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ABSTRACT

This paper explores the feasibility of fast transform

coefficients as classification features for pulse type

signals. The fast transforms investigated are Fourier (FFT),

Walsh (FWT), and Haar (FHT) . A synthesized signal base

containing 79 distinct pulse shapes of similar duration

is analyzed for classification information compactness in

the discrete time, Fourier, Walsh, and Haar bases. Non-

parametric information measures are used. It is concluded

that a Fourier basis representation enables the significant

reduction of dimensionality necessary for further study as

a generator of classification features.
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DEFINITION OF SYMBOLS AND TERMS

SYMBOL DEFINITION

A^. „ A matrix having M rows and N columns.

T
A The matrix transpose of A.

j§k
The signal space vector representation of
the k-th signal of the m-th class.

S^ (nT) The elements of s£ which are samples of the
"* indicated signal taken at time instants

nT, n = 0, 1, ..., N-l and T is the sample
interval.

3^ (nT) The approximator or estimate of s^ (nT).

( m \

3C. The transform space vector representation
of the k-th signal of the m-th class.

x , The n-th dimensional component or coefficient
nk

f x (m )
t

~k

N Dimensionality of the space concerned.

M Cardinality of signal classes in the space.

K Cardinality of signals in the m-th class.

K

\T
m ' = ^r- Z x£ • Estimated mean vector or

m k=l
*" Prototype for class m.

A frn')

u
v J The n-th dimensional component of the Protytype
n

Km
~2(m) -s^r l CjS

m) - J
(m)

3
2

. Estimated variance~ \T k=l vector of class m.





SYMBOL DEFINITION

J2(m)
n

The n-th dimensional component of the
variance vector of class m.

m
The relative current probability that an
observed signal should associate with class
m.

5

£

Covariance matrix.

Correlation matrix.

The i-th eigenvalue of the real-symmetric
matrix C.

TERM

A/D Analog to Digital (continuous to discrete)
conversion.

FPT

FHT

FWT

Global

Fast Fourier Transform.

Fast Haar Transform.

Fast Walsh Transform.

The whole space, meaning consideration of
all dimensions.

Class The representations of signals from the
same source.

Cluster The collection of points in N-space formed
by representations of signal of a common
class.





TERM DEFINITION

Category The collection of all possible classes to
be considered.

Signal Space The N-dimensional vector space equivalent
to the discrete time domain. Its basis
Is the N-set of block pulses.

Transform Space The N-dimensional vector space with an
orthonormal basis defined by the N
transform basis functions.

Feature Space The R(<_ N) - dimensional vector space
formed by discarding selected dimensions
of another space.

Coefficient The projection onto a dimension of the
transform space.

Feature A coefficient selected for use in the
classification process.

Metric, or
Measure

A function d(a,b) satisfying:
1. d(a,b) >_ with equality iff a
2. d(a,b) = d(b,a),
3. d(a,b) + d(b,c) >_d(a,c).

= b,

Prototype The best estimate of the true representation
for a class.
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I. INTRODUCTION

A. BACKGROUND

Radio-fingerprinting or signal source identification has

been regarded with varying degrees of skepticism over the

years. Early attempts at radar fingerprinting were based

on at most three parameters; signal carrier frequency (RF),

pulse repetition frequency (PRF) or interval (PRI), and

pulse width (PW) . The receivers used for parameter measure-

ments and operator skill differences produced errors great

enough to mask subtle differences between individual radars

of a type, and often veiled even type identification. The

process was of course largely manual, and speed was a func-

tion of operator skill and knowledge. And finally, since

the data base was compiled mostly from the above observa-

tions, the parameter value estimators were not always

reliable

.

Studies by Stanford Research Institute (SRI) among

others, in the early 1960's were influenced by the require-

ment for greater speed and accuracy and stimulated by ad-

vances in computer technology. Advancements in radar such

as frequency agility and intra-pulse modulation dictated

that measurements of the emitter scan characteristics and

modulation type be added to the traditional parameters, RF,

PRF, and PW. The emphasis however remained on type

classification.

12





Signal fingerprinting with precision measurement of

traditional parameters as the basis as well as some inves-

tigation into classification by pulse shape began in the

late 1960's. Bennett [1], [2] has explored a number of

linear and nonlinear representations of pulse type signals

on the basic investigative level. More recent work, as

yet unpublished, addresses this problem in an applied

manner using linear bases as does the research reported

on here.
,

B. SCOPE OF THE THESIS

The introduction of various fast discrete transform

algorithms and the versatile minicomputer has opened new

areas in the realm of signal processing and pattern recog-

nition. Although much work has been done on the application

of fast transforms, most if it has been in the areas of

image processing and two-dimensional character recognition

C3]» [**]• However, Bennett [1] included two of the three

linear bases, and their fast algorithms, (Fourier and Walsh)

considered in this research in his work on pulse represen-

tation comparison.

The intention of the work reported here is to investi-

gate four orthonormal bases with respect to their suitability

in signal source classification using standard pattern recog-

nition techniques. The discrete transforms selected are

three of the class possessing fast algorithms, namely, fast

Fourier transofrm (FFT), fast Walsh transform (FWT), and

fast Haar transform (FHT)

.

13





1. Signal Synthesis and Data Base Collection

In order to reduce the number of variables affecting

a signal from a set of sources, a data set is synthesized

rather than received from actual radars. The result is

a set of 79 radar-like pulse trains of high stability and

repeatability. Conversion from continuous to discrete form

was performed in the laboratory under controlled conditions

so that the only noise present in the data base is due to

quantization error.

The pulse synthesizer is modeled after the switched,

open-line type of pulse forming network found in some early

radars. An artificial (lumped element LC) transmission line

tapped at each of its 13 section junctions is alternately

charged and short circuited by a pulser circuit triggered

by a conventional laboratory pulse generator. Fig. 1 con-

tains a schematic diagram of the pulser. By jumpering the

section taps two at a time the 79 pulse types were generated.

A large number of pulses of each type (or class)

were converted from continuous form to discrete sample values,

A wide bandwidth (10 MHz) analog-to-digital (A/D) converter

reduced each pulse to a 128 sample, 8-bits per sample repre-

sentation. The digitized pulse data was then recorded on

magnetic tape as the permanent record.

2. Experimental Equipment

All analysis work was performed on the prototype

AN/UYQ-9(XN-1) or Parameter Encoder, a general purpose signal

analysis computer system composed of a teleprinter, card

14





reader, graphics terminal, magnetic tape drive, and 1000K

word disc file, as well as special purpose A/D and signal

processing devices, interfacing with a mini-computer.

Software for this work was specially written for

the purpose in Basic Fortran. Included are programs and

subroutines to convert (transform) the data on magnetic

tape to four 64-dimensional representations, namely, signal

or block pulse basis, Fourier, Walsh, and Haar function bases

in their discrete forms, and analysis programs which measure

the classificatory value of these representations.

Results of the analysis are presented graphically

on the terminal cathode ray tube where they are either photo-

graphed or processed by a special hard copy unit, or printed

by teletypewriter.

3. Theoretic Basis for the Thesis

The question to which an answer is sought in this

research is whether any of the rotations defined by the fast

Fourier, Walsh, and Haar transforms are useful in a dimen-

sionality reduction sense for the signal data set as pre-

scribed, and is further investigation on more general signal

sets and possible application warranted?

The choice of bases is a good mix of properties.

Both the Fourier and Walsh bases are global in nature, that

is, each coefficient is a function of all coefficients (sam-

ples) in the signal. The Walsh and Haar bases are closely

related in general shape and by their generating process,

while the Haar and signal or block pulse bases have the

15





common property of being local In nature, that Is their

functions are nonzero only on a portion of the signal (time)

axis.

If it is found that a certain transformation is

able to represent the distinctive features of the entire

category of signals with relatively few coefficients, then

that transform will probably lend itself to an efficient

classification process.

To this end the signal data is projected onto the

three orthonormal bases and analyzed for classificatory

Information content and distribution. The methods and

measures used are discussed in the context of this research

and application.

Although this work stops at feature selection, the

only completely valid test for comparison of one set of

classification features with another is performance under

a specified classification rule. Specifying the rule which

best fits the problem at hand Is itself sufficient to be

the topic of a thesis, and Is not considered here. The

literature contains both general and specialized studies on

the subject of classification.

Two feature selection metrics based on second order

statistics are developed and applied to the data. Measures

of a potentially more powerful nature such as those founded

in information theory are not considered because of the

requirement for knowledge of the distributions involved.

16





A brief discussion of rank order as a feature set is

included and could also be the subject of additional work.

The use of a ranked vector of feature indices may remove

some of the detrimental effects of time reference shift on

Walsh and Haar transforms as well as reduce the information

to be processed by quantizing the feature space.

4. Results and Conclusions

The signal data base was discovered to contain

significant jitter or variation in the time position of the

sampling window. The extent and effect of this jitter was

not discovered until analysis of the results had begun. Due

to time limitation, no attempt was made to reconstruct and

reprocess the data.

It is concluded that, in the presence of time jitter,

the Fourier basis can result in significant dimensionality

reduction, and that the Walsh and Haar bases offer little

if any improvement over the signal samples themselves.

However, in the absence of jitter an improvement in perfor-

mance of the Walsh and Haar bases is expected. Considering

the speed advantage of the FHT over the FWT and the FWT

over the FFT, some compromise to optimality might be indicated

for real time processing.

17





II. EXPERIMENTAL PROCEDURE

A. DATA BASE

Early attempts at the construction of a satisfactory

data base were oriented toward reception and digitizing

of local radars. This approach, though esthetically satis-

fying, proved impractical for this work. The data base had

to meet several criteria which ruled out the use of "live"

signals. First, the objective is to determine the feasibil-

ity of fast transform method as generators of high quality

classification features, and not to evaluate or specify a

complete intercept system for the task. Secondly, there is

the "completeness" problem, which is the requirement for the

data base to span the range of pulse shapes expected to be

encountered. The limited number of radars in the local area

limits the completeness of the data. The alternative se-

lected is to employ a pulse synthesizer consisting of a

triggered silicon controlled rectifier (SCR) switch driving

an open type artificial transmission line pulse forming

network similar to those used in early radars [5]. Modern

pulse formers are more likely to employ saturable inductances

in a high level modulator, but will still produce component

value dependent pulse shapes characteristic to that radar.

Figure 1 contains a schematic diagram of the line pulser

and its connection to the line and other devices, and also

shows the ensemble of pulse shapes which comprise the data

18
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base. The artificial line, originally constructed for

laboratory experimental use, is tapped at each end and at

each LC section junction for a total of 15 taps. The line

characteristics and hence the pulse shape are altered by

jumpering or short circuiting various taps, creating branches

and shortening the length of the main line as shown in

Figure 2.

Figure 2. Line Configuration for Class 2-7

In forming the pulse ensemble, 13 taps, number 1 to 13, were
TO

exhaustively jumpered two-at-a-time for ( ? ) = 78 distinct

line perturbations which with the "no jumper" or 1-1 config-

uration yielded 79 distinct pulse shapes. Referring to

Figure 1, note that adjacent pulses are similar both row

and column wise, differing mainly in the position and shape

of the perturbation. Although they may not accurately

represent any given radar's emitted pulse shape, they do

span a considerable number of possible shapes for pulses

20





of similar duration, and are considered a good base for

comparison purposes.

