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ABSTRACT

This thesis addresses the problem of identifying the

dynamics of a linear system in the frequency domain. An

alogrithm operating on the Fast Fourier Transform (FFT) of

blocks of signals is developed and its performance evaluated

through computer simulations. Several properties are tested,

in particular, its convergence and its capabilities of

identifying the frequency response of the unknown system.
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I . INTRODUCTION

The problem of identifying the dynamics of a physical

system from its input-output behavior is a fundamental issue

in modeling and control. The most general approach is based

on the assumption of a mathematical model, often linear and

time invariant, and its parameters are determined by

optimization of an error criterion.

A wide class of identification algorithms exists in the

literature. Several books have been written on this matter,

see for example [Ref. 1, 2]. Of particular interest are the

recursive algorithms, where the estimated parameters are

updated on-line based on new input-output data collected at

each sampling instant. In most of the approaches on recursive

identification the parameter estimates are updated for every

new set of data points; as a consequence, the estimate at any

time is updated up to the current data.

A different approach is based on Block Processing (BP) ,

where the parameters are recursively updated on the basis of

the data within nonoverlapping intervals of time. Although

this introduces a delay between the time we measure the input-

output data and the time we use it in the estimation, it has

the advantage that time averaging within the time interval

reduces the effect of disturbances.



Block Processing techniques have been investigated by

several authors. Of particular interest for this thesis is

the approach developed by Mansour [Ref. 3] in the adaptive

filtering contest, where the parameters are updated on the

basis of the DFT (Discrete Fourier Transform) of the data

within each time interval.

In this thesis an adaptive identification algorithm

operating on the DFT (Discrete Fourier Transform) of blocks of

input and output data is introduced. In particular, the

algorithm identifies the frequency response of the system's

linear model by applying several recursive estimation

techniques and adapting them to the frequency domain approach.

We will investigate estimation methods based on the Projection

Algorithm and Recursive Least Squares [Ref. 4] and the results

will be compared. Even though Recursive Least Squares is a

complex and time consuming method, it is preferable when

accuracy and speed of convergence are needed.

This thesis is organized as follows. Chapter II

introduces the concept of Block Processing and develops two

algorithms for recursive identification in the frequency

domain. Proof of convergence is also part of this chapter.

Simulation studies are introduced in Chapter III showing the

effectiveness of the algorithms and the conclusion is in

Chapter IV.



II. IDENTIFICATION OF LINEAR SYSTEMS

A. STATEMENT OF THE PROBLEM

Consider an LTI (Linear Time Invariant) system with input,

output signals given by u(t) and y(t) respectively. The

problem we address is the estimation of the parameters of a

linear model in order to predict future values of the output

y given past measurements of the input and output signals.

The general block diagram is given in figure 2.1. The block

z"
1 denotes time delay by one clock pulse.

I
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Figure 2.1 Block diagram of the system

This figure shows the general scheme where y(t) is the

prediction of y(t) based on the past input, output, and the

estimated model. The purpose is to determine a model for the

plant so that the error e(t) is miniminized. In particular,



the model is restricted to be an LTI system in either one of

the two forms:

ARMA (Auto Regressive Moving Average)

y(t) =a1y(fc-l) +. . .+any(t-n) +jb1u(fc-l) + . . .bnu(t-n) (2.1)

where a
i

, b. are constants; or

CONVOLUTION form, where the output input signals are related

by the convolution sum.

y(t)=h(t) *u(t) (2.2)

y{t)=Y, h(x)uit-x) (2.3)

The problem of adaptive freguency response identification

mainly has been concentrated on the approximation of infinite

impulse response systems by finite impulse response models.

In this thesis, we will consider the identification of stable

plants only, for which the impulse response h(t) decays to

zero as time increases. For this reason, the infinite impulse

response h(t) can be approximated by a finite seguence with

length N. In this way, the moving average (MA) model of the

following form is obtained.



y(t) =h(0) u(t) +h(l) u(t-l) +-+h(N-l) u(t-(N-l) ) (2.4)

where h(t), for < t < N-l, is the truncated impulse

response, We choose the block length N to be a power of 2 in

order to apply FFT (Fast Fourier Transform) techniques.

