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METHOD FOR TREATING PVT DATA 

FROM A BURNETT COMPRESSIBILITY APPARATUS 

by 

1/ 2/ 
Robert E. Barieau— and B. J. Dalton 

ABSTRACT 

This report describes the method employed by the Helium Research 

Center for treating PVT data from a Burnett compressibility apparatus 

so that the compressibility is obtained as a function of pressure or 

molal density. In addition, formulas are given for determining the 

variances of all calculated quantities and for calculating variances 

and covariances of all constants evaluated. 

INTRODUCTION 

In 1936, Burnett (3)—^ announced his method for obtaining PVT 

data on gases which eliminates the necessity of making any mass or 

volume measurements. The only data observed are the temperature of 

the isotherm being studied and a series of pressures and expansion 

numbers. 

1/ Supervisory research chemist, project leader, Thermodynamics, 

Helium Research Center, Bureau of Mines, Amarillo, Texas. 

2/ Research chemist. Helium Research Center, Bureau of Mines, 

Amarillo, Texas. . . 
3/ Underlined numbers in parentheses refer to items in the lis o 

references at the end of this report. 

Work on manuscript completed January 1966. 
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The Burnett apparatus consists of two thermostated containers, 

connected through a pressure valve, and a pressure gage. The first 

container is filled with gas to some high pressure and the initial 

pressure is determined. Then this same mass of gas is expanded into 

the second container, which has previously been evacuated, and the 

two containers are allowed to come to equilibrium. The pressure is 

then determined, the first container is isolated, and the second con¬ 

tainer is again evacuated. This process is repeated a number of times 

so that a series of pressures and expansion numbers are obtained. 

This report describes the way such data are treated at the 

Helium Research Center, Bureau of Mines, so that the compressibility 

is obtained as a function of the pressure or of the molai density. 

In addition, formulas are given for determining the variances of all 

calculated quantities and for calculating the variances and covari¬ 

ances of all constants evaluated. 

The method and the relationships outlined in this report for 

treating PVT data from a Burnett compressibility apparatus have been 

developed for the compressibility being a function of two parameters, 

B and C. The extension of this method to the evaluation of more 

parameters should be obvious. 
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THEORY OF THE BURNETT METHOD 

When the first container is filled to pressure P , the following 
o 

exact equation applies 

P V, = nRTZ (1) 
o 1, o o 

where 

P is the initial pressure, 
o 

is the volume of the first container when filled 

’ to the pressure P , 
o 

n is the number of moles of gas, 

R is the universal gas constant, 

T is the absolute thermodynamic temperature, and 

Z is the compressibility factor of the gas at pressure 

° . P and is defined by equation (1). 
o 

On expanding the gas into the second container, the following 

exact equation applies 

P1V2,1 
= nRTZ 

1 
(2) 

where 

P 

V 

1 

2,1 

Z 
1 

is the equilibrium pressure after the first expansion, 

is the volume of the first and second containers under 

the pressure P^, and 

is the compressibility factor of the gas at pressure 

P^ and is defined by equation (2). 

Dividing equation (2) by equation (1), we have 

P V 
12,1 

P V. 
o 1,0 

(3) 
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or 

Let 

Z v 9 , _^ p 
P V, 1 

o 1,0 

V 
LA 

v 
1,0 

(4) 

(5) 

is called the volume ratio of the first expansion. This will be 

a function of the pressure because of the change in volume of the 

containers with pressure. If Oi is the pressure coefficient of the 

volume of the two containers, and £ is the pressure coefficient of 

the first container, we have 

V 
1,0 

= V°(l + ppj (6) 

“ V2(1+ffPl) (?) 

where V° is the volume of container 1 under zero pressure, and V_ 
1 ^ 

is the volume of the two containers under zero pressure. Substi¬ 

tuting equations (6) and (7) into equation (5), we have 

(8) 

We now let 

(9) 
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where Np_Q is then the volume ratio at zero pressure. Substituting 

equations (8) and (9) into equation (4), we have 

1 + aP. 

zi p Np=o(i + 3p )pi 
o o 

(10) 

A similar equation holds for the second expansion 

Z1 fl + ^ 
PL NP=o(l + 3P1/P2 

(ID 

If we multiply equation (10) by equation (11), we find 

2 , (1 + q.P,)(1 + «P ) 

Z2 “ P NP=0 (1 + pP )(1 + pP.) 2 
o o i 

(12) 

The expression for the rth expansion is 

Z . ,1 + cvP, N 
n (-——)p 

Pr_L P=0\1 + pPr_1>/ r 

Multiplying Zr by Z^, Z^, Z^, we find 

Z 
r 

f P 
r r 

(13) 

(14) 

where 

(1 + <*P ) (1 + aP2) ... (1 + c*Pr) 

(1 + gPo)(l + gpp ... (1 + 
(15) 
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The problem of treating data obtained by the Burnett method 

is to evaluate the constants that appear in the expression for the 

compressibility, Z, and to also evaluate, simultaneously, the 

volume ratio, Np_^, that appears in equation (14). We evaluate 

these constants by the general non-linear least squares technique 

that we have developed for this particular purpose (_1) . 

METHOD OF OBTAINING THE LEAST SQUARES VALUES OF THE CONSTANTS 

WHICH APPEAR IN THE FUNDAMENTAL EQUATION FOR THE BURNETT METHOD 

For the Burnett method, we define 

F = F(r, Pr, B,C,Np=()) 

Z 
r 

f P 
r r 

0 (16) 

In equation (16) , Z^ can be an explicit function of either the 

pressure, P^_, or the molal density, p_^, in which case Z^_ is to be 

considered an implicit function of P^ through the equation 

P 
_r 

Pr “ RTZ 
(17) 

r 

Z^_ and Zq of equation (16) are functions of the parameters B and C 

which are to be evaluated but are not functions of N_ _ . f is a 
P=0 r 

function of all of the pressures P^, P^ ..., P , it being assumed 

that <y and |3 , which appear in the expression for f , have been inde¬ 

pendently determined and are exactly known. 
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In equation (16), we assume that the expansion number, r, 

is exactly known. We assume random errors only in the observed 

P^'s, and that they are normally distributed. 

Now because of random errors in the observed P^'s, when 

P . , . is substituted in equation (16) , F will not reduce exactly 
r(obs) 

to zero. Let F be the value of F when the observed values of r 
r 

and P are substituted in equation (16). Thus 
r 

Fr “ F<r-Pr(obB)-B*C*W (18) 

Now equation (16) can be solved for a calculated P^_ so that F 

reduces to zero. Thus 

F ■ F(r’Pr(calc)’B’C’NP=0> = 0 
(19) 

To calculate P , , N, we use the Newton-Raphson method and 
r (calc) 

an iterative technique. We first calculate ) at 
r r,B,C,Np_Q 

P , , . . Then as a first approximation, we take 
r(obs) 

^r(obs) ^r(calc) 
(20) 

\3P 
r r,B,C,Np_Q 

The solution of equation (20) gives ^r(ca]_c) j which is the first 

approximation of P , . N . This value is then substituted into 
r(calc) 

equation (16) and, if equation (16) is not exactly satisfied, then 

r (calc) 
is not the exact answer, so we let F be the numerical 
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value of F at P 
r(calc) 

1 

F = F(r,P t . \ ,B,C,N ) 
r r(calc), P=0 

(21) 

We then evaluate 

approximation, we take 

at P , _ v and, as a second 
» _ n XT r (calc) . 

r r,B,C,Np=() 1 

P 
r (calc) 

1 
r(calc)2 (s-)! 

(22) 

We repeat the iteration until equation (19) is satisfied to 

within any amount we wish to specify. 