The electrical length of the line is 9 microseconds

giving a maximum pulse length of 18 microseconds. Observa-

tion of all pulse spectra showed that spectral components

above 900 KHz are at least 50 db below the largest component.

Based on this and a requirement for complete framing of the

pulse in a 64-sample window, a sample rate of 3.0 MHz was

chosen for digitizing.

Digitizing is the process of converting the continuous

voltage waveform output of the line pulser to equally spaced

voltage samples converted to 8-bit (256 level quantization)

binary numbers or words, and the recording of these samples

on magnetic tape. The maximum rate of the A/D converter is

10 MHz, placing the rate used well within device limitations.

Each pulse digitization consists of 128 samples, and a total

of 4096 pulses for each of two "identical" lines in each of

the 79 configurations were committed to magnetic tape, and

these make up the permanent data base.

The final step in conditioning the data for analysis is

framing of the pulses in windows of 64 samples each. The

first sample or the beginning of the window should correspond

to a constant amplitude point on the leading edge of the

pulse, simulating a threshold crossing triggered sampler.

This step is performed manually by placing the joy-stick

controlled cursor of the graphics terminal on the desired

point of the leading edge of a displayed pulse and commanding

21





a "store" operation. The algorithm finds and stores the 64

samples following the cursor position in a file on the sys-

tem's disc. Figure 3. illustrates the flow and form of the

data during the data base building process.

It is this last step with its human interaction, and

the unsynchronized nature of the digitizing process which

are the causes of the window time jitter and the consequently

poor data from the non-time-invariant FWT and FHT.

PRF
CLOCK

SAMPLE
CLOCK

LINE
PULSER

A/D

CONTINUOUS

TAPE => f TAPE

128
8-BIT INTEGERS PER PULSE-

E
G.TERM.

TV
CPU

16-BIT INT. PER PULSE

Figure 3. Data Flow and Form During Data Base
Construction

B. DATA PROCESSING

The sequency of operations on the signal data base are

experimental in nature and are not designed for production

type processing although some of the subroutines could be

readily adapted for use in an operational program.
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Programs written for the Parameter Encoder for this

research are listed below with a description of their

functions.

1. Program TRED

a. Function

TRED prescreens and transfers the digitized data

from magnetic tape to disc file.

b. Description

TRED reads the 128 samples per pulse data from

a specified file and record on the magnetic tape, and

displays sequentially and individually in graph form on the

terminal CRT those pulses which exceed a preset threshold

value. If the signal is noisy, that is, contains parity

errors or is not of the desired type due to an error in

jumpering the pulsed line, it can be rejected. If the data

is suitable for further processing, the operator places the

cursor crosshairs at the leading edge of the pulse. The 64

samples following the leading edge are stored on the disk

as 64 16-bit integers. The program may be terminated at any

time.

2. Program SIFT

a. Function

SIFT calls those signals stored by TRED and

performs 1, 2, or 3 fast transformations on the data. The

transform coefficients are then stored along with the signal

data in a separate class structure file on the disc.

23





b. Description

SIFT can optionally perform a second screening

of the data enabling cursor positioning errors to be detected,

or it may automatically and sequentially process any signal

data located in TRED's file. The three transformation which

can be performed are subroutines and are easily changed.

All transform coefficients are normalized feo the average

value (zero-th order coefficient) and then stored as 64

floating point numbers in a disc file location in space set

aside for that particular pulse type or class. Listings of

the fast transform subroutines are provided in Appendix C.

3. Program MEVAR

a. Function

MEVAR calculates the class meaiu and variance.

b. Description

MEVAR uses the transform data stored by program

SIFT to calculate the mean values of each coefficient of each

transform for the signal type or class specified. The means

are stored and then used to calculate the variance or second

central moment of each coefficient and transform. These

class data are stored in a third disc file.

4. Program GVAR

a. Function

GVAR is a feature selector program calculating a

measure of feature goodness based on the average fluctuation

of class mean values weighted inversely to class variation.

24





b. Description

GVAR uses the class data of program MEVAR to

calculate a global central second moment from weighted class

data. The results are presented in original coefficient and

also in ranked order.

5. Program FRAT

a. Function

FRAT is a feature selector program similar to

GVAR. The measure of goodness it employs includes a weight

which is a function of the number of members in each class.

The results can be interpreted as a kind of signal to noise

ratio where the signal is classificatory information and

noise is the average within class variance of the signal

transform coefficients for each dimension.

b. Description

FRAT uses the class average data of program

MEVAR as does GVAR. The results are presented in original

coefficient order and in rank order.

25





III. SIGNAL TO TRANSFORM SPACE - PROJECTION

A. TRANSFORMATIONS AND CLASSIFICATION

At this point the terminology and notation employed for

the remainder of the thesis will be standardized and oriented

toward linear vector spaces and the classification problem

rather than to physical concepts.

The question "why transform?" may be asked with some

validity. Any operation on a signal requires time and

expense. The answer, fundamental to the field of pattern

recognition, is reduction of dimensionality. A complete

description of any possible signal representable in a space

of dimension N requires all N dimensions. For signals

emitted by a specific source, the N-dimenslonal representa-

tions will be similar and will differ in some manner from

representations of signals from another source. The problem

of classification is how to measure this difference so that

classification errors are somehow minimized. If all N dimen-

sional projections contain significant information then all

N must be included in the metric. However, if this signal

space can be rotated somehow so that the information in

some of its dimensions can be projected onto a single dimen-

sion in another space, then the information has been com-

pressed or dimensionality reduced. However, a rotation that

works for one signal class probably won't work for all signal

classes in the category of signals of interest. The criteria
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and evaluation methods for a transformation are discussed

in Section IV.

B. THE PAST TRANSFORMS

The primary reason for selection of the Fourier, Walsh,

and Haar discrete transformations is the existence of fast

algorithms based on elimination of redundancy [3]j C^] } by

matrix factorization of the basis matrix. An N-dimensional

2transformation in general requires N real or complex multi-

plications. A FFT or FWT requires but Nlog
?
N arithmetic

operations (complex multiplications for the FFT and real

additions for the FWT) . A FHT because of its highly local

nature (lots of zeros. in the transform matrix), requires

only 2(N-1) real additions and N-2 normalizing multiplications

Another important reason for the selection of discrete

Fourier, Walsh and Haar transforms is the difference in the

basis functions of the transformations. Appendix B addresses

the Walsh/Hadamard and Haar functions in greater detail.

The Fourier and Walsh functions possess similarities such

as the average number of sign changes per unit interval and

even/odd symmetry which lead to the terms sequency, sal,

and cal for the Walsh functions. Furthermore, the Walsh

and Haar functions are closely related.

A final comment on the translational invariance is in

order. The Fourier basis representation is invariant under

time translation while the Walsh basis is invariant under

dyadic translation. That is, the Fourier magnitude coeffi-

cients do not change when the signal data samples are

27





cyclically translated, that Is,

1
=
^Q'^l '

" " " '^N—

1

S
2

= (S
(0®k)

,S (iek)'--- jS
(N-l*k) )

where © Indicates modulo (N) addition. This is equivalent

to sliding the signal in the reference frame. Walsh coeffi-

cients do change under this type of translation but are

invariant when signal data are translated or reorder according

to the mod(2) bit-by-bit sum of the original index and the

translation constant, k.

s
i ~ (s

...ooo J s
...ooi' •••» S

l...ll )

S
2

~ (S (...000©k)' S (...001®k)' '•• , S
(l...ll®k) )

where © now indicates modulo(2) bit-by-bit addition and k is

an integer expressed in binary form. For this application,

dyadic invariance is not beneficial, but if time translation

is minimized this drawback is not serious. The Haar transform

is also not time invariant.

Figures 4, 5, 6, and 7 are plots of the 64 dimensional

representations of the data for the 79 pulse classes 1-2,

1-3, 1-4, ..., 11-12, 11-13, 12-13- Referring to Figure 1,

the class sequence progresses up the columns moving from

left to right. The spaces are signal, Fourier (magnitude),

Walsh, and Haar in Figs. 4, 5, 6, and 7 respectively.
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SAMPLE INDEX

Figure 4. 3-Axis Plot of Prototype Signals of the 79 Classes
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COEFFICIENT INDEX

Figure 6. 3-Axis Plot of the Walsh Prototypes of the

79 Classes
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Figure 7 3-Axis Plot
79 Classes

of the Haar Prototypes of the
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IV. DIMENSIONALITY REDUCTION - FEATURE SELECTION

A. PURPOSE

A main principle In pattern recognition is the elimina-

tion of redundancy and useless information in the given data

so that the classifying algorithm can make efficient use of

both time and machines. This elimination process is dimen-

sionality reduction, and the process itself is commonly

termed feature selection [3], [4], C71-E9].

B. FEATURE SELECTION

The projection of an N-dimensional signal vector repre-

senting an N-sampled time function from the signal space

to a transform space by means of a complete orthonormal

transformation does not in any way inherently reduce the

dimensionality of the representation. However, a transfor-

mation of this type can be viewed as measuring the correla-

tion between the signal and each of the N basis functions.

Hence it seems reasonable to assume that, given a certain

category of signals, certain orthonormal transformations are

more efficient than others in the sense of requiring fewer

coefficients to attain whatever the objective may be.

If the objective happens to be representation of the

signal in more compact form, then perhaps all transform

coefficients smaller than some threshold value could be

eliminated, resulting in a reduction from N to, say, K

dimensions. Then the representation obtained from the
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inverse transformation back into the signal space is the

best S, approximator of the original signal in terms of

that orthonormal basis. See Appendix A. The "closeness"

of this approximate representation is commonly measured in

terms of mean square (or energy) error (MSE), which in vector

space context is the squared Euclidean distance. This error

is given by

i
N"1 p

MSE = ± E (s(nT) - s(nT)T
N

n=0

where: s(iT) are the original signal samples

s(iT) are the signal approximator "samples"

T is the sample interval.

For the purpose of classification of signals the elimina-

tion criteria are different, and the MSE of the before and

after representations is not necessarily a good measure.

Some of the most distinctive characteristics of a signal may

contain very little energy. Their elimination causes little

energy error but a large loss of classificatory information

in the reduced representation.

Consider the signals s.(nT), n = 0, 1, 2, . .., N-l,

i = 1,2,..., I originating from M <_ I source classes all from
.

the category of interest (pulsed signals from different

sources of the same type). The N-dimensional vectors formed

by the signal samples define I points in the transform

space which will tend in some manner to form M clusters
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representing the M source classes. For a given orthonormal

transformation the I points will project onto each of the

N basis vectors and clustering to some extent will occur in

each dimension. The dimensional cluster for, say, class m,

will exhibit some spreading which is related to the manner

in which signal perturbations and system noise project onto

that particular basis vector. Another class, m„, will

similarly cluster on that dimension with some spreading.

The difference between the cluster mean values is a measure

of that dimension's classificatory information, the use of

which in classification is degenerated by the intra-class

spreading.

ts

A'Z.

