

Calhoun: The NPS Institutional Archive DSpace Repository

A microwave landing system and its associated antenna problem

McEwan, Archibald John
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/30400

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

A MICRONAVE LANDIMG SYSTEB AND ITS ASSOCIATED ARTEMNA PROBLE

A Thesis

By

Archibald John NeEmen
LIeutenant Commander USN

```
Kay 84: 1947
```

A MICRORAVE IANDING STSTEM AND ITS ASSOCIATED ANTERNA PROBLEM

A Thesis
Submitted to the Faculty of the
Naval Posteraduate School
in
Partial Fulfilment of the Requirements for the Degree of Master of Science in Engineering Electronics

By

Archibald Jom Wenwan
Lleutenant Commander USN

3ay 24, 1947

Approved:
Dean of the Naval Postgraduate School

TABLE OF COHIEMTS
Paze
I. Brief Histery of Landing Systems 1
II. Specific Datails of the Sperry uicrowave System 27

1. Transmitter 27
2. Wodulator 32
3. Antennas 34
4. Rocolver 36
III: Antonna Problem 42
5. Glide Path 44
6. Localizer 63
IV. Analysis of System 73
7. Antenna Size 73
8. Wilted-up Antonna gystem 73
9. :iobility73
10. Spectrum Vtilization 75
11. Future Utility 75

IIST OF FIGURES AND ILLUSTTATIONS
Page

1. Location of Trailera 13
2. Glide Path Irailer 14
3. Glide Path Antenna Patterne 16
4. Localizer irailer 18
5. Localizer Antenna Patterns 19
6. Alreraft Receiving Antenna 22
7. Aircraft fecelver 24
8. Cross-Pointer Eeter 25
9. Transmitter Elock Diagram 28
10. Klystron Cross Section 31
11. Glide Path Rodulator 33
12. Glide Path Kodulator Pattem 36
13. Receiver ELock Diagram 38
14. Receiver Local Oscillator Block Diagram 39
15. Measuring Equipment (Truck and Tower) 45
16. Neasuring Equipment (feceiving Antenna) 47
17. Measuring Equipment (Recorder) 48
18. GLide Path Fiun (Leakaze Present) 49
19. Elimination of Leakage 58
20. Glide Path Eun (Leakage Minimized) 53
21. Effect of Polyiron Slugs (250 ft. Range) 57
22. Effect of Polyiron Slugs (350 ft. Range) 58

LIST OF FIGURES GND ILLUSFRATIONS

Pago
25. Cross Section of Glide Path 60
24. Localizer Antenna Patterns (Range $650 \mathrm{ft}_{\mathrm{t}}$) 64
25. Localizer Antenna Patterns (Kange 1060 ft.) 68
26. Flaps 69
27. Effect of Plaps on Localizer 70
28. Relative Height of Antennas 74
29. Fecording of Automatic and Nanual Flight Gliáo Path 77
30. Recording of Automatic Flight on Localizer 78
31. Fecording of Manual Approach on Glide Path 80

A HICROZAVE LANDIHO SYSTEM AND ITS ASSOCTATED

 ANETHA PROBL基
1. A BKIEF HISTOKY OF DANLING SYSTEMS

The problen of landing an aireraft on a marrov runvay when cellinge are low and visability poor is indeod e complex one. It is evident that any equipment moeting this exacting requirament muat have the highegt preaiaion nad apencability.

Techniques for the landing of airaraft under adverse Weathor conditiona hevo been a gubject of aisouseion and development aince 1928.

With the evelopaent of the radio range eystem in I928 the Bureau of Etandards for the Aeronautics Branch of the Department of Comaroa doviaed a syetem to bring an airoraft down to the runway. This system utilized one leg of the radio range silgned with the deeired runvay for diraotional guianaceseveral marker basoons Loontad on the course for aistance information and a barometrio aitimeter for height data. This method auteored from two basio falte;barometrio altimetor arrors were bad and effecta of tranemiasion ines,terrain and railroad traoks at tho lov frequencies used oaused false courbes and bende in the range leg.

In an sttempt to oliminate the baronetric altimetor and jet obtain height informetion, a syetem was proposed by the Bureau of Standarde in I929 in whioh guidanoe in
the vertical plane was obtained by a constant-intensity glide path (defined as the locus of all points along the 1ocalizer where tio field intensity is the same as that at the desired touch-dow point on the runvay). The mumay localizer operated on 278 kce the glide path on 90.8 mc . and the marker beacons on 3105 kc . A crosspointer meter in the alroraft provided a visuaj indication of the position of the aircraft with reapect to the localizer and glide path. The boacons used for distance Infomation were identified by different modulations. Tests at this time indicated that the system had ereat possibilities; however the localizer still had course bends, and the long drawn out Low altitude constantIntensity glide path depended on too many factors which were likely to vary auch as recelver sensitivity and transmitter power output.

In the eariy part of 1033 the Aimeys Division of the Department of Commerce, reaorting to the aural range system, devised a method ahereby the pilot, by using the cone of silence directiy over the range station, timed turns, specified rates of descent, the radio range legs and a barometrio altimoter could fly an aireraft down to a point 500 feet over the ond of the runway. Inis system With the subatitution of the radio (absoluta) altimetor for the not too reliavie barometric altimeter is in use
at the rresent tiwe.
A Jear lator the Lorenz Company in Gemmany devaloped a loonlizsp having two loge and oparating on 3.3 me. Tho tranmatter axated the cencor antenna of three vertical halfowave antonnar facing the manvaty The outaide antonnse wer morlectors spaced a quarter* Wve from the oxchtod witenna. One rollectom was keyod by "A" means of anortoirouitinz relay at its center and the other koyon whtin an "y". Dy intoriocting the woying and awitching at tho proper wate two olliptical
 on courbe end precomant A or 7 to aither adde of the course. Fine man transmitter output wan modulatod at 1150 oyolan par meomnd main modulated mignal was roctified at tho recelvor and fec to n motor which Enciented position melative to cownse. Thin form of Wisual indication wes poor becauco of the kickine

In 1053 the Dendix Company and United A1r11nea comonatrated aystera cuploying two Yagi ontonnas aim ectec In such maner that thair pattome procucod an overlapping localisoz course. The enowey in onch ontenna zas zeyod at 70 and 00 oyole por accona reapeotively.

By 1939 the Internatwonal meloptone Fovelopuent

Company (I.T.D.) installed at Indianapolis a landing system complete with localizer, glide path and two markers. The localizer operated at 109.9 mc. and utilized the newly developed padale-type mechanical modulators. The paddes were used to detune coupled line modulating sections. Cross modulation was oliminated by anti-cross modulation bridges. The glide path, now operating et 93.9 mc . and being of the constant Intensity type, still was the weakest point in the system.

