

THE ONTARIO WATER RESOURCES COMMISSION

REPORT ON

LAKEFRONT SURVEY

of

WATER QUALITY

WASTE OUTFALLS and DRAINAGE INLETS

of

LAKE ONTARIO

within the area

Town of Burlington to Scarborough Township

MAY 1962

NOH 1.AM O FE AN 1 Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

REPORT

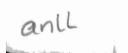
on a

LAKEFRONT SURVEY

of

WATER QUALITY,

WASTE OUTFALLS AND DRAINAGE INLETS


of

LAKE ONTARIO

within the area

Town of Burlington to Scarborough Township Inclusive

May 1962

LAKEFRONT SURVEY

LAKE ONTARIO - BURLINGTON TO SCARBOROUGH

This report records the results of surveys carried out in 1960 and 1961. The area between Burlington and Scarborough of Lake Ontario borders a thickly populated and highly industrialized section of the province. The survey was a joint effort of the Ontario Water Resources Commission, Metropolitan Toronto Works Department, and the Toronto Health Department. The analytical results are voluminous, and maps are included to show the locations of sampling points and the identifying numbers of these points used in the tabulated findings. These results are valuable both to indicate conditions existing at the time of the sampling, and for comparison with surveys which may be made later.

Regular investigations of water quality are essential in the pollution control program of the Ontario Water Resources Commission. In this survey two objectives were involved:

- (a) to obtain information on the quality of the water
 of the lake a short distance offshore, and
 (b) to check on all discharges or inflows to the lake
 - to check on all discharges or inflows to the lake from any source, and to determine by testing the amount of pollution carried into these waters.

Appropriate steps were taken to collect sufficient samples and to carry out the laboratory tests which would permit interpretation of conditions.

The "Objectives for Water Quality" adopted by the Commission

II

were used as a measuring unit in assessing the results. The most significant analyses were the B.O.D. (Biochemical Oxygen Demand), suspended solids, coliform counts, and phenols. Sources of Pollution

The report records all known sources of pollution including the effluents from sewage works, untreated wastes, industrial wastes, storm drains, watercraft of different kinds, and streams entering the waterfront. The lake must be the recipient of natural runoff and wastes of various kinds. The significant item must be the effects produced in the lake waters by these discharges, both initially and after reasonable mixing and dilution. The lake sampling points were so selected as to assess these effects.

Conditions Found

It must be expected that in such a long stretch of lakefront there will be wide variation in results. At many places the water was of acceptable quality while at some sampling points there was heavy pollution. In 1961 over 2000 samples were collected from the lake. This number, spread over 31 sampling periods, was sufficient to provide a means for assessing the degree of pollution and for comparing these figures with the water quality objectives. In this total number of samples in 1961 some 67% were within the OWRC maximum objective (2400 per 100 ml) for coliform counts, and 52% met the maximum B.O.D. objective of 4 ppm. The phenol content was within the OWRC maximum average figure of 2 ppb in 70% of the samples.

III

In the Metropolitan Toronto area the bacteriological analyses showed that 555 of 715 total samples were within the limits set by the Commission. In the remainder of the area 540 samples were satisfactory out of a total of 564. These latter figures are encouraging, and it was only at certain points in the lake that excess bacterial pollution was found.

More important than the analytical results themselves was the origin of pollution and the steps being taken to control this. Storm drainage and land runoff will contribute to wastes reaching the lake. This does not lend itself to control in any measurable degree. Sewage and industrial wastes can be the most serious sources of pollution. They must be purified before entering these watercourses whether to the streams or directly to the lake.

In this lakefront area, municipal sewage works exist at many places, and industrial wastes are widespread. In Metropolitan Toronto where the greatest concentration of population exists rapid progress has been made toward construction of sewage treatment plants. The abandonment of upstream treatment facilities in favor of new modern works at the lakefront can be expected to bring a major improvement. Storm flows will periodically wash down wastes to the streams and to the lake. Trunk sewers will provide outlets for much industrial wastes formerly reaching watercourses. The full program for sewage and waste treatment in the metropolitan area will reach its full objective shortly.

IV

In the section between Metropolitan Toronto and Burlington, sewage treatment is well advanced and effective treatment works will keep pace with increasing population. In the industrial field progressive steps have been taken by the oil industry to prevent the wastes from impairing water quality. Some industrial wastes still cause problems here largely because of the difficulties of treatment.

The necessity for a clean lakefront is well recognized. The program for control must be a continuous one, with close supervision at all times to protect these waters. To this end these periodic surveys serve a valuable purpose.

V

REPORT

on a

LAKEFRONT SURVEY OF LAKE ONTARIO

within the area

Town of Burlington to Scarborough Township Inclusive

CONTENTS

INTRODUCTORY STATEMENT

SECTION I

WASTE OUTFALLS AND DRAINAGE INLETS SURVEY

Part I - Metropolitan Toronto Area Part II - Burlington to Metropolitan Toronto Area based on field surveys performed in 1960 and 1961

SECTION II

WATER QUALITY SURVEY

Part I - Metropolitan Toronto Area Part II - Burlington to Port Credit Area based on field surveys performed in 1961

May

LAKEFRONT SURVEY LAKE ONTARIO - BURLINGTON TO SCARBOROUGH 1960 - 1961

INTRODUCTORY STATEMENT

:

This report deals principally with the collection and examination of samples taken from Lake Ontario and waste outlets or drainage inlets to the lake. The area involved extends from the Town of Burlington on the west to the Township of Scarborough on the east. The samples were collected in 1960 and 1961. The survey constituted a close examination of all sources of pollution whether these be from sewage, industrial wastes, storm water, or surface drainage. The usual laboratory tests were employed to interpret the extent of the pollution entering the lake and the effects this was having on the water.

This survey is one of considerable magnitude, the planning for which had to be carefully prepared and the identification of sampling points clearly shown for the records. Two Divisions of the Water Resources Commission were involved in the work. Sampling of the lake proper was carried out by the staff of the Laboratory Division while the staff of the Sanitary Engineering Division sampled outfalls, located the sampling points, and prepared the numbers for these locations. The surveys and the report were under the direction of Mr. F. A. Voege, Director of Laboratories, and Mr. G. Kay, District Engineer for the Sanitary Engineering Division. The planning of the survey was so arranged that this could be continued annually or as required in order to maintain a close check and supervision over these waters.

VII

The report is prepared in two sections so that these can be combined into one complete document or used separately to serve the interests of certain specific groups. Section 1 is devoted to the investigations of sewer outfalls and inlets to the lake. Section 2 concerns the sampling of the waters of the lake proper. Each of these sections is further subdivided into two parts; part 1 dealing with that area of the lake fronting on the municipality of Metropolitan Toronto, namely between the Village of Long Branch and the Township of Scarborough; part 2 dealing with that part of the lake fronting on the Towns of Burlington, Oakville, and Port Credit, and the Township of Toronto. These are all of the waterfront municipalities between the City of Hamilton and the easterly boundary of Metropolitan Toronto.

It is desirable also to point out that the surveys were conducted during periods when precipitation and surface runoff would be at a minimum. It is expected that in times of heavy rainfall the amount of pollutants would increase further. Lake samples were collected, for the most part, at 100 feet from shore and at a depth of approximately 1 foot below the water surface. It was believed that these results would give the most desirable information, but it was recognized that sampling at other depths would give probably different values. No biological examination of these waters was included in these surveys.

Generally, the municipal sewer outfalls discharging directly to the lake or Toronto Harbour were the only ones investigated. These outfalls discharge all the flows contributed through this system including those at its extreme limits, which in most cases were several miles from the lake. In other cases

VIII

some industries have outfalls discharging directly to the water. The watercourses flowing into the lake may have had these waters contaminated initially at points located as far as 10 to 20 miles from their mouths in the case of the major streams. The investigation of these watercourses is another part of the Commission's program for investigation of water quality.

Both Sections 1 and 2 of this report contain summaries and conclusions related to the prevention of these wastes going to the lake.

In these surveys use was made of sanitary chemical, bacteriological, and phenol tests. These were considered as the most significant in the interpration of water quality, but other surveys, which may be carried out later, might involve turbidity, colour, temperature, pH, conductivity, alkalinity, oxygen content, phosphates, nitrates, syndets, algae, chlorides, etc., all of which may be of significance in examining water quality and the effects of waste discharges on the waters.

Other groups have been actively concerned with water pollution in this area, and have taken steps to obtain information. The Commission is grateful for the assistance given by these groups, and some of the results are included in the report. Particular reference must be made to the work done by Metropolitan Toronto in the waterfront adjacent to that municipality. These analyses have been included in this report in order to make it more complete.

SUMMARY AND CONCLUSIONS

It may be pointed out that these surveys are not only important in determining the quality of the water in the lake,

IX

but also in assessing the nature and severity of the pollutants themselves. The investigations must be continued if full information is to be made available and control measures undertaken with effectiveness.

Some of the sources of pollution are well indicated. Others are less distinct. When the source and the intensity of this are known the municipality or industry responsible is asked to take corrective measures, and to ensure that the waters will not continue to be polluted contrary to the Ontario Water Resources Commission Act.

Much progress has been made in preventing and abating the discharge of pollutants to the lake. At the same time there has been a rapid growth, residentually and industrially, in this area, and it becomes a question of taking appropriate measures which will permit this growth to continue without jeopardizing the quality of the receiving watercourse. It is expected that these waters will be available for all normal uses, and if this is to be the case pollution control must be exercised effectively. This will require also the close cooperation among all interested parties, particularly the municipalities, the industries, and the Ontario Water Resources Commission. In this program there is much to be gained by all.

Х

REPORT

by

THE ONTARIO WATER RESOURCES COMMISSION

on a

WATER QUALITY and OUTFALL SURVEY

OF LAKE ONTARIO

BURLINGTON TO SCARBOROUGH TOWNSHIP INCLUSIVE

SECTION I

A Survey of Outfalls to the Waterfront Area

PART I

in the Municipality of Metropolitan Toronto

INTRODUCTION

This part of the report primarily concerns examinations that were made by the Ontario Water Resources Commission during 1960 and 1961, of the effluents from waste outfalls and drainage inlets in the Municipality of Metropolitan Toronto discharging to Lake Ontario between the Village of Long Branch and the Township of Scarborough inclusive. Samples were also collected from the lake proper in this area and are reported in Part I of Section II.

The procedure was to locate each sewer outlet, catalogue the same, and where flow was noted to collect a "grab" sample for laboratory analysis. If the outlet was partly or totally submerged the flow was sampled where accessible via a manhole having its invert above lake level. In some instances samples were collected near the submerged sewer outlets. These would represent diluted vicinity samples.

The staffs of the Metropolitan Toronto Industrial Waste Control Branch and Scarborough Township Works Department

1

A

co-operated in collecting a number of these samples where it was necessary to enter a manhole at a busy intersection or under other difficult circumstances. Their assistance in this manner and otherwise is especially appreciated.

The analyses of the samples collected from the mouths of the five major streams discharging to the lake through Metropolitan Toronto are included also in this report.

During the sampling periods the weather was generally clear and dry with the following exception. Heavy rain was falling on November 15, 1960 when the samples were collected from the sewers having outfalls numbered LO-76.3(W), LO-76.7(W), and LO-77.3(W).

ANALYSES

The analyses performed generally included determinations of biochemical oxygen demand (B.O.D.), solids or turbidity, and phenolic equivalents, in addition to bacteriological (coliform) examinations. In limited instances the samples were tested for ether solubles, pH, chrome, and copper.

"Grab" samples were collected: forty (40) ounce samples for sanitary chemical analysis, and six (6) ounce samples for bacteriological examination being used. All these laboratory tests were performed at the Ontario Water Resources Commission Laboratory in Toronto.

The most common analyses of sanitary significance are: biochemical oxygen demand, suspended solids, and the total coliform determination.

Biochemical Oxygen Demand (B.O.D.)

The B.O.D. of sewage, industrial wastes, or surface waters, including lake or river waters is the oxygen required during stabilization, (natural purification in a stream), of the decomposable organic matter, or chemical material by aerobic biochemical action. Unless otherwise noted a 5-day B.O.D. determination is performed, and it is reported in parts per million (ppm.). A high B.O.D. is often indicative of recent organic or chemical pollution. This quality of a material tends to reduce the dissolved oxygen of the water and could cause suffocation of fish therein and the production of offensive conditions. A desirable upper limit of this value in surface waters normally is 4 parts per million.

Suspended Solids

These results are reported in parts per million (ppm) and indicate the measure of undissolved solids of organic or inorganic nature. Where suspended solids values approach 20 parts per million or less, laboratory difficulties usually are experienced and result in the values being determined as turbidity which is reported in silica units.

Membrane Filter Coliform Count

The membrane filter technique is employed to obtain a direct enumeration of coliform organisms in the sample, and the number is reported per 100 millilitres.

Waters having total coliform counts as determined by this technique in excess of the upper limit of 2,400 organisms per 100 millilitres, are considered by the Commission as being

undesirable for municipal water supplies or bathing purposes. WATER QUALITY AND EFFLUENT OBJECTIVES

The desirable objectives for all surface waters in the Province of Ontario are as follows:

5-Day B.O.D	not	greater	tha	n 4 p.p.m.
M.F. Coliform Count	Ħ	**	n	2,400/100 ml.
Phenolic Equivalents - - Average	11	"	'n	2 p.p.b.
- Maximum		n	"	5 p.p.b.
pH Range				6.7 - 8.5

A few pertinent maximum concentration limits of contaminants in storm sewers, sewage treatment plant and industrial waste effluents, are listed below. Adequate protection for surface waters, except in certain specific instances influenced by local conditions, should be provided if the following concentrations and pH range, are not exceeded.

5-Day B.O.D.	 not	greater	than	15	p.p.m.
Suspended Solids	 Ħ	π		15	p.p.m.
Phenolic Equivalents	 **	"	"	20	p.p.b.
Ether Solubles (oil)	 Ħ	**	Ħ	15	p.p.m.
pH Range				5.5	5 - 10.6

RESULTS OF ANALYSES

The results of the bacteriological and chemical analyses . of the samples collected are recorded in Table I of this report, together with a brief description of all known sewer outfalls from Metropolitan Toronto to Lake Ontario and Toronto Harbour.

The locations of the outfalls are shown on accompanying plans numbered 15-31 inclusive. A key plan of this area is attached.

DISCUSSION

Some of the lakefront municipalities have combined sewers which discharge to associated storm sewers via relief mechanisms, during most periods of runoff.

Combined sewers carry sanitary sewage and/or industrial wastes as well as storm and run-off waters. Due to the costs of collecting and treating the high flows that occur at times of storms or surface run-off, they are diverted in part to storm sewers or storm relief sewers to be discharged, without treatment, to a watercourse. This represents a pollution problem in the receiving waters. This condition is aggravated if sanitary sewage and/or industrial wastes is discharged unnecessarily from the storm sewer or other outlets, during periods of zero or negligible run-off as during the periods of these surveys.

During this survey period, very little flow and certainly no contaminated combined sewer overflows, should be expected in storm sewer outfalls. But, in fact, appreciable severely contaminated flows were occurring, as indicated by their high bacterial (coliform) contents. Raw or untreated sanitary sewage could cause a high count to exist.

From Etobicoke to Scarborough high coliform counts were obtained in most of the outfall effluents. The maximum total coliform count of sixty-seven million per 100 ml. was recorded at the creek on the Ontario Hospital grounds at New Toronto LO-72.2(D). This creek periodically receives untreated industrial wastes together with overflows from a Township of Etobicoke sewage pumping station. A value of forty-one million was recorded at the Cherry Street storm sewer LOT-9(W). Values of one million or greater were recorded at

the Etobicoke Creek LO-70.7(D), Long Branch sewage treatment plant outfall LO-70.7(D), Park Lawn Road storm sewer LO-75.1(W), Parkside Drive storm sewer LO-76.7(W), Roncesvalles Avenue storm sewer LO-77.3(W), Dufferin Street storm sewer LO-78.5(W), Garrison Creek storm sewer LOT-2(W), the storm sewer between Parliament and Small Streets LOT-8(W), the Don River at Cherry Street LOT-10(D), Leslie Street storm sewer LOT-19(W), Main sewage treatment plant outfall LO-86.6(T), Ashbridges Bay LO-86.6(D), Coxwell Avenue storm sewer LOA-3(W), Scarborough Crescent storm sewer LO-91.7(W), and Highland Creek LO-98.6(D). Values approaching these concentrations were recorded at many other outfalls and are shown in Table I.

All the points mentioned above, almost invariably also were discharging wastes having B.O.D. and suspended solids concentrations in excess of the Commission's objective maximums. Locations LOT-11(W), LOT-12(W), LOT-13(W), and LOT-14(W), all in Toronto Harbour, revealed similar excesses.

Excessive phenol concentrations were revealed at the 23rd Street storm sewer LO-71.9(W), 2nd Street storm sewer LO-73.1 (W-1), Sand Beach storm sewer LO-73.3(W), Mimico Creek LO-75.0(D), Parkside Drive storm sewer LO-76.7(W), Roncesvalles Avenue storm sewer LO-77.3(W), Dufferin Street storm sewer LO-78.5(W), Garrison Creek storm sewer LOT-2(W), Simcoe Street storm sewer LOT-5(W), Sherbourne Street storm sewer LOT-7(W), Cherry Street storm sewer LOT-9(W), Polson Street storm sewer LOT-12(W), Carlaw Avenue storm sewer LOT-17(W), Commissioners Street storm sewer LOT-18(W), Leslie Street storm sewer LOT-19(W), Main sewage treatment plant outfall LO-86.6(T), ditch to Ashbridges Bay LOA-1(D), Scarborough Crescent storm sewer LO-91.7(W), and Highland Creek LO-98.6(D).

Excessive concentrations of ether solubles (oil) were recorded at the Hospital Creek in New Toronto LO-72.2(D) and at the Second Street storm sewer LO-73.1(W-D). Ether solubles evaluations were not made at all locations.

Low pH (acidic) results were obtained at the Hospital Creek LO-72.2(D) and at the Second Street storm sewer LO-73.1(W-2). ASSESSMENT OF ANALYSES

The analyses revealed that the B.O.D. and suspended solids of the effluents from many of the sewers were excessive, and there were some very high coliform counts. While the flows in the storm sewers were not estimated they were quite significant in many cases, so that the total weight of the polluting material thereof, was appreciable even during these periods of dry flow.

Gross deposition of solids was observed in some of the storm sewers receiving combined sewer overflows.

Attention is also directed to sampling points numbered LO-70.7(D), LO-75.0(D), LO-75.9(D), LO-98.6(D) which represent samples collected at the mouths of the Etobicoke and Mimico Creeks, Humber and Don Rivers, and Highland Creek, respectively. The B.O.D. of the waters in all these streams generally exceeded desired objectives in each investigation. The minimum and the maximum B.O.D. results for the above watercourses were as follows:

	Minimum B.O.D.	Maximum B.O.D.
Etobicoke Creek	3.2	17
Mimico Creek	6.4	23
Humber River	6.0	32
Don River	14	76
Highland Creek	9	15

Gross bacterial contamination was revealed in several of the samples collected from the mouths of the streams. The minimum and the maximum colliform counts obtained for each stream

are recorded below:

	Minimum Coliform Count	Maximum Coliform Count
Etobicoke Creek	10	1,040,000
Mimico Creek	0	10,400
Humber River	2,260	257,000
Don River	14,000	1,340,000
Highland	10	2,160,000*

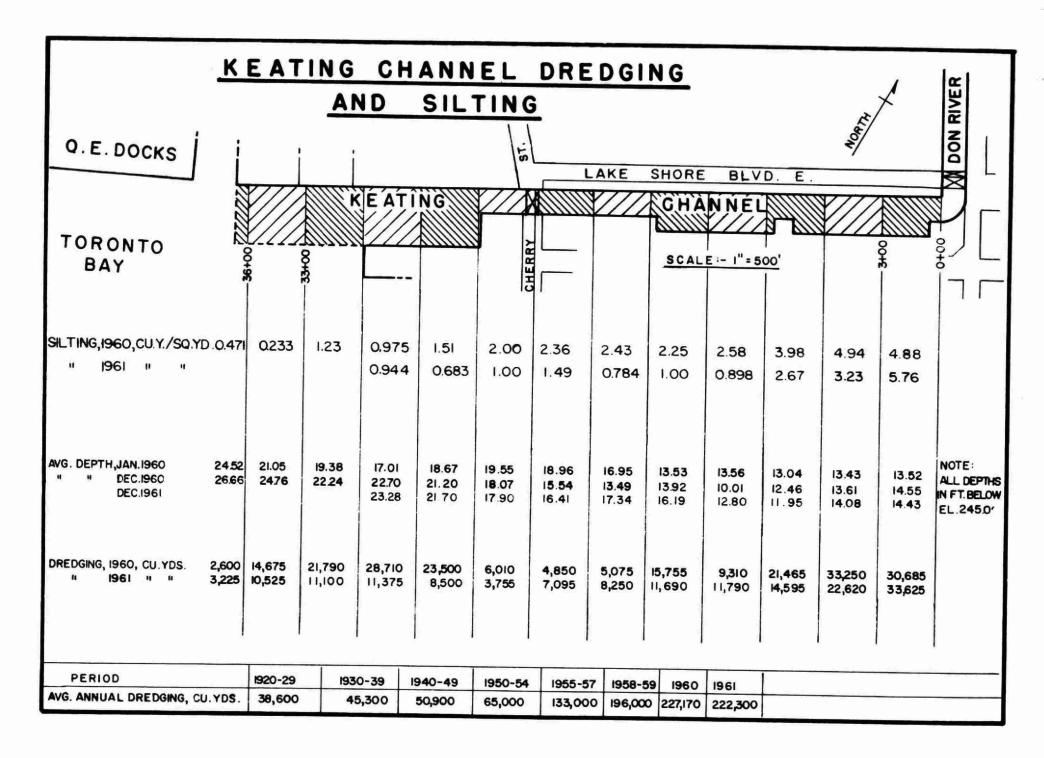
*This last value may have been caused by a malfunctioning of the effluent chlorination devices at the Highland Creek sewage treatment plant.

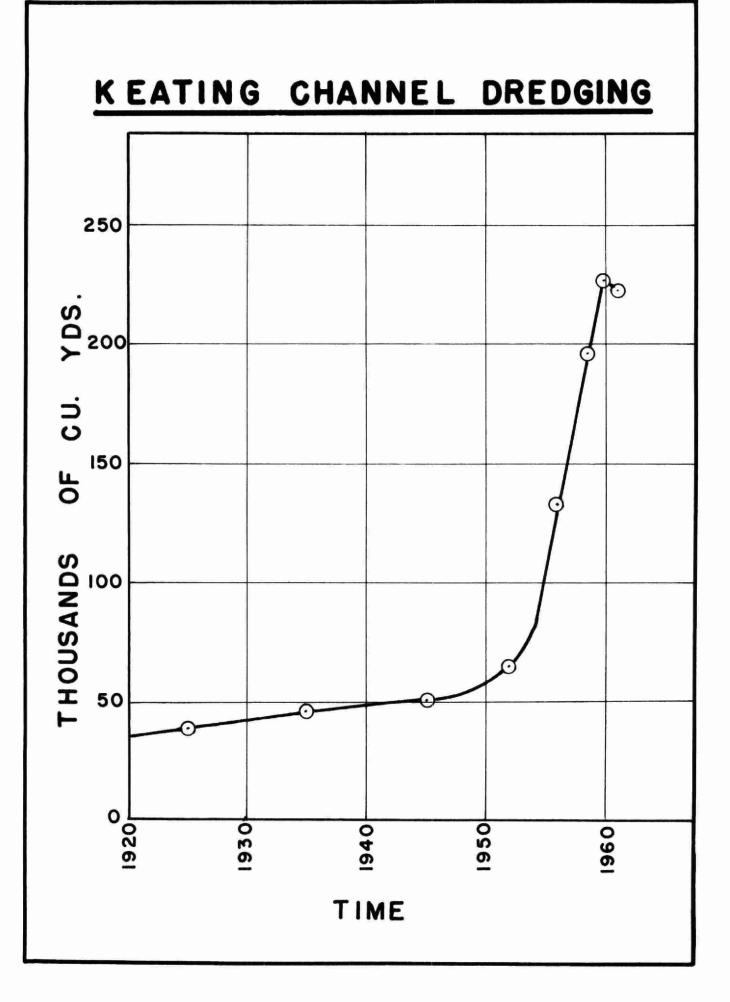
TORONTO HARBOUR - SEDIMENT

The Don River terminates at the Keating Channel. As well as other pollutants, excessive quantities of silt and debris are deposited here and are often visually evident. The effect on the bay area itself is not visible but is measurable. With continued urbanization and increased soil erosion in the drainage area of the Don, the annual quantities in the channel requiring dredging by the Toronto Harbour Commission, have risen from approximately 65,000 cubic yards ten years ago to approximately 225,000 cubic yards at present. A similar increased rate of siltation in the bay might be anticipated.

Deposition near Garrison Creek outlets LOT-3(W) and LOT-2(W), the Sherbourne Street outlet LOT-7(W), Carlaw Ave. LOT-17(W) and Cherry Street LOT-14(W) is also appreciable. Surveys may reveal that a greater part of this material originates in the Don River.

These deposits and other associated polluting material would in part be forced out of the bay to the lake during the periods of storms and severe runoff. Some of this material may also, of necessity, have been barged to the lake proper.


TORONTO HARBOUR COMMISSIONERS


As stated in A Review of the Lake Pollution Problem in the Toronto Area by the City of Toronto Planning Board, -"the Harbour Commission is responsible for the control over the discharge of material by shipping to harbour waters. The Animal Contagious Diseases Act, requires the collection and incineration of garbage and other refuse from foreign ships. A regular service of garbage collection, under the authority of a Federal By-Law, is in effect for all ships in the harbour. Oil Pollution Prevention Regulations, under the authority of the Canada Shipping Act have been in use since March 21, 1957, and have the effect of prohibiting the discharge of oil in the lake and authorizing the Harbour Police to act as oil inspectors who can board an offending ship and take whatever steps may be necessary. An additional safeguard is provided by periodic aerial inspection by the Harbour Commission for traces of oil in the harbour area.

There is no sewage collection service from boats in the harbour, although a plan for such service is understood now to be under consideration."

The polluting effects of discharges from the two thousand or so ships docking in the harbour each year (1958 -2,260; 1959 - 2,336) should be borne in mind.

The Harbour Commission makes an inspection of the harbour in the vicinity of some thirty-one outlets daily. Most of these outlets are submerged. Once a week, about seventytwo manholes and catch basins on these sewers are examined for the presence of oil. Any accumulation of oil or grease in these manholes or catch basins is pumped out so that it will not escape

to the harbour.

Together with oil pollution, siltation in the harbour is becoming more severe each year and is the subject of extensive investigation by that body, in association with Dr. R. H. Deane of the Great Lakes Institute. A sketch showing dredging quantities is attached by kind permission of the Commissioners.

During the navigation season there is danger of oil spills from boats, and hence the Commissioners have maintained daily oil inspection flights over the bay and lake from Whitby to Oakville.

The Commissioners have had an intensive policy of locating and plotting all known intakes and outlets in their waterfront areas. These are especially useful in assessing and abating pollution problems.

SAMPLING BY METROPOLITAN TORONTO WORKS DEPARTMENT

The Metropolitan Toronto Works Department has been active in attempting to minimize water pollution and to this end collects effluent samples in this area at basically the same locations as used by the Ontario Water Resources Commission. The results of analyses performed by the Department on samples collected in 1961 are attached, with an associated map, by kind permission of the Department. Generally these indicate the gross bacteriological pollution being discharged to the lake and the bay, suggesting the presence of raw or inadequately treated sanitary sewage therein.

The coliform index used here is derived by another method of coliform content determination, yielding values approximating those derived by the membrane filter technique.

The Industrial Waste Control Branch of the Water

Pollution Control Division of this Department has been especially active in investigating industrial waste discharges and co-operating with industry in abating these discharges.

A summary of coliform indeces of samples collected at Metropolitan Toronto water works intakes by staff of the Works Department and later analysed at their laboratory, is attached by kind permission. These average results indicate the extent of the bacterial pollution of the Metropolitan Toronto water source. Since it is desirable to kill all coliform organisms present in water to be used for drinking purposes, the need for adequate disinfection by chlorination procedures to avoid the occurrance of water-borne diseases is apparent.

LAKE ONTARIO WATER AT METROPOLITAN TORONTO WATER WORKS INTAKES

COLIFORM INDEX PER 100 ML.

YEARLY AVERAGES-1957-61.

	R.C.HARRIS PLANT	SCARBORO PLANT	NEW TORONTO PLANT	ISLAND FILTRATION PLANT
				4
1957	94	17,342	3,461	8,527
1958	195	101,040	6,684	28,413
1959	106	54,873	12,897	12,312
1960	318	17,978	4,113	3,659
1961	365	15,586	4,404	3,564

Note:

The Island Filtration Plant results are for the Eastern Intake only. Operation of the Western Intake is intermittent and therefore the results are not representative of the entire year.

POLLUTION CONTROL AND WATER EVALUATION LAKE AND STREAM SAMPLING

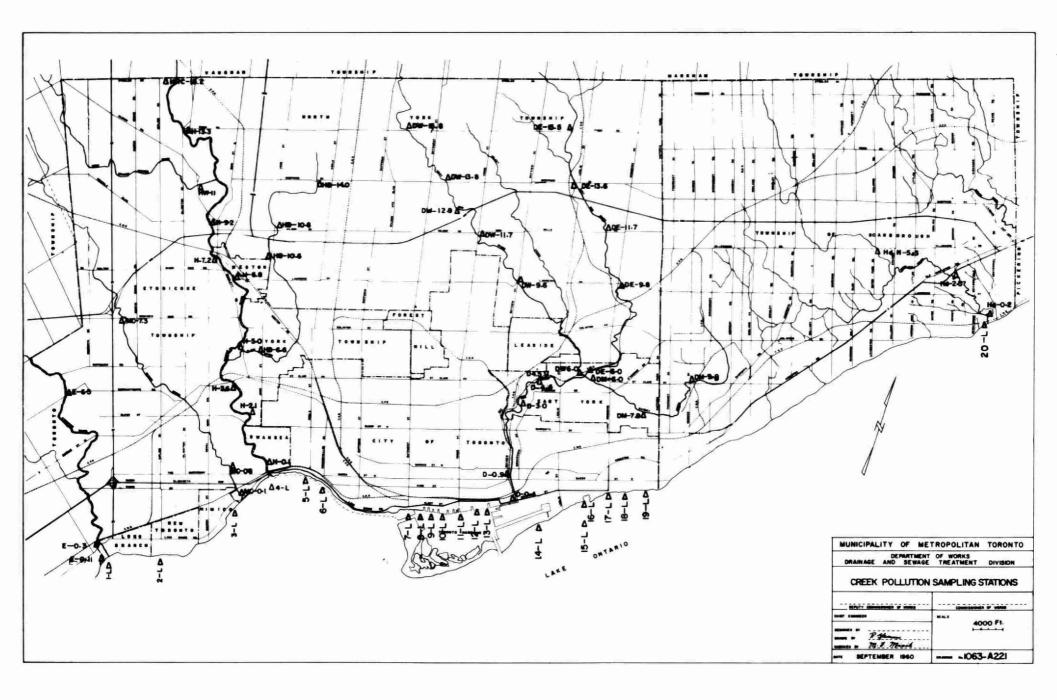
DATE July 26, 1961 SOURCE Lakefront

.

.

MONTH OF June SAMPLING DATE see remarks

4


٠.

SAMPI THE LOCATION		OLVED	WATER		SOLIDS	BOD	COLIFORM		
SAMPLING LOCATION		GEN	Temp.	Suspende	ed %	ppm	BACTERIA	R	EMARKS
x.5-15' from Outlets	ррш	%Sat.	°F	ppm	Volatil	e	index/100ML	Date	Weather
Strachan							-		
Western Gap	8.4	-					100,000		
-	8.0						10,000		
Simcoe Slip		-	60			5	10,000	June 28	Light Rain
Yonge Slip			60		73	1	100,000		
Sherbourne			60		64		100,000		
Parliament	5.4	THE REAL	68	136	74		100,000		
Turning Basin	3.0	33	68	80	74	65	1,000,000		
Outfall M.S.T.P.	-	-	50	8	100	7	NIL		
Coatsworth Cut	-	-	54	12	86	3	1,000		
Woodbine	-	-	52	3	100	NIL	10,000	June 7	Sunny
Lee	-	-	54	7	100	NIL	100		
Maclean	-	-	53	6	100	NIL	100		
				1 1					
				1		÷			
2°									
	Strachan Western Gap Spadina Slip Simcoe Slip Yonge Slip Sherbourne Parliament Turning Basin Outfall M.S.T.P. Coatsworth Cut Woodbine Lee	Strachan10.6Western Gap8.4Spadina Slip8.0Simcoe Slip5.5Yonge Slip6.3Sherbourne5.2Parliament5.4Turning Basin3.0Outfall M.S.T.PCoatsworth Cut-Woodbine-Lee-	Strachan10.694Western Gap8.479Spadina Slip8.0Simcoe Slip5.5Yonge Slip6.3Sherbourne5.2Parliament5.4Turning Basin3.0Outfall M.S.T.PCoatsworth Cut-Woodbine-Lee-	Strachan 10.6 94 50 Western Gap 8.4 79 65 Spadina Slip 8.0 88 60 Sincoe Slip 5.5 58 60 Yonge Slip 6.3 66 60 Sherbourne 5.2 55 60 Parliament 5.4 59 68 Turning Basin 3.0 33 68 Outfall M.S.T.P. - - 50 Coatsworth Cut - - 52 Woodbine - - 54	Strachan 10.6 94 50 28 Western Gap 8.4 79 65 32 Spadina Slip 8.0 88 60 9 Sincoe Slip 5.5 58 60 18 Yonge Slip 6.3 66 60 16 Sherbourne 5.2 55 60 23 Parliament 5.4 59 68 136 Turning Basin 3.0 33 68 80 Outfall M.S.T.P. - - 50 8 Coatsworth Cut - - 54 12 Woodbine - - 54 7	Strachan 10.6 94 50 28 49 Western Gap 8.4 79 65 32 61 Spadina Slip 8.0 88 60 9 74 Simcoe Slip 5.5 58 60 18 65 Yonge Slip 6.3 66 60 16 73 Sherbourne 5.2 55 60 23 64 Parliament 5.4 59 68 136 74 Turning Basin 3.0 33 68 80 74 Outfall M.S.T.P. - - 50 8 100 Coatsworth Cut - - 52 3 100 Lee - - 54 7 100	Strachan 10.6 94 50 28 49 3 Western Gap 8.4 79 65 32 61 17 Spadina Slip 8.0 88 60 9 74 2 Simcoe Slip 5.5 58 60 18 65 5 Yonge Slip 6.3 66 60 16 73 1 Sherbourne 5.2 55 60 23 64 8 Parliament 5.4 59 68 136 74 20 Turning Basin 3.0 33 68 80 74 65 Outfall M.S.T.P. - - 50 8 100 7 Coatsworth Cut - - 52 3 100 NIL Woodbine - - 54 7 100 NIL	Strachan 10.6 94 50 28 49 3 1,000 Western Gap 8.4 79 65 32 61 17 100,000 Spadina Slip 8.0 88 60 9 74 2 10,000 Sincoe Slip 5.5 58 60 18 65 5 10,000 Yonge Slip 6.3 66 60 16 73 1 100,000 Sherbourne 5.2 55 60 23 64 8 100,000 Sherbourne 5.4 59 68 136 74 20 100,000 Parliament 3.0 33 68 80 74 65 1,000,000 Outfall M.S.T.P. - - 50 8 100 7 NIL Coatsworth Cut - - 54 12 86 3 1,000 Woodbine - - 54 7 <t< td=""><td>Strachan 10.6 94 50 28 49 3 1,000 Western Gap 8.4 79 65 32 61 17 100,000 Spadina Slip 8.0 88 60 9 74 2 10,000 Simcoe Slip 5.5 58 60 18 65 5 10,000 Sherbourne 5.2 55 60 23 64 8 100,000 Parliament 5.4 59 68 136 74 20 100,000 Turning Basin 3.0 33 68 80 74 65 1,000,000 Outfall M.S.T.P. - - 50 8 100 7 NIL Woodbine - - 54 12 86 3 1,000 Woodbine - - 52 3 100 NIL 100</td></t<>	Strachan 10.6 94 50 28 49 3 1,000 Western Gap 8.4 79 65 32 61 17 100,000 Spadina Slip 8.0 88 60 9 74 2 10,000 Simcoe Slip 5.5 58 60 18 65 5 10,000 Sherbourne 5.2 55 60 23 64 8 100,000 Parliament 5.4 59 68 136 74 20 100,000 Turning Basin 3.0 33 68 80 74 65 1,000,000 Outfall M.S.T.P. - - 50 8 100 7 NIL Woodbine - - 54 12 86 3 1,000 Woodbine - - 52 3 100 NIL 100

T - Turbidity - Suspended Solids test carried out only when indicated turbidity is 20 units or more. NAP - No apparent pollution - Dissolved Oxygen at or near saturation, and indicated turbidity less than 20 units.

COMMISSIONER OF WORKS

Acknowlegement not necessary.

. . . .

AL 1. 1.

POLLUTION CONTROL AND WATER EVALUATION LAKE AND STREAM SAMPLING

DATE Nov. 27/61

SOURCE Lake Ontario

. . . .

