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Express ions arc developed for the transmiss ion and reflection coeffici ents for p ropagation 
of a plane wave through a layered medium, taking account of the effects of t he static 
magnetic fi eld . A matri x formulation is used which a llows proceed in g to t he limit of a 
continuously varyin g medium, a nd series expansions of th e field", for this case arc developed. 
The res ults a rc ex pected to have appli cation to interpretation of VLF data obtained within 
and above the lower ionosphere. 

1. Intrcduction 

Theoretical in.vestigations of VLF propagaLion have primarily b een concerned with the 
Tegion below the ionosphere, as evidenced by the use of semi-infinite model ionospheres not 
only in earli er semiquantitative studies [Budden , 1951] but also as a reasonable simplifyin g 
assumption in CUlTent studies [Wait and Walters, 1963fl, 1963b] . Even in studies in which 
a semi-infini te ionosphere is not ass umed, the transmission coefficien ts are often not developed 
[Wait, 1962a, 1963] or flre developed as an incidental part of the analysis [Johler and Harper, 
1962]. This emphfl,sis has been consistent with the nature of the available experimental 
data. However, as data from the ionosphere become available [Rorden et al. , 1962], their 
in terpretation requires consideration of propflgation in to and through the ionosphere. It is 
t he purpose of this paper to provide a framework Jor this type of calculation. 

As is generally the case if tractability is to be maintained, some simplification of the 
physicfll situation is desirable. A suitable model for our purposes is a stratified plane ionosphere 
with plane waves obliquely in cident. The earth's magn etic field is included since it is expected 
to allow propagation through the ionosphere (whistler mod es) at some frequencies and angles 
of incidence. It is assumed to have constant strength but to be at an arbitrary angle to the 
plane of stratification. 

The equations are first developed for an arbitrary number of homogeneous layers, a 
problem considered by Johler and Harper [1962]. A different system of representation is 
used in th is study, allowing the number of layers to be increased by multiplying together 
more and more matrices of constant (4 X 4) size rather than by increasing the size of a single 
matrix. This form has the advantage of allowing use of available computer subroutines 
to handle the matrices and the use of slow access storage for matrices not currently being 
operated upon. The values of the matrix elements are determined by the solution of the 
Booker quartic for each layer. The terminology used is that employed by Yabroff [1957] 
in treating a single planar boundary. 

In the next step, it is assumed that the layers become infinitely thin while becoming 
infinite in number , to represent a continuously varyin g medium. A series expansion for the 
tran smission and reflection coefficients is then obtained. The reflection coefficienLs series 
have the form found by Wait [1962a] and by Heading [1963] by an iterative procedure. A 
physicfll in terpretation of the series terms as representing multiple reflections within the 
varying medium is obtain ed by examining the development of the equations for the limiting 
cond itions . 
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2. Layered Medi urn 

2.1. Equations Holding in Each Homogeneous Slab 

vV:wes propagating in a homogeneous plasma medium are governed by Maxwell's equa­
tions and (neglecting the ions) by the equations of motion for the electrons: 

aE 
V' X H = - N e V + EO ?it 

av 
m -=-eE- mvV - poe(V X Ho) at 

(1) 

(2) 

(3) 

where E and H are the wave fields, V the electron velocity, N the electron density, e the electron 
charge, m the electron mass, v the classical electron collision frequency, EO the dielectric constant 
of free space, and Po the permittivity of free space. If the energy dependence of the collision 
frequency, v, is considered, v is replaced by a complex, frequency dependent quantity, as 
discussed by Wait [1962b] and Johler and Harper [1962]. This substitu tion does not affect the 
the equations to be derived below. 

These equations assume that ion motion can be neglected and that t he plasma is "temperate" 
[Allis et a1., 1963], i.e., that the electron motion occurs over only a sm all fraction of a wave­
length and that the electron thermal speed is much larger than the induced speed . These 
assumptions imply that the wave magnetic field H is much less than the earth's field H o and 
hence can be dropped from the last term on the right in (3). 

