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Abstract

In that paper, we prove that the composition of two roofs is another roof by using mapping
cone of a morphism of cochain complexes.
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1 Introduction

Assume that A is an abelian category. P. Aluffi defines a mapping cone MC(f) of a
morphism f : A → B in C(A) and homotopy between two morphisms in that category
in [Al]. Also, in [Kr], H. Krause defines triangulated category and the localizing class.
After that, he proves that the homotopic category K(A) is triangulated in Section 2.5.

Using this information, we prove that for a given upside down roof in the localization
of K(A), we can obtain a regular roof in that category. This allows us to compute the
composition of two regular roofs in the localization of homotopic category.
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2 Mapping Cone and Homotopy

The collection C(A) consisting of all cochain complexes in an abelian category A forms
an abelian category. It is easy to show that the set of morphisms of that category is an
abelian group, finite products and coproducts exist since they exist in A.

Definition 2.0.1. A morphism f between cochain complexes is quasi isomorphism if it
induces an isomorphism in cohomology.

For a given morphism f : A → B between cochain complexes A and B, we define a
mapping cone MC(f) as MC(f)i = A[1]i ⊕ Bi = Ai+1 ⊕ Bi for all i. Here, we get the
morphisms

diMC(f) : MC(f)i →MC(f)i+1,

diMC(f)(a, b) = (−di+1
A (a), f i+1(a) + diB(b))

between those objects.

MC(f) is a cochain complex since di+1
MC(f) ◦ diMC(f) = 0.

... Ai+1 Ai+2 Ai+3 ...

... Bi Bi+1 Bi+2 ...

⊕ ⊕ ⊕

−di+1
A −di+2

A

diB di+1
B

f i+1 f i+2

Definition 2.0.2. A homotopy k between two morphisms of cochain complexes f, g : A→
B is a collection of morphisms ki : Ai → Bi−1 such that for all i,

gi − f i = di−1B ◦ ki + ki+1 ◦ diA.

The above morphisms f and g are homotopic if there is a homotopy between them.
We use the following diagram to show that homotopy and use the symbol f ∼ g to mean
there exists a homotopy between the morphisms f and g.

... Ai−1 Ai Ai+1 ...

... Bi−2 Bi−1 Bi ...

di−1A diA

di−2B di−1B

ki−1 ki ki+1

Definition 2.0.3. A morphism f : A → B is a homotopy equivalence if there is a
morphism g : B → A such that f ◦ g ∼ idB and g ◦ f ∼ idA.
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A and B are homotopy equivalent if there is a homotopy equivalence A→ B.

Proposition 2.0.1. [Al] If f, g : A→ B are homotopic, then H•(f) = H•(g).

Corollary 2.0.1. If f : A→ B is homotopy equivalence, then H•(A) ∼= H•(B).

Every homotopy equivalence is a quasi isomorphism, but every quasi isomorphism may
not be a homotopy equivalence.

3 Triangulated Categories

Definition 3.0.4. [Kr] Assume that A is an additive category with an equivalence

F : A → A. A triangle (f, g, h) inA is a sequence of morphisms X
f // Y

g // Z
h // F(X)

for all objects X, Y and Z in A.

A morphism between two triangles (f1, g1, h1) and (f2, g2, h2) is a triple (k1, k2, k3)
of morphisms in A making the following diagram commute.

X

k1
��

f1 // Y

k2
��

g1 // Z
h1 //

k3
��

F(X)

F(k1)
��

X ′
f2
// Y ′ g2

// Z ′
h2
// F(X ′)

The category A is called pre-triangulated if it has a class of exact triangles satisfying
the following conditions.

