

[263]

The Anfwer of Dr. Papin to feveral Objections made by Mr . Nuis againft bis Engine for raifing Water by the rarefaction of the Air, whereof a defcription is given in No. 178 . of thefe Tranfactions.

Having feen in the Nouvelles de la Republ. des Lettres of the Nonth of December laft, fome difficulties which Mr. Nuis dothe find in my new way for raifing Water, publifh't in the Philofoptical Tranfactions of the month of Fanuary; I am obliged to anfwer them as clearly as I can in thefe thort notes.

In his firt Objection he faith, that it would be a very hard matter to hinder but fome Receptacles would come to be filld too much: So that the water filling alfo the pipes CDD would hinder the effect of the Engin. To this I anfwer that it being necelfary to let out the water of the higheft Recepracle, I thought it might be conceived that the water may alfo be let out of the inferiour Receptacles by inforting into each of them a crooked pipe, reaching a pretty way downwards, and having its lower aperture thut up with a valve; whereby the water might run out when the Receptacle fouid be filld to a certain height: and fo I did not Iudge it needfull to prevent this Objection.

The fecond Difficulty, which I had very well forefeen (as it is plain in my firt explication) lyes in the great quantity of An to be rarcfed: So that Mr. Nuis, by his computation, deh find that the Pump's fhould every one contain, 84 cubick feet of rarefied Air to raife water at 12000 foot diftance. To this I may anfiwer, firt that I have not pofitively promifed a good fuccefs but for Windfor and St.Germain; but when I fooke of Verfailles I ufed the word perbaps, thereby thewing that before any one fhould go about fuch a great undertaking he fhould reflect vpon

[264]

it more than I would then do, not having occafion for fuch work : but fince I have feen Mr. Nuis his Objection, I have been Obliged in order to anfwer him to make the following computation.

Let the diftance as he fuppofeth be 12000 foot, and the Capacity of each Receptacle be about one half of a cubick foot: I might make the wheel with the Axis to make their revolution in one minute of time, and fo order all things. that the Air under the afcending plugs might come to be rarefied to fuch a degree, that by its Elafticity it might not counterpoife more than 7 foot of water:but at the fame time the Air in the Receptacles $A A, B B$,would even in it's great eft dilatation be able to counterpoife 17 foot : fo it is plain that the Air will be driven from the Receptacles into the Pumps by a ftrength equivalent to ten foot of water : Now. if we compute after the method publifh'd in the Tranfaction of the month of October laft, what fhould be the Velocity of the Air driven by fuch a preffure: we fhali find that the faid Velocity will be about 740 foot in a fecond: So that in half a minute, during which the plug goeth up, this Air might pafs above 22000 foot, although it were not rarifi'd at all ; but being rarefid, as we do fuppofe it to be, it might go a great deal further.

I muft now take notice that according to the Honourable Mr. Boile's Experiments quoted by Mr. Nuis, the Rarefaction of the Air is much leffer than he takes it to be: For the Water contain'd in the Pipe NO. is fo far from caufing the Air to fill up a fpace four times bigger, that it will not extend it felf to a face once bigger than before; confidering therefore the Velocity of the Air and the fmall dilatation it doth fuffer, if any one will take the trouble to compute, he will find that if the Pumps have in Diameter the Diagonal of a Square Foor, and the fame heighth: and if the fmall Tubes of communication be made of $\frac{1}{9}$ part of an Inch in Diameter, fo that being 2000 Foot long, they may contain about one cubick Foot of

[265]

Air, that would be more than fufficient to make the neceffary Rarefaction in the Receptacles: And thus much might anfwer Mr. Nuis his Objection.

But for the good fuccefs of the Engine it is not enough to make the Air pafs from the Receptacles into the Pumps, it mult alfo return from the Pumps into the Receptacles: Now for this intent it would be neceffary to fet the Recepticles but five Foot above one another; fo to drive the Water up the Pipe NO, it would be enough that the Air in the Receptacle B fhould prefs with a ftrength equivalent to 23 Foot of Water: For it is plain that 5 Foot in the Pipe NO, together with a preffure equivalent to 17 Foot which I have fuppofed to be in the upper Receptacle A, will make but 22 Foot in all: and therefore 23 Foot preffing in the Receptacle B muft prevail and caufe the Water to afcend: now the preffure in the Receptacle being but 23 Foot, and the Air in the Pump returning to its ordinary preffure, which is about 33 Foot; it is plain that the Air going back to the Receptacle will be driven by a ftrength equivalent to ro Foot, as well as it had been in coming from the Receptacle towards the Pump: and fo the bignefs affigned for the communication-Pipes will alfo prove more than fufficient to this effect.

