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Abstract

Structural variations (SVs) play an essential role in the evolution of human genomes and are

associated with cancer genetics and rare disease. High-throughput chromosome capture

(Hi-C) technology probed all genome-wide crosslinked chromatin to study the spatial archi-

tecture of chromosomes. Hi-C read pairs can span megabases, making the technology use-

ful for detecting large-scale SVs. So far, the identification of SVs from Hi-C data is still in the

early stages with only a few methods available. Especially, no algorithm has been devel-

oped that can detect SVs without control samples. Therefore, we developed HiSV (Hi-C for

Structural Variation), a control-free method for identifying large-scale SVs from a Hi-C sam-

ple. Inspired by the single image saliency detection model, HiSV constructed a saliency

map of interaction frequencies and extracted saliency segments as large-scale SVs. By

evaluating both simulated and real data, HiSV not only detected all variant types, but also

achieved a higher level of accuracy and sensitivity than existing methods. Moreover, our

results on cancer cell lines showed that HiSV effectively detected eight complex SV events

and identified two novel SVs of key factors associated with cancer development. Finally, we

found that integrating the result of HiSV helped the WGS method to identify a total number

of 94 novel SVs in two cancer cell lines.

Author summary

Cancer and rare diseases are often driven by structural variations (SVs). Despite their

importance, detecting SV events remains challenging. High-throughput chromosome

capture (Hi-C) technology has proven valuable for large-scale SV detection. However,

algorithms that can use Hi-C data without control samples for SV detection have been

severely lacking. Therefore, we presented HiSV (Hi-C for Structural Variation), a control-

free method for identifying large-scale SVs from a Hi-C sample. We evaluated HiSV’s per-

formance on the simulation datasets and cancer cell lines, HiSV achieved superior accu-

racy and sensitivity. Moreover, HiSV effectively captured complex SVs in cancer cell lines.

Finally, we demonstrated that HiSV can be applied to supplement the result of WGS

methods.
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Introduction

Structural variations (SVs) are large-scale genomic alterations as a result of genetic events, such

as deletions, duplications, inversions, and rearrangements, that involve 50 or more base pairs

(bps) [1]. Numerous studies have shown that SVs play an essential role in the evolution of

human genomes and are associated with cancers and other rare diseases [2,3]. Compared with

single nucleotide variations (SNVs) and small indels, SVs are difficult to identify and have been

less understood, even though they are more likely to have greater impacts on gene functions.

Microarray comparative genome hybridization (array CGH) and the short-read technology

have been widely used to detect special types of SVs [4]. For example, Array CGH detects copy

number variations (CNV) but has difficulties in detecting copy neutral variations such as balanced

translocations and inversions [5]; short-read technology can identify SVs involving breakpoints

with single base-pair resolution [6], but cannot be used to accurately detect SVs in the repetitive

regions of the genome and complex SVs with multiple breakpoints [1]. Recent studies suggest

that data obtained by the high throughput sequencing-based chromatin conformation capture

(Hi-C) technique can be used to overcome limitations of the short-read technology to handle

large-scale SVs [7]. As a relatively new technique, Hi-C is designed to study the spatial architecture

of chromosomes by probing all possible genome-wide pairwise chromatin interactions, including

interactions in the repetitive region of the genome that traditional short-read-based technology

cannot identify. The possibility of using the Hi-C interaction matrix to detect a variety of SVs has

been studied in [7]. Hi-C based SV detection methods such as HiCtrans [8], and HiNT-TL [9] are

designed to detect inter-chromosomal translocations. HiC_breafinder [10] defined the SV break-

points by searching the abnormal interaction block with higher interaction frequencies compared

with the background model. More recently, the new method EagleC [11] combined deep-learning

and ensemble-learning strategies to predict a full range of SVs. Both HiC_breakfinder and EagleC

methods use several cell lines to construct a reference model that efficiently distinguishes intra-

chromosomal SV signals from other chromatin interactions. However, a common obstacle in can-

cer genomes is the lack of an appropriate control sample for normal tissue [12]. Cell lines are a

key tool in preclinical cancer research, but it is unclear to what extent they represent patient

tumor samples [13], so the reference model constructed with cell lines often do not work well

with patient samples. These methods also cannot accurately predict the SVs of other species

because of the variation in 3D genome organization features between species.

