DUD BY KNOX LIBRARY NAVEL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

Approved for public release; distribution is unlimited.

Anode Sheath Contributions in Plasma Thrusters

by

John F. Riggs Lieutenant Commander, United States Navy B.A., University of Kansas, 1982

Submitted in partial fulfillment of the requirements for the degrees of

AERONAUTICAL & ASTRONAUTICAL ENGINEER and MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1994

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washingon headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.						
1. AGENCY USE ONLY (Leave	blank) 2. REPORT DA March 1994	ΓΕ :	B. REPORT TYPE AN Engineer's and Mas	ND DATES COVERED ter's Thesis		
4. TITLE AND SUBTITLE ANODE SHEATH CONTRIBUTIONS IN PLASMA THRUSTERS				ING NUMBERS		
6. AUTHOR(S) Riggs, John 1	Forrest					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey CA 93943-5000				ORMING NIZATION RT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			ES) 10. SPONS AGENO	ORING/MONITORING Cy report number		
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.						
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.			12b. DISTI A	RIBUTION CODE		
13. ABSTRACT (maximum 200 words) Contributions of the anode to Magnetoplasmadynamic (MPD) thruster performance are considered. High energy losses at this electrode, surface erosion, and sheath/ionization effects must be controlled in designs of practical interest. Current constriction or spotting at the anode, evolving into localized surface damage and considerable throat erosion, is shown to be related to the electron temperature's (T_e) rise above the gas temperature (T_o). An elementary one-dimensional description of a collisional sheath which highlights the role of T_e is presented. Computations to model the one-dimensional sheath are attempted using a set of five coupled first-order, nonlinear differential equations describing the electric field, as well as the species current and number densities. For a large temperature nonequilibrium (i.e., $T_e > > T_o$), the one-dimensional approach fails to give reasonable answers and a multidimensional description is deemed necessary. Thus, anode spotting may be precipitated by the elevation of T_e among other factors. A review of transpiration cooling as a means of recouping some anode power is included. Active anode cooling via transpiration cooling would result in (1) quenching T_e , (2) adding "hot" propellant to exhaust, and (3) reducing the local electron Hall parameter. However, significant technical problems remain,						
				15. NUMBER OF PAGES 106		
				16. PRICE CODE		
17. SECURITY CLASSIFI- CATION OF REPORT Unclassi ⁺ ied	8. SECURITY CLASSIFI- CATION OF THIS PAGE Unclassified	I9. SECU CAT Unc	URITY CLASSIFI- ION OF ABSTRACT assified	20. LIMITATION OF ABSTRACT UL		

Prescribed by ANSI Std. 239-18

ABSTRACT

Contributions of the anode to Magnetoplasmadynamic (MPD) thruster performance are considered. High energy losses at this electrode, surface erosion, and sheath/ionization effects must be controlled in designs of practical interest. Current constriction or spotting at the anode, evolving into localized surface damage and considerable throat erosion, is shown to be related to the electron temperature's (T_e) rise above the gas temperature (T_e). An elementary one-dimensional description of a collisional sheath which highlights the role of Te is presented. Computations to model the one-dimensional sheath are attempted using a set of five coupled first-order, nonlinear differential equations describing the electric field, as well as the species current and number densities. For a large temperature nonequilibrium $(i.e., T_e > T_o)$, the one-dimensional approach fails to give reasonable answers and a multidimensional description is deemed necessary. Thus, anode spotting may be precipitated by the elevation of T_e among other factors. A review of transpiration cooling as a means of recouping some anode power is included. Active anode cooling via transpiration cooling would result in (1) quenching T., (2) adding "hot" propellant to exhaust, and (3) reducing the local electron Hall parameter. However, significant technical problems remain.

R 4654 C.

TABLE OF CONTENTS

I. INTRODUCTION				
II. LITERATURE REVIEW				
III. A	NOE	DE DESCRIPTION	7	
	A.	THRUSTER GEOMETRY DESCRIPTION	7	
	B.	ELEMENTARY SHEATH FORMULAE DESCRIPTION	11	
		1. Discussion	11	
		2. Simplified Formulation	14	
		3. Approximate Formulation	21	
		a. Effects of Temperature on Anode Constriction	22	
		(1) Case I: $T_e = T_i = T_o$ (Equilibrium)	23	
		(2) Case II: $T_e >> T_1 = T_o$ (Two-Temperature)	25	
		b. Similarity to Vacuum Arc Phenomena	27	
	C.	COMPUTER CODE	29	
	D.	COMPUTATIONAL RESULTS	30	
	E.	ANODE FALL VOLTAGE	36	
IV. T	ΓRAN	NSPIRATION COOLING	38	
V.	CON	NCLUSIONS AND RECOMMENDATIONS	43	

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

APPENDIX - APPLICABLE FORTRAN PROGRAMS	46
LIST OF REFERENCES	92
INITIAL DISTRIBUTION LIST	96

LIST OF TABLES

I. NOMENCLATURE	15
-----------------	----

LIST OF FIGURES

1.	Magnetoplasmadynamic (MPD) Thruster	8
2.	Space Plasma Thruster	10
3.	Electric Field Between Two Electrodes	11
4.	Electric Field and First Two Space Derivatives	19
5.	Electric Field and Species Approximation	24
6.	Two-dimensional Model of Current Paths	26
7.	Anode Discharge Modes	28
8.	Ionization Coefficient ν as a Function of E/N	30
9.	Species Number Density Plots for Individual Computer Run	32
10.	Electric Field as a Function of \tilde{y}	34
11.	Species Number Density as a Function of \tilde{y}	35

ACKNOWLEDGMENT

I dedicate this work to my dear wife Lin, for her support and understanding during my absence as a geographical bachelor of almost three years.

My sincere thanks to my parents for encouraging me to pursue my ambitions from childhood on, and to Oscar Biblarz, Ph.D., for patiently helping me to understand plasma physics.

1.00

A Received and Received and Received

I. INTRODUCTION

Several types of space flight propulsion systems have been developed over the years. These include chemical, nuclear, electric and solar propulsion. The majority of space thrusters to date have been chemical rockets. Although the Chinese used rockets over 800 years ago, true development of rocket propulsion took place during this century [Ref. 1]. Chemical thrusters give high thrust-to-weight ratios, larger than unity, and have been fully developed in the form of space launch vehicles and attitude control thrusters. In contrast, other propulsion systems have been developed only to the proof-of-concept stage, and essentially remain at this stage of development. Nuclear propulsion was studied with the NERVA (Nuclear Engine for Rocket Vehicle Application) thruster in the 1960's, and abandoned [Ref. 2:pp. 517-519]. Electric propulsion flights during the 1960's included the U.S. SERT-1 (Space Electric Rocket Test) in 1964 and the U.S.S.R. Yantari-1 rocket in 1966. Solarelectric propulsion was demonstrated via the SERT-2 rocket in 1970, powering the electric thruster from power generated by solar cells. Further electric propulsion research flights in the 1980's included the U.S. Navy's NOVA-1 satellite in 1981, and Japan's MS-T4 satellite, launched from the Space Shuttle. Beyond this, nonchemical thrusters have only been used in auxiliary roles, such as station-keeping and attitude control on geosynchronous satellites. NASA's Project PATHFINDER in the mid-1980's proposed the use of a megawatt-level electric plasma thruster for a manned Mars mission. However, development of this project was never funded.

In comparing the different propulsion schemes, a primary performance indicator is specific impulse, defined as the ratio of thrust to the rate of propellant usage, or alternately, propellant effective exhaust velocity (u_e) , divided by the sea-level gravitational constant, (g_o) .

$$I_{sp} = \frac{\dot{m}u_{\epsilon}}{\dot{m}g_{o}} = \frac{u_{\epsilon}}{g_{o}} \quad sec$$
(1)

Chemical rockets are inherently limited in performance by the total energy available in the fuel/oxidizer combustion process, so that the total enthalpy available for conversion into exhaust kinetic energy is limited. Exhaust velocity is also limited by material heating limitations of the combustion chamber and nozzle throat, and "frozen flow Losses" (unrecoverable energy deposition in internal modes of the gas) [Ref. 3:pp. 4-5]. Peak specific impulse for liquid chemical propellants is presently on the order of 450 seconds. This capability is completely sufficient for the tasks of launch to low earth orbit (LEO), attitude control, station keeping, and such missions. However, for missions such as manned interplanetary exploration, chemical propulsion can be shown to be clearly inadequate. A comparative analysis of a Mars

mission using chemical and electric propulsion systems shows the large difference in mass payload ratio (final mass/initial launch mass) for the two systems. A chemical system using a high impulse Hohman ellipse trajectory delivers a maximum of approximately 10% to 18% of the launch mass to the Martian surface [Ref. 4:p. 115]. In comparison, an electric system using a low impulse spiral trajectory could deliver from 20% to 60% of the launch mass, depending on the desired transit time. Each mission assumes transit from low Earth orbit to Mars orbit. An electric propulsion system would still need a high thrust propulsion system to reach the Martian surface Ref. 5:pp. 344-346]. The large difference in payload ratio is due to the much larger exhaust velocity and more efficient use of fuel by electric propulsion. Thus, some form of electric or hybrid electric thruster would seem to be in order for such interplanetary missions. However, due to the low thrust-to-weight ratio of electric thrusters, they must be launched into orbit by other means. Their usefulness is restricted to space thrusters, not to launch systems.

With specific impulses of as high as 10,000 seconds, electric propulsion offers the performance envelope needed for manned interplanetary missions. Electric propulsion is divided into three types of thrusters: electrostatic, electrothermal, and electromagnetic. The type relevant to this work is the magnetoplasmadynamic (MPD) thruster, an electromagnetic propulsion system that utilizes the Lorentz force created by an electric current together with its induced magnetic field to propel a gas that has been heated to the plasma state. According to electromagnetic theory, a conductor carrying a current produces an induced magnetic force perpendicular to

3

the current. The applied electric field and its induced magnetic field interact to produce the Lorentz force ($\vec{F} = \vec{j} \times \vec{B}$) perpendicular to both fields on the conductors. This briefly summarizes the concept behind the "self-field" MPD accelerator [Ref. 2:pp. 485-486]. MPD performance is enhanced by adding magnetic coils to the thruster, thus strengthening the magnetic field and, as a consequence, the Lorentz force and thrust. This thruster is appropriately called an "applied-field" MPD thruster. MPD thrusters have shown specific impulses of up to 7,000 seconds and efficiencies as high as 70% [Ref. 6:pp. 2-3]. Performance of MPD thrusters is limited by several factors, including electrode erosion, current spotting, frozen flow losses, and electrode power deposition. Specifically, anode power deposition is the single largest power loss mechanism in MPD thrusters operating at submegawatt power levels [Ref. 7]. In the following work, we review and analytically model the MPD anode, including the sheath and anode potential drop.

II. LITERATURE REVIEW

Anode losses significantly limit magnetoplasmadynamic (MPD) thruster performance. Much effort has been placed on characterizing these losses and on the nature of power deposition in the anode [Refs. 8-14]. As much as 80% of thruster total power may end up being deposited in the anode at sub-megawatt power levels [Refs. 8,15]. This power deposition together with current constriction at the anode surface present serious problems to thruster cooling and performance, as well as to anode lifetime. Before any practical design can be achieved, a more thorough understanding of the phenomena at the anode, particularly the anode sheath, must be gained. Studies have shown that the anode power fraction depends on thruster power, current, mass flow rate, and the parameter J^2/\dot{m} [Refs. 8,12,13,16]. It has also been shown that the anode fall voltage is inversely proportional to anode current density [Refs. 13,16]. It is believed that a better understanding of the role of an elevated electron temperature, of current flow dimensionality, and of current unsteadiness are prerequisites for the evolution of any practical MPD thruster design.

Computer codes that accurately describe observed data from steady-state MPD thrusters have been developed [Refs. 17-19]. However, these codes do not adequately describe observed data from quasi-steady thruster experiments. It has been suggested that the lack of proper electrode modelling (i.e., sheaths and fall potentials) in these

codes may explain this discrepancy [Ref. 6]. Limited analytical work has been done in modelling the sheath and ambipolar regions at the anode, influenced perhaps by the difficult set of coupled, nonlinear partial differential equations involved. Hugel [Ref. 12] and Subramaniam [Ref. 20] address the influence of the sheath region, but do not model the electric field, temperature, or sheath fall voltage.

Given the minuscule extent of the sheath versus thruster anode curvature, the problem at first appears one-dimensional in nature. A one-dimensional, collisional, equilibrium solution can satisfactorily reproduce the observed electric field and charge density distributions for the entire sheath and ambipolar regions for a sheath where the electron temperature equals that of the heavy species [Ref. 21]. However, this model cannot describe any decrease in current density away from the surface, or current constriction, at the anode surface which might be necessary in nonequilibrium. A two-dimensional model, developed by Biblarz and Dolson [Ref. 14], represents these phenomena and predicts the voltage drop in the region. It is shown that the sheath must account for a majority of the anode voltage drop, and that the sheath extent must be greater than the Debye length [Refs. 14,21]. Thus, a combination of one- and two-dimensional approaches appears to better describe sheath behavior. Incorporation of modelling of this sort may improve the ability of the computer codes cited above to properly describe quasi-steady thrusters.

Next, a description of the anode region is presented in order to delineate some of the possible effects of temperature.

6

III. ANODE DESCRIPTION

A. THRUSTER GEOMETRY DESCRIPTION

The majority of plasma thrusters to date have consisted of a central cathode rod surrounded by an annular shell anode, as shown in Figure 1 [Ref. 23]. The thruster illustrated is sufficient to produce needed thrust at current levels above one kiloamp. Below this level, an external magnetic field produced by an annular magnet is needed to ensure sufficient Lorentz force on the plasma propellant to meet thrust requirements. [Ref. 8]. As illustrated in Figure 1, the $\vec{j} \times \vec{B}$ body force simplifies into an axial $(j_x B_{\theta})$ body force, which provides direct electromagnetic thrust ("blowing"), and a radial $(-j_x B_{\theta})$ body force, which provides electromagnetic compression of the plasma and a subsequent pressure force along the cathode surface ("pumping"). [Ref. 6]

A notable exception to this geometry is the Stationary Plasma Thruster (SPT), a design from the former Soviet Union. The SPT is an example of a plasma propulsion system known as a Hall Current Plasma accelerator. An electric field is applied axially to a stream of flowing plasma, in addition to a magnetic field with a strong radial component, which is applied by an external electromagnet. When the axial electric field is applied and a current flows through the plasma, an azimuthal component of current is induced, i.e., the "Hall" current.

7

Figure 1 - Magnetoplasmadynamic (MPD) Thruster, with Axial and Radial Forces on Plasma Indicated. [Ref. 23]

Thrust is produced by electrostatically accelerating the ions in the plasma, as well as through the induced Lorentz force mentioned above. A strong radial magnetic field is applied to the plasma, whose properties are controlled to make the electron Larmor radius¹ small compared to the mean free path², while the ion Larmor radius is comparatively large. As a consequence, electron mobility in the axial direction is greatly reduced. Thus, the electric field energy is given mainly to the ions, producing axial ion acceleration. Collisions with neutral particles serve to accelerate the entire neutral plasma. [Ref. 24]

A pair of the final prototype design developed, the SPT-100, have been acquired by NASA recently from Fakel Enterprise in Kaliningrad, Russia, and are undergoing performance evaluation at the Jet Propulsion Laboratory. Designed at the Kurchatov Institute of Atomic Energy (IAE) in Moscow, USSR in the 1960's, smaller versions of the SPT-100 (SPT-50 and SPT-70) were flown beginning in 1972³. A specific impulse of 1,600 seconds and 50% efficiency, as well as space flights of fifty similar thrusters is claimed. The specific operational characteristics of the thruster are not well understood presently. Bohm diffusion of electrons and a phenomenon called "near-wall conductivity" have been proposed to explain the thruster's operation. This thruster is shown in Figure 2. [Ref. 25]

.

¹ Larmor radius is the radius of the helix traversed by a charged particle moving in a magnetic field.

² Mean free path is the distance traveled by a particle before making a collision.

³The suffix (i.e.,"-70") indicates the characteristic diameter of the thruster in millimeters.

Figure 2 - Stationary Plasma Thruster [Ref. 25]

1. Discussion

Voltage losses and anode power deposition account for most of the inefficiency of plasma thrusters. In order to understand these losses, the anode region must be understood and related phenomena explained and modelled. As shown in Figure 3, a substantial drop in voltage occurs in a short distance from the anode surface.

nde Anode drop region region---Vc Positive Column Anode Cathode

Figure 3 - Electric Field Between Two Electrodes, Including "Positive Column". [Ref. 27]

The anode fall region may be divided into two parts, the sheath and ambipolar regions. The plasma attempts to adjust itself near electrodes so as to shield the main body of the plasma from the electric field [Ref. 26]. The sheath is the region closest

to the anode surface within which the ion and electron number densities are unequal. with the electrons dominating the region. A high electron space charge exists at the anode surface. This is caused by the anode collecting incoming electrons in completing the arc current with the cathode. Positive ions are produced within the sheath by electron impact of neutral gas molecules, and the ions are repelled toward the cathode. At the cathode end of the anode drop region, the density of positive ions is high enough to almost neutralize the electron space charge, thus forming the positive column or core plasma. The essential positive ion current is created in this way near the anode. A more complete description of this process may be found in Cobine [Ref. 27] and von Engel [Ref. 28]. A fundamental characteristic of plasma behavior is its tendency toward electrical neutrality. Whenever local charge concentrations arise or external potentials are introduced into a system, these are shielded out in a distance known as the "Debye length"⁴. This distance must be much smaller than the system dimension for the ionized gas to be considered a plasma [Ref. 29]. Equation (2) gives the Debye length [Ref. 26].

$$\lambda_{d} = \sqrt{\frac{\epsilon_{o} kT}{n_{\infty} e^{2}}} = 69.0 \sqrt{\frac{T}{n_{\infty}}} \qquad (m)$$

⁴The Debye length effectively describes the radius of a shell around a charged particle outside of which the potential of the particle is not seen.

Another distance of interest is the electron mean free path, or distance traveled by a particle before making a collision. Equation (3) is from a derivation of Lin, Resler, and Kantrowitz [Refs. 30,31] giving the mean free path, with λ_s being the approximate sheath length.

$$\lambda = 0.12 \left(\frac{1}{n_e (e^2/3kT)^2 \ln(\lambda_s e^2/3kT)} \right)$$
(3)

Since the sheath extends at most a few mean-free lengths from the anode surface, curvature of the anode does not affect the governing equations in high pressure discharges. Thus, the region may be described in one dimension, the distance "y" from the anode surface. While the Debye length is sometimes assumed as the sheath extent, Reference 22 showed that the sheath thickness is a function of the anode fall voltage and the electron temperature. Equation (4) gives the appropriate form.

$$\lambda_{s} \approx \sqrt{\frac{\epsilon_{o} \Phi_{a}}{e n_{\infty}}} = \lambda_{D} \sqrt{\frac{e \Phi_{a}}{k T_{e}}}$$
(4)

An example case with a fall voltage of 100 volts gives a sheath extent of $\lambda_s = 2.352 \times 10^{-5} m$. This compares to a computed Debye length of $\lambda_D = 1.690 \times 10^{-6} m$. Therefore, the sheath can be an order of magnitude larger than the Debye length.

Nasser [Ref. 32] discusses an elementary theoretical approach to the glow discharge problem. He suggests a set of four one-dimensional ordinary differential equations, including the electron and ion current and number density equations, in addition to Poisson's equation. Most solution attempts have failed, with the boundary conditions being identified as the culprit. A similar attempt for the plasma thruster is discussed below.

2. Simplified Formulation

The steady probe equations are first written [Ref. 21] in their simplest form. The anode is assumed to operate as a heavily biased probe, which is true for low enough currents when the anode is not a source of ions. Whenever the temperature can be considered fixed, the energy equations are implicitly satisfied and, since ion inertia is neglected, the resulting set consists only of two species continuity equations and Poisson's equation. These equations are written in terms of y, which is the coordinate outward from the planar positive surface. Constants and variables are listed in Table 1.

TABLE 1 - NOMENCLATURE

a...characteristic length of plasma $D_{i,e}$...species diffusion coefficient e...elementary charge constant E...electric field E_{o} ...electric field at anode surface E_{∞} ...electric field at core plasma $j_{i,e}$...species current density J...total current k...Boltzmann's constant K...current parameter $n_{i,e}$...species number density \dot{n}_{e} ...time rate-of-change of n_{e} n_{∞} ...species number density at core plasma

N...total number density

T...temperature

T_o...neutral species temperature

α...two-body recombination coefficient

 ε_{\circ} ...permittivity constant

v ...ionization coefficient

 $\mu_{i,e}$...species mobility coefficient

 Φ_a ...anode fall potential

 λ ...mean-free distance

 λ_d ...Debye length

 λ_{s} ...Sheath thickness

Note: Species subscripts denote ions (i) and electrons (e).

$$j_{i} = e\mu_{i}n_{i}E - (eD_{i})\frac{dn_{i}}{dy}$$
 (5)

$$j_{e} = e\mu_{e}n_{e}E + (eD_{e})\frac{dn_{e}}{dy}$$
(6)

$$\frac{dE}{dy} = \frac{e}{\epsilon_o} (n_i - n_e)$$
(7)

$$J = j_{i} + j_{e} \tag{8}$$

$$\mu_{i,e} = \frac{eD_{i,e}}{kT_{i,e}}$$
(9)

Here, the <u>j's are species contributions to the total current density</u>. The existence of negative charges as free electrons is pivotal in the formulation. Next, the Einstein relation, equation (9), is introduced to write the mobilities in terms of the diffusion coefficients. We assume that the diffusion coefficients remain constant in the problem.

Equations (5) and (6) are next solved for $dn_{i,e}/dy$. The species current density equations are found from the net reaction rate of the plasma. Equations (10) and (11) combine to produce space derivatives for species current density.

$$\dot{n}_e = v_{in_e} - \alpha n_{in_e} \tag{10}$$

$$\frac{dj_{i}}{dy} = \frac{-dj_{e}}{dy} = e\dot{n}_{e}$$
(11)

Combining equations (5)-(11) produces a set of five coupled, non-linear differential equations describing the sheath. These are nondimensionalized to adjust all variables to the first order, and are rewritten below as equations (12)-(16), with nondimensionalized variables denoted by " \bar{x} ". Nondimensionalization can be accomplished as follows: The species number densities n_e,n_e , are divided by their values at infinity to produce output from the anode surface to unity at the ambipolar boundary. The current densities j_e,j_e are divided by the total current, allowing the output to show the "mirror behavior" of the two currents. The electric field is divided by the initial anode value to give output starting from unity at the surface and decreasing to the final core field value. The variable "y" is divided by the characteristic length⁵ of the plasma, "a", producing \tilde{y} . These corrections allow all output to vary in the range from zero to one, as a function of distance from the anode.

^sThe characteristic length is defined so as to cancel the multiplying factor in the electric field equation, (14), ($a = 1.107 \times 10^{\circ}$). This allows a physical interpretation of the ion/electron number densities, as well as the decay rate of the electric field.

$$\frac{d\tilde{n}_{i}}{d\tilde{y}} = \left(\frac{aeE_{o}}{kT_{o}}\right)\tilde{n}_{i}\tilde{E} - \left(\frac{aeE_{\infty}}{kT_{o}}\right)\tilde{j}_{i}$$
(12)

$$\frac{d\bar{n}_{e}}{d\bar{y}} = -\left(\frac{aeE_{o}}{kT_{o}}\right)\bar{n}_{e}\bar{E} + \left(\frac{aeE_{\infty}}{kT_{o}}\right)\bar{j}_{e}$$
(13)

$$\frac{d\tilde{E}}{d\tilde{y}} = \left(\frac{\operatorname{aen}_{\infty}}{E_{\circ}\epsilon_{\circ}}\right) \left(\tilde{n}_{,} - \tilde{n}_{e}\right)$$
(14)

$$\frac{d\tilde{j}_{e}}{d\tilde{y}} = -\left(\frac{akT_{o}v_{i}}{eE_{\infty}D_{e}}\right)\tilde{n}_{e}(\tilde{v}_{i}-\alpha\tilde{n}_{i})$$
(15)

$$\frac{d\tilde{j}_{i}}{d\tilde{y}} = \left(\frac{akT_{o}v_{i}}{eE_{x}D_{e}}\right)\tilde{n}_{e} (\tilde{v}_{i}-\alpha\tilde{n}_{i})$$
(16)

Attempts to solve this equation set using the computer code discussed below shows the set to be extremely sensitive to initial conditions. The computer code solver uses a "marching" scheme from the anode to the undisturbed plasma. The initial conditions are chosen to produce the electric field potential drop observed in actual thrusters. First and second space derivatives of the electric field are used as diagnostic checks to ensure reasonable output values and indicate instability of the integration process. Figure 4 shows the required resulting curves for the electric field and its first and second derivatives.

Figure 4 - Electric Field and First Two Space Derivatives Used as Diagnostic Checks for Integrator Output. (Plotted for a Generic Exponential Function).

Ecker characterizes the plasma at the anode as a double sheath, with the inner section called the "inertia sheath", and an outer section called the "energy loss section". The inner section shows a potential rise of the order of one volt, with the outer section showing the exponential potential drop shown in Figure 4. While this double sheath may in fact describe the actual sheath region, the formulation above only models the potential drop portion of the sheath, and does not attempt to produce the potential rise of the inner sheath. In addition, Ecker's current constrictions are of a "macroscopic" nature, whereas those of Reference 14 and this work are "microscopic" [Ref. 33].

Data for a 6,000°K Nitrogen plasma were used to test the equation set [Ref. 21]. Producing a proper solution required adjusting the initial conditions to force the curve shapes discussed above. Using Equations (2), (3), and (4), the mean free path, Debye length, and approximate sheath extent are calculated as $\lambda = 9.352 \times 10^{-3}$ m, $\lambda_{\rm D} = 1.690 \times 10^{-6}$ m, and $\lambda_{\rm S} = 2.352 \times 10^{-5}$ m (this assumes a drop voltage of 100 volts).

3. Approximate Formulation

Reference 21 explores the above equation set by taking advantage of the symmetry among the equations, and introducing two parameters, K^+ and K^- , shown below.

$$K^{*} \equiv \frac{j_{i}}{e D_{i}} + \frac{j_{e}}{e D_{e}}$$
(17)

$$-K^{-} \equiv \frac{j_{i}}{e D_{i}} - \frac{j_{e}}{e D_{e}}$$
(18)

It can be shown that the resulting equations can be manipulated to yield a single, ordinary differential equation for the K's in terms of the electric field. The resulting equation can be scrutinized for two distinct temperature regimes. Note that while the total current density, J, is constant in a steady, one-dimensional case, the K's can vary and will in turn also depend on the degree of reactivity of the plasma (\dot{n}_e), i.e.,

$$\frac{dj_{i}}{dy} = \frac{-dj_{e}}{dy} = e\dot{n}_{e}$$
(19)

Because ion diffusion is much slower than electron diffusion, it can be shown that the K's are related by

$$K^{-} \approx -K^{-} + \frac{2J}{eD_{e}}$$
(20)

As will be evident, at the electrode surface the K's are equal to each other and at the undisturbed plasma, $K^- = 0$. The total current density may be evaluated from

$$\mathbf{J} = \mathbf{en}_{\mathbf{x}} \mathbf{v}_{\mathbf{ex}} \tag{21}$$

where v_{ex} is the electron drift velocity beyond the ambipolar region which is strictly a function of E_x/N , (i.e., of the ratio of undisturbed electric field to the total number density).

a. Effects of Temperature on Anode Constriction

It is useful to investigate the overall effects of temperature. Since temperature will be considered constant, it comes in as a parameter in this formulation whereas charge density and electric field remain as variables. Intuitive arguments will be introduced which suggest that the electron and ion/neutral temperatures play a rather singular role in determining the intrinsic dimensionality of the problem, (i.e., there are cases when the geometry of the current lines is not necessarily impressed by the electrode geometry). Since the problem is described by moderate pressure, largely collisional sheaths, the ion and neutral temperatures are anticipated to remain reasonably equal. Depending on the gas, the electron temperature, on the other hand, can be elevated from the gas temperature at the anode where actual magnitudes depend on the local value of E/N. In order to get a perspective on the effects of temperature, we shall consider two extremes, namely, the case where the electron and ion temperature are the same (the equilibrium case) and the case where the electron temperature is substantially elevated from that of the ions/neutrals (the two-temperature case).

