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ADVERTISEMENT.

Among the early publications of the Smithsonian Institution was a very

important volume of meteorological tables by Dr. Arnold Guyot. They were

so widely used by geographers and physicists as well as by meteorologists

that when the fourth edition was exhausted it was decided to recast the

entire work and publish three separate volumes, Meteorological Tables,

Geographical Tables, and Physical Tables, each of which has now passed

through several editions.

In the application of the data of these volumes to the study of natural

phenomena certain mathematical tables beside those included in ordinary

tables of logarithms are urgently needed in order to save recurrent computa-

tion on the part of observers and investigators. It was therefore decided

to publish the present volume of Mathematical Tables, on Hyperbolic Func-

tions.

Hyperbolic Functions are extremely useful in every branch of pure physics

and in the applications of physics whether to observational and experimental

sciences or to technology. Thus whenever an entity (such as light, velocity,

electricity, or radioactivity) is subject to gradual extinction or absorption,

the decay is represented by some form of Hyperbolic Functions. Mercator's

projection is likewise computed by Hyperbolic Functions. Whenever me-

chanical strains are regarded as great enough to be measured they are most

simply expressed in terms of Hyperbolic Functions. Hence geological de-

formations invariably lead to such expression, and it is for that reason that

Messrs. Becker and Van Orstrand, who are in charge of the physical work

of the United States Geological Survey, have been led to prepare this volume.

CHARLES D/WALCOTT, Secretary.

WASHINGTON, D. C., April, 1909.

In this first reprint of the Hyperbolic Functions a few misprints of trifling import-

ance have been corrected and four values of the exponential have been changed by a

unit in the eighth significant place.

April, 1911. C. D. W.
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DEFINITIONS AND FORMULAS.

The hyperbolic functions are named the hyperbolic sine, cosine, tangent,

cotangent, secant, and cosecant from their close analogy to the circular func-

tions, the tangent being the ratio of the hyperbolic sine to the cosine and

the other three functions being reciprocals of these, as in circular trigonom-

etry. They are usually denoted by adding h to the symbols of the circular

functions, as cosh u for the hyperbolic cosine of u, sinh u for the hyperbolic

sine of u, etc.
1

Historically speaking, the hyperbolic functions were evolved from studies

of the hyperbola. They might have been developed from the geometry of

the ellipse or the catenary or that of other curves. These functions, how-

ever, may be considered independently of any geometrical interpretation and

can be derived from very fundamental functional theorems.

At least two methods have been devised of defining circular and hyper-

bolic functions analytically. One of these is due to Mr. Yvon Villarceau,
2

and is so extremely brief that it can be given here in a somewhat modified

form.

It has long been known that
\-

;

">

g'zmiir
-

j
. gu -f zmitr __ gu . p(u + 2tnir)t ._. aiu

The second of these equations has a single imaginary period, 2 zV, and the

third a single real period, 2 TT. Hence every exponential e
u in which u is real

has a single imaginary period, 2 zV, and every exponential with the same base,

but with an imaginary exponent, has a real period, 2 v. Now, all real purely
circular functions may be expressed in terms of constants and exponentials
with purely imaginary exponents, and all real hyperbolic functions may
be expressed in terms of constants and exponentials with exclusively real

exponents.

Hence hyperbolic functions may be defined as the singly periodic expo-
nential functions with real exponents. The circular functions are then the

singly periodic exponential functions with imaginary exponents.
It remains to be considered how, from this point of view, the hyperbolic

functions of complex variables are to be regarded. The question almost

answers itself
;
for

1 More compendious and convenient, but less usual, is the notation employed by B. de

Saint-Venant, sib. u, cob
,
tab u.

"Coinptes Rendus, Paris, vol. 83, 1876, p. 594.
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Vlll DEFINITIONS AND FORMULAS.

which is evidently the product of two functions one circular, the other

hyperbolic. Such functions have a real period and an imaginary one, but
since they are single-valued they are not elliptic functions.

The circular and hyperbolic functions being defined as above, it is merely
as a matter of convenience that a few of the simpler combinations of expo-
nentials receive special names, as sine, cosine, etc.

The other analytical method of generalizing the two classes of functions

is due to Edward Lucas,
1 and is too long to be given here in full, but the

method may be indicated. If a and b are the two roots of the equation

where P and Q are positive or negative whole numbers, then two functions

may be defined as follows:

Un
=

-"; Vn = a
a o

and these functions are related by the equation

Lucas develops and studies these functions, limiting n at first to whole posi-

tive numbers. He finds that all the theorems resulting from this study are

converted into those of ordinary trigonometry when U is replaced by 2 sin n

and Fby 2 cos n. He infers that between the limits i and minus i, n may
be replaced by any real value, and shows that the theorems dealing with U
and V when translated into trigonometric formulas on this assumption can

be verified. By substituting for n an imaginary argument, the hyperbolic

functions also are found to be comprehended in the general functions U
and V.

Both the circular and hyperbolic functions may further be regarded as

integrals of the equation

d
,

dl

y a

If c = a\ this gives
4J

- Be,

where A and B are arbitrary constants
;
so that the integral expression in

cludes sinh x, cosh a:, and the sum or difference of these functions.

If c ^-b\
y~
b

A
l
cos x -f /?, sin x.

1 Am. Jour, of Math., vol. i, 1878, p. 184.



DEFINITIONS AND FORMULAS. XI

and PC, may be drawn from a point P to a line AB ; the sum of the angles
of a triangle is less than two right angles, and the angle of parallelism // (/)
is dependent upon the perpendicular distance p of the point P from the line

AB. If now any line passing through A, such as AE, is extended until the

perpendicular erected at its middle point is parallel to AB, the locus of the

points E is a boundary curve, and the revolution of this curve about AB or

one of its parallels develops a boundary surface. It is upon this surface of

constant negative curvature that L,obachevsky imagines a triangle of sides

a,b,c and angles A, B, C to be drawn. He establishes as fundamental rela-

tions between the sides and angles of this triangle
l

sin A tan 77 (a) = sin B tan 77 () = sin C tan 77 (c) ,

sin 77 () sin 77 (c) = sin 77 (a) cos 77 () cos 77 (r) sin 77 (a} cos A,

sin 77 () cos A cos B cos C sin 77 ( ) -f- sin B sin C,

and also proves that

sin 77 (#) = (cos in)
~ l = (cosh u} ~\

tan 77 (w) = i (sin z&)
-1 = (sinh #)

-1
,

cos 77 () = / tan iu = tanh #.

Hence the preceding equations may be written

sin A sin B sin C
sinh sinh b

~
sinh

'

cosh a = cosh cosh ^ sinh sinh c cos ^4
,

cos A = cos B cos C + sin B sin C cosh a.

These formulas are, in fact, precisely those of spherical trigonometry, in

which the real sides a, b, c have been replaced by the imaginaries ia, ib, ic.

If the triangle on the boundary surface is infinitesimal, the above equations
reduce to the well-known relations between the sides and angles of a triangle
on the Euclidean plane. The theorems of non- Euclidean geometry may not

therefore be inconsistent with experience, for .the largest triangle which we
can measure is infinitesimal in comparison with a triangle on the boundary
surface. L,obachevsky pointed out that a triangle on a boundary surface

would correspond to a triangle connecting three stars in distant parts of the

universe, and that the postulates of his geometry, involving as they do the

question of the curvature of space, would be capable of experimental proof
if the parallaxes of distant stars could be measured with sufficient accuracy.

Lastly, there is an important relation between the numerical values of the

circular and hyperbolic functions. If the argument u assumes successive

values between o and + co
,
sinh u assumes successive values between o and

+ co just as tan a does when a varies from o to 90; cosh u assumes values

between i and + co like sec /?, and tanh u assumes values between o and i

X H. P. Manning's Non-Euclidean Geometry, p. 60.



Xll DEFINITIONS AND FORMULAS.

in the same way as sin y. The variation of the hyperbolic functions through-
out the entire plane and their similarity to the circular functions between the

limits o and 180 is shown
in the diagram. Since each

of the functions is singly

periodic, there must be a

single value of a, (3, y cor-

responding to a particular

value of u, such that

sinh u = tan a,

cosh u = sec /?,

tanh u = sin y.

It will be found by sub-

stituting in the trigonomet-
ric formulae that a = ft

= y
= <, and the required rela-

tions are therefore

cosh u = sec <,

sinh u = tan <,

tanh u = sin <.

The angle < which renders

it possible to evaluate the

hyperbolic functions by
means of the circular func-

tions is of great importance
in pure and applied mathe-

matics. Some of its prop-
rties and applications will

e considered in the section

on geometrical illustra-

tions. It is called guder-
mannian u and is written

<f>
= gd u.

The following list of form-

ulae involving the hyper-
bolic functions might be

greatly extended, but it

includes the most useful

relations.
1

D

FIG. 3.

'Taken with additions from Prof. B. O. Peirce s Short Table of Integrals, and :

McMahon's Hyperbolic Functions.



DEFINITIONS AND FORMULAS. xiii

A. RELATIONS BETWEEN HYPERBOLIC AND CIRCULAR FUNCTIONS.

i . sinh u = i sin iu = tan gd u.

2. cosh u cos iu = sec gd u.

3. tanh u = i tan iu = sin gd u.

4. tanh \ u tan \ gd u.

5. <?
w =

( i + sin %d u) -r- cos gd u,

=
[ i cos ( J TT H- tf u) ] -*- sin (i TT -f^ ),

= tan(*ir + \gdu).
6. sinh z = z sin &.

7. cosh iu = cos &.

8. tanh iu = i tan u.

9. sinh ( iv)
= / sin (z> =H 0,
= sinh # cos v i cosh w sin z>.