We then define 

^r ^r(obs) ^r(calc) 
(23) 

Now Y , the residual of P , , s , is the difference between 
r r(obs) 

the observed and calculated values. This is not the true random 

error in our observed P because we do not know the true value of 
r 

^r(obs)* however, we can maximize the probability that the Y^'s 

are equal to the true random errors, and this is just what the 

principle of least squares does. The principle of least squares 

says.that we maximize the probability that the Y^'s represent the 

true random errors by minimizing the sum of the weighted squares 

of the residuals. Thus, we should minimize the function 

n 

R = Y W (Y )2 (24) 

r=l r (obs) 



’■ 

: * 

' 



11 

and evaluate Np_^, B, and C so that 

r,Pr(obs)’C’NP=0 

n 

■2 y wP Yr 
r=l r(obs) &)r, c» ■ ° <!!> 

r’r(obs) ,C,NP=0 

n 

(B - 2 y w 

r,Pr(obs),B,NP=0 
r=l Pr(obs) r 

,dY \ 
Y(#) p RN " ° (26) 

r(obs) P=0 

\6N_ J 
P=0 r ,P , , v ,B,C 

’ r(obs)* ’ 

n 

= 2 > W 
/ ^Y 

Y 

r=l ^(obs) P=0'r>Pr(obS)>B>C 
I = 0 (27) 

In equation (24) , W 

r(obs) 

is the weight to be assigned to the 

observed P . If the P , , v's all have the same precision index, 
r r(obs) 

then they will have the same weight and W 

r(obs) 

do not all have the same precision index, then 

= 1. If the P , , x * s 
r(obs) 

W, 

r(obs) 

r(obs) 

(28) 

where L is a constant and Sp is the variance of pr(obs)* 

r(obs) 

In a particular problem, it may be necessary to assume 

W = 1 in the beginning. However, if this is done the resid- 

r(obs) 

uals, Y =[P/t_\-P / ,\]> should be examined to see if there 
r r(obs) r (calc) 

is any statistical evidence for the residuals squared being a 

function of Pr(obs)’ Any assumption as to the variance being a 

function of can always be checked by examining the residuals 

In any event, 

evaluated. 

is not a function of the constants to be 

r(obs) 
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In order to evaluate Np=0, B, C, we need to linearize equations 

(25), (26), and (27) with respect to the undetermined constants. A 

truncated Taylor's series expansion can be used to do this. The 

normal equations, written in linearized form, are 

a jAB + brAC + c]LANp=0 = (29) 

a^AB + b^AC + c^ANp^ = m2 (30) 

a^AB + b^AC + cgANp_0 = m3 (31) 

Equations (29), (30), and (31) result from expanding Yr, 

/!!l\ / 5Yr \ 
Vjb ) p c N ’ Vac ) B N ’ and V3N / c 

r,Pr(obs)’C,NP-0 ’r(obs) ,B,NP=0 PU ’r(obs)’ ’ 

about an approximate solution, Y°, ignoring second and higher order 

derivatives. The quantities AB, AC, ANp__Q are defined as 

\ 

AB = B - B 

AC = C - C 
o 

(32) 

AN 
P=0 ~ NP=0 " ^NP=0'o 

J 

where B, C, Np_Q are the undetermined constants and Bq, Cq, (Np=0)( 

are approximate values for these quantities. 

The a's, b's, c's, and m's appearing in the linearized normal 

equations are 

n 
r/BY No 

a i ‘ I wf , „ l(af) 
r*l 

r(obs) 

+ Y 
o 

r,Pr(obs),C’NP=0 

xB2Y no 

(-“) 

dB r,Pr(obs),C,NP=0 

(33) 
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a, = b. 

n ,SY xo 
/ r \ 

l»„ .. ,(sf) 

dY xo 

fc1) 
r=l 

n 

r(obs)'w" r’Pr(obs),C,NP=0 r,Pr(obs),B,NP=0 

S2Y no 

IWP , _ X(mc) 
r*l r (obs) r,Pr(obs),NP=0 

(34) 

n 

Iw 
r=l 

,3Y No 

Fr(obsrSB r,Pr(obs),C,Np,0 3NP=0'r,Pr(obs)>B,C 

/ \° 

(s±) 

♦£> 
r*l 

/ 3 * \° _, ,r 4 

Pr(obs) rV3BSNP=0'r,Pr(obs),C 

(35) 

n 
SY \ o' 32Y so 

i«r..i©\ ... +<&?) 
r=l Pr(obs) 5 r>Pr(obs),BsNP=0 r,Pr(obs),BjNP=0 

(36) 

b3 = c2 

n 

I- 
r-1 

dY \ o 
r 

\dN^ J 

n 

(—)° 
Pr(obs)^C 4,Pr(obs))BJNp=0V3NP=G'r>Pr(obs)>B)C 

51 vo 

I",,. .feh) P / , v r\dCdN_. „ 
r-1 r(0b3) P=0 r’Pr(obs)’B 

(37) 

n 
3Y v o' , d2Y .v o 

+ Y°(—— 
'3' L "P ,, ,L\3N_ J _ _ „ r\_2 / " Iwp , . I(s5±) 

r-l r(obs)—''Wr,Pr(obs),B,C r 3H^' r ,Pr(obs) ,B,<T 

(38) 
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where 

m. 

n 

■ -I 
BY vO 

W, 
r\3B / 

r=l r(°bs) r’Pr(obs) ,C,NP=0 

(39) 

m. 

n 

. y w y°(^)° 
r-l Pr<obs) A°C /r’Pr(obs)’B’NP=0 

(40) 

m. 

n 
P / BY N° 

• V w_ y°(-r—) L P t , x r\BNB J _ 
r-l r(obs> P=0 r>Pr(obs) 

,b2c 
(41) 

rBY No 
f—L\ 
\BB 

(BF/BB) 

r ,?r(calc),CjNP=Q 

r,Pr(obs),C’NP*0 (dF/SPr(calc))r,B,C,Np=0 

(42) 

/BY No 
(BF/BC) 

\BC 

r ?Pr(ca.lc) >B-NP=0 

o 

r,Pr(obs) >BjNP=0 (dF/dPr(calc.))r,B?C3N13= 
P=0 

(43) 

z BY No 

(-“) 
P*° r.fr(obs).B,C (5F/3P 

(3F/3N ) 

F U r? r(calc)? ? 

r(calc)' r jBjCjN^q 

(44) 



' 



Pr(obs) ’C 

Pr(obs) ,B 

»N P=0 

(—)0 

dB r>Pr(calc)?C?NP=0 

( 
3F 

3P -) 
r(calc) r,B,C,Np=0 

< 
a2F 

bBSP 
r(calc) r,C,Np=0 r>pr(caicVC’NP.Q 

r(__M—y 
LVdPr(calc) 

a2F ' ° 

+ 

(- . . 
r’Pr(calcVC,NP=0 ^rfcalc) r-B’C»Np=p 

) 

[( 
dF_V 

3Pr(calc)2r,B)C,Np=0' 

>N„„ P=0 

2_k o 
(EE) 

aC r’Pr(calcVE’NP^0 

( 
dF 

dP -) 
r(calc) r,B,C3Np=0 

< 
v o 

o F 
5C3P ■) 

o 

r(calc) r,B,Np=0 r >pr( caic VB ’^=0 

[( SF 

ap -) 
o 

r(calc) r,B3C,Np=0 

'5FN 
sac; t 32F *° 

) 
r,P / - n,B3N_ n ap , , \ r,B,C3N 

* r(calc) 3 ?=0 r(calc) P-0 

[( 
aF 

ap r(calc) r,B,C,Np=0‘ 
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v o 

\BN„ „BB/ 
>5NP-05B r>pr(caIc)>G 

BF 

>BP 

o 

r(calc) r,B3GsNp_Q 

B2y 

BBBN 

o 

P=0 r,Pr(obs),C 

b2f A 
o 

BF 
o 

5BaFr(ealc) r,C,Np=0 "P 0 r ,?r (eaic) »B >c 

[(»* 

o 

o 

r(calc) r,BsC3Np=0' 

d2F 
o 

r-PrrcaicVCA=0'aPl:(calc)3NF=0'r’E’C 

BF 

BP 

o 

r(calc) r,B SC 3N 
P=0 

o 

r ,P 

BF 

BN, 

o 
b2f 

o 

+ 
rfcalc) >C’NP=(/~'P~° r’Pr(calc) ’B>C 5?r(calc) r>B>C’Np~Q 

3 r ( bf 

LVbp 

o 

r(calc) r,B,C,H q‘ 

(47) 



, 



P=0 r»Prfcalc)-B 

( 
BF 

BP 
r(calc) r,B,C,Np=0 

b2f 

bcbp 

BF 
BN, 

o 

r(ealc)-r,B,Np=0-"-p=Q-r,Pr(calc),B,C 

BF 

BP 

o 

o 

r(calc) r,B,CsNp=0l 

b2f 
o 

r'prreaicrE’Np=o~aPr(caIc)8Np=0'r’E’c 

7 SF )° 
®Pr(ca ic)4 ,B ,C ,Np_Q' 

B F 

+ 

0 ( dF )° 

r,Pr(calc),B,NP=0 aNp=° r,Pr(calc),BjC SPr(caic) r’B’CjNp=0 

[( 
BF 

BP 

o 

r(calc) r,BsC,Np_Q‘ 

(48) 



