

ITTDLEY K
'"^

NA'AXPO: "^OL

MOWTERL

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A STUDY OF 3-D VISUALIZATION
AND KNOWLEDGE-BASED

MISSION PLANNING AND CONTROL
FOR THE NPS MODEL 2

AUTONOMOUS UNDERWATER VEHICLE

by

Ray Charles Rogers

December 1989

Thesis Advisor: Professor Robert B. McGhee

Approved for public release; distribution is unlimited.

T247304

Unclassified

Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified

2a Security Classification Authority

2b Declassification/Downgrading Schedule

lb Restrictive Markings

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s)

6a Name of Performing Organization I 6b Office Symbol

Naval Postgraduate School |
Code52Mz

6c Address (city, state, and ZIP code)

Monterey, CA 93943-5000
8 a Name of Funding/Sponsoring Organization

Naval Postgraduate School
8c Address (city, state, and ZIP code)

Monterey, CA 93934-5000

8b Office Symbol

Code 52Mz

5 Monitoring Organization Report Number(s)

7a Name of Monitoring Organization

Naval Surface Warfare Center
7 b Address (city, slate, and ZIP code)

White Oak, MD 20910
9 Procurement Instrument Identification Number

O & MN, Direct Funding

1 Source of Funding Numbers

Program Element Number Project No I Tisk No | Work Unit Accession No

1

1

Tide (Include Security Classification) A STUDY OF 3-D VISUALIZATION AND KNOWLEDGE-BASED
MISSION PLANNING AND CONTROL FOR THE NPS MODEL 2 AUTONOMOUS UNDERWATER
VEHICLE
12 Personal Authors) ROGERS, Ray C.

13a Type of Report

Master's Thesis

17 Cosati Codes

1 4 Date of Report (year, monthMay)

December 1989
1 5 Page Count

115
13b Time Covered

From To

16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

1 8 Subject Terms (continue on reverse if necessary and identify by block number)

Autonomous underwater vehicles, artificial intelligence, robotics, 3-D computer
graphics

19 Abstract (continue on reverse if necessary and identify by block number

Recently, specific tasking/total military mission concepts for subsea tasks have been developed that demand
either substantially more endurance and range than can be provided by manned submersibles and Remotely
Operated Vehicles (ROVs), respectively. Small, autonomous unmanned systems can provide the best

combination of speed, endurance, range, depth capacity, and flexibility needed to make these concepts realizable.

As the U.S. military has continued to identify more and more tasks that can be performed by autonomous
systems, the Naval Postgraduate School has heightened its research efforts to develop an experimental

autonomous underwater vehicle (AUV) to address these military requirements. As part of this development
process, a series of NPS AUV simulation systems have been developed that couple knowledge-based mission

planning and control systems with 3-D visualization (graphics) workstations that communicate across an

interprocess communications network. Development of these simulation systems have produced an extremely

useful "laboratory environment" for rapid prototyping ofAUV planning, navigation, and control subsystems
software. This thesis updates and extends the formats and functionality of the simulation systems to include a

Mission Planning and Control Workstation as a prototype for use aboard AUV deployment vessels, upgrades

mission profiles, and incorporates improvements to the software interface between the mission planning and
control subsystem and the 3-D visualization subsystem.

20 Distribution/Availability of Abstract

|
X

J

unclassified/unlimited tame as report JDTIC users

21 Abstract Security Classification

Unclassified

22a Name of Responsible Individual

Robert B. McGhee
DD FORM 1473. 84 MAR

22b Telephone (Include Area code) j 22c Office Symbol

(408) 646-2449
| Code 52Mz

83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

A STUDY OF 3-D VISUALIZATION
AND KNOWLEDGE-BASED MISSION PLANNING AND CONTROL

FOR THE NPS MODEL 2 AUTONOMOUS UNDERWATER
VEHICLE

by

Ray Charles Rogers
Lieutenant Commander, United States Navy

B.S., Southern University and A & M College, 1978

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1989,

ABSTRACT

Recently, specific tasking/total military mission concepts for subsea

tasks have been developed that demand substantially more endurance and

range than can be provided by manned submersibles and Remotely

Operated Vehicles (ROVs), respectively. Small, autonomous unmanned

systems can provide the best combination of speed, endurance, range, depth

capacity, and flexibility needed to make these concepts realizable.

As the U.S. military has continued to identify more and more tasks that

can be performed by autonomous systems, the Naval Postgraduate School

has heightened its research efforts to develop an experimental autonomous

underwater vehicle (AUV) to address these military requirements. As part

of this development process, a series of NPS AUV simulation systems have

been developed that couple knowledge-based mission planning and control

systems with 3-D visualization (graphics) workstations that communicate

across an interprocess communications network. Development of these

simulation systems have produced an extremely useful "laboratory

environment" for rapid prototyping of AUV planning, navigation, and

control subsystems software. This thesis updates and extends the formats

and functionality of the simulation systems to include a Mission Planning

and Control Workstation as a prototype for use aboard AUV deployment

vessels, upgrades mission profiles, and incorporates improvements to the

software interface between the mission planning and control subsystem and

the 3-D visualization subsystem.

in

.1
TABLE OF CONTENTS

I. INTRODUCTION : 1

A. BACKGROUND AND BRIEF PROBLEM STATEMENT 1

B. THESIS ORGANIZATION 4

II. SURVEY OF PREVIOUS WORK 6

A. INTRODUCTION 6

B. AUTONOMOUS UNDERWATER VEHICLE TECHNOLOGY 7

1. R&D Background 8

2. DOD AUV Research Programs 9

a. Draper Laboratories 9

b. Martin Marietta 10

c. Office of Naval Research (ONR) 10

d. Naval Ocean Systems Center (NOSC) 10

e. Office of Naval Technology (ONT) 11

f

.

National Oceanic & Atmospheric Administration (NOAA). 1

1

g. National Science Foundation (NSF) 12

3. Industrial Activities 13

C. EXPERT SYSTEMS DEVELOPMENT 14

1. Evolution and Characteristics 14

a. Characteristics and Components 15

b. Brief History 17

2. Role of Expert Systems in AUV Development 20

3. Future Developments 22

D. EXPERT SYSTEMS AND 3-D VISUALIZATION OF THE NPS

AUV DYNAMICS AND CONTROL 22

E. SUMMARY 24

III. DETAILED PROBLEM STATEMENT 25

A. INTRODUCTION 25

IV

B. NPS AUV CHARACTERISTICS 25

1. NPS Model 1 AUV 26

2. NPS Model 2 AUV 26

C. NPS AUV SIMULATORS 28

1. NPS AUV-SIM1 29

2. NPS AUV-SIM2 30

3. NPS AUV-SIM3 32

D. MISSION PLANNING AND CONTROL WORKSTATION 33

E. MISSIONS UPGRADE 35

F. MISSION PLANNER/DYNAMIC MODEL INTERFACE 35

G. SUMMARY 36

IV. AUV SIMULATOR DESCRIPTION 37

A. INTRODUCTION , 37

B. SIMULATION FACILITIES 37

1. Symbolics LISP Machine 38

2. Silicon Graphics IRIS 4D/70GT Workstation 39

C. CONTROL SYSTEM ARCHITECTURE AND LANGUAGES 39

1. The Mission Level 43

2. The Planning Level 46

3. The Execution Level 46

D. COMMUNICATIONS SOFTWARE 47

E. USER'S MANUAL 49

1. Graphics Workstation Operation-IRIS 4D/70GT 50

a. NPS AUV-SIM2 50

b. NPS AUV-SIM3 52

2. LISP Machine Operations-Symbolics 3675 53

a. NPS AUV-SIM2 53

b. NPS AUV-SIM3 58

F. SUMMARY 58

V. EXPERIMENTAL RESULTS 59

A. INTRODUCTION 59

B. AUV SIMULATION FACILITIES 59

1. The Original Mission Planner 59

2. Mission Planning and Control Workstation 60

3. Analysis of a Typical Mission Profile Test 62

4. Missions Upgrades 72

5. Mission Planner/Dynamic Model Interface 72

C. SUMMARY 73

VI. SUMMARY AND CONCLUSIONS 74

A. RESEARCH CONTRIBUTIONS 74

B. RESEARCH EXTENSIONS 75

APPENDIX 79

LIST OF REFERENCES 101

INITIAL DISTRIBUTION LIST 104

VI

LIST OF FIGURES

Figure 2.1 Draper Laboratories UUV Characteristics 9

Figure 2.2 Characteristics of Expert Systems 16

Figure 2.3 Components of an Expert System 17

Figure 2.4 Expected Technology Advancements 22

Figure 3.1 Line Drawing of NPS Model 2 AUV 27

Figure 3.2 NPS AUV-SIM2 31

Figure 3.3 NPS AUV-SIM2 31

Figure 4.1 Hierarchical System Architecture 40

Figure 4.2 Mission Planning and Control Panel 41

Figure 4.3 Graph of The AUV Knowledge Base 45

Figure 4.4 Communications Flow Diagram 48

Figure 5.1 Mission Planning and Control Panel-Transit Mission 66

Figure 5.2 AUV Dynamic Model-Transit Mission 67

Figure 5.3 Workstation External Monitor-7Va/z.s/f Mission 67

Figure 5.4 Mission Planning and Control Panel-Transit Mission 69

Figure 5.5 AUV Dynamic Model-7ra/tf/f Mission 70

Figure 5.6 Workstation External Monitor-7Van.S77 Mission 70

vu

ACKNOWLEDGMENTS

The original code for the NPS AUV-SIM1 simulation system was

provided by Dave MacPherson and was modified by Doug Nordman (NPS

AUV-SIM2) to conform to new hardware and different operating systems.

In this thesis Nordman's work has been further modified to extend the use

of the KEE software development shell by developing an interactive and

user-friendly Mission Planning and Control Workstation. The original

NPS AUV dynamic simulator was developed during a graphics project by

Dave Marco, Ray Rogers and Mike Schwartz. The dynamic simulator was

later modified by Dave Marco to include an enhanced drawing model and a

more robust controller. This model has been further modified to integrate

it into a full simulation system (NPS AUV-SIM3). The network

communications software was not modified during this research and was

written by Ted Barrow, Sehung Kwak, Bill Teter, and Larry Shannon.

Professor Sehung Kwak offered seemingly infinite wisdom and

knowledge of all facets of using and developing systems on the LISP

machines and their supporting software systems. His help was invaluable

getting me started on the right path.

I am especially grateful to Professor Robert McGhee for allowing

me the opportunity to work with him on this exciting project.

And lastly, I must thank my wife and family for allowing me the

freedom of movement, without hassles, to get the job done.

VUl

I. INTRODUCTION

A. BACKGROUND AND BRIEF PROBLEM STATEMENT

Research in the area of autonomous vehicles has been extensively

applied to ground, undersea, and airborne systems with varying degrees of

success over the last three decades. This thesis focuses in part, on the

uneven evolution of Autonomous Underwater Vehicles (AUVs) and the

concurrent developmental trends of the expert systems with which they are

controlled.

Underwater vehicles are either tethered or autonomous, manned or

unmanned. Tethered systems, whether manned or unmanned, have the

advantage of unlimited power supplied by a surface support platform, but

are severely restricted in their range and ability to maneuver due to their

support cabling [Ref. l:p. 33]. Untethered manned systems, such as the

Alvin, Johnson-Sea Link, and Deep Rover [Ref. l:p.33], avoid the

problems inherent to tether management, but are nontheless restricted to

relatively shallow depths, slow speeds, and short endurance. Small,

autonomous unmanned systems, however, can avoid all of the problems

listed above and provide the combination of speed, endurance, depth

capacity, and flexibility needed for today's sophisticated military

applications and marine industrial pursuits.

Interest in Autonomous Underwater Vehicles on the part of the

military and industry in general began in the early 1960s and conceptual

designs began to evolve by the middle of that decade [Ref. 2:p. 60]. This

interest quickly peaked, however, and dwindled back to a low level for

many years to come. First, manned submersibles captured the imagination

of the military and deep-sea related industry from about 1965 to 1975, but

was followed immediately (and somewhat overlapped) by Remotely

Operated Vehicles (ROVs) from roughly the 1970's to the recent past.

During this era, almost all the required subsea tasks could be

accomplished by manned submersibles (with their limited endurance) or by

ROVs (with their limited range) [Ref. 2:p. 61]. It was not until specific

tasking/total mission concepts were developed demanding substantially

more endurance and range that AUVs came to the forefront of general

interest again. Simultaneously, the escalating cost of manned systems

coupled with the rapid technological advances of traditional military

adversaries, created an atmosphere to seriously consider AUVs for multi-

purpose, multi-sensor military applications.

A fair number of autonomous systems that are operational today are

controlled in general by some form of artificial intelligence (AI) program,

and in particular, by an Expert System, which is a subfield of AI that has

found wide practicality for use in industrial and naval engineering

applications. The developmental trends of AI have been almost as cyclic as

that of the autonomous underwater vehicle. For several decades,

researchers have dreamed of "...autonomous 'thinking' machines that are

free of human control" [Ref. 3:p. 32]. And now some believe we are not

far from realizing that dream. Daniels [Ref. 4:p. 23] defines AI as follows:

"AI is defined as the application of knowledge, thought and learning to

computer systems to aid humans." No matter what the real definition is,

the important aspect of AI is that this is a relatively new field of computer

implementation which manipulates knowledge and symbols in ways that are

not possible with conventional data processing.

AI got its rather auspicious start in 1956 when the phrase was coined

by John McCarthy, the inventor of the LISP programming language [Refs.

5, 6, 7]. Since then, AI has had at least two periods of heightened

expectations and crushed hopes. During the late 1950s and early 1960s

researchers and scientists focused on autonomous systems and the 1960s

saw a number of implementations tested. For the most part these attempts

ended in failure [Ref. 5]. The situation has changed dramatically over the

past seven years. Generic knowledge systems which embody natural

language interfaces, tools for developing the expert knowledge base

through rules and examples, and inference engines are now commercially

available for desk top microcomputers [Ref. 3:p. 34].

As the U. S. military has continued to identify more and more tasks

that can be performed by autonomous systems, the Naval Postgraduate

School (NPS) has heightened its research in 3-D visualization techniques,

knowledge-based expert systems, and development of an experimental

AUV to address these military requirements. Previous 3-D visualization

and expert systems research at NPS has shown the outstanding utility of

coupling knowledge-based mission planning and control systems with 3-D

graphics workstations to produce an extremely useful "laboratory

environment" for testing AUV planning, navigation, and control

subsystems [Refs. 8, 9]. Use of these visual simulators have significantly

reduced the time and expense of implementing various AUV subsystems

while also permitting efforts to proceed along several independent but

simultaneous approaches.

This thesis improves on previous research at NPS by further expanding

and upgrading the missions and mission planning software and improving

the software interface between the mission planning and control subsystem

and the 3-D visualization subsystem. In addition, an interactive AUV

Mission Planning and Control Workstation was developed as an

experimental prototype for possible use onboard AUV deployment

platforms. This workstation has been fully integrated with the AUV

mission planner and graphics workstation to more fully demonstrate the

total AUV environment.

B. THESIS ORGANIZATION

Chapter II reviews previous work on AUV systems and examines the

development of expert systems and their significant role in the evolution of

AUVs. Expected developments in the area of expert systems and their

possible impact upon future AUV research are also discussed.

Chapter III presents a detailed problem statement for this research and

describes the evolutionary development of the NPS AUV, to include a

comparison of the NPS Model 1 and NPS Model 2 AUVs. The mission

upgrades and mission planner/dynamic model interface upgrades are

discussed and contrasted to earlier versions. Lastly, the AUV Mission

Planning and Control Workstation is described and the utility of this

prototype for use in the fleet is discussed.

A detailed description of the simulator's operation is described and

discussed in Chapter IV. This includes a review of the mission planning

and control software architecture and how they relate to the two most

recently developed 3-D visual simulators, AUV-SIM2 and AUV-SIM3, the

operation of the AUV Mission Planning and Control Workstation, and a

user's manual.

The utility of the AUV simulator research is examined in Chapter V.

This chapter explains how rapid prototyping using the expert system

control software and 3-D visualization system has saved time and cost in

the development of the NPS AUV. These results are summarized in

Chapter VI and are used as a basis for proposed research extensions. This

chapter also contrasts the development of the NPS AUV and systems

developed by other research organizations.

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

The 1980s have witnessed a virtual boom in Autonomous Underwater

Vehicle (AUV) technological advances as compared to the uneven interest

and development of the previous three decades. Recent advances in micro-

electronic technology, high speed digital computers, component

miniaturization, artificially intelligent signal processing, control and

sensor systems, and high-energy, high-density power supplies, coupled with

rapidly broadening industrial and military demands for this technology, has

made this revival both necessary and possible. MacPherson and Nordman

[Refs. 8, 9] reported on recent developments in AUV technology used for

military and industrial applications. Research and development of even

more innovative and versatile systems continue.

As far back as the early 1970s, the U. S. Navy recognized the rapidly

growing requirement for deep-ocean unmanned vehicles to perform

survey, recovery, and other classified military missions[Ref. 2:p. 62].

Traditional adversaries were becoming more technologically advanced at

an alarming rate which created a need for more innovative counters to this

very real threat. This type of vehicle outfitted with appropriate sensors and

highly efficient computerized decision and control technology offered

rapid response to emergency situations while, at the same time, providing

an economical and safe means of fulfilling a broad spectrum of tasks.

Now, nearly twenty years later, the requirements have not changed but

have grown increasingly more complex [Ref. 2:p. 65].

To meet these complex demands for AUV technology, expert system

technology, as a branch of Artificial Intelligence (AI), has had to follow

suit. Most autonomous systems use some form of knowledge-based expert

system to manage their computer software hierarchy/control structure.

After experiencing relatively auspicious beginnings, much like that of the

AUV, the ever-increasing computer capacity, significant breakthroughs in

knowledge representation, and the high efficiency of symbolic

programming techniques, has enabled expert systems to become more and

more popular in a wide variety of application fields where highly reliable

and rapid decision-making is involved, such as medical diagnosis,

geographical pattern search, and even in monitoring complex process

control systems [Ref. 10:p. 165].