1. A triangle is exact if it is isomorphic to an exact triangle.

2. For all objects X in A, the triangle 0 // X id // X // 0 is exact.

3. Each morphism f : X → Y can be completed to an exact triangle (f, g, h).

4. A triangle (f, g, h) is exact if and only if the triangle (g, h, −F(f)) is exact.

5. Given two exact triangles (f1, g1, h1) and (f2, g2, h2), each pair of maps k1 and k2
satisfying k2 ◦ f1 = f2 ◦ k1 can be completed to a morphism;

X

k1
��

f1 // Y

k2
��

g1 // Z
h1 //

k3
��

F(X)

F(k1)
��

X ′
f2
// Y ′ g2

// Z ′
h2
// F(X ′)

A is a triangulated category if in addition it satisfies the following axiom.
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6. The Octahedral Axiom: Given exact triangles (f1, f2, f3), (g1, g2, g3) and
(h1, h2, h3) with h1 = g1 ◦ f1, there exists an exact triangle (k1, k2, k3) making
the following diagram commutative.

X

=

��

f1 // Y

g1

��

f2 // U
f3 //

k1
��

F(X)

=

��
X

h1 // Z

g2

��

h2 // V

k2
��

h3 // F(X)

F(f1)
��

W = //

g3
��

W
g3 //

k3
��

F(Y )

F(Y )
F(f2) // F(U)

Remark 3.0.1. If A is a pretriangulated category, then Aop is a pretriangulated category,
too.

4 The Localization of A Category

Definition 4.0.5. [Kr] Assume that A is a category and F is a class of maps in A. F is
a localizing class if the following conditions are satisfied.

1. If f, g are composible maps in F , then g ◦ f is in F .

2. The identity map idA is in F for all A ∈ A.

3. If f : A → B is in F , then every pair of maps B′ → B and A → A′′ in A can be
completed to a pair of commutative diagrams;

A′ //

f ′

��

A

f
��

B′ // B

A //

f
��

A′′

f ′′

��
B // B′′

such that f ′ and f ′′ are in F .

4. If f, g : A→ B are maps in A, then there is some h : A′ → A in F with f ◦h = g◦h
if and only if there is some k : B → B′′ in F with k ◦ f = k ◦ g.

Definition 4.0.6. [Kr] Assume that A is a category and F is a class of maps in A.
The localization of A with respect to F is a category A[F−1] together with a functor
F : A → A[F−1] such that F(f) is an isomorphism for all f in F and any functor
G : A → B such that G(f) is an isomorphism for all f in F factors uniquely through F .

We can always find a localization like that.

4



Definition 4.0.7. Assume that A is a category and F is a localizing class. The objects
of A[F−1] are the objects of A. The morphisms A→ B in A[F−1] are equivalence classes

of diagrams A B′
foo g // B with the morphism f in F for all objects A and B in the

category A[F−1]. We will call those morphisms as regular roofs.

A pair (f, g) is also called a fraction because it is written as g ◦ f−1 in A[F−1].

Remark 4.0.2. The functor F : A → A[F−1] sends a map f : A → B to the pair
(idA, f).

Definition 4.0.8. (f, g) and (f ′, g′) are equivalent if there exists a commutative diagram
with f ′′ in F ;

B′

f

}}

g

!!
A B′′′

f ′′oo g′′ //

OO

��

B

B′′
f ′

aa

g′

==

5 Composition of Two Roofs

Definition 5.0.9. [Al] Assume that A is an abelian category. K(A) is a category whose
objects are the objects in C(A) and the set of morphisms is

HomK(A)(A, B) = HomC(A)(A, B)/ ∼

where ∼ is homotopy relation.

If f ◦ g ∼ id in C(A), then f ◦ g = id in K(A). As a result, homotopy equivalences
in C(A) become isomorphisms in K(A) and we say that K(A) is obtained by inverting
all homotopy equivalences in C(A). It is an additive category, but not abelian in general
since homotopic maps don’t have same kernels and cokernels.

In [Kr], H. Krause proves that K(A) is a triangulated category.

Remark 5.0.3. The set of quasi isomorphisms in K(A) for a given abelian category A
forms a localizing class.

