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Algorithmic systems—from rule-based bots to machine learning classifiers—have a long history of
supporting the essential work of content moderation and other curation work in peer production
projects. From counter-vandalism to task routing, basic machine prediction has allowed open
knowledge projects like Wikipedia to scale to the largest encyclopedia in the world, while maintaining
quality and consistency. However, conversations about what quality control should be and what
role algorithms should play have generally been led by the expert engineers who have the skills
and resources to develop and modify these complex algorithmic systems. In this paper, we describe
ORES: an algorithmic scoring service that supports real-time scoring of wiki edits using multiple
independent classifiers trained on different datasets. ORES decouples three activities that have
typically all been performed by engineers: choosing or curating training data, building models to
serve predictions, and developing interfaces or automated agents that act on those predictions. This
meta-algorithmic system was designed to open up socio-technical conversations about algorithmic
systems in Wikipedia to a broader set of participants. In this paper, we discuss the theoretical
mechanisms of social change ORES enables and detail case studies in participatory machine learning
around ORES from the 3 years since its deployment.
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1 INTRODUCTION

Wikipedia—the free encyclopedia that anyone can edit—faces many challenges in main-
taining the quality of its articles and sustaining the volunteer community of editors. The
people behind the hundreds of different language versions of Wikipedia have long relied on
automation, bots, expert systems, recommender systems, human-in-the-loop assisted tools,
and machine learning to help moderate and manage content at massive scales. The issues
around artificial intelligence in Wikipedia are as complex as those facing other large-scale
user-generated content platforms like Facebook, Twitter, or YouTube, as well as traditional
corporate and governmental organizations that must make and manage decisions at scale.
And like in those organizations, Wikipedia’s automated classifiers are raising new and old
issues about truth, power, responsibility, openness, and representation.

Yet Wikipedia’s approach to Al has long been different than in corporate or govern-
mental contexts typically discussed in emerging fields like Fairness, Accountability, and
Transparency in Machine Learning (FATML) or Critical Algorithms Studies (CAS). The
volunteer community of editors has strong ideological principles of openness, decentraliza-
tion, and consensus-based decision-making. The paid staff at the non-profit Wikimedia
Foundation—which legally owns and operates the servers—are not tasked with making edi-
torial decisions about content'. This is instead the responsibility of the volunteer community,
where a self-selected set of developers build tools, bots, and advanced technologies in broad
consultation with the community. Even though Wikipedia’s longstanding socio-technical
system of algorithmic governance is far more open, transparent, and accountable than most
platforms operating at Wikipedia’s scale, ORES??), the system we present in this paper,
pushes even further on the crucial issue of who is able to participate in the development and
use of advanced technologies.

ORES represents several innovations in openness in machine learning, particularly in
seeing openness as a socio-technical challenge that is as much about scaffolding support as
it is about open-sourcing code and data. With ORES, volunteers can curate labeled training
data from a variety of sources for a particular purpose, commission the production of a
machine classifier based on particular approaches and parameters, and make this classifier
available via an API which anyone can query to score any edit to a page—operating in real
time on the Wikimedia Foundation’s servers. Currently, 78 classifiers have been produced
for 37 languages classify edits in real-time based on criteria like “damaging / not damaging,’
“good faith / bad faith,” or a wholistic article quality scale. ORES intentionally does not
seek to produce a single classifier to enforce a gold standard of quality, nor does it prescribe
particular ways in which scores and classifications will be incorporated into fully automated
bots and semi-automated editing interfaces. Instead, ORES was built as a kind of cultural
probe to support an open-ended set of community efforts to re-imagine what machine
learning in Wikipedia is and who it is for.

i

1.1 Audiences for this work

The issue of open participation in machine learning raises many issues that are widely
relevant to both researchers of peer production platforms like Wikipedia, as well as those
working across CSCW, social computing, machine learning, and critical algorithms studies.

IExcept in rare cases, such as content that violates U.S. law, see http://enwp.org/WP:OFFICE
2https:/ /ores.wikimedia.org
Shttp://enwp.org/:mw:ORES
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To researchers of CSCW systems, this paper discusses the design and role of a technical
system that supports a novel type of collaborative meta-work, as ORES makes it possible
for volunteers to commission the production of machine learning classifiers that other editors
can use to support a variety of collaborative work practices in an established community
of practice. In this paper, we detail this system’s design as it was built to align with the
particular ways in which volunteers work in Wikipedia. We also describe how ORES has
altered the meta-work of Wikimedia tool developers.

To the FATML/CAS communities, we are introducing an open-by-design advanced al-
gorithmic platform that is widely used to maintain a critical information resource. This
platform and its context implement several of the dominant recommendations for algorithmic
system builders around transparency and community consent[6, 7, 17, 47, 55]. Through the
deployment of this system and subsequent design iterations, we are able to discuss novel
practical considerations for what openness, accountability, and transparency mean in a large
scale, real world system.

To algorithmic system-builders, we describe how we have approached key issues in devel-
oping a working, scalable, and robust system that matches the decentralized work practices
of end-users in Wikipedia. Some of these approaches apply well described techniques (e.g.
distributed processing and caching) while others are novel strategies for giving tool developers
and their users flexibility over how to use and understand ORES’s algorithmic predictions
(e.g. model interrogation and threshold optimization).