This chapter examines current AUV and expert systems advances and

then shows how these systems relate to today's myriad and complex

industrial and military demands.

B. AUTONOMOUS UNDERWATER VEHICLE TECHNOLOGY

Over the last 20 years, the trend in undersea vehicles has progressed

from manned submersibles to Remotely Operated Vehicles (ROVs) to

Autonomous Underwater Vehicles (AUVs). This progression has been

directed toward minimizing the need of man's physical presence and

intervention underwater by developing a self-contained, preprogrammed,

decision-making AUV, that is independent of all external control, with the

exception of launch and recovery operations, and in some cases, midcourse

data recovery or redirection [Ref. 11]. This research and development

effort extends to Multiple Autonomous Underwater Vehicles (MAUVs) and

AUV-ROV combinations (i.e., the ALVTN submersible and JASON JR

(ROV) used during the TITANTIC exploration).

The greatest advantage of an AUV is that it can swim free from

restrictions of umbilical cabling and is capable of operating at substantial

depths with relatively long endurance [Ref. 12:p. 263]. AUVs with subsea

robotics capability provide a great challenge and opportunity for

automating many of the present underwater vehicle applications currently

performed by manned or remotely operated submersibles. Subsea robotics

capabilities needed by AUVs to accomplish these tasks include advances in

areas such as: high resolution, 3-D imaging systems; computer aided vision

systems; satellite-subsurface acoustic/laser telemetry systems; highly

dextrous, autonomous two or three arm manipulator systems; and high-

energy, high-density power sources [Ref 11]. A myriad of research and

development efforts in these areas is in progress both in the United States

and abroad and this section surveys some of those activities; in particular,

those activities sponsored by the Department of Defense.

1. R & D Background

A recent survey revealed that 36 different U.S. organizations are

conducting research/development projects involving underwater vehicles,

26 of which are directly related to AUVs. In addition, 10 different foreign

countries are involved in similar R&D efforts. In the U.S., the major

source of funding for AUV R&D is the Department of Defense, which

8

accounts for approximately 90% or more of the total funds. Within the

DOD, the Navy and the Defense Advance Research Agency (DARPA) are

the primary backers of the subject research. The survey also reports that

non-DOD efforts account for less than about $500,000 per year [Ref. 11].

2. DOD AUV Research Programs

a. Draper Laboratories

Working under the auspices of DARPA, Draper Laboratories

is developing the Unmanned Underwater Vehicle (UUV). The UUV shape

will be that of a submarine, the physical characteristics of which is

consistent with the low drag needed for minimum propulsion power.

Other characteristics of the UUV are listed in Figure 2.1 [Ref. 11].

DRAPER LABORATORIES ' UUV CHARACTERISTICS

*Shape: submarine

* Weight: approximately 6,800 kg

*Speed: 10 knots (maximum)

^Acceleration: to 10 knots in 44 sees

*Depth Control: +/- lm at speeds greater than 3 knots

*Navigational Accuracy: accurate to within 0.2 knots

*Power: silver-zinc battery (-2,300 kg)

Figure 2.1 Draper Laboratories' UUV Characteristics

b. Martin Marietta

Also working under the DARPA umbrella, Martin Marietta is

involved in classified research to assess the capabilities and limitations of

AUVs. Some of the tasks being considered include planting submarine

sensors on the sea-floor, surveying and mapping minefields, towing

hydrophone arrays and serving as long-range weapons platforms [Ref. 11].

c. Office of Naval Research (ONR)

ONR is funding, through the Naval Research Laboratory,

development of several AUV capabilities, including long-range navigation

and fuel-cell power sources. The long-range navigation effort is to

develop a technique that will provide accurate navigational capabilities

beyond 100 nautical miles from a starting point. The goal of the fuel-cell

program is to develop a power source for a small unmanned observation

vehicle (UOV) that will use proton exchange technology to develop a fuel

cell that will not exceed the space occupied by silver-zinc batteries

currently used on AUVs [Ref. 11].

d. Naval Ocean Systems Center (NOSC)

NOSC San Diego, CA has been a pioneer in the field of ROV

technology since the 1960s and began AUV activity in the 1970s with

development of the Experimental Autonomous Vehicle-West (EAVE-

West), followed by the Advanced Unmanned Search System (AUSS) in the

1980s. The AUSS is a deep diving submersible designed for depths in

excess of 6,000 meters.

Currently, the next generation AUSS is being built and is

scheduled to go back to sea in 1990, and the EAVE-West is being

10

configured for evaluating new technologies for energy sources, propulsion,

data storage, machine vision, and a new processor that uses multi-

computing techniques (transputers) [Ref. 13]. Additionally, another AUV

recently developed by NOSC, is the Free Swimming Mine Neutralization

Vehicle (FSMNV). This vehicle and the EAVE-West are being outfitted

with the new processor and will be used as test beds to evaluate its

performance. The new control system consists of a 16-node array of

transputers hosted by an IBM-AT compatible computer and installed in an

undersea electronics bottle. This test-bed processor is expected to provide

valuable insights concerning undersea application of embeddable multi-

computing [Ref. 14 and 15].

e. Office of Naval Technology (ONT)

In 1987, ONT funded Texas A&M University via the Naval

System Warfare Center (NSWC) for AUV research and development. The

current work is directed at developing redundant fault tolerant control

systems for long duration missions for AUVs [Ref. 11].

f. National Oceanic & Atmospheric Administration

(NOAA)

The Sea Grant Office of NOAA has funded MIT to develop a

lightweight, low-cost autonomous vehicle called SEA SQUIRT. The

vehicle is intended to be a platform for testing AI algorithms. A layered

control approach to AI is used to give the vehicle the ability to respond to

unanticipated circumstances and environments. The vehicle will be capable

of obstacle avoidance and sensor mapping of objects of interest [Ref. 11].

11

g. National Science Foundation (NSF)

NSF has sponsored AUV development projects through four

different institutions: University of New Hampshire, Florida Atlantic

University, Carnegie-Mellon University, and Woods Hole Oceanographic

Institution. Research conducted at the University of New Hampshire

pertains to the design of real-time, expert systems for autonomous vehicles.

This project will also assess some of the problems in utilizing lnowledge-

based systems in real-time operations [Ref. 11].

A joint research project by Florida Atlantic University and

Carnegie-Mellon University is concerned with the development of an

underwater, 3-D vision system for intelligent AUVs. Algorithms will be

developed to process signals from a multiple element sonar array to

generate a grid representation of the ocean bottom terrain, and the

development of map building algorithms to generate a coherent map of the

terrain. The goal of this research is to develop the capability to produce a

high level, 3-D world model image required to support underwater

surveying and sensor-based navigation [Ref. 11].

Woods Hole Oceanographic Institution's project involves the

design and construction of an unmanned, untethered vehicle for servicing

long-term deep ocean benthic experiments. This vehicle, called the

Autonomous Benthic Explorer, can be launched from any oceanographic

research ship and will remain on site for several months, during which

time, it will periodically move about in its acoustic navigation net, taking

photos and making a variety of scientific measurements. At the end of its

mission, it can be recovered, on command, by an available ship. [Ref. 11]

12

3. Industrial Activities

A number of industrial activities are also involved in AUV R&D

efforts, several of which are in direct support of DOD initiatives. These

industrial activities include: Boeing Aerospace, Eltech Research

Corporation, Martin Marietta (discussed in previous section), Westinghouse

Electric Corporation R&D Division, Honeywell, INC. Systems & Research

Center, and Hughes Aircraft.

Boeing Aerospace is involved in development of a long endurance

power system that will be capable of providing at least 1,000 kw-hours of

energy over a 10 day period [Ref. 11]. Eltech has developed an aluminum

air fuel cell—an electrochemical device that continuously converts the

chemical energy of aluminum and oxygen into electrical energy. The

energy yield of this configuration is 200 to 300 kw-hours per pound, as

compared to the silver-zinc batteries currently in use that yields about 100

kw-hours per pound [Ref. 11]. Westinghouse has developed a silver-iron

battery for use in AUVs where high-energy, high-density power systems

are required. Additionally, their Oceanic Division has been examining

various mechnisms for extending laminar flow on underwater vehicles.

[Ref. 11]

Martin Marietta, in addition to development of their UUV, is

conducting research on a nonlinear control technique known as sliding

mode control (SMC), and also, Intelligent Waypoint Transiting in complex

AUV environs. The UUV is used as an in-water test bed for the research,

and the SMC is designed to provide a theoretical framework for the design

of controllers that are robust and are able to adapt to varying payloads

13

[Ref. 11]. Intelligent Waypoint Transiting is an approach for planning and

executing waypoint transiting in a complex and dynamic ocean scene that

requires the high-level controller to "learn" its environment for future use,

should it be required to retraverse the same area. [Ref. 11]

Honeywell's project pertains to AUVs with complex capabilities

and intelligent software for multi-mission capabilities. This project intends

to greatly simplify real-time, on-scene mission programming of the AUVs

on-board computer by operational personnel. A three-level approach will

be developed consisting of: (1) onshore development of operational tactics:

(2) predeployment programming by operational specifications, and (3)

real-time, dynamic determination of the current situation and response

within the desired operational constraints. [Ref. 11]

Hughes Aircraft Company, Ground Systems Group sponsors a

program that envolves a multi-year effort encompassing all aspects of UUV

technology. The major emphasis, however, is to develop a real-time

system with intelligent planning. [Ref. 11]

C. EXPERT SYSTEMS DEVELOPMENT

1. Evolution and Characteristics

Over the last several decades, society has had an infatuation with

trying to breathe life or intelligence into machines. "We no longer want

computers to just add, subtract, multiply, or divide, but to act human, to

think" [Ref. 16:p. 1]. One can readily imagine the endless possibilities of

intelligent machines: computer systems that recommend profitable financial

and marketing strategies; eagerly perform dangerous and monotonous

14

manufacturing or exploration tasks; create new designs in the automobile

or semiconductor industries; and quickly monitor and diagnose a patient's

health. To satisfy this infatuation, an entirely new research effort

dedicated to the development of artificial intelligence (AI) has evolved and

has grown in significance to become a virtual growth industry in today's

world. This new research effort is the development and widespread use of

"knowledge-based expert systems." Expert systems provide the

"intelligence" for the sophisticated mechanized "help-mates" of today's

society.

What do people mean when they say "artificial intelligence"? What

is an expert system"? Artificial intelligence research is often defined as the

search for general computational models of human intelligence [Ref. 17 :p.

xix]. Expert systems are computer systems, comprising both hardware and

software that mimic an expert's thought processes to solve complex

problems in a given field [Ref. 16:p. 3]. An expert system finds reasonable

solutions to problems for which there may be no hard and fast "right"

answer. The "expert" computer system uses extensive experience-based

knowledge of a subject to guess intelligently in the same way as a human

expert.

a. Characteristics and Components

By definition, expert systems are used to solve problems or

make decisions. Expert systems operate on a processing level higher than

that of conventional programs. They function like a thought process—they

15

make inferences 1 and guesses and ask questions for additional information.

Suitable applications for expert systems fall into the categories listed in

Figure 2.2 [Ref. 16:pp. 8-9].

CHARACTERISTICS OF EXPERT SYSTEMS

*Interpreting and Identifying: Explaining summarized results from

input information.

^Predicting: Inferring likely consequences of given or hypothetical

situations.

^Diagnosing: Identifying causes, given symptoms.

^Designing: Configuring objects into systems, given constraints.

^Planning: Devising a method for making or doing something in order

to achieve an end.

^Monitoring: Comparing observations with established standards.

^Debugging and Testing: Prescribing remedies for malfunctions.

*Instructing and Training: Educating and transferring information.

^Controlling: Regulating or guiding the operation of a machine,

apparatus, or system.

Figure 2.2 Characteristics of Expert Systems

The four basic components of an expert system are (1) the

knowledge base, (2) the inference engine, (3) the interface, and (4) the

1 Inference: An implied relationship of one object to another, allowing

new facts to be derived from existing facts.

16

development engine. Figure 2.3 outlines the basic characteristics of each

component [Ref. 16:p. 13].

COMPONENTS OF AN EXPERT SYSTEM

^Knowledge Base: Houses the information used by the expert system in

pursuit of a solution to a problem.

*Inference Engine: The workhorse of the expert system. It consists of

the processes that work the knowledge base, do analyses, form hypothesis,

and audit the processes according to some strategy that emulates the

expert's reasoning.

*Interface: Includes a terminal (TTY screen), graphical representations

(visuals), multiple character windows, and multiple graphic windows.

^Development Engine: Editor or knowledge acquisition subsystem that

allows the knowledge engineer to create, modify, add, and delete

information from the knowledge base.

Figure 2.3 Components of an Expert System

b. Brief History

In 1965, researchers at Stanford University began work on the

grandfather of all expert systems, DENDRAL [Ref. 18]. DENDRAL,

based on an algorithm developed by Nobel Prize-winning chemist Joshua

Lederberg, was designed to analyze information from a spectroscopic

analysis on chemical compounds to determine their molecular structures.

Using an efficient variant of a generate-and-test search technique in its

problem solving, DENDRAL outperformed some of the best human

17

experts in the field [Ref. 16:p. 5]. Approximately 15 years were spent in

developing DENDRAL—extracting heuristic2 information from expert

chemists; formulating the experts' reasoning rules into formal rules, and

implementing and testing the final system. Programmed in LISP,

DENDRAL is a good example of a rule-based system, storing much of its

knowledge in "If-Then" production rule statements.

In 1970, CADAUCEUS was developed at the University of

Pittsburgh to aid physicians in the diagnosis of human internal diseases.

Nineteen years later, this system has over 100,000 programmed

relationships which represent 85% of all relevant knowledge in this

particular domain. CADAUCEUS analyzes by initially examining the

problem using a bottom-up problem-solving strategy and then switching to

a top-down strategy, thus squeezing in on the diagnosis. [Ref. 16]

MACSYMA was written in the late 1960s by MITs Laboratory

of Computer Science as a mathematical problem solving aid. By 1971 it

was being successfully employed in sophisticated symbolic mathematical

analysis. MACSYMA surpasses most human experts by performing

differential and integral calculus symbolically and simplifying symbolic

expressions. Comprising more than 300,000 lines of LISP program code,

MACSYMA represents approximately 100 work-years of development

time. [Ref. 16]

2 Heuristics, in AI jargon, is a list of rules of thumb applied to a certain

application or situation. They are the mainstay of the knowledge we try to

store for use by natural English systems, expert systems, and robots.

18

MYCIN was developed at Stanford University in 1972 [Ref.

19]. One of the most publicized and famous expert systems, MYCIN assists

with the diagnosis and treatment of infectious blood diseases. Its

knowledge base currently has more than 4200 production rules. From

MYCIN stemmed TIERESIAS in 1976 and EMYCIN in 1978.

TIERESIAS is a knowledge acquisition tool that assists with entering and

updating the MYCIN knowledge base by utilizing metaknowledge

(knowledge about knowledge). EMYCIN contains all of the logical

structure of MYCIN, with the exception of its knowledge of infectious

blood diseases, hence the name "Empty MYCIN." Thus was born the

expert system shell, a program containing logical structures and thinking

strategies, but without the knowledge base of a specific domain. [Ref. 19]

Then came PUFF, a diagnostic consultation expert system for

pulmonary function diseases [Ref. 19]. PUFF is a derivative of EMYCIN

with a pulmonary function diseases knowledge base added.

About the same time, the Stanford Research Institute (SRI)

constructed the PROSPECTOR expert system [Ref. 20]. It is a rule-based

system that assists with the analysis of information related to geological

exploration. Its data structure is based on a semantic network.

In 1980, XCON, developed by Digital Equipment Corporation

(DEC), became the first expert system to be used successfully on a daily

basis in a commercial environment [Ref. 18]. XCON performs the difficult

job of configuring VAX computer systems as requested by DEC's

customers. As reported by DEC, XCON saves the corporation

19

approximately $200,000 per month in staff costs alone, not to mention

savings in manufacturing costs.

The 1980s have seen a myriad of applications of expert systems

that are too numerous to mention here. These new applications include

autonomous system control, space systems scheduling and control,

equipment/system design, traffic control, and 3-D vision systems, just to

name a few. The next section sites a few examples of how expert systems

are being used in the research and development of one of these areas-

autonomous underwater vehicles.

2. Role of Expert Systems in AUV Development

As described in the previous section on AUV development, the

success of AUV technology depends on its ability to exercise intelligent

behavior in a hostile marine environment without intervention from man.

The usefulness of "intelligent controllers" designed from knowledge-based

expert systems for real-time operations is readily apparent. As such, many

developers are concentrating their efforts on this technology.

Honeywell INCs project to develop intelligent software for AUV

multi-mission capabilities uses an expert system to produce a user-friendly,

simplified programming environment for operational personnel [Ref. 11].

UUV R&D efforts by Hughes Aircraft is another prime example of expert

system use in the development of AUV planning and control systems.

Their development of a real-time system with intelligent planning includes

a graphic human interface that facilitates operator entry of mission

planning data and allows quick examination of mission progress. An

expert system shell is used for this facility. [Ref. 11]

20

Researchers at the Applied Physics Laboratory/Johns Hopkins

University have developed a multiple knowledge-base approach to AUV

mission control in naval applications which is based on representation of

the Navy watch team model in a distributed computer system. This

"human paradigm" approach was chosen in order to create a control

structure that could readily accomodate knowledge from domain experts on

an actual submarine [Ref. 21 :p. 15]. By decomposing the control problem

into a set of sub-problems that faithfully correspond to the problem

domains of the members of a watch team (Captain, Conning Officer,

Navigator, Engineering Officer, Communications Officer, and Helm), the

problem of the knowledge acquisition bottleneck is partially addressed.

The experienced watch team members become a ready source of expert

knowledge. This approach, which has become a model used by other AUV

developers, was tested on a network of 32-bit (Sun) Workstations. Use of

expert systems allowed object-oriented design techniques to be highly

modular and to be distributed on multiple processors with interprocess

communications to be accomplished within and across machine boundaries.

