise, then their

magnitude can be reduced below a specified threshold value

by relating the derived amplitude bounds to the quanti-

zation step-size. In other words, using a worst-case de-

sign, the necessary number of significant digits c
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specified so that the limit cycle response is effectively-

suppressed .

Before this conclusion can be stated more formally,

however, it is necessary to extend the results for the two

pole filter of Fig. 3.4 to the general case of digital

filters with both poles and zeros in the transfer function.

D. THE INFLUENCE OF ZEROS IN THE TRANSFER FUNCTION ON
THE LIMIT CYCLES

So far, the natural and the forced response has been

studied for the two-pole digital filter as depicted in Fig.

3.4. This restriction arises naturally because the limit

cycle oscillations -of the quantized digital filter are

defined completely by a knowledge of the poles or eigen-

values of the filter. However , all practical digital fil-

ter realizations contain zeros in their transfer function.

The zeros do not change the nature of the limit cycle. How-

ever, they introduce additional gain, which may change the

magnitude of the limit cycles.

In this section, the influence of the zeros on the

limit cycles of a second-order digital filter section is

considered. The treatment is restricted to the six most

important and most often used digital filter configurations

[2]. They have been derived in Chapter II and are re-

T T T
presented by the S-matrices S , S , S , S , S , S .

a
l

a
l

a
2

a
2

a
3

a
3

First, consider the configuration S , which is depicted
a
l

in Fig. 2.4. Define the output of the leftmost summina

node as y(n). Then, with quantization after mult:'
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operations included

y(n) = -[a y(n-l)] - [b y(n-2}] + u(n). (5.20)

Equation (5.20) is identical to the difference equation con-

sidered in the preceding section. Jt describes the limit

cycle oscillations completely.

The output of the digital filter x(n) is obtained as

x(n) - [c y(n-l)] + [e y(n-2)] . (5.21)

If the bound on limit cycles defined by (5.20) is designated

by A., and roundoff quantization is assumed then the bound
-L

A~ on the limit cycles in the filter output x(n) is evalua-

ted from (5.21). Designate x (n) as the limit cycle of

the response x(n) and v. (n) as the limit cycle of theL - X/C

response y (n) . The limit cycle x
p

(n) has the biggest

possible amplitude, if y. (n) = y. (n-1) = y p
(n-2 ) . From

(5.21) one obtains

x
£c

(n) - c y£c
(n-l) ± 0.5 + 6 (n-1)

+ e y£c
(n-2) ± 0.5 + 6 (n-2), (5.22a)

and

x
£c

(n)
l i |c+e||y

£c (n)|+ 1.0. (5.22b)

This can be rewritten as

A
2 i l

c+e
l

A
i

+ 1 -°- (5.22c)

An identical result is obtained for the conf iguration
a
2

(see Fig. 2.4), because S and S differ only by .

a
l

a
2
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of the filter coefficient d, which does not enter into the

result (5.22c). As can be seen from Fig. 2.4, d = for

S and d = 1 for S
a
l

a
2

The configuration S is depicted in Fig. 2.6. Following
a
3

the same steps as for the preceding derivation, it is found

that

x(n) = y(n) + [ (a+c) y(n-l)] + [(b+e) y(n-2)l.

(5.23)

If a limit cycle occurs and its amplitude is bounded by A,

,

the largest possible contribution of this limit cycle in

the filter output is designated A~ and is bounded by

A
2

<^ |l+(a+c) + (b+c)
|
A + 1.0. (5.24)

rp rp m
Next, the throe transDOse configurations S , C ar.d E"

1

S
l ~2 a

3

are considered. The configuration S is depicted in Fig.
a
l •

2.5. The output of the digital filter is described by the

difference equation

x(n) = -[a xCn-1)] - [b x(n-2)l +

+ [c u(n-l)] + [e u(n-2)] . (5.25)
71 1

Combining the two input terms into one term, designated

u ' (n) , such that

u'(n) = [c u(n-l)] + [e u(n-2)] , (5.26)

(5.25) can be rewritten as

x(n) = -[a x(n-l)] - [b x(n-2)] + u'(n). (S.
'^

J

q
J

q
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Equation (5.27) is identical in form to (5.1), which was

investigated in the preceding sections. The amplitude bound

from Chapter III applies directly to a limit cycle from

(5.27). An inspection of Fig. 2.5 for the configuration

T T
S and Fig, 2.7 for configuration S indicates that the
a
2

a
3

conclusion stated above is also applicable for those con-

figurations if the input terms are properly redefined. Re-

Tdefine x, (n) for configuration S (see Fig. 2.5) as
1 a

2

y(n) = x
1
(n) . (5.28)

Then it is found from Fi'g . 2.5 that

y(n) = -[a y(n-l)] - [b y(n-2)l + [c u(n--l)] +
i 4

+ [e u(n-2) ] . (5.29)

The output of the filter is given by

x(n) = y (n) + u(n) .
• (5.30)

If the limit cycle amplitude is bounded by A, , then the

contribution A~ of this limit cycle in the filter output is

given by

A
2

= A
x

. (5.31)

T
Similarly, for configuration S (see Fig. 2.7) one obtains

a
3

x(n) = -Ux(n-l)] - [b x(n-2)] + u(n) +
q "

+ [(a+c) u(n-l)] + [(b+e) u(n-2)J . (5.32)

Equation (5.32) can be rewritten into (5.27) if the three

input terms are combined into one term u' (n) , such t
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u'(n) = u(n) + [(a+c) u(n-l)] + [(b+e) u(n-2)j .

q q

(5.33)

As has been stated earlier, the amplitude bounds from Chap-

ter III apply directly to a limit cycle from (5.32).

At this point one might well ask what effect, the quanti-

zation of the input sequences in (5.26) and (5.33) has on

the performance of the digital filter. Clearly, it has no

influence on the generation of limit cycles. On the other

hand, the quantization of the products in (5.26) and (5.33)

produces errors, which are best described by a statistical

analysis. This has been done successfully by Jackson [2]

and others. A comparison of (5.22), (5.24), and (5.31)

shows that the size of the limit cycle contribution in the

output of the filter can be minimized by a proper choice

of configuration.

For example if a Butterworth or Chebyshev low-pass

filter is considered, whose zeros occur at z - -1 , then

T
for configurations S and S the coefficients

a
3

a
3

a+c =2.0, (5.34a)

b+e = 1.0. (5.34b)

TFrom (5.24) and (5.31) it is seen that S should be pre-
a
3

ferred over S . With similar arguments it can be deduced
a
3

For this to be true, it is assumed that the bilinear
transformation has been used to obtain H(z) frc ,")-
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that for zeros in the left half of the unit circle in the

T T Tz-plane the configurations S , S , S are generally pre-
a
l

a
2

a
3

ferable compared with configurations S , S , S
a
l

a
2

a
3
1

If a Butterworth or Chebyshev high-pass filter is con-

sidered whose zeros occur at z = 1 , then an identical treat-

ment as above leads to the conclusion that configuration

T
S should be preferred over S . For zeros in the right
a
3

a
3

half of the unit circle in the z-plane the configurations

S , S , S, are generally preferable compared with con-
a -j a ry ""3

T1 T T
figurations S . S , S

a
l

a
2

a
3

In summary, the results of this important section allows

one to state an amplitude bound for that part of the output

of a general second-order digital filter, which is contributed

by the limit cycle oscillations generated in that filter.

Depending on the numerical values of the zeros in the trans-

fer function some filter configurations are preferable over

others if the magnitude of the generally unwanted limit

cycles is to be minimized.

E. HIGHER ORDER DIGITAL FILTERS

It has been shown in Chapter II that higher order digi-

tal filters are generally realized by either a cascade or a

parallel form which is composed of second-order subsections.

These two forms are now investigated with respect to their

limit cycle behaviour.

For this to be true, it is assumed that the bi! . ar
transformation nas been used to obtain H(z)
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First, consider the parallel form. From Fig. 2.2, it

is seen that all second-order subsections share a common

input and the output is summed over all sections. Thus,

each section generates its own limit cycle and all these

limit cycles are then summed together to form part of the

output. If the bound on the amplitude of the limit cycle

generated in section G. is given by A
.

, then a bound A of

the sum of all the limit cycles in the overall output is

given by

M
A <_ I A. . . (5.35)

i=l
1

The situation is more difficult for a cascade form. From

Fig. 2.3, it is seen that the output of each section feeds

as input into the next: section. Therefore, a limit c^cle

generated in section G. is input to section G.,, and gets

filtered there and in all subsequent sections. If it is

assumed that the limit cycle oscillation generated in

filter section G. is practically sinusoidal, then this limit

cycle can be approximated by

x (n) = A '. sin n w . T

.

(5.36)
o ll 1

The magnitude A- . of that portion of the overall output,

which is due to the limit cycle oscillation from section

G. is then given by

M j to . T
A
2i - An " K (e

x
'!• (5 - 37)

k=i

To evaluate (5.37) it is necessary to know the fre ncy
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f

.

z^- for the limit cycle under consideration with sufficient
s

accuracy

.

Accurate information about the frequency is only avail-

able for zero-input limit cycles. For limit cycles, which

are generated as part of the forced response, it has not

been possible to estimate the frequency with reasonable

accuracy. This has been pointed out in the preceding sec-

tions B and C. For the cascade form of digital filters,

the magnitude of that portion of the overall output, which

is due to limit cycle oscillations from the individual fil-

ter subsections can in general not be evaluated with

acceptable accuracy.

However, if the passbands of the individual filter sec-

tions are well separated, then it is safe to assume that

only the limit cycles generated in the last section of a

cascade are of significance. This observation suggests that

filter sections with equal or nearly equal passbands should

not be put in cascade with each other, because the nearly

sinusoidal limit cycles of the first stage will most likely

be enhanced in the next stage.

F . SUMMARY

The results of the preceding chapters are generalized

in this chapter, such that they are applicable as design

guides for practical digital filters. First, the step

response and then the forced response for general, but de-

terministic inputs was evaluated fo:: the two-pole di
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filter. It was shown that the forced responses of the

quantized and the linear digital filter differ by a signal,

which is described by a limit cycle oscillation. The ampli-

tude of this limit cycle is estimated by the same bounds

which have been developed in Chapter III for the zero-input

case

.

The results for the two-pole filter are then extended

to the case of a general second-order digital filter, whose

linear equivalent has both zeros and poles in the transfer

function. It was shown that the part of the filter output

which is due to limit cycles can be minimized by a proper

choice of digital filter configurations. If the zeros of

the filter are in the right half of the z -plane , the con-

figurations C £ , S are to b^ nrpfprrpd over the
1 2 3 mrp T1 T^

transpose configurations S , S , S . If the zeros of
a
l

a
2

a
3

the filter are in the left half of the z -plane, configura-

T T T . .

tions S '

, S , S are to be preferred over configurations
a -j a ,-. a ~

s , s , s .

a
l

a
2

a
3

Finally, limit cycles in higher order filters were con-

sidered. The parallel form is easy to analyze, because

the limit cycles generated in- the individual filter sub-

sections are added in the output. The cascade form is more

difficult to analyze, because each limit cycle is filtered

in the following filter subsections. If the passbands of

the cascaded filter subsections are well separated only the

limit cycles generated in the last stage are of significance

There remains an important ares, for which furt
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is necessary. It has been impossible to predict the fre-

quency of the limit cycles which are present in the forced

response of the digital filter. This information is needed

to evaluate the magnitude of the limit cycle output of a

digital filter realized by the cascade form.
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VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The purpose of this research has been to contribute to

the analytic solution of the phenomenon called limit cycle

oscillations in recursive digital filters with finite pre-

cision arithmetic. Despite the fact that these limit cycles

can become large as a function of the quantization step-

size, they can be made arbitrarily small by increasing the

number of significant digits of the data. This increase

results in an increased dynamic range with a corresponding

improvement of the signal-to-noise ratio in the filter out-

put, where the limit cycle signal is the noise.

The existence of limit cycles should be viewed as an

important consideration to be included in the design and

implementation phases for digital filters. Building a re-

cursive digital filter involves several steps, as follows:

a) The approximation problem.

b) Specification of the number of significant digits for
the filter coefficient (this is not necessarily equi-
valent to step (e) which follows).

c) Selection of a filter configuration.

d) Choice of the arithmetic mode which is most likely
to be fixed-point arithmetic if economical special
purpose hardware is designed.

e) Specification of the number of significant digits
for the data.

These steps are interdependent. Since no optimal pro-

cedures have been devised which encompass several of the

above steps and would lead to a unique solution, it is
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necessary to go through design steps (a) through (e) several

times until a satisfactory realization of a digital filter

has been formulated. Design decisions, to be made at step (c,

and (e) ,an; influenced by consideration of the possible,

undesired limit cycles.

As an example, consider the worst-case design of a

second-order digital module. For simplicity, the influence

of the zeros in the transfer function on the magnitude of

the limit cycles is neglected (in practice, the influence of

the zeros will most likely result in a reduction of the

limit cycles; see Chapter V).

Assuming that intermediate limit cycles with frequencies
f f 1
7T- , such that < -?— < =-, are a problem, the amplitude
s s

bound (4.4) is selected as design guide ^bp signal-to-

noise ratio in terms of the number of significant digits k

for the data can be written as

{^ dh S 20 log
Asi

9nal = 20 log I^L^l. (6.1)
A £c

1 ' 5

For the evaluation of (6.1) it is assumed that the signal

k
is kept at its maximum level of 10 units, and the ampli-

] 5
tude of the limit cycle is bounded by yz$r, from (4.4). The

number of decimal digits k, needed for a specified signal-

to-noise ratio, can be related to the number of binary

digits K for a binary realization through the relation

2
K

= 10
k

, or (6.2)

K = -—

.

= -— ~ [bit]. (6.3)
loq, r Z . 30103
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Some numerical examples for the evaluation of (6.1) and

(6.3) are stated in the following table:

(S//N) db K[bit] for K[bit] for
coefficient b=0.9 coefficient b-0.99

30 8.9 12.2

60 13.9 17.2

90 18.9 22.2

120 23.9 27.2

From (6.1) and (6.3) it can be deduced that, practically

speaking, the existence of limit cycles in digital filters

is not a limiting factor on their realization, but only an

important consideration to be included in the implementation

phase o ^ the G e fi l tPTR

The major contributions of this reasearch are now sum-

marized. In Chapter II, the linear model for second-

order digital filters was described and 24 canonical cir-

cuit configurations, under the assumption of k-digit accuracy,

were shown to exist. A general formula to predict changes

in pole positions due to changes from the nominal values of

coefficients because of finite representation of numbers

was derived. Chapter III is the most important chapter

of this dissertation. Many new results about zero-input

limit cycle oscillations due to roundoff were presented.

It was shown that the limit cycles can be expressed by a

matrix equation which was then used to derive an absolute

bound for the amplitude of the limit cycles. Other
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amplitude bounds were derived employing Lyapunov functions

and the effective value linear model devised by Jackson

[27]. However, it was also demonstrated, that the latter

bound can be exceeded by several quantization units and

is, therefore, only a convenient to apply rule-of -thumb.

The limit cycles were portrayed in a specially defined

successive value phase-plane plot. Some symmetry properties

of the state trajectories were shown to exist. An approxi-

mate expression for the frequency of the limit cycles was

derived. Finally, it was shown that magnitude truncation quantization

cannot sustain zero-input limit cyc3.es other than with

frequencies f /f = , ~-. The analytic results of Chapter

III were verified in Chapter IV with experimental data ob-

Lciixied from three computer programs. T'hp analysis program

for zero-input limit cycles enumerates all possible limit

cycles for specified filter coefficients and tabulates and

plots them on the successive value phase-plane. The

second program evaluates the different amplitude bounds to

facilitate a comparison between the bounds. The third pro-

gram simulates a digital oscillator which can be used for

digital function generation. • The data shows that any de-

gree of approximation of an ideal sinusoid can be achieved

which is contrary to a formula derived by Rader and Gold

[12]. The results of the preceding chapters were generali-

zed in Chapter V. The forced response for general, but

deterministic inputs was evaluated for the two-pole filter.

The results for the two-pole filter were then extended to
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to the case of a general second-order digital filter with

both zeros and poles in the transfer function. It was

shown that the magnitude of the limit cycles can be mini-

mized by a proper choice of the digital filter configuration,

Limit cycles in higher order digital filters, either reali-

zed by the parallel or the cascade form, were considered.

Finally, it was concluded, that magnitude truncation quantization

offers no advantages over roundoff quantization because the

errors due to magnitude truncation can be twice as large as those due

to roundoff

.

There remain several unanswered problems which have

arisen as a result of this research and should be noted for

further investigation. Among them pre the following:

a) A topological investigation, ot canonical second-

order digital filters to determine a relation between the

minimum number of delays, multipliers and adders and the

order of the difference equation of a canonical digital

filter.

b) A general definition and derivation of all possible

canonical forms for the second-order digital filter under

the restriction of k-digit accuracy (see Eqs . (2.13a-d)).

c) An investigation of the roundoff noise properties

of the twelve newly derived second-order digital filter

configurations S, through S, and their transposes (see
b
l

b
6

section II. C)

.

d) An exact analytical expression for the frequ

limit cycles generated in the presence of a driving
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e) A general relationship between the sampling period

T and the number of significant digits required to repre-

sent data, i.e., a relationship between the precision of the

data if it is to approximate a continuous signal in some

specified sense.

f) A spectral analysis of the limit cycles of a digital

oscillator, i.e., the frequency spectrum of the limit cycle

and a measure of its deviation from a pure sinusoid.

g) An optimum design procedure which starts with the

filter specifications and results in an optimum implementa-

tion, complete with coefficient truncation and selection

of a "best" configuration.
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APPENDIX A

AN UPPER BOUND ON THE DYNAMIC RESPONSE OF NONAUTONOMQUS

(FORCED) DISCRETE SYSTEMS USING LYAPUNOV ' S DIRECT METHOD

A. INTRODUCTION

The region of boundedness of the dynamic response of the

discrete system with constant coefficient matrices A and B

x(n+l) = A x (n) + B u(n), (A.l)

is studied in this appendix. A bound on the dynamic re-

sponse of the system (A.l) utilizing Lyapunov ' s direct

method is presented. The method of proof is based on a

paper by Johnson [21] in which a bound on the quantization

error in sampled-data control systems is derived. Correct-

ing and clarifying comments by Lack [22] and Johnson [22]

are used in the proof to improve the bound.