MONTH OF July SAMPLING DATE as below

4

SAMPLING LOCATION	OVV	GEN	WATER	A		BOD	COLIFORM	DEMON		
Approx.5-15' from Outlets			oF	Suspendee		ppm	BACTERIA			EMARKS
R.J-15 Hom Outlets	ppm	%Sat.	- <u>F</u>	ppm	Volatile		index/100M	Da	te	Weather
ong Branch S T P	8.0	66.2	1.5	3/	70.0		100.000		· _	
	256 CALEDO	Daries and the Meridian			177 N. 1997 March				•	Sunny
	CONTROL OF ALL OF ALL				10-1 (1) 10-10-					11
liminated	0.5	/9.1	20	12	96.0	NIL	10,000			
	11.2	91.7	45	NTI.	NTI.	NTI	100	11	11	
loncesvalles		The second second					110-00-004 (1707)	11	91	11
Strachan			2121	The solution.						11
Nestern Gap		and the second second	(main 12 main)						20	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								20	Partly Sunny
	1.11.1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.							91	12	
onge St. Slip	100 100 1000							"	12	
herbourne				Constraint States	-	_	-			
arliament				and the second second						
urning Basin							1,000,000			
utfall M.S.T.P.										
Toodbine				bud wede	,					
ee				1						
lacLean						5 J				
Outfall	8.0	80.8	62	64	49.1	4	NIL	11	6	Sunny
	Strachan Vestern Gap Spadin Slip W Corner of Pier 5 Slip Onge St. Slip Sherbourne Varliament Surning Basin Autfall M.S.T.P. Soatsworth Cut Yoodbine See MacLean Sighland Creek S of Outfall	Ont. Hospital Creek3.5Superior Ave. Mimico8.3Superior Ave. Mimico8.3Siminated8.3Breakwater opposite11.2Sunnyside11.1Strachan10.6Vestern Gap9.0Spadin Slip5.6W Corner of Pier 5 Slip8.2Songe St. Slip10.4Sherbourne9.2Varliament5.6Surning BasinSarSutfall M.S.T.P.werSoatsworth CutperSoatsworth CutperSoatsworth CutsofOutfall8.0	Ont. Hospital Creek3.539.8Superior Ave. Mimico8.379.1Sunnyside11.291.7Sunnyside11.192.8Sunnyside10.693.8Strachan10.693.8Vestern Gap9.086.5Spadin Slip5.651.3W Corner of Pier 5 Slip8.278.8Conge St. Slip10.4100.1Sherbourne9.288.5Sample point5.656.0Sunning BasinSample pointSutfall M.S.T.P.were not the personnel holidays, seeSacLean6.98.0Subland Creek S of8.0Outfall8.0	Ont. Hospital Creek3.539.872Superior Ave. Mimico8.379.156Sunnyside11.291.745Sunnyside11.192.846Strachan10.693.850Vestern Gap9.086.557Spadin Slip5.651.353W Corner of Pier 5 Slip8.278.857Songe St. Slip10.4100.158Sherbourne9.288.557Sample points5.656.061Surning BasinSample points1Soatsworth Cutpersonneldue toSoatsworth Cut9.080.862	Ont. Hospital Creek3.539.872780Superior Ave. Mimico8.379.15612Sunnyside11.291.745NILSunnyside11.192.84612Strachan10.693.85028Western Gap9.086.557NAPSpadin Slip5.651.35354W Corner of Pier 5 Slip8.278.857NAPSherbourne9.288.557NAPSarliament5.656.06124Surning BasinSample points L14 to L19yersonnel4ue to bad weatNodbineeeacLean6.080.86264	Ont. Hospital Creek 3.5 39.8 72 780 44.9 Superior Ave. Mimico 8.3 79.1 56 12 96.0 Sunnyside 11.2 91.7 45 NIL NIL NIL Sunnyside 11.1 92.8 46 12 68.0 Strachan 10.6 93.8 50 28 49.2 Spadin Slip 5.6 51.3 53 54 45.1 W Corner of Pier 5 Slip 8.2 78.8 57 NAP - Songe St. Slip 10.4 100.1 58 NAP - Songe St. Slip 9.2 88.5 57 NAP - Songe St. Slip 56 56.0 61 24 83.6 Surning Basin Sample points L.4 to L19 inclusive were not taken by Main Plant personnel due to bad weather, Sodbine see Mutfall M.S.T.P. 8.0 80.8 62	Dat. Hospital Creek 3.5 39.8 72 780 44.9 40+ Superior Ave. Mimico 8.3 79.1 56 12 96.0 NIL Sunyside 11.2 91.7 45 NIL NIL NIL NIL Sunyside 11.1 92.8 46 12 68.0 5 Strachan 10.6 93.8 50 28 49.2 3 Vestern Gap 9.0 86.5 57 NAP - - Spadin Slip 5.6 51.3 53 54 45.1 10 W Corner of Pier 5 Slip 8.2 78.8 57 NAP - - Superior Mutal M.S.T.P. 9.2 88.5 57 NAP - - Vurning Basin Sample points L.4 to L19 inclusive were not taken by Main Plant - - Sodtsworth Cut personnel due to bad weather, - - - - Superior Mutal M.S.T.P. 8.0 80.8 62 64 49.1 4	Dnt. Hospital Creek 3.5 39.8 72 780 44.9 40+ 10,000 Superior Ave. Mimico 8.3 79.1 56 12 96.0 NIL 10,000 Liminated 3.5 39.8 72.7 780 44.9 40+ 10,000 Liminated 3.3 79.1 56 12 96.0 NIL 10,000 Sunnyside 11.2 91.7 45 NIL NIL NIL 10,000 Concesvalles 11.1 92.8 46 12 68.0 5 1,000,000 Strachan 10.6 93.8 50 28 49.2 3 1,000 Greathan 10.6 93.8 50 28 49.2 3 1,000 Greathan 10.6 93.8 57 NAP - - 100 Strachan 10.4 100.1 58 NAP - - 100,000 We corner of Pier 5 Slip 8.2 78.8 57 NAP - - 100,000 Sample	Dnt. Hospital Creek 3.5 39.8 72 780 44.9 404 10,000 " Superior Ave. Mimico 8.3 79.1 56 12 96.0 NIL 10,000 " Superior Ave. Mimico 8.3 79.1 56 12 96.0 NIL 10,000 " Sunyside 11.2 91.7 45 NIL NIL NIL 10,000 " toncesvalles 11.1 92.8 46 12 68.0 5 1,000,000 " Grachan 10.6 93.8 50 28 49.2 3 1,000 " Strachan 10.6 93.8 50 28 49.2 3 1,000 " Gestern Gap 9.0 86.5 57 NAP - - 100 " Western of Pier 5 Slip 8.2 78.8 57 NAP - - 1,000 " Worne of Pier 5 Slip 8.2 78.8 57 NAP - - 100,000 " 'ar	Dnt. Hospital Creek 3.5 39.8 72 780 44.9 10,000 """ Superior Ave. Mimico 8.3 79.1 56 12 96.0 NIL 10,000 """" Superior Ave. Mimico 8.3 79.1 56 12 96.0 NIL 10,000 """" Sunyside 11.1 91.7 45 NIL NIL 10,000 """" Concesvalles 11.1 92.8 46 12 68.0 5 1,000,000 """" Strachan 10.6 93.8 50 28 49.2 3 1,000 """" Greatware of Piers 9.0 86.5 57 NAP - - 100 """" Spadin Slip 5.6 51.3 53 54 45.1 10 100 """" W Corner of Pier 5 Slip 8.2 78.8 57 NAP - - 1,000 """" Sample points L14 100.1 58 NAP - - 100,000 """" """" 'ar

NAP - No apparent pollution - Dissolved Oxygen at or near saturation, and indicated turbidity less than 20 units.

COMMISSIONER OF WORKS

Acknowlegement not necessary.

POLLUTION CONTROL AND WATER EVALUATION LAKE AND STREAM SAMPLING

DATE <u>Nov. 27/61</u> SOURCE <u>Lake Ontario</u>

MONTH OF <u>Aug.</u> SAMPLING DATE as below

	SAMPI ING LOCATION	DISSO		WATER		SOLIDS	BOD	COLIFORM		
Annr	SAMPLING LOCATION	OXYG		Temp.	Suspende	ed %				DEMON
	VA.J-13 Irom Outlets	ppm	ZSat.	oF	. ppm	Volatile			Data	KEMARKS
L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19E	ox.5-15' from Outlets Long Branch S.T.P.Outfall Ont. Hospital Superior Ave. Mimico Breakwater opp.Sunnyside Roncesvalles Eliminated Strachan Western Gap Spadina NW Corner Pier 5 Slip Yonge St. Sherbourne Parliament NW Corner Turning Basin Outfall Main S.T.P. Coatsworth Cut Woodbine Lee MacLean East	ppm 10.8 9.1 7.9 8.7 10.3 6.9 11.7 9.5 (Main (samp) 3.3 NIL NIL ((Bacte	25at. 93.9 88.3 79.8 76.9 88.8 65.7 21.8 95.0 Plant es du 34.4 - - riolog on the	^o F 49 58 62 50 48 56 64 61 Person 65 92 95 95 sical o	ppm 16 23 16 33 7 23 21 6 nel unat ats unlo 48 51 64	Volatile 52.5 45.6 25.0 20.5 22.2 31.6 32.7 42.8 le to take ading. 95.1 83.7	4 7 6 3 1 7 5	100,000 100,000 10,000 1,000 10,000 100,000	Aug.	16 " " " " 17 16 24 " " 30
L19W	MacLean West	Ċ						100,000		т 1
T - T	urbidity = Suspended Solid									

T - Turbidity - Suspended Solids test carried out only when indicated turbidity is 20 units or more. NAP - No apparent pollution - Dissolved Oxygen at or near saturation, and indicated turbidity less than 20 units.

÷ .

. . .

COMMISSIONER OF WORKS

. . . .

Acknowlegement not necessary.

. . . .

SOLIDS

%

ppm

POLLUTION CONTROL AND WATER EVALUATION LAKE AND STREAM SAMPLING

Suspended

WATER

Temp.

DISSOLVED

OXYGEN

DATE Nov. 27/61 SOURCE Lake Ontario

. . . .

SAMPLING LOCATION

MONTH OF Sept. SAMPLING DATE as below BOD COLIFORM BACTERIA REMARKS

.

.

Appro	ox.5-15' from Outlets	ppm	%Sat.	°F	ррш	Volatile	PP-	index/100M	Date
L 1 L 2 L 3 L 4 L 5 L 6 L 7	Long Branch S.T.P. Ontario Hospital Creek Superior Ave. Mimico Breakwater opp.Sunnysid Roncesvalles Eliminated Strachan Ave.	e				2			Samples Ll to L7 incl. and L9 and L15 to L19 west were unable to be taken by Main Plant Personnel
L 8 L 9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19E L19W	Western Gap Spadina Slip NW Corner Pier 5 Slip Yonge St. Slip Sherbourne St. Slip Parliament NW Corner Turning Basin Outfall Main S.T.P. Coatsworth Cut Woodbine Lee Ave. MacLean East MacLean West	6.4 0.4 NIL 1.7 0.7	72.7 4.6 NIL 20.3 7.8	aken by 72 73 59 78 71	4 15 35 6 76	37.5 33.3 75.5 91.4 99.9 97.4	22 >85 >85	10,000 10,000 1,000,000 * *	Sept. 21 Not Taken Sept. 14 " " *samples contaminated in lab
NAP -	urbidity - Suspended Sol: No apparent pollution -	ids té Disso	st car lved 0	ried out xygen at	only what or near	en indica saturati	ted t on, a	urbidity is nd indicated	20 units or more. I turbidity less than 20 units.

Acknowlegement not necessary

POLLUTION CONTROL AND WATER EVALUATION LAKE AND STREAM SAMPLING

DATE Nov. 27/61 SOURCE Lake Ontario

MONTH OF Oct. SAMPLING DATE as below

SAMPLING LOCATION			WATER Temp.	Cuppended W		BOD COLIFORM ppm BACTERIA		DEMAN
Approx.5-15' from Outlet	ppm	%Sat.	°F	ррш	Volatile		index/100M	REMARKS
L 1 Long Branch S.T.P. Dotario Hospital Creek Superior Ave. Mimico L 4 Breakwater opp. Sunnysid L 5 Roncesvalles L 6 Eliminated L 7 Strachan Ave. L 8 Western Gap L 9 Spadina Slip L10 NW Corner Pier 5 Slip L11 Yonge St. Slip L12 Sherbourne St. Slip L13 Parliament L14 NW Corner Turning Basin L15 Main S.T.P. Outfall L16 Coatsworth Cut L17 Woodbine L18 Lee Ave. L19E MacLean Ave. East L19W MacLean West T - Turbidity - Suspended Solid NAP - No apparent pollution - D	3.0 5.6 9.2 11L 3.4 3.9	29.4 56.6 99.9 - 31.8 38.6	59 62 62 59 54 60 ied out	45 16 T 8 55 34 23 only when	62.8 99.9 - 38.2 63.2 72.0	25 6 - 82 29 70	10,000 10,000 * 100,000 10,000 10,000	Samples Ll & L7 incl. L9 & L15 to L19 west inclusive were unable to be taken by Main Plant Personnel. Oct. 19 Sunny Oct. 12 NAP *Bottle broken on receipt Oct. 26 Cloudy """"""

WAP - No apparent pollution - Dissolved Oxygen at or near saturation, and indicated turbidity less than 20 units.

. . . .

COMMISSIONER OF WORKS

1 H 1

Acknowlegement not necessary.

.

.

. . . .

POLLUTION CONTROL AND WATER EVALUATION LAKE AND STREAM SAMPLING

DATE Dec. 6/61 SOURCE Lake Ontario

. . . .

SAMPLING DATE as be

. . .

	the second s	
	1 1	
as	below	
~ 0	DETOM	

	SAMPLING LOCATION	OXY	OLVED GEN %Sat.	WATER Temp. F	SO Suspende ppm	LIDS d % Volatile	BOD ppm	COLIFORM BACTERIA index/100M	L Dat	REMARK	
L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19E L19W		7 7 8 NIL 2 3	60 57 67 - 20 31	46 46 44 50 50 53	50 18 17 58 52 120	52.0 40.0 41.9 87.8 57.7 76.6	9 7 3 15 116 125	index/100M 10,000 10,000 100,000 100,000 100,000	Samp L9 & unab Main Nov. Nov.	les Ll t Ll5 to le to be Plant P 16	Weather o L7 incl L19W were taken by ersonnel Rain Cloudy " Rain "
T - T NAP -	urbidity - Suspended Soli No apparent pollution -	ds tes Dissol	t carr ved Ox	ied ou tygen at	t only whe t or near	n indicate saturation	ed turb n, and	idity is 20 indicated () unit turbic	lity less	te. than inits.

COMMISSIONER OF WORKS

Acknowlegement not necessary.

SAMPLING BY CITY OF TORONTO HEALTH DEPARTMENT

The City of Toronto has experienced adverse effects of bacteriological pollution by the necessary closing of some, and in mid-summer 1959, all of the city's lakeshore beaches but one. On the western beaches this pollution is considered to be caused in greater part, by a portion of the Humber River flow which is forced behind the breakwater by the prevailing wind action, as well as by the storm sewer outlet discharges in those areas.

The waterfront is sampled intensively and regularly during the summer months by the City of Toronto Health Department, and the results of bacteriological analyses performed at the Commission laboratory during 1960 and 1961 are attached, by kind permission of the Department. The excessively high coliform counts that occurred at some times in 1960 and 1961 in the Humber River mouth (#150, 151, 152), inside the breakwater at the Sunnyside central bathing area (#55B), at the foot of Strachan Avenue (#23), and at the foot of Dowling Avenue (#56A), should be noted.

CITY OF TORONTO - WATERFRONT SURVEY - BACTERIOLOGICAL REPOR	RT 1960	CAL REPORT	 BACTERIOLOGICAL 	SURVEY	- WATERFRONT	TORONTO -	CITY OF
---	---------	------------	-------------------------------------	--------	--------------	-----------	---------

e . .

÷.

.

.

. .

MEMBRANE FILTER TOTAL COLIFORM

٩

AREA	LOCATION OF TEST POINT		MAY 17	MAY 24	MAY 31	JUNE 7	JUNE 14	JUNE 21	JUNE 28	JULY 5 JULY	12
# 2	BALMY BEACH	100 YDS FROM SHORE	3	153	9	0	3,900	400	165	1,500 0)
# 3	KEW BEACH	30 YDS FROM SHORE	26	181	147	6	8,000	800	530	1,400 57	7
# 4	WOODBINE BEACH	50 YDS FROM SHORE	75	176	н	0	1,500	200	220	6,400 17	1
# 7	CHERRY BEACH (AT STATION)	100 YDS FROM SHORE	29,000	50	10		700	3,300	60	48 13	3
# 9	WARD'S IS. (BEACH AREA 7)	100 YDS FROM SHORE	26	30	120	190	NO SAMPLE	20	124	1,000 30)
# 51	HANLAN'S PT, BATHING AREA NO IO (BATH HOUSE)	50 YDS FROM SHORE	154	195	83	7	NO SAMPLE	70	0	130 30)
# 52	CHEROKEE BATHING AREA 8A (FOOT OF CHEROKEE AVE.)	50 YDS FROM SHORE	0	180	50	130	NO SAMPLE	150	220	37,000 30)
# 53	CENTRE IS, BATHING AREA 8	(BATH HOUSE)	63	203	87	13	NO SAMPLE	78	210	630 20)
# 55A	SUNNYSIDE-WEST OF SUPERVISED AREA FOOT OF HOWARD AVE	INSIDE BREAKWATER	210	183,000	5,000	10	840	7,000	640	18,000 570	0
# 55B	SUNNYSIDE-CENTRE SUPERVISED AREA CENTRE OF PAVILION	INSIDE BREAKWATER	100	180,000	280	10	780	14,000	500	55 ,000 6, 00	Ø
# 55C	SUNNYSIDE-EAST OF SUPERVISED AREA-EAST END OF POOL	INSIDE BREAKWATER	150	171,000	100	50	3,800	11,000	300	8,700 40)
# 56 A	WEST FREE AREA (WOMEN'S) FOOT OF DOWLING AVE.	INSIDE BREAKWATER	40	23,000	9,000	6,000	116	4,600	92	4,300 810)
# 56B	EAST FREE AREA (MEN'S) Foot of dowling ave.	INSIDE BREAKWATER	30	72,000	510	2,000	۱,000	16,000	100	2,600 70)
# 50	OLYMPIC BATHING AREA 9 (BATH HOUSE)	100 YDS FROM SHORE	200	290	330	470	950	1,800	560	1,200 30	0
# 21 2	FOOT OF DUNN AVENUE	INSIDE BREAKWATER A OUTSIDE BREAKWATER	130 100	670 70	790 430	1,000 420	7,000 29,000	850 400	14,000 100	3,000 160 630 20	
# 22	FOOT OF DUFFERIN ST. A	INSIDE BREAKWATER A outside breakwater	40 154	560 102	910 126	960 26	167,000 60	200 115	7,000 40	240,000 61 2,100 210	
# 23	FOOT OF STRACHAN AVE.	INSIDE BREAKWATER A outside breakwater	162 194	43,000 214	6 ,000 98	20 160	740,000 1,800	500 3,000	340 750	590,000 600 600 430	
		TEMPERATURE WIND DIRECTION VELOCITY M.P.H.	65 E. 2	55 N.W. 8	E.S.E.	5.E. 10	E.N.E. 12	5.E. 8	s.w.	66 79 N.W. S.V 12 8	9

CITY OF TORONTO - WATERFRONT SURVEY - BACTERIOLOGICAL REPORT -- 1960

MEMBRANE FILTER TOTAL COLIFORM

• •

AREA	LOCATION		JULY 19	JULY 26	AUG 2	AUG 9	AUG 16	AUG 23	AUG 30	SEPT 6	SEPT 13
# 2	BALMY BEACH	100 YDS FROM SHORE	7,200	ı	1,700	56 0	430	180	14	o	50
# 3	KEW BEACH	30 YDS FROM SHORE	32	68	3,400	14,000	37,000	950	47,000	120	32
# 4	WOODBINE BEACH	50 YDS FROM SHORE	5,800	71	3,100	170	490	850	30	40	39
# 7	CHERRY BEACH (AT STATION)	100 YDS FROM SHORE	900	61	6,100	550	28,000	30,000	52,000	116	NO SAMPLE
# 9	WARD IS. BEACH AREA 7	100 YDS FROM SHORE	1,500	150	760	NO SAMPLE	6 ,000	123,000	25,000	9	71
# 51	HANLAN'S PT, AREA NO 10 (BATH HOUSE)	50 YDS FROM SHORE	390	3	410	NO SAMPLE	70	22,000	ı 4 0	22	1,000
# 52	CHEROKEE BATHING AREA 8A (FOOT OF CHEROKEE AVE.)	50 YDS FROM SHORE	60	90	7,600	NO SAMPLE	220	350	2,000	20	37
# 53	CENTRE IS. BATHING AREA 8	(BATH HOUSE)	220	80	17,000	NO SAMPLE	210	۱,000	740	40	14
# 55A	SUNNYSIDE-WEST OF SUPER- Vised Area foot of Howard Ave.	INSIDE BREAKWATER	32 ,00 0	6 30	24,000	140	6 ,000	180,000	140,000	56	900
# 55B	SUNNYSIDE-CENTRE SUPERVISE AREA CENTRE OF PAVILION	D INSIDE BREAKWATER	7,000	6 90	510	390	9,000	390 ,000	390,000	700	610
# 55C	SUNNYSIDE-EAST OF SUPERVI Area east end of Pool	SED INSIDE BREAKWATER	1,100	15,000	2 ,200	87	15,000	198,000	340,000	900	440
# 56A	WEST FREE AREA (WOMEN'S) FOOT OF DOWLING AVE.	INSIDE BREAKWATER	715,000	400	17,000	1,110	37,000	172,000	37,000	139	9 ,700
# 56B	EAST FREE AREA (MEN'S) FOOT OF DOWLING AVE.	INSIDE BREAKWATER	62,000	150	11,000	920	33,000	224,000	17,000	97	8,200
# 50	DLYMPIC BATHING AREA 9	100 YDS FROM SHORE	17,000	100	970	NO SAMPLE	1,280	12,000	11,000	86	1,100
# 2I₽	FOOT OF DUNN AVENUE A	INSIDE BREAKWATER À OUTSIDE BREAKWATER	380 30	50 290	730 1,100	830 490	1,310 260	79,000 12,000	10,000 23,000	7 9 7	18,700 9,000
# 22	FOOT OF DUFFERIN ST	INSIDE BREAKWATER A OUTSIDE BREAKWATER	520 120	370 1,000	6,000 3,200	170 290	1,120 690	34,000 13,000	8,000 3,000	1,300 110	20,000 12,000
# 23	FOOT OF STRACHAN AVE. A	INSIDE BREAKWATER A OUTSIDE BREAKWATER	1 40,000 39,000	500 310	4,800 7,500	310 500	17,000 14,000	62,000 82,000	14,000 600	690 30	17,000 600
		TEMPERATURE WIND DIRECTION VELOCITY M.P.H.	74 S.W. 6	79 S.S.E. 6	67 S.W. 4	68 E. 12	74 S.E. 10	71 N. 10	78 S.E.	74 S.E. 6	64 S.W. 8

. . . .

. . . .

		CITY OF TORONTO	- WATERFR	ONT SURVE	Y - BACTERIOLO	DG ICAL REPOR	<u>T - 1961</u>		MEMBRANE F	
AREA	LOCATION OF TEST POINT		MAY 23	MAY 30	JUNE 6	JUNE 13	JUNE 20	JUNE 27	JULY 4	JULY 11
# 2	BALMY BEACH	100 YDS. FROM SHORE	1	0	41	0	184	I	61	13
# 3	KEW BEACH	30 YDS. FROM SHORE	17	I	н	15	147	, O	102	105
#4	WOODBINE BEACH	50 YDS. FROM SHORE	19	3	9	2	34,000	10	250	142
# 7	CHERRY BEACH (AT STATION)	100 YDS. FROM SHORE	0	1,100	5	82	129	20	56	53
# 9	WARD'S IS. (Beach Area 7)	100 YDS. FROM SHORE	67	0	18	15	2	0	3	42
# 51	Hanlan's Pt. Bathing Area No. 10(Bath House)	50 YDS. FROM SHORE	2	1	175	0	187	0	2	6
5 2	CHEROKEE BATHING AREA 8A (Foot of Cherokee Ave.)	50 YDS.FROM SHORE	10	0	7	0	71	0	4	2
# 53	CENTRE IS. BATHING AREA 8 (BATH HOUSE)		н	0	15	2	13	Ì	п	4
#55A	SUNNYSIDE-WEST OF SUPERVISED AREA FOOT OF HOWARD AVE.	INSIDE BREAKWATER	63	4	300	100	422,000	870	68 ,00 0	5,800
# 55B	SUNNYSIDE-CENTRE SUPERVISED AREA CENTRE OF PAVILLION	INSIDE BREAKWATER	8	233	20, 100	40	133,000	480	45,000	5,300
#55C	SUNNYSIDE-EAST OF SUPERVISED AREA - EAST OF POOL	INSIDE BREAKWATER	500	194	17,300	50	124,000	620	30,000	6,300
#56A	WEST FREE AREA (WOMEN'S) Foot of Dowling Ave.	INSIDE BREAKWATER	83	32	7,400	80	790	43	0	20
#568	EAST FREE AREA (MEN [®] S) Foot of Dowling Ave.	INSIDE BREAKWATER	61	19	7 ,40 0	110	8,000	150	1,030	10
#50	OLYMPIC BATHING AREA 9 (BATH HOUSE)	100 YDS. FROM SHORE	40 0	0	85	81	114	74	320	520
#21 <u>+</u>	FOOT OF DUNN AVENUE A	INSIDE BREAKWATER A OUTSIDE BREAKWATER	6 4	00	57 3,500	40	249 367	35 59	133 129	70 21
22	FOOT OF DUFFERIN ST. 8	INSIDE BREAKWATER A OUTSIDE BREAKWATER	12 9	247 800	71 89	184 61	12 ,40 0 117	81 30	94 37	293 166
23	FOOT OF STRACHAN AVE.	INSIDE BREAKWATER A OUTSIDE BREAKWATER	78 3	3,500 1,700	2,600 135	47 4	120,000 8, 40 0	22 27	201 14	44 101
		TEMPERATURE WIND DIRECTION VELOCITY M.P.H.	50 ⁰ N.N.W. 15мрн	60 ⁰ N.W. 10	58 ⁰ N.E. 400PH	81 ⁰ SMOOTH 2мрн	56 ⁰ S.W. 6мрн	71 ⁰ S. 8мрн	65 ⁰ WEST 12MPH	71 ⁰ South Эмрн

• •

e para e rere

		CITY OF TORONTO -	ATERFROM	T SURVEY - I	BACTERIOL	OGICAL REPO	RT 1961		MEMBRANE		
AREA	LOCATION OF TEST POINT		JULY 18	JULY 25	AUG. 2	AUG. 8	AUG. 15	AUG. 22	AUG. 29	SEPT 5	SEPT I
# 2	BALMY BEACH	100 YDS. FROM SHORE	0	2	32	254	6,000	40	610	0	4
# 3	KEW BEACH	30 YDS. FROM SHORE	0	3	22	280	18,000	1	960	0	29
# 4	WOODBINE BEACH	50 YDS. FROM SHORE	94	2,200	20	700	710	9	7,150	0	152
# 7	CHERRY BEACH (AT STATION)	100 YDS. FROM SHORE	10	44	24	500	150	1,840	270	<10	4
# 9	WARD'S IS. (BEACH AREA 7)	100 YDS. FROM SHORE	90	190	30	380	90	120	12	0	28
# 51	HANLAN'S PT. AREA (Bath House)	50 YDS. FROM SHORE	2	230	42	200	0	1,470	31	200	700
# 52	CHEROKEE BATHING AREA 8A (FOOT OF CHEROKEE AVE.)	50 YDS, FROM SHORE	840	1,260	54	900	110	350	91	2	67
# 53	CENTRE IS. BATHING AREA 8 (BATH HOUSE)	1	780	138	58	234	320	630	63	1,500	64
55A	SUNNYSIDE-WEST OF SUPER- VISED AREA FOOT OF HOWARD AVE.) INSIDE BREAKWATER	3,400	5,600	0	2,700	370	108	18	162	1,400
# 55B	SUNNYSIDE-CENTRE SUPERVIS	ED INSIDE BREAKWATER	400	2,900	780	2,100	120	80	468,000	212	2,500
55C	SUNNYSIDE-EAST OF SUPERVI AREA-EAST END POOL	SED INSIDE BREAKWATER	800	2,400	30	1,430	230	420	84	800	7,200
# 56A	WEST FREE AREA (WOMEN'S) FOOT OF DOWLING AVE.	INSIDE BREAKWATER	242	10,100	16	4,300	210	30	352,000	470	5 ,200
# 56B	WEST FREE AREA (MEN'S) FOOT OF DOWLING AVE.	INSIDE BREAKWATER	140	22,700	64	4,700	60	20	40	300	4,100
# 50	OLYMPIC BATHING AREA 9 (BATH HOUSE)	100 YDS FROM SHORE	580	260	4	2,900	240	80	9,000	166	92
# 21]	FOOT OF DUNN AVENUE A	INSIDE BREAKWATER A OUTSIDE BREAKWATER	106	3,500 14,800	37 34	2,800 1,200	8	196 290	4,900 1,200	44 1,800	2,100 3,600
22	FOOT OF DUFFERIN ST. A	INSIDE BREAKWATER A OUTSIDE BREAKWATER	120 1,020	13,600	12 0	3,200 900	67,000 30	1,280 320	7,100 7,300	100,000 0	6,600 3,000
# 23	FOOT OF STRACHAN AVE. A	INSIDE BREAKWATER A OUTSIDE BREAKWATER	102 434	22,000 20,000	99 112	26,100 1,500	140	950 120	520,000 134,000	<10	5 ,900 4 ,900
		TEMPERATURE WIND DIRECTION VELOCITY M.P.H.	72° S.W. 10	79° south 2	74° S.E. 4	77° S.W. 4	83° S.W. 15	63 [•] Calm	75° N.N.W. 10	78° west 4	71° N.W. 6

×		<u>CITY OF TORONTO -</u>	WATERFRONT S	URVEY - BACT	TER IOLOG ICAL	<u>report - 196</u>	<u>i0</u>		MEMBRANE FI	
AREA	HUMBER MOUTH	MAY 17	MAY 24	MAY 31	JUNE 7	JUNE 15	JUNE 21	JUNE 28	JULY 5	JULY 12
150	EAST	7,000	87 ,000	63,000	6 ,000	1,000	17,000	11,600	80,000	3,800
151	CENTRE	17,000	71,000	120,000	4,000	100	7,000	120	160,000	6,300
152	WEST	1,500	49,000	103,000	11,000	2,300	4,000	200	23,000	4,800
EASTERN BEACHES										
2	BALMY BEACH									
2A	SILVERBIRCH AVE. E.	38	90	15	0	3,800	300	121	2,000	0
28	MACLEAN AVE. C.	51	155,000	19,000	0	3,000	500	60	7,000	164
2C	HAMMERSMITH AVE, W.	500	121	2	0	1,900	900	190	3,600	0
3	KEW BEACH E.									
3 A	LEUTY AVE. E.	112	167	17	53	6,500	3,000	7,600	700	20
3B	WAVERLY ROAD C.	2,500	2,100	830	0	4,200	1,000	5,700	1,200	48
3C	KIPPENDAVIE AVE. W.	77	151	184,000	100	9,300	200	210	900	1,700
4	WOODBINE BEACH E.									
44	STATION -I E.	ш	80	860	6	3,800	100	450	5 ,400	10
4 B	STATION -3 C.	106	60	40	0	1,000	27	115	4,700	5,500
4C	STATION -5 W.	163	90	90	0	400	2,000	900	9,000	2,100
7	CHERRY BEACH E.									
78	EASTERLY LIMIT E.	84	22	15	20	1,300	200	160	41	60
7B	Center C.	95	26	21	13	3,600	400	5 90	58	46
7C	WESTERLY LIMIT W.	15,000	27	120	430	4,700	15,000	60,000	90	80

. . . .

. . . .

-

			ne .				- 1999 Mary Cly Joanne Constantion			
		CITY OF TORONTO - WATER	FRONT SURVE	Y - BACTE	RIOLOGIC	AL REPORT	- 1960		MEMBRAN TOTAL C	E FILTER
AREA	HUMBER MOUTH	JULY 19	JULY 26	AUG. 2	AUG.9	AUG. 16	AUG. 23	AUG. 30	SEPT. 6	SEPT. 13
150	EAST	140,000	5,400	1,000	6,000	80,000	170,000	490,000	1,400	1,000
151	CENTER	270,000	8,700	70,000	10,100	8,200	139,000	430,000	600	780
152	WEST	240,000	9,200	90,000	10,700	100,000	95,000	280,000	500	540
EASTERN BEACHES										
	BALMY BEACH E.									
2	SILVERBIRCH AVE. E.	43	0	5,700	53,000	1,200	160	950	190	310
28	MACLEAN AVE. C.	2,900	7	2,800	1,170	790	22,000	1,200	140	180
2C	HAMMERSMITH AVE. W.	72	19	800	1,080	960	530	830	50	127
	KEW BEACH E.									
3A	LEUTY AVE. E.	200	590	37,000	810	11,000	18,000	5,000	110	260
38	WAVERLY ROAD C.	102	34	3,100	920	760	800	11,000	40	58
3C	KIPPENDAVIE AVE. W.	134,000	320	42,000	1,070	980	700	98,000	840	440
	WOODBINE BEACH E.									
44	STATION -L E.	2,300	64	5,900	۱,080	450	100	880	40	89
48	STATION -3 C.	5,000	30	9,800	190	730	460	5,000	30	71
4C	STATION -5 W.	2,200	2	11,900	770	280	200	930	10	190
	CHERRY BEACH E.									
7 A	EASTERLY LIMIT E.	6,300	2,800	7,000	810	18,000	115,000	39,000	80	520
7B	CENTER C.	24,000	89	6,200	1,130	11,000	3,800	2,000	300	650
70	WESTERLY LIMIT W.	4,700	590,000	8,400	7,000	4,100	20,000	15,000	200	400

				CITY OF TORONTO - WA	TERFRONT SI	URVEY - BAC	TERIOLOGIC	AL REPORT -	1961	MEMBRANE TOTAL COL	FILTER IFORM
A	REA	HUMBER MOUTH		MAY 23	MAY 30	JUNE 6	JUNE 13	JUNE 20	JUNE 27	JULY 4 .	JULY I
#	150	EAST		300	27,800	2,900	160,000	320,000	18,900		25,800
Ħ	151	CENTRE		67	26,700	100,090	190,000	90,000	180,000	280,000	80,000
#	152	WEST		117	24,900	40,000	140,000	170,000	80,000	430,000	1,200
E	ASTERN BEACHES						•				.,
		BALMY BEACH EAS	Ľ								
#	2 -A	SILVERBIRCH AVE	E.	0	0	26	2	m	0	90	12
Ħ	2-B	MACLEAN AVE.	с.	0	2	72	0	147	74	81	87
#	2 -C	HAMMERSMITH AVE.	W.	0	2	.8	2	170	8	114	3
		KEW BEACH	Ε.								
#		LEAUTY AVE.	Ε.	116	0	61	34	102	38	NO SAMPLE	34
	3-В	WAVERLY RD.	с.	9	176	14	27	57	53	143	22
#	3 -C	KIPPENDAVIE AVE.	W.	6	29	34	26	98	27	107	12
		WOODBINE BEACH	E.								
Ħ	4-A	STATION - I	E.	5,700	5	12	51	1,130	9	110	700
Ħ	4 - B	STATION - 3	с.	7	8	3	25	247	Т	81	20
#	4-C	STATION - 5	W.	12	3	20	I	12,000	0	64	24
		CHERRY BEACH									
#	7 -A	EASTERNLY LIMIT	E.	o	700	£	60	~			
	7 - B	CENTRE	c.			6	63	83	1	79	15
	7-C	WESTERLY LIMIT	w.	0	400	1	40	36	19	63	24
		ACTINE LIMIT		0	263	0	32	34	24	61	44

. . . .

. . . .

.

.

			2	TTY OF TORONTO - W	ATERFRONT S	URVEY - BAG	CTER IOLOGIC	AL REPORT -	1961	MEM Tot	IBRANE FILT TAL COLIFOR	'ER IM
į	AREA	HUMBER MOUTH		JULY 18	JULY 25	AUG. 2	AUG. 8	AUG. 15	AUG. 22	AUG. 29	SEPT 5	SEPT 12
ł	# 150	EAST		210,000	110,000	7400	3,400	900	1,400	20,000	20	108
ł	151	CENTRE		170,000	40,000	300	1,300	1,500	600	400	28	1800
	152	WEST		17,600	90,000	1200	2,160	900	400	400	0	2400
	EASTERN BEACHES											
		BALMY BEACH EAST										
	# 2 -A	SILVERBIRCH AVE.	Ε.	0	380	40	950	1,810	30	40	0	0
	# 2 - 8	MACLEAN AVE.	с.	0	103	60	410	1,280	30	1,780	0	356
	# 2 -C	HAMMERSMITH AVE.	W.	0	10	100	240	980	8	700	0	<u>u</u>
		KEW BEACH EAST										
1	# 3-A	LEUTY AVE.	E.	0	31,000	120	1,550	630	370	127	0	85
	# 3 - 8	WAVERLY ROAD	с.	6	19,700	134	940	10,000	1,410	117	0	3
	# 3-C	KIPPENDAVIE	W.	18	13,300	32	370	43,000	40	121	0	24
		WOODBINE BEACH EAS	Ţ									
	# 4-A	STATION - I	E.	0	200	62	950	63 ,000	30	7	0	19
	# 4- B	STATION - 3	C.	4	400	18	700	27,000	п	138	0	169
	# 4-C	STATION - 5	W.	24	600	20	700	5 3,000	2	163	3	57
		CHERRY BEACH EAST										
	# 7-A	EASTERNLY LIMIT	E.	600	140	0	900	830	100	0	o	4
	# 7-B	CENTRE	с.	558	72	56	7 ,900 ·	60	190	73	0	0
	# 7-C	WESTERLY LIMIT	W.	60	88	6	7,000	140	160	41	0	34
							6. ·					

REPORT ON SEWER IMPROVEMENTS IN METROPOLITAN TORONTO

A report on pollution and flooding occasioned by and in Toronto's sewerage system was prepared for the City of Toronto in 1960 by James F. MacLaren Associates, Consulting Engineers. This report contained a number of specific recommendations which if implemented, would eliminate entirely many sources of surface water pollution in the City of Toronto and possibly control the remainder to approach acceptable limits.

MAJOR PROJECTS IN PROGRESS OR ACCOMPLISHED

There are certain projects underway throughout Metropolitan Toronto which should reduce pollution problems in the areas concerned.

These projects include:

1. Lakeshore Trunk Sewer

The Lakeshore trunk sanitary sewer of the Municipality of Metropolitan Toronto, which presently is under construction on Lakeshore Boulevard West, will carry sewage from Long Branch, the western area of New Toronto, the Ontario Hospital, and the southern section of Etobicoke Township, to the new Lakeview Water Pollution Control Plant, located in Toronto Township.

The western section of this trunk sewer is now in operation and has relieved an overloaded condition of the Long Branch sewage treatment plant, resulting in an improvement in the water quality of the lake in this area. On completion it will relieve an overloaded condition of sewer facilities in the Mimico area.

It will also allow abandonment of the Township of Etobicoke sewage lift station at Town's Road which has

occasionally discharged to the watercourse on the Ontario Hospital property in New Toronto.

