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General Introductory Remarks.

Tue Study of Algebra may be pursued in three very different schools, the Practical, the Philological, or
the Theoretical, according as Algebra itself is accounted an Instrument, or a Language, or a Contempla-
tion ; according as ease of operation, or symmetry of expression, or clearness of thought, (the agers, the
fari, or the sapere,) is eminently prized and sought for. The Practical person seeks a Rule which he
may apply, the Philological person seeks a Formula which he may write, the Theoretical person seeks a
Theorem on which he may meditate. The felt imperfections of Algebra are of three answering kinds.
The Practical Algebraist complains of imperfection when he finds his Instrument limited in power; when
a rule, which he could happily apply to many cases, can be hardly or not at all applied by him to some
new case; when it fails to enable him to do or to discover something else, in some other Art, or in some
other Science, to which Algebra with him was but subordinate, and for the sake of which and not for its
own sake, he studied Algebra. The Philological Algebraist complains of imperfection, when his Language
presents him with an Anomaly ; when he finds an Exception disturb the simplicity of his Notation, or the
symmetrical structure of his Syntax ; when a Formula must be written with precaution, and a Symbolism
is not universal. The Theoretical Algebraist complains of imperfection, when the clearness of his Con-
templation is obscured; when the Reasonings of his Science seem anywhere to oppose each other, or
become in any part too complex or too little valid for his belief to rest firmly upon them ; or when,
though trial may have taught him that a rule is useful, or that a formula gives true results, he cannot

prove that rule, nor understand that formula : when he cannot rise to intuition from induction, or cannot
look beyond the signs to the things signified.
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It is not here asserted that every or any Algebraist belongs exclusively to any one of these three
schools, so as to be only Practical, or only Philological, or only Theoretical. Language and Thought
react, and Theory and Practice help each other. No man can be so merely practical as to use frequently
the rules of Algebra, and never to admire the beauty of the language which expresses those rules, nor
care to know the reasoning which deduces them. No man can be so merely philological an Algebraist
but that things or thoughts will at some times intrude upon signs ; and occupied as he may habitually be
with the logical bujlding up of his expressions, he will feel sometimes a desire to know what they mean,
or to apply them. And no man can be so merely theoretical or so exclusively devoted to thoughts, and
to the contemplation of theorems in Algebra, as not to feel an interest in its notation and language, its
symmetrical system of signs, and the logical forms of their combinations ; or not to prize those practical
aids, and especially those methods of research, which the discoveries and contemplations of Algebra have
given to other sciences. But, distinguishing without dividing, it is perhaps correct to say that every Alge-
braical Student and every Algebraical Composition may be referred upon the whole to one or other of
these three schools, according as one or other of these three views habitually actuates the man, and emi-
nently marks the work.

These remarks have been premised, that the reader may more easily and distinctly perceive what the
design of the following communication is, and what the Author hopes or at least desires to accomplish.
That design is Theoretical, in the sense alteady explained, as distinguished from what is Practical on the
one hand, and from what is Philological upon the other. The thing aimed at, is to improve the Science,
not the Art nor the Language of Algebra. The imperfections sought to be removed, are confusions of
thought, and obscurities or errors of reasoning; not difficulties of application of an instrument, nor
failures of symmetry in expression. And that confusions of thought, and errors of reasoning, still darken
the beginnings of Algebra, is the earnest and just complaint of sober and thoughtful men, who in a spirit
oflove and honour have studied Algebraic Science, admiring, extending, and applying what has been al-
ready brought to light, and feeling all the beauty and consistence of many a remote deduction, from
principles which yet remain obscure, and doubtful.

For it has not fared with the principles of Algebra as with the principles of Geometry. No candid
and intelligent person can doubt the truth of the chief properties of Parallel Lines, as set forth by
Evcrip in his Elements, two thousand years ago; though he may well desire to see them treated in a
clearer and better method. The doctrine involves no obscuritv nor confusion of thought, and leaves in
the mind no reasonable ground for doubt, although ingenuity may usefully be exercised in improving the
plan of the argument. But it requires no peculiar scepticism to doubt, or even to disbelieve, the doctrine
of Negatives and Imaginaries, when set forth (as it has commonly been) with principles like these : that a
greater magnitude may be subtracted from a less, and that the remainder is less than nothing ; that two
negative numbers, or numbers denoting magnitudes each less than nothing, may be multiplied the one by
the other, and that the product will be a positive number, or a number denoting a magnitude greater than
nothing ; and that although the square of a number, or the product obtained by multiplying that number
by itself, is therefore always positive, whether the number be positive or negative, yet that numbers, called
imaginary, can be found or conceived or determined, and operated on by all the rules of positive and
negative numbers, as il they were subject to those rules, although they have negative squares, and must
therefore be supposed to be themselves neither positive nor negative, nor yet null numbers, so that the
magnitudes which they are supposed to denote can neither be greater than nothing, nor less than nothing,
nor even equal to nothing. It must be hard to found a Sciexce on such grounds as these, though the
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forms of logic may build up from them a symmetrical system of expressions, and a practical art may be
learned of rightly applying useful rules which seem to depend upon them.

So useful are those rules, so symmetrical those expressions, and yet so unsatisfactory those principles
from which they are supposed to be derived, that a growing tendency may be perceived to the rejection
of that view which regarded Algebra as a SCIENCE, in some sense analogous to Geometry, and to the
adoption of one or other of those two different views, which regard Algebra as an Ar¢, or as a Language :
as a System of Rules, or else as a System of Expressions, but not as a System of Truths, or Results having
any other validity than what they may derive from their practical usefulness, or their logical or philological
coherence. Opinions thus are tending to substitute for the Theoretical question,—¢“Is a Theorem of
Algebra true?” the Practical question,—¢ Can it be applied as an Instrument, to do or to discover some-
thing else, in some research which is not Algebraical ?” or else the Philological question,—¢ Does its
expression karmonise, according to the Laws of Language, with other Algebraical expressions ?”

Yet a natural regret might be felt, if such were the destiny of Algebra; if a study, which is conti-
nually engaging mathematicians more and more, and has almost superseded the Study of Geometrical
Science, were found at last to be not, in any strict and proper sense, the Study of a Science at all : and
if, in thus exchanging the ancient for the modern Mathesis, there were a gain only of Skill or Ele-
gance, at the expense of Contemplation and Intuition. Indulgence, therefore, may be hoped for, by any
one who would inquire, whether existing Algebra, in the state to which it has been already unfolded by
the masters of its rules and of its language, offers indeed no rudiment which may encourage a hope of
developing a ScieEnce of Algebra: a Science properly so called ; strict, pure, and independent; deduced
by valid reasonings from its own intuitive principles; and thus not less an object of priori contempla-
tion than Geometry, nor less distinct, in its own essence, from the Rules which it may tcach or use, and
from the Signs by which it may express its meaning.

The Author of this paper has been led to the belief, that the Intuition of TiME is such a rudiment.

This belief involves the three following as components: First, that the notion of Time is connected
with existing Algebra ; Second, that this notion orintuition of Time may be unfolded into an independent
Pure Science ; and Third, that the Science of Pure Time, thus unfolded, is co-extensive and identical with
Algebra, so far as Algebra itself is a Science. The first component judgment is the result of an induction ;
the second of a deduction; the third is a joint result of the deductive and inductive processes.

I. The argument for the conclusion that the notion of Time is connected with existing Algebra, is an
induction of the following kind. The History of Algebraic Science shows that the most remarkable disco-
veries in it have been made, either expressly through the medium of that notion of Time, or through the
closely connected (and in some sort coincident) notion of Continuous Progression. 1t is the genius
of Algebra to consider what it reasons on as _flowing, as it was the genius of Geometry to consider what
it reasoned on as flved. EucrLip* defined a tangent to a circle, AroLLoN1UST conceived a tangent to an
ellipse, as an indefinite straight line which had only one point in common with the curve ; they looked
upon the line and curve not as nascent or growing, but as already constructed and existing in space ; they
studied them as formed and fized, they compared the one with the other, and the proved exclusion of any
second common point was to them the essential property, the constitutive character of the tangent.
The Newtonian Method of Tangents rests on another principle; it regards the curve and line not as

® E5%%Tia xdxov ipdureadat Abyerary nris dmromévn Tov xbxdov xai éxCarlomivn bu Téuver Tor xdxror.— EucLip, Book IIL Def. 2,
Oxford Edition, 1703.

+ Edv Iy xdvov Tomfl &md 17 xopupiis vis Tomdis i iz mapX vevaymérer xarvypvmy ixrds megiirar vRs vomit—ixts Gpa
weaeita, Bidmep (PdwTeT THS Towds.— APPOLLONIUS, Book 1. Prop. 17. Oxford Edition, 1710.
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already formed and fixed, but rather as nascent, or in process of generation: and employs, as its pri-
mary conception, the thought of a flowing point. And, generally, the revolution which NEwron* made in
the higher parts of both pure and applied Algebra, was founded mainly on the notion of fluzion, which
involves the notion of Time.

Before the age of NEwroN, another great revolution, in Algebra as well as in Arithmetic, had been
made by the invention of Logarithms ; and the * Canon Mirificus” attests that NariErt deduced that in-
vention, not (as it is commonly said) from the arithmetical properties of powers of numbers, but from
the contemplation of a Continuous Piogression ; in describing which, he speaks expresssly of Fluxions,
Velocities and Times.

In a more modern age, LAGRANGE, in the Philological spirit, sought to reduce the Theory of Fluxions
to a system of operations upon symbols, analogous to the earliest symbolic operations of Algebra, and
professed to reject the notion of time as foreign to such a system ; yet admitted} that fluxions might be
considered only as the velocities with which magnitudes vary, and that in so considering them, abstrac-
tion might be made of every mechanical idea. And in one of his own most important researches in pure
Algebra, (the investigation of limits between which the sum of any number of terms in TayLor’s Series
is comprised,) Lacrance| employs the conception of continuous progression to show that a certain vari-
able quantity may be made as small as can be desired. And not to dwell on the beautiful discoveries
made by the same great mathematician, in the theory of singular primitives of equations, and in the al-
gebraical dynamics of the heavens, through an extension of the conception of variability, (that is, in
fact, of flowingness,) to quantities which had before been viewed as fized or constant, it may suffice for
the present to observe that LAGRANGE considered Algebra to be the Science of Functions§, and that it is
not easy to conceive a clearer or juster idea of a Function in this Science, than by regarding its essence
as consisting in a Law connecting Change with Change. But where Change and Progression are, there is
Tme. The notion of Time is, therefore, inductively found to be connected with existing Algebra.q

II. The argument for the conclusion that the notion of time may be unfolded into an independent
Pure Science, or that a Science of Pure T'ime is possible, rests chicfly on the existence of certain priori

* Considerando igitur quod quantitates xqualibus temporibus crescentes et crescendo genitzw, pro velocitate majori vel mi-
nori qua crescunt ac generantur evadunt majores vel minores ; methodum quwerebam determinandi quantitates ex velocitati-
bus motuum vel incrementorum quibus generantur; et has motuum vel incrementorum velocitates nominando Fluziones,
et quantitates genitas nominando Fluentcs, incidi paulatim annis 1665 et 1666 in Methodum Fluxionum qua hic usus sum in
Quadratura Curvarum— Tractatus de Quad. Curv., Introd., published at the end of Sir 1. Newton’s Opticks, London 1704,

+ Lugarithmus ergd cujusque sinus, est numerus quam proximé definiens lineam, que mqualiter crevit intered dum sinus
totius linea propoitionaliter in sinum illum decrevit, existente utroque motu synchrono, atque initio 2quiveloce. Baron

Napier’s Mirifici Logarithmorum Canonis Descriptio, Def. 6, Edinburgh 1614.—Also in the explanation of Def. 1, the
words fluru and fluat occur.

4 Caleul des Fonctions, Legon Premiere, page 2. Paris 1806,

| Done puisque ¥ devient nul lorsque ¢ devient nul, il est clair qu’ en faisant croitre 7 par degrés insensibles depws
7éro, la valeur de V croitra aussi insensiblement depuis zéro, soit en plus ou en moins, jusqu’ & un eertain point, aprés
quoi elle pourra diminuer.— Calcul des Fouctions, Legon Neuviéme, page 90. Paris 1806.
may be found in the First Note to Lagrange’s Equations Numeriques. Paiis, 1808.

§ On doit regarder I'algébre comme la science des fonctions.—Calc. des Fonct., Legon Premiere.

4] The word ¢ Algebra”” is used throughout this whole paper, in the sense which is commonly but improperly given
by modern mathematical writers to the name ¢ Analysis,” and not with that nairow signification to which the unphilosophi-

cal use of the latter term (Analysis) has caused the former term (Algcbra) to be too commonly confined, The author
confesses that he has often deserved the censure which he has here so freely epressed.

An instance still more strong
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intuitions, connected with that notion of time, and fitted to become the sources of a pure Science; and on
the actual deduction of such a Science from those principles, which the author conceives that he has
begun. Whether he has at all succeeded in octually effecting this deduction, will be judged after the
Essay has been read; but that such a deduction is possible, may be concluded in an easier way, by an
appeal to those intuitions to which allusion has been made. That a moment of time respecting which
we inquire, as compared with a moment which we know, must either coincide with or precede or follow
it, is an intuitive truth, as certain, as clear, and as unempirical as this, that no two straight lines can
comprehend an area. The notion or intuition of OrDER IN TIME is not less but more deep-seated in the
human mind, than the notion orintuition of ORDER 1N SPACE ; and a mathematical Science may be founded
on the former, as pure and as demonstrative as the science founded on the latter. There is something
mysterious and transcendent involved in the idea of Time ; but there is also something definite and clear:
and while Metaphysicians meditate on the one, Mathematicians may reason from the other.

III. That the Mathematical Science of Time, when sufficiently unfolded, and distinguished on the
one hand from all actual Qutward Chronology (or collections of recorded events and phenomenal marks
and measures), and on the other hand from all Dynamical Science (or reasonings and results from the
notion of cause and effect), will ultimately be found to be co-extensive and identical with Algebra, so far
as Algebraitselfis a Science: is a conclusion to which the author has been led by all his attempts, whe-
ther to analyse what is Scientific in Algebra, or to construct a Science of Pure Time. Tt is a joint result of the
inductive and deductive processes, and the grounds on which it rests could not be stated in a few general
remarks. The author hopes to explain them more fully in a future paper; meanwhile he refers
to the present one, as removing (in his opinion) the difficulties of the usual theory of Negative and Ima-
ginary Quantities, or rather substituting a new Theory of Contrapositives and Couples, which he considers
free from those old difficulties, and which is deduced from the Intuition or Original Mental Form of Time :
the opposition of the (so-called) Negatives and Positives being referred by him, not to the opposttion of
the operations of increasing and diminishing a magnitude, but to the simpler and more extensive contrast
between the relations of Before and After,* or between the directions of Forward and Backward ; and
Pairs of Moments being used to suggest a Theory of Conjugate Functions,} which gives reality and
meaning to conceptions that were before Imaginary,} Impossible, or Contradictory, because Mathemati-
cians had derived them from that bounded notion of Magnitude, instead of the original and comprehensive
thought of ORDER IN PROGREsSION.

* It is, indeed, very common, in Elementary works upon Algebra, to allude to past and future time, as one among many
illustrations of the doctrine of negative quantities ; but this avails little for Science, so long as magnitude instead of PROGRES-_
810X is attempted to be made the basis of the doctrine.

+ The author was conducted to this Theory many years ago, in reflecting on the important symbolic results of Mr.
Graves respecting Imaginary Logarithms, and in attempting to explain to himself the theoretical meaning of those remark-
able symbolisms. The Preliminary and Elementary Essay on Algebra as the Science of Pure Time, is a much more
recent developement of an Idea against which the author struggled long, and which he still longer forbore to make public, on
account of its departing so far from views now commonly received. The novelty, however, is in the view and method, not
in the results and details : in which the reader is warned to expect little addition, if any, to what is already known.

! The author acknowledges with pleasure that he agrees with M. CavcHy, in considering every (so-called) Imaginary
Equation as a symbolic representation of two separate Real Equations : but he differs fiom that excellent matbematician in
his method generally, and especially in not introducing the sign »/ —1 until he has provided for it, by his Theory of
Couples, a possible and real meaning, as a symbol of the couple (0.1,
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PRELIMINARY AND ELEMENTARY ESSAY

ON ALGEBRA AS THE SCIENCE OF PURE TIME.

Comparison of any two moments with respect to identity or diversity, subsequence or
precedence.

1. If we have formed the thought of any one moment of time, we may afterwards
either repeat that thought, or else think of a different moment. And if any two
spoken or written names, such as the letters A and B, be dates, or answers to the
question /7 hen, denoting each a known moment of time, they must either be names
of one and the same known moment, or else of two different moments. In each
case, we may speak of the pair of dates as denoting a pair of moments ; but in the
first case, the two moments are coincident, while in the second case they are distinct
from each other. To express concisely the former case of relation, that is, the case -
of identity between the moment named B and the moment named a, or of equivalence
between the date B and the date 4, it is usual to write

B=A; 19

a written sentence or assertion, which is commonly called an equation : and to express
concisely the latter case of relation, that is, the case of diversity between the two mo-
ments, or of non-equivalence between the two dates, we may write

BFa; (2.)

VOL. XVII. 3~
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annexing, here and afterwards, to these concise written expressions, the side-marks
(1.) (2.), &c., merely to facilitate the subsequent reference in this essay to any such
assertion or result, whenever such reference may become necessary or convenient.
The latter case of relation, namely, the case (2.) of diversity between two moments,
or of non-equivalence between two dates, subdivides itself into the two cases of subse-
quence and of precedence, according as the moment B is later or earlier than . To
express concisely the former sort of diversity, in which the moment B is later than a,
we may write

B>A; (3.)

and the latter sort of diversity, in which the moment B is earlier than a, may be ex-
pressed concisely in this other way,

B<A. (4.)
It is evident that
if B=a, then A=3; (5.)
if BFa, then a+s ; (6.)
if B>A, then A<B; (7.)
if B<A, then aA>B. (8.)

Comparison of two pairs of moments, with respect fo their analogy or- non-analogy.

2. Considering now any two other dates c and b, we perceive that they may and
must represent either the same pair of moments as that denoted by the former pair
of dates A and B, or else a djfferent pair, according as the two conditions,

c=4, and D=B5, 9.

are, or are not, both satisfied. If the new pair of moments be the same with the old,
then the connecting relation of identity or diversity between the moments of the one
pair is necessarily the same with the relation which connects in like manner the mo-
ments of the other pair, because the pairs themselves are the same. But even if the
pairs be different, the relations may still be the same ; that is, the moments ¢ and b,
even if not both respectively coincident with the moments a and B, may still be re-
lated to each other exactly as those moments, (D to c as B to A ;) and thus the two
pairs, A, B and ¢, b may be analogous, even if they be not coincident with each other.

An analogy of this sort (whether between coincident or different pairs) may be ex-
pressed in writing as follows,
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D~C=B—A, OF, B~A=D—C}; (10.)

the interposed mark =, which before denoted identity of moments, denoting now
identity of relations : and the written assertion of this identity being called (as before)
an eguation. The conditions of this exact identity between the relation of the mo-
ment D to ¢, and that of B to A, may be stated more fully as follows: that if the mo-
ment B be identical with A, then p must be identical with c ; if B be later than a,
then »p must be later than c, and exactly so much later; and if B be earlier than
A, then p must be earlier than ¢, and exactly so much earlier. It is evident, that what-
ever the moments A B and ¢ may be, there is always one, and only one, connected mo-
ment », which is thus related to c, exactly as B is to A ; and it is not difficult to per-
ceive that the same moment D is also related to B, exactly as c is to A : since, in the
case of coincident pairs, D is identical with B, and ¢ with a ; while, in the case of pairs
analogous but not coincident, the moment » is later or earlier than B, according as c
is later or earlier than A, and exactly so much later or so much earlier. If then the
pairs A, B, and c, D, be analogous, the pairs A ¢ and B, which may be said to be
alternate to the former, are also analogous pairs ; that is,

if D—c=B_.A,thenD—B=cCc—a4}; (11.)

a change of statement of the relation between these four moments A B ¢ b, which
may be called alternation of an analogy. It is still more casy to perceive, that if any
two pairs AB and cp be analogous, then the tnverse pairs pa and pc are analogous
also, and therefore that

if p—c= B—a, then c—p=2a—B, (12)

a change in the manner of expressing the relation between the four moments
A B ¢ D, which may be called inversion of an analogy. Combining inversion with
alternation, we find that

if D—c=B—a4, then B—D=A—cC}; (13.)

and thus that all the eight following written sentences express only one and the same
relation between the four moments A B¢ p :

D—C=B—4A, B—A=D—C,)

D—B=C—A, C—A=D—BRB, (14.)
C—D=A—_B, A—B=C—D, )

B—D=A_-C, A—C=B—D;}
any one of these eight written sentences or equations being equivalent to any other.
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3. When the foregoing relation between four moments A Bc b does not exist,

that is, when the pairs AB and cp are not analogous pairs, we may mark this non-
analogy by writing

D—C}B—Aj (15.)

and the two possible cases into which this general conception of non-analogy or di-
versity of relation subdivides itself, namely, the case when the analogy fails on ac-
count of the moment p being t00 late, and the case when it fails because that moment
D is f00 early, may be denoted, respectively, by writing in the first case,

D—C>B—a4, (16.)
and in the second case,

D—C<B—Aj; (17.)

while the two cases themselves may be called, respectively, a non-analogy of subse-
quence, and a non-analogy of precedence. We may also say that the relation of
D to ¢, as compared with that of B to 4, is in the first case a relation of comparative
lateness, and in the second case a relation of comparative earliness.

Alternations and inversions may be applied to.these expressions of non-analogy, and
the case of D foo late may be expressed in any one of the eight following ways, which
are all equivalent to each other,

D—C>B—A, B—A<D—C,
D—B>C_A, C—A<D—B, (18-)
¢ —D<A—B, A~B>C—D,
B—D<A—C, A—C>B—D;

while the other case, when the analogy fails because the moment b is foo early, may
be expressed at pleasure in any of the eight ways following,

D—C<B—4A, B—ADD-—C,
D—B<LC—A, C_A>D—~B,
C—D>A—B, A_B<LC—D,
B—D>A—Cy, A—C<B—D.

(19.)

In general, if we have any analogy or non-analogy between two pairs of moments,
A B and c p, of which we may call the first and fourth mentioned moments, A and b,
the ewtremes, and the second and third mentioned moments, namely, B and c, the



and on Algebra as the Science of Pure Time. 303

means, and may call A and c the anfecedents, and B and v the consequents ; we do
not disturb this analogy or non-analogy by interchanging the means among them-
selves, or the extremes among themselves ; or by altering equally, in direction and in
degree, the two consequents, or the two antecedents, of the analogy or of the non-
analogy, or the two moments of either pair ; or, finally, by altering oppositely in di-
rection, and equally in degree, the two extremes, or the two means. In an analogy,
we may also put, by inversion, extremes for means, and means for extremes; but if a
non-analogy be thus inverted, it must afterwards be changed in kind, from subse-
quence to precedence, or from precedence to subsequence.

Combinations of two different analogies, or non-analogies, of pairs of moments,
with each other.

4. From the remarks last made, it is manifest that
if D—c=B-—a,
and p'—p=58"—5, (20.)
then o' —c=8"—a4;

because the second of these three analogies shews, that in passing from the first to the
third, we have either made no change, or only altered equally in direction and in
degree the two consequent moments B and » of the first analogy. In like manner,

if D~c=B—a,
and ¢'—c =A —a, (21.)
thenp —¢'=B —4’;

because now, in passing from the first to the third analogy, the second analogy shews
that we have either made no change, or else have only altered equally, in direction
and degree, the antecedents 4 and ¢. Again,

f D—c=B—a,
and p'—p=c'—c, (22.)
thenp'—c' =B —a;

because here we have only altered equally, if at all, the two moments ¢ and » of one
common pair, in passing from the first analogy to the third. Again,

if D—c=B-—a,
and ¢ —c¢' =8 —B, (23.)
thenp—c'=8'—a;
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because now we e.ther do not, alter the means B and c at all, or else alter them oppo-
sitely in direction and equally in degree. And similarly,

if D —c=B—a,
and D'—D:A—A’,} (24.)

thenp'—c=8—4/,

because here we only alter equally, if at all, in degree, and oppositely in direction,
the extremes, A and p, of the first analogy. It is still more evident that if two pairs
be analogous to the same third pair, they are analogous to each other ; that is

if D—c=3B —a,
and B—a=p -, (25.)
thenp—c=p"—c.

And each of the foregoing conclusions will still be true, if we change the first supposed
analogy p — ¢ =B— A, to anon-analogy of subsequence p — ¢ > B — 4, or to a non-analogy
of precedence D —c <B— A, provided that we change, in like manner, the last or con-
cluded analogy to a non-analogy of subsequence in the one case, or of precedence
in the other.

It is easy also to see, that if we still suppose the first analogy p—c=B—aA to
remain, we cannot conclude the third analogy, and are not even at liberty to suppose
that it exists, in any one of the foregoing combinations, unless we suppose the second
also to remain : that is, if two analogies have the same antecedents, they must have
analogous consequents ; if the consequents be the same in two analogies, the antece-
dents must themselves form two analogous pairs ; if the extremes of one analogy be
the same with the extremes of another, the means of either may be combined as
extremes with the means of the other as means, to form a new aralogy ; if the means
of one analogy be the same with the means of another, then the extremes of either may
be combined as means with the extremes of the other as extremes, and the resulting
analogy will be true ; from which the principle of inversion enables us farther to
infer, that if the extremes of one analogy be the same with the means of another,
then the means of the former may be combined as means with the extremes of the
latter as extremes, and will thus generate another true analogy.

On continued Analogies, or Equidistant Series of Moments,
5. It is clear from the foregoing remarks, that in any analogy
B'—A'=B—a, (26.)

the two moments of either pair A B or A’ 8’ cannot coincide, and so reduce themselves
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to one single moment, without the two moments of the other pair o’ 8" or A B being
also identical with each other ; nor can the two antecedents a A’ coincide, without the
two consequents B B coinciding also, nor can the consequents without the antecedents.
The only way, therefore, in which two of the four moments A B A"B’ of an analogy
can coincide, without the two others coinciding also, that is, the only way in which an
analogy can be constructed with three distinct moments of time, is either by the two
extremes A B’ coinciding, or else by the two means B A’ coinciding ; and the principle
of inversion permits us to reduce the former of these two cases to the latter. We
may then take as a sufficient type of every analogy which can be constructed with
three distinct moments, the following :

B—B=B—A}; (21.)

that is, the case when an extreme moment B’ is related to a mean moment B, as that
mean moment B is related to another extreme moment a; in which case we shall say
that the three moments A B B compose a continued analogy. In such an analogy,
it is manifest that the three moments A B B’ compose also an equidistant series, ®'
being exactly so much later or so much earlier than B, as B is later or earlier than a.
The moment B is evidently, in this case, exactly intermediate between the two other
moments A and B, and may be therefore called the middle moment, or the bisector,
of the interval of time between them. It is clear that whatever two distinct moments
a and B’ may be, there is always one and only one such bisector moment B; and that
thus a continued analogy between threc moments can always be constructed in one
but in only one way, by inserting a mean, when the extremes are given. And it is
still more evident, from what was shewn before, that the middle moment B, along with
either of the extremes, determines the other extreme, so that it is always possible to
complete the analogy in one but in only one way, when an extreme and the middle
are given.

6. If, besides the continued analogy (27.) between the three moments A B B/, we
have also a continued analogy between the two last B B’ of these three and a fourth
moment B”, then the four moments A B B’ B” may themselves also be said to form
another continued analogy, and an equidistant series, and we may express their rela-
tions as follows :

B"—B =p'—B=B—A. (28.)

In this case, the interval between the two extreme moments o and »” is trisected by
the two intermediate moments B and g/, and we may call B the first trisector, and &’
the second trisector of that interval. If the first extreme moment a and the first
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trisector moment B be given, it is evidently possible to complete the continued analogy
or equidistant series in one and in only one way, by supplying the second trisector
B and the second extreme B” ; and it is not much less easy to perceive that any two
of the four moments being given, (together with their names of position in the series,
as such particular extremes, or such particular trisectors,) the two other moments can
be determined, as necessarily connected with the given ones. Thus, if the extremes
be given, we must conceive their interval as capable of being trisected by two means,
in one and in only one way ; if the first extreme and second trisector be given, we
can bisect the interval between them, and so determine (in thought) the first trisector,
and afterwards the second extreme; if the two trisectors be given, we can continue
their interval equally in opposite directions, and thus determine (in thought) the two
extremes ; and if either of these two trisectors along with the last extreme be given,
we can determine, by processes of the same kind, the two other moments of the
series.

7. In general, we can imagine a continued analogy and an equidistant series, com-
prising any number of moments, and having the interval between the extreme moments
of the series divided into the next lesser number of portions equal to each other, by a
number of intermediate moments which is itself the next less number to the number of
those equal portions of the whole interval. For example, we may imagine an equi-
distant series of five moments, with the interval between the two extremes divided
into four partial and mutually equal intervals, by three intermediate moments, which
may be called the first, second, and third quadrisectors or quarterers of the total
interval. And it is easy to perceive, that when any two moments of an equidistant
series are given, (as such or such known moments of time, ) together with their places in
that series, (as such particular extremes, or such particular intermediate moments,) the
other moments of the series can then be all determined ; and farther, that the series
itself may be continued forward and backward, so as to include an unlimited number
of new moments, without losing its character of equidistance. Thus, if we know the
first extreme moment A, and the third quadrisector B’ of the total interval (from A
to B”) in any equidistant series of five moments, A B® 8’ B”, we can determine by
trisection the two first quadrisectors B and ®, and afterwards the last extreme moment
8" ; and may then continue the series, forward and backward, so as to embrace other
moments B", B, &c., beyond the fifth of those originally conceived, and others also
such as E, E, £/, &c., behind the first of the original five moments, that is, preceding
it in the order of progression of the series ; these new moments forming with the old
an equidistant series of moments, (which comprehends as a part of itself the original
series of five,) namely, the following unlimited series,



and on Algebra as the Science of Pure Time. 307
«..2'EEABEB B"B" B" B"..., (29.)
constructed so as to satisfy the conditions of a continued analogy,
«..B'—3"=8"—B"=B"—B"=p" -8 =B ~B=B—A=A—E=E—E =& —E"... (30.)