The importance of the theorem which is stated in the

next section rests on the fact that an absolute bound on

the magnitude of the dynamic response is obtained without

reference to the detailed nature of the input to the system

which must only be bounded.

B. THEOREM: A BOUND ON THE DYNAMIC RESPONSE OF FORCED
DISCRETE SYSTEMS

It is well known [37] that the linear discrete system

(A.l) is bounded-input bounded-output (BI-BO) stable, if the

homogeneous system

x(n+l) - Ax(n) (A. 2)
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is asymptotically stable in the large (ASIL) . In this

Tcase (A. 2) possesses a Lyapunov function V = x Qx , where

Q is a real, symmetric and positive definite matrix and

can be found for any real, symmetric, positive definite

matrix C from the equation

-C = A QA - Q . (A. 3)

If the input to the system (A.l) is bounded by a constant

k, as

|u (n)
| <_ k

x
, (A. 4)

then the following theorem which estimates the region of

boundedness of the dynamic response can be stated.

Theorem: For the system x(n+l) = Ax(n) + Bu(n), if the

homogeneous system is ASIL and has a Lyapunov

T Tiifunction V = x Q.'x with AV= -x Cx and u (n) < k

Here

1

for all n > 0, then the system is stable and

the states are certain to enter a region defined

by

I xjl <_ r~ , where

r„ = k
X max(Q)

2
JV
1 X min(Q)

|l T
liA QB

X min(C)

: _

^

+

T I T
A QB(1 B QB

. 2 . ,_. X min (C)
X min(C)

(A. 5)

X min (C) = min. eigenvalue of the matrix C,

X rain/max (Q) = min. /max. eigenvalues of t
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T TA QB = norm of the matrix product A QB,

x = norm of the state vector x.

C. PROOF OF THE THEOREM:

The system (A.l) is stable as mentioned in section B,

and proven in a paper by Kalman and Bertram [37]

.

Before the rest of the theorem can be proven it is neces-

sary to state a lemma, which is given by LaSalle and

Lefschetz [38] for continuous time systems and is here re-

written and proven for discrete-time systems.

Lemma

:

Consider the discrete system

x(n+l) = Ax(n) + Bu (n)
,

(A. 6)

with V being the Lyapunov function for (A. 6). De-

fine sets of points in n-space, where n is the

dimension of the system, as

M = {x: ||x||_< r-j},

M = complement of M = {x: |{x|J > r, }

M
r

= {x:r
l

< 'Ni < r
2

} '

M = complement of M + M = {x: |jx ^ r
2
>. (A. 7)

These regions are depicted in Fig. A.l. If AV <_

for all x in M
C

and if V[x(n
2
), n

2
] > V[x(n

]L
) / n^J

for all n„ >^ n, ^ 0, all x (n, ) in M and all x(n )

c
in M , then each state of (A. 6) which at some time

n , such that n, > n > 0, is in M, can never
o 1 o —

thereafter leave M .

r
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To prove the lemma let x (n ) be a state of (A. 6) which

at n > is in M. Assume that at some later time N > n ,o — o

x(n) is in M .

If this is the case, then there exists a n, , where

n < n, < N
#
such that xCn) is in M for all n such that

o 1

n, < h < N and that n, is the smallest number with this

property

.

This implies that x(n,) is in M and therefore by hypo-

thesis V[x(n,), n, ] < V[x(N),N]. But this increase in V

is contrary to the hypothesis that AV < for all x(n) in

M . Therefore if the state x (n ) is in M at some time n
o o

it can nevi-..v thereof tor leave M
r

It is important to recognize that if the state of this

system is in M at a time n , it is not necessarily true

that the state of the system remains in M for all sub-

sequent time. The lemma only asserts that the state remains

inside the region M .j r

The previous lemma will now be employed to derive the

bound on the dynamic response of the system (A.l). Use

TV = x Qx as a Lyapunov function for the forced system.

Then the change in V is computed from the forward difference

as
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AV = V[x(n+1) J - V[x(n) ]

= -x
TCx + 2x

T
A
T
QBu + u

T
B
T
QBu. (A. 8)

Since [u| <_ k, and, for |[x[J sufficiently large, the sign of

TAV will be dominated by the term -x Cx, which is negative

definite. It follows, that there exists a region of points

c cin n-space , M , within which AV < . Here, M' is the

complement of M, as defined before by (A.7).

T
To estimate r.. it is recognized that B QB is a positive

scalar because Q is chosen according to (A. 3) as positive

definite. To assure that AV < , u(n) is replaced by its

Tbound k, and 2A QB is assumed to be positive. Then AV <

if

B
T
QB k

t
+ \2x

T
h
r
QB'k

1
\ <_ x

T
Cx

.

(A. 9)

For a real, symmetric, positive definite matrix, it is

1known that

min (x
T
Cx)= Xmin CC) ||x||

2
. (A. 10)

Substituting (A. 10) into (A. 9) one gets

^xVW-J l-*min tC) ||x||
2

- B
TQBk

2
,

(A. 11)

which implies the inequality (A. 9). Introducing norms of

2matrices , (A. 11) is rewritten as

See, for example Bellman [39], p. 110-113.

2
See, for example, Kalman and Bertram [37], p.
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2 ||x|| 1a
T
Qb|| k

x
<_ X

rain
(C) lixjj

2
- B

T
QBk^. CA.12)

If the equality-sign in (A. 12) is used a bound r, on the

region M in which AV < , is defined by

2 „, ILt_|1 t t „, 2
Amin (C) r

l ~ 2k
l I'

A QB
il

r
l " B QBk

l
=

° (A. 13)

Solving the quadratic equation (A. 13) for the one positive

root the bound on the region M is found to be

v r_ 1U
T
QBr

l 1
l
l rain(C

T
4 r-

B QB
(c)

] -
(A - 14)

\l ^ tny A min
(C)

In (A. 14) only the positive sign of the root can be used,

because r, > 0. However, as was pointed out earlier, r,

cannot be the absolute bound for the dynamic resoonse

of system (A. 6) because it is not a.c;sured that the state

remains in M, once it got there. It, therefore, remains to

evaluate a correction factor to properly estimate the

boundary of the region M , which the state will never leave,

once it has been in the region M.

Since Q is real, symmetric and positive definite it

follows that there exists

max V = max [x
T
Qx] = r, A (Q)

.

(A. 15)
xeM |{xj|=r.

If Tj is defined as |Jx|j = r~, where

min V = max V, then (A. 16)

XGM X£M
r
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rl X . CQ) = r? X CQ) ,2 mm 1 max '
(A. 17)

From (A. 17) it follows that the correction factor to proper ly

estimate the; boundary of the region M is given by

x (qTmax
r
2

r
l"V X~T~(0) *

I mm
(A. 18)

Now the conditions of the lemma are satisfied, because

c
AV < for all x in M and furthermore

V[xsMC ] > max V = r? X CQ)

,

(A. 19)
r 1 max '

xeM

and each state, which at some time was in M can never there-

after leave M . Thus r 9 is the desired bound such that

xll <_ r = k •

a \.Q;max
X . CQ}mm

!l m II

l

: A
x
QBlj

X min(C)

A
T
QB||

2

+
X . (C)mm

T
B

1
QB

X . (Cmm
(A. 20)
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Fig. A.l: Separation of State Space into Regions M, M , M

207





APPENDIX B

EXPERIMENTAL DATA COMPILED FROM COMPUTER SIMULATIONS

A. ANALYSIS PROGRAM FOR ZERO-INPUT LIMIT CYCLES

The data compiled in this section applies to the digital

filter discussed in Section IV. B. For given values for the

filter coef ficients a and b, all possible limit cycles with-

in the region of search, are enumerated in the tables B.l to

B.16 and labelled by an identification number. The fre-

quency F = f /f and the values of the limit cycle points are
-1 J o s J ~

stated. Furthermore, for each set of numbers for a and b,

the values for the approximate frequency (3.59) from the

linear model and the amplitude bound (3.46) and (3.53) are

printed

.

The phase-plane plots for most selections of a and b are

displayed in Figs. B.l to B.14. The x-axis represents x(n)

and its values are labelled in the top line. The y-axis

represents x(n-l) and its values are labelled in the left

column. A state trajectory is identified by those state-

points which are labelled with the same number. This num-

ber is the same as. the limit cycle identification number

given in the corresponding table. For example, consider

limit cycle #2 from table B.l. The corresponding state tra-

jectory is displayed in Fig. B.l and is constituted by the

14 state points labelled "2", such as (1,-3), (5,1), (8,5) f

(9,8), (8,9), (6,8), (3,6), (-1,3), (-5,-1), (-8,-5),

(-9,-8), (-8,-9), (-6,-8), (-3,-6).
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Table B.l:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A=-l. 700000000, B= 0.937000000, APPROXIMATE FREQUENCY F= 0.079402
THE AMPLITUDE BOUNDS ARE A 1= 7. 937, A 2= 4*219

LIMIT CYCLE # 1WITH FREQUENCY F= 7.142857E-02 IS-8-6-3158-9863 -1 -5 -8 -9

LIMIT CYCLE # 2WITH FREQUENCY F- 8.333333E-02 IS
5 2-2-5-7-7-5-2 2 5 7 7

LIMIT CYCLE # 3WITH FREQUENCY F= 8.333333E-02 IS-6-4-1 2 4 5 5 4 2-1-4-6
LIMIT CYCLE # 4WITH FREQUENCY F- 8.333333E-02 IS-6-5-30356530 -3 -5

LIMIT CYCLE * 5WITH FREQUENCY F= 8.333333E-02 IS-5-4-2 1 4 6 6 4 1-2-4-5
LIMIT CYCLE # 6W IT H "FREQUENCY F= 8.333333E-02 IS

-4 -3 -1 1 3 4 4 3 1-1-3 -4

LIMIT CYCLE #- 7WITH FREQUENCY F== 1.000000E-01 IS-3-2 2.3 3 2 0-2-3
LIMIT CYCLE H 8WITH FREQUENCY F- 1.000000E-01 IS-2-1 1 2 2 1 -1 -2

LIMIT CYCLE i 9WITH FREQUENCY F= 3.0000C0E+00 IS -1

LIMIT CYCLE HH 10WITH FREQUENCY F= O.OOOOOOE+OO IS r
;

LIMIT CYCLE # 11WITH FREQUENCY F= O.O.OOOOOE+OO IS 1
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Fig. B.l:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A=-1.70G< 0, B= 0.9370000
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Table B.2:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A--1. 500000000, B= 0.937000000, APPROXIMATE FREQUENCY F= 0.108924
THE AMPLITUDE BOUNDS ARE A 1= 7. 937, A 2 = 2.288

LIMIT CYCLE 3 1WITH FREQUENCY F= 1.071429E-01 IS1-3-6-6-3 1 5 7 6 2 -3 -7 -8 -5
6 6 3-1-5-7-6-2 3 7 8 5

LIMIT CYCLE * 2WITH FREQUENCY F= 1.1 11111E-01 IS-6-4 4 6 5 2-2-5
LIMIT CYCLE # 3WITH FREQUENCY F= 1.111111E-01 IS-6-5-2 2 5 6 4 -4

LIMIT CYCLE # 4WITH FREQUENCY F^ l.OOOOOOE-01 IS-5-3 3 5 5 3 0-3-5
LIMIT CYCLE 4 5WITH FREQUENCY F= 1.111111E-01 IS-5-4-1 2 4 4 2-1 -4

LIMIT CYCLE # 6WITH FREQUENCY F^ 1.111111E-01 IS
-4 -214541 -2 -4

LIMIT CYCLE #' 7WITH FREQUENCY F = 1.000000E-01 IS-4-3-1 13 4 3 1-1-3
LIMIT CYCLE H 8WITH FREQUENCY F= 1.000000E-01 IS-3-2023320 -2 -3

LIhIT CYCLE -* 9WI7H FREQUENCY F= i.OOOOOOE— 01 IS-2-1 1 2 2 1.0-1-2
LIMIT CYCLE H 10WITH FREQUENCY F= O.O.OOOOOE+OO IS -1

LIMIT CYCLE # 11W.ITH FREQUENCY F= O.OOOOOOE+00 IS

LIMIT CYCLE # 12WTTH FREQUENCY F= O.OOOOOOE+OO TS 1
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Fig. B.2:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A=-l. 500000000, B= 0.93700000C
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Table B.3:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE *

A=-1.30CCG0000, B= 0.937000000, APPROXIMATE FREQUENCY F= C. 132826
THE AMPLITUDE BOUNDS ARE A 1= 7.937 t A 2= 1.570

LIMIT
u
7

LIMIT
-6

LIMIT
-6

LIMIT
-5

LIMIT
-5
-1

LIMIT
-4
-1

LIMIT
-3

l T M I

T

-2

LIMIT
-1

CYCLE U
5 7
7 2

CYCLE H
-2 3

CYCLE #
-3 2

CYCLE #
-2 2

CYCLE «
-3 1

3 5

CYCLE 3
-2 1

2 A

CYCLE H
-2

CYCLE #
-1 3

CYCLE #
1

1WITH FREQUENCY F= 1.363636E-01 IS4-2-7-7-2 4 7 5 0-5
4 -7 -5

2WITH FREQUENCY F= 1.333333E-C1 IS
6 5 1-4-6-4 1 5 6 3

3WITH FREQUENCY F= 1.333333E-01 IS
6 6 2-3-6-5-1 4 6 4

4WITH FREQUENCY F= 1.25000CE-01 IS
5 5 2-2-5
5WITH FREQUENCY F= 1.363636E-01 IS

4 4 r -3-5-4 4 5
4 0-4

-7 -4 2

-2 -6

-1 -5

3 -1 -4 -4

6WITH FREQUENCY F= 1.263636E-01 IS
3 3 1-2-4-3 C 3 4 2
3 -3

7WITH FREQUENCY F= 1.250000E-C1 IS
2 3 2 0-2
8WITH FREQUENCY F- 1 .25000CE-C1 IS

? 2 1 -i -2

9WJTH FREQUENCY F= 1 * 666667E-01 IS
1 0-1

-1 -3

LIMIT CYCLE # 10WITH FREQUENCY F= .. OOOOCOE + OO IS

2i:





Fig. B.3:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A=-1.3C000C00O, B= 0.937000000
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1
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1 2 4 6 7 p, p 7 6 4 2 1

3 5 6 6 7 6 6 5 3
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1 3

2

4 5

2

5

3

4

?

3 1
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Table B.4:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A=-1.00Q0CC000i B= 0.937000000, APPROXIMATE FREQUENCY F= 0.16361
THE AMPLITUDE BOUNDS ARE A 1= 7. 937 , A 2= 1.067

LIMIT
-4

CYCLE »
-7 -3

1 W I T H
4 7

FREQUENCY
3

F

LIMIT
-3

CYCLE #
-7 -4

2WITH
3 7

FREQUENCY
4

F

LIMIT
-2

CYCLE f
-7 -5

3WITH
2 7

FREQUENCY
5

F

LIMIT
-1

CYCLE #
-7 -6

4WITH
1 7

FREQUENCY
6

F

LIMIT CYCLE *
-7 -7

5WITH
7

FREQUENCY
7

F

LIMIT
-6

CYCLE #
-7 -I

6WITH
6 7

•FREQUENCY
1

F

LIMIT
5

CYCLE # .

7 2
7WITH

-5
.
-7

FREQUENCY
-2

F

LIMIT
-6

CYCLE #
6

8WITH
6

FREQUENCY
-6

F

L I M I

T

rncnnr:M'"\.' c

-6 -i b 6 i — 5

L I M I

T

-6
CYCLE #
-2 *

10WITH
6 2

FREQUENCY
-4

F

LIMIT
-6

CYCLE -'

-3 3
11W.ITH
6 3

FREQUENCY
-3

F

LIMIT
-6

CYCLE P-

-4 2
12WITH
6 4

FREQUENCY
-2

F

LIMIT
-6

CYCLE #
-5 1

13WITH
6 5

FREQUENCY
-1

F

LIMIT
-5

CYCLE #
5

1 4W I T H
5

FREQUENCY
-5

F

LIMIT
-5

CYCl E $
-1 4

1 5W I T H
5 1

FREQUENCY
-4

F

LIMIT CYCLE #
-2 3

16WITH
5 2

FREQUENCY
-3

F

LIMIT
-5

CYCLE 3
-3 2

17WITH
5 3

FREQUENCY
-2

F

LIMIT
-5

CYCLE #
-4 1

18WITH
5 4

FREQUENCY
-1

F

LIMIT
-4

CYCLE #
4

19WITH
4

FREQUENCY
-4

F

L I M I

T

-4
CYCLE
-1 3

20WITH
4 1

FREQUENCY
-3

F

LIMIT CYCLE # 2 1 W I T H FREQUENCY F

1.66 6667E-01 IS

1.666667E-01 IS

1.666667E-01 IS

1.666667E-01 IS

1.666667E-C1 IS

1.666667E-01 IS

= 1.666667E-01 IS

= 1.666667E-01 IS

1.666667E-01 IS

1.666667E-C1 IS

= 1. 66666 7E-l'l IS

= 1.666667E-01 IS

= L.666667E-01 I?

= 1.666667E-G1 IS

= 1.666667E-01 IS

= 1.666667E-01 IS

= 1.666667E-C1 IS

- 1. 666667 E-01 IS

= 1 .666667E-01 IS

1.666667E-
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4 -2

LIMIT
-A

L I M I

T

-3

LIMIT
-3

L I M I

T

-3

LIMIT

L I M I T
-2

LIMIT
-1

CYCLE #
-3 1

CYCLE #
3

CYCLE #
-1 2

CYCLE §
-2 1

CYCLE #
2

CYCLE #
-1 i

CYCLE #
1

22WITH FREQUENCY F= 1.666667E-01 IS
4 3-1
23WITH FREQUENCY F= 1.666667E-01 IS
3 -3

24WITH FREQUENCY F= 1.666667E-01 IS
3 1-2
25WITH FREQUENCY F= 1 .666667E-0 1 IS
3 2-1
26WITH FREQUENCY F= 1.666667E-01 IS
2 -?.

