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The hydrothermal method is a cost-effective and eco-friendly
route for preparing various nanomaterials. It can use a capping
agent, such as a polysaccharide, to govern and define the
nanoparticle morphology. Elemental selenium nanostructures
(spheres and rods) were synthesized and stabilized using
a tailor-made carboxymethyl starch (CMS, degree of
substitution = 0.3) under hydrothermal conditions. CMS is
particularly convenient because it acts simultaneously as the
capping and reducing agent, as verified by several analytical
techniques, while the reaction relies entirely on green solvents.
Furthermore, the effect of sodium selenite concentration,
reaction time and temperature on the nanoparticle size,
morphology, microstructure and chemical composition was
investigated to identify the ideal synthesis conditions. A pilot
experiment demonstrated the feasibility of implementing
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the synthesized nanoparticles into vat photopolymerization three-dimensional-printed hydrogel

carriers based on 2-hydroxyethyl methacrylate (HEMA). When submersed into the water, the
subsequent particle release was confirmed by dynamic light scattering (DLS), promising great
potential for use in bio-three-dimensional printing and other biomedical applications.
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1. Introduction
Polysaccharides are promising candidates for various fields, including material science, medicine and
biotechnology, due to their biodegradability, renewability and versatility. Recently, many studies
reported on polysaccharides for drug carrier applications due to their biocompatibility and active
hydroxyl groups suitable for chemical modification [1–3]. Starches, among them, are abundant,
renewable and inexpensive [4,5]. They consist of amylose and amylopectin chains [6]. Starch is poorly
soluble in water at room temperature due to the strong hydrogen bonds of hydroxyl groups, limiting its
applications in food, cosmetics, medicine, absorbents and adhesives. However, it could be chemically
modified due to the three active hydroxyl positions at C2, C3 and C6 [7,8]. Carboxymethyl starch and its
derivatives represent a favoured sub-group in this category. Since 1924, when it was first prepared, it
was synthesized from different sources: potato, amaranth, rice and mung bean. These starches vary
in their amylose/amylopectin content, causing a varying degree of substitution (DS). Carboxymethyl
starch (CMS) could be prepared by starch reaction with sodium monochloroacetate (SMCA) or
monochloroacetatic acid (MCA) in the presence of NaOH. Generally, this reaction is performed in a
heterogeneous medium (ethanol/water, isopropyl alcohol/water, benzene/water). The reaction between
starch and SMCA follows the Williamson ether synthesis and is based on the SN2 mechanism. The polar
aprotic solvent is required for efficient etherification. DS is controlled by factors such as solvent type,
NaOH and SMCA concentration, temperature and reaction time [9,10]. Isopropyl alcohol aqueous
solution was previously identified as the most effective solvent for CMS production, giving the best DS.
The solubility in water appears already at DS of 0.1 [11–13]. Isopropyl alcohol/water mixture is also
convenient for removing unreacted impurities from CMS [14,15].

The active functional groups in polysaccharides such as hydroxyl (-OH), amine (-NH), or
carboxylic (-COOH) could template the growth of various nanostructures, such as cages, tubes, rods,
springs, etc. Among them, one-dimensional nanomaterials are of extraordinary importance because of
their low percolation threshold and high aspect ratio. These could be potentially used in
optoelectronics and electronics. One-dimensional nanostructures have been synthesized by known
routes such as vapour-liquid-solid growth [16], a hard template limited approach [17] and a
surfactant-assisted technique [18].

The strong electron–donor tendency of selenium is markedly improved on the nanoscale [19]. Hence,
the elemental form of selenium is highly demanded in chemistry, physics and biology. Its naturally
appearing polymorphs are amorphous, trigonal or monoclinic crystalline. The black trigonal selenium
is the most stable crystalline form at room temperature. The monoclinic form is red and contains S8
rings [20]. Amorphous red, black and vitreous selenium represent non-crystalline forms [21,22].
A recent review paper summarizes different methods and reducing agents to form selenium Se (0)
nanostructures with different controllable morphologies [22]. It includes various shapes, such as rods,
spheres and cubes, obtained using reducing agents such as bovine serum albumin, D-glucose and
soluble starch (amylum), respectively [4,23]. Another approach synthesized selenium nanospheres and
nanorods using L-cysteine as a reducing agent [4,24] and polysaccharides as a capping agent.
However, only a few studies conducted Se synthesis by hydrothermal method with biopolymers.
Among them, selenium nanobelts with a unique ribbon-like structure were synthesized by cellulose
templating [25].