10. cosh (?^ zV) = cos (z; =F /),
= cosh cos v / sinh & sin z>.

11. cosh (miir) = cos ?^ TT. (w is an integer.)

12. sinh (2 w + i) J zV = z sin (2 ra -{- i) J TT. (w is an integer.)

B. RELATIONS AMONG THE HYPERBOLIC FUNCTIONS.

13. sinh u= \(eu
<?~

M
)
= sinh (a) =(csch w),-

1

= 2 tanh J w -^ ( i tanh2

\ u} = tanh u -r- (i tanh2

w)

14. coshw= J (e
u
-\-e -") = cosh ( w) == (sech a)-

1

,

(i tanh*iw)= i H-(I

15. tanhu=(eu e- u
)~-(e

u
-^-e-

u
)
= tanh ( w),

= (coth )~
x = sinh ^ -=-cosh u (i sech2

1 6. sech w = sech ( u) = (i tanh2

&)%.

17. csch u csch ( w) = (coth
2 w i)^.

1 8. coth = coth ( w) = (csch
2 u -f i)^.

19. cosh2
sinh2 a := i.

20. sinh \ u = \/\ (cosh u i).

21. cosh i w = ]/ |(cosh u + i).

22. tanh ^ u (cosh w i) -f- sinh w,

= sinh w -T- (i + cosh wj = i/(cosh i) -^- (cosh -f i)

23 sinh 271 = 2 sinh w cosh w = 2 tanh u -=-
(i tanh2

u}.

24. cosh 2 = cosh 2 u + sinh2 u 2 cosh2 w i,

= 1+2 sinh2 = (i + tanh2

w) -r- (i tanh2

w).

25. tanh 2w = 2 tanh -r- (i + tanh2

#).
26. sinh 3 = 3 sinh u -f 4 sinh

3
w.

27. cosh 3 = 4 cosh3

3 cosh w.

28. tanh 3& = (3 tanh u -f tanh3

K) ~ (i -f 3 tanh 2

u).



XIV DEFINITIONS AND FORMULAS.

29. sinh nu =
n cosh" 1 u sinh u -\

-~ coshn~* u sinlr
o

30. cosh nu = cosh" u 4 - - cosh n ~2 u sinh2 u + . . . .

3 1 . sinh u 4 sinh z> = 2 sinh (w + v) cosh * (w v) .

32. sinh u sinh v = 2 cosh J (w + v) sinh J ( v).

33. cosh 2* 4- cosh v = 2 cosh i (2* 4 z>) cosh J (w v).

34. cosh u cosh v = 2 sinh J (w + v) sinh J (2* v) .

35. sinh u -j- cosh?* = (i + tanh \ u) ~-
(i tanh J #)

36. (sinh u 4- cosh u)
n = cosh w 4 sinh w.

37. tanh w 4- tanh v = sinh (u-\-v)-r- cosh 2^ cosh z>.

38. tanh u tanh v = sinh ( v) -f- cosh ?^ cosh v.

39. coth z/ -f- coth v sinh (w + v) -r- sinh w sinh v.

40. coth ?^ coth v = sinh (u v)
~- sinh u sinh v.

41. sinh (2* it z>)
= sinh cosh v cosh sinh v.

42. cosh (7^ : z) = cosh cosh v sinh 2^ sinh z;.

43. tanh O v) = (tanh u tanh z>) -r- (i it tanh u tanh z;).

44. coth (u v} = (coth u coth z; i) -5- (coth z; coth w).

45. sinh (7^ + f) -h sinh (u v) = 2 sinh u cosh z>.

46. sinh (u + v) sinh (7^ v) = 2 cosh w sinh v.

47. cosh (a + z;) + cosh (a z;)
= 2 cosh u cosh z>.

48. cosh (u -\- v) cosh (it v) = 2 sinh w sinh z;.

49. tanh \ (u + v) = (sinh 7/ + sinh v) -r- (cosh w + cosh v).

50. tanh i (u v) = (sinh u sinh z;) -f- (cosh u +cosh v).

51. coth i (# -f- z;)
= (sinh 7^ sinh v) -f- (cosh u cosh v).

52. coth \ (u v) = (sinh u -f- sinh f) -5- (cosh w cosh v).

tanh w + tanh v sinh
(2*5 -f v)

^ tanh w tanh v
~~

sinh (u v}'

coth w + coth z> _ sinh (u + )
^ coth w coth v

~
sinh (2^ z;)*

55. sinh (w + v) + cosh (w + v) = (cosh w-f sinh u} (cosh z/ -f sinh v),

56. sinh (w 4- ^) sinh (2^ z;)
= sinh2 u sinh 2

v,

= cosh 2
7* cosh2

v.

57. cosh (w -f cosh (w v) = cosh 2
?^ + sinh

2

z;,

= sinh2
?/ + cosh2

z/.

58. sinh (mi ii)
= o. (w is an integer).

59. cosh (mi IT) ( i)
m

.

60. tanh (mi IT)
= o.

61 . sinh (u -f mite) = ( i)
m sinh u.

62. cosh (u 4 mitt) ( i)
m cosh u.

63. sinh (2 m + i) i iv= i.



DEFINITIONS AND FORMULAS. XV

64. COsh (2 7# + I ) |-
Z TT = O.

65. sinh (~ uj
= i cosh u.

66. cosh f u\ i sinh u.

67. tanh (u -f- zV) = tanh u.

C. INVERSE HYPERBOLIC FUNCTIONS.

68. sinh- 1 = log(+ j/*+ x ^cosh' 1 1/V 4- T ='
t

-.

69. cosh- 1 *= log (w + i/V i)
= sinh

- 1 ^^ZTY
( i)x

. du
u) Hog(i

i u

71. coth" 1 u = Hog (i -\-u) Hog (u j)==j- F = tanh l

/ i u

72. sech-^^logf f\/^T :
)
= 1~^ 2^v == cosh" 1

*\u * u* J J u(i u*)* u

73. csch" 1 w log ( +\/ r+ J
) I / 2 _! NV ^sinh"

1

'Vw ^
z^

2
/ J ?/(?^

2 + ij/4 w

74. sin" 1 ^ = i sinh" 1
iu = i log (&"# + V i w'

2

) .

75. cos" x w = i cosh" 1 u= i log (u+ i V i u 2

).

76. tan" 1 = i tanh" 1^ = .log (i + iu) : log (i iu).

77. cot" 1 u=.i coth" 1 iu = . log (iu i) . log (iu + i).

78. sin" 1 iu= i sinh
- 1 = i log (z<* + V i -f- &

2

) .

79. cos" 1
z"& = i cosh" 1 iu -

z* log (u -f- l/ i -f- z/
2

).

80. tan" 1
/ = z tanh x w = log ( i + u) log ( i u).

i i
81. cot" 1 iu = z* coth" 1 u = log (u -f i) H log ( i).

82. cosh" 1

| ( + )
= sinh" 1 i [u j^tanh"

1
^

9
*>

V K / \ W/ 2

-f-I

= 2 tanh" 1 = log #.
z^ + i

83. tann" 1 tan z* = \gd 2. u. = :

84. tan" 1 tanh w = gd~
l

2u.

85. cosh- 1
esc 2 u = sinh- 1

cot 2 u = tanh- 1 cos 2 u = log tan u.



XVI DEFINITIONS AND FORMULAS.

86. tanh- 1 tan2

(Jir -f -J-w)
= T log esc it.

87. tanh" 1 tan2

\ u = % log sec u.

88. cosh" 1 u cosh" 1 v = cosh" 1

[uv db i/ (u* i) (v* i)]

u i . i / u i \
,

i ( u i \
i

. log u =- + _(_ _)4-_f_ __[.,_
u 2 V u J 3 V z; /

Fw i i / u i\
3

,
i / u i \

5
~1

. log U= 2 ----f (
--- +_ --.- +.'...

Lw-fi V -f I / V w -h I / J3

w 2 + ?/ -- if -\-234

89. sinh" 1 u sinh" 1 v = sinh" 1

[u V i+i/l vV'i+tt

D. SERIES.

91. log = O i) ~(u 2 + y ( i)
3

U I . T / U T \
2

.

92

93

94. log

95- log

97

98.

99. tanh = -
O

100. coth=i +

101.

,02.

--
' h '" - ... ("large.)245



DEFINITIONS AND FORMULAS. XV11

104. u=gd- l

<j>
=

<i> + -
<p

3

-f <p
5

-f -
<p

7

-|- . . . (<?<)6 24 5040 V 2 /24

i u* i 3 ub 135 d
105. sinh u= u - + . . . (u

2< i.)23 245 2467
_L_3_J_ + J _3_JLJ (^

2 >i)
2 4 4 &

4 24 66 w6

106. cosh" 1 u = log 2 u -^-j ---^4 -~|T e (^'
2 >O22 U 2 4 4

4
2 4 6 6 #

107. tanh" 1 u = u -j z^
3
H 2^

5 + w7 + . . . (#
8

<i.)
O 3 lIII I I

108. coth
- 1 u = tanh" =

1 r -\- ^H r+ (X>i-)u 11 $u 5 7 u

, i 2 i w 2
i 3 w4

i 3 5 ^6

IOQ. seen" 1 & = cosh" = log ...
u u 22 244 2466 (&

2 <i)
.,,1 i ii 131 J35 1

1 10. each" 1 u = sinh"1

u 2 $u* 2 4 5&
5

2 4 6 yw
7

-f . . . (*>!.)

22 244 2

H. DERIVATIVES.

-

-fa
=uU ^ -Hog**)-

? sinh

d cosh w
i io. -= = sinh u.

du
d tanh 2^

117.
- - =sech 2

u.
du

d coth u
118. - - = csch 2

a.
o'w

^<f sech u
119.