27WITH FREQUENCY F= 1.666667E-01 IS
2 1-1
28WITH FREQUENCY F= 1.666667E-01 IS10-1

LIMIT CYCLE # 29KITH FREQUENCY F = 0.0Q0000E+C0 IS

Table B.4: (Continued)
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Fig. B.4:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(M-l)
A=-1.0000COOOO, B= 0.937000000
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Table B.5:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A=-O.5O0OO00JOi B= 0.^37000000, APPROXIMATE FREQUENCY F = 0.208424
THE AMPLITJDF BOUNDS ARE A 1= 7.Q37,A 2= 0.696

LIMIT CYCLE U 1WITH FREQUENCY F= 2 .05 8824E-C 1 IS
6 5-3-7-1 6 4-4-6 1 7 3-5-6 2 72-6-5 3 7 1-6-4 4 6-1-7 -3 5 6 -2

-7 -2

LIMIT CYCLE * 2WITH FREQUENCY F= 2.058824E-01 IS-4-5 1 6 2-5-5 2 6 1-5-4
-3 4 5-1-6-2 5 5 -2 -6 -1 5

-6 6 3
3 6 -6
4 -3

LIMIT CYCLE # 3WITH FREQUENCY F= 2.000000E-01 IS
-5 5 3-3

L

I

w IT CYCLE U 4WITH FREQUENCY F= 2.058824E-01 IS-5-1 4 3-2-4 4 2-3-4 1 5 2-4-4
2 5 1-4-3 2 4 0-4-2 3 4-1-5-2 4
4 -2

LIMIT CYCLE # 5WITH FREQUENCY F= 2 . OOOOOOE-O I IS-5-3 3 5 C

LIMIT CYCLE H 6WITM FREQUENCY F= 2.000000E-01 IS
-A -1 3 3 -1

LIMIT CYCLE « 7WTTH FRFQUF.NCY F^ 2.000000E-01 IS
-3 I <\ i -3

LIMIT CYCLE * 8WITH FREQUENCY F= 2 . OOOOOOE-O 1 IS
-3 3 2-2

LIMIT CYCLE # 9WITH FREQUENCY F= 2.000000E-01 IS-3-1 2 2 -1

LIMIT CYCLE P 10WITH FREQUENCY F= 2.000000E-01 IS-3-2 2 3

LIMIT CYCLE # 11W1TH FREQUENCY F= 2.000000E-01 IS
-2 1 3 1-2

LIMIT CYCLE # 12WITH FREQUENCY F= 2 . OOOOOOE-^ 1 IS-2021-1
LIMIT CYCLE H 13WITH FREQUENCY F= 2.000000E-01 IS-2-1120
LIMIT CYCLE # 14WITH FREQUENCY " F= 1.666667E-C1 IS

-1 1 10-1
LIMIT CYCLE H 15WITH FREQUENCY F= O.OOOOOOE+00 IS
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Fig, B.5:

LIMIT CYCLES ARRANGED IN PHASE PLANE XCN) VS. XCN-11
A=-0. 500000000, B= 0.937000000
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Table B.6:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A= C.OOOOCOOi.'O, B= 0.937000000, APPROXIMATE FREQUENCY F= 0.2500C0
THE AMPLITUDE BOUNDS ARE A 1- 7. 937, A 2 = 0.516

LIMIT CYCLE ft 1WITH FREQUENCY F= 2 . 5C0O0CE-O1 IS

LIMIT CYCLF U 2WITH FREQUENCY F= 2.500000E-C1 IS

LIMIT CYCLE « 3WITH FREQUENCY F= 2.5OG000E-O1 IS

LIMIT CYCLE * 4WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLF # 5WITH FREQUENCY F= 2.5O00G0E-C1 IS

LIMIT CYCLE U 6WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLF U 7WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE # 8WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE #
. 9WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE V 10WIT-H FREQUENCY F= 2 . 500000E-C1 IS

LIMIT CYCLE # L1WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE il 12WITH FREQUENCY F= 2.500000E-C1 IS

2 500000F—01 I
4"

LIMIT CYCLE # 14WITH FREQUENCY F~ 2 .
K 0000Q E-fi

1

IS

LIMIT CYCLF # 15WITH FREQUENCY F= 2.500000E-0J IS

LIMIT CYCLE H 16WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE U 17WITH FREQUENCY F= 2.500000E-G1 IS

LIMIT CYCLE # 18WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE U 19WITH FREQUENCY F= 2 .500000E-0

1

IS

LIMIT CYCLE $. 20WITH FREQUENCY F= 2.5COOOOE-C1 IS

LIMIT CYCLE # 21WITH FREQUENCY F= 2.500000E-C1 IS

LIMTT CYCLF # 22WITH FREQUENCY F= 2.500000E-C1 IS

LIMIT CYCLF if 23WITH FREQUENCY. F= 2.500000E-01 IS

LIMIT CYCLE U 24WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLF # 25WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLF # 26WITH FREQUENCY F= 2.500000E-G1 IS

LIMIT CYCLF * 27WITH FREQUENCY F= 2.500000E-C1 IS

LIMIT CYCLE *i 28WITH FREQUFNCY F= 2.50000GE-C1 IS

LIMIT CYCLE # 29WITH FREQUENCY F= 2.5C000GE-CI IS

LIMIT CYCLF ti 30WITH FREQUFNCY F= 2 . 500D0CE-0

1

IS

LIMIT CYCLE 1! 31WITH FREQUENCY F= 2 . 50000CE-P

]

IS

L i i*i i T oV C L

7 7 7 -7

7 6 7 -6

7 5 7 -fi

7 4 7 — 4

7 3 7 — 3

7 2 7 -2

7 1 7 - 1

7 7 D

7 - i 7 1

7 -2 7 2

7 -3 7 3

7 — 4 7 4

7 _ 5 7 5

7 -6 7 6

6 6 6 -6

6 5 6 — r
,

6 4 6 -a

6 3 6 -3

•6 2 6 -2

6 1 6 ~]

•6 6 C

6 -1 6 ]

6 -2 6 2

•6 -3 6 3

6 -4 6 A

•6 -5 6 5

•5 5 5 - 5

•5 4 «5 -a

5 3 t^ _ i

5 2 5 -2
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LIMIT CYCLE 1! 32WITH FREQUENCY F= 2.50000CE-01 IS

LIMIT CYCLE ft 33WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE fi 34WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE # 35WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE t 36WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLF U 37WITH FREQUENCY F= 2 .50000GE-C1 IS

LIMIT CYCLE fl 38WITM FREQUENCY F= 2 . 50 OQOOE-0 1 IS

LIMIT CYCLE t>- 39WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE ?! 40VHTH FREQUENCY F= 2.500000E-G1 IS

LIMIT CYCLE # 41WITH FREQUENCY F= 2.500000E-P1 IS

LIMIT CYCLE I 42WITH FREQUENCY F= 2.500000E-C1 IS

LIMIT CYCLE » 43WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE # 44WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLF '4 45WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE « 46WITH FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE # . 47WITH FREQUENCY F= 2.500000E-C1 IS

LIMIT CYCLE # 48WIT-H FREQUENCY F= 2.500000E-01 IS

LIMIT CYCLE 49WITH FREQUENCY F= 2.50O000E-O] IS

LIMIT CYCLE # 50WITH FREQUENCY F= 2.500000E-01 IS

LiMiT CYCLE # 51WITM FREQUENCY F- 2.5OQ00OE-C1 IS

LIMIT CYCLE H 52WTTH FREQUENCY F= 2.500000E-C1 IS

LIMIT CYCLE U 53WITH FREQUENCY F= 2 . 500000E-C

1

IS

LIMIT CYCLE # 54WITH FREQUENCY F= 2.500000E-G1 IS

LI Mi IT CYCLE # 55WITH FREQUENCY F= 2.50000CE-01 IS

LIMIT CYCLE # 56WITH FREQUENCY F= 2.50G000E-01 IS

LIMIT CYCLE # 57WITH FREQUENCY F= O.OOOOOOE+00 IS

Table B.6: (Continued)

-5 5

-b -1 5 1

-5 -2 5 2

-5 — 3 5 3

-5 -4 5 4

-4 4 4 -<=.

-4 3 4 — 3

-4 2 4 ~?

-4 1 4 -1

-4 4 c

-4 -1 4 )

-4 -2 4 2

-4 -3 4 3

-3 3 3 _o

-3 2 3 -2

-3 1 3 -1

_q C 3 r

-3 -1 3 L

-3 -2 3 2

-2 2 2 -2

-2 1 2 -1

-2 2 C

-2 -1 2 1

-1 1 1 -1

- 1 U 1 (

r,
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Fig. B.6:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A= C.OCOOOGOOO, B= 0.937000000

-10 -9 -8 -7 -6 .r _,

10

9

10

7

6

5

4

3

2

1

Q

-1

_oc

-4

-5

-6

-7

-8

-9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 I

14 .15 16 17 18 19 20 21 22 23 24 25 26 15 2

13 26 27 28 29 3 31 3 2 33 34 35 36 •27 16 3

12 25 36 3 7 3 8 39 4C 41 42 43 44 37 28 37 4

11 24 35 4 4 45 46 47 4 8 49 45 38 •29 18 5

10 2 3 34 43 50 51 r-2 5 3 54 51 46 39 30 19 .4

9 22 33 42 49 54 55 5 6 55 52 4 7 40 31 20 7

R 21 3? 4 3 48 53 56 57 56 53 to 41 o

7 20 31 40 47 52 55 5 6 55 54 49 42 3 3 22 <J

6 19 30 3Q 46 51 54 53 52 51 50 43 34 'j^ 10

5 18 29 38 4 5 50 49 4 8 47 46 45 44 35 24 11

4 17 28 37 44 43 42 41 4C 39 38 37 36 25 12

3 16 27 3 6 35 34 33 32 31 30 29 28 27 26 13

2 15 26 25 24 23 22 21 20 19 18 17 16 15 14

1 14 13 12 11 10 9 8 7 6 5 4 3 c. 1

22?





Table B.7:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A= 0.500000000, B= 0.^37000000, APPROXIMATE FREQUENCY F= 0.29 1576
THE AMPLITUDE BOUNDS ARE A 1= 7.937, A 2= 0.696

LIMIT
-6
-1

LIMIT
-6
-2

LIMIT
-6

LIMIT
-6

1

LIMIT
_ c

LIMIT
-5

1

L I M I T

CYCLE #
4 4

CYCLE a
5 3

CYCLE H
3 4

CYCLE t!

2 5

CYCLE H
3 3

CYCLE #
2 4

CYCLE *

1WITH FREQUENCY F= 2.941176E-01 IS
•6 -1 7-3-5 6 2-7 2 6-5-3 7

2WITH FREQUENCY F= 2.941176E-01 IS
7 1 6-4-4 6 1-7 3 5-6-2 7

3WITH FREQUENCY F= 2.941176E-01 IS•5-1 6-2-5 5 2-6 1 5 -4 -3 6

4WITH FREQUENCY F= 2.941176E-01 IS•5-2 6-1-5 4 3-6 6

-*;
5VIITH FREQUENCY F= 3.000000E-01 IS

6WITH FREQUENCY F= 2 . <;4 1 1 76E-0 1 IS•4-2 5-1-4 3 2-4 A

-3 -^

-2

7WITH FREQUENCY F= 2.941176E-01 IS
•3 -? A 0-4 2 3 -4 -i 5

LIMIT
-4

LIMIT
-3

LIMIT
-3

LIMIT
-2

LIMIT

LIMIT

LIMIT

CYCLE H
1 3

CYCLE H
2 2

CYCLE #
1 2

CYCLE «
1 1

CYCLE #

CYCLE H

CYCLE «

PWITH FREQUENCY F= 3.000000E-01 IS
•3 -1 4-1-3 3 1

PWITH FREQUENCY F=
-3

lCWlfH FREQUENCY F=2-1 3-1-2
11WITH FREQUENCY F=
2 2-1 -1

12WITH FREQUENCY F=

13WITH FREQUENCY F=

14WITH FREQUENCY F=

3.000000E-01
3

IS

3.000000E-01
2 1

TS

3. 000000 E -01
2

IS

3.333333E-01 IS -1 l

3.333333E-01 IS -1 1

G.OOOOOOE+OO IS n





Fig. B.7:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N5 VS. X(N-l)
A= 0.500000000, B= 0. 937000000
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Table B.8:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A= 1.000000000, B= 0.937000000, APPROXIMATE FREQUENCY F= 0.336389
THE AMPLITUDE BOUNDS ARE A 1= 7. 937, A 2 = 1.067

LIMIT CYCLE it LW I T H FREQUENCY F = 3.333333E--01 IS 7 -7

LIMIT CYCLE # 2WITH FREQUENCY F= 3.333333E--01 IS -1 7 -6

LIMIT CYCLE # 3WITH FREQUENCY F= 3.333333E--01 IS -2 7 -5

LIMIT CYCLE U 4WITH FREQUENCY F= 3.333333E--01 IS -3 7 -4

LIMIT CYCLE H 5WITH FREQUENCY F= 3.333333E--01 IS -4 7 -3

LIMIT CYCLE H 6WITH FREQUENCY F= 3.333333E--01 IS -5 7 -2

LIMIT CYCLF a 7WITH FREQUENCY F= 3.333333E--01 IS -6 7 -1

LIMIT CYCLE H 8WITH FREQUENCY F = 3.333333E--01 IS -7 7

LIMIT CYCLE a 9WITH FREQUENCY F = 3.333333E--01 IS '

1 -7 6

LIMIT CYCLE # 10W IT

H

FREQUENCY F= 3.333333E--01 IS 2 -7 5

LIMIT CYCLE # 11WITH FREQUENCY F= 3.333333E--01 IS 3 -7 4

1 TMTT CYCLF # 1 2 W I T H FREQUENCY F- V.' A
T C /. _7 3

LIMIT CYCLE H 13WITH FREQUENCY F= 3.333333c--0 I I S J -
i ?

LIMIT CYCLE n 1 4W I T H FREQUENCY F= 3.333333E--01 IS 6 -7 1

LIMIT CYCLE # 15WITH FREQUENCY F= 3.333333E--01 IS -6 6

LIMIT CYCLE # 16WITH FREQUENCY F = 3.333333E--01 IS -6 5 1

LIMIT CYCLE # 17WITH FREQUENCY F = 3.333333E--01 IS -6 4 2

LIMIT CYCLE u 18WITH FREQUENCY F= 3.333333E--01 IS -6 3 3

LIMIT CYCLE H 19WITH FREQUENCY F= 3.333333E--01 IS -6 2 4

LIMIT CYCLE 4 2CWITH FREQUENCY F = 3.333333E--01 IS -6 1 5

LIMIT CYCLE # 21WITH FREQUENCY F= 3.333333E--01 IS -6 6

LIMIT CYCLE # 22WITH FREQUENCY F = 3.333333E--01 IS -5 6 -1

LIMIT CYCLE H 23WITH FREQUENCY F= 3.333333E--01 IS -5 5

LIMIT CYCLE il 24WITH FREQUENCY F= 3.33333*3E--01 IS -5 4 1

LIMIT CYCLE # 25WITH FREQUENCY F= 3.333333E--01 IS -5 3 2

LIMIT CYCLF n 2 6W I T H FREQUENCY F= 3.333333E--01 IS -5 2 3

LIMIT CYCLE- # 27WITH FREQUENCY F= 3.333333E--01 IS -5 1 4

LIMIT CYCLE 4 28WITH FREQUENCY F = 3.333333E--01 IS -5 5

LIMIT CYCLE U 29WITH FREQUENCY F= 3.333333E--01 IS -5 -1 6

LIMIT CYCL E q 30WITH FREQUENCY F= 3.333333E--01 IS -4 6 - 2

LIMIT CYCLE H 31WITH FREQUEN F= 3.333333E--01 IS -4 £-, -1
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LIMIT CYCLF u 32WI1 H FREQUENCY F= 3.333333E--01 IS -i+ 4 C

LIMIT CYCLE M 33WITH FREQUENCY F = 3.333333E--01 IS -4 3 1

LIMIT CYCLE H 34WITH FREQUENCY F= 3.333333E--01 IS -4 2 2

LIMIT CYCLE # 35WITH FREQUENCY F= 3.333333E--01 IS -4 1 3

LIMIT CYCLE # 3 6WITH FREQUENCY F = 3.323333E--01 IS -4 4

LIMIT CYCLE H 3 7WITH FREQUENCY l" = 3.333333E--01 IS -4 -1 5

LIMIT CYCLE # 3 8WITH FREQUENCY F = 3.333333E--01 IS -4 -2 6

LIMIT CYCLE /.' 39WITH FREQUENCY F= 3.333333E--01 IS -3 6 -3

LIMIT CYCLE ti 40WITH FREQUENCY F = 3.333333E--01 IS -3 5 -2

L I M I T CYCLE n 41WI7 hi FREQUENCY F= 3.333333E--01 IS -3 4 -1

LIMIT CYCLE n 42W1TH FREQUENCY F = 3.333333E--01 IS -3 3

LIMIT CYCLE a 43WITH FREQUENCY F = 3.333333E--01 IS -3 2 1

LIMIT CYCLE # 44WITU FREQUENCY F = 3.333333E--01 IS -3 1 2

LIMIT CYCLE » 45WITH FREQUENCY F = 3.333333E--01 IS -3 3

LIMIT CYCLE # 46WITH FREQUENCY F= 3.333333E--01 IS -3 -1 4

LIMIT CYCLE u
. 47WITH FREQUENCY F = 3.3.33333E--01 IS -3 -2 5

LIMIT CYCLE H 48WITH FREQUENCY F = 3.333333E--01 IS -2 4 _ 2

LIMIT CYCLE H 49WITH FREQUENCY F = 3.333333E--01 IS _ o
3 -1

LIMIT CYCLE # 50WITH FREQUENCY F = 3.333333E--01 IS -2 2

L I M 1

1

C Y C L ! 11
riii'TU

/ JL H 1 c . .

