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General Introductory Remarks. 

Tim Study of Algebra may be pursued in three very different schools, the Practical, the Philological, or 
the Theoretical, according as Algebra itself is accounted an Instrument, or a Language, or a Contempla 
tion ; according as ease of operation, or symmetry of expression, or clearness of thought, (the agere, the 
fari, or the sapere, is eminently prized and sought for. The Practical person seeks a Rule which he 
may apply, the Philological person seeks a Formula which he may write, the Theoretical person seeks a 
Theorem on which he may meditate. The felt imperfections of Algebra are of three answering kinds. 
The Practical Algebraist complains of imperfection when he finds his Instrument limited in power ; when 
a rule, which he could happily apply to many cases, can be hardly or not at all applied by him to some 
new case ; when it fails to enable him to do or to discover something else, in some other Art, or in some 
other Science, to which Algebra with him was but subordinate, and for the sake of which and not for its 
own sake, he studied Algebra. The Philological Algebraist complains of imperfection, when his Language 
presents him w ith an Anomaly ; when he finds an Exception disturb the simplicity of his Notation, or the 
symmetrical structure of his Syntax ; when a Formula must be written with precaution, and a Symbolism 
is not universal. The Theoretical Algebraist complains of imperfection, when the clearness of his Con 
templation i..--; obscured ; when the Reasonings of his Science seem anywhere to oppose each other, or 
become in any part too complex or too little valid for his belief to rest firmly upon them ; or when, 
though trial may have taught him that a rule is useful, or that a formula gives true results, he cannot 
prove that rule, nor understand that formula : when he cannot rise to intuition from induction, or cannot 
look beyond the signs to the things signified. 
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It is not here asserted that every or any Algebraist belongs exclusively to any one of these three 
schools, so as to be only Practical, or only Philological, or only Theoretical. Language and Thought 
react, and Theory and Practice help each other. No man can be so merely practical as to use frequently 
the rules of Algebra, and never to admire the beauty of the language which expresses those rules, nor 
care to know the reasoning which deduces them. No man can be so merely philological an Algebraist 
but that things or thoughts will at some times intrude upon signs ; and occupied as he may habitually be 
with the logical building up of his expressions, lie will feel sometimes a desire to know what they mean, 
or to apply them. And no man can be so merely theoretical or so exclusively devoted to thoughts, and 
to the contemplation of theorems in Algebra, as not to feel an interest in its notation and language, its 
symmetrical system of signs, and the logical forms of their combinations ; or not to prize those practical 
aids, and especially those methods of research, which the discoveries and contemplations of Algebra have 
given to other sciences. But, distinguishing without dividing, it is perhaps correct to say that every Alge 
braical Student and every Algebraical Composition may be referred upon the whole to one or other of 
these three schools, according as one or other of these three views habitually actuates the man, and emi 
nently marks the work. 

These remarks have been premised, that the reader may more easily and distinctly perceive what the 
design of the following communication is, and what the Author hopes or at least desires to accomplish. 
That design is Theoretical, in the sense already explained, as distinguished from what is Practical on the 
one hand, and from what is Philological upon the other. The thing aimed at, is to improve the Science, 
not the Art nor the Language of Algebra. The imperfections sought to be removed, are confusions of 
thought, and obscurities or errors of reasoning ; not difficulties of application of an instrument, nor 
failures of symmetry in expression. And that confusions of thought, and errors of reasoning, still darken 
the beginnings of Algebra, is the earnest and just complaint of sober and thoughtful men, who in a spirit 
of love and honour have studied Algebraic Science, admiring, extending, and applying what has been al 
ready brought to light, and feeling all the beauty and consistence of many a remote deduction, from 
principles which yet remain obscure, and doubtful. 

For it has not fared with the principles of Algebra as with the principles of Geometry. No candid 
and intelligent person can doubt the truth of the chief properties of Parallel Lines, as set forth by 
EUCLID in his Elements, two thousand years ago ; though he may well desire to see them treated in a 
clearer and better method. The doctrine involves no obscurity nor confusion of thought, and leaves in 
the mind no reasonable ground for doubt, although ingenuity may usefully be exercised in improving the 
plan of the argument. But it requires no peculiar scepticism to doubt, or even to disbelieve, the doctrine 
of Negatives and Imaginaries, when set forth (as it has commonly been with principles like these : that a 
greater magnitude may be subtracted from a less, and that the remainder is less than nothing ; that two 
negative numbers, or numbers denoting magnitudes each less than nothing, may be multiplied the one by 
the other, and that the product will be a positive number, or a number denoting a magnitude greater than 
nothing ; and that although the square of a number, or the product obtained by multiplying that number 
by itself, is therefore always positive, whether the number be positive or negative, yet that numbers, called 
imaginary, can be found or conceived or determined, and operated on by all the rules of positive and 
negative numbers, as if they were subject to those rules, although they have negative squares, and must 
therefore be supposed to be themselves neither positive nor negative, nor yet null numbers, so that the 
magnitudes which they are supposed to denote can neither be greater than nothing, nor less than nothing, 
nor even equal to nothing. It must be hard to found a SCIENCE on such grounds as these, though the 
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forms of logic may build up from them a symmetrical system of expressions, and a practical art may be 
learned of rightly applying useful rules which seem to depend upon them. 

So useful are those rules, so symmetrical those expressions, and yet so unsatisfactory those principles 
from which they are supposed to be derived, that a growing tendency may be perceived to the rejection 
of that view which regarded Algebra as a SCIENCE, in some sense analogous to Geometry, and to the 
adoption of one or other of those two different views, which regard Algebra as an Art, or as a Language 
as a System of Rules, or else as a System of Expressions, but not as a System of Truths, or Results having 
any other validity than what they may derive from their practical usefulness, or their logical or philological 
coherence. Opinions thus are tending to substitute for the Theoretical question,-" Is a Theorem of 
Algebra true?" the Practical question,-" Can it be applied as an Instrument, to do or to discover some 
thing else, in some research which is not Algebraical ?" or else the Philological question,-" Does its 
expression harmonise, according to the Laws of Language, with other Algebraical expressions ?" 

Yet a natural regret might be felt, if such were the destiny of Algebra ; if a study, which is conti 
nually engaging mathematicians more and more, and has almost superseded the Study of Geometrical 
Science, were found at last to be not, in any strict and proper sense, the Study of a Science at all : and 
if, in thus exchanging the ancient for the modern Mathesis, there were a gain only of Skill or Ele 
gance, at the expense of Contemplation and Intuition. Indulgence, therefore, may be hoped for, by any 
one who would inquire, whether existing Algebra, in the state to which it has been already unfolded by 
the masters of its rules and of its language, offers indeed no rudiment which may encourage a hope of 
developing a SCIENCE of A Igebra : a Science properly so called ; strict, pure, and independent ; deduced 
by valid reasonings from its own intuitive principles ; and thus not less an object of priori contempla 
tion than Geometry, nor less distinct, in its own essence, from the Rules which it may teach or use, and 
from the Signs by which it may express its meaning. 

The Author of this paper has been led to the belief, that the Intuition of TIME is such a rudiment. 
This belief involves the three following as components : First, that the notion of Time is connected 

with existing Algebra ; Second, that this notion or intuition of Time may be unfolded into an independent 
Pure Science ; and Third, that the Science of Pure Time, thus unfolded, is co-extensive and identical with 
Algebra, so far as Algebra itself is a Science. The first component judgment is the result of an induction ; 
the second of a deduction ; the third is a joint result of the deductive and inductive processes. 

I. The argument for the conclusion that the notion of Time is connected with existing Algebra, is an 
induction of the following kind. The History of Algebraic Science shows that the most remarkable disco 
veries in it have been made, either expressly through the medium of that notion of Time, or through the 
closely connected (and in some sort coincident notion of Continuous Progression. It is the genius 
of Algebra to consider what it reasons on as flowing, as it was the genius of Geometry to consider what 
it reasoned on as fixed. EUCLID defined a tangent to a circle, APOLLONIUSt conceived a tangent to an 
ellipse, as an indefinite straight line which had only one point in common with the curve ; they looked 
upon the line and curve not as nascent or growing, but as already constructed and existing in space ; they 
studied them as formed and fixed, they compared the one with the other, and the proved exclusion of any 
second common point was to them the essential property, the constitutive character of the tangent. 
The Newtonian Method of Tangents rests on another principle; it regards the curve and line not as 

0 ViFita x6xXott;pc'errEcrlei ,jiyfrecr, ;irif kl-ero,c4vtl DO x6xxov seal bcCaxxop,:yn Ov 7;/..4,11 TZ,), xtlxXor.-Eucup, Book III. Def. 2. 
Oxford Edition, 1703. 
t Ear ;Y X.: 40V PrO,L45 1C7r? ?if X0pliP7IC l'iii Prop,;ir c't,0.17 Enf 70: irapl TETCX7/AlYtef X.ITT7/.41YrlY ;X7't Tearirar iris roAs.--Lerls apt 

911CFETTCCI, at,j7tEp IC:kill-1'1TM' iris 70/471C.-APPOLLONIUS, Book 1. Prop. 17. Oxford Edition, 1710. 
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already formed and fixed, but rather as nascent, or in process of generation : and employs, as its pri 
mary conception, the thought of a flowing point. And, generally, the revolution which NEWTON made in 
the higher parts of both pure and applied Algebra, was founded mainly on the notion of fluxion, which 
involves the notion of Time. 

Before the age of NEWTON, another great revolution, in Algebra as well as in Arithmetic, had been 
made by the invention of Logarithms ; and the " Canon Mirificus " attests that NAP1ERt deduced that in 
vention, not (as it is commonly said from the arithmetical properties of powers of numbers, but from 
the contemplation of a Continuous P)ogression ; in describing which, he speaks expresssly of Fluxion:, 
Velocities and Times. 
In a more modern age, LAGRANGE, in the Philological spirit, sought to reduce the Theory of Fluxions 

to a system of operations upon symbols, analogous to the earliest symbolic operations of Algebra, and 
professed to reject the notion of time as foreign to such a system ; yet admitted4 that fluxions might be 
considered only as the velocities with which magnitudes vary, and that in so considering them, abstrac 
tion might be made of every mechanical idea. And in one of his own most important researches in pure 
Algebra, (the investigation of limits between which the sum of any number of terms in TAYLOR'S Series 
is comprised, LAGitArroEll employs the conception of continuous progression to show that a certain vari 
able quantity may be made as small as can be desired. And not to dwell on the beautiful discoveries 
made by the same great mathematician, in the theory of singular primitives of equations, and in the al 
gebraical dynamics of the heavens, through an extension of the conception of variability, (that is, in 
fact, of aflowingness, to quantities which had before been viewed as fixed or constant, it may suffice for 
the present to observe that LA.GRANGE considered Algebra to be the Science of Functionss, and that it is 
not easy to conceive a clearer or juster idea of a Function in this Science, than by regarding its essence 
as consisting in a Law connecting Change with Change. But where Change and Progression are, there is 
TIME. The notion of Time is, therefore, inductively found to be connected with existing Algebra.lf 

II. The argument for the conclusion that the notion of time may be urfolded into an independent 
Pure Science, or that a Science of Pure Time is possible, rests chiefly on the existence of certain priori 

 Considerando igitur quod quantitates mqualibus temporibus crescentes et crescendo genitn, pro velocitate majori vel mi 
noH qua crescunt ac gencrantur evadunt majores vel minores; methodum qumrebam determinandi quantitates ex velocitati 
bus motuum vel incrementorum quibus generantur ; et has motuum vel incrementorum velocitates nominando Fluxiones, 
et quantitates genitas nominando Fluentes, incidi paulatim annis 1665 et 1666 in Methodum Fluxionum qua hic usus sum in 
Quadratura Curvartim-Tractatus de Quad. Curv., Introd., published at the end of Sir L Nee ton's Opticks, London 17042 
t Lugarithmus ergO cujusque sinus, est numerus quam proxime definiens lineam, gum mqualiter crevit interea dum sinus 

totius linea propcntionaliter in sinum ilium decrevit, existente utroque motu synchrono, atque initio mquiveloce. Baron 
Napier's Mirifici Logarithmorum Canonis Descriptio, Def. 6, Edinburgh 1614.-Also in the explanation of Def. 1, the 
wordsfluxu and fleet occur. 
t Calcul des Fonctions, Lecon Premiere, page 2. Paris 1E06. 
II Done puisque V delient nul lorsque i devient nul, ii est clair qu' en faisvnt croitre i par degres insensibles depuis 

zero, la valeur de V croltra aussi insensiblement depuis zero, soit en plus on en moins, jusqu' a un certain point, aprk 
quoi elle pourra diminuer.-Calcul des Fonctions, Leon Neuvieme, page 90. Paris 1806. An instance still more strong 
may be found in the First Note to Lagrange's Equations Numeriques. Pails, 1808. 

On dolt regarder Palgehre comme la science des fonctions.-Calc. des Fonct., Lecon Premiere. 
IT The word " Algebra " is used throughout this whole paper, in the sense which is commonly but improperly given 

by modern mathematical writers to the name " Analysis," and not with that narrow signification to which the unphilosopin 
cal use of the latter term (Analysis has caused the former term (Algebra to be too commonly confined. The author 
confesses that lie has often deserved the censure which he has here so freely eNpressed. 
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intuitions, connected with that notion of time, and fitted to become the sources of a pure Science; and on 
the actual deduction of such a Science from those principles, which the author conceives that he has . 
begun. Whether he has at all succeeded in actually effecting this deduction, will be judged after the 
Essay has been read ; but that such a deduction is possible, may be concluded in an easier way, by an 
appeal to those intuitions to which allusion has been made. That a moment of time respecting which 
we inquire, as compared with a moment which we know, must either coincide with or precede or follow 
it, is an intuitive truth, as certain, as clear, and as unempirical as this, that no two straight lines can 
comprehend an area. The notion or intuition of ORDER IN Tuft is not less but more deep-seated in the 
human mind, than the notion or intuition of ORDER IN SPACE ; and a mathematical Science may be founded 
on the former, as pure and as demonstrative as the science founded on the latter. There is something 
mysterious and transcendent involved in the idea of Time ; but there is also something definite and clear : 
and while Metaphysicians meditate on the one, Mathematicians may reason from the other. 

III. That the Mathematical Science of Time, when sufficiently unfolded, and distinguished on the 
one hand from all actual Outward Chronology (or collections of recorded events and phenomenal marks 
and measures), and on the other hand from all Dynamical Science (or reasonings and results from the 
notion of cause and effect), will ultimately be found to be co-extensive and identical with Algebra, so far 
as Algebra itself is a Science : is a conclusion to which the author has been led by all his attempts, whe 
ther to analyse what is Scientific in Algebra, or to construct a Science of Pure Time. It is a joint result of the 
inductive and deductive processes, and the grounds on which it rests could not be stated in a few general 
remarks. The author hopes to explain them more fully in a future paper ; meanwhile be refers 
to the present one, as removing (in his opinion the difficulties of the usual theory of Negative and Ima 
ginary Quantities, or rather substituting a new Theory of Contrapositives and Couples, which he considers 
free from those old difficulties, and which is deduced from the Intuition or Original Mental Form of Time : 
the opposition of the (so-called Negatives and Positives being referred by him, not to the opposition of 
the operations of increasing and diminishing a magnitude, but to the simpler and more extensive contrast 
between the relations of Before and After, or between the directions of Forward and Backward ; and 
Pairs of Moments being used to suggest a Theory of Conjugate Functions, which gives reality and 
meaning to conceptions that were before Imaginary, t Impossible, or Contradictory, because Mathemati 
cians had derived them from that bounded notion of Magnitude, instead of the original and comprehensive 
thought of ORDER IN PROGRESSION. 

 It is, indeed, very common, in Elementary works upon Algebra, to allude to past and future time, as one among many 
illustrations of the doctrine of negative quantities ; but this avails little for Science, so long as magnitude instead of PROGRES-.. 
VON is attempted to be made the basis of the doctrine. 
 The author was conducted to this Theory many years ago, in reflecting on the important symbolic results of Mr. 

GRAvEs respecting Imaginary Logarithms, and in attempting to explain to himself the theoretical meaning of those remark 
able symbolisms. The Preliminary and Elementary Essay on Algebra as the Science of Pure Time, is a much more 
recent developement of an Idea against which the author struggled long, and which lie still longer forbore to make public, on 
account of its departing so far from views now commonly received. The novelty, however, is in the view and method, not 
in the results and details : in which the reader is warned to expect little addition, if any, to what is already known. 
T. The author acknowledges with pleasure that he agrees with M. CAUCHY, in considering every (so-called Imaginary 

Equation as a symbolic representation of two separate Real Equations : but he differs from that excellent mathematician in 
his method generally, and especially in not introducing the sign N -1 until he has provided for it, by his Theory of 
Couples, a possible and real meaning, as a symbol of the couple MD. 
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PRELIMINARY AND ELEMENTARY ESSAY 

ON ALGEBRA AS THE SCIENCE OF PURE TIME. 

Comparison of any two moments with respect to identity or diversity, subsequence or 

precedence. 

1. If we have formed the thought of any one moment of time, we may afterwards 
either repeat that thought, or else think of a different moment. And if any two 
spoken or written names, such as the letters A and B, be dates, or answers to the 
question When, denoting each a known moment of time, they must either be names 
of one and the same known moment, or else of two dijferent moments. In each 
case, we may speak of the pair of dates as denoting a pair of moments ; but in the 
first case, the two moments are coincident, while in the second case they are distinct 
Iron each other. To express concisely the former case of relation, that is, the case  
of identity between the moment named B and the moment named A, or of equivalence 
between the date B and the date A, it is usual to write 

 A ; 

a written sentence or assertion, which is commonly called an equation : and to express 
concisely the latter case of relation, that is, the case of diversity between the two mo 
ments, or of non-equivalence between the two dates, we may write 

VOL. XVII. 
B *A ; 

3N 
(2. 
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annexing, here and afterwards, to these concise written expressions, the side-marks 
(1. (Q.), &c., merely to facilitate the subsequent reference in this essay to any such 
assertion or result, whenever such reference may become necessary or convenient. 
The latter case of relation, namely, the case (2. of diversity between two moments, 
or of non-equivalence between two dates, subdivides itself into the two cases of subse 
quence and of precedence, according as the moment B is later or earlier than A. To 
express concisely the former sort of diversity, in which the moment B is later than A, 
we may write 

B > A ; (3- 

and the latter sort of diversity, in which the moment B is earlier than A, may be ex 
pressed concisely in this other way, 

It is evident that 
B lA. 

if B =A, then A  B 
if B*A, then A*B ; 
if B > A, then A B ; 
if B < A, then A > B. 

Comparison of two pairs of moments, with respect to their analogy or non-analogy. 

2. Considering now any two other dates c and D, we perceive that they may and 
must represent either the same pair of moments as that denoted by the former pair 
of dates A and B, or else a dffferent pair, according as the two conditions, 

C  A, and D  B, (9. 

are, or are not, both satisfied. If the new pair of moments be the same with the old, 
then the connecting relation of identity or diversity between the moments of the one 

pair is necessarily the same with the relation which connects in like manner the mo 
ments of the other pair, because the pairs themselves are the same. But even if the 

pairs be different, the relations may still be the same ; that is, the moments c and D, 
even if not both respectively coincident with the moments A and B, may still be re 
lated to each other exactly as those moments, (D to c as B to A and thus the two 

pairs, A, B and c, D may be analogous, even if they be not coincident with each other. 
An analogy of this sort (whether between coincident or different pairs may be ex 

pressed in writing as follows, 
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D-C=B-A, or, B-A=D---C; (10. 

the interposed mark =, which before denoted identity of moments, denoting now 

identity of relations : and the written assertion of this identity being called (as before 
an equation. The conditions of this exact identity between the relation of the mo 
ment D to C, and that of B to A, may be stated more fully as follows : that if the mo 
ment B be identical with A, then D must be identical with c ; if B be later than A, 
then D must be later than c, and exactly so much later ; and if B be earlier than 
A, then D must be earlier than c, and exactly so much earlier. It is evident, that what 
ever the moments A B and c may be, there is always one, and only one, connected mo 
ment D, which is thus related to c, exactly as B is to A ; and it is not difficult to per 
ceive that the same moment D is also related to B, exactly as c is to A ; since, in the 
case of coincident pairs, D is identical with B, and c with A ; while, in the case of pairs 
analogous but not coincident, the moment D is later or earlier than B, according as c 
is later or earlier than A, and exactly so much later or so much earlier. If then the 
pairs A, B, and c, D, be analogous, the pairs A C and B 0, which may be said to be 
alternate to the former, are also analogous pairs ; that is, 

if D  C =B  A, then D -B=C A ; (11. 

a change of statement of the relation between these four moments A B C D, which 

may be called alternation of an analogy. It is still more easy to perceive, that if any 
two pairs AB and CD be analogous, then the inverse pairs BA and DC are analogous 
also, and therefore that 

if D----C  B-A, then C-D  A---B, 02. 

a change in the manner of expressing the relation between the four moments 
A B C D, which may be called inversion of an analogy. Combining inversion with 
alternation, we find that 

if D  C=B  A, then B  D=A  C ; (13. 

and thus that all the eight following written sentences express only one and the same 
relation between the four moments AnCD: 

D C=B  A, B  A=D  C 21 
D  B=C  A, C  A=D  B , (14' C  D=A  B, A  B=C  D , 
II D=A  C, A  C=B -D ; 

any one of these eight written sentences or equations being equivalent to any other. 
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3. When the foregoing relation between four moments A B C D does not exist, 
that is, when the pairs AB and CD are not analogous pairs, we may mark this non 
analogy by writing 

DxC*B-A; (15. 

and the two possible cases into which this general conception of non-analogy or di 
versity of relation subdivides itself, namely, the case when the analogy fails on ac 
count of the moment D being too late, and the case when it fails because that moment 
D IS too early, may be denoted, respectively, by writing in the first case, 

and in the second case, 

D-C>B A, 

D-ClB-A; 

while the two cases themselves may be called, respectively, a nonfanalogy of subse 

quence, and a non-analogy of precedence. We may also say that the relation of 
D to c, as compared with that of B to A, is in the first case a relation of comparative 
lateness, and in the second case a relation of comparative earliness. 

Alternations and inversions may be applied to,these expressions of non-analogy, and 
the case of D too late may be expressed in any one of the eight following ways, which 
are all equivalent to each other, 

D-C>B-A, B-A<D-C, 
D-B>C-A, C-A<D-B1 
C-D<A-B, A-B>C-D, 
B-D<A-C, A-C>B-D; 

(18. 

while the other case, when the analogy fails because the moment D is too early, may 
be expressed at pleasure in any of the eight ways following, 

D-C<B-A, B-A>D-C, 
D-B<C-A, C-A>D-B, 
C-D>A----B, A.,._. BCC 
B-D>A-C, A-C<B-D. 

In general, if we have any analogy or non-analogy between two pairs of moments, 
AB and c D, of which we may call the first and fourth mentioned moments, A and D, 
the extremes, and the second and third mentioned moments, namely, B and c, the 

(19w 
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means, and may call A and c the antecedents, and B and 1 the consequents ; we do 
not disturb this analogy or non-analogy by interchanging the means among them 
selves, or the extremes among themselves ; or by altering equally, in direction and in 

degree, the two consequents, or the two antecedents, of the analogy or of the non 

analogy, or the two moments of either pair ; or, finally, by altering oppositely in di 
rection, and equally in degree, the two extremes, or the two means. In an analogy, 
we may also put, by inversion, extremes for means, and means for extremes ; but if a 

non-analogy be thus inverted, it must afterwards be changed in kind, from subse 

quence to precedence, or from precedence to subsequence. 

Combinations of two dPrent analogies, or non-analogies, of pairs of moments, 
with each other. 

4. From the remarks last made, it is manifest that 

if D -C=B 

-Al 
and DI -D  B'  B, (20. 
then D'  C  B'  A; 

because the second of these three analogies shows, that in passing from the first to the 
third, we have either made no change, or only altered equally in direction and in 

degree the two consequent moments B and D of the first analogy. In like manner, 

if D  C  B  A, 
and c'  c  A  A, 
then D -C =B -A ; 

(21. 

because now, in passing from the first to the third analogy, the second analogy spews 
that we have either made no change, or else have only altered equally, in direction 
and degree, the antecedents A and c. Again, 

if D  C =B  A, 
and D'  D  C'  c, M. 
then D'  C'  B  A ; 

because here we have only altered equally, if at all, the two moments c and n of one 
common pair, in passing from the first analogy to the third. Again, 

if D  C  B -A, 
and c  c' =111-B, (23z 
then D  C'  B' -A ; 
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because now we ether do not alter the means B and c at all, or else alter them oppo 
sitely in direction and equally in degree. And similarly, 

if D  C  B  A, 
and D'  D  A  A', 
t hen D'  C  B  A', 

because here we only alter equally, if at all, in degree, and oppositely in direction, 
the extremes, A and D, of the first analogy. It is still more evident that if two pairs 
be analogous to the same third pair, they are analogous to each other ; that is 

if D  C  B  A, 
and B  A  D'  C', 
then D  C  D'  C'. 

(25. 

And each of the foregoing conclusions will still be true, if we change the first supposed 
analogy D  C  B  A, to a non-analogy of subsequence D  C > B  A, or to a non-analogy 
of precedence D  C < B  A, provided that we change, in like manner, the last or con 
cluded analogy to a non-analogy of subsequence in the one case, or of precedence 
in the other. 

It is easy also to see, that if we still suppose the first analogy D-C=B-A to 
remain, we cannot conclude the third analogy, and are not even at liberty to suppose 
that it exists, in any one of the foregoing combinations, unless we suppose the second 
also to remain : that is, if two analogies have the same antecedents, they must have 

analogous consequents ; if the consequents be the same in two analogies, the antece 
dents must themselves form two analogous pairs ; if the extremes of one analogy be 
the same with the extremes of another, the means of either may be combined as 
extremes with the means of the other as means, to form a new analogy ; if the means 
of one analogy be the same with the means of another, then the extremes of either may 
be combined as means with the extremes of the other as extremes, and the resulting 
analogy will be true ; from which the principle of inversion enables us farther to 
infer, that if the extremes of one analogy be the same with the means of another, 
then the means of the former may be combined as means with the extremes of the 
latter as extremes, and will thus generate another true analogy. 

On continued Analogies, or Equidistant Series of Moments, 

5. It is clear from the foregoing remarks, that in any analogy 

13'  A'  B  A, 

(24. 

(26. 

the two moments of either pair A B or A' B' cannot coincide, and so reduce themselves 
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to one single moment, without the two moments of the other pair A' B' or A B being 
also identical with each other ; nor can the two antecedents A A' coincide, without the 
two consequents B B' coinciding also, nor can the consequents vvithout the antecedents. 
The only way, therefore, in which two of the four moments A B A' B' of an analogy 
can coincide, without the two others coinciding also, that is, the only way in which an 

analogy can be constructed with three distinct moments of time, is either by the two 
extremes A B' coinciding, or else by the two means B A' coinciding ; and the principle 
of inversion permits us to reduce the former of these two cases to the latter. We 

may then take as a sufficient type of every analogy which can be constructed with 
three distinct moments, the following 

B'-B=B-A; (27. 

that is, the case when an extreme moment n' is related to a mean moment B, as that 
mean moment B is related to another extreme moment A ; in which case we shall say 
that the three moments A B B' compose a continued analogy. In such an analogy, 
it is manifest that the three moments A B B' compose also an equidistant series, B' 

being exactly so much later or so much earlier than B, as B is later or earlier than A. 
The moment B is evidently, in this case, exactly intermediate between the two other 
moments A and B', and may be therefore called the middle moment, or the bisector, 
of the interval of time between them. It is clear that whatever two distinct moments 
A and B' may be, there is always one and only one such bisector moment u ; and that 
thus a continued analogy between three moments can always be constructed in one 
but in only one way, by inserting a mean, when the extremes are given. And it is 
still more evident, from what was shewn before, that the middle moment B, along with 
either of the extremes, determines the other extreme, so that it is always possible to 
complete the analogy in one but in only one way, when an extreme and the middle 
are given. 

6. If, besides the continued analogy (27. between the three moments A B Le, we 
have also a continued analogy between the two last B B' of these three and a fourth 
moment B", then the four moments A B B' B" may themselves also be said to form 
another continued analogy, and an equidistant series, and we may express their rela 
tions as follows 

B"  B'  B'  B  B  A. (28. 

In this case, the interval between the two extreme moments A and B" is trisected by 
the two intermediate moments B and 13, and we may call B the first trisector, and It' 
the second trisector of that interval. If the first extreme moment A and the first 
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trisector moment n be given, it is evidently possible to complete the continued analogy 
or equidistant series in one and in only one way, by supplying the second trisector 
B' and the second extreme B" ; and it is not much less easy to perceive that any two 
of the four moments being given, (together with their names of position in the series, 
as such particular extremes, or such particular trisectors, the two other moments can 
be determined, as necessarily connected with the given ones. Thus, if the extremes 
be given, we must conceive their interval as capable of being trisected by two means, 
in, one and in only one way ; if the first extreme and second trisector be given, we 
can bisect the interval between them, and so determine (in thought the first trisector, 
and afterwards the second extreme ; if the two trisectors be given, we can continue 
their interval equally in opposite directions, and thus determine (in thought the two 
extremes ; and if either of these two trisectors along with the last extreme be given, 
we can determine, by processes of the same kind, the two other moments of the 
series. 

7. In general, we can imagine a continued analogy and an equidistant series, cam 

prising any number of moments, and having the interval between the extreme moments 
of the series divided into the next lesser number of portions equal to each other, by a 
number of intermediate moments which is itself the next less number to the number of 
those equal portions of the whole interval. For example, we may imagine an equi-, 
distant series of five moments, with the interval between the two extremes divided 
into four partial and mutually equal intervals, by three intermediate moments, which 

 may be called the first, second, and third quadrisectors or quarterers of the total 
interval. And it is easy to perceive, that when any two moments of an equidistant 
series are given, (as such or such known moments of time, together with their places in 
that series, (as such particular extremes, or such particular intermediate moments, the 
other moments of the series can then be all determined ; and farther, that the series 
itself may be continued forward and backward, so as to include an unlimited number 
of new moments, without losing its character of equidistance. Thus, if we know the 
first extreme moment A, and the third quadrisector B" of the total interval (from A 
to B" in any equidistant series of five moments, A B B' B" di, we can determine by 
trisection the two first quadrisectors B and B', and afterwards the last extreme moment 
B"' ; and may then continue the series, forward and backward, so as to embrace other 
moments Bn; BV, &c., beyond the fifth of those originally conceived, and others also 
such as E, E', B", &c., behind the first of the original five moments, that is, preceding 
it in the order of progression of the series ; these new moments forming with the old 
an equidistant series of moments, (which comprehends as a part of itself the original 
series of five, namely, the following unlimited series, 
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... .E" E' E A B B' B" lei B" By..., (Q9. 

constructed so as to satisfy the conditions of a continued analogy, 

...Bv-B"=Biv-.131"  Bin  B"  B"  131  B' -B =B -A=A -E =E  E'  E'  E"... (30. 