/. . • /

# ?f

riP

Figure 8. Hypothetical 2-Class Projection
onto 3 Orthogonal Axes.

Figure 8 is a 3-dimensional, 2-class hypothetical example

The projections of both classes m, and m
?

on basis axes t,

and t^ exhibit small spreading, however the cluster separa-

bility on axis t. is clearly greater than on axis t_. The
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projections onto axis tp are widely spread and even though

the mean values differ considerably, no separability exists.

This illustration suggests a class of feature selection

metrics based on the concept of signal (information) to

noise ratio. The two feature selection metrics investigated

in this thesis are both of this type. The first is simple

and intuitive, used primarily for purposes of illustration.

This metric is incorporated in Program GVAR and can be

expressed as

1
M ^ -=n»

2

G = rFv £

where

:

T
n " M-l , -2(m)

m-1 a
n

a Cm)
u is the estimated n th dimensional
n

mean for class m
a th
y is the estimated n dimensional

average of class mean estimates,

a is the estimated n dimensional
n

variance for class m, and

M is the number of classes in the

category.

There is no compensation for differences in cardinality of

class populations, and it is sensitive to round-off errors

encountered when the dimensional projection means and the

variances are nearly equal and very small as would occur

if the basis vector for that dimension were orthogonal to
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everything in the signal vector. This instance occurred

in the case of the Haar basis, some functions of which are

non-zero only in regions where the signal is either zero

or a constant.

This test is simply the average of the ratios of squared

class mean deviations from the global average to class

variance. Because of the sensitivity to computational

errors, the results may be misleading. It does lead natu-

rally to a more powerful and less sensitive variance ratio

test incorporated in Program FRAT.

This latter test is a modified form of the Snedecor

F test so called for Fisher on whose Z distribution the test

is based [10]. Snedecor's F test as used here provides,

in addition to a relative goodness number, a confidence

percentage that the variance among class mean values is not

due to the average intra-class variance (or noise) . How-

ever, it is modified slightly to reflect the relative

probabilities of occurrence of a class. The metric F is

given by

1 J ^(m) - n2
S p(y„ - u )

F =
M-l 'Vm^n Mnm=l

1 2(m)
M * pn

a
nm=l

1 „ v i Mm; A \<± / v v
7T-^r Z K (y - y ; / I K
M-l , m Kn n , m

_ m=l m=l

i l K a
2(m)

/ I K
M m-l m n m=l ra
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where

:

p is the relative probability of occurance

of class m (more properly that an observed

signal came from source class m) , and

K is the number of signals in class m.m

A comparison of the results of the G test and the F

ratio test indicate that the latter is not as sensitive to

data and computational problems.

Signal-to-noise or variance ratio type tests are not

the only metrics for feature selection. Several information

theoretic approaches have been applied to inulticlass classi-

fication [7] » [8]. There are other, perhaps more elegant

methods, applicable to the two class problem or the clustering

problem [9].

Prom the feature selector algorithm results a subset

of coefficients is chosen which can be tested further for

optimality. Of course the only valid test is minimization

of classification error, a test not performed here because

of time limitations.

C. COVARIANCE AND CORRELATION

While feature selection tests will in general measure

the classificatory information a feature (or dimensional

projection) contains, they are not sensitive to the kind of

information but rather only to the average net accumulation.

If the pulse signal classes of concern have hypothetical

linearly independent details, say A, B, C, and D, which occur
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in various linear combinations to characterize the classes,

then the optimal linear orthogonal transformation which can

be performed on the signal data is the one which is able to

project each detail onto its own dimensions. Restated, let

the basis vectors of the transformation be generated from

the signal details so that the projections in the transform

space are mutually uncorrelated. Sebestyen [9] proves that

this transformation (followed by a diagonal feature weighting

transformation) is the optimum linear transformation for

feature generation. This transformation is variously called

Holelling's Method of Principal Components, Karhunen Loeve

Transform, and factor analysis. The matrix defining the

transformation is the matrix $„ of the signal set.

P
T
$P = diag(X

o
,X

1
,...,X

N_1 )

where the X. are the eigenvalues of E„, and

X
o - X

l - ' * * - X
N-2 - X

N-1

P is the matrix of eigenvectors corresponding to the

eigenvalues, X.

.

While this transformation would appear to be the solution

to the problem, there are aspects of pulse source classifi-

cation which nullify its attributes. Most important is the

fact that it is a complete orthogonal transformation only

for the signal from which it was generated. New features
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of new signal source classes will be undetected unless

they contain a linear combination of one or more of the

transform basis vectors. Secondly, since the basis is data

dependent and not composed of a fixed set of orthonormal

vectors, no factorization and hence no fast algorithms

are possible. This means that the transformation will

2
require N real multiplication operations and that unless

the feature space can be greatly reduced, an application

where speed is important cannot use it.

The covariance matrix £„ is calculated for the reduced

feature sets derived from the three fast transforms inves-

tigated. These are presented in the next section in nor-

malized form as correlation matrices. Ideally, feature

vectors of all signals in all classes, i.e., all observa-

tions, should be used in the calculation of a global corre-

lation matrix; however, due to machine limitations, only

the class mean feature values were used since they are the

best statistical estimate of actual feature values. The

covariance matrix is then:

_ r
-(m)

n
T ^(m)-.

VT " Lyn JNxM Lyn JMxN

- C(u± Mj )]NxN

where i,j range over 1, 2, ..., N independently and k,£

range over 1, 2, ..., M independently.
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The correlation matrix is obtained by normalizing all

elements to the inverse square roots of the diagonal

elements which are the global variances of the class means,

~(k) -(£)

Q™ = J

(D<
k)

)

2
(S<

£)
)

:

NxN

where i, j, k, £, are as defined above.

Off diagonal elements C . reflect the degree of

correlation between features of index i and j

.

D. RANK ORDERING

To this point only continuous measures in continuous

vector spaces have been considered. It is possible that a

discrete space might be entirely suitable If not superior

when the inter-class distances and intra-class variances

under a discrete metric are such that a quantized space

does not increase classification error.

Consider the case of ordering the features, selected

for their information content and derived from a complete

orthonormal transformation of the signal space as above, in

decreasing value order. If the reordered feature indices

rather than the feature values are used for classification,

the Information rate between the signal processing device

and the classifier could be reduced considerably. The

classifier itself could possibly be simplified.

Using the data of this thesis for example, data samples

are 8-bit integers and the projections in the transform
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space are floating point numbers requiring 32-bits. If the

number of features used for classification is 16, then, for

each pulse observation 512 bits must be sent to and processed

by the classifier. Now if only the rank orders is preserved,

the 16 features are represented as 4-bit integers and each

pulse observation results in transmission and processing of

64-bits. For a given channel bandwidth, significantly more

information could be sent per unit of time if a suitable

classifer can be found.

The feature space becomes quantized with N! = N(N-l)(N-2)

.. ,(2)(1) distinct points corresponding to all different

possible orderings of N features. For the case N = 16 there

1?
are more than 2 x 10 J distinct points. The 3-feature space

is illustrated below.

Figure 9- 3-Space Representation of all Rank
Ordered 3-Vectors (I ,I

2
,I_)
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There are tests which can be applied to ranked sets

which could find application to this problem. Moroney [10]

discusses several in the context of evaluating judges asked

to rank things in order of quality. A test which evaluates

the degree of agreement within a group of rankings (a class

cluster) compares the mean squared difference of perfect

agreement ranking and the expected ranking. The expected

ranking is the average of all possible rankings and is indeed

not a ranking at all, but an N-vector with all entries equal

to N(N+l)/2. The result is a number between and 1 called

the Coefficient of Concordance by Moroney. This test

might find use as a feature evaluator since it provides a

measure of intra-class fluctuation.

Another test measures the correlation between two

rankings and yields a number, R, between -1 and +1 given

by the empirical appearing formula

N
2

6 Z d^

N(N
2

- 1)

where d is the difference between ranked indices. R is
n

called Spearman's Rank Correlation Coefficient and might

be employed in classification, measuring the correlation

between an unknown ranking and the mean ranking of classes

taken one-at-a-time

.

Rank ordering was not considered in this investigation,

but it appears to warrant further study.
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V. DISCUSSION OF RESULTS AND CONCLUSIONS

The intention of this research is to explore the feasi-

bility for generating classification features for pulsed

signals by linear transformation using so-called fast algo-

rithms. The underlying premise is that the pulse generation

mechanisms of distinct sources impart sufficient information

to the pulse (envelope) shape to allow classification on

this basis. A complete orthonormal transformation process

cannot create information, and, by the completeness property,

does not destroy it. The hypothesis is that such a trans-

formation will result in a more efficient distribution of

classificatory information than is inherent in the signal.

Restated, the pulse shape representation in signal space

requires consideration of more dimensions for a specified

classification confidence level than does some transform

space defined by a fast discrete method.

In Section IV it was stated that the Karhunen-Loeve

transform is optimal for a closed, invariant set of features,

and results in the least dimensionality for a specified

error tolerance under a MSE metric. It does not, however,

meet the fast algorithm requirement. Thus it is sought to

determine if the FFT, FWT, or FHT results in a compacting of

classificatory information significant enough to warrant

further investigation and possibly application.

The discrete representation results in a dimensionality

of 64 for the signal space and each of the transform spaces.
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Using the second order statistics of the 79 signal classes,

and treating the projection onto each dimension as a classi-

fication feature, two measures of information content were

applied to each of the transform spaces. The F Ratio metric

was then applied to a subset of 20 signal classes to provide

a comparison between the three transform spaces and the

signal space to substantiate the hypothesis that a trans-

formation (or rotation of the space) can result in a more

compact representation for classification purposes.

A. INTERPRETATION OF DATA

A complete listing of numeric data is presented in

Appendix D.

A comparison of the transform class prototypes, that is,

the class estimated centroid in N-space, is shown graphically

in Figures 10, 11, 12, and 13 for signal, Fourier, Walsh,

and Haar representations. These figures consist of 79

superimposed curves consisting of lines connecting data

points which are signal samples for Fig. 10 and transform

coefficients for Figs. 11 to 13. The data are scaled

differently for illustration purposes.

The collection of points of intersection of the over-

laid curves and a line drawn vertically from any Index

point, n, gives one an indication of the distribution of

the class mean values, y on the n dimension.
' n

Figures lM, 15, and 16 are graphs illustrating the

measure of classificatory information and Its distribution.

The horizontal axis is calibrated by index of decreasing
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Figure 10. Overlaid Plots of the Prototype Signals of

79 Classes
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Figure 11. Overlaid Plots of the Fourier Prototypes of

79 Classes
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Figure 12. Overlaid Plots of the Walsh Prototypes of
79 Classes
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Figure 13. Overlaid Plots of the Haar Prototypes of
79 Classes
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rank of magnitude in test results, not in original coefficient

index order. Tables Dl to D10 of Appendix D list the

numerical values in both original coefficient and rank order.

1. Comments on Signal Data

Before a meaningful comparison of any data can be

made it must be normalized or scaled to some reference.

In the case of the transform coefficients, this reference

is the zero-th order coefficient or average value of the

signal. The same reference is used in the feature selection

tests. In Figure 10, each curve is scaled to have the same

maximum value which may be misleading.