en c oij n n r v p = ? 33333 3F--01 IS -2 1 1

LIMIT CYCLE 4 52WITH FREQUENCY F = 3.333333E--01 IS -2 o 2

LIMIT CYCLE (I 53WITH FREQUENCY F= 3.333333E--01 IS -2 -1 3

LIMIT CYCLE it 54WITH FREQUENCY F = 3.333333E--01 IS -1 2 -1

LIMIT CYCLE u 55WITH FREQUENCY F = 3.333333E--01 IS -1 1

L I H I T CYCLE n 56WITH FREQUENCY F= 3.333333E--01 IS -1 1

LIMIT CYCLE # 57WITH FREQUENCY F= 0.000000E i-OO IS

Table B.8: (Continued)
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Fig. B.3:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A= l.OOOOOOOOOi B= 0.937000000
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Table B.9:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A= 1,300000000, B= 0.937000000, APPROXIMATE FREQUENCY F= 0.367174
THE AMPLITUDE BOUNDS ARE A L= 7. 937, A 2^ 1.570

LIMIT

LIMIT

LIMIT
-6
-6

LIMIT
-5

LIMIT
-5

LIMIT

LIMIT
-4

1 IMtT

LIMIT
-3

LIMIT
-2

LIMIT

LIMIT

LIMIT

CYCLE *
-5 7

CYCLE #
5 -7

CYCLE H
6 -2
2 3

CYCLE #
5 -2

CYCLE #
A

CYCLE H
3 1

CYCLE f
3

rvriF a
~2

1

CYCLE //

2

CYCLE #
2 -1

CYCLE #

CYCLE #

CYCLE #

1WITH
-4 -2

2WITH
4 2

3 WITH
•3 6
•6 5

4W I T H
-2 5

-4
5WITH

6W I T H
4 4

7WITH
•3 4

RWITH
3 3

9W I T H
2 3

10W IT

H

1 2

1 1 W I T H

12WITH

13WITH

FREQUENCY F= 3.636364E-01 IS7-7 2 4-7 5

FREQUENCY F= 3 „ 636364E-0 1 IS
-7 7 -2 -4 7 -5

FREQUENCY F= 3.666667E-01 IS
-5 1 4-6 4 1-5 6-3-1-4 6-4-1 5 -6 3 2

FREQUENCY F= 3.750000E-^1 IS
-5 2 2

FREQUENCY F= 3.63 6364E-C1 IS-3-1 4-4 1 3

FRFOUFNCY F= 3.636364E-01 IS-1-3 5-4 4

FREQUENCY F= 3.636364E-C1 IS-2-1 3-3 1 2

FREQUENCY F- 3.636364E-01 IS-1-2 4-3 'J 3

FREQUENCY F= 3.750000E-01 IS
-2 2

FREQUENCY F= 3.750000E-01 IS
-2 1 1

FREQUENCY F= 3.333333E-01 IS -1

FREQUENCY F= 3.333333E-01 IS -1

FREQUENCY F= O.OOGOOOE-t-OG IS C

-2
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Fig. B.9:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A= 1.300000000, B= 0.937000000
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Table B.10:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TVPE A

A= 1.5O00O0OCO, B= 0.937000000, APPROXIMATE FREQUENCY F= 0.391076
THE AMPLITUDE BOUNDS ARE A 1= 7.937, A 2 = 2.288

LIMIT CYCLE i
l
- 1WITH FREQUENCY F= 3 .928571E-01 IS

2 3-7 8-5 1 3-6 6 -3 -1 5-7 6 -2 -37-8 5-1 -3 6-6 3 1-5 7 -6

LIMIT CYCLE # 2WITH FREQUENCY F= 3.888889E-01 IS
-6 5 -2-2 5-6 4 -4 6 -5 2 2-5 6-4

4

LIMIT CYCLE # 3WITH FREQUENCY F= 4.000000E-01 IS
-5 5-3 3

LIMIT CYCLE # 4WITH FREQUENCY F= 3.888889E-01 IS
-5 4-1-2 4-4 2 1-4 5-4 1 2-4 4 -2
-1 4

LIMIT CYCLE # 5WITH FREQUENCY F= 4.000000E-01 IS
-5 3 0-3 5

LIMIT CYCLE # 6WITH FREQUENCY F= 4.000000E-C1 IS
-4 3 -1 -1 3

LIMIT CYCLE 3 7WITH FREQUENCY F= 4.CC0000E-01 IS
-3 4-3 1 1

LIMIT CYCLE * flWTTH FREQUENCY F= 4.00000CE-01 IS
-3 3-20?

LIMIT CYCLE # 9WITH FREQUENCY F= 4.0C000OE-Q1 IS-320-23
LIMIT CYCLE $ 1.0WI1H FREQUENCY F= 4.0C0000E-01 IS

-2 2-1 1

LIMIT CYCLE # 11WITH FREQUENCY F= 4.000000E-01 IS
-2 1 -I 2

LIMIT CYCLE 4 12WITH FREQUENCY F= 5.000000E-01 IS -1 1

LIMIT CYCLE it 13WITH FREQUENCY F= O.OOOOOOE+00 IS 3
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Fig. B..10:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A= 1.500000000, 8= 0.937000000
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Table B.ll:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TVPE A

A= 1.700000000i B= 0.937000000, APPROXIMATE FREQUENCY F= C. 420598
THE AMPLITUDE BOUNDS ARE A 1= 7. 937, A 2 = 4.219

LIMIT
-5

LIMIT
-8

LIMIT

LIMIT
-6

LIMIT
-6

LIMIT
-6

LIMIT
-4

LIMIT
-3

CYCLE *
2 2

CYCLE #
6 -3

CYCLE 3
1 -5

CYCLE #
6 -4

CYCLE #
5 -3

CYCLE *
4 -1

CYCLE 8
4 -3

CYCLE £
3 -2

1 W I T H
5 7

2 'WITH
•1 5

3WITH
8 -9

4WITH
1 2

5WITH
3

6WITH
2 4

7WITH
1 . 1

8WITH
C 2

FREQUENCY F
-7 5 -2

4.166667E-01 IS
•2 5-7 7

FREQUENCY F= 4.2 8 5714E-01 IS
-8 9

FREQUENCY F=
8 -6

FREQUENCY F=
-4 5 -5

FREQUENCY F=
- 5 6 -5

'FREQUENCY F=
-5 5-4
FREQUENCY F=
-3 4 -4

4.285714E-01 IS

4.166667E-01 IS4-2-1 4

4.166667E-01 IS
3 -3 5

4.166667E-01 IS
2 1-4 6

4.166667E-01 IS
3 -1 -1 3

FREQUENCE F= 4.C000C0E-01 IS

I T •/ T TLilli I

— 3

LIMIT
-2

LIMIT
-2

LIMIT

LIMIT

^. u

CYCLE #
2 -1

CYCLE il

1

CYCLE #

CYCLE #

10WITH
1

11WITH
1 2

12WITH

13WITH

FREQUENCY F= 4.000000E-01 IS

FREQUENCY F^ 4.000QOOE-01 IS

FREQUENCY F=

FREQUENCY F=

5.000000E-01 IS

O.OOOOOOE+OO IS

-1
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Fig. B.ll:

LIMIT CYCLES ARRANGED IN PHASE PLANE X ( N) VS. X(N-l)
A= 1.70000COOO, B= 0.937000000
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Table B.12:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A=-0.1GOCOOOQOi B=-0.750000000t APPROXIMATE FREQUENCY F= G.OOOOOC
THE AMPLITUDE BOUNDS ARE A 1= 2,0C0»A 2 = 6.667

LIMIT CYCLE # 1WITH FREQUENCY F= O.OOOOOOE+OO IS -6

LIMIT CYCLE # 2WITH FREQUENCY F= O.OOOOOOE+OO IS -6 -5

LIMIT CYCLE § 3WITH FREQUENCY F= O.OOOOOOE+OO IS -2

LIMIT CYCLE # 4WITH FREQUENCY F= O.OOOOOOE+OO IS -2 -1

LIMIT CYCLE # 5WITH FREQUENCY F= 5.000000E-01 IS -2

LIMIT CYCLE # 6WITH FREQUENCY F= 5.000000E-01 I

S

-2 1

LIMIT CYCLE # 7WITH FREQUENCY F= 5.OO0000E-01 IS -2 2

LIMIT CYCLE # 8WITH FREQUENCY F= O.OOOOOOE+OC IS -5

LIMIT CYCLE U 9WITH FREQUENCY F= 5.000000E-01 IS 2 -1

LIMIT CYCLE* 10WITH FREQUENCY F = O.OOOOOOE+OO IS 2

LIMIT CYCLE ft 11WITH FREQUENCY F= O.OOOOOOE+OO IS 2 1

LIMIT CYCLE # 12WITH FREQUENCY F= O.OOOOOOE+OO IS -1

LIMIT CYCLE tt 13WITH FREQUENCY F= 5.0000COF-01 IS -1

LIMIT CYCLE ii 14WITH FREQUENCY F= 5.000000E-01 IS -I i

LIMIT CYCLE # 15WITH FREQUENCY F= O.OOOOOOE+OO IS 2

LIMIT CYCLE # 16WITH FREQUENCY F= O.OOOOOOE+OO IS

LIMIT CYCLE n 17WITH FREQUENCY F= O.OOOOOOE+OO IS 1

LIMIT CYCLE H 18WITH FREQUENCY F= O.OOOOOOE+OO IS 1

LIMIT CYCLE H 19V IT

H

FREQUENCY F= O.OOOOOOE +OO IS 5

LIMIT CYCLE U 20WITH FREQUENCY F= O.OOOOOOE+OO IS 5 6

LIMIT CYCLE # 21WITH FREQUENCY F= O.OOOOOOE+OO IS 6

234





Fig. B.12:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A=-0.10CG00000, B=-0.7500CCC00
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Table B.13:

LIMIT CYCLE OSCILLATIONS OP DIGITAl FILTER, TYPE A

A= O.QOQOOOOGO, 3=-0. 750000000, APPROXIMATE FREQUENCY F= 0.000000
THE AMPLITUDE BOUNDS ARE A 1= 2.000 T A 2= 4. 000

LIMIT CYCLE # 1WITH FREQUENCY

LIMIT CYCLE ft 2WITH FREQUENCY F

LIMIT CYCLE ft 3WITH FREQUENCY F

LIMIT CYCLE ft 4WITH FREQUENCY F

LIMIT CYCLE ft 5WITH FREQUENCY F

L I M I

T

CYCLE ft 6WITH FREQUENCY r

LIMIT CYCLE ft 7 WITH FREQUENCY F

LIMIT CYCLE ft 8WITH FREQUENCY r-
i

LIMIT CYCl E ft 9WITH FREQUENCY F

LIMIT CYCLE ft 10WITH FREQUENCY F

L I M I

T

CYCLE ft 11WITH FREQUENCY F

LIMIT CYCl E ft 12WITH FREQUENCY F

L I M I

T

CYCi. E
ii

i. 5 r iii".
r r. i- r» i i r m r \/ c

L I M I T CYCLE 4} 14WITH FREQUENCY 1-

LIMIT CYCLE ft 15WITH FREQUENCY F

0. 000000 E+00 IS

O.OOOOOOE+CO IS

5oOCOOOOE-Cl IS

5.000000E-01 IS

5.000000E-01 IS

O.OOOOOOE+OO IS

5.000000E-G1 IS

5.000000E-01 IS

5.GQ00Q0E-01 IS

O.OOOOOOE+OO IS

O.OOOOOOE+OO IS

O.OOOOOOE+OO IS

r e\r>r r r r.4- r f\ t cv e '.,, v, % \, v, v i -• \.- „ a ^j

O.OOOOOOE+OO IS

O.OOOOOOE+OO IS

-2

-2 -1

~2

-2 ]

-2 2

-1

-1

-1 1

-1 2

(

»<
1

2

j

i 2

2
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Fig. B.13:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(M-l)
A.= O.GOOOOOOOOf B=-0. 750000000
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Table B.14:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A= 0.100000000, B=-0.750000000i APPROXIMATE FREQUENCE F= O.jOGGOO
THE AMPLITUDE BOUNDS ARE A 1= 2.0C0tA 2 = 6.667

LIMIT CYCLE # 1WITH FREQUENCY F= O.OOOQCOE+CO IS -2

LIMIT CYCLE # 2WITH FREQUENCY F= O.OOOOOOE+00 IS -2 -1

LIMIT CYCLE # 3WITH FREQUENCY F= 5.000000E-01 IS -2

LIMIT CYCLE U 4WITH FREQUENCY F= 5.000000E-01 IS -2 1

LIMIT CYCLE ^,
! 5WITH FREQUENCY F= 5.000000E-01 IS -2 2

LIMIT CYCLE # 6WITH FREQUENCY F= 5.000000E-C1 IS -6 5

LIMIT CYCLE # 7WITH FREQUENCY F= 5.000000E-01 IS -6 6

LIMIT CYCLE # 8WITH FREQUENCY F= 5.0000C0E-01 IS -5 5

LIMIT CYCLE # 9WITH FREQUENCY F= 5.000000E-01 IS -5 6

LIMIT CYCLE # 10WITH FREQUENCY F= O.OOOOOOE+OO IS -1

LIMIT CYCLE # 11WITH FREQUENCY F= 5.000000E-01 IS -1

LIMIT CYCl E # 12WITH FREQUENCY F= 5.00000GE-01 IS -1 1

LIMIT CYCLE H 13WITH FREQUENCY F= 5 .COCO r CE~0 1 IS -1 2

LIMIT CYCLE H 14V! IT H FREQUENCY F= O.OOOOCOE+OO tb

LIMIT CYCLE M 15WITH FREQUENCY F= O.OOOOOOE+OO IS 1

LIMIT CYCLE # 16WITH FREQUENCY F= O.OOOOOOE+OO IS 2

LIMIT CYCLE # 17WITH FREQUENCY F= O.OOOOOOE+OO IS 1

LIMIT CYCLE H 16WITH FREQUENCY F= O.OOOOOOE+OO IS 1 2

LIMIT CYCLE if 19WITH FREQUENCY F= O.OOOOOOE+OO IS 2
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Fig. B.14:

LIMIT CYCLES ARRANGED IN PHASE PLANE X(N) VS. X(N-l)
A= 0,100000000, B=-0. 750000000
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Table B.15:

LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A=- 1. 400000000 i B= 0. 97300000C, APPROXIMATE FREQUENCY F= 0.124428
THE AMPLITUDE POUNDS ARE A 1= 18. 51 9, A 2= 1.745

LIMIT CYCLF g 1WITH FHEOUENCY F = 1.274510F-01 IS
-4 -16 -18 -9 5 16 17 8 -6 -16 -16 -6 8 17 16 5
-9-18-16 -4 10 18 15 3-11-18-14 -2 11 17 13 1

-12 -18 -13 13 18 12 -1 - 13 -17 -11 2 14 18 11 -3
-15 -18 -10 4 16 18 9 -5 -16 -17 -8 6 16 16 6 -8
-17-16 -5 9 18 16 4-10-18-15 -3 11 18 14 2-11
-17 -13 -1 12 18 13 -13 -18 -12 1 13 17 11 -2 -14
-18 -11 3 15 18 10

LIMIT CYCLE V 2WITH FREQUENCY F= 1.250000F-C1 IS
-10 -20 -18 -6 10 20 18 6

LIMIT CYCLF « 3WITH FREQUENCY F= 1.250000E-C1 IS
-6 9 19 18 7 -8 -18 -17

LIMIT CYCLF P 4WITH FREQUENCY F= 1.25000CF-01 IS
14 23 18 3 -14 -23 -18 -3

LIMIT CYCLE * 5WITH FREQUENCY F= 1.250000E-01 IS
-7 8 18 17 6 -9-19-18

LIMIT CYCLE # 6WITH FREQUENCY F= 2.500000E-C1 IS -17 -1 17

LIMIT CYCLE # 7WITH FREQUENCY F= 1.250000E-01 IS
-22 -16 -1 15 22 16 1 -15

LIMIT CYCLE U 8W11H FREQUENCY F= 1.250000E-01 IS
-21-15 -1 14 21 l

u
^ l-i4

LIMIT CYCLE /.' 9WITH FREQUENCY F= W250O00E-01 IS
-20 -11 4 17 20 11 -4-17

LIMIT CYCLE # 1QWITH FREQUENCY F= 1./50000E-01 IS
-20 -16 -3 12 20 16 3 -12

LIMIT CYCLE # ilWITH FREQUENCY F= 1.2500C0E-01 IS
-17 -7 7 17 17 7 -7-17

LIMIT CYCLE i 12WITH FREQUENCY F= 1.250000E-01 IS
-17 -9 4 15 17 9 -4 -15

LIMIT CYCLE * 13WITH FREQUENCY F= 1

.