Moreover, the time-dependent transformation of α-Se nanospheres to crystalline t-Se nanostructure was
identified by microscopy and spectroscopy [26]. Nanostructures are often embedded in a polymer matrix,
which may, among others, serve as a carrier for medical applications. Final samples could be shaped by
techniques such as vat photopolymerization three-dimensional printing, using light to selectively
polymerize a photosensitive resin, which is repeated layer-by-layer to print the final object [27–31].

Our preliminary results proved that carboxymethyl starch could be used to synthesize Se nanoparticles
by hydrothermal method [14,15]. CMS is particularly convenient because it acts simultaneously as the
capping and reducing agent. This study used CMS with a DS of 0.3 as a reducing and stabilizing agent
to investigate the hydrothermal process in more detail. It explored the effect of processing parameters,
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such as reaction time, temperature and reagent concentration, on the nanoparticle size andmorphology. The

formation of selenium nanostructures was monitored via colour change (UV-visible (UV-VIS)
spectroscopy), dynamic light scattering (DLS), scanning and transmission electron microscopy (SEM and
TEM), Fourier transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron
spectroscopy (XPS). Particular emphasis was put on anisotropic Se nanorods for their potential use in
biomedical applications. On top of that, we also included an application case by embedding the Se
nanoparticles into a three-dimensional-printed 2-hydroxyethyl methacrylate (HEMA) hydrogel carrier.
We monitored their subsequent release into the water, demonstrating their potential to be delivered on
the target site and marking the direction of possible further research.
/journal/rsos
R.Soc.Open
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2. Experimental section
2.1. Materials
Sodium selenite (Na2SeO3), HEMA, and SMCAwere purchased from SigmaAldrich (Germany) and used as
received. Potato starch was obtained from Agrana (Austria). Diphenyl (2,4,6-trimethylbenzoyl)-phosphine
oxide (TPO) photoinitiator was obtained from RAHN (Switzerland). CRODA (France) kindly provided
the Tween 20 surfactant. Acetone, ethanol, isopropanol and monochloroacetatic acid were purchased from
Lach-ner (Czech Republic) and used as received.

2.2. Synthesis process
Carboxymethyl starch was prepared using sodiummonochloroacetate, where 1 g (6mmol) of potato starch
was dispersed in 100 ml of the round bottom flask containing 50 ml of isopropyl alcohol-water mixture
(9 : 1). The mixture was treated with 1 ml 10% NaOH at room temperature (RT) for 1 h to deprotonate
the alcohol groups present in the monomeric units of starch (scheme 1a). The mixture was stirred for up
to 5 h at RT, followed by adding a sodium monochloroacetate solution (2.096 g/18 mmol in 5 ml of
distilled water) and stirring for 2 h at 50°C. After the reaction, a white solid was collected, dried at 50°C
for 14 h, and neutralized by 0.4 ml of 6 M HCl for 2 h at RT. Several filtrations with an acetone-water
mixture were conducted to purify the product [15,32,33]. The obtained solids were weighed and used to
grow selenium nanostructures using the hydrothermal technique. Initially, 0.1 g (1%) of carboxymethyl
starch (DS = 0.3, pH 5–6) and 0.1 g (1%) of Na2SeO3 were dissolved in 10 ml of distilled water [25] and
placed into a Teflon-lined stainless steel autoclave. The reaction was performed at 160°C for 14, 7 or 3 h
(scheme 1b). It was then cooled to room temperature, and the solid content was separated by
centrifuging and washed with ethanol. Different Se ion concentrations were obtained by varying the
concentration of sodium selenite (1%, 0.5% and 0.25%).

2.3. Characterization

2.3.1. X-ray diffraction

X-ray diffraction was measured by Rigaku Smart lab 3 kW (Japan) X-ray powder diffractometer with an
automatic⊖/⊖ goniometer on the solid product purified product placed on a glass slide holder for X-ray
measurement. The use of additional series complements the Bragg–Brentano and parallel beam
modes. Diffractometer measurement has been taken at 40 kV and a current of 30 mA using a Cu Kα
(λ = 0.154 nm).