The approach we consider is based on a frequency response

framework. In particular, the estimated model is computed

from the Fourier Transform of blocks of data collected from

measurements of the input and output.

There are several reasons which motivate this approach.

In many cases of interest, a model which is accurate on a

desired frequency range only is identified for the plant. For

example, if we want to model the low frequency spectrum of the

system with the frequency response approach, we select weights

in order to select frequencies of interest.

In the next section, a recursive algorithm for the

identificaton of the frequency response is introduced.

B. RECURSIVE FREQUENCY DOMAIN APPROACH

Block Processing (BP) techniques for on line

identification of linear models have been investigated by

several authors [Ref. 3]. With this approach the estimated

model parameters are sequentially updated on the basis of

blocks of data, rather than at each data point. In this

section, we investigate a BP adaptive algorithm which operates



on the Fast Fourier Transform (FFT) of blocks of input and

output data.

u(t)

PLANT
y(t)

f
blocks of data blocks of data

(N-i; 2N-1 3N-1 4N-1 5N-1

Figure 2.2 Blocks of Input and Output Data

There are some advantages in dealing with data by blocks

rather than individually. Block processing averages the data

within the block, resulting in better noise rejecton. In

order to illustrate the BP approach in the ARMA model case,

consider the model in (2.1) and the data y k
(t), u

k
(t) within

the k-th time block, i.e.

yk (t) =y(kN+t)



uk (t) =u(kN+t) (2.5)

for t = 0, 1, ... , N-l. If the block size N is larger than

the system order n, we can write (2.1) as

yk (t) =a1yk (t-l) +a 2yk (t-2) +b
1
uk (t-l) +b

2
uk (t-2) (2.6)

for a second order case with 2 < t < N-l. It is easy to see

that (2.6) can be written in convolution form as

yk (t) =a(t)®yk {t) +b(t)®uk ( t) nztzN-1 (2.7)

with a and b sequences in Rn

a=[0 a
x

a
2

- an
•••

0]

b=[0 b
x
b

2
••• bn - 0] (2.8)

and ® denoting circular convolution.

In the approach, the well known relationship between the

DFT and the circular convolution in the frequency domain is

exploited. By defining { Y
k
(l) , 1=0,1, ...,N-1 } and { U

k
(l)

, 1=0,1, ...,N-1 } as the DFT of the output and input data

yk
(t) ,u

k
(t) in the k-th block, we can define Y

k
(l) as

Yk {l) =A{1) YA1) +B{1) UA1) 2=0,1,-, N-l. (2.9)



Clearly from (2.7) and (2.9), we can write the important

relationship

yk (t)=yk (t) nztiN-1 (2.10)

with y k
(t) = IDFT[ Y iJ 1 )]' and IDFT denoting inverse DFT.

A linear estimation algorithm for A(l) and B(l) in (2.9)

can be determined by defining an error signal

ek (t) = yk {t)-yk (t) nztzN-1
(2 11}

0^t^72-l

where y k
(t) = IDFT[ A

k
(l)Y

k
(l) + B

k
(l)U

k
(l) , 1=0,1, ... ,N-1 ] and

A
k

, B
k
are estimates available at the k-th block. From the

above definitions, we can write the recursive estimates for A,

B by the algorithm. Let

$k (l)=[Ak (l),Bk U)]
T

Xk (l)=[Yk (l) ,Uk (l)] T (2.12)

for 1=0, 1, ..., N-l, k = 0, 1, 2, ...; also let

Ek (l) =DFJ[ek (t)] (2.13)

with e. as in (2.11). Then the recursion is such that



v ,is A ,11 X'k (l)Ek (l)

^1 (J)=©jc
(J) +__ £ _

(2 . 14)
i +m

5
x
^(i)i 2 +i^d)i

2

)

For this algorithm we can show the following:

(a)
||

6
k+1

(l) - 6(1) ||

2 <
|| k

(l) - 0(1) ||

2 (2.15)

for all 1=0, 1, 2, . .., N-l, and for all k;

(b) If the input and output data u
k
(t) , y k

(t) are bounded for
all k and t, then

£i~ ek (t)=0 for all OztzN-1 (2.16)

In this result we see that the parameter error decreases

with time (eqn. (2.14)) and the error between the model and

the plant e
k
(t) tends to zero, i.e. the model output tends to

follow the plant output.

