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Habitat selection is strongly influenced by spatial variations in

habitat quality and predation risk. Repeated exposure of

wildlife to anthropogenic activities in important habitats may

affect habitat selection, leading to negative biological

consequences. We quantified the cumulative human exposure

of a small, genetically isolated and behaviourally constrained

spinner dolphin (Stenella longirostris) population, off Hawaii

Island, and exposure effects on their daytime cumulative

activity budget. Dolphins were exposed to human activities

within 100 m for 82.7% of the daytime, with a median

duration of 10 min between exposure events. Individual

dolphins spent on average 61.7% (s.d. ¼ 6.5) of their daytime

resting. Of their total rest time, greater than 90% occurred

inside sheltered bays. Despite high levels of human exposure,

we did not observe an effect on dolphin resting behaviour.

The short intervals between exposure events probably prevent

dolphins from returning to a natural resting state before the

next event. Consequently, ‘control’ observations may represent

a resting behaviour of a more vigilant nature. Chronic levels

of exposure to human activities could lead to rest deprivation,

displacement from preferred resting habitats and ultimately

negative population level effects. These results have

implications for new proposed legislation aiming to reduce

dolphin exposure to human activities.
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1. Introduction

The habitat selection strategies of free-ranging animals are driven by trade-offs between the availability

of resources necessary for survival, such as prey [1], shelter [2] and the risk of predation [1]. The costs

and benefits associated with selecting one habitat over another shape the evolution of behavioural

strategies which, in turn, influences individual fitness [3,4]. Habitats that provide optimal

combinations of resources are important for population viability [3]. Concerns can arise, however,

when the use of important habitats by wildlife overlaps with the repeated use of the same habitats

by humans [5,6].

The effect of repeated exposure to human activities on wildlife populations is a growing concern for

conservation management. Repeated interactions with humans can lead to changes in many aspects of

animal behaviour, influencing activity budgets [7], energetics [8,9], vigilance [10], physiological stress

[11,12], reproductive success [13,14], social interactions with conspecifics [15], behavioural patterns

[16] and habitat use [17]. These effects can have negative impacts on individual vital rates [18,19],

resulting in negative consequences for population viability [20,21].

Since the early 1980s, human interactions with free-ranging cetaceans has increased dramatically

worldwide [22,23]. Many coastal cetacean populations are now exposed to prolonged and close-up

human encounters causing disruptions to natural behavioural patterns [7,16,24–26]. In the short term,

cetaceans are able to compensate for temporary behavioural disruptions [27] by, for example, feeding

at other times and/or at other locations [1]. The effects of a short-term behavioural response to

disturbance are likely to have little long-term consequence on individual animals [28]. However, the

cumulative effect of repeated short-term disturbances may lead to long-term biologically significant

consequences. For example, an individual may decide that a higher level of vigilance in a preferred

habitat, in which they are repeatedly disturbed, is less costly than moving to an alternative

undisturbed habitat that exposes them to greater predation risk. These decisions, however, may be

based on the lack of alternative choices, e.g. absence of suitable alternative habitats [17,29] and the

condition or capabilities of individuals, e.g. animals may be too weak to relocate [30]. As a

consequence, individuals may have no option but to remain and endure repeated disturbance

[17,29,30], which could ultimately lead to negative effects on vital rates (e.g. survival and reproduction).

Spinner dolphins (Stenella longirostris) in Hawaii exist in small [31,32], genetically isolated populations

with restricted ranges [33] and have evolved a constrained diel behavioural pattern. They cooperatively

forage offshore at night and return to sheltered bays to socialize and rest during the day [6,34–36]. This

spatial and temporal partitioning of behaviours allows the spinner dolphins to maximize their foraging

efficiency, while avoiding predation during periods of recovery [10,37].