2. New Toronto Storm Sewer Outlets and Hospital Creek

A few industries are still discharging industrial wastes to the lake via these outfalls, LO-73.1 (W-1), LO-73.1 (W-2), and LO-72.2 (D). Efforts by the municipalities and the Metropolitan Toronto Industrial Waste Control Branch, and the co-operation of industry, have resulted in the elimination of some of these sources and the reduction of others. Further improvements in the near future are anticipated.

Storm Sewer Effluents and Drainage Inlets in the City of Toronto.

Sanitary sewage apparently is entering the lake and harbour area from some storm sewers and watercourses even during periods of dry weather flow. This is indicated by the high coliform count in samples taken from storm sewers and watercourses.

A number of industries are discharging industrial wastes which find entry to storm sewers and watercourses. Oil discharges are still experienced in some outlets in the harbour area.

The co-operation of industry and efforts by the personnel of the City of Toronto, the Harbour Commissioners and the Municipality of Metropolitan Toronto, have aided in reducing these discharges.

An improvement in the quality of the effluent flowing to the Turning Basin from the Commissioners St. storm sewer at LOT-17 (W) was effected in 1961 by the reduction in discharge of phenolic bearing wastes by an industry there. The discharge of phenolic wastes and an occasional accidental spill in the past has resulted in chlorophenolic tastes tending to occur in the Metropolitan Toronto water supplies. Further improvements are being effected in regard to avoiding these discharges.

The vulnerability of the drinking supplies was increased when the H.E.P.C. Richard L. Hearn generating plant went into operation. This plant draws vast quantities of cooling water from the Ship Channel and Turning Basin and discharges it to the lake.

Phenolic materials combine with chlorine at water treatment plants to produce objectionable chlorophenolic tastes, so that taste and odour removal facilities are required to guard these quantities of the water.

Paper mill wastes and paintwastes being discharged to the Turning Basin from the Carlaw and Commissioners St. storm sewers at LOT-17 (W) and LOT-18 (W), and paper mill wastes from the Polson St. storm sewer at LOT-13 (W), should be reduced or eliminated, when adjacent industries have completed alterations and installations now in process.

To reduce oil losses at the Spadina and Simcoe St. storm sewers having outfalls designated as LOT-4 (W) and LOT-5 (W) respectively, oil interceptors were installed by the contributing railway firms. Additional improvements to minimize oil losses to these sewers are planned. Some oil discharges still are occasionally being experienced, emphasizing the need for proper maintenance of these units.

PACKING HOUSE WASTE TREATMENT

Some consideration has been given to the transportation of the strong wastes from the meat packing houses in the St. Clair Avenue - Keele Street area, to a Metropolitan Toronto sewage

treatment plant nearer this area. At present these flows, particularly during periods of heavy run-off, constitute part of the flows to storm overflow sewers, which are discharged untreated to the receiving waters.

METROPOLITAN TORONTO AND REGION CONSERVATION AUTHORITY

This body, with the aid of Federal and Provincial financial assistance, is engaged in a program including dam and reservoir construction on the Don and Humber Rivers. It is considered that eventually this program will increase average summer flows in these rivers by approximately forty per cent and so provide greater dilutional flows there for assimilation of wastes at those times.

4. Extension of Combined Sewer Overflow Outlets Beyond the Breakwater

Some sewers within the City of Toronto receiving combined sewer overflows, have discharged to the lake behind breakwaters. The resulting pollution of these waters has restricted recreational usage thereof.

In the Canadian National Exhibition area east of the Argonaut Rowing Club building, all five storm sewers will eventually discharge beyond the breakwater to allow improved dilution and diffusion of these flows. All breakwater openings there but three, will be closed with ventilated cribbing.

Approximately five years ago one of these, a storm sewer serving the Frederick Gardiner Expressway, was installed to discharge beyond the breakwater.

Work on another, the Garrison Creek relief sewer has just recently been completed.

Extensions of the Dufferin Street, Strachan Avenue and two other relief sewer outlets from the Canadian National Exhibition Grounds, are at various stages of construction. The entire contract is expected to be completed by July, 1962.

In the east end of the city, at Lee Avenue a similar extension has been completed.

The extension of these outfalls beyond the breakwater, will not reduce the polluting of the lake, but will reduce the trapping of discharged material in these inshore areas.

5. Metropolitan Toronto Sewage Treatment Facilities

On August 3, 1961, the new Humber sewage treatment plant outfall sewer which now extends 3,000 feet into the lake, was placed in operation. Previously, the effluent from the plant had discharged, temporarily directly to the Humber River. With the increased effluent dilution and diffusion provided, it is expected that shoreline pollution in this locality will be reduced. The plant itself, of 50 million gallons per day capacity replaces several smaller units and allows a superior effluent to be discharged.

Commencing in late November 1961, the secondary treatment units at the Main sewage treatment plant at Ashbridges Bay have been placed in operation progressively in 15 MGD increments. The present capacity of this section of the treatment works is 75 MGD. It is planned to have the remaining units operating in the near future to provide secondary treatment capacity of 90 MGD and ultimately 120 MGD. This will produce an improved effluent.

In November, 1961, the new Lakeview Water Pollution Control Plant in Toronto Township was placed in operation. This was financed through the Commission with the co-operation of the Municipality of Metropolitan Toronto and Township of Toronto. Flows from Long Branch, Etobicoke and New Toronto which previously overloaded the Long Branch sewage treatment plant and aggravated its effluent, can now be diverted to this new plant via the Lake shore trunk sewer and so allow the Long Branch plant to produce improved effluents while it remains in operation.

The Highland Creek sewage treatment plant is in the process of having its capacity doubled from 5 MGD to 8 MGD. This plant will ultimately have capacity of 50 MGD or greater.

In regard to other sewage treatment plants which have been operated by Metropolitan Toronto, a continuing major program of abandoning numerous small "upstream" plants in favour of a few large lakeshore plants, is proceeding. Operation of the Baker Downs plant has just recently been discontinued. This will leave nine sewage treatment plant in operation, and ultimately this will be reduced to four. This should allow greater dilution and diffusion of the total improved effluent flows. SUMMARY

There are approximately 18 major combined sewer overflow outlets from the city of Toronto to Lake Ontario. These outlets are referred to sometimes as storm sewer outlets in portions of this report.

This survey indicates that in Metropolitan Toronto, many of the combined sewer overflow outlets, as well as several

of the storm sewer outlets, are contributing polluting wastes to Lake Ontario and Toronto Harbour even during periods of dry weather flow.

The coliform counts and B.O.D. of the samples collected from the five major streams discharging to Lake Ontario, were excessive on a number of occasions.

Storm sewer discharges behind the Lake Ontario breakwall seriously pollute these waters in these locations.

Industrial wastes are also reaching these waters via various outfalls.

It should be borne in mind that the magnitude of this work has allowed only three sampling runs. It will be required that these investigations be continued to complement this information.

RECOMMENDATIONS

As a result of this survey, and as a means of correcting pollution problems within the Municipality of Metropolitan Toronto, the following recommendations are made:

1. That a sewer use and waste control By-law be utilized by the Municipality of Metropolitan Toronto to regulate the discharge of water and wastes into the sanitary and storm sewer systems of Metropolitan Toronto and providing penalties for violations thereof.

2. That the municipalities in the area concerned provide adequate intercepting sewer capacity including diversion structures, to permit the interception of at least two and one-half times the average future dry weather flow from any combined sewerage system, and its diversion to the sewage treatment plants for at least primary treatment.

Implementation of this recommendation should reduce the present pollution loading discharged to the lake.

3. That regular sampling of the waterfront and the major contributing watercourses be continued, and all sewer outlets to these waters be located, recorded, and sampled where discharge is noted. Together with continuing surveys of the lake proper, these results will allow assessments of the contributing pollutional loadings and their effects on the receiving waters.

4. That the regular inspections of all storm water diversion arrangements, and the systematic program of sewer inspection and maintenance be continued and improved throughout the Municipality of Metropolitan Toronto by the staff of the municipalities concerned.

5. That the selection, construction and operation of sanitary landfill sites draining to the lake or tributaries thereof, be performed in a manner to prevent these from discharging polluting material to the adjacent watercourses.

6. That since pollution abatement of necessity must be a co-operative venture, the parties concerned in carrying out these measures continue to co-operate closely, and hold meetings as necessary, for this purpose.

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

.

.

TABLE 1

. . . .

1	SAMPLING POINT NO.	LOCATION	PLAN	DATE EXAMINED	L. N. PER 100 M	M.F. M.F. L PER 100 ML	5-DAY B.Q.D.	TOTAL	SOLIDS SUSP. DISS.	TURB ID-	PHENOLS (PPB)	ETHER SOLUBLES PH	CHROME	COPPER	
	LO-70.7 D	ETOBICOKE CREEK AT LAKE SHORE RD.	15	SEPT. 15/60 OCT. 20/60 FEB. 15/61 SEPT. 14/61 Nov. 29/61		5,600 14,000 680 ≰10 1,040,000	7.2 4.4 17 3.2 4.8	476 770 1362 708 666	46 430 	- 3 11 2 3.8	- 2 - 15 4			-	
I	D- 70.7 T	OUTFALL SEWER LONG BRANCH SEWAGE TREATMENT PLANT	15	SEPT.15/60 Oct. 20/60 Nov. 29/61	-	NOT SAMP 8,000,000 610,000	LED 195 325	730 954	278 452	310	10	: :	2	2	
1	₩ ₩	42* Ø STORM SEWER - 40TH ST.	15	SEPT.15/60 Oct. 20/60 Nov. 29/61	-	NO FLOW	NOTED								
L	0-71.1 ₩	1°-6"x5°-0" STORM SEWER - 37тн St.	15	SEPT.15/60 Oct. 20/60 Nov. 29/61	-	17,000 14,000 221	18 2.6 27	366 204 318	20 346 6 198	- 8.0	4 10 6	3	2	-	
l	.0-71.3 ₩	42**Ø STORM SEWER – LAKE PROMENADE WEST OF 31st. St.	16	SEPT.15/60 Oct. 20/60 Nov. 29/61	-	53,000	Noted 45 Noted	428	70 358	-	0		-	-	
L	0-71.5 ₩	48™∮ STORM SEWER - 28TH ST。	16	SEPT. 15/60 Oct. 20/60 Nov. 29/61	Ē	NO FLOW	NOTED JFFICIENT	for sa For sa		TRACE OF S	EWAGE				
1	.0-71.7 ₩	STORM SEWER - 25th St.	16	SEPT.15/60 Oct. 20/60 Nov. 29/61	Ξ	PL 1, M	NOTED	FOR SA	MPL ING						
ł	0-71,9 ₩	STORM SEWER - 23rd St.	16	SEPT. 15/60 Oct. 20/60 Nov. 29/61	100,000	190,000 12,000	440 1'4 1 1 40	652 390 952	96 556 12 378	240	60 90 600	3	-	-	
L	D	CREEK AT ONTARIO HOSPITAL	16	SEPT.15/60 Oct. 20/60 July 20/61 Aug. 30/61 Nov. 29/61		67,000,000 490 104,000 8,000	32 104 56 5.6 30	160 126 100 604 200	20 1140 34 1092 	- 8 7 3.6	0 15 -0	7 7.2 21 3.3 10 -	0.02 0.006 0.60 7		

39

•

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

* * * *

TABLE

SAMPLING POINT NO.	LOCATION	PLAN	DATE EXAMINED	COLIF I. N. PER 100 ML		F.	5-0 B.0	AY		SUSP.	DISS.	TURBID-	PHENOLS (PPB)	ETHER SOLUBLES	PH	CHROME	COPPE	8
LO-72.6 W	STORM SEWER - 12th St.	16	SEPT. 15/60 Oct. 20/60 Nov. 29/61	Ξ		,000 400 T SAMF		0 5.6 OUTFAL	246 210 L 0851	24 6 TRUCTE		-	4 5	2	7.5	-	•	
LO-72.7 I	INDUSTRIAL SEWER - 9TH ST.	16	SEPT.15/60 Oct. 20/60 Nov. 29/61	100		890 28		5.6 4.4 6.0	220 218 280	18 24 -	202 194	5.5	6 0 6	-	:	-	÷	
LO-72.9 W	24° Ø STQRM SEWER - 7тн St.	16	SEPT.15/60 Oct. 20/60 Nov. 29/61	3	N0 # #	FLOW	NOTEL)										
L 0-72. 9 W-1	STORM SEWER - 5TH ST.	16	SEPT.15/60 Oct. 20/60 Nov. 29/61	2	NO *	FLOW	NOTEL	Ĵ.										
LO-72.9 W-2	STORM SEWER - 5TH ST.	16	SEPT.15/60 Oct. 20/60 NOV. 29/61	:	N0 #	FLOW	NOTEL)										
L0-73.0 W	STORM SEWER - 4TH ST.	17	SEPT.15/60 Oct. 20/60 Nov. 29/61	Ξ	NO 	FLOW	NOTEL)										40
L0-73.i ₩	STORM SEWER - 2ND ST.	17	SEPT. 15/60 Oct. 20/60 Nov. 29/61	-	N0 #	FLOW	NOTEL											
LO-73, I W-1	4'-6" Ø STORM SEWER - 2ND ST.	17	SEPT.15/60 Oct. 20/60 Nov. 29/61	1,000 - -		- 280 0	6	70.0 52.0 10	460 856 488	82 32 -	378 824 -	-	30 100 6	21 2.5 -	7.0 7.1 7.4	- 0,76	0.76	
LO-73.1 W-2	3'-O" Ø STORM SEWER 2ND ST.	17	SEPT.15/60 Oct. 20/60 Nov. 29/61	_ -		-	1	11.0 10.0 14	562 494	10	552	34.0	4 15 0	TRACE	2.5 2.9 3.0	3.0 4.4 5.0	24 7.7 24	
LO-73.3 W	36 Ø STORM SEWER- SAND BEACH RD.	17	SEPT.15/60 OCT. 20/60 Nov. 29/61	-	14,	0000		20 42 14	1122 660 672	80 32 -	1042 628	- 32	280 80 4	Ē	8.3 6.1	.02 - -	:	

. . . .

40

.

ALL ANALYSES	EXCEPT	PH	REPORTED	IN PPM
UNLESS OTHER	ISE IN	DIC	TED	

. . . .

TABLE

. . . .

SAMPLING POINT NO.	LOCATION	PLAN	DATE EXAMINED	COLIF	PER-10	F. O ML	5-DAY B.O.D.	TOTAL	SULIDS	DISS.	TURBID-	PHENOLS	ETHER SOLUBLES	PH	CHROME	COPPER
L0-73.5 ₩	2-30" Ø STORM SEWERS-ROYAL YORK RD.	17	SEPT. 15/60 OCT. 20/60 Nov. 29/61	-	N0 #	FLOW	NOTED				11 ⁴	2	20 4 7 3	2		¥
LO-73,9 W	24* Ø STORM Sewer-EDITH AVE.	17	Nov. 29/61	-	NO	FLOW	NOTED									
LO-73,9 ₩-1	STORM SEWER - MILES RD.	17	SEPT.15/60 Oct. 20/60 Nov. 29/61	-	NO P	FLOW	NOTED									
LO-74.0 ₩	18** Ø STORM SEWER-NORR I S CRES.	17	SEPT.15/60 Oct. 20/60 Nov. 29/61	-	ND # *	FLOW	NOTED									
LO-74.3 W	STORM SEWER - SUPERIOR AVE.	17	Nov. 22/61	•	62,0	00	4.2	606	-	-	8,5	17	-	-	•	-
L0-74.9 W	IS* Ø STORM SEWER - 300' WEST OF MIMICO CREEK	18	Nov. 22/61		OUT	FALL C	DBSTRUCTED	I – EVI	DENCE	OF SEPTI	C DISCHARG	E				
L 0-75. 0 D	MIMICO CREEK AT LAKE SHORE RD.	18	SEPT.15/60 Oct. 20/60 Nov. 22/60 Oct. 24/61 Nov. 22/61	0 - -	460 460 10,400 人?		17 23 17 12 6.4	528 472 544 468 524	14 32 -	514 440 -	- 8 7.8 40	12 220 - 275			-	
LO=75.1 W	24" Ø STORM SEWER- PA RK LAWN RD.	18	SEPT. 15/60 Oct. 20/60 Nov. 22/61	100,000	71,000	l	74 580 16	362 942 272	60 154	302 788 -	- 8	2 10	:	-	-	-
LO-75.6 W	21* Ø STORM SEWER – WEST OF SANDY BEACH MOTEL	18	Nov. 22/61	-	FLO	W INS	SUFF IC IENT	For	SAMPL	ING						
L0-75.8 T	OUTFALL SEWER - Humber Sewage Treatment plant	18	Nov. 17/60 Nov. 21/61 Dec. 14/61	-	:		9 11 16	-	30 38 13	:	:	:	-	7.6* 7.6* 7.5*	:	Ξ

* COMPOSITE SAMPLES COLLECTED AND ANALYSED BY THE METROPOLITAN TORONTO STAFF.

ж ж

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

TABLE I

SAMPLING POINT NO.	LOCAT ION	PLAN	DATE EXAMINED	L. N. PER 100 ML	IFORMS M. F. PER 100 M	5-DAY		SOL IDS	DISS.	TURB ID-	PHENOLS	ETHER SOLUBLES	PH	CHROME	COPPER
a star a se	10 a 10	90 90	AN REPORT OF ST	the with	with the second	h	₩n - 11	Weeks and	ang tak	then 20 is well be	Production of the	Server State	En	GUINOPIL	COFFER
L0-75.9	HUMBER RIVER AT LAKE SHORE	18	JULY 26/60 SEPT. 15/60		8,200 4,500	16 18	486	36	450	47	-	-	•	-	-
-	BLVD.		OCT. 20/60	-	170,000	12	418	28	390	-	2	-	-	-	
			JAN. 18/61	-	257,000	32	458	44	414	-		-	2		-
			SEPT.27/6		212,000	6.0	362	-		18	-	-	-	-	-
			Nov. 15/61	-	2,260	8.0	422	-		48	14	•	-	•	-
LO-75.9 W	30" Ø STORM SEWER – LAKE SHORE BLVD.	18			NO	FORWARD MOV	EMENT,	NOT	SAMPLE)					
L0-76.3	52" Ø STORM	18	Nov. 15/60		95,000	75	602	408	194	1000	10	2.0			
W	SEWER-ELLIS AVE.	10	Nov. 15/61	-	55,000	1.6	450		-	10.5	10	-	2	-	-
															-
L0-76.7	9" Ø STORM	19	Nov. 15/60		3,300,000	170	810	346	464	-	28	-	-	-	-
W	SEWER-PARKSIDE DR.		Nov. 28/61	-	5,100	44	390	62	328	-	18	-	•	-	-
LO-77.3 W	7'-6"x7'-6" STORM SEWER -	19	Nov. 15/60 Nov. 28/61	-	2,500,000 1,700	130 114	944 496	722 68	222 428	•	45 0	-	-	-	-
	RONCESVALLES AVE.				1,700		450	00	-20	-	v	-		-	•
LO-77.9 W	II' Ø STORM SEWER OPPOSITE JAMESON AVE.	20	Nov. 15/61	-	NOT	SAMPLED									
L 0- 78.2 W	9' Ø STORM SEWER - Garrison Creek	20	Nov. 15/61	-	OUTF	ALL EXTENSIO	n unde	r cons	STRUCT ION	4					
LO-78.5	6'-6"x6'-6"	20	Nov. 15/60) -	153,000	15	944	30	914	-	4	-	-	-	
W	STORM SEWER -		Nov. 15/61	-	1,950,000	205	536	-		62	30	-	-	-	-
	DUFFERIN ST.		Nov. 28/6	-	250	205	760	248	512	-	18	-	-	-	•
LO-78.9 W	STORM SEWER - 525' EAST OF ABERDEEN RD.	21N	Nov. 15/61	-	NOT	LOCATED									
LO-79.4 R	RELIEF SEWER - FROM LAKE SHORE BLVD, & STRACHAN AVE.	21N	Nov. 15/61	-	NOT	LOCATED									
LO-79.4 W	12'-0"X10'-0" STORM SEWER - STRACHAN AVE.	21N	Nov. 15/61		NOT	SAMPLED DU	E TO	CONST	RUCTION	AND TEM	IPORARY E	BY -PASS ING	TO S	storm s	EWER.

- STRACHAN AVE.

42

.

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

.

TABLEI

. . . .

SAMPL ING PO INT NO. LO-79.7	LOCATION 24 ^{44.} Ø STORM	PLAN	DATE EXAMINED	I. N. PER 100 ML	IFORMS M. F. PER IOO ML	5-DAY <u>B.O.D.</u>	SOLID		TURB I D- ITY	PHENOLS (PPB)	ether Solubles	PH	CHROME	COPPER
W	SEWER-STADIUM RD.	21N	Nov. 15/61	•	OUTFALL	SUBMERGED								
LO-79.9 D	WESTERN CHANNEL AT LAKE ONTARIO	21N	Nov. 15/61		NOT SAM	IPLED								
LOT-I	SEWER DUTLET EAST OF CANADA MALTING CO. LTD.	21N	Nov. 15/61	-	NOT LOC	ATED								
LOT-2 W	6°=0"x9°=0" GARRISON CREEK STORM SEWER	21N	Ост. 13/60 Nov. 28/61	1,000,000	NOT SAM	80 IPLED, CAR	960 52 Parked ov	908 Er Manholi	- -	25	-	-	-	-
LOT-3 W	6'-0x9'-0" GARRISON CREEK STORM SEWER	21N	Nov. 28/61		600	76	548 162	386	42	18	-	-	-	-
LOT-4 ₩	6'-0"x8'-0" STORM SEWER - SPADINA AVE.	21N	Nov. 28/61	-	SUITABLE	SAMPLING	POINT NOT	LOCATED						
LOT-5 W	8°-2"x5'-5" STORM SEWER - SIMCOE ST.	21N	Ост. 13/60 Nov.28 /61	•	131,000	65 58	334 18 512 78	316 434	- 3	000 46	:	-	-	-
lot⊶6 ₩	8'-6"X6'-6" STORM SEWER - YONGE ST.	22N	Ост. 13/60 Nov. 28/61	2	189,000 Not Sam	I4 PLED, NO	248 16 Forward Mon	232 VEMENT.	-	10	-	-	-	-
LOT=7 W	10°-0"×10°-0" STORM SEWER - SHERBOURNE ST.	22N	Ост. 13/60 Nov. 28/61	100,000	600	90 136	352 18 534 82	334 452	•	60 18	3	:	:	-
LOT-8 W	7°-0"X6°-0" STORM SEWER - BETWEEN PARLIAMENT & SMALL STS.	22N	Ост. 13/60 Nov. 16/61	- 3, -	800,000 181,000	295 98	1502 84 324 -		3.5	0	:	- 1 - 0	-	:
LOT-9 W	4'-6"x4'-6" STORM SEWER - CHERRY ST.	22N	SEPT.19/60 Oct.13/60 Nov.28/61		000,000 300,000 6,000	120 200 310	434 138 560 192 1118 654	296 368 464	- :	50 35 20	-	-	-	•

£

.

٠

•

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

SAMPLING POINT NO.	LOCATION	PLAN NO.	DATE EXAMINED	L. N. PER 100 ML	N.F. PER 100 ML	5-DAY B.O.D.	TOTA	SOLIDS		TURB ID- ITY	PHENOLS (PPB)	ETHER SOLUBLES	PH	CHROME	COPPER
LOT-10 D	DON RIVER AT CHERRY ST.	22N	AUG. 24/60 SEPT. 19/60 FEB. 9/61 Oct. 18/61 Nov. 16/61	:	i,340,000 i4,000 990,000 201,000 i48,000	14 23 76 33 17	380 904 430 400	42 160 -	- 338 744 -	27 - 23 26	0 - - 20		-	-	
LOT-11 W	3'-0"X3'-0" STORM SEWER _ COMMISSIONERS ST.	22N	Nov. 21/61	-	36,000	35	324	88	236	-	15	-	-	-	-
LOT-12 W	18" Ø STORM SEWER - TO SLIP NORTH OF POLSON ST.	22N	Nov. 16/61	-	1,290	60	428	-	٣	26	28	-	-	•	-
LOT-13 W	24" Ø STORM SEWER-POLSON ST.	22N	Nov. 21/61	:	200 OUTLE	165 T SUBMER	964 GED,	250 SAMPLE	714 DILUTE	о мітн	LAKE WATE	R -	-	-	-
LOT-14 W	24" Ø STORM SEWER-CHERRY ST. TO NORTH SIDE OF SHIP CHANNEL.	225	Nov. 21/61	-	400	130	686	180	506	-	20	-	-	-	•
LOT-15 I	INDUSTRIAL SEWER - TEXACO CANADA LTD.	225	Nov. 21/61	-	NOT LOCAT	TED									
LOT-16 W	30" Ø STORM SEWER – BASIN ST.	23	Nov. 21/61	-	FLOW INS	UFFICIENT	FOR	SAMPL	ING						
LOT-17 W	6°-0"x8°-6" Ø STORM SEWER - CARLAW AVE.	23	SEPT.15/60 Oct. 13/60 Nov. 28/61	10,000 -	- 800,000 4	225 100 270	830 462 994	438 148 202	392 314 792	-	3000 40 90	:	-	-	:
LOT-18 W	6'-0"x8'-6" STORM SEWER - CARLAW AVE.	23	OCT. 13/60 Nov. 28/61	-	700,000 NO FLOW	75 Noted	386	66	320	-	30	-	H	*	-
LOT-19 W	8'-6"x8'-3" STORM SEWER - LESLIE ST.	23	SEPT. 15/60 Oct. 13/60 Nov. 28/61	1,000,000 -	- 180,000 NOT SAMPI	155 120 LED, MAN	364 362 HOLE (76 34 Covered	288 328 WITH	EARTH	4000 25	13	-	-	:

. . . .

44

• •

A 1 1 1

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

14. It is 14.

SAMPLING POINT NO.	LOCAT ION	PLAN	DATE Examined	L. N. PER 100 ML	IFORMS M. F PER LOC	ML	5-DAY <u>B.O.D.</u>	TOTAL	SOLIDS	DISS.	TURB ID-	PHENOLS (PPB)	ETHER Solubles	PH	<u>CHROME</u>	COPPER
L0T-20 W	8' -6" x8'3" STORM SEWER - LESLIE ST.	23	Nov. 28/61	-	NOT	SAMP	PLED, MA	NHOLE	COVERED	WITH	EARTH					
LOT-21 W	18" Ø STORM SEWER - CHERRY ST. TO SOUTH SIDE OF SHIP CHANNEL	225	Nov. 21/61	-	NOT	LOCA	TED			51						
LO- 84.2 D	EASTERN CHANNEL AT LAKE ONTARIO	225	Nov. 21/61	-	NOT	SAMP	PLED									
LO-86,2 W	18" Ø STORM SEWER-LESLIE ST.	23	Nov. 21/61	-	NOT	LOCA	TED									
L 0-86. 6 T	9' Ø OUTFALL SEWER - MAIN SEWAGE TREATMENT PLANT.	24	SEPT. 19/60 Nov. 17/60 Nov. 21/61	3	4,000, 19 ,60 0, 930,	000	275 275 320	642 842 930	182	548 660 652	:	18 - 100	Ξ	-	-	-
LO-86.8 D	ASHBRIDGES BAY AT LAKE ONTARIO.	24	Nov. 21/61	•	NOT	SAMP	PLED									
LOA-I D	DITCH TO NORTH- WEST CORNER OF ASHBRIDGES BAY	24	Ост. 13/60 Nov. 22/61	>10,000,0	000 630,	000	80 50	586 650	12 214	574 436	50	80 16	2	-	-	1
L0 A- 2 R	42" Ø RELIEF SEWER TO NORTH – EAST CORNER OF ASHBRIDGES BAY	24	Nov. 21/61	•	NO	FLOW	NOTED	ά.								
LDA-3 W	9'x7'-3" STORM SEWER COXWELL AVE. TO NORTH-EAST CORNER OF ASHBRIDGES BAY	24	Nov. 17/60 Nov. 21/61	;	2,200 1,530	000	66 90	488 620	92 60	3 26 560	:	12	:	:	Ξ	:
LOA-4 W	9'x7'-3" STORM SEWER COXWELL AVE. TO NORTH EAST CORNER OF ASHBRIDGES BAY	24 -	Nov. 21/61	-	NO	FLOW	NOTED									

1

45

• •

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

4 4 14 4

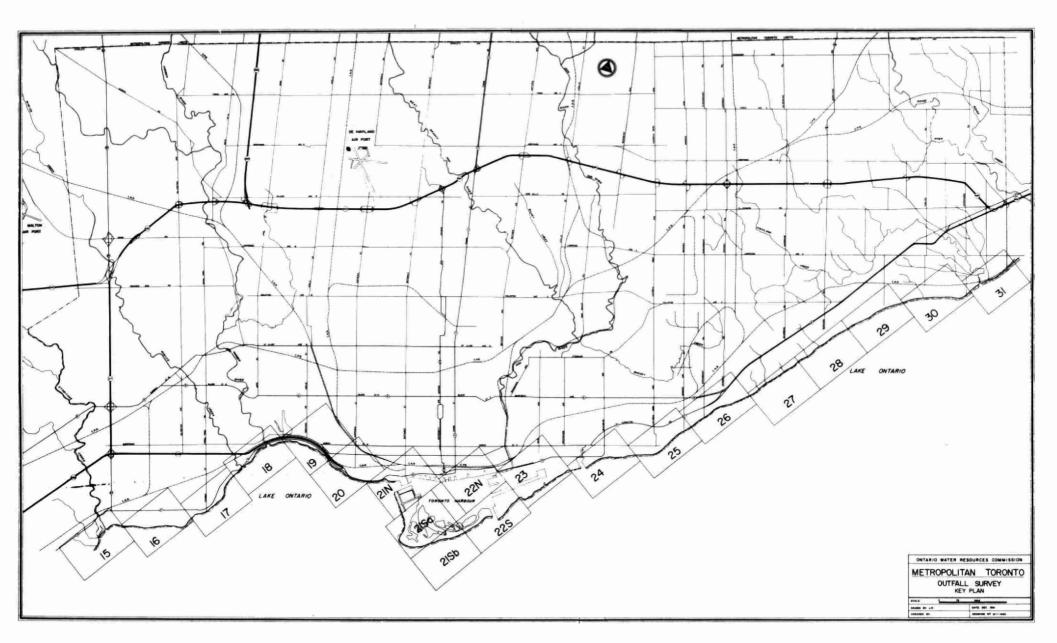
 \mathbb{R}

SAMPLING Point No.	LOCATION	PLAN	DATE EXAMINED	. COLI I. N. PER IOO ML		F. 100 ML	5-DAY <u>8.0.D</u>		SOLII	DS P. DISS.	TURB ID-	PHENOLS (PPB)	ETHER SOLUBLES	맫	CHROME	COPPER
LO-87.4 W	2'X3' STORM SEWER-WOODBINE AVE.	24	Nov.22/61	-	NO	FLOW	NOTED									
LO-87.5 W	3'-6"X3'-3" STORM SEWER- KIPPENDAVIE AVE.	24	Nov.22/61	-	NO	FORW	ard Mov	EMENT,	NOT SA	MPLED						
L0-87.6 W	3'-3"X3'-0" STORM SEWER- KENILWORTH AVE.	24	Nov.22/61	-	NO	Forw	vrd mov	EMENT,	NOT S	SAMPLED						
L0-87.7 W	3'-3"X3'-0" STORM SEWER WAVERLEY RD.	24	Nov.22/61	-	NO	FLOW	NOTED									
L0-87.9 W	3'-6"x3'-0" STORM SEWER LEE AVE.	24	Nov.22/61	-	14,	,000	5.2	902	-	-	3.5	0	-	-	•	■ i
L0-88.3 W	6'-6"x3'-0" STORM SEWER - MACLEAN AVE.	24	SEPT.14/60 Nov. 22/61	1	NO	0 Flow	2.4 Noted	734	20	714	-	2	-	-	•	-
LO-88,3 W-1	6'-6"X3'-0" STORM SEWER - MACLEAN AVE.	24	SEPT.14/60 Nov. 22/61	:	NO	<lo FLO₩</lo 	2 Noted	842	42	800	-	2	•	-	•	-
L0-88,8 W	3'-0"x2'-6" STORM SEWER NURSEWOOD RD.	25	SEPT.14/60 Nov. 22/61	-	NOT	0 Samp	4 PLED	668	8	660	•	2	-	-	•	-
LO-89.1 W	STORM SEWER - FALLINGBROOK RD.	25	DEC. 21/61	-	660,	000	132	1170	564	606	-	0	- ,	•	•	-
LO-89.3 W	48" Ø STORM SEWER SOUTH END OF FALLINGBROOK DRIVE	25	Nov. 22/61 Dec. 21/61	1		590 180	1.6 2.4	568 576	:	:	7.5 4.0	8 0	1	-	:	:
L0-89.7 R	60" Ø RELIEF SEWER- WARDEN AVE.	25	DEC. 21/61	÷		350	8.6	578	296	282	-	10		-	-	-
L0-90.4 R	48" Ø RELIEF SEWER BIRCHMOUNT RD.	26	DEC. 21/61	-	6,	300	1.9	3426	-	-	4.0	0		•	-	-
L0-90.9 W	60" Ø STORM SEWER LAKEHURST CRES.	26	DEC. 21/61	-	73,	000	24	1806	-	-	20	0	-	•	-	-
LO-91.3 W	STORM SEWER - Glen everest RD.	26	DEC. 21/61	-		80	2.1	3600	-	-	17	TRACE	-	•	-	-

. . . .

46

• •


. . . .

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

SAMPLING POINT NO.	LOCATION	PLAN	DATE EXAMINED	COLIFORMS t. N. M. F. 5 PER 100 ML PER 100 ML B		5-DAY <u>B.O.D.</u>	TOTAL	OLIDS SUSP.	DISS.	TURB ID-	PHENOLS (PPB)	ETHER SOLUBLES	ен	CHROME	COPPER	
LO-91.6 W	48" # STORM SEWER	26	DEC. 21/61	-	34,		13	4262	360	3902	•	8	-	-	-	-
L0⊷91.7 ₩	24" Ø STORM SEWER - SCARBORD CRES.	27	DEC. 21/61	-	入1,500,	000	315	1020	214	806	-	60	-	-	-	-
L0-91.8 ₩	48" Ø STORM SEWER - CHINE DR.	27	DEC. 21/61	-	>15,	000	7	1390	-		7.5	0	-	-	-	-
LO-92.0 D	LOCAL WATERCOURSE WEST OF BRIMLEY RD.	27	DEC. 21/61	-	l,	400	2.1	3260		-	6.5	2	-	-	-	-
LO-92.2 W	48" Ø STORM SEWER – South of Larwood BL'	27 VD.	DEC. 21/61	-	〉150,	000	5	1318	•	-	11.5	0	-	-	-	-
LO-93.9 D	LOCAL WATERCOURSE EAS	T 28	DEC. 21/61	-	350,	000	9	1200	108	1092	-	0	-	•	•	-
LO-95.2 W	72" Ø STORM SEWER - FOOT OF LIVINGSTON I	29 RD.	DEC. 21/61	-		940	4	906	•		Į7	3	-	-	-	-
LO-95.8 W-1	36" Ø STORM SEWER-EAS OF GALLOWAY RD.	T 29	SEPT.14/60 Nov. 17/60 Dec. 21/61	-		(10 900 78	2.6 2.8 2.2	600 766 700	28 86 -	572 680	2.8	0 -	-	-	-	2
LO-95.8 W-2	21" Ø STORM SEWER-EAST OF GALLOWAY RD.	r 29	SEPT.14/60 Nov. 17/60 Dec. 21/61	-	NO *	FLOW	NOTED									
LO-95.8 W-3	8" Ø STORM SEWER-EAST OF GALLOWAY RD.	29	SEPT. 14/60 Nov. 17 /60 Dec. 21/61	10		0 - 2	2.8 6 2.9	560 784 792	80 24	480 760	- 8.5	3 - 0	-	-	Ξ	-
LO-96.6 W	60" Ø STORM SEWER -FOOT OF MORNINGSIDE	30 AVE.	DEC. 21/61	-	8,	700	3.8	1528		-	4	4	-	-	-	-
LO-98.6 D	HIGHLAND CREEK AT LAKE ONTARIO	31	SEPT.14/60 Nov. 17/60 May 10/61 July 26/61	-	980,0 2,160,0	12	13 11 15 9	474 522 698 584	28 66 -	446 456	- 16 15	8 28 17 0	:	-	:	:
L0-99.1 I	3'-0"X3'-0" INDUSTRIAL SEWER- JOHNS-MANVILLE CO. LTD	31).	SEPT.14/60 Nov. 17/60		4,8	800 100	34 21		172 164	318 208	-	6 4	:	:	:	•

.

. . . .

.

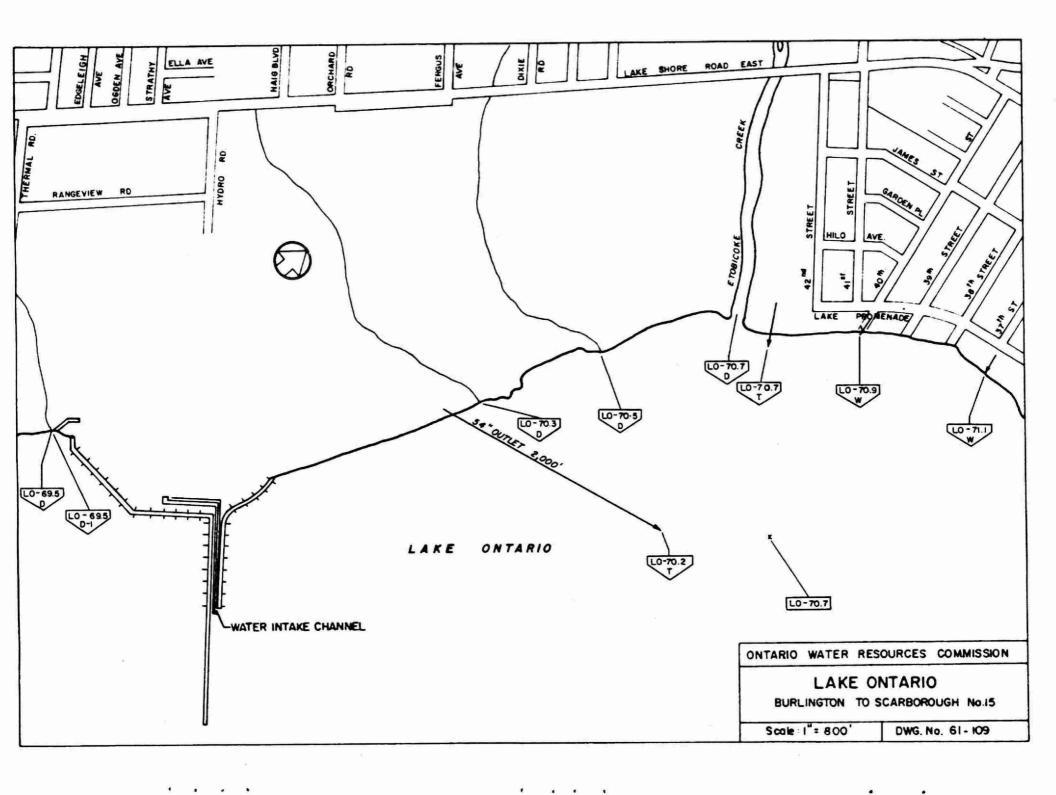
.

