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Using load-suspended backpacks to reduce vertical peak
dynamic load exerted on humans can reduce metabolic costs.
However, is it possible to further reduce metabolic cost by
modulating dynamic load phase shift? If so, is anti-phase
better than the others? In this study, we investigated the
biomechanics, energetics and trunk response under phase
shifts. Nine subjects wearing an active backpack with 19.4 kg
loads walked on a treadmill at 5 km h™" with four phase shift
trials (T1-T4) and a load-locked trial (LK). Our results show
that anti-phase trial (T3) assists ankle more and reduces the
moment and gastrocnemius medialis activity, while T4 assists
knee more and reduces the moment and rectus femoris activity.
Due to the load injecting more mechanical energy into human
in T3 and T4, the positive centre-of-mass work is significantly
reduced. However, the gross metabolic rate is lowest in T4 and
4.43% lower than in T2, which may be because the activations
of erector spinae and gluteus maximus are reduced in T4. In
addition, T3 increases trunk extensor effort, which may weaken
the metabolic advantage. This study provides guidance for
improving assistance strategies and human-load interfaces and
deepens the understanding of the energetics and biomechanics
of human loaded walking.

1. Introduction

Carrying loads using backpacks is a common human activity. The
backpack load tightened on the upper body exerts not only static
loads (gravity) but also dynamic loads (accelerative force) which
could reach up to 50% of the static load during walking of
5kmh™" [1]. The dynamic load will increase the peak load force
(static load and dynamic load) exerted on the human body,
resulting in larger ground reaction forces (GRFs) [2], joint torque
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[3], muscle activation and fatigue [4], energy cost [3,5] and change gait [6]. In addition, carrying loads [ 2 |
using backpacks will cause the human trunk to lean forward and more effort spent by the spine and
back muscles on maintaining a stable posture [7].

To alleviate the adverse effects of carrying loads, a variety of load-carrying tools have been
developed, such as load-suspended backpacks [8,9]. Load-suspended backpacks succeed in improving
the walking economy by reducing the amplitude of dynamic load (also reducing peak load force)
exerted on humans in the vertical direction [8-13], and minimizing the amplitude to zero could
reduce 8.02% metabolic cost [1]. Improved human-load interaction by reducing the amplitude of
dynamic load is beneficial to lower limb biomechanics, and thus improve the loaded waking economy
[9-11,14]. Similarly, phase shift of dynamic load, defined as the phase of the peak of vertical dynamic
load relative to the peak of human vertical acceleration (similar in [15]), can also change the human-
load interaction. Therefore, is it possible to modulate the phase shift to improve the economy?

Dynamic load during a step cycle can be divided into positive and negative periods, which increase/
decrease load force. The phase shifts redistribute the load force versus time, like moving the peak load
force during middle of double support stance (DS), which is in phase with the human vertical acceleration,
to other periods of gait, such as middle of single support stance (SS), which is anti-phase with the human.
Dynamic load phase shift is another approach to improve the human-load interaction which may be more
efficient. Some evidence suggests that anti-phase (phase shift =) may have less of a metabolic cost [15,16].
During human walking, the human centre-of-mass (CoM) moves atop a stance leg that behaves
approximately like a pendulum, and the mechanical work for step-to-step transitions appears to be a major
determinant of the metabolic cost of walking [17-19]. It indicates reducing load force during DS may cost
less work for redirecting CoM [20]. A simulation using load-suspended backpack shows that anti-phase
will minimize mechanical work [15]. However, some studies do not support the idea that anti-phase is
better in energy cost. Studies have shown that the highest muscular work occurs in the early single-imb
support for lifting the CoM [21] since only 60% of potential energy is provided by kinetic energy, rather
than the idea that a little energy is required during single-limb support according to inverted pendulum
model [17]. This suggests that choosing a specific phase shift, which could reduce load force during CoM
raising, may be a potential approach. Another study demonstrates that tuning phase shift could reduce
force during push-off [22]. Interestingly, the nodding behaviour that evolved naturally in horses chose the
anti-phase, while the nodding behaviour of other quadruped mammals chose other phase shifts [23].
Therefore, previous studies are insufficient to prove that anti-phase is the lowest energy choice for
human loaded walking, and there is a lack of biomechanical and physiological results for explaining the
effects of phase shifts [15,22,24]. In addition, previous studies have also shown that carrying loads using
backpacks causes the trunk to lean forward and alters muscle activity [25-27]. But, most studies of load-
suspended backpacks do not consider the effect of phase shifts on the trunk. For these reasons, this paper
aims to investigate the trunk response, biomechanics and energetic influence of dynamic load phase shift,
and confirm whether the anti-phase is the lowest metabolic cost choice.