During periods of activity, animals usually exhibit enhanced brain function, which is often referred to

as vigilance [38]. Vigilance is required for many activities including foraging, socializing and predator

avoidance. As animals undertake these cognitively challenging activities they tire and accrue what

is referred to as a vigilance decrement [38]. Vigilance decrements can manifest as a decreased

ability to detect predators or prey [38]. To recover from their energetic and cognitively challenging

night-time foraging activities [36,39], spinner dolphins need to rest [40]. Resting in bottlenose

dolphins (Tursiops spp.), a species that also inhabits coastal areas subjected to strong human

influence, has been highlighted as the most sensitive activity to interactions with humans [41]. This

could be even more so for spinner dolphins, given the constrained nature of their daily behavioural

schedule [10,42].

Spinner dolphins in Hawaii are targeted on a daily basis by humans for close-up encounters [5]. In

the waters off the Kona coast, on the leeward side of Hawaii Island spinner dolphins are often observed

within four bays during the day: Makako Bay, Kealakekua Bay, Honaunau Bay and Kauhako Bay.

Throughout the day, spinner dolphins are repeatedly approached by kayakers, swimmers and vessels

inside and outside their preferred resting habitats [6]. Concerns have been raised regarding the effects

of the repeated interruption of spinner dolphin resting occasions and have prompted the United

States National Oceanic and Atmospheric Administration (NOAA) to look at developing management

strategies that reduce the number and intensity of human–dolphin interactions in Hawaii [43].

We collected and analysed data to determine the daytime cumulative activity budget and exposure of

spinner dolphins to human activities, both inside and outside their preferred resting habitats, and

investigated the effects human activities might be having on the dolphins’ daytime cumulative activity

budget. Our aim was to inform NOAA to assist in the development of effective human–dolphin

management strategies.
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Figure 1. Map of the study area illustrating the four spinner dolphin resting bays, Makako Bay, Kealakekua Bay, Honaunau Bay and
Kauhako Bay, along the Kona Coast of Hawaii Island.
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2. Material and methods
To estimate the daytime cumulative activity budget of the spinner dolphins, their exposure to human

activities and to investigate the effects of the human activities on the spinner dolphin daytime

cumulative activity budget, we used data from four different sampling methods collected inside

and outside four spinner dolphin resting bays along the Kona Coast of Hawaii Island (figure 1).

Photographic identification to provide individual dolphin identification and the number of

observations of each dolphin in each bay, passive acoustic monitoring in each bay to provide daytime

presence/absence of dolphins inside the bays and land-based and boat-based group focal follows to

collect time-series behavioural data and human activity data inside and outside the four bays.
2.1. Data collection

2.1.1. Systematic photo-identification

Between September 2010 and December 2012, boat-based photographic-identification surveys of the

Hawaii Island spinner dolphins were carried out in four preferred resting bays, Makako Bay,

Kealakekua Bay, Honaunau Bay and Kauhako Bay (figure 1) following a systematic sampling design

developed by Tyne et al. [31]. To provide consistent effort throughout the study period, each bay was

surveyed on the same dates each month: 4 days in Kauhako Bay; 2 days in Honaunau Bay; 4 days in

Kealakekua Bay and 2 days in Makako Bay (see [31] for protocol). These data provided individual

spinner dolphin identification and the number of times individual dolphins were observed in each bay.
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2.1.2. Passive acoustic recordings

To provide the presence/absence data of spinner dolphins within each of the four resting bays, on each

day from January 2011 to August 2012, calibrated acoustic recordings of 30 s duration were made

every 4 min at a sampling rate of 80 kHz via bottom-mounted DSG-Ocean acoustic instruments

(Loggerhead Instruments, Sarasota, FL, USA). Recorders were equipped with HTI-96-Min/3 V

hydrophones (Frequency range: 0 Hz–40 kHz) (sensitivity: within 1 dB of 2186.6 dbV mPa21, High

Tech Inc, Gulfport, MS, USA), a 16-bit computer board and 30.9 GB SD cards. Acoustic data were

retrieved approximately every two weeks [44].