From what I have been faying it is plain, that in great diftances there fhould be made as many Pumps as Receptacles, as I had propounded in the firft explication of my Engine: and for to raife Water but 60 Foot high, there fhould be required 13 or 14 Receptacles and as many Pumps of the bignefs aforefaid. Some people may take this for a great difficulty. But I anfwer that in this Engine this is not fo much as it feems at firf; becaufe the preffure being all from without, there is no need of any great ftrength to refift it, and fo the Metal for the Pumps will coft but little: there may alfo be found occafions where to make fogood ufe of them, that fuch an Engine as I have defcribed would in a years time fave labour enough to pay

[266]

for many Pumps, fince it might every hour raife about 1800 pounds of Water to the height of 60 Foot: Mean while I don't pretend to have given here the beft proportion for the bignefs of every part of the Engine; but it may be, by altering the Capacity of the Pumps, of the Pipes, or of the Receptacles, a much more confiderable effect might be produced: but I'le leave this to be lookt after by thofe that may have occalion for it; and for my part I content my felf having fhewn the truth of what I had at firft, though but doubtfully, propounded: For the River Seine, where it is neareft to Verfailles, not being above 2000 Foot diftant, it is eafie to fee that, to fupply this increafe of diftance, we might lelfen at pleafure the capacity of the Receptacles, or increafe the capacity of the Pumps and of the Pipes, or caufe the wheel to fpend more time in its revolution: 'tis true the Engine would produce lefs effect, but upon a great River the number of the Engines might be multiplied, and valt quantitys of Water ftill be railed. I fhall therefore, to prevent new difficulties, add only this: that as well as in the Receptacles I have a way to prevent the overflowing with Water; fo in the Pumps I might alfo prevent the overfilling with Air, by making a Valve that fhould open as foon as the Air in the Pump fhould be more compreft than the outward Air: So the Air getting in through any pores would conftantly be let out.

As for the third objection wherein Mr. Nuis fays that it doth not appear how the Water in our Engine may;'by Rarefaction, afiend higher than 32 Foot. I anfwer that the Water doth notat any time afcend higher than froma lower Receptacle into the next upper Receptacle, which heighth is but 12 Foot: So that it is plain enough that the preffure of the Air may be fufficient to drive it up. It is indifferent whether it be by Rarefaction or otherwife that the Water comes into the Receptacle A; it is enough that the Water is thene, and that the Air preffes

[267]

upon it with fuch a ftrength as will prevail againft all that oppofeth it, as I have fhewn above.

To the fourth Difficulty I anfwer: That although the ufe of the Pipes be meerly for the conveying of Air: They may neverthelefs eafily be fill'd with Water when need requires, and fo the defects in them may as well be found out as in the Pipes that are ufed for the conveying of Water. This is all I may anfwer at prefent, and I fhall make an end with affureing Mr. Nuis that ille make ufe of his advice when ever he will be pleafed to give it me.

An anfwer of the fame to the Author of the perpetual

 Motion.I\mathbf{N} the laft papers I publifhed in Pbil. Tranfact. N. i84 againft this perpetual Motion defcribed in N. 177. I intreated the Author to permit me to fay nothing as to what alterations he might make in his Engine; refolving to leave it to others to thew him that upon that principle all he can do fignifies nothing. But I find fince, in the Nonvelles de la Republ: for December laft, that he ftill perfifts to urge fome new contrivances, which being added he conceives his Engine muft fucceed. To this I anfwer that I undertook only to hew that bis firt device would faile, which y et I fhould farce have done, if I liad thought a difpute of this nature could have lafted fo long. To come therefore to the point, where he faith that this Engme may well fucceed without alteration, becaufe he hath tryed with Liquors put into Bellows immerfed in Water: I again fay that I grant him the truth of the Experimens, but deny the confequences he would

