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ABSTRACT 

We develop and estimate optimal age replacement policies for devices whose age 

is measured in multiple time scales. For example, the age of a jet engine can be 

measured in chronological time, the number of flight hours, and the number of landings. 

Under a single-scale age replacement policy, a device is replaced at age ror upon failure, 

whichever occurs first. We show that a natural generalization to k ;::: 2 scales is to replace 

non-failed devices when their usage path crosses the boundary of a k-dimensional region 

M, where M is a lower set with respect to the matrix partial order. For lifetimes measured 

in two scales, we consider two contexts. In the first, devices age along linear usage paths. 

For this case, we generalize the single-scale long-run average cost and estimate optimal 

two-scale policies. We show these policies are strongly consistent estimators of the true 

optimal policies under mild conditions, and study small-sample behavior using 

simulation. For the second context, in which device usage paths are unknown, we use 

two-dimensional renewal theory to derive the long-run average cost of a policy. We give 

examples in both settings and note that these ideas generalize to more than two scales. 
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I. INTRODUCTION 

In practice, the age of a device is often measured in more than one time scale. For 

example, automobiles age in the "parallel" scales of calendar time since purchase and 

number of miles driven. As such, routine engine maintenance depends on both of these 

scales: an oil change is recommended every three months or 3,000 miles, whichever 

comes first. For some devices, the scale most relevant for maintenance is clear. For 

example, Kordonsky and Gertsbakh (1993) note that for a jet engine turbine, the duration 

of the warmup period is the most relevant (of several possible scales) but for the 

undercarriage of an aircraft, the number of landings is most relevant. For other devices, 

however, the most relevant scale for maintenance is difficult to determine. For example, 

the joint between an aircraft wing and the fuselage is subjected simultaneously to 

corrosion (thus the scale "calendar time" is relevant), landing stresses (thus number of 

landings is relevant), and level flight stresses (thus total flight time is relevant), as noted 

by Kordonsky and Gertsbakh (1993). In any case, a maintenance policy should take into 

account the parallel scales in which an item operates. In a military setting, attempts are 

made to model the effect of chronological or operational time on the failure 

characteristics of a military device during the developmental testing phase. During this 

phase, however, it may be difficult or impossible to accurately model the effect of usage 

on the device resulting from military missions. Thus, classical failure models are used to 

develop single-scale maintenance policies, even though it is well known that the device 

will operate in the parallel scales of chronological (or operational) time and number of 
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missions. Lifetime data including the total number of missions (e.g., landings) accrued at 

the time of device failure may become available later in the acquisition cycle, such as 

during operational testing or upon initial fielding. Military maintenance costs should be 

reduced by using policies that directly account for aging in multiple scales. In this 

dissertation we focus on developing, optimizing, and estimating maintenance policies, in 

particular age replacement policies, based on multiple time scales. 

A. SINGLE-SCALE AGE REPLACEMENT POLICIES 

The vast majority of methods for developing maintenance policies are based on a 

single time scale; see McCall (1965), Pierskalla and Voelker (1976), and Valdez-Flores 

and Feldman (1989) for comprehensive reviews. Among the most useful and most 

studied are age replacement policies, under which a device is replaced (or overhauled) at 

failure or at a predetermined age r> 0, whichever occurs first. Let X be a positive random 

variable (r.v.) representing the lifetime of a device, i.e., the time when the device fails. 

Let X have distribution function F; following Bather ( 1977) it will be convenient to 

define F(x) = P(X < x) and the survivor function as S(x) = P(X;;::: x). Thus, under an age 

replacement policy, a device is replaced with a new one at time min {X, r}. Let the cost 

for replacement be K > 0 if the device is replaced due to age (i.e., preventively, since 

X;;::: r) and K + C if it is replaced due to failure (i.e., X< r), where the additional cost of 

replacement at failure is C > 0. If devices have independent lifetimes, then replacement 

times occur according to a renewal process. From the Renewal Reward Theorem (e.g., 

Ross, 1997), the long-run average cost per unit of time that the device is in use is 
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C(r)= K+CF(r),r>O. 

I: s(u)du 
(1.1) 

A complete derivation of this expression can be found in Appendix A. IfF is absolutely 

continuous and has an increasing failure rate (IFR), then C( r) has at most one minimum. 

In addition, if the failure rate is continuous and strictly increasing to oo, there exists a 

unique and finite valuer* minimizing C(r) (e.g., Barlow & Proschan, 1965). Bergman 

( 1982) shows that a unique, finite 1* is attained under slightly less restrictive conditions. 

When F is completely specified, 1* can be found explicitly, but is more often 

found with numerical methods. Glasser ( 1967) uses numerical methods to obtain charts 

which can be used to find 1* when F is truncated normal, gamma, or Weibull. When F is 

unknown, there are numerous approaches available for estimating 1* based upon lifetime 

data. In most of these approaches, F in equation ( 1.1) is replaced with an estimator F 

based upon the data. This results in an estimator C( r) of the cost function C( r); 1* is 

then estimated by minimizing C(r). For example, given a simple random sample 

X1, ••• , Xn, of lifetimes from F, non-parametric estimators of C( r) and 1* can be found 

using the empirical survivor function 

(1.2) 

where I (X j ~ r) = 1 if X j ~rand 0 otherwise. It follows that the estimator of C( r) is 

(K +C)-C S(r)' r> O. 

J:s(u)du 
(1.3) 
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From the definition of S(r), it is seen that C(r) is lower semi-continuous with 

denominator strictly increasing on (0,=) and numerator a lower semi-continuous step 

function constant between observations. As a result, local minima of C(r) are found at 

the observations and we define f = argmin C(X j). Also, f is not necessarily unique. 

Arunkumar (1972) proves that C( r) and fare strongly consistent estimators of C( r) and 

tl', respectively. Ingram and Scheaffer (1976) address estimation using the non

parametric maximum likelihood estimator (MLE) ofF under the restriction ofF having 

an increasing failure rate. The optimal policy fl' can also be estimated under other 

sampling schemes; for example, Kumar and Westberg (1997) estimate fl' under right

censoring, and Bather (1977), Frees and Ruppert (1985), and Aras and Whitaker (1992) 

address sequential estimation of t". Graphical approaches can also be used to minimize 

(1.1) and (1.3). Bergman (1977) uses the total time on test (TTT) plotting method of 

Barlow and Campo ( 197 5) to estimate t". This method is insightful since one can deduce 

ranges of the ratio K!C for which a particular 1* is optimal. Two comprehensive 

treatments of this approach are contained in Bergman and Klefsjo (1982) and Klefsjo 

(1986). 

B. FAILURE MODELING IN MULTIPLE TIME SCALES 

Extending this theory so it can be used for maintenance of a device whose age is 

measured in multiple scales requires more than generalizing a univariate lifetime X to a 

multivariate lifetime, say (X, Y). This is not always immediately apparent. Confusion 
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arises because data used to estimate multiple-scale policies often appear to be of the form 

(X,,Y,), (X2,Y2), ... , (Xn.Yn). Nonetheless, the actual implementation of an age 

replacement policy requires that a device be tracked continuously through time. Even in 

a single scale, a policy cannot be implemented by observing the age at failure; the device 

is monitored through time so that it can be replaced at failure or time r, whichever comes 

first. The implementation of such a policy in more than one scale requires knowledge of 

the usage path, or "history" of the device; this notion is central to the literature of 

multiple time scales (e.g., Duchesne and Lawless (2000)). Let x ~ 0 denote the 

chronological time since introduction of a device into service, and let y(x) represent usage 

accumulated by the device up to age x (e.g., the total number of miles an automobile has 

been driven up to age x). The usage path of a device up to chronological timex is 

defined to be Z(x) = { (u,y(u)): 0 ~ u ~ x}. In addition, if the random variable X represents 

the chronological age of the device at failure and Y = y(X), then (X,Y) represents the time 

and cumulative usage at failure. In some cases a vector y(x) of various measures of usage 

is available (e.g., y1 (x) could be the number of flight hours accrued as of chronological 

timex, and y2(x) could be the number of landings accrued as of chronological timex, 

etc.). Then, the usage path is Z(x) = { (u,y(u)): 0 ~ u ~ x}. In most of what follows, 

however, we assume only a single measure of usage is available in order to simplify the 

presentation. Typically, a measure of usage is required to be both non-decreasing in x 

and an external covariate. The latter requirement (see Kalbfleisch and Prentice, 1980, 

Section 5.3) ensures the usage path Z is determined independently of the time to failure 

X. 
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Modeling the lifetime of a device whose failure depends upon the parallel effects 

of time and usage has received a great deal of attention in the past decade. Three main 

approaches are found in the literature. The first approach is to use a conditional model. 

Lawless et al (1995) model automobile warranty data by considering separately the 

distribution of X along each path Z and the distribution of the paths. The second is to use 

a joint model for failure times. This approach is taken by Singpurwalla and Wilson 

(1998), Murthy et al (1995), and Kordonsky and Gertsbakh (1994). Models built using 

this approach do not rely explicitly on the notion of a usage path. Due to the inherent 

complexity of explicitly modeling lifetimes and paths in multiple scales, much of the 

recent work in this area focuses on a third approach, that of finding appropriate methods 

for combining scales to form a single scale. When such a combined scale can be found, 

standard univariate reliability tools (including age replacement theory) can be brought to 

bear. Duchesne and Lawless (2000) unify and formalize all previous work in combining 

scales. 

C. MAINTENANCE IN MULTIPLE TIME SCALES 

Much less attention has been given to maintenance policies based on multiple 

scales. In the earliest work in this area, Nakagawa (1985) derives policies for devices 

that fail by either age or usage. He derives the expected cost rate C( T,N) of the policy 

under which a device is replaced at failure, at chronological age t; or at a discrete number 

N uses, whichever occurs first. In our setting, however, it is rarely evident whether 

failure occurred due to age or usage. In addition, since it is common to have both age and 
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usage continuous (e.g., scales might be chronological time since production and total 

flight time), we need models that allow usage to be continuous as well as discrete. 

Unlike Nakagawa (1985), most recent work focuses on finding an appropriate combined 

scale to be used for preventive maintenance. With this approach, the cost of age 

replacement can then be computed in the combined scale, and, under appropriate 

conditions, an optimal replacement age can also be found in that scale. The major work 

in this area is done by Kordonsky and Gertsbakh (1994) and along slightly different lines 

by Kordonsky and Gertsbakh (1993, 1995, 1997). They restrict attention to linear 

combined scales t(a) = (1-a)x + ay(x), where a E [0,1]. Under an age replacement policy 

in such a scale, a device is replaced at age r(in the combined scale) or upon failure at age 

T(a) = (1-a)X + aY, whichever occurs first. Most recently, Duchesne and Lawless (2000) 

propose an "ideal" time scale which generalizes some of the work of Kordonsky and 

Gertsbakh. Although not motivated specifically with preventive maintenance in mind, 

they suggest that their scale might be used for such purposes. The ideal scale is 

developed in order to capture chronological age and usage in such a way that, under 

appropriate conditions, the lifetime distribution of a device in this scale is independent of 

the path. Thus, in principle, an age replacement policy based on an ideal time scale could 

be used for devices regardless of their usage path. 

Because using combined scales reduces the problem of maintenance in multiple 

scales to that of maintenance in a single scale, it has the advantage of being tractable and 

easily understood. Combined scales, however, do not completely address the problems 

of maintenance in multiple scales. Absent from the literature is discussion of the 
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translation of policies developed in combined scales to policies in the original scales. 

Upon performing such a translation, it is clear that policies based on linear scales 

correspond to replacing devices if their joint failure time (X,Y) falls in the region 

M = { (x,y(x)): (1-a)x + ay(x)< r} or when their usage curve crosses the boundary of this 

region, whichever occurs first. Similarly, policies based on an ideal time scale 

correspond to regions in the positive quadrant whose upper boundaries follow the 

contours of the ideal time scale. Considering such regions in the original scales suggests 

a more general class of policies that should be considered when searching for the optimal 

policy. Also absent from the literature are methods for comparing the cost of policies 

based on combined scales of different forms. The approach of Kordonsky and Gertsbakh 

(1994) does provide a means for comparing costs in the special case of the family of 

linear scales. As such, the need arises for a means to compare the cost of policies from a 

larger class of alternatives. 

In this dissertation we directly attack the problem of estimating optimal age 

replacement policies for devices with age measured in multiple scales in two different 

settings. In both, our focus is to search over a large class of sensible policies to minimize 

estimated long-run costs. To do so, we first define a class of multiple-scale policies 

which generalize policies found in previous works. In Chapter II, we use several real 

data sets to help develop insight into our choice of this class of potential policies. 

Because this class of policies is related to policies produced by combined scales, in 

Chapter III we review and discuss in detail how multiple-scale policies are obtained using 

the scale-combining approaches found in the literature. In this chapter we also discuss 
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how these policies fit into the framework established in Chapter II. In so doing, we raise 

significant concerns that reveal the need for new methods. Since usage paths are often 

well-approximated by straight lines, in Chapter IV we develop estimators of the cost 

function and optimal policy for the case in which devices age along linear usage paths. 

In Chapter V we discuss the large- and small-sample properties of these estimators and 

compare their performances with policies based on a common scale-combining approach. 

In Chapter VI we develop a cost function for policies under a joint model for (X,Y) and 

present numerical results obtained from solving the corresponding optimization problem 

for rectangular-shaped policies. In Chapter VII we highlight our contributions and 

present opportunities for further research. 
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II. EXTENDING AGE REPLACEMENT THEORY TO MULTIPLE TIME SCALES 

We seek to generalize the classical age replacement policy, under which a device 

is replaced at age ror failure (whichever occurs first), to a policy based on age measured 

in multiple scales. The cost function used to define an optimal policy is based on the 

mechanism generating the failures. However, the general form of a sensible multiple

scale age replacement policy applies equally to many failure models. In this chapter, we 

introduce three data sets to help develop insight into an appropriate form for a multiple

scale age replacement policy. The data sets are chosen to represent situations for which 

either the conditional modeling approach or the joint modeling approach may be 

appropriate. In the first and third data sets, it is apparent that failures occur along fixed 

linear usage paths. In such a situation, an appropriate model is one which generates 

failures conditioned on the usage path and then utilizes a mixing distribution over the 

paths. However, in the second data set, there are no clear usage paths and the data are 

better modeled by a joint distribution. After considering the three data sets, we 

generalize the form of an age replacement policy to incorporate multiple time scales. 

A. INTRODUCTORY CASE STUDIES 

Under a single-scale policy with replacement time r, a device is replaced if it fails 

in the interval (0, r) or if its time in use (the one-dimensional equivalent of a usage path) 

crosses the right-most boundary of (0, r). As we generalize to the case of multiple scales, 

it will be convenient to identify a policy by the multiple-scale equivalent of the failure 
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replacement interval (0, r). This leads to consideration of policies defined by regions M. 

Here, a device is replaced if (X,Y) is in M (i.e., upon failure) or when its usage path 

crosses the boundary of M, whichever occurs first. For now, we consider how such 

policies might be constructed based on observed bivariate failure times (x1,y1), .. . , (xn,Yn). 

In what follows we use the notation R(x,y) to denote the rectangle (O,x) x (O,y). 

Case Study 1 

Consider policy Mx = R( f ,oo ), where f minimizes the empirical cost function 

(1.3) based on the first components x 1, ••• , Xn. Under this policy, we replace the device 

when its age reaches f or fails, whichever occurs first, regardless of the usage accrued. 

Although constructed in a rather naive manner, such a policy may be adequate in some 

cases. 

For example, consider the locomotive traction motor failure data in Singpurwalla 

and Wilson (1998). The data (see Appendix B) consists of the time since inception of 

service and mileage at failure of forty locomotive traction motors. Figure 2.1 shows a 

scatterplot of the failure data in the time scales number of days and number of miles and 

the regression fit through the origin. The coefficient of determination exceeds 99%. For 

these data, knowing the number of days at failure is almost equivalent to knowing the 

number of miles at failure since all exemplars have virtually identical usage rates (i.e., 

number of miles per day). Hence a "naive" policy based solely on chronological age 

suffices. Similarly, we could consider a mileage-based policy My= R(oo, v) where v 
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minimizes (1.3) based on y1, ••• , Yn· In fact, for ratios KIC ~ 0.25, the two regions 

Mx = R(oo,1200) and Mr = R(57304,oo) are based on the same observation, namely 

(1200,57304). 
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Figure 2.1: Traction Motor Data with Regression Line. 
Triangles represent the number of days and miles until a failure occurred. 

