Towards classifying actors on Wikipedia talk pages

Carlin MacKenzie, John Hott
University of Virginia
ckm8gz@virginia.edu, jrhott@virginia.edu

May 8, 2020

Abstract

Wikipedia is at the centre of high-quality
debate on the internet due to its popular-
ity, diverse user community and collab-
orative editorial base. Additionally, all
data, from traffic to user edits, is avail-
able under a free and open license. This
paper demonstrates how information can
be extracted from Wikipedia for analysis.
We uncover that, for the second largest
namespace, a database of all Wikipedia
edits can be created on consumer hard-
ware over several weeks. With access to
more resources it is possible to create this
database in 5 days. From this natural lan-
guage processing, classification and net-
work analysis can be performed.

1 Introduction

Nineteen years after its release, Wikipedia
needs no introduction. Started as an experi-
ment in anonymous, public collaboration, it
is now the largest and most popular refer-
ence work on the internet!. Unfortunately,
research into this extraordinary success is
limited due to several factors. Firstly, like
Wikipedia itself, documentation is commu-
nity generated. There is no top down guid-
ance of best practices or which tools to use.
There are at least five lists of tools, and they
do not hint when they were last actively de-
veloped.

Although the data is made as public as
possible, the dumps of the database tables
are not published. This is because there are
various transformations applied before it can
be released, like removing information about
passwords and [P addresses. Instead, edit
history is released as a set of ~600 archives,
each of which extract to ~50 GB XML files.
These files are very difficult to work with as
most editors try to open the full file before
displaying it. For this reason, the dumps
must be accessed programmatically through
streaming the file line by line.

The structure of Wikipedia itself can also
prevent researchers engaging with the web-
site. Wikipedia is split into several names-
paces. The most familiar being the article
namespace. Every article also has a talk
page, which is commonly used as a forum to
discuss the sources and structure of the ar-
ticle. Other namespaces exist, such as user,
Wikipedia, etc. each having an associated
talk namespace as well.

We posit that content posted on talk pages
is much more diverse than on the article it-
self. Article edits are generally either con-
tribution or vandalism, which can be classi-
fied by tools like ORES?. In contrast, talk
page content is argumentative and emotive
and hopefully a better indicator of user be-
haviour.

2 Related Work

While Wikipedia has many avenues for re-
search, there are few papers in this space
compared to Twitter or Facebook. Most re-
cently Rawat et al.'! attempted to classify
abusive actors. They acquired their data by
scraping user contributions from Wikipedia
and applying machine learning to this data
set. Their model provided an 84% accuracy,
however the data set they used was very
small. Our research instead expands to a
dataset of to all Wikipedia edits.

In the field of vandalism detection, Javan-
mardi*, provides a high performing and fast
model. They used a data set of Wikipedia
edits which were manually classified to be
spam or not spam. They created a classifier
with 66 features which had an accuracy of
95.5% Area Under Curve (AUC) on the test
set. To create the high performing model,
they used the Lasso technique which resulted
in 27 features and 95% AUC.

Schneider et al.'? discuss the articles’ talk
pages. They aimed to classify the diver-
sity in these pages and created thirteen such
categories. They explored how users could
signal which category their edit belonged to
for aggregation purposes. Interestingly, they
found that the most controversial articles
have relatively short talk pages due to repet-
itive arguments in which neither side con-
vinces the other.

From a user standpoint we can look at the
social networks of Wikipedia. Massa® found
that extracting a network based dataset
could be approached in three ways, each of
them flawed. Manual extraction is the most
reliable but very time consuming. Addition-
ally, this would not find edits which were re-
verted. Scraping talk pages faced many chal-
lenges such as custom signatures. Finally,
they used the Wikipedia XML dumps. This
was the most accurate for finding user’s ed-
its but could not verify to whom users were

replying.

Finally, Martinez-Ortuno et al.” looked at
users’ talk pages and how this is related
to user activity. In contrast to article talk
pages, user talk pages can be thought of as
the user’s profile where people can thank or
ask questions of the user. This is therefore
a good predictor of a user’s standing in the
community. The researchers did not find a
direct correlation between negative messages
and decreased edits, but did find a model
that could be used to predict user edit ac-
tivity.

3 Data Acquisition

For most use cases, it is possible to per-
form queries on the live Wikipedia dataset
through the Wikimedia Toolforge. This
is useful, however queries time out after
thirty minutes by default and the query lan-
guage used to interface with the database
is SPARQL, for which there is a learning
curve. If a Toolforge account is acquired,
through emailing the Wikimedia Founda-
tion, a longer query limit of twenty four
hours is granted.

As we did not want these limitations
placed on us, we investigated the available
tools. Of the 29 available tools, 16 had not
been developed in the last five years. Of the
rest, none of the tools were helpful to cre-
ating a manageable database of edits. Con-
sequently, we created a tool to fill this gap.
We chose Python as it is the most popular
and stable language for data science.