2 50000E-0 1 IS
-17-10 3 14 17 10 -3-14

LIMIT CYCLE # 14WITH FREQUENCY F= 1.25C000E-01 IS
-17-12 12 17 12 0-12
LIMIT CYCLE * 15WITH FREQUENCY F= 1.25000CE-01 IS
-17 -14 -3 10 17 i4 3 -10

LIMIT CYCLE # 16WITH FREQUENCY F= 1.250000E-01 IS
-17 -15 -4 9 17 15 4 -9

LIMIT CYCLE # 17WITH FREQUENCY F= 1,
-16 -7 6 15 15 6 -7 -16 -1

5

-13 -3 9 16 13 2 -10 -16 -12
-10 2 13 16 9 -3 -13 -1.5 -8

LIMIT CYCLE # 18WITH FREQUENCY F= 1.
-16 -8 5 15 16 7 -6 -15 -15
-14 -4 8 15 13 3 -9 -16 -13

-5 8
-1 11
4 14

16 14
16 11
16 8

4
-1
-5

-8
-12
-15

-IS
-16

276596F-
-6 7
-2 10

01 IS
16 15
16 12

5
1

-8
-11

-16
-16
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-11 1 12 16 10 -2 -13 -16 -9 3 13 15 8 -4 --14

LIMIT CYCLE H 19WITH FREQUENCY F= 1.250G00E-01 IS
-15 -7 5 14 15 7 -5 -14

LIMIT CYCLF U 20WITH FREQUENCY F= 1 . 250C0OE-O 1 IS
-15 -9 2 12 15 9 -2 -12

LIMIT CYCLE # 21WITH FREQUENCY F= 1.274510E-C1 IS
-15 -10 I 11 14 9 -1 -10 -13 -8 2 11 13 7 -3 -11
-12 -6 4 12 13 6 -5 -13 -13 -5 6 13 12 4 -6 -12
-11 -3 7 13 11 2 -8 -13 -10 -1 9 14 11 1 -10 -15
-11 11 15 10 -1 -11 -14 -9 1 10 13 8 -2 -11 -13
-7 3 11 12 6 -4 -12 -13 -6 5 13 13 5 -6 -13 -12
-4 6 12 11 3 -7 -13 -11 -2 8 13 10 1 -9 -14 -11
-1 10 15 11 0-11

LIMIT CYCLE # 22WITH FREQUENCY F= 1 . 250000C-01 IS
-15 -12 -2 9 15 12 2 -9

LIMIT CYCLE # 23WITH FREQUENCY F= 1.250000E-01 IS
-15 -14 -5 7 15 14 5 -7

LIMIT CYCLE # 24WITH FREQUENCY F= 1.25000CE-01 IS
-14 -6 6 14 14 6 -6 -14

LIMIT CYCLE U 25WITH FREQUENCY F= 1.250000E-01 IS
-14 -7 4 13 14 7 -4-13

LIMIT CYCLE 11 26WITH FREQUENCY F= 1.250000E-01 IS
-14 -8 3 12 14 8 -3 -12

LIMIT CYCLE # 27WITH FREQUENCY F= 1.250000F-01 IS
-14 -10 10 14 10 -10

LIMIT CYCLE if 28WITH FREQUENCY F= 1.250000E-01 IS
-14 -12 -3 8 14 12 3 -8

I TMTT CYCLE >/ 29WHH FREQUENCY F^ 1.250000E-C1 IS
-14 -13 -4 7 14 13 4 -7

LIMIT CYCLE # 30WITH FREQUENCY F= 1.250000E-01 IS
-13 -9 9 13 9 -9

LIMIT CYCLE fl 31WITH FREQUENCY F= 1.25C000F-01 IS
-12 -5 5 12 12 5 -5 -12

LIMIT CYCLE U 32WITH FREQUENCY F- 1.250O00E-01 IS
-12 -7 2 10 12 7 -2 -10

LIMIT CYCLF # 33WITH FREQUENCY F= 1.250000E-01 IS
-12 -8 1 9 12 8-1 -9

LIMIT CYCLE # 34WITH FREQUENCY F= 1.250000E-01 IS
-12 -9-1 8 12 9 1 -8

LIMIT CYCLE # 35WITH FREQUENCY F= 1.250000E-01 IS
-12 -10 -2 7 12 10 2 -7

LIMIT CYCLE # 36WITH FREQUENCY F= 1.285714E-01 IS
-11 -4 5 11 10 3 -6 -11 -9-2 6 10 8 1 -7 -11
-8 C 8 11 7-1-8 -10 -6 2 9 11 6-3 -10 -11
-5 4 11 11 4 -5 -11 -10 -3 6 11 9 2-6 -10 -8
-1 7 11 8 0-8 -11 -7 1 8 10 6-2 -9 -11 -6
3 10 11 5 -4 -11

LIMIT CYCLE H 37WITH FREQUENCY F= 1.250000E-01 IS
-10 -4 4 10 10 4 -4 -10

LIMIT CYCLE # 38WITH FREQUENCY F= 1.250000E-C1 IS
-10 -5 3 9 10 5-3 -9

LIMIT CYCLE # 3QWITH FREQUENCY F= 1.250000E-01 IS
-10 -7 7 10 7 -7

Table B.15: (Continued)
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LIMIT CYCLE H 40WITH FREQUENCY F = 1.250000E-01 IS
-10 -9-3 5 10 9 3 -5

LIMIT CYCLE # 41V,'ITH FREQUENCY F= 1.25C000E-01 IS-9-4 3 8 8 3-4-9
LIMIT CYCLE # 42WITH FREQUENCY F= 1.250000E-01 IS-9-5 2 3 9 5-2-8
LIMIT CYCLE * 43WITH FREQUENCY F= 1.250000E-01 IS-9-6 1 7 9 6-1-7
LIMIT CYCLE U 44WITH FREQUENCY F= 1 . 25000CE-C1 IS-9-7-1 6 9 7 1 -6

LIMIT CYCLE # 45WITH FREQUENCY F= 1.250000E-01 IS-9-0-2 5 9 3 2-5
LIMIT CYCLE H 46WITH FREQUFNCY F= 1.250000E-01 IS-8-34994 -3 -8

LIMIT CYCLE # 47WITH FREQUENCY F= 1.250000E-01 IS
-8 -4 2 7 3 4-2-7

LIMIT CYCLE # 48WITH FREQUENCY F= 1.296296E-01 IS-8-5 1 6 7 4 -1 -5 -6-32662 -3 -6-5-1 4 7 6 1-5-8-6 6 8 5-1-6-7
-4 1 5 6 3-2-6-6-2 3 6 5 1-4-7-6
-1 5 8 6 0-6

LIMIT CYCLE # 49WITH FREQUENCY F= 1 „ 250000E-01 IS
-8 -7 -24372 -4

LIMIT CYCLE # 50WITH FREQUENCY F= 1.250000E-C1 IS-7-33773 -3 -7

LIMIT CYCLE # 51WITH FREQUENCY F= 1.250000E-C1 IS-7-5 5 7 5 0-5
LIMIT CYCLE * 52WITH FREQUENCY F= 1.2500OOE-01 IS-6-4 C 4 6 4 -4

LIMIT CYCLE # 53WITH FREQUENCY F= 1.250000E-01 IS-5-2 2 5 5 2 -2 -5

LIMIT CYCLE * 54WITH FREQUENCY F= 1.250000E-01 IS-5-3 1 4 5 3-1-4
LIMIT CYCLE f 55WITH FREQUENCY F= 1.2500C0E-01 IS

-5 -4-13541 -3

LIMIT CYCLE V 56WITH FREQUENCY F= 1.250000E-01 IS-4-2 1 3 3 1-2-4
LIMIT CYCLE # 57WITH FREQUENCY F= 1.250000E-01 IS-4-30343 -3

LIMIT CYCLE # 58WITH FREQUENCY F= I.250000E-01 IS-3-1 2 4 4 2-1-3
LIMIT CYCLE # 59WITH FREQUENCY F= 1.250000E-01 IS-3-2 2 3 2 0-2
LIMIT CYCLE # 60WITH FREQUENCY F= 1.250000E-01 IS-2-1 1 2 2 1-1-2
LIMIT CYCLE # 61WITH FREQUENCY F= 1.666667E-01 IS-10 110-1
LIMIT CYCLE « 62WITH FREQUENCY F= n.O00000E+0O IS

Table B.15: (Continued)
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Table B.16:
LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A

A=-l. 740000000, B= 0.95833000C, APPROXIMATE FREQUENCY F= 0.075800
THE AMPLITUDE BOUNDS ARE A 1= II. 99 9, A 2 = 4.5 80

LIMIT CYCLE # 1WITH FREQUENCY F= 8.333333E-02 IS
5 0-5-9 -II -10 -6 6 10 11 9

LIMIT CYCLE # 2WITH FREQUENCY F= 7.142857E-02 IS
-17 -15 -10 -3 5 12 16 17 15 10 3 -5 -12 -16

LIMIT CYCLE # 3WITH FREQUENCY F= 8.333333E-02 IS
-3 3 8 11 11 8 3 -3 -8-11-11 -8

LIMIT CYCLE " 4WITH FREQUENCY F= 8.333333E-02 IS
6 -6 -10 -11 -9-5 5 9 11 10

LIMIT CYCLE # 5WITH FREQUENCY F= 8.333333E-02 IS
-10 -8-4 1 6 9 10 8 4-1-6 -9

LIMIT CYCLE n 6WITH FREQUENCY F= 8.333333E-02 IS
-10 9 •6 -1 4 10 l -u -i

LIMIT CYCLE U 7WITH FREQUENCY F= 8.333333E-02 IS-9-7-3 2 _ 6 8 8 6 2.-3 -7 -9

LIMIT CYCLE # 8WITH FREQUENCY F= 8.333333E-02 IS
-9 -3-5-1 3 6 7 6 3 -1 -5 -8

-8 -6 -2

LIMIT CYCLE #
-8 -7 -4

LIMIT CYCLE #
-7 -5 -2

LIMIT CYCLE H
•3

LIMIT CYCLE
-6 -4 -1

LIMIT CYCLE #
-6 -5 -3

LIMIT CYCLE #
-5 -4 -2

LIMIT CYCLE #
-4 -3 -1

LIMIT CYCLE #
-3 -2

LIMIT CYCLE
-2 -1

LIMIT CYCLE *

LIMIT CYCLE U

LIMIT CYCLE #

7 7 3-2
10WITH FREQUENCY F= 8.333333E-02 IS

8 7 -7

11WITH FREQUENCY F=
2 5 7 7 5

12WITH FREQUENCY F=15 8 9 8

8.333333E-02 IS
2 -2 -5 -7

8.333333E-C2 IS
5 1-3-6

13WITH FREQUENCY F= 8.333333E-C2 IS
2 -1 -4 -6

14WITH FREQUENCY F=

15WITH FREQUENCY F =14 6 6 4

8.333333E-02 IS
3 -3 -5

8.333333E-02 IS
1 -2 -4 -5

16WITH FREQUENCY F= 8.333333E-02 IS13 4 4 3 -4

17WITH FREQUENCY F =

2 3 3 2

18WITH FREQUENCY F=12 2 10
19WITH FREQUENCY F

20WITH FREQUENCY F=

21V.' IT H FREQUENCY F=

: l.OOOOOOE-ri IS
-2 -?

= l.OOOOOOE-OI IS
-1 -2

O.OOOOCOE+CC IS -1

O.OOOOOOE+00 IS

IS
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B. DIGITAL OSCILLATOR ANALYSIS

The data compiled in this section applies to the digital

oscillator discussed in Section IV. D.
A.

Given the coefficient a and initial conditions x(l) = 0,

x(2) = IC, where IC is given by numbers from 1 to 1200, the

resulting values are tabulated in tables B.17 to B.32. The

columns are labelled:

AMP = amplitude of linear oscillator response,

Q = period of the limit cycle qT,

FDIFF = I (f /f ), . - (f /f ) I , where the two
1 o s linear o s q

1

frequencies are the linear and the limit cycle

frequency respectively,

ADIFF =
| AMP - A

|
, where AMP is given above and A is

the estimated amplitude of the limit cycle,

DELTA = average deviation from the estimated amplitude

of the limit cycle 6A.

The program allows for a maximum number of 50 00 samples

per limit cycle. In those cases where the evaluation of

the limit cycle has to be terminated at q = 5000, the values

for AMP, FDIFF, ADIFF and DELTA are set to zero.
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Table B.17: Digital Oscillator Analysis

ROUND-OFF QUANTIZATION ANALYSIS, A =-1.20

FDIFF

• 1 9 1 E-0

1

0.191E-01

0.473E-G2

0.525E-G3

0.242E-02

0.242E-02

0. 525E-03

0.525E-03

0.107E-02

0.242E-Q2

0.525E^03

0.144E-03

OL.525E-03

0.102E-03

O*354E-04

0. 4 2 PE-04

G.427E-04

0.674E-Q4

0.354E-04

0.674E-05

0.203E-05

0.477E-05

0.334E-G5

0.674E-05

0.954E-06

0.256E-C5

0.417E-06

0.954E-06

0.0

0. 167E-05

AMP Q

1.15 6.

2.31 6.

3*84 7.

5. 01 3 4.

6ol8 20.

7*4? 2 0.

8.77 34.

10.02 3 4.

11.19 74.

12.36 20.

2 5.r>6 34.

37.47 88.

50.12 3 4.

62.53 278.

74.99 210.

87*52 1153.

100.02 61.

112.46 149.

124.98 210.

249.99 3 32.

3 7 5.00 2568.

499. ^9 31 10.

624o99 1782.

749.98 332.

875.00 393.

999.99 1450.

112 5.00 1904.

12 50.01 393.

o.o 5000.

14°9.99 2961.

ADIFF DELTA

O c 954E-06 0.120E--0 5

0. 191E--0 5 0.26OE--05

0.227E 0.1 59E DO

0. 548E 00 G.265E 00

0.308E f >
I 0.227E CO

0.21 IE DO 0.334E 00

0.55 3E 00 0.334E 00

0*134E 00 O.20 5E 00

0.436E 00 C.324E 00

0. 193 E--01 C.213E 00

0. 112E 0.240E 00

0. 105

E

01 C.590E 00

0.632E 03 f . ?92E

0.252E 01 0.1095 01

0.946E 00 0.457E 00

o 2 5 J E t . 1 J « . 76 1 E « i

0.382E--01 0.376E Q<3

0.463E 00 tic 64 9

E

00

0. 192E 01 0.850E no

0.854E 0. 892E 00

0.289E 01 0.273E 01

. 4 1 6 E 01 0.361E 01

e. hoe 01 0.1 38E 01

. 1 14 E 01 0. 10 5E 01

0.396E 00 0*161E 01

0.559E 01 0.36CE 01

0*424E 01 0.184E 01

0. 219

E

01 C.154E 01

0.0 o„o

C.184E 01 0.647E 01
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Tabic B.18: Digital Oscillator Analysis

TRUNCATION QUANTIZATION ANALYSIS, A =-1.20

AMP Q FDIFF ADIFF DELTA

1.15 6. Q.191E-Q1 0.954E--06 0.120E--05

2.31 6. G.191E-01 0.191E--0 5 0.260E--0.5

3.46 6. 0.191E-01 0.286E--05 0.379E--05

4.62 6. 0.191E-01 0. 572E--05 0.565E--05

6. 08 13. 0.626E-02 0.142E r ' n 0.238E

7*29 13. 0.626E-02 0.426E 0.275E 00

8.51 26. 0.626E-02 0.858E 00 0.49 IE 00

9.72 26. C.626E-02 0.357E 00 0.491E ro

11.02 46. ry .459E-:.2 0.329E 00 0.32 8E 00

12.28 33. 0.393E-02 0.731E oc 0.270E 00

24. 82 114. O.154E'-02 0.609E Oi Q.342E

37o31 74. 0.1G7E-G2 0.175E 01 ( .809E GO

49o75 370. 0-107E-02 0. 574E--01 0.104E CI

62o33 27. 0. 565E-03 0.389E 03 0.439E

74.76 344. 0.672E-03 0.630E--01 0.704E

87. 27 54. 0. 565E-03 0. 54 7

E

9 . 678 E GO

99.74 54. Q.565E-03 0.665E Oc 584E 00

112.20 27. 0.565E-03 0.102E g 1 . 3 6 5 E

12 4.78 196. 0.376E-03 0.712E 0.698E 00

249.83 88, 0. 144E-03 0. 276E 00 0.666E CO

374.76 2322. 0.134E-G3 0.348E 01 0.293E 01

499.77 118 5. 0.957E-C4 0.825E 01 0.3C1E 1

624.75 1.158. 0. 84 8E-C4 0.571E 00 . 1 6 6 E 01

749.77 1998. 0..640E-04 0.820E 0.262E 01

874.78 508. 0.542E-04 0.416E 01 C.134E 01

9°9.76 1226. e.5iOF-a4 D.113E 01 .223E 01

1124.76 3922. 0.451E-04 0.267E 00 0.406E 01

1249.77 2188. 0.398E-04 0.310E 01 0.1 73E 01

1374o77 630. 0.354E-04 0.213E 01 C.194E 01

1499.77 1741. 0.327E-Q4 0.447E 01 .424E 01
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Table 13.19: Digital Oscillator Analysis

ROUNCi-GFF QUANTIZATION ANAL V SIS, , A =-1.30

AM P FDIFF ADIFF DELTA

1.15 6. 0.293E-01 0.954E-06 ** 1 *? f> c
V. o Id'- C -05

2. 83 8. 0.124E-01 0. 858E--01 0.607E--01

3.97 22. 0.102E-02 0.217E 00 0.227E 00

5.2 9 22. O.102E-02 0.378E 00 0.327E 00

6.62 22. 0.1G2E-02 0.584E 00 0.278E 00

7.83 36. 0.150E-G2 r-. 526E 3 0.357E 00

9.26 22. 0. 102E-02 0.265E 00 0.265E 00

10.59 22. 0.102E-02 0.520E oc 0.270E 00

11,91 22. 0.102E-02 0. 206

E

00 0.269E 00

13o23 22. 0.102E-02 0.493E--01 0.136E 00

26.35 226o 0.216E-03 0.165E 01 0.742E 00

39.50 51. 0. 130E-03 0. 11 IE 0.1 0.682E 00

52.67 51. 0.13GE-03 0.428? 00 C.300E 00

65.90 124. 0.288E-Q3 0.473E 00 0.969E DO

78.91 8 >»' c. 0. 116F.-03 0.925E 00 0.512E 00

92«06 80. 0. 1 LOt~'::'}> a 4 3 9 E C 0. 860E

10 5. 3C> 932. A.454E-04 . 3 1 7 E ( 1 0.191E 01

118.48 386. 0.787E-C4 0.224E 01 C.9A8E 00

131c 61 182. 0.218E-04 0. 1"! 1E 01 0.932E on

263.21 910. 0.218E-04 0.997E C f 3 0.148E 01

394. 81 3356. 0.185E-04 0.340E 01 0.267E 01

526.39 1798. Pc96^F-t?5 0.275E 00 0.186E 1

657.98 80 8 o 0.823E-05 0.258E 01 0.210E 01

0.0 5000. 0.0 0.0 0.0

0.0 5C0G. 0.0 0.0 0.0

1052.75 626. 0.423E-05 0.295.E 00 0.138E 01

1184.35 3312. 0.525E-05 0.412E 01 0.210E 01

1315.95 3494. 0.6C8E-05 C.7H4E 0.409E 01

0.0 5000. 0.0 0.0 0.0

1579.12 626. 0.423E-05 0.263E 01 0.273E 01
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Table 13.20: Digital Oscillator Analysis