(1) Case I: $T_e = T_i = T_o$ (Equilibrium)

(5)-(9), (17) and (18). The resulting equation can be shown to be

$$\frac{kT_{o}}{e} \left(\frac{K^{*}}{E}\right)' + K^{*} = \frac{2J}{eD_{e}} - \left(\frac{kT_{o}\epsilon_{o}}{e^{2}}\right) \frac{1}{E^{2}} \left[EE'' - (E')^{2} - \frac{1}{4}\left(\frac{e}{kT_{o}}\right)^{2}E^{4}\right]'$$
(22)

If the electric field decreases monotonically from the wall to the undisturbed plasma (i.e., from $E_o \rightarrow E_\infty$), then as $y \rightarrow \infty$, $E \rightarrow E_\infty$, $E' \rightarrow 0$, $E'' \rightarrow 0$. So that in equation (22) above the "outer solution" becomes:

$$K^{-} = \frac{2J}{eD_{e}}$$
(23)

Now this represents an acceptable solution from a physical point of view. Moreover, as $y \rightarrow \infty$,

$$\dot{\mathbf{n}}_{\mathrm{ex}} \approx \mathbf{D}_{\mathrm{e}} (\mathbf{K}^*)' \approx 0 \tag{24}$$

which is also acceptable for an equilibrium situation at the undisturbed plasma. Results [Ref. 21] are shown in Figure 5 for the case of nitrogen at 6000°K using an approximate electric field distribution.

Figure 5 - Electric Field and Species as a Function of \tilde{y} , Distance From Anode. An Approximation Using a Shaped Electric Field and Isothermal Plasma [Ref. 21].
(2) Case II: $T_e >> T_i = T_o$ (Two-Temperature)

In this case the same procedure as before yields the following equation where terms divided by T_e have been dropped when compared to their counterparts divided by T_o .

$$(K^{*})' - \frac{K^{*}}{E}E' = \frac{2EJ}{kT_{o}D_{e}} + \frac{2\epsilon_{o}}{kT_{o}}EE'' + \frac{\epsilon_{o}}{eE}E''E' - \frac{\epsilon_{o}}{e}E'''$$
(25)

Assuming the same monotonic decrease as before for the electric field from the wall to the plasma proper, as $y \to \infty$, $E \to E_{\infty}$, $E' \to 0$, $E'' \to 0$. Then the outer solution becomes

$$\frac{dK^{*}}{dy} \approx \frac{2eEJ}{kT_{e}eD_{e}} \quad \text{with } \dot{n}_{ex} > 0$$
(26)

Or, $K^* \rightarrow$ (constant) y + constant, and $\dot{n}_{e^{\infty}}$ keeps increasing with y.

This is <u>not</u> the proper outer solution for the one-dimensional, equilibrium plasma that we seek because the net ionization rate continues to increase well inside the plasma proper where conditions should saturate, yielding a constant electric field. Therefore, as formulated, Case II is not amenable to a one-dimensional solution. References 14 and 21 show how this case can be analyzed under a multidimensional approach. These references also discuss a method for describing the electron temperature as a function of E/N, then how to couple a simplified energy relation which satisfactorily describes a two-temperature plasma. The necessary ingredient to make equation (26) approach zero beyond the decrease of E to E_x is to allow J to fan out as indicated in Figure 6. Thus, in equation (26), the product "EJ" can bring down the charge production rate to arbitrarily low values. Alternatively, it is possible to explore techniques of bringing the electron temperature down to be in closer equilibrium with the ions and neutrals. Transpiration cooling is one such means.

Figure 6 - Two-Dimensional Model of Current Paths Showing Periodic Structure. Thermal Instabilities and Inhomogeneities Would Favor One Site Over Others and a Single Macroscopic Constriction May Then Be Produced. [Refs. 14, 34]

b. Similarity to Vacuum Arc Phenomena

Instability phenomena observed in vacuum arcs [Ref. 35] are very similar to those observed in self-field thrusters [Ref. 12]. After the establishment of the current, the anode region operates in a vapor that issues from the electrodes. In vacuum arcs, Miller characterizes the anode region as operating in one of five distinct modes, ranging from a passive, low current mode to a high current, fully developed spot mode [Ref. 36]. Given the similarities mentioned above, vacuum arc anode research should be helpful in the understanding of MPD thruster transition to the anode spot mode. Existence diagrams after Miller [Ref. 36] are shown in Figure 7, which divide operating modes into regions as a function of anode current versus electrode geometry. Figure 7 shows the transition from glow to spot mode.

Anode spot formation at high currents is clearly a factor in limiting anode lifetime. Various phenomena have been related to anode spotting. Hugel [Ref. 12] relates the transition to spotting mode to an increase in J^2/\dot{m} above a critical level. A separate factor connected with the spot mode is surface temperature of the anode. Rich, et.al., [Ref. 37] show that anode spotting is preceded by a luminous "footpoint" and followed by local melting prior to spot formation. Separately, Schuocker [Ref. 38] finds a connection between spotting initiation and the factors of anode evaporation and magnetic constriction in vacuum arcs with high currents. Experimental investigations must be performed to see if the above-mentioned vacuum arc criteria apply to self-field thrusters.

Figure 7 - Anode Discharge Modes as a Function of Current and Gap Length. [Ref. 36]

C. COMPUTER CODE

Rather than using linear approximations to equations (12)-(16), the nonlinear set was used, with initial conditions adjusted in an attempt to produce observed electric fields from probe data. First and second space derivatives of the electric field were used as diagnostic checks to ensure computed output was reasonable. Initial conditions computed from the approximate formulae in Reference 21 were used. The equation set above presents a difficult problem for two reasons, nonlinearity and multiple time constants. The species number density equations, (12) and (13), both contain a nonlinear term, each with a time constant of its own. In addition, the electric field equation, (14), adds a possible third time constant. This constitutes a "stiff" set of equations. Attempts were made to solve the set with the data discussed above, using Gear's method of backward differentiation, in hopes that the variables would change slowly enough with each iteration to render a convergent iterative process. As described in Reference 39, if some reactions are slow and others fast among a set of coupled equations, the fast ones will control the stability of the method. This is addressed in the DGEAR program available from the International Mathematical & Statistical Library (IMSL). The latter software contains an Adams predictor-corrector method, as well as Gear's method, which is well known for its success at solving stiff equation sets. The DGEAR software allows for a choice of functional or chord iteration methods, as well as a choice of Jacobian matrices. A more detailed discussion of this software can be found in Reference 39 and in the IMSL library. [Ref. 39]

D. COMPUTATIONAL RESULTS

Numerous computer runs were completed using the initial conditions taken from Reference 21. In addition, data for the ionization coefficient v, Figure 8, was taken from References 40 and 41.

Figure 8. Ionization Coefficient v as a Function of E/N for Nitrogen for Various Vibrational Temperatures (Refs. 40,41).

Various combinations of initial conditions and ionization coefficient were used. As mentioned above, the electric field and its space derivatives were used as diagnostic/reasonability checks on the output. Individual, as well as multiple computer runs were attempted to model the sheath region. Nonlinearities in the equation set are clearly seen in Figure 9. The ion number density does not reach that of the electrons, and the latter population growth rate continues to grow without bound. The shape of the electron population curve is very sensitive to its initial value. As shown in Figure 9, the latter population has too high a growth rate when compared to the ion population, and the latter does not "catch up". Increasing the initial value of n_e flattens out this curve to a reasonable shape. Above an initial value of approximately 0.06, however, the plot of \tilde{n}_{e} "dips" after a certain distance and then continues to increase as expected. This gives an approximate upper value for this initial value. To avoid instabilities like this, small "slices" were taken of the output after a small number of integration steps and multiple runs were used to form a "cut and paste" plot of the region. When a reasonable plot shape was produced, the value of ionization coefficient was varied in the "slices" to attempt to produce the required end values for electric field and species population. Both multiple and equilibrium values for the ionization coefficient were used. When the data showed signs of instability and failure to follow the required forms of Figure 4, a "slice" was made in the data stream, and the data points from this point used to start a new computer run. This approach was taken in the hope of avoiding singularities in the integration from anode surface to ambipolar region. In addition to the diagnostic checks shown in Figure 4, an additional data check is provided by the transition from the sheath to the ambipolar region.

Figure 9. Species Number Density plots for Individual Computer Run, Showing Divergent Tracks for Ion and Electron Populations, and Effect of Nonlinearity.

As shown in Figure 5, the species number densities are equivalent in this region, as are their change rate. Thus, setting Equations (12) and (15) equal to each other and solving for \tilde{n} yields a value of 0.5 in the ambipolar region. As indicated in Figures

10-11, the output produces the desired plot slopes for electric field and species number density. However, the number density plots cross long before approaching the required value of 0.5. In addition, neither electric field nor species number density approaches an equilibrium value or shows sign of levelling off. Apparently, the multiple time constants and nonlinear portions of the number density equations combine to create a seemingly intractable system. Solutions for this system may be possible for specific, individual initial condition sets, but the problem does not appear amenable to this approach in general. A one-dimensional system such as this may be better described through the approach of boundary layer theory or nonlinear dynamics and chaos. Given the effort and difficulty involved in the latter, a onedimensional approach such as that modelled above does not appear useful. A combination of one- and two-dimensional modelling would appear to be more useful, as discussed in Reference 14. A one-dimensional model may be useful, but only in an approximation approach, with a shaped electric field, such as that used in Reference 21.

Figure 10. Electric Field as a Function of \tilde{y} , Distance From Anode, Using Equations (12)-(16).

Figure 11. Species Number Density as a Function of \tilde{y} , Distance From Anode, Using Equations (12)-(16).

E. ANODE FALL VOLTAGE

The arc discharge operates with an anode voltage drop (V_{at}) which should be on the order of the ionization potential of the gas as it is in glow discharges. This voltage drop is largely non-ohmic because the anode region is typically very thin and space-charge controlled. Since a significant portion of the anode heating comes via the oncoming electrons accelerating through the fall voltage, it is of interest to minimize this voltage, which can range from less than ten to over 40 volts in argon. The question arises as to what governs this anode drop and why is it such a noticeable function of current? [Ref. 42]

In collisional sheaths, the anode voltage drop is largely governed by a positive ion generation region which forms in front of the anode. The production of ions reduces the space charge density and thereby permits operation at lower voltages than otherwise possible. Ions are most often created by electrons within their last few mean-free-paths before entering the anode; these ions slowly drift away from the anode, thereby effectively neutralizing the space charge, at a speed proportional to the ratio of their mobility to that of the electrons. At the anode, the electric field is a maximum and the electron mean energy displays a corresponding high.

At moderate pressures, the sheath is very thin and breakdown can be visualized as occurring between the undisturbed plasma (which acts as a rich source of electrons) and the anode surface. This arrangement has the attributes that represent "thermionic arc breakdown" [Ref. 43], a source of electrons which is independent of the breakdown itself and relatively small spacings. For gases that allow cumulative

ionization (with some help from the tail of the Maxwellian distribution of electron energies), what results is a breakdown voltage appreciably below the ionization potential. This then could be an explanation for the low voltage breakdown observations [Ref. 42]. Clearly, gases with low ionization potentials and lots of atomic electron energy levels are preferred (such as cesium and barium) but lowvoltage breakdown has been observed with most gases.

The increase of the anode fall voltage above the ionization potential has been related to the electron Hall parameter, since a reduction of this parameter decreases that voltage and corresponding losses. Control of the local magnetic field through the use of and array of permanent magnets as well as implementation of transpiration cooling (which increases the electron collision frequency) have both yielded some encouraging results. Because the anode fall also scales up with J^2/\dot{m} , it is conceivable that current inhomogeneities and plasma instabilities which are reflected in this parameter are in the picture as well. [Ref. 44]

In summary, any possible reduction of the anode fall voltage will hinge on a thorough understanding of the anode region, with its associated sheath and ambipolar regions, where electron temperature effects, ionization effects, and magnetic field effects play a pivotal role. If transpiration cooling is present, then additional phenomena of fluid-dynamic nature may come into play. Experimental observations with atmospheric discharges indicate the possible presence of convective effects at the anode. [Ref. 45]

IV. TRANSPIRATION COOLING

Transpiration cooling of the anode has often been promoted as an attractive means of recovering a large portion of the power deposited there. Additionally, the onset of melting may be minimized or even avoided by active anode cooling. Rich, et.al., related high anode temperatures to anode spotting [Ref. 37]. Similarly, Park and Choi showed that low thermal diffusion leads to erosion and, consequently, anode damage [Ref. 46]. Active anode cooling via transpiration is one means of ensuring high thermal diffusion and extending anode lifetime. Early work by Schoeck, et. al., [Ref. 47] showed that up to 80% of the energy deposited in the anode is recoverable via transpiration cooling. While this study used non-convective, high-intensity argon arcs, it is reasonable to assume that this effect would apply in MPD arcs using other propellants. Although this cooling method has not been studied for incorporation in plasma thrusters for some time, it has been recently considered as a means of cooling the fuselage of the National Aerospace Plane (NASP). Plasma thruster designs could undoubtedly gain from this database, and due consideration should be given to this cooling approach for the anode.

For a given mass transfer flow rate, the heat flux reduction to a surface is inversely proportional to the molecular weight of the injected gas. Use of the propellant as coolant as well as fuel would eliminate the need for additional tankage and pumps, simplifying the design considerably. Lithium has been considered to be

the propellant of choice, primarily because of its low molecular weight, its favorable ionization potential, and its low-volume tankage properties. It has a relatively low first ionization potential of 5.4 eV and a high second ionization potential of 75.6 eV. This single ionization potential range of over 70 eV compares to approximately 20 eV for Cesium and 27 eV for Potassium [Ref. 48]. This provides a broad temperature range within which only single ionization will occur. Large temperatures must be reached within the gas before double ionization occurs. As the gas temperature is increased several thousand degrees Kelvin, it undergoes ionization and disassociation. Thermal energy deposited can be recovered through nozzle expansion at the exit. However, residence time of the gas is not long enough to ensure recombination. Thus, the energy invested in ionization and disassociation will be lost. [Ref. 49] Lithium has been shown to produce specific impulse figures in excess of 7,000 seconds at 70% efficiency in steady-state thrusters, [Ref. 50] whereas all other propellants have been limited to less than 3,000 seconds specific impulse at less than 40% efficiency [Ref. 6]. Subramaniam has concluded that:

...regenerative cooling of anodes (at the specific impulse values in the MPD regime) is possible only with hydrogen or with alkali-metal propellants, notably lithium. In the latter case, the ideal anode operating mode would be evaporation and ionization of the propellant on the porous or wetted anode surface, resulting in increased ion current fraction, reduced anode voltage fall and utilization of part of the anode loss energy [Ref. 51].

Liquid coolants, as well as reducing storage requirements, offer the advantage of providing latent heat of vaporization for energy disposal. However, design problems can occur if the liquid is allowed to vaporize within the porous structure. Problems

arise due to the abrupt increase in pressure gradient as the coolant vaporizes. Since coolant flow generally have three-dimensional characteristics, the flow will be diverted around the vapor bubbles and hot spots often develop. The technical practicality of using molten lithium to cool a porous tungsten anode would seem to be beyond current technology. On the other hand, the products of decomposition of hydrazine (gaseous hydrogen and ammonia) have proven to be efficient and practical coolants [Ref. 52].

Given the performance figures above, using an auxiliary coolant gas even with high molecular weight (e.g., NH₃, N₂, CH₄, etc.) which could serve as a propellant once released from a porous hot tungsten anode surface would seem to more practical, vice dealing with molten lithium. Experimental studies would be needed to compare the approaches. Kuriki and Suzuki performed experiments with a quasisteady MPD thruster to study the effect of anode gas injection (Argon). At high currents of up to 10 kA, increases in thrust, specific impulse, and flow discharge stability were observed [Ref. 53].

There is some question as to the likelihood of current constriction <u>resulting</u> from anode gas injection. In such a case, swirling or circulating the propellant gas would help to move any footpoints that developed around the anode surface and prevent them from becoming fully-developed spots. Additionally, an applied magnetic field could serve to circulate the footpoints as well. The unique advantage of transpiration cooling hinges on providing effective anode cooling while supplying hot propellant, but the real benefit will depend on how small the amount of coolant required really will be.

Transpiration cooling has proven to be as desirable as it is challenging. It is complicated to implement, with associated reliability problems and difficulty of analytical predictions. While the production of thicker boundary layers is largely ineffective against the electron flux heating, the cooling itself is most efficient and a substantial fraction of the energy transferred to the anode is recoverable. The arguments of Chapter Three indicate that a reduction of the electron temperature in the anode would have the desirable effect of reducing the initial current spotting which can be conjectured to be the path that leads to anode arc spots. This electron temperature reduction can be done most effectively by polyatomic gases (which have a high δ -loss factor) emanating from the anode surface [Ref. 54].

The arguments relating to transpiration cooling might be summarized as follows:

Favorable Outcomes

• No separate cooling mechanism for anode required,

• Adds "hot" propellant to exhaust "recovering" most of the electrical power loss to the anode,

• Quenches T_e thus likely to postpone anode spotting <u>and</u> reduce the heating associated with the electron thermal energy $(5kT_e/2e)$,

• Reduces bulk convective heating,

• Reduces the local electron Hall parameter by increasing the collision frequency,

Favorable Outcomes (cont'd.)

• Allows for some radiation cooling from the hot tungsten surface (about 120 watts/cm² at 2800°K [Ref. 51]),

• Hydrogen/ammonia gases flowing through hot porous (sintered) tungsten represent a compatible, proven technology.

Unfavorable Outcomes

- May decrease the electrical conductivity in the anode region,
- May destabilize the ionization processes in the sheath and bring about significant fluctuations in the current,
- · Disrupts "cathode jet" in front of the anode with unpredictable consequences,
- · Introduces propellant which may not be hot enough, not ionized enough, or not

in the proper place for $\vec{j} \times \vec{B}$ acceleration,

• Transpiration cooling through a porous (tungsten) anode is a difficult design problem.

V. CONCLUSIONS AND RECOMMENDATIONS

Plasma thrusters offer distinct advantages in terms of payload delivered for interplanetary missions, as well as for orbital transfer. A recent comparison completed by Choueiri, Kelly, and Jahn shows a mass savings of 65 tons for an orbital transfer from low Earth orbit to geosynchronous Earth orbit using a quasisteady MPD thruster as opposed to an advanced chemical thruster.⁶ This superior performance comes at the expense of low thrust-to-weight ratio and long transit time. However, given the large cargo/logistic requirements of a manned interplanetary mission, delivery of payload must be maximized. Thus, further work to characterize more fully thruster behavior and anode contributions in particular are certainly warranted. [Ref. 55]

The "cut-and-paste" method used to generate Figures 10 and 11 is not of practical use as a modelling method, due to the large effort involved. It did produce the expected electric field and species number and current density plots near the anode, but failed to produce the entire sheath out to the ambipolar region. The nonlinearity of the equation set led to a quickly deteriorating solution. A more practical approach using nonlinear dynamics and/or chaos must be developed to model the sheath numerically.

⁶This assumes a specific impulse of 2,000 seconds, 600 kW of input power, and a 270-day transit time.

Depending on the propellant mass fraction used for cooling, the transpiration scheme discussed above presents some rather unique advantages. A hot anode which uses only a small amount of propellant for cooling need not be penalized for any lost thrust. If in addition, we increase anode lifetime by delaying the formation of anode arc spots, then the scheme is all the more desirable. A decrease of the electron temperature in the vicinity of the anode may bring about a more homogeneous flow of current and a reduction in the heating effect associated with the high electron kinetic energy. Recovery of the heat deposited at the anode would be most important if the propellant fraction is high. In such case, nozzle expansion of the hot-propellant/coolant-gas might be implemented.

Means of limiting anode losses through decreasing anode fall voltages were discussed, including the control of the local Hall parameter and the implementation of thermionic arc breakdown. The electrical conductivity (of a nonreacting plasma) could possibly decrease as a result of transpiration cooling and this might increase the anode fall voltage.

Additional work needs to be done in the following areas:

• Investigate effectiveness of nonlinear dynamics and chaos in solving sheath equation set,

• Incorporate adequate one- or two-dimensional sheath modelling in quasisteady MPD numerical codes,

• Investigate the role that fluid dynamic effects play in MPD thruster anode discharges,

• Investigate the effect of transpiration cooling on current and plasma stability, as well as on thruster performance and lifetime,

• Determine effectiveness of transpiration cooling's increase of the collision frequency parameter,

• Compare performance of gaseous propellant/coolants versus hybrid designs with lithium propellant/gaseous coolant,

• Determine if required percentage of propellant gas as coolant is practical (e.g., less than 10%),

• Investigate effect of surface imperfections as focal points for current constrictions and as precursors to anode spotting.

APPENDIX A

The following software includes the calling program, SHEATH, its two subroutines, FCNJ and YDOT, and the DGEAR integrator. The latter is quite extensive in length and includes ten subroutines, including the following: DGRST, DGRCS, DGRPS, DGRIN, LUDATF, LUELMF, LEQTIB, UERTST, UGETIO, and USPKD. A detailed discussion may be found in IMSL literature or Reference 39.

*****	***************************************	******
	Program Sheath	000010
С		000020
C	Calling program for DGEAR integrator. Initial conditions are	000030
Ċ	input via READ statements and keyboard entry. Output is to data	000040
č	files via the DGRST subroutine. Diagnostic check of output via	000050
č	Figure 4 printed to data file from DGEST subroutine Consult	000060
c	DGEAR comments for variable descriptions not listed below	000061
C	being containing for variable descriptions not fisted being.	000001
C	DEAL F Y EDS TT FE FEINE DI DE MIINE CI YI A	000082
	TATECED N METEL MITCH INF, DI, JE, NOINF, CI, KI, A	000070
	INTEGER N, METR, MITER, INDEA, INC(1), IER, SIEF	000080
		000090
	EATERNAL IDUI, FCNU, DEEAR	000100
~	COMMON/CONSI/E, K, EPS, II, EF, EFINF, NINF, DI, DE, VINF, CI, KI, A	000110
C		000120
C ·	Constants	000121
C	CI and KI are constants describing the ionization coefficient.	000122
С	They are taken from the data plotted in Figure 8. The	000123
С	coefficient is equal to the nondimensionalized electric potential	000124
С	raised to the K1 power and then multiplied by C1.	000125
С	In this way, the ionization coefficient is allowed to vary in	000126
С	proportion to the strength of the electric potential.	000127
C ·		000128
	WRITE(*,*)'Input value for C1 (format 6E3):'	000129
	READ(*,*)C1	000130
	WRITE (*,*)C1	000131
	WRITE(*,*)'Input value for K1 (format 6E3):'	000132
	READ(*,*)K1	000133
	WRITE(*,*)K1	000134
С	Initial conditions for species number density, electric potential	000135
С	and species current density are now input (ni,ne,E,je,ji).	000136
C		000137
	WRITE(*,*)'Input values for $v(1)$ through $v(5)$ (format $5(6E3)$):'	000138
	READ $(*, *)$ v(1), v(2), v(3), v(4), v(5)	000139
	WRITE $(*, *)$ v (1), v (2), v (3), v (4), v (5)	000140
C	Following constants are for plasma described in Reference 21	000141
č	(6.000 K Init E=20.000 V/m Final E=1.200 V/m)	000142
C	E-1 6E-19	000143
		000150
	FDS-8 854F-12	000160
		000170
	FF-2F5	000190
		000190
		000200
		000200
		000210
	VIO = 2.00	000215
C	VINF = 4.93E-7	000220
0		000230

A is plasma characteristic length which shows potential drop.

С

C		000240
С	A = ((EPS*EF) / (E*NINF)) = 1.107E-6	
	A = 1.107E-5	000250
	X = 0.01	000270
	XEND = 10.	000280
	H = 1e-6	000290
	TOL = 1E-6	000300
	METH = 2	000305
	MITER = 1	000310
	INDEX = 1	000320
	N=5	000330
	IWK(1) = 5	000340
	WK = 18000.	000350
		000360
	OPEN (UNIT=8, FILE=' SHEATH.DAT', STATUS=' UNKNOWN')	000370
	CALL DEEARZ (N, IDOI, FCNJ, X, H, I, XEND, TOL, METH, MITER, INDEX, IWK, WK,	000380
+	-IER, STEP)	000390
DO	$DU_{3} = 0, N$	000410
DO	VDTTTE (* *).T V(T)	000410
	WRIE(",")O,I(I)	000420
1	POPMAT(T2 E5 1 5(5Y D9 2))	000430
2		000450
2		000460
2	WDITE(* *) 'Total Stens - ' STED 'Final Sten Size - ' H	000470
	'Error Code = ' IER	000480
	CLOSE (UNIT=8)	000490
	STOP	000500
	END	000510
C****	****	
C DUM	AY SUBROUTINE FCNJ	
C*****	*****************	
	SUBROUTINE FCNJ (N, X, Y, PD)	1
	INTEGER N	2
	REAL $Y(N)$, PD (N, N) , X	3
	RETURN	4
	END	5
C****	*****	
C SUBE	ROUTINE YDOT	
C****		
	SUBROUTINE YDOT(N,X,Y,YPRIME,eprime,eprime2)	
	REAL*8 X, I(5), IPRIME(5), NUI, eprime, eprime2	
	REAL E, K, EPS, II, EF, EFINF, NINF, DI, DE, VINF, CI, KI, A, BI, DZ, B3, D4	
	COMMON/CONST/E, K, EPS, TI, EF, EFINF, NINF, DI, DE, VIO, VINF, CI, KI, A	
	VI = UI + (I(S) + KI)	
C	Following constants are the bracketed values in Equations 12-16	
C	his loft as a variable	
Caraa	A 15 leit as a valiable.	
C	B1 = ((F*FDS)/(K*TT)) * D	
C	$B1 - 3.86E5 * \Delta$	
C	$B2 - ((E \times EFINF) / (K \times TT)) \times \Delta$	
-	B2 = 2.32E4 * A	
С	B3 = ((E*NINF)/(EF*EPS)) * A	
	B3 = 9.04E5 * A	
С	B4 = ((VINF*K*TI) / (E*DE*EFINF)) * A	
	B4 = 2.62E - 21 * A	
С	Alpha = 2-body recombination coefficient (fm. Laser Kinetics	
C	Handbook (AFWL-TP-74-216 1974)) (cm3/sec)	
<u> </u>		

```
C-----
 C FIVE FIRST ORDER EQUATIONS - Equations 12-16
C--
С
      Ni
      YPRIME(1) = (B * Y(1) * Y(3)) - Y(5)
С
      Ne
      \text{YPRIME}(2) = -(B * Y(2) * Y(3)) + Y(4)
С
      Ε
      YPRIME(3) = B3 * (Y(1) - Y(2))
С
      je
YPRIME(4) = -B4 * Y(2) * (VIT - (ALPHA * Y(1)))
С
      ji
      YPRIME(5) = B4 * Y(2) * (VIT - (ALPHA * Y(1)))
С
  --Diagnostic Check of first, second derivatives-----
C -
С
      eprime = y(1) - y(2)
      eprime2 = yprime(1) - yprime(2)
С
      RETURN
      END
```

	IMSL ROUTINE	NAME	- DGEAR	DGEA0010
	modified to r	eturn #	of stens via variable "sten" in subroutine cal	DGEA0020
-1	noutried to r	ecurii #	or steps via variabre step in subroutine car	DGEA0040
	COMPUTER		· IBM/DOUBLE	DGEA0050
		TON		DGEA0060
	LATESI REVIS	ION .	- NOVEMBER 1, 1964	DGEA0070
	PURPOSE	-	DIFFERENTIAL EQUATION SOLVER - VARIABLE ORDER	DGEA0090
			ADAMS PREDICTOR CORRECTOR METHOD OR	DGEA0100
			GEARS METHOD	DGEA0110
	USAGE	-	CALL DGEAR (N. FCN. FCNJ. X. H. Y. XEND. TOL. METH.	DGEA0120
			MITER, INDEX, IWK, WK, IER)	DGEA0140
				DGEA0150
	ARGUMENTS	N -	FOUATIONS	DGEA0160
		FCN -	NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS.	DGEA0180
			(INPUT)	DGEA0190
			THE SUBROUTINE ITSELF MUST ALSO BE PROVIDED	DGEA0200
			FOLLOWING FORM	DGEA0210
			SUBROUTINE FCN (N,X,Y,YPRIME)	DGEA0230
			REAL X, Y(N), YPRIME(N)	DGEA0240
			·	DGEA0250
				DGEA0280
			FCN SHOULD EVALUATE YPRIME(1),, YPRIME(N)	DGEA0280
			GIVEN N, X, AND Y(1),, Y(N). YPRIME(I)	DGEA0290
			IS THE FIRST DERIVATIVE OF Y(I) WITH DESDECT TO Y	DGEA0300
			FCN MUST APPEAR IN AN EXTERNAL STATEMENT IN	DGEA0320
			THE CALLING PROGRAM AND N, X, Y(1),, Y(N)	DGEA0330
		DONT	MUST NOT BE ALTERED BY FCN.	DGEA0340
		FCNU -	JACOBIAN MATRIX OF PARTIAL DERIVATIVES.	DGEA0350
			(INPUT)	DGEA0370
			THE SUBROUTINE ITSELF MUST ALSO BE PROVIDED	DGEA0380
			BY THE USER. IF MITER-1 IT SHOULD BE OF THE FOLLOWING	DGEA0390
			FORM	DGEA0410
			SUBROUTINE FCNJ (N,X,Y,PD)	DGEA0420
			REAL $X, Y(N), PD(N, N)$	DGEA0430
				DGEA0440 DGEA0450
			FCNJ MUST EVALUATE PD(I,J), THE PARTIAL	DGEA0460
			DERIVATIVE OF YPRIME(I) WITH RESPECT TO	DGEA0470
			I(J), FOR I=I,N AND J=I,N. IF MITER1 IT SHOULD BE OF THE FOLLOWING	DGEA0480
			FORM	DGEA0500
			SUBROUTINE FCNJ (N,X,Y,PD)	DGEA0510
			REAL $X, Y(N), PD(1)$	DGEA0520
				DGEA0530
			FCNJ MUST EVALUATE PD IN BAND STORAGE MODE.	DGEA0550
			THAT IS, PD(N*(J-I+NLC)+I) IS THE PARTIAL	DGEA0560
			V(J) NLC IS THE NUMBER OF LOWER	DGEA0570
			CODIAGONALS FOR THE BAND MATRIX.	DGEA0580
			FCNJ MUST APPEAR IN AN EXTERNAL STATEMENT I	NDGEA0600
			THE CALLING PROGRAM AND N, X, Y(1),, Y(N)	DGEA0610