3.1 XML Data Dumps

The Wikipedia XML dumps have a strict
structure which enables parsing to be per-
formed. Each dump is composed of a site-
info section followed by a variable number
of pages. The siteinfo section includes in-

nsdb.slurm External Libraries

6 fpy i f sho

N RO YN — —

Database.py
connect

nsdb.py parse.py

main 10 multiprocess

apply_async parse<— DB
getDump

checkReverted
parseNonTargetNamespace

parseTargetNamespace
getDiff
cleanString
longestWord
longestCharSequence
ratioCapitals
ratioDigits
ratioSpecial
ratioWhitespace
ratioPronouns

containsVulgarity profanity

createDumpsFile

countLines | wce |

—_—— —- — -

jobsDone «— DB

downloadFirstDump

—_—_ —- —- - -

extractFile 3 7z I

3 Smerrrwee— A R

splitwiki.py

splitFile «— DB
split

————
. countLines @—)I wc I
outstandingJobs«—>DB | | oo o | Y

addJobToDB <— DB
addJobToQueue

markLongRunningAsError «— DB

removeDoneJobs «—>DB
restartJobs «— DB

checkDiskSpace | du I

Figure 1: Program flow

formation such as the name of the site, the
database that was dumped, and the names-
paces of the wiki. Each page includes infor-
mation about the title, id, namespace, fol-
lowed by the full revision history of the page.
Each revision has an id, a timestamp, con-
tributor, comment, model, format, text, and
a SHA-1 hash. The text field is the new full
page after the edit is performed, no diff of
the change is provided.

Even though the structure makes the
dumps easy to parse, it was initially chal-
lenging to do this due to the file size. Fortu-
nately, the Python library mwxml? allows for
streaming of the file for processing.

To find the contribution of a user, man-
ual diff-ing must be performed. The pro-
cess of finding a diff is known as finding
the longest common subsequence. The so-
lution to this cannot be perfect as it can
be ambiguous which transformation was per-
formed between two states. In the end, we
used wdiff® a linux tool which provides
word level differences, as this produced the
best results on average. wdiff transforms the
two files so that there is one word per line
and creates a diff between these files using
the POSIX diff? utility.

3.2 Extraction Tool

We created a tool® which downloads, splits,
and extracts features to create a database of
edits for a Wikipedia namespace, which is
specified on the command line.

Downloading the XML dumps can take
significant time due to high load, throttling,
traffic etc. Consequently, a speed test is per-
formed to each mirror before the dump is
downloaded.

As each dump is independent of the oth-
ers, we can easily parallelise parsing. To
maximise parallelisation and localise errors
we split each dump into several partitions.
This functionality is performed by a helper

tool, splitwiki.py, which splits each dump
at page boundaries.

The parsing of each partition is handled
by our parser, parse.py. The parser iterates
through each page in the dump and extracts
features depending on whether the page is
in the target namespace or not. If it is, we
extract all the features described in the edit
table. Otherwise, we count the number of
edits and the number of reverted edits per
user. For these pages in the target names-
pace we insert into the database for every re-
vision, whereas in the non-target namespace
we only insert for each user. Finally, we in-
sert information about the page like the title,
namespace, and number of revisions.

As there is a large variation in the edits
made, error handling was very important.
Errors are logged to a file unless it stops
parsing, in which case it is logged to the
database.

Co-ordinating these scripts is nsdb.py
which is an acronym of Namespace
Database, the name of the GitHub repos-
itory. It downloads a list of dumps and
starts the process of downloading, splitting
and processing in parallel. It accepts
arguments of where it should store the files,
the maximum space it should use and the
number of cores it should keep available.

The strategy to parallelise this program
was a combination of Slurm Workload Man-
ager and Python multiprocessing. Slurm was
used to distribute nsdb.py on several nodes,
while multiprocessing creates several pro-
cesses of split and parse on the same node.

Figure 1 shows how the different functions
interact with each other and the external li-
braries that are relied upon.

id int
page_id int edit_id int
namespace | smallint edit_date datetime
title varchar page_id int
filename | varchar user_table_id int

added text
Table 1: Page table deloted ot
- - added_length mediumint
id int —

deleted_length mediumint

filename | varchar . —
blanking tinyint

status enum - —
comment_copyedit tinyint

error text —
- : comment_length tinyint

start_time | timestamp - —
- comment_personal life tinyint

start_end | timestamp . .
comment_special_chars decimal

Table 2: Partition table del_words mediumint

ins_capitalization decimal
id int ins_digits decimal
user_id int ins_external link smallint
username varchar ins_internal link smallint
ip_address varbinary ins_longest_character_sequence | smallint
number_of_edits int ins_longest _inserted_word smallint
reverted_edits int ins_pronouns decimal
talkpage number_of_edits | int ins_special_chars decimal
talkpage_reverted _edits int ins_vulgarity tinyint
namespaces set ins_whitespace decimal
reverted tinyint

Table 3: User table
Table 4: Edit table

Figure 2: Schema of the tables

3.3 Data Extraction Perfor-
mance

e cach node also has 10 parse.py processes

Under these circumstances, the perfor-
The bulk of processing was done under the mance was as follows:
following circumstances:

e 100x reduction in database size to dump

e nsdb.py running on 6 nodes size

e target namespace was 1 (article talk 7 partitions parsed per minute

pages)

84 partitions per dump

e cach node has 3 splitwiki.py processes

5 dumps per hour

e splitwiki was set to create 80 partitions 132 hours total parsing time

Running on consumer hardware, we found
a reduction to 2-3 partitions parsed per
minute. This would amount to several weeks
of processing, which could be reduced if a
sample of the dumps were used instead.

