
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2018-12

AN APPLICATION OF MODULAR NETWORK

FUNCTION VIRTUALIZATION AND ITS IMPLEMENTATION

Kim, Jeremy S.

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/61202

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN APPLICATION OF MODULAR NETWORK
FUNCTION VIRTUALIZATION AND ITS

IMPLEMENTATION

by

Jeremy S. Kim

December 2018

Thesis Advisor: Dennis M. Volpano
Second Reader: Geoffrey G. Xie

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2018 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
AN APPLICATION OF MODULAR NETWORK FUNCTION
VIRTUALIZATION AND ITS IMPLEMENTATION

 5. FUNDING NUMBERS

 6. AUTHOR(S) Jeremy S. Kim

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Network function virtualization (NFV) is the concept of implementing network services in software
using commodity hardware. Services include forwarding, learning, and firewalling, among others. Modular
NFV (MNFV) was introduced as a methodology for designing virtualized network functions (VNFs),
precisely and ultimately compiling them to an open platform. This thesis applies the methodology to
rigorously design a 2-port relay switch from reusable behaviors with features found in commercial switches.
A potential implementation of the 2-port relay using Intel’s open platform called the Data Plane
Development Kit (DPDK) is investigated.

 14. SUBJECT TERMS
modular network function virtualization, Data Plane Development Kit 15. NUMBER OF

PAGES
 77
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

AN APPLICATION OF MODULAR NETWORK FUNCTION
VIRTUALIZATION AND ITS IMPLEMENTATION

Jeremy S. Kim
Captain, United States Marine Corps

BS, California State Polytechnic University Pomona, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2018

Approved by: Dennis M. Volpano
 Advisor

 Geoffrey G. Xie
 Second Reader

 Peter J. Denning
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Network function virtualization (NFV) is the concept of implementing network

services in software using commodity hardware. Services include forwarding, learning,

and firewalling, among others. Modular NFV (MNFV) was introduced as a methodology

for designing virtualized network functions (VNFs), precisely and ultimately compiling

them to an open platform. This thesis applies the methodology to rigorously design a

2-port relay switch from reusable behaviors with features found in commercial switches.

A potential implementation of the 2-port relay using Intel’s open platform called the Data

Plane Development Kit (DPDK) is investigated.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. APPLICATION OF MNFV ..5
A. THE TWO-PORT RELAY AS A “BLACK BOX”5
B. MODULAR NETWORK FUNCTIONS..7
C. STATE TRANSITIONS BY PRIMITIVE FUNCTION9

1. Forwarding (fwd) ...10
2. MAC Address Learning (ml1 and ml2)11
3. Stateful Firewall (sf1) ..15

D. TENSOR PRODUCT ..19

III. TOWARD CODE SYNTHESIS FOR TENSOR PRODUCTS23
A. CHECKING VS SYNTHESIZING ..23
B. START STATE ..24
C. READ STATE ..26
D. WRITE STATE ..29

IV. DPDK—A PLATFORM FOR MNFV ...31
A. DATA PLANE DEVELOPMENT KIT ...31
B. DPDK APPLICATIONS ...33

1. Open vSwitch ..34
2. Click Modular Router ...34
3. Game Servers ...35

C. DPDK AS A PLATFORM FOR MNFV ..36

V. RELATED WORK ..37
A. OPENBOX/MBBRICK ...37
B. OPEN VSWITCH ..38
C. COCONUT ...39
D. P4 ...40
E. CLICK ..42

VI. CONCLUSIONS AND FUTURE WORK ...43

APPENDIX. λ-SFA FOR 2-PORT RELAY SWITCH IN PYTHON47

viii

SUPPLEMENTAL 1. COMPLETE TENSOR PRODUCT IN PYTHON51

SUPPLEMENTAL 2. SYNTHESIZED CODE FOR ENTIRE TENSOR
PRODUCT ..53

LIST OF REFERENCES ..55

INITIAL DISTRIBUTION LIST ...59

ix

LIST OF FIGURES

Figure 1. Traffic between ports 1 and 2 ..8

Figure 2. fwd machine ...10

Figure 3. ml1 machine ...12

Figure 4. sf1 machine ..16

Figure 5. Tensor product state machine trace ..20

Figure 6. Tensor product for start state ...24

Figure 7. Code synthesized for start state..25

Figure 8. Tensor product for read state after f6. ..27

Figure 9. Synthesized code for state after f6 ...28

Figure 10. Partial output of tensor product for read state after f7_p2_s29

Figure 11. Synthesized code for state after f7_p2_s arrives ..30

Figure 12. Application of DPDK. Source: [10]. ..32

Figure 13. Simple replication causes incorrect blocking. Source: [3].40

Figure 14. The very simple switch (VSS) architecture. Source: [22].41

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. A run of the switch on a sequence of events ..6

Table 2. Forwarding state machine trace ...11

Table 3. MAC address learning ml1 state machine trace ...13

Table 4. Stateful firewall state machine trace ..17

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Program Interface

DPDK Data Plane Development Kit

I/O or IO input/output

IRQ internal request

LAN Local Area Network

MAC Media Access Control

MNFV Modular Network Function Virtualization

NIC Network Interface Card

NFV Network Function Virtualization

NUMA Non-uniform Memory Access

OS Operating System

OVS Open vSwitch

P4 Programming Protocol-Independent Packet Processors

PCAP Packet Capture

QEMU Quick Emulator

SDN Software-Defined Networking

SFA Symbolic Finite Automaton

TLB Transmission Lookup Buffer

VM virtual machine

VNF virtual network functions

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

First and foremost, I’d like to thank Dr. Volpano for working so tirelessly and

patiently with me. Your guidance and expertise have inspired me to dig deeper and verify.

I appreciate you taking the time to mentor and teach me things beyond the scope of our

work. I look forward to your future success.

Thank you, Dr. Xie, for making my thesis better. I uncovered things that I wouldn’t

have if you had not demanded more.

To the Senior Marine Office, Col Lyons, LtCol Camardo, and LtCol Forbell, I

cannot thank you enough for what you did for my family. Though we struggled during our

time here, your leadership and kindness meant the world to us. We are a stronger family

because of it.

Thank you, LT Wylkynsone, for making my experience as great as it could be. I

forever owe you a beer.

Thank you, Chris Eagle and Paul Clark, for being the instructors that you are.

Finally, I want to thank my wife. Your dedication, patience, and understanding

made this journey happen. You are the greatest partner anyone could ever ask for and the

perfect mom to our son. We made it.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Network function virtualization (NFV) is an emerging topic that has the backing of

significant companies world-wide through the European Telecommunications Standards

Institute (ETSI). NFV is rapidly evolving and has the support of many influential

companies such as AT&T, Verizon, Intel, and Cisco, to name a few. Technological

advances in computing and storage have already taken advantage of virtualization [1]. The

benefits of NFV and the challenges associated with it are surveyed in [2]. Decoupling

network functions from the physical devices has the potential for reducing expenses. It also

means that many of the devices found in data centers can be replaced by their software

virtualizations. Virtual network functions (VNFs) can be implemented in software on open

platforms, eliminating the need to purchase proprietary equipment. It has the potential to

reduce energy consumption and make data centers much more agile in terms of their

capabilities.

Virtualizing a network function typically means implementing a function normally

found in a single middlebox dedicated to it in software that runs on one or more open

platforms. Scaling out the function across different physical or virtual platforms requires

preserving the behavior of that function as defined by its implementation in a single

middlebox. This can be a challenge in light of stateful functions since now that state needs

to be managed centrally or distributed over the platforms while maintaining its consistency

as it gets updated. Some virtualization technologies like COCONUT [3] address the

challenge in the context of software-defined networking (SDN) where there is already a

centralized controller. Other technologies are less concerned with scaling out the function

than with providing APIs or domain-specific languages that make coding it on a single

platform easier. These include MBBrick [4], OpenBox [5], P4 [6] and Click [7].

Only COCONUT is concerned with the correctness of a virtualization. The other

technologies offer no support whatsoever for verification. But COCONUT depends on a

SDN controller per network function. Therefore, if multiple stateful functions must be

virtualized simultaneously, their SDN controllers must be replicated or merged somehow.

2

It is not at all clear how one would do this. Further, the API and language-based approaches

do not address reusability in a modular and verifiable way.

A NEW APPROACH

Volpano makes some key observations in [8]. A network function often can be

decomposed into very primitive behaviors. These behaviors can be useless alone but

indispensable from the standpoint of reusability. For instance, a frame forwarding behavior

might require that an inbound frame be forwarded to every other port of a device, making

the device a hub. A port-learning behavior might learn the port behind which something

can be found. By itself, port learning is not useful even if we know what is learned behind

the port. But it has the potential to be far more reusable as it stands. It can be instantiated

to learn different things behind the port depending on how it’s used. With the hub behavior,

for example, it can learn the port behind which a particular MAC address lives, which

makes the hub behave like a switch, and with a stateful firewall, it can learn a datagram

source port to which traffic can be sent for a period of time. Contrast these behaviors with

an API. An API method offers a behavior as well but that method is always useful by itself.

Otherwise it would not be in the API! Such methods though make poor reusable elements

and moreover are difficult to verify. So Volpano proposed a new approach called Modular

Network Function Virtualization (MNFV) [8].

