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Osteoclasts are multinuclear giant cells that have unique ability

to degrade bone. The search for new medicines that modulate

the formation and function of osteoclasts is a potential

approach for treating osteoclast-related bone diseases.

Piceatannol (PIC) is a natural organic polyphenolic stilbene

compound found in diverse plants with a strong antioxidant

and anti-inflammatory effect. However, the effect of PIC on

bone health has not been scrutinized systematically. In this

study, we used RAW264.7, an osteoclast lineage of cells of

murine macrophages, to investigate the effects and the

underlying mechanisms of PIC on osteoclasts. Here, we

demonstrated that PIC treatment ranging from 0 to 40 mM

strongly inhibited osteoclast formation and bone resorption

in a dose-dependent manner. Furthermore, the inhibitory

effect of PIC was accompanied by the decrease of osteoclast-

specific genes. At the molecular level, PIC suppressed the

phosphorylation of c-Jun N-terminal kinase (JNK),

extracellular signal-regulated kinase (ERK1/2), NF-kB p65,
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IkBa and AKT. Besides, PIC promoted the apoptosis of mature osteoclasts by inducing caspase-3

expression. In conclusion, our results suggested that PIC inhibited RANKL-induced

osteoclastogenesis and bone resorption by suppressing MAPK, NF-kB and AKT signalling

pathways and promoted caspase3-mediated apoptosis of mature osteoclasts, which might

contribute to the treatment of bone diseases characterized by excessive bone resorption.
lishing.org/journal/rsos
R.Soc.open

sci.6:190360
1. Introduction
Bone homeostasis is maintained by the precise balance between bone formation and bone resorption,

which are carried out by osteoblasts and osteoclasts, respectively [1]. However, enhanced osteoclastic

bone resorption can cause imbalance of bone homeostasis, which leads to many bone-destructive

diseases including osteoporosis, rheumatoid arthritis and metastatic cancers [2–4]. Osteoclasts

originate from the haematopoietic progenitor cells of monocyte/macrophage lineage which undergo

differentiation to form specialized bone resorbing cells [5,6]. The process is essentially determined by

two key cytokines, macrophage colony stimulation factor (M-CSF) and receptor activator of NF-kB

ligand (RANKL), respectively [7,8]. Notably, mouse monocyte/macrophage cell lineage (RAW264.7)

can be induced to differentiate into osteoclasts by RANKL in the absence of M-CSF [9,10].

The binding of RANKL to its receptor RANK leads to the recruitment of tumour necrosis factor

receptor-associated factor 6 (TRAF6), which then activates several downstream signalling pathways

including NF-kB, MAPKs (ERK, JNK and p38) and Src/PI3K/AKT [11]. These events ultimately lead

to the expression of NFATc1, a master regulator for osteoclastogenesis [12]. NFATc1 plays an

important role in osteoclast formation and function by regulating a number of osteoclast-specific

genes, including tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), matrix

metalloproteinase 9 (MMP-9) and dendritic cell-specific transmembrane protein (DC-STAMP) [11].

Thus, the agents that suppress RANKL-mediated signalling pathways can be a potential therapeutic

target.

Piceatannol (PIC) is a polyphenolic stilbene found naturally in various plants, including grapes,

rhubarb and sugarcane [13,14]. Pharmacological effects of PIC such as antioxidative, anti-

inflammatory, anti-cancer and cardioprotective properties have been reported before [15]. Specifically,

studies have confirmed that PIC exhibits the representative anti-inflammatory effect through the

