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ABSTRACT 

The National Aeronautics and Space Administration’s current proposed timeline for an 

interplanetary expedition is circa 2030. A manned Mars mission involves many complex 

requirements for communication with significant challenges including implementation, 

signal limitations, orbit requirements, and Earth-Sun-Mars occlusion.  

This analysis is focused on the potential advantages and disadvantages of 

potential orbits for maintaining communications with a manned mars mission. Areas 

analyzed will include signal limitations and possible improvements for Mars 

communication, through recommended frequency, the resulting signal to noise ratio, 

available channel capacity, and possible data rates of potential orbits. 

Ultimately, the purpose of this study is to determine (1) will one to two satellites 

be capable of maintaining continuous communication between a Mars orbit and a Mars 

ground mission, (2) will one to two satellites be capable of maintaining communication 

between Mars and Earth, likely through the Deep Space Network (DSN), (3) which 

frequency or frequencies will best suit Earth-Mars, and Mars relay communication, (4) 

how many satellites are necessary for continuous communication, including during Mars 

transit through the solar occlusion zone, and (5) what orbits are necessary to provide 

continuous communications throughout all the above mission regimes?  
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I. INTRODUCTION 

As propagating waves, electromagnetic transmissions (EM) are subject to path 

losses. These losses include free space loss, absorption loss, diffraction, multipath loss, 

terrain, and atmospheric loss. Free space loss is caused by the diffusion of signal power 

over an increasing area, essentially as the signal travels it expands in three dimensions, 

this expansion decreases the power per unit area of the signal. At the receiver, this power 

loss is proportional to the distance traveled. Absorption occurs as the signal travels 

through a non-transparent medium as the medium absorbs a part of the transmitted signal. 

Diffraction is caused by interfering objects in the line of transmission, as signals can 

reflect but not “bend” diffraction losses are increased by rounded objects. Multipath loss 

is caused by the signal taking multiple paths to the receiver and their subsequent in phase 

or out of phase re-combination. Terrain affects the signal through obstruction and 

attenuation, dependent on the frequency, composition can also affect signal strength. 

Atmospheric loss similarly causes loss through both refraction and reflection. The 

troposphere has an especially significant effect, evident by ultra high a (UHF) 

“bouncing.”  

A. ATMOSPHERE 

An atmosphere is the layer or envelope of gases surrounding a planet (Merriam 

Webster, 2014). It is critical and largely causal to the morphology of a planet. 

Additionally, in the case of Earth, atmosphere is crucial to the evolution and survival of 

life. 

1. Earth Atmosphere 

Earth’s atmosphere is comprised of roughly 78% nitrogen, 21% oxygen,  

1% argon, and trace amounts of carbon dioxide, iodine, carbon monoxide, and ammonia 

with water vapor at low altitudes (Cain, 2009). This leads to significant attenuation by 

oxygen (which possesses a permanent magnetic moment) and attenuation by precipitation 

due to clouds. Water vapor attenuation is subject to many parameters, but is most affected 
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by droplet size, which can be represented by a logarithmic function of signal strength 

before, after, and through the rain region (Zubair, Haider, Khan, & Nasir, 2011).  

2. Mars Atmosphere 

In contrast, Mars’ atmosphere is comprised of 96% carbon dioxide, 2.1% argon, 

1.9% nitrogen, and traces of free oxygen, carbon monoxide, water, methane, nitrogen 

oxide, neon, hydrogen-deuterium-oxygen, krypton, and xenon (Mahaffy et al., 2013). 

This represents only 0.6% the volume of atmosphere surrounding Earth. However, Mars 

Exploration rovers indicated the Martian atmosphere is highly dusty as it contains a 

significant volume of suspended dust particles roughly 1.5 micrometers in diameter, 

which will affect high frequency signals.  

B. ATMOSPHERIC EFFECTS 

Based on the measurements from Viking 1, 2 and Mars 6, Seiff (1982) derived a 

nominal mean model of pressure and temperature shown below. This model was used by 

Ho, Golshan, and Kliore (2002) to tabulate the Martian tropospheric parameters and 

subsequently Martian tropospheric effects as functions of: temperature, pressure, and 

atmospheric mass density for a mid-latitude summer seasonal atmosphere where 

µ=43.49, R=191.18 joule/kg K, gravity g(z), and temperature T(z) are functions of 

altitude z  

 

Based on the Seiff (1982) model, in their paper, “Martian Atmospheric Effects on 

Radio Wave Propagation,” Ho, Sue, and Golshan (2002) found the Martian atmospheric 

scale height (HN) to be 11 km, which yields a refractive index (N) two orders of 

magnitude smaller than that of Earth, shown below where N0 is the surface value of N 

(N0=3.9N unit) when altitude h=0. 

∗  

As such, ray bending and multipath loss are present but significantly lower than 

terrestrial losses. Due to the relative size of Mars (15% of Earth by volume, 11% of Earth 



 3

by mass) defocusing loss will be increased. Mars temperature fluctuations (120 K–293 K) 

are comparable to Earth (185 K–344.85 K) and when combined with the significantly 

thinner troposphere, Ho et al. (n.d.) indicate Mars scintillation losses represented in 

Figure 1 are likely less than 0.5% of Earth.  

As shown by Ho et al. (n.d.), the thin atmosphere and low temperatures (average 

210 K) also eliminate many Earth-like weather effects. Martian clouds have an average 

optical depth of 1.0 from 400–700 nm (visible range), equaling a 63.3% reduction of 

transiting signal. At their extreme, Martian clouds are similar to high-level cirrus clouds 

on Earth. Due to the relatively dry atmosphere (water content 1/3000th Earth) water 

absorption is low. Absorption losses are further decreased because the Martian 

atmosphere is predominately composed of CO2 and N2, which do not form electric or 

magnetic dipoles, though CO2 and N2 can through interaction at high density cause 

absorption lines in the infrared and visible bands. Ho Sue, and Golshan (2002) frequency 

versus attenuation is shown in Figure 1.  

 

Figure 1.  Gaseous specific absorption of Earth and Mars  
(from Ho, Sue, & Golshan, 2002) 
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Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) data 

analyzed by Andrews et al. (2013) indicates a Martian plasma frequency range from 40 

kHz to 231 kHz. Typical communications will not be affected however; during entry 

Mars Pathfinder experienced an expected 10 second plasma sheath blackout when plasma 

density surrounding the lander increased to over 8.8 x 1011 cm-3 (Ho, Sue, & Golshan, 

2002).  

1. Losses 

Ho et al. (2002) calculates free space loss on Mars ranges from 277 dB to 294 dB 

between Mars and Earth. Earth tropospheric losses for Ka-band (26.5–40 GHz) average 

3–4 dB but can be as great as 5 dB (vertical propagation) largely due to rain scattering 

and absorption. Mars tropospheric losses are dominated by dust storms, which average 1 

dB but can be as large as 3 dB. Combined Martian atmospheric losses average from 1.4 

to 2 dB but could be as great as 3.4 dB. Multipath losses can be extrapolated from Earth 

data and may be as high as 2–8 dB for L band signals, with higher losses expected at 

higher frequencies.  

Ho et al. (2002) further calculated total expected Mars-Earth atmospheric losses 

will likely be near 8 dB. Simplified path loss between Mar-Earth can be calculated using 

20log	
4

 

where D = maximum straight-line distance between Earth and Mars (this neglects the Sun 

occult region and equals 401E6 km), and λ = wavelength (34450 MHz uplink, 32050 

MHz downlink), which yields a free space path loss of -295.2 dB uplink, and -294.6 

downlink. Therefore, total losses are expected to be near 303 dB. To calculate losses 

incorporating a viable occult solution, additional, and potentially non-keplerian (B) 

orbits, must first be used.  

2. Noise 

The ITU Radiocommunication Assembly identifies sources of radio noise 

external to the radio receiving system for Earth-space communications as from the 
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following: atmospheric noise (including lightning), radiation from machinery and or 

transmission lines, emissions from atmospheric gases and hydrometeors, obstruction, and 

celestial sources. Noises from such sources are typically given in terms of brightness 

temperature.  

External noise figures (dB) and sky temperatures (K) versus frequency calculated 

by Ho, Slobin, Sue, and Njoku (2002) in “Mars Background Noise Temperatures 

Received by Spacecraft Antennas” are given in Figure 2. 

 

Figure 2.  ITU-R P372-7 frequency vs. noise  
(from ITU Radiocommunication Assembly, 2001) 

Martian surface emissivity, a significant component of background noise, is 

dominated by surface temperature. Mars surface temperatures are lower than but 

comparable to Earth. Ho et al. (2002) calculate the antenna noise temperature for an 

antenna (pointing) at Mars and Earth (in degrees Kelvin). Ka-band is summarized in 

Table 1. 
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Table 1.   Ka-band antenna temperature (K) at Mars and Earth  
(after Ho, Sue, & Golshan, 2002). 