MUST NOT BE ALTERED BY FCNJ. DGEA0620 FCNJ IS USED ONLY IF MITER IS EQUAL TO DGEA0630 1 OR -1. OTHERWISE A DUMMY ROUTINE CAN DGEA0640 BE SUBSTITUTED. SEE REMARK 1. DGEA0650 Х - INDEPENDENT VARIABLE. (INPUT AND OUTPUT) DGEA0660 ON INPUT, X SUPPLIES THE INITIAL VALUE DGEA0670 AND IS USED ONLY ON THE FIRST CALL. DGEA0680 ON OUTPUT, X IS REPLACED WITH THE CURRENT DGEA0690 VALUE OF THE INDEPENDENT VARIABLE AT WHICHDGEA0700 INTEGRATION HAS BEEN COMPLETED. DGEA0710 INPUT/OUTPUT. H DGEA0720 ON INPUT, H CONTAINS THE NEXT STEP SIZE IN DGEA0730 X. H IS USED ONLY ON THE FIRST CALL. DGEA0740 ON OUTPUT, H CONTAINS THE STEP SIZE USED DGEA0750 LAST, WHETHER SUCCESSFULLY OR NOT. DGEA0760 - DEPENDENT VARIABLES, VECTOR OF LENGTH N. Y DGEA0770 (INPUT AND OUTPUT) DGEA0780 ON INPUT, Y(1), ..., Y(N) SUPPLY INITIAL DGEA0790 VALUES. DGEA0800 ON OUTPUT, Y(1), ..., Y(N) ARE REPLACED WITH DGEA0810 A COMPUTED VALUE AT XEND. DGEA0820 INPUT VALUE OF X AT WHICH SOLUTION IS DESIRED DGEA0830 XEND NEXT. INTEGRATION WILL NORMALLY GO DGEA0840 BEYOND XEND AND THE ROUTINE WILL INTERPOLATEDGEA0850 TO X = XEND. DGEA0860 NOTE THAT (X-XEND) *H MUST BE LESS THAN DGEA0870 ZERO (X AND H AS SPECIFIED ON INPUT). DGEA0880 INPUT RELATIVE ERROR BOUND. TOL MUST BE TOL DGEA0890 GREATER THAN ZERO. TOL IS USED ONLY ON THE DGEA0900 FIRST CALL UNLESS INDEX IS EQUAL TO -1. DGEA0910 TOL SHOULD BE AT LEAST AN ORDER OF DGEA0920 MAGNITUDE LARGER THAN THE UNIT ROUNDOFF DGEA0930 BUT GENERALLY NOT LARGER THAN .001. DGEA0940 SINGLE STEP ERROR ESTIMATES DIVIDED BY DGEA0950 YMAX(I) WILL BE KEPT LESS THAN TOL IN DGEA0960 ROOT-MEAN-SQUARE NORM (EUCLIDEAN NORM DGEA0970 DIVIDED BY SQRT(N)). THE VECTOR YMAX OF DGEA0980 WEIGHTS IS COMPUTED INTERNALLY AND STORED DGEA0990 IN WORK VECTOR WK. INITIALLY YMAX(I) IS DGEA1000 THE ABSOLUTE VALUE OF Y(I), WITH A DEFAULT DGEA1010 VALUE OF ONE IF Y(I) IS EQUAL TO ZERO. DGEA1020 THEREAFTER, YMAX(I) IS THE LARGEST VALUE DGEA1030 OF THE ABSOLUTE VALUE OF Y(I) SEEN SO FAR, DGEA1040 OR THE INITIAL VALUE OF YMAX(I) IF THAT IS DGEA1050 LARGER. DGEA1060 METH - INPUT BASIC METHOD INDICATOR. DGEA1070 USED ONLY ON THE FIRST CALL UNLESS INDEX IS DGEA1080 EOUAL TO -1. DGEA1090 METH = 1, IMPLIES THAT THE ADAMS METHOD IS DGEA1100 TO BE USED. DGEA1110 METH = 2, IMPLIES THAT THE STIFF METHODS OF DGEA1120 GEAR, OR THE BACKWARD DIFFERENTIATION DGEA1130 FORMULAE ARE TO BE USED. DGEA1140 INPUT ITERATION METHOD INDICATOR. MITER DGEA1150 MITER = 0, IMPLIES THAT FUNCTIONAL DGEA1160 ITERATION IS USED. NO PARTIAL DGEA1170 DERIVATIVES ARE NEEDED. A DUMMY FCNJ DGEA1180 CAN BE USED. DGEA1190 MITER = 1, IMPLIES THAT THE CHORD METHOD DGEA1200 IS USED WITH AN ANALYTIC JACOBIAN. FOR DGEA1210 THIS METHOD, THE USER SUPPLIES DGEA1220

50

DGEA1230

SUBROUTINE FCNJ.

	MITER = 2, IMPLIES THAT THE CHORD METHOD IS USED WITH THE JACOBIAN CALCULATED INTERNALLY BY FINITE DIFFERENCES.	DGEA1240 DGEA1250 DGEA1260
	A DUMMY FCNJ CAN BE USED.	DGEA1270
	MITER = 3, IMPLIES THAT THE CHORD METHOD	DGEA1280
	IS USED WITH THE JACOBIAN REPLACED BY	DGEA1290
	A DIAGONAL APPROXIMATION BASED ON A	DGEA1300
	DIRECTIONAL DERIVATIVE.	DGEA1310
	A DUMMY FCNJ CAN BE USED.	DGEA1320
	MITER = -1 OR -2, IMPLIES USE THE SAME	DGEA1330
	METHOD AS FOR MITER= 1 OR 2, RESPECTIVELY,	DGEA1340
	BUT USING A BANDED JACOBIAN MATRIX. IN	DGEA1350
	THESE TWO CASES BANDWIDTH INFORMATION	DGEA1360
	MUST BE PASSED TO DGEAR THROUGH THE	DGEA1370
	COMMON BLOCK	DGEA1380
	COMMON /DBAND/ NLC, NUC	DGEA1390
	WHERE NLC=NUMBER OF LOWER CODIAGONALS	DGEA1400
	NUC=NUMBER OF UPPER CODIAGONALS	DGEA1410
INDEX -	INPUT AND OUTPUT PARAMETER USED TO INDICATE	DGEA1420
	THE TYPE OF CALL TO THE SUBROUTINE. ON	DGEA1430
	OUTPUT INDEX IS RESET TO 0 IF INTEGRATION	DGEA1440
	WAS SUCCESSFUL. OTHERWISE, THE VALUE OF	DGEA1450
	INDEX IS UNCHANGED.	DGEA1460
	ON INPUT, INDEX = 1, IMPLIES THAT THIS IS THE	DGEA1470
	FIRST CALL FOR THIS PROBLEM.	DGEA1480
	ON INPUT, INDEX = 0, IMPLIES THAT THIS IS NOT	DGEA1490
	THE FIRST CALL FOR THIS PROBLEM.	DGEA1500
	ON INPUT, INDEX = -1, IMPLIES THAT THIS IS NOT	DGEA1510
	THE FIRST CALL FOR THIS PROBLEM, AND THE	DGEA1520
	USER HAS RESET TOL.	DGEA1530
	ON INPUT, INDEX = 2, IMPLIES THAT THIS IS NOT	DGEA1540
	THE FIRST CALL FOR THIS PROBLEM. INTEGRATION	NDGEA1550
	IS TO CONTINUE AND XEND IS TO BE HIT EXACTLY	DGEA1560
	(NO INTERPOLATION IS DONE). THIS VALUE OF	DGEA1570
	INDEX ASSUMES THAT XEND IS BEYOND THE	DGEA1580
	CURRENT VALUE OF X.	DGEA1590
	ON INPUT, INDEX = 3, IMPLIES THAT THIS IS NOT	DGEA1600
	THE FIRST CALL FOR THIS PROBLEM. INTEGRATION	NDGEA1610
	IS TO CONTINUE AND CONTROL IS TO BE RETURNED	DGEA1620
	TO THE CALLING PROGRAM AFTER ONE STEP. XEND	DGEA1630
	IS IGNORED.	DGEA1640
IWK -	INTEGER WORK VECTOR OF LENGTH N. USED ONLY IF	DGEA1650
	MITER = 1 OR 2	DGEA1660
WK -	REAL WORK VECTOR OF LENGTH 4*N+NMETH+NMITER.	DGEA1670
	THE VALUE OF NMETH DEPENDS ON THE VALUE OF	DGEA1680
	METH.	DGEA1690
	IF METH IS EQUAL TO 1,	DGEA1700
	NMETH IS EQUAL TO N*13.	DGEA1710
	IF METH IS EQUAL TO 2,	DGEA1720
	NMETH IS EQUAL TO N*6.	DGEA1730
	THE VALUE OF NMITER DEPENDS ON THE VALUE OF	DGEA1740
	MITER.	DGEA1750
	IF MITER IS EQUAL TO 1 OR 2,	DGEA1760
	NMITER IS EQUAL TO N*(N+1)	DGEA1770
	IF MITER IS EQUAL TO -1 OR -2,	DGEA1780
	NMITER IS EQUAL TO (2*NLC+NUC+3)*N	DGEA1790
	WHERE NLC=NUMBER OF LOWER CODIAGONALS	DGEA1800
	NUC=NUMBER OF UPPER CODIAGONALS	DGEA1810
	IF MITER IS EQUAL TO 3,	DGEA1820
	NMITER IS EQUAL TO N.	DGEA1830
	IF MITER IS EQUAL TO 0,	DGEA1840
	NMITER IS EQUAL TO 1.	DGEA1850

IND

WK MUST REMAIN UNCHANGED BETWEEN SUCCESSIVE DGEA1860 CALLS DURING INTEGRATION. DGEA1870 IER - ERROR PARAMETER. (OUTPUT) DGEA1880 DGEA1890 WARNING ERROR IER = 33, IMPLIES THAT X+H WILL EQUAL X ON DGEA1900 THE NEXT STEP. THIS CONDITION DOES NOT DGEA1910 FORCE THE ROUTINE TO HALT. HOWEVER, IT DGEA1920 DOES INDICATE ONE OF TWO CONDITIONS. DGEA1930 THE USER MIGHT BE REQUIRING TOO MUCH DGEA1940 ACCURACY VIA THE INPUT PARAMETER TOL. DGEA1950 IN THIS CASE THE USER SHOULD CONSIDER DGEA1960 INCREASING THE VALUE OF TOL. THE OTHER DGEA1970 CONDITION WHICH MIGHT GIVE RISE TO THIS DGEA1980 ERROR MESSAGE IS THAT THE SYSTEM OF DGEA1990 DGEA2000 DIFFERENTIAL EQUATIONS BEING SOLVED IS STIFF (EITHER IN GENERAL OR OVER DGEA2010 THE SUBINTERVAL OF THE PROBLEM BEING DGEA2020 SOLVED AT THE TIME OF THE ERROR). IN DGEA2030 THIS CASE THE USER SHOULD CONSIDER DGEA2040 USING A NONZERO VALUE FOR THE INPUT DGEA2050 PARAMETER MITER. DGEA2060 WARNING WITH FIX ERROR DGEA2070 IER = 66, IMPLIES THAT THE ERROR TEST DGEA2080 FAILED. H WAS REDUCED BY .1 ONE OR MORE DGEA2090 TIMES AND THE STEP WAS TRIED AGAIN DGEA2100 SUCCESSFULLY. DGEA2110 IER = 67, IMPLIES THAT CORRECTOR DGEA2120 CONVERGENCE COULD NOT BE ACHIEVED. DGEA2130 H WAS REDUCED BY .1 ONE OR MORE TIMES AND DGEA2140 THE STEP WAS TRIED AGAIN SUCCESSFULLY. DGEA2150 TERMINAL ERROR DGEA2160 IER = 132, IMPLIES THE INTEGRATION WAS DGEA2170 HALTED AFTER FAILING TO PASS THE ERROR DGEA2180 TEST EVEN AFTER REDUCING H BY A FACTOR DGEA2190 OF 1.0E10 FROM ITS INITIAL VALUE. DGEA2200 SEE REMARKS. DGEA2210 IER = 133, IMPLIES THE INTEGRATION WAS DGEA2220 HALTED AFTER FAILING TO ACHIEVE DGEA2230 CORRECTOR CONVERGENCE EVEN AFTER DGEA2240 REDUCING H BY A FACTOR OF 1.0E10 FROM DGEA2250 ITS INITIAL VALUE. SEE REMARKS. DGEA2260 IER = 134, IMPLIES THAT AFTER SOME INITIAL DGEA2270 SUCCESS, THE INTEGRATION WAS HALTED EITHERDGEA2280 BY REPEATED ERROR TEST FAILURES OR BY DGEA2290 A TEST ON TOL. SEE REMARKS. DGEA2300 IER = 135, IMPLIES THAT ONE OF THE INPUT DGEA2310 PARAMETERS N, X, H, XEND, TOL, METH, MITER, OR DGEA2320 INDEX WAS SPECIFIED INCORRECTLY. DGEA2330 IER = 136, IMPLIES THAT INDEX HAD A VALUE DGEA2340 OF -1 ON INPUT, BUT THE DESIRED CHANGES DGEA2350 OF PARAMETERS WERE NOT IMPLEMENTED DGEA2360 BECAUSE XEND WAS NOT BEYOND X. DGEA2370 INTERPOLATION TO X = XEND WAS PERFORMED. DGEA2380 TO TRY AGAIN, SIMPLY CALL AGAIN WITH DGEA2390 INDEX EQUAL TO -1 AND A NEW VALUE FOR DGEA2400 XEND. DGEA2410 Step -# of integration steps taken + DGEA2420 PRECISION/HARDWARE - SINGLE AND DOUBLE/H32 DGEA2430 - SINGLE/H36,H48,H60 DGEA2440 DGEA2450 REQD. IMSL ROUTINES - DGRCS, DGRIN, DGRPS, DGRST, LUDATF, LUELMF, LEQT1B, DGEA2460

		UERTST, UGETIO	DGEA2470
NOTATION		TNEODMATTON ON ODECTAL NOTATION AND	DGEA2480
NOTATION		CONVENTION ON SPECIAL NOTATION AND	DGEA2490
		INTRODUCTION OF THROUGH INSI, ROUTINE UHELP	DGEA2510
			DGEA2520
REMARKS	1.	THE EXTERNAL SUBROUTINE FCNJ IS USED ONLY WHEN	DGEA2530
		INPUT PARAMETER MITER IS EQUAL TO 1 OR -1. OTHERWISE,	DGEA2540
		A DUMMY FUNCTION CAN BE USED. THE DUMMY SUBROUTINE	DGEA2550
		SHOULD BE OF THE FOLLOWING FORM	DGEA2560
		SUBROUTINE FCNJ (N,X,Y,PD)	DGEA2570
		INTEGER N DEAL V(N) DD (N N) V	DGEA2580
		REAL I (N), PD (N, N), A	DGEA2590
		END	DGEA2610
	2.	AFTER THE INITIAL CALL, IF A NORMAL RETURN OCCURRED	DGEA2620
		(IER=0) AND A NORMAL CONTINUATION IS DESIRED, SIMPLY	DGEA2630
		RESET XEND AND CALL DGEAR AGAIN. ALL OTHER	DGEA2640
		PARAMETERS WILL BE READY FOR THE NEXT CALL. A CHANGE	DGEA2650
		OF PARAMETERS WITH INDEX EQUAL TO -1 CAN BE MADE	DGEA2660
	-	AFTER EITHER A SUCCESSFUL OR AN UNSUCCESSFUL RETURN.	DGEA2670
	3.	THE COMMON BLOCKS / DBAND/ AND / GEAR/ NEED TO BE	DGEA2680
		FOR THE COMMON BLOCKS TO FYIST IN THE CALLING DOGDAM	DGEA2090
		THE FOLLOWING STATEMENTS SHOULD BE INCLUDED	DGEA2710
		COMMON /DBAND/ NLC, NUC	DGEA2720
		COMMON /GEAR/ DUMMY(48), SDUMMY(4), IDUMMY(38)	DGEA2730
		WHERE DUMMY, SDUMMY, AND IDUMMY ARE VARIABLE NAMES NOT	DGEA2740
		USED ELSEWHERE IN THE CALLING PROGRAM. (FOR DOUBLE	DGEA2750
		PRECISION DUMMY IS TYPE DOUBLE AND SDUMMY IS TYPE REAL)	DGEA2760
	4.	THE CHOICE OF VALUES FOR METH AND MITER MAY REQUIRE	DGEA2770
		THE NATURE OF THE PROBLEM AND OF STORAGE REQUIREMENTS	DGEA2780
		THE PRIME CONSIDERATION IS STIFFNESS. IF	DGEA2800
		THE PROBLEM IS NOT STIFF, THE BEST CHOICE IS PROBABLY	DGEA2810
		METH = 1 WITH MITER = 0. IF THE PROBLEM IS STIFF TO A	DGEA2820
		SIGNIFICANT DEGREE, THEN METH SHOULD BE 2 AND MITER	DGEA2830
		SHOULD BE 1,2,-1,-2 OR 3. IF THE USER HAS NO KNOWLEDGE	DGEA2840
		OF THE INHERENT TIME CONSTANTS OF THE PROBLEM, WITH	DGEA2850
		WRICH TO PREDICT TIS STIFFILESS, ONE WAY TO DETERMINE	DGEA2860
		AT THE BEHAVIOD OF THE SOLUTION COMPLETED AND THE STED	DGEA2870
		SIZES USED. IF THE TYPICAL VALUES OF H ARE MUCH	DGEA2890
		SMALLER THAN THE SOLUTION BEHAVIOR WOULD SEEM TO	DGEA2900
		REQUIRE (THAT IS, MORE THAN 100 STEPS ARE TAKEN OVER	DGEA2910
		AN INTERVAL IN WHICH THE SOLUTIONS CHANGE BY LESS	DGEA2920
		THAN ONE PERCENT), THEN THE PROBLEM IS PROBABLY STIFF	DGEA2930
		AND THE DEGREE OF STIFFNESS CAN BE ESTIMATED FROM THE	DGEA2940
		VALUES OF H USED AND THE SMOOTHNESS OF THE SOLUTION.	DGEA2950
		THAT METH-1 IS MORE EFFICIENT THAN METH-2	DGEA2980
		EXPERIMENTATION WOULD BE REQUIRED TO DETERMINE THIS.	DGEA2980
		REGARDLESS OF METH, THE LEAST EFFECTIVE VALUE OF	DGEA2990
		MITER IS 0, AND THE MOST EFFECTIVE IS 1,-1,2,OR -2.	DGEA3000
		MITER = 3 IS GENERALLY SOMEWHERE IN BETWEEN. SINCE	DGEA3010
		THE STORAGE REQUIREMENTS GO UP IN THE SAME ORDER AS	DGEA3020
		EFFECTIVENESS, TRADE-OFF CONSIDERATIONS ARE	DGEA3030
		CHOICE OF ARS (MITTER) -1 IS CENERALLY DEFERRED TO	DGEA3040
		ABS (MITER) = 2 INLESS THE SYSTEM IS EATDLY COMPLICATED	DGEA3030
		(AND FCNJ IS THUS NOT FEASIBLE TO CODE) THE	DGEA3070
		ACCURACY OF THE FCNJ CALCULATION CAN BE CHECKED BY	DGEA3080

COMPARISON OF THE JACOBIAN WITH THAT GENERATED WITH DGEA3090 ABS (MITER) = 2. IF THE JACOBIAN MATRIX IS SIGNIFICANTLY DGEA3100 DIAGONALLY DOMINANT, THEN THE OPTION MITER = 3 IS DGEA3110 LIKELY TO BE NEARLY AS EFFECTIVE AS ABS (MITER) =1 OR 2, DGEA3120 LIRELI TO BE NEARLY AS EFFECTIVE AS ABS(MITER)=1 OR 2, DGEA3120AND WILL SAVE CONSIDERABLE STORAGE AND RUN TIME.DGEA3130IT IS POSSIBLE, AND POTENTIALLY QUITE DESIRABLE, TODGEA3140USE DIFFERENT VALUES OF METH AND MITER IN DIFFERENTDGEA3150SUBINTERVALS OF THE PROBLEM. FOR EXAMPLE, IF THEDGEA3160PROBLEM IS NON-STIFF INITIALLY AND STIFF LATER,DGEA3170METH = 1 AND MITER = 0 MIGHT BE SET INITIALLY, ANDDGEA3180METH = 2 AND MITER = 1 LATER.DGEA3190

- METH = 2 AND MITER = 1 LATER.DGEA31905. THE INITIAL VALUE OF THE STEP SIZE, H, SHOULD BEDGEA3200CHOSEN CONSIDERABLY SMALLER THAN THE AVERAGE VALUEDGEA3210EXPECTED FOR THE PROBLEM, AS THE FIRST-ORDER METHODDGEA3220 EXPECTED FOR THE PROBLEM, AS THE FIRST-ORDER METHODDGEA3220WITH WHICH DGEAR BEGINS IS NOT GENERALLY THE MOSTDGEA3230EFFICIENT ONE. HOWEVER, FOR THE FIRST STEP, AS FORDGEA3240EVERY STEP, DGEAR TESTS FOR THE POSSIBILITY THATDGEA3250THE STEP SIZE WAS TOO LARGE TO PASS THE ERROR TESTDGEA3260(BASED ON TOL), AND IF SO ADJUSTS THE STEP SIZEDGEA3270DOWN AUTOMATICALLY. THIS DOWNWARD ADJUSTMENT, IFDGEA3280ANY, IS NOTED BY IER HAVING THE VALUES 66 OR 67,DGEA3290AND SUBSEQUENT RUNS ON THE SAME OR SIMILAR PROBLEMDGEA3300SHOULD BE STARTED WITH AN APPROPRIATELY SMALLERDGEA3310VALUE OF H.DGEA3220 VALUE OF H.
 - 6. SOME OF THE VALUES OF INTEREST LOCATED IN THE COMMON BLOCK /GEAR/ ARE
 - COMMON BLOCK /GEAR/ ARE A. HUSED, THE STEP SIZE H LAST USED SUCCESSFULLY DGEA3350 DGEA3360

DGEA3320

DGEA3330 DGEA3340

DGEA3370

DGEA3380

DGEA3390

DGEA3410 DGEA3420

DGEA3400

DGEA3430

DGEA3440

DGEA3450

DGEA3480

DGEA3510

DGEA3520

DGEA3530

- B. NQUSED, THE ORDER LAST USED SUCCESSFULLY (IDUMMY(6))
- C. NSTEP, THE CUMULATIVE NUMBER OF STEPS TAKEN (IDUMMY(7))
- D. NFE, THE CUMULATIVE NUMBER OF FCN EVALUATIONS (IDUMMY(8))
 - (IDUMMY(8)) E. NJE, THE CUMULATIVE NUMBER OF JACOBIAN EVALUATIONS, AND HENCE ALSO OF MATRIX LU DECOMPOSITIONS (IDUMMY(9))
- 7. THE NORMAL USAGE OF DEEAR MAY BE SUMMARIZED AS FOLLOWS DEA3450 A. SET THE INITIAL VALUES IN Y. B. SET N, X, H, TOL, METH, AND MITER. DGEA3470

 - C. SET XEND TO THE FIRST OUTPUT POINT, AND INDEX TO 1. DGEA3490 DGEA3500 D. CALL DGEAR
 - E. EXIT IF IER IS GREATER THAN 128.
 - F. OTHERWISE, DO DESIRED OUTPUT OF Y.
 - G. EXIT IF THE PROBLEM IS FINISHED.
 - H. OTHERWISE, RESET XEND TO THE NEXT OUTPUT POINT, AND DGEA3540 RETURN TO STEP D. DGEA3550
 - 8. THE ERROR WHICH IS CONTROLLED BY WAY OF THE PARAMETER DGEA3560 TOL IS AN ESTIMATE OF THE LOCAL TRUNCATION ERROR, THAT DGEA3570 IS, THE ERROR COMMITTED ON TAKING A SINGLE STEP WITH DGEA3580 THE METHOD, STARTING WITH DATA REGARDED AS EXACT. THIS DGEA3590 IS TO BE DISTINGUISHED FROM THE GLOBAL TRUNCATION DGEA3600 ERROR, WHICH IS THE ERROR IN ANY GIVEN COMPUTED VALUE DGEA3610 OF Y (X) AS A RESULT OF THE LOCAL TRUNCATION ERRORS DGEA3620 FROM ALL STEPS TAKEN TO OBTAIN Y (X). THE LATTER ERROR DGEA3630 ACCUMULATES IN A NON-TRIVIAL WAY FROM THE LOCAL DGEA3640 ERRORS, AND IS NEITHER ESTIMATED NOR CONTROLLED BY DGEA3650 THE ROUTINE. SINCE IT IS USUALLY THE GLOBAL ERROR THAT DGEA3660 A USER WANTS TO HAVE UNDER CONTROL, SOME DGEA3670 EXPERIMENTATION MAY BE NECESSARY TO GET THE RIGHT DGEA3680 VALUE OF TOL TO ACHIEVE THE USERS NEEDS. IF THE DGEA3690 PROBLEM IS MATHEMATICALLY STABLE, AND THE METHOD USED DGEA3700