At this time the Massachusetts institute of Technology was working on a landing system in the 700 me. range. The use of horns with a 20 degree flare and 26 ft . by 10 ft . by 2.5 ft . at the mouth was an unusual inovation. 'The glide path was determined by the equisignal region between the two sharp overlapping patterns produced by two horns at a slight angle to each other. Flight tests indicated a 50 mile range. Cathode-ray tube indication was used. Localizer, glide path and attitude information were combined and presented on a cathode-ray tube. Difilculty was encountered in obtaining a glide path at a low enough angle to the ground without serious ground reflections. Lack of suitable high frequency tools imposed further limitations at this time.

In 1942 a complete instrument landing syatem employing equi-signal techniques in both the localizer and glide path was ovolvod from the I.T*D. system. This systom has beon officialiy adoptod by the Civil Aeronautios Adaninistration for civil aviation and by the Amy Air Forces for military eviation.

In this system lateral and vertical deviations from the desired flight peth were indicated to the pilot on a crose-pointer meter and range information was obteined by three mariser beacon transmitters. Localizer, glide path and marker beacon tranmitters were required In the airoraft. The localizer transmitter was located on the up-wind end of the runwey, the glide path trantmitter about 500 feet to either side of the runway and about 800 feet upwind from the desired touch down point and the markers vere located on course at the airport boundary, 4500 feet and 4.5 milea respectively.

The localizer transmitted modulated oarrier from the aideband ontenna, The sidebands from the modulated carrier combined with the pure sideband signals in the aircraft receiver and the recoived modulation pattern was due to the algebraic sum of both patterns. Two overlapping patterns were produced, one modulated at 90 cycles per second and the other modulated at 150
cyoles per second. The equi-signal locus of pointa of these two patterns defined the localizer course. The glide path which was also an equi-signal path was formed by two antennas one above the other. The upper antenna pattern was modulatea at 90 cycles per second and the lower at 150 oycles per second. The design of these mfemas was such that the intersection of the lover lobe of the upper antenna and the underalde of the lower antenna pattern defined the glide path. This path, whioh mas essentially IInear, was adjuatable from 2 degrees to 5 degrees with the ground.

The localizer operated on 110 mc . and the gilde path on 330 mo . These carriers were obtained by conventional multipliers ueing cxystals in the basic oacillator.

The receivers for the localizer and gilde path were of the auperheterodyne erystal controlled type. The metering oircuit consisted of two band-pass filters (one for 90 cycles per second and the other for 150 cyoles per second) and copper oxide rectifiers with a 150-0-150 miorompere meter connected across the output to indicate the difference between the 90 eycles per second and 150 cyclea per second voltages
fed to the filters. The glide path receiver also incorporated an artificinl course-softening feature which will be explaine later in connection with a nicrovave landing syatem. Two small halinmave Aipoles served as antennas.

The marker beacons transmitted a vertical patern from a half-wnve dipole a quarter-मave above the eround. The frequency was $75 \mathrm{mo}_{\mathrm{*}}$ and each marker was given a distinct icentifying modulation.

This syster, although adopted as the prosent-day landine aystem, has numerous faults. At the frem quencles involved the antenna patterns are formed In part by ground roileotions. Any antenna syatem which uses a reflector with a variable dielectrio coefficient is bound to have inconsistant patterne. Since the ground is effected by mow, rain and the moisture content of the atmosphere its dieleotric coefficient will change effecting the patterng* The oharacteristics of the gilde path wlll also be a function of the number and type of reflecting objects In the vicinity and the contour and alope of the terrain. Thus the system requires special considexation and compensations for each airport set-up. This 1ikevise makes portable use of one equipment on any one of a number of runwaye on the same airport impractable. It should be mentioned that the atability
and accuracy of the localizer course are quite satisfactory and buffice for present dey landing teohniques.

It is interesting to note at this point that all of the preceding equipments had ono thing in comon. The pilot received sufficient infomation directiy on nome form of indicating equipment in the plane to permit him to fly a predetermined approach path to the runway: In the later systems the afrcraft was required to carry 3 receivers.

In the spring of 1943 the Rediation Laboratory of the massachusette Institute of Technology developed a system of landing airoraft which was not restricted to airoraft equipped with special localizer, glide path and marker receivers.

This mothod of landing airoraft differod from all of the preceding metiode. Here aufficient information regaraing the position of an aircraft with respect to a predotermined flight path is received by equipment on the ground and the pilot informed by ground personnel as to the course he should fly to bring him down this preceterminod path.

The system which falls into this latter catagory 18 Radio Sot AN/MPN-2A Gxound Controlled Approach Radar (aCA). In this equipment aecurate and continuous information regarding the location of an airaraft with
respect to a predetermined flight path $1 s$ presented to radar operators as lateral and vertioal deviation From the selected approach path and is communicated to the pilot in the form of instructions as to the course he must fly to make the proper epproach to the runvay.

This aquipment consista basically of two complete radar systems. The iirst is the "search syatem" consisting of a radar transmitter operating in the S Bend of frequencies with a range of 30 miles and providing a 360 degree scan with PPI presentation. The information received by this system is used to locato and ddentify all aircraft within the soarch area and funnel them into a specific area off the downwind ond of the munway covered by another radar system. This second system or so-called "prealsion systom" uses a radar transmitter operating in the X Band of frequencies. This aystem covers an area In space which is 20 degrees wide in aztmuth, 7 degrees high in elevation and has a maximum range of 10 miles. It is this equipment which provides the ground control operators with the precise information required to guide the pilot of an aircraft over a proper approach to a runway. The major components of these two systoms are duplicated in the form of

Channela A and B.
Perhaps the most unique feature of the equipment Is tho method of scanning usea in the precision system. The antenna system consists of two antennas providing extremely narrow beens, one scanning through 7 degreos in elevation and the other 20 degrees in auinuth. These two antennas are onerctzed alternately by an R. \bar{F}. switcining unit. The elevation antenna consists of a collinear array of 165 dipoles fed by probes extending into a 14 goot section of wave guide whose lateral dimension is veriable and located at the focal line of a seut-cylindrical reflector of parabollo crossmsection. Iue to the phase relationship existing botvenn tho radiation from individual dipoles at various points in the field of the antenna, the urray is highly directive and energy is radiated in a very narrow beam. If the width of tho guide is inoreased the wavelength of the energy in the guicie is decreased and the phase difference botwe on each suocessive dipolo is increased resulting in e shift of the antenna boam tomerd the load end of the wavem guide. The amount of tils waveguide variation is sufficient to cause the antenna bean to acan through an angle of 7 degrees. The azimuth antenna consists
of a collinear array of 114 dipoles utilizing the same theory and acanning through 20 degrees in azimuth.

The GCA system of landing afroraft is unique In one detail - it can be relied upon to furniah accurate let-down information to all airoraft equipped with a conventional receiver. Since the corrective filght information is given to the pilot aurally, he is not required to observe one other instrument during that part of the filight which requires the most skill. However any system with a voice IInk has inherent delays - the delay on the ground while the racar operator interprets what he sees, the delay while the pilot interprets what he hears and the delay while the pilot reacte to what he interprets. During the final stage of the landing, these cumulative delays can produce errora of considerable magnitude. These exrors in conjunction with the system errors limit the minimm altitude to which the aircraft can be talked dom safely.