Therefore, we described HiSV (Hi-C for Structural Variation), a control-free method based

salient object detection model to identify large-scale SVs from a Hi-C sample. HiSV measured the

saliency value of each pixel (bin pair) by calculating the dissimilarity between its interaction fre-

quencies and that of neighboring pixels, and then segmented the saliency map by total variation

regularization. The segments whose segmented saliency exceeds a certain threshold were chosen

as the SV events. Based on simulation samples and cancer cell lines, HiSV achieved better perfor-

mance than existing methods. Furthermore, long-read-based validation datasets demonstrated

that HiSV is an effective tool for detecting complex SV. Moreover, HiSV identified novel SVs of

key factors associated with cancer development by analyzing the differential expression genes and

detecting neo-loops. Finally, by comparing and integrating the result of HiSV and WGS, we

showed that HiSV can complement the incomplete identification of SVs from WGS methods.

Results

Overview of HiSV

In the Hi-C data, the interaction frequencies scales as a power law with genomic distance [14].

When SV occurs, the distally genomic regions are fused and the interaction in two loci around
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the breakpoint rises to the level of the proximal loci, causing marked deviations in interaction

frequencies. As shown in Fig 1A, we draw Hi-C maps for different types of SV events. For

example, a deletion of fragment A will result in the junction of breakpoint a and breakpoint b.

Because of the spatial proximity, there will be strong interaction frequencies between break-

point a and breakpoint b. When we map the Hi-C reads to the reference genome, a salience

block was present at the breakpoints compared to the surrounding regions. Similarly, a dupli-

cation of fragment A will result in the junction of the original DNA fragment A and the dupli-

cation fragment A, resulting in a significant block between breakpoints a and b regions. For

inversion, the sides of the breakpoint will form a ‘butterfly shape’ on the Hi-C map. For trans-

location, it will result in the junction of breakpoint a on chromosome M and breakpoint b on

chromosome N, with unusually strong long-range trans interactions visible on the Hi-C maps

between chromosome M and N.

At over megabase distances, the expected interaction frequencies between two loci close to

zero, while abnormal interaction blocks formed by large-scale SVs are extremely prominent in

the surrounding area. This level of significance extends well beyond other chromatin higher-

order structures. For example, Fig 1B showed a 3.1Mb deletion event in K562 cell line. we

could observe the unusually strong interactions at breakpoints compared with the normal cell

line. We then compared the significance of the interaction frequencies of stripes, TADs and

SV boundaries on chromosome 4 in the K562 cell line. The significances of interaction fre-

quencies were calculated by FitHiC2 [15]. FitHiC2 corrects the resulting binomial p-values for

the multiple testing using Benjamini-Hochberg to compute q-values, which represent the min-

imum false discovery rate (FDR). TAD boundaries were identified by Insulation Score [16]

and stripes were identified by StripeCaller [17]. As shown in the Fig 1C, we observed that the

Fig 1. Hi-C as a new technique for detecting large-scale SVs. (A) The expected alteration to chromatin interaction frequencies for different types of SVs. (B)

The Hi-C map is shown a validated deletion event in K562 cell line. (C) The significances of interaction frequencies of stripes, TADs and SV boundaries on

chromosome 4 in K562 cell line.

https://doi.org/10.1371/journal.pcbi.1010760.g001
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interaction frequencies formed by SV events are more significant than most TADs and stripes,

with a median q-value of 6.17e-165 for SV boundaries where 6.4e-5 for TADs and 3.8e-3 for

stripes. We then counted the significance of TADs large than 1Mb. The minimum q-value of

these TADs is 4.59e-8, which is greater than the median q-value of the SV boundary. Overall,

we demonstrated that large-scale intra-chromosomal SVs can be isolated from the Hi-C map.

Therefore, we targeted the significant regions in the Hi-C matrix as large-scale SV events.

Identifying large-scale SVs from a Hi-C map can be seen as an image salient object detection

problem. The solution to this problem usually consisted of two stages: 1) detecting salient

objects in the scene and 2) segmenting the entire range of these objects [18].

Here, we developed the HiSV method to identify large-scale SVs from a Hi-C sample based

on saliency detection model (Fig 2). First, we computed the distance-normalized Hi-C interac-

tion matrix to avoid the strong interactions on the diagonal interfering with the detection of

SVs. The next step is to isolate the significant regions from complex background. To this end,

we measured the saliency by calculating the local spatially weighted dissimilarity for each pixel

(bin pair). Finally, we used the total variation segmentation to group the sparse salient subsets

into several subgroups called segments, and segments will be reported as a SVs event if the seg-

mented interaction frequencies greater than a predefined cutoff.

Our method supports raw fastq, bam file,.hic,.mcool and Hi-C Matrix files as its input. The

final HiSV output file includes the regions and types for each SV event. More details of the

HiSV are discussed in Materials and Method.