2.3.2. Scanning electron microscopy

The selenium nanocrystals’ morphology, size and organization behaviour were determined by VERIOS
460 L (Thermo Fisher Scientific, USA) and Mira 3 XMU (Tescan, Czech Republic) field-emission scanning
electron microscopes. The samples for SEM were prepared by a drip casting of a few microlitres of
dispersed nanoparticles in isopropyl alcohol/water on a 200 copper mesh grid with an amorphous
carbon holey membrane. To avoid charging, the dried grid was sputter coated with approximately
20 nm Au/Pd layer with ACE600 coater (Leica, Germany). SEM observations were conducted using
secondary electron (SE) detectors and in scanning TEM (STEM) mode with dark-field detectors
available on the microscopes. The SEM elemental analysis of the selenium nanocomposite was carried
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out by energy dispersive X-ray spectrometry (EDS) using X-Max 20 spectrometer (Oxford Instruments,
UK) attached to the Tescan Mira 3 XMU SEM.
2.3.3. Transmission electron microscopy

TEM analysis of Se nanorod crystal structure and chemical composition were obtained with spherical
aberration image corrected transmission electron microscope TITAN Themis 60–300 (Thermo Fisher
Scientific, USA) operated at 60 kV and equipped with a Super-X EDS spectrometer. The TEM sample
was prepared the same way as for SEM but not coated. TEM data were acquired and processed with
SW Velox v. 2.14.
2.3.4. UV-visible spectroscopy

The optical properties of the obtained nanosuspension were investigated by UV-visible spectroscopy
with an S-220 spectrophotometer and Jasco V-770 spectrometer in a 10 mm cuvette at spectral range
200–800 nm, and wavelength steps 2 nm.
2.3.5. Dynamic light scattering measurement

Dynamic light scattering was measured with a Zetasizer Ultra instrument from Malvern Panalytical
(UK). The hydrodynamic volume and its distribution were calculated using the OEM software.
All samples were measured freshly synthesized as obtained without dilution.
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2.3.6. Fourier transform infrared measurement

FTIR measurements were performed using an attenuated total reflection Fourier transform
infrared (ATR-FTIR) spectrometer (Bruker Vertex 70 V, Germany). The samples were thoroughly dried.
The obtained powder was placed on a crystal’s surface and held in place with a clutch-type lever
before measuring the transmittance. Each sample spectrum was collected from 400 to 4000 cm−1 and
128 scans in the wavenumber range.

2.3.7. Thermogravimetry analysis

Thermogravimetry analysis (TGA) measurements were obtained using TGA Discovery (TA instruments,
USA). This method shows the changes in the specimen’s weight as the temperature increases. Each
measurement was taken under the same conditions under a nitrogen atmosphere by ramping the
temperature at 10°C min−1 up to 700°C, followed by a 5 min isothermal hold.

2.3.8. X-ray photoelectron spectroscopy

XPS measurements of all nanostructures were obtained using an X-ray photoelectron spectrometer Axis
Supra (Kratos Analytical, UK). All powdered samples were placed on a double-sided copper tape and
inserted into the sample mount. Analysis was carried out with an aluminum monochromator source
with one analysis point per sample. Scans were collected between 1200 to 0 eV and 4 mA emission
current with a step size from 1 to 0 eV. High-resolution spectra were collected for O1s, C1s, Se 3d
with three sweeps, and Na 1 s with two sweeps. The fitting of individual elements was performed
using the Casa XPS software (v. 2.3.17) by applying a Gaussian line shape for fitting and the ORIGIN
2016 software.

2.3.9. 1H,13C nuclear magnetic resonance

All nuclear magnetic resonance (NMR) experiments were performed at 35°C with a JEOL 500 MHz ECZ-
R equipped with a RoyalHFX probe. Quantitative 1H experiments were run with 32 scans and a total
relaxation time (acquisition and relaxation delay) of 23.5 s. The 1H data was processed in MestreNova
14 using an exponential line broadening and an ablative baseline correction. Integrals were obtained
by performing line fitting across the spectral regions so that H7, which overlaps with the other
protons, could be better compared with H1 and H10. Quantitative 13C experiments were performed
with the inverse gated decoupling sequence using 5000 scans and a total relaxation time of 50.8 s. 13C
data were processed using a 30 Hz exponential line broadening and an ablative baseline correction.
Integrals were obtained by directly integrating the spectrum.