Daily daytime spectrograms were generated primarily in Raven Pro 1.5 (Cornell University) and

XBAT (Cornell University), a bioacoustics toolbox in Matlab. Spectrograms were generated using a

512-point DFT, 50% overlap and a 512-point (6.4 ms) Hann window. The presence of dolphin sounds

was investigated for each bay during daytime through manual visual inspection of the daily

spectrogram and was used to document the presence/absence of dolphins based on whether sounds

had been documented on recordings. Dolphin sounds included whistles, burst pulse sounds and

echolocation. In all cases, we viewed a window of 12 s at a time. If we found dolphin sounds, visual

inspection stopped at that time, the time of ‘first dolphin sound’ was noted and the observed day was

marked as ‘dolphins present’. To avoid misidentification of background noise, we used echolocation

as an indicator of dolphin presence if the echolocation was clear and unambiguous or followed by

other dolphin sounds. Days with interrupted recordings (i.e. acoustic logger servicing) were excluded

from the analysis of the time of first dolphin sound and days with malfunctions were completely

excluded from this analysis (for more details, see [44]).
2.1.3. Group focal follows

Established group focal follow protocols were employed to collect positional, behavioural and human

activity information on spinner dolphins during daylight hours from both boat-based and land-based

(theodolite observations) platforms. Boat-based dolphin group focal follows were undertaken both

inside and outside (within 1 km of the coastline) of these bays to record spinner dolphin time-series

group behaviour (see [6] for protocol). Land-based group focal follows were undertaken via theodolite

tracking from clifftops overlooking Kauhako Bay (50 m elevation) and Kealakekua Bay (140 m

elevation). Group focal follows consisted of a combination of continuous and instantaneous scan

sampling procedures [45,46]. Instantaneous scan sampling recorded the predominant group activity,

resting, socializing and travelling (table 1) at 10 min intervals [24,45,46]. Behavioural data were

categorized as control (undisturbed behaviour) or impact situations. A control situation was when no

kayaks, swimmers or boats were with 100 m of the focal group, while an impact situation was when a

kayak, swimmer and/or boat was within 100 m of the focal group. A group focal follow was

terminated when dolphin behaviour could no longer be reliably determined because of poor visibility,

dolphins moving out of range or splitting into too many groups. Time-series data of group behaviour

were used to estimate spinner dolphin daytime cumulative activity budgets, to determine the

exposure of dolphins to human activities within 100 m and to investigate whether the human

activities influenced the spinner dolphin daytime cumulative activity budget. To minimize the impact

of the presence of the research vessel on the spinner dolphins during boat-based group focal follows,

the vessel was maintained at a distance of 100 m from the focal group and was positioned behind and

to the side of the group. All care was taken to minimize disturbance and changes in the dolphin

group behaviour induced by the presence of the vessel. Further details of boat-based and land-based

group focal follow protocols are given in Tyne et al. [6].
2.2. Data modelling and analysis

2.2.1. Calculation of daytime dolphin activity budgets for each bay

Daytime activity budgets are defined as the proportion of time dolphins spent in each activity state

(table 1), in each bay and outside the bays and were estimated from the boat-based and land-based

group focal follow behavioural time-series data. Boat-based data were used to estimate dolphin

activity budgets for Makako Bay, Honaunau Bay and outside the bays. Boat-based and land-based

data were combined to estimate dolphin activity budgets within Kauhako Bay and Kealakekua Bay.