- -= sech u. tanh u.
du

d csch u
120. - - = csch u. coth .

121. -

du Vu* -f
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d cosh l u i

122.

123.

124-

125-

126.

127.

du I'V i

d tanh
~ l u i

du i zt
2

'

d coth 1 u i

du i

d sech T u

du u |/ ! w2

d csch l u i

du
~

u i/V -f i

d^u

I28 _s^ = secw . **
du

F. INTEGRATE. (INTEGRATION CONSTANTS ARE OMITTED.)

129. J
sinh u du = cosh u.

130. J cosh u du = sinh .

131. j
tanh udu = log cosh w.

132. j
coth u du = log sinh u.

133. j
sech u du 2 tan

~~ 1 M= gd u.

r ft

134. I csch u du= log tanh

135. J sinhn udu = sinh" 1 u. cosh ft -J pinh"
2 dfoN

= sinh n + 1 u cosh w I sinh " + * u du.
n + i w -f- i */

1-16. ( cosh"z^ ^ = sinh w. cosh"- 1
?^ H I cosh"

~ 2
7^ du, x

/ w w *^

= sinh u cosh" + l u -\ I cosh" + - u du.
n + i n + \J

137. \ u sinh 21 du = u cosh ?/ sinh ft.

138. J u cosh w afo = u sinh ^ cosh u.

139. J //' sinh u du = (u
z +2} cosh u 2 u sinh u.

140. J //" sinh u du = u n cosh u ?t?fn-i .sinh u

-f w (rc i)J
un ~ 2 sinh 7^.
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149.

141. J sinh
2 u du =% (sinh u cosh u u).

142. j
sinh u. cosh u du = \ cosh (2 u).

143. J cosh2 udu=\ (sinh w cosh w + w).

144. J
tanh2 udu = u tanh &.

145. j
coth

2 u du = u coth w.

146. j
sech

2 u du= tanh &.

147. j
sech

3 u du = \ sech u tanh w 4- |- gd u.

148. J
csch

2 u du = coth u.

. jsinh"
1 u du = u sinh- 1 u (i -f u2

)^.

150. j
cosh" 1 u du = u cosh" 1 u (u

z

i)%.

151. j
tanh" 1 u du = tanh- 1 w + i log (i w2

).

152. J 7* sinh- 1 aflfo = J
|

(2 w
2

-f- i) sinh- 1 w w (i 4- *

J 53- J
a cosh~ l udu =-J (2 w

2

i) cosh 1 u u (2** i)% .

154. J
(cosh a -f cosh w)

l du = 2 csch . tanh
~ l (tanh

-j-
w. tanh J ),

= csch log cosh \ (u + a) log cosh ( a)

J 55- J (cos a + cos^ u}~ 1 du = 2 esc <z. tan-1 (tanh -J-
w. tan

|- ).

156. J (i -f cos a. cosh )
x du = 2 esc <z. tanh~ l

(tanh ^ ?/. tan %a}.

157. J sinh u cos & afo = \ (cosh w. cos w -f- sinh z^. sin w).

158. J cosh w. cos udu = ^ (sinh z*. cos + cosh u. sin ).

159. J sinh w. sin udu
-|- (cosh ;/. sin u sinh 74. cos u).

i6o. J cosh u. sin u du = \ (sinh w. sin 7^ cosh 7/. cos u).

f
161.

J
sinh (mu) sinh (w) ^ v vn

=
^2 ^2 I l sinh (ww) cosh (mu) n cosh (ww) sinh (mu)\



XX DEFINITIONS AND FORMULAS.

162.
J
cosh (mu) sinh (nu) dn

=
2_ 2

m sinh (nu) sinh (mu} n cosh (nu) cosh (mu) I

163. 1 cosh (mu} cosh (#) afo

=
z_ 2

w sinh (mu} cosh (#&) n sinh (;*) cosh (ww)

1 64.
J
sinh u tanh & </ = sinh u gd u./ucosh u coth udu= cosh 4~ log tanh

166.
J
sec & du = gd~ x w.

167. J sec
3 <</< =

J (i + tan2

<)^aftan < = | sec < tan <j> + \ gd
-

1

<^>,

= \ tan < (i
-J- tan2

<#>)^ + ^ sinh" 1
(tan <#> ). Here <j>=gdu.

C du . u C du u
168 I

, , =smh~ . I J
--

2Tlz =sin-
/

(
2 + a2

)^ J (a
2

u*y* a'

C du . u C du u
I >̂9- ~~7~2

--
in/" =cosh~ . ^-J7=cos~/ (u

2 a2

)^ a ^ (a
2 u2

)
X a'

/du i . u C du i . u- = tanh" 1
. -tan" 1 -

O2 0< ^ J a2

-\- u* a a'

du i
^
u C du i ,117-2^- =- coth" 1

. = = cot~
(u

2 a2

)u>a a a J a2 + u* a a'

du i u C du i u
^r/ = sech" 1

. ^/ = sec" .

u(a
2 2

)^ a a J u (u- a2

)% a a

du l
v,
- 1

u C du _L -i u

u (a
2 + u2

)

1
/*
-

~^
C

~^' J n(u' a*) ~~~'~^
C

~^'

/du i au + b
7 rr T~ r~^?

= /= sinh- ^ a positive, ac >b'\
(au

2

+2bu+c)* |/ a (ac &y*

i au-\- b
=
v= (.-&>

i au 4- b= = cos- 1

-^
' a negative.

!/_# {tracy*

/du i aw -f b

u* u
== - * ^^^'

aw 4- b ac<b\
(f-acj* au + b <(& acY*.

i aw 4- b ac<b\

coth
_ t

au 4- b ac<b\
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XXI

or - tan
llT

\\ h_

tanh- 1

^=T'

b a

or coth- 1
\\

u
- (The real form is to be taken.)

a b

/ (a -
du

or - coth
(baf/*

* b a-W-r^-^ h n

\ & u

or tan
" 1

(a

w __ ^^w = w 2

a*)*- i
2 cosh- 1 --

real form is to be taken -)

179.

180.

181

182.

JV-*
2-*^ =*(-

^2 _J_ ^2^ ^ __
^ u ^

U 2

_j_

/_ <1U

~a"

c - e<lu

sn-

2 sinh- 1
.

;w
w /*

I nm~ l

a J
du.

du e
au

r *
^

i8s. I a au = -
:

J Moga/" wn TZ" wn - ] n (n i)
M u* *

.

un au du = - T H- - y

log a (log )
2

(log )
8

n (n i) (w 2) . . 21 u

(log^)^ 1

Cau du au F i log a (log a)
2

lo^. I r ^^: I n _ i T 7 o 7 r~r r ,;

Qogg) n ~ T

f ^U ^ "1
" (- 2)(^- 3 ) . . . 2.1 J // J'

Cau du (7^1oga)
2

,
(

jgg. I- -=\QVU-\-U^ '

J n
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/du i r ~\

-^+6^
==

isa l
mu ~ log (a + ^"}J

/ du
I9i

/du i

(a 4- femu)^
=
m '~\_

*0g ^ V ~*~ ^"'
M ~~

' ^

-
log (l/a + ^wu + I/a)! -

I93 '

J ( i + /
==

i f u/eau
loer u i r e

au du
euu log u du = -

.

a a J u

195. J log u du = u log u ?<.

196. ftf"

197. J (log w)
n du = u (log ?0

n n
J (log ")

n ~ l <#*Jwm + 1
Clog; ?0

n n r
tc (log )- du = -

j-+ i m + l j
r (log )</< (logM)"^

1

J 99- J
-
"IT

' nI

J^ ,

i r du

(log w)
n

= "

( i)(log/^)
n - 1 w i J (log?^)""

1

/?^
m du um + l m-\- i f* nm du

(logw)
w

"

(w i) (logw)"-
1

"

w i J (Iog70
n ~ l

<"*

log/?<"*
rfw r e~y-

dy, where JF
= (m 4- log .

lo ?^ ^

C_du_ __i

2 5 ' J u (log w
"

(n i ) (log )
n - l

206. J ( 4- ^?0
m lg w ^M =

l f ( + ^/) BI !
//// -i

J -S-
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207. j
um log (a 4- bu) du

1
\~ m+i i f A

Cum + l du~\

0* 4- i L J a + w J*

C loer (# 4 ^^) du
208. I

s-i
J w

bu i ( bu\* i / bu
log a .log + ---

? ( ) +-( -

/log
^^ ^ _ i F_ log u C_du_-i

(a + bu)
m

~ :

b(mi) L (a + tu)
m - l+ J n (a + t>u)

m ~ l J.

/log
u du i i /* log O + ^w)^__ = _iog . log(a + te) ___j_

i__ i rfw.

21 1. f( + M) log <fo =^^ log
-

\s 20

/log
u du

212

2) V (a + bu) 4- l/alog (\/a + bu

- J# log (l/4-^~ l/), if >o,

=y [(log 2) I/ (a + bu) 4- 2 iX-^tan- 1 ^^^^f a<o.

213- f ^~ a2"2
rf = * * = r a).

*/0 2 2 a V2 '

214.

. fJo
216.

. f ?-"" l/HIdu =^ J *
Jo 2 A ~~ '

X-JQ ^ ^nw )

. I -=-du = JJL-
Jo |/ K \ w

2l8 ' ' '- m

'V r o.

az9 . JV *
/0 Sllsinh (nu) 2, w

220. r u

Jo sinsinh (?^)
" "

4
2

'
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/* "" / 7T

221.
JQ

sinh (mu) . sinh () du =
Jo

cosh (wz*) . cosh (nu) du

= o, if m is different from n.