8. By thus constructing and continuing an equidistant series, of which any two
moments are given, we can arrive at other moments, as far from those two, and as near
to each other, as we desire. For no moment B can be so distant from a given moment
A, (on either side of it, whether as later or as earlier,) that we cannot find others
still more distant, (and on the same side of A, still later or still earlier,) by continuing
(in both directions) any given analogy, or given equidistant series; and, therefore,
no two given moments, ¢ and b, if not entirely coincident, can possibly be so near
to each other, that we cannot find two moments still more near by treating any two
given distinct moments (A and B), whatever, as extremes of an equidistant series of
moments sufficiently many, and by inserting the appropriate means, or intermediate
moments, between those two given extremes. Since, however far it may be necessary
to continue the equidistant series ¢ p...p", with ¢ and o for its two first moments, in
order to arrive at a moment p" more distant from c¢ than 5 is from 4, it is only ne-
cessary to insert as many intermediate moments between A and B as between ¢ and
v’, in order to generate a new equidistant series of moments, each nearer to the one
next it than v to c. Three or more moments A B ¢ &c. may be said to be wuniserial
with each other, when they all belong to one common continued analogy, or equi-
distant series; and though we have not proved (and shall find it not to be true) that
any three moments whatever are thus uniserial moments, yet we see that if any two
moments be given, such as A and B, we can always find a third moment p" uniserial
with these two, and differing (in either given direction) by less than any interval pro-
posed from any given third moment c, whatever that may be. This possibility of
indefinitely appproaching (on either side) to any given moment c, by moments
uniserial with any two given ones A and B, increases greatly the importance whiclh
would otherwise belong to the theory of continued analogies, or equidistant series
of moments. Thus if any two given dates, ¢ and b, denote two distinct moments of
time, (¢ == ,) however near to each other they may be, we can always conceive their
diversity detected by inserting means sufficiently numerous between any two other
gwen distinct moments A and B, as the extremes of an equidistant series, and then, if
necessary, extending this series in both directions beyond those given extremes, until
some one of the moments B' of the equidistant series thus generated is found to fall

between the two near moments ¢ and p, being later than the earlier, and earlier than
VOL. XVII. 8o
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the later of those two. And, therefore, reciprocally, if in any case of two given
dates ¢ and p, we can prove that no moment B’ whatever, of all that can be imagined
as uniserial with two given distinct moments a and B, falls thus between the moments
¢ and b, we shall then have a sufficient proof that those two moments ¢ and p are
identical, or, in other words, that the two dates ¢ and b represent only one common
moment of time, (¢c=b,) and not two different moments, however little asunder.

And even in those cases in which we have not yet succeeded in discovering
a rigorous proof of this sort, identifying a sought moment with a known one, or dis-
tinguishing the former from the latter, the conception of continued analogies offers
always a method of research, and of nomenclature, for investigating and expressing,
or, at least, conceiving as investigated and expressed, with any proposed degree of
approximation if not with perfect accuracy, the situation of the sought moment in
the general progression of time, by its relation to a known equidistant series of
moments sufficiently close. This might, perhaps, be a proper place, in a complete
treatise on the Science of Pure 1%me, to introduce a regular system of integer ordi-
nals, such as the words first, second, third, &c., with the written marks 1, 2, 3, &c.,
which answer both to them and to the cardinal or quotitative numbers, one, two,
three, &c. ; but it is permitted and required, by the plan of the present essay, that we
should treat these spoken and written names of the integer ordinals and cardinals,
together with the elementary laws of their combinations, as already known and
familiar, It is the more admissible in point of method to suppose this previous
acquaintance with the chief properties of integer numbers, as set forth in elementary
arithmetic, because these propertics, although belonging to the Science of Pure Time,
as involving the conception of succession, may all be deduced from the unfolding of
that mere conception of succession, (among things or thoughts as counted,) without
requiring any notion of measurable intervals, equal or unequal, between successive
moments of time. Arithmetic, or the science of counting, is, therefore, a part, indeed,
of the Science of Pure T%me, but a part so simple and familiar that it may be pre-
sumed to have been previously and separately studied, to some extent, by dny one
who is entering on Algebra.

On steps in the progression of time ; their application (direct or inverse) to moments,
so as to generate other moments ; and their combination with other steps, in the
way of composition or decomposition.

9. The foregoing remarks may have sufficiently shewn the importance, in the
general study of pure time, of the conception of a continued analogy or equidistant
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series of moments. This conception involves and depends on the conception of the
repeated transference of one common ordinal relation, or the continued application of
one common mental step, by which we pass, in thought, from any moment of such a
series to the moment immediately following. Ior this, and for other reasons, it is
desirable to study, generally, the properties and laws of the transference, or applica-
tion, direct or inverse, and of the composition or decomposition, of ordinal relations
between moments, or of steps in the progression of time; and to form a convenient
system of written signs, for concisely expressing and reasoning on such applications and
such combinations of steps.

In the foregoing articles, we have denoted, by the complex symbol B —a, the ordinal
relation of the moment B to the moment A, whether that relation were one of identity
or of diversity ; and if of diversity, then whether it were one of subsequence or of
precedence, and in whatever degree. Thus, having previously interposed the mark
= between two equivalent signs for one common moment of time, we came to inter-
pose the same sign of equivalence between any two marks of one ordinal relation,
and to write

D—C:B"‘A,

when we designed to express that the relations of p to ¢ and of B to A were coin-
cident, being both relations of identity, or both relations of diversity; and if the
latter, then both relations of subseyuence, or both relations of precedence, and both
in the same degree. In like manner, having agreed to interpose the mark == be-
tween the two signs of two moments essentially different from each other, we wrote

D —CB—),
when we wished to express that the ordinal relation of » to ¢ (as identical, or sub-
sequent, or precedent) did not coincide with the ordinal relation of the moment B to
A ; and, more particularly, when we desired to ciistinguish between the two principal
cases of this non-coincidence of relations, namely the case when the relation of b to
¢ (as compared with that of B to A) was comparatively a relation of lateness, and the
case when the same relation (of p to c) was comparatively a relation of earliness,
we wrote, in the first case,

D—C>B—3,
and in the second case,

D—C<B—A,
having previously agreed to write

B>A
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if the moment B were later than the moment a, or
B<aA
if B were earlier than a.

Now, without yet altering at all the foregoing conception of 8—a, as the symbol
of an ordinal relation discovered by the comparison of two moments, we may in some
degree abridge and so far simplify all these foregoing expressions, by using a simpler
symbol of relation, such as a single letter a or b &c. or in some cases the character
0, or other simple signs, [instead of a complex symbol such as z—a, or p—c, &c.
Thus, if we agree to use the symbol O to denote the relation of identity between two
moments, writing

A—A=0y (81.)

we may express the equivalence of any two dates B and A, by writing
B—A=0, (82.)
and may express the non-equivalence of two dates by writing
B—ATO0; (33.)
distinguishing the two cases when the moment B is later and when it is earlier than a,
by writing, in the first case,
B—A>0, (84.)
and in the second case,
B—aA<O0, (85.)

to express, that as compared with the relation of identity O, the relation 3 —a is in
the one case a relation of comparative lateness, and in the other case a relation of
comparative earliness : or, more concisely, by writing, in these four last cases re-
spectively, which were the cases before marked (1.) (2.) (8.) and (4,)

a=0, (86.)
a=F0, (87.)
a> 0, (38.)
a<O0, (89.)
if we put, for abridgement,
B—A=a, (40.)

Again, if we put, in like manner, for abridgement,
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the analogy (10.) namely,
D—C=B—A,
may be concisely expressed as follows,
b=a; 42.)
while the general non-analogy (15.),
Dp—0C=kB—a,
may be expressed thus,
bta, (43.)
and the written expressions of its two cases (16.) and (17.), namely,
D—C>B—A
and D—c<B—A,
may be abridged in the following manner,
b>a, (44.)
and b<a. 45.)

Again, to denote a relation which shall be exactly the inverse or opposite of any
proposed ordinal relation a or b, we may agree to employ a complex symbol such
as © a or © b, formed by prefixing the mark ©, (namely, the initial letter O of the
Latin word Oppositio, distinguished by a bar across it, from the same letter used for
other purposes,) to the mark a or b of the proposed ordinal relation ; that is, we may
agree to use © a to denote the ordinal relation of the moment A to B, or ©b to
denote the ordinal relation of ¢ to p, when the symbol = has been already chosen to

denote the relation of B to s, or b to denote that of p to ¢: considering the two
assertions

B—A=3,and A—B=9 a, (46.)
as equivalent each to the other, and in like manner the two assertions
D—c="b,and c—D=0Ob, (47.)

and similarly in other eases. In this notation, the theorems (5.) (6.) (7.) (8.)
may be thus respectively written :

03=0, if a=0; (48.)
© a0, if =0 (49.)
6a<0, if a>0; (50.)

e a>0’ if a<0; (51»)
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and the theorem of inversion (12.) may be written thus :

Ob=0a, if b=a, (52.)
The corresponding rules for inverting a non-analogy shew that, in general,
O b0a, if bza;, (58.)
and more particularly, that
Ob<Oa, ifb> a, (54.)
and ©b> 0, if b< a, (55.)
It is evident also that
if ¥=03a, then a=0 d'; (66.)

that is, the opposite of the opposite of any proposed relation a is that proposed
relation itself; a theorem which may be concisely expressed as follows :

0 (Ba)=a; (57.)

for, as a general rule of notation, when a complex symbol (as here © =) is substituted
in any written sentence (such as here the sentence s=© a) instead of a simple
symbol (which the symbol «, notwithstanding its accent, is here considered to be),
it is expedient, and in most cases necessary, for distinctness, to record and mark this
using of a complex as a simple symbol, by some such written warning as the enclosing
of the complex symbol in parentheses, or in brackets, or the drawing of a bar across
it. However, in the present case, no confusion would be likely to ensue from the
omission of such a warning ; and we might write at pleasure

0(0)=12, 0{0al=a, O[0a] =2, 8 Oa= a, or simply © © a=a. (58.)

10. For the purpose of expressing, in a somewhat similar notation, the propérties
of alternations and combinations of analogies, set forth in the foregoing articles, with
some other connected results, and generally for the illustration and development of
the conception of ordinal relations between moments, it is advantageous to intro-
duce that other cornected conception, already alluded to, of sfeps in the progression
of time ; and to establish this other symbolic definition, or conventional manner of
writing, namely,

B=(B—A)+4A, Or B=a+A if B—a=a; (59.)

this notation a+4a, or (B—A)+4, corresponding to the above-mentioned concep-
tion of a certain mental step or act of transition, which is determined in direction
and degree by the ordinal relation = or s—a, and may, therefore, be called ¢the
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step »,” or the step 5—A, and which is such that by making this mental step, or
performing this act of transition, we pass, in thought, from the moment A to the
moment B, and thus suggest or generate (in thought) the .latter from the former, as
a mental product or result B of the act a and of the object A. We may also express
the same relation between B and A by writing

A=(© a) +B, or more simply A =0 2 +5, (60.)

if we agree to writc the sign ©a without parentheses, as if it were a simple or single
symbol, because there is no danger of causing confusion thereby ; and if we observe
that the notation A=© a+B corresponds to the conception of another step, or
mental act of transition, © s, exactly opposite to the former step s, and such that by
it we may refwrn (in thought) from the moment B to the moment A, and thus may
generate A as a result of the act ©a and of the object B. The mark +, in thissortof
notation, is interposed, as a mark of combination, between the signs of the act and
the object, so as to form a complex sign of the result ; or, in other words, between
the sign of the transition (» or O 2) and the sign of the moment (A or B) from which
that transition is made, so as to express, by a complex sign, (recording the suggestion
or generation of the thought,) that other moment (8 or A) fo which this mental tran-
sition conducts. And in any transition of this sort, such as that expressed by the
equation B= a +a, we may call (as before) the moment A, from which we pass, the
antecedent, and the moment B, {0 which we pass, the consequent, of the ordinal \rela-
tion 2, or B—A, which suggests and determines the transition. In the particular
case when this ordinal relation is one of identity, (+=0,) the mental transition or
act (» or 0) makes no change in the object of that act, namely in the moment s, but
only leads us to repeat the thought of that antecedent moment A, perhaps with a
new name B in this case, therefore, the transition may be said to be null, or a null
step, as producing no real alteration in the moment from which it is made. A step
not null, (a:0,) corresponds to a relation of diversity, and may be called, by con-
trast, an effective step, because it is an act of thought which really alters its object,
namely the moment to which it is applied. An effective step a must be either a late-
making or an early-making step, according as the resultant moment a -+ A is later or
earlier than A ; but even a nail/ step O may be regarded as relatively late-making,
when compared with an early-making step a, (O +A> a +4, if 2<0,) or as relatively
early-making if compared with a late-making step b; (O+A<b 44, if b>0;) and,
in like manner, of two unequal early-making steps, the lesser may be regarded as
relatively late-making, while of two unequal late-making steps the lesser step may be
considered as relatively early-making. With these conceptions of the relative effects
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of any two steps a and b, we may enunciate in words the non-analogy (44.), (b > 4,
that is, b+ A > a +4,) by saying that the'step b as compared with:the step 2 isrelatively
late-making ; and the opposite non-analogy (45.), (b < a, that is,. b+a <a'+a,) by
saying that the step b as compared with » is relatively early-making.

11. After having made any one step a from a proposed moment- A to a resulting
moment represented (as before) by a + A, we may conceive that we next make from
this new moment a + & a new step b, and may denote the.-new result by the new com-
'ple‘c symbol b+ (a +A); enclosing in parentheses the sign a-+a of the object of this
new act of mental transition, or (in other words) the sign of the new antecedent

moment, to mark that it is a compléx used as a simple symbol; so that, in this
notation,

if B—A=1, and c—B= b, then c=b +(a +A4). (61.)

1t is evident that the Zotal change or total step, effective or null, from the first
moment A to the last moment ¢, in this successive transition from A to B and from
x to ¢, may be considered as compounded of the two successive or partial steps »
and b, namely the step a from A to B, and the step b from B to c¢; and that the
wltimate ordinal relation of ¢ to A may likewise be considered as compounded of the
two intermediate (or sugcrestmcr) ordinal relations b and a, namely, the relation b of
¢ to B, and the relation , of B to A ; a composition of steps or of relations which may
conveniently be denoted, by interposing, as a mark of combination, between the signs
of the component steps or of the component ordinal relations, the same mark +
which was before employed to combine an act of transition with its object, or an
ordinal relation with its antecedent. We shall therefore denote the compound trans-
ition from A to C, or the compound relation of ¢ to A, by the complex symbol b + s,

writing,
C—a=b +a,if B—A=a,and c—B=hb, (62.)
that is,

c="b-+a, if B=a+A, C=b+8, c=c +A. (68.)
Tor example, the case of coincidence between the moments a and c, that is, the
case when the resulting relation of ¢ to A is the relation of identity, and when there-
fore the total or compound transition from A to € is null, because the two component

or successive steps a and b have been exactly opposite to each other, conducts to the
relations,

©a+a=0; b+4+0b=0, (64.)
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In general, the establishment of this new complex mark b + s, for the compound
mental transition from a through B to c, permits us to regard the two written asser-
tions or equations

c=(b+3a)+a and c=b +(a +4), (65.)

as expressing: the same thing, or as each involving the other; for which reason we. are
at liberty to omit the parentheses, and may write, more simply, without fear of causing
confusion,

c=b+a+a ifc=b+B, andB= a+ A: (66.)

because the: complex symbol b + a + A denotes only the one determined moment c,
whether it be interpreted by first applying the step a to the moment 4, so as to ge-
nerate another moment denoted by the complex maik a + a, and afterwards applying
to this moment the step denoted by b, or by first combining the steps » and b into
one compound step b + s, and afterwards applying this compound step to the original
moment A.

In like manner, if three successive steps a bec have conducted successively (in
thought) from A to B, from B to c, and from c to p, and therefore ultimately and
upon the whole from A to b, we may consider this total transition from 4 to » as
compounded of the three steps a b ¢; we may also regard the resulting ordinal relation
of D to A as compounded of the three relations ¢, b, a, namely of the relation ¢ of
D to ¢, the relation b of c¢ to B, and the relation » of B to aA; .and may denote
this compound step or compound relation by the complex symbol ¢ +b + a, and the
last fesulting moment p by the connected symbol ¢ +b + = +4; in such a manner
that:

D—A=c+b+ta, andp=c+b+2+a, (67)
if B—A=a, c—p=b, andb—Cc=c. &

For example,

€+9a+a:c,c-+b+6b:c,} (68.)

Ob4bta=a,e +Qcta=a,

Remarks of the same kind apply to the composition of more successive steps than
three. And we see that in any complex symbol suggested by this sort of composition,
such as ¢ + b 4+ a +4a, we are at liberty to enclose any two or more successive compo-

nent symbols, such as ¢ or b or a or a, in parentheses, with théir proper combining
VOL. XVIL 3p
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marks +, and to treat the enclosed set as if they formed only one single symbol ;
thus,

e+bt+ata=c+b+(atA)=c+(b+a)+ta }

=(c+b+a)+a, &, (69-}

the notation ¢ 4-(b +2)+ 4, for example, directing us to begin by combining (in
thought) the two steps a and b into one compound step b + 2, and then to apply
successively this compound step and the remaining step ¢ to the origihal moment A ;
while the notation (e + b +a)+a suggests a previous composition (in thought} of
all the three proposed steps a, b, ¢, into one compound step ¢ + b + a, and then the
application of this one step to the same original moment. It is clear that all these
different processes must conduct to one common result ; and generally, that as, by the
very meaning and conception of a compound step, it may be applied to any moment
by applying in their proper order its component steps successively, so-also may these
components be compounded successively with any other step, as a mode of com-
pounding with that other step the whole original compound.

We may also consider decomposition as well as composition of steps, and may pro-
pose to deduce either of two components 2 and b from the other component and from

the compound b + a. For this purpose, it appears from (68.) that we have the re~
lations

a=0Ob+4+ec,and b=c +9a,ifc:b+a; (70)

observing that a problem of decomposition is plainly a determinate problem, in the
sense that if any one component step, such as here the step denoted by ©b + ¢, or
that denoted by ¢ +©a, has been found to conduct to a given compound c, wlhen
combined in a given order with a given component b or a, then no other component
a or b, essentially different from the one thus found, can conduct by the same process
of composition to the same given compound step. We sce then that each of the two
components a and b may be deduced from the other, and from the compound ¢, by
compounding with that given compound the opposite of the given component, in
suitable order of composition, which order itself we shall shortly find to be indifferent.

Meanwhile it is important to observe, that though we have agreed, for the sake of
conciseness, to omit the parentheses about a complex symbol of the kind ©a, when
combined with other written signs by the interposed mark +, yet it is in general ne-
cessary, if we would avoid confusion, to retain the parentheses, or some such. con-
necting mark or marks, for any complex symbol of a step, when we wish to form, by
prefixing the mark of opposition 8, a symbol for the opposite of that step: for
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example, the opposite of a compound step b + a must be denoted in some such
manner as © (b + a), and not merely by writing ©b + a.  Attending to this remark,
we may write

O (b +a)=0a 40Ob, (71.)

because, in order to destroy or undo the effect of the compound step b + a, it is suf-
ficient first to apply,the step ©b which destroys the effect of the last component stepb,
and afterwards to destroy the effect of the first component step = by applying its op-
posite ©a, whatever the two steps denoted by = and b may be. In like manner,

O(c+b+a)=0a +0b 40c; (72.)

and similarly for more steps than three.
12. We can now express, in the language of sieps, several other general theorems,
for the most part contained under a different form in the early articles of this Essay.
Thus, the propositions (20.) and (21.), with their reciprocals, may be expressed by
saying that if equivalent steps be similarly combined with equivalent steps, whether in
the way of composition or of decomposition, they generate equivalent steps; an asser-
tion which may be written thus :

if ¥=a,then b 4-a'=b + 2, a' 4+ b=a + b,
b +0a=b +0a, Qa4 b=0a +b, (78.)
Ob +a=0b 4 a, 2/ +Ob=2 4+ 0b, &c.
The proposition (25.) may be considered as expressing, that if two steps be equiva-
lent to the same third step, they are also equivalent to each other ; or, that

if a"=a' and a’=a, then a"=32 (74.)
The theorem of alternation of an analogy (11.) may be included in the assertiom

that in the composition of any two steps, the order of those two components may be
changed, without altering the compound step ; or that

a+b=>b4a, (75.)

For, whatever the four moments A B¢ p may be, which construct any proposed ana-
logy or non-analogy, we may denote the step from A to B by a symbol such as a, and
the step from B to o by another symbol b, denoting also the step from a to c by v,
and that from ¢ to o by ' ; in such a manner that

B—Az=a,D~B=b, c—A=V, D—C=v; (76.)
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and then the total step from A to D may be denoted either by b +a or by ~+V, ac-
cording as we' conceive the transition performed by passing through B or through c;
we have therefore the relation

A W=D 4a, 77
which becomes
a4+ bV==b+a, (78,)
when we establish the analogy
D—C=B—4, that is, « = »; (79.)

we see then that if the theorem (75.) be true, we cannot have the analogy (79.) with-
out having also its alternate analogy, namely

b=V, or D-B=C—A: (80.)

because the compound steps 2 + v and 2 +b, with the common second component =,
could not be equivalent, if the first components v and b were not also equivalent
to each other. The theorem (75.) includes, therefore, the theorem of alternation.

Reciprocally, from the theorem of alternation considered as known, we can infer
the theorem (75.), namely, the indifference of the order of any two successive compo-
nents a, b, of a compound step : for, whatever those two component steps a and b
may be, we can always apply them successively to any one moment 4, so as to gene-
rate two other moments B and ¢, and may again apply the step = to ¢ so as to gene-
rate a fourth moment p, the moments thus suggested having the properties

B=sas+A, C=b+A D=a+¢, (81.)
and being therefore such that

D—A=a+b, D—C=a=B—Aj (82.)

by alternation of which last analogy, between the two pairs of ‘moments A B and ¢ b,
we find this other analogy,
D—~B=C—A=b, D=Db+B="b + a + 4, (83.)
and finally,
b a=D—A=a+b. (84.)
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The propositions (22.) (238.) (24.), vespecting certain combinations of analogies,
are included in the same assertion (75.) ; which may also, by (71.), be thus expressed,

a+b=0(0a+0Ob),0r, b+a=0(Ob+60a); (85.)

that is, by saying that it comes to the same thing, whether we compound any two
steps a and b themselves, or first compound their opposites © a, © b, into one com-
pound step © b+© a, and then take the opposite of this. Under this form, the
theorem of the possibility of reversing the order of composition may be regarded as
evident, whatever the number of the component steps may be ; for example, in the
case of any three component steps a, b, ¢, we may regard it as cvident that by apply-
ing these three steps successively to any moment a, and generating thus three
moments B, ¢, D, we generate moments related to A as A itself is related to those
three other moments 8', ¢/, o', which are generated from it by applying successively,
in the same order, the three respectively opposite steps, © a, © b, © ¢; that is, if

c=b+03B, ¢C=00b + 1,
D=c+¢C, D=6c¢c 4+ C,

B=a+ A, B=0a + A,
(86.)

then the sets 3 AB, ¢’ Ac, D' A D, containing each three moments, form so many
continued analogies or equidistant series, such that

B—A=A—§

C—-A=A—C’} (87.)

and therefore not only b + 2 =6 (6b +©2), as before, but also
c+b+a=0 (0c+Ob+0Oa), (88.)

that is, by (72.) and (57.),

c+b+a=a+b+ec; (89.)

and similarly for more steps than three.
The theorem (89.) was contained, indeed, in the reciprocal of the proposition
(24.), namely, in the assertion that

if D~c=5-—2,
and p’—c=8B—4, (90.)
then D’ —pD=2a—24,
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and, therefore, by alternation,
D'—Aa=D—14"; (91.)

for, whatever the three steps abe may be, we may always conceive them applied suc-
cessively to any moment A, so as to generate three other moments B, ¢, o', such that

B=a+A, C=b+B, D=c+¢, {92.)

and may also conceive two other moments A’ and p such that B ¢ b may be succes-
sively generated from A’ by applying the same three steps in the order ¢, b, s, so that

B=c+A, C=b+B, D=a +C; (98.)

angd then the two first analogies of the combination (90.) will hold, and, therefore,
also the last, together with its alternate (91.); that is, the step from A to », com-
pounded of the three steps abe, is equivalent to the step from A’ to », compounded of
the same three steps in the reverse order cba.

Since we may thus reverse the order of any three successive steps, and also the
order of any two which immediately follow each other, it is easy to see that we may
interchange in any manner the order of three successive steps ; thus

c+b+a=&+8+b=b+-/c+a} (94_.)

=a+4+ b4+ c=at+c+b=b+a-tec

We might also have proved this theorem (94.), without previously establishing the
less general proposition (89.), and in a manner which would extend to any number of
component steps ; namely, by observing that when any arrangement of component
steps is proposed, we may always reserve the first (and by still stronger reason any
other) of those steps to be applied the last, and leave the order of the remaining steps
unchanged, without altering the whole compound step; because the components
which followed, in the proposed arrangement, that one which we now reserve for the
last, may be conceived as themselves previously combined into one compound step,
and this then interchanged in place with the reserved ome, by the theorem respecting
the arbitrary order of any two successive steps. In like manner, we might reserve
any other step to be the last but one, and any other to be the last but two, and soon ;
by pursuing which reasoning it becomes manifest that when any number of component
steps are applicd to any original moment, or compounded with any primary step, their
order may be altered at pleasure, without altering the resultant moment, or the whole
compounded step : which is, perhaps, the most important and extensive property of
the composition of ordinal relations, or steps in the progression of time.
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On the Multiples of a given base, or unit-step ; and on the Algebraic Addition,
Subtraction, Multiplication, and Division, of their determining or multipling
Whole Numbers, whether positive, or contra-positive, or null.

13. Let us now apply this general theory of successive and compound steps, from
any one moment to any others, or of component and compound ordinal relations
between the moments of any arbitrary set, to the case of an equidistant series of
moments,

..E'CEABE B ... (29.)
constructed so as to satisfy the conditions of a continued analogy,
. B'—8=p —B=pP—A=A—CL=r0-L =1 —1", &c.; (30.)

and first, for distinctness of conception and of language, let some one moment a of
this series be selected as a standard with which all the others are to be compared, and
let it be called the zero-moment ; while the moments B, ', &c. which follow it, in the
order of progression of the series, may be distinguished from those other moments
L, £, &c., which precede it in that order of progression, by some two contrasted
epithets, such as the words positive and contra-positive : the moment B being called
the positive first, or the first moment of the series on the positive side of the zero 5
while in the same plan of nomenclature the moment ®' is the positive second, B" the
positive third, t the contra-positive first, € the contra-positive second, and so forth.
By the nature of the series, as composed of cqui-distant moments, or by the condi-
tions (30.), all the positive or succeeding moments B B’ &c. may be conceived as
generated from the zero-moment A, by the continual and successive application of
one common step a, and all the contra-positive or,preceding moments ¢ &' &c. may be
conceived as generated from the same zero-moment 4, by the continual and successive
application of the opposite step © a, so that we may write

B—=a+4, B=a+B, B =a+D, &, (95.)
and
E=0Oa +4, =02 +1, '=0a +1, &c.; (96.)

while the standard or zero-moment a itself may be denoted by the complex symbol
© + A, because it may be conceived as generated from itself by applying the null step
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0. Hence, by the theory of compound steps, we have expressions of the following
sort for all the several moments of the equi-distant series (29.) :

-
E'=0a+0a+0a+a4,
E’:en+€)ﬂ+A,
L —0a+ A,
A =0 +a, > 97.)
B = a + A
B = a + a+ A,
B'= a + a+a+a4,

cresce J

with corresponding expressions for their several ordinal relations to the one standard
moment A, or for the acts of transition which are made in passing from A to them,
namely :

-

r'"—A=0a+0a+ 0a,
E —A=0a+ 0a,
L —A=0a,
A —A=0, < (98.)
B —A=a,
B —A—=a-a,
B"—A..—_a-i-a-{-a,

&ec. J

The simple or compound step, a, ot a + a, &c., from the zero-moment A to any
positive moment B or 8" &c. of the series, may be called a posilive step ; and the
opposite simple or compound step, © a, or © a +0 a, &c., from the same zero-

_moment A to any contra-positive moment E or E’, &c., of the series, may be called a
contra-positive step ; while the null step 0, from the zero-moment a to itself, may be
called, by analogy of language, the zero-step. The original step a is supposed to
be an effective step, and not a null one, since otherwise the whole series of moments
(97.) would reduce themselves to the one original moment 4 ; but it may be either a
late-making or an early-making step, according as the (mental) order of progression of
that series is from earlier to later, or from later to earlier moments. And the whole
series or system of steps (98.), simple or compound, positive or contra-positive, effec-
tive or null, which scrve to generate the several moments of the equi-distant series
(29.) or (97.) from the original or standard moment A, may be regarded as a system of
steps generated from the original step a, by a system of acts of generation which are
all of one common kind; cach step having therefore a certain relation of its own to



and on Algebra as the Science of Pure Time. 823

that original step, and these relations having all a general resemblance to each other, so
that they may be conceived as composing a certain system of relations, having all one
common character. To mark this common generation of the system of steps (98.)
from the one original step », and their common relation thereto, we may call them all
by the common name of multiples of that original step, and may say that they are or
may be (mentally) formed by multipling that common base, or unit-step, a; distin-
guishing, however, these several multiples among themselves by peculiar or special
names, which shall serve to mark the peculiar relation of any one multiple to the
base, or the special act of multipling by which it may be conceived to be generated
therefrom.

