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PREFACE

In this book, which is planned for an introductory course,

the first eight chapters include the subjects usually treated in

rectangular coordinates. They presuppose as much knowledge

of algebra, geometry, and trigonometry as is contained in the

major requirement of the College Entrance Examination Board,

and as much plane analytic geometry as is contained in the

better elementary textbooks. In this portion, proofs of theorems

from more advanced subjects in algebra are supplied as needed.

Among the features of this part are the development of linear

systems of planes, plane coordinates, the concept of infinity, the

treatment of imaginaries, and the distinction between centers

and vertices of quadric surfaces. The study of this portion can

be regarded as a first course, not demanding more than thirty or

forty lessons.

In Chapter IX tetrahedral coordinates are introduced by means
of linear transformations, under which various invariant proper-

ties are established. These coordinates are used throughout the

next three chapters. The notation is so chosen that no ambigu-

ity can arise between tetrahedral and rectangular systems. The
selection of subject matter is such as to be of greatest service for

further study of algebraic geometry.

In Chapter XIII a more advanced knowledge of plane analytic

geometry is presupposed, but the part involving Pliicker's num-
bers may be omitted without disturbing the continuity of the

subject. In the last chapter extensive use is made of the cal-

culus, including the use of partial differentiation and of the

element of arc.

The second part will require about fifty lessons.
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ANALYTIC GEOMETRY OF SPACE

CHAPTER I

COORDINATES

1. Rectangular coordinates. The idea of rectangular coordinates

as developed in plane analytic geometry may be extended to space

in the following manner.

Let there be given three mutually perpendicular planes

(Fig. 1) XOY, YOZ, ZOX, intersecting at 0, the origin. These

planes will be called coordinate planes. The planes ZOX, XOY
intersect in X'OX, the X-axis; the planes XOY, YOZ intersect

in Y'OY, the F-axis ; the

planes YOZ, ZOX intersect

in Z'OZ, the Z-axis. Dis-

tances measured in the

directions X'OX, Y'OY,

Z'OZ, respectively, will be

considered positive ; those

measured in the opposite

directions will be regarded

as negative. The coordi-

nates of any point P are its distances from the three coordinate

planes. The distance from the plane YOZ is denoted by x, the

distance from the plane ZOX is denoted by y, and the distance

from the plane XOY is denoted by z. These three numbers

X, y, z are spoken of as the x-, y-, z-coordinates of P, respect-

ively. Any point P in space has three real coordinates. Con-

versely, any three real numbers x, y, z, taken as x-, y-, and z-

coordinates, respectively, determine a point P; for if we lay otf a

distance OA= x on the X-axis, OB=y on the F-axis, OC = z on

1
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Fig. 2.

the Z-axis, and draw planes through A, B, C parallel to the co-

ordinate planes, these planes will intersect in a point P whose

coordinates are x, y, and z.

It will frequently be more convenient to determine the point

P whose coordinates are x, y, and z, as follows : Lay off the

distance OA = x on the X-axis (Fig, 2). From A lay off the

distance AD = ?/ on a parallel to the F-axis. From D lay off the

distance DP = 2 on a parallel to

the Z-axis.

The eight portions of space

separated by the coordinate

planes are called octants. If the

coordinates of a point P are a,

'^ b, c, the points in the remaining

octants at the same absolute

distances from the coordinate

planes are (— a, b, c), (a, — b, c),

(a, b, - c), (- a,-b, c), (- a, b, - c), (a, - b, - c), (- a, — 6,- c).

Two points are symmetric with regard to a plane if the line

joining tliem is perpendicular to the plane and the segment

between them is bisected by the plane. They are symmetric with

regard to a line if the line joining them is perpendicular to the

given line and the segment between them is bisected by the line.

They are symmetric with regard to a point if the segment be-

tween them is bisected by the point.

The problem of representing a ligure in space on a plane is

considered in descriptive geometry, where it is solved in several

ways by means of projections. In the figures appearing in this

book a particular kind of parallel projection is used in which the

X-axis and the Z-axis are represented by lines perpendicular to

each other in the plane of the paper ; the F-axis is represented by

a line making equal angles with the other two. Distances

parallel to the X-axis or to the Z-axis are represented correctly

to scale, but distances parallel to the F-axis will be foreshortened,

the amount of which may be chosen to suit the particular drawing

considered. It will usually be convenient for the student, in

drawing figures on cross section paper, to take a unit on the

y-axis 1/V2 times as long as the unit on the other axes.
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EXERCISES

1. Plot the following points to scale, using cross section paper : (1, 1, 1),

(2, 0, 3), (- 4, - 1, -4), (-3,-4, 1), (4, 4, - 1), (-7, 2, 3), (-1, 6, -6),

(-4,2,8), (3, -4, -1), (2,1, -3), (-1,0,0), (4, -2, 2), (0, 0, 2),

(0, -1, 0), (-3,0, 0), (0, 0, 0).

2. What is the locus of a point for which x = ?

3. What is the locus of a point for which x = 0, ?/ = ?

4. What is the locus of a point for which x = a, y = b?

5. Given a point {k, I, m), write the coordinates of the point symmetric

with it as to the plane XOY; the plane ZOX; the X-axis; the F-axis; the

origin.

2. Orthogonal projections. The orthogonal projection of a

point oil a plane is the foot of the perpendicular from the point

to the plane. The orthogonal projection on a plane of a segment

PQ of a line* is the segment P'Q\ joining the projections P' and

Q' oi P and Q on the plane.

The orthogonal projection of a point on a line is the point in

which the line is intersected by a plane which passes through the

given point and is perpendicular to the given line. The or-

thogonal projection of a segment PQ of a line Z on a second line

/' is the segment P'Q' joining the projections P' and Q' of P and

Q on I.

For the purpose of measuring distances and angles, one direc-

tion along a line will be regarded as positive and the opposite

direction as negative. A segment PQ on a directed line is

positive or negative according as Q is in the positive or nega-

tive direction from P. From this definition it follows that

PQ=-QP.
The angle between two intersecting directed lines I and V will

be defined as the smallest angle which has its sides extending

in the positive directions along I and V. We shall, in general,

make no convention as to whether this angle is to be considered

positive or negative. The angle between two non-intersecting

directed lines I and V will be defined as equal to the angle be-

tween two intersecting lines m and m' having the same directions

as I and V, respectively.

* We shall use the word line throughout to mean a straight line.
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Theorem I. The length of the projection of a segment of a

directed line on a second directed line is equal to the length of the

given segment midtiplied by the cosine of the angle between the lines.

Let PQ (Figs. 3 a, 3 b) be the given segment on I and let P'Q'

be its projection on V. Denote the angle between I and I' by 6.

It is required to prove that

P' Q' = PQ cos 0.

Through P' draw a line I" having the same direction as I. The

angle between V and I" is equal to 6. Let Q" be the point in

Fig. 3 a. Fig. 3 6.

which I" meets the plane through Q perpendicular to V. Then
the angle P'Q'Q" is a right angle. Hence, by trigonometry,

we have

P'Q' = P'Q" cos e.

But P'Q" = PQ.

It follows that P'Q' = PQ cos $.

It should be observed that it makes no difference in this

theorem whether the segment PQ is positive or negative. The
segment PQ = r will always be regarded as positive in defining

Theorem II. The projection on a directed line I of a broken

line made %ip of segments P^P^, P2P3, ••', Pn-\Pn of different lines is

the sum of the projections on I of its parts, and is equal to the pro-

jection on I of the straight line P^Pn-
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For, let P\, P'o, P'3, •••, P'„_i, P'„ be the projections of P^, P^,

Ps, ••-, P„_i, P„, respectively. The sum of the projections is

equal to P\P\, ; that is,

P,P, + P,P, + ... + P'„_iP'„ = P,P,,

But P'iP'„is the projection of PiP„. The theorem therefore follows.

Corollary. If Pi, P2, •'•, P„-i «'"e the vertices of a polygon, the

sum of the projections on any directed line I of the segments P^P^,

PiP^i •••> Pn-\Pi formed by the sides of the 'polygon is zero.

Since in this case P„ and Pi coincide, it follows that P\ and P'„

also coincide. The sum of the projections is consequently zero.

EXERCISES

1. If is the origin and P any point in space, show that the projections

of the segment OP upon the coordinate axes are equal to the coordinates of P.

2. If the coordinates of Pi are Xi, y^ ^i and of Po are x-j, 2/2, z-,, show that

the projections of the segment PiP^ upon the coordinate axes are equal to

^•2 — a^i, 2^2 — 2/i> Zo — Z\, respectively.

3. If the lengths of the projections of PiP^ upon the axes are respectively

3, — 2, 7 and the coordinates of Pi are (- 4, 3, 2), find the coordinates of P2.

4. Find the distance from the origin to the point (4, 3, 12).

5. Find the distance from the origin to the point (a, h. c).

6. Find the cosines of the angles made with the axes by the line joining
the origin to each of the following points.

(1,2,0) (1,1,1) (-7,6,2)
(0,2,4) (1,-4,2) {:>-,iJ,z)

3. Direction cosines of a line. kZ
Let I be any directed line in

space, and let V be a line through

the origin which has the same
direction. If «, fi, y (Fig. 4)

are the angles which V makes
with the coordinate axes, these

are also, by definition (Art. 2),

the angles which I makes with
the axes. They are called the

direction angles of I and their cosines are called direction cosines.
The latter will be denoted by A, /x, v, respectively.

^
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'

Let P=(a, b, c) be any point on I' in the positive direction from

the origin and let OP = r. Then, from trigonometry, we have

a o b c
\ = cos a = , /x = cos p = -, V = cos y = - •

r r r

Bnt r is the diagonal of a rectangular parallelepiped whose edges

OA^a, OB = b, OG=c.

Va^



Arts. 4, 5] ANGLE BETWEEN TWO DIRECTED LINES 7

line P1P2 (Fig. 5) by X, /a, v and the length of the segment P^Pz

by d. The projection of the segment P^P., on each of the axes is

equal to the sum of the projections

of P,0 and OP., that is

Xd = X, ~ x\, fxd = 2/2
— Vn vd = Zo — Zi.

By squaring both members of these

equations, adding, and extracting the

square root, we obtain

^1
N^ N,

Fig. 5.

^M^
-rX

a = V(a?a - ^1)'^ + (:i/'2 - Vi)'^

+

(«2 - «i)2. (2)

EXERCISES

1. Find the distance between (3, 4, — 2) and (— 5, 1, — 6).

2. Show that the points ( - 3, 2, - 7), (2, 2, - 3), and (- 3, 6, - 2) are

vertices of an isosceles triangle.

3. Show that the points (4, 3, — 4), (- 2, 9, — 4), and (— 2, 3, 2) are

vertices of an equilateral triangle.

4. Express by an equation that the point (x, rj, z) is equidistant from

(1, 1, 1) and (2, 3, 4).

5. Show that or^ + y'^ + z- = i \s the equation of a sphere whose center is

the origin and whose radius is 2.

6. Find the direction cosines of the line P1P21 given :

(a) Pi = (0, 0, 0),

(h) P,= (l, 1, 1),

^(c) Pi = (l, -2,3),

P2 = (2, 3, 5).

P2 = (2, 2, 2).

P2 = (4,2, -1).

7. What is known about the direction of a line if (a) cos a = ?

(6) cos a — and cos /3 = ? (c) cos « = 1 ?

8. Show that the points (3, - 2, 7), (6, 4, — 2), and (5, 2, 1) are on a

line.

9. Find the direction cosines of a line which makes equal angles with the

coordinate axes.

5. Angle between two directed lines. Let li and l^ be two

directed lines having the direction cosines X,, fXi, vi and A2, /X2, V2,

respectively. It is required to find an expression for the cosine

of the angle between l^ and I^. Through (Fig. 6) draw two
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^,'

lines OPi and OP^ having the same di-

rections as li and l^, respectively. Let

OP2 = ^2 and let the coordinates of P^ be

x^ = OM, 2/2 = MN, %<,= ArP2

X The projection of OP^ on OPi is equal

to the sum of the projections of the
'

Fig. 6. broken line OMNP. on OP^ (Art. 2).

Hence OP^ cos = 03/ Ai + MN y.^ + ^^2 vi-

< But OP2 = »'2J 03/= a;2 = r2A.2J ^^= 2/2 = ^*2/>t2) -^-f*= ^2 = ^2>'2-

Hence, we obtain

or

r^ cos ^ = rjXiAa + >'2/'ii/^2 + ^2»'i»'2)

cos e = \i\2 -}- 1*1(1.2 + vivg. (3)

The condition that the two given lines are perpendicular is

that cos ^ = 0. Hence we have the following theorem :

Theorem. Two lines l^ and Uwith direction cosines Aj, /xj, vi and

X2, /Ao) V2, respectively, are perpendicular if

'^l^a + t^lK-2 +''iv.2 = 0. (4)

The square of the sine of 6 may be found from (1) and (3).

Since sin^ ^ = 1 — cos^ 6, it follows that

sin2 6 = (Ai^ + ix^ + v,2) {X^ +ix,^ + v.^) - (A1A2 + M1M2 + v,v,Y

— (Ai)a2 — XofJ^xf+ {lJ^iV2 — M2Vl)^ +(viA2 - V2Ai)2.

<5. Point dividing a segment in a

given ratio. Let Pj = (.t„ .Vi, z^) and

P2 = (x2, 1/2, Z2) be two given points

(Fig. 7). It is required to find the

point P= (x, y, z) on the line P1P2

such that P,P : PP. = Wi : m.. Let

A, iM, V be the direction cosines of

(5)

Fig 7.

the line P1P2. Then (Art. 2, Th. I) we have

P, P A = .T — Xi and PP2 \ = X2—x.

Hence P^P A : PP2 \ = x — Xi : x^ — x^ m^ : wij.
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On solving for x we obtain

x = —^-'—! =, (6)
mi + m2

c 1 1 „ m2!/i + mii/2
Similarly, y = ; .

~ mi + m^

It should be noticed that if vii and 7?i2 have the same sign, P^P
and PPj a.re measured in the same direction so that Plies between

Pj and Pj. If 7Jii and ?/i2 have opposite signs, P lies outside the

segment PiPj. By giving mj and 7)12 suitable values, the coor-

dinates of any point on the line P1P2 can be represented in

this way. In particular, if P is the mid-point of the segment

P1P2, vii = m^, so that the coordinates of the mid-point are

_ a?! +X2 _ Vx + ?/2 „ _ ^^ +Z2

EXERCISES

1. Find the cosine of the angle between the two lines whose direction

cosines are —^, —^, —^—- and —;^, —^::, —^^-
^14 \/l4 Vli VSO VSO VSO

2. Find the direction cosines of each of the coordinate axes.

3. The direction cosines of a line are proportional to 4, — 3, 1. Find
their values.

4. The direction cosines of two lines are proportional to 6, 2, — 1 and
— 3, 1, — 5, respectively. Find the cosine of the angle between the lines.

5. Show that the lines whose direction cosines are proportional to 3, 6,

2 ;
— 2, 3, — 6 ;

— 6, 2, 3 are mutually perpendicular.

6. Show that the points (7, 3, 4), (1, 0, 6), (4, 5,-2) are the vertices

of a right triangle.

7. Show that the points (3, 7, 2), (4, 3, 1), (1, 6, 3), (2, 2, 2) are the

vertices of a parallelogram.

8. Find the coordinates of the intersection of the diagonals in the paral-

lelogram of Ex. 7.

9. Show by two different methods that the three points (4, 13, 3),

(3, 6, 4), (2, — 1, 5) are coUinear.
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10. A line makes an angle of 75° with the A'-axis and 30° with the F-axis.

How many positions may it have ? Find, for each position, the cosine of the

angle it makes with the Z-axis.

11. Determine the coordinates of the intersection of the medians of the

triangle witli vertices at (1, 2, 3), (2, 3, 1), (3, 1, 2).

12. Prove that the medians of any triangle meet in a point twice as far

from each vertex as from the mid-point of the opposite side. This point is

called the center of gravity of the triangle.

" 13. Prove that the three straight lines joining the mid-points of oppo-

site edges of any tetrahedron meet in a point, and are bisected by it. This

point is called the renter of gravity of the tetrahedron.

14. Show that the lines joining each vertex of a tetrahedron to the point

of intersection of the medians of the opposite face pass through the center of

gravity.

15. Show that the lines joining the middle points of the sides of any

quadrilateral form a parallelogram.

16. Show how the ratio mi : ??i2 (Art, 6) varies as P describes the line

P1P2.

7. Polar Coordinates. Let OX, Y, OZ be a set of rectangular

axes and P be any point in space. Let OP = p have the direc-

AZ tion angles a, ^, y. The position

of the line OP is determined by

rt, (3, y and the position of P on

the line is given by p, so that the

position of the point P in space

is fixed when p, a, ^, y are

known. These quantities p, a,
ft,

y are called the polar coordinates

Y ^^i"- « of P. As a, ft, y are direction

angles, they are not independent, since by equation (1)

cos^ a + cos^ ft -f cos^ y = 1.

If the rectangular coordinates of P are x, y, z, then (Art. 3)

X = p cos a, y — p cos
ft,

z = p cos y.

8. Cylindrical coordinates. A point is determined when its

directed distance from a fixed plane and the polar coordinates of

its orthogonal projection on that plane are known. These co-

ordinates are called the cylindrical coordinates of a point. If the
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point P is referred to the rectangular

axes X, y, z, and the fixed plane is taken

as 2 = and the a;-axis for polar axis,

we may write (Fig. 9)

x= p cos 6, y = p sin 6, z = z,

in which p, 0, z are the cylindrical coordi-

nates of P.

9. Spherical coordinates. Let OX, Y, OZ, and P be chosen as

in Art. 7, and let P be the orthogonal projection of P on the plane

XOY. Draw OP. The position of P is defined by the distance

p, the angle </>= ZOP wliich the line OP makes with the 2;-axis,

and the angle 6 (measured by the angle XOP) which the plane

through P and the 2;-axis makes witli the plane XOZ. The num-

bers p, ^, 6 are called the spherical coordinates of P. The length

p is called the radius vector, the angle <{> is called the co-latitude,

and 6 is called the longitude.

If P = (x, y, z), then, from the figure

(Fig. 10),

OP = p cos (90 - <^) = p sin <^.

Hence x = p sin cf> cos 8,

y = P sin <^ sin 6,

FiG. 10.
'

z = p cos <^.

On solving these equations for p, <fi, 6, we find

= arc tan " •p = Vic^ + 2/^ + 2;S <^ = arc cos

Va-2 + ?/2
-f-

;32

EXERCISES

1. What locus is defined by p =: 1 ?

2. What locus is defined by a = 60° ?

3. What locus is defined by ^ = 30° ?

4. What locus is defined by ^ = 45° ?

5. TransforLu x'^ -\-
y'^ + z- — '^ to: (a) polar coordinates, {h) spherical

coordinates, (c) cylindrical coordinates.

6. Transform x^ -f 2/^ = z'^ into spherical coordinates ; into cylindrical

coordinates.

7. Express the distance between two points in terras of tlieir polar

coordinates.



CHAPTER II

PLANES AND LINES

10. Equation of a plane. A plane is characterized by the

properties

:

(a) It contains three points not on a line.

(b) It contains every point on any line joining two points on it.

(c) It does not contain all the points of space.

Theokem. The locus of the points ivhose coordinates satisfy a

linear equation

Ax + By+ Cz + D = (1)

with real coefficients is a plane.

We shall prove this theorem on the supposition that C ^ 0.

Since A, B, C are not all zero, a proof for the case in which

C—0 can be obtained in a similar way.

It is seen by inspection that the coordinates
( 0, 0, — 77 ),

fo, 1, _ (-S+ ^)\ f-^^^
Q^ _ (A + D)\ gatisfy the equation. These

three points are not collinear, since no values of m,, m2 other than

zero satisfy the simultaneous equations (Art. 6)

m, = 0, nu = 0, m^A + ni2B = 0.

Let Pi = (.i\, iji, Zi) and P, = {x^, y^, z.,) be any two points whose

coordinates satisfy (1). The coordinates of any point P on the

line P1P2 are of the form

miX2 + m^Xi _ /«.,//.j + nuV\ ^ _ tn^z^ + n^z^
X —

f y — —J z — •

wii + m.>
'

m^ + m.2 m^ + mj

The equation (1) is satisfied by the coordinates of P if

nu{Ax, + By, -|- Cz, + D)-\- m,{Ax., + By., + Cz^ + Z)) = 0,

but since the coordinates of I\ and P^ satisfy (1), we have

Ax, + By, + Cz,-\-D = 0, Ax, 4- By, + Cz, + D = 0,

hence the coordinates of P satisfy (1) for all values of m, and wij.

12
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Finally, not all the points of space lie on the locus defined by

(1), since the coordinates
[ 0, 0, — ^—^—^

j
do not satisfy (1).

This completes the proof of the theorem.

11. Plane through three points. Let (ic,, y^, z^), (x^, n^, z^,

(^3, ?/3, Zj) be the coordinates of three non-collinear points. The

condition that these points all lie in the plane

^x + -B^ + Cz + Z> =

is that their coordinates satisfy this equation, thus

Ax^ + %i + C^i + i> = 0,

Ax^ + By^_ + Cz2+ D=: 0,

Ax, + By, + Cz, + D = 0.

The condition that four numbers A, B, C, D (not all zero)

exist which satisfy the above four simultaneous equations is

X y z 1

.-c, ?/i Zi 1
= ^-^yL^.^.2..c.^Ml^1 2/2 ^2

•^z Vz ^3

This is the required equation, for it is the equation of a plane,

since it is of first degree in x, y, z (Art. 10). The plane passes

through the given points, since the coordinates of each of the given

points satisfy the equation.

12. Intercept form of the equation of a plane. If a plane inter-

sects the X-, Y-, Z-axes in three points '^1, B, C, respectively, the

segments OA, OB, and OC are called the intercepts of the plane.

Let A, B, C all be distinct from the origin and let the lengths of

the intercepts be a, b, c, so that A =(a, 0, 0), B =(0, b, 0), C =
(0, 0, c). The equation (2) of the plane determined by these three

points (Art. 11) may be reduced to

^ + f-f- = l. (3)
a b c

This equation is called the intercept form of the equation of a

plane.
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EXERCISES

1. Find the equation of the plane through the points (1, 2, 3), (3, 1, 2),

(5, - 1, 3).

•*
2. Find the e(iuation of the plane through the points (0, 0, 0), (1, 1, 1),

(2, 2, - 2) . What are its intercepts ?

3. Prove that the four points (1, 2, 3), (2, 4, 1), (- 1, 0, 1), (0, 0, 5)

lie in a plane. Find the equation of the plane.

4. Determine k so that the points (1, 2, - 1), (3, - 1, 2), (2, - 2, 3),

(1, — 1, k) shall lie in a plane.

' 5. P'ind the point of intersection of the three planes, a: + ?/ + 2 = 6,

22-y+2a! = 0, x-2y + 33; = 4.

13. The normal form of the equation of a plane. Let ABC
(Fig. 11) be any plane. Let OQ be drawn through the origin per-

pendicular to the given plane

and intersecting it at P'. Let

the direction cosines of OQ, be

A, fi, V and denote the length of

the segment OP by^:*.

Let P= {x, y, z) be any point

in the given plane. The projec-

tion of P on OQ is P' (Art.' 2).

Draw OP and the broken line

OMNP, made up of segments

CM= X, MN = y, and NP= z,Fio. 11.

parallel to the X-, Y-, and Z-axes, respectively. The projections of

OP and OMNP on OQ are equal (Art. 2, Th. II). The projection

of the broken line is \x + fxy + vz, the projection of OP is OP' ov jy,

so that

Xx + ixy + vz=2^. (4)

This equation is satisfied by the coordinates of every point P in

the given plane. It is not satisfied by the coordinates of any

other point. For, if Pj is a point not lying in the given plane, it

is similarly seen, since the projection of OPi on OQ is not equal to

p, that the coordinates of Pi do not satisfy (4).

Hence, (4) is the equation of the plane. It is called the normal

form of the equation of the plane. The number p in this equa-

tion is positive or negative, according as P' is in the positive or

negative direction from on OQ.
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14. Reduction of the equation of a plane to the normal form. Let

Ax + By+Cz + D = (5)

be any equation of first degree with real coefficients. It is required

to reduce this equation to the normal form. Let Q = (^4, B, G)

be the point whose coordinates are the coefficients of x, y, z in this

equation. The direction cosines of the directed line OQ are

(Art. 3)

X
^ B C ...

Va^^+W+c^ V^2 + B' + C^ Va-" +^ + (72

If we transpose the constant term of (5) to the other member of

the equation, and divide both members by y/A^ + B'^ + C^, we
obtain

A
,

BX + —Z -y

^
,

^ .= -^
• (7)

The plane determined by (7) is identical with that determined

by (5) since the coordinates of a point will satisfy (7) if, and only

if, they satisfy (5). By subtituting from (6) in (7) and comparing

with (4), we see that the locus of the equation is a plane perpen-

dicular to OQ, and intersecting OQ at a point P' whose distance

from is

P= ^
~^ =' (8)

V^2 + B^ + C^

In these equations, the radical is to be taken with the positive

sign. The coefficients of x, y, z are proportional to A, /a, v in such

a way that the direction cosines of the normal to the plane are

fixed when the signs of A, B, C are known. But the plane is not

changed if its equation is multiplied by — 1, hence the position

of the plane alone is not sufficient to determine the direction of

the normal. In order to define a positive and a negative side of

a plane we shall first prove the following theorem:

Theorem. Tico points Pi, P^ are on the same side or on opposite

sides of the plane Ax -\- By + Cz-\- D = 0, according as their coordi-

nates make the first member of the equation of the plane have like or

unlike signs.
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For, let Pi=(xi, y^, z-^), Po = (x2, y-i, x^) be two points not lying

on the plane. The point P = {x, y, z) in which the line PiPo inter-

sects the plane is determined (Art. 6) by the values of mi, m^

which satisfy the equation

my{Ax^ + By. -f- Cz^ + Z>) + m-lAxi + By^ + Cz^ + D)= 0.

If Axi + 7?//i + Czi + D and Ax. + By. + Cz. + D have unlike

signs, then m^ and iiu have the same sign, and the point P lies be-

tween Pi and P.2. If Axi -f- £//i + Cz^ -f- Z> and yl.r. + By. -\- Cz^

+ D have the same sign, then the numbers m^, m^ have opposite

signs, hence the point P is not between Pj and Pg.

When all the terms in the equation

Ax + By + Cz-\-D =

are transposed to the first member, a point (x^, _?/„ Zi) will be said

to be on the positive side of the plane if Axi + By^ + Cz^ + Z) is a

positive number; the point will be said to be on the negative side

if this expression is a negative number. Finally, the point is on

the plane if the expression vanishes. It should be observed that

the equation must not be multiplied by — 1 after the positive and

negative sides have been chosen.

15. Angle between two planes. The angle

between two planes is equal to the angle

between two dii-ected normals to the planes
;

hence, by Arts. 5 and 14, we have at once

the following theorem

:

Theorem. Tlie cosine of the angle 6 be-

tween two planes

Ax -{-By-\-Cz + D = 0,

A'x + B'y + C'z + D' =

is defined by the equation

AA' +BB'-irCC'

Fm. 12.

COS 6 = z=:' (9)

In particular, the condition that the planes are perpendicular is

AA' 4- BB' + CC = 0. (10)
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The result is ^ , n , ^ , r.

^ ^ Axt + By I + Czi+D
_ .^2)

Va'^ + B- + C^

The direction to P from the plane, along the normal, is positive

or negative according as the expression in the numerator of the

second member is positive or negative (Art. 14), that is, according

as P is on the positive or negative side of the plane.

EXERCISES /

1. Reduce the equation 3 x — 12 ?/ — 4 z — 26 = to the normal form.

2. Write the equation of a plane through the origin parallel to the plane

X + 2 y = 6.

3. What is the distance from the plane 3x + 4y — z = 5 to the point

(2,2,2)?

4. Find the distance between the parallel planes

2x — i/ + 32 = 4, -Ix-y + Zz + b =0.

5. Which of the points (4, 3, 1), (1, -4, 3), (3, 5, 2), (- 1, 2, -2),
(5, 4, 6) are on the same side of the plane 5x — 2y — 32 = as the point

(1, 6, - 3) ?

6. Find the coordinates of a point in each of the dihedral angles formed

by the planes
3x + 2y + 5s-4 = 0, x-2?/-2; + 6 = 0.

7. Show that each of the planes 25 x + 39 ?/ + 8 2 — 43 = and 25 x

— .39?/ -|- 112 2 + 113 = bisect a pair of vertical dihedral angles formed by

the planes o x + 12 2 + 7 = and 3«/ — 42 — 6 = 0, Which plane bisects

the angle in which the origin lies ?

8. Find the equation of the plane which bisects that angle formed by

the planes 3x — 22/ + 2 — 4 = 0, 2x+2/ — 82 — 2 = 0, in which the point

(1, 3, -2) lies. -;
_

'

9. Find the equations of the planes which bisect the dihedral angles

formed by the planes AxX + Biy + dz + Di = 0, A-^x + B-iy + C-iZ + D-2 = 0,

10. Find the equation of the locus of a point whose distance from the

origin-is equal to its distance from the plane 3x + 2/ — 22 = 11.

11. Write the equation of a plane whose distance from the point (0, 2, 1)

is 3, and which is perpendicular to the radius vector of the point (2, — 1,-1).

12. Show that the planes 2x-j/ + 2 + 3 = 0, x-?/ + 42 = 0, Zx + y

-22 + 8 = 0, 4x-2«/ + 22-5 = 0, 9x + 3«/-62 — 7=0, and lx-1 y

+ 28 2 — 6 = bound a parallelopiped.

13. Write the equation of a plane through (1, 2, — 1), parallel to the

plane x — 2j/ — 2 = 0, and find its intercepts.
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14. Find the equation of the plane passing through the points (1, 2, 3),

(2, — 3, 6) and perpendicular to the plane 4x + 2y + 3z = l.

15. Find the equation of the plane through the point (1, 3, 2) pei-pen-

dicular to the planes

2x + Sy-iz = 2, ix-Sy-2z =:5.

16. Show that the planes x + 2y — z = 0, y + 1 z — 2 = 0, x — 2y — z

— 4 = 0, X + Sy + z = -i, and Sx + Sy — z — 8 bound a quadrilateral

pyramid.

17. Find the equation of the locus of a point which is 3 times as far

from the plane 3x — 6y — 2z = as from the plane 2x — y + 2z = 9.

18. Determine the value of m such that the plane mx + 2y — Sz — 14i

shall be 2 units from the origin.

19. Determine k from tlie condition that x — ky + Sz — 2 shall be perpen-

dicular to 3 X + 4 y — 2 z = 5.

1 7. Equations of a line. Let A^x + B^y + C^z + D^ = and A2X

-f- B^y + C2Z -\- 0-2 = he the equations of two non-parallel planes.

The locus of the two equations considered as simultaneous is a

line, namely, the line of intersection of the two planes (Art. 10).

The simultaneous equations

A,x + B,y + C,z + A = 0,

A2X + Biy + C2Z + D2 =

are called the equations of the line.

The locus represented by the equations of two parallel planes,

considered as simultaneous, will be considered later (Art. 33).

18. Direction cosines of the line of intersection of two planes.

Let A, fx, V be the direction cosines of the line of intersection of

the two planes

ii = A,x + B,y -f- C,z -f Z>i = 0,

L2 = -420; + B2y + C2Z -fA = 0-

Since the line lies in the plane A = 0, it is perpendicular to the

normal to the plane. Hence, (Arts. 5, 1^

\A, + fjiB, + vCi = 0.

Similarly, XA. + fxBz + vC'j = 0.

By solving these two equations for the ratios of A, /u,, v, we obtain

^ fjt.

B,C2 - B2C, C,A2 - C2A, A.B. - A2B,
(13)
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The denominators in these expressions are, therefore, proportional

to the direction cosines. In many problems, they may be used

instead of the direction cosines themselves, but, in any case, the

actual cosines may be determined by dividing these denominators

by the square root of the sum of their squares. It should be

observed that the equations of a line are not sufficient to deter-

mine a positive direction on it.

19. Forms of the equations of a line. If A, /u,, v are the direction

cosines of a line, and if P, ={xi, y^, Zj) is any point on it, the

distance d from Pj to another point P = (x, y, z) on the line satis-

fies the relations (Art. 4)

Xd = X — Xi, fxd = y — yi, vd = z — z^.

By eliminating d, we obtain the equations

\ fJi V

which are called the symmetric form of the equations of the line.

Instead of the direction cosines themselves, it is frequently

convenient to use, in these equations, three numbers a, b, c, pro-

portional, respectively, to A, /a, v. The equations then become

«i _ ?/ - .Vi _ ^
(15)

a b c

They may be reduced to the preceding form by dividing the de-

nominator of each member by V«^ + ^^ + c^ (Art. 3).

If the line (15) passes through the point P.;,={x2, y^, z^, the

coordinates of P^ satisfy the equations, so that

a b c

On eliminating a, b, c between these equations and (15), we

obtain

x-xi ^ y-yi ^ z-Zi
^ ^^q-^

x^-xi yt-y, zi-zx

These equations are called the two-point form of the equations

of a line.
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20. Parametric equations of a line. Any point on a line may

be defined in terms of a fixed point on it, the direction cosines of

the line, and the distance d of the variable point from the fixed

one. Thus, by Art. 4

x=:Xi + Xd, yz=y^^ fid, z = z^ + vd. (17)

If A, /A, V are given and (x^, y^, z^) represents a fixed point, any

point {x, y, z) on the line may be defined in terms of d. To every

real value of d corresponds a point on the line, and conversely.

These equations are called parametric equations of the line, the

parameter being the distance.

It is sometimes convenient to express the coordinates of a

point in terms of a parameter k which is defined in terms of d by

a linear fractional equation of the form

y + 8k

in which a, /3, y, 8 are constants satisfying the inequality

«8 - ^y ^ 0.

By substituting these values of d in (17) and simplifying, we
obtain equations of the form

in which a^, b^, etc., are constants. Equations (18) are called the

parametric equations of the line in terms of the parameter k.

It should be observed that the denominators in the second

members of equations (18) are all alike. Each value of k for

which a^ -\-b^K=^0 determines a definite point on the line. As

«4 + b^K approaches zero, the distance of the corresponding point

from the origin increases without limit. To the value deter-

mined by tti 4- 64K = we shall say that there corresponds a

unique point which we shall call the point at infinity on the line.

EXERCISES

1. Fiud the points in which the following lines pierce the coordinate

planes :

(a) X +2y -Sz = 1, 3x-2y + 5z = 2.

(b) x + Sy + bz = 0, 5x-Sy + z = 2.

(c) x + 2y-5 = 0, 2x-Sy + 2z = T.
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2. Write the equations of the line x + y — 3 s = Cr, 2 x — y -\- 2z = 1 in

the symmetric form, the two-point form, the parametric form.

3. Show that the lines 4a; + 2/
— 3^ = 0, 2x — y + 2z + Q — 0, and 8 x

— y -\- z = 1, lOx + 2/
— •l^ + lrrO are parallel.

4. Write the equations of the line through (3, 7, 3) and (— 1, 5, 6).

Determine its direction cosines.

5. Find the equation of the plane passing through the point (2, — 2, 0)

and perpendicular to the line 2 = 3, ?/ = 2 .r — 4.

6. Find the value of k for which the lines ^^^ = ^-±-i = ^^^ and ^—^
2 k k+l 3 3

y + 5 r + 2 T 1= ^—!—= —!— are perpendicular.
1 ^•-2

7. Do the points (2, 4, 6), (4, 6, 2), (1, 3, 8) lie on a line ?

8. For what value of k are the points {k, — 3, 2), (2, — 2, 3), (fi, —1, 4)

coUinear ?

9. Is there a value of k for which the points (k, 2, — 2), (2, — 2, A-), and

(—2, 1, 3) are coUinear?

10. Show that the line' ^^—^ = ^-^ = ?-^ lies in the plane 2x+2y3-14
-0 + 3 = 0.

11. In equations (18) show that, as k approaches infinity, the correspond-

ing point approaches a definite point as a limit. Does this limiting point lie

on the given line ?

21. Angle which a line makes with a plane. Given the plane

Ax + By ^ Cz + D =

and the line ^^^=^ = -"^^^^ = ^-^^^.
a b c

The angle which the line makes with the plane is the complement

of the angle which it makes with the normal to the plane. The

direction cosines of the normal to the plane are proportional to

A, B, C and the direction cosines of the line are proportional' to

a, b, c, hence the angle 6 between the plane and the line is de-

termined (Art. 5) by the formula

sin 6 = — — — ' (19)

V^2 + B^+ C'2 Va2 + 62 + c2
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EXERCISES

1. Show that the planes 2x -Sy + z + \ =0, 5x + z — l =0, ix +
9y — z — 5 = have a line in common, and find its direction cosines.

2. Write the equations of a line which passes through (5, 2, 6) and is

parallel to the line 2 x — 3 z + y — 2 = 0, x + y + z + l=0.

3. Find the angle which the line x + y + 2z — 0, 2x— y + 2z — 1=0
makes with the plane Sx + 6z — 5y + l =0.

4. Find the equation of the plane through the point (2, — 2, 0) and

peqiendicular to the line x + 2y — Sz = i, 2x — Sy + 4iZ = 0.

5. Find the equation of the plane determined by the parallel lines

X + I _ y — 2 _ z X — .3 _ y + 4 _ z — I3~2~r 3~2~1'
6. For what value of k will the two lines x + 2y — z + S = 0, Sx — y -{-

2z + l=0; 2 X— y + z— 2 = 0, x + y — z + k = intersect ?

^ 7. Find the equation of the plane through the points (1, — 1, 2) and

(.3, 0, 1), parallel to the line x + y — z = 0, 2 x + y + z = 0.

oci *i**i 1- X— 2 V + I z i X — 3 w + 4 z + 2
8. Show that the hues = ^-^— = and = ^—J— =——

3 3-2 _ 1 3 2

intersect, and find the equation of the plane determined by them.

9. Find the equation of the plane through the point (a, b, c), parallel to

each of the lines, "i^^ = ^^^ = l^lii
;
"^^^^ = y^^^ = ^-^^^.

10. Find the equation of the plane through the origin and perpendicular

to the line 'i x — y + i z -\- ii = 0, x + y — z = 0.

11. Find the value of k for which the lines
^' ~ '^ = -^-^— = ^;
2 k k + l 5 '

X — I V + 5 z + 2 ,. ,—-— = --^—^— = are perpendicular.
3 1 k-2 ^ ^

12. Find the values of k for which the planes kx — 5 y + (k + S^z + 3 =
and (k — l)x + ky + z = are perpendicular.

13. Find the equations of the line through the point (2, 3, 4) which meets

the I'-axis at right angles.

22. Distance from a point to a line. Given the line

X — CCi _ 7/ — Pi _ Z — Zi

X fJL V

and the point P^ = (x^, y^, z^^ not lying on it. It is required to find

the distance between the point and the line.
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Fig. 13.

Let Pi = (.Ti, y^, z,) (Fig. 13) be any

point on the line ; let P be the foot of

the perpendicular from Pj o^ the line

;

the angle between the given line and

•-j^ the line P1P2; let d be the length of

the segment PiP^. We have (Fig. 13)

P,P2 = P^P^^ sin^ = (r~- cP cos^ e.

The direction cosines of the line P^P^ are '-- —, — —,
d d

from which (Art. 5)

d

d

>j2 - yi _,_ ^.
^2 - zi

d d
Hence,

d' cos^ e = {X, - x,f + (//, - y,y 4- (z. - z,y

(20)

23. Distance between two non-intersecting lines. Given the

two lines

X- Xi _ y - y, ^ z - z,
^^^^^

x - x.^ ^ y - ?/, _ z - z^

Ai /*i Vl V2

which do not intersect. It is required to find the shortest dis-

tance between them. Let A, ^, v be the direction cosines of the

line on which the distance is measured. Since this line is per-

pendicular to each of the given lines, we have, by Art. 5,

Equations (4) and (5),

AZ
/*

/i-lVo — V,/A2

V ±1
A1M2 ~ 1^1 A2 sin 6

where 6 is the angle between

the given lines.

The length d of the required

perpendicular is equal to the

projection on the common per-

pendicular of the segment PP', ^ ^'°- ^^•

and is equal to the projection of the broken line PMNP' (Fig. 14).
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or

d = ±
sin 6

Hi
—

1/2 fJ-i H-2

Zi — e, I'l V2

EXERCISES

1. Find the distance from the oritiin to the line

1
(21)

X- 1 _y-3_g-2
2 4 1

2. Find the distance from (1, 1, ]) to x + y + z = 0, Sx — 2y + 4z = 0.

3. Find tlie perpendicular distance from the point (— 2, 1, 3) to the line

x + 2y-z + 'i-0,Hx — y + 2z + l-0.

4. What are the direction cosines of the line through the origin and the

point of intersection of the lines x -\- 2 y — z + 3 = 0, ox — y + 2z + l = 0;

2x — 2y + 3z — 2=0,x-y-z + S = 0.

5. Determine the distance of the point (1, 1, 1) to the line a; = 0, y —
and the direction cosines of the line on which it is measured.

6. Find the distance between the lines - = ^ = ~
~

and ^ ~
-2-2 1 4

^y-3^z+l
2 - 1

7. Find the equations of the line along which the distance in Ex. 6

is measured.

8. Find the distance between the lines 2 x + y — z = 0, x— y -\-2z = 3

and x + 2y — 3z — 'i, 2x — 3?/ + 40 = 5.

9. Express the condition that the lines ^ ~ ^1 - ^ ~ ^i - ^ ~ ^1
^

x - Xj

h mi Hi h

= y^ZLVl = IjlLll intersect.
7712 «2

24. System of planes through a line. If

ii = A^x + B^y + C^z + 7), = 0,

L., = A2X + Boy + C.JX + Z>2 =

ane the equations of two intersecting planes, the equation fcjLj +
A:2Z/2 = is, for all real values of k^ and ^•2, the equation of a plane

passing through the line Li = 0, Lo = 0. For, Jc^L^ + kjj^ = is

always of the first degree with real coefficients, and is therefore

the equation of a plane (Art. 10); this plane passes through the

line ij = 0, 7^2 = 0, since the coordinates of every point on the line

satisfy Z-i = and Xg = and consequently satisfy the equation
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\Li + Tx-.L., = 0. Conversely, the equation of any plane passing

through the line can be expressed in the form l\Li + k.^Lo = 0,

since k^ and ^^, can be so chosen that the plane k^Li + A'2L2 =
will contain any point in space. Since any plane through the

given line is determined by the line and a point not lying on

it, the theorem follows.

To find the equations of the plane determined by the line L^ = 0,

Z/2 = 0, and a point P^ not lying on it, let the coordinates of Pj be

(xi, Pi, Zi). If Pi lies in the plane k^L^ + koL., = 0, its coordinates

must satisfy the equation of the plane; thus

k,(A,x, + B,>ji + C\z,+I),) + k,(A,Xi + B.^j, + C.,z^ + A) = 0.

On eliminating A'^ and k^ between this equation and k^L^ + AvLj = 0,

we obtain

= {Aa, + B.^j, + a^i + A)(^4^^• + B,y + C,z + A)
- {A,x^ + 5,^1 + C^z^ + A) {A^ + AV + C-Z + A),

as the equation of the plane determined by the line A = 0, A = 0,

and the point Pj.

It will be convenient to write the above equation in the abbre-

viated form

A(a:'i)A('«-') — A(-^i) A(-t') = 0-

The totality of planes passing through a line is called a pencil

of planes. The number k^/'k^ which determines a plane of the

pencil is called the parameter of the pencil.

If, in the ecjuation

A'lA + ^'2A =^ 0,

A'l and k., are given such values that the coefficient of x is equal to

zero, the corresponding plane is perpendicular to the plane aj = 0.

Since this plane contains the line, it intersects the plane cc = in

the orthogonal projection of the line Lj = 0, A = 0. Similarly,

if fci and k^ are given such values that the coefficient of y is equal

to zero, the corresponding plane is perpendicular to the plane y =
and will cut the plane y = in the projection of A = ^i A = on

that plane ; if the coefficient of z is made to vanish, the plane will

contain the projection of the given line upon the plane z =0. The

three planes of the system k^L^ + k.L^^ obtained in this way

are called the three projecting planes of the line T/j = 0, ij = on

the coordinate planes.
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Since two distinct planes

passing through a line are

sufficient to determine the

line, two projecting planes of

a line may always be em-

ployed to define the line. If

the line is not parallel to the

plane z = 0, its projecting

planes on a; = and y = are

distinct and the equations of

the line may be reduced to the form (Fig.

Fig. 15

15)

X = mz + a, y = nz + h. (22)

If the line is parallel to 2 = 0, the value of k for which the coeffi-

cient of X is made to vanish will also reduce the coefficient of y to

zero, so that the projecting planes on

x" = and on ?/ = coincide. This

projecting plane z =c and the projec-

ting plane on z = may now be chosen

to define the line. If the line is not

"X parallel to the X-axis, the equations

oi the line may be reduced to (Fig. 16)

X = py -\- c, z = c. (23)

Finally, if the line is parallel to the A"-axis, its equations may be

reduced to (Fig. 17)

y^b, z^ c. (24)

If the planes L^ = 0, L, = are par-

allel but distinct, so that

Ao B., a Do'

A

"O

Y

X

Fig. 17.

then every equation of the form k^L^ -|- kj^^ = 0, except when

k A H C--2=— =—i=—ij defines a plane parallel to the given ones.
k\ A-y Bi Cz

\ Conversely, the equation of any plane parallel to the given ones

\can be written in the form k^Li + koL., = by so choosing k^ : k^
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tliat the plane will pass through a given point. In this case the

system of planes k-^L^ + A;2L2 = is called a pencil of parallel planes.

Two equations

A = A^x + Bi!j + C,z + A = 0,

Li^ A.^ + B.2y -\- G^z -\- Di =

will represent the same plane when, and only when, the coefficients

Ax, Bi, Ci, Di are respectively proportional to A2, B2, C2, D^; thus,

when

A2 B2 C2 A'

These conditions may be expressed by saying that every deter-

minant of order two formed by any square array in the system

A, A Ci D,

A2 A Q D.,

shall vanish.

In this case multipliers ki, k^ can be found such that the equa-

tion k^Li + kJjo = is identically satisfied.

Conversely, if multipliers k^, ko can be found such that the pre-

ceding identity is satisfied, then the equations Li = 0, L2 =
define the same plane.

EXERCISES

'^ 1. Write the equation of a plane through the line 7 x + 2y ~ z — S = 0,

3x~3y + 2z — 5 = perpendicular to the plane 2x-\-y — 2z = 0.

2. What is the equation of the plane determined by the line 2x — Sy —
z + 2 = 0, x-y + iz = S and the point (3, 2, — 2) ?

/ 3. Determine the equation of the plane passing through the line

^ Q y_L4 Z 7
X + 2 z = i, y — z = 8 and parallel to the line = ^—!^— = .^ ^ 112

4. Does the plane x + 2y — z + '4 = have more than one point in

common with the line Sx — y + 2z+l=0, 2x — Sy + Sz-2 = 0?

^5. Determine the equations of the line through (1, 2, 3) intersecting the

two lines x + 2 (/-3.j=0, >/— 4,j= 4 and 2x-y +3^ = 3. 3x + y -\-2z + 1 = 0.

25. Application in descriptive geometry. A line may be repre-

sented by the three orthogonal projections of a segment of the line,

each drawn to scale. Consider the X>^-plane (elevation, or verti-

cal plane) as the plane of the paper, and the XF-plane as turned

about the ,Y-axis until it coincides with the XZ-plane. The pro-
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^x

jections iu the XF-plaue are thus drawn to scale on the same

paper as projections on the XZ-plane, but points are distinguished

by different symbols, as P', P^. q a Z
The XF-plane is called the plan

or horizontal plane. Finally, let

the FZ-plane be turned about the

Z^axis until it coincides with the

XZ-plane, and let figures iu the

new position be drawn to scale.

This is called the end or profile

plane. Thus, in the figure (Fig.

18), a segment PQ, wherein

P=(7, 4, 8), Q = (13, 9, 12),

may be indicated by the three segments P'Q', PiQi, PpQp-

Example. Find the equations of the projecting planes of the line

2x + 32/ — 42 = 5, x — iy + 5z = 6.

Here, Li = 2 x + S y — i z — ^, L2 = x — iy + 5z — 6,

kiLi + k2L2 =(2 ki + k2)x + (3 ki - 4 A-^)?/

+ (_ 4 A-i + 5 hi)z + ( - 5 fci - 6 A;2) = 0.

If ki = —2 k\, the coefficient of x disappears ; thus the equation of the

plane projecting the given line on the plane .r = is

11 ?/- 142 + 7 =0.
7. q

If — =: -, the coefficient of y vanishes; the projecting plane on y = is

ki 4

found to be 1 1 X 38.

ko 4
Finally, if -^ = -, the projecting plane on 2=0 is found.

ki b
Its equation

is 14 X — ?/ = 49.

EXERCISES

Find the equations of the projecting planes of each of the following lines :

-'1. z + 2 y - 3 2 = 4, 2 x - 3
J/ + 4 2 = 5.

2 2x +y + z = 0, x — y + 2 z = S.

3. X + t/ + 2 = 4, X- y + 3z = 4.

4. Au- + Bxy + Ciz -f- Z)i = 0, .4oX + B-.y + C\z + Z>2 = 0.

26. Bundles of planes. The plane L^ = A-^x + B^y + C^z -\- D^

=0 will belong to the pencil determined by the planes A= Oj L2=0,

assumed distinct, when three numbers k\, ko, k^, not all zero, can

be found such that the equation k^L^ + k^Lo + k^L^ = is identi-
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cally satisfied for all values of x, y, z. This condition requires that

the four equations \Ay + hoA., + ^s-^j = 0, k^B^ + k^B^ + Jc^B^ = 0,

A^iCi + k-yC. + k^Cs = 0, k^Di + k^D. + ^^sA = are satisfied by

three numbers k^, k^, k^, not all zero ; hence, that the four equa-

tions

I

A,B,G, 1=0,
I

B,C,D,
1

= 0,
1

C,D,A, 1=0, \
D,A,B,

are all satisfied, wherein we have written for brevity,

AiB^C^i

Ay
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the direction cosines of their Hue of intersection are proportional

(Art. 18) to

B,C^ - BoC„ C,A, - aA„ A^B, - A.B,.

The condition that this line is parallel to the plane Ls = is

(Art. 21)

A,{B,a - B,C,) + B,(C,A, - G,A,) + C,{A,B, - A,B,) = 0,

which is exactly the condition
|
A^B^C:^

j

= 0. The proof for the

other lines and planes is found in the same way.

If at least one of the determinants
|
A^BoC^

\, \
D^BoCs

\, |
A^DoC^

\,

and
I

A1B2D3
1
is not zero, the system of planes

A-jZ/i + Jc.Jj., + k^L^ =

is called a bundle. If \ABC\^ 0, all the planes of the bundle

pass through the point (25), since the coordinates of this point

satisfy the equation of every plane of the bundle. Conversely,

the equation of every plane passing through the point (25) can be

expressed in this form. This point is called the vertex of the

bundle. If \ABC\ = 0, all the planes of the bundle are parallel

to a fixed line (such as L^ = 0, L., = 0). In this case, the bundle

is called a parallel bundle.

27. Plane coordinates. The equation of any plane not passing

through the origin may be reduced to the form

ux + vy -t- wz + 1=0. (26)

When the equation is in this form, the position of the plane is

fixed when the values of the coefficients «, v, w (not all zero) are

known; and conversely, if the position of the plane (not passing

through the origin) is known, the values of the coefficients are

fixed. Since the numbers (a, v, iv) determine a plane definitely,

just as (x, y, z) determine a point, we shall call the set of num-
bers («, V, ic) the coordinates of the plane represented by equation

(26). Thus, the plane (3, 5, 2) will be understood to mean the

plane whose equation is 3 a; + 5 ?/ -f 2 2; + 1 = 0. Similarly, the

equation of the plane (2, 0, — 1) is 2 ic — 2; + 1 = 0.

If u, V, IV are different from zero, they are the negative recipro-

cals of the intercepts of the plane (u, v, w) on the axes (Art. 12).
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If u = 0, the plane is parallel to the X-axis ; if u = 0, -y = 0, the

plane is parallel to the XF-plane. The vanishing of the other

coefficients may be interpreted in a similar way.

28, Equation of a point. If the point {x^, y^, z^ lies in the

plane (26), the equation

ux^ + vy^ + icz^ +1 = (27)

must be satisfied. If x-^, y^, z^ are considered fixed and u, v, w
variable, (27) is the condition that the plane (m, v, iv) passes

through the point (a-„ y^, Zi). For this reason, equation (27) is

called the equation of the point (a-j, yi, Zi) in plane coordinates.

Thus, u-5v + 2iv-\-l =0

is the equation of the point (1, — 5, 2) ;
similarly,

3u + IV + 1 =0

is the equation of the point (.3, 0, 1).

If equation (27) is multiplied by any constant different from

zero, the locus of the equation is unchanged. Hence, we have

the following theorem

:

Theorem. TJie linear equation

Au + Bv+Civ + D = (Z) ^ 0)

is the equation of the point (—, —
, ]

in plane coordinates.

Thus, u — 5v— 3^0 — 2 = is the equation of the point

- 1 5 3^

2 ' 2' 2^

The condition that the coordinates (w, v, w) of a plane satisfy

two linear equations

uxi + vyi -\- u'Zi 4-1=0, ^1X2 + vy., + wz., +1=0

is that the plane passes through the two points (x^, y^, z^ and

{X2, 2/2) ^-i) and therefore through the line joining the two points.

The two equations are called the equations of the line in plane

coordinates.
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EXERCISES

1. Plot the following planes and write their equations : (1, 2, i), (3, — I,

2. Find the volume of the tetrahedron bounded by the coordinate planes

and the plane (— h ~ h ~ i)-

3. What are the coordinates of the planes whose equations are

Tx + 6y-^z+l=0, x-6y + nz + o = 0, 9.r-4=0?

4. Find the angle which the plane (2, 0, 5) makes with the plane

(-1, i2). ^
5. Write the equations of the points (1, 1, 1), (2, - 1, ^,), (6, —2, 1).

6. What are the coordinates of the points whose equations are

2m-»-3w+1 = 0, ?t + 2 to -3=0, to -2 = 0?

^7. Find the direction cosines of the line

3?< — •o4-2mj + 1=0, u + ^ V + 2 w - I = 0.

8. What locus is determined by three simultaneous linear equations in

(m, V, w) ? r^ '

*'9. Write the equation satisfied by the coordinates of the planes whose

distance from the origin is 2. What is the locus of a plane which satisfies

this condition ?

29. Homogeneous coordinates of the point and of the plane. It is

sometimes convenient to express the coordinates x, y, z; of a point

in terms of fonr numbers x', y', z' , t' by means of the equations

x' v' z'— = X, ^=y, — = z.

A set of four numbers (x', y', z', t'), not all of which are zero, that

satisfy these equations are said to be the homogeneous coordinates

of a point. If the coordinates (x', y', z', t') are given, the point

is uniquely determined (for the case t' = 0, compare Art. 32),

but if (x, y, z) are given, only the ratios of the homogeneous

coordinates are determined, since (x', y', z', t') and (kx', ky', kz', kt')

define the same point, k being an arbitrary constant, different

from zero.

Similarly, if the coordinates of a plane are (w, v, iv), four num-

bers (?t', v', w', s'), not all of which are zero, may be found such

that

u' v' w'— = u, - = v, —-10.
s' s s'
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The set of numbers (?<', v', ?t'', s') are called the homogeneous coordi-

nates of the plane.

Where no ambiguity arises, the accents will be omitted from

the homogeneous coordinates.

30. Equation of a plane and of a point in homogeneous coordinates.

If, in the equation If, in the equation

Ax + By-\-Cz-\- D = An + By + Cjo + i) =
{D^O, and A, B, C are not all (D ^ 0, and A, B, C are not all

zero) the homogeneous coordi- zero) the homogeneous coordi-

nates of a point are substituted, nates of a plane are substituted,

we obtain, after multiplying by we obtain, after multiplying by

t, the equation of the plane in s, the eqiiation of the point in

homogeneous coordinates homogeneous coordinates

Ax + Bt/ -\-Cz + Dt = 0. All + Bv + Civ + Ds = 0.

The homogeneous coordinates The homogeneous coordinates

of this plane are (^1, B, C, D). of this point are (A, B, C, D).

31. Equation of the origin. Coordinates of planes through the

origin. The necessary and sufficient condition that the plane

whose equation is ?<.r + ^n -f- vz -\- st = shall pass through the

origin is .s=0. We see then that s = is the equation of the

origin, and that (u, v, iv, 0) are the homogeneous coordinates of a

plane through the origin. Since s = 0, it follows from Art. 29 that

the non-homogeneous coordinates of such a plane cease to exist.

32. The plane at infinity. Let {x, y, z, t) be the homogeneous

coordinates of a point. If we assign fixed values (not all zero)

to X. y, z and allow t to vary, the corresponding point will vary in

such a way that, as ^ = 0, one or more of the non-homogeneous co-

ordinates of the point increases without limit. If t = 0, the non-

homogeneous coordinates cease to exist, but it is assumed that

there still exists a corresponding point which is said to be at

infinity. It is also assumed that two })oints at infinity coincide

if, and only if, their homogeneous coordinates are proportional.

The equation of the locus of the points at iniinity is ^ = 0.

Since this equation is homogeneous of the first degree in x, y, z, t,

it will be said that ^ = is the equation of a plane. This plane

is called the plane at infinity.
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33. Lines at infinity. Any finite plane is said to intersect the

plane at infinity in a line. This line is called, the infinitely dis-

tant line in the plane. The equations of the infinitely distant line

in the plane Ax + Bf/ + Cz + Dt = are Ax + By + Cz = 0,t = 0,

Theorem. Tlie condition that two finite planes are ^mrallel is

that they intersect the plane at infinity in the same line.

If the planes are parallel, their equations may be written in

the form (Art. 15)

Ax + By+ Cz +Dt = 0, Ax + By+Cz + D't= 0. (28)

It follows that they both pass through the line

Ax->rBy+Cz=0, t = 0. (29)

Conversely, the equations of any two finite planes through the

line (29) may be written in the form (28). The planes are there-

fore parallel.

34. Coordinate tetrahedron. The four planes whose equations

in point coordinates are

a; = 0, y = 0, 2 = 0, t =
will be called the four coordinate planes in homogeneous coordi-

nates. Since the planes do not all pass through a common point,

they will be regarded as forming a tetrahedron, called the coordi-

nate tetrahedron. The coordinates of the vertices of this tetra-

hedron are

(0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0).

The coordinates of the four faces in plane coordinates are

(0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0).

The equations of the vertices are u = 0, v = 0, iv = 0, .s = 0.

EXERCISES

1. Find the iKm-homogeneous coordinates of the following points and
plane.s

:

^

(h) 10 a; -3y-(- 15 = 0, (e) u + v-w-l=0,
(c) x-2 = 0, (f) 2w+ 11 =0.

>^ 2. Determine the coordinates of the infinitely distant point on the line

Sx -j-2 >j + [,t = U, 2x— \{)z + At = 0.



36 PLANES AND LINES [Chap. IL

r3. Show that if Li{u) =AiU + Biv + CiW + Dis = 0, and Z2(m) =^2«

+ iJo?? + C2W + D2S = are the equations of two points, the equation of any

point on the joining line may be written in the form kiLi + k^Li = 0.

t- ''4. Show that the planes X + 22/ + 72 — 3«=:0, x + 3?/+62 = 0, x + 4j/

+ 52 — 2^ = determine a parallel bundle. Find the equation of the plane

of the bundle through the points (2, — 1, 1, 1), (2, 5, 0, 1).

35. System of four planes. The condition that four given planes

L, = A,x + B^y + C,z + D,t =%
L2 = A.2X + B^y + C.2Z + Dot = 0,

A = A,x + B,y + Qz + Dit = 0,

L, = A,x + B,y + dz -{-D,t =

all pass through a point\is that four numbers {x, y, z, t), not alfl

zero, exist which satisfy the four simultaneous equations. The

condition is, consequently, that the determinant

A, B, a ^1

Ao B. a A
A,

B,

A
A

is equal to zero. If this condition is not satisfied, the four planes

are said to be independent. When the given planes are independ-

ent, four numbers A,, k,, k^, k^ can always be found such that the

equation

A'lLi + A'oLa + A-jLj + kjj^ =

shall represent any given plane. For, let ax -j- by -\- cz + d — be

the equation of the given plane. The two equations will repre-

sent the same plane if their coefficients are proportional, that is,

if numbers Atj, k,, k^, k^, not all zero, can be found such that

a = k^Ai + A;,A + hA + A-4.14,

b = k,B, + k,B2 + k,B, + k,B„

c = A'lCi -|- kiCi -f ksC^ -H ^4^4,

d = k,D^ + k,D, + k,D, + Jc^D,.

