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ABSTRACT

There has been a tremendous growth in recent years in the use of data base

management systems (DBMS) throughout the world. This has lead to efforts to

increase the effectiveness and efficiency of systems designed to create and

maintain large databases. The traditional approach has been to select a data

model and its associated model-based data language and implement a database

system based on that single model. The multi-lingual database system (MLDS)

was designed to increase the functionality of data base systems by allowing the

use of multiple data models and several model-based languages on a single system.

With this approach, the system could support a heterogeneous collection of

databases, each based on the data model most appropriate for the individual

application requirements.

MLDS currently supports the use of relational, hierarchical, network, and

functional databases. The goal of this thesis is to further increase the functionality

of MLDS by permitting a user knowledgeable only in a relational-based data

language (SQL) to access and manipulate information in a hierarchical database,

while strictly maintaining the integrity of the hierarchical model. This extends

the multi-lingual database system to a multi-model database system (MMDS).

The emphasis, in this thesis is two-fold. First, to provide the design analysis

necessary to accomplish the translation. More specifically, to develop a process

for transforming a hierarchical database schema into an equivalent relational

schema and to analyze the SQL requests that are used to access a database and
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provide a methodology for equivalent access to a hierarchically- based database

system. The second area of emphasis is in the implementation of the schema

transformation process and language translation methodology within the current

MLDS structure. The software engineering aspects of the implementation are

detailed to provide a base for further expansion of similar systems.
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I. INTRODUCTION

A. OVERVIEW

The traditional approach to designing and implementing a database system

involves analyzing the needs and structure of the task and then choosing an

appropriate data model. Possible models include the relational data model, the

hierarchical data model, the network data model, or the entity-relationship model

to name just a few. The next step in the process is to specify a data language

based on the selected model. For example, SQL for the relational data model or

DL/I for the hierarchical model.

A number of database system have been designed following this traditional

approach. IBM's SQL/Data system supports the relational model and data

language. Sperry Univac developed the DMS-1100 system which supports the

network data model and although its data language is unnamed, it uses a

CODASYL-based data manipulation language. A final example is IBM's

Information Management System (IMS) which was developed around the

hierarchical data model and the hierarchical model data language DL/I (Data

Language I).

Each of these traditional database designs can be characterized as being

mono-lingual database systems. That is, each is based on a single data model that

acts as a high-level abstraction of the underlying data that makes up the database
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itself. The user interacts with the database by writing transactions in the model-

specific data language designed to support that data model. The obvious

limitation of this approach is that the user is restricted to a single data model and

a specific model-based data language.

A much more flexible approach to database design was proposed by

Demurjian and Hsiao [l]. Modern database systems should support and execute a

large number of shared databases using a finite set of data models and associated

data languages. Such a system is call a multi- lingual database system (MLDS).

There are a number of distinct advantages to such an approach. Since an

MLDS design supports a number of different data models, an organization using

this system could save on the cost of additional hardware and software when

implementing a new database or database application. An analysis of the new

requirements would lead to the selection of an appropriate model and subsequent

implementation of the database on existing system components.

Another distinct advantage is in support and training. Since MLDS supports

a variety of data models and languages on a single system, existing employee skills

can be utilized on the multiple data models reducing overall training costs.

Additionally, database resources are specialized to the particular mix of

requirements within an organization rather than relying on a single, mono-lingual

system that must attempt to be general enough to handle the diverse

requirements. This specialization results in an increase in both performance and

functionality.
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A more subtle, but significant advantage of using an MLDS system involves

the flexibility to explore the effectiveness of various data models for a given

database application. The development of a new application might involve

parallel implementation of a small number of databases utilizing different data

models and languages that appear appropriate to the envisioned use. Further

testing and analysis may indicate that the mix of transactions specific to that

application are more efficiently and effectively handled by one of the selected

models.

B. THE MULTI-LINGUAL DATABASE SYSTEM

A block diagram of the structure of a multi-lingual database system is shown

in Figure 1. A user accesses and modifies the database by interaction with the

language interface layer (LIL) through a specific user data model (UDM).

Transactions are written in a user data language (UDL) defined for the chosen

model. Transactions are of two general types, database definition requests and

database manipulation requests. The LIL identifies which of these types is

currently being input by the user and routes the transaction sequences to the

kernel mapping system (KMS) for processing.

The KMS handles the requests in two ways. If the transactions are database

definition requests, the KMS transforms the UDM database definition to a kernel

data model (KDM) database definition equivalent. The transformed definition is

then forwarded to the kernel controller (KC) which, in turn, routes the requests to

11



UDM :User Data Model

UDL :User Data Language

LIL : Language Interface Layer

KMS : Kernel Mapping System

KC : Kernel Controller

KFS : Kernel Formatting System

KDM : Kernel Data Model

KDL : Kernel Data Language

KDS : Kernel Database System

Data Model

Data Language

System Module

Information Flow

Figure 1. The Multi-Lingual Database System

the kernel database system (KDS) for processing. When the KDS has finished with

the database creation, it notifies KC of the completion, which in turn notifies the

user through the LIL that the database definition request has been processed and

further requests can be accepted.
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If the transactions are database manipulation requests, the KMS transforms

the UDL transactions to their KDL equivalents. These requests are then

forwarded to the KDS, through the KC, for processing. The KDS returns the

results of the transaction to KC. KC forwards these results to the kernel

formatting system (KFS) where they are transformed from their KDM structure

to a UDM equivalent. The results are then displayed to the user in a format

consistent with the UDM.

The LIL, KMS, KFS, and KC define the language interface for a single user-

defined data model. In a multi-lingual database system, a separate language

interface is required for each model defined as shown in Figure 2. For example, in

the current system, a unique language interface has been developed for the

relational/SQL model, the hierarchical/DL/I model, the network/CODASYL-

DML model, and the functional/Daplex model. In contrast, the KDS structure is

a single, common component shared by all models. It is through the KDS that the

physical database is accessed and manipulated by the various user-defined

language interfaces.

The attribute-based data model and attribute-based data language (ABDL)

have been implemented as the KDM and KDL, respectively, for MLDS. ABDL is

a simple yet powerful language first described by Hsiao [2,3] and studied by

Rollins [4]. Subsequent reports have been completed which show how

relational [5], hierarchical [6], and network [7] constructs can be mapped to

attribute-based equivalents and identified the background for the data-language
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Figure 2. Multiple Language Interfaces

interfaces from SQL to ABDL [8,9], from DL/I to ABDL [10,11] and from

CODASYL-DML to ABDL [12,13]. Additionally, the design for the Daplex to

ABDL language interface [14] has been detailed, however, the implementation [15]

has not been completed at the time this thesis was written.
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C. THE MULTI-BACKEND DATABASE SYSTEM

The multi-backend database system (MBDS) has been designed to overcome

the performance and replacement problems associated with a traditional

mainframe-based approach to database system design. MBDS has solved these

problems by moving the database functions to a separate system with its own

dedicated hardware and software. As shown in Figure 3, the MBDS controller is a

separate computer from the backends. It acts as an interface to a host computer

or directly to users and performs the controlling functions of the database system.

Transactions are passed to the controller and the results of database operations

are routed back to the controller from the backends. The backends are the

database engines of MBDS. Each is a separate mini- or micro- computer

connected in parallel via a broadcast communications bus. Each backend

maintains a portion of the database on one or more hard disk subsystems. This

parallelism proves to be the key to the high-performance of the system. When a

transaction is broadcast by the controller, each backend can execute the request

on its portion of the database, independent of the other backends.

The benefits of the MBDS architecture lie in the capability to provide

performance gains and to accommodate database growth. Performance gains can

be realized by increasing the number of database backends. Assuming a constant

size database, an MBDS system should produce a nearly proportional decrease in

response times when the number of backends is increased. Additionally, a

proportional increase in the number of backends in relation to an increase in the

15
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Figure 3. The Multi-Backend Database System

size of the database produces nearly invariant response times for a given set of

transactions.

MBDS also provides a high degree of extensibility. The system can

accommodate additional backends with no modification to existing software and

no new programming. In addition, no modification to existing hardware is
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necessary and the disruption of system activity in minimal. The reader is referred

to Hsiao and Menon [16,17] for a more detailed discussion on MBDS.

*»

D. THESIS ORGANIZATION

The current implementation of MLDS is restricted in the complete utilization

of the available databases. Specifically, the relational databases are accessible only

through the SQL interface, the hierarchical databases are accessible only through

DL/I, the network databases are accessible only through the CODASYL-DML

interface, and the functional databases are accessible only through Daplex. This

thesis is part of the effort to remove these restrictions, thereby allowing the

databases based on a given models to be accessed by database languages

associated with different data models. This extends the multi- lingual database

system to a multi-model database system (MMDS).

We are concerned in this thesis with the design and implementation of a

methodology which will allow a SQL user to access a hierarchical database. In

Chapter II, we describe the attribute-based, relational, and hierarchical models

and their associated languages in order to provide a base of understanding for the

following discussion. In Chapter III we examine a number of strategies for

implementing the cross-access of a hierarchical database via SQL transactions in

the MMDS and select the most appropriate approach. Chapter IV details the

implementation issues involved in transforming a hierarchical schema to a

functionally equivalent relational schema and in Chapter V, we discuss the design

17



and implementation issues involved in transforming SQL transactions into ABDL

equivalents that will allow manipulation of data in a hierarchical database while

maintaining the integrity of that database. Finally, in Chapter VI, we provide our

conclusions concerning the actual design and implementation of the cross-

language functionality.

Appendix A provides a schematic representation of the major data structures

utilized in implementing the relational language interface, with emphasis on those

structures modified for the MMDS implementation. Appendices B and C contain

the specification details of the LIL and KMS, written in a System Specification

Language for ease in understanding. These two modules were the most extensively

modified during the implementation of MMDS. New or modified code has been

italicized to more clearly identify changes in the MLDS design. The relational

model implementation thesis by Kloepping and Mack [9], contains complete

details on the data structures and module specification of the relational language

interface in the Multi-Lingual Database System.

18



II. DATA MODELS

In this chapter, we briefly describe the various data models and model-based

data languages necessary for a full understanding of the multi-model

transformation. In section A, we discuss the attribute-based data model and its

associated language ABDL. Section B outlines the relational data model and the

SQL data language. Finally, in section C the hierarchical data model and the

DL/I language are presented.

A. THE ATTRIBUTE-BASED DATA MODEL

As stated in Chapter I, the attribute-based data model and ABDL have been

implemented as the KDM and KDL respectively in the multi-lingual database

system. This model and its associated language, as originally developed by

Hsiao [2,3], is a simple yet powerful construct for creating and manipulating

databases.

1. Model Description

A database consists of a collection of files. Each file contains a group of

related records. A record is made up of a collection of attribute- value pairs. An

attribute-value pair is a Cartesian product consisting of an attribute name and an

attribute value. For example, <GRADE, 'A'> is an attribute-value pair having

GRADE as an attribute name and an associated attribute value of 'A'. A record

19



may also contain an optional record body, containing textual information related

to the record. An example of a record, without a record body, is shown below.

( <FILE, Student>, <NAME, 'Zawis'>, <SNUM, 0284>, <GRADE, 'A'>
)

The first attribute-value pair in each record identifies the file name. In this case,

the file name is 'Student'. There is at most one attribute value pair for each

unique attribute defined in the database.

Access to the database is through a query of keyword predicates. A

predicate is a three-tuple in the form < attribute, operator, value>, such as

(SNUM <= 0284). A query on a database then, is a finite number of keyword

predicates in disjunctive normal form. For example,

(((FILE = Student) and (SNAME = Zawis)) or

((FILE = Student) and (SNAME = Little)))

2. The Attribute-Based Data Language (ABDL)

Access and manipulation of a database are performed through five

primary operations (insert, delete, update, retrieve and retrieve-common). These

operations are formed by utilizing the queries as just described. A brief

description of each operation follows.

The INSERT request in used to insert a new record into a specified file of

an existing database and takes the form:

INSERT Record

20



An example of an INSERT operation which inserts a student record into a file

named Student is: .

INSERT (<FILE = Student>, <SNAME = Gorman>, <SNUM = 3462>)

The DELETE operation is used to remove one or more records from the

database. A DELETE operation takes the form:

DELETE Query

An example of a DELETE which removes all students named 'Hayes' from the

Student file is:

DELETE ((FILE = Student) and (SNAME = Hayes))

An UPDATE is used to modify records of the database. An UPDATE

request consists of two parts. The syntax is:

UPDATE Query Modifier

An example of an UPDATE request which changes the grade of a student named

Oliver to an 'A' is:

UPDATE ((FILE = Student) and (SNAME = Oliver) (GRADE = 'A'))

A RETRIEVE request is used to retrieve records from the database. The

database is not altered by this operation. A RETRIEVE consists of three parts, a

query, a target-list and an optional by-clause. The target list specifies the set of

attributes to be output to the user. It may consist of an aggregate operation (avg,

count, sum, min, max). The by-clause is used to group the output records. The

21



syntax for a RETRIEVE request is:

RETRIEVE (Query) (Target-list) (by-clause)

For example:

RETRIEVE (FILE = Student) (SNAME) BY SNUM

would retrieve the names of all students, ordered by their student number.