222.
I

''cosh
2

(mu) du = P* sinh2

(ww) afo = 1^1.
/O o/O 2

X+ilT
sinh (mu) du = o.

i*

/i JT

224. cosh (raw) afo = o.
i/O

XtTT
sinh (ftttt) cosh (MM) ^ =o.

-i

J7T

sinh (OTK) cosh (mu) du = o.
_ .

rl logu 7T
2

227. I
- du = --

.

/o i w 6

r1
log u 7T

2

228. I
- du =-- .

JQ i + u 12

r1

iog 7T
2

220. -du =-- .

Jo i u1
8

C l

, ( I + U\ du 7T
2

230. I log I
- -

)

- =
a jo '\i u ) u 4

X
1

log M du 7t

(l
- u>)%

= -T log2 '

* ' rfa A +

233- r oog *)" ^ = c !)"
/0

235

.36

237-
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G. FORMULAS FOR THE SOLUTION OF PSEUDO-SPHERICAL TRIANGLES.

a. Right Triangles.

cot U (a) sinh a
sin A =

cos A =

cot 11 () sinh c

cos 77 (b) _ tanh b

cos // () tanh c

sin Z?
t.

cos ^4 = ; .. , N
= sm B cosh

sin 11 (a)

cot77() sinh
cot ^4 =

cos =

cos 77 (a) tanh

cosll(a tanh a

cos 77 (V) tanh

_, sin A , .

cos B = . ... = sin A cosh
sin u (o)

cot 77 (b) sinh
sin B=

cot >5 =

cot^ (V) sinh

cot/7 () sinh

cos /y ^ tanh b

tan J. tan B= sin 77
(V)
= sin 77 (a) sin 77 ().

= sech <:= sech a sech 3.

b. Oblique Triangles.

The general relations are :

cosh a = cosh b cosh sinh sinh c cos ^4.

sin ^4 sinh b = sin .Z? sinh a.

coth a sinh b cosh cos C + sin C cot A .

cos ^4 = cos B cos C -4- sin Z? sin C cosh a.

Forti solves the six typical cases in the following manner:

CASE i. Given a, b, c. Put zp = a -f b + c. Then,

tan I A = J sinh (I ).sinh(/> g)
.

' sinh /> sinh (/ a)

The conditions are a < b + c; b <ia + c; and < <z + b.

CASE 2. Given a, b, A. Draw the geodetic line CD perpendicular to AB.

Then a>CD;
A < i

;
cot i C> o

;
and tanh ^ ^> o-



XXVI DEFINITIONS AND FORMULAS.

sinh b sin A
sin B =

l ^_
sinh a

an ^ (A B) sinh ^ (a 4- b}

sinh

! _ _

CASK 3. Given a, b, C. 2 & = * (A + #-f C).

i / xf r>\ itan A + B = cot

sinh (0-Hh

sin A sin (A -f- C)
sin (A -f A) sin (A -f B)

CASE 4. Given ^, B,c. A + B <* and DBC <DBG. The angle
is the angle between the geodetic DB drawn perpendicular to AC and the

geodetic BG drawn parallel to AC.

i r ^/sinh (/> a) sinh (p b}
tan *- \

-
; 7 ; , , r

sinh/ sinh (p c)

CASE 5. Given A, B, a. a > CZ? and ^4 + B < TT.

Solve the two right triangles formed by the geodetic line CD drawn per-

pendicular to A B.

CASE 6. Given A, B, C. A+ B+ C<~.

sin A sin (A -)- A)
sin (A + B) sin (A + C)

'

H. FORMULAS FOR THE SOLUTION OF THE Cusic 1
.

If a cubic equation is given in the form

-f- 0,2* -f- bz -\- c = o,

it can be reduced by the substitution z = x - - to the simpler form
v5

**+/*+ f = O,

'Taken from 1% Ingenieurs Taschenbuch der Htitte, Berlin, i8th edition.
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CASE i . When xz

-\-px q= o; p and q positive. Compute the auxiliary

variable u from sinh u =
^ ^f ^;

then the roots are

Xl = =t= 2 v"~\p sinh \ u.

x^ = V \p sinh \u-\-i V~p cosh | u.

x
3
= I/ \p sinh

-I
u i V p cosh \ u.

CASE 2. When x* px $= o; p and q positive, (i/)
3 < (\ qf. Com-

pute from cosh u = 2
'

T ^M/> tnen tlie roots are'/2

= =F 2 l^ -|-/>
cosh

x^ = I/ \p cosh \u -\r i V p sinh \ u.

xz
= V \P cosh J * t/ ^ sinh ^ w.

CASE 3. When #3

/j; q =o-, p and ^ positive. (^-/)
3

>(-J- ^)
2

. Com-

pute the angle u from cos u =
^-^7\~^\y'>

then tlie roots are

x^ = =F 2 I/
7
|/> cos ^ w.

^T
2
= =h 2 I/ |/> COS (i + 120).

x
9
= =i= 2 I/ -^/> cos (^ w + 240).

CASE 4. When x* pxq= o; / and ^ positive. (-J- ff =

For applications of hyperbolic and circular functions to the solution of the

cubic whose coefficients are general (i. e., real or complex), see a brief paper

by Mr. W. D. Lambert in American Mathematical Monthly for April, 1906.



GEOMETRICAL ILLUSTRATIONS OF HYPERBOLIC
FUNCTIONS..

The algebraic relationship of the hyperbolic functions to the circular func-

tions has been discussed in the section on definitions and formulas. A close

relationship also exists between the elliptic functions and the hyperbolic

functions. Thus it may be shown that the elliptic integral of the first kind,

V i sn

in which k is the modulus and < the amplitude, reduces to = gd~ l
< when

k = i . The elliptic functions thus degenerate into the hyperbolic functions

when the modulus is equal to unity. A case in point is the elastica, the

equation of which takes the form of an elliptic integral, excepting when the

modulus is unity. It then reduces to the two equations

X 1/2= K 2 tanh u; - =
,

a a cosh u

which is a syntractrix described by the free end of a rod whose middle point

traces out the tractory.
1

Ligowski gives the following easy geometrical method of demonstrating

the relations between the hyperbolic and circular functions. Let the equation

of the circle of unit radius be

and call

y

uc the arc of this circle from the positive x axis to the point xcy c

Then, of course, the circle may be repre-

sented by the two equations

xc
= cos uc ; yc

= sin uc .

Now, the area of the circular sector, whose
O 77 T

chord is 2yc ,
is - - uc ,

so that xc and

yc may be regarded as the cosine and sine of

a sector uc . The ellipse may be derived

from the unit circle by multiplying the or-

dinates yc by b. Hence, in the ellipse, the

area of the sector subtended by the chord

2 ye is, say, ne and ue
= bnc .

1 If in these equations m is substituted for 2 they represent any syntractrix. The two

equations, with this substitution, can be combined to the following :

(au '

showing that the curve is traced by a point on a circle of radius am whose center is in

motion. It is noteworthy that if in this equation the hyperbolic sector u is replaced by

a circular sector </>,
the new equation represents a prolate or a curtate cycloid, or In tier

the syncycloid. Thus the syntractrix may be considered as a syncycloid with an infinite

period.
acxviii
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Thus
Uf,

xc cos uc
= cos -r-

so that for the ellipse,

.

yc
= sin w c

=y = sin

^2 , ^ _ .
* e
~

72
~

-1

,xe =xe
= cos

; ye
= b sin -7--

The equation
jt

2 y = i

represents an equilateral hyperbola, and if u is the area of the hyperbolic

sector whose chord is 2_y, then there can be no objection to writing

x= cosh u ; y= sinh u,

where cosh and sinh are functions whose nature is still to be determined.

The most evident relation is

cosh2 u sinh
2 u= i .

Now if i =V i, the hyperbola may be written

which is an ellipse whose major axis is unity and whose minor axis is i.

Comparing this with the ellipse discussed above, it appears at once that

x= cosh u = cos ->
i

-.. . . . u
y = sinh u = i sin r>

or, in an equivalent form,

cosh u = cos iu ; sinh u = i sin iu,

cosh iu= cos u ; sinh iu= i sin u.

The investigation of cosh u and sinh u can be completed in various ways ;

for example, by writing out the series for cos iu and i sin iu and showing
that their sum or difference is e M

.

The geometrical properties of the hyperbolic functions themselves are com-

monly discussed in reference to the equilateral hyperbola. They could also

be derived from the geometry of the ellipse without reference to the hyper-
bola

;
but a more perspicuous method seems to be to study the relations of

these functions to both curves at the same time. 1

In any ellipse,

J See Bull. Geol. Soc. Am., vol. 2, 1891, p. 49, and Am. Jour. Sci., vol. 46, 1893, p. 337.
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the area a (3 may be chosen as the unit area, so that the equation of the

curve becomes

By varying the value of a in this equation a family of ellipses is obtained

each of area TT, all with the same center and all with axes lying in the axes

of coordinates. The envelope of this system of curves is the hyperbola

xy = ^-,
and this may be conceived as generated by the motion of a single

point. The coordinates of the point Plt
at which the hyperbola is tangent

to the ellipse, are

Via \ 2

and the coordinates of the point c at which the hyperbola is tangent to the

unit circle, are

i
= 7T <~*d

4:

J X-t *
'

*
i

n
f

;*tt*s

~tv(jL ^'"- '

FIG. 5.

If the hyperbola is conceived as generated by the point c in moving from

its original position to P
l (or as a "

line of flow "), its radius vector sweeps

over an hyperbolic sector ocPr If this area is called
,
then by a well-

known formula, dtl = x dy
- y dx,
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and because xy = %,

dy dx\
du = i

I
- -

)
.