Since the planes are independent, the determinant of the coeffi-

cients in the second members of these equations is not zero, and

the numbers A;,, k^, k^, ki can always be determined so as to satisfy

these equations.
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These results, together with those of Arts. 24, 26, may be ex-

pressed as follows : The necessary and sufficient condition that a

system of planes have no point in common is that the matrix*

formed by their coefficients is of rank four ; the planes belong to

a bundle when the matrix is of rank three ; the planes belong to

a pencil when the matrix is of rank two ; finally, the planes all

coincide when the matrix is of rank one. We shall use the ex-

pression " rank of the system of planes " to mean the rank of the

matrix of coefficients in the equations of the planes.

\ \r EXERCISES^'
\jj^ 1. Determine the nature of the following systems of planes :

' l^a) 2x — 5y + z — 3t = 0, x + y + 'iz — 5t =0, x + Sy + 6z-t = 0.

(ft) 3x + iy + 5z-5t = 0, 6x + 5y + 9z-l0t = 0, 3x + Sy + 5z
-5« = 0, x—y + 2z = 0.

(c) 2x-f4j/ = 0, Hx + ly + 2z = 0, Sx + iy - 2z + ?,t = 0, x = 0.

(d) 2x + £>y + Sz-0, 7y-[,z + it = 0, x-y + iz = 8t.

JL^^ ^-^. Show that the line x + ?jy — z + t = 0, 2x-y + 2z — St-0 lies in

the plane 7 x + 1 y + z — 3t = 0.

^3. Determine the conditions that the planes

X = cy + bz, y = ax + cz, z = bx + ay

shall have just one common point ; a common line ; are identical.

4. Prove that the planes 2x — Sy — 7z = 0, 3 x — 14 y — 13 z = 0,

8x — 31?/ — 33 2 = have a line in common, and find its direction cosines.

5. Show that the planes 3x — 2y — t = 0, ix — 2z — 2 t = 0, 4x -\- 4y
— b z =0 belong to a parallel bundle.

* Any rectangular array of uumbers

Ai 2?i C'l Di ... 3/]

A.2 B.2 C'2 Di - Mi

An B„ Cn Z)„ Mn

is called a matrix. Associated with every matrix are other matrices obtained
by suppressing one or more of the rows or one or more of the columns of the

given matrix, or both
; in particular, associated with every square matrix, that

is, one in which the number of rows is equal to the number of columns, is a de-

terminant whose elements are the elements of the matrix. Conversely, associated

with every determinant is a square matrix, formed by its elements. We shall

use the word rank to define the order of the non-vanishing determinant of high-

est order contained in any given matrix. The rank of tlie determinant is defined

as the rank of the matrix formed by the elements of the determinant.



CHAPTER III

TRANSFORMATION OF COORDINATES

The coordinates of a point, referred to two different systems

of axes, are connected by certain relations which will now be

determined. The process of changing from one system of axes

to another is called a transformation of coordinates.

36. Translation. Let the coordinates of a point P with respect

to a set of rectangular axes OX, OY, OZ be (.c, y, z) and with

respect to a set of axes O'X', 0' Y', 0'Z', parallel respectively

to the first set, be (.«', y', z'). If the coordinates of 0', referred

to the axes OX, Y, OZ are {h, k, l) we have (Fig. 19)

x = x' + h, y = y'-\-J,; z = z' + l. (1)

For, the projection on OX of OP is equal to the sum of the pro-

jections of 00' and O'P (Art. 2), but the projection of OP is x,

of 00' is h, and of O'P is x'; hence

x — x'+ h. The other formulas are

derived in a similar way. Since

the new axes can be obtained from

the old ones by moving the three

coordinate planes parallel to the

X-axis a distance h, then parallel

to the y-axis a distance k, and

parallel to the .Z-axis a distance

I, without changing their directions, the transformation (1) is

called a translation of axes.

37. Rotation. Let the coordinates of a point P, referred to a

set of rectangular axes OX, OY, OZ, be x, y, z, and referred to

another rectangular system OX', OY', OZ' having the same origin,

be x', y', z'. Let x' = OL', y' = L'M', z' = M'PiFig. 20); and let

the direction cosines of OX', referred to OX, O Y, OZ, be A,, fxi, vi ;

those of OY' be Aj, fi.2, vo, and of OZ' be A3, yu.3, v^.

38
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We shall show that

X = Aix' + XoXi' + Ajz',

y = ii.,x' + /xo?/' + M32', (2)

2 = vix' + v^y' + v^z'.

For, the projection of OP (Fig. 20) on the axis OX is x. The sum

of the projections of OL',

L'M', and M'P is A,.r' + A.^^'

+ A32:'.

That these two expres-

sions are equal follows from

Art. 2. The second and

third equations are obtained

in a similar way.

The direction cosines of

OX, Y, and OZ, with re-

spect to the axes OX', OY',

OZ' are Ai, A,, A3; /ii, /xo, fi^;

vi) V2, V3, respectively. If Ave '^"' " '

project OP and 0L= x, LM = y, and MP = z on OX', OY', and

OZ', we obtain

(2')

x' = X^x + [x{y + v^z,

y' = X^x+ fi.y + v^z,

z' — X^x + fji^y + v^z.

The systems of equations (2) and (2') are expressed in con

venient form by means of the accompanying diagram.
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We have seen that Ai, A2, A3; /xj, ^u,.,, /^a^ v,, vo, v^ are also the di-

rection cosines of three mutually perpendicular lines. It follows

that

^1^ + A.2^ + A-3^ = Ij KH-I + ^^2/^2 + ^3/^3 = 0,

P-i^ + /A2^+ M3^ = Ij /AlVi + /A2l'2 + H-3V3 = 0, (4)

Vl^ + V2^ + V3^ = 1, ViAj + V2A2 + V3A3 = 0.

It will next be shown that

Aj = € (1X2V3 — V2IJ.3), A2 = e (/X3V1 — V3/A1), A3 = e (/AiV2 — V1/A2),

/xj = e(v2A3 — A2V3), |Li2 = e(v3Ai — A3V1), ^3 = e(viA2 — AiVj), (5)

vj = e (A2M3— fJ.2>^3), Vo = e (Ag^i— ^3 Aj), V3 = e (Aj/Xj — /XjAs),

where e= ±1. From the first and third equations of the last

column of (4) we obtain

Ai ^ A2 ^ A3

fUV3 — V2/A3 /A3V1 — V3/I.1 /XiVo — I'lfJ.o

If we denote the value of these fractions by e, solve for Ai, A2, and

A3 and substitute in the first of equations (4), we obtain

f^[(/tA2"3 — ^2^3)- + (/A3V, — V3/A1)' +(/tiV2 — Viflof] = 1.

Since the lines OY' and OZ' are perpendicular, the coefficient of

c2 is unity (Art. 5, Eq. (5)). It follows that e^ = 1 or e = ± 1. The

first three of equations (5) are consequently true. The other equa-

tions may be verified in a similar way.

It can now be shown that

Ai A2 A3

fJ-i P-2 ^3

V, V2 V3

= ±1. (6)

For, expand the determinant by minors of the elements of the

first row, and substitute for the cofactors of Aj, A2) A3 their values

from (5), The value of the determinant reduces to

It will be shown in the next Article that if e= 1, the system of

axes 0-X'Y'Z' can be obtained by rotation- from 0-XYZ. If

c = — 1, a rotation and reflection are necessary.
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38. Rotation and reflection of axes. Having given three mutu-

ally perpendicular directed lines, forming the trihedral angle

0-XYZ (Fig. 21), and three other mutually perpendicular directed

lines through 0, forming the trihedral angle 0-X'Y'Z', we shall

show that the trihedral angle 0-XYZ can be revolved in such

a way that OX and OZ coincide in direction with OX' and OZ',

respectively. OY will then coincide with OY' or will be di-

rected oppositely to it.

Let Xy be the line of intersection of the planes XOY and

X'OY'. Denote the angle ZOZ' by 6, the angle XOX by </>, and

Z' k Zthe angle XOX' by ij/. Let the

axes 0-XYZ be revolved as a

rigid body about OZ through the

angle
<f>,

so that OX is revolved

into the position OX. Denote the

new position of OF by OY^, so

that the angle YOY^ =
(f>.

The
trihedral angle 0-XYZ is thus re-

volved into 0-X^Y,Z. Now let

0-XY^Z be revolved about OX
thi-ough an angle 6, so that OZ
takes a position OZ', and OFj, a F^^- ^l-

position OY2. Then the angle ZOZ' = angle YiOY2 = e. The
trihedral angle O-X^Y^Z is thus brought into the position

O-XY2Z'. Finally, let the trihedral angle in this last position

be revolved about OZ' through an angle ij/, so that O^is revolved

into OX'. By the same operation OFis revolved into a direction

through perpendicular to OX' and to OZ'. It either coincides

with OY' or is oppositely directed. In the first case the trihedral

0-XYZ has been rotated into the trihedral 0-X'Y'Z'. In the

second case the rotation must be followed by changing the direc-

tion of the F-axis. This latter operation is called reflection on the

plane i/ =0. It cannot be accomplished by means of rotations.

In case the trihedral 0-XYZ can be rotated into 0-X'Y'Z',
the number « (Art. 37) is positive ; otherwise, it is negative. For,

during a continuous rotation of the axes, the value of e (Eq. (6))

cannot change discontinuously. If, after the rotation, the trihe-

drals coincide, we have, in that position, Ai = /Hj = V3 = 1 and the
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other cosines are zero, so that (Eq. (G)) e = 1*. If, however, at the

end of the rotation, Y and Y' are oppositely directed, Aj =
V3 = 1, /A2 = — 1> and e = — 1.

39. Euler's formulas for rotation of axes. Let the coordinates of

a point P referred to 0-XYZ be {x, y, z), referred to O-NY^Z be

(xi, 2/1, ^i), referred to O-NY2Z be ix2, y-i, z^), and referred to

0-X' Y'Z' be {x', y', z'), (Fig. 21).

In the first rotation, through the angle ^, z remains fixed.

Hence, from plane analytic geometry,

z = 2,, X = Xi cos
<i>
— yi sin <^, y = x^ sin <^ + 2/1 cos <p.

In the rotation through the angle 6, x^ remains fixed. Hence

we have

Xi = X2, 2/1 = 1/2 cos — Zo sin 0, z^ = ?/2 sin Q -\- z^ cos ^.

Finally, if O-X' Y'Z' can be obtained from 0-XYZ by rotation,

22 remains fixed, and we have

z^ = z', X., = x' cos ijy — y' sin i//, y^ = x' sin ^ -\- y' cos i/'.

On eliminating x.^, y2, z^; x^, y^, z^, the final result is obtained,

namely

:

X = x' (cos (fi COS i/' — sin <^ sin \p cos 0) — ?/'(cos <^ sin ij/

+ sin <)!> cos ij/ cos ^) + z' sin </> sin ^.

y = x' (sin <^ cos i/' + cos <^ sin ip cos 0)— ^(sin ^.sin
\f/

— cos </> cos li' cos 6) — z' cos
<f>

sin ^.

z = x' sin i/^ sin 6 + y' cos i// sin ^ + z' cos ^.

If 0-X' Y'Z' cannot be obtained from 0-XYZ hy rotation, the

sign of y' should be changed. These formulas are known as

Euler's formulas.

4-0. Degree of an equation unchanged by transformation of co-

ordinates. If in an equation F{x, y, z) = the values of x, y, z are

replaced by their values in any transformation of axes the degree

of F cannot be made larger, since x, y, z are replaced by linear ex-

pressions in x', y', z'. But the degree of the equation cannot be

made smaller, since by returning to the original axes and to the

original equation, it would be made larger, which was just seen to

be impossible.
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EXERCISES

1. Transform the equation x'^ — 3 yz + y- — 6 x + z = to parallel axes

through the point (1, —1,2),

2. By means of equations (2) show that the expression x^ + y^ -\- z- is un-

changed by rotation of the axes. Interpret geometrically.

3. Show that the lines x = ^ = ^; - = -^ = z ;
- =y = -^— are mu-

4 22-1 '2^-3
tually perpendicular. "Write the equations of a transformation of coordinates

to these lines as axes.

*^4. Translate the axes in such a way as to remove the first degree terms

from the equation x"^ -2y^ + Qz^ - \Gx — 4y — 24:Z + 37 = 0.

^. Show that the equation ax + by + cz + s = may be reduced to x =
by a transformation of coordinates.

^' 6. Find the equation of the locus 11 x- + 10 y- + 6 z'^ — 8 yz + i zx — 12 xy

— 12 = when lines through the origin whose direction cosines are ^, |, | ;

h h ~ ^> ~ h h ~ i ^^® taken as new coordinate axes.

7. Show that if 0-X' Y'Z' can be obtained from 0-XYZ by rotation, and

if OY can be made to coincide with OX by a revolution of 90 degrees,

counterclockwise, as viewed from the positive end of the /^-axis, then OY'
can be revolved into OX' by rotating counterclockwise through 90 degrees as

viewed from the positive Z'-axis.

8. Derive from Ex. 7 a necessary and sufficient condition that 0-X Y'Z
can be obtained from 0-X YZ by rotation.



CHAPTER IV

TYPES OF SURFACES

41. Imaginary points, lines, and planes. In solving problems

that arise in analytic geometry, it frequently happens that the

values of some of the quantities x, y, z which satisfy the given

conditions are imaginary. Although we shall not be able to plot

a point in the sense of Art. 1, when some or all of its coordinates

are imaginary, it will nevertheless be convenient to refer to any

triad of numbers x, y, z, real or imaginary, as the coordinates of a

point. If all the coordinates are real, the point is real and is de-

termined by its coordinates as in Art. 1 ; if some or all of the

coordinates are imaginary or complex, the point will be said to be

imaginary. Similarly, a set of plane coordinates u, v, w will de-

fine a real plane if all the coordinates are real ; if some or all

of the coordinates are imaginary, the plane will be said to be

imaginary.

A linear equation in x, y, z, with coefficients real or imaginary,

will be said to define a plane, and a linear equation in ti, v, w,

with coefficients real or imaginary, will be said to define a point.

The equations of any two distinct planes, considered as simul-

taneous, will be said to define a line. It follows that if (.x-j, y^, z{)

and (.x-2, y-,,, 2.>) are any two points on the line, then the coordinates

of any othei" point on the line can be written in the form

A-jXi + A-jXg, etc. The line is also determined by the equations of

any two distinct points on it.

The line joining two imaginary points is real if it also contains

two real points. If P =(a -\- ik, b -f il, c + im) is an imaginary

point, the point P' =(a — ik, b — il, c — im), whose coordinates

are the respective conjugates of those of P, is called the point

conjugate to P. The line joining any two conjugate points is

real ; tlius the equations of the line PP' are Ix — ky -{- bk — al = 0,

(bm — d)x +{ck — am)y +(al — bk)z = 0. The line of intersec-

44
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tion of two imaginary planes is real if through it pass two distinct

real planes. The line of intersection of two conjugate planes

is rer'

Fr^ii^ the preceding it follows that no imaginary line can con-

tain more than one real point, and through an imaginary line

cannot pass more than one real plane. If a plane passes through^

an imaginary point and not through its conjugate, the plane is Uttc^

imaginary. If a point lies in an imaginary plane and not in j
its conjugate, the point is imaginary-.

One advantage of using the form of statement suggested in this

Article is that many theorems may be stated in more general form

than would otherwise be possible. We may say, for example,

that every line has two (distinct or coincident) points in common
with any given sphere.

With these assiimptions the preceding formulas will be applied

to imaginary elements as well as to real ones. No attempt will be

made to give to such f(n-mulas a geometric meaning when imagi-

nary quantities are involved.

In the following chapters, in all discussions in which it is

necessary to distinguish between real and imaginary quantities,

it will be assumed, unless the contrary is stated, that given points,

lines, and planes, and the coefficients in the equations of given

surfaces, are real.

'
' EXERCISES

1. Show that the point (2 + i, 1 + 3 i, i) lies on the plane x — 2y + 5 2=0.

V2. Find the coordinates of the points of intersection of the line whose

parametric equations are (Art. 20) x = 1 + ^^ d, y = — 2 + ^^ d, z = 5 — \f d,

with the sphere x'^ + y'^ + z^ = 1.

' ^3. Show that the line of intersection of the planes x + ?^ = 0, (1 -j^ *)^^ a •

4. Find the coordinates of the point of intersection of the line through

(3, 2, - 2) and (4, 0, 3) with the plane x + 3 y + (1 - 2 1)2^ + 1 = 0.

' 5. Find the equation of the plane determined by the points (5 -|- i, 2,-2
- 0, (4 + 2 f, -1 + 2 i, 0), (i, 1 + 2 (\ 1+3 0.

6. Determine the points in which the sphere (x - l)'^ + r/^ + (0 +2)2 = 1

intersects the X-axis.
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42. Loci of equations. The loons defined by a single eqnation

among the variables x, y, z is called a surface. A point

P= (.x'l, yi, 2i) lies on the surface i^= if, and only if, the coor-

dinates of P satisfy the equation of the surface. We have seen,

for example, that the locus of a linear equation is a plane. More-

over, the locus of the equation

a;2 + ^2 ^_ ^2 ^ 1

is a sphere of radius unity with center at the origin.

The locus of the real points on a surface may be composed of

curves and points, or there may be no real points on the surface

;

for example, the locus of the real points on the surface

X^ + 7/2 =

is the Z-axis ; the locus of real points on the surface

•«' + y2 + 2^ =
is the origin; the surface

x'-\-if + z^ + l =
has no real points.

If the equation of a surface is multiplied by a constant different

from zero, the resulting equation defines the same surface as be-

fore; for, if P= is the equation of the surface and k a constant

different from zero, the coordinates of a point P will satisfy the

equation kF= if, and only if, they also satisfy the equation F=0.
The locus of two simultaneous equations is the totality of the

points whose coordinates satisfy both equations. If F{x, y, z)=0,

fix, y, z) =0 are the equations of two surfaces, then the locus of

the simultaneous equations ^=0, /=0 is the curve or curves in

which these surfaces intersect. Every point on the curve of in-

tersection may be imaginary.

The locus of three simultaneous equations is the totality of the

points whose coordinates satisfy the three simultaneous equations.

/?
EXERCISES

1. Find the equation of the locus of a point whose distance from the Z-axis

is twice its distance from the JTF-plane.

2. Discuss the locus defined by the equation x^ + x'^ — yf-.

"^ 3. Find the equation of the locus of a point the sum of the squares of

whose distances from the points (1, 3, — 2), (6, — 4, 2) is 10.
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r 4. Find the equation of the locus of a point whicli is three times as far

from the point (2, 6, 3) as from the point (4, — 2, 4).

5. Find the equations of the locus of a point wliich is 5 units from the

XF-plane and 3 units from the point (3, 7, 1).

'6. Find tlie equations of tlie locus of a point which is equidistant from the

points (2, 3, 7), (3, -4, 6), (4, 3, -2).

7. Find the coordinates of the points in which the line x = — i, z = 2 in-

tersects the cylinder y^ = -ix.

43. Cylindrical surfaces. It was seen in Art. 42 that the locus

of a single equation F{x, y, z) = is a, surface. We shall now
discuss the types of surfaces which arise when the form of this

equation is restricted in certain ways.

Theorem. If the equation of a surface involves only tivo of the

coordinates x, y, z, the surface is a cylindrical surface ivhose generat-

ing lines are ^mrallel to the axis ivhose coordinate does not appear

in the equation.

Let/(iK, ?/) = be an equation containing the variables x and y
but not containing z. If we consider the two equations /(.c, y)=0,
z = simultaneously, we have a plane curve f(x, y) = in the

plane z = 0. It (xi, y-^, 0) is a point of this curve, /(o^i, ?/i)
= 0.

The coordinates of any poiut on the line x = x^, y = yi are of the

form a^, y^, z. But these coordinates satisfy the equation f{xy, y^)

= independently of z, hence every point of the line lies on the

surface f(x, y) = 0. It is therem^e generated by a line moving par-

allel to the Z-axis and always intersecting the curve /(.«, y) = in

the XF-plane. The surface is consequently a cylindrical surface.

In the same w^ay it is shown that <f>{x, z) =0 is the equation of a

cylindrical surface whose generating elements are parallel to the

F-axis, and that F(y, z) ~0 is the equation of a cylindrical sur-

face whose generating elements are parallel to the X-axis.

44. Projecting cylinders. A cylinder whose elements are per-

pendicular to a given plane and intersect a given curve is called

the projecting cylinder of the given curve on the given plane.

The equation of the projecting cylinder of the curve of inter-

section of two surfaces F(x, y, z) = 0, f(x, y, z) = on the plane

2 = is independent of z (Art. 43). The equations of this cylin-
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der may be obtained by eliminating z between the equations of the

curve.

If i^ and /are polynomials in z, the elimination may be effected

in the following way, known as Sylvester's method of elimination.

Since the coordinates of points on the curve satisfy i^=0 and

/=0, they satisfy

F= 0, 2i^= 0, z'F= 0, •", /= 0, zf= 0, ^y = 0, ...,

simultaneously. If we consider these equations as linear equa-

tions in the variables z, z"^, z^, —, and eliminate z and its powers,

we obtain an equation R{x', y) = 0, which is the equation required.

The following example will illustrate the method.

Given the curve

2^ + 3 .T2 -f X + 2/ = 0, 2 ^2 + 3 2 + .f + ^2 ^ 0.

The equation of its projecting cylinder on 2 = is found by elimi-

nating 2 between the given equations and

z^ -I- 3a-22 + {x-\-y)z = 0, 2 z' -\-3 z^ + (x 4- y^)z = 0.

The result is

1 3x x+y
1 3 a; X + y

2 3 x + y^

2 3 a; + ?/

which simplifies to

(y- —2y — xy = 9 (1 — 2 a;) {xy'^ -\-x'^ — x — y).

The equations of the projecting cylinders on a; = and on y =
may be found in a similar manner.

45. Plane sections of surfaces. The equation of the projecting

cylinder of the section of a surface F{x, y, z)=0 by a plane 2 = A;

parallel to the XF-plane may be found by putting 2 = A: in the

equation of the surface. The section of this cylinder F(x,y, k)=
by the plane 2 = is parallel to the section by 2 = k. Since paral-

lel sections of a cylinder, by planes perpendicular to the elements,

are congruent, we have the following theorem :

Theorem. If in the equation of a surface, loe put z = k and con-

sider the result as the equation of a curve in the plane 2 = 0, this carve

is congruent to the section of the surface by the plane z = k.

= 0,



Art. 46] CONES 49

46. Cones. A surface such that the line joining an arbitrar}^

point on the surface to a fixed point lies entirely on the surface is

a cone. The fixed point is the vertex of the cone.

Theorem. If the equation of a surface is homogeneous in x,y, z,

the surface is a cone luith vertex at the origin.

'Letf{x, y, z)=0 be the equation of the surface. Let / be ho-

mogeneous of degree n in {x, y, z), and let P^ =(xi, yi, Zi) be an

arbitrary point on the surface, so that/(a;i, ?/i, Zi)= 0. The origin

lies on the surface, since /(O, 0, 0) = 0. The coordinates of any

point P on the line joining P^ to the origin are (Art. 6)

x = kxi, yz=ky^, z^Jcz^, where k =
r/i, + ma

But the coordinates of P satisfy the equation, since

f{^, y, 2)= /(A;.r„ %i, kz,)= k''f{x^, y„ z{)=0

for every value of k. Thus, every point of the line OPi lies on

the surface, which is therefore a cone with the vertex at the origin.

EXERCISES

1. Describe the loci represented by the following equations :

(a) x2 + y2^4. ^ iL' + ^=l.
^ ^ 4 9

(b) y- = x. .. ^_L^= 1^^49'
(c) j/ = sinx. v' (f) x(x-l){x-l){x-S) = 0.

2. Describe as fully as possible the locus of the equation 4 x- + i/^ = 25 z^.

3. Show that the section of the surface a;'^ + y- = 9 ^ by the plane 2 = 4

is a circle. Find the coordinates of its center and the length of its radius.

\ 4. Find the equation of the projection upon the plane 2 = of the curve

of intersection of the surfaces

2/2+1=0, {X? +?/2- 1)2 + 2 2/ = 0.

* 5. Show that the section of the surface x'^z'^ + a?y'^ = r-z"^ by the plane

z = k is an ellipse. Find its semi-axes. By giving k a series of values, de-

termine the form of the surface.

^ 6. Show that if the equation of a surface is homogeneous in x — ^, y — k,

z — I, tlie surface is a cone with vertex at (/i, k, I).

7. By using homogeneous coordinates, show tliat the cylinder /(x, y, t) =0
can be considered a cone with vertex at (0, 0, 1, 0).
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47. Surfaces of revolution. The surface generated by revolving

a plane curve about a line in its plane is called a surface of revo-

lution. The fixed line is called the axis of revolution. Every

point of the revolving curve describes a circle, whose plane is per-

pendicular to the axis of revolution, whose center is on the axis

and whose radius is the distance of the point from the axis.

To determine the equation of the surface generated by revolving

a given curve about a given axis, take the plane of the given curve

for the X5^-plane and the axis of revolution for the X-axis. Let

the equation of the given curve in 2 = be fix, y) = 0. Let

Pi = (a*!, ?/i, 0), Fig. 22, be any point on the curve, so that f(xi, y^) =

Fig. 22.

and let P = (a-, ?/, z) be any point on the circle described by Pj.

Since the plane of the circle is perpendicular to the X-axis, the

equation of this plane is .k = ^,. The coordinates of the center C
of the circle are C = (x^, 0, 0); and the radius CPi is y^. The

distance from C to P is

,/, = V(^i - x,y + (y - Of +{z- oy = V2/2 + z^-

On substituting , , ;

a-i = X, ?/i
= V.y- -f- z-

in the equation /(.t'l, ?/i)=0 we obtain, as the condition that the

point P lies on the surface,

f{x, V?^+^)=0,

which is the desired ecpmtion.

In the same way it may be seen that the equation of the sur-

face of revolution obtained by revolving the curve /(x, ?/)= about

the F-axis is • /-or ? s n/( Vx^ +- z\ y) = 0.
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EXERCISES

1. What is the equation of the surface generated by revolving the circle

x2 + t/2 = 25 about the X-axis ? about the I'-axis ?

y^l. Obtain the equation of the surface generated by revolving the line

2x + 3y = 15 about the X-axis. Show that the surface is a cone. Find its

vertex. What is the equation of the section made by the plane x = ?

Find the equation of tlie cone generated by revolving the line about the

I'-axis.

3. Why is the resulting equation of the same degree as that of the gen-

erating curve in Ex. 1, but twice the degi'ee of the given curve in Ex. 2?

Formulate a general rule.

• 4. What is the equation of the surface generated by revolving the line

y = a about the X-axis ? about the i'-axis ?

. 5. If the curve /(.r, tj) = crosses the x-axis at the point (xi, 0, 0), de-

scribe the appearance of the surface

/(./•, Vy'^ -f- z^) — near the point (xi, 0, 0).

6. Find the equation of the surface generated by revolving the following

curves about the A'-a.-cis and about the F-axis. Draw a figure of each surface.

(«) T +
-n-
= l- (') y- = ^^- (^) 2/ = sinx.

4 9

(6) ^-f-'=l- (cO x2+(^- 1)2 = 4. if)y=e'.
a- 0^

^

/ J J- X. '
.



CHAPTER V

THE SPHERE

48. The equation of the sphere. The equation of the sphere

having its center at (a"o, y^, Zq) and radius r is

(x - x,y +{y - y,y + {z- z,f = r\ (1)
or

ar' + 2/^ + 2- - 2 x^x -2yQy-2zoZ + Xq" + ?/o'^ + Zq^ -i~ = 0.

Any equation of the form

a{x'' + y^ + z'') + 2fx + 2gy + 2hz + k = 0, a^O (2)

may be written in the form

..{J.(..^J.(..fJ=/l±^^if^^. (3)

jf j2 _j_ ^2 _j_ ^2 _ (^j^. ^ Q^ |.j^^g ^g segi^^ \)y comparing with (1), to be

a sphere with center at
(
— — ,

—",
) and radius

\ a a a)

V/2 + ^2 ^ }C- - nk

a

If the expression under the radical sign vanishes, the center is

the only real point lying on the sphere, which in this case has a

zero radius, and is called a point sphere. If the expression under

the radical is negative, no real point lies on the locus, which is

called an imaginary sphere.

49. The absolute. We shall now prove the following theorem:

Theorem I. All spheres intersect the plane at infinity in the

same curve.

In order to determine the intersection of the s])liere and the

plane at infinity, we first write the equation of the sphere in

homogeneous coordinates

:

a (x-2 + / + z"") +2fxt + 2 yyt + 2 hzt + kf^ = 0, a ^ 0.

52
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The equations of the curve of intersection of this sphere with the

plane at infinity are

t^O, a;- + / + 2' = 0. (4)

Since these equations are independent of the coefficients a, f, g,

h, k which appear in the equation of the sphere, the theorem

follows.

The curve determined by equations (4) is called the absolute.

Since the homogeneous coordinates of a point cannot all be zero

(Art. 29), there are no real points on the absolute.

The equation of any surface of second degree which contains

the absolute may be written in the form

a {x^ + y- + z^) + (kx + hj-\- VIZ + nt) t = 0.

It a ^ 0, this is the equation of a sphere (Art. 48). If a = 0, the

locus of the equation is two planes of which at least one is ^ = 0.

In the latter case also, we shall call the surface a sphere, since

its equation is of the second degree and it passes through the abso-

lute. When it is necessary to distinguish it from a proper sphere,

it will be called a composite sphere. With this extended defini-

tion, we have at once the following theorem :

Theorem II. Every surface of the second degree which contains

the absolute is a sphere.

Any plane
ux 4- vy 4- wz -\- st — 0,

other than t = 0, intersects the absolute in two points whose coor-

dinates may be found by solving the equation of the plane as

simultaneous with the equations of the absolute. Any circle in

this plane is the intersection of the plane with a sphere. Since

the absolute lies on the sphere, the circle must pass through the

two points in which its plane intersects the absolute. These two

points are called the circular points in the plane.

Evidently all the planes parallel to the given one will contain

the same circular points. The reason for the designation circu-

lar points is seen from the fact that any conic lying in any real

transversal plane and passing through the circular points is a

circle, as will now be shown. Since the equations of the absolute

are not changed by displacement of the axes, it is no restriction
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to take z = for the equation of the transversal plane. The
coordinates of the points in which the plane 2=0 meets the

curve ^ = 0, X' + y^ + z^ = are (1, i, 0, 0), (1, — i, 0, 0). A conic

in the plane z = has an equation in homogeneous coordinates

of the form

Ax"- -f Bi/^ + 2 Hxy + 2 Gxt + 2 Fyt + Cf = 0.

If the points (1, /, 0, 0), (1, — i, 0, 0) lie on this curve,

A= B, 11=0.

But these are exactly the conditions that the conic is a circle.

Conversely, it follows at once that every circle in the plane z =
passes through the two circular points in that plane. A conic

in an imaginary plane will be defined as a circle if it passes

through the circular points of the plane.

If the two circular points in a plane coincide, the plane is said

to be tangent to the absolute. Such a plane is called an isotropic

plane. The condition that the plane ux + vt/ + ivz -j- st = is

isotropic is found, by imposing the condition that its intersections

with the absolute coincide, to be

u" + V- + iv^ = 0. (5)

This equation is the equation of the absolute in plane coordinates.

EXERCISES

1. Write the equation of a sphere, given

(a) center at (0, 0, 0) and radius r,

(6) center at (— 1, 4, 2) and radius 6,

(c) center at (2, 1, 5) and radius 4.

2. Determine the center and radius of each of the following spheres:

(a) x^ + y'^ + z'^ + 7x + 2y + z + 5 = 0.

lb) x2 + 2/2 -f ^2 + 2 X + 4 ?/ - 6 2 + 14 = 0.

i (c) 2(x'^ + y^ + z^)-x-2y + 5z + 6 = 0.

(d) x^ + y^ + z^+fx^O.

3. Find the points of intersection of the absolute and the plane

2 x - y + 2 z + l^ t = 0.

4. Find the coordinates of the points of intersection of the line x =— 2

+ I d, 2/ = 3 - f (?, = - 2 + i c? with the sphere x^ + y'^ + z- + 1=0.

5. Show that x^ -iry'^ + z^ = is the equation of a cone.

6. Find the distance of the point (1, 0, i) from the origin.

/
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7. Show that the radius of the circle in which ^ = 2 intersects the sphere

- jJ^
^ ^' '^ ^'-^ ^^ imaginary. iiVtui^ )

yv^^B. Prove that, if (xi, ij\, Zi) is any point exterior to the sphere (x — Xo)^ / ^^.v«-.«-ei^

+ {y — 2/o)- + (2 — 2o)- - r'^ tlie expression (xi — Xq)- + (iji - 2/o)^ + {zi — ZoY \]j^it~^
— r^ is the square of the segment on a tangent from (xi, t/i, Zi) to the point of 'u > ^
contact on the sphere.

/*^ 50. Tangent Plane. Let P= (.ri, ?/,, Zi) be any point on the

sphere

a(2;2 + y2 ^ ^2) ^ 2/a; + 2 gy + 2 liz + k = 0.

The plane passing through P perpendicular to the line joining P
to the center of the sphere is the tangent plane to the sphere at P.

\i is required to find its equation. The coordinates of the

center are (

— •-, — •-, )• The equations of the line joining
\ a a a)

the center to P are (Art. 19)

X — a;, 11
—

?/, 2 — 2,

- ^ - .Ti -'^-]}x ^x
a a a

The ecjuation of the plane passing

through P and perpendicular to this

line is
Fig. 23.

If we expand the first member of this equation and add to it

a{Xi^ + 7/^'^ + Zi'^) + 2fXi + 2 gyi+2hz,+k, which is equal to zero

since the point {x^, y^, z^) lies on the sphere, we obtain

«('^-i^' + yiy + ^1^) + /(« + .i-i) + giih + y) + K^^i ^z) + k = o, (6)

which is the required equation of the tangent plane.

51. The angle between two spheres. The angle between two
spheres at a point P^ on their curve of intersection is defined as

equal to the angle between the tangent planes to the spheres at Py
To determine the magnitude of tliis angle, let the coordinates

of Pj be (xi, ?/i, 2i) and let the equations of the spheres be

a(x-- + v/2 \- z-')+2fx -^2 gy + 2I1Z + k ^i),

a'(x^ + 2/2 + Z-) + 2f'x -\-2g'y + 2h'z + k' = 0.



56 THE SPHERE [Chap. V.

The equations of the tangent planes to these spheres at P^ are

a{x^x + y,y + z,z) -\-f{x + x^)+ g{y + Ih) + h{z + ^j) + A; = 0.

a\x,x + y,y + z,z)+f\x + x,) + g\y + y,) + h'{z + ^i) + A;' = 0.

Since the angle 9 between the spheres is equal to the angle

between these planes, we have (Art. }5) ^
cog Q ^ L 9^%<4>iL itUiJ-^M^ y^ CA}<^^^ynjtXJ

.

{axi +f){a'xi +f) + (ayi + g)(a'yi + (j') + (azi+h){a'zi + h')

^(axi+fy + {a>ji + gy^+iazi+ hyV{a'xi+f'y^+ {a'yi+g'y+{a'zi + h'y'

Since (x^, y^, z^) lies on both spheres, this relation reduces to

2 v/r + g^ + li" - akVf'^ + g"" + h''' - a'k'

Since this expression is independent of the coordinates of P^, we
have the following theorem :

Theokem. Tiro sjyheres intersect at the same angle at all points

of their carve of intersection.

If ^ = 90 degrees, the spheres are said to be orthogonal. The
condition that two spheres are orthogonal is

2 //•' + 2 (/r/' + 2 hh' - aJc' - a'k = 0. (8)

52. Spheres satisfying given conditions. The equation of a

sphere is homogeneous in the five coefficients a, f, g, h, k. Hence

the sphere may he made to satisfy four conditions, as, for example,

to pass through four given points, or to intersect, four given

spheres at given angles. If the given conditions are such that

a = 0, the sphere is composite (Art. 49).

EXERCISES

1. Prove that the point (— 3, 1, — 4) lies on the sphere x^ + y^ -]- z"^ + 6x
+ 24y-{-Sz = and write the equation of the tangent plane to the sphere at

that point.

2. Find the angle of intersection of the spheres x^ -\- y- + z- + x + 6 y

+ 2 z + \) = 0, x:^ + y^ + z^ + 5 X + S z + i = 0.

^ 3. Find the equation of the sphere with its center at (1, 3, 3) and making

an angle of 60 degrees with the sphere x"^ + ?/2 + z- = 4.

• 4. Determine the equation of the sphere which passes through the points

(0,0,0), (0,0,3), (0,2,0), (1,2, 1).
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5. Determine the equation of the sphere which passes through the points

(1,3,2), (3,2, -5), (-1,2,3), (4,5,2).

i^' 6. Write the equation of the sphere passing through the points (2, 2, — 1),

(3, — 1, 4), (1, 3, —2) and orthogonal to the sphere

X?- -\- y- -V z'^ — Z X -\- y + z = ^.

*i^. Write the equation of the sphere inscribed in the tetrahedron x = 0,

y = 0, 5x+12 2 + 3 = 0, 3x-12y + 42i=0.

53. Linear systems of spheres. Let

S' = a' (x^ + y^ + z") + 2fx + 2 f/'y + 2 li'z + A;' =

be the equation of two spheres. The equation

A,6' + X^S' = 0,

or (a.\i + a'\,){x'^ + y^ + z-^)+2 (f\, +/A,) x +2 (gX, + 9'X,)y

+ 2 (/iAi + /i'A,) z + kX, + k'X. =

also represents a sphere for all values of X^ and A,. Every
sphere of the system Ai*S + Ao<S" = contains the curve of inter-

section oi S = and S' = (Art. 42). In particular, if aAj = — a'Az,

the sphere A,iS + XnS' = is composite; it consists of the plane at

infinity (which intersects all the spheres of the system in the

absolute) and the plane

2 {a'f- af) x + 2 {a'g - ay') y + 2 {a'h - cM)z + a'k - ak' = 0, (9)

which intersects all the spheres of the system in a fixed circle,

common to S = and S' = 0. The plane (9) is called the radical

plane of the given system of spheres.

It will now be shown that the radical plane is the locus of the

centers of the spheres intersecting ,S' = and *S' = orthogonally.

For this purpose let

ooi^' + y' + z') + 2f,x + 2g,y + 2h^ + k, = (10)

be the equation of a sphere. It will be orthogonal to S if (Art

51)

2/o/+ 2gog + 2 hji - a^k - ako = 0,

and to S' if

2/o.r' + 2 go'/ + 2 /*o^' '
- ci,k' - a% = 0.
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If we eliminate Jcq between these two equations, we have

2{a[f-af%+ 2{a'g-ag')go+ 2(a'h-ahyio-{a'k-ak')a,=0, (11)

which is exactly the cendition that the center
(

,

—^, —
of the orthogonal sphere lies in the radical plane (9). Con-

versely, if ciq, /o, go, Jiq are given numbers which satisfy (9), a value

of ko can be found such that the corresponding sphere (10) is

orthogonal to every sphere of the system X^S + A^^S' = 0.

Again, if

S" = a" (a;2 + if + z") + 2/"x + 2 g"y + 2 /i"z + A;" =

is a sphere whose center does not lie on the line joining the

centers of 8 and S\ every sphere of the system

Ai^ + A2-S' + A3>S" = (12)

passes through the points of intersection of the spheres »S'=0,

S' = 0, aS"' = 0.

Every sphere of the system (12) determined by values of

Aj, A2, A3 for which
Aia + A,,o' +A3a" =

is composed of two planes of which one is the plane at infinity

and the other passes through the line

2 {a\f- af')x + 2 (a V/ - ag')y + 2 {a'h - ah')z + a'k - ak' = 0, (13)

2 (a"f-af")x+ 2(a"(/- ag ")y+ 2{a"h - ali")z+ a"k- ak" = 0. r a"$'etS'

This line is called the radical axis of the system of spheres (12),

By comparing equations (13) with (11) and the equation analo-

gous to (11) for S" = 0, it may be shown that the radical axis is

the locus of centers of the spheres which intersect all the spheres

of the system (12) orthogonally.

Now let

S'" = a'" (.f2 + 7/2 + z^) + 2f"'x + 2g"'y + 2 h"'z + k'" =

be the equation of a sphere whose center is not in the plane de-

termined by the centers of /S' = 0, /S' = 0, ;S" = 0. The condition

that a sphere of the system

X,S + \oS' + X^S'' + XS"' = ^

is composite, is that Ai A2 A3 and A4 satisfy the relation

Aitt -\- Ajtt' + Aatt" -f A4a"' = 0.
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The sphere orthogonal to all the spheres of the system is in

this case uniquely determined by equations analogous to (W).

The center of this orthogonal sphere is called the radical center

of the system. Through the radical center passes one plane of

every composite sphere of the system.

EXERCISES

•7 1. Prove that the center of any sphere of the system \iS + X2<S'' = lies

on the line joining the center of ;S^ = to the center of S' = 0.

Z-^. Prove that the line joining the centers of the spheres ^S* = and *S'' =;

r7 is perpendicular to the radical plane of the system \iS + X2<S" = 0.

' 3. Show that the radical axis of the system \i*S' + 'hoS' + X3<S"' = is per-

yJ^ pendicular to the plane of centers of the spheres belonging to the system.

^^ 4. Determine the equation of the system of spheres orthogonal to the

. ' system Xi^ + X-^S' + f^sS" = 0.

1 5. Show that two point spheres are included m the system Xi^* + MS' — 0.

i, 4 6. Show that any sphere of the system Xi;S'+X2;S^' = is the locus of

a point, the ratio of whose distances from the centers of the two point

spheres of the system is constant.

f 7. If S = 0, S' = 0, S" = 0, S'" = 0, S"" = are the equations of five

spheres which do not belong to a linear system of four or less terms, show
that' the equation of any' sphere in space can be expressed by the equation

5=SXi5'<'> = 0. V£ti/^'y-y^'*^CU<t'ti

V 54. Stereographic projection. Let be a fixed point on the

surface of a sphere of radius r, and let tt be the plane tangent to

the sphere at the opposite end of the diameter passing through

0. The intersection with tt of the line joining to any point P^

on the surface is called the

stereographic projection of

P, (Fig. 24).

To determine the equa-

tions connecting the co-

ordinates of Pj and its

projection, take the plane

TT for the plane z = 0, and
the diameter of the sphere

through for Z-axis. The
equation of the sphere is

x'^+y-+z''-2 rz = 0. Fig. 24.
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The equations of the line joining = (0, 0, 2 r) to Pi = (xi, y^, Zi)

on the sphere are (Art. 19)

x_v_z — 2r

Xi ?/, 2i
- 2 r

To determine the coordinates (x, y, 0) of P, the point in which

OPi intersects tt, we make the equations of the line simultaneous

with 2 = 0. On solving for x, y, z we obtain

2 rx, 2 rvi Ax = i-, y = ^L, z = 0.

2r — z^ 2r — Zi

These equations can be solved for x^, y^, z^ by making use of the

fact that, since /*i lies on the sphere,

^\ + y\ + z\-2 rzi = 0.

The results are

. V, = . z, = ^^ ^ ' '

.^2-fj/2 + 4r2' ''
a;2 + ?/2^4/-2' ' x' + y^ + Ar'' ^ ^

Theorem I. The stereographic jnojection of a circle is a circle.

Let the equation of the plane of the given circle on the sphere be

Ax + By + Cz + D = 0.

The condition that Pi lies on this circle is consequently

Axi + Byi + Czi + D = 0.

If we substitute from (14) in this equation, we obtain as the

equation of the stereographic projection,

4 Ar^x + 4 Br'y + 2 Or {x" + y'') + D {x" + ^^ _^ 4 r^) = 0, (15)

which represents a circle in the XF-plane.

In particular, if the plane of the given circle passes through 0,

the stereographic projection of the circle is composite. The con-

dition that the plane

Ax-[-By-{-Cz-\-D =
passes through is

2rC'+Z) = 0.

If this condition is satisfied, the efjuation of the circle of projec-

tion is, in homogeneous coordinates,

t {Ax +By + Dt) = 0.
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The points of the line t = correspond only to the point itself.

The line

is the line of intersection of the plane of the circle and the plane

of projection. We have conseqviently the following theorem :

Theorem II. The circles on the sphere tchich pass through the

center of projection are projected stereographically into the lines in

lohich their planes intersect the plane ofp)rojection.

The angle between two intersecting curves is defined as the

angle between their tangents at the point of intersection. We
shall prove the following theorem :

Theorem III. Tlie angle between ttvo intersecting curves on the

sjjhere is eqxial to the angle between their stereographic projections.

It will suffice if we prove the theorem for great circles. For,

let C'l and C'l be any two curves whatever on the sphere having

a point P' in common. The great circles whose planes pass

through the tangents to C\ and Co at P' are tangent to C\ and

C\, respectively, at P'. Let C^, C^, and P, be the stereographic pro-

jections of C'l, C'2, and P. The stereographic projections of

the great circles are tangent to C, and Co. respectively, at Pi so

that the angle between them is the angle between Ci and

C2. If, then, the theorem holds for great circles, it holds for all

intersecting curves.

The condition that a circle is a great circle is that its plane

Ax + B;/ +Cz + D =

passes through the center (0, 0, r) so that

Cr + D = 0.

The equation (15) of the stereographic projection reduces to

C (x2 + 2/2) + 4 r (Ax + By- rC) = 0.

The angle between two great circles is equal to the angle be-

tween their planes, since the tangents to the circles at their com-
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mon points are perpendicular to the line of intersection of their

planes. The angle 6 between the planes

Ax + By + Cz-Cr =
and A'x-hB'y-\-C'z-C'r =

is defined by the formula (Art. 15)

. AA' + BB' + CC ,.c,cosp =— ——— • (16)

The tangents to the projections

(7(^2 + 1/)+^ r {Ax + By - rC) = 0,

C'(x'' + y')+-i r{A'x + B'y - rC) =

of the given circles, at the point {x^, y^) in which they intersect, are

{Cx, + 2 rA)x + (C.vi + 2 rB)y + 2 vAx, 4- 2 r%i - 4 r^C-- 0,

(C'xi + 2 r^')x+ (C"?/i + 2 r5') ?/ + 2 r.r.^i + 2 ri3'//i - 4 r^C = 0.

The angle <^ between these circles is given by the formula

cos <^ =
{Cx, 4- 2 rA) (C'x, + 2 rA') + {Oy, + 2 rJ3) ((?>, + 2 r^Q

V((7a;i + 2 ?-^)2+ ((7?/i + 2 rBf ^{C'x, + 2 r^')2+ (C'y, + 2 ri^')^
•

By expanding this expression and making use of the fact that

(.Tj, 2/i) lies on both circles, we may simplify the preceding equa-

tion to

AA' + BB' + CC ,.rr.
cos<^ = — ~——=^=1

—

• (17)
V^2 + B'+ C VA'' + B" + C"2

From (16) and (17) we have cos 6 = cos </>. We may conse-

quently choose the angles in such a way that 6 =
<f),

which proves

the proposition.

The relation established in Theorem III makes stereographic

projection of great importance in map drawing.
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FORMS OF QUADRIC SURFACES

55. Definition of a quadric. The locus of an equation of the

seeoud degree in x, y, z is called a quadric surface. In this chapter

certain standard types of the equation will be considered. It will

be shown later that the equation of any non-composite quadric

may, by a suitable transformation of coordinates, be reduced to

one ot these types.

50. The ellipsoid. The locus of the equation

^ + .^
_l_

^^ = 1
a? b^ c'^

is called the ellipsoid. Since only the second powers of the varia-

bles X, y, z appear in the equation, the surface is symmetrical as

to each coordinate plane, as to each coordinate axis, and as to the

origin.

The coordinates of the points of intersection of the ellipsoid

with the X-axis are found by putting ^ = ^ = to be (± a, 0, 0).

Its intersections with the F-axis are (0, ± 6, 0), and with the Z-axis

are (0, 0, ± c). These six points are called the vertices. The seg-

ments of the coordinate axes included between the vertices are

called the axes of the ellipsoid. The point of intersection of the

axes is called the center. The segments from the center to the

vertices are the semi-axes ; their lengths are a, 6, c. We shall

suppose the coordinate axes are so chosen that a^h^c > 0. The
segment joining the vertices on the X-axis is then known as the

major axis ; that joining the vertices on the Y'-axis as the mean

axis; that joining the vertices on the Z-axis as the minor axis.

The section of the ellipsoid by the plane z = A; is an ellipse

whose equations are

C'

63
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The semi-axes of this ellipse are a*ji _ ^^ ^-Jl — — . As
|
A;

|

in-

creases from to c, the axes of the ellipses of section decrease.

If \Jc\=c, the ellipse reduces to a point. If
j

Zc
j

> c, the ellipse

of section is imaginary, since its axes are imaginary. The real

part of the surface

j|l^_______^^ therefore lies en-

Yv.,^ tirely between the

planes z = c and

z= — c.

In the same man-

ner, it is seen that

the plane y = k'

intersects the sur-

face in a real ellipse

if\k'\ <b, that the

ellipse reduces to

a point if
I

fc'
I

= 6,

and that it becomes imaginary if
|

A;'
|
> 6. Finally, it is seen

that the section x = k" is a real ellipse, a point, or an imaginary

ellipse, according as
|

k"
\
is less than, equal to, or greater than a.

The ellipsoid, there-

fore, lies entirely

within the rectan-

gular parallelepiped

formed by the planes

X = a, ?/= b, z =c;

x= - a, y=-b,
z= — c, and has one

point on each of these '^^BBIll^^kis^'Ha^®
planes (Fig 25).

If a = b > c, the

ellipsoid is a surface of revolution (Art. 47) obtained by revolving

the ellipse
x^ y^ _ M

Fig. 25.

about its minor axis. This surface is called an oblate spheroid.

If a > 6 = c, the ellipsoid is the surface of revolution obtained
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by revolving the same ellipse about its major axis. It is called a

prolate spheroid.

If a = b = c, the surface is a sphere.

57. The hyperboloid of one sheet. The surface represented by

the equation „ „ „

^" + ^ _ ?_" = 1
a^ 6^ c^

is called an hjrperboloid of one sheet. It is symmetric as to each of

the coordinate planes, as to each of the coordinate axes, and as to

the origin.

The section of the surface by the plane z = k is an ellipse

whose equations are

This ellipse is real for every real value of k. The semi-axes are

«v

which are the smallest when A- = 0, and increase without limit as

I

k
I

increases. For no value of k does the ellipse reduce to a

point.

The plane y = k' intersects the surface in the hyperbola

= 1, y = k:

If \k'
\
< b, the transverse axis of the hyperbola is the line

2 = 0, y = k', and the conjugate axis is x = 0,y = k'] the lengths

of the semi-axes are a\ 1
, c\ 1 . As I A;' I increases from

zero to b, the semi-axes decrease to zero. When
j
k'

]

= b, the

equation cannot be put in the above form, but becomes ~ =
a 2 c^

and the hyperbola is composite ; it consists of the two lines

"^ + ' = 0, y=b; "^-" = 0, y = b;
a c a c
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when k' = — b, the hyperbola consists of the lines

0, y = -b.- + - = 0, y = -b; ---
a c a c

These four lines lie entirely on the surface. If \k'
\
> b, the

transverse axis of the section is x — 0, y = k' and the conjugate

axis is z = 0, y = k'. The lengths of the serai-axes are

62
' \ Jf.

They increase without limit as k' increases.

The plane x = k" intersects the surface in the hyperbola

y^ z^

bH\ cn\- A:"2
1, x=k'\

Of- J \ a"

If
I

A;"
I

< a, the transverse axis of this hyperbola is 2 = 0, .-c = A:".

The section on the plane x = a consists of the two lines _-^

"7'-0'-3

b
0, a; = a ; "^ = 0, a; = a. J -'rz:

c be
The section on the plane x = — a consists of the lines

| + ? = 0, .r = -a; f-? = 0, x = -a.be be
If

I

k"
I

> a, the line y = 0, x = k" is the transverse axis and 2=0,
x = k" is the conjugate axis.

As
I

k"
I

increases, the lengths

of the semi-axes increase with-

out limit. The form of the

surface is indicated in Fi<r. 26.

Fig. 26.
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If a = b, the hyperboloid is the surface of revolution obtained

by revolving the hyperbola

--- = 1, y = o

about its conjugate axis.

58. The hyperboloid of two sheets. The locus of the equation

d?' h" c^

= 1

is called an hyperboloid of two sheets. It is symmetric as to each

of the coordinate planes, the coordinate axes, and the origin.

Fig. 27.

The plane z = k intersects the surface in the hyperbola

^2 y2

a^fl +
l'

W{1 +
A;2

= 1, z = k.

The transverse axis is y = 0, z = k, for all values of k. The

They are
I ^ / k"^

lengths of the semi-axes are a\/l H— , &\/l + —

smallest for A: = 0, namely a and b, and increase without limit as

I

k
I

increases. The hyperbola is not composite for any real

value of k.

The plane y = k' intersects the surface in the hyperbola

= 1, y = k'.

aHl +
i'-'S)
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The transverse axis is z = 0, y = k'. The conjugate axis is

X = 0, y = k'. If k' = 0, the lengths of the semi-axes are a and c

;

they increase without limit as k' increases.

The plane x = k" intersects the surface in the ellipse

+ -7777^ r = l, ^ = k".
r

This ellipse is imaginary if
|
k"

|

< a. If
]
Zc"

|

= a, the semi-

axes are zeio; they increase without limit as k" increases.

If b = c, the hyperboloid of two sheets is the surface of revolu-

tion obtained by revolving the hyperbola

- ^ = 1, z =
62

about its transverse axis.

59. The imaginary ellipsoid. The surface defined by the equa-

tion

x^ y^ z^ _ _^
a^ b^ c^

is called an imaginary ellipsoid. Since the sum of the squares of

three real numbers cannot be negative, there are no real points on

it.



Arts. 59, 60] THE ELLIPTIC PARABOLOID 69

EXERCISES

^ 1. By translating the axes of coordinates, show that the surface defined

by the equation 2 x- + 3 j/'^ + 4 2^ _ 4 a; _ e y -j- IH ^ + 16 = is an ellipsoid.

Find the coordinates of the center and the lengths of the semi-axes.

2. Classify and describe the surface x- + j/2 _ 4 a; — 3 ?/ + 10 2 = 20 — z^.

3. Show that the surface 2 x^ — 3 z- — 5 ^ = 7 — 2 j/'^ is a surface of revo-

lution. Find the equations of the generating curve.

^^4. On the hyperboloid of one sheet x^ 4- y- — 2^ = 1, find the equations

of the two lines which pass through the point (1, 0, 0) ; through (— 1, 0, 0).

h 5. Classify and plot the loci defined by the following equations :

(a) 9 x2 + 16 2/2 -f 25 z^ = 1, (d) y;i + ^2 _ 4 ^2 _ 25,

(6) 4 x2 - 9 2/2 - 16 22 = 25, (e) x2 -f 4 2/2 -f-
^2 _ 9^

(c) 4 x2 - 16 2/2 -^ 9 5;2 = 25, (/) x2 -f- 4 2/2 -f- 9 ^2 + 8 = 0,

60. The elliptic paraboloid. Tlie Icx'us of the equation

is called an elliptic paraboloid. The surface is symmetric as to

the planes x = and ?/ = but not as to z = 0. It passes through
the origin, and lies on the positive side of 2 = if n is positive

and on the negative side if n is negative. In the following dis-

cussion it will be assumed that n is positive. If n is negative, it

is necessary only to reflect the surface on the plane 2: = 0.

The section of the paraboloid by the plane 2; = A; is an ellipse

whose semi-axes are aVlJ nk and 6V2 >(A-, respectively. If A; < 0,

the ellipse is imaginary. If A- = 0, the ellipse reduces to a point,

the origin. As A' increases, the semi-axes of the ellipse increase

without limit.

The section of the paraboloid by the plane y = A' is the

parabola

For all values of k' these parabolas are congruent. As k' in-

creases, the vertices recede from the plane y= along the parabola

y-=2nz, x = 0.
62

V
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Fig. 28.

li a — b, the paraboloid is

tlie surface of revolution

generated by revolving the

parabola '— = 2 nz, y =

about the Z-axis.

61. The hyperbolic parab-

oloid. The surface defined

by the equation

The sections by the planes x =
k" are the congruent parabolas

r_9= 'Z vz
7.M2

'^, x = k".

Their vertices describe the pa-

rabola

— = 2 nz, y = o.

The form of the surface is in-

dicated by Fig. 28.

is called an hyperbolic paraboloid. The surface is symmetric as to

the planes x =0 and ?/ = 0, but not as to 2 = 0.

As before, let it be assumed that n > 0. The plane z = k inter-

sects the surface in the hyperbola

^^ - -^^^ =1 z = 7c

a^2nk b^2nk
'

If A; > 0, the line x — 0, z = k \s the transverse axis and y = 0,

z = k is the conjugate axis. If k < 0, the axes are interchanged.

The lengths of the semi-axes increase without limit as |A;| increases.
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When k = 0, the section of the paraboloid consists of the two

lines

^ + ^ = 0,2 = 0; --^=0, z = 0.ah a b

Fig. 29.

The sections of the surface by the planes y = k' are the con-

gruent parabolas

V^lf'i a- 0-

'.'.n

The vertices of these

parabolas describe the

parabola

^ = - 2 H2r, a- = 0.

The sections by the

planes x = A'" are

congruent parabolas

whose vertices de-

scribe the parabola

^jLtf^i*

62. The quadric cones. The cone (Art. 46)

^ 1. =
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is called the real quadric cone. Its vertex is at the origin. The
section of the cone by the plane 2; = c is the ellipse

The cone is therefore the locus of a line which passes through the

origin and intersects this ellipse.

If a = b, the surface is the right circular cone generated by re-

volving the line - = , y = about the Z^axis.
a c

The equation

o? b"^ &

represents an imaginary quadric cone. There are no real points

on it except the origin.

63. The quadric cylinders. The cylinders (Art. 43) whose

equations are

a^ b"^
' «2 b"^ ^ a? b"^

are called elliptic, hyperbolic, imaginary, and parabolic cylinders,

respectively, since the sections of them by the planes z = k are

congruent ellipses, hyperbolas, imaginary ellipses, and parabolas,

respectively.

64. Summary. The surfaces discussed will be enumerated

again for reference.
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^ = 2 nz. Hyperbolic paraboloid. (Art. 61)
a? b^

^^t-t=,0. Keal quadric cone. (Art. 62)
a^ b"^ c^

— + — -\— = 0. Imaginary quadric cone. (Art. 62)
a- b^ c^

— ± ^ = ± 1 ;
y^ = 2px. Quadric cylinders. (Art. 63)

a* &*

EXERCISES

Classify the following surfaces

:

1. 4 22-6x2 + 2 2/2 = 3.

2. x-^ + 3 2/2 + 5 a; + 2 2/ + 7 = 0.

3. x2 + 3 2/2 + 4 X - 2 2 = 0.

4. 4 x2 + 4 2/2 - 3 ^2 = 0.

5. 2 22 _ x2 - 3 2/2 - 2 X - 12 2/ = 15.

6. x2 - 2 j/2 - 6 2/ - 6 2 = 0.

7. Find the equation of and classify the locus of a point which moves so

that (a) the sum of its distances, {b) the difference of its distances from two

fixed points is constant. Take the points (± a, 0, 0).

8. Find and classify the equation of the locus of a point which moves so

that its distance from (a, 0, 0) bears a constant ratio to its distance (a) from

the plane x = ; (6) from the Z-axis.

9. Show that the locus of a point whose distance from a fixed plane is al-

ways equal to its distance from a fixed line perpendicular to the plane is a

quadric cone.

10. A line moves in such a way that three points fixed on it remain in

three fixed planes at right angles to each other. Show that any other point

fixed on the line describes an ellipsoid. (Sug. Find the direction cosines of

the line in terms of the coordinates of the point chosen, and substitute in

formula (1), Art. 3.)



CHAPTER VII

CLASSIFICATION OF QUADRIC SURFACES

65. Intersection of a quadric and a line. The most general form

of the equation of a quadric surface is (Art. 55)

F{x, y, z) = ax^ + hy'^ + cz- + 2fyz + 2 gzx + 2 hxy

+ 2 te + 2 ?/i?/ + 2 //z 4- fZ = 0. (1)

We shall suppose, unless the contrary is stated, that the coeffi-

cients are all real, and that the coefficients of the second-degree

terms are not all zero.

To determine the points of intersection of a given line (Art. 20)

ic = a-o + Ar, y = Po + f^r, z = z^ + vr (2)

with the quadric (1), substitute tlie values of x, y, z from (2) in

F{x, y, z) and arrange in powers of r. The result is

Qf- + 2Rr + S = 0, (3)

in which

Q = a\2 + hfx^ + cv^ + 2/^v + 2 ^vX + 2 /^A/., (4)

R = {axo+ /i//o 4- gzo+ A+ (/i.i'o+ f>yo +.fzo -\-m)ix + (gxo +/2/0

+

cZq+n)v

IfdF,
,

dF , dF= - A + /A H 1

2 \dxQ dyo Ozq

S = F{Xo, yo, Zo).

