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Expressions are developed for the transmission and reflection coefficients for propagation
of a plane wave through a layered medium, taking account of the effects of the static
magnetic field. A matrix formulation is used which allows proceeding to the limit of a
continuously varying medium, and series expansions of the fields for this case are developed.
The results are expected to have application to interpretation of VLF data obtained within
and above the lower ionosphere.

1. Intreduction

Theoretical investigations of VLE propagation have primarily been concerned with the
region below the ionosphere, as evidenced by the use of semi-infinite model ionospheres not
only in earlier semiquantitative studies [Budden, 1951] but also as a reasonable simplifying
assumption in current studies [Wait and Walters, 1963a, 1963b]. Even in studies in which
a semi-infinite ionosphere is not assumed, the transmission coefficients are often not developed
[Wait, 1962a, 1963] or are developed as an incidental part of the analysis [Johler and Harper,
1962]. This emphasis has been consistent with the nature of the available experimental
data. However, as data from the ionosphere become available [Rorden et al., 1962], their
interpretation requires consideration of propagation into and through the ionosphere. It is
the purpose of this paper to provide a framework for this type of calculation.

As is generally the case if tractability is to be maintained, some simplification of the
physical situation is desirable. A suitable model for our purposes is a stratified plane ionosphere
with plane waves obliquely incident. The earth’s magnetic field is included since it is expected
to allow propagation through the ionosphere (whistler modes) at some frequencies and angles
of incidence. It is assumed to have constant strength but to be at an arbitrary angle to the
plane of stratification.

The equations are first developed for an arbitrary number of homogeneous layers, a
problem considered by Johler and Harper [1962]. A different system of representation is
used in this study, allowing the number of layers to be increased by multiplying together
more and more matrices of constant (4<4) size rather than by increasing the size of a single
matrix. This form has the advantage of allowing use of available computer subroutines
to handle the matrices and the use of slow access storage for matrices not currently being
operated upon. The values of the matrix elements are determined by the solution of the
Booker quartic for each layer. The terminology used is that employed by Yabroff [1957]
in treating a single planar boundary.

In the next step, it is assumed that the layers become infinitely thin while becoming
infinite in number, to represent a continuously varying medium. A series expansion for the
transmission and reflection coefficients is then obtained. The reflection coeflicients series
have the form found by Wait [1962a] and by Heading [1963] by an iterative procedure. A
physical interpretation of the series terms as representing multiple reflections within the
varying medium is obtained by examining the development of the equations for the limiting
conditions.
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2. Layered Medium

2.1. Equations Holding in Each Homogeneous Slab

Waves propagating in a homogeneous plasma medium are governed by Maxwell’s equa-
tions and (neglecting the ions) by the equations of motion for the electrons:

oH
VX E=—p, o &
VXH:—Av€V+50%ItE (2)
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where E and H are the wave fields, V the electron velocity, N the electron density, e the electron
charge, m the electron mass, » the classical electron collision frequency, ¢, the dielectric constant
of free space, and u, the permittivity of free space. 1If the energy dependence of the collision
frequency, », is considered, » is replaced by a complex, [requency dependent quantity, as
discussed by Wait [1962b] and Johler and Harper [1962]. This substitution does not affect the
the equations to be derived below.

These equations assume that ion motion can be neglected and that the plasmais “temperate”
{Allis et al., 1963], i.e., that the electron motion occurs over only a small fraction of a wave-
length and that the electron thermal speed is much larger than the induced speed. These
assumptions imply that the wave magnetic field H is much less than the earth’s field H, and
hence can be dropped from the last term on the right in (3).

The notation used follows Yabroft [1957]; a right-hand cartesian coordinate system is
defined with # normal to the plane of stratification, so that N and » are functions of z only.
The direction of a vector in this coordinate system is specified by the angles « and 8. Beta is
the angle between the vector and a unit vector in the z direction; « is the angle between the
projection of the vector in the y-z plane and a unit vector in the z direction, as shown in figure 1.
H, is taken to lie in the z-z plane at an angle 8, to the z axis. The incident wave in free space
is taken to be propagating with its wave normal given by angles «; and g;.