Activity states were drawn at random (with replacement) from the original dataset (resting, socializing



Table 1. Definitions of spinner dolphin group activities, adapted from Norris et al. [35].

predominant group activity

rest characterized by tight group, slow speed moving back forth or meandering movement. Individuals typically

take multiple breaths; synchronous group diving; changing direction while underwater; spend long periods

of time submerged (1.5 – 3 min); reduced acoustic activity

social characterized by regular, consistent, aerial behaviours within the group; little time is spent below the surface;

dives are brief

travel characterized by regular and consistent spatial progress with respect to the bottom (in practice surface and

shoreline features), i.e. directed swimming that is roughly straight. Travel speed is typically 3.2 km h21
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and travelling). This was repeated 1000 times to obtain a density distribution of the relative proportion of

time the dolphins spent in each activity state (resting, socializing and travelling) in the activity budget for

each bay and outside the bays.
1506
2.2.2. Daytime cumulative activity budgets of individual dolphins

The daytime cumulative activity budget represents the daytime (6.00–18.00) activity budget (resting,

socializing and travelling) of individual dolphins throughout the study period and takes into

consideration the relative time that individual dolphins spent inside and outside of each of the four

bays (figure 2). It also considers variations in dolphin activity between different bays and outside the

bays (figure 2) and was used to evaluate the effects of human activities on the daytime cumulative

activity budget.

Model simulations were used to estimate the daytime cumulative activity budgets of individual

photographically identified dolphins (n ¼ 235). For each day of the study period, the model randomly

allocated individual dolphins to different bays based on their relative occurrence in the bays. The

relative occurrence of individual dolphins in each bay was based on the number of times each

individual was observed in each bay provided by the photo-identification data (figure 2a). After

allocating dolphins to bays, the passive acoustic data were used to confirm if dolphins had indeed

visited a bay on a given day (binary response based on whether dolphin sounds had been

documented in recordings made within each bay on each given day). If a bay had not been visited by

dolphins on a given day, the dolphins allocated to that bay were removed and allocated to outside the

bays (figure 2b). For dolphins that had been allocated to a specific bay, the proportion of time spent

inside the bay was randomly drawn from a bay-specific distribution of times dolphins had spent inside

the bay (estimated from the focal follow data). If no acoustic data were available for a given day (e.g.

because of equipment malfunctions), dolphin presence was drawn at random for that day using a

Bernoulli process informed by the probability that dolphins would be present in that bay (dolphin

presence/number of observations). Based on the bay which an individual dolphin had been allocated,

and the duration of time it spent there, the daily activity budget of the dolphin was calculated (figure 2c):

Daily activity budget ¼ (ai � budget inside bayi)þ (b� budget outside bays),

where a is the proportion of time spent inside bay i on a specific day (drawn from a random distribution

for bay i) and b is the proportion of time spent outside of bays (b ¼ 1 2 ai). To account for uncertainty in

the bay-specific activity budget, a random proportion of the activity budget was drawn from the density

distributions that were obtained for the specific bay (see section Calculation of daytime dolphin activity

budgets for each bay) and allocated to a dolphin. The same was done for the activity budget outside of

bays. Hence, the daily activity budget represents the proportion of time an individual dolphin spent

resting, socializing and travelling on a specific day, based on the bay-specific activity budget and the

proportion of time spent within a specific bay. Dolphins were assumed to only visit a single bay

during a day.

The above procedure was repeated for every day of the study period (n ¼ 601 days). The cumulative

activity budget was then estimated for every individual dolphin by taking the sum of the duration of the

different activity states throughout the study period (figure 2).

All calculations were performed using R 3.0 [47].
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Figure 2. Integration of three discrete datasets to model the cumulative activity budget of spinner dolphins inside and outside of
resting bays along the Kona Coast of Hawaii Island. (a) Individual spinner dolphin presence/absence in resting bays from systematic
photo-id sampling, (b) dolphin group presence/absence in resting bays from 24 h per day of acoustic monitoring in resting bays and
(c) dolphin group behavioural time series from group focal follows inside and outside of resting bays.
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2.2.3. Factors affecting daytime dolphin activity states

To better understand which factors influence spinner dolphin daytime activity states, boat-based and

land-based observational data were used to determine how the probability of dolphin resting,

socializing and travelling was affected by different covariates, including: time-of-day (hour); day-of-

year; location (inside or outside bays); number of boats/kayaks/swimmers present (within 100 m of

the dolphin group) and distance between dolphin group and boats/kayaks/swimmers. Generalized

additive mixed models (GAMM; gamm in R package mgcv) were used with a thin plate regression

spline smoother and a binomial distribution and logit link function. In the model selection process,

covariates and interactions between covariates were added sequentially to the null model. The