Case Study 2 

A policy based on a single scale may not be satisfactory for lifetime data arising 

from devices having differing usage paths. Figure 2.2 shows a scatterplot of failure times 

of jet engines, discussed by Gertsbakh and Kordonsky (1998). This data set (see 

Appendix B) contains the flight hours and number of landings at failure of 21 Aeroflot jet 

engines. Unlike the first data set, the failures have occurred along several usage paths, 

and these paths are not provided or evident from Figure 2.2. Thus, knowing the number 
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of hours at failure is not equivalent to knowing the number of landings at failure. Hence, 

a policy based on only the flight hours at failure or only the number of landings at failure 

is likely to ignore information that could potentially reduce maintenance costs. In fact, 

for K/C = 0.5, Mx = R( 4932,=) and Mr = R( =, 1152); these two policies (with boundaries 

delimited by the overlaid dashed lines in Figure 2.2) are based on the vastly "different" 

observations (4932, 1960) and (3227,1152), respectively. 

0 
0 
0 
<0 

0 
0 
0 

"' 
0 
0 
0 

" ., 
g> 0 
'6 0 
<: 0 

El "' 
0 
0 
0 

"' 
0 
0 

~ 

0 

I 
i 
i 
i 
I 
i 
i 
i 
i 
i 
i 
i 
i 
i 

! 
i 
i 
i 
i 
! 
I 
i ...... 
i 
i 

.. i 

... 

-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· ....... ·-·-·-·-·-·-·-·-·-·r·-·-·-·-..... ·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· 

0 2000 4000 6000 8000 

hours 

Figure 2.2: Jet Engine Data. 
Triangles represent the number of flight hours and landings until a failure 
occurred. The vertical and horizontal lines represent the boundaries of, 
respectively, a policy triggered solely by the number of flight hours at 
failure and the policy triggered solely by the number of landings at failure. 

Such policies, however, are often used. Gertsbakh and Kordonsky (1997) note 

that a single distribution is often fit to lifetime data arising from devices operating in 

heterogeneous environments. An "optimal" policy is estimated from this distribution and 

14 



applied to the entire population. Policies of this form ignore the bivariate nature of the 

failure data. For example, under policy Mx, devices with lifetimes (x,y) and (x,2y) are 

treated in the same manner, even though the latter device is "older" in some sense than 

the former. A policy which somehow incorporates the additional information contained 

in the paired failure times seems "better" than Mx. Consider the policy Mxr = R( f , v ), 

formed by combining Mx and My. Under policy Mxr we replace a non-failed device 

when it accrues either age f or usage v, whichever occurs first; f and v are estimates of 

the optimal replacement times in the two single-scale age replacement problems. Policy 

Mxr seems to be an improvement over both Mx and My, since it is based on all the data 

and since in some cases (for example) devices with lifetimes (x,y) and (x,2y) are treated 

differently. Nevertheless, the separate computation off and v ignores the dependency 

between the failure times in the two scales. Policy Mxr is based only on estimates of the 

marginal distributions of failure time in the two scales, and thus does not fully account 

for the joint effect of age and usage on failure. A bivariate policy should somehow 

account for this dependence. Kordonsky and Gertsbakh ( 1995) explain, "Each particular 

time scale reflects indirectly a most relevant process of damage accumulation, but fails to 

reflect the joint, interactive action of these processes. For an aircraft ... 'time in the air' 

and 'number of flights' both reflect fatigue damage accumulation, but· each scale 

separately is not able to reflect 'total' fatigue damage." In Chapter VI, we develop a cost 

function that can be used to find the "best" policy of the form Mxr. 
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Case Study 3 

Consider failures due to metal fatigue, (see Appendix B) discussed in Kordonsky 

and Gertsbakh (1993). The metal fatigue data plotted in Figure 2.3 consists of 30 

observations, five on each of six distinct paths. Specimens on a particular path are 

subjected to bending through a repetitive pattern of a fixed number of small-amplitude 

(low-load) cycles followed by a fixed number of large-amplitude cycles (high-load) until 

failure. In Figure 2.3, the scale along the horizontal axis is the number of low-load cycles 

and the scale along the vertical axis is the number of high-load cycles. By design, the 

observations fall almost perfectly on lines of slopes 81 = 0.053, fh. = 0.250, 8:3 = 0.667, 

84 =1.5, 85 = 4, and 86 = 19. The dashed lines in Figure 2.3 represent these approximate 

linear usage paths. 
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Figure 2.3: Metal Data with Approximate Linear Usage Paths. 
Each triangle represents the number of low-load and high-load cycles until 
a failure occurred, scaled by a factor of 1/10. 
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In data sets of this form, each device ages along a linear path of slope 8;, 

i = 1, ... , m, where 0 < 81 < (h.< ... < Bm < =. As such, the data set can be naturally 

partitioned into m samples, each consisting of failure data along a linear path. As with 

the traction motors, a policy can be specified for devices along a given usage path solely 

in terms of chronological time, since at any time x > 0 the position of a device along its 

usage path is known. To construct such a policy, consider the sample along each usage 

path separately. That is, use then; chronological ages at failure along the i1h path to 

estimate F;, the conditional lifetime distribution of X IB= B;. Then, use the empirical cost 

function (1.3) to estimate the optimal age replacement policy r; (which applies only to 

devices on the i1h path). The resulting policy, with replacement times summarized in 

vector (rl' r2 , ... , r/11)' takes the following form: replace a non-failed device on path i 

when its chronological age reaches r;' i = 1, ... 'm. 

For the metal data, suppose each F; is estimated with the empirical distribution, 

placing mass 1/n; = 0.2 on each observation on the i1
h path. Upon doing so, for KIC = 0.5 

we obtain the following estimates: rl = 23580, r2 = 10300, r3 = 5700, r4 = 3200, 

r5 = 1000, r6 = 275. Hence, the "composite" policy is as follows: replace non-failed 

devices on path 1 at age 23580; ... ; replace non-failed devices on path 6 at age 275. The 

region corresponding to this policy is depicted on the left side of Figure 2.4. 

At first glance, the proposed composite policy seems reasonable; however, the 

implementation of the policy is problematic. Consider two devices, say A and B. 

Suppose A has usage path 5, namely { (x,4x), x > 0} and B has usage path 4, namely 
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{ (x, 1.5x), x> 0}. Under the composite policy, if device A is still operating we would 

replace it preventively when its age reaches x = 1000; at this time, it has usage 

y(x) = 4000. However, if device B is still operating at x = 3000, we would not replace it; 

at this time, its usage is y(x) = 4500. The metal fatigue experiment was designed so that 

the accumulation of low-load cycles and the accumulation of high-load cycles are the 

only factors leading to device failure. As such, this composite policy does not seem 

sensible, because device B is older than device A in every respect. 
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Figure 2.4: Composite Policies for the Metal Data. 
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The solid lines on left side of the figure represent the failure replacement 
region for the policy with replacement time vector (23580, 10300, 5700, 
3200, 1000, 275). The right side of the figure depicts the failure 
replacement region for the policy with replacement time vector (1 0000, 
10300, 5700, 3200, 1200, 275). 

However, this is not the only problem we could encounter using this approach. 

Consider the same data, and suppose that instead of the policy suggested above, we 

obtain policy (10000, 10300, 5700, 3200, 1200, 275). The region corresponding to this 

policy is depicted on the right side of Figure 2.4. Suppose device A is on path 1 and 
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device Bison path 2. Under this policy, if device A is still operating at age x = 10000, 

we would replace it preventively; at this time its cumulative usage is y(x) = 526. 

However, if device B is still operating at age x = 10000, we would not replace it (as it has 

not yet reached age x = 10300); at age x = 10000 its cumulative usage is y(x) = 2500. 

Device B is older than A in every respect; this composite policy does not seem sensible 

either. We now investigate the notion of a "sensible" policy in more detail. 

B. DESCRIPTION OF A CLASS OF MULTIPLE-SCALE POLICIES 

In this section we describe a class of multiple-scale policies which generalizes the 

class of single-scale policies { (0, r): r> 0}. We assume devices under consideration may 

differ only in their age in chronological time and in the amount of usage accumulated. 

As such, we implicitly assume there are no "hidden" covariates (e.g., better 

environmental conditions for certain devices, or additional measures of usage) affecting 

the process leading to eventual device failure. One example of a policy which 

generalizes the policy (0, r) isM= (O,u) x (O,v), where u > 0 and v > 0, as considered in 

Case Study 2. Under this policy, a device is replaced if it fails at a time (X,Y) where 

X< u and Y < v or when its usage path crosses the boundary x = u or y = v, whichever 

occurs first. Kordonsky and Gertsbakh ( 1994) devise policies based on lifetimes in two 

scales by projecting failure times onto a single time scale of the form t = (1-a)x + ay(x), 

in which they define a replacement age '"Ca. This policy replaces at age t = '"ta or upon 

failure, whichever occurs first. In the original two scales, this policy corresponds to the 

region M = { (x,y(x)): (1-a)x + ay(x) < '"Ca}. In fact, for a= 0, M = Mx, as in Case 1; 
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similarly, for a= 1, M = Mr; when 0 <a< 1, Mis a right triangle with right angle at the 

origin. 

On the other hand, consider the policy M depicted in Figure 2.5. From a 

preventive maintenance standpoint, this policy is not sensible since the device with 

(x,y(x)) = (50,25) would be replaced preventively, but a non-failed device with 

(x,y(x)) = (55,90) would not be replaced, even though it is older than the first device in 

both time scales. In order to be sensible under the assumptions described above, a policy 

prescribing preventive replacement of a device should prescribe preventive replacement 

of any "older" device. On the other hand, if a policy stipulates that a device should not 

be replaced preventively, then any "younger" device should not be replaced preventively 

either. To describe this more formally, we need a means of ordering two-dimensional 

failure times. 
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Figure 2.5: Undesirable Policy. 
Under this policy, for example, a non-failed aircraft component with x = 50 
flight hours and y(x) = 25 landings would be replaced, but one with x = 55 
flight hours and y(x) = 90 landings would not be replaced. 

A binary relation-< on a set Xis a simple order on X if it is reflexive, transitive, 

anti-symmetric, and the members of every pair of elements of X are comparable. The 

relation-< is a partial order on a set X if it is reflexive, transitive, and anti-symmetric 

(thus, simple orders are partial orders; however, for partial orders, certain elements of X 

may be non-comparable). In addition, L c Xis a lower set with respect to a partial order 

-< ifu E L, v E X and v-< u imply vEL (e.g., Robertson, Wright, and Dykstra, 1988); a 

lower set contains all "predecessors" of each of its members. For failure times u = (u 1,u2) 

and v = ( v1, v2) in X s;;;; (O,oo )2
, we take -< to be the matrix partial order where u -< v if and 
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only if u1 :::::; v1 and u2 :::::; v2• Note that X may be a proper subset of (0,=)2
, as in Case Study 

3, where all failure times lie along one of six linear usage paths. 

Using these definitions, we now characterize a class of policies for the multiple

scale age replacement problem. For ease of exposition, they are described in the plane. 

Let X denote the support of (X,Y), and Mx denote the class of all open lower sets with 

respect to the matrix partial order on X. Observe that for X = (0,= ), the class of single

scale policies { (0, r): r > 0} is the class of open lower sets with respect to the simple 

order:::::; on (0,= ). Thus, Mx is a natural generalization of the class of single-scale policies. 

In addition, members of Mx are "sensible" policies from the standpoint of 

implementation when failure characteristics are captured by the two time scales. In the 

literature, Murthy et al ( 1995) use rectangular, triangular, other planar regions as 

warranty policies; every region they consider is a lower set with respect to the matrix 

partial order on (0,=)2
• Similarly, the policies developed in Case Studies 1 and 2 above 

are members of Mx, but the policies described in Case Study 3 are not. For ages· 

measured ink> 2 scales, the notation is easily extended so that Mxis the class of open 

lower sets in X~ (0,= )k with respect to the matrix partial order generalized to (O,oo l 

C. NESTED POLICIES 

Let r = KIC denote the ratio of the preventive replacement cost and the additional 

cost to replace a device due to failure. As r decreases, it becomes proportionally more 

costly to replace at failure, so the replacement age based on a single scale should be more 

conservative. To show this, we make explicit the dependence on cost ratio rand define 
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D(r;r) = C(r)/C 

= r+F(r) , r> O, 

J: S(u)du 
(2.1) 

where C( r) is the cost function in (1.1). Let v= inf{x: S(x) = 0}; v::; oo. Then, for cost 

ratios< r, 

r-s 
D( r ;r)- D( t' ;s) = _r __ _ 

fo S(u )du 
(2.2) 

is a positive, continuous, and strictly-decreasing function of ron (0, v ). SupposeD( r ;s), 

and hence C( r) with cost ratios, attains a minimum at 'Z*(s); there may be several 

minima. It can be shown that 'Z*(s)::; v. For r< 'Z*(s), 

D( r;r)- D( 'Z*(s);r) = [D( r;r)- D( r;s)] + [D( r;s)- D( 'Z*(s);s)] + 

[D( 'Z*(s);s)- D( 'Z*(s);r)]. (2.3) 

Since 'Z*(s) minimizes D( r ;s), the second term on the right-hand side of (2.3) is non-

negative; in addition, because (2.2) is strictly decreasing on (0, v), the sum of the first and 

third terms is positive. Thus, D( r ;r) > D( 'Z*(s);r) V r < 'Z*(s) , and it follows that C( 1) 

with cost ratio r can only attain a minimum for r ~ 'Z*(s). 

Hence, for a decreasing sequence of cost ratios r 1, r 2 , ••• , the corresponding 

single-scale policies are nested. That is, if the corresponding optimal replacement times 

are, respectively, 'rt, rz, ... , then we know r1 ~ r2 ~ ... , so that the policies 

(0, r1) ::> (0, 'rz) ::> ... form a sequence of nested lower sets. 
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Multiple-scale age replacement policies should also be more conservative as r 

decreases; in particular, policies for smaller r should be subsets of those for larger r. Let 

X= (O,oof Consider the policies based on region M 1 = {(x,y(x)): x + y(x) < 6, x > 0} for 

r1 = 1 and M2 = { (x,y(x)): 5x + y(x) < 15, x > 0} for r2 = 0.5. Note both M1 and M2 are in 

Mx. Now, consider a device with linear usage path y(x) = 5x; the policies and usage path 

are depicted in Figure 2.6. This example illustrates that non-nested multiple-scale policies 

can prescribe replacement times that are not sensible. With r 1 = 1, the additional cost to 

replace a device due to failure is equal to the preventive replacement cost, while r2 = 0.5 

means the additional cost to replace a device due to failure is twice the preventive 

replacement cost. Thus, it seems policy M 2 should hedge against this higher failure 

replacement cost and suggest replacement at an earlier time than the time suggested by 

policy M 1• 
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Figure 2.6: Non-nested Policies. 
Solid lines represent boundaries of policies M1 and ~ and the dashed line 
represents a linear usage path of slope 5. Under policy M1, non-failed 
devices on this path are replaced when x = 1; under policy ~. non-failed 
devices on this path are replaced when x = 1.5. 
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Ill. POLICIES BASED ON COMBINED SCALES 

Due to the complexity of modeling lifetimes in multiple scales, much of the recent 

work in this area focuses on finding appropriate methods for combining scales to form a 

single time scale. Once such a combined scale is found, reliability tools such as age 

replacement theory can be brought to bear. We begin with a general discussion of 

combined scales. We then consider in detail three combined time scales in the literature 

that seem best suited for age replacement policies given failure data in two scales, age 

and usage. The first, and in a sense closest in spirit to our efforts, is the work of 

Kordonsky and Gertsbakh ( 1994) in which a combined scale is found for age 

replacement. The next two scales discussed are the "minimum CV" scale of Kordonsky 

and Gertsbakh (1993, 1995, 1997) and the "ideal" time scale of Duchesne and Lawless 

(2000). Both of these time scales are based solely on the underlying failure models and 

are developed independently of the age replacement problem. However, Gertsbakh and 

Kordonsky ( 1997) do suggest a context in which their min CV scale is "optimal" for 

preventive maintenance and Duchesne (1999) suggests his scales might be useful for 

maintenance planning. 

A. COMBINED TIME SCALES 

A formal definition of "time scale" is given by Duchesne and Lawless (2000). 