Programs which were implemented in LISP, C++, and C were able to

communicate freely using this scheme. A user operating the simulation test

facility is able to interface easily with the graphical interface to input maps

and top level mission descriptions and then watch the dialogue between the

knowledge bases as the missions are executed. [Ref. 21]

These are but a few examples of how expert systems have become

an integral part of AUV development and with the current rapid

21

developmental trends of computer, microelectronic, and processor

technology, the future seems limitless.

3. Future Developments

In the past, most expert systems development efforts were very

expensive and were funded primarily by government agencies as internal

R&D projects since widespread commercial use was not viewed as a viable

alternative [Ref 16:p. 247]. Today, both AI and its offspring, expert

systems, are unquestionably growth industries with far-ranging applications

in the industrial, military, and commercial sector. Researchers and

developers have found that expert systems can be cost effectively

implemented now and with current technological advances the future is

exceedingly bright in all sectors. Figure 2.4 lists advances that are in

development now that will further revolutionize the use of expert systems.

D. EXPERT SYSTEMS AND 3-D VISUALIZATION OF THE

NPS AUV DYNAMICS AND CONTROL

As the U. S. military has continued to identify more and more tasks

that can be performed by autonomous systems, the Naval Postgraduate

School (NPS) has heightened its research in 3-D visualization techniques,

knowledge-based expert systems, and development of an experimental

AUV to address these military requirements. Previous research by

McPherson and Nordman [Refs. 8,9] demonstrated the outstanding utility

of interfacing single-user workstations that couple an expert system that

coordinates mission planning and control to a computer graphics

workstation which houses a 3-D dynamic model of the AUV currently

22

under construction at NPS. As in the research being conducted at

APL/Johns Hopkins University, on a multiple knowledge base approach to

AUV mission control [Ref 21], object-oriented design techniques are

employed to allow programs to be highly modular and to be distributed on

EXPECTED TECHNOLOGY ADVANCEMENTS

^Increased Speed on Conventional Machines: Better LISP and C
optimization is increasing the development and run speed of expert

systems on all machines [Refs. 22, 23, 24].

*Supercomputers on a Chip: Very high speed integrated circuit

(VHSIC) technology makes it possible to have micro-chips that contain

about 35 million transistors which will make almost instantaneous

processing of expert systems possible at workstations [Refs. 25, 26]

^Parallel Processing: New computers are being developed with over

64,000 processors acting in parallel. By working parts of problems

simultaneously, machines will be able to find solutions faster[Ref. 27].

*Neural Networks: Research is proceeding in the effort to use metal-

oxide semiconductor field-effect transistors to emulate the way simple

biological networks work. Development in this area will revolutionize the

"thinking machine" concept used by autonomous systems [Refs. 28, 29, 30,

31L

Figure 2.4 Expected Technology Advances

multiple workstations which communicate across interprocess

communications links. Use of these special purpose workstations, as

opposed to general purpose computers, provide the best environment for

development of complex simulation and control software. As such, a

23

"laboratory environment" has been produced at NPS that allows rapid

prototyping of AUV planning, navigation, and control subsystems which

ultimately reduces the overall time and expense of AUV subsystem

development.

In short, AI workstations provide an excellent environment for the

development of large-scale complex programs that model human

intelligence and behavior. Special purpose processors allow for high-speed

symbolic processing using LISP or PROLOG programming languages.

High-speed, high resolution 3-D visualization systems allow the production

of realistic dynamic models of systems under development. Expert system

shells allow the development of extremely useful and "user-friendly" man-

machine interfaces. Networking facilities, large memory capacity, and

sophisticated memory management provide the necessary flexibility and

speed for the development of intelligent, dynamic simulators and

development laboratories [Ref. 8:p 17].

E. SUMMARY
This chapter presents background information on previous research

that is relevant to this thesis. A brief synopsis of the historical

development trends of both Autonomous Underwater Vehicles and Expert

Systems is addressed and is followed by an overview of recent

developments in both areas of research. This chapter is concluded with a

brief discussion of AUV research conducted at NPS in the Computer

Science area of study, and the outstanding utility of using distributed,

single-user workstations in this research.

24

III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

This research is part of an inter-departmental project at the Naval

Postgraduate School that is in the process of designing and building an

experimental Autonomous Underwater Vehicle. The purpose of this thesis

is to enhance existing real-time, computer graphics simulations of the

proposed AUV by upgrading mission profiles, improving the mission

planner/dynamic model interface, and designing and producing an AUV

Mission Planning and Control Workstation. Additional research is being

conducted to determine advanced uses of knowledge-based expert systems

in the development of AUV mission planning and control algorithms.

B. NPS AUV CHARACTERISTICS

The original NPS Autonomous Underwater Vehicle design is patterned

after the U.S. Navy's Swimmer Delivery Vehicle (SDV) that is used for the

covert delivery and extraction of Special Warfare teams into and out of

sensitive areas [Refs. 8,9]. Use of this model provided an initial vehicle

dynamics database from which to start the NPS design efforts.

Development, building, and testing of the NPS Model 1 AUV provided

additional hydrodynamic data from which to refine the design, and

currently, the NPS Model 2 AUV is under construction.

25

1. NPS Model 1 AUV

The NPS Model 1 AUV is a small 30 by 7 by 3.5 inch tethered

model that was used to generate much of the initial hydrodynamic and

control subsystem data used for the design of the NPS Model 2 AUV,

which is currently under construction.

As reported by Boncal [Ref. 33:p. 102], this model was built to aid

in the design of a model following autopilot that could be used in an

Autonomous Underwater Vehicle. As an initial database, the SDV hull

shape and hydrodynamic characteristics were well studied, documented,

and displayed many of the attributes of a potential AUV.

The model was built as a dramatically scaled-down version of the

SDV and a 19 state controller was designed for automatic control of

maneuvers in the dive plane only. This controller design displayed fairly

robust control and trajectory following characteristics over a five to one

speed range and provided an excellent array of hydrodynamic test data for

use in the more advanced controller designs planned for the NPS Model 2

AUV [Ref. 33:p. 103].

2. NPS Model 2 AUV

The basic shape of the NPS Model 2 AUV is also similar to the

SDV. The model under construction will be a 350 lb (approximate), 84 by

16 by 10 inches, flattened cylinder hull shape with a rounded bow and

tapered stern. The AUV will maneuver with bow planes, stern planes, twin

rudders, and twin screws. In addition, the model is being equipped with

two vertical and two horizontal tunnel thrusters for hovering and

26

maneuverability at low speeds. Figure 3.1 is a simple line drawing of the

proposed body and control surfaces arrangement.

THRUSTERS

Figure 3.1 Line Drawing of NPS Model 2 AUV

Three generations of autopilot designs have been tested for possible

use in the NPS Model 2 AUV: Proportional-Integral-Derivative (PID)

Control, Sliding Mode Control (SMC), and Adaptive Variable Structure

Control (AVSC). Each of these designs are much more robust systems than

the controller used in the earlier model, with the latter two designs

offering the most promise.

The PID controller is a simple, not very robust, non-adaptive

(model specific) design scheme that uses system gain adjustments to provide

27

the desired response [Ref. 34 :p 260]. The SMC design is much more

robust and is a significant improvement over the PID design. The SMC

principle, in short, is based on a sliding plane and a switching logic that

stabilizes, asymptotically, pairs of unstable structures in the control system.

This principle results is a very fast and accurate system with a relatively

wide bandwidth. However, this system is also non-adaptive [Ref. 35 :p.

212]. The AVSC uses the same principles as the SMC but is more robust

and not model specific, to a great extent. This system is based on using

adaptive gains which guarantee convergence of the state vector to the

sliding surface [Ref. 35:pp. 213-215].

To test these control systems in a more realistic environment, 3-D,

dynamic, visual simulators of the proposed AUV have been developed.

C. NPS AUV SIMULATORS

Design and development of new systems, such as autonomous

underwater vehicles, can be an expensive and time consuming process

without a means of rapid prototyping and concurrent testing of algorithms,

subsystems, and high-level mission planners [Ref. 9]. Researchers at NPS

seek to solve this problem through the use of 3-D visual simulation.

Previous simulator research at NPS by MacPherson [Ref. 8] has shown

that graphics workstations provide a useful way to simulate a realistic

external environment for conducting AUV operations and, more recently,

Nordman [Ref. 9] has developed a simulator that generates a "laboratory

environment" for testing several AUV planning, navigation, and control

subsystems. This approach permits the prompt development and thorough

28

testing of AI software for the NPS Model 2 AUV, the examination of

different AUV hydrodynamic models, the testing of maneuvering

subsystems in conjunction with different sensor configurations, as well as

the rapid prototyping and development of AUV Mission Planning and

Control Workstations for possible use on AUV launching platforms.

At present, three different simulators have been developed in the

progression to provide more and more useful and versatile rapid

prototyping and development tools for producing mission planning and

control subsystems for the NPS Model 2 AUV.

1. NPS AUV-SIM1

This 3-D visual simulation system was developed before the

decision was made as to the vehicle body shape of the NPS AUV, but was

the first attempt at approximating expected AUV behavior in an open-

ocean mission environment. As such, this system permits mission

execution without a detailed implementation of AUV dynamics. The

simulator represents a small manned vehicle with a control panel and a

"through the periscope" display. The NPS AUV-Siml dynamics model can

be operated manually or in the autopilot control mode and consists of a

simple point-mass approximation governed by one acceleration equation,

two rate equations, and one attitude equation. The vehicle's location,

orientation, and motion characteristics are represented by applying these

equations at a 10-Hz rate and by setting the autopilot's control surface

positions according to depth or course error. AUV speed is chosen by the

autopilot and is limited by battery charge or by the onset of cavitation.

The vehicle's pitch angle is determined by the AUV's speed and sternplane

29

angle and it's acceleration is fixed at 1 knot/sec^ while depth and azimuth

rates depend on a combination of speed and control surface angle. [Ref. 8]

Currently, this simulator is used infrequently, but has been retained

for use during future, more advanced open-ocean mission development for

the NPS AUV. However, the simulator's mission control software and

structure, developed using the KEE knowledge-based expert system [Ref.

8], provided an excellent framework from which to develop more

advanced mission planning and control systems. Its control structure is a

hierarchical system architecture that divides control among three areas: the

mission level, the planning level, and the execution level. This structure

has been used to develop the NPS AUV-SIM2 and 3 and will also be the

blueprint for the actual onboard control system for the NPS Model 2 AUV.

This hierarchical structure will be discussed in more detail in the next

chapter.

2. NPS AUV-SIM2

The NPS AUV-SIM2 system developed by Nordman [Ref. 9]

utilizes a 3-D visualization model of the proposed NPS AUV based on the

SDV's dynamics and shape and on preliminary NPS hydrodynamic test data

gained from experimentation with the NPS Model 1 AUV [Ref. 32]. The

water environment for this simulator is modelled after the proposed initial

test site for the NPS Model 2 AUV, which is a swimming pool measuring

approximately 120 by 60 by 8 feet. Figures 3.2 and 3.3 are 3-D simulator

views of the dynamic model and represents the initial design of the NPS

AUV. The actual vehicle will differ somewhat from this simulator view

due to a new rudder design and a slightly different body shape.

30

Figure 3.2 NPS AUV-SIM2

Figure 3.3 NPS AUV-SIM2

31

This system uses a simple depth or course-error calculation to set

control surface positions for maneuvers. Manually selected or autopilot

orders create control surface angles which in turn act on the AUV

hydrodynamic model to generate hull pitch angles and resulting changes in

depth and course. This system uses a first order, PID controller that

produces abrupt and non-linear control surface behavior. However, as

more advanced control structures are developed, the system's modular code

structure allows easy installation between the autopilot and the

hydrodynamic model for testing and analysis.

This simulator system retains the hierarchical mission planning and

control structure that was developed for NPS AUV-SIM1. The mission

planner and controller controls execution of missions by the dynamic

model by transmitting orders and receiving positional data across

interprocess communications links. In this format, the simulator provides

an excellent "laboratory environment" for prototyping and development of

advanced AUV planning, navigation, and control subsystems. The original

version of this simulation system utilized a simplified mission selection,

planning, and control structure designed with the KEE expert system shell.

This thesis research further upgrades this simulation system by expanding

use of the expert system shell to develop an AUV Mission Planning and

Control Workstation as a prototype for use on an AUV deployment

vehicle.

3. NPS AUV-SIM3

This simulator is identical to the NPS AUV-SIM2, with the

exception that the AUV dynamics model has been upgraded with better

32

graphics drawing algorithms and a more advanced controller. The

dynamic model used with this simulator system currently uses a Sliding

Mode Control (SMC) system, but is also being used for experimentation

with the Adaptive Variable Structure Control (AVSC) system.

One part of this thesis research was to enable this model to be

driven in the autopilot (simulated autonomous) mode in the same manner as

NPS AUV-SIM2. This system takes different inputs to operate its control

surfaces, thus requiring an interface upgrade to couple the computer

system that houses the 3-D dynamic model with the system that houses the

mission planning and control system. The interprocess communications

software used with NPS AUV-SIM2 was also used with this system with

only minor modifications. This interface was also modularized to facilitate

ease of alteration if the need arises during future research.

This simulator is primarily used for testing of new controller

algorithms and hydrodynamic equations.

D. MISSION PLANNING AND CONTROL WORKSTATION

As reported by Bane and Ferguson [Ref. 34] and more recently, by

Nordman [Ref. 9], the U.S. military has identified well over 70 military

missions especially suited for unmanned submersibles, in particular,

autonomous unmanned submersibles. Concurrent with development of

these autonomous systems, an equal amount of thought and effort must be

devoted to developing comprehensive, easy-to-use, and fully interactive

mission planning and control workstations for use by operational

33

personnel. These systems must facilitate easy as well as rapid response

programming to meet the particular mission scenarios at hand.

This area of AUV development has not been fully explored during

previous research at NPS and is a major portion of this thesis research

effort. The goal of this effort was the development of a robust and user-

friendly AUV Mission Planning and Control Workstation that could be

used as a prototype for possible use aboard AUV deployment platforms.

Development of this workstation starts with the mission planning and

control structure developed by MacPherson and Nordman [Refs. 8,9] and

extends the use of the KEE expert system shell to produce a system that is

completely mouse and message driven. The workstation contains mouse

actuated method units for AUV deployment/recovery actions,

communication channel selection, type mission selection, and goal

parameter selection. After mission and goal parameters are selected and

the current location of the AUV (xy-coordinates and depth-under-the-auv)

is obtained, the data is sent to a path-planner that uses a best-first search

algorithm to plan the mission path. A Mission-Plan display panel shows

mission parameters after the path planning has been completed, to include

start location, goal location, and subgoal locations along the path. During

mission execution, additional display units show orders sent to the AUV

(ordered course, depth, and speed), and data received from the AUV, to

include, positional data (xy-coordinates and depth-under-the-auv), actual

heading, actual depth, and rpm. This latter information is transmitted over

interprocess communication channels as part of the simulation system and

represents data that might be transmitted via fiber-optic cabling between a

34

deployed AUV and a deploying platform. The NPS Model 2 AUV will be

outfitted to operate with or without a fiber-optic cable for data flow back

to the deployment site, but will receive movement orders from a pre-

programmed on-board computer. Additionally, information messages are

printed to a typescript window to guide the user each step of the way

during the mission planning and execution process.

A more detailed description of this workstation is included in the next

chapter.

E. MISSIONS UPGRADE

The missions programmed into the NPS AUV simulators are described

in detail by Nordman [Ref. 9]. These missions are divided into four main

categories: payload/transponder delivery, charting, reconnaissance, and

surveillance. A fifth category, "test.pool", was added by Nordman to NPS

AUV-SIM2 and 3 to facilitate testing the dynamic model of the NPS Model

2 AUV in a representative water environment. The code for this mission

and supporting functions has been modified to facilitate data flow for

operation and testing of the Mission Planning and Control Workstation.

The other missions are designed for testing AUV response in the open-

ocean environment (NPS AUV-SIM1) and have not been upgraded to work

in the test pool environment. This upgrade has been reserved for future

research.

F. MISSION PLANNER/DYNAMIC MODEL INTERFACE

During the development of NPS AUV-SIM3, it was desired to enable

the enhanced dynamic model to be driven in the autopilot mode in the same

35

manner as NPS AUV-SIM2. As this new model uses a different controller

from that used with the earlier simulator, and requires different inputs to

control the model's control surfaces, it was necessary to modify/upgrade

the interface between the computer graphics system and the mission

planning and control system to simulate autopilot control. This process

proved to be extremely cumbersome and time consuming and involved

modification of a sizable portion of code in the AUV dynamic model's

primary graphics file with a few additional modifications to supporting

files. To make it easier to interface future 3-D graphics models with the

mission planning and control system, the code within the graphics file that

is required for this interface has been converted to a modular format. This

will allow development of any new interface requirements to be completed

"outside" the main body of code, with a simple and rapid swap of modules

for testing of the new system.

G. SUMMARY
This chapter provides a detailed discussion of the problems considered

for this study and the approach to providing solutions. A very general

description of the evolution of the NPS AUV is included as well as a

description of the simulator systems that have been developed to facilitate

testing of certain planning and control sub-systems in a realistic

"laboratory environment." Additionally, the characteristics and utility of

the Mission Planning and Control Workstation are presented.

36

IV. AUV SIMULATOR DESCRIPTION

A. INTRODUCTION

This chapter describes, in detail, the NPS AUV-SIM2 simulation

software with the addition of the Mission Planning and Control

Workstation. The NPS AUV-SIM1 was described in detail by MacPherson

[Ref. 8] and Nordman [Ref. 9] and its characteristics were summarized in

the previous chapter. Because of its limited use at this point in the NPS

AUV development, it will not be discussed in any detail in this chapter.

The description starts with an overview of the hierarchical AUV

software architecture and how each level of the structure carries out its

assigned tasks. This structure was described in detail by Nordman [Ref. 9],

but portions of that description must be repeated here for clarity and

continuity.

The last section of this chapter is a user's manual which repeats

portions of the Nordman [Ref. 9] manual, also for clarity and continuity.