S. By thus constructing and continuing an equidistant series, of which any two 
moments are given, we can arrive at other moments, as far from those two, and as near 
to each other, as we desire. For no moment B can be so distant from a given moment 
A, (on either side of it, whether as later or as earlier, that we cannot find others 
still more distant, (and on the same side of A, still later or still earlier, by continuing 
(in both directions any given analogy, or given equidistant series ; and, therefore, 
no two given moments, c And D, if not entirely coincident, can possibly be so near 
to each other, that we cannot find two moments still more near by treating any two 

given distinct moments (A and n), whatever, as extremes of an equidistant series of 
moments sufficiently many, and by inserting the appropriate means, or intermediate 
moments, between those two given extremes. Since, however far it may be necessary 
to continue the equidistant series c D...D", with c and D for its two first moments, in 
order to arrive at a moment D" more distant from c than B is from A, i is only ne 

cessary to insert as many intermediate moments between A and B as between c and 
D", in order to generate a new equidistant series of moments, each nearer to the one 
next it than n to c. Three or more moments A B C &C. may be said to be uniserial 
with each other, when they all belong to one common continued analogy, or equi 
distant series ; and though we have not proved (and shall find it not to be true that 
any three moments whatever are thus uniserial moments, yet we see that if any two 
moments be given, such as A and B, we can always find a third Moment B" uniserial 
with these two, and differing (in either given direction by less than any interval pro 
posed from any given third moment c, whatever that may be. This possibility of 

indefinitely appproaching (on either side to 4ny given moment c, by moments 
uniserial with any two given ones A and B, increases greatly the importance which 
would otherwise belong to the theory of continued analogies, or equidistant series 
of moments. Thus if any two given dates, c and D, denote two distinct moments of 
time, (c  DO however near to each other they may be, we can always conceive their 

diversity detected by inserting means sufficiently numerous between any two other 

given distinct moments A and II, as the extremes of an equidistant series, and then, if 

necessary, extending this series in both directions beyond those given extremes, until 
some one of the moments B" of the equidistant series thus generated is found to fall 
between the two near moments c and D, being later than the earlier, and earlier than 

VOL. xvii. 3 o 
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the later of those two. And, therefore, reciprocally, if in any case of two gi VCR 
dates c and D, we can prove that no moment B" whatever, of all that can be imagined 
as uniserial with two given distinct moments A and B, falls thus between the moments 
c and D, we shall then have a sufficient proof that those two moments c and D are 
identical, or, in other words, that the two dates c and D represent only one common 
moment of time, (c=n, and not two different moments, however little asunder. 

And even in those cases in which we have not yet succeeded in discovering 
a rigorous proof of this sort, identifying a sought moment with a known one, or dis 

tinguishing the former from the latter, the conception of continued analogies offers 

always a method of research, and of nomenclature, for investigating and expressing, 
or, at least, conceiving as investigated and expressed, with any proposed degree of 
approximation if not with perfect accuracy, the situation of the sought moment in 
the general progression of time, by its relation to a known equidistant series of 
moments sufficiently close. This might, perhaps, be a proper place, in a complete 
treatise on the Science of Pure Time, to introduce a regular system of integer ordi 
nals, such as the words ,first, second, third, &c., with the written marks 1, 2, 3, &c., 
which answer both to them and to the cardinal or quotitative numbers, one, two, 
three &c. ; but it is permitted and required, by the plan of the present essay, that we 
should treat these spoken and written names of the integer ordinals and cardinals, 
together with the elementary laws of their combinations, as already known and 
familiar. It is the more admissible in point of method to suppose this previous 
acquaintance with the chief properties of integer numbers, as set forth in elementary 
arithmetic, because these properties, although belonging to the Science of Pure Time, 
as involving the conception of succession, may all be deduced from the unfolding of 
that mere conception of succession, (among things or thoughts as counted, without 
requiring any notion of measurable intervals, equal or unequal, between successive 
moments of time. Arithmetic, or the science of counting, is, therefore, a part, indeed, 
of the Science of Pure Time, but a part so simple and familiar that it may be pre 
sumed to have been previously and separately studied, to some extent, by any one 
who is entering on Algebra. 

On steps in the progression of time ; their application (direct or inverse to moments, 
so as to generate other moments ; and their combination with other steps, in the 
way of composition or decomposition. 

9. The foregoing remarks may have sufficiently shewn the importance, in the 

general study of pure time, of the conception of a continued analogy or equidistant 
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series of moments. This conception involves and depends on the conception of the 

repeated transference of one common ordinal relation, or the continued application of 
one common mental step, by which we pass, in thought, from any moment of such a 
series to the moment immediately following. For this, and for other reasons, it is 
desirable to study, generally, the properties and laws of the transference, or applica 
tion, direct or inverse, and of the composition or decomposition, of ordinal relations 
between moments, or of steps in the progression of time ; and to form a convenient 

system of written signs, for concisely expressing and reasoning on such applications and 
such combinations of steps. 

In the foregoing articles, we have denoted, by the complex symbol B-A, the ordinal 
relation of the moment B to the moment A, whether that relation were one of identity 
or of diversity ; and if of diversity, then whether it were one of subsequence or of 

precedence, and in whatever degree. Thus, having previously interposed the mark 
 between two equivalent signs for one common moment of time, we came to inter 

pose the same sign of equivalence between any two marks of one ordinal relation, 
and to write 

D -C=B-A, 

when we designed to express that the relations of D to c and of B to A were coin 
cident, being both relations of identity, or both relations of diversity ; and if the 
latter, then both relations of subsequence, or both relations of precedence, and both 
in the same degree. In like manner, having agreed to interpose the mark #-: be 
tween the two sign's of two moments essentially different from each other, we wrote 

D  C*B  A, 

when we wished to express that the ordinal relation of D to c (as identical, or sub 

sequent, or precedent did not coincide with the ordinal relation of the moment B to 
A; and, more particularly, when we desired to distinguish between the two principal 
cases of this non-coincidence of relations, namely the case when the relation of n to 
c (as compared with that of n to A was comparatively a relation of lateness, and the 
case when the same relation (of D to c was comparatively a relation of earliness, 
\s e wrote, in the first case, 

and in the second case, 

having previously agreed to write 

D-C>B-A, 

0  ClB-A, 

B>A 
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if the moment B were later than the moment A, or 

BlA. 

if B were earlie-r than A. 
Now, without yet altering at all the foregoing conception of n -A, as the symbol 

of an ordinal relation discovered by the comparison of two moments, we may in some 
degree abridge and so far simplify all these foregoing expressions, by using a simpler 
symbol of relation, such as a single letter a or b &c. or in some cases the character 
0, or other simple signs, tinstead of a complex symbol such as B A, or D  c, &c. 
Thus, if we agree to use the symbol 0 to denote the relation of identity between tvvo 
moments, writing 

A -A=0)- (31. 

we may express the equivalence of any two dates B and A, by writing 

B-A=0, (3Q, 
and may express the non-equivalence of two dates by writing 

B -AtO ; (33. 

distinguishing the two cases when the moment B is later and when it is earlier than A, 
by writing, in the first case, 

B-A>0, (344. 
and in the second case, 

n -A < 0, (35. 
to express, that as compared with the relation of identity 0, the relation B -A is in 
the one case a relation of comparative lateness, and in the other case a relation of 

comparative earliness : or, more concisely, by writing, in these four last cases re 
spectively, which were the cases before marked (1. (2. (3. and (4 

a:7-40, (36. 
a#0, (37. 
a > 0, (38. 
a < 0, (39. 

if we put, for abridgement, 
B.__A=a. (40. 

Again, if we put, in like manner, for abridgement, 
D  c .741 , (41. 
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the analogy (10. namely, 
D--C=B-A, 

may be concisely expressed as follows, 
b  a  (42. 

while the general non-analogy (15.), 
D  C*B  A 2 

may be expressed thus, 
b*a 2 (43. 

and the written expressions of its two cases (16. and (17.), namely, 
D-C>B-A 

and D  C l B  A, 

may be abridged in the following manner, 

b5.a, (44. 
and b < a . (4Z. 

Again, to denote a relation which shall be exactly the inverse or opposite of any 
proposed ordinal relation a or b, we may agree to employ a complex symbol such 
as 8 a or 0 b, formed by prefixing the mark 0, (namely, the initial letter 0 of the 
Latin word Oppositio, distinguished by a bar across it, from the same letter used for 
other purposes, to the mark a or b of the proposed ordinal relation ; that is, we may 
agree to use 0  to denote the ordinal relation of the moment A to B, or 0 b to 
denote the ordinal relation of c to D, when the symbol a has been already chosen to 
denote the relation of B to A, or b to denote that of D to c : considering the tho 
assertions 

13  A  a 2 and A  B  0 a, (46o 

as equivalent each to the other, and in like manner the two assertions 

D  C  b, and c--D=0 b, (47. 

and similarly in other cases. In this notation, the theorems (5. (6. (7. (8. 
may be thus respectively written : 

0 a=0, if a=0; (48. 
0 a*O, if a*O 5 (49. 
0 a<0, if a>0; (50. 
8 a >0, if a <0 ; (51. 
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and the theorem of inversion (12. may be written thus 

O b=0 a, if b  a. (52. 
The corresponding rules for inverting a non-analogy shew that, in general, 

 b*0 a, if b4za ; (53.) 
and more particularly, that 

 b l 0 a, if b > a, 
and b > a, if b < a. (55. 

It is evident also that 

if ar 0 a, then a=0 a' ; (06. 
that is, the opposite of the opposite of any proposed relatio a is that proposed 
relation itself ; a theorem which may be concisely expressed as follows 

0 (0 a)=a ; (57h 

for, as a general rule of notation, when a complex symbol (as here 0 a is substituted 
in any written sentence (such as here the sentence a=0 a' instead of a simple 
symbol (which the symbol a', notwithstanding its accent, is here considered to be), 
it is expedient, and in most cases necessary, for distinctness, to record and mark this 

using of a complex as a simple symbol, by some such written warning as the enclosing 
of the complex symbol in parentheses, or in brackets, or the drawing of a bar across 
it. However, in the present case, no confusion would be likely to ensue from the 
omission of such a warning ; and we might write at pleasure 

0 (0 a  a, 0 [0 al  a, 0 [e a  a, 0 0 a  a, or simply 0 0 a a. (58. 

1 0. For the purpose of expressing, in a somewhat similar notation, the properties 
of alternations and combinations of analogies, set forth in the foregoing articles, with 
some other connected results, and generally for the illustration and development of 
the conception of ordinal relations between moments, it is advantageous to intro 
duce that other connected conception, already alluded to, of steps in the progression 
of time ; and to establish this other symbolic definition, or conventional manner of 

writing, namely, 
B=(g-A)+A, or B a  A if B-A=a ; (59. 

this notation a or (B A  A, corresponding to the above-mentioned concep 
tion of a certain mental step or act of transition, which is determined in direction 
and degree by the ordinal relation a or B -A, and may, therefore, be called " the 
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step a," or the step B  A, and which is such that by making this mental step, or 

performing this act of transition, we pass, in thought, from the moment A to the 
moment B, and thus suggest or generate (in thought the batter from the former, as 
a mental product or result 13 of the act a and of the object A. We may also express 
the same relation between B and A by writing 

A  (0 ,a  B, or more simply A  e a  B, (GO. 

if we agree to write the sign 0 a without parentheses, as jf it were a simple or single 
symbol, because there is no danger of causing confusion thereby ; and if we observe 
that the notation A =0 a -I B corresponds to the conception of another step, or 
mental act of transition, 0 a, exactly opposite to the former step a, and such that by 
it we may return (in thought from the moment B to the moment A, and thus may 
generate A as a result of the act 0 a and of the object B. The mark +, in this sort of 

notation, is interposed, as a mark of combination, between the signs of the act and 
the object, so as to form a complex sign of the result ; or, in other words, between 
the sign of the transition (a or 0 a and the sign of the moment (A or B from which 
that transition is made, so as to express, by a complex sign, (recording the suggestion 
or generation of the thought, that other moment (B or A to which this mental tran 
sition conducts. And in any transition of this sort, such as that expressed by the 

equation B  a  A, we may call (as before the moment A, from which we pass, the 
antecedent, and the moment B, to which we pass, the consequent, of the ordinal , rela 
tion a, or B  A, which suggests and determines the transition. In the particular 
case when this ordinal relation is one of identity,  a  0, the mental transition or 
act (a or 0 makes no change in the object of that act, namely in the moment -1, but 

only leads us to repeat the thought of that antecedent moment A, perhaps with a 
new name B ; in this case, therefore, the transition may be said to be null, or a null 
step, as producing no real alteration in the moment from which it is made. A step 
not null, (a *0, corresponds to a relation of diversity, and may be called, by con 
trast, an effective step, because it is an act of thought which really alters its object, 
namely the moment to which it is applied. An effective step a must be either a late 
making or an early-making step, according as the resultant moment a  A is later or 
earlier tha A ; but even a null step 0 may be regarded as relatively late:making, 
when compared with an early-making step a, (0  A> a 4 A, if a l 0, or as relatively 
early-making if compared with a late-making step b ; (0  A < b  A, if b > 0 ; and, 
in like manner, of two unequal early-making steps, the lesser may be regarded as 
relatively late-making, while of two unequal late-making steps the lesser step may be 
considered as relatively early-making. With these conceptions of the relative effects 
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of any two steps a and b, we may enunciate in words the non-analogy (41.),. (b > a, 
that is, b  A > a  A, by saying that the' step b as compared with-the step a is relatively 
late-making ; and the opposite non-analogy (45.), (b < a, that is,. b A < a :1 A , by 
saying that the step b as compared with a is relatively early-making. 

11. After having made any one step a from a proposed moment S A to a resulting 
moment represented (as ,before by a  A, WO may conceive that we next make from 
this new moment a  A a new step b, and may denote the-new result by the new com 
plex. symbol b+(a +A); enclosing in parentheses the sign a  A of the object of this 
new act of mental transition, or (in other words the sign. of the new antecedent 
moment, to nark that it is a complex used as a simple symbol ; so that, in this 
notation, 

if 13  A  a and c --B  b, then C b  (a +A). (61. 

It is evident that the total change or total step, effective or null, from the first 
moment A to the last moment c, in this successive transition from A to B and from 
B to c, may be considered as compounded of the two successive or partial steps a 
and b, namely the step a from A to B, and the step b from B to c ; and that the 
ultimate ordinal relation of c to A may likewise be considered as compounded of the 
two intermediate (or suggesting ordinal relations b and a , namely, the relation b of 
C to B, and the relation a of B to A ; a composition of steps or of relations which may 
conveniently be denoted, by interposing, as a mark of combination, between the signs 
of the component steps or of the component ordinal relations, the same mari.  
which was before employed to combine an act of transition with its object, or an 
ordinal relation with its antecedent. We shall therefore denote the compound trans  
ition fro A. to C, or the compound relation of c to A, by the complex symbol b a, 

writing, 

C-A=b  a, if B-A and b 

that is, 

c b  a, if B a +A, C b +B, c +A. (63. 
For example, the case of coincidence .between the moments A and c, that is, the 

case when the resulting relation of c to A is the relation of identity, and when there 
fore the total or compound transition from A to .0 is null, because the two component 
or successive steps a and b have been exactly opposite to each other, conducts to the 

relations, 

0 a  a =0i b +0b =0. (61. 
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In general, the establishment of this new complex mark b a, for the compound 
mental transition from A through B to c, permits us to regard the two written asser 
tions, or equations 

c=(b  a +A and c b +(a +A), (65. 

as expressing. the same thing, or as each involving the other ; for ,which reason we are 
at liberty to omit the parentheses, and may write, more simply, without fear of causing 
confusion, 

C  b a  A, if c b +13, and B a  A : (66. 

because the complex symbol b a 4 A denotes only the one determined moment c, 
whether it be interpreted by first applying the step a to the moment A, so as to ge 
nerate another moment denoted by the complex mark a  A, and afterwards applying 
to this moment the step denoted by b, or by first combining the steps a and b into 
one compound step b  a, and afterwards applying this compound step to the original 
moment A. 

In like manner, if three successive steps a b c have conducted successively (in 
thought from A to B, from n to c, and from c to D, and therefore ultimately and 

upon the whole from A to n, we may consider this total transition from A to D as 

compounded of the three steps a b c ; we may also regard the resulting ordinal relation 
of D to A as compounded of the three relations c, b, a, namely of the reltion c of 
D to c, the relation b of c to B, and the relation a of B to A ; and may denote 
this compound step or compound relation by the complex symbol c -F, b a, and the' 
last resulting moment D by the connected symbol c+b +a  A ; in such a manner 
that. 

For example, 

n--A c b  a, and p c  a 
+Al. if B-A =a, CiB b, and D-C c. 

1 
C +Oa --a =c, c -4 b +Oh -e. c, 
Ob +b +a =a, C +09c+aL-a.. 

(67n 

(68. 

Remarks of the same kind apply to the composition of more successive steps than 
three. And we see that in any complex symbol suggested by this sort of composition, 
such as c b  a +A, we are at liberty to enclose any two or more successive compo 
nent symbols, such as c or b or a or A, in parentheses, with their proper combining 
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marks -F, and to treat the enclosed set as if they formed only one single symbol ; 
thus, 

c +1  a +A c  b +(a -1-A) c +(b  a)+A 
(c +b +a)+A,S(C.J. (69. 

the notation C   b  a)+A, for example, directing us to begin by combining (in 
thought the two steps a and b into one compound step b  a, and then to apply 
successively this compound step and the remaining step c to the original moment A ; 
while the notation  ,c+b+a)+A suggests a previous composition (in thought of 
all the three proposed steps a, b, c, into one compound step c +1;  a, and then the 

application of this one step to the same original moment. It is clear that all these 
different processes must conduct to one common result ; and generally, that as, by the 

very meaning and conception of a compound step, it may be applied to any moment 

by applying in their proper order its component steps successively, so.also may these 

components be compounded successively with any other step, as a mode of com 

pounding with that other step the whole original compound. 
We may also consider decomposition as well as composition of steps, and. may pro 

pose to deduce either of two components a and b from the other component and from 
the compound b  a. For this purpose, it appears from (68. that we have the re-, 
lations 

a =Eyb  c, and b  c +Oa, if c=b  a; (70. 

observing that a problem of decomposition is plainly a determinate problem, in the 
sense that if any one component step, such as here the step denoted by Ob  c, or 
that denoted by c  0 a, has been found to conduct to a given compound ., when 
combined in a given order with a given component b or a, then no other component 
a or b, essentially different from the one thus found, can conduct by the same process 
of composition to the same given compound step. We see then that each of the tv.o 

component's a and b may be deduced from the other, and from the compound c , by ... 
compounding with that given compound the opposite of the given component, in a 
suitable order of composition, which order itself we shall shortly find to be indifferent. 

Meanwhile it is important to observe, that though we have agreed, for the sake of 
conciseness, to omit the parentheses about a complex symbol of the kind 0 a, when 
combined with other written signs by the interposed mark -F, yet it is in general ne 

cessary, if we would avoid confusion, to retain the parentheses, or sonie such. con 

necting mark or marks, for any complex symbol of a step, when we wish to form, by 
prefixing the mark of opposition 0, a symbol for the opposite of that step : for 
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example; the opposite of a compound step b a must be denoted in some such 
manner as 9 (b  a ), and not merely by writing e b a. Attending to this remark, 
we may write 

43(13 a)=0a +01), 

because, in order to destroy or undo the effect of the compound step b a, it is suf 
ficient first to apply,the step 013 which destroys the effect of the last component step b, 
and afterwards to destroy the effect of the first component step a by applying its op 
posite 0 a, whatever the two steps denoted by a and b may be In like manner, 

e(c  b  a)=Gla +eb +0c; (7ql 

and similarly for more steps than three. 
12. We can now express, in the language of steps, several other general theorems, 

for the most part contained under a different form in the early articles of this Essay. 
Thus, the propositions (20. and (21.), with thei.r reciprocals, may be expressed by 

saying that if equivalent steps be similarly combined with equivalent steps, whether in 
the way of composition or of decomposition, they generate equivalent steps; an asser 
tion which may be written thus 

if ai a, then b at b  a, a' b=a  b, 
b +19a!=b +Oa, Oa' b=0a. +b, 
Ob al=eb  a, al +0b=a +eb, &C. 

The proposition (25. may be considered as expressing, that if two steps be equiva 
lent to the same third step, they are also equivalent to each other ; or, that 

if a" =a' and a1 a, then a" a (74. 

The theorem of alternation of an analogy (11. may be included in the assertion 
that in the composition of any two steps, the order of those two components may be 

changed, without altering the compound step ; or that 

a+b =b+a (75. 

For, whatever the four moments ABCD may be, which construct any proposed ana 

logy or non-analogy, we may denote the step from A to B by a symbol such as a, and 
the step from n to D by another symbol b, denoting also the step from A to c by b', 
and that from c to D by at; in such a manner that 

--A=a, D-B=b, C-A=//, D-C=a'; (76. 

(71. 

(73. 
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and then the total step from A to D may be denoted either by b  a or by d-i b', ac 

cording as we conceive the transition performed by passing through B or through c ; 
we have therefore the relation 

a'  b'=b 4 a , (77m 

which becomes 

when we establish the analogy 

a 1-11=b a, (78. 

D-C=B-A, that is, a'  a; (79. 

we see then that if the theorem (75. be true, we cannot have the analogy (79. with 
out having also its alternate analogy, namely 

b  br, or D-B=C-A: (80. 

because the compound steps a  b' and a  b, with the common second component a , 
could not be equivalent, if the first components b' and b were not also equivalent 
to each other. The theorem (75. includes, therefore, the theorem of alternation. 

Reciprocally, from the theorem of alternation considered as known, we can infer 
the theorem (75.), namely, the indifference of the order of any do successive compo 
nents a, b, of a compound step : for, whatever those two component steps a and b 

may be, we can always apply them successively to any one moment A, so as to gene 
rate two other moments B and c, and may again apply the step a to c so as to gene 
rate a fourth moment D, the moments thus suggested having the properties 

B ft +A, C b  A, D a  C, (81. 

and being therefore such that 

D-A a  b, D---C a =B-A; 

by alternation of which last analogy, between the two pairs of -moments A It and C r, 
we find this other analogy, 

D-B=C-A b, D b +B=b  a +A, (83. 
and finally, 

b I a  rs-A a  b. (84. 
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The propositions (22. (23. (4.), respecting certain combinations of analogies, 
are included in the same assertion (75. ; which may also, by (71.), be thus expressed, 

a  b =0 (0 a  ebb or, b  a =0 (0 b  0 a ; (85. 

that is, by saying that it comes to the same thing, whether we compound any t1N o 

steps a and b themselves, or first compound their opposites 0 a, 0 b, into one com 

pound step 0 b  0 a, and then take the opposite of this. Under this form, the 
theorem of the possibility of reversing the order of composition may be regarded as 
evident, whatever the number of the component steps may be ; for example, in the 
case of any three component steps a, b, c, we may regard it as evident that by apply 
ing these three steps successively to any moment A, and generating thus three 
moments n, C, D, we generate moments related to A as A itself is related to those 
three other moments B', c', D', which are generated from it by applying successively, 
in the same order, the three respectively opposite steps, 0 a, 0 b, 0 c ; that is, if 

B  a  A, 131 0 a  A, 

1 
C  b  B, Ci  0 b -I le, 
D  c  C, D'  0 c  C', 

(86. 

then the sets B' A B, C' A C, D' A D, containing each three moments, form so many 
continued analogies or equidistant series, such that 

B  A  A  B' 
C -A  A- C' 
D  A  A  D' 

and therefore not only b  a =0 (0b +0a), as before, but also 

c  b  a  0 (0 c  0 b  0 a), 

that is, by (72. and (57.), 

c+b+a a+b+c; 

(87. 

(88. 

(89v 

and similarly for more steps than three. 
The theorem (89. was contained, indeed, in the reciprocal of the proposition 

(24.)t namely, in the assertion that 
. rd 1I D  C r--- B  A, 

and D'  C  B  A', (90. 
then D'  D  A --A', 
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and, therefore, by alternation, 

D'  A  D  A' ; (91. 

for, whatever the three steps a b c may be, we may always conceive them applied suc 

cessively to any moment A, so as to generate three other moments n, c, D', such that 

B=a +A, C=b +B, D'=c +C, (9Q. 

and may also conceive two other moments A' and D such that B c D may be succes 

sively generated from A' by applying the same three steps in the order e, b, a, so that 

B  c +A, C  b  B, D  a  C ; (93. 

and then the two first analogies of the combination (90. will hold, and, therefore, 
also the last, together with its alternate (91. ; that is, the step from A to D , com 

pounded of the three steps a b c, is equivalent to the step from A to n, compounded of 
the same three steps in the reverse order c b a. 

Since we may thus reverse the order of any three successive steps, and also the 
order of any two which immediately follow each other, it is easy to see that we may 
interchange in any manner the order of three successive steps ; thus 

c  b a c.+a+b=b+_c 
+a (94' =a +b c=a+c+b=b+a+c. 

We might also have proved this theorem (94.), w,ithout previously establishing the 
less general proposition (89.), and in a manner which would extend to any number of 

component steps ; namely, by observing that when any arrangement of component 
steps is proposed, we may always reserve the first (and by still stronger reason any 
other of those steps to be applied the last, and leave the order of the remaining steps 
unchanged, without altering the whole compound step ; because the components 
which followed, in the proposed arrangement, that one which we now reserve for the 
last, may be conceived as themselves previously combined into one compound step, 
and this then interchanged in place with the reserved one, by the theorem respecting 
the arbitrary order of any two successive steps. In like manner, we might reserve 

any other step to be the last but one, and any other to be the last but two, and so on ; 
by pursuing which reasoning it becomes manifest that when any number of component 
steps are applied to any original moment, or compounded with any primary step, their 
order may be altered at pleasure, without altering the resultant moment, or the whole 

compounded step : which is, perhaps, the most important and extensive property of 
the composition of ordinal relations, or steps in the progression of time. 
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On the Multiples of a given base, or unit-step ; and on the Algebraic Addition, 
Subtraction, Multiplication, and Division, of their determining or multipling 
Whole Numbers, whether positive, or contra-positive, or null. 

13. Let us now apply this general theory of successive and compound steps, froze 

any one moment to any others, or of component and compound ordinal relations 
between the moments of any arbitrary set, to the case of an equidistant series of 
moments, 

E" B'EAB (29. 

constructed so as to satisfy the conditions of a continued analogy, 

B"-B'=Bi-B=B-A=A-L=E-E1=1Y-E", &C.; (30. 

and first, for distinctness of conception, and of language, let some one moment A of 
this series be selected as a standard with which all the others are to be compared, and 
let it be called the zero-moment ; while the moments 13, B', &c. which follow it, in the 
order of progression of the series, may be distinguished from those other moments 
E, E', &C., which precede it in that order of progression, by some tvw contrasted 

epithets, such as the words positive and contra-positive : the moment B being called 
the positive first, or the first moment of the series on the positive side of the zero ; 
while in the same plan of nomenclature the moment B' is the positive second, n" the 

positive third, E the contra-positive ifirst, E' the contra-positive second, and so forth. 
By the nature of the series, as composed of equi-distant moments, or by the condi 
tions (30.), all the positive or succeeding moments B &c. may be conceived as 

generated from the zero-moment A, by the continual and successive application of 
one common step a, and alt the contra-positive or, precedin moments c &c. may be 
conceived as generated from the same zero-moment A, by the continual and successive 
application of the opposite step 0 a, so that e may write 

B a +A, 13' a  B, B" a +B', (95. 
and 

 0 a  A, L' 0 a  E, E" 0 a  &C. ; (96. 

while the standard or zero moment A itself may be denoted by the complex symbol 
0  A, because it may be conceived as generated from itself by applying the null step 
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0. Hence, by the theory of compound steps, we have expressions of the following 
sort for all the several moments of the equi-distant series (e9. : 

.. 1 
E"=0a ea+0a+A, 
E`=0 al-ea A, 
L =Oa A, 
A  0 +A, (97a 
B  a  A, 

Bff a -1 a+a A, 
 a  a  A, 

jq.k ****** 

with corresponding expressions for their several ordinal relations to the one standard 
moment A, or for the acts of transition which are made in passing from A to them, 
namely : 

ygctspr ..... 11d 
E"-A=9au0at0a, 
 -A=Oa Oa, 
E -A=0a, 
A -A=0, (98. 
B -AL- a, 
B' -A a +a, 
B"---A--a +a +a, 

&c. 

Tile SiLtiple or compound step, a, or a  a, &c., from the zero-moment A to any 
positive moment n or n' &c. of the series, may be called a positive step ; and the 

opposite simple or compound step, 0 a, or 0 a +0 a, &C., from the same zero 
moment A to any contra-positive moment E or E', &c., of the series, may be called a 

contra-positive step ; while the null step 0, from the zero-moment A to itself, may be 
called, by analogy of language, the zero-step. The original step a is supposed to 
be an effective step, and not a null one, since otherwise the whole series of moments 

(97. would reduce themselves to the one original moment Ai but it may be either a 

late-making or an early-making step, according as the (mental order of progression of 
that series is from earlier to later, or from later to earlier moments. And the whole 
series or system of steps (98.), simple or compound, positive or contra-positive, effec. 
tive or null, which serve to generate the several moments of the equidistant series 

(29. or (97. from the original or standard moment A, may be regarded as a system of 
steps generated from the original step a, by a system of acts of generation which are 
all of one common kind, each step having therefore a certain relation of its own to 
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that original step, and these relations having all a general resemblance to each other, so 
that they may be conceived as composing a certain system of relations, having all one 
common character. To mark this common generation of the system of steps (98. 
from the one original step a, and their common relation thereto, we may call them all 
by the common name of multiples of that original step, and may say that they are or 

may be (mentally formed by multipling that common base, or unit-step, a; distin 

guishing, however, these several multiples among themselves by peculiar or special 
names, which shall serve to mark the peculiar relation of any one multiple to the 
base, or the special act of multipling by which it may be conceived to be generated 
therefrom. 

