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The Mpemba effect is a counterintuitive relaxation phenomenon, where a system prepared at a hot
temperature cools down faster than an identical system initiated at a cold temperature when both are
quenched to an even colder bath. Such nonmonotonic relaxations are observed in various systems,
including water, magnetic alloys, polymers, and driven granular gases. We analyze the Mpemba effect in
Markovian dynamics and discover that a stronger version of the effect often exists for a carefully chosen set
of initial temperatures. In this strong Mpemba effect, the relaxation time jumps to a smaller value leading to
exponentially faster equilibration dynamics. The number of such special initial temperatures defines the
Mpemba index, whose parity is a topological property of the system. To demonstrate these concepts, we
first analyze the different types of Mpemba relaxations in the mean-field antiferromagnetic Ising model,
which demonstrates a surprisingly rich Mpemba-phase diagram. Moreover, we show that the strong effect
survives the thermodynamic limit and that it is tightly connected with thermal overshoot; in the relaxation
process, the temperature of the relaxing system can decay nonmonotonically as a function of time. Using
the parity of the Mpemba index, we then study the occurrence of the strong Mpemba effect in a large class
of thermal quench processes and show that it happens with nonzero probability even in the thermodynamic
limit. This study is done by introducing the isotropic model for which we obtain analytical lower bound
estimates for the probability of the strong Mpemba effects. Consequently, we expect that such
exponentially faster relaxations can be observed experimentally in a wide variety of systems.
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I. INTRODUCTION

The physics of thermal relaxation is rich with fascinating
and often surprising behaviors. A particularly striking and
counterintuitive example is provided by the Mpemba effect.
Known already to Aristotle [1] but named after a high
school student E. B. Mpemba [2], the effect is commonly
described as a curious phenomenon where initially pre-
pared hot water freezes faster than cold water under
otherwise identical macroscopic conditions when both
are cooled by the same cold bath. Because of the complex-
ity of the phenomenon, the precise mechanism and con-
ditions for the occurrence of the Mpemba effect have been
under debate. Several explanations have been put forward
to the particular mechanism for the Mpemba effect in water.
The cause of the Mpemba effect in water has been
attributed to evaporation [3], supercooling [4], convection

[5], particular properties of hydrogen bonds [6,7], freezing-
point depression by solutes [8], and a difference in the
nucleation temperatures of ice nucleation sites between
samples [9]. Moreover, the status of the Mpemba effect in
water as an experimental finding has been recently called
into question [10,11]. Indeed, subtleties of the liquid-solid
transition make the precise definition of the effect difficult.
For example, when does freezing occur? How well is the
freezing point defined? Is a small leftover amount of vapor
or liquid tolerated in the description?
It is possible to view the effect as a particular example of a

relaxation process far from equilibrium: The Mpemba effect
is defined by a quenching process—cooling through a quick
change in the ambient temperature achieved by putting the
system in contact with a new, colder, thermal bath. In contrast
to quasistatic cooling, where the system is in equilibrium at
each instant of the cooling process, quenching is, in general, a
far-from-equilibrium process. Indeed, anomalous thermal
relaxations are not unique to water, and similar effects have
been observed in various other systems, e.g., magnetic alloys
[12], carbon nanotube resonators [13], granular gases [14],
clathrate hydrates [15], polymers [16], and even dilute atomic
gas in an optical resonator [17].
Microscopically, the Mpemba effect occurs when the

initially hotter system takes a nonequilibrium “shortcut” in
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the system’s state space and thus approaches the new
equilibrium faster than the initially colder system. A
phenomenological description of such a behavior was
recently proposed by Lu and Raz within the framework
of Markovian dynamics [18]. In this picture, a Mpemba-
like behavior can be studied in a large variety of systems (as
many processes in physics and chemistry are Markovian
[19]), and in particular, in small systems that cannot be
adequately described by macroscopic thermodynamics
alone. An inverse Mpemba effect (associated with heating
processes) can be described similarly. The suggested
mechanism for the Mpemba effect raises several natural
and important questions: (i) Does the mechanism require
fine-tuning of parameters; i.e., does it occur only in singular
points of the model’s parameter space? Is it robust to small
changes in the system parameters? (ii) Does this mecha-
nism survive the thermodynamic limit, or is it only a
peculiarity of few-body systems such as those studied in
Ref. [18]? One might intuitively expect that this mechanism
does not apply to macroscopic systems, since in such
systems the probability distribution is highly concentrated
on specific points of the system phase space—those that
minimize the free energy in equilibrium systems, and
hence, even if such shortcuts exist, the system cannot
explore them.
The current manuscript contains the following contri-

butions. First, using geometric insights on the relaxation
dynamics in probability space, we show that the Mpemba
effect may be substantially enhanced on a discrete set of
initial temperatures—a phenomenon we call the strong
Mpemba effect. We show that these special initial temper-
atures can be classified by an integer, which we name the
Mpemba index, and whose parity is a topological property
of the system. Thus, the existence of a strong Mpemba
effect is robust to small perturbations in the model
parameters. Next, we study the effect in a thermodynamic
system focusing on a paradigmatic model: the mean-field
Ising antiferromagnet, where a rich Mpemba-phase dia-
gram is found. Using this model, we demonstrate that even
though in the thermodynamic limit the probability distri-
bution is concentrated on specific points of phase space, the
strong Mpemba effect still exists. Interestingly, we show
that the strong Mpemba effect is tightly connected with
another type of anomalous thermal relaxation—thermal
overshooting—in which the temperature of the system
relaxes nonmonotonically in time and overshoots the bath’s
temperature. We then provide an exact analytical calcu-
lation of a strong Mpemba effect probability for an
arbitrarily chosen set of energy levels in an idealized
“isotropic” model. Comparison of these analytic results
with the dynamics of the same set of energy levels with
random barriers gives a surprisingly good quantitative
agreement. Lastly, we numerically study the strong
Mpemba effect in the random energy model (REM) with
random barriers and find the scaling of the probability of

the strong effect with the system size. This scaling suggests
that again the effect can be observed in the thermo-
dynamic limit.
The manuscript is organized as follows. In Sec. II, we

give details on the explicit form of the Markovian dyna-
mics, and in Sec. III, we define the strong Mpemba effect
and describe its geometric meaning. Next, in Sec. IV a
study of the dynamics of an antiferromagnetic Ising model
on a complete bipartite graph reveals a remarkable phase
diagram exhibiting a variety of phases with various values
of the Mpemba index IM ¼ 0, 1, 2 and phases with both a
direct and inverse strong Mpemba effect. In Sec. IV D, we
show that the Mpemba effect also appears in the thermo-
dynamic limit of the antiferromagnetic Ising model, and
lastly, in Sec. IV F, we show that in this specific model the
strong Mpemba effect implies overshoot in the temperature
during relaxation. In Sec. VA, we study the probability of
the occurrence of an odd Mpemba index for a system with
random barriers taken from a very wide distribution and a
fixed set of energies. For this purpose, we use as a model a
statistically isotropic ensemble of second eigenvectors of
the driving rate matrix. In particular, we find that the
probability of a strong Mpemba effect is inversely propor-
tional to the bath temperature, where the proportionality
constant depends on the first few moments of the energy
level distribution. In Sec. V B, we study the Mpemba effect
in the REM with random barriers.

II. SETUP AND DEFINITIONS

We consider Markovian relaxation dynamics, as given
by the master equation [20]

∂tp ¼ Rp; ð1Þ

where p ¼ ðp1; p2;…Þ, and piðtÞ is the probability to be in
state i at time t. Here, the off-diagonal matrix element Rij is
the rate (probability per unit time) to jump from state j to i.
The state i of the system is associated with an energy Ei,
and we focus on relaxation dynamics for which the steady
state of Eq. (1) is given by the Boltzmann distribution,

πiðTbÞ≡ e−βbEi

ZðTbÞ
; ð2Þ

where Tb is the temperature of the bath, ZðTbÞ ¼
P

i e
−βbEi

is the partition function at Tb, and throughout the paper
β≡ ðkBTÞ−1 is the inverse temperature [in particular,
βb ¼ ðkBTbÞ−1]. Moreover, we also assume that the rate
matrix R obeys detailed balance,

Rije−βbEj ¼ Rjie−βbEi ; ð3Þ

and thus can be written in the form (see, e.g., Ref. [21]):
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Rij ¼
�Γe−βbðBij−EjÞ; i ≠ j;

−
P

k≠j Rkj; i ¼ j;
ð4Þ

where Bij ¼ Bji can be interpreted as the barrier between
the states, and Γ is a constant with the proper units. At long
times, the Markov matrix (4) drives an arbitrary initial
distribution to the Boltzmann distribution associated with
the bath temperature Tb. Note that if the matrix R does not
satisfy the detailed balance condition, its steady state does
not represent equilibrium since it has nonvanishing current
cycles. Interestingly, direct and inverse Mpemba-like
effects were recently discovered in driven granular gases
where detailed balance is violated [14]. Although our
approach may be useful also for such nonequilibrium
steady states, for simplicity, we limit our discussion to
systems obeying detailed balance.
In the Mpemba effect scenario, the initial condition for