Thus, the null step, or zero-step, 0, which conducts to the zero-moment A, may be
called, according to this way of conceiving it, the zero multiple of the original step a; and
the positive (effective) steps, simple or compound, a, a+a, a + a + a, &c., may
be called by the general name of positive multiples of a, and may be distinguished by
the special ordinal names of first, second, third, &c., so that the original step a is, in
this view, its own first positive multiple; and finally, the contra-positive (but effective)
steps, simple or compound, namely, 6 3, 6 » + 9? ©a+ 02+ 02, &c., may be
called the first contra-positive multiple of a, the second contra-positive multiple of
the same original step a, and so forth. Some particular multiples have particular
and familiar names ; for example, the second positive multiple of a step may also be
called the double of that step, and the third positive multiple may be called familiarly
the ériple. In general, the original step = may be called (as we just now agreed) the
common base (‘or unit) of all these several multiples; and the ordinal name or
number, (such as zero, or positive first, or contra-positive second,) which serves as a
special mark to distinguish some one of these multiples from every other, in the
general series of such multiples (98.), may be called the determining ordinal : so
that any one multiple step is sufficiently described, when we mention its base and its
determining ordinal. In conformity with this conception of the series of steps (98.,)

as a sertes of multiples of the base a, we may denote them by the following series of
written symbols,

cieeee 300, 202, 10a, 0a, 1a, 2a, 3a, ... (99.)

and may denote the moments themselves of the equi-distant series (29.) or (97.) by
the symbols,
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E'=80a +a4,
E=20a+a,
=10a +4,
Oa 44, > (100.)
1a +a,
QLa +A,
3a + A,
c. 3

~

=R~ E= i

TR

in which
0a=0, (101.)
and
1la=a, 106a=206a, l
Qa=a+a, 20a—=06a +0 a,
Sa=a-+a+a, 8606a=02a+68a1+0a,
&e., &e.

(102.)

The written sign O in O a is here equivalent to the spoken name zero, as the
determining ordinal of the null step from A to A, which step was itself also denoted
before by the same character O, and is here considered as the zero-multiple of the
base a; while the written signs 1, 2, 3, &ec., in the symbols of the positive multiples
la, 2a, 8a, &c., correspond to and denote the determining positive ordinals, or the
spoken names first positive, second positive, third positive, &c.; and, finally, the re-
maining written signs 1 o, 2 0, 8 @, &c., which are combined with the written sign of
the base a, in the symbols of the contra-positive multiples 1 ©a, 2 62, 304, &c., cor-
respond to and denote the determining ordinal names of those contra-positive multiples,
that is, they correspond to the spoken names, first contra-positive, second contra-posi-
tive, third contra-positive, &c. : so that the series of signs of multiple steps (99.), is

formed by combining the symbol of the base a with the following series of ordinal
symbols,

...36,20,10,0,1, 2 3, &ec. (103.)

We may also conceive this last series of signs as equivalent, not to ordinal names,
such as the numeral word firsé, but to cardinal names, such as the numeral word
one ; or more fully, positive cardinals, contra-positive cardinals, and the null cardinal
(or number none) ; namely, the system of all possible answers to the following com-
plex question : ¢ Have any effective steps (equivalent or opposite to the given
base a) been made (from the standard moment a), and if any, then How many, and
In which direction 2 In this view, 3 © is a written sign of the cardinal name or
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number contra-positive three, as a possible answer to the foregoing general question ;
and it implies, when prefixed to the sign of the base a, in the complex written sign
8 © a of the corresponding multiple step, that this multiple step has been formed,
(as already shown in the equations (102.), ) by making three steps equal to the base
a in length, but in the direction opposite thereto. Again, the mark 1 may be re-
garded as a written sign of the cardinal number positive one, and 1 a denotes (in
this view) the step formed by making one such step as a, and in the same direction,
that is, (as before,) the original step a itself ; and O denotes the cardinal number
none, so that 0 a is (as before) a symbol for the null step from A to a, which step we
have also marked before by the simple symbol 0, and which is here considered as
formed by making no effective step like ». In general, this view of the numeral
signs (108.), as denoting cardinal numbers, conducts to the same ultimate interpre-
tations of the symbols (99.), for the steps of the series (98.), as the former view,
which regarded those signs (108.) as denoting ordinal numbers.

If we adopt the latter view of those numeral signs (103.), which we shall call by the
common name of whole (or integer) numbers, (as distinguished from certain broken
or fractional numbers to be considered afterwards,) we may conveniently continue to
use the word multiple (occasionally) as a verb active, and may speak of the several
multiple steps of the series (98.), or (99.), as formed from the base a, by multipling
that base by the several whole (cardinal) numbers : because every multiple step may be
conceived as generated (in thought) from the base, by a certain mental act, of which
the cardinal number is the mark. Thus we may describe the multiple step 3 © a,
(which is, in the ordinal view, the third contra-positive multiple of a,) as formed from
the base a by multipling i¢ by contra-positive three. Some particular acts of multi-
pling have familiar and special names, and we may speak (for instance) of doubling
or ¢ripling a step, instead of describing that step as being multipled by positive two,
or by positive three. In general, to distinguish more clearly, in the written symbol
of a multiple step, between the base and the determining number (ordinal or cardi-
nal), and to indicate more fully the performance of that mental act (directed by the
number) which generates the multiple from the base, the mark x may be inserted
between the sign of the base, and the sign of the number; and thus we may
denote the series of multiple steps (99.) by the following fuller symbols,

e+ 830 x2, 20 x2, 10 x2,0x2,1x32, 2x2,8xa, &, (104.)

and which 1 x a (for example) denotes the original step a itself, and 2 x a represents
the double of that original step.
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It is manifest that'in this notation

nO xa=n x02a=0(n xa):e(nexea),}

anana:nexea:e(nexa)ze(n X 0a), (105.)

if n denote any one of the positive numbers 1, 2, 8, &c. and if » © denote the cor-
responding contra-positive number, 1 0, 2 0, 3 ©, &c. ; for example, the equation
2 © x a = 2 x ©Oa is true, because it expresses that the second contra-positive multiple
of the base a is the same step as the second positive multiple of the opposite base or
step © a, the latter multiple being derived from this opposite base by merely doubling
its length without reversing its direction, while the former is derived from the original
base a itself by both reversing it in direction and doubling it in length, so that both
processes conduct to the one common compound step, ©a + ©a. In like manner
the equation 2 x a = 2 © x Oa is true, because by first reversing the direction of the
original step a, and then taking the reversed step ©a as a new base, and forming the
second contra-positive multiple of it, which is done by reversing and doubling, and
which is the process of generation expressed by the symbol 2 © x ©a, we form in
the end the same compound step, = + a, as if we had merely doubled a. We may
also conveniently annex the mark of opposition ©, at the left hand, to the symbol of
any whole number, 7 or # © or 0, in’order to form a symbol of its opposite number,
n 6, n, or 0; and thus may write

en=n0o, ©(nO)=n, 60=0; (106.)

if we still denote by n any positive whole number, and if we call two whole numbers
opposites of each other, when they are the determining or multipling numbers of
two opposite multiple steps.

14. Two or more multiples such as p x a, v x a, £ x a, of the same base a, may
be compounded as successive steps with each other, and the resulting or compound
step will manifestly be itself some multiple, such as o x a, of the same common base
a ; the signs u, v, & denoting here any arbitrary whole numbers, whether positive, ot
contra-positive, or null, and » denoting another whole number, namely the deter-
mining number of the compound multiple step, which must evidently depend on the
determining numbers p v & of the comporient multiple steps, and on those alone,
according to some general law of dependence. This law may conveniently be de-
noted, in writing, by the same mark of combination -+ which has been employed
already to form the complex symbol of- the compound- step itself, considered as “de-
pending on the component steps ; that is, we may agree to write
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w=v+p, Whenw X a=(» X a)+(n x a), (107.)
and
w=E+v+p wheno x a=(€ xa)+(v x a)+(u x a), (108.)

together with other similar expressions for the case of more component steps than
three. In this notation,

(v x a)+(p x a):(v+u) X a,
} (100

Exa)+(wxa)+(uxa)=(E+v+p) xa,
&ec.

whatever the whole numbers p » £ may be; equations which are to be regarded here
as true by definition, and as only serving to explain the meaning attributed to such
complex signs as v +py, or £+ v +p, when u v & are any symbols of whole num-
bers : although when we farther assert that the equations (109.) are true inde-
pendently of the base or unit-step a, so that symbols of the form » +por & +v +p
denote whole numbers independent of that base, we express in a new way a theorem
which we had before assumed to be evidently true, as an axiom and not a definition,
respecting the composition of multiple steps.

In the particular case when the whole numbers denoted by u v & are positive, the
law of composition of those numbers expressed by the notation v + p or £ + v + g,
as explained by the equations (109.), is easily seen to be the law called eddition of
numbers (that is of quotities) in elementary arithmetic ; and the quotity of the com-
pound or resulting whole number is the arithmetical sum of the quotities of the com-
ponent numbers, this arithmetical sum being the answer to the question, FHow many
things or thoughts does a total group contain, if it be composed of partial groups
of which the quotities are given, namely the numbers to be arithmetically added.
Tor example, since (8 x a) + (2 x a) is the symbol for the total or compound mul-
tiple step composed of the double and the triple of the base a, it must Jenote the
quintuple or fifth positive multiple of that base, namely 5 x a; and since we have
agreed to write

(3 Xa)-l-(@)(n):(S—l-Q)Xa,

we must interpret the complex symbol 8 + 2 as equivalent to the simple symbol 5
in seeking for which latter number five, we added, in the arithmetical sense, the given
component numbers #wo and three together, that is, we formed their arithmetical
sum, by considering how many steps are contained in a total group of steps, if the
.component or partial groups contain two steps and threce steps respectively. In like
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manner, if we admit in arithmetic the idea of the cardinal number none, as one of the
possible answers to the fundamental question How many, the rules of the arith-
metical addition of this number to others, and of others to it, and the properties
of the arithmetical sums thus composed, agree with the rules and properties
of such combinations as 0 +p, &+ v + 0, explained by the equations (109.),
when the whole numbers, u, v, & are positive; we shall, therefore, not clash
in our enlarged phraseology with the language of elementary arithmetic, respecting
the addition of numbers regarded as answers to the question How many, if we now
establish, as a definition, in the more extensive Science of Pure T'ime, that any com-
bination of whole numbers p v &, of the form v + p, or £+v+p, interpreted so as to
satisfy the equations (109.), is the sum of those whole numbers, and is composed by
adding them together, whether they be positive, or contra-positive, or null. But as a
mark that these words sum and adding are used in ALGEBRA (as the general Science
of Pure Time), in a more extensive sense than that in which Arithmetic (as the
science of counting) employs them, we may, more fully, call v + p the algebraic sum
of the whole numbers p and », and say that it is formed by the operation of algebrai-
cally adding them together, v to p.

In general, we may extend the arithmetical names of sum and addition to every
algebraical combination of the class marked by the sign +, and may give to that
combining sign the arithmetical name of Plus ; although in Algebra the idea of
more, (originally implied by plus,) is only occasionally and accidentally involved in
the conception of such combinations. Ifor example, the written symbol b +a, by
which we have already denoted the compound step formed by compounding the step b
as a successive step with the step a, may be expressed in words by the phrase
‘“a plus b,” (such written algebraic expressions as these being read from right to left,)
or “the algebraic sum of the steps a and v ;”” and this algebraic sum or compound
step b + a may be said to be formed by ¢algebraically adding v to a > although this
compound step is only occasionally and accidentally greater in length than its com-
ponents, being necessarily shorter than one of them, when they are both effective
steps with directions opposite to each other. Even the application of a step a to a
moment A, so as to generate another moment a + A, may not improperly be called
(by the same analogy of language) the algebraic addition of the step to the moment,
and the moment generated thereby may be called their algebraic sum, or <the original
moment plus the step ;” though in this sort of combination the moment and the step
to be combined are not even homogeneous with each other.

With respect to the process of calculation of an algebraic sum of whole numbers,
the following rules are evident consequences of what has been already shown respect-
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ing the composition of steps. In the first place, the numbers to be added may be
added in any arbitrary order ; that is,

v+p=pn-+v,
Et+vtu=p+&+v= &ec., (110.)
&e. ;

we may therefore collect the positive numbers into one algebraical sum, and the con-
tra-positive into another, and then add these two partial sums to find the total sum,
omitting (if it anywhere occur) the number None or Zero, as not capable of altering
the result. In the next place, positive numbers are algebraically added to each other,
by arithmetically adding the corresponding arithmetical numbers or quotities, and
considering the result as a positive number ; thus positive two and positive three,
when added, give positive five : and contra-positive numbers, in like manner, are al-
gebraically added to each other, by arithmetically adding their quotities, and consi-
dering the result as a contra-positive number ; thus,contra-positive two and contra-po-
sitive three have contra-positive five for their algebraic sum. In the third place, a
positive number and a contra-positive, when the quotity of the positive exceeds that
of the contra-positive, give a positive algebraic sum, in which the quotity is equal to
that excess ; thus positive five added to contra-positive three, gives positive two for
the algebraic sum : and similarly, a positive number and a contra-positive number, if
the quotity of the contra-positive exceed that of the positive, give a contra-positive
algebraic sum, with a quotity equal to the excess; for example, if we add positive
three to contra-positive five, we get contra-positive two for the result. Finally, a posi-
tive number and a contra-positive, with equal quotities, (such as positive three and
contra-positive three,) destroy each other by addition ; that is, they generate as their
algebraic sum the number None or Zero.

It is unnecessary to dwell on the algebraical operation of decomposition of multiple
steps, and consequently of whole or multipling numbers, which corresponds to and
includes the operation of arithmetical subtraction ; since it follows manifestly from
the foregoing articles of this Essay, that the decomposition of numbers (like that of
steps) can always be performed by compounding with the given compound number
(that is, by algebraically adding thereto) the opposite or opposites of the given com-
ponent or components: the number or numbers proposed to be subtracted are there-
fore either to be neglected if they be null, since in that case they have no effect, or
else to be changed from positive to contra-positive, or from contra-positive to positive,
(their quotities being preserved,) and then added (algebraically) in this altered state.
Thus, positive five is subtracted algebraically from positive two by adding contra-posi-
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tive five, and the result is contra-positive three ; that is, the given step 2 x a or 2 a
may be decomposed into two others, of which the given component step 5 x a is one,
and the sought component step 8 © a is the other.

15. Any multiple step p = may be treated as a new base, or new unit-step; and
thus we may generate from it a new system of multiple steps. It is evident that these
multiples of a multiple of a step are themselves also multiples of that step; that is, if
we first multiple a given base or unit-step a by any whole number u, and then again
multiple the result u x a by any other whole number v, the final result v x (u x a)
will necessary be of the form w x a, » being another whole number. It is easy also
to see that the new multipling number, such as w, of the new or derived multiple, must

1-pend on the old or given multipling numbers, such as x and », and on those alone;
and the law of its dependence on them may be conveniently expressed by the same
mark of combination x which we have already used to combine any multipling
number with its base ; so that we may agree to write

o=v Xp whenw xa=v»x (uxa). (111.)

With this definition of the effect of the combining sign >, when interposed between
the signs of two whole numbers, we may write

vXx (uxa)=(vxp) Xa=v xpgXa, (112.)

omitting the parentheses as unnecessary ; because, although their absence permits us
to interpret the complex symbol v x g x a cither as v x (¢ x 2) or as (vxpu) X a,
yet both the processes of combination thus denoted conduct to one common result, or
ultimate multiple step. (Compare article 11.)

When ¢ and v are positive numbers, the law of combination expressed by the nota-
tion » x p, as above explained, is easily seen to be that which is called Multiplication
in elementary Arithmetic, namely, the arithmetical addition of a given number v of
equal quotities u ; and the resulting quotity v x u is the arithmetical product of the
numbers to be combined, or the product of px multiplied by v: thus we must, by the
definition (112.), interpret 8 x 2 as denoting the positive number 6, because
3x (2 x a)=6 x a, the triple of the double of any step a being the sextuple of that
step ; and the quotity 6 is, for the same reason, the arithmetical product of 2 multi-
plied by 3, in the sense of being the answer to the question, How many things or
thoughts (in this case, steps) are contained in a total group, if that total group be
composed of 3 partial groups, and if 2 such things or thoughts be contained in
each of these? Irom this analogy to arithmetic, we may in general call v x p the
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product, or (more fully) the algebraic product, of the whole numbers u and », whe-
ther these, which we may call the factors of the product, be positive, or contra-
positive, or null ; and may speak of the process of combination of those numbers, as
the multipling, or (more fully) the algebraic multipling of u by v: reserving still the
more familiar arithmetical word ¢ multiplying”’ to be used in algebra in a more
general sense, which includes the operation of multipling, and which there will soon
be occasion to explain.

In like manner, three or more whole numbers, u, v, & may be used successively to
multiple a given step or one another, and so to gencrate a new derived multiple of the
original step or number ; thus, we may write

Ex fux (uxa)}=Ex {(vxpxa}=Exvxp)xa, (113.)

the symbol & x v x u denoting here a new whole number, which may be called the
algebraic product of the three whole numbers p, v, & those numbers themselves being
called the factors of this product. With respect to the actual processes of such
multipling, or the rules for forming such algebraic products of whole numbers,
(whether positive, or contra-positive, or null,) it is sufficient to observe that the pro-
duct is evidently null if any one of the factors be null, but that otherwise the product
is contra-positive or positive, according as there is or is not an odd number (such as
one, or three, or five, &c.) of contra-positive factors, because the direction of a step
is not changed, or is restored, when it is either not reversed at all, or reversed an
even number of times; and that, in every case, the quotity of the algebraic product
is the arithmetical product of the quotities of the factors. Hence, by the properties
of arithmetical products, or by the principles of the present essay, we see that in
forming an algebraical product the order of the factors may be altered in any manner
without altering the result, so that

vXp=uXv, Exvxu=pux&txv==E&ec., &c.; (114.)

and that any one of the factors may be decomposed in any manner into algebraical
parts or component whole numbers, according to the rules of algebraic addition and
subtraction of whole numbers, and each part separately combined as a factor with the
other factors to form a partial product, and then these partial products algebraically
added together, and that the result will be the total product ; that is,

(v +9) x g =0 x ) + (), } (115.)
v x (@ +p)=(v xp)+(vxp), &
VOL. XVII. Sr
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Again, we saw that if a factor u be null, the product is then null also,
»x0=0; (116.)

because the multiples of a null multiple step are all themselves null steps. But if, in
a product of two whole numbers, v x p, the first factor p (with which by (114.)
the second factor » may be interchanged) be given, and effective, that is, if it be
any given positive or contra-positive whole number, (x=}=0,) then its several multi-
ples, or the products of the form v x g, form an indefinite series of whole numbers,

e 830 xuy 20 xp, 10 xp, Oxpy 1 Xy 2xpy 3Xpy oo (117.)

such that any proposed whole number o, whatever, must be either a number of this
series, or else included between two successive numbers of it, such as v x p and
(1 +v) x p, being on the positive side of one of them, and on the contra-positive side
of the other, in the complete series of whole numbers (103.). In the one case, we can
satisfy the equation

w=vXpu or, O (vxu)+w=0 (118.)

by a suitable choice of the whole number v; in the other case, we cannot indeed do
this, but we can choose a whole number v, such that

w=p+(vxp), or, O(vxp) +w=p, (119.)

p being a whole number which lics between O and p in the general series of whole
numbers (103.), and which thercfore has a quotity less than the quotity of that given
first factor p, and is positive or contra-positive according as u is positive or con-
tra-positive. In each case, we may be said (by analogy to arithmetical division) to
have algebraically divided (or rather measured), accurately or approximately, the
whole number o by the whole number x, and to have found a whole number v which
is either the accurate quotient (or measure), as in the case (118.), or else the next
preceding integer, as in the other case (119 ) ; in which last case the whole number p
may be called the remainder of the division (or of the measuring). In this second
case, namely, when it is impossible to perform the division, or the measuring, exactly,
in whole numbers, because the proposed dividend, or mensurand, v, is not contained
among the series (117.) of multiples of the proposed divisor, or measurer, p, we may
choose to consider as the approximate integer quotient, or measure, the next suc-
ceeding whole number 1 + v, instead of the next preceding whole number v ; and then
we shall have a different remainder, © p + p, such that

0=(Ou+p)+ (T +v x p), (120.)
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which new remainder © p +p bas still a quotity less than that of p, but lies between
0 and Oy, instead of lying (like p) between O and g, in the general series of whole
numbers (103.), and is therefore contra-positive if u be positive, or positive if p be
contra-positive. With respect to the actual process of calculation, for discovering
whether a proposed algebraical division (or mecasuring), of one whole number by
another, conducts to an accurate integer quotient, or only to two approximate integer
quotients, a next preceding and a next succeeding, with positive and contra-positive
remainders ; and for actually finding the names of these several quotients and re-
mainders, or their several special places in the gencral series of whole numbers : this
algebraical process differs only by some slight and obvious modifications (on which it
is unnecessary here to dwell,) from the elementary arithmetical operation of di-
viding one quotity by another ; that is, the operation of determining what multiple
the one is of the other, or between what two successive multiples it is contained.
Thus, having decomposed by arithmetical division the quotity 8 into the arithmetical
sum of 1 x 5 and 8, and having found that it falls short by 2 of the arithmetical pro-
duct 2 x 5, we may easily infer from hence that the algebraic whole number contra-
positive eight can be only approximately measured (in whole numbers), as a mensur-
and, by the measurer positive five ; the next succeeding integer quotient or measure
being contra-positive one, with contra-positive three for remainder, and the next pre-
ceding integer quoticnt or measure being conéra-positive two, with positive two as the
remainder. It is easy also to see that this algebraic measuring of one whole number
by another, corresponds to the accurate or approximate measuring of one step by
another. And in like manner may all other arithmetical operations and reasonings
upon quotities be generalised in Algebra, by the consideration of multiple steps, and
of their connected positive and contra-positive and null whole numbers.

On the Sub-multiples and Fractions of any given Siep in the Progression of Time ;
on the Algebraic Addition, Subtraction, Multiplication, and Division, of Re-
ciprocal and Fractional Numbers, positive and contra-positive ; and on the
tmpossible or indeterminate act of sub-multipling or dividing by zero.

16. . We have seen that from the thought of any one step 2, as a base or unit-
step, we can pass to the thought of a series or system of multiples of that base,
namely, the series (98.) or (99.) or (104.), having each a certain relation of its own
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to the base, as such or such a particular multiple thereof, or as mentally generated
from that base by such or such a particular act of multipling ; and that every such
particular relation, and every such particular act of multipling, may be distinguished
from all such other relations, and from all such other acts, in the entire series or
system of these relations, and in the entire system of these acts of multipling, by its
own special or determining whole number, whether ordinal or cardinal, and whether
positive, or contra-positive, or null. Now every such relation or act must be con-
ceived to have a certain inverse or reciprocal, by which we may, in thought, connect
the base with the multiple, and return to the former from the latter : and, generally,
the conception of passing (in thought) from a base or wunit-step to any one of its
multiples, or of returning from the multiple to the base, is included in the more com-
prehensive conception of passing from any one such multiple to any other ; that is,
from any one step to any other step commensurable therewith, two steps being said to
be commensurable with each other when they are multiples of one common base or
unit-step, because they have then that common base or unit for their common mea-
surer. 'The base, when thus compared with one of its own multiples, may be called
a sub-multiple thereof ; and, more particularly, we may call it the ¢second positive
sub-multiple” of its own second positive multiple, the ¢first contra-positive sub-
multiple”” of its own first contra-positive multiple, and so forth ; retaining always, to
distinguish any one sub-multiple, the determining ordinal of the multiple to which it
corresponds: and the act of returning from a multiple to the base, may be called an
act of sub-multipling or (more fully) of sub-multipling by the same determining
cardinal number by which the base had been multipled before; for example, we may
return to the base from its second contra-positive multiple, by an act of thought
which may be called sub-multipling by contra-positive two. Some particular sub-
multiples, and acts of sub-multipling, have particular and familiar names; thus, the
second positive sub-multiple of any given step, and the act of sub-multipling a given
step by positive two, may be more familiarly described as the half of that given step,
and as the act of halving it. And the more comprehensive conception above men-
tioned, of the act of passing from any one step b to any other step ¢ commensurable
therewith, or from any one to any other multiple of one common measure, or base,
or unit-step a, may evidently be resolved into the foregoing conceptions of the acts
of multipling and sub-multipling; since we can always pass first by an act of sub-
multipling from the given step b, considered as a multiple of the base a, to that
base a itself, as an auxiliary or intermediate thought, and then proceed, by an act of
multipling, from this auxiliary thought or step, to its other mulliple . Any one
step ¢ may therefore be considered as a multiple of a sub-multiple of any other
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step b, if those two steps be commensurablé ; and the act of passing from the one to
the other is an act compounded of sub-multipling and multipling.

Now, all acts thus compounded, besides the acts of multipling and sub-multipling
themselves, (and other acts, to be considered afterwards, which may Dbe regarded as
of the same kind with these, being connected with them by certain intimate relations,
and by one common character,) may be classed in algebra under the general name of
multiplying acts, or acts of algebraic multiplication ; the object on which any such
act operates being called the multiplicand, and the result being called the product ;
while the distinctive thought or sign of such an act is called the algebraic multiplier,
or multiplying number : whatever this distinctive thought or sign may be, that is, what-
ever conceived, or spoken, or written specific rule it may involve, for specifying one
particular act of multiplication, and for distinguishing it from cvery other. The
relation of an algebraic product to its algebraic multiplicand may- be called, in general,
ratio, or algebraic ratio ; but the particular ratio of any one particular product to
its own particular multiplicand, depends on the particular act of multiplication by
which the one may be generated from the other : the number which specifies the act
of multiplication, serves thercfore also to specify the resulting ratio, and every
number may be viewed either as the mark of a ratio, or as the mark of a multiplica-
tion, according as we conceive ourselves to be analytically ewvamining a product
already formed, or synthetically generating that product.

We have already considered that series or system of algebraic integers, or whole
numbers, (positive, contra-positive, or null,) which mark the several possible ratios of
all multiple steps to their base, and the several acts of multiplication by which the
former may be generated from the latter; namely all those several acts which we
have included under the common head of multipling. The inverse or reciprocal acts
of sub-multipling, which we must now consider, and which we have agreed to regard
as comprehended under the more general head of multiplication, conduct to a new
class of multiplying numbers, which we may call reciprocals of whole numbers, or,
more concisely, reciprocal numbers ; and to a corresponding class of ratios, which we
may call reciprocals of integer ratios. And the more comprehensive conception of
the act of passing from one to another of any two commensurable steps, conducts to
a correspondingly extensive class of multiplying acts, and therefore also of multiplying
numbers, and of ratios, which we may call acts of fractioning, and fractional
numbers, or fractional ratios ; while the product of any such act of fractioning, or
of multiplying by any such fractional number, that is, the generated step which is any
multiple of any sub-multiple of any proposed step or multiplicand, may be called a
Jraction of that step, or of that multiplicand. A fractional number may therefore



336 Professor HaiviLToN on Conjugate Functions,

always be determined, in thought and in expression, by two whole numbers, namely
the sub-multipling number, called also the denominator, and the muitipling number,
called also the numerator, (of the fraction or fractional number,) which mark the two
successive or component acts that make up the complex act of fractioning. Hence
also the reciprocal number, or reciprocal of any proposed whole number, which marks
the act of multiplication conceived to be equivalent to the act of sub-multipling by
that whole number, coincides with the fractional number which has the same whole
number for its denominator, and the number 1 for its numerator, because a step is not
altered when it is multipled by positive one. And any whole number itself, consi-
dered as the mark of any special act of multipling, may be changed to a fractional
number with positive one for its denominator, and with the proposed whole number for
its numerator ; since such a fractional number, considered as the mark of a special
act of multiplication,. is only the complex mark of a complex act of thought equi-
valent to the simpler act of multipling by the numerator of the fraction ; because the
other component act, of sub-multipling by positive one, produces no real alteration.
Thus, the conceptions of whole numbers, and of reciprocal numbers, are included in
the more comprehensive conception of fractional numbers ; and a complete theory of
the latter would contain all the properties of the former.

17. To form now a notation of fractions, we may agree to denote a fractional num-
ber by writing the numerator over the denominator, with'a bar between ; that is, we
may write

c = 1—:n, or more fully, ¢ = :—: X.a, (121.)

when we wish to express that two commensurable steps, b and ¢, (which we shall, for
the present, suppose to be both effective steps,) may be severally formed from some
one common base or unit-step a, by multipling that base by the two (positive or
contra-positive) whole numbers p and v, so that

b==pu Xa, ¢=vXa, (IQQ)

[We shall suppose throughout the whole of this and of the two next following arti-
cles, that all the steps are effective, and that all the numerators and denominators are
positive or contra-positive, excluding for the present the consideration of null steps,
and of null numerators or null denominators.]