NF-kB, MAPKs and PI3K/AKT pathways [16–18], which are also essential for osteoclast

differentiation and bone resorption. Based on existing and confirmed knowledge, only a few studies

have reported the direct effect of PIC on osteoclast formation. Jia et al. [19] revealed that PIC inhibited

the activation of Syk and the osteoclast formation. Ke et al. [20] demonstrated that PIC decreased the

expression of miR-183, resulting in suppressed osteoclastogenesis. Although these findings have

provided an understanding of the effects of PIC on osteoclast formation, the precise underlying

mechanism of PIC on osteoclast differentiation and bone resorption from RANKL-induced RAW264.7

cells remains unclear. Moreover, the effects and the molecular mechanism of PIC on the survival of

mature osteoclasts have not been investigated. In this study, we investigate the direct effects and the

underlying mechanism of PIC on the differentiation, function and survival of osteoclasts.
2. Material and methods
2.1. Reagents and antibodies
Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were purchased from

GIBCO (Invitrogen Corp., Carlsbad, CA, USA). The M-CSF and RANKL were obtained from R & D

Systems (Minneapolis, MN, USA). The cell counting kit-8 was obtained from Phygene (Fuzhou,

China). The caspase-3 activity assay kit and Hoechst 33258 were obtained from Beyotime

Biotechnology (Shanghai, China). TRAP stain kit was purchased from Sigma-Aldrich (USA).

RAW264.7 cells were obtained from Procell (Wuhan, China). Piceatannol (PIC) was acquired from

Selleck Chemicals (USA) and dissolved in dimethyl sulfoxide (DMSO) and then diluted to the

required working concentrations in complete culture medium. All antibodies used in this study were

obtained from Cell Signalling Technology (Danvers, MA).
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2.2. Cell culture and treatment

RAW264.7 cells were grown in a dish with complete culture medium composed of 90% DMEM, 10% FBS

and 1% penicillin/streptomycin. The cells were put in an incubator with a humidified atmosphere

containing 5% CO2 at 378C. Cells were treated with RANKL (20 ng ml21), M-CSF (10 ng ml21) and

different concentrations of PIC (0, 2.5, 5, 10, 20 and 40 mM) to induce osteoclast formation. The

highest concentration of DMSO was below 0.1% during the experiments, and this concentration

served as vehicle control.
.org/journal/rsos
R.Soc.ope
2.3. Cytotoxicity assay
Cell viability was detected with the CCK-8. Briefly, RAW264.7 cells were seeded into sterile 96-well plates

at a density of 5 � 103 cells well21. After 24 h, cells were treated with different concentrations of PIC (2.5,

5, 10, 20, 40 mM) or vehicle (0.1% DMSO) for 48 or 72 h. At the end of the culture period, the culture

media were replaced with 100 ml mixture of 10% CCK-8 and 90% DMEM. After cells were incubated

for 2 h, the absorbance values were measured using a 96-well plate reader at 450 nm.
n
sci.6:190360
2.4. TRAP staining and TRAP activity assay
RAW264.7 cells were seeded into sterile 96-well plates at 5 � 103 cells per well in complete medium for

24 h until they attached to the plates. Cells were then cultured with the complete culture medium

supplemented with 20 ng ml21 RANKL, 10 ng ml21 M-CSF and various non-cytotoxic concentrations

of PIC (2.5, 5, 10, 20, 40 mM) or vehicle (0.1% DMSO) for 4 days. At the end of the culture period, the

cells were fixed with 4% paraformaldehyde for 20 min and then stained for TRAP according to the

manufacturer’s instructions. TRAP-positive cells containing three or more nuclei were counted as

osteoclasts. Images were obtained using an Olympus IX83 inverted microscope. TRAP activity was

performed as previously described [21] and was quantified by detecting optical absorbance at 405 nm

using EnSpire 2300 multimode reader (PerkinElmer).
2.5. Bone resorption assay
To evaluate bone resorption, RAW264.7 cells were seeded on bone slices in 24-well plates at a density of

1.5 � 104 cells per well, in the presence of RANKL (20 ng ml21), M-CSF (10 ng ml21) and varying

concentrations of PIC (10, 20, 40 mM) or vehicle (0.1% DMSO). Afterwards, the attached cells were

cultured for 5 days (SEM) and 7 days (toluidine blue). The media were replaced every 2 days. At the

end of the culture period, cells that had attached to bone slices were washed by mechanical agitation.