An active backpack is required to modulate the phase shift and amplitude independently. Some
studies of passive or semi-active load-suspended backpacks have analysed the possibility of
modulating the amplitude and phase of the dynamic load by adjusting the stiffness or damping
[14,22,28-31], but this approach cannot decouple amplitude and phase shifts of the dynamic load. In
addition, the actual performance of adjusting the damping in real time is not as good as in
simulation, due to imprecise parameters and gait recognition [13]. Some active backpacks have been
proposed [1,24] since they can arbitrarily adjust the load motion, theoretically. Comparing with
controlling load displacement on the backpack [24], controlling load vertical acceleration is more
appropriate since it directly controls the dynamic load profiles [1].

In this paper, we proposed the approach of dynamic load phase shift modulation using an active
backpack. To investigate the trunk response, energetics and biomechanics under dynamic load phase
shifts, we measured and statistically evaluated GRFs, kinetics and kinematics, muscle activation, CoM
work and gross metabolic rate in nine healthy male subjects. We hypothesize that reducing load force
during double support stance (T3) and CoM raising (T4) may improve the economy. Our results show
that anti-phase (T3) and T4 could assist ankle and knee, respectively. The CoM works are reduced in
T3 and T4 since more mechanical energy is injected into human body from the load. But, anti-phase
may lead to more trunk extensor effort even than when load is locked, which weakens the metabolic
advantage and causes the lowest metabolic rate in T4. This study inspires us that strategies assisting
in carrying load especially the anti-phase need to consider the negative impact on the trunk, which
provides guidance for us to improve the design of the human-load interface and assistance strategy,
and also give a deeper understanding of the energetics and biomechanics of human loaded walking.
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Figure 1. (a) Forces are exerted on humans using an active backpack. Load force consists of load gravity and load accelerative force
(dynamic load). (b) The two key steps to modulate the phase shift are: (D generating desired profiles by adjusting the time delay
to @ tracking the desired load acceleration profiles. The 4 desired load acceleration profiles of phase shift trials at the top of the
figure (grey and yellow dotted line) are generated by the measured human vertical acceleration (black dotted line) with the
adjustable time delay t,. The assistance period of T3 is marked as yellow shadow. The gait periods (DS, SS, CoM raising and
(oM descending) focused on in this paper are plotted under time axes.

2. Methods

2.1. Active load-suspended backpack with load acceleration profile tracking

An active load-suspended backpack used for this study was previously presented with the strategy of
minimizing the dynamic load [1]. This backpack consisted of a passive system to suspend the payload
and an active system to adjust the load acceleration. All passive and active components were integrated
on a backpack frame, which connects to the wearer by the physical interface (shoulder straps and waist
belt). The controllable active driving force is generated by a motor (100 W), while the passive driving
force is generated by two elastic ropes. Two IMUs are installed at the waist belt and the load plate to
measure the vertical acceleration of the human and the load. A force sensing resistor (FSR) is mounted
on the right heel to detect the event of heel strike and calculate the gait cycle duration (Tgc) in
real time. The desired load acceleration is generated by measured human acceleration in real time, and
the disturbance observer (DOB) and the feedforward controller are used to track the load acceleration [1].

2.2. Approach of phase shift modulation

Human beings naturally select the pendulum-like bipedal walking gait with the CoM vertical fluctuation
[32] and vertical acceleration fluctuation. Vertical acceleration profiles of load and human are similar
using backpacks, while highest during the collision (about 5% gait cycle (GC)) and lowest during
mid-stance (about 30% GC). The load force exerted on the human can be approximated by load
gravity and dynamic load (shown in figure 1a). In this paper, we use dynamic load to describe the
changes of load force:

Ea(t) = m(t), (2.1)

where m; and X; are the load mass and load vertical acceleration. The negative period of dynamic load is
defined as assistance period (shown in figure 1b) since the load force is reduced, while the positive period
increases the load force. The assistance period can be moved along time by phase shift modulation to
reduce external force during different gait periods or events.