Under these conditions, the step ¢ is a {raction ¢f b, and bears to that step v the
fractional ratio =, called also ¢ the ratio of » to u;”> and ¢ may be deduced or gene-

rated as a product from b by a corresponding act of fractioning, namely, by the act of
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multiplying b as a multiplicand by the fractional number 2 as a multiplier, or finally

by the complex act of first submultipling b by the denorﬁinator p, and then multi-
pling the result o by the numerator v. Under the same conditions, it is evident that
we may return from e to b by an inverse or reciprocal act of fractioning, namely, by
that new complex act which is composed of submultipling instead of multipling by +,
and then multipling instead of submultipling by u; so that

o
el’.:

X ¢, when ¢ = ; XD : (123.)
on which account we may write

[1. e —-.3'_ E 4
=t ( »b), and ¢ X (v X ¢), (124.)

whatever (effective) steps may be denoted by b and ¢, and whatever (positive or con-
tra-positive) whole numbers may be denoted by x and »v. The two acts of fractioning,

marked by the two fractional numbers > " and £ =, are therefore opposite or reciprocal
acts, of which each destroys or undoes the eﬁ'ect of the other; and the fractional
numbers themselves may be called reciprocal fractional numbers, or, for shortness,
reciprocal fractions : to mark which reciprocity we may use a new symbol u, (namely,
the initial letter of the word Reciprocatio, distinguished from the other uses of the
same letter by being written in an inverted position,) that is, we may write

=4 q

I

R

3

IR

n
; , (125.)

TIw

whatever positive or contra-positive whole numbers may be marked by pandv. In
this notation,

gy-=u(u-) =1

e I=

v v
- =3 126.

: L, (126,

or, to express the same thing in words, the reciprocal of the reciprocal of any frac-
tional number is that fractional number itself. (Compare equation (57.) ).

It is evident also, that

1
a:;xb, andb:’—lea, if b= xa; (127.)
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that is, the whole number p, regarded as a multiplier, or as a ratio, may be put under

the fractional form ’Lf, so that we may write

I

= p; (128.)

and the reciprocal of this whole number, or the connected reciprocal number u p to
multiply by which is equivalent to submultipling by g, coincides with the reciprocal frac-

tional number Pt so that

=dHT =dp: (129.)

w1~
—E

results which were indeed anticipated in the remarks made at the close of the fore-
going article, respecting the extent of the conception of fractional numbers, as includ-
ing whole numbers and their reciprocals. As an example of these results, the double

of any step = may be denoted by the symbol% x a as well as by 2 x a, and the half
of that step a may be denoted either by the symbol 5 x a, orby 2 x a.  The sym-
bol u 1 is evidently equivalent to 1, the number positive one'being its own reciprocal ;
and the opposite number, contra-positive one, has the same property, because to re-

verse the direction of a step is an act which destroys itself by repetition, leaving the
last resulting step the same as the original; we have therefore the equations,

1l=1, u61=01. (180.)

By the definition of a fraction, as a multiple of a submultiple, we may now express
it as follows :

E><b=v><(£><b)-;v><(}l,;><b). (131.)
n

Besides, under the conditions (122.), we have, by (112.) and (114.), that is, by the
principle of the indifference of the order in which any two successive multiplings are
performed,

pxe=px(vxa)=(pxv) xa=(wxpu)xa=v X (pxa)=zvxb; (132)

so that a fractional product c¢ = LAEVEN may be derived from the multiplicand b, by
,u

first multipling by the numerator v and then submultipling by the denominator y, in-
stead of first submultipling by the latter and afterwards multipling by the former ;
that is, in any act of fractioning, we may change the order of the two successive and
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component acts of submultipling and multipling, without altering the final result, and
may write

xb=-x(vxbv)=upx (@xb) (183.)

Rl
R ]

In general it may easily be shown, by pursuing a reasoning of the same sort, that in
any set of acts of multipling and submultipling, to be performed successively on any
one original step, the order of succession of those acts may be altered in any arbitrary
manner, without altering the final result. We may therefore compound any proposed
set of successive acts of fractioning, by compounding first the several acts of submul-
tipling by the several denominators into the one act of submultipling by the product
of those denominators, and then the several acts of multipling by the several numerators
into the one act of multipling by the product of those numerators, and finally the two
acts thus derived into one last resultant act of fractioning ; that is, we have the relations,

vf lev
,x LAV =

W HXk (184.)
1’7 {"-,x(—xb)}: XY X v X b, ’

pOX X p
J

X b,

We may also introduce or remove any positive or contra-positive whole number as a
factor in both the numerator and the denominator of any fraction, without making
any real alteration ; that is, the following relation holds good :

w X v

4

T e— 1350

pToexp’ (155.)

whatever positive or contra-positive whole numbers may be denoted by pvew; a
theorem which may often enable us to put a proposed fraction under a form more simple
in itself, or more convenient for comparison with others. As particular cases of this
theorem, corresponding to the case when the common factor w is contra-positive one,
we have

v ©Ov © Qv v

- = — = 136.

noep’ w e’ (186.)
that is, the denominator of any fraction may be changed from contra-positive to posi-
tive, or from positive to contra-positive, without making any real change, provided
that the numerator is also changed to its own opposite whole number. Two frac-
tional numbers, such as o andi, may be said to be opposites, (though not recipro-

I
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cals), when (though not themselves the marks of opposite acts), they generate opposite

steps, such as the steps E—)#ﬂ x b and i x b3 and to mark this opposition we may write
v
u

=0l 137.
. (187.)

Hence every fractional number, with any positive or contra-positive whole numbers p

and » for its denominator and numerator, may be put under one or other of the two
following forms :
n

Ist. =, or IInd. o=, (138.)

(m and n denoting positive whole numbers,) according as the proposed whole numbers
p and v agree or differ in respect of being positive or contra-positive ; and in the
Ist case we may say that the fractional number itself is positive, but in the IInd
case that it is conéra-positive : definitions which agree with and include the former
conceptions of positive and contra-positive whole numbers, when we consider these as
equivalent to fractional numbers in which the numerator is a multiple of the denomi-
nator ; and lead us to regard the reciprocal of any positive or contra-positive whole
number (and more generally the reciprocal of any positive or contra-positive frac-
tional number) as positive or contra-positive like it ; a fractional number being
equivalent to the reciprocal of a whole number, when the denominator is a multiple
of the numerator. A fraction of a late-making step b is itself a late-making or an
early-making step, according as the multiplying fractional number is positive or
contra-positive ; and as we have agreed to write b > O when b is a late-making step,
so we may now agree to write

:-i > 0, when i xb>0 and b> 0, (139.)
that is, when ;‘ is a positive fractional number, and to write, on the contrary,
,—1: < 0, when i xb< O and b»> 0, (140.)

that is, when E is a contra-positive fractional number. More generally, we shall
write

~

4

,if’”?xb>£xb,b>0, (141.)

Tl
v
T

and

~

7

,ifi,xb<£xb,b>0; (142.)

= I
A
Rrie
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and shall enunciate these two cases respectively, by saying that in the first case the
fractional number ’i,, is on the positive side, and that in the second case it is on the
contra-positive side, of the other fractional number Z; or that in the first case 5, Sol-
lows and that in the second it precedes i-:, in the general progression of numbers,

from contra-positive to positive : definitions which may easily be shown to be con-
sistent with each other, and which extend to whole numbers and their reciprocals, as
included in fractional numbers, and to the number zero itself as compared with any of
these. Thus, every positive number is on the positive side of zero and of every
contra-positive number ; while zero is on the positive side of all contra-positive
numbers, but on the contra-positive side of all positive numbers: for example,

2>0,2>08 6083<0,0383<2,0>038 0<2 (148.)

Of two unequal positive whole numbers, the one which has the greater quotity is on
the positive side, but among contra-positive numbers the reverse is the case; for
example,

3>2 03<02: (144.)

and in general a relation of subsequence or precedence betwecen any two whole or
fractional numbers is changed to the opposite relation of precedence or subsequence,
by altering those numbers to their opposites, though a relation of equality or coinci-
dence remains unaltered after such a change. Among reciprocals of positive whole
numbers, the reciprocal of that which has the lesser quotity is on the positive side of
the other, while reciprocals of contra-positive numbers are related by the opposite
rule ; thus

Lol 1

§>§, e2<e , thatis, 42> u8, u©62<u08. (145.)

VY]

In general, to determine the ordinal relation of any one fractional number ﬁ, to
another %, as subscquent, or coincident, or precedent, in the general progression
of numbers, it is sufficient to prepare them by the principle (185.) so that their deno-
minators may be equal and positive, and then to compare their numerators; for

which reason it is always sufficient to compare the two whole numbers pux pxp xv'
and ¢’ x g’ x u x v, and we have

. 4 > ’
, according as puxpuxp' xv = p' xu' xpuxv: (146.)
<

Allv

NN
R

>
the abridged notation = implying the same thing as if we had written more fully
<
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“ > or = or <.” If it had been merely required to prepare two fractional numbers
so as to make them have a common denominator, without obliging that denominator
to be positive, we might have done so in a simpler manner by the formula (135.),
namely by multipling the numerator and denominator of each fraction by the deno-
minator of the other fraction, that is, by employing the following expressions,

v' ><v' v vX;L'
L=k, =225 (147.)
r pXp K X p

a process which may be still farther simplified when the original denominators have
any whole number (other than positive or contra-positive one) for a common factor,

since it is sufficient then to multiple by the factors which are not thus common, that
is, to employ the expressions,

v ,= nXv - v — vXp . (14‘8-)
wa. wXH.X[I. '.UX’.I. (’J)(’I,X'L

A similar process of preparation applies to more fractions than two.

18. This reduction of different fractional numbers to a common denominator is
chiefly useful in combining them by certain operations which may be called algebraical
addition and subtraction of fractions, (from their analogy to the algebraical addition
and subtraction of whole numbers, considered in the 14th article, and to the arith-
metical operations of addition and subtraction of quotities,) and which present them-

selves in considering the composition and decomposition of fractional steps. TFor j(
’/
. . v v

we compound, as successive steps, any two or more fractions - x v, = x b, &c., of

!

. B NG
any one effective step b, and generate thereby a new effective step, this resultant step
will evidently be itself a fraction of the step b, which we may agree to denote as

follows :
;‘: X b):(]—’;-i- )xb,

Iu
xb) (:—;—-f- + - )Xb, &e. 3

“Zle

(149.)

I ll
and the resultant fractional number -,+— or ,,+ +~ &e. may be called the

133 "
algebraical sum of the proposed ﬁactmnal numbers =, ",, Z, &c. and may

I ©

be said to be formed by algebraically adding them together ; deﬁmtlons which agree
with those established in the 14th article, when the fractional numbers reduce them-
selves to whole numbers. If the denominators of the proposed fractions be the same,
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it is sufficient to add the numerators, because then the proposed fractional steps are all
multiples of one common sub-multiple of the common unit-step b, namely of that sub-
multiple which is determined by the common denominator ; it is therefore sufficient, in
other cases, to prepare the fractions so as to satisfy this condition of having a common
denominator, and afterwards to add the numerators so prepared, and to combine their
sum as the new or resulting numerator of the resulting fractional sum, with the
common denominator of the added fractions as the denominator of the same frac-
tional sum ; which may, however, be sometimes simplified by the omission of common
factors, according to the principle (135.). Thus

-

— O xp)+( x») , or more concisely 1’_ +

V= —_-_’iﬁ .5 (150
p KXp pu &e.; (150)

v
I

NN
=

for, as a general rule of algebraic notation, we may omit at pleasure the mark of
multiplication between any two simple symbols of factors, (except the arithmetical
signs 1, 2, 3, &c.,) without causing any confusion ; and when a product thus denoted,
by the mere juxta-position of its factors, (without the mark x,) is to be combined
with other symbols in the way of addition, by the mark +, it is not necessary to en-
close that symbol of a product in parentheses : although in this Elementary Essay we
have often used, and shall often u<e again, these combining and enclosing marks, for
greater clearness and fulness. It is evident that the addition of fractions may be
performed in any arbitrary order, because the order of composition of the fractional
steps is arbitrary.

The algebraical subéraction of one given fractional number - f;om another un-
equal fractional number 5, is an operation suggested by the decomposmon of a
given compound fractional step > x b mto a given component fractional step 1’, X b
and a sought component fractional step 2, x b, (these three steps being here sup-

posed to be all effective :) and it may be performed by compounding the opposite of
the given component step with the given compound step, or by algebraically adding
the opposite © = of the given fractional number 1, to the other given fractional
number 2, according to the rule (150.). WheI’: we thus subtract one fractional
number from another with which it does not coincide, the result is positive or contra-
positive according as the fraction from which we subtract is on the positive or contra-
positive side of the other ; and thus we have another general method, besides the
rule (146.), for examining the ordinal relation of any two unequal fractions, in the
general progression of numbers. This ordinal relation between any two fractional



344 Professor Hamirron on Conjugate Functions,

(or whole) numbers « and f3, is not altered by adding any fractional (or whole) num-
ber y to both, nor by subtracting it from both; so that

> > >
v+B=y + e, and © y+B=0O1y + a,accordingas B=a. (151.)
< < <

19. Again, the composition and decomposition of successive acts of fractioning
(instead of successive fractional steps) conduct to algebraical operations of multipli-
cation and division of fractional numbers, which are analogous to the arithmetical
operations of multiplication and division of quotities. TFor if we first multiply a
given step b by a given fractional number '— , that is, if we first perform on v the
act of fractioning denoted by this number, and so form the fractional step Y v,
we may then perform on the result another act of fractxonmg denoted by aﬁlothel
fractional number :,, and so deduce another fractional step '—’- X ( Ix b),whlch
will evidently be itself a fraction of the original step b, and might therefore have
been deduced from b by one compound act of fractioning ; and thus we may proceed

to other and other fractions of that step, and to other compound acts of fractioning,
which may be thus denoted, '

v Vv ‘ll' v
—;x(—xb):(—,x—)xb,
® H B

vu vl v 'll” v' » (152')
—,—,x{-—, X (— X b)}:(—,,x —;x—)xb, &ec.;
18 " 14 " [ 1)
. 'U’ v ‘ll” 1"
and the resultant fractional numbers = x %, = x = x -, &ec., which thus express

[
the resultant acts of fractlonmg, denved ﬁom the proposed component acts marked

by the fractional numbers 3 , v,, -, &c., may be called the algebraic products

of those proposed fractxonal numbers, and may be said to be formed by algebraically
multiplying them as fractional factors together ; definitions which agree with the
definitions of product and multiplication already established for whole numbers.
The same definitions shew that every fraction may be regarded as the product of the
numerator (as one factor) and the reciprocal of the denominator (as another); and

give, in general, by (184.), the following rule for the calculation of a fractional
product

-

®Ie
r\

X

=

-=§

"
= ’ X

<
X
<
<

L VX x
popxpxu’

l

x &e. (153.)

®I=

v
U
o
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The properties (114.) and (115.) of algebraic products of whole numbers extend to
products of fractional numbers also ; that is, we may change in any manner the order
of the fractional factors; and if we resolve any one of those factors into two or
more algebraic parts by the rules of algebraic addition and subtraction, we may com-
bine each part separately as a partial factor with the other factors proposed, so as to
form by algebraic multiplication a partial fractional product, and then add together

those partial products algebraically to obtain the total product: or, in written
symbols,

14 v v V
I?XI: = P_‘ X ;_1.;’ &e., (154.)
and
 x 1'—”+1, —(vx‘i,-,)-l—(”x”') &c (155.)
" (u" u')_ TR poop/? " o
because

Ex(b"+b’):(£xb">+(£xb’), (156.)

whatever steps may be denoted by v and v and whatever fractional (or whole)
number by :—:- . We may also remark that

>
yx B=vxa, according as B = a, if y> O, (157.)
< <
but that
< . > .
v x 3 =y X a, according as B3 = a, if y <0, (158.)
= <

a 3 y denoting any three fractional (or whole) numbers.

The deduction of one of two fractional factors from the other and from the product,
may be called (by analogy to arithmetic) the algebraic division of the given fractional
product as a dividend, by the given fractional factor as a divisor ; and the result,
which may be called the quotient, may always be found by algebraically multiplying
the proposed dividend by the reciprocal of the proposed divisor. This more general
conception of quotient, agrees with the process of the 15th article, for the division of
one whole number by another, when that process gives an accurate quotient in whole
numbers ; and when no such integral and accurate quotient can be found, we may
still, by our present extended definitions, conceive the numerator of any fraction to
be divided by the denominator, and the quotient of this division will be the fractional
number itself. In this last case, the fractional number is not exactly equal to any
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whole number, but lies between two successive whole numbers, a next preceding and
a next succeeding, in the general progression of numbers; and these may be dis-
covered by the process of approximate division above mentioned, while each of the
two remainders of that approximate division is the numerator of a new fraction,
which retains the proposed denominator, and must be added algebraically as a coi-
rection to the corresponding approximate integer quotient, in order to express, by the
kelp of it, the quotient of the accurate division. Ifor example,

8 3 02 o8 2 o3
- =z 1= — 24 —_— = = =
;=5 +t1 5+,and s =3 +02 5 + 0L

In general, a fractional number may be called a mived number, when it is thus ex-
pressed as the algebraic sum of a whole number and a proper fraction, this last name
being given to a fractional number which lies between zero and positive or contra-
positive one. We may remark that an ordinal relation between two fractional
numbers is not altered by dividing them both by one common positive divisor ; but if
the divisor be contra-positive, it changes a relation of subsequence to one of pre-
cedence, and conversely, without disturbing a relation of coincidence.

20. In all the formule of the three last articles, we have supposed that all the
numerators and all the denominators of those formulwe are positive or contra-positive
whole numbers, excluding the number zero. However, the general conception of a
fraction as a multiple of a sub-multiple, permits us to suppose that the multipling
number or numerator is zero, and shows us that then the fractional step itself is null,
if the denominator be different from zero; that is,

gXb:Oif,u:j:O. (159.)

Thus, although we supposed, in the composition (149.) of successive fractional steps,
(with positive or contra-positive numerators and denominators,) that the resultant
step was effective, yet we might have removed this limitation, and have presented the
formule (150.) for fractional sums as extending even to the case when the resultant
step is null, if we had observed that in every such case the resultant numerator of the
formula is zero, while the resultant denominator is different from zero, and therefore
that the formula rightly expresses that the resultant fraction or sum is null. For

- . . (S .
example, the addition of any two opposite fractional numbers, such as Y and 22 , In

I
which p and v are different from zero, conducts to a null sum, under the form
O v+

, in which the numerator © v +v is zero, while the denominator is different

from zero.
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But it is not so immediately clear what ought to be regarded as the meaning of a
fractional sign, in the case when the denominator is null, and when therefore the act
of fractioning prescribed by the notation involves a sub-multipling by zero. To
discuss this case, we munst remember that to sub-multiple a step b by a whole number
p, 18, by its definition, to find another step a, which, when multipled by that whole
number g, shall produce the proposed step b; but, whatever step = may be, the theory
of multiple steps (explained in the 13th article) shows that it necessarily produces
the null step 0, when it is multipled by the null number zero ; that is, the cquation

0xa=0 (1€0.)

is true independently of 2, and consequently we have always

0xazkw, if vz 0. (161.)

It is, therefore, impossible to find any step a, in the whole progression of time, which
shall satisfy the equation

1
gXb=21 or Oxa=hn, (162.)

if the given step b be effective ; or, in other words, it is impossible to sub-multiple an

1

cffective step by zero. 'The fractional sign 5 denotes therefore an impossible act, if it

be applied to an effective step: and the zero-submultiple of an effective step is a phrase
which involves a contradiction. On the other hand, if the given step b be null, it is
not only possible to choose some one step a which shall satisfy the equations (162.),
but every conceivable step possesses the same proposed property ; in this case, there-
fore, the proposed conditions lay no restriction on the result, but at the same time,
and for the same reason, they fail to give any information respecting it: and the act
of sub-multipling a null step by zero, is indeed a possible, but it is also an indeter-

minate act, or an act with an indeterminate result; so that the zero-submultiple of «

1

null step, and the written symbol g % 0, are spoken or written signs which do not

specify any thing, although they do not involve a contradiction. We sec then that
while a fractional number is in general the sign of a possible and determinate act of
fractioning, it loses one or other of those two essential characters whenever its deno-
minator is zero ; for which reason it becomes comparatively unfit, or at least inconve-
nient, in this case, for the purposes of mathematical reasoning. And to prevent the
confusion which might arise from the mixture of such cases with others, it is conve-
nient to lay down this general rule, to which we shall henceforth adhere: that all
VOL. XVIIL 3T
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denominators and divisors are to be supposed different from zero unless the contrary
be mentioned expressly ; or that we shall never sub-multiple nor divide by a null num-
ber without expressly recording that we de so.

On the Comparison of any one effective Step with any other, in the way of Ratio,
and the Generation of any one such step from any other, in the way of Multipli-
cation ; and on the Addition, Subtraction, Multiplication, and Division of Alge-
braic Numbers in general, considered thus as Ratios or as Multipliers of Steps.

21. The foregoing remarks upon fractions Iead naturally to the more general con-
ception of algebraic ratio, as a complex relation of any one effective step' to any
other, determined by their relative largeness and relative direction ; and to a simi-
larly extended conception of algebraic multiplication, as an act (of thought) which
enlarges, or preserves, or diminishes the magnitude, while it preserves or reverses the
direction, of any effective step proposed. In conformity with these conceptions, and
by analogy to our former notations, if we denote by a and b any two effective steps,
of which a may be called the antecedent or the multiplicand, and b the consequent
or the product, we may employ the symbolli to denote the ratio of the consequent b
to the antecedent a, or the algebraic number or multiplier by which we are to mul-
tiply a as a multiplicand in order to generate b as a product : and if we still employ
the mark of muitiplication x, we may now write, in general,

b=2xa: (168.)

a
or, more concisely,

b=a X a, if;i: a, (164.)

that is, if we employ, for abridgement, a simple symbol, such as the italic letter a, to
denote the same ratio or multiplier which is more fully denoted by the complex
symbol ;—’-

It is an immediate consequence of these conceptions and definitions, that the fol-
lowing relation holds good,

vxe ol (165.)

s denoting any effective step, and p and » denoting any positive or contra-positive
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whole numbers; since the fractional ratio denoted by the symbol 2 is the ratio of

the multiple step v x a to the multiple step u x a. In like manner it follows, from
the same conceptions and definitions, that

v /
i : b= ;—:, and reciprocally v =’-’i X b if% = ii (166.)
and more generally, that
b
aXe=b (167.)
c a
and reciprocally,
a=2x.cif i =2 (168.)

whatever effective steps may be denoted by a, b, ¢, d, and whatever fraction by L

We may also conceive combinations of ratios with each other, by operations ’évhich
we may call Addition, Subtraction, Multiplication, and Division of Ratios, or of
general algebraic numbers, from the analogy of these operations to those which we
have already called by the same names, in the theories of whole numbers and of
fractions. And as we wrote, in treating of whole numbers,

w=v+pu when w><a=(v><a)+(#><a), (107.)
and
w=vXpu when o x a=v X (,u X a); (111.)

and, in the theory of fractions,

o Y " " v v
-,,=—;+; when ;,,xb:(;,x b)+(,—‘xb), (149.)
and
v v v V' v v
;”z’:,x; when ,}Xb:;rx(;x'”)’ (152.)

with other similar expressions; so we shall now write, in the more general theory of
ratios,

B _b b b” v b
= ==+~ when 7 x c=(;l-,Xc>+(;x c), (169.)
and

B _ Y b v W /b
7 =3 X3, When 7 X c:;x(;x c): (170.)
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and shall suppose that similar definitions are established for the algebraical sums and
products of more than two ratios, or general algebraic numbers. It follows that

b, b _b+b 3
2 "a " a
b bbby L a7L)

a a 'a a ’

&ec. J

and that

¥ b _ b 1
bXa"a’
b’ B b _b & s (179.)
vXpXa Ty ¢

o

A ratio between any two effective steps may be said to be positive or contra-positive,
according as those two steps are co-directional or contra-directional, that is, according
as their directions agree or differ ; and then the product of any two or more positive
or contra-positive ratios will evidently be contra-positive or positive according as there
are or are not an odd number of contra-positive ratios, as factors of this product ;
because the direction of a step is not altered or is restored, if it either be not reversed
at all, or be reversed an even number of times.

Agaiun, we may say, as in the case of fractions, that we subiract a ratio when we
add its opposite, and that we divide by a ratio when we multiply by its reciprocal, if we
agrec to say that two ratios or numbers are opposites when they generate opposite
steps by multiplication from one common step as a multiplicand, and if we call them
rectprocals when their corresponding acts of multiplication are opposite acts, which
destroy, each, the effect of the other ; and we may mark such opposites and reci-
procals, by writing, as in the notation of fractions,

v b v b

=0 when FXec= e(; X c), (178.)
and

g: u:%, whengx(:lXc =¢: (174.)

definitions from which it follows that

and that
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And as, by our conceptions and notations respecting the ordinal relation of one
fractional number to another, (as subsequent, or coincident, or precedent, in the
general progression of such numbers from contra-positive to positive,) we had the
relations,

v >

v 2y v
~=-,when=xas= - xa, a> 03
¥o<n Kooo<n
so we may now establish, by analogous conceptions and notations respecting ratios,

the relations,

’ > ’ ’ > ,
E—,ig,wheng—,xa?%xa, a> 0: Q77.)

that is, more fully,

bll b 17 w ’

;‘,>;;,Wllell(;‘;><a)+A>(§‘,X&)+A, (178.)

b” bl }I ’

= = o when(;’;,x a)+A=(§,xa>+A, (179.)
and

bl! b bl’ ’

ar < 3 when(;,xa)+A<(%xa)+A; (180.)

the symbol A denoting any moment of time, and a any late-making step. The rela-
tion (179.) is indeed an immediate consequence of the first conceptions of steps and
ratios; but it is inserted here along with the relations (178.) and (180.), to show
more distinctly in what manner the comparison and arrangement of the moments

(Fxa)+a (Fxa)+a & (181.)
which are suggested and determined by the ratios or numbers g, :—:;, , &c., (in combi
nation with a standard moment a and with a late-making step a,) enable us to com-
pare and arrange those ratios or numbers themselves, and to conceive an indefinite
progression of ratio from contra-positive to positive, including the indefinite pro-
gression of whole numbers (103.), and the more cowmprehensive progression of frac-
tional numbers considered in the 17th article: for it will soon be shown, that though
every fractional number is a ratio, yet therc are many ratios which cannot he ex-
pressed under the form of fractional numbers. Meanwhile we may observe, that the
theorems (151.) (157.) (158.) respecting the ordinal relations of fractions in the
general progression of number, are true, even when the symbols « 3 y denote ratios
which are not reducible to the fractional form ; and that this indefinite progression
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of number, or of ratio, from contra-positive to positive, corresponds in all respects to
the thought from which it was deduced, of the progression of time itself, from mo-
ments indefinitely early to moments indefinitely late.

22. It is manifest, on a little attention, that the ratio of one effective step v to
another a, is a relation which is entirely determined when those steps are given, but
which is not altered by multiplying both thosc steps by any common multiplier,
whether positive or contra-positive ; for the relative largeness of the two steps is not
altered by doubling or halving both, or by enlarging or diminishing the magnitudes of
both in any other common ratio of magnitude, that is, by multiplying both by any
common positive multiplier : nor is their relative direction altered, by reversing the
directions of both. We have then, generally,

2y (182.)

=1L (183.)

Hence, by (167.), the two steps < x b and% x care related in one common ratio,
namely the ratio g, to the common step c, and therefore are equivalent to each
other ; that is, we have the equation,

Xxb = 2 ox e, (184.)

@6

whatever three effective steps may be denoted by a b <.

In general, when any four effective steps a b ¢ d are connected by the relation

g— = —g, (185.)

that is, when the ratio of the step a to ¢ is the same as the ratio of the step b to a,
these two pairs of steps a, b and ¢, a may be said to be analogous or proportional
pairs ; the steps a and c being called the aniecedents of the analogy, (or of the
proportion) and the steps b and a being called the consequents, while a and a are the
extremes and b and ¢ the means. And since the last of these four steps, or the
second consequent d, may, by (168.), be expressed by the symbol g X ¢, We see, by
(184.), that it bears to the first consequent b the ratio § of the second antecedent
¢ to the first antecedent a; that is,
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d o d b
Ezf—xf—:—:
a C a

(186.)
a theorem which shows that we may transform the expression of an analogy (or pro-
portion) between two pairs of effective steps in a manner which may be called alter-
nation. (Compare the theorem (11.).)

It is still more casy to perceive that we may ¢nvert an analogy or proportion
between any two pairs of effective steps; or that the following theorem is true,

o d b

i= g ifg =7 (187.)
Combining inversion with alternation, we see that

b o d b

(Compare the theorems (12.) and (13.).)

In general, if any two pairs of effective steps a, b and ¢, a be analogous, we do
not disturb this analogy by interchanging the extremes among themselves, or the
means among themselves, or by substituting extremes for means and means for ex-
tremes ; or by altering proportionally, that is, altering in one common ratio, or mul-
tiplying by one common multiplier, whether positive or contra-positive, the two con-
sequents, or the two antecedents, or the two steps of either pair: or, finally, by
altering ¢n {nverse proportion, that is, multiplying respectively by any two reciprocal
multipliers, the two extremes, or the two means. The analogy (185.) may therefore
be expressed, not only in the ways (186.), (187.), (188.), but also in the following :

Xd __axh d __1b aXd _ b
Te T T TR axeT axa gy T a0 (189.)
b d
Taxd axb
. Taxargax ¢ Ta (190.)

a denoting any ratio of one effective step to another, and u a denoting the reciprocal
ratio, of the latter step to the former.

23. We may also consider it as evident that if any effective step ¢ be com-
pounded of any others a and b, this relation of compound and components will not
be disturbed by altering the magnitudes of all in any common ratio of magnitude,
that is by doubling or halving it, or multiplying all by any common positive multi-
plier ; and we saw, in the 12th article, that the same relation of compound and com-
ponents is not disturbed by reversing the directions of all: we may therefore mul-
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tiply all by any common multiplier @, whether positive or contra-positive, and may
establish the theorem,

axcec=(axb)+(axa), if c=b + a; (191.)

which gives, by the definitions (169.) (170.) for the sum and product of two ratios,
this other important relation,

ax (0 +d0)=(a xb)+(axDb), (192.)

if b, V', and ¥’ + b, denote any three positive or contra-positive numbers, connected
with each other by the definition (169.), or by the following condition,

(B +b) xa=@'xa)+(bxa), (193.)

in which d¢ denotes any arbitrary effective step. The definitions of the sum and
product of two ratios, or algebraic numbers, give still more simply the theorem,

(0 +0) xa=(' x a)+ (b x a). (194.)