The final operation is the RETRIEVE-COMMON request. It is used to

merge two files by common attribute values. The syntax for a RETRIEVE-

COMMON request is:

RETRIEVE (Query 1) (target-list 1)

COMMON (attribute 1, attribute 2)

RETRIEVE (Query 2) (target-list 2)

An example of such a request is:

RETRIEVE (FILE = STUDENT) (SNAME)
COMMON (SNAME, TNAME)
RETRIEVE (FILE = TEACHER) (TNAME)

This request would display a list of students and teachers that share a common

name. As with the retrieve command, the database is not modified by this

operation.

B. THE RELATIONAL DATA MODEL

1. Model Description

The relational database is viewed by its users as a collection of tables. A

table can be visualized as being organized in rows and columns. The rows, called

tuples, are a sequence of related values. The column headings of the table are the

22



domain names for the values listed below them. In terms of the attribute-based

data model described earlier, a table is a file, while the tuples are records. Each

tuple value equates to an attribute-value and the domain names are the

attribute-names. The relational model was a major departure from earlier

database models such as the hierarchical and network models in the sense that the

user was no longer required to understand the underlying structure of the

database in order to access and manipulate the data contained within it. Instead,

the user is presented with a simple, tabular representation of the data and is

allowed to manipulate the data directly without having to first navigate a set of

logical connections leading to that data. Operations of the data are specified

logically by relational algebra or calculus [18]. This allows maximum flexibility in

the manipulation of the database. Any relationship that can be expressed in a

logical query can be used to access the data.

2. The Data Manipulation Language (SQL)

A number of different relational data languages have been developed, but

by far the most common is SQL (initially called SEQUEL) [19]. It is an English-

like language that allows intuitive and simple access to and manipulation of

relational databases. SQL is a powerful language which allows many variations of

the basic commands. No effort is made in the following examples to provide an

exhaustive description of these commands. Instead, the basic syntax is presented

to provide a familiarity with the language constructs. A more detailed survey can

be found in Date [20].
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The SELECT command is used to retrieve information from the

database. The basic syntax is:

SELECT attribute(s) FROM relation WHERE query

The attribute-values to be returned are listed in the SELECT clause. The relation

or relations to search are identified in the FROM clause, and the conditions on

the search are specified in the where clause. An example of a SELECT command

is:

SELECT SNUM
FROM Student

WHERE SNAME = Hayes

The SELECT command is an extremely flexible construct which provides

numerous variations for accessing a database. One of the most useful is the

NESTED SELECT in which the results of one SELECT request are used in the

WHERE clause of a second SELECT to further refine the set of conditions used

in accessing the database.

The INSERT command is used to to insert a new tuple (record) into an

existing table (relation). Its syntactical structure is:

INSERT INTO relation : (attribute-names) < attribute-values >

For example:

INSERT INTO Student: (SNAME, SNUM, GRADE)
<'Brodhag\ 9745, 'A'>

24



If all the attributes of the inserted tuple are specified in the INSERT command,

the attribute names do not have to be explicitly listed.

The DELETE command is used to remove tuples from an existing

database. The syntax is:

DELETE relation WHERE query

The set of tuples to be deleted is determined by the query of the WHERE clause.

For example:

DELETE Student

WHERE GRADE = 'B'

will delete all tuples in the student relation which have a value of 'B' in the

GRADE attribute.

The UPDATE command changes a value of a specific attribute within an

existing tuple or set of tuples. The basic syntax is as follows:

UPDATE relation SET modifier WHERE query

An example of an UPDATE operation is:

UPDATE Teacher

SET SALARY = SALARY + 10000

WHERE DEPT = Computer Science

This transaction will update the tuples in the Teacher relation to reflect a 10,000

dollar pay increase for all instructors in the Computer Science department.
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C. THE HIERARCHICAL DATA MODEL

1. Model Description

A hierarchical database is composed of an ordered set of trees [20]. A tree

consists of a single, root record type with an ordered set of one or more dependent

subtrees. Each subtree in turn consists of a single root record and set of zero or

more dependent subtrees. Hierarchical structures are a very natural way to model

real-world systems such as business organizations, military chains of command,

university course offerings, etc. and thus are ideal structures for database

organization. Each record type is composed of one or more attributes which

uniquely define it. A record type is connected to dependent record types through

directed arcs or links. These links provide implicit information about the

relationships between the various record types that must be explicitly identified in

a relational database. In a hierarchical model, the links define a one-to-many

relationship from the parent to the child record type. At most, one link can exist

between two record types. One of the key constraints in a hierarchical system is

that no occurrence of a child record type can exist without its parent. This

implies that many of the operations on a database must necessarily affect record

occurrences other than those specifically identified. For example, if a record

occurrence is deleted from the database, the entire subtree consisting of dependent

child records to which it is linked must also be deleted. Similarly, a child record

occurrence cannot be inserted into the database unless its parent currently exists.

26



2. The Data Manipulation Language (DL/I)

One of the first, and possibly still the most utilized, database system was

introduced in 1968 by International Business Machines (IBM) under the product

name Information Management System (IMS) [21]. An IMS database consists of

a hierarchical arrangement of segments (records), each of which is composed of a

collection of fields. The data manipulation language utilized by IMS is called

Data Language/One (DL/I). Queries to a hierarchical database are designed to be

made by issuing DL/I calls from within a host language such as COBOL or PL/I.

Since MLDS is a stand-alone system, there is no need for such a host language.

Therefore, a more descriptive syntax has been implemented following the general

form outlined by Date [20]. Four basic operations (get, insert, delete and replace)

have been implemented within MLDS.

The GET operations (GU, GHU, GNP, GHN, etc.) are used to set

currency pointers within a hierarchical database and perform retrieval of segment

occurrences. Various forms of this operation are also utilized to prepare the

database for other manipulation commands. The following example is a Get

Unique (GU) query which is used to retrieve the first student occurrence with a

grade of B in course number C100 taught in July 1987.

GU course (cnum = 'clOO')

offering (date = '0787')

student (grade = 'B')
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In addition to the record retrieval, currency pointers have been set within the

database and retrieval of additional records meeting the same criteria can be

accomplished through looping constructs utilizing a Get Next (GN) operation.

For example, the following loop transaction will retrieve the remaining records

meeting the above constraints.

aa GN student

GOTO aa

An INSERT operation is accomplished by specifying a record occurrence

and then identifying the hierarchical path to the desired insertion point. For

example, the following query inserts a record in the offering segment for course

C100, identifying the date, location, and format of that course.

BUILD (date, location, format) : ('0787', 'S123', 'lecture')

ISRT course (cnum = 'clOO')

offering

DELETE operations are performed by setting database currency pointers

via a Get Hold Unique (GHU) operation and then issuing a delete command. The

following query deletes a student named 'Sando' from course ClOO taught in July

1987.

GHU course (cnum = 'clOO')

offering (date = '0787')

student (sname = 'Sando')

DLET

As previously mentioned, a DELETE operation automatically deletes all

dependent occurrences in the hierarchical database.
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The REPLACE operation is used to modify an occurrence within a

database and can be accomplished by setting the database currency pointers via a

Get Hold Unique (GHU) operation, identifying the field to change, and issuing a

replace command. For example, to change the prerequisite for the advanced

database course from AI to data structures, the following query can be input.

GHU course (ctitle = 'adv. database')

prereq (ptitle = 'ai')

CHANGE ptitle to 'data structures'

REPL

A constraint placed on the REPLACE operation in both IMS and MLDS is that a

sequence (key) field cannot be updated. A desired change to a sequence field must

be accomplished through the use of DELETE and INSERT operations.
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III. MAPPING FROM THE HIERARCHICAL TO THE RELATIONAL MODEL

A. MAPPING METHODOLOGIES

As mentioned previously, MLDS is a single database system designed to

support a number of different database models and their corresponding data

languages. However, MLDS restricts a user to accessing a specific database

through the data language implemented to support it. That is, a database user

can access a relational database only via SQL transactions or a hierarchical

database via DL/I transactions. MMDS is an extension of MLDS that is designed

to allow cross-access of databases. For example, a relational user can access a

hierarchical database via SQL transactions or a hierarchical user can access a

network database using DL/I transactions.

Chapter I outlined the composition of the language interface needed to

support each database model. Each interface is specific to the model it supports in

terms of capturing the semantics of the data model. Specifically, the attribute-

based database created in the data model transformation has the semantics of the

corresponding user data model encoded within it. As a result, a given language

interface can only access its associated attribute-based database. Notationally, the

relational language interface can only access an AB(relational) database and the

hierarchical language interface can only access an AB (hierarchical) database.
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In view of these restrictions, we can see that the major challenge for MMDS is

to develop a methodology that allows users of one data model to access databases

created via the language interface of a different data model. More specifically, this

thesis focuses on access to a hierarchical database by relational users via SQL

transactions.

A number of different design strategies exist for implementing MMDS which

can be characterized by the level at which the strategy is integrated into the

already existing database system [22]. The basic strategies were first described by

Rodeck [23] in terms of accessing functional databases using the CODASYL data

language. The remainder of this chapter summarizes these design strategies and

concludes with the selection of the strategy best suited for accessing hierarchical

databases via SQL transactions.

1. The High-Level Preprocessing Method

The preprocessing strategy is considered to be a high-level process because

it occurs on top of the language interface modules as shown in Figure 4.

Modifications to the language interface involve three components, a schema

transformer, a language translator, and a results reformatter. When a user selects

a database which is not part of the local language interface (LI), all other Li's are

searched in an attempt to find the database. If successful, the schema transformer

uses the original database schema to create a parallel and equivalent schema in

the local LI, based on the local database model. When the user executes a

transaction against this transformed database schema using the local data
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Transformer

Language

Translator

Results

Reformatter

Figure 4. The High-Level Preprocessing Strategy

manipulation language, the language translator generates transactions in the

original data manipulation language that can be used to access the database. The

results reformatter formats the returned responses, if necessary, in the basic form

of the local LI.
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2. The Mixed-Processing Strategy

The mixed-processing strategy is a mid-level, direct method for the cross-

access of databases as shown in Figure 5. Two components are involved, a

schema transformer and a second language interface. As in the preprocessing

strategy, when a user selects a database that is not in the local LI, all other Li's

Schema

Transformer

I
LI'i

Figure 5. The Mixed-Processing Strategy
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are searched for the desired database. When found, the original database schema

is copied and transformed into an equivalent schema in the local LI. When a user

executes a transaction in the local data manipulation language, the new language

interface processes the request. The AB requests output from this language

interface are in the form of the original database model which thereby eliminates

the need for an extra language translation step.

3. The Postprocessing Strategy

As shown in Figure 6, the postprocessing strategy is a low-level method

for cross-accessing databases. Similar to the preprocessing strategy, three

components are involved, a schema transformer, a language translator, and a

results reformatter. This method is considered low-level because it occurs below

the Li's in the kernel database system. In this strategy, the schema

transformation occurs from the kernel database schema of the original database to

the kernel database schema of the local LI. Language translation occurs in the

opposite direction from the kernel database language transactions of the local LI

to the kernel database language transactions of the original database. The results

reformatter would then translate the results into the format of the local Li's form.

B. DESIGN CHOICE

In selecting the most appropriate design strategy for accessing a hierarchical

database via SQL transactions, we must weigh the advantages and disadvantages

of each of the strategies developed. A major problem with the postprocessing
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Figure 6. The Postprocessing Strategy

strategy is in the location of modifications. This approach deals with the kernel

database system and as such, we can expect the focus of programming activity to

be in this area. In the current implementation of MLDS, the kernel database

schemas are not visible to the individual language interfaces and implementation

of this strategy would force a major design change in the interaction between the
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kernel database system and the language interfaces. Additionally, the kernel

database system was designed as an independent, stand-alone system upon which

the MLDS language interfaces were added as a functional enhancement. We find

it inadvisable, at this point, to attempt to combine the code of these two large

projects by coding in an interdependency between specific language interfaces

and the kernel database system.

The remaining two strategies, on the other hand, can be implemented

completely at the language interface layer in MLDS. The preprocessing method

appears, at least initially, to be conceptually easier to understand and implement

by simply converting the transactions input in one data manipulation language

into equivalent transactions of a second data manipulation language for access to

a database. Upon investigation however, it becomes clear that the task of

translating the syntax of a data manipulation language into the syntax of a

second language while maintaining the semantic meaning is far from simple.