A MNFV specification prescribes the correct behavior of a middlebox in terms of

its input/output (I/O) relation. Packets or frames arrive at ingress ports of the box and exit,

perhaps transformed, at egress ports. When and where they exit is dictated by the MNFV

specification. These entry and exit points may depend on frame contents, obviously, as

well as frame history at the box, state maintained internally by the box, and timers it may

keep as a way to expire that state. So the MNFV specification captures the I/O relation of

the box. While the specification describes desirable behavior, it does not produce desirable

behavior. In other words, it says whether a given sequence of ingress and egress port

activity belongs to the desired I/O relation. This activity would be determined by some

hardware and software comprising the middlebox. But as Volpano points out in [8], there

is no reason the MNFV specification cannot be used to guide synthesis of software whose

3

execution would always be guaranteed to produce behaviors that belong to the I/O relation

the specification describes. This is a code synthesis problem. Different behaviors can

satisfy the same specification. For instance, buffering a block of frames before forwarding

any of them may be preferred for better throughput than forwarding them one at a time to

minimize their latencies. If an MNFV specification does not distinguish between them

because it does not care which approach is taken, then its compilation has a choice. It would

be correct to synthesize code for either approach.

This thesis applies the MNFV methodology with the aim of creating a two-port

relay switch that provides basic forwarding, hardware MAC address learning, and stateful

firewalling functions. These functions will be presented as primitive behaviors that are

reusable using a type of symbolic finite automaton. Being primitive, the behaviors are more

reusable and more amenable to formal verification. They are combined via a tensor product

construction [8] to yield a new specification that is the desired behavior of the two-port

relay switch. The new specification is another MNFV specification, hence the

methodology’s reusability characteristic. The specification is operational in the sense that

it can serve as a monitor of the switch’s behavior over time, revealing when, if ever, the

switch is behaving incorrectly. Our goal is not to use the specification as a monitor,

however. Instead it is treated as a specification from which software can be derived such

that the software always behaves correctly when executed. To this end we describe how

that software might be produced by giving a portion of code synthesized from the tensor

product for the two-port relay. Finally, a potential implementation of the code using Intel’s

open platform called the Data Plane Development Kit (DPDK) is investigated.

Applying the MFNV methodology to the problem of creating a two-port relay

switch is described in Chapter II. There the primitive behaviors for forwarding, learning

and firewalling will be given as MNFV specifications. In Chapter III, we describe one way

that code might be synthesized from a MNFV specification for the switch. In Chapter IV,

we describe the DPDK and its potential to implement the code. Chapter V discusses related

work, specifically the virtualization research mentioned earlier in this chapter. Finally, we

conclude with directions for future work in Chapter VI.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. APPLICATION OF MNFV

In order to convey the benefits of MNFV, we will go through an example of a two-

port switch. This switch will forward frames from port 1 to port 2 and vice versa. It will

have the capability of learning the hardware MAC addresses of the hosts connected to the

ports for a predetermined amount of time. Furthermore, Port 1 will be protected by a

stateful firewall with socket learning in order to prevent traffic destined for the socket from

reaching it unless the host behind port 1 initiated traffic from it.

We begin with a top-level or black-box view of the desired switch. We observe its

external behavior with respect to a clock to get a sense for the timers used and the state

maintained inside the switch that affects its forwarding behavior. We will then decompose

the switch into its constituent, primitive behaviors showing a complete separation of

concerns. When these concerns operate in concert, they produce the externally observable

behavior of the switch with the features mentioned above.

A. THE TWO-PORT RELAY AS A “BLACK BOX”

Imagine the relay switch as a black box with two ports. Each port has an inbound

and outbound interface (perhaps full duplex but this does not concern us). Each frame

transits the switch first by being sent from an inbound interface and then followed by

receipt at an outbound interface. For example, f1_p2_s is an event where frame f1 is

received at port 2 (p2) and awaits being sent to port 1 (p1). The switch may not allow f1 to

be received at p2. In other words, the event f1_p1_r, signifying that f1 is received at the

outbound interface of p1, may be unacceptable. This may be due to the firewall behavior.

We can list a sequence of such events with respect to time and observe the switch’s

behavior by looking to see which events were accepted at particular times. Such a sequence

can be thought of as a “run” of the switch. An example is given Table 1.

6

Table 1. A run of the switch on a sequence of events

frame

name time (ms) Accept?

f1_p2_s 5 Y

f1_p1_r 6 N

f2_p1_s 8 Y

f2_p2_r 9 Y

f3_p1_s 10 Y

f3_p2_r 11 Y

f4_p2_s 12 Y

f4_p1_r 15 Y

f5_p2_s 22 Y

f5_p1_r 24 N

f6_p2_s 26 Y

f6_p1_r 28 Y

f7_p2_s 34 Y

f7_p1_r 45 N

Summarizing the behavior in the table we have

f1 arrives at p2 at time t = 5 but is rejected at p1 at t = 6.

f2 arrives at p1 at time t = 8 and is accepted at p2 at t = 9.

f3 arrives at p1 at time t = 10 and is accepted at p2 at t = 11.

f4 arrives at p2 at time t = 12 and is accepted at p1 at t = 15.

f5 arrives at p2 at time t = 22 but is rejected at p1 at t = 24.

f6 is similar to f4.

f7 is similar to f5.

7

Notice that unlike f1, f4 exits the switch. So it appears the forwarding behavior for

it depends on the past, namely having seen frame f2 or f3. Also, frame f4 is forwarded but

not f5 so apparently f5 must differ from f4 somehow. We now take a closer look at what is

driving this behavior in terms of the switch’s primitive, modular network functions.

B. MODULAR NETWORK FUNCTIONS

Behavior within the black box is shown in Figure 1. It shows the frames mentioned

in Table 1 being transferred between the two ports. We assume there is a host with MAC

address ‘A’ connected to p1 and another host with MAC address ‘B’ connected to p2. The

MAC addresses of the hosts are fixed. There are three primitive modules at play here:

forwarding, MAC address learning, and stateful firewalling. There is stateful firewalling at

p1 that blocks or allows traffic as depicted by the blue transmission arrows stopping or

going through the black-dotted line. The black dotted lines depict the inbound and

outbound interfaces of each port labeled respectively as locations 1 and 10 for p1 and

locations 2 and 20 for p2.

8

Figure 1. Traffic between ports 1 and 2

A timer is the difference between a system clock called current time (ct) and a time

stamp (ts) accompanying each frame at ingress. There are two timers in this switch, ml1

and sf1. Timer ml1 is for MAC address learning and indicates for how long a MAC address

will be remembered at a particular port. Timer sf1 is for stateful firewalling at p1. A socket

is learned there and starts sf1 to remember how long the socket will be accessible at p1.

Both timers can be refreshed, meaning they are soft timers. The MAC address learning

timer is refreshed for a MAC address if the address is seen again at that port before the

timer expires, likewise for the socket timer which is reset upon another packet from that

socket arriving at p1.

9

Each frame in a ‘run’ takes a turn at being what is called the current frame. The

current frame can be referenced as cf. For example, a frame can arrive at port p1 with cf.sa

= ‘A’ and cf.da = ‘B’, meaning the current frame has source hardware address sa and

destination hardware address da. Likewise a frame can arrive at p2 with cf.sa = ‘B’ and

cf.da = ‘A’. A frame has other attributes as well that can be referenced. These include TCP

source and destination sockets (ssock and dsock, respectively)–we call these sockets since

each is an IP-address/datagram port number pair. A datagram port number is different from

a hardware port. Attribute ls is a location stamp conveying which inbound interface the

frame arrived at and ts is a time stamp conveying when the frame arrived at that interface.

Some of the values of these attributes can be seen in Figure 1.

The behavior seen inside the switch is the composite behavior of three separate

primitive modules. Each of these impacts the overall behavior. Next we examine the role

each has in producing the composite behavior. Keep in mind that the primitive modules

are independent subsystems that govern only their parts of the world (forwarding, learning,

etc.). As Volpano observed in [8], each is aware there may be other subsystems at work so

each must “stutter” on events that do not concern it at discrete instances in time [9].

C. STATE TRANSITIONS BY PRIMITIVE FUNCTION

In this section, we describe each of the constituent primitive behaviors individually.

Each behavior is captured as a λ-SFA. A λ-SFA runs on a sequence of events and decides

whether the sequence is admissible by entering a special state called a final state. A

transition on an event is possible if the event satisfies a condition associated with the

transition. The condition in general is a proposition involving linear arithmetic constraints.

It can require occurrence of a specific event or that an event occur at a particular location

at some time. The behavior being prescribed determines the propositions on transitions [8].

We give one λ-SFA each for forwarding, learning the port behind which a MAC address

lives (MAC address learning) and stateful firewalling.

10

1. Forwarding (fwd)

Forwarding is concerned with making sure that every frame received at the inbound

interface of a port eventually reaches the outbound interface of the other port and is never

forwarded between the inbound and outbound interfaces of the same port. It is concerned

with nothing else. It does not inspect frame contents or record frame history. The

forwarding λ-SFA is shown in Figure 2. Its start state is _fIp1_.

Figure 2. fwd machine

In the transition from the start state to _ fIIp1_, there’s a condition:

λf. (loc = 1 ∨ loc = 2)

For the transition to be made, the current frame in the event sequence must be located at

the inbound interface of port 1 (loc = 1) or that of port 2 (loc = 2). The λ-binding binds the

λ-variable f to the current frame for future reference. Note that it is referenced in the

propositions of both transitions from _fIIp1_.