The roots in r of equation (3) are the distances from the point

Pq = (^o> 2/o> ^o) 01^ the line (2) to the points in which this line

intersects the quadric.

If Q :^0, equation (3) is a quadratic in r. If Q = 0, but R and

S are not both zero, (3) is still to be considered a quadratic, with

one or more infinite roots. If Q = 72 = /S' = 0, (2) is satisfied for

all values of r and the corresponding line (2) lies entirely on the

quadric. We have, consequently, the following theorems :

Theorem I. Every line ickkh does not lie on a given quadric

surface has two {distinct of coincident) points in common loith the

surjace. ,'

74
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Theorem IL If a given line has more than two points in common
with a given qnadric, it lies entirely on the quadric.

For, if (3) is satisfied by more than two values of r, it is satis-

fied for all values.

66. Diametral planes, center. Let P, and P2 be the points of

intersection of the line (2) with the quadric. The segment P1P2

is called a chord of the quadric.

Theorem I. T7ie locus of the middle point of a system ofp)arallel

chords of a quadric is a plane.

Let r, and r2 be the roots of (3) so that P^Pi = r^ and PqPo = r^.

The condition that Pq ^s the middle point of the chord P1P2 is

PoP, + P,P, = 0,

or

ri + r2 = 0. ^'

Hence, from (4), we have JVAt+A^ so
'{axo + hy^ + gz^ + 0'^ + (^'-^'o

-|- ^J'h +.ho + m)fi

+ (.7-^0 + fUo + <^^o + n) V = 0'.
'^

"
'

(5)

If, now, \, fx, V are constants, but x^, yg, Zq are allowed to vary,

the line (2) describes a system of parallel lines. The locus of the

middle points of the chords on these lines is given by (5). Since

(5) is linear in Xq, y^, Zq, this locus is a plane.

Such a plane is called a diametral plane. ^' / ."^ ^
'

r''
^ X'

Theorem II. All the diametral planes of a quadric have at least

one (finite or infinite) jwint in common.

For all values of A, ix, v the plane (5) passes through the inter-

section of the planes

ax + hy -\- gz + I = 0,"

hx+by+fz-\-m = 0,- (6)

gx + fy -f cz -j- n = 0.

In discussing the locus determined by (6), it will be convenient

to put, for brevity,

D =
a h g
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If D =^ 0, the planes (6) intersect in a single finite point

(Art. 26)
L M N ,^.

If this point (xq, y^, Zq) does not lie on the surface, it is called

the center of the quadric. It is the middle point of every chord

through it. If the point (xq, y^, Zq) does lie on the surface, it is

called a vertex of the quadric. In either case the system of planes

(5) is a bundle with vertex at

f_L M _N\
\ D' D' D)'

If Z) = 0, but L, M, N are not all zero, the planes (6) intersect

in a single infinitely distant point, the homogeneous coordinates

of which are found, by making (6) homogeneous and solving, to

be (L, — M, N, 0). The system of planes (5) is a parallel bundle.

The quadric is, in this case, said to be non-central.

If the system of planes (6) is of rank two (Art. 35), the planes

determine a line; the diametral planes (5) constitute a pencil of

planes through the line. If this line is finite and does not lie

on the quadric, it is called a line of centers ; if it is finite and does

lie on the quadric, it is called a line of vertices. If the system is

of rank one, the diametrical planes coincide. If each point of this

plane does not lie on the quadric, it is called a plane of centers ; if

every point of the plane lies on the quadric, it is called a plane of

vertices.

Example. Find the center of the quadric

The equations (6) for determining the center are

a: + 2?/ + 2;+l = 0, x + 2// + 2 + l = 0, x-|-2y — z — 1=0,

from which x + 2i/ = 0, 2+1=0. This line is a line of centers unless

d = — 1, in which case it is a line of vertices.

EXERCISES

2
1. Find the coordinates of the points in which the line x=l + -r,

2 T
y = — 2 r, 2=— 1+- intersects the quadric x^ + Sy"^ — 4:z'^ + 'iz~2 y—

o o

6 ::=0.
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Find which of the following quadrics have centers. Locate the center

when it exists.

2. z^-2y'2 +6z^ + 12xz -U= 0.

>^ 3. 2z^+y^ — z^ — 2xz + ixy + 4:yz + 2y-4z~i = 0.

4. xy + yz + zx — X + 2 y — z — 9 = 0.

5. 2 x^ + 5 y'^ + z" - 4 xy - 2 X - i y - 8 = 0.

f^6. x^ — xz — yz — z = 0.

#7. x^ + y^ + z' — 2yz + 2xz — 2xy — x + y - z =0.

P e. x"^ + 4 y- + z^ - i yz — 2 xz + i xy + \0 x + ^ y - 7 z + 15 = 0.

)Ikk 9. Show that any plane which passes through the center of a quadric is

a diametral plane.

10. Let Pi and P^ be two points on an ellipsoid, and let be its center.

Prove that if Pi is on the diametral plane of the system of chords parallel to

OP2, then P2 is on the diametral plane of the system of chords parallel to

OPi.

67. Equation of a quadric referred to its center. If a quadric

has a center {xq, y^, Zq), its equation, referred to its center as origin,

may be obtained in the following way :

If we translate the origin to the center by putting

x = x' + Xo, y = y'-\-yo, z = z' + z^,

the equation F{x, y,z)= is transformed into

ax" + by'' + cz'^ + 2fy'z' + 2 gz'x' + 2 hx'y' + 2{ax,+ hy, +
gZo+ l)x' + 2(/tXo + %o +fio + wi)^' + 2(gXo+fyo + cz^ + n)z' + S =
wherein, as in Eq. (4), S = F(xq, yo, z^).

Since (xq, y^, Zq) is the center, it follows from (6) that

axo -\- hyo + gZo-\- I =0,

hxo + byo +JZo + 7n = 0, (8)

gxo + fyo + c'Zf, i- n =0,

so that the coefficients of x', y', z' are zero, and the equation has

the form (after dropping the accents)

ax'+ by' + cz' + 2fyz + 2 gzx+2hxy + S = 0.-^ (9)

The function S = F{xq, yo, z^) may be written in the form

S = F(xo, yo, Zo) =
Xo{axo + hyo + gzo + I) + yo{hxo + byo -\-fzo + m) + Zo(gxo 4-./>/o+ c^o+

n) + Ixo + myo + nzo + d.
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Hence, from (8) we have

^S = Ixo + m?/o + nzo + d. (10)

By eliminating Xo, y^, 2;,, from (8) and (10) we obtain the relation

h

b

f
m

I

m
n

d-S

= 0.

This equation may be written in the form

a h g
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The condition that the diametral plane (5)

(ciA + hix + gv)x + {h\ + bfj.-\- fv)y + (fi'A +fiJ.-\- cv)z +
IX+ ?/iyu, + wv =

is perpendicular to the chords it bisects is (Art. 14)

aX + hfi + gv _ hX + ^i^ +> _ fifA +//a + cv ,^2\

A /A V

If we denote the common value of these fractions by k, equa-

tions (12) may be replaced by

(a — A-)A + h/x -\- gv = 0,

hx+{b-k)ti+fv=0, (13)

gX+ffji-{-(c-k)v = 0.

The condition that these equations in A, fx, v have a solution other
-'J-',O vv^-' '--

= 0, (14)

than 0,0, is
-^^--o vv- •

-

a — k h g

h h-k f
9 f c - A;

or, developed and arranged in powers of k,

Jc^ -(a + 6 + c)k^+{ab + bc-^ca-f^- g"- - h'')k -D = 0, (15)

where B has the same meaning as in (7). This equation is called

the discriminating cubic of the quadric F{x, y, z) = 0.

To each real root, different from zero, of the discriminating

cubic corresponds, on account of (13), (12), and (5), a real finite

principal plane. Our theorem will consequently be proved if we

show that equation (15) has at least one real root different from

zero. The proof will be given in the next article. .

69. Reality of the roots of the discriminating cubic. We shall

first prove the following theorem :

Theorem I. TJie roots of the discriminating cubic are all real.

Let fcj be any root of (15) and let Aq, /xq, vq (not all zero) be values

of A, fx, V that satisfy (13) when k = k^. If A; is a complex number,

Aq, /hq, Vq may be complex. Let

^0=^1 + iX\, ixq = ixi + ifx\, vo = vi + iv\,

where ?' =V — 1 and Aj, A'l, lx^, fx\, vj, v\ are real.
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Substitute fcj and these values of X.^, /xq, vq for A;, A, fi, v in (13),

multiply the resulting equations by Aj — i\\,
fj.^
— iix\, vj — iv\, re-

spectively, and add. The result is

(A^2 + AV + /.i^ + tx.\' + V,' + v'r) k, = (Ai^ + A'l^) a + (/xi^ + ^Lt'i^) 6

+ (vi^ + v'l^) c + 2 (/.iv: + /xVv'i)/ + 2 (viA, + v'A'O gr

+ 2(Ai/xi+AVi)/i-

The coefficient of A:i is real and different from zero. The number
in the other member of the equation is real. Hence k^ is real.

Since A;i is any root of (15), the theorem follows.

Theorem II. Not all the roots of the discriminating cubic are

equal to zero.

The condition that all the roots of (15) are zero is

a-\-h + c = 0,ah + hc + ca-f- — g'^-h^=Q,D = 0.

Square the first member of the first equation, and subtract twice

the first member of the second from it. The result is

a? + 62 _,_ ^2 ^ 2/2 + 2 ^2 _^ 2 7^2 = 0.

Since these numbers are real, it follows that

a = 6 = c = /= gr = /i = ;

but if these conditions are satisfied, the equation of the quadric

contains no term in the second degree in x, y, z, which is contrary

to hypothesis (Art. 65).

70. Simplification of the equation of a quadric. Let the axes be

transformed in such a way that a real, finite principal plane of the

quadric F{x, y, z) =0 is taken as x = 0. Since the surface is now
symmetric with respect to a; = (Art. 68), the coefficients of the

terms of first degree in x must all be zero. Hence the equation

has the form

ax-2 + 6(/2 + cz"^ + 2fyz + 2my + 27iz + d = 0.

Moreover, fiTtO, since otherwise x = would not be a principal

plane (Art. 68).

Now let the planes y = 0, 2 = be rotated about the X-axis

2 f
through the angle 6 defined by tan 2 = —•—- • This rotation re-

b — c
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duces the coefficient of yz to zero, and the equation has the form

"\
i. iL' a'x'-[-h'y- + c'z' + 2m'y-\-2n'z + d' = 0, (16)

wherein a' ^ 0, but any of the other coefficients may be equal to zero.

71. Classification of quadric surfaces. Since the equation of a

quadric can always be reduced to the form (16), a complete classi-

fication can be made by considering the possible values of the co-

V efficients.

-- I. Let both h' and c' be different from zero. By translation of

the axes in such a way that f 0, —— ,
——

j
is the new origin,

the equation reduces to

If d" ^ 0, divide by d" and put

a h c'

the signs being so chosen that a, b, c are real. This gives the fol-

lowing four types

:

t + t + t = i. Ellipsoid. (Art. 56)
or Ir c-

/p2 y2 2^—\-- = 1. Hyperboloid one sheet. (Art. 57)
a? \r <?

— — -^—^ = 1- Hyperboloid two sheets. (Art. 58)
a^ Ir c-

- —^ — ^=1. Imaginary ellipsoid. (Art. 59)
€? h- &

If d" = 0, the reduced forms are

'— + 77 + — = 0. Imaginary cone. (Art. 62)
w- IP- c

t + t t = 0. Real cone. (Art. 62)
or ¥ c^

^

IL Letc' = 0, 6'^0.

If n' ^t 0, by a translation of axes, the equations may be re-

duced to

a'x^ + b'y^ + 2 n'z = 0.
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This equation takes the form

^ — 2 n2.

Elliptic paraboloid.

Hyperbolic paraboloid.or

according as a' and 6' have the same or opposite signs.

If n' = 0, the equation may be reduced to

a'.-r^ + 6y + rf" = p.

If (/" ^ 0, this may be written in the form

^.2

(Art. 60)

(Art. 61)

±^±1 0. Quadric cylinder. (Art. 63)

and if d" = 0, Pair of intersecting planes.

III. Let6' = c' = 0. Equation (16) is in this case

aV + 2m'?/ + 2n'^ + d'=0.

If m and n are not both zero, since the plane 2 m'y + 2 ?i'2; + d'

= is at right angles to x = 0, we may rotate and translate the

axes so that this plane is the new ?/ = 0. The equation of the sur-

face becomes
;r2 = 2 my. Parabolic cylinder. (Art. 63)

If m' and n' are both zero, we have,

if d'^0, x^ ^k'^ — 0. Two parallel planes.

if (V = 0, x"^ = 0. One plane counted twice.

72. Invariants under motion. A function of the coefficients of

the equation of a surface, the value of which is unchanged when

the axes are rotated and translated (Arts. 36 and 37), is called an

invariant under motion of the given surface. It will be shown

that the expressions

7=a + 6 + c,

J^ 6c + ca + oh —p

D=
a h
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formed from the coefficients of the equation (1) of a quadric are

invariants under motion.

73. Proof that /, /, and D are invariants. When the axes ar^

translated (Art. 36), the coefficients of the terms in the second

degree in the equation of a quadric are unchanged. Hence /, ,/,

and D are unchanged.

Since the equations of rotation (Art. 37) are linear and homo-

geneous in X, y, z, x\ y', z', the degree of any term is not changed

by these transformations, so that a term of the first degree can-

not be made to be of the second, nor conversely. Suppose the

expression

f{x, y, z) = ax^ + 2 hxy -f &/ + 2 (/x^ + 2fyz + cz"^

is transformed by a rotation into

f\x', y', z') = a'x'^ + 2 h'x'y' + h'y'"" + 2 g'x'z' + 2f'y'z' + c'z'\

Now consider the function

<^(.^-, y, z)= f(x, y, z) - k{x' + y' + z').

The expression x^ + y^ + z^ is the square of the distance of a point

(x, y, z) from the origin, and will therefore remain of the same

form .r'2 + y'^-f-z'^ by the transformation of rotation (Art. 37).

If, then,/(x, y, z) is changed into f'(x', y', z'), cf){x, y, z) will be

changed into

<f>'{x\ y' z') =f'{x', y\ z') - A:(x'== + y" + z").

If k has such a value that </> is the product of two linear factors in

X, y, z, then, for the same value of k, the expression <j>' will be the

product of two linear factors in x', y', z'. The condition that <^ is

the product of two factors is that its discriminant vanishes, that

is

a — k h g
h h-k / =0,

g f c-k

which, developed in powers of k, is exactly the equation of the dis-

criminating cubic (Art. 68)
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Similarly, the condition that
<f>'

is the product of two linear fac-

tors is Ji^-I'k^-\-J'k-D' = 0,

where /', J', and D' are the expressions I, J, and D formed from

the coefficients oif'(x', y', z').

These two equations have the same roots, hence the coefficients

of like powers of k must be proportional. But the coefficient of k?

is unity in each, hence,

/' = 7, J' = J, D' = D,

that is, I, J, D are invariants.

From the theorem just proved the following is readily obtained

:

"' Theorem. When the axes are transformed in such a loay that

the coefficients of xy, yz, and zx are all zero, the coefficients of x^, y^^

and z^ are the roots of the discriminating cubic.

For, if the equation of the quadric has been reduced to

a'x^ + by + c'z2 + 2rx + 2 m'y + 2 u'z + d' = 0,

the discriminating cubic is

A;3 _ (a' + 6' + c')k + {a'b' + b'c' + c'a.')k - a'b'c' = 0.

The roots of this equation are a', b', and c'. This proves the

proposition.

From the theorem just proved, the following criteria immedi-

ately follow

:

If two roots of the discriminating cubic are equal and different

from zero, the quadric is a surface of revolution, and conversely.

If all three roots of the discriminating cubic are equal and

different from zero, the quadric is a sphere.

If A T^ 0, and a root of the discriminating cubic is zero, the

quadric is non-central.

If two roots of the discriminating cubic are equal to zero, the

terms of second degree in the equation of the quadric form a

perfect square.

74. Proof that A is invariant. It will first be proved that A is

invariant under rotation. The reasoning is similar to that in

Art. 73. Let

F(x, y, z)= ax"" + by"" + cz^ + 2fyz + 2 gzx + 2hxy + 2lx + 2 my
+ 2nz + d =
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be the equation of the given quadric. Let this equation be trans-

formed by a rotation into

F{x\ y', z')= a'x'^ + b'y'^ + cY' + 2f'y'z' + 2 g'z'x' + 2 h'x'y' + 2 1'x'

+ 2 m'y' + 2 n'z' + d' = 0.

This rotation transforms the expression

$ {x, y, z) = F(x, y, z) - k (x' -{-y^ + z-' + l)

into $'(ic', y', z')= F'{x', y', z') - k {x'^ + y"' + z"" + 1).

The discriminants of $ and $' are, respectively,

a — k
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The resulting determinant is A. Hence A' = A, so that A' is inva-

riant under translation. Since A is invariant unaer both transla-

tion and rotation, it is invariant under motion.

75. Discussion of numerical equations. In order to determine

the form and position of a quadric with a given, numerical equa-

tion, it is advisable to determine the standard form (Art. 71) to

which the equation of the given quadric may be reduced, and the

position in space of the coordinate axes for which the equation

has this standard form. For this purpose the roots k^, ko, ks of

the discriminating cubic and the value of the discriminant A
should first be computed.

A. If all the roots ki, k^, k^ are different from zero, the three

principal planes may be determined as in Art. 68. If these planes

are taken as coordinate planes, the equation reduces to (Art. 67,

Eq. 11 ; Art. 73)

^•i^" + hy' + hz' + TT^ = 0.

B. If one root k-^ is zero, two finite principal planes may be

determined as before. Let these be taken as cc = and y = 0.

At least one intei*section of the new Z-axis with the surface is at

infinity. If this axis does not lie on the surface, and does meet

the surface in one finite point, the axes. should be translated to

this point as origin. The equation of the surface now has the

form
k\x''-\-k.^/^-^2n"z = 0.

Since

A =

it follows that

^\
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where (Art. 67)
S = lXo+ viyo + nzo + d,

and (xq, ijo, Zq) are the old coordinates of the new origin.

C. If two roots of the discriminating cubic are zero, the terms

of the second degree in the original equation form a, perfect square,

so that the equation of the surface, referred to the original axes,

is of the form ^^''::

(ax + /3y + yzf + 2 Ix + 2 m?/ -f 2 nz + d = 0,

or (ax + /3y+yz + Sf + 2(1 - a8)x + 2(m - /3B)y + 2(n - y8)z

e^,
+d-8' = 0. (17)

If the planes ax + /3y -\-yz + 8 = 0,

2(1 - aS)x + 2(m - ^8)y + 2(n - y8)z + d - 8^ =

are not parallel, we may choose 8 so that they are perpendicular.

The first term of (17) is proportional to the square of the distance

of the point (x, y, z) from the plane

ax+ (iy + yz+8 = 0.

. . The remaining terms of (17) are proportional to the distance to

the second plane. If these planes, with the appropriate value of

8, are chosen as x = 0, y = 0, the equation reduces to

(«2 + ^2 + y--yf + 2V(? - a8f+ (m - 138)'+ (n - y8y x = 0.

If the two planes are parallel, 8 may be so chosen that

l-a8 = 0, m - ^8 = 0, n - y8 = 0.

The equation now becomes

(u-^+fS^ + y^f + d -8^=0,
wherein ax -\- /3y -\- yz -}- 8 — is the new y = 0.

Example 1. Discuss the equation

a;2 _ 2 j/2 ^_ 6 2> + 12 xz - 16 X - 4 y - 36 z + &2 = 0.

Tlie equations determining tlie center are x + 6 z — S = 0, 2y + 2 = 0,

6 X -\- 6 z — 18 = 0, from which the coordinates of the center are (2,— 1, 1).

The invariants are / = 5, J" = — 44, Z> = GO, A = 1800.

Hence, the discriminating cubic is

A;3 _ 5 ^.2 _ 44 ;t - 60 = 0.

Its roots are ki = 10, k^ —— 2, kz = — 3. The transformed equation is

10 a;2 _ 2 2/2 _ 3 ^2 + 30 = 0.
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The direction cosines of the new axes through (2, — 1, 1) are found, as in

Art. 68, by giving k the values 10, — 2, — 3, to be

O Q S 2——, 0, -^; 0, 1, 0; —^, 0, —=•

V13 Vl3 Vl3 Vl3

The surface is an hyperboloid of one sheet.

Example 2. Discuss the quadric

11 x2 + 10 2/2 + 6 22 - 8 J/.S + 4 2X - 12 xy + 72 X - 72 t/ + 36 2 + 150 = 0.

The discriminating cubic is

k^ - 27 k^ + 180 yfc - 324 = 0.

Its roots are 3, 6, 18. A = ^ 3888. The surface is an ellipsoid.

The equations for finding the center are

11 X - 6 y + 2 z + 36 = 0, - 6 x + 10 y - 4 2; - 36 = 0,

2 X - 4 ?/ + 6 .2 + 18 = 0.

The coordinates of the center are (— 2, 2,-1). The direction cosines of

the axes are
1 2 2. 21 _2. _22 1
3' 3' 5 ' 3' 3' 3 ' 3' 3' ^*

The equation of the ellipsoid referred to its axes is

3x2 _^ (^yi + is^i- 12.

Example 3. Discuss the quadric

Sx^ -y2 + 2z^ + 6yz -4:ZX--2 ry - 14 x + 4 y + 20 2 + 21 = 0.

The discrinainating cubic is

^-3_4i.-2_ 13^.^ 19 = 0.

Its roots are approximately 1.2, 5.7, — 2.9. A = 0. The surface is a cone.

The equations for finding the vertex are

Sx-y-2z-7=0, - X - // + 3 2 + 2 = 0, - 2 x + 3 x + 2 z + 10 = 0.

The coordinates of the vertex are (1, — 2, — 1). The direction cosines of

the axes are approximately

.8. .4, .5; .6, -4, -.7; 0, .6, - .4.

The equation of the cone referred to its axes is approximately

1.2 x2 + 5.7 2/2 _ 2.9 22 = 0.

Example 4. Discuss the quadric

4 x^ + y"^ + z^ - 2 yz + i xz — i xy — 8 X + i z + 1 = 0.

This equation may be written in the form

(2x-2/ + z + 5)2= (8 + 4 5)x-2 52/-(4-25)2-7 +52. .

If 5 = — 1, the planes 2Xf-y +z-l -0 and 4x + 2y — 6z — 6--0 are

perpendicular. If we take these planes as ?/' = and x' = 0, the equation of

the surface reduces to 6 2/2 = V56 x. The surface is a parabolic cylinder.
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EXERCISES

Discuss the quadrics:

1. 3 a;2 + 2 2/2 + 22 _ 4 xy - 4 yz + 2 = 0.

2. x^-y^ + 2z^-2yz + 4iXZ + Axy-2x-4:y-l=0.
''§. 6 y2 + 8 2^ + 6 yg + 6 xz + 2 xy + 2 X + 4 y - 2 z - 1 = 0.

4. 4x2 + y2-8z2 + 8yz-4xz + 4xy-8x-4y + 4z + 4 = 0.

6. 3x2 + 2y2 + 2z2-4y3-2zx + 2xy-6x + 2y + 2z-12 = 0.

'6. 6x2-2z2-6yz-6x3-2xy + 2x + 4y + 2z = 0.

7. 4x2 + 4y2 + 22-4yz-4xz + 8xy-6y + 6z-3 = 0,

/^ 8. x'' - yz + xz - xy + X + y + 2 z - 2 = 0.

>' 9. 3 y2 + 6 yz + 6 xy - 2 X + 2 z + 4 = 0.

10. 3 x" + 3 y2 + z2 + 2 yz + 2 xz - 2 xy - 7 X + y + 6 z - 7 = 0.

11. 3 x2 - 5 y2 + 15 z2 - 22 yz + 14 xz - 14 xy + 2 X - 10 y + 6 z - 5 = 0.

12. x2 - y2 - 2 z2 - 4 yz + 2 xy - 2 y + 2 z = 0.

13. x" - 6 yz + 3 zx + 2 xy + X - 13 z = 0.

14. x2 - 2 y2 + z2 - 4 zx - 12 xy + 4 y + 4 z - 9 = 0.

16. x2 + 2 y2 + 2 z2 + 2 xy - 2 X - 4 y - 4 z = 0.

16. 3 x2 + y2 + z2 + yz - 3 zx - 2 xy + 2 X + 4 y + 2 z = 0.

17. For what values of c is the surface

5 x2 + 3 y2 + cz2 + 2 xz + 15 =

a surface of revolution?

18. Determine d in such a way that

x2 + y'^ + 5z2 + 2ya + 4x2-4xy + 2x + 2y + d =

is a coue.



CHAPTER VIII

SOME PROPERTIES OF QUADRIC SURFACES

76. Tangent lines and- planes. If the two points of intersection

of a line and a quadric coincide at a point Pq, the line is called a

tangent line and Pq the point of tangency. If the surface is sin-

gular, it is supposed in this definition that Pq is not a vertex.

Theorem. TJie locus of the lines tangent to the quadric at Pq is

a plane.

Let the equation of the quadric be

F{x, y, z) = ax^ + by'^ + cz^ + ^fy^ + 2 gzx + 2 hxy

+ 2lx + 2 my + 2 7iz -j- d — 0, (1)

and let the equation of any line through P „ = (-^'o ^o ^o) ^^

(Art. 20)

X = Xo + Xr, y = y,-}- fxr, z = Zq + vi: (2)

Since Pq lies on the quadric, F(xq, y^, Zq) = 0. Hence, one root of

equation (3), Chapter VII, which determines the intersections of

the line (2) with the quadric (1), is zero. The condition that a

second root is zero is P = 0, or

A {axQ + hy^ -f- (/^^ + /) + /a (JiXa + hy^ + Jzq + m)

+ v{gxQ + /Vo -+- ''^0 + »0= 0- (3)

If we substitute in (.3) the values of A, p., v from (2), we obtain

(x — Xo)(axo + hyo + gz^ + l) + (y - yo)(hXo + byo + J'Zq + m)

+ {z- Zo) (gxa + fyo + cz^ + 7i) = 0, (4)

which must be satisfied by the coordinates of every point of every

line tangent to the quadric at Pq. Conversely, if (x, y, z) is any

point distinct from Pq, whose coordinates satisfy (4), the line de-

termined by (ic, y, z) and Pq is tangent to the surface at Pq.

Since (4) is of the first degree in (.t, y, z), it is the equation of a

plane. This plane is called the tangent plane at Pq.

90
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The equation (4) of the tangent plane may be simplified. Mul-

tiply out, transpose the constant terms to the second member, and

add Ixq + m>jQ -f tiZq + d to each member of the equation. The

second member is F(Xa, r/^, Zq), which is equal to zero, since Pq lies

on the quadric. The equation of the tangent plane thus reduces

to the form

axxo + byi/o + czZq + /{yz^ + zy^) + f/
{zx^ + -rzc) + h (-^V/o + V^o)

+ l{x + .i-o) + m (y + .vo) + 7^ (z + z,)-{-d = 0. (5)

* This equation is easily remembered. It may be obtained from

the equation of the quadric by replacing x^, y'^, z^ by xx^^ yy^, zZq
;

2 yz, 2 zx, 2 xy by yz^ + zyo, zx^ + xz^, xy^ + yx^ and 2x,2y,2zhy
^ + 3*0) y + ?/o) 2! 4- ^0, respectively.

77. Normal forms of the equation of the tangent plane. The equa-

>'^ion of the tangent plane to the central quadric

ax'' + by"" + cz^ = 1 (6)

at the point (x^, y^, Zq) on it is

axxQ + byyo + czZq = 1,

Let the normal form of the equation of this plane (Art. 13) be

A.T -\-
fj.y + vz = p, (7)

so that
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It follows from (8) that the necessary and sufficient condition

that the plane
ux -{- vy + wz = 1

is tangent to the quadric (6) is that

t + t + }!^==l. VlV' (9)
a b c

This equation is called the equation of the quadric (6) in plane

coordinates.

Again, if

ax^ + bif=2 nz (10)

is the equation of a paraboloid (Arts. 60 and 61), it is proved in a

similar way that the normal form of the equation of the tangent

plane to the paraboloid is

X. + ,y + v. = -i(f +
f)

(11)

and that the condition that the plane

iix -{- vy -\-wz = 1

is tangent to the paraboloid is

'iV - + — = 0. (12)
a b n

Equation (12) is the equation of the paraboloid in plane coordinates.

78. Normal to a quadric. The line through a point P(, on a

quadric, perpendicular to the tangent plane at P^, is called the

normal to the surface at Pq.

It follows from equation (4) that the equations of the normal

at Po to the quadric F{x, y, z) = are

X — Xn _ y — lk _ 2: — Zq

aXf^ + hyf^ + gZf^ + I hxo + byo +fz^ + m gxo + fyo + cz^ + n
(13)

EXERCISES

1. Show that the point (1, - 2, 1) Hes on the quadric x^ — y^ + z^ +
4 yz + 2 zx + xy — X + y + z + 12 = 0. Write the equations of the tangent

plane and the normal line at this point.

2. Show that the equation of the tangent plane to a sphere, as derived in

Art. 76, agrees with the equation obtained in Art. 50.
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3. Prove that the normals to a central quadric ar? -\- by^ + cz- = 1, at all

points on it, in a plane parallel to a principal plane, meet two fixed lines,

one in each of the other two principal planes.

4. Prove that, if all the normals to the central quadric ax^ + hif -}- cz^ = l

intersect the X-axis, the quadric is a surface of revolution about the JT-axis.

5. Prove that the tangent plane at any point of the quadric cone

ax2 + 6^2 -f. 0^2 = passes through the vertex.

6. Prove that the locus of the point of intersection of three mutually per-

pendicular tangent planes to the central quadric ax^ -f- hy'^ \- cz^ =\ is the

concentric sphere z^ + y^ + z'^ = --\ 1 This sphere is called the director
a b c

sphere of the given central quadric.

7. Prove that through any point in space pass six normals to a given

central quadric, and five normals to a given paraboloid.

79. Rectilinear generators. The equation of the hyperboloid

of one sheet

or

or also

X' y^ ^ — 1
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(14). Moreover, through each point of the surface passes a line

of the system (16) since the coordinates of each point on the sur-

face satisfy (14) and consequently satisfy (16). The system of

lines (16), in which | is the parameter, is called a regulus of lines

on the hyperboloid. Any line of the regulus is called a generator.

Similarly, by equating each member of (15) to yj, we obtain the

system of lines whose equations are

in which -q is the parameter. This system of lines constitutes a

second regulus lying on the surface. The two reguli will be

called the ^ regulus and the rj regulus, respectively. Through

every point P of the surface passes one, and but one, generator

belonging to each regulus. Moreover, any plane that contains a

generator of one regulus contains a generator of the other regulus

also. The equation of any plane through a genei'ator of the ^

regulus, for example, may be written in tlie form (Art. 24)

a c \ bj \a c

Since this equation may also be written in the form

it follows that this plane also passes through a generator of the

rj regulus. Every such plane is tangent to the surface at the

point of intersection P of the generators in it, since every line

in the plane through P has its two intersections with the surface

coincident at P.

Example. The equations of the reguli on the hyperboloid

4 ' 9

4- ^ — t I 1

- + ^ _ ^2 = 1

X
o + 'S

and |+, = ,(,_!), 1+| =
, (!-»)•

The point (2, 6, 2) lies on the surface. The values of | and tj which
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determine the generators through this point are | = 1, tj =— 3. Hence, the

equations of these generators are

? + ^ = l + 2/, i_y = ?_^, and ? + 0=-3fl-2/V i + ^=:_3f?-^V
2 3' 3 2 ' 2 V 3^ 3 V2 /

The equation of the plane determined by these lines is

This is the equation of the tangent plane at (2, 6, 2) (Art. 76).

It is similarly seen that the equation

a? ¥

of the hyperbolic paraboloid may also be written in the forms

ah 1 (.

and

Hence, on this surface also, there is a ^regulus and an yj regains

The generators of the ^ regains are parallel to the fixed plane

— " = ; those of the -q regains, to the fixed plane " + -^ = 0.

a b a b

By writing the above equations in homogeneous coordinates, it is

seen that the line - -f ^ = 0, f = in the plane at infinity belongs
a b

to the $ regulus ; and the line ' — ^ = 0, < = to the n regains.
a b

Hence the plane at infinity is tangent to the paraboloid.

The hyperboloid of one sheet and the hyperbolic paraboloid are

sometimes called ruled quadrics, since the reguli on them are real.

It will be shown (Art. 115), that on every non-singular quadric

there are two reguli ; bat, on all the quadrics except these two,

the reguli are imaginary.

80. Asymptotic cone. The cone whose vertex is the center of

a given central quadric, and which contains the curve in which

2nz
'
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the quadric intersects the plane at infinity, is called the asymp-

totic cone of the given quadric.

If the equation of the quadric is

the equation of its asymptotic cone is

ax^ + by"^ + cz^ = 0.

For, this equation is the equation of a cone with vertex at the

center (0, 0, 0, 1) of the given quadric (Art. 46). Its curve of

intersection with the plane at infinity coincides with the curve of

intersection

of the given surface with that plane.

EXERCISES

(1. Show that the quadric xy = z \s ruled. Find the equations of its gen-

erators.

2. Show that x^ — 2 z^ + by — x + 9iz = is Si ruled quadric.

3. Prove that, for all values of k, the line x + \ = ky — — {k + \)z lies on

the surface yz + zx + xy + y + z = 0.

4. Prove that (y + rnz) (x + nz) — z represents an hyperbolic paraboloid

which contains the X-axis and the F-axis.

5. Show that every generator of the asymptotic cone of a central quadric

is tangent to the surface at infinity. From this property derive a definition

of an asymptotic cone.

6. Show that every generator of the asymptotic cone of an hyperboloid of

one sheet is parallel to a generator of each regulus on the surface.

81. Plane sections of quadrics.

Theorem I. The section of a quadric by a finite plane, lohich is

not a component of the surface, is a conic.

For, let TT be any given finite plane, and let the axes be chosen

so that the equation of this plane is 2 = 0. Let the equation of

the quadric, referred to this system of axes, be

ax^+by^+cz''+2fyz+2gzx+2hxy+2lx+2my-^2nz+ d=0. (17)

If, when 2 = 0, (17) vanishes identically, the given quadric is
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composite and z = is one component ; otherwise, the locus

defined in the XF-plane by putting 2; = in (17) is a conic.

Theorem II. Tlie sections of a quadric by a system of parallel

planes are similar conies and similarly placed.

Let the axes be chosen so that the equations of the given sys-

tem of parallel planes is 2; = A;, and let (17) be the equation of the

given quadric. The equation of the projecting cylinder of the

section by the plane z = k is

ax^ + '2hxy+by^ + 2(l+ gk)x + 2 (?n +fk)y + ck^ + 2nk + d = 0.

The curves in which these cylinders intersect z = 0, and conse-

quently (Art. 45) the curves of which they are the projections,

are similar and similarly placed, since the coefficients of x'^, xy,

and y"^ in the above equation are independent of k*
The equations of the section of the surface by the plane at

infinity are found by making (17) homogeneous in .-r, y, z, t and put-

ting t= 0. They are

ax^ -\- by^ + cz"^ + 2 fyz +2 gzx -\- 2 hxy =0,t = 0.

The locus of these equations is called the infinitely distant conic

of the quadric. This conic consists of two lines if the first mem-
ber of the first equation is the product of two linear factors. The
condition for factorability is

D = 0.

'iOfi

EXERCISES

lid the semi-axes of the ellipse in which the plane z = 1 intersects

the quadric x^ + i y"^ — 3 z^ + i yz — 2 x — 4 y = I.

2.; Show that the planes z = k intersect the quadric 2 x'^ — y"^ + 3 z^ +
4 oiz^ 2 yz + i X + 2 y = in hyperbolas. Find the equations of the locus of

the-cgnters of these hyperbolas.

A ( 3. Show that the curve of intersection of the sphere x"^ + y"^ + z"^ = r^ and
f\ ^—''

3.2 ,/2 g2
the ellipsoid —f- ^ + — = 1 lies on the cone

a2 b^ c^

a-z r^j ^\fy2 r"-) W r^

Find the values of r for which this cone is composite. Show that each com-
ponent of the composite cones intersects the ellipsoid in a circle.

* Cf. Salmon, " Conic Sections," 6th edition, p. 222.
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82. Circular sections. We shall prove the following theorem :

Theorem I. Through each real, finite point in space pass six

planes which intersect a given non-composite, non-spherical quadric

in circles. If this quadric is not a surface of revolution nor a para-

bolic cylinder, these six p)lanes are distinct; two are real and four

are imaginary. If the quadric is a surface of revohdion or a para-

bolic cylinder, four of the planes are real and coincident and two are

imaginary.

Two proofs will be given, based on different principles.

Proof I. Since parallel sections of a quadric are similar, it

will suffice if we prove this theorem for planes through the origin.

The planes through any other point, parallel to the planes of the

circular sections through the origin, also intersect the quadric in

circles.

Let the axes be chosen in such a way that the equation of the

quadric is (Art. 70)

k.x'' -f-W + ^-3^' + 2 Ix + 2 my ^2nz + d = 0, (18)

where k^, k^, k^ are the roots of the discriminating cubic (Art. 73).

The condition that a plane intersects this quadric in a circle is

that its conies of intersection with the given quadric and with a

sphere coincide.

The curve of intersection of the quadric (18) with the sphere

k(x~-\-y'^-^z'')-\-2lx-h2 7ny-\-2nz-^d = (19)

coincides with the intersection of either of these surfaces with

the cone

(^•l
- k) x-" + {k^ - k)y^ + (k, - k) z" = 0.

This cone is composite if the first member of its equation is

factorable, that is, if k is equal to k^, k.,, or k^.

It follows that each of the six planes

VA:i - k^ x=± Vits —kiy

-Vki — ^2 X = ± VA-2 — k^z

Vfcj — ki y = ± VA,*! — k^ z

intersects the quadric (18) in a conic which lies on the sphere (19)

and is consequently a circle.
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If A;, > k2 > k^, the six planes are distinct. The planes

VA;i — fcj a; = ± VA-'j — fcj 2

are real. The others are imaginary.

If ki = k.2^k3, the last four planes coincide with z = 0. The

other two are imaginary. If ki = ^2 ^ 0, the quadric (18) is a

surface of revolution (Art. 73). If k^ = k., = 0, it is a parabolic

cylinder (Art. To).

If the equation of the surface is in the form (17), and k^, k^, k^

are the roots of its discriminating cubic, it follows from the dis-

cussion in Article 73, that the equations of the planes of the

circular sections through the origin are

ax2 + bf + cz"" + 2fyz + 2 gzx + 2 hxy - k, (x"" + y^ + z") = 0,

ax'^ + by- + cz- + 2fyz + 2 gzx + 2 hxy — k.-, (x-^ + y2-\-z'^) = 0,

ax2 + 6^2 ^ cz"" + 2fyz + 2 gzx + 2 hxy - ^-3 (a^ + ?/' + 2')= 0.

Proof II. It was shown (Art. 49) that a plane section of a

quadric is a circle if it passes through the circular points of its

plane. The conic in which the quadric meets the plane at infinity

has four points of intersection with the absolute. Any plane

other than the plane at infinity which passes through two of

these points will meet the quadric in a conic through the circular

points of the plane ; hence the section is a circle.

The coordinates of the points of intersection may be found by

making the equations

ax- + by"^ + cz^ + 2fyz + 2 gzx + 2 hxy = 0, x^ + ?/2 + z* =
simultaneous. Since both equations have real coefficients and the

second is satisfied by no real values of the variables, it follows

that the four points Pj, P.,, P3, P^ consist of two pairs of conjugate

imaginary points, or of one pair counted twice.

In the first case, let Pj, P^ be one pair of conjugate points, and

P3, P4 the other. The lines P^P., P^Pi are real (Art. 41), while the

lines P1P3, P2P4, P1P4, P2P3 are imaginary. The pairs of lines

PiPo, P3P4; P1P3, P2P4; PiP4> P^Pz constitute composite conies

passing through all four of the points Pj, P2, P3, P,.

In the second case, let P., = P4 and Pj = P3. The lines P1P2 and

P3P4 coincide, and the lines PiP3, P2P4 are tangents to both curves,

which have double contact with each other at these points.
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In either case the equations of the lines /*,Pt can be found as

follows. Through the points of intersection of (17) and the abso-

lute passes a system of conies

ax'+ b>f^cz-+2fiiz^2 gzx+ 2 hxi/ - k{x--\-y^+z^)=0, t=0. (19')

A conic of this system will consist of two straight lines through

the four points of intersection if its equation is factorable, that is,

a —k h g '

h b-k / =0;

9 f c-k,

thus k must be a root of the discriminating cubic (Art. 73). Let

A;,, ki, ks be the roots of this equation. The equations of the pairs

of lines are then

ax.2 4. jjy2^ ez2+ 2 ./}/2+ 2 gz.v

+

2 hxy- k,{£+f ^-7?) = ^, t= 0, (20)

with similar expressions for ki and k^. From Art. 4t it follows

that for one of the roots k^ the two factors of the first member of

the quadratic equation (20) are real, but the factors for each of

the others are imaginary when the roots k^ are all distinct.

If ?«, V are the two linear factors of (20), then the line u = 0,

^ = will pass through one pair of points and v = 0, < = will pass

through the other. A plane of the pencil u +2?< = will cut the

quadric in a circle. Since a plane is determined by a line and a

point not on the line, the theorem follows.

In case two roots of the discriminating cubic are equal and

different from zero, the quadric is one of revolution; the two

conies in the plane at infinity now have double contact.

If fcj > k^ > A'3, the planes determined by the second root are

real.

83. Real circles on types of quadrics. The above results will now
be applied to the consideration of the real planes of circular section

for the standard forms of the equation of the quadric (Chap. VI).

(a) For the ellipsoid

^' + ^ + ^ = 1,
a^ 6^ (?

the roots of the discriminating cubic are 1/a*, 1/6'', 1/c*.
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Let a > 6 > c > 0. Since parallel sections of the surface are

similar, it follows that the equations of the real planes of circular

section are

cy/a''-¥x±a^b''-c^z-{-d = 0, (21)

where d is a real parameter.

The circle in which a plane (21) intersects the ellipsoid is real

if the plane intersects the ellipsoid in real points, that is, if it is

not more distant from the center than the tangent planes parallel

to it. The condition for this is (Arts. 76 and 16) |

d
]
£. ac^a? — fl

If
I

d
I

> ac Va^ — c^ the circles are imaginary.

If 1^1= acVa^ — c", the circles are point circles. The four

planes determined by these two values of d are the tangent planes

to the ellipsoid at the points

-, 0, ±cyA-
' ^a^ — c

Each of these points is called an umbilic.

The two systems of planes (21) are also the real planes of circu-

lar section of the imaginary cone

^4.^ + 5^=0,
a? b^ c^ '

and of the imaginary ellipsoid

^! 4. 2/'
>
?" ^ _ 1

a^ b^ c"

(b) The equations of the real planes of circular section of the

hyperboloids of one and two sheets

and of the real cone

a"" b'' c2
'

a" 62 c2 '

where a > 6 > 0, are found to be

cVa2 -b^y ±b Va^ + e" z + d = 0.
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On the hyperboloid of one sheet and the real cone, the radii of

the circles are real for all values of d. On the hyperboloid of two

sheets, the circles are real only if \d\ >bc ^ b^ + c^. The coordi-

nates of the umbilics on the hyperboloid of two sheets are

(c) The real planes of circular section of the elliptic paraboloid

'^ + l = 2nz, a>6>0, n>0

and the real or imaginary elliptic cylinders

-, + f =±1, a>6>0

are determined by

± V«2 - b' y + bz + d = 0.

On the real elliptic cylinder, the circles are real, and on the

imaginary cylinder they are imaginary, for all values of d. On

the elliptic paraboloid, the circles are real if d<-^(a^ — b"^).

The coordinates of the umbilics on the elliptic paraboloid are

n
0, ±bn^(e--b-, ^{a'-b')

(d) For the hyperbolic paraboloid

2nzt
x^_y^_r,
a" b'

and the hyperbolic cylinder

^2 ^ y2 ^ ^^

a" b'

the equations of the planes of the circular sections are

bx ± ay -\- dt = 0.

The circles in these planes are all composite. For, the planes

bx + ay -\- dt =
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intersect these surfaces in the fixed infinitely distant line

hx + ay — 0, t =

and in a rectilinear generator which varies with d. Similarly,

the planes
hx — ay -\-dt =

intersect them in the line

hx — ay = 0, t =

and in a variable generator.

Also on the parabolic cylinder

a;2 = 2 myt

the real circles are all composite, since the planes x = dt intersect

the surface in the fixed line x = t= 0, and in a variable generator.

We have, therefore, the following theorem :

Theorem II. On the hyjjerhoh'c 2^("'<^l>oloid, the hyperholic

cylinder, and the j^'^i'f'ci'hoUc cylinder, the real circular sections are

composite. The components of each circle are an infinitely distant

line and a rectilinear generator ivhich i)itersects it.

^ EXERCISES

f 1.: Find the equations of the real circular sectipns of the surface

4 '^^ 2 2/2 + z^ + 3yz + X2 = 1. ^>H^^ '^ "^ "^^ P*^ -kCit^-^'i "^^
J*)

-' « «>

2., Find the equations of the real circular sections of the surface

2 x^+ 5 2/2 + 3 5;- + 4 .r2/ = 1.

i'

3. Find the radius of a circular section through the origin in Ex. 2.

.-^.! Find the equations of the real planes through (1. —3, 2) which in-

tetsfect the ellipsoid 2 x- + y'^ + iz'^ = 1 in circles.

5. Find the conditions which must be satisfied by the coefficients of the

equation F{x, y, z) = oi a, quadric if the planes z = k intersect it In circles.

6.' Show that the centers of the circles in Ex. 5 lie on a line. Find the

equations of this line.

//y. Find the second .system of real planes cutting circles from the quadric

Kn Ex. 5.

8. Find the conditions which must be satisfied by the coefficients if the

plane Ax + By + Cz -{- D = intersects the quadric F{x, y, z) = in circles.

9. Find the coordinates of the center and the radius of the circle in

which the plane x =2 z + 5 intersects the cone 3 x- + 2y'^ — 2 z^ = 0.
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V 10. Show that, for all values of \, the equation of the planes of the cir-

cular sections of the quadrics

(a + X)x2 + (6 4- X)2/2 + (c + \)z2 = 1

are the same. The quadrics of this system are said to be concyclic.

84* Confocal quadrics. The system of surfaces represented by

the equation

+ -^— + -^^— = 1, a>b>c>0, (22)

in which k is a parameter, is called a system of confocal quadrics.

The sections of the quadrics of the system by the principal planes

x = 0, y = 0, z = are confocal conies.

If A; > — c^, the surface (22) is an ellipsoid ; if — c- >k> — b"^,

the surface is an hyperboloid of one sheet; if — 6- > fc > — a^, the

surface is an hyperboloid of two sheets ; if — a^ > k, the surface

is an imaginary ellipsoid.

If A:> — c^, but approaches — c^ as a limit, the minor axis of

the ellipsoid approaches zero as a limit, and the ellipsoid ap-

proaches as a limit the part of the XF-plane within the ellipse

-^— + -^^ = 1. (23)

If — e^>A; > — b"^, the surface is an hyperboloid of one sheet.

As k approaches — c-, the surface approaches the part of the

XF-plane exterior to the ellipse (23). As A; approaches — 6^, the

surface approaches that part of the XZ-plane which contains the

origin and is bounded by the hyperbola

= 1. (24)
a^ — b"^ b^ — c^

If — ¥ >k> — o}, the surface is an hyperboloid of two sheets.

As k approaches — 6^, the hyperboloid approaches that part of the

plane y = which does not contain the origin. As k approaches

— ci^, the real part of the surface approaches the plane a;=0,

counted twice.

The ellipse (23) in the XF-plane and the hyperbola (24) in the

XZ-plane are called the focal conies of the system (22).
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The vertices of the focal ellipse are

(-t-Va^-cS 0, 0).

The foci are

(±Va^^^^ 0, 0).

On the focal hyperbola the vertices are ( ± Va^ — 6^ 0, 0) and the

foci are (± Va^ — c^, 0, 0). Hence, on the focal conies, the ver-

tices of each are the foci of the other.

85. Confocal quadrics through a point. Elliptic coordinates.

Theorem I. Three confocal quadrics pass through every point

P in space. If P is real, one of these quadrics is an ellipsoid, one an

hyperholoid of one sheet, and the third an hyperholoid of two sheets.

If P = (Xi, yi, Zi) lies on a quadric of the system (22), the param-

eter k satisfies the equation

{j£ + a''){k + b'){k + c^)- x^(k -f ¥)(k + c^) - y,\k + c%k + a'-)

- z,\k + a^k -f h^)= O.sr^i -1^X25)

Since this is a cubic equation in k, and each of its roots determines . 9-

a quadric of the system through P, there are three quadrics of eT *^

the system (22) which pass through P. ^'jJc
Let P be real. **«>

If ^' = -f- 00, the first member of (25) becomes positive. -Mj h 1 /

If A; = — c^, it is — 2;i2(— c2-|-a2)(— c^ 4- &2)^-vvhich is negative. =V^'^i
If k = — b"^, it is — yi'^(

— ¥ + c'^){— ¥ + a-), wliich is positive. ^
-f
C~ ^^<

Itk = — a^, it is — x^%— a^ + ?/)(— a^ + c^), which is negative. ^ } '

~*

Hence the roots of (25) are real. One is greater than — c^, one

lies between — c^ and —b^, and the third between — 6^ and — a^-

Denote these roots by ki, k^, k^. Hence, we have

ki >-c'>k,>-¥>k,>- a\

Then, of the three quadrics

f
1,9! I 7. ' _9 1 7. '

a2 -\-k, b'' + k, c2 -1- fci

CC^ iP" 2*^
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which pass through P, the first is an ellipsoid, the second an hy-

berboloid of one sheet, and the third an hyperboloid of two sheets.

Theorem II. TJie three quadrics of a confocal system which

pass through P intersect each other at right angles.

For, the equations of the tangent planes to the first two quad-

rics (26) are

^

^

a^ + K
+

4-

62 + A;i

+

+

(? + fci

a^ + k. ' 5- + A-.,
'

c'^ + k^

These planes are at right angles if

= 1,

= 1.

V

n
t

S
'S^
<'.'?

+ Vi +
(a^ + ;ci)(a2 + k,) {1/ + k,){b' + k.^ (c^ + k,){c'' + k,)

=

That this condition is satis-

fied is seen by substituting the
Jj-*]

coordinates of P in (26), sub*!*"

tracting the second equation?

from thefirst, and removing the*^'

factor A'2— A'l,
which was seen

to be different from zero. The

proof for the other pairs may
be obtained in the same way.

The three roots k^, k^, A3 of

equation (25) are called the el-

liptic coordinates of the point P.

To find the expressions for the

rectangular coordinates of P,in

terms of the elliptic coordinates,

we substitute the coordinates

(.Ti, ?/i, 2,) of P in (26) and solve

for Xi^, yx, %{-. The result is

,.,_ («^ + A-0(a^ + A,)(a^ + A3)

'

(a2-62)(a2-c2) '

{WJrK^{W^-k^{W^k,^
^'

(^2 _ (j2)(52 _ c2)
'

,^ (c'' + A0(c^ + A,)(c^-j-A-3)

'

(c2-a2)(c2-62)

(27)
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It is seen at once from these equations that Ji\, fcj, and ^'3 are the

elliptical coordinates, not only of P, but also of the points sym-

metric with P as to the coordinate planes, axes, and origin.

86. Confocal quadrics tangent to a line.

Theore3i I. An.i/ line touches tivo quadrics of a confocal system.

The points of intersection of a given line with a quadric of the

system (22) are determined by the equation (Art. 65) oL^ U^aaa^ *"* 3*<
witC *> 14/ i'v Sam**

a" -\-k ¥ + k c- + kj \a'' + k b^ + k c^~ + k

W + k b^ + k c-' + k J ^
The condition that this line is tangent is -^ y j^-a..*:^ w^ vJ^^^

a^j^kh-'^kc'^k) ^^"^

+ v;;^ + -;r^ -^F^ +t/^ + ^t^-I =0.

When expanded and simplified, this equation reduces to

y? -f [(62 + c2) A^ + {c? + «') /x^ + («' + /'^) v^ - (a^oi^ - y,\Y
— (z/o«'

— ^Jq/a)" —
(2;o^-

— -I'd")'] ^ + [ft-c^A^ + c^aV + a-lP-v^

— i?'^l>'
- .'/o^)c' - (.Vol' - 2;oa)/j- — (^oA. - .Tov)a2] = 0.

Since this equation is quadratic in k, the theorem follows.

Theorem II. If tico confocal quadrics touch a line, the tangent

'A. planes at the points of contact are at right angles.

fl Let A"i and A'o be the parameters of the quadrics, and let

^ P'={x', y', z'), P" = {x", y", z") be the points of tangency of the

\^^line with the given quadrics. The equations of the tangent

'.J planes at P' and P" are (Art. 76), respectively,

jj ;j»
x'x y'y ^'^ =\ ^"^

1

?/"-^^
1

^'''^ —\
,^ a^+A-i h'^-^ki^ c'-^-k^ ' a2 + A-o &2 ^ A:., c2 + A;2

These planes are at right angles, if

^'*^"
+ ^NL + ^^ = 0. (28)

(a2 + A'0(a2 + A-o) (6^ + a-,)(62 + A%) (c^ + A-i)(c2 + A-,)



I

l08 properties of QUADRIC surfaces [Chap. VIII.

Since the line through P' and P" is tangent to both quadrics, it

lies in the tangent planes at both points. Hence P* and P" lie in

both planes, so that

,.U" ,.'-.," /v'-v" ^'t" ii'^/" -^'-v"
1

J u.^ , yy" , z-z" ^^ x'xr yy z'z" ^^ /,j>
I*! V ,.> , 1. ' -LO , 1. ' .9 I 7. ' „9 1 7« '" t9 1 7. ' ,.01 1 7.

a2+A:j 62+^"j c2+ ;fci ' o?+ k^ b'+ k. c'+h '

J^<'
» xjj subtracting one of these equations from the other, it is seen';^^ ^

J that (28) is satisfied. The planes are therefore at right angles.
, ^/

87. Confocal quadrics in plane coordinates. The equation of tl^ ^/

system (22) in homogeneous plane coordinates (Art. 77) is /v^"'^ *^

ahr + 6V + c'^iv^ - s^ + k(if + w^ + w^) = 0. ^y *V^ v*

Since this equation is of the first degree^i k, we have the follow- ^*

ing theorem:6jc^ (^''+ A.;!^,V^. • -
• V U;-^^ M^^'+'^V^iJl

Theorem. An arbitrary plane («i, Vj, ?f'i, s,)t^s tangent to one

and onlij one quadric of a confocal system. - _ ^^t^-^^JUXc Lc^*-n/^ "^

The (imaginary) planes whose homogeneous coordinates satisfy

the two equaUons^frv^i_JQj_^^^^^^ r * J

"a^M^ + 6^y^ + c^zo' — s^ = 0, w'^ + V" + w^ =
are exceptional. They touch all the quadrics of the system.

Hence, all the quadrics of a confocal system touch all the planes

common to the quadric k = and the absolute.

EXERCISES

*» 1. Prove that the difference of the squares of the perpendicular from the

center on two parallel tangent planes to two given confocal quadrics is con-

stant. This may be used as a definition of confocal quadrics.

^2. Prove that the locus of the point of intersection of three mutually per-

pendicular planes, each of which touches one of three given confocal quadrics,

is a sphere.

3. Write the equation of a quadric of the system (22) in elliptic coordi-

nates. Derive from (27) a set of parametric equations of tliis quadric, using

elliptic coordinates as parameters. r, \

*( 4. Discuss the system of confocal paraboloids y i V^ s?a ^^^^

a^ + k b-^ + k

5. Discuss the confocal cones

+ —^— = 2iiz + kn^.
i^vA

+ -^— + _^=0.
a^ + k b'^ + k c- + k

<AAZ-<iyiutr4 rxi 'y^'^^n^^^



CHAPTER IX

TETRAHEDRAL COORDINATES

88. Definition of tetrahedral coordinates. It was pointed out in

Art. 34 that the four planes x = 0, ?/ =0, z — 0, and t = 0, which

do not all pass through a point, may be considered as forming a

tetrahedron which was called the coordinate tetrahedron. We
shall now show that a system of coordinates may be set up in

which the tetrahedron determined by any four given non-concu r-

Ter^t/ planes is the coordinate tetrahedron. A system of coordi-

nates so determined will be called a system of tetrahedral

coordinates.

Let the equations of the four given non-concurrent planes (re-

ferred to a given system of homogeneous coordinates) be

AiX + B,y + C,z + D,t = 0, i=l, 2, 3, 4. (1)

Since these planes do not all pass through a point, the determinant

^1
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Since the four planes (1) do not all pass through a point, the

coordinates x^, X2, x^, x^ cannot all be zero for any point in space.

When (x, ?/, z, t) are given, the values of a-j, x.,, x^, x^ are uniquely

determined by (3). Conversely, since the determinant (2) does

not vanish, equations (3) can be solved for x, y, z, t so that, when

Xi, X2, X3, x^ are given, one and only one set of values of x, y, z, t

can be found. Since (.r, y, z, t) and (kx, ky, kz, kt) represent the

same point (Art. 29), it follows from (3) that (x^, x^, x^, x^ and

{kx^, kx-i, kx^, kx^) represent the same point, k being an arbitrary

constant, different from zero.

89. Unit point. A system of tetrahedral coordinates is not

completely determined when the positions of its coordinate planes

are known. For, since the equations

k(Ax + By -{-Cz + Dt) = 0, k^ 0,

and Ax + By -\-Cz-\-Dt =

represent the same plane (Art. 24), it follows that if k^, ko, k^, k^

are four arbitrary constants differejit from zero, the equations

x', = k^(A,x + B,y + C\z + D,t), i = 1, 2, 3, 4 (4)

define a system of tetrahedral coordinates having the same coordi-

nate planes as (3) but such that

x\ = k-x-, i = 1, 2, 3, 4.

The point whose tetrahedral coordinates with respect to a given

system are all equal, so that x^: x^: x^: Xi = l : 1 : 1 -.1, is called the

unit point of the system.

Theorem I. Any j)oint P, not lying on a face of the coordinate

tetrahedron, may he taken as unit point.

For, by substituting the coordinates (x, y, z, t) of P in (4)

values of k^, k.^, k^, ki may be found such that «/ = x^ '= .^3' = x/^

so that P is the unit point.

Since the ratios A:, : ^2 : ^3 : A:4 are fixed when the unit point has

been chosen, we have the following theorem :

Theorem II. The system of tetrahedral coordinates is deter-

mined xvhen the coordinate planes .r, = 0, .Tj = 0, cCg = 0, a^^ = and

the unit point (1, 1, 1, 1) liave been chosen.
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EXERCISES

In the following problems, the equations in homogeneous coordinates of

the coordinate planes of the given system of tetrahedral coordinates are

» X - y^+2t = 0, x+2y — 2z-{-t = 0, --'^

3x + 3y + 2z + 2t-0, x-Sy + z + 2t=0.

The homogeneous coordinates of the unit point are (— 1, 2, — 1, 1).

1. Find the tetrahedral coordinates of the points whose homogeneous

rectangular coordinates are (x, y, z, t), (0, 0, 0, 1), (1, 1, 1, 1), (5, 1, — 2, 1),

(8, 1,1,0), (0,1, -1,0).

2. Find the rectangular coordinates of the points whose tetrahedral

coordinates are (— 1, 1, 4, 3), (1, 2, — 1, — 5), (0, 0, 1, 3), (xi, Xi, x^, X4).

3. Write the equation of the surface xi + 2^2 — 2 X3 — a;4 = in rec-

tangular coordinates. Show that the locus is a plane.

4. Write the equation of the plane [> x + y + z — t = in tetrahedral

coordinates.

r^ 5. Write the equation of the surface XiXo + x^Xi = in rectangular

I ^j coordinates.^ .—
^ 6. Solve Exs. 1 and 2 when the point whose rectangular coordinates are

^Q (3, 1, — 2, 2) is taken as unit point.