Simultaneously with the foregoing work and with the development of the klystron the Sperry Gyroscope Company was working on a microwave landing system in the 2600 mo. range. It was reasoned that higher directivity and a verticaliz tilted type of antenna
system would eliminate the problens inherent in the low frequency glide peth-localizer systems.

The Sperry Microwave Instrument Landing System 1/
Comprises three main components - two mobile ground transmittors and a rocoiver which is installed in the aircraft. The two ground transmitters project patterns in space which define the approach path. The glide path trancmitter produces ossontially a plane tilted at approximately 2.5 degrees to the horizontal while the localizor produces a vertical plane intersecting the center ine of the runvay and extendang in the down-wind direction. The tranmitters are located as shown on page 13. The localizer trans. mitter is placed 200 to 500 feet upmind of the rumey and the gilde path transmittor is placed about 500 feet from the down-wind end and 400 to 500 feet to either side of the runvay.

The recelving equipment in the airoraft takes the profeoted information and conveys it to the pilot in the form of visual meter indioations. Glide path

The glide path trensmitter, shown on page 24,

[^0]

GLIDE PATH TRAILER
consists of a orystal controlled tranemitter operating at 2617 mic. which feods a combinea mechanical modulator and switch. The output of the modulator is fed into an antenna composed of a oylindrical section of a parabola. Tho parabola is fed in such a manner that two beams of the cesired shape one slightly above the other are transmitted into apace (page 16). The Intersection of these two beams providea the flat straight Iine gilde path the angle of which will govern the rate of descent of the airoraft. The radio frem quency energy in the lower beom is modulated at 600 cyoles per second and that in the upper beam ia nodulated at 900 cycles per second. The actual glide path is produced by the equi-sisnal intersection of these two beama.

Since the gilde patin is essentially a straight line, the point of landing will be a function of the helght of the airoraft antenna above the ground, the angle of the glide path and the distence the trans. mitter is from the down-wind end of the runway, Later it will be shown that this is also true at any fixed distance from the runway when the glide path is not a plane but has a flare that varies in a known manner as distance from the tranamitter is increased. The usable range of the gilde path will be limited

mainly by the maximum altitude at wich interception tahes plaoe. This in turn vill be dependent upon the glide path angle. For an angle of 2.5 degrees a range of 50 milea at 12,000 feet is quite feasable.

Localizer

The localizer tranmaitter, page 18, is very similar to the gilde path tranamitter with the exception of the antennas and modulator unit. Since the difference between the two transmitters is only in frequency and in the radiated patterns, many of the componenta oan be interchanged. The localizer Erequency of 2640 mc . and the glide path froquenoy of 2617 mc permit use of vaveguide feede from transmitter to modulator to antennas. The same theory used to form the gilde path pattern is utilized in the localizer. Two diatinct beams from a segmentei off-set fed parabola are combined to provide a vertical equi-signal plane aligned with the center line of the runway. The beams In this system are uni-airectional tue to the type of antennas used. This property recuces the possibility of ambiguity inherent in any bi-directional system. As shown on page 19, the radio frequency energy in the left hend beam is nodulated at 600 oycles per second and that in the right hand beam is modulated at 900 cyoles per second. However, due to the prominence of the side lobes from the main beams it is necessary

In the Localizer to add auxiliary antennas to submerge them. The radio frequency patterns of these auxillary antonnas are also modulatod at 600 and 900 cyoles per second as bhown on page 19.

The localizer antenna stmuoture consists of a B ix foot parabolold separated into two sections by a vertical separator, each section being fed by a separate vaveguide. Two aix foot cylindrical parabolas are located one on each alde of the main paraboloid and point at 45 degrees to the centor line of the runway.

Since propagation at 2600 me. is practioally Iinear, the equipment can be set up by optiand moans alone. By use of a theodolite the localizer can be aligned with the center line of the munway and by means of a calibrated tiltins system with liquid levele the clide path trailer can bo set at any deaired elicio path angle from 2.5 to 4 degrees.

Alraraft Receiver

The aircraft equipment consists of a microwave antenna, a receiver; power supply, junction box, control box and a crossmpointer meter totaling 68,5 pounds. The recelver antenna (page 22) is normally mounted on top of the airoraft. This entenna consiats of an array of three triplemáipoles apaced half-wave lensth apart on a rigid coaxial iine, The azimuth field pattern

of the antenna is approximately circular. The olevation pattern is fan shapad and ranges from 22.5 degrees bolow the horizontal plane to approxinately 22.5 degrees above (as measured at the half power points). The antenna has a gain of 3.5 to 5 dioibols over an isotropic radiator (a point dource radiating a uniform pattern in ali directions). Noxmal ilight attitude changea do not effect the reception of aignals. However, a sharp turn which interposes the wing atmucture between antonna and tranamittor will blanic out signals.

The airoraft receiver (page 24) is a superheterodyne type and is designed as a single mit with two I.F. channels to receive both localizer and glide path simultanoously. The alignals from the two ground stations are detected in a single resonant chamber mizer and amplified in soparate I.F. circuits. Prom vision is made in the receiver for reception of any one of three possible frequencies which the ground transmitting station may have selected. The channel selector switch is loceted in the control box and operates relays in the receiver unit to switch in the proper crystal for driving the local oscillator at the correct frequency.

The crossepointer meter, page 25, gives the pilot a

visual presentation of the airplenes position in space With respeot to the landins path. The vertical needle Is actuated by the signals from the localizer and the horizontal needie is actuated by the glide path signale. The intersection of the needies represents the position of the lending path with respect to the aircraft (reprem sented by the small plane fixed in the center of the meter). The pilot always flys the small plane, so to speak, totrard the intersection of the needles. An alarm system is incorporated in the receiver. If proper sisnals are beins received from the localizer and glide path transmitter two neon lampa flesh on the oross-pointer meter. If signals should fail or beoome orratio the neon lamps go out.

Since marker beacons only provide discontinuous range fixes it is contomplated that continoous range information obtained from proposed distance measuring equipment (DHE) will complement the vertical and lateral information of the glide path and localizer giving the pilot an instantaneous three dimensional Eix.
II. SPEOEFIC DEPAILS OE THE SPERRY MOROWAVE SYETTH

Considering the microwave aystom in detail tiae following order will bo followed: transmitter, modulator, antennas and receiving oquipment. Since the elide path and localizer transmitter are very similar only one shall be considered.