Let the set of all device usage paths Z(x) be Z(x). For a particular device, let the "whole" 

usage path be Z = Z(oo); let the set of all such paths be Z = Z(oo). A time scale <I>(x,Z(x)) 
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is a non-negative real-valued functional of x and the path Z up to age x; it is required to 

be non-decreasing in x for all Z in Z. Hence, a time scale is a function of chronological 

time and external covariates. Recent research efforts focus on finding a time scale <I> for 

which t
2
(x) = <I>(x,Z(x)) suffices for the calculation of probabilities for failures modeled in 

two scales. Oakes ( 1995) introduces the notion of the "collapsibility" of two time scales 

into one time scale which is "fully informative" in the sense that the probability of 

survival to a specified point (in the plane) depends only on the location of the point, not 

on the path taken to get to the point. Specifically, following Duchesne and Lawless 

(2000), the distribution of XIZ is "collapsible in y(x)" if the survival probability at timex 

depends only on the path Z up to x only through its endpoint (x,y(x)). Thus, a time scale 

for a collapsible model can be written as tz(x) = <I>(x,y(x)). Collapsible models are 

common in the literature since in many cases X and Y = y(X) are observable but the 

history Z(X) is unknown. If the usage path is approximated by a straight line, the 

resulting models are collapsible since, y(x) = Ox and hence the path Z is known by its 

value y(x) at any time x. 

To illustrate the consequences of combining time scales in a collapsible model, 

consider the time scale t = x + gy(x) for some g > 0. Note t induces a family of contours 

{y = (t- x)/g, t E (O,oo)}, as depicted in Figure 3.1 (Duchesne, 1999). The points where 

the usage paths intersect a given dotted contour line all have the same age (in the 

combined scale). 
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Figure 3.1: Contours of Linear Scale in a Collapsible Model. 

Jagged lines represent device usage paths and dashed lines represent 

contours of a linear time scale. Reproduced from Duchesne (1999). 

This family of contours provides a means to compare points on different usage 

paths that may be non-comparable with respect to matrix partial order. Consider the 

points of intersection of contour t = 4 with the four usage paths in Figure 3.1. The matrix 

partial order does not enable us to determine the relative "age" of devices having age and 

usage represented by these points. On the other hand, the four points have the same age 

in scale t. Thus, the combined scale t induces an ordering (by age in this scale) of a set of 

points (xt,y(xt)), (x2,y(xz)), ... , (Xn,Y(Xn)). In addition, as illustrated by the contours, the 

scale provides a means of specifying the relative age of one device in relation to another. 

Different time scales order and "space" a given set of lifetimes differently. To 

illustrate this, consider Figure 3.2. Figure 3.2 contains a scatterplot of labeled points 

(Xt,Yt), (xz,yz), ... , (XIO,YIO), randomly generated from the unit square; lines of slope -1 

correspond to contours of scale t = x + y(x) and lines of slope -10 correspond to contours 
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of scales= x + 0.1y(x). Table 3.1 lists the coordinates of the points, their "age" in the 

two scales, and their ranks r(t) and r(s) in the two scales t and s. 

co '·, ci s.-
' 8 ., 

0 
ci 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 3.2: Contours of Linear Scales t and s. 
Labeled points are randomly generated from the unit square. Lines of 
slope -10 and -1 are contours of linear time scales sand t, respectively. 

i X y t s r(t) r(s) 
1 0.54 0.89 1.43 0.63 9 5 
2 0.31 0.54 0.85 0.36 5 3 
3 0.65 0.69 1.34 0.72 8 10 
4 0.58 0.49 1.07 0.63 6 6 
5 0.50 0.25 0.75 0.53 3 4 
6 0.57 0.75 1.32 0.65 7 7 
7 0.63 0.21 0.84 0.65 4 8 
8 0.01 0.18 0.19 0.02 1 1 
9 0.30 0.06 0.36 0.31 2 2 
10 0.62 0.91 1.53 0.71 10 9 

Table 3.1: The "Action" of Two Different Time Scales. 
This table summarizes some of the information in Figure 3.2. Row 7 
indicates (x7,y7) has age 0.84 in scale t, age 0.65 in scale s, is the fourth 
"youngest" point in scale t, and is the eighth "youngest" in scale s. 
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Using the combined scale, an age replacement policy can be expressed as (0, r). 

In this form, a policy may have limited utility to the practitioner. On the other hand, a 

graphical depiction of this policy in terms of the original scales age and usage is very 

useful. In the original scales, the t-scale policy (0, r) is equivalent to 

M = { (x,y(x)): <l>(x,y(x)) < r}. For example, policy (0,0.4) in scale t above "translates" to 

the policy { (x,y(x)): x + y(x) < 0.4} in Figure 3.2. In fact, the policy Mx discussed in 

Chapter II is a special case of such a "translation"; in this case, the combined scale is 

simply x. For most combined scales found in practice, an age replacement policy in the 

combined scale corresponds to a lower set in the original scales. This is only the case, 

however, when the combined time scale <I> is such that for (x1,y1(x1)) and (xz,yz(xz)) where 

Xt::; xz and Yt(Xt)::; yz(xz) we have <l>(xt.Yt(Xt))::; <l>(xz,yz(xz)). In other words, since time 

scales are by definition required only to be increasing in x for any Z, it is possible to 

display combined scales for which the policy in the original scales is not a lower set. 

B. A COMBINED SCALE FOR AGE REPLACEMENT 

Kordonsky and Gertsbakh ( 1994) find the "best" scale for age replacement among 

the family of scales that are convex combinations of the two scales of age and usage. 

They consider the family of scales {t(a) = (1- a)x + ay(x), a E [0,1]}; in scale t(a) the 

lifetime is T(a) = (1- a)X + aY. The geometric interpretation of times in scale t(a) is 

insightful. Time t(a) = (1-a)x + ay(x) is proportional to the length of the orthogonal 

projection of the point (x, y(x)) onto vector (1- a,a); the search for the "best" scale is 

essentially a search for the "best" such vector onto which to project the data. 
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For a fixed a, let Fa(t) = P(T(a) < t), and define 

Ca('Z) = K + CFJr) '1"> O. 

J: (1- Fa (u ))du 
(3.1) 

Thus, Ca( -r) is identical to the long-run average cost function (1.1). To find the "best" a, 

it seems reasonable to find, for a given a, the optimal replacement time in this scale (say 

'Z"a), and then search [0,1] for the a yielding minimal Ca( 'Z"a). However, Ca( 'Z"a) has 

dimension cost per unit of time in the scale t(a). Thus, values of Ca( 'Z"a) must be 

"converted" to make them comparable. To this end, Kordonsky and Gertsbakh convert 

(3.1) into a cost function with dimension cost per unit of chronological time in the 

following way. Because the average lifetime in scale t(a) is E[T(a)] and the average 

lifetime in chronological timex is E[X], then from a damage accumulation perspective 

one unit of "t(a)-time" is equivalent to E[X] /E[T(a)] units of x-time. Hence, the 

"converted" cost function is 

Da( -r) = Ca( -r)E[T(a)]IE[X], 1"> 0. (3.2) 

Let 'Z"a = argmin Da( 1"). By definition, the "best" scale corresponds to the a* which yields 

the minimum value of Da( 'Z"a). 

Kordonsky and Gertsbakh estimate a* nonparametrically based on a simple 

random sample (X1,Y1), (X2,Y2), ... , (Xn,Yn). Care needs to be taken in applying their 

method, however. Consider the auto data set, taken from Wilson (1993), and which can 

be found in Appendix B. The boundaries of the policies for cost ratios r = 0.5, 0.25, and 

0.125 are depicted in Figure 3.3. The policies are lower sets, but they exhibit the non-

nested behavior exhibited in Figure 2.6. This suggests that the "best" scale is a function 
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of the cost ratio. For the metal data, however, the policies are nested for { r: 0 < r < 1}. 

We suspect the non-nestedness of the policies derived from the auto data may be caused, 

in part, by the lack of sufficient spread in the distribution of usage paths. As such, it can 

be argued that non-nestedness is exhibited here since most observations in the auto data 

set fall roughly along a single regression line fit through the origin (unlike the metal 

data). 
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Figure 3.3: Non-nested Policies for Auto Data Based on "Best Scale" Method. 
Triangles represent the number of days and miles until a failure occurred. 
Labeled lines are policy boundaries for cost ratios r= 0.5, 0.25, and 0.125. 

C. POLICIES BASED ON MINIMUM CV SCALE 

We now examine another combined scale on which policies can be based. 

Consider again the family of linear scales Ta = {t(a) = (1- a)x + ay(x), a E [0,1]}. Let 

CV[T(a)] denote the coefficient of variation of the lifetime in scale t(a); Kordonsky and 
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Gertsbakh (1993, 1995, 1997) identify the scale having a* minimizing CV[T(a)]. They 

prove the (unrestricted) minimizer of CV2[T(a)] has a*= g*/(1 +g*), where 

* E[Y]Var[X]-E[X]Cov(X,Y) 
g = . 

E[X ]Var[Y] - E[Y]Cov( X, Y) 
(3.3) 

Since the family of scales specifies a E [0,1], it is important to describe the cases 

leading to a* E [0,1]. In fact, from (3.3) we can show that a* E [0, 1] iff either Case A or 

Case B holds in (3.4): 

Case A: CV 2 (X)< Cov(X' Y) < CV 2 (Y); 
E[X]E[Y] 

Case B: CV 2 (Y) < Cov(X' Y) < CV 2 (X). 
E[X]E[Y] 

(3.4) 

In practice, an estimate a* of a* is obtained by replacing each of the terms in (3.3) with 

its sample estimate; Cases A and Bare modified accordingly. Duchesne and Lawless 

(2000) note that when Case A holds, the minimizer of CV2[T(a)] in Ta has a*= 0, so that 

t =xis the min CV scale. When Case B holds, a* = 1, t = y(x) is the min CV scale. 

Consider using the min CV scale to construct a multiple-scale age replacement 

policy based on a simple random sample (X1,Y1), (X2,Yz), ... , (Xn.Yn). If the sample 

version of Case A holds, the policy is Mx (as in Case Study 1 of Chapter II). This means 

that if we use "min CV" as the criterion for time scale selection, it suffices to base the 

policy solely on the distribution of chronological time at failure. Similarly, if Case B 

holds, it suffices to base the policy solely on the distribution of cumulative usage at 

failure. Gertsbakh and Kordonsky (1997) note that if Cov(X,Y) < 0, then a* E [0, 1], so 

neither Case A nor Case B can occur. In this "more interesting" situation, we often find 
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0 <a*< 1 (we note it is possible for a* to be 0 or 1 if Cov(X,Y) < 0). In this case, 

policies for a decreasing sequence of ratios r form a sequence of "nested" right triangles. 

For example, consider the metal data set. From the sample version of (3.3) we find 

a*= 0.871, so the min CV scale is t = 0.129x + 0.871y(x). Using (1.3) in this scale we 

find the replacement time for 0.7 ~ r ~ 1 is 3984; for 0.594 ~ r < 0. 7 the replacement time 

is 3801; and for r < 0.594 the replacement time is 3396. These replacement times induce 

the set of nested right triangles depicted in Figure 3.4. 
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Figure 3.4: Nested Policies for Metal Data. 

.... 
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Dashed lines represent policy boundaries, based on the min CV scale. The 

policy for r< 0.594 is nested within the policy for 0.594 ~ r< 0.7, which is in 

turn nested within the policy for 0.7 ~ r~ 1. 
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D. POLICIES BASED ON IDEAL TIME SCALE 

The long-run average cost C( r) of a single-scale age replacement policy (0, r) is 

given in (1.1); 1* minimizes this expression. Using the transformation p = F( r), with 

F-1
(p)=sup{x: F(x) ::;;p}, equation (1.1) can be rewritten as 

C(p) - K + C p 0< <1 
- ri() ' -P- · 

fo P S(u)du 
(3.5) 

Solving for p* to minimize C(p) in (3.5) and for 1* in (1.1) are identical problems; the 

total time on test approach to solving the age replacement problem is based on this 

transformation. Thus, 1* is the p*-quantile of the lifetime distribution F. This latter 

formulation of the age replacement problem is insightful since it indicates that, under the 

policy, a device has probability p* of failure before replacement. Thus, a "natural" 

generalization of policy (0, r) is a multiple-scale policy for which the probability of 

failure before replacement is the same (say p) regardless of the path. With broader 

applications in mind, Duchesne and Lawless (2000) introduce an "ideal" time scale (ITS) 

which might be used to find such a policy. 

Duchesne and Lawless (2000) motivate their definition of an ITS as follows. If a 

single-scale tz(x) = <I>(x,Z(x)) suffices for the calculation of failure probabilities, then the 

distribution ofT= <I>(X,Z(X)) along each Z should be independent of Z. That is, 

P[T > t I Z] = P[T > t] = G(t), and GO does not depend upon Z. In addition, tz(x) must 

change whenever the conditional survivor functions S0 (x, Z(x)) = P[X >xI Z] change. 

Duchesne and Lawless define tz(x) = <I>(x,Z(x)) to be an ideal time scale if it is a one-to-
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one function of S0 (x, Z(x)). In this case, P[X >xI Z] = G[tz(x)] = P[T > tz(x)]. Duchesne 

(1999) explains, "an ITS is a time scale in which we can directly compare the lifetimes of 

all the devices under study, no matter what their usage patterns are ... it is 'ideal' in the 

sense that the age in the ITS is the only information needed to compute P[X >xI Z], so it 

is 'sufficient' for computing the age of the units." 

In fact, Duchesne ( 1999) mentions maintenance and inspection policies as 

potential applications of his ITS concept, and gives the following example. Suppose we 

want to inspect devices when their probability of failure is 0.25, regardless of the path. 

Suppose t = x + 5y(x) is an ITS; letT denote the lifetime of a device in scale t and t.25 

denote the 251
h percentile of thai lifetime distribution. If t.25 = 100, devices should be 

inspected whenever x + 5y(x) = 100. Duchesne (1999) notes that ITSs are, by definition, 

unique up to one-to-one transformations. Hence, if t defines an ITS and 'If is a strictly 

increasing continuous function with 'lf(O) = 0 and 'lf(oo) = oo, then, u = 'lf(t) is also an ITS. 

Thus, for example, u = t2 = (x + 5y(x))2 is also an ITS; let U denote lifetime in this scale. 

Since Pr(U ~ 1002
) = Pr(T ~ 100) = 0.25, we have u.25 = 1002

• Thus, devices should be 

replaced whenever (x + 5y(x))2 = 1002
, which is identical to the policy based upon scale t 

as defined above. This is a simple consequence of the monotone transformation. 

Similarly, it seems we should be able to obtain a path-independent age 

replacement policy by finding the policy in any ITS and transforming this interval to a 

region in the positive quadrant (as described in section A above). There is a problem, 

however, stemming from the non-uniqueness of the ITS. Suppose T has an exponential 

distribution. It is well known that the optimal replacement time is infinite, so the policy 
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in this scale would be to replace only at failure. The t-scale policy (0,=) translates to the 

entire positive quadrant. Now, consider the policy based on scale u = t112
: U would then 

have a Weibull distribution, and the policy in scale u would be (O,v) for some v < =. 

Translating to the plane results in the region { (x,y(x)): (x + 5y(x)) 112 < v} which differs 

from the policy based on scale t. 

To illustrate this, consider the metal fatigue data discussed in Case Study 3 of 

Chapter II. Duchesne and Lawless (2000) show that scale t = x + 6. 7y(x) is a reasonable 

approximation to the true, unknown ITS. LetT denote the lifetime in this scale; we first 

"reduce" each pair (x, y(x)) to scale t. Then, upon estimating FJ{t) = P(T < t) with the 

empirical distribution, we find that for r = 0.5, the minimizer of (1.3) is f = 26125. The 

ITS interval (0,26125) corresponds to the region Mr = { (x,y(x)): x + 6.7 y(x) < 26125 }. 

The boundary of this policy is the solid line in Figure 3.5. Under this policy, we replace 

the device upon failure or when the sum of its accumulated low cycles and 6.7 times its 

accumulated high cycles reaches 26125. 
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Figure 3.5: Policies Based on Ideal Scales t and u. 
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The solid line represents the policy boundary for r = 0.5 based on scale t 
and the dashed line represents the policy boundary for r = 0.5 based on 
scale u. 

We now construct the age replacement policy for this data using another ITS. If 

t = x + 6.7y(x) is ideal for the metal data, then the monotone transformation u = t2 is also 

ideal. Proceeding as above, upon calculating the failure times U we find the minimizer of 

equation (1.3) is v = 407602
• In the plane, the ITS interval (0,407602

) corresponds to the 

region Mu = { (x, y(x)): x + 6.7 y(x) < 40760}. The boundary of this region is the dashed 

line in Figure 3.5. Observe Mu is not the same as MT, the region derived from the first 

ideal scale. 