HiSV outperforms existing methods in detecting SVs on Hi-C maps

We systematically evaluated the performance of HiSV by comparing it with existing methods,

HiCtrans [8], HiNT-TL [9] and HiC_breakfinder [10] and EagleC [11]. We used simulation

data and four cancer cell lines, HCC1954, K562, T47D and MCF7 as the benchmark datasets.

Here, we evaluated the performances of HiSV by comparing it with HiCtrans, HiNT-TL and

HiC_breakfinder on HCC1954, K562 and T47D cell lines. Since K562 and T47D cell lines

Fig 2. The framework of HiSV. HiSV has the three major steps: (1) Distance normalization: HiSV normalized the interactions based on linear genomic distance; (2)

Saliency measure: the saliency value of each bin pair is measured by calculating the dissimilarity between its interactions and that of neighboring bin pairs; (3)

Segmentation: HiSV used two-dimensional segmentation method to group the sparse data into several subgroups called segments, and a segment will be reported as a SVs

event if the segmented interactions greater than a predefined cutoff.

https://doi.org/10.1371/journal.pcbi.1010760.g002
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were used as training samples by EagleC, we then compared the performance of HiSV with

EagleC on HCC1954 and MCF7 cell lines (Figs A and B in S1 File). To evaluate the impact of

tumor heterogeneity on SV prediction, we simulated a series of Hi-C datasets containing mul-

tiple SVs at various sequencing depths and tumor purities (Materials and methods). Since

HiCtrans and HiNT-TL can only detect inter-chromosomal translocations, we divided the

result of SVs into two categories of intra- and inter-chromosomal SVs and compared them

respectively. Additionally, the simulation data only contained chromosomes 10 and 11, while

HiNT-TL does not accept single chromosome pair as input, so we excluded it when evaluating

the performance using simulation data.

Performance evaluating using simulation data

First, we evaluated the performance of HiSV and other methods at different sequencing depths

(Fig 3A). For inter-chromosomal translocation, HiSV consistently has higher precision and

recall rates than other methods at all sequencing depths. HiCtrans had the second highest

recall for each sample. HiC_breakfinder does not support detection of inter-chromosomal

translocations in the low coverage sample but had higher precision than HiCtrans at higher

coverage. The F1-score of HiSV was significantly higher than other methods in detecting

intra-chromosomal SVs. For example, the F1-scores of HiSV at 1X, 2X and 3X coverage were

59%, 76% and 72%, respectively, while HiC_breakfinder’s F1-scores are 40%, 40% and 47%.

We further measured the F1-score of these methods at varying tumor purities (Fig C in S1

File). We observed that HiSV achieved higher F1-scores at all tumor purity levels for inter-

chromosomal translocations. Especially, HiSV’s F1-score was most dramatic in low tumor

purity samples (< 0.4 tumor purity). For example, the F1-score of HiSV was 67% at 0.2 tumor

purity, while the HiCtrans and HiC_breakfinder were 8% and 23%, respectively. For intra-

chromosomal SVs, the F1-score of HiC_breakfinder was 6 percentage points higher than that

of HiSV in the 0.8 tumor purity sample, while the F1-score of HiSV was higher than that of

HiC_ breakfinder in all other tumor purity samples.

Performance evaluating using cancer cell lines. We then evaluated the performances of

HiSV by comparing it with existing methods on three tumor cell lines. Different methods vary

considerably in precision, recall rate and AUPR. For inter-chromosomal translocations, HiSV

outperformed all the other methods with higher F1-scores and AUPR in HCC1954 and K562

cell lines (Figs 3B and 3D in S1 File). HiSV’s superior F1-score was most dramatic in HCC1954

cell line, which was 28% higher than the second-ranked HiC_breakfinder (0.53 VS 0.25).

HiNT-TL had the third-highest F1-score in all three cell lines, followed by HiCtrans. For intra-

chromosomal SVs, HiSV identified 171 SVs in HCC1954, and 23 SVs in K562, while T47D

reported 17. HiC_breakfinder detected 131, 12 and 13 SVs in three cancer cell lines respectively.

Notably, HiSV had the higher F1-score and AUPR in all three cell lines (Figs 3B and 3D in S1

File). The higher precision of HiC_breakfinder came with significant sacrifice on recall.

We performed more in-depth comparisons between HiSV and HiC_breakfinder in differ-

ent SV types. First, we showed the number of different types of validated SVs detected by these

methods in Fig 3C. We can observe that HiSV detected not only the highest number of SVs

but also all variant types. Then, we evaluated the performance of different SV types (Fig E in

S1 File). We found that HiSV has a consistently higher F1-score than HiC_breakfinder across

nearly all SV types. For example, the F1-scores for HiSV to detect duplication in HCC1954

and K562 cell lines were 67% and 88% respectively, while the F1-scores for HiC_breakfinder

were 55% and 46%.