Eq. (1) is the thermal equilibrium for some temperature
T ≠ Tb,

piðT; t ¼ 0Þ ¼ πiðTÞ≡ e−βEi

ZðTÞ : ð5Þ

During the relaxation process, the distribution p, i.e., the
solution of Eq. (1), can be written as

pðT; tÞ ¼ eRtπðTÞ ¼ πðTbÞ þ
X
i>1

aiðTÞeλitvi; ð6Þ

where the rate matrix R has (right) eigenvectors vi and
eigenvalues λi,

Rvi ¼ λivi: ð7Þ

The largest eigenvalue of R, λ1 ¼ 0 is associated with the
stationary (equilibrium) distribution πðTbÞ, whereas all the
other eigenvalues have a negative real part, 0 > Reλ2 ≥
Reλ3 ≥ …, and they correspond to the relaxation rates of
the system. The equilibration timescale is typically char-
acterized by −ðReλ2Þ−1 [22].
Any detailed balance matrix R can be brought to a

symmetric form R̃ via the similarity transformation,

R̃ ¼ F1=2RF−1=2; ð8Þ

where Fij ≡ eβbEjδij. The matrix R̃ has the same eigen-
values as R, and it has an orthogonal set of real eigenvec-
tors. In particular, f i ≡ F1=2vi are eigenvectors of R̃ with
eigenvalues λi. The f i�s forms an orthogonal basis, with
f i · f j ¼ ðvi · FvjÞδij. This form will be useful in what
follows.

A. The Mpemba effect

A simple criterion for the presence of a Mpemba effect
for the relaxation process in Eq. (1) was given by Lu and
Raz [18]. When jReλ2j < jReλ3j (namely, when they are
not equal), the probability distribution (6) can be approxi-
mated after a long time as

pðT; tÞ ≈ πðTbÞ þ a2ðTÞeλ2tv2: ð9Þ

In this case, the Mpemba effect is characterized by the
existence of three temperatures: hot, cold, and the bath
(Th > Tc > Tb, respectively), such that [23]

ja2ðThÞj < ja2ðTcÞj: ð10Þ

The coefficient a2 can be derived as follows: Multiplying
Eq. (6) with f 2F1=2 from the left, substituting vi ¼ F−1=2f i,
and using the fact that f i�s forms an orthogonal basis, one
gets f 2 · F1=2pðT; tÞ ¼ a2ðTÞjjf 2jj2eλ2t. Therefore, for an
evolution starting at a given initial probability pinit, we have
that a2 is the corresponding overlap coefficient between the
initial probability and the second eigenvector f 2:

a2 ¼
f 2 · F1=2pinit

jjf 2jj2
: ð11Þ

At the bath temperature, this coefficient vanishes, a2ðTbÞ ¼
0 (as in this case F1=2pinit ¼ f 1, which is orthogonal to f 2),
and it increases in absolute value as the initial temperature
departs from the bath. Therefore, to determine whether the
Mpemba effect exists, one has to look for nonmonotonicity
of a2ðTÞ.
In the next section, we define the strong Mpemba effect,

introduce an index to characterize the strong effect, and
describe the geometrical interpretation of the effect.

III. THE STRONG MPEMBA EFFECT,
ITS INDEX, AND ITS PARITY

Our first contribution is the observation that a stronger
effect (even shorter relaxation time) can occur: a process
where there exists a temperature TM ≠ Tb, such that

a2ðTMÞ ¼ 0: ð12Þ

We call such a situation a strong direct Mpemba effect
if TM > Tb and a strong inverse Mpemba effect if
TM < Tb, as at TM the relaxation process is exponentially
faster than for initial temperatures slightly below or above
it. Since there is essentially no difference between the direct
and inverse effects, we refer to both of them as strong
Mpemba effects. The strong Mpemba effect implies the
existence of the “weak” effect, as in order to cross zero, a2
has to be a nonmonotonic function of temperature [because
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a2ðTbÞ ¼ 0, whereas a2 ≠ 0 slightly above and below
Tb] [24].
To study the strong Mpemba effect, we define the

Mpemba indices as

Idir
M ≡ # of zeros of a2ðTÞ; Tb < T < ∞;

I inv
M ≡ # of zeros of a2ðTÞ; 0 < T < Tb; ð13Þ

and the total index as

IM ¼ Idir
M þ I inv

M : ð14Þ

Idir
M changes its value when the number of zero crossings of

the graph of a2ðTÞ changes in the interval Tb < T < ∞.
This implies that it is robust, as we discuss in Sec. III A 1.

A. The geometry of the strong Mpemba effect

The geometry of the problem is schematically illustrated
in Fig. 1 for a three-state system. The set of all points p ¼
ðp1; p2; p3Þwhich are normalized ðp1 þ p2 þ p3 ¼ 1Þ and
non-negative (pi ≥ 0) form the probability simplex—the
blue triangle in the figure. The set of all Boltzmann
distributions πðTÞ form the Boltzmann curve (the red line),
which has two boundaries: the πðT ¼ 0Þ where the
probability is concentrated at the lowest-energy state (blue
point) and πðT ¼ ∞Þ, the maximally mixed state in the
middle of the simplex where all the states are equally
probable (the red point). The set of all p for which a2 ¼ 0 is
illustrated by the intersection of the green plane with the
blue triangle. The Boltzmann curve intersects the a2 ¼ 0
plane at πðTbÞ (pink point) since, being the equilibrium

distribution at Tb, a2ðTbÞ vanishes by definition. However,
in the specific example, the two boundaries of the
Boltzmann curve are both on the same side of the
a2 ¼ 0 hyperplane; therefore, there must be another
point—marked by the green point in the figure—at which
the Boltzmann line crosses the a2 ¼ 0 hyperplane again.
This point corresponds to TM where there is a strong
Mpemba effect. Topologically, having codimension one,
the a2 ¼ 0 hyperplane separates the probability simplex
into two disjoint sets. The parity of the number of times a
continuous curve crosses this hyperplane depends only on
the two boundaries of the curve: If they are both in the same
set, then the number of crossings is even, and hence, the
parity of IM is odd (as it does not count the crossing at Tb),
and if they are in a different set, then the number of
crossings must be odd, with an even parity for IM.
Given Tb, a sufficient condition for the strong direct

Mpemba effect to occur is obtained by determining whether
a2 changes sign going from a2ðTb þ εÞ to a2ðT ¼ ∞Þ. This
sign change can be expressed by

PðIdir
M Þ≡ θ½−∂Ta2ðTÞjT¼Tb

a2ðT ¼ ∞Þ�; ð15Þ

where we use a2ðTb þ εÞ ≈ ∂Ta2jT¼Tb
ε, and θ is the

Heaviside step function. The argument of the step function
in Eq. (15) is positive if a2ðTÞ has an odd number of zero
crossings; thus, Eq. (15) describes the parity of the number
of zeros. In particular, if PðIdir

M Þ ≠ 0, we are assured to
have at least one crossing, and so PðIdir

M Þ serves as a lower
bound on the number of initial temperatures for which the
direct strong Mpemba effect occurs. Similarly, the parity
for the strong inverse Mpemba effect is

PðI inv
M Þ≡ θ½∂Ta2ðTÞjT¼Tb

a2ðT ¼ 0Þ�; ð16Þ

and the parity of the strong Mpemba effect is

PðIMÞ≡ θ½a2ðT ¼ ∞Þa2ðT ¼ 0Þ�: ð17Þ

As already mentioned above, in some situations there are
zeros of a2ðTÞ that are not accompanied with a sign change.
This happens when a2ðTMÞ ¼ 0 and a02ðTMÞ ¼ 0 simulta-
neously. Such points appear on the boundary between the
areas in parameter space with IM ¼ 0 and IM ¼ 2, e.g., on
the line separating the purple and green areas in Fig. 2. In
these cases, PðIMÞ is no longer the exact parity but still
serves as a lower bound to the number of crossings.
Figure 1 provides a helpful three-dimensional picture for

the strong Mpemba effect in a three-state system. In fact,
the existence of the strong Mpemba effect is always
essentially a three-dimensional problem when projected
to the proper subplane. As we discuss above, the strong
effect can be deduced from the relative directions of the
following three vectors: (i) the tangent to the equilibrium
line at the bath temperature, (ii) the vector connecting

FIG. 1. The geometry of the strong Mpemba effect in a three-
state system. The probability simplex is illustrated by the blue
triangle. The set of all equilibrium distributions form the red
curve. The blue and red points on the curve correspond to T ¼ 0
and T ¼ ∞. The Mpemba index is nonzero if the equilibrium
curve crosses the a2 ¼ 0 plane (green) not only at the bath
temperature (illustrated here by the pink point) but also at some
other temperature (the green point).
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πðTbÞ and πðT ¼ ∞Þ [or πðT ¼ 0Þ for the inverse effect)],
and (iii) the direction of the slowest dynamic v2 defined in
Eq. (7). This observation plays a crucial role in Sec. VA,
where we estimate the probability to observe the strong
Mpemba effect in a class of random models.