In summary, path-independent, fixed-probability-of-failure inspection policies can 

be based on an ITS, but basing an age replacement policy on an ITS can pose significant 

problems. The reason ideal scales pose problems for age replacement but not fixed-
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probability inspection policies relates to our discussion of the ordering and "spacing" 

action of combined scales. An ITS <I>, like other combined scales, orders and induces 

spacings between the failure times. A monotone function 'I' of <I> maintains the ordering 

of the times given by ITS <I>, but the spacings change. This fundamentally changes the 

nature of the failure distribution on which the optimal age replacement policy depends. 

(An obvious exception is when 'I' is linear; see Lemma A.1 in Appendix A.) More 

specifically, letT and U denote the lifetimes in scales <I> and \jl(<l>), respectively; let t" 

and v* denote optimal replacement times in these scales. The observation above is that 

although U = \jl(1), it is not necessarily true that v* = \jl( t"). This is due to the fact that in 

transforming the cost function ( 1.1) from scale t to scale u, the numerator remains 

constant but the denominator changes. 

E. DISCUSSION AND SUMMARY 

In this chapter we have discussed how a multiple-scale age replacement policy 

might be obtained if scales age and usage are combined in various ways. One method of 

Kordonsky and Gertsbakh (1994) is motivated from the standpoint of cost. For a fixed 

r > 0, this method finds the "best" vector (1- a, a) on which to project the data based on a 

"converted" cost function; the resulting policy Mr is triangular (or possibly of form Mx or 

My). However, we note for s < r the method is not guaranteed to have Ms c Mr; this is 

because the "best" scale depends on the cost ratio. For a fixed r >~ 0, policies based on 

the min CV scale are triangular (or possibly Mx or Mr) and since minimizing CV results 

in a vector (1- a,a) independent of r, the policies for a decreasing sequence of cost ratios 
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are nested. Finally, we note that if, based on the failure data, a reasonable estimate of the 

ITS can be found, a policy in this scale has the property of fixed probability of failure 

before replacement, regardless of the path. While this property is attractive, we note 

monotone transformations of the ITS are also ideal, but do not necessarily result in the 

same policy as in the original ITS. 

Combining scales is convenient in that it allows analysis to proceed along one 

scale. There is a drawback to the combining of scales, however. Kordonsky and 

Gertsbakh (1995) explain how damages in the different time scales can interact: in 

aviation, corrosion (as reflected by the time scale "calendar time") affects both fatigue 

damages due to the amount of time in level flight (as reflected by the time scale "flight 

hours") and the high-amplitude stresses incurred during the takeoff and landing cycle (as 

reflected by the time scale "number of landings"). As such, they observe "No single time 

scale is sufficient for a complete description of all wear and damage accumulation 

leading to failure in one of the aircraft parts." Thus, useful information may be lost even 

if the "best" single time scale is used (i.e., the one which best accounts for the damage 

accumulation processes and their interaction); for this reason, we proceed to the 

introduction of new methods which do not combine the scales. 
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IV. POLICIES GIVEN DATA ALONG SEVERAL LINEAR PATHS 

In this chapter we generalize the single-scale failure replacement interval (0, r) to 

the multiple-scale setting in which failure data fall along several linear paths. Such 

situations often arise in modeling real-world observational lifetime data in multiple scales 

(e.g., Gertsbakh and Kordonsky, 1998 and Lawless et al., 1995). In many cases X andY 

are known but the usage curve Z is unknown and is approximated by a straight line. 

Linear usage paths may also arise by cyclic usage in fatigue life experiments (as 

exemplified in the metal data). The development is as follows. First, we establish 

notation to be used throughout the chapter. In so doing, we describe the cost function 

used to define an "optimal" policy in this setting. Next, we explain how to estimate the 

optimal policy for given failure data, and present an example. We then compare our 

approach to the methods found in the literature, and summarize. 

A. "COMPOSITE" POLICIES 

Consider a population of devices differing only in their rates of use, which 

remains constant throughout their lifetimes. Thus, suppose that upon entering service, a 

device is assigned a linear path Z; (characterized by its slope 8;) with probability p;, 

i = 1, ... , m. Suppose also that 0 < 81 < £h. < ... < 8m < oo. Let F; be the distribution of 

lifetime X (in chronological time) given 8= 8;, i = 1, ... , m; as in Chapter I, F;(x) = P(X < 

x 18= 8;). From (1.1) the long-run average cost per unit time for a device operating with 

8 = 8; under policy (0, t;) is 
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K +CF;(r;) . 
C;( 11) = . , 11 > 0, z = 1, ... , m. f S;(u)du 

(4.1) 

Let 11* be an optimal age replacement time for devices on path i, i = 1, ... , m; that is, 

11* = argmin C;( 11). To form a composite policy from the path-specific policies (0, 11*) for 

i = 1, ... , m, let M!"" = { (x,~x): 0 < x < 11*, i = 1, ... , m}. This composite policy has 

replacement times summarized by the vector (ti*, -x-2*, ... , 'X"m*), meaning devices on 

path Z; are replaced upon failure or when their age reaches 11* (whichever occurs first), 

i = 1, ... , m. As in Case Study 1 of Chapter II, since at any given chronological time 

x > 0, the position of a device along its usage path is known, we can specify the 

replacement times solely in terms of chronological time. 

In Case Study 3 of Chapter II, for the metal data, estimation of replacement times 

for such a composite policy did not result in a sensible policy. More specifically, with 

0= {0.053,0.250,0.667, 1.5,4, 19} and%= {(x,~x): O<x, B;in 0, i= 1, ... ,6}, the 

composite policy with replacement times (23580, 10300, 5700, 3200, 1000, 275) does not 

correspond to a region which is a lower set in Mx. We now give conditions on a 

replacement time vector ( -x-1, -x-2, ••• , t"m) that ensure M r is a lower set. 

Proposition 4.1. A composite policy M r = { (x, B;x): 0 < x < 11, i = 1, ... , m} for 

devices on linear usage paths where 0 < 81 < (h. < ... < Bm is a lower set with respect to 

the matrix partial order on X= { (x, ~x): 0 < x, i = 1, ... , m} if and only if both 11+1 ::;; 11 

and ~+111+1;;:: ~11. i = 1, ... , m- 1. 
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Proof: Starting with the reverse statement, let x E M -rand let y E X such that 

y -< x. To show M -r is a lower set with respect to the matrix partial order on X, it suffices 

to showy E M -r· Because x E M '~"• the age x = (t, Bjt) for some 0 < t < ; and some Bj in e. 

Similarly, because y E X, y = (s,8ks) for somes> 0 and some 8k in e. Because y-< X, it 

follows that s::; t and 8ks::; Bjt. It suffices to show 0 < s < 1k· First, treat the case k ::;j. 

Because s ::; t and ; ::; rk, we have 0 < s ::; t < ; ::; rk. On the other hand, if k > j, then 

because 8ks::; Bjt and Bj;::; 8krk, we have 0 < s::; ( 8j8k)t < ( 8j8k)'l}::; 1k· Thus, the policy 

is a lower set. 

Turning to the direct statement, suppose M -r is a lower set; let i E { 1, ... , m- 1 } . 

Suppose further that 'Zl+l > 1"i. Let x = ('Zl+l + T;)/2; consider u = (x,8i+1x) EM-rand 

v = (x,8ix)E X. Note that v-< u, but because x > 'Z), v r!.M-r. This contradicts the fact that 

M -r is a lower set. Thus, 'Zl+l ::; 'Z). Similarly, suppose ~+I 'Zl+l < 8i'Zl· Let y = 

(~+I 'Zl+l + ~T;)/2, x = y/~ and z = y/8i+l· Consider u = (x,y) EM-rand v = (z, y)E X. Note 

that v-< u, but because z > 'Zl+l• v r!.M-r, contradicting the fact that M-ris a lower set. Thus 

This proposition reveals the problems encountered in Case Study 3 of Chapter II. 

The policy with r= (23580, 10300, 5700, 3200, 1000, 275) has 85r5 < 84r4 ; in order for 

M-rto be in Mxwe need 8srs ~ 84r4 (all other requirements of the proposition are 

satisfied). Similarly, the policy with r= (10000, 10300, 5700, 3200, 1200, 275) has 

'Tz > 1"1; for M -r to be in Mx we need r2 ::; r1• Thus, for the metal data, the hypothetical 
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policies we considered in Case Study 3 are not lower sets. Several ad hoc methods can 

be used to transform these policies into members of Mx. For one, a linear interpolation 

can be used to "smooth" sequential members of rwhich violate either of the conditions 

'li+I :::; 'Zf or ~+I 'li+I 2:: ~'Zf. Another alternative is to use a pooling scheme (as is done in 

isotonic regression, ref. Robertson, Wright, and Dykstra 1988) to transform the policy. 

However, neither of these schemes takes into account the cost of implementing the 

resulting policy. Since it is desirable to obtain a sensible policy which is optimal with 

respect to some cost function, we now introduce such a cost function. 

B. THE COST OF A COMPOSITE POLICY 

The first policy of Case Study 3 of Chapter II is "optimal" in the sense that it 

minimizes the (estimated) long-run average cost per unit of time in use for devices on 

each path i = 1, .. . ,m. Unfortunately, the policy is not sensible from the standpoint of 

implementation. We need a means of obtaining a policy that is "optimal" in a sense 

which accounts for costs along each path, but is simultaneously "sensible." An equitable 

method of calculating the cost of policy M r with corresponding replacement time vector 

r = ( r1, r2, ••• , rm) is to form the average, weighted by the assigned probabilities, of the 

costs of the path-specific policies: let 

m 

C(r) = LP;C;(r;), 'Zf > 0, i = 1, ... , m. (4.2) 
i=l 

A cost function of this form is studied by Gertsbakh and Kordonsky (1997) as they 

address the "optimal" time scale for maintenance in heterogeneous environments. Here 
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C( r) represents the expected long-run average cost per unit of time in use of maintaining 

a device under a policy corresponding to its operating conditions. The dimension of C( r) 

is in units of cost per unit of (chronological) time in use. If it is more meaningful to the 

decision maker, equation (4.2) can be easily transformed so it has dimension units of cost 

per unit of time in use in the second scale. 

From Proposition 4.1, we note that in order for a policy M r with replacement time 

vector r= ( r1, rz, ... , rm) to be in M_1; rmust lie in the set A, defined by 

Thus, to find the optimal "sensible" policy for a given r > 0, one must minimize (4.2) 

subject to the restriction that ris in A. Let 1* denote this minimizer. 

For a given r > 0, if a collection of conditional distributions { F;} has 

( r1 *, rz*, ... , rm *) E A, then by the optimality of each r;* it follows that 

1* = ( r1 *, rz* , ... , rm*), regardless of the mixing probabilities. Collections of distributions 

with this property often arise from models common in the literature. Lawless, et al 

( 1995) study failure data from automobile brake pads using a form of accelerated failure 

time model in which they form a time scale u = x1
-11 y(x) 11, 77 E [0,1]. They assume linear 

usage paths y(x) = Bx, so that u = xB 11, and they fit a two-parameter Weibull distribution 

to failure times in scale u. Although their work does not pertain directly to age 

replacement theory, the resulting collection of distributions of XIBhas this property. 

Duchesne and Lawless (2000), Gertsbakh and Kordonsky (1998), and Oakes (1995) 
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study linear time scales t = x + gy(x), g;;:::: 0. Under a linear path assumption, time scale t 

takes form x(l + g8 ). When a parametric distribution including a scale parameter is fit to 

failure times in scale t, the resulting collection of distributions of Xl8 has this property. 

In certain cases, proportional hazard models can also produce collections of conditional 

distributions with this property. 

C. ESTIMATING THE OPTIMAL COMPOSITE POLICY 

We now tum to estimation under constraints (4.3). Assume {F;} is a collection of 

distributions with (r1*, r2*, ... , 'Z"m*) EA. Following (1.3), letS; denote the empirical 

survivor function based on the ordered sample chronological lifetimes 

x;,(l):::; Xi,(Z):::; • •• :::;xi,(n,> from path i, where n; is the number of observations on path i, and 

let 

(K+C)-CS;(r;) . 
....;,__~ __ :....:.._:....:.. , 11 > 0, l = 1, ... , m. 

J:' si(u)du 
(4.4) 

Thus, C; (r;) estimates C;( 1;). The following is the analog of (1.3) for the multiple-path 

scenario: 

(4.5) 

In the univariate problem, the fact that the empirical cost function ( 1.3) is a 

piecewise decreasing function reduces the search for the minimum to a finite number of 

"strategic" points. Similar principles apply to searching for a minimizer of C ( r); let f 
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be such a minimizer, i.e., C (f)~ C ( r) for all rin A. We now describef and prove that 

it is globally optimal. 

For convenience, suppose that along each path no two failure times are equal, so 

that x;,o> < x;,(2) < ... < xi,(n; >; also let xi,(OJ = 0 and xi,(n;+IJ = oo, i = 1, ... , m. Form an 

m-dimensional grid 

m 

r =X {x;.o>, xi.<2> , ... , xi.<n;)} 
i=l 

(4.6) 

based on the observations along each path. In each m-dimensional hypercube of the form 

m 

H = X (x;.w, xi.U;+Il], where}; E {0, ... , n;}, i = 1, ... , m, 
i=l 

(4.7) 

C ( r) is decreasing in each argument; it follows that the minimum of C ( r) in H occurs 

at the vertex (x1.u1 
+IJ, x 2.<h+IJ , ... , xm.(j..,+I>) . Note this vertex dominates all other points in 

H with respect to the matrix partial order on (O,oo )m; that is, 

r-< (x1.<MI>, x 2.<h+ll , ... , xm.<j..,+IJ) '\/ r E H. Thus, to find the global minimum of C ( r) in 

the absence of constraints, we evaluate C ( r) at all such non-dominated vertices and 

select the one yielding the smallest cost. In the presence of constraints (4.3) defining set 

A, it seems reasonable to limit our search for f to the set of these vertices which lie in A, 

but it can be shown that checking only such vertices will not necessarily produce the 

global minimum. Such a procedure, though, will yield a point corresponding to an upper 

bound for the optimal cost. 
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Rue 18 oo ll:02a 
p.2 

Let H denote the set of all hypercubes Has in (4.7) for which HrlA "* 0. For 

some H in this set, the non-dominated vertex (xu;, ... 1p X1.<J, ... l>'"'' x .... (j,.+I>) lies ink for 

others, this vertex lies outside of A. In the latter case, the non-dominated point in H II A 

(i.e., the point that simultaneously maximizes the value of each coordinate) yields the 

smallest value of C (r). To find f, an enumeration procedure is utilized to find the non-

dominated point, say l4(H), in H 11 A for all H in H. Then. f = argmin C (u(H)) among 

all He H. For each He H, the non-dominated point u(H) is constructed explicitly based 

on the following results. 

Proposition 4.2. For any x = (XJ. x2, ... , x111 ) in (O,oo)m. let 

Bx = { re (O,oo)"': r....:x}. Define u(x) as follows: u(x) = (u1(x), uz(x), ... , u111(x)) where 

Then, ( 1) u(x) E A 11 Bx and (2) y'--< u(x) 'r:fy e A 11 Bx. 
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Proof: First, u(x) e Bx since ui(x)::; x;, i =!, ... , m: that is, u(x) -<x. To show 

11(x) e A it suffices to show ~Ut(X) S ~ ... ,u; ... r(x) and u;(x) ~ u; ... ,(x) fori= 1. ... , m- 1. 

Let i E { 1, ... , m- I}. Since 8; ... , > 0;, 

8 ( ) 8 . ( e; ... , e,. ) 
;II; X= 1 Illlll XpX2 , ... ,X1,-Xi+I>''''-X'" 

()i 8; 

:; min(81x1, 81x2 , ... ,81X;, ()i+lxi+l, ... , (},.x,) 

s min(e, ... ,x,, e1 ... 1x 2 , ... ,81+1 x;, 01 ... 1-"'; ... 1 , ... , 8,x,) 

also 

Thus, u(x) E A l'o Bx, proving (1 ). To show (2), lety E A n Bx. and let i e { 1, ... , m}. 

Since YEA, Y1 ~ Yz ~ ..• ~ y; and (}mYm ~ ... ~ Ot+2Yi+2 ~ (}i+IYi+l;::: ~y;, then 

follows that u(y) = y. Since y E Bx. it follows that y1 S X;, i = 1, ... , m. Since each u1(z) is 

non-decreasing in each argument of z E (O,oo )'", we have y = u(V) -< u(x), as required. 