B. SIMULATION FACILITIES

As previously discussed, all three simulator systems run on

interconnected workstations that communicate across interprocess

communications lines. The systems used are LISP machines for mission

planning and control and IRIS graphics machines for 3-D visualization of

dynamic models and mission execution.

37

The Symbolics 3675 and Texas Instruments (TI) Explorer II LISP

machines were available for mission and planning level simulator control

and the IRIS 4D/70GT and the Silicon Graphics IRIS-2400T graphics

workstations were available for the simulator execution level and 3-D

display. The older IRIS-2400T graphics workstation is used for the NPS

AUV-SIM1 simulator system and can be controlled in the autopilot mode

from either the Symbolics or the TI Explorer LISP machines. Operation

of this combination is described in detail by Nordman [Ref. 9]. The

Symbolics LISP machine and IRIS 4D/70GT graphics workstation

combination was chosen as the primary configuration for NPS AUV-SIM2

and 3, and for development of the Mission Planning and Control

Workstation.

1. Symbolics LISP Machine

The LISP machine is aptly described by Nordman [Ref. 9]. "This

machine is an advanced single-user workstation that uses the KEE software

development shell to support development of large-scale and complex

artificial intelligence programs. The programming environment includes

very high speed proprietary processors, a large memory, sophisticated

caching and memory-management system, high-resolution black-and-white

graphics, support for color image processing, and networking facilities.

The KEE shell gives the operator a productive and intuitive programming

environment for developing large and complex applications."

The Symbolics 3675 was chosen over the TI for development of the

NPS AUV simulation systems because it incorporates a Pixar image

processing computer which offers significant advantages for future

38

research and also possesses a color terminal suitable for graphical

representation of mission execution. The TI LISP machine offers neither

of these features [Ref. 9].

2. Silicon Graphics IRIS 4D/70GT

This system architecture uses multiple RISC-based CPUs with a

high-speed 64-bit data bus and a 96-bitplane raster subsystem. In addition

to a very fast hardware Geometry Engine, the Unix-based software

supports high speed image generation and updating for object-oriented

programming. The system readily supports a higher update rate for a real-

time AUV simulation while simultaneously incorporating graphics lighting

and shading models [Ref. 9].

C. CONTROL SYSTEM ARCHITECTURE AND LANGUAGES

This thesis has preserved the hierarchical system architecture

implemented by MacPherson [Ref. 8] for development of the Mission

Planning and Control Workstation. This architecture also provides the

basic framework for the software structure of the NPS Model 2 AUV.

The software system divides control among three areas: the mission

level, the planning level, and the execution level, as can be seen in Figure

4.1. The top level of this architecture is the mission level—a knowledge

base implemented using the KEE software development shell. This

knowledge base has been expanded to include a Mission Planning and

Control Workstation. This workstation is composed of two parts; a

Mission Planning and Control Panel (Figure 4.2) and an external color

display monitor. The panel allows selection of certain parameters at the

39

mission level and provides display units for monitoring the results of

software operations during the planning level and real-time feedback data

from the 3-D dynamic model during the execution level. The external

display monitor provides a 2-D representation of the AUV's track during

mission execution.

HUMAN
USER

KNOWLEDGE BASED
SUPERVISOR
MISSION SELECTDN

RULE-BASED
NAVIGATOR

/
SENSOR
MANAGER

FATHOMETER

MISSION

LEVEL

(KEE)

RULE-BASED
PATH-PLANNER,
OBSTACLE
AVOIDANCE

PLANNING
LEVEL

(COMMON LISP)

AUTOMATED
VEHICLE CONTROL

SONAR VISUAL CONTROL
SURFACES

EXECUDON
LEVEL

(C)

PROPULSION

SIMULATOR
ENVIRONMENT

Figure 4.1 Hierarchical System Architecture

40

j
0\

o
10

D (N 2 f>
f>»

On y

'a 00 t

q
VO r

Figure 4.2 Mission Planning and Control Panel

41

Operations begin with the operator interacting directly with the

knowledge base by selecting "deploy" on the AUV-Deploy/Recover sub-

panel. This action initializes all display units and prompts the operator to

set up the 3-D dynamic model in the "autopilot" mode, select the

appropriate communication channel to the graphics workstation, select the

desired mission, and select desired goal parameters. Once these steps have

been completed, the operator is prompted to access the current location and

depth of the AUV. This information along with the mission selection data

is then passed to the planning level for the mission planning process.

After the required mission selection information is passed to the

planning level, the path-planner and navigator plan the best path to the

desired goal. The path-planner and navigator are Common LISP software

modules that consult the environmental database for the location of known

obstacles, and then use a best-first search algorithm to plan the desired

path. Upon completion of the path planning process, this path, which

consists of the starting location, the goal location, and a series of subgoals,

is reported to the mission level and is displayed on the Mission Planning

and Control Panel.

Once supplied with the mission parameters and a path to the mission's

goal, the planning level prompts the operator to actuate the third level—the

execution level. Maneuvering parameters in the form of autocourse,

autodepth, and autospeed, are forwarded to the graphics workstation via

the communications network and are interpreted by the execution-level

autopilot as control surface commands that put the simulator's AUV on the

path's course, speed, and depth [Ref. 9]. The execution level software

42

includes provisions for sensor modules that can provide simulated

electronic, acoustic, and visual environmental inputs to the AUV3
. These

inputs, as well as AUV position data, is passed back up the hierarchy to the

navigator where the data is analyzed, displayed on the control panel, and, if

necessary, acted on.

AUV position data is also passed by the navigator to an external color

monitor that displays the AUV track as the mission is being executed. This

display consists of a 2-D scale representation of the test pool environment,

where multi-colored icons represent the AUV's start location, goal

location, and track. The display monitor track, which is retained for

analysis until "cleared", also provides an additional means of analyzing the

path-following accuracy of the AUV.

Once the mission is complete, the operator is prompted to close the

communications channel, to recover the AUV (re-initializes the control

panel display units), and to save and delete the knowledge base, if no more

mission runs are desired.

1. The Mission Level

The KEE software development shell was used to develop the

mission level. KEE's representational features, reasoning and analysis

systems, and access to knowledge with KEE graphics tools offer many

advantages in developing applications, not the least of which, is the ability

3 The NPS AUV-SIM1 simulator system utilizes these simulated sensor
inputs for the open-ocean missions. However, the NPS AUV-SIM2 and 3

systems have been programmed for the test pool environment only and do not, as

yet, use these inputs.

43

to build functional application prototypes, complete with user interfaces, in

a short period of time [Ref. 37].

The structure of this knowledge base is made up of image panels,

frames (units), methods, and active images. A knowledge base can contain

behavioral, as well as, descriptive knowledge. Behavioral knowledge is

represented in the KEE system by methods. Each method is a small LISP

program, and whenever the method is called, the program is run. The

method carries out whatever task it is instructed to do and can run from the

very simple to very complex algorithms.

In this simulation system, the mission planning and control panel is

made up of active images, which are either mouse actuated images that call

methods, or display units that display analog, digital, or literal data. Image

panels are used to group or organize related active images, and, in some

cases, contain sub-panels that also contain active images.

As described in the previous section, missions are normally selected

by mouse activating the appropriate active image. The structure of this

knowledge base also graphically links related portions of the knowledge

base on a tree diagram that allows inheritance of information down the

hierarchy from parent to child nodes. This facility also allows activation

of the missions by selecting ,with the mouse, the desired mission at the leaf

nodes of the tree. After a selection is made in this manner, the operator is

prompted for additional information that is used to plan and execute the

mission. This, however, is not the recommended way to operate the

simulation system. Figure 4.3 shows the graph of the knowledge base

developed for this simulation system.

44

Figure 4.3 Graph of The AUV Knowledge Base

45

Currently, only the test.pool "transit" mission has been fully

programmed for use with the Mission Planning and Control Workstation

and is used to test the dynamic model's propulsion and control subsystems.

2. The Planning Level

The planning level is also written in Common LISP and runs on the

Symbolics LISP machine for this simulator. As described earlier, this level

consists of a number of software modules that compose the mission

navigator, path planner, and environmental database. After the path

planner receives mission selection data and plans an appropriate mission

path, the navigator receives orders from the mission level and provides

corresponding guidance commands to the execution level. Using frequent

data exchanges via the communications interface, the navigator provides

the execution level with information on the next subgoal, the autopilot

course, speed, and depth, and the commands required to execute the

current phase of the mission. The planning level receives sensor and

positional data from the execution level and modifies mission commands as

necessary for the next data exchange.

3. The Execution Level

The execution level is written in C and runs on the IRIS 4D/70GT

graphics workstation. This level is the lowest level of AUV control and

executes either manual or autopilot commands to update the vehicle and

environmental displays.

In the manual mode, in addition to being able to "fly" the AUV

model by varying the control surface positions, the operator can change the

viewer's perspective of the environment by manipulating mouse controlled

46

slider bars on the control panel to vary the viewing distance, elevation, and

azimuth. This feature is available on both the NPS AUV-SIM2 and 3

simulation systems.

The control surfaces of the AUV model in the NPS AUV-SIM2

simulation system are varied by assigning desired angles. The NPS AUV-

SIM3 simulation system differs in that the AUV model takes ordered

headings (+180 degrees to -180 degrees) and ordered depths (150 units up

to 150 units down) and the control surfaces are programmed to move

appropriately to achieve the ordered heading/depth.

In the autopilot mode, the execution level interprets planning level

commands and positions the AUV control surfaces to achieve the ordered

parameters. At each update of the 3-D visual display, the execution level

passes sensor and position data up the hierarchy to the planning level where

it is displayed on the control panel and acted on, if appropriate.

D. COMMUNICATIONS SOFTWARE

During execution-level operations, interprocess communications

support must be available for data transfer between the execution-level

code on the IRIS graphics machine and the planning-level on the LISP

machine. Communications modules in the code of each workstation link

the systems via an Ethernet cable; each module passes the same data types

and structures in slightly different formats.

Figure 4.4 shows the communications flow of information between the

two workstations. The diagram shows both workstations having individual

send and receive ports. Actually, two ports are used on the LISP machine

47

COMMUNICATIONS FLOW DIAGRAM

MISSION

LEVEL
(LISP)

(KEE Package)

-knowledge-based:-;-:

-::supervisor ::-:•»:-»:-:;

Amission selection/
:
::goal selection;^:

Mission Selection,

Goal Parameters

PLANNING
LEVEL

(LISP)

(USER'S Package)

AUV Position Data

Sl.

-v RULE- BASED ;.;-v.v.>v-v-

vPATH-PLANNERandv:
;^navigator:^:;>:v>:

:
:

GUIDANCE COMMANDS

Send Port 5C=r ^A

Guidance Commands
(Autocourse)

(Autodepth)

(Autospeed)

-Receive Port

Sensor Data

ETHERNET
Communications
Network

Receive Port

EXECUTION

LEVEL

(C)

(IRIS 4D/70GT)

Jsii.

AUV Position

(x-y Coords, Depth-Under-AUV)

Send Port

yAUV DYNAMIC MODEL^^^Xv
yAUTOMATED VEHICLE'cONTROLv

OSENSOR MANAGER SSSS^SSS^SSSSSS/S:

Figure 4.4 Communications Flow Diagram

48

but all data is transferred through a single port (dual socket) on the IRIS

graphics workstation. The drawing arrangement has been simplified for

clarity.

The Mission Planning and Control Panel allows the operator to select

one of two communications paths: IRIS-5 for NPS AUV-SIM2 and 3, or

IRIS-3 for NPS AUV-SIM1. The operator selects the machine on which

the communications will be run, which determines what portions of the

communications modules will be used to support the simulation. The data

exchange between the LISP machine and the IRIS graphics workstation

allows the planning level to pass guidance commands to the execution-level

which controls the actions of the AUV dynamic model during execution of

the mission. The guidance commands are autocourse, autodepth, and

autospeed. The execution-level, in turn, passes sensor and AUV position

data over the communications network to the planning level for

information display and actions by the navigator, if required by the mission

profile. Data transfer occurs approximately every three seconds during the

execution-level process.

The communications code is adapted from MacPherson [Ref. 8] for

NPS AUV-SIM1 and from Nordman [Ref. 9] for NPS AUV-SIM2 and 3.

This thesis research found no need and made no attempt to modify these

communications systems.

E. USER'S MANUAL

The NPS AUV-SIM2 and 3 simulators are completely mouse and

message driven. Messages printed in the typescript window of the Mission

49

Planning and Control Panel prompt the operator for input that can be

accomplished with mouse actuation of certain active images on the panel.

This manual assumes some basic familiarity with the Symbolics LISP

machine and the IRIS graphics workstation. Some very basic experience is

required with the KEE expert system shell and the UNIX operating system

for startup and shutdown of the simulator, but not for its operation.

NPS AUV-SIM1 is discussed in detail by Nordman [Ref. 9] and will not

be covered in this manual. This manual does repeat portions of the

Nordman [Ref. 9] user's manual for continuity.

1. Graphics Workstation Operation-IRIS 4D/70GT

a. NPS AUV-SIM2

The NPS AUV dynamic model may be operated in either the

manual or the autopilot modes. This simulation is normally run on the

IRIS 4D/70GT (IRIS-5) because of its close proximity to the LISP

workstation, which allows easy viewing of both workstations during the

autopilot mode of operation. However, the IRIS machines are networked

in a manner that allows the simulation to be run on either IRIS-1, IRIS-4,

or IRIS-5.

To start the simulation, "log on" to both the IRIS workstation

and the side terminal of the IRIS and transfer to the directory

lusrlworklnordmanlsymbolicslauvsim. Start the program in the manual

mode by entering the command auv on the side terminal followed by a

carriage return.

The simulated AUV starts on the surface at a speed of 25 rpm

on course east. All manual control in this simulator uses the mouse to

50

manipulate sliding markers on the control panel at the right side of the

main terminal display. To alter the viewer's perspective or to change AUV

parameters, press and hold the left mouse button, and drag the marker to

the desired new value for that parameter. (Changes to the viewer's

perspective should be executed slowly or the user may lose his own

perspective in the display.) Care should also be taken when manipulating

the markers that change the control surface angles. The sliding markers

for the rudder and the dive planes4 are tied together and can be operated

simultaneously to fly the AUV around the test pool environment. To

operate the rudder independently of the planes, the mouse cursor must be

placed at the degree level of the dive plane control and moved left or

right for independent rudder control. For simultaneous operation of

control surfaces, simply drag the mouse cursor to the desired dive plane

angle, and while keeping the cursor at the desired level, move the cursor

left or right of the dive plane control bar for simultaneous rudder

operation.

At very low speeds, the AUV may slowly roll from side to

side. This is caused by an instability in the mathematical model at low

speeds and raising speed will restore proper control surface effects on the

hydrodynamic drag model and should damp out this motion.

4 The dive planes consist of both bow and stern planes. When the dive

planes angle is changed using the mouse-controlled sliding marker, the bow and
stern planes move to the requested angle but in opposite directions. This is a

simplified representation of how a submarine would operate with bow and stem

planes.

51

The autopilot mode is started by pressing the A-key on the

main keyboard of the IRIS machine. The AUV should be driven to the

desired starting location prior to activating the autopilot mode. (The AUV

can be returned to the original starting position of the manual mode by

pressing the ESC-key.) Additionally, once the autopilot mode has been

activated, the display must be secured and restarted to return to the manual

mode of operation. After activating the autopilot mode, the side terminal

will indicate that the IRIS server is waiting to connect to syml (the

Symbolics LISP machine) and the following message will prompt the

operator to start the KEE portion of the simulator to connect the LISP

client to the IRIS server:

Start the autopilot program on the lisp machine.

Then hit any IRIS key to send initial AUV position.

Server waiting to connect to SYMI

The autopilot execution can be interrupted by pressing the Q-

key; the autopilot cannot be restarted at this point, but manual control of

the AUV is available. Prior to restarting the IRIS 4D/70GT simulator

autopilot, ensure the previous communication socket connection has been

completely broken. To do this, list the current processes by entering the

Unix command ps on the side terminal keyboard. A list of active processes

and process numbers will appear. Stop any send/receive communications

daemons with the kill <process number> command. (Inexperienced

operators may require assistance for this step.)

b. NPS AUV-SIM3

This simulator is basically the same as NPS AUV-SIM2, with a

few minor exceptions. To start the simulation, "log on" to both the IRIS

52

workstation and the side terminal and transfer to the directory

lusrlworklrogerslmythesislmysymbolicslauvauto. Start the program in the

manual mode by entering the command autoauvs on the side terminal

followed by a carriage return. Also, type the command gclear on the side

terminal to initialize the mouse.

The simulated AUV starts on the surface at a speed of 250 rpm

on course north. Manual control in this simulator uses the mouse to

manipulate sliding markers on its control panel as with the previously

discussed simulator. However, the control surfaces for this simulator do

not respond to ordered angles. AUV depth is changed by selecting an

ordered depth (150 units up to 150 units down), and AUV heading is

changed by selecting an ordered heading (-180 degrees to +180 degrees).

The depth and heading sliding markers operate independently.

All other operations of this simulator are the same as those for NPS

AUV-SIM2.

2. LISP Machine Operations—Symbolics 3675

a. NPS AUV-SIM2

On the Symbolics LISP machine, ensure that the KEE expert

system shell software is loaded. (It is accessed by entering SELECT-K.) If

the shell is not loaded, a cold boot of the machine will be required; an

inexperienced user should refer to posted instructions near the machine or

get staff assistance at this point. Once KEE is available, "log on" in the

LISP Listener window and then press the SELECT-K combination on the

keyboard to move to the KEE desktop. Ensure that the Symbolics external

monitor is ready by depressing the "on" button, depressing the

53

"degaussing" button and holding for at least 2 seconds, and turning the

brightness knob fully clockwise. Once the KEE desktop is available, there

are two methods of loading the knowledge base:

(1) Use the mouse and point the cursor at the latchkey icon located at

the upper left corner of the screen and depress the left mouse button. A

pop-up menu will appear offering KEE Commands', select the Load KB

command by pointing at the command with the mouse cursor and

depressing the left mouse button. A KEE "typescript" window will appear

requesting the name of the knowledge base to be loaded; enter

sym4:>rogers>controlpanel-file>auvcp.u followed by a carriage return.