Bone slices images were taken by using a scanning electron microscope (SEM, FEI Q25) at 10 kV.

However, toluidine blue staining was also used for bone resorption pit assay as previously described

[22]. Resorbed areas on bone slices were analysed with IMAGEJ software.
2.6. Real-time qPCR
RAW264.7 cells were seeded at a density of 4 � 104 cells per well in a 12-well plate and were exposed to

PIC (20, 40 mM) or vehicle (0.1% DMSO) in the presence of RANKL (20 ng ml21) and M-CSF (10 ng ml21)

for 4 days. Total RNA was extracted from cultured cells using UNIQ-10 Column Trizol Total RNA

Isolation Kit (Sangon Biotech). Single-stranded cDNA was synthesized from 1 mg of total RNA using

reverse transcriptase (Toyobo, Japan). Real-time qPCR was performed with ChamQ SYBR qPCR

Master Mix (Q331-02, Vazyme) using ABI 7500 Real-time quantitative PCR machine (Applied

Biosystems, Foster City, CA). All reactions were run in triplicate. The primers (Sangon Biotech) used

in this study are as follows: GAPDH, 50-GGTTGTCTCCTGCGACTTCA-30 and 50-TGGTCCAGGGTTTCT

TACTCC-30; MMP-9, 50-CAAAGACCTGAAAACCTCCAAC-30 and 50-GACTGCTTCTCTCCCATCATC-

30; CTSK, 50-GGCCAGTGTGGTTCCTGTTGG-30 and 50-CCGCCTCCACAGCCATAATTCTC-30; TRAP,

50-CAAGAACTTGCGACCATTGTTA-30 and 50-ATCCATAGTGAAACCGCAAGTA-30; DCSTAMP, 50-CG

TTGCCCTGCTCTCTTCTG-30 and 50-CAGCCGCAATCAAAGCGTTC-30; NFATc1, 50-TACCAGGTC

CACCGGATCAC-30 and 50-CCCGATGTCTGTCTCCCCTT-30.
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2.7. Western blotting

RAW264.7 cells were seeded in a sterile six-well plate at a density of 1 � 106 cells per well. After

pretreatment with PIC (40 mM) or vehicle (0.1% DMSO) for 6 h, the RAW264.7 cells were treated with

RANKL (50 ng ml21) for 0, 15 and 30 min. The cells were then washed in ice-cold PBS and lysed in

radio-immunoprecipitation assay buffer accompanied with phosphatase and protease inhibitors. The cell

lysates were centrifuged at 12 000 r.p.m. for 10 min at 48C and supernatants were collected. The protein

concentrations were measured by a bicinchoninic acid protein assay kit. A total of 30 mg of each protein

sample was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to

polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA). Afterwards, the membranes were

blocked with 5% skim milk for 2 h, and then incubated with primary antibodies overnight at 48C,

followed by incubation with the appropriate secondary antibodies. Antibody reactivity was detected

using the ProteinSimple FluorChem M Imaging System as recommended by the manufacturer.

2.8. Mature osteoclasts
RAW264.7 cells were cultured in DMEM complete medium supplemented with RANKL (20 ng ml21)

and M-CSF (10 ng ml21) for 4 days to differentiate into mature osteoclasts. The media were changed

on day 2. On day 4, mature osteoclasts were then cultured with PIC or vehicle (0.1% DMSO) for 24 h.

2.9. Mature osteoclast survival assay
Mature osteoclasts were cultured with PIC (20, 40 mM) or vehicle (0.1% DMSO) for 24 h. At the end of

treatment, the cells were fixed with 4% paraformaldehyde for 20 min, followed by TRAP staining.

TRAP-positive multinucleated cells containing three or more nuclei were counted as mature osteoclasts.