We did not have time to investigate the
size and time taken to parse the article
namespace. An estimate from the diagnos-
tics we performed would suggest it would be
at least 10 times larger and slower.

4 Database

When deciding which features we wanted
to extract, we took guidance from Javan-
mardi*. In total we were able to extract
17 out of 27 of their features, which can be
seen in the schema shown in Figure 2. Fea-
tures that were not implemented were fea-
tures in which implementation wasn’t clear,
like DDSR which was a metric of the user’s
reputation.

5 Future Work

Future researchers can now investigate in
any number of directions. WikiProjects
could be analysed to see how they evolve over
time. Blocked users of various types could be
investigated for editing patterns. Sentiment
analysis could flag when a user ”turns bad”.
Any of these projects would help guide fu-
ture systems to create a better encyclopedia
for all of us.

6 Conclusion

In this paper we have described a method
for the creation of a database of Wikipedia
edits in any namespace.

Acknowledgement

The author would like to thank Aaron Hal-
faker for his MediaWiki Utilities!® which
were invaluable for parsing the dumps and
Lane Rasberry for his support of this project.
The author would also like to link to the
repository and WikiMedia Research page
but is unsure how to in a journal format.

References

[1] Alex Woodson. Wikipedia remains go-
to site for online news. https://www.re
uters.com/article/us-media-wikip
edia/wikipedia-remains-go-to-sit
e-for-online-news-1idUSN081942912
0070708, 2007. [Accessed 5-May-2020].

2] Aaron Halfaker and R. Stuart Geiger.
Ores: Lowering barriers with partici-
patory machine learning in wikipedia,
2019.

[3] IEEE and The Open Group. Posix diff.
https://pubs.opengroup.org/onlin
epubs/9699919799/, 2008. [Accessed
8-May-2020].

[4] Sara Javanmardi, David W McDonald,
and Cristina V Lopes. Vandalism de-
tection in wikipedia: a high-performing,
feature-rich model and its reduction
through lasso. In Proceedings of the 7th
International Symposium on Wikis and
Open Collaboration, pages 82-90. ACM,
2011.

[5] Carlin MacKenzie. Names-
pace database - a tool to create
a database of wikipedia edits.

https://www.github.com/carli
nmack/NamespaceDatabase/, May
2020.

https://www.reuters.com/article/us-media-wikipedia/wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708
https://www.reuters.com/article/us-media-wikipedia/wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708
https://www.reuters.com/article/us-media-wikipedia/wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708
https://www.reuters.com/article/us-media-wikipedia/wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708
https://www.reuters.com/article/us-media-wikipedia/wikipedia-remains-go-to-site-for-online-news-idUSN0819429120070708
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.github.com/carlinmack/NamespaceDatabase/
https://www.github.com/carlinmack/NamespaceDatabase/

[6]

[12]

Martin von Gagern. Gnu wdiff. http
s://www.gnu.org/software/wdiff/,
2014. [Accessed 8-May-2020].

Sergio Martinez-Ortuno, Deepak Meng-
hani, and Lars Roemheld. Sentiment as
a predictor of wikipedia editor activity.
2014.

Paolo Massa. Social networks of
wikipedia. In Proceedings of the 22nd
ACM conference on Hypertext and hy-
permedia, pages 221-230, 2011.

MediaWiki. Mediawiki-utilities/mwxml
— mediawiki, the free wiki engine, 2017.
[Online; accessed 8-May-2020].

MediaWiki. Mediawiki-utilities — me-
diawiki, the free wiki engine, 2020. [On-
line; accessed 8-May-2020)].

Charu Rawat, Arnab Sarkar, Sameer
Singh, Rafael Alvarado, and Lane Ras-
berry. Automatic detection of online
abuse and analysis of problematic users
in wikipedia. In 2019 Systems and In-
formation Engineering Design Sympo-
sium (SIEDS). IEEE, apr 2019.

Jodi Schneider, John G Breslin, and
Alexandre Passant. A content analy-
sis: How wikipedia talk pages are used.
2010.

https://www.gnu.org/software/wdiff/
https://www.gnu.org/software/wdiff/

	Introduction
	Related Work
	Data Acquisition
	XML Data Dumps
	Extraction Tool
	Data Extraction Performance

	Database
	Future Work
	Conclusion