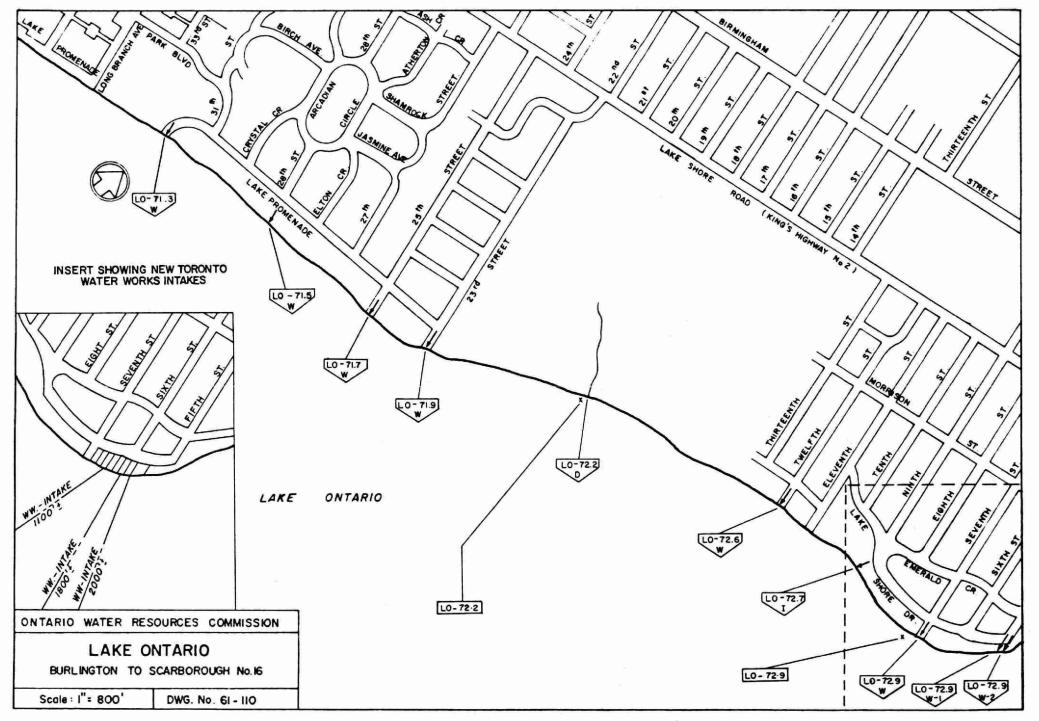
. . . .

LAKE ONTARIO OUTFALL SURVEY Nomenclature For Outfalls

Outfalls were designated by the shore line mileage measured clockwise from the International Boundary in the Niagara River along the shore and outside any bays or harbours. A letter signifying the type of outfall follows the Lake Ontario (LO) shore line mileage.

Example -

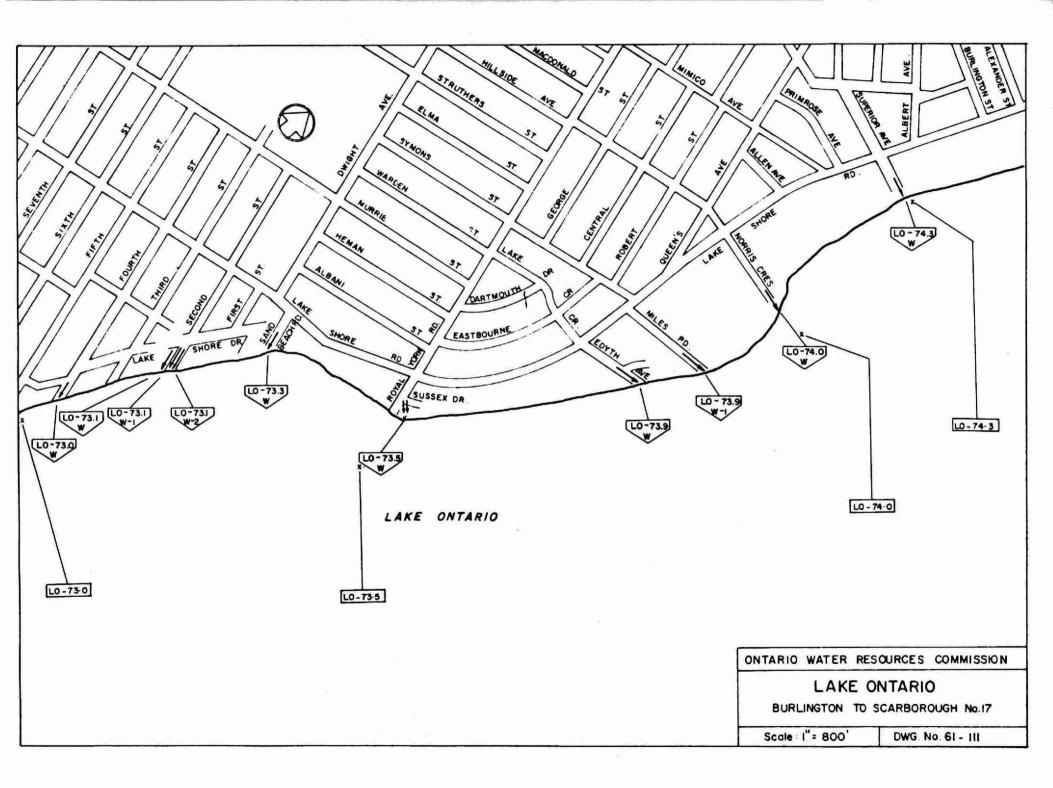



Inside harbours, outfalls were designated by numbers prefixed by the initial letter of the harbour (Toronto-T). Numbering thereof was done in a clockwise direction in numerical order.

Example

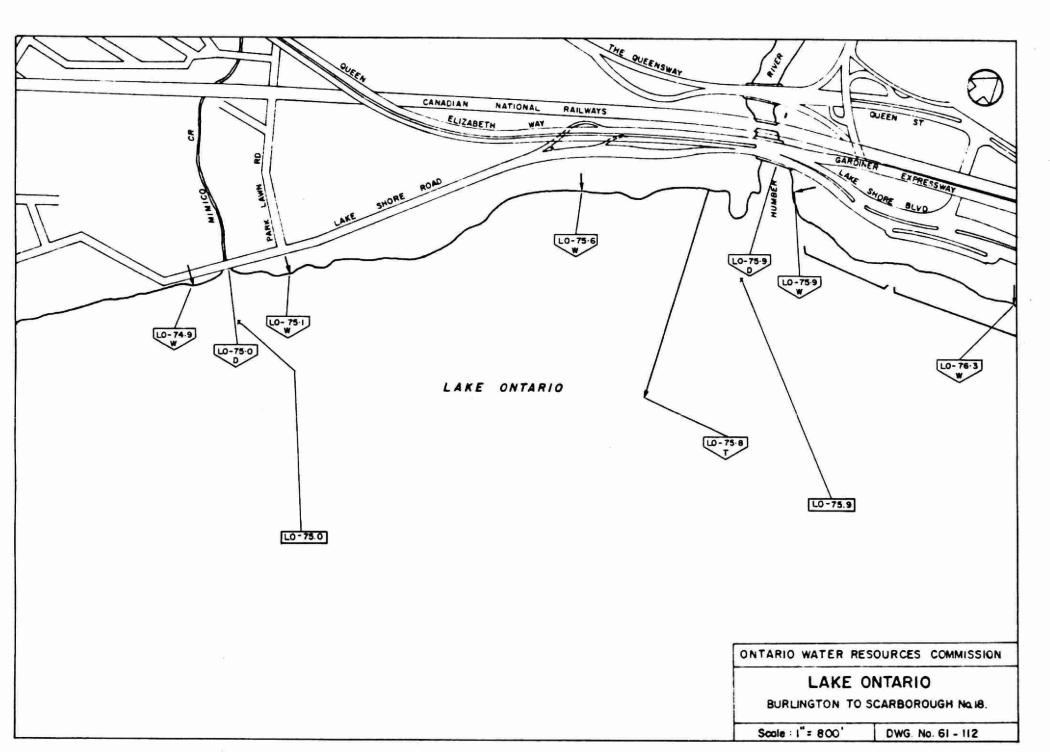
Outfall Symbol Letters

- W Storm sewer.
- T Sewage treatment plant outfall sewer.
- I Industrial waste sewer.
- R Relief sewer from a pumping station or from a sanitary or combined sewer.
- D Drainage ditch, creek or river.


F 4

. . .

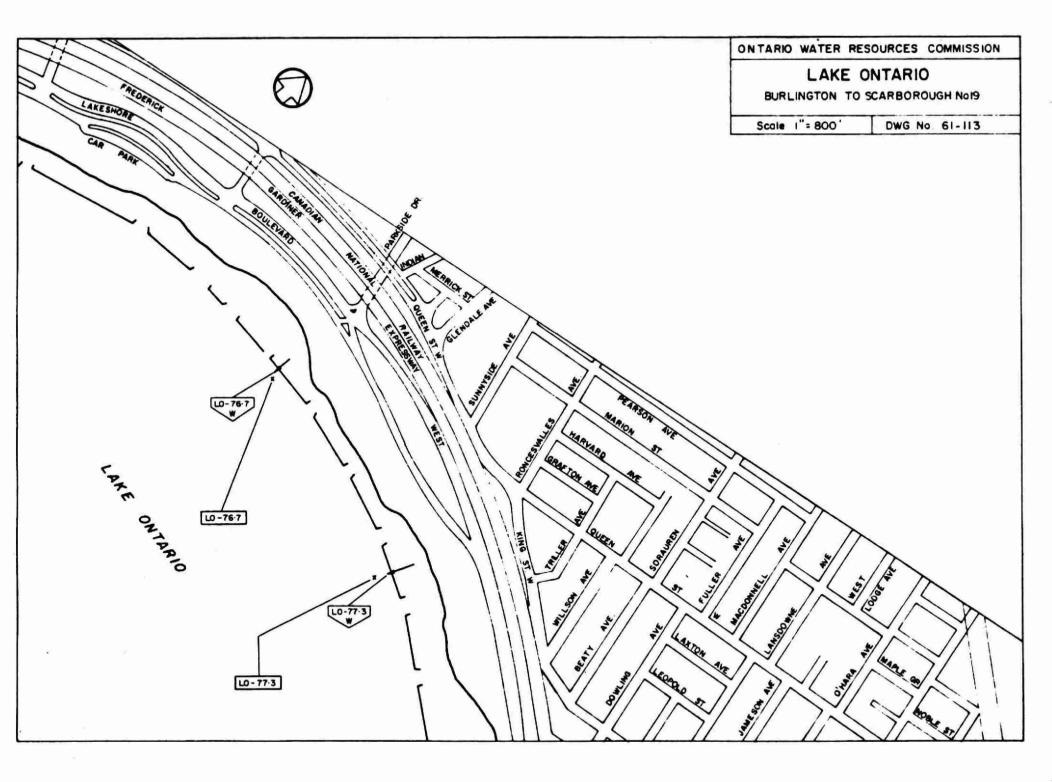
.


Construction of the second distribution of the second of the second s

. .

.

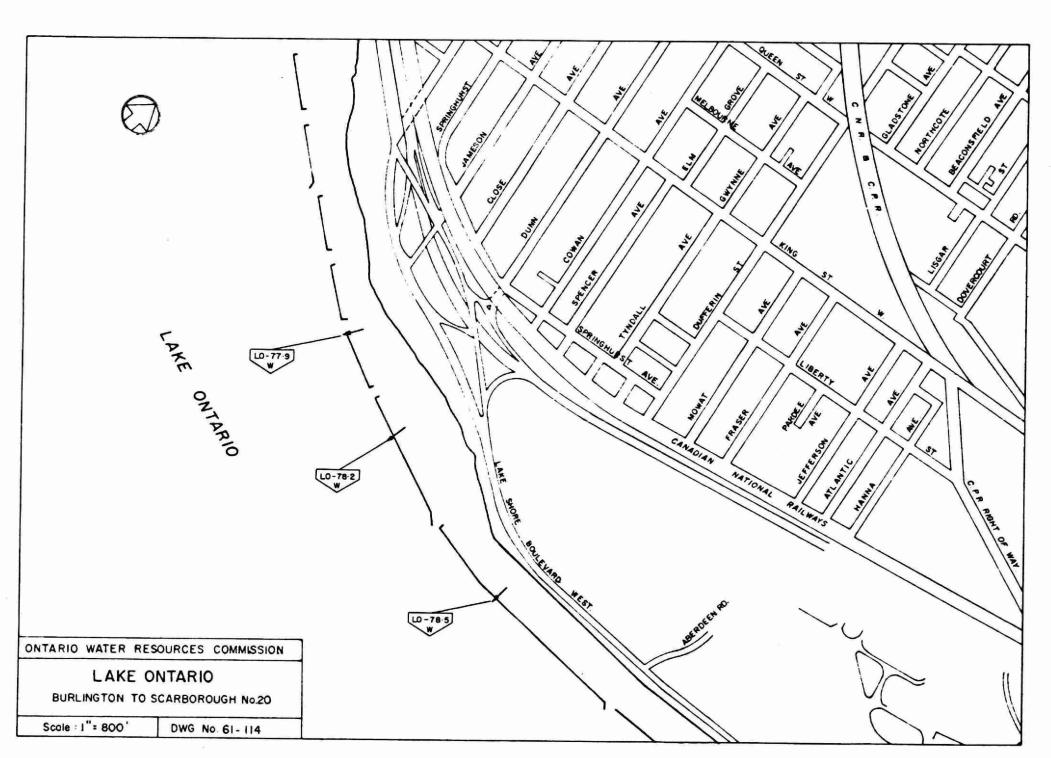
. .


• •

.

.

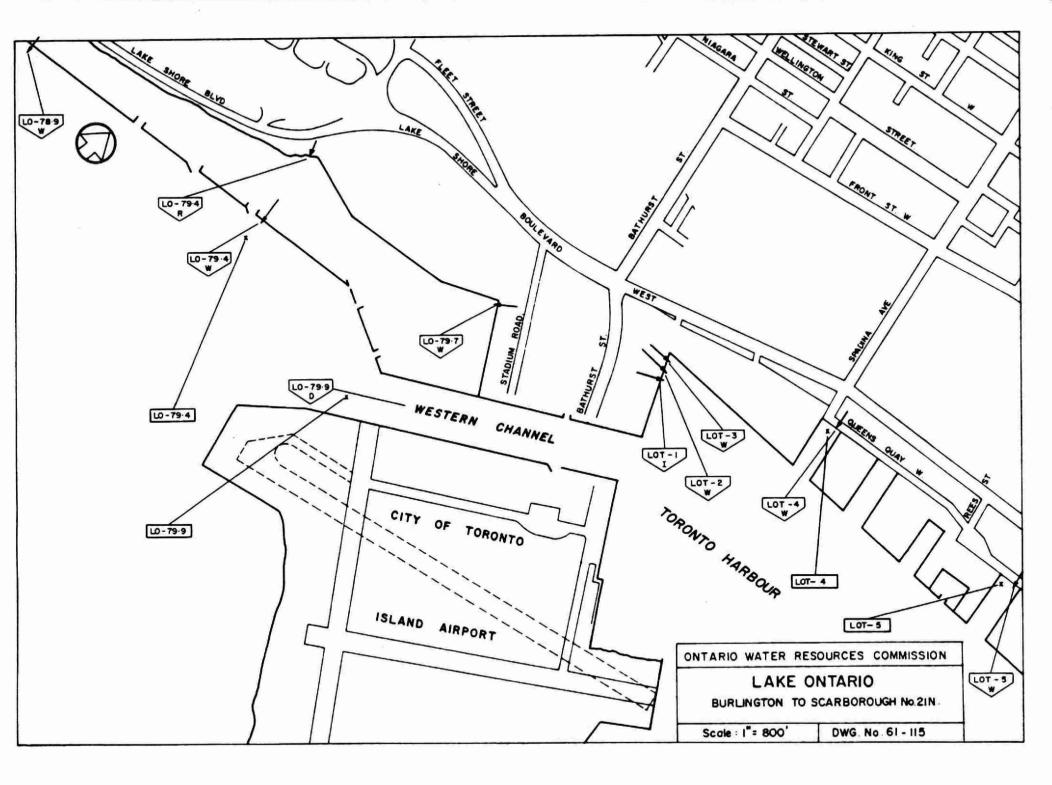
.


. .

.

.

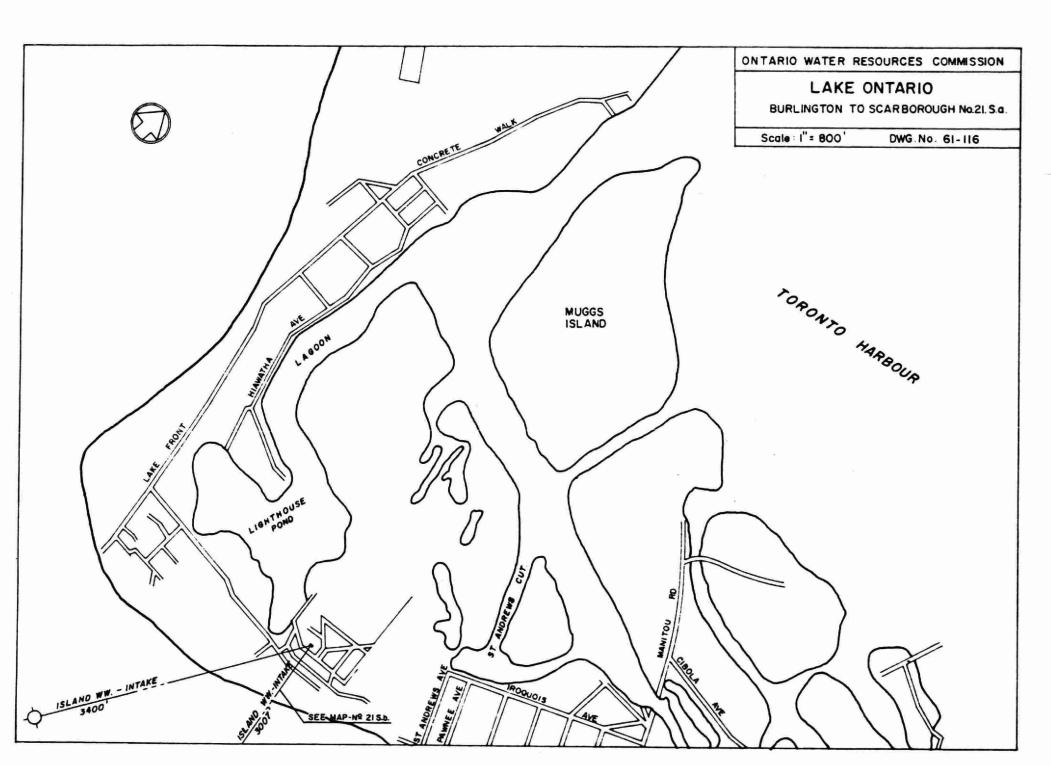
. . . .


• •

.

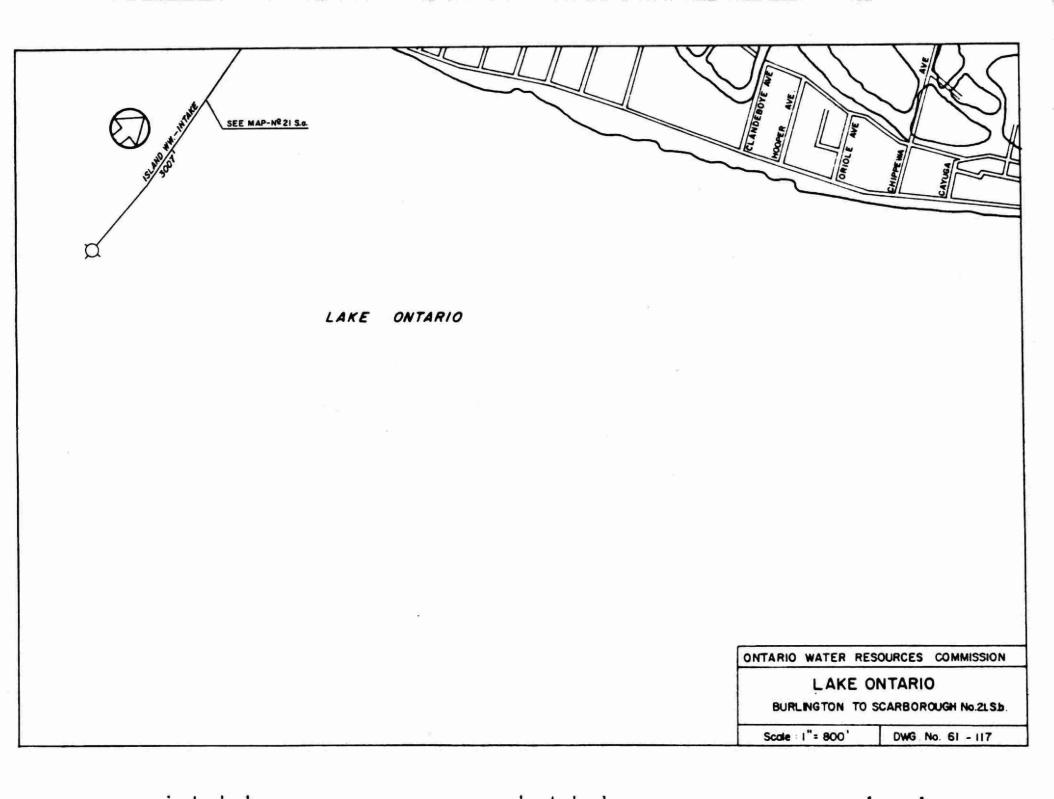
.

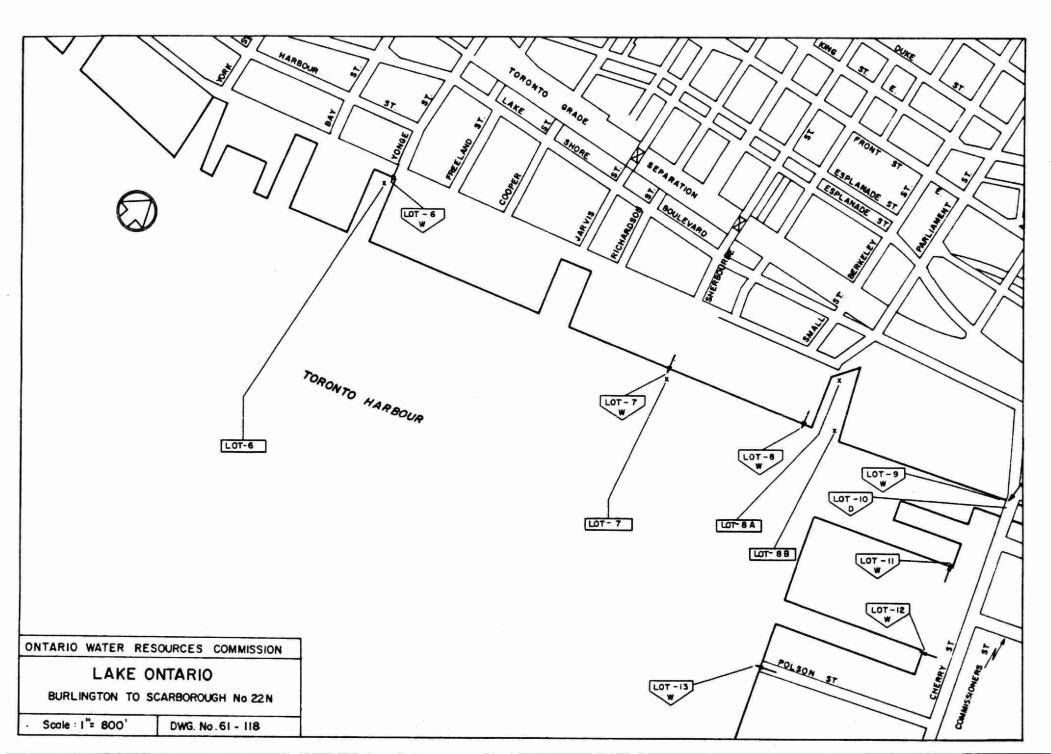
.


. .

.

. .

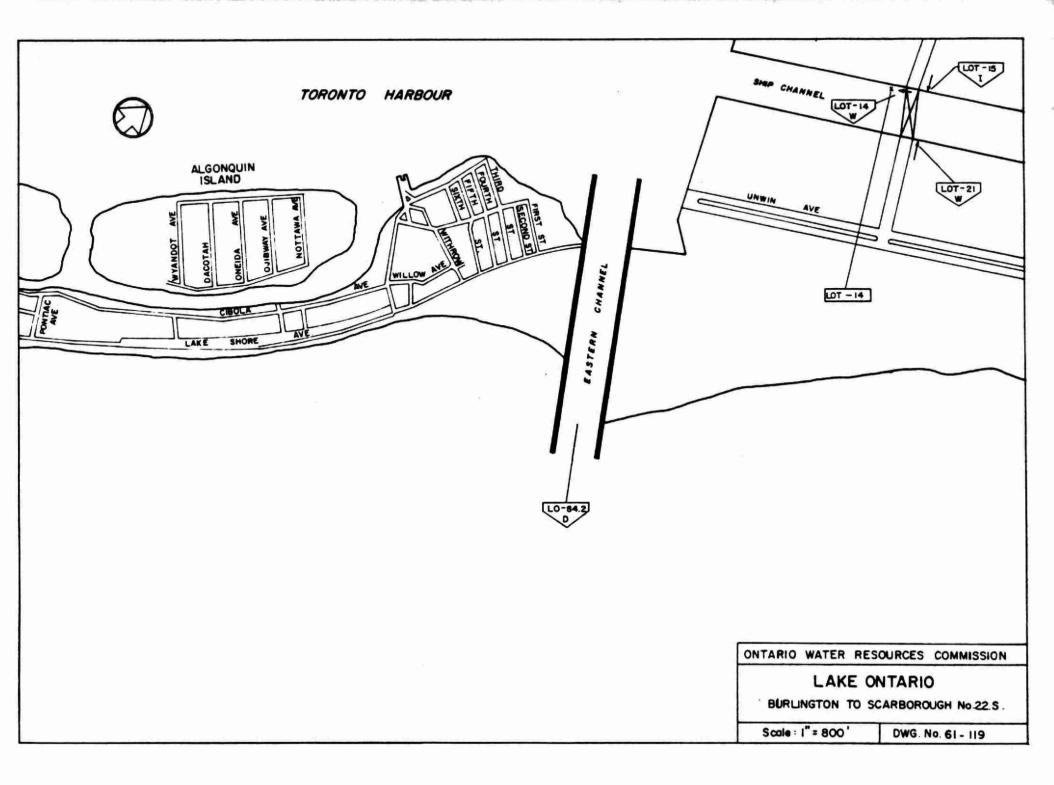

.



. . . .

.

. . .

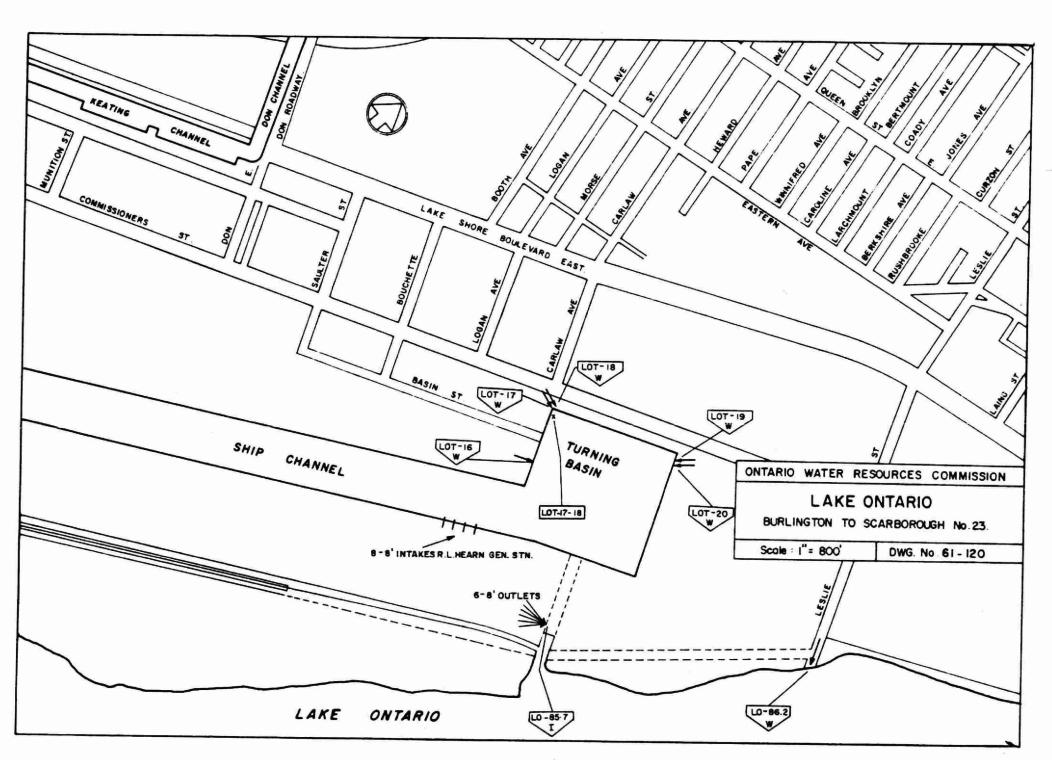


. . .

.

.

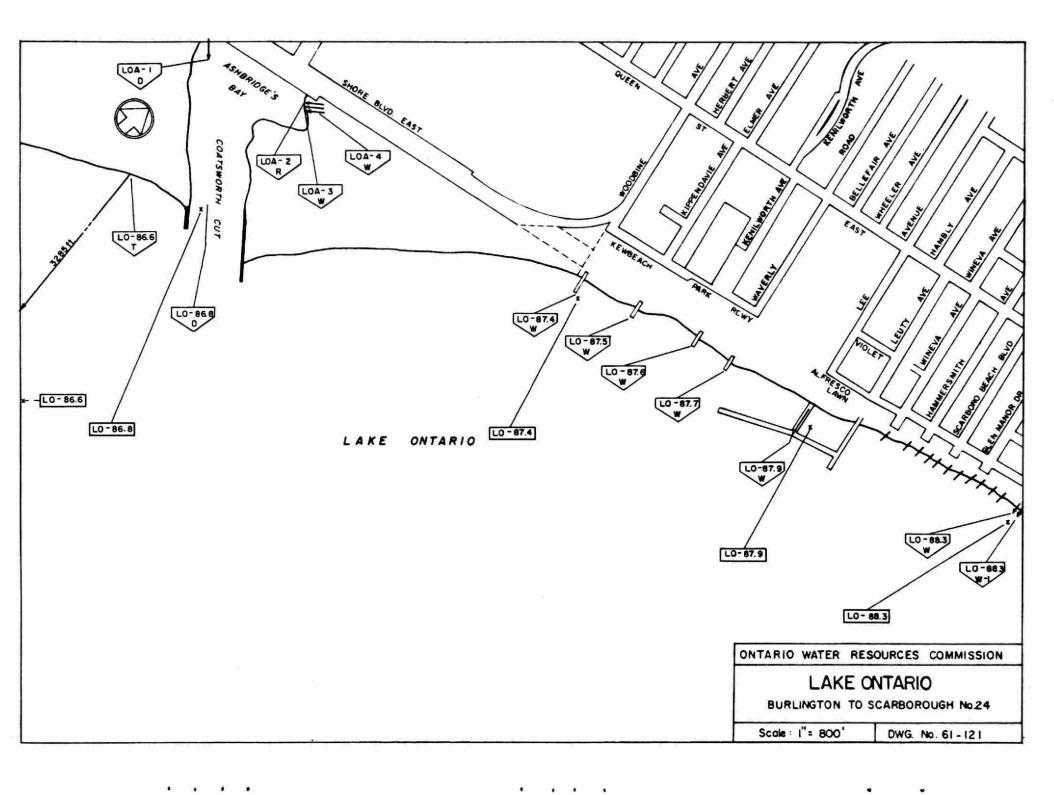
. . . .

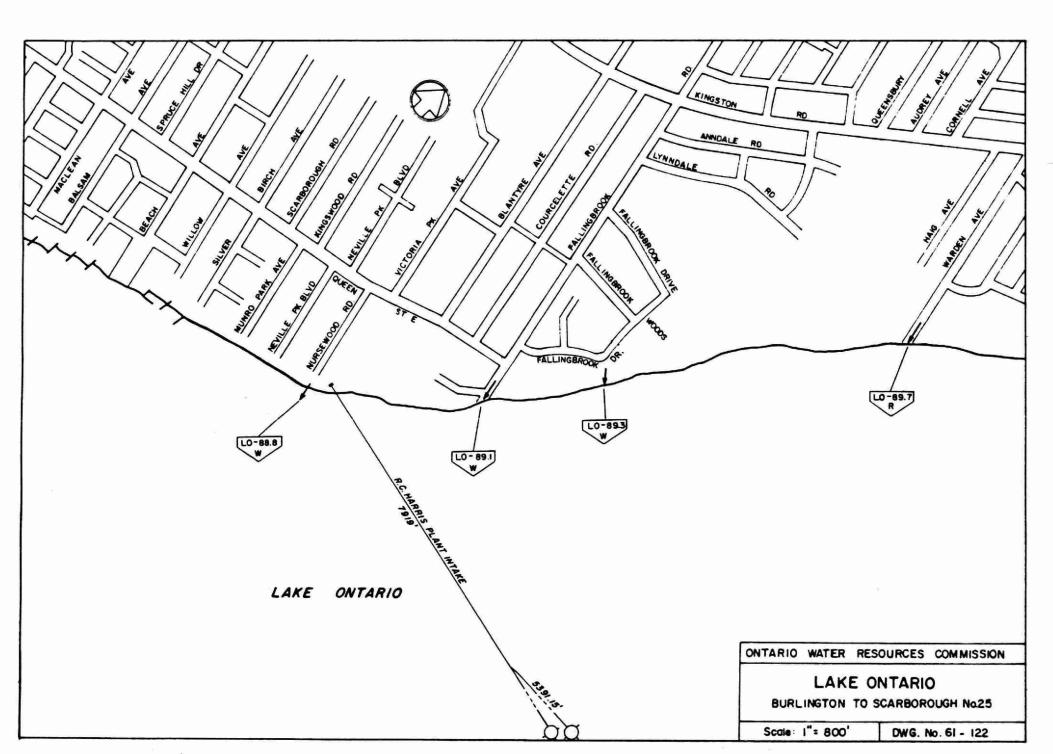


.

.

.

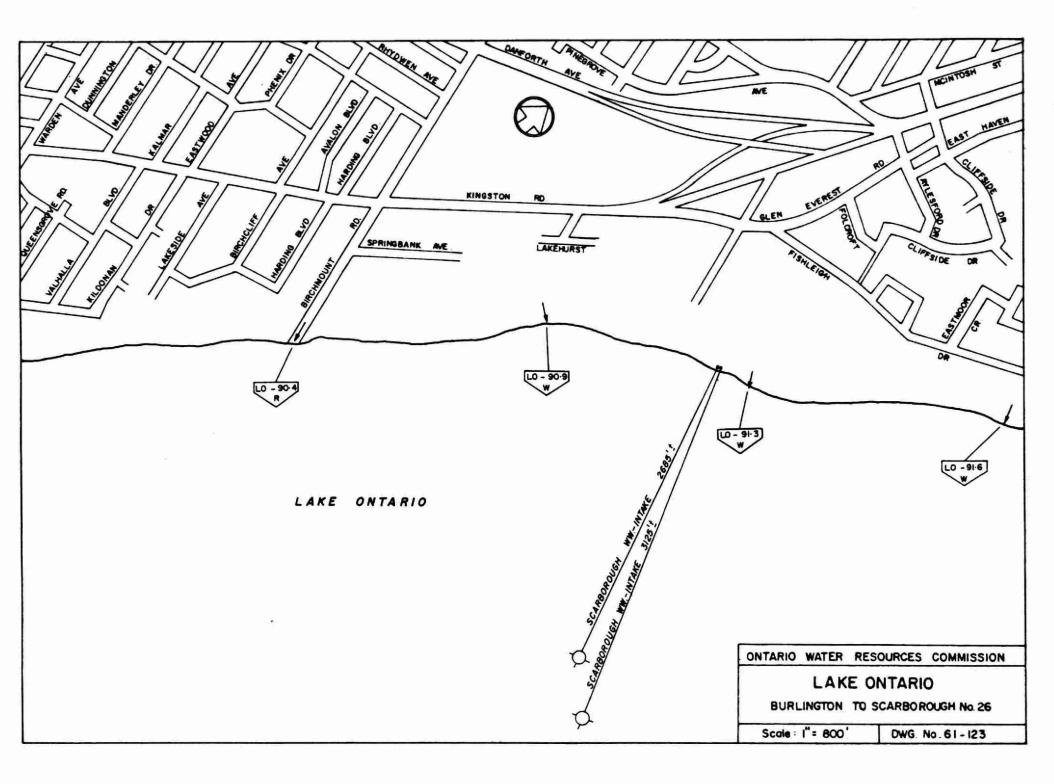

. .



.