We now use this result to find u(H) for HE H. 
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Proposition 4.3. Let Has in (4;7) be a member of H; let x = (x
1

, x
2 

, ... , x,.) denote 

(xl.!l!l'x2 .u~ 1 , ... ,x.,.um 1). Let u(H) = u(x) as in Proposition 4.2. Then (l)y-<: u(H) 

'rty e A n H, and (2) u(H) e A r1 H. 

Proof': Let u = (u" 11 2 , ••• , u m) = u(H). Let y E AIIH (such a y exists, since 

A r1 H:~:0). Since H c Bx it follows that y e A r1 Bx; from Proposition 4.2 we know that 

y-< u, thus proving (1). By (1), we have y1 $ U;, i =I. .... m. Sincey e H, we know that 

Zt < y; $ x;, i = 1, ... , m. Because ll-<: x, we know u1 S x;, i = 1, ... , m. From these 

inequalities it follows that Z; < u; S Xi, i = 1, ... , m, so that u(H) e H. By Proposition 4.2 

we know u(H) E A; thus, we have shown (2). 

We now show that our procedure returns the global minimum of(: ('Z'). 

Theorem 4.1: C (f) S C ( 't') 'r;f -re A. 

Proof: Let r e A. Because the grid r defines a partition of the positive orthant, 

re H for some He H. Forn1 u(H) as described above. By definition, C (f)~ C (u(H)), 

so it remains to show C (u(H)) $ C (r). By construction of u(H) we have ·r-<: u(H); in H. 

C ( 1) is decreasing in each argument, so it follows that C {u(H)) $ C ( 'Z'), as required. 
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D. EXAMPLE 

Returning to the metal fatigue data from Case Study 3 of Chapter II, Table 4.1 

contains the policy vector f = ( i\ 'r; , ... , f'") for r =: 0.5 along with the values ei i; to 

amplify the fact thatM1 is a member of .llf.l' In the policy for r = 0.7:5, i\ =15200, so 

that 02 f 2 =3800. Ail other components are identical to the policy for r"" 0.5. The policy 

for r = 1 is identical to the policy for r = 0. 75. Thus, for this data the procedure produces 

nested policies for these values of the cosl ratio. Figure 4.1 contains a scatterplot of the 

data overlaid with line segments representing paths curtailed by their corresponding 

replacement times for r = 0.5. 

i Slope 0; f; B;i; 
1 0.053 23580 1241 
2 0.250 10300 2575 
3 0.667 5700 3800 --=--4 1.500 2666.67 4000 
5 4.000 1000 4000 
6 19.00 275 5225 

Table 4.1: Composite Polley for the Metal Data, r = 0.5. For example, row 5 Indicates that non-failed devices on a linear usage path of slope 4 are replaced when the number of low-load cycles accrued reaches 1000. At this time, the number of high-load cycles accrued is 4000. 
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Figure 4.1: Metal Data with Policy for r = 0.5. 
The solid lines represent the failure replacement region for the policy with 
replacement time vector {23580, 10300, 5700, 2666.67, 1000, 275). 

This example also sheds light on ways to reduce the computational burden of 

finding f : it is often unnecessary to compute C at the non-dominated point in every 

H E H. We recommend first finding the unrestricted minimized: . A basic optimization 

P}inciple is that if the solution of a relaxation happens to satisfy a restriction, then it 

solves the restriction. This principle implies that if f E A, then f = f . Thus, if the 

unrestricted minimizer lies in the set A, no further computation is necessary. Computing 

f can save computation even iff eA. In some cases, f may violate only one constraint 

defining the set A; restricting the coordinates causing the violation (while leaving the 

others relaxed) may lead to an optimal solution. More specifically, suppose that 
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c; ( r k 'r k+l) = t k ( r k ) p k + t k+1 ( r k+l) p k+1 ' 

subject to 

Ak = { ( 'Zk, 'Zk+ I) E (O,oo )
2

: 'Zk ;::: 'Zk+ I' ek 'Ck '5, e k+l 'Ck+d. 

Let f' denote the vector formed by replacing 'ik and 'ik+J in f with r; and r;+J, 

respectively. It can be shown that iff' E A, then f = f'. This approach works for the 

metal data for r = 0.5; recall from Case Study 3 that f violates one constraint defining 

set A. This approach applies sequentially on the metal data for r = 0.75; in this case f 

violates two constraints. 

E. COMPARISON WITH SCALE-COMBINING APPROACHES 

The scale-combining methods discussed in Chapter III differ fundamentally from 

our estimation procedure in their motivation, but in some cases produce sensible policies. 

The "best scale" method seeks the linear time scale t(a) = (1- a)x + ay(x), a E [0,1], with 

corresponding t(a)-scale replacement time 'Ca, that yields the lowest long-run average cost 

(per unit of chronological time, after "conversion"). The min CV method seeks the linear 

scale corresponding to the smallest lifetime CV. Both of these procedures use the data to 

produce a linear time scale and hence a policy of the form Mx, My, or a triangular set 

Ma = {(x,y(x)): t(a) < 'Ca}. In contrast, the policies produced by our procedure are 
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required only to be lower sets. This is a broader class of policies than those resulting 

from a linear scale. 

Ideal time scale methods seek the scale t such that P[T > t0 I Z] does not depend 

on the path Z; hence, a policy based on an ITS has the property that the probability of 

failure before replacement in this scale is the same, regardless of the path. Most of the 

focus of Duchesne ( 1999) is on inference procedures for the parameters of ITS models 

which are either linear (i.e., t = x + gy(x), g 2:: 0) or multiplicative (i.e., u = x 1
-TJ y(x) 17, 

0~ 7] ~1). In the case of linear paths with slopes 0 E { 01, ••• ,Om}, these scales always 

result in sensible policies. To demonstrate this, suppose the data are reasonably 

described by a linear ITS model t = x + gy(x). The "best" scale for age replacement and 

min CV scale can be re-parameterized to this form. The policy takes the following form: 

replace non-failed devices when x + gy(x) = f. It follows that the replacement time 

vector is ( f /(1 + g01), •• • , f /(1 + gOm)) E A. Restricting attention to preventive 

maintenance policies formed by ITS models may be appropriate in some cases; however, 

we have noted in Chapter III that the non-uniqueness of an ITS can cause problems for 

estimation of age replacement policies even when the ITS has a simple parametric form. 

Unfortunately, given a set of lifetime data (along linear paths or otherwise) it is rarely 

clear which (if any) parametric form the ITS should take. Duchesne (1999) suggests a 

non-parametric procedure for estimating the true, unknown ITS; this procedure links the 

quantiles along the paths. Policies based on the resulting scale can be constructed which 

are not lower sets. 
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In Chapter II we have noted that in the single-scale problem, policies 

corresponding to a sequence of decreasing cost ratios are "nested." We have also 

observed that this quality is desirable for multiple-scale policies because non-nested, 

multiple-scale policies prescribe replacement times for devices on some paths that are 

inconsistent with respect to the corresponding cost ratios. We have also observed in 

Chapter III that policies based on either the min CV scale or on an ITS are nested, but 

policies based on the "best" scale for age replacement method are not guaranteed to be 

nested. Due to the nature of the single-scale cost function (1.3) and in tum (4.5), the 

policies produced by our procedure are not necessarily nested. However, we show in 

Chapter V that in practice, our procedure tends to produce nested policies even with 

small samples. In such cases, our procedure forms a time scale based on the cost ratio r. 

The points along each path corresponding to the replacement time for a given r have the 

same age in this scale. Also, in a manner analogous to the cost sensitivity analyses 

conducted with the aid of TTT plots, we find there are ranges of r over which the same 

composite policy is valid. Combined scales, on the other hand, essentially order the 

observations based on their lifetimes in the combined scales; points along contours of 

these scales are the same "age" in these scales, indicating they have, in a sense, 

accumulated the same level of damage. 

F. DISCUSSION AND SUMMARY 

In this chapter we developed a method of estimating the optimal "sensible" policy 

given lifetimes from a population of devices which age along linear paths. Under such a 

57 



policy, non-failed devices on path Zi are replaced when their chronological age reaches 1), 

i = 1, ... , m. As such, this composite policy technically applies only to devices on these 

paths. Policies based on combined scales of the form considered in Chapter III have this 

same form when applied to data on linear paths. The assumption that devices age exactly 

along linear paths is usually an approximation of reality; thus, it is worthwhile to consider 

ways to extend these policies to ones that apply to devices on any path. The policy (0, 'Z) 

in a combined scale t extends in a natural way to the region { (x,y(x)): t < r} in the 

positive quadrant, as exemplified in Figure 3.4 and Figure 3.5. 

The key consideration for extending the policy produced by our estimation 

procedure is to ensure that the resulting policy is a lower set with respect to the matrix 

partial order on (O,oo l Consider, for example, a population of devices aging along lines 

of slope 81 = 0.5, (h. = 2, or (}j = 8. Suppose that for some r > 0 the replacement times are 

1"1 = 20, 'l"z = 10, and r3 = 5, respectively. The solid lines segments in Figure 4.2 represent 

the failure replacement region for this policy. To extend this policy to the positive 

quadrant, we need a non-increasing function on (O,oo) that is contained within the 

rectangular regions delimited by the dashed lines in Figure 4.2. This function induces a 

boundary of the failure replacement region; non-failed devices are replaced when their 

usage curve crosses this boundary. A "conservative" extension is to choose a step 

function coincident with the lower boundaries of the boxes; a more "aggressive" 

extension is to choose a step function coincident with the upper boundaries of the boxes 

(in this case there is no usage limit for devices with x < 5). Between the two extremes, 

we arbitrarily choose a smooth curve through the policy points { (20,10), (10,20), (5,40)}, 
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as depicted in Figure 4.2. We address the problem of determining the cost of 

implementing such policies in Chapter VI. 
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Figure 4.2: Extension of Estimated Optimal Policy. 

The solid lines represent the failure replacement region for the policy with 

replacement time vector (20, 10, 5). The dashed lines represent bounds for 

a non-increasing function serving as a policy boundary under the lower set 

restriction. The smooth curve represents the boundary of one possible 

extension of the policy based on the linear paths of slope 0.5, 2, and 8. 

Additionally, we note that our focus in this chapter has been on completely non-

parametric estimation of the optimal policy. We acknowledge it is also possible to 

estimate the F; under the restriction that the estimates be IFR. Ingram and Scheaffer 

(1976), however, find little value added from the increased computational burden over 

empirical estimation. We remark that if parametric (or other non parametric) distributions 

are fit to each F; and a r, estimating !)* is found for a given r > 0, the vector 

(f1 , f 2 , ••• , f m) is not necessarily in A. It is possible, however, to estimate parameters of 
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certain collections {F;} under the restriction that (rl' r 2 , ••• , fm) be in A. Gertsbakh and 

Kordonsky (1998) consider an example of such a collection. They discuss estimation in 

the Weibull family under which the shape parameter is constant for all paths but the scale 

parameters are allowed to vary. Geurts (1983) acknowledges optimal age replacement 

times in the Weibull family are relatively insensitive to the shape parameter, so in our 

setting this seems to be a reasonable approach. In such a case, it can be shown that if the 

scale parameters satisfy conditions akin to ( 4.3), the resulting composite policy 

(r1 , f 2 , ••• , fm) is in A. General conditions under which (r1 , f 2 , ••• , fm) is in A need further 

study. 

Finally, in this chapter we focus on linear paths in two scales. The concepts 

developed here can be generalized to more than two scales. For example, m linear paths 

in k+l scales can be represented by (x, YI(x), ... , Yk(x)) where yj(x) = Bux, i = l, ... ,m,j = 

l, ... ,k. Form such paths, as in two scales, an age replacement policy need only specify 

replacement ages ( r1, r2, ••• , 'Z"m) in chronological time. In addition, the cost function ( 4.2) 

remains the same. The difference comes in specifying constraints (4.3) so that the policy 

( r1, r2, ••• , 'Z"m) is indeed sensible in the original scales. We speculate that the constraints 

and the estimator will have form similar to those developed in this chapter. We do note, 

however, that it is difficult to imagine practical applications of extending these results to 

more than three scales. 
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V. PROPERTIES OF THE ESTIMATED OPTIMAL COMPOSITE POLICY 

In this chapter we address the properties of the policy f . We begin with a 

discussion of its large-sample properties, and then investigate its small-sample behavior 

through simulation. We conclude with simulation results aimed at comparing the 

performance of the policies produced by our procedure with those based on the min CV 

method. 

A. LARGE-SAMPLE PROPERTIES 

Let S; be a uniformly strongly consistent estimator of S;, i = 1, .. . ,m. For 

example, if lifetimes along path i are from a simple random sample, then taking S; to be 

the empirical survivor function (1.2) gives a non-parametric estimator of S;, which by the 

Glivenko-Cantelli lemma converges uniformly to S; with probability 1. On the other 

hand, should lifetimes along path i be right-censored, depending on the censoring 

mechanism, the Kaplan-Meier estimator is an appropriate choice for S;. With such an 

estimator and the assumption that 'l!* < oo exists and is unique (e.g., ifF; is IFR with 

failure rate strictly increasing to oo) then it is well known (e.g., Arunkumar, 1972) that ~ 

minimizing C; ( 'l!) is a strongly consistent estimator of 'l!*. From this it follows, for the 

composite policy with replacement time vector f = (!';, ... , fm), that 
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with probability 1 as n; --7 oo, for all i = 1, ... , m. This result, of course, does not require 

the estimated policy f to be in A even if ( r1 *, ... , rm *) is in A. 

The showing of the strong consistency of the estimator f, which is required to be 

in A, takes a bit more care. With the individual 'Z;* < oo and unique, and S; a uniformly 

strongly consistent estimator of S;, then a small modification of Ingram and Scheaffer's 

(1976) argument shows that C; converges uniformly to C; in an interval bounded away 

from zero with probability 1. In particular, Ingram and Scheaffer (1976) show that 

r S; (u)du < oo by appealing to the condition that F; be IFR. However, this is also true if 

'Z;* < oo and unique because fort> 'Z;*, 0 < C;( 'Z;*) < C;(t) and hence 

r S;(u)du = (K +C)lim(l/ C;(t)) < oo. For the multiple-scale functions C(r) and C (r), 
0 ~~~ 

we have 

Thus, for a> 0 we see that C ( r) converges uniformly to C( r) in them-dimensional 

region [a,oo)m. Suppose n!: [a,oo)"\ so that;< a for somej = 1, ... ,m. Then C(r), and 

similarly C ( r), are bounded below as follows: 

C(r) ~ piCi(r) 

(K +C)-C 
~ p j -'----'--

I: S i(u)du 

K . 
~-mmp;. 

a J:5i:5m 
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An application of the multivariate analog of Theorem 1 of Arunkumar (1972, p. 252) then 

gives strong consistency off, as an estimate oft*, as stated in the following theorem. 

Theorem 5.1. Let r > 0, ( ti *, ... , -z;,z*) E A be unique, where A is defined in 

(4.3), r;* < oo, and S; be a uniformly strongly consistent estimator of S;, i = 1, ... , m. 

Then 

with probability 1 as each n; ~ =, i = 1, ... , m. 

We note that the proof of Theorem 5.1 does not require f to be unique. Indeed 

with S; as the empirical survivor function, uniqueness off is not guaranteed. In 

addition, although ( 1i *, ... , 1;11 *) E A for most practical cases, this is not a strict 

requirement. What is required in the proof of Theorem 5.1 is the existence of a unique t* 

minimizing C( r) among 1'E A and that t* has finite elements. Weak convergence off is 

not studied here. Arunkumar ( 1972) does develop the asymptotic distribution of the 

minimizer of (1.3) in the one-dimensional case. Perhaps Arunkumar's approach can be 

used to establish weak convergence for the multi-dimensional, restricted estimator f. 

Furthermore, for large samples, the estimators of the optimal policies are nested. 

Suppose s < r, and let r;*(s) and r;*(r) minimize C ;( r;) with respective cost ratios s and r, 

i= 1, ... ,m. lf(r1*(s), ... , 1'm*(s))-< (r1*(r), ... , 1'm*(r)),thecorrespondingfailure 

replacement regions are nested. Suppose both ( 1'1 *(s), ... , 1'm *(s)) and 
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( ti *(r), ... , t'm *(r)) are in A and r;*(s) < r;*(r), i = 1, ... , m. Then, it follows from 

Theorem 5.1 that with probability 1, for all n 1, n2, ••• , nm large enough, the estimated 

policies f (s) ~ f (r), and thus their corresponding failure replacement regions will be 

nested. 