J

\ y x )

Since no integration constant is required,

u =. \ log = \ log a2
or a = e

w
.

x
l

The area u is the sector oP
l cP^ where the coordinates of P

t
are x2 =yiy

and y2
= xr It is noteworthy that two other areas, APl

cP
z
B and CD P

l

cP
2 ,
have this same value, for evidently

X%
/*.Va

y dx = I X dy= log a= U.
J

2/i

The length of the chord /> />
8
is

and half of this, or /> a, is the hyperbolic sine which may evidently be put
in the form

eu_ e -u
smh u = .

2

Since the curve P
l
cP

2
is an hyperbola,

and therefore

+ *-oa= |/ 1 sinh2 u = - - = cosh u.

The diameters connecting the points of intersection of the unit circle and

the ellipse whose axes are a and a 1
, may be called the isocyclic diameters

of the ellipse, because the circle and the ellipse have the same area. These

diameters are not conjugate. If the ellipse is conceived as the section on

the greatest and least axes ot an ellipsoid of unit volume, the isocyclic

diameters are the traces of the circular sections of the ellipsoid. The coordi-

nates of one of the points of intersection, say E, are

x =
l/a2

-hl

and therefore the angle v, which the vector oE makes with the major axis of

the ellipse, is given by the relation

tan v a 1 =e
and it follows that

I

tan f 2v\ =
-J- (cot v tan v)

= sinh u.

is angle ( 2v\ is gd u, or the gudermannian of u, so that in any
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ellipse whatever the angle made by any line parallel to one isocyclic diameter

with a perpendicular on the other isocyclic diameter is the gudermannian of the

natural logarithm of the semi-major axis, this being expressed in terms of the

isocyclic radius, which in the general case is the square root of the prod-
uct of the semiaxes.

1 In the diagram the gudermannian bob^ is shown as

bisected by the axis of the hyperbola, and it is worth remarking that if the

ellipse were to be distorted into a circle by compressing the major axis and

elongating the minor axis, the line ob would be brought into coincidence

with ob^ so that gd u can be defined as the angle through which an isocyclic

diameter has swept when the ellipse has been derived from a circle by irro-

tational plane strain.

The angle 45 -f
f

which occurs in the formula for meridional parts

is the angle made by either isocyclic diameter of the ellipse with the minor

axis, and the tangent of this angle is the semi-major axis a.

The twofold relations of the hyperbolic functions to the hyperbola and

the ellipse are illustrated in a somewhat different manner in figure 6.

Here the curve pl
cpz

is an arc of an hyperbola jy
2 x1 = i. If the area

of the sector opl
c p^ is called u, a />1

= sinh u and oa = cosh u. Make

bc=pl
a and draw the associated ellipse shown in the diagram. Then the

angle boc=gdu / bo = cosh u and

tan gd u = sinh u

sec gd u= cosh u

sin gdu = tanh u.

The ellipse has corresponding properties. Since the gudermannian is the

angle between either isocyclic diameter and a line perpendicular to the other,

the line ob may be regarded as coinciding with one isocyclic diameter and the

axis of abscissas with the other. The major axis of the ellipse then bisects

L The isocyclic diameter used in this illustration of hyperbolic functions lies in the

circular section of a shear ellipsoid, or an ellipsoid in which the mean axis is a mean

proportional between the greatest and least axes. The position of the circular section

of the general ellipsoid is also readily expressed in terms of hyperbolic functions. Let

the equation of the ellipsoid be

*-2 v? 9.2

+ IT + !*>>

If = cosh u
lt
and

-j-
= cosh w2 ,

the angle v which the circular section makes with the greatest axis is given by

i b a - * tanh w,
tan = T tanh =

c -._ b -*
=

..nhl^'

If Ul = w, and -?-
= a this expression reduces to tan v = a -\ or to the case of the

shear ellipsoid.
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the angle 90 gdu, its magnitude is 2 e
u

,
and the equation of the ellipse is

4 xy tan gd u tan
2

-+- i) = i.

'

By varying the value of tan gd u (or sinh u) a system of ellipses is obtained

whose envelopes are y i
,
so that if any one of the ellipses is supposed

to be derived from the circle by distortion, the process is that generally

known as "shearing motion or scission."

If the points in the circle are sought which correspond to the points on the

FIG. 6.

major axis of the ellipsoid, it will be found that the angle between the two

positions (the angle of rotation) is equal to the gudermannian.
1

If instead of the horizontal, the vertical line in figure 6 had been taken as

coinciding with the isocyclic diameter of the ellipse, the result would have

been the discovery of a system of ellipses whose envelopes are x d= i,

similar in all respects excepting orientation to that discussed.

1 Love's Treatise on the Theory of Elasticity, vol. i, p. 43.



METHODS OF INTERPOLATION.

It is not easy to describe the use of the tables which follow without some
notes on the methods of interpolation with reference to which they are

arranged. In all of them the argument advances by equal increments, each

equal, say, to o>. It is required to find a value of the function F interme-

diate between two tabulated values, FQ
and F

lt corresponding to a fractional

value of the argument or to wo>, where n is always less than unity, and

preferably less than one-half.

Let Fn be the value of the function to be determined
;

let Fi and /*!. 2 be

tabulated values of F immediately preceding Fot
and let F

lt F^ be values

immediately following F . Denote F
l
F by a

ly
other first differences (A')

being similarly represented. If also a
a

a
l
= b^ b

l
b
Q
= c

lt
etc. , the whole

system of functions and differences is shown in the following schedule :

l

F
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The coefficients are those of the binomial theorem. This formula is appli-

cable to the first intervals of a series, which is not the case with any other

mode of interpolation. It may also be adapted to the last intervals by sub-

stituting n for n and a, b'
', c", d"',

. . . for^, b
iy c^ d^ . . . . In systematic

interpolation, such as is involved in the construction of tables, it is usual to

employ the more rapidly converging formulas of Stirling or Bessel; but when

a computing machine and a table of products are available it is sometimes

less laborious to compute an extra term of Newton's formula than to calcu-

late and apply the mean differences called for by the other methods. Both

Stirling's and Bessel' s formulas can be derived from Newton's by known
relations between the several differences.

In Stirling's formula the mean of the first differences next preceding and

followingFQ
is made use of instead of only the latter, as in Newton's formula.

The third differences are similarly treated, so that #
,

c
, etc., being new

quantities, are defined by

These mean values are used in conjunction with the even differences on the

same horizontal line with FQ in the schedule, and Stirling's formula is

n* n (n
2

i) ri
l

(n
2

i)Fn Ft = nat+-^b, +
-

^i-
r + -

^T"
(' i)Q2

4) .

5!
*""

To interpolate backward it is only needful to substitute n for n.

In Bessel's formula use is made of mean differences of the even orders, and
if b\ d, etc.

,
are these means they are defined in terms of the scheduled differ-

ences, thus :

They are used in conjunction with the simple odd differences ar c
ly etc., and

the formula is

p p_ n i

n (n T )
fl-L.

n (n *)(** i) t(n-\-i)n(n i (n 2) .

2 ! 3 ! 4 !

; + !)( i) (n 2) (

5

When n = ^, or for interpolation to the middle of an interval, the co-

efficient of ^ vanishes and Fn F is independent of third differences, which
is clearly a great advantage. In general this method is very advantageous
.when n approaches one-half, while Stirling's formula is preferred for small

values of n.

V7*_
-

i.) n\n- -i; ^ ^; ^n -%)

f \
l ~T .
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When Bessel's formula is used for backward interpolation, it may be

written

*__/?= -na
> + i^H (A*L) -."'"--H"-*)^ .....

>

being taken as positive.

A distinct method of interpolation is founded directly upon Taylor's
theorem. If F ' F ", etc., are the successive derivatives of F , and w is the

constant increment of the argument, this fundamental theorem may be

written

zr Z7 V ,

*
w2V .

"S '

^o'"
* *

^o"
/^ ^ = o,^ + -J-0

___^ T^ ......

and this becomes an interpolation formula when the derivatives are ex-

pressed in terms of the differences. This is readily accomplished to any

degree of exactness whenever the differences become rigorously or sensibly

constant at some particular order and the tabular interval is small relatively

to the period of the function. To find the numerical values of the deriva-

tives it is not necessary that the analytical expression of the function should

be known ; for, rearranging the terms of the formula of Bessel and Stirling

according to ascending powers of n and comparing coefficients,

(Bessel.) (Stirling.)

-.. .^-Ifo.-K +

f." = (*-*',-T<r <*+*.+ )
= (*.-**,+

Hence, to compute the first derivative, say from Stirling's formula, when

the 6th differences and -fa of the mean of the corresponding third differences

are negligible, it is only needful to take the mean of the first differences pre-

ceding and following the tabular value of the function, subtract from it one-

sixth () of the mean of the corresponding third differences, and divide the

result by o>.

Newton's formula gives for arguments near the beginning of the series of

tabular values :
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and for arguments near the end of the series of tabular values,

F; = (' + * *' + i c" + i d" + \ e'" + . . .

F>' = 4 (<*' + c" + H d" + f *'" + . . .)

The differences of the derivatives may of course be found and discussed

in the same manner as those of any other function, and the higher deriva-

tives, Fn
"

', Fn" t
..... can be expressed in terms of the differences of Fn .