A run of the forwarding λ-SFA is shown in Table 2 for a particular sequence of

events. Notice that the state changes twice for each frame: once when the frame arrives at

the inbound interface and once at the outbound interface. The λ variable f is re-bound to a

11

new frame at p1 or p2 after the frame previously bound to it reaches an outbound interface

(loc = 10) or (loc = 20).

Table 2. Forwarding state machine trace

cf fwd λ-var

function state event loc sock t (ms) name ls socks

f1_p2_s 2 2 5 f 2 2 _fIIp1_

f1_p1_r 10 2 6 f 2 2 _fIp1_

f2_p1_s 1 2 8 f 1 2 _fIIp1_

f2_p2_r 20 2 9 f 1 2 _fIp1_

f3_p1_s 1 2 10 f 1 2 _fIIp1_

f3_p2_r 20 2 11 f 1 2 _fIp1_

f4_p2_s 2 2 12 f 2 2 _fIIp1_

f4_p1_r 10 2 15 f 2 2 _fIp1_

f5_p2_s 2 3 22 f 2 2 _fIIp1_

f5_p1_r 10 3 24 f 2 2 _fIp1_

f6_p2_s 2 2 26 f 2 2 _fIIp1_

f6_p1_r 10 2 28 f 2 2 _fIp1_

f7_p2_s 2 2 34 f 2 2 _fIIp1_

f7_p1_r 10 2 45 f 2 2 _fIp1_

Frame f1 arrives at loc = 2, cf is stored in f (it satisfies the condition that the frame is seen

at loc = 1 or loc = 2) and fwd transitions to _fIIp1_. Then the frame is “received by” loc =

10 (because the frame arrived at loc = 2) and fwd transitions to _fIp1_. Next f2 arrives at

loc = 1, cf is stored in f (again it satisfies the condition that the frame is seen at loc = 1 or

loc = 2) and fwd transitions to _fIIp1_. Then the frame is “received by” loc = 20 (because

the frame arrived at loc = 1) and fwd transitions to _fIp1_.

2. MAC Address Learning (ml1 and ml2)

The purpose of MAC address learning is to determine which host is connected to

which port. In Figure 3, we give the state machine ml1, which learns up to one MAC

12

address connected to port 1. We say the source MAC address sa is learned when a frame

arrives at loc = 1 while in the start state l1p1. At this point, the current frame binds to λ

variable q, thereby creating state. From l2p1, there are only three transitions for the

machine: refresh the timer (l2p1 to l4p1), reset the λ variable (l2p1 to l1p1), or stutter (stay

in l2p1, if in l2p1; same for l4p1). The same transitions are observed at l4p1. Notice that

we cannot learn a new source address until the timer has expired.

Figure 3. ml1 machine

The source address is learned when a frame arrives at the inbound interface of the port and

the frame is then stored in λ-variable q for 15 seconds. If another frame with the same

source address arrives at the inbound interface of port 1, the timer is effectively reset. The

ml1 machine serves to learn which port a source address is behind and then to enforce what

it has learned by requiring that if a frame with that source address as destination address

ever appears at an outbound interface then the interface must be the one corresponding to

the inbound interface where the address was learned. This is seen in the condition on the

transitions from state l2p1 (or l4p1) to itself. There the knowledge learned is enforced until

it expires.

13

ml1 changes states differently than fwd in that λ-variable q changes when a frame

is seen at inbound port 1 (see Table 3).

Table 3. MAC address learning ml1 state machine trace

cf ml1 λ-var

Func.
state event loc addr

t
(ms) name ls sa

ts
(ms)

δ (t-ts)
(ms)

f1_p2_s 2 B 5 N/A N/A l1p1

f1_p1_r 10 B 6 N/A N/A l1p1

f2_p1_s 1 A 8 q 1 A 8 0 l2p1

f2_p2_r 20 A 9 q 1 A 8 1 l2p1

f3_p1_s 1 A 10 q 1 A 10 0 l4p1

f3_p2_r 20 A 11 q 1 A 10 1 l4p1

f4_p2_s 2 B 12 q 1 A 10 2 l4p1

f4_p1_r 10 B 15 q 1 A 10 5 l4p1

f5_p2_s 2 B 22 q 1 A 10 12 l4p1

f5_p1_r 10 B 24 q 1 A 10 14 l4p1

f6_p2_s 2 B 26 q 1 A 10 16 l1p1

f6_p1_r 10 B 28

N/A N/A l1p1

f7_p2_s 2 B 34

N/A N/A l1p1

f7_p1_r 10 B 45

N/A N/A l1p1

14

Note:

• f1 arrives at p2 with sa = ‘B’ and is learned by ml2 the MAC address

learning machine for p2 and not shown here. But ml1 does not store the

contents of cf in λ-variable q since the frame was observed at p2 (loc = 2),

not p1 (loc = 1). So it stutters by remaining in its current state l1p1. When

loc = 10 at time t = 6, ml1 again stutters and remains in l1p1.

• Frame f2 arrives at loc = 1 and cf.sa = ‘A’ is learned by binding the frame

to λ variable q. ml1 then transitions to l2p1 (since the frame was seen at

loc = 1). At loc =20, ml1 does not make a state transition and remains in

l1p1 because the activity is not at p1 nor has the timer expired.

• Frame f3 arrives at loc = 1 with the same source address sa. ml1 observes

the frame (because cf.sa = q.sa and the frame is at loc = 1) and transitions

to l4p1. A new timestamp is placed in q.ts, effectively resetting the timer.

At loc =20, ml1 does not make a state transition and remains in l4p1

because the activity is not at p1 nor has the timer expired.

Notice that after f3, ml1 changes state form l2p1 to l4p1. The transition between the

two states involves rebinding its λ-variable (this behavior is also observed with sf1),

effectively refreshing its timer.

• Frame f4 arrives at loc = 2. Since the timer for ml1 has not expired, it

remains in state l4p1. At loc = 10, since the timer for ml1 is valid and

cf.da = q.sa, ml1 remains in this state.

• Frame f5 arrives at loc = 2. Since the timer for ml1 has not expired, it

remains the same state namely l4p1. At loc = 10, since the timer for ml1 is

valid and cf.da =λq.sa, ml1 remains in the state.

• Frame f6 arrives at loc = 2. Here, ml1 has timed out because ct – q.ts >

15. So it effectively forgets the source address of the host behind p1. ml1

15

makes a state transition to l1p1. (The variable q for “f6_p2_2” in Table 3

should not exist, however, it is shown to display that a timeout occurred in

that it has been longer than what was programmed for ml1 to remember.)

At loc = 10, since the frame is not observed at loc = 1, ml1 maintains its

state.

• Frame f7 arrives at loc = 2. Since the frame is not observed at loc = 1, ml1

maintains its state of l1p1. At loc = 10, since the frame is not observed at

loc = 1, ml1 maintains its state.

Because our relay switch contains only two ports exist, learning a MAC address is

not as important as it would be in the context of three or more ports. Nonetheless we see

how the independent concerns of learning and forwarding can be separated.

3. Stateful Firewall (sf1)

This λ-SFA is much like ml1 except we are concerned with datagram ports as

opposed to MAC addresses. One other distinguishing feature is the start state, sf1p1 (see

Figure 4). Not only are we concerned with ensuring λ variable y is bound only when a

frame arrives at loc = 1, we want to guarantee that frames seen at loc = 10 before any traffic

is solicited will be dropped, hence a stateful firewall.

16

Figure 4. sf1 machine

The ssock of the first frame that arrives at the inbound interface of p1 is learned and stored

as λ variable y for 25 seconds. The sockets are stored by the state machines above as well

but are not checked there since their functions do not concern sockets. No frame is allowed

through the stateful firewall unless a socket is already learned. After a socket has been

learned, any subsequent frame that arrives at inbound interface p1 with a different ssock

will not be saved until a timeout has occurred. See Table 4 for a run of sf1 on a particular

sequence of events.

17

Table 4. Stateful firewall state machine trace

cf sf1 λ-var
function

state event loc sock t (ms) name ls socks ts (ms) δ (t-ts) (ms)

f1_p2_s 2 2 5 N/A N/A sf1p1

f1_p1_r 10 2 6 N/A N/A sf1p1

f2_p1_s 1 2 8 y 1 2 8 0 sf2p1

f2_p2_r 20 2 9 y 1 2 8 1 sf2p1

f3_p1_s 1 2 10 y 1 2 10 0 sf4p1

f3_p2_r 20 2 11 y 1 2 10 1 sf4p1

f4_p2_s 2 2 12 y 1 2 10 2 sf4p1

f4_p1_r 10 2 15 y 1 2 10 5 sf4p1

f5_p2_s 2 3 22 y 1 2 10 12 sf4p1

f5_p1_r 10 3 24 y 1 2 10 14 sf4p1

f6_p2_s 2 2 26 y 1 2 10 16 sf4p1

f6_p1_r 10 2 28 y 1 2 10 18 sf4p1

f7_p2_s 2 2 34 y 1 2 10 24 sf4p1

f7_p1_r 10 2 45 y 1 2 10 35 sf1p1

The start state of sf1 is sf1p1:

• Frame f1 arrives at loc = 2. sf1 does not store the cf in y (the frame was

observed at loc = 2 and not loc = 1), and remains in its current state of

sf1p1. At loc = 10, it is observed that cf.dsock = 2. Because there has not

been any traffic seen from ‘A’, y.ssock does not exist, therefore, sf1 does

not make a state transition and remains in sf1p1.