The notation used follows Yabroff [1957] ; a right-hand cartesian coordinate system is 
defined with x normal to the plane of stratification , so that N and v are functions of x only. 
The direction of a vector in this coordinate system is specified by the angles a and {3. Beta is 
the angle between the vector and a unit vector in the x dil'ection; a is the angle between the 
projection of the vector in the y-z plane and a unit vector in the z dil'ection, as shown in figure l. 
Ho is taken to lie in t he x-z plane at an angle {3H to the x axis. The incident wave in free space 
is taken to be propagating with its wave normal given by angles aI and {3I ' 

The incident wave will be of the form 

(4) 

x 
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/ 
/ 
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y 

FIG U RF. 1. Coordinate system . 
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wh ere (Flo) is the complex m agnitud e or the fLeld ftt t h e origin of the cool'din ftte system (tak en 
to b e in free space). The reflected wave will be simil ar , with aR = aI; (3n = (7r -(3,). In eftch 
ho mogeneous layer, for su ch an in cidcn t wavc, tllC wftves will h ftve th e form 

(5) 

where the continuity of t h e fi elds at the boundar ies b etween hom ogeneous layers has bccn 
employed to speci!'y the y alld z yariation . For s uch waves in ft la,yer , (1) , (2) , and (3) Cftn b e 
manipuhted to elimin ate H a nd V, giving a set of llOmogencous equation s in lb e cOlllpolH'n ts 
of E : 

[mn-a, mlZ + aTD m,,+ a,D ] 

[E] -m12 + aTD 1nn- Dz - a'i m2.+aLa1' 
; : = 0. 

(6 ) 

m13+ aLD - m23 + aLaT m 33- D 2- a } 

The par l iculftl, 1'01'ln or the malrix l1lult iplying E in (6) is obtai ned by derivin g l he cond uct iv' il y 
tensor relatin g V to E from (:3 ) , eliminatin g H from (1) all d (2), and rcpbcin g N eV i n t he r cs ult ­
ing eq uation by t he condu ctivi ty tensor multiply in g E . A detftiled dcrivfttiOIl or the equivfLlen t 
(fo r ft different eboi ce of coordillitlcs) of (6) is given by Budden [1961]. 

Th e pal'flJ11eters m ;j and CL m c 

in terms of 

and 

8 
Inz2 = 1--:;--/" (b) 

1; " - ~" 

. hr 
1nlZ= -'I, -:;--/ 2' (d) 

S "- ~ 

a = sin (3/, (a ) 

1- i (v/27rj) 
s= (.f~/.r) 

h= .t!f (a) 
fo 

hL= h cos (3H (b ) 

hT= h sin (3H (c) . 

(7) 

(8) 

(9) 

(10) 

Finftll:v, lhe qnHllti tie ./, .tu, and I II ar e the familiar wave freq uency, plasma frequ ency, 
a nd gyrorl'equcncy , l'cspC'ct i\'c1y: 

(ll ) 

(12) 

:Konll'ivial solutions to (6) cxis t on ly if thc detcrminant of Lbe lllflLrix multiplying E 
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vanishes. This condition produces a quartic in D to be solved for each layer: 

a4D,I+ a3D3 + a2D2+aID + ao= O 
where 

a,, = ml1 (a) 

(13) 

Thus there are generally four modes possible in the medium, two up going and two downgoing. 
Equations (13) and (14) are the Booker quartic [Booker, 1939] in the form used by Yabroff. 

He needed only two roots for D correspondin g to upgoing waves since only a single boundary 
with a semi-infulite medium on either side was treated. For a number of boundaries, all four 
modes have to be included except in the final sem i-infulite medium. 

The properties of the wave in the medium are contained in D. The wave has its phase 
normal in the direction 

- I ( sin (3[) 
(3M = tan Re (D) (b) (15) 

which is Snell 's law. The phase velocity is 

(16) 

The wave is seen to be an inhomogeneous plane wave since it is attenuated exponentially in 
the x direction at a rate of 

~ Tm (D ) 
c 

(17) 

nepel's per unit distance. 

2.2. At the Boundaries 

At each boundary the tangential components of E and curl E have to be continuous . 
Thus the equations can be written 

(18) 

where (-) and (+) refer to the field just below and just above the boundary, respectively. 
The equations may conveniently be written in terms or matrices 

(19) 

where E _ and E+ are column vectors of independent (one for each mode) components of E in 
the two mediums i and i+ 1 forming the boundary, and A i and A itl are matrices, characteristic 
of each medium, relating the elements of E _ and E+, respectively, to E y , (V' X E) y, E z, and 
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(VX E) z. Thus (a;)l1E-l is the y component of E_ I, (aHI)!2E+2 is the y component of E +2, 
(a ,)zlE_ 1 is the y component of (VX E )_I, and so on. 