2.3.10. Three-dimensional-printed hydrogel carriers

The pilot experiment for the three-dimensional printed hydrogel enriched with the selenium
nanostructures was carried out with the Original Prusa SL1S 3D printer (Prusa, Czech Republic). It is
based on masked stereolithography (M-SLA) technology and equipped with a 405 nm UV LED source
(2.07 mW cm−2). The resin was prepared by dissolving 0.3 g of TPO in 8 g of HEMA at RT and
adding 2 g of Tween 20 and 2 g of purified selenium nanoparticles dispersed in deionized water. The
resin was mixed at RT for 10 min, sonicated for 5 min, and filtered using a syringe filter of 0.45 µm.
A rectangular beam (2 × 5 × 48.5 mm3) was printed with an exposure time of 40/20 s for the first/all
other layers and a layer thickness of 25 µm [27]. The printed hydrogel was submerged in water for
21 h, and the nanoparticle extraction was confirmed by dynamic light scattering (Zetasizer Ultra,
Malvern Panalytical, UK).
3. Results and discussion
3.1. Carboxymethyl starch
The structure of the synthesized carboxymethyl starch was confirmed using 1H-NMR (figure 1a) and
13C NMR (figure 1b). The assignments of various carbon types’ resonances, evaluated according to the
literature [34,35], are shown directly in the spectra. The position of signal ‘7’ corresponding to
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methylene protons in the carboxymethyl group was found based on the multiplicity edited 1H-13C
heteronuclear single quantum coherence (HSQC) NMR spectrum shown in electronic supplementary
material, figure S1. Additionally, H10 signal appears due to substituting the carboxymethyl group at
the O-2 position. 13C NMR spectrum yielded line widths typical for a natural amorphous
polysaccharide with a broadband signal between 60 and 90 ppm arising from the bulk of the ring,
C-OH. C-4 carbon accounts for the high-frequency shoulder, while C-1 between 90 and 110 ppm was
attributed to anomeric carbon. The shape of this band suggests that it is composed of multiple
signals. 13C NMR carboxymethylated starch signal at 178 ppm was assigned to the carbonyl carbon of
the carboxymethyl groups (figure 1b). The signals marked with a prime (‘) are related to carbons next
to substituted hydroxyl groups. The appearance of these signals suggests substitution on all three
possible hydroxyl groups. The degree of substitution was calculated using 13C NMR spectrum to
DS = 0.3 [35].

Additionally, the morphology of starch granules changed significantly after the chemical
substitution of the carboxymethyl group, shown in figure 2a,b. SEM image suggests the
approximate granule’s size before and after the modification as 10–20 and 200–350 microns,
respectively. On the other hand, some granules appear broken after modification. Moreover, the
smoothness of the surface was reduced (figure 2b). That may reflect the loss of crystallinity after
substituting the carboxymethyl group revealed by the XRD results in electronic supplementary
material, figure S12.

3.2. Reaction time
In the initial set of experiments, selenium nanostructures (rods, spheres) were prepared hydrothermally
using 1% of sodium selenite (Na2SeO3) as a source of Se ions and 1% of carboxymethyl starch as
a reducing agent (figure 3). The reaction was kept at 160°C to activate the functional groups
present in the carboxymethyl starch. The mixture was cooled down after 3, 7, or 14 h to cease the
reaction. The reaction mixture colour changed from colourless to light orange supernatant and solid
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precipitate with different shades of black depending on the reaction time. That indicates that the redox
reaction occurred in the liquid phase containing monoclinic selenium while the precipitate contained a
more stable trigonal polymorph [22,36]. SEM-EDS characterization was performed to analyse the
particles and confirm their atomic composition (figure 3). It reveals the effect of time on the growth of
selenium nanostructure (rods), which is uniformly distributed with the nanospheres. The presence
of carbon, oxygen and sodium next to selenium in the EDS spectra hints at carboxymethyl starch
residues in the particles (figure 3c,f,i). The Se content decreased as the reaction proceeded. Therefore,
the shortest tested time of 3 h yielded the highest Se concentration in the nanostructures.