B. SMALL-SAMPLE BEHAVIOR 

1. General Simulation Results 

We use simulation to gain insight into the behavior of the estimated cost function 

and policy for small sample sizes. In this simulation, devices have "low," "medium," or 

"high" rates of use, corresponding to usage paths of slope 81 = 1, fh. = 2 or fh = 5. For 

each path, lifetimes arise from the Weibull distribution, with density 

(5.2) 

As in the simulations of Ingram and Scheaffer (197 6) we fix the shape parameter P = 2 

for each path. Gertsbakh and Kordonsky ( 1998) also assume the Wei bull shape 

parameter is constant over paths. The scale parameter (/)is varied for the three paths so 

that (/)I= 40/21, (/)2 = 1017, (/)3 = 1 for paths 1, 2, and 3, respectively. These scale 

parameters ensure (t'1*,t'z*,t'3*) lies inA for any r > 0. 

Four groups of simulations are performed to investigate the small-sample 

behavior of C ( t') and f as sample sizes along paths n = (n 1, nz, n3), mixing probabilities 

p = (p1, p2, p 3), and cost ratio r vary. Each group corresponds to realistic settings for n 
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and p. There are three runs within each group, to investigate the effects of varying r. 

Table 5.1 depicts the settings used in each run. 

Run n p r 

Group 1 1 (5,5,5) (1/3, 1/3, 1/3) 1.0 

2 (5,5,5) (1/3, 113, 113) 0.5 

3 (5,5,5) ( 113,1/3, 1/3) 0.1 

Group 2 4 (5,5,5) (0.1,0.8,0.1) 1.0 

5 (5,5,5) (0.1 ,0.8,0.1) 0.5 

6 (5,5,5) (0.1 ,0.8,0.1) 0.1 

Group 3 7 (10,10,10) ( 113,1/3, 1/3) 1.0 

8 (10,10,10) (1/3, 1/3, 1/3) 0.5 

9 (10,10,10) (113, 113, 113) 0.1 

Group 4 10 (10,10,10) (0.1,0.8,0.1) 1.0 

11 (10,10,10) (0.1 ,0.8,0.1) 0.5 

12 (10,10,10) (0.1,0.8,0.1) 0.1 

Table 5.1: Settings for General Simulation Runs 

Sample sizes of 5 and 10 are common, particularly in observational data or experiments 

designed to study the lifetime of high-cost prototypic devices. Mixing probabilities 

(113, 1/3, 113) represent populations for which devices are evenly spread across several 

usage rates; and mixing probabilities (0.1, 0.8, 0.1) represent populations for which a 

large majority of the devices have a "medium" rate of use (e.g., automobiles). Table 5.1 

contains runs for which the relative frequencies of the sample sizes along paths differ 

from the mixing probability vector since it is not uncommon for the mixture of test assets 

to differ from the mixture in the actual population. Finally, the cost ratios 1, 0.5, and 0.1 

are common in the literature. 

Each run of the simulation consists of 200 replications. In replicationj, we 

generate a data set consisting of ni Weibull(2, qJi) lifetimes, i = 1 ,2,3 and for this data set 
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we find i U> corresponding to the given p and r using the procedure described in Chapter 

IV. The random number seed is set in advance for replicability. For each run, we 

compute several quantities to gain insight into the small-sample performance of i as an 

estimator of -z<l'. Table 5.2 contains -z<l', the minimizer of the true cost function C( 'Z), 

found numerically. It also lists Av( i) = (1 I 200) L~: t<j) , an estimate of the expected 

value of i and the difference Av(i)- -z<!', an estimate of the bias of i. Finally, it 

includes p( i), the proportion of the replications for which i = ( f 1 , f 2 , f 3 ); this quantity 

reveals how often f E A and hence we find i "automatically," with minimal 

computation. 

T* Av(f) Av(f)- -z<l' p(f) 
1 2.078 1.558 1.091 2.005 1.440 0.988 -0.073 -0.118 -0.103 0.225 
2 1.406 1.054 0.738 1.471 1.048 0.713 0.066 -0.007 -0.025 0.260 
3 0.607 0.456 0.319 0.866 0.607 0.407 0.258 0.151 0.088 0.210 
4 2.078 1.558 1.091 2.180 1.464 0.973 0.102 -0.094 -0.118 0.225 
5 1.406 1.054 0.738 1.607 1.078 0.706 0.201 0.024 -0.032 0.260 
6 0.607 0.456 0.319 0.923 0.634 0.424 0.316 0.179 0.105 0.210 
7 2.078 1.558 1.091 2.121 1.545 1.035 0.044 -0.013 -0.056 0.250 
8 1.406 1.054 0.738 1.466 1.064 0.747 0.061 0.010 0.009 0.330 
9 0.607 0.456 0.319 0.753 0.538 0.357 0.146 0.082 0.038 0.225 
10 2.078 1.558 1.091 2.301 1.601 1.031 0.223 0.043 -0.060 0.250 
11 1.406 1.054 0.738 1.514 1.054 0.725 0.108 -0.001 -0.013 0.330 
12 0.607 0.456 0.319 0.768 0.551 0.364 0.160 0.095 0.045 0.225 

Table 5.2: Small-Sample Performance of i 

First, by comparing rows 1-6 with rows 7-12 in Table 5.2, we note that increasing 

sample sizes generally results in an increase in the (estimated) accuracy off. As 
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expected, increasing sample sizes increases the proportion of replications for which 

f = (i\, f 2 , f 3 ). To investigate the effect of a non-uniform p on fin small-sample 

situations, compare rows 1-3 with rows 4-6 and rows 7-9 with rows 10-12. In general, 

the accuracy off decreases slightly, but this effect is reduced as the sample sizes 

increase. By examining columns 4-6 of the rows within each group, we note the 

"average" policies are nested. 

We proceed as follows to determine if the policies produced in each individual 

replication of a given run are nested. By setting the random seed, we generate the same 

lifetimes for each run in the first two groups and in the last two groups. Hence, for 

example, the estimated policies for replication j of runs 1, 2, and 3 are based on the same 

random numbers. For a fixed group, let f <i>(r) denote the estimated policy for cost ratio r 

given the data for replicationj. It can be shown that these policies are nested if 

f <i\0.1) -< f v>(0.5) -< f <i>( 1 ). For each of the four groups, we find that nesting occurs in 

each of the 200 replications. 

For each run, we also compute several quantities to gain insight into the small-

sample performance ofC ('r) as an estimator of the true cost C('r). First, we compute 

C( -ti'), the exact cost of the true optimal policy, from (4.2). Next, we compute 

Av[C(f)] = (1/200) I~: ('U>(f<j> ), an estimate of the expected estimated minimum cost 

of age replacement, and then the sample standard deviation of the C ( f ). We also 

compute Av[C(f)] = (1/200) I~: c(f<j) ), an estimate of the expected true cost at the 

optimal policy. Finally, we compute b[C(f)]= Av[C(f)]- Av[C(f)] and 
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MSE[c(i)]= (1/200) L~~~ (c(j) (t<n )- c(t<n )Y, estimates of the bias and MSE of c ( i) 

as an estimator of C( i ), respectively. These quantities are scaled by the factor 1/C and 

displayed in Table 5.3. 

C('Z*) Av[C(i)] sd[ C(f)] Av[C(i)] b[C(i)J MSE[C(f)] 

1 1.618 1.481 0.272 1.679 -0.199 0.107 
2 1.095 0.904 0.202 1.150 -0.246 0.094 
3 0.473 0.272 0.112 0.518 -0.247 0.074 
4 1.554 1.420 0.351 1.623 -0.204 0.142 
5 1.052 0.860 0.249 1.110 -0.251 0.112 
6 0.454 0.256 0.145 0.513 -0.257 0.084 
7 1.618 1.516 0.183 1.654 -0.139 0.052 
8 1.095 0.960 0.144 1.133 -0.173 0.049 
9 0.473 0.318 0.090 0.503 -0.185 0.042 
10 1.554 1.465 0.242 1.597 -0.132 0.071 
11 1.052 0.921 0.178 1.094 -0.172 0.058 
12 0.454 0.300 0.115 0.490 -0.191 0.047 

Table 5.3: Small-Sample Performance of C ( i ) 

As in Table 5.2, by comparing rows 1-6 with rows 7-12 of Table 5.3, we note 

that increasing the sample sizes results in an increase in the (estimated) accuracy and 

precision of C (r) as an estimator of C(r). To investigate the effect of a non-uniformp 

on C (r), compare rows 1-3 with rows 4-6 and rows 7-9 with rows 10-12. In general, the 

accuracy and precision of C ( r) decreases slightly, but this effect is reduced as the 

sample sizes grow. 
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2. Results of Nesting Simulation 

We also use simulation to investigate in more detail the nesting tendency of the 

policies produced by our procedure. In the general simulation, we used the sequence of 

cost ratios { 1, 0.5, 0.1}; in this simulation we use a more refined sequence { 1, 0.9, 

... ,0.1 } . We retain the same slopes and Wei bull parameters as in the general simulation. 

The nesting simulation consists of 4 runs of 20 replications each; for each replication we 

use a new random number seed. To investigate the effect of sub-sample size and mixing 

probability on nesting, we vary n and p between runs. The settings for n and p for the 

four runs coincide with the settings in groups 1-4 in Table 5.1 (i.e., run 1 has the same 

settings as in Group 1, and so on). In each replication of a given run, we generate ni 

Weibull(2,<pi) lifetimes, i = 1,2,3; for this data set we find f v>(r) for each r in { 1, 0.9, 

... ,0.1} and we check whether f v>co.1 )-< f v>co.2)-< ··· -< f v>c 1). For each run, we find 

that nesting occurs in each of the 20 replications. 

C. COMPARISON WITH MIN CV METHOD 

We further use simulation to gain insight into the performance of composite 

policies estimated using our procedure with in comparison with composite policies 

. estimated using the min CV procedure. Here, we compare the true costs of the policies 

produced by the two procedures using the sample sizes, mixing probabilities, and cost 

ratios contained in Table 5 .1. As in the general simulation, we use devices with usage 

paths of slope 81 = 1, fh. = 2, or 8:3 = 5 and that X IBi - Weibull(2, <pi), i = 1 ,2,3. But in 
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t_his simulation, the scale parameters (/Ji correspond with distributions for which the min 

CV method is expected to return reasonable estimates of ( 'f! *, r-2*, -r3*). 

Unlike our procedure, the min CV method is not designed specifically for the 

purpose of estimating ( -r1 *, r-2*, 13*). Nonetheless, for certain families of conditional 

distributions, the policy based on the min CV method does in fact estimate ( 1'1 *, -r2*, -r3*). 

Consider, for example, a population of devices on linear usage paths Z whose lifetimes 
:-.; 

correspond to the model 

(5.2) 

That is, devices have lifetimes corresponding to the linear ITS model with time scale 

parameter Yo· The times in the ITS have a Weibull distribution with shape parameter P 

and scale parameter rp (ex: Duchesne and Lawless, 2000). It can be shown that along 

paths we have X 18- Weibull(jJ,qi(l +roB)). Suppose P= 2, (/J= 4, and Yo= 3/5. It 

follows that X I~- Weibull(2,rpi) where rp1 = 2.5, (/J2. = 20/11, and (jJJ = 1; these scale 

parameters are used throughout the study. These scale parameters ensure ( -r1 *, -rz*, -r3*) 

lies in A for any r > 0. 

For a given r > 0, our procedure always returns a policy with lower estimated cost 

than any other policy in (4.3). But since the true -r* in this simulation corresponds to a 

triangular policy, and min CV restricts attention to such policies, we would expect the 

policy based on the min CV scale to have lower actual cost than our estimated policy. 

We find, though, that our procedure compares favorably in terms of true costs also. The 
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12 runs of this simulation use the n,p, and r as described in Table 5.1; each run of the 

simulation consists of 200 replications. In a given replication, we generate n; lifetimes 

from Weibull(2,tp;), i = 1,2,3. From this data set we compute a, resulting in f cv, the 

policy produced by the min CV method. We also compute f using our method. Hence, 

the result of each run are pairs ( fUl, fYJ ),j = 1, ... , 200. For each run, we compute 

C( -r) at each of these values and (due to occasional non-normality) perform a Wilcoxon 

signed-rank test on the differences C( fYJ)- C( fUl ),j = 1, ... , 200. For every run we 

reject the null hypothesis that the true mean difference is non-positive; approximate 

p-values are 0 in each case. In fact, our estimator results in a lower-cost policy in 67% to 

85% of the 200 replications for each run. 
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VI. POLICIES GIVEN DATA FROM UNKNOWN USAGE PATHS 

Assume that (X,Y) has support X= (O,oo)2 and that usage paths are unknown. 

Unlike the setting with known linear usage paths, there is no natural way to write the cost 

function in terms of one-dimensional cost functions and still be able to compute the cost 

for any policy Min Mx. Approaches that use combined scales reduce the cost function to 

a one-dimensional cost function in the combined scale, but they do so by restricting 

policies to classes of nested policies. Combined scale approaches do not lend themselves 

to comparison of policies that are not nested. In this chapter, we develop a cost function 

that is a natural generalization of the one-dimensional cost function ( 1.1) and can be 

applied to all policies in M:~., 

In the single-scale problem, the cost function ( 1.1) has the interpretation "long

run average cost per unit of time in use," and arises in a relatively natural way from 

univariate renewal theory. Under a joint model for (X,Y), it seems reasonable to consider 

a cost function of the same nature as ( 1.1 ), with interpretation "long -run average cost per 

unit of time in use," where "time in use" can be measured in chronological time or usage 

(e.g., flight hours or landings). In practice, budgets are often made with respect to 

chronological time, rather than usage. With this in mind, the cost function we develop 

has dimension cost per unit of use in chronological time. It does, however, incorporate 

both scales and could easily be taken to be cost per unit of usage. 

As in previous chapters, we consider policies M in M.:r under which a device is 

replaced upon failure or when its usage path crosses the boundary of M, whichever 

73 



occurs first. We develop the two-dimensional renewal reward process as the foundation 

on which we base the cost function for policies in Mx. For a given set of failure times 

(XJ,YJ), .•. ,(xn.Yn), we then demonstrate how to estimate an optimal rectangular policy in 

Mx, and conclude with an example. 

A. THE TWO-DIMENSIONAL RENEWAL REWARD PROCESS 

The cost function that we develop arises from considering renewal reward 

processes (see Appendix A) in two dimensions. Let R(u,v) denote the rectangle 

[O,u] x [O,v] and u > 0, v > 0. A stochastic process {N(u,v); u > 0, v > 0} is said to be a 

two-dimensional counting process if N(u,v) represents the total number of events that 

have occurred in R(u,v). Let { (U;,V;)} be a sequence of independent and identically 

distributed (iid) non-negative random vectors, and let S ~t> = L,~=t U i and S ~ 2> = L,;=I v; . 

Define N(u,v) = max{n: S~l):::; u, S~2 >:::; v }. Then {N(u,v); u > 0, v > 0} is also a two

dimensional renewal process (e.g., Hunter 1974a). Both { U;} and { V;} define univariate 

renewal processes. With N~1 > = max{n: S~l) :::; u} and N~2> = max{n: S~2> :::; v}, it is 

readily seen that N(u,v) =min{ N2>, N~2>}. Let Rn denote the reward earned at the n1
h 

renewal. Assume the Rn, n ;?: 1 are iid; note Rn may depend on ( Un, Vn). Let 

Z(u, v)= I:=~.v) Rn represent the total reward earned in R(u,v). Then {Z(u,v); u > 0, 

v > 0} is a two-dimensional renewal reward process. 

Now, we generalize the univariate Renewal Reward Theorem. Let 

J11 = E[UJ] < oo and flz = E[VJ] < oo; suppose also E[RJ] < oo. Given a one-dimensional 
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renewal process {N(t); t 2:: 0} with mean inter-renewal time J.L, it is well known that the 

total number of renewals N( co) is infinite (e.g., Ross, 1997). For a two-dimensional 

renewal process, let N( oo,oo ) be the number of renewals in a square of infinite size; that 

is, N( oo,oo) = lim N(t, t). We show that N( oo,oo) cannot be finite. 
t-)= 

Lemma 6.1: N( oo,oo) =co with probability 1. 

Proof: This proof is a generalization of Ross's ( 1997, p. 353) proof for the one-

dimensional case. 

P{N(oo, co)< co}= P{X n =co or Yn =co for some n} 

=P(Q{x. ==or r. ==}) 
:::;LP{Xn =co or yn =oo}=O. 

n=l 

The result follows by complementation. 

Given a renewal process { N(t); t 2:: 0} with mean inter-renewal time J.L, it is also 

well known that limN(t )/t = 1/ J1, with probability 1 (e.g., Ross, 1997). That is, the rate 
f-)= 

at which N(t) goes to infinity is the reciprocal of the mean inter-renewal time, with 

probability 1. The following result considers the rate at which a two-dimensional 

renewal process goes to infinity. 