Furthermore, we compared the result of HiSV and HiC_breakfinder for intra-chromo-

somal SVs at different SV sizes. We then divided the SVs detected by each method into four
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categories according to their length, namely <5Mb SVs, <10Mb SVs, <20Mb SVs and

>20Mb SVs. As shown in Fig 3D, we found HiSV and HiC_breakfinder detected similar num-

bers of>5Mb SVs, whereas HiSV detected more <5Mb SVs in all three cell lines.

Fig 3. Performance comparison of SVs callers. (A) The precision and recall rates of SVs detected by HiSV, HiC_breakfinder, HiCtrans and HiNT-TL in the simulation

sample at different sequencing depths. Black contours show harmonic means of precision and recall rates (F1-score). (B) The precise and recall rates of SVs detected by the

above methods in HCC1954, K562 and T47D cell lines. (C) The number of validated SVs with different types detected by existing methods. (D) The number of different

ranges of SVs detected by HiSV and HiC_breakfinder with validation by groundtruth.

https://doi.org/10.1371/journal.pcbi.1010760.g003
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HiSV detects complex SVs in cancer cell lines

We found that the SVs detected by HiSV contained several complex SV events which are a

chain of simple SVs and have multiple breakpoint connections. These complex SVs were vali-

dated by long-read sequencing data. HiSV detected four complex SVs in K562 and T47D, and

these complex SVs event were not fully detected by HiC_breakfinder. For example, a large-

scale complex SV event in K562 span ~10Mb, involving two overlapping intra-chromosome

translocations t(18) (p11.32;p11.31) and t(18) (p11.31;p11.22) (Fig 4A). And on chromosome

10 of T47D, complex SV span ~30M, involving two overlapping duplications dup(10)

(q22q24) and dup(10) (q23q24)) (Fig 4B). Furthermore, the complex inter-chromosomal rear-

rangement event (chr3-chr10) in T47D involved five fragments with five breakpoints (Fig 4C).

And another complex inter-chromosomal rearrangement event in K562 crosses three chromo-

somes t(9;13;22) involving multiple duplications and multiple inter-chromosomal transloca-

tions. This complex SV involves BCR/ABL1 gene fusion, which is a hallmark of K562 (Fig 4D)

[19]. Based on the above observation, HiSV can be an effective complex SV detection tool.

Effects of SVs on gene expression

We next sought to investigate the effect of SVs on gene expression. As shown in Fig 5A, a total

of 2569 differentially expressed genes (DEGs) were detected between GM12878 and K562 cell

lines. We found the 194 DEGs associated with SVs (Fig 5B). For example, FNBP1 gene expres-

sion was significantly downregulated because of expression disruption by duplication dup(9)

(q12) and GNB1L gene was upregulated undergoing inversion inv(22) (q11.21).

In addition, we found novel SVs are associated with 47 DEGs (Fig 5C). To further explain

the mechanism of the gene mis-regulation, we used Neoloopfinder [20] to reconstruct the Hi-

C matrix at the SV loci and detect neo-loop formed by SVs, which may correspond to regula-

tory event of genes [21]. Fig 5D and 5E illustrated that both GPC5 and DLGAP1 are the neo-

loop involved genes, in which DLGAP1 gene affects the growth rate of hematopoietic cells [22]

and GPC5 is a promising therapeutic target for reducing podocyte vulnerability in glomerular

disease [23]. Interestingly, we found DLGAP1 gene with an enhancer hijacking event because

it is located in one anchor of the neo-loop, and an enhancer located in the other anchor of the

neo-loop. In conclusion, HiSV is a sensible method for disease-associated SV discovery and

can be used as a preliminary tool to explain the remote regulation of gene expression caused

by SVs.

HiSV complements the detection of SVs by the WGS method

Comparison of SVs detected by HiSV and WGS methods. To analyze the performance

of different sequencing technologies for detecting SVs, we compared the ability of HiSV and

WGS methods for detecting SVs in K562 and T47D. Each type of SVs was divided into differ-

ent categories according to the size (DEL<1Mb; DEL>1Mb; DUP<1Mb; DUP>1Mb;

INV<1Mb; INV>1Mb). We counted the results of WGS methods and HiSV for each category

of SVs (Fig F in S1 File). We observed that HiSV can effectively detect more large-scale SVs,

particularly complex SVs (Fig 6A). On the contrary, WGS methods provided higher detection

capabilities for small-scale SVs. These results are consistent with the previous study [24]. Over-

all, Hi-C and WGS have unique strengths for identifying SVs. Therefore, integrating WGS and

Hi-C can comprehensively detect SVs.