For the incident and r eflected waves below Lhe fll'st boundary, the independent components 
of E _ are conveniently cho en 10 be Lhe components of E in (Eli ) and perpendicular to (El.) the 
plane of propagatioll . Thus 

(El.) I 

(Ell) I 

(El.h 

(Ell ) 2 

(20) 

where the subscripts 1 and 2 refer to the inciden t and reflected waves, re pectively. The 
matrix A o is, then , 

cos (XI Sill (XI cos f3[ 

sm (XI COS~(31 -cos (XJ 
(21) 

cos (XI cos f31 

In the plasma m ediums a more conveni ent choi ce of independcnL variable is Ev Jor each 
mode: 

r(E;)'l 
(E Y)2 

E'~l(E')'J 
(EY)4 

(22) 

The matrices A i are then 

r:,,, 
1 1 

:,,,l ai22 a;23 

A~l ' aj31 at32 ai33 

a'"J 
a'41 ai42 ai43 ai44 

(23) 

where 
(a;b=-cos (XI sin f318 J+ DJR } (a) 

(a i )3j= R ; (b) 

(ai)4j=-D;+sin (XI sin (3J8 ; (c) . (24) 

The quantities R~ and 8j are the cofactor ratios of the matrix in (6), which relate E z and 
Ex, respectively, to E y for the jth mode in the ith layer: 

(- m12+aTJ)j) (-m23+ aLaT) -[m22- (DW -all(mI3+aLDj) 
(m23+aLa 1·) (m!3+aJ»J)- (-m12+ aTDj)[m33- (D})Z-a~l 

8 i [m22-(Dj)2-alJ[m33-(D;)2-a~'1- (mn + aLaT) ( -m23+ aLaT) 
J (m23+aLa 1.)( mJ3+a~J)-( - mJ 2+a7D j)[ m33-(DJ)2- a2Tl 

It must be remembered that the m is also characteristic 01' th e i th medium. 
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Finally, at the last boundary, the reflected modes are not present in t he upper medium, 
so that 

(27a) 

where the subscrip t N is the number of boundaries. The form of A N lleed not be changed, 
however. 

If the final semi-infinite medium is free space, a better choice for the transmitted modes 
would be 

(27b) 

with AN given by (21 ) . 
To relate the incident and reflected waves at each boundary of a layer, another matrix, .61 , 

is defined: 
E i -=.6 i E H 

where 6. i is diagonal 
(28) 

r 
-i~ d· D~ 

0 0 l eel 0 

-i~ d'D~J 

.6 i=l 0 eel - 0 0 

I -i~ d· D~ 

l : 0 eel 

o J .W i 

0 0 e -Ie di D4 

(29) 

and where di is the thickness of the ith layer. 
IVith the above notation, the incident and reflected waves at the first boundary can be 

related to the transmitted wave at the last boundary by a series of matrix multiplications. 

(30) 

We define the product matrix, M, so that (30) is more co ncisely written : 

EN+= MEo_ (31) 
where 

K ote that if a layer, i= a, is allowed to yanish by letting da become zero, .6a becomes the 
identity matrix and the product A a.6aA ; ' is also the identity matrix. 

By splitting E o- into the incident and reflected modes 
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where Er and En have the form 

(a) 

(b) 

(3 1) can be rewritten to gi\Te solutions E N+(= E T ) and En in term s or the SO lll'ce E,: 

By defining a mat ri x, E " t hn,t co mbin es E -r a nd En, (35) can b e written 

where N is seen to b e or t he form 
o 

o 
- 1 

- 1 

(34) 

(35) 

(36) 

(37) 

wher e the n otation m eans that the lert-l1ftnd It 'llf is ident ical with the lef t-h and of 1Vl- 1 and the 
right -hand IntH is as shown; while E, is Lite column vector 

I.e ., (b ) (38) 

Having solved the quartic, (13) for the roots, D, in each medium, th e elements of the 
matrices formin g Jo.t, and hence N , can be eyaluated . The transmitted and reflected waves 
then are given as solutions of the four linear equations (36). The ratios of (EJ! to (EJ.) 2 

and (Ellh and of (E") l to (Eil) 2 and (EJ. )2 give the r eflection coefficients J.R J. , J.R ", II E ll and 
ll R J. . When the seco nd semi-infini te m edium is free space the transmission coefficients can 
be similarly defined. 
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Once the transmitted and reflected waves have been determined the fields within the 
medium can be found. At some boundary within the medium, we have, in the ith layer 
just abO\'e the boundary, 