Trananitter

The frequency maltiplier deck of the transmitter, page 28, generates the bosic R.P. algnals, multipiles them ia froquency, kmplifies them and pasaes them on to the microwave deck. The basic oscillator uses a 4.87 mo. quartz arystal which is matchec to the oscillator ofrcuit. This whole assembly is onclosed in a thermostatically controlleá oven. By these means a staulifty of plus or minus 25 cycles per scoond or plus or minus. 0003% is achieved. The oven contains throe arystala winioh permit operation on any ono of throe differont cinanels. The output of the oscillators feacis tho somanled 30 me. unit. This chassis contains throe tubes. the ilygt is a 1614 which acts as a buffer oporating Class A. The second, a TR1, operating Class C, doubles the frequency from 5 to $10 \mathrm{mc}$. ; and the third, also a T21 operating Class C; triples the frequency from 10 to 30 mc . The output of this unit feeds another chassis callec the 370 me. zultiplier. The first tube on this chassis is an 829

```
* these three units are in the
    TRANSMITTER FREQUENCY MULTIPLIER DECK
```


TOTAL MULTIPLICATION $=540$ TIMES CRYSTAL FREQUENCY
(FREOUENCY VALUES SHOWN ARE NOMINAL;
EXACT FREQUENCIES DEPEND ON SPEGIFIC CRYSTAL SELECTED)
dual pentode blased for Class C operation whioh multiplies the frequency from 30 to 20 mo. This signal then driven a paiv of 826 tubes which triplea the frem quency to 270 nc. operating class C. The output of the B26s is than fed throuch a coarial line to the so-called nicrorrave deck. Here the 270 mc . power from the frem quency multiplier deok $i s$ fed to a type XE 8531 klystron multiplier through a fleaible coarial line. This klystron has tro resonant cavities, a buncher and a catcher. The input cavity is tuned to 264 mc . (channel A) and the outpat oavity tuned to 2640 mc giving a multiplication facton of 10. The 2640 me output of the klystron multiplier drives a type XZF 8534 oascade mplifier klystron. This klyatron is a throe cavity tube having an oxide heater type cathode and operating vith 650 to 800 volts on its beam. The output of the tube, about one watt, dxives a type XZF 8589 bombarded oathode cascade anplifier kiystron providing 100 watta OW power output. The bean voltage of the latter tube is 3750 volte.

As a measure of afoty the shells of the thase kiystrons are at ground potentiel. Thus the cathodes are at some negative value below exound. In the XAF 8529 (output Elystron) the cathode is approzimately 5000 volts below ground.

It ahould be notod hore thet the total rrequency multsplication of the syotem is 640 times. The reason for the close tolerance on the quarte cryatal in the basio oscilletor becomes obvious. A ono cycle arift of oryetal resulta in a 840 cycle drift at the microwave frequenoy.

The output of tio finel kiyotron is couploci into a waveguide atarting section wich is in turn corneoted to the gulde feeding the zodulator and antonnas. A thomwo couple probe in the atarting section acts as a relative power-out monitor and as a tuner for the final klystron.

The kiyntrons used in this tranamitter are of the narrow band ilxed grid typo. Tuning ia cone by means of tho peddios wilch project into the resonant chambere. page 31, end provide a tuning zenge of plus or minus 15 me. Fhen the padele 15 tumed so that it is paraliel. to the plone aurface of the ploture ocay ourrants in the vano neutralizo a maximun number of magnotic lines and the rosonator 18 tumed to ita hlehest Irequency. Conversoly when the vane is turned perpendicular to the ploture a minimun number of linea are noutralized and the Fesonator is unod to ita lomeat frequency.

Since the mesonant circuita used in these Lilystrons

are of comparable size to the wavelengths used the klystrons are tomperature sensitive. Some meens of maintaining the tube et a constant operating tomperature must be resorted to A complete thomostatically controlled ocoling system using ethylene glycol solution as a coolant is employed.

Modulator

The output of the transmitter goes to the modulatore In order to maten the modulator to tho output klystron a phase shifter is inserted between the klyation and modulator. Adjustment of thia phase mifter will control the shape of the transmitted wave. The modulator is a mochanical unit which varies the amplitude of the transmitted R\%F. signal at an audio rate. Thia modulator, page 33 , consists of two metal disles (for the glide path) mounted on a common shaft which is rotated at a constant speed by a synchronous notor. The teeth in the disks permit an altornate opening and closing of the waveguide. Then a tooth is blocking the vaveguide about 10% of the energy is passed resulting in about 90% modulation of carrier. By suitable shaping of teeth and allowing for fringing, approxinatie sinowave modulation is obtained. The number of teeth and the RPM of the synchronous motor determine the audio modulation rate. Frequencies of 600

and 900 cycles per second are used in this system. With this type of modulation the problem of switching from one antenna to another becomes simplified. Keferring again to Page 33, a portion of the aisk has no teeth aut in it. When this section of the disk is in front of the wave guide slot, no enexgy is passed down the guide to the antenna. At this time the other disk is passing modulated energy. Thus, the problem of modulating and sultching is combined Into one (Pase 35). Hence at anyone instant one modulaten RT beam is boing transmitted -- reducing the possibility of interierence betwen two beams being transmitted simultaneously. The location of the modulator is such that the microwave energy from the output klystron can vary over a considerable range without effecting the position of the landing path, since all beams will be effected alike. Antonnas.

The glide path antenna, Fage 14 consists of a 12 foot by 3 inch parabola fed by two waveguldes one above and the other below the focal point. The result is two sharply defined overlapping beams 2.2 degrees wide at the half-power points. This equisignal intersection defines the glide path. The gain of this anteana is 324 or 25.1 decibels above an isotropic radiator.

Glide Path Modulation Pafferns

Fhase shifters are inserted between modulator and antenna. By properly adusting these phase shifters feed back from one wave guide to the other is prevented. If feedback is present it will perzit 600 cycles per second modulated energy to be radiated from the 900 cycle per second wave gulde and vice versa.

The localizer antennas (Pages 18 and 19) as previously explained, radiate four patterns in space. The two main beeme ere 8 degrees wide at the half power points and have again of 890 or 29.5 decibels over en isotropic radiator. The cross-over point of the two main beans is set at $\sqrt{0.6}$ max to obtain correct course sensitivity.

The auxiliary antennas are set at 45 degrees to each side of the main antenna and radate broad patteme 60 degrees wide messured at the 0.35 Eraax/1.414 point where maz is referred to the main bean. The design of these antennas is such that a gain of 150 or 22 ceaibels over an isotropic radiator is obtained.

The use or phase shifters in the localizer antenna is not necessary since no two waveguides feed a single antenna and therefore no feedibsck is possible. Receiver.

The recaiging equipment in the aircraft aetacts the localizer and glide path signals and presents them to the pilot in the form of meter indications.

Fererring to the blocis diagrams, Page 39, the received signale are coupled into the nixer chamber by a coaxial line which terminates in two probes. The local oscillator frequency is coupled into the cafity by taeans of loop. The received slgnels are combined With the local oscillator signsis and the resultant beet Prequencies detected. Thus if the localizer and gllde path Erequencies are 2640 me and 2617 me respectfully, and the local oscillator frequency ia 2535 anc the resuitant beat frequencies of 7 mo and 16 no will represent the localizer and gliae path signals at the input to the Ie amplifiers.