Additionally, we can expect the overall performance of the preprocessing

method to be less than that of the mixed-processing method. In the preprocessing

strategy, cross-access of databases requires a schema transformation, two language

translations and two reformatting of results. On the other hand, cross-access via

the mixed-processing strategy requires one schema translation, one language

translation and one reformatting of results. It is clear that less processing activity

is needed by the mixed-processing approach resulting in increased performance.
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One final point in favor of the mixed-processing method deals with the

amount of new code needed and modification to existing code. As outlined earlier

in this chapter, the preprocessing strategy requires three components to be

implemented, a schema transformer, language translator, and results reformatter.

These are new software modules to be added to the language interface level.

Modifications to the current language interfaces would be relatively minor. The

mixed-processing strategy, on the other hand, would require extensive

modification to the existing language interface to handle the cross accessing of

databases, however, this code would be very similar to the code in the current LI

making the implementation task much simpler. We would expect that the amount

of code required to implement the mixed-processing strategy to be between one-

half to two-thirds of that required to implement the preprocessing strategy.

f
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IV. TRANSFORMING HIERARCHICAL SCHEMAS TO RELATIONAL

A. DESIGN

Having selected the mixed-processing strategy as the most appropriate for the

MMDS design, the first step in implementing this approach, as outlined in the

previous chapter, is to perform a schema transformation from a hierarchical

database to a relational database. This process involves the translation of the

relationships implicit in the hierarchical database to their functional equivalents

in the relational model.

In order to describe this transformation, a sample hierarchical database will

be used to illustrate the process. Figure 7 shows the DL/I definition of the sample

database. The first line identifies the database name as 'schooldb'. There are five

segments defined in this database (Course, Prereq, Offering, Teacher, and

Student). The Course segment is the parent of both the Prereq and Offering

segments as specified in the definitions of the Prereq and Offering segments in

Figure 7. The Offering segment in turn is the parent to the Teacher and Student

segments. Figure 8 depicts the hierarchical nature of the relationships.

The fields (attributes) of each segment follow the individual segment

definitions in Figure 7. The first field of each segment is defined as the sequence

field for that segment. This is a required field and must have an associated value
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dbd name= schooldb

segm name= course

field name= (cnum, seq), bytes = 4

field name= ctitle, bytes = 10

field name= descripn, bytes = 10

segm name= prereq, parent = course

field name= (pnum, seq), bytes = 4

field name= ptitle, type= char, bytes = 10

segm name= offering, parent= course

field name= (date, seq), type = char, bytes = 4

field name= location, bytes = 8

field name= format, bytes = 6

segm name= teacher, parent = offering

field name= (tnum, seq), type = char, bytes = 4

field name= tname, bytes = 10

segm name= student, parent = offering

field name= (snum, seq), bytes = 4

field name= sname, type= char, bytes = 10

field name= grade, bytes = 1

Figure 7. Hierarchical Database Definition
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Course

Prereq Offering

•

Teacher Student

Figure 8. A Hierarchical Database Tree Structure

for each record entered into the database. Figure 9 shows the logical structure of

the sample database with segment and field definitions.

A relational database model is often referred to as a 'flat' database because

there are no structural relationships between tables as there are in a hierarchical

or network database model. Each table is an independent data entity. Explicit,
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Course

cnum ctitle descripn

Prereq

* sequence field

Offering

date location

Teacher

format

Student
*
tnum tname snum sname grade

Figure 9. Logical Data Structure of the Hierarchical Database

logical relationships are formed through data manipulation language constructs

such as JOIN and VIEW, but these are not part of the database schema itself.

The key issue in the schema transformation from a hierarchical database to a

relational database then is the representation in the relational schema of the

parent-child relationships between segments in the hierarchical database. There
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are two relatively direct methods of performing this transformation. The first

method is to create a new table for each relationship desired. This table would

contain the sequence fields of the two segments which are to be related. For

example, in the sample database, we could create a new table called 'taught-by'

to relate the Offering and Teacher tables and include the Date and Tnum from

each table respectively. This method would provide the necessary relationships

but at the expense of many additional tables in the database schema.

Additionally, queries against the database would tend to be long and complicated

for even the simplest databases, making this a rather unyieldy solution.

The alternative method is to 'cascade' the sequence fields of ancestor

segments into all descendent segments when transforming them to the table

format required in the relational model. For example, the parent-child

relationship in the sample database from Course to Offering can be represented by

including the sequence field, Cnum, from the Course segment in the newly created

Offering table. Subsequently, the full relationship between Course, Offering, and

Student can be represented by cascading the Cnum field from the Course segment

and the Date field from the Offering segment into the newly formed Student

table. Figure 10 depicts the relational database schema of the sample database

following a transformation using this cascade method.

The obvious disadvantage of this technique is the additional space

requirement necessary for the duplication of the sequence fields. The primary

advantages, and the reasons that this method has been selected for
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Figure 10. The Logical Structure of the Relational Schema
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implementation, are that queries against the database are shorter, and less

complicated because of the additional information within each table and that this

method mirrors the transformation made in the AB(hierarchical) schema, making

language translation algorithms much more efficient and straight-forward. Figure

11 details textually, the structure of the transformed schema. It should be noted

that the cascaded sequence fields are represented as KEY attributes in each of the

relational tables, indicating that a value must be specified for these attributes.

This becomes essential in maintaining the integrity of the hierarchical database

when data manipulation is performed using SQL transactions.

B. IMPLEMENTATION

The remainder of this chapter and the next chapter focus on the

implementation of the mixed-processing strategy. The details of the schema

transformation are presented in this chapter and the translations of SQL queries

to AB (hierarchical) transactions in order to access a hierarchical database are

detailed in Chapter V.

The implementation of the cross-access functionality involved extensive

modification to selected portions of the relational language interface, specifically,

the language interface layer (LIL), kernel mapping system (KMS), and kernel

controller (KC). No attempt has been made to completely describe the language

interface procedures and data structures. Instead, an overview of the major

processes is presented for clarity and understanding, with emphasis on the areas of
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database name = SCHOOLDB, number of relations = 5

database type = HIERARCHICAL

relation name = COURSE, number of attributes = 3

attr name = CNUM , type = s, length = 4 , key = TRUE
attr name = CTITLE , type = s, length = 10, key = FALSE
attr name = DESCRIPN , type = s, length = 10, key = FALSE

relation name = PREREQ, number of attributes = 3

attr name = CNUM , type = s, length = 4 , key = TRUE
attr name = PNUM , type = s, length = 4 , key = TRUE
attr name = PTITLE , type = s, length = 10, key = FALSE

relation name = OFFERING, number of attributes = 4

attr name = CNUM , type = s, length = 4 , key = TRUE
attr name = DATE , type = s, length = 4 , key = TRUE
attr name = LOCATION , type = s, length = 8 , key = FALSE
attr name = FORMAT , type = s, length = 6 , key = FALSE

relation name — TEACHER, number of attributes = 4

attr name = CNUM , type = s, length = 4 , key = TRUE
attr name = DATE , type = s, length = 4 , key = TRUE
attr name = TNUM , type = s, length = 4 , key = TRUE
attr name = TNAME , type = s, length = 10, key = FALSE

relation name = STUDENT, number of attributes = 5

attr name = CNUM , type = s, length = 4 , key = TRUE
attr name = DATE , type = s, length = 4 , key = TRUE
attr name = SNUM , type = s, length = 4 , key = TRUE
attr name = SNAME , type = s, length = 10, key = FALSE
attr name = GRADE , type = s, length = 1 , key = FALSE

Figure 11. Textual Representation of the Relational Schema
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significant modification. A logical rather than procedural view is provided in

describing the flow of program control to eliminate unnecessary detail. A complete

discussion of the relational language interface implementation can be found in

Kloepping and Mack [9].

1. Language Interface Data Structures

When a relational user logs onto MMDS, a number of existing data

structures are present that contain information relevant to that, and all other,

users. The first of these is the dbid node depicted in Figure 12. This structure

points to the linked list of database schemas that have previously been defined in

each of the language interfaces. It is through this data structure that a user has

access to all of the database currently within the system.

The rel dbid node pointer identifies the first relational database schema.

The central data structure for each schema is the rel dbid node as shown in

union dbidnode

{

struct reldbidnode *rel;

struct hiedbid node *hie;

struct net dbid node *net;

struct ent dbid node *ent;

}

Figure 12. The dbid node Data Structure
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Figure 13. This structure contains the database name, number of relations,

pointers to the first and current relations, and a pointer to the next database

schema. The rel dbid node structure has been modified to contain an additional

field called dbtype that is used to identify the original database model in which

the schema was created. For example, a schema transformation from a

hierarchical model would include an HIE identifier in this field. Additional data

structures pointed to by the reldbidnode structure completely specify the

database schema.

A number of data structures are also created that are specific to the new

relational user. The first of these is the user_info data structure shown in Figure

14. This structure uniquely identifies the new user in a multi-user environment

and points to the data structures created for the exclusive use of that user. A

struct rel_dbid_node

{

char name[DBNLength + l];

int num rel;

struct rel node * first rel;

struct rel node *curr rel;

struct rel dbid node *next db;

int

>

dbtype

Figure 13. The rel dbid node Data Structure
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struct user_info

{

char uid[UIDLength + 1];

union li_info li_type;

struct user info *next user;

}

Figure 14. The user info Data Structure

pointer links this information to the list of data structures associated with all

other system users.

Figure 15 depicts the sql_info structure. This is the central data structure

created for a relational user and contains much of the information or pointers to

information used throughout the user session.

2. The Schema Transformation

The Language Interface Layer (LIL) is the primary control module from

which all other modules are called. It has been designed to be menu-driven by

inputs from the current user. It is through the LIL that a user can load new

databases, select previously created databases for processing, and access databases

by generating and selecting SQL transactions. Control always returns to the LIL

following any of these operations. The user may end the current session and

return to the operating system by making an appropriate choice from the top

level menu.
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struct sql info

{

struct curr db info curr db;

struct file info file;"

struct ran info sql tran;

int operation;

struct ddl info *ddl_files;

struct tran info *abdl tran;

union kms info kms data;

union kfs info kfs data;

union kc info kc data;

int error;

Figure 15. The sql info Data Structure

As previously mentioned, when a new user logs into the system, a number

of user-specific data structures are created and initialized. These structures

provide the temporary storage necessary for performing various database

operations and holding returned results. The first menu presented to the relational

user pertains to database selection:

Enter type of operation desired

(1) - load a new database

(p) - process old database

(x) - return to the operating system

ACTION—

>
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At this point, the user may choose to load a new database schema, in which case

he is prompted to enter the database name and set of creates, or process an

already existing schema. If the user chooses to process an existing database

schema, he is prompted for the database name. The program will attempt to

locate the desired database schema by traversing the linked list of relational

rel dbid node data structures described earlier. If found, the schema is loaded,

and query processing may begin.

If the desired database schema was not found, the constraints of MLDS

dictated that the user be presented with an error message and prompted to enter

a different database name. Under MMDS however, processing does not stop.

Instead, the program searches all other language interfaces for a matching

database name and, if found, copies and transforms the located schema to a

functional equivalent that can be used for access to the associated database via

SQL transactions. It should be noted that this is the first thesis dealing with

schema transformations to the relational model, therefore, only the hierarchical

model transformation has been implemented to date.

If the user has selected a hierarchical database for processing, a new

relational schema is created based on the desired hierarchical schema. The

relational data structures previously discussed have functional equivalents in all

other language interfaces. It is through these structures that the transformation is

accomplished.
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Initially, a new rel dbid node is created and attached to the end of the

linked list of existing relational schemas. The hierarchical database name is then

inserted, the number of relations is set equal to the number of segments in the

hierarchical schema, and the schema is tagged as a hierarchical equivalent by

setting the dbtype variable to 'HIE'. A new data structure, rel node, shown in

Figure 16, is created and attached to the schema. This structure describes each of

the relations in a database and is initialized with information available from the

equivalent segment data structures in the hierarchical schema. The relation name

is set equal to the hierarchical segment name and pointers are set to the first

attribute of the relation and to the next relation, if any, in the schema.

Each attribute in a relation is fully described by a rattr node data

structure as depicted in Figure 17. Initially, an attribute node is created for each

field in a hierarchical segment. The attribute name, type, and length are

struct rel node

{

char name[RNLength + l];

int num attr;

struct rattr node *first attr;

struct rattr node *curr attr;

struct rel node *next rel;

}

Figure 16. The rel node Data Structure
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struct rattr node

{

char name[ANLength -1- 1];

char type;

int length;

int key flag;

struct rattr_node *next;

}

Figure 17. The rattr node Data Structure

transferred directly from the hierarchical field node. If the field is a sequence field,

the attribute is tagged as a key attribute in the relational schema. Attributes in a

relation are linked via the 'next' pointer.

At this point, the sequence fields are 'cascaded' into the relation. This is

accomplished by traversing the hierarchical schema from the current segment to

the root segment and creating an attribute node from the sequence field of each

segment visited. This traversal is possible because each segment node contains,

among others, a pointer to its parent segment.