KEE will load the AUV Mission Planning and Control Panel knowledge

base along with the LISP code files containing the planning level functions.

(This process will take approximately 2 minutes.) Once the files have been

loaded, a black icon will appear on the screen. (This is a prompt to enter

an input by depressing one of the mouse buttons.) Depress the left mouse

button and the image panels of the Mission Planning and Control Panel will

appear one at a time. The external monitor will also expose a display

window with a 2-D scaled grid pattern of the test pool environment. If the

"typescript" and/or the "LISP listener" windows are not in the correct

position and partially obscure the image panels, point the mouse cursor at

the top bar of these windows and depress the right mouse button. A menu

will appear that will allow the operator to select move and reshape. Select

these options one at a time and move and reshape the windows as

neccessary to clear the image panels. The Mission Planning and Control

Workstation is now ready for operation.

54

(2) This method is somewhat slower than the first method but loads a

preset desktop arrangement with the knowledge base. Use the mouse and

point the cursor at the desktop icon located at the upper left corner of the

screen and depress the left mouse button. A pop-up menu will pointing at

the command with the mouse cursor and depressing the left mouse button.

A KEE "typescript" window will appear requesting the name of the

desktop to be loaded; enter sym4:>rogers>controlpanel-file>auvcp.desktop

followed by a carriage return. KEE will load the AUV Mission Planning

and Control Panel knowledge base along with the LISP code files

containing the planning level functions. If an old desktop was on the screen

upon logging on, it will need to be cleared before the auvcp desktop can be

loaded. The "typescript" window will request the operator select one of

the following options: Respecify, Flush Old Desktop, Rename Desktop, or

Debug\ enter Flush Old Desktop followed by a carriage return. The

screen will then clear, after which, the pre-set desktop and the image panels

for the control panel will appear. The Mission Planning and Control Panel

is now ready for operation.

To start the simulation, select the deploy command by pointing

the mouse cursor at the deploy method actuator in the Panel-Controls

section of the control panel and depressing the left mouse button. This

action will initialize all display units on the panel and cause a series of

prompts to be printed in the KEE typescript window.

If not already accomplished, ensure the AUV portion of the

simulator on the IRIS 4D/70GT has been placed in its autopilot mode and is

waiting to connect to the Symbolics LISP machine (SymJ).

55

Prior to selecting a mission, a communications channel must be

opened to the IRIS workstation. Select IRIS-5 by pointing the mouse

cursor at the IRIS-5 method actuator on the Panel-Controls section of the

control panel and depressing the left mouse button. This will start the

TCP/IP software on the LISP machine and locate the correct IRIS port(s)

for data exchange. Currently, IRIS-5 contains all the files for the graphics

portion of this simulation system. (IRIS-3 contains the files for the

graphics portion of NPS AUV-SIM1.) The following message should be

appear in the KEE typescript window: A conversation with the IRIS

machine has been established.

Select a mission by pointing the mouse cursor at the desired

mission method actuator in the Mission-Selection section of the control

panel. (Currently, only the Transit mission is fully programmed to work

with this simulation system.) A series of messages will now appear in the

KEE typescript window to prompt the operator to select appropriate goal

parameters for the mission selected. Select goal parameters by pointing the

mouse cursor at each of the required method actuators in the Goal-

Selection section of the control panel, one at a time, and depressing the left

mouse button. A calculator will appear on the screen to facilitate inputing

the desired values. Select all desired numbers for a particular parameter

value and then select enter with the mouse when the appropriate value has

been entered in the calculator window. This action will cause the

parameter value to appear in the appropriate parameter window on the

control panel. This process must be repeated for each goal parameter

required for the selected mission. Once the values for all parameters have

56

been entered, select Set-Data by pointing to the method actuator with the

mouse and depressing the left mouse button. This causes the goal data to be

transmitted to the planning level of the simulator.

A prompt will now ask the operator to access the AUV initial

position data from the IRIS workstation. This is accomplished by

depressing any key on the IRIS keyboard. When this step is accomplished,

the following message should appear on the screen of the IRIS side

terminal:

Initial position written to lispmachine-hit any key when the

lispmachine completes its search.

Upon completion of this step, the x-position, y-position, and

depth-under-the-auv should appear in the KEE typescript window of the

Symbolics machine. This completes the data needed by the planning level

to compute the mission path and this process starts without further action

by the operator. When the mission path has been computed, the starting

location, goal location, and subgoal locations will appear in the Mission-

Plan section of the control panel and in the KEE typescript window,

preceded by the following message: autopilot course on the first leg is: .

Start autonomous simulator execution by pressing any key on the IRIS

keyboard.

If necessary, the AUV simulation can be stopped by entering

CONTROL-ABORT at the LISP machine or by pressing the Q-key on the

IRIS keyboard. Once the simulator has completed its mission or after

abortion of the mission, the Symbolics-IRIS communication socket

connection must be closed by selecting Close on the Panel-Controls section

of the control panel with the mouse and depressing the left mouse button.

57

The control panel should be reset at this point by selecting Recover on the

Panel-Controls section of the control panel. This action re-initializes the

control panel display units and the Symbolics external monitor, and a series

of prompts will appear in the KEE typescript window to direct the

operator in securing the knowledge base (if no more runs are desired). If

the knowledge base has not been secured, the simulation may be restarted

by securing and restarting the IRIS portion of the simulator, and repeating

the steps listed above at the point of selecting a communications channel.

b. NPS AUV-SIM3

From the Symbolics workstation, the steps for activation and

operation of this simulation system are exactly the same as those listed

above for NPS AUV-SIM2.

I. SUMMARY
This section describes the NPS AUV-SIM2 and NPS AUV-SIM3

simulation systems, which includes the Mission Planning and Control

Workstation. The description starts with an overview of simulation

facilities followed by a detailed discussion of the control system

architecture and the high-level programming languages used in the various

levels of its hierarchy. A subsequent section gives a brief description of

how the interprocess communications system is used for information

exchange and control of the execution-level of the simulations. The final

section of this chapter contains the User's Manual to assist in operating the

various workstations to run these simulations.

58

V. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter evaluates the utility of the Mission Planning and Control

Workstation and presents experimental results relating to upgrades to the

mission planner/dynamic model interface. All tests were conducted using

the NPS AUV-SIM2 and 3 simulator systems.

B. AUV SIMULATION FACILITIES

1. The Original Mission Planner

The original mission planning module at the top level (mission

level) of the software structure of the NPS AUV simulation systems was

efficient but lacked the robustness and display features typical of operator's

consoles for equipment as complex as autonomous systems.

After the original knowledge base was loaded, the AUV Simulator

Mission Selection Tree was drawn in a window labelled The Graph of the

AUV Knowledge Base . This graph was in a tree format similar to Figure

4.3, but only consisted of the mission-selection node at the top level of the

tree and the generic missions located at the leaf nodes of the tree's

branches. A mission was selected by using the mouse to point to the

appropriate leaf node and pressing the left mouse button. This action

would cause a pop-up menu of Unit Commands to appear. Selecting the

Send Message option from this menu, with the mouse, would result in

another pop-up menu of Message Types to appear. From this menu, the

59

appropriate message that would start the selected mission would be selected

and a series of messages, printed in the KEE typescript window, would

prompt the operator to enter the required mission parameters from the

keyboard.

When the typescript window announced that it had connected with

the appropriate IRIS workstation, the current location of the AUV was

accessed by the operator, and the path planning process was initiated when

this data, along with the goal parameters, was passed to the rule-based path

planner at the planning level. The remainder of the process is the same as

that of NPS AUV-SIM2 and 3 (described in the previous chapter).

The procedure just described, though efficient, offered no feedback

information to the operator and required more knowledge about the inner-

workings of the KEE expert system shell than was felt necessary.

2. Mission Planning and Control Workstation

The concept of developing the Mission Planning and Control

Workstation was conceived for two purposes: (1) to more fully investigate

the facilities and advantages of the KEE software development tool, and (2)

to create an informative, versatile, and easy-to-operate workstation as a

prototype for use aboard AUV deployment platforms. To meet the second

goal, it was desired that the workstation include clear and concise facilities

for selecting missions, goal parameters, and communications channels, and

include information display units to show the results of mission planning

and AUV operating status (during mission execution). AUV operating

status could possibly include pre-deployment readiness information, real-

time feedback information from an AUV equipped with an electronic data

60

link or fiber-optic cable, or expected track information based on the

selected mission profile.

The Mission Planning and Control Console meets all of the

aforementioned desires/requirements. The control panel includes sub-

panels for mission selection, goal selection, communications channel

selection, and selection of deployment and recovery functions. Additional

sub-panels provide display units for mission plan parameters (start

location, goal location, and subgoal locations), guidance commands to the

AUV (autocourse, autodepth, autospeed), and AUV operating status (xy-

coordinates, depth-under-the-auv, heading, depth, and rpm) 5
. The

operator is prompted by messages printed to the KEE typescript window

for each step of the mission selection and planning process, and all actions

performed by the operator are accomplished using the mouse. Also, care

has been taken to avoid "information over-load" in the selection and

structure of the control panel units and the content of the message prompts.

An operator should be able to perform all required functions easily and

without guesswork.

This particular version of the control panel is designed to support

the simulation systems, NPS AUV-SIM1, 2, and 3, but can be readily

modified to support shipboard AUV deployment systems. Each unit on the

selection sub-panels are active images that activate methods (sub-programs)

that perform certain functions that range from simply printing message

The control panel is currently arranged to support the requirements of

the NPS AUV simulation systems, but can be easily reconfigured for shipboard

use where data feedback may not be available during mission execution.

61

prompts to executing complex algorithms [Ref. 37]. These methods are in

modules that can be easily displayed and edited on the KEE desktop and

offer an almost endless range of possibilities for the functionality of the

control panel.

An additional feature of the Mission Planning and Control

Workstation is the external color monitor that is controlled by the LISP

code at the planning level of the software hierarchy. This monitor displays

a 2-D representation of the AUV's track during execution of missions using

the NPS AUV-SIM2 and 3 simulation systems and the code could be easily

modified to display the track of an actual AUV during post-mission

analysis. This provides a very nice analysis tool for verifying the correct

operation of the AUV.

The experimental results of using the Mission Planning and Control

Workstation versus the original mission planning mechanism is not judged

in the form of increased speed of operation, but in the form of increased

functionality, breadth of information available to the operator, and

adaptability to enhanced systems. By extending the use of the KEE expert

system shell to develop the Mission Planning and Control Workstation, an

improved man-machine interface has been created that greatly contributes

to the "laboratory environment" afforded by using the NPS AUV

simulation systems and additionally, provides a very adaptable prototype

for a shipboard AUV deployment and control system.

a. Analysis of a Typical Mission Profile Test

Numerous tests were conducted during the development of the

Mission Planning and Control Workstation to verify the functionality and

62

utility of the system. The NPS AUV-SIM2 simulation system offers the

most realistic characteristics of the actual testing environment for the NPS

Model 2 AUV and was used in the majority of the testing.

The User's Manual described in the previous chapter offers two

methods of loading the knowledge base. Method 1 does not include the

preset desktop arrangement and can be a little cumbersome for the first

time user, if the proper desktop arrangement has not been left on the

screen from a previous mission run. Method 2, though a little slower in

some cases, does provide the preset desktop arrangement and is the

recommended method of loading the knowledge base for new operators.

Once the knowledge base has been loaded and the Deploy icon (located in

the AUV-Deploy/Recovery sub-panel) is activated using the mouse,

message prompts written in the KEE typescript window guide the

operator's every step to set up and run a test mission.

The first step in setting up the simulation system to conduct a

test mission run is to load the execution level AUV dynamic model

subsystem in the autopilot mode. The model can be driven to any desired

position within the test pool environment using the manual mode and then

placed in the autopilot mode by pressing the A-key on the keyboard of the

IRIS machine. For all of the test runs conducted, the AUV model was

placed in the lower left corner of the test pool environment and given a

goal that would cause the path-planner to plan a diagonal path across the

expanse of the test pool that would also pass through the obstacle field.

This was done to analyze the time required by the path-planner to plan the

particular mission paths through the obstacle field and also to analyze how

63

the AUV model responded to guidance commands issued by the rule-based

navigator during the execution of the mission. It was discovered that given

a goal (600 1100) that required the AUV to transit almost to the opposite

corner of the test pool environment and to cross the approximate middle of

the obstacle field, the rule-based path-planner required 7-8 minutes to

compute the required path. Conversely, if the goal was selected that

required a path that crossed only about one third of the obstacle field (400

1100) the path was computed in less than one minute. In certain real-life

scenarios, requiring 7-8 minutes to plan a fairly simple path of this nature

might mean the difference between success and failure of the mission.

Upgraded path planning algorithms will be required to improve this

feature of the simulation system.

The Transit mission was selected for all tests, which requires

the AUV to be driven to a specified goal location in the test pool

environment and then simply turn around and return to its starting

location. To support this mission profile, after all mission parameters have

been passed to the planning level of the software hierarchy, the path-

planner plans the path and causes the start location, goal location, and

several subgoal locations to be printed to the KEE typescript window, as

well as being displayed on the Mission-Plan sub-panel. If only one subgoal

is planned, the X-Subgoal2 and Y-SubgoaH display units in the Mission-

Plan sub-panel will show the word illegal which tells the operator that the

path planner only needs one sub-goal between the start location and the

goal location to accomplish the desired transit. For longer, more complex

missions, the path-planner will need and will display more subgoals in the

64

KEE typescript window and the display units in the Mission-Plan sub-

panel. For this scenario, as each subgoal is reached, the subgoal locations

are updated accordingly in the Mission-Plan sub-panel to reflect the next

set of subgoals. The actual goal location will also be displayed as a subgoal

once the AUV model nears that location.

Once a mission is executed, guidance commands are

immediately transmitted from the planning level rule-based navigator to

the execution level dynamic model and the AUV Model begins to move at

the commanded speed, turns to the commanded course, and proceeds to the

commanded transit depth. Figure 5.1 shows the Mission Planning and

Control Panel during a typical test Transit mission run with the model in

transit toward the designated goal. Its operating status (position, depth,

course, speed, and depth-under-the-auv) is displayed in the KEE typescript

window and on the AUV-Operating-Status sub-panel of the control panel.

Guidance commands are displayed on the Orders-To-AUV sub-panel to

allow the operator to readily compare ordered parameters to actual

parameters being fed back from the execution level. As shown, the actual

heading of the AUV model is 015 as compared to the ordered course of

012.26033 The actual course is accurate to within 81.7% of ordered

course, which is acceptable for this level of development.

Figure 5.2 shows the AUV model transiting the test pool

environment and Figure 5.3 shows the corresponding AUV track displayed

on the external monitor of the Mission Planning and Control Workstation.

65

Figure 5.1 Mission Planning and Control Panel-Transit Mission

66

Figure 5.2 AUV Dynamic Model-Transit Mission

Figure 5.3 Workstation External Monitor-Transit Mission

67

The AUV model's location and attitude correspond to the

information displayed for the operator at the Mission Planning and Control

Workstation. The dark cylindrical objects in the background are the pre-

staged obstacles that have been placed in the test pool environment to test

the path planner's ability to plan paths to safely avoid these obstacles. The

vertical safety distance is 20 units and the AUV model can be clearly

observed changing depth accordingly when it nears any of the obstacles that

are within this range of ordered depth.

The external monitor display actually plots the AUV's track

during mission execution and provides the operator a ready medium for

comparing the AUV's "actual" track to its "ordered" track during post-

mission analysis.

Figure 5.4 shows the Mission Planning and Control Panel during

the return leg of the Transit mission. The AUV model has reached its

goal, has reversed course, and is returning to its starting location. Figure

5.5 shows the AUV model in the test pool environment on this return leg

of the mission, and Figure 5.6 shows the corresponding AUV model's track

on the external monitor portion of the Mission Planning and Control

Workstation. Note that the ordered course (autocourse) is 192.129397 on

this leg of the transit. The actual course, as shown in the KEE typescript

window, is 193.0, which is within 99.5% accuracy when compared to the

ordered course. The AUV model appears to be tracking better on the

return leg than on the initial leg. The variance on the earlier leg may have

been caused by recording the hardcopy of the screen (LISP machine) just

68

m
! ^

D
r~ h r*>

rt
f—

-
r- u

9
<o z

r -

o O

|

(N
s

od B
"",

5 n
r

li

— 8

» CO
L. <T>

3 -I

Figure 5.4 Mission Planning and Control Panel-Jra/is// Mission

69

A
i"\ «#&•* ^^i'

•

M
9

•

Figure 5.5 AUV Dynamic Model-Transit Mission

Figure 5.6 Workstation External Monitor-7>a/?si7 Mission

70

after a slight course change, in which case, the AUV model would still have

been turning to ordered course. All other indications show that the AUV

model was following ordered guidance commands accurately. As a case in

point, Figure 5.6 shows a fairly straight line track to the goal location and

that the AUV model passed through the middle of this location (designated

by the magenta circle on the grid) before reversing course to start the

return leg of the mission. This substantiates the earlier assumption that the

AUV model followed ordered guidance commands closely.

Figure 5.6 also shows that the AUV model, though it clearly goes

back to its starting location as desired, does not return to its original track

during its return transit. This occurs on this test run because the path

planner only provided one subgoal between the starting position and the

goal. These same positions (waypoints) are also used for the return transit

but in the reverse order. Additionally, the algorithm that designates the

return transit route for the AUV model deletes the goal position from the

list of waypoints so as not to confuse the AUV model. When the AUV

model passes through the goal position and reverses course, if the goal is in

the list of waypoints that it must pass through, it is too close to this position

to pass through the point and also maintain the ordered course and will

begin an infinite circle around this point. Clearly, the algorithm must be

improved to avoid this problem. Subsequent testing with longer transit

paths and more waypoints between the starting location and the goal

revealed that the AUV model does angle back to its original track after

passing through the goal location and reversing course. This is the desired

71

result, but should occur immediately following the course reversal to avoid

obstacles that may lie close to its return track.