• • •

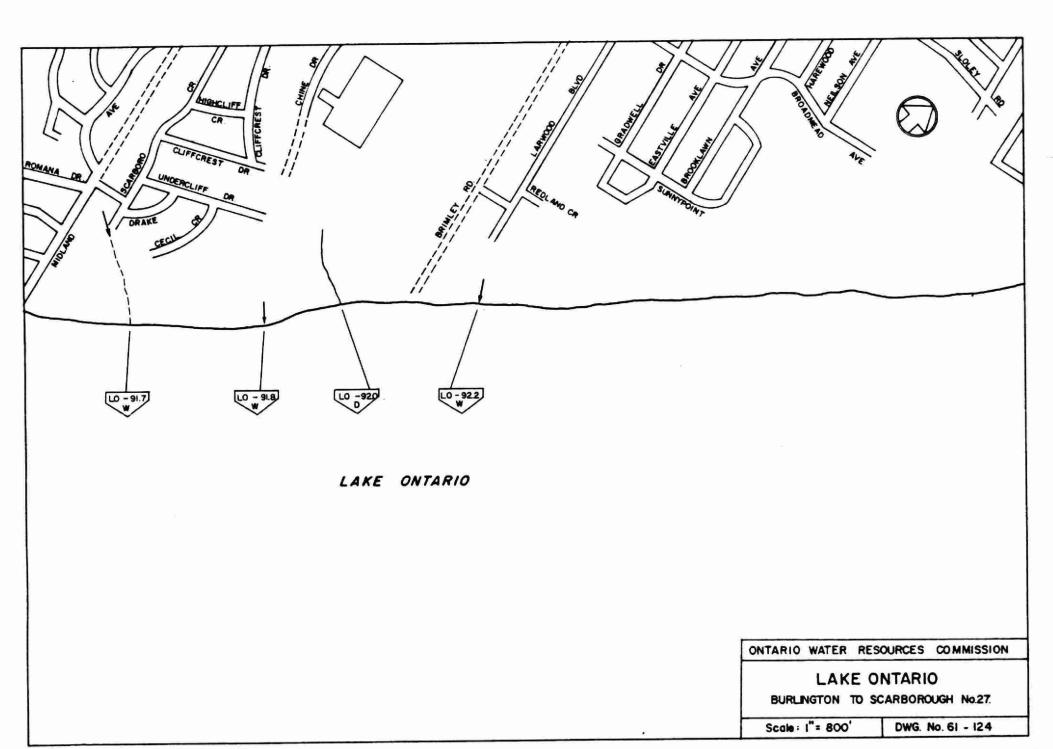
. . .



• •

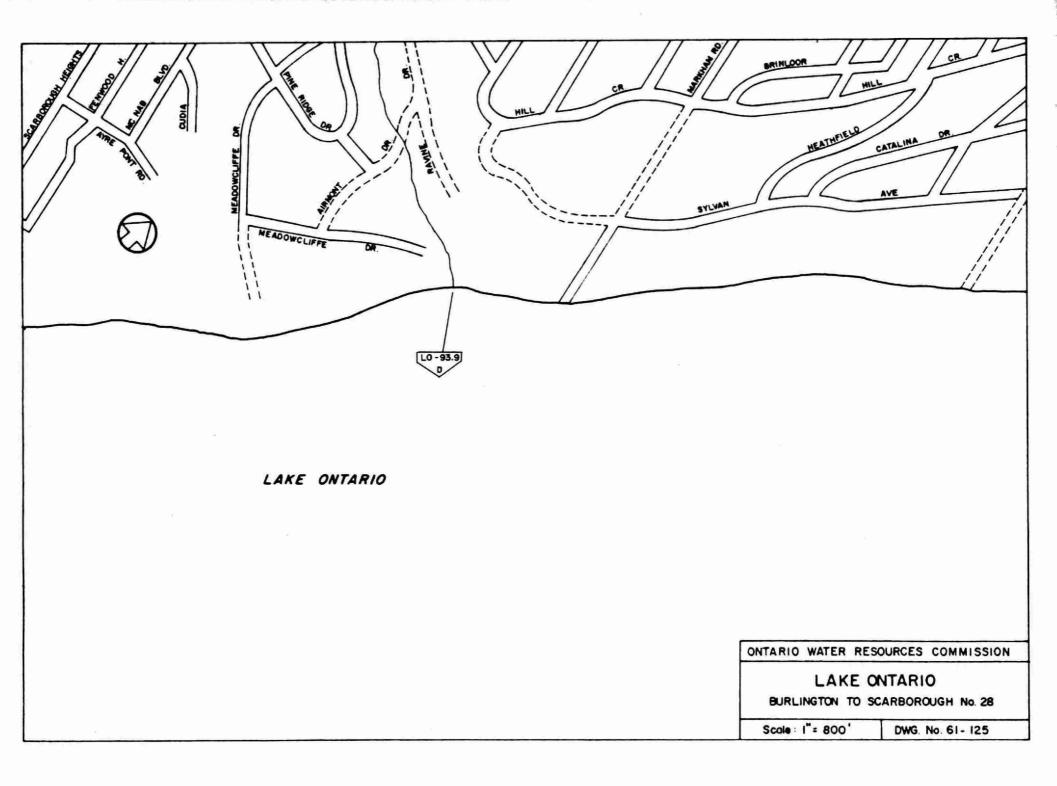
.

. . .



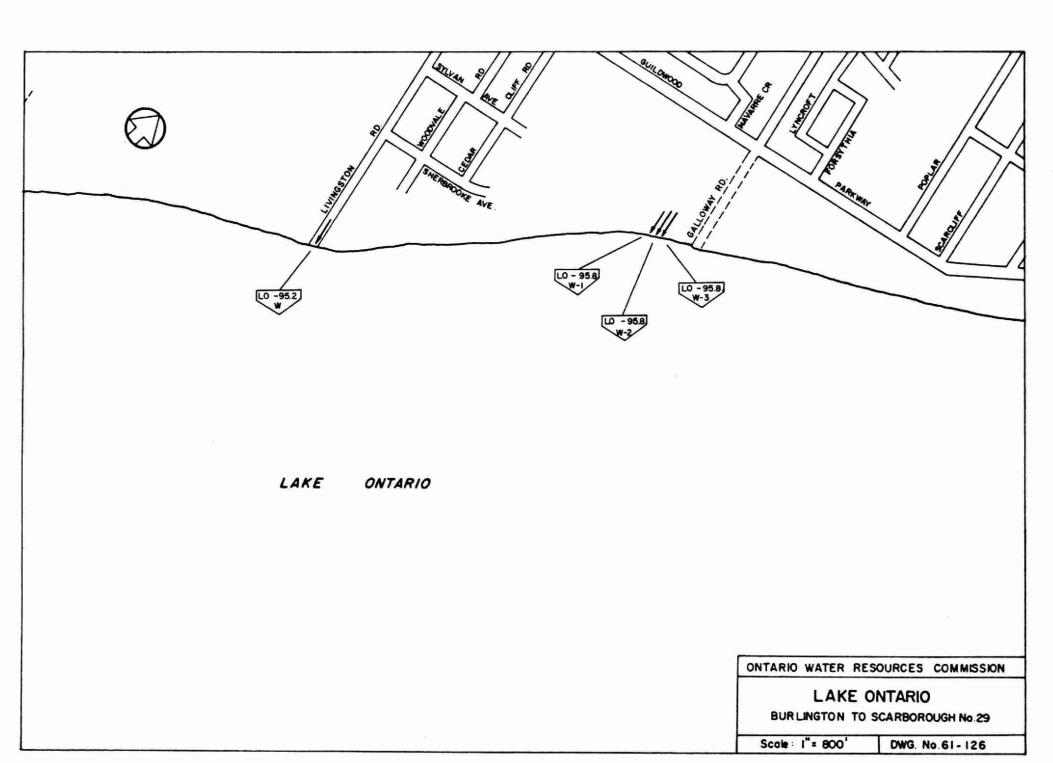
. .

.


. .

. .

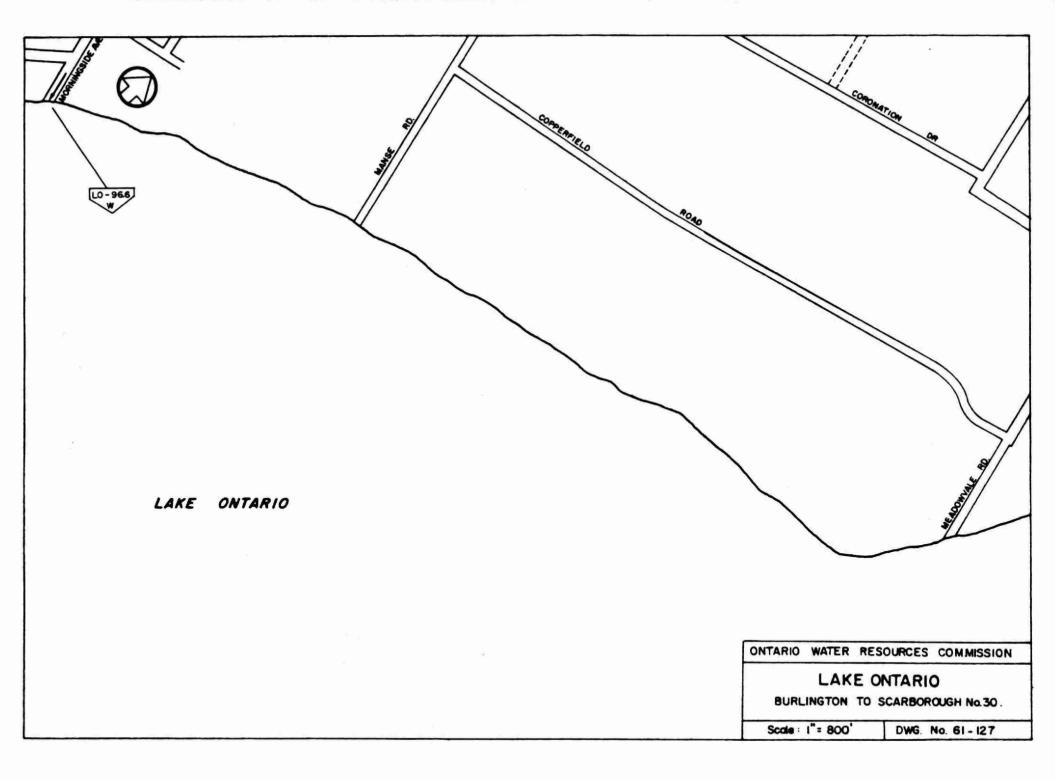
.


. . .

. . . .

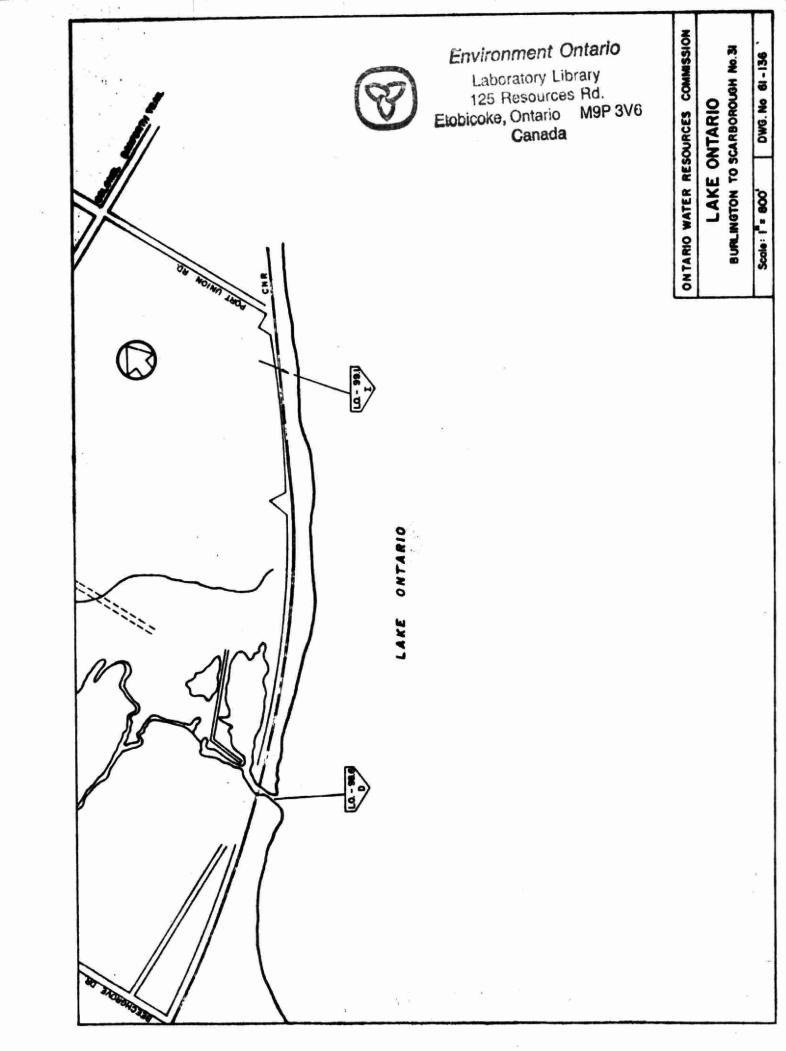
. .

• •



.

• •


. . .

¥.

.

- N - N

70

REPORT

by

THE ONTARIO WATER RESOURCES COMMISSION

on a

WATER QUALITY and OUTFALL SURVEY

OF LAKE ONTARIO

BURLINGTON TO SCARBOROUGH TOWNSHIP INCLUSIVE

SECTION I

Survey of Outfalls to Waterfront Area

PART II

in the Towns of Burlington, Oakville and Port Credit and the Township of Toronto

INTRODUCTION

This part of the report concerns inspections made by the Ontario Water Resources Commission during 1960 and 1961, of waste effluents from outfalls and drainage inlets discharging to Lake Ontario in the municipalities of Burlington, Oakville, Toronto Township and Port Credit.

All known sewer outlets were located, and where flow was noted "grab" samples were collected therefrom, for analysis at the Commission's laboratory. If the outlet was totally or partly submerged, a sample of the discharge was collected from a manhole upstream from the outlet.

Samples were collected also from the mouths of the nine principal watercourses emptying into Lake Ontario in the area under review.

WEATHER OBSERVATIONS

During and immediately prior to the sampling periods, appreciable precipitation did not occur, therefore, flow in the storm sewers was not at a maximum.

ANALYSES

The analyses made included determinations of biochemical oxygen demand (B.O.D.), solids or turbidity, and phenolic equivalents. The samples were also examined for coliform bacteria, and those collected from the oil refineries outfalls were analysed for e ther solubles (oil).

"Grab" samples were collected: forty (40) ounce samples for sanitary chemical analysis, and six (6) ounce samples for bacteriological examination being used. All laboratory tests were performed at the Ontario Water Resources Commission laboratory in Toronto.

The most common analyses of sanitary significance are: biochemical oxygen demand, suspended solids, and the total coliform determination.

Biochemical Oxygen Demand (B.O.D.)

The B.O.D. of sewage, industrial wastes, or surface waters, including lake or river waters, is the oxygen required during stabilization, (natural purification in a stream), of the decomposable organic matter or chemical material, by aerobic biochemical action. Unless otherwise noted a 5-day B.O.D. determination is performed and reported in parts per million (ppm.). A high B.O.D. is often indicative of recent organic or chemical pollution. A desirable upper limit in surface waters normally is 4 parts per million. This potential demand for oxygen to stabilize a discharged material tends to reduce the dissolved oxygen content of the water and so promotes suffocation of fish and the production of offensive conditions.

Suspended Solids

These results are reported in parts per million and indicate the measure of undissolved solids of organic or inorganic nature. Where suspended solids values approach 20 parts per million or less, laboratory difficulties usually are experienced and result in the values being determined as turbidity which is reported in silica units.

Membrane Filter Coliform Count

The membrane filter technique was employed to obtain a direct enumeration of coliform organisms, and the number is reported per 100 millilitres.

Waters having a total coliform count in excess of 2,400 organisms as determined by this technique are considered by the Commission as being undesirable for municipal water supplies or bathing purposes.

WATER QUALITY AND EFFLUENT OBJECTIVES

The following are the Commission's objectives for all surface waters in the Province of Ontario:

5-Day B.O.D		ne t.	$(1,0)\in \mathbb{R}^{n}$	6man	4 p.p.m.
M.F. Coliform Count		"		U	2,400/100 ml.
henolic Equivalent	s-Average		U	m	2 p.p.b.
	-Maximum	"	"	77	5 p.p.b.
bi	-kange				6.7 - 8.5

Some reminum clic.able concentrations of pertinent contaminants in storm sewer, sewage treatment plant and industrial waste effluents are listed below. With the exception of certain specific instances influenced by local conditions, adequate safeguarding for surface water should be provided if the following effluent concentrations or ranges are not exceeded.

 5-Day B.O.D.
 ----- not greater than 15 p.p.m.

 Suspended solids
 """" 15 p.p.m.

 Phenolic Equivalents
 - """" 20 p.p.b.

 pH
 ------ (Range)
 5.5 -10.6

 Ether Solubles
 ----- not greater than 15 p.p.m.

In this area, severe taste problems have occurred in some municipal water supplies due to the receipt of excess concentrations of phenol or phenolic equivalents by Lake Ontario. These materials tend to combine with chlorine at the water treatment plants, to produce objectionable chloro-phenolic tastes in the water unless adequate taste and odour control procedures are in use. This problem is aggravated by the fact that these phenolic problems have been intermittent in nature. Some persons are able to detect chloro-phenolic tastes in water having the very low concentration of 2 p.p.b. (parts per billion) of phenolic equivalents. Therefore treatment facilities for taste and odour control are required.

It should be noted that whereas the terminology phenol, phenols, or phenolic compounds may be used, the determination results of this survey, are reported in phenolic equivalent units.

ANALYSES OF SAMPLES

The results of the bacteriological and sanitary chemical analyses performed on the samples collected are presented in Table 2 of this report. The table also contains a brief description of all presently located sewer outfalls which discharge to Lake Ontario in the area under study.

The locations of the outfalls are shown on accompanying plans designated as 1 - 15 inclusive. A key plan of this series of maps is also appended.

An examination of the results of the analyses revealed that the B.O.D. and coliform counts of the effluents from six storm sewers at some times were unsatisfactory. The phenol concentrations in some instances were significant.

Storm and runoff flows did not occur during the periods of sampling so that excessive flows and certainly contaminated flows should not be experienced in the storm sewers. However, appreciable severely contaminated flows, in fact, were revealed.

From Burlington to Long Branch high total coliform counts were obtained in most of the outfalls.

The worst occurrence of bacterial (coliform) pollution recorded was on Sept. 20, 1960 at the Reynolds St. storm sewer in Oakville LO-58.2 (W), when thirty-six million coliforms per 100 ml.were present.

Values in excess of one million were revealed in the storm sewer west of the Brant Inn LO-46.2 (W), Locust St. storm sewer LO-46.6 (W), Drury Lane S.T.P. outfall LO-47.5 (T), Guelph Line storm sewer LO-47.8 (W), Inglewood Dr. Storm sewer LO-49.6 (W), Elizabeth Gardens S.T.P. outfall LO-51.5 (TW), George St. storm sewer LO-58.0 (W), Highway #10 watercourse LO-67.5 (D), St. Lawrence Starch Co. outfall LO-67.6 (I), watercourse east of Lakeview Water Pollution Control Plant LO-70.3 (D), and Etobicoke Creek LO-70.7 (D). The presence of raw or inadequately treated sanitary sewage in these flows could cause a high coliform content.

Severe coliform concentrations were revealed also at other sampling locations as shown on Table 2.

At almost all of the above mentioned points, B.O.D. and/or suspended solids concentrations also exceeded the objective

maximums.

This was also true at the Elizabeth Street storm sewer LO-46.8 (W), Trafalgar S.T.P. outfall LO-55.3 (T), and the Regent Refining (Canada) Ltd. open cut LO-66.4 (I).

Phenol concentrations were excessive at the Locust St. storm sewer LO-46.6 (W), Elizabeth St. storm sewer LO-46.8 (W), George St. storm sewer LO-58.0 (W), Reynolds St. storm sewer LO-58.2 (W), Southdown Rd. storm sewer LO-62.8 (W), British American Oil Co. Ltd. outfall LO-63.0 (I-2), Highway #10 watercourse LO-67.6 (I), Hiawatha Park Blvd. storm sewer LO-67.9 (W) and Montbeck Cresc. storm sewer LO-69.1 (D). Excessive ether solubles (oil) were observed in the British American Oil Co. Ltd. outfall LO-63.0 (I-2).

A summary is presented below of the analytical results for the samples taken from nine watercourses.

	B.O. p.p.			olic valents o.b.)		Count per 100 ml. mbrane Filter Technique
STREAM	Min.	Max.	Avg.		Min.	Max.
Hager Creek	2.8	12.0	2.5	3	1,000	10,000
Rambo Creek	4.7	14.0	3	6	5,700	25,000
Bronte Creek	2.2	3.2	0	0	34	90
Palermo Creek	2.0	3.3	3	3	2	4,800
Oakville Creek	3.2	3.9	1.5	3	27	39,000
Morrison Creek	2.4	4.1	1	2	0	800
Joshua's Creek	2.7	4.3	8.3	13	630	16,000
Credit River	1.6	5.3	1	2	10	368
Etobicoke Cree	k 3.2	17	7	15	10	1,040,000

The samples taken at the mouths of Rambo, Hager, Palermo, Joshua's, and Etobicoke Creeks showed average phenol concentrations

exceeding the desired objective. The high values of 13 ppb and 15 ppb were found in Joshua's, and Etobicoke Creeks respectively. With the exception of Etobicoke Creek which had a high coliform count of 1,040,000 per 100 ml., these streams had maximum coliform counts ranging from 4,800 per 100 ml., to 25,000 per 100ml. The biochemical oxygen demand in four instances exceeded the objective of 4 ppm with maximum values of 4.3 ppm to 17 ppm, except for Palermo Creek where the high value was 3.3 ppm.

The biochemical oxygen demand, phenol, and coliform results for Bronte, Morrison, and Oakville Creeks, and the Credit River generally did not exceed desired objective maximums. Exceptions to this were found in Oakville Creek (Sixteen Mile Creek) which had a maximum coliform count of 39,000 per 100 ml., and in the Credit River where one biochemical oxygen demand result of 5.3 ppm was noted.

Sample analyses results revealed that waste flows to Lake Ontario from the St. Lawrence Starch Company Limited plant, at outlet LO-67.6 (I) were unsatisfactory due to excessive sanitary chemical and coliform concentrations. This has been the situation for an extended period of time. The average B.O.D. of the waste at the time of sampling of 1265 p.p.m. is approximately six times the concentration of raw sanitary sewage. At the estimated flow of 1 million gallons per day, this is equivalent to the B.O.D. loading from a population of approximately seventy-five thousand people.

MAJOR POLLUTION-ABATEMENT PROJECTS PROPOSED OR COMPLETED

A number of projects have been completed throughout Burlington, Oakville, Port Credit, and Toronto Township which tend to abate previous pollution problems in the areas concerned.

Work is also in progress in some municipalities to correct existing problems which cause water pollution.

These projects are as follows:

1 - Burlington

Hager Creek

Abatement of waste discharges by a local chemical industry to Hager Creek had been initiated since the 1960 survey.

Rambo Creek

Early in 1961, a chemical plant began to treat its waste which discharges to Rambo Creek. Since that time the quality of the water in this watercourse downstream from this plant has improved.

Drury Lane Sewage Treatment Plant

This is a comple-treatment plant, located on Drury Lane extended, which was financed through the Commission by the Town of Burlington.

In February 1961 the construction of duplicate units here to double the original capacity was completed and placed in operation. An improved effluent discharge to Lake Ontario from this plant is now possible.

Elizabeth Gardens Sewage Treatment Plant

This is a Commission-financed plant located on Hampton Heath Rd. Primary-type treatment only, was originally provided and secondary-type, (complete) treatment was commenced in May 1960. An improvement in the quality of the effluent collected on November 22, 1961, over those of previous examinations was noted. Severe organic loadings, aggravated by wastes from a local packing plant, have caused treatment problems here. The installation of primary treatment units at the packing house has been of assistance.

Flows to Hamilton Bay

A portion of the Town of Burlington has outfalls discharging to Hamilton Bay. These were not sampled in this survey and will be presented in a later survey of the entire municipality. Included in these is the effluent from a temporary primary-type sewage treatment plant, located just west of LaSalle Park. This unit will be replaced by the proposed secondary-type treatment plant (Skyway), in the Burlington Beach area, which will also discharge to the bay.

The Bellview Street area is served by a common septic tank with effluent discharge to the bay via Indian Creek. 2- Oakville

Oakville Sewage Treatment Plant

This is a secondary-type (complete) treatment plant located near Rebecca and Navy Streets. The plant is in need of extensive renovation and was previously severely overloaded. Recently, flows constituting the hydraulic overload to the plant were re-directed to the Trafalgar sewage treatment plant from the westerly Oakville drainage area and in December 1961, other flows via the new Rebecca Street trunk sanitary sewer.

This flow diversion and proposed renovation will allow this previously overloaded plant to produce a consistently good effluent and thereby should improve the quality of the water in Oakville Creek (Sixteen Mile Creek), near its mouth.

Trafalgar Sewage Treatment Plant

This is a secondary-type (complete) plant located between Woodhaven Park Drive and Sandwell Drive and is presently capable of producing a superior effluent while receiving the extra

flows from the Oakville plant. This quality is critical due to the proximity of extensive bathing areas. There is also a storm tank outfall associated with this plant.

Cities Service Refining (Canada) Limited

Cities Service Refining (Canada) Ltd. has taken extensive measures at its refinery to avoid polluting the lake.

Shell Oil Company of Canada Limited

The Shell Oil Company of Canada Limited is constructing a refinery in the town and will be expected to control the qualities of its effluents.

3- Township of Toronto

British American Oil Company Limited

Improvements in the quality of one of the effluents from the British American Oil Company Limited refinery at Clarkson should be evident when the new biological phenol-reduction waste treatment plant is put into service early in 1962. Care will continue to be necessary to avoid the accidental escape of petroleum products particularly those having phenolic characteristics.

Lakeview Water Pollution Control Plant

In November 1961, the new Lakeview Water Pollution Control Plant was placed into operation. Previously, sewage from this sewered area of Toronto Township was conveyed temporarily, to a municipal septic tank with the incompletely treated effluent being discharged to a local watercourse having an outfall to Lake Ontario designated as LO-70.3 (D). Sample analyses results showed a marked improvement in the B.O.D. and coliform content of this stream following the establishment of treatment at this new plant.

This was financed through the Ontario Water Resources Commission with the co-operation of the Municipality of Metropolitan Toronto and Toronto Township and opened on November 24th, 1961. The advent of this plant and Lakeshore trunk sewer has already allowed diversion thereto of some of the excess flows that previously overloaded the Long Branch sewage treatment plant and aggravated its effluent. When the Metro Lakeshore interceptor trunk sewer presently under construction on the Lakeshore Boulevard West is completed, this overloading will be reduced further and the Long Branch plant will become capable of producing an acceptable effluent during the period that it remains in operation.

Also, tenders have been called for sewers and appurtenances to allow the total sewage flow from the Town of Port Credit to be pumped to the Lakeview plant. This will allow the abandonment of the grossly overloaded Port Credit sewage treatment plant. The effluent from this plant has been a source of concern due to its polluting potential, particularly due to its point of discharge being in the Credit River just upstream from the Lake Ontario intake of the Port Credit water works.

4 - Port Credit

Regent Refining (Canada) Ltd.

The new biological oxidation unit and the American Petroleum Institute oil-water separator at the Regent Refining (Canada) Limited oil refinery were placed in service in July, 1961. There has been a marked reduction in the amount of petroleum contaminants discharged to the lake since improved waste treatment facilities have been provided. Care will continue to be necessary to avoid accidental escape of petroleum products particularly those which have phenolic characteristics.

SUMMARY

It should be borne in mind that the magnitude of this work has allowed only three sampling runs. It will be required that these investigations be continued to complement this information. However, as a result of these investigations, it is apparent that inadequately treated wastes were gaining access to Lake Ontario through eight municipal and two industrial sewer outlets.

Generally the values of the samples collected from seven of the nine major watercourses flowing to the lake, exceeded one or more of the Commissions objective maximums during these two years of sampling.

RECOMMENDATIONS

On the basis of the analyses the waste flows being discharged at the following sewer outfalls, particularly required attention.

MUNICIPALITY OR INDUSTRY	SAMPLING POINT NUMBER
Burlington	LO-46.2 (W) LO-46.6 (W) LO-46.8 (W) LO-47.8 (W)
Oakville	LO-58.0 (W) LO-58.2 (W)
Toronto Township	LO-62.8 (W)
Port Credit	LO-67.9 (W)
St. Lawrence Starch Co. Ltd.	LO-67.6 (I)

It is therefore recommended:

That the "Water Quality and Effluent Objectives", 1. prescribed in this report, be observed in the development of remedial and pollution-preventive measures by the municipalities

and industry to which reference is made above. These objectives should apply to both existing and new sources of wastes.

2. That all sewer outfalls in these municipalities be located and recorded and sampled where a discharge is noted to the lake proper or contributing watercourses. If the analytical results exceed the "Water Quality and Effluent Objectives" outlined in this report remedial measures should then be initiated by the municipalities or industries involved, to reduce the quantities of polluting material reaching the lake and avoid contravention of the Ontario Water Resources Commission Act.

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

TABLE 2

SAMPLING Point No.	LOCATION	PLAN	DATE EXAMINED	I. N.	FORMS M. F. PER 100 ML	5-DAY B.O.D.	SO TOTAL S	USP.	DISS.	TURB ID- ITY	PHENOLS (PPB)	ETHER SOLUBLES	맨	<u>CHROME</u>	COPPER
L0-46.2 W	21" Ø STORM SEWER WEST OF BRANT INN	t	SEPT.19/60 Oct. 18/60 Nov. 21/61	-	FLOW IN 1,500,000 115,000	NSUFFICIENT 52 11	FOR SAM 376 580	1PL I NG 28 -	348	2.5	6 12	:	:	-	-
LO-46.3 W	30" Ø STORM SEWER NELSON AVE.	I	SEPT.19/60 OCT. 18/60 Nov. 21/61		NO FLOW 1,200 10,300	NOTED 4.8 7;9	710 818	:	Ξ	l 2.9	4 2	:	•	-	:
LO-46.4 W	12" Ø STORM SEWER OPPOSITE HAGER AVE.	I.	SEPT.19/60 OCT. 18/60 Nov. 21/61	. -		NSUFFICIENT	FOR SAM	IPL I NG							
LO-46.5 D	HAGER CREEK AT WATER ST.	i S	SEPT.19/60 OCT. 18/60 Nov. 21/61	Ì	1,000 1,200 10,000	8.4 12 2.8	880 620 618	18 - -	862	16 12.5	2 3	÷	í.	, Ē	Ξ
LO-46.6 W	18" Ø STORM SEWER LOCUST ST.	ا ,	SEPT.19/60 Oct. 18/60 Nov. 21/61	-	NOT LOC 1,900,000 FLOW IN	CATED 1280 ISUFFICIENT		160 IPL ING	728	-	1200	-	-	-	-
L0-46.7 W	15" Ø STORM SEWER BRANT STREET	1	SEPT.19/60 OCT. 18/60 Nov. 21/61		NOT LOC	CATED			÷						
LO-46.8 W	12" Ø STORM SEWER ELIZABETH ST.	T	SEPT.19/60 OCT. 18/60 Nov. 21/61		NOT LOC 22,000	620 .	610	•	-	7.1	25	-	-	-	•
L0-47. I D	RAMBO CREEK AT HWY. #2 (WATER ST.)	I	SEPT.19/60 Oct.18/60 Nov.21/61	-	25,000 5,700 13,100	6.0 14 4.7	222 334 462	2	220	3 3. I	6 - 0	÷		-	Ē
L0-47.2 D	DRAINAGE DITCH BETWEEN TORRANCE ST. & SMITH AVE.	1	SEPT.19/60 Oct.18/60 Nov.21/61	-	NO FLOW	NSUFFICIENT									a
L0-47.4 D	DRAINAGE DITCH EAST OF SENECA ST.	2	SEPT.19/60 Oct. 18/60 Nov. 21/61		1,000	NSUFFICIENT 4.0 NSUFFICIENT	226	-	-	3	2	-	•	-	-

. . . .

83

.

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

-

3

. . . .

TABLE 2

. . .

÷.

SAMPLING POINT NO.	LOCAT ION	PLAN	DATE EXAMINED	t. N. PER 100 ML	FORMS M.F. PER 100	Ó ML	5-DAY B.O.D.	TOTA	SOLID:	DISS.	TURB I D-	PHENOLS (PPB)	ETHER SOLUBLES	PH	CHROME	COPPER	
LO-47.5 R	30" Ø RELIEF SEWER FROM DRURY LANE SEWA TREATMENT PLANT OUTF	GE ² All	SEPT. 19/60 Oct. 18/60 Nov. 20/61	-	NO	FLOW	NOTED		-	T., (, () (" و "مرد"				5		
L0-47.5 T	30* Ø OUTFALL SEWER DRURY LANE SEWAGE TREATMENT PLANT	2	SEPT.19/60 Oct. 18/60 Nov. 30/61	-	7,000, 840, 12,		104 46 84	546 958 596	54 422 70	492 536 526	5	10 0	:	-	:	-	
LO-47.6 W	30" Ø STORM SEWER GREEN STREET	2	SEPT.19/60 Oct.18/60 Nov.21/61	-	NO *	FLOW	NOTED			4							
L0-47.7 W-1	14™∮ STORM SEWER MARKET STREET	2	SEPT.19/60 Oct.18/60 Nov.21/61	-	OUTI *	LET SI	UBMERGED,	OTHER :	SUITABI TABI	LE SAMPLI	NG POINT I	NOT LOCATE).				
LO-47.7 W-2	15 * Ø STORM SEW ER MARKET STREET	2	SEPT.19/60 Oct. 18/60 Nov. 21/61			LOW I	NOTED	•									04
LO-47.8 W	24" Ø STORM SEWER GUELPH LINE	2	SEPT.19/60 Oct. 18/60 Nov. 21/61		12,000, 210, 1,400,	,000	300 62 11	710 528 530	184 -	526 -	- 4 2.6	20 4 12	•	-	-	3	
LO-48,2 W	12" STORM SEWER POMONA AVE.	2	SEPT. 19/60 OCT. 18/60 Nov. 21/61	:	OUTL	ET SI	UBMERGED, (OTHER S	SAMPL IN	IG POINT	NOT LOCATE	D.					
LO-48.4 D	WATERCOURSE AT HWY. #2	2	SEPT.19/60 Oct. 18/60 Nov. 21/61	-	670, 18, 137,	000	11 10 4.1	514 552 804	44 - -	470 -	I 3.5	0 - 3	:	-	•	-	
LO-49.0 D	WATERCOURSE AT HWY.∰2 EAST OF LAKEVIEW AVE.	3	SEPT.19/60 Oct. 18/60 Nov. 21/61	-		10W N 350 000	10TED 7.4 2.7	570 552	:	•	l 2.8	- 6	:	-	-	-	
L0-49.2 W	30™∲STORM SEWER WALKERS LINE	3	SEPT.19/60 Oct. 18/60 Nov. 21/61	:	2,	700 000	UFFICIENT 7,2 3,2	For SAM 572 670		-	2 2.6	2 13	:	:	:	:	

.

84

.

A 4 A A

TABLE 2

SAMPLING POINT NO.	LOCATION	PLAN NO.	DATE EXAMINED	COL I. N. PER 100 ML	M. F. Per 100 ML	5-DAY B.O.D.	TOTA	SOLII	DS P. DISS.	TURB I D-	PHENOLS (PPB)	ETHER SOLUBLES	PH	CHROME	COPPER
LO-49.6 W	12" Ø STORM SEWER INGLEWOOD DR.	3	SEPT.19/60 Oct. 18/60 Nov. 21/61	:	2,700,000 15,000 179,000	12 6.8 5.6	660 700 678	6 -	654 -	- 4 3.3	2 4 3	Ē	-	5	ł
L0-49.8 D	WATERCOURSE EAST OF SHOREACRES RD.	3	SEPT.19/60 Oct. 18/60 Nov. 22/61	:	NO FLOW 19,000 34,000	NOTED 7.8 2.6	624 716	:	-	 9.0	- 6	:	-	:	:
LO-50.0 D	WATERCOURSE EAST OF POPLAR DR.	3	SEPT.19/60 Oct. 18/60 Nov, 22/61	2	FLOW IN 34,000 13,200	SUFFICIEN 3.2 4.5	T FOR 746 648	SAMPL	ING - -	3 4.5	ō	Ę	-	÷	:
LO-50.7 D	WATERCOURSE 0.25 MIL	es 4	SEPT. 19/60 Oct. 18/60 Nov. 22/61	:	NO FLOW	NOTED	636		-	4.0	0	-	÷	-	
LO-51.5 T₩	18* Ø OUTFALL SEWER ELIZABETH GDNS. SEWAGE TREATMENT PLA		SEPT.19/60 OCT. 18/60 Nov. 22/61	:	14,000,000 1,800,000 <10	235 120 33	610 646 788	68 52	542 594	27	18 - 6	-	-	2	:
LO-51.5 TV	48" Ø SEWAGE TREATMEN PLANT OUTFALL & STOR SEWER-HAMPTON HEATH ROAD		SEPT.19/60 Oct. 18/60 Nov. 22/61	Ē	FLOW ING	TO LAKE	VIA OU	TLET -	L0-51.5T						
L0-52.5 I	30" Ø OUTFALL SEWER – CITIES SERVICE REFINING (CAMADA) LIMITED	5	SEPT.20/60 Oct. 19/60 Nov. 30/61	1,000	110 - 64	2:9 5.6 4.2	724 414 1456	34 4 -	690 410 -	- 6.0	4 90 8	Ξ	-	Ì	2
LO-53.0 D	WATERCOURSE AT HWY. #2 WEST OF CUDMORE RD.	5	SEPT.20/60 Oct. 19/60 Nov. 22/61	-	NO FLOW 0 960	NOTED 1.9 3.2	568 578	:	:	1 38	ō	-		:	:
LO-53.8 D	BRONTE CREEK AT LAKE SHORE RD.	5	SEPT.20/60 Oct. 19/60 Nov. 22/61	Ē	90 34 59	3.0 3.2 2.2	216 260 364	:	÷	2 3 4.5	0 - -	-	•	ŝ	:
LO-54. I D	WATERCOURSE AT FOOT OF EAST ST.	6	Nov. 30/61	-	FLOW IN	SUFFICIEN	IT FOR	SAMPL	ING						

* * * *

85

.

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

TABLE 2

. . . .