To distinguish the differences of F' from those of F
t they may be denoted

by Greek letters, and the notation is exhibited in the following scheme :

a y a^ -\- a = 2 a
Q

F; ft s

a
i 7i 7i + y = 2 7o

FS A
s

^
Using Stirling's formulae, page xxxvi, the successive derivatives inclusive

of fifth differences are now

and the interpolation formula may be written

or, neglecting fifth differences,

and for backward interpolation

/
n

\

n*

a n ( n 2
\ ~|

;'
--a

o +- ^o
-_

(-
--

:) yo
j.
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In the tables which follow, the first derivatives multiplied by <o are tabu-

lated in units of the last decimal place of the tabulated function (except
Table VII), and the remaining quantities required in the computation can

be found by mere inspection. The higher order of differences will be needed

only for a very few arguments at the beginning or end of those tabular

values whose numerical magnitudes approach o or oo. For the remaining

arguments it will be found that the -$ part of the second difference of to Fn
f

is not great enough to influence the result, and it is therefore sufficient to use

2

wa
o being the mean first difference of w F' corresponding to F . This formula

is rigorous when third differences are zero. In most cases can be found

mentally, and since o> f Fj -\- oj is here to be regarded as an interpolated

value of w F ', no confusion can arise as to the sign of the correction. It thus

becomes almost as easy to include ^ a
o
in the computation as to omit it. A

convenient rule is : Find by linear interpolation the value ^ F' for one-half

the interval f
J

; multiply this interpolated value by the entire interval (?i)

and apply the product to the tabular value of the function, either positively

or negatively, according as the function is increasing or decreasing. To
illustrate the application of this rule, find Iog 10

sinh 0.00304. In this case

n = 0.4 and the table gives

^0 = 7-4771 2; >F ' = 1447.7; *> = -48,3,

the last two quantities being expressed in units of the fifth decimal place.

Interpolating a> F' linearly for one-half the interval,

H
u) Fn

= to (F
f

-\ s) J4477 0.2 x 48,3 = 1438,0 ;~

multiplying this value by n and adding the result to the tabular value of the

function, there results

/;= 1438,0 X 0.4 + 7.47712 -=7.48287.

The corresponding difference formula (Bessel's) is

The derivative formula () with two terms has the advantage of being much

more convenient than the difference formula, while the accuracy of the two

is the same (five-eighths of a unit) when the derivatives are tabulated to the
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same order of decimal as the function. In the case of linear interpolation,

however, it is in general more accurate to use the differences, the maximum
error of the difference formula being one -half of a unit and that of the de-

rivative formula three-fourths of a unit in the next succeeding decimal place.

The accuracy of the two formulas is the same when the next succeeding

decimal of the derivative is tabulated. The error of the derivative formula

is then simply the error of the tabular value, while the error of the difference

formula may be =, > or < than that of the tabular value, but is never greater

than one-half of a unit.

Interpolation formulas which are applicable only to a single function are

rarely advantageous, because as much time is often consumed in looking them

up as is saved by employing them
;
but some formulas applicable to hyper-

bolic functions are so simple that when once suggested they can hardly be

forgotten. Thus, Taylor's theorem gives at once

n2
o>

2 n3
co

3

cosh (u -j- n o>) cosh u = n o> sinh u -| cosh u -j
j

sinh u -f . . .
,

and the form for the sine is of course similar. Again, when, as here, the

cosine is tabulated with an argument in terms of radians,

cos (u + n co) cos u= no) sin u cos u -j
j

sin u -f- . . . . ,

the series for the sine being similar.

So, too,

logc (u + n w) log,, u = loge

(
J + -^

n ot
. n* u?

. n* >
3

Simplest of all is the exponential,

eu +n_ eu ^ eu en<*_ l=e

= eu (-\- o. 01 n + o.ooo,05 rc
2

-f 0.000,000,167 n 3 + . . .), (> o.oi)= "(+ o.ooi n -f- o.ooo,000,5 n2

-f- . . .). (</>= o.ooi)

The series in ni may be replaced by 7z, and this may have any finite value.

Especially when a computing machine is available, this formula is easily ap-

plied and is, of course, rigorous.

From time to time inverse interpolation by a method more accurate than
first differences is called for

; indeed, whenever interpolation of a function

by higher differences is needful, it is equally needful that the argument cor-

responding to a given function should be ascertained by a like process. The
method ordinarily pursued in such cases is to estimate two values of the argu-
ment, one a little greater and the other a little less than that of the required
argument, interpolate corresponding values of the function, and finally inter-

polate linearly over the reduced interval for a final value of the argument.
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Another method consists in interpolating values of the function and its deriv-

atives for an approximate value of the required interval and then computing
a correction to this approximate value by means of a reversed Taylor's series.

1

If second differences only are to be taken into account, the usual method

of procedure is to estimate an approximate value of w, say ri
',
and with this

estimated value we interpolate linearly as before and find the value of & /v
~T

corresponding to one-half of the estimated interval (

J
. Then the required

interval () is equal to the difference between the given value and the nearest

tabular of the function divided by w Fn> . This method is in fact simply the

reverse of the one for direct interpolation. A recomputation is of course

necessary if the values of n and n' are not practically the same. As an illus-

tration, find u when Iog10
sinh 11 7.48287. We first compute

, 7.48287 7.47712

1448,0

then the value of w /v in terms of the last tabular unit is found as before
2

by linear interpolation to be 1438,0. Hence

7.48287 7.47712n = -- ^ - = 0.40 and u = 0.00304.

Since the estimated and computed values of the interval agree, there is no

need of a recomputation.
The methods which are based upon an estimated value of the argument

are unsystematic and clumsy. It is much better to use a formula which

gives the required result by a direct and rigorous method. To find such a

formula, divide Taylor's series (eq. a) by w /?', and put

Fn F S F' f

atFJ" ^ F "5

/o' .

then the interpolation formula may be written

Reversing this series in accordance with the relation,
2

x = 2- + ^ (
-

,) + 4 ( , + 2 a?)

i ^ 5 i

2 ^ 2 1

1 Rice's Theory and Practice of Interpolation, section 83.

2 Prof. James McMahon :

" On the General Term in the Reversion of Series." Hull.

Am. Math. Soc., April, 1894.
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which is the reversed series of

and rearranging the terms,
1

n = n
l -}-nl [ ^/2 + 2 (^/2)

2

5 (nif^ + 14 (ni/2Y + ]

+ "? [,/, (-1+5 (!/,)
- 21 (^/2)

2 + . . )]

+ v* \_nJi (1+6 !/,) + 3 (i/8
)

2

+...]
+ / [-i/.+ ] , W-

In the actual computation it is convenient to put

r= n
'

;

2 u> /*"
'

then, when successive values of Fn are tabulated in units of the last decimal

place, and Stirling's coefficients are used,

nif* = rt (ao
:
k 7o) ^1/3 = i r w (A T2 S

o)

i /4
= T2 r <o y Wi/5 <rV ^ 8 -

The formula is rigorous inclusive of fifth differences, and does not require

the computation of an approximate value of n. It is applicable to any func-

tion or series of tabulated values whose successive derivatives become evanes-

cent. It is particularly convenient when differences higher than the second

are neglected. The formula then becomes

n = n
l + ! [ r w a -\- 2 (ra> a )

2
5 (r a> a

)

3 + 14 (ro) a
)
4

] .

Since r a a is a very small quantity, the higher powers are seldom needed, and,

should they be required, are easily taken into account. As an example, let

it be required to find u when Iog10 sinh u = 7.48287. We compute

.= 7.48287 - 7 .477i 2 =04Q

! 0.40r=- -1
7- =--- = 0.0001;

20* F9
2 x i447>7

and
n

l
rioaQ

= 0.40 x o.oooi X ( 48,3) = o.oo.

Hence n = n^ = 0.40 and w = 0.00304, the same as obtained by the other

method.

When Fn = eu
,
it is easily shown, either by means of series (d) or by inde-

pendent methods, that

n= + n
l 0.005 n

\ + 0.000,033 ?/j

3 + . . .
, (a = o.oi )

n=-\-n l 0.0005V + ..... O = o.ooi)

These formulae afford an easy means of finding the natural logarithm of a

1
See, also,

" Inverse Interpolation by Means of a Reversed Series," Phil. Mag., May, 1908.
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number from the tabular values of e u
. Thus, to find the natural logarithm

of 0.9642102, we compute

0.9646403 0.9642102n
i 7- 7

~ ==r '44587'
0.0009646403

Substituting in the last of the above equations

n = 0.44587 0.0005 x (o.45)
2= 0.44577,

hence nat log of 0.9642102 = 0.0364458.

One of the most important applications of differences is the detection of

errors in values tabulated at equal intervals of the argument. It may be

shown by substitution in the schedule of differences (page xxxiv) that an

error, + e,
in F

Q produces errors in the successive differences of any order

which are multiples of e, the law of distribution of the multiples being that

of the corresponding coefficients of the binomial theorem, and the signs of

the errors being alternately positive and negative. Since some order of dif-

ferences of every continuous function must vanish, the presence of an error

in a tabular value must ultimately result in producing successive differences

of a certain order which alternate in sign. A comparison of these differences

with the corresponding binomial coefficients enables one to estimate the mag-
nitude of the error. Thus in the series which follows :

X
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Table I is devoted to 5-place values of the logarithmic hyperbolic sine,

cosine, tangent, and cotangent of u expressed in radians. The argument
u advances by ten-thousandths from o to o.i, by thousandths from o.i to

3.0, and by hundredths from 3.0 to 6.0 In this as in all the tables (except
Table VII), instead of the first differences, the first derivatives of the func-

tions multiplied by the tabular interval (w) are tabulated in units of the last

decimal place, under the heading w/^'. As noted above, this agrees with

much of the most authoritative modern practice and facilitates interpolation.

It did not appear worth while to extend the tabulation of the table beyond
six radians, because higher values are seldom needed ;

but in Table IV a few

very high values of e - u are given, from which in case of need the hyper-
bolic functions can be found.