B. Robustness of the Mpemba index

The above geometric interpretation implies that the
Mpemba index is a robust quantity, as we discuss next.
Consider a small perturbation of order ϵ in the physical
quantities, i.e., in the energies, the barriers, and the temperature
of the bath. The corresponding change in R is also of order ϵ.
This perturbation in R changes both pinitðTÞ and f 2, and
hence, by Eq. (11), also the graph of a2ðTÞ in the relevant
interval of T. But it does not change πðT ¼ ∞Þ, which is
always the maximally symmetric point. Similarly, πðT ¼ 0Þ is
the lowest-energy point, which changes only if the perturba-
tion changes the ground state by an energy level crossing.
For the perturbation in the physical parameters to change

the number of zero crossings, one of the following cases has
to occur: (i) pinit can change abruptly even with a small
perturbation inR if there is a first-order phase transition in the
system, and therefore, the equilibrium distribution changes
discontinuously. An example for such a case is discussed in
Sec. IVD. Note that for this discontinuous change of the
equilibrium distribution to happen, the perturbation in
the relevant parameters has to be large enough compared
to the distance from the value at which there is a first-order
phase transition. (ii) f 2 can change abruptly when the
perturbation changes the order of λ2 and λ3; namely, the
order of the eigenvalues changes, and therefore, the direction
of the eigenvector jumps. As the perturbations of the
eigenvalues are of order ϵ too, the spectral gap λ2 − λ3
defines the stability region in which these changes are not
expected. In other words, if the perturbation in R is small
compared to λ2 − λ3 then such a jump is not expected. (iii) A
small perturbation in R can cause two zeros to “annihilate”
each other in a saddle-node bifurcation, and similarly, two
new zeros can be generated. However, in these cases, the
parity of IM does not change. (iv) A zero can move through
Tb (this is analogous to a transcritical bifurcation). In such a
case, bothIdir

M andI inv
M change by 1, but the parity ofIM does

not change. (v) Lastly, a zero can “vanish” in theT → ∞ limit
or at T ¼ 0. But as we discuss above, the end points
πðT ¼ 0Þ andπðT ¼ ∞Þ donotmove, so a zero can “vanish”
only if f 2 changes its direction.
From the five cases discussed above, we can conclude

that the parity of IM can change only if there is a phase
transition in the system, λ3 becomes larger than λ2, or if the
perturbation changes the sign of one of a2ð0Þ and a2ð∞Þ.
Therefore, the parity is stable in some range, which
depends on the details of the spectral gap λ2 − λ3, the
distance of parameters from a phase transition, and the
angle between πðT ¼ 0Þ, πðT ¼ ∞Þ, and f 2.
The above argument for stability can be explained using

the geometric picture for the Mpemba effect that we discuss
above. In any system, the a2 ¼ 0 hyperplane separates the
probability space into two disjoint sets as we discuss in
the three-state system above. TheBoltzmann curve intersects
the a2 ¼ 0 hyperplane at T ¼ Tb. Any additional temper-
ature TM for which a2ðTMÞ ¼ 0 is an intersection between

FIG. 2. The mean-field antiferromagnetic Ising model
Mpemba-phase diagram. Upper panel: The phase diagram
calculated for N ¼ 400 spins. There are eight different Mpemba
phases in this system: (i) white; no direct or inverse Mpemba
effects, (ii) blue; weak direct and no inverse effects, (iii) green;
weak inverse and no direct effects, (iv) burgundy; strong inverse
with I inv

M ¼ 1 and no direct effects, (v) violet; strong inverse with
I inv
M ¼ 2 and no direct effects, (vi) light blue; strong inverse

with I inv
M ¼ 1 and weak direct effects, (vii) gray; strong direct

with Idir
M ¼ 1 and strong inverse with I inv

M ¼ 1, and (viii) yellow;
strong direct with I inv

M ¼ 1 and weak inverse effects. The blue
line is the antiferromagnetic-to-paramagnetic phase-transition
line of this model calculated in Ref. [25]. Lower panel: The
same calculation forN ¼ 70 spins. Although the exact location of
the boundaries between the different phases is not identical in the
two computations, the overall structure is the same. The three
dashed lines are lines of constant magnetic field H ¼ 1.03,
H ¼ 1, and H ¼ 0.97, and their corresponding equilibrium loci
in the thermodynamic limit are given in Fig. 3. Note that the
phase diagram has an abrupt jump at H ¼ 1, which corresponds
to the jump in the equilibrium locus in Fig. 3.
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the curve and the hyperplane, and IM counts these additional
intersections. Topologically, the parity of the number of
crossings between a continuous curve and a hyperplane of
codimension one depends only on the boundaries of the
equilibrium curve, namely, in our case on πðT ¼ 0Þ and
πðT ¼ ∞Þ. If they are both on the same side of the hyper-
plane then the number of crossings is even, and if they are on
different sides then the number of crossings is odd.
To appreciate the above topological aspect, let us

contrast it with a (possibly only hypothetical) “superstrong
Mpemba effect,” where there exists a temperature TSM at
which a2ðTSMÞ ¼ a3ðTSMÞ ¼ a4ðTSMÞ ¼ 0. In other
words, consider a case where the coefficients of πðTSMÞ
vanish along v2, v3, and v4. This implies an even faster
relaxation than the strong effect. The condition for this
superstrong effect a2ðTSMÞ ¼ a3ðTSMÞ ¼ a4ðTSMÞ ¼ 0
defines a hyperplane of codimension three that can intersect
the probability simplex (which is of codimension one) in a
codimension-two hyperplane. This hyperplane does not
separate the space into two disjoint sets, and the topological
argument does not work anymore. As an example of this
fact, consider a codimension-two hyperplane in a 3D space,
which is a straight line. It does not separate the 3D space
into two disjoint sets as a plane does. Now consider an
equilibrium locus that crosses the superstrong straight line
in a 3D probability simplex. A small perturbation in the
model parameters deforms the equilibrium locus a bit and
generically separates the equilibrium locus from the
straight line. Therefore, even an infinitesimal perturbation
can (and usually does) destroy the superstrong Mpemba
effect. In this sense, the strong Mpemba effect has
topological stability, but the superstrong effect does not.
We therefore do not expect to observe the superstrong
effect in systems which are not fine-tuned.

IV. MEAN-FIELD ISING ANTIFERROMAGNETIC
MODEL WITH GLAUBER DYNAMICS

The mechanism for the Mpemba effect suggested in
Ref. [18] was so far demonstrated only in microscopic
systems with a few degrees of freedom. However, all the
experimental observations of similar effects are in macro-
scopic systems with a huge number of microstates. To
discuss the applicability of the mechanism in such macro-
scopic systems, we next consider the Ising model with
antiferromagnetic interactions and mean-field connectivity
on a complete bipartite graph. This is a classical many-body
model which has been studied extensively and whose phase
diagram can be calculated exactly (see Fig. 6 in Ref. [25]).
As we describe below, this model shows a rich Mpemba
behavior, which survives the thermodynamic limit.

A. The model

In mean-field models, each spin interacts equally with all
the other spins in the system. To generate a model of

antiferromagnetic interactions in the mean-field approxi-
mation, we consider a system with a total number of N
spins, half of them on each “sublattice” or subgraph. Each
spin interacts antiferromagnetically with all the spins in the
other subgraph, but spins on the same subgraph do not
interact at all. The interaction strength between the spins is
fixed. This type of interaction can lead to an “antiferro-
magnetic phase” in which the spins in one sublattice are
predominantly in the up state, while most spins in the other
subgraph point down.
Let N1;↑, N1;↓ (N2;↑, N2;↓) be the number of spins

pointing up and down on subgraph 1 (subgraph 2). We
define the two magnetization densities on subgraphs 1 and
2 as

x1 ≡ N1;↑ − N1;↓

N=2
and x2 ≡ N2;↑ − N2;↓

N=2
: ð18Þ

Although the system has 2N different microstates, all
microstates that correspond to the same values of N1;↑

and N2;↑ are equivalent since the interaction strength is
“position” independent (mean field). Thus, the Hamiltonian
of this model is only a function of x1 and x2 and is given by

H ¼ N
2
½−Jx1x2 − μHðx1 þ x2Þ�; ð19Þ

where J is the coupling constant,H is the external magnetic
field, and μ is the magnetic moment. In the antiferromag-
netic case, the coupling constant is negative J < 0, and for
simplicity we choose the units such that J ¼ −1 and μ ¼ 1.
The dynamics we consider for this model is Glauber

dynamics, with only single spin-flip transitions allowed.
Under this assumption, the rates of flipping a spin up or
down in subgraphs 1 and 2 are given by