The incident wave will be of the form

F,=(Fy) exp [1%’ (ct—x cos B,—ysin B;8In a;— 2 sin B; cos a,)—l (4)
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Ficure 1.  Coordinate system.
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where (F},) is the complex magnitude of the field at the origin of the coordinate system (taken
to be in free space). The reflected wave will be similar, with azg=a;; Bg=(m—p;). In each
homogeneous layer, for such an incident wave, the waves will have the form

F,=(Fy) exp [1% (et —xD—ysin B;sin a;— 2 sin 3, cos a,)] (5)

where the continuity of the fields at the boundaries between homogeneous layers has been
employed to specily the y and z variation. For such waves in a layer, (1), (2), and (3) can be
manipulated to elimmate H and V, giving a set of homogeneous equations in the components
of E:

my — a? M+ apD mys—+a, Oy
— My +azD Moo—ID*—aj3 o By | =0 (6)
mys+a,D — Mozt aay mys— I —a7. E,

The particular form of the matrix multiplying E in (6) is obtained by deriving the conductivity
tensor relating V to E from (3), elimmating H from (1) and (2), and replacineg NeV in the result-
ing equation by the conductivity tensor multiplying E. A detailed derivation of the equivalent
(for a different choice of coordinates) of (6) is ¢iven by Budden [1961].

The parameters m;; and a are

$—=hi .. 8
My 1_.w(x*¥/zz)’ (a); mp=1— 5y (b)
—h2 . .k
M 33 1—\(;._,:[/;._,); (c); M= —1 '-\‘22/ » (d)
o l“/[qj,, 0. 8 /['[, o -
Mg (\'(.\"‘4/1,2)’ (( ), Moz=—1 .\'2—/1,:y () (/)
a=sin B;, (a)
a,=a cos ay, (b)
ar=a sin ay, (¢) (8)
in terms of
1—a(v/2f) y
—=———rrr Y
NCHTD &
and
11:7[.%{ (a)
hz,=h cos By (b)
hp=h sin By (c). (10)

Finally, the quantities /, /), and f; are the familiar wave frequency, plasma {requency,
and gyrolrequency, respectively:

. Ne*
‘/0—4?0”2’ (11)
. [J,”(’][n 9)
Jn= 2mrm 47

Nontrivial solutions to (6) exist only if the determinant of the matrix multiplying E
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vanishes. This condition produces a quartic in ) to be solved for each layer:

D+ asDP +a,D* 4 a,.D+a,=0 (13)

where
as=my (a)
W3=2a;,My3 (b)
A= Mgg@ ], + Moo+ M1 (@° — Mgz — May) -+ miz+mis (€)
a;=2mys(ai+apa’) —2a;mosmys (d)
o= (Mg — %) (Maz—az) (my—a®) + (Mgz—a’p) M — (M, —ai) mis
+2mogmyigmyy— (azae—mas) (my—a®) (e) (14)

Thus there are generally four modes possible in the medium, two upgoing and two downgoing.
Equations (13) and (14) are the Booker quartic [Booker, 1939] in the form used by Yabroff.
He needed only two roots for ) corresponding to upgoing waves since only a single boundary
with a semi-infinite medium on either side was treated. For a number of boundaries, all four
modes have to be included except in the final semi-infinite medium.
The properties of the wave in the medium are contained in ). The wave has its phase
normal in the direction

Apr=—ag (a)
_ =1l sin B;
BM*tan RO (D) (b) (15>
which is Snell’s law. The phase velocity is
@
Vo (e Dy st 17 (16)

The wave is seen to be an inhomogeneous plane wave since it is attenuated exponentially in
the z direction at a rate of

?’T Im (D) (17)
nepers per unit distance.

2.2. At the Boundaries

At each boundary the tangential components of E and curl E have to be continuous.
Thus the equations can be written

E, =E, (a)
(VXE),-=(VXE),4 (b)
E. =E.. (o)
(VXE),-=(VXE).; (d) (18)

where (—) and (4 ) refer to the field just below and just above the boundary, respectively.
The equations may conveniently be written in terms of matrices

A1Ei—:1417+1E4+1-E— (]9)

where £_ and E, are column vectors of independent (one for each mode) components of E in
the two mediums 7 and i1 forming the boundary, and A; and A,; are matrices, characteristic
of each medium, relating the elements of E_ and £, respectively, to £, (VXE), E. and
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(VXE).. Thus (a),E-; is the y component of I_;, (a;11)2lf4s is the y component of K.,
(a,)n 1 is the y component of (VXX E)_;, and so on.