F-statistic for the ANOVA F-test was estimated for each model and compared with that of the

previous model. Covariates were added both as linear effects and nonlinear smoothers to cover all

possible relationships between the response and explanatory variables. As sequential observations

within focal follows could not be considered independent, a temporal auto-correlation structure

within follows was incorporated in the model, where the residuals at any given time were modelled

as a function of the residuals of the previous time points. The most suitable auto-correlation structure

was fitted by altering the number of auto-regressive and moving average parameters and then

comparing the different models. Auto-correlation and partial auto-correlation function plots were used



Table 2. Number of days, hours and mean length of photo-identification surveys conducted within the four resting bays
between September 2010 and August 2012.

location survey days hours mean survey length (hr:min+ s.e.)

Makako Bay 46 395 8:35+ 0:11

Kealakekua Bay 92 818 8:53+ 0:13

Honaunau Bay 46 412 8:57+ 0:15

Kauhako Bay 92 856 9:18+ 0:10

total 276 2481 9:00+ 0.12
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to detect patterns of auto-regressive and moving average parameters visually, before and after adding the

different correlation structures.

The variance inflation factor (VIF) was used to investigate collinearity (high correlation) between the

explanatory variables in the model. A threshold value of three was used to remove collinear variables one

at a time until all VIF values were below three and no collinearity remained [48]. For all models, model

validation tests were run to identify potential violations of assumptions. Scatter plots of residuals versus

fitted values and residuals against each explanatory variable were used to test the assumption of equal

variances (i.e. homogeneity of variance) in the model. Normality of residuals was interpreted from

quantile–quantile plots and from residual histograms. Over-dispersion was tested for each model by

dividing the residual deviance by the residual degrees of freedom and a value of greater than 1.5 was

used to indicate over-dispersion [49].

2.2.4. Frequency of human interactions

To investigate the elapsed time between human interactions with dolphins, frequency histograms of

unapproached (continuous time with no human interactions with dolphins) and approached (continuous

time with human interactions with dolphins) durations were inspected and compared.
3. Results
3.1. Summary of photo-identification and behavioural sampling efforts
The systematic sampling design developed in Tyne et al. [31] to collect individual spinner dolphin photo-

identification data resulted in nearly 2500 h of on-water effort over 276 days of sampling (table 2). From

these data, 235 highly distinctive individual spinner dolphins were identified. The number of individual

dolphin sightings ranged from 1 to 48 during the study period (figure 3), with a mean of 12+0.52

(+1 s.e.).

A total of 105 boat- and land-based dolphin group focal follows was conducted over approximately

428 h, of which 75 (71.4%) were from the boat-based platform and 30 (28.6%) were from the land-based

platform (table 3).

3.2. Passive acoustic monitoring efforts
In each of the four bays, bottom-mounted acoustic loggers were simultaneously deployed for 601 days.

A total of 2148 recording days were made over the study period: 565 days in Makako Bay, 484 days in

Kealakekua Bay, 563 days in Honaunau Bay and 536 days in Kauhako Bay [44]. Acoustic recordings

confirmed the daytime presence of dolphins during 90% of monitoring days in Makako Bay, 65% in

Kealakekua Bay, 37% in Honaunau Bay and 51% in Kauhako Bay (for more details see [44]).

3.3. Daytime bay use by individual dolphins
Most dolphins (94%, n ¼ 220) were observed in Makako Bay, followed by Kealakekua Bay (55%, n ¼
130), Honaunau Bay (53%, n ¼ 124) and Kauhako Bay (36%, n ¼ 85; figure 4). Some dolphins showed

a strong preference for a specific bay, while others showed less preference and could be observed in

two or more bays throughout the study period (electronic supplementary material, figure S1).