Downward Looking Mars 193 
Earth 210 

Upward Looking Mars 3 
Earth 117 

 

Using the Ho, Sue, and Golshan (2002) antenna noise temperatures, and an 

estimated Mars sky noise temperature of 5 K and an Earth average sky noise of 43 K (Ho, 

Slobin, & Gritton, 2005), total Ka-band receiver noise can be estimated using: 

 

1  

 

 

Resultant Mars noise is shown in Table 2. 

Table 2.   Signal noise 

 Tant (K) T 
(K) 

NF N (W) N 
(dB) 

Downward Looking Mars 193 198 1.68 1.37E-12 -118 
Earth 210 253 1.87 1.75E-12 -117 

Upward Looking Mars 3 78 1.27 5.38E-13 -122 
Earth 117 166 1.57 1.15E-12 -119 

 

where T0 = 290 K, k = Boltzman’s constant 1.3806488 x 10-23 noise temperature 5 K in 

Ka-band, downward looking is same as earth, surface mars 210K, 300K earth.  

3. Gain 

Antenna gain relates the intensity of an antenna in a given direction to that of a 

hypothetical lossless ideal antenna radiating equally in all directions. Using their gaseous 

attenuation model and a hypothetical 1 m dish antenna, Ho, Sue, and Golshan (2002) 

calculated background noise effects on the gain of a Mars based signal/receiver, across 

multiple bands as follows in Table 3. 
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Table 3.   Antenna maximum and minimum gains by frequency (after Ho, 
Sue, & Golshan, 2002) 

Band UHF S X Ka 
Omni-

directional 
f (GHz) 0.4 2.3 8.4 32  
Gmax (dB) 12 25.4 36 47 3 
Gmin (dB) -3.6 -7.4 -10.2 -13 -1 
 

This shows a clear gain advantage of high frequency Ka-band communications 

from and to Mars. 

Current commercial Ka-band receiver antenna sizes range from 0.35 to 25m 

(“KA-band,” n.d.). Assuming an efficiency of .7 and the Ka-band standards for 

transmission, the expected gain of a 0.3 m receiver antenna at the low limit of Ka-band is 

over 18 dB (SatCom Online, 2014).  

Using antenna gain calculated from the standard antenna gain equation shown 

below, NASA’s Deep Space Network (DSN) 70m antenna parameters include a Ka-band 

gain of over 85 dB and a maximum transmit power of 400 kW. The DSN 34m antenna 

posts a similarly impressive gain of 80 dB operating in the Ka-band. Additionally, 

NASA’s recently developed inflatable/self-rigidizable antenna dish could provide similar 

efficiency with a 24 m2 area and subsequent 63 dB of gain  

10log	
4

 

where Ar = physical aperture area, λ= wavelength in meters at the frequency of operation 

(34450 MHz uplink 32050 MHz downlink), and η = aperture efficiency (70%).  

C. LINK BUDGET 

Therefore, the downlink budget in dB of Mars communication can be expressed 

as  

 



 8

where Pr = power received, Pt = power transmitted, Gt = gain of the transmit antenna, Gr = 

gain of the receive antenna, and Lp – path loss, which = free space loss + atmospheric 

loss.  

D. BASELINE ESTIMATES (NOT A VIABLE OCCLUSION SOLUTION) 

Assuming a DSN transmission power of 400 kW (its maximum output), the signal 

received from Earth to Mars should be near -96.2 dB. A signal received from Mars 

(assuming an unrealistic orbiter transmission power of 400 kW) should be near -96.9 dB. 

Assuming a more realistic safety restricted DSN transmit power of 20 kW, and viable 

orbiter transmission power of 100 W, the received signals should be near -115 dB and  

-139 dB, respectively. transmission link budgets are summarized in Table 4.  

Table 4.   Baseline link budgets 

 Transmit Power Gain 
Transmitter 

Gain 
Receiver 

Loss (Free space + 
atmospheric) 

Received 
Power 

Uplink 70 m 
(34450MHz) 

400kW=56.02dBW 86.5 64.4 295.2+8=303.2 -96.3 

Downlink 70m 
(32050 MHz)  

400kW=56.02dBW 63.8 85.9 294.6+8=302.6 -96.9 

Uplink 34 m 
(34450 MHz) 

400kW=56.02dBW 80.2 64.4 295.2+8=303.2 -102.6 

      
Downlink 34 m 
(32050 MHz)  

400kW=56.02dBW 63.8 79.6 294.6+8=302.6 -103.2 

Uplink 70 m 
(34450MHz) 

20kW=43 dBW 86.5 64.4 295.2+8=303.2 -109.3 

Downlink (32050 
MHz) Low Power 

100W=20dBW 63.8 85.7 294.6+8=302.6 -132.93 

Uplink 34 m 
(34450 MHz) 

20kW=43 dBW 80.2 64.4 295.2+8=303.2 -115.6 

Downlink (32050 
MHz) Low Power 

100W=20dBW 63.8 79.6 294.6+8=302.6 -139.2 

 

E. SIGNAL TO NOISE RATIO 

Signal to noise ratio (S/N or S/N) is a comparison of the desired signal power to 

the background noise. It is typically expressed in decibels where any positive value 

indicates a greater presence of signal than noise. Mathematically, it is expressed as: 
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or 

10 log / , ,  

The Shannon-Hartley theorem describes the channel capacity or maximum 

information rate based on the S/N. The channel capacity in bits per second is expressed 

as: 

log 1  

where B equals the bandwidth in Hz, and S/N is a unit less ratio of W/W.  

The Eb/N0 or energy per bit to noise power spectral density ratio is used to 

compare bit error rate (BER) performance of different modulation schemes within digital 

communications. It is a normalized S/N or S/N per bit (“Eb/N0,” 2014). It can be 

expressed as: 

∗  

The spectral efficiency in bits/Hz expresses the net bit rate or maximum 

throughput over the bandwidth of a communication channel. It is used to analyze the 

efficiency of digital modulation often in combination with forward error correction.  

Ultimately based on averaged noise temperatures of Earth and Mars (“DSN 

Telecommunications,” n.d.; Ho et al., 2002; Ho, Sue, & Golshan, 2002; Shambayati, et 

al., 2014; Taylor, Lee, & Shambayati, 2006), the best case (high power large dish uplink) 

S/N is 172.4 dB and worst case (medium dish low power downlink) S/N is 0.022 dB, 

which yield channel capacities of 3.72 Gbps, and 15.9 Mbps, and Eb/N0s of 23.2 and 

0.701. An over 1000% increase from the Mars Reconnaissance Orbiter’s average 

downlink speed on X-band (Taylor, Lee, & Shambayati, 2006).  
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II. ORBITS AND INTRODUCTION TO NON-KEPLERIAN 
ORBITS 

An orbit is the gravitationally curved path of an object around a point in space 

(barycenter), or alternately, the path followed by a celestial body or artificial satellite as it 

revolves around another body due to the force of gravity. In the case of a celestial body or 

satellite, the barycenter is the center of mass of the system. Orbits are elliptical or nearly 

circular in shape and are very closely approximated by Kepler’s laws of planetary motion 

(“Orbit,” n.d.). 

Planetary motion within our own solar system was mapped and understood for its 

periodicity for many centuries but it was not until Johannes Kepler (1619), a German 

mathematician, developed his three laws of planetary motion in the early 17th century 

that the solar system was accurately modeled and more importantly, the movements of 

the planets successfully predicted.  

A. KEPLERIAN ORBITS 

Johannes Kepler was a brilliant mathematician hired to map the orbit of Mars by 

the infamous elk owner, duelist, and astronomer Tycho Brahe (Dreyer & Brahe, 1890). 

Despite a difference in viewpoints (Kepler supported Copernicus while Brahe developed 

his own model of planetary motion in which the Sun orbited the Earth and all other 

bodies orbited the Sun), Kepler eventually inherited Brahe’s detailed astronomical 

records, and using Brahe’s data, Kepler ultimately showed not only did the planets orbit 

the Sun, but the planets’ orbits were elliptical with the Sun at one focus point (Kepler, 

1622). Kepler (1619) further determined the planets traced a path of continuous area per 

unit time (they moved much faster when nearer the Sun), and ultimately, found the period 

is directly and mathematically related to the planet’s distance from the Sun. These three 

ideas became Kepler’s three laws of planetary motion illustrated in Figure 3.  
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Figure 3.  Kepler’s laws (from Stundle, 2007) 

In Figure 3, f1 and f2 depict the foci of the system of the Sun and two planets, a1 

and a2 depict the semi-major axes, and A1 and A2 show area cross sections carved by 

equal orbit times.  