The superimposed curves show that there is consider-

able error in estimating the leading edge of the pulses

from which the prototypes are estimated. By linearly

extrapolating the estimated actual pulse origin, it is

apparent that an error on the order of 8% of the average

pulse width is present. That it appears in the class proto-

type indicates an inconsistency in the leading edge deter-

mination process which is manual. A threshold crossing

decision would have minimized this error which undoubtedly

affected the Walsh and Haar data due to the non-time-invari-

ant nature of these transformations.

• To illustrate the relative effects of time window

jitter and quantizer noise, a pulse class (9-11) was selected

at random for inspection of each signal and transform used

to generate the class prototype. Figures 17 - 20 show the

signal, Fourier, Walsh, and Haar coefficients of the class
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as superimposed curves. In Figure 14 both time jitter and

quantizing effects are apparent. The FFT data, Figure 18,

shows no visible coefficient variation, while FWT and FHT

data, Figures 19 and 20 respectively, show that some coeffi-

cients are quite noisy. The Haar functions of index 2
m

,-

m=l, 2, ..., 5, are non-zero only during the first 64/2

signal samples and thus reflect the effect of time jitter

to the greatest extent in their respective coefficients.

Results of the F-Ratio test performed on the signal

sample data for the 20 classes 6-11 through 10-12 (see

Fig. 16) indicate that most of the Information of classifi-

cation value — as determined by this metric — is distributed

fairly uniformly over 32 of the 64 samples. Figure 21 shows

how the information for these classes is distributed in

signal space (time) order. This is somewhat surprising in

that the leading edge region is considered by this metric to

be useless while the latter midsection and trailing edge

region rates high. This result is believed due to the large

variance in edge data caused by the time jitter mentioned

above. The trailing edges are affected on an individual

class basis rather than globally, which does not tend to

lower the average for the whole ensemble. Given an accurate

time-of-arrival (TOA) estimate it is conjectured that the

leading edge region would rank high also. This would tend

to increase the necessary dimensionality by Including more

samples in the "good feature" category.
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2. Comments on Transform Data

Because of the magnitude operation on the Fourier

sine and cosine pairs, the number of unique coefficients is

reduced by half. This operation is time consuming but

results in time-invariant features which, in light of the

Jitter present in the data base, would tend to favor the FFT

in this comparison. Not so fortunate are the Walsh and Haar

bases, both of which are affected by time reference variation.

Figures 14 and 15 compare the information distributions in

the three spaces while Figure 16 includes signal data as well.

From Figures 14 and 15 it is apparent that the Fourier

basis has several clear advantages. Most of the useful

information is in the first 12 coefficients. Not only is the

information concentrated in a few features, but that infor-

mation is a monotone decreasing function of index. Thus

the order of the transform, N, and the time of execution can

be reduced considerably. For an order reduction R, which is

a power of 2. the number of arithmetic operations is reduced

by R logpR. For the case considered here the savings in

arithmetic operations amounts to a reduction factor of 8.

The FWT and FHT data are difficult to interpret due

to the time jitter. All Walsh coefficients are global in

that they are functions of all signal data points, whereas

all Haar coefficients except the first and second are local.

See Appendix B. The first two Haar functions are identical

to the first two sequency order Walsh functions and hence

will generate identical coefficients.
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Time jitter may have two effects on the FWT coeffi-

cients. It will certainly produce a variation in coefficient

values which would reduce their effectiveness as classifica-

tion features. Furthermore, in the case of higher order

coefficients, this variation might tend to make the cluster-

ing multimodal. The variance ratio feature selection tests

used in this work fail when clusters are not unimodal. This

may explain why so many of the Walsh coefficients have large

apparent information content

.

The similarity of Haar functions to both Walsh

functions and so-called block pulses (which are the set of

basis functions for the signal space) is apparent In Figure

16. The Haar coefficient curve is similar to the Walsh

coefficient curve for those features of high information

content and to the signal sample curve for those of little

apparent information.

Condensed correlation matrices for the three trans-

form spaces are shown in Tables Dll to D13. Only the eight

features having the highest classificatory information as

determined by the 79 class F-Ratio test are included.

Evident is a high degree of correlation between FWT and FHT

coefficients which may be due to multimodal clustering or to

poor resolution of a given signal detail by anything but an

extended linear combination of Walsh or Haar basis functions.

In this respect the Fourier basis also excels as evidenced

by much smaller, but still considerable, inter-coefficient

correlation. Once again, this may be due to the time

invariance of the Fourier basis.
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B. CONCLUSIONS

On the basis of the results of this Investigation it is

concluded that the Fourier basis as represented by the FPT

can produce a dimensionality reduction factor of 5 or 6 for

the signal data base employed. If actual pulse signal

emitters of a common type display this degree of pulse shape

dissimilarity then efficient classification should be

possible on the basis of signal envelope shape. The effects

of additive noise, multipath propagation, and signal distor-

tion resulting from pulse-to-pulse amplitude variation and

a nonlinear (square-law) detector were not investigated and

would certainly degrade the value of the selected features

for classification purpose.

No positive conclusions can be drawn from the Walsh and

Haar transform results due to the jitter present in the sig-

nal data base. Further investigation may show that in the

absence of time window jitter one of these transforms may

exhibit the capability for dimensionality reduction to an

extent that its use as a feature generator is feasible.

The fact that the FWT and FHT are extremely fast makes them

highly desirable for real-time processing.
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Figure 1*1. F-Ratlo Test Information Measure of
Representations in Three Bases for all
79 Classes as Functions of Test Rank Index
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Figure 15

.

G-Variance Ratio Test Information Measure of
Representations in Three Bases for all
79 Classes as Functions of Test Rank Index
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Figure 16

.

F-Ratio Test Information Measure of Four Basis
Representations for 20 Classes (6-11 to 10-12)
as Functions of Test Rank Index
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Figure 17- Overlaid Plots of the 25 Signals Defining
Class 9-11
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Figure 18. Overlay of the 25 Sets of FFT Coefficients
of the Signals Defining Class 9-11
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Figure 19- Overlay of the 25 Sets of FWT Coefficients
of the Signals Defining Class 9-11

60





48

COEFFICIENT INDEX

Figure 20. Overlay of the 25 Sets of FHT Coefficients
of the Signals Defining Class 9-11
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APPENDIX A

LISTING OF FAST SUBROUTINES

001 .

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
00 IS
0019
0020
0021
0022
0023
0024
0025
0026
0027
0E28
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046

FTN

C
C

C
C
C

c
c

SUBROUTINE FFT(M,REAL, SI GNF)
DIMENSION S(2,64),RIM(64),REAL(64)

FAST FOURIER TRANSFORM
M - L0G2CN0MBER OF SAMPLES)
REAL - I/O ARRAY
SIGNF - DIRECTION OF TRANSFORM
OUT PUT IS IN MAGNITUDE SQUARED FORM

N = 2**M
NHALF = N / 2
FLOTN = N

PIARG = 6.2831853 / FLOTN * SIGNF
DO 1000 1=1,

N

1000 RIMCI) =

DO 3000 1=1,

M

N2I = 2**(M-I)
NI = 2**(I-1)
DO 2000 J=1,NI
IN2I = CJ-1) * N2I
THETA = FL0ATCIN2I) * PIARG
C = COSCTHETA)
SI : SIN(THETA)
DO 2000 K=1,N2I
IN0
INI
IN2
IN3

CR =

CI =

K + IN2I
K + 2*IN2I
INI + N2I
IN0 + NHALF

COMPLEX MULTIPLY
C * REALCIN2) - SI
SI * REALCIN2) + C

*

*

CR
CI
CR

CI

RIMCIN2)
RIMCIN2)

S(1,IN0) = REALCIN1)
S(2,IN0) = RIMCIN1)
S(1,IN3) = REAL(INl)
S(2,IN3) = RIM(INl)
CONTINUE
DO 3000
REAL(L)
RIM(L) =

CONTINUE
) COMPUTE MAGNITUDE SQUARED

DO 4000 1=1,

N

4000 REAL(I) = REAL(I)*REAL(I)
RETURN
END

2000

3000

.= 1,N
: S(1,L)
S(2,L)

+ RIM(I)*RIM(I)
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0001 FTN
0002 SUBROUTINE FWT(M,X)
0003 DIMENSION X(l)
0004 C FAST WALSH XFORM
0005 C M - L0G2(N)
0006 C N - NUMBER OF SAMPLES
0007 C X- I/O ARRAY: (l:N) = I/0; (N+1:2N) = SCRATCH
0008 N = 2**M
0009 NH = N / 2

0010 LR =

0011 DO 1000 L=1,M
0012 LP = L + 1

0013 LM = L - 1

0014 LR = N - LR
0015 LT = N - LR
0016 NY =

0017 NZ = 2**LM
0018 NZI = 2 * NZ

0019 NZN = N / NZI

0020 DO 1000 1=1, NZN
0021 NX = NY + 1

0022 NY = NY + NZ

0023 JS = (1-1) * NZI

0024 JD = JS + NZI + 1

0025 DO 1000 J=NX,NY
0026 JS = JS + 1

0027 JT = J + NH

0028 LJS = LR + JS
0029 LTJ = LT + J

0030 LTJT = LT + JT
0031 XCLJS) = X(LTJ) + X(LTJT)
0032 JD = JD - 1

0033 LJD = LR + JD
0034 1000 X(LJD) = X(LTJ) - XCLTJT)
0035 IF ( LR ) 1500,3000,1500
0036 1500 DO 2000 1=1, N

0037 IPN = I + N

0038 2000 X(I) = XCIPN)
0039 3000 RETURN
0040 END
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0001
0002
0003
000-4

0005.
0006
0007
0008
0009
0010
0011
0012
0013
00 14

0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035

FTN

C

C
C
C
C
C
C

C
c

SUBROUTINE FHT(M,S)
DIMENSION SC64),H(64)

FAST HAAR TRANSFORM

M - L0G2CNR OF DATA POINTS)
S - I/O VECTOR OF LENGTH 2**M
H - SCRATCH VECTOR

FHT REQUIRES 2 ( N- 1 ) REAL ADD OPERATIONS

N=2**M
NH=N
DO 4000 1=1, M

NH=NH/2
DO 1000 J=1,NH
IUJ
I2=J+NH
J2=2*J
JUJ2-1
H(I1)=S(J1)+S(J2)
H(I2)=S(J1)-S(J2)

1000 CONTINUE
NH2=NH*2
DO 2000 J=1,NH2
SCJ)=H(J)

2000 CONTINUE
GO TO (4000,3000)1

3000 NH2UNH2+1
DO 4000 J=NH21,N
S(J)=S(J)*1. 414213562

4000 CONTINUE
RETURN
END
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APPENDIX B

WALSH AND HAAR FUNCTIONS AND MATRICES

The increasingly familiar Walsh functions and the less

well known Haar functions originated in the early 20th

century. J. A. Barrett, as described by Fowle [11] was

perhaps the first to discover Walsh functions, using them

as the basis of a telegraph wire transposition scheme to

reduce crosstalk. J. L. Walsh in 1923 [12]] formalized the

set of complete orthogonal bivalued functions defined on the

unit interval [0,1] which now bear his naire. An important

orthogonal but incomplete subset of the Walsh functions are

the square-waves known as Rademacher functions after H. A.