Thus, the null step, or zero-step, 0, which conducts to the zero-moment A, may be 
called, according to this way of conceiving it, the zero multiple of the original step a; and 
the positive (effective steps, simple or compound, a, a a, a  a  a, &c., may 
be called by the general name of positive multiples of a, and may be distinguished by 
the special ordinal names of first, second, third, &c., so that the original step a is, in 
this -view, its own first positive multiple ; and finally, the contra-positive (but effective 
steps, simple or compound, namely, 0 a,0a+Of,Oa+Oa+0a, &C., may be 

i, 
called the first contra-positive multiple of a the second contra-positive multiple of 
the same original step a, and so forth. Some particular multiples have particular 
and familiar names ; for example, the second positive multiple of a step may also be 
called the double of that step, and the third positive multiple may be called familiarly 
the triple. In general, the original step a may be called (as we just now agreed the 
common base (or unit of all these several multiples ; and the ordinal name or 

number, (such as zero, or positive first, or contra-positive second, which serves as a 

special mark to distinguish some one of these multiples from every other, in the 

general series of such multiples (98.), may be called the determining ordinal : so 
that any one multiple step is sufficiently described, when we mention its base and its 

determining ordinal. In conformity with this conception of the series of steps (98., 
as a series of multiples of the base a, we may denote them by the following series of 
written symbols, 

...... 3 ea, P., ea, 1 ea, OA, la, 2a, 3a, . 

and may denote the moments themselves of the equi-distant series (29. or (97. by 
tile symbols, 
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pmuro 1 
E" . 3 0 a +A, 
E'=2 0a 1-A, 
E =lea +A, 
A  0 a +A, (100. 
B  1 a +A, 
B' 2a +A, 
B" 3 a +A, 

&C.; 
in which 

and 
0 a  0,  1 0 1 .  

1 0 a --17 19 a , 1 a  a , 
2 a a  a, 2 0 a 0 a +0 a, 
3 a  a  a  a, 80a=ea+0a+0a, 

&c., &c. _I 

The %if ritten sign 0 in 0 a is here equivalent to the spoken name zero, as the 

determining ordinal of the null step from A to A, which step was itself also denoted 
before by the same character 0, and is here considered as the zero-multiple of the 
base a ; while the written signs 1, 2, 3, &c., in the symbols of the positive multiples 
1 a, 2 a, 3 a, &c., correspond to and denote the determining positive ordinals, or the 

spoken names first positive, second positive, third positive, &c. ; and, finally, the re 

maining written signs 1 0, 2 e, 3 0, &c., which are combined with the written sign of 
the base a, in the symbols of the contra-positive multiples 1 9 a, 2 0a, 30a, &c., cor 

respond to and denote the determining ordinal names of those contra-positive multiples, 
that is, they correspond to the spoken names, first contra-positive, second contra-posi 
tive, third contra-positive, &c : so that th0 series of signs of multiple steps (99.), is 
formed by combining the symbol of the base a with the following series of ordinal 

symbols, 
...3 e, 2 0, 1 0, 0, 1, 2, 8, &c. (103. 

We may also conceive this last series of signs as equivalent, not to ordinal names, 
such as the numeral word ,first, but to cardinal names, such as the numeral word 
one ; or more fully, positive cardinals, contra-positive cardinals, and the null cardinal 

(or number none ; namely, the system of all possible answers to the following com 

plex question : " Have any effective steps (equivalent or opposite to the given 
base a been made (from the standard moment A), and if any, then How many, and 
In which direction ?" In this view, 3 0 is a 'mitten sign of the cardinal name or 
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numbe contra-positive three, as a possible answer to the foregoing general question ; 
and it implies, when prefixed to the sign of the base a, in the complex written sign 
3 0 a of the corresponding multiple step, that this multiple step has been formed, 
(as already shown in the equations (102.),  by making three steps equal to the base 
a in length, but in the direction opposite thereto. Again, the mark 1 may be re 

garded as a vcrritten sign of the cardinal number positive one, and 1 a denotes (in 
this view the step formed by making one such step as a, and in the same direction, 
that is, (as before, the original step a itself ; and 0 denotes the cardinal number 
none, so that 0 a is (as before a symbol for the null step from A to A, which step we 
have also marked before by the simple symbol 0, and which is here considered as 
formed by making no effective step like p . In general, this view of the numeral 

signs (105.), as denoting cardinal numbers, conducts to the same ultimate interpre 
tations of the symbols (99.), for the steps of the series (98.), as the former view, 
which regarded those signs (103. as denoting ordinal numbers. 

If we adopt the latter view of those numeral signs (103.), which we shall call by the 
common name of whole (or integer numbers, (as distinguished from certain broken. 
or fractional numbers to be considered afterwards, we may conveniently continue to 
use the word multiple (occasionally as a verb active, and may speak of the several. 

multiple steps of the series (98.), or (99.), as formed from the base a, by multipling 
that base by the several whole (cardinal numbers : because every multiple step may be 
conceived as generated (in thought from the base, by a certain mental act, of which 
the cardinal number is the mark. Thus we may describe the multiple step 3 0 a, 
(which is, in the ordinal view, the third contra-positive multiple of a, as formed from 
the base a by multipling it by contra-positive three. Some particular acts of multi 

piing have familiar and special names, and we may speak (for instance of doubling 
or tripling a step, instead of describing that step as being multipled by positive two, 
or by positive three. In general, to distinguish more clearly, in the written symbol 
of a multiple step, between the base and the determining number (ordinal or cardi 
nal), and to indicate more fully the performance of that mental act (directed by the 
number which generates the multiple from the base, the mark x may be inserted 
between the sign of the base, and the sign of the number ; and thus we may 
denote the series of multiple steps (99. by the follosNing fuller symbols, 

... 3 0 x a, 2 0 x a, 1 e X a, 0 x a, 1 x a, 92 x a, 3 X a, &C., (104. 

and which 1 x a (for example denotes the original step a itself, and Q x a represents 
the double of that original step. 
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It is manifest that' in this notation 

nO x a n x0a=e(n x a)=0(nexea),:t 
and n x a=n0x0a=0(nOx a)=0 n xea),S 

if 22 denote any one of the positive numbers 1, 2, 3, &c. and if n 0 denote the cor 
responding contra-positive number, 1 0, 0, 3 0, &c. ; for example, the equation 
2 Ox a 2 x 0 a is true, because it expresses that the second contra-positive multiple 
of the base a is the same step as the second positive multiple of the opposite base or 
step 0 a, the latter multiple being derived froni this opposite base by merely doubling 
its length without reversing its direction, while the former is derived from the original 
base a itself by both reversing it in direction and doubling it in length, so that both 

processes conduct to the one common compound step, 0 a  0 a. In like manner 
the equation 2 x a=20x0a is true, because by first reversing the direction of the 

original step a, and then taking the reversed step 0 a as a new base, and forming the 
second contra-positive multiple of it, which is done by reversing and doubling, and 
which is the process of generation expressed by the symbol 2 0 x 0 a, we form in 
the end the same compound step, a  a, as if we had merely doubled a. We may 
also conveniently annex the mark of opposition 0, at the left hand, to the symbol of 
any whole number, n or n 0 or 0, in 'order to form a symbol of its opposite number, 
n 0, n, or 0 ; and thus may write 

0 n=n 0, 0 (n 0)=n, 0 0=0 ; (106. 

if we still denote by n any positive whole number, and if we call two whole numbers 

opposites of each other, when they are the determining or multipling numbers of 
two opposite multiple steps. 

14. Two or more multiples such as x a, v x a, (5 x a, of the same base a, may 
be compounded as successive steps with each other, and the resulting or compound 
step will manifestly be itself some multiple, such as w x a, of the same common base 
a ; the signs 11, v, , denoting here any arbitrary whole numbers, whether positive, o1 

contra-positive, or null, and co denoting another whole number, namely the deter: 

mining number of the compound multiple step, which must evidently depend on the 

determining numbers it v of the component multiple steps, and on those alone, 
according to some general law of dependence. This law may conveniently be de 
noted, in writing, by the same mark of combination which has been employed 
already to form the complex symbol of the compound step itself, considered 'as -de 

pending on the component steps ; that is, we may agree to write 

(105. 
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(0. v +iu, when GI x a X a +(OA X a), (107b 
and 

 +v +ft, when to X a X a  (v X a +(j X a), (108. 

together with other similar expressions for the case of more component steps than 
three. In this notation, 

(v X a GA X a   (v  tt X a, 

1 
(g X a  (v X a  (rt X a 1"..: +v +p x a, (109. 

&c. 

whatever the whole numbers p. v may be ; equations which are to be regarded here 
as true by definition, and as only serving to explain the meaning attributed to such 

complex signs as v  dtt, or  v +12, when ,tt v are any symbols of whole nuzn 
bers although when we farther assert that the equations (109. are true inde 

pendently of the base or unit-step a, so that symbols of the form v  i or  v +11. 
denote whole numbers independent of that base, we express in a new way a theorem 
which we had before assumed to be evidently true, as an axiom and not a definition, 
respecting the composition of multiple steps. 

In the particular case when the whole numbers denoted by v are positive, the 
law of composition of those numbers expressed by the notation v  II or  v  p, 
as explained by the equations (109.), is easily seen to be the law called addition of 
numbers (that is of quotities in elementary arithmetic ; and the quotity of the com 

pound or resulting whole number is the arithmetical sum of the quotities of the com 

ponent numbers, this arithmetical sum being the answer to the question, How many 
things or thoughts does a total group contain, if it be composed of partial groups 
of which the quotities are given, namely the numbers to be arithmetically added. 
For example, since (3 x a  (Q. x a is the symbol for the total or compound mul 

tiple step composed of the double and the triple of the base a, it must denote the 

quintuple or fifth positive multiple of that base, namely 5 x a; and since we have 

agreed to write 

x a  (4 x a)r._-(3  2 x a, 

we must interpret the complex symbol 3  2 as equivalent to the simple symbol 5; 
in seeking for which latter number five, we added, in the arithmetical sense, the given 
component numbers two and three together, that is, we formed their arithmetical 
sum, by considering how many steps are contained in a total group of steps, if the 

.component or partial groups contain two steps and three steps respectively. In like 
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manner, if we admit in arithmetic the idea of the cardinal number none, as one of the 

possible answers to the fundamental question How many, the rules of the arith 
metical addition of this number to others, and of others to it, and the properties 
of the arithmetical sums thus composed, agree with the rules and properties 
of such combinations as 0  i, '4  v  0, explained by the equations (109.), 
when the whole numbers, p, v, , are positive ; we shall, therefore, not clash 
in our enlarged phraseology with the language of elementary arithmetic, respecting 
the addition of numbers regarded as answers to the question How many, if we now 
establish, as a definition, in the more extensive Science of Pure Time, that any com 
bination of whole numbers ft v of the form v  i, or  v +itt, interpreted so as to 

satisfy the equations (109.), is the sum of those whole numbers, and is composed by 
adding them together, whether they be positive, or contra-positive, or null. But as a 
mark that these words sum and adding are used in ALGEBRA (as the general Science 
of Pure Time), in a more extensive sense than that in which Arithmetic (as the 
science of counting employs them, we may, more fully, call v  tt. the algebraic sum 
of the whole numbers a and v, and say that it is formed by the operation of algebrai 
cally adding them together, v to tt. 

In general, we may extend the arithmetical names of sum and addition to every 
algebraical combination of the class marked by the sign  , and may give to that 

combining sign the arithmetical name of Plus ; although in Algebra the idea of 
more, (originally implied by plus, is only occasionally and accidentally involved in 
the conception of such combinations. For example, the written symbol b  a , by 
Nviiich we have already denoted the compound step formed by compounding the step b 
as a successive step with the step a , may be expressed in words by the phrase 
" a plus b ," (such vcritten. algebraic expressions as these being read from right to left, 
or " the algebraic sum of the steps a and b '," and this algebraic sum or compound 
step b  a may be said to be formed by "algebraically adding b to a :" although this 

compound step is only occasionally and accidentally greater in length than its com 

ponents, being necessarily shorter than one of them, when they are both effective 

steps with directions opposite to each other. Even the application of a step a to a 
moment A, SO as to generate another moment a  A , may not improperly be called 

(by the same analogy of language the algebraic addition of the step to the moment, 
and the moment generated thereby may be called their algebraic sum, or " the original 
momentp/us the step ;" though in this sort of combination the moment and the step 
to be combined are not even homogeneous with each other, 

With respect to the process of calculation of an algebraic sum of whole numbers, 
the following rules are evident consequences of what has been already shown respect 
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ing the composition of steps. In the first place, the numbers to be added may be 
added in any arbitrary order ; that is, 

v-Fil="1-1-11, 
-Fv-I-iu-_-:,u"-Fv &C., 
&C.; 

(110. 

we may therefore collect the positive numbers into one algebraical sum, and the con 
tra-positive into another, and then add these two partial sums to find the total sum, 
omitting (if it anywhere occur the number None or Zero, as not capable of altering 
the result. In the next place, positive numbers are algebraically added to each other, 
by arithmetically adding the corresponding arithmetical numbers or quotities, and 

considering the result as a positive number ; thus positive two and positive three, 
when added, give positive five : and contra-positive numbers, in like manner, are al 

gebraically added to each other, by arithmetically adding their quotities, and consi 
dering the result as a contra-positive number ; thus,contra-positive two and contra-po 
sitive three have contra-positive five for their algebraic sum. In the third place, a 

positive number and a contra-positive, when the quotity of the positive exceeds that 
of the contra-positive, give a positive algebraic sum, in which the quotity is equal to 
that excess ; thus positive five added to contra-positive three, gives positive two for 
the algebraic sum : and similarly, a positive number and a contra-positive number, if 
the quotity of the contra-positive exceed that of the positive, give a contra-positive 
algebraic sum, with a quotity equal to the excess ; for example, if we add positive 
three to contra-positive five, we get contra-positive two for the result. Finally, a posi 
tive number and a contra-positive, with equal quotities, (such as positive three and 

contra-positive three, destroy each other by addition ; that is, they generate as their 

algebraic sum the number None or Zero. 
It is unnecessary to dwell on the algebraical operation of decomposition of multiple 

steps, and consequently of whole or multipling numbers, which corresponds to and 
includes the operation of arithmetical subtraction ; since it follows manifestly from 
the foregoing articles of this Essay, that the decomposition of numbers (like that of 

steps can always be performed by compounding with the given compound number 
(that is, by algebraically adding thereto the opposite or opposites of the given com 
ponent or components : the number or numbers proposed to be subtracted are there 
fore either to be neglected if they be null, since in that case they have no effect, or 
else to be changed from positive to contra-positive, or from contra-positive to positive, 
(their quotities being preserved, and then added (algebraically in this altered state. 
Thus, positive five is subtracted algebraically from positive two by adding contra-posi 
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tine five, and the result is contra-positive three ; that is, the given step 2 x a or a 

may be decomposed into two others, of which the given component step 5 x a is one, 
and the sought component step 3 0 a is the other. 

15. Any multiple step IA a may be treated as a new base, or new unit-step ; and 
thus we may generate from it a new system of multiple steps. It is evident that these 

multiples of a multiple of a step are themselves also multiples of that step ; that is, if 
we first multiple a given base or unit-step a by any 'whole number p, and then again 
multiple the result IL x a by any other whole number v, the final result v x ( x a 
will necessary be of the form w x a, to being another whole number. It is easy also 
to see that the new multipling number, such as w, of the new or derived multiple, must 

L-pencl on the old or given multipling numbers, such as p and v, and on those alone ; 
and the law of its dependence on them may be conveniently expressed by the same 
mark of combination x which we have already used to combine any multipling 
number with its base ; so that we may agree to write 

w =vxii,whenw xa=vx(suxa). (Ill. 

With this definition of the effect of the combining sign x , when interposed between 
the signs of two whole numbers, we may write 

v X (ft X a  XII X a=v X II X a, (112. 

omitting the parentheses as unnecessary ; because, although their absence permits us 
to interpret the complex symbol v x fz x a either as v x (p. x a or as (v x ,u x a, 
yet both the processes of combination thus denoted conduct to one common result, or 
ultimate multiple step. (Compare article 11. 

When au and v are positive numbers, the law of combination expressed by the nota 
tion v x p as above explained, is easily seen to be that which is called Multiplication 
in elementary Arithmetic, namely, the arithmetical addition of a given number v of 

equal quotities ; and the resulting quotity v x 11 is the arithmetical product of the 
numbers to be combined, or the product of p multiplied by v : thus we must, by the 
definition (1.12.), interpret 3 x 2 as denoting the positive number 6, because 
3 x (2 X a) 6 x a, the triple of the double of any step a being the sextuple of that 

step ; and the quotity 6 is, for the same reason, the arithmetical product of 2 multi 

plied by 3, in the sense of being the answer to the question, How many things or 

thoughts (in this case, steps are contained in a total group, if that total group be 

composed of 3 partial groups, and if 2 such things or thoughts be contained in 
each of these  From this analogy to arithmetic, we may in general call v x the 
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product, or (more fully the algebraic product, of the \Nhole numbers ti and v, whe 
ther these, which we may call the factors of the product, be positive, or contra 

positive, or null ; and may speak of the process of combination of those numbers, as 
the mzdtipling, or (more fully the algebraic multipling of p by v reserving still the 
more familiar arithmetical word " multiplying" to be used in algebra in a more 
general sense, which includes the operation of multipling, and which ther NN ill soon 
be occasion to explain. 

In like manner, three or more whole numbers, v, '5,, may be used successively to 

multiple a given step or one another, and so to generate a new derived multiple of the 

original step or number ; thus, we may write 

X [v X Cu X a   X (v X p &#18; a  x v X p X us (113. 

the symbol x v x It denoting here a new whole number, which may be called the 

algebraic product of the three whole numbers ,u, v, those numbers themselves being 
called the factors of this product. With respect to the actual processes of such 

multipling, or the rules for forming such algebraic products of whole numbers, 
(whether positive, or contra-positive, or null, it is sufficient to observe that the pro 
duct is evidently null if any one of the factors be null, but that otherwise the product 
is contra-positive or positive, according as there is or is not an odd number (such as 
one, or three, or five, &c. of contra-positive factors, because the direction of a step 
is not changed, or is restored, when it is either not reversed at all, or reversed an 
even number of times ; and that, in every case, the quotity of the algebraic product 
is the arithmetical product of the quotities of the factors. Hence, by the properties 
of arithmetical products, or by the principles of the present essay, we see that in 

forming an algebraical product the order of the factors may be altered in any manner 
without altering the result, so that 

v Xte ttxv, X v X II  11 X X v  &C., &C. ; (114. 

and that any one of the factors may be decomposed in any manner into algebraical 
parts or component whole numbers, according to the rules of algebraic addition and 
subtraction of whole numbers, and each part separately combined as a factor with the 
other factors to form a partial product, and then these partial products algebraically 
added together, and that the result will be the total product ; that is, 

VOL. XVII. 

 v), X p  (I X itt (v du ), 
v X (tt  (v X Itt x p), &c. 

-311 

(115. 
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Again, we saw that if a factor p be null, the product is then null also, 

v x 0  0 ; (116. 

because the multiples of a null multiple step are all themselves null steps. But if, in 
a product of two whole numbers, v x if, the first factor p (with which by (114. 
the second factor v may be interchanged be given, and effective, that is, if it be 
any given positive or contra-positive whole number, (p.*0, then its several multi 
ples, or the products of the form v x p, form an indefinite series of whole numbers, 

... 3 0 x p, 2 0 x p, 1 0 x p, 0 x p, 1 x p, 2 x p, 3 x It, ... (117. 

such that any proposed whole number w, whatever, must be either a number of this 
series, or else included between two successive numbers of it, such as v x z and 

(1  v x ti, being on the positive side of one of them, and on the contra-positive side 
of the other, in the complete series of whole numbers (103.). In the one case, we can 
satisfy the equation 

co7.-_- v x p, or, 0 (v x ,u  (a 0, (118. 

by a suitable choice of the whole number v ; in the other case, we cannot indeed do 
this, but we can choose a R hole number v, such that 

6  p  (v xia), or, 0(v x,u  w =p, (119. 

p being a wliole number which lies between 0 and p in the general series of whole 
numbers (103.), and which therefore has a quotity less than the quotity of that given 
first factor p, and is positive or contra-positive according as p, is positive or con 

tra-positive. In each case, we may be said (by analogy to arithmetical division to 
have algebraically divided (or rather measured), accurately or approximately, the 
whole number co by the whole number p, and to have found a whole number v which 
is either the accurate quotient (or measure), as in the case (118.), or else the next 

preceding integer, as in the other case (119  ; in which last case the whole number p 
may be called the remainder of the division (or of the measuring). In this second 
case, namely, when it is impossible to perform the division, or the measuring, exactly, 
in whole numbers, because the proposed dividend, or niensurand, w, is not contained 

among the series (117. of multiples of the proposed divisor, or measurer, p, we may 
choose to consider as the approximate integer quotient, or measure, the next suc 

ceeding whole number 1  v, instead of the next preceding whole number v ; and then 
we shall have a different remainder, 0 1,L  p, such that 

to=(ep+p)+(l. -h-v X p), (NO. 
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which new remainder 0 /I has still a quotity less than that of but lies between 
0 and 0,u, instead of lying (like p between 0 and tt, in the general series of whole 
numbers (103.), and is therefore contra-positive if it be positive, or positive if p. be 

contra-positive. With respect to the actual process of calculation, for discovering 
whether a proposed algebraical division (or measuring), of one whole number by 
another, conducts to an accurate integer quotient, or only to two approximate integer 
quotients, a next preceding and a next succeeding, INith positive and contra-positive 
remainders ; and for actually finding the names of these several quotients and re 
mainders, or their several special places in the general series of whole numbers this 

algebraical process differs only by some slight and obvious modifications (on which it 
is unnecessary here to dwell, from the elementary arithmetical operation of di 

viding one quotity by another ; that is, the operation of determining what multiple 
the one is of the other, or bete een what two successive multiples it is contained. 
Thus, having decomposed by arithmetical division the quotity 8 into the arithmetical 
sum of 1 x 5 and 3, and having found that it falls short by 2 of the arithmetical pro 
duct 2 x 5, we may easily infer from hence that the algebraic %%hole number contra 
positive eight can be only approximately measured (in whole numbers), as a mensur 
and, by the measurer positive jive ; the next succeeding integer quotient or measure 

being contra-positive one, with contra-positive three for remainder, and the next pre 
ceding integer quotient or measure being contra-positive two, with positive two as the 
remainder. It is easy also to see that this algebraic measuring of one whole number 

by another, corresponds to the accurate or approximate measuring of one step by 
another. And in like manner may all other arithmetical operations and reasonings 
upon quotities be generalised in Algebra, by the consideration of multiple steps, and 
of their connected positive and contra-positive and null whole numbers. 

On the Sub-multiples and Fractions of any given Step in the Progression of Time ; 
on the Algebraic Addition, Subtraction, Multiplication, and Division, of Re 
ciprocal and Fractional Numbers, positive and contra positive ; and on 11w 
impossible or indeterminate act of sub-multipling or dividing by zero. 

16. We have seen that from the thought of any one step a, as a base or unit 
step, we can pass to the thought of a series or system of multiples of that base, 
namely, the series (98. or (99. or (104i.), having each a certain relation of its own 
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to the base, as such or such a particular multiple thereof, or as mentally generated 
from that base by such or such a particular act of multipling ; and that every such 

particular relation, and every such particular act of multipling, may be distinguished 
from all such other relations, and from all such other acts, in the entire series or 

system of these relations, and in the entire system of these acts of multipling, by its 
own special or determining whole number, whether ordinal or cardinal, and whether 

positive, or contra-positive, or null. Now every such relation or act must be con 
ceived to have a certain inverse or reciprocal, by which we may, in thought, connect 
the base with the multiple, and return to the former from the latter : and, generally, 
the conception of passing (in thought from a base or unit-step to any one of its 

multiples, or of returning from the multiple to the base, is included in the more com 

prehensive conception of passing from any one such multiple to any other ; that is, 
from any one step to any other step commensurable therewith, two steps being said to 
be commensurable with each other when they are multiples of one common base or 

unit-step, because they have then that common base or unit for their common mea  
surer. The base, when thus compared with one of its own multiples, may be called 
a sub-multiple thereof ; and, more particularly, we may call it the " second positive 
sub-multiple" of its own second positive multiple, the " first contra-positive sub 

multiple" of its own first contra-positive multiple, and so forth ; retaining always, to 

distinguish any one sub-multiple, the determining ordinal of the multiple to which it 

corresponds : and the act of returning from a multiple to the base, may be called an 
act of sub-multipling or (more fully of sub-multipling by the same determining 
cardinal number by which the base had been multipled before ; for example, we may 
return to the base from its second contra-positive multiple, by an act of thought 
which may be called sub-multipling by contra-positive two. Some particular sub 

multiples, and acts of sub-multipling, have particular and familiar names ; thus, the 
second positive sub-multiple of any given step, and the act of sub-multipling a given 
step by positive two, may be more familiarly described as the hay of that given step, 
and as the act of halving it. And the more comprehensive conception above men 
tioned, of the act of passing from any one step b to any other step c commensurable 
therewith, or from any one to any other multiple of one common measure, or base, 
or unit-step a, may evidently be resolved into the foregoing conceptions of the acts 
of multipling and sub-multipling ; since we can always pass first by an act of sub 

multipling from the given step b, considered as a multiple of the base a, to that 
base a itself, as an auxiliary or intermediate thought, and then proceed, by an act of 

multipling, from this auxiliary thought or step, to its other multiple c. Any one 

step c may therefore be considered as a multiple of a sub-multiple of any other 
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step b, if those two steps be commensurable ; and the act of passing from the one to 
the other is an act compounded of sub-multipling and multipling. 

Now, all acts thus compounded, besides the acts of multipling and sub-multipling 
themselves, (and other acts, to be considered afterwards, which may be regarded as 
of the same kind with these, being connected with them by certain intimate relations, 
and by one common character, may be classed in algebra under the general name of 

multiplying acts, or acts of algebraic nzultiplication ; the object on which any such 
act operates being called the multiplicand, and the result being called the product ; 
while the distinctive thought or sign of such an act is called the algebraic 9nultiplier, 
or multiplying number : whatever this distinctive thought or sign may be, that is, what 
ever conceived, or spoken, or written specific rule it may involve, for specifying one 

particular act of multiplication, and for distinguishing it from every other. The 
relation of an algebraic product to its algebraic multiplicand may be called, in general, 
ratio, or algebraic ratio ; but the particular ratio of any one particular product to 
its own particular multiplicand, depends on the particular act of multiplication by 
which the one may be generated from the other : the number which specifies the act 
of multiplication, serves therefore also to specify the resulting ratio, and every 
number may be viewed either as the mark of a ratio, or as the ?nark of a multiplica 
tion, according as we conceive ourselves to be analytically examining a product 
airdady formed, or synthetically generating that product. 

We have already considered that series or system of algebraic integers, or whole 
numbers, (positive, contra-positive, or null, which mark the several possible ratios of 
all multiple steps to their base, and the several acts of multiplication by which the 
former may be generated from the latter ; namely all those several acts which we 
have included under the common head of multipling. The inverse or reciprocal acts 
of sub-multipling, which we must now consider, and which we have agreed to regard 
as comprehended under the more general head of multiplication, conduct to a new 
class of multiplying numbers, which we may call reciprocals of whole numbers, or, 
more concisely, reciprocal numbers ; and to a corresponding class of ratios, which we 
may call reciprocals of integer ratios. And the more comprehensive conception of 
the act of passing from one to another of any two commensurable steps, conducts to 
a correspondingly extensive class of multiplying acts, and therefore also of multiplying 
numbers, and of ratios, which we may call acts of fractioning, and fractional 
numbers, or fractional ratios ; while the product of any such act of fractioning, or 
of multiplying by any such fractional number, that is, the generated step which is any 
multiple of any sub-multiple of any proposed step or multiplicand, may be called a 

fractio22, of that step, or of that multiplicand. A fractional number may therefore 
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always be determined, in thought and in expression, by two whole numbers, namely 
the sub-multipling number, called also the denominator, and the multipling number, 
called also the numerator, (of the fraction or fractional number, which mark the two 
successive or component acts that make up the complex act of fractioning. Hence 
also the reciprocal number, or reciprocal of any proposed whole number, which marks 
the act of multiplication conceived to be equivalent to the act of sub-multipling by 
that whole number, coincides with the fractional number which has the same w hole 
number for its denominator, and the number 1 for its numerator, because a step is not 
altered when it is multipled by positive one. And any whole number itself, consi 
dered as the mark of any special act of multipling, may be changed to a fractional 
number with positive one for its denominator, and with the proposed whole number for 
its numerator ; since such a fractional number, considered as the mark of a special 
act of multiplication,. is only the complex mark of a complex act of thought equi 
valent to the simpler act of multipling by the numerator of the fraction ; because the 
other component act, of sub-multipling by positive one, produces no real alteration. 
Thus, the conceptions of whole numbers, and of reciprocal numbers, are included in 
the more comprehensive conception of fractional numbers ; and a complete thew), of 
the latter would contain all the properties of the fen mer. 

17. To form now a notation of fractions, we may agree to denote a fractional num 
ber by writing the numerator over the denominator, with)a bar between ; that is, we 

may write 

v v c  -a, or more fully, c   X-a, a LI  1 2 1 .  

when we wish to express that two commensurable steps, b and c, (which we shall, for 
the present, suppose to be both effective steps, may be severally formed from some 
one common base or unit-step a , by multipling that base by the two (positive or 

contra-positive whole numbers tt and v, so that 

b  itt x a, c =v >, a . (122. 

[We shall suppose throughout the w hole of this and of the two next following arti 
cles, that all the steps are effective, and that all the numerators and denominators are 

positive or contra-positive, excluding for the present the consideration of null steps, 
and of null numerators or null denominators. 

Under these conditions, the step c is a fraction of b , and bears to that step b the 

fractional ratio 1 -' , called also " the ratio of v to z ; " and c may be deduced or gene t, 
rated as a product dfrom b by a corresponding act of fractioning, namely, by the act of 
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multiplying b as a multiplicand by the fractional number -!. as a multiplier, or finally itt 
by the complex act of first submultipling b by the denominator 11, and then multi 

pling the result a by the numerator v. Under the same conditions, it is evident that 
we may return from c to b by an inverse or reciprocal act of fractioning, namely, by 
that new complex act which is composed of submultipling instead of multipling by v, 
and then multipling instead of submultipling by t ; so that 

v b  La X c, when c   x b 
 itt 

on which account we may write 

(123. 

n b 1:-. x (-v >, b), and c  
v 

x ( x c), (124.   /L 2, 

whatever (effective steps may be denoted by b and c, and whatever (positive or con 

tra-positive whole numbers may be denoted by ft and v. The two acts of fractioning, 
marked by the two fractional numbers v and tiL, are therefore opposite or reciprocal p 
acts, of which each destroys or undoes the effect of the other ; and the fractional 
numbers themselves may be called reciprocal fractional numbers, or, for shortness, 
reciprocal fractions : to mark which reciprocity we may use a new symbol II, (namely, 
the initial letter of the word Reciprocatio, distinguished from the other uses of the 
same letter by being written in an inverted position, that is, we may write 

 itt P  v   11  ,   1.1 , itt V V IL (125. 

whatever positive or contra-positive whole numbers may be marked by I' and v. In 
this notation, 

 v U 11   II (a    II ILL  ' V 
IL II 

 
V IL (126. 

or, to express the same thing in words, the reciprocal of the reciprocal of any frac 
tional number is that fractional number itself. (Compare equation (57. ). 