Following this operation, the number of attributes is set equal to the

number of fields in the associated segment plus the number of cascaded sequence

fields. Processing continues with subsequent relations until the schema is

completed. Control is then returned to the LIL for further access and

manipulation of the database.
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V. MAPPING SQL STATEMENTS TO AN AB(HIERACHICAL) DATABASE

The previous chapter detailed the schema transformation process necessary

for the implementation of the mixed-processing strategy. The remaining major

component required for the cross-access of a hierarchical database through SQL

transactions is the new language interface (LI). One of the primary purposes of

this component is to map the SQL queries input by the relational user to

equivalent AB (hierarchical) transactions. This chapter describes the design and

implementation of this component.

A. THE LI TRANSLATION PROCESS

As stated previously, each database schema created within a given model is

transformed into an equivalent schema in the kernel attribute-based model. This

AB schema has unique, embedded structures that ensure that the attribute-based

database is the functional equivalent of the user defined model. For this reason,

the LI must provide a language translation from transactions in the user data

manipulation language to the attribute-based transactions specific to that

language, e.g., from SQL to AB(relational). To provide a relational model user

access to a hierarchical database, then, it is necessary to create a second language

interface that will translate SQL transactions to their AB (hierarchical)

equivalents.
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This second language interface can be implemented in one of two ways. The

first method is to create an entirely separate language interface (LIL, KMS, KC,

and KFS), and branch to the appropriate version based on database selection by

the user. The alternate approach is to modify the current language interface in

such a way that program execution will branch to the appropriate translation and

processing activities based on user input. In this manner, a new language interface

can be logically created without duplication of a large amount of similar code.

This reduction in code size was the primary factor in choosing to modify the

existing code in the implementation of the cross-access capability.

1. Query Processing in the LIL

After the user has loaded a new database or selected an existing database

for processing, he is prompted for the mode of query input as follows:

Enter mode of input desired

(f) - read in a group of transactions from a file

(t) - read in transactions from the terminal

(x) - return to the previous menu

ACTION—

>

The user now has the option of reading in a group of queries from a prepared file

or directly entering the queries from the terminal. Regardless of the input method

selected, processing continues in an identical manner. The list of transactions are

displayed on the terminal, each preceded by an identifying number. The user is

then presented with the following execution menu:
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Pick the number or letter of the action desired

(num) - execute one of the preceding queries

(d) - redisplay the list of queries

(x) - return to the previous menu

ACTION—

>

At this point, the user can select a query for processing. Since each query is an

independent entity, the order of processing is not important. Following each

selection, the query is sent to the kernel mapping system (KMS) for translation,

and then to the kernel controller (KC) for execution. Results, if any, are displayed

to the user and the execution menu is re-displayed for further commands.

2. Query Processing in the KMS

SQL transactions are sent to the KMS from the LIL. The function of the

KMS is two-fold, to parse the SQL query and verify its syntax, and to translate

the query into an equivalent ABDL transaction. If the SQL query is determined

to be valid, the ABDL is passed to the kernel controller for processing and

execution by the MBDS.

The primary component within the KMS is the transaction parser. It has

been implemented within MLDS by use of the UNIX utility Yet-Another-

Compiler Compiler (YACC). YACC is a program generator that performs

syntactic processing on an input stream of tokens. The compiler utilizes a set of

grammar rules input by the programmer to generate a program that will parse a

token stream and perform operations based on the recognition of the patterns

within the input stream. The YACC-produced parser is a finite- state automata
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that performs a top-down parse. Parsing begins through the upper-levels of the

grammar hierarchy and proceeds through the lower levels in a search for matches

to the input tokens. As tokens and token strings are recognized, portions of the

output code are executed. Processing may traverse up and down the grammar

hierarchy as the parser attempts to recognize the input string by satisfying the

grammatical rules. If the entire token string has been processed and associated

with grammar rules, parser execution will terminate normally, otherwise, a syntax

error is reported, the parser will abort, and control will return to the calling

procedure.

In addition to the information provided through the data structures from

the LIL, The KMS uses, primarily, five data structures during the parsing

operation. These are outlined briefly for completeness. Figure 18 shows the

rel kms info structure. This structure holds information for delayed use in the

parsing process. The target list holds attribute names used in Select and Insert

operations, the template records stores the names of the relations being accessed,

and the insert list maintains attribute values used in Insert requests. The next two

fields are character strings. The temp str is used to store intermediate translation

results and the join_str holds the translation of the second retrieve request of a

join operation. The next nest field is utilized only during the parse of a nested

Select transaction, and is a pointer to the next rel kms info structure in the list.

The final field, alt tgt, has been added during the current implementation to hold

information relating the translation to AB (hierarchical) statements.
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struct rel kms info

{

struct target list info * first tgt;

struct templates info templates;

struct insert list info * first val;

char *temp-str;

char *join str;

struct rel kms info *next nest;

struct alt list info *alt tgt;

}

Figure 18. The rel kms info Data Structure

Figure 19 depicts the four data structures pointed to by the rel_kms_info

structure. They are used to represent the target list of attribute names, the

names of the relations (templates) being accessed, a list of attribute values for the

Insert request, and a list of attribute names, values, and operations used in the

AB (hierarchical) translations, respectively. Further details on the KMS and its

data structures can be found in Kloepping and Mack [9].

As described, the KMS parser is the central component in the translation

of SQL transactions to ABDL statements, hence the modifications for the cross-

access implementation deal primarily with that construct. The code changes

principally involve branching subroutines that alter the code generation process

when a grammar rule is recognized within the parser. The remaining part of this

chapter describes the implementation details involved in mapping the four
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target_list_info

{

char

char

struct

}

templates info

{

char

char

}

insert list_info

{

char

struct

}

alt list info

C
char

char

char

struct

}

target list info

insert list info

alt list info

name[ANLength + 1];

tgt_rel[RNLength + 1];

*next attr;

namel[RNLength + 1];

name2[RNLength + lj;

*value;

*next val;

namefANLength + lj;

op[RNLength + 1];

*value;

*next attr;

Figure 19. KMS Parser Data Structures

primary SQL transactions (Select, Insert, Delete, and Update) to their

AB (hierarchical) equivalents.
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B. THE SELECT STATEMENT

The SQL Select statement is used to retrieve information from a database.

Since this statement does not alter the database in any way, it can be used,

without modification, to access an AB(hierarchical) database directly. This is

possible because the original hierarchical schema has been mapped to an

attribute-based schema in essentially the same manner in which the schema

transformer from hierarchical to relational has been implemented for the cross-

access capability. Figure 20 is an example of a Select transaction issued against

the sample database, and the equivalent ABDL transaction issued against the

hierarchical database. As seen in this example, the cascaded sequence fields are

visible to the relational user and can be used in composing queries against the

hierarchical database. The desired functionality is complete. A relational user can

directly access the segments of a hierarchical database as if they were a set of

relational tables. The various versions of the Select statement, such as nested

selects, are fully supported.

SELECT tnum, tname

FROM Teacher

WHERE cnum = 'C100'

RETRIEVE ((TEMP = Teacher) and (CNUM = C100)) (TNUM, TNAME)

Figure 20. A SQL Select Transaction
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C. THE INSERT STATEMENT

The purpose of the SQL Insert statement is to add information to an existing

database. This statement modifies the database so steps must be taken to ensure

that the integrity of the hierarchical database is maintained when this operation

is invoked. Although the relational user is viewing the hierarchical database as a

collection of independent tables, The parent-child relationships within the

hierarchy must be preserved.

1. Design

One of the primary constraints on a hierarchical database, as stated in

Chapter II, is that no occurrence of a child record type can exist without its

parent. Since the relational user is not constrained by relationships between

tables, it is the responsibility of the new language interface to ensure that these

relationships are maintained.

To be more specific, whenever a record is inserted into a hierarchical

database, related records must already exist in all of the ancestor segments

associated with the segment receiving the new record. Using the sample database

as an example, suppose a relational user wanted to execute the following Insert

transaction:

INSERT INTO Student (cnum, date, snum, sname, grade)

<'C100\ '0787', '0284', 'Miller', 'A'>
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In order to remain within the constraints of the hierarchical model, the ancestor

record occurrences shown in Figure 21 must already exist in a hierarchical tree of

the database.

2. Implementation

There are two basic methods of assuring that these ancestor records exist

prior to executing the Insert request. The first approach is to program the

Course

cnum ctitle descripn

C100 xxxxxx !
xxxxxxxx

Prereq

pnum ptitle

Offering

date location format
1 fl7R7 xxxxxxxx i xxxxxx

Teacher Student
tnum tname snum sname grade

Figure 21. Hierarchical Database Prior to a SQL Insert
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language interface to automatically insert the ancestor occurrences, if they do not

already exist in the database, using information generated in the parse of the

insert statement. This method would be entirely transparent to the relational

user. That is, the insert would always be performed because the constraints on the

database are being managed by the language interface. The overriding

disadvantage of this approach is that the parsed Insert statement does not contain

enough attribute information to fully specify the ancestor occurrences and it

would be necessary to add dummy values into the unspecified fields. The user

would then need to perform an Update transaction on each of the fields holding

dummy values so that they can be replaced with the proper values. The second

method, although less transparent, reduces significantly the number of required

transactions. In this approach, the language interface determines if the proper

ancestor occurrences exist prior to passing the Insert request to MBDS for

execution. If the occurrences exist, the request is transmitted to MBDS, however,

if the ancestor occurrences are not in the database, a message is displayed to the

user stating that the proper hierarchical relationships do not exist, and informing

the user of the hierarchical tree that must be completed. In terms of the example,

if the necessary ancestor occurrences did not exist, the user would be informed

that corresponding records need to be inserted into the Course and Offering

Tables prior to executing the current Insert transaction, as shown in Figure 22.

As described above, it is necessary for the entire ancestor tree to be

complete before an Insert operation can be executed, however, the implementation
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INSERT NOT ALLOWED - in order to maintain the integrity of the

Hierarchical model, all ancestor segments/relations must contain

key-fields having the same values as the insert just attempted.

The ancestor relations and key-fields, from parent to root, are:

OFFERING DATE
COURSE CNUM

Inserts should be performed from the root down.

Figure 22. Response to Improper Hierarchical Insert Request

of this database integrity check can be accomplished by checking the immediate

parent of the segment receiving the new record. This single check is sufficient

because the remaining ancestor occurrences must already have existed at the time

the immediate parent occurrence was inserted into the hierarchical database.

The implementation of this feature within the language interface required

modification of the relational KMS and KC components. Within the KMS, the

changes involved branching within the token stream parser. More specifically, the

parse continues within the original language interface until the token stream is

recognized as an Insert transaction. At this point, the KMS has generated the

complete AB (relational) Insert request and the program branches to the

subroutine that performs the logical translation to an AB(hierarchical) equivalent.

The first step to be performed within this subroutine is to search the

original hierarchical schema for the segment receiving the new record. This

segment data structure contains a pointer to the parent segment within the
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schema which will be used to check for the proper ancestor tree by creating a

Retrieve request. Information contained in the Insert transaction and the parent

segment will be used to build the request. The Retrieve request will be generated

in all cases, except in the situation in which the segment receiving the new record

is the root segment of the hierarchical database. In this case, the record can be

inserted directly without further processing.

The Retrieve request is made against the parent segment, using the

cascaded sequence fields and values obtained from the ABDL insert statement.

Figure 23 provides an example using the sample database. The user wishes to

insert a new record in the Student relation. The Retrieve that is generated will

access the Offering relation, which is the immediate parent of the Student

segment within the hierarchical schema.

Following the AB (hierarchical) translation, the parser completes its

operations and control is returned to the LIL. The linked list of ABDL requests is

INSERT INTO Student (cnum, date, snum, sname, grade)

<'C100\ '0787', '0284', 'Miller', 'A'>

[
RETRIEVE ((TEMP = Offering) and (CNUM = C100)

and (DATE = 0787)) (CNUM)
]

[ INSERT (<TEMP, Student>, <CNUM, C100>, <DATE, 0787>,

<SNUM, 0284>, <SNAME, Miller>, <GRADE, A>)
]

Figure 23. A SQL To AB(hierarchical) Insert Transaction
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then passed to the kernel controller for execution. The KC acts as an interface to

the MBDS and provides a temporary buffer for returned results. In this case, the

KC recognizes that a hierarchical database is being accessed and branches to a

routine that handles the request. The Retrieve statement is passed to MBDS and

results are returned to a buffer. If one or more records were returned, the proper

ancestor tree is in existence and the Insert transaction is transmitted to MBDS for

processing. If, however, the return buffer is empty, the necessary ancestor

occurrences do not exist and the Insert transaction is not sent to MBDS. The

final step is to display the explanatory message (Figure 22) to the user and return

control to the LIL for further processing.