Rademacher [13] » who developed them as parlfc of a unified

theory of orthogonal functions in the early 20' s.

Much of the recent interest in application of Walsh

functions was stimulated by their adaptability to digital

processing. For example, a discrete Walsh matrix, like the

discrete Fourier matrix of sampled sinusoids, contains the

symmetry and redundancy required for a fast transform algo-

rithm based on matrix factorization. Because of the bivalued

nature of the functions, the fast Walsh transform or any

Walsh function based processing is inherently suited to

digital implementation. Harmuth [14] proposes many and

varied uses for Walsh functions in applications from signal

processing to communication data multiplexing.
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The set of Walsh functions of order N = 2 for all

non-negative integers, n, forms an Abelian group under

multiplication. That is, the product, equi-argument wise,

of any two functions of the set is another member of the

set. The first eight Walsh functions are shown below in

Figure 22.

wto.x)

W(I.X)

W(2.X)

W(3.X)

W{4.X)

W(5.X)

W(6.X)

W(7.X)

0.5 1.0

Figure 22. Continuous Walsh Functions of Order 8
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The ordering shown here Is the so-called sequency order

after Harmuth who defines sequency as the average number

of zero crossings per unit interval, (0,1).

Harmuth chooses to define the Walsh functions on [-hi+h']

and employs the notation Cal(s,x), Sal(s,x) to accentuate

the symmetry similarities to the sinusoidal trigonometric

functions. Sequency, s, is now defined as one-half the

average number of zero crossings per unit Interval i-H,+h) .

The discrete Walsh functions, W (i,k), I = 0,1,.. .
,N-1

and k = 0,1,..., N-l are formed by sampling the continuous

Walsh functions at N equally spaced points on the interval

of definition. The discrete form is most conveniently

shown in matrix form as in Figure 23, below.
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Wg(2,k)

Wg(3,k)

W
Q
(4,k)

Wg(5,k)

Wg(6,k)

Wg(7,k)

Figure 23. Walsh Sequency Matrix of Order 8

The Haar functions form a complete orthogonal but non-

orthonormal set of bivalued functions on [0,1], and were

first published by A. Haar in 1909 [15]. This set is related

to the set of Walsh functions as pointed out by Fino [6],
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but appear considerably different. The orthogonal Haar

functions attain values +1, -1, and as shown below in

Figure 24, which clearly illustrates the increasingly

local nature of higher orders. The literature indexes

Haar functions by a subscript and a superscript, a system

which provides insight to the shape of a function from its

indices but is somewhat clumsy for this work which employs

a single subscript index.

° H

*! H

i H

I H

i H

I H

1 H

a4 H

1 .

0.5 1.0

Figure 24 . Continuous Haar Functions of Order 8

69





This orthogonal set may be normalized by multiplying each

orthogonal function by (\Z1T )
~ where k is the sub-index

in £.

The discrete Haar functions of order N are formed, like

the discrete Walsh functions, by sampling the continuous

functions at N equally spaced points on the interval of

definition. The N-square Haar matrix formed of the first

N discrete Haar functions is shown in Figure 25 in orthogonal

form.

+ + + + + + + +

+ + + + - - - -

+ + - -

58
=

+

+ +

+ -

+ -

+ -_

Figure 25. Orthogonal Haar Matrix of Order 8

Both Walsh and Haar matrices contain high redundancy

which has led to not only the fast transform algorithms but

to a variety of generating methods based on their internal

symmetry, [6], [l6]-[20]. The fast Walsh and Haar algorithms

used in this research are adapted from papers by Robinson

[18] and Rejchrt [20] respectively.
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APPENDIX C

GENERALIZED FOURIER SERIES

Consider the infinite dimensional signal (vector) space,

S, consisting of all continuous physically realizable signals

(functions) defined on a <_ x <_ b . On this space is defined

an Inner product or projection operation

b
f • g = / f(x)g(x) dx.

a

S contains orthonormal systems of infinitely many vectors

Let E = {e_, e , ...., e , ...} be one such system. The

orthonormality condition states that the e. satisfy
1

e . e = 6 = for I ^ j

-i * ~j ij 1 for I = J

for all non-negative integer indices i and j

.

An arbitrarily chosen signal, s(x), in S can be repre-

sented by sequentially nested subsets of E, each of which

spans a subspace of S. For clarity it should be noted that

any segment of the real line can be considered an infinite

dimensional vector space, hence s(x) can be expressed as

s, depending on the context.

The signal (vector) s possesses a "best" S, approximator

s, in the subspace S. spanned by E, and is given by s. = P g >

where p_ = (s«e.) is the projection of s onto e n . In other
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words, P e
Q

is the vector in E, which is by some measure

closest to s of all vectors in E, . Similarly, s, possesses

a "best" S~ approximator in E
?

= (£»e )g + (s-^)^

and a "best" S, approximator computed in the same manner

ln E
k

= {Jg , -l , ~2 > *••' sk-l }
»

that 1Si

s, = p ne n + p n e, + ... + p, ,e, .. .~k ^0~0 ^1~1 ^k-l~k-l x

By virtue of the orthogonality of the e
.

, each coefficient

p. is invariant in the S, approximations for kM = 0,2, ,,

The limiting approximator,

N
lim S = lim I (s»e. )e

.

n-*» n-H» j=o J J

is called the Fourier E-coefficient expansion of s, and the

coefficients p. = (s»e.) are the Fourier E-coefficients.

As implied above, a Fourier E-coefficient expansion of

s has the property that for each successive k = 1, 2, ...,

the S, approximator formed of the first k terms is "best"

in the sense that there is no other vector "closer" to s

in the subspace S, . Implicit here is that s, is at_ least

as good as s, , .
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"Closest" as used here is In the sense of Euclidean

distance or the norm of the difference between the two vectors

s and s, . "Best" implies that s. is the closest of all S,— ~k * ~k k

approximators to s. To formalize the notion, the distance is

given by

IIS " gk ll
" Cg - gk ) * (s - s

k )

To prove that s, is the best S, approximator of s, in the

norm, choose an arbitrary S, approximator

k-1

and determine the coefficients p! which makes the norm
J

2
|| s - sJ" || smallest, or equivalently, minimizes || s, - s'||

s - s'||
2

= (s - s.«) • (s - s')

k-1 k-1 k-1
•"8*8-2 E p!(s»e.) + I I p!p!(e,.e,)- -

p
j ~ ~3 1=0 , =0 *i*\r~i ~3

3-0

? k-1 k-1
5

=
II
s

|l

^ - 2 I p'p + I (p')*
j-o J J j=o J

3 k-1 k-1
= Hsir + 2 (pj - p.) - ^ (p.)

3=0 J J 3=0 J

Thus pt = p. = s»e,, 3 = 0, 1, 2, ..., k-1 is the coeffi-
3 3 ~ ~3

cient set which results in the best S, approximator.
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The limiting case of the best S. approximator does not

imply that lim ||s - s. ||
=0. It is conceivable that we

can find an s^ which possesses components which are orthogonal

to every vector in the infinite set E. One example is the

infinite system

E =
{ A7 > h sin(x)

• h sln ( 2x > »•••..}

spanning the space of continuous functions defined on

-ir<xlTr . E is orthonormal and infinite, yet the best S,

approximator for f (x) = A cos(x) is zero for all k. This

introduces the notion of completeness. An infinite ortho-

normal system E is said to be a complete orthonormal system

if for every seS, the norm ||s - s. ||
-*-Q as k-*00 .

To this point the discussion has been limited to contin-

uous signal and infinite dimensional signal (vector) spaces.

The results can be modified to cover finite dimensional, say

N, signal spaces which are not unbounded, that is, the set

of N-dimensional vectors whose elements are real numbers

possible obtained by sampling the value of continuous

functions at N equally spaced points on the interval

a <_ x <_ b. It is implicitly assumed that the constraints

placed by the sampling theorem are met.

We define a discrete inner product operation on the

space S„ as

N-l T
F-GM = Z f g = FMGTT~N~N

n=n
n n '"N-'N
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where £N
= (f

Q
, f^ ..., f^) and G

N
= (gQ , S±t ..., gN_1

)

.

Let DM = {dOJ d n , • .., d.
T , } be a discrete N-dimensional

•N ~0 ~1 ~N-1

orthonormal system spanning S... The d are lxN vectors

satisfying

T
d.*d. = d.d. = 6..
~i ~3 ~i~j ij

For any signal vector in SM , say s = (s
Q , s, , . .., s„ ,

)

there is a best S, approximator in the norm given by

k-1
s = I p cL for all k = 1, 2, ..., N
K

i=0
1^L

where

T
N-l

p., = s»d. = s d. = Z s. d. .f± ~ ~± ~ «^_ . =1 ~j ~ji

The N-dimensional system DN is said to be a complete

discrete orthonormal system if for every seSM , the norm

s - s
k ||

= 0.

In the above discussion, general orthonormal systems

spanning continuous and discrete signal spaces have been

considered. Nothing has been said about which orthonormal

system or basis may be best suited to representation of a

certain category of signals in the space.

A given signal, v, in the discrete signal space S„

possesses best S, approximators in every orthonormal basis

in SN . However the best S, approximator in one basis will

in general posses a greater or smaller norm error than the

best S. approximator in another basis. Since there is an
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infinite number of signals possible in SM , the determination

of the best orthonormal basis to represent a particular

category of signals by a truncated series, that Is a S,

approximator, is more than a casual matter.
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APPENDIX D

TABULATION OF NUMERICAL RESULTS

SIGNAL SPACE 6-11 TO 10-12

F-RATIO VECTOR. NR SIG PER CLASS r 25 NR CLASSES 20

N GLOBAL MEAN F - RATIO

1 .222070307
2 .286132872
3 .323046923
4 .341074228
5 .347714841
6 .351523519
7 .349199176
8 .347734392
9 .343847632

10 .342832029
11 .341581941
12 .342675805
13 .344257712
14 .344140649
15 .344668031
16 .344303975
17 .341718793
18 .337812543
19 .336386681
20 .334472597
21 .334609339
22 .338437557
23 .346464813
24 .356015623
25 .367402315
26 .380039096
27 .391523421
28 .401757836
29 .408632874
30 .411835963
31 .410820305

.55055E+01

.57295E+01

.57926E+01

.80339E+01

.27556E+01

.36908E+01

.75660E+01

.3 53 40E+01
•59935E+01
.67135E+01
• 13259E+02
.97770E+01
.65022E+01
.19725E+01
.58023E+01
.79927E+01
.29640E+02
• 14092E+03
.25212E+03
.66148E+03
.10338E+04
.16895E+04
•21429E+04
.31068E+04
.40367E+04
.58017E+04
.73377E+04
.93782 E+04
.69004E+04
• 50050E+04
.30961E+04