Table 3. Number and duration of dolphin group focal follows collected from land-based and boat-based platforms inside bays
and outside of resting bays along the Kona Coast, Hawaii Island.

focal follow number of focal follows total focal follow hours
mean focal follow duration
(hr:min+ s.e.)

land-based

Kealakekua Bay 23 189 8:27+ 0:19

Kauhako Bay 7 38 3:25+ 1:17

total 30 227 7:57+ 0:22

boat-based

Makako Bay 13 26 2:00+ 0:26

Kealakekua Bay 10 16 1:36+ 0:15

Honaunau Bay 5 21 4:12+ 0:15

Kauhako Bay 10 16 1:36+ 0:48

total 38 117 2:21+ 0:26

outside bays 37 84 3:10+ 0:13

total 75 201 2:41+ 0:10

overall total 105 428 4:08+ 0:51
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Figure 3. The number of sightings of each of the 235 photographically identified spinner dolphins in Makako Bay, Kealakekua Bay,
Honaunau Bay and Kauhako Bay between September 2010 and August 2012.
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3.4. Daytime bay-specific activity budgets
Model simulations estimated that during the daytime individual spinner dolphins spent most of their

time inside bays (76% of time), while spending 24% of the time outside bays (figure 5a). Spinner

dolphins spent most of the daytime resting, followed by socializing and travelling (figure 5b). The

proportion of daytime spent resting was higher inside bays (greater than 60%) than outside (less than

40%; figure 5b), but as the dolphins only spent 24% of the daytime outside bays, overall the

proportion of time they rested outside bays was less than 10%. Time spent socializing was

approximately the same (approx. 35%) inside and outside bays, dolphins spent a substantially higher

proportion of time travelling outside (approx. 30%) than inside bays (approx. 5%; figure 5b). There

was little variation in the dolphins’ activity budget between bays, with the exception of Makako Bay,

where dolphins spent more time resting (72.6%), and less time socializing (19.0%) than in the other

bays (figure 5b).
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3.5. Daytime cumulative activity budget
The daytime cumulative activity budget showed that individual dolphins spent between 49.5% and

69.4% of the daytime resting (mean ¼ 61.7%, s.d. ¼ 6.5). Of the time spinner dolphins spent in

Makako Bay, the dolphins spent a higher proportion of time resting than in the other bays (figure 5b).
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Socializing activity showed a similar pattern, with dolphins spending between 20.2 and 34.7% of their

daytime socializing (mean ¼ 26.1%, s.d. ¼ 5.0). While both resting and socializing activities showed

large individual variations, there were small variations in the proportion of daytime dolphins spent

travelling, ranging between 10.3 and 16.9% of their time (mean ¼ 12.2%, s.d. ¼ 1.6).

3.6. Factors affecting dolphin daytime activity
None of the human activity covariates (presence of boats/kayaks/swimmers ( p ¼ 0.995), distance

between dolphins and boats/kayaks/swimmers) had a significant effect on the probability of

dolphins resting, socializing or travelling. All human activity covariates (presence of boat/kayak/

swimmers within 100 m) were collinear, preventing the use of more than one covariate in each model.

The control data (no boats/kayaks/swimmers present within 100 m) constituted only 27.7% of the

land-based data and 5.3% of the boat-based data. In total, spinner dolphins were exposed to human

activities (impact scenario; human activity within 100 m) during 82.7% of the time (focal follow

observations).