The definition (169.) of a sum of two ratios, when combined with the theorem
(75.) respecting the arbitrary order of composition of two successive steps, gives the
following similar theorem respecting the addition of two ratios,

bta=a+d. (195.)

And if the definition (170.) of a product of two ratios or multipliers be combined
with the theorem (180.) of alternation of an analogy between two pairs of steps, in
the same way as the definition of a compound step was combined in the 12th article
with the theorem of alternation of an analogy between two pairs of moments, it
shows that as any two steps a, b, may be applied to any moment, or compounded
with each other, either in one or in the opposite order, (b + a =a +b,) so any two
ratios @ and b may be apphed as multipliers to any step, or combined as factors of a
product with each other, in an equally arbitrary order; that is, we have the relation,

bxa=axb (196.)

It is easy to infer, from the thorems (195.) (196.), that the opposite of a sum of two

ratios is the sum of the opposites of those ratios, and that the reciprocal of the pro-

duct of two ratios is the product of their two reciprocals ; that is,

0 (b+a)=00b+06aq, (197.)

and
¥ (bxa)=ubxua. (198.)
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And all the theorems of this article, respecting pairs of ratios or of steps, may easily
be extended to the comparison and combination of more ratios or steps than two.
In particular, when any number of ratios are to be added or multiplied together, we
may arrange them in any arbitrary order; and in any multiplication of ratios, we
may treat any one factor as the algebraic sum of any number of other ratios, or
partial factors, and substitute each of these separately and successively for it, and the
sum of the partial products thus obtained will be the total product sought. Asan
example of the multiplication of ratios, considered thus as sums, it is plain from the
foregoing p;'inciples that

(d+6)x(b+a)={dx(b+a)} + fex (b +a)}
=(dxb) +(dxa)+(cxb) +(cxa)

=db+da+cb+ca, (199.)
and that

G+a)x(b+a)=(bxb)+(2xbxa)+ (axa)
=bb+2ba+aa, (200.)

whatever positive or contra-positive ratios may be denoted by a b ¢ d.

And though we have only considered effective steps, and positive or contra-
positive ratios, (or algebraic numbers,) in the few last articles of this Essay, yet the
results extend to null steps, and to null ratios, also ; provided that for the reasons
given in the 20th article we treat all such null steps as consequents only and not as
antecedents of ratios, admitting null ratios themselves but not their reciprocals into our
formulee, or employing null numbers as multipliers only but not as divisors, in order
to avoid the introduction of symbols which suggest either impossible or indeterminate
operations.

‘On the insertion of a Mean Proportional between two steps; and on Impossible,
Ambiguous, and Incommensurable Square-Roots of Ratios.

24. Three effective steps a b b may be said to form a continued analogy or con-

tinued proportion, when the ratio of v to b is the same as that of b to a, that is,
when

b
A

<

; (201.)
YOL. XVII, 3 v
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a and v being then the extremes, and b the mean, or the mean proportional between
a and v, in this continued analogy ; in which v is also the third proportional to a
and b, and a is at the same time the third proportional to v and b, because the
analogy may be inverted thus,

—t—
—_—

sl
.

(202.)

i

When the condition (201.) is satisfied, we may express i as follows,

b '
Y=< X a3 (208.)

that is, if we denote by @ the ratio of v to a, we shall have the relations
b=@aXa, Y=aXb=aXaXa; (204.)

and reciprocally when these relations exist, we can conclude the existence of the con-
tinued analogy (201.). It is clear that whatever effective steps may be denoted by
aand b, we can always determine, (or conceive determined,) in this manner, one
third proportional v and only one ; that is, we can complete the continued analogy
(201.) in one, but in only one way, when an extreme a and the mean b are given:
and it is important to observe that whether the ratio ¢ of the given mean b to the
given extreme a be positive or contra-positive, that is, whether the two given steps
a and b be co-directional or contra-directional steps, the product a x @ will necessarily
be a positive ratio, and therefore the deduced extreme step 1 will necessarily be
co-directional with the given extreme step a. In fact, without recurring to the
theorem of the 21st article respecting the cases in which a product of contra-positive
factors is positive, it is plain that the continued analogy requires, by its conception,
that the step b’ should be co-directional to b, if b be co-directional to a, and that w
should be contra-directional to b if b be contra-directional to a; so that in every
possible case the extremes themselves are co-directional, as both agreeing with the
mean or both differing, from the mean in direction. ¢ s, therefore, impossible to
insert a mean proportional between two contra-directional steps ; but for the same
reason we may insert either of two opposite steps as a mean proportional between
two given co-directional steps ; namely, either a step which agrees with each, or a
step which differs from each in direction, while the common magnitude of these two
opposite steps is exactly intermediate in the way of ratio between the magnitudes of
the two given extremes. (We here assume, as it seems reasonable to do, the con-
ception of the general existence of such an exactly intermediate magnitude, although
the nature and necessity of this conception will soon be more fully considered.) For
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example, it is impossible to insert a mean proportional between the two contra-
directional (effective) steps a and © 9 a, that is, it is impossible to find any step b
which shall satisfy the conditions of the continued analogy

(S} 9 a .ll

b =

, (205.)
or any number or ratio @ which shall satisfy the equation
axa=09: (206.)

whereas it is possible to insert in two different ways a mean proportional b between
the two co-directional (effective) steps a and 9 a, or to satisfy by two different steps
b (namely, by the step 3 a, and also by the opposite step © 3 a) the conditions of the
continued analogy

9_b? =t, (207.)
and it is possible to satisfy by two different ratios a the equation
axa=9, (208.)

namely, either by the ratio 8 or by the opposite ratio © 8. In general, we may
agree to express the two opposite ratios a which satisfy the equation

axa=b(>0), (209.)
by the two symbols

Vb (> 0)and ©v5 (< 0), (210.)
b and ~ b being positive ratios, but © v b being contra-positive ; for example,
v9=8, ©v9=6 3. (211.)

With this notation we may represent the two opposite steps of which each is a mean
proportional between two given co-directional (effective) steps = and v, by the

symbols
,‘/gx a, and G/gx a; (212.)

and shall have for each the equation of a continued analogy,

/b'xa..ﬁ_i_“ o ‘Xazﬁ_{d«i"i‘_ﬁ. (218.)
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We may also call the numbers v b and ©v5 by the common name of roots, or
(more fully) square-roots of the positive number b ; distinguishing them from each
other by the separate names of the positive square-root and the contra-positive
square-root of that number b, which may be called their common square : though we
may sometimes speak simply of the square-root of a (positive) number, meaning then
the positive root, which is simpler and more important than the other.

25. 'The idea of the continuily of the progression from moment to moment in
time involves the idea of a similarly continuous progression in magnitude from any
one effective step or interval between two different moments, to any other unequal
effective step or other unequal interval ; and also the idea of a continuous progres-
ston in ratio, from any one degree of inequality, in the way of relative largeness or
smallness, as a relation between two steps, to any other degree. Pursuing this train
of thought, we find ourselves compelled to conceive the existence (assumed in the
last article) of a determined magnitude b, exactly intermediate in the way of ratio
between any two given unequal magnitudes a and V', that is, larger or smaller than
the one, in exactly the same proportion in which it is smaller or larger than the
other; and therefore also the existence of a determined number or ratio @ which is
the exact square-root of any proposed (positive) number or ratio &. To show this
more fully, let A 8 D be any three given distinct moments, connected by the relations

—A
B —

o]

=5 b>51, (214.)

>

which require that the moment B should be situated between A and 0 ; and let ¢ be
any fourth moment, lying between B and D, but capable of being chosen as near to s
or as near to D as we may desire, in the continuous progression of time. Then the
two ratios

€A gng 272

B—A. €—A
will both be positive ratios, and both will be ratios of largeness, (that is, each will be
a relation of a larger to a smaller step,) which we may denote for abridgement as
follows,

C=4 — o, D-—-A:y:asz; (215.)
B—A C—A

but by choosing the moment ¢ sufficiently near to B we may make the ratio 2 ap-
proach as near as we desire to the ratio of equality denoted by 1, while the ratio y
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will tend to the given ratio of largeness denoted by 4 ; results which we may express
by the following written sentence,

if Lc=8, then Lx=1 and L y=19, (216.)

prefixing the symbol L, (namely the initial letter L of the Latin word Limes, distin-
guished by a bar drawn under it,) to the respective marks of the variable moment c
and variable ratios #, y, in order to denote the respective limits to which those
variables tend, while we vary the selection of one of them, and thercfore also of the
rest. Again, we may choose the moment c nearer and nearer to », and then the
ratio # will tend to the given ratio of largeness denoted by &, while the ratio y will
tend to the ratio of equality ; that is,

if Lc=p, then Law=b, Ly=1; (217.)

and if we conceive a continuous progression of moments ¢ from B to b, we shall also
have a continuous progression of ratios #, determining higher and higher degrees of
relative largeness (of the increasing step ¢ —A as compared with the fixed step 8 —a)
from the ratio of equality 1 to the given ratio of largeness 4, together with another
continuous but opposite progression of ratios y, determining lower and lower degrees
of relative largeness (of the fixed step D—a as compared with the increasing step
¢ —4) from the same given ratio of largeness  down to the ratio of equality 1; so
that we cannot avoid conceiving the existence of some one determined state of the
progression of the moment c, for which the two progressions of ratio meet, and for
which they give

D—A _C—A

4 xxb=y=e, thatis
J= C—A  B—a

. (218.)

having given at first y > @, and giving afterwards y < . And since, in general

D—a C0=A_ D_A, that is, (@ x x b)) x =0, (219.)
C—A B—A B—A

we can and must by (218.) and (214.), conceive the existence of a positive ratio ¢
which shall satisfy the condition (209.), @ x a=b, if b > 1, that is, we must conceive
the existence of a positive square-root of 5, if & denote any positive ratio of large-
ness. A reasoning of an entirely similar kind would prove that we must conceive the
existence of a positive square-root of b, when & denotes any positive ratio of small-
ness, (b < 1;) andif b denote the positive ratio of equality, (6=1,) then it evi-
dently has that ratio of equality itself for a positive square-root. We see then by
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this more full examination what we before assumed to be true, that every positive
number or ratio & has a positive (and therefore also a contra-positive) square-root.
And hence we can easily prove another important property of ratios, which has
been already mentioned without proof; namely that several ratios can and must be
conceived to exist, which are incapable of being expressed under the form of whole
or fractional numbers ; or, in other words, that every effective step a has other steps
incommensurable with it ; and therefore that when any two distinct moments A and
B are given, it is possible to assign (in various ways) a third moment ¢ which shall
not be uniserial with these two, in the sense of the 8th article, that is, shall not
belong in common with them to any one equi-distant series of moments, comprising
all the three. For example, the positive square-root of 2, which is evidently inter-
mediate between 1 and 2 in the general progression of numbers, and which therefore
is not a whole number, cannot be expressed as a fractional number either ; since if it

could be put under the fractional form :—:—l, so that

N2 =y (220.)
we should then have
_n _m _nxn
2 = T rm? (221.)
that is,
nXN=2xmxm; (222.)

but the arithmetical properties of quotities are sufficient to prove that this last equa-
tion is impossible, whatever positive whole numbers may be denoted by m and =.
And hence, if we imagine that

b= VI X 1, a>0, (228.)

the step b which is a mean proportional between the two effective and co-directional
steps » and 2 a (of which the latter is double the former) will be incommensurable
with the step a (and therefore also with the double step 2 a); that is, we cannot
find nor conceive any other step < which shall be a common measurer of the steps
s and b, so as to satisfy the conditions

a=Mec, b=7 c, (‘2244.)
.whatever positive or contra-positive whole numbers we may denote m and n ; be-
cause, if we could do this, we should then have the relations,

b= — 2 =
mt V2

, (225.)

SIS
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of which the latter has been shown to be impossible. Hence finally, if A and B be
arly two distinct moments, and if we choose a third moment ¢ such that

= v (226.)

the moment c will not be uniserial with A and B, that is, no one equi-distant series of
moments can be imagined, comprising all the three. And all that has here been
shown respecting the square-root of two, extends to the square-root of three, and
may be illustrated and applied in an infinite variety of other examples. We must
then admit the existence of pairs of steps which have no common measurer; and

may call the ratio between any two such steps an incommensurable ratio, or incom-
mensurable number.

More formal proof of the general existence of a determined positive square-root,
commensurable or incommensurable, for every determined positive ratio: conti-
nuity of progression of the square, and principles connected with this continuity.

26. The existence of these incommensurables, (or the necessity of conceiving
them to exist,) is so curious and remarkable a result, that it may be usefully con-
firmed by an additional proof of the general existence of square-roots of positive
ratios, which will also offer an opportunity of considering some other important prin-
ciples,

The existence of a positive square-root @ = v b, of any proposed ratio of largeness
b > 1, was proved in the foregoing article, by the comparison of the two opposite
progressions of the two ratios # and u @ x b, from the states #=1, u # x b=¥b, for
which w # x b > @, to the states ¥ =b, w x xb=1, for which u # xb <. ; for this
comparison obliged us to conceive the existence of an intermediate state or ratio «
between the limits 1 and 6, as a common state or state of meeting of these two oppo-
site progressions, corresponding to the conception of a moment at which the de-
creasing ratio w x x b becomes exactly equal to the increasing ratio @, having been
previously a greater ratio (or a ratio of greater relative largeness between steps), and
becoming afterwards a lesser ratio (or a ratio of less relative largeness). And it
was remarked that an exactly similar comparison of two other inverse progressions
would prove the existence of a positive square-root & of any proposed positive
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ratio b of smallness, 5 <1, 5> 0. But instead of thus comparing, with the progression
of the positive ratio &, the connected but opposite progression of the connected posi-
tive ratio u . x b, and showing that these progressions meet each other in a certain
intermediate state or positive ratio @, we might have compared the two connected
and not opposite progressions of the two connected positive ratios # and x x , of
which the latter is the square of the former ; and might have shown that the square
(=@ x v =x x) increases constantly and continuously with the root (=), from the
state zero, so as to pass successively through every state of positive ratio 3. To
develope this last conception, and to draw from it a more formal (if not a more con-
vincing) proof than that already given, of the necessary existence of a conceivable
positive square-root for every conceivable positive number, we shall here lay down a
few Lemmas, or preliminary and auxiliary propositions.

> >
Lemma 1. If 2’ =, and 2>0, a'>0, then 2’2’ = vz; (227.)
< <

that is, the square 2’2’ of any one positive number or ratio 2’, is greater than, or
cqual to, or less than the square 2z of any other positive number or ratio z, ac-
cording as the number 2’ itself is greater than, or equal to, or less than the number
« 3 one number 2/ being said to be greater or less than another number z, when it is
on the positive or on the contra-positive side of that other, in the general progression
of numbers considered in the 21st article. This Lemma may be easily proved from
the conceptions of ratios and of squarcs; it follows also without difficulty from the
theorem of multiplication (200.). And hence we may obviously deduce as a corollary
of the foregoing Lemma, this converse proposition:

> >
if 22 = zz, and >0, 2'>0, then 2/ i 23 (228.)
<

that is, if any two proposed positive numbers have positive square-roots, the root of
the one number is greater than, or equal to, or less than the root of the other
number, according as the former proposed number itself is greater than, or equal to,
or less than the latter proposed number.

The foregoing Lemma shows that the square constantly increases with the root,
from zero up to states indefinitely greater and greater. But to show that this in-
crease is continuous as well as constant, and to make more distinct the conception of
such continuous increase, these other Lemmas may be added.

Lemma II. If & and @’ be any two unequal ratios, we can and must conceive the
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existence of some intermediate ratio @ ; that is, we can always choose @ or conceive
it chosen so that

a>d, a<dad’, if d>d. (229.)
For then we have the following relation of subsequence between moments,
@' (B—A)+A>d (B—A)+a4, if B> a, (230.)

by the very meaning of the relation of subsequence between ratios, ¢’ > o/, as defined
in article 21.; and between any two distinct moments it is manifestly possible to
insert an intermediate moment, indeed as many such as we may desire: it is, there-
fore, possible to insert a moment c between the two non-coincident moments

@ (B—A)+a and d' (B—~4) + 4,
such that
c>d (B—aA)+4, c<a (B—A)+4a, if B>, a" >d; (231.)

and then if we put, for abridgement,

cC—aA
a=_—- 232,
B—a’ (252.)
denoting by a the ratio of the step or interval c—a to the step or interval B—a,
we shall have

a (B—A)+A> d (B—A)+a,

c=a (B—A)+4, B> 4,
(283.)
a (B—a)+Aa<a'(B—a)+a,

and therefore finally,
a>d, a<a,

as was asserted in th8 Lemma. We see, too, that the ratio @ is not determined by
the conditions of that Lemma, but that an indefinite variety of ratios may be chosen,
which shall all satisfy those conditions.

Corollary. It is possible to choose, or conceive chosen, a ratio a, which shall
satisfy all the following conditions,

a>a, a>b, a>c, } (234.)

a<d', a<b’, a<c’, ...

7,

if the least (or hindmost) of the ratios a”, 8", ¢”, ... be greater (or farther advanced
in the general progression of ratio from contra-positive to positive) than the greatest
(or foremost in that general progression) of the ratios ', ¥', ¢, &c.

VOL. XVII. 3x
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For if ¢’ (for example) be the least or hindmost of the ratios a”, 0", ¢’,.

.. SO
that

C” ; a”, C”.; bll’ cll ; dl;, ... (235')

and if &’ (for example) be the greatest or foremost of the ratios @', &', ¢, ... so that
VZd, Ve, b2d,... (236.)

(the abridged sign = denoting what might be more fully written thus, ¢« <or =”

b4
and the other abridged sign = denoting in like manner “> or =”,) then the con-

ditions (234.) of the Corollary will all be satisfied, if we can satisfy these two condi-
tions,

a>b, a<c; (237.)

and this, by the Lemma, it is possible to do, if we have the relation

> b, (288.)

which relation the enunciation of the Corollary supposes to exist.

Remark.—If the ratios a' &' ¢... a” b” ¢"... be all actually given, and therefore

limited in number ; or if, more generally, the least of the ratios a” 8" ¢"... and the
greatest of the ratios a' 3’ ¢’... be actually given and determined, so that we have
only to choose a ratio a intermediate between two given unequal ratios ; we can then
make this choice in an indefinite variety of ways, even if it should be farther required

that ¢ should be a fractional number 2, since we saw, in the 8th article, that be-
tween any two distinct moments, su:h as @ (B—a)+A and a” (B—a4) +A4, it is pos-
sible to insert an indefinite variety of others, such as ~ (B—A) + A, uniserial with the
two moments A and B, and giving therefore fractions such as Y , intermediate (by

the 21st article) between the ratios ¢’ and a”. But if, instead of actually knowing
the ratios a’ &' ¢’... a” b’ ¢'... themselves, in (234.), we only know a law by which we
may assign such ratios without end, this law may lead us to conceive new conditions
of the form (234.), incompatible with some (and perhaps ultimately with all) of these

selections of fractional ratios =, although they can never exclude all ratios @ what-

ever, unless they be incompatible with each other, that is, unless they fail to possess

the relation mentioned in the Corollary. The force of this remark will soon be felt
more fully.

Lemma III. If b denote any given positive ratio, whether it be or be not the
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square of any whole or of any fractional number, it is possible to find, or to conceive

as found, one positive ratio ¢, and only one, which shall satisfy all the conditions of
the following forms :

’ ”

n n

a> 5 @< 5 (239.)

m' n' m" n' denoting here any positive whole numbers whatever, which can be chosen
s0 as to satisfy these relations,

/nl

" m

<b > (240.)

S

~

3

For if the proposed ratio & be not the square of any whole or fractional number, then
the existence of such a ratio @ may be proved from the two preceding Lemmas, or
from their Corollaries, by observing that the relations (240.) give

n/' n/[ n' n’ nl/ n’
S and therefore — > —; 241.
m T om '’ m” " m’ ( )

so that no two conditions of the forms (239.) are incompatible with each other, and there

must be at least one positive ratio @ which satisfies them all. And to prove in the same .
case that there is only one such ratio, or that if any one positive ratio a satisfy all the

conditions (239.), no greater ratio ¢ (>a) can possibly satisfy all those conditions, we

may observe that however little may be the excess © @ -+ ¢ of the ratio ¢ over a, this

excess may be multiplied by a positive whole number m' so large that the product

shall be greater than unity, in such a manner that

m (©a+c)>1, (242.)
and therefore

1 1
Qa+tc>—, and c¢>— 4 «; (243.)
m m

and that then another positive (or null) whole number %’ can be so chosen that

n 1+n _ 1+a
e <0 = X —— >b (244.)

with which selection we shall have, by (239.) (240.) (243.),

a>2, o> 117, (245.)
m

m

whereas, if ¢ satisfied the conditions (239.) it ought to be less than this fraction
! :—n,n » because the square of this positive fraction i® greater by (244.) than the pro-




366 Professor Hamivton on Conjugate Functions,

posed ratio 5. In like manner it may be proved that in the other case, when b is the
square of a positive fractional or positive whole number ;—;, one positive ratio ¢ and
only one, namely the number :—t itself, will satisfy all the conditions (239.) ; in both

cases, therefore, the Lemma is true : and the consideration of the latter case shows,
that, under the conditions (239.),

a== if b ===, 2o (246.)
mm m
In no case do the conditions (239.) exclude all ratios @ whatever ; but except in the
case (246.) they exclude all fractional ratios : for it will soon be shown that the one
ratio ¢ which they do not exclude has its square always =0, and must, therefore, be
an incommensurable number when b is not the square of any integer or fraction.
(Compare the Remark annexed to the Corollary of the IInd Lemma.)

Lemma 1V. If ¥ and 5" be any two unequal positive ratios, it is always possible
to insert between them an intermediate fractional ratio which shall be itself the square

of another fractional ratio ol that is, we can always find, or conceive found, two

positive whole numbers m and n which shall satisfy the two conditions,

22y, ﬂ:? <V, if 5> ¥, 5>0. (247.)

mm m 7

For, by the theorem of multiplication (200.), the square of the fraction ! ;;n may
be expressed as follows,
1+nrx1+n___ 1 +Qn+nn. (248.)

m m  mm mm mm’

that is, its excess over the square of the fraction ~ 18 1 + H%’ which is less than

2 ' . . L mm
~ X 1——;%&, and constantly increases with the positive whole number 7' when the

positive whole number m remains unaltered ; so that the 1+’ squares of fractions
with the common denominator m, in the following series,
n' n'

x%,... X =, Lin  1lxw (249.)

m w m m

S~
S
2w
X
Sl
Ste

’

14+n

. 2
increase by increasing differences which are each less than ~ x , and therefore

1 . , . ..
than W if we choose m and 7’ so as to satisfy the conditions

m=21ik, 1+n=tm, (250.)
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i and % being any two positive whole numbers assumed at pleasure : with this choice,
therefore, of .the numbers m and 7', some one (at least) such as ll—:; among the

squares of fractions (249.), that is, some one at least among the following squares of
fractions,

1 1 2 2 8 3 2iik  2iik
5Tk C 9T’ Oik N 9ik 9ik 90k

Sy SR vy e vy SR 2D
of which the last is =474, must lie between any two proposed unequal positive ratios

b and 6", of which the greater b” does not exceed that last square 77, and of which

1 aye .
the difference © '+ 8" is not less than Py and positive whole numbers i and % can

always be so chosen as to satisfy these last conditions, however great the proposed
ratio 5" may be, and however little may be its excess © &' +&" over the other pro-
posed ratio '

27. With these preparations it is easy to prove, in a new and formal way, the ex-
istence of one determined positive square root /b for every proposed positive ratio
b, whether that ratio b be or be not the square of any whole or of any fractional
number ; for we can now prove this Zheorem :

The square @ @ of the determined positive ratio a, of which ratio the existence
was shown in the 1IId. Lemma, is equal to the proposed positive ratio & in the same
Lemma ; that is,

1 [
. n nn
if a> — whenever —— < b,
7 m m

"l
" [T}
n n'n 259,
and @ < —;, whenever ——; > b, (252.)
m m-m

then e a=b, a= v b,

m' n' m" n" being any positive whole numbers which satisfy the conditions here men-
tioned, and b being any determined positive ratio.

For if the square @ a of the positive ratio ¢, determined by these conditions, could
be greater than the proposed positive ratio &, it would be possible, by the IVth Lemma,
to insert between them some positive fraction which would be the square of another

positive fraction % ; that is, we could choose m and # so that

LN b, 2 <caa: (253.)

mm mm
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and then, by the Corollary to the Ist Lemma, and by the conditions (252.), we should
be conducted to the two following incompatible relations,

n n
—_ — ar
- <a, a0 < —. (254.)

A similar absurdity would result, if we were to suppose aa less than 6 ; a ¢ must
therefore be equal to &, that is, the theorem is true. It has, indeed, been here as-
sumed as evident, that every determined positive ratio ¢ has a determined positive
square a a ; which is included in this more general but equally evident principle, that
any two determined positive ratios or numbers have a determined positive product.

We find it, therefore, proved, by the most minute and rigorous examination, that
if we conceive any positive ratio # or ¢ to increase constantly and continuously from
0, we must conceive its square & or aa to increase constantly and continuously with
it, so as to pass successively but only once through every state of positive ratio b :
and therefore that every determined positive ratio b has one determined positive
square root » b, which will be commensurable or incommensurable, according as b can
or cannot be expressed as the square of a fraction. When & cannot be so expressed,
it is still possible to approzimate in fractions to the incommensurable square root v 5,
by choosing successively larger and larger positive denominators, and then seeking
for every such denominator m’ the corresponding positive numerator »’ which satisfies
the two conditions (244.); for although every fraction thus found will be less than
the sought root + b, yet the error, or the positive correction which must be added to
it in order to produce the accurate root » b, is less than the reciprocal of the deno-
minator m’, and therefore may be made as little different as we please from 0, (though
it can never be made exactly = 0,) by choosing that denominator large enough.
This process of approximation to an incommensurable root v & is capable, therefore,
of an indefinitely great, though never of a perfect accuracy ; and using the notation
already given for limits, we may write

n' n'n lﬁ 142

whb=12 i T cp TR ET S, (255.)
m mm m m

and may think of the incommensurable root as the limit of the varying fractional
number.

The only additional remark which need be made, at present, on the subject of the
progression of the square x.r, or aa, as depending on the progression of the root x,
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or g, is that since (by the 24th article) the square remains positive and unchanged
when the root is changed from positive to contra-positive, in such a manner that

OaxOa=axa (256.)

the square aa must be conceived as firs¢ constantly and continuously decreasing or
retrograding towards O, and afterwards constantly and continuously increasing or
advancing from 0, if the root @ be conceived as constantly and continuously increas-
ing or advancing, in the general progression of ratio, from states indefinitely far from

0 on the contra-positive side, to other states indefinitely far from O, but on the posi-
tive side in the progression.

On Continued Analogies, or Series of Proportional Steps; and on Powers, and
Roots, and Logarithms of Ratios.

28. Four effective steps a b v’ b’ may be said to form a continued analogy or conti-
nued proportion, » and v~ being the extremes, and b and v the means, when they are
connected by one common ratio in the following manner :

b _ b
==y

1

5 (257.)
and if we denote for abridgement this common ratio by @, we may write
b=—a Xa,V=gXaqXasas, b=—aXaXaXa. (258.)