TRUNCATION QUANTIZATION ANALYSIS, A =-1.30

AMP Q FDIFF ADIFF DELTA

Id 5 6. 0.293E-01 0.954E--06 C.120E--05

2e31 6o O.293E-01 0.191E--05 0c2 6"'E--05

3.46 6. 0.293E-01 0.2861:--05 G.379F--05

4.94 20. 0.126E-01 0. 20 5

E

00 0.208E 00

6c 27 34. G.967E-C2 • 43 6 E 00 0.362E 00

7 59 62. 0.778E-G2 C.759F en . 4 5 2 E 00

8.95 7. 0. 547E-02 0. 180E GO C.931E--01

10.33 78. 0.364E-C2 0.817= 00 2o453E 00

11,51 7. 0. 547E-G2 0.123E CO V 81 6E--01

12o79 7o 0.547E-02 0.407E • 0.23 5E or;

25o96 50. 0.262E-02 0. 177E 01 . 8 1 1

E

00

39.16 72. O.150E-02 0„ 160 E fif} 0.1G3E 01

52o31 166, 0. 117E-02 0.218E 00 0.458E c

65.47 94. 0.913E-03 0.122E 01 0.7O8F 00

78.65 210. 0.711 E-C

3

0.106E 01 0.683E 00

9 1 . F9 32 6. 0. 652E-03 G. 32 5

E

0.77 i

"
K"

104.94 790. 0.590E-0 0.214E 01 q c 2G7E 01

118.14 42 8. 0.466E-C3 G.411E 01
'

0.156E 01

131.30 254. 0.411E-C3 . 60 5 F 00 . 1 1 6 E ]

2 62.9'? 293. Go 199E-03 Q.167E 01 1 . -' <-. i c »d

394.46 778. 0.148E-03 C.489E 01 0.217E CI

0.0 5000. 0.0 0.0 0.0

657.64 3528. 0.S72E-0-4 Oe 998E 01 0.43 5E 01

o.e 5000. p.o 0.0 0.0

920. 80 4176. 0.677E-04 0.714E 01 0. 52 5E 01

10 52.40 2532. 0.563E-D4 0.339E 01 0.302E 01

1183.99 1950. 0.514E-04 0.409E 01 0.5C2E 01

1315. 53 2132. 0.452E-f.4 0.73 7E 0). 0.356E 1

1447.18 1841. 0.409E-04 *.826E ft 1V J. o 363E 01

1578.77 2234. 0.372E-04 0.387E 01 . 2 7 1

E

01
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Table B.21: Digital Oscillator Analysis

ROUND-OFF QUANTIZATION ANALYSIS- A =-1.40

AMP Q FDIFF ADIFF DELTA

1.15 6. 0.401E-91 G.954E--06 O.120E--0 5

2.83 8. 0.159E-02 0.858E--v ? l 0.607E--01

4.24 8e 0.159E-02 . 1 2 1 E 0.858E--01

5.66 8. 0, 159E-02 0. 172E 00 . 1 2 1

E

no

7.07 8. 0.159F-C2 0.355E--CI . 2 5 1 E--01

8c 2 5 54. 0.304E-02 0. 122 F: 01 C.58 8E 00

9.90 8. 0„159E~02 0.5C3E--01 0.355E--01

11.07 70. 0.198E-G2 0.302E--01 C.408E oc

12.73 8. 0.159E-02 0. 136E 00 C.962E--01

14.14 8. 0.159E-02 0.711E--01 0.5C3E--01

27.99 150. 0.750E-04 0.140E 01 0.585E oo

42.05 87. 0.155E-03 0.226E 01 0.759E 00

56.04 166. 0. 857E-04 0.789L- 00 0.939E 00

70.05 166. 0. 857E-04 0.133E 01 G.839E o

84.0 6 166. 0.857E-04 0.493E 00 G.662E 00

98.01 466* 0. 1 78E-C <* • 1 3 1

E

C> 5 7 C E
^. /

112.03 474. Q.936E-05 C. 180E 01 0. 147E 01

125.97 150. O.75OE-04 0.574E oc 0.559E <~f

140.04 316. 0.936E-05 Q.123E 01 0.150E 1

280.07 474. 0.936E-05 0„4.;:7E 00 0.138E 01

420.11 158. 0.936E-05 0.29 5E 01 . 94 5 E

560.14 79. 0.936E-05 0. 134F 01 0.715E

700.18 316. 0.936E-05 0.875E oc 0.198E 01

840.17 4400. Q.715E-06 0.313E 01 0.533E e i

980.25 79. 0.936E-C5 0.517E CO 0.529E 00

1120.23 1414. 0.417E-06 D.75 7.F 00 C.2 77E 01

1260.25 1256. 0.715E-06 0. 636E 01 C.213E 01

1400.2 8 392 6. 0.298E-06 0.2 rt7F 01 0.323E 01

1540.3 2 1572. 0.131E-05 ^.163E 01 0.167E 01

1680.34 1414. Q.4 17E-C6 0.177E 01 0.150E 01
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Table B.22: Digital Oscillator Analysis

TRUNCATION QUANTIZATION ANALYSIS? A =-1.40

AMP Q FOIFF ADIFF DELTA

1.15 6. 0.401E-01 0.954E--06 0.120E--05

2.31 6. O.4O1E-01 a 191E--05 C.26-E-- r, 5

3*84 7. 0.163E-Q1 0.227E oc 0.159E

5.29 22. 0.977E-92 f;c37 8E OS 0.327E

6o62 22. 0.977E-02 0.254E 0.202E 00

8.07 15. 0.674E-02 0.43 8E 00 . 42 2 E K G

9o 26 22. 0.977E-02 0.596E 0.514E .*>» .~-

10*87 3 8. 0.499E-02 0.284E 00 0.37^E 00

12. 11 15. 0.674E-02 0.245E £0 0.264E C Q

13.59 38. 0.499E-02 0.734E--0 2 0.399E

27.69 28 8. 0.188E-Q2 0. 240E 01 Q.129E M
41.67 86, 0. 132E-02 0.145E 01 Q.704E 00

55.66 478. 0.1Q2E-G2 o. 17 ie 01 0.843E DO

69.65 102. 0.859E-03 0.783E oo . 7 5 5 E

83.67 110. 0.681E-03 0. 240E i o726E

Q 7 . 7 ?36. o. 52 ?E-&3 D« 54 IE 01 '"
: o 2 8 ' E

111.66 118. O.5 27E-03 Q.237E 01 , o 1C3E t 1

125.72 189. 0. 392E-Q3 Go 207E 01 . 1 1 5 E 01

139.79 134. 0.274E-G3 0.129E 01 0.648E OC

279.73 702. 0.189E-Q3 0.284E 01 0.134E C 1

419.74 3665. 0.135E-03 0.449E 01 0.29 IE 01

5 59.74 1618. O.1O8E-03 Q« 223E oo C.195E 01

699. 82 150. 0.750E-04 0.204E 01 0.1C3E 01

839.83 1358. 0.6 52E-04 0. 120E 01 0.264E C 1

979.85 4398. 0. 568E-04 0.437E 01 . 2 90 E C 1

1119.87 1674, 0.511E-04 0.68 5.E 01 C.418E 1

1259.90 4430. 0.449E-C4 0.1 24E G2 0.714E CI

C.C 500 C. 0.0 0.0 0.0

1539.97 3072. 0.359E-04 C. 164E CI G.324E 01

O.G 5000. 0.0 0.0 L .
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Table B.23: Digital Oscillator Analysis

ROUND-OFF QUANTIZATION ANALYSIS? A =-1.5C

AMP Q FDIFF ADIFF DELTA

1.70 10. 0.150E-G1 0.291E P.12 7E CO

3.40 10. 0.150E-C1 . 1 8 E 00 0.785E--01

5.10 10. 0.150E-01 . 1 1 1

E

1 0.485E--01

6.22 9. Q.392E-02 0.225E OC 0.125E oc

7.92 46. 0.633E-02 0.649E oe 0.489E 00

9.33 9. 0.392E-02 0.146E GO 0.861E--01

10.89 9. 0.392E-02 0.381E 00' . 1 8 1

E

CO

12.34 98. 0.278E-02 0. 5 74E CO G.623E CO

13.82 62. 0.212E-02 Co 76 6

E

00 0.348E oc

15.56 9. 0.392E-C2 0.371E 0.163E 00

30.45 114. Q.992E*-03 0.67CE 00 0.544E CO

45.68 L14. 0.992E-03 0. 125E 01 0.73 9E OC

60. 67 96. 0.443E-H3 0.487E 0.338E CO

75.83 2 88. 0.443E-03 0.769E 00 0.848E 00

90.98 349. 0.414E-G3 0.157E . 1 2 2 E 1

106.04 bit 0.273E-C

3

0.22 6

E

( Q • 49 3 E

121.18 61. 0.273E-03 0.705E CO C.538E 00

136.33 305. 0.273E-03 0.137E D

1

G.146E 1

151.41 27C. 0.212E-C>3 0. 233E 00 0.923E 00

332.64 557. 0. 125E-C3 . 2 1 4 E OC C .955E

453.80 1418. C761E-G4 0.435E 01 .265 E 01

604.97 1122. 0.535E-04 0.380E 01 0.156E 01

756.21 1409. 0.516E-04 0.407E 01 0.276E (

1

907.38 1061. 0..409E-04 0.103E 01 0.132E 01

CO 5000. 0.0 0.0 O.C

0.0 500C. 0.0 0.0 . o.e

1360.96 3974. 0.293E-04 0.100E 02 0.40 IE 01

1512.15 60 Co Sc268E-C4 0. 134E 01 0.22 5E CI

1663.32 3226. 0.237E-Q4 0.920E--Gl 0.269E CI

0.0 5QCC. 0.0 0.0 O.C
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Table IJ.24: Digital Osci3.1ator Analysis

TRUNCATION QUANTIZATION ANALYSIS, A =-1,50

AMP Q FDIFF ADIFF DELTA

1.15 6. 0.516E-01 0.954E--06 CI.12GE--Q5

2.83 8. 0.997E-02 0.858E--01 0.607E--01

4. 24 8. 0.997E-02 0.121E 00 0.858E--01

5.88 42. 0.402E-02 0.693E 0.327E ec

7,07 8* 0.997E-C2 0c355E--0! Q.251E--01

8.82 42. 0.402E-02 0.108E 01 0. 591E so

10.29 42. 0.402E-02 o 6 1 5 E 00 G.365E 00

12.06 26. 0.358E-03 G.297E 00 0.250E 00

13.23 42. 0.402E-02 O0668F I 0.356E 00

14.91 94. 0.199E-02 0.284E 00 0.425E OC

30.00 198. 0.113E'-02 0.102E OS 0.78QE OC

45.09 164. 0.827E-C3 0.155E V 1 . 7 3 8 E cc

60.32 26c 0.358E-03 0.336E 00 0.264E 00

7 5.40 26. 0.358E-03 . 1 2 2 E 01 o.iBse 00

90.4 8 26. 0.358E->n 3 G.323E cc O.200E nr.

IC5. ^6 26s. 0. 3 58E-03 0.58 4 E {
' c

120.71 451. 0.273E-03 . 3 8 8 E 01 0.13C E 01

135.72 26. 0.358E-G3 0. 215

E

00 0.21 5E OC

150.96 512. O.2O8E-03 0.277F 01 Q. 10 6

E

01

302. 1C 660. 0.125E-03 0. 579E 01 . 0.209E 01

453.26 582. 0.935E-G4 0.322E 00 . 1 23 E c 1

604.45 530. 0.676E-04 0.259E '-'
1 ',%S C Qg

755.66 2494. 0.494E-C4 0.382E 01 C.182E 01

906.85 1825. 0.417E-04 0.242E »-.

g . 2 8 1

E

1

1058.00 1208. 0.395E-04 0. 14 7F CI 0.213E 01

0.0 5C00. 0.0 . c
r-- p

1360.41 2 790. O.270E-04 0.40GE 0.375E 01

1511.57 930. 0.27CE-04 0. 204E 01 0.14 IE 01

1662.78 3668 0.224E-04 0.146E CI 0.394E 01

G.O 500 0. 0.0 0.0 O.C
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Table B.25: Digital Oscillator Analysis

ROUNDi-0 FF QUANTIZATION] ANALYST Si , A =-1.60

AMP Q FDIFF ADIFF DELTA

1.70 10. 0.242F-02 0.291E CD 0.127E OC

3 a 4C 10. 0.242E-Q2 0* 180E I .785E-•01

5.10 10. 0.242E-C2 . 1 1 1

E

OG 0.485E--01

6c81 10. O.242E-02 f:„359E oc 0.1 57E oc

8,51 10. 0.242E-02 r .686E--01 0.300E--01

10.21 10. 0.242E-02 D.222E 00 0.970E--01

11.91 10. 0.242E-02 0. 248E ft ft 0.108E 00

13,61 10. 0.242E-02 0.424E--01 0.18 5E-- 1

14.78 4 8. 0. 175E-02 0.652E 00 0.243E ft ft

17e01 10. 0.242E-02 0.137E 00 0.600E--0

1

33.37 88. 0.144E*-03 . 1 1 3 E 01 0.615E

50oOC L66* 0.679E-05 0.6C2E 00 0.812E nn

6 6.58 39. 0L.148E-C3 0. 103

E

01 0.759E -

83. 34 •'+9 8. 0.679E-05 0. 236E 01 . 1 6 6 E 01

100. C

i

166. 0.679E-05 0.234E 01 C . 8 5 1

E

G

116.67 166. 0.679E-G5 . 7 7 7 E oc i e c. l u

133.38 67 4. 0.426E-04 0.206E 1 0.208E 01

150.01 49 8. 0.679E-05 0. 250

E

01 0.1 65E 01

166.68 830. 0.679E-05 0.747F 00 0.224E 01

333o38 625. 0.165E-04 v
Y .6i;'E ft 1U 1 0.298E 01

500.03 166. 0.679E-G5 0. 881

E

oo 0.845E I

666.66 3310. 0.477E-C6 0.127 E 02 0.486E Gl

833.33 3310. G.477E-G6 C 698E oc 0.263E 01

1000.00 19C4. 0.477E-06 0.346E CO 0.20 IE 01

1166.73 498. O.679E-05 0. 350E 01 0.227E 01

0.0 50C0« 0.0 0.0 . 0.0

1500.01 3974c 0.715E-06 0. 101E 02 0.491E 01

1666.68 4306. 0.119E-05 C.336E CC . 4 6 4 E 01

1833.33 3476. 0.119E-06 0.768E 01 0.609E 01

1999.99 1572. 0. B94E-Q6 0.38 IE 01 0.344E ]

253





Table B.26

AT I ON

Q

TRUNC

AMP

1.15

2.83

4.24

6.22

7.78

9.51

11.23

12.68

14.43

16.18

32.72

49.28

66. 10

82.81

99.37

i 1 6 • 1

6

132.82

149.44

16 6.15

332. 82

499.43

666. 12

832.77

999.43

1166.07

1332.75

1499.46

0.0

0.0

1999.44

Digital Oscillator Ana

QUANTIZATION ANALYSIS, A

FDIFF

0.643E-01

n 226E-G1

8.

9.

9.

46.

28.

46.

28.

66.

86.

48.

116.

37 8.

126.

204.

243.

76 8 e

f374 c

692.

2116.

1551.

344 4.

1610.

888.

810.

732.

5oao.

500 0.

449.

0.226E-01

0.869E-02

0. 869E-02

0.628E-02

0.473E-02

0.628E-02

G.473E-02

0.364E-G2

0.223E-02

0. 175E-02

O.103E-02

0.758E-03

0.758E-03

0. 525E-G3

0.464E-03

0.448E-03

0.371E-03

0.185E-03

C. 136E-03

0.981E-04

0.806E-04

0.681E-04

0.610E-04

0.527E-04

O.426E-04

0.0

0.334E-04

ADIFF

0.954E-06

0.858E-G1

0.121E 9G

0.225E OC

0.302E GO

0.423E 00

0.379E OC

0.743E ©Q

0. 236 E 00

0.459E i

0.424E OC

C.458E 00

0.928E 00

0.377E 00

0.476E 00

. 1 2 3 E G

1

0.952E 00

0.68 IE 00

0.115E 01

0.175E 01

0.282E 01

0.287E 01

0.378E 01

0.147E 00

.r».148E 01

0.306E 01

0.149E 01

Cc 163E 01

lysis

=-1.60

DELTA

0.120E-

0.607E-

0.858E-

0.125E

0.1 46E

0.724E

. 40 3E

0. 597E

0.409E

0.467E

G.620E

0.575E

0.1 34E

. 1 2 1

E

0.713E

D.102E

0.203E

0.143E

0.256E

0.218E

0.248E

0.412E

0.218E

0. 18 6E

0.316E

0.195E

0.0

0.159E

05

01

01

OC

00

00

OC

OC

00

01

01

CO
/=* «=*

1 »

01

1

01

01

01

01

01

01

01

01

01

01
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Table JJ. 27: Digital Oscillator Analysis

ROUND-OFF QUANTIZATION ANALYSIS, A =-1.70

AMP FDIFF ADIFF DELTA

1.70 10. 0.117E-01 0.291E OC 0.1 27E 00

3.40 10. 0.117E-01 0. 180E oc 0.785E-01

6c CO 12. 0.497E-02 0.113E OC 0.801E-01

8.00 12. 0.497E-02 0.414E--01 C.293E--01

9.50 34. 0. 657E-04 0.233E 00 0.426E 00

11.40 34, 0.657E-G4 0.482E 00 0.265E 00

13.16 56. 0.985E-03 0.754E 00 0.477E 00

15.20 34. 0.657E-04 0.937E 00 0.295E 00

17.26 3 2 6. 0.999E-03 0.73 3E 00 0.1 HE 01

19.00 34. 0.657E-04 0.434E 00 0.453E 00

38.19 57. 0.582E-C3 (% 25 7

E

( g 0.924E oc

56.99 :.02. 0.657E-C4 0. 1C0E 01 0.754E 00

75.98 34. 0. 6 57E-C4 '%284E 00 r>.662E On

94.98 2 38 c 0.657E-04 0. 159E 01 0.1 87F 01

113. o7 782. C.657E-04 0.272E 01 G.295E 01

LB2. 97 i 1^ c b57E— 34 0. 28 3

E

sc 1 •- 557c G G

151.97 102. 0.657E-G4 . 16 9 E 00 0.76 IE oc

17 0.96 34. 0.657E-04 Q.310E oo 0.338E

189.96 34. 0.657E-04 0. 133E 0.3O2E 0€

379.92 34. 0.657E-04 . 2 2 1 E or 0.15GE 0(

569. 87 34. 0.657E-C4 D.354E 00 0.363E GC

759.41 3228. 0.110E-04 0.476E 01 0.293E 1

0.0 5000. 0.0 O.fi 0.0

1139. 10 1042. 0.924E-C5 0.300E 01 0.322E 01

1328.95 1042. 0.924E-05 .0.415E 01 0.36 8E 01

1518. 75 1982. 0.632E-05 0.318E 01 0.45 IE 01

1708.55 1427. 0.387E-05 0»1*74E 01 0.414E 01

1898.36 372 6. 0. 250E-05 0.921E 01 0.4 2 8E CI

2088.24 2888. 0.459E-05 0.478E 01 0.397E 01

2278.09 1914. 0.423E-05 0.425E 01 0.307E 01
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Table B.28: Digital Oscillator Analysi:

TRUNCATION QUANTIZATION ANALYSIS, A =-1.70

AMP Q FDIFF ADIFF DELTA

1. 15 6. 0.784E-01 0o954E--06 0.12CE--05

3.40 10. 0.117E-01 0.180E 00 0.785E--01

5.10 ID. G.117E-C1 0.111E 00 0.485E--01

60 81 10. 0.117E-01 0.359E 00 0.157E r-f.