Following Kepler’s publication of his three laws, Isaac Newton proved Kepler’s 

laws adhered to his, then new, concept of gravity. To illustrate gravity, Newton described 

the motions of an apple from a tree and the moon around the earth as adhering “To the 

same natural effects,” and further stated, “we must as far as possible, assign the same 

causes” (“The Science,” 2009). In his breakthrough work, Philosophiae Naturalis 

Principia Mathematica, Newton described his own three laws of motion, and more 

importantly, defined the concept of universal gravitation, which ultimately provided the 

mechanism for Earth’s movement around the Sun, and consequently, provided a plausible 

basis of motion for Kepler’s laws (Newton, 1687).  

A Keplerian orbit as expressed by Lemmon and Mondragon (2010) is: 

1  

where l = angular momentum per unit mass, G = the gravitational constant or 6.670E-11 

m3kg-1s-2, M = 1.989E30 kg (the mass of the Sun), a = the semi-major axis of the orbit, 

and e = orbit eccentricity.  
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The current model of the solar system is built on Albert Einstein’s principle of 

relativity and supported by data from the 1970 Mariner Spacecraft, the 2003 Cassini 

spacecraft, as well as NASA’s Gravity B probe (“Einstein’s General Relativity,” 1970; 

Perrotto, 2011; “Saturn-bound Spacecraft,” 2003). The relativistic correction as defined 

by Tyler J. Lemmon and Antonio R. Mondragon (2010) in their paper “First-Order 

Relativistic Corrections to Kepler’s Orbits” is: 

1
 

and is greatest for planets close to the Sun or with very eccentric orbits (Lemmon & 

Mondragon, 2010).  

In general, using special relativity accounts for one sixth of the observed 

planetary orbit discrepancy (roughly 43 arcsec/century) (Lemmon & Mondragon, 2010); 

therefore, modeling the solar system (and subsequent three body satellite problems) as a 

Keplerian orbit problem is sufficient for this communication capability analysis. 

Keplerian orbits account for the rotation of the vast majority of celestial bodies 

within our solar system. Notable anomalies are the non-Keplerian propeller moons in 

orbit within Saturn’s rings (Tiscareno et al., 2010). Keplerian orbits trace a path of an 

ellipse, parabola, or hyperbola (escape orbit) and belong to a group of curves known as 

conic sections. Their mathematic expression is: 

1
1 cos

 

where r = the distance, a = the semi major axis, e = the orbit eccentricity, and ν = the true 

anomaly (the angle between the orbiting body and its closest approach to the central 

body, periapsis). 

Based on their eccentricity (e) Keplerian orbits can be geometrically illustrated, as 

shown in Figure 4. 
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Figure 4.  Keplerian orbits of various eccentricity (from Hill, n.d.) 

Keplerian orbits are also identified as conic sections (“Conic Section,” n.d), which 

describe an orbit as the intersection of a plane and a cone. Dependent upon the angle of 

intersection, the resulting curve takes the shape of a parabola, circle, ellipse, or a 

hyperbole, shown in Figures 5 and 6. 

 

Figure 5.  Conic sections (from 
Seahen, n.d.) 

Figure 6.  Conic sections 
(from S.A, n.d.) 
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In addition to describing planetary motion around the Sun, Keplerian orbits also 

describe satellite motion around a planet. 

B. SATELLITE ORBITS 

Satellite communications via a geosynchronous satellite were first suggested by 

Arthur C. Clarke in the October 1945 issue of Wireless World (“Clarke Suggests,” 2013). 

Since then satellites have become an integral part of daily life. Over 6,600 satellites have 

been launched with an estimated 3,600 still in (Keplerian) orbit (Rising, 2013). 

Satellites provide relays for communication across the globe and between 

spacecraft. They have enabled our present EM environment. However, as Keplerian 

orbiting bodies, satellites are restricted to a narrow field of stable orbits. These orbits 

limit the reach of satellite communications, which, in some cases, are completely unable 

to provide access. One such case is occultance where one body blocks an observer’s view 

of another object by passing between them. A simple example of an occultance is a solar 

eclipse by the moon. In the case of a manned Mars mission, the greatest period of 

downed communications is caused by a solar occultance of the Earth-Mars system shown 

in Figure 7 (Provo, 2011b). This region occupies a roughly 5° arc as seen from Earth, 

which exceeds the diameter of the Sun significantly, but is still affected by solar 

interference (Provo, 2011a). In order to avoid this outage, Lagrange points or non-

Keplerian orbits must be used.  
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Figure 7.  Earth-Sun-Mars occult region (from Provo, 2011b) 

C. NON-KEPLERIAN ORBITS 

Using the Keplerian model of the solar system, and the Earth-Sun-Mars 3-body 

system, Robert J. McKay, Malcolm Macdonald, James Biggs, Colin McInnes, and 

Massimiliano Vasile, in their papers, “Survey of Highly-Non-Keplerian Orbits with Low-

Thrust Propulsion” (McKay, Macdonald, Biggs, & McInnes, 2011), and “Non-Keplerian 

Orbits using Low Thrust, High ISP Propulsion Systems” (McKay, Malcolm, Bosquilion 

de Frescheville, Vasile, McInnes & Biggs, 2009) describe a potential solution to 

communications blackouts caused by the Sun occult region.  

To summarize McKay et al. the possibility of holding an object in artificial 

equilibrium through continuous application of low thrust propulsion against the 

difference in gravitation and centripetal force was first proposed by Dusek in 1966 

(McKay et al., 2009). Since then, the potential for continuous low thrust propulsion has 

been expanded, allowing for the possibility of expanding a spacecraft’s trajectory out of 

natural (Keplerian or A) orbits into displaced (non-Keplerian or B) orbits. These B orbits 

include the “orbit” of hovering above the pole of a planet as a “Statite” as described by 

Forward in the early 1990s (1991).  
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Alternately, McInnes (1998) described the conditions for circular displaced non-

Keplerian orbits using an (x, y, z) reference frame and spacecraft of mass m rotating at 

constant angular velocity  , shown in the following equations: 

2  

where r is the position vector with dots differentiated with respect to time, and V is the 

augmented potential (shown below)  

1
‖ ‖ ‖ ‖

1
2
‖ ‖  

 

and a represents the applied thrust where n is the direction of thrust and G is the 

gravitational constant (equal to 1) making   the reduced mass. 

 

 
/  

By setting 0 (setting equilibrium conditions in the rotating frame) McInnes 

(1998) then simplified the equation to: 

 

which defines a surface of points at equilibrium, which subsequently, makes it possible to 

readily find and plot equilibrium points for a variety of forces (propulsion capabilities). 

The thrust vector for these points is given by 

‖ ‖
 

and the magnitude of the thrust vector is given by 

‖ ‖ ‖ ‖ 

Ultimately, the above equations allowed McInnis to treat the spacecraft as a 

stationary body within the reference frame, and then categorize two trajectories using 

continuous thrust. The first category is a displaced traditional (Keplerian orbit), such as 

the shift of a geostationary orbit (around the equatorial plane), to a hover orbit above the 
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pole of a planet. The second category is displaced orbits at the Lagrange points of a 

system. Lagrange point orbits are discussed further later.  

Using a three-body problem to approximate a satellite orbiting a planet within the 

solar system, McKay et al. (2009) identifies a spacecraft of mass m within a rotating 

reference frame comprised of fix masses m1 and m2 with the x axis linking the primary 

masses, and the y axis denoting the axis of rotation. This in turn creates a spacecraft 

position vector of r=(x,y,z)T or alternately position vectors of r1 and r2, which describe the 

spacecraft position with respect to m1 and m2. In this case, r1=(x+μ,y,z)T and r2=((x-(1-

μ),y,z)T, all of which are shown in Figure 8.  

 

Figure 8.  Rotating coordinate frame and spacecraft position for restricted 
three-body problem (after McKay et al., 2009) 

At its limit, the three-body problem can be resolved as a two-body problem where 

the second mass m2=0, such as the case where the third body’s mass is inconsequential in 

comparison to the much larger first and second bodies (i.e., a satellite in reference to a 

planet and the Sun). Using cylindrical polar coordinates (  ,z), and rotating with constant 

angular velocity ̂ relative to an inertial frame I, McKay et al. (2009) depicts the 

system in Figure 9. 
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Figure 9.  Two-body displaced non-Keplerian orbit (from McKay et al., 2009) 

Because ω is constant, there is no transverse component of thrust. As such, the 

thrust vector exists solely in the plane of the radius vector and vertical axis, which 

consequently defines a single pitch angle, a, mathematically the system is: 

 

 , ;   

 

tan
‖ ̂ ‖
̂ ∙

1  

 

 

 

, ;  
 

all of which describes a stationary spacecraft within a rotating frame of reference or 

alternately within an inertial reference frame the spacecraft orbits in a displaced circle 

above the central body (a halo).  