D. THE DELETE STATEMENT

The SQL Delete statement modifies a relational database by removing one or

more records from a single relation. As with the Insert statement, a database

modification, when performed on a hierarchical database must ensure that the

hierarchical model integrity is maintained. The primary task, then, in translating

a SQL Delete to a AB (hierarchical) Delete transaction is to provide this integrity

guarantee.

1. Design

The central difference between a Delete transaction on a relational

database and a Delete transaction on a hierarchical database is that the relational

operation affects only a single relation whereas the hierarchical operation may
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cause changes in multiple segments. The reason for this is that no occurrence is

allowed to exist without a parent occurrence. For example, suppose a user

performs the following Delete transaction on the database shown in Figure 24:

DELETE Course

WHERE Ctitle = 'Pascal'

If the single Course occurrence is deleted, the related occurrences in the Prereq

and Offering segment, and in turn, the associated Teacher and Student

occurrences would not be attached to a fully specified hierarchical tree.

Therefore, in addition to deleting the specified Course record, it is necessary to

delete all associated occurrences in the Prereq, Offering, Teacher, and Student

segments as well. *

2. Implementation

In order to accomplish this sequence of multiple deletes, a rather complex

system of data structures is required in the KMS, and multiple buffering of

intermediate results is necessary in the KC. These structures must handle

traversal of the hierarchical path between segments and recursion of the ABDL

transaction processing. None of these structures or capabilities currently exist

within the relational language interface, so it would be necessary to program these

components and integrate them into the existing interface. It is estimated that the

code required to accomplish this would double the size of the current language

interface. Additionally, the added processing required. to initialize and update

these components may adversely affect operating performance.
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Course

cnum ctitle descripn

! C100 !

Pascal ! Intro
J

Prereq Offering

pnum ptitle

! C200 Logic

date location format

0787
J

Monterey ! Lecture
j

j 1287
|
Presidio j Lecture"

Teacher

£
Student

tnum tname me _c

snum sname grade ad<

2346 Adams £-J
j 5623 ! Hayes j A U5—|

1 a
j
7809

j

Sando ! b }

Figure 24. A Sample Hierarchical Database Prior to a Delete Operation

The hierarchical language interface does, however, contain the necessary

data structures and functionality as a natural part of its hierarchy processing

capability. As such, it is desirable to extend the concept of the new, logical

language interface of the mixed-processing strategy to encompass portions of both
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the relational and hierarchical language interfaces. In this manner, it becomes

possible to utilize the processing functions in the hierarchical interface to

accomplish the desired operations without duplication and integration of code.

The composition of transactions necessary to accomplish a deletion is a

function of where the occurrence is located in the hierarchical tree. If the deleted

record is at the end of tree, i.e., in a leaf segment, then only a single delete

transaction is required. If however, the deleted record occurs in any other portion

of the tree, a combination of Retrieve and Delete operations may be necessary to

accomplish the deletion.

Retrieve transactions are required as part of the Delete operations because

the user-supplied Delete statement does not contain all of the information

necessary to fully specify the entire sequence of delete transactions. The Retrieve

statements are used to gather this information from the database and the

returned values are then used to complete the required Delete statements. More

specifically, a Retrieve is required at each level of the hierarchy and whenever

processing switches to a different branch of the tree. Figure 25 depicts the

sequence of transactions required to perform the previously mentioned SQL Delete

statement on the sample hierarchical database. If Figure 24 represents the

current composition of the database, then the first retrieve will return the Course

occurrence <C100, Pascal, Intro>. The returned Cnum value of C100 will be used

to complete the Delete statements on the Course and Prereq segments. At this

point, processing in the branch containing the Prereq segment is complete and a
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[
RETRIEVE ((TEMP = COURSE)

and (CTITLE = Pascal))

(CNUM) BY CNUM
]

[ DELETE ((TEMP = COURSE)
and (CNUM = **))

]

[ DELETE ((TEMP = PREREQ)
and (CNUM = **))

]

[
RETRIEVE ((TEMP = OFFERING)

and (CNUM = **))

(DATE) BY DATE
]

[
DELETE ((TEMP = OFFERING)

and (CNUM = **)

and (DATE = **))
]

[
DELETE ((TEMP = TEACHER)

and (CNUM = **)

and (DATE = **))
]

[
DELETE ((TEMP = STUDENT)

and (CNUM = **)

and (DATE = **))
]

Figure 25. A Sample AB(hierarchical) Delete Transaction

switch is made to its sibling segment, Offering. Since information from an

additional sequence field is required, a Retrieve operation is completed on the

Offering segment, utilizing the C100 value from the previous Retrieve. The

returned occurrences in this case are <0787, Monterey, Lecture> and <1287,

Presidio, Lecture>. The Cnum value of C100 and the first returned Date value of
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0787 are now used to complete the three remaining Delete transactions on the

Offering, Teacher, and Student segments. Following execution of these Delete

operations, the processing returns recursively to the Offering buffer and completes

three more Delete transactions using the same C100 value for Cnum and the

second value of 1287 for Date. These Deletes are subsequently sent to the MBDS

for execution. Since there are no further occurrences in the Offering buffer, the

current branch has been completely processed, and there are no other branches in

the tree, the transaction is complete and processing terminates.

Implementation of this modification centered on the parser within the

KMS of the relational language interface. During the parse on the user-specified

transaction, a new data structure, alt info, described earlier was used to

accumulate a list of attribute names, operations, and attribute values recognized

during the parse. When the parser identified the transaction as a Delete on a

hierarchical database, program execution branched to a subroutine designed to

perform the AB (hierarchical) translation. The subroutine discards the

AB (relational) transaction and completely specifies the AB (hierarchical)

transaction using information stored during the parse.

In order to build and execute a AB (hierarchical) Delete transaction, the

data structures and functions of the hierarchical language interface are needed

and it is at this point that these structures are created and initialized. The initial

Retrieve and Delete statements are generated using the information in the

alt info data structures and the relational and hierarchical schemas. The
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remaining partially-specified Retrieves and Deletes are then built utilizing

information from the hierarchical database schema. At this point, the transaction

is complete and the KC is called to execute the sequence of operations.

The previous discussion has focused on a simple Delete to keep the details

of the translation to an absolute minimum. The subroutine has been designed,

however, to process Deletes with more complicated structures. For example, a

Delete containing one or more OR'd predicates requires additional processing.

Basically, each group of OR'd predicates is used to form a separate set of Delete

transactions. After the first set has been executed, the individual statements are

used as a template to form the next set of transactions. This continues until each

group has been processed.

Following execution of the Delete transactions, the hierarchical data

structures are released and the allocated memory returned to the operating

system. The KMS then resumes processing and the relational data structures are

re-initialized. Finally, control is returned to the LIL for the next user input.

E. THE UPDATE STATEMENT

The SQL Update statement is used to change attribute values within a

relational database. Only a single value can be changed during each Update

transaction. If more than one value is to be changed, a sequence of Update

transactions must be sent to the MBDS. The hierarchical equivalent to the SQL

Update statement is the REPLACE transaction.
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1. Design

One of the major problems with the Update transaction is that a change

to a sequence field in a hierarchical database may cause a loss of integrity in the

database. That is, if a sequence field value is changed in a segment and, as a

result, there is an incomplete ancestor tree relating to the new value, then one of

the major constraints on the hierarchical database has been violated. This

problem is enough of a concern that most hierarchical models, including IBM's

IMS and MLDS, place a constraint on the Replace statement to the effect that

changes can only be made to non-sequence fields. In order to remain consistent

with the current model, this implementation remains within that constraint.

2. Implementation

Since attribute value restrictions are restricted to non-sequence fields, the

Update translation from SQL to AB (hierarchical) can be handled within the

relational language interface exclusively. The LIL passes the transaction to the

KMS for translation to an ABDL statement. The parse continues within KMS

until the token stream is recognized as an Update transaction on a hierarchical

database. At that point, a subroutine is called that searches the database schema

for the attribute being updated. If the attribute is determined to be a Key-

attribute, the following error message is presented to the user:

UPDATE not allowed. The current implementation

of DL/I allows updates on NON-KEY fields only.
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The remainder of the parse is aborted and control returns to the LIL for

additional processing. If, however, the attribute is found to be a non-key field,

then processing continues normally, and the AB (hierarchical) update transaction

is passed to the KC for execution by the MBDS.

3. Additional Comments

Although most hierarchical model implementations do not allow changes

to sequence fields, it may be possible to add this functionality to the MLDS

language interface. It appears that the Update transaction can be handled in

much the same manner as a Delete transaction. That is, when an Update

transaction is issued against segment key field, a combination of Retrieve and

Update statements can be generated that will modify the cascaded sequence field

values of all descendent segments in the hierarchical tree. In addition to these

statements, it would be necessary to perform an initial Retrieve on the immediate

parent of the segment receiving the Update, using the new attribute value as a

selection criteria. If one or more records are returned by this initial Retrieve, then

the complete ancestor tree exists for the new value and the remaining Retrieve

and update statements can be executed against the hierarchical database.

In order to achieve this capability, some relatively large modifications

must be made in the hierarchical KMS parser and KC modules. Additionally, the

current translation from the SQL Update statement to AB(hierarchical)

transaction would need to modified accordingly. The major portion of this

modification, involving the initial Update and cascaded Retrieves and Updates,
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has been written as part of the coding effort for this thesis and will be available if

future thesis work involves additions to the functionality of the various language

interfaces.
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VI. CONCLUSIONS

The predominant approach to database design has been to implement a

system based on a single database model and associated data manipulation

language. This has proved to be an adequate, short-term solution, however, the

lack of flexibility, capacity for expansion, and extensibility indicate the need for

research into alternative approaches. One such approach has been designed and

implemented at the Laboratory for Database Systems Research, Naval

Postgraduate School, Monterey, California. The Multi-Lingual Database System

(MLDS), as shown in Figure 26, allows a single database system to support

multiple language models. Specifically supported models include relational/SQL,

hierarchical/DL/I, network/CODASYL-DML, functional/Daplex, and attribute-

based/ABDL. The system can easily be expanded to handle other database

models and data manipulation languages.

Although MLDS allows access and manipulation of databases via five

separate data models and languages, individual databases can be accessed only

through the model within which it was created. For example, a relational

database can only be accessed via the relational data model and the SQL data

manipulation language. The extension of MLDS to support cross- access of all

databases through any of the supported models is the current focus of research
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Figure 26. The Multi-Lingual Database System Concept

and design analysis. The design and implementation of one of the interfaces

within the Multi-Model Database System (MMDS) has been the central topic of

this thesis.

A. A REVIEW OF THE RESEARCH

The goal of the research documented in this thesis has been to increase the

functionality of MLDS by allowing a database user knowledgeable only in the

relational model to access and manipulate a hierarchical database through the use
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of SQL transactions. We presented and analyzed a number of design strategies for

implementing this extension into MLDS, including the high-level preprocessing,

mixed-processing, and postprocessing methods before selecting the mixed-

processing strategy as the most feasible methodology.

In order to implement the mixed-processing strategy, two components, a

schema transformer and a new language interface, had to be designed. We first

discussed the design of a schema transformation algorithm from a hierarchical

database to a relational database. The technique selected involved the cascading

of hierarchical sequence fields into the relational schema to fully specify the

parent-child relationships between hierarchical segments. We then described the

data structures and implementation details necessary to integrate the schema

transformer into the Language Interface Layer (LIL).

The design and implementation of the new language interface provides the

means for accessing and manipulating a hierarchical database by the translation

of SQL statements to their AB(hierarchical) equivalents. We discussed how it

was possible to create a new, 'logical' language interface by modification of the

relational interface and incorporation of the functionality of the hierarchical

language interface into a framework that provides the cross-access capability. We

then detailed the modifications necessary to the relational KMS and KC to

implement the new language interface, and concluded by describing the

translations of the SQL Select, Insert, Delete, and Update statements to the

equivalent AB(hierarchical) transactions.
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B. FINAL OBSERVATIONS

Figure 27 depicts the MMDS concept as a functional extension of MLDS.