Proof: Let us define the parameter error

8k (l)=Qk (l)-Qk (l) (2.17)

Then from (2.14) and (2.17) we can write the recursion

&k^(l) =&
k (l) -\ik (Xk (l) Ek (l) )

(2.18)

where

^
l +
m**(pk (l)f +\Yk U)\

2
)

(2 * 19)



By taking the magnitude sguare of both sides of (2.18), we

obtain

= [©^(2) -^^(DiTjd)] [©^(J) -11^(2)^(2)]

=||© /t (2)||
2
-n J^;

r (2)^r (2)©^(2)-ji Jc
e;T (2)xJ;(2)4(2)

+ \i
2

kE*k
Tx£(l)X*k (l)Ek (l) (2.20)

By taking the sum of all frequency components in both sides of

(2.20), we obtain the expression

EP*»u>l,
-Efc«>r-i»iE

i=o i=0 J«0
El^i(^l

2

=EI^( J )|
2-^E B?ii)xlu)**u)

1=0

N-l

2=0

+ [!*£ »&*{!) XZU) Xk (l) 4(2) (2.21)

Applying Parseval ' s theorem, we can relate data in the

frequency domain to the corresponding time domain as

10



£ [E*/{1)] [xZ(l)&k (l)]=
y£§k (t)t k (t) (2.22)

j=o t-o

N-l N-l

^ek (t)t k (t)=Y:
C=0 C=2

E**(t)e Jt (t)-EpJt
(C)|a ^O (2.23)

where we define

e Ir (t)=J£>FTUJ(J)©t (I)] (2.24).^ v ui - j.ur i is\k v j. ) ^>k

Equation (2.23) comes from the fact that

§k (t)=0 Oztzn-1 (2.25)

ek (t)=yk (t) -yk (t) =ek (t) nztzN-1 (2.26)

and

e k (t)=ek (t) n<t<N-l (2.27)

Still using Parseval's theorem, we can write

ElP*u>IW (2 - 28)

ii



After some manipulations and the fact that /u
k
|X

k
(l)| 2 < 1 for

all k and 1 = 0, 1, ..., N-l, we can bound the parameter error

at the end of the (k+l)th block as

'*! r * w 2 - 2m^mw (2 - 29 >

and therefore

P*.J
2

* Pf-iHfit < 2 - 30 >

Finally, since
||

©
k II

^ for all k and is a nonincreasing

sequence as in (2.30) , the increment /liJ| e
k ||

2 must tend to zero

as k tends to infinity. Therefore

lim
ll

g*f =0 (2 31)
*"°° l+MAJ§Yk (l)\ 2 +\Uk (l)\2

}

which proves the result.

The significance of this result is that we can estimate

the parameters of the given system (in terms of A
k
(l), B

k
(l))

based on the frequency content of each block of data.

Furthermore, the estimation is recursive, and the convergence

of the prediction error e(t) to zero is guaranteed at least in

the ideal case. It will be shown in the simulations that even

in the presence of measurement noise, the convergence of the

error to small values is still satisfactory.

12



In the implementation of the estimation algorithm

introduced above, we need to compute the DFT of the "windowed"

error term e
k
(t) in (2.25) and (2.26). We can see that in the

implementation two operations of IDFT are required to compute

y k
(t) . Using DFT again, E

k
(l) is obtained, which is used in

the recursion (2.14).

An algorithm, which does not require this sequence of IDFT

and DFT in its implemention, is introduced next. The new

algorithm also offers the advantage of being able to use

different recursive estimation techniques (such as the

Recursive Least Squares) which exhibits faster convergence.

However, this is obtained at the expense of added complexity.