It is evident also, that 

1 II a   X b , and b y x a, if b  It x a ; IA (127v 
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that is, the whole number rega.rded as a multiplier, or as a ratio, may be put under 
the fractional form so that we may write 

 (128. 

and the reciprocal of this whole number, or the connected reciprocal number u to to 
multiply by which is equivalent to submultipling by m, coincides with the reciprocal frac ]. 
tional number -, so that 

-'emu  (129. 

results which were indeed anticipated in the remarks made at the close of the fore 
going article, respecting the extent of the conception of fractional numbers, as includ 

ing whole numbers and their reciprocals. As an example of these results, the double 
2 of any step a may be denoted by the symbol T x a as well as by 2 x a and the half 

of that step a may be denoted either by the symbol a or by 2 x a. The sym 
bol it 1 is evidently equivalent to 1, the number positive oneibeing its own reciprocal ; 
and the opposite number, contra-positive one, has the same property, because to re 
verse the direction of a step is an act which destroys itself by repetition, leaving the 
last resulting step the same as the original ; we have therefore the equations, 

u1 1, n01=7.01. (130. 

By the definition of a fraction, as a multiple of a submultiple, we may now express 
it as follows : 

-xb=v >c(-xb)=vx(11f,Lxb). /2 (131. 

Besides, under the conditions (122.), we have, by (112. and (114.), that is, by the 

principle of the indifference of the order in which any two successive multiplings are 

performed, 

,uxe=tLx(vx a)=(/2Xv X a =(v X tu X a=v X Cu X a):_-_v X b; (132. 

so that a fractional product c  x b may be derived from the multiplicand b , by 
itt 

first multipling by the numerator v and then submultipling by the denominator ft, in 
stead of first submultipling by the latter and afterwards multipling by the former ; 
that is, in any act of fractioning, we may change the order of the two successive and 
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component acts of submultipling and multipling, without altering the final result, and 
may write 

X b= X r iixb)=11/1X(vxb). (133. 

In general it may easily be shown, by pursuing a reasoning of the same sort, that in 
any set of acts of multipling and submultipling, to be Performed successively on any 
one original step, the order of succession of those acts may be altered in any arbitrary 
manner, without altering the final result. We may therefore compound any proposed 
set of successive acts of fractioning, by compounding first the several acts of submul 
tipling by the several denominators into the one act of subinultipling by the product 
of those denominators, and then the several acts of multipling by the several numerators 
into the one act of multipling by the product of those numerators, and finally the two 
acts thus derived into one last resultant act of fractioning ; that is, we have the relations, 

VI X V 
re X IA 

psi X vi X v 
F." X X ft 

yr  X ryX b 

Iv 
X (-1-- X 

b) ft 
&C. 

X b, 

(134. vrf 
-77 X X b, 

We may also introduce or remove any positive or contra-positive whole number as a 
factor in both the numerator and the denominator of any fraction, without making 
any real alteration that is, the following relation holds good : 

(135. 

whatever positive or contra-positive whole numbers may be denoted by FL v o ; a 
theorem which may often enable us to put a proposed fraction under a form more simple 
in itself, or more convenient for comparison with others. As particular cases of this 
theorem, corresponding to the case when the common factor w is contra-positive one, 
we have 

0 v v   
fit 11 0 tt (136. 

that is, the denominator of any fraction may be changed from contra-positive to posi 
tive, or from positive to contra-positive, without making any real change, provided 
that the numerator is also changed to its own opposite whole number. Two 

0 v 
frac-. 

tional numbers, such as  and  , may be said to be opposites, (though not recipro 
VOL. xvix. 3 s 
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cals), when (though not themselves the marks of opposite acts), they generate opposite 
0 t'v 

steps, such as the steps  x b and  x b c; and to mark this opposition we may write 
it i-L 

ev 
fl 

 0 v. 
ti (137q 

Hence every fractional number, with any positive or contra-positive whole numbers !I 
and v for its denominator and numerator, may be put under one or other of the two 

following forms : 

:1st. n-or 'Ind. 0 .-'1 ?it I in (138. 

(m and n denoting positive whole numbers, according as the proposed whole numbers 
p. and v agree or differ in respect of being positive or contra-positive ; and in the 
1st case we may say that the fractional number itself is positive, but in the IInd 
case that it is contra-positive : definitions which agree with and include the former 

conceptions of positive and contra-positive whole numbers, when we consider these as 

equivalent to fractional numbers in which the numerator is a multiple of the denomi 
nator ; and lead us to regard the reciprocal of any positive or contra-positive whole 
number (and more generally the reciprocal of any positive or contra-positive frac 
tional number as positive or contra-positive like it ; a fractional number being 
equivalent to the reciprocal of a whole number, when the denominator is a multiple 
of the numerator. A fraction of a late-making step b is itself a late-making or an 

early-making step, according as the multiplying fractional number is positive or 

contra-positive ; and as we have agreed to write b > 0 when b is a late-making step, 
so we may now agree to write 

 v 
 > 0, when  X b> 0 and b > 0, (139. tt /I 

that is, when -v is a positive fractional number, and to write, on the contrary, ft 
v v  l 0, when  x b < 0 and b > 0, (140. iz tE 

that is, when'' is a contra-positive fractional number. More generally, we shall 

write 
, . V V if v v 

-,>-, -,x b>-Xb, b> 0, (141. II fL ti. IL 
and 

, , V v 
if v 

-,<-, II --,X b< 
v -x b, b> 0; (142. Itt att it il 
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and shall enunciate these two cases respectively, by saying that in the first case the 

fractional number -v, is on the positive side, and that in the second case it is on the 
itt 

contra-positive side, of the other fractional number -v ; or that in the first case -V, foi 
1, P ft 

lows and that in the second it precedes  , in the general progression of numbers, tt 
from contra-positive to positive : definitions which may easily he shown to be con 
sistent with each other, and which extend to whole numbers and their reciprocals, as 
included in fractional numbers, and to the number zero itself as compared with any of 
these. Thus, every positive number is on the positive side of zero and of every 
contra-positive number ; while zero is on the positive side of all contra-positive 
numbers, but on the contra-positive side of all positive numbers : for example, 

2 > 0, 2 > 03, e3 l 0, 03 < 2, 0 > e3, 0 < 2. (143. 

Of two unequal positive whole numbers, the one which has the greater quotity is on 
the positive side, but among contra-positive numbers the reverse is the case ; for 

example, 
3 > ,2, 0 3 < 0 _2 : (144. 

and in general a relation of subsequence or precedence between any two whole or 
fractional numbers is changed to the opposite relation of precedence or subsequence, 
by altering those numbers to their opposites, though a relation of equality or coinci 
dence remains unaltered after such a change. Among reciprocals of positive whole 
numbers, the reciprocal of that which has the lesser quotity is on the positive side of 
the other, while reciprocals of contra-positive numbers are related by the opposite 
rule ; thus 

I 1 1 1 
0, < eta that is, 11 2 > II 3, 11 0 2 < 11 0 3. 2 5, (145. 

In general, to determine the ordinal relation of any one fractional number .-vi to 
v  

another --, as subsequent, or coincident, or precedent, in the general progression au. 
of numbers, it is sufficient to prepare them by the principle (135. so that their deno 
minators may be equal and positive, and then to compare their numerators ; for 
which reason it is always sufficient to compare the two whole numbers ti. x 11 x m.' x v' 
and It' X 11 X II X 11, and we have 

V, > v> 
--,   , according as I x p. x iti" X vt . p X pfx L X v : (146. 14 < 11 < 

> 
the abridged notation  implying the same thing as if we had written more fully < 



342 Professor HA.MILTON on Conjugate Fuizctions, 

" > or  or <." If it had been merely required to prepare two fractional numbers 
so as to make them have a common denominator, without obliging that denominator 
to be positive, we might have done so in a simpler manner by the formula (135.), 
namely by multipling the numerator and denominator of each fraction by the deno 
minator of the other fraction, that is, by employing the following expressions, 

v p, X v v v X it'  ; (147  
11. X tt t m. X pc 

a process which may be still farther simplified when the original denominators have 

any whole number (other than positive or contra-positive one for a common factor, 
since it is sufficient then to multiple by the factors which are not thus common, that 
is, to employ the expressions, 

L X v 
I  (148. 

coxp. wxp.xp. to X to X II X p. 

A similar process of preparation applies to more fractions than two. 
18. This reduction of different fractional numbers to a common denominator is 

chiefly useful in combining them by certain operations which may be called algebraical 
addition and subtraction of fractions, (from their analogy to the algebraical addition 
and subtraction of whole numbers, considered in the 14th article, and to the arith 
metical operations of addition and subtraction of quotities, and which present them 
selves in considering the composition and decomposition of fractional steps. For 

we compound, as successive steps, any two or more fractions  x b , --,xb, &c., of 
itt 

any one effective step b , and generate thereby a new effective step, this resultant step 
will evidently be itself a fraction of the step b which we may agree to denote as 
follows : 

 v v 
, X b   X b  

)=(+ x b, 
itt f1 /1 

vll, 
7; ac b  

V' 
X b  X b  (12-7,  X b, &C. ; 

fL 

V v and the resultant fractional number  V, + or -7,  v, 
v 

&c. may be called the 
II  P. la v v' 

algebraical sum of the proposed fractional numbers  , - 7 , &c. and may IL IL /L 
be said to be formed by algebraically adding them together ; definitions which agree 
with those established in the 14th article, when the fractional numbers reduce them 
selves to whole numbers. If the denominators of the proposed fractions be the same, 

V V X 
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it is sufficient to add the numerators, because then the proposed fractional steps are all 

multiples of one common sub-multiple of the common unit-step b , namely of that sub 

multiple which is determined by the common denominator ; it is therefore sufficient, in 
other cases, to prepare the fractions so as to satisfy this condition of having a common 
denominator, and afterwards to add the numerators so prepared, and to combine their 
sum as the new or resulting numerator of the resulting fractional sum, with the 
common denominator of the added fractions as the denominator of the same frac 
tional sum ; which may, however, be sometimes simplified by the omission of common 
factors, according to the principle (135.). Thus 

, V VI v (11  ,u  Ot' x v v  -,    EL" 4: L 
v 
, &c. ; (150  L A ft x ii,  A itt kt 

for, as a general rule of algebraic notation, we may omit at pleasure the mark of 

multiplication between any two simple symbols of factors, (except the arithmetical 

signs 1, 2, 3, &c., without causing any confusion ; and when a product thus denoted, 
by the mere juxta-position of its factors, (without the mark x , is to be combined 
with other symbols in the way of addition, by the mark +, it is not necessary to en 
close that symbol of a product in parentheses : although in this Elementary Essay we 
have often used, and shall often uge again, these combining and enclosing marks, for 

greater clearness and fulness. It is evident that the addition of fractions may be 

performed in any arbitrary order, because the order of composition of the fractional 

steps is arbitrary. 
The algebraical subtraction of one given fractional number 7 from another un 

v P. 
equal fractional number  , is an operation suggested by the decomposition of a A v 
given compound fractional step  >e b into a given component fractional step -v x b 

A d ite 
and a sought component fractional step v-7, x b , (these three steps being here sup it 
posed to be all effective : and it may be performed by compounding the opposite of 
the given component step with the given compound step, or by algebraically adding 

v the opposite 0 
v 
-" of the given fractional number  to the other given fractional 

V P. te 
number  , according to the rule (150.). When we thus subtract one fractional 

P. 
number from another with which it does not coincide, the result is positive or contra 

positive according as the fraction from which we subtract is on the positive or contra 
positive side of the other ; and thus we have another general method, besides the 
rule (146.), for examining the ordinal relation of any two unequal fractions, in the 
general progression of numbers. This ordinal relation between any two fractional 
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(or whole numbers a and j3, is not altered by adding any fractional (or whole num 
ber 7 to both, nor by subtracting it from both ; so that 

> 
7  P=7  a, and 0 7 -I p=e 7  a, according as p=a. -C < < (151. 

19. Again, the composition and decomposition of successive acts offiactioning 
(instead of successive fractional steps conduct to algebraical operations of multipli 
cation and division of fractional numbers, which arc analogous to the arithmetical 

operations of multiplication and division of quotities. For if v$e first multiply a v 
given step b by a given fractional number  , that is, if we first perform on b the 

11 
act of fractioning denoted by this number, and so form the fractional step  x b , 

itt 
we may then perform on the result another act of fractioning denoted by another 
fractional number ; , and so deduce another fractional step v-, x  lt.-' x b), which 

11 11 11 
will evidently be itself a fraction of the original step b, and might therefore have 
been deduced from b by one compound act of fractioning ; and thus we may proceed 
to other and other fractions of that step, and to other compound acts of fractioning, 
which may be thus denoted, 

 (v V  x  ..., \ x b, 
L 11 

:I 1 II P v 
{V 

V 
(V 

V V 
, 1X -;x  - x b 1 

 -,-, X ;x -- x b , &C. ; It 1-1. \Ii 11 11 11 

x b 
(152. 

v v v v ' v if t 
and the resultant fractional numbers -, x  , - x --, x  , &c., NOrich thus express fl, itt ti. ii, IL 
the resultant acts of fractioning, gderived from the proposed component acts marked il 
by the fractional numbers v , v-, -, , &C., may be called the algebraic products I 11' v11r 
of those proposed fractional numbers, and may be said to be formed by algebraically 
multiplying them as fractional factors together ; definitions which agree with the 
definitions of product and multiplication already established for whole numbers. 
The same definitions thew that every fraction may be regarded as the product of the 
numerator (as one factor and the reciprocal of the denominator (as another ; and 
give, in general, by (131.), the following rule for the calculation of a fractional 
product 

1 V v X V V" v' v V" X v' X v 
-, x   --/-- , -,-, x  x 
Il 14 A x 112' t 1 12" X ill X P (153. 
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The properties (111. and (115. of algebraic products of whole numbers extend to 

products of fractional numbers also ; that is, we may change in any manner the order 
of the fractional factors ; and if we resolve any one of those factors into two or 
more algebraic parts by the rules of algebraic addition and subtraction, we may com 
bine each part separately as a partial factor with the other factors proposed, so as to 
form by algebraic multiplication a partial fractional product, and then add together 
those partial products algebraically to obtain the total product : or, in written 

symbols, 

and 

v' v v o 
7    x 7 , lLC., 

Ft (151. 

because 

-v x 
ii-z,v" it-L;il 

 -v x (-1 X 12:), &c., (1,55. it IA" \ ti 

x (b" b' -v x b" -vx b' (156. 

whatever steps may be denoted by b' and if and whatever fractional (or whole 
number by  . We may also remark that 

yx P=7 x a, according as . a if > 0 157. 

but that 

7 x  7 x a, according as p  a, if y < 0, (158. 

a /3 7 denoting any three fractional (or whole numbers. 
The deduction of one of two fractional factors from the other and from the product, 

may be called (by analogy to arithmetic the algebraic division of the given fractional 

product as a dividend, by the given fractional factor as a divisor ; and the result, 
which may be called the quotient, may always be found by algebraically multiplying 
the proposed dividend by the reciprocal of the proposed divisor. This more general 
conception of quotient, agrees with the process of the 15th article, for the division of 
one whole number by another, when that process gives an accurate quotient in whole 
numbers ; and when no such integral and accurate quotient can be found, Igoe may 
still, by our present extended definitions, conceive the numerator of any fraction to 
be divided by the denominator, and the quotient of this division will be the fractional 
number itself. In this last case, the fractional number is not exactly equal to any 
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whole number, but lies between two successive whole numbers, a next preceding and 
a next succeeding, in the general progression of numbers ; and these may be dis 
covered by the process of approximate division above mentioned, while each of the 
two remainders of that approximate division is the numerator of a new fraction, 
which retains the proposed denominator, and must be added algebraically as a co  
rection to the corresponding approximate intep,er quotient, in order to express, by the 
help of it, the quotient of the accurate division. For example, 

83 0 2 , e8 2 0 3  
,--;  1     

-6  2 a' -5 
   I 9 2  -5 

In general, a fractional number may be called a mixed number, when it is thus ex 
pressed as the algebraic sum of a whole number and a proper fraction, this last name 
being given to a fractional number which lies between zero and positive or contra 

positive one. We may remark that an ordinal relation between two fractional 
numbers is not altered by dividing them both by one common positive divisor ; but if 
the divisor be contra-positive, it changes a relation of subsequence to one of pre 
cedence, and conversely, without disturbing a relation of coincidence. 

20. In all the formulae of the three last articles, w e have supposed that all the 
numerators and all the denominators of those formulae are positive or contra-positive 
whole numbers, excluding the number zero. However, the general conception of a 
fraction as a multiple of a sub-multiple, permits us to suppose that the multipling 
number or numerator is zero, and shows us that then the fractional step itself is null, 
if the denominator be different from zero ; that is, 

o  x b  0 if It  0. 
p.  1 5 9 .  

Thus, although we supposed, in the composition (149. of successive fractional steps, 
(with positive or contra-positive numerators and denominators, that the resultant 

step was effective, yet w e might have removed this limitation, and have presented the 
formulae (150. for fractional sums as extending even to the case when the resultant 

step is null, if we had observed that in every such case the resultant numerator of the 
formula is zero, while the resultant denominator is different from zero, and therefore 
that the formula rightly expresses that the resultant fraction or sum is null. For 

v 0 v . 
example, the addition of any two opposite fractional numbers, such as  and  , in 

it ii 
which /1 and v are different from zero, conducts to a null sum, under the form 
0 v  v 

, in which the numerator 0 v  v is zero, while the denominator is different 
tt 

from zero. 
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But it is not so immediately clear what ought to be regarded as the meaning of a 
fractional sign, in the case when the denominator is null, and when therefore the act 
of fractioning prescribed by the notation involves a sub-multipling by zero. To 
discuss this case, we mast remember that to sub-multiple a step b by a whole number 

11, is, by its definition, to find another step a , which, when multipled by that whole 
number it, shall produce the proposed step b ; but, vvhatever step a may be, the theory 
of multiple steps (explained in the 13th article shows that it necessarily produces 
the null step 0, when it is multipled by the null number zero ; that is, the equation 

Oxa 0 (1C0. 

is true independently of a , and consequently we have alvva3s 

CI X a  b , if b  O. (161. 

It is, therefore, impossible to find any step a, in the whole progression of time, sdlich 
shall satisfy the equation 

I 
Ox b =...a, or 0Xa=b, (162. 

if the given step b be effective ; or, in other words, it is impossible to sub-multiple an 
. effective step by zero. The fractional sign  denotes therefore an impossible act if it 0 

be applied to an effective step : and the zero-submul4ple of an effective step is a phrase 
which involves a contradiction. On the other hand, if the given step b be null, it is 
not only possible to choose some one step a which shall satisfy the equations (162.), 
but every conceivable step possesses the same proposed property ; in this case, there 
fore, the proposed conditions lay no restriction on the result, but at the same time, 
and for the same reason, they fail to give any information respecting it : and the act 
of sub-multipling a null step by zero, is indeed a possible, but it is also an indeter 
minate act, or an act with an indeterminate result ; so that the zero-submultiple of a 

1 
null .step, and the written symbol 0 

 x 0, are spoken or written signs which do not 

specify any thing, although they do not involve a contradiction. We see then that 
while a fractional number is in general the sign of a possible and determinate act of 
fractioning, it loses one or other of those two essential characters whenever its deno 
minator is zero ; for which reason it becomes comparatively unfit, or at least inconve 
nient, in this case, for the purposes of mathematical reasoning. And to prevent the 
confusion which might arise from the mixture of such cases with others, it is conve 
nient to lay down this general rule, to which we shall henceforth adhere : that all 
VOL. XVII. 3 T 
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denominators and divisors are to be supposed fferent from zero unless the contrary 
be mentioned expressly or that we shall never sub-multiple nor divide by a null num 
ber without expressly recording that we do so. 

On the Comparison of any one effective Step with any other, in the way of Ratio, 
and the Generation of any one such step from any other, in the way of Multipli 
cation ; and on the Addition, Subtraction, Multiplication, and Division of Alge 
braic Numbers in general, considered thus as Ratios or as Multipliers of Steps, 

21. The foregoing remarks upon fractions lead naturally to the more general con 

ception of algebraic ratio, as a complex relation of any one effective step to any 
other, determined by their relative largeness and relative direction ; and to a simi 

larly extended conception of algebraic multiplication, as an act (of thought which 

enlarges, or preserves, or diminishes the magnitude, while it preserves or reverses the 
direction, of any effective step proposed. In conformity with these conceptions, and 

by analogy to our former notations, if we denote by a and b any two effective steps, 
of which a may be called the antecedent or the multiplicand, and b the consequent 
or the product, we may employ the symbol -ba, to denote the ratio of the consequent i 
to the antecedent a, or the algebraic number or multiplier by which we are to mul 

tiply a as a multiplicand in order to generate b as a product and if we still employ 
the mark of multiplication x , we may now write, in general, 

or, more concisely, 

b b  -a X a (163. 

b a x a, if ab  (164. 

that is, if we employ, for abridgement, a simple symbol, such as the italic letter a, to 
denote the same ratio or multiplier which is more fully denoted by the complex 
Symbol w. 

It is an immediate consequence of these conceptions and definitions, that the fol 

lowing relation holds good, 
r X a 
it X a 

V 
(165. 

a denoting any effective step, and p. and v denoting any positive or contra-positive 
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whole numbers ; since the fractional ratio denoted by the symbol -2' is the ratio of 
the multiple step v x a to the multiple step p x a . In like manner it follows, from 
the same conceptions and definitions, that 

 X b v b'  , and reciprocally b'   X b if  (166. 
b 

and more generally, that 

and reciprocally, 

b  X c a   - a 

b d  -a x c if d   -; c a 

(167. 

(168. 

whatever effective steps may be denoted by a , b, c,d, and whatever fraction by -u 
itt 

We may also conceive combinations of ratios with each other, by operations which 
we may call Addition, Subtraction, Multiplication, and Division of Ratios, or of 

general algebraic numbers, from the analogy of these operations to those which we 
have already called by the same names, in the theories of whole numbers and of 
fractions. And as we wrote, in treating of whole numbers, 

=v +/ when w x a  x a  02 X a), (107. 
and 

w v x ft when w x a =v x ( x a); (111. 

and, in the theory of fractions, 

y 1    -1' when ll x b  (-1 x b (-v x b), (149. ite ti fil 
and 

v"  yr x when v x b=7LX(I-j X b (152. ite ite II it 

with other similar expressions ; so we shall now write, in the more general theory of 
ratios, 

b" b' b b" b'  a   when  x  a x c)+e a" a' a' x c), (169. 

b" b' b b" 
'71a c -1a x , when  x (b x : (170. a" a x 

and 
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and shall suppose that similar definitions are established for the algebraical sums and 

products of more than two ratios, or general algebraic numbers It follows that 

b b 
a a a 

b" b' bbud-bi+b  a a a a 
&C. 

(171k 

and that 
b b' 

b" b b" 
xa &C. (17g. 

A ratio between any two effective steps may be said to be positive or contra.positive, 
according as those two steps are co-directional or contra-directional, that is, according 
as their directions agree or differ and then the product of any two or more positive 
or contra-positive ratios will evidently be contra-positive or positive according as there 
are or are not an odd number of contra-positive ratios, as factors of this product 
because the direction of a step is not altered or is restored, if it either be not reversed 
at all, or be reversed an even number of times. 

Again, we may say, as in the case of fractions, that we subtract a ratio when w e 
add its opposite, and that we divide by a ratio when we multiply by its reciprocal, if we 

agree to say that two ratios or numbers are opposites when they generate opposite 
steps by multiplication from one common step as a multiplicand, and if we call them 

reciprocals when their corresponding acts of multiplication are opposite acts, which 

destroy, each, the effect of the other ; and we may mark such opposites and reci 

procals, by writing, as in the notation of fractions, 

and 
,  o   when X c  0( X c), (173. a ' a 

b-, when b ; X 0 X c  (174. a a' a a 

definitions from which it follows that 

and that 

b b  0 a a 

a b 
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And as, by our conceptions and notations respecting the ordinal relation of one 
fractional number to another, (as subsequent, or coincident, or precedent, in the 

general progression of such numbers from contra-positive to positive, we had the 

relations, 
> v v' > v ?1 

=-, a , when  x = X a, a > 0; II <I PP < itt 

so ne may now establish, by analogous conceptions and notations respecting ratios, 
the relations, 

> > b ' b' b '   --when  x a -b' X a a> 0: a' a , a.'  
< < 4 

that is, more fully, 
b" b  b" 
..-2 > i-c, when a-, x a  +A>itibxa)+A, 
b" b, 1 b' 
w ,  , , wnen  w, X a   A   11; -1-1 X a)-F At 

and 
b" b , b" b' 
7, < .,i , when L w, x  a ,  A <  -ft-i X a +A 

(177 

(178. 

(179z 

(180. 

the symbol A denoting any moment of time, and a any late-making step. The rela 
tion (179. is indeed an immediate consequence of the first conceptions of steps and 
ratios; but it is inserted here along with the relations (178. and (180.), to show 
more distinctly in what manner the comparison and arrangement of the moments 

 b'A, \ a 
b" 

-, X a    r X i a   A, &C. 0810 

which are suggested and determined by the ratios or numbers ab ; , I. a7 ", 7 , &c., (in combi 
nation with a standard moment A and with a late-making step a, enable us to com 

pare and arrange those ratios or numbers themselves, and to conceive an indefinite 

progression of ratio from contra-positive to positive, including the indefinite pro 
gression. of IA hole numbers (103.), and the more comprehensive progression of frac 
tional numbers considered in the 17th article : for it will soon be shown, that though 
every fractional number is a ratio, yet there are many ratios which cannot be ex 

pressed under the form of fractional numbers. Meanwhile we may observe, that the 
theorems (151. (157, (158. respecting the ordinal relations of fractions in the 

general progression of number, are true, even when the symbols a j3 'y denote ratios 
which are not reducible to the fractional form ; and that this indefinite progression 
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of number, or of ratio, from contra-positive to positive, corresponds in all respects to 
the thought from which it was deduced, of the progression of time itself, from mo 
ments indefinitely early to moments indefinitely late. 

;22. It is manifest, on a little attention, that the ratio of one effective step b to 
another a, is a relation which is entirely determined when those steps are given, but 
which is not altered by multiplying both those steps by any common multiplier, 
whether positive or contra-positive ; for the relative largeness of the two steps is not 
altered by doubling or halving both, or by enlarging or diminishing the magnitudes of 
both in any other common ratio of magnitude, that is, by multiplying both by any 
common positive multiplier : nor is their relative direction altered, by reversing the 
directions of both. We have then, generally, 

bi 
a--7 X b b 
b'  
 X a a' 

and in particular, by changing a' to a, and b' to c 

 a X b 
 a 

(182. 

(183. 

Hence, by (167.), the two 

a 
steps x b and ;13 x c are related in one common ratio, a 

namely the ratio 1 , to the common step c, and therefore are equivalent to each 
other ; that is, we have the equation, 

 X b -a X c a (184. 

whatever three effective steps may be denoted by a b c . 
In general, when any four effective steps abed are connected by the relation 

a 
a' (185. 

that is, when the ratio of the step d to c is the same as the ratio of the step b to a, 
these two pairs of steps a, b and c, d may be said to be analogous or proportional 
pairs ; the steps a and c being called the antecedents of the analogy, (or of the 

proportion and the steps b and a being called the consequents, while a and a are the 
extremes and b and c the means. And since the last of these four steps, or the 
second consequent , may, by (168.), be expressed by the symbol Tik x c , we see, by 
(184.), that it bears to the first consequent b the ratio e-a of the second antecedent 
to the first antecedent a ; that is, 
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c . d 
-1; a I f -c  : a (186. 

a theorem which shows that we may transform the expression of an analogy (or pro 
portion between two pairs of effective steps in a manner which may be called alter 
nation. (Compare the theorem (11.). 

It is still more easy to perceive that we may invert an analogy or proportion 
between any two pairs of effective steps ; or that the following theorem is true, 

c a  L . d b 
Ti.  b, 1.1.  .;-: . (187. 

Combining inversion with alternation, we see that 

b 
.a 

 !., :r d  b  c i t c ---  (188. a 

(Compare the theorems (12. and (13.). 
In general, if any two pairs of effective steps a, b and c, a be analogous, we do 

not disturb this analogy by interchanging the extremes among themselves, or the 
means among themselves, or by substituting extremes for means and means for ex 
tremes ; or by altering proportionally, that is, altering in one common ratio, or mul 
tiplying by one common multiplier, whether positive or contra-positive, the two con 
sequents, or the two antecedents, or the two steps of either pair or, finally, by 
altering in inverse proportion, that is, multiplying respectively by any two reciprocal 
multipliers, the two extremes, or the two means. The analogy (185. may therefore 
be expressed, not only in the ways (186.), (187.), (188.), but also in the following : 

axd =_ a X e  
" X d b 

( a x 
 a 189. 

/Taxa  a X a , uax c- (190. 

a denoting any ratio of one effective step to another, and ii a denoting the reciprocal 
ratio, of the latter step to the former. 

23. We may also consider it as evident that if any effective step c be com 
pounded of any others a and b this relation of compound and components will not 
be d;sturbed by altering the magnitudes of all in any common ratio of magnitude, 
that is by doubling or halving it, or multiplying all by any common positive multi 
plier ; and we saw, in the 12th article, that the same relation of compound and com 
ponents i's not disturbed by reversing the directions of all : we may therefore mul 
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tiply all by any common multiplier a, whether positive or contra-positive, and may 
establish the theorem, 

a x  (a x b  (a X a), if c  b a; (191. 

which gives, by the definitions (169. (170. for the sum and product of two ratios, 
this other important relation, 

a X (11  b  (a x11  (a x b), (192. 

if b, b', and b' b, denote any three positive or contra-positive numbers, connected 
with each other by the definition (169.), or by the following condition, 

(b' +b x d  (11 x d x d (193. 

in which d denotes any arbitrary effective step. The definitions of the sum and 
product of two ratios, or algebraic numbers, give still more simply the theorem, 

(b'  b x a  (b' x a  (b x a). (194. 

The definition (169. of a sum of two ratios, when combined IN it h the theorem 
(75. respecting the arbitrary order of composition of two successive steps, gives the 
following similar theorem respecting the addition of two ratios, 

b+a=a+b. (195. 

And if the definition (170. of a product of two ratios or multipliers be combined 
with the theorem (186. of alternation of an analogy between two pairs of steps, in 
the same way as the definition of a compound step was combined in the 12th article 
with the theorem of alternation of an analogy between two pairs of moments, it 
shows that as any two steps a , b , may be applied to any moment, or compounded 
with each other, either in one or in the opposite order, (b a a +b , so any two 
ratios a and b may be applied as multipliers to any step, or combined as factors of a 

product with each other, in an equally arbitrary order ; that is, we have the relation, 

bxa=axb. (196. 