'■ 

■ 



18 

S2y xO 
-£l 

.2 J 
3NP=0 r’Pr(obs)>B’C 

32F '° 

<1 

82F 
O , xO 

A3N-, J 
SNpVr’Pr(calc)’B-C "V3WPr (calc)' r ,B ,C —P=0' r ,Pr (calc) ,B ,C 

i SF \° jj 3F \° I 

^SPr (calc)^r ,B,C?Np=0 "SPr(calc)^r,B,C,Np_0“* 

2 o 
)° /9F \ f 5F 

SNP=0 r,Pr(calc),B,C SPr(calc) r>BsC ^Np=o 

c>F 

3P 

o 

r (ca 1c) r ,B ,C SN 
P=0 

(49) 

,S2yrv ° 

\8B3C/ p „ 
r,Pr(obs),NP=0 

(—)0 \dC8B/ 
r ,Pr(calc) ,NP=0 

( 
3F 

dP 

o 

r(calc) r,B5C3Np=0 

S2F 

dBdP 

o 
mV 
8C J 

r(calc) r,C,Np=() r J ?r (ca ,'Lc) ,B ^NP=0 

_2 
SF \ 

o 

3P v 
r(calc) r,B,C,Np=0 

(i) 
o 

|Pr(calc) ,C^V=0 

? 
8"F 

o 

^Pr(calc)r,B 5Np_o 

[( 
dF 

SP 

o 

r(caic) r,BaCsN 
P=0 

+ 

/3F\° (M. 
53B/ P C N VsC r 

’r(calc) ,C,MP=0 

J F 

P , . v ,B5N _ BP , . v 
r(calc) 9 P=0 r(calc) 

o 

r,B5CsNp=0 

[( dF 

8P 
r(calc) r,B»C3N 

1' 

J 
P=0 

(50) 
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[P r(obs) 
- P , , V ] 

r(calc) 

o 
(23) 

Now in order to evaluate the constants of the linearized normal 

equations, we need values of first and second derivatives of the 

function, F, 

F = F<r’Pr(calc)’KP-0’B»C> “ 0 
(19) 

By differentiating equation (19) , we find that these derivatives are 

BF 

BB 

r,Pr,NP=0’C 

• BZ , N . ,BZ^. 
P. j . -IzS / O 

V3B > Po r Aas . 
r o 

(51) 

BF 

BC 

r,Pr,NP=0,B 

BZ 

£ p a 
BC /p B p0 r 'P B 

r o 

(52) 

BF 

BN 
P=0 r,P ,B,C 

r 

rZ 

^ f P P P=0 r r 
o 

(53) 

BF 

BP 
r r ,Np_0,B,C 

/BZ N 

(sf) 
r B 3C o 

i2 NP=0 fr - F NP=0 Prfe (54) 
o r 

But, 

/Bf v f « 

5f) ■ r*r 
r r 

(55) 

Therefore, substituting equation (55) in equation (54), 

Wr ,N 
P=0 

,B 3C 

BZ N Z , cvP 

If) ‘ F NP=0 fr(1 + 1+aP 
r B ,C o r 

(56) 
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32F 

SB r,Pr,Np=0,C 

S2Z 
,, & 

? ] p y T*V 2 a 

SB P ,C o SB P ,C 
r o 

(57) 

s2f 

SC r,Pr5Np=0,B 

s2z 

■ eo 
N 

f p (s2z° 
SC2 2P ,B Po r rVSC2 V ,B 

o 

(58) 

(-4-) 

-r(r-l)Z 

(—) 
W r,Np=0,B,C 

r ,P ,B,C 
r 

? 
,S z 
( : -) 

C
M

 ro
 /b3c 

r 

,Sf X 
( A 
\SP / 

o 
2 Np"n f P P=0 r r 

(59) 

2Z 
—- Nr 
P P 

/Sf N Z /S2f \ 

Jsf) - f »;.o Nl „ P (—tt) (60) 
P=0 r\-, 2 

o SP 

f a 
r 

i+aP 
(55) 

S2f 

SP 

Sf 
a f r 

1+aP \Sp 
r r 

f O' 
r 

(l+aPr) 

S2f 

SP 

f of 
r 

f ot¬ 
ic 

(1+aP ) (l+aP^) 

= 0 (61) 

Therefore, 

(3) 
rV' 

s2z 

SP b,c 
r 

2Z f a 
—— Nr r 

P P=0 1+aP 
o r 

(62) 

(-&) 
\SBSC/ 

r P N 
’ r’ P=0 

2 

rzA 
\SBSC/ 

N 
P=0 

f p 

,S2Z v 
(_ 

P 
P '■r*r\SBSC/. 

o 
o 

(63) 
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\BBBN_ 

f P ,3Z 
P=0 r r 

P=0 r,Pr,C o © (64) 

Po’C 

( Z F \ 

\BBBP J 
r r,Np=o,c 

d2z 
_ /J—£) - N.?.~Q .j. fj + V. 

\8BBP )n P v 1+arP A 
r C o r 

arP v ,dZ * 
r V o '. 

i+q-p Abb a n 
r P ,C 

o 

(65) 

(-&—) 
VdC3N_ J 

-rN^'i f P ,dZ 
P=0 r r 

P=0 r,P ,B 
r 

o 
(sf) 

P0’B 

(66) 

/ a2F 

\3CSP ■) 

/ b2z. 

r r,Np=o,B 
\BCBP 

f / orP \ ,BZ 
P=0 r/1+ r 

r B o 
1+aP 

\ /BZ •» 

■Xsf) (67) 

Po’B 

(■ 34 -) 
\BN^ „BP / 

r -1 
’rZ Np n f o P=0 r 

^Np=0SPr' r ,B,C 

aP 

1 + 

o 
1-tor P -) (68) 

The derivatives of F, as given by equations (51) - (68), are to be 

evaluated for P = P , . N. 
r r(caic) 

Now if Z^ is an explicit function of the pressure, P^, then 

equations (51) - (68) can be used directly to calculate the various 

derivatives of the function, F. However, if Z^ is an explicit func¬ 

tion of the molal density, p_^, then it is necessary to express the 

various derivatives of Z appearing in equations (51) - (68) as a 

function of the density, p . 

We then have 

BZ 

BB 
P ,C 
r 

/dz \ 

• (sr) + 
BZ Bp. 

p ,C >Spr2B,CNsSB ' P ,C 
rr r 

(69) 



' 

\ 



22 

Now 

Similarly, 

P 
_r 

RTZ 
r 

P 
_o 

RTZ 
o 

(17) 

(70) 

Differentiating equation (17) with regard to B, keeping P^ and C 

fixed, we have 

and substituting equation (17) in equation (71) 

(71) 

(72) 

Then substituting equation (72) into equation (69) , we have 

(73) 

or, rearranging the above equation, 

(74) 
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Similarly 

( 
3Z 

o 

dB 
Po’C 

3z 
O 

dB 

Po’C 

1 + 
o 

/&Z \ 

Grf 
(75) 

Zo '5po'B,C 

Substituting equations (74) and (75) into equation (51) , we have 

© 
fer) 

P >C r r 
N1 nf P 

P=0 r r 

,3Z . 

(ar 
po’C 

r,Fr’NP=0’C 1 + 

p /dZ x 
(_r\ 

Z \3p J 

P /&Z \ 
— (—) 
Z \3P 4 p 

o o B ,C 

(76) 

1 + 

B,C 

/3Z N 

(ar) and 

P ,B 
r 

,3Z \ 

(sf) are of the same form as equations (74) 

Po’B 

and (75) and upon substituting these expressions into equation (52) 

we get an equation similar to equation (76) of the form 

,3Z V 

(ar) 
bd 

Pr >B 

Pr’B 1 + 
Z \3p 

az 
NP=OfrPr 

o 

/3Z \ 

(af) 

1 + 

r B,C 

Pp-B 

P 7°Z 
— (—) 
Z \3p r 

o o B ,C 

(77) 

Since Z and Z are functions of the parameters B and C but not of 
r o 

N 
P=0 ’ 

(-32—) 
\3N„ J 

P=0 r ,P ,B ,C 
r 

-3Z 

-r Z f P 
o P=0 r r 

o 

<U£j \ /3Z \ /3p \ 

(53) 

(78) 

then 





24 

Differentiating equation (17) with regard to P , keeping B and C 

fixed, we have 

or, substituting equation (17) into equation (79), 

B ,C 

(79) 

(80) 

Substituting equation (80) into equation (78), we have 

(81) 

or, 

(82) 

Substituting equation (82) into equation (56), we have 

function(p^,B,C) (84) 
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,az , 
(ar) 

Pr>C 

, /3Z S / r 

Ldp \9b 
r 

r -n ,BZ 
I o f r 

JdPr LdB VSB 
Pr»c B,C 

dB + 

Vc'Pr,c 

sz 
1 

SB 
dC (85) 

P ,C p ,B 
r Kr 

,S2Z /O ^ V 

fa1). SB P ,C 
r 

a ,BZ 
o Y r 

( L3pr \9B .p 
r ’ 

Bp. 