Reciprocally, when b v can be thus expressed, the four steps a b b’ b” compose a
continued analogy ; and it is clear that if the first extreme step a and the common
ratio @ be given, the other steps can be deduced by the multiplications (258.) It is
easy also to perceive, that if the two extremes a and v” be given, the two means b and
v may be conceived to be determined (as necessarily connected with these) in one and
in only one way ; and thus that the insertion of fwo mean proportionals between two
given effective steps, is never impossible nor ambiguous, like the insertion of a single
mean proportional, In fact, it follows from the theorems of multiplication that the
product a x @ x @, which may be called the cube of the number or ratio q, is not
obliged (like the square a x o) to be always a positive ratio, but is positive or contra-
positive according as q itself (which may be called the cube-root of this product
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a x a x a) is positive or contra-positive ; and on examining the law of its progression,
(as we lately examined the law of the progression of the square,) we find that the cube
a x a x a increases constantly and continuously with its cube-root « from states inde-
finitely far from zero, on the contra-positive side, to states indefinitely far advanced
on the positive side of zero, in the general progression of ratio, so as to pass succes-
sively but only once through every state of contra-positive or positive ratio, instead of
first decreasing or retrograding, and afterwards increasing or advancing, like the
square. 'Thus every ratio has onc and only one cube-root, (commensurable or in-
commensurable,) although a ratio has sometimes two square-roots and sometimes none,
according as it is positive or contra-positive ; and when the two extreme effective steps
a and b” of the continued analogy (257.) are given, we can always conceive the cube-

. . b .
root o of their ratio ~ determined, and hence the two mean steps or mean propor-
a

tionals of the analogy, b and v

29. In general, as we conceived a continued analogy or series of equi-distant mo-
ments, generated from a single standard moment a, by the repetition of a forward
step a and of a backward step ©a; so we may now conceive, as another sort of conti-
nued analogy, a series of proportional steps, generated from a single standard (effec-
tive) step a, by the repetition of the act of multiplication which corresponds to and is
determined by some one multiplier or ratio « (3= 0),and of the inverse or reciprocal
act of multiplication determined by the reciprocal multiplier or ratio wa: namely, the
following series of proportional steps,

wedaX¥daXda Xa,daXxdaXa, g X a, nya@ X a0 X @ X 2, XA X a@ X dyaaa

(259.)
which may also be thus denoted,

w.d(aaa)xs,d(aa)xs,Wax s, 1xa, axa aaxa, aaaxa, ... (260.)
2
and in which we may consider the system or series of ratios or multipliers,
«.d(aaa), ¥(aa), a1, a, aa;, aaa, ... (261.)

to be a system generated from the original ratio or multiplier a, by a system of acts
of generation having all one common character : as we before considered the system of
multiple steps (98.),

.02+ 02+02,02+02,0a,0, a, a+a,a+a+a,...

to be a system of steps generated from the original step a by a system of acts of ge-
neration to which we gave the common name of acts of multiplying.
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In conformity with this conception, we may call the original ratio a the base of the
system of ratios (261.) and may call those ratios by the common name of powers of
that common base, and say that they are (or may be) formed by acts of powering
it. And to distinguish any one such power, or one such act of powering, from all
the other powers in the system, or from all the other acts of powering, we may
employ the aid of determining numbers, ordinal or cardinal, in a manner analogous
to that explained in the 13th article for a system of multiple steps. Thus, we may
call the ratios a, aa, aaa, ... by the common name of positive powers of the base
a, and may distinguish them by the special ordinal names first, second, third, &c. ; so
that the ratio @ is, in this view, its own first positive power; the second positive
power is the square a a, and the third positive power is the cube. Again, we may
call the ratio 1, which immediately precedes these positive powers in the series, the
zero-power of the base @, by analogy to the zero-multiple in the series of multiple
steps, which immediately preceded in that series the system of positive multiples ;
and the ratios w a, u (aa), u (@aa), ... which precede this zero-power 1 in the
series of powers (261.), may be called, by the same analogy, from their order of
position, contra-positive powers of a, so that the reciprocal u ¢ of any ratio a is the
Jfirst contra-positive power of that ratio, the reciprocal u (aa) of its square is its
second contra-positive power, and so on. We may also distinguish the several cor-
responding acts of powering by the corresponding cardinal numbers, positive, or
contra-positive, or null, and may say (for example) that the third positive power aaa
is formed from the base a by the act of powering by positive three ; that the second
contra-positive power ¥ (aa) is formed from the same base a by powering by contra-
positive two ; and that the zero-power 1 is (or may be) formed from « by powering
that base by the null cardinal or number none. In written symbols, answering to
these thoughts and names, we may denote the series of powers (261.), and the series
of proportional steps (260.), as follows,

1 0 1 3
ese a°3, aez, ae y @ 5y A » a2, QA 5 ooy (26‘2.)
and
cee aea X a, a92 X a, ael X a, ao X a, al X a, azx gy asx Q9 see (263-)

in which

a®=1, (264.)
and
a;=a, a®'=1qa,
a’=aa, a°’=14 (aa),
a’=aae, 4° =% (ana) (265.)
&ec. &ec.

VOL. XVII. 3y
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And we may give the name of ezponents or logarithms to the determining numbers,
ordinal or cardinal,

..03,0201,0,1,2 3, ...... (266.)

which answer the question ‘“ which in order is the Power ?”’ or this other question
« Have any (effective) acts of multiplication, equivalent or reciprocal to the original
act of multiplying by the given ratio a, been combined to produce the act of multi-
plying by the Power ; and if any, then How many, and In which direction, that is,
whether are they similar or opposite in effect, (as enlarging or diminishing the step on
which they are performed,) to that original act > Thus 2 is the logarithm of the
square or second power aa, when compared with the base a; 8 is the logarithm of
the cube aaa, 1 is the logarithm of the base @ itself, © 1 is the logarithm of the
reciprocal ¥ a, and O is the logarithm of the ratio 1 considered as the zero-power
of a.

With these conceptions and notations of powers and logarithms, we can easily
prove the relation

a' x ac=artx, (267.)

for any integer logarithms p and v, whether positive, or contra-positive, or null ; and
this other connected relation

b»=a*xw if b=ax; (268.)

which may be thus expressed in words: * Any two powers of any common base may
be multiplied together by adding their logarithms,”” and ¢ Any proposed power may
be powered by any proposed whole number, by multiplying its logarithm by that
number,” if the sum of the two proposed logarithms in the first case, or the multiple
of the proposed logarithm in the second case, be employed as a new logarithm, to
form a new power of the original base or ratio; the logarithms here considered being
all whole numbers.

80. The act of passing from a base to a power, is connected with an inverse or
reciprocal act of returning from the power to the base ; and the conceptions of both
these acts are included in the more comprehensive conception of the act of passing
from any one to any other of the ratios of the series (261.) or (262.). This act of
passing from any one power a# to any other power a* of a common base g, may be
still called in general an act of powering ; and more particularly, (keeping up the
analogy to the language already employed in the theory of multiple steps,) it may be

called the act of powering by the fractional number -:: . By the same analogy of
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definition, this fractional number may be called the logarithm of the resulting power,
and the power itself may be denoted in written symbols as follows,

(a#)% = a, (269.)
or thus,

c=bu, if b=ar, c=a-. (270.)
(The analogous formula (121.) ought to have been printede = - b, and not ¢ = ﬁn ,
when b =px a, c=vxa.) #
In the particular case when the numerator v is 1, and when, therefore, we have to

Power by the reciprocal of a whole number, we may call the result (a*) & F', that is
a', = a, a root or more fully the ’th root of the power or ratio ¢*; and we may
call the corresponding act of powering, an extraction of the w’th root, or a rooting by
the (whole) number p. Thus, to power any proposed ratio & by the reciprocal

number 5 0T 35 is to extract the second or the third root, that is, (by what has been

already shown,) the square-root or the cube-root, of b, or to root the proposed ratio
b by the number 2 or 8; and in conformity with this last mode of expression, the
following notation may be employed,

t
a="%b when b=qa*, a=br: (271)

so that a square-root +~ b may also be denoted by the symbol 24, and the cube-root
of b may be denoted by #5. And whereas we saw, in considering square-roots that
a contra-positive ratio 4 <0 has no square-root, and that a positive ratio >0 has two
square-roots, one positive = + b and the other contra-positive =© v &, of which each
has its square =& ; we may consider the new sign ¢ or %4 as denoting indifferently
either of these two roots, reserving the old sign v b to denote specially that onc of
them which is positive, and the other old sign © v b to denote specially that one of
them which is contra-positive. Thus & and © v shall still remain determinate
signs, implying each a determinate ratio, (when 5>0,) while % and b ? shall be used
as ambiguous signs, susceptible each of two different meanings. But ¥4 is a deter-
minate sign, because a ratio has only one cube-root. In general, an even root, such
as the second, fourth, or sixth, of a proposed ratio b, is ambiguous if that ratio be
positive, and impossible if & be contra-positive ; because an even power, or a power
with an even integer for its logarithm, is always a positive ratio, whether the base be
positive or contra-positive : but an odd root, such as the third or fifth, is always pos-
sible and determinate.

31. It may, however, be useful to show more distinctly, by a method analogous to that
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of the 26th and 27th articles, that for any proposed positive ratio  whatever, and
for any positive whole number m, it is possible to determine, or conceive determined,
one positive ratio @, and only one, which shall have its m’th power =4 ; and for this
purpose to show that the power a™ increases constantly and continuously from zero
with a, so as to pass successively, but only once, through every state of positive
ratio & On examining the proof already given of this property, in the particular
case of the power a? we see that in order to extend that proof to the more general
case of the power a™, we have only to generalise, as follows, the Ist, IIId, and IVth
Lemmas, and the Corollary of the Ist, with the Theorem resulting from all four,
retaining the IInd Lemma.
Vth Lemina : (generalised from Ist.)

Ify % z, and #>0, y>O0, then y~ % am, (272.)
When m =1, this Lemma is evident, because the first powers y ' and 2 ' coincide with
the ratios y and 2. When m > 1, the Lemma may be easily deduced from the con-
ceptions of ratios, and of powers with positive integer exponents; it may also be
proved by observing that the difference © x#” +y™, between the powers ™ and y™,
in which the symbol © @™ denotes the same thing as if we had written more fully
© (™), and which may be obtained in one way by the subtraction of ™ from y™,

may also be obtained in another way by multiplication from the difference 6 w +y
as follows :

emrz:+yn»=<ex+y)x(.z.el+m‘y0+m92+myl+.“+wly02+m+xoyel+m>, (273.)

and is, therefore, positive, or contra-positive, or null, according as the difference
© x +y of the positive ratios 4 and y themselves is positive, or contra-positive, or
null, because the other factor of the product (273.) is positive. For example,

O a’+y’=0r+y)x (@’ +oy+y”; (274.)

and, therefore, when & and y and consequently @ *+2 y+y* are positive, the dif-
ference © &°+y?® and the difference © z +y are positive, or contra-positive, or null
together.

As a Corollary of this Lemma, we see that, conversely,

> >
fy"=a™ and >0, y >0, thenyix. (275.)
<
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Thus, the power 2 ™ and the root & increase constantly together, when both are
positive ratios.

The logic of this last deduction, of the Corollary (275.) from the Lemma (272.),
must not be confounded with that erroneous form of argument which infers the truth
of the antecedent of a true hypothetical proposition from the truth of the conse-
quent ; that is, with the too common sophiism : If A be true then B is true; but B is
true, therefore A is true. The Lemma (272.) asserts three hypothetical propositions,
which are tacitly supposed to be each transformed, or logically converted, according
to this valid principle, that the falsehood of the consequent of a truc hypothetical
proposition infers the falsehood of the antecedent; or according to this just formula :
If a were true then B would be true ; but B is false, therefore A is not true. Ap-
plying this just principle to each of the three hypothetical propositions of the Lemma,

we are entitled to infer, by the general principles of Logic, these three converse
hypothetical propositions :

if y»a”, then ytx;

if y» 2" theny > z;
, L e
if y™<¢ x™ then y ¢ x;

@ and y being here any positive ratios, and m any positive whole number, and the
signs > 4 denoting respectively ‘““not > and “not < as the sign o= denotes
“not =”. And if, to the propositions (276.), we join this principle of intuition in
Algebra, as the Science of Pure Time, that a variable moment B must cither follow,
or coincide with, or precede a given or variable moment A, but cannot do two of
these three things at once, and therefore (by the 21st article) that a variable ratio
must; also bear one but only one of these three ordinal relations to a given or variable
ratio @, which shows that

when y” = 2", then y” ¢ 2™ and y™ b 2™,

when y™ < ™ then y™ > o™ and y™ + ™,

when y” > 2™, then y” 2™ and y™ ¢ ™,
} (277.)

and that

when y & @ and y > @, then y = a2,

when y $ & and y ==, then y < ,

when y =2 and y ¢ @, then y >z,
} (278.)

we find finally that the Corollary (275.) is true. The same logic was tacitly em-
ployed in deducing the Corollary of the Ist Lemma, in the hope that it would be
mentally supplied by the attentive reader. It has now been stated expressly, lest any
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should confound it with that dangerous and common fallacy, of inferring, in Pure
Science, the necessary truth of a premiss in an argument, from the known truth of
the conclusion.

Resuming the more mathematical part of the research, we may next establish
this

VIth Lemma (generalised from IIId): There exists one positive ratio @, and only
one, which satisfies all the following conditions,

721 m
a> o whenever (—,) <,
m
" " (279')
@<= whenever (n—) >b;
m' m" 4
b being any given positive ratio, and m any given positive whole number, while
m' n' m" ' are also positive but variable whole numbers. The proof of this Lemma
is so like that of the IIId, that it need not be written here; and it shows that in the
particular case when the given ratio 4 is the mt power of a positive fraction

— , then a is that fraction itself. In general, it will soon be shown that under the
conditions of this Lemma the mt power of a is &.

V1Ith Lemma (generalised from IVth). It is always possible to find, or to con-

ceive as found, two positive whole numbers m and 7, which shall satisfy the two
conditions

(:7> ">, (:7)m <, if ¥ >v, ¥>0, (280.)
1 1]

m being any given positive whole number ; that is, we can insert between any two

unequal positive ratios & and %" an intermediate fractional ratio which is itself the
mt power of a fraction.

For, when m =1, this Lemma reduces itself to the IInd; and when m > 1, the
theorem (273.) shows that the excess of (1 +n) over (7—:—) may be expressed as

follows : ™
(S (:—%)m + (1—;’{2 " :7%/ X P, (281.)
in which
o14m 02 4m 03 4m
p=(5)" T (R)TTEE) (R)TTES
et (3) (272 () ) e

ml
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1+n

3 3
) over the cube (—:T) , 18

] I

o(2) iz =« {(A) 2 L L )

()

for example, when m =38, the excess of the cube (

In general, the number of the terms (or added parts) in the expression (282.), is
e l+4m
m, and they are all unequal, the least being (%) , and the greatest being

A+ therefore, is less than the mt multiple of this greatest ¢
\ m, } H elr sum, ereiore, 1S less an e m mu IP e of this grea es erm,
that is,
o1+ m
p<mx(LE?) (284.)

(]

and therefore the excess (281.) is subject to the corresponding condition

9<m,) (A2 <%‘(1—1fm—”)°'+m; (285.)
for example,
1 1 2
© (m,) +( ;;,n m/( ,;:ln) (286.)

However this excess (281.) increases constantly with 7, when m, remains unaltered,
because p so increases; so that the 1+ fractions of the series

G G G BT (287.)

increase by increasing differences, (or advance by increasing intervals,) which are each
(1 +ny o' tm

less than — , and therefore than 70 if we choose m, and 7 so as

to satisfy the condltlons

ol-tm kmim

l+n=im, m=kmxz ;

, (288.)

¢ and % being any two positive whole numbers assumed at pleasure ; with this choice,
therefore, of the numbers m, and 7, some one (at least), such as (9%’ )m » of the

series of powers of fractions (287.), of which the last is =¢™, will fall ‘between any
two proposed unequal positive ratios ¥ and &, if the greater 4" does not exceed that

last power ¢™, and if the difference © & + &” is not less than %; and these condi-

tions can be always satisfied by a suitable choice of the whole numbers ¢ and %, how-
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ever large may be the given greater positive ratio 4", and however little may be its
given excess over the lesser positive ratio &'.
Hence, finally, this Theorem :

1 1

n
Ifa>”7,anda < =

whenever (%,) "< b, (;’:_l:") " s, (289.)

1

then a” =8, a="Ws =07}

5 denoting any given positive ratio, and m any given positive whole number,
while m' n' m” n" are any arbitrary positive whole numbers which satisfy these
conditions, and @ is another positive ratio which the VIth Lemma shows to be
determined.

For if @™ could be >3, we could, by the VIIth Lemma, insert between them a

positive fraction of the form (%) , such that

(3) "0 (%) "<ams @09

and then by the Corollary of the Vth Lemma, and by the conditions (289.), we
should deduce the two incompatible relations

Z-li<a, a<%, (291.)

which would be absurd. A similar absurdity would follow from supposing that a ™
could be less than &; a™ must therefore be =5, that is, the Theorem is true. It
has, indeed, been all along assumed as evident that every determined positive ratio a
has a determined positive mtt power @™, when s is a positive whole number ; which
is included in this more general but also evident principle, that any m determined
positive ratios or numbers have a determined positive product.

Every positive ratio & has therefore one, and only one, positive ratio a for its
m root, which is commensurable or incommensurable, according as & can or

cannot be put under the form ( ) ;3 but which, when incommensurable, may be

theoretically conceived as the accurate limit of a variable fraction,

e=wi=al, it (5) "< (D (202)
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and may be practically approached to, by determining such fractions :—2—,;, , with larger

and larger whole numbers m’ and 7’ for their denominators and numerators. And
whether m be odd or even, we see that the power a™ increases continuously (as well
as constantly) with its positive root or base @, from zero up to states indefinitely
greater and greater. But if this root, or base, or ratio @ be conceived to advance
constantly and continuously from states indefinitely far from zero on the contra-
positive side to states indefinitely far upon the positive side, then the power a™ will
either advance constantly and continuously likewise, though not with the same quick-
ness, from contra-positive to positive states, or else will first constantly and continu-
ously retrograde to zero, and afterwards advance from zero, remaining always posi-
tive, according as the positive exponent or logarithm m is an odd or an even integer.
It is understood that for any such positive exponent m,

0m=0, (293.)

the powers of O with positive integer exponents being considered as all themselves
equal to 0, because the repeated multiplication by this null ratio generates from any
one effective step a the series of proportional steps,

5, 0xa=0, 0x0xa=0, . . , (294..)

which may be continued indefinitely ¢n one direction, and in which all steps after the
first are null ; although we were obliged to exclude the consideration of such null
ratios in forming the series (259.) because we wished to continue that series of steps
indefinitely in two opposite directions.

32. We are now prepared to discuss completely the meaning, or meanings, if any,
which ought to be assigned to any proposed symbol of the class b, b denoting any
proposed ratio, and p and v any proposed whole numbers. By the 30th article,
the symbol & i denotes generally the »’th power of a ratio a of which 3 is the x’th
power ; or, in other words, the »th power of a uth root of 4; so that the mental
operation of passing from the ratio 4 to the ratio & ;vT, is compounded, (when it can
be performed at all,) of the two operations of first rooting by the one whole
number g, and then powering by the other whole number v: and we may write,

b ;= (&) = (6 11_)". (295.)

The ratio 4, and the whole numbers p and v, may each be either positive, or contra-

positive, or null; and thus there arise many cases, which may be still farther sub-
VOL. XVII, 8z
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divided, by distinguishing between odd and even values of the positive or contra-
positive whole numbers. Tor, if we suppose that B denotes a positive ratio, and that
m and 7 denote positive whole numbers, we may then suppose

b=B, or =0, or b=0 B,
p=m, or u=0, or p=0O m, (296.)
v=n, or v=0, or v=0 n,
and thus shall obtain the twenty-seven cases following,
s o en
Bm, Bm, B m
n o on
B°, B2, B o (297.)
n o on
Bém, Bém, Bom
n o en
0w, 0w, 0, l
n o on
0s, 0o, 0 o, (298.)
n 0 on
06w, 05w, 0om,;
n o on
(©5)#% (0B)7 (03) W, l
n o on
(08)7, (©3B)s, (©3B) 7, (299.)

(® B) o7, (0 1)a%, (O 1)dw,
which we may still farther sub-divide by putting m and » under the forms

m=21i, orm—=01+271,

n=2k or n=01+2%F, (300.)

in which ¢ and % themselves denote positive whole numbers. But, various as these
cases are, the only difficulty in discussing them arises from the occurrence, in some,
of the ratio or number 0; and to remove this difficulty, we may lay down the fol-
lowing rules, deduced from the foregoing principles.

To power the ratio O by any positive whole number m, gives, by (293.), the ratio
0 as the result. This ratio O is, therefore, at least one m’th root of 0; and since
no positive or contra-positive ratio can thus give O when powered by any positive
whole number, we see that the only m’th root of 0 is O itself. Thus,

1
07 =0, (301.)
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and generally,
0#==0. (302.)

To power any positive ratio a, whether positive, or contra-positive, or null, by the
number or logarithm 0, may be considered to give 1 as the result; because we can
always construct at least this series of proportional steps, beginning with any one
effective step a, and proceeding indefinitely in one direction :

l1xa,@axa,axaxa, . . . ; (808.)

and we may still call the ratio 1 the zero-power, and the ratios a, @ xa, ... the
positive powers of the ratio @, even when we cannot continue this series of proportional
steps (803.) backward, like the series (259.), so as to determine any contra-positive
powers of a ; namely, in that particular case when ¢=0. We may, therefore, con-
sider the equation (264.), ¢°=1, as including even this particular case ¢=0; and
may write

0°=1, (304.)
and, therefore, by (301.) and (295.)

N

0m=1: (305.)

we are also conducted to consider the symbals
on
0°”, 0=, (306.)

as absurd, the ratio O having no contra-positive powers.
From the generality which we have been led to attribute to the equation ¢°=1, it
follows that the symbol

o=

12, and more generally 15, (807.)

is indeterminate, or that it is equally fit to denate all ratios whatever; but that the
symbol

55, or b3, if b1, (308.)

is absurd, or that it cannot properly denote any ratio. In particular, the symbols

1 v
0°, 07, (309.)
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are absurd, or denote no ratios whatever. In like manner the symbol

1 v
0%w, and more generally 0&wn, (310.)
is absurd, or denotes no ratio, because no ratio @ can satisfy the equation
a°"=0. (311.).

‘We have thus discussed all the nine cases (298.), of powers in which the base is 0,
and have found them all to be impossible, except the two first, in which the exponents
are =, and ~, and in which the resulting powers are respectively O and 1. We
have also obtained sufficient elements for discussing all the other cases (297.) and
(299.), with their sub-divisions (800.), as follows,

Ist. B is determined and positive, unless = is even, and 7 odd; in which case
. 01+2% . . . . .
it becomes of the form B —=%7—, and is ambiguous, being capable of denoting either

of two opposite ratios, a positive or a contra-positive. To distinguish these among
themselves, we may denote the positive one by the symbol

1+2 %
BoRe, (312.)

and the contra-positive one by the symbol

ol14+2%
0 b (313.)

for example, the two values of the square-root ¥n or B!, may be denoted for dis-
tinction by the two separate symbols

1
B?= 4B, ©B?=0OVB. (814.)

The other three cases of the notation B 7, namely, the symbols

ouper 2k 2k 515
gol+2i polE p¥i (815.)

denote determined positive ratios.
2d. The three cases

1te @B  o@k)  e@h
p OTF2i_ poliRi g el (316.)

en -~
”

of the notation B ™, are symbols of determined positive ratios; but the case
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1+e2k) . . . . . e .-
B 2§ ) is ambiguous, this symbol denoting either a determined positive ratio or a

determined contra-positive ratio, which may be thus respectively marked, when we
wish to distinguish them from each other,

140 (2 %) 1+e(24)
B7 g, , ©B 3 . (317)
In general, we may write,
on n
B m» = u(Bn), (818.)

the latter of these two symbols having the same meaning or meanings as the
former.

3d. The symbols

0112 2k 2k
p o@D GTFOED 5@y (819.)

included in the form Bé7, denote determined positive ratios; but the other symbol
0142k l

B oy, included in the same form B®=, is ambiguous, denoting either a deter-
mined positive or a determined contra-positive ratio,

o142k e1-F2 &
B 9(2) ;or OR °(2v, (820.)

In general, we may write

Bom=x (B #). (821.)

4th. In like manner, we may write,

1k

pom=n s (822.)

the former symbol having always the same meaning or meanings as the latter. The
cases

14+e(2%) o(2k) e (2%)
B 140 (2 1) B 140 (27) B e (21) (323.)
’ ] ’

. - . 1+o2h) . .
are symbols of determined positive ratios; but the case B “o2o~ is ambiguous, and

includes two opposite ratios, which may be thus respectively denoted,

1+0(24) 1+e (2 )
B °C) ,038 °@Y) (824.)
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In general, we shall denote by the symbol
BE, or 13:7, if 5>0, 0, v0, (825.)

that positive ratio which is either the only value, or at least one of the values of the

symbol Bi or bi ; and it is important to observe that this positive ratio is not
changed, when the form of the fractional logarithm —' is changed as if it were a
fractional multnpher, by the rule (135.), to the form M, or (as it may be more
concisely written) =~ ; that is,

Eli

'Fl-z

B =3B (826.)
a theorem which is easily proved by means of the relation (268.), combined with the
determinateness (already proved) of that positive ratio which results from powering
or rooting any proposed positive ratio by any positive or contra-positive whole
number.

5th.  With respect to the five remaining notations of the group (297.), ngmely,
those in which O occurs, we have

Bn=1; Béo_’"':l; (827.)
also the symbols
n on
Be, B o, (828.)

are each indeterminate when B=1, and absurd in the contrary case ; and, finally, the
symbol

B (329.)

is absurd when e 9= 1, but determined and =1, when B=1.
6th. Proceeding to the group (299.), the symbols

©8)7, (0B)7, (03)3, (330.)
are absurd; the symbols
(0 B)7, (0 B)dn, (831.)

are determined and each =1, if m be odd, but otherwise they are absurd; and the
four remaining symbols

(©B)% (98)7, (@B)in, (O8)m, (352.)
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are absurd if m be even, but denote determined ratios when m is odd, which ratios
are positive if n be even, but contra-positive if z be odd.
It must be remembered that all the foregoing discussion of the cases of the general

notation b, for powers with fractional logarithms, is founded on the definition laid

down in the 30th article, that b%z denotes the v’th power of a g’th root of b, or in
other words, the »’th power of a ratio « of which b is the y’th power. When no such
ratio a can be found, consistently with the previous conception of powers with integer

logarithms, the symbol b is pronounced to be absurd, or to be incapable of denoting
any ratio consistently with its general definition ; and when two or more such ratios
a can be found, each having its p’th power = b, we have pronounced that the frac-

tional power bir is ambiguous or indeterminate, except in those cases in which the
second component act of powering by the numerator » has happened to destroy the inde-
terminateness. And with respect to powers with integer exponents, it is to be remem-
bered that we always define them by a reference to a series of proportional steps, of which
at least the original step (corresponding to the zero-power) is supposed to be an effective
step, and which can always be continued indefinitely, at least in the positive direction,
that is,"in the way of repeated multiplication by the ratio proposed as the base, al-
though in the particular case of a null ratio, we cannot continue the series backward
by division, so as to find any contra-positive powers. These definitions appear to be
the most natural ; but others might have been assumed, and then other results would
have followed. In general, the definitions of mathematical science are not altogether
arbitrary, but a certain discretion is allowed in the selection of them, although when
once selected, they must then be consistently reasoned from.

83. The foregoing article enables us to assign one determined positive ratio, and
only one, as denoted by the symbol s when b is any determined positive ratio, and
a any fractional number with a numerator and a denominator each different from 0:
it shows also that this ratio é" does not change when we transform the expression of
the fractional logarithm a by introducing or suppressing any whole number w as a factor
common to both numerator and denominator ; and permits us to write

{)9“ =1a (b*), (338.)
© a being the opposite of the fraction a in the sense of the 17th article. More gene-

rally, by the meaning of the notation 2+, and by the determinateness of those positive
ratios which result from the powering or rooting of determined positive ratios by de-
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termined integer numbers, (setting aside the impossible or indeterminate case of root-
ing by the number 0,) we have the relation

bF x b° = bfi=, (834.)
which is analogous to (267.) ; and the relation
cP = bBxe if ¢ = b, (885.)

analogous to (268.) : a and 3 denoting here any two commensurable numbers. And
it is easy to see that while the fractional exponent or logarithm a increases, advancing
successively through all fractional states in the progression from contra-positive to
positive, the positive ratio b* increases constantly if b >1, or else decreases constantly
if 5<1, (6>0,) or remains constantly = 1 if 5 = 1. But to show that this increase
or decrease of the power with the exponent is confinuous as well as constant, we must
establish principles for the interpretation of the symbol °b° when « is not a fraction.

When « is incommensurable, but b still positive, it may be proved that we shall still
have these last relations (334.) and (385.), if we interpret the symbol la’“ to denote
that determined positive ratio ¢ which satisfies the following conditions :

c = é" > I:% whenever a >3, l
c=0b<bd - whenever a < 2 (856.)
T b J
or else these other conditions,
c="5"< Ig% whenever a >,
c=10b> b:':T whenever a <2, (387.)
T i b<1,850;
or finally this equation,
c= l:“ =1,ifb=1 (338.)

The reader will soon perceive the reasonableness of these interpretations; but he may
desire to see it proved that the conditions (336.) or (337.) can always be satisfied by
one positive ratio ¢, and only one, whatever determined ratio may be denoted by q,
and whatever positive ratio (different from 1) by b. That at least one such positive
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ratio ¢ = i’“ can be found, whatever incommensurable number the exponent « may
be, is easily proved from the circumstance that none of the conditions (836.) are in-
compatible with one another if 4 > 1, and that none of the conditions (337.) are in-
compatible with each other in the contrary case, by reason of the constant increase or

constant decrease of the fractional power Y for constantly increasing values of the
fractional exponent —. And that only one such positive ratio ¢ = lg“ can be found,
or that no two different positive ratios ¢, ¢, can both satisfy all these conditions may

be proved for the case & > 1 by the following process, which can without difficulty be
adapted to the other case. .
The fractional powers of & comprised in the series

tm 1+4+im
W, b (389.)

1.2 3
bm, bm, by L., b
° ° o °

increase (when 5> 1) by increasing differences, of which the last is
t

tm 1 1
obn + B 3 01 + by, (840))

this last difference, therefore, and by still stronger reason each of the others which
precede it, will be less than ,‘;, if

I>kD (841.)
and
1
61 +b°y_n<73 (34‘@.)
and this last condition will be satisfied, if
m>1l (01 + b), (343.)

I and m (like 7 and %) denoting any positive whole numbers ; for then we shall have

1+3>5 (344.)
and by still stronger reason
(Lx3)”>8 1+1l>é$, (345.)
observing that
A+3) "> 142, ifm>1, (346.)

VOL. XVII. 4 A
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because, by the theorem of multiplication (273.), or (281.),

m 1 2 61 +4m
01+ (1+7) =.}{1+(1+7)+(1+%)+...+(1+}) } (347.)
If then ¢ ¢’ be any two proposed unequal positive ratios, of which we may suppose

that ¢’ is the greater,
c¢'>c¢ c>0, (848.)

we may choase two positive whole numbers 7, %, so large that
B>, 1<00+d, (349.)

and two other positive whole numbers /, m, large enough to satisfy the conditions
(841.) (848.) ; and then we shall be sure that some one at least, such as b=, of the

fractional powers of 4 comprised in the series (839.) will fall between the two proposed
unequal ratios ¢ ¢, so that

c<bm,c > bm. (850.)