RANK F - RATIO

28 .93782E+04
27 .73377E+04
29 .69004E+04
26 .58017E+04
30 .50050E+04
25 .40367E+04
24 .31068E+04
31 .30961E+04
41 .22867E+04
43 .22955E+34
42 .21555E+04
23 .21429E+04
39 . 1SS25E+34
40 .18669E+04
44 .17171E+04
22 .16895E+04
32 . 16522E+04
38 . 16063E+04
33 .13857E+04
45 .13855E+04
34 .12911E+04
37 . 12444E+04
36 . 11757E+04
21 .10338E+04
35 .95942E+03
46 .89299E+03
20 .66148E+03
47 .50426E+03
19 .25212E+03
48 .25078E+03
13 . 14092E+03

TABLE Dl. Feature Selector (F-Ratio) Test on Signal
Samples of 20 Classes (6-11 to 10-12)
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SIGNAL SPACE (CONT)

32 .405371070 .I6522E+04 49 .10401E+03
33 .395803829 . 13857E+04 50 .4491SE+02
34 .381640673 .12911E+04 17 .29640E+02
35 .365371048 .95942E+03 51 .17336E+02
36 .346074224 .11757E+04 52 .16858E+02
37 .322753906 .12444E+04 11 .10259E+C2
38 .298769534 .16063E+04 12 .97770E+01
39 .270624995 .18825E+04 54 .84328E+01
40 .242421865 .18669E+04 4 .80339E+01
41 .213886738 .22867C+24 16 .79927E+01
42 .185917914 .21555E+04 7 .75660E+01
43 .158691436 .22955E+04 57 .69157E+01
44 .133320332 .17171E+04 53 .68629E+01
45 .108823142 .13S55E+04 58 .68517E+01
46 .086152345 .S9299E+03 10 .67135E+01
47 .066233476 .50426E+03 13 .65022E+01
48 .04S710942 .25078E+03 56 .63940E+01
49 .036562510 .10401E+03 61 .63207E+01
50 .029863276 .44913E+32 60 .62801 E+01
51 .027402349 .17336E+32 55 .61496E+01
52 .026562501 .1685SE+32 63 .61142E+01
53 .027324218 .68629E+01 62 .60556E+01
54 .027246099 .84328E+01 9 .59935E+01
55 .027187504 .61496E+01 15 .58023E+01
56 .027421873 .63940E+01 3 .57926E+01
57 .027285166 .69157E+01 2 .57295E+01
58 .027148437 .6S517E+01 59 .56356E+01
59 .027460940 .56056E+01 1 .55055E+01
60 .027226567 .628S1E+31 6 .3690SE+01
61 .027226550 .63207E+01 8 .35340E+01
62 .027382813 .60556E+01 5 .27556E+01
63 .027246099 .61142E+01 14 .19725E+01

TABLE Dl. (continued)
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FOURIER 6-11 TO 10-12

F-RATIO VECTOR. NR SIG PER CLASS = 25 NR CLASSES = 20

N GLOBAL MEAN F - RATIO RANK F - RATIO

1 .150054395 .63360E+05 3 .64962E+05
2 .028901398 . 49742 E+05 1 .63360E+35
3 .007832460 .64962 E+05 2 .49742E+05
4 .003212961 .21429E+05 4 • 2I429E+05
5 .002258407 •58363E+34 5 .58363E+04
6 .000839599 • 14310E+04 6 .14010E+04
7 .000358398 .56836E+03 7 .56836E+03
8 .000244518 .17927E+03 8 .17927E+03
9 .000195182 .65161 E+02 9 .65161E+02

10 .000114297 .23846E+02 10 .23846E+02
11 .000077852 .13883E+02 12 .14263E+02
12 .000054494 .14263E+02 11 .13883E+02
13 .000039765 .57374E+01 14 .1 1504E+02
14 .000030612 .11504E+02 30 .96354E+01
15 .000020852 .42061E+01 18 .84680E+01
16 .000015115 •3S095E+01 26 .79446E+01
17 .000315180 .52134E+01 21 .73034E+01
18 .000011 138 .84680E+01 20 .62571E+01
19 .000008543 .52743E+01 13 .57374E+01
20 .000009830 .62571E+01 23 .55700E+01
21 .000009220 .73034E+01 24 .53858E+01
22 .000008530 .49047E+01 28 .53833E+01
23 .000006571 .55700E+01 19 .52743E+01
24 .030006548 .53858E+01 17 .52134E+01
25 .333005893 .36414E+01 22 .49047E+01
26 .003035540 .79446E+01 27 .47574E+01
27 .000005772 .47574E+01 15 .42061E+01
28 .000004928 .53833E+01 16 .3S095E+01
29 .030005287 .32960E+01 25 .36414E+01
30 .000006183 .96354E+31 29 .32960E+01
31 .000004341 .25476E+01 31 .25476E+01

TABLE D2. Feature Selector (P-Ratio) Test on Fourier
Magnitude Coefficients of 20 Classes
(6-11 to 10-12)
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WALSH 6-11 TO 10-12

F-RATIO VECTOR. NR SIG PER CLASS = 25 NR CLASSES = 20

N GLOBAL MEAN F - RATIO RANK F - RATIO

1 .421459854 .94382E+03 3 .13845E+05
2 -.276371837 . 16822 E+02 6 .29463E+04
3 .180234492 .13845E+05 9 •19316E+04
4 .101912975 .12270E+04 25 .14192E+04
5 -.100674778 .93880E+03 21 .13941E+04
6 -.158544034 .29463 E+04 4 .12270E+04
7 .052469350 .10585E+04 10 .10815E+04
8 -.022725660 .923 42E+03 7 .10585E+04
9 -.014492664 .19316E+04 26 .95740E+03
10 -.028861068 .10815E+04 1 .94382E+03
11 -.045914553 .43283E+03 5 • 93880E+03
12 .024911135 .48538E+03 8 .92342E+03
13 -.063686222 .9330SE+02 23 .81742E+03
14 -.085314587 .43180E+03 57 .69750E+03
15 .012225481 .12082E+02 24 .67505E+03
16 -.015699737 .52419E+02 58 .54888E+03
17 -.016392939 .49295E+03 17 .49295E+03
18 -.011567336 .24585E+03 12 .48538E+03
19 -.018360678 .40562E+03 27 .44935E+03
20 -.026983093 .43928E+03 20 .4392SE+03
21 -.014538482 .13941 E+04 11 .43280E+03
22 -.010047775 .25646E+03 14 .431S0E+33
23 -.015147123 .81742E+03 19 .40562E+03
24 -.015672214 .67505E+03 28 .38519E+03
25 -.012974054 .14192 E+04 53 .37941E+03
26 -.016723357 .95740E+03 56 .37574E+03
27 -.026574213 .44935E+03 30 .34832E+03
28 .008189458 .38519E+03 55 .27556E+03
29 -.034384355 .79327E+02 59 .26150E+03
30 -.046341300 .34832E+03 22 • 25646E+03
31 .003344229 .83294E+01 18 .24585E+03

TABLE D3. Feature Selector (F-Ratio) Test on Walsh
Coefficients of 20 Classes (6-11 to 10-12)
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WALSH 6-11 TO 10-12 (CONT)

32 -.003937508 .72821E+01 60 .23367E+03
33 -.004391285 .94356E+02 49 .21078E+03
34 -.003328099 .55239E+02 62 .20571E+03
35 -.005259098 .11806E+03 39 •16422E+03
36 -.007195756 .40071 E+02 51 .16308E+03
37 -.003813875 .15540E+03 37 .1554OE+03
38 -.002785032 .89413E+02 52 .13224E+03
39 -.003943303 .16422E+03 54 .13029E+03
40 -.003647456 .11918E+03 40 .1 191SE+03
41 -.005117728 .49212E+02 35 .1 1806E+03
42 -.001877687 • 87908E+02 33 .94356E+02
43 -.002985545 .53109E+02 13 .93308E+02
44 -.004045820 .31593E+02 38 .89413E+02
45 -.001935357 .32743E+02 42 .87908E+02
46 -.003251178 .55945E+02 29 .79027E+02
47 -.002473158 .51670E+02 50 .723 13 E+02
48 -.008079369 .16390E+02 46 .55945E+02
49 -.008163791 .21078E+03 34 .55239E+02
50 -.005553338- .72313E+02 43 .53109E+02
51 -.009373251 .16308E+03 16 .52419E+02
52 -.014026146 .13224E+03 47 .51670E+02
53 -.007172137 .37941E+03 41 .49212E+02
54 -.005473697 .13029E+03 36 .40071 E+02
55 -.003266874 .27556E+03 61 .36500E+02
56 -.008029046 .37574E+03 45 .32740E+02
57 -.006842355 .69753E+03 44 .31593E+02
58 -.008202417 .54888E+03 2 .16822E+02
59 -.013011700 .26150E+03 48 . 16390E+02
60 .004154839 .23367E+03 15 . 12082E+02
61 -.017102443 .36500E+02 31 .83294E+01
62 -.023213031 .20571E+03 32 .72821E+01
63 .001648158 .70162E+01 63 .70162E+01

TABLE D3- (continued)
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HAAR 6-11 TO 10-12

F-RATIO VECTOR. NR SIG PER CLASS = 25 NR CLASSES = 20

N GLOBAL MEAN F - RATIO RANK F - RATIO

1 .421459354 . 94382 E+03 5 .65954E+04
2 -.067979291 .38147E+04 12 .41875E+04
3 .322869420 .11542E+04 2 .38147E+04
4 -.052418254 .51611E+01 25 .29081E+04
5 -.05365S437 .65954E+04 6 .29033E+04
6 .206800520 .29033E+04 24 .27113E+04
7 .004212818 .161 41 E+03 27 .20938E+04
8 -.079145819 .52838E+01 13 .18742E+04
9 .000045885 .30722E+01 10 .18237E+04

10 .031146692 •18237E+04 22 .13999E+04
11 -.025410343 .78754E+03 26 •12637E+04
12 .056869388 .41875E+04 23 .12631E+04
13 .074749634 .18742E+04 21 .11728E+04
14 .006280228 .14284E+03 3 .11542E+04
15 .000043196 .50746E+01 1 .943S2E+03
16 -.067468256 .47637E+01 11 .78754E+03
17 -.003099656 .46635E+01 48 .58286E+03
18 .001861913 .59404E+01 47 .56349E+03
19 -.000485979 .71514E+01 50 .54573E+03
20 .003002785 .176 18 E+03 49 .49981 E+33
21 -.004078226 .1172SE+04 51 .41726E+33
22 -.012486210 .13999E+04 55 .38915E+33
23 -.003243537 .12631E+04 43 .34455E+33
24 .014016557 .27113E+04 54 .32788E+03
25 .025833614 .29381 E+04 44 .31620E+03
26 .029063039 .12637E+04 45 .29903E+03
27 .023341 142 • 20938E+04 28 .27999E+03
28 .007274361 .27999E+03 46 .23718E+03
29 -.000141846 .11623E+02 52 .22990E+03
30 .000025079 .65944E+01 53 .21122E+03
31 -.030345565 .58745E+01 20 .176 18 E+03

TABLE D4. Feature Selector (F-Ratio) Test on Haar
Coefficients of 20 Classes (6-11 to 10-12)
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HAAR 6-11 TO 10-12 (CONT)