Ru1ðx1; x2Þ ¼
ð1 − x1Þ=2

1þ eð−2x2−2HÞ=Tb
;

Ru2ðx1; x2Þ ¼
ð1 − x2Þ=2

1þ eð−2x1−2HÞ=Tb
;

Rd1ðx1; x2Þ ¼
ð1þ x1Þ=2

1þ eð2x2þ2HÞ=Tb
;

Rd2ðx1; x2Þ ¼
ð1þ x2Þ=2

1þ eð2x1þ2HÞ=Tb
; ð20Þ

where Ru1ðx1; x2Þ is the rate of flipping a spin up in
subgraph 1, and Rd2ðx1; x2Þ is the rate of flipping a spin
down in subgraph 2. The numerators in Eqs. (20) are the
combinatorial factors that take into account how many
spins can be flipped in the specific state of the system,
and the denominator is the standard Glauber factor
1=ð1þ eβbΔEÞ, where ΔE is the difference of energies
before and after the spin flip [26].
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B. Mpemba-index phase diagram

The Mpemba-index phase diagram of this model was
calculated numerically for N ¼ 400 and is shown in the
upper panel of Fig. 2. At each point in the figure, that is, for
each temperature Tb and magnetic field H of the environ-
ment, we calculate (numerically) the coefficient a2ðTÞ of
the slowest relevant eigenvector of the corresponding
Glauber dynamics [Eq. (20)] at each point along the
equilibrium line. From the monotonicity and zero crossing
of these coefficients a2ðTÞ, we deduce what types of
Mpemba effects exist at this point. The phase diagram in
Fig. 2 is quite rich and has eight different phases differ-
entiated through their colors, including regions with odd
and even Mpemba index existing for the direct inverse or
both effects.
To make sure that the observed phase diagram is not

dominated by the number of spins in the system, we repeat
this calculation with N ¼ 70 and check that the phase
diagram looks essentially the same (Fig. 2, lower panel).
Moreover, we check other forms of rates—Metropolis and
heat-bath dynamics, both with single spin flips only.
Although the exact locations of the different phases are
not identical in the different dynamics, the main features in
the phase diagram are similar in all of them. An example for
such a feature is the line at H ¼ 1 across which the
Mpemba phase changes. To explain this feature, we next
consider the thermodynamic limit of this model.

C. The thermodynamic limit

Let us take the thermodynamic (N → ∞) limit for the
mean-field antiferromagnetic model described above. To
this end, we first write explicitly the master equation using
all the single flip rates. At the configuration ðx1; x2Þ, a
single spin in each subgraph can either flip from up to down
or from down to up. Therefore, there are four different
terms in the master equation corresponding to leaving the
current configuration, and similarly, four transitions into
the specific configuration:

∂tpðx1; x2Þ ¼ Ru1ðx1 − Δx; x2Þpðx1 − Δx; x2Þ
þ Ru2ðx1; x2 − ΔxÞpðx1; x2 − ΔxÞ
þ Rd1ðx1 þ Δx; x2Þpðx1 þ Δx; x2Þ
þ Rd2ðx1; x2 þ ΔxÞpðx1; x2 þ ΔxÞ
− ½Ru1ðx1; x2Þ þ Rd1ðx1; x2Þ
þ Ru2ðx1; x2Þ þ Rd2ðx1; x2Þ�pðx1; x2Þ; ð21Þ

whereΔx is the change in the variable x due to a single spin
flip. In the limit N → ∞, we approximate x1 and x2 as
continuous variables. Expanding both p and all the terms of
R to first order in Δx, we get a Fokker-Planck-like equation

∂tp ¼ ∂x1 ½ðRd1 − Ru1Þp� þ ∂x2 ½ðRd2 − Ru2Þp�: ð22Þ

Note that in this case, there is no diffusion, as the
corresponding term vanishes in the N → ∞ limit. Hence,
it originates from a Langevin equation without random
noise, namely, from a deterministic equation for x1 and x2.
For such a deterministic motion, an initial distribution
which is a (δ) function stays a (δ) function at all times, and
it is therefore enough to know the evolution of the averages

x1ðtÞ≡
Z

x1pðx1; x2Þdx1dx2; ð23Þ

x2ðtÞ≡
Z

x2pðx1; x2Þdx1dx2: ð24Þ

Using these definitions, we write an “equation of motion”
for the averages of x1 and x2 by substituting the values of
the rates in Eq. (20) into Eqs. (22) and (23). After some
algebra, these give

_x1 ¼
1

2

�
tanh

H − x2
Tb

− x1

�
;

_x2 ¼
1

2

�
tanh

H − x1
Tb

− x2

�
: ð25Þ

Unfortunately, these equations are not always linearly
stable: For some values of H, Tb, x1, x2, a small
perturbation in the initial values of x1, x2 changes the
trajectory significantly. For example, when the initial
condition has x1 ¼ x2, the symmetry of the dynamic keeps
x1 and x2 equal at all times, even if the equilibrium
distribution which corresponds to the specific Tb and H
is different. In such cases, any infinitesimal perturbation (in
the initial condition or during the dynamic) results in
relaxation towards the equilibrium rather than following
the solution of the above equations. Fortunately, in a large
fraction of the parameter space ðH; TbÞ, as well as in the
vicinity of all the fixed points, the above equations are
stable. When stable, these nonlinear equations describe the
temporal evolution of the macroscopic system, and we can
use them to understand the Mpemba behavior of the
system.
Using the above result, let us look at the equilibrium

locus in the thermodynamic limit. For each value of H and
Tb, the equilibrium values of x1, x2, which we denote by ξ1,
ξ2, are the steady state Eq. (25), namely, the solution of

0 ¼ tanh
H − ξ2
Tb

− ξ1;

0 ¼ tanh
H − ξ1
Tb

− ξ2: ð26Þ

For each value of H, the equilibrium line can therefore be
found using Eqs. (26) to calculate ξ1ðTbÞ and ξ2ðTbÞ for
0 ≤ Tb ≤ ∞. Note that Eqs. (26) are symmetric to
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exchanging x1 and x2. We therefore limit ourselves, without
loss of generality, to x1 ≤ x2.
Examples for the equilibrium locus for H ¼ 0.99,

H ¼ 1, and H ¼ 1.01 are shown in Fig. 3, where for each
Tb we numerically find the equilibrium by solving Eq. (26).
As expected, at Tb → ∞ both ξ1 → 0 and ξ2 → 0.
Importantly, the equilibrium line is not a simple convex
line; therefore, increasing the distance along the line does
not necessarily increase the changes in the magnetizations.
Moreover, at H ¼ 1 the equilibrium locus has a singular
transition demonstrated in Fig. 3. The sharp change in the
equilibrium line at H ¼ 1 corresponds to the first-order
phase transition in the model at H ¼ 1 when Tb ¼ 0. This
transition can be demonstrated by considering the limit
Tb → 0: For H > 1, the arguments of the hyperbolic
tangents in Eq. (26) approach þ∞ asymptotically in the
limit Tb → 0, and hence, ξ1;2 → 1. In contrast, for H < 1,
ξ1 → 1 and ξ2 → −1 are the asymptotic solutions at
Tb → 0. As we discuss in Sec. III, this sharp transition
in the shape of the equilibrium line naturally corresponds to
the sharp transition in the Mpemba phases in Fig. 2: When
the equilibrium locus abruptly changes, so does the
coefficient along the slowest relaxation mode a2ðTÞ.
Although this argument in principle should work only in
the thermodynamic limit, it is evident from Fig. 2 that, in
practice, it works well already at N ¼ 70.
So far, we have seen that some features of the finite-

system Mpemba-phase diagram can be explained using the
thermodynamic limit. In the next section, we discuss the
existence of Mpemba effects in the thermodynamic limit
and their relations to the finite-N system.