Integration of SVs detected by HiSV and Lumpy. We showed the integrated result of

SVs for K562 and T47D in Figs 6B and G in S1 File. For K562 cell line, we obtained 8,243 calls

including 5330 deletions, 1184 tandem duplications, 70 inversions, 1407 intra-chromosomal

translocations, and 252 inter-chromosomal translocations. For T47D cell line, we obtained
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6,317 calls including 4038 deletions, 1062 tandem duplications, 67 inversions, 904 intra-chro-

mosomal translocations, and 246 inter-chromosomal translocations. Notably, compared with

the WGS result detected by Lumpy, the supplementary HiSV results allow 44 and 50 novel SVs

Fig 4. Complex SVs were detected by HiSV. Intra-chromosomal complex SVs were detected in K562 (A) and T47D (B) by HiSV. The top shows the Hi-C maps with

complex SVs and boxes represent the SVs event detected by HiSV. The plot in the middle depicts breakpoint connections that are detected from long-read sequencing

data. The bottom panel shows the genome structure of the complex SVs. Inter-chromosomal complex SVs were detected in T47D (C) and K562 (D) by HiSV. The top

panel shows Hi-C maps with complex SVs. The circos plot in the below, from outside to inside, depicts the chromosome ideogram, copy number profiles and breakpoint

connections. The black arcs are the SVs detected from long reads data and red arcs represent the inter-chromosomal rearrangements detected by all Hi-C methods.

https://doi.org/10.1371/journal.pcbi.1010760.g004

PLOS COMPUTATIONAL BIOLOGY A control-free method for structural variation detection from Hi-C data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010760 January 6, 2023 8 / 17

https://doi.org/10.1371/journal.pcbi.1010760.g004
https://doi.org/10.1371/journal.pcbi.1010760


to be detected for K562 and T47D cell lines respectively. These novel SVs mainly include

large-scale SVs and translocations. To sum up, this model takes the result of HiSV as a supple-

ment to WGS methods which improves the performance of detecting SVs. Therefore, HiSV

can complement the incomplete identification of SVs from WGS method.

Discussion

Hi-C provides an excellent opportunity to simultaneously identify large-scale SVs and study

the regulation of disease-associated gene expression. Because Hi-C data provides longer-range

information than standard short-read, so it breaks the limitation of short-read-based WGS in

detecting SVs. However, computational tools that detect a broad range of SVs from a single

Hi-C sample are still lacking. Here, we described HiSV (Hi-C for Structural Variation), a

computational pipeline based salient object detection model to identify large-scale SVs from a

single Hi-C sample. HiSV measured the saliency value of each pixel (bin pair) by calculating

the dissimilarity between its interaction frequencies and that of neighboring pixels, and then

segmented the saliency map by total variation regularization. The segments whose segmented

saliency exceeds a certain threshold are chosen as the SV events. HiSV supported multiple

input formats including raw FASTQ, BAM and contact matrix. The output file of HiSV

included the position and type of SVs. We applied HiSV to simulated and real data, and our

analysis highlighted some of the challenges of detecting SVs using Hi-C data.

Fig 5. Effects of SVs on gene expression in K562 cell line. (A) Volcano plot showing differentially expressed genes (DEGs); red dots represent upregulated

genes; blue dots represent downregulated genes and gray dots represent genes with no expression changes. (B) Comparison of the genes in SV regions with

DEGs. (C) The overlap counts of DEGs in novel SV regions and common SV regions. (D) The differential expression of GPC5 is associated with neo-loops. (E)

The upregulated expression of DLGAP1 is associated with an enhancer hijacking event.

https://doi.org/10.1371/journal.pcbi.1010760.g005
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Based on the evaluations both of simulated and real data, HiSV achieved a higher level of

accuracy and sensitivity compared to existing methods. Especially, HiSV didn’t require multiple

normal samples to construct a reference model. It not only reduced the cost of the experiment

but also avoided the influence of heterogeneity among samples on the result. However, HiSV

has limited power in detecting SVs in< 1Mb in size. There are two main reasons: 1) the resolu-

tion is limited because Hi-C relies on the presence of digestion sites kilobases apart in the

genome. 2) It is difficult to distinguish the increased interactions whether due to small-scale

SVs or normal variation in 3D genome organization. To be able to solve these problems, we

need have a deeper understanding of the 3D genome. Moreover, we used K562 and T47D cell

lines with long-read sequencing, RNA-seq and DNase-seq demonstrated HiSV effectively iden-

tified the complex SV events and novel SVs of key factors associated with cancer development.