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

034772977
013562107
002439418
000854119
001427832
000458961
000580903
000193610
000841666
000527325
000041010
002936369
004171481
004217939
002539818
O00350902
003491787
005964154
003566041 '

010348957
010499693
010017596
009038653
007324575
004464616
000904510
000280508
000021330
000050633
0001 14483
030000069
000050732

.44496E+01

.46693E+01

.39371E+01

.25150E+01

.24802 E+01

.48432E+01

.37468E+01
• 23888E+01
.88559E+01
.20209E+02
.10548E+03
.34455E+03
.31620E+03
.29903E+03
.23718E+33
.56349E+03
.5S286E+33
.49981Z+03
.54573E+S3
.41725E+03
.22990E+03
.21 122E+03
.32788E+33
.38915E+03
. 14041E+03
.23660E+02
.95778E+01
.65067E+01
.64988E+01
.S3 083 E+01
• 63902E+01
.64573E+01

7 .1614IZ+03
14 .14284E+03
56 .14041E+03
42 .10548E+03
57 .23660E+02
41 .20209E+02
29 .11623E+02
58 .9577SE+01
40 .88559E+01
19 .71514E+01
30 .65944E+01
59 .65067E+01
60 .64988E+01
63 .64573E+01
62 .63902E+01
61 .63083E+01
18 .59404E+01
31 .58745E+01
8 .5283SE+01
4 . 5 1 6 1 1 E+0 1

15 .5G746E+01
37 .48432E+E1
16 .47637E+01
33 .46693E+01
17 .4S635E+01
32 .4449SE+01
34 .39371E+31
38 .37468E+01
9 .30722E+01

35 .25150E+31
36 .24S02E+01
39 .23888E+01

TABLE D4. (continued)
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FOURIER

F-RATIO VECTOR, NR SIG PER CLASS = 25 NR CLASSES - 79

N GLOBAL MEAN F - RATIO

1 .244011253 .13646E+07
2 .030544873 .1 1854E+07
3 .007437990 .29563E+06
4 .004120382 .25194E+06
5 .00211 1879 .63064E+05
6 .000865536 . 12963E+05
7 .000385381 .90581E+04
8 .000240613 .29392E+04
9 .000155630 .89223E+03
10 .000096675 .50438E+03
11 .000065638 .24139E+03
12 .000043440 .15983E+03
13 .000030658 .98446E+02
14 .000023340 .1 1621 E+03
15 .000016273 .94626E+02
16 .000012276 .75074E+32
17 .000010168 .79197E+02
18 .000308259 .66924E+02
19 .003006182 .41279E+02
20 .000006026 •50026E+O2
21 .000005957 .50573E+02
22 .000004969 • 5O6S2E+02
23 .000004456 .51833E+02
24 .000004095 .51929E+02
25 .000003874 .36995E+02
26 .000003587 .57435E+02
27 .000003761 .45930E+02
28 .000003032 .36979E+02
29 .000003664 • 27693E+02
30 .000003656 .42875E+02
31 .000003202 .30794E+02

RANK F - RATIO

1 .13646E+07
2 .11854E+07
3 .29563E+06
4 .25194E+06
5 .63064E+05
6 •12963E+05
7 .905P1E+04
8 .29392E+34
9 .89223E+03

10 .50438E+03
11 .24139E+03
12 .15983E+03
14 .1 1621 E+03
13 .98446E+02
15 .94626E+02
17 .79197E+02
16 .75074E+02
18 .66924E+02
26 .57435E+02
24 .51929E+02
23 .51833E+02
22 .50682E+02
21 .50573E+02
20 .50026E+02
27 .45930E+02
30 .42875E+02
19 .41279E+02
25 .36995E+02
28 .36979E+02
31 .30794E+02
29 .27693E+02

TABLE D5. Feature Selector (F-Ratio) Test on Fourier
Magnitude Coefficients of 79 Classes
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FOURIER

GL03AL WEIGHTED SECOND MOMENTS. NR CLASSES = 79

N GLOBAL MEAN WTD MOMENT

1 .244011253
2 .030544873
3 .007437993
4 .004120382
5 .002111879
6 .000865536
7 .000385381
8 .000240613
9 .000155630

10 .000096675
11 .000065638
12 .030043440
13 .000030658
14 .000023340
15 .000316273
16 .003012276
17 .000013168
18 .003308259
19 .000306182
20 .003006326
21 .033305957
22 .300034969
23 .003334456
24 .033034095
25 .000003874
26 .000033587
27 .000003761
2S .000003332
29 .003303S64
30 .000003656
31 .000003202

.81307E+05

.34596E+05

.33545E+05

.17185E+05

.72055E+04

.49743E+03

.19427E+03

.8S671E+02

.51498E+02

.37999E+02

.83954E+01

.57777E+01

.29259E+01

. 42502 E+01

.32881 E+01

.22817E+01

.45425E+01

. 18282 E+01

. 13818E+31

. 191 79 E+01

. 14677E+31

.26202E+31
•12907E+31
. 15577Z+31
.16236E+31
. 18179E+B1
. 17297E+01
.1481PE+B1
.90337E+00
.16634E+31
.14747E+01

RANK WTD MOMENT

1 .81307E+05
2 .34596E+35
3 .33545E+05
4 .17185E+05
5 .72055E+04
6 .49743E+03
7 .19427E+03
8 .88671E+02
9 .51498E+02

10 .37999E+02
11 .83954E+01
12 .57777E+01
17 .45425E+01
14 .42502E+01
15 .32881E+01
13 .29259E+01
22 .26202E+01
16 .22817E+31
23 .19179E+01
18 .18282 E+01
26 .18179E+01
27 .17297E+01
30 .16634E+01
25 .16206E+01
24 .15577E+01
28 .14810E+01
31 .14747E+01
21 .14677E+01
19 .13818E+01
23 .12907E+01
29 .90337E+00

TABLE D6. Feature Selector (G-Variance Ratio) Test on

Fourier Magnitude Coefficients of 79 Classes
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WALSH

F-RATIO VECTOR. NR SIG PER CLASS = 25 HR CLASSES 79

N GLOBAL MEAN F - RATIO RANK F - RATIO

1 .565311790 • 18709E+05 5 .19245E+05
2 -.217285603 .38569E+04 1 .18709E+05
3 .103944555 .11957E+05 4 .18401E+05
4 -.053110689 .18401E+05 29 •12934E+05
5 -.180918634 • 19245E+05 3 . 1 1957E+05
6 -.107709035 .23209E+04 28 .1 1363E+05
7 .030635044 .19S84E+04 . 13 .10376E+05
8 -.040665880 .34298E+04 12 •97208E+04
9 -.044336351 .33474E+04 27 .64322E+04
10 -.022559818 .42024E+04 11 .59864E+04
11 -.029491160 .59864E+04 60 .55136E+04
12 -.042010292 .97208E+04 61 .43864E+04
13 -.102987796 .10376E+05 10 .42024E+04
14 -.069822848 .82600E+03 25 .41552E+04
15 .001940256 .30388E+03 26 .40892E+04
16 -.016583100 . 45342 E+03 2 .38569E+34
17 -.020561803 .1 1594E+04 21 .36362E+04
18 -.011698609 .16507E+04 59 .34932E+04
19 -.015326099 .27382E+04 20 .34443E+04
20 -.016030990 .34443E+04 8 •34298E+04
21 -.012256719 .36362 E+04 23 .34015E+04
22 -.017078027 .27946E+04 24 .33631E+04
23 -.013291242 .34015E+04 9 .33474E+04
24 -.022318721 .33631 E+04 22 .27946E+04
25 -.025561351 .41552E+04 19 •27382E+04
2S -.013324937 .40892E+04 57 .25764E+04
27 -.0175661 11 .64322 E+04 6 • 23209E+04
28 -.023117185 .1 1363E+05 58 .21546EH-04
29 -.052535623 .12934E+05 56 • 20902E+04
30 -.037340686 •11378E+04 7- . 19884E+04
31 -.000379351 .21820E+03 52 .17819E+04

TABLE D7. Feature Selector (F-Ratio) Test on Walsh
Coefficients of 79 Classes
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WALSH (CONT)

32 -.002763121 .85677E+02 18 .16507E+04
33 -.033858594 .16422E+03 55 .15446E+04
34 -.001771946 .14446E+03 53 .14643E+04
35 -.002504065 .33111E+03 54 .12274E+04
36 -.002813622 .59134E+03 17 .11594E+04
37 -.001669894 .48991E+03 30 .11378E+04
38 -.002616133 .33749E+03 51 .10275E+04
39 -.001990825 .47213E+03 62 .97721E+03
40 -.000862905 .37063E+03 14 .82600E+03
41 -.002232825 .27667E+03 36 .59134E+03
42 -.001120716 .21317E+03 50 .56949E+03
43 -.001534370 .17058E+03 49 .53684E+03
44 -.001099636 .21086E+03 37 .48991E+03
45 -.000131854 .17027E+03 39 .47213E+03
46 -.0013771 16 .20433E+03 16 .45342E+03
47 -.000502281 .17193E+03 40 .37063E+03
48 -.007560768 .16286E+03 35 .33111E+33
49 -.009521550 .53684E+03 38 .30749E+03
50 -.005135024 .56949E+03 15 .30388E+03
51 -.006912556 .10275E+04 41 .27667E+03
52 -.007238736 .17819E+04 31 .21820E+03
53 -.005216978 .14643E+04 42 .21317E+03
54 -.007828495 .12274E+04 44 .21086E+03
55 -.006029200 .15446E+04 46 .20433E+03
56 -.010537105 .20902E+04 47 .17193E+03
57 -.012213166 .25764E+04 43 .17058E+03
58 -.006033713 .21546E+04 45 . .17027E+03
59 -.008100864 .34932E+04 33 .16422E+03
60 -.010843758 .55136E+04 48 .16286E+03
61 -.0256S6976 .43S64E+04 34 .14446E+03
62 -.018169586 .97721E+03 32 .85677E+02
63 .000486727 .60132E+02 63 .60132E+02

TABLE D7. (.continued)
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WALSH

GLOBAL WEIGHTED SECOND MOMENTS. NR CLASSES = 79

N GLOBAL MEAN WTD MOMENT RANK WTD MOMENT

1 .565311790 .13590E+04 4 .87650E+04
2 -.217285603 .67881E+02 5 .42234E+04
3 .103944555 .31066E+04 3 .31066E+04
4 -.0531 10689 .87650E+04 12 .13955E+04
5 -.180918634 .42234E+04 1 .13590E+04
6 -.107709035 .32753E+03 13 .76792E+03
7 .030635344 .27490E+23 10 .62367E+03
8 -.040665880 .45347E+03 28 .50915E+03
<> -.044336051 .28946E+03 11 .47813E+03