McKay et al. (2009) goes on to subdivide the first category of B orbits (halo orbits 

described above) into three types: Type I orbit period fixed for a given r, Type II orbit 

period fixed for a given ρ, and Type III Keplerian orbit (displaced orbit with the same 

orbital period as a selected Keplerian reference).  
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Type I orbits require the global minimum thrust, which makes the acceleration a 

function of ρ and z. Type II orbits describe a satellite that is synchronous with a body on a 

circular Keplerian orbit in the z=0 plane with a radius ρ. Type III orbits are synchronous 

with the Keplerian orbital period P, or the Keplerian orbital radius ρ.  

McKay et al. (2009) Mars two and three-body B orbits are depicted in ρ –z 

contour plots, Figures 10–12. The dashed lines represent contours of constant period, the 

colored contours represent thrust contours (in mN), and the arrows show thrust direction 

required to maintain orbit. The thick black contour defines the limit of Mars 

(gravitational) influence.  

  

Figure 10.  Mars two-body type I 
orbits (from McKay et al, 

2011) 

 

Figure 11.  Mars two-body type II 
orbits (from McKay et al., 

2011) 
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Figure 12.  Mars two-body type 
III orbits (from McKay et 

al., 2011) 

Figure 13.  3-body system 
equithrust contours 

projected onto a plane 
perpendicular to the 

ecliptic (from McKay et 
al., 2011) 

 

D. LAGRANGE POINTS 

Lagrangian points are defined as one of five points in the plane of revolution of 

two bodies in orbit around their common center of gravity at which a third body of 

negligible mass can remain in equilibrium with respect to the other two bodies 

(“Lagrangian Point,” 2009). For planets within the solar system, the Sun’s mass is highly 

dominant, which allows the resulting structure (of a planet moon) to be treated as a 

rotating two-body problem framed around the Sun as a fixed object. Alternately, a planet 

and the Sun can form the basic two-body problem within which a satellite can be 

stationed. 

Eighteenth century mathematicians Leonhard Euler and Joseph-Louis Lagrange 

(for whom the points are named) discovered there are five points within this reference 
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where an object of negligible mass with respect to the system (such as a satellite) will 

remain effectively stationary (rotating with the system) as acting forces upon it are in 

equilibrium depicted graphically in Figures 14 and 15 (“Lagrange Points,” 2014). 

Figure 14.  Gravitational 
equilibrium (from 
“Lagrange Points,” 

2014). 

Figure 15.  Angular displacement 
(from “List of Objects,” n.d.). 

As shown in Figure 14, L4 and L5 are dynamically stable (small disturbances in 

the orbit will dampen and eventually dissipate) while L1, L2, and L3 are not, and are 

therefore difficult to maintain. L1, L2, and L3 occupy positions collinear with the main 

bodies of the system, and therefore, are called collinear Lagrange points. L4 and L5 form 

an equilateral triangle between the two system bodies and are often called the triangular 

Lagrange points. However, as they are gravitationally stable, and therefore, an efficient 

location for satellite station keeping, they are also attractive to solar system debris and 

orbiting bodies. Within the Sun-Mars system triangular Lagrange points are occupied by 

Mars Trojans (asteroids named for the heroes of the Greek-Trojan war) 1999 UJ7 (L4) 

and 5261 Eureka 1998 VF31, 2007 NS2, and 2001 DH47 (L5), as well as two additional 

unconfirmed asteroids 2001 FG24 and 2001 FR127 (L5) (“List of Martian,” 2013). 
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III. EARTH-SUN-MARS GEOMETRY AND POTENTIAL ORBITS 
FOR MARS EARTH COMMUNICATIONS 

A. EARTH MARS SUN GEOMETRY 

As shown in Chapter II, the position and nature of the Sun within the Earth-Sun-

Mars system creates periods where communication to the Martian surface or spacecraft in 

Martian orbit is impossible. This situation is acceptable for robotic missions but would 

present a much greater than acceptable risk to human exploration. Non-Keplerian orbits 

present a possible solution.  

Aphelion is defined as the orbit of a planet, asteroid, or comet at which it is 

furthest from the Sun (“Aphelion,” 2014). At aphelion, Earth is 152,098,233 km from the 

Sun. Mars is 249,232,432 km at aphelion. Therefore, the farthest possible distance 

between the planets is 401,330,665 km, with the Sun occupying an occulting position. In 

this worst-case scenario, communications are not only degraded by the distance but also 

completely blocked by the Sun. In order to enable communications, relays must be 

established. However, Keplerian orbital mechanics require a large number of relay 

satellites to provide continuous communications. Non-Keplerian orbits can extend the 

range of viable relay positions, and ultimately, significantly improve capability and 

reduce the number of satellites necessary by providing stable relays outside of the occult 

region.  

The preliminary design for the Mars Lasercom Terminal (MLT), a proposed laser 

communications system for deployment to Mars orbit, includes an operating limit of 

within 2° of the Sun at conjunction (Scozzafava et al., 2005) (a configuration in which 

two celestial bodies have their least apparent separation (“Conjunction,” 2014). 

Assuming a more conservative disk of solar interference of 21,000,000 km, Mars-Earth-

Sun occultation and conjunction appear, respectively as in Figures 16 and 17. 
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Figure 16.  Solar occultation angles 

 

Figure 17.  Solar conjunction angles 
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The increased radial distance of the orbiting bodies (Earth-Mars) along the 

ecliptic geometrically decreases the occultation angle, which consequently requires less 

separation between the Non-Keplerian orbiting satellite and the ecliptic plane. The 

minimum altitude required due to geometry is roughly 5,460,000 km, which equates to 

.03 AU (astronomical unit = the average distance from Earth to the Sun). This is well 

below the maximum threshold of McInnis non-Keplerian orbits. Due to the high transmit 

power requirements already in place, the detriment caused by increased altitude to Mar-

Mars orbit communications is significantly less than the Mars-Earth relay benefits 

(additional x-band communications capability). Therefore, applying McInnis orbits as a 

minimum altitude presents a conservative solution to the celestial geometry, and the first 

of four potential orbits surveyed in this paper.  

 

Figure 18.  Mars-Earth communications relay architecture options out of the 
ecliptic plane (from McKay et al., 2009) 

1. Orbit 1 Non-Keplerian Hover 

In their paper, “Survey of Highly Non-Keplerian Orbits with Low Thrust-

Propulsion,” McKay et al. (2011) described the possible orbits of a 1,000 kg 

communication relay equipped with 300 mN continuous thrust to provide uninterrupted 

communication capabilities for a manned Mars mission. McKay et al. (2011) illustrated 

such a satellite could maintain station approximately 0.176 AU above or below the 

geographic poles of Mars, and consequently significantly exceed the K-band exclusion 
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zone of 1.5° (McKay, Macdonald, Biggs, & McInnes, 2011). Using a type II orbit as 

described in Chapter II and pictured above in Figure 18. they mapped an “average” 

occultation scenario. By super-imposing a worst case (aphelion) situation onto the 

occultation diagram, maximum distances and minimum expected S/N can be calculated.  

By using the resulting slant range of 402,192,868 vice the previously discussed 

notional aphelion range of 401,330,124 km the resulting S/Ns are: best case (high power 

large dish uplink) S/N is 171.35 dB, and worst case (medium dish low power downlink) 

S/N is 0.0222 dB, which yield channel capacities of 3.715 Gbps, and 15.842 Mbps, and 

Eb/N0s of 23.06 dB and 0.701 dB or an overall performance decrease of 0.39%, a 

negligible difference to the notional/optimal link. 

In contrast, the occultation period of Mars in the Earth-Sun-Mars system is 

approximately 780 days, while the sidereal period of Mars is approximately 687 days, 

which equals a 93 day period of occultation every 2.13 (Earth years) or a 12% by time 

outage of communications (McKay, Macdonald, Bosquillon de Frescheville, Vasile, 

McInnes, & Biggs, 2009). The use of Non-Keplerian type II orbits provides continuous 

communications (a 12% increase) in exchange for a less than ½% loss of S/N.  

2. Orbit 2 Strizzi et al. L1 

In their paper, “Sun-Mars Libration Points and Mars Mission Simulations,” Jon 

D. Strizzi, Joshua M. Kutrieb, Paul E. Damphousse, and John P. Carrico (2001), 

examined a 2-satellite communications relay with oppositely orbiting satellites around 

Mars L1 and L2 first introduced by Pernicka, Henry, and Chan (1992). Carrico, Strizzi, 

Kutrieb, and Damphousse (2001) later assessed the utility of L1 and L2 satellites to 

provide communications for Mars and a Mars-Earth relay capable of bypassing the Earth-

Sun-Mars occultation.  