In Table II the natural values of the hyperbolic functions are tabulated

for the same arguments as in Table I. In some instances the values are

given to one or to two places of decimals more than would be obtained by
taking the inverse logarithms of the preceding table.

Table III gives sin u = i sinh iu and cos u = cosh in with their loga-

rithms to 5 decimal places, the argument u being expressed in radians.

The tabulation extends from u = o.oooo to o. 1000, and from u = o. 100 to

i. 600, because 90 = 1.570 7963 radians; so that, this value of --
being

borne in mind, the table affords the means of finding the sine or cosine of any
arc expressed in radians.

Independently of hyperbolic functions, this table is often convenient. It

also facilitates the computation of the principal hyperbolic functions of

complex variables. Thus

sinh (ft iv) = sinh u cosvi cosh u sin v,

cosh (u iv) = cosh u cos v == / sinh u sin v,

and to compute either of these functions it is only needful to take out two
tabulated logarithms from Table III, two from Table I, make two additions,

and look out two antilogarithms. It is of course conceivable that all the

four quantities involved should be tabulated once for all
; but even if u and

v advanced only by hundredths, such a table would occupy 200 pages. To
find from it functions corresponding to u and v expressed in thousandths

would require three interpolations a process quite as laborious as the use

of the tables here given.

Space which would otherwise be vacant is utilized to give the angular
values of the radian arguments, or a table of conversion of radians from

xliii
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o.oooo to o. 1000 and from o. 100 to 1.600 into degrees, minutes, seconds,
and hundredths of a second.

Table IV gives the values of Iog10 e
u

,
eu and e

~u to 7 decimal places from
u = o.ooo to 3.000 and from 3.00 to 6.00. The values of eu and e~" enter

into a vast number of equations representing natural phenomena, especially
those (as Cournot remarked) which can be classed under the generic denom-
ination of phenomena of absorption or gradual extinction. The ascending
and descending exponentials may be regarded at will either as hyperbolic
functions or as independent components of hyperbolic functions, since

e " = cosh u sinh u

while, on the other hand,

e u e~ u e u
-f e~ u

sinh 21 = ; cosh u = ;

e u e~ u
TT

tanh u = - -
; gd u == 2 tan

~ l e u--
.

6 ~T~ 6 2

It is further evident that a table of e " is a table of natural antilogarithms.

Formula e on page xli affords an easy means of obtaining the natural loga-

rithm of a number from the tabular values of c u
. It is of course unneces-

sary to give the derivative of eu
,
since this is eu

,
while the derivative e~ u

is

e
~M

. In general the interpolation or extrapolation of the function is

very easy. (See formula c, page xxxix). The logarithm of e
~ " is not given

because, being merely the arithmetical complement of the Iog10
eu

,
it can

be read off as fast as'it can be written down.

In any table of Iog10
eu where the interval of u is % the difference of

successive logarithms is constant and equal to ^ Iog10
<? or 0.4342 9448*0.

If the logarithm of eu + n<a is required, this will be

(u + not} Iog10 e= Iog10 eu + nu Iog10
e.

Hence it is practicable to prepare an extended table of proportional parts or

a table of n Iog10 e which is applicable to any table of Iog10
eu when the tab-

ulated values are multiplied by </>. Such an auxiliary table is given at the

close of Table IV, in which the argument varies from o.ooo to 0.500. If

ID is unity, this is merely a 5-place table of Iogi eu . If, on the other hand,

ia is o.ooi, as in the earlier part of Table IV, the auxiliary table gives the

increments corresponding to n to 8 places of decimals. Thus, if log, & -088245

is required, Table IV gives log, <?-
088 = 0.0382179, the auxiliary table gives

for = 0.245, n log,,, e = 0.10640; and since & = o.ooi, <u n Iog10
c =

at

0.00010640, which added to log,
-088

, gives log, <?-
088245 == 0.0383243. In

the latter portion of Table IV & is only o.oi; so that, if the Iog10
e*--

wanted, the main table gives log^= 1.3028834, and ^ times n log c is

o 0010640; so that the required number is i 3039474.
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When Iog10
eu is required for u > 6.00 the auxiliary table is insufficient to

give 7-place values. Then the main table, IV, may be used as an auxiliary

table. Thus

I g ^11.088245 = I g e \\
_f_ I g ^0.088245

= 4.777 2393 +0.0383243= 4.8155636.

In the second part of Table IV values of e - u and the logarithms of eu are

given, u varying from i to 100. The logarithms are given to 10 decimals
;

the other functions to 9 significant figures. Such high values are seldom

needed, but are included here lest these tables might some times fail the

computer.
Table V gives the natural logarithms of numbers from i to 1000, with

their derivatives to 5 places of decimals. These derivatives are merely the

reciprocals of the arguments, and since loge (-)
= loge >', the logarithms

of the derivatives are the tabulated logarithms taken negatively. The

table thus gives, in addition to the logarithms of 1000 whole numbers, the

logarithms of 1000 proper fractions lying between o.ooi and unity.

THe interpolation of natural logarithms is much less simple than is that

of common logarithms, and this is the main reason why the latter are pre-

ferred for computation. A few simple rules, however, facilitate the needful

calculations. When the natural logarithm of a vulgar fraction is required

it is best to look out the logarithm of both numerator and denominator and

subtract. If the natural logarithm is required of a fractional number stated

decimally and less than 21.000, no attempt should be made to interpolate it

directly, because the third differences of the table cannot be neglected for

numbers so near the beginning of the table. If the number lies between

10.000 and 21.000, as, for example, 12.345, it should be written 123.45 / 10 >

and the required logarithm will be nat log 123.45 nat log 10. It is safe to

interpolate the first of these between nat log 123 and nat log 124, using the

formula for second differences. If the number whose logarithm is to be

found lies between i and 10, as, for example, 8.2468, it should be written

824.68 / 100, so that the required quantity is nat log 824.68 nat log 100.

The first of these logarithms can be found by using only the mean first

differences or the tabulated derivatives between the logarithms of 824 and

825. For values of the argument between 21 and 158 interpolation requires
the use of second differences, while above 158 average first differences or

the first derivative is sufficiently accurate, inasmuch as the error involved is

less than half a unit in the fifth decimal place.

It would be possible to interpolate the negative logarithms of the smaller

fractions given by the derivatives that is, from the reciprocal of 159 on to

the end of the table, or for numbers between 0.00628 and o.ooioo but this

would not be expedient, because these reciprocals are themselves rounded

values. If the natural logarithm of 0.0068352 is wanted as accurately as
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the tables will give it, it is best to find the logarithm of 683.52 and to sub-

tract from it the logarithm of 100,000. (See also formula e, page xli.)

The use of second differences may be avoided altogether if the computer
chooses, for any number not lying between 158 and 1,000 may be multiplied
and divided by another number which will bring the numerator within

these limits. Thus, if, as before, nat log 12.345 is required, this number

may be written 246.90 / 20, and the natural logarithm of the numerator found

by help of the derivative, less nat log 20, is the required value.

The awkwardness of a table of natural logarithms is inherent and cannot

be overcome by any device. It depends on the fact that e and the base of

numeration, the number 10, are incommensurable quantities. If our numer-

ation were duodecimal, as it might have been had six fingers to a hand been

the rule instead of the exception, 12 would also have been the most convenient

base for a table of logarithms. A great table of natural logarithms, such as

Barlow's 8-place table of all numbers from i to 10,000, is only a little more

convenient than that here offered, and with it, too, it is expedient to multiply

any small number by a factor such that the product approaches 10,000.

Table VI gives the values of the gudermannian of u to 7 places from

u= o.ooo to u = 3.000 and from u= 3.00 to u= 6.00. In this table u is

expressed in radians, and %d u both in radians and in angular measure. For

theoretical work the gudermannian in radians is usually the more convenient,

but for use in finding hyperbolic functions it must be reduced to an angle.

The gudermannian, gd #, is connected with the hyperbolic functions by
the following well-known relations :

sinh u = tan gd u / cosh u = sec gd u ; tanh u= sin gd u

tanh -- = tan \ gd u ; u = loge tan (- - 4-

Thus Table VI, with the help of a y-place table of logarithms of the cir-

cular functions, gives y-place values of the hyperbolic functions.

The derivative of gd u is sech u, and can be used independently of the

gudermannian.
Table VII is substantially a reversion of Table VI, and gives the anti-

gudermannian in terms of the gudermannian, both, however, being expressed

in minutes and decimals of a minute. If m is the antigudermannian ex-

pressed in minutes and u the same function expressed in radians,

= 3437-7468 u = 3437.7468 loge tan
(

-

Table VII is a table of m, and if m is multiplied by o.ooo 2908 8821 the

product is u in radians. This table is known to navigators as a table of

Meridional Parts for a Spherical Globe. It is frequently of use in the dis-

cussion of physical questions and is the very foundation of navigation with

Mercator charts. In the more modern works on navigation, however, the
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ellipticity of the meridian is allowed for in computing tables of meridional

parts, and consequently this table will probably never be reproduced in a

navigator. For this reason it is here preserved for computers who are not

engaged in navigation.

To test this table, which is borrowed from Inman, 200 of the values, or

one in every 27 entries, were compared with Gudermann's y-decimal place

table of the antigudermannian in radian measure. In nearly all cases Inman's

last figure was confirmed, but in a few instances the last figure is incorrect

by a unit. Inquiry into these cases showed that the maximum error detected

was less than o 006 of a minute. Thus the last figure is not absolutely trust-

worthy, but is near enough to enable the computer to interpolate accurately

to 5 places. If 7 places of the antigudermannian are required, they can be

found by inverse interpolation in Table VI.