	TS APPRO	PRIATELY ST	ABLE. THEN THE	GLOBAL 1	ERROR AT A	DGEA3710
	GIVEN X	SHOULD VARY	SMOOTHLY WITH	TOL IN 2	MONOTONE	DGEA3720
	INCREAS	ING MANNER		101 10 1	1 1101101101112	DGEA3730
9	TE THE R	OUTTINE RETT	IRNS WITH TER V	TUTES OF	132 133	CEA3740
2.	OR 134	THE USER SH	IOIILD CHECK TO	SEF TF T	OO MICH	UGEA3750
	ACCURACY	TS BEING E	FOUTRED THE U	SED MAV	WISH TO	DGEA3760
	SET TOL	TO A LARGER	VALUE AND CON	TINTE A	NOTHER	DGEA3770
	DOSCIBLE	CALLER OF 7	THESE EDDOD CON	DITIONS	TC AN	DGEASTRO
	FUSSIDE	THE CODING	OF THE EXTERN	DIIIONS	TONE ECN	DGEA3700
	OD ECNI	TE NO EDDO	OF THE EATERN.	AL FUNCI	LUNS FUN	DGEAS
	TO MONIT	OD INTERMED	TATE OUND,	C CENEDA	E NECESSARI	DGEASOUU
	TO MONIT	OR INTERMEL	MINITE QUANTITIE	S GENERA	TED BI THE	DGEASOIU
	ROUTINE.	THESE QUAN	TITIES ARE STOP	RED IN TH	HE WORK VECTOR	DGEA3820
	WK AND I	NDEXED BY S	PECIFIC ELEMEN.	TS IN THE	E COMMON BLOCK	DGEA3830
	/GEAR/.	IF IER IS 1	32 OR 134, THE	COMPONE	NTS CAUSING	DGEA3840
	THE ERRO	R TEST FAIL	JURE CAN BE IDE.	NTIFIED	FROM LARGE	DGEA3850
	VALUES (OF THE QUAN	TITY			DGEA3860
	WK(IDU	MMY(11)+I)	/WK(I), FOR I=1	.,,N.		DGEA3870
	ONE CAUS	E OF THIS N	MAY BE A VERY S	MALL BUT	NONZERO	DGEA3880
	INITIAL	VALUE OF A	BS(Y(I)).			DGEA3890
	IF IER I	S 133, SEVI	ERAL POSSIBILIT	TIES EXIS	5T.	DGEA3900
	IT MAY B	E INSTRUCTI	VE TO TRY DIFF	ERENT VA	LUES OF MITER.	DGEA3910
	ALTERNAT	IVELY, THE	USER MIGHT MON	ITOR SUC	CESSIVE	DGEA3920
	CORRECTO	R ITERATES	CONTAINED IN W	K (IDUMMY	(12) + I), FOR	DGEA3930
	I=1,,	N. ANOTHER	POSSIBILITY MI	GHT BE T	O MONITOR	DGEA3940
	THE JACC	BIAN MATRI	X, IF ONE IS US	ED, STOR	ED, BY	DGEA3950
	COLUMN,	IN WK (IDUM	MY(10)+I), FOR	I=1,,	N*N IF	DGEA3960
	ABS (MITE	R) IS EQUA	L TO 1 OR 2, OR	FOR I=1	,,N IF	DGEA3970
	MITER IS	S EQUAL TO	3.			DGEA3980
		~				DGEA3990
COPYRIGHT	-	- 1984 BY II	MSL. INC. ALL	RIGHTS R	ESERVED.	DGEA4000
						DGEA4010
WARRANTY	-	IMSL WARRA	ANTS ONLY THAT	IMSL TES	TING HAS BEEN	DGEA4020
		APPLIED	TO THIS CODE.	NO OTHE	R WARRANTY.	DGEA4030
		EXPRESS	ED OR IMPLIED.	IS APPLI	CABLE .	DGEA4040
						DGEA4050
						-DGEA4060
						DGEA4070
SUBROUTIN	E DGEAR	(N. FCN. FCNJ	X.H.Y.XEND.TO	L. METH. M	TTER. INDEX.	DGEA4080
1		IWK.WK.IE	R.step)	_,,	,	+
-		,, <u>_</u> ,	SPECIFICATIONS	FOR ARGU	MENTS	DGEA4100
INTEGER		א אדייא אז	TER INDEX IWK (1) TER C	ten	+
DOUBLE PR	FCISION	X H Y(N)	XEND TOL. WK(1)	1,,100,0	ccb	DGEA4120
DOODIN IN	LCIDION	<i>x, n, 1</i> (<i>n</i>) <i>, 1</i>	DECIETCATIONS	FOR LOCA	T. VADTABLES	DGEA4130
TNTEGED		NEDDOD NON	VE1 NOAVE2 NOW	NV NC MI	C KELAG	DGEA110
1		ISTART NGO	NOUSED NETED N	FF N.TE T	NO NHCIT KGO	DGEA4150
2	, c	TED VED NN	NECHTI TOIMMY	(21) NTC	MU, MICOL, NOO,	DGEA4150
DEAL		SDIMMY (A)	, NEQUIL, IDOMAI		, NOC	DGEA4100
	FCISTON	T HH HMIN	HMAX FOC LIDOL	ND EDGT		DGEA4190
1 DOUBLE FR	ECISION	AVT D DN C	EDC DIMMY (20)	ND, EP30,1	NUSED, IOUIF,	DCEA4100
		ECN ECNT	EPS, DOPMI (59)			DGEA4190
COMMON /D	BAND /	NLC NUC				DGEA4200
	BAND/	T HU INTE				DGEA4210
LONIMON / G	EAR/	TOTTO COLOR	W NC MCC VELAC	L TOWNDO	NCO NOUCED	DGEA4220
1		NOTE, SDUM	II, NC, MFC, KFLAG	NONTRACT,	NSQ, NQUSED,	DGEA4230
2	1	NOILP, NEL, N	NO. NEW, NERROR,	NSAVEL, N	SAVEZ, NEQUIL,	DGEA4240
2		GEDC (B2 15 1	NO, NHCUT			DGEA4250
DATA		SEPS/23410		-	(7))	DGEA4260
			FIRST EXECUTABI	LE STATEN	1510.1.	DGEA4270
IF (MITER	(.GE.0) NI	LC = -1				DGEA4280
KER = 0						DGEA4290
JER = 0	0.0.0.0					DGEA4300
URCUND =	SEPS					DGEA4310
			COMPUTE WORK VE	SCIOR INE	DICIES	DGEA4320

С С

С

С

NSAVE1 = NERROR+N DGEA NSAVE2 = NSAVE1+N DGEA NY = NSAVE2+N DGEA IF (METH.EQ.1) NEQUIL = NY+13*N DGEA IF (METH.EQ.2) NEQUIL = NY+6*N DGEA NPW = NEQUIL + N DGEA IF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUIL DGEA MFC = 10*METH+IABS (MITER) DGEA CHECK FOR INCORRECT INPUT PARAMETERS DGEA IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (N.LE.0.D0) GO TO 85 DGEA IF (N.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4340 4350 4360 4370 4380 4490 4400 4410 4420 4420 4440 4450 4440 4450 4460 4450 4460 4450
NSAVE2 = NSAVE1+N DGEA NY = NSAVE2+N DGEA IF (METH.EQ.1) NEQUIL = NY+13*N DGEA IF (METH.EQ.2) NEQUIL = NY+6*N DGEA NPW = NEQUIL + N DGEA IF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUIL DGEA MFC = 10*METH+IABS(MITER) DGEA CHECK FOR INCORRECT INPUT PARAMETERS DGEA IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.1) GO TO 20 DGEA IF (INDEX.EQ.1) GO TO 20 DGEA	4350 4360 4370 4380 4390 4400 4410 4420 4420 4430 4440 4450 4440 4450 4460 4470 4480 4490 4500
NY = NSAVE2+NDGEA.IF (METH.EQ.1) NEQUIL = NY+13*NDGEA.IF (METH.EQ.2) NEQUIL = NY+6*NDGEA.NPW = NEQUIL + NDGEA.IF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUILDGEA.MFC = 10*METH+IABS (MITER)DGEA.CHECK FOR INCORRECT INPUT PARAMETERSDGEA.DGEA.DGEA.IF (MITER.LT2.OR.MITER.GT.3) GO TO 85DGEA.DGEA.DGEA.IF (METH.NE.1.AND.METH.NE.2) GO TO 85DGEA.IF (TOL.LE.0.D0) GO TO 85DGEA.IF (N.LE.0) GO TO 85DGEA.IF (INDEX.EQ.0) GO TO 10DGEA.IF (INDEX.EQ.2) GO TO 15DGEA.IF (INDEX.EQ1) GO TO 20DGEA.IF (INDEX.EQ.3) GO TO 25DGEA.	4360 4370 4380 4490 4400 4410 4420 4420 4430 4440 4450 4460 4450 4460 4470 4480 4490 4500
IF (METH.EQ.1) NEQUIL = NY+13*N DGEA IF (METH.EQ.2) NEQUIL = NY+6*N DGEA NPW = NEQUIL + N DGEA IF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUIL DGEA MFC = 10*METH+IABS(MITER) DGEA CHECK FOR INCORRECT INPUT PARAMETERS DGEA IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.2) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA	4370 4380 4390 4400 4410 4420 4430 4440 4450 4450 4460 4470 4480 4490 4500
IF (METH.EQ.2) NEQUIL = NY+6*N DGEA NPW = NEQUIL + N DGEA IF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUIL DGEA MFC = 10*METH+IABS(MITER) DGEA CHECK FOR INCORRECT INPUT PARAMETERS DGEA IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA	4380 4390 4400 4410 4420 4430 4440 4450 4450 4460 4470 4480 4490 4490
NPW = NEQUIL + NDGEAIF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUILDGEAMFC = 10*METH+IABS (MITER)DGEACHECK FOR INCORRECT INPUT PARAMETERSDGEAIF (MITER.LT2.OR.MITER.GT.3) GO TO 85DGEAIF (METH.NE.1.AND.METH.NE.2) GO TO 85DGEAIF (TOL.LE.0.D0) GO TO 85DGEAIF (N.LE.0) GO TO 85DGEAIF (INDEX.EQ.0) GO TO 10DGEAIF (INDEX.EQ.2) GO TO 15DGEAIF (INDEX.EQ1) GO TO 25DGEA	4390 4400 4410 4420 4430 4440 4450 4440 4450 4460 4470 4480 4490 4500
IF (MITER.EQ.0.OR.MITER.EQ.3) NPW = NEQUILDGEAMFC = 10*METH+IABS (MITER)DGEACHECK FOR INCORRECT INPUT PARAMETERSDGEAJF (MITER.LT2.OR.MITER.GT.3) GO TO 85DGEAIF (METH.NE.1.AND.METH.NE.2) GO TO 85DGEAIF (TOL.LE.0.D0) GO TO 85DGEAIF (N.LE.0) GO TO 85DGEAIF (INDEX.EQ.0) GO TO 10DGEAIF (INDEX.EQ.2) GO TO 20DGEAIF (INDEX.EQ.3) GO TO 25DGEA	4400 4410 4420 4430 4440 4450 4445 4450 44470 4480 4490 4500
MFC = 10*METH+IABS (MITER) CHECK FOR INCORRECT INPUT PARAMETERS DGEA DGEA DGEA IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA	4410 4420 4430 4440 4450 4450 4470 4480 4490 4500
CHECK FOR INCORRECT INPUT PARAMETERS DGEA DGEA IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA DGEA DGEA DGEA DGEA DGEA DGEA	4420 4430 4440 4450 4460 4470 4480 4490 4500
DGEA IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4430 4440 4450 4460 4470 4480 4490 4500
IF (MITER.LT2.OR.MITER.GT.3) GO TO 85 DGEA IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4440 4450 4460 4470 4480 4490 4500
IF (METH.NE.1.AND.METH.NE.2) GO TO 85 DGEA IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF (X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4450 4460 4470 4480 4490 4500
IF (TOL.LE.0.D0) GO TO 85 DGEA IF (N.LE.0) GO TO 85 DGEA IF ((X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4460 4470 4480 4490 4500
IF (N.LE.0) GO TO 85 DGEA IF ((X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ.2.1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4470 4480 4490 4500
IF ((X-XEND)*H.GE.0.D0) GO TO 85 DGEA IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ.2.1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4480 4490 4500
IF (INDEX.EQ.0) GO TO 10 DGEA IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4490
IF (INDEX.EQ.2) GO TO 15 DGEA IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	4500
IF (INDEX.EQ1) GO TO 20 DGEA IF (INDEX.EQ.3) GO TO 25 DGEA	
IF (INDEX.EQ.3) GO TO 25 DGEA	4510
	4520
IF (INDEX.NE.1) GO TO 85 DGEA	4530
IF INITIAL VALUES OF YMAX OTHER THAN DGEA	4540
THOSE SET BELOW ARE DESIRED, THEY DGEA	4550
SHOULD BE SET HERE. ALL YMAX(I) DGEA	4560
MUST BE POSITIVE. IF VALUES FOR DGEA	4570
HMIN OR HMAX, THE BOUNDS ON DGEA	4580
DABS (HH), OTHER THAN THOSE BELOW DGEA	4590
ARE DESIRED, THEY SHOULD BE SET DGEA	4600
BELOW. DGEA	4610
DO 5 I=1,N DGEA	4620
WK(I) = DABS(Y(I)) DGEA	4630
IF (WK(I).EQ.0.D0) WK(I) = 1.D0 DGEA	4640
WK(NY+I) = Y(I) DGEA	4650
5 CONTINUE DGEA	4660
NC = N DGEA	4670
T = X DGEA	4680
HH = H DGEA	4690
IF ((T+HH).EQ.T) KER = 33 DGEA	4700
HMIN = DABS(H) DGEA	4710
HMAX = DABS(X-XEND)*10.D0 DGEA	4720
$\frac{HMAX}{EPSC} = TOL DGEA$	4720 4730
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEA	4720 4730 4740
HMAX = DABS (X-XEND) *10.00DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEA	4720 4730 4740 4750
HMAX = DABS (X-XEND) *10.00DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEA	4720 4730 4740 4750 4760
HMAX = DABS $(X-XEND) *10.D0$ DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEA	44720 44730 44740 44750 44750 44760 44770
HMAX = DABS (X-XEND) *10.00DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEA	4720 4730 4740 4750 4760 4760 4770 4780
HMAX = DABS $(X-XEND) *10.D0$ DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEA	4720 4730 4740 4750 4760 4770 4780 4790
HMAX = DABS $(X-XEND) *10.D0$ DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEA	44720 44730 44740 44750 44760 44780 44790 44790 44800
HMAX = DABS $(X-XEND) *10.D0$ DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEAGO TO 30DGEA	4720 4730 4740 4750 4760 4760 4770 4780 4790 4790 4800 4810
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEAGO TO 30DGEATOUTP IS THE PREVIOUS VALUE OF XENDDGEA	4720 4730 4747 4750 4750 4760 4770 4770 4770 4770 4770 4770 477
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEAGO TO 30DGEATOUTP IS THE PREVIOUS VALUE OF XENDDGEAFOR USE IN HMAX.DGEA	4720 4730 47470 4750 4760 4770 4770 4780 4790 4790 4800 4810 4820 4830
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30TOUTP IS THE PREVIOUS VALUE OF XENDFOR USE IN HMAX.DGEA10 HMAX = DABS (XEND-TOUTP) *10.D0DGEA	44720 44730 44740 44750 44750 44770 44780 44790 44800 44810 44820 44830 44840
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30TOUTP IS THE PREVIOUS VALUE OF XENDFOR USE IN HMAX.DGEA10 HMAX = DABS (XEND-TOUTP) *10.D0DGEAGO TO 45DGEA	14720 14730 14740 14750 14750 14770 14780 14790 14800 14800 14820 14830 14840 14850
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30TOUTP IS THE PREVIOUS VALUE OF XENDIO HMAX = DABS (XEND-TOUTP) *10.D0DGEAGO TO 45DGEAIE INNY = DABS (XEND = DOWED) #10.D0DGEADGE	14720 14730 14740 14750 14750 14770 14780 14790 14800 14800 14820 14830 14840 14850 14850
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30TOUTP IS THE PREVIOUS VALUE OF XENDIO HMAX = DABS (XEND - TOUTP) *10.D0DGEAGO TO 45DGEA15 HMAX = DABS (XEND - TOUTP) *10.D0DGEAD	14720 14730 14740 14750 14750 14770 14780 14780 14800 14800 14820 14830 14840 14850 14850 14850 14850
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30TOUTP IS THE PREVIOUS VALUE OF XENDIO HMAX = DABS (XEND - TOUTP) *10.D0DGEAGO TO 45DGEA15 HMAX = DABS (XEND - TOUTP) *10.D0DGEAIF ((T-XEND) *HH.GE.0.D0) GO TO 95DGEA	14720 14730 14740 14750 14750 14770 14780 14790 14800 14800 14820 14830 14840 14850 14860 14880
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30DGEAFOR USE IN HMAX.10 HMAX = DABS (XEND - TOUTP) *10.D0GO TO 45DGEA15 HMAX = DABS (XEND - TOUTP) *10.D0DGEAIF ((T-XEND) *HH.GE.0.D0) GO TO 95DGEAGO TO 50DGEA	14720 14730 14740 14750 14750 14770 14780 14780 14800 14800 14820 14830 14840 14850 14850 14880 14880
HMAX = DABS (X-XEND) *10.00DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30DGEATOUTP IS THE PREVIOUS VALUE OF XENDDGEADGEAFOR USE IN HMAX.DGEA10 HMAX = DABS (XEND-TOUTP) *10.D0DGEAGO TO 45DGEA15 HMAX = DABS (XEND-TOUTP) *10.D0DGEAIF ((T-XEND) *HH.GE.0.D0) GO TO 95DGEAGO TO 50DGEA	14720 14730 14740 14750 14750 14770 14780 14790 14800 14800 14820 14830 14850 14850 14850 14850 14890 14890 14900
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30TOUTP IS THE PREVIOUS VALUE OF XENDI0 HMAX = DABS (XEND - TOUTP) *10.D0DGEAGO TO 45DGEA15 HMAX = DABS (XEND - TOUTP) *10.D0DGEAIF ((T-XEND) *HH.GE.0.D0) GO TO 95DGEAGO TO 50DGEA20 IF ((T-XEND) *HH.GE.0.D0) GO TO 90DGEA	14720 14730 14740 14750 14750 14770 14780 14790 14800 14800 14820 14830 14850 14850 14850 14850 14890 14890 14900 14910
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEADUMMY (14) = 1.0D0DGEAGO TO 30DGEAFOR USE IN HMAX.DGEA10 HMAX = DABS (XEND-TOUTP) *10.D0DGEAGO TO 45DGEA15 HMAX = DABS (XEND-TOUTP) *10.D0DGEAIF ((T-XEND) *HH.GE.0.D0) GO TO 95DGEAGO TO 50DGEA20 IF ((T-XEND) *HH.GE.0.D0) GO TO 90DGEAJSTART = -1DGEA	14720 14730 14740 14750 14750 14770 14780 14790 14800 14800 14820 14830 14840 14850 14850 14850 14890 14890 14900 14910
HMAX = DABS (X-XEND) *10.D0DGEAEPSC = TOLDGEAJSTART = 0DGEAN0 = NDGEANSQ = N0*N0DGEAEPSJ = DSQRT (UROUND)DGEANHCUT = 0DGEADUMMY (2) = 1.0D0DGEAGO TO 30DGEAFOR USE IN HMAX.DGEA10 HMAX = DABS (XEND-TOUTP) *10.D0DGEAGO TO 45DGEA15 HMAX = DABS (XEND-TOUTP) *10.D0DGEAIF ((T-XEND) *HH.GE.0.D0) GO TO 95DGEAGO TO 50DGEA20 IF ((T-XEND) *HH.GE.0.D0) GO TO 90DGEAJSTART = -1DGEANC = NDGEANC = NDGEA	14720 14730 14740 14750 14750 14750 14750 14750 14750 14750 14750 14750 14800 14820 14820 14850 14850 14850 14850 14890 14910 14920 14920

C C

000000000

C C

С

С

			DGEA4950
25	IF $((T+HH) \cdot EQ \cdot T)$ KER = 33 write(* *) 'error code = 'k	er	DGEA4960
	wille(","), eiioi code = , k	CT.	T DGF24970
30	NN = NO		DGEA4980
	step = step + 1		+
	write(*,*)'step = ',step		+
	CALL DGRST (FCN, FCNJ, WK (NY+1)	,WK,WK(NERROR+1),WK(NSAVE1+1),	DGEA4990
1	WK (NSAVE2+1), WK (NPW+1), WK (N	EQUIL+1),IWK,NN,step)	+
			DGEA5010
	KGO = 1 - KFLAG		DGEA5020
	GO TO (35,55,70,80), KGO		DGEASU3U
25	CONTINUE	RFLAG = 0, -1, -2, -3	DGEAS040
30	CONTINUE	ORMAL RETURN FROM INTEGRATOR THE	DGEA5060
		WEIGHTS YMAX (I) ARE UPDATED. IF	DGEA5070
		DIFFERENT VALUES ARE DESIRED, THEY	DGEA5080
		SHOULD BE SET HERE. A TEST IS MADE	DGEA5090
		FOR TOL BEING TOO SMALL FOR THE	DGEA5100
		MACHINE PRECISION. ANY OTHER TESTS	DGEA5110
		OR CALCULATIONS THAT ARE REQUIRED	DGEA5120
		AFTER EVERY STEP SHOULD BE	DGEA5130
		INSERTED HERE. IF INDEX = 3, Y IS	DGEA5140
		DETIDN TE INDEY - 2 HH IS	DGEASISU DGEASI60
		CONTROLLED TO HIT XEND (WITHIN	DGEA5170
		ROUNDOFF ERROR), AND THEN THE	DGEA5180
		CURRENT SOLUTION IS PUT IN Y ON	DGEA5190
		RETURN. FOR ANY OTHER VALUE OF	DGEA5200
		INDEX, CONTROL RETURNS TO THE	DGEA5210
		INTEGRATOR UNLESS XEND HAS BEEN	DGEA5220
		REACHED. THEN INTERPOLATED VALUES	DGEA5230
		OF THE SOLUTION ARE COMPUTED AND	DGEA5240
		STORED IN Y ON RETURN.	DGEA5250
		DESTRED THE CALL TO DEPTN SHOULD	DGEA5260
		BE REMOVED AND CONTROL TRANSFERRED	DGEA5280
		TO STATEMENT 95 INSTEAD OF 105.	DGEA5290
	D = 0.D0		DGEA5300
	DO 40 I=1,N		DGEA5310
	AYI = DABS(WK(NY+I))		DGEA5320
	WK(I) = DMAX1(WK(I), AYI)		DGEA5330
40	D = D + (AYI/WK(I)) * *2		DGEA5340
	D = D*(UROUND/TOL) **2		DGEA5350
	DN = N TE (D GT DN) GO TO 75		DGEA5360
	IF (INDEX EO 3) GO TO 95		DGEA5370
	IF (INDEX.EQ.2) GO TO 50		DGEA5390
45	IF ((T-XEND) *HH.LT.0.D0) GO	TO 25	DGEA5400
	NN = NO		DGEA5410
	CALL DGRIN (XEND, WK (NY+1), NN	I,Y)	DGEA5420
	X = XEND		DGEA5430
	GO TO 105		DGEA5440
50	IF (((T+HH) -XEND) *HH.LE.0.DO)) GO TO 25 (π) (π)	DGEA5450
	IF (DABS(T-XEND).LE.UROUND*D	TAAL (10.DU*DABS (T), HMAX)) GO TO 95	DGEA5460
	$HH = (XEND_T) * (1 DO_4 DO_4) GO$		DGEA5470
	JSTART = -1		DGEA5480
	GO TO 25		DGEA5490
		ON AN ERROR RETURN FROM INTEGRATOR.	DGEA5510
		AN IMMEDIATE RETURN OCCURS IF	DGEA5520
		KFLAG = -2, AND RECOVERY ATTEMPTS	DGEA5530

С

С

С

C C C C

С ARE MADE OTHERWISE. TO RECOVER, HH DGEA5540 С AND HMIN ARE REDUCED BY A FACTOR С DGEA5550 OF .1 UP TO 10 TIMES BEFORE GIVING DGEA5560 C UP. 55 JER = 66DGEA5570 60 IF (NHCUT.EQ.10) GO TO 65 DGEA5580 NHCUT = NHCUT+1 DGEA5590 HMIN = HMIN*.1D0 DGEA5600 HH = HH*.1D0DGEA5610 JSTART = -1DGEA5620 GO TO 25 DGEA5630 C DGEA5640 65 IF (JER.EQ.66) JER = 132 DGEA5650 IF (JER.EQ.67) JER = 133 DGEA5660 GO TO 95 DGEA5670 C DGEA5680 70 JER = 134DGEA5690 GO TO 95 DGEA5700 C DGEA5710 75 JER = 134DGEA5720 KFLAG = -2DGEA5730 GO TO 95 DGEA5740 C DGEA5750 80 JER = 67DGEA5760 GO TO 60 DGEA5770 С DGEA5780 85 JER = 135 DGEA5790 GO TO 110 DGEA5800 C DGEA5810 90 JER = 136DGEA5820 NN = N0DGEA5830 DGEA5840 CALL DGRIN (XEND, WK(NY+1), NN, Y) X = XENDDGEA5850 GO TO 110 DGEA5860 C DGEA5870 95 X = TDGEA5880 DO 100 I=1,N DGEA5890 100 Y(I) = WK(NY+I)DGEA5900 105 IF (JER.LT.128) INDEX = KFLAG DGEA5910 TOUTP = XDGEA5920 IF (KFLAG.EQ.0) H = HUSED DGEA5930 IF (KFLAG.NE.0) H = HH **DGEA5940** 110 IER = MAX0(KER, JER) DGEA5950 9000 CONTINUE DGEA5960 IF (KER.NE.0.AND.JER.LT.128) CALL UERTST (KER,6HDGEAR) DGEA5970 IF (JER.NE.0) CALL UERTST (JER, 6HDGEAR) DGEA5980 9005 RETURN DGEA5990 END DGEA6000 DGEA6010

IMSL ROUTINE NAME	- DGRST	DGRS0010
- C-modified to print s	heath and diagnostic output to files "sheatha.dat	;" + +
C COMPUTER	- IBM/DOUBLE	DGRS0050 DGRS0060
LATEST REVISION	- JUNE 1, 1982	DGRS0070 DGRS0080
C PURPOSE	- NUCLEUS CALLED ONLY BY IMSL SUBROUTINE DGEAR	DGRS0090 DGRS0100
C PRECISION/HARDWAR	E - SINGLE AND DOUBLE/H32 - SINGLE/H36,H48,H60	DGRS0110 DGRS0120 DGRS0130
C REQD. IMSL ROUTINE	ES - DGRCS, DGRPS, LUDATF, LUELMF, LEQT1B, UERTST, UGETIO	DGRS0140 DGRS0150 DGRS0160
C NOTATION	- INFORMATION ON SPECIAL NOTATION AND CONVENTIONS IS AVAILABLE IN THE MANUAL INTRODUCTION OR THROUGH IMSL ROUTINE UHELP	DGRS0170 DGRS0180 DGRS0190 DGRS0200
C COPYRIGHT C	- 1982 BY IMSL, INC. ALL RIGHTS RESERVED.	DGRS0210 DGRS0220
C WARRANTY C C C C	- IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN APPLIED TO THIS CODE. NO OTHER WARRANTY, EXPRESSED OR IMPLIED, IS APPLICABLE.	DGRS0230 DGRS0240 DGRS0250 DGRS0260 -DGRS0270
C SUBROUTINE DGRS	T (FCN, FCNJ, Y, YMAX, ERROR, SAVE1, SAVE2, PW, EQUIL, IPIV, NO, step) SPECIFICATIONS FOR ARGUMENTS	DGRS0280 + DGRS0310
INTEGER DOUBLE PRECISIO 1	<pre>IPIV(1),N0 IPIV(1),YMAX(1),ERROR(1),SAVE1(1),SAVE2(1), PW(1),EQUIL(1),eprime,eprime(2)</pre>	DGRS0320 DGRS0330 +
C INTEGER 1 2 3 4 REAL DOUBLE PRECISIO 1	SPECIFICATIONS FOR LOCAL VARIABLES N, MF, KFLAG, JSTART, NQUSED, NSTEP, NFE, NJE, NSQ, I, METH, MITER, NQ, L, IDOUB, MFOLD, NOLD, IRET, MEO, MIO, IWEVAL, MAXDER, LMAX, IREDO, J, NSTEPJ, J1, J2, M, IER, NEWQ, NPW, NERROR, NSAVE1, NSAVE2, NEQUIL, NY, MITER1, IDUMMY(2), NLC, NUC, NWK, JER TQ(4) N T, H, HMIN, HMAX, EPS, UROUND, HUSED, EL(13), OLDLO, TOLD, RMAX, RC, CRATE, EPSOLD, HOLD, FN, EDN, E, EUP,	DGRS0350 DGRS0360 DGRS0370 DGRS0380 DGRS0390 DGRS0400 DGRS0410 DGRS0420 DGRS0420
2 3 EXTERNAL COMMON /DBAND/ COMMON /GEAR/ 1 2 3 4 5 6 7 8 C	 BND, RH, R1, CON, R, HL0, R0, D, PHL0, PR3, D1, ENQ3, ENQ2 PR2, PR1, ENQ1, EPSJ, DUMMY, tcum FCN, FCNJ NLC, NUC T, H, HMIN, HMAX, EPS, UROUND, EPSJ, HUSED, EL, OLDL0, TOLD, RMAX, RC, CRATE, EPSOLD, HOLD, FN, EDN, E, EUP, BND, RH, R1, R, HL0, R0, D, PHL0, PR3, D1, ENQ3, ENQ2, PR2, PR1, ENQ1, DUMMY, TQ, N, MF, KFLAG, JSTART, NSQ, NQUSED, NSTEP, NFE, NJE, NPW, NERROR, NSAVE1, NSAVE2, NEQUIL, NY, I, METH, MITER, NQ, L, IDOUB, MFOLD, NOLD, IRET, MEO, MIO, IWEVAL, MAXDER, LMAX, IREDO, J, NSTEPJ, J1, J2, M, NEWQ, IDUMMY FIRST EXECUTABLE STATEMENT 	, DGRS0440 + DGRS0460 DGRS0470 DGRS0490 DGRS0500 DGRS0510 DGRS0520 DGRS0530 DGRS0540 DGRS0550 DGRS0550 DGRS0560 DGRS0570
open(unit=8,fi) open(unit=9,fi) KFLAG = 0	le='sneatha.dat',status='unknown') le='diag.dat',status='unknown')	+ + DGRS0580
$TO_{i}D = T$	THIS ROUTINE PERFORMS ONE STEP OF	DGRS0590 DGRS0600