The earlier design [23] and implementation [24] of the capability to access a

functional database using the network model and the CODASYL-DML data

manipulation language, along with the work done in this thesis support and

confirm the feasibility of the MMDS design. Additionally, this body of research

provides the basis for designing alternate cross-access capabilities.

i_i
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Figure 27. The Multi-Model Database System Concept
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Currently planned thesis topics on the Multi-Model Database System include

extensions on the functionality of the hierarchical and relational language

interfaces, completion of the functional language interface, and additional cross-

model access capability. The ongoing research and development efforts at the

Laboratory for Database Systems Research indicate that a complete and fully-

functional multi-model database system can be designed and implemented

utilizing current hardware and software techniques and that the additional growth

capacity, performance gains, and extensibility of such a system is a significant

step in the area of database systems design.
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APPENDIX A - SCHEMATIC OF THE MAJOR DATA STRUCTURES
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APPENDIX B - THE LIL PROGRAM SPECIFICATIONS

Note : italicized lines indicate MMDS modifications.

module SQL-INTERFACE

db-list : list; /* list of existing relational schemas */

head-db-list-ptr: ptr; /* ptr to head of the relational schema list */

current-ptr: ptr; /* ptr to the current db schema in the list */

follow-ptr: ptr; /* ptr to the previous db schema in the list */

db-id : string; /* string that identifies current db in use */

proc LANGUAGE-INTERFACE-LAYERO;
/* This proc allows the user to interface with the system. */

/* Input and output: user SQL requests */

stop : int; /* boolean flag */

answer: char; /* user answers to terminal prompts */

perform SQL-INIT();

/* initialize pointers used in LIL */

stop = 'false';

while (not stop) do

/* allow user choice of several processing operations */

print (''Enter type of operation desired");

print (" (1) - load new database");

print (" (p) - process existing database");

print (" (x) - return to the to operating system");

read (answer);

case (answer) of

'1': /* user desires to load a new database */

perform LOAD-NEW ();

'p': /* user desires to process an existing database */

perform PROCESS-OLDQ;
'x': /* user desires to exit to the operating system */

/* database list must be saved back to a file */

store-free-db-list(head-db-list, db-list);

stop = 'true';

- exit();

default: /* user did not select a valid choice from the menu */

print ("Error- invalid operation selected");

print ("Please pick again")'

end-case;

/* return to main menu */

end-while;

end-proc;
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proc SQL-INITQ;

end-proc;

proc LOAD-NEW();
/* This proc accomplishes the following: */

/* (1) determines if the new database name already exists, */

/* (2) adds a new header node to the list of schemas, */

/* (3) determines the user input mode (file/terminal), */

.
/* (4) reads the user input and forwards it to the parser, and */

/* (5) calls the routine that builds the template/descriptor files */

answer: int; /* user answer to terminal prompts */

more-input: int; /* boolean flag */

proceed: int; /* boolean flag */

stop : int; /* boolean flag */

db-list-ptr: ptr; /* pointer to the current database */

req-str: str; /* single create in SQL form */

ptr-abdl-list: ptr; /* ptr to a list of ABDL queries (nil for this proc)*/

tfid, dfid: ptr; /* pointers to the template and descriptor files */

/* prompt user for name of new database */

print ("Enter name of database");

readstr (db-id);

db-list-ptr = head-db-list-ptr;

stop = 'false';

while (not stop) do

/* determine if new database name already exists */

/* by traversing list of relational db schemas */

if (db-list-ptr.db-id = existing db) then

print ("Error - db name already exists");

print ("Please reenter db name");

readstr (db-id);

db-list-ptr = head-db-list-ptr;

end-if;

else

if (db-list-ptr +1 = 'nil') then

stop = 'true';

else

/* increment to next database */

db-list-ptr = db-list-ptr + 1;

end-else;

end-while;

89



/* continue - user input a valid 'new' database name */

/* add new header node to the list of schemas and fill-in db name */

/* append new header node to db-list */

create-new-db(db-id)

;

/* the KMS takes the SQL creates and builds a new list of relations */

/* for the new database. After all of the creates have been processed */

/* the template and descriptor files are constructed by traversing */

/* the new database definition (schema). */

more-input = 'true';

while (more-input) do

/* determine user's mode of input */

print ("Enter mode of input desired");

print (" (f) - read in a group of creates from a file");

print (" (t) - read in a single create from the terminal");

print (" (x) - return to the main menu");

read (answer);

case (answer) of

T: /* user input is from a file */

perform READ-TRANSACTION-FILE();
perform CREATES-TO-KMS();
perform FREE-REQUESTS ();

perform BUILD-DDL-FILESQ;
perform KERNEL-CONTROLLER();

't': /* user input is from the terminal */

perform READ-TERMINALQ;
perform CREATES-TO-KMS();
perform FREE-REQUESTS();
perform BUILD-DDL-FILESQ;
perform KERNEL-CONTROLLERQ;

V: /* exit back to LIL */

more-input = 'false';

default: /* user did not select a valid choice from the menu */

print ("Error - invalid input mode selected");

print ("Please pick again");

end-case;

end-while;

end proc;
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proc PROCESS-OLD();
/* This proc accomplishes the following: */

/* (l) determines if the database name already exists, */

/* as a Relational model. If not, other models are */

/* checked, and if found, the schema is converted */

/* to a relational schema. */

/* (2) determines the user input mode (file/terminal), */

/* (3) reads the user input and forwards it to the parser */

answer: int; /* user answer to terminal prompts */

found: int; /* boolean flag to determine if db name is found */

more-input: int; /* boolean flag to return user to LIL */

proceed: int; /* boolean flag to return user to mode menu */

db-list-ptr: ptr; /* pointer to the current database */

req-str: str; /* single query in SQL form */

ptr-abdl- list: ptr; /* pointer to a list of queries in ABDL form */

tfid, dfid: ptr; /* pointers to the template and descriptor files */

/* prompt user for name of existing database */

print ("Enter name of database");

readstr (db-id);

db-list-ptr — head-db-list-ptr;

found = 'false';

while (not found) do

/* determine if database name does exist */

/* by traversing list of relational schemas */

if (db-id = existing db) then

found = 'true';

end-if;

else

/* check if db name is defined in another model */

perform CHECK-ALTERNA TE-MODELS();
else

db-list-ptr = db-list-ptr + 1;

/* error condition causes end of list('nil') to be reached */

if (db-list-ptr = 'nil') then

print ("Error - db name does not exist");

print ("Please reenter valid db name");

readstr (db-id);

db-list-ptr = head-db-list-ptr;

end-if;

end-else;

end-while;
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/* continue - user input a valid existing database name */

/* determine user's mode of input */

more-input = 'true';

while (more-input) do

print ("Enter mode of input desired");

print (" (f) - read in a group of queries from a file");

print (" (t) - read in a single query from the terminal");

print (" (d) - display the current database schema");

print (" (x) - return to the previous menu");

read (answer);

case (answer) of

T: /* user input is from a file */

perform READ-TRANSACTION-FILEQ;
perform QUERIES-TO-KMSQ;
perform FREE-REQUESTS ();

V: /* user input is from the terminal */

perform READ-TERMINAL();
perform QUERIES-TO-KMS();
perform FREE-REQUESTSQ;

'd': /* display the database schema */

perform SQL-TRAVERSEQ;

'x': /* user wishes to return to LIL menu */

more-input = 'false';

default: /* user did not select a valid choice from the menu */

print ("Error - invalid input mode selected");

print ("Please pick again");

end-case;

end-while

end-proc;

proc READ-TRANSACTION-FILEQ;
/* This routine opens a create/query file and reads the requests */

/* into the request list. If open file fails, loop until valid */

/* file entered */

while (not open file) do

print ("Filename does not exist");

print ("Please reenter a valid filename");

readstr ( file);

end-while;

READ-FILEQ;
end-proc;
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proc READ-FILE();
/* This routine reads transactions from either a file or the */

/* terminal into the user's request list structure so that */

/* each request may be sent to the KERNEL-MAPPING-SYSTEM.*/

end-proc;

proc READ-TERMINALQ;
/* This routine substitutes the STDIN filename for the read */

/* command so that input may be intercepted from the terminal */

end-proc;

proc CREATES-TO-KMS();
/* This routine sends the request list of creates one by one */

/* to the KERNAL-MAPPING-SYSTEM */

while (more-creates) do

KERNAL-MAPPING-SYSTEMQ

;

end-while;

end-proc;

proc CHECK-ALTERNATE-MODELS();

/* this routine calls other subroutines that check the Hierarchical, */

/* Network, and Functional schemas for the desired database name. */

/* If found, the schema is translated to a corresponding Relational */

/* schema and prepared for processing. */

perform TRAVERSE-DLI-SCHEMAf);
if found —— true

dbtype = HIE;

perform TRANSLA TE-DLI- TO-REL()
/* initialize the data base. */

sql operation = CreateDB;

Kernel Controller();

if found'— FALSE
{

/* stub for future implementation of network model */

}

if (found == FALSE)

{

/* stub for future implementation of functional model */

}

} /* end check alternate models */

end-proc;
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proc TRAVERSE-DLI-SCHEMAf);
/* This routine traverses the linked list of hierarchical */

/* database schemas in an attempt to locate the user- requested *

/

/* database. If found, a pointer is returned to the schema. */

proc TRANSLATE-DLl-TO-RELf)

/* this routine converts the hierarchical schema to a relational schema */

/* the new rel database node is allocated and filled here with */

/* information from the hierarchical database node */

create new rel_dbid_node();

strncpy(relational_db name, hierarchical db name);

number of relations = number_of_segments;

dbtype = HIE; /* identify db as hierarchical */

previous node next db = new dbid node; /* connect to rel db list */

seg ptr = hierachicaljroot_seg;

create flag = TRUE;
up flag = FALSE;
while (segptr /= NULL)

if (create flag == TRUE)
/* the relation nodes are allocated and filled here */

create_new rel_node();

strncpyfrelation name, segment name);

number_ofjrelational_attributes = number_of_hierarchical fields;

if (seg ptr == hierarchical root seg)

/* special case of first relation */

dbid_node_first_rel = newjrel_node;

else

rel node next rel = new rel node;

hattr_ptr = seg_ptr-> first_field;

while (hattrptr != NULL)
/* the attribute nodes are allocated and filled here */

create new rattr node();

strncpy(attribute name, field name);

attribute type = fieldtype;

attribute length = field length;

key flag = sequence field flag;

if (hattr ptr == seg ptr-> first field)

/* special case of first attribute */

rel node first attr = new rattr ptr;

else

rattr node_next attr = new_rattr ptr;

hattrjptr — next field;

/* end attr loop */
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/* the sequence fields are cascaded at this point *

/

ancestor seg ptr = seg_ptr-> parent;

while (anc seg_ptr != NULL)
create newjrattrjnodef);

strncpyf attribute name, segment_name)

attribute = fieldtype;

attribute length = field length;

attribute key flag = sequence field flag;

attach attribute to_relation();

ancestor_seg_ptr = anc_seg_ptr-> parent;

/* end if create_flag == true */

create_flag = TRUE;

if (up 'flag == FALSE && seg_ptr->first child .'= NULL)
seg ptr = seg_ptr-> first_child;

else

if (seg ptr->next sibling != NULL)
seg ptr— seg ptr-> next sibling;

upjiag = FALSE;
else

segjptr = seg_ptr-> parent;

up 'flag = TRUE;
create flag = FALSE;
if (seg ptr == hierarchical_dbjroot_seg)

seg ptr = NULL;
/* end while seg ptr != null *

/

end-proc;

proc QUERIES-TO-KMS();
/* This routine causes the queries to be listed to the screen. */

/* The selection menu is then displayed allowing any of the */

/* queries to be executed. */

perform LIST-QUERIES ();

proceed = 'true';

while (proceed) do

print ("Pick the number or letter of the action desired");

print (" (num) - execute one of the preceding queries");

print (" (d) - redisplay the file of queries");

print (" (x) - return to the previous menu");

read (answer);
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case (answer) of

'num' : /* execute one of the queries */

traverse query list to correct query;

perforin KERNAL-MAPPING-SYSTEM();
perform KERNEL-CONTROLLERQ;

'd' : /* redisplay queries */

perform LIST-QUERIES();

'x' : /* exit to mode menu */

proceed = 'false';

default : /* user did not select a valid choice from the menu */

print (" Error - invalid option selected");

print (" Please pick again");

end-case;

end-while;

end-proc;

end-module;
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APPENDIX C - THE KMS PROGRAM SPECIFICATIONS

module KMS ()

perform parser ()

end-module KMS

proc yyparse ()

/* This proc accomplishes the following : */

/* (1) parses the SQL input requests and maps them to appropriate */

7
7
7
7
7

%{

r
i*

r
i*

i*

abdl requests, using LEX and YACC to build proc yyparseQ.

(2) builds the relational schema, when loading a new database.