Lemma 6.2: lim N(t, t )/t = ljmax {,Up,U2 }, with probability 1. 
t-)= 
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Proof: For any fixed t, N(t,t) = min{NY) ,N,(2
) }. Also, for fixed t, 

min{N,(I), N,(2) }/t = min{N,(I) /t, N,(2
) /t}. Since limN,(I) /t = 1/ f.l1 and limN,(

2
) /t = 1/ f.l 2 

t-?oo t-?oo 

with probability 1, it follows that limmin{N,(I) /t ,N,(2
) /t} = min{l/ f.i1 ,lj f.l 2 } with 

/-7= 

probability 1. 

Next, we generalize the Renewal Reward Theorem. 

Theorem 6.1: limZ(t,t )/t = E[R1 ]/max {f.lpf.l 2 } with probability 1. 
/-7= 

""N(t,t) I ( )/ Proof: Decompose Z(t,t)/t as the product of ..L.in=I R" N(t,t)andN t,t t. By 

Lemma 6.1 and the Strong Law of Large Numbers the first term goes to E[RI] with 

probability 1. By Lemma 6.2 the second term goes to ljmax {f.lpf.l 2 } with probability 1. 

B. DEVELOPMENT OF COST FUNCTION FOR TWO-SCALE POLICIES 

We must modify the above results slightly before they can be applied to the 

setting in which the components of the two-dimensional inter-renewal times { ( U;, V;)} are 

measured in different scales. In the case of two parallel time scales, the time units of the 

mean inter-renewal times in the denominator are not directly comparable. However, if 

we "convert" time in the usage scale (e.g., landings) to chronological time, we obtain a 

meaningful denominator. To this end, we prove a corollary to the theorem. 
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Corollary 6.1: For a> 0, b > 0, limZ(at,bt)/t = E[R1]/max{,u1/a,,u2 /b} with 
f-)00 

probability 10 

Proof: From { (Ui,Vi}) form the new renewal process { (W;,Zi)} where Wi = U/a 

I 

N(t, t) = max{n: rYl <.:::: t, r}2l <.:::: t} 0 As E[Wi] = f.1Ja and E[Vi] = f.1 2 /b, we have 

limN(t,t)
1 

/t = 1/max{,u1ja,,u2 /b} with probability 1 from Lemma 6.20 But 
f-)oo 

I 

N(t,t) =max{n:S!1
) <.:::at,S!2

) <.:::bt} 

= N(at,bt). 

This line of reasoning is essentially identical to Hunter's derivation of the limiting growth 

rate of E[N(at,bt)] (1974b, ppo 555-6)0 The result follows immediately, using this fact 

and the decomposition technique from the proof of Theorem 6010 

Now we are positioned to use the results and discussion above to develop the 

function with which we can compute the cost for a given member M of set Mxo Consider 

the one-dimensional case in which a device has lifetime X and operates under the age 

replacement policy (0, -r). Recall the interpretation of the objective function (1.1): the 

long-run average cost per unit of "time in use" of implementing policy (0, -r)o Here, the 

"time in use" corresponding to lifetime X is simply the replacement time min {X, -r} 0 

Now, consider the two-dimensional case in which a device has lifetime (X,Y) and 

operates under policy M E Mxo We seek an objective function with a similar 

interpretation, but now "time in use" is more problematic. Let (U,V) denote the 
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replacement time under policy M. We consider two cases. First, suppose (X,Y) EM. 

This means that the device failed before crossing the boundary of M, so clearly 

(U, V) = (X,Y). Thus, its "time in use" is U =X and V = Y, and its two-dimensional 

replacement time is simply (X,Y). Second, suppose (X,Y) E M. We know the device 

begins its life at (0,0). As it ages, it traces out a usage path terminating at (X,Y), which, 

by assumption, lies outside of M. At some point, its usage curve crossed the boundary of 

M. Had policy M been in place, its "time in use" in both scales would be the point at 

which the usage path crossed the boundary of M. But by assumption we only know (X,Y) 

and M, not its usage path. Since usage paths are often approximated by a straight line, we 

adopt the following convention: let ( U, V) be the point of intersection of the boundary of 

M and the chord connecting (0,0) to (X,Y). We describe (U,V) in either case as follows: 

U = sup{x ~X: (x, (Y I X)x)E M}, and 

V =(Y I X)U. 

We now construct the two-dimensional renewal reward process for a device 

(6.2) 

operating under policy ME M:1. We are given two-dimensional failure times (X1,Y1), 

(X2,Y2), ••• iid from some bivariate lifetime distribution F; thus { ( U; , V;)} are iid. Let 

R(u,v) denote [O,u] x [0, v]. Let N(u,v) represent the total number of replacements made 

in R(u,v). Since the {(U;,V;)} are iid, {N(u,v); u > 0, v> 0} is a two-dimensionalrenewal 

process. As in the one-dimensional case, let the "reward" (i.e., cost for replacement) R be 

Kif replaced due to age and (K + C) if replaced due to failure. Let Z(u, v) represent the 

total cost incurred in R(u,v). Then, {Z(u,v); u > 0, v > 0} is a two-dimensional renewal 

reward process, with inter-renewal times {(U;,V;)}, rewardsR; = K +Cl[ (Xpf; )EM], 
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and Z(u, v) = :L:;u,v) Ri . Recall the cost of policy (0, r) in the one-dimensional case is 

C( r) = limZ(t )/t = E[R1 ]/ E[U1], as discussed in Appendix A. To obtain a similar 
I-'>= 

limiting result for the situation we have just described, we apply Corollary 6.1. Thus, let 

a= 1 and b = E[Y]IE[X]; let Jli(M) = E[U] and J12(M) = E[V]. From Corollary 6.1, 

(6.3) 

with dimension cost per unit of chronological time. The coefficient bin (6.3) is 

motivated from the "conversion factor" used by Kordonsky and Gertsbakh (1994), and 

can be interpreted as follows. From a reliability standpoint, one unit of usage is "worth" 

E[X]IE[Y] units of chronological time, on average. 

To "solve" the multiple-scale age replacement problem in this setting, we must 

find theM* in Mxwhich minimizes this expression. We now demonstrate how to solve 

the appropriate optimization problem for a specific subset of Mx. 

C. FINDING THE BEST RECTANGULAR POLICY 

The aim of this section is to search over the set MR = { R(s,t): s > 0, t > 0}, the set 

of all "lower rectangular" policies (O,s) x (O,t). Observe MR ~ Mx. The set of lower 

rectangles is attractive since rectangular policies are easily implemented: a device is 

replaced upon failure or when its elapsed chronological time or cumulative usage reaches 

some "limit." Hence, rectangular policies are closely akin to automobile warranties. In 

this section, we derive the form of the cost function for a given rectangle and describe the 

minimizer of the cost function formed when F is estimated by the empirical distribution 
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on the bivariate data. For the same reasons as in the univariate problem, it is convenient 

to define F(x,y) = P(X < x,Y < y) for (x,y) in X. We now calculate the numerator and 

denominator in (6.3) for C(s,t), the cost when M = R(s,t). 

We find the numerator of C(s,t) in a manner similar to the single-scale case. 

Define reward R by 

R = {K + C if (X, Y) E (0, s)x(O,t) 

K if (X,Y)E (O,s)x(O,t) 
(6.4) 

Thus, the numerator is E[R] = (K + C) F(s,t) + K (l - F(s,t)) = K + C F(s,t). 

To compute the denominator, let J11(s,t) = E[U] and J12(s,t) = E[V], where U and V 

are defined as in (6.2). For a fixed (s,t) in X, letA 1(s,t) = (O,s) x (O,t), 

A2(s,t) = { (x,y) E X: y;::: t andy;::: (tls)x}, and A3(s,t) = { (x,y) E X: x;::: sandy< (tls)x}. 

In what follows the parameters (s,t) are omitted from these sets to simplify notation. 

Observe that these regions form a partition of X. From (6.2), we find 

{

X, if (X,Y)E AI 

U = tX IY, if (X,Y)E A 2 • 

s, if (X,Y)E A3 

(6.5) 

Thus, 

J1 1(s,t)= JfxdF(x,y)+Jf(txly)dF(x,y)+ JfsdF(x,y). (6.6) 
~ ~ ~ 

Similarly, 

{

Y, if (X,Y)E AI 

V = t, if (X,Y)E A2 , 

sY I X ,if (X,Y) E A 3 

(6.7) 
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and it follows that 

f1 2 (s, t) = fJ ydF(x, y) + fJ tdF(x, y) + fJ (sy I x)dF(x, y). (6.8) 
AI A2 A3 

Assembling the parts, we find that the cost when M = R(s,t) is 

C(s,t) = K + C F(s,t) (6.9) 
max{,U1 (s,t),,U2 (s,t)l b} 

When F is estimated by a discrete bivariate distribution with mass p; on { (x;,yi), 

i = 1, ... , n}, such as the empirical distribution, C(s,t) is estimated as follows. Let lj(i) 

denote the indicator function on set Aj for i = 1, ... , n and j in 1 ,2,3. That is, 

1/i) = {
1, 

0, 

if (Xi , y i ) E A j 

otherwise 

Then, it can be shown that the quantities E[R], J11(s,t), f12(s,t) and bare estimated by 

[i 2 (s, t) = I:
1 
[yJ1 (i) + tl 2 (i) + (sy;fx; )I 3 (i)]P; , and 

b= . . x . .. " Ln /In 
i=I Y,P, i=l ,P, 

We substitute these into (6.9), obtaining 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

Let us now explain how to find the minimizing value of (6.15). Recall that to 

solve the one-dimensional problem it suffices to evaluate C ( T) in (1.3) at each of the 

observations. We apply a similar strategy to find the minimizer of C (s,t). Because (1.3) 
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and (6.15) are developed in a similar manner, it is tempting to think that to find the 

minimizer of C (s,t), it suffices simply to evaluate (6.15) at (xi,y;), i = 1, ... , n, and select 

the two-dimensional failure time with the smallest cost. Upon closer examination, we 

find that it is necessary to evaluate ( 6.15) at other points in addition to the two-

dimensional failure times. Let i be such a minimizer, i.e., C (i):::; C (s,t) for all (s,t) in 

X. We now describe how to find i . 

For convenience, suppose that no chronological failure times share the same 

value, so that the chronological failure times can be strictly ordered x0> < x(2) < ... < x<n>, 

and similarly suppose the usage failure times can be ordered yO> < y <Z> < ... < y <n> • Let 

X<o> = 0 = Y<o> and x(n+ll = oo = Y<n+ll. Form a grid 

(6.16) 

Note r defines a partition of= (O,oo)2 into rectangles ofthe form (X(i),X(i+l}] X (y(j).Y(j+l)], i, 

j E { 0, ... , n}. Let n(s,t) = E[R] and d(s,t) =max { jl1 (s, t), jl 2 (s, t) I b } from (6.11), 

(6.12), (6.13) and (6.14). Consider the numerator. Note that n(s,t) is constant on every 

(xu>.X<i+l)] x (yvl>Yv+l)], continuous from the left ins for all t, continuous from the left in t 

for all s, and non-decreasing in both s and t with jumps that can only occur on the north 

and east boundaries of the (xu).X(i+ I)] x (yv>•Yv+ I)]. Consider the denominator. We have 

jl1 (s,t) = "L;=I q;(s,t)pi' where qi(s,t) = xJ1 (i) + (tx;fy; )I 2 (i) + sl 3 (i). It can be shown 

that qi (s,t) and hence jl
1 
(s,t) is continuous and non-decreasing in both sand t. 
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also be shown that r;(s,t), and hence P, 2 (s, t) I b, is continuous and non-decreasing in both 

sand t. Thus d(s,t) is continuous and non-decreasing ins and t. 

On each (X(i),X(i+l)] x (yvhYv+l)], the ratio n(s,t)ld(s,t) is thus continuous and non

increasing ins and t and therefore has minimum value at (xu+ I)· Yv+l)). By a careful 

examination of the cost function it can be shown that C (x;,Y(n)) ::; C ( x;,y(n) + y), 

i = 1 ... n for y > 0 and C (X(n),Yj) ::; C (X(n) + x,yj), j = 1 ... n for x > 0. As such, it is not 

necessary to search beyond the outermost point of the grid, namely (x (n)• Y<n)). These 

points are gathered into the following result. 

Theorem 6.2: Consider the probability distribution which places mass p; on 

(x;,y;), i = 1, ... , n. Let C (s ,t) be defined as in ( 6.15) and r as in ( 6.16), and 

z = argmin c (s,t). Then, z E r. 

D. EXAMPLE 

Returning to the jet engine and automobile data sets, Table 6.1 contains z for the 

cost ratios r = 1.0, 0.5, and 0.1 when F is estimated by the empirical distribution F . 

Beneath z in each cell is F ( z ) . 
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r= 1 r=0.5 r= 0.1 
Jet Engine (4932,2426) (3227,1550) (3227,1550) 

0.238 0.000 0.000 
Automobile (330,10300) (368,8000) (68,8400) 

0.578 0.421 0.053 

Table 6.1: Rectangular Policies for Various Cost Ratios. 
Parenthetical entries in the cells represent the optimal policy 
corresponding to a particular value of the cost ratio r. Beneath each such 
entry is the value of the empirical distribution at this point. 

We make the following observations from Table 6.1. First, as indicated by the values 

ft ( z ), more conservative policies are selected as r decreases (under more conservative 

policies, devices have a smaller chance of failure before replacement). However, the 

policies are not always nested; in particular, for the automobile data, the policy for r = 0.1 

is not contained in the policy for r = 0.5. Also, none of the z correspond with 

observations, thus amplifying the need to evaluate the estimated cost function at all points 

in the grid r. Figure 6.1 depicts the policies for the jet engine data. Note from Table 6.1 

that the policy for r = 0.5 is identical to the policy for r = 0.1, and that this policy is 

nested within the policy for r = 1. 
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Figure 6.1: Rectangular Policies for Jet Engine Data. 
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The dashed lines represent the boundaries of the policies for r = 0.5 and 1. 

E. DISCUSSION AND SUMMARY 

In this chapter we developed the two-dimensional renewal reward process, and it 

served as the foundation on which to build the cost function for policies in Mx under a 

joint model for (X,Y). The cost function arises from the analog of the univariate Renewal 

Reward Theorem, and has dimension cost per unit of chronological time in use, much 

like ( 1.1 ). In the latter half of this chapter, we derived the form of the cost function for 

rectangular policies and showed how to find the rectangular policy with lowest cost given 

a set of bivariate failure data. The notions developed in this chapter are easily extended 

to policies based on more than two scales. 
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We do not claim the policy z produced by this procedure is an estimate of a true 

optimal z* for the underlying F. Unlike the case of several linear paths, we have yet to 

find examples of non-trivial bivariate distributions for which an optimal z* or an 

equivalence class of such policies exists. The closest work in the literature is that of 

Murthy et al ( 1995) in which the parameters of the optimal rectangular warranty policy 

are found for certain named bivariate distributions, but the cost functions used to define 

"optimal" are very different in nature from ours. Perhaps certain bivariate notions of 

aging (e.g., bivariate IFR, etc.) can be used to identify distributions for which a z* exists. 

Also, under additional conditions, it may be possible to show that z converges to z*. If 

such distributions can be identified, simulation studies can be conducted to verify the 

small-sample properties of z. 
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VII. CONCLUSIONS 

In this dissertation, we generalize the classical age replacement policy to the case 

in which the age of a device is recorded in more than one time scale. We use several case 

studies to motivate the form of a general replacement policy in multiple scales. The case 

studies demonstrate the need for careful consideration in developing such policies. In the 

first two, we notice that in some situations, simply ignoring the usage scale may not be 

problematic, but in others, failure times in one single scale (e.g., chronological time) may 

not capture the entire damage accumulation process. The third case study reveals that a 

naive (though seemingly sensible) approach for data lying along linear paths can result in 

a policy that, although "optimal" from the standpoint of (estimated) costs, is not sensible 

from the standpoint of implementation. Based on these observations, we describe a class 

of policies that are sensible from the standpoint of implementation. This class 

generalizes multiple-scale policies found in the literature. Furthermore, we find it is 

desirable for multiple-scale policies to be nested when considering (in sensitivity 

analyses, for example) a decreasing sequence of cost ratios; otherwise, the replacement 

times prescribed by the policies can be inconsistent with the interpretation of the cost 

ratios. 