(39) 

where the reflected wave components of Eo- are now known, so that they need only be inserted. 
There is an interesting relationship between (36) and the expressions deyeloped by Johler 

aml Harper [1962] and Wai t [1963]. Equation (36) is equivalent to the matrix equation (33) 
of Johler and Harper, but it represents the effect of many slabs by a product 4 x 4 matrices 
rather than by a single matrix which grows in rank. Wait uses a method of development for 
a stratified ionosphere similar to tlnct of Johler and Harper in treating the wave propagation 
problem in spherical coordinates where the earth and ionosphere are considered the boundaries 
of a waveguide. In this case, the resulting equation does not involve an arbitrary incident 
plane wave. Es and EI are solved for simultaneously (the earth provides another boundary, 
which would gi \'e two more equations and hence 6 x 6 matrices in the formulation employed 
here), so that the determinant of the equilTalent of the matrix (N- J) for the spherical coordi­
nates would yield the waveguide model equation. 

2.3. Limit of a Continuously Varying Medium 

The deyelopmen t in section 2 is particularly suited to proceeding to the limi t of a con­
tinuously varying medium. Swift [1962] employed it to investigate the characteristics of the 
coupling coefficients appearing in tbe difrerential equations. In this study we are more 
interested in developing forms for the reflection and transmission coefficient. Consider the 
form of the matrix M (32). It is seen to be a product of elements 

r i= A iLl iA jl (40) 

for each layer, except the semi-infinite layers on each end. The terms of r i have the form 

By noting that Ll i is diagonal, 

(42) 

one summation of (41) can be eliminated, leaving 

(43) 

where the el i are all taken the same. 
As the thickness of each layer is decr eased, r i approaches the identity matrix. By ex­

panding Ll i in a power series for each term, we get 

. w . c r (i (,) elDl) 2 
1-1, cDi+ 2! + ... o o o l 

I 
(44) 

o ,W dD 1-1, c ~+ . .. o o 

o o o 

l o o o 
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r i can be written 
.., . W , . W 1/ ( )

2 

I i=1 - '/, c d'Y i+ '/, c d 'Yi - .... 

:i\ ote that the i':': d facto rs are taken Lo multiply each term. of the 'Y i ' 
c 

(b) 

and so on. 
The product of the matrices r i can then be written 

This can now be expanded: 

(45) 

(45) 

(48) 

Tn the limit as d llpproac hes zero, only the terms in 1" or (4))) rC lllain finite, there bein g Oil 

t he order or (l jd)" term s in Lhe sumnlflti ons for the nth term. For the te rms co ntainin g 1''' or 
a hi gher order , the number or Lerms in the summations increases as a lower power of (l Id) 
than Llle powe r of d flPpen,ring as a multiplier. Thus we are lef t with t he series 

(49) 

as d becomes small . III the limit the sum s become integmls, and we ha\'e 

where A u and A£ are t he matrices for the upper and lower semi-infinite med iu llls, respectively. 
This for m of .M. ca ll be eyaluated if the qUlU"tic for D is sol "ed with x It parameter to give a 
D(x) for each mode. 

The field s within the varying medium are now given by t he limi t or (39), which is 

where the reflected wa,'e elements of Eo are now known. 
The form for lVl ginn in (50) should be compared with the solution for the reflection 

coefficients giyen by Wait [1952a] and by H eading [1963] for a continuously varying medium. 
It is seen that t he terms for the reflection and transmission coefficients in the present series 
hlwe the same form as those produced by the iterative procedure used by Wait to sol ve a 
differential equation for the reflection coefficient and by Heading to solye an integral equation 
for the fi elds for an isotropic ionosphere. The present deriyation is thought to giye additional 
insight into the nature or the expansion , as well as to pro\"ide expressions for the transmi ssion 
coefficients for an anisotropic ionosphere. Heading also deriyes an integral equation for t ile 
fields in an anisotropic ionospllCre but docs not develop t he series solution. 