At another level, ORES is widely relevant to researchers across social computing platforms—
specifically researchers of commons-based peer production platforms like Wikipedia. ORES
was created in the context of Wikipedia’s much-discussed issues around newcomer social-
ization and inclusion[24]. Wikipedia’s existing algorithmic infrastructure for supporting
various kinds of decision-making has generally been built by volunteers focused on qual-
ity control — removing spam, hate speech, vandalism, and low-quality content as soon as
possible. Newcomer socialization has suffered from an apparent tradeoff as Wikipedians
focused heavily on efficient quality management strategies[24, 25]. Peer production projects
in general appear to struggle with this apparent tradeoff between quality management and
newcomer socialization[54].

Past work has attempted to directly intervene by making tools[25] and designing spaces[37]
that directly support newcomer socialization. While some of these interventions have shown
promise[38], technological hurdles prevented a systemic re-configuration of the problematic
aspects of quality control processes[25]. In this paper, we describe a novel system that
represents a critical intervention in this space. ORES is an advanced algorithmic prediction
service for Wikipedians that is designed to reduce barriers to the development of work process
support tools that need advanced technologies like machine classifiers in order to function
efficiently. Unlike past work, our goal in the development of ORES is not to directly solve
the quality /newcomer problem ourselves. Instead, we seek to remove barriers to others — to
enable more people in the community of tool developers to experiment with novel strategies
for managing quality and supporting newcomers.

1.2 Genre: A systems paper and a work study paper

This paper is a blend of two classic genres of CSCW scholarship which reflects our dual
intellectual lineages. Traditionally, systems papers introduce and implement a novel design.
Because they make a new kind of abstract interaction possible, empirical evaluations of the
system within the context of work practices are typically left for future work (e.g. [45]).
In some ways, this paper follows this systems approach, in that we have produced a novel
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system and describe it with a thoughtful design rationale and technical specifications. But
this paper also incorporates elements of a classic CSCW case study of work practices, which
often point out how the abstract design rationales of a system do not align with the local
context in which it is used (e.g. [52]). Our design rationale is deeply based on prior empirical
and theoretical research into the specific practices of Wikipedia as a socio-technical system.
Furthermore, our system serves as a kind of cultural probe in that we seek to elicit ideas
about machine learning from our users, and we describe several case studies of the adoption
of ORES and the reflective responses of our users.

By combining a situated design rationale, a description of the system, and case studies of
work practices, this paper is mindful of issues long raised in HCI and CSCW around the gulf
between systems developers, designers, and researchers (e.g. [9, 16, 20]). We follow the lead
of contemporary CSCW researchers like Irani et al.[31] and provide a situated reflection of
work practices and contexts in line with our system description. While this approach makes
for a longer paper, it allows us to refer back to the ecological effects we hypothesize as part
of our design rationale when discussing ORES’ adoption patterns and our case studies.

In this paper, we first review related literature around open algorithmic systems, then
discuss the socio-technical context of Wikipedia and the design rationale that lead us to
building ORES. Next, we describe how we engineered the ORES system to match Wikipedian
work practices — including innovations we’ve made with regards to algorithmic openness
and transparency. Then we present a small set of case studies of uses and critiques of ORES’
predictions that demonstrate the effectiveness of the system in meeting our design goals.
Finally, we conclude with a discussion of the issues raised by this work with our target
audiences: CSCW researchers, FATML/CAS researchers, social-computing researchers, and
algorithmic system-builders.

2 RELATED WORK
2.1 The politics of algorithms

Algorithmic systems play increasingly cruical roles in the governance of social processes[17].
In online spaces, these systems help us deal with information overload problems: What
search results best balance relevance and importance? Which books are most related to the
ones a user likes? In other spaces, algorithmic systems help institutions run more efficiently:
Who is least risky to loan money to? Where should police patrol to mitigate the most
dangerous crimes? Software algorithms are increasingly used in answering such questions
that have no single right answer and where prior human decisions used as training data can
be problematic [2, 55].

Algorithms designed to support work change people’s work practices, shifting how, where,
and by whom work is accomplished[6, 17, 61]. Software algorithms gain political relevance
on par with other process-mediating artifacts (e.g. laws[35]). This increasing relevance
of algorithms in social and political life has renewed focus on questions of fairness and
transparency”.

There are repeated calls to address the power dynamics at play in algorithmic bias through
transparency and accountability of the algorithms that govern public life and access to
resources[8, 47]. The field around effective transparency and accountability mechanisms is
growing. We cannot fully address the scale of concerns in this rapidly shifting literature, but
we find inspiration in Kroll et al’s discussion of the potential and limitations of auditing and
transparency[33] and Geiger’s call to go “beyond opening up the black box” [12].