SAMPLING POINT NO.	LOCATION	plan <u>No.</u>	DATE EXAMINED	L. N. PER 100 MI	M. F. PER 100 ML	5-DAY <u>B.O.D.</u>	TOTAL	SOL IDS	S DISS,	TURB ID- ITY	PHENOLS (PPB)	ether Solubles	면	CHROME	COPPER	
L0-55.2 T	OUTFALL SEWER TRAFALGAR Sewage treatment Plant	6	SEPT.20/60 Oct. 19/60 Nov. 30/61	100	5 - 500	10 18 60	504 540 612	34 14 78	470 526 534	- 18	4	:	-	-	-	
LO-55.8 D	PALERMO CREEK AT LAKE SHORE RD.	7	SEPT.20/60 OCT. 19/60 Nov. 22/61	-	NO FLOW 2 4,800	NOTED 2.0 3.3	736 496	-	-	l 2.3	- 3	:	-	-	:	
LO-56.3 D	STREAM "A" AT LAKE ONTARIO	7	SEPT.20/60 OCT. 19/60 Nov. 22/61	-	22,000 2,000 2,200	8 3.2 3.1	290 312 538		•	4 2 2,6	0 - 2	÷	-	Ξ	Ξ	
LO-56.6 D	WATERCOURSE AT BIRCHHILL TANE	7	Nov. 30/61		1,800	3.8	724	•	-	20	8	-	-	-	-	
LO-57.3 D	WATERCOURSE AT	8	SEPT.20/60 Oct. 19/60 Nov. 22/61	-	47,000 1,200 30,000	6.2 4.0 2.9	706 804 894	-	-	8 4 5	0 4	-	•	-	•	1
LO-57.4 D	WATERCOURSE AT BROCK STREET	8	SEPT.20/60 Oct. 19/60 Nov. 22/61	:	FLOW INS # \$73,000	SUFFICIENT *	FOR SAM	IPL ING	-	7	5		-	-	-	3
LO-57.5 W	36* Ø STORM SEWER KERR STREET	8	SEPT. 20/60 Oct. 19 /60 Nov. 22 /61) –	500 0 18	2.5 6.8 0.7 -	324 222 198	-	-	31 1 2,6	0 - 2	:	•	Ē	:	
LO-57.8 D	OAKVILLE CREEK AT LAKE ONTARIO	8	SEPT.20/60 Oct. 19/60 Nov. 22/61		39,000 27 252	3,9 3,2 3,8	234 256 276	-	:	3 1 5.0	3 0	÷	-	Ξ		
LO-58.0 W	15" Ø STORM SEWER GEORGE STREET	8	SEPT.20/60 Oct. 19/60 Nov. 22/61		3,500,000 500 13,300	17 125 6,2	248 484 262	18 78 -	230 406	2.1	100 150 6	:		-	:	
LO-58.1 W	12" Ø STORM SEWER DUNDAS STREET (WEST OUTLET)	8	SEPT.20/60 Oct. 18/60 Nov. 22/61	•	NO FLOW	NOTED										

ł.

98

.

. . .

.

TABLE 2

SAMPLING POINT NO.	LOCAT ION	PLAN	DATE EXAMINED	L. N. PER 100 ML	N. F. PER 100 ML	5-DAY B.O.D.	TOTA	SOL 1D	S DISS.	TURBID- ITY	PHENOLS (PPB)	ETHER SOLUBLES	PH	<u>CHROME</u>	COPPER
LO-58.1 W-1	12" Ø STORM SEWER DUNDAS STREET (EAST OUTLET)	8	SEPT.20/60 Oct. 19/60 Nov. 22/61	-	NO FLOW	NOTED									
LO-58,2 W	12" Ø STORM SEWER REYNOLDS STREET	8	SEPT.20/60 OCT. 19/60 Nov. 22/61	-	36,000,000 8,700 210,000	38 760 106	300 388 536	30 28	270 360	42	10 500 12	-	-	:	-
LO-58.3 W	12" Ø STORM SEWER Allan Street	8	SEPT.20/60 OCT. 19/60 Nov. 22/61	:	NO FLOW	NOTED									
LO-58.4 W	48" Ø STORM SEWER FIRST STREET	8	SEPT.20/60 Oct. 19/60 Nov. 22/61	-	NO FLOW		660	-	-	2.0	0	-	-	-	
L0- 58 . 4 R	8" Ø RELIEF SEWER FIRST ST. SEWAGE PUMPING STATION	8	SEPT.20/60 OCT. 19/60 Nov. 22/61) -	NO FLOW	NOTED									
LO-58,6 D	WATERCOURSE BETWEEN PARK AVE. & SECOND STREET	8	SEPT.20/60 Oct. 19/60 Nov. 22/61) –	NO FLOW	NOTED									
LO-58.7 W	12" Ø STORM SEWER ESPLANADE	8	SEPT.20/60 Oct. 19/60 Nov. 22/61) -	NO FLOW	NOTED	482	-	-	1.4	4	-	-	-	-
LO-58.9 D	WATERCOURSE AT ESPLANADE BETWEEN HOWARD AVE+& EIGHTH LINE ~	8	SEPT.20/60 Oct. 19/60 Nov. 30/61) -	FLOW IN	SUFFICIEN •	T FOR	SAMPL I	NG						
L0-58,9 R	RELIEF SEWER E IGHTM LINE SEWAGE PUMPING STATION	8	SEPT.20/60 OCT. 19/60 Nov. 22/61) -	NO FLOW	NOTED									а
LO-59.1 D	STREAM AT ARGYLE DR.	9	SEPT.20/60 OCT. 19/60 Nov. 30/61) -	NOT SAM 6,400	PLED * 2.6	626	-	-	2,6	6	1× 	-	-	

٠

- **H** - **H** - **H**

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

TABLE 2

.

. . . .

SAMPL ING Point No.	LOCATION	PLAN NO.	DATE EXAM INED	I. N.	M. F. PER 100 ML	5-DAY <u>B.O.D.</u>		SOL ID:	DISS.	TURB I D- ITY	PHENOLS (PPB)	ETHER SOLUBLES	PH	<u>Chrome</u>	COPPER	
LO-59,6 D	MORRISON CREEK AT LAKE SHORE RD.	9	SEPT.20/60 Oct. 19/60 Nov. 30/61	-	540 0 800	2.6 2.4 4.1	230 214 400	:	-	2 2 3.1	0 - 2	-	:	-	:	
LO-59.7 W	12" Ø STORM SEWER - ENNISCLARE DR. W.	9	SEPT.20/60 Oct. 19/60 Nov. 30/61	-	NOT SAME 21,800	7.2	654	-	-	2.1	3	-	-	-	-	
LO-59,9 D	WATERCOURSE BETWEEN CAULDER DR. & TRELAWN AVE.	9	SEPT.20/60 Oct. 19/60 Nov. 30/61		740 0 1,800	2.8 2.3 5.1	624 512 630	-	:	4 1 3.3	3 - 8	3	-	Ξ	Ξ	
LO-60.0 D	WATERCOURSE WEST OF NINTH LINE AT LAKE SHORE RD.	9	SEPT.20/60 Oct. 19/60 Nov. 30/61		NOT SAMP 32,000		600	-	-	7.0	4		•	-	-	
LO-60.1 T	60" Ø OUTFALL SEWER - FORD MOTOR CO. OF CANADA LTD. SEWAGE TREATMENT PLANT	9	SEPT.20/60 DEC. 1/60 Nov. 30/61		<5 - 30 <10	2.8 1.8 4.4	274 190 226	44 12 26	230 178 200	:	6 2 2	Ξ	-	i	÷	Ċ
L0-61.6 D	JOSHUA'S CREEK AT LAKE SHORE RD.	10	SEPT.20/60 Nov. 9/60 Nov. 30/61	-	16,000 630 7,000	2.7 4.0 4.3	418 532 562	6 - -	412	- 5 5	6 13 6	Ξ	:	-	Ξ	
L0-62. I I	INDUSTRIAL SEWER-ST,LAWRENCE CEMENT CO.	10	Nev. 30/61	-	130	2.8	310	-	-	5.5	6	•			-	
L 0- 62,2 T	42# Ø OUTFALL SEWER- Clarkson sewage Treatment plant	ά.	SEPT.20/60 Nov. 9/60 Dec. 1/61	-	51,000 20 <10	15 5.6 . 0.7 .	630 664 594	16 -	614	- 12 20.0	10 2 7	Ē	:	-	Ξ	
LO-62.4 D	LOCAL WATERCOURSE BETWEEN AVONHEAD & SOUTHDOWN RDS.	п	DEC. 1/61	-	900	2.2	816	-	-	2,9	6	÷	-	-	-	
L O-62. 8 W	27" Ø STORM SEWER - SOUTHDOWN RD.	н	DEC. 1/61	-	760,000	420	1194	220	974	-	1200	-	-	-	-	

14

10

88

٠

. A. A.

.

TABLE 2

SAMPLING POINT NO.		PLAN NO.	DATE EXAMINED	COL I. N. PER IOO ML	IFORMS M. F. PER 100 ML	5-DAY B.O.D.	TOTAL	SOLIDS	DISS.	TURB ID-	PHENOLS (PPB)	ether <u>Solubles</u>	<u>рН</u>	CHROME	COPPER
LO-63.0 I	48" Ø INDUSTRIAL SEWER - BRITISH AMERICAN OIL CO. LTD.	11	DEC. 1/61	-	•	66	330	-	÷	53.0	30	5.3	-	-	-
LO-63.0 I-1	42" Ø INDUSTRIAL SEWI - BRITISH AMERICAN OIL CO. LTD.	er, it	SEPT.20/61 DEC. 6/60 DEC. 1/61	-	NO FLOW - -	NOTED 8.4 1.6	188 198	22	166 -	2.5	8 4	0 -	î	5	:
L0-63.0 I-2	42" Ø INDUSTRIAL SEWE - BRITISH AMERICAN OIL CO. LTD.	ERII	SEPT.20/60 DEC. 6/60 DEC. 1/61	- 1	- - 82	4.8 8.0 2.1	226 176 200	22 8 -	204 168	2.5	140 110 3	17	-	-	-
LO-64.4 D	LOCAL WATERCOURSE OPPOSITE FOOT OF BEXHILL RD.	12	SEPT.20/60 Nov. 9/60 Dec. 1/61) -	900 29 1,600	2.6 2.6 3.1	626 488 658	Ē	-	3 3 2.6	2 - 4	-	-	Ē	-
LO-64.6 D	LOCAL WATERCOURSE South Edelweiss Dr.	12	SEPT.20/60 Nov. 9/60 Dec. 1/61) –	280,000 3,100 900	4.0 5.0 3.0	706 670 682	10 - -	696 - -	10 4.5	0 - 2	:	-	Ξ	:
LO-64.9 D	LOCAL WATERCOURSE WEST LUGSDIN AVE.	12	SEPT.20/60 Ngv. 9/60 Dec. 1/61) -	7,000 43 86	2.4 2.1 2.9	464 458 480	į	-	2 1 1.7	2 4	:	-	Ξ	Ē
LO-65.3 D	LOCAL WATERCOURSE BETWEEN MOORE AVE. & WHITTIER CRES.	12	DEC. 1/61	-	FLOW IN	SUFF IC I ENT	FOR S	AMPL ING	3						
LO-65.4 D	LOCAL WATERCOURSE BETWEEN ORIENT AVE. & WHITTIER CRES.	12	DEC. 1/6	-	FLOW IN	SUFFICIENT	F FOR S	SAMPL ING	5						
LO-65.5 D	LOCAL WATERCOURSE EAST OF ORIENT AVE.	12	SEPT.20/60 Nov. 9/60 Dec. 1/6	- (8,000 51 50	4.8 1.9 2.6	452 492 524	Ē	Ξ	3 3 3.5	9 5 3	-	-	Ę	:
LO-65.9 D	LOCAL WATERCOURSE BETWEEN CROZIER CT. & BEN MACHREE DR.	13	SEPT.20/6 Nov. 9/6 Nov. 30/6	0 -	NO FLOW 1,000 16	NOTED 4.0 17	538 650	:	-	5 11.5	-8	:	-	-	-

* • • •

.

.

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

TABLE 2

. . . .

SAMPLING POINT NO.	LOCAT ION	PLAN NO.	DATE EXAMINED	I. N. PER IOO ML	IFORMS M. F. Per Ioo ML	5-DAY B.O.D.	TOTAL	SOL ID: SUSP	S DISS.	TURB I D- ITY	PHENOLS (PPB)	ether <u>Solubles</u>	맨	CHROME	COPPER
LO-66.1 W	18" Ø STORM SEWER Opposite ben Machree Dr.	13	SEPT.20/60 Oct. 9/60 Nov. 30/61	:	ND FLOW	NOTED									
L0-66,4 I	OPEN CUT (STATION NO.4) - REGENT REFINING (CANADA) LTD.	13	SEPT.20/60 DEC. 6/60 Nov. 30/61	-	22,000 0 2	38 28 2,4	308 220 252	24 20	284 200	- 3. I	25 30 8	TRACE 0	-	-	:
LO67.0 D	CREDIT RIVER AT LAKE SHORE RD.	13	SEPT.20/60 Nov. 9/60 JAN. 27/61 SEPT.14/61 Nov. 30/61		300 15 72 <10 368	3.0 3.5 5.3 2.3 1.6	264 272 286 278 332	•		3 1 3 4 2.9	0 - - 2			•	-
LO-67.0 R	RELIEF SEWER - STAVEBANK RD. S. SEWAGE PUMPING STATION.	13	Nov, 30/61	-	NOT LOCA	TED									
LD-67,2 W	I8" Ø STORM SEWER - WEST SIDE OF ELIZABETH ST.	13	Nov. 30/61	-	NO FLOW	NOTED									
LO-67.4 W	45™ Ø STORM SEWER - BETWEEN HELENE ≵ ANN STS.	13	SEPT. 19/60 Nov. 9/60 Nov. 30/61	Ē	300,000 2,500 90	5.4 6.9 6.6	264 216 406	8 - -	256 -	3 11.5	0 - 6	:	-	-	-
L0-67,5 D	LOCAL WATERCOURSE EAST SIDE HWY, NO.10	13	SEPT. 19/60 Nov. 9/60 Nov. 30/61	t,000,000	256,000 296	13 10 9,2	312 674 834	12	300 -	- 5 4,5	4 27 8	:	Ξ	-	-
LO-67.6 I	23" Ø INDUSTRIAL WASTE SEWER – ST. LAWRENCE STARCH CO. LTD.	13	SEPT.20/60 Nov. 9/60 Nov. 30/61	:	4,800,000 680,000 100	1750 940 1040	3046 2018 1732	264 210 216	2782 1808 1516	Ē	0 - 0	Ē	-	:	
LO-67.7 W	21* Ø STORM SEWER - OAKWOOD ST.	14	SEPT. 19/60 Nov. 9/60 Nov. 30/61	Ξ	279,000 NOT SAMP 28	30 LED 2.3	334 342	6 -	328 -	- 3.3	9 2		-	-	-
LO-67.9 W	36" Ø STORM SEWER OPPOSITE HIAWATHA PARK BLVD.	14	SEPT. 19/60 Nov. 9/60 Nov. 30/61	Ē	NO FLOW	NOTED 35	628	-	-	43.0	න	-	-	-	-

ξ.

90

• •

. . . .

TABLE 2

SAMPLING POINT NO.	LOCATION	PLAN NO.	DATE EXAMINED	I. N. PER JOO ML	M. F. PER 100 ML	5-DAY B.O.D.	TOTAL	SUSP.	DISS.	TURBID- ITY	PHENOLS (PPB)	ETHER Solubles	PH	CHROME	COPPER
LO-68.2 W	30" Ø STORM SEWER - Between 126 & 130 Cumberland Dr.	14	SEPT.19/60 Nov. 9/60 Nov. 30/61	Ξ	200,000 7,800 4	6.2 7.8 2.8	216 190 400	10 - -	206 - -	- 6 1.8	0 - 5		:	Ē	Ē
LO-68,2 R	8" Ø RELIEF SEWER - BETWEEN 126 & 130 CUMBERLAND DR.	14	SEPT.19/60 Nov. 9/60 Nov. 30/61	3	NO FLOW	NOTED						÷			
LO-68.5 D	LOCAL WATERCOURSE OPPOSITE WEST END RICHEY CR.	14	Nov. 30/61	-	424	5,2	642	•	-	20	6	-	•	-	•
L0-68.7 D	COOKSVILLE CREEK OPPOSITE EAST END RICHEY CR.	14	SEPT.19/60 Nov. 9/60 Nov. 30/61	-	200,000 9,700 256	4.0 3.6 4.3	606 792 856	20 - -	586 - -	3 3,5	8 4 8	-	-	Ē	Ē
LO-69.1 D	LOCAL WATERCOURSE AT MONTBECK CRES.	14	SEPT.19/60 Nov. 9/60 Nov. 30/61	-	290,000 9,500 520	23 5.1 34	286 412 714	10	276 - -	3 24	2 - 40	5		Ξ	-
LO-69.2 W	12" Ø STORM SEWER - TORONTO TWP. WATER WORKS	14	NOV. 30/61	-	NO FLOW	NOTED									
L 0- 69 . 2 P-1	24" Ø SURGE DRAIN - TORONTO TWP. WATER WORKS	14	NOV. 30/61	-	NO FLOW	NOTED									
LO-69.2 P-2	21" Ø BACKWASH DRAIN - TORONTO TWP. WATER WORKS	14	Nov. 30/61		0	3.2	246	-	-	2.3	2	•			
L0-69.2 P-3	36" Ø BACKWASH DRAIN - TORONTO WATER WORKS	14	Nov. 30/61	-	0	2.4	234	-		2.3	3	-	-	-	-
L0-69,5 D	DRAINAGE DITCH AT COOLING WATER CHANNEL	15	Nov, 29/61	-	NO FLOW	NOTED									
LO-69.5 D-1	COOLING WATER CHANNEL-LAKEVIEW GENERATING STATION	15	Nov. 29/61	-	-	2.9	204	-	•	2,6	0	-	-	-	-

. . . .

16

.

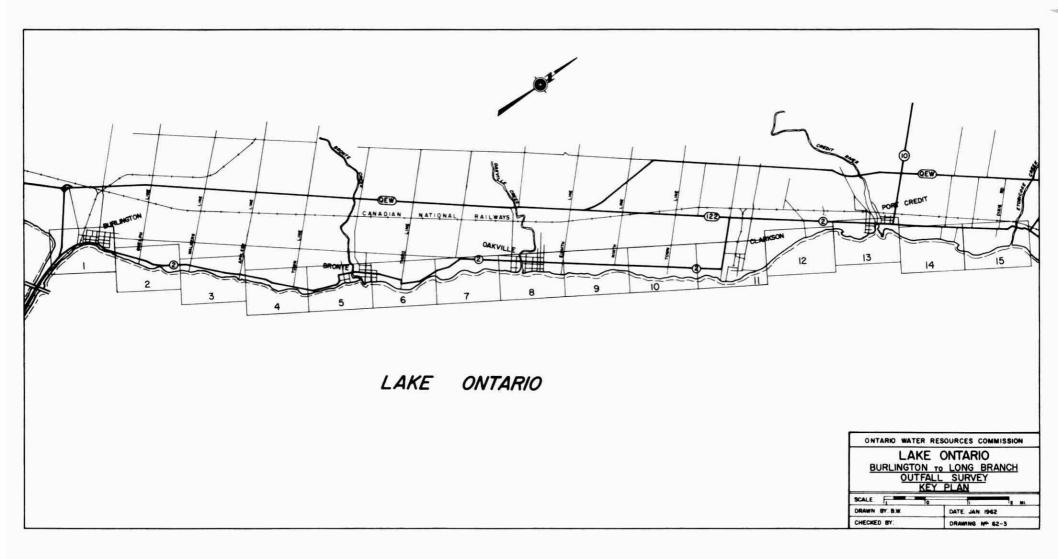
.

-12

ALL ANALYSES EXCEPT PH REPORTED IN PPM UNLESS OTHERWISE INDICATED

. . . .

24


TABLE 2

. . . .

SAMPL ING PO INT NO.	LOCATION	PLAN NO.	DATE EXAMINED	L. N. PER IOO M	OLIFORMS M.F. IL PER 100 ML	5-DAY <u>B.O.D.</u>	TOTAL	SUSP.	DISS.	TURB ID- ITY	PHENOLS (PPB)	ether Solubles	घ्म	CHROME	COPPER
LO-70,2 T	OUTFALL SEWER LAKEVIEW WATER POLLUTION CONTROL PLANT	15	Nov. 29/61	-	46	6.8	656	-	•	24	0	-	•	-	•
LO-70.3 D	LOCAL WATERCOURSE EAST OF LAKEVIEW WATER POLLUTION CONTROL PLANT	15	SEPT.19/60 Nov. 9/60 Nov. 29/61) -	1,300,000 7,300,000 24,000	230 180 23	1028 590 816	348 80 -	680 510 -	- - 10,5	15 3 6	Ē	-	-	-
LQ=70.5 D	LOCAL WATERCOURSE BETWEEN FERGUS AVE. & DIXIE RD.	15	SEPT.19/60 Nov. 9/60 Nov. 29/61) -	NOT SA , 1,000	MPLED W 5.1	780	-	-	2.8	4	-	-	-	-
LO-70,7 D	ETOBICOKE CREEK AT LAKE SHORE RD	15	SEPT. 15/60 Oct. 20/60 FEB. 15/61 SEPT.14/61 Nov. 29/61		5,600 14,000 680 <10 1,040,000	7.2 4.4 17 3.2 4.8	476 770 1362 708 666	46 - - -	430 - - -	- 3 11 2 3.8	2 - 15 4				

92

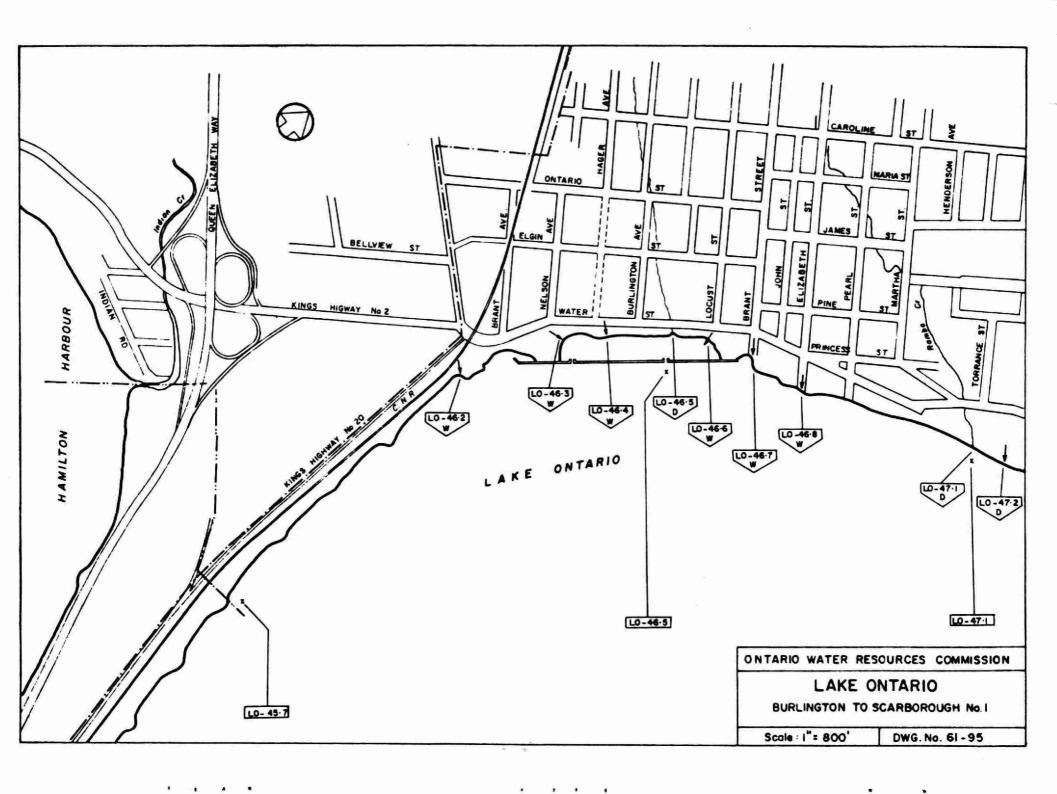
•

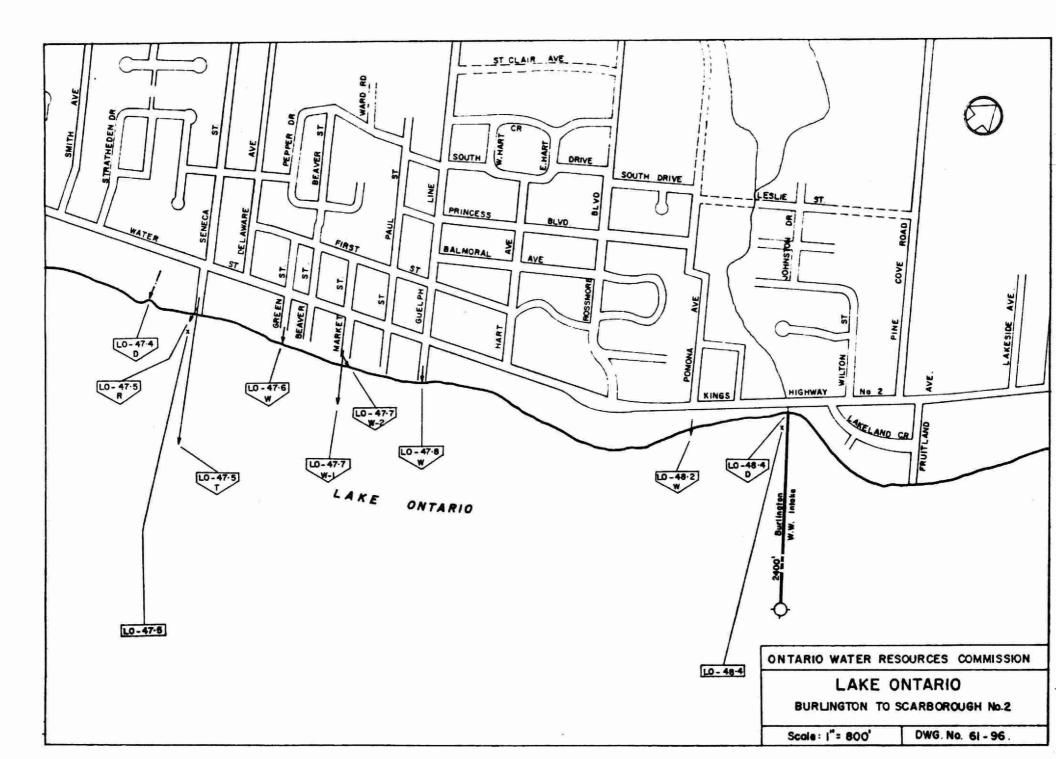
. . . .

٠

. . . .

LAKE ONTARIO OUTFALL SURVEY Nomenclature For Outfalls

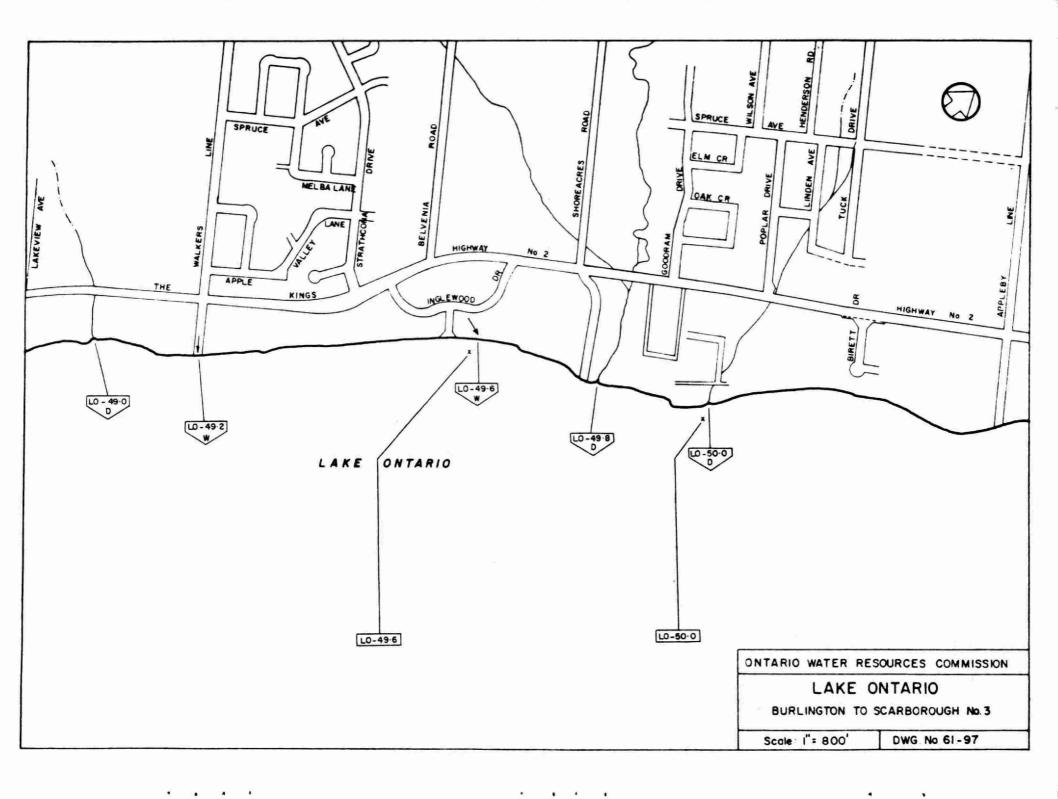

Outfalls were designated by the shore line mileage measured clockwise from the International Boundary in the Niagara River along the shore and outside any bays or harbours. A letter signifying the type of outfall follows the Lake Ontario (LO) shore line mileage.

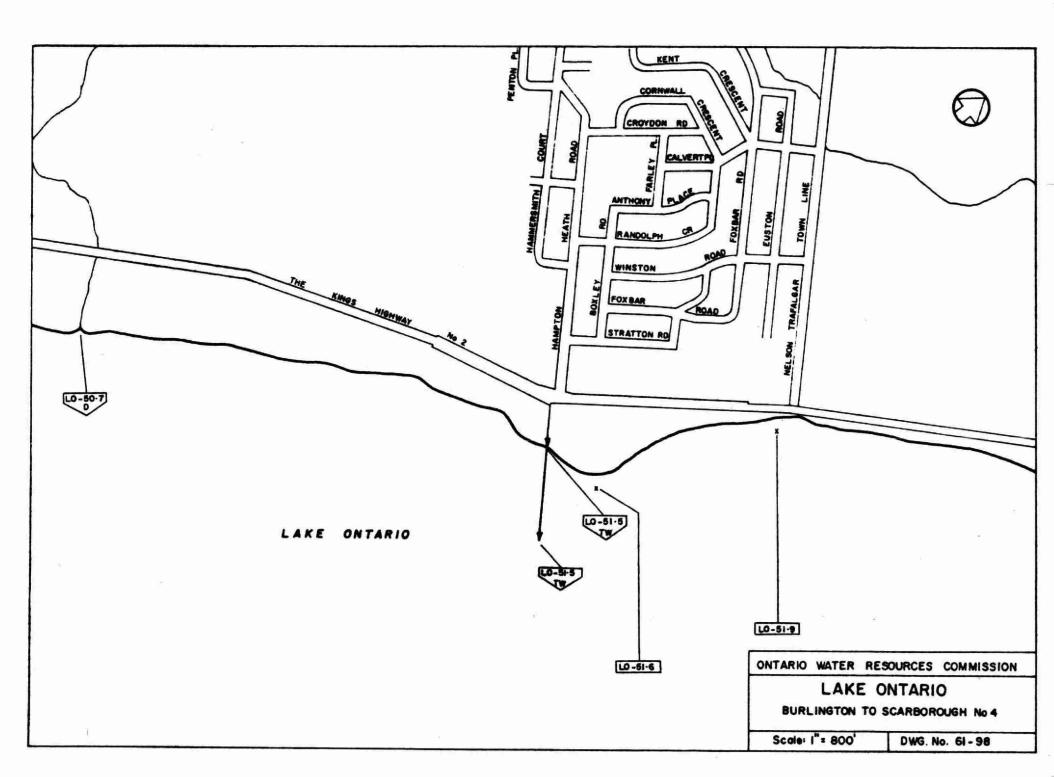

Example -

LO-79.

Outfall Symbol Letters

- W Storm sewer.
- T Sewage treatment plant outfall sewer.
- I Industrial waste sewer.
- R Relief sewer from a pumping station or from a sanitary or combined sewer.
- D Drainage ditch, creek or river.

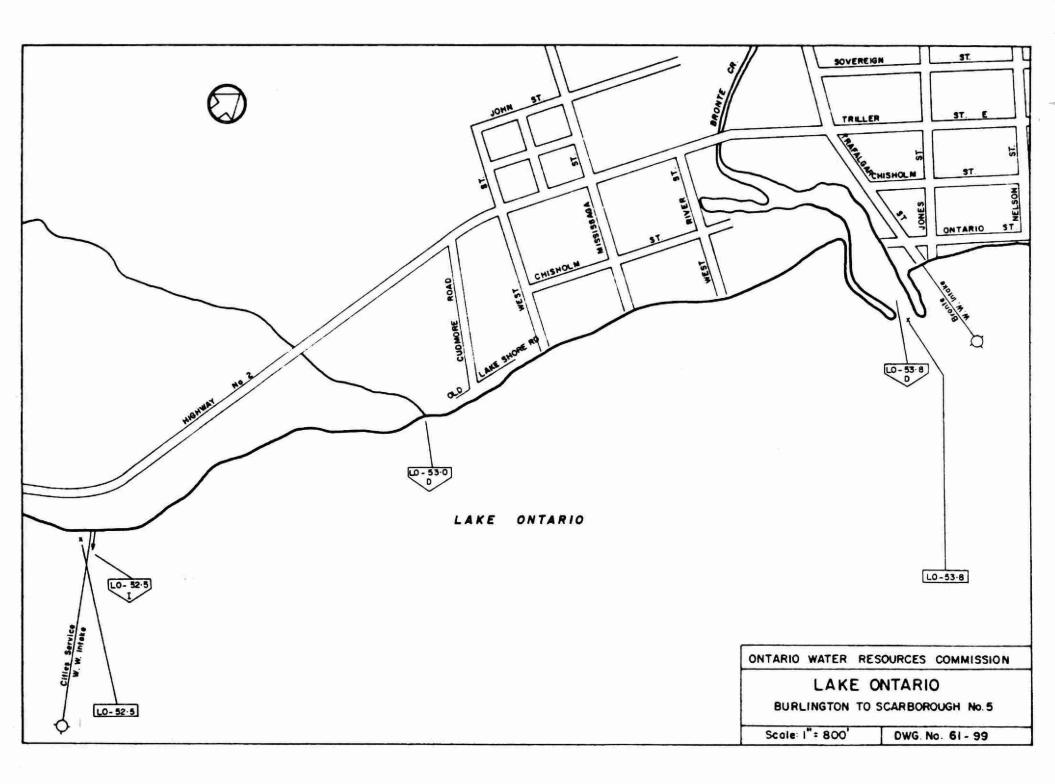



.

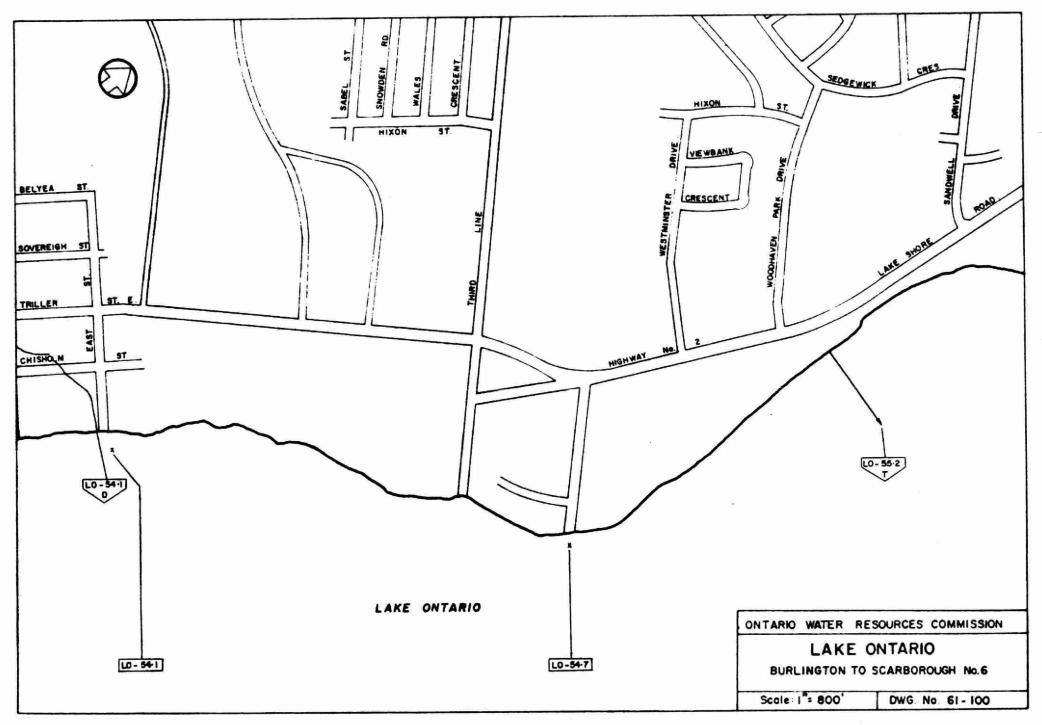
۰.

. .

. . . .



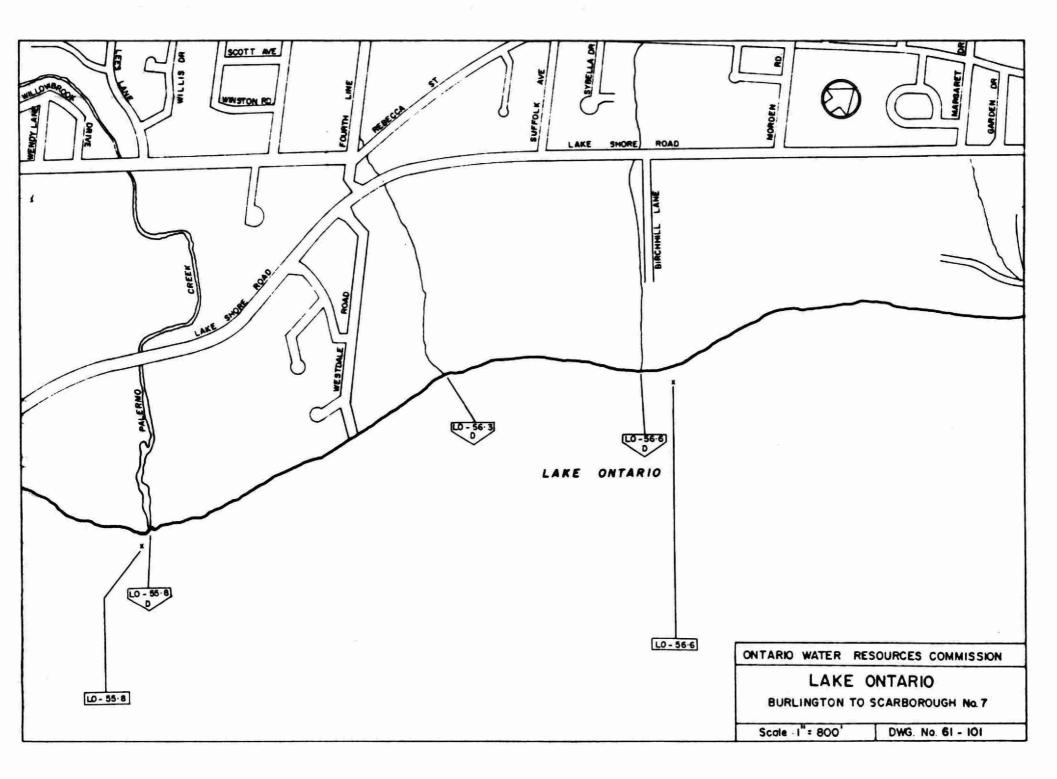
1. 1. 1


.