The test results shown and described here clearly show the

functionality of the Mission Planing and Control Workstation and how well

the AUV dynamic model responds to planning level guidance commands.

Needed improvements to the path planning algorithm have been identified

and should be implemented during future research.

3. Missions Upgrade

The Transit mission and supporting functions of the Test.Pool

category were modified to support the various functions of the Mission

Planning and Control Workstation. Currently, this is the only category of

mission profiles that support controlling the AUV dynamic model in the

test pool environment. The other missions support the open-ocean format

NPS AUV-SIM1 simulation system. The modifications to this code provide

an excellent framework for upgrading more complex mission profiles to

control the AUV dynamic model and will be the subject of future research.

4. Mission Planner/Dynamic Model Interface

Currently, the AUV dynamic model included in the NPS AUV-

SIM3 simulation system is primarily used for testing various maneuvering

subsystem (control surfaces) controller algorithms. The software structure

(C code) of the dynamic model for this simulation system is arranged in a

modular format, which makes it an excellent vehicle for testing different

software subsystems. This dynamic model was integrated into a complete

simulation system, very similar to the NPS AUV-SIM2 system, to allow

this model to be controlled in the autopilot mode and be fully tested while

72

running mission profiles. Though the test pool environment is not to scale,

it should be a fairly simple modification to convert the water

environment's dimensions to conform to those of the pool where the NPS

Model 2 AUV will be tested. Additionally, the modular format of this

model allows the external configuration to be easily modified to look and

perform more like the real vehicle once its characteristics have been more

fully defined.

The LISP-IRIS machine interface code has also been put into a

modular format. This allows the integration of any new dynamic models

into the simulation system with much more ease than earlier formats. The

new interface code can be developed outside the main body of the graphics

package, and modules can be simply swapped for testing of the new model.

C. SUMMARY
This chapter presents a summary of the upgrades to the NPS AUV

simulation systems. The functionality and utility of the Mission Planning

and Control Workstation is contrasted to the earlier format and a typical

test of a mission profile is thoroughly analyzed. Next, upgrades to the Test

Pool mission profiles to support this workstation are discussed. Lastly, the

integration of the latest version of the AUV dynamic model into a complete

simulation system that affords both manual and autopilot operation is

discussed along with, upgrades to the LISP-IRIS machine interface.

73

VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

As originally reported by Nordman [Ref. 9], the NPS AUV simulator

systems are important tools for incorporating new control concepts and

algorithms into the latest version of the NPS AUV. In addition, the KEE

expert system shell has facilitated the development of a Mission Planning

and Control Workstation that further extends the development possibilities

of these simulation systems. At the top level of the software control

structure, this new utility provides an operator with an informative, easy-

to-operate, and totally interactive control panel that allows rapid mission

planning and execution of the NPS AUV simulation systems. In addition,

the control panel displays real time feedback data for immediate analysis of

the operation of the AUV dynamic model. The control panel is a prototype

for use aboard AUV deployment platforms and can be easily configured to

display pre-deployment readiness status, real time feedback display, or post

mission analysis display from a data file generated by the AUV's onboard

computer. The system also retains the flexibility to allow programmers to

readily modify or develop new mission and planning level code and

mission profiles.

This enhanced "laboratory environment" gives the operator more of a

feel of real-life operations and is a valuable test and debugging tool that

will save countless hours of experimentation and allow rapid verification of

74

subsystem software code reliability before installation into the actual

vehicle.

B. RESEARCH EXTENSIONS

Several research extensions of NPS AUV simulation system

development, discussed by both MacPherson [Ref. 8] and Nordman [Ref.

9], still apply and must be re-iterated here. These extensions include

developing faster path-planning algorithms, an AUV vision system for

mapping and contact classification, an environment for examining high

resolution sonar data, a hovering mode with appropriate guidance

command control, and incorporation of a simple and user-friendly

interface that allows selection of different dynamic models for rapid

comparative analysis. The current state of the "laboratory environment"

afforded by the existing NPS AUV simulation systems make these

extensions not only reasonable, but fairly easily developed and

implemented.

Currently, research conducted by Friend [Ref. 38], has made available

a navigation subsystem algorithm and a corresponding 3-D graphics

simulation system using simulated inputs from the sonar transducers

proposed for the NPS Model 2 AUV. This simulation system should be

integrated into the NPS AUV-SIM2 and 3 simulation systems for further

analysis and development of sonar subsystem interface software for the

actual vehicle.

A research proposal and plan is currently being prepared to develop a

series of path-planning algorithms that will be specifically tailored for

75

different real-life scenarios (i.e. quick-reaction missions, long-range

missions, close-quarters missions, etc). These algorithms should be readily

selectable from the Mission Planning and Control Panel and should utilize

the KEE rules language to develop this interface.

Current plans for the NPS Model 2 AUV include having two onboard

computers. One of the computers (386-based MS-DOS gridcase) will be

used for data storage and to possibly house real-time planning level LISP

code, and the second computer (GESPAC, Motorola-based, 68020, with

OS-9 operating system) will house the primary autopilot control code,

written in C or possibly ADA. To fully develop and test the software code

for this system, the simulation systems should be upgraded to include a

simulated three computer system by interconnecting a gridcase computer

between the LISP machine and the IRIS graphics workstation.

Additionally, research must be conducted to ascertain the best format for

the software structure of the onboard computer systems and the format of

the information that is to be downloaded from the mission level to these

systems. This information could be in the form of mission parameters, a

set of mission rules, or a combination of both. The onboard systems could

accept this information and either perform all of the planning level

functions within its software structure or contain a rule system that would

allow it to only modify mission plans downloaded to it based on real-time

situations. Upgrading the simulation systems would allow this research to

be conducted rapidly and concurrently with the construction of the actual

vehicle.

76

The NPS AUV-SIM3 dynamic model is being used to develop various

propulsion and maneuvering subsystem controller software. The modular

software structure of this simulation system makes this an ideal vehicle for

this research. The simulation system should, however, be frequently

updated with the new algorithms and thoroughly tested, both in the manual

and autopilot modes. Additionally, as the physical design of the NPS

Model 2 AUV is more fully defined, a new dynamic model should be

developed to research probable operating characteristics of the new design.

As testing of the physical vehicle begins, this dynamic model should be

updated frequently with the most current hydrodynamic data available.

These simulation systems can provide a highly realistic simulation of the

actual vehicle's operating characteristics and, if utilized to its fullest

potential, will produce valuable and timely feedback by quickly

demonstrating the validity of or the potential problems/side effects created

by the new design.

A fully operational and versatile AUV should have the ability to deviate

from planned mission profiles for obstacle avoidance, mapping of

unexpected/ interesting objects, etc. and then be able to resume the pre-

planned mission or re-plan the mission based on new path information.

Additionally, the AUV should be "smart" enough to "learn" from

encounters with previously unknown obstacles so as to plan better paths for

future missions.

Nordman [Ref. 9] suggested that the KEE expert system shell's rule

language could be utilized to implement "interrupt" and "hover" decision

based code to facilitate obstacle avoidance/exploration behavior by the

77

AUV. KEE provides an excellent rule system that provides an effective

way to: 1) express information in discrete steps as independent pieces or

modules of knowledge, 2) express unordered and declarative information,

and 3) specify conditions under which an action takes place [Ref. 37]. By

expressing information in rules, the knowledge base remains transparent,

easily readable, and modular. These characteristics facilitate ready

development of applications like obstacle avoidance/exploration as well as

scenario-driven mission and path planning. The current knowledge base

should be further extended to make use of this facility while retaining the

Mission Planning and Control Panel format.

Currently, all of the mission profiles, with the exception of the Test

Pool category, are written for the open-ocean simulator system, NPS

AUV-SIM1. These missions should be upgraded to facilitate them being

run in the test pool environment. This is in preparation for testing of the

actual vehicle in its water environment. As the characteristics of the NPS

Model 2 AUV become more well defined, and the simulation systems are

upgraded to reflect these operating characteristics, more detailed testing

can be done with the more sophisticated missions to determine inadequacies

or side-effects of the new design that might not make it practical for

certain scenarios/situations. Changes to the design could be made

accordingly. This will provide an excellent medium for validating the

design as it is being developed, and should facilitate an overall time and

cost savings in the full development of the NPS AUV.

78

APPENDIX

This appendix contains files of computer code that is pertinent to this

thesis research. The two major knowledge base files, auvcp.u and

auvcp.desktop, are generated automatically by the KEE system as the

knowledge base is created (active images, image panels, frames, etc).

These files are not included as they are very long and complex and would

not practically benefit the reader of this report. The files that are included

are listed below with brief explanations:

* File ap3.lisp: File apS.lisp gets mission goal position from the

KEE package and initial AUV position info from the IRIS machine
and calculates the autopilot course for the simulator to steer during

mission execution.

* File initkb.lisp: File initkb.lisp initializes the display components
of the AUV Mission Planning and Control Panel. At the start of

each mission selection process, all display units are set to zero.

* File monitor. lisp: File monitor. lisp creates a color display screen

on the LISP machine external color monitor. The display screen

contains a 2-D representation of the test pool environment for the

AUV dynamic model. During mission execution, AUV position

data is sent to this file from from file ap3.lisp and the AUV's track

is plotted using a colored icon.

* File best. lisp: File best. lisp was created during earlier research

[Ref. 8] and is provided here for continuity. This lisp code accepts

start/goal positions from ap3.1isp and uses a best-first search

algorithm to calculate the appropriate path from start to goal.

79

File sym-iris-comml .lisp: This file is also provided for continuity.

It is an updated version of sym-iris-comm.lisp [Ref. 9] developed

by Professor S. Kwak. This file facilitates the interprocess

communications between LISP machines and IRIS graphics

workstations for the NPS AUV-SIM2 and 3 simulation systems.

80

- Mode. LISP; Syntax: Common-lisp; Package: USER. Base: 10 --

. This is the file ap3. This lisp code gets mission goal position from the KEE package

; and initial AUV position infofrom the IRIS machine and calculates the autopilot course

; for the simulator to steer during mission execution.

; The following missions are designedfor the submarine simulator currently

; running on IRIS3. These are open ocean missions an AUV might be expected

; to carry out.

(defun elect_recon_mission (xdest ydest time_on_station)

(transitjo_pt xdest ydest 200 5)

(comejo_PD xdest ydest)

(record_data_onjtation xdest ydest time_on_station)

(transit_back 200 5)

(come_to_PD xstart vstart)

(princ -ELECTRONIC MISSION COMPLETED"))

(defun photoj< econjnisswn (xdest ydest time onjstation periscope bearing)

(transitjojpt xdest ydest 300 6)

(comejo_PD xdest ydest)

(takejphotosjmjtation xdest ydest time_onjstation periscopeJiearing)

(transit_back 300 6)

(comejoJF'D xstart vstart)

(princ "PHOTO RECON MISSION COMPLETED")
(standbyjorjecovery xstart ystart))

(defun sonarjearchjnission (xdest ydest searchjtepth searchjpeed)
(transitjojpt xdest ydest 300 5)

(executejonarjsearch xdest ydest searchjiepth searchjspeed)

(transit_back 300 5)

(comejo_PD xstart vstart)

(princ "SONAR SEARCH MISSION COMPLETED"))

(defun executejonarjearch (xdest ydest searchjiepth searchjpeed)
(sonaijsearch (- xdest 30) (+ 5 ydest) searchjiepth searchjpeed)

(sonarjearch (+ xdest 30) (+ 10 ydest) searchjiepth searchjpeed)

(sonarjearch (-xdest 30) (+ 15 ydest) searchjiepth searchjpeed)

(sonarjearch (+ xdest 30) (+ 20 ydest) searchjiepth searchjpeed)

(princ "SONAR SEARCH COMPLETED"))

(defun sonarjearch (xsearch ysearch depth speed)

(do ((distancejojgoal (getjhejiistance x y xsearch ysearch)

(getjhejiistance x y xsearch ysearch)))

((> 2 distancejojgoal) (princ "SUB ATSUBGOAL"))
(sendjloat (get_autocourse x y xsearch ysearch))

(sendjloat depth)

(sendjloat speed)

(sendjloat xsearch)

(sendjloat ysearch)

(sendjtruig "sonar search")

(
getjiatajromjris))

)

81

(dcfun bottomjearchjnission (xdest ydest searchjspeed)

(transit_to_pt xdest ydest 300 4)

(divejoJottom xdest ydest)

(executeJottomjearch xdest ydest searchjpeed)
(transitJtack 300 4)

(comejoJD xstart \start)

(princ "BOTTOM SEARCH MISSION COMPLETED"))

(defiin divejoJyottom (xdest ydest)

(do ((depthjiow subjdepth subjiepth))

((< depth under sub 150) (princ "SUB NEAR BOTTOM"))
(sendjloat (getjiutocourse x y xdest ydest))

(sendJloat(- (+ subjiepth depth_under_sub) 145))

(sendjloat 4)

(sendJloat x)

(sendjloat \)

(sendjtring "DIVE TO THE BOTTOM")
(getjiatajromjris)))

(defun executeJottomjearch (xdest ydest searchjpeed)
(bottom_search (- xdest 30) (+ ydest 5) search_speed)

(bottomjearch (+ xdest 30) (+ ydest 10) searchjpeed)
(bottomjearch (- xdest 30) (+ ydest 15) search_speed)

(bottom_search (+ xdest 30) (+ ydest 20) searchjpeed))

(defun bottomjearch (xsearch ysearch searchjpeed)
(do ((distancejojjoal (getjhejiistance x y xsearch ysearch)

(getjhejiistance x y xsearch ysearch)))

((>2 distancejo_goal) (princ "SUB ATSUBGOAL"))
(sendjloat (getjiutocourse x y xsearch ysearch))

(sendJloat (- (+ subjdepth depthjinderjub) 150))

(sendjoat searchjpeed)
(sendjoat xsearch)

(sendjoat ysearch)

(sendjtring "BOTTOM SEARCH")
(getjiatajromjris)))

(defan deliverjpayloadjnission (xdest ydest transitjiepth transitjpeed)
(transitjojpt xdest ydest transitjiepth transitjpeed)
(comejoJD xdest ydest)

(princ •TRANSIT COMPLETED - RECOVER PAYLOAD")
(standbyJorjecovery xdest ydest))

The following functions support driving the AUV dynamic model on IRIS5 in the

"autopilot mode". They are based on the "deliverjpayloadjnission" and "transitjojpt"

functions and do not yet support collision avoidance. They do handle path-planning

around obstacles. Any expressions that start with "kee::... " designate KEE package

functions that pass infofrom this, the USER'S package to the KEE package for display on

the Mission Planning and Control Panel.

(defun transitjpool (xl yl transitjiepth transitjpeed)
(start-con)

(terpri)

82

(princ "Connection with iris established. ")

(terpri)

(setq xstart (get_data))

(setq x xstart)

(princ "x receivedfrom iris: ") (print x)

(terpri)

(kee::put.value 'kee: .mission-plan 'kee: .xstart xstart)

(kee: .put. value
'

kee: :auv-operating-status ' kee : :x-position xstart)

(setq ystart (getjdata))

(setq v ystart)

(princ "y receivedfrom iris: ") (print y)

(terpri)

(kee .put. value 'kee: .mission-plan ' kee : :y-start ystart)

(kee: .put. value 'kee::auv-operating-status 'keer.y-position ystart)

(setq depth_underjsub (getjdata))

(princ "depth_under_sub receivedfrom iris: ")(prinl depthjinder_sub)

(terpri)

(kee: .put. value 'kee .mission-plan ' kee : :depth-under-auv depth_under_sub)

(kee ::put. value 'kee : :auv-operating-status ' kee : :depth-under-auv depth_under_sub)

;:: The following lines of code send data to the color monitorfor display of the

::: AUV model's start position and the goal position.

;;, The color monitor's coord system is opposite that of the iris.

;;; (x direction on iris = y direction on monitor)

(setq xi ystart)

(setq yi xstart)

(setq xg yl

)

(setq ygxl)
(draw-start-pos xi yi)

(draw-goal-pos xg yg)
(move-icon xiyi)

(planjpath x y xl yl transitjdepth)

(setq revjpath (reverse path))

(terpri)

(princ "Autopilot course calculatedfor first leg."')(terpri)

(princ "Hit a key on Iris5 main terminal to continue. ")(terpri)

(sendjloat xl

)

(sendjloatyl)

(transit_without_contacts xl yl transit_depth transitjspeed 'TRANSIT")
(transit_back_without_contacts transitjlepth transit_speed)

(terpri)

(princ 'TRANSIT COMPLETE .")

(terpri)

(stopjnjpool xstart ystart))

: The following functions support the AUV and SUB simulator functions in the

, above code. These are subsidiary functions carried out during a mission, or

; functions that assist the path planner with course and water depth calculations.

(defun transit_back (autodepth autospeed)

(setq path revjpath)

(setq path (cdr path)) ;drop the first node to prevent auv limit cycling...