2.10. LDH assay
Necrosis is a type of cell death characterized by the breakdown of cell plasma membranes, which eventually

causes the release of intracellular contents such as lactate dehydrogenase (LDH) into extracellular milieu

[23]. After the culture period, LDH release was performed as previously described [23].

2.11. Hoechst staining
Mature osteoclasts were cultured with PIC (40 mM) or vehicle (0.1% DMSO) for 24 h. At the end of

culture period, the cells were washed with PBS gently and stained with Hoechst 33258 in the dark for

15 min. Photomicrographs were captured using a Zeiss Ism710 Confocal Laser Scanning Microscope.

2.12. Caspase-3 activity assay
Mature osteoclasts were exposed to PIC (40 mM) or vehicle (0.1% DMSO) for 24 h. After the culture

period, an assay kit was used to measure caspase-3 activity of the cells as recommended by the

manufacture. Caspase-3 activity was determined by measuring optical absorbance at 405 nm using

EnSpire 2300 Multimode Reader (PerkinElmer).

2.13. Statistical analysis
All experimental data expressed as the mean+ s.d. Statistical significance was determined using

Student’s paired t-test, one-way analysis of variance and GRAPHPAD PRISM 6.01 software. In all cases,

p , 0.05 was considered significant.
3. Results
3.1. PIC inhibits RANKL-induced osteoclast formation
To determine the effect of PIC on osteoclast differentiation, RAW264.7 cells were treated with different

concentrations of PIC. We first examine the cytotoxicity effect of PIC on RAW264.7 cells. The various
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concentrations used in our studies showed no significant effect on cell viability (figure 1b,c). RAW264.7

cells were then differentiated with M-CSF and RANKL for 4 days in the presence of various

concentrations of PIC. The number of TRAP-positive osteoclasts increased in vehicle control cells and

significantly decreased after PIC treatment in a dose-dependent manner (figure 1d– f ). Furthermore,

PIC completely inhibited osteoclast formation at a concentration of 40 mM and decreased the TRAP

activity in a dose-dependent manner (figure 1g).
3.2. PIC attenuates osteoclastic bone resorption
Even though PIC could inhibit osteoclast formation, it was unclear whether PIC has the similar effect on

bone resorption. Thus, we first performed pit formation assay on bovine slices by using SEM. In control,

several bone resorption pits were observed (figure 2a). The resorption area was significantly decreased

with an increase in PIC concentration (figure 2b). We next performed the pit formation assay using

toluidine blue staining on bovine slices for more convincing results. As shown in figure 2c, an
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obvious increase of bone resorption pits was seen in the control group. By contrast, bone resorption pits

significantly decreased with PIC in a dose-dependent manner (figure 2d ).
3.3. PIC inhibits RANKL-stimulated osteoclast-specific gene expression
To further identify the inhibitory effect of PIC on RANKL-induced osteoclast differentiation and bone

resorption, we performed real-time qPCR to examine the expression of RANKL-induced osteoclast-
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specific genes. As expected, RANKL significantly induced the expression of NFATc1, DCSTAMP, CTSK,

MMP-9 and TRAP. However, the mRNA expression of these genes was effectively reduced by PIC in a

concentration-dependent manner (figure 3).
3.4. PIC suppresses RANKL-stimulated activation of NF-kB, JNK, ERK and AKT
To elucidate the intracellular mechanism of the inhibitory effect of PIC on osteoclast formation and bone

resorption, we investigated the RANKL-mediated MAPKs, NF-kB and AKT signalling pathways.