4See also https://www.fatml.org/ for a conference devoted to these questions
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This paper discusses a specific organizational and political context — Wikipedia’s algorith-
mic quality control and socialization practices — and the development of novel algorithmic
systems for support of these processes. We implement a meta-algorithmic intervention
aligned with Wikipedians’ principles and practices: deploying a set of prediction algorithms
as a service and leaving decisions about appropriation to our users and other technology
developers. Instead of seeking to train the single best classifier and implement it in our own
designs, we embrace public auditing and re-interpretations of our models’ predictions as
an intended and desired outcome. Extensive work on technical and social ways to achieve
fairness and accountability generally do not discuss this kind of infrastructural intervention
on communities of practice and their articulation work.

2.2 Machine prediction in support of open production

Open peer production systems have a long history of using machine learning in service of
efficiency in content moderation and task management. For Wikipedia and related Wikimedia
projects, vandalism detection and quality control has been paramount for practitioners and
researchers. Article quality prediction models have also been explored and applied to help
Wikipedians focus their work in the most beneficial places.

Vandalism detection. The damage detection problem in Wikipedia is one of great scale.
English Wikipedia receives about 160,000 new edits every day, which immediately go live
without review. Wikipedians embrace this risk as the nature of an open encyclopedia, but
work tirelessly to maintain quality. Every damaging or offensive edit puts the credibility of
the community and their product at risk, so all edits must be reviewed as soon as possible.

As an information overload problem, filtering strategies have been hugely successful in
Wikipedia, and we briefly review a decade of work in this area. Potthast et al.’s seminal
paper([44] describes a strategy using logistic regressions to automatically detecting van-
dalism. Jacobi described ClueBot[4], a Wikipedia editing bot deployed to automatically
revert obvious vandalism. Adler et al. (2011) summarized the state of the art in feature
extraction and modeling strategies, building a classifier that aggregated all clearly effective
features extraction strategies discussed in the literature[1]. In some cases, researchers directly
integrated their prediction models into specific, purpose-designed tools for Wikipedians
to use (e.g. STiki[60], a classifier-supported human-computation tool). Yet most of this
modeling work remains in the literature and has not been incorporated into current tools in
Wikipedia.

Based on tools that have been deployed to Wikipedia, Wikipedians have built and orches-
trated a complex, multi-stage filter for incoming edits that is efficient and effective. Geiger &
Halfaker quantitatively describe the temporal rhythm of edit review in Wikipedia[13]: First,
automated bots revert obvious vandalism that scores high according to a machine classifier.
Then “vandal fighters” use human-in-the-loop tools, where they review edits scored high
by machine classifier, but not high enough for fully-automated reversion [15]. Edits that
make it past these bots and “cyborgs”[26] are routed through a system of watchlists® to
experienced Wikipedia editors who are interested in the articles being edited. With this
system in place, most damaging edits are reverted within seconds of when they are saved[13]
and Wikipedia is kept clean.

Task routing. Task routing in Wikipedia is supported by a natural dynamic: people
read what they are interested in, and when they see an opportunity to contribute, they

Shttp://enwp.org/:mw:Help:Watchlist

ACM CSCW, Vol. , No. , Article Under review. Publication date: November 2018.


http://enwp.org/:mw:Help:Watchlist

Under review:6 Halfaker et al.

do. This leads to a demand-driven contribution pattern where the most viewed content
tends to be edited to the highest quality[30]. There are still many cases where Wikipedia
remains misaligned[59], and content coverage biases creep in (e.g. for a long period of
time, the coverage of women scientists in Wikipedia lagged far behind the rest of the
encyclopedial23]). By aligning interests with missed opportunities for contribution, these
misalignments and gaps can be re-aligned and filled. Past work has explored collaborative
recommender-based task routing strategies (see SuggestBot[5]), which show good success.
Recently, the maintainers of SuggestBot have developed article quality prediction models to
help route attention to important, but low quality articles[57]. Warncke-Wang and Halfaker
have also used the article quality model to perform some one-off analyses to help Wikipedians
critique and update their own manual quality assessments[58].

2.3 The Rise and Decline: Wikipedia’s socio-technical problems

While Wikipedians have successfully algorithmic quality control support systems to maintain
Wikipedia, a line of critical research has studied the unintended consequences of this complex
socio-technical system, particularly on newcomer socialization [24, 25, 37]. In summary,
Wikipedians struggled with the issues of scaling when the popularity of Wikipedia grew
exponentially between 2005 and 2007[24]. In response, they developed quality control
processes and technologies that prioritized efficiency by using machine prediction models[25]
and templated warning messages[24]. This transformed newcomer socialization from a
primarily human and welcoming activity to one that is more dismissive and impersonal[37].
This is a clear example of the values of the designers being captured in the process and
supporting infrastructure they developed[25]. The efficiency of quality control work and the
elimination of damage was considered extremely politically important, while the positive
experience of newcomers was less politically important. The result was a sudden and sustained
decline in the retention of good-faith newcomers and a decline in the overall population of
Wikipedia editors[24].

After the effect of this trade-off was made clear, a number of initiatives were started
in an effort to more effectively balance the needs for good community management with
quality control efficiency. For example, a newcomer help space (The Teahouse[37]) was
developed to provide a more welcoming and forgiving forum for newcomers to ask questions
and meet experienced Wikipedians. A newcomer training game was developed and tested
with financial support from the Wikimedia Foundation[42]. The Wikimedia Foundation also
formed a product development team that was tasked with making changes to Wikipedia’s
user interfaces to increase newcomer retention.® However, most of these efforts did not show
gains in newcomer retention under experimental conditions. An exception is the Teahouse,
where intervening by inviting newcomers to participate in the question and answer space
had a statistically significant benefit to long term newcomer retention[38].