It is easy to infer, from the thorems (195. (196.), that the opposite of a sum of two 
ratios is the sum of the opposites of those ratios, and that the reciprocal of the pro 
duct of two ratios is the product of their two reciprocals ; that is, 

and 
0 (b 4 a  0 b  0 a, (197. 

(bxa)=Iibxua. (198. 
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And all the theorems of this article, respecting pairs of ratios or of steps, may easily 
be extended to the comparison and combination of more ratios or steps than two. 
In particular, when any number of ratios are to be added or multiplied together, we 
may arrange them in any arbitrary order ; and in any multiplication of ratios, we 
may treat any one factor as the algebraic sum of any number of other ratios, or 
partial factors, and substitute each of these separately and successively for it, and the 
sum of the partial products thus obtained will be the total product sought. As an 

example of the multiplication of ratios, considered thus as sums, it is plain from the 

foregoing principles that 

(d  c x(b a  x (b  a)1  [c x (b  a)1 

 (d x b  (d x a  (c x b  (c xv 

=db+da+cb+ca, (199n 
and that 

(b +a x(b +a  (b x b  (2 x b x a  (a x a 

=bb+2ba+aa, (2004 

whatever positive or contra-positive ratios may be denoted by a b c d. 
And though we have only considered effective steps, and positive or contra 

positive ratios, (or algebraic numbers, in the few last articles of this Essay, yet the 
results extend to null steps, and to null ratios, also ; provided that for the reasons 

given in the 20th article we treat all such null steps as consequents only and not as 
antecedents of ratios, admitting null ratios themselves but not their reciprocals into our 
formulae, or employing null numbers as multipliers only but not as divisors, in order 
to avoid the introduction of symbols which suggest either impossible or indeterminate 

operations. 

-On the insertion of a Mean Proportional between two steps ; and on Impossible, 
Ambiguous, and Incommensurable Square-Roots of Ratios. 

24. Three effective steps a b b' may be said to form a continued analogy or con 
tinued proportion, when the ratio of b' to b is the same as that of b to a, that is, 
when 

VOL. XVII. 

b' 
(201. 

3 u 
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a and b' being then the extremes, and b the mean, or the mean proportional between 
a and b',, in this continued analogy ; in which b' is also the third proportional to a 
and b, and a is at the same time the third proportional to b' and b, because the 

analogy may be inverted thus, 

a..... b 
b  b' (202. 

When the condition (201. is satisfied, we may express b as follows, 
k b b'  a  X I l''' (203. 

that is, if we denote by a the ratio of b to a, we shall have the relations 

b=aXa,b' =axb=axaxa; (201. 

and reciprocally when these relations exist, we can conclude the existence of the con 
tinued analogy (201.). It is clear that whatever effective steps may be denoted by 
a and b, we can always determine, (or conceive determined, in this manner, one 
third proportional bl and only one ; that is, we can complete the continued analogy 
(201. in one, but in only one way, when an extreme a and the mean b are given : 
and it is important to observe that whether the ratio a of the given mean b to the 

given extreme a be positive or contra-positive, that is, whether the two given steps 
a and b be co-directional or contra-directional steps, the product a x a will necessarily 
be a positive ratio, and therefore the deduced extreme step b' will necessarily be 
co-directional with the given extreme step a. In fact, without recurring to the 
theorem of the 21st article respecting the cases in which a product of contra-positive 
factors is positive, it is plain that the continued analogy requires, by its conception, 
that the step b' should be co-directional to b , if b be co-directional to a, and that w 
should be contra-directional to b if b be contra-directional to a; so that in every 
possible case the extremes themselves are co-directional, as both agreeing with the 
mean or both differing, from the mean in direction. It is, then fore, impossible to 
insert a mean proportional between two contra-directional steps ; but for the same 
reason we may insert either of two opposite steps a a mean proportional between 
two given co-directional steps ; namely, either a step which agrees with each, or a 

step which differs from each in direction, while the common magnitude of these two 

opposite steps is exactly intermediate in the way of ratio between the magnitudes of 
the two given extremes. (We here assume, as it seems reasonable to do, the con 

ception of the general existence of such an exactly intermediate magnitude, although 
the nature and necessity of this conception will soon be more fully considered. For 
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example, it is impossible to insert a mean proportional between the two contra 
directional (effective steps a and 9 9 a , that is, it is impossible to find any step b 
which shall satisfy the conditions of the continued analogy 

99 a b 
b nt. a' 

or any number or ratio a which shall satisfy the equation 

a x a=49 9 : 

whereas it is possible to insert in two different ways a mean proportional b between 
the two co-directional (effective steps a and 9 a , or to satisfy by two different steps 
b (namely, by the step 3 a, and also by the opposite step 0 3 a the conditions of the 
continued analogy 

9 a b 
b a (207h 

and it is possible to satisfy by two different ratios a the equation 

a x a=9, (2084 

namely, either by the ratio 3 or by the opposite ratio 0 S. In general, we may 
agree to express the two opposite ratios a which satisfy the equation 

a x a 7:-Lb (> 0), (2w9. 
by the two symbols 

iv b  > 0 and 0 ,, b (< 0), (210. 

b and v' b being positive ratios, but 0 ,. b being contra-positive ; for example, 

Ni9=3, 0,/9=0 5. (211. 

With this notation we may represent the two opposite steps of which each is a mean 
proportional between two given co-directional (effective steps a and b', by the 
symbols 

Z17 Ji7 
ax a, and 0A7 ax a; 

and shall have for each the equation of a continued analogy, 

(21. 

bi 
 1/17 X a 
...". , a 

1)f ,..., 
ov;, ,-, 

a 
17 

1/ X a a 
a 

(213. 
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We may also call the numbers N b and 0 ,, b by the common name of roots, or 
(mere fully square-roots of the positive number b ; distinguishing them from each 
other by the separate names of the positive square-root and the contra-positive 
square-root of that number b, which may be called their common square : though we 
may sometimes speak simply of the square-root of a (positive number, meaning then 
the positive root, which is simpler and more important than the other. 

25. The idea of the continuity of the progression from moment to moment in 
time involves the idea of a similarly continuous progression in magnitude from any 
one effective step or interval between two different moments, to any other unequal 
effective step or other unequal interval ; and also the idea of a continuous progress, 
sion in ratio, from any one degree of inequality, in the way of relative largeness or 
smallness, as a relation between two steps, to any other degree. Pursuing this train 
of thought, we find ourselves compelled to conceive the existence (assumed in the 
last article of a determined magnitude b , exactly intermediate in the way of ratio 
between any two given unequal magnitudes a and W , that is, larger or smaller than 
the one, in exactly the same proportion in which it is smaller or larger than the 
other ; and therefore also the existence of a determined number or ratio a which is 
the exact square-root of any proposed (positive number or ratio b. To show this 
more fully, let A B D be any three given distinct moments, connected by the relations 

B '-x's.. A. 
D  A 

 b, b > 1, (214. 

which require that the moment B should be situated between A and D ; and let c lie 

any fourth moment, lying between B and D, but capable of being chosen as near to B 
or as near to D as we may desire, in the continuous progression of time. Then the 
two ratios 

C j.-. A A D '--. A -_ an, 
B  A, C --. A 

will both be positive ratios, and both will be ratios of largeness, (that is, each will be 
a relation of a larger to a smaller step, which we may denote for abridgement as 

follows, 
C .-. A 

---' A  xp -- =y=lixxb, 
B,  A C .. A (215. 

but by choosing the moment c sufficiently near to B we may make the ratio z ap 

proach us near as we desire to the ratio of equality denoted by 1, while the ratio y 
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will tend to the given ratio of largeness denoted by b ; results which we may express 
by the following written sentence, 

if L C=B, then L X=1 and L ty=b, (Q16. 

prefixing the symbol L, (namely the initial letter L of the Latin word Limes, distin 

guished by a bar drawn under it, to the respective marks of the variable moment c 
and variable ratios x, y, in order to denote the respective limits to which those 
variables tend, while we vary the selection of one of them, and therefore also of the 
rest. Again, we may choose the moment c nearer and nearer to D, and then the 
ratio x will tend to the given ratio of largeness denoted by b, while the ratio y ill 
tend to the ratio of equality ; that is, 

if L c  D, then L X b, L y =1 ;, (217.). 

and if we conceive a continuous progression of moments c from B to D, we shall also 
have a continuous progression of ratios x, determining higher and higher degrees of 
relative largeness (of the increasing step c -A as compared with the fixed step B  A 
from the ratio of equality 1 to the given ratio of largeness b, together with another 
continuous but opposite progression of ratios y, determining lower and lower degrees 
of relative largeness (of the fixed step D A as compared with the increasing step 
c -A from the same given ratio of largeness b down to the ratio of equality 1. ; so 
that we cannot avoid conceiving the existence of some one determined state of the 

progression of the moment c, for which the two progressions of ratio meet, and for 
which they give 

D C-A X X b=y x, that is A  
C-A B-A (218. 

having given at first y > x, and giving afterwards y < x. And since, in generals 

D-A C -A D-A x  , that is, x xb),x x=b, C---A B -A B-A (219a 

we can and must by (218. and (214.), conceive the existence of a positive ratio a 
which shall satisfy the condition (209.), a >e a  b, if b > 1, that is, we must conceive 
the existence of a positive square-root of b, if b denote any positive ratio of large 
ness. A reasoning of an entirely similar kind would prove that we must conceive the 
existence of a positive square-root of b, when b denotes any positive ratio of small 
ness, (b < 1 ; and if b denote the positive ratio of equality, (b=1, then it evi 
dently has that ratio of equality itself for a positive square-root. We see then by 
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this more full examination what we before assumed to be true, that every positive 
number or ratio b has a positive (and therefore also a contra-positive square-root. 

And hence we can easily prove another important property of ratios, which has 
been already mentioned without proof ; namely that several ratios can and must be 
conceived to exist; which are incapable of being expressed under the form of whole 
or fractional numbers ; or, in other words, that every effective step a has other steps 
incommensurable with it ; and therefore that when any two distinct moments A and 
B are given, it is possible to assign (in various ways a third moment c which shall 
not be uniserial with these two, in the sense of the 8th article, that is, shall not 

belong in common with them to any one equi-distant series of moments, comprising 
all the three. For example, the positive square-root of 2, which is evidently inter 
mediate between 1 and 2 in the general progression of numbers, and which therefore 
is not a whole number, cannot be expressed as a fractional number either ; since if it 

could beput under the fractional form  , so that 

(220. 

we should then have 

that is, 

n n n x n 2 x  IA TA M X TA (2210 

nxn xmxrn; (222. 

but the arithmetical properties of quotities are sufficient to prove that this last equa 
tion is impossible, whatever positive whole numbers may be denoted by nz and n. 
And hence, if we imagine that 

b sr X a, a >0, (223. 
the step b which is a mean proportional between the two effective and co-directional 
steps a and 2 a (of which the latter is double the former will be incommensurable 
with the step a (and therefore also with the double step 2 a); that is, we cannot 
find nor conceive any other step c which shall be a common measurer of the steps 
a and b, so as to satisfy the conditions 

a=m c, b =n c, (224.. 

 whatever positive or contra-positive whole numbers we may denote 772 and n ; be 
cause, if we could do this, we should then have the relations, 

b   a,  (225. in 
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of which the latter has been shown to be impossible. Hence finally, if A and i be 
ally two distinct moments, and if we choose a third moment c such that 

C  A 
Avi B  A 2, (Q26. 

the moment c will not be uniserial with A and B, that is, no one equi-distant series of 
moments can be imagined, comprising all the three. And all that has here been 
shown respecting the square-root of two, extends to the square-root of three, and 
may be illustrated and applied in. an infinite variety of other examples. We must 
then admit the existence of pairs of steps which have no common measurer and 
may call the ratio between any two such steps an incommensurable ratio, or incom 
mensurable number. 

More formal proof of the general existence of a determined positive square-root, 
commensurable or incommensurable, for every determined positive ratio : conti 
nuity of progression of the square, and principles connected with this continuity. 

26. The existence of these incommensurables, (or the necessity of conceiving 
them to exist, is so curious and remarkable a result, that it may be usefully con 
firmed by an additional proof of the general existence of square-roots of positive 
ratios, which will also offer an opportunity of considering some other important prin 
ciples. 

The existence of a positive square-root a , Ii, of any proposed ratio of largeness 
b > 1, was proved in the foregoing article, by the comparison of the two opposite 
progressions of the two ratios x and u x x b, from the states x=1, u x x b b, for 
which x x b > x, to the states x=b, uxxb=1, for which II x x b < for this 

comparison obliged us to conceive the existence of an intermediate state or ratio a 
between the limits 1 and 6, as a common state or state of meeting of these two oppo 
site progressions, corresponding to the conception of a moment at which the de 

creasing ratio u x x b becomes exactly equal to the increasing ratio x, having been 

previously a greater ratio (or a ratio of greater relative largeness between steps), and 

becoming afterwards a lesser ratio (or a ratio of less relative largeness). And it 
was remarked that an exactly similar comparison of two other inverse progressions 
would prove the existence of a positive square-root \lb of any proposed positive 



362 Professor HAMILTON on Conjugate Functions, 

ratio b of smallness, 6 < 1, 6> O. But instead of thus comparing, with the progression 
of the positive ratio x, the connected but opposite progression of the connected posi 
tive ratio II x x b, and showing that these progressions meet each other in a certain 
intermediate state or positive ratio a, we might have compared the two connected 
and not opposite progressions of the two connected positive ratios x and x x x, of 
which the latter is the square of the former ; and might have shown that the square 
(=x x x =z x increases constantly and continuously with the root  =.x), from the 
state zero, so as to pass successively through every state of positive ratio b. To 
develope this last conception, and to draw from it a more formal (if not a more con 

vincing proof than that already given, of the necessary existence of a conceivable 
positive square-root for every conceivable positive number, we shall here lay down a 
few Lemmas, or preliminary and auxiliary propositions. 

> > 
Lemma I. If x'  x, and x> 0, x' > 0, then x'x'  x x ; 

< < (227. 

that is, the square x ' x' of any one positive number or ratio x', is greater than, or 

equal to, or less than the square xx of any other positive number or ratio x, ac 

cording as the number x itself is greater than, or equal to, or less than the number 
x ; one number x' being said to be greater or less than another number x, when it is 
on the positive or on the contra-positive side of that other, in the general progression 
of numbers considered in the 21st article. This Lemma may be easily proved from 
the conceptions of ratios and of squares ; it follows also without difficulty from the 
theorem of multiplication (200.). And hence we may obviously deduce as a corollary 
of the foregoing Lemma, this converse proposition: 

> > 
if x'x'  X X, and z > 0, a;, > 0, then x'  z ; < < 

that is, if any two proposed positive numbers have positive square-roots, the root of 
the one number is greater than, or equal to, or less than the root of the other 

number, according as the former proposed number itself is greater than, or equal to, 
or less than the latter proposed number. 

The foregoing Lemma shows that the square constantly increases with the root, 
from zero up to states indefinitely greater and greater. But to show that this in 
crease is continuous as well as constant, and to make more distinct the conception of 
such continuous increase, these other Lemmas may be added. 

Lemma II. If a and a" be any two unequal ratios, we can and must conceive the 
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existence of some intermediate ratio a ; that is, we can always choose a or conceive 
it chosen so that 

a > a', a < a", if a" > a'. (9229. 

For then we have the following relation of subsequence between moments, 

, , a" 03 --A  A > a' 03  A  A, if B > A, (230. 

by the very meaning of the relation of subsequence between ratios, a" > a', as defined 
in article 21. ; and between any two distinct moments it is manifestly possible to 
insert an intermediate moment, indeed as many such as we may desire : it is, there 
fore, possible to insert a moment c between the two non-coincident moments 

a' (B  A  A and a" (B -A  A, 
such that 

C > a' (B  A  A, c < a" (B  A  A, if B > A, a'' > a' ; (231. 

and then if we put, for abridgement, 
C  A a  , B  A (232. 

denoting by a the ratio of the step or interval c  A to the step or interval B  A, 
we shall have 

and therefore finally, 

IN c =a (B -A  A, B > A, 
a (B  A  A > a' (B  A  A, 
a (13  A  A < a"(13  A  A, 

(233. 

a > a', a < a", 

as was asserted in th Lemma. We see, too, that the ratio a is not determined by 
the conditions of that Lemma, but that an indefinite variety of ratios may be chosen, 
which shall all satisfy those conditions. 

Corollary. It is possible to choose, or conceive chosen, a ratio a, which shall 

satisfy all the following conditions, 

a a', a> b', ai c', 
_1 a< a", a <b", a < c'', ... 

if the least (or hindmost of the ratios a" , b", c" , ... be greater (or farther advanced 
in the general progression of ratio from contra-positive to positive than the greatest 
(or foremost in that general progression of the ratios a', b', 6, &c. 

VOL. XVII. 3 x 

(234. 
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For if c" (for example be the least or hindmost of the ratios a", b", c", ... so 
that 

c" < a", c" ,_.' b" c" < d", ... (235. 

and if b' (for example be the greatest or foremost of the ratios a', b', c', ... so that 

bi > a', b' ' c', b' > d', ... (236. 

(the abridged sign < denoting what might be more fully written thus, " < or =", 

and the other abridged sign 
' 

denoting in like manner " > or =", then the con 
ditions (234. of the Corollary will all be satisfied, if we can satisfy these two condi 

tions, 
a> b1, a < C' ; (237. 

and this, by the Lemma, it is possible to do, if we have the relation 

c" > b', (238. 

which relation the enunciation of the Corollary supposes to exist. 
Remark. If the ratios a b' c'... a" b" c"... be all actually given, and therefore 

limited in number ; or if, more generally, the least of the ratios a" b" c"... and the 

greatest of the ratios a' b' c'... he actually given and determined, so that we have 
only to choose a ratio a intermediate between two given unequal ratios ; we can then 
make this choice in an indefinite variety of ways, even if it should be farther required 
that a should be a fractional number --v , since we saw, in the 8th article, that be 

P. 
tween any two distinct moments, such as a' (B  A  A and au (B -A  A, it is pos 
sible to insert an indefinite variety of others, such as -v (B  A  A, uniserial with the 

it 1, two moments A and B, and giving therefore fractions such as --i , intermediate (by 
the 21st article between the ratios a' and a". But if, instead of actually knowing 
the ratios a' b' c'... a" b' c"... themselves, in (2344.), we only know a law by which we 
may assign such ratios without end, this law may lead us to conceive new conditions 
of the form (234.), incompatible with some (and perhaps ultimately with all of these 
selections of fractional ratios --' , although they can never exclude all ratios a what 

itt 
ever, unless they be incompatible with each other, that is, unless they fail to possess 
the relation mentioned in the Corollary. The force of this remark will soon be felt 
more fully. 

Lemma III. If b denote any given positive ratio, whether it be or be not the 
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square of any whole or of any fractional number, it is possible to find, or to conceive 
as found, one positive ratio a, and only one, which shall satisfy all the conditions of 
the following forms : 

n' nil 
a , a < (239. 

n' nil' n" denoting here any positive whole numbers whatever, which can be chosen 
so as to satisfy these relations, 

n, n n < (..  --------  a a  m/ mi (240. 

For if the proposed ratio o be not the square of any whole or fractional number, then 
the existence of such a ratio a may be proved from the two preceding Lemmas, or 
from their Corollaries, by observing that the relations (240. give 

n" n' 
a 

n" > n: , and therefore -7 >   (241. M Ma 712' 771' VI" 

so that no two conditions of the forms (239. are incompatible with each other, and there 
must be at least one positive ratio a which satisfies them all. And to prove in the same , 
case that there is only one such ratio, or that if any one positive ratio a satisfy all the 
conditions (239.), no greater ratio c (z a can possibly satisfy all those conditions, we 

may observe that however little may be the excess 0 a -1 c of the ratio c over a, this 
excess may be multiplied by a positive whole number a so large that the product 
shall be greater than unity, in such a manner that 

and therefore 
-1-(9 a c > 1, 
 ...... 

(242. 

0 a  c > -1 and c -4 a  m" (248. 

and that then another positive (or null whole number n' can be so chosen that 

x b, MF 71e 
n' 1 4. n, 1  ?if b, (244. 

with which selection we shall have, by (239. (240. (243.), 
71' 

a > 1  n' c----- 711' 2 mr (245. 

whereas, if c satisfied the conditions (239. it ought to be less than this fraction 
1  because the square of this positive fraction is greater by (244. than the pro --; , 
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posed ratio b. In like manner it may be proved that in the other case, When b is the 

square of apositive fractional or positive whole number  , one positive ratio a and 

only one, namely the number 71 itself, will satisfy all the conditions (239. ; in both 

cases, therefore, the Lemma is true : and the consideration of the latter case shows, 
that, under the conditions (09.), 

. 71 21 71 
a  y >0. xn m 771 711 (246. 

In no case do the conditions (239. exclude all ratios a whatever ; but except in the 
case (246. they exclude all fractional ratios : for it will soon be shown that the one 
ratio a which they do not exclude has its square always  b, and must, therefore, be 
an incommensurable number when b is not the square of any integer or fraction. 

(Compare the Remark annexed to the Corollary of the IInd Lemma. 
Lemma IV. If b' and b" be any two unequal positive ratios, it is always possible 

to insert between them an intermediate fractional ratio which shall be itself the square 
of another fractional ratio ; that is, we can always find, or conceive found, two 

positive whole numbers m and n which shall satisfy the two conditions, 

n21 n 
>11, < b", if b" > > 0 min in in 

For, by 
4-n' 

may y the theorem of multiplication (200.), the square of the fraction 
be expressed as follows, 

1 +n, 1 +7z' 1 2 n' n' n' x    _____.  ; mm mm mm nzm 
n' 1 n' 

that is, its excess over the square of the fraction  is   , which is less than 
2 m mm mm 

x 1  n' 
, and constantly increases with the positive whole number n' when the 

positive whole number m remains unaltered so that the 1  n' squares of fractions 
with the common denominator m, in the following series, 

2 2 
x -, 

3 3 ni 1. n, 1 x n' 
in in m 2n 211 211, nz in, , 11,1 . X (249. 

2 
increase by increasing differences which are each less than x 1 4 , and therefore 

1 
than if we choose m and n' so as to satisfy the conditions 

m=2 2 Tr, 1 +71' =i m, (250. 
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i and k being any two positive whole numbers assumed at pleasure with this choice, 

therefore, oLthe numbers m and n', some one (at least such as 
n 71 
-m among the 

squares of fractions (249.), that is, some one at least among the following squares of 
fractions, 

2 2 3 3 2iik 
2ik x 2ik'2ik x 2ik' 21k X 2ik" 2ik x 21k ' (251. 

of which the last is  i i, must lie between any two proposed unequal positive ratios 
b' and b", of which the greate b" does not exceed that last square i 1, and of which 

1  and positive whole numbers and k can 

always be so chosen as to satisfy these last conditions, however great the proposed 
ratio b" may be, and however little may be its excess e b' b" over the other pro 
posed ratio b'. 

27. With these preparations it is easy to prove, in a new and formal way, the ex 
istence of one determined positive square root b for every proposed positive ratio 
b, whether that ratio b be or be not the square of any whole or of any fractional 
number ; for we can now prove this Theorem 

The square a a of the determined positive ratio a, of which ratio the existence 
was shown in the Md. Lemma, is equal to the proposed positive ratio b in the same 
Lemma ; that is, 

n' ni n' 
if a >  whenever mi m, < b, 

iiinil nil nl 
and a < 7, whenever,, b, m 

then a a=b, a , b, 

(252. 

e n' ili" n" being any positive whole numbers which satisfy the conditions here men 
tioned, and b being any determined positive ratio. 

For if the square la a of the positive ratio a, determined by these conditions, could 
be greater than the proposed positive ratio b, it would be possible, by the IVth Lemma, 
to insert between them some positive fraction which would be the square of another 

positive fraction n ; that is, we could choose m and rt so that fit 

nn nn 
> 0, i < aa: mm mm (253. 
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and then, by the Corollary to the 1st Lemma, and by the conditions (252.), we should 
be conducted to the two following incompatible relations, 

72 n  < a, a < -. m m (54. 

A similar absurdity would result, if we were to suppose a a less than b ; a a must 
therefore be equal to b, that is, the theorem is true. It has, indeed, been here as 
sumed as evident, that every determined positive ratio a has a determined positive 
square a a ; which is iricluded in this more general but equally evident principle, that 
any two determined positive ratios or numbers have a determined positive product. 

We find it, therefore, proved, by the most minute and rigorous examination, that 
if we conceive any positive ratio x or a to increase constantly and continuously from 
0, we must conceive its square x x or as to increase constantly and continuously with 
it, so as to pass successively but only once through every state of positive ratio b 
and therefore that every determined positive ratio b has . one determined positive 
square root pv b, which will be commensurable or incommensurable, according as b can 
or cannot be expressed as the square of a fraction. When b cannot be so expressed, 
it is still possible to approximate infractions to the incommensurable square root v' b, 
by choosing successively larger and larger positive denominators, and then seeking 
for every such denominator a the corresponding positive numerator n' which satisfies 
the two conditions (244. ; for although every fraction thus found will be less than 
the sought root iv b, yet the error, or the positive correction which must be added to 
it in order to produce the accurate root , b, is less than the reciprocal of the deno 
minator a, and therefore may be made as little different as we please from 0, (though 
it can never be made exactly  0, by choosing that denominator large enough. 
This process of approximation to an incommensurable root v' b is capable, therefore, 
of an indefinitely great, though never of a perfect accuracy ; and using the notation 

already given for limits, we may write 

721 72' n' 1 +721 t +n 
, b  L  if < b, x , > b7 (Q55.   ni' ' rn' in' in in 

and may think of the incommensurable root as the limit of the varying fractional 
number. 

The only additional remark which need be made, at present, on the subject of the 

progression of the square x .c, or a a, as depending on the progression of the root x, 
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or a, is that since (by the 24411 article the square remains positive and unchanged 
when the root is changed from positive to contra-positive, in such a manner that 

0a X ea=aX a, (256. 

the square a a must be conceived as first constantly and continuously decreasing or 

retrograding towards 0, and afterwards constantly and continuously increasing or 

advancing from 0, if the root a be conceived as constantly and continuously increas 

ing or advancing, in the general progression of ratio, from states indefinitely far from 
0 on the contra-positive side, to other states indefinitely far from 0, but on the posi 
tive side in the progression. 

On Continued Analogies, or Series of Proportional Steps ; and on Powers, and 
Roots, and Logarithms of Ratios. 

28. Four effective steps a bb'b" may be said to form a continued analogy or conti 
-nned proportion, a and b" being the extremes, and b and v the means, when they are 
connected by one common ratio in the following manner 

b" b' b. V b  7, (257. 

and if we denote for abridgement this common ratio by a, we may write 

b=axa,W=aXaXa,b":=aXaXax a. (258. 

Reciprocally, when b b' b" can be thus expressed, the four steps a b b' b'' compose a 
continued analogy ; and it is clear that if the first extreme step a and the common 
ratio a be given, the other steps can be deduced by the multiplications (258. It is 
easy also to perceive, that if the two extremes a and b" be given, the two means b and 
b' may be conceived to be determined (as necessarily connected with these in one and 
in only one way ; and thus that the insertion of two mean proportionals between two 

given effective steps, is never impossible nor ambiguous, like the insertion of a single 
mean proportional. In fact, it follows from the theorems of multiplication that the 
product a x a x a, which may be called the cube of the number or ratio a, is not 
obliged (like the square a x a to be always a positive ratio, but is positive or contra 
positive according as a itself (which may be called the cube-root of this product 
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axaxa)is positive or contra-positive ; and on examining the law of its progression, 
(as we lately examined the law of the progression of the square, we find that the cube 
a x a x a increases constantly and continuously with its cube-root a from states inde 

finitely far from zero, on the contra-positive side, to states indefinitely far advanced 
on the positive side of zero, in the general progression of ratio, so as to pass succes 

sively but only once through every state of contra-positive or positive ratio, instead of 
first decreasing or retrograding, and afterwards increasing or advancing, like the 

square. Thus every ratio has one and only one cube-root, (commensurable or in 

commensurable, although a ratio has sometimes two square-roots and sometimes none, 
according as it is positive or contra-positive ; and when the two extreme effective steps 
a and b" of the continued analogy (257. are given, we can always conceive the cube 

b" 
root a of their ratio  determined, and hence the two mean steps or mean propor a 
tionals of the analogy, b and b'. 

29. In general, as we conceived a continued analogy or series of equi-distant mo 
ments, generated from a single standard moment A, by the repetition of a forward 

step  and of a backward step 0 a; so we may now conceive, as another sort of conti 
nued analogy, a series of proportional steps, generated from a single standard (effec 
tive step a, by the repetition, of the act of multiplication which corresponds to and is 
determined by some one multiplier or ratio a (4 0), and of the inverse or reciprocal 
act of multiplication determined by the reciprocal multiplier or ratio II a : namely, the 

following series of proportional steps, 

a IlaXliaXila X a, IlaXlia X a, 'Ha X a, a, a X a,a  a X a, a X a X a X a,... 
(e59. 

which may also be thus denoted, 

a.. ll(a aa)x aoqa a)>< a,ilax a,1xa ax a, aaxa, aaax., ... (260. 

and in which we may consider the system or series of ratios or multipliers, 

... li (a a a), 71 (a a), 11 a, 1, a, a a, a a a, ... (261. 

to be a system generated from the original ratio or multiplier a, by a system of acts 
of generation having all one common character : as we before considered the system of 

multiple steps (98.), 

rh Oa Oa  0a, Oa  Oa, Oa, 0, a, a a, a  a - a, .w 

to be a system of steps generated from the original step a by a sy stem of acts of ge 
neration to which we gave the common name of acts of multiplying. 
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In conformity with this conception, we may call the original ratio a the base of the 

system of ratios (261. and may call those ratios by the common name of powers of 
that common base, and say that they are (or may be formed by acts of powering 
it. And to distinguish any one such power, or one such act of powering, from all 
the other powers in the system, or from all the other acts of powering, we may 
employ the aid of determining numbers, ordinal or cardinal, in a manner analogous 
to that explained in the 13th article for a system of multiple steps. Thus, we may 
call the ratios a, a a, a a a, ... by the common name of positive powers of the base 
a, and may distinguish them by the special ordinal names first, second, third, &c. ; so 
that the ratio a is, in this view, its own first positive power ; the second positive 
power is the square a a, and the third positive power is the cube. Again, we may 
call the ratio 1, which immediately precedes these positive powers in the series, the 

zero-power of the base a, by analogy to the zero-multiple in the series of multiple 
steps, which immediately preceded in that series the system of positive multiples ; 
and the ratios u a, u (a a , u (a a a , . which precede this zero-power 1 in the 
series of powers (261.), may be called, by the same analogy, from their order of 

position, contra-positive powers of a, so that the reciprocal u a of any ratio a is the 

first contra-positive power of that ratio, the reciprocal u (a a of its square is its 
second contra-positive power, and so on. We may also distinguish the several cor 

responding acts of powering by the corresponding cardinal numbers, positive, or 

contra-positive, or null, and may say (for example that the third positive power a a a 
is formed from the base a by the act of powering by positive three ; that the second 

contra-positive power u (a a is formed from the same base a by powering by contra 

positive two ; and that the zero-power 1 is (or may be formed from a by powering 
that base by the null cardinal or number none. In written symbols, answering to 
these thoughts and names, we may denote the series of powers (261.), and the series 
of proportional step (260.), as follows, 

03  a 2 a 02 01 0 1 a 3 . . . a a 2 a ay a7  v9 (262. 
and 

in which 

and 

a 3 X a, a02 X a a01x a, ao X a, al X al (0 X a, a3 X a, (263. 

a =1, (261. 

ae 1 it a 
e 2 a -'11 (a a), 03 a -II (a a a), 
&c. 

a, 2 a -aa, 
a  a a a, 

&c. 
(265. 