Theorem 5.0.2. [Al] Assume that A is an abelian category and we have two morphisms

L α // K and M
β // K with β is a quasi isomorphism for objects L and M in K(A).

Then, there exists a cochain complex K, morphisms K → L which is quasi isomorphism
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and K →M in K(A) such that the following diagram commutes.

K
γ1

  

γ2

��
L

α ��

M

β~~
K

(1)

Proof. Assume that γ is the composition L // K //MC(β) , K = MC(γ)[−1]

and Ki = Li ⊕ M i ⊕ Ki−1. We define morphisms Ki → Li, (l, m, k) → l and
Ki →M i, (l, m, k)→ −m as in [Al].

We want to prove that L and M are connected by a regular roof as well.

For the rest of the proof, we need to show that the Diagram 1 commutes.

H•(M) ∼= H•(K) since β is a quasi isomorphism. This implies that MC(β) is exact,
so H•(MC(β)) = 0.

MC(β)i = M [1]i ⊕Ki = M i+1 ⊕Ki,

diMC(β) : MC(β)i →MC(β)i+1, diMC(β)(m, k) = (−di+1
M , βi+1(m) + diK(k)).

We define γi(l) = (0, αi(l)) and

MC(γ)i = L[1]i ⊕M i+1 ⊕Ki = Li+1 ⊕M i+1 ⊕Ki

where diMC(γ) : MC(γ)i →MC(γ)i+1 with

diMC(γ)(l, m, k) = (−di+1
L (l), γi+1(l) + diMC(β)(m, k)) =

(−di+1
L (l),−di+1

M (m), αi+1(l) + βi+1(m) + diK(k)).

K = MC(γ)[−1],

MC(γ)[−1]i = MC(γ)i−1 = Li ⊕M i ⊕Ki−1 = Ki

and diK = −di−1MC(γ) with

diK = (diL(l), diM(m), − αi(l)− βi(m)− di−1K(k)).

Assume that hi : Ki → Ki−1 takes (l, m, k) to −k. We need to show that

αi ◦ γi2 − βi ◦ γi1 = di−1K ◦ hi + hi+1 ◦ diK
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for all i ∈ Z which shows that α ◦ γ2 and β ◦ γ1 are homotopic maps in K(A). This
will show that they are same maps.

For all (l, m, k) ∈ Ki,

(αi ◦ γi2 − βi ◦ γi1)(l, m, k) = αi(γi2(l, m, k))− βi(γi1(l, m, k))

= αi(l)− βi(−m) = αi(l) + βi(m)

since A is additive. On the other hand,

(di−1K ◦ hi + hi+1 ◦ diK)(l,m, k) = di−1K (hi(l, m, k)) + hi+1(diN(l, m, k))

= di−1K (−k) + αi(l) + βi(m) + di−1K (k) = αi(l) + β(m).

This shows the maps are homotopic and the diagram is commutative.

We need to show that γ2 is a quasi isomorphism. We have an exact triangle;

L

##
L[1] +MC(β)

88

MC(β)oo

This triangle is isomorphic to an exact triangle;

MC(β)

''
L[1]

::

L[1] +MC(β)oo

Then, we take its cohomology and the triangle still will be exact.

H•(MC(β))

))
H•(L[1])

77

H•(L[1] +MC(β))oo

H•(MC(β)) = 0, so H•(L[1]) ∼= H•(L[1] +MC(β)) and

L[1] +MC(β) = L[1] +M [1] +K = K[1].

Consequently, H•(L[1]) ∼= H•(K[1]). This means H•(L) ∼= H•(K), hence γ2 is a quasi
isomorphism.
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The pair (f ◦ f ′′, g′ ◦ g′′) is the composition of two pairs (f, g) and (f ′, g′) as in the
following commutative diagram;

C ′′

g′′

!!

f ′′

}}
B′

f

~~

g

!!

C ′

g′

  

f ′

}}
A B C
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