Despite these targeted efforts and shifts in perception among some members of the
Wikipedia community, the quality control process that was designed over a decade ago
remains largely unchanged[25]. The quality control systems that were dominant before the
publication of the of the seminal “Rise and Decline” study in 2013[24] remain in place and
unchanged. Notably, Halfaker et al. experimented with developing a novel reversal of the
damage detection tools by re-appropriating a damage classifier to highlight good editors who
were running into trouble in the quality control system[25], but there has not yet been a
clear shift in how quality control is enacted in Wikipedia.

Shttp://enwp.org/:m:Growthteam
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3 DESIGN RATIONALE

In this section, we discuss systemic mechanisms behind Wikipedia’s socio-technical problems
and how we as system builders designed ORES to have impact within Wikipedia. Past
work has demonstrated how Wikipedia’s problems are systemic with no readily apparent
system-level solutions. To responsibly use machine learning in addressing these problems,
we examined how Wikipedia functions as a distributed system using the concept of genre
ecologies, focusing on how processes, policies, power, and software come together to make
Wikipedia happen.

3.1 The context: Wikipedia as a genre ecology

Unlike traditional mass-scale projects, Wikipedia’s structure and processes are not centrally
planned. Wikipedia’s system is a heterogeneous assemblage of humans, practices, policies, and
software. This open system and its processes are dynamic, complex, and non-deterministic.

Genre ecologies is a theoretical framework we found useful in helping us account for the
totality of factors and their relationships in Wikipedia, which is essential to building a
system-level understanding of state and change processes. A genre ecology is “an interrelated
group of genres (artifact types and the interpretive habits that have developed around them)
used to jointly mediate the activities that allow people to accomplish complex objectives.” [51].
The genre ecology framework arose from observational research on how collaborators amend
and repurpose existing officially-sanctioned tools (e.g. written documents and technological
interfaces) and developed their own unofficial tools to supplement or circumvent official
tools. This was needed in order to account for practical contingencies and emergent needs
not anticipated, a longstanding concern in CSCW. In tracing the relationships among the
set of official and unofficial tools used in communities of practice, this literature helps
conceptalize the relationships between tool genres and individual human actors, addressing
issues of distributed agency, interdependency, rule formalization, and power dynamics in
socio-technical systems[50].

Morgan & Zachry used genre ecologies to characterize the relationships between Wikipedia’s
official policies and “essays”: unofficial rules, best practices, and editing advice documents
that are created by editors in order to contextualize, clarify, and contradict policies[39]. In
Wikipedia, essays and policies co-exist and interact. For example, the “proper” interpretation
of Wikipedia’s official Civility policy” within a particular context may need to account for the
guidance provided in related essays such as “No Angry Mastodons.®” In genre ecology terms,
performing the work of enforcing civil behavior on Wikipedia is dynamically and contingently
mediated by the guidance provided in the official policy and the guidance provided in any
related essays. Unofficial genres provide interpretive flexibility in the application of official
rules to local circumstances as well as challenging and re-interpreting official ideologies and
objectives.

Algorithmic systems also have a role in mediating the policy, values, rules, and emergent
practices in social spaces[35, 43, 53]. When looking at Wikipedia’s articulation work through
the genre ecology lens, bots and human-computation tools mediate the meaning of policies
and how Wikipedia enacts quality management. For example, Sinebot enforces the signature
policy in certain ways but not others[10], and the “Huggle’” counter-vandalism tool enacts

"http://enwp.org/WP:CIVIL
8http://enwp.org/ WP:MASTODON
%http://enwp.org/ WP:Huggle
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quality in Wikipedia as a task of rapidly distinguishing good from bad edits in a live stream
of recent changes[25].

3.2 The problem: Wikipedia’s focus on automated mediation

As discussed in section 2, through the co-development of collaborative work processes and
technologies to support them, Wikipedians traded soft, human newcomer socialization
for hard, efficient quality control. Their software focused narrowly on the most important
problem to them at the time—removing damage quickly—and formalized processes that were
previously more flexible and contingent. As they scaffolded their quality control workflows
and values in code, other forms of quality control and socialization were pushed to the
margins. The result was a marked decline in the retention of new editors in Wikipedia and a
new threat to the core values of the project.

Where does change come from in a system of distributed cognition that emerged based
on community needs and volunteer priorities, where problematic assumptions have been
embedded in the mediation of policy and the design of software for over a decade? Or maybe
more generally, how does deep change take place in a genre ecology?

3.3 The complication: Making change in an decentralized ecology

As previously discussed, several initiatives were created to improve Wikipedian socialization
practices, inlcuding the Teahouse and outreach efforts like Inspire Campaigns[36], which
elicited ideas from contributors on the margins of the community. However, the process
of quality control has remained largely unchanged. This assemblage of mindsets, policies,
practices, and software prioritizes quality/efficiency and does so effectively [13][25] but at a
cost.