10 -.022559813 .62367E+03 8 •45347E+03
11 -.029491160 .47813E+03 29 .34414E+03
12 -.042010292 .13955E+04 6 .32753E+03
13 -.102987796 .76792 E+03 9 .28946E+03
14 -.069822848 .35172E+02 7 • 27490E+03
15 .001940256 .98932E+01 27 •26488E+03
16 -.016583100 .11939E+02 26 .23225E+03
17 -.020561833 .4738SE+02 20 . 19803E+03
IS -.01 1698609 .49247E+02 25 .19704E+03
19 -.015326099 .77826E+02 24 .18797E+03
20 -.016030990 .19803E+03 22 •14856E+03
21 -.012256719 . 12389E+03 60 .12543E+03
22 -.017078027 . 14856E+03 21 . 12389E+03
23 -.013291242 . 1 1665E+03 23 •11665E+03
24 -.022318721 .18797E+03 61 . 10899E+03
25 -.025561351 . 19704E+03 59 .89312E+02
26 -.013324937 .23225E+03 19 •77826E+02
27 -.017566111 .26488E+03 2 .67881E+02
28 -.0231 17185 .50915E+03 56 .62724E+02
29 -.052535623 .34414E+03 58 .49439E+02
30 -.037340686 .2877SE+02 18 .49247E+02
31 -.000379351 .48499E+01 57 .47756E+02

TABLE D8. Feature Selector (G-Variance Ratio) Test on

Walsh Coefficients of 79 Classes
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WALSH (CONT)

32 -.002763121
33 -.003858594
34 -.001771946
35 -.002504065
36 -.002813622
37 -.001669894
38 -.002616133
39 -.001990825
40 -.000862905
41 -.002232825
42 -.001120716
43 -.001534370
44 -.001099636
45 -.000131854
46 -.001377116
47 -.000502281
48 -.007560768
49 -.009521550
50 -.005135024
51 -.006912556
52 -.007238736
53 -.005216978
54 -.007823495
55 -.006029200
56 -.010537105
57 -.012210166
58 -.006003713
59 -.008100864
60 -.010843758
61 -.025686976
62 -.018169586
63 .000486727

.16543E+01

.34326E+01

.52938E+01

.85940E+01

.15359E+02

.13186E+02

.59670E+01

.95801E+01

.77226E+01

.80924E+01

.53087E+01

.50344E+01

. 10175E+02

.51846E+01

. 45302 E+01

.38544E+01

.21936E+01

.98725E+01

.94851E+01

.24274E+02

.36842E+02

.282S6E+02

.23803E+02

.34456E+02

.62724E+02

.47756E+02

.49439E+02

.89312E+02

.12543E+03

. 10899E+03

.27122E+02

.10623 E+01

17 .47388E+02
52 .36842E+02
14 .35172E+02
55 .34456E+02
30 .28778E+02
53 .28266E+02
62 .27122E+02
51 .24274E+02
54 .23803E+02
36 .15359E+02
37 .13186E+02
16 .11939E+02
44 .10175E+02
15 .98932E+01
49 .98725E+01
39 .95801E+01
50 .94851E+01
35 .85940E+01
41 .80924E+01
40 .77226E+01
38 .59670E+01
42 .53087E+01
34 .52938E+01'
45 .51846E+01
43 .50344E+01
31 .48499E+01
46 .45302E+01
47 .38544E+01
33 .34326E+01
48 .21936E+01
32 .16543E+01
63 .10623E+01

TABLE D8. (continued)
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HAAR

F-RATIO VECTOR. NR SIG PER CLASS = 25 NR CLASSES = 79

N GLOBAL MEAN F - RATIO RANK F - RATIO

1 .565311790 • 18739E+05 3 .20366E+05
2 -.080144212 .40094E+04 1 .18709E+05
3 .227144033 .20366E+05 5 .15571E+05
4 -.155551642 .56587E+04 12 .10324E+05
5 .078477696 .15571E+05 6 .10047E+05
6 .133076342 . 10047E+05 1 1 .981 17E+04
7 .005268052 . 16782 E+04 13 .90949E+04
8 -.123720288 . 12499E+04 24 .87025E+04
9 -.026809175 .58476E+04 21 .S56S4E+04

10 .015614549 .84870E+04 10 .84870E+34
11 .338914397 .98117E+04 23 •82532E+04
12 .045777909 .10324E+05 27 .73474E+04
13 .048083924 • 90949E+04 25 .66174E+04
14 .007561467 . 185S3E+04 22 .62710E+04
15 .000065082 . 10602 E+02 18 .61692E+04
16 -.078742653 .23280E+03 20 .60012E+04
17 -.017329343 .48708E+04 9 .58476E+04
18 -.010028591 .61692E+04 26 .56997E+04
19 -.007272270 .55549E+04 4 .56587E+04
20 .002185489 .63012E+04 19 .55549E+04
21 .008286370 .85684E+04 17 .48708E+04
22 .011720791 .62713E+04 2 .40094E+04
23 .015740100 .82532E+04 43 .31419E+04
24 .016436238 .87025E+04 28 .27804E+04
25 .016254377 .66174E+04 42 .27716E+04
26 .016929265 .56997E+04 45 .26860E+04
27 .016759910 .73474E+04 39 .26273E+04
28 .007548493 .27804E+04 40 .25358E+04
29 -.000035129 .70845E+02 41 .25028E+04
30 .000026063 .13846E+02 44 .24087E+04
31 .000003486 • 12519E+02 36 .23791E+04

TABLE D9. Feature Selector (F-Ratio) Test on Haar

Coefficients of 79 Classes
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HAAR (CONT)
.

32 -.030998804 .71907E+02
33 -.020798806 .36716E+03
34 -.008263538 • 15029E+04
35 -.004329727 .18157E+04
36 -.003420372 .23791 E+04
37 -.003714766 .23272 E+04
38 -.003357950 .21674E+04
39 -.001785635 .26273E+04
40 .000036728 .25358E+04
41 .001294567 .25028E+04
42 .002697312 .27716E+04
43 .003185426 .31419E+04
44 .0037S8556 .24087E+34
45 .004647519 .26860E+34
46 .005146206 . 19179E+04
47 .005858616 .22528E+04
48 .005964712 .20354E+04
49 .005714301 .14999E+04
50 .005673340 .144 12 E+04
51 .006033399 .14327E+04
52 .006039556 .11742E+04
53 .006098758 .12796E+04
54 .006267068 .14583E+04
55 .005584360 .21475E+04
56 .003954230 .12952E+04
57 .001430578 .57037E+03
58 -.000000463 .62252E+02
59 .000039989 .18718E+G2
60 .000013213 . 13684E+02
61 -.000028365 .16565E+02
62 .000021590 . 16325 E+02
63 .000021762 .13495E+02

37 .23272E+04
47 .22528E+04
38 .21674E+04
55 .21475E+04
48 .20354E+04
46 •19179E+04
14 . 18583E+04
35 .18157E+04
7 .16782E+04

34 .15029E+04
49 . 14999E+04
54 .14583E+04
50 .14412E+04
51 .14327E+04
56 .12952E+04
53 .1279SE+04
8 .12499E+04

52 .11742E+04
57 .57037E+03
33 .36716E+03
16 .23280E+03
32 .71907E+02
29 .70845E+02
58 •62252E+02
59 .18718E+02
61 .16565E+E2
62 .16325E+02
30 .13846E+02
60 .13684E+02
63 .13495E+02
31 .12519E+02
15 .10602E+02

TABLE D9 . (continued)
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HAAR

GLOBAL WEIGHTED SECOND MOMENTS. NR CLASSES = 79

N GLOBAL MEAN WTD MOMENT

1 .565311790 • 13590E+04
2 -.080144212 .23700E+03
3 .227144033 .26014E+04
4 -.155551642 .60665E+03
5 .078477696 .528232+04
6 .133076042 .6G607E+03
7 .005268052 .21S13E+37
8 -.123720288 .86505E+02
9 -.026809175 .53364E+C3

10 .015614549 .82489E+03
11 .038914397 .14071E+04
12 .045777909 . 15639E+04
13 .048083924 .21813E+37
14 .007561467 .21S13E+37
15 .000065082 .21813E+37
16 -.078742653 . 14884E+02
17 -.017329343 . 12823E+03
18 -.010028591 .27691E+03
19 -.007272270 .24777E+03
20 .002185489 .17905E+03
21 .008286370 .27031E+03
22 .011720791 .30375E+03
23 .015743100 .33230E+03
24 .016436238 .37681E+03
25 .016254377 .340S0E+03
26 .016929265 .21813E+37
27 .016759910 .21813E+37
28 .007548493 •21813E+37
29 -.000035129 .21813E+37
30 .000026063 .21813E+37
31 .000003486 .21813E+37

RANK WTD MOMENT

7 .21S13E+37
13 .21813E+37
14 .21813E+37
15 .21813E+37
26 .21813E+37
27 .21S13E+37
28 .21813E+37
29 .21813E+37
30 .21813E+37
31 .21813E+37
37 .21813E+37
38 .218.13E+37
39 .21813E+37
43 .21833E+37
45 .21813E+37
51 .21813E+37
52 .218131+37
53 .21813E+37
54 .21813E+37
55 .21813E+37
56 .21S13E+37
57 .21813E+37
58 .21813E+37
59 .21813E+37
60 .21813E+37
61 .21S13E+37
62 .21813E+37
63 .218I3E+37
35 . 16375E+06
36 .37971 E+05
40 .26643E+05

TABLE DIO. Feature Selector (G-Variance Ratio) Test on

Haar Coefficients of 79 Classes
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HAAR CCONT)

32 -.030998804 . 18503 E+01 42 .80963E+04
33 -.020798806 .15598E+02 5 .52823E+04
34 -.008263538 .32671E+02 3 .26014E+04
35 -.004329727 .16375E+06 12 .15639E+04
36 -.003420372 .37971E+05 11 .14371E+04
37 -.003714766 • 21813E+37 1 .13590E+04
38 -.£03357950 .21813E+37 10 .82489E+03
39 -.001785635 .21S13E+37 4 .60665E+03
40 .000036728 .26643E+05 • 6 .60607E+03
41 .001294567 .32313E+02 9 .53364E+33
42 .002697312 .80963E+04 24 .37681E+03
43 .003185426 .21S13E+37 25 .34080E+03
44 .003788556 .50924E+02 23 .33230E+03
45 .004647519 .21S13E+37 22 .30375E+03
46 .005146206 .45074E+02 18 .2769 1 "+03

47 .005858616 .41865E+02 21 .27031E+03
48 .005964712 .32577E+02 19 .24777E+03
49 .005714301 .31696E+02 2 .23703E+03
50 .005673340 .32009E+02 20 .17905E+03
51 .006033399 • 21813E+37 17 .12S23E+03
52 .006039556 .21813 E+37 8 .86505E+02
53 .006098758 .21813E+37 44 .50924E+02
54 .006267068 .21813E+37 46 .45074E+02
55 .005584360 .21S13E+37 47 .41865E+02
56 .003954230 .21813E+37 34 .32671 E+02
57 .001400578 .21813E+37 48 .32577E+02
58 -.000000463 .21313E+37 41 .32313E+C2
59 .000009989 .2 18 13 E+3 7 50 .32009E+02
60 .000013213 .21813E+37 49 .31696E+S2
61 -.000028365 .21813E+37 33 . 15598E+02
62 .000021590 .21813E+37 16 •14884E+02
63 .000021762 .2 181 3 E+37 32 .18503E+01

TABLE D10. (continued)
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