		THE INTEGRATION OF AN INITIAL VALUE PROBLEM FOR A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS.	DGRS0610 DGRS0620 DGRS0630
	IF (JSTART.GT.0) GO TO 50 IF (JSTART.NE.0) GO TO 10		DGRS0640
	CDUL ECN (N E V CNE) estin	ON THE FIRST CALL, THE ORDER IS SET TO 1 AND THE INITIAL YDOT IS CALCULATED. RMAX IS THE MAXIMUM RATIO BY WHICH H CAN BE INCREASED IN A SINGLE STEP. IT IS INITIALLY 1.E4 TO COMPENSATE FOR THE SMALL INITIAL H, BUT THEN IS NORMALLY EQUAL TO 10. IF A FAILURE OCCURS (IN CORRECTOR CONVERGENCE OR ERROR TEST), RMAX IS SET AT 2 FOR THE NEXT INCREASE.	DGRS0650 DGRS0660 DGRS0670 DGRS0680 DGRS0700 DGRS0710 DGRS0720 DGRS0720 DGRS0730 DGRS0740 DGRS0750 DGRS0760
	DO 5 I-1 N	e,eprimez)	
5	Y(T, 2) = H*SAVE1(I)		DGRS0790
-	METH = MF/10		DGRS0800
	MITER = MF-10*METH		DGRS0810
	NQ = 1		DGRS0820
	L = 2		DGRS0830
	$\frac{1000B}{RMAX} = 1.D4$		DGRS0850
	RC = 0.D0		DGRS0860
	CRATE = 1.D0		DGRS0870
	HOLD = H		DGRS0880
	MFOLD = MF		DGRS0890
	NSTEPJ = 0		DGRS0910
	NFE = 1		DGRS0920
	NJE = 0		DGRS0930
	IRET = 3		DGRS0940
	GO TO 15	TE THE CALLED HAS CHANGED METH	DGRS0950
		DGRCS IS CALLED TO SET THE	DGRS0970
		COEFFICIENTS OF THE METHOD. IF THE	DGRS0980
		CALLER HAS CHANGED N, EPS, OR	DGRS0990
		METH, THE CONSTANTS E, EDN, EUP,	DGRS1000
		AND BND MUST BE RESET. E IS A	DGRS1010
		CURRENT ORDER NO EUR IS TO TEST	DGRS1020
		FOR INCREASING THE ORDER, EDN FOR	DGRS1040
		DECREASING THE ORDER. BND IS USED	DGRS1050
		TO TEST FOR CONVERGENCE OF THE	DGRS1060
		HAS CHANGED H V MICT BE DECOMED	DGRS1070
		IF H OR METH HAS BEEN CHANGED.	DGRS1000
		IDOUB IS RESET TO L + 1 TO PREVENT	DGRS1100
		FURTHER CHANGES IN H FOR THAT MANY	DGRS1110
		STEPS.	DGRS1120
1(MEO - METH		DGRS1130
	MIO = MITER		DGRS1140
	METH = MF/10		DGRS1160
	MITER = MF-10*METH		DGRS1170
	MFOLD = MF	MIMER	DGRS1180
	IF (MITER.NE.MIO) IWEVAL =	MITER	DGRS1190
	IDOUB = L+1		DGRS1200
	IRET = 1		DGRS1220

C C C
15	CALL DGRCS (METH, NO, EL, TO, MAXDER)		DGRS1230
15	$I_{MAX} = MAXDER+1$		DGRS1240
	$RC = RC \times EL(1) / OLDLO$		DGRS1250
	OLDIO = EI(1)		DGRS1260
20	FN = N		DGRS1270
20	EDN = FN*(TO(1)*EPS)**2		DGRS1280
	E = FN*(TO(2) * EPS) * * 2		DGRS1290
	EUP = FN*(TO(3)*EPS)**2		DGRS1300-
	BND = FN*(TO(4)*EPS)**2		DGRS1310
	EPSOLD = EPS		DGRS1320
	NOLD = N		DGRS1330
	GO TO (30,35,50), IRET		DGRS1340
25	TF ((EPS, EO, EPSOLD), AND, (N, EO, NOLD)) GO TO 30	DGRS1350
23	IF (N.EO.NOLD) IWEVAL = MITER	,	DGRS1360
	TRET = 1		DGRS1370
	GO TO 20		DGRS1380
30	IF (H.EO.HOLD) GO TO 50		DGRS1390
20	RH = H/HOLD		DGRS1400
	H = HOLD		DGRS1410
	TREDO = 3		DGRS1420
	GO TO 40		DGRS1430
35	RH = DMAX1 (RH, HMIN/DABS(H))		DGRS1440
40	RH = DMIN1 (RH, HMAX/DABS(H), RMAX)		DGRS1450
10	R1 = 1.00		DGRS1460
	DO 45 J=2.L		DGRS1470
	R1 = R1 * RH		DGRS1480
	DO 45 T=1.N		DGRS1490
45	Y(T,J) = Y(T,J) * R1		DGRS1500
	H = H * RH		DGRS1510
	BC = BC*BH		DGRS1520
	IDOUB = L+1		DGRS1530
	IF (IREDO.EO.0) GO TO 285		DGRS1540
	THIS SE	CTION COMPUTES THE PREDICTED	DGRS1550
	VALUE	S BY EFFECTIVELY MULTIPLYING	DGRS1560
	THE Y	ARRAY BY THE PASCAL TRIANGLE	DGRS1570
	MATRI	X. RC IS THE RATIO OF NEW TO	DGRS1580
	OLD V	VALUES OF THE COEFFICIENT	DGRS1590
	H*EL(1). WHEN RC DIFFERS FROM 1 BY	DGRS1600
	MORE	THAN 30 PERCENT, OR THE	DGRS1610
	CALLF	R HAS CHANGED MITER, IWEVAL	DGRS1620
	IS SP	T TO MITER TO FORCE THE	DGRS1630
	PART	LALS TO BE UPDATED. IF	DGRS1640
	PARTI	ALS ARE USED. IN ANY CASE,	DGRS1650
	THE F	ARTIALS ARE UPDATED AT LEAST	DGRS1660
	EVER	Y 20-TH STEP.	DGRS1670
50	IF (DABS(RC-1.D0).GT.0.3D0) IWEVAL	= MITER	DGRS1680
	IF (NSTEP.GE.NSTEPJ+20) IWEVAL = M	ITER	DGRS1690
	T = T + H		DGRS1700
	DO 55 J1=1,NQ		DGRS1710
	DO 55 J2=J1, NO		DGRS1720
	J = (NQ + J1) - J2		DGRS1730
	DO 55 I=1,N		DGRS1740
55	Y(I,J) = Y(I,J) + Y(I,J+1)		DGRS1750
	UP TO I	CORRECTOR ITERATIONS ARE	DGRS1760
	TAKE	I. A CONVERGENCE TEST IS MADE	DGRS1770
	ON T	HE R.M.S. NORM OF EACH	DGRS1780
	CORRI	ECTION, USING BND, WHICH IS	DGRS1790
	DEPEI	NDENT ON EPS. THE SUM OF THE	DGRS1800
	CORRI	ECTIONS IS ACCUMULATED IN THE	DGRS1810
	VECTO	OR ERROR(I). THE Y ARRAY IS	DGRS1820
	NOT J	LTERED IN THE CORRECTOR LOOP.	DGRS1830
	THE	JPDATED Y VECTOR IS STORED	DGRS1840

C TEMPORARILY IN SAVE1. DGRS1850 60 DO 65 I=1,N DGRS1860 65 ERROR(I) = 0.D0DGRS1870 DGRS1880 M = 0CALL FCN (N,T,Y,SAVE2,eprime,eprime2) + NFE = NFE+1DGRS1900 IF (IWEVAL.LE.0) GO TO 95 DGRS1910 C IF INDICATED, THE MATRIX P = I -DGRS1920 С H*EL(1)*J IS REEVALUATED BEFORE DGRS1930 С STARTING THE CORRECTOR ITERATION. DGRS1940 С IWEVAL IS SET TO 0 AS AN INDICATOR DGRS1950 С THAT THIS HAS BEEN DONE. IF MITER DGRS1960 С = 1 OR 2, P IS COMPUTED AND DGRS1970 CCC PROCESSED IN PSET. IF MITER = 3, DGRS1980 THE MATRIX USED IS P = I -DGRS1990 С H*EL(1)*D, WHERE D IS A DIAGONAL DGRS2000 С MATRIX. DGRS2010 IWEVAL = 0DGRS2020 RC = 1.D0DGRS2030 NJE = NJE+1DGRS2040 NSTEPJ = NSTEPDGRS2050 GO TO (75,70,80), MITER DGRS2060 70 NFE = NFE + NDGRS2070 $75 \text{ CON} = -H \times EL(1)$ DGRS2080 MITER1 = MITER DGRS2090 CALL DGRPS (FCN, FCNJ, Y, N0, CON, MITER1, YMAX, SAVE1, SAVE2, PW, EQUIL, DGRS2100 1 IPIV, IER) DGRS2110 IF (IER.NE.0) GO TO 155 DGRS2120 GO TO 125 DGRS2130 80 R = EL(1) * .1D0DGRS2140 DO 85 I=1,N DGRS2150 85 PW(I) = Y(I,1) + R*(H*SAVE2(I) - Y(I,2))DGRS2160 CALL FCN (N,T, PW, SAVE1, eprime, eprime2) + NFE = NFE+1DGRS2180 $HL0 = H \times EL(1)$ DGRS2190 DO 90 I=1,N DGRS2200 RO = H*SAVE2(I) - Y(I, 2)DGRS2210 PW(I) = 1.D0DGRS2220 D = .1D0*R0-H*(SAVE1(I)-SAVE2(I))DGRS2230 SAVE1(I) = 0.D0DGRS2240 IF (DABS(R0).LT.UROUND*YMAX(I)) GO TO 90 DGRS2250 IF (DABS(D).EQ.0.D0) GO TO 155 DGRS2260 PW(I) = .1D0 * R0/DDGRS2270 SAVE1(I) = PW(I) * RODGRS2280 90 CONTINUE DGRS2290 GO TO 135 DGRS2300 95 IF (MITER.NE.0) GO TO (125,125,105), MITER DGRS2310 С DGRS2320 С IN THE CASE OF FUNCTIONAL ITERATION, DGRS2330 С UPDATE Y DIRECTLY FROM THE RESULT DGRS2340 С OF THE LAST FCN CALL. DGRS2350 D = 0.D0DGRS2360 DO 100 I=1,N DGRS2370 R = H*SAVE2(I) - Y(I,2)DGRS2380 D = D + ((R - ERROR(I)) / YMAX(I)) * *2DGRS2390 SAVE1(I) = Y(I, 1) + EL(1) * RDGRS2400 100 ERROR(I) = RDGRS2410 GO TO 145 DGRS2420 С IN THE CASE OF THE CHORD METHOD, DGRS2430 С COMPUTE THE CORRECTOR ERROR, F SUB DGRS2440 (M), AND SOLVE THE LINEAR SYSTEM DGRS2450 С C WITH THAT AS RIGHT-HAND SIDE AND P DGRS2460

0000		AS LU 2.	COEFFICIENT MATRIX, USING THE DECOMPOSITION IF MITER = 1 OR IF MITER = 3, THE COEFFICIENT	DGRS2470 DGRS2480 DGRS2490 DGRS2500
C	105	PHL0 = HL0 $HL0 = H*EL(1)$ IF (HL0.EQ.PHL0) GO TO 115 $PHL0 = 0$		DGRS2510 DGRS2520 DGRS2530
		R = HL0/PHL0 DO 110 I=1,N D = 1 D0-P*(1 D0-1 D0/DW(I))		DGRS2540 DGRS2550
		IF (DABS (D) .EQ.0.D0) GO TO 16	55	DGRS2570
	115	PW(1) = 1.00/D DO 120 T=1 N		DGRS2580
	120	SAVE1(I) = PW(I) * (H*SAVE2(I) - (Y))	(I,2)+ERROR(I)))	DGRS2600
		GO TO 135		DGRS2610
	125	DO 130 I=1,N SNUE1(I) = $H \times SNUE2(I) = (V(I - 2) + EI)$		DGRS2620
	130	$SAVE1(1) = H^{*}SAVE2(1) - (1(1,2) + E)$ IF (NLC . EO1) GO TO 131	RROR (1))	DGRS2630
		NWK = (NLC+NUC+1) * NO+1		DGRS2650
		CALL LEQTIB (PW, N, NLC, NUC, NO, SAVI	E1,1,N0,2,PW(NWK),JER)	DGRS2660
	1 2 1	GO TO 135 CALL LUEIME (DW SAVEL TOTU N NO.	CATE 1)	DGRS2670
	135	D = 0.D0	, SAVEL)	DGRS2680
		DO 140 I=1,N		DGRS2700
		ERROR(I) = ERROR(I) + SAVE1(I)		DGRS2710
	140	D = D + (SAVE1(I) / YMAX(I)) **2)	DGRS2720
С	140	TEST	, FOR CONVERGENCE. IF M.GT.0, THE	DGRS2740
Ĉ		SÇ	QUARE OF THE CONVERGENCE RATE	DGRS2750
С		CC	DNSTANT IS ESTIMATED AS CRATE,	DGRS2760
С	145	AL TE (M NE O) CRATE - DMAX1 (9DO*(ND THIS IS USED IN THE TEST.	DGRS2770
	140	IF ((D*DMIN1(1.D0, 2.D0*CRATE))).	LE.BND) GO TO 170	DGRS2790
		D1 = D		DGRS2800
		M = M+1		DGRS2810
		CALL FCN (N T SAVE1 SAVE2 eprim	e enrime?)	DGR52820
		GO TO 95		DGRS2840
С		THE	CORRECTOR ITERATION FAILED TO	DGRS2850
C			DNVERGE IN 3 TRIES. IF PARTIALS	DGRS2860
C		DA	ATE. THEY ARE REEVALUATED FOR THE	DGRS2870
Ĉ		NE	EXT TRY. OTHERWISE THE Y ARRAY IS	DGRS2890
С		RI	ETRACTED TO ITS VALUES BEFORE	DGRS2900
C		PI	REDICTION, AND H IS REDUCED, IF	DGRS2910
C		E	XIT IS TAKEN.	DGRS2920
	150	NFE = NFE+2		DGRS2940
		IF (IWEVAL.EQ1) GO TO 165		DGRS2950
	155	T = TOLD PMAX - 2 DO		DGRS2960
		$DO \ 160 \ J1=1. NO$		DGRS2970
		DO 160 J2=J1, NQ		DGRS2990
		J = (NQ+J1) - J2		DGRS3000
	160	DO 160 I=1, N Y(T, T) = Y(T, T) - Y(T, T+1)		DGRS3010
	100	IF (DABS(H) . LE . HMIN*1.00001D0)	GO TO 280	DGRS3020
		RH = .25D0		DGRS3040
		IREDO = 1		DGRS3050
	165	GO TO 35 TWEVAL - MITTER		DGRS3060
	100	GO'TO 60		DGRS3070

```
63
```

```
С
                                   THE CORRECTOR HAS CONVERGED. IWEVAL
                                                                           DGRS3090
С
                                      IS SET TO -1 IF PARTIAL
                                                                           DGRS3100
C
C
                                     DERIVATIVES WERE USED, TO SIGNAL
                                                                           DGRS3110
                                     THAT THEY MAY NEED UPDATING ON
                                                                           DGRS3120
С
                                     SUBSEQUENT STEPS. THE ERROR TEST
                                                                           DGRS3130
C
                                      IS MADE AND CONTROL PASSES TO
                                                                           DGRS3140
C
                                      STATEMENT 190 IF IT FAILS.
                                                                           DGRS3150
  170 IF (MITER.NE.O) IWEVAL = -1
                                                                           DGRS3160
      NFE = NFE + M
                                                                           DGRS3170
      D = 0.D0
                                                                           DGRS3180
      DO 175 I=1,N
                                                                           DGRS3190
  175 D = D + (ERROR(I) / YMAX(I)) **2
                                                                           DGRS3200
      IF (D.GT.E) GO TO 190
                                                                           DGRS3210
C
                                   AFTER A SUCCESSFUL STEP, UPDATE THE
                                                                           DGRS3220
С
                                      Y ARRAY. CONSIDER CHANGING H IF
                                                                           DGRS3230
С
                                      IDOUB = 1. OTHERWISE DECREASE
                                                                           DGRS3240
С
                                      IDOUB BY 1. IF IDOUB IS THEN 1 AND DGRS3250
C
C
C
                                      NQ .LT. MAXDER, THEN ERROR IS
                                                                           DGRS3260
                                      SAVED FOR USE IN A POSSIBLE ORDER
                                                                           DGRS3270
                                      INCREASE ON THE NEXT STEP. IF A
                                                                           DGRS3280
С
                                      CHANGE IN H IS CONSIDERED, AN
                                                                           DGRS3290
С
                                      INCREASE OR DECREASE IN ORDER BY
                                                                           DGRS3300
С
                                      ONE IS CONSIDERED ALSO. A CHANGE
                                                                           DGRS3310
С
                                      IN H IS MADE ONLY IF IT IS BY A
                                                                           DGRS3320
С
                                      FACTOR OF AT LEAST 1.1. IF NOT,
                                                                           DGRS3330
                                      IDOUB IS SET TO 10 TO PREVENT
С
                                                                           DGRS3340
C
                                      TESTING FOR THAT MANY STEPS.
                                                                           DGRS3350
      KFLAG = 0
                                                                           DGRS3360
      IREDO = 0
                                                                           DGRS3370
      NSTEP = NSTEP+1
                                                                           DGRS3380
      HUSED = H
                                                                           DGRS3390
      NOUSED = NO
                                                                           DGRS3400
      DO 180 J=1,L
                                                                           DGRS3410
      DO 180 I=1,N
                                                                           DGRS3420
  180 Y(I,J) = Y(I,J) + EL(J) + ERROR(I)
                                                                           DGRS3430
      IF (IDOUB.EQ.1) GO TO 200
                                                                           DGRS3440
      IDOUB = IDOUB-1
                                                                           DGRS3450
      IF (IDOUB.GT.1) GO TO 290
                                                                           DGRS3460
      IF (L.EQ.LMAX) GO TO 290
                                                                           DGRS3470
      DO 185 I=1,N
                                                                           DGRS3480
  185 Y(I, LMAX) = ERROR(I)
                                                                           DGRS3490
      GO TO 290
                                                                           DGRS3500
С
                                    THE ERROR TEST FAILED. KFLAG KEEPS
                                                                           DGRS3510
С
                                      TRACK OF MULTIPLE FAILURES.
                                                                           DGRS3520
C
C
C
                                      RESTORE T AND THE Y ARRAY TO THEIR DGRS3530
                                      PREVIOUS VALUES, AND PREPARE TO
                                                                           DGRS3540
                                      TRY THE STEP AGAIN. COMPUTE THE
                                                                           DGRS3550
Ĉ
                                      OPTIMUM STEP SIZE FOR THIS OR ONE
                                                                           DGRS3560
C
                                      LOWER ORDER.
                                                                           DGRS3570
  190 KFLAG = KFLAG-1
                                                                           DGRS3580
      T = TOLD
                                                                           DGRS3590
      DO 195 J1=1,NQ
                                                                           DGRS3600
      DO 195 J2=J1,NO
                                                                           DGRS3610
          J = (NQ+J1) - J2
                                                                           DGRS3620
      DO 195 I=1,N
                                                                           DGRS3630
  195 Y(I,J) = Y(I,J) - Y(I,J+1)
                                                                           DGRS3640
      RMAX = 2.D0
                                                                           DGRS3650
      IF (DABS(H).LE.HMIN*1.00001D0) GO TO 270
                                                                           DGRS3660
      IF (KFLAG.LE.-3) GO TO 260
                                                                           DGRS3670
      IREDO = 2
                                                                           DGRS3680
      PR3 = 1.D+20
                                                                           DGRS3690
      GO TO 210
                                                                           DGRS3700
```

C C C		R	EGARDLESS OF THE SUCCESS OR FAILURE OF THE STEP, FACTORS PR1, PR2, AND PR3 ARE COMPUTED, BY WHICH H COULD	DGRS3710 DGRS3720 DGRS3730
00000			BE DIVIDED AT ORDER NQ - 1, ORDER NQ, OR ORDER NQ + 1, RESPECTIVELY. IN THE CASE OF FAILURE, PR3 = 1.E20 TO AVOID AN ORDER INCREASE. THE SMALLEST OF THESE IS	DGRS3740 DGRS3750 DGRS3760 DGRS3770 DGRS3780
C			DETERMINED AND THE NEW ORDER CHOSEN ACCORDINGLY IF THE ORDER	DGRS3790
C			IS TO BE INCREASED, WE COMPUTE ONE	DGRS3810
С	200	DD2 1 D+20	ADDITIONAL SCALED DERIVATIVE.	DGRS3820
	200	IF (L.EO.LMAX) GO TO 210		DGRS3830
		$D1 = 0.\widetilde{D}0$		DGRS3850
	205	DO 205 $I=1,N$	(VN/AV (T)) ++ 0	DGRS3860
	205	DI = DI + ((ERROR(I) - I(I, LMAX))) ENO3 = .5D0/(L+1)	// IMAA (1)) ^ 2	DGRS3870
		PR3 = ((D1/EUP) * ENQ3) * 1.4D0	+1.4D-6	DGRS3890
	210	ENQ2 = .5D0/L		DGRS3900
		$PR2 = ((D/E)^{*}ENQ2)^{*}I.2D0+I.$	20-6	DGRS3910
		IF (NQ.EQ.1) GO TO 220		DGRS3930
		D = 0.D0		DGRS3940
	215	DO 215 I=1, N D = D $(Y(T, I) (YM)Y(T)) **2$		DGRS3950
	215	D = D + (1(1, 1)) / 1 + A + (1)) + 2 ENO1 = .5D0/NO		DGRS3970
		PR1 = ((D/EDN) * * ENQ1) * 1.3D0 +	1.3D-6	DGRS3980
	220	IF (PR2.LE.PR3) GO TO 225		DGRS3990
		GO TO 230		DGRS4000
	225	IF (PR2.GT.PR1) GO TO 230		DGRS4020
		NEWQ = NQ		DGRS4030
		RH = 1.00/PR2		DGRS4040
	230	NEWQ = NQ - 1		DGRS4060
		RH = 1.D0/PR1		DGRS4070
		IF (KFLAG.NE.0.AND.RH.GT.1.D	0) $RH = 1.D0$	DGRS4080
	235	NEWO = L		DGRS4090
		RH = 1.D0/PR3		DGRS4110
		IF (RH.LT.1.1D0) GO TO 245		DGRS4120
	240	V(T, NEWO+1) = ERROR(T) *EL(T)	/T.	DGRS4130
		GO TO 255	/ _	DGRS4150
	245	IDOUB = 10		DGRS4160
	250	GO TO 290 TE ((KELAG EO O) AND (PH LT	1 100)) CO TO 245	DGRS4170
С	200	11 ((RILEG.EQ.0) . AND. (RILEI.	1.150// 60 10 245	DGRS4190
С		:	IF THERE IS A CHANGE OF ORDER, RESET	DGRS4200
C			NQ, L, AND THE COEFFICIENTS. IN	DGRS4210
C			RH AND THE Y ARRAY IS RESCALED.	DGRS4220
C			THEN EXIT FROM 285 IF THE STEP WAS	DGRS4240
C		IF (NEWO, EO NO) GO TO 35	OK, OR REDO THE STEP OTHERWISE.	DGRS4250
	255	NQ = NEWQ		DGRS4270
		L = NQ+1		DGRS4280
		IRET = 2		DGRS4290
С			CONTROL REACHES THIS SECTION IF 3 OR	DGRS4300
С			MORE FAILURES HAVE OCCURED. IT IS	DGRS4320

ASSUMED THAT THE DERIVATIVES THAT С DGRS4330 000000000 HAVE ACCUMULATED IN THE Y ARRAY DGRS4340 HAVE ERRORS OF THE WRONG ORDER. DGRS4350 HENCE THE FIRST DERIVATIVE IS DGRS4360 RECOMPUTED, AND THE ORDER IS SET DGRS4370 TO 1. THEN H IS REDUCED BY A DGRS4380 FACTOR OF 10, AND THE STEP IS DGRS4390 RETRIED. AFTER A TOTAL OF 7 DGRS4400 FAILURES, AN EXIT IS TAKEN WITH DGRS4410 С KFLAG = -2.DGRS4420 260 IF (KFLAG.EQ.-7) GO TO 275 DGRS4430 RH = .1D0DGRS4440 RH = DMAX1 (HMIN/DABS(H), RH) DGRS4450 H = H*RHDGRS4460 CALL FCN (N,T,Y,SAVE1,eprime,eprime2) + NFE = NFE+1DGRS4480 DO 265 I=1,N DGRS4490 265 Y(I,2) = H*SAVE1(I)DGRS4500 IWEVAL = MITER DGRS4510 IDOUB = 10DGRS4520 IF (NQ.EQ.1) GO TO 50 DGRS4530 NQ = 1DGRS4540 L = 2DGRS4550 IRET = 3DGRS4560 GO TO 15 DGRS4570 С ALL RETURNS ARE MADE THROUGH THIS DGRS4580 CC SECTION. H IS SAVED IN HOLD TO DGRS4590 ALLOW THE CALLER TO CHANGE H ON DGRS4600 C THE NEXT STEP. DGRS4610 DGRS4620 270 KFLAG = -1GO TO 290 DGRS4630 275 KFLAG = -2DGRS4640 GO TO 290 DGRS4650 280 KFLAG = -3DGRS4660 GO TO 290 DGRS4670 285 RMAX = 10.D0DGRS4680 290 HOLD = HDGRS4690 JSTART = NQDGRS4700 C--Diagnostic Check of first and second derivatives of E + if (tcum.eq.told) go to 310 + write(8,300)tcum, step, y(1,1), y(2,1), y(3,1), y(4,1), y(5,1) + 300 format(1x,e11.4,1x,I5,5(1x,e11.4)) + write (9,305) step, eprime, eprime2 + 305 format(1x, I5, 2(1x, e20.13)) + RETURN DGRS4710 END DGRS4720

С	IMSL ROUTINE NAME	- DGRCS	DGRC0010
С			DGRC0020
C			DGRC0030
c	COMPUTER	- IBM/DOUBLE	DGRC0050
C		,	DGRC0060
С	LATEST REVISION	- JANUARY 1, 1978	DGRC0070
C			DGRC0080
C	PURPOSE	NUCLEUS CALLED ONLY BY IMSL SUBROUTINE DGEAR	DGRC0090
C	PRECISION/HARDWARE	- SINGLE AND DOUBLE/H32	DGRC0110
C	,	- SINGLE/H36,H48,H60	DGRC0120
С			DGRC0130
C	REQD. IMSL ROUTINES	- NONE REQUIRED	DGRC0140
C	NOTATION	- INFORMATION ON SPECIAL NOTATION AND	DGRC0150
C	NOTATION .	CONVENTIONS IS AVAILABLE IN THE MANUAL	DGRC0170
C		INTRODUCTION OR THROUGH IMSL ROUTINE UHELP	DGRC0180
С			DGRC0190
C	COPYRIGHT	- 1978 BY IMSL, INC. ALL RIGHTS RESERVED.	DGRC0200
C	MADDANTTV .	- TMSI, WADDANTS ONLY THAT THEI TESTING HAS BEE	N DGRC0220
C	WARRANTI	APPLIED TO THIS CODE, NO OTHER WARRANTY.	DGRC0220
C		EXPRESSED OR IMPLIED, IS APPLICABLE.	DGRC0240
С			DGRC0250
C		•••••••••••••••••••••••••••••••••••••••	DGRC0260
С	CIMPOTINE DCDCC	(METH NO EL TO MAYDED)	DGRC0270
C	SUBROUTINE DERCS	SPECIFICATIONS FOR ARGUMENTS	DGRC0280
5	INTEGER	METH, NO, MAXDER	DGRC0300
	REAL	TQ(1)	DGRC0310
	DOUBLE PRECISION	EL(1)	DGRC0320
С	TATECED	SPECIFICATIONS FOR LOCAL VARIABLES	DGRC0330
	REAL	R PERTST (12.2.3)	DGRC0340
	DATA	PERTST/1.,1.,2.,1.,.3158,.7407E-1,	DGRC0360
	1	.1391E-1,.2182E-2,.2945E-3,.3492E-4,	DGRC0370
	2	.3692E-5,.3524E-6,1.,1.,.5,.1667,	DGRC0380
	5	.4167E-1,7*1.,2.,12.,24.,37.89,	DGRC0390
	* 5	147 4 168 8 191 0 2 0 4 5 7 333	DGRC0400
	6	10.42,13.7,7*1.,12.0,24.0,37.89,	DGRC0420
	7	53.33,70.08,87.97,106.9,126.7,	DGRC0430
	8	147.4,168.8,191.0,1.,3.0,6.0,	DGRC0440
~	9	9.167,12.5,8*1./	DGRC0450
C	GO TO (5.10). MET	FIRST EXECUTABLE STATEMENT	DGRC0480
	5 MAXDER = 12	••	DGRC0480
	GO TO (15,20,25,3	0,35,40,45,50,55,60,65,70), NQ	DGRC0490
	10 MAXDER = 5		DGRC0500
C	GO TO (75,80,85,9	0,95), NO THE FOLLOWING CORRECTENTS SHOULD I	DGRC0510
c		DEFINED TO MACHINE ACCURACY FOR	A DGRC0520
C		GIVEN ORDER NO, THEY CAN BE	DGRC0540
С		CALCULATED BY USE OF THE	DGRC0550
С		GENERATING POLYNOMIAL L(T), WHOSI	E DGRC0560
C		COEFFICIENTS ARE EL(I) $L(T) =$	DGRC0570
C		EL(NO+1) \star T \star NO FOR THE IMPLICIT	DGRC0590
C		ADAMS METHODS, L(T) IS GIVEN BY	DGRC0600
С		$DL/DT = (T+1) * (T+2) * \dots$	DGRC0610
С		(T+NQ-1)/K, L(-1) = 0, WHERE K	= DGRC0620