Strizzi et al. (2001) and Carrico et al. (2001) seem to have assumed the 

communications zone blocked by the Sun as equal to the physical area of the Sun; 

however, a more realistic area, which prohibits communications, is nearly 10 times as 

large (X-band) due to plasma effects and the high noise temperature of the Sun. 
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Consequently, the orbits described by Strizzi et al. (2001) are ultimately too small to 

provide effective communications.  

Despite this apparent error, their work can be expanded as their  V estimates of 

near 2 m/s annually for a smaller orbit represent a minimal thrust estimate for the much 

larger (and therefore communications viable) L1/L2 halo orbit. Figure 19 shows the 

potential Strizzi et al. (2001) orbital geometry.  

 

Figure 19.  Sun-Mars L1 and L2 Lagrange orbits (from Strizzi et al., 2001) 

Utilizing the collinear Langrange point L1 has an additional benefit of providing 

early warning for solar coronal mass ejections (CME); however, the Strizzi orbit also 

exposes the satellites to the solar exclusion zone, which ultimately requires a minimum of 

two satellites directly opposite each other in the same orbit, or in L1 and L2 orbits.  

Within a L1 or L2 system, the first satellite (leading) will enter and exit the 

occlusion zone before the second satellite (lagging) enters it. Cross-linking will provide 

the necessary continuous communications, and in the case of a L1/L2 relay, enable nearly 

99.8% of the planet to be seen continuously. Strizzi et al. (2001) expect a gap of only 1.5 

minutes near the poles. However, in the event of a failure, at worst case the L1/L2 

satellites could face a near 42-day long solar exclusion.  



 28

Alternately, due to their inherent stability, relay satellites could be placed at the 

Earth or Mars triangular Lagrange points. However, as Strizzi et al. (2001) noted, the 

distance of these points to either planets’ surface is significant (equal to the semi-major 

axis of the second body, in this case Mars), which at can exceed the distance between 

Earth-Mars, ultimately requiring extremely large transceivers making the orbit unfeasible 

despite its benefit to propulsion.  

3. Orbit 3 Gangale MarsSat 

Gangale (2005) described a fourth possibility, and the third group of orbits 

surveyed by this paper, using a series of MarsSat relay satellites inclined off the ecliptic 

in order to lead/lag Mars and provide stable communications for at least 15 years. 

However, the MarsSat system requires multiple launches and multiple satellites within 

one or more of four candidate orbits (A, B, C, and D) shown in Figures 20 and 21. 

 
 

Figure 20.  MarsSat candidate orbits (from Gangale, 2005) 
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Figure 21.  L4/L5 (from Gangale, 2005) 

S/N ratios for the candidate orbits vary based on their inclination, but on average 

(2.5° inclination) the distance between a MarsSat and Mars is 22 million km or 

approximately 1/10th the distance of a L4/L5 link, which if conditions are assumed equal, 

results in a 100 times greater signal than the Lagrangian system. If the inclination is 

doubled to ensure communications during the Earth-Sun-Mars occlusion, the resulting 

MarsSat system is still five times nearer the planet than a L4/L5 system equaling a 25:1 

link budget savings over a triangular Lagrange system. 

4. Orbit 4 Modified L1 Hover 

As determined by Malcom Macdonald, Robert J. McKay, Massimiliano Vasile, 

Frcois Bosquillon de Fresheville, James Biggs, and Colin McInnes (2011), in their paper, 

“Low-Thrust Enabled Highly non-Keplerian Orbits in Support of Future Mars 

Exploration,” the final system to provide continuous communications is an amalgamation 

of the previously described orbits. Displacement in the Y axis (of the system as described 

in Chapter II) requires significantly less thrust than along the Z axis. Therefore, by 

displacing a satellite the necessary distance to circumvent occultation along the Y is 
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significantly more efficient than displacing it perpendicular to the ecliptic (vertically 

along the Z axis) shown in Figure 22. 

 

Figure 22.  Equithrust contours of 1000 kg spacecraft around Mars (from 
Macdonald et al., 2011). 

Figure 23 shows the MacDonald et al.’s (2011) equithrust contours of a 1,000 kg 

spacecraft in non-Keplerian orbit around Mars. The red and blue circles depict the occult 

region for X and Ka-bands respectively. A 45° displacement, as shown below, reduces 

the required thrust of a single satellite from 300 mN to 200 mN. The orbit allows for a 

single satellite if placed at its maximum displacement but with the potential fuel savings 

two satellites (L1 and L2 or opposite L1) could be used to provide coverage for a greater 

percentage of the surface. In the event of a failure, communication could be maintained 

utilizing only the remaining satellite with no risk of occlusion blocked communications.  
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Figure 23.  Alternative Architecture Along the Orbital Plane  
(from Macdonald et al., 2011)  
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IV. ORBITAL COMPARISONS AND CONCLUSIONS 

A. PROPULSION REQUIREMENTS AND ORBIT BENEFITS 

Based on the two-body system resulting from the Sun-Earth-Mars geometry, 

Strizzi et al. (2001) analyzed L1 and L2 orbits at near Mars distances (1,000,000 

kilometers ahead of and behind Mars collinearly on the ecliptic plane). Due to the large 

(greater than 402,000,000 kilometers) distance of communications at the ecliptic, the 

resulting signal to noise ratio is well within 1% of a halo orbit above or below the planet 

(displaced from the ecliptic plane).  

The  V required for orbit insertion is negligibly different. Additionally, the non-

Keplerian hover, Strizzi et al. (2001), and modified L1 hover, could all potentially use the 

Aldrin Cycler to reach mars (Chen, McConaghy, Landau, Longuski, & Aldrin, 2005; 

McConaghy, Longuski, & Byrnes, 2002). However, the energy required to maintain 

collinear Lagrange and Mars Halo orbits is markedly different. Strizzi et al. (2001) 

determined the annual  V required to maintain L1/L2 orbit as near or less than 2.45 m/s. 

By using Newton’s second law and applying a 1,000 kg mass to Strizzi et al.’s (2001) 

conclusions it is possible to compare McKay et al.’s (2011) 300 mN statite to averaged 

thrust for a L1/ L2 satellite shown below. Strizzi et al. described orbit is decidedly less 

than the 300 mN thruster described by McKay et al (2011). However, McKay et al. 

(2011) also indicated thrust would only be required during solar occlusion, which reduces 

the required  V by a factor of 93/780 (12%). Despite this reduction, a L1/L2 orbit, in 

terms of propulsion, is far more efficient. When the transfer  V is applied, to the halo 

orbit the difference is increased. 

∆ ∆ ∆  
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Therefore, for this comparison, the Strizzi L1/L2 orbit  V requirements are near 

optimal for a single satellite at an estimated 2.45 m/s, but in order to provide this fuel 

savings, the L1/ L2 orbit enters the occlusion zone, and therefore requires a minimum of 

two satellites, while a Halo orbit can provide communications with a single satellite and 

significantly higher propellant requirements.  

Leading or lagging the planet, as recommended by Gangale’s MarsSat, has a two-

fold drawback of restricting communications and therefore exploration around the 

scientifically relevant polar region (where surface ice is visible (Carr, 1996, p. 197), and 

as mentioned previously, this orbit is also vulnerable to occlusion. Therefore, similar to 

the Strizzi et al. (2001) L1/L2 orbits, MarsSat requires a minimum of two satellites.  

To counteract these drawbacks, and the significant propulsive requirements of a 

modified L1 hover, solar electric propulsion (SEP), orbit displacement along the Y axis, 

and orbit displacement about L1 can be used to reduce thrust requirements, provide 

limited early warning for CMEs or solar proton events, and make it possible to transition 

to relevant artificial equilibrium points (AEP) further reducing thrust requirements.  

As outlined by Braig and McInnes (2008), Baig and McInness, (2009), and M. 

Ceriotti and C. R. McInnes (2010) the addition of a solar sail can drastically reduce 

propellant requirements for non-Keplerian orbits, including a modified L1 hover, as well 

as significantly expanding potential non-Keplerian orbits (asymmetrically favoring 

dayside L1 over nightside L2). Ultimately, a SEP enabled statite or satellite in an L1 

hover is viably propulsive as compared to Strizzi et al.’s (2012) L1 orbit, which will 

consequently make their data capabilities more important.  

B. RESULTING SIGNAL CAPABILITIES COMPARISON 

As the Mars orbit to Earth signals of each of these potential satellite systems are 

closely aligned their function as a Mars relay becomes more important. Signal strength 
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and data rates of L1 L2 orbits were analyzed by W. Kok-Fai Tai (1998) and M. Danehy 

(1997) using generic noise temperature at multiple frequencies. Using the recommended 

Ka-band uplink and downlink frequencies as described in Chapter I, and more realistic 

noise temperatures from (Ho et al., 2002), the resulting worst case S/Ns and channel 

capacities for a 100W output of a satellite to 50W output ground station, similar to 

current field operated radios, using a non-Keplerian hover, Strizzi L1 orbit, Gangale 

MarsSat system, and modified Macdonald et al. displaced L1 with transition to AEP are 

shown in Table 5. 