3.7. Frequency of human interactions
The proportion of time that dolphins were exposed to boats, kayaks and swimmers differed between

bays (electronic supplementary material, figure S2). Inside Makako Bay, dolphins were predominately

exposed to boats and swimmers, but not to kayaks (electronic supplementary material, figure S2). By

contrast, in the other bays, dolphins were mostly exposed to kayaks and swimmers (electronic

supplementary material, figure S2). Frequency histograms depicting the duration of each time period

when spinner dolphins were observed in ‘approached’ or ‘unapproached’ situations (i.e. continuous

time spent in each situation) highlight that unapproached situations were significantly shorter

compared with approached situations (figure 6). The median unapproached situation durations were

10 min for both the boat- and land-based data, while the corresponding approached durations were

70 and 30 min, respectively.
4. Discussion
During daytime hours, spinner dolphins were exposed to human activities within 100 m for greater than

82% of the time. To our knowledge, this level of exposure is substantially greater than those previously

reported for any other dolphin species (table 4). Despite the high level of exposure, however, human

activities seemingly did not have a significant effect on the probability of spinner dolphins resting.

This result is, however, probably an artefact of the low level of control data available (less than 18%

of observations) to make robust comparisons between behavioural patterns in unapproached

(continuous time periods with no human activity within 100 m of dolphins) and approached

situations (continuous time periods with human activities within 100 m). Furthermore, the elapsed

time between repeated disturbances can also influence the activity budget of dolphins [16], as exposed

animals generally need time to return to their initial activity state following an interaction [24,51].

Insufficient time between interactions may prevent dolphins from returning to their initial activity

state. During approached situations, spinner dolphins were exposed to human activities for between

30 and 70 min. Unapproached situations had a median duration of 10 min before dolphins were

exposed to human activity again. Dolphins need time to recover from a disturbance to return to a pre-

disturbed activity state [16,24]. For example, bottlenose dolphins in Milford Sound, New Zealand,

required at least 68 min between interactions to return to their pre-disturbed behaviour [16]. It is likely

that the short time intervals between successive exposure events are insufficient for spinner dolphins

to return to a natural behavioural state between exposures. Consequently, the unapproached

observations, as defined in this current study, may not accurately represent the natural resting

behaviour of spinner dolphins, but may represent one of a more vigilant nature, reflecting that the

dolphins may not be achieving a natural resting state. This may also explain why no significant

differences were detected in the probabilities of observing resting activity states during approached

and unapproached situations.

Spinner dolphins spent most of the daytime hours (76%) inside sheltered bays and 24% of the

daytime outside of these bays. Of the daytime spinner dolphins spent outside the bays, nearly 40% of

that time was spent resting; this indicates that the spinner dolphins are less likely to rest (less than
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10% of the daytime) outside of the bays [6]. However, should dolphins increase the time they spend

outside the bays and the proportion of time they rest outside the bays, it may suggest that the

dolphins are being displaced from their preferred resting areas and resting in less suitable habitats,

which may lead to an increased predation risk.

Spinner dolphins spent the highest proportion of their time resting in Makako Bay compared with the

other bays, and most (94%) of the identified dolphins were observed in the bay even though boats and

swimmers are the main human activities. Previous research suggests that resting spinner dolphins are

acoustically silent [35]. By contrast, however, recent results suggest that resting spinner dolphins can

be acoustically active in the presence of human activities in Makako Bay [61]. This could be an

indication that resting behaviour in Makako Bay is one of a more vigilant nature. Makako Bay is also

proximal to spinner dolphin night-time foraging areas [37], which is important in the selection of

spinner dolphin resting habitat [37]. The high proportion of resting time in Makako Bay could be a

trade-off between vigilant rest in a preferred habitat with a high proportion of human activity, rather

than deeper rest in a less suitable habitat, with less human activity but where the dolphins may be

more vulnerable to predation.

The constrained diel behavioural schedule of spinner dolphins [42] may affect their ability to

compensate if deprived of rest [42], and they may not sufficiently recover from their night-time

foraging-induced vigilance decrement [38], leading to impaired cognitive and decision-making abilities

[62–64]; in turn, potentially reducing their ability to detect predators, a reduced foraging efficiency,

reduced reproductive success and compromised social skills. During night-time foraging bouts, spinner

dolphins cooperatively herd prey into dense aggregations and pairs of spinner dolphins then take turns

to forage within these aggregations [36]. Impaired cognition, may affect the success of this cooperative

foraging strategy [36], by compromising the development and reinforcement of social bonds between

conspecifics or to properly perceive prey patches during foraging activities. Impaired cognition can

adversely affect the social cohesion of a community [15]. Moreover, mothers and calves may be

particularly susceptible to rest deprivation if the ability of mothers to properly care for, feed and protect

their calves is compromised [14,65].