ບບບບບບບບບບບບບບບບບບບບບບບບບບບ С

		FACTORIAL (NQ-1). FOR THE GEAR METHODS, L(T) = (T+1)*(T+2)* *(T+NQ)/K, WHERE K = FACTORIAL (NQ)*(1 + 1/2 + + 1/NQ). THE ORDER IN WHICH THE GROUPS APPEAR BELOW IS IMPLICIT ADAMS METHODS OF ORDERS 1 TO 12, BACKWARD DIFFERENTIATION METHODS	DGRC0630 DGRC0640 DGRC0650 DGRC0660 DGRC0670 DGRC0680 DGRC0690 DGRC0700
		OF ORDERS 1 TO 5.	DGRC0710
15	EL(1) = 1.0D0		DGRC0720
	GO TO 100		DGRC0730
20	EI(1) = 0.5D0		DCPC0740
20	EI(1) = 0.500		DCDC0750
	EL(3) = 0.5D0		DGRC0750
	GO TO IOU		DGRC0760
25	EL(1) = 4.166666666666666667D-0	1	DGRC0770
	EL(3) = 0.75D0		DGRC0780
	EL(4) = 1.666666666666667D-0)1	DGRC0790
	GO TO 100		DGRC0800
30	EL(1) = 0.375D0		DGRC0810
	EL(3) = 9.166666666666667D-0)1	DGRC0820
	EL(4) = 3.3333333333333333D-0)1	DGRC0830
	EL(5) = 4.1666666666666667D-0	12	DGRC0840
	GO TO 100		DGRC0850
35	$EI_{1}(1) = 3.486111111111111110-0$	1	DGRC0860
55	$FI_{(3)} = 1.041666666666666700$	-	DGRC0870
	$EL(3) = 4.961111111111111110_0$	11	DCDC0880
	EI(4) = 4.00IIIIIIIII (0)		DCPC0890
	EL(5) = 1.0410000000000000000000000000000000000		DCDC00000
	EL(6) = 0.333333333333332-(0)	13	DGRC0900
4.0			DGRC0910
40	EL(1) = 3.298611111111111110-(DGRC0920
	$E_{L}(3) = 1.1416666666666667D+0$	10	DGRC0930
	EL(4) = 0.625D+00		DGRC0940
	EL(5) = 1.770833333333333D-0)1	DGRC0950
	EL(6) = 0.025D+00		DGRC0960
	EL(7) = 1.3888888888888889D-0)3	DGRC0970
	GO TO 100		DGRC0980
45	EL(1) = 3.155919312169312D-0	01	DGRC0990
	EL(3) = 1.225D+00		DGRC1000
	EL(4) = 7.518518518518519D-0)1	DGRC1010
	EL(5) = 2.552083333333333D-0)1	DGRC1020
	EL(6) = 4.86111111111110-0	02	DGRC1030
	EL(7) = 4.86111111111110-0	03	DGRC1040
	EL(8) = 1.984126984126984D-0	04	DGRC1050
	GO TO 100		DGRC1060
50	EL(1) = 3.042245370370370D-0	01	DGRC1070
	EL(3) = 1.296428571428571D+0	00	DGRC1080
	EL(4) = 8.685185185185185D - 100000000000000000000000000000000000	01	DGRC1090
	EL(5) = 3.3576388888888889D-0	01	DGRC1100
	EL(6) = 7.777777777777778D-0	12	DGRC1110
	$EI_{1}(7) = 1.064814814814814815D - 1.064814814814815D - 1.064814814814814815D - 1.064814814814815D - 1.064814814814815D - 1.064814814814815D - 1.064814814814814815D - 1.064814814814815D - 1.064814814814814815D - 1.064814814814814814815D - 1.064814814814815D - 1.064814814814814815D - 1.064814814814815D - 1.064814814814815D - 1.064814814814815D - 1.064814814815D - 1.064814814815D - 1.064814814815D - 1.064814814815D - 1.064814814815D - 1.064814814815D - 1.064814815D - 1.064814814815D - 1.064814814815D - 1.064814814815D - 1.064814815D - 1.064815D - 1.0648815D - 1.064815D - 1.0648815D - 1.068815D - 1.068850000000000000000000000000000000000$	n2	DGRC1120
	$EI_{(8)} = 7.936507936507937D_{-1}$	λ λ	DCPC1130
	$EI_{(0)} = 2.4901507201507200$	05	DCPC1140
	CO TO 100		DCPC1150
55	EL(1) = 2.949690004409171D	11	DGRC1160
22	EII(1) = 2.9400800044091/1D-		DGRCIIGO
	$E_{II}(3) = 1.3389285/14285/1D+$		DGRCII/O
	$E_{L}(4) = 9.765542328042328D-$		DGRCII80
	$E_{\rm L}(5) = 4.1/18/50-01$	0.1	DGRCII90
	$E_{L}(6) = 1.11354166666667D - D_{L}(7) = 0.010757 0.000000000000000000000000000000000$	01	DGRC1200
	$E_{L}(7) = 0.01875D+00$	0.2	DGRC1210
	EL(8) = 1.934523809523810D-	0.3	DGRC1220
	EL(9) = 1.116071428571429D-	04	DGRC1230
	EL(10) = 2.755731922398589D-	06	DGRC1240

	GO TO 100	DGRC1250
60	EL(1) = 2.869754464285714D-01	DGRC1260
	EL(3) = 1.414484126984127D+00	DGRC1270
	EL(4) = 1.077215608465609D+00	DGRC1280
	EL(5) = 4.985670194003527D-01	DGRC1290
	EL(6) = 1.484375D-01	DGRC1300
	EL(7) = 2.906057098765432D-02	DGRC1310
	EL(8) = 3.720238095238095D-03	DGRC1320
	EL(9) = 2.996858465608466D-04	DGRC1330
	EL(10) = 1.377865961199295D-05	DGRC1340
	EL(11) = 2.755731922398589D-07	DGRC1350
	GO TO 100	DGRC1360
65	EL(1) = 2.801895964439367D-01	DGRC1370
	EL(3) = 1.464484126984127D+00	DGRC1380
	$EI_{1}(4) = 1 \cdot 171514550264550D+00$	DGRC1390
	$EI_1(5) = 5.793581900352734D-01$	DGRC1400
	$E_{1}(6) = 1.883228615520282D-01$	DGRC1410
	$FI_1(7) = 4$ 143036265432099D-02	DGRC1420
	$FI_1(8) = 6.211144179894180D-03$	DGRC1430
	$EI(0) = 6.252066798941799D_04$	DGRC1440
	$E_{I}(1) = 4.241740152951260-05$	DGRC1450
	$EI(11) = 1.515652557219224D_06$	DGRC1450
	$EI(11) = 1.515052537519224D^{-}00$	DGRC1460
	EL(12) = 2.303210030344172D-08	DGRC1470
70		DGRC1480
/0	EL(1) = 2.742655400315991D-01	DGRC1490
	EL(3) = 1.5099386/24386/2D+00	DGRC1500
	EL(4) = 1.2602/1164021164D+00	DGRC1510
	EL(5) = 6.59234182098/654D-01	DGRC1520
	EL(6) = 2.304580026455027D-01	DGRC1530
	EL(7) = 5.569724610523222D-02	DGRC1540
	EL(8) = 9.439484126984127D-03	DGRC1550
	EL(9) = 1.119274966931217D-03	DGRC1560
	EL(10) = 9.093915343915344D-05	DGRC1570
	EL(11) = 4.822530864197531D-06	DGRC1580
	EL(12) = 1.503126503126503D-07	DGRC1590
	EL(13) = 2.087675698786810D-09	DGRC1600
	GO TO 100	DGRC1610
		DGRC1620
75	EL(1) = 1.0D+00	DGRC1630
	GO TO 100	DGRC1640
80	EL(1) = 6.666666666666667D-01	DGRC1650
	EL(3) = 3.33333333333333D-01	DGRC1660
	GO TO 100	DGRC1670
85	EL(1) = 5.454545454545455D-01	DGRC1680
	EL(3) = EL(1)	DGRC1690
	EL(4) = 9.0909090909091D-02	DGRC1700
	GO TO 100	DGRC1710
90	EL(1) = 0.48D+00	DGRC1720
	EL(3) = 0.7D+00	DGRC1730
	EL(4) = 0.2D+00	DGRC1740
	EL(5) = 0.02D+00	DGRC1750
	GO TO 100	DGRC1760
95	EL(1) = 4.379562043795620D-01	DGRC1770
	EL(3) = 8 211678832116788D-01	DGRC1780
	EL(4) = 3.102189781021898D-01	DGPC1 790
	EL(5) = 5.4744525547445260-02	DGPC1900
	EL(6) = 3.649635036496350D-03	DGPC1910
		DGPC1020
100	DO 105 K-1 3	DGRC1020
100	TO(K) = DEDTST(NO METH K)	DGRC1030
105	CONTINUE	DCRC1840
105	TO(4) = 5D0 * TO(2) / (NO+2)	DCRC1850
	1Q(1) = .500 1Q(2) / (1QT2)	DGRC1860

С

С

RETURN END

•

DGRC1870 DGRC1880

C C	IMSL ROUTINE NAME	- DGRPS	DGRP0010 DGRP0020
с с с			-DGRP0030
	COMDITTER		DGRP0040
	COMPUTER		DGRP0050
c	LATEST REVISION	- NOVEMBER 1, 1984	DGRP0070
C			DGRP0080
C	PURPOSE	- NUCLEUS CALLED ONLY BY IMSL SUBROUTINE DGEAR	DGRP0090
С			DGRP0100
С	PRECISION/HARDWARE	- SINGLE AND DOUBLE/H32	DGRP0110
C		- SINGLE/H36,H48,H60	DGRP0120
C	DEOD TMSL DOLTTINES		DGRP0130
č	REQD. INDE ROOTINED	HODAIF, HEQIID, GERIGI, GGEIIG	DGRP0150
C	NOTATION	- INFORMATION ON SPECIAL NOTATION AND	DGRP0160
С		CONVENTIONS IS AVAILABLE IN THE MANUAL	DGRP0170
С		INTRODUCTION OR THROUGH IMSL ROUTINE UHELP	DGRP0180
С			DGRP0190
C	COPYRIGHT	- 1984 BY IMSL, INC. ALL RIGHTS RESERVED.	DGRP0200
C		THEI WARDANTE ONLY THAT THEI TECTING HAS BEEN	DGRPU210
C	WARRANTI	ADDITED TO THIS CODE NO OTHER WARRANTS	DGRP0220
č		EXPRESSED OR IMPLIED, IS APPLICABLE	DGRP0240
c			DGRP0250
C			-DGRP0260
С			DGRP0270
	SUBROUTINE DGRPS	(FCN, FCNJ, Y, NO, CON, MITER, YMAX, SAVE1, SAVE2, PW,	DGRP0280
	*	EQUIL, IPIV, IER)	DGRP0290
С		SPECIFICATIONS FOR ARGUMENTS N0,MITER,IPIV(1),IER Y(N0,1),CON,YMAX(1),SAVE1(1),SAVE2(1),PW(1), EOUIL(1)	DGRP0300
	DOIBLE DECISION		DGRP0310
	*		DGRP0330
С		SPECIFICATIONS FOR LOCAL VARIABLES	DGRP0340
C			DGRP0350
	INTEGER	NC, MFC, KFLAG, JSTART, NQUSED, NSTEP, NFE, NJE, NPW,	DGRP0360
	*	NSQ, I, JI, J, NERROR, NSAVE1, NSAVE2, NEQUIL, NY,	DGRP0370
	*	IDUMMY (23), NLIM, II, IJ, LIM1, LIM2, NB, NLC, NUC, NWK	DGRP0380
	DOIBLE PRECISION	TH HMIN HMAY EDCC HONIND EDC. THISED D DO V.I D	DGRP0390
	*	D1, D2, WA, DUMMY (40)	DGRP0400
	COMMON /DBAND/	NLC, NUC	DGRP0420
	COMMON /GEAR/	T, H, HMIN, HMAX, EPSC, UROUND, EPSJ, HUSED, DUMMY,	DGRP0430
	*	SDUMMY, NC, MFC, KFLAG, JSTART, NSQ, NQUSED, NSTEP,	DGRP0440
	*	NFE, NJE, NPW, NERROR, NSAVE1, NSAVE2, NEQUIL, NY,	DGRP0450
~	*	IDUMMY	DGRP0460
C		THIS ROUTINE IS CALLED BY DERST TO	DGRP0470
C		COMPUTE AND PROCESS THE MATRIX P = T - H + FL(1) + T WHERE T TO NN	DGRP0480
c		APPROXIMATION TO THE JACOBIAN J	DGRP0500
Ĉ		IS COMPUTED, EITHER BY THE USER-	DGRP0510
С		SUPPLIED ROUTINE FCNJ IF MITER =	DGRP0520
С		1, OR BY FINITE DIFFERENCING IF	DGRP0530
C		MITER = 2. J IS STORED IN PW AND	DGRP0540
C		REPLACED BY P, USING CON =	DGRP0550
C		-H*EL(I). THEN P IS SUBJECTED TO	DGRP0560
c		FOR LATER SOLITION OF LINEAD	DGRP0520
č		SYSTEMS WITH P AS COEFFICIENT	DGRP0590
С		MATRIX. IN ADDITION TO VARIABLES	DGRP0600
С		DESCRIBED PREVIOUSLY,	DGRP0610
С		COMMUNICATION WITH DGRPS USES THE	DGRP0620

DGRP0630 DGRP0640 С FOLLOWING EPSJ = DSORT (UROUND), С USED IN THE NUMERICAL JACOBIAN С INCREMENTS. DGRP0650 С DGRP0660 FIRST EXECUTABLE STATEMENT С DGRP0670 IF (NLC.EQ.-1) GO TO 45 DGRP0680 BANDED JACOBIAN CASE С DGRP0690 NB = NLC + NUC + 1DGRP0700 NWK = NB * NO + 1DGRP0710 IF (MITER.EQ.2) GO TO 15 **DGRP0720** MITER = 1C DGRP0730 NLIM = NB*N0DGRP0740 DO 5 I=1,NLIM **DGRP0750** PW(I) = 0.0D0DGRP0760 5 CONTINUE DGRP0770 CALL FCNJ (NC, T, Y, PW) DGRP0780 DO 10 I=1,NLIM DGRP0790 PW(I) = PW(I) * CONDGRP0800 10 CONTINUE DGRP0810 GO TO 35 DGRP0820 MITER = 2C DGRP0830 15 D = 0.0D0DGRP0840 DO 20 I=1,NC DGRP0850 20 D = D + SAVE2(I) * * 2DGRP0860 R0 = DABS(H) * DSQRT(D) * 1.0D + 03 * UROUNDDGRP0870 DO 30 J=1,NC DGRP0880 YJ = Y(J,1)DGRP0890 R = EPSJ*YMAX(J)DGRP0900 R = DMAX1(R, R0)DGRP0910 Y(J,1) = Y(J,1) + RDGRP0920 D = CON/RDGRP0930 CALL FCN(NC,T,Y,SAVE1) DGRP0940 LIM1 = MAX0(1, J-NUC)DGRP0950 LIM2 = MINO(NO, J+NLC)DGRP0960 DO 25 I=LIM1,LIM2 DGRP0970 DGRP0980 IJ = (J - I + NLC) * NO + IPW(IJ) = (SAVE1(I) - SAVE2(I)) *DDGRP0990 25 CONTINUE DGRP1000 DGRP1010 Y(J,1) = YJ30 CONTINUE DGRP1020 ADD IDENTITY MATRIX. DGRP1030 C DGRP1040 35 DO 40 I=1,NC II = NLC * NO + IDGRP1050 PW(II) = PW(II) + 1.0D0DGRP1060 40 CONTINUE DGRP1070 С DO LU DECOMPOSITION ON P DGRP1080 C DGRP1090 CALL LEQTIB (PW, NC, NLC, NUC, NO, EQUIL, 1, NO, 1, PW (NWK), IER) DGRP1100 RETURN DGRP1110 DGRP1120 FULL JACOBIAN CASE С 45 IF (MITER.EQ.2) GO TO 55 DGRP1130 MITER = 1С DGRP1140 CALL FCNJ (NC, T, Y, PW) DGRP1150 DO 50 I=1,NSQ DGRP1160 DGRP1170 50 PW(I) = PW(I) * CONGO TO 75 DGRP1180 MITER = 2DGRP1190 C 55 D = 0.0D0DGRP1200 DO 60 I=1,NC DGRP1210 60 D = D + SAVE2(I) * * 2DGRP1220 R0 = DABS(H) * DSORT(D) * 1.0D + 03 * UROUNDDGRP1230 DGRP1240 J1 = 0

YJ = Y(J, 1)DGRP12 $R = EPSJ*YMAX(J)$ DGRP12 $R = DMAX1(R, R0)$ DGRP12 $V(J, 1) + P$ DGRP12
R = EPSJ*YMAX(J) DGRP12 $R = DMAX1(R,R0) DGRP12$ $V(J,1) + D$ $DGRP12$
R = DMAX1(R, R0) DGRP12
$\Upsilon(J, I) = \Upsilon(J, I) + \mathcal{K}$ DGRP12
D = CON/R DGRP13
CALL FCN (NC, T, Y, SAVE1) DGRP13
DO 65 I=1,NC DGRP13
$65 PW(I+J1) = (SAVE1(I) - SAVE2(I)) *D \qquad DGRP13$
Y(J, 1) = YJ DGRP13
JI = JI + NO DGRP13
70 CONTINUE DGRP13
ADD IDENTITY MATRIX. DGRP13
75 J = 1 DGRP13
DO 80 I=1.NC DGRP13
PW(J) = PW(J) + 1.0D0 DGRP14
J = J + (N0+1) DGRP14
80 CONTINUE DGRP14
DO LU DECOMPOSITION ON P. DGRP14
DGRP14
CALL LUDATF (PW, PW, NC, NO, 0, D1, D2, IPIV, EOUIL, WA, IER) DGRP14
RETURN DGRP14
END DGRP14

С

C C C IMSL ROUTINE NAME - DGRIN DGRI0010 C DGRI0020 DGRI0030 C-----C DGRI0040 C - IBM/DOUBLE COMPUTER DGRI0050 С DGRI0060 С LATEST REVISION - JANUARY 1, 1978 DGRI0070 С DGRI0080 С PURPOSE - NUCLEUS CALLED ONLY BY IMSL SUBROUTINE DGEAR DGRI0090 С DGRI0100 С PRECISION/HARDWARE - SINGLE AND DOUBLE/H32 DGRI0110 С - SINGLE/H36,H48,H60 **DGRI0120** С DGRI0130 C REQD. IMSL ROUTINES - NONE REQUIRED DGRI0140 С DGRI0150 С - INFORMATION ON SPECIAL NOTATION AND NOTATION DGRI0160 C CONVENTIONS IS AVAILABLE IN THE MANUAL DGRI0170 С INTRODUCTION OR THROUGH IMSL ROUTINE UHELP DGRI0180 С DGRI0190 C - 1978 BY IMSL, INC. ALL RIGHTS RESERVED. COPYRIGHT DGRI0200 C DGRI0210 - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN DGRI0220 С WARRANTY APPLIED TO THIS CODE. NO OTHER WARRANTY, C DGRI0230 С EXPRESSED OR IMPLIED, IS APPLICABLE. DGRI0240 C DGRI0250 -----DGRI0260 С DGRI0270 С (TOUT, Y, NO, YO) SUBROUTINE DGRIN DGRI0280 С SPECIFICATIONS FOR ARGUMENTS DGRI0290 INTEGER N0 DGRI0300 DOUBLE PRECISION TOUT, Y0 (N0), Y (N0, 1) DGRI0310 SPECIFICATIONS FOR LOCAL VARIABLES C DGRI0320 NC, MFC, KFLAG, I, L, J, JSTART, NSQ, NQUSED, NSTEP, INTEGER DGRI0330 NFE, NJE, NPW, NERROR, NSAVE1, NSAVE2, NEOUIL, NY, DGRI0340 1 2 IDUMMY(23) DGRI0350 REAL SDUMMY(4) DGRI0360 DOUBLE PRECISION T, H, HMIN, HMAX, EPSC, UROUND, EPSJ, HUSED, S, S1, DGRI0370 DUMMY(40) DGRI0380 COMMON /GEAR/ T, H, HMIN, HMAX, EPSC, UROUND, EPSJ, HUSED, DUMMY, DGRI0390 1 SDUMMY, NC, MFC, KFLAG, JSTART, NSQ, NQUSED, NSTEP, DGRI0400 2 NFE, NJE, NPW, NERROR, NSAVE1, NSAVE2, NEQUIL, NY, DGRI0410 3 IDUMMY DGRI0420 С FIRST EXECUTABLE STATEMENT DGRI0430 DO 5 I = 1, NCDGRI0440 YO(I) = Y(I,1)DGRI0450 5 CONTINUE DGRI0460 С THIS SUBROUTINE COMPUTES INTERPOLATEDDGRI0470 C VALUES OF THE DEPENDENT VARIABLE DGRI0480 C Y AND STORES THEM IN YO. THE DGRI0490 С INTERPOLATION IS TO THE DGR10500 C DGRI0510 POINT T = TOUT, AND USES THE С NORDSIECK HISTORY ARRAY Y, AS DGRI0520 С FOLLOWS.. DGRI0530 C NQ DGRI0540 С Y0(I) = SUM Y(I,J+1) * S * * J, DGRI0550 C DGRI0560 J=0 С WHERE S = -(T - TOUT)/H. DGRI0570 L = JSTART + 1DGRI0580 S = (TOUT - T)/HDGRI0590 S1 = 1.0D0DGRI0600 DO 15 J = 2, LDGRI0610 S1 = S1 + SDGRI0620

```
DO 10 I = 1,NC
Y0(I) = Y0(I) + S1*Y(I,J)
10 CONTINUE
15 CONTINUE
RETURN
END
```

DGRI0630 DGRI0640 DGRI0650 DGRI0660 DGRI0670 DGRI0680

С	IMSL ROUTINE	NAME	-	LUDATF	LUDA0010
C					LUDAU020
C					-LUDAUU3U
	COMDITED			TPM / DOUBLE	LUDAU040
C	COMPUTER		-	IBM/DOUBLE	LUDAUUSU
C		TON		TANTIADY 1 1070	LUDAUUGU
C	LATEST REVIS	ION	-	JANUARI I, 1978	
C				I IL DECOMPOSITION BY THE CROIT ALCORTING	LUDAUU8U
C	PURPOSE		-	MITH OPTIONAL ACCURACY MEET	LUDAUU9U
C				WITH OPTIONAL ACCURACY TEST.	LUDAUIUU
ĉ	TICACE		_		
c	USAGE		-	CADD DODAIF (A, DO, N, IA, IDGI, DI, DZ, IPVI,	
				EQUID, WR, IER)	LUDAUISU
č	ADCIMENTS	λ	_	TNDIT MATTORY OF DIMENSION N BY N CONTAINING	LUDA0140
ĉ	ARGUMENTS	A		THE MATRIX OF DIMENSION N BI N CONTAINING	
ĉ		T.T	_	PEAL OUTDUTT MATCHY OF DIMENSION N BY N	
		цU		CONTAINING THE L-H DECOMPOSITION OF A	LUDAU170
				DOWNIE DEDMITTATION OF THE INDIT MATDIX	LUDAUISO
č				FOR A DESCRIPTION OF THE ENDMAR OF III SEE	LUDA0190
č				FYAMDLE	
č		N	_	TNDITT SCALAD CONTAINING THE ODDED OF THE	
č		TA		MATDIY A	
č		ТЪ	_	TNDITT SCALAD CONTAINING THE DOW DIMENSION OF	
č		IA		MATDICES A AND LU EXACTLY AS SDECTEED IN	
č				THE CALLING DOGDAM	
č		TDGT	-	INDIT OPTION	
č		1001		IF INCT IS GREATED THAN ZEDO THE NON-ZEDO	
č				FLEMENTS OF A ADE ASSIMED TO BE CODDECT TO	
č				IDGT DECIMAL DLACES LIDATE DEDEODMS AN	
č				ACCURACY TEST TO DETERMINE IF THE COMDITIED	
č				DECOMPOSITION IS THE EXACT DECOMPOSITION	
č				OF A MATPIX WHICH DIFFERS FROM THE CIVEN	
č				ONE BY LESS THAN ITS INCEPTAINTY	
č				IF IDGT IS FOUND, TO ZEDO THE ACCUPACY TEST	
č				IS BYDASSED	
č		ות	_	OUTPUTT SCALAP CONTAINING ONE OF THE TWO	
č		51		COMPONENTS OF THE DETERMINANT SEE	LIDA0380
č				DESCRIPTION OF PARAMETER D2 BELOW	LIDA0390
č		ר2	_	OUTPUT SCALAR CONTAINING ONE OF THE	
č		22		TWO COMPONENTS OF THE DETERMINANT THE	LIDA0410
č				DETERMINANT MAY BE EVALUATED AS (D1) (2**D2)	
č		TPVT	_	OUTPUT VECTOR OF LENGTH N CONTAINING THE	LIDA0430
č				PERMUTATION INDICES SEE DOCUMENT	LUDA0440
Ĉ				(ALGORITHM).	LUDA0450
Ĉ		EOUIL	-	OUTPUT VECTOR OF LENGTH N CONTAINING	LUDA0460
č		-2		RECIPROCALS OF THE ABSOLUTE VALUES OF	LUDA0470
č				THE LARGEST (IN ABSOLUTE VALUE) ELEMENT	LUDA0480
č				IN EACH ROW.	LUDA0490
č		WA	_	ACCURACY TEST PARAMETER, OUTPUT ONLY IF	LUDA0500
Ĉ				IDGT IS GREATER THAN ZERO.	LUDA0510
Ċ				SEE ELEMENT DOCUMENTATION FOR DETAILS.	LUDA0520
Ĉ		IER	-	ERROR PARAMETER. (OUTPUT)	LUDA0530
С				TERMINAL ERROR	LUDA0540
С				IER = 129 INDICATES THAT MATRIX A IS	LUDA0550
С				ALGORITHMICALLY SINGULAR. (SEE THE	LUDA0560
С				CHAPTER L PRELUDE).	LUDA0570
С				WARNING ERROR	LUDA0580
С				IER = 34 INDICATES THAT THE ACCURACY TEST	LUDA0590
С				FAILED. THE COMPUTED SOLUTION MAY BE IN	LUDA0600
С				ERROR BY MORE THAN CAN BE ACCOUNTED FOR	LUDA0610
С				BY THE UNCERTAINTY OF THE DATA. THIS	LUDA0620

PRELUDE FOR FURTHER DISCUSSION. LUD	40640 40650
PRECISION/HARDWARE - SINGLE AND DOUBLE/H32	A0660 A0670
- SINGLE/H36,H48,H60 LUDA	A0680
REQD. IMSL ROUTINES - UERTST, UGETIO	A0700
NOTATION - INFORMATION ON SPECIAL NOTATION AND LUD	A0720
INTRODUCTION OR THROUGH IMSL ROUTINE UHELP LUD	A0740
REMARKS A TEST FOR SINGULARITY IS MADE AT TWO LEVELS: LUD	A0750 A0760
1. A ROW OF THE ORIGINAL MATRIX A IS NULL. LUD 2. A COLUMN BECOMES NULL IN THE FACTORIZATION PROCESS.LUD	A0770 A0780
LUD. COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED. LUD.	A0790 A0800
LUD. WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN LUD.	A0810 A0820
APPLIED TO THIS CODE. NO OTHER WARRANTY, LUD.	A0830
LUD.	A0850
	A0860 A0870
SUBROUTINE LUDATF (A,LU,N,IA,IDGT,D1,D2,IPVT,EQUIL,WA,IER) LUD. LUD.	A0880 A0890
DIMENSION A(IA,1),LU(IA,1),IPVT(1),EQUIL(1) LUD. DOUBLE PRECISION A,LU,D1,D2,EQUIL,WA,ZERO,ONE,FOUR,SIXTN,SIXTH,LUD	A0900 A0910
* RN, WREL, BIGA, BIG, P, SUM, AI, WI, T, TEST, Q LUD. ZERO, ONE, FOUR, SIXTN, SIXTH/O, DO, 1, DO, 4, DO, LUD.	A0920
* 16.D0,.0625D0/ LUD	A0940
INITIALIZATION LUD	A0950
IER = 0	A0970
WREL = ZERO	A0980 A0990
D1 = ONE LUD	A1000
D2 = ZERO LUD BIGA - ZERO LUD	A1010 A1020
DO 10 I=1,N	A1030
BIG = ZERO LUD	A1040
DO 5 J=1, N LUD	A1050
P = A(I, J) LUD	A1060
$D(1,0) \neq P \qquad \qquad DD(1,0) = D \qquad$	A1070
IF (P, GT, BIG) BIG = P LUD	A1090
5 CONTINUE LUD	A1100
IF (BIG .GT. BIGA) BIGA = BIG LUD	A1110
IF (BIG .EQ. ZERO) GO TO 110 LUD	A1120
EQUIL(I) = ONE/BIG LUD	A1130
DO 105 J-1 N	A1140
JM1 = J-1	A1160
IF (JM1 .LT. 1) GO TO 40 LUD	A1170
$COMPUTE U(I,J), I=1, \ldots, J-1 LUD$	A1180
DO 35 I=1, JM1 LUD	A1190
SUM = LU(1, J) IUD IUU	A1200
$IMI = 1^{-1} \qquad IUU$	A1220
WITH ACCURACY TEST	A1230
AI = DABS(SUM)	A1240