Instead of pursuing the tempting technical solutions to just fix quality control, it is not
at all apparent what better quality control would look like. Even if we did, how does one
cause systemic change in a decentralized system like Wikipedia? We draw from standpoint
epistemology, specifically Sandra Harding and Donna Haraway’s concept of successors[28][29],
which helps us reflect on the development of new software/process/policy components. Past
work has explored developing a successor view that prioritizes the standpoints of mentors
in support of new editors in Wikipedia, rather than the standpoints of vandal fighters
focused on the efficiency of quality control[25][11]. However, a single point rarely changes
the direction of an entire conversation or the shape of an entire ecology, so change is still
elusive.

From these efforts, we know there is general interest in balancing quality /efficiency and
diversity /welcomingness more effectively. So where are these designers who incorporate this
expanded set of values? How do we help them bring forward their alternatives? How do
we help them re-mediate Wikipedia’s policies and values through their lens? How do we
support the development of more successors, who can build interfaces, tools, and bots based
on different ideas of what machine learning is and what it should be used for?

3.4 The goal: Expanding the margins of the ecology

Successors come from the margin: they represent non-dominant values and engage in the
re-mediation of articulation[41]. In our view, such successors are a primary means to change
in an open genre ecology like Wikipedia. For anyone looking to enact a new view of quality
control into the designs of a software system, there is a high barrier to entry: the development
of a realtime machine prediction model. Without exception, all of the critical, high efficiency
quality control systems that keep Wikipedia clean of vandalism and other damage employ
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a machine prediction model for highlighting the edits that are most likely to be bad. For
example, Huggle and STiki'" use machine prediction models to highlight likely damaging
edits for human reviews. ClueBot NG'! uses a machine prediction model to automatically
revert edits that are highly likely to be damaging. These automated tools and their users
work to employ a multi-stage filter that quickly and efficiently addresses vandalism[13].

Wikipedians have long had extensive discussions and debates about the development of
the thousands of relatively simple rule-based bots that are tasked with enforcing rules or
supporting various tasks [10]. In contrast, there are high barriers to entry around machine
learning classification models for quality control, both in knowing how they work and how to
develop and operate them at Wikipedia’s scale. Without these skills, it was not possible for
the average Wikipedian to create an alternative view of what quality controls should be, while
also accounting for efficiency and the need to scale. Notably, one of the key interventions in
this area that did do so was also built by a computer scientist[25].

The result is a dominance of a certain type of individual: a computer scientist or software
engineer with an eye towards improving the efficiency of quality control. This high barrier
to entry and in-group effect has exacerbated the minimization of the margin and a supreme
dominance of the authority of quality control regimes that were largely developed in 2006—
long before the social costs of efficient quality control were understood. Worse, this barrier
stands in the way of a key aspect of ecological health: diversity. We believe this lack of
diversity has limited the adaptive capacity of Wikipedia’s process ecology around quality
management this has lead to the well-documented, long-standing issues with newcomer
socialization[24].

Our approach: Lowering the barriers to entry. Wikipedia’s quality control processes
are open to the development of successor systems for re-mediating quality control, but only
for those with the right skills and capacities, which are not evenly distributed. We have two
options for expanding the margins: (1) increase general literacy around machine classification
techniques and operations at scale; or (2) minimize the need to deeply understand practical
machine learning at scale in order to develop an effective quality control tool.

Our goal in the development of ORES is to explore the second option. By deploying
a high-availability machine prediction service that supports multiple classifiers at scale,
designing accessible interfaces to engage with such classifiers in various ways, and engaging
in basic outreach efforts, we seek to dramatically lower the barriers to the development of
new algorithmic systems that could implement radically new ideas about what should be
classified, how it should be classified, and how classifications and scores should be used. By
enabling alternative visions of what quality control and newcomer socialization in Wikipedia
should look like, we also open the doors to participation of alternative views in the genre
ecology around quality control. For us, we measure success not through higher rates of
precision and recall, but instead though the new conversations about how algorithmic tools
affect editing dynamics, as well as new types of tools that take advantage of these resources,
implementing alternative visions of what Wikipedia is and ought to be.

4 THE ORES SYSTEM

ORES has been iteratively engineered to meet the needs of Wikipedia editors and the tools
that support their work. In this section, we describe the architecture of the system and how
architecutral decisions allowed ORES to be intergrated into different types of workflows.

Ohttp://enwp.org/WP:STiki
Mhttp://enwp.org/User:ClueBot NG

ACM CSCW, Vol. , No. , Article Under review. Publication date: November 2018.


http://enwp.org/WP:STiki
http://enwp.org/User:ClueBot_NG

Under review:10

Halfaker et al.