When failure times are recorded in multiple scales, it becomes readily apparent 

that identical devices do not operate under identical field conditions. Researchers are 

grappling with ways to use such lifetime data to produce comprehensive models, and 

some are seeking to use these models in the arena of optimal preventive maintenance. 
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Methods for developing preventive maintenance policies for such devices fall on a 

continuum ranging between two extremes. One extreme, as noted by Kordonsky and 

Gertsbakh (1997) is to provide an individualized policy for every single device in the 

population. They note such an approach is totally impractical and, as a result, 

unacceptable. The other extreme is the "one-size-fits-all" approach, in which the 

"optimal" policy is based on fitting a single distribution to observations which, in reality, 

may come from a mixture; this policy is then applied to the entire population. Basing a 

policy on a combined scale falls in between these extremes in that data in two scales are 

modeled by a univariate distribution in some "optimal" scale. As expressed by 

Kordonsky and Gertsbakh ( 1997), the goal of such approaches is to find a scale in which 

maintenance actions can be described "in a unified way which would fit all exemplars 

and would cover all operational conditions." We carefully examine policies based on 

combined scales arising from three approaches in the literature in light of "desirable" 

properties. We find that each of the three approaches lacks features important when 

developing multiple-scale policies. In one approach, the observations are translated into 

many different scales and the scale corresponding to the minimum value of a "converted" 

cost function is defined to be "best." This approach, although motivated from the 

standpoint of minimizing costs, does not guarantee nested policies in the original scales. 

In the second approach, a combined scale is found in a manner unrelated to maintenance 

costs. Policies based on this scale have the same "shape" and are nested. The third 

approach also restricts the form of the policy in a manner unrelated to costs. This 
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approach, although appropriate in some preventive maintenance contexts, does not seem 

best suited for age replacement. 

We consider multiple-scale age replacement in two settings. In the first, since it is 

common in the literature to approximate unknown usage paths with straight lines, we 

develop a procedure based on the assumption that devices age along linear paths. Like 

the scale-combining approaches, our approach lies between the extremes in that it can 

result in different policies for devices on different usage paths. However, our procedure 

does not rely on finding an "optimal" scale. Instead, it considers the lifetime distributions 

corresponding to devices on different paths in a manner resulting in an estimate of the 

optimal policy among a class of "sensible" policies. We show that under mild conditions, 

the estimated optimal replacement times are strongly consistent estimators of the true 

optimal replacement times, and then show by simulation that these estimates. are well

behaved in small-sample situations. It is also shown that our procedure tends to produce 

policies having lower true cost than those based on the min CV method. 

In the second setting, device usage paths are unknown. We define the two

dimensional renewal reward process, and prove a two-dimensional version of the 

Renewal Reward Theorem. Using this result, we develop the cost function by which we 

can evaluate various policies under the assumption of a joint model for the bivariate 

failure times. We also derive the form of the cost function for a smaller class of 

alternatives and present numerical results obtained from solving the corresponding 

optimization problem for various two-dimensional failure data sets. 
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We note that our contributions may seem to fall in the area known as 

"multivariate age replacement." The literature in this realm, however, differs 

significantly from ours. In this literature, "multivariate age" refers to the ages of several 

components, where age is measured in a single scale. For example, Ebrahimi ( 1997) 

defines MAR(T1, ... , Tk), the policy for multivariate age replacement for a system of k 

components which replaces component i, i = 1, 2, ... , k either at age T; or upon its 

failure. For the case k = 2, Ebrahimi explains how to find the optimal MAR(T,1) for both 

s.eries and parallel systems. Heinrich and Jensen (1996) also discuss optimal replacement 

in a two-component parallel system, as does Scheaffer (1975). 

Numerous extensions to the dissertation research present themselves. Throughout 

this dissertation our main focus has been on data consisting of ordered pairs representing 

the chronological age at failure and the cumulative usage at failure. In some cases (e.g., 

the aircraft wing joint we mention in the Introduction) more than one measure of usage 

may be available; in other cases, values of other external covariates thought to impact the 

failure process may be available. The concept of a lower set generalizes to higher 

dimensions, and the problem of incorporating additional external covariates into policy 

estimation is worthy of consideration. In fact, as noted in the Introduction, the definition 

of time scale is general enough to include such cases. In the single-scale realm, Love and 

Guo ( 1991) and Kumar and Westberg ( 1997) present methods for obtaining age 

replacement policies for a pressure gauge given covariate information (the data set can be 

found in Appendix B). Both of these use a parametric model to incorporate the effect of 

the covariate on gauge lifetime. The work ofMakis and Jardine (1992, 1999) in the 
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single-scale realm is more comprehensive. They recommend a combination of age 

replacement and "condition-based" replacement in hopes of obtaining replacement 

decisions that are more accurate than by employing one approach or the other. The 

foundation of their work is the Cox proportional hazard model (PHM) with time

dependent covariates. Given a data set of the form considered in this dissertation, we can 

obtain (in concept) a multiple-scale replacement policy by treating the measurements 

from the second time scale as the time-dependent covariate. Duchesne (1999), however, 

remarks that "because models with covariates treat the time variable and the covariates 

quite asymmetrically, it is not recommended to choose an arbitrary scale as the main 

scale and the other scale as covariates." Farewell and Cox (1979) issue a similar 

warning. Of course, one can conceive of a situation where a wealth of information is 

available at device failure, including time in various scales and numerous condition 

measurements (some of which may be interval covariates such as measures of wear). In 

such cases, we echo Duchesne's (1999) call for methods for the systematic identification 

of information categories for inclusion in models for device failure. 

The procedure developed in Chapter IV relies on the assumption that for a given 

r > 0, the collection of conditional distributions {Fi} has unique and finite 

( ti*, r2*, ... , 'Z"m *) E A. Further investigation is needed to characterize families with this 

property. This would provide a means for checking model assumptions before applying 

the procedure. We note that stochastic ordering (or even the stronger failure rate 

ordering) of the conditional lifetimes is not sufficient to guarantee (r1*, r2*, ... , 'Z"m*) EA. 
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In addition, numerous extensions were made to the basic problem with cost 

function ( 1.1) in the years following its initial development, as noted in the surveys by 

McCall (1965), Pierskalla and Voelker (1976), and Valdez-Flores and Feldman (1989). 

Such extensions as cost discounting, imperfect repair, and others are also viable research 

topics for the multiple-scale problem. 

The cost function (4.2) by which we define the "optimal" composite policy is of 

the "average of cost functions" form considered by Gertsbakh and Kordonsky (1997). 

Letting R denote the "reward" (cost) of a replacement and U the replacement time, the 

estimation of the optimal policy based on a "true" reward functional of the form 

E[R]IE[U] for the linear path case would also be a worthwhile pursuit. Here E[R] and 

E[U] could be found by a conditioning approach (e.g., Ross, 1997). This function has a 

slightly different interpretation than the one in (4.2), and is closely related to (6.3). 

Finally, we note much can be built on the foundation created in Chapter VI, where 

we focus on non-parametric policy estimation for the case in which observations do not 

fall on linear paths. For example, we concentrate specifically on rectangles. While such 

policies are easily implemented, it is conceivable that other members of Mxmay result in 

lower cost than the "best" rectangular policy (if it exists) for a given F. For instance, for 

some F, the class of policies bounded by the quantile curves ofF may be worthy of 

consideration. Under such a policy (much like the policies based on an ideal time scale) 

the probability of failure before replacement would be identical for devices on any usage 

path. However, implementation may be difficult due to the shape of such a policy. It 

may also be fruitful to consider clustering methods for the case of unknown usage paths. 
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In such an approach, observations (X,Y) could be clustered by their (estimated) usage rate 

Y/X and then projected onto the line with slope corresponding to their respective cluster 

center. With the data in this form, the techniques of Chapter IV could then be applied to 

the "projected" data. A similar approach was suggested by Duchesne (1999) for non-· 

parametric estimation of the ITS. 
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APPENDIX A: RENEWAL THEORETIC DEFINITIONS AND DERIVATION OF 
COST FUNCTION 

A. DEFINITIONS 

The following renewal theoretic definitions are from Ross ( 1997). A stochastic 

process {N(t); t;:::: 0} is a counting process if N(t) represents the total number of events 

that have occurred up to time t. Let { N(t); t;:::: 0} be a counting process and let Xn denote 

the time between the (n -1 )51 and n1
h event of this process, n ;:::: 1 (henceforth these times 

will be called "inter-renewal times"). If the inter-renewal times {X11 } are independent and 

identically distributed (iid), the counting process {N(t); t;:::: 0} is a renewal process; a 

"renewal" has taken place when an event has occurred. Given a renewal process 

{N(t); t;:::: 0} with inter-renewal times {X11 }, let R11 denote the reward earned atthe time of 

the n1
h renewal. Assume the R11 , n;:::: 1 are iid; R11 may depend on Xn. Let Z(t) =I:~:> R" 

represent the total reward earned up to timet; {Z(t); t;:::: 0} is a renewal reward process. 

B. DERIVATION OF SINGLE-SCALE COST FUNCTION 

Consider a device which is maintained under an age replacement policy; that is, 

the device is replaced upon failure or when it reaches age -r, whichever comes first 

(assume the replacement time is negligible). For example, consider a large supply of 

identical light bulbs. Upon failure, a light bulb is replaced instantly; operating conditions 

remain identical from one light bulb to the next. Assume replacement devices are as 

good as new. Let Xn denote the lifetime of the n1
h device; assume X1, X2, ••• are iid with 

distribution function F and survivor functionS. For simplicity, assume F is absolutely 

95 



continuous with density f; Nakagawa and Osaki (1977) discuss the discrete version of this 

problem. Let Un =min {X11 , r} denote the time between the (n -1l1 and n1
h replacement; 

assume a replacement has occurred at time 0. Let N(t) denote the number of replacements 

to occur in (0, t]; by the assumptions made thus far {N(t); t ;-::: 0} is a counting process 

with times between events iid and is therefore a renewal process. Suppose the cost for 

replacement is K > 0 if replaced due to age (i.e., preventively) and (K + C) if replaced due 

to failure (assume C > 0; this indicates the costly nature of a replacement during 

operation). Let Z(t) denote the total cost incurred in (0, t]; {Z(t); t ;-::: 0} is a renewal 

reward process with inter-renewal times { U11 }, where Un = min{X11 , r}, 

"'N(t) • 
Rn = K + Cl[X n < r], and Z(t) = Lin=l Rn . Ross (1997) proves that If E[RJ] < DO and 

E[ U1] < DO, the long-run average cost per unit of time in use is lim Z(t )/ t = E[ R1 ]/ E[U 1 ] 
I-+~ 

with probability 1. If we say a "cycle" is completed every time a replacement occurs, this 

limit is the "expected reward per cycle" over the "expected cycle length." We now 

compute E[RJ] and E[U1]. Since R1 = K + C/[X1 < r], we find E[RJ] = K + C F(i). 

reduces to J: S(u )du. Thus, the long-run average cost per unit of time in use as a 

function of ris (1.1). 

C. SINGLE-SCALE COST FUNCTION AND SCALE FAMILIES 

The following lemma shows that ( 1.1) behaves "as expected" in scale families. 
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Lemma A.l (Optimal Replacement Time Ordering in Scale Families): Let Z 

and Y denote lifetimes from distributions F z and F y, respectively, where Z = aY, with 

a> 0. Let K and C > 0. Let rz* and r/ minimize (1.1) when F = Fz and Fr, respectively. 

Then, rz* = ar/. 

Proof: Let r> 0. Then, by definition 

It follows that 

But then 

T z • = arg min C z ( r) 

= argmin_!_Cy(r/a) 
a 

= argmin Cy(r/a) 
* 

=a Ty , 

where the last two equalities follow by observing that (1) minima are preserved under 

vertical shrinking, and (2) minima are scaled upon horizontal stretching. 

97 



THIS PAGE INTENTIONALLY LEFf BLANK 

98 



APPENDIX 8: DATA SETS 

1. Automobile data. This data set consists of 19 failure times in days since purchase and 

number of miles driven (to the nearest 100 miles) for a particular automobile component. 

The data set is taken from Wilson (1993, p. 32). The data are presented in the table 

below. 

Failure Days Miles 
1 146 3200 
2 251 11100 
3 251 11100 
4 470 14100 
5 26 8400 
6 330 8500 
7 187 6800 
8 210 9100 
9 368 6500 
10 68 1200 
11 340 11000 
12 384 12400 
13 286 8000 
14 306 10300 
15 105 1900 
16 24 1100 
17 95 2200 
18 101 4200 
19 187 2400 

Table 8.1: Auto Data 
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2. Metal fatigue data. This data set was discussed in Kordonsky and Gertsbakh (1993, 

p. 240); a summary of their description of the data set follows. A sample of 30 identical 

steel specimens was divided into six groups of size five; each group was subjected to a 

cyclic two-level loading regime until failure. The loading regime for group j was a 

periodic sequence of 5000 loading cycles consisting of 5000a; cycles of small amplitude 

(i.e., low load) followed by 5000( 1-a;) cycles of large amplitude (i.e., high load), j = 

1, ... ,6. The table below records the cumulative number of low cycles and high cycles at 

failure for each specimen, scaled by a factor of 10. 

Specimen a; Low/10 High/10 Specimen a; Low/10 High/10 

1 0.95 25680 1350 16 0.40 3200 4570 

2 0.95 23580 1160 17 0.40 4800 7040 

3 0.95 37015 1925 18 0.40 4200 6150 

4 0.95 33510 1750 19 0.40 4200 6060 

5 0.95 38030 2000 20 0.40 5400 8040 

6 0.80 15300 3800 21 0.20 1000 3750 

7 0.80 17620 4400 22 0.20 1600 6270 

8 0.80 16030 4000 23 0.20 1200 4530 

9 0.80 15600 3900 24 0.20 1900 7260 

10 0.80 10300 2500 25 0.20 1100 4200 

11 0.60 8400 5440 26 0.05 300 5390 

12 0.60 8100 5230 27 0.05 375 6855 

13 0.60 9000 5990 28 0.05 425 7795 

14 0.60 5700 3730 29 0.05 332 5795 

15 0.60 6600 4270 30 0.05 275 5125 

Table 8.2: Metal Data 
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3. Traction motor data. This data set comes from the railroad industry, and is found in 

Wilson (1993, p. 31). Table B.3 contains the time since inception of service and mileage 

at failure of forty locomotive traction motors when they were returned to the depot for 

maintenance. 

i miles days i miles days 
1 9766 166 21 5922 128 
2 2041 35 22 1974 31 
3 12392 249 23 2030 65 
4 9889 190 24 12532 221 
5 974 27 25 14796 316 
6 1594 41 26 979 22 
7 2128 59 27 15062 261 
8 2158 75 28 2062 32 
9 11187 223 29 16888 397 
10 47660 952 30 3099 48 
11 13827 335 31 28 1 
12 5992 164 32 95 27 
13 6925 145 33 12600 295 
14 7078 170 34 8067 140 
15 7553 140 35 41425 827 
16 25014 498 36 105 2 
17 25380 571 37 12302 209 
18 26433 499 38 447 29 
19 16494 340 39 9766 166 
20 7162 160 40 57304 1200 

Table 8.3: Traction Motor Data 

101 



4. Jet engine failure data. This data set is discussed in Gertsbakh and Kordonsky (1998, 

p. 1186) and was obtained from the first author. Table B.4 contains the flight hours and 

number of landings at failure of 21 jet engines. 

i hours landings i hours landings 

1 1216 6000 12 5136 1974 

2 1424 3232 13 5224 1913 

3 1784 1550 14 5709 1180 

4 2712 2426 15 5777 2088 

5 2712 2426 16 5988 2367 

6 3227 1152 17 6507 2433 

7 3374 1176 18 6509 2496 

8 3387 1316 19 6623 2495 

9 4391 1676 20 7126 2810 

10 4932 1960 21 7343 5057 

11 4948 1900 

Table 8.4: Jet Engine Data 
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5. Pressure gauge data. The table below contains the failure (or censoring, if marked by 

an asterisk) time in hours of 15 pressure gauges and the corresponding covariate value 

"pressure." The data set is from Love and Guo (1991, p. 14). The implication is that the 

value of the covariate was fixed during each particular life cycle. Thus, for example, the 

first entry indicates that "medium" (in some sense) pressures were measured from time 0 

until failure at 70 hours. 

i Time (hrs) Pressure 
1 70 4 
2 53 4 
3 77 4 
4 42 4 
5 61* 4 
6 51 5 
7 70 5 
8 32 5 
9 47 5 
10 44* 5 
11 101 3 
12 66 3 
13 198 3 
14 95 3 
15 60* 3 

Table 8.5: Pressure Gauge Data 
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