Elsewhere, dolphin communities with considerably less cumulative exposure to human activities

(table 4) have had their natural behavioural patterns disrupted [24–26] and energy budgets



Table 4. Studies that have quantified exposure rates of dolphins to human activities and whether authors noted or inferred an
impact. MV, motorized vessels; K, Kayaks; SUP, stand-up paddleboard; S, swimmers.

species

proportion of time
exposed to human
activities %

impact
distance (m)

source of
disturbance

behavioural
response study

Bottlenose dolphin

(Tursiops truncatus)

9 400 MV, K yes [7]

Bottlenose dolphin

(T. truncatus)

10.8 400 MV, K yes [16]

Bottlenose dolphin

(T. truncatus)

12.8 400 MV, K yes [16]

Bottlenose dolphin

(T. truncatus)

15.5 400 MV, K yes [50]

Common dolphin

(Delphinus sp.)

21 300 MV, SUP, K yes [51]

Hector’s dolphin

(Hectori hectori)

23.6 200 MV no [52]

Bottlenose dolphin

T. truncatus

24 50 MV, S yes [53]

Common dolphin

(Delphinus sp.)

29 300 MV yes [54]

Killer whale

(Orcinus orca)

28.5 100 MV yes [55]

Dusky dolphin

(Lagenorhynchus obscurus)

31 200 MV yes [56]

Killer whale

(O. orca)

37.6 100 MV yes [55]

Bottlenose dolphin

(T. truncatus)

45 50 MV, S yes [57]

Dusky dolphin

(L. obscurus)

51.6 300 MV yes [58]

Bottlenose dolphin

(T. truncatus)

58 300 MV yes [26]

Spinner dolphin

(S. longirostris)

77 300 MV, K, S not reported [59]

Spinner dolphin

(S. longirostris)

26, 42 and 53a 300 MV, S yes [60]

Spinner dolphin

(S. longirostris)

82.7 100 MV, K, S n.d. this study

aThe proportion of time the spinner dolphins were exposed to human activities in three different areas in the Red Sea, Egypt.
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affected [8]. Repeated exposure to human activities has also resulted in long-term habitat abandonment

[16,24], which has led to longer-term strategies such as the avoidance of important habitats [16], and

subsequently biologically negative impacts on populations [18,66,67]. For example, in Doubtful Sound,

New Zealand, the short-term avoidance of tour boats by bottlenose dolphins led to a long-term

avoidance of preferred habitat [16,66] and in Shark Bay, Western Australia, the relative abundance of

bottlenose dolphins within a tourism area declined in response to an increase in tour vessel activity
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[67]. It is likely that the spinner dolphins of Hawaii may be under similar pressure. In fact, signs of

displacement are emerging [42]. Over the past three decades, human activities in spinner dolphin

resting bays have increased significantly [68]. Concurrently, the most recent spinner dolphin

abundance estimates 631 (95% CI 524–761) [31] and 668 (95% CI 556–801) [32] are lower than all

previous estimates 960 [35], 2334 [69], 1001 and 855 [70], indicating a possible long-term impact.

Furthermore, the anthropogenic underwater sound was not considered during this study, but clearly

affects the soundscape of the four bays and animals that rely on acoustics as their main sensory input

[71]. As such, our estimates of spinner dolphin exposure to human activities is conservative as it does

not account for engine noise which can propagate many kilometres [72], further highlighting the need

for management actions that aim to reduce the exposure of spinner dolphins to human activities

within these important resting habitats.
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