• Frame f2 arrives at loc = 1. sf1 learns cf.ssock = 2 (because it arrived at

loc = 1) by binding the frame to y and transitions to sf2p1. At loc = 20, sf1

remains in the same state since there was no activity observed at loc = 10

and the timer has not yet expired.

18

• Frame f3 arrives at loc = 1 with cf.ssock = 2. The timer associated with

this ssock is reset at sf1. sf1 observes that the frame information is the

same as the previous frame (because the frame is at loc = 1 and cf.ssock =

y.ssock), sets the new ts and ls, and then transitions to sf4p1. At loc = 20,

sf1 remains in the same state since no activity is observed at loc = 10 and

the timer has not expired.

• Frame f4 arrives at loc = 2, so sf1 remains in its current state of sf4p1 (it

also has not timed out). At loc = 10, since cf.dsock = y.ssock and it is

observed at loc = 10, sf1 remains in the same state.

• Frame f5 arrives at loc = 2, so sf1 remains in its current state of sf4p1 (it

also has not timed out). At loc = 10, unlike f4, cf.dsock does not match

y.ssock. However, sf1 remains in its current state because it vacuously

meets the condition check that, “if the frame is seen at an outbound

interface and cf.dsock = y.ssoc, then it must be at loc = 10.”

• Frame f6 arrives at loc = 2, so sf1 remains in its current state of sf4p1 (it

also has not timed out). At loc = 10, since cf.dsock = y.ssock and it is

observed at loc = 10, sf1 remains the same state.

• Frame f7 arrives at loc = 2, so sf1 remains in its current state of sf4p1 (it

also has not timed out). At loc = 10, it is discovered that ct – y.ts > 26 and

sf1 has timed out and therefore no longer remembers the ssock of the host

behind p1 and transitions to sf1p1. As with ml1, the y after “f7_p1_r”

should not exist but is shown to depict the time out.

19

D. TENSOR PRODUCT

The tensor product of the primitive machines presented in this chapter is computed

automatically using a preprocessor developed by Volpano for this purpose [8]. Each must

first be expressed as a Python dictionary as shown in the Appendix. The tensor product is

the intersection of all the machines. An excerpt of the product machine for our two-port

switch is given in Chapter III. (The entire specification can be seen in Supplemental 1.)

States and transitions can be eliminated as a result of unsatisfiable constraints on transitions

in the product. A solver modulo an equational theory (SMT solver) is used for this purpose.

In Figure 5, we show a trace of the product machine to the right of the sequence of events

we saw in Figure 1. We see then it is the product machine that governs the behavior of the

switch that we observed initially.

• The start state for the product machine is _fIp1_sf1p1l1p1l1p2. f1 arrives

but is rejected at loc = 10. In fact, any and all frames coming from ‘B’ will

be sent to p1, but will always be rejected at our stateful firewall. This can

be viewed as rejecting traffic until host ‘A’ creates a socket that other

hosts can communicate with through p1.

• After f2, our machine will continue to allow traffic to host ‘A’ as long as

the cf.da = q.sa, cf.dsock = y.ssock, loc = 10 and the frame arrives within

the allotted time (ct - y.ts < 26).

20

Figure 5. Tensor product state machine trace

• Once f3 is processed, the machine will behave the same as after f2 was

processed, the difference being that ts has changed to the time this framed

arrived at p1. Subsequent frames with the same frame information will

continue to be processed the same until the timer has expired.

• As after f2, the conditions are set where any traffic destined for host ‘A’

with a dsock = 2 will be accepted, so f4 is accepted. This frame is

successfully forwarded to host ‘A’. Here even though cf.da = q.sa, f5 does

not get passed p1 since cf.dsock ≠ y.ssock.

• The situation for f6 was explained previously, where even though a MAC

address is not retained at p1, the frame is successfully forwarded.

Ultimately, only the condition check cf.dsock = y.ssock is applied before

the frame is successfully forwarded.

21

• Once f7 is passed onto loc = 10, no information about host ‘A’ is retained;

the machine only knows the port behind which host ‘B’ lives.

Volpano has proposed an algorithm for synthesizing code from a tensor product. In

the next chapter, we apply this algorithm to the tensor product for our two-port relay switch,

illustrating the potential for getting C code that can actually run under Intel’s DPDK. While

the code we generate is not C code nor has it been implemented using the DPDK, it is

significant in that it illustrates many of the issues facing automatic code synthesis in this

environment.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. TOWARD CODE SYNTHESIS FOR TENSOR PRODUCTS

The tensor product of the λ-SFA for forwarding, machine learning and firewalling

specifies all desired behaviors of a two-port relay switch. As such, it’s equipped to monitor

a sequence of events at its ports and determine whether the sequence is a desired behavior.

This can be thought of as checking the correctness of such a relay. But as Volpano has

observed [8], a product can serve as a sort of recipe for synthesizing code that is guaranteed

to always yield only desired behaviors. Volpano has proposed an algorithm for such

synthesis, and it is applied in this chapter to a portion of the tensor product for forwarding,

learning and firewalling.

A. CHECKING VS SYNTHESIZING

A tensor product is just another λ-SFA. So it can run on events like any other λ-

SFA and check whether the events are conformant. These events are produced by some

existing implementation. But we want to synthesize an implementation that is guaranteed

to produce events that are always conformant. For example, if a condition on a transition

is true when a particular frame is located at an outbound interface, then, rather than check

for its truth, generate code that guarantees the frame will be located there. So the transition

will be always be taken because the code assures us the condition will always be true. In

some cases, there may be two transitions from one state where one has a condition that is

true if a frame is located at an outbound interface while the other is true if a frame is located

at an inbound interface. The former involves writing a frame to the wire while the other

involves reading one from the wire. Which action do we take? The code must make a

decision.

Volpano proposes introducing read and write cycles. The software toggles between

them as the tensor product makes state transitions. If we are in a state such as the one above

then we let the cycle type resolve the action taken. The other action will be taken on the

next cycle. The state in which this occurs will be the one where the constituent λ-SFA

whose action was deferred has stuttered.

24

The entire synthesized code for our switch can be seen in Supplemental 2. We will

review a few of these states in the next sections as it pertains to Figure 5, particularly the

start state, the read state after f6, and the write state after f7.

B. START STATE

Consider a portion of the tensor product shown in Figure 6. It is a Python dictionary

defining all transitions from the start state of the product. It shows all conditions needed to

make a transition from the start state as well as when λ variables that get bound when these

transitions occur. The preprocessor for computing products generates new variable names

that supplant user-defined variables in machines. For instance in Figure 6 and Figure 7,

_v493 replaces λ variable f, _v3972 variable y, and _v1922 variable q.

The code synthesized for the start state is shown in Figure 7. Notice that we start in

a read-only state (w = 0). There’s one loop that switches on the current state of the machine,

which can be any state of the product machine. Once we enter a state, the first action is to

get the frame, or packet (p in getnext()). Once we have the frame (getnext()>0), the next

step is to write that frame to the outbound interface (transition to a write state, w = 1). The

machine is expecting a frame to arrive at a valid location, hence we have case ‘1’ or case ‘2’

and no default. If no frame is observed, we remain in state ‘1111’; this is the stutter step

for this particular state.

Figure 6. Tensor product for start state

25

For every state, there exists a stutter state, or multiple stutter states. These states are

in a situation where no read or write is performed but the timers are all checked. This is

necessary because stuttering still takes processing time so we need to check constraints

such as whether timers have expired. Such a check can be seen in the case of f7 in Figure

5. Machine sf1’s timer has expired when the frame arrives so it cannot be forwarded to

port 2. Until that time, the machine’s synthesized code was looping and time was passing.

Figure 7. Code synthesized for start state

Let us go back to Figure 5. When f1 arrives, we observe a frame at loc = 1 (case ‘1’).

Then, we will read cf at the inbound interface of p1 (1ib) and store the cf information in

the appropriate λ variable. According to our tensor product, this will transition the machine

to state_fIIp1_sf2p1l2p1l1p2 (‘2221’), which is the state we will be in after f1_p2_s. We

then move onto the next transition (continue).

26

Notice that the start state can only transition to three other states. Other states have

many more possibilities, like after f6 (Figure 8). As demonstrated before, all the timestamps

must be checked to see if the λ variables are still valid. ml1 must have the current frame

destination address checked against q. The current frame destination socket must be

checked against y. Depending on the results of the condition checks, a different transition

will occur.

C. READ STATE

In Figure 8 and Figure 9, there are a couple of more λ-variables introduced. These

new auto-generated variables are copies of λ variables, where _v3500 replaces y and _v1

replaces r. Consider state ‘1414’, which is the state we are in after f6. In order to make a

transition, we would expect a frame to arrive at loc = 1 or loc = 2, if not it stutters. If a

frame arrives at loc = 1 (case ‘1’), then fwd would transition to _fIIp1_, sf1 could transition

to sf2p1 if cf.ssock = y.ssock or if the timer has expired, ml1 would transition to l2p1, and

ml2 could transition to l1p2 if the timer has expired. If a frame arrives at loc = 2 (case ‘2’),

then fwd would transition to _fIIp1_, sf1 could transition to sf1p1 if the timer expired, ml1

would remain the same, and ml2 could transition to l2p2 if cf.sa = r.sa or if the timer has

expired.