The locel oscillator, Page 39, has five stages. Any one of three teaperatare-regulated quartz orystals can be selected depending upon the transmitter channel. The se crystals in conjunction with trimmer condensers give a frequeney accuracy of plue or minus 50 cyeles. By onergizing the correct relay the desired erystal is choson. The firet atage uses a $6 \mathrm{vo} \mathrm{as} \mathrm{ancos-}$ cilletor coubler in which the tank is permeability tuned to the seoond harmonio (9.75 me) of the crystal. The second stage consisto of a 676 tripler with the tank tuned inductively to the third hamonic of the input (29. 26 md). The third stage similariy triples to 87.77 mo and i ts output is tronsformer-coupled to the third tripler. This stage consists of an 832t beam

power amplifier operating in push pull, whose plate circuits are terminated in a short-circuited two wire line tuned to 263.3 mc by condenser across the line. A short loop couplea the energy from the plate tank of the B32A to the input resonator of a eK36 klystron multiplier. The output resonator of this kiystron is tuned to the tenth hamonic of the input cavity (2633 me). This output is the local oscillator frequency used as a reference in the mixer cavity.

The 7 me and 16 me IF signals are passed to two simflar If channels. These ohannels have three stages of amplification (6SG75) the output of which is fed to audio and AVC detectors. The AVC detector (one-half of a 6SL7) produces a voltage for biasing the IF and first audo tubes. The audio components of the If aignals are detected by the audio detector (one-half of a 6SL7) and passed to the audio amplifier a 9003 tube followed by a $6 \mathbb{V}$ tube. The plate circult of the last audio stage has two band pass filters in series with the plate supply. One filter is tuned to pass at 600 cycles and the other tuned at 900 oycles. The total variation of attenuation through the pass band (botween 95% and 105\% of center-frequency) does not exceed one decibel and the insertion loss does not exceed 6 decibels. After separation of the 600 and 900 oycle signals they are passed to two similar copper oxide rectifiers con-
nected in opposition. The voltages developed across these rectifiers provide the signals to the crosspointer meters.

In oxder to provide a means of knowing when the equipment is operating properiy, each channel excites a neon lemp indicator on the cross-pointer meter. Rectified 600 and 800 eycle signals are fed to an amplfler tube which arives a cathode follower nozmally self-0iased to approxisately 45 volts betwen its cathode and ground. An eudio voltage large enough to cause the cross-pointer neter to read canes the cathode follower to conduct and inerease its eathode voltage to a sufficient value to light a neon lamp connected from cathode to ground.

The recelver bandwidth is 250 kc , that is, $\pm \mathrm{tc}$
125 kc . This deteralnes the linit of the frequency variation allowable in the system.

This variation can be brokea up as follows,
Transuitter:
Crystal plus or minus $.0003 \% \pm 15 \mathrm{kc}$
Safety factor $\quad \pm 25 \mathrm{ko}$
Recelver:
Crystal and local oscillator dircuits
eccurate to $* .091 \% \quad, \quad=30 \mathrm{kc}$
uning nafety factor of $2,65=50 \mathrm{ke}$
This leaves 50 ko for IF amplifier variation.

Az indicated by the following specifications one of the most difficult probloms of any inetrurent landIng ayatem in the aeaign of aultable antonnas which will produce the requisite patternc in space.

The specifications which the present syster zust met are ss rollows:

Locallzer

1. Any present localizar coure shall be defned an atraight line tith a minltum acouracy of ± 15 feet or 23 强ile khichever is the larger.
2. Fhe Localizer ghall be usable at ell ongles up to 5 tegrees above the horlzon.
3. There ghall be no tole coursee within 485 degrees of the twue course (whithin liaits of peragraph 2).
4. The plane of the localizer on-couree indication ahail be perpendicular to the ground (vithin angular linita of paragraph 2)
5. The average loonlizer senaitivity shall be 5.5 microanperes per mil 1 mieroanpere per nil. (A ceparture from course of $a 1.5$ degrees in the horizonsal plane wil produce full ecale fly-left or fly-right meter indication): The sentitivity shall be essen-
tially linear from full scale fly-left to full scale flyright indications.
6. At all points oubside of full scale to full scale coursewidth up to ± 85 degrees full scale fly-left or full scale fly-right indications shall be obtained.
7. The line of sight range of the localizer shall be 100 miles at azimuth angles up to ± 8 degrees to the course.

Gilae Path

1. Any present glide path shall be defined as a. straight line with a minimum of accuracy of 0.1 degree (1.78 mils).
2. There shall be no false course below the glice path.
3. Positive fly down indication shall be given by the aystem between the glide path plane and a plane 5 degrees above the glide path.
4. The average filde path sensitivity shall be 18.5 microamperos per mil ± 2 microamperes per mil (a departure from course of 45° shall produce full scale fly-up or fly-down meter reading). The sensitivity shall be easentially linear from full scale fly-up to full scale fly-down.
5. The range of the glide path when flying on course shall be a minimum of 50 miles.

Two antenna problems shall be considered:

1. An analysis of the glide path patterns to determine if fly-ability of course cen be improved and to determine if glide path lends itself to fully outomatic landings.
2. Analysis of the localizer antemn patterns to ascertain wiky paragraphs 3 and 6 in the specifications are not fulfilled.

In order to analize the antenna patterns for the purpose of determing the answers to the preceding problems, field measurementa were a requisite. This called for both atetic and dynamic measurements of the localizer and glide path. Static pattoms were taken by measuring the F.F. fleld pattern using unnodulated CW transmitted from one beam at a time. The dynamic patterns were taken with the modulator muning and two or more antomnes transmitting.

A grid 500 feet ahead and 500 feot to each side of the glide path traller was measured off and field atrength measurements taken at 50 foot intervals. The measurement equipment consisted of a standard aircraft receiver installed in a mobile unit, (page 45), which towed a 35 foot tower on which was mounted the receiver antonna. This anterna could be moved up and down by means
of a motor drive, Page 47. An Esterline Angus rocording unit. Page 48, was used to record both static and dynamic patterns. The recorder was inserted in the plate circuit of the last IF Stage in the receiver in such a manner as to present the same working load to the tube. The recorder measured If plate current. As the recelver approaches the transmitter the signal strength increases - increasing AVC action and thereby recucins plate current. By suitably calibrating the receiver it ia possible to measure relative field strengtin by intelligentiy interpreting the IF plate cumrent readings.

Page 49 shows the results of an early glide path rung. Here it is at once apparent that an inconsistency exiats. Since the pilots cross-pointer moter reading is a function of the decibel difference between the 600 and 900 cycle patterns the cross-pointer curve and the decibel difference curve ahould track rather closely and very definately cross the axis at the same point (within accumulated messurement exror). Successive muns indicated that this orror was alwyes present. By removing the receiver antenne it was found that indications were obtained on the cross-pointer meter as the receiver was moved about in the antenna fleld indicating direct leakage into the receiver. This would seem off hand as a design limitation of the receiver.

However the two operating conditions are quite different. In an aircraft the receiver is in approximately the same fleld intensity a the antenna and the receiver shield pius the shielding effect of the fuselage of the eircraft give at least a 70 decibel difference between antemna signal and leakage signal directly into the recelver mixer. In the field test set however, the test conditions were auch that it was feasible for the antenna to be in a field 50 to 60 decibels below that in which the receiver was located. Thus the leakage signal can approach in masnitude the signal at the point being measured.