In order to introduce the technique, let us recall the

signal

yk (t)=a( t) ®yk ( t) +Jb ( t) ®uk ( t) (2.32)

with a, b being the plant parameters, and the equality

yk (t)=yk (t) nztzN-1 (2.33)

Going to vector notation, let us write (2.33) in the following

form

13



yk -

yk (n)

yk (N-2)

yk (N-i)

[o] [0]

[0] [J]

yk (o)

yk in)

yk (N-2)

yk (N-i)

=hyk
(2.34)

where [0] and [I] denote blocks of zeros and the identity

matrix respectively. Definition of the Fourier matrix F as

Fm,n=e
• , 2nmn >

(2.35)

allows the computation of the DFT of a sequence as a matrix

operation. In this way, we obtain from (2.34)

Fyk=Fhyk (2.36)

and therefore, after simple manipulations, the following

equation,

Fy^iFhF' 1
) (Fyk ) (2.37)

It is easy to see that the vectors Fy
k
and F y k

are the arrays

of DFT coefficients of the respective sequences y k
and y k ,

which yields

Yk=HYk (2.38)

Recall from (2.32) that

14



YA1)=AA1) YA1) +BADUA1)k^J-' "k (2.39)

for 1=0, 1, 2, . .., N-l. Let us define YU as the following

expression

YU=

Yk (0)

Yu(l)

i Uk (0)

i Uk (l)

:

Y.(N-l) U.iN-1)

(2.40)

and combine (2.38) and (2.39) to yield

AAO)

Yk = (HYU)

Ak (N-l)

Bk (0)

BAN-1)

(2.41)

The recursive estimation algorithm is derived from (2.41) . In

particular, we know that (2.41) can be broken into a sequence

of linear equations of the form

Yk (l)=$l(l)@ 1=0,1,2, . . . ,N-1 (2.42)

where

15



0=[^(O) ... Ak (N-l) Bk (0) - Bk (N-l)]
T (2.43)

is the vector of unknown parameters, and

*J(2)=[iJ(2,0) - H(1,N-1)] (YU)

= [H(l,0)Yk (0) - H(1,N-1) YAN-1)

,#(2,0) £7.(0) - H{1,N-1)UAN-1)]
(2.44)

In (2.44) the coefficient H(i,j) are constant (in the sense

that they do not depend on the block k) and are determined by

the window matrix h only.

From (2.42) we can use any recursive algorithm to estimate

0. In particular, a Recursive Least Squares [Ref. 2]

algorithm applied to complex data is going to yield the

following recursion

(2.45)

16



1*1 i p£® k (D®k(i)PkH -pi- T i
(2 - 46)

for 1 = 0, 1, 2, ..., N-l, with initial conditions at the

beginning of each time block given by

K=K-i S P°k=°
2 I (2.47)

with I the identity matrix and a 2 an arbitrary constant

parameter. In general, the constant a is chosen to be a large

value, in comparison with the order of magnitude of the

parameters 6

.

Although far more complicated to implement, the algorithm

(2.45), (2.46), and (2.47) has better convergence properties

than the one shown previously.

In the next section the two algorithms are applied to the

identification of a linear time invariant system.

17



III. SIMULATION STUDIES

A. INTRODUCTION

The estimation techniques discussed in the previous

chapter have been simulated, and used to estimate the

frequency response of a system. In addition, two computer

programs written in MATLAB have been developed. The first one

is the main program given in Appendix A which simulates the

entire system in an iterative fashion. The main program

estimates the value of the frequency response of a given

system at a particular frequency and compares it with the

corresponding value of the original system.

The second program is a function type of subroutine which

implements the Recursive Least Squares algorithm [Ref. 2].

The proposed identification method has been tested using

several different inputs in the program in order to simulate

and analyze the effect of various excitaton conditions. In

the next section, a first order recursive difference equation

is used as an example.

B. SIMPLE DERIVATION

The system being used as an example is a first order

system described by the difference equation.

18



y(fc) =0.3y(fc-l) +5. Ou(fc-l) (3.1)

In like manner (3.1) can also be written in terms of the

impulse response,

oo

y(t) =-h(0)u(0)+h(l)u(t-l)+. . . =£ h(m)u(t-m) (3.2)

Since the system is stable, its impulse response decays to

zero, and (3.2) can be approximated by a finite sum

y(fc)=h(0)u(t)+h(l)u(t-l)+. . .+h(N-l) u(t-N+l) (3.3)

In the followig simulations N is chosen as N = 32 data points.

The transfer function H(z) of the original system

tf( z)=XLEL = § (3.4)
U(z) z-0.3

yields its frequency response

H(eJQ)=-—-5 (3.5)
ej6-0.3

Due to the use of FFT methods, we estimate the frequency

response at discrete frequency points 6 = 27rl/N, 1 = 0, 1, 2,

..., N-l. For this purpose, let us define

19



-j(-S^S)
Hd)=j2 h ^n)e K (3 * 6)

and its finite approximation

N-l _., 2Kln
)

H{l)=Y,h(n)e N (3.7)
n=0

The next step is to calculate the frequeccy response of the

original system.