27
Figure 8. Tensor product for read state after f6.

28

Figure 9. Synthesized code for state after f6

29

D. WRITE STATE

Let us examine how our machine will transition once f7 is observed. Before f7

arrived, we would be in ‘1414’ (Figure 9). Since a frame was observed at loc = 2 and cf.sa

= r.sa and the timer for sf1 has not expired, the next state would be ‘2412’. Now that we

have already seen a frame, we will enter a write state of ‘2412’ in Figure 10. (below, only

a portion of the tensor product for this state is shown due to space. Please see

Supplemental 1 for the full state and its transitions). It is important to note that we only

write to an outbound interface based on the direction given to us by the fwd SFA. In our

case, since the frame we observed was at loc = 2 (2ib), we can only write to loc = 10 (1eb)

if the conditions allow (Figure 11). Since the timer for ml2 is still valid but the timer for

sf1 is not, we enter state ‘1112’. Therefore, the frame is not accepted by virtue of not writing

to loc = 10 (write 1eb _v493).

Figure 10. Partial output of tensor product for read state after f7_p2_s

30

Figure 11. Synthesized code for state after f7_p2_s arrives

31

IV. DPDK—A PLATFORM FOR MNFV

While Chapter III described a scheme for synthesizing target code, there remains

the problem of implementing it on an actual platform of some kind. Ideally, the platform

would be devoid of any networking functions since we expect the functionality to be fully

prescribed by the target code. The platform should provide just the bare essentials for

building any type of middlebox semantics we have in mind, no matter how complex. One

such platform that appears promising for this purpose is Intel’s Data Plane Development

Kit (DPDK). It is described in this chapter along with some applications of it that highlight

why it appears to be a promising platform for MNFV.

A. DATA PLANE DEVELOPMENT KIT

The DPDK is a set of libraries and network drivers that allows the data plane and

packet processing to be handled from within user-space processes. This set of libraries

gives direct access to the network interface card (NIC) by bypassing the Linux kernel (see

Figure 12). This is significant in that it eliminates the context switching that occurs every

time an application executes a system call [10]. It also eliminates the interrupts that occur

from every packet being copied to main memory then transferred to user space.

32

Figure 12. Application of DPDK. Source: [10].

DPDK has five core components [11]:

1. Ring Manager. It allows the management of queues. Some of the

properties exhibited by the ring manager are that it behaves as a queue, the

queues have a fixed maximum size, pointers to the rings are stored in a

table, and there’s a lockless implementation of the queues. When

compared to a linked list queues, one of its advantages is that it is adapted

for bulk enqueuer/dequeuer operations. The memory pool manager uses

this manager.

2. Memory Pool Manager. As defined by [11], a memory pool (mempool) is

an allocator of a fixed-sized object. One of its objectives is to ensure that

memory is equally loaded. To avoid accessing the ring too many times, the

mempool manager stores a local cache.

33

3. Network Packet Buffer Management Library. It uses the mempool library

to allocate and free buffers (mbufs). When mbufs are freed, they are

returned to the original mempool. This library also contains functions that

allow the user to manipulate the data in the packet that is stored, i.e., get

data length, get the pointer to the start of the data, prepend, append, or

remove data.

4. Timer Manager. It provides the timer service to execute functions

asynchronously. It can be loaded in one core and executed in another but

must be specified. The functionality is such that a handle is created in one

core that can be referenced by a new core.

The DPDK makes use of poll-mode drivers (PMD) for specific NICs. If the NIC

driver does not exist in the library of drivers available, then is it is not possible to access it.

This direct access to the packets avoids the overhead from the kernel network stack [12]

by bringing kernel-level processing into user space. This is accomplished by binding to a

NIC using PMDs. In doing so, the packets can be received faster and allows the user to

process those packets.

DPDK also makes use of HugePages. It allows coverage of more of the memory

address space by using fewer translation lookahead buffer (TLB) entries. This leads to

fewer TLB misses thereby improving performance. The authors of [12] tested the

performance of DPDK by applying it to Open vSwitch and compared with Open vSwitch

without DPDK. They sent 50, 300, and 800 packets of size 50, 135, and 230 bytes and

found that the DPDK version had a performance increase of 72% for the smallest number

of packets of the smallest packet size and a 219% performance increase for the largest

number of packets of the largest packet size.

B. DPDK APPLICATIONS

DPDK is used in the cloud, data centers, and other Internet connected devices.

Some projects are more notable than others but the range of research extends

internationally and across corporate and academic environments. DPDK is open source and

34

associated with the Linux Foundation. As such it can be easily extended and shared within

the computer science community.

1. Open vSwitch

Open vSwitch was integrated with DPDK in an effort to accelerate virtual switching

performance across virtual and physical connections [13]. Open vSwitch’s forwarding

plane is implemented in the Linux. Using DPDK allows it to be implemented in user space

[14] and improves performance by ten-fold [15]. The DPDK’s use of poll mode drivers to

communicate with the NICs facilitates that transition. This integration is even more

significant when it is taken into account that DPDK is also Non-uniform Memory Access

(NUMA) aware and has the ability to integrate NUMA nodes for significant improvements

[16].

According to [13], the architectural changes that come with integrating DPDK with

Open vSwitch provides significant performance improvements on the Intel architecture for

physical and virtual networks. (Though not specified, the architecture is likely a host with

Intel processors and Ethernet contollers. This assumption is based on the test platform

specifications available in [13].) Intel compared physical-to-physical (Intel NIC to Intel

NIC) and physical-to-virtual-to-physical switching tests (Intel NIC to

Fedora/QEMU/DPDK/Open vSwitch to Intel NIC). When running Open vSwitch with

DPDK, the physical-to-physical ran nearly 12 times faster; the other ran nearly seven times

faster.

2. Click Modular Router

The authors of [17] applied DPDK to the Click modular router [7]. Their research

was based on kernel-based forwarding in comparison to several Click modular routers,

each with a different packet I/O framework, while considering multi-queues, multi-core,

and NUMA. During their work, they created an environment with more hyper-threads,

hardware queues, and logical cores for Click with PCAP and standalone Click. This

environment was mainly designed to circumvent the issue of receive livelock [18] caused

by too many internal requests (IRQ) being generated. Initially, all of their models pushed

35

packets from one device (FromDevice) to a receiving device (ToDevice) connected by a

queue on the same core. After a preliminary test, receive livelock was still observed.

With the results of their first test, they introduced two versions of FastClick, one of

which integrated Click with DPDK. They discovered that using a “full push” method,

whereby the packets are all processed on a single thread without queues, avoided the

problems of synchronization and cache misses. Still they were able to use multi-threading

by exploiting the capabilities within the NICs to avoid locking. One of the advantages of

the DPDK model was that it is capable of supporting multiple RX/TX rings, which allows

for having one queue per device per thread.

They found that DPDK provided the fastest I/O throughout compared to the other

frameworks. Their recommendations included using a polling system like DPDK to solve

the livelock problem.

3. Game Servers

The authors of [19] used DPDK from the perspective of electronic sports events.

These events are mainly comprised of local area networks. Their concern was the latency

within the network stack more so than from the network. According to the authors, a change

to the latency by an order of magnitude within the millisecond range has a great impact to

game servers. Their proposal was to maximize throughout and minimize latency using

DPDK.

The authors created three scenarios: a malicious payload slowing the network stack,

deploying the game server in a VM-cloud environment, and bypassing the OS stack using

DPDK. Of the three, the use of DPDK reduced latency and when the number of clients

increased, the improvement was even more significant. They leveraged the ability to poll

the NIC to retrieve packets so that applications could process packets as soon as they were

made available. Also, because DPDK processes packets in batches, only a single call to the

DPDK library was necessary. They found that DPDK’s ability to avoid context switches

contributed to the improved performance.

36

C. DPDK AS A PLATFORM FOR MNFV

The code synthesized in Chapter III is still in need of further compilation before it

can be realized on the DPDK platform. First, read and write operations must be mapped to

poll-mode driver queries in the DPDK. While the synthesized code reads a frame at a time,

we expect a block of frames will be buffered and this buffer will separate reads from driver

queries. Likewise, the code writes a frame at a time. This too may map to an outbound

buffer, which will require management. Alternatively, the buffers could be incorporated

into the λ-SFA but this would require changes to the SFA in order to prevent state-space

explosion in tensor products.

Another issue is whether read-write cycle toggling in the synthesized code gives

the kind of performance we expect. Different code synthesis strategies are possible and

may be needed depending on the outcome of testing. These are areas of future work.

37

V. RELATED WORK

There are a number of efforts that focus on implementing network functions like

switching and routing in software on open platforms. These are essentially middlebox

software technologies. Common functions are expressed in new programming paradigms

or domain-specific languages for implementation on a single, physical middlebox. These

are not considered middlebox virtualization technologies in practice but their emphasis on

software running on open platforms makes them relevant. Then there are the middlebox

virtualization technologies. These are aimed at taking a middlebox function like firewalling

or load balancing and implementing it across many different physical devices or virtual

machines in a way that this distributed implementation mirrors its implementation on just

a single device (called seamless scale out). And lastly there are efforts focused more on

software-based management of network devices and in extreme cases offloading their

decision logic to a central controller. This has been termed software-defined networking

(SDN). This chapter surveys some middlebox software and virtualization technologies.