B,C 'SB ' P ,C j r 

+ S_ 
LSB 

,BZ \ 

fa) (86) 
P ,C p ,C 
r r 

But from equation (74) , we have 

(74) 

Differentiating equation (74) with regard to B keeping p^_ and C fixed, 

(87) 
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(90) 

(72) 

(74) 
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Substituting equation (74) into equation (72), we have 

(91) 

Multiplying equation (91) by equation (90), we have 

Substituting equations (88) and (92) into equation (86), we have 



' 
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Similarly, 

.s2z 

£?). SB Po,C 

s2z 
G2) 

P ,SZ 
o 

'SB p ,C 
r o 

&) 1< 
P0.c 

p /C>z 
1 + 

/U4j \ 

2 (5A Z \Sp *« p 
o o B ,C 

S2z s I /az 
II ° 0 ^ 

3B3poC 
z Vsp 0 r 0 

r po ,SZ \ n 
(-A L z 0 ^dpo^B}C"J 

,SZ 

po’C 

PQ 
(5Z°)2 r 

, ,3Z , p 
1 °) + 0 

/S Z v 
( n°) .%(• r2)2 ] Z 

0 
\SB ) pL 

p jt' 
z Vsp L P z 0 Ko B,C 0 

\ 2 / 
Sp~ B,C z2 V 3po'b,CJ 

1 + 

p /SZ \ 

z \Sp / . 
o ro B ,C 

(94) 

Equations (93) and (94) are. to be used in equation (57) . 

2 2 
,S Z v ,S Z \ 

The (■--) and the (—are obtained in the same manner 

V3C2 P ,B V 7P ,B 
r o 

as equations (93) and (94) and are of the form 

■ cs2Z /O ^ \ 

(31). 
SC P ,B 

r 

■s2z 

& 

p /SZ 
r r 

2 
3Z 

p >B 
“r 

lac ; L2Vacapr/B Zr VaPr4 Vac ; . 
r ^ T 

1 + 
P /dZ 

f r 
Z \Sp 
r r B„C 

pr /SZr\ ’ 

7 + r (ar)B c. 
r rr B,C 

SZ N 2 

" (—) z Vsc / 
+ 

p ,B Kr 

1 /BZ 1 ( r 

LZ \Sp 
r 

p /S z \ p 

7 V 2 
r'BaC r Spr " B „C Z 

SZ v 2 
j 

rrB,C‘ 

/SZ \ 

tfef) 

[ 1 + 

p / SZ \ 
r (_r\ 

Z„ VsP / 

-.3 

r B 3C‘ 

(95) 



, 
* 

' 



P0’B 

,a2z ,0 c. \ 

& 
p0’b 

a2z f^o\ [J 3 ZcA 
z Vac ) L Vacap J 

o po,B o 
z 

o 

’o' B 

az 
o 

o Spo'B,C 

/bZ x 

(s4) 

1 + 

/bZ \ 

~ (—) : vap J [‘ - ¥ ©, 
o B ,C 

Z \ap . -n r. 
o o B ,C 

£o/!fof +^(^) 1 

Zo Vb^o Wb.C ZoV;b,C Z2V3pA,CJ 

+ 
P0’B 0 

o ap b,c 
o 

i + 
- (—) 
o ^Po B ,C‘ 

Equations (95) and (96) are to be substituted in equation (58) 

VaN^ J 
P=0 r,Pr,B,C 

~rZ Nr~\ f P 
o P=0 r r 

o 

(53) 

-r (r-1) ZQNp~2 

P 
o 

f p 
r r 

(59) 

From equation (82), we have 

B3C 

(82) 

and differentiating the above expression with respect to P^ , keeping 

B and C fixed, 

(97) 



. 

, 
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Differentiating equation (82) with regard to , keeping B and C 

fixed, we have 

dZ 

dP ) 
r B,(rB,C 

L /!!r\ + £r A) . h (1jl\ /!!r\ 

r ^3pr B,C Pr 4p2 4,C P2 ^3pr B,(TSpr B, 

1 + 

■L_ 

P /SZ \ 
~ (—) 
Z \dp / r 
r Kr B,C 

j" 3Z \ , /9Z \ p ,32Z. 

r B ,C 
m 
‘dp^ 'B,C 

p ,dZ N 2 - 

7 
r 

P /dZ 
1 + —r 

Z \Sp r. 
r r B,C 

(98) 

Substituting equation (82) into equation (80), we have 

or 

(80) 

(82) 

(99) 

(100) 



' 
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Multiplying equation (98) by equation (100) and substituting into 

equation (97), we have 

Equation (101) is to be substituted in equation (62). 

Differentiating equation (85) with regard to C, keeping Pr and 

B fixed, we get 

From equation (74), we have 

(74) 

Differentiating the above expression with regard to first C, keeping 

p and B fixed, and then with regard to p , keeping B and C fixed, 

we get 

,az . 

(sf) 

,$2z r 

IdBoC :) © 

,d2z 

LZ \dp 3C 
p ,C r Hr 

p / SZ \ /5Z \ 

r 
B Pr’B' 

P ,C p ,B 
r Hr 1 + 

p /3Z 
S. / 

Z \dp 

Li \ 

~) 
r B,C 

1 + 

p ,dZ \ -.2 

t 
(103) 

r B,C 
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and 

r s & i Lspr ^4 ,CJ 

( 
92Z 

- Bp 3B/ 
( 

BZ 

3B ) „LZ 
Pr >c r 

r i /Sz tjl i r 
Bp 

+ 

2 
p ,3 Z 

r B ,C Bp“ 'B,C 
r 

/o ^ \ p /BZ s 2 

(rfO --lit?) z2 Spr B,CJ 

B,C 
1 + z Vdp ; 

r rr B,C 

1 + 

BZ 

Bp 
r B,C 

(104) 

As for equation (91) , it can be shown that 

,Bp 

(if 

p /dz \ 

^ if ) 
P ,B 
rr 

Pr’B 
P /^Z \ 

^f if)c 
r 'r B,C 

(105) 

Multiplying equations (104) and (105), we have 

- * >^z o 

.Bp. (if) 
1 /^P 

P ,CJB,C^C ' P ,B 
r r 

p ,3Z .. 
rr 

© Si 
S2Z . 

-—) 
.Bp BB/p 

Pr,B Kr C 

r P / B Z \ 

[‘ - f (if) 
-,2 

+ 

Zr VBpr'B,C- 

p /3Z \ /BZ \ pi /BZ s p /B Z \ 

f(^ (#) ,tf (if)»c * f (-/) 
r p^_,C p^,B r ’r B,C r dp^ B,C 

© 

BZ x2 
r 

Bp 
r B ,C 

U 

f, + fr /!fr\ 

L1 z Up / 
r 'r B,C 

(106) 

Adding equations (103) and (106), and then substituting into equation 

(102), we have 
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From: 

Subject: 

Page 35, 

L. W. Brandt 

H. P. Wheeler (2) 

Project Control Office (2) 

R. E. Barieau (2) 

P. C. Tully 

C. L. Klingman 

D. E. Emerson 

R. A. Guereca 

R. E. Wood 

L. Stroud 

J. A. Jacobsen 

T. C. Briggs 

HRC Library (3) 

A. J. Carroll 

B. J. Dalton (2) 

B. J. Dalton and Robert E. Barieau 

Addendum to Helium Research Center Internal Report No. 86, 

"Method for Treating PVT Data from a Burnett Compressibility 

Apparatus," by Robert E. Barieau and B. J. Dalton 

equation (111) should be 

From: 

Subject: 

Page 35, 

\k>. A . 