D. Weak and strong Mpemba effects in the
thermodynamic limit

For systems with a finite number of states and a given set
of environmental parameters, we have a simple prescription
to check what types of Mpemba effects exist: The monot-
onicity (weak effect) and zero crossings (strong effect) of
the coefficient along the slowest dynamic a2ðTÞ encapsu-
late all this information. In the thermodynamic limit, we
cannot use the same method, as rarely does the coefficient
a2ðTÞ have an analytic expression at finite N, for which we
can take the thermodynamic limit N → ∞. Likewise, the
direct calculation of a2ðTÞ in the infinite system is often not
feasible. This is somewhat unfortunate because all the
experimental observations of Mpemba effects that we
mention above are in macroscopic systems; hence, it is
not clear that the mechanism we suggest is relevant for such
systems. Moreover, the existence of the effect in macro-
scopic systems does not follow trivially from its existence
in small systems. Although phase space becomes larger in
large systems and thus more shortcuts may exist, in the
thermodynamic limit, the probability distribution is con-
centrated in a tiny portion of the system’s phase space,
which suggests that the system would rarely explore the
extended phase space. Therefore, these shortcuts might not
be as relevant.
Although we cannot use a2ðTÞ to analyze the existence

of Mpemba effects in the thermodynamic limit of the
antiferromagnetic Ising model, for any environmental
conditions (Tb, H) and two temperatures Th and Tc,
Eq. (25) can be used to compare the relaxation trajectories
initiated from the corresponding equilibrium distributions.
A natural and physically motivated distance function in this
case is the free-energy difference between the current state
and the equilibrium state, namely,

D½ðx1; x2Þ; ðξ1; ξ2Þ� ¼ F ðx1; x2Þ − F ðξ1; ξ2Þ; ð27Þ

where the free energy is given by [25]

F ðx1; x2Þ ¼
Hðx1; x2Þ

N
þ Tb

4
ð1þ x1Þ logð1þ x1Þ

þ Tb

4
ð1 − x1Þ logð1 − x1Þ

þ Tb

4
ð1þ x2Þ logð1þ x2Þ

þ Tb

4
ð1 − x2Þ logð1 − x2Þ; ð28Þ

and Hðx1; x2Þ is given by Eq. (19). If the initial condition
with a longer distance from the equilibrium becomes, after
some finite time, closer to equilibrium, then we know that
there is a Mpemba effect in this system. However, checking
if a Mpemba effect exists at a point using this approach is
tedious—it requires solving the relaxation trajectories for
all initial conditions. Luckily, checking if strong effects

FIG. 3. The “equilibrium locus” of the mean-field antiferro-
magnetic Ising model at H ¼ 0.97, H ¼ 1, and H ¼ 1.03 plotted
in the plane of average magnetization densities in each subgraph
x1, x2. Note the sharp transition in the curve’s shape around
H ¼ 1. This sharp transition corresponds to an abrupt transition
in a2ðTÞ, which is clearly seen in the Mpemba-phase diagram in
Fig. 2: The three equilibrium lines here correspond to the three
dashed lines in the lower panel of Fig. 2.
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exist and identifying their index is a much easier task. To
this end, we can linearize Eqs. (25) near the equilibrium
point corresponding to ðTb;HÞ. Denoting the differences
from the equilibrium by Δxi ¼ ξi − xi, we can write for
small Δxi,

Δ_x1 ¼
βbð1 − ξ21ÞΔx2 − Δx1

2
þOðΔx2i Þ; ð29Þ

Δ_x2 ¼
βbð1 − ξ22ÞΔx1 − Δx2

2
þOðΔx2i Þ: ð30Þ

These linearized equations have two relaxation eigendir-
ections: a fast direction and a slow direction, with relax-
ation rates given by

λ̄1 ¼ −
1

2(1 − βb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ21Þð1 − ξ22Þ

q
); ð31Þ

λ̄2 ¼ −
1

2(1þ βb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ21Þð1 − ξ22Þ

q
): ð32Þ

Unless the initial condition is such that at the long time
limit the coefficient of points on its trajectory along the
slow direction (namely, the eigenvector corresponding to
λ̄1) is zero, at long enough time the relaxation is from the
direction corresponding to the slow direction. The number
of trajectories that start on the equilibrium locus and
approach the equilibrium point asymptotically from the
fast direction is the Mpemba index, and the corresponding
initial conditions show strong Mpemba effect. To find if
such initial conditions exist, we can propagate backwards
in time solutions to Eqs. (25) that approach the equilibrium
from the fast direction (there are two such trajectories; one
from each side of the equilibrium locus). The number of
crossings between these shoot-back trajectories and the
equilibrium locus is the Mpemba index.
As an example, consider the relaxation dynamic for an

environment with H ¼ 1.1 and Tb ¼ 0.5. The equilibrium
locus as well as the relaxation trajectories from different
initial temperatures are plotted in the upper panel of Fig. 4.
As can be seen in the figure, there is a “fast” and a “slow”
direction to the relaxation process, and essentially all the
trajectories relax to equilibrium from the slow direction—
except for a single trajectory (the red dashed trajectory) that
relaxes directly from the fast direction. This special
trajectory is the strong inverse Mpemba with IM ¼ 1, in
agreement with the finite-state phase diagram in Fig. 2 for
these values ofH and Tb. In this case, the ratio between the
relaxation rates λ̄1 and λ̄2 given in Eq. (31) is 14.7. In other
words, not only does the strong Mpemba initial condition
relax exponentially faster, the relaxation rate is an order of
magnitude higher than that from any other initial temper-
ature. Indeed, as shown in Fig. 5, the strong effective
trajectory relaxes significantly faster towards the equilib-
rium compared to all the other initial temperatures.

FIG. 4. Upper panel: The thick green dashed line is the equilib-
rium locus, and the colored lines are the relaxation trajectories
toward the equilibrium point (the red circle). All relaxation
trajectories except the dashed red one approach equilibrium from
the slow direction. The red dashed trajectory approaches equilib-
rium from the fast direction, and it corresponds to the strong inverse
Mpemba trajectory (with bath temperature Tb ¼ 0.5 and initial
temperature T∞

M ¼ 0.1377). Its relaxation rate is 14.7 times faster
than the other trajectories; see Fig. 5. Lower panel: A comparison
between the thermodynamic limit and finite system withN ¼ 400.
The dash-dot thick green line is the thermodynamic limit equilib-
rium line, and the dashed black line is the projection into ðx1; x2Þ of
the equilibrium line in the finite system. The projections of the
relaxation trajectories for several initial temperatures are shown as
thin lines, and the relaxation which corresponds to the strong
Mpemba [calculated by aðTMÞ ¼ 0] is the thick blue dashed line.
The inset shows an enlargement of the relaxation trajectories near
the equilibrium. The strong Mpemba initial condition approaches
equilibrium from a different direction.
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E. Comparing the thermodynamic limit
with a finite-N system size

So far, we have seen the strongMpemba effect in both the
finite state N ¼ 400 and the thermodynamic limit of the
antiferromagneticmean-field Isingmodel. However, it is not
obvious that the two effects are trivially related: In the
thermodynamic limit, the effect is derived by linearizing the
nonlinear equations for the order parameters, Eqs. (25),
not by considering a2ðTÞ in the N → ∞ limit, which is
intractable. Oneway to compare the two cases is to calculate
a Mpemba-phase diagram for the thermodynamic limit and
compare it with Fig. 2. However, in the paramagnetic phase
(x1 ¼ x2), we cannot use Eqs. (25) as they are not linearly
stable, as we discuss above. Therefore, we perform instead
several other comparisons as presented next.
One hint that the two effects are nevertheless related is

the sharp transition of the equilibrium line atH ¼ 1 and the
corresponding jump in the Mpemba index shown in Fig. 2
and discussed above. To further convince that the strong
Mpemba effect in the thermodynamic limit corresponds to
the finite-system case, the temperature at which a strong
effect occurs TMðNÞ is calculated for various values of
system size N. Figure 6 shows that indeed TMðNÞ con-
verges at the large-N limit to the temperature T∞

M at which a
strong effect occurs in the thermodynamic limit for the
chosen Tb and H. Similar behavior is observed in a wide
range of temperatures and magnetic fields.
Additional comparison between a finite system and the

thermodynamic limit is shown in the lower panel of Fig. 4.
For N ¼ 400, we calculate the equilibrium distribution as a
function of the temperature and “project” it into the ðx1; x2Þ
plane by calculating the equilibrium-averaged magnetiza-
tion in each sublattice. This equilibrium line is given by the

thick black dashed line in the figure. For comparison, the
green dash-dotted line is the thermodynamic limit equilib-
rium line, as in the upper panel. Next, we calculate the
probability distribution dynamics initiated at several
Boltzmann distributions of temperatures in the range
T ∈ ½0.1; 0.2�. This is done using Eq. (1), with R defined
in Eq. (20). These trajectories in probability space are
projected to the ðx1; x2Þ plane and are shown by the colored
thin lines. Lastly, the trajectory of the strong effect TM ¼
0.148 that solves a2ðTMÞ ¼ 0 is calculated too and is
plotted by the thick blue dashed line. For comparison, the
strong Mpemba trajectory in the thermodynamic limit
initiated at T∞

M ¼ 0.1377 is plotted as a thick dashed red
line. As shown in the inset, all the trajectories except the
strong Mpemba effect approach the equilibrium point (the
blue circle) from the slow direction, and the strong effect
approaches the equilibrium point from a different fast
direction. Note that the equilibrium line and the trajectories
in the thermodynamic limit are not identical to those of the
finite system, hinting that N ¼ 400 is not large enough to
match the thermodynamic limit. Nevertheless, this example
demonstrates that the a2ðTMÞ ¼ 0 in finite-size systems
maps into the strong Mpemba mechanism in the thermo-
dynamic limit. Although not mathematical proof, this
analysis hints that the strong Mpemba effect in the
thermodynamic limit is a consequence of the strong effect
in the finite system.