We observed that HiSV is a powerful tool to detect large-scale SVs. On the other hand,

WGS is successful in detecting small-scale SVs with the highest resolution. Therefore,

Fig 6. HiSV complements the detection of SVs by the WGS method. (A) The detection results of WGS method and HiSV for different types of large-scale

SVs in K562 (left) and T47D (right) cell lines. (B) Circos plot visualizing the detection of novel SVs in K562 (left) and T47D (right). Tracks from outer to inner

circles are the chromosome ideogram, duplication (red) and deletion (blue), and positional rearrangements including inversions (green), intra-chromosomal

translocation (orange), and inter-chromosomal translocation (purple).

https://doi.org/10.1371/journal.pcbi.1010760.g006
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integrating the Hi-C and WGS can capture more SVs. However, both Hi-C and WGS depend

on short-read sequencing, the problem of a high alignment error cannot be avoided. There-

fore, full-spectrum SV detection requires the integration of more technologies.

Materials and methods

Implementation of HiSV

Distance-normalized Hi-C matrix. In our method HiSV, interaction frequencies in the

Hi-C matrix are scaled and normalized to weaken the frequency signals between genomic loci.

Specifically, the normalized interaction frequency between bin i and bin j is a z-score defined

as follows:

zi;j ¼
ai;j � mðdÞ
sðdÞ

where ai,j denotes the interaction frequencies between bin i and bin j, μ(d) and σ(d) are the

mean and the standard deviation of the interaction frequencies of loci bins within distance d =

|j−i|.
Constructing a saliency map of interaction frequencies. When we measured the

saliency, two factors were considered: the dissimilarity of the interaction frequencies and their

spatial distance. With the increasing of the spatial distance between two bin pairs, the influence

of the dissimilarity between them was decreasing. The saliency is normalized to range [0, 1]

and defined as:

bi;j ¼ 1 � exp �
1

ð2kÞ2
Xiþk

p¼i� k

Xjþk

q¼j� k

d½ði; jÞ; ðp; qÞ�

 !

where k is the local region window. d[(i, j), (p, q)] is the spatially weighted dissimilarity mea-

sure between the element (i, j) and element (p, q) and defined as:

d ði; jÞ; ðp; qÞ½ � ¼
zi;j � zp;q

1þ dist½ði; jÞ; ðp; qÞ�

Where p2(i−k, i+k) and q2(j−k, j+k). dist[(i, j), (p, q)] is the Euclidean distance between the

element (i, j) and element (p, q).

Segmenting SV events from the saliency map. Here we used total variation regulariza-

tion to fit the saliency profile and extract the salient segments as SV events [25]. The output of

the total variation regularization is obtained by minimizing a particular cost function. Given a

saliency map, the goal is to estimate the segmented data B0 which minimized the:

min
D0

EðB;B0Þ þ lVðB0Þ

where the first term is the L2 norm between the bi,j and the segmented value b0i,j. The second

term is the total variation penalty and λ is regularization parameter. The total variation penalty

was defined as:

VðB0Þ ¼
X

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jb0 iþ1;j � b0i;jj
2
þ jb0i;jþ1 � b0i;jj

2

q

Finally, we return the segments whose segmented saliency exceed threshold t as the SV

event.

PLOS COMPUTATIONAL BIOLOGY A control-free method for structural variation detection from Hi-C data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010760 January 6, 2023 11 / 17

https://doi.org/10.1371/journal.pcbi.1010760


Determination of SV breakpoints

We first find SVs at a given bin size (eg.50Kb). After this initial phase, we further analyze the

submatrix near the SV breakpoints with smaller binsize (eg.1Kb). As shown in Fig H in S1

File, the breakpoints of SVs can be recognized by locating the change point in the submatrix.

We performed PCA on the rows and columns of the matrix separately, and breakpoints were

determined where the sign of the first eigenvector or principal component changes [20].

Annotation of SV types

The most basic way to represent Hi-C data is in matrix format. To make the method more gen-

eral, we infer the type of SV event by Hi-C matrix instead of the bam file. Here, we analyzed

the different patterns and signatures of structural variations across Hi-C contact matrix and

classified the result into duplication, deletion, inversion, intra-chromosomal translocation,

and inter-chromosomal translocation. Among them, translocations are divided into unbal-

anced and balanced translocations. Due to HiSV providing two breakpoint regions for each

SV (the left fragment A and the right fragment B), we used the start position of fragment A

and the end position of fragment B as the breakpoint of each SV.