83

(transit xstart xstart autodepth autospeed "TRANSIT BACK"))

(defun record_data_on_station (xdest ydest minutes)

(sctq cndjime (+ (* minutes 3600) (get-internal-real-time)))

(do ((time_now (get-internal-real-time)

(get-internal-real-time)))

((> timejiow endjime) (princ "OK"))

(sendJ'oat (get_autocourse x y xdest ydest))

(sendjloat 0)

(sendjoat!)
(sendjloat x)

(sendjloat vj

(setq command "ELECTRONIC RECON - ANTENNA RAISED")
(sendjstring command)

(getJataJomjris)))

(defun takejphotos_onjstation (xdest ydest minutes periscopeJearing)
(setq endjime (+ (* minutes 3600) (get-internal-real-time))

)

(do ((timejww (get-internal-real-time

)

(get-internal-real-time)))

((> timejiow endjime) (princ "OK"))

(sendjoat (getjjutocourse x y xdest ydest))

(sendjoat 0)

(sendjoat 2)

(sendjoat x)

(sendjoat y)

(sendjtring "PHOTOGRAPHIC RECON - PERISCOPE TRAINED")
(get_dataJomjris)))

(defun comejoJD (xdest ydest)

(do ((depthjiow subjiepth subJtepth))

((< depthjiow I) (princ "SUB atPD"))
(sendjoat (getjiutocourse x y xdest ydest)) ;send autocourse

(sendjoat 0) ;send autodepth

(sendjoat 4) ;send autospeed

(sendjoat x)

(sendjoat vj

(sendjtring "COME TO PERISCOPE DEPTH")
(getJataJomjris)))

(defun standbyJorjecovery (xdest ydest)

(loop

(sendjoat (getjjutocourse x y xdest ydest))

(sendjoat 0) .send autodepth

(sendjoat!) ;send autospeed

(sendjoat xdest)

(sendjoat ydest)

(send_string "STANDING BY FOR RECOVERY - ANTENNA RAISED")
(getjiataJomjris)))

(defun get dataJom_iris()

(setq x (getjiata))

(setq v (getjiata))

(setq depth_under_sub (getjiata))

84

(setq sub_depth (getjiata))

(setq acourse {getjiata))

(princ" x v depthjmder_sub sub' s depth course")

(format t "~% -02F -152F ~15.2f~15,2F -152F" x v depthjinderjub sub_depth acourse)

(terpri)

(setq sonar_contacts

(list

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))

(list (getjiata) (getjiata))))

(princ sonarj:ontacts)

(princ "Contact ranges :")(terpri)

(get_closestjange sonarj:ontacts)

(terpri))

(defun getjiataJromJrisjvithout_contacts(

)

(setq x (getjiata))

(kee: .put. value ' kee : :auv-operating-status 'keer.x-position x)

(setq y (getjiata))

(keer.put. value kee : :auv-operating-status ' kee : :y-position y)

;;; The following few lines transfer data to the color monitor to mark the AUV's
,,'; track during mission execution.

;;; The color monitor coord system is opposite that of iris display;

;;; (x direction on iris = y direction on monitor)

(setq xi y)

(setq yi x)

(move-icon xi yi)

(setq depthjinderjub (getjiata))

(kee : .put.value 'kee : :auv- operating-status ' kee : :depth-wider-auv depthjinder_sub)
(setq subjiepth (getjiata))

(kee::put. value ' kee : :auv-operating-stams 'keer.auv-depth subjiepth)

(setq acourse (getjiata))

(kee ::put. value ' kee : :auv-operating-status 'kee sheading acourse)

(princ" x y depthjinderjiuv auv' s depth course")

(format t "~% ~0,2F -102F ~122f~l22F -122F" x y depthjinder_sub subjiepth acourse)

(terpri))

(setq closestjrontactjange 3)

(defun get_closestjange (contacts)

(do ((contactJist contacts

(cdr contactJist))

(listjength (length contacts)

(1- listjength)))

((< listjength 2))

(princ (caar contactJist))

85

(terpri)))

(defim transit_to_pt (xl yl autodepth autospeed)

(start-con)

(terpri)

(princ "Connection with iris established.")

(terpri)

(setq xstart (get_data))

(setq x xstart)

(princ "x receivedfrom iris: ") (print x)

(terpri)

(setq ystart (getjdata))

(setq y ystart)

(princ "y receivedfrom iris: ") (print y)

(terpri)

(setq depthjinder_sub (get_data))

(princ "depthjinder_sub receivedfrom iris: ")(prinl depth_under_sub)

(sendjloat xl

)

(send_float yl)

(planjpath x y xl yl autodepth)

(setq rev_path (reverse path))

(terpri)

(princ "Autopilot course calculated for first leg. ")(terpri)

(princ "Hit <Enter> on Iris2 side terminal to continue.")

(terpri)

(transit xl yl autodepth autospeed "transit"))

(defun transit (xl yl autodepth autospeed subcommand)
(do ((distancejo_goal (getjhe_disiance x y xl yl)

(getjhe_disrance x y xl yl)))

((> 2 distancejojjoal) (princ "SUB AT GOAL"))
(setq autocourse (getjiutocourse x y (caadr path) (cadadr path)))

(sendjloat autocourse)

(cond

((> 100 depthjinder_sub) (sendjloat (- (+ depthjinder_sub subjJepth) 100)))

(t (sendjloat autodepth)))

(sendjloat autospeed)

(sendjloat (caadr path))

(sendjloat (cadadr path))

(sendjstring subjommand)
(terpri)

(getjiataJromJris)
(cond

((> 1 (getjhejiistance xy (caadr path) (cadadr path)))

(setq path (cdr path))))))

(defun transit_withoutj:ontacts (xl yl autodepth autospeed subjommand)
(do ((distancejojgoal (

getjhejiistance x y xl yl)

(getjhejiistance x y xl yl)))

((> 25 distancejo_goal) (terpri) (princ "AUV AT GOAL") (terpri))

(setq autocourse (getjiutocourse xy (caadr path) (cadadr path)))

(sendjloat autocourse)

(kee: .put. value ' kee : .orders-to-auv 'kee: .autocourse autocourse)

(cond

((> 20 depthjinderjub) (sendjloat (- f+ depthjtnderjub subjiepth) 20)))

86

(7 (sendjloat autodepth)))

{kee:.put.value ' kee: orders-to-auv 'kee: .autodepth autodepth)

(sendjloat autospeed)

(kee: .put'.value ' kee : .orders-to-auv 'kee: .autospeed autospeed)

(kee r.put.value ' kee : :auv-operating-status ' kee::auv-rpm autospeed)

(sendjloat (caadr path))

(kee .put. value 'kee: .mission-plan 'keerx-subgoall (caadr path})

(sendjloat (cadadr path))

(kee r.put. value 'kee: .mission-plan 'kee ::y-subgoal1 (cadadr path))

(kee: :put value 'kee ..mission-plan 'kee::x-subgoa!2 (caadr (cdr path)))

(kee r.put. value 'kee ..mission-plan 'kee::y-subgoal2 (cadadr (cdr path)))

(send_string subcommand)
(terpri)

(get_dataJomJris_without_contacts)

(cond

((> 25 (getjhe_distance xy (caadr path) (cadadr path)))

(setq path (cdr path))))))

(defun transit_back_without_contacts (transit_depth transitjspeed)

(setq path revjpath)

(transit_without_contacts xstart ystart transit_depth transit_speed "TRANSIT BACK"))

(defun stopjn_pool (xstart ystart)

(loop

(sendjloat (get_autocourse x y xstart ystart))

(sendjloat 0) : put auv on surface,

(sendjloat 0) ; come to all stop,

(sendjloat xstart)

(sendjloat ystart)

(kee: .put. value ' kee : :auv-operating-status 'kee::auv-rpm 0)

(send_string "STANDING BY FOR RECOVERY. ")

(get_dataJromJris_without_contacts)))

(defun plan_path (x v xl yl autodepth)

(if

(null (check_water_depth_alongjrack x y xl yl autodepth))

(setq path (process_path (get_real_path (list xy) (list xl yl) (+ 100 autodepth) 20)

(+ 100 autodepth)))

(setq path (list (list x y) (list xl yl))))

(prinl path))

(defun get_autocourse (x y xl yl

)

(cond

((< x xl) (autocoursel x y xl yl))

(t (- 360 (autocoursel x y xl yl)))))

(defun autocoursel (x y xl yl)

(* 57.295 (acos (I (-yl y)

(getjhe_distance x v xl yl)))))

(defun getjhejiistance (xy xl yl)

(sqrt (+ (square (- x xl))

87

(square (- y yl)))))

(defun check_water_depth_btwn_nodes (nl n2 autodepth)

(check_water_depth_along_track (car nl) (cadr nl)

(car n2) (cadr n2) autodepth))

(defun check_water_depth_alongjrack (xy xl yl autodepth)

(setq ac (get_autocourse x y xl yl))

(setq track_length (get_the_distance x y xl yl))

(setq xx x)

(setq yy y)

(prog ((index trackJength))

again

(cond ((> index) (return index)))

(setq index (I- index))

(setq xx (+ xx (sin (I ac 57.295))))

(setq yy (+ yy (cos (I ac 57.295))))

(pnnl (get_water_depth xx yy)) (princ " ")

(prinl xx) (princ " ") (prinl yy) (terpri)

(if(< autodepth (get_water_depth xxyy))

(go again) nil))

(if

(> I (getjhe_distance xx yv xl vl))

(princ " -SUFFICIENT WATER DEPTH ALONG INTENDED TRACK- ")))

(defun processjpath (path autodepth)

(cond

((and<< 2 (length path))

(check_water_depth_bvwnjiodes {car path) (cadr path) autodepth))

(process_path (cons (car path) (cddr path)) autodepth))

((equal 2 (length path)) path)

(t (setq path (cons (car path)

(process_path (cdr path) autodepth))))))

88

,•;; -*- Mode: LISP: Syntax: Common- lisp: Package: KEE: Base: 10 -*-

(in-package 'kee)

;; This is file initkb. This file initializes the display components

;; of the AUV Mission Planning and Control Panel. At the start of each

;; mission selection process all display units are set to zero.

(defun init-disp/ays ()

-initialize goal-selection parameters

(put. value 'goal-selection

(put. value 'goal-selection

(put. value 'goal-selection

(put. value 'goal-selection

(put. value 'goal-selection

(put. value 'goal-selection

(put. value 'goal-selection

'x-position 0)

'y-position 0)

'transit-depth 0)

'transit-speed 0)

'search-depth 0)
'search-speed 0)

'data-set 0)

-initialize mission-plan parameters

(put. value

(put. value

(put. value

(put. value

(put. value

(put. value

(put. value

(put. value

(put. value

'mission-plan

'mission-plan
' mission-plan

'mission-plan

'mission-plan

'mission-plan

'mission-plan

'mission-plan

'mission-plan

'x-start 0)

'y-start 0}
'depth-under-auv 0)

'x-goal 0)

'y-goal 0)

'x-subgoail 0)

'y-subgoall 0)

'x-subgoa!2 0)

'y-subgoal2 0)

^initialize orders-to-auv parameters

(put. value 'orders-to-auv 'autocourse 0)

(put. value 'orders-to-auv 'autodepth 0)

(put. value 'orders-to-auv ' autospeedO)

;initialize auv-operating-status

(put. value 'auv-operating-status 'x-position 0)

(put. value 'auv-operating-status 'y-position 0)

(put.value 'auv-operating-status 'depth-under-auv 0)

(put. value 'auv-operating-status ' auv-depth 0)

(put.value 'auv-operating-status 'auv-rpm 0)

(put.value 'auv-operating-status 'heading 0))

(defun setpack-user ()

:;sets the user package

(serf *package* (find-package "user")))

(defun setpack-kee ()

::sets the kee package

(serf *package* (find-package "kee")))

89

,-;, -*- Mode: LISP; Syntax: Common-lisp; Package. USER -*-

;; This is file monitor This file creates a color display screen on the

;; LISP machine external color monitor. The display screen contains a

2-D representation of the test pool environment for the AUV dynamic

model. During mission execution, AUV position data is sent to this

file from file ap3 and the AU\r s track is plotted using a colored icon.

-DEFINE VARIABLES

(DEFVAR *display-window*)

(DEFVAR *display-window-array*)

(DEFVAR *display-window-width*)

(DEFVAR *display-window-height*

)

(DEFVAR *display-window-position*

)

(DEFVAR *display-window-screen*

)

(DEFVAR *display-wmdow-pos*

)

(DEFVAR *main-screen*)

(DEFVAR *screen-alu*)

(DEF\'AR *start-alu*)

(DEFVAR *goal-alu*)

(DEFVAR *icon-alu*)

(DEFVAR *gnd-alu*)

(DEFVAR *letter-alu*)

(DEFVAR *legend-box-alu*)

(DEFVAR *x-start*)

(DEF\/AR *y-start*)

(DEFX'AR scale)

(DEFVAR xs)

(DEFVAR ys)

(DEFVAR xg)

(DEFVAR yg)
(DEF\;AR xi)

(DEFVAR yi)

;;DEFINE WINDOW AND COLORS

(DEFFLAVOR my-color-flavor(

)

(tv.window

rwgraplncs-mixin)

)

(DEFUN make-color-window

(window-name position inside-width inside-height

&rest options &key (superior (color:find-color-screen :create-p t))

&allow-other-keys)

(apply #' r\' :make-window 'my-color-flavor

:blinker-p nil

.borders 2

:save -bits t

.expose -p t

.label nil

.name window-name
position position

90

.inside-width inside-width

inside-height inside-height

.superior superior

options))

(DEFUN make-display-window ()

(SETF *display-window*

(make-color-window "Display-Window"

'(50 50)1150 850))

(SETF *screen-alu* (SEND color.color-screen

:compute-color-alu

rx.alu-seta 0.3807 0.5125 1.0))

(SEND *display-window* :set-erase-aluf*screen-alu*)

(SEND *display-window* .refresh))

(DEFUN mit-display ()

(clear-scene)

(draw-box)
'monitor-display-is-ready)

(DEFUN create-display-window(

)

(SETF *main-screen* (SEND *terminal-io* superior))

(make-display-window)

(SETF *display-window-pos*

(SEND *display-window* .position))

(SETF *display-window-screen*

(SEND *display-window* .screen))

(init-colors)

'done-init-display-window)

(DEFUN clear-scene ()

(tv.sheet-force-access (*display-window*

)

(SEND *display-window* refresh)))

(DEFUN kill ()

(SEND *display-window* .kill)

'display-window-killed

)

(DEFUN init-colors ()

(SETF *start-alu* (SEND *display-window-screen*

xompute-color-alu color:alu-x 0.406 0.9535 0.2207))

(SETF *goal-alu* (SEND *display-w\ndow-screen*

:compute-cotor-alu color:aht-x 1 .0 0.009008 0.8421))

(SETF *icon-alu* (SEND *display-window-screen*

:compute-color-alu color:alu-x 1 .0 0.0 0.2862))

(SETF *grid-alu* (SEND *display-window-screen*

xompute-color-alu color:alu-x 0.9054 1.0 0.4847))

(SETF *letter-alu* (SEND *display-window-scrcen*

xompute-color-alu color:a/u-x 0))

(SETF *legend-box-alu* (SEND *display-wmdow-screen*

:compute-color-alu color :alu-x 0.745 0.7243 0.7976)))

91

(DEFUN draw-box ()

(SEND *display-window"

.draw-rectangle 1000 500 100 100. *grid-alu*)

;;draw vertical lines

(SEND *display-window*

draw-line 225. 100. 225. 600. *icon-alu*)

(SEND *display-window*

.draw-line 350. 100. 350. 600. *icon-alu*)

(SEND *display-window*

.draw-line 475. 100. 475. 600. *icon-alu*)

(SEND *display-window*

.draw-line 600. 100. 600. 600. *icon-alu*)

(SEND *display-window*

.draw-line 725. 100. 725. 600. *icon-alu*)

(SEND *displa\-window*

.draw-line 850. 100. 850. 600. *icon-alu*)

(SEND *display-window*

draw-line 975. 100. 975. 600. *icon-alu*)

;;draw horizontal lines

(SEND *display-window*

.draw-line 100. 225. 1100. 225. *icon-alu*)

(SEND *display-window*

draw-line 100. 350. 1100. 350. *icon-alu*)

(SEND *display-window*

.draw-line 100. 475. 1100. 475. *icon-alu*))

(DEFUN draw-legend-box ()

(SEND * display-window*

.draw-rectangle 400 100 400 650 *legend-box-alu*)

(SEND *display-window* :draw-filled-m-circle 550 700 20 *start-alu*)

(SEND *display-window* :draw-filled-m-circle 650 700 20 *goal-alu*)

(LET ((sx 540)

(sv 710)

(gx 640)

(gy 710))

(SEND *display-window* .draw-string "S"

sx sy (+ 1 sx) sy t '(.fix .italic .large)

letter-alu)

(SEND *display-window* .draw-string "G"
gx gy (+ 1 gx) gy t '(-fix .italic .large)

letter-alu)))

(DEFUN draw-icon (x y)

(SEND *display- window* :draw-filled-in-circle x y 10 *icon-alu*))

(DEFUN draw-start-pos (x y)

(SETF scale 0.694)

(SETF xs (+(* x scale) 100))

(SETF ys (+ (* v scale) 100))

(SEND *display-window* :draw-filled-in-circlc xs ys 20 *start-alu*))

92

(DEFUN draw-goal-pos (x vj

(SETF scale 0.694)

(SETF xg (+(*x scale) J00))

(SETF yg (+(*y scale) J00))

(SEND *display-window* :draw-filled-in-circle xg yg 20 *goal-alu*))

(DEFUN move-icon (xy)

(serfscale 0.694)

(setfxi<+(* x scale) 100))

(serfyi <+ (* y scale) J 00))

(draw- icon xi yi))

;;;main body

;;;prepare monitor

(create-display-window)

(inir-display)

93

Mode: LISP; Package: USER: Base: JO; Syntax: Common-lisp

Tins is The file best. This lisp code accepts start!goal positions

from ap3.lisp and uses a best-first search algorithm to calculate

the appropriate path from start to goal.