F. Temperature overshooting during relaxation

As we discuss above, the existence of a Mpemba effect
can be checked by calculating the distance from equilib-
rium as a function of time from two different initial points
on the equilibrium lines. This requires a choice of some
reasonable distance function, e.g., the free-energy distance
[see Eq. (27)]. In the specific case of the mean-field

FIG. 5. The distance from equilibrium [defined in Eq. (27)] in
logarithmic scale as a function of time for several initial
conditions in the thermodynamic limit. The initial condition
corresponding to the strong effect is the dashed line.

FIG. 6. Comparison between the strong effect in the N spin
system and the strong effect in the thermodynamic limit. The
temperature from which there is a strong effect on the finite-N
system TMðNÞ converges to the temperature from which there is a
strong effect in the thermodynamic limit T∞

M .
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antiferromagnetic model, there is another natural option:
Even though the system is not in equilibrium through
relaxation, it is possible to associate a temperature with
each state during the relaxation process and use this
temperature to compare different relaxations. This temper-
ature does not have all the properties commonly required
from a distance function, e.g., it is not monotonically
decreasing in a relaxation; nevertheless, it sheds light on
additional counterintuitive aspects of thermal relaxations
far from equilibrium. As we show below, the temperature
can overshoot the environment temperature. In other words,
a hot system when coupled to a cold bath can reach during
its relaxation process temperatures which are lower than the
environment’s temperature.
To associate a temperature for each point in the relax-

ation process, let us use the following coordinate trans-
formation from ðx1; x2Þ to ðTeq; HeqÞ defined by

Heq ≡ x1tanh−1x1 − x2tanh−1x2
tanh−1x1 − tanh−1x2

;

Teq ≡ x1 þ x2
tanh−1x1 − tanh−1x2

: ð33Þ

The physical significance of this transformation can be
understood by a simple algebraic manipulation of the above
equations that gives Eq. (26). Comparing these to Eq. (25),
one notes that for an environment with temperature Tb ¼
Teq and external magnetic field H ¼ Heq, the specific state
given by ðx1; x2Þ is the equilibrium. In other words, if
during the relaxation process when the system is in the state
ðx1; x2Þ, the system is decoupled from the current envi-
ronment and coupled to a different environment with Tb ¼
Teq and H ¼ Heq, then the system would be in equilibrium
with the new environment. It is therefore natural to interpret
Heq and Teq as the magnetic field and temperature of the
system itself.
Before proceeding, two comments on the above mapping

are in order. (i) Note that the transformation is singular at
x1 ¼ x2 as the denominator in Eqs. (33) vanishes. In other
words,we cannot associate a single temperature andmagnetic
field for states in which x1 ¼ x2. (ii) The ability to associate
the equilibrium temperature andmagnetic field to most states
of the system is a very nongeneric property. It is a conse-
quence of the fact that the number of parameters in the model
is identical to the number of order parameters describing the
system in the thermodynamic limit. Luckily, in the thermo-
dynamic limit of this model, the probability distribution
becomes a δ function with exactly two order parameters.
Using the mapping in Eq. (33), we plot in Fig. 7 the

temperature of the system as a function of time for various
initial conditions along the equilibrium line. As can be
seen, not only do the temperature curves cross—namely, a
Mpemba effect occurs—but also for some relaxation
trajectories the temperature is nonmonotonic as a function

of time. Moreover, systems that are initiated at temperatures
lower than the environment’s temperature can reach tem-
peratures which are higher than that of the environment in
their relaxation. Similar nonmonotonic relaxations were
discussed in the context of non-Markovian thermal relax-
ation [27] or finite baths [28], but as far as we know, this is
the first example for such a nonmonotonic relaxation in
Markovian dynamics and in the thermodynamic limit.
It is interesting to note that the temperature overshoot is

tightly connected with the strong Mpemba effect. To
explain this, let us examine Fig. 4 carefully. Initial temper-
atures to the left of the strong Mpemba relaxation trajectory
approach equilibrium from one side of the slow direction,
and initial temperatures to the right of the strong Mpemba
trajectory approach equilibrium from the opposite direc-
tion, which is also a slow direction. Opposite directions
mean opposite directions in the coordinate Teq; namely,
there are trajectories that approach equilibrium from both
higher and lower temperatures compared to the environ-
ment. Conversely, if there are trajectories that approach
equilibrium from both higher and lower temperatures, they
must approach equilibrium from opposite directions of the
slow relaxation. Therefore, by continuity there must also be
a trajectory that approaches equilibrium from the fast
direction, and this trajectory corresponds to a strong effect.

V. HOW GENERIC IS THE MPEMBA EFFECT
IN THE REM MODEL?

So far, we have considered the Mpemba effect in a
specific model—the mean-field antiferromagnetic Ising

FIG. 7. Teq − Tbath as a function of time for various initial
temperatures along the equilibrium line. The inverse Mpemba
effect is shown here as a crossing of two curves—initially,
the colder system heats up faster. The figure also shows that the
temperature can overshoot the environment temperature—the
system can reach equilibrium temperatures which are higher than
that of the environment.
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model. Is the existence of the Mpemba effect a special
property of this model, or should we expect to see similar
effects in many other models? To address this question, we
next evaluate the probability of having a Mpemba effect in
a class of models with random parameters. As we discuss
below, the strong Mpemba effect plays a crucial role in our
ability to estimate the probability of having a Mpemba
effect.

A. Analytical estimates: The isotropic ensemble

A proper analysis of the probability to find a Mpemba
effect in classes of random models is a formidable
challenge: One must perform the rather difficult calculation
of the second eigenvector f 2 and the coefficient a2
in Eq. (11) as a function of the initial temperature,
the energies, and the barriers and then average over the
ensemble. Even the simpler problem of analyzing the
strong Mpemba effect requires facing the daunting task
of analyzing the number of zeros in Eq. (11).
To gain some analytical insight, we proceed by estimat-

ing the strong Mpemba probability in an ensemble of
relaxation dynamics which we call the isotropic ensemble.
The ensemble is chosen to represent a wide distribution of
barriers so that the distribution of eigenvectors of the
relaxation modes is as isotropic as possible, consistent
with a given target thermal distribution. Explicitly, given a
set of L energies fE1; E2;…; ELg, we average over an
ensemble of random f 2 eigenvectors that are orthogonal, in
the sense of the quadratic form in Eq. (11), to the
equilibrium distribution with a given bath temperature
Tb. This approach allows us to perform analytically the
ensemble averaging. We then compare our analytic results
for the isotropic ensemble with direct numerical calcula-
tions on the matrix Eq. (4) with fixed energies and random
barriers and find surprisingly good agreement in certain
parameter regimes.
For a given set of energies E1;…; EL and dynamics

prescribed by the Markov matrix Eq. (4), the steady-state
distribution is the Boltzmann distribution at Tb: πðTbÞ. The
first eigenvector of the symmetrized Markov matrix R̃ is

f 1≡F1=2πðTbÞ¼
1

ZðTbÞ
ðe−½ðβbE1Þ=2�;…;e−½ðβbELÞ=2�Þ ð34Þ

and R̃f 1 ¼ 0. The second eigenvector of R̃, f 2 together with
the initial condition πðTÞ determine the coefficient a2,
which according Eq. (11) is

a2ðTÞ ¼
XL
i¼1

ðf 2Þi
kf 2k2

e−½β−ðβb=2Þ�Ei

ZðTÞ : ð35Þ

We obtain the explicit expression for the parity of the direct
Mpemba index as a function of f 2 by plugging Eq. (35) into
Eq. (15) and find

PðIdir
M Þ ¼ θ

��XL
j¼1

ðf 2Þje−½ðβbEjÞ=2�ðhEib − EjÞ
�

×

�XL
i¼1

ðf 2Þie½ðβbEiÞ=2�
��

; ð36Þ

where hEib ≡PL
i¼1 Eie−βbEi=ZðTbÞ is the average energy

in equilibrium at Tb. We can represent Eq. (36) in the form

PðIdir
M Þ ¼ θ½ðf 2 · udirÞðf 2 · wÞ�; ð37Þ

with the vectors udir and w defined as

ðudirÞi ≡ e½ðβbEiÞ=2�; ð38Þ

ðwÞi ≡ e−
βbEi
2 ðhEib − EiÞ: ð39Þ

Note that the vectors udir and w appearing in this form
depend solely on the set of energies and on the bath
temperature—they are independent of the barriers.
Moreover, the form of Eq. (37) has a simple geometric
meaning. To see it, we single out the components of f 2 in
the plane spanned by the (nonorthogonal) vectors udir, w.
Choosing fk as the component of f 2 parallel to udir, we
have

f 2 ¼ fk
udir

kudirk þ f⊥
ðw − w·udir

kudirk2 u
dirÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kwk2 − ðw·udir
2
Þ2

kudirk2

r
þ terms orthogonal to udir and w: ð40Þ

In this basis, ðf 2 · udirÞðf 2 · wÞ is equal to

ðf 2 · udirÞðf 2 · wÞ
¼ f2kðudir · wÞ þ fkf⊥judir · wjKðudir;wÞ; ð41Þ

where

Kðudir;wÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kudirk2kwk2
ðw · udirÞ2 − 1

s
: ð42Þ

Therefore, on the fk, f⊥ plane, the region satisfying
PðIdir

M Þ ≠ 0 is a double wedge

f2kðudir · wÞ þ fkf⊥judir · wjK > 0 ð43Þ

(see Fig. 8). The boundary of the region is associated with
the lines f⊥ ¼ −fk=K and fk ¼ 0.
The same treatment is also possible for the inverse