The size distribution plots in figure 4 were determined from STEM images presented in the same
figure. The average width was obtained by counting 100 randomly selected rod widths from each
condition. A Gaussian distribution fit yielded the mean size of (741.3 ± 3) nm, (460.81 ± 6.3) nm and
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(1025 ± 7) nm for 3, 7 and 14 h reaction times, as shown in figure 4, respectively. The data indicate that
moderate-size nanorods are formed after a 7 h reaction compared with the 3 h and 14 h, correlating well
with the DLS measurements (electronic supplementary material, figure S2). A possible explanation might
be the partial aggregation of the selenium nanostructures at longer times (14 h) reaction. However, the
average width of nanorods was found lower after 3 h and higher after 14 h compared with the 7 h
reaction time (figure 4). In hydrothermal reactions, the degree of supersaturation plays a vital role in
nucleation and crystal growth. Alongside intraparticle growth, Ostwald ripening is also essential. As
time passes, the degree of supersaturation decreases, leading to the growth of nanostructures to a
larger size. However, we hypothesized that when nanorods reach a minimum size, the residual CMS
and sodium selenite may reach equilibrium due to the slow-reducing tendency of CMS. Later, the
nanorods begin to agglomerate again due to the continuous Brownian motion of molecules, increasing
the apparent size. The sodium peak indicates that the highest SMCA content was detected in the
smallest nanoparticles (7 h, figure 3f ), but it was then practically entirely eliminated (14 h, figure 3i).
The size differences might also be caused by the residual CMS in the supernatant wrapped around
the nanorods as a capping agent through its active functional groups, increasing their apparent thickness.

FTIR spectroscopywas chosen to evaluate themolecular interactions betweenCMS, elemental and ionic
selenium. The displacement, appearance or disappearance of bands in the FTIR spectra may be related to
the interactions of CMS with selenium nanostructures. Figure 5a shows the FTIR spectra of CMS reacted
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for 3 h (black), 7 h (red) and 14 h (green). The intensity of hydroxyl (-OH, approx. 3364 cm−1) and
carboxylic groups (-COOH, approx. 1599 cm−1) shifted with the reaction time. That may be evidence of
selenium ion reduction to elemental selenium [37]. The blue shift of the -OH peak occurred after 3 h
(red), documenting the presence of the Se-O bond. It suggests that CMS acted as the stabilizing
agent during the growth [38]. The formation of selenium nanostructures was further supported
by XRD (figure 5b). The bulk Se diffraction peaks 2θ are summarized in electronic supplementary
material, table S1 together with their corresponding (hkl) planes and d-spacings [22,24,25,39,40].
The diffraction peaks at (100) and (101) planes show the trigonal crystal lattice with constants
c ¼ 4:94�A, b ¼ 4:355�A according to the CIF file AMCSD 0011257 [41]. The seemingly major intensity of
the 100 and 101 planes in figure 5b indicates that selenium nanostructures tend to grow preferentially in
the [001] direction. The presence of crystalline selenium proved the feasibility of CMS-directed synthesis
under hydrothermal conditions (figure 5b).

Furthermore, the effect of reaction time on the size distribution of nanostructures evidence was
supported by the classifier model, partial least squares discrimination analysis (PLS-DA), which was
trained for the FTIR spectra; all FTIR spectra were used to build a PLS-DA model, which was able to
classify groups based on the FTIR data. As a result, clear functional groups were detected for samples
that underwent reactions lasting 3, 7 and 14 h, thanks to the similar vibrational bonding between
selenium and oxygen (Se-O) created by the active sites present on the CMS (-OH, -COOH) and the
selenium nanostructure produced during the same time intervals. That led to separated classes for
each time point of the reactions, which indicates that time plays a crucial role in the size distribution,
as shown in the electronic supplementary material, figure S7.