For the incident and reflected waves below the first boundary, the independent components
of E_ are conveniently chosen to be the components of E in (%)) and perpendicular to (/) the
plane of propagation. Thus

(£
(£,
E_\= (20)
(E1):
(E1)2

where the subscripts 1 and 2 refer to the incident and reflected waves, respectively. The
matrix A4, 1s, then,

oS ay sin a; €os f3; COS oy sin «a; €os 3;
—sin «a; cos B; cos a; (cos? B;—sin? 3;) sin a; cos™B;,  —cos ay
AN= . - (21)
—sIn ay cos a; COS fr —sin ar CcOs ajy COS fr
—C0S ay COS B; sin a; (sin? B,—cos’ B;) Cos a; cos' B, sin a;

In the plasma mediums a more convenient choice of independent variables is /7, for each

mode: i
(E
(£,)2
Hy= - (22)
(E,)s
_ ()4
The matrices A; are then
1 1 1 1
iy, @igy Qigy @iy
A= (23)
Q1g @igy Gigg @igy
gy Qig Qigy Qigy
where ) _ o
(@;)9;=—cos ar sin B;S i+ DR} (a)
(_%)3]':1{; (b)
(01)4]:_’D;+Sin ar Sin ,31S§ (C). (24:)

The quantities R} and S? are the cofactor ratios of the matrix in (6), which relate £, and
E., respectively, to /£, for the jth mode in the ith layer:
(“"7l12+(1f7"])§:)(_77&23+QL(1T)_[77?'22_(D;:)Q—(l%](mm—"aLD;)

== : : -
= (mostarar) (77l13+(1rLD]L') - (_m12+a7‘0;)lm33_ (Dﬁ')z—asz]

(25)

Qi L",IQ?_:(Z);)Q—”’%H M3z— (D})Z_GJZT]— (mos—t+arar) (—m'23+aLa/T). (26)
T (mytagar) (migtaLD)) — (—maaFapD}) [ mas— (D)) *—a%) :

It must be remembered that the m is also characteristic of the 2th medium.
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Finally, at the last boundary, the reflected modes are not present in the upper medium,
so that

(B

@

D= (27a)
0
0

where the subscript /N is the number of boundaries. The form of Ay need not be changed,
however.
I the final semi-infinite medium is free space, a better choice for the transmitted modes

would be
(B

(E‘)l
Ey,= (27b)
0

0
with Ay given by (21).
To relate the incident and reflected waves at each boundary of a layer, another matrix, A;,
is defined:

X Ei— :Ailf'H‘ (28)
where A, is diagonal
 —Z2a0 3
@ v 0 0 0
S
7 0 @ © 0 0
= ‘ (29)
—1'(*? d; 1173
0 0 ¢ 0
—i2 4 Dl
L 0 0 0 e ¢ 2

and where d; is the thickness of the ith layer.
With the above notation, the incident and reflected waves at the first boundary can be
related to the transmitted wave at the last boundary by a series of matrix multiplications.

EX#—:(11;'14'1A\'~IAA\'-14‘13”1—111‘\%24‘\%2-'1;’12 e A'llAlilflA'ltJ) I':uﬂ (30)
We define the product matrix, M, so that (30) is more concisely written:
Ey, =ME,_ (31)
where

M=(A3" Ay Ay AFL .  AAAT Ay). (32)

Note that if a layer, i=a, is allowed to vanish by letting ¢, become zero, A, becomes the
identity matrix and the product 4,A,4;" is also the identity matrix.
By splitting £,_ into the incident and reflected modes

Ey =E,+Eg (33)
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where £, and £y have the form

r(lﬁvi)h
(E i)l
1 — (ﬂ)
0
0 o
3
fo )
) 0
Br— (b)
(E1)s
(E))2
(31) can be rewritten to give solutions £y, (=/£7) and Ey in terms of the source £
M'E,—Ez=E,. (35)
By defining a matrix, £, that combines £y and Fp, (35) can be written
NE,=E, (36)
where NV is seen to be of the form
0 0
0 0
N=| M™! (37)
B
—1 —1

where the notation means that the left-hand half is identical with the left-hand of M~" and the
right-hand half is as shown; while £, is the column vector

E=E;+Eg (a)
()1

(E,): |
1.e., 1B= (b) (38)
(K1) .