Firstly, SVs were divided into inter-chromosomal translocation and other types based on

whether the chromosome of the source locus is the same as that of the target locus. Then, we

divided other types of SVs into copy number changed SVs and copy neutral SVs. Here, we

defined the average coverage profile across the genome c0, which is positively correlated with

copy number [9]. First, we computed a one-dimensional coverage profile at each bin across

the genome. We then employed a generalized additive model [14] on the coverage profile to

correct the bias in GC content, mappability, and the number of restriction sites. A structural

variation will be defined as deletion if its average coverage profile is less than half of c0. On the

contrary, the average coverage profile of the region is more than the twice of c0 and is deter-

mined as duplication. For other types of SVs, the average coverage profile between two break-

points floats around with c0, but there are different interaction patterns between the break-

point regions. As shown in Fig I in S1 Fig, unbalanced trans-location forms a single block with

strong interaction frequencies and balanced translocation and inversion both showed interac-

tion frequencies split between two blocks, producing a ‘butterfly’, but in different orientations.

Therefore, we distinguish inversion, balanced translocation, or unbalanced translocation by

measuring in which the direction of the interaction frequency decreases in the breakpoint

region. A structural variation will be defined as balanced translocation if the direction in

which the interaction frequency decreases is constant. When the direction in which the inter-

action frequency decreases of structural variation breakpoint region change from top-down to

bottom-up, it is determined as a balanced translocation. Instead, it is defined as inversion.

Integrating SV signals from Hi-C and WGS

By comparing the SV calls from HiSV and WGS methods, we demonstrated that Hi-C and

WGS have unique strengths for identifying SVs. Therefore, integrating Hi-C and WGS can

comprehensively identify SVs. In general, simple integration used overlap to merge SV calls

from different technologies. Although it achieved high precision detection of SV, the unique

SVs detected by each technology are missed. Therefore, we integrated SV detection signals

from Hi-C and WGS to comprehensively identify SVs. Here, we used Lumpy to integrate the

multiple SV signals, which is a probabilistic framework for detecting SVs and is readily extensi-

ble to new signals from new technologies. Firstly, since the breakpoint may appear in the previ-

ous bin or the next bin, we expanded a bin at both ends of the breakpoint detected by HiSV

and put them into the model as prior knowledge. Then, paired-end sequencing and split read
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sequencing were extracted from WGS data by BWA-MEM and the probabilities of read-pair

module and split-read module were calculated by Lumpy. Finally, overlapping breakpoint

intervals were clustered and the probabilities are integrated. The breakpoint can be determined

by the position with probabilities in the higher percentile of the distribution. For Lumpy, the

tuning parameters min_non_overlap was set to 150, weight set to 1 and min_mapping_thres-

hold was set to 1.

Simulating Hi-C data with SVs

To provide a benchmark for HiSV and other methods calls, we developed a simulation pipe-

line for generating Hi-C data with SVs. The simulated Hi-C data should not only contain a full

range of SV events but also had chromatin higher-order structures. FreeHi-C [26] was recently

developed to simulate high-fidelity to biological Hi-C data. Here, we extend FreeHi-C with

embedded SV events. The methods are described in detail below.

We first used Hi-C data from a normal cell line to train the frequency of each fragment

interactions by FreeHi-C and learn the expected contact on genomic distance using a smooth

spline fit. We then generated a set of SV events and mapped them to RE sites. The distance

between each RE fragment is recalculated based on SV events and obtained the expected inter-

actions among the pairs of RE sites using their new genomic distance. We defined the initially

expected interactions between each RE fragment as f1 and the new expected interactions as f2.

We scaled the interactions of each fragment according to
f 1

f 2
. Subsequently, we generated pairs

of sequencing reads from the new interaction fragment pairs by FreeHi-C.

Here, we chose chromosome 10 and chromosome 11 from hg38 as the reference and

GM12878 as the training sample. To evaluate the effect of sample heterogeneous, we consider two

factors to configure the simulation including sequencing depth and tumor purity. First, we simu-

lated samples with 2M (~1X coverage), 4M (~2X coverage) and 6M (~3X coverage) read pairs

respectively. Then, for the 6M read pairs sample, we mixed samples containing SVs with normal

samples in the proportions of 0.2, 0.4, 0.6, and 0.8, respectively. Each sample contains seven types

of SVs including deletion, duplication, inversion, intra-chromosomal translocation, inter-chromo-

somal translocation, and three complex SVs, and the length of SVs from 1Mb to 2Mb (S1 Table).

Evaluation of SV callsets

The true set of SVs for HCC1954 was obtained from ICGC PCAWG project (https://dcc.icgc.

org/releases/PCAWG/cell_lines/HCC1954). The high confidence SVs for K562 and T47D

were obtained from [10], and they were defined as detected on at least two of the three differ-

ent platforms (Optical mapping, Hi-C and WGS), where the result of Hi-C is detected by

HiC_breakfinder. The complex SV callsets of long reads data for T47D and K562 were

detected by long-span paired-end tag (PET) [27] and linked-read sequencing [28]. We defined

the SVs with lengths larger than 1Mb from these data sets are used as groundtruth.