The thermal properties of CMS and selenium composites were investigated in a temperature ramp
ranging from 50 to 700°C at a heating rate of 10.00°C min−1 in nitrogen, figure 5c,d. Heating to 700°C
resulted in carbonization and ash formation. While CMS (black) loses about 40% weight at around
300°C, the reaction product after 3 h (red) loses only 25% at above 300°C (figure 5c). On the other
hand, the samples that reacted for 7 and 14 h had almost identical residual weights as CMS
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(figure 5c). In figure 5d, the differential thermogravity (DTG) curves for 3 h (red), 7 h (green) and 14 h
(blue) show three peaks at around 50–100°C, 200°C and 300–350°C. They correspond to water loss
and degradation of selenium and CMS, respectively [33]. Apparently, the 7 h sample (green) showed
higher CMS stability, with a decomposition temperature of approximately 370°C, than the other two
reaction times (358 and 341°C for 3 and 14 h, respectively) or the pure CMS (294°C).
3.3. Effect of Se ion concentration
The effect of Se ion concentration in the synthesis reaction also plays a crucial role in controlling the
average thickness of the selenium rods, as shown in figure 6. The STEM images and size distribution
analysis for the Se ion concentration dependence (0.25%, 0.5% and 1%) for a 7 h reaction at 160°C is
shown in figure 6. It revealed a non-monotonic trend with the smallest nanorods obtained at medium
Se ion concentration in Na2SeO3. The average nanorod diameter was established from the Gaussian fit
to (163.0 ± 5.7), (91 ± 2) and (460.8 ± 6.3) nm for the 0.25%, 0.5% and 1% Se ion concentrations,
respectively. That correlated with the DLS measurement (figure 7a). Size reduction between 0.25%
and 0.5% of Na2SeO3 is probably caused by promoted nucleation due to the higher Se ion
concentration. On the other hand, the large species obtained at 1% Na2SeO3 corresponded with the
crystallographic change, as shown below. Another vital application aspect is dispersion stability [42].
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The zeta potential measured at a constant CMS concentration and varied sodium selenite concentration
scaled in the same order as the nanorod size after the reaction (figure 7b). The values of –32.5, –32.4 and
–34.9 mV obtained for 0.25, 0.5 and 1% Na2SeO3, respectively, suggest good dispersion stability at all
tested concentrations due to the electrostatic repulsion [42]. In fact, such high negative zeta potential
values in the presence of interacting polymer give rise to bimodal distributions of nanostructures
caused by their partial aggregation, correlating with our current observations [42]. That may explain
the coexistence of nanorods and nanospheres observed after 3 h of the reaction.

The XRD pattern in figure 7c shows the characteristic diffraction peaks of the selenium nanorods. The
planes corresponded to trigonal selenium crystals [39,43]. A TEM analysis of Se nanostructures was
conducted for the sample reacted for 7 h at 160°C with 0.5% sodium selenite. The TEM results
presented in figure 8 reveal the sample in the form of nanorods, while the nanospheres were not
determined, correlating with the SEM observations in figure 6c. The TEM performed in bright-field
mode found that the nanorods were straight and with minimum crystal defects (figure 8a). Some
nanorods were found with twin defects resulting in their ‘zig-zag’ growth (not presented here),
but, generally, the nanorods had a single crystal structure within their length, as demonstrated in
high-resolution TEM (HRTEM) images with atomic resolution in figures 8b,c. The crystallographic
analysis in figure 8d was performed using fast Fourier transformation (FFT) of the HRTEM image in
figure 8c. It determined Se nanorods with P3221 trigonal crystal lattice, where the [0001] directions
were parallel with a longitudinal axis of the rod, suggesting its growth direction. The crystallographic
FFT data agreed with the XRD measurement and a standard listed in [41]. The EDS analysis was
performed at a single nanorod, and the collected spectra in figure 8e indicate its pure Se composition.
The minor amount of carbon may correspond with surface contamination of the nanorod
(the amorphous structure at the nanorod edges in figure 8c), and the Cu signal comes from the
copper TEM grid.

In figure 7d, FTIR spectra show the characteristic hydroxyl (-OH) and carboxylic (-COOH) peaks of
CMS at approximately 3364 cm−1 and approximately 1599 cm−1 on the surface of all selenium nanorods,
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respectively (figure 5a). In addition, large shifts of the broadband peak for 1% of Na2SeO3 (blue) and the
intensity change of the -COOH peak may indicate that more Se-O bonds are formed from the CMS
hydroxyl groups (figure 7d ). These could stabilize the nanorods and potentially explain the zeta
potential variation (figure 7b). The XPS spectra from the C1s and O1s peaks verified the Se-O bond
formation. Moreover, the -C-O-Se signal confirms that CMS behaves as a capping agent.
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The Se (3d) XPS spectrum in figure 9b compares the selenium valence state in nanorods prepared at
different sodium selenite concentrations. The Se(3d) peak consists of two subpeaks, Se 3d5/2 and Se
3d3/2. Values from the literature suggested that they are separated by 0.86 eV [44–46]. During Gaussian
fitting, we defined the parameters and found that it is necessary to fit the subpeaks. According to the
literature, Se(0) is expected to appear at the binding energy of approximately 55.4 eV, Se(IV) at 59.5 eV,
Se(VI) at 61 eV and Se(-II) at less than 55 eV [47,48]. Therefore, all the samples in figure 9b showed Se(0)
along with Se(IV), representing either residual unreacted reagents or polarized selenium from the outer
layer charged again due to the interaction with the capping agent. One per cent Se ion (blue) showed the
highest intensity of Se(0) relative to Se(IV), marking the highest efficiency of the selenium reduction.