C. STRUCTURE OF THE PROGRAM

The algorithms introduced in the last chapter have been

tested in the identification of a discrete time system. In

particular we look at the problem of identifying the frequency

response of the system by fitting a finite impulse response

system to the input-output data.

The software developed consists of two programs: a main

program which produces the input output data used in

identification, and a subroutine which implements the

Recursive Least Squares identification shown in Chapter II.

The effectiveness of the estimation is assessed on the

basis of two criteria: the error between actual output of the

system and predicted output, and the error between the

frequency response of the system and the frequency response of

its estimate.

20



Since we try to fit a finite impulse response model to a

recursive system (with impulse response of infinite length)

,

we cannot pretend to estimate the frequency response at all

frequencies in an effective way. Therefore, we input test

signals at finite number of frequencies and we look at the

estimated spectrum at these frequencies only.

As it will be seen in the sequel, the results are

satisfactory even in the presence of added disturbances in the

measurements. The recursive use of blocks of data has the

effect of smoothing the effect of disturbances in the

estimates.

D. SIMULATION RESULTS

In this thesis, we try inputs with different frequencies

to test the identification algorithm. Also, we test the

behavior when the input is the combination of several

different frequencies to examine the effectiveness of the

technique. In the next paragraph, we discuss some results

obtained by running the program.

1. Original System

Figure 3 . 1 shows the magnitude and phase of frequency

response of the original system. It shows the low pass nature

of the system.

21



2. Single Frequency Input at Arbitrary Frequency without

Noise

Figure 3 . 2 and 3 . 3 are in the same group in which we

tried a constant input with magnitude 10. As predicted,

figure 3 . 2 portrays the error EPS between the output and

predicted output which decreases and approaches zero.

Furthermore, in figure 3.3, the frequency response of the

estimated model at the input frequency is shown to be

identical to the one of the original system.

In a second set of experiments, we tried several

sinusoidal inputs with different frequencies. First of all,

we used an input signal with a digital frequency tt/2 and

obtain the results shown in figures 3.4 and 3.5. And then, we

tried another input with frequency tt/8 and get the results

shown in figures 3.6 and 3.7. In like manner, the error

approaches to zero quickly and the frequency response of the

estimated model at the input frequency is the same as the one

of the orignal system.

3. Multiple Frequency Inputs without Noise

In a third set of experiments, we tried the

combination of four frequency inputs at arbitrary frequencies

to obtain the results shown in figures 3.8, 3.9, and 3.10.

The output in the time domain is shown in figure 3.8. In this

case, the error between true and predicted outputs approaches
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zero quickly and the frequency responses at the input

frequencies are still identical.

4. Single Frequency Input with Noise

In this section we show results of similar experiments

with random measurement noise. The noise considered is

Gaussian white zero mean, i.e., independently and indentically

distributed. Its standard deviation is set at about one third

of the output magnitude.

As before we first excite the system with a constant

input, and we add measurement noise to the output of the

system. The results are shown in figures 3.11, 3.12, and

3.13. From figure 3.12, even though we find that the error

does not decay to zero due to the presence of noise, the

frequency response of the estimated model is sufficiently

close to the one of the original system.

In a second set of experiments, we tried sinusoidal

inputs again with noisy measurements. There are four inputs

with different digital frequencies (ll7r/16,7r/2 , 7r/4, and tt/16)

used and the results are shown in fiqures (3.14-3.22)

respectively. Then, by inspecting the figures, the error

still does not go to zero due to the presence of noise, but

the estimated frequency response is sufficiently close to the

one of the oriqinal system.
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5. Multiple Frequency Inputs with Noise

In like manner, we input signals with multiple

frequencies to test the alogrithm. In this case, we used four

different groups of inputs. The first one is constant and

sinusoidal (frequency tt/2) input. The 2nd one is a constant

and sinusoidal (frequency n/4) input. The 3rd and 4th are

sinusoidal with two frequencies (7r/2,7r/4) and (n/4 ,tt/8)

respectively. The results are shown in figures 3.2 3 to 3.31.