Table 5.   Mars candidate orbit comparative S/N 

Link Orbit S/N 
(dB) 

Channel Capacity 
(Gbps) 

Uplink (34450 MHZ) Non-Keplerian Hover 63.73 10.58 
Downlink (32050 
MHz)  

 64.13 10.65 

Uplink (34450 MHZ) Strizzi L1 38.41 6.38 
Downlink (32050 
MHz)  

 34.77 5.77 

Uplink (34450 MHZ) Gangale 2.5° MarsSat 5.29 1.06 
Downlink (32050 
MHz)  

 5.69 1.12 

Uplink (34450 MHZ) Gangale 5° MarsSat 4.45 0.96 
Downlink (32050 
MHz)  

 4.86 1.01 

Uplink (34450 MHZ) Modified L1 Hover 38.41 6.38 
Downlink (32050 
MHz)  

 33.70 5.60 

Uplink (34450 MHZ) 

Contingency Modified L1 
Hover 

38.40 6.38 

Downlink (32050 
MHz)  

 33.70 5.60 

 

As expected, the S/N is inversely proportional to distance from the planet, which 

makes the propulsively expensive non-Keplerian hover described by McKay et al. 

(2009), the most capable relay for Mars surface explorers, especially for a mission 

oriented towards the scientifically appealing polar regions. The channel capacity and S/N 

difference between the Strizzi et al. (2001) proposed L1 hover and McKay/McInnis 

modified L1 hover is largely negligible, in contrast to the significant difference in 
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propellant requirements between the orbits. However, the Strizzi orbit around L1 

provides no protection against occlusion; therefore, in this case, the cost of continuous 

communications during occlusion is exclusively propulsive. Additionally, though the 

MarsSat primary and secondary orbits are beneficial in terms of fuel requirements, and 

viable though not ideal from a communicative standpoint, their position along Mars orbit 

reduces their effectiveness for other than Mars communications. Conversely, a L4/L5 

satellite (not shown) provides very limited benefit for relayed Mars communications but 

does serve well as an interplanetary relay for missions extending much farther than Mars. 

Significantly, the L1 and modified L1 hover provide early warning of solar events, which 

is an especially important function of a manned mission’s satellite relay. Due to their 

position (roughly 1,000,000 km) nearer the Sun than Mars, the L1 orbits provide a 

minimum of 5 minutes, an average of 33 minutes, and a maximum of 13 hours for a CME 

based on Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric 

Coronagraph (LASCO) measurements (“Coronal Mass Ejection,” n.d.). This early 

warning could mean the difference between a successful and catastrophic mission. 

C. CONCLUSION 

Answers to questions asked: 

1. Will 1–2 satellites be capable of maintaining continuous communication 
between a Mars orbit and a Mars ground mission? 

Yes. As demonstrated by Strizzi et al. (2001), a L1/L2 paired hover can maintain 

communications for over 98% of Mars with a less than 2-minute gap in coverage. A polar 

statite as described by McKay et al. (2009) can more than adequately cover the polar 

regions without additional satellites. However, in order to provide near full planetary 

coverage, a minimum of two satellites is recommended. 

2. Will 1–2 satellites be capable of maintaining communication between 
Mars and Earth, likely through the Deep Space Network  

Yes. As demonstrated by extant technologies using X-band communications, 

Mars can be reliably contacted for the majority of its orbit. Latency tolerant programming 

and technologies must be used, but if combined with a Mars orbit reliable 

communications, are readily possible. The potential for expanded Mars-Earth 
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communications is significant. Additionally, there is also potential for increasing 

communicative ability of deep space probes or additional interplanetary missions.  

3. Which frequency or frequencies will best suit Earth-Mars, and Mars relay 
communication?  

Ka-band has emerged as a relevant and increasingly reliable avenue for 

communications. Its use as a primary frequency can expand data rates to Mars nearly 

1,000% over previous missions. Ka-band usage is becoming increasingly common and a 

working proof of concept was demonstrated from Mars orbit. Additionally, its high 

frequency is ideal for the Martian atmosphere and could reduce orbital (and subsequent 

propulsion) requirements of communicating with Earth.  

4. How many satellites are necessary for continuous communication, 
including during Mars transit through the solar occlusion zone? 

By using Ka-band and non-Keplerian orbits continuous communication could be 

reliably provided by a single satellite/statite with sufficient offset distance from the 

planet. McKay et al.’s (2009) statite could provide communication from Earth to the 

Mars polar region throughout solar occlusion. Strizzi et al.’s (2001) concept, as well as 

MarsSat, could provide communication with a minimum of two satellites. The modified 

L1 hover could provide communication with one or two satellites during normal 

operations and transition to a non-Keplerian orbit outside occlusion when necessary. The 

modified L1 hover could also maintain function throughout occlusion despite a loss of 

one satellite.  

5. What orbits are necessary to provide continuous communications 
throughout all the above mission regimes? 

Each of the orbits surveyed could (albeit potentially contingent upon two or more 

satellites) provide communication throughout the entire mission. Propulsive requirements 

favor an L1 hover; however, cost (of each satellite), as well as safety (potential loss of a 

satellite), favor the modified L1 hover. Gangale (2005) provides the least capability at the 

greatest financial cost due to the multiple launches required, while Strizzi et al. (2001) 

provides the lowest cost but does not meet contingency operations or all flight regimes 

without additional satellites. Ultimately, continuous operations favor a non-Keplerian 

orbit provided by either a polar statite or a modified L1 hover.  
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D. RECOMMENDATIONS 

Ultimately, due to the low loss in capacity, manageable propulsion requirements, 

redundancy/potential for successful contingency operations, and significant benefit 

provided by early warning, a pair of SEP/high ISP equipped satellites in a modified L1 

hover orbit provide the greatest advantage for a manned Mars mission. If combined with 

artificial equilibrium points, and their requisite transit propulsion requirements, these 

satellites could require as little 80 mN of thrust for 12% of the year each, while providing 

continuous non-occluded Ka-band communication to and from Mars at a higher capacity 

than any other space system. Each of the orbits surveyed has potential and benefit to one 

or more aspects of a future mission, the advantages provided by McKay et al.’s (2011) 

modified L1 hover combined with a SEP/low-thrust high ISP propulsion system 

significantly outperform the alternatives in terms of access, capability, and availability.  
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Notional Keplerian

S/N

Small DSN Low Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐115.56 2.78E‐12 3.08 2.03

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐116.19 2.41E‐12 6.50 4.47

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐139.20 1.20E‐14 ‐16.51 0.02

Large DSN Low Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐109.29 1.18E‐11 9.35 8.62

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐109.92 1.02E‐11 7.66 5.84

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐132.93 5.10E‐14 ‐15.35 0.03

Small DSN  High Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐102.55 5.56E‐11 16.09 40.67

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐103.18 4.81E‐11 19.51 89.35

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐139.20 1.20E‐14 ‐16.51 0.02

Large DSN High Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐96.28 2.36E‐10 22.36 172.38

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐96.91 2.04E‐10 20.67 116.76

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐132.93 5.10E‐14 ‐15.35 0.03

APPENDIX A.  NOTIONAL KEPLERIAN SIGNAL TO NOISE RATIO 
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APPENDIX B.  NOTIONAL KEPLERIAN ORBIT CHANNEL CAPACITY 

 

Bit Rate (Channel Capacity)
BR=B*log2(1+S/N)

Small DSN Low Power bps kbps Mbps Gbps

Earth to Mars 800459080.77 800459.08 800.46 0.80

Mars to Earth High Power 1225438705.34 1225438.71 1225.44 1.23

Mars to Earth Low Power 15935720.69 15935.72 15.94 0.02

Large DSN Low Power bps kbps Mbps Gbps

Earth to Mars 1632937930.13 1632937.93 1632.94 1.63

Mars to Earth High Power 1386803319.87 1386803.32 1386.80 1.39

Mars to Earth Low Power 20755207.37 20755.21 20.76 0.02

Small DSN  High Power bps kbps Mbps Gbps

Earth to Mars 2690421169.09 2690421.17 2690.42 2.69

Mars to Earth High Power 3248723985.13 3248723.99 3248.72 3.25

Mars to Earth Low Power 3248723985.13 3248723.99 3248.72 3.25

Large DSN High Power bps kbps Mbps Gbps

Earth to Mars 3718890704.26 3718890.70 3718.89 3.72

Mars to Earth High Power 3439871590.61 3439871.59 3439.87 3.44

Mars to Earth Low Power 20755207.37 20755.21 20.76 0.02
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APPENDIX C. NOTIONAL KEPLERIAN ORBIT EB/NO AND SPECTRAL EFFICIENCY 