The problem of shielding at 2600 NO was quite interesting. A copper box completely enclosing the receiver and ita pover supply was not sufficient. The vire mesh used to permit air cooling of the local OscilIator klystron offerec a low attenuation path to the leakage field. Eecause these ventilation holea were necessary, short pleces of circular waveguide were resorted to. Since a circular waveguide below cutoff has an attonuation of approximately 30 decibols per dameter of length, a bunch of guides below cutoff and long enough to give an attenuation of approximately 120 decibels and with an open area sufficient to permit adequate ventilation of the klystron were
used, page 52. This effectively brought the leakage down to 90 decibels below signal.

Page 53 shows the results after leakage was minimized. The aiscrepancy between cross-pointen meter reading and aecibel-difference crossover points is due to a nuber of possible reasons: outright errors in elevation mi-reading, error in metering circufts (Esterline Angus recorder in slugefish and does not follow rapid changes in signal - this is particulariy true near the cross-over point), exrors in rem ceiver audio circuita (difference between the insertion losaes of efther the band pass filters or the copper oxice recticiora will cause the cross-pointer meter to raed other than zero when the cectbel difference between the 600 and 900 eycle fielce is zerol

The curves ahow that the first cross over occurs at 40 mile os alightiy less than 2.5 aegrees. An invorse courae (recelve fly-up eignal when proper correction would be Ely-aown and vice verra) appeare at 72 mile and a false course (correct signals but glide path angle in not cesired one) occurs at 107 nila elevation. The fact that the first inverse course is less than 5 degrees above the true gildo path is aue pri= marliy to the ahort mange (150 feot) at which the run

was made. At short ranges the beam patterns are not completely formed. Ground tests at increased ranges and flight tests bear out this statement.

The course sensitivity at this particular point from page 53 is 25 microamperes per mil. This is a more sensitive course to fiy than the 18.5 microamperes per mil the specifications call for. The fly ability of a ayatem is a very important factor. It is conceivable to produce a flight path which is so precise that it would be impossible to fly. Thus the course sensitivity gives a direct indication of the fly-ability of the course.

Because it is not possible to match feecs on the gilde path without aacrificing course sensitivity the angular course width (minimum off-course angle to produce full scale deflection of crose-pointer needle) cannot be increased beyond 9 degrees. The same antema is used to form both glide path beams, page 14. Vertical displacement of the beams is obtained by moving the effective source of the 600 and 900 eycle energy, above the focus for the 600 cycle beam and below the focus for the 900 cycle beam. The result is two overlapping beams whose overlap is invergely proportional to the displacement. Considering the sources at the center of the waveguide openings it
becomes obvious that the minimum off-set of the sources will be limited by the physical shape of the waveguides since they are placed one on top of the other. When the guides are in contact with each other a method of further increasing the overlap is to close off part of the wave guide opening which is furthest from the focal point. This has the erfect of moving the center of the operture closer to the focal point of the cylindrical parabola thus broadening the course. However this results in a high swin in the guides feeding the antenna. Attempes to match the antenna to the waveguide results in changes in course characteristics. With the feeds matched a course width of 6.3 mils was obtained as against 22 mils with umatched feeds. A course width of perhaps 28 mila would be considered better for manual flight purposes. At the present time a SWR of 1000: 1 is tolerated in order to get the widest course. It should be noticed that there is a limit to widening the course by simple overlapping of the beams. As overlapping increases, the angle betwoen the course and the first inverse course decreases, resulting in poor engular coverage of the syatem.

The question then arises converning the possible effects on the antenna patterns caused by currents flowing on the outside face of the waveguide window.

It is obvious that any currents flowing on the face will cause a aifferent effective excitation across the aperture of the wave guide. Since it is very difficult. to tie down the exact magnitude and direction of these currents, an empirical approach was considered. Runs were thon taken with a polyiron slug on the outside surface of the waveguide windowe The idea of the slug being to absorb any radiated energy caused by these supposed currents on the guide window. Pages 57 and 58 show the comparative results. It is noted that in both cases the course senstivity decreased; in one case 3.3 mjcroamperes per mil and in the other case 5.3 microamperes per mil. This seemingly small decrease is significant when the foregoing problem of waveguide spacing is considered. The change in course cross-over point indicates the decided erfects of the polyiron slugs on the main beams. This decrease in couxse sensitivity indicates that the currents which flow on the face of the window are of such a magnitude and direction that they tend to increase the distance of the effective sources from the focal point of the parabola decreasing the overlap of the beans. A comprehensive picture of the glide path formed as a result of all of the field measurements indicated that the glide path was not a plane surface

as supposed but turned up at the ends at the right and left sides of the antema. Vertical sections through the glide path gave a straight line glide path in front of the antenna (very close to theoretical expectation) and a part which begen to flare at the end as distance to left or right of antenna increased.

This immodiately offors great possibilities for automatic landing of aircraft. The system as designed was based on a atralght line glide path. From simple calculations, an aircraft approachins a runway at 110 milea per hour on a 2.5 degren gilde path will hit the runway with a rate of descent of 420 feet por minute. This rate with the acded factor that the pilot may be bracketing in a downard direction at the line of contact makes tho straight 1 ins approach path imm practical for manual flyto-touchdown landings or fully automatic landings (the method of decreasing the gilde path angle to utilize the straight line technique for the above purposes is limited by obm stacles surrounding the airport). Tho possibility of flaring the glide path just prior to the touchdown point so that the rate of descent is compatible With safe landinge has received consideration in the past but has never adequately been solved. Page 60 show a cross aection of the glide path at a position 500 feet to the right of the transmitter. The solid

Ines indicate the glide path an called for in the specifications and which is very nearly true dipectiy in feont of the antenna. The dotted lines indicate the actual glide path 500 feet to the right of the transmitter. This flaring can be attributed to a number of reasons: the theoretical lines assume plane beams and no ground reflection while actually since the parabola is fed off-center, conical beams are produced which in conjunction with vary definite ground reflection help produce the flare; when the angle from the center line of the antenna approaches 44° or more the glide path is formed by the intersection of side lobes - these side lobes are affected riore by second order effects such as irregularity in the antenna or slight off-set of feods. The broadening of the glide pach in olevation is due to the fact that the antenna is less efficient at its edges for the elevation pattern.

As indicated on page 60 anc- 4 (4 engined aircraft)
has an ontenna helght of approximately 23 feet above ground. This permits the aircraft to touch down at 225 feet in front of the transmitter at a tine prior to the possibla reception of a fly-down signal. This is the required case.