VOL. XVII. 3 Y 
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And we may give the name of exponents or logarithms to the determining numbers, 
ordinal or cardinal, 

... 3, 0 2, 0 1, 0, 1, 2, 3, (266. 

which answer the question " which in order is the Power ?" or this other question 
" Have any (effective acts of multiplication, equivalent or reciprocal to the original 
act of multiplying by the given ratio a, been combined to produce the act of multi 

plying by the Power ; and if any, then How many, and In which direction, that is, 
whether are they similar or opposite in effect, (as enlarging or diminishing the step on 
which they are performed, to that original act ?" Thus 2 is the logarithm of the 

square or second power a a, when compared with the base a ; 3 is the logarithm of 
the cube a a a, 1 is the logarithm of the base a itself, 0 1 is the logarithm of the 

reciprocal u a, and 0 is the logarithm of the ratio 1 considered as the zero-power 
of a. 

With these conceptions and notations of powers and logarithms, we can easily 
prove the relation 

a. x a P. 7.--a'+*, (267k 

for any integer logarithms ft and v, whether positive, or contra-positive, or null ; and 
this other connected relation 

b.  a. x P if b=aPd; (268. 

which may be thus expressed in words : " Any two powers of any common base may 
be multiplied together by adding their logarithms," and " Any proposed power may 
be powered by any proposed whole number, by multiplying its logarithm by that 
number," if the sum of the two proposed logarithms in the first case, or the multiple 
of the proposed logarithm in the second case, be employed as a new logarithm, to 
form a new power of the original base or ratio ; the logarithms here considered being 
all whole numbers. 

80. The act of passing from a base to a power, is connected with an inverse or 

reciprocal act of returning from the power to the base ; and the conceptions of both 
these acts are included in the more comprehensive conception of the act of passing 
from any one to any other of the ratios of the series (261. or (262.). This act of 

passing from any one powei a ' to any other power a' of a common base a, may be 
still called in general an act of powering ; and more particularly, (keeping up the 

analogy to the language already employed in the theory of multiple steps, it may be 

called the act of powering by thefractional number -v . By the same analogy of 
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definition, this fractional number may be called the logarithm of the resulting power, 
and the power itself may be denoted in written symbols as follows, 

(a'   ay (269, 
or thus, 

c=b;, if b=aP, a ay. (270. 

(The analogous formula (121. ought to have been printed  -v b , and not c  -v a , 
When b =iuX a, c=vX a. 

In the particular case when the numerator v is 1, and when, therefore, we have to 

power by the reciprocal of a whole number, we may call the result (am that is 

al,  a, a root or more fully the 12th root of the power or ratio as' ; and we may 
call the corresponding act of powering, an extraction of the Oh, root, or a rooting by 
the (whole number tt. Thus, to power any proposed ratio 1i by the reciprocal 

1 1 
number  or -3 ' is to extract the second or the third root, that is, (by what has been 2 
already shown, the square-root or the cube-root, of b, or to root the proposed ratio 
b by the number 2 or 3 ; and in conformity with this last mode of expression, the 

following notation may be employed, 

a=Vb when b=aiu, a=bIT: (271  

so that a square-root ,/b may also be denoted by the symbol avb, and the cube-root 
of b may be denoted by ,;/b. And whereas we saw, in considering square-roots that 
a contra-positive ratio b <0 has no square-root, and that a positive ratio b> 0 has two 
square-roots, one positive  b and the other contra-positive :7_70 J b, of which each 
has its square  b ; we may consider the new sign b or ,Vb as denoting indifferently 
either of these two roots, reserving the old sign Nib to denote specially that one of 
them which is positive, and the other old sign 0 J b to denote specially that one of 
them which is contra-positive. Thus b and 0 b shall still remain determinate 
signs, implying each a determinate ratio, (when b> 0, while and b a shall be used 
as ambiguous signs, susceptible each of two different meanings. But vb is a deter 
minate sign, because a ratio has only one cube-root. In general, an even root, such 
as the second, fourth, or sixth, of a proposed ratio b, is ambiguous if that ratio be 
positive, and impossible if b be contra-positive ; because an even power, or a power 
with an even integer for its logarithm, is always a positive ratio, whether the base be 
positive or contra-positive : but an odd root, such as the third or fifth, is always pos 
sible and determinate. 

31. It may, however, be useful to show more distinctly, by a method analogous to that 
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of the 26th and 27th articles, that for any proposed positive ratio b whatever, and 
for any positive ̀ hole number m, it is possible to determine, or conceive determined, 
one positive ratio a, and only one, which shall have its neth power =b ; and for this 

purpose to show that the power a 
m increases constantly and continuously from zero 

With a, so as to pass successively, but only once, through every state of positive 
ratio b. On examining the proof already given of this property, in the particular 
case of the power a 2, we see that in order to extend that proof to the more general 
case of the power a m, we have only to generalise, as follows, the 1st, IIId, and IVth 
Lemmas, and the Corollary of the 1st, with the Theorem resulting from all four, 
retaining the Iind Lemma. 

Vth Lemma : (generalised from 1st. 

If y  x, and x> 0, y> 0, then y  xm. (272. 

When m=1, this Lemma is evident, because the first powers and x 1 coincide with 
the ratios y and x. When m > 1, the Lemma may be easily deduced from the con 

ceptions of ratios, and of powers with positive integer exponents ; it may also be 

proved by observing that the difference 0 x m 
+y m, between the powers x m and gym, 

in which the symbol 0 x m denotes the same thing as if we had written more fully 
0 (x m), and which may be obtained in one way by the subtraction of x m from y 
may also be obtained in another way by multiplication from the difference 0 x  y 
as follows 

0 m  (0 x +y x (x01-1-niyo +x g321-my 
I 4, +x +x0y 01+m), (273. 

and is, therefore, positive, or contra-positive, or null, according as the difference 
x +y of the positive ratios x and y themselves is positive, or contra-positive, or 

null, because the other factor of the product (273. is positive. For example, 

0 x'+y3 (0 x +y x (x2 x y +y2 ; (274. 

and, therefore, when x and  and consequently x2+xy+y2 are positive, the dif 

ference 0 x'+ and the difference 9 a +y are positive, or contra-positive, or null 

together. 
As a Corollary of this Lemma, we see that, conversely, 

if y  'X n and x > 0, y > 0, then  S. (275. 
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Thus, the power atm and the root cc increase constantly together, when both are 

positive ratios. 
The logic of this last deduction, of the Corollary (275. from the Lemma (272.), 

must not be confounded with that erroneous form of argument which infers the truth 
of the antecedent of a true hypothetical proposition from the truth of the conse 

quent ; that is, with the too common sophism : If A be true then B is true ; but B is 
true, therefore A is true. The Lemma (272. asserts three hypothetical propositions, 
which are tacitly supposed to be each transformed, or logically converted, according 
to this valid principle, that the falsehood of the consequent of a true hypothetical 
proposition infers the falsehood of the antecedent ; or according to this just formula : 
If A were true then B would be true ; but B is false, therefore A is not true. Ap 
plying this just principle to each of the three hypothetical propositions of the Lemma, 
we are entitled to infer, by the general principles of Logic, these three converse 
hypothetical propositions : 

if y m x fn, then y 1 x 
if y 

m  Xm, then y  x ; 
if ym x in, then y x; 

(276. 

x and y being here any positive ratios, and m any positive whole number, and the 

signs . 4: denoting respectively " not > " and "not <" as the sign 4 denotes 
" not =". And if, to the propositions (276.), we join this principle of intuition in 
Algebra, as the Science of Pure Time, that a variable moment B must either follow, 
or coincide with, or precede a given or variable moment A, but cannot do two of 
these three things at once, and therefore (by the 21st article that a variable ratio y 
must, also bear one but only one of these three ordinal relations to a given or variable 
ratio x, which shows that 

and that 

when y > x in,. then y 
m  x in and y 

m x 
when y  x in, then y 

m x m and y m 1> x 73, 
when y < x m, then y J=. x m and y m x 

(277. 

when y *.x and. y x, then y > x, 
when y x and y x, then y  x, 
when y x and y 4 x, then y< x, 

we find finally that the Corollary (275. is true. The same logic was tacitly em. 
ployed in deducing the Corollary of the 1st Lemma, in the hope that it would be 
mentally supplied by the attentive reader. It has now been stated expressly, lest any 

(278. 
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should confound it with that dangerous and common fallacy, of inferring, in Pure 
Science, the necessary truth of a premiss in an argument, from the known truth of 
the conclusion. 

Resuming the more mathematical part of the research, we may next establish 
this 

VIth Lemma (generalised from IIId : There exists one positive ratio a, and only 
one, which satisfies all the following conditions, 

a> -, whenever (-, < 

n" 
a < whenever (nfl 

m 

-)> 
 

mil 

b being any given positive ratio, and m any given positive whole number, while 
m' n: m" n" are also positive but variable whole numbers. The proof of this Lemma 
is so like that of the IIId, that it need not be written here ; and it shows that in the 

particular case when the given ratio b is the mth power of a positive fraction 
n, 

, then a is that fraction itself. In general, it will soon be shown that under the 
m, 
conditions of this Lemma the mth power of a is b. 

VIIth Lemma (generalised from IVth). It is always possible to find, or to con 
ceive as found, two positive whole numbers 271, and no which shall satisfy the two 
conditions 

(71,m 
m 

> b' 
(- 

b" if b" > b' 6' 0 , 280. m 

m being any given positive whole number ; that is, we can insert between any two 

unequal positive ratios 6' and 6" an intermediate fractional ratio which is itself the 
mth power of a fraction. 

For, when m=1, this Lemma reduces itself to the IInd ; and when m > 1, the 

theorem(273. shows that the excess of (-1 +fly over 
n be expressed as m, \ lit I 

follows : 

in which 

n 
yn (1 -1-nyi 

1 
0 

( 
 x 

m, p, (281. 

77,7 
n o 2 +rnti n "+"21 +n\' 
m, m, m  m, 

n\2 (1 n\ 
3 -"I 

 1 n)e 
2" 1 n)i m 77-t,  7n, N. 7n,  

 n2  (282. 

7 9 
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for example, when m=3, the excess of the cube 11  
n)3 m over the cube (---n )3' is m, , 

(n 
, 3 . (1 +n\3 1 2 )2  ..._.n 1 +n 1+n o m--""  +I m,  m, ik m, I in, m, \ m, 

. (285. , 

In general, the number of the terms (or added parts in the expression (282.), is 
7, 0 , I+. 

912, and they are all unequal, the least being.    , and the greatest being 
/1 +ny)1+m' m, 

; their sum, therefore, is less than the Mth multiple of this greatest term, 
1, 1 
that is, 

(1 
 n I 

1  m 
p <mx 

m, I (284. 

and therefore the excess (281. is subject to the corresponding condition 

 n 
yz (I 

 
n; 

m 1 
ny 

'-1-m 
e k   <  

ni, nz, m, m, i (285. 
for example, 

li -m3 /1  n.\3 3 /1  n\2 0 (   
 

71Z, 
 

M, 
< 

Me 7111 (286. 

However this excess (281. increases constantly with n, when m, remains unaltered, 
because p so increases ; so that the 1  n fractions of the series 

f 1 .,I 
m 

 2 c\ 
\ m1 k mi 

m 
   1+n m 

\ nil  (287.  

increase by increasing differences, (or advance by increasing intervals, which are each 
less than 

1 .  k. 
m 1 +n 0 1 

r  in 
, and therefore than  if we choose nz, and n so as 

m, m, k, 
to satisfy the conditions 

.0i-Fm kmi. 
11-n=irn m,=k mxt =_____ . i ' (288. 

i and k being any two positive whole numbers assumed at pleasure ; with this choice, 
niii 

 therefore, of the numbers m, and n, some one (at least), such as  
.-' , of the 
m, 

series of powers of fractions (287.), of which the last is =im, will fall between any 
two proposed unequal positive ratios b' and b" , if the greater b" does not exceed that 
last over 2 m and if the difference a b' b" is not less thand these con di k ' 
tions can be always satisfied by a suitable choice of the whole numbers i and k, how 
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ever large may be the given greater positive ratio b", and however little may be its 

given excess over the lesser positive ratio b' . 
Hence, finally, this Theorem : 

n' nu 
If a > -i, and a < .---,,, m m 

, . 
whenever  n-u,  < b,  Ili: I  

m 
> b, m 

then a m --7 b, a ="4/.5  b WI ; j 

(289. 

b denoting any given positive ratio, and m any given positive whole number, 
while m' n' in" n" are any arbitrary positive whole numbers which satisfy these 
conditions, and a is another positive ratio which the VIth Lemma shows to be 
determined. 

For if am could be > b, we could, by the VIIth Lemma, insert between them a 
m 

positive fraction of the form  , such that 
m, 

n, 
)7n 'm, >6, a < 

ml 

m 
(290. 

and then by the Corollary of the Vth Lemma, and by the conditions (289.), we 
should deduce the two incompatible relations 

n, 21, < a, a < 
ml 

 
m, (291 q 

which would be absurd. A similar absurdity would follow from supposing that aft 
could be less than 6 ; cen must therefore be =6 that is, the Theorem is true. It 
has, indeed, been all along assumed as evident that every determined positive ratio a 
has a determined positive mth power a m, when m is a positive whole number ; which 
is included in this more general but also evident principle, that any m determined 

positive ratios or numbers have a determined positive product. 
Every positive ratio b has therefore one, and only one, positive ratio a for its 

7th root, which is commensurable or incommensurable, according as b can or 
m 

cannot beput under the form  ; but which, when incommensurable, may be 
m, 

theoretically conceived as the accurate limit of a variable fraction, 

a=m,vb if4 71-1 if mt fib, (1+1il1m > 6, 092. 711 M \-rn 
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and may be practically approached to, by determining such fractions with larger 
and larger whole numbers m' and n' for their denominators and numerators. And 
whether m be odd or even, we see that the power a 

"I increases continuously (as well 
as constantly with its positive root or base a, from zero up to states indefinitely 
greater and greater. But if this root, or base, or ratio a be conceived to advance 

constantly and continuously from states indefinitely far from zero on the contra 

positive side to states indefinitely far upon the positive side, then the power am will 
either advance constantly and continuously likewise, though not with the same quick 
ness, from contra-positive to positive states, or else will first constantly and continu 

ously retrograde to zero, and afterwards advance from zero, remaining always posi 
tive, according as the positive exponent or logarithm m is an odd or an even integer. 
It is understood that for any such positive exponent m, 

O'n=0, (Q93. 

the powers of 0 with positive integer exponents being considered as all themselves 

equal to 0, because the repeated multiplication by this null ratio generates from any 
one effective step a the series of proportional steps, 

a, 0 x a=0, 0X0X a =0, . (294. 

which may be continued indefinitely in one direction, and in which all steps after the 
first are null although we were obliged to exclude the consideration of such null 
ratios in forming the series (259. because we wished to continue that series of steps 
indefinitely in two opposite directions. 

32. We are now prepared to discuss completely the meaning, or meanings, if any, 
which ought to be assigned to any proposed symbol of the class bit, b denoting any 
proposed ratio, and p. and v any proposed whole numbers. By the 30th article, 
the symbol denotes generally the v'th power of a ratio a of which b is the ll'th 
power or, in other words, the with power of a Oh root of 6 ; so that the mental 

Y 
operation of passing from the ratio b to the ratio b IT , is compounded, (when it can 
be performed at all, of the two operations of first rooting by the one whole 
number /A, and then powering by the other whole number v ; and we may write, 

6/7,  (14/6)v  t7y. (295. 

The ratio b, and the whole numbers p. and v, may each be either positive, or contra 
positive, or null ; and thus there arise many cases, which may be still farther sub. 

VOL. XVII' 3 z 
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divided, by distinguishing between odd and even values of the positive or contra 
positive whole numbers. For, if we suppose that B denotes a positive ratio, and that 
m and n denote positive whole numbers, we may then suppose 

b=B, or b=0, or b=0 B, 
li  In, or ict =0, or u=0 m, 
v=n, or v=0, or v=0 n, 

and thus shall obtain the t1N enty-seven cases following, 

(296p 

n 0 0 n 
B m, B ni, B m 

n o 49 On .... 
Bo, Bo, B 0 

n 2 On 
Bern, B 0 'n , B e-74 

1 

(297l 

n o 0 n 
0 t7; , 0 7n , a m  
n 0 0 n 

a'T, 07, 0-;-, 
n 0 0 n 

0 7, 0e , o 677z; J 

(298d 

n 0 0 n 
(0 B ;  ; " , OD B Ti , (0 B m , 

0 n 
(9 B 7: 7 , (0 B 7 , (0 B 

n o 0 n 
(0 B iT ; i, (0 B  7 7 3 , (0 B 0713 , J 

(299. 

which we may still farther sub-divide by putting m and n under the forms 

m  9, i, or m  0 1  2 i, 
n=2 k, or n  0 1 +2 k,5 (300. 

in which i and k themselves denote positive whole numbers. But, various as these 
cases are, the only difficulty in discussing them arises from the occurrence, in some, 
of the ratio or number 0; and to remove this difficulty, we may lay down the fol 

lowing rules, deduced from the foregoing principles. 
To power the ratio 0 by any positive whole number m, gives, by (293.), the ratio 

0 as the result. This ratio 0 is, therefore, at least one rn'th root of 0 ; and since 
no positive or contra-positive ratio can thus give 0 when powered by any positive 
whole number, we see that the only m'th root of 0 is 0 itself. Thus, 

0 ,T.  0, (301. 
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and generally, 
r 1 

0 w 0. (302. 

To power any positive ratio a, whether positive, or contra-positive, or null, by the 
number or logarithm 0, may be considered to give 1 as the result ; because we can 

always construct at least this series of proportional steps, beginning with any one 
effective step a, and proceeding indefinitely in one direction 

1>; a, a X a, ax a x a, 

and we may still call the ratio 1 the zero-power, and the ratios a, a x a, .. the 

positive powers of the ratio a, even when we cannot continue this series of proportional 
steps (303. backward, like the series (259.), so as to determine any contra-positive 
powers of a ; namely, in that particular case when a  0. We may, therefore, con 
sider the equation (264.), a0 1, as including even this particular case a  0 ; and 
may write 

0 0=1, (304. 

and, therefore, by (301. and (295. 
. 

0 ,T, =1 : (305. 

we are also conducted to consider the symbols 
6n 1 

0 ", 0-27., (306. 

as absurd, the ratio 0 having no contra-positive powers. 
From the generality which we have been led to attribute to the equation a =1, it 

follows that the symbol 
1 1 

1 3. , and more generally 1., (307. 

is indeterminate, or that it is equally fit to denote all ratios whatever ; but that the 
symbol 

i v 
Fi, or F, if b 1, (308. 

is absurd, or that it cannot properly denote any ratio. In particular, the symbols 

1 v 
07, 0.7, (309. 
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are absurd, or denote no ratios whatever. In like manner the symbol 
1 y 

0 a77,z, and more generally 0 0-72, (310. 

is absurd, or denotes no ratio, because no ratio a can satisfy the equation 

af"2=0. (311.). 

We have thus discussed all the nine cases (298.), of powers in which the base is 0, 
and have found them all to be impossible, except the two first, in which the exponents 
are I. , and . t- , and in which the resulting powers are respectively 0 and 1. We 
have also obtained sufficient elements for discussing all the other cases (297. and 

(099.), with their sub-divisions (300.), as follows. 

1st. B m is determined and positive, unless m is even, and n odd ; in which case 
0 1+2 h 

it becomes of the form B 2. , and is ambiguous, being capable of denoting either 
of two opposite ratios, a positive or a contra-positive. To distinguish these among 
themselves, we may denote the positive one by the symbol 

0 1+2 k 
B 21 , (312.  

and the contra-positive one by the symbol 
0 1+2 k 

0 B 2 ; (313. . 

for example, the two values of the square-root 4/13 or n 1, may be denoted for dis 
tinction by the two separate symbols 

1 1 
n2 NiB, 0 n2=0,,,/n. (MC 

. 
The other three cases of the notation ni7z, namely, the symbols 

0 1+2 k 2 k 2 k 
0 1+2 i 0 1+2 i 2 i B , B , B , 

denote determined positive ratios. 
2c1. The three cases 

(315. 

1+0 (2 k 0 (2 h a(2 h 
o 1+2i Au.so01+2i .,, 2i 016. B , 

0 n , 
of the notation n rn, are symbols of determined positive ratios ; but the case 
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1  0 (2 k , B 2 i is ambiguous, this symbol denoting either a determined positive ratio Or a 

determined contra-positive ratio, which may be thus respectively marked, when we 
wish to distinguish them from each other, 

In general, we may write, 

1+0 (2 h 1+0 (2 h 
B 22 , 0 33 2i  0 0 (317n 

0 n n z , B m  11 03 m), (318. 

the latter of these two symbols having the same meaning or meanings as the 
former. 

3d. The symbols 
0 1+2 h 2k 2k 

1+0 (2 92 n e(2 / 1+0 (2 0 n , B 9 (319. 
. 

included in the form B 0 7n , denote determined positive ratios ; but the other symbol 0 1+2 kn1 
i B 0 (2 2 , included in the same form B 0 ni, is ambiguous, denoting either a deter 

mined positive or a determined contra-positive ratio, 

0 1+2 k 01+2k 
B e (20, or 0 n e (2 1 . O 0 

In general, we may write 

21 , 2, B 0 m =11 kB tr9 . 

4th. In like manner, we may write, 
0 n n 

B 0 '3  B m, 

(320. 

the former symbol having always the same meaning or meanings as the latter. The 
cases 

1+0 (2 k 0 (2 k  (2 k 
B 1+0 (2 ij B 1+0 (2 2 B e (2z5 , 5 5 (323. 

1+0 2 k , 
are symbols of determined positive ratios ; but the case B -0-(2 0 is ambiguous, and 
includes two opposite ratios, which may be thus respectively denoted, 

1+0(2k 1+0 (2 k 
B 0 (2 i , 0 B 0 (2 2 0 (324. 
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In general, we shall denote by the symbol 
y y 

13; , Or b ,1 ", if b > 0, au  0, v 0, (325. . . 

that positive ratio which is either the only value, or at least one of the values of the 
p . 

symbol 13/7 or b p7; and it is important to observe that this positive ratio is not 
changed, when the form of the fractional logarithm 2: is changed, as if it were a 
fractional multiplier, by the rule (135.), to the form w).--S--L , or (as it may be more W xp. 
concisely written 4.'--Y- ; that is, co I.,,, 

Wy V 
B " =B fh : C 0 (326. 

a theorem which is easily proved by means of the relation (268.), combined with the 
determinateness (already proved of that positive ratio which results from powering 
or rooting any proposed positive ratio by any positive or contra-positive whole 
number. 

5th. With respect to the five remaining notations of the group (297.), namely, 
those in which 0 occurs, we have 

also the symbols 

o 
B '7=1 

0 
B 0m!1 (327. 

n On 
BP, g y, (3Q8j 

are each indeterminate when B=1, and absurd in the contrary case ; and, finally, the 
symbol 

o 
B a (329. 

is absurd when n 4 1, but determined and =1, when B =1.. 
6th. Proceeding to the group (299.), the symbols 

ts o on 
(0 n -a-, (0 B 7, (0 B 7 , (330. 

are absurd ; the symbols 
. . 

(e B 'Th, (e B 7m, (331. 

are determined and each  1, if m be odd, but otherwise they are absurd ; and the 
four remaining symbols 

n On n On 
CO B 'n, (E B 17n , (0 B 0-in , (0 B +17M , On 
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are absurd if m be even, but denote determined ratios when m is odd, which ratios 
are positive if n be even, but contra-positive if n be odd. 

It must be remembered that all the foregoing discussion of the cases of the general v 
notation VA, for powers with fractional logarithms, is founded on the definition laid 

L 
down in the 30th article, that b A denotes the v'th power of a p.'th root of b, or in 
other words, the v'th power of a ratio a of which b is the ifth power. When no such 
ratio a can be found, consistently with the previous conception of powers with integer 

 
i 

t. 
logarithms, the symbol b A is pronounced to be absurd, or to be incapable of denoting 
any ratio consistently with its general definition ; and when two or more such ratios 
a can be found, each having its eu'th power  b, we have pronounced that the frac 

v 
tional power bi, is ambiguous or indeterminate, except in those cases in which the 
second component act of powering by the numerator v has happened to destroy the inde 
terminateness. And with respect to powers with integer exponents, it is to be remem 
bered that we always define them by a reference to a series of proportional steps, of which 
at least the original step (corresponding to the zero-power is supposed to be an effective 
step, and which can always be continued indefinitely, at least in the positive direction, 
that is,' in the way of repeated multiplication by the ratio proposed as the base, al 

though in the particular case of a null ratio, we cannot continue the series backward 

by division, so as to find any contra-positive powers. These definitions appear to be 
the most natural ; but others might have been assumed, and then other results would 
have followed. In general, the definitions of mathematical science are not altogether 
arbitrary, but a certain discretion is allowed in the selection of them, although when 
once selected, they must then be consistently reasoned from. 

33. The foregoing article enables us to assign one determined positive ratio, and 
only one, as denoted by the symbol bea , when b is any determinedpositive ratio, and 
a any fractional number with a numerator and a denominator each different from 0 
it shows also that this ratio ,,(2 does not change when we transform the expression of 
the fractional logarithm a by introducing or suppressing any whole number w as a factor 
common to both numerator and denominator ; and permits us to write 

be.  u(ba), . . (333. 

0 a being the opposite of the fraction a in the sense of the 17th article. More gene 
rally, by the meaning of the notation boa and by the determinateness of thosepositive 
ratios which result from the powering or rooting of determined positive ratios by de 
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termined integer numbers, (setting aside the impossible or indeterminate case of root 

ing by the number 0, we have the relation 

bP X ba  ba--k, (334. O 0 0 

which is analogous to (267. ; and the relation 

co  boxc, if c  b., (335. . . . 

analogous to (268. : a and j3 denoting here any two commensurable numbers. And 
it is easy to see that while the fractional exponent or logarithm a increases, advancing 
successively through all fractional states in the progression from contra-positive to 

positive, the positive ratio boa increases constantly if b > 1, or else decreases constantly 
if b < 1, (b > 0, or remains constantly  1 if b  1. But to show that this increase 
or decrease of the power with the exponent is continuous as well as constant, we must 

establishprinciples for the interpretation of the symbol oba when a is not a fraction. 
When a is incommensurable, but b still positive, it may be proved that we shall still 

have these last relations (334. and (385.), if we interpret the symbol to to denote 
that determined positive ratio c which satisfies the following conditions : 

n' n' C  ba > b t-Tz ' whenever a > Te , O 0 
n" n" c ba < b 7" whenever a< ,77,,,, O 0 

if b >1 ; 1 

(336. 

or else these other conditions, 
n' n' C  ba < b717' whenever a > ,, O 0 
n'. 

c  ba > Pi whenever a <771.:, O 0 
if b< 1, b>0; 1 

(337 - 

or finally this equation, 

c Liz ba  1, if le  1. If 

The reader will soon perceive the reasonableness of these interpretations ; but he may 
desire to see it proved that the conditions (336. or (337. can always be satisfied by 
one positive ratio c, and only one, whatever determined ratio may be denoted by a, 
and whatever positive ratio (different from 1 by b. That at least one such positive 



and on Algebra as the Science of Pure Time. 387 

ratio c =boa can be found, whatever incommensurable number the exponent a may 
be, is easily proved from the circumstance that none of the conditions (336. are in 

compatible with one another if b > 1, and that none of the conditions (337. are in 
compatible with each other in the contrary case, by reason of the constant increase or 
constant decrease of the fractional power ob:, for constantly increasing values of the 
fractional exponent :. And that only one such positive ratio c =boa can be found, 
or that no two different positive ratios c, c', can both satisfy all these conditions may 
be proved for the case b > 1 by the following process, which can without difficulty be 
adapted to the other case. . 

The fractional powers of b comprised in the series 
I2 3 tm 1-Fint 

b z, Fi, FL, b7-7- , b m , (339.  . 0 0 0 0 0 

increase (when b> 1 by increasing differences, .of which the last is 
Li 

sin I-1- i 1 
0 b-ii;  b---..  b (9 1 b;; ; (540. . . . 

this last difference, therefore, and by still stronger reason each of the others which 
precede it, will be less than 171, if 

1>kbf (541. 

and 

0 1  h!. < Li : . (34Q. 

and this last condition will be satisfied, if 

m > 1(01  h), (343. 

land m (like i and k denoting any positive whole numbers ; for then we shall have 

1  7 eb, (344. 

and by still stronger reason 

(1 x -II 
'n 

 > b, 1 +!i> b,.,, (345. 

observing that 

(1  li m 1 +7, if m > 1, (346. 
VOL. XVII. 4e 
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because, by the theorem of multiplication (73.), or (281.), 

1 "2 1 1 2 
01  (1  T 

 
71 {1 

 (1  i  (1 +7  ...  (I  71  ell. (3470 

If then c c be any two proposed unequal positive ratios, of which we may suppose 
that c is the greater, 

c' > c, c > 0, (348. 

we may choose two positive whole numbers i, k, so large that 

b' > c, 1, < 0 c  c' 7c (349. 

and two other positive whole numbers 1, m, large enough to satisfy the conditions 
. 

(341. (343. ; and then we shall be sure that some one at least, such as bm, of the . 
fractional powers of b comprised in the series (339. will fall between the two proposed 
unequal ratios c c', so that 

fa ra 
c < h; , c' > B,; . . (350. 