RAW264.7 cells were pretreated with PIC or vehicle control for 6 h. Cells were then treated with

RANKL (50 ng ml21) for different time (0, 15, 30 min). MAPKs, NF-kB and AKT signalling pathways

were evaluated by immunoblotting. The results showed that the expression levels of JNK, ERK, p38

and AKT were nearly similar among control and PIC groups. Furthermore, the phosphorylated

proteins (p-JNK, p-ERK, p-AKT, p-p65) were marginally expressed without RANKL treatment

(0 min), while these proteins were highly expressed in RANKL-stimulated control group (15 and

30 min). Notably, the phosphorylated protein (p-IkBa) maintained high levels of expression in

RANKL-treated control group (0, 15 and 30 min). However, the phosphorylation of JNK, ERK, AKT,

IkBa and p65 were greatly reduced by PIC pretreatment (figure 4a,b). Further studies showed that p38

and p-p38 were not affected by PIC pretreatment (figure 4c).
3.5. PIC promotes the apoptosis of mature osteoclasts
To evaluate the influence of PIC on osteoclast apoptosis, mature osteoclasts were exposed to PIC for 24 h

and stained for TRAP. We found that PIC treatment attenuated the survival of mature osteoclasts in a

dose-dependent manner (figure 5a,b). To investigate whether the decrease in mature osteoclast

survival was accompanied by apoptosis, LDH release for cell necrosis and Hoechst 33258 staining for

nuclear fragmentation were performed as described in the methods. As shown in figure 5c, mature

osteoclasts did not release significant LDH after 24 h exposure to PIC. On the other hand, an

increasing nuclear fragmentation was observed in the PIC-treated cells compared to the control,

indicating that PIC treatment enhanced apoptosis of mature osteoclasts (figure 5d ). Consistent with its

pro-apoptotic effect, addition of PIC increased caspase-3 activity and induced the cleavage of the

caspase-3 precursor (figure 5e,f ).
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4. Discussion
Osteoclasts are unique bone resorptive cells which are essential for skeletal metabolism. Increased bone

resorption can cause the disorder of bone homeostasis, such as osteoporosis. Therefore, inhibition of the

formation and function of osteoclasts may provide a promising therapeutic method for osteoclast-based

diseases. In the present study, we found that PIC could significantly inhibit RANKL-induced osteoclast

formation and bone resorption. Furthermore, PIC inhibited the activation of NF-kB, JNK, ERK and AKT.

Notably, for the first time, we found that PIC promoted the apoptosis of mature osteoclasts via caspase-3



C

concentration of PIC (mM)

pro-caspase-3

cleaved caspase-3

b-actin

%
 s

ur
vi

va
l o

f 
T

R
A

P(
+

) 
M

N
C

s

#

100 mm 100 mm 100 mm

0

150

100

50

0

50

100

150

(a)

(b)

(d)

(e) ( f )

#

20 40 CV

concentration of PIC (mM)

RANKL

20 40
0

50

re
la

tiv
e 

L
D

H
 r

el
ea

se

re
la

tiv
e 

ca
sp

as
e-

3 
ac

tiv
ity

100

150
(c)

0 mM

control PIC

20 mM 40 mM

C
PICV

RANKL

control PIC
**

Figure 5. PIC promotes caspase3-mediated apoptosis of mature osteoclasts. Mature osteoclasts were treated with PIC or vehicle for
24 h. (a) Cells were fixed with 4% paraformaldehyde and stained for TRAP; (b) the survival of TRAP-positive MNCs relative to the
control group; (c) LDH release for necrosis; (d ) Hoechst 33258 staining was performed to visualize nuclear fragmentation. Apoptotic
mature osteoclasts are indicated with white arrows; (e) caspase-3 activity assay for apoptosis was performed; ( f ) caspase-3 and
cleaved caspase-3 protein levels were determined by Western blotting (**p , 0.01, #p , 0.0001).

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190360
9

activation. Taken together, we concluded that PIC might be valuable as a potent therapeutic agent for

treating osteoclast-based metabolic bone diseases.