However, for a DC-3 (2 engined aircraft) the antenna height is oniy 18 feet and the point of touchdown is IIE reet in front of the transmittor. Here it is seen that after the aircraft has flared off and before it has touched the munbay a very decided fly-down signal 1s received. This would tend to produce high stresses on the landing gear and is not conducive to smooth landings. A contimous $f 1 y$-down signal is however essential for a certaln tire after contact with the rumpay if automatic landing la desired. Since the application of fully automatic landing would most probably be applied to the larger aircrafta perhaps this would not be too great a problem to overcome. However, difficulty becomes evident when operating at great distances to the left or right of the transmitter in order to utilize this flare. As the angle from the center line of the antemna increases to the left or right the tilt of the beams approaches zero. Half of the energy is radiated Into the groum and the beams are very much aistorted. The result is two interweaving beans with sufficient intersections to cause rapid fluctuation of the crosspointer meter. As the glide path angle increases the aircraft lands closer to the radiator and the azimuth angle of the point of contact approaches 90 degrees. Hence the duration of the fly-down indication becomes
shorter and shorter.
The evidence of flare was observed only on three syetoms. The consistancy of such a flare and the possibility of reproducing it in successive equipments is questionable and only after many field tests with and without growid reflection effects could sufficient data be obtained to prove the feasibility of its use for completely automatic landings.

Localizer

The localizer field measurements were made by makIng runs perpendicular to the localizer course and recording 600 cycle auxiliary and main beams, 900 cycle auxiliary and main beams and cross-pointer meter current readings.

An leal cross-pointer curve would be one that gave full scale readings to ± 85 degrees of the $10-$ calizer course, no false or inverse course within this region and a linear chenge through zero as the localizer course was crossed. Page 64 shows the RF patterns of the four localizer antennas and the resulting crossphinter meter readings. These patterns show that the first two main beam aide jobes on each side are at least 12 to 15 decibels down from the main beams. Due to the partition in the main disk, Page 18 the beams are not symotrical, resulting in the minor

lobes on one side of the main beam being longer than on the other gide. It is unfortunate that the larger minor lobes appear on the side of the course opposite to that of the main beam 1tself. The decibel curve indleates the decibel afference between the two main beams only. This indicates approxinately what the cross-pointer meter would read if there were no auxiliery antenns. The cross-over is fine, however, the apecification that there be full scale reading to ± 86 degrees of the lacalzer course and that there shall be no false or inverse courses within the region is flagrantly violated. The lack of full scale reading and presence of inverse coursesis due in part to the fact that minor lobes of the 900 cycle main beam are of a magnitude approaching or greater than thes 600 cycle main beam on the 600 cycle side. A similar condition exists on the 900 cycle side. By adaing auxiliary antennas it is possible to submerge the offects of these minor lobes without at the ame time altering the course characteristics. The cross-pointer meter reading shows the dynamic effects of all of the antennas. It is evident here thet at 1000 mils on the 800 cycle side there is a decided soft spot (point not on course where full scale meter deflection is not available) accompanied by a false course and an inverted
courses are very confusing. The pilot sees on-course readings and rapid meter fluctuations in regions where the pointer should remain hard-over. If such courses were flown the results might be disastrous. Thus all anomalous courses must be elininatad within the specifled region to insure consistantiy safe landings. Flight checks indicated no soft spots in this partim cular region. An analysis of the curves indicates a consistant dip of the 900 and 900 A beams at approximately 900 mils on the 900 cycle side. This leads to the conclusion as surmised earlier that even at 2640 mc and with a tilted-up beam system, ground roflections are significant. It should be remembered however, that the alrcreft usually touches-domn about 400 feet in front of the localizer and thet this run was mado at 650 feot giving rise to the possibility of incomplete beam form ing.

If the 900 A beam were increased in pover abcut 2.5 decibels to equal that of the GOOA beam (this is the nomal case, the drop here is not due to mismatel in the guide but is due to an irregularity in the waveguicie slot in the modulator, lator tests with a new modulator gave the same pover out for bothi auxiliary antennes) and the auxiliary beam peaks moved out slightIy the soft spot prould be eliminated. In these mus corrections for the fact thet the run was made perpen-
dicular to the localizer course and not on a circular track arourd the transmitter (constant range) was taken into consideration.

However, a look at Page ${ }^{6} 8$ shows that this attack will not quite soive the problem. The chart shows the petterns at a high point in the field Here a sort spot between 225 and 500 mils on the 900 cycle alde and a weak spot at 300 mils on the 600 side are evident. Any increase in the 900 A power to aatisfy the 900 cycle side will make the veak spot on the 600 cycle eide a very definite soft spot. In any case an improvement of one side vill be detrinental to the other side.

At thia point the idea of using reflectore on the auxiliary antennas was proposed. This reflector was to be set at the proper angle to reflect energy in such a manner that the sort spot would bo removed. The tech nique used was to attach the reflectors to the inboard side of the auxiliary antennas, Page 69, and orient them by noting the disappearance of the eoft spot on the cross-pointer meter. The resulting tests showed a very decided improvement. Remembering that a soft spot occurs when the cross-pointer meter current drops below 150 microamperes (full-scale) when not on course we see that with the additional of flaps. Page 70, the very large soft spot between 410 and 900

engineering division

mils was almost completely eliminated. A run with the antenna slightly higher indicated a greater microampere reading at all points except at 1000 mils on the 900 cycle side. At 1000 mils the reading was more than adequate at 190 micromperes. Tests also showed that these flaps reflected energy from the minor lobee of the main antenna in auch a way as to decrease the effects of the minor lobes.

From the localizer patterns the full significance of course sensitivity becomes evident. It is obviously desirable to get high angular eensitivity at long ranges to prevent wandering. However, if the same angular sensitivity were maintained near the landing point the course would be too sensitive to fly. Since the meter indicates the mount of plight error, it is desirable to have the meter remain on-scale during the final phases of the landing. By this means the pilot has an idea of where he is with respect to the course. The reduction of course sensitivity is called course broadening. The breadth can be increased by raising the relative cross-over intensity of the main beams and reduced by lowering the cross-over point of the beams.

Consider again the angular sensitivity of the course with a constant angular sensitivity the flyability of the course apparently becomes more difricult as
the range from the tranemitter decroages. A fixed linear devietion from on course at a range of two alles will produce only one half the geale deflection as the same deviation at oae mile. Thus os range decreases the mil deviation (and thus erosepolister rading will increase for a fixed lateral devintion. If ft were possible to broaden the coareo in such maner that during tho final phase or the appros oh the convergence would not be too preat the rlyability of the course would be inproved.
so-called courbe-goftening has been tried in which the audio tibes have been biased by Ayo action in such a maner thet the output arops off an range is decreaced no that the apparent aensitivity of the course is re©uced. This technique has not proven eatieraotory aince nyc voltace is not a precise meank of measuring range and further the ave action ie alfferent for various receivers. This would wake the charecteristies of tie course a function of the recoiver end each one mould be dirforent. If a proolse means of measurIng range war available (as in jistanco moaburing Squipment - Dis) then this Inrormation could bo used to control the sensitivity of the recolver's output as a
 use in the siferowave system it seens at the prosent titae to be feasible aolation to the problea.