S^ 7. Why may not anoint lying in a face of the tetrahedron of reference

( be taken as unit point ./to i ^^O^.^,^,^^^,^^^ ^e>

, f 90. Equation of a plane. Plane coordinates. From the equation

/[^
Kx -f vy -f- wz -\- sf = (5)

y» of a plane in homogeneous rectangular coordinates, the corre-

^ spouding equations in tetrahedral coordinates can be found by

"5(5^ solving equations (3) for x, y, z, t and substituting in (5). The

^^ resulting equation is linear and homogeneous in Xi, x.2, x^, x^ of

:!^ the form

^ Wj-Tl + U^X^ + UsXs + U^Xi = 0, (6)

J* . .* with constant coefficients ^^^, ti^, 113, W4. Conversely, any equation

T of the form (6) defines a plane. For, if x^, x^, x^, X4 are replaced

4 by their values from (3), the resulting equation is

I*

ux + vy-^ wz -f- si = 0,
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wherein xi, = A^i^ + Am^ + A^u^ -\- -44M4,

V = A«i + B^iL, + B^u^ + 54W4,

ty = Ci^i + (72?t2 + (73H3 + (74?/4,
(7)

The coefficients u^, Uo, u^, u^ in (6) are called the tetrahedral

coordinates of the plane (compare Arts. 27 and 29). It follows

from equations (7) and (2) that, if u^, U2, x(s, '«4 (not all zero) are

given, the plane is definitely determined, and that, if the plane is

given, its tetrahedral coordinates (wj, U2, ih, it^ are fixed except for

an arbitrary multiplier, different from zero.

91. Equation of a point. Let {x^, x^, x^, x^) be the coordinates

of a given point. The condition that a plane whose coordinates

are (u^, xu, 7/3, xi^) passes through the given point is, from (6)

Wl^i + Xl..^2 + ^'3^'3 + "4»"4 = 0. (8)

This equation, which is satisfied only by the coordinates of the

planes which pass through the given point, is called the equation

of the point (xj, x^, x^, x^) in plane coordinates (cf. Art. 28).

It should be noticed that, in the equation (6) of a plane,

(?fj, U2, M3, W4) are constants and (x^, Xo, x^, Xi) are variables. In

the equation (8) of a point (x^, x.,, Xg, X4) are constants and

(wj, U2, u-i, W4) are variables.

92. Equations of a line. The locus of the points whose coordi-

nates satisfy two simultaneous linear equations

U'\X^ + ?/"2iC2 + U'^X^ + ^"4X4 =0 ^ ^

is a line (Art. 17). The two simultaneous equations are called

the equations of the line in point coordinates.

Similarly, the locus of the planes whose coordinates satisfy

two simultaneous linear equations

X jMi + X 2?^2 "T ^ 3^*3 "I "^ 4^*4 ^^ ")
/-I A\

JC'>, + CC"2W2 + •'C'V'3 + a^'>4 = ^

is a line (Art. 28). These two simultaneous equations are called

the equations of the line in plane coordinates.



Arts. 91-93] DUALITY 113

EXERCISES

1. Write the equations and the coordinates of the vertices and of the

faces of the coordinate tetrahedron.

2. Write the equations in point and in plane coordinates of the edges of

the coordinate tetrahedron.

3. Find the equations of the folio wing points: (1, 1, 1, 1), (3, — 5,7, — 1),

(_ 1, 6, -4, 2), (7, 2, 4, 6). ,.r

4. Write the coordinates of the following planes :

^\ + y-i. + X3 + a;4 = 0, 7 .Ti — X2 — 3 .rs ^ X4 = 0, a;i + 9 j-2 — 5 X3 — 2 X4 = 0.

5. Write the equations of the line Xi + 0:2 = 0, X3 — 7 3:4 = in plane

coordinates.

ScG. Write the equations of two points on the line.

6. Find the coordinates of the point of intersection of the planes (1, 2, 7,

3), (1, 3, 6, 0), (1, 4, 5, 2).

93. Duality. We have seeu that any four numbers x^, X2, x^, x^,

not all zero, are the coordinates of a point and that any four num-
bers ?<i, U2, U3, ?<4, not. all zero, are the coordinates of a plane.

The condition that the point (xy, x^, x^, x^) lies in the plane

(«,, 1*2, Uz, Ui), or that the plane (11^, U2, u^, u^ passes through the

point (Xi, X2, x^, x^ is

U^Xi + ?<2^*2 + ^'3^3 + ^<4^4 = 0.

This equation remains unchanged if x^, x^, x^, x^ and u^, u^, W3, u^

are interchanged.

The equations (9) and (10) of a line are simply interchanged if

point and plane coordinates are interchanged.

From the above observations, the following important principle,

called the principle of duality, may be deduced ; namely, that if

we interchange Xj, x^, x^, x^ and u^, u^, U3, u^ in the proof of a

theorem concerning the incidence of points, lines, and planes, or

concerning point and plane coordinates, we obtain at once the

proof of a second theorem. The theorem so derived is called the

dual of the first. It is obtained from the given one by inter-

changing the words point and plane in the statement.

In the next two Articles we shall write side by side for com-

parison the proofs of several theorems and their duals.

The symbols (x), (x'), (u), etc., will be used as abbreviations for

(xi, Xj, Xj, X4), (x\, x'2, x'3, x\), (itj, U2, M3, iCi) etc., respectively.
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94. Parametric equations of a plane and of a point.

Xi
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The* system of points (13)

is said to form a plane field.

The equation of the points of

this plane field is found by sub-

stituting the values of x^, Xn,

.T3, x^ from (13) in the equation

2«ra\ = of a point. The re-

sulting equation

The system of planes (14) is

.

said to form a bundle of planes.

The equation of tlie planes of

the bundle is found by sub-

stituting the values of Ui, xi-i,

«3, ?f4 from (14) in the equation

2«,.iv=0 of a plane. The re-'

suiting equation

/,2x-',M.. + Zo2.t'",», + h^x"\u, = l^u'.x^ + k%u'\x^ + k'^n"\x, =

is the equation, in plane co- is the equation, in point coordi-

ordinates, of the plane field nates, of the bundle of planes

(13). (14).

95. Parametric equations of a line. Range of points. Pencil

of planes.

Theorem. If (cc) is any Theorem. If (a) is any

point on the line determined plane through the line deternmied

by tivo given c>i.stii>ct points (.)•') hy tiro giren distinct planes («')

and {x"), every determinant of and {a" ), every determinant of

order three in the matrix order three in the tnatrix

Jby JU-~} iCQ it.

J

Xi A it/ o '^ 3 '^

I
cV 1 •1/9 "^ 3 *^

is equal to zero.

Foi', the points (a;), {x'), {x")

and any fourth point (x'") are

coplanar. Their coordinates

consequently satisfy (11). Since

(11) is satisfied for all values

of x"\, x"\, x"\, x"\, it follows

that the coefficient of each of

these variables is equal to zero,

that is, that all the determi-

nants'of order three in (15) are

equal to zero.
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Conversely, if the determi-

nants of order three in (15) are

all equal to zero, the points (x),

{x'), and {x") are collinear,

since they are coplanar with

any fourth point (x'") what-

ever.

It follows from the above

theorem that there exist three

numbers j), l^, l^, not all zero,

such that

Conversely, if the determi-

nants of order three in (16) are

all equal to zero, the planes (w),

(«'), and {u") are collinear,

since they have a point in com-

mon with any fourth plane {u'")

whatever.

It follows from the above

theorem that there exist three

numbers p, l^, l^, not all zero,

such that

px,= l,x\+lix'\, ?-=l,2,3,4. (17) pn^= l,u\+ku" ., /=1,2,3,4. (18)

In particular, we have p ^ 0,

since otherwise the coordinates

of the points {x') and (x")

would be proportional so that

the points would coincide.

Equations (17) are called the

parametric equations of the line

determined by {x') and {x").

The coefficients l^ and U are

called the homogeneous param-

eters of the points on the

line.

The system of points (17)

is said to form a range of

points. The equation of

the points of this range is

found, by substituting from

(17) in the equation

Sm.cc^ =

of a point, to be

U'^x\u- -I- l^'^x'^Ui = 0.

In particular, we have p ^ 0,

since otherwise the coordinates

of the planes (w') and («")

would be proportional so that

the planes would coincide.

Equations (18) are called the

parametric equations of the line

determined by (w') and {u").

The coefficients l^ and I2 are

called the homogeneous param-

eters of the planes through

the line.

The system of planes (18)

is said to form a pencil of

planes (Art. 24). The equation

of the planes of this pencil is

found, by substituting from

(18) in the equation

Sw-x. =

of a plane, to be

l{^u\Xi + k'Zu'^Xi = 0.
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EXERCISES

1. Prove the following theorems analytically. State and prove their duals,

(a) A line and a point not on it determine a plane.

(6) If a line has two points in common with a plane, it lies in the plane.

(c) If two lines have a point in common, they determine a plane.

(d) If three planes have two points in common, they determine a line.

2. Write the parametric equations of the plane determined by the points

(1, 7, - 1, 3), (2,5, 4, 1), (10, - 1, -3, - 5). Find the coordinates of this

plane.

3. Write the parametric equations of the point determined by the planes

(- 5, 3, 4, 1), (7, - 5, 8, 2), (6, - 4, — 3, 1). Find the coordinates of

this point.

4. Write the equation, in plane coordinates, of the field of points in the

plane xi + 2 X2 — Xs — xt = 0.

ScG. First find the coordinates of three points in the plane.

5. Find the parametric equations of the pencil of planes which pass through

the two points Ui — 5 W2 + 3 Ms — M4 = 0, 7 Mi + 2 Mo — Us — M4 = 0.

6. Prove that the points (1, 2, - 3, - 1), (3, -2, 5, - 2), (1, -6, 11, 0)

are coUinear. Find the parametric equations of the line determined by these

points and the equation in plane coordinates of the range of points on this line.

96. Transformation of point coordinates. Let (Xi, x.,, x^, x^) be

the coordinates of a point referred to a given system of tetra-

hedral coordinates, so that

X- =aiiX + a^.2y + a.i^z + aj, « = 1, 2, 3, 4, (19)

in which the determinant of the coefficients *

Let the coordinates of the same point, referred to a second S3^stem

of tetrahedral coordinates, be

a;'. = a\yx + a\.jj + a'.^z + a'J, i = 1, 2, 3, 4, (20)
in which

A' =
I

a'li a'22 a'33 a'44
1
^ 0.

* The sj'mbol
]
a-^ a-^ a^ 044 1 will be used for brevity to denote

«ii f'i2 ai3 "14

the determinant ^21 ^22 "23 ^'24

Osi ^82 Osa 034

041 043 043 044
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It is required to determine the equation connecting the two sets

of coordinates (x^, x.,, x^, x^ and (x\, x'^, x\, x'^). For this purpose

solve equations (20) for x, y, z, t. The results are

A'x = %A\,x\, A'y = :^A\,x'„ A'z = 2^1 ',30;'^, A't = %A\,x'„

in which A'^^ is the cofactor of a'-^. in the determinant A'. Sub-

stitute these values of x, y, z, t in (19) and simplify. The result

is of the form

x^ = «ii.i-'i + «,„x-'. + «i3.»'3 + wi^a/^,

X2 = (it.2iX y
-j- «22^ 2 ~r ^23*'^' 3 "I" ^''24'*^ 4J

X^ = CC^iX y
-\- (t^'yX 2 + «33-'*'' 3 + '<34't'

4,

.^4 = a^yx\ + a^rx". + aax\ + a^^x'^,

wherein.

^'«,, = a,,A\, + a,2.1',2 + «i3^1'A.3 + nu^^'u,

The determinant

T^

is called the determinant of the transformation (21). This deter-

minant is different from zero, for if we substitute in it the values

of the a-i^ from (22), we have at once * f

1

(21)

i, k = l,2, 3, 4. (22)

«n
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Since T=f^O, the system (21) can be solved for x\, x\, x\, x\ in

terms of X i, x 2, x 3, x ^. The results are

TX\ = /3uXi + Al^'2 + ^31-^-3 + (3iiXi,

Tx\ = p,.x, + /SooXo -I- ^30X3 + ^4,X4,

Tx\ = ^,3.7-1 -f /3,3X-., 4- 1833^^3 + ^843^^4,

Tx\ = p,,x, + /3,^, + l3,iX, + /?«.T„

(23)

in which ^^^ is the cofactor of a.^ in the determinant T.

The transformations (2l) and (23) are said to be inverse to each

other.

97. Transformation of plane coordinates. Let

UiXi + ii^Xo + U3X3 + u^Xi = (24)

be the equation of a given plane, referred to tlie system of tetra-

hedral coordinates determined by (19). Let the equation of the

same plane, referred to the system (20), be

I, \x\ 4- ti'ox', + u ',x', + H ,x\ = 0. (25)

If, in (24), we replace a;,, x^, x^, x^ by their values from (21), we
obtain, after rearranging the terms,

(ail?'i + It-zi^U + a^i'(3 + «4l"4)-l''l +(«i>"l + «_•_•": + «lj"3 + "-i;>'A)-'>^'-2

+ («13"l + «J3"2 + «,!3"3 + ^<43"4)-''''3 + («14"l + «-:i"2 + «34«3

+ a^,,,).i-',= 0. (26)

Since equations (25) and (26) are the equations of the same plane,

their coefficients are proporticmal, hence

l>t'\ = «i."i 4- (W^ + «'."3 4- «u"47 ' = 1, 2, 3, 4, (27)

where j^^O is a factor of i)ruportionality. If we solve equations

(27) for u^, V.-,, j/j, v^, we have

crn, = p^,n\ + ^^,n\ + ^.3.^-3 + ^,,.^'4, i = 1, 2, 3, 4, (28)

in which o- t^ and the p^,^ have the same meaning as in (23).

Since, when x^, x^, x^, x^ are subjected to a transformation (21),

M„ T<2' "3) "^h ai"6 subjected simultaneously to the transformation

(28), the systems of variables (x) and (ii) are called contragredient.
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EXERCISES

1. Prove that the four planes determined by equating to zero the second

members of equations (23) are the faces of the coordinate tetrahedron of the

system (x'l, x'2, x'3, x'4).

2. State and prove the dual of the theorem in Ex. 1 for the second mem-
bers of equations (27).

3. By means of equations (21) and (23) find the coordinates in each sys-

tem of the unit point of the other system.

4. Determine the equations of a transformation of coordinates in which

the only change is that a different point is chosen as unit point.

98. Projective transformations. Equations (21) were derived as

the equations connecting tlie coordinates of a given arbitrary point

referred to two systems of tetraliedral coordinates. We shall now

give these equations another interpretation, entirely distinct from

the preceding one, but ec^ually important.

Let there be given a system of equations (21) with determinant

T not equal to zero. Let P' be a given point and let its coordi-

nates, in a given system of tetrahedral coordinates, be {x\, x'2, x\,

x'^. By substituting the coordinates of P' in the second members

of (21), we determine four numbers a^i, x,, Xg, x^, which we consider

as the coordinates (in the same system of coordinates as those of

P') of a second point P. To each point P' in space corresponds, in

this way, one and only one point P. Moreover, when the coordi-

nates of P are given, the coordinates of P' are fixed by (23), so

that to each point P corresponds one and only one point P'. It is

useful to think of the point P' as actually changed into P by the

transformation (21) so that, by means of (21), the points of space

change their positions.

A transformation determined by a system of equations of the

type (21), with determinant T not equal to zero, is called a pro-

jective transformation. The projective transformation (23) is

called the inverse of (21). If, by (21), P' is transformed into P,

then, by (23), P is transformed into P'.

By (21), the points of the plane («') are transformed into the

points of the plane (») determined by (28). Equations (28) are

called the equations of the transformation (21) in plane coor-

dinates.
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99. Invariant points. The points which remain fixed when
operated on by a given projective transformation (21) are called

the invariant points of the transformation. To determine these

points, put x, = p.«'i in (21). The condition on p in order that

the resulting equations

(«ii —P) ^\ + «i2^"'2 + a^zx\ + a^iX\ = 0,

Ojix'i + {0.21— P)x'2 + a^^x'; + a^iX\ = 0,

ttaiic'i + ttsox', + («33 — 1^) ^"'3 + a34^'4 = 0,

a^^x'i + aiox\ + a43x'3 + {a^^ —p) x'4 =

have a set of solutions (not all zero) in common is that

D{p) =

an-p
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If o- = — 1, the four given points or planes are said to be

harmonic.

An important property of the cross ratio is stated in the follow-

ing theorem

:

Theorem. The cross ratio offour x>oints (or planes) is equal to

the cross ratio of any four points (or 2ilanes) into which they can be

projected.

In the projective transformation (21), let the points (x') and

(x") of equation (17) be projected into (y') and (y"), respectively.

It follows that the point of the range (17) whose parameters are

/i and h is projected into a point (?/) of the range determined by

(?/') and (y") such that

yi = i,y'i + i2y"i, ^• = l, 2, 3,4.

Since the parameters of the points are unchanged, the cross ratio

is unchanged. Similarly for a set of four planes through a line.

Conversely, two ranges of points, or pencils of planes, are pro-

jective if the cross ratio of any four elements in the first is the

same as that of the corresponding elements in the second.

^. EXERCISES

'

1. Let .4^(1, 0, 0, 0), 7^=(0, 1, 0, 0), C=(0, 0, 1, 0), Z)=(0, 0, 0, 1),

E={1, 1, 1, 1). Find the equations of a projective transformation which

interchanges these points as indicated, determine the roots of D( p) — 0, and

find the configuration of the invariant elements when

(a) J. is transformed into A, B into i?, C into C, D into E^ E into D.

(6) A is transformed into B, B into ^, C into D, Z> into C, E into E.

(c) A is transformed into 5, B into C, C into ^4, Z) into Z>, E into E.

(d) A is transformed into B, B into C, C into Z>, B into £", E into A.

2. Show that a projective transformation can be found that will transform

five given points A, B, C, D, E. no four of which are in one plane, into five

given points ^4', B', C", D', E' , respectively, no four of which lie in one

plane. Show that the transformation is then uniquely fixed.

^ 3. A non-identical projective transformation that coincides with its own
inverse is called an involution. Find the condition that the transformation

(21) is an involution.

^' 4. Show that the tran.sformations X\ — x'l, Xo = x'2, X3 = ± x'3, X4 = — x'4

are involutions. Find the invariant points in each case.
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5. If P, P' are any two distinct corresponding points in either involution

of Ex. 4, prove the following statements :

(a) The line PP' contains two distinct invariant points 31, 31'.

(/>) The points {PP'313I') are harmonic.

6. Find the invariant points of the transformation Xi = x'2, x.^ = x'3,

3:3 = x'4, Xi = x'l. Show that the points of space are arranged in sets of four

which are interchanged among themselves.

'7., Interpret the equations (Art. 36) of a translation of axes as the

etpiations of a projective transformation. Find the invariant elements.

8. Interpret the equations (Art. 37) of a rotation of axes as the equations

of a projective transformation. Show how this transformation can be

effected.

9. Find the cross ratio of the four points on the line (17) whose param-

eters are (0, 1), (1, 1), (1, 5), (4, 3).



CHAPTER X

QUADRIC SURFACES IN TETRAHEDRAL COORDINATES

101. Form of equation. Since the equation F(x, y, z, t) =
may be transformed into an equation in tetrahedral coordinates

by means of equation (3) of Art. 88, it follows that the equation

of a quadric surface in tetrahedral coordinates is of the form

+ 2 a^iX^x^ + 2 a23.r2.r3 + 2 a^iX^Xi + 2 Us^x^Xi = 0. a^^ = a^^. (1)

Conversely, any equation of this form will represent a quadric

surface, since by replacing each x^ by its value from (3), Art. 88,

the resulting equation F (x, y, z, t) = is of the form discussed in

Chapters VI, VIT, and VIII.

102. Tangent lines and planes. Let (x) and (y) be any two

points in space. The coordinates of any point (z) on the line

joining (x) to (y) are of the form (Art. 95)

z^ = \x^+l.y,, 1=1,2,3,4. (2)

If (2:) lies on the quadric A = 0, then

\'A(x) + 2Xf,A(x,y) + ,.'A{y) = 0, (3)

wherein

A(x, y) = A(y, x) = (a„?/i + a^,y., + a3i?/3 + a,iy,)xi +
(a2l2/l+ a222/2 + «322/3 + «422/4)^2 + («3uVl + (^3^2+ ttsS^/s + «342/4)a'3 +

(a4l2/l + a42.V2 + 0432/3 + a442/4)^'4 = 9 2^^ 2/. = ."^A ^^
•^'•- ^'^^

If (y) lies on J. = 0, then A(y) = and one root of (3) is X = 0.

If (y) is so chosen that both roots of (3) are A = 0, we must have

A(x, y) = 0. If {x) is regarded as variable, and A{x, y) is not

identically zero, the equation A{x, y) = defines a plane. The

line joining any point in this plane to the fixed point (y) on the

quadric A touches the surface at the point (y) (Art. 76). The

line is a tangent line and the plane A(x, y) = is a. tangent plane

to ^ = at (y).

124
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EXERCISES '

1. Find the equation of the tangent plane to x^ + Xi^ + X3- — a^Xi'' = at

the_point (0, 0, a, 1).

2. Show that equation (4) vanishes identically if

A = axi^ + bx2^ + cxs^ = and (y) = (0, 0, 0, 1).

3. Determine the coordinates of the points in which the line

Xi + 2 X2 4- 354 = 0, ^3 — 2 X4 = meets the surface Xi^ — xiX2 + a;2X3 + 4 ^3^= 0.

4. Show that the line Xi = 0, a;i — 3 X2 = touches the surface

0-4- — 3 xr + bxo'^ -\- Xi{xi + 5 X2) + a;3X4 = 0.

103. Condition that the tangent plane is indeterminate. If

equation (4) is satisfied identically, the coefficient of each x, must

vanish. Thus we have the four equations

«Uyi + 0212/2 4- Clsilh + «4l2/4 = 0,

«12yi + «222/2 + 032^3 + «42y4 = 0, /gx

ai3^1 + «23?/2 + «33?/3 + «43?/4 = 0,

«142/l + «242/2 + «342/3 + ^uVi = ^^

If these equations are multiplied by yi, y2, Vz, y^i respectively, and

the products added, the result is ^(?/)=0, hence if the coordinates

of a point {y) satisfy all the equations (o), the point lies on the

surface ^ = 0. From (3) it follows that the line joining any

point in space to a point {y) satisfying equations (5) will meet

the surface ^4=0 in two coincident points at (.?/). If {x) is any

other point on the surface A. so that A{x) = 0, it follows from (3)

that every point on the line joining (x) to (?/) lies on the surface.

The surface A is in this case singular and (y) is a vertex (Arts.

66 and 67).

Conversely, if A{x) = is singular, with a vertex at (?/), the

two intersections with the surface of the line joining {y) to any

point in space coincide at {y). The coefficient ^(.r, y) is identi-

cally zero and the coordinates of {y) satisfy (5). Since these co-

ordinates are not all zero, it follows that the determinant

A =

ttji a, «13



126 QUADRIC SURFACES [Chap. X.

vanishes. Conversely, if A = 0, then four nmnbeis y^, j/o, Vz, Vi

can be found such that the four equations (5) ai-e satistied. The

point iy) lies on A{;x) = and in the plane A{x, y)=0. The line

joining (y) to any point {x) will have two coincident points in

common with A(x) = at (y) ; that is, (y) is a vertex of the quadric

A. We thus have the following theorem

:

Theorem. The necessary and sufficient condition that a quadric

surface is singidar is that the determinant A vanishes.

The determinant A is called the discriminant of the quadric A.

If it does not vanish, the quadric will be called non-singular.

Unless the contrary is stated, it will be assumed throughout this

chapter that the surface is non-singular.

104. The invariance of the discriminant. In Chapter VII cer-

tain invariants under motion were considered. We shall now

prove the following theorem which will include that of Art. 74 as

a particular case.

Theorem I. If the equation of a quadric surface is subjected to

a linear transformation (Art. 96), the discriminant ofthe transformed

equation is equal to the product of the discriminant of the original

equation and the square of the determinant of the transformation.

A 4

Let A{x) = 2] 2 ^^ik^i^k = be the equation of a given quadric,

and let

a;. = ai]X\ -f a^^x'^ + a^^'s + oLh^'a, i = 1, 2, 3, 4

define a linear transformation of non-vanishing determinant T.

If these values of a;,- are substituted in A(x), the equation becomes

1=1 A=l

in which
4 4
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If we now put

127

rik = X^' Im^^mky

it follows that

'a-=2"''^*'^-

If we form the discriminant A' of A'(x'), we may write

«ll'*ll + «2l'*21 + «3l'"31 + "4l''41 «u''l2 + (h\'''22 + «3l''32 + «4l''42

«12^11 + «22'*21 + «32''31 + «42'*41 «12»'l2 + «22^'22 + «32'"32 + «42''42

A' =

This determinant may be expressed as the product of two deter-

minants T and R (Art. 96, footnote), thus

«11
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The method of proof will be sufficiently indicated by consider-

ation of the minor

This determinant, when written in full,

«l2'''ll + «22''21 + «32'*31 + «42'"41

'*u''l2 "1" ^^21^22 ~l~ '''si^Sa ~r C'4l'*42

«12''l2 + «22'*22 + "32^32 + a42''42

may be expressed as the sum of sixteen determinants, four of

which vanish identically. The remaining ones may be arranged

in pairs, by combining the determinant formed by the ith term of

the first column and the kth term in the second with that formed

by the kth. term in the first column and the ith in the second.

Every such pair is equivalent to the product of a second minor of

A and a second minor of T. If / = 2, k= 3, for example, we have

CC21T21 tt31^'32

^22^21 ^32^*32

In this way it is seen that every second minor of A' is a linear

function of the second minors of the determinant R, the coeffi-

cients not containing yv^.

4

By replacing each ?-.^ by its value ^^''w""''; ^"^^ repeating the

m=l

same process, it may be seen that each second minor of R may be

expressed as a linear function of the second minors of A, the

coefficients not containing any a,^.. The same reasoning may be

applied to the first minors of A'. This proves the proposition.

As a corollary we have the further proposition :

Theorem III. Tlie rank of the discriminant of the equation of

a quadric surface is riot changed by any linear transformation with

non-vanishing determinant.

+
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For, it follows from Th. II that the rank of A' is not greater

than that of A. Neither can it be less, since by the inverse trans-

formation the minors of A may be expressed linearly in terms of

those of A'.

We may now conclude : if the discriminant A is of rank four,

the quadric A(x) = is non-singular (Art. 103). If A is of rank

three, ^ = is a non-composite cone, for if we take its vertex

(Art. 103) as the vertex (0, 0, 0, 1) of the tetrahedron of refer-

ence, the equation A = reduces to

a^Xi^ + cu.X2^ + 033X3^ + 2 a^nX^x^ 4- 2 ai3cria;3 + 2 a23X2Xs = 0.

The line joining any point on the surface to (0, 0, 0, 1) lies on

the surface, which is therefore a cone (Art. 46). Since by

hypothesis A is of rank three, we have

I

«lia22«33
!
^ ^,

hence the cone is non-composite. If A is of rank two, the quadric

is composite, for if we take two vertices as (0, 0, 0, 1) and

(0, 0, 1, 0), the equation reduces to

aiiX'i^ + «22-V + 2 ai2XiX2 = 0,

which is factorable. Since by hypothesis A is of rank two,

o„a22 — du is not zero, hence the two components do not coincide.

If A is of rank one, the equation may be reduced to the form

.rj2 = 0, which represents a plane counted twice.

105. Lines on the quadric surface.

Theorem. TTie section of a quadric surface made by any of

its tangent planes consists of two lines passing through the point

of tangency.

For, let (?/) be any point on a quadric surface ^ = 0, and (z) any

point on the tangent plane at (y), so that A(y) = 0, A(y, z) = 0.

If (2) is on the curve of intersection of A(x) = 0, A{x, y) = 0,

then A{z) = and (3) is identically satisfied, hence every point

of the line joining (y) to (2) lies on the surface. Since the sec-

tion of a quadric made by any plane is a conic (Art. 81) and

one component of this conic is the line joining (y) to (2), the

residual component in the tangent plane is also a straight line.
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The second line also passes through (y), since every line lying in

the tangent plane and passing through (y) has two coincident

points of intersection with the surface at (y). ,

106. Equation of a quadric in plane coordinates. Let the plane

u^x^ + UnX^ + n^x^ + v^Xi = (7)

be tangent to the given quadric ^1, and let (y) be its point of

tangency. Since A(x, y) = is also the equation of the tangent

plane at (?/), the equation 2?/,;*;^ = must differ from A{x, y)=0
by a constant factor k (Art. 24), hence

(hlVl + a2l2/2 + «3l2/3 + fl'41.V4 = kUu ^

«122/l + «222/2 + a32.V3 + «42i/4 = ^'^2,
(g^)

auVi + (hslh + «332/3 + ttisy* = ^«3>

«14^1 + ^24^2 + «34.V3 + «44.V4 = ^"4-

Moreover, since (?/) lies in the tangent plane, we have

^^i2/i + ^'22/2 + n^lh + "4?/4 = ^- (9)

On eliminating y^, y^, y^, y^ and k between (8) and (9), we obtain

as a necessary condition that the plane (?<) shall be tangent to the

surface,

$(?<)=

«11
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The equation ^ (») = is of the second degree in ?fj, U2, u^, n^.

It is the equation of the quadric in plane coordinates.

By duality it follows that any equation of the second degree

in plane coordinates, whose discriminant is not zero, is the equa-

tion of a quadric surface in plane coordinates.

If A is of rank three, so that A = is the equation of a cone,

the equation (^(a) =0 reduces to C^k-u^f^ 0, 2fci"i = being the

equation of the vertex of the cone. If A is of rank less than

three, ^{u) = vanishes identically. The equation <!>(?<) = was

in fact derived simply by imposing the condition that the section

of the quadric by the plane (u) should be composite.

EXERCISES

1. If the equation ^(.r) = cuntaius but three variables, show that it

represents a singular quadric.

2. Calculate the discriminant of Xi- + 'j-{' + X2'^ — x^^ = 0.

3. Show that the di.scriuiinaiit of <i>(?6) = contains the discriminant of

^(x) = as a factor.

4. Given A{x) = axi'- + bx-^^ + cxi^ + dx^^ = 0, determine the form of

the equation $(m) = 0.

5. When the equation *(«) = is given, show how to obtain the equation

A{x) = 0.

6. Given A (x) = axi^ + bx-r + 2 cxai = 0, find <P(u) = 0.

7. Find the discriminant of

A{X) = Xr — Xo- — X1X3 — XoXs + XyXi + XoXi + X-iXi = 0,.

and determine the form of <!>(?<) = 0.

8. Given 4>(?<) = Ui^ — 2 uiUo + u-2^ + 2 ti^uz + 2 xiiin — 2 xi^u-i — 2 u^u^ +
M3- + »4^ + 2 u-iUi = 0, find A{x) = and interpret geometrically. •* '"i"

*

9. Find the two lines lying in the tangent plane Xi = to the quadric

X\X-2 + xi- — xi^ — 0.

10. \yrite the equation of a quadric passing through each vertex of the

tetrahedron of reference.

11. \Yrite the equation of a quadric touching each of the coordinate

planes (use dual of method of Ex. 10).

12. Write the equation of a quadric which touches each edge of the tetra-

hedron of reference.

13. What locus is represented by the equation 'LatkUiUk — when the dis-

criminant is of rank three ? of rank two ? of rank one ?

14. Show that through any line two planes can be drawn tangent to a

given non-singular quadric.
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107. Polar planes. When the coordinates Zj, Z2, z^, Zi of any

point (z) in space are substituted in A(;x, z) = 0, the resulting

equation defines a plane called the polar plane of (z) as to the

quadric A.

Let (y) be any point in the polar plane of (2), so that

A(y, z) = 0. Since the expression

A(y, z) = A(z, y)

is symmetric in the two sets of coordinates yi, y2, y^, 2/4 and z^, z^,

z^, z^, it follows that (z) lies in the polar plane of (?/). Hence we
have the following theorem :

Theorem. If the j)oiut (y) lies on the polar plane of (z), then (2)

lies on the polar plane of (y).

Any two points (?/), (z), each of which lies on the polar plane of

the other, are called conjugate points as to the quadric A(x) = 0.

Dually, any two planes are said to be conjugate if each passes

through the pole of the other.

108. Harmonic property of conjugate points. We shall prove

the following theorem.

Theorem. Any two conjugate j^oints (x), (y) and the two points

in which the line joining them intersects the quadric constitute a set

of harmonic jioints.

The coordinates of the points (z) in which the line joining the

conjugate points (x), (y) as to the quadric A are obtained by

putting Zi = \x- + /A?/- and substituting these values in A{z) = 0.

The values of the ratio X : fx are roots of the equation (Art. 102)

A2.4(x) + 2 XfxA(x, y) + fi?A(y) = 0.

Since A{x, y) = 0, if one root is Aj : /xi, the other is — Ai : /aj. The
coordinates of the points (x), (y) and the two points of intersec-

tion are therefore of the form

^i, Vi, K^i + Mi, K^\ - Mi, ? = 1, 2, 3, 4,

hence, the four points ai'e harmonic (Art, 100).

Dually, any two conjugate planes («), {v) and the two tangent

planes to the quadric through their line of intersection determine

a set of harmonic planes.
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109. Locus of points which lie on their own polar planes. The

condition that a point (y) lies on its own polar plane A{x, y) =0
as to A(x) = is A{y, y) = A{y) = 0, that is, that the point lies on

the quadric. We therefore have the theorem :

Theorem. The locus of points ichich lie on their polar planes as

to a quadric A(x) = is the quadric itself.

Since when (y) is a point on A(x) = 0, A{x, y) = is the equa-

tion of the tangent plane to A(x) =0 at {y), it follows that the

polar plane of any point on the surface is the tangent plane at

that point.

A point which lies on its own polar plane will be said to be

self-conjugate. Dually, a plane which passes through its own pole

will be said to be self-conjugate.

110. Tangent cone. If from a point (y) not on the quadric A
all the tangent lines to the surface are drawn, these lines define a

cone, called the tangent cone to ^1 from (//).

Theorem. Tlie tangent cone to a quadric from any point not on

the surface is a quadric cone.

Let (x) be any point in space. The coordinates of the points

(z) in which the line joining (x) to (y) meets the quadric A are of

the form
2;. = A.i\ -|- fxy^,

in which A : fi are roots of the quadric equation

\'A{x) + 2 \^A(x, y) + /.2.4(v/) = 0.

The two points of intersection will be coincident if

[A{x, y)J = A{x)A{y). (11)

If now {y) is fixed and (x) is any point on the surface defined by

(11), then the line joining {x) to {y) will be tangent to A = 0.

Since this equation is of the second degree in x, the theorem
follows.

The curve of intersection of the tangent cone from (?/) and the

quadric is found by considering (11) and A{x) = simultaneous.
The intersection is evidently defined by

\_A{x,y)J=0, A{x) = 0.
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This locus is the conic of intersection of the quadric and the polar

plane of the point (t/), counted twice.

If (y) is a point on the surface, then ^l(^) = and the tangent

cone reduces to the tangent plane to ^4 = at {y), counted twice.

111. Conjugate lines as to a quadric. We shall now prove the

following theorem.

Theorem. The polar j^layie of every jwinf of the line joining any

two given points (y), (z) jiasses through the line of intersection of the

polar planes of {y) and (z).

The polar planes of (y) and of (z) are A{x, y) = and A(x, z)

= 0. The coordinates of any point of the line joining (jj) and (z)

are of the form Xy--j-iJiZ-; and the polar plane of this point is

A{x, Xy -\- jxz) = 0. Since this equation is linear in Xy^ + /x2,, it

may be rewritten in the form

XA{;x, y) + fxA{x, z) = 0,

which proves the theorem.

From Art. 107 it follows that the polar plane of every point of

the second line passes through the first. Two such lines are

called conjugate as to the (paadric. If from P, any point on the

quadric, the transversal to any pair of conjugate lines is drawn, it

will meet the quadric again in the harmonic conjugate of P as to

the points of intersection with the conjugate lines, since its inter-

sections with these lines are conjugate points (Arts. 107, 108).

EXERCISES

1. Determine the equation of tlie polar plane of (1, 1, 1, 1) as to the

quadric .ii"- + »;2" + *'3^ + ^i" = 0.

2. Find the equation of the line conjugate to a:i = 0, a;2 = as to the

quadric s'l'^ + X2^ + X3- + Xi^ = 0.

3. Show that any four points on a line have tlie same cro.ss ratio as their

four polar planes.

4. Find the tangent cone to 3:1X2 — x^Xt = from the point (1, 2, 1, 3).

5. If a line meets a ([uadric in P and Q, show that the tangent planes at

P and Q meet in the conjugate of the line.
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6. Show that t]\e quadrics xr + xr + x-i^ — kXi~ = 0, xr + Xo- + x.r — Ix^^

= are such that the pohxr plane of (0, 0, 0, 1) is tlie same for both. Inter-

pret this fact geometrically.

7. Write the equation of a quadric containing the line Xi = 0, X2 = 0.

How many conditions does this impose upon the equation ?

8. Write the equation of a quadric containing the line Xi = 0, x^ = and
the line X3 = 0, Xi = 0.

9. Show that through any three lines, no two of which intersect, passes

one and but one quadric.

112. Self-polar tetrahedron. Associated with every tetrahedron

P1P2F3P4 is a tetrahedron 7ri7r27r37r4 formed by the polar planes of

its vertices, ttj of P^, w^, of P^, ttj of P3, and -n-^ of P^. Conversely,

it follows from Art. 107 that the plane P^P^P^ is the polar plane

of the point ttittottj, etc.

Two tetrahedra P^P^P^P^, Tr^ir^rr^-i, such that the faces of each

are the polar planes of the vertices of the other as to a given

quadric, are called polar reciprocal tetrahedra. If the two tetra-

hedra coincide, so that the plane ttj is identical with the plane

P^P^Pi, etc., the tetrahedron is called a self-polar tetrahedron.

To determine a self-polar tetrahedron choose any point Pi not

on A{x) and determine its polar plane tt). In this polar plane

choose any point P, not on A{x) and determine its polar plane tt^.

This plane passes through P^ (Art. 107). On the line of inter-

section of 7rj7r2 choose a third point P3 not on A{x) and determine

its polar plane ^3. The plane tt^ passes through Pi and P.,.

Finally, let P4 be the point of intersection of ttittotts. The polar

plane 774 of P4 passes through points P^P^P^. Hence the tetra-

hedron P^P^P^P^ = TTi 772773774 is a self-polar tetrahedron.

113. Equation of a quadric referred to a self-polar tetrahedron.

Theorem. Tlie necessarj/ and sufficient condition that the equa-

tion of a quadric contains only tlie squares of the coordinates is that

a selfpolar tetrahedron is chosen as tetrahedron of reference.

If the tetrahedron of reference is a self-polar tetrahedron, the

polar plane of the vertex (0, 0, 0, 1) is x^ = 0. But the equation

^(^> 2/) = <^ of the polar plane of (0, 0, 0, 1) is a4ia;i + a42a;2 + a43.'r3

+ ««-'^*4 = 0, hence a^ = a^ = O43 = 0. Since the polar plane of
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(0, 0, 1, 0) is x^ = 0, it follows further that O13 = 033 = 0, and since

the polar plane of (0, 1, 0, 0) is X2 = 0, that a^z = 0. But if these

conditions are all satisfied, then the polar plane of (1, 0, 0, 0) is

Xj = 0, and the equation of the quadric has the form

Conversely, if the equation of a quadric has the form

OtllX'j -|- 0!22'^2 I" '^33'^3 1
fl'44'^4 ^ "j

the tetrahedron of reference is a self-polar tetrahedron. Since

A^O, the coefficients a^j are all different from zero.

If the coefficients in the equation of a quadric are real numbers,

it follows from equation (4) that the polar plane of a real point is

a real plane, hence from Art. 88 the equation of the quadric can

be reduced to the form 2a„.'c'^ = by a real transformation of

coordinates, that is, one in which all the coefficients in the equa-

tions of transformation are real numbers.

By a suitable choice of a real unit point the equation of the

quadric may further be reduced to the form

Xj^ + X2^ ± x^ ± x^ = 0.

114. Law of inertia. The equation of a quadric having real

coefficients may thus be reduced by a real transformation to one

of the three forms

(a) Xi^ + xi + x^^ + x^ = 0,

(6) xy-" + x,-" + x,"" - x-" = 0,

(c) .Xi^ + .r2- — x^^ — x^^ = 0.

Theorem. TTie equation of any real non-singxdar quadric may he

reducedbya real transformation to one and only one of the types (a),

(6), (c).

A quadric of type (a) contains no real points, as the sum of the

squares of four real numbers can be zero only when all the num-

bers are zero. If the equation is of type (6), the surface contains

real points, but no real lines, for a real line lying on the surface

would cut every real plane in a real point, but the section of (b)

by 3^4 = is the conic x^^ + x^^ + .T3'^ = 0, which contains no real



Arts. 113-115] RECTILINEAR GENERATORS 137

points. If the equation of a quadric can be reduced to type (c),

the surface contains real points and real lines. The line

x^ — X3 — 0, X2 — x'4 = 0, for example, lies on the surface. Any

real plane through it will intersect the quadric in this line and

another real line. If the equation of a quadric can be reduced

to one of those forms by a real transformation, it can evidently

not be reduced to either of the others, since real lines and real

points remain real lines and real points.

The theorem of this Article is known as the law of inertia of

quadric surfaces. It states that the numerical difference between

the number of positive terms and the number of negative terms

is a constant for any particular equation independently of what

real transformation is employed.

By a transformation which may involve imaginary coefficients

the equation of any quadric may be reduced to the form 2x--^ = 0.

For this purpose it is necessary only to replace x- by —l^z in the

equation Sa^.x,^ = of Art. 113.

115. Rectilinear generators. Reguli. If in the equation

2j;^.2 = 0, the transformation

Xi = a;
J

-{- X 2} X2 = l\X 1
— ^2)} ^i^^ ^{.^ 3 I" -^ 4)9 ^4 ^^

i*^ 3 '''4/

is made, it is seen that the equation of any quadric can also be

written in the form

If the quadric is of type (c), its equation can be reduced to (12)

by a real transformation. In the other cases the transformation

is imaginary.

The line of intersection of the planes

""1*^1 ~" '^2*''^3j /CjiC^ ^^ ^2*^2 \ *^/

lies on the quadric for every value of k^ : ^^, since the coordinates

of any point (y) on (13) are seen by eliminating k^ : k^ to satisfy

(12). Conversely, if the coordinates of any point (.?/) on the

quadric are substituted in (13), a value of k^ : ko is determined

such that the corresponding line (13) lies on the quadric and

passes through [y).
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No two lines of the system (l.'>) intersect, for if k^Xi = A^-jXa,

k^x^ = knXo, and k\Xi = ^''2^2J k\x^ = ^'2-^3 are the two lines, the con-

dition that they intersect is

k, fco

k\ k',

k, A-,

k'. k\

— — (kiK 2 — "-'2"^ 1 ) — '-'•

But this condition is not satisfied unless k^ : k, = A;'i : A;',, that is,

unless the two lines coincide, hence

:

Theorem. Througk each point on the quadric (12) jjcisses one

and bwt one line of the sytitem (13), lying entirehj on the surface.

A system of lines having this property is called a regulus

(Art. 79).

In the same way it is shown in the system of lines

l^x, = l.,x„ 1^X3 = 1x2 (14)

is a regulus lying on the same quadric (12). Those two reguli will

be called the A:-regulus and the Z-regulus, respectively. It was

seen that no two lines of the same regulus intersect. It will now
be shown that every line of each regulus intersects every line of

the other. Let 7. . _ 7. . ^ . _ 1.
A'j.i'j — A'2.^'3, KiX^ — /l2^2

be a line of the A'-regulus and

(j.l'l = 10X4, tj2?3 = I2X2

be a line of the Z-regulus. The condition that these lines intersect

^^^^^^
k, A-2

ko k,

li l,

/. ^1

But this equation is satisfied identically ;
hence the lines intersect

for all values of k^ : k^ and Zj : l^.

110. Hyperbolic coordinates. Parametric equations. Each value

of the ratio k^ : k., uniquely determines a line of the A;-regulus
;
each

value of li : L uniquely determines a line of the /-regulus. These

two lines intersect; their point of intersection lies on the quadric;

= 0.
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through this point passes no other line of either regains. Thus,

a pair of values k^ : A:, and Zj : I2 fixes a point on the surface.

Conversely, any point on the surface fixes the line of each system

passing through it, and consequently a pair of values of Jc^ : k^ and

^1 : ^2- These two numbers are called hyperbolic coordinates of the

point.

From equations (13), (14) the relations between the coordinates

x^, X2, X3, x^ of a point on the surface and the hyperbolic coordi-

nates ki : k.,, li : I2 are

These equations are called the parametric equations of the

quadric (12). Since the equation of any non-singular quadric can

be reduced to the form (12) by a suitable choice of tetrahedron of

reference, it follows that the general form of the parametric

equation of a quadric surface, referred to any system of tetra-

hedral coordinates, may be written in the form

ic. = ciijcl, + «-2i^\h + (hi^J'i + ^ji^'j^jj * = 1, 2, 3, 4.

117. Projection of a quadric upon a plane. Given a quadric

surface A and a plane tt. If each point Pof A is connected with a

fixed point on A but not on tt, the line OP will intersect w in a

point P', called the image of P. Conversely, if any point P' in tt

is given, the point P of which it is the image is the residual point

in which OP intersects A. If P describes a locus on A, P' will

describe a locus on tt, and conversely. This process is called the

projection of A upon tt.

Through pass two generators ,7, and g^ of A, one of each

regulus. These lines intersect tt in points 0^, 0,, which are

singidar elements in the projection, since any point of ^i has Oi

for its image, and any point of g.^ has 0^ for its image. The tan-

gent plane to A at contains the lines ^i, r/o) hence it inter-

sects the plane tt in the line 0^0,. Any point P' of O^Oi will

be the image of 0. The line O/Jj will be called a singular line.

The tangent lines to A at form a pencil in the tangent plane;

any line of this pencil is fixed if its point of intersection Avith

O1O2 is known. If a curve on A passes through 0, the point in

which its tangent cuts 0^0^ will be said to be the image of the
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point on that curve. The generators of the regulus to which gr,

belongs all intersect g^ ; each, with 0, determines a plane passing

through g^, and the intersections of these planes with tt is a

pencil of lines passing through Oo. Similarly for the other regu-

lus and Oj. The two reguli on A have for images the pencils of

lines in ir with vertices at Oj, O2.

118. Equations of the projection. Let 0, Oj, 0^ be three vertices

of the tetrahedron of reference ; take for fourth vertex the point

of contact 0' of the other tangent plane through O1O2. If

= (0, 0, 0, 1), 0, = (0, 0, 1, 0), 0' = (1, 0, 0, 0), 0, = (0, 1, 0, 0),

the equation of the surface may be written

Let ^1, 4) 4 be the coordinates of a point in the image plane, re-

ferred to the triangle of intersection of o^j = 0, Xj = 0, ccj = and

the image plane tt or ^a^x- =0. Any point of the line joining

(0, 0, 0, 1) to (?/i, 2/25 Vz, Vi) on A will have coordinates of the form

Tcy^, ky^, ky^, A'l/^ + A,

wherein k'^a^y^ + a^X = for the point in which the line pierces

the plane tt.

Moreover, since $i = kyi (i = 1, 2, 3) and yiy^ — y^^ = 0,

,, y^ih 7, v?t3

Hence, a point (?/) on A and its image (|) in tt are connected by

the equations

Plh = ^l^ plh = Ii4. pVz = 44> Plh = 44- (16)

If 4 = 0, tlien ^1 = 0, 2/2 = 0, 2/3 = 0, so that any point of the line

0;02 corresponds to 0. If ^1 = and ^ = 0, all the ?/ vanish, but

if we allow a point to approach Oi in tt along the line ^ — t^ = 0,

then the corresponding point on A is

pyx=T%\ py2 = rt'^S Plh = r^2^z, Pl/i=i2^3,

from which the factor ^ can be removed. If now ^ is made to

vanish, the point on A is defined by

Z/i = *N 2/2 = 0, ?/3 - T.V4 = 0.
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Thus, to the point Oy correspond all the points of the generator

gi, but in such manner that to a direction |i — t^2 = through Oj

corresponds a definite point (0, 0, t, 1) on g^. To the line

li
— T^2 = as a whole corresponds the line

?/i
- ry. = 0, ^3 - ry^ = 0,

that is, a generator of the regulus g^. A plane section cut from A
by the plane 2«iic, = has for image in tt the conic whose equa-

tion is

It passes through Oy, Oz-

EXERCISES

1. Prove that if the image curve C is a conic not passing through Oi nor

O2, then the curve C on J. has a double 'point at 0, intersects each generator

of each reguhis in two points, and is met by an arbitrary plane in four points.

2. If C is a conic through Oi but not O2, then C passes through 0, inter-

sects each generator gi in two points and each generator g2 in one point ; it

is met by a plane in three points.

3. By means of equations (16), show that C of Ex. 1 lies on another

quadric surface, and find its equation.

4. By means of equations (16), show that C of Ex. 2 lies on another

quadric, having a line in common with A. Find the equation of the surface

and the equations of the line common to both.

119. Quadric determined by three non-intersecting lines. Let

the equations of three straight lines I, I', I", no two of which inter-

sect, be respectively

2m.x.. = 0, ^ViXi = ; 2w>, = 0, ^v\x, = ; ^u",x, = 0, ^v'\x, = 0.

It is required to find the locus of lines intersecting I, I', I".

Let (y) be a point on l" so that

2»",7/,. =0, 20. =0. (17)

The equation of the plane determined by (_?/) and I is

2M,.?/i2v,a;. — 2",ic.2'y,?/, = 0, (18)

and of the plane determined by (y) and I' is

%a\y,^v',Xi - •$u\xr$o',y, = 0. (19)
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The planes (18) and (19) intersect in a line which intersects I, I',

I". Moreover, the equations of every line which intersects the

given lines may be written in this form. If we eliminate
?/i, 1/2,

?/3, 2/4 from (17), (18), (10), we obtain a necessary condition that

a point (x) lies on such a line. The equation is

u^{vx) — t\{ux) U2(vx) — V2{vx) U3(vx)—V3{iix) u^(vx)~i\(vx)

u\(v'x)— v\(u'x) — —
u'\ u\ u'\ u'\
" '"" v'\ v''v V

= 0,

(20)

wherein (iix) is written for 2m<Xj, etc.

Since this equation is of the second degree, the locus is a quadric.

The skew lines ?, V, I" all lie on it, hence it cannot be singu-

lar. The common transversals of I, I', I" belong to one regulus,

and I, I', I" themselves are three lines of the other regulus.

If .T, =0, X2 = is chosen for I', and Xj = 0, 0:4 = for I", the

equation becomes

= 0,

X2
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120. Transversals of four skew lines. Lines in hyperbolic posi-

tion. We can now solve the problem of determining the number

of lines in space which intersect four given skew lines li, I2, I3, I4

by proving the following theorem :

Theorem. Four skew lines have at least two (distinct or coin-

cident) transversals. If they have more than two, they all belong to

a regulus.

Any three of the lines, as ^1, I2, h, determine a quadric on which

^1, I2, I3 lie and belong to one regains. The common transversals

of Zj, ?25 '3 constitute the generators of the other regulus. The

line Z4 either pierces this quadric in two points P^, P^, or lies

entirely on the surface. In the first case, through each of the

points Pi, P2 passes one generator of each regulus, hence one line

meeting /j, h, I3. But P^, Po are on l^, hence through Pj, P2 passes

one line meeting all four of the given lines. In the second case,

li belongs to the same regulus as li, L, I3.

Four lines which belong to the same regulus are said to be in

hyperbolic position.

EXERCISES

1. Write the equations of the quadric deteruiined by the lines

Xi + X2 = 0, X3 + a-4 = ; 2 xi + X2 — X3 = 0, X2 + X3 — 2 X4 = ;

Xi — X2 — X3 + X4 =: 0, xi + 2 X2 + 3 X3 + 4 X4 = 0.

2. Find the equations of the two transversals of the four lines

Xi = 0, X2 = ; X:i = 0, X4 = ; Xi + X3 = 0, X2 + 0:4 = ;

Xi -f- X4 — 0, X2 — X-i = 0.

3. When a tetrahedron is inscribed in a quadric surface, the tangent

planes at its vertices meet the opposite faces in four lines in hyperbolic

position.

4. State the dual of the theorem in Ex. 3.

5. Find tlie polar tetrahedron of the tetrahedron of reference as to tbe

general quadric A = 0.

121. The quadric cone. It has been seen (Art. 104) that the

surface A = "^aikXiX^. = represents a proper cone if and only

if the discriminant is of rank three. In this case there is one

point (y) whose coordinates satisfy the four equations

anJh + «,22/2 + «i3//3 + oii4?/4 = 0, i = 1, 2, 3, 4. (21)

The point (?/) is the vertex of the cone.
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The equation of the polar plane (Art. 107) of any point (z) with

regard to the cone is

(2aa2:,) x^ + {^a^z,) x^ + C^a^^z,) x, + (2a,42,) x^ = 0. (22)

On rearranging the equation in the form

C$a,,x,) z, + (2a,,.7;,) z, + {^a,,x,) z, + (Sa^.x.) z, = 0, (23)

it is seen that the coordinates of the vertex {y) will make the

coefficient of every coordinate z,- vanish, hence

:

Theorem 1. TJie j)olar plane of any point in space ivith regard

to a quadric cone passes through the vertex. The polar plane of the

vertex itself is indeterminate.

Moreover, the polar plane of all points on the line joining any

point (2;) to the vertex will coincide with the polar plane of (2),

since the coordinates of any point on the line joining the vertex

(y) to the point (z) are of the form k^y^ + kzZi. On substituting

these values in (23) and making use of (21) we obtain (22) again.

In particular, if (z) lies on the surface, the whole line (;?/) [z) is on

the surface ; the polar plane is now a tangent plane to the cone

along the whole generator passing through (2:). Hence

:

Theorem II. Every tangent plane to the cone jmsses through the

vertex and touches the surface along a generator.

If the vertex of the cone is chosen as the vertex (0, 0, 0, 1) of

the tetrahedron of reference, then from (22), a^^ = a^ = O34 =a44=0,

hence the equation of the surface is independent of 0:4. Con-

versely, if the equation of a quadric does not contain x^, then

A = and the surface is a proper or composite cone with vertex

at (0, 0, 0, 1). The equation of any quadric cone with vertex at

(0, 0, 0, 1) is of the form

K= ^a^^x^x^ — 0, i, k=l,2, 3.

The equation of the tangent plane to K at a point (2) is

+ (ctsi^^i + a3222 + assh) X3 = 0.
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If a plane 2"ja.\ = coincides with this plane, then

^11^1 ~r 0^1222 4" cii^z^ = CUi,

^31^1 "r <^32^2 ~r ^33^3 ^^ ''^Sj

^4 = 0.

Moreover, the point (z) must lie in the plane SWiic, = 0, hence

2?<.z^ = 0. If z^, Z2, %, ^ are eliminated from these equations, the

resulting equations are

W4 = 0,

an
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EXERCISES
1. Show that

4 xi2 + 6 ri.ra + 8 x-r + 9 Xg^ + 12 X3X4 +4 3:42 =
represents a cone. Find the coordinates of its vertex.

2. Find a value of k such that the equation

x{- — 5 x\X2 + 6 X2^ + 4 x^ — TcXi'X'i + a'4"'^ =

represents a cone.

3. Write tlie equations of tlie cone of Ex. 1 in plane coordinates.

4. In equations (24), replace m by x,- and interpret the resulting equations.

5. Prove that if the two lines of intersection of a quadric and a tangent

plane coincide, the surface is a cone.

6. What locus on the cone K has for its projection in tt a conic :

(a) not passing through 0' ?

(6) passing through 0', not touching I ?

(c) touching I at O' ?

7. State some properties of the projection upon tt of a curve on K which

passes k times through 0, has A;' branches at the vertex, and intersects g in n

additional points.



CHAPTER XI

LINEAR SYSTEMS OF QUADRICS

In this chapter we shall discuss the equation of a quadric sur-

face under the assumption that the coefficients are linear functions

of one or more parameters.

123. Pencil of quadrics. If

A = 2a.,.avx-^ = 0, B= ^b^XiX,^ =
are the equations of two distinct quadric surfaces, the system

.1 - A5 = 2 (a,, - Xb,,) x,x, = 0, (1)

in which X is the parameter, is called a pencil of quadrics.

Every point which lies on both the given quadrics lies on every

quadric of the pencil, for if the coordinates of a point satisfy the

equations A = (), B = Q, they also satisfy the equation A — XB =
for every value of X.

Through any point in space not lying on the intersection of

A = 0, B = passes one and but one quadric of the pencil. If

(y) is the given point, its coordinates must satisfy the equation (1),

hence
A(y)-XB{y) = 0.

If this value of X is substituted in (1), we obtain the equation

Aiy)B-Biy)A =

of the quadric of the pencil (1) through the point (y).

124. The X-discriminant. The condition that a quadric

A — XB = of the pencil (1) is singular is that its discriminant

vanishes, that is,

aji — A.&,i a,2 — A6i2

Clfj2 — X0i2 CI22 — XU22

ai3 — AO13 a23 — A623

Uu — Xbu a24 — A524

147

I
a.i. — A6,.

I

=
ai3 — ^&i3
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This deterraiuant will be called the X-discriminant. If it is iden-

tically zero, the pencil (1) will be called a singular pencil. If the

pencil is not singular, equation (2) may be written in the form

AX* + 4 ©A^ 4- 6 4>A2 + 4 ®'A -h A' = 0. (3)

If A ^ 0, this equation is of the fourth degree in A. If A = 0,

the equation will still be considered to be of the fourth degree,

with one or more infinite roots. It follows at once from equation

(3) that in any non-singular pencil of quadrics there are four

distinct or coincident singular quadrics. If in (3), A is put equal

to zero. A' results. But from (2), this is the discriminant of

^ = 0. Similarly, A is the discriminant of B = 0. Let jS,^ be

the cofactor of 6,^. in A. From (2) and (3) we obtain

- 40 = ciuAi + «22/^22 + ••• + (isAi-

If = 0, yl = is said to be apolar to S = 0. Similarly, if 0'= 0,

B= is said to be apolar to ^1 = 0. A geometric interpretation

of this property will be given later (Art. 149).

125. Invariant factors. If the equations of the quadrics of a

non-singular pencil are transformed by a linear substitution such

that ^ = is transformed into A' = and B = into B' = 0,

then A — XB = becomes A' — \B' = 0. Moreover, if T is the

determinant of the transformation of coordinates, then (Art. 104)

\a\,-kb',,\ = T'\a,,-\b,,\.

From this formula we have at once

Theorem I. If (A— Ai)*o is a factor of |

a.^ — Ai.t |, it is also a

factor of
I

a',,. — A^'.^
|
and conversely.

Hence the numerical value and multiplicity of every root of

the A-discriminant is invariant under any linear transformation

of coordinates. Moreover, by a proof similar to that of Theorem

II, Art. 104, we obtain the following theorem

:

Theorem II. Every sth minor of the transformed X-discriminant

is a linear function of the sth minors of the original X-discriminant

and conversely.

From the two theorems I and II we obtain at once
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Theorem III. If (A — A,)* is a factor of all the sth minors of

|fl.^_X5.^|^ then it is also a factor of all the sth minors of

I
a'i* — -^^'i* I

^'^^ conversely.

Let (A — A,)*o be a factor of the A-discriminant,

(X. — Ai/i of all its first minors,

(A — Ai)*2 of all its second minors, etc.,

k^ being the highest exponent of the power of (A — Aj) that

divides all the sth minors, and k, being the first exponent of the

set that is zero.

Let also

Li = A'o — A"i, Lo = A;i — k^, •••, -i/, = a;,._i. (4)

From Theorem III we have

:

Theorem IV. The expressions

(A-AOS (A-AOS •••, (A-Ai)^^

are independent of the choice of the tetrahedron of reference.

These expressions are called invariant factors or elementary

divisors to the base A — A, of the A-discriminant.

We shall next prove the following theorem :

Theorem V. The expimcnt of t^ack invariant factor is at least

unity.

^^^
I

f'.. - A^,
I

= (A - AO*^'i^(A),

wliere -F(A) is not divisible by (A — Ai).

Then
,/~

I

",. - A/.,,
1

= (A - X,r^-\f{\),

where /(A) is not divisible by (A — Ai). But the derivative of

I

tt,t — A/>.j.
I

with respec-t to A may be expressed as a linear function

of the first minors,* and is conse(]uently divisible by (A — Ai)*i

at least.

* If the elements of a determinant \ahcd\ are functions of a variable, it follows

from the definition of a derivative that the derivative of the determinant as to the

variable may be expressed as the sum of determinants of the form

\u'hcd\ -\-\ah'c(l\ + \
abc'd \ -\- \ uhcd' \,

in which a\ is the derivative of Oj, etc.

If these determinants are expanded in terms of the columns which contain the

derivative, it follows that the derivative of the given determinant is expressible as

a linear function of its lirst minors.
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Hence 7^7 1 r \ i

The proof in the other cases may be obtained in a similar way.

120. The characteristic. It is now desirable to have a symbol

to indicate the arrangement of the roots in a given A.-discriminant.

There may be one, two, three, or four distinct roots. If k^ = 1 for

any root Aj, then L^ = l, and no other L^ appears for that factor.