If then the one ratio c satisfy all the conditions (336.), the incommensurable number 
a must be <77 and therefore, by the 2nd relation (350.), the other ratio c' cannot also 

2. 
satisfy all the conditions of the same form, since it is > b m, although a < 1. In like 
manner, if the greater ratio c' satisfy all the conditions of thb0 form 036. the lesser ratio c 
cannot also satisfy them all, because in this case the incommensurable number a will be >77%1. 
No two unequal positive ratios, therefore, can satisfy all those conditions : they are there 
fore satisfied by one positive ratio and only one, and the symbol boa (interpreted by 
them denotes a determined positive ratio when b > 1. For a similar reason the same 

symbol b interpreted by the conditions (337.), denotes a determined positive ratio 
when b < 1, b > 0 ; and for the remaining case of a positive base, b  1, the symbol 
V denotes still, by (338. a determined positive ratio, namely, the ratio 1. The ex . 
ponent or logarithm a has, in these late investigations, been supposed to be incom 
mensurable ; when that exponent a is commensurable, the base b being still positive, 
we saw that the symbol boa can be interpreted more easily, as a power of a root, and 
that it always denotes a determined positive ratio. 

Reciprocally, in the equation 
C  ba , . 

if the power o be any determined positive ratio, and if the exponent a be any deter. 

(351. 



and on Algebra as the Science of Pure Time. 889 

mined ratio, positive or contra-positive, we can deduce the positive base or ratio b, by 
calculating the inverse or reciprocal power 

6  ea , (352. 0 

as appears from the relation (335. which extends, as was above announced, together 
with the relation (334.), even to the case of incommensurable exponents. The proof 
of the important extension last alluded to, will easily suggest itself to those who have 
studied the foregoing demonstrations ; and they will perceive that with the foregoing 
rules for the interpretation of the symbol Zia , for the case of an incommensurable ex 
ponent, the power ba increases (as was said above continuously as well as constantly 
with the exponent a if the base b be > 1, or else decreases continuously and con 
stantly if that positive base be z 1, but remains constantly  I. if ,:b  1. It is 
therefore possible to find one determined exponent or logarithm a, and only one, 
which shall satisfy the equation (351.), when the power c and the base 6 are any given 
positive ratios, except in the impossible or indeterminate case when this base 6 is the 

particular ratio 1 ; and the number a thus determined, whether positive or contra 

positive or null, may be called " the logarithm of c to the base b," and may be denoted 
by the symbol 

a  log , . c. (353. 

It is still more easy to perceive, finally, that when this logarithm a is given, (even 
if it be incommensurable, the power c increases constantly and continuously from 
zero with the base h, if a > 0, or else decreases constantly and continuously towards 
zero if a < 0, or remains constant and  1, if a  0. 

Remarks on the Notation of this Essay, and on some modifications by which it may 
be made more like the Notation commonly employed. 

31. In the foregoing articles we have constantly denoted moments, or indivisible 

points of time, by small capital letters, A, B, A', B', &C. ; and steps, or transitions from 
one such moment to others, by small Roman letters, a, b, a', b' , &c. The mark  
has been interposed between the marks of two moments, to express the ordinal rela 
tion of those two moments, or the step which must be made in order to pass from 
one to the other ; and the mark  has been inserted between the marks of a step 
and a moment, or between the marks of two steps, to denote the application of the 
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step to the moment, or the composition of the two steps with each other. For the 

decomposition of a step into others, we have used no special mark ; but employed 
the theorem that such decomposition can be performed by compounding with the 

given compound step the opposites of the given component steps, and a special nota 
tion for such opposite steps, namely, the mark 0 prefixed ; so that we have written 
0 a to denote the step opposite to the step a, and consequently e a  b to denote the 

algebraical excess of the step b over the step a, because this excess may be conceived, 
as a step compounded of b and e a. However, we might have agreed to write 

(b 4-A)-(a uA) b a, (354. 

denoting the step from the moment a  A to the moment b  A, for conciseness by 
b a; and then b  a would have been another symbol for the algebraical excess of 
the step b over the step a, and we should have had the equation 

b-a=e0a-Fb. (355. 

We might thus have been led to interpose the mark  between the marks of a corn, 

pound step b and a component step a, in order to denote the other component step, 
or the algebraical remainder which results from the algebraical subtraction of the 
component from the compound. 

Again, we have used the Greek letters It v p w, with or without accents, to denote 
integer numbers in general, and the italic letters iklmn to denote positive whole 
numbers in particular ; using also the earlier letters aPy a b c d to denote any 
ratios whatever, commensurable or incommensurable, and in one recent investigation 
the capital letter B to denote any positive ratio and employed, in the cornbi 
nation of these symbols of numbers, or of ratios, the same marks of addition and of 

opposition,  and 0, which had been already employed for steps, and the mark of 

multiplication x , without any special mark for ,subtraction. We might, llowevec, 
have agreed to write, in general, 

(b X a  (a x a  (b  a X a, (356. 
as we wrote 

(b x   (a x it  (b  a X a; 

and then the symbol b -a would have denoted the algebraical excess of the number 

 This mark has been printed, for want of the proper type, like a Greek Theta in this Essay : it was 
4esigned to be printed thus e. 
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1 over the number a, or the remainder obtained by the algebraical subtraction of the 
latter number from the former and we should have had the equation, 

b-a=9 a+6, (357. 

which is, with respect to numbers, or ratios, what the equation (355. is, with respect 
to steps. And when such symbols of remainders, b a or b  a, are to be combined 
with other symbols in the way of algebraical addition, it results, from principles 
already explained, that they need not be enclosed in parentheses ; for example, we 

may write simply c  b. a instead of c   b a ), because the sum denoted by this 
last notation is equivalent to the remainder   b  a. But the parentheses (or 
some other combining mark must be used, when a remainder is to be subtracted ; 
thus the symbol b a is to be interpreted as  b a, and not as c (b  a), 
which latter symbol is equivalent to  c b ; a, or c  b-1 a. 

35. With this way of denoting the algebraical subtraction of steps, and that of 
numbers, we have the formula, 

 a =ea, 0-a=0 a, (358. 

0 denoting in the one a null step, and in the other a null number. And if we farther 
agree to suppress (for abridgement this symbol 0 when it occurs in such combina, 
nations as the following, O. At 0 4, 0 a, 0-a, writing, in the case of steps, 

0  a   a, 0  a=- a, (359. 

and similarly, in the case of numbers, 

0+a  -a -a, (3600 

and, in like manner, 

0  a.-xb +a+. b, 0-akb -a b., 
0 +a-u:b=+ah.-b, 0 -azb -ag.b, 

we shall then have the formula 

(361. 

 a a,  a=etat (36Q. 
and 

+a=a, -a=0 a, (363. 

of which the one refers to steps and the other to numbers. With these conventions, 
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the prefixing of the mark  to an isolated symbol of a step or of a number, does 
not change the meaning of the symbol ; but the prefixing of the mark  converts 
that symbol into another, which denotes the opposite of the original step, or the 
opposite of the original number ; so that the series of whole numbers (103. or (266. 
may be written as follows . 

... -3, -.2, -1, 0,  1,  2,  3, ... 
Also, in this notation, 

b -j:   a,) b -f. a, b Liz   a) b r a, 

bz-(+a)=b o-: a, b  ( a  bri- a. 

36. Finally, as we wrote, for the case of commensurable steps, 

v X a v    
it X a tt 

(364. 

(365. 

L and v being here whole numbers, so we may agree to write, in general, 

bxa _b (366. ax a a 

whatever ratios a and b may be ; and then this symbol 
1 
74 will denote, in general, the 

algebraic quotient obtained by dividing the number or ratio b by the number or ratio 
a ; whereas we had before no general way of denoting such a quotient, except by the 
mark u prefixed to the symbol of the divisor a, so as to form a symbol of the reci 

procal number u a, to multiply by which latter number is equivalent to dividing by 
the former. Comparing the two notations, we have the formula, 

and generally 

-I  11 a, a (367. 

b 
II - b xua. a (368. 

These two marks 0 and u have been the only new marks introduced in this Ele 

mentary Essay ; although the notation employed for powers differs a little from the 
common notation : especially the symbol b. a, suggested by those researches of Mr. 
Graves respecting the general expression of powers and logarithms, which were the 
first occasion of the conception of that Theory of Conjugate Functions to which we 
now proceed. 

END OP THE PRELIMINARY AND ELEMENTARY ESSAY. 
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THEORY OF CONJUGATE FUNCTIONS, 

OR ALGEBRAIC COUPLES, 

On Couples of Moments, and of Steps, in Time. 

1. When we have imagined any one moment of time Ai, which we may call a 
primary moment, we may again imagine a moment of time A2, and may call this a 
secondary moment, without regarding whether it follows, or coincides with, or pre 
cedes the primary, in the common progression of time ; we may also speak of this 
primary and this secondary moment as forming a couple of moments, or a moment 
couple, which may be denoted thus, (A A2). Again, we may imagine any other two 
moments, a primary and a secondary, Bj and 132, distinct from or coincident with each 
other, and forming another moment-couple, (B1, n2 and we may compare the latter 
couple of moments with the former, moment with moment, primary with primary, 
and secondary with secondary, examining how Bi is ordinally related to A and how 
B2 is ordinally related to A2, in the progression of time, as coincident, or subsequent, 
or precedent ; and thus may obtain a couple of ordinal relations, which may be thus 
separately denoted Bi A1, B2 - A2, or thus collectively, as a relation-couple, 

(131 A1, B2 A2) 

This couple of ordinal relations between moments may also be conceived as consti. 
tuting a complex relation of one moment-couple to another a and in conformity with 
this conception it may be thus denoted, 

(111, B2  (A1, A2), 
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so that, comparing this with the former way of representing it, we may establish the 
written equation, 

Bl, B2  (All A2  (131 A1 B2   1. 

Instead of conceiving thus a couple of ordinal relations between moments, or a 
relation between two couples of moments, discovered by the (analytic comparison of 
one such couple of moments with another, we may conceive a couple of steps in the 

progression of time, from moment to moment respectively, or a single complex step 
which we may call a step-couple from one moment-couple to another, serving to 

generate (synthetically one of these moment-couples from the other ; and if we 
denote the two separate steps by al, a 2,  a 1 being the step from Al to B,2$1 and a2 being 
the step from A2 to B2, so that in the notation of the Preliminary Essay, 

 al +Ai, B2  a2 A2, 
 (B1   Al, 132  (B2  A2  A2, 

we may now establish this analogous notation for couples, 

(B1, B2  a i  A1 a2  A2 
  a I, a2 +(A1, A, 
 {(131,  (A1 A2)1 (A1 AO 

the symbol (n1, B,  (Ai, A2 corresponding now to the conception of the step-couple by 
which we may pass from the moment-couple (A1, AO to the moment-couple (B1, B2), and 
the equivalent symbol  a 1, a2 or (n -A19 B2 AO corresponding now to the conception 
of the couple of steps al, a2, from the two moments A1, A2, to the two moments B1, B2, 
respectively. The step .1, or Bt -Ai may be called the primary step of the couple 
 a 1, all and the step a2 or 132  A2 may be called the secondary step. 

A step-couple may be said to be effective when it actually changes the moment 

couple to which it is applied ; that is, when one at least of its two coupled steps is 
effective : and in the contrary case, that is, when both those coupled steps are sepa 
rately null, the step-couple itself may be said to be null also. And effective step-couples 
may be distinguished into singly effective and doubly effective step-couples, according 
as they alter one or both of the two moments of the moment-couples to which they 
are applied. Finally, a singly effective step-couple may be called a pure primary or 

pure secondary step-couple, according as only its primary or only its secondary step 
is effective, that is, according as it alters only the primary or only the secondary 
moment. Thus (0, 0 is a null step-couple,  a 1, a2 is a doubly effective step-couple, 
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and  1, 0 (0, a2 are singly effective step-couples, the former  a, 0 being a pure 
primary, and the latter (0, a2 being a pure secondary, if 0 denote a null step, 
4n a1 a2 effective steps. 

On the Composition and Decomposition of Step Couples, 

2. Having stepped from one couple of moments (A,, A2 to another couple of 
moments (B1, B2 by one step-couple  an a2), we may afterwards step to a third 

couple of moments (el, c2 by a second step-couple  b 1, b2), so as to have 

(c1, c2)=(b1, b2 (n1, B2), 
(B1, B2   a b a2 (A1 A2 ; 

and then we may consider ourselves as having made upon the whole a compound 
couple of steps, or a compound step-couple, from the first moment-couple (A1, A2 to 
the third moment-couple (c1, c2), and may agree to call this compound step-couple 
the sum of the two component step-couples  a 1, a2), b  b2), or to say that is formed 
by adding them, and to denote as follows, 

(C1, -- (A1, A2  b b2  a a2 ; (4. 

as, in the language of the Preliminary Essay, the two separate compound steps, from 
Al to c1 and from A2 to c2 are the sums of the component steps, and are denoted by 
the symbols bi  al and b 2 a2 respectively. With these notations, we have evi 
dently the equation 

(bo b2)w(ai, a0=(b1 a1,b2 a2); (5. 

that is, the sum of two step-couples may be formed by coupling the two sum-steps, 
Hence, also, 

(b1,b0+(ai, a2 (al, a2 +(b1, (6. 

that is, the order of any two component step-couples may be changed without altering 
the result ; and 

 a 1, a.  a 1, 0  (0, a2), (7. 

that is, every doubly effective step-couple is the sum of a pure primary and a pure 
VOL. xvu, 4 13 

(3. 
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secondary. In like manner, we can conceive sums of more than two step-couples, 
and may establish, for such sums, relations analogous to those marked (5. and (6. ; 
thus, 

(c1, c2 1-(b), 2)+(ab a2)=(c1 b1 al, C2 b2 a2), 
(8. 

=Cal a2)+(bi, b2)+(ci, c2 &C. 

We may also consider the decomposition of a step-couple, or the subtraction of one 
such step-couple from another, and may write, 

(b b2)-(a a2)=(bi-a1 b2 as), (9 

(b b 2  a  .12 being that sought step-couple which must be compounded with or 
added to the given component step-couple (a a2 in order to produce the given 
compound step-couple (b 1, b 2). And if we agree to suppress the symbol of a null 

step-couple, when it is combined with others or others with it in the way of addition 
or subtraction, we may write 

a2)=(), 0 +(al, a 2) +(al, a2),1 
(-a  a0=0, 0)-(a a2) a2),51 (10. 

employing a notation analogous to that explained for single steps in the 35th article 
of the Preliminary Essay. Thus +(al, a2 is another way of denoting the step 
couple  a  a2 itself ; and   a 1, a 2 is a way of denoting the opposite step-couple 
 a  a2). 

On the Multiplication of a Step Couple by a Number. 

3. From any proposed moment-couple (A1, A2), and any proposed step-couple 
(a a2 ), we may generate a series of other moment-couples 

   (E'1, E'2), (El, ED, (A1, A2) (131, 132), (B'1, e2    (11. 

by repeatedly applying this step-couple  al, a2 itself, and the opposite step-couple 
al, or al,  82 ), in a way analogous to the process of the 13th article of 

the Preliminary Essay, as follows : 
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bnyesirxdptv 
(B 1, L'2   a 1,  a 2   a 1,  a 2  (A1, A2), 
(E E2   a 1, a2 (A A 1), 
(A1, A2  (Ai, A2), 
(B1, B2  1, a 2  (Al, A2), 
(13'1, B'2  1, a 2  , a 2  A2), 

qmaclqvykez 

and a series of multiple step-couples, namely 

ndjaucxmpws 
(E'D B12 (A1, A2   a 1 a2 
(El, E2 (A1, A2   a i,  a 2 
(A1, A2 (A1, A2  (0, 0), 
(111, B2 (Al, A2  (al, a 2), 
(B'1, 13'0  (A1, A2  (a /, a 2  a 2), 

trilfhobgtk 

which may be thus more concisely denoted, 

 -a1, --- a 2), 

(18. 

(15. 

(E'l, E'2   (al, a 2  (A1, 
(El, E2 (a 1, a 2  (A1, 
(A1, A2   0 (a 1, a 2  (A1, AO, 04. 
(B1, BO  1 (a 1, a  AO, 
(13' ,   2 (a 1, a 2  (A1, A2), 

and 
bcaejiw    

ufognxhdzms 
(E'1, E'2 (A1, A2  2 (a 1, a  X (a 19 
(E1, E2 (A1, A2  1 (a 1, a 2  -1 X (a 1, 
(A1, A2  (A1, A2  0 (a 1, a  o X (a 1, 
(Bo B2)-(A1, 1 1, a2  1 X (a 1, 
(13%, B'2 (A1, A2  2 (a 1, a 2 X (a 1, 

&c. 

We may also conceive step-couples which shall be sub-multiples and fractions of a 

given step-couple, and may write 

(c 1, c  X (b1, b2  b2), (16. 

a 2), 
a 2), 
a 2), 
a 2), 
a 2), 
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when the two step-couples (b,, b2 (c  c2 are related as multiples to one common 
step-couple  a  a2 as follows : 

 
(b1, b2  p. X (a12 at), (c1, c2  V X (a12 a2), (17. 

it and v being any two proposed whole numbers. And if we suppose the fractional 
multiplier in (16. to tend to any incommensurable limit a, we may denote by t 
a x (b  b2 the corresponding limit of the fractional product, and may consider this 
latter limit as the product obtained by multiplying the step-couple (b 1, b2 by the in 
commensurable multiplier or number a; so that we may write, 

 c1, C2  a x (b1, 1)2  a (b f, b2), 
if (c1,  L (-(b b2) and a=L1' , ti  it 

using L as the mark of a limit, as in the notation of the Preliminary Essay. It follows 
from these conceptions of the multiplication of a step-couple by a number, that gene 
rally 

a x (al, a2  (a all a a (19l 

whatever steps may he denoted by al, a2, and whatever number (commensurable or 

incommensurable, and positive or contra-positive or null may be denoted by a. 
Hence also we may write 

(a al, a a'2  a, 
(al, a2 

and may consider the number a as expressing the ratio of the step-couple (a al, a a2 
to the step-coup!e  a a2). 

On the Multiplication of a Step Couple by a Number Couple ; and on the Ratio of 
one Step-Couple to another. 

4. The formula (20. enables us, in an infinite variety of cases, to assign a single 
number a as the ratio of one proposed step-couple (1)1 b2 to another (a ai); 

namely, in all those cases in which the primary and secondary steps of the one couple 
arc proportional to those of the other : but it fails to assign such a ratio, in all those 

 
(18. 

(20. 
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other cases in villich this condition is not satisfied. The spirit of the present Theory 
of Couples leads us, however, to conceive that the ratio of any one effective step 
couple to any other may perhaps be expressed in general by a number-couple, or 
couple of numbers, a primary and a secondary ; dnd that with reference to this more 
general view of such ratio, the relation (20. might be more fully written thus, 

(al al, a I all 
(al, a2 

 (a', 0), (21 

and the relation (19. as follows, 

(r ,, x a2  (a1, 0 (ai, a2  (al al, al a2), (22. 

the single number a1 being changed to the couple (a1, 0), which may be called apure 
primary number-couple. The spirit of this theory of primaries and secondaries leads 
us also to conceive that the ratio of any step-couple (b 1, b2 to any pure primary 

step-couple  al, 0), may be expressed by coupling the two ratios -b1, 22-2 , which the 
al al 

two steps b I, b2 bear to the effective primary step al; so that we may write 

(1)1. b2 (hi b2 (a1 all a2 al =a a2), (23. 
(a 0 

 
'a,2, a2. (a12 0  

and in like manner, by the general connexion of multiplication with ratio, 

(a a2 x (a12 0  (a1, a2 (al, 0 (a, a a2 a1). (24. 

From the relations (22. (24.), it follows by (5. that 

(1),  a1, 0  a a2  (b12 0  no a2  (al, 0  asp a 2 )7 (25. 

and that 

(a1 a2 (b al, 0 (al, a2 (131, 0)-1 (at, a2  a 1, 0 7 (26. 

and the spirit of the present extension of reasonings and operations on single mo 
ments, steps, and numbers, to moment-couples, step-couples, and number-couples, 
leads us_to determine (if we can what remains yet undetermined in the conception of 
a number-couple, as a multiplier or as a ratio, so as to satisfy the two following more 

general conditions, 

(b,  al, b2 a2  a1, .2)=(b1, b2 (a1, a2 +(a', a2 a2), (27. 

and 

(a,, a2 (b,-1 a 1 b2 a 2  (a1, a2  (13 1, b  (al a2  a 1, a 2), (28. 
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whatever numbers may be denoted by a1 a, b1 b2, and whatever steps by a a2 bi 1)2. 
With these conditions we have 

(a1, a2  a 1, a 2  (a1, 0  a 19 a 2  (0 a2  a 1, a 2)7 (29. 

(0, a2  a 1 a 2 (0, a2   0  (0, ch (0, a2), (30. 

and, therefore, by (22. and  4.), and by the formula for sums, 

(a1, a2 al, a 2  (a, a 2, a1 a 1  (0, a2 a 1  (0, all (01 a 2 

=(a1 a I, a, .2 a, a1  (0, a2 (0, a 01 (31. 

in which the product (0, a2 (0, a 2 remains still undetermined. It must, however, 
by the spirit of the present theory, be supposed to be some step-couple, 

(0, a2 (0, a  c c ; (32. 

and these two steps ci e2 must each vary proportionally to the product a2 a2, since 
otherwise it could be proved that the foregoing conditions, (27. and (28.), would not 
be satisfied ; we are, therefore, to suppose 

c1  71 a9 a2, c2  72 a2 a2, (38. 
that is, 

(0, a2 (0, a 2 (71 a2 a2, 72 a2 as), (34. 

yi, 72, being some two constant numbers, independent of a2_and a2, but otherwise 

capable of being chosen at pleasure. Thus, the general formula for the product of a 

step-couple  a 1, a 2 multiplied by a number-couple (a1, a2), is, by (31. (34. and by 
the theorem for sums, 

(al, a,  a 1, a 2  (al al, a1 a2 a2 al (yi a2 a2s 72 a2 .2 

 (a1 al  yi a, 821 al a, a2 a1  72 a2 a2 (55. 

and accordingly this formula satisfies the conditions (27. and (28.), and includes the 
relations (22. and (244.), whatever arbitrary numbers we choose for 7 and 72 ; pro 
vided that after one choosing these numbers, which we may call the constants of mul 

tiplication, we retain Lthenceforth unaltered, and treat them as independent of both 

the multiplier and the multiplicand. It is clear, however, that the simplicity and 

elegance of our future operations and results must mainly depend on our making a 

simple and suitable choke of these two constants of multiplication ; and that in making 
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this choice, we ought to take care to satisfy, if possible, the essential condition that 
there shall be always one determined number-couple to express the ratio of any one 
determined step-couple to any other, at least when the latter is not null : since this was 
the very object, to accomplish which we were led to introduce the conception of these 

number-couples. It is easy to show that no choice simpler than the following, 

71 =-1, 72 --- 0, (36. 

would satisfy this essential condition : and for that reason we shall now select these 
two numbers, contra-positive one and zero, for the two constants of multiplication, 
and shall establish finally this formula for the multiplication of any step-couple  a I, a 2 
by any number-couple (cti,,q), 

(a1, a2)(a a2  (a, al  a2 a2, a2 al  a1 a2). 

5. In fact, whatever constants of multiplication 71 72 we may select, if we denote 
by (b,,b2 the product of the step-couple  a  a2  by the number-couple (a1, a,), so 
that 

(b1, b!  (a,, a2 x  a2 (38. 

we have by (35. the following expressions for the two coupled steps b j, b2, of the 
product, 

b 1  a1 al  7, ai a2, 
131.  al at a2 al +T a22, 
z, 

and therefore 

PI  a1 a1 +71 a2 a2 
132  a1 a2  a2 al  72 a2 a2 , 

if a1 a2 PI P2 denote respectively the ratios of the four steps 
step c, so that 

=ai CI a2 =7: a2 
and 

bi p, e, b, =c32 c ; 

(40. 

a1 a2 b1 b2 to one effective 

(44. 

(42. 
from which it follows that 

a1 fa, (al  72 a2 -71 a22 =13, (ai +72 a2 -p2 7 u2 2 
1 a2 Eat (a1  72 a2 -71 a221 =P2 al -01 a2 ; 

in order therefore that the numbers ai a2 should always be determined by the equa 

(37. 

(39. 

(43. 
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tion (38.), when a and a2 are not both null steps, it is necessary and sufficient that 
the factor 

(a  7,  71 a2 (a  a2)2 (71 +1722 a2 

should never become null, when al and a2 are not both null numbers ; and -this con 
dition will be satisfied if we so choose the constants of multiplication 7, 72 as to make 

71+172 < 0 , (45. 

but not otherwise. Whatever constants v1 72 we choose, we have, by the foregoing 
principles, 

,; (0, C (0  1, -(0 ;  1 0); 
(c, 01 (c, 0 (0 c  

460 

and finally 

(C, 0 
(0, c 'Y1 

because, when we make, in (43.), 

 a2 1, =1, p 

we find 

a, 7 a2 
71 

\ 
71 I 

so that although the ratio of the pure primary step-couple (c, 0 to the pure sec ond 

ary step-couple (0, c can never be expressed as a pure primary number,couple, it 

may be expressed as a pure secondary number-couple, namely (0, -), if we choose 
71 

0, as in (36.), for the value of the secondary constant 72 , but, not otherwise : this 
choice 72=0 is therefore required by simplicity. And since by the condition (45.), 
the primary constant 7, must be contrapositive, the simplest way of determining it is 
to make it contrapositive one, 71 -1, as announced in (36.). We have there 
fore justified that selection (36. of the two constants of multiplication ; and finds 
with that selection, 

, 0  (0, -1), (50. 
(0, c 

and generally, for the ratio of any one step-couple to any other, the formula 

( h,, 19! (i3 e, 132 
(A 

a1 - j3 a2 P2 al -PI a2 ),  ' 2 (at C, 02 c  a4. at  al, %. 
 a2 
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On the  Addition, Subtraction, Multiplication, and Division, of Number.Couples, 
as combined with each-oilier. 

6. Proceeding to operations upon number-couples, considered in combination with 
each other, it is easy now to see the reasonableness of the following definitions, and 
even their necessity, if we would preserve in the simplest way, the analogy of the the 

ory of couples to the theory of singles : 

(b1 , b2 (a1, (10  (bi  al, b2 a2 ; (52.) 

(b1 -(a a2 =01 a, , b2 r a2 ; (53. 

, b2 (al (z2)=.(b1 b2 x (al , a2 =(b1 al -b2 (12 , b2 ai bi a2 ; (54. 

b2 (bt o f +b2 112 b -bi 112 
(al , c12) ae+1122 (112  a22 

Were these definitions even altogether arbitrary, they would at least not contradict 
each other, nor the earlier principles of Algebra, and it would be possible to draw 

legitimate conclusions, by rigorous mathematical reasoning, from premises thus arbi 

trarily assumed : but the persons who have read with attention the foregoing remarks 
this theory, and have compared them with the Preliminary Essay, will sec that 

these definitions are really not arbitrarily chosen, and that though others might have 
been assumed, no others would be equally proper. 

With these definitions, addition and subtraction of number-couples are mutually 
inverse operations, and so are multiplication and division ; and we have the relations, 

b2 (a1 a2) (al a2 , b2), 

(b1 b2 x (a1 u2 {u1 a2 x 01, b2), 

(61 b2 (12  (al, 172)1  (61, b2 (cti a`2 (b1,  (12 (58. 

we may, therefore, extend to number-couples all those results respecting numbers, 
which have been deduced from principles corresponding to these last relations. For 
example, 

[(b b2 a2) x {(b1, b2  (a1, a2)j 

(1)1, b2 (bi, b2  (b1, b2 (a1, a2 +(a. (1.  (72), (59. 
VOL. XVII. q, c 

(55. 

(560 

(57 . 



401 Professor HAMILTON 071 Conjugate Functions, 

in which 

2 (b1, '2 (at' a2  (2, 0 (b1, b2 (a1, a2  (b1, b2 (a1, a2  01, b2 (al, a2 i (60. 

for, in general, we may mix the signs of numbers with those of number-couples, if we 
consider every single number a as equivalent to a pure primary number-couple, 

a (a, 0). (61. 

When the pure primary couple (1, 0 is thus considered as equivalent to the number 
:1, it may be called, for shortness, the primaq unit , and the pure secondary couple 
(0, 1 may be called in like manner the secondary unit. 

We may also agree to write, by analogy to notations already explained, 

(0, 0  (al, a2   (a1, a2), 
(0, 0 -(a a2   (a1, ab 

and then  (al, 112 will be another symbol for the number-couple (al, a2 itself, and 
 (a a2 will be a symbol for the opposite number-couple (-al,  a2). The reciprocal 
of a number-couple (al, a2 is this other number-couple, 

1(1, 0  -a2 
 

_...(21 , -a2  
(al, a2 (al, 0,0 

 a1 
(a12 -f , a12  a22 

-- 
a12  a22  

It need scarcely be mentioned that the insertion of the sign of coincidence  
between any two number-couples implies that those two couples coincide, number with 
number, primary with primary, and secondary -with secondary ; so that an equation 
between number-couples is equivalent to a couple of equations between numbers. 

On the Powering of ia Number-couple by Single Whole Number. 

7. Any number-couple (al, a2 may be used as a base to generate a series of 

powers, with integer exponents, or logarithms, namely, the series 

, \ -1 r,,, , V f,,ui, , N r   . (al, a2 -2, (al, "2 7 (a1, t-.21 , (al, c-c2iI v  .1 vi2/21    

in which the first positive power (al, a2)t is the base itself, and all the others all. 
formed from it by repeated multiplication or division by that base, according as the 
follow or precede it in the series ; thus, 

(a, a2)r (1, 0), (65. 

(62. 

(63.  

(61. 
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(a1, a2)1 (a a2), (a1, a2 

(a1, a2)2 (a1, a2 (a1, a2), (a1, a2 
&c. 

_1, (1, 0 
(a1, a2Y 

_2  (1, 0 
(a1, a2 (a', chY 

&c. 

and 

(66. 

To power the couple (a1, a2 by any positive whole number m, is, therefore, to 

multiply, m times successively, the primary unit, or the couple (1, 0), by the proposed 
couple OD a2 ; and to power (at a2 by any contra-positive whole number  914 
is to divide (1, 0 by the same couple (a a2), m times successively : but to power by 
0 produces always (1, 0.). Hence, generally, for any whole numbers II, v, 

(a (12)A (a a2).=(ao a2)p-i-v 
((a1, a2)4  V  OD a2 A .. 

8. In the theory of single numbers, 

(a  b)m anz an'' V .  lx2x3...xnt -1x2x3...xnt 1x2x3x...(m-l 1 
am-2 b2 

1 x 2 x 3 x .. (nz -2 1 x 2  .   