B. J. Dalton 

Robert E. Barieau 
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^2zr \ 
3P 3B/_ 

r C 

Equations (75) and (111) are to be substituted into equation (65). 

d2F 

($>C3N 
P=0 r,P ,B 

r 

-rN 
r-1 

P=0 
f P 
r r 

P 
o 

dZ 
o 

dC 

Po’B 

(66) 

(112) 

Substituting equation (112) into equation (66), we get 

(-&-) 
VSCSNp=0/r 

r 

i ,c>Z \ 
rNr 1 f P 

P=0 r r \3C / 
P 

r P /SZ \ 
1 + L z 

o 'dpo'B,(T 

(111) 

(113) 
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From equation (67) , we have 

(j>V) 
VcsCdP / 

,d2Z r 

r" r ,B = ^F’B 

N?1 _ f , Of? \,bZ 
P=0 r ( i + _L_V 

o 
1+aP ABC - p B 

o 

(67) 

Now the first term on the right-hand side of the above equation is 

/ a zr \ 
obtained in the same manner as °^ equation (ill) and is of 

r° C 

the form 

P /d Z \ 
IX f r ) 
P Vdp dc/ 

& 4 (59. „ 4 (44 4 4) 
P /d Z P /dZ \2 ~ -v- / r \ 

r B 

r* P ,cSZ v n 2 r pr 
ri + ~ ( r) 1 + ~ 
L z 

r WB,CJ 
L Z 

r 

p^B r Pr B,C r dpr B,C Z^. r B,C 

■ dZ \ 

Equations (112) and (113) are to be substituted into equation (67) 

•(114) 

( a2g.._\ 
\3N_ „3P / 
>SNp=0SPr' r ,B,C 

~rZoNP=0 £r 

P 
o 

aP 

1 + 
1+aP 

(68) 

We will now apply these formulas to the special case when the 

compressibility, Z, can be expressed as 

1 + BP + CP 
r r 

(113) 

This expression is linear in the constants B and C. However, 

the equations previously given apply to any functional form for B, 

C, ..., linear or non-linear. 

We have by differentiating equation (114) 

,BZ \ 

&\.c = p (116) 
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Also, 

Z = 1 + BP + CP2 
o o o 

so that 

(117) 

(118) 

(119) 

(120) 

(121) 

(122) 

(123) 

(124) 

(125) 

(126) 
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(127) 

(128) 

(129) 

(130) 

Substituting equations (116) - (130) into equations (51) - (68) , 

we find 

= P 

r >^p=o(calc) 

(calc)(1 " fr(calc)NP=0} (13l) 

= P 
,bcJ _ .. - xr(calc) 

r,B,Np=0,Pr(calc) 

- f „P 
r(calc) r(calc) P~0 o_ 

(132) 

(-8—) r-1 

P=0 r,B,C,Pr(calc) 

-r(Z /P )f , , vN., n P , 1 \ (133) 
o o7 r(calc) P=0 r(calc) 

dF 
dP 

= B + 2CP 

r(calc) r,B,C,N 
r(calc) 

P=0 

r^£ Nr fi + ——r 
'V r(calc) P=oL (1 + aPr(calc))J 

(^f) = 0 (135) 

3B r»c>NP=0>I’r(calc) 

(134) 



/ 

'■ 
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(—) 
SC2 r,BjNp=0!Pr(calc) 

= 0 (136) 

dNp=0 r’B,C,Pr(calc) 
•r(r-1)(p^fr(calc)Np=0 Pr (calc) (‘137) 

( 
d2F 

= 2C - 2(~Jf 

dPr(calc) r,B’C’Np=0 

o 
N 

P / r(calc) P=0\1 + aF , , . 
o r(calc) 

>(r 
O' 

j (138) 

/d2F 

VdBdC ■) 
= 0 

r,NP=0,Pr(calc) 

(139) 

f s2f 
\3B3N ;) 

P=0 r,C,P 
r(calc) 

-rf / i P / '\ \ r(calc) P=0 r(calc) 
(140) 

^ F \ 

3B3Pr(calc) r,C,Np=0 

= 1 - f . . .Nr 
r(calc) P=0 

l + ^(calc) 

1+Q,pr (ca 1c) 
(141) 

/ d2F 

SCdWr,B,Pr(calc) 

r* — I 
-rP f N P 

o r(calc) P=0 r(calc) 
(142) 

d F \ 

dCdP ( , */ 
r(calc) r,B,N 

= 2P / , n - f / , „ P r(calc) r(calc) P=0 o 

aP 
1 + 

r(ca1c) 

1-taP 
r (calc) 

(143) 

( d2F 

SNP=03Pr(calc)' r,B,C 
-) 

•rZ f , . . 
o r(calc) P=0 

P 
o 

aP 
1 + 

r(ca1c) 

1-toP r(calc) 

(144) 

Substituting equations (131) - (144) into equations (42) - (50) , we 

have 



r ■ 
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-3Y xo 
rN fer) 

Pr(caic)LI " £r(caic)NP=0j 

r,Pr(obs)’C,NP=0 
/Z0\ r T, . Qf?r (calc) 

B + 2CPr(calc) " \P yfr(calc)NP=ol1 ' (1+aP 
o 

(145) 

r (calc 

3Y \ o 

(#) 
r 

r(calc) 
P , . x - f , . VN P. I 
i-ycalc) r (calc; P~u oJ 

r,Pr(obs),B,NP=0 B + 2CP r(calc) f - ■ -n^oL1 + 

ap 
(146) 

r(calc) 

SP / r(calc) P 
o 

(14ttP 
r (ca lc y 

dY N o 
r 

(sc:) 
'r(Zo/Fo)£r(calc)NP=0 Fr(calc) 

p-° r>Pr(obs),B,C B + 2CP 
r(calc) 

—'i f Nr r i + 
,P / r(calc) P=0L 

o 

cvP 
(147) 

r(calc) 

(1+Q*r(calc))J 

/S2Y no 

(- ) 

3B r ,Pr(obs),C,NP=0 

f r \f", r „r /, aPr(cal 

~2Pr (calc) \ ~ £r (calc)NP=0/L_r(calc) P=0\ (1+QfP^ 

B + 2CP 
r(calc) 

f , , ,N^=0[l + 

aP r (calc) 

,P / r(calc) P 
o a+a,Pr(calc))J 

+ 2P% - fr(calc)Nrp=0) [c - ,2 
r (calc)' 

o N 
Oi 

V r(calc) P=°(l+Q^pr^caic))~J 

B + 2CP 
r(calc) 

£ , , ,IC=0[l + 
ckP 

—.3 

r(calc) 

,P /~r(calc) P 
o (HaPr(calc))J 

(148) 



s 



d2Y \ o 
r ) 

r,P R N 
r(obs)3 3 P=0 

- 2P 
r(calc)LPr(calc) fr(calc)NP=0 PoI2Pr (calc) fr(calc)N r P( P=0 o\ 

l + ...^(calc) 

(1^Pr(calc)-) 

0 B + 2CPr(calc) “ \Po)fr(calc) NP=o( 

c*p 
1 + 

r(ca lc) 

(1+aPr(calc))/J 

+ 2Pr(calc)[Pr(calc) ' fr(calc)NP=0 PcJ [C ' (f)f N, 
<y 

r(calc) P=0 (1+&P , . v) 
o___r (ca lc) 

0 
B + 2CP 

r(caic) (p )fr(calc)NP=o(^ + 
gPr(calc) '^3 

(1+typr(caic)) ■)] 

(149) 

4> 





- rf'r-l')!—if Nr~^ P 
*\P / r(calc) P=0 r(calc) 

B + 2CP 
r(calc) (p~^fr(calc)NP=o(1 + 

c*P 
r(calc) 

(1-toP 
r (calc. ) 

)] 

21 «?) o 

p , , N^1 + 
aP 

r(calc) 
r (ca1c) 

(1~toPr(calc)) 
) 

lB + 2CPr(calc) - (r)£r(calc)H5-o(1 + 

aP ( -i \ \n2 
_Licalc) \ 

(l-fO?Pr(caic)) 

{&) 
+ 

Z , -,2 
r -1 

f N P 
o r(calc) P=0 r(calc) 

n2r /z ' 

t - (f. n: 
O' 

r(calc) P=0 (1+cyP , , n) 
o r (ca lc) 

[B + 2CPr(calc) - (l^/ r(calc)^P=o(1 + 
tyFr(calc) '-3 

(1+Q?Pr(calc)> 
•)] 





B2Y ,o 

P N 
’ r(obs)’ P=0 

Pr(calc)(Pr(calc) Pr(calc)^P=0Po) ^r(calc) 

7 

r -r (ca lcrA . 