If /Cq = 2, then L^ may be 1 or 2, according as the same factor is

contained in all the first minors or not. If all the exponents L,

associated with the same root are enclosed in parentheses {L^,

L2, •••), and all the sets for all the bases in brackets, the config-

uration is completely defined. This symbol is called the charac-

teristic of the pencil (1). E.g., suppose

and that X — X^ is also a factor of all the first minors, but that

X — Xi is not. The characteristic is [2(11)]. If A — Aj is also a

factor of all first minors so that Lx = l, Lo = l to the base A — Aj,

the symbol has the form [(11)(11)].

From (4) it is seen that T^i + Zo -|- ••• -{- L^ = A'^, that is, that the

sum of the exponents for any one root is equal to the multiplicity

of that root. Since the sum of the multiplicities of all the roots

is equal to four, we have the following theorem

:

Theorem. The sum of the exponents in the characteristic is

always equal to four.

1. Express the minor

EXERCISES

\h':
of

I

a',i — ^ft'itl in terms
I

a'23 — X6'23 «'33

of the second minors of la.-jt
— Xft,*!.

2. Find the invariant factors and characteristic of each of the following

forms :

(a)

(c)

1- \
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127. Pencil of quadrics having a common vertex. If the A-dis-

criminant is identically zero, the discussion in Arts. 124-126 does

not apply. In case all the quadrics have a common vertex, we

may proceed as follows. If the common vertex is taken as

(0, 0, 0, 1), the variable Xi will not appear in the equation. We
then form the A,-discriminant of order three of the equation in

a'l, X2, X3. If this discriminant is not identically zero, we deter-

mine its invariant factors and a characteristic such that the sum

of the exponents is three.

Similarly, if the quadrics have a line of vertices in common, we
form the A.-discriininant of order two, and a corresponding charac-

teristic ; if the quadrics have a plane of vertices in common, the

A-discriminant is of order one.

128. Classification of pencils of quadrics. The principles de-

veloped in the preceding Articles will now be employed to classify

pencils of quadrics and to reduce their equations to the simplest

forms. When the equation of the pencil is given, the charac-

teristic is uniquely determined. It will be assumed that for any

given pencil A — \B = 0, the A-discriminant has been calculated

and the form of its characteristic obtained. For convenience, the

cases in which A = and B = coincide will be included in the

classification, although in this case A — \B = does not constitute

a pencil as defined in Art. 123.

Since any two distinct quadrics of a pencil are suflBcient to

define the pencil, we shall always suppose that the quadric B =
is so chosen that the A-discriminant has no infinite roots.

129. Quadrics having a double plane in common. By taking the

plane for x^ = 0, the equation reduces to

A-iX^ — AXy ^ U,

A = \,x,\ B = x,\

and the characteristic is [1].

130. Quadrics having a line of vertices in common. Let x^ = 0,

X2 = be the equations of the line of vertices. Every quadric

consists of a pair of planes passing through this line, and the

equation of the pencil has the form

A — XB = ajiXi^ -f 2 ai2XiX2 -f a22X2^ — A(6ii^i^ + 2 bi2XiX2 + 622^2^ = 0-
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Three cases appear :

(a) The A-discriminant has two distinct roots Aj, Xj-

(b) The A-discriminant has a double root Ai, but not every first

minor vanishes for A = A^

(c) The A-discriminant is of rank zero for A = Aj.

In case (a), ^4 — AjB is a square and A — AjB is another square.

Let the tetrahedron of reference be so chosen that

A-XiB = .r/, ^ - A2B = Xi\

If we solve these equations for ^4 and B, we may, after a suitable

change of unit point, write A, B in the form

A = Aia;,^ + X^x.^ = 0, B = x''-\- x^.

In case {b) we have the relation

(rtH&22 - a^lKY = 4 (aii&n - Ol2^'ll)(«12^22 - Ct22&12)>

which is the condition that A = 0, 5 = have a common factor.

By calling this common factor ic,, and the other factor of B =
(which is by hypothesis distinct from the first) 2 x^, we may put

A-\^B = Xy^, B = 2x^X2.

Solving for A, B, we have

In case (c), we have ^ — A,B = 0, hence we may write at once

Ki^'i' + ^2') - A(a;,2 + x/) = 0.

The invariant factors are A — Aj, A — Aj.

In this case we have then the following types

:

[11 ] A = Ai-Ti^ 4- x^x^^ B^xi^^ x^,

[2] A = 2 AiX'iO^a + x^, B = 2 XiX2,

[(11)J A = X,{x,' + X,'), B = X,' + x,\

131. Quadrics having a vertex in common. Let the common
vertex be taken so that the equation of the pencil contains only

three variables, .t,, a;,, x^. It will first be assumed that the A-dis-

criminant is not identically zero.

Suppose |a,.^ — A^i, 1

= has at least one simple root Aj. The

expression A — XiB is the product of two distinct linear factors,

hence the quadric A — X^B = consists of two distinct planes,
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both passing through the point (0, 0, 0, 1). Let the line of inter-

section of the planes be taken for Xj = 0, rcj = ^> so that the ex-

pression A — \iB does not contain x^. It follows that

«ii - Kbn = 0, a,2 - Ai^i2 = 0, 013 - -^-^13 = 0-

By means of those relations a^, ajj, a^^ can be eliminated from

the X-discriminant. The result may be written in the form

I
Oik - bik

I

=
5u(Xi - X) fei2(X, - X) fci3(Xi - X)

bn{\i — A) O22 — X022 O23 — X623

bu(Ki - X) 0^3 - X623 033 - X633

Since Xi was assumed to be a simple root of
|

a-^ — Xb^^. \, it follows

that 6,1 ^ 0. The equation of the pencil now has the form

— \{bnxi^ + 2 bi^XoXi + 2 bi^x^Xj + 622^2^ + 2 623a-2iC3 + 633X3^)= 0.

If we make the substitution

yi = x, + -i?-^-

—

'-^, 2/2 = x„ y, = Xs,

then replace t/i, 1/21 Vs by x^, x^, x^, the equation of the pencil takes

the form

Xi^i^ + <^(.T2, .T3) - \{x,^ +f{x.^, 2:3))= 0,

in which </>(x2, x^ and f{Xo, 2-3) are homogeneous quadratic func-

tions of X2, x^. The above transformation may be interpreted

geometrically as follows : Since 61, ^t 0, the quadric JB = does

not pass through the point (1, 0, 0, 0). The polar plane

of the point (1, 0, 0, 0) as to B is consequently not a tangent

plane to B at this point. The transformation makes this polar

plane the new x^, changes the unit point, and leaves x^ = 0, x^ =
unchanged.

The expression <^(a;2, x^) — A/(a;2, x^) may now be classified ac-

cording to the method of Art. 130, and the associated functions

of Xi, X2, X3 are obtained by adding X^x^^ to (l>{x.,, x^), x^ to/(.T2. Xg).

Next suppose that |a,i — X&.^l =0 has no simple root. It has,

then, a triple root which we shall denote by Xj. If X— Aj is not

a factor of all the first minors, the quadric ^ — XiB = consists
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of two distinct planes. Let the tetrahedron of reference be

chosen in such a way that these two planes are taken as x^ = 0,

X3 = 0, so that the equation of the quadric has the form

A — XiB = 2 (a23 — Xib23)X2X3 = 0,

wherein 033 — A16.23 t^ 0, but

«ii — Ai&„ = 0, Oo., — XA2 = 0, ajs — A1633 = 0, ai2 — A/>,2 = 0,

«i3 - ^1^13 = 0, and

I
dik - Xbifc

I
=

6u(Xi - X) 6i2(X, - X) b,3(X, - X)

buiXl - X) 622(X - Xl) 023 - X623

ftlo(Xi - X) 023 - Xfe23 b33(Xl - X)

Since (X — Ai)' is a factor of this determinant and a^^ — Xib^s ^ 0,

it follows that ftn = 0, and 613^12 = 0, that is, either &13 = or

&j,, = 0. Since it is simply a matter of notation which factor is

made to vanish, let &i3=0. Then 612 =^0, since
1
0,-^ — A&j^

|

^ 0.

Geometrically, this means that the plane ajj = touches B =
along the line X2 = 0,X3 = 0. The plane x^ = intersects the cone

£ = in the line X2 = 0, 0^3 = and in one other line. By a

further change of coordinates, if necessary, the tangent plane to

B = along this second line may be taken for x^ = 0.

We then have

but since

A = XiB + 2 (01,3 - Ai&23)a^2a^3,

we may, by a suitable choice of unit point, write the equation of

the pencil in the form

A-XB = Ai(2 xix^ + ^-32) + 2 XVT3 - A(2 x^x., + x^") = 0.

If A — Ai is also a factor of all the first minors of the A-dis-

criminant, but not of all its second minors, A — X^B is a square

and represents a plane counted twice. This pla:ne may be chosen

for Xj = so that

A —XiB = (a.22 — Xj)n-^ x.2^.

Since (A — Aj)' is a factor of the A-discriminant, we must also

have

?>n^>33 - ^'13- = 0.
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Geometrically, this condition expresses that Xj = is a tangent

plane to the cone B = 0. We may now write

Hence, by a suitable choice of unit point, the equation of tlie

pencil may be reduced to

A,(2 x^, + x,') + X.? - A(2 x,x, + xi)= 0.

If A — Ai is also a factor of all the second minors of
|

a^^ — \h.^
j

,

the equation of i? = is a multii)le of that of ^4 = and the equa-

tion of the pencil may be written in the form

We have thus far supposed, in this Article, that the A-discrimi-

nant did not vanish identically. It may happen that the deter-

minant
I

a
-J.

— A^,^. ! is identically zero even though the quadrics of

the pencil do not have a line of vertices in common. In this case

every quadric of the pencil consists of a pair of planes. Let

A = <)){Xi, .i'o), B=f(x.,, X3). Since jai^. — A^.-^l
is identically zero,

it follows that

f'll(&22^33 - ^23') = 0, 633(«U^'22 " ai2') = 0,

and hence that Ou = 0, ^^33 = 0, as otherwise the quadrics would

have a line of vertices in common, contrary to hypothesis.

By an obvious change of coordinates, we may write the equa-

tion of the pencil in the form 2 XjXj — A2 x^x^ = 0. This is called

the singular case in three variables. Its characteristic will be

denoted by the symbol \S\. Collecting all the preceding results

of the present Article, we have the following types of pencils of

quadrics with a common vertex.

[Ill] \,x,- -f- X,x,^ + A3.T32 x-^ + x.^ + CC3'

[21] AiO-i^ + 2 Aoa-2-^3 + x^^ x^^ + 2 XoX^

[1(11)] AjXi^ + A,(.^./ + x,') x,^ + x,^ + x,^

[3] A,(2 x,x, + x,^) + 2 .T,a-3 2 x,x,+x,^

[(21)] A,(2 x,x, + x,^) + xi 2 x,x, -f x,^

[(111)] X.ixC- ^ x,^ + x,^) .ri^ + .r^^ + a-3*
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EXERCISES

1. Determine the invariant factors for each pencil in the above table.

2. Determine the nature of the locus ^ = 0, B = for each pencil in the

above table.

3. Find the invariant factors and the characteristic of the pencils of

quadric cones defined by

(a) ^ = 3 a;r -f 9 Xi"^ -f- 4 3:2X3 — 2 xiXs — 6 xiXi — 0,

B = o x{^ + 8 Xo2 - 2 xs^ — 6 XiiCs — 14 XiXg = 0.

(b) ^ = 5 Xi2 + 3 X2'^ + 2 X32 + 4 X2X3 — 2 X1X3 + 2 3:1X2 = 0,

B = 9 xr - X22 + X32 - 4 x.:X3 + 14 X1X3 + 42 X1X2 = 0.

(c) A = 5 x.^ - 5 X22 + X32 + 6 X2X3 + 10 X1X3 - 4 X1X2 = 0,

B = 10 Xi2 + 2 X22 + 10 x^- 10 X2X3 + 24 X1X3 - 16 X1X2 = 0.

{d) A = 2 xi2 + 2 X2^ - 2 X2X3 - 2 X1X3 = 0,

B = Xi2-f 3 X.22 + X32 — 4 X2X3 - 2 X1X3 = 0.

4. Find the form of the intersection of vl = 0, jB = in each of the pencils

of Ex. 3.

5. Write the equations of each of the pencils in Ex. 3 in the reduced form.

132. Quadrics having no vertex in common. As in the preced-

ing case, we shall suppose, except when the contrary is stated?

that
] ttik — ^&,)fc I

is not identically zero. If (A — X{) is a simple

factor of the A.-discriminant, then A — X^B = is the equation of

a cone. By choosing its vertex as (1, 0, 0, 0) and proceeding

exactly as in Art. 131, the equation may be reduced to the form

AiXi^ + (fi(x2, X3, X4) - X(a:i2 +/(.C2, 0^3, Xi))= 0.

By this process the variable x^ has been separated and the func-

tions <f>{x2, .T3, X4), f(x2, x^, x^) can be reduced by the methods of

Art. 131, not including the singular case.

The only new cases that arise are those in which the roots of

I
a,4 — A&.jt

I

= are equal in pairs or in which all four are equal.

Consider first the case in wliich there are two distinct double

roots Ai and A25 neither of which is a root of all the first minors of

the X-discriminant. The quadrics A — X^B = 0, ^ — X2B = are

cones having distinct vertices. Let the vertex of the first be

taken as (0, 0, 0, 1) and that of the second as (0, 0, 1, 0). The
equation of the former does not contain x^. Hence, we have

«i4 — -^1^14 = 0, a24 — A1624 = 0, a34 - A1634 = 0, a^ — A,?>44 = 0.
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When those values of a^i are substituted in
|
a^^— A6,j |

= 0, A. — Aj

is seen to be a factor. The condition that (A — Ai)^ is a factor is

that either b^ = or that A — Aj is a factor of the minor cor-

responding to a^ — A644. But in the latter case A — Aj is a factor

of all the first minors, contrary to hypothesis, hence 644 = 0.

Proceeding in the same way with the factor A— A2, it is seen that

and also that 633 = 0. Hence the vertices of both cones lie on the

quadric B= 0. Let the tangent plane to 5 = at (0, 0, 0, 1) be

taken as cc, = 0, and the tangent plane to 5 = at (0, 0, 1, 0) be

taken as x^ = 0. Since B = is non-singular, 613 in the trans-

formed equation does not vanish, hence the plane a^j = intersects

the cone A — \iB = in the line x^ =3^2=^ and in another line.

Let the tangent plane along this second line be taken as CC3 = 0;

that is, make the transformation

yi = ^i, 2/2 = ^2,

2 &,3(A2 - Ai)y3 = («!! - Kbn)Xl + 2 (ai2 - \A2)X2 + 2 &i3(A2 - Ai).T3,

2/4 = ^i-

The equation of the cone has now the form

A-\iB= (((02 - Kb.„)x.^ + 2(ai3 - kAs)^^'''.^ = 0.

Similarly, the plane .<•, = () intersects the cone ^ — A2B = in

the line x^ = 0, x^ — and in another line. Make a further trans-

formation by choosing the tangent plane to -4 — A2B = along

this line for the new x^, thus

Vl = ^1, Ih = ^2, Ik = ^3,

2 624(^1 — ^2)2/4 =(«12 — '^2^12)-^'l +(«22 — A2&22)^'2 + 2 624(^1 " •^)-'^'4-

The equation of the second cone now has the form

A — X^B = ((In — X.bid^i^ + 2(a24 — X^hd^^^i = 0.

By a suitable choice of unit point the equation of the pencil may
be reduced to .

Ai(xi2 -f 2 X.X,) + A2(.r.r + 2 x.x^) - Afa^i^ -f o-J 4-2 x^x^ -\- 2 x.x^)= 0.

If the invariant factors are (A — A,), (A — Aj), (A — ^y, the quad-

ric A — Ai-B = is a pair of distinct planes and as before A — A2B =0
is a cone having its vertex on the quadric B = 0. Let the line of
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intersection of the two planes of ^ — X^B = be taken as x^ = 0,

x^ = 0, and let the vertex of ^ — AgB = be at (0, 0, 1, 0) as before.

Since this vertex lies on A — X^B = and on B = 0,\t lies on every

quadric of the pencil, in particular, therefore, on A — XiB = 0.

Thus, one of the planes of the pair constituting ^ — A]B = is the

plane x^ = 0. The other may be taken as a^g = so that

A-XyB = (a34 - Xib^i)XsXi = 0.

The plane x^ = is not tangent to ^ — X^B = 0, since otherwise the

discriminant |a,jt — Xb^^l would vanish identically. Hence we may
choose for x^ = 0, and X2 = any pair of planes conjugate to each

other and each conjugate to Xi = as to the cone A —X2B = 0. The

equation of the cone A — X^B = is now

A — X^B^ (a„ — Xa&iOa^i^ + (0^22 — KK^^t^ + («44 — Kbi^x^ = 0.

From these two equations we may reduce the equation of the pen-

cil to the form

2 X^x,x, + X,(x,' + x^'-j- X,') - A(2 x,x, + .t^^ + x^' + .^•/) = 0.

If (A— A2) is also a factor of all the first minors, so that the in-

variant factors are (A — Ai), (A — Ai), (A — A2), (A — A2), the quadrics

A — Ai-B = and A — A2B = both consist of non-coincident planes.

These four planes do not all pass through a common point, since

in that case all the quadrics of the pencil would have a common
vertex at that point, contrary to the hypothesis. We may conse-

quently take

A-X,B = (r<33 - Xfi,:,)x^^ + (a44 - X,b^,)xi^ = 0,

A — X2B = (ftii — XJ)n)Xi^ + (a22 — Xj32->)X2 = 0.

By a suitable choice of unit point the equation of the pencil as-

sumes the form

Ai(.r,^ + .^-2') + X^x,^ + .r/)- X{x,^ -f- x.,' + a'a" + x,^)= 0.

The remaining cases to consider are those in which
|
<x,-4 — A6,j.

|

has a fourfold factor (A — Ai)l Suppose first that A — Aj is not a

factor of all the first minors. The quadric yl — A,B = is a cone

with vertex on B~0. Its vertex may be taken as (1, 0, 0, 0), and

the taugent plane to B = at this point as x., = ^. Since A —
XiB = is a cone with vertex at (1, 0, 0, 0) we have

aii-Xi^u = 0, a,2 — A1&12 = 0.. ^'13 - '^i^a = 0, ai4 — Ai6i4=0.
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Since (1, 0, 0, 0) lies on B = 0, we have b^ = 0, and since the tan-

gent plane at (1, 0, 0, 0) is cco = 0, it follows that 613 = 0, 614 = 0.

The A-discriminant now has the form

61A- A)
6i2(Ai— X ) CT22 — A622

«23 — A.&23 «:

- ctiA — \h, a

*^23 A.O23

A.633

A6,

^24 — "^24

«34 - >^hi

a44 - A644

Since (A — A,)* is a factor and b^^ =^ 0, it follows that

H(A-AO^ =
I
— A6.,.

«34 - A634

The section of the pencil of quadrics A — XB = by the plane

X.J = is the pencil of composite conies

033X3^ -f a^Xi^ + 2 a^^x^Xi — A(633a;32 4- b^^x^^ 4- 2 b^^x^x^)= 0, x.2 = 0.

The characteristic of this pencil of composite conies is [2]; it con-

sists (Art. 130) of pairs of lines through (1, 0, 0, 0) all of which

have one line g in common. The plane iC2 = cuts the cone A —
Ai-B = in the line g counted twice, and g is defined by one of the

factors of 633a;3^+ 2 b^^x^x^+b^^x^-, since it is common to all the conies

of the pencil. The tangent plane 0:2 = to J5 = therefore con-

tains the line g and another line gf. Through the line g', which

passes through the vertex of the cone A—kiB=0, can be drawn
two tangent planes to the cone. One of them is X2 = 0. Choose

the other for x^ = 0. The plane x^ = will touch the cone A —
AjB — along a line g". The plane containing the two generators

g, g" of the cone is next chosen as Xi = 0. The equation of the

cone A — AjB = now has the form

A — AiB = 2(a23 — Ai623)^'2'''^3 + («44 — Ai644~)a;/ = 0.

The plane 0-3 = contains the generator g' ot B = 0, hence it is

tangent to 5 = 0, and intersects B = in a line gr, of the other

regulus. The plane x^—0 contains the generator ^ of B = 0,

hence meets the surface in another line _f/2. The lines g, g' are of

opposite systems, hence ^1, g^_ belong to different reguli and inter-

sect. The plane of g^, g^ may be taken as the plane iCj = 0. The
quadric 5 = now has the equation

5 = 2 bxtX^x^_ -f 2 634a;3a-4 = 0.
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By means of this equation and the equation of the cone A— \iB
= it is seen that the equation of the pencil may be reduced, by

a suitable choice of unit point, to

Xi(2 X1X2 + 2 x^x^) + 2 x^s + x^^ — A(2 x^x^ + 2 x^x^) = 0.

Now suppose A. — Aj is also a factor of all the first minors, but

not of all the second minors. The surface A — X^B = consists

of a pair of planes which may be taken for Xs = and ^4 = 0, so

that

A- XiB= 2(034

-

Khd^i^i = 0,

and A — \B = 2(034 — '^i^34)^V^4 + (K — ^) B.

If the A-discriminant is calculated and the factor (A— Aj)^ re-

moved, it is seen that in order for
|
a -^
— Xbi^ \

to have the further

factor (A — Ai)^ the expression 611622 — ^12^ must vanish. Hence

^u^i'^ + 2 6120:1.^2 + 6223^2^ either vanishes identically, or is a square

of a linear expression.

In the first case, 611 = 0, 612 = 0, 6,2 = 0, so that the line x^ = 0,

x^ = lies on the quadric B = 0. The plane ^3 = passes through

this line and intersects B = in a second line g'. Similarly,

CC4 = intersects i? = in x^ — and in another line g". Another

tangent plane through g' may be taken as x., = 0, and the plane of

g" and the second line in x^ = as x'l = 0. The equation oi B =
is

and the equation of the pencil may be reduced to the form

Ai(2 x^Xs + 2 a-2a;4) + 2 a;3a;4 — A (2 x^x^ + 2 x'2a.*4)= 0.

In case 6iia;i^ + 2 6i2X'iJ*2 + 6222^2^ is a square, not identically zero,

the line x^ = 0, .^4 = touches 5 = but does not lie on it. Let

the point of tangency be taken as (0, 1, 0, 0) so that 612 = 0,

622 = 0. If we now remove the factor (A — Ai)' from the A-dis-

criminant and then put A equal to Ai, the result is 603624(034— A1634).

This expression is equal to zero, since (A — A,)* is a factor of the

A-discriminant. But O34 — Ai634^0, as otherwise A would be

identical with B ; hence either 603 = or 624 = 0. Let the nota-

tion be such that 694= 0. Then the section of the quadric B =
by the plane aja = consists of two lines through (0, 1, 0, 0).
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Let L be the harmonic conjugate of the line a^j = 0, 0:4 = with

regard to these two lines, and let P be any point on the conic

rr4 = 0, ^ = 0. If the plane determined by P and L is chosen for

Xi = and the tangent plane to B = at P is taken for x^ = 0, the

equation of 5 = becomes

B = biixi^ + 2 b23X2X3 + hi^x^ = 0,

and the equation of the pencil has the form

Xi(.ri2 -^x^^ + 2 x,x,) + 2 .j'3.r, - \ (.^i^ + x,' + 2 x,x,)= 0.

Now suppose that A — A, is a factor of all the second minors,

but not of all the third minors, so that A — \iB — is a plane

counted twice. Let this plane be taken as x^ = 0.

vl-AiB = (a«-A,6«).vr = 0.

By substituting these values in the A-discriminant, it is seen that

the determinant l^n'^oi^ssl must also vanish if A — Aj is to be

a fourfold root. This means tliat the section of the quadric

J5 = by the plane x^=0 consists of two lines, hence that cc^ =
is a tangent plane to B =0. Let planes through these two lines

be taken as x^ = 0, x.^ = 0. The remaining generators in Xi =
and in ;», = belong to opposite reguli and therefore intersect.

The plane determined by them is now to be taken as x^ = 0. The
equation of B = is 2 bioX^Xo + 2 b^^x^x^ = 0, hence the equation

of the pencil may be reduced to the form

A, (2 x,x, + 2 x,x,) + x^ - A(2 x^x. + 2 x^x,)= 0.

If finally A — Ai is a factor of all the third minors, the two

equations ^4 = 0, B = differ only by a constant factor. If B =
is reduced to the sum of squares by referring it to any self-polar

tetrahedron, the equation of the pencil becomes

\{x^ + x,J 4- x^ + x^-) — A x^ + X.} +^^32+ x{) = 0.

Thus far it has been assumed that the A-discriminant did not iden-

tically vanish. Now suppose
|
a -j

— A6,^| = so that all the quad-

rics of the pencil are singular. By hypothesis they do not have

a common vertex. In the singular pencil two distinct composite

quadrics cannot exist, for, if ^ = 0, B = were composite, we
could choose A — 2 x^x^, -B = 2 X2,Xi, since the quadrics of the pencil
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do not have a common vertex. But the A-discriminant of the

pencil A — XB — is not identically zero, contrary to hypothesis,

hence the pencil does not contain two distinct composite quadrics.

The quadrics ^ = 0, B = may therefore be chosen as cones.

Let the vertex of ^ = be taken as (0, 0, 0, 1) and the vertex of

5 = as (1,0, 0, 0).

Let g, g' be generators of ^ = 0, B = which intersect, but

such that the tangent planes along each of them does not pass

through the vertex of the other cone. The plane g, g' can be

taken as x^ = 0, the tangent plane to ^ = along g as a-j = 0, and

the tangent plane to B = along g' as x^ = 0.

The equations of the singular quadrics ^ = 0, B = are now of

the form

B = 633.T3- + 2 biiX^i + 2 634X30:4 + 6440:42 = 0,

and the X-discriminant is

I
a,-. — Xh, I

=

Since this expression vanishes identically, the coefficient of each

power of X must be equal to zero. These conditions are a^ = 0,

644 = 0, ai2634 — 624ai3 = 0. The last condition expresses that the

planes ai2.T2 4- a^jX^ = and 624.r2 + 634.^3 = are coincident. By
transforming the equation of this plane to x^ = 0, the equation of

the pencil reduces to

2 XiXo + ax^^ — A(2 0:20:4 + 0:3^^) = 0.

This case is called the singular case in four variables. The char-

acteristic will be denoted by the symbol [ \3\ 1].

The determination of the invariant factors and the form of the

characteristic for each of the above pencils is left as an exercise

for the student. The properties of the curve of intersection will

be developed in Chapter XITI, but in each case the curve is

described in the following table for reference. The table includes

only those forms which do not have common double point.

ttu
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133. Forms of pencils of quadrics.

Simplified Formb of A and BCharacter-
ISTIC

[1111]

[112]

[11(11)]

[13]

[1(21)]

[1(111)]

[22]

[2(11)]

B = X,' + x.^ + .x-a^ + .^•4'

A = Ai^'i^ + Aa-^a^ + 2 X^x^x^ + x^

B = x^^ + x.y^ + 2 x^Xi

A = Aia',2 + A^a-.^^ + X.ix-' + x,^)

B = X,' + x,^ + x-' + x,^

A = AiXi^ H- A2(2 x-o.-Tj + x,^) + 2 x,x,

^ = AiXi^ + A2(2 x,x, + a-,2) + x,"^

B = x,^ + 2 oj^ajg + .r/

A = AjOJi^ + A^CiCo^ + X32 + X42)

£ = x^"^ + a-/ + x^^ + a;^^

A2 (.1-/ + 2 aJiXa)

A = Ai(a-i2 + a;,^ + x^^) + 2 AoiKga'^

[(11)(11)] A =K{x,' + x.^) + \,(x,^ + X,')

B=x,' + x,' + x-' + x,-

Curve op Intersection
OF ^= AND ^=0

A general space

quartic of the

first species.

A nodal quai'-

tic.

Two conies

which intersect at

two distinct

points.

A cuspidal

quartic.

Two conies

which touch each

other.

A conic counted

twice. At each

point of this conic

the quadrics are

tangent.

A generator and

a space cubic. The

generator and the

cubic intersect in

distinct points.

Two intersect-

ing generators,

and a conic which

intersects each

generator. The

three points of in-

tersection are dis-

tinct.

Four generators

which intersect at

four points.



164 LINEAR SYSTEMS OF QUADRICS [Chap. XI.

CllARAO-

TEKISTIC

[^]

Simplified Fokms of

A AND B

A = Xi{2 X1X2 + 2 x^Xi)

-f 2 x^, + x,^

Curve of Intf.rsection op

^ = AND ^=0

A generator and a space

cubic. The generator

touches the cubic.

[(22)]

[(31)]

A
B.

A

B

[(211)] A:
B.

[(1111)] A
B

[13|1] A
B

Xi(2 XyX^ -\- 2 x^Xi)+ 2 x^x^

"T -^ ^3'*'4

Ai(^ ^'1^2 ~f" -^ X^X^j -\- Xi

x,^ + x,^ + X,' + x,^

2 .rox^ + .Ts^

Three generators, one

counted twice. This

generator intersects

each of the others.

Two intersecting gener-

ators and a conic

which touches the

plane of the generators

at their point of inter-

section.

Two intersecting gener-

ators each counted

twice. The quadrics

touch at each point of

each generator.

The quadrics coincide.

A conic and a generator

counted twice. The

vertices of the cones

all lie on this gen-

erator.

EXERCISES

1. Derive the invariant factors of each of the above systems of quadrics.

2. Find the equations of each conic and eacli rectilinear generator of in-

tersection of the quadrics of the above pencils.

3. Determine the invariant factors; find the equations of the curve of

intersection, and write the equations in the reduced form of the pencils

determined by

A - Xi2 — a-u2 4. 2 X32 + 2 x^ + 5 XiX.^ = 0,

L' = 3 a*]- — x-r + xi^ — 8 xi^ — 2 xiXo — 2 x^Xi = 0.
(a)
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.^s A = x{^ + Xi^ + 4 3:32 + X42 + 4 xiX-2 + <3 X2X3 + 4 XiX^ = 0,

B = X2'^ + SX3^ + Xi^ + 2XiX3 + 2x.iX3^0.

,. A = 3 xr - X2^ - 2 X32 + 2 X42 + 2 xiXg — 4!ciX3 = 0,

B = i xr' - X22 + 2 X32 + 3 X42 + 2 XiX2 + 2 xix^ + 4 X3X4 = 0.

/^N ^ = 3 Xr + 2 X22 — Xs'^ — X42 + 4 X1X2 — 2 X3X4 = 0,

i> = 3 Xi'-' — ^2^ — X32 — X42 + X1X2 — 2 X3X4 — 3 X2X4 — 3 X1X4 = 0.

4. To what type does a pencil of concentric spheres belong ? A pencil of

tangent spheres ?

134. Line conjugate to a point. The equation of the polar

plane of a point (y) with respect to any quadric of the pencil (1) is

As A varies, this system defines a pencil of planes (Art. 24). The
axis of the pencil, namely the line

is said to be conjugate to the point (y) as to the pencil of quadrics.

Let (y) describe a line, two points of which are (/) and (y").

It is required to find the locus of the conjugate line. Since

y. = H-iy'i + M"i, i = 1, ^, 3, 4

(Art. 95), the line conjugate to (?^'is, by definition,

H-i'^aiky'i^k + H-2^aiky"iXk = 0,
'

ixyV),kU\^k + H"i^b,,y'\x, = 0.

As (y) describes the line joining {y') to (y") the ratio fx^ : ^uo takes

all possible values. If between these equations (x.^ : fi., is elimi-

nated, the resulting equation defines the quadric surface

%a,^\x, . 26,,y",a;, - %a,,y",x, ^j,^\x, = 0. (5)

From the method of development it follows (Art. 119) that all the

lines of the system belong to one regulus (Art. 115).

The polar planes, with respect to a given quadric of the pencil,

of two fixed points {y'), (y") on the given line intersect in the line

2a.y.a;, - \%h,^\x, = 0, 2a,^",ar, - X^b,,y",x, = 0.

If between these equations A is eliminated, the resulting equation

defines the same quadric (5). From Art. 115 it follows that this

second system of lines constitutes the other regulus on the surface.
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EXERCISES

1. Write the equation in plane coordinates of the pencil of quadrics

x{^ - xr + :c3^ + oXi^ — 6 xiXi + i xsXi — X(2 X2X4 4 xr + xo^ + xs^) = 0.

2. Determine the equations of the three quadrics of the pencil of Ex. 1

which touch the plane 3:4 = 0.

3. Determine equation (7) for the pencil

a(2 X1X2 + 2 a;3X4) + x{^ — X(2 Xix.y + 2 X3X4) = 0.

Show that (7) vanishes identically for each of the planes Xi= 0, X3 = 0,

X4 = 0, and interpret the fact geometrically.

136. Bundle of quadrics. If ^1 = '^a^i^x^x^ = 0, B = Vj^^x^x^ = 0,

C = %Ci^x-x^ = () are three given quadrics which do not belong to

the same pencil, the system defined by the equation

Ai^ + A,B + A3 6' = 0, (8)

in which Xy, A,? ^3 are parameters, is called a bundle of quadrics.

The three given quadrics ^ = 0, J3 = 0, C=0 intersect in at least

eight distinct or coincident points,* through each of which pass

all the quadrics of the bundle. These eight points cannot be

taken at random, for in order that a quadric shall pass through

eight given points, the coordinates of each point must satisfy its

equation, thus giving rise to eight linear homogeneous equations

among the coefficients in the equation of the quadric. If the

eight given points are chosen arbitrarily, these eight equations are

independent and the system of quadrics determined by them is a

pencil.

It is seen that seven given arbitrarily chosen points determine

a bundle of quadrics passing through them. Since all the quadrics

of the bundle have at least one fixed eighth point in common, we
have the following theorem :

Theorem I. All the quadric surjaces ivhich pass through seven

independent 2^0 i)its in space pass through a fixed eighth point.

* Three algebraic surfaces whose equations are of degrees m, ?i, p, respectively,

intersect in at least mnp distinct or coincident points. If they have more than

mnp points in common, then they have one or more curves in common. For a

proof of this theorem see Salmon: Lessons Introductory to Modern Higher
Algebra, Arts. 73, 78. We shall assume the truth of this theorem.
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These points are called eight associated points. If the coordi-

nates of any fixed arbitrarily chosen point {y) are substituted in

(8), the condition that {y) lies on the cpiadric furnishes one linear

relation among the A^. Hence through {y) pass all the quadrics

of a pencil and therefore a proper or composite quartic curve

lying on every quadric of the pencil. This quartic curve passes

through the eight associated points of the bundle.

If (?/) is chosen on the line joining any two of the eight asso-

ciated points, every quadric of the pencil passing through it will

contain the whole line, since each quadric of the pencil contains

three points on the line (Art. 65, Th. II). The residual intersec-

tion is a proper or composite cubic curve passing through the

other six of the associated points and cutting the given line in

two points.

137. Representation of the quadrics of a bundle by points of a

plane. Let Ai, \o, A3 be regarded as the coordinates of a point in a

plane, which we shall call the A-plane. To each point of the A-

plane corresponds a definite set of values of the ratios Aj : A2 : A3 and

hence a definite quadric of the bundle (1) and conversely, so that

the quadrics of the bundle and the points of the A-plane are in one

to one correspondence. To the points of any straight line in the

A-plane correspond the quadrics of a pencil contained in the bundle.

The line wdll be said to correspond to the pencil. Since any two

lines intersect in a point, it follows that any two pencils of quadrics

contained in the bundle have one quadric in common.

138. Singular quadrics of the bundle. Those values of Aj, A2, A3

which satisfy the equation

lAia,. + X2&a + V.J = (9)

will define singular quadrics of the bundle. Unless special rela-

tions exist among the coefficients a^^, b^^, c^^, none of these cones

will be composite, for in that case all of the first minors of (9)

must vanish, thus giving rise to three independent conditions among

the A,, A2, A3, which are not satisfied for arbitrary values of the

coefficients. It follows further that, under the same conditions, no

two cones contained in the bundle have the same vertex. For, if

/r= 0, L = were two cones having the same vertex, then every
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cone of the pencil Ai7v'+ A2L = would have this point for a ver-

tex. By choosing this point as vertex (0, 0, 0, 1) of the tetrahe-

dron of reference, the pencil could be expressed in terras of the

three variables x^, Xo, x^. Tlie discriminant of this pencil equated

to zero would be a cubic in Ai : Aj whose roots define composite

cones which were shown above not to exist for arbitrary values of

^iki ^iki ^ik-

It follows from (9) that the points in the A-plane determined by
values of A], Ao, A3 which define cones of the bundle of (8) lie on a

quartic curve C4. Every point of this curve defines a cone of the

bundle, and conversely. Each cone has a vertex, and it was just

shown that no two cones have the same vertex. We have therefore

the following theorem :

Theorem. The vertices of the cones in a general bundle describe

a space curve J. The points of J are in one to one correspondence

with the points of the curve G^ in the X-plane.

The four points in which any line in the A-plane intersects C4

correspond to the four singular quadrics of the pencil which cor-

responds to the line. If P is any point on the quartic curve, the

tangent line to C4 at P defines a pencil of quadrics in which one

singular quadric is counted twice ; if the residual points of inter-

section of the tangent line and C4 are distinct from each other and
from the point of contact, the characteristic of the pencil is [211].

All the quadrics of the pencil pass through the vertex of the cone

corresponding to the point of contact.

139. Intersection of the bundle by a plane. If the quadrics of

the bundle (8) are not all singular, the equation

= 0, (10)

•wherein s.^ = X^a^t. -f XJI\^ + X^c-^, is called the equation of the

bundle in plane coordinates. If the coordinates of a given plane

(a) are substantiated in (10), the resulting equation, if it does not

vanish identically, is homogeneous of degree three in Ai, A2, A3 and

^11
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is consequently the equation of a cubic curve C3 in the A-plane.

Equation (10) is the condition that the section of the quadric

(Ai, A2, A3) by the plane (») shall be composite. Every such com-

posite conic in the plane («) has at least one double point. It will

now be shown that the locus of the point of tangency to (?t) of the

quadrics of the bundle which are touched by (11) is a cubic curve.

The equation of any plane (w) may be reduced to x*4 = by a

suitable choice of coordinates. Let Ai, A2, A3 be any set of values

of Aj, A2, A3 which satisfy (10) when we have replaced «i, Wj, M3, each,

by zero and M4 by 1.

The section of the quadric Ai^l + A2-B + A3C=0 by the plane

a;4 = is a composite conic having at least one double point (^y^, y^,

2/3, 0). The coordinates of (jj) must satisfy the relations

K^a,,y, + ~X.^h,^, + AaSc.,,?/, = 0, for i = 1, 2, 3.

If from these three equations Aj, Ao, A3 are eliminated, the result is

the equation of the locus of the point of contact (?/). Since the re-

sulting equation is of degree three in the homogeneous variables

.Vu .%) .V31 the locus is a cubic curve. It is called the Jacobian of

the net of conies in the given plane.

140. The vertex locus /. The order of a space curve is defined

as the number of its (real and imaginary) intersections with a

given plane.

We shall now prove the following theorem

:

Theorem. The vertex locus J of a general bundle is of order six.

For, the condition that the vertex of a cone of the bundle lies

in a given plane (») is that the corresponding point in the A-plane

lies on each of the curves (9) and (10). The theorem will follow

if it is shown that these curves have contact of just the first order

at each of the common points so that their twelve intersections

coincide in pairs.

Let the given plane be taken as x^ = 0. The equation of a cone

of the bundle having its vertex in this plane Dan be reduced to

X,' + x-' + .r/ = 0,

and that of the bundle to the form

X,A -f A^B + A3(.«-o' + .^3^ + .V) = 0.
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The point in the A-plane corresponding to the cone is (0, 0, 1).

It lies on C^^X) and on C3(X). It is to be shown that Ci(X), Cs{\)

have the same tangent at (0, 0, 1), but that they do not have con-

tact of higher than the first order. In (9) put c^^ = % = C44 = 1

and all the other c^^ = 0, and develop in powers of A3. The re-

sult may be written in the form

(aiiAi + 511X2)V + <A. + <^13

<^33

I 1 4>n <f>U

^14 <^44

0,

wherein
<f>,^
= a^^Xi + b.^X^ = <l>ki-

Similarly in (10) put Wi = ^2 = ^3 = 0, mJ = 1, c.jj. = 0, and

develop in powers of A3. The result is

(auXi + bnX^)Xs'' +
<^12

<^22

+
<^13

<^13

<^33
Xs + 0.

These curves both pass through the point (0, 0, 1) and have the

same tangent anAi + &11X2 = at that point. By making the two

equations simultaneous, it is seen that they do not have contact

of order higher than the first unless anXi -\- 611X2 is a factor of

011<^44 - 4>\i^,

which is not the case unless particular relations exist among the

coefficients a.t, ?>,..

141. Polar theory in a bundle.

Theorem. T7ie polar planes of a point (y) toith regard to all the

guadrics of a bundle pass through a fixed point {y').

For, the polar plane of the point (?/) with regard to a quadric

of the bundle Aj^ + A2B + A3C = has the equation

X^^a^t^x-y^ + X^'^bii.x^y^ + X^tcufc-y^ = 0.

For all values of A,, Ao, A3 this plane passes through the point (?/')

of intersection of the three planes

SffifT^y, = 0, ^b,,x,y, = 0, 2c,iX,?/4 = 0. (11)

From the theorem that if the polar plane of (y) passes through

(y'), then the polar plane of (?/') passes through (y), it follows that

all the points in space are arranged in pairs of points (y), (y')
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conjugate as to every quadric of the bundle. Since the coordinates

t/i, y^, yz, 2/4 a^wd v'u y'2) l/zi y\ appear symmetrically in the equations

2a.,/.2/A. = 0, ^h,,y\y, = 0, 2c.y,?/, =

defining the correspondence between {y) and {y'), the correspond-

once is called involutorial.

By solving the equations defining the correspondence for y\,

y'2, y'z, y\ we obtain

2a2t.V* 2a3,j/^ ^o.^yk

oy^ ^Kyk ^^Akyk

and similar expressions for y'^, y\. y\. If we denote the second

members of the respective equations by ^i{y), then replace both

2/j and y\ by x^ and x\, respectively, the equations defining the

involution may be written in the form

a.<. = «/,,(.!;), px, = <i>,{x'). (12)

If {y) describes a plane S'ti.i'j = 0, the equation of the locus of

(?/') may be obtained by eliminating the coordinates of {y) from

(11) and the equation 2'<j/, = 0. The result is

1/1
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with respect to this cone is indeterminate (Art. 121). Hence
there exists a set of values of A,, As, A3, not all zero, for which this

plane is indeterminate. It follows that the matrix

'Xuj.o;, •$a.,x^ 2a3,.r, la^X;^

'^bi,x^ :^b,,x^ 2^3,.?-, lb^,x^

St'li-^V ^C2^X^ n<'zk''''jc ^'^ik-^k

is of rank at most two. Thus, in the equation of the cubic sur

face (13), the coefficient of each n- vanishes when the coordinates

of any point J are substituted in it ; hence the equation is satisfied

for all values of (?/j, U2, it^, u^).

Any two planes '^u-x- = 0, 2f.cc^ = intersect in a line; their

image surfaces intersect in a composite curve of order nine, consist-

ing of t/and the cubic curve, image of the line. If the point (y)

is the vertex of a cone belonging to the bundle, the three polar

planes of (?/) determined by (11) belong to a pencil. Let I be the

axis of this pencil. Every point of the line I corresponds to (y)

in the correspondence (11), since it is involutorial.

As (y) describes J, its corresponding line I describes a ruled

surface R. The image of a cubic surface 2?/;*^, =0 in the involu-

tion (12) is the plane 'S.u-t/- = and a residual surface of order

eight. As this residual surface is the locus of Z, we conclude

that the ruled surface R is of order eight.

142. Some special bundles. While it would lead beyond the

scope of this book to give a complete classification of bundles of

quadrics, like that for pencils of quadrics as developed in

Arts. 131-133, still it is desirable to mention a few particular

cases. It was seen (Art. 138) that in the general bundle there

are no composite quadrics. But bundles containing composite

quadrics may be constructed ; for example, the bundle

Ai^ -f A2S + X^x^x. =

evidently contains the composite quadric ic,.T2 = 0. If Xj = inter-

sects the curve of intersection of ^ = 0, 5 = in four points, and

if ^2 = intersects it in four points, so that no component of the

curve lies in either plane a*, = 0, ccj = 0, then these two sets of-four

points constitute eight associated points.
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Every point of the line a;i = 0, iC2 = is a vertex of a com-

posite cone of the bundle. The locus J consists of this line and

of a residual curve of order five. The image curve Ci{X) in the

A-plane has a double point corresponding to the composite quadric,

as may be seen as follows. The equation of Ci{X)=0 now has

the form

V<^2('^-1) ^2)+ ^3<^3('^l> -^2)+ ^4(^1) ^2)= 0,

in which <^2) ^3; ^4 do not contain A3. Hence the point Ai = 0,

Aj = is a double point on Ci{\)= ; it corresponds to the quadric

a;iiC2 = 0. The points of Ci{X) are now in one to one correspond-

ence with the curve of order five, forming one part of J, and the

double point is associated with the whole line x^^ = 0, 0^2 = 0.

Similarly, buudles of quadrics may be constructed having eight

associated double points lying on two, three, four, five, or six

pairs of planes. In the last case the equation of the bundle may
be written in the form

AiC^i^ - ^4') + K{^2'- - 3^4')+ K{x,^ - re/)= 0.

The eight associated points are (±1, ±1, ±1, 1). The curve

J consists of the six edges of a tetrahedron and C4(A) is composed

of the four sides of a quadrilateral. Its equation is

AiA2A3(Ai + A2 + A3)=0.

In this case the equations (12) of the involution (1/), (2/') have the

simple form

y\ = -, 1 = 1,2,3,4,

in which o- is constant.

Bundles of quadrics exist having a common curve and one or

more distinct common points. The spheres through two fixed

points furnish an example.

EXERCISES

1. Show that (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1),

(1, 1', -1, -1), (1, -1, 1, -1), (1, -1, -1, 1) are eight associated

points.
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2. Prove that if P is a given point and I a given line through it, there

is one and only one quadric of the bundle to which I is tangent at P.

3. Determine the characteristic of the pencil of quadrics in a general

bundle corresponding to :

(o) A tangent to Ci(\).

(6) A double tangent to Ci(\).

(c) An inflexional tangent to Ci{\).

4. What is the general condition under which C4(X) may have a double

point ?

5. Determine the nature of the bundle

Xi(a:i2 - x.xz) + Mx^^ + x^^ + X3' - 4 X42) +X3(xi2 - 3:32) =

and of the involution of corresponding points (y), (?/').

6. If three quadrics have a common self-polar tetrahedron, the twenty-four

tangent planes at their eight intersections all touch a quadric.

7. Write the equation of a bundle of quadrics passing through two given

skew lines and a given point.

8. If four of the eight common tangent planes of three quadrics meet in a

point, the other four all meet in a point.

9. Show that the cubic curve, image of an arbitrary line, intersects the

locus of vertices J in 8 points.

10. Show that the surface B of Art. 141 contains J" as a threefold curve.

143. "Webs of quadrics. If J. = 2o,ta;,.T^ = 0, B = '^bn^x^x^ = 0,

C= 2c,fc.r,a-4 = 0, i) = Sc^i^cc.a^^ = are four quadrics not belonging

to the same bundle, the linear system

X,A + X^B + X3C+\,D = (14)

is called a web of quadrics. Through any point in space pass all

the quadrics of a bundle belonging to the web, through any two

independent points a pencil, and through any three independent

points, a single quadric of the web.

144. The Jacobian surface of a web. The polar planes of a

point {y) with regard to the quadrics of a web form a linear system

^i^^ik^iVk + K'^^\k^^yk + AaSCi^a^i?/, 4- XiMik^iVk = 0. (15)

If the point (?/) is chosen arbitrarily, this plane may, by giving Aj,

A2, X3, X4 suitable values, be made to coincide with any plane in
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space, unless there are particular relations among the coefficients

a^k, 6,-^., c.jt, dij. Thus an arbitrary plane is the polar plane of (y)

with regard to some quadric of the web. There exists a locus of

points (y) whose polar planes with regard to all the quadrics of a

web pass through a fixed point (?/'). This locus is called the

Jacobian of the web. Since the equations connecting (y) and (?/')

are symmetrical, it follows that (y') also lies on the Jacobian. A
pair of points (?/), (y') such that all the polar planes of each pass

through the other are called conjugate points on the Jacobian.

To determine the equation of the Jacobian, we impose the con-

dition that the four polar planes of (y)

pass through a point.

K.=

It. The result
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Since T(\) is a sjonmetric determinant there are ten sets of values

of Xi, X2, Xs, X4 for which it is of rank two.* The ten corresponding

quadrics are composite and each line of vertices lies on Kt = 0, hence

we have the theorem:

Theorem II. The Jacohian of the general web of quadrics contains

ten lines.

145. Correspondence with the planes of space. The polar plane

of a fixed point (y) with regard to any quadric Q of the web will

be called the associated plane of (y) as to Q. When Q describes

a pencil, its associated plane will describe a pencil ; when Q de-

scribes a bundle, its associated plane will describe a bundle. The

quartic curve of intersection of two quadrics of the web corre-

sponds to the- line of intersection of their associated planes, and to

every set of eight associated points of a bundle of quadrics in the

web corresponds one point, the vertex of the bundle of associated

planes. Through any two points a straight line can be drawn,

hence through any two sets of eight associated points within the

web can be passed a pencil of quadrics belonging to the web. Since

through any three points a plane can be passed, it follows that a

quadric of the web can be foimd which passes through any three

sets of eight associated points in the web.

146. Web with six basis points. The maximum number of dis-

tinct basis points a web can have without having a basis curve is six.

Let 1, 2, 3, 4, 5, 6 designate the six basis points of a web having

six basis points. All the quadrics of the web through an arbitrary

point P belong to a bundle, and hence have eight associated points

(Art. 136) in common, the eighth point P' being fixed when 1, 2,

3, 4, 5, 6 and P are given. Between P= ($) and P' = (^') exists

a non-linear correspondence.

We shall now prove the following theorem

:

Theorem I. In the case of a tveb ivith six distinct basis points,

the Jacobian surface Ki = is also the locus of points (|) such that

* Salmon: Lessons Introductory to Modem Higher Algebra, Lesson XIX.
The configuration of the lines on the Jacobian has been studied by Reye. See

Crelle's Journal, Vol. 86 (1880).
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In order to prove this we shall prove the following theorems

:

Theorem II. Tlie quadrics of a bundle of the weh which pass

through the vertex of a given cone of the web have, at this vertex, a

common tangent line.

Theorem III. Conversely, if all the quadrics of a bundle have

a common tangent line at a given point, a cone beloyiging to the

bundle has its vertex at the point.

To prove Theorem II, let the vertex of the given cone be

(1, 0, 0, 0), so that its equation (7=0 does not contain x^. Let

^ = 0, 5 = be any two non-singular quadrics of the bundle

passing through the point, so that a,, = 0, b^^ = 0. The equation

of the tangent plane to the quadric Ai^l -f XnB + ^.3(7= at

(1, 0, 0, 0) is

'^•i(«i2^'2 + «i3^3 + «iA) + A2(&12.^'2 + b^^x^ + b^^x^ = 0.

But these planes all contain the line

a,2.T2 + a^^x^ + a^^x^ = 0, b^^x^ + b^^x^ + b^x^ = 0,

which proves the proposition.

To prove Theorem III, let x-, = 0, 0^2 = be the equations of the

line, and (0, 0, 0, 1) the common point. We may then take

A = 2 a^^x^x^ + <^(a7i, x.^, x^)= 0,

JB = 2 624^22^4 + i^Ca^'i, x^, Xi)=Q,

C = w CnX]X^ -f- w C243J2''^4
\ J V**'!? "^ii "^3/^^ ")

wherein <^, i/', /contain only x^, x^, Xj.

In the bundle

the quadric corresponding to Ai = — 0,4624, A2 = — 0,14024, A3 = 0,4624

is a cone with vertex at (0, 0, 0, 1) since the equation of the quadric

does not contain x^.

Since at the vertex of every cone two associated points coin-

cide, and conversely, at every coincidence is the vertex of a cone,

the proposition of Theorem I follows.

The ten pairs of planes determined by the six basis points

1, 2, 3, 4, 5, 6 taken in groups of three, as, for example, the pair
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tXj^»<>2»t3*t'^
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points of A", P and P' coincide. The locus of the corresponding

point (a, h, c, d) is called the Kummer surface.*

We have thus proved the following theorem :

Theorem IV. Tlie j^oints of the Weddle surface and the points

of the Kummer surface are in one to one correspondence.

EXERCISES

1. Show that all the quadrics having a common self-polar tetrahedron

form a web.

2. Determine the Jacobian of the web of Ex. 1.

3. Determine under what conditions the Jacobian of a web will have a

plane as component.

4. Find the Jacobian of the web defined by the spheres passing through

the origin x = 0, ?/ = 0, z = 0.

5. Show that the Jacobian of a web having two basis lines is inde-

terminate.

6. Discuss the involution of conjugate points (y), (y') for the web of

Ex.4.

7. Show that the spheres cutting a given sphere orthogonally define a

web.

8. Show that the equation of the quadric determined by the lines joining

the points (1, 0, 0, 0), (ai, aj, «3, ^4); (0, 1, 0, 0), (0, 0, 1, 0); (1, 1, 1, 1),

(0, 0, 0, 1) is

x^Xl{a2 — az)+ (a^T^ — 02X3) + Xi(aiXi — aiX2) = 0.

147. Linear systems of rank r. The linear system of quadrics

A.i^i + X,Fo + '-\-KF, = 0, (19)

wherein

is said to be of rank r, if the matrix

(20)

"11
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is of rank r, that is, if there does not exist a set of values of Aj,

A2, •••, Xrf ^lot all zero, such that the expression

k,F, + X,F^ + :- + X,F,

is identically zero. All the quadrics in space form a linear sys-

tem of rank ten, since the equation of any quadric may be ex-

pressed linearly in terms of the ten quadrics, x^, x^, •••, x^Xi for

which the matrix (20) is of rank ten.

All the quadrics in space whose coefficients satisfy 10 — r

independent homogeneous linear equations form a linear system

of rank r. For, if ^b-^x^x^ = is the equation of any quadric

whose coefficients satisfy the given conditions, then all the co-

efficients 6j^ can be expressed linearly in terms of the coefficients

of r quadrics belonging to the system. Thus

bi, = Aia.,<" + Vf.,"' + - + KaJ'\ h k = 1, 2, 3, 4, (21)

wherein ^ ,,> ^ „ . ^

are fixed quadrics belonging to the system.

Conversely, 10 — r independent homogeneous linear conditions

may be found which are satisfied by the coefficients in the equa-

tions of the quadrics F, = 0, i^2 = 0, -•, F, = 0, and consequently

by the coefficients in the equations of all the quadrics of the

linear system (19) of rank r.

148. Linear systems of rank r in plane coordinates. The system
of quadrics

AA + A.2<^2 + ••• +A,$, = 0,

wherein $, = 2/3./"". "« is called a linear system of rank r in

plane coordinates if there does not exist a set of values Ai,

A2, — , A^ for which the given equation is satisfied identically.

These systems may be discussed in the same manner as that
considered in the preceding article.

149. Apolarity. Let F= Sa-^x.x-^ = be the equation of a
quadric in point coordinates and ^ ~ S/?,;,?/,?^^. = be the equation
of a quadric in plane coordinates. If the equation

2a,i^,, ~ a„/3„ + a,,f3,, + a,,l3,, + a,,(3» + 2 a^^As + 2 a,,l3,, + 2 a,,^,,

+ 2 cu,(3,, + 2 ao,A4 + 2 a,,/3,, = (22)
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is satisfied by the coefficients in the eqnations of the two quadrics,

F=0 is said to be apolar to <!>= 0, and $ = is said to be apolar

to F= 0. It should be noticed that in this definition the equa-

tion F=0 is given in point coordinates, and that of <I> = in

plane coordinates. It should also be noticed that if i^=0 and

4> = are two given apolar quadrics, and if 2«i4.?/,% = is the

equation of i^= in plane coordinates, and '!S,bi;^x-x^ = is the

equation of ^ = in point coordinates, then it does not necessarily

follow that Sa.At = ^ because SttaiSit —" 0-

In order to show the significance of the condition (22) of

apolarity, we shall prove the following theorem

:

Theorem I. TJie expression a^^/Sik is a relative invariant.

Let the coordinates of space be subjected to the linear trans-

formation

»,. = ttax'i + Ui^x'z + a^^^x'i + a^x'^, i= 1, 2, 3, 4

of determinant T^O. The coordinates of the planes of space

undergo the transformation (Art. 97)

M. = Ai^n\ + yl.ou'z + As^'s + Ai^i'i, i = 1, 2, 3, 4.

The equation F(x)= goes into '^^a'^^x'-x'^ = 0,

wherein (Art. 104)

and $ = is transformed in ^(i'-f.u-u\ = 0, wherein

The proof of the theorem consists in showing (Art. 104) that

In the first member, replace a',^, fi\^ by their values from the

above equations, and collect the coefficients of any term tti^/Si^ in

the result. We find

hence

which proves the proposition.

The vanishing of this relative invariant may be interpreted

geometrically by means of the following theorem :
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Theorem II. If F= 0, ^ = are apolar quadrics, there exists

a tetrahedron self-polar as <o <l> = and inscribed in F = 0.

This theorem should be replaced by others in the following

exceptional cases in which no such tetrahedron exists.

(a) If 2^=0 is a plane counted twice. In this case (22)

is the condition that the coordinates in this plane satisfy

$ = 0.

(b) If $ = is the equation of the tangent planes to a proper

conic C and ii F = intersects the plane of C = in a line

counted twice, (22) is the condition that this line touches C.

We shall consider first the special cases (a) and (b).

Let F = (uiXi + »2'^2 + "3^3 + ^^^^^y^

Then a^^ = M,?/fc and (22) reduces at once to $ = 0.

In case (6), let the plane of C be taken as ^4 = and the line

of intersection of F =0 with X4 = be taken as x^ = x^ = 0.

Then

$ = fin< + PlM.^ + /833"3' + 2 /3i27(,«2 + 2 ^23^2^3 + 2 P,,U,U,= (i,

and F= a^^x^- -\- 2 a^iXyX^ + 2 a^^x.x^ + 2 a^^x^Xi + 2 a^^x^ = 0,

where a^ ^ 0. Hence (22) reduces to ^^ = 0, that is, to the con-

dition that Xj = .i'4 = touches C.

To prove Theorem II, excluding cases (a) and (6), we must

consider various cases. First suppose 4> = is non-singular.

Choose a point Pj on F = 0, not on the intersection F = 0, ^ — 0,

and find its polar plane tt, as to 4> = 0. In tti take a point Pg ^^^

F = 0, not on 4> = 0, and find its polar plane tt.^ as to ^ = 0. On
the line ttittj choose a point P^ on F = 0, not on $ = 0, and find

its polar plane ttj. If the point of intersection of ttj, ttj, ttj is

called P4, then P1P2P3P4 = TTiTToTTzTr^ is taken for the tetrahedron

of reference; we may, by proper choice of the unit plane, reduce

the equation of $ = to ^^i^ + n.,^ + 11 ^^ -\- ii^- = 0. Equation (22)

now has the form On -f «22 + ^33 + f'« = ^- Since three of the

vertices P,, P2, P3 were chosen on P = 0, three coefficients a^, = 0,

hence the fourth must also vanish, which proves the proposition

for this case.

It should be observed that if P = 0, * = define the same
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quadvic, equation (22) cannot be satisfied since tlieir equations

may be reduced simultaneously to

F = x^^ + x.^ + xi + 0^4^ = 0, 4> = u^ + W2' + ^i + n^ = 0.

Now let $ = be the equation of the tangent planes to a

proper conic c. Take the plane of O as x^ = 0, so that

)8h = )8,, = /334 = 1844 = 0.

If 2^=0 is composite and x^ is one component, equation (22)

is identically satisfied. In this case we may take three vertices

of a triangle in x^^^ self-polar as to the conic C and any point

on i^ = not on .T4 = as vertices of a tetrahedron self-polar to

$ = and inscribed in jP = 0. If jp' = consists of ^'4 =
counted twice, (22) expresses the condition that the plane

belongs to $ = 0, whether $ = is singular or not. This is the

exceptional case (a).

If CC4 = is not a component of /^ = 0, (22) has the form

ttiiiSn + atSit + 033/833 + 2 a,,^i.3 -f 2 «,3;8i3 + 2 a.^S1^= 0,

which is the condition that the section C" of i^ = by the plane

0:4 = is apolar to C.

It follows by the theorem for apolar conies analogous to

Theorem II that a triangle exists which is inscribed in C" and is

self-polar to C. A tetrahedron having the vertices of this tri-

angle for three of its vertices and a fourth vertex on i^ = but

not on 0^4 = satisfies the condition of the theorem (dual of

Th. I, Art. 121).