8.51 10. 0. 117E-C1 0.686E--01 G.300E--01

10.80 32. 0.545E-Q2 0.609E 00 G.409E 00

11.91 ie. 0.117E-01 0.248E 00 0.108E CO

14.4© 32. C.545E-G2 0.549E 00 0.38OE 00

16.20 32. 0.545E-<^2 C.364E «"> ft 0.376E 00

18.00 32. 0.545E-02 C.260E f\ Pi
. 1 9 8 E CO

3 7.06 47 4. 0. 24 2E-C

2

0.63 3E 00 0.126E 01

56. 13 7.8. 0. 144E-02 0.887E--0 2 0.453E 00

75.09 30 2 . G.110E-02 0.314E 00 C.1C8E 01

94.35 4 5. O t 588E~C3 0.800E 0.984E 00

113.ee 550. G.790E-03 0.293E 01 C.209F ft 1

13 i„ 97 236: 0»682EH l 0. 559E OC1 a "• Ci3 I: • 1

151.00 93 4. O.564E-03 C. 16 IE 0] 0.217E 01

170.01 642. 0.484E-03 0. 104E 01 0.147E 01

188.91 214. 0.484E-C3 0.224E 01 0.999E r r

378.74 192. 0.241E-0 3 0. 172F 01 0. 174E 01

568.57 26G. 0.161E-03 G.3Q5E r ft 0.140E 01

758.55 1414. O.1O1E-03 0.10 IE 01 0.201E 01

948.36 396. 0.829E-04 0.894E OC 0.20 IE 01

113 8.10 826. 0.768E-O4 n.28 4F 01 0.1 96F 01

1327.96 679. 0.643E-O4 • 0.608E 01 0.458E 01

1517.76 713. 0.581E-04 0.847E 00 G . 2 8 2 E 01

0.0 5000. 0.0 0.0 0.0

18Q7.41 781. 0.473E-04 0.137E 01 0.456E 01

2087.29 4992. 0.404E-04 0. 120E 02 C.993E 01

2277.10 1132. 0.383E-04 0. 166E 01 0.255E 01
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Table B.29: Digital Oscillator Analysis

ROUND-OFF QUANTIZATION ANALYSIS, A -UP 1

AMP Q FDIFF ADIFF DELTA

2.30 14, 0.355E-03 0.5^8 E 00 0.210E OC

4.61 14. C.355E-03 C.459E QC 0.113E ©0

6.91 14. G.3 55E-03 Oc5^4E 00 0.166E CO

9.22 14. C.355E-03 ^. 861E- -01 0.931E--01

11.52 14» 0.355E-03 . 1 3 5 E GO 0.816E--01

13.83 1 4. 0.355E-03 C.373E 00 0.132E 00

16.13 14. G.355E-03 0.324E or 0.106E ori

18c 44 14. 0.355E-03 Q.729E 00 0.236E 00

20.74 14. 0.355E-03 . 2 2 1

E

00 0.567E--01

2 3.C5 14. C.355E-C3 0.27OF on C.163F oe

46.10 14. Q.355E-03 0.163E--01 0.366E--01

6 9,14 14. 0.355E-03 0. 25 4E 00 0.12 9 c

92.19 14. O.355E-03 0.325E^-01 0.732F--01

115.24 14. G.355E-03 0.238E 00 0.960E--01

137. 50 654o 0.8 23E-04 C.241E 00 0.210E 01

J 61.33 ) 4. 0. 355E-03 . >22E 00 Go 674 ;r --01

183.52 1184. 0.739E-O5 G.156E 1 0.398E 01

2x> 7 • 43 14 e 0.355E-03 0.205E CO 0.504E-- 1

229. 2C: 167. 0.731E-04 Oc 16 8

E

01 0.916E GO

458.91 418. 0.1 28E--C4 0.286E 01 0.228E CI

688.26 40 4. 0.9 54F-06 0.342E 01 0.196E 01

917.67 404. 0.9 54E-G6 0.449E--01 0.1 89E 01

1147.09 404. 0.954E-06 0. 212

E

01 C.151E 01

1376.40 794* 9.525E-05 0.167E oc 0.167E 1

160 5.93 404. 0.954E-G6 .0.336E 01 0.145E 01

0.0 . 0. 0.0 0.0 0.0

o.c 5000. u.O 0.0 O.C

2294.14 2814 0.775E-06 0.759E--01 0.600E 01

2523.61 40 4. 0.954E-06 0.561E 01 0.253E 01

• 0.0 5000. 0.0 0.0 e C
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Table B.30 : Digital Oscillator An alysis

TRUNCATION QUANTIZATION ANALYSIS, A =-1.80

AMP Q FDIFF AOIFF DFLTA

1.15 6. C.949F-S1 0.954E--06 0.1 20E

3.40 10. 0.282E-01 0.180E 30 0.785E-

6. 00 12. 0.116E-01 o 1 1 3 E 0.801E

8.00 12. 0.116E-01 0.414E--01 0.293E

10.51 3 8. 0.716E-02 0.9O9E DO 0.479E

12.36 62. C.886E-02 0.69CE 00 0.823E

15.06 39. 0. 514E-02 . 1 1 3 E oc 0.697E

16.81 3 8. Q.716E-^2 ^'o531E 00 0.290E

19.64 66. 0.397E-02 fJ c 769E 00 0.680E

21.82 66. 0.397E-02 Co 20 IE 01 0.1 21E

44.87 6 8. 0.175E-02 0. 156E 01 0.991E

67.52 23 2. 0. 149E-02 0. 13 3

E

01 0.165E

90.66 55. 0.944E-03 0.624E 0.1O1E

113.53 24 8. 0.798E-C3 0.318E 01 tt.2 5 8E

136.35 262. 0.736E-03 . 1 5 7 E ei 0.156E

1 59. 38 152. u. 585E-03 Q e 1 29 E OG . 1 2 3 E

182.42 346. r'.471E-^3 0.231E 00 0.254E

205.31 180. 0.439E-03 0. 3 72

E

01 0.1 68E

228.36 402. 0.356E-C3 0. 210E 1 Oc 154F

457.64 514. 0. 2<"UE-03 0.345E ] 0.227E

686. 83 139. 0.159E-C3 • 6 1 5 E 00 0.177E

916.45 626. r.. 1G2E-C3 0.586E- 1 0.215E

0.0 5000. c C .0 . C

1375.35 682. G.644E-D4 0.740E 0© 0.379E

1604.71 3466. 0. 576E-04 0.144E 02 G.424E

1834.09 4218. 0.519E-04 o 1 7 1

E

02 0.812?

2063.52 4998. C.456E-C4 0. 120E OC . 5 2 7 E

2292.97 181. Q.401E-04 0.130E 01 0.249F

0.0 5000. 0.0 Q^ 0»€

2751.76 2938. 0.344E-04 0.608E 01 0.602E

•01

01

01

00

00

00

oc

V V '

01

00

01

01

01

01
ft* *

si J-

01

01

01

01

CI

01

CI

01

01

01

01

01
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Table B.31: Digital Oscillator Analysis

ROUND-OFF QUANTIZATION ANALYSIS, A =-1.90

AMP Q FDIFF ADIFF DELTA

4.18 26. 0.121E--91 0.108E 01 0.434E 00

5.85 1 8. 0.501E--0 2 0.972E oc 0.278E 00

8.77 ] 8. 0.501E--02 0.417E or C.861E--01

14.20 C 2 o 0.5O9E--02 0. 147E 00 0.153E 00

16.18 20. 0.541E--03 0.139E 01 0.321E 00

19.42 20. 0.541E--03 0.58 7E JJ« 0.152E 0<y

22.65 20. 0.541E--03 0.517E 00 0.959E--01

2 5.66 218. 0.826E--04 0.624E 01 0.289E 01

28. 19 5 8. C. 118E--02 0.164E oc 0.493E 00

32. ei 17 8. 0.205E--04 0.425E 01 0.278E 01

64.72 20. 0.541E--0 3 0.482E 00 Oc I 54E DO

96.46 298. 0.206E--03 D.547E 00 0.1 72E 01

128.31 654. 0.826E--04 0.455E 01 0.34 IF 01

161. 80 20. 0.541E--03 0.901E--01 f*.815E--01

192*91 298, C.206E--03 0.462E 01 0.222E 01

2 2 4 i. 8 4 258s 0. 1 54E--03 0. 203

E

01 P 7 6 2 E - * i

256.96 258. 0.154E--03 0.623E 00 Co 104E 01

288.69 218. 0. 826E--04 0.306E 01 0.143E 01

320.52 1604. 0.426E--04 . 1 99 E 02 0.665E 01

640.88 1*64« 0.298E--04 0. 204

E

02 . 1 1

E

02

961.10 3820. 3.178E--04 0.116E 01 0.474E 01

1281.26 376. C.941E--05 0. 117E 01 0.2^-9E 01

1601.59 3483c 0.1Q2E--04 0.634E 01 0.136E 02

1921.88 376. A.941E--05 0.35"E 01 0.233E 01

ft.Q 500 Q. 0.0 0.0 •

2562.39 308 7. 0.682E--05 0.716E 01 C.998E 01

0.0 5000. 0.0 0.0 OeO

0.0 5000. 0.0 OrO G oO

0.0 5000. 0.0 0.0 0.0

0.0 5GO0. c.c 0.0 0.0
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Table B.32: Digital Oscillator Analysis

TRUNCATION QUANTIZATION ANALYSIS , A =-1.90

AMP Q FDIFF ADIFF DELTA

1. 15 6. 0.1 16F GC 0.954E--06 0.120E--05

3.40 J. i*> . 0.495E--01 0.188 E oc 0.785E--01

6.91 14. 0.209E--01 0.594E qq 0.166E 00

1 1 . 70 18. G.501E--02 0.125E 01 0.278E 00

13.07 16. 0.120E--01 0. 134E 03 0.844E--01

15*68 16. 0.120E--01 0.424E 00 0.168E 00

20.47 18. 0.501E--02 0.829E 00 0.274E oc

23.39 18. 0.501E--02 0. 124E 00 0.865E--01

26.31 18. C.501E--02 0.143E 00 0.54GE--01

29.93 166a 0.368E--02 0.630F 01 0.284E 01

61 . 84 248c 0.188E--02 0.721E 01 0.314E 01

93. 17 115. Q.163E--02 0. 149E. 01 0.1C4E 01

125.27 406. 0. 118E--02 0.250E 01 0.3 54E 01

157c 34 136. 0.929E--03 0.250E 01 0.197F 01

18 9.47 39. 0.741E--03 0.868E 00 0.764E '

2 2 1 e <
a o
.J J « 0. r41fc--03 i

'~-

e 307

E

i u

253o33 176. 0.595E--03 '•• 166E 01 0.992E f\ f

285.62 9 8. 0.479E--0 3 0.8 ICE f
) 0.2 64F 01

31 7.50 80 4. 0.454E--03 0.322E 01 0.2 84E 01

637.71 1556. 0.230E--03 . 4 8 8 E 01 0.46C E 01

958.14 730. 0.144^--G3 0.598E 01 . 5 7 1

E

01

1278.19 2586. 0.116E--03 0.480E 01 0.55 8E 01

1598.48 1422. 0.916E--04 0. 194E 01 . 5 8 3 E 01

1918.75 810. G.760E--04 . 1 1 1 E CI G.363E 01

2238.97 494. 0.660E--04 .0.790E 01 9.344E CI

2559. 24 2589. 0.574E--04 0.404E 01 0.95 8E 01

2879.58 2708. Q.495E--04 0. 121E 2 0.623E 01

3199.69 850. 0.469E--04 0. 268E 01 0.292E 01

3520.09 2234. 0.406E--04 0.268E 01 0.565E CI

3-840.21 120 6. 0.391E--04 0. 905

E

00 0.46CE 01
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Computer Program A

:

Analysis Program for Zero-input
Limit Cyclefbscillations in Digital Filters with Roundoff.

ONE: PROCEDURE OPTIONS (MAIN)

?

/* EVALUATION OF ALL POSSIBLE LIMIT CYCLES DUE TO
ROUNDING AFTER MULTIPLICATIONS FOR DIGITAL
FILTERS WITH TV/0 POLES */

DECLAPE (A,B) DECIMAL FIXED <
Q ,6);

DECLARE (F,F_APPROX, TWO Pi) DECIMAL FLOAT(12):
DECLARE DF C ENTRY (DECIMAL F

1

XED ( t) , DEC IMAL FIXEP(M,
DECIMAL FI7ED(6)) RETURNS ( DECIMAL FIXED(6));
OPEN F I LE ( SY SPRINT) PAGESIZE ( 75 )

;

TWO PI=6. 2831 85307;
A=-3 .94;
B =0.95833;
DO LL=1 TO 37;
A=A+0.1

t

NINE: A 1 = 0. 5/^ 1.0- APS (Bl);
A2=l./< l.+B-ABS(A) )

;

IF (4.0*B-A**2) <
THEN DO;

F APPROX=0.0;
GOTO ten;
end;

IF A>-.01 & A<.01
THEN F_APPROX=0.25;
ELSE F_APPROX=ATAN(-SQRT'< 4.*B-A**2) /A)./TWO_PI ;

IF F_APPR0X <
THEN F_AP P R X=0 . 5 +F_APPROX

;

TEN: PUT EDIT
(•LIMIT CYCLE OSCILLATIONS OF DIGITAL FILTER, TYPE A')
(PAGE, L INE( 5) , COLUMN (20) ,A)

;

PUT EDIT( ! A= ! ,A, ?
, R=',B,», APPROXIMATE FREQUENCY F= •

,

F APPROX,»fHt AMPLITUDE BOUNDS ARE A 1-' T A1, ,
t

A2) (LINE( °>> .COLUMN (20) ,A,F(12,9),A,F(12,9j,A,F(9,6),
L I NE ( 9 ) , COLUMN (20),A,F(7,3),A,F(7,3));
PUT SKIP(4);
A1=A1 + 6.0;
A2=A2+5.0;
IF A]>=A2

THEN II = A1 ;

ELSE II=A2;
TWO: BEGIN;

/* GO THROUGH FILTER RESPONSES FOR ALl POSSIBLE
INITIAL CONDITIONS */

DECLARE MATRIX(-II:I 1,-1 I: I I ) BI NA RY F

I

XED( 6 )

;

DECLARE U DECIMAL FIXED(6);
M=i; u=0;
ILIM=10*A1;
/* INITIALIZE THE MATRIX TO -1 */
DO I=-II TO IT;
DO J=-I! TO II;
MATRIX( I , J)=-l;
END;
END;
DO I = - I I TO II;
/* SUBSCRIPT I DENOTES ROW OF MATRIX OR X(N) */
DO J=-I I TO II;
/* SUBSCRIPT J DEMOTES COLUMN OF MATRIX OF X(N-l) */
N = 1 * ISIGN=0* I F L AG = "

THREE: 7*RUN TRANSIENT RESPONSE FOR ONE INITIAL CONDITION-/
BEGIN;
DECLARE LIMIT(ILIM) BINARY FIXED(15),

(X1,X2) DECIMAL FIXED(6);
DO L=I TO ILIM; /* INITIALIZE LIMIT TO */
LIMIT(L)=0;
END;
if ; ( i » j ) > o

THEN GOTO SIX;
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MATRIX( I ,J)=0;
X1=I;
X 2 = J

*

FOUR: '

' K=DF_A(X1,X2,U)

;

IF ABS(K)>I I i ABS( X 1 ) >I

J

THEN GOTO FIVE;
IF MATRIX(K,X1)=-1

THEN DO; /*NEW TRANSIENT POINT DETECTED*/
MATRIX(K,X1) =0;

FIVE:X2=X1

;

X1 = K;
GOTO FOUR;
END;

IF MATRIX(K,X1 )=C
THEN DO; /*NEW LIMIT CYCLE DETECTED*/
IFLA3=l;
MATRI X( K,X1)=M;
LIMIT (N)=K;
n = n+i ;

IF SIGN(K)=SIGN(X1)
THEN GOTO FIVE:
ELSE IP SIGN(SIGN(K)+SIGN(X1) )=1

THEN GOTO FIVE;
ELSE DO;
/* SIGN-CHANGE OCURRED INDICA

NEW HALF-CYCLE OF OSCILLAT
ISIGN=ISIGN+1 5

GOTO FIVE;
END;

END?
/* OLD LIMIT CYCLE OR END OF PRESENT LI HIT C

DETECTED */
DO I2=-II TO II ;

/* RFSET ALL MATRIX POINTS EXCEPT LIMIT CYCL
DO J2=-II TO II:
1 r MAiKlAl ii|Ji;-u

r H h N MAiKlX(I2fJ2i=-i»
end;
end;
IF IFLAG=Q

THEN GOTO SIX;
F=ISIGN;
F_APPR0X=2*(N-1 )

;

F=F/F APPROX

;

PUT SKIP (2 )

;

PUT EDIT(« LIMIT CYCLE $ ' ,M,»WITH FREQUENCY
Ft' IS 1

) <C0LUMN(2C),A t F(3) ,A,E(13,6) , A,X( }]

IF (N-l) <= 4
THEN PUT EDIT
((LIMIT(L) DO L=l TO N-1)){F(4))J
ELSE DC;

-

N] =o;
PUT EDITM M (SKIP f COLUMN ( 19) » A)

;

DO L=l tq N-l;
PUT EDIT.(LIM1T(L) ) ( F(A) ) ;

N1=N1+1;
IF Nl=16 THEN DO;

TTNG
ION */

YCLE

E */

F = «,

END;
END:

PUT EDIT( «

Nl=Q;
END;

) { SKIP, COLUMN (19) , A)

;

END THREE;
SIX: END:
END;

SEVEN: /* WRITE MATRIX OF SIZE 1

BEGIN;
PU T EDIT ('LIMIT CYCLES ARRANGED

X 15 OR LESS */

PU T ED1T( * A=« ,A,
•

,

t C IS T n I 1 \

IN PHASE PLANE X'"> •' r
.