EB/NO (S/N)*(B/data Rate) Spectral Efficiency Rb/B

Small DSN Low Power (W/W)/(Hz/bps) dB bps/Hz dB

Earth to Mars 1.27 1.04 1.60 2.04

Mars to Earth High Power 1.82 2.61 2.45 3.89

Mars to Earth Low Power 0.70 ‐1.54 0.03 ‐14.97

Large DSN Low Power

Earth to Mars 2.64 4.21 3.27 5.14

Mars to Earth High Power 2.10 3.23 2.77 4.43

Mars to Earth Low Power 0.70 ‐1.53 0.04 ‐13.82

Small DSN  High Power

Earth to Mars 7.56 8.78 5.38 7.31

Mars to Earth High Power 13.75 11.38 6.50 8.13

Mars to Earth Low Power 0.00 ‐24.64 6.50 8.13

Large DSN High Power

Earth to Mars 23.18 13.65 7.44 8.71

Mars to Earth High Power 16.97 12.30 6.88 8.38

Mars to Earth Low Power 0.70 ‐1.53 0.04 ‐13.82
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Non‐Keplerian Hover

S/N

Small DSN Low Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐115.59 2.76E‐12 3.06 2.02

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐116.21 2.39E‐12 6.47 4.44

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐139.22 1.20E‐14 ‐16.54 0.02

Large DSN Low Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐109.31 1.17E‐11 9.33 8.57

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐109.94 1.01E‐11 7.64 5.80

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐132.95 5.07E‐14 ‐15.37 0.03

Small DSN  High Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐102.58 5.53E‐11 16.07 40.43

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐103.20 4.78E‐11 19.49 88.82

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐122.69 5.38E‐13 ‐139.22 1.20E‐14 ‐16.54 0.02

Large DSN High Power Noise @ Earth (dBW) Noise @ Earth (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Earth to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐96.30 2.34E‐10 22.34 171.36

Mars to Earth High Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐96.93 2.03E‐10 20.65 116.07

Mars to Earth Low Power ‐122.69 5.38E‐13 ‐117.58 1.75E‐12 ‐117.58 1.75E‐12 ‐132.95 5.07E‐14 ‐15.37 0.03

APPENDIX D.  NON-KEPLERIAN HOVER SIGNAL TO NOISE RATIO 
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APPENDIX E.  NON-KEPLERIAN HOVER CHANNEL CAPACITY 

 
 
 

Bit Rate (Channel Capacity)
BR=B*log2(1+S/N)

Small DSN Low Power bps kbps Mbps Gbps

Earth to Mars 797589341.26 797589.34 797.59 0.80

Mars to Earth High Power 1221939117.36 1221939.12 1221.94 1.22

Mars to Earth Low Power 15842361.87 15842.36 15.84 0.02

Large DSN Low Power bps kbps Mbps Gbps

Earth to Mars 1629099355.95 1629099.36 1629.10 1.63

Mars to Earth High Power 1383146316.06 1383146.32 1383.15 1.38

Mars to Earth Low Power 20634015.25 20634.02 20.63 0.02

Small DSN  High Power bps kbps Mbps Gbps

Earth to Mars 2686239047.46 2686239.05 2686.24 2.69

Mars to Earth High Power 3244486289.24 3244486.29 3244.49 3.24

Mars to Earth Low Power 3244486289.24 3244486.29 3244.49 3.24

Large DSN High Power bps kbps Mbps Gbps

Earth to Mars 3714630228.39 3714630.23 3714.63 3.71

Mars to Earth High Power 3435622821.62 3435622.82 3435.62 3.44

Mars to Earth Low Power 20634015.25 20634.02 20.63 0.02
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APPENDIX F. NON-KEPLERIAN HOVER EB/NO AND SPECTRAL EFFICIENCY 

 
 

EB/NO (S/N)*(B/data Rate) Spectral Efficiency Rb/B

Small DSN Low Power (W/W)/(Hz/bps) dB bps/Hz dB

Earth to Mars 1.267 1.028 1.595 2.028

Mars to Earth High Power 1.817 2.594 2.444 3.881

Mars to Earth Low Power 0.701 ‐1.544 0.032 ‐14.992

Large DSN Low Power

Earth to Mars 2.630 4.199 3.258 5.130

Mars to Earth High Power 2.098 3.218 2.766 4.419

Mars to Earth Low Power 0.703 ‐1.529 0.041 ‐13.844

Small DSN  High Power

Earth to Mars 7.525 8.765 5.372 7.302

Mars to Earth High Power 13.688 11.363 6.489 8.122

Mars to Earth Low Power 0.003 ‐24.657 6.489 8.122

Large DSN High Power

Earth to Mars 23.065 13.630 7.429 8.709

Mars to Earth High Power 16.892 12.277 6.871 8.370

Mars to Earth Low Power 0.703 ‐1.529 0.041 ‐13.844
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APPENDIX G. NON-KEPLERIAN HOVER / NOTIONAL KEPLERIAN SIGNAL TO NOISE RATIO 

Non‐Keplerian Hover / Notional 
Keplerian Comparison

S/N

Small DSN Low Power S/N % Lost

Earth to Mars 0.994076972 0.59

Mars to Earth High Power 0.994076972 0.59

Mars to Earth Low Power 0.994076972 0.59

Large DSN Low Power

Earth to Mars 0.994076972 0.59

Mars to Earth High Power 0.994076972 0.59

Mars to Earth Low Power 0.994076972 0.59

Small DSN  High Power

Earth to Mars 0.994076972 0.59

Mars to Earth High Power 0.994076972 0.59

Mars to Earth Low Power 0.994076972 0.59

Large DSN High Power

Earth to Mars 0.994076972 0.59

Mars to Earth High Power 0.994076972 0.59

Mars to Earth Low Power 0.994076972 0.59
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APPENDIX H. NON-KEPLERIAN HOVER / NOTIONAL KEPLERIAN CHANNEL CAPACITY 

 

Bit Rate (Channel Capacity)

Small DSN Low Power bps % Lost

Earth to Mars 0.996414883 0.36

Mars to Earth High Power 0.997144216 0.29

Mars to Earth Low Power 0.994141538 0.59

Large DSN Low Power

Earth to Mars 0.997649283 0.24

Mars to Earth High Power 0.997362998 0.26

Mars to Earth Low Power 0.994160881 0.58

Small DSN  High Power

Earth to Mars 0.998445551 0.16

Mars to Earth High Power 0.998695581 0.13

Mars to Earth Low Power 0.998695581 0.13

Large DSN High Power

Earth to Mars 0.998854369 0.11

Mars to Earth High Power 0.998764847 0.12

Mars to Earth Low Power 0.994160881 0.58



 54

THIS PAGE INTENTIONALLY LEFT BLANK 

 
 



 55

APPENDIX I.  NON-KEPLERIAN HOVER / NOTIONAL KEPLERIAN EB/NO 

 

EB/NO

Small DSN Low Power EB/NO % Lost

Earth to Mars 0.997653677 0.23

Mars to Earth High Power 0.996923971 0.31

Mars to Earth Low Power 0.999935053 0.01

Large DSN Low Power

Earth to Mars 0.996419271 0.36

Mars to Earth High Power 0.996705286 0.33

Mars to Earth Low Power 0.999915598 0.01

Small DSN  High Power

Earth to Mars 0.995624619 0.44

Mars to Earth High Power 0.995375358 0.46

Mars to Earth Low Power 0.995375358 0.46

Large DSN High Power

Earth to Mars 0.995217123 0.48

Mars to Earth High Power 0.995306328 0.47

Mars to Earth Low Power 0.999915598 0.01
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APPENDIX J.  LINK BUDGET COMPARISON 

 

 
 

Link Budget
Maximum power of DSN is 400 kW, however it is aircraft safety limited (normal use) to 20 kW)

Non‐Keplerian Hover f (GHz) λ (m) PTX (W)  PTX (dBW) GTX (dB) GRX (dB) LFSP (dB) LATM (dB) PRX (dBW)

Uplink (34450 MHZ) 34.45 8.70E‐03 100 20.00 80.23 64.45 ‐211.60 ‐8.00 ‐54.92

Downlink (32050 MHz) Low Power 32.05 9.35E‐03 50 16.99 63.83 79.60 ‐210.97 ‐8.00 ‐58.55

Strizzi L1 f (GHz) λ (m) PTX (W)  PTX (dBW) GTX (dB) GRX (dB) LFSP (dB) LATM (dB) PRX (dBW)