(E)):

Having solved the quartic, (13) for the roots, [), in each medium, the elements of the
matrices forming M, and hence N, can be evaluated. The transmitted and reflected waves
then are given as solutions of the four linear equations (36). The ratios of (K1), to (/1)
and (E))s, and of (), to (E)), and (K.), give the reflection coefficients (R, (R, [ and
(.. When the second semi-infinite medium is free space the transmission coeflicients can

be similarly defined.
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Once the transmitted and reflected waves have been determined the fields within the
medium can be found. At some boundary within the medium, we have, in the ith layer
just above the boundary,

7= ATHA A AT L ANATYAE, - (39)

where the reflected wave components of /£, are now known, so that they need only be inserted.

There is an interesting relationship between (36) and the expressions developed by Johler
and Harper [1962] and Wait [1963]. Equation (36) is equivalent to the matrix equation (33)
of Johler and Harper, but it represents the effect of many slabs by a product 4 x 4 matrices
rather than by a single matrix which grows in rank. Wait uses a method of development for
a stratified ionosphere similar to that of Johler and Harper in treating the wave propagation
problem in spherical coordinates where the earth and ionosphere are considered the boundaries
of a waveguide. In this case, the resulting equation does not involve an arbitrary incident
plane wave. [ and [, are solved for simultaneously (the earth provides another boundary,
which would give two more equations and hence 6 x 6 matrices in the formulation employed
here), so that the determinant of the equivalent of the matrix (N—17) for the spherical coordi-
nates would yield the waveguide model equation.

2.3. Limit of a Continuously Varying Medium

The development in section 2 is particularly suited to proceeding to the limit of a con-
tinuously varying medium. Swift [1962] employed it to investigate the characteristics of the
coupling coefficients appearing in the differential equations. In this study we are more
interested in developing forms for the reflection and transmission coefficient. Consider the
form of the matrix M (32). It is seen to be a product of elements

T,=AA A (40)

for each layer, except the semi-infinite layers on each end. The terms of T'; have the form

(T = (A)1(A) m(AT) k.- (41)
By noting that A; is diagonal,
—i%dD;
(Ai)j/;zajke O (42)
one summation of (41) can be eliminated, leaving
—i%aDi
T u=A)n( A7) e ° (43)

where the ; are all taken the same.
As the thickness of each layer is decreased, I'; approaches the identity matrix. By ex-
panding A; in a power series for each term, we get

2 : : 2
(HWm)
1—ilpip> ¢ 74 0 0 0
LC 1 2! o«
0 1—i Cf dDi+-. .. 0 0
A= . (44)
0 0 1—iwm+“. 0
0 0 0 1—i 24dDi+ . ..
. c J
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I"; can be written

I',=1—1 j«/v}—}-('/i%(/). vi— . ... (45)

Note that the i;—o(/ factors are taken to multiply each term of the .. The v, have the form
(vi) 1 = (A 5 (A7) DA (a)
(V) = (A3) n (A7) 1 (D1)? (b) (46)

and so on.
The product of the matrices I'; can then be written

T _[[—q_(lm< (l> ...:H:I—oj%fl‘yé%—...—l...l:l—'i%(lva%-...:l- (47)

This can now be expanded:

N 2N N ' N N
,“ll"’j]*’ .(/Zl7+ ‘/ y‘lL’Y%’\ +<1/*'/ ZV (fj(/) EZY,I7;/+"'
i= C = £ =1 j=i 3 A d=1 f=¢

3 N N - N N ,
+(z—f/ PRI (f(/ S S g .. @)

i=1 j=i = ==

In the limit as ¢ approaches zero, only the terms in v of (48) remain finite, there being on
the order of (1/d)" terms in the summations for the nth term. For the terms containing v’/ or
a higher order, the number of terms in the summations increases as a lower power of (1/d)
than the power of ¢ appearing as a multiplier. Thus we are left with the series

N

HI‘ N]—I*(/ 'y+< 74/ 27‘7,71 .. (49)

i=1 z— i=1 j=i

as ¢ becomes small.  In the limit the sums become integrals, and we have

J[”'xl“‘{[—z ~f "(x)dx -{—( ) f dxy’ (z)f dy~y’ (y)+ }xl,, (50)

where A, and Az are the matrices for the upper and lower semi-infinite mediums, respectively.
This form of M can be evaluated if the quartic for D is solved with z a parameter to give a
D(x) for each mode.