(3) checks for validity of relation and attribute names within

the given db schema, when processing requests against an

existing database.

list: tgt-list

list: templates

list: insert-list

list: alt info

string: temporary-str

string: abdl-str

string: join-str

boolean: nested

boolean: creating

boolean: or-where

boolean: and-where

boolean: set-member

/* list of attribute names */

/* relation name(s) */

/* list of values for insertion op */

/* list of attributes, ops, and values */

I* used for accumulation of query conjuncts */

/* used for accumulation of abdl request */

/* used for accumulation of join request */

/* signals a nested SELECT query */

/* signals a DbLoad - versus a DbQuery */

/* signals an OR term in the WHERE clause */

/* signals an AND term in the WHERE clause */

/* signals set membership op, vice nested SEL */

boolean: common-attr /* signals COMMON attr predicate of JOIN op */

%)

boolean: rell

boolean: rel2

boolean: or-abdl-join

boolean: or-kms-join

boolean: delete-all

boolean: key attr

boolean: leaf

int: no null count

int: target-list-length

int: insert-list-length

int: no-templates

int: no-attributes

int: attr-len

char: attr-type

char: db[]

char: template[]

char: attributef]

/* signals curr predicate assoc'd w/lst join rel */

/* signals curr predicate assoc'd w/2nd join rel */

/* OR in 1st join retrieve request */

/* OR in 2nd join retrieve request */

/* signals deletion of all records in relation */

/* identifies a key attribute */

/* identifies leaf segment in hierarchical schema */

/* counts number of key attributes in a relation */
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% start statement

% token /* LIST ALL TOKENS FROM "LEX", and their TYPE, HERE */

%%
/* The grammar rules that follow have been taken from : */

/* "System R", Appendix II, by M.M. Astrahan in the ACM Trans- */

/* actions on Database Systems, Vol. 1, No. 2, June 1976. */

/* The rules are not shown in their entirety, however except for the */

/* following exceptions, they were strictly adhered tp in an effort */

/* to facilitate future expansion of this program for SQL : */

/* (1) all non-terminals are in lower-case, */

/* (2) all terminals (recognized by LEX/lex.yy.c) are in upper-case, */

/* (3) some upper-case single-character letters appear throughout — */

/* they represent points in the grammar where allowances were */

/* made for optional terminals and non-terminals. */

statement: query

{

nested = FALSE
free all tgt/insert lists and temp-str (malloc'd vars)

return

}

dml-statement

{

cat End-Of-Request ("]") to end of abdl-str

free all tgt/insert lists and temp-str (malloc'd vars)

return

}

ddl-statement

{

return

}

dml-statement: insertion

deletion

update

query: query-expr

query-expr: query-block

{

cat End-Of-Request ("]") to end of abdl-str

}
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query-block: select-clause FROM from-list

{

for (ea attribute name in tgt-list)

if (! join)

if NOT valid-attribute(db, template, attribute, attr-len)

print ("Error - field name 'attribute-name' does not exist")

perform yyerrorQ

return

end-if

end-if

else

a join exists -- check that tgt-rel(s) match at least

one from-list relation

if (match neither)

print ("Error - 'attr' attr not in from-list relations")

perform yyerror ()

return

end-if

end-else

end-for

cat "(" to abdl-str

if (join)

cat "(" to join-str

end-if

if (nested)

fill temporary-str w/'*'s marking the length of the tgt attr

end-if

}

A

{

cat ")" to abdl-str

if (! join)

cat "('tgt-list')" to abdl-str

end-if

else

cat "('tgt-list')" to abdl/join-str, as appropriate

construct the rest of the abdl join request

(ie, cat COMMON-str to abdl-str; cat join-str to abdl-str)

end-else

}

B
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A: empty

{

cat "TEMP = 'relation-name'" to abdl-str

}

|
WHERE boolean

{

if (! join) && (or-where)

cat ")" to abdl-str

end-if

else if (or-abdl-join)

cat ")" to abdl-str

end-elseif

elseif (or-kms-join)

cat ")" to join-str

end-elseif

}

B: empty

|
GROUP BY field-spec-list

{

cat "BY 'attribute-name'" to abdl-str

}

|

ORDER BY field-spec-list

{

cat "BY 'attribute-name'" to abdl-str

}

!

select-clause: SELECT

{

if (nested)

allocate another set of tgt/insert lists, temporary-str,

and abdl strings

end-if

copy "[ RETRIEVE " to beginning of abdl-str

}

C;

C: sel-expr-list

|
MULTOP

{

/* retrieval of "all" attribute values desired */

if (MULTOP value /= '*')

print ("Error - asterisk(*) operator expected")

perform yyerror ()

return

end-if

}
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sel-expr-list: sel-expr

{

copy first attribute name to tgt-list

}

sel-expr-list COMMA sel-expr

{

copy successive attribute name(s) to tgt-list

}

sel-expr: expr

insertion: INSERT INTO

{

copy "[ INSERT (" to beginning of abdl-str

}

receiver COLON insert-spec

{

/ If the current database is hierarchical, branch to */

/* the alternate processing algorithm at this point */

perform INSER T-REL- TO-DLI(J

cat ")" to abdl-str

}

receiver: table-name

{

cat "<TEMP, 'relation-name'>" to abdl-str

/* Get the number of key attributes in the current relation */

call get no null countf)

}

D
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D: empty

{

/* inserting info for "all" attribute values */

copy all attribute names from schema to tgt-list

if (target-list-length < 1)

print ("Error - rel does not exist, or has no attr's")

perform yyerror()

return

end-if

}

|
LPAR field-name-list RPAR

{

for (ea attribute name in tgt-list)

if NOT valid-attribute(db, template, attribute, attr-len)

print ("Error - field name 'attribute-name' does not exist)

perform yyerrorQ

return

end-if

end-for

};

field-name-list: field-name

{

target-list-length++
copy first attribute name to tgt-list

}

field-name-list COMMA field-name

{

target-list-length-f-l-

copy successive attribute name(s) to tgt-list

};

insert-spec: literal

{

if (length of tgt-list <> length of insert-list)

print ("Error - not enough or too many values inserted")

perform yyerrorQ

return

end-if

for (ea attribute in tgt-list / ea value in insert-list)

perform type-checking of attrribute-value pairs

cat ",<'attribute-name', 'insert-value'>" to abdl-str

end-for

if (value not given for each key attribute)

print (NONULL attributes in relation must be given specific values)

perform yyerrorf)

return

end-if

};

102



deletion: DELETE table-name

{

copy "[ DELETE (
" to abdl-str

copy 'table-name' to templates

}

E
{

if (delete-all)

cat "TEMP = 'table-name'" to abdl-str

end-if

cat ")" to abdl-str

/* If deleting from a hierarchical db, allocate an alt info structure, */

/* intialize to NULL values, and attach to end of linked list. */

call alt list_info_alloc()

cat ('ZZZ' to name, op, value)

/* If deleting from a hierarchical db */

perform DELETE-REL- TO-DLI()

)

E: empty

{

delete-all = TRUE
}

|

WHERE boolean

{

if (or-where)

cat ")" to abdl-str

end-if

}

update: UPDATE table-name

{

copy »| UPDATE (
" to beginning of abdl-str

copy relation-name to templates

}

set-clause-list F

{

cat ") 'set-clause-list'" to abdl-str

/* // updating in a hierarchical db, allocate an alt info structure, */

/* intialize to NULL values, and attach to end of linked list. */

call alt list info alloc ()

cat ('ZZZ' to name, op, value)

/* If updating in a hierarchical db and attempting to change a Key field *

/

print (UPDATE not allowed. The current implementation of DL/I)

print (allows updates on NON-KEY fields only)

};
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F: empty

|
WHERE boolean

{

if (or-where)

cat ")" to abdl-str

end- if

}

set-clause-list: set-clause

set-clause: SET field-name EQ expr

{

if NOT validattribute(db, template, attribute, attr-len)

print ("Error - field name 'attribute-name' does not exist")

perform yyerrorQ

return

end-if

if (updating a hierarchical db, check if updating is on a key field)

call 8et_update_8tatu8()

else

copy "< 'field-name = expr'>" to abdl-str

end-else

}

ddl-statement: create-table

create-table: CREATE

creating = TRUE
locate db-id schema header

TABLE table-name COLON
{

no-templates ++
create new template block

enter 'relation-name' in template block

}

field-defn-list
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field-defn-list: field-defn

{

no-attributes ++
}

|
field-defn-list COMMA field-defn

{

no-attributes ++
}

field-defn: field-name LPAR type G RPAR
{

create new attribute block

enter 'attribute-name' in attribute block

}

type: CHAR LPAR INTEGER RPAR
{

enter attribute type and length in attribute block

}

|
INT LPAR INTEGER RPAR

{

enter attribute type and length in attribute block

}

|
FLOAT LPAR INTEGER RPAR

{

enter attribute type and length in attribute block

}

G: empty

{

set key-flag to '0' in attribute block

}

|
COMMA NONULL

{

set key-flag to '1' in attribute block

}
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boolean: boolean-term

{

if (! join)

cat "-(TEMP = 'relation-name') and" to abdl-str

cat temporary-str to abdl-str

end-if

}

boolean OR
{

or-where = TRUE

/* If deleting or updating in a hierarchical db, allocate an alt_info */

/* structure, intialize to NULL values, and attach to end of linked list.*/

call alt_list_info_alloc()

cat ('ZZZ' to name, op, value)

if (! join)

abdl-str[ll] = '('

cat ") or ((TEMP = 'relation-name') and" to abdl-str

copy empty-str to temporary-str

end-if

}

boolean-term

{

if (! join)

cat temporary-str to abdl-str

end-if

else

if (current predicate assoc'd w/same rel as previous predicate)

abdl/join-str[ll] = '('

cat ") or ((TEMP = 'rel-name') and" to abdl/join-str (as approp)

cat temporary-str to appropriate str (abdl/join-str)

end-if

else

abdl/join-str(as approp) [11 + 3] = '('

cat "and" to appropriate str (abdl/join-str)

cat temporary-str to appropriate str (abdl/join-str)

end-else

copy empty str to temporary-str

or-where = FALSE
end-else

}
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boolean-term: boolean-factor

{

if (join) && (! or-where)

determine rel that curr predicate is assoc'd with

if (rell) && (! common-attr)

cat "(TEMP = 'rel-namel') and" to abdl-str

cat temporary-str to abdl-str

cat " TEMP = 'rel-name2'" to join-str

end-if

if (rel2) && (! common-attr)

cat "(TEMP = 'rel-name2'j and" to join-str

cat temporary-str to join-str

cat " TEMP = 'rel-namel'" to abdl-str

end-if

if (common-attr)

cat " TEMP = 'rel-namel/2" to abdl/join-str's

end-if

end-if

}

boolean-term AND
{

and-where = TRUE;
if (! join)

cat "and" to temporary-str

end-if

}

boolean-factor

{

if (join) && (! or-where) && (! common-attr)

if (rell)

abdl-str[ll + 3] = '('

cat ") and" to abdl-str

cat temporary-str to abdl-str

end-if

if (rel2)

join-str[ll + 3] = '('

cat ") and" to join-str

cat temporary-str to join-str

end-if

copy empty-str to temporary-str

and-where = FALSE
end-if

}

boolean-factor: boolean-primary

boolean-primary: predicate
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predicate: expr

{

if (! join)

if NOT valid-attribute(db, template, attribute, attr-len)

print ("Error - field name 'attribute-name' does not exist")

perform yyerror()

return

end-if

if (! and-where)

allocate new temporary-str

cat "('attribute-name' " to temporary-str

and-where = FALSE
end-if

/* If deleting or updating in a hierarchical db, allocate an alt_info */

/* structure, set name to current attribute, and attach to linked list.*/

call alt list_info_alloc (

)

cat (attribute to name)

else

save 'type' for later comparison during type-checking,

in case this is the COMMON attribute predicate

}

comparison

{

if (nested)

save attr name in case nest is actually a set membership op

}

table-spec

(

if (! join)

cat ")" to temporary-str

else

if (common-attr)

save values of 'expr', 'comparison', & 'table-spec'

for the COMMON expr, and type-check the two attr's

end-if

if (! and-where) && (! or-where)

allocate initial temporary-str

copy "(" to temporary-str

end-if

else

cat "(" to temporary-str

end-else

cat "'expr' 'comparison' 'table-spec')" to temporary-str

end-else

}
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comparison: comp-op

{

if (! join)

cat 'comp-op' to temporary-str

if (nested)

copy type-op-code to abdl-str.rel-op

end-if

end-if

}

comp-op: EQ
{

/* If deleting or updating in a hierarchical db, set the */

/* current operation, and attach to end of linked list. */

cat (operation to op)

>

|
M J

{

/* // deleting or updating in a hierarchical db, set the */

/* current operation, and attach to end of linked list. */

cat (operation to op)

if (nested)

cat 'J' to 'M' and save

end-if

}

I

L

{

/* // deleting or updating in a hierarchical db, */

/* and a nested operation is attempted - error. */

print (nested delete or update operation not allowed on HIE database)

nested = TRUE
}

J: empty

I

K
{

/* If deleting or updating in a hierarchical db, */

/* and a ALL/ANY operation is attempted - error. */

print (ALL/ANY operation not allowed on HIE database)

nested - TRUE
}
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K: ANY I ALL

L: IN
|
NOT IN

M: NE I RWEDGE I GE I LWEDGE I LE

table-spec: literal

{

if (! set-member)

if ('literal[0]' = QUOTE)
strip quotes from literal

change literal to ALPHANUMFIRST
literal-const = FALSE

end-if

cat result, or original literal, to temporary-str

/* If deleting or updating in a hierarchical db, set the */

/* attribute value, and attach to end of linked list. */

cat (attribute value to value)

if (nested)

set first-ptr to top of abdl-str list

end-if

end-if

else

set-member = FALSE
end-else

}

query-expr

{

increment ptr to next tgt/insert list, temp-str, and abdl-str

}

|
LPAR query-expr RPAR

{

increment ptr to next tgt/insert list, temp-str, and abdl-str

}

expr

{

common-attr = TRUE
}
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literal: lit-tuple