(defun getjreal_path (start finish autodepth gram)

(append

(remove_last (cons start (cdr (best start finish autodepth grain))))

(list finish)))

(defun remove_last (L)

i cond

((= 1 (length L)) nil)

(t (cons (car L) (removeJast (cdr L))))))

(defun best (start finish autodepth grain)

(setq start (list (nearest_20 (car start)) (nearest_20 (cadr start))))

(setq finish (list (nearest_20 (car finish)) (nearest_20 (cadr finish))))

(setq autodepth (roundjium autodepth))

(bestJ (list (list start)) finish autodepth grain))

(defun bestI (queue finish autodepth grain)

(cond ({null queue) nil)

((equalfinish (caar queue))

(reverse (car queue)))

(t (bestl (sort (append (expandjiode (car queue) autodepth grain)

(cdr queue))
#' (lambda (x y) (closerp x y finish)))

finish autodepth grain))))

(defun expand_node (path autodepth grain)

(remove-if

#'(lambda (path) (member (car path) (cdr path)))

(mapcar U '(lambda (child) (cons child path))

(successor (car path) autodepth grain))))

(defun successor (position autodepth grain)

(setq I nil)

(cond

((< autodepth (get_water_depth (car position) (+ (cadr position) grain)))

(setq I (cons (list (car position) (+ (cadr position) grain)) I)))

)

(cond

((< autodepth (get_water_depth (car position) (- (cadr position) grain)))

(setq I (cons (list (car position) (- (cadr position) gram)) I))))

(cond

((< autodepth (get_water_depth (+ (car position) grain) (- (cadr position) grain)))

(setq I (cons (list (+ (car position) gram) (- (cadr position) grain)) I))))

94

(cond

((< autodepth (get_water_depth (+ (car position) gram) (cadr position)))

(setq I (cons (list (+ (car position) grain) (cadr position)) I))))

(cond

((< autodepth (get_water_depth (+ (car position) grain) (+ (cadr position) grain)))

(setq I (cons (list (+ (car position) gram) (+ (cadr position) grain)) I))))

(cond

((< autodepth (get_water_depth (- (car position) grain) (• (cadr position) grain)))

(setq I (cons (list (- (car position) grain) (- (cadr position) grain)) I))))

(cond

((< autodepth (get_water_depth (- (car position) grain) (cadr position)))

(setq I (cons (list (• (car position) grain) (cadr position)) I))))

(cond

((< autodepth (get_water_depth (- (car position) grain) (+ (cadr position) grain)))

(setq I (cons (list (- (car position) grain) (+ (cadr position) grain)) I)))))

(defun closerp (a b with_respect_to)

(< (get_nodejdistance (car a) withjespectjo)

(getjxode_distance (car b) withjespect_to)))

(defun getjwdejdistance (nJ n2)

(sqrt (+ (square (- (car nl) (car n2)))

(square (- (cadr nl) (cadr n2))))))

(defun get_water_depth (x y)

(cond

((> 10 (distance x y 205 205)) 0) ;Sub simulator island

((> 20 (distance x y 205 205)) 50) ;Sub simulator shoals.

((> 30 (distance x y 205 205)) 0) ;Six AUV simulator minesfollow.

((> 30 (distance x y 200 1202)) 0)

((> 30 (distance x y 350 652)) 0)

((> 30 (distance x y 380 902)) 0)

((> 30 (distance x y 535 227)) 0)

((> 30 (distance x y 560 1052)) 0)

(t (* 0.5 (square (distance x y 205 205)))))) ;This is at least the pool depth.

(defun distance (x y xl yl)

(sqrt (+ (square (- x xl))

(square (-yyl)))))

(defun square (x) (* x x))

(defun round_num (number)

(car (list (round number))))

(defun nearest_20 (number)

(* 20 (round num (I number 20.0))))

95

-*- Mode: LISP. Syntax: Common-lisp; Package: USER

This is file sym-iris-comml . Tins file facilitates the interprocess

communications between LISP machines and IRIS graphics workstations.

This is an upgrade from file sym-iris-comm.

'Talk" is an object to send and to receive data across a network.

usage : (send talk init-destination-host 'iris2) ; get remote host object

(send talk :start-iris) ; make connection

(send talk :put-iris data) ; send data

(send talk get-iris) ; get data from remote host

(send talk .stop-iris) ; close communication

(send talk .reuse-iris) ; open closed communication

(send talk :change-iris-ports) ; switchfrom ihs2 full-duplex

; comms to iris5 semi-duplex

(def\ar talk)

library functions to be used by flavor conversation-with-iris.

(defun convert-number-to-string (n)

(princ-to-string n)

)

(defun convert-string-to-integer (str &optional (radix 10))

(do((jO(+ jl))

(nO (+ (* n radix) (digit-char-p (char str j) radix))))

((= j (length str)) n)))

(defun find-period-index (str)

(do((xO(+xl)))
((equal (char str- x) (char "." 0))

x)))

(defun get-leftside-of-real (str ^optional (radix 10))

(do ((jO(I + j))

(n (+ (* n radix) (digit-char-p (char str j) radix))))

((or (null (digit-char-p (char str j) radix)) (- j (length str))) n)))

(defun get-rightside-of-real (str ^optional (radix 10))

(do ((index (1+ (find-period- index str)) (1+ index))

(factor 0.10 (* factor 0.10))

(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))

((= index (length str)) n)))

96

(defun convert-string-to-real (str &optional (radix 10))

(+ (float (get-leftside-of-real str radix)) (get-rightside-of-real str radix)))

(defun num-string4 (num.)

; num should be less then and equal to 4 digits,

(let* ((num-string (princ-to-string num))

(num-of- leading-zeros (- 4 (length num-string)))

(leading-zeros

(make-string num-of-leading-zeros

.initial-element (char "0"
0))))

(concatenate 'string leading-zeros num-string)))

port number definitions: Iris2 uses full duplex comms so ports are set up for

this default. IrisS uses semiduplex comms (the same portfor send and
receive) and will have both ports set to *remote-portl*

.

(defvar *remote-portl* 1027) ; this is the remote send port

(defvar *remote-port2* 1026) ; this is the remote receive port

(defvar * local-talk-port* 1500) ; this is the local send port

(defvar * local-listen-port* 1501

)

; this is the local receive port

conversation-with-irisflavor definition

This definition is not restricted to iris, but it can be

used with any host as long as the remote host does not

already use ports 1027 or 1026 for its own purposes.

(defflavor conversation-with-iris ((talking-port-number *remote-portl*)

(listening-port-number *remote-port2*

)

(local-talk-port-number * local-talk-port*)

(local-listen-port-number * local-listen-port*

)

(talking-stream)

(listening-stream)

(destination-host-object)

)

.initable-instance-variables)

(defmethod (:init-destination-host conversation-with-iris)

(name-of-host)

97

[serf destination-host-object (net.parse-host namc-of-host)))

(defmethod (xhange-ins-ports conversation-with-ihs)

(setf talking-port-number *remote-port]*) ;sets ins5 semi-duplex comm ports,

(serf listening-port-number *remote-portl*))

(defmethod (.start-iris conversation-with-iris)

(serftalking-stream

(tcp.open-tcp-stream destination-host-object

talking-port-number

local-talk-port-number))

(self listening-stream

(tcp.open-tcp-stream destination-host-object

listening-port-number

local-listen-port-number))

(terpri)

(princ "A conversation with the iris machine has been initiated. ")

(terpri))

(defmethod (reuse-iris conversation-with-iris)

(send self .start-iris))

(defun read-string (stream num-chars)

(let ((out-string ""))

(dotimes (i num-chars)

(setfout-string (string-append out-string (read-char stream))))

out-string))

(defmethod (:ger-iris conversation-with-iris)

(let* ((typebuffer " ")

(lengthbuffer " ")

(buffer " ")

(buffer-length 1))

(serf typebuffer

(read-string listening-stream 1))

(serf lengthbuffer

(read-string listening-stream 4))

(self buffer-length

(convert-string-to-integer lengthbuffer))

(self buffer

(read-string listening-stream buffer-length))

(cond ((equal typebuffer "I") (convert-string-to-integer buffer))

98

((equal rypebuffer "R") (convert-sving-to-real buffer))

((equal rypebuffer "C") buffer)

(tnil))))'

(defun my-write-strmg(string stream)

(let* ((num-chars (length string)))

(dotimes (i num-chars)

(write-char (aref string i) stream))))

(defmethod (:put-iris conversation-with-iris)

(object)

(let* ((buffer (cond

((equal (type-of object) 'bignum) (convert-number-to-string object))

((equal (type-of object) 'fi.xnum) (convert-number-to-sning object))

((equal (type-of object) 'single-float) (convert-number-to-string object))

((equal (type-of object) 'string) object)

(t "error")))

(buffer-length (length buffer))

(rypebuffer (cond ((equal (type-of object) 'bignum) "I")

((equal (type-of object) 'fixnum) "I")

((equal (type-of object) 'single-float) "R")

((equal (rype-of object) 'string) "C")

U "C")))

'

(lengthbuffer (convert-number-to-string buffer-length)))

(my-write-string rypebuffer talking-srream)

(send talking-stream .force-output)

(if(= (length lengthbuffer) 4)

(write-string lengthbuffer talking-stream)

(write -string (num-string4 lengthbuffer) talking-stream))

(send talking-stream .force-output)

(my-write-string buffer talking-stream)

(send talking-stream .force-output)

))

99

(defmethod (:srop-iris conversation-with-iris)

(send listening-stream .close)

(send talking-stream .close)

(terpri)

(princ "A conversation with the iris machine has been closed. ")

(terpri))

(serf talk (make-instance ' conversation-with-iris))

(defun choose -iris (* host-name*)

(cond

((equal *host-name* ' iris2)

(setq *host-name* ' iris2)

(send talk :init-destination-host *host-name*) ;use iris2 as default output.

(terpri)

(princ "Iris2 communications selected")

(terpri))

((equal *host-name* ' iris5)

(setq *host-name* 'irisS)

(send talk init-destination-host *host-name*

)

(terpri)

(princ "Iris5 communications selected")

(teipn))))

(defun test-iris2() ;use these two functions to test

(equal *host-name* 'iris2)) ;which iris machine is the output.

;an example of this is the get_water_

(defun test-iris5() .depth function in best. lisp,

(equal *host-name* 'iris5))

(defun start-con()

(send talk .start-iris))

(defun get_data()

(send talk get-iris))

(defun send_float(single-float)

(send talk put-iris single -float))

(defun send_string(string)

(send talk :put-iris string))

(defun end-con()

(send talk .stop-iris))

(defun restartf)

(send talk reuse-iris))

100

REFERENCES

1. Hawkes, G. and Earle, S., "DEEP FLIGHT: A New Approach to

Autonomous Underwater Search and Survey Vehicles," Unmanned Systems,

v. 5, No. 4, Spring 1987.

2. Bane, G. and Ferguson, J., "The Evolutionary Development of the Military

Autonomous Vehicle," Proceedings of the Fifth International Symposium on

Unmanned Submersible Technology, v. 5, June 1987.

3. Hartman, P., "Practical Applications of Artificial Intelligence in Naval

Engineering," Naval Engineers Journal, v. 100, No. 6, November 1988.

4. Daniels, J., "Artificial Intelligence: A Brief Tutorial," Signal, June 1986.

5. D'Ambrosio, B., "Expert Systems-Myth or Reality?," BYTE, pp. 275-282,

January 1985.

6. Kumara, S. Soyster, A. and Kashyap, "An Introduction to Artificial

Intelligence," IE, pp. 9-20, December 1986.

7. Waldrop, M., "The Necessity of Knowledge," Science, pp. 1279-1282,

March 1984.

8. MacPherson, D., A Computer Simulation Study of Rule-Based Control of an
Autonomous Underwater Vehicle, Master's Thesis, Naval Postgraduate

School, Monterey, CA, June 1988.

9. Nordman, D., A Computer Simulation Study of Mission Planning and
Control for the NPS Autonomous Underwater Vehicle, Master's Thesis,

Naval Postgraduate School, Monterey, CA, June 1989.

10. Jiang, J. and Doraiswami, R., "Information Acquisition in Expert Control

System Design Using Adaptive Filters," Proceedings of the IEEE
International Symposium on Intelligent Control, 1987.

11. Busby, F. and Vadus, J., Status and Trends in Autonomous Underwater
Vehicles (AUV) Research and Development in the U.S.A., National Oceanic
and Atmospheric Administration, Rockville, MD, September 1989.

101

12. Ura, T., "Free Swimming Vehicle PTEROA For Deep Sea Survey,"

Intervention '89 Conference and Exposition, 1989.

13. Durham, J., Engineering Intelligent Undersea Vehicles, Naval Ocean Systems

Center, San Diego, CA, June 1989.

14. Durham, J., Gillcrist, B., and Heckman, P., A Testbed Processor for
Embedded Multi-Computing, Naval Ocean Systems Center, San Diego, CA,
August 1989.

15. Durham, J., Heckman, P., Bryan, D., and Reich, R., Eave-West: A Testbed

for Plan Execution, Naval Ocean Systems Center, San Diego, CA, July 1988.

16. Wolfgang, D., Dear, T., and Galbraith, C, Expert Systems for the Technical

Professional, John Wiley & Sons, Inc., 1987.

17. Keller, R., Expert Systems Technology: Development and Application,

Yourdon Press, Englewood Cliffs, N. J., 1987.

18. Alexander, T., "The Next Revolution in Computer Programming," Fortune,

pp. 81-86, October 1984.

19. Shortliffe, E., Computer Based Medical Consultation: MYCIN, Elsevier,

New York, 1976.

20. Duda, R., Hart, P., Konolige, K., and Reboh, R., "A Computer-Based
Consultant for Mineral Exploration," Technical Report: Final Report, SRI
Project 6415, SRI International, September 1979.

21. Wenstrand, D., Stewart, R., Grabowski, D., and Busher, D., "A Multiple

Knowledge Base Approach to AUV Mission Control in Naval Applications,"

AUVS 87, Proceedings, July 1987.

22. Verity, J., "The LISP Race Heats Up," Datamation, pp. 55-58, August 1986.

23. Robinson, G., "Mainframe Technology in a Micro," Design News, pp. 119-

124, January 1986.

24. Serlin, O., "MIPS, DHRYSTONES, and Other Tales," Datamation, pp. 1 12-

118, 1986.

25. Newt, J., "A Supercomputer on a Single Chip," Fortune, September 1986.

102

26. Norton, R., "Where the U.S. Stands, Computers, Chips, and Factory

Automation," Fortune, pp. 28-32, October 1986.

27. "Computer Incorporates 64,000 Processors," Design News, p. 19, July 1986.

28. Williams, T., "Optics and Neural Nets: Trying to Model the Human Brain,"

Computer Design, pp. 47-62, March 1987.

29. Hppfield, J. and Tank, D., "Computing with Neural Circuits: A Model,"

Sdence, pp. 625-633, August 1986.

30. TUcker, M., "Coming Next from Japan: The Bionic Computer," Mini-Micro

Systems, pp. 28-30, July 1986.

31. Vifctor, J., "Bell Labs Models Parallel Processor on Neural Networks," Mini-

Micro Systems, pp. 43-51, August 1986.

32. MacDonald, G., Model-based Compensator Design and Experimental

Verification of Control Systems for a Model AUV, Master's Thesis, Naval

Postgraduate School, Monterey, CA, March 1989.

33. Boncal, R., A Study of Model Based Maneuvering Controls for Autonomous
Underwater Vehicles, Master's Thesis, Naval Postgraduate School,

Monterey, CA, December 1987.

34. Thayler, G., Automatic Control Systems, West Publishing Co., St. Paul/New
York/LA/San Francisco, pp. 260-261, 1989.

35. Utkin, V., "Variable Structure Systems With Sliding Modes," IEEE
Transactions on Automatic Control, v. AC-22, No. 2, April 1977.

36. Bane, G. and Ferguson, J., "The Evolutionary Development of the Military

Autonomous Vehicle," Proceedings of the Fifth International Symposium on
Unmanned Untethered Submersible Technology, v. 5, pp. 23-27, June 1987.

37. KEE Software Development System User's Manual, version 3.0, pp. 1-1 to

1-4, Intellicorp, Mountain View, CA, March 1986.

38. Friend, J., Design of a Navigator For a Testbed Autonomous Underwater
Vehicle, Master's Thesis, Naval Postgraduate School, Monterey, CA,
December 1989.

103

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center

I"

1 . Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145
i

2. ' Dudley Knox Library

-Code 0142
• Naval Postgraduate School

Monterey, CA 93943-5002

3 ! Chief Of Naval Operations

Director, Information Systems (OP-945)

Navy Department

Washington, DC 20350-2000

4 Department Chairman, Code 52
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5000

5 Curricular Officer, Code 33

Weapons Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

6 Professor Robert B. McGhee
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

7 Professor Sehung Kwak, Code 52Kw
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

104

8 Professor Yuh-Jeng Lee, Code 52Le
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

9 Professor A.J. Healey, Code 69Hy
Mechanical Engineering Department

Naval Postgraduate School

fvlonterey, CA 93943-5000

10 Professor R. Christi, Code 62Cx
Electrical and Computer Engineering Department

J^aval Postgraduate School

Monterey, CA 93943-5000

1 1 United States Military Academy
Department of Geography & Computer Science

ATTN: CPT Mark Fichten

West point, NY 10996-1695

12 Naval Ocean Systems Center

Ocean Engineering Division (Code 94)

ATTN: Paul Heckman
San Diego, CA 92152-5000

13 Naval Coastal System Center

Navigation, Guidance, and Control Branch
ATTN: G. Dobeck
Panama City, FL 32407-5000

14 Naval Surface Warfare Center

ATTN: Hal Cook, Code u25
White Oak, MD 20910

15 HQDA Artificial Intelligence Center

ATTN: DACS-DMA, LTC A. Anconetoni
The Pentagon, Room 1D659
Washington, D.C. 20310-0200

16 RADM G. Curtis, Code PMS-350
Naval Sea Systems Command
Washington, DC 20362-5101

105

17 Dr. David Y. Tseng
Hughes Research Laboratories

3011 Malibu Canyon Rd.

Malibu, CA 90256

18 Research Administration

Code 012
Naval Postgraduate School

^lonterey, CA 93943-5000

i

19 NASA Goddard Space Flight Center

ATTN: Russell Werneth
Greenbelt Road
£reenbelt, MD 20771

20 MARINTEK
ATTN: Svein Kristiansen

Haakon Haakonsons gt. 34

P.O. Box 4125 Valentinlyst

N-7000 Trondheim, Norway

106

IsJAV

MOT:

Thesis Thesis
R68555 R68555
cl Ic.l

I

Rogers
A study of 3-D visua-

lization and knowledge-

based mission planning

and control for the NPS

Model 2 Autonomous
Underwater Vehicle.

Thesis

R68555 Rogers

A study of 3-D visua-
lization and knowledge-
based mission planning
and control for the NPS
Model 2 Autonomous
Underwater Vehicle.