The first step of phase shift modulation is to generate the desired acceleration profiles with phase
shifts in real time. Desired acceleration can be expressed as

X1des () = kin(t — to), (2.2)
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Figure 2. Experiment setup.

where k is amplitude coefficient and t,, is time delay of phase shift. The relationship between time delay
and phase shift is: ¢ = t,/0.5T¢c - 2. In the digital controller, it can also be expressed as

X1es (1) = kX (i — p), (2.3)

where i is the current sample and p is the adjustable delay points. Sampled human acceleration profiles of
last half gait cycle are recorded in memory (from Xy, (i — 0.5n) to X(i)), where n is the sample points of
each gait cycle. The second step is to track the desired load acceleration, and the control model and
controller have been elucidated in previous studies [1].

In this paper, amplitude k is set as 0.5, because the range of load displacement on the backpack is
restricted by screw length. The phase shifts are set as 0, 7/2, 7 and 37/2, with the corresponding time
delay of 0Tgc (T1), 0.125Tgc (T2), 0.25Tgc (T3) and 0.375Tgc (T4). When k=1, ¢=0Tgc, the load
acceleration is the same with human, which can be seen as load locked or ordinary backpack. When
k=0, phase shifts do not change the dynamic load profiles and the dynamic load is minimized [1].

According to the assistance period, the 4 phase shift trials can be divided into two groups (T1 versus
T3, T2 versus T4), and their assistance periods are opposite within the group. In T3 and T1, the load force
is reduced during double support stance and mid-stance, respectively. In T4 and T2, the load force is
reduced during CoM raising and CoM descending, respectively.

2.3. Experimental protocol

Nine healthy adults (six males, three females) participated in the experiment (age 25.56 +2.65 years,
stature 1.72+0.06 m, and weight 71.24 + 8.63 kg (mean +s.d.)). All participants provided informed
consent before their participation, and the possible consequences of the studies were explained. The
experimental protocol was approved by the Chinese Ethics Committee of Registering Clinical Trials on
the use of humans as experimental subjects. The experimental protocol included two sessions: a
habituation session and a testing session. Each session was performed on a separate day to avoid
fatigue effects. The experiment consisted of five trials: four phase shift trials (T1-T4) and a load-locked
trial (LK) by a locking mechanism on the backpack frame. In the habituation session, the subjects walk
for 30 min (6 min x 5 trials) to adapt different dynamic load patterns and ensure the correct use of the
active backpack. In the testing session, subjects walk for 6 min at a speed of 5kmh™' with the
backpack on a treadmill in five trials. All walking trials are randomly assigned orders to minimize the
ordering effect, and a 15 min break was given between trials. The experiment setup is shown in figure 2.

2.4. Measurement and data processing

Surface electromyography (EMG) signals from 8 muscles were measured by an electromyography system
(5X230, Biometrics, UK), and sampled at 1 kHz. Measured muscles include soleus (SOL), tibialis anterior
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(TA), gastrocnemius medialis (GAS), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF),
gluteus maximus (GM), erector spinae (ES). All EMGs were post-processed using custom MATLAB code.

An instrumented treadmill with force plates (AMTI, Watertown, MA, USA, 1000 Hz) was used to
measure the GRFs of each leg during the experiment. The peaks and valleys of vertical GRFs were
calculated for each trial.

Kinematic data were measured by a motion capture system (Vicon, Oxford, UK, 100 Hz).
Retroreflective markers were attached to the lower limbs of subjects and the active backpack to record
their motions. Specifically, markers were placed on the load (two), backpack (two), pelvis (four) and
on the thigh (four), knee (two, only for the segment definitions), shank (four), ankle (two, only for
the segment definitions), calcaneus (one), forefoot (three, distal heads of the first, second and fifth
metatarsals) for each leg.

The estimated trajectory of the human CoM was calculated from the body segment positions [33]. The
instantaneous CoM power is defined as dot product of CoM velocity with ground reaction force from one
leg. Four periods of CoM power, defined from positive and negative intervals [19,34], collision (CO),
rebound (RB), pre-load (PL) and push-off (PO), were examined. Mechanical work of CO, RB, PL, PO
and sum work were calculated.

The work performed on human CoM from load force (termed as Wy,q), defined as load force dot
product CoM velocity, was calculated for analysing the energy flow between load and human.

Inverse dynamics analysis was performed using standard software (Visual3D, C-Motion,
Germantown, MD, USA) for calculating joint angles, moments and powers for the ankle, knee and
hip. Joint work was computed from joint powers.