Then, inspection of these figures reveals that the error in

each case is bounded and the frequency responses of the

estimated model are sufficiently close to the one of the

original system.
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IV. CONCLUSION

In this thesis we introduced an approach to the

identification of linear models based on the frequency domain

formulation. The recursive nature and the use of FFT

techniques make the approach attractive for on-line

implementation

.

A particular aspect we addressed is the identification of

the frequency response of the system by approximating the

impulse response with a finite sequence. By use of a

simulated example we have explored the convergence properties

of the algorithm, and its robustness in the presence of

measurement noise.

Several issues remain to be investigated, mainly the

advantages (if any) of this approach in comparison with more

conventional time domain estimation techniques. Although this

is subject of future research, as a conjecture we can say that

the recursive frequency domain approach might be more robust

than the conventional time domain in the cases when the input

signal has energy concentrated around a few frequencies, such

as the case of periodic excitation. In this case the

processing gain of the DFT should give a better performance in

the presence of measurement noise.
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APPENDIX A : MAINPROGRAM

THESIS MAIN PROGRAM File name THESIS4.M

Advisor
Student
Date

Roberto Cristi
Chao, Chi-Shun
Jan, 1, 1991

% Set some constant number

clg
clear
tfinal = 80;
dt = 0.1;
kmax = tfinal/dt;
rand (

' normal
' )

;

rand_mag = 3 5;
M = 20;
N = 32;
N2= N/2;

The max. time to run
Sampling time
The max. number of signals
Set the type of noise
Set the gain of noise
The # to calculate the error
The # of signals in a block

% Set the
yp(l)=0;
yp(2)=0;
y(l)=0;
y(2)=0;
u(l)=0;
u ( 2 ) =0

;

initial condition

% Produce the input and coresponding output
% at different frequencies
for n=3:kmax

%u(n)= 10;
u(n)= 20*cos(pi*n*5/16)

;
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%u(n)= 30*cos(pi*n/4)

;

%u(n)= 40*cos(pi*n/8)

;

%u(n)= 50*cos(pi*n/16)

;

%u(n)= 60*cos(pi*n/32)

;

%u(n)= 10+30*cos(pi*n/4)

;

%u(n)= 40*cos(pi*n/8)+30*cos(pi*n/4)

;

%u(n)= 10+2 0*cos(pi*n/2)+3 0*cos(pi*n/4)+4 0*cos(pi*n/8)
%u(n)= 10+20*cos(pi*n/2)+30*cos(pi*n/8) ...

+40*cos (pi*n/8+50*cos (pi*n/16)

;

yp(n)=0. 3*yp(n-l)+5. 0*u(n-l)

;

y (n) =yp (n) +rand_mag*rand;

end

% Produce the figures of input and output
plot(u)

;

title ( 'INPUT U(n) ' )

;

xlabel (
* n

' ) ; ylabel (
' MAGNITUDE

' ) ;

grid;
pause;

clg
subplot(211) ,plot(yp)

;

title ('YP(n) ORIGINAL OUTPUT WITHOUT NOISE ');
xlabel ( n

' ) ; ylabel (
' MAGNITUDE

' )

;

grid;

subplot (212) ,plot(y)

;

title('Y(n) OUTPUT WITH NOISE u (n) =20cos (5*pi*n/16)
y(n)=yp(n)

' )

;

xlabel (
'
n

' ) ; ylabel (
' MAGNITUDE

' )

;

grid;
%meta thesis44
pause;
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% Produce the frequency response of the original system
% by using the "dbode" function
num=[5]

;

den=[l,-0.3]

;

w=linspace(0,pi, 17)

;

[mag, phase] =dbode (num, den, w)

;

clg
subplot(211) ,plot(w,mag)

;

title ( 'FREQUENCY RESPONSE OF THE ORIGINAL SYSTEM H(Z)');
xlabel( 'THETA' )

;

ylabel (
' MAGNITUDE

' )

;

grid;

subplot(212)
,
plot (w, phase) ;

title ( 'FREQUENCY RESPONSE OF THE ORIGINAL SYSTEM H(Z) 1

);

xlabel( 'THETA' )

;

ylabel ( 'PHASE (DEGREE)');
grid;
pause;