.

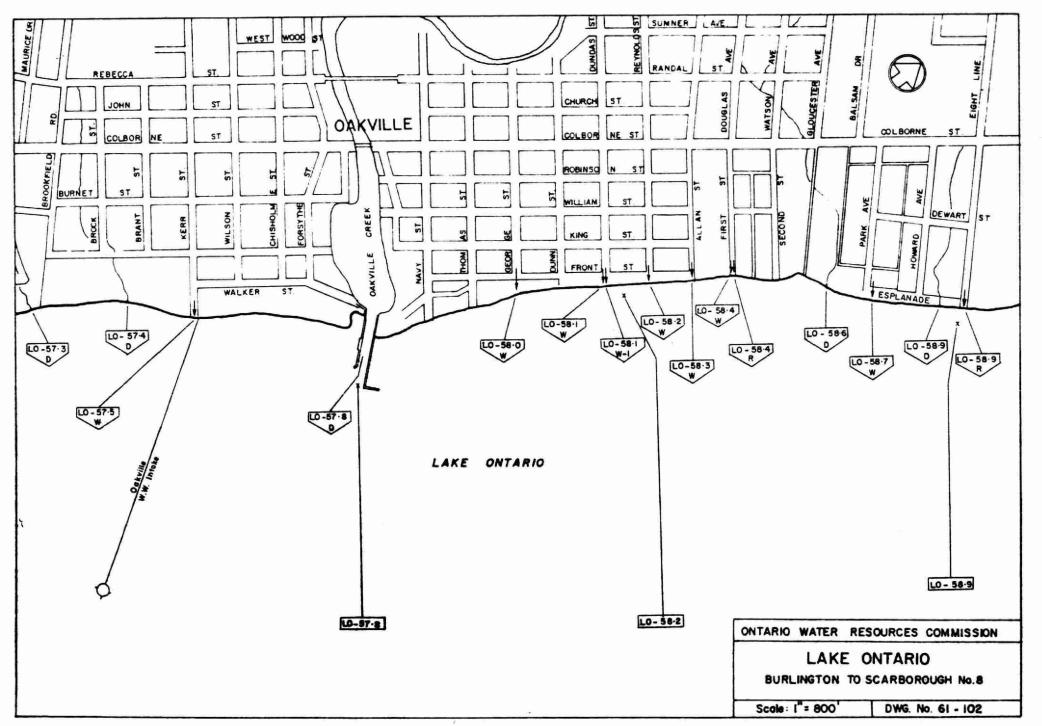
. .

· • • •



· · ·

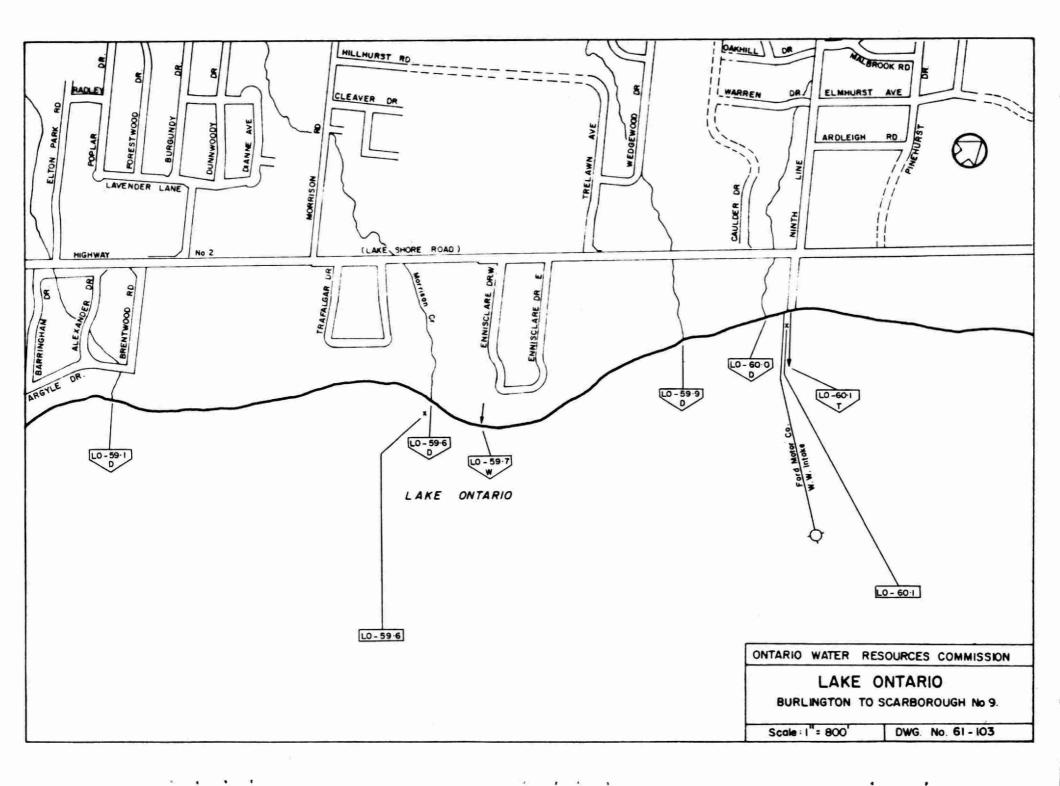
.

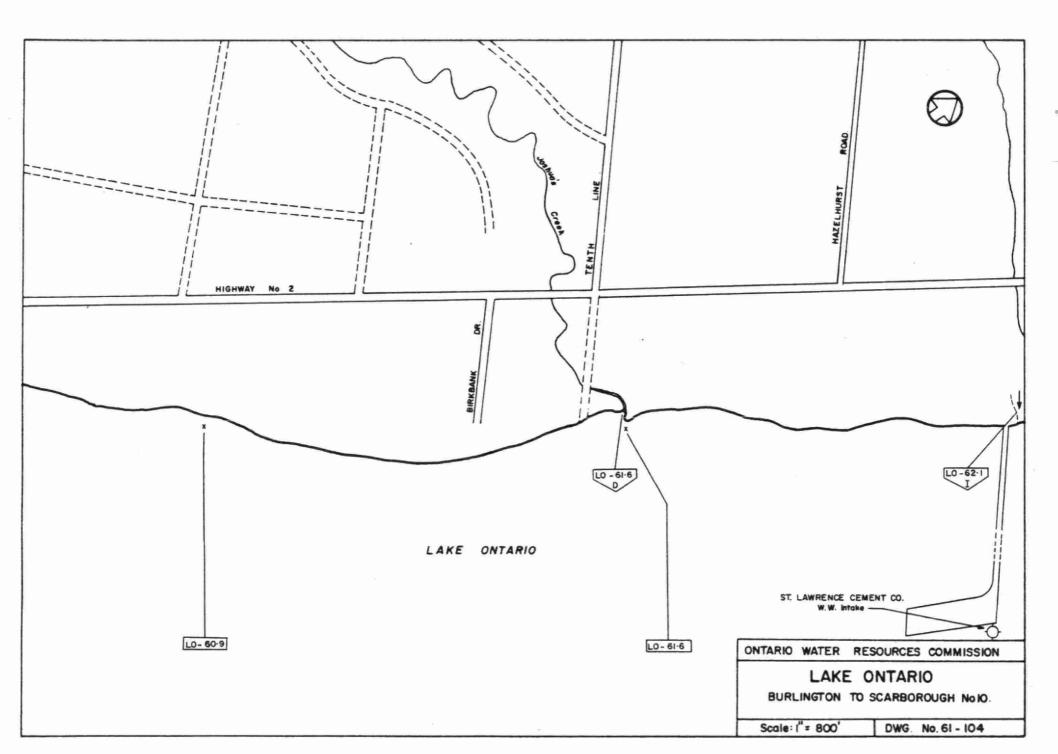

.

• •

e = 20

.

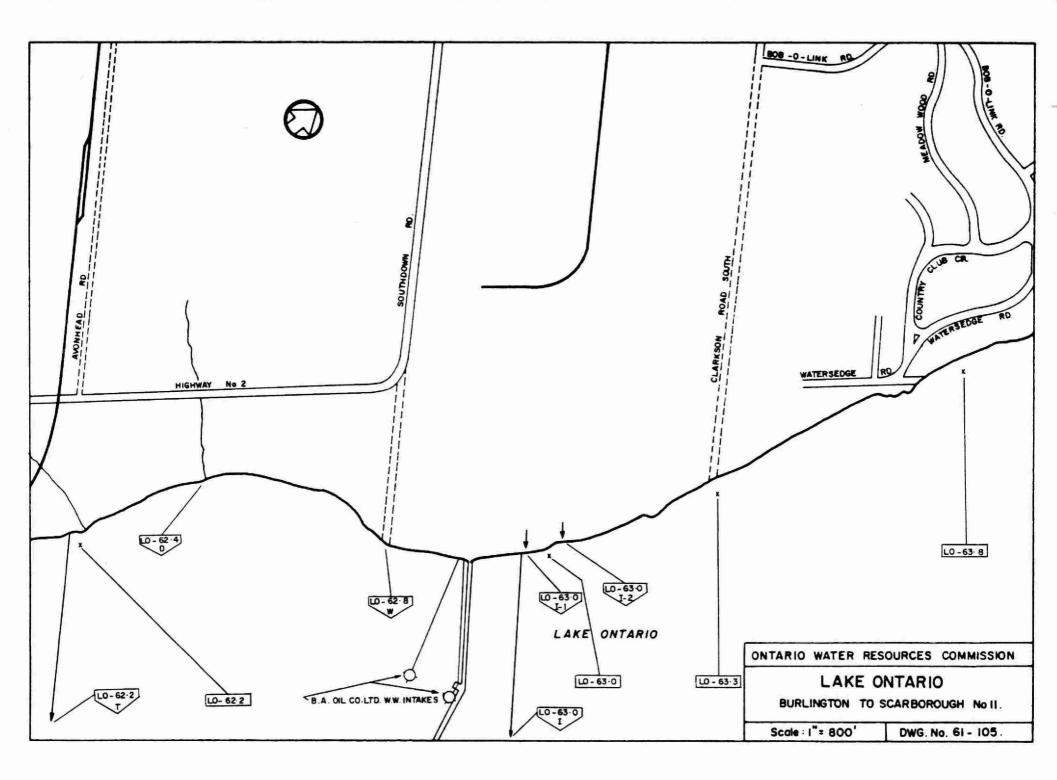


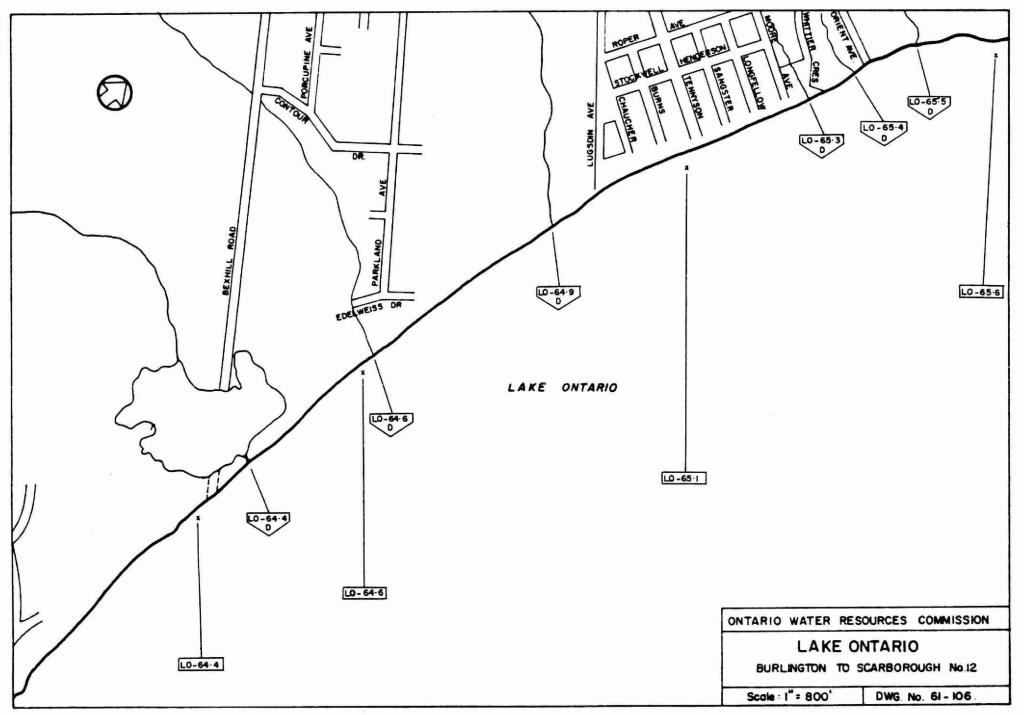

. . . .

.

0

• •

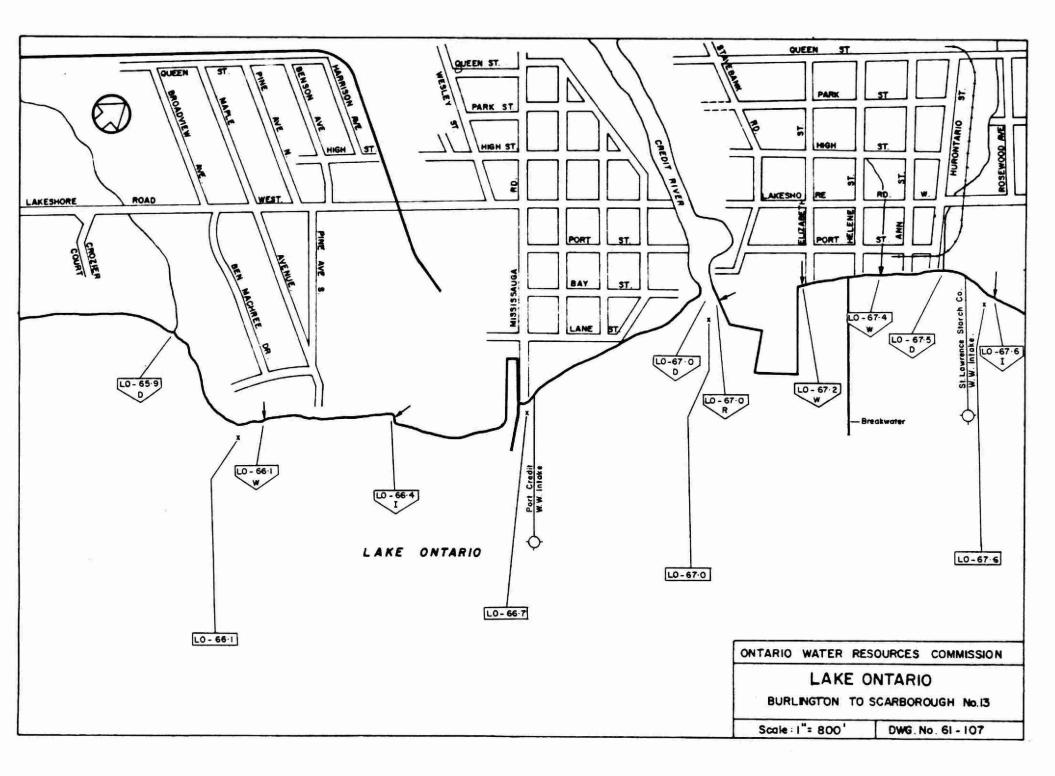



1 1 7

.

. . . .

• • • •

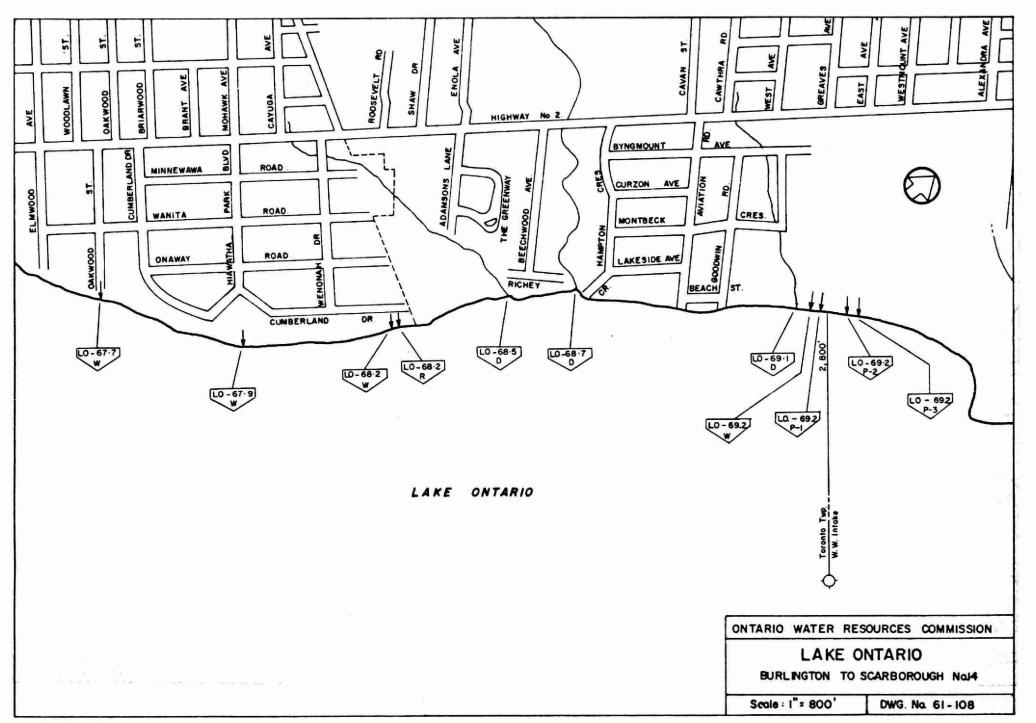


. . . .

•

. . .

٠

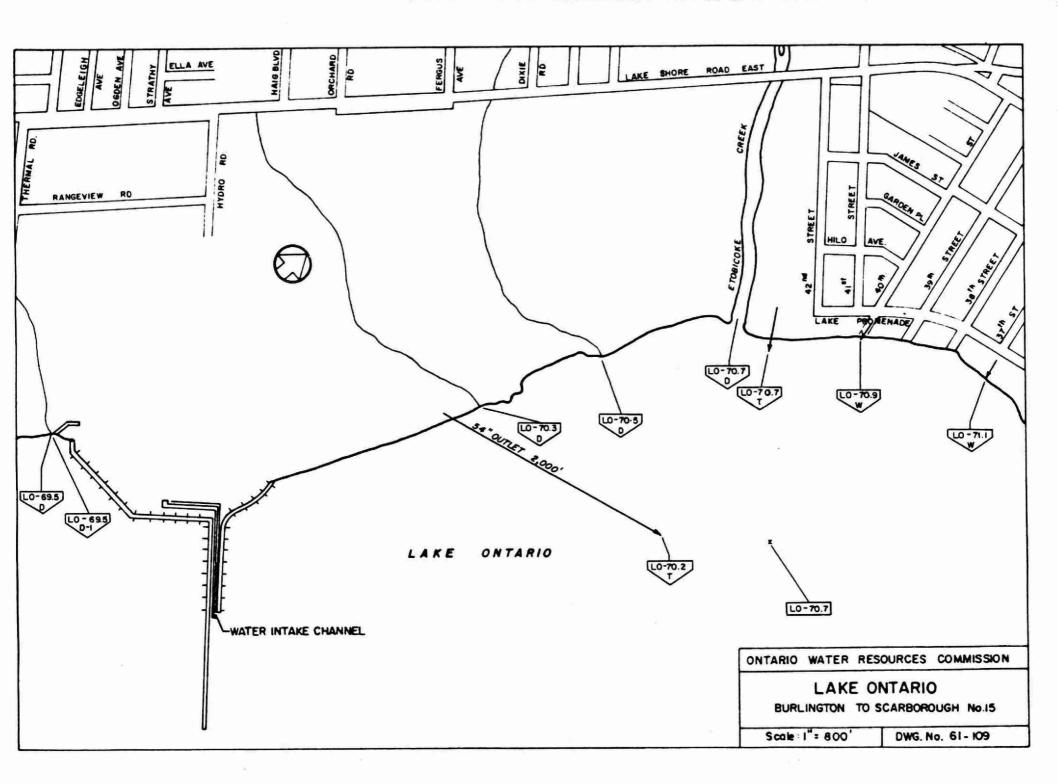


.

. . .

٠

. . .



• •

. .

. .

.

REPORT

by

THE ONTARIO WATER RESOURCES COMMISSION

on a

WATER QUALITY and OUTFALL SURVEY

of LAKE ONTARIO

BURLINGTON TO SCARBOROUGH TOWNSHIP INCLUSIVE

SECTION II

Lakefront Survey - 1961

PART I

METROPOLITAN TORONTO AREA

In 1961, a sampling survey was made of the waters of Lake Ontario in the Metropolitan Toronto area and Toronto Harbour to determine what effects the discharges from the Metropolitan Toronto area were having on these waters with regard to pollution. This was in conjunction with the surveys being carried out by the staff of Metropolitan Toronto Works Department.

SAMPLING LOCATIONS

The survey area covered extends from the Long Branch Sewage Treatment Plant at mileage LO-70.7, to Maclean Ave. west of Balmy Beach at LO-88.3. The sampling locations are listed below. In the list, LO-70.7 refers to a sample from Lake Ontario 70.7 miles from the Niagara River. The designation LOT refers to a sample taken from Toronto Harbour. Location Number Description L0-70.7 off outfall from Long Branch STP - 500 yards from shore - 300 yards east of end of pier L0-72.2 mouth of Hospital Creek - New Toronto 500 ft. west of New Toronto Water Works L0-72.9 100' from shore L0-73.0 500 ft. east of New Toronto 100' from shore L0-73.5 end of Royal York Rd. - 500 ft. from shore L0-74.0 west of Mimico Beach - 200 ft. LO-74.3 Mimico Beach - off foot of Superior Ave. L0-75.0 mouth of Mimico Creek - 500 ft. off shore .. " Humber River -LO-75.9 L0-76.7 outside breakwater at Sunnyside bathing pavilion L0-77.3 outside breakwater at west side of Boulevard Club by wire fence outside breakwater at CNE Princess Gate -LO-79.4 foot of Strachan Ave. L0-79.9 middle of western end of western channel LOT-4 at foot of north wall of Spadina Ave. slip northwest corner of Pier #5 slip - east of LOT-5 Toronto Harbour Police Station LOT-6 at storm sewer outlet at foot of Yonge St. by Pier #10 LOT-7 at storm sewer outlet at foot of Sherbourne St. by Pier #15 LOT-8A in slip at foot of Parliament St. by Pier #18 - west of Victory Mills LOT-8B at outfalls of Victory Mills at Pier #18 LOT-14 at Cherry St. bridge outfall

Location Number	cont'd <u>Description</u>	
LOT - 17, 18	northwest corner of Turning Basin	
L0-86.6	at marker at first bubbling spot off sh from Main STP	lore
L0-86.8	midstream, half way up Coatsworth cut	
LO-87.4	at storm sewer outlet at foot of Woodbi Ave. by park land	.ne
L0-87.9	at storm sewer outlet at foot of Lee Av inside breakwater	re.
LO-88.3	at west storm sewer outlet at foot of Maclean Ave.	
L0-88.3	at east """""" Maclean A ve.	

These locations were approximately the same as those used by the Metropolitan Toronto sampling crew and are shown on the accompanying maps.

PROCEDURE

The samples were taken at the locations listed, using the Ontario Water Resources Commission boat. In most cases the samples were taken as close to the outfall of the sewer as was possible unless otherwise stated. All samples were taken approximately one foot below the surface of the water.

The samples were returned to the OWRC laboratory the same day to be analyzed.

A total of three runs was made in this area September 18, October 17 and November 22, 1961.

PROCEDURE cont'd

Difficulty was experienced before the September sampling date in arranging for the OWRC boat operation in Toronto Harbour. This boat and operator were also used in making the sampling runs mentioned in Part II of this section.

The number of locations sampled on each run was not always complete but depended upon the weather conditions existing at the time. Some sampling points in the Toronto Harbour area were definitely hazardous to sample when adverse weather conditions were prevailing.

ANALYSES

Depending on the location of the sampling point, certain analyses were chosen for each sample to give the most information. The analyses usually consisted of total_coliform count, 5-day biochemical oxygen demand (5-day BOD), total solids, chlorides, phenol, and turbidity.

The coliform counts and phenol analyses were performed as stated in the Lake Ontario Lakefront Survey, Part II. The other analyses were determined as stated in the Standard Methods with minor modifications.

The analytical results are tabulated on sheets included with this report.

DISCUSSION

BACTERIAL RESULTS

In the three sampling runs made 44 samples were

DISCUSSION cont'd

collected for bacterial analysis. Of these samples the maximum coliform count of 130,000 per 100 ml was found at location LOT-6 (at storm sewer outlet at foot of Yonge St. by Pier 10). However, of all the locations sampled, location LOT-7 had the highest average and median counts of 57,400 and 68,000 per 100 ml, respectively.

The results show that the Toronto Harbour and the Main sewage treatment plant areas had consistently high coliform counts. One appreciable count, 42,000 per 100 ml, was found in the sample taken off the mouth of the Hospital Creek in New Toronto.

Samples taken in other than these three areas had varying counts ranging from 4,600 to 20 per 100 ml.

BIOCHEMICAL OXYGEN DEMAND

Twenty-eight samples were analyzed for their biochemical oxygen demand. Of these samples, six had concentrations much above that of good quality lake water. These six concentrations ranged from 150 to 30 ppm, compared to the objective of the Ontario Water Resources Commission of 4 ppm. The locations with these concentrations were:

LO-72.2	48	ppm		
LOT-14	130	89		
LOT-17	150	and	82	ppm
LO-86.6	60	91	30	**

The high concentration of 48 ppm BOD off the mouth of the Hospital Creek in New Toronto suggests that some source was

114

.....

DISCUSSION cont'd

discharging concentrated wastes into the creek. The other high concentrations occur near the Main sewage treatment plant discharge, and near storm sewer discharges in the Toronto Harbour. This latter case indicates that the storm sewers were carrying domestic and/or industrial wastes.

A slight, perceptible rise in BOD concentration occurred along the Metropolitan Toronto lakefront from the foot of Strachan Avenue to Woodbine Avenue.

PHENOL

Fifty samples were analyzed for phenol to determine levels of concentration and sources of this taste-producing substance.

Very high phenol concentrations were found in three samples collected from the grea at the northwest corner of the Turning Basin (LOT-17, 18).

Other locations found to have above-normal phenol concentrations were:

LO-72.2 off Hospital Creek - New Toronto 40 ppb LO-75.0 mouth of Mimico Creek 30 ppb LOT-5 northwest corner of Pier #5 slip 25 ppb LO-86.6 Main sewage treatment plant outfall 25, 15 ppb Eleven of the samples collected and analyzed for phenol were above the maximum of 5 ppb, that is the objective of the

Ontario Water Resources Commission.

CONCLUSIONS

Although it is difficult to come to any definite conclusion from the limited number of samples taken certain trends toward pollution in definite areas of the lake have become apparent.

The whole Toronto Harbour area is receiving wastes that cause high coliform counts and a tendency toward BOD and phenol concentrations exceeding the OWRC objectives. The area near LOT-17, 18, in the Turning Basin, shows the highest BOD and phenol concentration and appreciable bacterial counts.

The area off the mouth of Hospital Creek in New Toronto (LO-72.2) was consistent in its high levels of coliforms, phenol and BOD, indicating that possibly waste from domestic and/or commercial sources containing phenols was being discharged either into the creek or into the lake at that spot.

RECOMMENDATIONS

The sources of domestic and industrial wastes discharging directly to Lake Ontario or to storm sewers discharging to the lake or Toronto Harbour should be determined, and every effort should be made toward treatment and/or redirection of the wastes into the sanitary sewers wherever applicable.

LAKE ONTARIO LAKEFRONT SURVEY

METROPOLITAN TORONTO AREA

DATE SAMPLES: September 18, 1961

Sample Point No.	5 -Day BOD ppm	Total ppm	Solids Susp. ppm	Diss. ppm	Phenol ppb	Turbidity in Silica Units	Chlorides ppm	M.F.Coliform Count per 100 ml.	<u>n</u>
L0-70.7	1.7	198	-	-	3	1		2,300	
L0-72.2	48.	460	60	400	40	-		42,000	
L0-74.3	1.7	192	-	-	0	l		166	
L0-76.7	1.3	194	-	-	0	2		296	
L0-77.3	1.3	198	-	-	0	1		194	
L0-79.4	2.4	202	-	-	0	2		20	
L0-79.9	1.6	192		-	0	2		60	
LOT-4	3.4	210	-	-	0	2		5,200	117
LOT-5	3.8	204	-	-	0	2		138	
LOT-6	3.2	204	-	-	5	2		4,800	
LOT-7	3.0	240		-	2	2		14,200	
LOT-8A	3.6	270	-	-	5	3		13,900	
LOT-17, 18	3 150.	466	174	292	2000	-		12,300	
LO-86.6	60.	312	-	-	25	8		89,000	
LO-86.8	2.6	240	-	-	0	6		45,000	
LO-87.4	2.2	210	-	-	0	2		3,300	
L0-87.9					0	-		310	
L0-88.3					0	-		4,600	
								-	

. . .

LAKE ONTARIO LAKEFRONT SURVEY

<u>е</u> т х т

METROPOLITAN TORONTO AREA

DATE SAMPLED: October 17, 1961

X

. . . .

SAMPLE POINT No.	5-Day BOD ppm	Total ppm	Solids Susp. ppm	Diss. ppm	Phenol ppb	Turbidity in Silica Units	Chlorides ppm	M.F.Colifo Count pe 100 ml.	er
L0-76.7					0			20	
L0-77.3					0			176	
L0-79.4					0			276	
L0-79.9					0			82	
LOT-4					0			20	
LOT-5					4			234	
LOT-6					0			2,040	
LOT-7					3			90,000	118
LOT-8A					6			21,000	
LOT-8B	8.0	274			6	7		5,300	
LOT-17, 18	3				350			16	
LOT-14	130	504	196	308	-			14,000	
L0-86.6	30	274	46	228	15			50	
L0-86.6					15				
L0-86.8					0			29,000	
L0-87.4					0			200	
L0-87.9					0			20	
L0-88.3					0			70	

• •

LAKE ONTARIO LAKEFRONT SURVEY

METROPOLITAN TORONTO AREA

DATE SAMPLED: November 22, 1961

SAMPLE POINT No.	5-Day BOD ppm	Total ppm	Solids Susp. ppm	Diss. ppm	Phenol ppb	Turbidity in Silica Units	Chlorides ppm	M.F.Coliform Count per 100 ml.	
L0-74.3	2.3	278	-	-	0	18	26	1,670	
L0-79.4	2.4	212	-	-	0	6.5	27	1,980	
L0-79.9	2.1	204	-	-	0	5.0	27	970	
LOT-4	3.0	210	-	-	0	4.5	27	1,370	
LOT-5	5.2	228	-	-	25	4.0	34	69,000	
LOT-6	2.9	234	-	-	2	17.0	34	130,000	
LOT-7	3.3	232	-	-	4	21.0	30	68,000 ₊	
LOT-8A	6.4	264	-	-	6	14.0	35	21,000	1.1.1
LOT-17, 18	82.	440	-	-	5,000	43.0	44	630	
L0-72.9					4				
L0-73.0					2				
L0-73.5					0				
LO-74.0					0				
L0-74.3					0				
L0-75.0					30				
LO-75.9					0				

. .

119

¢

A

REPORT

Ъy

THE ONTARIO WATER RESOURCES COMMISSION

on a

WATER QUALITY and OUTFALL SURVEY

of LAKE ONTARIO

BURLINGTON TO SCARBOROUGH TOWNSHIP INCLUSIVE

SECTION II

Lakefront Survey - 1961

PART II

in the Towns of Burlington, Oakville and Port Credit

PURPOSE

This survey was a continuation of one started in 1960 to determine the quality of the water along the lakefront from Hamilton to Port Credit. The quality was assessed according to the phenol and coliform contents of the water being sampled. These two contaminants were considered as the best pollution indicators for taste in water and public health significance.

At one particular location, namely off Coronation Park between Bronte and Oakville, the levels of certain other constituents of the water were determined for the purpose of the algae (Cladophora) survey being run during the summer.

SAMPLING LOCATIONS

In 1960 certain key locations in proximity to sewage

treatment plants and industrial outfalls were chosen to be sampled. In 1961 additional points were selected between these key locations to give better coverage to the whole area included in the survey. In most instances these in-between points were spaced equally between the numbered locations used in 1960, and each was given a suffix B, or C, or D; each succeeding suffix denoting a point farther west. Later these numbers were altered to conform with the practice used by other divisions of the Commission. The locations were designated by the mileage along the lakefront with the starting point at the Niagara River. These intermediate points increased the number of sampling locations from 16 in 1960 to 37 in 1961.

These points were then identified with on-shore landmarks to facilitate sampling and as such are designated in the list contained in the tabulation of data. The points are shown on the accompanying maps.

The first of these 37 locations, LO-41.9, was located off the small red building south of Dodo's grill on Van Wagner's beach, and the last one, LO-67.6, off the St. Lawrence Starch Company outfall at Port Credit. The distance covered in the survey was approximately 25 miles.

All samples, except the special ones taken for the algae survey, were taken approximately 100 feet from shore.

The special samples taken for the algae survey were taken along a line extending perpendicularly out from the shore

SAMPLING LOCATIONS cont'd

at point LO-54.7. Along this line the sampling locations were 100 ft, 250 ft, 500 ft, 1000 ft, 1/2 mile, and 1 mile from shore. Samples taken at locations Bronte East (LO-54.1) and Bronte West (between LO-51.9 and LO-51.6) were used to determine chemical concentrations at or near algae test plots.

PROCEDURE

Sampling runs were made once a week commencing on June 7 and terminating on October 12, except for the weeks of July 2, July 30, September 17, September 24, and October 1. A total of 13.5 runs were made; only a half run was made on September 6 due to increasingly rough water.

In making the sampling runs sample number LO-41.9 was collected first and the samples were collected in numerical order in an eastward direction. Except as mentioned above on September 6 each run of 37 points was made in one day.

For the sake of safety and sampling convenience, two persons were assigned to the OWRC boat for each run. These operated the boat, collected the bacterial and phenol samples manually, and between the sampling locations added the buffer to the phenol samples as a preliminary step toward the complete phenol determinations. Since the samples were analyzed for phenol within a short time, no attempt was made to preserve the samples other than the addition of the buffer solution which has been considered to have some preservative effect.

PROCEDURE cont'd

The samples were collected approximately one foot below the surface of the water.

ANALYSES

The samples were taken to the OWRC laboratory to be analyzed. Except for the phosphate determinations, all analyses were begun on the same day the samples were taken, usually within 5 hours of collection.

Phenol and bacterial (coliform) determinations were made on all the samples collected, including those taken for the algae survey. On the special samples collected for the algae survey, total and soluble phosphorus, nitrogen as free ammonia, and total Kjeldahl nitrogen determinations were carried out.

The phenol determinations were made using the direct dosing and reading method; that is, the reagents were added directly to the sample aliquot without distillation. Also, the colour developed using Gibbs reagent (2, 6-dibromoquinonechlorimide) was read by visual comparison with standards. As mentioned before, to save time in the laboratory, the buffer used in the analysis was added between sampling locations. The analyses were completed in the laboratory.

The coliform bacteria numbers were determined by the method prescribed in Standard Methods for the Examination of Water and Wastewater, 11th Edition, and described under the membrane filter technique.

SAMPLING OBSERVATIONS

On Tuesday, June 13, the sampling personnel observed many small dead fish along the shores and also considerable amounts of floating garbage. The fish mortality was presumed to be the result of natural causes since no known artificial causes were apparent.

On three days, patches of sooty material covering certain areas were noticed. This sooty material, similar to carbon black, is often the result of smoke particles drifting down to the water and covering the surface. This layer often has the appearance of an oil slick. The lake is usually very calm, the sky overcast and the wind very light or non-existent when this occurs.

Three cases of thin oil slicks were noticed. That on June 7 occurred at location LO-54.7 at 500 feet and 1000 feet offshore; on June 28 a slick was noticed at location LO-51.9 and that of July 11 stretched from LO-64.6 to east of the Regent Refining (Canada) Limited Plant at Port Credit.

ANALYTICAL RESULTS

The results of the 564 phenol and 564 bacterial samples taken during the survey are tabulated on the data sheets in the appendix.

DISCUSSION

BACTERIAL RESULTS

The Ontario Water Resources Commission's objective for

DISCUSSION cont'd

all waters in the Province of Ontario is that the total coliform count shall be not greater than 2400 per 100 ml of sample. During this survey 540 samples or 95.7 per cent had counts lower than this figure. Table I gives the disposition of the remaining 24 samples.

The maximum coliform concentration was $2,100^{000}_{A}$ per 100 ml found off the St. Lawrence Starch Co. at Location LO-67.6. The results also show that this location had the highest median concentration (480,000) and the highest minimum concentration (6300) of all the sampling points.