Uplink (34450 MHZ) 34.45 8.70E‐03 100 20.00 86.50 64.45 ‐243.19 ‐8.00 ‐80.24

Downlink (32050 MHz) Low Power 32.05 9.35E‐03 50 16.99 63.83 85.88 ‐242.56 ‐8.00 ‐83.87

Gangale MarsSat 2.5° Inclination f (GHz) λ (m) PTX (W)  PTX (dBW) GTX (dB) GRX (dB) LFSP (dB) LATM (dB) PRX (dBW)

Uplink (34450 MHZ) 34.45 8.70E‐03 100 20.00 80.23 64.45 ‐270.04 ‐8.00 ‐113.36

Downlink (32050 MHz) Low Power 32.05 9.35E‐03 50 16.99 63.83 79.60 ‐269.41 ‐8.00 ‐116.99

Gangale 5° Inclination f (GHz) λ (m) PTX (W)  PTX (dBW) GTX (dB) GRX (dB) LFSP (dB) LATM (dB) PRX (dBW)

Uplink (34450 MHZ) 34.45 8.70E‐03 100 20.00 86.50 64.45 ‐277.14 ‐8.00 ‐114.19

Downlink (32050 MHz) Low Power 32.05 9.35E‐03 50 16.99 63.83 85.88 ‐276.52 ‐8.00 ‐117.83

Modified L1 Hover f (GHz) λ (m) PTX (W)  PTX (dBW) GTX (dB) GRX (dB) LFSP (dB) LATM (dB) PRX (dBW)

Uplink (34450 MHZ) 34.45 8.70E‐03 100 20.00 86.50 64.45 ‐243.19 ‐8.00 ‐80.24

Downlink (32050 MHz) Low Power 32.05 9.35E‐03 50 16.99 63.83 85.88 ‐242.56 ‐8.00 ‐83.87

Contingency Modified L1 Hover f (GHz) λ (m) PTX (W)  PTX (dBW) GTX (dB) GRX (dB) LFSP (dB) LATM (dB) PRX (dBW)

Uplink (34450 MHZ) 34.45 8.70E‐03 100 20.00 86.50 64.45 ‐243.19 ‐8.00 ‐80.24

Downlink (32050 MHz) Low Power 32.05 9.35E‐03 50 16.99 63.83 85.88 ‐242.57 ‐8.00 ‐83.88
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APPENDIX K.  S/N COMPARISON 

 

S/N

Non‐Keplerian Hover Noise @ Satellite (dBW) Noise @ Satellite (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Satellite to Mars ‐122.69 5.38E‐13 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐54.92 3.22E‐06 63.73 2.36E+06

Mars to Satellite ‐122.69 5.38E‐13 ‐118.64 1.37E‐12 ‐122.69 5.38E‐13 ‐58.55 1.39E‐06 64.13 2.59E+06

1.00E+00

Strizzi L1 Noise @ Satellite (dBW) Noise @ Satellite (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Satellite to Mars ‐122.69 5.38E‐13 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐80.24 9.47E‐09 38.41 6.93E+03

Mars to Satellite ‐122.69 5.38E‐13 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐83.87 4.10E‐09 34.77 3.00E+03

Gangale MarsSat 2.5° Inclination Noise @ Satellite (dBW) Noise @ Satellite (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Satellite to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐113.36 4.62E‐12 5.29 3.38E+00

Mars to Satellite ‐122.69 5.38E‐13 ‐118.64 1.75E‐12 ‐122.69 5.38E‐13 ‐116.99 2.00E‐12 5.69 3.71E+00

Gangale MarsSat 5° Inclination Noise @ Satellite (dBW) Noise @ Satellite (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Satellite to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐114.19 3.81E‐12 4.45 2.79E+00

Mars to Satellite ‐122.69 5.38E‐13 ‐118.64 1.75E‐12 ‐122.69 5.38E‐13 ‐117.83 1.65E‐12 4.86 3.06E+00

1.00E+00

Modified L1 Hover Noise @ Satellite (dBW) Noise @ Satellite (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Satellite to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐80.24 9.47E‐09 38.41 6.93E+03

Mars to Satellite ‐122.69 5.38E‐13 ‐118.64 1.75E‐12 ‐117.58 1.75E‐12 ‐83.87 4.10E‐09 33.70 2.35E+03

Contingency Modified L1 Hover Noise @ Satellite (dBW) Noise @ Satellite (W) Noise @ Mars (dBW) Noise @ Mars (W) Total Noise (dBW) Total Noise (W) Signal (dBW) Signal (W) S/N (dB) S/N

Satellite to Mars ‐119.40 1.15E‐12 ‐118.64 1.37E‐12 ‐118.64 1.37E‐12 ‐80.24 9.47E‐09 38.40 6.92E+03

Mars to Satellite ‐122.69 5.38E‐13 ‐118.64 1.75E‐12 ‐117.58 1.75E‐12 ‐83.88 4.10E‐09 33.70 2.35E+03
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APPENDIX L.  CHANNEL CAPACITY COMPARISON 

 

Bit Rate (Channel Capacity)
BR=B*log2(1+S/N)

Non‐Keplerian Hover bps kbps Mbps Gbps

Satellite to Mars 10584655655 10584656 10585 10.58

Mars to Satellite 10652453203 10652453 10652 10.65

Strizzi L1 bps kbps Mbps Gbps

Satellite to Mars 6379388496 6379388 6379 6.38

Mars to Satellite 5775345281 5775345 5775 5.78

Gangale MarsSat 2.5° Inclination bps kbps Mbps Gbps

Satellite to Mars 1065095816 1065096 1065 1.07

Mars to Satellite 1117958522 1117959 1118 1.12

Gangale MarsSat 5° Inclination bps kbps Mbps Gbps

Satellite to Mars 960901600 960902 961 0.96

Mars to Satellite 1011415463 1011415 1011 1.01

Modified L1 Hover bps kbps Mbps Gbps

Satellite to Mars 6379282538 6379283 6379 6.38

Mars to Satellite 5598487666 5598488 5598 5.60

Contingency Modified L1 Hover kbps Mbps Gbps

Satellite to Mars 6378888683 6378889 6379 6.38

Mars to Satellite 5598093922 5598094 5598 5.60
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APPENDIX M.  EB/NO AND SPECTRAL EFFICIENCY 

 

EB/NO (S/N)*(B/data Rate) Spectral Efficiency Rb/B

Non‐Keplerian Hover (W/W)/(Hz/bps) dB bps/Hz dB

Satellite to Mars 111401.43 50.47 21.17 13.26

Mars to Satellite 121600.70 50.85 21.30 13.28

Strizzi L1 (W/W)/(Hz/bps) dB bps/Hz dB

Satellite to Mars 543.13 27.35 12.76 11.06

Mars to Satellite 259.63 24.14 11.55 10.63

Gangale MarsSat 2.5° Inclination (W/W)/(Hz/bps) dB bps/Hz dB

Satellite to Mars 1.59 2.00 2.13 3.28

Mars to Satellite 1.66 2.20 2.24 3.49

Gangale MarsSat 5° Inclination (W/W)/(Hz/bps) dB bps/Hz dB

Satellite to Mars 1.45 1.62 1.92 2.84

Mars to Satellite 1.51 1.80 2.02 3.06

Modified L1 Hover (W/W)/(Hz/bps) dB bps/Hz dB

Satellite to Mars 543.06 27.35 12.76 11.06

Mars to Satellite 209.58 23.21 11.20 10.49

Contingency Modified L1 Hover (W/W)/(Hz/bps) dB bps/Hz dB

Satellite to Mars 542.80 27.35 12.76 11.06

Mars to Satellite 209.48 23.21 11.20 10.49
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APPENDIX N.  CME WARNING TIME 

 
 

CME Warning Time

Forward Distance (m) Minimum Warning (s) Average Warning (s) Maximum Warning (s)

Non‐Keplerian Hover 1000000 0.00 0.00 0.00

Strizzi L1 1000000000 309.16 1996.66 49996.66

Gangale MarsSat 2.5° Inclination 22000000000 0.00 0.00 0.00

Gangale MarsSat 5° Inclination 49846486400 0.00 0.00 0.00

Modified L1 Hover 1000000000 309.16 1996.66 49996.66

Contingency Modified L1 Hover 1000000000 309.16 1996.66 49996.66

Forward Distance (m) Minimum Warning (min) Average Warning (min Maximum Warning (min)

Non‐Keplerian Hover 1000000 0.00 0.00 0.00

Strizzi L1 1000000000 5.15 33.28 833.28

Gangale MarsSat 2.5° Inclination 22000000000 0.00 0.00 0.00

Gangale MarsSat 5° Inclination 49846486400 0.00 0.00 0.00

Modified L1 Hover 1000000000 5.15 33.28 833.28

Contingency Modified L1 Hover 1000000000 5.15 33.28 833.28
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