С

C C

С

С

		WI = ZERO	LUDA1250
		IF (IM1 .LT. 1) GO TO 20	LUDA1260
		DO 15 K=1,IM1	LUDA1270
		T = LU(I,K) * LU(K,J)	LUDA1280
		SUM = SUM-T	LUDA1290
		WI = WI + DABS(T)	LUDA1300
	15	CONTINUE	LUDA1310
		LU(I,J) = SUM	LUDA1320
	20	WI = WI+DABS(SUM)	LUDA1330
		IF (AI .EO. ZERO) AI = BIGA	LUDA1340
		TEST = WI/AI	LUDA1350
		IF (TEST .GT. WREL) WREL = TEST	LUDA1360
		GO TO 35	LUDA1370
С		WITHOUT ACCURACY	LUDA1380
•	25	IF (IM1 .LT. 1) GO TO 35	LUDA1390
		DO 30 K=1. IM1	LIDA1400
		SIIM = SIIM - III (T, K) * III (K, I)	
	20		
	30		
	25		
	30		LUDA1450
~	40	$P = \Delta BRO$	LUDAL450
C		COMPOSE $0(3,3)$ AND $L(1,3)$, $1=3+1,,$	LUDAL460
			LUDAL470
		SOM = LO(1,3)	LUDA1480
_		IF (IDGT .EQ. 0) GO TO 55	LUDAI490
С		WITH ACCURACY TEST	LUDA1500
		AI = DABS(SUM)	LUDA1510
		WI = ZERO	LUDA1520
		IF (JM1 .LT. 1) GO TO 50	LUDA1530
		DO 45 K=1,JM1	LUDA1540
		$\mathbf{T} = \mathbf{LU}(\mathbf{I}, \mathbf{K}) * \mathbf{LU}(\mathbf{K}, \mathbf{J})$	LUDA1550
		SUM = SUM-T	LUDA1560
		WI = WI + DABS(T)	LUDA1570
	45	CONTINUE	LUDA1580
		LU(I,J) = SUM	LUDA1590
	50	WI = WI + DABS(SUM)	LUDA1600
		IF (AI .EO. ZERO) AI = BIGA	LUDA1610
		TEST = WI/AT	LUDA1620
		IF (TEST GT, WREL) WREL = TEST	LUDA1630
			LIDA1640
C		WITHOUT ACCURACY TEST	LIDA1650
C	55	TROOT ACCORACT TEST	LIDA1660
	55		LIDAL670
			LUDAI670
	C 0	SOM = SOM - LO(1, K) - LO(K, J)	LUDA1680
	60		LUDAI690
	~-	LU(1, J) = SUM	LUDAL /00
	65	Q = EQUIL(1) * DABS(SUM)	LUDA1710
		IF (P.GE. Q) GO TO 70	LUDA1720
		P = Q	LUDA1730
		IMAX = I	LUDA1740
	70	CONTINUE	LUDA1750
С		TEST FOR ALGORITHMIC SINGULARITY	LUDA1760
		IF (RN+P .EQ. RN) GO TO 110	LUDA1770
		IF (J.EQ. IMAX) GO TO 80	LUDA1780
С		INTERCHANGE ROWS J AND IMAX	LUDA1790
		D1 = -D1	LUDA1800
		DO 75 K=1,N	LUDA1810
		P = LU(IMAX, K)	LUDA1820
		LU(IMAX, K) = LU(J, K)	LUDA1830
		LU(J,K) = P	LUDA1840
	75	CONTINUE	LUDA1850
		EOUTL(TMAX) = EOUTL(J)	LUDA1860
		$-\chi_{0TT}(TTTTT) - T\chi_{0TT}(0)$	202112000

	80	IPVT(J) = IMAX	LUDA1870
		$D1 = D1 \star LU(J,J)$	LUDA1880
	85	IF (DABS(D1) .LE. ONE) GO TO 90	LUDA1890
		$D1 = D1 \star SIXTH$	LUDA1900
		D2 = D2 + FOUR	LUDA1910
		GO TO 85	LUDA1920
	90	IF (DABS(D1) .GE. SIXTH) GO TO 95	LUDA1930
		D1 = D1*SIXTN	LUDA1940
		D2 = D2 - FOUR	LUDA1950
		GO TO 90	LUDA1960
	95	CONTINUE	LUDA1970
		JP1 = J+1	LUDA1980
		IF (JP1 .GT. N) GO TO 105	LUDA1990
2		DIVIDE BY PIVOT ELEMENT U(J,J)	LUDA2000
		P = LU(J,J)	LUDA2010
		DO 100 I=JP1,N	LUDA2020
		LU(I,J) = LU(I,J)/P	LUDA2030
	100	CONTINUE	LUDA2040
	105	CONTINUE	LUDA2050
2		PERFORM ACCURACY TEST	LUDA2060
		IF (IDGT .EQ. 0) GO TO 9005	LUDA2070
		P = 3 * N + 3	LUDA2080
		WA = P*WREL	LUDA2090
		IF (WA+10.D0**(-IDGT) .NE. WA) GO TO 9005	LUDA2100
		IER = 34	LUDA2110
		GO TO 9000	LUDA2120
2		ALGORITHMIC SINGULARITY	LUDA2130
	110	IER = 129	LUDA2140
		D1 = ZERO	LUDA2150
		D2 = ZERO	LUDA2160
9	000	CONTINUE	LUDA2170
2		PRINT ERROR	LUDA2180
		CALL UERTST (IER, 6HLUDATF)	LUDA2190
9	005	RETURN	LUDA2200
		END	LUDA2210

.

С	IMSL ROUTINE	NAME	-	LUELMF	LUEF0010	
С					LUEF0020	
C				•••••••••••••••••••••••••••••••••••••••	-LUEF0030	
C	COMDITTED				LUEF0040	
C	COMPUTER		-	IBM/DOUBLE	LUEF0050	
č	LATEST REVIS	TON	-	JANUARY 1, 1978	LUEF0000	
C					LUEF0080	
C	PURPOSE		-	ELIMINATION PART OF SOLUTION OF AX=B	LUEF0090	
С				(FULL STORAGE MODE)	LUEF0100	
С					LUEF0110	
C	USAGE		-	CALL LUELMF (A, B, IPVT, N, IA, X)	LUEF0120	
C		7		A TH (THE DECIME CONDUCTOR IN THE THAT	LUEF0130	
C	ARGUMENTS	A	-	A = LU (IHE RESULT COMPUTED IN THE IMSL	LUEF0140	
ĉ				TRIANGULAR MATRIX WITH ONES ON THE MAIN	LUEFOISO	
c				DIAGONAL. U IS UPPER TRIANGULAR. L AND U	LUEF0170	
C				ARE STORED AS A SINGLE MATRIX A AND THE	LUEF0180	
C				UNIT DIAGONAL OF L IS NOT STORED. (INPUT)	LUEF0190	
С		В	-	B IS A VECTOR OF LENGTH N ON THE RIGHT HAND	LUEF0200	
С				SIDE OF THE EQUATION AX=B. (INPUT)	LUEF0210	
С		IPVT	-	THE PERMUTATION MATRIX RETURNED FROM THE	LUEF0220	
C				IMSL ROUTINE LUDATF, STORED AS AN N LENGTH	LUEF0230	
C		NT		VECTOR. (INPUT)	LUEF0240	
C		IN TA	-	DOW DIMENSION OF A EXACTLY AS SPECIFIED IN	LUEF0250	
ĉ		IA	-	THE DIMENSION OF A EXACILIT AS SPECIFIED IN THE DIMENSION STATEMENT IN THE CALLING	LUEF0200	
č				PROGRAM. (INPUT)	LUEF0280	
Ĉ		х	-	THE RESULT X. (OUTPUT)	LUEF0290	
С					LUEF0300	
С	PRECISION/HARDWARE - SINGLE AND DOUBLE/H32					
С			-	SINGLE/H36,H48,H60	LUEF0320	
C				NONE DECRETEED	LUEF0330	
C	REQD. IMSL R	COLLINES	5 -	NONE REQUIRED	LUEF0340	
ĉ	NOTATION		_	INFORMATION ON SPECIAL NOTATION AND	LUEF0350	
ĉ	NOTATION			CONVENTIONS IS AVAILABLE IN THE MANUAL	LUEF0370	
č				INTRODUCTION OR THROUGH IMSL ROUTINE UHELP	LUEF0380	
Ĉ					LUEF0390	
С	COPYRIGHT		-	1978 BY IMSL, INC. ALL RIGHTS RESERVED.	LUEF0400	
С					LUEF0410	
C	WARRANTY		-	IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN	LUEF0420	
С				APPLIED TO THIS CODE. NO OTHER WARRANTY,	LUEF0430	
C				EXPRESSED OR IMPLIED, IS APPLICABLE.	LUEF0440	
с						
c					LUEF0470	
-	SUBROUTINE LUELMF			F (A, B, IPVT, N, IA, X)		
С						
	DIMENSION DOUBLE PRECISION		A(IA,1),B(1),IPVT(1),X(1)		LUEF0500	
				A, B, X, SUM	LUEF0510	
C				FIRST EXECUTABLE STATEMENT	LUEF0520	
С	DO E T-1 N			SOLVE LY = B FOR Y	LUEF0530	
	5 X(T) - R(T)	м Т)			LUEF0540	
	IW = 0	- /			LUEF0560	
	DO 20 I=1.	, N			LUEF0570	
	IP = II	PVT(I)			LUEF0580	
	SUM = X (IP) $X (IP) = X (I)$				LUEF0590	
					LUEF0600	
	IF (IW .EQ. 0)) (GO TO 15	LUEF0610	
	IM1 = 1	τ-τ			LUEF0620	

	DO 10 J=IW, IM1	LUEF0630
	SUM = SUM - A(I, J) * X(J)	LUEF0640
10	CONTINUE	LUEF0650
	GO TO 20	LUEF0660
15	IF (SUM .NE. $0.D0$) IW = I	LUEF0670
20	X(I) = SUM	LUEF0680
	SOLVE UX = Y FOR X	LUEF0690
	DO 30 IB=1,N	LUEF0700
	I = N+1-IB	LUEF0710
	IP1 = I+1	LUEF0720
	SUM = X(I)	LUEF0730
	IF (IP1 .GT. N) GO TO 30	LUEF0740
	DO 25 J=IP1,N	LUEF0750
	SUM = SUM - A(I, J) * X(J)	LUEF0760
25	CONTINUE	LUEF0770
30	X(I) = SUM/A(I,I)	LUEF0780
	RETURN	LUEF0790
	END	LUEF0800

С

С	IMSL ROUTINE	NAME	-	LEQTIB	LE1B0010
C					LE1B0020
c					LE1B0040
C	COMPUTER		-	IBM/DOUBLE	LE1B0050
C					LE1B0060
C	LATEST REVIS	ION	-	JANUARY 1, 1978	LE1B0070
С					LE1B0080
С	PURPOSE		-	LINEAR EQUATION SOLUTION - BAND STORAGE	LE1B0090
С				MODE - SPACE ECONOMIZER SOLUTION	LE1B0100
С					LE1B0110
С	USAGE		-	CALL LEQTIB (A, N, NLC, NUC, IA, B, M, IB, IJOB, XL,	LE1B0120
С				IER)	LE1B0130
C	A DOLINER MILLO	7		TNDIT OTTOM WATER OF STATISTICS N N SY	LEIB0140
C	ARGUMENIS	A	-	(NUC+NIC+1) SEE DADAMETED TIOD	LEIBUISU
C		NT	_	(NOCHNECTI). SEE PARAMETER LUUB.	
č		IN	-	B (INDIT)	LEIBOI /0
c		NLC	_	NUMBER OF LOWER CODIAGONALS IN MATRIX A	LEIB0190
c		nii c		(INPUT)	LE1B0200
c		NUC	-	NUMBER OF UPPER CODIAGONALS IN MATRIX A.	LE1B0210
C				(INPUT)	LE1B0220
č		IA	-	ROW DIMENSION OF MATRIX A EXACTLY AS	LE1B0230
C				SPECIFIED IN THE DIMENSION STATEMENT IN THE	LE1B0240
С				CALLING PROGRAM. (INPUT)	LE1B0250
С		В	-	INPUT/OUTPUT MATRIX OF DIMENSION N BY M.	LE1B0260
С				ON INPUT, B CONTAINS THE M RIGHT-HAND SIDES	LE1B0270
С				OF THE EQUATION AX = B. ON OUTPUT, THE	LE1B0280
С				SOLUTION MATRIX X REPLACES B. IF IJOB = 1,	LE1B0290
С				B IS NOT USED.	LE1B0300
С		M	-	NUMBER OF RIGHT HAND SIDES (COLUMNS IN B).	LE1B0310
С				(INPUT)	LE1B0320
C		TR	-	ROW DIMENSION OF MATRIX B EXACTLY AS	TEIB0330
C				SPECIFIED IN THE DIMENSION STATEMENT IN THE	LEIBU340
C		TIOP	_	TNDIT OPTION DADAMETED TIOD TIMDITEC WEEN	LEIB0350
C		TUOP	-	INPUT OPTION PARAMETER. 100B = I IMPLIES WHEN T = 0 EXCTOR THE MATRIX X XND COLVE THE	LE1B0300
č				FOUNTION AX - B ON INDUT A CONTAINS THE	LE1B0380
č				COEFFICIENT MATRIX OF THE EQUATION $AX = B$.	LE1B0390
c				WHERE A IS ASSUMED TO BE AN N BY N BAND	LE1B0400
č				MATRIX. A IS STORED IN BAND STORAGE MODE	LE1B0410
C				AND THEREFORE HAS DIMENSION N BY	LE1B0420
С				(NLC+NUC+1). ON OUTPUT, A IS REPLACED	LE1B0430
С				BY THE U MATRIX OF THE L-U DECOMPOSITION	LE1B0440
С				OF A ROWWISE PERMUTATION OF MATRIX A. U	LE1B0450
С				IS STORED IN BAND STORAGE MODE.	LE1B0460
С				I = 1, FACTOR THE MATRIX A. A CONTAINS THE	LE1B0470
С				SAME INPUT/OUTPUT INFORMATION AS IF	LE1B0480
С				IJOB = 0.	LE1B0490
C				I = 2, SOLVE THE EQUATION AX = B. THIS	LE1B0500
C				OPTION IMPLIES THAT LEQTIB HAS ALREADY	LEIB0510
C				BEEN CALLED USING IJOB = 0 OR I SO THAT	LEIB0520
C				IN THIS CASE OUTDIT MATDICES & AND XI	LEIBUSSU
č				MIST HAVE BEEN SAVED FOD DEUSE IN THE	LE180540
c				CALL TO LEOTIR	LE1B0560
c		XL	-	WORK AREA OF DIMENSION N* (NLC+1) THE FIRST	LE1B0570
C				NLC*N LOCATIONS OF XL CONTAIN COMPONENTS OF	LE1B0580
C				THE L MATRIX OF THE L-U DECOMPOSITION OF A	LE1B0590
С				ROWWISE PERMUTATION OF A. THE LAST N	LE1B0600
С				LOCATIONS CONTAIN THE PIVOT INDICES.	LE1B0610
С	·	IER	-	ERROR PARAMETER. (OUTPUT)	LE1B0620

	TERMINAL ERROR IER = 129 INDICATES THAT MATRIX A IS ALGORITHMICALLY SINGULAR. (SEE THE CHAPTER L PRELUDE).	LE1B0630 LE1B0640 LE1B0650 LE1B0660 LE1B0670
PR	ECISION/HARDWARE - SINGLE AND DOUBLE/H32 - SINGLE/H36,H48,H60	LE1B0680 LE1B0690
RE	QD. IMSL ROUTINES - UERTST, UGETIO	LE1B0710 LE1B0720
NC	TATION - INFORMATION ON SPECIAL NOTATION AND CONVENTIONS IS AVAILABLE IN THE MANUAL INTRODUCTION OR THROUGH IMSL ROUTINE UHELP	LE1B0730 LE1B0740 LE1B0750 LE1B0760
CC	PYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED.	LE1B0770
AW	RRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN APPLIED TO THIS CODE. NO OTHER WARRANTY, EXPRESSED OR IMPLIED, IS APPLICABLE.	LE1B0780 LE1B0790 LE1B0800 LE1B0810 LE1B0820 -LE1B0830
	SUBROUTINE LEOTIB (A.N.NLC.NUC.IA.B.M.IB.IJOB.XL.IER)	LE1B0840 LE1B0850
	DIMENSION A(IA,1),XL(N,1),B(IB,1)	LE1B0860 LE1B0870
	DOUBLE PRECISION A,XL,B,P,Q,ZERO,ONE,RN DATA ZERO/0 D0/.ONE/1 0D0/	LE1B0880
	FIRST EXECUTABLE STATEMENT	LE1B0900
		LE1B0910
	JBEG = NLC+I NLC1 - JBEG	LEIB0920
	IF (IJOB .EC. 2) GO TO 80	LE1B0940
	RN = N	LE1B0950
	RESTRUCTURE THE MATRIX	LE1B0960
	FIND RECIPROCAL OF THE LARGEST	LE1B0970
	ABSOLUTE VALUE IN ROW I	LE1B0980
	NC = JBEG+NIIC	LE180990
	NN = NC	LE1B1010
	JEND = NC	LE1B1020
_	IF (N .EQ. 1 .OR. NLC .EQ. 0) GO TO 25	LE1B1030
5	K = 1 P = 7FPO	LE1B1040
	$P = \Delta E RO$ DO 10 J = JBEG. JEND	LEIBIOSO
	A(I,K) = A(I,J)	LE1B1070
	Q = DABS(A(I,K))	LE1B1080
	IF (Q .GT. P) P = Q	LE1B1090
10	K = K + 1	LEIBIIOO
10	IF (P.EO. ZERO) GO TO 135	LEIBIIIO
	XL(I, NLC1) = ONE/P	LE1B1130
	IF (K.GT. NC) GO TO 20	LE1B1140
	DO 15 $J = K, NC$	LE1B1150
15	A(I,J) = ZERO	LE1B1160
20	I = I + I	LEIBII90
	JBEG = JBEG-1	LE1B1190
	IF (JEND-JBEG .EQ. N) JEND = JEND-1	LE1B1200
	IF (I .LE. NLC) GO TO 5	LE1B1210
	OBEG = 1 NN - JEND	LE1B1220
25	JEND = N-NUC	LE1B1230

C C C

С

		DO 40 I = JBEG, N	LE1B1250
		P = ZERO	LE1B1260
		DO 30 J = 1, NN	LE1B1270
		Q = DABS(A(I,J))	LE1B1280
		IF (Q .GT. P) P = Q	LE1B1290
	30	CONTINUE	LE1B1300
		IF (P.EQ. ZERO) GO TO 135	LE1B1310
		XL(I, NLC1) = ONE/P	LE1B1320
		IF (I .EQ. JEND) GO TO 37	LEIBI330
		$\frac{1}{V} = \frac{1}{1} $	LEIBI340
		PO 35 T - K NC	LEIDI350
		$\Delta(T,T) = 7EPO$	LEIBI300
	35	CONTINIE	LEIBI380
	37	NN = NN - 1	LE1B1390
	40	CONTINUE	LE1B1400
		L = NLC	LE1B1410
2		L-U DECOMPOSITION	LE1B1420
		DO 75 K = 1, N	LE1B1430
		P = DABS(A(K, 1)) * XL(K, NLC1)	LE1B1440
		I = K	LE1B1450
		IF (L . LT. N) L = L+1	LE1B1460
		K1 = K+1	LE1B1470
		IF (K1 .GT. L) GO TO 50	LE1B1480
		DO 45 $J = K1, L$	LE1B1490
		Q = DABS(A(J, 1)) *XL(J, NLC1)	LE1B1500
		IF (Q, LE, P) GO TO 45	LEIBISIO
		P = Q	LEIBI520
	45		LEIDISSU
	50	XL(T NLC1) - XL(K NLC1)	LEIBI550
	50	XL(K,NLC1) = I	LE1B1560
С		SINGULARITY FOUND	LE1B1570
-		O = RN+P	TEIRIERO
		~	TETPIDOA
~		IF (Q.EQ. RN) GO TO 135	LE1B1580
Ç		IF (Q.EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K	LE1B1590 LE1B1600
C		IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60	LE1B1590 LE1B1600 LE1B1610
C		IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC	LE1B1590 LE1B1600 LE1B1610 LE1B1620
C		IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = $A(K,J)$	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630
C		IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = $A(K,J)$ A(K,J) = A(I,J)	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1640
C		IF $(Q .EQ. RN)$ GO TO 135 INTERCHANGE ROWS I AND K IF $(K .EQ. I)$ GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1640 LE1B1650
С	55	IF $(Q .EQ. RN)$ GO TO 135 INTERCHANGE ROWS I AND K IF $(K .EQ. I)$ GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE INTERCHANGE ROWS I AND K	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1640 LE1B1660
C	55 60	IF $(Q .EQ. RN)$ GO TO 135 INTERCHANGE ROWS I AND K IF $(K .EQ. I)$ GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF $(K1 .GT. L)$ GO TO 75 DO FO I	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1640 LE1B1650 LE1B1660 LE1B1670
C	55 60	IF $(Q .EQ. RN)$ GO TO 135 INTERCHANGE ROWS I AND K IF $(K .EQ. I)$ GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF $(K1 .GT. L)$ GO TO 75 DO 70 I = K1,L P $(K1 .CT. L)$	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1640 LE1B1640 LE1B1660 LE1B1660 LE1B1680
C	55 60	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K	LE1B1590 LE1B1590 LE1B1610 LE1B1620 LE1B1630 LE1B1640 LE1B1650 LE1B1660 LE1B1670 LE1B1680 LE1B1690
С	55 60	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K YI.(K1 IK) = P	LE1B1590 LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1640 LE1B1650 LE1B1650 LE1B1670 LE1B1690 LE1B1700 LE1B1710
c	55	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2 NC	LE1B1590 LE1B1590 LE1B1600 LE1B1620 LE1B1620 LE1B1630 LE1B1650 LE1B1660 LE1B1670 LE1B1670 LE1B1690 LE1B1720 LE1B1720
c	55 60	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J)-P*A(K,J)	LE1B1590 LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1650 LE1B1650 LE1B1650 LE1B1670 LE1B1690 LE1B1700 LE1B1710 LE1B1720
c	55 60	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J)-P*A(K,J) CONTINUE	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1640 LE1B1650 LE1B1650 LE1B1670 LE1B1690 LE1B1700 LE1B1710 LE1B1720 LE1B1730 LE1B1740
c	55 60	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) -P*A(K,J) CONTINUE A(I,NC) = ZERO	LE1B1590 LE1B1600 LE1B1600 LE1B1610 LE1B1620 LE1B1630 LE1B1650 LE1B1650 LE1B1650 LE1B1670 LE1B1700 LE1B1710 LE1B1720 LE1B1730 LE1B1740 LE1B1750
c	55 60 65 70	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) -P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE	LE1B1590 LE1B1600 LE1B1610 LE1B1620 LE1B1620 LE1B1640 LE1B1650 LE1B1650 LE1B1670 LE1B1670 LE1B1700 LE1B1710 LE1B1720 LE1B1730 LE1B1740 LE1B1750 LE1B1760
c	55 60 65 70 75	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE CONTINUE	LE1B1590 LE1B1600 LE1B1600 LE1B1620 LE1B1620 LE1B1640 LE1B1650 LE1B1660 LE1B1660 LE1B1670 LE1B1700 LE1B1710 LE1B1720 LE1B1730 LE1B1750 LE1B1750 LE1B1760 LE1B1770
c	55 60 65 70 75	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005	LE1B1590 LE1B1590 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1640 LE1B1660 LE1B1660 LE1B1670 LE1B1680 LE1B1700 LE1B1710 LE1B1720 LE1B1750 LE1B1770 LE1B1770 LE1B1770
C	55 60 65 70 75	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005 FORWARD SUBSTITUTION	LE1B1590 LE1B1590 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1640 LE1B1660 LE1B1660 LE1B1680 LE1B1690 LE1B1700 LE1B1710 LE1B1720 LE1B1750 LE1B1770 LE1B1770 LE1B1770 LE1B1780 LE1B1790
C	55 60 65 70 75 80	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005 FORWARD SUBSTITUTION L = NLC	LE1B1590 LE1B1600 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1640 LE1B1650 LE1B1660 LE1B1660 LE1B1680 LE1B1700 LE1B1700 LE1B1730 LE1B1750 LE1B1770 LE1B1770 LE1B1780 LE1B1790 LE1B1800
C	55 60 65 70 75 80	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) -P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005 FORWARD SUBSTITUTION L = NLC DO 105 K = 1,N	LE1B1590 LE1B1600 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1640 LE1B1650 LE1B1660 LE1B1660 LE1B1670 LE1B1700 LE1B1700 LE1B1700 LE1B1750 LE1B1770 LE1B1770 LE1B1780 LE1B1790 LE1B1810
c	55 60 65 70 75 80	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005 I = NLC DO 105 K = 1,N I = XL(K,NLC1)	LE1B1590 LE1B1600 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1640 LE1B1650 LE1B1660 LE1B1660 LE1B1670 LE1B1700 LE1B1700 LE1B1700 LE1B1750 LE1B1770 LE1B1770 LE1B1780 LE1B1790 LE1B1810 LE1B1820
C	55 60 65 70 75 80	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I - K XL(K1, IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P + A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005 FORWARD SUBSTITUTION L = NLC DO 105 K = 1,N I = XL(K,NLC1) IF (I .EQ. K) GO TO 90	LE1B1590 LE1B1600 LE1B1600 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1650 LE1B1650 LE1B1660 LE1B1660 LE1B1670 LE1B1700 LE1B1700 LE1B1700 LE1B1750 LE1B1770 LE1B1770 LE1B1780 LE1B1780 LE1B1810 LE1B1810 LE1B1830
c	55 60 65 70 75 80	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I - K XL(K1, IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P + A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005 FORWARD SUBSTITUTION L = NLC DO 105 K = 1,N I = XL(K,NLC1) IF (I .EQ. K) GO TO 90 DO 85 J = 1,M	LE1B1590 LE1B1600 LE1B1600 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1650 LE1B1650 LE1B1660 LE1B1660 LE1B1670 LE1B1700 LE1B1700 LE1B1700 LE1B1770 LE1B1770 LE1B1770 LE1B1780 LE1B1810 LE1B1840 LE1B1840
c	55 60 65 70 75 80	IF (Q .EQ. RN) GO TO 135 INTERCHANGE ROWS I AND K IF (K .EQ. I) GO TO 60 DO 55 J = 1,NC P = A(K,J) A(K,J) = A(I,J) A(I,J) = P CONTINUE IF (K1 .GT. L) GO TO 75 DO 70 I = K1,L P = A(I,1)/A(K,1) IK = I-K XL(K1,IK) = P DO 65 J = 2,NC A(I,J-1) = A(I,J) - P*A(K,J) CONTINUE A(I,NC) = ZERO CONTINUE IF (IJOB .EQ. 1) GO TO 9005 FORWARD SUBSTITUTION L = NLC DO 105 K = 1,N I = XL(K,NLC1) IF (I .EQ. K) GO TO 90 DO 85 J = 1,M P = B(K,J) P(K,J) = P(I,J)	LE1B1590 LE1B1600 LE1B1600 LE1B1600 LE1B1600 LE1B1620 LE1B1630 LE1B1650 LE1B1650 LE1B1660 LE1B1660 LE1B1680 LE1B1700 LE1B1700 LE1B1700 LE1B1700 LE1B1770 LE1B1770 LE1B1770 LE1B1780 LE1B1810 LE1B1830 LE1B1840 LE1B1840