If <I> = is the equation of two distinct points, (22) expresses

the condition that these points are conjugate as to ii^= 0. This

is also the condition that a tetrahedron exists which is inscribed

in F= and is self-polar to <I> = 0. If 4> = is the equation of

a point counted twice, (22) expresses that the point lies on

i^= 0. This is the dual of the exceptional case (a).

In each of the above cases, the teti-ahedron which satisfies the

conditions of the theorem can be chosen in an infinite number of

ways, hence we have the following theorem.

Theorem III. If one, tetrahedron exists ivhich is inscribed in

F= and is self-polar as to $= 0, the^i an infinite number of such

f£trahedra exist.
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By duality we have the following theorems

:

Theorem IV. //' i^ = 0, $ = are apolar quadrics, there exists

a tetrahedron self-polar as to F = and circumscribed <o 4> = 0.

Theorem V. If one tetrahedron exists which is circumscribed to

$ = and is self-polar as to F = 0, then an infinite number of such

tetrahedra exist.

Moreover, both the exceptional cases of Theorem II have an

immediate dual interpretation: they will not be considered further.

With the aid of these results we can now give an interpretation

to the vanishing of the coefficients and ©' of equation (3), Art.

124, and of %{u), %{n) of equation (7), Art. 135. If 5 = in (1)

is non-singular, let its equation in plane coordinates be 2;8i^.tt,i<^.= 0.

Since /S.-^ is the first minor of 6-^ in the discriminant of B = 0, it

follows at once from equation (3) that ©' = 'S.ai^^i^- Hence 0' =
is the condition that ^ = is apolar to B = 0. If 5 = is a cone,

it is similarly seen that 0' = is the condition that the vertex of

the cone B = lies on ^ = 0. If 5 = is composite, 0' is iden-

tically zero, independently of A, since the discriminant of 2? =
is of rank two, hence all the coefficients ^^^ vanish. An analogous

discussion holds for = 0.

The surface *i(w) = (Art. 135) may be defined as the envelope

of a plane which intersects ^4 = in a conic which is apolar to

the conic in which it intersects B = 0. For particular singular

quadrics this definition will not always apply.

Let an arbitrary plane of *i(w) = be taken as x^ = 0. It fol-

lows from equation (7) that

I
«11&22&33

1 + 1 ^ll«22&33 |
+ | hAi^hz \

= 0. (23)

Let the sections of A = 0, B = by x^ = he C, C, respectively.

If C" is not composite, it is seen by writing the equation of C in

line coordinates that (23) is the condition that C is apolar to C.

If C is a pair of distinct lines, (23) is the condition that their

point of intersection lies on C. If C is a line counted twice, (23)

is satisfied identically for all values of a^^, since all the first minors

of the discriminant of C" vanish.

An analogous discussion holds for *2(^) = ^-
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150. Linear systems of apolar quadrics. Since equation (22) is

linear in the coefficients of i^= 0, from Art. 147 we may state the

following theorem

:

Theorem 1. All the quadrics apolar to a given quadric form a

linear system of rank nine.

Conversely, since the coefficients of the equations of all the

quadrics of a linear system of rank nine satisfy a linear condition

which may be written in the form of equation (27), we have the

further theorem :

Theorem 11. All the quadrics of any linear system of rank nine

are apolar to a fixed quadric.

From the condition that a plane counted twice is apolar to a

quadric (Art. 149), it follows that this fixed quadric is the envelope

of the double planes of the given linear system.

If a quadric F —0 is apolar to each of r quadrics

4.1 = 2A.,<»M,% = 0, $, = 2y8,,<^>.^,% = 0, ...,

<!>, = :^/3J'-\r,, = 0,

the coefficients in its equation satisfy the r conditions

It follows that if a quadric is apolar to each of the given quadrics,

it is apolar to all the quadrics of the linear system

The conditions that this linear system is of rank r are equivalent

to the conditions that the corresponding equations (24) are inde-

dendent. Hence

:

Theorem 111. All the quadrics apolar to the quadrics of a linear

syste^n of rank r in plane coordinates form a linear system of rank

10 — r in point coordinates and dually.

EXERCISES

1. Find the equation of the quadric in plane coordinates to which all the

quadrics through a point are apolar.
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2. How many double planes are there in a general linear system of rank

seven in point coordinates ?

3. Show that all the pairs of points in a linear system of rank six in plane

coordinates lie on a quartic surface.

4. Show that all the spheres in space form a linear system and find its

rank.

5. Find the system apolar to the system in Ex. 4.

6. Show that a system of confocal quadrics (Art. 84) is a linear system of

rank two in plane coordinates. Detei-mine the characteristic and the singular

quadrics of the system (Art. 133).

7. Show that, if the matrix (20) is of rank r' < r, the system of quadrics

(19) is a linear system of rank r'.



CHAPTER XII

TRANSFORMATIONS OF SPACE

151. Projective metric. In order to characterize a transfor-

mation of motion, either translation, or rotation, or both, or a trans-

formation involving motion and reflection, as a special case of a

projective transformation, it will first be shown under what cir-

cumstances orthogonality is preserved when a new system of

coordinates is chosen.

If the new axes can be obtained from the old ones by motion

and reflection, the plane t = must evidently remain fixed, and

the expression x"^ + 1/"^ + z^, which defines the square of the dis-

tance from the point (0, 0, 0, 1) to the point (x, y, z, 1), must be

transformed into itself or into {x — atf + (y — hty + (^ — cty,

according as the point (0, 0, 0, 1) remains fixed or is transformed

into the point (a, h, c, 1). It will be shown that, conversely, any

linear transformation having this property is a motion or a motion

and a reflection.

152. Pole and polar as to the absolute. We shall first point out

the following relation between the direction cosines of a line and the

coordinates of the point in which it pierces the plane at infinity.

Theorem I. T7ie homogeneous coordinates of the point in ivhich

a line meets the plane at infinity are proportional to the direction

cosines of the line.

The equations of a line through the given finite point (xq, y^, Zq, t^

and having the direction cosines (A, [x, v) are

t{<ix — X(f, __ tf^y y^t __ t^ — Zff ^.tv

A /A V

The point {x, y, z, 0) in which the line pierces the plane at infinity is

given by the equations

A /x V

from which the theorem follows.

188
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We shall now establish the following theorems concerning poles

and polars as to the absolute.

Theorem II. The necessary and sufficient condition that a plane

and a line are perpendicular is that the line at infinity in the jilane is

the polar of the point at infinity on the line as to the absolute.

The absolute was defined (Art. 49) as the imaginary circle in the

plane at infinity defined by the equations

x'-\-y''-\-z^ = 0, t = 0. (2)

The polar line as to the absolute of the point (A, fi, v, 0) in which

the line (1) intersects the plane at infinity is

Xx + fxy + v2 = 0, « = 0. (3)

The equation of any plane through this line is of the form

\x + tiy + vz-\- kt = 0. (4)

These planes are all perpendicular to the line (1). Conversely,

the equation of any plane perpendicular to the line (1) is of the

form (4) ; the plane will therefore intersect the plane at infinity

in the line (3).

Theorem III. T7ie necessary and sxifficient condition that two

lines are perpendicular is that their jyoints at infinity are conjugate

as to the absolute.

The condition that two lines are perpendicular is that each lies

in a plane perpendicular to the other, that is, that each intersects

the polar line of the point at infinity on the other as to the absolute.

Finally, since two planes are perpendicular if each contains a

line perpendicular to the other, we have the following theorem :

Theorem IV. Tlie necessary and sufficient condition that two

planes are perpendicular is that their lines at infinity are conjugate

as to the absolute.

A tangent plane to the absolute is conjugate to any plane pass-

ing through the point of contact ; in particular, it is conjugate to

itself. It should be observed that the equation of a tangent plane

to the absolute cannot be reduced to the normal form, hence we
cannot speak of the direction cosines of such a plane.
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Consider the pencil of planes passing through any real line.

We may choose two perpendicular planes of the pencil as x = 0,

y = 0, and write the equation of any other plane of the pencil in

the form
y = mx.

The equations of the two tangent planes to the absolute which

pass through this line are y = ix and y = —ix. By using the

usual formula to obtain the tangent of the angle <^ between y = ix

and y = mx, we obtain

. . m — i m — i 1
tan (^ = = = - = — *

1 + im i(m — i) i

independent of m. For this reason tangent planes to the absolute

are called isotropic planes. The cone having its vertex at (a, b, c)

and passing through the absolute has an equation of the form

(x - ay + {y- by + (z- cy = 0.

If we employ the formula of Art. 4 for the distance between

two points, we see that the distance of any point of the cone from

ihe vertex is equal to zero. For this reason the cone is called a

minimal cone. Moreover, if Pj and Pj are any two points on the

same generator, since

VP,-VP, = P,P,,

we conclude that the distance between any two points on any line

that intersects the absolute is zero. For this reason these lines

are called minimal lines. They have no direction cosines (Art. 3).

153. Equations of motion. Let an arbitrary point P be referred

to a rectangular system of coordinates x, y, z, t and to a tetrahe-

dral system ccj, .Tj, x^, x^, with the restriction that .T4 = is the equa-

tion of the plane at infinity t = 0. The equations connecting the

two systems of coordinates are

crx = Xx^ + A'xj + A"iC3 + hXi,

ay = ixx^ + fjjx^ + ii"x^ 4- h'x^, .

, (tz = vXi + v'x2 + v"Xi 4- h"Xi, ^ '

at = X4.

Divide the first three equations of (5) by the last, member by

member, and replace the non-homogeneous coordinates -,etc.,by
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x\ y\ z' and ^S etc., by x\, x\, o:\. ]f P is any point not in the

plane at infinity, we shall prove the following theorem :

Theorem I. Tlie most general linear transformations of the form

(5) that ivill transform the exjn'ession

a-'2 + y'-^ + 2'2 i7ito x',2 + x'.,^ + x-.^

are the rotations and reflections about the j)oiiit x' = 0', y' = 0,

^' = 0.

If we substitute the values of x', y', z' in the expression

x'^ 4. y'i
-I-

2;'2^ we obtain

(\x\ + \'x', + X"x', + hy + (^x\ + ix'x\_ + fx:'x\ + h'Y

+ {yX\ + v'x'. + v"x\+h"y.

If this is equal to x\^ + x'^ + x'^ for all finite values of x\, x\,

X3, we have the following relations

X2 + ^2 -}- v2 = X'2 + fj-" + v'' = X'" + H-"^ + v'" = 1,

XX' + f,fx' + vv' = X'X" + fji'fji" + v'v" = X"X + /x'V + v"v = 0, (6)

hx + h'fx + h"v = 0, hX' + AV + h"v' = 0, hX" + h'lx" + /i"v"= 0.

Since the determinant
|
Xp-'v"

\

is not zei'O, it follows that

h = h' = h" = 0. The formulas (6) which do not contain h, h',

h" are exactly the relations among the coefficients to define a

rotation or a rotation and reflection about the origin (Art. 37).

This proves the proposition.

By similar reasoning we may prove the theorem

:

Theorem II. Transformations that ivill transform

a;'2 + ^'2 + z'^ into (x\ - ay + (x'^ - by + (x', - cy

consist of motion or of motion and reflection.^

154. Classification of projective transformations. The equations

of any projective transformation (Art. 98) are of the form

fCX 1 ^ Ctu^l "T <^12**'2 ~r Ctl3'''3 I 0(l4'^4>

kX 2 ^ 02)3^1 4" tt22'''2
1 ^"23*^3 I '^24'''4> xwv

kX 3 = 0^31 a^i + <^32'*'2 "T <^ 33*^3 "T C34'^4>

kX 4 = C41-'^l "T ^42^*2 I '^43'^3 I
tt44^4'
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We shall now consider the problem of classifying the existing

types of such transformations and of reducing their equations to

the simplest form.

The invariant points of the transformation (7) are determined

by those values of k which satisfy the equation

D(k)

,-k
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be the equation of any plane not passing through the invariant

point. If now we put

y, = ^I3,,x„ i = 1, 2, 3, 4,

and solve the equations for the x-,

Xi = 2yit?/,„ and put also x\ = ^yiky'k,
*=i

then substitute these valaes in the members of (7), the new equa-

tions, when solved for y\, will be of the form

y'l = Kyi + binJ/2 + ^132/3 + &i4y«

y\ = 622^2 + ^232/3 + ^242/4.

y'3 = Kyi + Kyz + hiy»

y\= bi.y2-\-bi^y^ + biiyi.

Without changing the vertex (1, 0, 0, 0), the planes 3/2 = 0, 7/3 = 0,

2/4 = may be replaced by others by repeating this same process

on the last three equations; in this way we may replace the

coefficients 632, ^42 by ; by a further application to the variables

2/3> 2/4 we may replace 643 by 0.

Referred to the system of coordinates just found, the equations

of the projective transformation (7) are

X
I
= fC^Xi -f- C12X2 + Ci3^3 + ^'l4''^4>

(9)
x',=
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In any case, if i <,k and c^^ ^ c^.^, we may always remove the

term c,^ by replacing x\. by x^ -\—^''^'^^'
in both members of the

equation. If c„ = c^^. and c^^ ^0, by a change of unit point, o.^

may be replaced by unity ; thus, if C33 = C44 and C34 4^ 0, by writing

034X4 = 1/4, we obtain the equations

^'3 = 6332/3 + ?/4,

.V'4
= C332/4.

These two types of transformations will reduce the equations to

their simplest form in every case in which D{k) = has no root

of multiplicity greater than two.

If D(k) = has one simple root k^ and a triple root k^, the pre-

ceding method can be applied to reduce the equations of the

transformation to
,X 1 = K^Xi,

X 2 = "'2*''2 i~ ^23*^3 I ^24'''4J

X 2= KqX^ -f" '^34*''4>

X 4 ^^ K^X^t

In case a24 = 0, the preceding method can be applied again ; thus,

if a34^0, a^ 9^0, each may be replaced by unity; if coeflBcients

a23, a24, a34 are zero, the transformation is already expressed in its

simplest form. If a24 = 0, either or both of the coefficients 023

and a34, if not zero, may be replaced by unity by a transformation

of the type just discussed.

If O24 ^ 0, a34 ^ 0, replace x^ by the substitution

«->4?/3

^34

In the transformed equation, the new a24 is zero. In the same

way, if 0*24 ^ 0, ^,34 = 0, but aog =^ 0, put

«23

and the same result will be accomplished. Finally, if a24=?!=0,

but O34 = 0, 023 = ^) P"t

^1 = 1/1, x., = y3, X3 = y2, x^ = y^ (10)

in both members of the equation. Now a24 = 0, and the complete

reduction can be made as before.
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If D{k)=0 has a fourfold root k^, equations (9) reduce to

'^1*^2 1 ^^23*^3 1
^^24*^4?X 2 —

iK 3 =
x\ = rC^X^.

By transformations analogous to those in the preceding case, the

coefficients cii^, a^i, and 024 may be reduced to zero, and the coeffi-

cients ai2, «23> 3'i^d a^i to zero or to unity.

This completes the problem of reduction. The determination

of the locus of the invariant points and the characteristic of D(k)

in the various cases is left as an exercise for the student. The re-

sults are collected in the following table.

projective transformations.

Locus OF InVAKIANT I'uINTS

Four distinct points.

Two distinct, two co-

incident points.

Two distinct points

and a line.

x^ One distinct, three

coincident points.

A point and a line.

A point and a plane. C

Two pairs of coinci-

dent points.

Two coincident points

and a line.

Two lines.

^ Four coincident points.

155. Standard forms of
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definite point (x'). If the equations (11) can be solved rationally

for Xi, X2, X3, x^ in terms of x\, x'o, x\, x'

^

X, = U^\, x'„ x\, x\), i = 1, 2, 3, 4, (12)

in which all the functions 1//^ are of the same degree, then to a

point {x') also corresponds a definite point {x). In this case the

transformation defined by (11) is called birational ; that defined by

(12) is called the inverse of that defined by (11).

When the point (.«') describes the plane 2«',«'i = 0, the corre-

sponding point {x) describes the surface

w'i<^i(^) + w'2</>2(^) + u'3<f)-i{x) + u\<f>^(x) = 0. (13)

This surface will be said to correspond to the plane (/<'). If the

m', are thought of as parameters, we may say : corresponding to all

the planes of space are the surfaces of a web defined by (13).

In the same way it is seen that, corresponding to the planes

"Siii-x- =0 of the system (.«), are the surfaces of the web

u,il,,(x') + ti.^lx') + n,i(;,(x') + u,^,(x') = 0. (14)

Three planes («') which do not belong to a pencil have one and

only one point in common, henoe three surfaces of the web (13),

which do not belong to a pencil, determine a unique point (x)

common to them all, whose coordinates are functions of the coor-

dinates of («').

This fact shows that in the case of non-linear transformations

the web defined by (13) cannot be a linear combination of arbi-

trary surfaces of given degree. For if the <^- are non-linear, any

three of them intersect in more than one point, but it was just

seen that of the points of intersection there is just one point

whose coordinates depend upon the particular surfaces of the web

chosen. The remaining intersections are common to all the sur-

faces of the web. They are called the fundamental points of the

system (x) in the tranformation (11). When the coordinates of a

fundamental point are substituted in (9), the coordinates of the

corresponding point (x') all vanish. For the fundamental points

the correspondence is not one to one. The fundamental points of

(x') are the common basis points of the surfaces *pi(x') = 0.
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157. Quadratic transformations. We have seen (Art. 98) that

if the 4>i
are linear functions, the transformation (11) is projective,

and that no point is common to all four planes <fy,(x) =0. The

simplest non-linear transformations are those in which the cf>i are

quadratic. We shall consider the case in which all the quadrics

of the web have a conic c in common.

Let the equations of the given conic be

2i/.a5.- = 0, f{x) = 0.

Any quadric of the system

2?/.a;.(AiaJi + ^^x^ + X3X3 + \^x^) + \5f(x) =

will pass through this conic. Among the quadrics of this system

those passing through an arbitrary point P define a web. Any
two quadrics Hi = 0, H.^^O of this web intersect in a space

curve consisting of the conic c and a second conic c' which passes

through P. The planes of c and of c' constitute a composite

quadric belonging to the pencil determined by i/i = and H = 0,

and the conies c, c' lie on every quadric of the pencil. Hence c, c'

intersect in two points, as otherwise the line of intersection of the

two planes would have at least three points on every quadric of

the pencil, which is impossible.

Any third quadric H^ = of the web but not of the pencil

determined by H^ = 0, H^ = passes through c and P. The plane

of c' intersects H^^O in a conic c" passing through P and the

two points common to c, c' and in just one other point. The posi-

tion of this fourth point of intersection depends on the choice of

the bundle H^ = 0, //a = (^ H^ = 0. We have thus proved that the

web of quadrics defined by a conic and a point P has the neces-

sary property mentioned in Art. 156 possessed by the web deter-

mined by a birational transformation.

Let the equations of the conic c be

x^ = 0, e^x^ + 62^2" + ^3^3*= 0.

If P is not on the plane x^ = 0, it may be chosen as vertex

(0, 0, 0, 1) of the tetrahedron of reference. The equation of the

web has the form
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In analogy with equation (11) we may now put

ic 1 ^ ^iX^y a; 2 = X2X^, x ^ := XyC^, x ^^ ^i-^i r 62-'K2 -r 63X3 . \^0)

The most general form of the transformation of this type may be

obtained by replacing the x'^ by any linear functions of them with

non-vanishing determinant.

In the derivation of equations (12) it makes no difference

whether the conic c is proper or composite, hence three cases

arise, according as ej = 62 = ^s = 1 or ^j = ej = 1, 63 = or e^ = 1,

62 = ^3 = 0. The equations are

Cb 1 ^^ •t/iX^^ Jb o — JUo^iy **^ 3 — **^3*^4 ^ 4 •""
**^i "t" *^2 1" 3 * \ /

CC 1 —— **^i"-'45 *^ —
' **^2 4) 3 — •^3*^4 *^ 4

—~ **^l 1* ^^2 • \ )

CC 1
—— "^1*^41 *^ 2 — *^2 4' 3 ^"~ **^3*^4 *^ 4 — *^l • \ /

Now let P approach a poiut K on the conic c. If c is com-

posite, suppose its factors are distinct and that K lies on only

one of them. In the limits the line KP is tangent to all the quad-

rics of the web determined by c and P. But the tangent to c at K
is also tangent to all these quadrics at K. Hence the plane of

these two lines is a common tangent plane to all the quadrics of

the web at K= P.

Let P be taken as (1, 0, 0, 0), the common tangent plane at P
as X2 = 0, and let the equations of the conic be reduced to x^ = 0,

iCia;2 + ex^^ = 0. The equation of the web has the form

KiX^Xi + X2X3X4 + Agx/ + \i{xiX2 + 6X3^)= 0.

The two cases, according as e = 1 or e = 0, give rise to the

transformations

X
J = ^20^4, X 2

—™ •^3^4, *^ 3 ^— «^4 , •C 4 ^ ^\*^2 "I" *^3 > V /

• 1 "^ X^Xa* X 2 —' *^3**'4, X 3 — fcCj *C 4 — XyX^ \ /

of this type.

Finally, let c be composite and let the point K which P ap-

proaches lie on both components of c. Since all the quadrics

thi'ough c have in this case the plane of c for common tangent

plane at K, the point P must approach c in such a way that the

line KP approaches the plane of c as a limiting position. The
conies in which the quadrics of the web are intersected by any

plane through Pand A" have two points in common at K and one
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at P. Hence in the limit, all these conies must have three inter-

sections coincident at K= P.

Let the equations of c be Xi = 0, x^ + ex^ = 0, and the coordi-

nates of P be (1, 0, 0, 0). The equations of the system of rank

five of quadrics through c is

XiX^Xi + \2X.Xi + XsX^Xi + XiXi^ + X^(xi^ + 6X3^) = 0.

The section of this system by any plane through P, different from

.T4 = 0, will consist of a system of conies touching each other at P.

The required web belongs to this system and satisfies the condi-

tion that its section by any plane through P other than a'4 = is a

system of conies having three intersections coincident at (1, 0, 0, 0).

The equations of the section by the plane .T3 = are

Ai^jS/^ -f- A2'1^2'^4 ~r A4.T4 -|- A5X2 ^ "5 '^3 ~^ ^•

All these conies touch each other at P. Let \\, A'2, A'4, A'5 be the

parameters of one conic, and Aj, A2, A4, A5 of another contained in

this system. The equations of the lines from (1, 0, 0, 0) to the

two remaining intersections of these two conic are

(AiA'a - A^A'O-bf +(AiA'2 - A2A'i)avr4 +(AiA'4 - K^'i)^*' = 0.

One of these remaining points is also at P if AjA'j — A5A', = 0.

Hence all the quadrics of the web satisfy a relation of the form

A5 -f A;Ai = 0. It is no restriction to put A; = 1. It can now be

shown that the conies cut from the quadrics of the web A5 + Ai =
by any plane aiX^ 4- aoXj -f O3.V3 = through P have three coinci-

dent points in common at P.

The equation of the web is

Ai.r.,.r4 + X.,XyXi + X:^Xi^ + Xi(x2^ + ex^ - 0^10:4) = 0.

The two birational transformations defined by webs of quadrics

of this type are

X 1 = X2.T4, .1; 2 = •'^3"^4» '^ 3 ^^ '^*4 >
3J 4 = .^2 -f- .^3 XyC^. yj )

X ] = ^2"^4» '^ 2 ^^ •^i'^i: *^ 3 ^ •''4 J
iK 4 = 3?2 X^X^. \^yj

The inverse transformations of forms (a) ••• (g) are also quadratic.

For this reason transformations of this type are called quadratic-

quadratic.
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158. Quadratic inversion. A geometric inpthod of constructing

some of the preceding types of birational transformations will

now be considered. Given a quadric A and a point 0. Let P be

any point in space, and P' the point in which the polar plane of

P as to A cuts the line OP. The transformation defined by hav- '

ing P' correspond to P is called quadratic inversion. If does

not lie on the quadric ^ = 0, let = (0, 0, 0, 1) and let the equa-

tion of ^1 = be

If P= (yi, y^, 2/3, y^, the coordinates of P' are

y\ = yiyt, y't = yiyi, y'z = M4, y\ = euVi^ + 622/2^ + e^x^^

which include forms (a), (6), (c). If lies on A, we may take

A = x^- + e,x,^ - x,x, = 0, = (0, 0, 0, 1).

The coordinates of P' in this case are functions of y^, y^, y^, y^

defined b}'' (/) and (r/). The quadratic-quadratic transformations

(a), (b), (c), (/), (g) can therefore be generated in this manner.

159. Transformation by reciprocal radii. If, for the quadric

^ = (Art. 158) we take the sphere

a;2 ^y^ + z^ = m"" (16)

and for the center of this sphere, the equations of the trans-

formation assume the form

x' = k'^xt, y' = k^yt, z'= kht, if = x^ + y^ -^ x". (17)

On account of the relation

OP ' OP' = ¥ (18)

existing between the segments from to any pair of correspond-

ing points P, P', it is called the transformation by reciprocal radii.

Any plane not passing through goes into a sphere passing

through and the circle in which the given plane meets the

sphere (16), which is called the sphere of inversion.

The fundamental elements are the center 0, the plane at

infinity, and the asymptotic cone of the sphere of inversion.



202 TRANoFORMATIONS OP SPACE [Chap. XII.

A plane ax + by -\- cz -\- dt = not passing through the origin

(d =^ 0) is transformed into a sphere

ak^xt + bkhjt + ckht + d(.«2 ^y'i+z'^)=0

passing through the origin.

A plane passing through the origin is transformed into a com-

posite sphere consisting of the given plane and the plane at in-

finity. We shall say that planes through the origin are trans-

formed into themselves.

A sphere

a(a;- + y'' + z"^) -\- 2 fxt -f 2 gyt -f 2 hzt + mf = (19)

not passing through the origin (in -^^ 0) is transformed into the

sphere
wi(a;2+ 2/2 + z-") + 2fk\xt + 2 gk'^yt + 2 hk^zt -^ ak' = 0. (20)

The factor x^ + y"^ + z"^ can be removed from the transformed

equation. A sphere passing through the origin {in = 0) is trans-

formed into a composite sphere consisting of a plane and the

plane at infinity.

If any surface passes through the origin, its image is seen to be

composite, one factor being the plane at infinity. The plane at

infinity is the image of the center 0, which is a fundamental

point.

In particular, the sphere (19) will go into itself if m = ak^
;

but this is exactly the condition that the sphere (19) is orthogonal

to the sphere of inversion, hence we may say :

Theorem I. Tlie sphe7-es tchich are orthogonal to the sphere of in-

version go into themselces when transformed by reciprocal radii.

We shall now prove the following theorem

:

Theorem II. Angles are preserved ivhen transformed by recipro-

cal radii.

Let AyX + B{y + C^z + D^t = 0, A^x -f B^y + G^z + 0^1 =

be any two planes. The angle 6 at which they intersect is de-

fined by the formula (Art. 15)

QQg Q _ ^1^2 + A -S2 + C] C2
^ /o\\

-JIaJTW+^WaFVW+W)
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These planes go into the spheres

Z)i(x2 + ?/2 -f z2)+ A^k'^xt + BJi-yt + CJiht = 0,

i>2(x2 + ?/2 + z2)+ A.Ji'-xt + JSjA;^^^ 4- Cpzt = 0.

Since the angle of intersection of two spheres is the same for

every point of their curve of intersection (Art. 51) and both

spheres pass through 0, we may determine the angle at which the

spheres intersect by obtaining the angle between the tangent

planes at 0. These tangent planes are

A^x + B^y + CjZ = 0, A^x + B^y + C^z = 0,

hence the angle between them is defined by (21). Since the angle

of intersection of any two surfaces at a point lying on both is de-

fined as the angle between their tangent planes at this common
point, the proposition is proved.

160. Cyclides. Since lines are transformed by reciprocal radii

into circles passing through 0, a ruled surface will be transformed

into a surface containing an infinite number of circles. A quadric

has two systems of lines, hence its transform will contain tw^o sys-

tems of circles, and every circle of each system will pass through

0. Moreover, the quadric contains six systems of circular sections

lying on the planes of six parallel pencils (Art. 82). Hence the

transform will also contain six additional systems of circles, not

passing through 0, but so situated that each system lies on a

pencil of spheres passing through 0.

By rotating the axes (Art. 37), we may reduce (Art. 70) the

equation of any quadric not passing through to the form

^ ax" + hy"" + c2^ + i^ + 2 Ixt -f 2 myt -f 2 nzt = (22)

without changing the form of the equation of the sphere of inver-

sion. By transforming this surface by reciprocal radii, we obtain

(a;2 + t/2 + 22)2 + 2 k^x"" + ?/ + z2)(/.i- + my + nz)t

+ k\aj^ + by^ + cz'^)f = 0.

This surface is called the nodal cyclide ; it contains the absolute

as a double curve and has a double point at the point 0.*

* A point P on a surface is called a double point or node when every line

through P raeets the surface in two coincident points at P. A curve on a surface

is called a double curve when every point of the curve is a double point of the

surface.
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If the given quadric is a cone with vertex at P, its image will

have a double point at and another at P'. The circles which

are the images of the generators of the cone pass through

and P'.

The equation of the cone may be taken as

a{x- fty -\-b{y- gty + c(z - htf = (23)

and the equation of the transform is

(a/2 _,_ ^g2 _,_ e/i2)(a;2 4- ^2 _,_ ^2^2 _ q m{x^ +if +z'){afx + bgy + chz)

+ k\ax' 4- &/ + cz'y = 0.

This surface has a node at the origin and at the transform

(/) 9^ h, p-\- rf -\- 7*2) of the vertex of the cone (23). It is called a

binodal cyclide.

If, in equation (22), 6 = c, so that the given quadric is a surface

of revolution, the transformed equation may be written in the

form

[ic2+ ^2 _,_ ^2 _|_
^tQ,-^ + my + nz)t + ^ IH'^'y + (a - h)k*xH'^

- k4lx 4- my + nz + ^ k''t\H'' = 0.

It has a node at and at the points in which the line a; = 0,

2lx-{-2 my + 2 nz + k'^ht = intersects the sphere a;^ + 3/^ + 2^ + 2 Ixt

+ 2 myt -f 2 nzt + bkH- = 0. It is called the trinodal cyclide.

Finally, if the cone (21) is one of revolution, the resulting

cyclide has four nodes, and is called a cyclide of Dupin. If the

center of inversion is within the cone, so that no real tangent

planes can be drawn to the cone through the line OP, the surface

is called a spindle cyclide; if the center is outside the cone, the

resulting surface is called a horn cyclide.

The generating circles of a cone of revolution intersect the recti-

linear generators at right angles. Since both the lines and the

circles are transformed into circles and angles are preserved by

the transformation, we have the following theorem:

Theorem III. Through each point of a cyclide of Diqjin pass

two circles lying entirely on the surface. Tliese circles meet each

other at right angles.
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A particular case of the spindle cyclide is obtained by taking

the axis of the cone through the center of inversion. The result-

ing cyclide is in this case a surface of revolution. It may be

generated by revolving a circle about one of its secants. If the

points of intersection of the circle and the secant are imaginary,

the cyclide is called the ring cyclide. It has the form of an

anchor ring. In this case all the nodes of the cyclide are

imaginary.

EXERCISES

1. If A consists of a pair of non-parallel planes and is taken on one of

them, show that the quadratic inversion reduces to the linear transformation

defined in Art. 155, Ex. 8 as central involution.

2. Obtain the transform of the ellipsoid

?! + m! + ^ = 1
a?- y- €^

with regard to the sphere x~ + ;/'- \- z' — 1. How many systems of circles

lie on the resulting surface ? Show that four minimal lines pass through

and lie on the surface.

3. Show that the transform of the paraboloid ax^ + hxp- = 2 ^ by reciprocal

radii is a cubic surface. How many systems of circles lie on this surface ?

How many straight lines ?

4. Discuss the transform of a quadric cone by reciprocal radii when the

center of the sphere of inversion lies on the surface but is not at the vertex.

5. Show that a surface of degree n passing k times through the center of

inversion is transformed by reciprocal radii into a surface of degree 2(n — A;), 2, >-

having the absolute as an {n — ^•)-fold curve.

6. Show that the center of an arbitrary sphere is not transformed into

the center of the transformed sphere by reciprocal radii.

7. Given the transformation

X'l = {Xx — Xz)X-2, x'o=(Xi — X2).r:i, X'3 = (Xl — X2).r4, X'i = X2X3.

Find the equations of the inverse transformation and discuss the basis points

in (x).

8. Given the transformation

x'l = X1X2, X'o = X2X3, X':? = .r^Xi, X'i = X4(Xi -I- X-2 + X3).

Find the equations of the inverse transformation. Discuss the basis points

in the web of quadrics XiXiXo + X2X2X;i + \3X3X1 + X4X4(xi + X2 + X3) = 0.



CHAPTER XIII

CURVES AND SURFACES IN TETRAHEDRAL COORDINATES

I. Algebraic Surfaces

161. Number of constants in the equation of a surface. The

locus of the equation

f(^)= 2 ,o^,g, aa^Y6«'i"'»2V^/ = 0, (1)
«! p! y! 6!

wherein a, /S, y, 8 are positive integers (or zero) satisfying the

equation « + /5+ y + 8 = n, is called an algebraic surface of

degree n.

If the equation is arranged in powers of one of the variables,

as .^4, thus
n^," + u.x,'^-^ + . .

. + w„ = 0, (2)

in which u- is a homogeneous polynomial of degree i in x^, x^, x^,

the number of constants in the equation can be readily calculated.

For we may write

n. == (^o^V + <^ia-3'-^ H + cf>i,

4>k being a homogeneous polynomial in x^, x^^ of degree A; and con-

sequently containing A; + 1 constants. The number of constants

in XI- is therefore

1 I

o
, , n ;^^ (^ + l)(r + 2) _(^ + 2)!.

2 i!2!

This number of constants in u^ is now to be summed for all inte-

gral values of i from to n. By induction the sum is readily

found to be

^ 2^ 3j_4 (n + l)(n+2) _ (n + 3)!22 2 n!3!

which is the number of homogeneous coefficients in the equation

of the surface. The number of independent conditions which

the surface can satisfy is one less than this or

(n + 3)

!

_ ^ ^ n^ + 6 w' + 11 n

w!3!
~

6

206
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162. Notation. It will be convenieut to introduce the follow-

ing symbols :

A f(x) = v ^M + v ^^ + » ^-f^ + v M^- Vv ^^

A//(x-) = V ——
yi^y-^yiUi

d\f(x)

wherein 1 ^ r ^n and a, b, c, d are positive integers (or zero),

satisfying the condition a-f-6 + c + d = r,

EXERCISES V

Let /(.x) = aioooXi* + ao4ooX2* + aooioX3* + aQoo4Xi* + 6 02200X1^X2^+600220X2^X3^

+ 6 ao202XrX4^ + 6 aoo22.'*;3-^4'^ + G a202o.i;i''^-^3"^ + 6 a2002Xi'Xi^.

1. Find A//(x) for r = 1, 2, 3, 4.

2. Show that A, [A//(.r)] = A//(x).

3. Show that ^A,V(^) = Ax/(y).

4. Show that Ay-f(x) = Ax^fiy).

5. Show that A,f(x) =4/(x) ; AxVC^:) = 12/(x) ; A^VW = 24/(x).

163. Intersection of a line and a surface. If (y), (x) are any two

points in space, the coordinates of any point (z) on the line joining

them are of the form z^ = \y^ + fjiX^ (Art. 95). If (z) lies on

f[x) — 0, then f{\y + \x.x) = 0. By Taylor's theorem for the

expansion of a function of four variables, we have, since

A/+*/(?/) = for all positive integral values of A;,

Siky + /.X-) = A"/(^) + A-VA^/Cv) + -

^A//(^) + -+-^
r! n

+ ^-^ A//(^) + •
. • + ;^ A/ fiy) = 0. (4)

This equation may also be written in the form

f{\y + iix)= iL-fix) + /x" iAA,/(.r) +

/• ! w

:

+ Lr^ A//(x) + - + ^ A,"/(x) = 0, (6)

which is equivalent to the preceding one.
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If these equations are identically satisfied, the line joining (y)

to (x) lies entirely on the surface. If they are not identically

satisfied, they are homogeneous, of degree n in X, fx and conse-

quently determine n intersections of the line and the surface. If

we define the order of a surface as the number of points in which

it is intersected by a line, we have the following theorem.

Theokem. The order of a surface is the degree of its equation in

point coordinates.

164. Polar surfaces. In (5) let the point (y) be fixed but let

(x) vary in such a way that the equation

a;/(x) = o (6)

is satisfied.

This equation defines a surface of order n — r called the rth polar

surface of the fixed point (y) with regard to the given surface

/(.!•) = 0. When r = n — l, the surface (6) is a plane. It is

called the polar plane of the point (y) as to f(x) = ; when

r = n — 2, the resulting quadric defined by (6) is called the

polar quadric, etc.

In the identities (4) and (5) the coeflicients of like powers of

A, fi are equal, that is,

i- a;fix) =
^ A— /(y)-

r ! (n — r) !

From this identity we have the following theorem :

Theorem I. If (x) lies on the rth jjolar of (y), then (y) lies on

the (n — r)th polar of (x).

If in (4), the two points (y), (x) are coincident, then

fi\x + ^) = (A + ^yf{x) = X-fix) + A-VA^/Cx) + •..

\n—r,,r

By expanding (A + fi)" by the binomial theorem and equating

coefficients of like powers of A, /a in the preceding identity, we

obtain

A/f(x)=--^f(x),
(w — ?•)

!
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which is called the generalized Euler theorem for homogeneous

functions. From this identity we hav^e the following theorem :

Theorem II. The locus of a jwint which lies on any one and

therefore on all its own polar surfaces is the given surface f(x) — 0.

From the definition of ^Jf{x) (Art. 162) it follows that if

^
<'<"'

A//(.r) = A/[A-/(aO].

From this identity we have the theorem :

Theorem III. Tlie sth polar surface of the (r — s)th polar siir-

face of (y) with respect to f(x) = coincides with the rth polar sur-

face of (y).

EXERCISES

1. Determine the coordinates of tiie points in which the line Joining

(1, 0, 0, 0) to (0, 0, 0, 1) intersects the surface

Xi'^ + 2 X^^ — X3^ — 4 Xi^ + 4 Xi2X4 — XiX4''^ + 6 X2'^X3 — 6 X1X2X.3 = 0.

2. Determine a so that two intersections of the line joining (0, 1, 0, 0)

to (0, 0, 1, 0) with the surface

Xl* + X2* + X-i* + Xi* 4- 0X2^X3 + 2 (a - 1)X22X,32 + 4 X2X33 + 6 X1X2X3X4 =
coincide.

3. Show that any line through (1, 0, 0, 0) has two of its intersections

with the surface

3 XzW + Xi* + 6 Xi2X2- + 12 X22X42 + 4 Xirs"^ + 24 Xi,r2X3X4 =
coincident at (1, 0, 0, 0).

4. Prove the theorems of Art. 164 for the surface of Ex. 3 by actual

differentiation.

165. Tangent lines and planes. A line is said to touch a sur-

face at a point P on it if two of its intersections with the surface

coincide at P. In equation (4) let (?/) now be a fixed point on

the given surface so th.a.t fy) = 0. One root of (4) is now /x = 0,

and one of the intersections (x) coincides with (y).

The condition that a second intersection of the line (y)(x) coin-

cides wdth (y) is that fj} is a factor of (4), that is, that (x) is a

point in the plane

dyi 5//2 a^/3 dy^

All the lines which touch f(x) = at (?/) lie in the plane (7) and
every line through (y) in this plane is a tangent line. This plane
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is called the tangent plane of (>/). The plane (7) is also the polar

plane of (ij)
; hence we have the theorem :

Theokkm. The polar plane of a point P on the surface is the

tangent plane to the surface at P.

From Art. 164, Theorem III it also follows that the tangent

plane to /(.r) = at a point (y) on it is also the tangent plane at

(y) to all the polar surfaces of {y) with regard tof(x) = 0.

166. Inflexional tangents. A line is said to have contact of

the second order with a surface at any point P on it if three of

its intersections with the surface coincide at P.

Let (?/) be a given point on the surface, so that/(?/)=0. The

condition that the line {y){z) has contact of the second order at

(y) is that fx^ is a factor of (4), that is, that (2:) lies on the tangent

plane and on the polar quadric of (?/). Hence (2;) lies on the

intersection of

A,/(z/)=0, A//(^/) = 0.

Since A^/(?/) = is the tangent plane of the quadric A//(y)=0
at (y), the conic of intersection of the taiigent plane and polar

quadric consists of two lines, each of which has contact of the

second order with _/(,r) =0 at the point (?/). These two lines are

called the inflexional tangents to the surface at the point P. The
section of the surface by an arbitrary plane through either of

these lines has an inflexion at (?/), the given line being the inflex-

ional tangent.

167. Double points. A point P is said to be a double point or

node on a surface if every line through the point has two inter-

sections with the surface coincident at P. If (y) is a double

point on f(x) = 0, equation (4) has /x^ as factor for all positions

of (2), that is, ^J{y) = is an identity in z^, z.,, z^, z^. It follows

that if (?/) is a double point, its coordinates satisfy the four

equations

M2()=0, M^ = o, M^ = o, M^=0. (8)

Conversely, if these conditions are satisfied, it follows, since

nfijj) = ^yfQl), that equation (4) has the double root /x^ = and
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{y) is a double point. Hence the necessary and sufficient condi-

tion that/(x') = has a double point at {y) is that the coordinates

of {y) satisfy equations (8). Unless the contrary assumption is

stated, it will be assumed that/(ic) = has no double points.

EXERCISES

1. Impose the condition that the point (0, 0, 0, 1) lies on the surface

f{x) = and find the equation of the tangent plane to the surface at that

point.

2. Determine the condition that the surface of Ex. 1 has a double point

at (0, 0, 0, 1).

3. Show that the point (1, 1, 1, 1) lies on the surface of Ex. 1, Art. 164,

and determine the equation of the tangent plane at that point.

4. Find the equations of the inflexional tangents of the surface of Ex. 1,

Art. 164, at the point (1, 1, 1, 1).

5. Show that the lines through a double point on a surface f{x) = which

have three intersections with the surface coincident at the double point form

a quadric cone.

6. Show that there are six lines through a double point on a surface

f(x) = which have four points of intersection with the surface coincident

at the double point.

7. Prove that the curve of section of a surface by any tangent plane has a

double point at the point of tangency, and the inflexional tangents are the

tangents at the double point.

168. The first polar surface and tangent cone. If in equation (7),

the coordinates Xi, x.;,, x., x^ are regarded as fixed, and ?/i, ?/2, 2/3, y^

as variable, the locus of the equation is the first polar of the

point (x).

Theorem I. Tlie first polar surface of any point in space passes

through all the double j^oints of the given surface.

For, if f(x)=0 has one or more double points, the coordinates

of each must satisfy the system of equations (8) and also (7).

Theorem II. Tlie joints of tangency of the tangent planes to the

surface from a point {x) lie on the curve of intersection of the given

surface and the first polar of{x).

For, if (y) is the point of tangency of a tangent plane to

f(x)=0 which passes through the given point (x), the coordi-
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nates of (y) satisfy /(//)= and A^/'(^) = 0, Conversely, if (y)

is a non-multiple point on this curve, it follows that the tangent

plane at {y) passes through the given point (ic).

Since the line joining (x) to any point (y) on the curve defined

in Theorem II lies in the tangent plane at (y), it follows that it is

a tangent line. The locus of these lines is a cone called the

tangent cone from (x) to the surface f(x)= 0. To obtain the

equation of this cone we think of (x) as fixed in (4) and impose

the condition on (y) that two of the roots of the equation in A : /x

shall be coincident. Hence we have the following theorem

:

Theorem III. The equation of the tangent cone from any point

(x) is obtained by equating the discriminant of (4) to zero.

169. Class of a surface. Equation in plane coordinates. A point

(x) lies on tlie surface /(a?) = if its coordinates satisfy the equa-

tion of the surface. Similarly, a plane (u) touches the surface if

its coordinates satisfy a certain relation, called the equation of

the surface in plane coordinates. The class of a surface is the

dual of its order ; it is defined as the number of tangent planes to

the surface that pass through an arbitrary line and is equal to

the degree of the equation of the surface in plane coordinates.

Theorem. The class of an algebraic surface of order n, having

8 double points and no other singularities, is n(7i — ly — 2 8.

Let /(.^•) = be of order n, and let Pi=(y), P.^={z) be two

points on an arbitrary line I. The point of tangency of every

tangent plane to/(ic) = that passes through I lies on the surface

/(.c) = 0, on the polar of {y) and on the polar of (2;), so that its

coordinates satisfy the equations

/(.r)=0, A,/(x)=0, A,/(a;) = 0.

These surfaces are of orders n, n — 1, n — 1, respectively, and

have n(n — 1)^ points in common ; \i f{x)=: has no double points,

each of these points is a point of tangency of a plane through the

line I, tangent to the given surface. If /(a:)=0 has a double

point, Aj^/(x)=0 and A,/(a7) = 0, both pass through it, hence the

number of remaining sections is reduced by two.

If the plane u^x^^ + u^x^ -{- n^x^ + u^x^ = is tangent to f{x)=
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at (.y), then this plane and that defined by equation (7) must be

identical, hence

Moreover, (y) lies in the given plane and also on the given sur-

face, hence
^^^^^ _^ ^^^^^ ^ ^^^^ _^ ^^^^ ^ 0^ ^^^^^^ 0. (10)

If between (9) and (10) the coordinates of (y) are eliminated, the

resulting equation will be the equation of the given surface in

plane coordinates. If /(a;)= has double points, the resulting

equation will be composite in such a way that the equation of

each double point appears as a double factor.

EXERCISES

1. Determine the equation of the tangent cone to the surface

Xi^ + X2^ + Xs^ + Xi^ =
from the point (1, 0, 0, 0).

2. Write the equation of the surface of Ex. 1 in plane coordinates.

3. Write the equation of the surface

a;ia:23;3 + a:ia;3a;4 + XiXoXt + XiX^Xt =
in plane coordinates.

4. Write the equation of the surface Xi'^x^ — X2-X4 — in plane coordinates.

170. The Hessian. The locus of the points of space whose

polar quadrics are cones is called the Hessian of the given sur-

face f{x)= 0. The equation of the polar quadric of a point (x)

may be written in the form

y^'my^y, = 0, (11)^ ax. 5.1V

in which y^, y^, y^, y^ are the current coordinates. This quadric

will be a cone if its discriminant vanishes (Art. 103), hence if we

put for brevity ^ gy^^
ax-ax^

the equation of the Hessian may be written in the form

/u /12 /l3 J\i

TT fl2 J22 /23 X24

./l3 /23 JZ3 /34

7l4 ./24 /34 744

It is of order 4 (n — 2).

= 0. (12)
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It will now be shown that the Hessian may also be defined as

the locus of double points on first polar surfaces of the given

surface. The equation of the first polar of (y) as to/(a;)= is

If this surface has a double point, the coordinates of the double

point make each of its first partial derivatives vanish, by (8), thus

ax^ axiox.^ dx^^dx^ dx^dXi

yi^+2/.|^+ 2/3^ + 2/4^=0, (13)
0X16X2 OX^ 0X20X3 0X20Xi

Qlf Q2f Q2f Q2f

OXyOX:^ OX2OX3 0X3^ OX^OX^

oxiox^ dXiOX^ ox^ox^ oxv

The condition that these equations in ^j, ?/2> 2/3) 2/4 ^^^ consistent

is that their determinant is equal to zero, that is, that (x) lies on

the Hessian.

171. The parabolic curve. The curve of intersection of the

given surface with its Hessian is called the parabolic curve on the

surface.

Theorem. At any point of the parabolic curve the two inflexional

tangents to the surface coincide.

For, let (x) be a point on the parabolic curve. Since (x) lies on

the Hessian, its polar quadric is a cone. This cone passes through

(x) (Art. 164). The inflexional tangents are the lines which the

cone has in common with its tangent plane at (x) (Art. 166).

These lines coincide (Art. 121).

172. The Steinerian. It was just seen that the polar quadric of

any point on the Hessian is a cone. Let (.c) be a point on H, and

(y) the vertex of its polar quadric cone. As (x) describes H, (y)

also describes a surface, called the Steinerian of f(x) = 0. The

polar quadric of (;c) is given by equation (11). If (y) is the ver-

tex of the cone, its coordinates satisfy (13). The equation of the
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Steiuerian jnay be obtained by eliminating x^, x^, x^, x^ from these

four equations (13). As the equations (13) were obtained by im-

posing the condition that the first polar of (?/) has a double point,

we may also define the Steinerian as the locus of a point whose

first polar surface has a double point (lying on the Hessian).

EXERCISES

1. Prove that the Hessian and the Steinerian of a cubic surface coincide.

2. Prove that if a point of the Hessian coincides with its corresponding

point on the Steinerian, it is a double point of the given surface, and con-

versely.

3. Determine the equation of the Hessian of the surface

ai-Ti^ + a-ix-^ + asa-s' + a^x.^ + OsCx] + .ro + X3 + X4)^ = 0.

4. Determine the order of the Steinerian of a general surface of order n.

II. Algebraic Space Curves

173. Systems of equations defining a space curve. A curve

which forms the complete or partial intersection of two algebraic

surfaces is called an algebraic curve ; if the curve does not lie in

a plane, it is called a space curve.

If a given curve C forms the complete intersection of two sur-

faces F^ =0, i^2 = ^1 so that the points of C, and no other points,

lie on both surfaces, then the equations of these surfaces, consid-

ered as simultaneous, will be called the equations of the given

curve.

If the intersection of the surfaces i^i = and i^j = is composite,

and G is one component, the equations 2^^ = 0, i^2 = are satisfied

not only by the points of C but also by the points of the residual

curve. If a surface i^3 = through G can be found which has no

points of intersection with the residual curve except those on C,

the simultaneous equations F^ = 0, i^2 = 0, i^3 = are satisfied only

by the points of G and are called the equations of the curve.

If the surfaces F^ = 0, i^^ = 0, i^3 = through G have one or

more points in common which do not lie on C, then a fourth sur-

face i^j = can be found through G which does not contain these

residual points, but may intersect the residual curve of J^i = 0,

7^2 = in other points not on 2^3 = ; in this case the simultaneous
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equations F, = 0, i^2 = 0, i^s = 0, i^4 = are called the equations of

the curve. In this way a system of equations can be found which

are simultaneously satisfied by points of C and by no others.

As an illustration, consider the composite intersection of the

quadric surfaces

It consists of a space curve and the line X2 = 0, x^ = 0. The

surface XiX^ — XzX^ = also contains the space curve since it

contains every point common to the quadrics except points

on the line X2 = 0, ^3 = 0. These three surfaces are sufficient

to define the curve. The surface XiXi(xi — x^)—X2^-{-X2X^Xi=zO

also contains the given curve. It does not, however, with

the two giveu surfaces constitute a system whose equations

define the given curve. All three equations are satisfied, not

only by the coordinates of the points of the curve, but by the

coordinates of the point (1, 0, 0, 1) which does not lie on the

curve, since it does not lie on the surface XiX^ — x^x^ = 0. The sur-

face x-^x^x^ + x^ — ;r./ — xi = passes througli the curve but not

through the point (1, 0, 0, 1). The curve is therefore completely

defined by regarding the four equations

XiXi (Xi — x^) — xi + x^^Xi = 0, X1CC4 (a^i + X4) — xi — x^ =

as simultaneous.

1 74. Order of an algebraic curve. Let F^ = 0, F^- = be two

surfaces of orders /*, /x', respectively, and let C be their (proper

or composite) curve of intersection. Any plane that does not con-

tain C (or a component of it) intersects C in fxfjj points. For,

any such plane intersects F^ = in a curve of order /*, and inter-

sects i^ - in a curve of order jx. These coplanar curves have

precisely jx^jJ points in common.*

It can in fact be shown that every algebraic curve, whether

defined as the complete intersection of two surfaces or not, is

intersected by any two planes, neither of which contains the

curve or a component of it, in the same number of points.t We
* See, e.g., Fine: College Algebra (1905), p. 519.

t Halphen: Jour, de I'ecole polyteclinique. Vol. 52 (1882), p. 10.
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shall assume, without proof, the truth of this statement. The

number of points in which an arbitrary plane intersects an alge-

braic curve is called the order of the curve (Art. 140).

175. Projecting cones. If every point of a space curve is

joined by a line to a fixed point P in space, a cone is defined,

called the projecting cone of the curve from the point P. If the

point P lies at infinity, the projecting cone from P is a cylinder

(Art. 44). Except in metrical cases to be discussed later we
shall make no distinction between cylinders and cones.

For an arbitrary point P an arbitrary generator of the project-

ing cone intersects the curve in only one point. It may happen,

however, for particular positions of the point P, that every

generator meets the curve in two or more points. If in

this case P does not lie on the curve or if P lies on the

curve and every generator through P intersects the curve in

two or more points distinct from P, the curve is called a conical

curve.

Let P be a point not on the curve, such that an arbitrary

generator of the projecting cone from P meets the curve in just

one point. The order of the projecting cone is the number of

generators in an arbitrary plane through its vertex. Each gener-

ator contains one point on the curve, hence the order of the pro-

jecting cone is equal to the order of the curve. If P is on the

curve, the order of the projecting cone is one less than the order

of the curve.

Theorem. To find the equation of the 2^'>'ojecting cone of the

simple or composite curve defined by the complete intersection of two

surfaces, from a vertex of the tetrahedron of reference, eliminate be-

tween the equations the variable which does not vanish at that

vertex.

Let the equations of the given surfaces be P^ = and F^. =
and let it be required to project the curve of intersection of these

surfaces from the point (0, 0, 0, 1).

Let (y) be any point of space. The coordinates of any point

(x) on the line joining (0, 0, 0, 1) to (y) are of the form

X, = A?/i, a'2 = Xy2, x^ = Xy^, x^ = Xy^ + o-.
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The points in which this line intersects F^ = 0, F^. = are de-

fined by
F^,{x) = F^{Xy„ Xy„ Xy^, Xy^ + a)

= >^''Ffy„ y„ y„ y,+ f)
= 0,

^ ^^
(14)

F^.{x) = F^-{Xyi, Xy^, Xy^, Xy^ + a)

= Xt^'FJy„ y.„ 2/3, 2/4+H=0,

respectively. The condition that the line intersects both surfaces

in the same point is that these equations have a common root in

-, hence the equation of the projecting cone is obtained by elimi-
A

nating - between these two equations (cf. Art. 44). If - is elimi-
A A

nated from (14), y^ is also eliminated and the resulting surface is

identical with that obtained by eliminating x^ between the equa-

tions of the given surfaces.

If the curve of intersection is composite, the projecting cone is

composite, one component belonging to each component curve.

A method for determining the projecting cone from any point

P in space may be deduced by similar reasoning, but the process

is not quite so simple.

EXERCISES

1. Show that the intersection of the surfaces

3:1X2 — X3X1 + X^'^ — X2X3 = 0, XiXs'^ — X1X2X4 + X2(X42 — X2X3) =
is composite.

2. Represent each component curve of Ex. 1 completely by two or more

equations.

3. Find the equation of the projecting cone of the curve

Xi'^ + X32 + X42 + 2 X1X4 = 0, X42 + 2 X2X4 - Xi^ + 2 X32 =

from the point (0, 0, 0, 1).

4. Find the equation of the projecting cone of the curve

Xi2 + 4 X32 - X42 = 0, Xi2 _ 2 X22 + 2 X32 - 3 .r4- =

from the point (0, 0, 0, 1).

5. Find the equation of the projecting cone of the curve

xi"^ + X2'^ + X32 4- xt^ = 0, aixi2 + a2X:2 -f- 03X32 + a^Xi^ =
from the point (0, 0, 0, 1),
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6. Show by means of elimination that, if (0, 0, 0, 1) does not lie on the

curve Ffj^= 0, i^^-^O, the order of the projecting cone from (0, 0, 0, 1) is ix/x',

provided the curve is not conical from (0, 0, 0, 1).

7. Find the equation of the projecting cone of the curve

Xi^ + 2 X2^ — Xs^ — 0, Xi' — 0*2^:3 + Xi^ =

from the point (1, 1, 1, 1).

176. Monoidal representation. If a non-composite space curve

(7„ of order m is defined as the complete or partial intersection

of two surfaces F^ = 0, F^. = 0, other surfaces on which the curve

lies can be obtained from the given ones by algebraic processes.

Among such surfaces we have already discussed the projecting

cone from a given point P. We shall now show how to obtain

the equation of a surface which contains C„ and has at P a point

of multiplicity one less than the order of the surface. Such a

surface is called a monoid.

In determining the equation of a monoid through C„, we shall

assume that neither the complete intersection of P^ = and

F^. = nor any component of it is a conical curve from P. We
shall also assume that P does not lie on this curve of intersection.

Let P be chosen as (0, 0, 0, 1) and let the equations F^ = 0,

F^. = be arranged in powers of x^ (Art. 161).

F^ = u^,^ + Kior/"' + ••• + w^ = 0,

F^- = iVV' + ^iaJ4''"' + ••• +v^- = 0,

wherein ?^,-, v,- are homogeneous functions of x^, x^, x-^ of degree i.

Let the notation be so chosen that /x' ^ fx. The equation

v^/->'F^ - u,F^. =

contains x^ to at most the power /a' — 1. The surface represented

by it passes through the curve C„, since the equation is satisfied

by the coordinates of every point which satisfy F^ — and F^. = 0.

The equation

V .F -u F . =MM MM
is divisible by x^. If this factor is removed, the resulting equation

is of degree at most /x' — 1 in .^4, and determines a surface which

passes through C'„.

If either of these equations contains x^ to the first but to no
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higher power, the surface determined by it is of the type required.

If not, the two equations cannot both be independent of x^ nor

can they coincide, since in that case the curve F^ = 0, F^- =
would be conical from (0, 0, 0, 1).

By applying this same process to the two equations just ob-

tained, we may obtain two new ones which contain x^ to at most

the power fi — 2.

Continuing in this way with successive partial elimination, we

obtain finally an equation of the form

M= x^(f}„_y{Xi, X2, Xs) - <^„(a^i, X2, Xs) = 0,

in which <^„_i and (^„ are homogeneous functions, not identically

zero, of degree n — 1 andn, respectively, in x^, X2, Xy The surface

M = is of order n and has an (it — l)-fold point at (0, 0, 0, 1). It

is consequently a monoid. The surface <^„ = is a cone ; it is

called the superior cone of the monoid. If ?i > 1, <^„_i = is the

equation of another cone, called the inferior cone of the monoid.

Let/„(.Ti, X2, .T3) = be the equation of the projecting cone from

(0,0,0,1). The equations

are said to constitute a monoidal representation of the curve C„.

The advantage of this representation is that the residual inter-

section, if any, of the two surfaces M = 0, f„ = consists of lines

common to the three cones

/„ = 0, <^„, =0, 0„ = O.

For, let P be a point common to /„ = 0, M— 0, but not lying on

C„, nor at the vertex (0, 0, 0, 1). The generator of /„ = passing

through P intersects C„ in some point P'. Since this generator

has P, P' and n — 1 points at (0, 0, 0, 1) in common with M = 0,

it lies entirely on the monoid (Art. 163). For every point of this

line, that is, independently of the value of x^, the equation

Xi(f)„_i
— cf)^ = must be satisfied ; hence the given generator lies

on the inferior cone and on the superior cone.

It follows at once from the above discussion that if any genera-

tor of /„ = intersects C„ in two points P, Q, it lies entirely on

the monoid and forms a part of the residual intersection. Such a

line is called a double generator of the projecting cone, since, in
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tracing the curve, the generator takes the position determined by

Pon C„ and also the position, coincident with the first, determined

by Q. Every such line counts for two intersections of M=
and .4 = 0.

Each of these bisecants of the curve is said to determine an

apparent double point of C„ from (0, 0, 0, 1) ; the curve appears

from (0, 0, 0, 1) to have a double point on each of these lines.

It can be proved* and will here be assumed that the number

of apparent double points of a given curve is the same for every

point not lying on it, except the vertices of the cones, if any, on

which Cn is a conical curve. This number will be denoted by h.

We shall now show that if a point P which does not lie on C„,

nor on any line that intersects C„ in more than two points, nor at

the vertex of a cone (if any) of bisecants to C„„ is chosen for the

vertex, then the order of the monoid from P is at least half the

order of C„.

The complete intersection of the projecting cone/„ = and the

monoid a;4<^„
i
— </>„ = is a curve of order mn. The curve C^ is

one component of order m, and the h bisecants of C^ through

(0, 0, 0, 1) together form a component of order 2h. If the num-

ber of residual intersecting lines is denoted by k, then

mn — m — 2 h = Jc, k ^ 0.

The h bisecants of C„ and the k residual lines are components of

the intersection of <^„_i =0, <^„ = 0. Hence

from which

and

7i[u — l) = h-}-k =7n()i — 1)— h,

{m — n){n — l) = h^ - (n — 1),

> 7n
n — v '

which proves the proposition.