' P=°l (1^Fr(calcV 
.U 9 

B + 2CP , , N - l~)f^^n;=0(i + 

(*p 
r(calc) 

r(calc) VPoy^r(calc)i’P=0\J' ' (l+aPr(calc)) 

/ r \r r / cy^r(calc) \ 

Pr(calc)\ fr(calc)NP=0/L2Pr(calc) fr(calc)NP=0Po\ + (1+aPr(ca^c))^ 

crP , , . \ -,2 
o 

B + 2GPr(-calc) - \p^/fr(calc) NP=o( 1 + 
r (calc) 

(1+Q/Pr(calc)) 

+ 2P“, , s(l >2 
r(calc)’ 

f , - J 
r(calc) P J( P - f N 

r(calc) r(calc) P - 

Z f , 7 .N a- 
o r(calc) P=0 

P (l+c*P ( . v) . 
o r(calc) 

0 
B + 2CP 

r (calc) 
— )f Nr 

,P / r(calc) P 
o 

=o( 

aP 
1 + 

r(ca1c) 

(1'taPr(calc))/J 

3 

(151) 

4> 
Co 





d2Y 

dBdN. :) 
o 

P=0 r>Pr(obs)’C 

r -1 
- r f N P 

r(calc) P=0 r(calc) 

t B + 2CP 
r(calc) 

f . . v N-=0( 1 + 

<*P 
r(calc) 

,P /~r(calc) P 
o 

(1+aOP 
r(calc) >)] 

Z \ i 
—— J f Nr^ P 
PJ r(calc) P=0 r(calc) I- 

0 

f Nr 11 + -ricalcX_\ 

r(calc) P=Q\ (1+Q*.(calc)^ 

cyP , , \ \-,2 
B + 2CP , . . - l-lf , . ^(l H- 

r (calc) >P J r(calc) P=0' 
o r (calc) 

+ P 
r(calc) ( 1 - f NJ 

r(calc) P J - (?) f , . + 
- / 1 r(calc) P= 

cvP 
r(calc) 

(1'toFr(calc)) 
) 

B + 2CP 
r (calc) 

aP 
r(calc) 

.rXccalc)1^1 + d-tePr(calc)) )]' 

( 2P“, . A 1 - f , , nn; ) r l~)f , , nN 
r(calc) 'r(calc) P= P / r(calc) P 

o 
- 

Z f , i \Np n 
o r(calc) P=0 

P (1+aP , , 0 
o r(calc) 

[B + 2CPr(calc) - (p^)fr(calc)^P=o(1 + 

aP 
r(calc) 

(1+0'Pr(calc)) 
')] 

(152) 





d2Y 

dCdN ;) 
o 

P ° r,Pr(obs),B 

r ~ 1 
- r P f N P 

o r(caic) P=0 r(caic) 

c B + 2CP , , N - zr-)f , , ' N~=o(1 + r(calc) 

aP 

P / r(calc) P= 
o 

r(calc) 

(1-toP 
r(calc) y)] 

+ r(——''if wr~^ p 
\Pq/ r(calc) P=0 r(calc) L2Pr(calc) " fr(calc)NP=0Po('L + 

^^(calc) V 

(1^Pr(calc^' 

D B + 2CP 
r(calc) f , . ' N^_0( 1 + 

Q'P 

,P /"“r(calc) P 
r (calc) 

(l+tvpr (caic) 

+ P 
-(calc)(Pr(calc) fr(calc)NP=0Po) r (p . 
_________ o 

n 

— ] f - 
r (calc)"?1 

[B + 2CPr(calc) - (P^)fr(calc)NP=0(^ + a^(c!lc)>' 

Nr'Y ! + —^jrXcalc) \ 
' ^ <1+ttPr(calc^ 

^^(calc) V2 

L+aP , , N)/_ 

2P2 ( p - f 
r(calc)\ r(calc) r(calc) NP=0Po) r (/>. 

Nr-ir _ Zofr(calc) NP=0 cy' 
r(calc)~P=OL P (1+cyP , , *) 

o o r(calc) 

[B + 2CPr(calc) - (?)*«calc)^1 + 
o v r(calc) )> 

(153) 

•p- 
Cn 
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The quantities given by equations (145) - (153) are to be sub¬ 

stituted in equations (33) - (41), and then summed over all the 

observed pressures from P, to P = P . The initial pressure. P . 
r 1 r n r ’ o’ 

is omitted from this sum because equation (18) is exactly satisfied 

for P = Pq. There is, therefore, no residual for the initial pres¬ 

sure, P . 
o 

The solutions to equations (29) , (30) , and (31) are: 

where 

D AB = 
o Dlml+ 

D^m^ + 
D3m3 

(154) 

D AC = 
o 

D. m. + 
4 1 

D^m^ + 
D6m3 

(155) 

VNP=0 
= D?mi + D8m2 + D9m3 (156) 

D1 = b2c3 b3C2 
(157) 

D4 D2 b3Cl ' blC3 
(158) 

D? bi°2 ” ^2°! (159) 

D_ = a,c„ - a„c. 
5 13 3 1 

(160) 

D8 = D6 = a2Cl - alC2 
(161) 

D9 alb2 ” a2bl 
(162) 

D = Da + Da + Da 
o 1 1 2 2 3 3 

(163) 
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If the assumed values for the undetermined constants were not 

too good, then it would be necessary to repeat the calculations using 

the new B, C, and Np_^ as the start of a new iteration. We continue 

this iterative technique, provided the problem is continuing to con¬ 

verge, until m^ = m^, = m^ = 0 to within some predetermined small 

quantity, the final B, C, and Np_Q being the least squares solution 

for these constants. For a more detailed discussion of methods to 

use that will lead to convergence of the iteration when the problem 

starts diverging, we refer the reader to a previous report. (_1) on 

this subject. 

EXPRESSIONS FOR CALCULATING VARIANCES 
AND COVARIANCES OF THE CONSTANTS EVALUATED 

Once we have determined the best values for B, C, N^_^, we 

proceed to calculate all variances and covariances of these con¬ 

stants. We do this from the definition of these quantities and the 

law for the propagation of errors (2, 4). This law states that if 

we have a function or quantity, say Q, that is a function of the 

independently-observed quantities y^, y , ... , then the variance 

of the quantity Q is given as 

n 

■ 2A .M. 
dy -)2s2 

r=l r(obs) ^r(obs) 
(164) 

2 2 
where S is the variance of Q and S is the variance of 

Q yr(obs) 
yr(obs)’ Extracting the square root of the variance, we obtain 

a value on the same scale as the function Q. This value, , is 

called the standard error or the standard deviation of Q. 
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The value of the constant B, which we have evaluated, is a 

function of all of the observed r's and of all of the observed P 's. 
r 

Since we have assumed the errors of the r's to be zero, then the 

expression for the variance of B is of the form 

S 
2 
B 

V (_SI_)2s2 
ZAsp . / p , . 

r_£ r(obs) r(obs) 
(165) 

and there will be an equation similar to equation (165) for deter¬ 

r(obs) 

mining the variance of C and the variance of Np_Q. 