A. OPENBOX/MBBRICK

OpenBox [5] completely decouples the control plane from the data plane with a

new protocol. It consists of three logical components: OpenBox applications (OBA) are

written using the northbound API, OpenBox Instances (OBI) make up the southbound API,

and an OpenBox Controller (OBC) merges, deploys, and manages network functions.

According to [5], each network function in traditional middleboxes process packets using

similar processing steps and managements its own interface. This makes it difficult to

manage and deploy middleboxes [4]. OpenBox proposes to manage network functions

more efficiently by using the OBC to deploy logic of the OBA to the data plane made up

of OBIs.

Packets are process using processing locks. Each processing block performs a

“single, encapsulated logic unit.” The blocks are categorized into five classes:

1. Terminals: starts or ends packet processing

38

2. Classifiers: classifies the packet according to certain criteria or rules and

outputs to a specific output port

3. Modifiers: modifies the packet

4. Shapers: performs traffic shaping tasks, e.g., queues

5. Statics: does not modify packets or the forwarding path, and does not

belong in the other classes.

Correctness of merging these classes is maintained using a “graph merge

algorithm,” which aims to increase performance. Correctness is defined as a packet going

“through the same path of processing steps such that it will be classified, modified, and

queued in the same way as if it went through” twice.

MBBrick [4] differs from OpenBox in that it consolidates multiple functions into

one virtual box. By presenting a “unified model,” MBBrick is capable of representing all

middlebox functions. It is comprised of a control module, called mcontroller, and three

data plane modules—classifier, rewriter, and forwarder. Combining the three data plane

modules into different orders creates different middlebox functions. However, it relies on

a SDN controller where the mcontroller translates the SDN controller’s commands for the

other modules.

Both technologies attempt to optimize packet processing using virtualized

middlebox functions. The focus is on improving performance and network function

management by eliminating redundancy and centralizing the control and deployment of the

middleboxes. Neither OpenBox nor MBBrick offer any support for building correct

network functions as applications. The focus is exclusively on ease of programming, not

on verification of the code that results.

B. OPEN VSWITCH

Open vSwitch [20] is virtual switch that connects virtual machines and physical

interfaces. It allows for directly configuring the forwarding table and manages topological

configurations by having the ability to create switches and access virtual and physical

39

interfaces. Open vSwitch connects virtual machines over a private, virtual network that

resides on a shared physical network. The authors propose simplifying the physical

infrastructure by allowing it to focus on providing connectivity and leaving the

implementation of functions to the virtual switches.

Open vSwitch is an API that implements policies. The user has no idea how the

functions behave. It necessary to understand the behavior and limitations of the network

functions if we are to trust the functionality of the API. But since these behaviors are

masked within the program, so we have no way of knowing anything about behaviors. The

implementation of the behaviors is dependent on the program. Without knowing how the

behavior was implemented, it is difficult, if not impossible, to verify.

C. COCONUT

COCONUT (Correct Concurrent Networking Utensils) [3] is a system for

“seamless scale-out” of network forwarding elements. The author points out the idea of

simple replication where forwarding rules are often duplicated across multiple locations

without coordination. The idea is to correctly create a single forwarding element that can

be replicated across an entire network. It avoids “weak causality” violations using logical

clocks to prevent applying outdated rules when handling packets and using a tag bit to flush

out outdated rules lingering within the network.

For example, in [3] a switch is given with an ACL that whitelists traffic for

forwarding, drops blacklisted traffic, or sends gray traffic to an IDS. Suppose P1 is an

initial policy that says port 80 traffic is gray. Next suppose a network operator decides to

change the policy to P2 where port 80 traffic is whitelisted. In a network where rules are

implemented across multiple devices, it is not possible to install or update rules

simultaneously on every device. Using simple replication, a race condition occurs. Let us

say that P2 gets installed on host A but not a host B. When A send a request to B, it avoids

the IDS and the request is sent to B. B replies, but since it is still using P1, the reply gets

sent to the IDS and gets blacklisted because the traffic was unsolicited by B. Figure 13

shows how often this race condition affects network traffic.

40

Figure 13. Simple replication causes incorrect blocking. Source: [3].

Using COCNUT, these sequences of packets that are directly tied to one another

would not cause an incorrect blockage. Logical clocks would be used to track the state of

the network and prevent the switch from applying the wrong rule. In short, if there is change

to the network and the current switch has not seen the update that has been applied to the

packet, then the switch waits to update its rules before processing the packet.

The notion of correctness for the scale out of the forwarding element is one where

hosts on opposite ends of the element cannot distinguish the scale out of the element from

its behavior on a single physical device. This notion was first defined by Ghorbani and

Godfrey in [21]. They observed incorrect networking behavior when mapping one element

to many in a virtualized environment. This led to the SDN-based solution COCONUT.

COCONUT’s algorithms are based on updating forwarding rules to implement network

functions, not on defining the network functions themselves. It is a virtualization

technology though. Unlike other efforts it’s concerned with correctness.

D. P4

P4 (Programming Protocol-Independent Packet Processors) [6] is a domain-

specific programming language designed to process packets. It has three main goals in

mind: reconfigurability, protocol independence, and target independence.

Reconfigurability is described as allowing the programmer to change the way a switch

parses and processes packets after it is deployed. Protocol independence means there is no

41

packet format, hence, it is not tied to any network protocol. Target independence means

that packet processing can be described on any hardware platform. The idea is to give full

control to the programmer for determining data plane packet processing of any given target.

Figure 14 is an example of a switch implemented with P4. The white blocks are

what is programmable using P4 and must be have the behavior specified by the user. The

red arrows are user-created flows.

Figure 14. The very simple switch (VSS) architecture. Source: [22].

The parser needs an Ethernet header followed by an IPv4 header otherwise it

terminates with an error and the packet is dropped. Otherwise the packet makes transitions

to four different tables within the “match-action pipeline” where the next hop and source

Ethernet address of the current switch is determined. The deparser constructs the outgoing

packet by reassembling what the pipeline computed. The complete code and explanation

of the example can be found at [22].

Though P4 defines behaviors and greatly opens up the customization of packet

processing, it does not offer any support for verifying the correctness of P4 programs. One

may have a formal description of the behavior of a packet processor yet a P4 programmer

is left wondering whether their P4 program satisfies the description. The P4 authors

42

acknowledge that undefined behaviors exist, much like the C language it imitates, and

encourages best practices when using P4, specifically “out parameters, uninitialized

variables, accessing header fields of invalid headers, and accessing header stacks with an

out of bounds index” [22].

E. CLICK

Click [7] is a modular architecture that was designed from router properties. It is

composed of elements written in C++, each implementing different router functions. These

elements are designed to be placed anywhere in a router configuration while maintaining

its original functionality, thereby making it easy to add and increase functionality. Elements

represent a unit of router processing. The elements themselves can be compounded to

create another element that can be used primitively. The user determines what a Click

router does by choosing elements and connections. The elements use connections to

handoff packets and represents possible paths for the packet the travel. The handoffs are

initiated using push or pull processing from the source or destination, respectively. That

connection is determined to be a push or pull processing by the port it is connected to. The

port type is determined by the element upon initialization; only like ports may be connected

together.

Click was demonstrated by CLiMB [23] while adding functionality; it corroborated

Click’s ability to provide modular reusability. Click is related to MNFV due to its emphasis

on reusability. Like MNFV, Click supports functionality at layer 2 switching and

firewalling. But like most of the other technologies discussed, it lacks support for

verification as pointed out in [8].

43

VI. CONCLUSIONS AND FUTURE WORK

As described in [8], a goal of MNFV is the systematic derivation of software from

a specification of a middlebox’s desired behavior. The specification defines an input-output

relation that can serve as an intermediate representation for code generation. This thesis

has applied the MNFV methodology to build a specification for a 2-port relay switch from

specifications of its constituent behaviors. It also applied an algorithm proposed by

Volpano to the final specification, as a tensor product, to show that code can be produced

from it. When executed, the code guarantees behavior that conforms to the specification.

An open platform to which the code could be potentially mapped, called DPDK, was also

described. Finally, the MNFV methodology was put into the context of related work in

virtualizing network functions and efforts to open networks to non-proprietary software.

What makes MNFV different from other software and virtualization technologies

is its focus on incremental correctness and reusability. Network functions are built from

primitive behaviors that can be reasoned about individually. State invariants can be

formulated and proved using standard techniques such as mutual induction. New functions

are formed from tensor products of behaviors and invariants for new states follow directly

from those of states of the constituent behaviors. Unlike an API, a primitive behavior need

not be useful alone however is typically indispensable when building new network

functions.

A tensor product makes manifest every state that a network function can ever be in.