Training data 0 RES

B enwiki damaging (from Wikilabels)

[T eswiki goodfaith (from Wikilabels) ScoringModels

Ej eswikiquote reverted (from edit DB) O enwiki damaging (from Wikilabels) UserS

[T fiwiki qualty (rom user annotation) O eswiki goodfaith (from Wikilabels)

QO eswikiquote reverted (from edit DB) O,
o, / QO frwiki quality (from WP 1.0) %%
— %% Researchers QO
Model builders
Socializers
Snuggle
Live data (from MediaWiki DBs) /
Huggle O
@ enwiki @ dewiki REST API
uWSGl (10) » . P
Ki/12345/d: atrollers
Ej arwiki Ej enwiktionary / enwiki lamaging Z / RecentChanges
+ enwiki/12345/wp10
Ej —_ Ej oS conkiguotelotosovered | N
eswiki/16169/goodfaith
Celery (CPU) arwiki/150961/damaging

wikidata/12501/damaging

v

@ wikidata E eswikiquote

PatruBOT

Fig. 1. ORES conceptual overview. Model builders design process for training ScoringModels from
training data. ORES hosts ScoringModels and makes them available to researchers and tool developers.

4.1 Conceptual architecture

At the core, ORES is a collection of machine classifier models and an API. These models are
designed and engineered by a varied set of model builders (some external researchers and
others by our own engineering team) using varied sources of training data. The models that
ORES hosts are engineered to support Wikipedian processes related to damage-detection,
quality-assessment, and topic-routing, but the system is adaptable to a wide range of other
models.

To make these models available for users, ORES implements a simple container service
where the “container,” referred to as a ScoringModel, represents a fully trained and tested
prediction model. All ScoringModels contain metadata about when the model was train/tested
and which features are necessary for making a prediction. All predictions take the form
of a JSON document. The ORES service provides access to ScoringModels via a RESTful
HTTP interface and serves the predictions (JSON documents) to users. We chose this service
structure because Wikimedian tool developers (our target audience) are familiar with this
RESTful API/JSON workflow due to the dominant use of the MediaWiki APT among tool
developers. See sections A.1.1 and A.1.2 for details and examples of about ORES’ outputs.

4.2 Scaling & robustness

To be useful for Wikipedians and tool developers, ORES uses distributed computation
strategies to provide a robust, fast, high-availability service. Reliability is a critical concern
in Wikipedian quality control work. Interruptions in Wikipedia’s algorithmic systems have
historically led to increased burdens for human workers and a higher likelihood that readers
will see vandalism[13]. As previously discussed, we wanted to support Wikipedians who did
not have the access and ability to operate a machine learning classifier at datacenter scales.
The widespread use of ORES for multiple models across language versions of Wikimedia
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wikis could potentially involve orders of magnitude more computation than has ever been
used for machine learning in Wikipedia.

This horizontal scaleability is achieved in two ways: input-output (I0) workers (uwsgi'?)
and the computation (CPU) workers (celery'?). Requests are split across available 10 workers,
and all necessary data is gathered using external APIs (e.g. the MediaWiki API'*). The
data is then split into a job queue managed by celery for the CPU-intensive work. This
efficiently uses available resources and can dynamically scale, adding and removing new 10
and CPU workers in multiple datacenters as needed. This is also fault-tolerant, as servers
can fail without taking down the service as a whole.

4.3 Real-time processing

The most common use case of ORES is real-time processing of edits. For example, those
using counter-vandalism tools like Huggle monitor edits within seconds of when they are
made. It is critical that ORES return these requests in a timely manner. We implement
several strategies to optimize this request pattern.

Single score speed. In the worst case scenario, ORES is generating a score from scratch.
This is the common case when a score is requested in real-time—which invariably occurs
right after the target edit or article is saved. We work to ensure that the median score
duration is around 1 second. Our metrics tracking currently suggests that for the week April
6-13th, 2018, our median, 75%, and 95% score response timings are 1.1, 1.2, and 1.9 seconds
respectively.

Caching and precaching. In order to take advantage of our users’ overlapping interests
in scoring recent activity, we also maintain a basic least-recently-used (LRU) cache'® using a
deterministic score naming scheme (e.g. enwiki:123456:damaging would represent a score
needed for the English Wikipedia damaging model for the edit identified by 123456). This
allows requests for scores that have recently been generated to be returned within about
50ms via HTTPS. In other words, a request for a recent edit that had previously been scored
is 20X faster due to this cache.

In order to make sure that scores for all recent edits are available in the cache for real-time
use cases, we implement a “precaching” strategy that listens to a high-speed stream of recent
activity in Wikipedia and automatically requests scores for a specific subset of actions (e.g.
edits). With our LRU and pre-caching strategy, we consistently attain a cache hit rate of
about 80%.

De-duplication. In real-time ORES use cases, it’s common to receive many requests to
score the same edit/article right after it was saved. We use the same deterministic score
naming scheme from the cache to identify scoring tasks, and ensure that simultaneous
requests for that same score attach to the same result (or pending result) rather that starting
a duplicate scoring job. This pattern is very advantageous in the case of precaching, because
of our network latency advantage: we can generally guarantee that the precaching request
for a specific score precedes the external request for a score. All waiting requests attach
to the result of a single score generation process that starts prior to receiving the external

2https://uwsgi-docs.readthedocs.io/

Bhttp:/ /www.celeryproject.org/
Mhttp://enwp.org/:mw:MW:APT

15 Implemented natively by Redis, https://redis.io

ACM CSCW, Vol. , No. , Article Under review. Publication date: November 2018.


https://uwsgi-docs.readthedocs.io/
http://www.celeryproject.org/
http://enwp.org/:mw:MW:API
https://redis.io

Under review:12 Halfaker et al.

request. So even in worst-case scenarios where we’re still calculating scores, we often see a
better-than-expected response speed from the tool user’s point of view.