All three samples displayed two C1s peaks (figure 9c) attributed to C–C (280.43–280.68 eV) and C–C=O
(281.9–282.86 eV) [36,49]. That is yet another evidence of the CMS presence on the nanorod surface.
Moreover, the 1% Na2SeO3 sample had lower binding energy than the 0.5% and 0.25% samples.
A possible reason could be more capping sites of CMS available for forming the Se-O bond, which is
also supported by the higher negative zeta potential (figure 7b). As the concentration of selenium
ions increases from 0.25% to 1%, the binding energy of oxygen decreases from 529.18 to 528.24 eV
(figure 9d). Moreover, an additional peak is formed as a shoulder at 526.0 eV for 1% Na2SeO3, possibly
due to the carbonyl oxygen’s interaction with selenium nanorods. The binding energy of Na (1s) in
electronic supplementary material, figure S9 also depicts the presence of sodium in carboxymethyl starch
and the presence of residual sodium selenite, traces of which are also present in the Se (3d) spectrum in
figure 9b.

Complementary experiments revealing analogical nanorod size dependence on the Na2SeO3

concentration are available in the supporting information. It includes STEM images and size
distributions (electronic supplementary material, figure S3), FTIR, XRD and hydrodynamic size
obtained by DLS (electronic supplementary material, figures S4 and S5). Given all the experimental
results, we suggest that the nanorod shape is directly related to using CMS as the capping and
reducing agent and that different polymers may yield nanostructures with different morphology.



(a) (b) (c)

(d) (e)

(g) (h)

a

3 h 100°C

3 h 135°C

3 h 160°C

10 µm 2 µm

10 µm 2 µm

20 µm 2 µm

1
0

1000
2000
3000 Na

3 h 100°C

3 h 135°C

3 h 160°C

Se

O

Na
SeO

C

Na

Se

O

C

C

4000
5000

co
un

ts 6000
7000
8000
9000

10 000

0
1000
2000
3000
4000
5000

co
un

ts 6000
7000
8000
9000

10 000

0
1000
2000
3000
4000
5000

co
un

ts 6000
7000
8000
9000

10 000

2 3 4

1 2 3 4

1 2
keV

3 4

( f)

(i)

Figure 10. SEM-EDS analysis of selenium nanostructures (spheres, rods) with 1% of sodium selenite and 1% of CMS: (a,d,g) lower
and (b,e,h) higher magnification SEM images, and (c,f, i) EDS spectra for samples reacted for 3 h at (a,b,c) 100, (d,e,f ), 135
and (g,h,i) 160°C. Red rectangles show the area of larger magnification (a,d,g) or EDS spectra collection (b,e,h).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230829
14
3.4. Reaction temperature
The temperature effect on the growth of selenium nanostructures was observed for 1% of CMS and 1% of
Na2SeO3 reacting for 3 h at 100, 135 or 160°C. SEM-EDS analysis of the formed nanostructures is
captured in figure 10. No clear evidence exists for selenium nanostructures growing on CMS at 100°C,
figure 10a,b. Instead, micron-sized objects were formed with a high carbon and oxygen content, as
documented by EDS spectra in figure 10c. On the other hand, nanostructures were formed at 135°C
(figure 10d,e) and 160°C (figure 10g,h). Apparently, the threshold temperature lies between 100 and
135°C. Supposedly, more free carbonyl and hydroxyl groups are available to reduce the selenium ions
into the Se(0) at higher temperatures. These results correlate with the DLS data (electronic
supplementary material, figure S6a). A statistical relation between the size distribution obtained from
STEM and DLS is shown in electronic supplementary material, figure S10. Moreover, a surface
plasmon resonance (SPR) peak was detected in the UV-VIS spectra between 390 only for (blue) 3 h
160°C shown in electronic supplementary material, figure S6b [50]. The SPR position relates to
nanoparticle size such that smaller nanoparticles absorb at longer wavelengths. Therefore, a redshift
to higher wavelengths indicates smaller particles [51]. Aggregated particles provide no surface
plasmon resonance due to the defects and irregularities in their structure.