A portable indirect calorimetry system (Oxycon Mobile, CareFusion, Germany) was used to measure
the metabolic cost, and only the data during the last two minutes was calculated. The metabolic rate was
normalized to each participant’s body mass.

2.5. Statistic analysis

For each trial, means and standard errors (SEM) of gross metabolic rate, mechanical work, peak
muscle activities, peaks in GRFs were calculated across subjects, with standard errors indicating inter-
participant variability [35,36]. The Jarque-Bera two-sided goodness-of-fit test was used to confirm the
applicability of tests that assume a normal distribution. One-way repeated measures analyses of
variance (ANOVA) were conducted across T1-T4 to assess differences between phase shifts. Multiple
comparisons were performed using two-sided paired t-test with Fisher’s least significant difference
(LSD) test [37]. The p-values marked in all figures represent the results of ANOVA across T1-T4.
Then, ANOVA and multiple comparisons were conducted across T1-T4 and LK, for evaluating the
advantage compared with ordinary backpacks. The significance level was set to be a<0.05 for all
analyses. All statistical analysis was conducted in MATLAB (MathWorks Inc., USA).

3. Results
3.1. Modulation of dynamic load phase shifts

Dynamic load profiles show assistance in different gait periods under phase shift modulation (figure 3).
The middle of assistance periods in T1-T4 is 31.39 + 0.67%, 43.67 + 0.81%, 5.06 = 0.86%, 17.50 + 0.74% of
GC, corresponding to mid-stance, CoM descending, double support stance and CoM raising,
respectively. The peak-to-peak (P-P) values of F, are almost the same which are 78.55+1.89, 74.78 +
2.52, 80.33 £2.45, 79.93 +3.09 (N), respectively.

3.2. Ground reaction forces

Significant differences are observed in the peaks and valleys of the vertical GRFs (figure 4a). Comparing T2
and T4, more GRF is transferred from Fy to Fyp, in T4 since load force is reduced during CoM raising
and increased during CoM descending, while the opposite occurs in T2. Comparing T1 and T3, higher Fy,,
and lower Fy,q and Fy,,, are observed in T4. A complete overview of the peaks and valleys of GRFs is
presented in electronic supplementary material, table S1.
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Figure 4. (a) Weight-normalized vertical GRFs averaged across subjects, and significant changes were found in peaks and valleys. (b)
Activity of four muscles (GAS, RF, GM and ES) of 5 trials averaged across subjects and the significant differences in peak activity.
Significant differences were also observed in the mean activation of ES. () The averaged CoM velocities are also termed CoM
hodograph. RHS, right heel strike; LTO, left toe-off.

3.3. Musdle activity

There are significant differences in peak activities for GAS, RE GM and ES (figure 4b), while no
significant difference was found in the other muscles. The peak activity of GAS is the lowest in
T3 and reduced by 9.29% (p =0.017) compared with T1. The peak activity of RF decreases with phase
shift and is lowest in T4, which is 6.58% (p=0.023) lower than T2. The peak activity of GM is the
lowest in T4 and reduced by 12.88% (p <0.01) compared with T2. Notably, there were two activity
peaks of the ES muscle. The first peak demonstrates a significant difference, which is lowest in T4 and
reduced by 16.5% (p <0.001) compared with T2. The second peak in T4 shows a significant difference
tendency (p=0.089) to be the lowest. The mean activation of ES in T4 is reduced by 10.34% (p =0.04)
compared with T2. The specific data are presented in electronic supplementary material, table S2.
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Figure 5. The angles, moments and powers of ankle and knee. The moment and power are normalized by human weight.
*Significant differences in T1-T4.

3.4. Joint kinematics and kinetics

Significantly higher peak ankle dorsi-flexion in T4 was observed than in T2 (p=0.002), while there
was no significant change in other joint angles (figure 5). Lower peak ankle plantar-flexion moment
was observed in T2 and T3, 4.13% (p =0.03) and 4.28% (p <0.001) lower than T4 and T1, respectively.
Lower peak knee extension moment was observed in T3 and T4, which reduced by 6.18% (p <0.05)
and 7.86% (p=0.004) compared to T1 and T2, respectively. No significant difference was observed in
hip joint angle and moment, probably because loads lead to greater effects on ankle and knee [19].
Negative ankle peak power during preload and negative ankle work was lowest in T2 and highest in
T4 (p<0.001, p=0.023). The positive ankle peak power during push-off is higher in T4 without
significant difference, while the positive ankle work is lowest in T4. Positive knee work was lowest in
T3 and T4. The specific data are presented in electronic supplementary material, table S3.