4.4 Batch processing

Many different types of Wikipedia’s bots rely on batch processing strategies to support
Wikipedian work processes[10], so ORES needs to support sudden, high-intensity querying.
For example, many bots are designed to build worklists for Wikipedia editors (e.g. [5]) and
recently, many of them have adopted ORES to include an article quality prediction for use in
prioritization (see section 6). Work lists are either built from the sum total of all 5m+ articles
in Wikipedia, or from some large subset specific to a single WikiProject (e.g. WikiProject
Women Scientists claims about 6k articles'®). We’ve observed robots submitting large batch
processing jobs to ORES once per day. It’s relevant to note that many researchers are also
making use of ORES for various analyses, and their activity usually shows up in our logs as
a similar burst of requests.

In order to most efficiently support this type of querying activity, we implemented batch
optimizations in ORES by splitting IO and CPU operations into distinct stages. During the
10 stage, all data is gathered to generate a set of scores. During the CPU stage, scoring
jobs are split across our distributed processing system. This batch processing affords up
to a 5X increase in time to scoring speed for large requests[48]. At this rate, a user can
score 1 million revisions in less than 24 hours in the worst case scenario (no scores were
cached)—which is unlikely for recent Wikipedia activity.

4.5 Empirical access patterns

The ORES service has been online since July 2015[27]. Since then, usage has steadily risen
as we’ve developed and deployed new models and additional integrations are made by tool
developers and researchers. Currently, ORES supports 78 different models and 37 different
language-specific wikis.

Generally, we see 50 to 125 requests per minute from external tools that are using ORES’
predictions (excluding the MediaWiki extension that is more difficult to track). Sometimes
these external requests will burst up to 400-500 requests per second. Figure 2a shows the
periodic and “bursty” nature of scoring requests received by the ORES service. For example,
every day at about 11:40 UTC, the request rate jumps—most likely a batch scoring job such
as a bot.

Figure 2b shows the rate of precaching requests coming from our own systems. This graph
roughly reflects the rate of edits that are happening to all of the wikis that we support
since we’ll start a scoring job for nearly every edit as it happens. Note that the number of
precaching requests is about an order of magnitude higher than our known external score
request rate. This is expected, since Wikipedia editors and the tools they use will not request
a score for every single revision. This is a computational price we pay to attain a high cache
hit rate and to ensure that our users get the quickest possible response for the scores that
they do need.

Taken together these strategies allow us to optimize the real-time quality control workflows
and batch processing jobs of Wikipedians and their tools. Without serious effort to make
sure that ORES is practically fast and highly available to real-time use cases, ORES would
become irrelevant to the target audience and thus irrelevant as a work-support infrastructure.
By engineering a system that conforms to the work-process needs of Wikipedians and

16 As demonstrated by https://quarry.wmflabs.org/query /14033
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Fig. 2. Request rates to the ORES service for the week ending on April 13th, 2018

their tools, we’ve built a systems intervention that has the potential gain wide adoption in
Wikipedia’s technical ecology.

5 INNOVATIONS IN OPENNESS

Our goals in the development of ORES and the deployment of models is to keep the the flow
of data, from random samples through model training, evaluation, and application, open for
review, critique, and iteration. In this section, we describe how we implemented transparent
reproducibility in our model development process, and how ORES outputs a wealth of useful
and nuanced information for users. By making this detailed information available to users
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and developers, we hope to enable flexibility and power in the evaluation and use of ORES
predictions for novel purposes. In this section, we describe some of the key, novel innovations
that have made ORES fit Wikipedian concerns and be flexible to re-appropriation. The
appendix also contains information about ORES’ detailed prediction output (section A.1.1),
how users and tools can adjust their use to model fitness (section A.1.2; and how the whole
model development workflow is made inspectable and replicable (section A.1.3).

5.1 Collaboratively labeled data

There are two primary strategies for gathering labeled data for ORES’ models: found traces
and manual labels.

Found traces. For many models, the MediaWiki platform records a rich set of digital
traces that can be assumed to reflect a useful human judgement. For example, in Wikipedia,
it is very common that damaging edits will eventually be reverted and that good edits
will not be reverted. Thus the revert action (and remaining traces) can be used to assume
that the reverted edit is damaging. We have developed a re-usable script'” that when given
a sample of edits, will label the edits as “reverted_for_damage” or not based on a set of
constraints: edit was reverted within 48 hours, the reverting editor was not the same person,
and the edit was not restored by another editor.

However, this “reverted_for_.damage” label is problematic in that many edits are reverted
not because they are damaging but because they are involved in some content dispute.
Operationalizing quality by exclusively measuring what persists in Wikipedia reinforces
Wikipedia’s well-known systemic biases, which is a similar problem in using found crime
data in predictive policing. Also, the label does not differentiate damage that is a good-faith
mistake from damage that is intentional vandalism. So in the case of damage prediction
models, we only make use of the “reverted_for_damage” label when manually labeled data
is not available. However, ORES makes it possible to compare predictions made from this
dataset with those made from others, and incongruences between models can be quite
generative in thinking about when, where, and why to use a particular approach.