In order to evaluate equation (165), we must evaluate 

(dB/3Pr(0bs)) for each Pr(obs)> multiply this quantity by Sp 

square the product, and then sum the product over all of the 

observed P 's. 
r 

In a previous report QJ) , we have outlined the details for 

evaluating the variances and covariances of the constants evaluated 

For our particular problem, these variances and covariances are deter¬ 

mined from the following relations: 
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n 

Di 4 WP 

BY >2 n 

& 
BY ,2 

+ d2I»p ,, id) 
r=l r(obs) r?Pr(obs),C,NP=0 r=l r(obs^ r,Pr(obs),B,NP=0 

n 
BY v 2 

+ D2 V w (J^r_) 
3 L P „ , A3N„ „/ 

=1 r(obs) P=0 r,Pr(obs))B,C 

n 
/BY 

+ 2D-D- > wp ,, id AI ) 

,3Y s 

(#) 
= 1 r(obs) r,Pr(obs),C,NP=0 r,Pr(obs),B,NP=0 

n 

a I 
+ 2D,D„ > W 

,dY N / \ 

(a±) 
r=l r(obs) r,Pr(obs),GjNP=0 P 0 r’Pr(obs),B,C 

n 
r /By \ 

+ 2D,D, ) W (—-r) 

r(°bs) r’Pr(obs)’B’NP=0 P=0'r’Pr(obs)’B>C 

/ SY \ 

(a± 
r=l 

(166 

■*X"p 

/BY .2 

(i#) 

n 

+ D5 Z WP 

BY ,2 

(sr) 
r-1 r(0bs) r’Pr(obs)>C’NP=0 r=X r(°bs) r’Pr(obs)’B-Np=0 

n 
BY x 2 

+ Dblv , ,(s±) 
r=l r(obs) P=0 r,Pr(obs),B,C 

n 

+ 2D4D5 A WP 

/BY \ 
r— 
\BB 

/BY 

(sT 
r=1 r (°bs) r ,Pr (obs) ,GsNp=0 r ?Pr (obs) ,B ’NP=0 

n 
BY V /BYx 

46 ;1 Pr(obs) 3B r)Pw^^)C,NB_n''3NP=0-r)P„,„k^)B,C 
(s±) 

r(obs)’ '5 P=0 r ( ob s) 

n 

+ 2VbIwp (b id) 
r=1 r(obs) r ,P 

/ SY \ 

(sA) 
r(obs)’BjNP=0 P ° r,Pr(obs),B,C 

(167 
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N 2 
P=0 D 

o 

n 
2 r-> ,3Y N2 

°7 Z WP ( (sb". 
. r(obs) r,P , , .,C,N_ „ 

r=l ' ' r(obs)5 ’ P=0 

n 
9 V-1 / ^ Y \ ^ 

+ dsIwp . . Xw) p 
r=X r(obs> r’Pr(obs)’B’N 

n 
SY 

d9Iwp _ iaS±) 
r-l Pr(obS)N3NP=0' r,Pr(obs),B,C 

n 
• SY .SY 

+ 2D7D8 I WP , ,(</) (ac1) 

r-l r^obs^ r,Fr(obs),C,NP=0 r,Pr(obs) ,B,NP=0 

n 
aSY v 

+ 2D,D. > W_ [-r™j 
'7D9 I \SB 

/ SY \ 

(s±) 
r-l r(obs>'“" 'r>Pr(obs)>C’NP=0"'''P=0'r’Pr(obs)-B-C 

r-i ,SY 

+ 2D8d9Zwp , , AaT 
/ \ 

(sr1:) 
r-l r(°bs)’" 'r’Pr(obS)>B’W“‘'P=0'r’Pr(obS)’B’C 

P=0 

(168) 
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n 
BY v2 n 

did4Iwp , _(af) 
+ 

,BY n2 r r \ 

D2D5IWP ,, kf) 
r-1 Pr(°bs>SdB /r>Pr(obs)’C’NP=0 2 5r=l Pr(obs^3C ■r>Pr(obs)’B>NP=0 

n 
r BY \ 2 

d3d6 l WP , , Awk) 
=1 r(obs> p=0 r’Pr(obs)’B’C 

n 

+ (D2D4 + DlD5) ^ w (^) Vac. 

r*l r(o s) r,Pr(obs),C,NP«0 r,Pr(obs) ,B,NPO 

/BY N 

'-1) 

n 

+ (D1D6 + W I W. 
,3Y . 

(si*) 

/ BY 

(cwT 
r= 

n 

1 r(obs)"~ " r ,Pr(obs) ,C ’^p=o 'p=0" r ,Pr (obs) ,B ,C 

+ (d2d6 + d3d5) £ 
BY /BY 

W. (—-t 

*1 4(obs) ^ /c,P^1.nli^,6,Hr„n^NP-0'r,P_,ist^,B,C 
„ & 

r (obs) ,,D jJ'NP=0 r ’■‘‘r (obs) 

(169) 

n 

V7I 
W. 

/BY N 2 

(r .BB 

,BY ,2 
+ D„D„ > W_ (r^J 

“l-*r(obB)'“"'r,Pr(obB),C,N]M) 2 ^ Pr(obs) dC 'r ,Pr (ob(|) ,B ,Np=0 

n 
BY v2 

+ 
D3D9 1 WP iwk' 

r=l r(obs) P=0 r’Pr(obs) ,B,C 

£ /SY \ 

+ (did8 + W l WP _ Aar) 

,3Y N 

(*r) 
r=l r(obs)"" ■r-Pr(obs)>C>NP=o'“' 'r>Pr(obs)’B’NP=0 

n 

+ (DlD9 + d3d7) l 
/BY 

W (—- 

-1 r<obs> SB ^.P^^.G.N^^PKrr.P^^.B.C 

, aY \ 

(rf 
r(obs) ,kJ,iNP=0 P“° 1 ’xr(obs) 

■ BY 

+ (¥9 + wI“r © (sirS) 
r-l r(°bs) r’Pr(obs)’B>NP=0 P=0 r’Pr(obs)’B>C 

(170) 
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CN 2 
P=0 D 

o 

n 

D4D7 2 «P 

dY v 2 n 

(an) 
= 1 r(0b8) r’Pr(°bs)’C’NP=0 

+ D5D8 2 WP 

dY v2 

© 

= 1 r(°bs)'“" r’Pr(obs)>B-NP=0 

n 

+ D,Dn } W„ 
6 9 ZL P , , AdN 

/ SY \2 

(s±) 
=1 r(obs> P=0 r’Pr(obs)>B’C 

n 

+ (d4d8 + d5d7) l w. 
9 

dY /dY 

(~ 

r-1 Pr(°bs) 3B r’Pr(obs)’C’NP=0 'r>Pr(obs)>B-NP=0 

+ r /BY \ 
(D4D9 +W2WP , Air) 

, 3Y \ 
(ii±) 

r=l Pr(obsA3B A,Pr(obs))C,Np=0''3NP=0-r,Pr(obs)>B>C 

n 
r /3Y \ 

+ (v9 + d6V2wp ,, Air) 
r=l 

Pr(obs)V3C - - - V3N 

/3Y 

(; r 

r,Pr(obs),B,NP=0 P ° r,Pr(obs),B,C 

(171) 
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The remaining questions to be answered are: 1. what is the 

variance of the calculated P's and any other calculated P that 

reduces F to zero?; and 2. what is the variance of the compressi¬ 

bility factor? 

EVALUATION OF THE VARIANCE OF THE P 'S 
r(calc) 

AND ANY OTHER CALCULATED P THAT REDUCES F TO ZERO 

The variance of a calculated P^_ which satisfies equation (19) 

for a given observed r value is obtained in the following way: 

Pr(calc) ls a function °f the observed r's and, through the constants 

evaluated, is a function of all of the Pr(obg)'s. We see from equa¬ 

tion (164) that, the expression for determining the variance of 

Pr(calc) involves evaluation of the quantity 

(172) 
r (calc) 

In order to evaluate the variance of the calculated P 's, we need 
r 

an expression for [^r(calc)/SPr(obs) ]. This quantify can be 

determined from equation (19) 

(19) 

We differentiate equation (19) with regard to P , ,, holding r 
r(obs) ° 

constant. This gives us 



' 
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( 
dF 

( 
3P 

r(calc)^ + fbF'] 

aPr(calc);B,C)r,Np=0V3Fr(obs) ' -r >NP=0 >Pr (calc) (obs) 

+ ( (»fr-) * (sM. 3F\ 

B ,r ,N n,P , . .VdPr(obs)// V5NP=0'B ,C ,r ,P , . . 
P=0 r(calc) r(calc) 

( 
3N 

P=0 
3P 

r (obs)' 

= 0 (173) 

Solving equation (173) for [3Pr(calc)/dpr(obs)J» we Set 

( 
dPr(calc)^ _ _ 

dPr(obs) ' 

(SI) (.&—) 
'dB C,r,N ,P ( 1 c ^Pr(obs) 
_* P=Q r(calc) 

( 
3F 

3P •). 
r(calc) B?C,r,Np=0 

© 
+ 

(ap-22—) 
B,r,N n,P , , v r(obs) 

P=0 r(calc) 
3F 

3P 

( 
+ 

r(calc) B,C,r,Np=0 

3F \ / dNP=0 N 

dNP=0 B,C,r,P ( ^dPr(obs) 
_? r(calc)_ 

3F 

3P 
r(calc) B,C3r3N 

P=0 

(174) 

Multiplying equation (174) by S 
r(obs) 

then summing over all of the observed 

, squaring the 

P 1s . we get 
r 

product, and 
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r (calc) 

s2 (—)2 + s2 (^)2 

r,C,NP=0’Fr(calc)r’E’Np=o>pr(caic) 

( 
dF 

dP 
r(calc) r,B,C,Np;=0 

+ S (J£—\ AdN„ J 
Np*CrSNP*0' r ,B,C,P 

r(calc) 

( dP •) 
r(calc) r,B,C,N 

P=0 

+ 2S 2 r/sF 
BCLAdB 

(M) 
r>C^NpaO>Pr(calc-) r?B>NP=0?Pr(calc) 

] 

( 
iF_V 

3P / , J 
r(calc) r,B,C,Np=0 

+ 2S 
BN 

P=0 

'bF' 

LAdB, 
(SL) 
\dN J 

r ?C,Np=Q’Pr(calc) P 0 r?B’C*Pr(calc) 
] 

(aF^rr)' 
r(calc) r,B,C,Np=0 

+ 2S 

CNP-oLvac' 
r’B,NP=0’:Pr(cai.c) P=0 r’E’C’Pr(calc) 

)' 
r(calc) r,B,C,Np=0 

(175) 



.. 



from which we can evaluate the values of S corresponding to 

r(calc) 

the observed r's. 