3.5. Mechanical work and metabolic rate

The instantaneous CoM powers from the right leg are shown in figure 6a. The CoM work of CO (Wco)
decreased to minimum sequentially from T1 to T4, but the difference was not significant. The CoM work
of RB (Wgg) was lowest in T3 and T4 and reduced by 13.41% (p = 0.079) and 12.52% (p = 0.009) compared
with T1 and T2. The CoM work of PL (Wp;) was highest in T4 and lowest in T3, but the positive work
(Wpo) did not show significant differences. Sum CoM positive work (W(¢,,) decreased to minimum
sequentially from T1 to T4 (figure 6b) and was reduced by 7.02% (p=0.034) in T4 compared to T2
and by 6.39% (p=0.042) in T3 compared to T1. Sum negative CoM work (W,,) was lowest in T3,
but the difference was not significant.

The work performed on CoM from the load (W),.4) represents injecting energy into human (positive,
Wga 4) or extracting energy from human (negative, W ). ngad in T3 and T4 are higher than in T1 and
T2. W4 in T2 and T3 are higher than in T4 and T1 (figure 6b).

The gross metabolic rate was lowest in T4 and highest in T2 (figure 7). Reducing load force during
CoM raising (T4) could lead to 4.43% (p<0.05) metabolic rate reduction. However, the mean
metabolic rate in T3 is higher than in T4 without significant differences. Compared with LK, phase
shifts reduce 6.36% (p <0.01) metabolic rate at most. The specific data are presented in electronic
supplementary material, table S5.

3.6. Trunk inclination and extension moment

The trunk inclination angles (6; is shown in figure 8a) are calculated by markers mounted on the pelvis
and neck. The range of trunk angle is greater in T1 and T4, and the minimum angle was smaller (closer to
upright posture). To evaluate the assistance of the trunk extensor by rear loads, the mean rearward
moment M, during the trunk extensor (ES) activation period (90%-10% GC) caused by load force
exerted on shoulders was calculated. The rearward moment was higher in T1 and T4 than in T2 and
T3. The specific data are presented in electronic supplementary material, table Sé.
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The rearward moment M; is calculated as follows and then normalized by subject weight .
Assuming the load force is distributed proportionally between the shoulders and the waist, the
proportional coefficient 4 is 0.7 [38]. The force acting on the shoulders F; with an angle of 6, generates
a rearward moment assisting trunk extension. The rearward moment can be calculated as

M; = w(mg + myap)Ly sin (65) /1my,. (3.1)

4. Discussion

How to choose a phase shift to improve walking economy is a key issue in this study. According to the
muscle activity, joint moment, and CoM work, the phase shifts T3 and T4 may provide more
biomechanics and energetics benefits. Reducing more load force during double-support stance (T3)
assists more in the ankle push-off, which reduces the peak muscle activation of GAS, the peak ankle
plantar flexion moment. In addition, Wgg is reduced in T3, which may be caused by the lower vertical
CoM velocity during RB. However, the Wpg is not significantly reduced in T3, which may be due to
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the higher forward CoM velocity during double stance. Less load force during raising CoM (T4) mainly
assists knee extension and reduces knee extension moment and peak activation of knee extensor RF.
More assistance to knee joint also reduces the Wco and Wgg since the knee joint is an important
negative collision work absorber [19] and acts to lift the CoM. Although increasing the load force
during CoM descending resulted in a higher peak plantar flexion moment in T4, the positive ankle
work during push-off did not increase. The reason may be that the larger dorsi-flexion angle during
preload helps to generate the greatest plantar flexion moment [39], which indicates the higher passive
ankle plantar flexion moment and the more elastic energy through the tendon elongation [40,41].

In a stable gait, the mechanical work of the human and the load should be conserved. In T3 and T4,
more mechanical work from loads is injected into human body, thereby reducing the positive CoM work.
However, more negative work is extracted from human body to load in T3 than in T4, which means that
more negative work performed on CoM from lower limbs was done in T4. Considering part of the
negative work may come from passive biological structures such as tendons and soft tissues [34], T3
and T4 are better choices from the perspective of mechanical work.