177. Number of intersections of algebraic curves and surfaces.

Theorem. Any surface of order jj. lohich does not contain a given

non-composite curve of order m intersects it in mfx j)oints.

*N()etlier: Ziir Grumllegiing der Tlv^orie der alfjebraischeii Raumkurven, Ab-

handlungen der k. preussisclien Akademie der Wissensehaften fiir 1S82.
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Let C„ be the given curve and i^^^ = be the equation of the

given surface. Choose (0, 0, 0, 1) not on F^ = 0, and let the

monoidal equations of C„ be /„ = 0, Xi<f>^_i — <^^ = 0. The com-

plete intersection of /„ = 0, .t^4<^„_i — <^„ = consists of (7„ and of

m{n — l) lines through (0, 0, 0, 1). As F^=0 does not pass

through (0, 0, 0, 1), it cannot contain any of these lines. Hence

Ffj, = 0, /„ = 0, M^ = have no common component. They con-

sequently intersect in mri/j. points. Of these, mfx{n — 1) points are

where the residual lines intersect F^= 0. The remaining m/x points

lie on C„. If C„ has vi/x. + 1 points on F^ = 0, it lies on the sur-

face, for the three surfaces /^ = 0, M^ = 0, F^ = have now

mnfx + 1 points in common, and therefore all contain a common
curve. Since the lines do not lie on ^^^ = 0, and/„ = 0, 3/"^ =
have no other component curve except C„, it follows that C„ must

lie on F^ = 0.

EXERCISES

1. Show that a plane or any proper quadric is a monoid.

2. Write the equation of a monoid of order three.

3. Show that the only curve of order one is a line.

4. Show that the only irreducible curve of order two is a conic.

5. Show that a composite curve of order two exists which does not lie in

a plane. How many apparent double points has this curve ?

6. Show that a bundle of quadrics pass through a proper space cubic curve.

7. Write a monoidal representation of a space cubic curve.

8. Show that every irreducible curve of order four lies on a quadric

surface.

9. Discuss the statements of Exs. 6 and 8 for the case of composite cubics

and composite quartics.

178. Parametric equations of rational curves. Since a space

curve is defined as the complete or partial intersection of two

surfaces, the coordinates of its points are functions of a single

variable. The expressions for the coordinates of a point as func-

tions of a single variable may not be rational. A curve which

possesses the property that all its coordinates can be expressed

as rational functions of a single variable is called a rational curve.

"By definition the equations of such a curve can be written para-

metrically in the form

^i =.W) = tt.o^"' + (I
J""'' + - + «•>., i = 1, 2, 3, 4.
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Since the variables x^ are homogeneous, it is no restriction to

suppose that the polynomials /^O liave no common factor. To

every value of t corresponds a unique point {x) on the curve, but

it may happen that more than one value of t will define the same

point (x) on the curve. If, for example, the functions fi{t) can

be expressed in the form

in which F^ are homogeneous rational functions, of the same order,

of the two polynomials <j>{t), i}/{t), then f-(t) will define the same

point for every value of t that satisfies the equation

where s is given. In this case the coordinates of the points on

the curve are rational functions of s.

Conversely, it will now be shown that if to each point (x) of the curve

correspond 7i values of t{n^ 1), then t may be replaced by a new variable,

in terms of which the correspondence between it and the point (x) on the

curve is one to one.

Let fi, t2, •••, tn all correspond to the same point (x). The expressions

Mt)Mh)-Mti)Mt) i, k - 1, 2, 3, 4

vanish for t = ti, tz, •••, t„, hence they have a common factor of order n,

whose coefficients contain ti,

<t>o{h)t^ + 0i(«i)«"-i + ••• + <t>n{h)-

If ti is replaced by ti, the expression must have the same factor, hence the

function

<po{t2)t^ + <Pl{t-l)t''-'^ + ••• + <Pn{t2)

has the same roots. Similarly for tz, •••, «„ It follows that the ratios of the

coefficients

00 : 01 :
••• 0„

have the same values for ti, h, •••, <„. These ratios cannot be constant for

every point (x) on the curve, since in that case ti, ••, ?„ would be independent

of (x), contrary to hypothesis. If we now put

and eliminate t between this equation and x^ =fi{t), the resulting equations

may be written in the form

X.- = bioSP + biisp-'^ + • + ft.p,

in which np — m.
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When the correspondence between (x) and t is one to one, the

order of the curve x^ =fi(t) is m. For, to each point of intersection

of the curve with an arbitrary plane '^u-x^ = corresponds a root

of the equation '^Uifi{t) = 0, and conversely.

179, Tangent lines and developable surface of a curve. Let C be

the intersection of two algebraic surfaces F=0, F' =0 and let P
be an arbitrary point on C. The line t of intersection of the

tangent planes to i^= and i^' = at P has two points in common
with each of the surfaces coincident at P (Art. 165), and hence

witli C. The line is called the tangent line to the curve C at the

point P. The locus of the tangent lines to C is a ruled surface.

This surface is called the developable surface of C. Its equation

may be found by eliminating the coordinates y^, y^, ys, 2/4 of -f*

between the equations of O and of the tangent planes, thus

:

F(y) = 0, F'(y)=0,X -. "f^ = 0, 2 -.^^ = 0-^ dyi ^ dyi

Example. The intersection of the surfaces

xi^ + X22+ xs^ + Xi^ = 0, aixi2 + 02052'^ + 03X32 + 04X42 =

is a quartic curve. The equation of the developable surface of this quartic

is obtained by eliminating yi, 2/2, Vs, Vi between the equations

yi^ + 2/2^ + 2/3^ + ^4^ = 0, ai2/l2 + 022/2^ + 032/3^ + 042/4=^ = 0,

X12/1 + X22/2 + X32/3 + X42/4 = 0,

aiXiyi + a2X22/2 + 03X32/3 + 04X42/4 = 0.

If we write Uik for a,- — o^, the result may be written in the form

4 ai2ai3a42a4:?(oi3Xi2+ a23a;2'^+ 043X42) (a-nxr + 023X3^ + a34X42)x22x42

— [0230l4'-Xi2x4-^ + aoiQirXi^Xi^+ 03401 22Xi'-X22+ a-iiau^Xs^Xi^+ 03l024'^X22X42

+ 003(012034 + Ol3O24)X2'-X32]-= 0.

The number of tangents to the curve C„ which meet an

arbitrary line is called the rank of the curve. From this defini-

tion it follows that the rank is equal to the order of the develop-

able surface. It is the same number for every line not on the

surface (Art. 163).

180. Osculating planes. Equation of a curve in plane coordi-

nates. Every plane through the tangent line to C at P contains

the line and has therefore two points in common with G at P.
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Such a plane is called a tangent plane. Among the tangent planes

there is one having three intersections with C at P. This plane

is called the osculating plane to G at F. The number of osculating

planes to C which pass through an arbitrary point in space is

called the class of C. This number is the same for every point in

space.* If G is the intersection oi F=0 and F' -—^, we can

obtain two equations which m.ust be satisfied by the coordinates

of the osculating planes of G by eliminating two of the variables,

as .^3, x^, between the equations F =0, F' = 0, and the equation of

the plane S^^a:- = 0, then imposing the condition that the resulting

homogeneous equation in the other two variables has a triple root.

Example. The two surfaces Xi'^ + 2 X2.r4 = 0, Xo- + 2 a^iXs = intersect

in the line xi = 0, a;2 = and a space cubic curve. If between the first equa-

tion and SMjXj — we eliminate Xi, we find

UiXi^ — 2 ?<iXiX2 — 2 M23C2^ — 2 U3X2X3 = 0.

Now if we eliminate X3 between this result and the second given equation,

we obtain
M4X13 — 2 U1X1-X2 — 2 jtoXi.Ci^ + Usx^^ = 0.

Finally, if this cubic has three equal roots, its first member must be a cube.

Hence
2 ?<i2 + .3 ?«4W2 = 0, 2 ?<22 -f- 3 UiUs = 0.

A system of two or more equations in plane coordinates (Art. 173)

which are satisfied by the coordinates of the osculating planes of

G, and by no others, is said to define the curve C in plane coor-

dinates. To a curve G defined in this way may be applied a dis-

cussion dual to that given in Arts. 174-179.

EXERCISES

1. Find a system of parametric equations of the rational curve

XlXo — X3X4 = 0, X2X3 = Xl'^ — X'r^.

2. Write the equation of the developable surface of the cubic curve lying

on the surfaces

xi- -4- 2 X2X4 = 0, xi^ + 2 X1X3 =: 0.

3. Find two equations satisfied by the cooi-dinates of the osculating planes

of the curve
X1X2 — X3X4 = 0, X2- = X32 + X42,

* See reference in Art. 176.
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4. Define the dual of the projecting cone of a curve and show how its

equation may be obtained,

5. Derive the dual of a monoid al representation of a curve.

6. Define the dual of an apparent double point.

7. What is the dual of the rank of a space curve ?

181. Singular points, lines, and planes. A point P on a curve

is called an actual double point if two of the points of intersection

of C with any plane through P coincide at P. If the two tangent

lines to (7 at P are distinct, the point is called a node. If the two

tangents at P coincide, the point is called a cusp or stationary

point. Curves may have higher point singularities, for example,

a curve may pass through the same point three or more times, etc.,

but such singularities will not be considered here.

A plane is said to be a double osculating plane if it is the oscu-

lating plane at two points on the curve. A plane having four

points of intersection with the curve coincident at P is called a

stationary plane.

A line is called a double tangent if it touches the curve in two

distinct points. If a tangent line has three coincident points in

common with the curve, it is called a stationary or an inflexional

tangent. The point of contact is called a linear inflexion.

182. The Cayley-Salmon formulas. We shall now collect, for

the purpose of pointing out certain relations existing among them,

the following numbers associated with a given space curve. We
shall assume that these numbers are fixed when the curve is given,

and are independent of the arbitrarily chosen plane, line, or point

that may be used to determine them.

Given a space curve C. Let

m = its order (Art. 140).

71 = its class (Art. 180).

r = its rank (Art. 179).

^ = the number of its nodes (Art. 181).

h = the number of its apparent double points (Art. 176).

g — the number of lines of intersection of two of its osculating

planes which lie in a given plane (dual of h).

G = number of double osculating planes (Art. 181).

a = the number of its stationary planes (Art. 181).
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(3 =the number of its stationary points (Art. 181).

V = the number of its linear inflexions (Art. 181).

(0 = the number of its actual double tangents (Art. 181).

X = the number of points lying in a given plane, through

which pass two distinct tangents to C.

y = the number of planes passing through a given point, which

contain two distinct tangents to C.

These numbers are connected by certain equations called the

Cayley-Salmon formulas ; they are derived from the analogous

equations, known as Plucker's formulas, connecting the character-

istic numbers of plane curves. Let fi = order, v = class, 8 = num-

ber of double points, t = number of double tangents, k = number
of cusps, I = number of inflexions, of an algebraic plane curve.

Plucker's formulas are *

v= /t(/x— 1) — 28 — 3 k; i=3/A(/i, — 2) — 68 — 8k;

/u. = v(v — 1) — 2t — 3i; K=3v(v — 2) — 6t — 8 1.

Those in the second line are the duals in the plane of those in the

first line.

Let the given space curve C be projected, from an arbitrary

point P not lying on it, upon an arbitrary plane not passing

through P. The plane curve then has the following characteristic

numbers

:

/x = m, v=r, 8 = ^ + i?, T=2/-t-w, K = /8, t = n-}-v.

By substituting in the Pllicker formulas, we obtain

r = m(m-l)-2(h + H)-3(3;
n+v = 3m{m-2)-6{H+h)-Sfi; .

m = r(r—l) — 2(y + oi)—3{n + v); ^ '

;8 = 3 r(r - 2) - 6(2/ + to) - 8 (?i + ^).

By duality in space, that is, by taking the section of the develop-

able surface by an arbitrary plane, we have

r = n (u - 1) - 2 (G + ^) - 3 «

;

m-f-^ = 3n(n-2)-6(6? + gr)-8«;

w = r(r-l)-2(a;-|-a)) -3(m+v); ^^
a = 3 /•(/• - 2) -6(x -t- oi) - 8 (»i + V).

Salmon: Higher Plane Curves, 3d edition (1879). See p. 66.
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Of these eight equations, six are independent. One relation

exists among the first set of four, and one relation among the

second set.

The genus of a curve is the difference between the sum of its

apparent and actual double and stationary points and the maxi-

mum number of double points which a non-composite plane curve

of the same order may have. If the genus of the space curve C
is denoted by p, we have

i>
^ (m-l)(m-2) _^^_^^^^^^(n-l)(n-2)_^^^^^^^^

183. Curves on non-singular quadric surfaces. It has been seen

(Art. 115) that the equation of any non-singular quadric surface

may be reduced to the form

^'l^2 — •''^3^4 = 0> (1^)

and that through each point of the surface passes a generator of

each regulus of the two systems

x^ — Xx^ = 0, a'a — Xx2 = 0, (18)

a-3 — ixx^ = 0, X2 — fxx^ = 0. (18')

The coordinates of the point of intersection of the generator

A= constant with the generator /ia = constant are (Art. 115)

pXi ^ A, px^ = [X,. px^ = Xjx, px^ = 1. (19)

Consider the locus of the points whose parameters A, p. satisfy a

given equation /(A, /x) = 0, algebraic, and of degree A;, in A and of

degree Jc2 in p.. The curve /(A, p.)=0 meets an arbitrary generator

p. = constant in ki points, and an arbitrary generator A = constant

in k^ points. It will be designated by the symbol [Aij, k2^. The

order of the curve is k^ 4- A^j, since the plane determined by any two

generators of different reguli meets the curve in k^ + Atj points on

these two lines, and nowhere else.

By replacing A, p. in /(A, p.) = by their values, we see from (17),

(18), (18') that the curve is the intersection of the two surfaces

\Xi xj
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The second is a monoid of order two (Art. 176) and the first is a

cone with vertex at (0,0, 1, 0), a(2— l)-fold point on the monoid.

Thus, these equations constitute a particular monoidal representar

tion of the curve. The equations of the image (Art. 118) of the

given curve on the plane Za = are

/A^^^O, .^3 = 0.

Va-4 xj

The two generators to the quadric through the vertex of the cone

/=0 meet the plane in the points (1, 0, 0, 0), (0, 1, 0, 0). The

former is a Avfold point on the plane curve, and the latter a

^l-fold point.

Theorem I. Tvoo curves of symbols [k^^, k^'], [k\, A-'.,] on the same

non-singular quadric intersect i)i kjc'., + k2k\ x^oints.

Let C, C" be the given curves of symbols [A^i, A-.,], [k\, A'2], re-

spectively, and let the equation of the quadric be reduced to the

form (17) in such a way that the point (0, 0, 1, 0) does not lie on

either curve, and that the generators .Ti = 0, x^ = i)\ .1-2 = 0, x^ — i)

through (0, 0, 1, 0) do not pass through a point of intersection of

the given curves. Project the curves from (0, 0, 1, 0). Their

images on x^ = are of orders k^ + k^, k\ + k\, respectively ; they

intersect in {k^ + k^{k\ + A'j) points. Of these points, kji\ coin-

cide at (0, 1, 0, 0) and kjk'^^ at (1, 0, 0, 0). They are the projections

of the points in which the curves meet the generators passing

through (0, 0, 1, 0), the vertex of the projecting cone, and are

therefore apparent, not actual, intersections of the space curves.

The remaining

(ki ~p koj(k
I

-\- tC 2)— iCifC J
— rCoK 2 ^^ fC^fC 2 ~r" '12"' 1

intersections of the plane curves are projections of tlie actual in-

tersections of the space curves, hence the theorem is pioved.

Theorem II. Tlie number of ap^jarent double points of a carve

of symbol [Aj, ^2] on a quadric is

h = ^{k,^ + k2'-k,-k2).

Through an arbitrary point on the surface pass only two lines

which meet the curve in more than one point, namely, the two

generators passing through (). The generator fx = constant
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through meets the curve in A', points, consequently counts

for -~{k^~l) bisecants through 0. Similarly, the generator

A = constant, which passes through (0, 0, 1, 0), meets the curve
k

in A'2 points and counts for -~ {k^ — 1) bisecants. The number of

api^arent double points is the sum of these two numbers.

184. Space cubic curves.*

Theorem I. Tliroiigh any six given points in space, no four of

which lie in a plane, can he passed one and only one cubic curve.

Let Pj, •••, Pq be the given points. The five lines connecting P^

to each of the remaining points uniquely determine a quadric

cone having Pi as vertex. Similarly, the lines joining Pj to each

of the other points define a quadric cone having P, as vertex.

These two cones intersect in a composite curve of order four, one

component of which is the line P1P2, since it lies on both cones.

The residual is a curve of order three. This curve cannot be com-

posite, for if it were, at least one component would have to be a

straight line common to both cones. But that would require that

the cones touch each other along P1P2, which would count for two.

The residual intersection would in that case be a conic passing

through P3, •••, Po- But this is impossible as it was assumed that

the points P3, —, P« do not lie in a plane. No other cubic curve

can be passed through the given points, for every such curve would

have seven intersections with the two cones (the vertex counting

for two). Hence it would lie on their curve of intersection, wliich

is impossible, since the complete intersection is of order four.

Theorem II. A space cubic curve lies on all the qnadrics of a

bundle.

For, let Pj, •••, P- be seven given points of the curve. Every

quadric through these points has 2-3 + 1 points in common with

the curve and consequently contains the curve (Art. 177). But

through the given points pass all the quadrics of a bundle (Art.

136), which proves the theorem.

Not all the quadrics of this bundle can be singular, for if so, at

* Unless otherwise stated, it will be assumed in the following discussion that

the curve is non-composite.
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least one of them would be composite (Art. 131) and still contain the

curve. This is impossible, since the given curve is not a plane curve.

The symbol (Art. 183) of a space cubic curve on a non-singular

quadric is [2, IJ or [1, 2], since such symbols as [0, 3] and [3, 0]

simply define three generators belonging to the same regulus.

The forms of /(A, /x) corresponding to these symbols are

(a,X^ + 2 a,\ + a,),M + (b,X +2b,\ + b,) = 0, (20)

(aV^ + 2 aV + a',)A + (?>V + '-' '^> + '^'2) = 0. (20')

Conversely, every irreducible equation of this form will define

a cubic curve on the quadric.

Since these equations have six homogeneous coefficients, five in-

dependent linear conditions are sufficient to determine a curve of

either system. Hence through any five points on a given non-

singular quadric can be drawn two cubics, one of each symbol.

Some of these cubics may be composite.

From the formula of Art. 183 it follows that on a given non-

singular quadric two cubics having the same symbol intersect in

four points, while two cubics having different symbols intersect

in five points.

Theorem III. Every space cubic curve is rational.

Let the parametric equations of a non-singular quadric through

the given cubic be reduced to the form (19). The equations of

the curve in A, (x are of the form (20) or (20'). In (20), let X=t,

solve for /x in terms of t, and substitute the values of A and of /x

in terms of t in (19).

The resulting equations reduce to the form

X, = a^^f + a.^f' + aJ -f a-,, i = 1, 2, 3, 4. (21)

These are the parametric equations of the curve (Art. 178). Since

the curve is by hypothesis of order three, to each value of t cor-

responds a definite point on the curve, and conversely.

Since the cubic (21) does not lie in a plane, the determinant

I

a-j.
I

^ 0. The parametric equations, referred to the tetrahedron

defined by

Xi = a^ox'i + aiix'2 + a.ax'j + a^^x^, i = 1, 2, 3, 4,

are, after dropping the primes,

x^ = ^, 0^2 = f", X3 =t, X4 = 1. (22)
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From (22), the intersections of the curve with the plane '2,u-x-=
are defined by the roots of the equation

?/l«3 -f M2«2 4- Ust + »4 = 0. (23)

The condition that the pla.ne is an osculating plane is that the

roots of (23) are all equal (Art. 180). It follows that the coor-

dinates of the osculating plane at the point whose parameter is t

may be expressed in the form

Mj =1, 7(2 = — 3 t, u^ — 3 t', Ui = — f.

These equations are called the parametric equations of the cubic

curve in plane coordinates.

The condition that the osculating plane at the point whose

parameter is t passes through a given point (//) in space is that t

is a root of the equation

lUf -3y,t' + 3y,t-y,=0. (24)

Since this equation is a cubic in t, it follows that the cubic curve

is of class three.

We shall now pfove the following theorem:

Theorem IV. TJie points of contact of the three osculating jyJanes

to a cubic curve throv/jh an arbitrarij point P lie in a plane passing

through P.

Let %a-Xi = be the plane passing through the points of oscu-

lation of the three y^lanes passing through any given point

P = (?/). The parameters of the points of osculation of the three

osculating planes through {y) are the roots of (24). The roots of

(24) must also satisfy the equation

ttii? -\- a^'^ + aji + a^ = 0,

hence

'^ Ik - V\

From these conditions it follows that 2a,.V, = 0, so that (?/) lies

in the plane of the points of osculation.

By the method of Art. 179 the equation of the developable sur-

face of the cubic curve is found to be

(X^X^ X^pt'^j 4(^X2 X'^X'i^jyX^ 3^2X4^= U.
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This is also the condition that equation (24) has two equal roots.

From this equation it follows that the rank of the cubic curve is

four (Art. 179).

It was stated without proof in Art. 133 that the basis curve of

a pencil of quadrics of characteristic [22] is a cubic and a bi-

secant ; it was also stated that the basis curve of a pencil of char-

acteristic [4] is a cubic curve and a tangent to it. We shall now

prove these statements.

It was shown in Art. 132 that the [22] pencil of quadrics is

defined by the two surfaces

x^^ + 2 x^x^ = 0, x^^ + 2 x^x-i = 0.

These quadrics intersect in the line x^^O, Xo = ^ and the space

cubic whose parametric equations can be found by putting Xi = 1,

Xi = 2t in the equations of the surfaces, in the form

It intersects the line Xi = 0, x., = in the two points (0, 0, 0, 1),

(0,0,1,0).

Similarly, it was seen that a pencil of characteristic [4] is

defined by the surfaces

The basis curve of this pencil consists of the cubic

and of the line 0:2 = 0, x^ = which touches it at (1, 0, 0, 0).

If in the parametric equation (20) of a cubic we replace X by

— , and /x by -^, we determine as the projecting cone from
x^ x^

(0, 0, 1, 0) a cubic cone with a double generator. It follows that

the projecting cone of the cubic is intersected by a plane in a

nodal or cuspidal plane cubic curve. We shall now prove the

converse theorem.

Theorem V. Any nodal or cuspidal plane cubic curve is the

projection of a space cubic.

Let the plane of the cubic be taken as x^ = 0, and the node or

cusp at (0, 1, 0, 0). The equation of the curve is of the form

XtittffCi + 2 a^x^x^ + anX^) + b^x^Xi + 2 b^x^x^ + b.,x^^ = 0.
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By dividing this equation by x^ and replacing x, : x^ by \, x^ : x^

by IX, we obtain equation (20) of a space cubic curve of which the

given curve is the projection.

Theorem VI. Amj plane nodal cubic curve has three points of

inflexion lying on a line.

If a space cubic is projected from any point {y) upon a plane,

the osculating planes from {y) will be cut by the plane of projec-

tion in the inflexional tangents of the image curve and the points

of osculation will project into the points of inflexion. From the

theorem that the points of osculation lie in a plane through (?/) it

follows that the points of inflexion of the plane cubic lie on a line.

EXERCISES

1. Show that any space cubic curve and a line which touches it or inter-

sects it twice form tlie basis curve of a pencil of quadrics.

2. Show that a composite cubic curve exists, through which only one

quadric surface can pass.

3. Prove that the osculating planes to a cubic curve at its three points of

intersection with a given plane (w) intersect at a point in (?().

4. Show tliat if a cubic curve has an actual double point or a trisecant it

must lie in a plane.

5. Obtain all the Cayley-Salmon numbers for the proper space cubics.

6. Where rau.st the vertex of the projecting cone be taken, in order that

the plane projection of a proper space cubic shall have a cusp ?

7. Show that the projection of a space cubic upon a plane from a point

on the curve is a conic.

8. Show that the cubic curve through the six basis points of a web of

quadrics determined by six basis points lies entirely on the Weddle surface

(Art. 146).

9. Show that a cubic through any six of eight associated points (Art.

136) will have the line joining the other two for bisecant (or tangent).

185. Metric classification of space cubic curves. The space cubic

curves are metrically classified according to the form of their

intersection with the plane at infinity. If the three intersections

are real and distinct, the curve is called a cubical hyperbola. It

has three rectilinear asymptotes and lies on three cylinders all of

which are hyperbolic. If the points at infinity are all real and

two are coincident, the curve is called a cubical hyperbolic
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parabola. It has one asymptote, and lies on one parabolic cylin-

der and on one hyperbolic cylinder. If all three of the points of

intersection are coincident, the plane at infinity is an osculating

plane. The curve is called a cubical parabola. It has no recti-

linear asymptote and lies on a parabolic cylinder. Finally, two

of the points of intersection may be imaginary. The curve is

now called a cubical ellipse. It has one rectilinear asymptote

and lies on one elliptic cylinder. An interesting particular case

of the cubical ellipse is the curve called the horopter curve on

account of its part in the theory of physiological optics. If one

looks with both eyes at a point P in space, the eyes are turned so

that the two images fall on corresponding points of the retinae.

The locus of the points in space whose images fall on correspond-

ing points is a horopter curve through the point P.

186. Classification of space quartic curves.*

Theorem I. Every space q^iartic curve lies on at least one quad-

He surface.

For, through any nine points on the curve a quadric surface

can be passed. This surface must contain the curve, since it has

2 X 4 -f 1 points in common with it (Art. 177).

If a quartic curve lies on two different quadrics A = 0, B= 0,

it is called a quartic of the first kind. A quartic of the first kind

is the basis curve of a pencil A — XB = of quadrics. Not all

the quadrics of this pencil are singular, since in every singular

pencil are some composite quadrics. Composite quadrics are im-

possible in this case, since the curve does not lie in a plane. The
symbol of the curve on any non-singular quadric on which it

lies is [2, 2], since each generator of one quadric will intersect

the other quadric defining the curve in two points.

A quartic having the symbol [1, 3] cannot lie on two different

quadrics, nor can it lie on a quadric cone, since every generator

would have to cut the curve in the same number of points. The
[1, 3] curve is called a quartic of the second kind.

It follows from Arts. 132 and 184 that except in the cases of

the characteristics [1111], [112], [13], the basis curve of a pencil

* See footnote of Art. 184.
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of quadrics is composite. It will now be shown that in these

three cases the basis curve is not composite, that in the case

[1111] the basis curve has no double point, that in the case [112]

it has a node, and that in the case [13] it has a cusp or stationary

point (Art. 181). That the basis curve is not composite may be

seen as follows: If it were, one component would have to be a

line or a conic. It cannot be a line, for the line would have to

lie on every quadric of the pencil, hence pass through the vertex

of every cone contained in the pencil. From the equations of the

pencils having these characteristics (Art. 133) it is seen that in

each case there is at least one cone whose vertex does not lie on

the basis curve. Moreover, one component cannot be a conic, for

the quadric of the pencil determined by an arbitrary point P in

the plane of the conic would contain the plane of the conic, and

hence be composite ; but pencils having these characteristics have

no composite quadrics. It will now be shown that the basis curve

of the pencil [1111] has no actual node or cusp. It will be called

the non-singular quartic curve of the first kind. Suppose the

basis curve had a node at 0. The projecting cone to the curve

from is of order two. The quadric of the pencil through an

arbitrary point P on the projecting cone contains the line OP,

since it has three points in common with it. This quadric and the

cone must coincide, since they have a quartic curve and a straight

line in common. Hence the cone would belong to the pencil, but

this is impossible, since no cone of the pencil [1111] has its ver-

tex on the basis curve.

From the equation of the pencil of characteristic [112] it

follows that the vertex (0, 0, 0, 1) of the cone

(A, - X,)x,^ + {K - K)^-? + a^s' =

of the pencil lies on the basis curve. This point is an actual

double point on the curve, since every plane through it has two

points of intersection with the curve coincident at that point.

All the quadrics of the pencil touch the plane x-^ = at (0, 0, 0, 1);

every plane through either of the distinct lines (A,, — A3)a;i'^

+

(A2 — \:i)x.^ = 0, in which x^ — intersects the cone has three in-

tersections with the curve coincident at (0, 0, 0, 1). These two

lines are tangents at the node.
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Finally, the vertex of the cone

of the [13] pencil is a double point on the basis curve. The tan-

gent lines Xi = 0, x^ = coincide. The double point is a cusp.

The parametric equation of a quartic of symbol [2, 2] has the

form

(ta^ + 2 OiX + «o)^2 + 2(&o\'+ 2 6iX+&2V+ CoA2+2 c,\+c,= 0. (25)

The quartic defined by (25) is the intersection of the quadric

X1X2 — x^x^ = (Art. 1 83) and the quadric

aoO^s^ + 2 aiXs-Tj -f aj-r^^ + 2 boX^x^ + 4 b^x^Xz + 2 62^2^4 + (^0^1^ + 2 010:1X4

'

+c,x,' = 0. (25')

If the quartic of intersection has a double point or cusp, we

may take the double point as (0, 0, 0, 1), and a cone with vertex

at that point for one of the quadrics passing through it. The

parametric equation (25) now has the form

(2 a,X + a,)ix? + 2(b,\' + 2 b,\),M + CoX^ = 0. (26)

If in (26) we put X = fxt, solve for t, and put the values of ft and

\ = yd in equations (19), we obtain a set of parametric equations

of the singular quartic curve of the first kind, of the form

x, = a,o^ + a,,e + a,/ + aJ + a,^, i = 1, 2, 3, 4 ; (27)

hence the nodal and cuspidal quartics are rational.

A quartic of the second kind can be expressed parametrically

in terms of the parameter which appears to the third degree in its

parametric equation, hence the quartics of the second kind are also

rational. Rational curves will be discussed later (Art. 188).

Theorem II. Through a quartic curve of the second kind and

any two of its trisecants can be passed a non-composite cubic surface.

For, through nineteen points in space a cubic surface can be

passed (Art. 161). Choose thirteen on the quartic curve, one on

the trisecant g, one on the trisecant g', not on the curve, and four

others in space, not in a plane nor on the quadric on which the

quartic lies. The quartic curve and the lines g and g' must lie on

the non-composite cubic surface determined by these nineteen
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points as well as on the quadric containing the regulus of tri-

secants, hence together they form the complete intersection of the

cubic and the quadric.

187. Non-singular quartic curves of the first kind. Two quartic

curves of the first kind lying on the same quadric intersect in

eight points (Art. 183) ; these points ai-e eight associated points

defining a bundle (x\rt. 136), since they lie on three distinct

quadrics not having a curve in common.

The number of apparent double points of a non-singular quartic

Ci of the first kind is two. For each bisecant of C^ through an

arbitrary point P is a generator of the quadric of the pencil hav-

ing C4 for basis curve which passes through P. Conversely, each

generator of every quadric through C4 is a bisecant.

Of the Cayley-Salmon numbers we now have m = 4, h = 2,

/8 = 0, H= 0. It also follows from the definition that G = v

= to = 0, hence from the formulas of Art. 182 we have

m = 4, n = 12, r = 8, H=0, h = 2, G = 0, g = 38, a = 16, (3 = 0,

v = 0, 0) = 0, x = 16, y = 8, J) = 1.

Theorem I. Through any bisecant of a non-singular space

quartic curve of the first kind can be drawn four tangent planes

to the curve, besides those having their poiyit of contact on the given

bisecayit.

Let the given bisecant be taken as .t, = 0, x^ = and the quadric

of the pencil containing it as x^Xi — x^x^ = 0. Let another quadric

of the pencil be determined by (25'). Any plane of the pencil

Xi = mx^ intersects C4 in two points on .x, = 0, x^ = and in two

other points determined by the roots of the quadratic equation in

X2 ' x^

x^ {a^ni^ + 2 a{tn + a,) + 2 XM^ {bfpn"^ -\- 2 b^m + 62)

-f x^ (cqWi^ + 2 Ci?«, -\- C2) = 0.

The planes determined by values of m which make the roots of

this equation equal are tangent planes. The condition on m is

4(6om2+2 6im+ &2)^-4(aom2+2 a^m+ a.^{cam''-\-2 c{)n-\-c^ = Q. (28)

Since this equation is of the fourth degree, the theorem is

established.
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Theorem II. An arbitrary tangent to a non-singular quartic of

the first kind intersects four other tangents at points not on the curve

This is a particular case of Theorem I, since a tangent is a

bisecant whose points of intersection with the curve coincide.

Theorem III. The cross ratio of the four tangent planes through

any bisecant is the same number for every bisecant of the curve.

Two cases are to be considered, according as the two given

bisecants intersect on C^ or not. Let g, g' be two bisecants

through a point P on C^, but not lying on the same quadric of

the pencil. Let the equation of the quadric of the pencil through

C4 which contains g be reduced to the form x^x^ — x^Xi = Q in such

a way that the equations of g are x^ = 0, 054 = and the points of

intersection of g' with C4 are (0, 0, 1, 0) (0, 0, 0, 1). In (25') we
now have a^ = 0, c, = 0, and also in (28). The points of inter-

section not on g' of a plane x^ = nx^ and C4 are determined by the

roots of the equation

2 {c^n- + b.m) x.^ + (c^^n- + 4 61/* -f- a,) x^x^ + 2 {b^n + a^) x^^ = 0.

The parameters rii, Wji '>hj ^h 0^ the four tangent planes are roots

of the equation

(CqW^ + 4 b^n + aof — 16 {bf^n + a^) {c{n^ + &2'0= 0.

The cross ratio of the four roots of this equation is equal to the

cross ratio of the roots of (28) (when Uq = 03 = 0), since the two

equations can be shown to have the same invariants.*

To prove the theorem when g, g' intersect at P on C4 and

lie on the same quadric through C4, consider any third bisecant

g" of C4 through P. The cross ratios on g and on g' are each

equal to that on g".

This completes the proof of the first case.

To prove the theorem when the two bisecants do not intersect

on Ci, consider a third bisecant connecting a point of intersection

on the first with a point of intersection on the second. The
cross ratio on each of the given lines is equal to that on the

transversal.

This cross ratio is called the modulus of the quartic curve.

* Burnside and Panton : Theory of Equations, 3d edition, p. 148, Ex. 16. It

will be found that I and J have the same values for each equation.
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The projecting cone of C\ from a point on it is a cubic cone.

The section of this cone made by a plane not passing through the

vertex is a cubic curve. Conversely, any plane cubic curve is the

projection of a space quartic curve of the first kind. Consider

the cubic curve in the plane x^ = 0. It is no restriction to choose

the triangle of reference with the two vertices (1, 0, 0, 0), (0, 1,

0, 0) on the curve. The most general cubic equation in x^, x^, Xi,

but lacking the terms x^, x.^, may be written in the form

2 a^x.^Xi + a^x^x^ + 2 h^^Xi + 4 b^x^x^x^ + 2 h^x^x^ -\- c^x^Xi

+ 2 c^x^x^ + c^x^ = 0.

But this is exactly the result of projecting (Art. 175) from the

point (0, 0, 1, 0) the curve (25) for the case ciq = 0, that is, when

the quartic curve passes through (0, 0, 1, 0).

From Theorem III it now follows that the cross ratio of the

four tangents to any non-singular cubic curve from a point on it,

not counting the tangent at the point, is constant.

It was seen that every non-singular quartic lies on four quadric

cones whose vertices (Art. 133) are the vertices of the tetrahedron

self-polar as to the pencil of quadric surfaces on which the curve

lies (Art. 112). Let t, t' be two distinct tangents of C^ which

intersect in a point P. The plane tt determined by t, t' touches C^

in the points of contact T, T of t, t', respectively. The following

properties will now be proved :

(1) The line I = TT' is a generator of a quadric cone on which

Ci lies.

(2) The plane tt is a tangent plane to this cone along I.

(3) The point P lies in the face of the self-polar tetrahedron

opposite to the vertex through which I passes.

The plane n cuts the pencil of quadric surfaces on which C4 lies

in a pencil of conies touching each other at T and T. One conic

of this pencil consists of the line I counted twice, hence Z is a

generator of a cone of the pencil and tt is its tangent plane. More-

over, I is the polar line of P as to the pencil of conies, hence the

vertex of the cone and the point P are conjugate points. Thus

P lies in that face of the self-polar tetrahedron which is opposite

the vertex of the cone.

If TT approaches a stationary plane (Art 181), then T, T, P
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approach coincidence, and the tangents t, t' both approach I. This

occurs at every point in which C4 intersects the faces of the self-

polar tetrahedron. We have thus the following theorem :

Theorem V. Tlie points of contact of the sixteen stationary

planes (a = 16) of a non-singular qaartic curve of the first kind lie

in the faces of the common self-polar tetrahedron. The planes he-

longing to the points in each face pass through the opposite vertex.

Referred to the self-polar tetrahedron, the equations of the

quartic are (Art. 133)

The equation of the developable was derived in Art. 179.

The section of the developable surface by the plane Xi = is

the quartic curve (o,^ = a — a^),

Ct24Cli3 Xi X^ -\- CI34I12 "^1 ^2 1
Ct23(,Cll2^34 l" ^IZ^^Uj'^i X3 = U

counted twice. It is a double curve on the developable. It is

the locus in the plane 0:4 = of the points of intersection of tan-

gents to C4. A similar locus lies in each of the other faces of the

self-polar tetrahedron. Since the Cayley-Salmon number x is 16,

the entire locus of intersecting tangents to C^ is these four curves.

Since the points of intersection of G^ with the faces of the

self-polar tetrahedron are the points of contact of the sixteen

stationary planes, the coordinates of these points are

(±Va^, ±Va3i, ±Vai2, 0), (±Va^, ± Va4i, 0, ±Va|^),

(±Va34, 0, ±Va^, ±Vai3), (0, ± Va34, ±Va42, ±Va^).

EXERCISES

1. Find the locus of a point P such that the two bisecants to d from P
coincide.

2. How many generators of each quadric through d are tangent to the

curve ?

3. By the method of Art. 180 find the equations of the stationary planes.

4. Show that any plane containing three points of contact of stationary

planes will pass through a fourth. How many distinct planes of this kind

are there ?

5. Find the locus of a point P such that the plane projection of d from
P will be a quartic curve with one double point and one cusp ; two cusps.
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188. Rational quartics. The parametric equations of any

rational quartic may be written in the form

x^ — a^^} + 4 a-i^ + 6 a^J? + 4 0,3^ + a -4, i = 1, 2, 3, 4.

The parameters of the points of intersection of the curve with

any plane "^u-x^ = are the roots of the equation

i^2«,a,o + 4 t^'^u-aa + 6 i^Su.a.-o + 4 f^UiOis + '^u-a^ = 0.

Let ti, <2, is, U be the roots of this equation. From the formulas

expressing the coefficients in terms of the roots we have at once

(<i + fo + ^3 + ^4) 2a,o", + 4 Saa"t = 0,

(tA + t,t, + t,t^ + W3 + U, + ^3^4) 2a,c?*t - 6 %a,i>,, = 0,

(<i«2«3 + t,UU + tUi + khQ %a,,u^ + 4 ^a,,u^ = 0,
^^^^

titnt-/-i%aiQi(^ — 2«,-4?^i = 0.

If we eliminate n^ : v^ : "3 : ^^4 from these four equations, we obtain

as the condition that t^, • • •, tt are the parameters of four coplanar

points, the equation

12 A,y,t/, 4- 3 J3(^^.,^3 + tikfA + W, + ^,^3^

+ 2 A,{t,t, + t,t, + ^1^4 + U, + t,t, + ^3/4) (30)

+ 3 A,{t, + t, + t, + t,) + 12 Ao = 0,

in which ^0 =
|
f'llf*22«33f'44 1? -^ll =

1

«10«22'^33f'44
|j

©tC. If <i = <2

= ^3 = ^4 in (29), the corresponding point will be a point of con-

tact of a stationary plane. Hence there are four points of con-

tact of stationary planes. These four points are defined by the

equation
A,t' + A,fi + A,f + A,t + A = 0. (31)

Theorem. If a quartic airve has a double jwint, the parameters

of the j)oints of contact of the stationary 2)lan.es are harmonic.

Let P be the double point and let ty, t, be the values of the para-

meter at P. Since P is coplanar with any other two points on

the curve, equation (30) is satisfied independently of the values

of ^3 and ^4. Thus ^1, to must satisfy the conditions

12 A,tfz + 3 .-43 (t, + Q + 2 ^2 = 0,

3 AU2 + 2 A, (/, -I- t,) + 3 A, = 0, (32)

2 A^t^ -f 3 ^1 («i -f t^) -f 12 ^0 = 0.



Art. 188] RATIONAL QUARTICS 243

These equations are compatible only when the determinant

vanishes, thus
^.^ ^ ^^ ^^
3 A3 2 ^2 3 ^1 = 0.

2.4, 3 A, 12 Ao

But this is the condition that the roots of (31) are harmonic*

The condition that the double point is a cusp is t^ = U. In this

case equations (32) are replaced by the quadratic equations

6 Af- + 3 A^t + A^ = 0, 3 A^"" + 4 ^2^ + 3 ^i = 0,

A«2 + 3 ^i« + 6 4, = 0.

But these are the conditions that (31) has a triple root. Hence, on

a cuspidal quartic, tliree of the points of contact of stationary

planes coincide at the cusp. There is in this case only one proper

stationary plane.

Three points on C^ are collinear if their parameters t^, to, t^

satisfy (30) for all values of ^4. The necessary conditions are

12 A,W, + 3 A,(t,t, + t,t, + y,) + 2 A,(t, + t, + ^3) + 3 A, = 0, .33.

3 A,t,y, + 2 A,{t,t, + «2«3 + y,) + 3 A,(t, + U + t,) +12 .lo = 0. ^ ^

If the curve has a double point, the parameters t^, to of the double

point satisfy these conditions for every value of ^3. If it does

not have a double point, the equations (33) are satistied, for any

given value of ^3, by the parameters of the other points on the

trisecant through t.

If the equations resulting from (33) by putting ?, = ^2 = ^3 have

a common solution t', the curve has a linear inflexion at the point

whose parameter is t'. The condition that tliese equations in t'

have a common solution is exactly the condition that (31) has a

double root. In particular, if (31) is a square, the curve has two

distinct linear inflexions.

EXERCISES

1. Obtain the Cayley-Salmon numbers for

:

(a) the nodal quartic.

(6) the cuspidal quartic.

(c) the general quartic of the second kind.

(d) the quartic having a linear inflexion.

(e) the quartic having two linear inflexions,

* When the roots of a quartic equation are harmonic, the invariant J vanishes.

See Burnside and Pautou: Theory of Equations, 4th edition, Vol. 1, p. 150.
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2. Show that every [1, !•] curve on a quadric is rational and can have no

actual double point.

3. Show that every rational quartic is nodal, cuspidal, or a quartic of the

second kind.

4. Show that if a rational quartic does not have a cvisp or a linear in-

flexion, its parametric equations can be written in the form

.n = (( + 1)4, X2 = (t + ay, X3 = t^, X4 = 1.

Find the values of a for which the curve is nodal.

5. Prove that if a quartic has a single linear inflexion, its equations can

be written in the form

xi = t\ X2 = ^^ X3 = {t+ l)^ Xi = 1,

and if it has two distinct linear inflexions, in the form

Xi = t*, X2 = t^, Xs = t, 0-4= 1.

6. Show that the equations of a cuspidal quartic can be written in the form

Xi = t*, Xi = t^, X3 = t'^, X4 = 1.

7. Show that the tangents at the points of contact of the stationary planes

of a rational quartic are in hyperbolic position (Art. 120).

8. Show that through any point P on a rational ([uartic curve pass three

osculating planes to the curve besides the one at P, and that the plane of the

points of contact passes through P.

9. Determine the number of generators of a quadric surface which are

tangent to a [1, 3] curve lying on it.

10. Determine the number of generators of a quadric surface which are

tangent to a nodal quartic curve lying on it.

11. Find the parametric equations in plane coordinates of the curves of

Ex.5.



CHAPTER XIV

DIFFERENTIAL GEOMETRY

In this chapter we shall consider some of the properties of

curves and surfaces which depend on the form of the locus in the

immediate neighborhood of a point on it. Since the properties

to be determined involve distances and angles, we shall use rec-

tangular coordinates.

I. Analytic Curves

189. Length of arc of a space curve. The locus of a point whose

coordinates are functions, not all constant, of a parameter u

^=fi{u), y:=f,(u), z=f,(u) (1)

is a space curve. The length of arc of such a curve is defined as

the limit (when it exists) of the perimeter of an inscribed poly-

gon as the lengths of the sides uniformly approach zero. Curves

for which no such limit exists will be excluded from our discus-

sion.

By reasoning similar to that in plane geometry it is seen that

the length of arc s from the point whose parameter is Wi to the

point whose parameter is ^^ is

This equation defines s as a function of u. If the function so

defined is not a constant, equation (2) also defines w as a function

of s. In this case we may write (1) in the form

x=x{s), y = y(s), z = z(s), (3)

in which s is the parameter.

Unless the contrary is stated, we shall suppose that s is the

parameter in each case, and that x, y, z are analytic functions of

245
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s in the interval under consideration. In the neighborhood of

{x{s), y{s), z(s)), to which we shall refer as the point s, we have

x"
y^ = x-\- .a-'A.s + '— (A.s)^ + .. . ,

y, = y-\- y'^s + •(^' (A.s')^-f ...
, (4)

in which a;' = — , a;" = , etc.
rf.s ds^

It follows from ec^uation (2) that

.r'2 + y'^ + z'' = 1. (5;

By differentiating equation (5) we obtain

x'x" + y'y" + z'z" = 0. (6)

We have thus far supposed that the second member of (2) was

not a constant. If the second member of (2) is a constant, we
have

Curves for which this condition (7) is satisfied are called minimal

f!urves. They will be discussed presently. It will be supposed,

except when the contrary is stated, that the curve under consider-

ation is not a minimal curve.

190. The moving trihedral. The tangent line to the curve at

the point P = (x, y, z) on it may be defined as the limiting posi-

tion of a secant as two intersections of the line with the curve

approach P.

From (4) the equations of the tangent at P are

X— X __ Y— y_Z— z /ON

x'
~^~y^~

z'
^^

Let A, fi, V be the direction cosines of the tangent, the direction

in which s increases being positive. From (8) and (5) we have

A = a.', /x=2/', . = z\ (9)
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Tlie plane through P = {x, y, z) perpendicular to the tangent line

is called the normal plane. Its equation is

x'{X -x)^y\Y-y)-\- z' {Z-z)= 0. (10)

The osculating plane at P is the limiting position of a plane

through the tangent line at P and a point P' on the curve, as P'

approaches P. We chall now determine the equation of the

osculating plane.

The equation of any plane through P is

A{X- X) + B{Y-y) ^ C{Z -z) = 0.

It contains the tangent (8) if

Ax' + By' + Cz' = 0,

and will be satisfied for powers of As up to the third (Eqs. (4)) if

Ax" + By" +Cz" = ^.

By eliminating A, B, C, we obtain, as equation of the osculating

plane at P,

X-x Y-y Z-z
x' y' z'

x" y" z"

= 0. (11)

The line of intersection of the osculating plane and the normal

plane is called the principal normal. From (10) and (11) its

equations are found to be

X — x _ Y—y ^ Z—z ,^2\
x" y" z" ' ^ '

If Xi, /til, vi are the direction cosines of the principal normal, and

if we put

l = Va/'2+y'2^z"2, (13)

we have

K = px!', ^, = py", y,=pz". (14)

The plane through P perpendicular to the principal normal is

called the rectifpng plane. From (12) its equation is

x'\X-x) + y"{Y-y)+z"{Z-z) = 0. (15)
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The intersection of the rectifying plane and the normal plane is

called the binormal. From equations (10) and (15) its equations

are

X-x ^ Y-y ^ Z-z
,

,

y'z"-D"z' z'x"-z"x' x'y"-x"y' ^ '

If Xjj ih.1 V2 are the direction cosines of the binormal, we have the

relations

\, = p{,fz" -y"z'\ ,x, = p{z'x"-z"x'), v, = p{x'y"-x"y'). (17)

The trirectangular trihedral whose edges extend in the positive

directions from P along the tangent, principal normal, and bi-

normal is called the moving trihedral to the curve at P ={x, y, z).

From (9), (14), and (17), we have

\ ft V

It follows at once (Arts. 37, 38) that the positive directions of

the coordinate axes can be brought into coincidence .with the

positive directions of the moving trihedral at the point P by

motion alone, without reflexion. Moreover, we have (Art. 37)

X = fJLlVi — V1JU2 ft = V1X2 — A1V2, V = A,/X2 — Ao/Ai,

Xi = fl^V — V2IJ', fli = VoX — X2V, Vi = X2JU. — X/U.2, (19)

X2 = Vift — fX.iV fX, := XiV — VjX, V-, = XfJii — Xifl.

' 191. Curvature. The curvature of a space curve is defined,

like that of a plane curve, as the limit, if it exists, of the ratio

of the measure of the angle between two tangents to the length

of arc of the curve between their points of contact, as the points

approach coincidence.

Let be the angle between the tangents to the curve at P and

P'. The direction cosines of the tangent at P are x', y', z' (9),

those at P' are

x' + x-"A.s + ..., y' -f 2/"As + -, z' + 2"As -}- -.

From Art. 5, we have

sin^ A^ =
\
{y'z" - y"z'y + {z'x" - x'z"y + {x'y" - x"yy\ (As)2+ -.,
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the remaining terms all containing higher powers of As. From

(5) and (6) the coefficient of (A.s)- reduces to x"^ + y"^ + z"\

Since

lim-^H^^ = l,

we have, on account of (13),

da p
(20)

as the expression for the curvature at P. The reciprocal of the

curvature is called the radius of cui-vature.

If - = at a point P on the curve, the tangent at P has three

P

points of intersection with the curve coincident at P; hence P is

a linear inflexion.

192. Torsion. The torsion of a space curve is defined as the

limit, if it exists, of the ratio of the angle between two osculating

planes to the length of arc between their points of osculation, as

the points approach coincidence. The reciprocal of the torsion

is called the radius of torsion and is denoted by a.

In order to find the value of o-, let At be the angle between the

osculating planes at the points whose parameters are s and s -}- As.

By a process similar to that of Art. 191 we obtain

sin2 Ar =
]
(/x,v', - v,ii.\y + {v,X.', - \,u',y + (V2 - 1^2^2)'

I
(As)2 + ...,

the remaining terms all containing higher powers of As. By dif-

ferentiating (17) we have

X\ = P-X, + p(y'z"'

P
fji, + p{z'x"'-x'z"'),

It follows that
p

(21)
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If we substitute these values in the above expression for sin At,

pass to the limit, take the square root, and assign opposite signs to

the two members, we obtain the result

ds cr
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8 being a factor of proportionality. To determine its value, sub-

stitute these values of A'2, yx^, v'l in (23). Since \^ •\- \x.^ + ^i^ = 1,

we find 8 = -. The last three equations of (24) are thus established.

To find the values A'l, differentiate the identity \ = /^jv — vjyu.

(19) and substitute for /x', /, /a',, v'2 their values from (24). By

(19) the result reduces to the form A'i = — f- + -?j. The values

of /u,'i, v\ are found in the same way.

194. The osculating sphere. The sphere which has contact of

the third order with a curve at a point P is called the osculating

sphere of the curve at P. To determine the center and radius of

the osculating sphere at P^{x, y, z), denote the coordinates of

the center by (0:2, y^, ^2) ^"^^ the radius by R.

The equation of the sphere is

(X- 0^2)^ + (r- 2/2)2+ (^ _ ^^y ^ ^2,

This equation must be satisfied by the coordinates defined by (4)

to terras in (As)' inclusive. From these conditions we obtain the

following equations

{x - x,y + (y - y,y + (z -z,y = r^,

{x - x^)x' + {y- y^)y' + (z - z.y = 0,

{X - x,)x" + (y - y,)y" +(z- z,)z" + 1 = 0,
^^""^

(x - x.y" +{y- yy" + (z - z,)z"' = 0.

By solving the last three equations for x — x^, y — y^,^ — 2^2 ^.nd

simplifying by means of (21), (22\ and (24) we find

X^ = X-\- p\i — p'crXo, 2/2 = .'/ + pP-i — p'fJ'H-iJ Zo = Z + pvi— p'crv2- (26)

If we substitute these values of a-,, ^2' ^2 ^^ the first of equations

(25) and simplify, we obtain

R' = p^ + (t'p'\ (27)

Theorem. TTie condition that n space curve lies on a sphere is

p + (t{(t'p' + a-p")= 0.

If a given curve lies on a sphere, the sphere is the osculating

sphere at all points of the curve so that x^, y^, z^ and R are con-
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stants. Conversely, if these quantities are constants, the curve

lies on a sphere.

To determine the condition that the coordinates of the center

are constant, differentiate equations (26) and simplify by means

of (24). Since Aj, fj^, v^ are not all zero, the condition is

p + o-(cr'/3' + up")= 0.

By differentiating (27) we see that R is also constant if this equa-

tion is satisfied. This proves the proposition.

195. Minimal curves. We have thus far excluded from discus-

sion those curves (Art. 189)

x=f,{u), y=f^{u), z=f,{u),
for which

Such curves we called minimal curves. A few of their properties

will now be derived.

From (28) we may write

dx
,

. di/ _ . dz

du dii du

J .(dx .dy\ dz
and t{ —-— 1—^]=—-

\du dtij du

in terms of a parameter t. From these equations we deduce

dx dy dz

du _ du _ du

2 2

If we denote the value of these fractions by <^(w), solve for

— , — , — and integrate, assuming that <^(m) is integrable, we
da da du

find that the equations of a minimal curve may be written in the form

x = - C{1- t'^)(fi{u)du, y= f
("(1 -f t~)cf>{u)du, z = Ct(fi{u)du^

2J 2J J
^29)

in which i is a constant or a function of n. If t is constant, the

locus (29) is a line. For, let k be defined by fc = | cf>(u)du.
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lu terms of k we obtain

X = -^— k + a?!, y = ^(1 + t'^)k + y^, z = tk + z^,

wherein x-^, ?/,, z^^ are constants of integration. The locus of the

point {x, y, z) is the minimal line through the point {x^, y^, z^

x—Xi y-yx z-Zx
\-P i(l + O t

2 2

The equation of the locus of the minimal lines through any point

(Xi, ?/,, Zi) is found by squaring the terms of these equations and

adding numerators and denominators, respectively, to be the cone

{X.-X,Y+ y-y,Y^{z-Z,Y=^,

having its vertex at (xi, ?/i,
z^ and passing through the absolute.

This is identical with the equation of the point sphere (Art. 48).

If t is not constant, but a function of ?t, we may take t as the

parameter. Let u = \\i{t.), and let ^{iC)(ln ^= <^{^{tj)\\i^{pjdt be re-

placed by F{t)dt. Equations (29) have the form

x = ^^{l-t')F{t)dt, y='^j{l + t')F{t)dt, z=JtF{t)dL (30)

Jjet f{t) be defined by-^ = i^(^). By integrating equations (30)

by parts we have

y=^s^^m-u'J^+im+y,, (31)

dt^ dt

^i> yi> ^\ being constants. The equations of any non-rectilinear

minimal curve may be expressed in this form.

EXERCISES
1. The curve

X = a cos 0, y — a sin cj), z = a(j>

is called a circular helix. Find the parametric equations of the curve in

terms of the length of arc.
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2. At an arbitrary point of the helix of Ex. 1 find the direction cosines

of the tangent, principal normal, and binormal. Also find the values of p

and (T.

3. Find the radius of the osculating sphere at an arbitrary point of the

space cubic x = t , y = t^, z — t^.

4. Show that the equations of a curve, referred to the moving trihedral of

a point P on it, may be written in the form

+ z=- — +
o p(r2p \ds)6p^

s being the length of arc from P.

5. Discuss the equations (31) of a minimum curve in each of the follow-

ing cases:

C'^) /(O ^ quadratic function of t.

(6) f(t) a cubic function of t.

II. Analytic Surfaces

196. Parametric equations of a surface. The locus of a point

(x, y, z) whose coordinates are analytic real functions of two in-

dependent real variables u, v

x=f^{u,v), y=f2{u,v), z=fs{u,v), (32)

such that not every determinant of order two in the matrix

M ^ ^3
du du du

df\ df, %
do dv dv

(33)

is identically zero, is called an analytic surface. The locus de-

fined by those values of ri, v for which the matrix (33) is of rank

less than two is called the Jacobian of the surface. Points on

the Jacobian will be excluded in the following discussion.

The reason for the restriction (33) is illustrated by the follow-

ing example.

Example. Consider the locus

X = u + V, y =(u + vy, z =(u + vy.

For any given value t, any pair of values ?«, v which satisfy the equation

u -{- V = t define the point (t, t'-, «'). The locus of the equations is a space

cubic curve. In this example the matrix (33) is of rank one.
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The necessary and sufficient condition that u, v enter /i,/2,/3 in

such a way that x, y, z can be expressed as functions of one vari-

able is that the matrix is of rank less than two.

197. Systems of curves on a surface. If in (32) u is given a

constant value, the resulting equations define a curve on the sur-

face. If u is given different values, the corresponding curve

describes a system of curves on the surface. Similarly, we may
determine a system of curves v = const. The two systems of

curves n = const., v = const, are called the parametric curves for

the given equations of the surface ; the variables u, v are called

the curvilinear coordinates on the surface.

Any equation of the form

<t>{u, v) = c (34)

determines, for a given value of c, a curve on the surface. The
parametric equations of the curve may be obtained by solving

(34) for one of the variables and substituting its value in terms of

the other in (32). If we now give to c different values, equation

(34) determines a system of curves on the surface.

If <f>(ii, v) = c, \p{u, V) = c' are two distinct systems of curves on
the surface, such that

dcf) dip dcf> 5i/' p>

du dv dv du

by putting <^(?*, v) = u', \p (n, v) = v' and solving for u, v we may
express x, y, z in terms of u', v'. This process is called the trans-

formation of curvilinear coordinates.

198. Tangent plane. Normal line. The tangent plane to a sur-

face at a point P on it is the plane determined by the tangents

at P to the curves on the surface through P.

The equations of the tangent lines to the curves u = const,

and V = const, at P = (x, y, z) = {u, v) are (Art. 190)

X-x Y-y Z-z
dx
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The plane of these two lines is

X-x T-y Z-z
dx
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199. Differential of arc. Let <j){u, v)=0 be the equation of a

curve on the surface (32). The differential of the length of arc of

this curve is given by the formula (Art. 189)

ds^ = dx^ -\- dy^ + dz^,

in which

dx = -^ du -\—'- dv, dy = -^ dxi 4- -^ dv, dz =— du -\ dv,
u dv ou dv du dv

and the differentials du, dv satisfy the equation

du dv

If we substitute these values for dx, dy, dz in the expression for

ds we obtain

ds^ = Edu'' + 2 Fdudv + Gdv'^, (38)

in which

-=(ST-(IJ-(SJ'

du dv du dv du dv

^=y \dv) \dv)

Since the expression <^{u, v) does not enter explicitly in the equa-

tion (39), the expression for ds has the same form and the coefft-

cients E, F, G have the same values for all the curves passing

through P, but the value of dv : du depends upon the curve chosen.

The coefficients E, F, G are called the fundamental quantities of

the first order. From (37) and (39) it follows that

D^ = EG- F\

Let C be a curve on the' surface through {u, v) and let ds be the

element of arc on C. The direction cosines A, fx, v of the tangent

to C are

._dx_dxdudxdv^ _dy _dy du dy dv

ds du ds dv ds ds du ds dv ds'

_ dz _ dz du dz dv

ds du ds dv ds
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If we replace ds by its value from (38), divide numerator and
denominator of each equation by da, and replace dv : du by k,

we have
dx ,,dx
du do

A ^ •

VE + 2Fk-\-Gk^'

^ + k^
du dv .,^^

IX =
, (40)

VE-{-2Fk + Gk^ ^ ^

— -I- A- —
du dv

" ~ ^W+YW+Gk^'

It follows from these equations that at a given point on the sur-

face the tangent line to a curve passing through the point is

uniquely deteiunined when the value of the ratio dv : du = k is

known, since -^, — , etc., are fixed when the point (u, v) is given.
du dv

200. Minimal curves. Each factor of the expression

Eda^ + 2 Fdudv + Gdv\

when equated to zero, determines a system of curves on the sur-

face. Let <^ (?/, v) du + ^^ (u, v) dv be such a factor. By equating to

zero and integrating we obtain an equation of the form f(u, v,)= c,

in which c is a constant of integration, which determines a system

of curves on the surface.

The two systems of curves determined in this way are minimal

curves (Art. 195), since the differential of arc of every curve of

each system satisfies the condition

(7i-2 = Edu^ + 2 Fdudv -f- Gdv'' = 0.

This equation determines, at (u, v), two values of the ratio

dv : du = k which define two imaginary tangents to minimal

curves. The two tangents coincide at points for which D= 0.