2! ),A);

( skip ; ] I ,coi u n I

,

A ,f( i2.°) r
,i ,p ( : ) ) s

(PAGE,SKIP< 10) f Ci LU 1(20 ), A)

;

b - i
)
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END
END
END
DF_

DEC

END
END

PUT
IF

SKIP(51
II < 15

DO
IF

END
PUT
DO
PUT
DO
IF

END
PUT
END

SEVE
two;

THEN
ELSE

12— 13
I2=-I3

THEN
c L S E

13=1 T ;

13=15;
to 13;

PUT F D I T ( I 2 ) ( COLUMN ( 20 ) , F ( 3 ))
PUT LDIT( 12) ( F{3) )

;

S'<IP( ?) ;

J2=I3 TO -T3 BY -1;
FD I T ( J2. ) ( CO LUMN ( 17 ) , F ( 3 ) ) 5

12 = - 1 3 TO 13;
MATRIX( 12, J2 )>0

THEN PUT EDI T( MATRIX (I 2, J2) ) (F(3) )

ELSE PUT ED IT ( * » ) (A(3) ) ;

'skip (2);

n;

ArPROCEDURE (X1,X2.U) DECIMAL FIXED<6>;
/* FUNCTION PROCEDURE TO SOLVE DIFFER!

FOP TWO POLE FILTER WITH ROUND-OFF
MULTIPLICATIONS */

LARE (X,X1,X2-U) DECIMAL FIXFD(M'
X=ROUND(-A*X1,0 ) + R0UND(-B*X2,0) + U
RETURN ( X)

;

DF A;
one";

:MCE EQUATION
AFTl R
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Computer Program B: Evaluation of Two Amplitude Bounds for
Zero-input Limit Cycle Oscillations in Digital Filters with
Roundoff

.

C THE PROGRAM COMPUTES THE NUMERICAL VA1UES FOR tH p

C AMPLITUDE BOUNDS, TYPE LYAPUMOV AND TYPE PERIOD QT
C ASSUMED FOR VALUES OF 6 = D«5, 0,7?, 0.83, Co 875, 0*^
C AND VARYING A
C
C

DIMENSION X(400) ,Y(4C01 ,Z(40C ) ,G( lGtlC),
*NN(1G ) ,MM(lf )

REAL LABEL/4H /
REALMS ITITLEU2)/* AMPPLITUDE BOUND (LYAPUNOV) FOR ZER

* LIMIT CYCLES IN DIGITAL FILTERS, SoFcHE^S, J 126 »/
REAL*8 ITAGC 12) /• AMPLITUDE BOUND (ASSUME PERIOD QT)

* LIMIT CYCLES IN DIGITAL FILTERS, SoF.HFSS, 0126 /
COMPUTE REPRESENTATIVE VALUES FOR A AND B

C
c
c

c
c
c
c
c

c
c
c

c
c
c

c
c
c

DELTA=0.01
WRITE(6,1Q0)

100 FORMAT? 1 HI

)

DO 1 1=1,5
B=( 1-0,5) /I
A=-0.91-B
WRIT5< 6,101) B

101 FORMAT (5X,«B =«,F1Q.6,/)
DO 2 J=l,4< (

X(J)=( J

2 Y(J}=0
DO 3 J=1,4C^
A=A+DELTA
X( J)=A

COMPUTE AMPLITUDE BOUND(LYAPUNOV) FOR VARYING A

BB=1.0 + B
DENOM=( loD-B) *(BB**2-A**2)

COMPUTE ELEMENTS OF Q-MATRIX, 0)1, Q12, 022

Qll=l .C-M 2. A#( B**2 ) *BB ) /DE NOM
Q12=( 2.0*A*B) /DENOM
Q22=(2.0*BB)/DENOM
QSUB=Q11-Q22
0ADD=Q11+Q22
R00T=SQRT(QSUB**2. + 4«0*Q12**2

)

COMPUTE WIN AND MAX EIGENVALUES OF MATRIX Q

EMIN=(QADD-R00T)/2.Q
EMAX=(QADD+ROOT) /2.C

COMPUTE NORM OF MATRIX-PRODUCT (A TRANSPOSE QB)

W1=ABS(022*B)
W2=ABS(Q12-A*Q22)
W-AMAX1 (W1,W21
Y{ J)=SQRT(EMAX/EMIN)*(W+SQRT(W**2+Q22J

)

DISPLAY 3 VALUES OF THE BOUND AND CALL GRAPH-ROUTINE

IF( JeEQol) WRITE(6,1Q2)A,Y(J)
U»2 F0RMAT(5X,»A =•

,

E13.6 , 3X, » Y =',E13.6,/)
I-(A £ rT .AND,A,LT.S.0C51 WRITE (6, 1C 2) A, YU )

IF(A.GI Q+B)GOT0 4
3 COI . NUE
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c
c
c
c
c
c

r.

c
c
c

c
c
c
c
c
c
c

c
c
c

4 WRITE(6,1©2)A,Y( J)
IF(IoEQ.l) M0DCUR=1
IF( I, GE.2.AND. IeLF 4) M0DCUR=2
IF(I<. CQoH M0DCUR=3
CALL DRAW( J ,X, Y, MODCUR,Q,LABEL, ITITLE,0.4, 3.C

,

*2,8,9,

1

,LAST)
1 CONT'iNUE

,4,2,

COMPUTE AMPLITUDE BOUND (PERIOD OF I I MIT CYCLE IS QT

)

SELECT PARAMETER Q SUCH THAT K = Q, AND K.LE.1C

TWOPT =6*2 83185
DO 5 K=4,8

COMPUTE REPRESENTATIVE VALUES FOR A AND B

DO 15 1=1,5
B=( I -0.5) /I
A=-0.91-B
WRITE(6,103) K,B

1C3 FORMAT (5 X, 'PERIOD OF LIMIT CYCLE =«,I3,», B =«,

•THUS'POUND IS VALID AROUND FOLLOWING VALUES OF A 1 ,/

J

IP = P
16 IP=IP + 1

IF(FLOAT( IP)«CEoFL0AT(K/2) ) GOTO 17
AA=-2.0*COS(TW0PI*IP/K}
WRITE(6,106) AA,IP

106 FORMAT(15X,F10.6,3X,I2)
GOTO 16

17 CONTINUE
DO 12 J=1,4C0

12 Z(J)=0
DO 14 J=1,4GC
A=A+DELTA
X( J)=A

SET UP MATRIX G DESCRIBING THE LIMIT CYCLE FOR KoGE„4
INDEX N DENOTES ROW OF G, INDEX M DENOTES COLUMN OF G

DO f N=1,K
DO 1 M=1,K

7 G ( N , M ) =0
6 CON! INUE

DO 9 N=1,K
N1=N+1
N2---N + 2
IF(N1.LE.K)G(N,N1)=A
IF(N2.LE.K)G(N,N2)=B

9 G(N,N)=1.<
G(K,1).=A
G(K,2)=B
G(K-1,1J=B

1Q CONTINUE

INVERT THE G-MATRIX USING A STANDARD GAUSS-JORDAN METHOD
MINV IS A SSP SUBROUTINE AND EXCEPTS ONLY ONE-DIMENSIONAL
ARRAYS AS MATRICES
SUBROUTINE ARRAY CONVERTS FROM ONF TO TWO DIMENSIONAL
ARRAYS AND VICE VERSA

CALL ARRAY(2,K,K,10,10,G,G)
C ALL M I N V ( G , K , D , NN , MM )

CALL ARR AY (1 , K , K ,
1«';

, ?C , G , G )

IF(D.EQ.O)GOTO 5

COMPUTE AMPLITUDE BOUND

DO 11 N=1,K
C=G(1,N)
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c
c
c

11 Z(J)~Z(J)+ABS(C)

DISPLAY 3 VALUES OF THE BOUND A^D CALL GRAPH-ROUTINE

104

14
13

IF(J.EQ.1)WRITE(6,1G4) A,Z< J)
F0RMAT(5X,«A =

' , El 3c 6 , 3X ,
* Z =',E13o6,/)

I F ( A , GT o -0.0C5 . AND . A. L T. 3 . DC ?) WP I T E ( 6 , 10 * ) A , Z ( J

)

IF(A.GE.C.Q+B)GOTO 13
CONTINUE
WRITE (6, 104)

A

7 7 (J)
IF(T.EO.l) M0DCUR=1
IF( I.GE.2.ANP. I.LE.4) MODCUR= 2
IF(I.EQ.5) f'0DCUR=3
CALL DRAW( J,X, Z,MGDCUR,C , LABEL, ITAG,Qe6,

*2, 8, 9,1, LAST)
15 CONTINUE
5 CONTINUE

STOP
END

2«5,C,4,2
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Computer Program C

:

Analysis Program for a Digital
Oscillator

.

C
c
c
c
c

c
c
c

c
c
c
c

c
c
c
c

c
c
c
c
c

DIGITAL OSCILLATOR ANALYSIS FOR ROUND-QFF AMD
TRUNCATION QUANTIZATION OF THE RESULT OF MULTIPLICATION
OF DATA-SAMPLES WITH THE OSCILLATOR COEFFICIENT A

DIMENSION IX(50Q5), SINUS (5005) , AAA (2, 5, 35)
TW0P1^6. 283185
IA=-8

COMPUTE OSCILLATOR RESPONSE FOR VALUES OF A=-0.9 TO -1.9

DO 3 J=l,ll
IA=IA-1
A= I A/ 19.0

COMPUTE FREQUENCY OF LINEAR OSCILLATOR

FLIa! = ARCOS (-1 A/2Q.C )/TWOPI
WRITE(6.1CC1

100 FORMAT (1H1)
WRITE* 6, 101 )A,FLIM

101 FORMAT (5X, •FREQUENCY OF LINEAR OSCILLATOR FOR A= [
,

*F5.2i' f EQUALS F =»,E12.6,/)
IX(1)=0
IX(2)=Q

GENERATE INITIAL CONDITIONS OP IX(1)=0 AND IX(2) = ICi
WHERE IC VARIES FROM 1 TO 1200 IN STEPS OF 1,10, ICC

f~* r-\ ^\ T 1 *\ iFi

I V i i • L t • 1 i I S i E P = 1

I F ( I . GE . 1 1 . AND • I . L t • 1 v } i ST t P = 10
IFU.GE.2G.AND.I.LE.3D) ISTEP = 100
IX(2)=IX(2)+ISTEP
IFLAG=1

INITIALIZE VARIABLES, LARGEST POSSIBLE NUMBER OF LIMIT
CYCLE POINTS IS 50S

10 CONTINUE
IQ=3
IP=0
DO 1 11=1,5000
IX ( II+2)=0

1 SINUS(II)=0

GENERATE LIMIT CYCLE WITH INITIAL CONDITIONS
AND IX(2), COUNT LIMIT CYCLE POINTS IQ
AND NUMBER OF HALF-CYCLE.S IP

4 IZ=IX( IQ-1)
IX( IQ) = IQUANT( IFLAGtIA,IZ)-IX(IQ-2)

DETECT SIGN-CHANGES OF IX TO EVALUATE IP

IF( IX( IQJ.EQ.9 )GQTO 5
IF(IX( TQ').GT.r„,.AND.IX( IO-l J.LT.D GOTO 5
IF( IX( IQ).LT.S-.AMD. IX( IQ-1) .GT.fl) GOTO 5
GOTO 6

5 IP=IP+1
6 CONTINUE

IP(IX(IQ).EO.IX(2).AND.IZ.E0.IX(D) GOTO
IFUQ.EQ.5000) GOTO 12
IQ=IQ+1
GOTO 4

Reproduced from
best available copy.

IX( 1)
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c
c
c

c
c
c

c
c
c

c
c
c

END OF LIMIT CYCLE DETECTED

7 IQ=IO-2
AAACIFLAG,5,I)=FLOATUQ)
FQUANT=IP/( 2.0*1 Q)
FDIFF=ABS( FQUANT-FLIN)
AAA( IFLAG,2, I)=FDIFF
IFC IFLAG.EQ.l) WRITEC6, 102) IP, I Q, FQUANT, FDIFF
IF( IFLAG.EQ.2) WRITE { 6 , 103 ) I P, I Q, EQUANT, FDIFF

.02 FORMAT (1CX, « ROUND-OFF QUANTIZATION ANALYSIS',/,
*15X ? 'P = • , 14, '

,

# «

=»,I5,
, FDIFF =',E13o6,/)

103 FORMAL IPX, 'TRUNCATION
* 1 5 X , ' P = ' , I 4 , '

,

*•, FDIFF =« ,E13.6,/)
=',15,'

,

FQUANT =' ,E13.6,

QUANTIZATION ANALYSIS',/,
FQUANT =« ,F13.6,

COMPUTE ESTIMATE FOR THE AMPLITUDE, CALLED AA

AA=0

104

DO 8 K=1,IQ
SINUS (K)=S INC (K-l )*FQUANT*TWOPI)
AA=AA+IX(K)*SINUS(K)
AA=( 2.0*AA)/IQ
AMP=IX(2)/SINUSC2)
ADIFF=ABS( AA-AMP)
/iAACIFLAG, 1, I )=AMP
AAA(IFLAG,3, I)=ADIFF
WRITE (6, 104) AA, AMP, AD I

FORMAT { 15X, ' ACAP =• ,E1
I APrTUC — C1T i. I \

FO..
*•, 4.DIFF = • El 3. 6, /)

FF
3 e 6, » , AMP =« ,E13.6,

COMPUTE AVERAGE DEVIATION FROM AMPLITUDE, CALLED FOM

FOM=0
DO 9 K = l ,IQ
SINUSCK)=AA*SINUS(K}

<J FOM=hUM + ( IX( K i -SINUS (K ) / **2
FOM=SQRTCFOM/IQ)
AAA( I FLAG, 4,

I

)=FOM
WRITE(6,105) FOM

105 F0RMATC15X, ' AVG AMPLITUDE DEVIATION = I ,E13.6,/)
GOTO 1

1

12 WRITE(6,1Q6)
106 FORMAT (5X, 'LIMIT CYCLE STOPPED AT Q = 500G • , /

)

DO 14 M=l,4
14 AAA( I FLAG, M, I)=0.

AAACIFLAG,5, I )=5QGQ.

REPEAT THE CALCULATIONS FOR TRUNCATION (IFLAG=2)

11 IFLAG=IFLAG+1
IFC IFLAG.EQ.2)G0T0 10

2 CONTINUE

WRITE TABLE OF RESULTS ^OR AMP, IQ , FDI FF, AD I FF , FOM

IFLAG=1
13 WRITE (6, 100)

IFC IFLAG.EQol) WRITE (6, 107)

A

107 F0RMAT(/////,1PX,
* 'ROUND-OFF QUANTIZATION ANALYSIS,
IFC IFLAG.E0.2) WRITER, 108)

A

108 FORMAT ( /////, 1?X,
*« TRUNCATION QUANTIZATION ANALYSIS
WRITE (6, 3 09)

109 FORMAT (18X, 'AMP' , 5X ,
'
Q

« , 5X ,
« FD IFF « , 7X ,

•

ADI FF • ,7X

,

* f DELTA' ,/)
WRITE (6, 110) (AAAC IFLAG,!. ,N) , A A A C I FLAG, 5 , N ) ,

*AAACIFLAG,2,N) , AAA ( I FLAG, 3, N) , AAA( IFLAG,4,N) ,N=] ,'"
)

1 10 FORM AT ( F22 . 2 , F 6 . 0, 3E1 2. 3 , /

)

IFLAG= IFLAG+1

A = • ,F5o2,/)

A = • , F 5 . 2 , /

)
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IF(IFLAG.EQ„2) GOTO 13
3 CONTINUE

STOP
END

FUNCTION IQUANT{ IFLAG, IA, IZ)
C
C
C THE FurXTION COMPUTES THE QUANTIZED PRODUCT -A*IX( IQ-2

)

C
C

IF< 1FLAG.EQ.1) IR = 5
IF( IFLAG«EQo2) IR=0
IPROD=-IA*IZ
IF( IPRODcGEo^)GOTO 1

IPROD=IPROD-IR
GOTO 2

1 TPRGD=1PR0D+IR
2 PROD=FLOAT( IPROD)/10oD

IQUi\NT=INT(PROOJ
RETURN
END
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