Now we ask ourselves the question: how do we calculate the 

variance of any other calculated P that exactly satisfies equation 

(19)? In order to answer this question, we must find a value of r, 

say r^, and we must find a value of f, evaluated at P, , v , which 
J p’ (.calc) 

exactly satisfy the equation 

rP 
:.n = (Z /P )f . . J _ P, , . 
P. _ . o o (calc) P=0 (calc) 
(calc) 

(176) 

where 

= 1 + BP 

(calc) 
(calc) 

+ CP 
(calc) 

(177) 

We have previously evaluated B, C, and N ^. We now proceed to 

evaluate f, which will be needed in equation (176). We do this as 

follows: from equation (15), 1 . is of the form 
(^caic) 

(calc) 

(1 + gPKcalc))(I + aP2(calc) (1 + “hOaicP 
a + ppo)d + ep1(calc)) ••• o. + BVucaicp 

(178) 

Our experimental determination of Oi and p, which appear in 

equation (15), indicates that Oi and 3 differ by less than 0.1 percent. 

In this section only, we therefore take a = 3• Then equation (178) 

can be written as 

(1 + aP 

(calc) 

r(calc) ) 
1 + Oi 'P ) 

o 

(179) 
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Experimentally, equations (176) and (179) apply only to integral 

values of r . However, in calculating the variance of Z„, . N and 
P P(calc) 

of P, v , we assume that equations (176) and (179) will apply to 
1C y 

any value of the expansion number, r^. 

We are interested in calculating Z at even values of the pressure 

We therefore calculate expansion numbers that will satisfy .equation 

(176) for these even values of the pressure. 

Now r , the expansion number corresponding to P, . . and f 
P 1ca re) 

evaluated at P, , N , can be determined from the equation 
(calc) 

In Z . N - ln(Z /P ) - In P, , N - In f 
P(calc) o o (calc) (calc) 

In N 
P=0 

(180) 

Equation (180) results from our taking natural logarithms of equation 

(176) and solving for r^. Now that we have determined values of r and 

2 
f for P, . x , we can proceed to evaluate S„ , the variance of a 

(calc) r Pf i N 
(calc) 

calculated P that exactly satisfies equation (176). 

To evaluate the variance of P, . , we employ equation (175) 
(caic) 

where the terms involving derivatives of F are to be evaluated for 

P, , . , r , and £, . ■. . The expression for these derivatives are 
(calc)5 P’ (calc) 

given by equations (51) , (52) and (56). 

EXPRESSION FOR CALCULATING THE VARIANCE OF THE COMPRESSIBILITY FACTOR 

The variance of Zn 
(calc) 

, where Z 

(calc) 
is given by 

(calc) 
1 + BP(calc) + CP(calc) 

(177) 
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and is any calculated P which exactly satisfies equation 

(176), involves evaluation of the quantity 

n dZ 

P(calc)\2 2 

(calc) r=l 
^Pr(obs) Pr(obs) 

(181) 

where S is the variance of Z and S is the 

P(calc) (calc) r(obs) 

variance of P , . N . 
r(obs) 

To evaluate equation (181), we evaluate [dZ_ /dP , , N] 

P(calc) r(0bs) 
for each , multiply this quantity by S.^ , square the 

r(obs) 

product, and then sum the product over all of the observed P 's. 
r 

When we do this, we get 

(calc) 

2 2 2 2 2 2 2 
B + 4<rp, V + P, , 

i \ (calc) P, , x (calc) B 
(calc) v 7 (calc) v 7 

+ P^ , NS2 + 4BCP, _ xS2 + 2BP. , .S* 
(calc) C (calc) P(calc) (calc) B,P(calc) 

2 2 2 2 
+ 2BP. i vS + 4CP5 , ,SZ „ 

(calc) C5B('calc) (calc) B3P^calc) 

3 2 3 2 
+ 4CP, , D + 2P, 

(calc) C,P, , x (calc) BC 
^calc) 

(182) 

2 2 
The covariance terms S and S 

3 (calc) C ^(calc) 
equation (182) , are defined as 

, which appear in 

n 
,3P 

j2 = V /—(calc)y  dB U 

Bsp, x L VdP ( , xAdP . , J P , , x 
(caic) r_^ r(obs) r(obs) r(obs) 

(183) 
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n 

C,P 
(calc) 

BP 
(calc) 

BP 
r=l 

r(obs) 

BC 

^Pr(obs)2 ^r(obs) 
(184) 

and these quantities are to be evaluated from equations (183) and 

(184) , which we proceed to do. 

[3P(calc)/3Pr (obs)1 can determined from equation (174) 

where the terms involving derivatives of F are to be evaluated for 

P(calc) ’ rP’ and f (calc)' MultiP1yin8 equation (174) by 

2 
(BB/BP , , ., ) S and summing the product over all of the ob- 

r ^ods; r . . 
r(obs) 

served P 's, we get 

dP 
(calc)V BB 

^Pr(obs) ^Pr(obs)2 Pr(obs) 

= S 
B,P 

(ca1c) 

S 
bB\BB 

rP?C?NP=0?F(calc) 

(calc) rp,B,C,Np=0 

+ s2 
BC\BC 

r B N P 
rP^3iNP=0?r(calc) 

BF 

BP 
(calc) rp,B?G5ND_ 

P=0 

+ S 
ABN„ J 

BNP=0V3NP=0’r B,C,P 
P (calc) 

[ BF \ 

.BP 

(185) 
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Multiplying equation (174) by (SC/dP^, )Sp and then 

r(obs) 

summing the product over all of the observed P 's, we get 

V / (calc)V dc_\ 2 _ 2 

L VdP , , v AdP /'i\/P/-i\ c,p, . . 
r(obs) r(obs) r(obs) (calc) 

s2 (^) 
BC\dB/ 

fe2-) 

r C N P 
rP?iNP=0 ,r (calc) 

(calc) rp,B,C,Np=() 

*«§ 
VBjNP=0’P(calc) 

3F 

3P 

+ S 

(calc) rp,B,CsNp=0 

( dF 

CWaNP=0'rp,B,C,F(cal^ 

dF 

dP 
(calc) rp,B,C,Np=() 

(186) 

Therefore, the use of equations (185) and (186) in equation 

2 
(182) will enable the variance of a calculated Z , S 

P Z 

be determined. 

, to 

(calc) 

In a following paper, the Helium Research Center will apply the 

equations developed in this report to some PVT data on helium at 0° C 

obtained by the Burnett method. 





61 

REFERENCES 

1. Barieau, Robert E., and B. J. Dalton. Non-Linear Regression 

and the Principle of Least Squares. The Method of Evaluating 

the Constants and the Calculation of Variances and Covariances. 

Bureau of Mines Bulletin (In process). 

2. Birge, Raymond T. The Calculation of Errors by the Method of 

Least Squares. Phys. Rev., v. 40, April 15, 1932, pp. 207-227. 

3. Burnett, E. S. Compressibility Determinations Without Volume 

Measurements. J. Appl. Mech., v. 3A, December 1936, pp. 136- 

140. 

4. Merriman, Mansfield. A Textbook on the Method of Least Squares. 

John Wiley and Sons, Inc., New York, N. Y., 8th ed., 1911, pp. 

75-79. 

-r 

w 



* * 

V' 
M 

' 

■ 





•• 

\ 