The SV calls were assessed based on the groundtruth in the following approach. For dupli-

cations, deletions and inversions, a prediction is determined as a true-positive when there was

significant overlap with groundtruth (> 75%). For translocations, a prediction is determined

to be a true-positive call if the start and stop coordinate of the SV is within ±1 binsize the true

breakpoint. Here, the binsize is set according to the default parameter of each method.

Hi-C and WGS data processing

For raw Hi-C sequencing data, BWA-MEM [29] is used to align read pairs to the hg38 refer-

ence genome. After the SAM files have been generated, we used HiCExplore [30] to generate a
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normalized Hi-C matrix, the resolution is set to 50kb. For raw WGS sequencing data, we used

BWA-MEM [29] to create SAM files and used SAMtools [31] to generate BAM files.

SV detection from WGS data

SV detection from WGS was carried out using Manta [32] and Lumpy [33]. Default parame-

ters were used to run Manta and Lumpy. Control-FREEC [12] was used to detect CNV from

WGS data, and we used binsize = 1000bp to determine the breakpoint in K562 and T47D cell

lines. We integrated the result of the above three methods as the result of WGS, where SV

events are defined as detected on at least two of the three different methods.

Calling the DEGs from RNA-seq

Since SVs not only affect gene dosage but also affect the regulatory elements which can regu-

late genes by long-range chromatin interactions, we expanded the results of SVs by 1Mb to

find genes associated with SVs. Here, we used DEseq2 [34] to identify differentially expressed

genes (DEGs) from RNA-seq dataset of GM12878 (lymphoblastoid cell line) and K562 cell

lines. DEGs with false discovery rate (FDR) < 0.05 and absolute Log2 fold change (Log2 FC)

> 1 were identified.

Determination of the HiSV parameter

There are three parameters in HiSV: 1) the local region window k. 2) the regularization param-

eter λ. 3) the threshold t for filtering SV segments. HiSV required a single parameter k to con-

trol the local region window in measuring saliency, and the range of the parameter is

associated with the resolution of Hi-C matrix. Previous studies [35] have shown that the aver-

age size of 3D genome organization was less than 1Mb. Therefore, the local region is approxi-

mately 1Mb which can avoid the normal 3D organization having high salience. Since we chose

the binsize is 50 kb for Hi-C data, the choice of k is 10. For the regularization parameter λ, we

chose 0.2 because it allows the segment to capture the complete SV region by analyzing the

result of multiple experiments. HiSV filtered segments as SV events depend on one parameter,

and the range of the parameter is associated with the sequencing depth of Hi-C data (Fig J in

S1 File). When the Hi-C data with higher sequencing depth, the domain structures are more

complete and the segments with higher saliency are defined as SV events. Here, for the cell

lines with low sequencing depth (K562, MCF7 and HCC1954), we chose the parameter t is 0.5,

and for the cell lines with high sequencing depth (T47D), we chose the parameter t is 0.6.

Supporting information

S1 File. Supplementary File. Fig A. The precise and recall rates of SVs detected by HiSV and

EagleC in MCF7 and HCC1954 cell line. Fig B. Size distribution of validated intra-chromo-

somal SVs detected by HiSV, HiC_breakfinder and EagleC. Fig C. Performance comparison

of HiSV with existing methods in simulation samples. The F1-score is used to evaluate the

sensitivity of HiSV and other methods to detect SVs in different tumor purity samples. Fig D.

Performance comparison of HiSV with existing methods in cancer cell lines. The AUPR is

used to evaluate the result of HiSV and other methods to detect SVs in different samples. Fig

E. Performance comparison of HiSV and HiC_breakfinder in different SV types. Fig F. Com-

parison of SVs detected by HiSV and WGS methods. The detection results of WGS methods

and HiSV for different types of SVs in K562 (a) and T47D (b). Fig G. The detection results of

integrating WGS and Hi-C for different types of SVs. Fig H. Determination of SV break-

points. The breakpoint was determined by searching the sign of the first eigenvector or
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principal component changes. Fig I. Classification of the different types of SVs. The cartoon

in the box depicts the direction in which the interaction frequently decreases within the break-

point region. Fig J. Suggested t of HiSV. We assessed the effect of bin size (a), sequencing

depth (b) and assay (c) on the choice of parameter t.
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S1 Table. The number of different types of SVs in simulation datasets.
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