, (67p 

at hm-i 
 1 1x2x3x...(ni-1 

 bm 
lx2x3x. (68. 

and similarly in the theory of number-couples, 

[(a1, a2  (bi b2)1m (al, a2 
lx2x3x...nz 1x2x3x...na  1 x 2x 3x ...(nz 1 

(a1, I (b1, b2 
1 m 

(a,, a2)m -2 (b1, b2)2 4.  1x2x3x...(m--2 1x2  

 ._(al, a2)1 (b1' b2)m-1 
.I. 1X2X3X ...(771-1 

(b1, N)n .  1x2x3x ...m 7 (69. 

fl being in both these formulra positive whole number, but a b a, a2 bi b2 being any 
numbers whatever. The latter formula, which includes the former, may easily be 
proved by considering the product of m unequal factor sums, 

(a1, a2  (b1(", b2")), (a1, a2  (b1(2), b2(2)),... (a1, a,  (bi(m), b2(") , (70. 

for, in this product, when developed by the rules of multiplication, the power 
(al, a2)m--4 is multiplied by the sum of all the products of n factor couples 
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such as (b1(1), (b1'2), b2(2))...(b1(n), b73 ; and the number of such products is the 
number of combinations of m things, taken n by n, that is, 

lX2x3X...xm 
lx2x3x...(m-n xix2x3x. 

while these products themselves become each  (b1, 62)n, when we return to the case of 
equal factors. 

The formula (69. enables us to determine separately the primary and secondary 
numbers of the power or couple (ai, a,)In , by treating the base (ab a2 as the sum of 
a pure primary couple (a1, 0 and a pure secondary (0, a2), and by observing that the 
powering of these latter number-couples may be performed by multiplying the powers 
of the numbers a, a2 by the powers of the primary and secondary units, (1, 0> and. 
(0, 1 ; for, whatever whole number i may be, 

(a1, O)T  a (1, O)' CM 
(0, a2)r.  a2 (0, 1 . 

We have also the, following expressions for the powers of these two units,. 

(1, 0)2 (1, 0), 
(0, 1 

'8 r_-(0, 1), 
(0, 1)4k_2=, k 1, 0), 
(0,  (0,  1), 
(0, 1), 

4 k  (1, 0); 
that is, the powers of the primary unit are Aan thynigehres equal to thatprimary unit;: 
but the first, second, third,, and fourth powers of the secondary unit are re 
spectively 

(0, 1 1, 0), (0,  1), (1, 0), 

and the higher powers are formed by niPrely repeating this period. In like manner 
we find that the equation 

(a1, a2)na  (b,, (74. 
is equivalent to the two following, 

b1=aina (m -1 am-2a : 4 (711-1 
1x2 i 

1x2x3x4 
 1 M 1  (771, -2 

b, =m a, a, 1x2x3 &c, 

tis.-.4 4 2 --- &c. 
(75.)' 

For example, the square and cube of a couple, that is, the second and third positive 
powers of it, may be developed thus, 

cti, a2)2   ai,  (0, (1012  ail- a22, Q al a2), (76. 

 (71. 

(73. 
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and 

Cal, a2 [(a 3, 0  (0 a2) 
3  a13 -3 al a2, 3 at2 a2 (12). (77. 

9. In general, if 

C al, a2 a'2) (a"1, a"2), 

then, by the theorem or rule of multiplication (54. 
"  a, a'2' a2 d12  a2 a11  al (1' a, 2, 

and therefore 

a"22 a12 a22 (1,22 

(78t 

(79. 

(80. 

and in like manner it may be proved that 

if  a1, a2 a'1,  (a"3, a"2  (an, di2), 
then  ami2 d"22) a22 4.2 a122 aif22), 

and so on, for any number m of factors. Hence, in particular, when all these m fac.. 
tors are equal, so that the product becomes a power, and the equation (74. is satisfied, 
the two numbers b1 b, of the power-couple must be connected with the two numbers 
a 1 a 2 of the base-couple by the relation. 

B12 b: tt22r. (82. 

For example, in the cases of the square and cube, this relation holds good under the 
forms 

2\2 r 
a2 

r 2 \2 12 -- a.,  k..2 a, a2  ail (c2 

(a1  3 3 a1 a22)2 (3 aL2 e12 a2)2 = a12 a22)3. 

The relation (82. is true even for powers with contra-positive exponents  m, that is, 

b12 b22= 642 a22, " if (b1,10=(ai, a2)-m 
for in general 

if (bi, b2  
a2 a 2 (di, ant 

(c12 c (ill d2 (0"1, c12 

then (b1  ,-1 1)22) (a 12  a22   d22 (aff12 a"22 )... 
(c12 c12 v12 c/22 (cii2 2.z )... 

C 

and 
(83. 

(84. 

(85. 

(86. 
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On a particular Class of Exponential and Logarithmic Function Couples, connected 
with a particular Series of Integer Powers of Number-Couples. 

10. The theorem (69. shows, that if we employ the symbol F,g,  a a2 and rm (ti, b2 
to denote concisely two number-couples, which depend in the following way on the 

couples  al, a2 and (i),, 1,2), 

 at, 02)1  a1, a2)2  Tin al, a  (1, 0    I Ix 2 
 al, a2r 

I x2x 3 X .  itz' 

Of, b2)'+(b b02  r (bi, 62  (I, CO  ix2 ''s (b1 
I x2x3x ...tit ' (88. 

and if we denote in like manner by the symbol 

rx, ((a a2  (by, b1)  Fm (at  bp a2  b0 (89. 

the couple which depends in the same way on the sum Op a1  (61, b,), or on the 

couple (a1 -1 b (12  b2 , and develope by the rule (69. the powers of this latter sum, 
we shall have the relation 

[rr, (al, a2 x rni (6,, b2)  I'm ((al, a2 +(b1, 62)  

(a, a2)t' f (b1, b2)1 (b1, b2Y (1)1, 62)73 1 +... lx2x3x ..m t 1 1>c2 2 1x2x3x...nt 

(a2, a2)---' f(bi, b2)2 
1x2x3x...(m-1  Ix2 +... 

..... . 
(a a2 (b,, b2)14 

1 1x2x3x...m. 

(b b2)m 
+1x2x3x...m 

(90  

 

 

 

This expression may be farther developed, by the rule for the multiplication of a sum, 
into the sum of several terms or couples, (c1, c2), of which the number is 

m(m+1 1 +2+3 +...-1-m 2 

and which are of the form 

(b1, b2)4' (a1 a2)1 x lx2x3x...e (c1, c2)=lx2x3x ...i 
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i and k being positive integers, such that 

i11n, kl> m, i +k> (93. 

and if we put for abridgment 

and 
ail (122 =a, ,v1)1  1)22  (94. 

a2 Pk  
lx2x3x...zxlx2x3x,..e 

e shall have, by principles lately explained, 

(95. 

,1/C12--1 C22  7, (96. 

and therefore 

Cl  7, Cl 4. -7, C2  7, C2 4: -7: (97. 

if then the entire sum (90. of all these couples (c1, c2 be put under the form 

(c1, c2  C1, c2), (98. 

the letter M being used as a mark of summation, we shall have the corresponding li 
mitations 

2 CI M 7, M 7, I. 
E c2 1 7,  c2 j 7, 

E7 being the positive sum of the m (m  1 such terms as that marked (95.). This 2 
latter sum depends on the positive 'whole number nz, and on the positive numbers 
a, j3 ; but whatever these two latter numbers may be, it is easy to show that by taking 
the former number sufficiently great, we can make the positive sum I .y become 
smaller, that is nearer to 0, than any positive number 8 previously assigned, however 
small that number 8 may be. For if we use the symbols re, (a , r, ([3), ro, (a  (3), to 
denote positive numbers connected with the positive numbers a, f3, a  p, by relations 
analogous to those marked (87. and (88.), so that 

(99. 

am 
Fm(a)=1+T+ixo+-4-1x2x3x (100. 

a a2 

it is easy to prove, by (68.), that the product Fn, (a x I'm (/3 exceeds the number 
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I'm (a  j3 by E 7, but falls short of the number r2m(a  (3), that is of the following 
number 

F2m"(a+P) 1 +(a+1)3)1+(a+13)31-...-F 
(a 13)2m 

1 x 2 lx2x3x...x2m; 
so that 

E 7 (Fm (a x I'm (3) -F, (a  p), (102. 
and 

1 'Y < F2 m (a  (3  Fm(a  P : (103. 

if then we choose a positive integer n, so as to satisfy the condition 

n  i > 2(ct  p), that is a ---aP < I (101. n 2 ' 

and take m > n, we shall have 

(a -1-pr 1 (a +13)n , and therefore < ix2x3x...m<2m-nlx2x3x...n 

(101. 

(105. 

however small the positive number 8 may be, and however large a  j3 may be, if we 
take m large enough ; but also 

F2,, (a  p -F q,(a  m (a  py-7, and therefore < '8 x n , (106. 1x2x3x...nt 
in which 

  a +13 (a  13)2 (a  Pr 77   +...  (107. m x 1 (m +1)(7n +2 (m 1 (ni  2 x ... 2172, ' 

and, therefore, 
n < 1, (108. 

because 

a +13,.. I \ D M p1 
(a  p)2 < I (a  pr 1 < ; (109. (m+1 (m+2 22' .i (m+1 (m+2 x ...(2 m om  

therefore, combining the inequalities (103. (106. (108.), we find finally 

2 7 < 8. (110. 

And hence, by (99.), the two sums m cl, M c, may both be made to approach as near 
as we desire to 0, by taking m sufficiently large ; so that, in the notation of limits 

already employed, 
L 7, 7=0, L M ei =0, L 2 c2=0, (111. 
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and, therefore, 
L 
Ct Fm (a I'm 03) Fm (a  j3  0, (112. 

LI". ((Ti, a2 rf, (b1, 1),)-Fm  (a1, (0  (b1, b2)  (0, 0). (113. 

In the foregoing investigation, a and j3 denoted. positive numbers ; but the theorem 
(113. shows that the formula (112. holds good, whatever numbers may be denoted 
by a and j3, if we still interpret the symbol Fni(a by the rule (100.). 

11. If a still retain the signification (9t.), it results, from the foregoing rea 

sonings, that the primary and secondary numbers of the couple 

Fm-Fms (a1, a2 -Fin (al, a2 (114. 
are each 

Fn+m (a  Fw, (a), and 4: Fm (a -rmi_m (a ; (115. 

and, therefore, may each be made nearer to 0 (on the positive or on the contra 

positive side than any proposed positive number 8 by choosing m large enough, 
however large m' and a may be, and however small .43 may be : because in the ex 

pression 
am a a a m. 

rm.", (a  Fm (a  -1 X2 X3X ...m  
tm+1 (m+1 (m+2 

-I ...  
(in  I ...(m  Id )1 (116. 

m 
the positive factor may be rattle <8, that is, as near as we please to 0, 1 x 2 

a 
x 3 x ...m 1 1 1 1 

and also the other factor, as being < 71  -2n +... +-2-?---, and therefore < -n_i , it 
m 1-1 > n a. Pursuing this train of reasoning, we find that as m becomes greater 
and greater without end, the couple I'm (a1, (12 tends to a determinate limit-couple, 
which depends on the couple (ai, (12), and may be denoted by the symbol r jai, a,), 
or simply r (a (12), 

F (a1, a4 =r0,(a1, a2  L I'. (al, (72 ; (117. 

and similarly, that for any determinate number a, whether positive or not, the 
number Fm (a tends to a determinate limit-number, which depends on the number a, 
and may be denoted thus, 

F (a  F., (a z L Fk,(a). (118. 

It is easy also to prove, by (112.), that this function, or dependent number, r (a), 
must always satisfy the conditions 

1  a  x (f3 =F (a +[3), (i19z 
VOL. XVII. 44D 
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and that it increases constantly and continuously from positive states indefinitely near 
to 0 to positive states indefinitely far from 0, while a increases or advances constantly, 
and continuously, and indefinitely in the progression from contra-positive to positive ; 
so that, for every positive number j3, there is some determined number a which satis 
fies the condition 

F (120. 
and which may be thus denoted, 

a=F-I (j3). (m. 

It may also be easily proved that we have always the relations, 

r (a =a", r-1 =log,. p, 

if we put, for abridgement, 

r cty e, (1Q3. 

and employ the notation of powers and logarithms explained in the Preliminary 
Essay. A povser boa , vshen considered as depending on its exponent, is called an 

crponential function thereof; its most general and essential properties are th(fxt 

expressed by the formula,, 

ba x bfl  5, (121. 0 

of which the first is independent of the base b, \\He the second specifies that haw 3, 
and since, by (113.), the function-couple r a2 satisfies the analogous condition, 

F (a (12 x r (b1, b2 F ((al, (6 n(b 12)}=r (a1 a2+b). (125. 

(viliatever numbers a1 a. b1 b2 may be, we may say by analogy that this function-couple 
F (ai, a2 is an eaponential function-couple, and th_tt, its bane-ozeple is 

F  (e, : (126. 

and because the exponent a of a power ob'', when considered as depending on that 

power, is called a logarithmic function thereof, we may say by analogy that tho 

couple (12 is a logarithmic function, or function-couple, of the couple r (a a yi 
and may denote it thus, 

(a1,  r  10i 6.1) if (61 1  F a2). (127. 
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In general, if we can discover any law of dependence of one couple (T (a a2), upon 
another (a a), such that for all values of the numbers a, a, b, b, the condition 

4 (ai, a (1 (b 1)2)=4 (a, -F. a2, b1-i-b (1Q8. 

ii satisfied, then, iAlictlier this function-couple b (al, a2 be or be not coincident with 
the particular function-couple F (a1, au), we may call it (by the same analogy of defi4 
nition an e.tponential function-couple, calling the particular couple (1 (1, 0 its base, or 

base-couple ; and may call the couple (at, a,), when considered as depending inversely 
on (I (al, a,), a logarithmic function, or function-couple, which VIC may thus denote, 

(a1, a 2 =(1 -1 (b1, b2), if 01, b).-.7-_(-1 (a1, a). (1Q9. 

P2. We have shown ti it the particular exponential function-couple (61, 1), 1: 
r  ai, a2 is always possible and determinate, whatever determinate couple  (11, 62 
may be ; let us now consider whether, inversely, the particular logarithmic functioh 
-couple  i 112)=F-1 (b  b2 is aNays possible and determinite, for every determined 
couple  bl, By By the exponential properties of the function r, we have 

(bi, b2  F  a', a2)=r(ar, 0 r (0, ct,  r  ai  r (0, a2 

a , a1 . 
=(e cos a  e sin a,), (1f30. 

if Iv, define the functions cos a and sin a, or more fully the cosine and sine of any 
irmther a, to be the primary and secondary numbers of the couple r (0, a), or the 
numbers sNhich satisfy the couple-equation, 

r (0, u --z. (cos u, sin a). (131. 

ri ()IA this definition, or from the.e two others nn hick it includes, namely from the fol 
10-,1% expressions of the functions 'cosine and siae as limits of the sums of series, 
-011:,!I arc already familiar to mathematicians, 

02 rt4 COS a  I     &eel Ix' lx2x-- 1 

a3 a5 -sin a  a  4 _______  &c. j lx2x3 1x2x3x1x5 

(132. 

it is possible to deduce all the other known properties of these two functions ; and 
especially that they are periodical functions, in such a in/nnn tint while the variable 
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number a increases constantly and continuously from 0 to a certain constant positive 
number, (71 being a certain number between 3 and 4, the function sin a increases 2 
with it (constantly and continuously from 0 to 1, but cos a decreases (constantly and 

continuously  from 1 to 0 while a continues to increase from -7r to 7T, sin a decreases 

from 1 to 0, and cos a from 0 to ; while a increases from 7r to -7, sin a decreases 2 
from 0 to -1, but cos a increases from -1 to 0 ; w bile a still increases from..--}-7 to 27r, 
sin a increases from -1 to 0, and cos a from 0 to 1, the sum of the squares of the 
cosine and sine remaining always 1 ; and that then the same changes recur in the 
same order, having also occurred before for contra-positive values of a, accoi ding to 
this /au of pekiodicity, that 

cos (a  ,c2 i7r  cos a, sin (a  2 i 7r  sin a, (133. 

denoting here (as elsewhere in the present paper any positive whole number. But 
because the proof of these well known properties may be deduced from the equations 

without any special reference to the theory of couples, it. is not necessary, and 
it might not be proper, to dwell upon it here. 

It is, how ever, important to observe here, that by these properties we can always 
find (or conceive found an indefinite variety of numbers a, differ ing from each other by 

multiples of the constant number 2 w, and 3et each having its cosine equal to any one 

proposed number p,, and its sine equal to any other proposed number p provided 
that the sum of the squares of these to o proposed numbers p p2, is  1 ; and reci 

procally, that if two different numbers a both satisfy the conditions 

cos a pi, sin a  /32, (13-1. 

13, and p, being two given numbers, such that pi2 , then the difference of these 
two numbers a is necessarily a multiple of 2 r. Among all these numbers a, there mil 

alwa)s be one which mill satisfy these other conditions 

a, -7r, a , 7r, (1-35. 

and this particular number a may be called the principal solution of the equations 
034 y, because it is alvsays nearer to 0 than any other number a which satisfies the 

same equations, except in the particular case when p, p,-- 0 ; and because, in 

this pal ticular case, though the two numbers 7r and -7r are equally near to 0, and 
both satisfy the equations Oat.),  et still the principal solution 7r, assigned by the 

conditions (1.35.), is simpler than the other solution 77, which is rejected by those 

last conditions. It is therefore always possible to find not only one, but infinitely 

many number-couples (al, differ ing from each other by multiples of the constant 
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couple (0, 2 7r), but satisfying each the equation (130.), and therefore each entitled to 
be represented by, or included in the meaning of, the general symbol F-1 (b1, b2), 
whatever proposed effective couple (61, O2 may be. For we have only to satisfy, by 
(1.30.), the two separate equations 

 
e at cos a2  b1, e al sin a2 =62; a . 

which are equivalent to the three following, 

(136. 

eat  Ni b12  62, . 
an& 

0.37. 

(133. 

and if a be the principal solution of these two last equations, II e shall have as their 
most general solution 

while the formula (137. gives 

a2 a  2 to 7r, 

al =log, . V bi2  b22 

the couple  al, CO admits therefore of all the following values, consistently with the 
conditions (130. or (136.), 

 al, a2  r-i (hi, 62) (log ,  .. i12  b 22, a  2 w 7), (I41. 

in which co is any whole number, and a is a number > -IT, but not > 7, which has its 
cosine and sine respectively equal to the proposed numbers hi b2, divided each by the 
square-root of the sum of their squares. To specify any one value of (a 1, a), or 
F---4 (61, b2), corresponding to any one particular whole number to, we may use the 
symbol F- (bi, 62 ; and then the symbol r-1 (.61, .62 will denote what may be called 
the principal value of the inverse or logarithmic function-couple r-i (b b2), because 
it corresponds to the principal value of the number a2, as determined by the condi 
tions (138.). 

 , sin a2  cos a2  
--iTfo kl 1)14  ba2; ,v 

b 61 2 
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On the Powering of any Number-Couple by any Single Number or Number Couple. 

13. Resuming now the problem of powering a number-couple by a number, wo 
may employ this property of the exponential function F, 

F (a,, (12)y  F(,u at, i a2), (142. 

being any whole number whether positive or contrapositive or null ; which easily 
follows from 025.), and gives this expression for the ii'th power, or power-couple, of 

any effective number-couple, 

b2Y  F-101 I b2)). (143.3 

Reciprocally if (a1, a2 be an inth root, or root-couple, of a proposed couple (b, b,), 
so that the equation (71. is satisfied, then 

(al, a2 , b2);;  F( (b1, b2 (14k. Tit 

This last expression admits of many values, when the positive whole number m is > 
on account of the indeterminateness of the inverse or logarithmic function F ; and 
to specify any one of these values of the root-couple, corresponding to any one value 
F-1 of that inverse function, which value of the root we may call the coat value of that 

root, we may employ the notation 

01, b2)772 F 

we may also call the particular value 

(b  b );Tt F 01, b2)), m 

(I F-101 2) 
 

n2 s 

the principal value of the root-couple, or the principal m'th root of the couple (bi, 1)2). 
In this notation, 

(1, 0);; (0,26"r ,  k int (147, 

1 1 1 
(bi,b2)A  (b1 b2 174 (1 , ); 5 (148. 

so that generally, the {,'th value of the 17 th root of any number-couple is equal to 
the principal value of that root multiplied bey the Gyth value of the mth root of the 
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primary unit (1, 0). The with root of any couple has therefore 9n distinct values, 
and no more, because the m th root of the primary unit (1, 0 has nn distinct values, 
and no more, since it may be thus expressed, by (M. and (131.), 

2 (0 2 (0 1r 
(1, 0   cos. , sin. 711, (149h 

so that, by the law of periodicity (133.), for any different whole number tu,, 

(1,0);  (1, 0)7, 050. 

and therefore generally, 

(bi, b2  (fit , b2); , (151. aot 
if 

(1:0. 

but not otherwise. For example, the cube-root of the primary unit (1,. 0 has three 
distinct values, and no more, namely 

 
-1 

2 
..13 

(1, 0)1  Cl, ; (1, 0 3   
 (1 0 "T." , (153.  

27 7 `_2 ; 

so that each of these three couples, but no other, has its cube (1, 0). Again the 

couple (-1, -0 has two distinct square-roots, and no more, namely 

 (0, ;  (0, -1 ). (154. 

in general we may agree to denote the principal square-root of a couple (b, b2 by 
the synibol 

b2  (b1,1))'; (155. 

.and then we shall have the particular equation 

/(-- 0)=(0, 1 ; (156. 

which may, by the principle (61.), be concisely denoted as follows, 

-1 (157. 

In the THEORY OF SINGLE NUMBERS, the symbol si 1 is absurd, and denotes an 
IMPOSSIBLE EXTRACTION, or a merely IMAGINARY NUMBER ; but in the THEORY OF 
COUPLES, the same symbol Ni Ti is significant, and denotes a POSSIBLE EXTRACTION', 
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or a REAL COUPLE, namely (as we have just now seen the principal square-roof 
the couple (-1, 0). In the latter theory, therefore, though not in the former, thii 

signs ---1 may properly be employed ; and we may write, if we choose, for any cot'. 

pie (ai, a2 whatever, 

(at, a2) a, +a2 -1, (158. 

interpreting the symbols al and a2, in the expression al  a2 s/111, as denoting the pure 
primary couples (as, 0 (a2, 0), according to the law of mixture (61. of numbers with 
number-couples, and interpreting the symbol Ni 11, in the same expression, as de 
noting the secondary unit or pure secondary couple (0, 1), according to the formula 
(157.). However, the notation (a1, a2 appears to be sufficiently simple. 

14. In like manner, if we write, by analogy to the notation of fractional powers 
of numbers, 

+r (c,, 6.0 =01, b,),., (159. 

whenever the two couples (b b2 and (c1, c2 are both related as integer powers to one 
common base couple (a1, a2 as follows, 

(bi, 1)2  (as, a2)'L, (c1, c2  (a1, aav, (160. 

(ft and v being any two whole numbers, of which t at least is different from 0, we 
can easily prove that this fractional power-couple (c1, c2), or this result of powering 
the couple (b1, b2 by the fractional number -v , has in general many values, which 

fl 

v 
(C1, C2  b2  F F (b1, b2)), (161. 

and of which any one may be distinguished from the others by the notation 

(b1, b2)u  F vF -1 (bi, b2) (16Q. 

We may call the couple thus denoted the w'th value of the fractional power, and in 

particular we may call 

(b 1 , b F v F-1 (b b2 (163. 

the principal value. The w'th value may be formed from the principal value, by 
multiplying it by the w'th value of the correEponding fractional power of the primary 
unit, that is, by the following couple, 

are all expressed by the formula 
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, i 
(1, OF,  cos 2 w v 

7, si-n 2 W V 7 
; (161. . P, f, 

and therefore the number of distinct values of any fractional power of a couple, is 
v 

equal to the number m of units which remain in the denominator, when the fraction 
tt 

has been reduced to its simplest possible expression, by the rejection of common 
factors. 

15. Thus, the powering of any couple (b1, b2 by any commensurable number v 

may be effected by the formula, 
(b1, bOt =F (x F-1 (b1, b2) ; (165. 

or by these more specific expressions, 

(b1, b2)x =I,' (X F -I On b2) e by 
=(b1, b2)z (1, 0y, (166. 

in which 
(1, o)x  (cos '2 w X 7, sin 2 ca X 7r : (167. 0 

and it is natural to extend the same formulae by definition, for reasons of analogy and 
continuity, even to the case when the exponent or number x is incommensurable, in 
which latter case the variety of values of the power is infinite, though no con fusion 
can arise, i feach be distinguished from the others by its specific ordinal number, or 

determining integer 0). 
And since the spirit of the present theory leads us to extend all operations with 

single numbers to operations with number-couples, we shall further define (being 
authorised by this analogy to do so that the powering of any one number-couple 
(b" B2 by any other number-couple (x,, x2 is the calculation of a third number-couple 
(c , c2), such that 

(c1, c2) (b 62)(Xl, x2  F ((x1, x2 X F-1 011 b2) ; (168. 
or more specifically of any one of the infinitely many couples corresponding to the 
infinite variety of specific ordinals or determining integers (0, according to this for 
mula, 

bo (z1, x2 F ((x1, xd X F -1 (bi, b2) 0 

 (b1, b2 (X11 X' (1, 0 (Xi x2), 
0 (169. 

in which the factor (b1, b2 . 
VOL. XVII. 

(x1, x.2 may be called the principal value of the general 
4E 

Op . 
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power couple, and in which the other factor may be calculated by the following ex. 
pression, 

(1, 0 (241, x2 =17 ((x1, x2 x (0, 2 to 

"F   2 to 7r. x2, 2 (0 7 X 

 e -2 W 7 
X2(cos 2 w 7r 2.1, sin 2 w 7 Xi). (170. 0 

For example, 

and 

also 

(1,. 0 
(X" 1272   1, 0), 

(e, 0 (x1, s2)=F(Xil.X2  
a 

(171. 

(172v 

(e, 0 (x1' x2).=F ((x1, x2 x (1, 2 w 7r)). (173. 

On Exponential and' Logarithmic Function-Couples in general. 

16. It is easy now to discover this general expression for an exponentiallunction 
couple : 

I (xi X2  r ((xi, x2 x (al, a2)); (174.. 

in which (a1, a2 is any constant couple, independent of (x x2). This general expo 
hentialfunction (la includes-the particular function r, and satisfies (as it ought tho 
condition of the form (128.), 

43 (x1, x2 (D (yip :y2) 1 (xi +yip x2 +.y2 ; (175. 
its base, or base-couple, which may be denoted for conciseness by (61, b2), is, by the 
Ii th, article, the couple 

(b b2) (1 (I , 0 =F (a1, a2 ; (176. 

and if we determine that integer number w which satisfies the conditions 

a2 2 w 7 > -7r, a2 2 Ct 7 1, 7, (177b 

we shall have the general transformation 

q (xi, .1.0=01, b2)-(x' `1 (178. 
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And the general inverse exponential or logarithmic function-couple, which ITIdY, by 
(129.), be thus denoted, 

(x1, x, 
1 
(syi, p2), if (yi, Y2 do (x15 x2), 

may also, by (171. and (176.), be thus expressed 

 y2  
F Cy ,y2). (180.  b2)' 

it involves, therefore, two arbitrary integer nunzbers, when only the couple 
and the base (b b2 are given, and it may be thus more fully written, 

,y2 ,  4,--1(d1,y2  log b2 Oil, .Y2 
b2 ``.7 (181. 

For example, the general expression for the logarithms of the primary unit (1, 0 to 
the base (e, 0), is 

1. (e, (1,  (0, 2 a 7 (0' 77.> 0 10 
(1, 2 w7r -(2(07,-W (182. 

or, if we choose to introduce the symbol , -1 , as explained in the 13th article, 
that is, as denoting the couple (0, 1 according to the law of mixture of numbers with 
number-couples, then 

In general, 

2 a 7 \/----71 2 wr r 
e  1 +2 w7r Ar-7.T 2 w 

log 01, b2   CY1, Y2  b b, (0, 2 to 7r 
,y2 1-(0,_2 17r 

(183. 

(184. 

The integer number w may be called the first specific ordinal, or simply the ORDER, 
and the other integer number to' may be called the second specific ordinal, or simply 
the RANK, of the particular logarithmic function, or logarithm-couple, which is deter 
mined by these two integer numbers. This existence of two arbitrary and inde 
pendent integers in the general expression of a logarithm, was discovered in the year 
1826, by Mr. GRAVES, who published a Memoir upon the subject in the Philosophical 
Transactions for 1829, and has since made another communication upon the same 
subject to the British Association for the Advancement of Science, during the meeting 
of that Association at Edinburgh, in 1831: and it was he who proposed these names 
of Orders and Ranks of Logarithms. But because Mr. GRAVES employed, in 

(179m 

(YL, .Y2 
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reasoning, the usual principles respecting Imaginary Quantities, and was content to 

prove the symbolical necessity without showing the interpretation, or inner meaning, 
of his formulae, the present Theory of Couples is published to make manifest that 
hidden meaning : and to show, by this remarkable instance, that expressions which 
seem according to common views to be merely symbolical, and quite incapable of 

being interpreted, may pass into the world of thoughts, and acquire reality and signi 
ficance, if Algebra, be viewed as not a mere Art or Language, but as the Science of 
Pure Time. The author hopes to publish hereafter many other applications of this 
view ; especially to Equations and Integrals, and to a Theory of Triplets and Sets of 
Moments, Steps, and Numbers, which includes this Theory of Couples, 

THE END. 



ERRATA. 
Page 
321, last line, for 0  read 0  
323, line 17, for  0 read  0 a, 
330, line 11, for pend read depend 
336, equations (121. for a read b 
342, line 18, for For read For if 
347, 6th line from foot, for thorems read theorems 
360, last line but 2, for denote read denote by 
383, last line, for B read 1.1 
384, line 7, for 

COY CO read  cop, war.A. 
387, equation (340. for 1  m read 1  i m 
391, before (358. for formula read formulae 
391, before (362. for formula read formulae 
391, last line, for one read one set 
394, line 10, for A1 to B2 read A1 to B1 
395, before (4. for denote read denote it 
399, in (21. for (a al , al al  read (al a1 , al a2  
399, in (23. for (2-, 1 

read 
(11 , 

1)2 b b 
a2 a2 al al 

400, line 6, for (a a2 , a1 al  read (alai , al a2 
400, last but 3, for retain read retain them 
401, before (37. for (al , 0 read (al , a2  
401, 2d formula (39. for b1 read b2 
401, in (42. for P2 read P2 c 
402, end of (44. for a2 read a2 2 
402, in (48. for /32 read P2 
404, in (62. for a2 read a2 
404, in (63. for a 12  a2 read a 12  a 22 
405, after (69. for formula read formulae 
407, in (78. for (a" , a'2 read (a",i , e2 
407, in (79. for a1 a'2 read a1 a'1 
407, in (83. for alt --a2 read a12  022 
408, in (90. for (a2 , 02 )n--1 read (al , a2 )tn--' 
410, in (104. for n x 1 read n 1 
410, in (107. for an x 1 read m  1 
417, in (151. for (b1, b2 read (bi , b2A , , 
421, in (182. for (2 iv' fir. 0 read (2 for 77-, 0 

 