Mpemba effect. For example, assuming, for simplicity, a
nondegenerate ground state and ordering the energies so
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that E1 is the ground-state energy, we find that PðI inv
M Þ is

given by Eq. (37) with the replacement

udir → uinv; ðuinvÞi ¼ −e½ðβbEiÞ=2�δi;1: ð44Þ

Next, we formulate the averaging over the admissible f 2
vectors. In the class of random relaxations we consider, we
generate f 2 by picking a random vector g ¼ ðg1;…; gLÞ
and obtaining from it a random vector orthogonal to f 1 (by
subtracting the projection of g on f 1)

f 2ðgÞ≡ g −
g · f 1
jjf 1jj2

f 1: ð45Þ

The distribution of the g vectors is taken to be isotropic, and
therefore, the projection of the distribution of the g’s onto
the hyperplane orthogonal to f 1 is also isotropic. For this
purpose, we take the gi’s in g to be IID Gaussian variables.
Analogous to the derivation of Eq. (37), we plug Eq. (45)
into Eq. (36) and separate the gi components. We find that
the direct Mpemba parity for a particular realization of gi
can be written as

PðIdir
M Þ ¼ θ½ðg · udirisoÞðg · wÞ�; ð46Þ

where w is defined in Eq. (39) and udiriso is given by

ðudirisoÞi ¼ e½ðβbEiÞ=2� −
Le−½ðβbEiÞ=2�

ZðTbÞ
; ð47Þ

where L is the number of energy levels (or the system size).
As before, we break g into the components parallel and
perpendicular to udiriso and find as before

ðg · udirisoÞðg · wÞ ð48Þ

¼ g2kðudiriso · wÞ þ gkg⊥judiriso · wjKðudiriso;wÞ; ð49Þ

where K is defined in Eq. (42).
The Gaussian IID’s gi have a rotationally invariant joint

distribution function, and therefore, in any coordinate
system the components are corresponding Gaussian IIDs.
It follows that gk; g⊥ are Gaussian IIDs and have a rota-
tionally invariant distribution on the gk; g⊥ plane. On this
plane, the region satisfying PðIdir

M Þ > 0 is a double wedge
(cf. Fig. 8), and the probability of gk, g⊥ to fall inside the
wedge depends only on the wedge angle.
Geometrically, if ϕ is the angle between u and w,

then Prob½PðIdir
M Þ > 0� ¼ ðϕ=πÞ when ðu · wÞ > 0

[and Prob½PðIdir
M Þ > 0� ¼ 1 − ðϕ=πÞ when ðu · wÞ < 0].

Expressed explicitly in terms of udiriso, w we find

Prob½PðIdir
M Þ > 0� ¼ 1

2
þ signðudiriso · wÞ

π
arctan

1

Kðudiriso;wÞ
:

ð50Þ

To recap, the formula Eq. (50) represents, for a given set of
energies fEig and bath temperature Tb, the probability that
the direct Mpemba index is odd.
Equation (50) can be simplified for hot bath temperatures

kBTb ≫ maxðfE1;…; ELgÞ, and asymptotically it gives

Prob½PðIdir
M Þ > 0� ≈ CE

Tb
: ð51Þ

Here, the constant CE depends only on the first few
moments of the energy level distribution (for the explicit
expression, see the Appendix A).
Figure 9 shows a comparison of Eq. (50) with a random

realization of L ¼ 15 energies andMpemba index averaged
over 4000 realizations of random barriers. The expression
seems to capture surprisingly nicely the behavior of a
random draw of energy levels when the barriers’ distribu-
tion is wider than the distribution of energies and the
temperature is higher than the characteristic energy spread.
Similarly, for the inverse Mpemba effect we have

PðI inv
M Þ ¼ θ½ðg · uinviso Þðg · wÞ�; ð52Þ

where w is defined in Eq. (39), and uinviso is given by

ðuinviso Þi ¼ −e½ðβbEiÞ=2�δi;1 þ
e−½ðβbEiÞ=2�

ZðTbÞ
; ð53Þ

where we assume that E1 is the lowest energy. As before,

FIG. 8. The direct Mpemba index Idir
M is odd in the double-

wedge shaded region of the fkf⊥ plane if udir2 · w > 0, and while
if udir2 · w < 0, the direct Mpemba index is odd for the comple-
mentary region (white). See Eq. (43).
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Prob½PðI inv
M Þ > 0� ¼ 1

2
þ signðuinviso · wÞ

π
arctan

1

Kðuinviso ;wÞ
:

ð54Þ

Substituting for w and uinviso from Eqs. (39) and (53), we get

PðI inv
M Þ ¼ 1

2
−
1

π
arctan

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ZðTbÞeβbE1−1�ΔE2
b

ðE1−hEibÞ2 − 1

r
1
CA: ð55Þ

The above expression simplifies in the limit of a very low
bath temperature kBTb ≪ ðE2 − E1Þ. Without loss of gen-
erality, we set E1 ¼ 0 and obtain

Prob½PðI inv
M Þ>0�

≈
1

2
−
1

π
arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2ε2þE3ε3Þ2

ðE2−E3Þ2ε2ε3ð1þε2þε3Þ

s !
: ð56Þ

Simplifying the expression even further, we get

Prob½PðI inv
M Þ > 0� ≈ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − E3Þ2ε2ε3ð1þ ε2 þ ε3Þ

ðE2ε2 þ E3ε3Þ2

s
;

ð57Þ

where εi ≡ e−βbEi . Taking ε3 → 0 or if E2 ¼ E3, we find

Prob½PðI inv
M Þ > 0� ≈ 0; ð58Þ

which is expected, as there is no Mpemba effect for a two-
level system.
It is important to note that the isotropic ensemble,

while introduced for the purpose of enabling analytical
averaging, is consistent with the assumptions of our
relaxation dynamics. Namely, one can prove the following
theorem.
Theorem 1.—Given any choice of a real vector f 2

orthogonal to f 1 in Eq. (34), there exists a set of barriers
Bij with relaxation dynamics obeying detailed balance (4)
having F−1=2f 2 as its slowest relaxation eigenvector.
The proof can be found in Appendix B.

B. Numerically: The probability of the strong
Mpemba effect in the REM model

In the previous section, we analyze an analytically
tractable model; however, in general, estimating the prob-
ability of the Mpemba effect is a daunting and often
impossible task. In what follows, we numerically
study the probability of having a strong Mpemba effect in
the REM.
The random energy model was introduced by Derrida as

an extreme limit of spin glasses [29]. It is the simplest
model of a system with quenched disorder that has a phase
transition. In the REM, L energy levels are IID random
variables. The conventional choice for the probability
distribution of Ej ’s is a Gaussian distribution

ProbðEj ¼ EÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2Elog2L

p e−½E2=ð2σ2Elog2LÞ�; ð59Þ

where in order to have extensive thermodynamic potentials,
the variance depends on the system size. At temperatures
lower than Tcritical ≡ σE=ðkB

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p Þ, the system is trapped
in a few low-lying states; this condensation phenomena is a
phase transition, and at the transition the free energy is
nonanalytic.
Note that quenched disorder is not necessary for the

Mpemba effect. Our previous examples, such as the mean-
field Ising antiferromagnet and other examples discussed in
Ref. [18] are proof that quenched disorder is not an
essential feature for this effect.
The Mpemba effect is a property of the system and its

dynamics; thus, to study it, we need to specify the barriers
Bij in Eq. (4). Here we chose Bij as IID random variables
obeying a “truncated” Gaussian distribution