The tensor product for the 2-port relay has 54 states total. Each has an invariant

(proposition) describing what is true of all network traffic that has traversed the switch

whenever the switch is in that state. Contrast this representation of a middlebox function

with one specified in say P4 [6]. Like any programming language for manipulating state, a

P4 programmer must identify points in the program where states of its execution are

relevant and then devise invariants for them. For instance, a condition might state what is

invariant about program state during every iteration of a loop (a loop invariant). The point

is that P4 program states are not explicit like they are in a tensor product. Consequently,

44

they can be difficult to assimilate, leading to certain claims about correctness that are false.

Not only are all states explicit in a product but one needs to only prove invariants for states

of constituent, less-complex machines. Invariants for states of more complex behaviors

follow directly from the simpler machines at no additional cost. Although there are many

benefits to using MNFV, there are technical challenges that remain before it can be used

in practice. Some of these challenges are discussed in the next section.

The most important task is mapping the intermediate code like that shown in

Chapter III to C code that uses DPDK API, in particular, the poll mode driver. There are

questions that remain around how to interface to the driver. It can be polled and may return

a block of frames. The code shown in Chapter III reads one frame at a time via getnext()

so the block may need to be buffered with getnext() returning a pointer to the next frame

in the buffer if present, otherwise polling the driver for another block. If polling doesn't

add any frames to the buffer then getnext() returns -1.

The algorithm used in Chapter III yielded code that simply oscillates between read

and write cycles. How well does this perform in practice? Should there be a compile-time

option that allows say multiple reads before a write, or multiple writes before a read?

Testing is needed to answer such questions.

Another area of investigation is how well λ-SFA scale out to 100's if not 1000's of

device ports. As the name implies, a tensor product of k machines will have at most |S1| x

|S2| x x |Sk| states. In some cases, the number of reachable states in the product may be

less but other times not. For instance, for the four SFA comprising the 2-port relay, we

have 2 x 3 x 3 x 3 or 54 reachable states. To handle more ports, one would add a forwarding

and learning SFA for each port. But this would quickly cause just the reachable forwarding

states to grow to 2^n for n ports, which is unacceptable. Notice that each of the forwarding

SFA would be identical except for the port being serviced. The logic is identical for each

port. Volpano has suggested taking an object-oriented view of some SFA at code synthesis

time, not a literal one as was done in Chapter III. This means for the forwarding SFA, for

example, that we maintain a data structure storing a frame and a state for each port where

45

the frame is the last frame read from that port and the state is the state the SFA is in for that

port. The generated code for forwarding would be a tight loop simultaneously reading a

frame from each port if possible, buffering it, and then updating the SFA state for the port

if necessary, while also writing all frames in the buffer for which the forwarding SFA is in

a state where a write is possible. Each iteration of the loop is effectively “calling” the

forwarding SFA of the buffer as a method, hence the object-oriented view of the SFA.

Other challenges will undoubtedly arise and need to be addressed. In the end,

MNFV should lead to scalable verification and efficient, high-performance network

functions. Both are goals of the MNFV methodology.

46

THIS PAGE INTENTIONALLY LEFT BLANK.

47

APPENDIX. λ-SFA FOR 2-PORT RELAY SWITCH IN PYTHON

2-port switch

m4 macros
changequote(<!, !>)
define(IB, <!((‘loc’ == 1) | (‘loc’ == 2))!>)
define(EB, <!((‘loc’ == 10) | (‘loc’ == 20))!>)

################# forwarding ###################

f.ls is f’s location stamp (port at which f arrived)

fwdstates = [‘_fIp1_’, ‘_fIIp1_’]
fwdstart = ‘_fIp1_’
fwdaccepts = [‘_fIp1_’]
fwddelta = {
 ‘_fIp1_’: {
 ‘_fIp1_’: [(‘_’, “~(‘loc’ == 1) & ~(‘loc’ == 2)”)],
 ‘_fIIp1_’: [(‘f’, “(‘loc’ == 1) | (‘loc’ == 2)”)]
 },

 ‘_fIIp1_’: {
 ‘_fIIp1_’: [(‘_’, “~(‘cf’ == ‘f’) | ~EB”)],
 ‘_fIp1_’: [(‘_’, “(‘cf’ == ‘f’) & (~(‘f.ls’ == 1) | (‘loc’ == 20)) & (~(‘f.ls’ == 2) |
(‘loc’ == 10))”)]
 }
}

################# learning ###################

learning at port 1.

lp1states = [‘l1p1’, ‘l2p1’, ‘l4p1’]
lp1start = ‘l1p1’
lp1accepts = [‘l1p1’, ‘l2p1’, ‘l4p1’]
lp1delta = {
 ‘l1p1’: {
 ‘l1p1’: [(‘_’, “~(‘loc’ == 1)”)],
 ‘l2p1’: [(‘q’, “(‘loc’ == 1)”)]
 },

48

 ‘l2p1’: {
 ‘l4p1’: [(‘q’, “(‘loc’ == 1) & ((‘cf.sa’ == ‘q.sa’) | (‘ct’ - ‘q.ts’ > 15))”)],

 ‘l2p1’: [(‘_’, “(~(‘loc’ == 1) | ~(‘cf.sa’ == ‘q.sa’)) & (~EB | ~(‘cf.da’ == ‘q.sa’) |
(‘loc’ == 10)) & (‘ct’ - ‘q.ts’ < 16)”)],

 ‘l1p1’: [(‘_’, “~(‘loc’ == 1) & (‘ct’ - ‘q.ts’ > 15)”)]
 },

 ‘l4p1’: {
 ‘l2p1’: [(‘q’, “(‘loc’ == 1) & ((‘cf.sa’ == ‘q.sa’) | (‘ct’ - ‘q.ts’ > 15))”)],

 ‘l4p1’: [(‘_’, “(~(‘loc’ == 1) | ~(‘cf.sa’ == ‘q.sa’)) & (~EB | ~(‘cf.da’ == ‘q.sa’) |
(‘loc’ == 10)) & (‘ct’ - ‘q.ts’ < 16)”)],

 ‘l1p1’: [(‘_’, “~(‘loc’ == 1) & (‘ct’ - ‘q.ts’ > 15)”)]
 }
}

learning at port 2.

lp2states = [‘l1p2’, ‘l2p2’, ‘l4p2’]
lp2start = ‘l1p2’
lp2accepts = [‘l1p2’, ‘l2p2’, ‘l4p2’]
lp2delta = {
 ‘l1p2’: {
 ‘l1p2’: [(‘_’, “~(‘loc’ == 2)”)],
 ‘l2p2’: [(‘r’, “‘loc’ == 2”)]
 },

 ‘l2p2’: {
 ‘l4p2’: [(‘r’, “(‘loc’ == 2) & ((‘cf.sa’ == ‘r.sa’) | (‘ct’ - ‘r.ts’ > 15))”)],

 ‘l2p2’: [(‘_’, “(~(‘loc’ == 2) | ~(‘cf.sa’ == ‘r.sa’)) & (~EB | ~(‘cf.da’ == ‘r.sa’) |
(‘loc’ == 20)) & (‘ct’ - ‘r.ts’ < 16)”)],

 ‘l1p2’: [(‘_’, “~(‘loc’ == 2) & (‘ct’ - ‘r.ts’ > 15)”)]
 },

 ‘l4p2’: {
 ‘l2p2’: [(‘r’, “(‘loc’ == 2) & ((‘cf.sa’ == ‘r.sa’) | (‘ct’ - ‘r.ts’ > 15))”)],

49

 ‘l4p2’: [(‘_’, “(~(‘loc’ == 2) | ~(‘cf.sa’ == ‘r.sa’)) & (~EB | ~(‘cf.da’ == ‘r.sa’) |
(‘loc’ == 20)) & (‘ct’ - ‘r.ts’ < 16)”)],

 ‘l1p2’: [(‘_’, “~(‘loc’ == 2) & (‘ct’ - ‘r.ts’ > 15)”)]
 }
}

################# socket learning with stateful firewall ###################

socket learning with stateful firewall at port 1.

sfp1states = [‘sf1p1’, ‘sf2p1’, ‘sf4p1’]
sfp1start = ‘sf1p1’
sfp1accepts = [‘sf1p1’, ‘sf2p1’, ‘sf4p1’]
sfp1delta = {
 ‘sf1p1’: {
 ‘sf1p1’: [(‘_’, “~(‘loc’ == 1) & ~(‘loc’ == 10)”)],
 ‘sf2p1’: [(‘y’, “‘loc’ == 1”)]
 },

 ‘sf2p1’: {
 ‘sf4p1’: [(‘y’, “(‘loc’ == 1) & ((‘cf.ssock’ == ‘y.ssock’) | (‘ct’ - ‘y.ts’ > 25))”)],

 ‘sf2p1’: [(‘_’, “(~(‘loc’ == 1) | ~(‘cf.ssock’ == ‘y.ssock’)) & (~EB | ~(‘cf.dsock’
== ‘y.ssock’) | (‘loc’ == 10)) & (‘ct’ - ‘y.ts’ < 26)”)],

 ‘sf1p1’: [(‘_’, “~(‘loc’ == 1) & (‘ct’ - ‘y.ts’ > 25)”)]
 },

 ‘sf4p1’: {
 ‘sf2p1’: [(‘y’, “(‘loc’ == 1) & ((‘cf.ssock’ == ‘y.ssock’) | (‘ct’ - ‘y.ts’ > 25))”)],