IV. ANALYSIS OF SYSTEM

The resulta of the roregoing field tests indicate that ground measuring techniques will suffice to determine the actual antenna patterns and can be extrapolated to determine what takes place at much greater range in the filight epproach path. Providing the beans have completely formed these ground measurements are sufficient to deternine the operatine characteristics of the system as a mole.
considering the microvave landing system as an integrated system it becomes evldent that there are many advantages pecullar to it.

1. Autenna size - It is of great advantage to have sharp narrow beams yet have small antennas. Fage 74 shows the relative antenna heights to produce the same bean width (2 degreas) at different frequencies. Keeping in mind that large antennas prefent hazardous obstacles in a flight landing area and that the antenne pattern should be independent of variables such as the ground the advantages of a system operating in the microwave region becomes obvious.
2. milted-up antenna systems - Not only are the beams sharp and independent of the ground for pattern formation but the nature of their uptilt reduces to a minimum the emount of interference by reflection.
3. Nobility - The fact that the equipment can be set up optically leads to portability and esse of re-
In
locating on any one of a number of runways on the same airfiela.
4. Spectrum Utilization - CW mierowave techniques permit the fulest use of the RF spectrum. since the frequency stability is of a high order and the intelligence required for instrument landing purposes is of a siaple nature the transaission bendelathe are narrow.
5. Future Utility - A very important consideration of any present day landing system is its possible edaptability to automatic approach techniques. When a great effort is expended on making a system provide a highly accurate flight path in space it is invariably found that the more accurate and precise the path the more aifficult it is to fly. For automatio approach this doea not offer a great problem however, it must alwaye be remembered that at any point on the approach path, should the automatic equipment fail, the system must be capable of being flown manually wi th sufficient accuracy to permit a safe landing.

The Sperry Gyroscope Coxpany has automatic approach equipment as an adjunct to their microwave landing system and which can also be used on the CAA or SCS-51 instrument landing systems. This equipment provides automatic bracketing of the localizer when the control switch is in "localizer" position. Upon interception of the glide path the witch is set on mapproach" and
combined bracketing of both Localizer and glide path beams results. This operating in conjunction with the. A-12 automatic pilot; which autonatically sets the aixcraft tab controls as flight attitude changes, and an automatic air-speed control provides a smooth approach to the runway with a minimum of hunting and bracketing.

Fifght tests show that automatic flight is three times more accurate than the best manual approach by a pilot familiar with instrument approech techniques. To illustrate this point consider the glide path shown in Page 77. Here the numbers on the curve indicate mil deViation from the true glide path and the numbers on the left side indicate range in miles. At approximately 8 miles the automatic approach equipment is engaged and a slight hunting and bracketing takes place. At a range of 2.5 miles the pilot takes over and flys manual1y. Note the increase in mil deviation from the true path. Note also that it is the last mile or so where deviation assumes a major importance. Flight bracketing corrections as the range decreases become comparable to the total hoight of the alrcraft above the terrain. Manually this system can be flown safely down to 50 to 100 feet above the runway. Automatic approach techniques reduce this altitude to 5 to 25 feet.

Fage 78 shows a localizer filight recording. Note the point of engagement of the autanatic pilot on the

localizer and initial bracket. Although this flight took place in zough air and a considerable cross-wind the maximum deviation fron the true course was only 3 mils and this taking place at about 1 mile amounts to a lateral deviation of approximately 15 feet. As indicated at 2000 feet altitude the glide path was interceptad and the autonstic approach equipment switehed to Inal approaoh position. From this point on, both beams were being bracketed sinultaneously. The adyantage of automatic approach 18 nagain very ovident on Eage 80. Here the glide path is flom manually and in very rough air. The maximum mil deviation from the correct glide peth angle is 7 mils. Hote the excessive brackoting and overshooting between 0 and 1 mile range. However maximum deriation in this range did not excead 3 mils or 15 reet.

In conciusion it can be said that the eaployment of microwave techniques in a landing systan whioh is adaptable to automatic approach and in the fature to completely automatio landings indicate a great stride towaras the ultinste in consistentiy sare and aependent airaratt landing systems.

BIBLIOGRAPAX.

Analyeis of I.T.D. Locellzer. Sperry Report by T. 2 . Perrill, October 8, 1941.

Theory of Electronic scanning and switching. Sperry Report No. 5220-208 by Gerald L. Tawney, June 22, 1943.

3 pand keasurements of Reflection Coefficients for Various Typea of Earth. Sperry feport No. 5220129 by E.M. Sherwood, October 29, 1943.

Antenna Fatterns as Applied to Instrument Landing System. sperry Report No. 101 by fllce Breunlich, January 13, 1944.

Klystron Frequency hultipliers. Sperry Report No. 5221115 by A. Harrigon and $\mathrm{H} . \mathrm{Haxby}$, April 12, 1944.

Plane and Conical Beam Gide Paths. Sperry Heport No. 5240-105 by Alice Braunlioh, tay 1, 1944.

Sperry I.L. System propagation Constente. Sperry Tech. Report Ho. 18, August 19, 1944.

Instrument Landing Test Procedures. Sperry Report by G. Litchford, February 23, 1945.

Coordinated Alr traffic Control. Sperry Pub. Ho. Ed 101 January 1946.

Radio Instrument Landing Systems (A discussion of the limitations imposed by radiation and propagation). G.L. Tawney and A.E. Braunlich, Sperry Report No 2, April 5, 1943.

Status of the sperry 2640 Hegacycle Instrument Lending Project as of December 1946. D.F. Folland (Sperry) December 11, 1946.

Use of microwaves for Instrument Landing. D.F. Folland (Sperry) February 1946.

Demonstration of Instrument Landing Equipment, the Lorenz System at Indianapolis by D. G. Pink. Aviation 36:20-1. July 1937.

Status of Instrument Landing systems. Froc. I.R.E. Vol. 26 p. 681, June 1933.

Aircraft Instrument Landing Research at the Fassachusetts Institute of Technology; E.L. Bowles, I.f.E. Proc. 27;409, June 1939.

Instrument Landing of Aircraft. Bleotrical ingineering, Vol. 59 p. 485, Decexber 1940.

Developnent of Civil Aeronautics Authority Instrument Landing System at Indianapolis. Trans. A.I.E. R. Vol. 59, p. 849, 1944.

The C.A.A. Instrument Landing System Fart I. Electronio3. February 1945.

The C.A.A. Instrument Landing System Part 2. Blectronics. iarch 1945.

The GCA Landing Systera. Bendix Radio Engineer Vol. 2 No. 3. Jenuary 1946.

Report of Electronic Subdivision Advisory Group on Air Navigation. Air Technicel Service Command Report No. T SELC-SPR, Februery 1846.
D.S. Air Navigation Aids. PICAO Demonstration. October 7-26, 1946.

Radio cet AN/EPN-IA Instruction tanual. Ships 3.6 A. January 20, 1945.

The Application of Hicrowaves to Instrument Landing of Airplanes by Joseph £yman for Publication by Institute of the Aeronautical Sciences.

[^0]: 1/ Use of lilorovaves for Instrument Landing. Sperry Report by Donald F. Folland, Feb. 13, 1946.