ProbðBij ¼ BÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2Blog2L

p e−½B2=ð2σ2Blog2LÞ�θðBÞ; ð60Þ
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FIG. 9. The probability for the odd direct Mpemba index for
a particular random draw of L ¼ 15 energy levels obtained
two independent ways: analytically by averaging over the
isotropic ensemble (solid line) and numerically by averaging
over random barriers (points). The energy level realization is
drawn from a Gaussian distribution with zero mean and
standard deviation 1.5. Each point corresponds to the average
of 4000 barrier realizations taken from a truncated Gaussian
distribution with zero mean and standard deviation 15 (the
Gaussian is truncated to have only positive Bij values). The
solid line represents the analytical result for the isotropic
ensemble Eq. (50).
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and θ is the Heaviside step function. This particular choice
of barriers can impede only the transition rates Rij as in this
case e−βbBij < 1. The variance of the barriers is scaled with
the system size like that of the energies, so that their ratio is
system size independent. Note that numerous other choices
of the dynamics for the REM have been studied in the past,
most notably, single spin-flip dynamics (see, e.g.,
Refs. [30–32] and references therein). It would be interest-
ing to search for Mpemba effects in those other choices of
REM dynamics as well.
Numerically, we study the parity of the direct Mpemba

effect [see Eq. (15)] by exact diagonalization of an
ensemble of REM with random barrier R matrices. As
an example of typical numerical results, see Fig. 10, where
L ¼ 10 energy levels are chosen from a Gaussian distri-
bution Eq. (59) and barriers are chosen from Eq. (60). The
bath temperature in the numerics is kBTb ¼ 0.1 and
kBTb ¼ 1.0. Each data point is averaged over 105 realiza-
tions. From the ample numerical evidence, we infer that the
Mpemba effect occurs with finite probability, especially for
the Tb < Tcritical case (left panel of Fig. 10).
We also study the system size dependence of the REM

with random barriers; see Fig. 11. The system size is varied
(L ∈ ½4; 20�), and we take the bath temperature to be
kBTb ¼ 0.1. The energies are IIDs from Eq. (59) with
variance σ2E log2 L, where σE ¼ 1.0 and the barriers are
IIDs from Eq. (60) with variance σ2B log2 L. Each point on
the density plot is averaged over 2 × 105 realizations. We
notice that the probability of the parity being positive for
the direct Mpemba index seems to be converging to a
limiting value with increasing system size. Although we
test small sizes, the convergence suggests the thermo-
dynamic limit behavior.

VI. DISCUSSION

The Mpemba effect is a shortcut in relaxation time. The
direct Mpemba effect implies that initiating the system at a
particular hot temperature results in cooling down which is
faster than any colder temperature when the system is
coupled to a cold bath. Possibly even more counterintuitive
is the inverseMpemba effect where an analog effect happens
in heating. Similar to the direct Mpemba effect, in annealing
one first heats the system and then cools it in a controlled
manner such that it acquires desirable features (relaxes to the
ground state, has fewer defects, etc.). More specifically,
simulated annealing is a probabilistic technique used to find
ground states [33,34], while annealing in metallurgy is used
to make materials with larger monocrystal domains and
fewer defects [35]. It would be interesting to explore the
connection between annealing and the Mpemba effect.
Markov chain Monte Carlo (MCMC) algorithms are

essential numerical tools broadly used in many branches of
science to estimate steady-state properties of various
systems [36]. It is often desirable to speed up the relaxation
of a MCMC to the steady state; see, e.g., Refs. [37,38]. Our
results serve as proof of principle that in specific systems
one could devise additional transition barriers (Bijs) that
would cause speed up of a MCMC algorithm’s relaxation to
equilibrium by creating a strong Mpemba effect.
The approach to equilibrium often has a nontrivial

relationship with the energy landscape and nature of the
barriers. This is especially true in glassy materials and
complexmany-body systems. The approach to equilibration
can even be used to explore structures in glassy systems and
many-body systems experimentally [39]. One of the future

Barrier

E
ne

rg
y

E
ne

rg
y

Barrier

FIG. 10. Lower bound for the probability of the strong Mpemba
effect—the probability of the parity being positive for the direct
Mpemba index [see Eq. (15)] for the case of REM with random
barriers. The number of energy levels is L ¼ 10 and the bath
temperatures are kBTb ¼ 0.1 (left) and kBTb ¼ 1.0 (right). The
energies are IIDs from Eq. (59) with variance σ2E log2 L, and the
barriers are IIDs from Eq. (60) with variance σ2B log2 L. Each
point on the density plot is averaged over 105 realizations. The
condensation phase transition is at kBTcritical ¼ σE=

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
≈

0.84σE. We notice that the probability of having a direct strong
Mpemba effect is finite and even high for certain regions of the
σEσB− plane for Tb < Tcritical (left panel).
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FIG. 11. Lower bound for the probability of the strong Mpemba
effect—the probability of the parity being positive for the direct
Mpemba index [see Eq. (15)] for the case of the REM with
random barriers and different system sizes L ∈ ½4; 20�. The bath
temperature is kBTb ¼ 0.1. The energies are IIDs from Eq. (59)
with variance σ2E log2 L and σE ¼ 1.0, and the barriers are IIDs
from Eq. (60) with variance σ2B log2 L. Each point on the density
plot is averaged over 2 × 105 realizations. We notice that the
probability of the parity being positive for the direct Mpemba
index seems to be converging to a finite limiting value with
increasing system size.
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directions is to deepen the understanding of the relation of
the Mpemba effect and to the plethora of nontrivial cooling
phenomena present in glassy materials such as memory,
aging, and rejuvenation.
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APPENDIX A: HIGH-TEMPERATURE
EXPANSION

Here we derive Eq. (51) for the asymptotic T−1
b behavior

of the probability of a direct strong Mpemba effect. The
starting point is

Prob½PðIdir
M Þ > 0� ¼ 1

2
þ 1

π
signðudir · wÞ arctan 1

K
; ðA1Þ

where K is given in Eq. (42). By plugging Eqs. (38) and
(39) into Eq. (42), we get

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½PL

i¼1 e
βbEið1 − L

ZðTbÞ e
−βbEiÞ2�hΔE2ib

ðPL
j¼1 ð−Ej þ hEibÞÞ2

− 1

vuut ; ðA2Þ

where hEib ≡PiπiðTbÞEi and hΔE2ib ≡Pi πiðTbÞðEi−
hEibÞ2. At the high-temperature limit Tb → ∞, we can
expand K in small βb. To get the correct result, we have to
expand all terms in the argument for the square root up to
order β2b. Using arctanð1=KÞ ∼ ðπ=2Þ − K, we find

Prob( − fa2ðT ¼ ∞Þ½∂Ta2�T¼Tb
g > 0) ¼ CE

Tb
; ðA3Þ

where

CE ¼ 1

π
jðĒ2 − E2Þjð8Ē6 − 24Ē4E2 þ 20Ē2E22 − 5E23

þ 4Ē3E3 − 2Ē E2 E3 −E32 − Ē2E4 þ E2 E4Þ1=2;
ðA4Þ

andEk is the kthmoment of the energy distribution defined as

Ek ≡ 1

L

XL
i¼1

Ek
i : ðA5Þ

APPENDIX B: PROOF OF REALIZABILITY OF
THE ISOTROPIC ENSEMBLE

Theorem 1.—Given any choice of a real vector f 2
orthogonal to f 1 in Eq. (34), there exists a set of barriers
Bij with relaxation dynamics obeying detailed balance (4)
having F−1=2f 2 as its slowest relaxation eigenvector.
Proof.—For our purpose, we need to demonstrate at least

one choice of barriers. We first note that for any (sym-
metrized) form of the driving R̃ with a steady-state
distribution f 1, we can obtain, using Eqs. (4) and (8),
formally, a set of barriers as

Bij ¼ −
1

βb

�
logðR̃ijÞ −

Ei þ Ej

2

�
; i ≠ j: ðB1Þ

The only requirement for these Bij’s to be consistent with
our relaxation dynamics is that Bij is a real and symmetric
matrix. In other words, it is sufficient that R̃ij is symmetric
and that R̃ij > 0 for all i ≠ j (note that Rii is then uniquely
determined by the condition that f 1 is an eigenvector with
eigenvalue 0).
We now show that we can make such a choice for any f 2.

To do so, we consider first an initial set of barriers
Bij ¼ Ei þ Ej. An explicit calculation shows that the
resulting dynamics has a single zero eigenvalue associated
with f 1, and that the rest of the eigenvalues are all −ZðTbÞ.
In this case, we have R̃ij ¼ e−f½βbðEiþEjÞ�=2g. In particular,
any choice of f 2 orthogonal with f 1 is immediately an
eigenvector of R̃. It remains to break the degeneracy
between f 2 and the other vectors orthogonal to f 1. We
do this by adding a small perturbation to R̃:

R̃ij → R̃ij þ
ϵ

kf 2k2
ðf 2Þiðf 2Þj: ðB2Þ

This change will affect only the eigenvalue associated with
f 2, changing it to −ZðTbÞ þ ϵ, making it a nondegenerate
eigenvector.
Clearly, for ϵ small enough the positivity of R̃ij for

i ≠ j will not be affected, and the formula (B1) will give
us a valid set of barriers. [It is enough to take
ϵ < minijðe−f½βbðEiþEjÞ�=2gÞ]. QED.
Of course, the above procedure yields a very particular

type of barrier for each f 2. There are numerous ways to set
up other barriers consistent with a given f 2.
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