From t he seri es in (48) it is seen t lmt the higher terms express multiple reflections within 
the varyi ng medium . This interpretat ion ca n be m ade clearer by considering a single boundary, 
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for which the equfLtion for finite slab thicknesses was written 

(19) 

E ;+J-, the transmitted incident wave at the next boundary, is gi ven by inserting (28) into (19) 
and rearranging: 

(52) 

I t is seen that E i+i - is given by the product of a matrix i of the form of r i with E i _ . 

Consider now the relationship between the lDcident, reflected , and transmitt.ed waves for 
an inhomogeneo us region: 

(32) 

where E N + is the transmitted wave, and Eo- is the incident and reflected waves . K eeping (52) 
in mind, we can interpret the form of !vI given by (50) as follows. Using only the first term of 
t he series in (50), we get. the same relation as for a sharp boundary between the upper and lower 
semi-infinite mediums: 

(53) 

The second term alters this result by the reflection of the undiminished incident wa \-e 
througllOut the medium: 

(54) 

The AZ 1 and A L , of co urse, couple this refi ected wave to the semi-infinite mediums on either 
side of th e inhomogeneous region. 

The third term then reflects the wave gi\-en by (54) throughout tlte medium 

(55) 

where now the inner integral from x to Xu gives the wave at x that is due to the incident waye, 
Eo- , b ein g reflected from the region beyond x; the outer integral then gives th e result of reflec­
tion of this wave throughout the med ium. Higher terms in the series are similarly interpreted. 
This interpretation of the series term s agrees with that gi ven by Westcott [1962], who considered 
the scattering process from infinitesimal slabs of the medium. 

W e can check this for a single homogeneo us sLtb, in which D (x) and, hel"ce, r' are constant. 
D oing the indicated in tegrals in (48) produces the series 

(56) 

which is recognized as the series for r for a single slab where the exp [ - i ~ D i(xu-XL) ] 

terms in c, (4 1) have been expanded in a power series. 

3 . List of Symbols 

E = electric wave vector 
H = m agnetic wave vector 

Ho=static (earth's) m agnetic field vector 
V = electron velocity vector 
N = electron density, number of mediums, subscript for final medium 
m = electron mass 

J1 = electron collision frequency 

1 \Vhen the limit ofd--)O is taken A i+l--7A i a ncl Ll i+l--7 .:1. j, Also, as the matrices bccomoci iagonal the order of mult iplica tion becomes immaterial. 
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EO = dielectl'ic cons tan t for free spfLce 
J..Lo= permittivity for free space 

~) ~ooo,dina', " " 0 '· va.·;"bl" of ;""gT,';on 

~}= angl es spec ifyin g direction of a vector in coordinate system 

J3H = direction of s tatic field 
F = any wave field component 

f) = subscripts for J~:.~~~:~]ttt ed) quanti ties 
R 1 reflected 

c= speed of light 
i=super- or subscript for ith layer, or for matrix quantities, 01' the imagin a ry uili t 

T/); /o-= parametel's appearin g in quartic determin all t- see (7) 

a:) = an gular panLmctel'S for wave normal- see (8) 
aT 

, i:j = parameLe I'S characteri zin g plasma- see (9) and (10) 
~£ 

h'l' 
D;= vari able in Booker qu arLic, root for .ftlt mode in i th layer 

f = wave frequency 
f o= plasma frequency 
.ill = gyro freq u en cy 
Vp= phase velocity 

w= wave angular frequency 
A = matrix reLttin g field component of eacll mode to field components tangelltial to 

boundari es 
a ij= compon ents of A 
E II= compon ent of Er ly in g ill Lhe plane containing the wave normal 

EJ. = compon ent of EI lying perpendi cular to plane containin g the wave norma,] 

~n=ratios of electric fi eld components for .fth mode in ith layer- see (25) and (26) 

Ll i= matrix relating fields across i th layer- see (29) 
di = thickness of i th layer 

1\d= matrix relating incident, transmitted, and reflected waves- see (32) 
E s. 1'. R. N. i. i . 0= column matrices containing a componen t of E for each mode, see (20) , (22), (27), 

and (34) 
N = matrix relating Es to EI- see (37) 

II.J.R I1 . .L = reflection coefficients 
r j= matrix product for i th layer- see (40) 

')';," = matnx terms of series expansion of r j-see (44) 
I = iden tity m atrix 

u, L = subscripts for upper and lower semi-infinite mediums respectively. 
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