% Create the matrix H
v= [ zeros ( 1 , N2 ) , ones ( 1 , N2 )

]

h=diag(v)

;

F=fft(eye(N) )

;

H=F*h*inv(F)

;

% Set the zero matrix
THETAK = zeros(N,l);
P0=10*eye(N)

;

P=PO ;
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% Use the FFT and RLS (Recursive Least Square) techniques
% to estimate frequency response of the model. It is an
% interactive and iterative loop
for k = 2 : M

ykO = y( (k-l)*N2+l : k*N2 )';
uk = u( (k-2)*N2+l : k*N2 )';
yk= [ zeros (N2, 1) ;ykO]

;

YK = fft( yk )

;

UK = fft( uk ) ;

EPS (k) =0.0;

for i = 1 : N

PHI=diag(H(i,
: ) )*UK;

[THETAK,P]=rls(THETAK,P,PHI,YK(i) )

;

EPS(k)=EPS(k)+(YK(i)-conj (PHI
•

) *THETAK) ' * ...

(YK(i)-conj (PHI 1 )*THETAK)

;

end

THETA(:,k) = THETAK ;

end

EPS = sqrt(EPS)/N;

% Calculate the corresponding horizontal axis
for k=0:N/2

wl(k+l)=2*pi*k/N;
end
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% Produce the frequency response figures of estimated model
clg
subplot (2 11) ,plot(wl,abs(THETA(l:17,M)

) )

;

title ( 'EST. H(Z) '
) ;

xlabel(»THETA ( PI*K/(N/2) )');
ylabel (

' MAGNITUDE
' )

;

grid ;

subplot (2 12) ,
plot (wl, angle (THETA(1: 17, M) ) )

;

title ( 'EST. H(Z) ')

;

Xlabel( 'THETA ( PI*K/(N/2) )');
ylabel ( 'PHASE (RADIAN)');
grid;
pause;

% Produce the error figures
clg
displot(EPS)

;

title ('EPS (when u(n) =20cos (5*pi*n/16)
y (n)=yp(n)+35*rand )•);

xlabel( 'K')

;

ylabel (
' MAGNITUDE

' )

;

grid;
Imeta thesis44
pause;

% Produce the frequency response of the estimated model
% in a continuous pattern.
clg
plot(w,mag,wl,abs(THETA(l:17,M)

) )

;

title('H(Z) & EST. H(Z) ');

xlabel( 'THETA ( PI*K/(N/2) )');
ylabel (

' MAGNITUDE ' ) ;

grid;
pause;
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% Store the value of the response of the estimated model
% at the input frequency.
THETA_F = zeros(17,l);
%THETA_F(1,1)
%THETA_F(2,1)
%THETA_F(3,1)
%THETA_F(5,1)
%THETA_F(9, 1)
THETA_F (6,1)

= THETA(1,M)
= THETA(2,M)
= THETA(3,M)
= THETA(5,M)
= THETA(9,M)
THETA(6,M)

;

frequency response of the original system and
model at the input frequency

Produce the
the response of estimated
in the same figure.

clq
plot (w,mag)

;

title ('H(Z) & ESTIMATED H(Z) AT THE INPUT FREQUENCY
(WITH NOISE)

• )

;

xlabel( 'THETA ( PI*K/(N/2) )');
ylabel (

' MAGNITUDE
' )

;

grid;
hold on
displot (wl , abs (THETA_F) )

;

hold off
%meta thesis44
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APPENDIX B : FUNCTION TYPE SUBROUTINE RLS

SUBROUTINE TYPE FUNCTION

% Advisor : Roberto Cristi
Student
Date

Chao, Chi-Shun
Jan, 1, 1991

File name RLS.M

function [x,p]=rls (x,p,phi,y)

It updates the estimate x and its covariance p
by standard recursive least squares.

data: x = column vector (input, output)

p = square matrix,
y = scalar (input)
phi = column vector

positive definite (input , output)

(input)

NOTE: Due to numerical approximations it might be
a good idea to check the matrix p for positive
definiteness.

fact = 1.0 + phi'*p*phi;
x = x + p*conj (phi) * (y-conj (phi' ) *x)/fact;
p = p - p*conj (phi) *conj (phi' ) *p/ fact

;

end rls
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