In the succeeding discussion we shall assume that minimal

curves are excluded.
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201. Angle between curves. Diiferential of surface. The angle

between the tangents to the curves u = const., v = const, is deter-

mined from Art. 198 by the formula (Art. 5)

F f T , • ^EG - F' D
cos oj =— , from which sm w =

^'EG -JEG ^EG

The curvilinear quadrilateral whose vertices are determined by

{u, v), (n -j- Am, v), {u, v -\- Aw), {u + A», v + Ay) is approximately

a parallelogram such that the lengths of the adjacent sides are,

from (38)", -VEdu, -y/Gdv, and the included angle is w.

Hence we have in the limit for the differential of surface

dS = sin (D^EGdudv = Ddudv.

Let C, C be tw^o given curves on the surface through a point P.

We shall denote the differentials of n, v, s on C by dii, dv, ds and

the differentials of u, v, s on C by 8u, Sv, 8s. The direction co-

sines A, /A, V of the tangent to C are determined by replacing k in

(40) by dv-.du; similarly the direction cosines A', [x, v of the

tangent to C are determined by replacing Iz by Sy : Z^i.

If Q is the angle between the tangents to C and C at (w, -y),

oos«=XX' + m/+v/ = ^-^^^jj
^ (41)

From (41) we have at once the following theorem:

Theorem. The condition that tioo directions determined by the

ratios do : da, hv : Sic are orthogonal is

EduSu + F(du8v + dvBu) + Gdv8v = 0. (42)

202. Radius of normal curvature. Meusnier's theorem. Let ip

be the angle which the principal normal to C makes with the

normal to the surface. Let Ai, fii, vi denote the direction cosines

of the principal normal and ds the differential of arc along C.

We have, from (14)

cos^ = A,A + /.„. + v,v = p^A- + ^^-t-v-j,

p being the radius of curvature of C at (m, v).



(43)
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But

d'^x _ d'^x /d«Y _ d'^x du dv
,
d'^x/dvV dx dhi dx d?v

ds^ du'^\dsj ~' dudvdsds dv^\dsj du ds^ dvds"^'

with similar expressions for —-, Substitute these values
ds^ ds^

for the second derivatives in the equation for cos if/. Since the

normal to the surface is perpendicular to the tangents to the

curves u — const., v = const., we have the relations

-dx By dz ^ - dx _ df/ dz ^
ou au du dv do dv

If we replace ds by its value from (38), the equation for cos \p may
be reduced to

cos if/ _ Ldu- + 2 Mdudv + Ndv^

p ~ Edu"" + 2 Fdudo + Gdv'^'

wherein

r _ T ^"^
,
- ^^y

,
- ^'^

d^r dir du^

31^1^^ + ].^^ + .^, (44)
dudv dude dudv

dv^ dir dv^

The quantities L, M, N are called the fundamental quantities of the

second order for the given surface.

The second member of equation (43) depends only on (m, v) and

the ratio dv : da = A;. Consider the plane section of the surface

determined by the normal to the surface and the tangent to C.

Such a section is called a normal section. Let the radius of

curvature of this normal section at (u, v) be denoted by B. From

(43) we have

li
~ Edu} + 2 Fdudv + Qdv''' ^ ^

Rcosil/ = p. (46)

and hence

The result expressed in equation (46) may be stated in the follow-

ing form, known as Meusnier's theorem :
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Theorem. Tlie center of curvature of any point of a curve on a

surface is the projection on its osculating plane of the center of curva-

ture of the normal section tangent to the curve at the p)oint.

203. Asymptotic tangents. Asymptotic curves. The two tan-

gents to the given surface at (w, v) defined by the equation

Ldu} + 2 Mdudv + Ndd" = (47)

are called the asymptotic tangents at P.

From (45) we have at once the following theorem

:

Theorem I. If the curve C on the surface is tangent to an asymp-

totic tangent at (u, v), then either the osculating plane to C coincides

with the tangent plaiie to the surface or C has a linear inflexion at

(u, v).

The two systems of curves defined by the factors of (47) are

called the asymptotic curves of the surface. They have the prop-

erty that their tangents are the asymptotic tangents to the sur-

face. We have the further theorems

:

Theorem II. If a straight line lies on a surface, it coincides

with an asymptotic tangent at each of its points, hence the line is an

asymptotic curve.

Theorem III. The osculating plane at each point of a real

asymptotic curve, not a straight line, coincides with the tayigent plane

to the surface at that point.

204. Conjugate tangents. The equations of the tangent planes

at P= {x, y, z) and at P' =(a; +Ax, ?/ + Ay, z -(- Az) on the surface

are (Art. 198)

^X-x)-\-]l(Y-y)-\-v(Z-z)=0,

(A + A\){X-x - Ax) -{-(Ji + A]x){T-y- Ay)

+ (v-\-Av)iZ-z-Az)=0. (48)

Let P' approach P along a curve whose tangent at P is deter-

mined by k = dv : du. We shall now determine the limiting posi-

tion of the line of intersection of the planes. If we subtract the
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first of equations (48) from the second, member by member, and

pass to the limit, we have

d\(X— x) + dfL{ Y—y) + dv {Z — z)+ ~Xdx + jldy + vdz = 0.

But Adx + jldy -\- vdz = 0, sinr^e the normal to the surface at P is

perpendicular to every tangent at P. Hence the limiting position

of the line of intersection passes through P, since it lies in the

tangent plane at P and in the plane dk{X — x) + d'fj.^Y— y)

+ dv(Z— ^)=0 through P. Let the point {X, Y, Z) on the line

Sx doc
of intersection be denoted by X—x-\-^x — x-\ 8m -1 Sv, etc.

du dv

(Art. 199). We have

d\(^-^8u + ^-^8v) + d-J^8u + ^Bv\+d-J^-^8u + ^-^Bv) = 0.
\du dv J \du dv J \da dv J

If we replace A, ju., v by their values from (36) and simplify, this

equation reduces to

LduBu + M(du8v -f- dv8u) + NdvSv = 0, (49)

which determines Bv : Bu linearly in terms of dv : du.

Since equation (49) is symmetric in dv : du and Bv : 8m, it follows

that if a point P" approaches P in the direction determined by

8v : Su, the limiting position of the line of intersection of the tan-

gent planes at Pand P" is determined by dv: du.

Two tangents determined by dv : du, Bv : Bu which satisfy (49)

are called conjugate tangents.

Theorem. The necessary and sufficient condition that a tangent

coincides with its conjugate is that it is an asymjytotic tangent.

For, if in (49) we put Bv : Bu = dv : du, we obtain (47). Con-

versely, if dv : du satisfies (47) and Bv : Bu is conjugate to it, then

dv: du= Bv: Bu.

205. Principal radii of normal curvature. In order to determine

the maximum and minimum values of R in equation (45) at a

given point (u, v) put dv: du =k and differentiate li as a function

of Jc. The derivative vanishes for values of k determined by the

equation

(FN- GM)k^-(GL-EN)k+ (EM- FL) = 0. (50)
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If this equation is not identically satisfied, the two roots k^, k^ are

real and distinct, since the part under the radical may be expressed

as the sum of two squares.

(GL - ENf - 4:{FN- GM){EM- FL)

= 4 —lEM-FLy+[EN-GL-^(EM- FL) J.

One root will determine the tangent dv : dii such that the normal

section through it will have a maximum radius of curvature R^ and

the other will determine the normal section having the minimum
radius of curvature i?2.

The tangents at (u, v) determined by the roots of (50) are called

the tangents of principal curvature, and the corresponding radii

Ml, i?2 ^'^e called the principal radii of curvature. To determine

the values of R^ and ^2 we have from (45) and (50)

L + kM^ M+kN^ ]_^

E + kF F + kG R

By eliminating k between these equations, we obtain the quad-

ratic equation

{LN- M^)R' - {EN- 2FM + GL)R + EG-F' = 0, (51)

whose roots are R^ and R^.

The expression
\

is called the mean curvature of the sur-
Ri R2

face at (u, v) ; the expression— • — is called the total curvature
Ri R2

of the surface at (u, v). From (51) we have

Ri R, EG-F^ ' ^
"^

1 LN- M-
R1R2 EG-F^

206. Lines of curvature. If in (50) we put k =^dv: du, we obtain

{E3f- FL)du- - (GL - EN)dudv + (FN- GM)do- = 0. (53)

The two factors of this equation determine two systems of curves

called lines of curvature of the surface. If the two directions at
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(u, v) of the lines of curvature are denoted by dv : du and 8v : 8u,

then, from (53)

dv8u + Sodu ^ GL- EN dvSv ^ EM-FL
duSa ~FX-GM' duU FN-GM'

from which
Eduhu + FydvZu + duhv) + Gdv^v = 0, (54)

LduSu 4- M{dv8u+ duho) + Ndvhv = 0.

From the first of these equations we have, by (41), the following

theorem

:

Theorem I. The two lines of curvature at a point on the sur-

face are orthogonal.

From the second equation we have, by (49), the further theorem

:

Theorem II. The tangents to the lines of curvature at a jioint

on the surface are conjugate directions.

Conversely, if two systems of curves on the surface are orthog-

onal and conjugate, their equations satisfy (53) and (54), hence

they are lines of curvature.

The normals to the surface at the points of a given curve O on

it generate a ruled surface. The ruled surface is said to be de-

velopable if the limit of the ratio of the distance between the

normals to two points P, P' on C to the arc PP' approaches zero

as P' approaches P.

It should be noticed that in particular a cone satisfies the con-

dition of being a developable surface. A cylinder is regarded as

a limiting case of a cone, and is included among developable

surfaces.

Theorem III. The condition that the normals to a surface at the

points of a curve on it describe a developable is that the curve is a

line of curvature.

Let P = (it-, y, z) and P' = {x-\- Ao;, y -f Ay, z + Az) be two

points on the given curve C. The equations of the normals at

P and P are (Art. 20)

X=a; + A.r, Y=y-\-'fxr, Z — z + vr,

X= x -I- Ax + (A + AA)r', Y = y + Ay + (jx + fxA)r',

Z = z + Az +(v + Av)r'.
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The ratio of the distance Al to the arc As is (Art. 23)

Ai Aic(/ZAv — vAjii) + A!/(vA\ — AAv) -|- Az(XAJl— /XAA)

^^ ^s ^QiAv - vA/X)2 ^ ^-^X - XAP)2 + (AA/i - ;iAA)2*

Divide numerator and denominator of the second member of this

equation by As^ and pass to the limit as As = 0. Using the dif-

ferential notation to indicate lim Ax : As, etc., we have

|- A^ _ dx(jidv — nljx) + dy(vdX — Xdv) + dz(\djl — fxdk)

A*^ AS V()idv - vdJxY + (vd\ - Xd^y + (Ad/Z - Jxdxy

Both numerator and denominator of the second member of this

equation vanish for those values of A, jx, v which satisfy the

equations

dx dfi dv ,

A ft V

and the limiting value of the ratio -— is indeterminate. The de-
As

nominator cannot vanish for any other values of A, 'jx, v.

Since A^ + ^2 _^ v^ = 1,

we have, by differentiating,

AcZA -f (xdji + vdv = 0,

which reduces, under the condition that dx = kX, etc., to

k{X' + H-' + P)=k=0.

Since k — 0, we have dx = dH- = dv = 0. Hence the normal to

the surface has a constant direction for all points of the curve C.

The surface generated by the normal is in this case a cylinder.

If the denominator of (55) is not zero, the condition that the

surface generated by normals to the surface along C is a develop-

able is that the numerator of the second member of (55) is zero,

that is, that

dx Qldv - vdji) + dyCvdx - Xdv) + dz (xdJL - JldX) = 0.

If we substitute for a, Jjl, v their values from (36) and for dx, dy,

dz their values -- du -\- -^-dv, etc., we can reduce this equation to
au dv

(53), which proves the theorem.
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207. The indicatrix. Let the lines of curvature be chosen for

parametric curves. In (54), dv = and 8u = 0, but du =^ 0, Bv ^ 0,

hence F=0, M=0.
Let C" be a curve making an angle 6 with u = cons, and let B

be the radius of normal curvature in the direction of C". Along

u = cons., ds = ^Gdv, hence from (41),

cos e = V^-, sin e=^E^.
ds ds

From (45) and (52) we now have the formula

1 _ cos^^ sin^^

This equation is known as Euler's formula for the radius of

curvature of normal sections. It is intimately connected with the

shape of the surface about P.

Let the surface be referred to the tangents of principal curva-

ture and normal at P as X, Y, Z axes.

Let X, y be taken as parameters. The equation in x, y, z has

the form

Since z = is the equation of the tangent plane at the origin,

1
—

1
= and

I

— 1= 0. Since the X and Faxes are the tangents
\dx)

_

\dyj
^

of principal curvature at the origin.

,dxy R^ \dxdyj ' \dyy Rn

hence, neglecting powers of x and y higher than the second, the

approximate equation of the surface for points near (0, 0, 0) is

2;s= — + ^. (56)
Ri R2

If — and — are both different from zero, the surface defined by
Ri R2

(56) is a paraboloid. If one of them is zero and the other finite,

the surface is a parabolic cylinder. If both are zero, the surface

is the tangent plane to the given surface. This last case will not

be considered further.
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The section of the quadric (56) by a plane z — cons, is called the

indicatrix of the given surface at a point P.

If ^1 and i?2 have the same sign, the section is an ellipse for a

plane on one side of the tangent plane, and is imaginary for a

plane on the other side. In the neighborhood of P the surface

lies entirely on one side of the tangent plane. Such a point P is

called an elliptic point on the surface.

If i?i and jRj have opposite signs, the paraboloid (56) is hyper-

bolic and the section by any plane z = cons, on either side of the

tangent plane is a real hyperbola. The point P is in this case

called a hyperbolic point on the surface.

If — or — is zero, the section z = cons, consists of two paral-
Pi P2

lei lines for a plane on one side of the tangent plane, and is im-

aginary for a plane on the other side. It follows from (52) that at

such points LN— M^ = 0, and from (47) that the two asymptotic

tangents coincide. The point P is in this case called a parabolic

point on the surface.

In all three cases, the directions of the asymptotic tangents to

the surface at a point P are the directions of the asymptotes of

the indicatrix. At an elliptic point the asymptotic tangents are

imaginary; at a hyperbolic point they are real and distinct; at a

parabolic point they are coincident. Moreover, conjugate tangents

on the surface are parallel to conjugate diameters on the indica-

trix. The asymptotic tangents are self-conjugate.

EXERCISES

1. Find the equation of the tangent plane and the direction cosines of the

normal to the surface x = u cos v, y = u sin v, z = tfi at the point (m, v).

2. Determine the differential equation of the asymptotic lines on the sur-

face defined in Ex 1.

3. Show that the parametric curves in Ex. 1 are orthogonal.

4. Find the lines of curvature on the surface x = a{u + u), ?/ = &(m — v),

z = iiv.

5. Prove that if E : F -. G = L . M: X iov every point of a surface, the

surface is either a sphere or a plane.
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Page 3. Art. 1

I
2. The FZ-plane. 3. The Z-axis,

' 4. A line parallel to the Z-axis through (a, 6, 0).

6. (k, I, — to), (k, — I, in), (k, — I, — m), (—k, I, — m), ( — k, —I, — m).

Page 5. Art. 2

3. (-1,1,9). 4. 13. 5. Vo^T&M^.

6 — A. 0- — — — • ^^ -^ 2

VS' Vs' ' Va' V3' VS' \/89' V89' \/89

J- A.- 1 -4 2

' Vs' Vs' V21' \/2l' V2I'

y y

y/x^ + y^ +2^ y/x^ + y'^ + z^ Vx^ + y'^ + z^

Page 7. Art. 4

1. V89. 4. \/(x-l)2+(y-l)2+(2-l)2=V(x-2)H(2/-3)2+(2-4)2.

A r«^ 2 3 5 ,,.111
V38 V38 V38 VS \/3 V3

(c) 4=, -4=, ^.
\/41 V41 \/41

7. (a) Parallel to the TZ-plane. (6) Parallel to the Z-axis.

(c) Parallel to the X-axis. 9. ~, -4, — •

V3 \/3 V3

Page 9. Art. 6

1. :^. 2. 1.0,0;0,1,0;0,0,1. 3. -4r, ^^, -i-
1* V2(j V^ v26

^^
• 8. ^•s. 9. 2^ 10 Twn -uvV3-l,8. (f, I, 2). 10. Two. 4- V V 3 - 1 • 11.(2,2,2),

Page 11. Art 9

1. Sphere of radius 1, center at origin.

2. Cone of revolution, with X-axis for axis.

269
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3. Plane through Z-axis, niakiug angle of 30^ with JT-axis.

4. Cone of revolution, with Z-axis for axis.

5. (a) p = 2
; (6) p = 2

;
(c) p'^ + z^ = 4. 6. <p = 45^ p2 = g2,

7. Vpi^ 4- p2- — 2 pip2(C0S «! cos «o + COS ^1 COS ^2 + cos 7i COS 72)-

Page 14. Art. 12

1. 3z + iy+2s=n. 2. X — y = 0. X- and Y- intercepts zero.

3. -4x + 3y + z^5. i. k = 2. 5. (-3,4,5).

Page 18. Art. 16

1- A ^ - if .V
- t\ 2 = 2. 2. x + 2y = 0.

3. -^- 4. -4r- 5- (4, 3, 1); (1, -4, 3).

V26 \/l4

7. 25 X + 39 y + 8 2 - 43 = 0. 8. 5 a; - 1/ - 2 2; - 6 = 0.

g_ Aix + ^ly + C^i + Ji ^ _^
Aox + Boy + C2g + D2

.

10. U(x:^ + y'' + z'-) = {Sx+y-2z- 11)2.

11. 2 X -j^ - s + 3 + 3v6 = 0. 13. X - 2 y - 2 + 2 = ;
- 2, 1, 2.

14. 21x- 9^-22^ + 63 = 0. 15. 3 x + 2 y + 3 s - 15 = 0.

17. 11 X - y + 16 2 - 63 = and 17 x - 13 y + 12 5; - 63 = 0.

18. m = ± 6. 19. k=-h

1.

Page 21. Art. 20

^ ^
\,

' 4 2/ \14 14 J U 8 ;

0).

,x-3 2/-7 2-3 4 2 -3 , ,0,0 n4. = ^ = ; —^^, —:^ , —^- 5. x + 2?/ + 2 = 0.
4 2 -3 V29 \/29 v'29

6. k = ^. 7. Yes. 8. A; =-2. 9. No. 11. Yes.

Page 23. Art. 21

1 ^ni _i_ 5

SVs' 3V3' 3V3
2. 2x + 2/ — 3^ + 6=0, X + 2/ + 2 -13 = 0.

3. arc sin J^^ _ . 4. x + 10 y + 7 2 + 18 = 0.

V29 \/70
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5.

8.

10.

12.

1.

5.

S X + y - 26 z + 6 = 0.

Sx-y + 3z -7 = 0.

3 .r - 7 2/
- 4 z = 0.

k = 2 and k = 3.

6. k=- 1.

9

7. X 4- 2 2 = 6.

X — a y — b z — c\

li mi 111 \— 0-

h mo W2
I

11. k = l
13. 2x-z = 0, y = 3.

Page 25. Art. 23

2. \/3. 3. 0. 4. -4=, 0, ^1,.
VI 13 VllS

V2; X, J,, 0.

V2 V2

Vl4 .

2

6.
1

Vs'
7. 15 cc 4- 43 = 0, 12 y = 62 +13.

Xl — y2 ^1 h
2/1 — 2/2 WM m2

2l — 22 «1 "2

= 0.

Page 28. Art. 24

61 x - 52 2/ + 35 2 - 93 = 0. 3. a; + 5 y - 3 - 44 = 0.

12.T- 17 2/ + 32 + 4 = 0. 4. Yes.

7a; + 12 2/-13 2 + 8 = 0, x-3y + 42-7 = 0.

Page 29. Art. 25

7?/- 10 2-3 = 0, 7x-2-22 = 0, I0x-y-3l=0.

2/-2 + 2 = 0, x + 2 = l, x + 2/=-l.

2/ — 2=0, x + 22 = 4, x + 2y = i.

(A1B2 - AiBx)y + {AxC2 - AtGi)z + {AiD-z - .i.A) = 0.

{B1A2 - B2Ai)x + (5iC2 - -B2Ci)2 + (B1D2 - B'Di) = 0.

(Ci^2 - a2^i)x + ( C1B2 - C2Bi)y + ( C1D2 - C2D1) = 0.

1.

2. 5.

4. arc cos

5.

6.

8. A plane

Page 33. Art. 28

y

2 4
x + 22/ + J + l=0; 3x-|-|+l=0; x + |-|+l=0.

3\/T0

'•^'•^•-)^a-^-^)^(-i-'°)

V299

M + r + u>=-l, 6 7i-3» + tr + 3 = 0, 6M-2» + ir+l=0.

-1
(2, -1, -3); (— , 0,— 0, 0, 7. — — , —

.

V3' VS' V3
9. 4(m'^ + v2 + w-)= 1. A sphere.
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Page 35. Art. 34

(c)(^,o,o). (/)(«. ".n)-

2. (-10,15,-2,0). 4. 7x + 9j/ + 542-59« = 0.

Page 37. Art. 35

1. (a) Parallel bundle. Rank 3. (b) Rank 4. (c) Rank 4.

(d) Parallel bundle. Rank 3.

-1 c b

3. The determinant

-69 5
4.

a — 1 c

6 a - 1

- 19

is of rank 3 ; of rank 2 ; of rank 1.

\/3867 \/3867 \/3867

Page 43. Art. 40

1, x2-3 2/2 + 2/2-4x-8y + 42 + 4 = 0.

^21 V6 VU
^ix' y'

^

z'

V21 V6 vTi'

z ^ ^x' y' Zz'
~

V21 V6 Vli

4. New equation is x^ — 2 j/^ + 6 2^ = 49.

Translation is x = x' + 8, ?/ = y' — 1, 2 = 2' + 2.

6. 3 x2 + 6 y2 + 18 ^2 = 12.

Page 45. Art. 41

- /28±6i -6±8i 5T24i\ ^ /17-4t

) - (^- H^' -*'•)
13 ' 13 ' 13 ;

"
V 6

6. (13 + 9i)x+(3 + 4i)2/ + (16-7i> = 23 + 64 i.

6. (1 ± iV-T, 0, 0).

Page 46. Art. 42

1. x2 + j/2 = 4 z^. 3. x2 + y'^ + 2^ - 7 X + .V + 30 = 0.

4. 8(x2 + y2 ^. ^2) _ 68 X + 48 2/ - 66 2 + 275 = 0.
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5. « = 5, (x-3)2+(2/-7)2 + (;j-l)2 = 9.

6. 2 a; - 14 y - 2 3 + 1 = 0, 4 X - 18 + 33 = 0. 7. (- 4, ± 4 i, 2).

Page 49. Art. 46

8. Center at (0,0, 4); radius 6. 4. x"^ - y"^ = 1. 6. r, —

•

Page 51. Art. 47

1. a;2 + 2/2 + ^2 = 26. 2. 9(y2 + z^) = (15 - 2 a;)*. Vertex (Y, 0, 0)

;

z = 0, 9(2/2 + ^2) = 225 ; 4(x2 + z^) = 9(5 - y)^.

4. 2/2 + 22 = (,2
; y = a.

6. (a)?! + l^4-^=l; ?-% 1^ + ^' = 1.^^499 ' 494
^ '

a2 62 fc2
' a2 1-1 a2

(c) 2/2 + 22 =: 8 x
;

2/* = 64(x2 + z^).

(d) (x2 + 2/2 + ^2 _ 5)2 = 16 - 4 x2 ; x2 + (y - 1)2 + 22 = 4.

(e) 2/2 + ^2 = sin2 x ; ?/ = sin V'x2 4- 22.

(/) y2 + 22 = e2'
; 2/ = e-^x^'.

Page 54. Art. 49

1. (o) x2 + 2/2 + z2 := ^2. (6) x2 + 2/2 + 22 + 2 x - 8 y - 4 2 = 16.

(c) x2 + y2 + 22 - 4 x - 2 y - 10 2 + 14 = 0.

(a) Center f- I, -1, --\ radius ^^.
^ '

V 2 ' 2/ 2

(6) Center (-1, - 2, 3) ; radius 0.

(c) Center fl, 1, ^V radius
^' ^^^

^
^ U 2 4 r

lius
2

4

(d) Center
(
_ /, 0, O^j; radius

8. (-4±3i, 2±6i, 5, 0).

. /2±2iV2 1 T 2 t V2 _2±\/2i\
I 3

'

3 ' 3 }

Page 56. Art. 52
1. y = 1.

2. Arc cos . The spheres have no real point in common.

8. x2 + y2 + 22 _ 2 X - 6 y - 6 2 + 10 = and x2 + y2 + 22 - 2 x - 6 y
-62-6=0,
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4. x^ + y^ + z^ + x-2y-Sz = 0.

5. 2 X — o y + z + 5 = 0. The sphere is composite.

6. 10(x2 + y2 + 2-2) ^-jix -6Sy -8[)z - 185 = 0.

7. 4232(a;'-! + y-^ + z^) - 276 a; + 27G y + 1032 ^ + 225 = 0.

Page 69. Art. 59

1. Center (1, 1, -2); semi-axes^, — , —

•

^ ' ' ^' 2 3 2

2. Sphere ; center [ 2, '-, — 5j; radii
V'2U5

2

3. y = 0, 2 x^ = 3 z^ + 5 z + 7 . Rotated about the Z-axis.

4. X = 1, y = z ; x = 1, y =— z; x — — 1, y = z; x = — I, y =— z.

5. (a) Ellipsoid, (ft) Hyperboloid of two sheets, (c) Hyperboloid of

one sheet. (cZ) Hyperboloid of revolution of one sheet, (e) Ellipsoid.

(/) Imaginary ellipsoid.

Page 73. Art. 64

1. Hyperboloid of one sheet. 2. Imaginary cylinder.

3. Elliptic paraboloid. 4. Real cone. 5. Hyperboloid of two sheets.

6. Hyperbolic paraboloid. 7. — + ^ "*" ^ = 1.

8. (a) (1 - r-2)a;2 + y^ + z-i - 2 ax + d^ = 0.

(b) (1 - r2)x2 + (1 - r2)j/2 + z^-2ax + a^ = 0.

Page 76. Art. 66

^
/ -8±n/I09 5 T V109 - 17 ± VlO!) \

g fO 0^
'

\ 3
'

3 '
(J j

• V . 7 >

3. (-1,1, -A)- 4. (-1, 2,-1). 5.(1,1,0).

6. Vertex (0, -1,0). 7. Plane of centers 2(x - y + «)- 1 = 0.

8. Non-central.

Page 89. Art. 75

1. Hyperboloid of two .sheets. Center (0, 0, 0). Direction cosines of axes

2 _ 2 1.2 1 2.1 2 2 fl r2 -U 9 »;2 .^i 4_ 2 —

2. Hyperboloid of one sheet. Center (1, |, — f). Direction cosines of axes

2 + 2-\/5 VS-l 5+\/5 . 2-2V5 -\/5 -1

2V15 + 4V6 2Vl5+4v'5 2Vl5 + 4\/5 2Vl5-4\/5 2Vl5-4V5

5_V5 . -3 4 2 5 + V5^2
,

•''> - v^^' ^2 _ 3 ^2 = 10

2V15-4V5' ^29 V29 v/29 22 3
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3. Hyperboloid of one sheet. Center ( — , -pr- , -pr- 1
•

Direction cosines of axes, 7n'^'^'^'^';ll';;|5'
^'^- 11-^ + 4 2/^-^^ = A.

2 1
4. Real cone. Vertex, (1, 0, 0). Direction cosines of axes, -7= >

—7=»

-12 11-25 V5 V5

Ve Ve a/6 V30 V30 V30 ^

6. Elliptic paraboloid. New origin, ( - ,
—

,
— 1 . Direction ^

2 1 -1.1 -1 l.n-1-1
of axes, —F ) -7= > —7= ) -7= ) —7= > —7= > "> -7= > —7= • 6 x2 + 3 2/2 =

Ve Ve Ve V3 V3 V3 V2 V2 -^ y

(4 - 1 22 \^ ' -7- > 57 1 . Direction

1-5 3 1 2 3-3^1
cosines oi axes, /— > ~7= » ,— > ,— > ,— » ,

—

: > ,— > "> ,

—

•

V35 V35 V35 Vl4 Vl4 Vl4 VlO VlO
2 x2 - 5 2/2 + 7 z2 + — =0.

35

7. Parabolic cylinder. New origin on2x + 22/-2z-l=0. 2x - y2—1222 2 —

1

+ 2 z - 2 = 0. Direction cosines of axes, -
> -r- > - j ^ > ^ > ^ J —-

,

cy c} *j O *J O fj (j O

3 > - • 5 2/2 + 6 X = 0.

8. Two real intersecting planes. Line of vertices, x + z - 1 = 0,

X -
2/ + 2 = 0. Direction cosines of axes, —7^1 ^^ > —7=^; 0, ~7^ > —p^',

_1 _1 1 021, 'V6 V6 V6' ' \/2 V2'
ZJ:^ ij _L_. 3x^ l_y2

V3' Vs' ^3' 2 ~ 2 "

9. Hyperbolic paraboloid. New origin, (1, 0, - 1). Direction cosines

of axes, -^ , _?^ ,
_L

;
J_

,
III

,
J_

; ^ ,0, — . fi j-2 _ q >/2 -

2^ z.
^6' Ve' Ve' V3' V3' V3 V2' V2 ^ "^ ^ ^

-

10. Elliptic paraboloid. New origin, (0, - 1, 1). Direction cosines of

1 1 1.1-1^1 1-2
axes, -7= ' -7= , -7= , —^ ,—=., U ;-—,—=,-—= . 3 x2 + 4 2/^ =

V3 V3 V3 V2 V2 V6 Ve V6 -r
«

sVe z.

11. Hyperbolic cylinder. Line of centers 3x-72/ + 7z + l=0, or

2x-22/ + 4z + l=0. 7X + 52/ + 112 + 5 = 0.

X + 32/+ 2 + 1=0.1—12 1 3 1 —

7

Direction cosines of axes, —7= > -7^ . —;=^ ! —f= » —7^:^ . —7=^ J -7=
,14 ' Ve Ve Ve \/n Vu Vn Vee

Vl' V^- 24x2-112/2-5 = 0.
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12. Hyperbolic paraboloid. Origin (
—

, — ,
^— )• Direction cosines

\72 72 i2 I

f 1 V7-2 V7-3 -1
of axes — —

,
•

—

-
,
— -

;
— —

,

V28-10\/7 V28- lOvT V28 - 10V? V28 + 10 V7

V7 + 2 V7 + 3 1 -1 1

V28+IOVT V28+IOV7 ^ >/3 V3

(_ 1 + V7)a;'^ -(1 + ^7)2/2 = 4 V3^.

13. Hyperboloid of one sheet. Center (^, ^-
, — V Direction cosines

of axes .21, - .65, .69; .91, .41, .10 ; .36, - .64, - .68.

3.09 a;2 + 1.59 y2 _ 3.67 ^2 ^ as,

(2 3 — 26\— , - , ) . Direction cosines
15 5 15 /

of axes -.77, .56, .28; .14, -.31, .94; .63, .76, .13. 6.17 x2 + . 712,2

-6.8822=^^9.

15. Ellipsoid. Center (0, 1, 1). Direction cosines of axes

2 1+^^ .0=
-^

. -^+^L ,0:0.o,i.
V'l0+2V5 V1O + 2V5 V1O-2V5 V1O-2V6

— x^ -\ y^ + 2 z^ — i.
2 2

(—9—7 \
, , — 6 1. Direction cosines of axes .83,

- .33, - .44 ; .26, .95, - .22 ; .49, .07, .87. 4.20 a;2 + .59 y^ + .20 z^ = ^.

17. I, 5±2i. 18. ^=^.
^'

28

Page 92. Art. 78

1. X+IO2/-32 +22 = 0, ^^^zJ: = 1+l = ?^zl.
"

1 10-3
Page 96. Art. 80

1. y -i, z = kx,; x--n, z = -r)y.

Page 97. Art. 81

1. V5, :^. 2. a; + z + 1 = 0, 2/ + 2 - 1 = 0. 3. a, 6, c.
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Page 103. Art. 83

1. x + y — z = dandx- y + 2z = p. 2. x — {2 ± y/6)y = d.

3. -^. 4. y + S±\/2{z-2)-0. 5. a = 6, h=0.
V3

6. ax + fir.2; + Z = 0, ay + fz + m = 0. 7. 2 g'x + 2/y 4-(c - a)^ = d.

8. (6 -i-)^- +(«-^')-S2 -2/4^5 = 0,

(c - i-)-S2 + C?>
- A-) C2 - 2 /J5C' = 0,

(a - A;) C2 + (c - A)^^ _ 2 ^C^ = 0,

A" being a root of the discriminating cubic.

9. (-1,0, -3). ^.
Page 108. Art. 87

8. ki = cons, i = 1, 2, 3, 4. For parametric equations, substitute this value

of*,-, inEqs. (27).

Page 111. Art. 89

1. (-6x4-61/- 12 «, x + 2y-2z + t, Qx + Sy + iz + it, —x + Sy
-z-2t), (-12, 1, 4, -2), (12, -2, -20, 1), (18, -6, -16, 1),

(12,-3, -28,1), (3,2,1,2).

2. (-373, 179, 92, 283), (-500, 181, 145, 344), (-153, 61, 38, 107),

(-37x1-96x2-9x3 + 156x4, 11 Xi + 24 X2 - 3 X3 - 60 X4, 8x1 + 48x2
- 6 xa - 36 X4, 31 Xi + 60 X2 + 3 X3 - 108 X4).

3. 15 X + 5
J/
+ 11 + 16 e = 0.

4. 197 xi + 468 X2 + 57 X3 - 792 X4 = 0.

5. 6x'^-15y^ + 2 z^ + 3 yz- zx- 3 xy + n xt + 9 yt- 6 zt + 10 t^ = 0.

6. (22 X - 22 2/ + 44 «, 12 x + 24 j/ - 24 + 12 «, 33 x + 33 y + 22 2; + 22 1,

66 x-198 2/ + 66^+132 0, (22, 6, 11, 66), (22, 12, 55, 33), (33, 36, 44, 33),

(22, 18, 77, 33), (22, -48, -11, 264), (-97121, 36427, 22804, 66851),

(296167, - 115487, - 64346, - 205981), (- 185625, 71181, 42570, 128403),

(814 xi - 6912 X2 - 297 X3 - 61776 X4, - 242 xi + 1728 X2 - 99 X3 + 23760 X4,

- 176 xi + 3456 X2 - 198 X3 + 14256 X4, -682 Xi+4320 X2+99 X3 + 42768 X4).

Page 113. Art. 92

1. Vertices : ?(i = 0, (1, 0, 0, 0) ; M2 = 0, (0, 1, 0, 0)

;

M3 = 0, (0, 0, 1, 0); Ui = 0, (0, 0, 0, 1).

Faces : Xi = 0, (1, 0, 0, 0); X2 = 0, (0, 1, 0, 0);

X3 = 0, (0, 0, 1, 0); X4 = 0, (0, 0, 0, 1).

2. Xi = 0, X2 = ; M3 = 0, M4 = 0.

Xi = 0, X3 = ; ?<2 = 0, M4 = 0.

iCi = 0, X4 r=
; U2 — 0, W3 = 0.
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X2 = 0, Xa = ; Ml = 0, Hi = 0.

X2 = 0, a;4 = ; Ml = 0, u^ = 0.

Xs = 0, a;4 = ; Ml = 0, M2 = 0.

3. Ill + ^'2 + ^(3 + W4 = 0, 3 Ml — 5 M2 + 7 Ms — W4 = 0,

— Ml + 6 2t2 — 4 M3 + 2 M4 = 0, 7 Ml + 2 M2 + 4 M3 + 6 M4 = 0.

4. (1, 1, 1, 1), (7, -1,-3, 1), (1, 9, - 6, 2).

5. Ml - M2 = 0, 7 Ms + U4 = 0. 6. (- 9, 1, 1, 0).

Page 117. Art. 95

2. pxi = li + 2 12 + 10 h,

px2 = lh + 5h- h, (176, - 175, 40, 363).

pX3=—h + 4:l2-S h,

px4 = 3li + h— ^h.

3. pui -—bh + lh + Gh,

pu2 = 3h-5h-^h, (21,32,1,5).

pMs = 4 Zi + 3 ^2 - 3 Zs,

J9M4 = ?1 + 2 Z2 + h-

5. ^Mi = Zi + 7 I2, pu2 = — 5 Zi + 2 ^2, puz = 3 Zi — Z2, pUi =— h — h.

6. px\ = Zi + 3 Z2, pa;2 = 2 Zi — 2 Z2, px^ = — 3 Zi + 5 Z2, pXi=—h-2 h.

Zi(Mi + 2 M2 — 3 Ms — U4) + Z2(3 Ml — 2 ?f2 + 6 7<3 — 2 M4) = 0.

Page 120. Art. 97

3. («11 + «12 + «13 + «14, "21 + «22 + «2S + «24, Csi + «32 + "33 + a34,

a41 + ^42 + «43 + «44). (/3ll + )321 + ftl + i34l, j3l2 + 1822 + /332 + /342,

/3l3 + ^23 + ft3 + ^43, /3l4 + ^24 + ^4 + /344)-

4. xi = A;iXi', X2 = kiXi', Xs = k^x^', X4 = k4X4'.

Page 122. Art. 100

1. (a) xi = Xi' — 3:4', a-2 = X2' — X4', Xs = xs' — X4', X4=— X4'.

D(p) = (l + p)(l — py. Invariant points are (1, 1, 1, 2) and all the

points of X4 = 0.

(6)Xi = X2', X2=Xi', X3 = X4', X4 = Xs'. D(p) = (p^-iy.

Every point on each of the lines

Xi + X2 = 0, Xs + X4 = ; xi — X2 = 0, X3 — X4 = 0.

(C) Xi=X3', X2 = Xl', X3 = X2', X4 = X4'. D{p) = {I — p^ip"^ + p + 1).

The points (1, w, w^, 0), (1, u"^, w, 0), w^ _ j^ and every point of the line

Xl = X2 = Xs.

(d) Xl = — X4', X2 = Xl' — X4', Xs = X2' — X4', X4 = Xs' — X4'.

D(p)=p*+p^ + p''+p + i. (d, i + 0, -e»(i + e), -6^), 6^ = 1, e^i.

3. "'* = cons. i,k = l, 2, 3, 4.
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4. In case X3 = :cs\ the point (0, 0, 0, 1) and all the points of the plane

3-4=0.

In case Xs = — xz', every point of each of the lines xi = 0, a-2 = ; 3-3 = 0,

Xi = 0.

6. (1, 1, 1, 1), (1, - 1, 1, - 1), (1, i, -1, _ I), (1, - 1, - 1, i).

7. All the points in the plane at infinity.

9. ^'^.

Page 125. Art. 102
1. X3 — aXi = 0.

3. (2 ± 2 iy/l2f, - 3 T iVl2f, 8, 4).

Page 131. Art. 106
2. A=- 1.

abed'
6. bcui^ + cath'^ 4- 2 abuzUi = 0.

7. A = ^. *(?«) = M2^ — U1U2 + U1U3 — U2U3 — iiiiu + M2W4 — 2 M3W4 = 0.

8. ^(x)=0.

9. Xi = 0, X3 — 3:4 = and Xi = 0, Xs + X4 = 0.

10. an =0. 1= 1, 2, 3, 4.

12. a,fc2 = a^i . a^j, /, k - 1, 2, 3, 4.

13. A conic ; two distinct points ; two coincident points.

Page 134. Art. Ill

1. xi + a;2 + xs + a;4 = 0. 2. X3 = 0, X4 = 0.

4. (2 Xi + X2 - 3 X3 — X4)2 + 4(XiX2 - X3X4) = 0.

7. XiSWiX,- — XiZvXi = 0. Three.

8. 013X1X3 + ai4XiX4 + 023X2X3 + a24X.X4 = 0.

Page 141. Art. 118

3. aiixi^ + 022^^2- + «33^"3'^ + 2 ai2XiX2 + 2 023X2X3 + 2 013X1X3 = 0.

4. oiiXi^ + 022X2* + 2 012X1X2 + 2 023a-2a;3 + 2 013X1X3 = 0.

Xi =0, X2 = 0.

Page 143. Art. 120

1. 8 xi2 + xo2-5 X32-2 X42 + 9 X1X2+ 5 X1X3 + 18 X1X4 + 13 X2X4 -7 X3X4=0.

2. i(xi + X3) - (X2 + X4) = 0, i(xi + X4) - (X2 - X3) = 0, and

i(xi + X3) + (X2 + X4) = 0, iXxi + X4) + (a-2 - X3) = 0.

5. Equations of faces 20^4X4 =0, i = 1, 2, 3, 4.
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Page 146. Art. 122

(0,0,2, -3). 2. k = ±4.

72 Mi^ + 36 U2^ + 23 H3- - 54 Mi?t2 = ; 2 ?t3 - 3 «4 = 0.

(a) A quartic curve with double point at 0.

(b) A cubic curve passing through 0.

(c) A plane section of K, not passing through O.

3.

Page 150. Art. 126

2 \<^ik — ^^ifc an — Xbii

(a) X - 1, X2 X, [1(21)].

(6) M [4].
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[22]. n =0, a-2 = 0.

[2(11)]. Xi+ ix3= 0, 3:4=0 ; xi— 1X2=0, X4=0; X3=0, 3ri2+a;2-+ 3-42=0.

[(11) (11)]. Xi + 1X2 = 0, Xs + 1X4 = ; Xi + 1X2 = 0, X3 — 1x4 = ;

Xi — 1x2 = 0, X3 + JX4 = ; xi — ix2 = 0, Xg — 1X4 = 0.

[4]. X2 = 0, X4 = 0.

[(22)]. X2 = 0, X3 = ; xi = 0, X4 = 0; X3 = 0, X4 = 0; the last one

counted twice.

[(31)]. xi + JX4 = 0, X3= 0; xi— (>4=0, X3=0 ; X4=0, Xi'-+ 2x2X3=0.

[(211)]. Xi = 0, .r3 = ; Xi = 0, X4 = 0.

[{3}1]

.

X2 = X3 = ; xi - nxi = 0, 2 x^^Xi + X3- = 0.

3. (a) (X - i)2, (\ - ^y. xi - X2 = 0, xs + 2 X4 = ;

Xi - X2 - V3(X3 + 2 X4)= 0, V^(xi + X2) + 2 X3 + Xi = ;

Xl — X2 + V3(X3 + 2X4) = 0. V o(Xi + X2)— 2 X3 — X4 = 0.

X1X3 + X2X4 + 2 X3X4 — X(2 X1X3 + 2 X2X4) = 0.

(b) X — 1, X — 1, (X + 1)2. xi + X3 = 0, xi — X2 + iXi = ; Xi + X3 = 0,

.71 — X2 — 1x4 = ;

a:i + X3 + 4 X2 = 0, x'-4 + (xi — X2)2 — 24 X2'- — 16 X2X3 = 0.

xi^ + X2^ + X42 — 2 X3X4 — X(xi2 + X22 + X42 + 2 X3X4) = 0.

(c) X + 3, X - 1, X - 1, X - 1. xi + 2 X3 + X4 = 0, 5 xi2 - xr + 6 Xs*

+ 4 X1X3 + 2 X1X2 = 0.

- 3 xi^ + xr + X32 + xr — X(xi2 + X2- + X32 + x^^) - 0.

(d) X — 1, X — 1, X-. xi + X2 = 0, Xi + ,T3 + X4 = ; xi + X2 = 0,

xi — X3 — X4 = ; X2 + X4 = 0, 3 x\- + X22 — X32 + 4 X1X2 + 2 X2X3 = 0.

Xi'- + X22 + X4'- — X(xi2 + X22 + X42 + 2 X3X4) = 0.

4. [1(111)]. [2(11)].

Page 167. Art. 135

1. (X3 + 2 X2 + 4 X + l)wi2 + (3 X2 + 7 X - 10)K2=' + (X^' + 2 X2 + 9 X +Q)ui^

+ (X2- l)(\_l)M42_6(X2_\)„i„2+ 12(X^+ 1)2hiH3 + Q{\'^ - l)uxU4

+ 4(X2- x)?<2?<3 + 2 x(x - i)2m2M4 - 4(x2 - i')mm = 0.

2. 2 X22 — 3 X42 + 6 X1X4 + 2 X2X4 — 4 X3X4 = 0, twice.

2 xi2 + 2 X32 + 3 X42 — 6 X1X4 + 2 X2X4 + 4 X3X4 = 0.

3. 2(miM2 + M3M4)^^ + ("2^ — 6 a?«i«2 — 6 auzUi)X-

+ (6 a?uiU2 + 6 a?UiU4 — 2 au2^)\ + a2M22 — 2 ahtiti2 — 2 ahisUi = 0,

Page 174. Art. 142

3. (a) [211]. (5) [22]. (c) [31].

4. All the quadrics of the bundle toucli a fixed line at a fixed point.

5. The quadrics touch x^ = 0, X2 — 2 X4 = at (0, 2, 0, 1), and X3 = 0,

X2 + 2x4 = at (0, 2, 0, —1); they have four basis points in the plane

X2 — X3 = 0, at the points
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(2, 2, 2, V3), (2, 2, 2, -V>]), (-2, 2, 2, \/3), (-2, 2, 2, -VS).

y'l = -1 yrii4, y'o = -^ 2/12/4 (^ 2/3 - ^2),

2/'3 = 4 ?/i(/32/4, /y'4 = 2/1 (- 2/;!'' + '^ 2/22/3 — 2/2^).

7. Xi(Ma;)(Mx')[(«"'x)(M"x")-(?t"x)(?("'x')]

+ \2{u"x){u"x')\_{u'x){ux')-{nx){u'x')^

+ \zl{u'x){u"'x){ux'){u'ix')-{ux){%i"x){u'x'){ti"'x')'\^0.

(For notation, see Art. 119.)

Page 180. Art. 146

2. yvyiy^yi = 0. 3. The plane counted twice is a quadric of the web.

4. (x^ + y- + Z')fi = 0.

6. Any point on x^ + y'^ -{- z^ = is conjugate to any point on « = 0.

Page 187. Art. 150

1. (SMix'i)^ = 0. 2. 8. 4. 5.

5. Xi(?t'-^ — W-) + \2(i)- — r«-) + Xs^n; + \iVio + XjMj?j = 0.

6. [1111]. (a2 _ c2)m-; + (/)•! _ c-^)v2 = s'^

;

(a^ — 6-)?|2 _ (ft2 _ c2)^2 — s2
;

(a^ - 62) m2 + (a2 _ c2)i,2 ^ s2 = ;

y2 -f j;2 ^ ^(;2 _ 0.

Page 196. Art. 155

1. kiP = kiP = JC3P = kiP.

Page 205. Art. 160

2. (x2 + 2/2 + ^2)2 =
^^^ + g + g^f2. Eigllt.

3. 2 0(x2 + y- + Z-) = (ax- + by-)t. Eight. Fifteen.

7. xi = .r2'(.)-i' + .r4')(-^2' + :*-4')' ^2 = a;2'a-4'(xi' + X4'),

X3 = X2'Xi'{X2' + Xi'), X4 — Xz'Xi'{Xi' + ^i')-

(1, 0, 0, 0), (0,1,0,0) ; the line xi = 0, a-o = 0. Touch at (0, 0, 0, 1).

8. Xi = Xi'Xs'iXl'Xi' + Xi'Xs' + Xs'Xl'), X2 = X\'X2'{Xi'X2' + X2'X3' + Xz'Xx'),

Xz = X2'X3'{Xi'X2' + X^'Xz' + X^'Xl'), X4 - Xi'xJXz'Xi'

.

(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0). Four coincident at (0, 0, 0, 1).

Page 207. Art. 162

1. A„/(a;) = 4 2/i(«40ooa;i-' + 3 02200X112- + 3 a202oa;i«3^ + 3 a20023'iX42)

+ 4 2/2(3 ffl2200'>'l'^-'*"2 + «0400a'2^ + 3 ao22oa;2*'3" + 3 ao202X2X42)

+ 4 2/3(3 a2020''l23-3 + 3 nQ22QXrXZ + n'0040^3' + 3 rt00225C3^4^)

+ 4 J/4 (3 a2002.''l''.r4 + 3 ao202a'2'^3'4 + 3 ao022X32.r4 + ffl0O04a;4^) •
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^U^fip^) = 12 ?/l-(«4000-'>'l- + «2200^'2- + «2020a'3"^ + «2002a^4-)

+ 12 y2'-^(ffl2200a;i'-^ + (?0400-^2- + a0220a^3- + «0202:''4-)

+ 12 2/3-(rt202oa'i- + no22QXr' + «oo40»"3- + «oo22a:4-)

+ 12 2/4-(«2002A"l- + a0202a-2'-^ + «0022X3^ + «0004-^"4"'^)

+ 48 tjiyiarmXiXi + 48 yxijsaim'XiXi + 48 ?/i?/4«2002a^ia^4

+ 48 y^yiaxt'i-ioXiXz + 48 yiyiUma-i^iXi + 48 (/3.V4«oo22a:3^4-

^uV(^) = 24(?/i3a4oooXi + y2^«040oa:^2 + 2/3^«oo4oa;3 + 2/4''rtooo4a;4

+ 3 ?/i-*/2a220o3'2 + 3 yiy2-n22ooXi + 3 yi'-2/3«202oa'3

+ 3 ?/l?/3-a2020-*'l + 3 .'/l-l/4«2002-T4 + 3 2/l2/4-«2002a;i

+ 3 ?/2-'2/3ao22oa;3 + 3 y2yrao22oX2 + 3 !/22/y4ao202.*'4

+ 3 y22/4-«0202a^2 + 3 2/3-J/4«oo22a-4 + 3 2/32/4-aoo22a;3) •

A„V(a;) = 24/(2/).
Page 209. Art. 164

1. (1, 0, 0, 1), (1, 0, 0, - 1), (4, 0, 0, - 1).

2 4 2359 + 1 31 v/17 2359- 131 Vl7
'

376
'

376

Page 211. Art. 167

1. (tOOOn = 0) aiWn-lXl + flolO n-lX2 4" «n01 h-1-^3 = 0-

2. osooon = 0, aioon-1 = 0) rtoiOrt-i = 0, aonin-i = 0.

3. 2(3:1-3-3) +5(a;2-X4) =0.

4. 2(a;i-a;3)+ 5(a;2-a-4) =0, 4 xi + 32 X2 - 36 3-4 ± Vl042(a;2 -0:4) = 0.

Page 213. Art. 169

1. (X2^ + 0:3^ + X4^y- = 0.
3 ,,^1 ^

„^i + ,,3^ ^ ^J ^ 0.

2. ?tl^ + U2^ + 1(3^ + Ui^ = 0. 4. Mi-?(3 + U2'^Ui = 0.

Page 215. Art. 172

3. J- + -i- 4- A_ + Jl_ + 1 =^0. 4. 4(n-2)3.
aixi a2X2 azxz 04X4 ai{x\ + 0^2 + X3 + X4)

Page 218. Art. 175

2. X\ = 0, 3:42 — X2%z = ; X2 — X3 = 0, X2— X4 = ;

X1X2 — X1X3 + X42 — X2a;3 = 0, xi^ — X2a-4 — X2'-^ + X2X3 = 0,

x^ + a;2a;3 + 2 X2X4 + X3X4 — xiX2 = 0.

3. (Xl2 + X22 - X32)2 - 4(Xi - X2) (Xi3 + X-? + X^Xa^ - 2 X1X32) = 0.

4. x^ H- X22 + 5 X32 = 0.

5. (ai — a4)xr + («2 — «4)x22 + {a% — ai^X'^ — 0.

7. (xi2- 2 X22+X32 + 2x42 -2x2X3)2
- 2(xi _ 3 X2 + 2 X4) [(xi2 + X42 - .T0X3) (2 n + 4 X2 - 2 X3)

- (xi2 + 2 X22 - X32) (2 xi - X2 - .T3 + 2 X4) ] = 0.
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Page 225. Art. 180

1. .Tl = t(t- - 1), X2 = f- - 1, a-3 = (<- - 1 )2, X4 = t.

2. (4 TsXi — xiX2y^ — HX2^ + 2 a:ia:3)(a-i'- + 2 X2a-4) = 0.

3. 12(ui^ - U3^){U2^ — M4^)— l2(UiU2 — If3«4)-

+ (Mi2 + 2 Mo^ - Ms'^ - M4^)2 = 0.

36(Mo2 _ M32) (M22 - M42) (mi2 4- 2 tiz^ - W32 - M42)

+ 18(?<i2 - 4 ?t22 + 2 W32 + 2 ?<42) (M1M2 - UiUty

-(?<l2 + 2 ?{22 - Uz^ - Ui^)^ = 0.

Page 234 Art. 184

8. m = 3, n = 3, r = 4, iy = 0, /i = 1, G = 0, g = 1, a = 0, p = 0,

V = 0, u = 0, X - 0, y = 0, p = 0.

6. On the developable of the given curve.

Page 241. Art. 187

1. The four quadric cones on vyhich d lies.

2. Eight. Four of each regulus.

4. 16 stationary planes.

24 planes tangent to d at each of two stationaiy points.

96 planes tangent at one and passing through two other stationary points

116 planes through four distinct stationary points.

5. The developable surface of C4. The four quartic curves in which the

faces of the self-polar tetrahedron intersect the developable surface.

Page 243. Art. 188

I. (a) m = 4, n = 6, r = 6, H = 1, h = 2, G = 0, g = 6, a = 4, ^3 = 0,

V = 0, w = 0, X = Q, !/ = 4, p = 0.

(b) m =4, u = 4, r ^ 5, H= 0, h-2, G = 0, gr = 2, a = 1, /3 = 1,

V = 0, oj = 0, .X = 2, y = 2, p ~ 0.

(c) m = 4, n = 6, r = 6, H=0, h = 3, G = 0, g -6, a = 4, /3 = 0,

V = 0, w = 0, X = (k ?/ = 4, p = 0.

(d) m = 4, /I = 5, r = 6, H= 0, ^ = 3, 6? = 0, ^ = 4, a = 2, /3 = 0,

V = l, w = 0, x = 5, ?/ = 4, p = 0.

(e) m-i, n = 4, r = 6, Zf=0, A = 3, G = 0, g = S, a = 0, /3 = 0,

V = 2, w = 0, X = 4, ?/ = 4, p = 0.

4. — 1, 2, ^. 9. Four. 10. Four. Two of each regulus.

II. Ui = «3 _ 3 (2 _ 2, U2 =it(t+ 1)2, 7/3 = - «3, ?<4 = «3(f + 1)2.

Ml =1, M2 =— 2 «, ?/.3 = 2 f'', ?<^ =— t,i.
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Page 253. Art. 195

1. x = a cos—^, y = a sin—^, z = —^•

a\/2 a\/2 V2

1 . s 1 si
2. Tangent sin -, —- cos -, —-•

\/2 rtV'2 v'2 aV2 V2

Principal normal — cos

—

'-— , — sin -^— , 0.

aV2 a\/2

n- , 1 . S 1 „ S 1
Bmormal — sin , cos , —z-

V2 ay/2 V2 aV2 V2

p = 2ffl, ff =— 2 a.

S. B = i-/'l±i?i±l^y(36(l +4 fi + 9t*) + (486 f+ bQl t^ f 90 t^-6 ty)l

4. (a) No curve. (6) A cubic curve.

Page 267. Art. 207

1. 2 r< cos V X + 2 u sinv y = z + u"^,

2 u cos V 2u sin v — 1

Vl + 4 u' Vl + 4 tfi Vl + 4 1{2

2. dM2 + M-2dy2 _ 0.

4. {U + \/m2 -I- cfi + 6-2) (?, + Vv2 + 0(2 ^. 52) _ c,

u + Vm2 + a''' + 62 = c,i(ji2 + Vu2"+a2~+^).
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The numbers refer to pages.

Absolute, 53
Angle, 3

between two lines, 3, 22
between two planes, 22

Apolar, 182

Axis, radical, 47
of revolution, 50
major, mean, minor, 63

Binormal, 248
Bundle of planes, 31, 115

of quadrics, 167

parallel, 31

Burnside and Panton, 239

Center, 76
of ellipsoid, 63
radical, 59

Characteristic, 160

Class of a curve, 225
of a surface, 210

Cone, 49
asymptotic, 96
minimum, 190
projecting, 217
quadric, 72
tangent, 212

Conjugate points, 132
planes, 132

point and line, 165
Contragredient, 119

Coordinates, 1

curvilinear, 255
cylindrical, 10

elliptic, 106
homogeneous, 33
hyperbolic, 139

plane, 31

polar, 10

spherical, 11

tetrahedral, 109
Correspondence, 120

involutorial, 172

Cross ratio, 121

Curvature, 248
mean, 263
total, 263

Curve, 46
algebraic, 215
asymptotic, 261
minimum, 252
parametric, 255
space, 215, 245

Cusp, 226
Cyclide, 203

binodal, 204
Dupin, 204
horn, 204
nodal, 203
ring, 204
spindle, 204

Cylinder, 49
elliptic, 72
hyperbolic, 72
imaginary, 72
parabolic, 72
projecting, 47

Direction, 3

cosines, 5
Discriminant, 78, 126

Discriminating cubic, 79
Distance, 4, 7

between two lines, 24
between a point and line, 23
from a plane to a point, 17

Double point of a curve, 226
apparent, 221
of a surface, 203, 210

Duality, 113

Ellipse, cubical, 235
Ellipsoid, 63

imaginary, 68
Equation of plane, 12

of point, 32

287
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Equations of a line, 19

parametric, 138

Euler, 42

Factors, invariant, 149

Field, plane, 115

Fine, 216
Formulas, Euler's, 42
Frenet-Serret, 250

Generator, 94
Genus, 228

Halphen, 216
Harmonic, 122

Hessian, 212
Horopter, 235
Hyperbola, cubical, 234
Hyperboloid of one sheet, 65

of two sheets, 67

Image, 139

Independent planes, 36
Indicatrix, 267
Inflexion, linear, 226
Intercepts, 13

Invariant
points, 121

relative, 127

under motion, 82
Inversion, quadratic, 201

Involution, 122

Isotropic planes, 54

Jacobian of a net, 170

of a web, 176

Kummer, 180
surface, 180

Law of inertia, 136

Lines, conjugate, 134

minimum, 190

normal, 255
of centers, 76
of curvature, 263

of vertices, 76

Matrix, 37
Meusnier, 260
Monoid, 219

Node, 226
Noether, 221
Normal, 92

Normal form, 13

principal, 247

Octant, 2

Order of curve, 170

of surface, 208
Origin, 1

Parabola, cubical, 235
Paraboloid, elliptic, 69

hyperbolic, 70
Parameter, 21

Parametric equations, 21

Pencil of planes, 26, 115

of quadrics, 147

Perspectivity, 196

Plane, 13

at infinity, 76
diametral, 75
double osculating, 226
fundamental, 73
normal, 132, 208

of centers, 76
principal, 78
radical, 57
rectifying, 247
splf-conjugatc, 133

stationary, 226
tangent, 210

Planes, coordinate, 1

isotropic, 190
projecting, 26

Point, at infinity, 21

stationary, 226
Points, associated, 168

circular, 53
conjugate, 132, 153

elliptic, 267
fundamental, 197

hyperbolic, 267
imaginary, 44
parabolic, 267
self-conjugate, 133

Polar reciprocal figures, 135

tetrahedra, 135

Position, hyperbolic, 143

Projection, orthogonal, 3

quadric on a plane, 139

quadric cone on a plane, 149

stereographic, 59

Quadric cone, 72
non-singular, 78
singular, 78
surface, 63, 124



INDEX 289

Quadrics, confocal, 104

Quartic curve, 235

first kind, 242
non-singular, 238

Quartic curve, rational, 240

second kind, 237

Radii, reciprocal, 201

Radius of curvature, 249

of torsion, 249
Range of points, 115

Rank of curves, 224

of determinants, 37

of a matrix, 37

Reflection, 41

Regulus, 94, 138

Reye, 77
Rotation, 38

Salmon, 167, 177, 227
Section, circular, 98
Semi-axis, 63
Sphere, 52

director, 93
imaginary, 52
osculating, 251

point, 52

Spheroid, oblate, 64
prolate, 65

Steinerian, 214
Surface, 46

algebraic, 206

Surface, developable, 225

of revolution, 50
polar, 208
quadric, 63

Tangent, 209
double, 226
inflexional, 226
stationary, 226

Tangents, asymptotic, 261
conjugate, 262
inflexional, 210

Tetrahedron, coordinate, 35
self-polar, 135

Torsion, 248
Transformation, birational, 197

of coordinates, 38
projective, 120

Translation, 38

Umbilic, 101

Unit plane, 110

point, 110

Vertex of bundle, 31

of quadric, 76

Vertices of ellipsoid, 63

Web, 176

Weddle, 179

surface, 179
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