If then the one ratio ¢ satisfy all the conditions (836.), the incommensurable number
a must be <, and therefore, by the 2nd relation (850.), the other ratio ¢ cannot also

satisfy all the conditions of the same form, since it is > ﬁ, although « <. In like
manner, if the greater ratio ¢’ satisfy all the conditions of the form (336.) the lesser ratio ¢
cannot also satisfy them all, because in this case the incommensurable number « will be > %
No two unequal positive ratios, therefore, can satisfy all those conditions : they are there-
fore satisfied by one positive ratio and only one, and the symbol b (interpreted by
them) denotes a determined positive ratio when 4 > 1. TFor a similar reason the same
symbol b°, interpreted by the conditions (837.), denotes a determined positive ratio
when 5 < 1, 5> 0; and for the remaining case of a positive base, » = 1, the symbol
6* denotes still, by (338.) a determined positive ratio, namely, the ratio 1. The ex-
ponent or logarithm a has, in these late investigations, been supposed to be incom-
mensurable ; when that exponent a is commensurable, the base & being still positive,
we saw that the symbol &" can be interpreted more easily, as a power of a root, and
that it always denotes a determined positive ratio.
Reciprocally, in the equation
c = b, (851.)

°©

if the power ¢ he any determined positive ratio, and if the exponent « be any deter-
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mined ratio, positive or contra-positive, we can deduce the positive base or ratio 4, by
calculating the inverse or reciprocal power

b=c; (852)

as appears from the relation (835.) which extends, as was above announced, together
with the relation (884.), even to the case of incommensurable exponents. The proof
of the important extension last alluded to, will easily suggest itself to those who have
studied the foregoing demonstrations ; and they will perceive that with the foregoing
rules for the interpretation of the symbol 13,“ , for the case of an incommensurable ex-
ponent, the power 6 increases (as was said above) continuously as well as constantly
with the exponent a if the base 4 be > 1, or else decreases continuously and con-
stantly if that positive base be < 1, but remains constantly = 1 if 5 = 1. It is
therefore possible to find one determined exponent or logarithm a, and only one,
which shall satisfy the equation (851.), when the power ¢ and the base 4 are any given
positive ratios, except in the impossible or indeterminate case when this base & is the
particular ratio 1; and the number a thus determined, whether positive or contra-
positive or null, may be called ‘¢ the logarithm of ¢ to the base »,” and may be denoted
by the symbol

a=log,. c. (853.)

It is still more easy to perceive, finally, that when this logarithm « is given, (even
if it be incommensurable,) the power ¢ increases constantly and continuously from
zero with the base 4, if « > 0, or else decreases constantly and continuously towards
zero if a < 0, or remains constant and = 1, if a — O.

Remarks on the Notation of this Essay, and on some modifications by which it may
be made more like the Notation commonly employed.

34. In the foregoing articles we have constantly denoted moments, or indivisible
points of time, by small capital letters, a, B, 4’, 8, &c.; and steps, or transitions from
one such moment to others, by small Roman letters, a, b, «, v/, &ec. The mark —
has been interposed between the marks of two moments, to express the ordinal rela-
tion of those two moments, or the step which must be made in order to pass from
one to the other ; and the mark + has been inserted between the marks of a step
and a moment, or between the marks of two steps, to denote the application of the
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step to the moment, or the composition of the two steps with each other. For the
decomposition of a step into others, we have used no special mark; but employed
the theorem that such decomposition can be performed by compounding with the
given compound step the opposites of the given component steps, and a special nota-
tion for such opposite steps, namely, the mark* © prefixed ; so that we have written
© a to denote the step opposite to the step a, and consequently ©a + b to denote the
algebraical excess of the step b over the step a, because this excess may be conceived
as a step compounded of » and ©a. However, we might have agreed to write

(v +4a)—(a+A)=b—a, (854.)

denoting the step from the moment a +4A to the moment b+ a, for conciseness by
b — a; and then b — a would have been another symbol for the algebraical excess of
the step b over the step a, and we should have had the equation

b—a=06a+b,. (855.)

We might thus have been led to interpose the mark — between the marks of a com-
pound step b and a component step s, in order to denote the other component step,
or the algebraical remainder which results from the algebraical subtraction of the
component from the compound.

Again, we have used the Greek letters u v £ p w, with or without accents, to denote
integer numbers in general, and the italic letters ¢ £ /m n to denote positive whole
numbers in particular ; using also the earlier letters a 8 ¥ a b ¢ d to denote any
ratios whatever, commensurable or incommensurable, and in one recent investigation
the capital letter B to denote any positive ratio: .and employed, in the combi-
nation of these symbols of numbers, or of ratios, the same marks of addition and of
opposition, + and ©, which had been already employed for steps, and the mark of
multiplication x , without any special mark for subtraction. We might, however,
have agreed to write, in general,

(b xa)—(axa)=(b—a)xa, (856.)
as we wrote '
(2 a)+(a x ;):(b+a) X a;

and then the symbol ¢ —a would have denoted the algebraical excess of the number

* This mark has been printed, for want of the proper type, like a Greek Theta in this Essay: it was
designed to be printed thus &,
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b over the number a, or the remainder obtained by the algebraical subtraction of the
latter number from the former ; and we should have had the equation,

b—a=06a+s, (857.)

which is, with respect to numbers, or ratios, what the equation (355.) is, with respect
to steps. And when such symbols of remainders, b —a or 5—a, are to be combined
with other symbols in the way of algebraical addition, it results, from principles
already explained, that they need not be enclosed in parentheses; for example, we
may write simply ¢ + b — a instead of ¢ +(® — a), because the sum denoted by this
last notation is equivalent to the remainder (¢ +b) —a. But the parentheses (or
some other combining mark) must be used, when a remainder is to be subtracted ;
thus the symbol ¢ — b — a is to be interpretedas (¢ — b) — a, and not as ¢ — (b — a),
which latter symbol is equivalent to (e —b) + a, or ¢ — b + a.

85. With this way of denoting the algebraical subtraction of steps, and that of
numbers, we have the formula,

0—-2=0a, 0—a=06 a, (358.)

O denoting in the one a null step, and in the other a null number. And if we farther
agree to suppress (for abridgement) this symbol O when it occurs in such combina-
nations as the following, Q0 + a, O — s, 0+a, O—a, writing, in the case of steps,

O+a=+4+4a,0—a=—a, (_359.)
and similarly, in the case of numbers,

O+a=+a, 0—a=—a, (860,)

and, in like manner,

(861.)

0+aib"—"+n-_|:b, O—axb=—atb,
O+axb=+axd O—axtb=—ax), '

we shall then have the for_mula,

+a=a, —a:_ea, (36%.)
and '

+a=a, —a=0aq, (863.)

of which the ong refers to steps and i;be other to numbers. With these conventions,
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the prefixing of the mark + to an isolated symbol of a step or of a number, does
not change the meaning of the symbol ; but the prefixing of the mark — converts
that symbol into another, which denotes the opposite of the original step, or the

opposite of the original number ; so that the series of whole numbers (103.) or (266.)
may be written as follows :

see —8, ""Q, '-1, O, +1, +Q’ +3, ove (864‘.)
Also, in this notation,

(865.)
bx(+a)=bxa, bx(—-a)=bFa.

bt(+a)=btas, bt(—a)=bF n,}

86. Tinally, as we wrote, for the case of commensurable steps,

v X a v

pXxa op
¢ and v being here whole numbers, so we may agree to write, in general,

bxa_0b, (366.)

axa a

whatever ratios @ and 4 may be; and then this symbol g-will denote, in general, the
algebraic quotient obtained by dividing the number or ratio 5 by the number or ratio
a ; whereas we had before no general way of denoting such a quotient, except by the
mark u prefixed to the symbol of the divisor 4, so as to form a symbol of the reci-
procal number u @, to multiply by which latter number is equivalent to dividing by
the former. Comparing the two notations, we have the formula,

;1; s (367.)
and generally

g:uaxb::bxua, (868.)

These two marks © and u have been the only new marks introduced in this Ele-
mentary Essay ; although the notation employed for powers differs a little from the
common notation : especially the symbol b°, suggested by those researches of Mr.
Graves respecting the general expression of powers and logarithms, which were the
first occasion of the conception of that Theory of Conjugate Functions to which we
now proceed.

END OF THE PRELIMINARY AND ELEMENTARY ESSAY.
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THEORY OF CONJUGATE FUNCTIONS,

OR ALGEBRAIC COUPLES.

On Couples of Moments, and of Steps, in Time.

1. When we have imagined any one moment of time a,, which we may call a
primary moment, we may again imagine a moment of time A, and may call this a
secondary moment, without regarding whether it follows, or coincides with, or pre-
cedes the primary, in the common progression of time ; we may also speak of this
primary and this secondary moment as forming a couple of moments, or a moment-
couple, which may be denoted thus, (a,, A,). Again, we may imagine any other two
moments, a primary and a secondary, B, and B, distinct from or coincident with each
other, and forming another moment-couple, (8,, B,) ; and we may compare the latter
couple of moments with the former, moment with moment, primary with primary,
and secondary with secondary, examining how B, is ordinally related to a,, and how
B, is ordinally related to A,, in the progression of time, as coincident, or subsequent,
or precedent ; and thus may obtain a couple of ordinal relations, which may be thus
separately denoted B, ~ A1, By—4, or thus collectively, as a relation-couple,

(B1—4y By~ Az)-

This couple of ordinal relations between moments may also be conceived as consti-
tuting a complex relation of one moment-couple to another ; and in conformity with
this conception it may be thus denoted,

(81, By)~(41, A,
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so that, comparing this with the former way of representing it, we may establish the
written equation,

(Bl’ Bz)"(Ala Az)z(Bl—'Au By— Ay). (1)

Instead of conceiving thus a couple of ordinal relations between moments, or a
relation between two couples of moments, discovered by the (analytic) comparison of
one such couple of moments with another, we may conceive a couple of steps in the
progression of time, from moment to moment respectively, or a single complex step
which we may call a step-couple from one moment-couple to another, serving to
generate (synthetically) one of these moment-couples from the other; and if we
denote the two separate steps by a,, a5, (a, being the step from 4, to B;; and s, being
the step from 4, to B,,) so that in the notation of the Preliminary Essay,

Bl= a, +A[, B2= 82+A2’

B, =(B, - A,) + A Be= (Bg - Az) + Ay
we may now establish this analogous notation for couples,

(B, Bo)=(a1+ Ap 2y + A;)
= ( ap 32) + (Al, Az) (Q.)
= {(B1y B2) — (A1, 42)} + (a1 43),

the symbol (&, B;) — (a1, 4s) corresponding now to the conception of the step-couple by
which we may pass from the moment-couple (A, A;) to the moment-couple (B, B,), and
the equivalent symbol (a,, a,) or (B, —A;, B;—4,) corresponding now to the conception
of the couple of steps a;, a, from the two moments A;, Ay to the two moments B, B,
respectively. The step a,, or B,—4A, may be called the primary step of the couple
(=1, 25), and the step o, or B,— 2, may be called the secondary siep.

A step-couple may be s1id to be effective when it actually changes the moment-
couple to which it is applied ; that is, when one at least of its two coupled steps is
effective : and in the contrary case, that is, when both those coupled steps are sepa-
rately null, the step-couple itself may be said to be nu/l also. And effective step-couples
may be distinguished into singly effective and doubly effective step-couples, according
as they alter one or both of the two moments of the moment-couples to which they
are applied. Finally, a singly effective step-couple may be called a pure primary or
pure secondary step-couple, according as only its primary or only its secondary step
is effective, that is, according as it alters only the primary or only the secondary
moment. Thus (0, 0) is a null step-couple, (a, a) is a doubly effective step-couple,
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and (a,, 0) (0, a,) are singly effective step-couples, the former (a,, O) being a pure
primary, and the latter (0, a,) being a pure secondary, if O denote a null step,
and a; a, effective steps.

On the Composition and Decomposition of Step- Couples,

2. Having stepped from one couple of moments (a,, A,) to another couple of
moments (B, B,) by one step-couple (a,, a,), we may afterwards step to a third
couple of moments (ci, c;) by a second step-couple (b, b,), so as to have

(C;, 02):(bl’ bz)"‘(Bu Bz), }_

(Bl, 32)2(31, 32)+(Ah A2)5

(3.)

and then we may consider ourselves as having made upon the whole a compound
couple of steps, or a compound step-couple, from the first moment-couple (a;, 4,) to
the third moment-couple (c,, ¢,), and may agree to call this compound step-couple
the sum of the two component step-couples (a,, ), (by, b,), or to say that is formed
by adding them, and to denoteas follows,

(e Cz) —(Au Az) =(by, bz) + (2, 5) 3 (4)

as, in the language of the Preliminary Essay, the two separate compound steps, from
A to ¢, and from 4, to c, are the sums of the component steps, and are denoted by
the’ symbols b, 4- a, and b, + a, respectively. ~With these notations, we have evi-
dently the equation

( 1y 2)"‘(31, 2):(b|+“1, b, + az); (5.)

that is, the sum of two step-couples may be formed by coupling the two sum-steps,
Hence, also,

(bhb2)+(ah az):‘(“u “2)+(‘3n b,), (6.)

that is, the order of any two component step-couples may be changed without altering
the result ; and

(al, "“2):(“1, O) +(O1 ”2), . (7)

that is, every doubly effective step-couple is the sum of a pure primary and a pure
VOL. XVII, 4B
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secondary. In like manner, we can conceive sums of more than two step-couples,

and may establish, for such sums, relations analogous to those marked (5.) and (6.) ;
thus,

(epy ) +(by, by +(ay, ax)=(ey+ b+ 3y, 3+ byt 3y, @)
=(“l’ a2)+(bp b2)+(cl, (:2) &C. }

We may also consider the decomposition of a step-couple, or the subtraction of one
such step-couple from another, and may write,

(bx, bZ)—(a‘l, a'2)=(b1—" ay, by— ay), (9-)

(by, by)—(ay, a,) being that sought step-couple which must be compounded with or
added to the given component step-couple (a,, 2,) in order to produce the given
compound step-couple (b,, b;). And if we agree to suppress the symbol of a null
step-couple, when it is combined with others or others with it in the way of addition
or subtraction, we may write

(81, 32)=(0, 0) + (21, 32)= +(an, “2):} (10.)

("" iy — a2)=(03 O)_‘(al’ “2)2 —(a’h ”'2)’

employing a notation analogous to that explained for single steps in the 85th article
of the Preliminary Essay. Thus + (ay, a,) is another way of denoting the step-
couple ( ay, a,)itself; and —( sy, 8,) is o way of denoting the opposite step-couple

( — 2y, - “2)-

On the Multiplication of a Step- Couple by a Number.

3. From any proposed moment-couple (a5, 4.), and any proposed step-couple
(a1, 2:), we may generate a series of other moment-couples

eee (1, B9, (Ei E)s (A Ag)s (Bis By), (B B) ... (11.)
by repeatedly applying this step-couple (ai, a,), itself, and the opposite step-couple

— (i 22), or ( —a;, — =), in a way analogous to the process of the 13th article of
the Preliminary Essay, as follows :
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(Blla 13'2)2(—111, —ﬂz) +(—an "‘az) + (Ah Az),

(®p E2):(_“ls —“2)+(A1a A,),
(a1, A2)=(ay, 42),
(BJ, B2)=(al, 82) +(Al, Az)’

(G0 B,) = (a1, as) + (a3, a,) + (A1 4y),

and a series of multiple step-couples, namely

(E’l’ El‘«’) _‘(An Az)z(—an _32) +(—3n _“2)5

(En Ez) - (Au Az) = ( —ap, -‘az)

(Al’ Az) - (Al: A2) = (03 O)’

(Bp» Bz) —(a) Az) = (a,, a 2),

(Blu Btz) - (Al) Az) = (al’ 32) + (“u ‘12)9

which may be thus more concisely denoted,

(€, E))=—2 (1 a2) + (4 4),
(B, E2)=—1(ap 35) + (A 42),
(an Az) = 0 (a 1 32) + (AI’ Az)a
(Bl’ Ba)z +1 (“b a2) +(Al’ A2),
(B' ) B'2): + 2 (al, a2) + (Al’ Az),

ooooooooooo

and

(E,l, Elz)_(Ab Az): -2 (al, ag): —2x (al,
(B, E2)—(Ap A)=— 1 (8}, an)=—1x(ay
(A A2)—(ap Az): 0 (a1 42):' 0 x (ay
(B Bo)—(Ap a2)= + 1 (ay a,)= +1x(ay

(8" B'z) —(ay A2)8;—- + 2 (ay, ag)= +2x(ay
C.

We may also conceive step-couples which shall be sub-multiples

given step-couple, and may write

32)’
a2)s
az),
ﬂz)’
“2)’

(i o) = ﬁx (s b)) = i(bl, B)s

1

L (12)

~

> (13.)

(14

1 (15.)

J

and fractions of a

(16.)
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when the two step-couples (b, b)) (e}, ¢;) are related as multiples to one common
step-couple (a,, a,) as follows :
L4

(bl’ b2) =p X ("'l: al)’ (cla cz) =v X (31) 52)3 (17)

p and v being any two proposed whole numbers. And if we suppose the fractional
. g v . . ..
multiplier - in (16.) to tend to any incommensurable limit a, we may denote by

a x (by, by) the corresponding limit of the fractional product, and may consider this
latter limt as the product obtained by multiplying the step-couple (b,, b,) by the in-
commensurable multiplier or number a; so that we may write,

(cu 02) =ax (bh bz) = a(bb by),
} (18)

if ey eg) =L (by b)) and a=L2
® Iz

using L as the mark of a limit, as in the notation of the Preliminary Essay. It follows

from these conceptions of the multiplication of a step-couple by a number, that gene-
l‘auy )

a X (a“ ag):(a al,aag), (19.)

whatever steps may be denoted by a,, a,, and whatever number (commensurable or

incommensurable, and positive or contra-positive or null) may be denoted by a.
Hence also we may write

(a“n a“z)

(“ls aa)

and may consider the number a as expressing the ratio of the step-couple (a a1, @ a3)
to the step-couple (ay, a2 ).

=a, (20.)

On the Multiplication of a Step- Couple by a Number- Couple ; and on the Ratio of
one Step- Couple to another.

4., The formula (20.) enables us, in an infinite variety of cases, to assign a single
number @ as the ratio of one proposed step-couple (b, b;) to another (a; a,);
namely, in all those cases in which the primary and secondary steps of the one couple
arc proportional to those of the other : but it fails to assign such a ratio, in all those
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other cases in which this condition is not satisfied. The spirit of the present Theory
of Couples leads us, however, to conceive that the ratio of any one effective step-
couple to any other may perhaps be expressed in general by a number-couple, or
couple of numbers, a primary and a secondary ; and that with reference to this more
general view of such ratio, the relation (20.) might be more fully written thus,

(”l ap @) “1) — 0 a1
'—“‘_—'—(ab ) (a1, 0), (21.)
and the relation (19.) as follows,
(a[, O) X (al, 82) = ((ll, 0) (81, 82) = ((11 ayy, @ 32), (QQ')

the single number a, being changed to the couple (a,, 0), which may be called a pure
primary number-couple. 'The spirit of this theory of primaries and secondaries leads

us also to conceive that the ratio of any step-couple (b, b,) to any pure primary

step-couple (a,, 0), may be expressed by coupling the two ratios —2—' , -b—’, which the
1 a1

two steps b1, b, bear to the effective primary step a,; so that we may write

and in like manner, by the general connexion of multiplication with ratio,
(ai, @) x (a2, 0) = (@, @) (a1, 0) = (g, ay, @, a)). (24.)
From the relations (22.) (24.), it follows by (5.) that
(bi+a, 0) (a, ap)=(dy, 0) (a,15)+ (a1, 0) (ay, 2,), (25.)
and that
(@, ) (b, + a;, 0) = (a1, a,) (by, 0) + (a1, ay) (ay, 0); (26.)

and the spirit of the present extension of reasonings and operations on single mio-
ments, steps, and numbers, to moment-couples, step-couples, and number-couples,
leads us to determine (if we can) what remains yet undetermined in the conception of
a number-couple, as a multiplier or as a ratio, so as to satisfy the two following more
general conditions,

(bx+al, b2+az) (2 "*2):(171, b)) (21 a,) +(a, ay) (ay a,), (27)
and

(01, 02) (b|+ 2y, byt “2):(01, az) (bh b2)+(al’ a,) (al’ a,), (98-)
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whatever numbers may be denoted by a, a, b, b, and whatever steps by a, a, b, b,
With these conditions we have

(@ @) (215 22)=(a50) (21, 2) +(0, @) (21, 2),  (29)
(0, @) (25 2)=(0,a) (*5,0)+(0,a) (0, =), (80)
and, therefore, by (22.) and (24.), and by the formula for sums,
(0 @) (30 8)=(@ 20 @ 2)+(0, @ 5 +(0, @) (0, 55)
=(a %3 @ 33485 3,) +(0, as) (0, 5,), (31.)

in which the product (0, a,) (0, »;) remains still undetermined. It must, however,
by the spirit of the present theory, be supposed to be some step-couple,

| (O’ a’) o, “2):("19 c2) 5 (32.)

and these two steps ¢, ¢, must each vary proportionally to the product @, », since
otherwise it could be proved that the foregoing conditions, (27.) and (28.), would not
be satisfied ; we are, therefore, to suppose '

L= Gy By Q=173 03 %, (38’)
that is,
(O, a,) (O, a2).-_-_-(‘71 a3 33 Y3 Qg "2): (84“)

yi» y» being some two constant numbers, independent of a@; and s,, but otherwise
capable of being chosen at pleasure. Thus, the general formula for the product of a
step-couple (a,, a,) multiplied by a number-couple (a), a,), is, by (81.) (84.) and by
the theorem for sums,

(al: (13) (e “2): (al a, @ 8 +a,s) +(‘Yl @y 3y Y2 Ay "2)

Sty a0 G+ d Y O 5): (85.)
Y

and accordingly this formula satisfies the conditions (27.) and (28.), and includes the
relations (22.) and (24.), whatever arbitrary numbers we choose for y,, and v, ; pro-
vided that after oncg choosing these numbers, which we may call the constants of mul-
tiplication, we retainjthenceforth unaltered, and treat them as independent of both
the multiplier and the multiplicand. It is clear, however, that the simplicity and
elegance of our future operations and results must mainly depend on our making a
simple and suitable choice of these two censtants of multiplication ; and that in making
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this choice, we ought to take eare to satisfy, if possible, the essential condition that
there shall be always one determined number-couple to express the ratio of any one
determined step-couple to any other, at least when the latter is not null : since this was
the very object, to accomplish which we were led to introduce the conception of these
number-couples. It is easy to show that no choice simpler than the following,

Y1 = - 1, Y2 = 0, (36.)

would satisfy this essential condition : and for that reason we shall now select these
two numbers, contra-positive one and zero, for the two constants of multiplication,
and shall establish finally this formula for the multiplication of any step-couple (2,, a2)
by any number-couple (a,, £), .

L BN
(au aa) (“1, *‘2) = (al @), — @, a,, @ 8, 4 a, %). (8'7.)

5. In fact, whatever constants of multiplication y, y, we may select, if we denote

by (b,,b,) the product of the step-couple (2, 2,) by the number-couple (a,, a,), so
that

(b1, b2) = (@, @) x (3}, 8,), (38.)

we have by (35.) the following expressions for the two coupled steps b, b,, of the
product,

by =@a, a; + vy, 8 3,
by = @ 8, + G 8; + ¥, 4, 8y, } (89.)
z
and therefore
ﬁl:al a +Yl a a, , } (40.)
Be=a, az+ @ a4y, @ az

if a; o, B: £, denote respectively the ratios of the four steps s, a,b, b, to one effective
step ¢, so that 5

8 —ay ¢ % =a €, (411.)

b}:ﬁ, c, bz.:ng; (4«2,)

and

from which it follows that

a, {a, (a, +vy2 @) =y s’} =1 (o +v2 @) =31y as }

(48.
a; §fa; (a' +y; a3) — a’} =P a1 = as; )

in order therefore that the numbers g, a; should always be determined by the equa-
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tion (38.), when s, and a, are not both null steps, it is necessary and sufficient that
the factor

a; () 492 @) —y( @’ = (a; + %)’2 a)’— (y. + ‘i‘]’z) a (44

should never become null, when a, and «, are not both null numbers ; and "this con-
dition will be satisfied if we so choose the constants of multiplication y, vy, as to make

v+ -}Lyf <0, 45

but not otherwise. Whatever constants y, y, we choose, we have, by the foregoing
principles,

(c, 0 0’ (0, ©) )-— 1,0); (46,
= (10),(,_(01) o= 16.)
and finally
) (= L 47.
mw‘(yfmf (47.)
because, when we make, in (43.),
0=0, =1, fi=1, =0, (48.)
we find
w="2,a=L, €49))
" i

so that althongh the ratio of the pure primary step-couple (¢, 0) to the pure second-
ary step-couple (0, ¢) can never be expressed as a pure primary number-couple, it

may be expressed as a pure secondary number-couple, namely (0, ;—), if we choose

0, as in (36.), for the value of the secondary constant y,, but not otherwise : this
choice y, =0 is therefore required by simplicity. And since by the condition (45.),
the primary constant 4, must be contrapositive, the simplest way of determining it is
to make it contrapositive one, y,= —1, as announced in (36.). We have there-
fore justified that selection (86.) of the two constants of multiplication ; and find,
with that selection,

(e 0) — (0, — y
0. =(0, —=1), (50.)
and generally, for the ratio of any one step-copple to any othér, the formula
( by, b*))._.(Bl €y ﬁz cl _ (ﬁ) a; + ﬁa d‘z 62 al‘-ﬁl az (51')

Con o)™ (arey age) —

2 z
ay” + ay a’ +af
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On the Addition, Subtraction, Multiplication, and Division, of Number- Couples,
as combined with each other.

6. Proceeding to operations upon number-couples, considered in combination with
each other, it is easy now to see the reasonableness of the following definitions, and
even their necessity, if we would preserve in the simplest way, the analogy of the the-
ory of cOﬁples to the theory of singles:

(bl , bz) -+ (aq s (12) :(bx +a,, bz + 02) ; (52')
(s bz) =(a; a)=(b ~ly, bi—ay); (53.)
s by (@, az):(bx » ) x(ay, a)=0, a1 —bs ty, b, @i + b, ay); (54.)

(55.)

(bl » b2 )__ l(b( a; +bz as by a; —b; a,
(@, @)\ afta? 7 a’+a}l )

Were these definitions even altogether arbitrary, they would at least not contradict
each other, nor the earlier principles of Algebra, and it would be possible to draw
legitimate conclusions, by rigorous mathematical reasoning, from premises thus arbi-
trarily assumed : but the persons who have read with attention the foregoing remarks
‘of this theory, and have compared them with the Preliminary Essay, will see that
these definitions are really not arbitrarily chosen, and that though others might have
been assumed, no others would be equally proper.

With these definitions, addition and subtraction of number-couples are mutually
inverse operations, and so are multiplication and division ; and we have the relations,

b1 B) + (@ a)=(ar, @) + (b, by, (56
(bl ’vb2) X (al ’ (12)_—_-(61‘ ’ 02) X (bl b b«‘), (57-)
(by5 b)) {(a'l ay) + (au‘ a)} = (b, ) (&), &) + (b, by). (ay, ay) : (58.)

we may, therefore, extend to number-couples all those results respecting numbers,

which have been deduced from principles corresponding to these last relations. For
example,

{(613 62) + (au. a?)} X {(61’ b2)’+ (dl, aa}} =

(b b) (biy B +2 (B, B) (@1 @) + (v 0 (a1 1), (59.)
VOL. XVII, ‘ 4 ¢
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m which

2 (b by) (ay @) =(2,0) (bys b) (@ @) =(by, b2) (@15 @) + (by, by) (s a3) 5 (60.)

for, in general, we may miz the signs of numbers with those of number-couples, if we
consider every single number @ as equivalent to a pure primary number-couple,

a=(a, 0). (61.)

When the pure primary couple (1, 0) is thus considered as equivalent to the number
1, it may be called, for shortness, the primary wnit ; and the pure secondary couple
(0, 1) may be called in like manner the secondary unit.

We may also agree to write, by analogy to notations already explained,

0, 0) +(ay @)= +(a;, a,),

(0, 0)—(ay, @)= —(a, a‘lz’) ; (62.)

and then + (@, @,) will be another symbol for the number-couple (a, ay) itself, and
— (@, a») will be a symbol for the opposite number-couple (—a, —a,). The reciprocal
of a number-couple (a, @) is this other number-couple,

I _d, 0)__( a —ay )_(a;n—az) (68.)

= = 3 T po 7 e
(a,, @)~ (ay, ay) a’+a;’ al2+a22 a’ +a,

It need scarcely be mentioned that the insertion of the sign of coincidence =
between any two number-couples implies that those two couples coincide, number with
number, primary with primary, and secondary with secondary ; so that an equation
between number-couples is equivalent to a couple of equations between numbers.,

On the Powering of a Number-couple by Single W hole Number.

7. Any number-couple (@, @,) may be used as a base to generate a series of
powers, with integer exponents, or logarithms, namely, the series

ees (du a)—?, (au (12)_1: (au az)o, (0?1, 02)1, (al’ 02)2, ves (61‘-)

in which the firs¢ positive power (ai, a.)' is the base itself, and all the others are
formed from it by repeated multiplication or division by that base, according as the)
follow or precede it in the series ; thus,

(@, a2)’=(1, 0), (65.)
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and
1, O)
(@, a,)' = (@, @), (@ a2)_l:(§1h a,)
(1,0 66.
(v, @) =(ay @) (a1, @), (a1, @) 2=m’ )
&e. &e.