Many plants are rich in polyphenols, which may be beneficial to bone health. Representative studies

have indicated a positive relationship between intake of polyphenols and bone health [24–27]. Previous

studies showed that ferulic acid, a dietary polyphenol, attenuated RANKL-induced osteoclast formation

and bone resorption through the inhibition of NF-kB signalling pathway [28]. Furthermore, Shahnazari

et al. found that dietary dried plum increased bone volume and strength, and indicated that these effects

might be linked to the immune system and dried plum-specific polyphenols [29]. Piceatannol, a naturally

occurring polyphenolic stilbene found in various plants, has been confirmed to exhibit anti-inflammatory
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and anti-cancer properties [30]. To our knowledge, there were almost no studies reporting the effect and

the underlying mechanism of PIC on osteoclast-associated diseases. In this study, to explore the direct

effects and its underlying mechanism of PIC on the formation, function and survival of osteoclasts,

the relevant signalling pathways of osteoclast differentiation and the apoptosis of mature osteoclasts

were investigated.

Signalling mediated by MAPKs, including JNK, ERK and p38, plays a key role in osteoclast

differentiation and function [31]. To date, many polyphenols derived from natural plants have

been demonstrated to inhibit osteoclast formation and function by suppressing the MAPK

signalling pathway. For example, eriodictyol, a natural occurring flavonoid found in citrus fruits,

inhibited osteoclast formation by suppressing MAPK-NFATc1 signalling pathways [32].

Kaempferol, the most common flavonoid present in a variety of plants, impaired IL-1b-

stimulated, RANKL-mediated osteoclast differentiation via the MAPK signalling pathway [33].

Consistently, in this study, we also confirmed that PIC exerts antiosteoclastogenesis and

antiresorptive effects via suppression of the phosphorylation of JNK and ERK in RANKL-

stimulated RAW264.7 cells.

The binding of RANKL to its receptor RANK leads to the activation of PI3K/AKT signalling

pathway, which plays an important role in regulating osteoclast survival [34]. In the current

study, we found that PIC significantly suppressed the RANKL-stimulated phosphorylation of

AKT in RAW264.7 cells. These data imply that PIC displays an inhibitory effect on osteoclast

differentiation, which may be due to the decreased survival of osteoclast precursor cells during

differentiation because of AKT suppression. The activation of NF-kB signalling pathway is

critical for RANKL-induced osteoclast formation and bone resorption, since the deletion of both

NF-kB p50 and p52 subunits caused severe osteoporosis due to failure of osteoclast formation

[35,36]. Previous studies showed that piceatannol suppressed TNF-induced NF-kB activation in

human myeloid cells by inhibiting the phosphorylation of IkBa and p65 [37]. Similarly, in this

study, we also observed that PIC attenuated RANKL-induced NF-kB activation in RAW264.7

cells through suppression of IkBa kinase and p65 phosphorylation.

Osteoclast apoptosis was critical for regulating bone homeostasis [34]. Recently, more and

more researchers considered the induction of osteoclast apoptosis as a potential therapeutic

target for bone diseases characterized by excessive bone resorption [38 – 40]. In this study, we

found that PIC effectively reduced the number of mature osteoclasts, which suggested that PIC

could suppress the survival of mature osteoclasts. Nuclear fragmentation is a key marker of

apoptosis [41]. To investigate whether the decline in the survival rate of mature osteoclasts was

accompanied by apoptosis, Hoechst 33258 staining was performed to observe the nuclear

fragmentation in mature osteoclasts, and the LDH release was performed to exclude the necrosis.

Mature osteoclasts did not release significant LDH, which suggested that apoptosis was the

leading cause of cell death. Caspase-3 is involved in the majority of apoptotic effects, and is likely

to be critical for osteoclast differentiation [42]. Similarly, in this study, we found that PIC

increased caspase-3 activity and induced the cleavage of the caspase-3 precursor. These results

indicated that the activation of caspase-3 might be associated with PIC-stimulated osteoclast

apoptosis. However, the precise mechanism of PIC-induced apoptosis of mature osteoclasts

remains to be investigated.
5. Conclusion
In summary, our findings show that PIC significantly suppresses the formation and function of

osteoclasts. Furthermore, PIC promotes the apoptosis of mature osteoclasts. Therefore, PIC has

potential therapeutic effects on osteoclast-based bone diseases.
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