The fields within the varying medium are now given by the limit of (39), which is

Bo=a=w) [1-() [ v it (i) [ an o [[ v -] a6y

where the reflected wave elements of £, are now known.

The form for M given in (50) should be compared with the solution for the reflection
coeflicients given by Wait [1962a] and by Heading [1963] for a continuously varying medium.
It is seen that the terms for the reflection and transmission coeflicients in the present series
have the same form as those produced by the iterative procedure used by Wait to solve a
differential equation for the reflection coefficient and by Heading to solve anintegral equation
for the fields for an isotropic ionosphere. The present derivation is thought to give additional
insight into the nature of the expansion, as well as to provide expressions for the transmission
coeflicients for an anisotropic ionosphere. Heading also derives an integral equation for the
fields in an anisotropic ionosphere but does not develop the series solution.

From the series in (48) it is seen that the higher terms express multiple reflections within
the varying medium. This interpretation can be made clearer by considering a single boundary,
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for which the equation for finite slab thicknesses was written
AiEiszH—lEH—I-}—- (19)

F., the transmitted incident wave at the next boundary, is given by inserting (28) into (19)
and rearranging:

Eio= 0 ATHAYE,_. (52)

It is seen that ££,,,_ is given by the product of a matrix' of the form of I'; with /£, .
Consider now the relationship between the mecident, reflected, and transmitted waves for
an inhomogeneous region:

Ey,=ME,_ (32)

where Fy, is the transmitted wave, and £%,_ is the incident and reflected waves. Keeping (52)
in mind, we can interpret the form of M given by (50) as follows. Using only the first term of
the series in (50), we get the same relation as for a sharp boundary between the upper and lower

semi-infinite mediums:
e =IAe AL S (53)

The second term alters this result by the reflection of the undiminished incident wave

throughout the medium:
E}#:[A;l SHELD 4, Bo-. (54)
. ZL

The A;' and Ay, of course, couple this reflected wave to the semi-infinite mediums on either
side of the inhomogeneous region.
The third term then reflects the wave given by (54) throughout the medium

7, —An{ —i¢ [Ma | | “dm’(y)]}ALEo_ (55)
S zy, olian

where now the inner integral from = to z, gives the wave at x that is due to the incident wave,
Eqy_, being reflected from the region beyond z; the outer integral then gives the result of reflec-
tion of this wave throughout the medium. Higher terms in the series are similarly interpreted.
This interpretation of the series terms agrees with that given by Westcott [1962], who considered
the scattering process from infinitesimal slabs of the medium.

We can check this for a single homogeneous slab, in which D(z) and, her.ce, v” are constant.
Doing the indicated integrals in (48) produces the series

2 . 2
M—A;I{Iﬂf %7’(x1t—xL)—<%> e ”T’L)Jr . }AL (56)

. . . . 3 . . W
which is recognized as the series for T' for a single slab where the exp [—l*Di(Iu—T/L)]
¢

terms in A (41) have been expanded in a power series.

3. List of Symbols

E=electric wave vector
H=magnetic wave vector
H,=static (earth’s) magnetic field vector
V=electron velocity vector
N=electron density, number of mediums, subscript for final medium
m=electron mass
v=-electron collision frequency

1 When the limit of d>01is taken A;—A;and A=A Also, as the matrices become diagonal the order of multiplication becomes immaterial,
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e, —=dielectric constant for free space
o= permittivity for free space

]
?/J‘:coor(linnto axes or variables of integration

[

angles specifving direction of a vector in coordinate system

a|
8|
By =direction of static field

F=any wave field component

7 \ Iincident \
T\ =subscripts for {transmitted | quantities
1‘)} ]I'eﬂected l

c=speed of light
i=super- or subscript for ith layer, or for matrix quantities, or the imaginary unit

m,; = parameters appearine in quartic determinant—see (7)