To power the couple (@, a;) by any positive whole number m, is, therefore, to
multiply, m times successively, the primary unit, or the couple (1, 0), by the proposed
couple (a;, @) ; and to power (2, a;) by any contra-positive whole number —om,
is to divide (1, 0) by the same couple (@, a,), ™ times successively : but to power by
0 produces always (1, 0.). Hence, generally, for any whole numbers p, v,

(a, )" (@, ) v:(al, ) »+, o
((ap %)) " =(a» ®) " } (67)

8. In the theory of single numbers,

(a+b)" a” + a™=! b + am—* B
Ix2x3...xm ~Ix2x3...xm 1x2X3X...m—1) 1 1x2x3x%x.. (m—2) 1x2 Foe
al bm—l bm
+t3 I1X2X3X...(m—1) +t Txexsx. )’ (68.)
and similarly in the theory of number-couples,
{(au a,) + (b, b} (a, a)” (@, a)"=! (bu by)"
IX2x3x..m T 1x2x3X..m 1x2x38x..(m—1) 1
(au ‘Zz)m"2 (bla 62)2 +
+ Ix2x38x...(m—2) 1x2
(a;, a,) (b, b)" ! (b, )" .
+ 1 Ix2Xx3% ...(m—1) Ix2x3X..m’ (69.)

m being in both these formuli‘ positive whole number, but a b ¢, a, b, b, being any
numbers whatever. The latter formula, which includes the former, may easily be
proved by considering the product of m unequal factor sums,

(@1, @) + (0% B, (@, @) +(B®, B),eee (@ @z) + (B, b)) 5 (70.)

for, in this product, when developed by the rules of multiplication, the power
(@, a)"~" is multiplied by the sum of all the products of = factor couples
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such as (0%, 8,) (5%, 5,%)...(d,, b,) ; and the number of such products is the
number of combinations of m things, taken » by 7, that is,

Ix2x3x...xm
IX2x3x ..(m—n)xIx2x3IxX..n* (71.)

while these products themselves become each =(5,, 4,)", when we return to the case of
equal factors.

The formula (69.) enables us to determine separately the primary and secondary
numbers of the power or couple (a;, a,)", by treating the base (a;, @) as the sum of
a pure primary couple (a;, 0) and a pure secondary (0, a,), and by observing that the
powering of these latter number-couples may be performed by multiplying the powers

of the numbers @, ¢, by the powers of the primary and secondary units, (1, 0): and
(0, 1) ; for, whatever whole number ¢ may be,

(a;, 0)=ay (1, 0)‘,’}
0, a,)'=ay (0, 1) ¥
We have also the following expressions for the powers of these two units,.
(1, 0)y=(1, 0),
(0, 1)**=2=(0, 1), :
(0, *"*=*=(~-1, 0) (73.)
(0, DN*='=(0, —1),
O, 1).** =(1, 0);
that is, the powers of the primary unit are afl thémselves equal to that primary unmit';
but the first, second, third, and fourth powers of the secondary unit are re-
spectively

(72.)

0, 1) (=1, 0), (0, —1), (1, 0),

and the higher powers are formed by merely repeating this- period.. In like manner
we find that the equation.

(al’ a2)”:(bu bz): (74*)
is equivalent to the two following,

m- m—2 .
b—=q, —mm=1) atamm=1) (m_2)=(m-8):}a metnt__ &Ko,
= Ixz & bt 1x2x3x4 b
m—1 m(m~1) (m—2)
b;:m a, ly— 1x2x3 a,"'"sags-!- &c-

75y

For example, the square and cube of a couple, that is, the second and third positive
powers of it, may be developed thus,

( Ay a2)’= { ( ais O) + (0, ﬂz) }:’= ( al’"_ a2” La a2)a (76')
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and
( s ‘12)3'—'" {(“ Iy 0) + (0: “2)}3 = ( a*—~8aa’y 3a, a,— aas)' (770)

9. In general, if

((l], aa) (a'u 0'2)=(a"l’ a’s)s (78')
then, by the theorem or rule of multiplication (54.)
&'y = ay dy— a; day @'y = ay d\ + ay dy (799
)
and therefore
a'l+ a7 =(a’+ a?) (& + )3 (80.)

and in like manner it may be proved that

17

then (a”*+ &) =(a*+ a) (d*+ d) (d"*+ %),

if (a, “2) (“ln “’2) (a"n a"z) ={a"s “”'2)’ } (31«)

and so on, for any number m of factors. Hence, in particular, when all these m fac-
tors are equal, so that the product becomes a power, and the equation (74.) is satisfied,
the two numbers b, b, of the power-couple must be connected with the two numbers
a, a, of the base-couple by the relation

b+ b =(al’ + a)™ (82.)

For example, in the cases of the square and cube, this relation holds good under the
forms

(al— a_:')2 +2a &) =(a’+ a) (88.)
and
(a=8a; &) +(8a® m— &)’ =(a’ + a')* (84.)

The relation (82.) is true even for powers with contra-positive exponents —n, that is,

b+bi=(a’+ &)~ if (by b)=(any a)™"; (83.)
for in general

. ___(ab 02) (a’!sa2) (a”” a"})...'_:.’
if (b, 62)—(61; es) (d1, d2) (15 '2) ...
2 oy (@12 + as?) (@42 + a'5?) (a"y2 + a"52)...
then (0" + b0 = e @+ 7) (a7 + a7

(86.)
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On a particular Class of Exponential and Logarithmic Function- Couples, connected
with a particular Series of Integer Powers of Number-Couples.

10. The theorem (69.) shows, that if we employ the symbols r,, ( a;, a,) and 1, (3, 8,)
to denote concisely two number-couples, which depend in the following way on the
collples (a], ag) and (b.l’ bg),

_ (av @) | (ay, a) (ay a)"
T (ary @) = (1, 0) + ===+ ot et e (87.)

_ (b B, (b, B (by, b)"
T (b 8) = (L, 0) + 2522 2ggt o by, (88)

and if we denote in like manner by the symbol
T, (@, @) + Gy, 8)) =F, (@ + )5 @y +5;) (89.)

the couple which depends in the same way on the sum (a,, @) + (4, 4,), or on the
couple (@, +0,, @, +0,), and develope by the rule (69.) the powers of this latter sum,
we shall have the relation

{Fm (ay, @) X T, (bu bz)} —T, ((al’ as} + (b 52)) =
(a1, a)" {(b,, bt oy 03 (B 5)” }

ITx2x3x .m 1 1x2 T 1x8x3x..m

(a:z; ”2) m=1 (s 62)2+ + (b, bz)m }

Ix2%x3%..(m—1) Ix2 7777 T Ix2x3x..m

+ (2, )" (b, B)" (90 )

1 Ix2x3x..m

This expression may be farther developed, by the rule for the multiplication of a sum,
into the sum of several terms or couples, (¢, ¢,), of which the number is

1+2+3+...+m=’l‘_(’."§+_1.), (91)

and which are of the form

(Cx, Cg): (a,, a,)y’ « (bly b?)L (92)

IX2X3X 0t I1X2X3X...E
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7 and & being positive integers, such that

ipm, kPm, t+k>m; (93.)
and if we put for abridgment
VP +al=a, O +07=f, (94.)
and
- o B 5
T T TXEXEX X IX2XBX (95.)

we shall have, by principles lately explained,
Vet eti=qy, (96.)
and therefore

Cib+7y Cd =y P +y Cd —y: ©7)
if then the entire sum (90.) of all these couples (¢;, ¢;) be put under the form

Sy )=(Ec, =¢q), (98.)

the letter = being used as a mark of summation, we shall have the corresponding li-
mitations

201}275 2014:_2-},, }

Se, Sy, S6: — Sy, (99

X v being the positive sum of the M;D such terms as that marked (95.). This

latter sum depends on the positive whole number m, and on the positive numbers
a, 35 but whatever these two latter numbers may be, it is easy to show that by taking
the former number sufficiently great, we can make the positive sum =y become
smaller, that is nearer to 0, than any positive number § previously assigned, however
small that number § may be. Tor if we use the symbols r,, (a), 1,, (8), T (a + ), to
denote positive numbers connected with the positive numbers «, 3, a +3, by relations
analogous to those marked (87.) and (88.), so that

2
a a a
F, (0)= 1+T+1x2+"°+1><2x3x m

, (100.)

it is easy to prove, by (68.), that the product ¥, («) x 1,,(8) exceeds the number
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¥, (e +B) by £y, but falls short of the number ¥,,(a+(3), that is of the following
number

ENNORYC) P TR Ct) R Chl ) S Cf ) S C T '

1x2 1x2%x3X..x2m’°
so that
S y=(F, (@) X Fr () —F, (a +3), (102.)
and
Sy ¢ Fup (a+B) =Fn (a+) (103.)

if then we choose a positive integer 7, so as to satisfy the condition
n+152 (a+p), tha.tis‘%@<%, (104.)
P23

and take m > m, we shall have

(a+p)” 1 (@+p)r

TR Exon m T Txaxax o nd therefore <3, (105.)
however small the positive number § may be, and however large « + 3 may be, if we
take m large enough ; but also

F,m(a+ﬁ)—pm(a+ﬁ)=l_£%§% and therefore <8xn,  (106.)

in which

atf,  (etf) (at )" (107.)

mx1  (mrl)em+2) T (u 1) (m+2) X ...(2m) ]

n =

and, therefore,

n <1, (108.)
because
atf oy @ifr 1 (a+B)" 1
it <P GED A ST mED mrgxoEm S (109

therefore, combining the inequalities (103.) (106.) (108.), we find finally
sy <3 (110.)

And hence, by (99.), the two sums S ¢;, = ¢;, may both be made to approach as near
as we desire to 0, by taking m sufficiently large; so that, in the notation of limits
already employed,

L2y=0, L3¢=0, L3c=0, (111.)
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and, therefore,

1T (1) T (B) =7, (a + B} =0, (112)
tir, (a, @) (b, 0) =%, ((0 @) +(by b))} =(0, 0). (118.)

In the foregoing investigation, a and 3 denoted positive numbers; but the theorem
(118.) shows that the formula (112.) holds good, whatever numbers may be denoted
by a and B, if we still interpret the symbol r,(a) by the rule (100.).

11. If a still retain the signification (9L.), it results, from the foregoing rea-
sonings, that the primary and secondary numbers of the couple

Foptonr (als az) —Fp (ah az) (1 1’1'.)
are each

» Frpm () —F, (a), and < T, (a) =Ty 1 (a) (115.)

and, therefore, may each be made nearer to O (on the positive or on the contra-
positive side) than any proposed positive number & by choosing m large cnough,
however large m’ and « may be, and however small § may be: because in the ex-
pression

a l)..2

— am “m'
Ty (@) =T (a) = 1?2%%777:{,714.1 T 1) me) T +m+‘n—')} (116,

the positive factor Txoxss—m 1Y be made <3, that is, as ncar as we please to 0,

. 1 1 1
and also the other factor, as being < 5ttt and therefore < 71 if
m -1 > n a. Pursuing this train of reasoning, we find that as m becomes greater
and greater without end, the couple r,, (a,, @) tends to a determinate limit-couple,
which depends on the couple (a, a,), and may be denoted by the symbol r_(ay, a 2D,

or simply 1 (a,, @),
F (ay, aA):F@(al) 02)=E Tom (”u a); (117-)

and similarly, that for any determinate number «, whether positive or not, the
number F,(a) tends to a determinate limit-number, which depends on the number «,
and may be denoted thus,

F (a)=F_(a) =L Fu(a). (118.)

It is easy also to prove, by (112.), that this function, or dependent number, 1 (a),
must always satisfy the conditions

v (a) x7 (B)=F (a+B), (119.)

VOL. XVII. 4D
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end that il increases constantly and continuously from positive states indefinitely near
to O to positive states indefinitely far from 0, while a increases or advances constantly,
and continuously, and indefinitely in the progression from contra-positive to positive ;

5o that, for every positive number (3, there is some determined number « which satis-
fies the coundition

B=F (a),, (120.5
and which may be thns denoted,
e=r=" (). (121.)
It may also be easily proved that we have always the relations,
T (a) =€ r—'(B)=log.. B, (122.%
if we put, for abridgement,
r()=e, (123.)

and employ the notation of powers and logarithms explained in the Preliminary
Tissay. A power éa, when considered as depending on its exponent, is called an
erponential function thereof; its most general and essential propertics are these
expressed by the formul,

bex B =bets, B=b, (121.)

of which the first is independent of the base 5, while the sccond specifies that base .
and since, by (118.), the function-couple ¥ (a;, a,) satisfies the analogous condition,

F (a1, @) x T (b, b) =7 (a1, @) + (b, b)P=r (@14 by, a;+b)). (125.)

(whatever numbers q, @, b, b, may be,) we may say by analogy that this function-couple
F (a1, @) 1s an exponential function-couple, and that its base-couple is

F(l, 0 =(, 0): (126.)

and because the exponent a of a power &, when considered as depending on that
power, is called a logarithmic function thereof, we may say by analogy that the
couple (a,, a)) is a logarithmic function, or function-couple, of the couple r (a,, @, }
and may denote it thus,

(ay, a;) = F.—](I’u &), if (5, &)=rF (a;, aj,). (1e7.)
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in general, if we can discover any law of dependence of one couple @ (a, @), upon
another (a,, a,), such that for all values of the numbers o, o, b, 8, the condition

O (@ 1) © (G, )= (a,+a, b +5) (123,

i3 satisfied, then, whedher this function-couple @ (@, ;) be or be not coincident with
the particular function-couple ¥ (a,, @,), we may call it (by the same analogy of defi-
nition) an es ponential furction-couple, calling the particular couple @ (1, 0) its buse, or
base-couple ; and may call the couple (a,, @), when considered as depending inversely
on ® (@, @), a logarithmic function, or function-couple, which we may thus denote,

(@, @) =50, %), if ¢,b)=d @, a). (129.)

12. We have shown thst the particular exponential function-couple (4, 4.) =
r (a1, @) is always possible and determinate, whatever determinate couple (a) «,)
may be ; let us now consider whether, inversely, the particular logarithmic function-
couple ( 1y, ;) =F~"' {4, b)) is alnays possible and determinate, for every determined
couple {4y, &). Dy the exponential propertics of the function r, we have

(b, 0)=F(a, a)=r(a;, 0)T (0, &) =T (a,) T (0, a2)
(130.)

{3 a .
=(e"'cos aye”! sineg),
>

Q
if we define the functions cos « and sina, or more fully the cosine and sine of any

nariber «, to be the primary and secondary numbers of the couple r (0, ), or the
numbers which setisfy the couple-equation,

r (0, «) =(cos «, sina). (131.)

Fina this definition, or from theee two others which it includes, namely from the fol-
forsing expressions of the functions vosine and sine as limits of the sums of serics,
wuh are already familiar to mathematicians,

1 o ot &
COS = — R + —— —_— -— ’C.
¢ Ix2 Tx2x354 ve
i (182.)

]
a a

sina =a — -+ —_
Ix2x3  Ix2x3x4x5

&e.

it 15 possible to deduce all the other known properties of these two functions; and
especially that they are periodical functions, in such a manner that while the variable
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number a increases constantly and continuously from O to a certain constant positive
number g, (= being a certain number between 3 and 4,) the function sin « increases
with it (constantly and coutinuously) from O to 1, but cos « decreases (constantly and
continuously) from 1 to 0; while a continues to increase fromg to =, sina decreases
from 1 to O, and cos « from O to —1; while « increases from = to .3.27_7 , sin a decreases
from O to — 1, but cos a increases from —1 to 0; while a still increases from i’fto r,

sin « increases from —1 to 0, and cos « from O to 1, the sum of the squares of the
cosine and sine remaining always = 1; and that then the same changes recur in the
same order, having also occurred before for contra-positive values of «, accoirding to
this law of pexiodicity, that

cos (ax2ix)=cosa, sin (a=277)=sina, (188

% denoting here (as elsewhere in the present paper) any positive whole number. But.
because the proof of these well known properties may be deduced from the equations
(132.), without any special reference to the theory of couples, it is not necessary, and
it might not be proper, to dwell upon it here.

It is, however, important to observe here, that by these properties we can always
find (or conceive found) an indefinite variety of numbers a, differing from each other by
multiples of the constant number 2, and yet each having its cosine equal to any one
proposed number 3,, and its sine equal to any other proposed number 3,, provided
that the sum of the squares of these two proposed numbers 38,, 3, is = 1; and reci~
procally, that if two different numbers « both satisfy the conditions

cosa =0, sina = (131.5

B, and 3, being two given numbers, such that 3* +B,’=1, then the difference of these
two numbers a is necessarily a multiple of 27. Among all these numbers a, there mli
alnays be one which will satisfy these other conditions

a> —mw, a, T, 6135.)

and this particular number « may be called the principal solution of the equations
(134 ), because it is always nearer to O than any other number « which satisfies the
same equations, cxcept in the particular case when 3= —1, $,=0; and because, uz
this patticular case, though the two numbers = and —= are equally near to 0, and
both satisfy the equations (134.), yet still the principal solution =, assigned by the
conditions (185.), is simpler than the other solution —=, which is rejected by those
last conditions. It is therefore always possible to find not only one, but infinitely
many number-couples (@, a,), differing from each other by multiples of the constant
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couple (0, 2=), but satisfying each the equation (130.), and therefore each entitled to
be represented by, or included in the meaning of, the general symbol r=' (2, &y),
whatever proposed effective couple (4, 4,) may be. Tor we have only to satisfy, by
(130.), the two separate equations

Sa‘ oS @y = by ga‘ sina, = &.3 (136,
which are equivalent to the three following,
eM= vV b+ Uh 187
and )
COSagz:'/""l:.__;‘i_:__‘—b?, sin @y = jﬁ-—%—-—b—?; (188.)

and if « be the principal solution of these two last equations, we shall have as their
most general solution

a,=a +2wm, (139
while the formula (137.) gives

ay=log..v b*+ bt (140.)

the couple ( a, ;) admits thercfore of all the following values, consistently with the
conditions (180.) or (136.),

(@ a) =T~ (byy by =(log, . v bi' + bs’, a +2w ), (141.)

in which w is any whole number, and « is a number > —=, but not >=, which has its
cosine and sine respectively equal to the proposed numbers 5, 5,, divided each by the
square-root of the sum of their squares. To specify any one value of fa), ay), or

¥~ (8, 5y), corresponding te any onc particular whole number w, we may use the
symbol ¥~! (5,, 5, ; and then the symbol r"’ (51, 5y will denote what may be called

the prmozpal value of the inverse or logar ithmic function-couple r—' (4,, &,), because

it corresponds to the principal value of the number as, as determined by the condi-
tions (138.).
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On the Powering of any Number- Couple by any Single Number or Number- Couple.

13. Resuming now the problem of powering a number-couple by a number, we
may employ thig property of the exponential function r,

(F <ah a2))“:F(gU iy u az): (14‘9-)

p being any whole number whether positive or contrapositive or null; which easily
follows from (125.), and gives this expression for the y’th power, or power-couple, of
any effective number-couple,

by, b)Y =w(uF=(D,, b)) {148.)

Reciprocally if (ai, @;) be an mth root, or root-couple, of a proposed couple (3., 4.),
so that the equation (74.) is satisfied, then

I
@, =0, b =7 (=¥ (b, b)) (144.)

This last expression admits of many values, when the positive whole number m is > 1,
on account of the indeterminateness of the inverse or logarithmic faunction ¥—'; and
to specify any one of these values of the root-couple, corresponding to any one value
r—! of that inverse function, which valuc of the root we may call the wth value of that
zoot, we may employ the notation

1 1
(bl Py bz)mz F (; F bx s bz)); (14‘5.)
we may also call the particular value
1 1
(b, b)» = ¥ (—7; =G, b,)), (146.)

the principal value of the root-couple, or the principal m’th root of the couple (¢, &,).
In this notation,

Zum), (147.)

1
1, 0w=r (o,
! 1 1
(B, b)m = (b, b)m (1,0)m; (148.)

so that generally, the o'th value of the mth root of* any number-couple is equal to
the principal value of that root multiplied by the wih value of the mth root of the
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primary unit (1, 0).  The mth root of any couple has therefore m distinct values,
and no more, because the mth root of the primary unit (1, 0) has m distinct values,
and no more, since it may be thus expressed, by (147.) and (131.),

= 2 .2
(1, 0= { eos. 22T, sin, 227,
m . m

(149.)

go that, by the law of periodicity (183.), for any different whole number w,

(1, 0% = 1, 0)%, (150
and therefore generally, ) (
By, 1) = (B, B3 (151.)
it ’ )
o =wkim, (152.)

but not otherwise. TFor example, the cube-root of the primary unit (1,.0) has three:
distinct values, and no more, namely

L L1 3 L1 3
(150)3_—_(1,0);(1;0)3:( 5,-?7);(1;0)J:( 5, "% )5 (158

8o that each of these three couples, but no other, has its cube =(1, 0}, Again the
couple (~1, 0) has two distinct square-roots, and no more, namely

1 1
(1,08 = (0, 1); (=1, 0F=(0, ~1). (154.)
In general we may agree to denote the principal square-root of a couple (4,, b)) by
the synibol

T B = b, b) A (155.)
and then we shall have the particular equation
V(—1,0=00, 1); (156,
which may, by the principle (61.), be concisely denoted as follows,
vV —1=(0, 1). (157.)

In the THEORY OF SINGLE NUMBERs, the symbolv —1 is absurd, and denotes an
IMPOSSIBLE EXTRACTION, or a merely IMAGINARY NUMBER; but in the Tirory or
cOUPLES, the same symbol v —1 is significant, and denotes a POSSIBLE EXTRACTION,
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or a REAL COUPLE, namely (as we have just now seen) the principal squarc-roofl of
the couple (—1, 0). In the latter theory, therefore, though not in the former, this
signv/ — 1 may properly be employed ; and we may write, if we choose, for any cou-
ple (a1, a») whatever,

(a, w)=a,+a,v —1, (158.)

interpreting the symbols 4, and a,, in the expression @, + g, v/ =1, as denoting the pure
primary couples (a;, 0) (a,, 0), according to the law of mixture (61.) of numbers with
number-couples, and interpreting the symbol ~ "1, in the same expression, as de-
noting the secondary unit or pure secondary couple (0, 1), according ,to the formula
(157.). However, the notation (a;, @,) appears to be sufficiently simple.

14. In like manner, if we write, by analogy to the notation of fractional powers
of numbers,

(e €) = (B, 3%, (159.)

whenever the two couples (¢, 2,) and (c,, ¢,) are both related as integer powers to one
common base couple (2,, a,) as follows,

(s ) =(a, @), (e €)= (a1, @) (160.)'

(x and v being any two whole numbers, of which p at least is different from 0,) we
can easily prove that this fractional power-couple (ci, ¢.), or this result of powering
the couple (b, b,) by the fractional number Z, has in general many values, which

IL
are all expressed by the formula

(o ¢)=(by b)s = (ﬁ 2= (b B)), (161.)
and of which any one may be distinguished from the others by the notation

(b )%= & (v~ (B 5)) (162.)
We may call the couple thus denoted the ’th value of the fractional power, and in
particular we may call

(b, B)i=» (5 r= by b)) (163.)

the principal value. The o’th value may be formed from the principal value, by

multiplying it by the «’th value of the corresporiding fractional power of the primary
unit, that is, by the following couple,
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(1, 05 = cos Q“’ﬂ”, sinQ"’:"); (164.)

and therefore the number of distirict values of any fractional power of a couple, is
equal to the number m of units which remain in the denominator, when the fraction >

has been reduced to its simplest possible expression, by the rejection of common
factors. :

15. Thus, the powering of any couple (b, by) by any commensurable number ®
may be effected by the formula,

by By =% (e ¥~ (by, b)) (165.)
or by these more specific cxpressions,
(611 by =¥ (7" (b, by))
=0, by (1, 07, (166.)

in which

(1, 0 =(cosuwam, sin2waw): (167.)

and it is natural to extend the same formulw by definition, for reasons of analagy and
continuity, even to the case when the exponent or number x is incommensurable, in
which latter case the variety of values of the power is infinite, though no confusion
can arise, if each be distinguished from the others by its specific ordinal number, or
determining integer w.

And since the spirit of the present theory leads us to extend all operations with
single numbers to operations with number-couples, we shall further define (being
authorised by this analogy to do so) that the powering of any one number-couple

(b1s Ba) By any other number-couple (x,, x,) is the calculation of a third number-couple
(¢, ¢), such that

(i €)= (1, 2) @ ™) =k (@), 2 x 2= By, ) 5 (168.)

or more specifically of any one of the infinitely many couples corresponding to the

infinite variety of specific ordinals or determining integers w, according to this for-
mula,

(B )70 %) Z 1 (@, @) x £ =1 G,y B))
= (b“ bz) (.’El, »’l‘v'z) (1’ O) ((L'l, ms)’ (169.)

in which the factor (5, z;) (¥» @) may be called the principal value of the general
VOL, XVII. 4 E
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power- couple, and in which the other factor may be calculated by the following cx-
pression,

(1, 0) (o 22) _ ({21, 25) x (€0, 2 0 7))
=F(—20 7%y Lo

= _Qw"‘%(cos 2urzy, sin 2w wa). (170.)

For example,

@, 0) 7)=(1, 0), (171.)
and
(e, 0) (@0 @) _g ()5 (172.)
also
& 0) @i @) _ & (@ ) % (1, 2 0 7). (173.)

On Ezponential and Logarithmic Function- Couples in general.

16. It is easy now to discover this general expression for an exponential. function-
couple :

® (@1, @) =7 ((%1, 22) x (1, 4,)) 5 (174.)

in which (a,, a.) is any constant couple, independent of (x,, x;). This general expo-
nential function ® includes the particular function ¥, and satisfies (as it ought) the
condition of the form (128.),

O (2, 2,) @ (,’l/h Y)=20 (wl T+ Lo +.%)5 (175-)

its base, or base-couple, which may be denoted for conciseness by (&, b,), is, by the
11th.article, the couple

(b 0)=2 (1, 0)=F (@, a3) ; (176.)
and if we determine that integer number « which satisfies the conditions
G—20nr > —7, 3 —20T b m 7))

we shall have the general transformation

B (@1, 22)= (b, b (T T (178.)
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And the general inverse esponential or logarithmic function:couple, which may, by
(129.), be thus denoted,

(-’Dh $2) =¢! (,yb yz)» if (yu 3/2) = (xb -'132‘), (179-)
may also, by (174.) and (176.), be thus expressed :
=1 _F-](yl’ .yz).
="' (Y yz)—m; (180.)

it involves, therefore, #wo arbitrary integer numbers, when only the couple (yi, y.)
and the base (d,, b,) are given, and it may be thus more fully written,

- - v (Yo ¥2)
?—‘(3/1: ¥) = ]gg @Gi,5) ° (1 ) :]"_T(_b—ij) . (181.)

For example, the general expression for the logarithms of the primary unit (1, 0) to
the base (e, 0), is

o’ _ 0,20 7) _(2 w7, 0)
log o- (10) = 5 = Garl)’ (182.)

or, if we choose to introduce the symbol v =1, as explained in the 13th article,
that is, as denoting the couple (0, 1) according to the law of mixture of numbers with
number-couples, then

2oTVyT _ 27
= 1+%wav_1 2wr—/_1 (183')

]:;g ee 1
In general,

(Y y2)

o + (0, 2 )
]?g (Gr,2) ° (yw .’/2)-:1::1‘( b;—bg)_:‘"'(

0,—2 ‘; 71') (184'.)

The integer number v may be called the first specific ordinal, or simply the orbpERr,
and the other integer number «" may be called the second specific ordinal, or simply
the RANK, of the particular logarithmic function, or logarithm-couple, which is deter-
mined by these two integer numbers. This existence of fwo arbitrary and inde-
pendent integers in the general expression of a logarithm, was discovered in the year
1826, by Mr. Graves, who published a Memoir upon the subject in the Philosophical
Transactions for 1829, and has since made another communication upon the same
subject to the British Association for the Advancement of Science, during the meeting
of that Association at Edinburgh, in 1834 : and it was he who proposed these names
of Orders and Ranks of Logarithms. But because Mr. Graves employed, in his
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reasoning, the usual principles respecting Imaginary Quantities, and was content to
prove the symbolical necessity without showing the interpretation, or inner meaning,
of his formule, the present Theory of Couples is published to make manifest that
hidden meaning : and to show, by this remarkable instance, that expressions which
seem according to common views to be merely symbolical, and quite incapable of
being ihterpreted, may pass into the world of thoughts, and acquire reality and signi-
ficance, if Algebra be viewed as not a mere Art or Language, but as the Science of
Pure Time. The author hopes to publish hereafter many other applications of this
view ; especially to Equations and Integrals, and to a Theory of Triplets and Sets of
Moments, Steps, and Numbers, which includes this Theory of Couples.

THE END.



ERRATA.

321, last line, for € + read 0 +

-

line 17, for 4 © read 4 © a,

line 11, for pend read depend

equations (121.) for a read b

line 18, for For read For if

6th line from foot, for thorems read theorems
last line but 2, for denote read denote by
last line, for B read B

line 7, for ::“ read %—

equation (340.) for 1 4+ m read 1 + im
before (858.) for formula read formula
before (362.) for formula read formule
last line, for one read one set

394, line 10, for A, to By read A;to B,

-

before (4.) for denote read denote it

in (21.) f07‘ (a; Qh,a1 ) read (a, 3, a1 A )
. by by by D,

in (23.) for (.;;, P read (Tl s .;l..)
line 6, for (ag 2, a1 ) read (a1 %, a1 %)
last but 3, for retain read retain them
before (37.) for (a;, 0) read (a1, az)

2d formula (39.) for by read b,

in (42.) for B: read Byc

end of (44.) for ay read ay?

in (48.) for B% reod B,

in (62.) for o®read a,

in (63.) for a,® +ap read a,? + a,?

after (69.) for formula read formulz

in (78.) for (a"1, dsy ) read (a", a”)

in (79.) for a) d; read a) dy

in (83.) for a2 —a? read a,2 — a,?

in (90.) for (as, az )*~! read (ay, a, Y~}
in (104.) for nx1 read n+41

in (107.) for mx 1 read m+1

in (151.) for (b1, &) read (b, by )
in (182.) for (2 ' 7. 0) read (2 o m, 0)