FTIR spectra confirmed the formation of selenium nanostructures at 135 and 160°C by the increased
hydroxyl (-OH, approx. 3364 cm−1) and carboxylic (-COOH, approx. 1599 cm−1) absorption intensities
(electronic supplementary material, figure S6c). Moreover, electronic supplementary material, figure
S6d shows the XRD patterns of selenium nanostructures synthesized at different temperatures. The 2θ
peaks of selenium nanorods reacted at 160°C found at 23.55°, 29.72°, 41.27°, 43.68°, 45.43°, 47.1°
51.72°, 56.07° and 65.24° were indexed as the 100, 101, 110, 102, 111, 200, 201, 112 and 210 planes.
On the other hand, no crystallites were detected for 100 and 135°C reactions.

Finally, a pilot test was conducted to verify the potential application of the selenium nanostructures
and their release from a hydrogel carrier (figure 11). A purified supernatant obtained by reacting 0.25%



(a) (b)

(d)

(c)

TPO
HEMA
surfactant
SeNS

UV
laser

reference

Se nanoparticles

reference

100 µm

Se nonocomposite hydrogel
0.25% sodium selenite, 7 h, 160°C

0
0
5

fr
eq

ue
nc

y

10
15
20

SeNS
25
30

100 200
size (d nm)

300 400 500

after one day

after one day
soaked in DI

water

SeNS release

water

Figure 11. (a) Vat photopolymerization three-dimensional printing scheme of the Se-loaded hydrogels, (b) design of the particle
release experiment and photos of the samples with a pronounced bending of the reference (without Se) detected after the
submersion, (c) DLS confirmation of the released nanostructures’ size, (d ) SEM images of the reference (without Se
nanostructures) and sample doped with Se nanostructures (0.25% sodium selenite, 7 h, 160°C) including an EDS map.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230829
15
sodium selenite and 1% CMS for 7 h at 160°C was added to a HEMA-based photopolymer resin and
three-dimensional printed with a vat photopolymerization three-dimensional printer (figure 11a).
HEMA is a water-soluble monomer commonly used in biomedical applications, such as contact
lenses. The HEMA-based resin could be mixed with water or aqueous solutions to cure into a
hydrogel. The printed body was submersed into the water for 21 h (figure 11b), and the released
nanostructures were confirmed by DLS (figure 11c). However, the selenium nanoparticles interacted
with the TPO photoinitiator and caused it to form micron-sized anisotropic structures, as documented
by the presence of phosphorus in the EDS map (figure 11d ). That probably stiffened the hydrogel and
reduced the level of bending observed after the submersion (figure 11b). A detailed mechanism of the
interaction and its potential impact on biocompatibility is not yet known. Nevertheless, we consider
this a proof of concept and a good starting point for investigating bio-three-dimensional printing and
other biomedical applications with the selenium nanoparticles synthesized by the presented method.
4. Conclusion
A detailed study on the selenium nanorods and nanospheres synthesis by the hydrothermal technique
using carboxymethyl starch (CMS, DS = 0.3) as a reducing and capping agent is reported. An in-depth
characterization (SEM, STEM, XRD, FTIR, DLS, XPS) of the particle size and structure regarding the
sodium selenite concentration, reaction time and temperature is also provided. The minimum
temperature required for selenium reduction and nanostructure formation was between 100 and
135°C. A substantial increase in size was detected at prolonged reaction times. EDS and XPS results
confirmed that the selenium nanostructures contain Se(0) and Se–O bond states, with CMS as a
capping agent on the particle surface. That was further supported by FTIR and zeta potential
measurements. The smallest nanorods (average size of 91 nm) were obtained for 0.5% sodium selenite,
and 1% CMS reacted for 7 h at 160°C, while the XRD patterns revealed that the nanorods have a
trigonal phase. A selenium nanocomposite hydrogel was prepared by a vat photopolymerization
three-dimensional printing and tested for nanoparticle release when introduced to water, as confirmed
by DLS measurement. That verified the potential of the presented nanoparticles to be included in
complex structures and delivered on an application site by hydrogel carriers. Such behaviour
promises excellent potential for bio-three-dimensional printing and other biomedical applications.
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