LPAR entry-list RPAR
{

set-member = TRUE
case (set-membership-op)

3,5,8,10 : /* <=ANY, <ANY, >=ALL, >ALL */

cat 'max of value set' to temporary-str

4,6,7,9 : /* >=ANY, >ANY, <=ALL, <ALL */

cat 'min of value set' to temporary-str

1 : /* NOT IN */

cat first value to temporary-str

while (other values exist)

cat ") and ('attr-name' /= 'value'" to temporary-str

end-while

0,2 : /* IN, /-ANY */

cat first value to temporary-str

if (more values exist)

abdl-str[ll] = '('

or-where = TRUE
end-if

while (other values exist)

cat ")) or ((TEMPLATE = 'rel-name') and ('attr-name'"

to temporary-str

if ( rel-op = IN
)

cat " = " to temporary-str

end-if

else

cat " /= " to temporary-str

end-else

cat value to temporary-str

end-while

end-case

lit-tuple: entry

|
LWEDGE entry-list RWEDGE
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entry-list: entry

{

/* copy first value to insert-list */

insert-list-length+-|-

if fentry[0]' = QUOTE)
strip quotes from entry

change entry to ALPHANUMFIRST
end-if

copy result, or original entry, to insert-list

}

entry-list COMMA entry

{

/* copy successive value(s) to insert-list */

insert-list-length++

if ( 'entry [0]' = QUOTE)
strip quotes from entry

change entry to ALPHANUMFIRST
end-if

copy result, or original entry, to insert-list

}

entry: constant

expr: arith-term

expr ADDOP arith-term

arith-term: arith-factor

I
arith-term MULT-OP arith-factor

arith-factor: H primary

H: empty

I
ADDOP

primary: field-spec

|

set-fn LPAR field-name RPAR
LPAR expr RPAR
constant

field-spec-list: field-spec
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field-spec: field-name

table-name DOT field-name

{

if (! valid-attribute(db, rel, attr, attr-len)

print ("Error - 'rel. attr' is invalid combination")

perform yyerrorQ

return

end-if

if (join)

if (! or-where)
|| (

(or-where) && (! and-where)
)

if (table-name = rell)

rell = TRUE
rel2 = FALSE

end-if

if (table-name = rel2)

rell = FALSE
rel2 = TRUE

end-if

end-if

end-if

};

set-fn: AVG I MAX I MIN I SUM I COUNT

from-list: table-name

{

copy first relation name to templates

if (tgt-list = null)

fill tgt-list with "all" attribute names in the relation

end-if

}

from-list COMMA table-name

{

copy second relation name to templates

join = TRUE
allocate join-str

};

empty: ;

constant: QUOTE I QUOTE
{

literal-const = TRUE
perform type-checking

}

|
INTEGER

{

perform type-checking

};
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I: IDENTIFIER
I
VALUE

field-name: IDENTIFIER

table-name: IDENTIFIER

{

if (! creating)

if NOT valid-table(db, template)

print ("Error - relation name 'table-name' does not exist")

perform yyerrorQ

return

end-if

end-if

}

'070

end-proc yyparse

proc parser
()

{

if (! creating)

allocate and initialize first tgt/insert lists, temporary-str, and abdl-str

/* if an old abdl-str exists, free it first */

end-if

perform yyparse ()

reset all boolean and counter variables

}

end-proc parser

proc yyerror (s)

char *s

{

if (creating)

set CreateDB-error-flag

print ("Error msg - tell user which CREATE TABLE request was in error")

free current schema (malloc'd vars)

end-if

else

free all tgt/insert lists, temp-str, and abdl-strs

end-else

reset all boolean and counter variables

}

end-proc yyerror
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proc INSERT-REL- TO- DLIf)
/* This procedure translates a AB (relational) insert transaction */

/* to an equivalent AB(hierarchical) insert transaction */

hierarchical ptr = locate dlijschema(db); /* head of hie db */

relational ptr = locate rel_schema(db); /* head of rel db */

/* search the hie schema for the segment/relation name *

/

seg ptr = hierarchical root seg;

visitflag - TRUE; up_fla~g = FALSE; found = FALSE;
while (seg_ptr /= NULL && found == FALSE)

if (visit flag == TRUE)
if(hierarchical name =— relational name)

found = TRUE;
visit flag = TR UE;

if (found == FALSE)
if (upjlag == FALSE && segment first_child /= NULL)

seg ptr = segment first_child;

else

if (segment_nextjsibling != NULL)
seg ptr = segment next sibling; up flag = FALSE;

else

seg ptr = segment parent;

seg ptr = segment parent; up flag = TRUE; visit flag = FALSE;

if (seg ptr == hierarchical root seg)

seg_ptr = NULL;
/* end while seg_ptr != null *

/

/* determine if RETRIEVE will be need, and if so, build it. */

/* note : A RETRIEVE is not needed at the root segment. */

while (segment name != relationjname)
relptr = next relation;

if (seg_ptr-> segmentjparent != NULL) /* then retrieve is needed */

strcat(arireq, n
) J

1
*); /* end the insert request */

/* begin forming the RETRIEVE request *

/

strcpy(new_req, "/ RETRIEVE ((TEMP = ", segment parent_name, ")");

/* use the information in the insert request to form the new retrieve */

while (field name != attribute name)

strcatfnew req, " and (" , attribute name, " = ");

/* add the attribute value *

/

strcatfnew req, attribute value, n
)
n
);

/* add the target list to the retrieve request */

strcatfnewreq, ") (
n

, relational first attr name);

nojrtq = no req + 1; /* increase the number of ABDL requests */

/ link the insert request to the retrieve request */

first req = retrieve req; next req = insert req;

/* end if seg ptr .'= null */

end- proc insert- rel- to- dli
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proc DELETE- REL- TO-DLI()

/* translates the SQL delete to AB(hierarchical) Delete transactions */

/* initialize rel pointers */

rdb ptr = locate_rel schema(db); /* head of rel db */

hdb ptr = locate_dli_schema(db); /* head of dli db */

/* create the ancestor retrieve requests */

while (Idone)

if (seg ptr->hn_parent == NULL)
done~= TRUE;

/* alloc and init a new abdljstr and a new tgt list item */

temp sit ptr = Sit info alloc ();

call init_sitinfo ();

operation = GhuOp;

strcpy (abdlreq, "/ RETRIEVE (TEMP = ", segmentname, ")");

/* add the cascaded sequence fields and key field */

while (attribute name .'= segment field name)

strcat (abdljreq, " and (" , attribute_name, u
)
n
);

for (i = 1; i <= attribute_length)

strcat (abdl req, Star);

strcat (abdlreq, n
)
n
);

rattr ptr — next^attribute;

/* add on specific query predicates if any */

added value = FALSE;
while (temp alt ptr /= end alt ptr)

/* check of a specific query goes with this segment */

hattr ptr = seg ptr first attr;

entered = FALSE;
while (hattr_ptr != NULL && '.entered)

if (ali name = = field name)
/* a specific query predicate matches an attribute in this segment */

strcat (abdl req, " and (" , aliname, op, value,")");

added value = TRUE; /* used to determine if additional brace needed */

entered = TRUE; /* used to break out of loop */

/* end alijname = field_name */

else

hattrjptr = next attr;

/* end while hattr ptr != null */

temp alt ptr = ali next attr;

if (extra parenthesis needed)

abdlreqfLeadingLPAR] = '(';

strcat (abdlreq, n
)
n
);

/* add on the tgt list and by clause *

/

strcat (abdlreq, " (" , seg first_field_name, n
) BY", seg_first_field_name, "]");

seg ptr = parent;

/* end while Idone */
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/* build the Delete request for the specified relation/segment *

/

/* alloc and init a new abdl str and a new tgtlist item */

c all Sit_info_alloc ();

call init_sit_info ();

operation = DletOp;

/* formulate the first DELETE request */

strcpy (abdlreq, "/ DELETE ((TEMP = ", segmentname, n
)
n
);

while (not at end of list tgt list)

/* copy seq fid attribute- value pairs to abdljstr */

strcat (abdl req, " and (" , siijname, n— tt

);

/* mark max length of attribute value */

for (i = 1; attribute length)

strcat (abdljreq, Star);

strcat (abdljreq, ")");

tgtjptr = nextjxttr;

while (temp alt ptr != end_alt_ptr)

hattr ptr = first attr->next attr;

entered = FALSE;
while (hattrptr /= NULL && lentered)

if (ali name == field name)

strcat (abdl req, " and (" , name, op, value, n
)
n
);

added value = TRUE;
entered = TRUE;

else

hattr ptr = next attr;

temp alt ptr = next attr;

strcat (abdlreq, n
) J");

/* move the ptr to next set of specific predicates. Ptr will be null */

/* if no 'OR' involved or point to first predicate of next set */

alt ptr = ali next attr;

/* form the descendant Deletes to complete the Delete request */

call form descendant deletes ();

/* set up the sit status structures */

call matchf);

/* call the Kernel Controller */

Kernel Controller();

/* on return, clear the result files in case they are needed again */

close J>uffs();

while (sitptr != NULL)
partial init sit info ();

sit ptr = next;
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/* check if this is an 'OR' operation. If it is, revise the */

/* initial set of retrieves as neccessary and call KC again. */

while (altjptr != NULL)
/* reset necessary pointers */

operation = ExecRetReq; req_status = FIRSTTIME;
/* set the boundary for the next set of specific predicates */

end alt ptr — altjptr;

while (aliname b= "ZZZ")

end alt ptr = next_attr;

/* move to the retrieve of the rel/seg being deleted */

while (operation != DietOp)

sit ptr = next;

/* modify all the retrieves */

while (Idone)

if (!first time && segjparent == NULL)
done = TRUE;

/* identify the area of the modifications */

while (abdl_reqffwd count] != \n')

-\--\-fwd_count;

rev_count = strlen(abdl_req)

;

while (abdljreqfrevcountj != \n')

— rev_count;

/* copy the abdl req to the template in order to rebuild the request */

strcpy (template, abdl req);

/* cut off the abdl req at the point of the first predicate */

abdl_reqffwd_count] = \0';

/* search the rel schema for the segment/relation name */

while (relation name !— segment name)

reljptr = next_r elation;

rattr ptr = first attr;

/* add the cascaded sequence fields and key field */

if (first time && relation name == segment name)

while (attribute name != second field name)

strcat (abdljreq, " and (", attributejname ,
" = "

);

for (i = 1; attribute_length)

strcat (abdl req, Star);

strcat (abdlreq, ")");

rattr ptr — next attr;

else

while (attribute name /= fi.rst_fi.eld name)

strcat (abdl req, " and (" , attribute name, " = "
);

for (i = 1; attribute length)

strcat (abdl req, Star);

strcat (abdlreq, ")");

rattr ptr = next attr;
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/* add on specific query predicates if any */

temp alt ptr = alt ptr;

while (temp alt_ptr != end_alt_ptr)

/* check if a specific query goes with this segment */

if (firstJtime)

hattrjptr = first_attr->han_next_attr;

else

hattr ptr = first attr;

while (hattr ptr != NULL && .'entered)

if (alijname == field_name)
/* a specific query predicate matches an attribute in this segment */

strcat (abdl req, " and (" , name, op, value, n
J
n

);

added value = TRUE; /* used to determine if additional brace needed */

entered = TRUE; /* used to break out of loop */

else

hattr_ptr = nezt_attr;

/* end while hattr_ptr /= null */

temp_alt_ptr = all next attr;

if (first time)

strcat (abdl req, ") J");

else

if (segment parent != NULL\\ added value)

abdlreqfleadingLPARj = '(';

strcat (abdlreq, n
)
n
);

else

abdlreq/LeadingLPAR] = ' ';

/* add on the tgt list and by- clause of the request */

i = strlenfabdl req); j = rev count;

while (template [j] !- \0')

abdljreq[ij= sitjptr->Si template[jj;

abdl_req[i+lj = \0';

free(Si template);

sit ptr = Si prev;

if (!first time)

seg ptr = segment parent;

firsttime = FALSE;
/* end while !done */

/* move the ptr to next set of specific predicates. Ptr will be null */

/* if no 'OR' involved or point to first predicate of next set */

alt ptr = ali next attr;

/* call the Kernel Controller */

call kernel controller();

closeJbuffsf);

/* end while alt_ptr /= null */
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/* after final call to KC, release ALL dli structures *

/

/* before returning to normal SQL processing. */

/* clean up all the DLI structures */

end-proc delete rel to dli
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