	B(I,J) = P				LE1B1870
85	CONTINUE				LE1B1880
90	IF $(L . LT. N) L = L+1$				LE1B1890
	K1 = K+1				LE1B1900
	IF (K1 .GT. L) GO TO 105				LE1B1910
	DO 100 I = $K1, L$				LE1B1920
	IK = I - K				LE1B1930
	P = XL(K1, IK)				LE1B1940
	DO 95 J = $1, M$				LE1B1950
	$B(I,J) = B(I,J) - P \star B$	B(K,J)			LE1B1960
95	CONTINUE				LE1B1970
100	CONTINUE				LE1B1980
105	CONTINUE				LE1B1990
:		BACKWARD	SUBSTITUTION		LE1B2000
	JBEG = NUC+NLC				LE1B2010
	DO 125 $J = 1, M$				LE1B2020
	L = 1				LE1B2030
	K1 = N+1				LE1B2040
	DO 120 I = 1, N				LE1B2050
	K = Kl - I				LE1B2060
	P = B(K, J)				LE1B2070
	IF (L .EQ. 1) GO TO 11	15			LE1B2080
	DO 110 KK = $2, L$				LE1B2090
	IK = KK + K				LE1B2100
	P = P - A(K, KK) * B(IK)	-1,J)			LE1B2110
110	CONTINUE				LE1B2120
115	B(K,J) = P/A(K,1)				LE1B2130
	IF (L .LE. JBEG) $L = I$	L+1			LE1B2140
120	CONTINUE				LE1B2150
125	CONTINUE				LE1B2160
	GO TO 9005				LE1B2170
135	IER = 129				LE1B2180
9000 CONTINUE					
	CALL UERTST (IER, 6HLEQT1B)				LE1B2200
9005	RETURN				LE1B2210
	END				LE1B2220

C

С	IMSL ROUTINE	NAME - UERTST	UERT0010
С			UERT0020
C			UERT0030
С			UERT0040
С	COMPUTER	- IBM/SINGLE	UERT0050
С			UERT0060
С	LATEST REVIS	ION - JUNE 1, 1982	UERT0070
С			UERT0080
С	PURPOSE	- PRINT A MESSAGE REFLECTING AN ERROR CONDITION	UERT0090
С			UERT0100
С	USAGE	- CALL UERTST (IER, NAME)	UERT0110
С			UERT0120
С	ARGUMENTS	IER - ERROR PARAMETER. (INPUT)	UERT0130
С		IER = I+J WHERE	UERT0140
С		I = 128 IMPLIES TERMINAL ERROR MESSAGE,	UERT0150
С		I = 64 IMPLIES WARNING WITH FIX MESSAGE,	UERT0160
С		I = 32 IMPLIES WARNING MESSAGE.	UERT0170
С		J = ERROR CODE RELEVANT TO CALLING	UERT0180
С		ROUTINE.	UERT0190
С		NAME - A CHARACTER STRING OF LENGTH SIX PROVIDING	UERT0200
С		THE NAME OF THE CALLING ROUTINE. (INPUT)	UERT0210
С			UERT0220
С	PRECISION/HA	RDWARE - SINGLE/ALL	UERT0230
С			UERT0240
С	REQD. IMSL R	OUTINES - UGETIO, USPKD	UERT0250
С			UERT0260
С	NOTATION	- INFORMATION ON SPECIAL NOTATION AND	UERT0270
С		CONVENTIONS IS AVAILABLE IN THE MANUAL	UERT0280
С		INTRODUCTION OR THROUGH IMSL ROUTINE UHELP	UERT0290
С			UERT0300
С	REMARKS	THE ERROR MESSAGE PRODUCED BY UERTST IS WRITTEN	UERT0310
С		TO THE STANDARD OUTPUT UNIT. THE OUTPUT UNIT	UERT0320
С		NUMBER CAN BE DETERMINED BY CALLING UGETIO AS	UERT0330
С		FOLLOWS CALL UGETIO(1,NIN,NOUT).	UERT0340
С		THE OUTPUT UNIT NUMBER CAN BE CHANGED BY CALLING	UERT0350
С		UGETIO AS FOLLOWS	UERT0360
С		NIN = 0	UERT0370
С		NOUT = NEW OUTPUT UNIT NUMBER	UERT0380
С		CALL UGETIO(3, NIN, NOUT)	UERT0390
С		SEE THE UGETIO DOCUMENT FOR MORE DETAILS.	UERT0400
С			UERT0410
С	COPYRIGHT	- 1982 BY IMSL, INC. ALL RIGHTS RESERVED.	UERT0420
С			UERT0430
С	WARRANTY	- IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN	UERT0440
С		APPLIED TO THIS CODE. NO OTHER WARRANTY,	UERT0450
С		EXPRESSED OR IMPLIED, IS APPLICABLE.	UERT0460
С			UERT0470
C		•••••••••••••••••••••••••••••••••••••••	-UERT0480
С			UERT0490
	SUBROUTINE	E UERTST (IER, NAME)	UERT0500
С		SPECIFICATIONS FOR ARGUMENTS	UERT0510
	INTEGER	IER	UERT0520
	INTEGER	NAME(1)	UERT0530
С		SPECIFICATIONS FOR LOCAL VARIABLES	UERT0540
	INTEGER	I, IEQ, IEQDF, IOUNIT, LEVEL, LEVOLD, NAMEQ(6),	UERT0550
	*	NAMSET(6), NAMUPK(6), NIN, NMTB	UERT0560
	DATA	NAMSET/1HU, 1HE, 1HR, 1HS, 1HE, 1HT/	UERT0570
	DATA	NAMEQ/6*1H /	UERT0580
	DATA	LEVEL/4/, IEQDF/0/, IEQ/1H=/	UERT0590
С		UNPACK NAME INTO NAMUPK	UERT0600
C		FIRST EXECUTABLE STATEMENT	UERT0610
	CALL USPKI	O (NAME, 6, NAMUPK, NMTB)	UERT0620

С C C C C

GET OUTPUT UNIT NUMBER **UERT0630** C CALL UGETIO (1, NIN, IOUNIT) UERT0640 **UERT0650** CHECK IER C JERT0660 IF (IER.GT.999) GO TO 25 IF (IER.LT.-32) GO TO 55 **UERT0670** IF (IER.LE.128) GO TO 5 UERT0680 IF (LEVEL.LT.1) GO TO 30 UERT0690 PRINT TERMINAL MESSAGE UERT0700 C IF (IEQDF.EQ.1) WRITE(IOUNIT, 35) IER, NAMEQ, IEQ, NAMUPK UERT0710 IF (IEQDF.EQ.0) WRITE (IOUNIT, 35) IER, NAMUPK UERT0720 **UERT0730** GO TO 30 5 IF (IER.LE.64) GO TO 10 **UERT0740** IF (LEVEL.LT.2) GO TO 30 UERT0750 UERT0760 PRINT WARNING WITH FIX MESSAGE C IF (IEQDF.EQ.1) WRITE (IOUNIT, 40) IER, NAMEQ, IEQ, NAMUPK **UERT0770** UERT0780 IF (IEQDF.EQ.0) WRITE(IOUNIT,40) IER,NAMUPK GO TO 30 **UERT0790** 10 IF (IER.LE.32) GO TO 15 UERT0800 PRINT WARNING MESSAGE UERT0810 C IF (LEVEL.LT.3) GO TO 30 UERT0820 **UERT0830** IF (IEQDF.EQ.1) WRITE (IOUNIT, 45) IER, NAMEQ, IEQ, NAMUPK IF (IEODF.EQ.0) WRITE (IOUNIT, 45) IER, NAMUPK UERT0840 GO TO 30 UERT0850 15 CONTINUE UERT0860 CHECK FOR UERSET CALL UERT0870 C UERT0880 DO 20 I=1,6 IF (NAMUPK(I).NE.NAMSET(I)) GO TO 25 UERT0890 20 CONTINUE UERT0900 LEVOLD = LEVEL **UERT0910** LEVEL = IER **UERT0920** IER = LEVOLD **UERT0930** IF (LEVEL.LT.0) LEVEL = 4 **UERT0940** IF (LEVEL.GT.4) LEVEL = 4**UERT0950** GO TO 30 UERT0960 **UERT0970** 25 CONTINUE IF (LEVEL.LT.4) GO TO 30 UERT0980 PRINT NON-DEFINED MESSAGE IF (IEQDF.EQ.1) WRITE(IOUNIT,50) IER,NAMEQ,IEQ,NAMUPK UERT0990 UERT1000 C IF (IEQDF.EQ.0) WRITE(IOUNIT, 50) IER, NAMUPK UERT1010 30 IEODF = 0UERT1020 RETURN UERT1030 35 FORMAT (19H *** TERMINAL ERROR, 10X, 7H (IER = , I3, UERT1040 1 20H) FROM IMSL ROUTINE , 6A1, A1, 6A1) UERT1050 40 FORMAT(27H *** WARNING WITH FIX ERROR, 2X, 7H(IER = , I3, UERT1060 1 20H) FROM IMSL ROUTINE , 6A1, A1, 6A1) UERT1070 45 FORMAT (18H *** WARNING ERROR, 11X, 7H (IER = , I3, UERT1080 1 20H) FROM IMSL ROUTINE , 6A1, A1, 6A1) UERT1090 50 FORMAT(20H *** UNDEFINED ERROR,9X,7H(IER = ,15, UERT1100 UERT1110 UERT1120 1 20H) FROM IMSL ROUTINE ,6A1,A1,6A1) CCCC P IS THE PAGE NAMUPK R IS THE POLYMONY SAVE P FOR P = R CASE UERT1130 UERT1140 UERT1150 55 IEQDF = 1UERT1160 DO 60 I=1,6 **UERT1170** 60 NAMEO(I) = NAMUPK(I)**UERT1180** 65 RETURN **UERT1190** END **UERT1200**

IMSL ROUTINE NAME - UGETIO С UGET0010 C **UGET0020** C-----UGET0030 C UGET0040 - IBM/SINGLE С COMPUTER **UGET0050** C **UGET0060** С LATEST REVISION - JUNE 1, 1981 **UGET0070** C UGET0080 С - TO RETRIEVE CURRENT VALUES AND TO SET NEW PURPOSE UGET0090 VALUES FOR INPUT AND OUTPUT UNIT C UGET0100 IDENTIFIERS. С **UGET0110** C **UGET0120** С USAGE - CALL UGETIO (IOPT, NIN, NOUT) **UGET0130** С **UGET0140** С ARGUMENTS IOPT - OPTION PARAMETER. (INPUT) **UGET0150** IF IOPT=1, THE CURRENT INPUT AND OUTPUT UGET0160 С UNIT IDENTIFIER VALUES ARE RETURNED IN NIN UGET0170 C С AND NOUT, RESPECTIVELY. **UGET0180** IF IOPT=2, THE INTERNAL VALUE OF NIN IS C **UGET0190** RESET FOR SUBSEQUENT USE. C **UGET0200** IF IOPT=3, THE INTERNAL VALUE OF NOUT IS RESET FOR SUBSEQUENT USE. C **UGET0210** С UGET0220 UGET0230 С NIN - INPUT UNIT IDENTIFIER. C OUTPUT IF IOPT=1, INPUT IF IOPT=2. UGET0240 С NOUT - OUTPUT UNIT IDENTIFIER. **UGET0250** OUTPUT IF IOPT=1, INPUT IF IOPT=3. С **UGET0260** С **UGET0270** С PRECISION/HARDWARE - SINGLE/ALL **UGET0280** С UGET0290 С REOD. IMSL ROUTINES - NONE REQUIRED UGET0300 С **UGET0310** C NOTATION - INFORMATION ON SPECIAL NOTATION AND **UGET0320** C CONVENTIONS IS AVAILABLE IN THE MANUAL UGET0330 C INTRODUCTION OR THROUGH IMSL ROUTINE UHELP UGET0340 С **UGET0350** С EACH IMSL ROUTINE THAT PERFORMS INPUT AND/OR OUTPUT REMARKS **UGET0360** OPERATIONS CALLS UGETIO TO OBTAIN THE CURRENT UNIT С **UGET0370** С IDENTIFIER VALUES. IF UGETIO IS CALLED WITH IOPT=2 OR UGET0380 С IOPT=3, NEW UNIT IDENTIFIER VALUES ARE ESTABLISHED. **UGET0390** С SUBSEQUENT INPUT/OUTPUT IS PERFORMED ON THE NEW UNITS. UGET0400 С **UGET0410** С - 1978 BY IMSL, INC. ALL RIGHTS RESERVED. **UGET0420** COPYRIGHT С UGET0430 С - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN UGET0440 WARRANTY С APPLIED TO THIS CODE. NO OTHER WARRANTY, UGET0450 С EXPRESSED OR IMPLIED, IS APPLICABLE. UGET0460 С **UGET0470** C -----UGET0480 C **UGET0490** SUBROUTINE UGETIO (IOPT, NIN, NOUT) **UGET0500** C SPECIFICATIONS FOR ARGUMENTS **UGET0510** INTEGER IOPT, NIN, NOUT UGET0520 С SPECIFICATIONS FOR LOCAL VARIABLES UGET0530 NIND, NOUTD INTEGER **UGET0540** NIND/5/,NOUTD/6/ DATA **UGET0550** C **UGET0560** FIRST EXECUTABLE STATEMENT IF (IOPT.EQ.3) GO TO 10 **UGET0570** IF (IOPT.EQ.2) GO TO 5 **UGET0580** IF (IOPT.NE.1) GO TO 9005 **UGET0590** NIN = NINDUGET0600 NOUT = NOUTD UGET0610 GO TO 9005 **UGET0620**

5 NIND = NIN GO TO 9005 10 NOUTD = NOUT 9005 RETURN END

UGET0630 UGET0640 UGET0650 UGET0660 UGET0670

.

С IMSL ROUTINE NAME - USPKD **USPK0010** С **USPK0020** ------USPK0030 C---------USPK0040 С C COMPUTER - IBM/SINGLE **USPK0050** С USPK0060 C LATEST REVISION - NOVEMBER 1, 1984 **USPK0070** С USPK0080 С PURPOSE - NUCLEUS CALLED BY IMSL ROUTINES THAT HAVE USPK0090 С CHARACTER STRING ARGUMENTS USPK0100 С USPK0110 С USAGE - CALL USPKD (PACKED, NCHARS, UNPAKD, NCHMTB) USPK0120 С USPK0130 С ARGUMENTS PACKED - CHARACTER STRING TO BE UNPACKED. (INPUT) USPK0140 С NCHARS - LENGTH OF PACKED. (INPUT) SEE REMARKS. USPK0150 С UNPAKD - INTEGER ARRAY TO RECEIVE THE UNPACKED USPK0160 С REPRESENTATION OF THE STRING. (OUTPUT) USPK0170 С . NCHMTB - NCHARS MINUS TRAILING BLANKS. (OUTPUT) USPK0180 С **USPK0190** С PRECISION/HARDWARE - SINGLE/ALL **USPK0200** С USPK0210 С REOD. IMSL ROUTINES - NONE USPK0220 С USPK0230 С REMARKS 1. USPKD UNPACKS A CHARACTER STRING INTO AN INTEGER ARRAY USPK0240 С IN (A1) FORMAT. **USPK0250** С 2. UP TO 129 CHARACTERS MAY BE USED. ANY IN EXCESS OF USPK0260 С THAT ARE IGNORED. **USPK0270** С USPK0280 Ċ - 1984 BY IMSL, INC. ALL RIGHTS RESERVED. COPYRIGHT USPK0290 С USPK0300 С WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN USPK0310 С APPLIED TO THIS CODE. NO OTHER WARRANTY, USPK0320 С EXPRESSED OR IMPLIED, IS APPLICABLE. USPK0330 С USPK0340 C------USPK0350 SUBROUTINE USPKD (PACKED, NCHARS, UNPAKD, NCHMTB) USPK0360 SPECIFICATIONS FOR ARGUMENTS USPK0370 C NC, NCHARS, NCHMTB USPK0380 INTEGER С USPK0390 UNPAKD(1), PACKED(1), LBYTE, LBLANK LOGICAL*1 INTEGER*2 USPK0400 USPK0410 IBYTE, IBLANK EQUIVALENCE (LBYTE, IBYTE) USPK0420 USPK0430 DATA LBLANK /1H / DATA IBYTE /1H / USPK0440 DATA IBLANK /1H / USPK0450 С INITIALIZE NCHMTB USPK0460 NCHMTB = 0USPK0470 С RETURN IF NCHARS IS LE ZERO USPK0480 IF (NCHARS.LE.0) RETURN **USPK0490** С SET NC=NUMBER OF CHARS TO BE DECODED USPK0500 NC = MIN0 (129, NCHARS)**USPK0510** NWORDS = NC*4**USPK0520** J = 1**USPK0530** DO 110 I = 1, NWORDS, 4 **USPK0540** UNPAKD(I) = PACKED(J)**USPK0550** UNPAKD(I+1) = LBLANKUSPK0560 UNPAKD(I+2) = LBLANK**USPK0570** UNPAKD(I+3) = LBLANK**USPK0580** 110 J = J+1**USPK0590** C CHECK UNPAKD ARRAY AND SET NCHMTB USPK0600 С BASED ON TRAILING BLANKS FOUND USPK0610 DO'200 N = 1, NWORDS, 4USPK0620

```
NN = NWORDS - N - 2

LBYTE = UNPAKD(NN)

IF(IBYTE .NE. IBLANK) GO TO 210

200 CONTINUE

NN = 0

210 NCHMTB = (NN + 3) / 4

RETURN

END
```

.

USPK0630 USPK0640 USPK0650 USPK0660 USPK0670 USPK0680 USPK0690 USPK0700

LIST OF REFERENCES

1. von Braun, W. and Ordway, F., *History of Rocketry and Space Travel*, 3d ed., T. Crowell Co., 1974.

2. Sutton, G.P., Rocket Propulsion Elements, 4th ed., John Wiley & Sons, 1976.

3. Jahn, R.G., Physics of Electric Propulsion, McGraw-Hill, 1968.

4. Sutton, G.P., Rocket Propulsion Elements, 5th ed., John Wiley & Sons, 1986.

5. Stuhlinger, E., Ion Propulsion for Space Flight, McGraw-Hill, 1964.

6. Myers, R.M., Mantenieks, M.A., and LaPointe, M.R., MPD Thruster Technology, NASA-TM-105242, AIAA-91-3568, Sept., 1968.

7. Myers, R.M., Applied-Field MPD Thruster Geometry Effects, AIAA-91-2342, June, 1991.

8. Saber, A.J., "Anode Power in the Quasi-Steady MPD (Magnetoplasmadynamic) Thruster," Ph.D. Thesis, Princeton Univ., NJ, 1974.

9. Shih, K.T., Pfender, E., Ibele, W.E., and Eckert, E.R.G., "Experimental Anode Heat-Transfer Studies in a Coaxial Arc Configuration," *AIAA Journal*, V. 6, No. 8, pp.1482-1487, August, 1968.

10. Sanders, N.A., and Pfender, E., "Measurement of the Anode Falls and Anode Heat Transfer in Atmospheric Pressure, High Intensity Arcs," J. Appl. Phys., V. 55, No. 3, pp. 714-722, Feb., 1984.

11. Vainberg, L.I., Lyubimov, G.A., and Smolin, G.G., "High Current Discharge Effects and Anode Damage in an End-Fire Plasma Accelerator," *Sov. Physics, Tech. Phys.*, V. 23, No. 4, pp. 439-443, April,1978.

12. Hugel, H., "Effects of Self-Magnetic Forces on the Anode Mechanism of a High Current Discharge," *IEEE Trans. Plasma Sci.*, V. PS-8, No. 4, pp.437-442, Dec. 1980.

13. Gallimore, A.D., Kelly, A.J., and Jahn, R.G., "Anode Power Deposition in Quasisteady MPD Thrusters," *J. Propulsion & Pwr.*, V. 8, No. 6, pp. 1224-1231, Dec., 1992.

14. Dolson, R.C., and Biblarz, O., "Analysis of the Voltage Drop Arising from a Collisiondominated Sheath," J. Appl. Phys., V. 47, No. 12, pp. 5280-5287, Dec., 1976.

15. Myers, R.M., "Energy Deposition in Low Power Coaxial Plasma Thrusters," Ph.D. Thesis, Princeton Univ., NJ, June, 1989.

16. Oberth, R.C., and Jahn, R.G., "Anode Phenomena in High-Current Accelerators," AIAA Journal, V. 10, No. 1, pp. 86-91, Jan., 1972.

17. Sleziona, P.C., Auweter-Kurtz, M., and Schrade, H.O., "Numerical Codes for Cylindrical MPD Thrusters," IEPC 88-038, 20th Int'l. Elec. Prop. Conf., Garmisch-Partenkirchen, W. Germany, Oct., 1988.

18. Sleziona, P.C., Auweter-Kurtz, M., and Schrade, H.O., "Numerical Evaluation of MPD Thrusters," AIAA 90-2602, July, 1990.

19. LaPointe, M.R., "Numerical Simulation of Self-Field MPD Thrusters," AIAA-91-2341, NASA-CR-187168, July, 1991.

20. Subramaniam, V.V., and Lawless, J.L., "Thermal Instabilities of the Anode in a Magnetoplamsadynamic Thruster," J. Propulsion & Pwr., V. 6, No. 2, pp. 221-224, Mar., 1990.

21. Biblarz, O., "Approximate Sheath Solutions for a Planar Plasma Anode," *IEEE Trans. Plasma Sci.*, V. 19, No. 6, pp. 1235-1243, Dec., 1991.

22. Biblarz, O., Dolson, R.G., and Shorb, R.C., "Anode Phenomena a Collision-dominated Plasma," J. Appl. Phys., V. 46, No. 8, pp. 3342-3346, Aug., 1975.

23. Rudolph, L.K. and Pawlik, E.V., "The MPD Thruster Development Program," AIAA Technical Paper 79-2050, in *Progress in Aeronautics and Astronautics*, Vol. 79, Amer. Inst of Aer. & Astro., 1981.

24. Cann, G.L., and Marlotte, G.L., "Hall Current Plasma Accelerator," AIAA Journal, V. 2, No. 7, pp. 1234-1241, Jul., 1964.

25. Brophy, J., Stationary Plasma Thruster Evaluation in Russia, Summary Report, Jet Propulsion Laboratory (JPL) Publication 92-4, March 15, 1992.

26. Mitchner, M., and Kruger, C.H., Partially Ionized Gases, pp. 128-134, Wiley, 1973.

27. Cobine, J.D., Gaseous Conductors, Theory and Engineering Applications, McGraw-Hill, 1941.

28. von Engel, A., Ionized Gases, Clarendon Press, 1965.

29. Chen, F.F., Introduction to Plasma Physics and Controlled Fusion, 2nd ed., p.10, Plenum, 1984.

30. Lin, S., Resler, E., and Kantrowitz, A., "Electrical Conductivity of Highly Ionized Argon Produced by Shock Waves," J. Appl. Phys., V. 26, p. 95, Jan., 1955.

31. Campbell, A., Plasma Physics and Magnetofluidmechanics, p. 161, McGraw-Hill, 1963.

32. Nasser, E., Fundamentals of Gaseous Ionization and Plasma Electronics, p.412, Wiley, 1971.

33. Ecker, G., "Anode Spot Instability. I. The Homogeneous Short Gap Instability," *IEEE Trans. Plasma Sci.*, V. PS-2, No. 3, Sept., 1974.

34. Biblarz, O. and Riggs, J.F., "Anode Sheath Contributions in Plasma Thrusters," AIAA 93-2495, Jun., 1993.

35. Miller, H.C., "Vacuum Arc Anode Phenomena," *IEEE Trans. Plasma Sci.*, V. PS-11, No. 2, June, 1983.

36. Miller, H.C., "Discharge Modes at the Anode of a Vacuum Arc," *IEEE Trans. Plasma Sci.*, V. PS-11, No. 3, pp. 122-127, Sep., 1983.

37. Rich, J.A., Prescott, L.E., and Cobine, J.D., "Anode Phenomena in Metal-Vapor Arcs at High Currents," J. Appl. Phys., V. 12, No. 12, pp.587-601, Feb., 1971.

38. Schuocker, D., "Improved Model for Anode Spot Formation in Vacuum Arcs," *IEEE Trans. Plasma Sci.*, V. PS-7, No. 4, pp. 209-216, Dec., 1979.

39. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971.

40. Burnet, H., Vincent., P., and Rocca Serra, J., "Ionization Mechanism in a Nitrogen Glow Discharge," J. Appl. Phys., V. 54, No. 9, pp. 4951-4957, 1983.

41. Phelps, A.P. and Pitchford, L.C., "Anisotropic Scattering Electrons by N_2 and its Effect on Electron Transport," *Phys. Rev. A*, V. 31, pp. 2932-2949, 1985.

42. Myers, R.M., Kelly, A.J.and Jahn, R.G., "Energy Deposition in Low-Power Coaxial Thrusters," J. Propulsion, V. 7, No. 5, pp. 732-739, Sep./Oct., 1991.

43. Biblarz, O., "Thermionic Arc Initiation", 1992 IEEE International Conference on Plasma Science, Tampa, FL, June 1992.

44. Gallimore, A.D., "Anode Power Deposition in Coaxial MPD Thrusters," Ph.D. Thesis, Princeton Univ., NJ, Oct., 1992.

45. Biblarz, O. and Barto, J.L., "Fluid-Dynamic Effects, Including Turbulence, on a High Pressure Discharge". *Gas Flow and Chemical Lasers*, 6th Int. Symposium (S. Rosenwaks, Ed.), pp. 34-39, Springer-Verlag, Berlin, 1987.

46. Park, W. & Choi, D., "Numerical Analysis of MPD Arcs for Plasma Acceleration," *IEEE Trans. Plasma Sci.*, V. PS-15, No. 5, pp. 618-624, Oct., 1987.

47. Schoeck, P. A., Eckert, E.R.G., and Wutzke, S.A., "An Investigation of the Anode Losses in Argon Arcs and their Reduction by Transpiration Cooling," ARL 62-341, DTIC AD-278570, April, 1962.

48. Brady, J.E., General Chemistry, Principles & Structure, 5th ed., Wiley, 1990, p. 223.

49. Janes, G.S., "Magnetohydrodynamic Propulsion," in Advanced Propulsion Techniques, AGARD Proceedings, Aug., 1960, pp. 151-154, Pergamon, 1961.

50. Connolly, D.J., Sovie, R.J., Michels, C.J., and Burkhart, J.A., "Low Environmental Pressure MPD Arc Tests," *AIAA Journal*, V. 6, No. 7, pp. 1271-1276, July, 1968.

51. Subramaniam, V.V., "Fundamental Studies on Erosion in MPD Thrusters," AFOSR 87-0360, April, 1992.

52. Hurwics, H. and Rogan, J. E., "High Temperature Thermal Protection Systems", Section 19, , *Handbook of Heat Transfer* (Rohsenow, W.M., and Hartnett, J.P., Eds) McGraw-Hill, 1973.

53. Kuriki, K. and Suzuki, H., "Quasisteady MPD Arcjet with Anode Gas Injection," AIAA 79-2058, 14th International Electric Propulsion Conference, Princeton, NJ, Oct., 1979.

54. Sutton, G.W. and Sherman A., Engineering Magnetohydrodynamics, p. 148, McGraw-Hill, 1965.

55. Choueiri, E.Y., Kelly, A.J., and Jahn, R.G., "Mass Savings Domain of Plasma Propulsion for LEO to GEO Transfer," J. Spacecraft and Rockets, V. 30, No. 6, pp. 749-754, Nov./Dec., 1993.

INITIAL DISTRIBUTION LIST

2

2

3

1

- Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145
- Library, Code 52 Naval Postgraduate School Monterey, California 93943-5002
- Chairman Department of Aeronautics & Astronautics, Code AA Naval Postgraduate School Monterey, California 93943-5000
- Professor Oscar Biblarz
 Department of Aeronautics & Astronautics, Code AA/Bi
 Naval Postgraduate School
 Monterey, California 93943-5000
- Professor Fred Schwirzke Department of Physics, Code PH/Sw Naval Postgraduate School Monterey, California 93943-5000
- Commander, Space & Naval Warfare Systems Command Space Technology Directorate (SPAWAR-40) 2451 Crystal Drive Arlington, Virginia 22245-5200
- Dr. Roger Myers Lewis Research Center M.S. SPTD-1 Cleveland, Ohio 44135-3191
- Dr. James S. Sovey SPTD NASA Lewis Research Center 21000 Brookpark Rd. Cleveland, Ohio 44135
| 9. | Dr. Tom Pivirotto
Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, California 91109
M.S.125-224 | 1 |
|-----|---|---|
| 10. | Dr. John Brophy
Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, California 91109
M.S.125-224 | 1 |
| 11. | Dr. Jay Polk
Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, California 91109
M.S.125-224 | 1 |
| 12. | Dr. Arnold J. Kelly
Dept. of Mechanical & Aerospace Engineering
Princeton University
Princeton, New Jersey 08544 | 1 |
| 13 | Dr. Mitat A. Birkan
AFOSR NA
110 Duncan Avenue, Suite B115
Bolling AFB, D.C. 20352-0001 | 1 |
| 14 | Dr. Ed Weiler
Code SZB
NASA Headquarters
Washington, D.C. 20546-0001 | 1 |
| 15 | . LCDR John Riggs
10215 Centinella Dr.
La Mesa, California 91941 | 5 |

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY UM 93943-5101