However, the metabolic rate was lowest in T4 instead of T3 and was not as high as the CoM work
showed in T1. We speculate that the different trunk response under phase shifts accounts for the
metabolic cost bias. Studies have shown that moderate load on the back generates a rearward moment
reducing the activation of ES [26,27]. The larger rearward moment during the activation period of ES
(90%-10% GC) in T1 and T4 assists the trunk extension and reduces the activation of ES. Another
similar result is GM activation. There is a high applied hip flexion moment at heel strike which needs
to be counteracted by the hip extensor [42]; the larger rearward moment may lead to the reduction of
GM activation in T1 and T4. These suggest that designing assistance strategies for backpack-type
devices should not only consider the mechanics and energy cost of the lower limbs but also consider
the impact on the trunk. To reduce or avoid unforeseen negative effects on the trunk, more load can
be transferred to the waist [11] to lower the point of load force acting on the trunk to reduce the
rearward or frontward moment, or, keep the load force along the direction of the trunk by
symmetrical loads distributed front and rear [43] to avoid the rearward or frontward moment.

To evaluate the performance of the phase shift strategy, it is necessary to compare it with the LK.
Compared with LK, the positive and negative CoM work in T1-T4 are reduced by 6.02-14.47% and
2.43-9.95%, respectively. The gross metabolic rates are reduced by 1.84-6.36% in T1-T4, which is less
than the reduction of positive CoM work. The reasons may be that the CoM work cannot isolate work
performed by passive structures such as tendons [44] and other soft tissues [34], contains no
information on the mechanical energy changes of the body segments relative to the CoM [45,46], does
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not consider the counteraction of positive and negative muscle work provided by co-activated muscles [ 10 |
[21], the cost of balance control and adaptation learning. Confusingly, the phase shift strategy did not
show more metabolic reduction than minimizing dynamic load [1]. We speculate that constant load
force brings more comfortable human-load interaction, which may have some potential advantages
that are not directly reflected in mechanical work. Another reason is that anti-phase leads to higher ES
activation even more than LK, which indicates the metabolic cost of the trunk using anti-phase
strategy may be more than for ordinary backpacks. In addition, a possible factor is the empirical
design of the dynamic load profiles. The profiles are generated by filtered human vertical acceleration,
and the assistance period is close to 25% gait cycle duration. As mentioned above, anti-phase strategy
reduces the load force during double-support stance and assists ankle push-off. However, we note
that positive ankle power period during push-off is about 10-15% gait cycle duration, which is
shorter than the duration of the assistance period. This inspires us that designing profiles with shorter
duration and larger magnitude assistance period to match the specific interval of joint power or
moment may be a better strategy.

Although the experimental results show that dynamic load phase shifts could improve the walking
economy and anti-phase may lead to more trunk extensor effort, there are still a number of limitations to
this study. First, the metabolic reduction of phase shifts is not more than the previous strategy [1]. We
attribute this to the increased muscle effort of the trunk extensor in anti-phase. Our future work will
focus on improving the human-load interface by transferring more load to the waist or symmetrically
placing loads on the front and rear sides to avoid impact on the trunk. Second, the results of this
paper suggest that empirical dynamic load profile design may be inefficient, and designing assistance
profiles based on biological information (joint moment or power) is also our next work. In addition,
the small sample size may limit the extensiveness of the conclusions in this paper, and more subject
data can be collected in the future to enhance the validity of these conclusions.
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5. Conclusion

This study investigates the influence of dynamic load phase shift strategy on trunk response,
biomechanics and energetics. The anti-phase (T3) mainly assists the ankle push-off during double-
support stance, and reduces GAS activation and ankle plantar flexion moment. Reducing load force
during CoM raising (T4) assists knee joint more, and RF activation and knee extension moment are
lowest. Due to the load injecting more mechanical energy into human body in T3 and T4, the
positive CoM works are lowest. However, the gross metabolic rate is lowest in T4. This may be
caused by increased trunk extensor effort in anti-phase even more than LK, which may weaken the
metabolic advantage.

Although the phase shift strategy did not show plenty of metabolic advantages, our results explain
the possible reason why the anti-phase strategy is not as effective as expected, which provides a basis for
our next work to improve the human-load interface and assistance strategy. In addition, the mechanical
energy flow of the phase shift strategy suggests that the energy injection from loads into the human may
be an important consideration. This study provides a deeper understanding of the energetics and
biomechanics of human loaded walking.
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