The earlier part of Table VII may be interpolated by first differences with-

out considerable error. At about 843O
/

one-eighth of the second difference

becomes approximately half a unit in the last tabulated place, and beyond
this point second differences should be taken into account.

Table VIII is a table for converting radians into angular measure and

vice versa. A few numerical constants are appended.



HISTORICAL NOTE.

The first and most important application of the functions now known 33

hyperbolic was made by Gerhard Mercator (Kremer) when he issued his

map on " Mercator's projection," in 1569, or, as some say, in 1550, while

Bowditch gives the date as 1566. To this day substantially all of the deep-
sea navigation of the world is carried on by the help of this projection,
which has been modified only to the extent of correcting the "meridional

parts" for the ellipticity of the meridian. Mercator' s problem was to find

a projection on which the loxodrome should be a straight line. The solu-

tion is unique, and for a spherical globe is \gd where A is the latitude,

m the "meridional part," or the ordinate on the projection of a point in

latitude A., and a is the radius of the sphere. Of course, this relation gives

m =
loge tai

a

and this Mercator must have tabulated. He published his map without

explanation, however, and it was left to Edward Wright in 1599 to state

the formula for m.

"The actual inventor of the hyperbolic trigonometry," says Professor

McMahon, "was Vincenzo Riccati, S. J. (Opuscula ad res Phys. et Math,

pertinens, Bonpniae, 1757). He adopted the notation Sh. <j>, C/i. <#>, for the

hyperbolic functions and Sc. <, Cc. <f> for the circular ones. He proved the

addition theorem geometically, and derived a construction for the solution

of a cubic equation. Soon after Daviet de Foncenex showed how to inter-

change circular and hyperbolic functions by the use of |/
- i

,
and gave

the analogue of de Moivre's theorem, the work resting more on analogy,

however, than on clear definition (Reflex, sur les quant, imag., Miscel.

Turin Soc., Tom. i). Johann Heinrich Lambert systematized fhe subject

and gave the serial developments and the exponential expressions. He

adopted the notation sinh
, etc., and introduced the transcendent angle,

now called the gudermannian, using it in computation and in the construc-

tion of tables
1
."

C. Gudermann published an important memoir on Potential or Cyclic-

hyperbolic functions in 1830*, followed by extended tables. In recogni-

1

James McMahon, Hyperbolic Functions, p. 71.
7 Crelle's Journal, vols. 6, 7, 8, and 9. These memoirs were afterwards reprinted in a

separate volume. xlviii
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tion of his contributions to the subject, Cayley, in I862,
1

proposed the

name gudermannian
2
for the angle which Lambert called transcendent,

and which had been variously designated by others. Among other more

recent works on hyperbolic functions are Siegmund Giinther's Lehre

von den Hyperbelfunctionen, 1881, and Mr. James McMahon's Hyper-
bolic Functions, 4th edition, 1906.

The first large table of hyperbolic functions we have met with is Legen-

dre's table of log tan
( + )

to 12 decimals. The argument advances
\ 4 2 /

by increments of 30 minutes, but five differences are tabulated to facilitate

interpolation.
3 Gudermann in 1831 published a table of the same func-

tion, using centesimal degrees and advancing by hundredths of a degree

(oo'32".4) from o to an entire quadrant, the function being given to seven

decimal places. This was later supplemented by a table advancing by hun-

dredths of a degree from 88 to 100, the function being given to eleven

decimal places. Gudermann also gave a 9-place table of log cosh u, log

sinh u, and log tanh u, from u = 2.000 to u = 5.000, and a lo-place

table of the same functions from u = 5.00 to u = 12.00.

In 1862 Z. F. W. Gronau4

published a 5-place table of hyperbolic func-

tions, the argument being the gudermannian gd u in sexagesimal degrees
and minutes. He tabulated to this argument log cosh &, log sinh u

y
and the

Briggs logarithm of f -f
J
instead of the natural logarithms of this

function, following therein a suggestion of Lambert.
A In 1890 W. Ligowski issued his Tafeln der Hyperbelfunctionen und der

Kreisfunctionen, which is admirably accurate and much the most useful

collection of tables of the hyperbolic functions hitherto printed. He filled

the gap left by Gudermann by computing log sinh
, log cosh u, and log

tanh u from u =0.000 to 2.000. These he gives to only 5 places, but in

addition he tabulates gd u in degrees, minutes, seconds, and decimals of a

second. These values are in all cases sufficiently accurate to enable the com-

puter to take out from an ordinary table of logarithms 7 -place values of the

logarithms of cosh &, sinh
,
and tanh u. The argument ranges from o.ooo

to 2.000 and from 2.00 to 6.00 for gd u, while log cosh u and log sinh u are

carried up to u = 9.00. Ligowski also gives the natural functions cosh u,

sinh u, cos u, and sin u to 6 decimals for values of u in radians from o.oo to

2 oo, the cosh u and sinh u being continued to u = 8.00. The only fault

we can find with Ligowski 's tables is that the increments of the argument
are sometimes inconveniently large.

1 Phil. Mag., vol. 24, p. 19.
2 Thus spelled in Cayley's paper.
3 Exercises de Cal. Int., vol. 2, 1816.

*Neueste Schriften der Naturforscher-Gesellschaft in Danzig, vol. 6, 1862.



1 HISTORICAL NOTE.

In 1883 F. W. Newman published a 12 place table
1
of the descending ex-

ponential from it = o.ooo to u = 15.349, and a i4-place table of the same func-

tion advancing by two-thousandths from 15.350 to 17.298 and by five-thou-

sandths from 17.298 to 27.635. In the same volume appeared Mr. J. W. L.

Glaisher's tables of the ascending and descending exponential to nine sig-

nificant figures, with lo-place logarithms. The argument advances by one-

thousandth to o.i
; by one-hundredth to 2.00; by one-tenth to 10, and by a

single unit to 500.

Mr. A. Forti's Nuove Tavole delle Funzioni Iperboliche were pub-

lished in 1892. The hyperbolic sines, cosines, and tangents, together

with their logarithms, are given to six decimals from o.oooo to 0.2000,

from 0.200 to 2.000, and from 2.00 to 8.00. Frequent errors, however, of

one, two, and three units in the last decimal place practically limit these

tables to five places. The gudermannian is tabulated in degrees, minutes,

seconds, and tenths of a second, and the logarithms of the arguments are

given to seven places.

In the volume here presented the first thousand values of log sinh u, log

cosh u, and log tanh u have been computed; the remaining values have been

taken from the tables of Gudermann or Ligowski. The values of the nat-

ural hyperbolic sines and cosines for values of the argument < o. i and of

the tangents for arguments > 2.0 have been computed; the remaining values

have been taken from the tables of Forti and Ligowski. A recomputation

of a great number of the borrowed values was made in order to obtain the

required accuracy. The values of coth u and log coth u have been computed.

In Table III the sines and cosines were obtained by interpolation from

the 7-place values of natural sines and cosines given in Hiilsse's Vega,

where the argument is expressed in angle. The logarithms of the sines and

cosines and the angular equivalents of the arguments have been computed.

In Table IV the values of c
~u are all taken from Newman's great

table. Those of c + u from o.ooo to o. 100 and from i to 100 are from

Glaisher's table. The remainder we computed, checking the results by

Glaisher's table or by reciprocating. It should be noted that the 7 place

table of en given in Hiilsse's edition of Vega is inaccurate and really

amounts to no more than a 5 place table. The logarithms of en were com-

puted independently of the values of eu .

Tables V and VIII are borrowed.

The values of gd u in Table VI in terms of angle are taken from Ligow-

ski, excepting the thousand values between u = 2.000 and 3.000. These

were interpolated from Ligowski's values (2.00 to 3.00) with due checks on

his accuracy. In preparing the table of gdu in radians it was necessary for

us to make an independent computation of this function from u = 0.300 to

u = 3.000 in order to secure accuracy in the seventh significant figure.

The remaining values were derived from Ligowski by converting angles

1 Cambridge Phil. Soc., Trans., vol. 13, 1883.
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into radians. A considerable number of his values, however, were tested

by independent computation.
Table VII is borrowed from the Nautical tables of James Inman, revised

by James W. Inman, London, 1867, with a few small corrections.

Finally, it may be remarked that the derivatives as given in these tables

have been computed for them. They are not derived from the diSerences

of the values as printed, but from more extended values, or are computed

independently, and the error of the derivatives as well as of the functions is

less than one-half of a unit in the next succeeding decimal place.

These tables were prepared in connection with the geophysical work of

the United States Geological Survey, and are published with the permission
of the Director.

GEORGE F. BECKER.
C. E. VAN ORSTRAND.

WASHINGTON, D. C., January, 1908.
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TABLE III

NATURAL AND LOGARITHMIC CIRCULAR FUNCTIONS
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TABLE IV

THE ASCENDING AND DESCENDING EXPONENTIAL AND

Log )0 (e
u

)

NOTE. In Table IV, for u greater than 2.302, the tabulated values of

the ascending exponential may sometimes be erroneous to one unit in the

last place.
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TABLE V

NATURAL LOGARITHMS

NOTE. In Table V, for u greater than 158, linear interpolation of

loge
w suffices to give a value whose error is not greater than one unit in

the last place.
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THE fiUDERMANNIAN
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TABLE VII

THE ANMUDERMANNIAN

m expressed in minutes in terms of the Gudermannian,

gd u expressed in degrees and minutes.

i minute = o.ooo 2908 8821 radians,

o.ooo 2908 8821 m = log e
tan f-L^-J- gd u)

= u radians.

In this table the second decimal place is sometimes erroneous by a unit.
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TABLE VIII

CONVERSION OF RADIANS INTO ANfiULAR MEASURE AND VICE VERSA
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