TABLE I

Sampling locations with coliform count over 2400/100 ml (13 sample runs)

Location No.	Description	Number of times 2400 coliforms/ 100 ml exceeded
LO-67.6 LO-67.0 LO-65.6 LO-63.3	off St. Lawrence Starch Co. outfall off mouth of Credit River off white hip roof dwelling off eastern extremity of B.A.tank farm	13 3 1 1
L0-63.0 L0-57.8 L0-54.7 L0-48.4	 B.A. Oil Co. discharge Oakville Creek mouth Coronation Park mouth of small creek 	1 2 1 2

The reason for this high concentration of bacteria at this location, near this plant, is difficult to determine since grab samples collected on November 30, 1961 of the two creek outfalls and the industrial waste sewer discharging in that area,

DISCUSSION cont'd

did not contain high concentrations of coliforms (90,296, and 100 per 100 ml, respectively). It is noteworthy however, that one sample obtained from the St. Lawrence Starch Co. outfall in September, 1960 contained 4,800,000 coliforms per 100 ml.

Other locations that had persistently higher than normal median coliform counts, were those off the natural discharges to the lake, e.g. Credit River (LO-67.0), Oakville Creek (LO-57.8), Bronte Creek (LO-53.8), and the Burlington Canal (LO-44.9).

If all the locations sampled in this survey were considered as a single area, the bacterial results of the different days can be compared, as shown in Table II. The medians in this table show that the concentrations on the days toward the end of August were appreciably above those for the other sampling days suggesting an increase with the warmer weather.

It is interesting to note at the location used for the algae survey that the bacterial results of the samples there, although admittedly not many, generally show a decrease in concentration with increasing distance from shore.

TABLE II

Date 1961	Maximum	<u>Coliforms per 100</u> <u>Minimum</u>	<u>ml</u> <u>Median</u>
June 7	450,000	0	10
13	210,000	0	2
13 21	2,010,000	0	40
28	6,300	0	9
July 11	1,370,000	1	37
19	110,000	0	3
27	530,000	0	19
Aug. 9	480,000	0	14
17	150,000	0	28
22	730,000	34	440
29	2,100,000	2	238
Sept. 6	Not comp	barable	
12	370,000	0	15
Oct. 12	140,000	0	14

Comparison of coliform count by days

PHENOL RESULTS

The objective of the Ontario Water Resources Commission for all waters of the province is that after initial dilution, the average phenol concentration for any point should be not greater than 2 parts per billion (ppb) and the maximum concentration should not exceed 5 parts per billion.

Regarding the average phenol concentration, 29 of the 37 locations were below the 2 ppb average figure and the averages of the 8 remaining locations ranged from 2.3 ppb to 14.8 ppb.

The highest average concentration occurred at location LO-63.3 off a point west of the easterly extremity of the British American Oil Co. tank farm in Clarkson. The maximum phenol concentration of 150 ppb also occurred at this point. The fact that the

DISCUSSION cont'd

maximum concentration occurred on the same day that the locations on either side experienced their maxima, suggests that an appreciable amount of phenolic material existed in that area at that time. If such a concentration occurred at **a** water works intake, some chloro-phenolic taste would most likely develop. Although the incidence of the concentration of 150 ppb undoubtedly is the main cause of the highest average phenol concentration for point LO-63.3, the average is also influenced by the fact that this point also had 7 positive phenol results out of the 13 sampling runs made; only two less than that of point LO-67.6 which had the greatest number.

The summaries of the maximum and average phenol concentrations per sampling point are given in Tables III and IV.

Of the 564 samples taken for phenol analysis, 24 or 4.25 per cent had concentrations above the 5 ppb considered as the objective for maximum concentrations.

OTHER RESULTS

The results obtained for samples collected for the algae survey are not discussed here but will be included in a separate algae report.

TABLE III

Phenol concentrations at sampling points Summary of Maxima

1	point	at	150 ppb	off	eastern extremity of B.A.tank farm	(LO-63.3)		
1	point	at	50 ppb	**	St. Lawrence Starch Co. outfall	(10-67.6)		
ì	point	at	45 рръ	**	B. A. Oil Co. discharge	(LO-63.0)		
1	point	at	40 ppb		Meadowood Park	(LO-63.8)		
1	point	at	20 ppb	Ħ	Oakville Creek	(LO-57.8)		
¥	* 5 points at $8 - 6$ ppb							

 $\frac{5 \text{ points at } 8 - 6 \text{ ppb}}{27 \text{ points at } 4 - 0 \text{ ppb}}$

* OWRC Objective not to exceed 5 ppb maximum after initial dilution.

TABLE IV

Phenol concentrations

Summary of averages at sampling points

1	point	at	14.8	ppb	off	eastern extremity of B.A.tank farm	(LO-63.3)
1	point	at	6.6	ppb	"	St. Lawrence Starch Co. outfall	(LO-67.6)
1	point	at	5.2	Ħ	**	B. A. Oil Co. discharge	(LO-63.0)
1	point	at	4.8		**	Meadowood Park	(LO-63.8)

** <u>3 points at 2.7 - 2.3 ppb</u> 29 points at 1.4 - 0 ppb

** OWRC Objective not to exceed 2 ppb average after initial dilution.

CONCLUSIONS

As well as can be judged from the number of samples taken and the sampling locations used, there is no total gross pollution existing in the area covered by the survey although individual locations do exhibit signs of pollution.

Bacteriological pollution (coliforms) was severe and persistent near the St. Lawrence Starch Company outfall in Port Credit and also at the mouth of the Credit River.

Phenol concentrations were often excessive in the proximity of the British American Oil Company Refinery at Clarkson.

Investigations will be made to determine if the localized pollution is the result of industrial waste discharges, and if so steps can be taken to have the causes corrected.

APPENDIX

SAMPLING POINTS IN LAKE ONTARIO

- LO-67.6 Off water tower of St. Lawrence Starch Co. outfall
- LO-67.0 Mouth of Credit River
- LO-66.7 Off water tower, Port Credit Water Works
- LO-66.1 The point west of Port Credit Regent Refinery
- LO-65.6 White hip roof dwelling
- LO-65.1 Red and White house (group of four)
- L0-64.6 Off flag pole at golf course (sand field)
- LO-64.4 Housing subdivision
- LO-63.8 At white flag pole, Meadowood Park
- LO-63.3 West of eastern extremity of B.A. tank farm
- LO-63.0 Off B.A. Oil Discharge Clarkson
- LO-62.2 Clarkson S.T.P. outfall east of Lawrence Cement Co. dock
- LO-61.6 Small creek east of dock with winch
- LO-60.9 Small white round tower with flag
- LO-60.1 Off Ninth Line between Clarkson & Oakville. Near Ford Co. S.T.P. outfall approximately 1,000 feet from shore (White marker in water)
- LO-59.6 Small creek beside Polo Ground
- L0-58.9 Off Eighth Line, Oakville
- LO-58.2 Off 2nd Church Tower
- LO-57.8 Off mouth of Oakville Creek
- LO-56.6 Yellow buoy close to shore
- LO-55.8 Small creek west of water tower
- L0-54.7 The point off Coronation Park
- LO-54.1 Bronte East

- LO-53.8 Off Bronte Creek mouth
- LO-52.5 Off Cities Service garden
- LO-51.9 Townline, beside Pig & Whistle restaurant Bronte West
- LO-51.6 Large white house flying flag
- LO-50.0 Small creek east of four stone piers
- LO-49.6 Metal sewer protruding from rock face
- LO-48.4 Small creek, pumphouse 100 yards from shoreline
- LO-47.5 East of red brick apartment building. Near Drury Lane S.T.P. outfall
- LO-47.1 Rambo creek
- LO-46.5 Entrance to breakwater area, 50 yards from eastern tip
- LO-45.7 Hydro tower marked Larry 57-58
- LO-44.9 Off Burlington Canal
- LO-43.6 Third Hydro tower north of large red brick school Van Wagner's beach
- LO_41.9 Off small red brick building south of Dodo's grill and south of swimming pool. Van Wagner's beach

1961

VAN WAGNER'S BEACH, BURLINGTON TO ST. LAWRENCE STARCH COMPANY, PORT CREDIT

COLIFORMS PER 100 ML (MEMBRANE FILTER METHOD)

- 1 - X

SAMPLES TAKEN 100 FEET FROM SHORE

			J	UNE			JULY	
RANGE (LO-)	ABBREVIATED DESCRIPTION	7тн	ІЗТН	21ST	28тн	ПТН	19тн	27тн
67.6	OFF ST. LAWRENCE STARCH CO. OUTFALL	450,000	210,000	2,010,000	6,300	1,370,000	110,000	530,000
67.0	MOUTH OF CREDIT RIVER	230	140	690	140	70	760	100
66.7	PORT CREDIT WATER WORKS	230	20	1,360	20	150	850	40
66.1	PORT CREDIT REGENT REFINERY	50	200	300	-	41	6	11
65,6	WHITE HIP ROOF DWELLING	6	0	189	7	5	8	12
65.1	RED AND WHITE HOUSE	25 2	2	193	5	43 32	3	73
64.6	FLAG POLE - GOLF COURSE		1	40	9		7	6
64.4	HOUSING SUBDIVISION	70	1	37	0	11	2	C
63.8	MEADOWOOD PARK	10	0	5	3	8	0	32
63,3 6 3, 0	EASTERN EXTREMITY B.A. TANK FARM	10	0	16	4	39 162	1	32 25
63,0	OFF B. A. OIL DISCHARGE - CLARKSON	3	0	20	217	162	327	3,300
62,2	CLARKSON S.T.P. OUTFALL	-	3	.4	2	80	0	8
61,6	SMALL CREEK EAST OF DOCK	20	0	82	3	15	0	9
60.9	SMALL WHITE ROUND TOWER	9	0	4	2	34	0	3
60,1	NEAR FORD CO. S.T.P. OUTFALL	-	0	0	.3	L.	0	17
59,6	SMALL CREEK - POLO GROUND	0	8	207	84	106	109	57
59.6 58.9	EIGHTH LINE, OAKVILLE	0	0	21	-1	37	Ō	9
58,2	2ND CHURCH TOWER	0	2	91	0	4	0	6
57.8	OAKVILLE GREEK	50	3	51	72	12,000	161	1,500
57 8 56 6	YELLOW BUOY	1	Õ	23 17	2	2	0	
55,8	SMALL CREEK WEST, OF WATER TOWER	10	0	17	14	64	0	211
54.7	CORONATION PARK	20	3	39	4	32	1	71
54.1	BRONTE EAST	10	4	24	12	3	0	423
53.8	BRONTE CREEK MOUTH	7	84	1,400	150	640	80	1,310
52.5	CITIES SERVICE GARDEN	300	Ó	2	5	178	0	2
51.9	PIG & WHISTLE RESTAURANT	0	2	2	43	29	0	21
51.6	WHITE HOUSE - FLAG		3	31	10	25	169	1
50,0	FOUR STONE PIERS	1	12	169	14	124	107	2
49.6	METAL SEWER	3	1	12		53	5	0
48.4	SMALL CREEK - PUMPHOUSE	10	55	207	49 63	4,900	10	2
47.5	NEAR DRURY LANE S.T.P. OUTFALL	4	3	110	5	21	1	41
47.1	RAMBO CREEK	40	27	103	é	35	5	1,800
46.5	ENTRANCE TO BREAKWATER AREA	30	34	118	IÓ	1,200	ó	43
45,7	HYDRO TOWER	8	27	97	21	9	5	
44.9	OFF BURLINGTON CANAL	730	1,400	238	1,600	2,100	238	320
43.6	THIRD HYDRO TOWER VAN WAGNER'S BEACH	36	38	250	1,000	30		20
47.0	THIRD HIDRO TOWER TAR WAGNER'S BEACH	30	30	0		50	17	

4

.

• •

. . . .

1961

VAN WAGNER'S BEACH, BURLINGTON TO ST. LAWRENCE STARCH COMPANY, PORT CREDIT

1

COLIFORMS PER 100 ML (MEMBRANE FILTER METHOD)

16 y T

.

SAMPLES TAKEN 100 FEET FROM SHORE

			AU	GUST		SEPT	TEMBER	OCTOBER
ANGE (LO-)	ABBREVIATED DESCRIPTION	9тн	17TH	22ND	29тн	бтн	12TH	12TH
67 6 67 0	OFF ST. LAWRENCE STARCH CO. OUTFALL	480,000	>150,000	730,000	2,100,000		370,000	140,000
67.0	MOUTH OF CREDIT RIVER	1,020	72,000	830	9,000	-	1,800	17,000
66.7	PORT CREDIT WATER WORKS	900	680	1,520	2,300		34	66
66.1	PORT CREDIT REGENT REFINERY	91	47	410	38	Т	2	14
65.6	WHITE HIP ROOF DWELLING	0	64	31,000	138	0	8	18
65,1	RED AND WHITE HOUSE	0	12	760	-8	0	0	
64.6	FLAG POLE - GOLF COURSE	0	0	850	324		8	11
64.4	HOUSING SUBDIVISION	4	8	800	22		4	10
63.8	MEADOWOOD PARK	Ó	9	860	34		3	5
63.3	EASTERN EXTREMITY B.A. TANK FARM	0	700	11,000	900	R	0	4
63.0	OFF B.A. OIL DISCHARGE - CLARKSON	6	2	900	16	0	29 81	
62,2	CLARKSON S.T.P. OUTFALL	24	< 2	970	144	U	81	29
61,6	SMALL CREEK EAST OF DOCK	9	28	212	66	G	41	6
60.9	SMALL WHITE ROUND TOWER	0	28	292	1,400	н	2	1
60,1	NEAR FORD CO. S.T.P. OUTFALL	0	61	1,800	238		0	(
59.6	SMALL CREEK - POLO GROUND	35	0	-	1,800		5	1
58.9	EIGHTH LINE, OAKVILLE	0	31	192	710		3	
58,2	2ND CHURCH TOWER	0	6	54	3		13	0
57.8 56.6	OAKVILLE GREEK	168	436	6,400	1,820		2,040	
56,6	YELLOW BUOY	0	126	440	64		121	7
55.8	SMALL CREEK WEST, OF WATER TOWER	60	127	34	910		10	27
54.7	CORONATION PARK	1	192	146	3,300		2	1
54.7 54.1	BRONTE EAST	-	< 2	138	36	202	6	
53.8	BRONTE CREEK MOUTH	101	200	370 780	380	244	89	
52,5	CITIES SERVICE GARDEN	4	<10		2	15	1	14
51,09	PIG & WHISTLE RESTAURANT	63	< 2	600	196	130	15	21
51.6	WHITE HOUSE - FLAG	14	32	54	81	62		3
50,0	FOUR STONE PIERS	67	12	68	200	150	381	38
49.6	METAL SEWER	103	6	264	76	100	6	13
48,4	SMALL CREEK - PUMPHOUSE	82	170	450 180	18,000	500	10	17
47.5	NEAR DRURY LANE S.T.P. OUTFALL	99 182	0		160	600	76	19
47	RAMBO CREEK		18	520	2,100	900	96	23
46.5	ENTRANCE TO BREAKWATER AREA	300	4	164	1,800	170	80	10
45,7	HYDRO TOWER	6	208	210	.17	52	63	26
44.9	OFF BURLINGTON CANAL	900	192	134	830	103	80	2,000
43.6	THIRD HYDRO TOWER VAN WAGNER'S BEACH	2	14	76	400	26	2	3
41.9	DODO'S GRILL VAN WAGNER'S BEACH	7	0	44	238	128	17	9

٠

4

1961

VAN WAGNER'S BEACH, BURLINGTON TO ST. LAWRENCE STARCH COMPANY, PORT CREDIT COLIFORMS PER 100 ML (MEMBRANE FILTER METHOD) SAMPLES TAKEN 100 FEET FROM SHORE

ANGE (LO-)	ABBREVIATED DESCRIPTION	AVERAGE	MAXIMUM	MINIMUM	MEDIAN
67.6	OFF ST. LAWRENCE STARCH CO. OUTFALL	665,869	2,100,000	6,300	480,000
67.0	MOUTH OF CREDIT RIVER	7,983	72,000	70	760
66.7	PORT CREDIT WATER WORKS	628	2,300	20	230
66,1	PORT CREDIT REGENT REFINERY	101	410	2	230 44 8
65,6	WHITE HIP ROOF DWELLING	2,420	31,000	0	.8
65.1	RED AND WHITE HOUSE	88	760	0	
64.6	FLAG POLE - GOLF COURSE	100	850	0	8
64.4	HOUSING SUBDIVISION	75	800	0	8
63.8	MEADOWOOD PARK	25	860	0	5
63.3	EASTERN EXTREMITY B.A. TANK FARM	977	11,000	0	ιó
63.0	OFF B.A. OIL DISCHARGE - CLARKSON	75 977 384	3,300	0	12 8 5 10 20 18
62,2	CLARKSON S.T.P. OUTFALL	112	970	0	18
61,6	SMALL CREEK EAST OF DOCK	38 137	212	0	15
60,9	SMALL WHITE ROUND TOWER	137	1.400	0	ž
60,1	NEAR FORD CO. S.T.P. OUTFALL	176	1,800	0	í
59_6 58_9	SMALL CREEK - POLO GROUND	201	1,800	0	46
58,9	EIGHTH LINE, OAKVILLE	- 77	710	0	3
58,2	2ND CHURCH TOWER	14	91	0	3
57.8	OAKVILLE CREEK	1,900	12,000	0	168
56,6	YELLOW BUOY	60	440	0	5
55.8	SMALL CREEK WEST OF WATER TOWER	113	910	0	17
54.7	CORONATION PARK		3,300	1	20
54.1	BRONTE EAST	2 94 66	423	ò	10
53,8	BRONTE CREEK MOUTH	363	1,400	7	197
52,5	CITIES SERVICE GARDEN	94	780	ó	4
51,9	PIG & WHISTLE RESTAURANT	94 80	600	0	21
51,6	WHITE HOUSE - FLAG		169	ĩ	28
50,0	FOUR STONE PIERS	41 96	381	i	87
49.6	METAL SEWER	49	264	ò	12
48,4	SMALL CREEK - PUMPHOUSE	49 1,748	18,000	2	72
47.5	NEAR DRURY LANE S.T.P. OUTFALL	AP I	600	ō	31
47.1	RAMBO CREEK	94 418	2,100	5	37
46.5	ENTRANCE TO BREAKWATER AREA	283	1,800	ő	37 61
45.7	HYDRO TOWER	54	210	Å	23
44.9	OFF BURLINGTON CANAL	54 848	2,000	80	2) 525
43.6			-		525
	THIRD HYDRO TOWER VAN WAGNER'S BEACH	46	400	0	15
41.9	DODO'S GRILL VAN WAGNER'S BEACH	35	238	0	8

. .

. . . .

135

× .

.....

• • •

PHENOL CONCENTRATIONS

1961

*

VAN WAGNER'S BEACH, BURLINGTON TO ST. LAWRENCE STARCH COMPANY, PORT CREDIT

PHENOLS IN PPB

. . .

SAMPLES TAKEN 100 FEET FROM SHORE

.

	terren bildari dari bara dara bilan dari bilan dari dari dari dari dari dari dari dari			N.E.			1019	
RANGE (LO-)	ABBREVIATED DESCRIPTION	7тн	13TH	N E 21ST	28тн	ПТН	<u>Ј U L Y</u> 19тн	27 T I
67,6 67,0 66,7 66,1	OFF ST. LAWRENCE STARCH CO. OUTFALL	2	52	0	6	4	2	0
67.0	MOUTH OF GREDIT RIVER	0	ź	2	2	Ó	4	0
66.7	PORT CREDIT WATER WORKS	0	2	0	0	0	26	0
66,1	PORT CREDIT REGENT REFINERY	0	1	2	0	4		0
65.6	WHITE HIP ROOF DWELLING	0	0	0	0	2	2	0
65.1	RED AND WHITE HOUSE	0	0	0	0	0	0	0
64.6	FLAG POLE - GOLF COURSE	0	0	2	0	0	0	0
64.4	HOUSING SUBDIVISION	0	0	0	0	2	0	0
63,8	MEADOWOOD PARK	0	6	0	32	40	0	9
63.3	EASTERN EXTREMITY B.A. TANK FARM	0	14	0		150	0	0
63.0	OFF B.A. OIL DISCHARGE - CLARKSON	3	3	0	2	45	0	0
62,2	CLARKSON S.T.P. OUTFALL	-	0	4	0	0	6	0
61,6	SMALL GREEK EAST OF DOCK	0	2	Ó	0	0	0	0
60.9	SMALL WHITE ROUND TOWER	3	0	0	0	0	0	0
60.1	NEAR FORD CO. S.T.P. OUTFALL	1	0	0	0	0	0	0
	SMALL CREEK - POLO GROUND	0	0	0	2	0	0	0
59.6 58.9	EIGHTH LINE, OAKVILLE	0	0	0	0	0	0	0
58 2	2ND CHURCH TOWER	0	0	0	0	0	0	0
57,8	OAKVILLE CREEK	0	0	0	2	0	3	0
56,6	YELLOW BUOY	0	0	2	0	0	Ō	0
55,8	SMALL CREEK WEST OF WATER TOWER	0	0	0	0	0	0	0
54.7	CORONATION PARK	0	0	2	0	0	2	0
54.1	BRONTE EAST	0	0	0	0	0	0	0
53.8	BRONTE CREEK MOUTH	0	0	0	0	2	0	0
52,5	CITIES SERVICE GARDEN	ō	Ō	0	0	2	0	0
51,09	PIG & WHISTLE RESTAURANT	0	0	0	2	4	0	C
51 6	WHITE HOUSE - FLAG	3	0	2	2	ò	0	0
50.0	FOUR STONE PIERS	Á	õ	0	0	0	0	0
49.6	METAL SEWER	2	Ō	0	0	4	0	0
48,4	SMALL CREEK - PUMPHOUSE	0	0	2	0	ò	0	0
47.5	NEAR DRURY LANE S.T.P. OUTFALL	0	0	2	0	0	0	0
47.1	RAMBO CREEK	ŏ	ŏ	ō	õ	ō	Ō	0
46,5	ENTRANCE TO BREAKWATER AREA	ō	ŏ	ō	ō	ō	Ō	0
45.7	HYDRO TOWER	õ	õ	Ă	ŏ	õ	õ	0
44.9	OFF BURLINGTON CANAL	4.	Ă.	5	4	5	õ	Ó
43.6	THIRD HYDRO TOWER VAN WAGNER'S BEACH	5	5	õ	5	ó	õ	0
41.9	DODO'S GRILL VAN WAGNER'S BEACH	õ		ŏ	ŏ	ō	õ	ō

PHENOL CONCENTRATIONS

1961

VAN WAGNER'S BEACH, BURLINGTON TO ST. LAWRENCE STARCH COMPANY, PORT CREDIT

PHENOLS IN PPB

SAMPLES TAKEN 100 FEET FROM SHORE

			AUG	UST			EMBER	OCTOBE
RANGE (LO-)	ABBREVIATED DESCRIPTION	9тн	17тн	22ND	29тн	6тн	12TH	121
67.6	OFF ST. LAWRENCE STARCH CO. OUTFALL	6	6	5	50*	-	0	0
67.0	MOUTH OF CREDIT RIVER	Ō	2	Á	ó		2	0
67.0 66.7	PORT CREDIT WATER WORKS	0	0	4	0		0	0
66,1	PORT CREDIT REGENT REFINERY	8	8	6	0		0	0
65.6	WHITE HIP ROOF DWELLING	0	2	8•	0	т	0	0
65.1	RED AND WHITE HOUSE	0	4	0	0	0	0	0
64.6	FLAG POLE - GOLF COURSE	0	Ó	0	0	0	0	0
64.4	HOUSING SUBDIVISION	0	0	0	0		0	0
64 4 63 8	MEADOWOOD PARK	0	0	4	0		0	0
63.3	EASTERN EXTREMITY B.A. TANK FARM	4	6	6•	10		0	0
63.0	OFF B. A. OIL DISCHARGE - CLARKSON	2	0	10*	0		2	0
62,2	CLARKSON S.T.P. OUTFALL	0	0	2	0		0	0
61.6	SMALL CREEK EAST OF DOCK	0	0	9	0	R	0	0
61.6	SMALL WHITE ROUND TOWER	0	0	6	0	0	0	0
60.1	NEAR FORD CO. S.T.P. OUTFALL	0	0	4	0	U	0	0
59.6	SMALL CREEK - POLO GROUND	0	0	2	0	G	0	0
59,6 58,9 58,2 57,8	EIGHTH LINE, OAKVILLE	0	0	0	0	н	0	0
58,2	2ND CHURCH TOWER	0	0	0	0		0	0
57.8	OAKVILLE CREEK	3	20	2	0		0	0
56,6	YELLOW BUOY	2	0	0	0		0	0
55.8	SMALL GREEK WEST OF WATER TOWER	0	4	0	0		0	0
54.7	CORONATION PARK	0	2	0	0		0	0
54.1	BRONTE EAST	-	0	0	0		0	0
53,8	BRONTE CREEK MOUTH	2	4	0	2	0	0	0
52.5	CITIES SERVICE GARDEN	0	0	0	4	0	0	0
51.9	PIG & WHISTLE RESTAURANT	0	4	0	2	0	0	0
51,6	WHITE HOUSE - FLAG	0	2	0	2	0	0	0
50,0	FOUR STONE PIERS	0	0	0	0	0	0	0
49.6	METAL SEWER	0	0	0	0	0	0	0
48,4	SMALL CREEK - PUMPHOUSE	0	0	0	4	2	0	0
47.5	NEAR DRURY LANE S.T.P. OUTFALL	0	0	0	0	0	0	0
47.1	RAMBO CREEK	0	4	0	4	0	0	0
46.5	ENTRANCE TO BREAKWATER AREA	2	ö	0	ò	0	0	0
45.7	HYDRO TOWER	0	0	2	2	0	0	0
44.9	OFF BURLINGTON CANAL	2	Ğ	ō	4	0	6•	2
	THIRD HYDRO TOWER VAN WAGNER'S BEACH	ō	ŏ	ō	2	0	Ō	0
43,6 41.9	DODO'S GRILL VAN WAGNER'S BEACH	ŏ	0	0	0	0	0	0

137

. . . .

PHENOL CONCENTRATIONS

1961

VAN WAGNER'S BEACH, BURLINGTON TO ST. LAWRENCE STARCH COMPANY, PORT CREDIT

PHENOLS IN PPB

. . . .

SAMPLES TAKEN 100 FEET FROM SHORE

٠

٠

RANGE (LO-)	ABBREVIATED DESCRIPTION	AVERAGE	MAXIMUM	MINIMUM	MEDIA
67.6	OFF ST. LAWRENCE STARCH CO. OUTFALL	6,6	50	0	4
67.6 67.0	MOUTH OF CREDIT RIVER	1.4	4	0	2
66.7	PORT CREDIT WATER WORKS	.6	4	0	0
66.1	PORT CREDIT REGENT REFINERY	2,7	48	0	1
65.6	WHITE HIP ROOF DWELLING	أوا	8	0	0
65.1	RED AND WHITE HOUSE	•3	4	0	0
64.6	FLAG POLE - GOLF COURSE	-2	2	0	0
64.4	HOUSING SUBDIVISION	2 4.8	2	õ	Ō
64.4 63.8	MEADOWOOD PARK	4.8	40	0	0
63.3	EASTERN EXTREMITY B.A. TANK FARM	14.8	150	0	2
63.0	OFF B.A. OIL DISCHARGE - CLARKSON	5.2		0	2
62 2	CLARKSON S.T.P. OUTFALL	م آ	45	0	0
61,6	SMALL CREEK EAST OF DOCK	,2	2	0	0
60,9	SMALL WHITE ROUND TOWER	•7	6	0	0
60,1	NEAR FORD CO. S.T.P. OUTFALL	.3	4	0	0
50 6	SMALL CREEK - POLO GROUND	.3	2	0	0
59,6 58,9	EIGHTH LINE, OAKVILLE	0	ō	õ	õ
58.2	2ND CHURCH TOWER	õ	õ	õ	0
58 2 57 8 56 6 55 8 54 7 54 1 53 8	OAKVILLE CREEK	2,3	20	0	0
56 6	YELLOW BUOY		2	õ	õ
55.8	SMALL CREEK WEST, OF WATER TOWER	•3 •3	4	õ	õ
54.7	CORONATION PARK	•5	2	0	0
54.1	BRONTE EAST	0	0	0	0
53.8	BRONTE CREEK MOUTH	•7	4	0	0
52.5	CITIES SERVICE GARDEN	•4	4	0	0
51,09	PIG & WHISTLE RESTAURANT	•9	4	0	0
51,6	WHITE HOUSE - FLAG	•9 •8	3	0	0
50,0	FOUR STONE PIERS	.3	4	0	0
49.6	METAL SEWER	.4	4	0	0
48.4	SMALL CREEK - PUMPHOUSE	,6	4	0	0
47,5	NEAR DRURY LANE S.T.P. OUTFALL	ام	2	0	0
47.1	RAMBO CREEK	.6	4	0	0
46,5	ENTRANCE TO BREAKWATER AREA	.1	2	0	0
45.7	HYDRO TOWER	6	4	ō	0
44.9	OFF BURLINGTON CANAL	2 6	2	0	0
43.6	THIRD HYDRO TOWER VAN WAGNER'S BEACH	+1	2	0	0
41.9	DODO'S GRILL VAN WAGNER'S BEACH	0	· · ō	õ	õ

1961

PHOSPHATES (PPM)

- TOTAL (T) - SOLUBLE (S)

.

. .

							RAAN	GES										
DATES	10 (s)	0' (T)	25 (\$)	0" (T)	500 (s)	(T)	L0 100 (\$)	54•7 (T)	1 M (S)	ILE (T)	1 M (S)	ILE (T)	(s) ^{&v}	^G (т)	LO 54 BRONTE (S)	EAST	LO 51. BRONTE (S)	9- 51.6 West (T)
JUNE 7	0.01	0.06	0.00	0.04	0.00	0.05	0,00	0.04	0.00	0.03	0.00	0,02	0.00	0.04	0,02	0.06	0.01	0.60
13	0,02	0.06	0.04	0.04	0.02	0.03	0.00	0.05	0,00	0.06	0.00	0.03	0.01	0.05	0.01	0.05	0.01	0.05
21	0.03	0.08	0.01	0.06	<0.01	0.05	0,02	0.07	0.01	0.03	⊲0,01	0.04	0.01	0.06	0.01	0.04	0.01	0.06
28	0,02	0.03	0,02	0,04	0.02	0.03	0,02	0.03	0,02	0.04	0,02	0.03	0,02	0.03	0.02	0.05	0,02	0.04
JULY II	0.01	0.05	0.02	0.05	0,02	0.06	0.02	0.06	0,02	0.05	0.02	0.05	0.02	0.05	0.01	0.06	0.01	0.05
19	0.01	0.09	0.00	0.07	0.00	0.07	0,00	0.07	0.00	0.06	0.00	0.05	0.00	0.07	0.01	0.06	0.00	0.01
27	0,01	0.07	0.01	0.07	0.00	0.05	0,00	0.03	0,00	0.03	0,00	0.03	0.00	0.05	0.00	0.08	0.01	0.08
AUG. 9	0.03	0.06	0,02	0.06	0,02	0.05	0.00	0.05	0,00	0.03	0,00	0.03	0.01	0.05	0.00	0.04	0.04	0.07
17	0.09	0.14	0,02	0.05	0.01	0.04	0.00	0.03	0.01	0.06	0,00	0.04	0,02	0.06	0.09	0.15	0.04	0.09
22	0.08	0.15	0.18	0,22	0.03	0.06	0.04	0.07	0.01	0.05	0.03	0,07	0.06	0.10	0.05	0.11	0 .0 8	0.20
29	0.03	0.17	0.04	0.11	0.04	0.10	0.03	0.07	-	_	0.03	0,05	0.03	0,10	0.03	0.07	0.03	0.06
SEPT. 6	_	-	-	_	_	_	_	_	-	-	-	-	-	-	0.01	0.06	-	-
12	0.00	0.01	0.00	0.04	0.00	0.05	0.00	0 ₀ 04	0.01	0.06	0.00	0.04	0.00	0.04	0.04	0.09	0.00	0 .0 6
AVERAGE	0.03	0.08	0.03	0.07	0.01	0.05	0.01	0.05	0.01	0.05	0,01	0.04	0,02	0,06	0,02	0.07	0,02	0.11
MAXIMUM	0.09	0.17	0.18	0,22	0.04	0.10	0.04	0.07	0,02	0.06	0.03	0.07			0.09	0.15	0.08	0,60
MINIMUM	0,00	0.01	0,00	0.04	0.00	0.03	0.00	0.03	0.00	0.03	0.00	0.02			0,00	0.04	0.00	0.01
MEDIAN	0,02	0.07	0,02	0.06	0,02	0.05	0.00	0.05	0.01	0.05	0,00	0.04			0.01	0.06	0.01	0.06

.

1

1961

NITROGEN AS N (PPM)

- FREE AMMONIA (FA) - TOTAL KJELDAHL NITROGEN (K)

· · · ·

.

- The second second

RANGES

							<u> </u>	NGL										
DATES	10	0	25	50 •	50	01	100	4.7	늘 M	ILE	IM	ILE	A	G.	LO5 BRONT	4.I E EAST	LO51 .9	west
	(FA)	(K)	(FA)	(K)	(FA)	(K)	(FA)	(K)	(FA)	(K)	(FA)	(K)	(FA)	(K)	(FA)	(K)	(FA)	(K)
JUNE 7	0.32	0.62	0.48	0.49	0,28	0.66	0.0 6	0.23	0.32	0.33	0.3 6	0.36	0.30	0.45	0.13	0.42	0.13	0.42
13	0.30	0.53	0.26	0.30	0.53	0.86	0.06	0.43	0.22	0.53	0,18	0.30	0.26	0.49	0.22	0.40	TRACES	0.23
21	0,20	0.43	0.12	0.66	0.08	0.16	0.12	0.33	0.08	0.26	0.18	0.39	0.13	0.37	0.12	0.23	0.20	0.26
28	0.26	0.30	0.18	0,20	0,20	0.23	0.10	0.13	0.14	0.20	0.36	0.36	0.21	0.24	0.18	0.18	0.08	0.13
JULY II	0,20	0.26	0.38	0.46	0.23	0.26	0,20	0.20	0.15	0.30	0.29	0.30	0.24	0.30	0.08	0,20	0.13	0.20
19	0.28	0.40	0.49	0.92	0.28	0.94	0.13	0.26	0.13	0.46	0.26	0.75	0,26	0.62	0.13	0.23	0.03	0.33
27	0.30	0.33	0.21	0.76	0.28	0.33	0.10	0.13	0.26	0.26	0.13	0.17	0.21	0.33	0.16	0.30	0.15	0,20
AUG. 9	0.19	0.33	0.36	0.40	0.36	0.40	0,22	0.26	0,12	0.26	0.38	0.40	0.27	0.34	0.19	0.33	0.13	0,20
17	0.10	0.13	0.11	0,20	0.10	0.13	0.10	0.13	0.11	0.26	0.09	0.13	0.10	0.16	0.09	0,20	0.11	0.26
22	0.13	0.26	0.10	0.17	0.20	0.20	0.11	0.13	0.16	0,20	0.16	0,20	0.14	0.19	0.13	0.30	0.13	0.30
29	0.05	0.46	0.05	0.46	0.06	0.40	0.11	0.33	0 .0 8	0.40	0.05	0.40	0.07	0.41	0.11	0.79	0.12	0.40
SEPT. 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.21	0.46	-	-
12	0.39	0.53	0.07	0.70	0,10	0.92	0,20	0.36	TRACES	0.53	0.21	0.66	0.16	0.62	0.08	0.20	0.08	0.30
AVERAGE	0.23	0.38	0.23	o _ 4 8	0.23	0 .46	0.13		0.16	0.33	0,22	0.37	0.20	0.38	0.14	0.33	0.12	0.27
MAXIMUM	0.39	0,62	0.49	0.92	0.53	0.94	0.22	0.43	0.32	0.53	0.38	0.75			0.22	0.79	0,20	0.42
MINIMUM	0.05	0.13	0.05	0.17	0.06	0.13	0.06	0.13	TRACES	0,20	0.05	0.13			0.08	0.18	TRACES	0.13
MEDIAN	0.23	0.37	0.20	0.46	0,22	0.37	0.11	0,25	0.15	0.28	0,20	0.36			0.13	0.30	0.13	0.26

.

٠

1961

M.F. COLIFORMS PER 100 ML

				RANGES		-			
DATES	100 FT.	250 FT.	500 FT.	LO 54.7		I MILE	AVG.	LO 54.1 BRONTE EAST	LO 51.9 LO 51.6 BRONTE WEST
JUNE 7	20	17	31	9	2	0	13	1	10
13	3	3	1.	4	1	0	2	3	4
21	39	1	0	1	0	0	7	31	24
28	4	0	0	0	8	3	2	10	12
JULY II	32	71	52	9	21	25	35	26	3
19	1	0	0	0	ο	0	0	10	0
27	71	234	2	2	0	I	52	5	423
AUG. 9	I	3	L.	0	1	0	Ť	o	-
17	192	3	3	4	3	3	35	< 2	< 2
22	146	102	92	70	79	29	86	810	838
29	3,300	800	162	18	3	4	715	11	36
SEPT. 6	-	-	-	-	-	-	-	202	-
12	3	0	2	2	o	0	I	13	6
AVERAGE	318	103	29	10	10	5	79	86	60
MAXIMUM	3,300	800	162	70	79	29		810	423
MINIMUM	1	0	0	0	0	0		0	0
MEDIAN	26	3	2	3	2	1		10	10

.

.

.

PHENOLS IN PPB

Ľ.

. .

			R	ANGES		And American Annual	the set of the second	a second a second second second	
DATES	100 FT.	250 FT.	500 FT.	LO 54.7	글 MILE	I MILE	AVG.	LO 54.1 BRONTE EAST	LO 51.9 - LO 51.6 BRONTE WEST
JUNE 7	0	0	0	0	0	0	0	3	0
13	0	0	0	0	0	0	0	0	0
21	2	4	6	2	2	2	3	2	0
28	0	0	5	0	0	5	2	2	0
JULY II	0	0	o	o	o	o	0	6	0
19	2	2	4	2	0	4	2	2	0
27	0	0	0	0	0	0	0	0	0
AUG. 9	0	0	0	o	0	0	0	-	-
17	2	2	0	2	0	0	I	0	0
22	0	0	0	0	0	0	0	2	0
29	0	0	0	0	0	0	0	2	o
SEPT.6	-	-	-	-	-	-	-	0	-
12	0	0	0	0	0	0	0	0	0
AVERAGE	0.5	0 ⁴ •7	T.3	0.5	0.2	0.9	0.7	1.6	o
MAXIMUM	2	4	6	2	2	5		6	0
MINIMUM	0	0	0	0	0	o		0	0
MEDIAN	0	0	0	0	0	0		2	0

÷

142

٠

.

 \sim

·

DATE DUE

* • • • •

27.7