J
|
a,, =angular parameters for wave normal—see (8)
"
S
h ..
h, =parameters characterizing plasma—see (9) and (10)
e

Di=variable in Booker quartic, root for
f=wave frequency

Jo=plasma frequency
Ju=gyrofrequency
V,=phase velocity

w=wave angular frequency
A=matrix relating field component of
boundaries

a;;—components of A
Yj=component of E, lying

* jth mode in ith layer

each mode to field components tangential to

in the plane containing the wave normal
perpendicular to plane containing the wave normal

7, =component of E; lying
see (25) and (26)

R _

S|
A;=matrix relating fields across ith layer—see (29)
d;=thickness of ith layer

M=matrix relating incident, transmitted, and reflected waves—see (32)

FEs 7. g . i,7,0=column matrices containing a component of E for each mode, see (20), (22), (
and (34)
N=matrix relating s to F,—see (37)
1. LRy L =reflection coefficients

T';=matrix product for ith layer—see (40)

v;, =matrix terms of series expansion of I',—see (44)

/=identity matrix
u, L=subscripts for upper and lower semi-infinite mediums respectively.

ratios of electric field components for jth mode m 4th layer

27),

4. References
Allis, W. P., S. J. Buchsbaum, and A. Bers (1963), Waves in anisotropic plasmas, p. 18 (M.I.T. Press, Cam-
bridge, Massachusetts).
Booker, H. G. (1939), The propagation of wave packets incident obliquely upon a stratified doubly refracting
ionosphere, Phil. Trans. Roy. Soc. London, A237, 411-451.

417



Budden, K. G. (1951), The propagation of a radio-atmospheric, Phil. Mag. 42 (Seventh series), No. 324, 1-19

Budden, K. G. (1961). Radio waves in the ionosphere, p. 226-227, (Cambridge University Press, England).

Heading, J. (1963), Composition of reflection and transmission formulae, J. Res. NBS 67D (Radio Prop.), No. 1,
65-77.

Johler, J. R. and J. D. Harper (1962), Reflection and transmission of radio waves at a continuously stratified
plasma with arbitrary magnetic induction, J. Res. NBS 66D (Radio Prop.), No. 1, 81-99.

Rorden, L. H., R. A. Helliwell. and R. L. Smith (September, 1962). An interpretation of Lofti-1 VLI ob-
servations, paper presented at AGARD Meeting, Munich, Germany.

Swift, D. W. (1962). Very-low-frequency radio propagation in the ionosphere, J. Res. NBS 66D (Radio Prop.),
No. 6, 663-680.

Wait, J. R. (1962a), On the propagation of VLF and ELF radio waves when the ionosphere is not sharply bound-
ed, J. Res. NBS 66D (Radio Prop.), No. 1, 53-61.

Wait, J. R. (1962b), Electromagnetic waves in stratified media, p. 256 (Pergamon Press, Oxford, London).

Wait, J. R. (1963), Concerning solutions of the VLF mode problem for an anisotropic curved ionosphere,
J. Res. NBS 67D (Radio Prop.), No. 3, 297-301.

Wait, J. R., and L. C. Walters (1963a), Reflection of VLI radio waves from an inbhomogenecus ionosphere.
Part I. Exponentially varying isotropic model, J. Res. NBS 67D (Radio Prop.), No. 3, 361-367.

Wait, J. R., and L. C. Walters (1963b), Reflection of VLF radio waves from an inhomogeneous ionosphere.
Part II. Perturbed exponential model, J. Res. NBS 67D (Radio Prop.), No. 5, 519-523.

Westcott, B. S. (1962), Tonospheric reflection processes for long radio-waves-I, J. Atmospheric Terrest. Phys.
24, 385-399.

Yarbroff, I. W. (1957), Reflection at a sharplv-bounded ionosphere, Proc. IRE 45, No. 6, 750-753.

(Paper 68D4-356)

418



	jresv68Dn4p_407
	jresv68Dn4p_408
	jresv68Dn4p_409
	jresv68Dn4p_410
	jresv68Dn4p_411
	jresv68Dn4p_412
	jresv68Dn4p_413
	jresv68Dn4p_414
	jresv68Dn4p_415
	jresv68Dn4p_416
	jresv68Dn4p_417
	jresv68Dn4p_418