 ‘sf4p1’: [(‘_’, “(~(‘loc’ == 1) | ~(‘cf.ssock’ == ‘y.ssock’)) & (~EB | ~(‘cf.dsock’
== ‘y.ssock’) | (‘loc’ == 10)) & (‘ct’ - ‘y.ts’ < 26)”)],

 ‘sf1p1’: [(‘_’, “~(‘loc’ == 1) & (‘ct’ - ‘y.ts’ > 25)”)]
 }
}

fwding at 1 and 2 X stateful-fw at 1 X mac-learning at 1 X mac-learning at 2

50

fwd = DFA.DFA(states=fwdstates, start=fwdstart, accepts=fwdaccepts, delta=fwddelta)

maclearn1 = DFA.DFA(states=lp1states, start=lp1start, accepts=lp1accepts,
delta=lp1delta)
maclearn2 = DFA.DFA(states=lp2states, start=lp2start, accepts=lp2accepts,
delta=lp2delta)

sf = DFA.DFA(states=sfp1states, start=sfp1start, accepts=sfp1accepts, delta=sfp1delta)

sffwd = DFA.intersection(fwd, sf)

msffwd = DFA.lambda_merge(sffwd)
msffwd.py_print(1)

sffwdml1 = DFA.intersection(sffwd, maclearn1)
sffwdml = DFA.intersection(sffwdml1, maclearn2)

msffwdml = DFA.lambda_merge(sffwdml)

msffwdml.py_print(1)

51

SUPPLEMENTAL 1. COMPLETE TENSOR PRODUCT IN PYTHON

This supplemental contains the complete tensor product computed for the two-port

relay switch showing all states and transitions. Please refer to the NPS Library for the

supplemental.

52

THIS PAGE INTENTIONALLY LEFT BLANK

53

SUPPLEMENTAL 2. SYNTHESIZED CODE FOR ENTIRE TENSOR PRODUCT

This supplemental contains the synthesized code for the behavior of the two-port

relay switch. The behavior of the switch is such that only one packet is handled at a time.

While the packet is in read mode (‘1xxx’), no other packet can be observed and only a

transition to a write state can occur or stutter. Though the forwarding machine transitions

to _fIIp1_, since no write will occur, the new packet effectively gets dropped. Here, the

old packet that was stored in the λ-variable f can be re-written to the port it was originally

destined for. During writing, no other packet can be read. No stutter state during any write

state (‘2xxx’) is observed since all packets either meet the conditions to be written or the

packet is effectively dropped.

Please refer to the NPS Library for the supplemental.

54

THIS PAGE INTENTIONALLY LEFT BLANK.

55

LIST OF REFERENCES

[1] European Telecommunications Standards Institute, “Network functions and virtulisation:
An introduction, benefits, enablers, challenges, and call for action,” SDN and OpenFlow
World Congress, Darmstadt, Germany, Oct. 2012. [Online]. Available:
https://portal.etsi.org/nfv/nfv_white_paper.pdf

[2] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Network
function virtualization: State-of-the-art and research challenges,” IEEE Commun. Surv.
Tutor., vol. 18, no. 1, pp. 236–262, 2016. [Online]. doi: 10.1109/COMST.2015.2477041

[3] S. Ghorbani and P. B. Godfrey, “COCONUT: Seamless scale-out of network elements,”
in Proceedings of the Twelfth European Conference on Computer Systems, New York,
NY, USA, 2017, pp. 32–47. [Online]. doi: 10.1145/3064176.3064201

[4] X. He, Q. Li, M. Xu, Y. Jiang, and L. Wang, “MBBrick: Unified middlebox design and
deployment in software defined network,” in 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2017, pp. 402–407. [Online]. doi:
10.1109/INFCOMW.2017.8116410

[5] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A software-defined framework for
developing, deploying, and managing network functions,” in Proceedings of the 2016
ACM SIGCOMM Conference, New York, NY, USA, 2016, pp. 511–524. [Online]. doi:
10.1145/2934872.2934875

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D.
Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming Protocol-
independent Packet Processors,” SIGCOMM Comput Commun Rev, vol. 44, no. 3, pp.
87–95, Jul. 2014. [Online]. doi: 10.1145/2656877.2656890

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click modular
router,” ACM Trans Comput Syst, vol. 18, no. 3, pp. 263–297, Aug. 2000. [Online]. doi:
10.1145/354871.354874

[8] D. Volpano, “Modular network function virtualization,” in 2017 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2017, pp. 922–927.
[Online]. doi: 10.1109/INFCOMW.2017.8116499

[9] L. Lamport, “The temporal logic of actions,” ACM Trans Program Lang Syst, vol. 16, no.
3, pp. 872–923, May 1994. [Online]. doi: 10.1145/177492.177726

[10] Andrej Yemelianov, “Introduction to DPDK: Architecture and principles,” Selectel Blog,
24-Nov-2016. [Online]. Available: https://blog.selectel.com/introduction-dpdk-
architecture-principles/

https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://blog.selectel.com/introduction-dpdk-architecture-principles/
https://blog.selectel.com/introduction-dpdk-architecture-principles/

56

[11] Data Plane Development Kit, [Online]. Available: https://www.dpdk.org/. Accessed:
08-Dec-2018.

[12] Đ. Vladislavić, D. Huljenić, and J. Ožegović, “Enhancing VNF’s performance using
DPDK driven OVS user-space forwarding,” in 2017 25th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM), 2017, pp. 1–5.
[Online]. doi: 10.23919/SOFTCOM.2017.8115534

[13] Intel, “Open vSwitch enables SDN and NFV transformation,” [Online]. Available:
https://networkbuilders.intel.com/docs/open-vswitch-enables-sdn-and-nfv-
transformation-paper.pdf. Accessed: 08-Dec-2018.

[14] Star Aspirant, “Open vSwitch with DPDK in OVS 2 6 0 - YouTube,” 22-Nov-2016.
[Video File]. Available: https://www.youtube.com/watch?v=KrKzx9s1dvw.
Accessed: 12-Dec-2018.

[15] R. Giller, “Open vSwitch with DPDK overview,” 19-Dec-2016. [Online]. Available:
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview.
Accessed: 08-Dec-2018.

[16] K. Hyoudou, “NUMA-aware Open vSwitch,” presented at Open vSwitch 2016 Fall
Conference, San Jose, CA, Nov. 8, 2016. [Online]. Available:
http://www.openvswitch.org/support/ovscon2016/8/1400-gray.pdf

[17] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,” in
Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, Washington, DC, USA, 2015, pp. 5–16.

[18] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven
kernel,” ACM Trans Comput Syst, vol. 15, no. 3, pp. 217–252, Aug. 1997. [Online]. doi:
10.1145/263326.263335

[19] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “A study of network stack latency
for game servers,” in 2014 13th Annual Workshop on Network and Systems Support for
Games, 2014, pp. 1–6. [Online]. doi: 10.1109/NetGames.2014.7008960

[20] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker, “Extending
networking into the virtualization layer,” in Proceedings of the 8th ACM Workshop on
Hot Topics in Networks, 2009, pp.1-6.[Online]. Available:
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf

[21] S. Ghorbani and B. Godfrey, “Towards correct network virtualization,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, New York, NY,
USA, 2014, pp. 109–114. [Online]. doi: 10.1145/2620728.262075

https://www.dpdk.org/
https://networkbuilders.intel.com/docs/open-vswitch-enables-sdn-and-nfv-transformation-paper.pdf
https://networkbuilders.intel.com/docs/open-vswitch-enables-sdn-and-nfv-transformation-paper.pdf
https://www.youtube.com/watch?v=KrKzx9s1dvw
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
http://www.openvswitch.org/support/ovscon2016/8/1400-gray.pdf
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf

57

[22] P4, “P4~16~ Language specification,” May 22, 2017. [Online]. Available:
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html [Accessed: 12-Dec-2018].

[23] R. Laufer, M. Gallo, D. Perino, and A. Nandugudi, “CliMB: Enabling network function
composition with Click middleboxes,” SIGCOMM Comput Commun Rev, vol. 46, no. 4,
pp. 17–22, Dec. 2016. [Online]. doi: 10.1145/3027947.3027951

https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html

58

 THIS PAGE INTENTIONALLY LEFT BLANK

59

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	18Dec_Kim_Jeremy_First8
	18Dec_Kim_Jeremy_Needs_Supplemental
	I. Introduction
	II. Application of MNFV
	A. The Two-port Relay as a “Black Box”
	B. Modular Network Functions
	C. State Transitions by Primitive Function
	1. Forwarding (fwd)
	2. MAC Address Learning (ml1 and ml2)
	3. Stateful Firewall (sf1)

	D. Tensor Product

	III. Toward Code Synthesis for Tensor Products
	A. Checking vs Synthesizing
	B. Start State
	C. Read State
	D. Write State

	IV. DPDK—A Platform for MNFV
	A. Data Plane Development Kit
	B. DPDK applications
	1. Open vSwitch
	2. Click Modular Router
	3. Game Servers

	C. DPDK as a Platform for MNFV

	V. Related Work
	A. OpenBox/MBBrick
	B. Open vSwitch
	C. Coconut
	D. P4
	E. Click

	VI. Conclusions and Future Work
	Appendix. λ-SFA for 2-port Relay Switch in python
	Supplemental 1. Complete Tensor Product in Python
	Supplemental 2. Synthesized code for entire tensor Product
	List of References
	Initial Distribution List