Another case of found traces is a score of article quality on a standardized, seven-point
ordinal scale, which editors routinely make as part of a well-established process'®, named
“wpl0” after the Wikipedia 1.0 assessment project, where the article quality assessment scale
originated'”. We follow the process developed by Warncke-Wang et al.[56] to extract the
revision of an article that was current at the time of an assessment. Many other wikis employ
a similar process of article quality labeling (e.g. French Wikipedia and Russian Wikipedia),
so we can use the same script to extract their assessments with some localization.?’ However,
other wikis either do not apply the same labeling scheme consistently (or at all), leaving
manual labeling is our only option.

Manual labeling campaigns with Wiki Labels. We hold manual labeling by human
Wikipedians as the gold standard for purposes of training a model to replicate human
judgement. By asking Wikipedians to demonstrate their judgement on examples from their
own wikis, we can most closely tailor model predictions to match the judgements that make
sense to these communities. This contrasts with found data, which deceptively appears to be
a better option because of its apparent completeness: every edit was either reverted or not.

7see autolabel in https://github.com/wiki-ai/editquality
8http://enwp.org/ WP:ASSESS
http://enwp.org/ WP:WP10

20see extract_labelings in https://github.com/wiki-ai/articlequality

ACM CSCW, Vol. , No. , Article Under review. Publication date: November 2018.


https://github.com/wiki-ai/editquality
http://enwp.org/WP:ASSESS
http://enwp.org/WP:WP10
https://github.com/wiki-ai/articlequality

ORES Under review:15

Yet as previously discussed, there are many issues with bias, and the implicit signals may not
exactly match the intended use of the model. Manual labeling has a high up-front expense of
human labor. In order to efficiently utilize valuable time investments by our collaborators —
mostly volunteer Wikipedians — we developed a system called “Wiki Labels®!”. Wiki Labels
allows Wikipedians to submit judgments of specific random samples of Wiki content using a
convenient interface and logging in via their Wikipedia account.

For example, to supplement our models of edit quality, we replace the models based
on found “reverted_for_damage” traces with manual judgments where we specifically ask
labelers to distinguish “damaging” /good from “good-faith” /vandalism. “Good faith” is a
well-established term in Wikipedian culture, with specific local meanings that are different
than their broader colloquial use — similar to how Wikipedians define “consensus” or
“neutrality”. Using these labels we can build two separate models which allow users to filter
for edits that are likely to be good-faith mistakes[22], to just focus on vandalism, or to apply
themselves broadly to all damaging edits.

5.2 Threshold optimization

When we first started developing ORES, we realized that operational concerns of Wikipedia’s
curators need to be translated into confidence thresholds for the prediction models. For
example, counter-vandalism patrollers seek to catch all (or almost all) vandalism before it
stays in Wikipedia for very long. That means they have an operational concern around the
recall of a damage prediction model. They also like to review as few edits as possible in order
to catch that vandalism. So they have an operational concern around the filter rate—the
proportion of edits that are not flagged for review by the model[21].

By finding the threshold of prediction likelihood that optimizes the filter-rate at a high
level of recall, we can provide vandal-fighters with an effective trade-off for supporting
their work. We refer to these optimizations in ORES as threshold optimizations and ORES
provides information about these thresholds in a machine-readable format so that tools can
automatically detect the relevant thresholds for their wiki/model context.

Originally, when we developed ORES, we defined these threshold optimizations in our
deployment configuration. But eventually, it became apparent that our users wanted to
be able to search through fitness metrics to choose thresholds that matched their own
operational concerns. Adding new optimizations and redeploying quickly became a burden
on us and a delay for our users. In response, we developed a syntax for requesting an
optimization from ORES in realtime using fitness statistics from the models tests. E.g.
maximum recall @ precision >= 0.9 gets a useful threshold for a counter-vandalism bot
or maximum filter_rate @ recall >= 0.75 gets a useful threshold for semi-automated
edit review (with human judgement).

{"threshold": 0.30, ...,
"filter_rate": 0.88, "fpr": 0.097, "precision": 0.21, "recall": 0.75%}

Fig. 3. Result of https://ores.wikimedia.org/v3/scores/enwiki/?models=damaging&model_info=
statistics.thresholds.true.”maximumfilter_rate@recall)=0.75’

This result shows that, when a threshold is set on 0.299 likelihood of damaging=true,
then you can expect to get a recall of 0.751, precision of 0.215, and a filter-rate of 0.88.

2Ihttp://enwp.org/:m:Wikilabels
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While the precision is low, this threshold reduces the overall workload of vandal-fighters by
88% while still catching 75% of (the most egregious) damaging edits.

5.3 Dependency injection and interrogability

From a technical perspective, ORES is a algorithmic “scorer” container system. It is primarily
designed for hosting machine classifiers, but it is suited to other scoring paradigms as well.
For example, at one point, our experimental installation of ORES hosted a Flesch-Kincaid
readability scorer. The only real constraints are that the scorer must express its inputs in
terms of “dependencies” that ORES knows how to solve and the scores must be presentable
in JSON.

5.3.1 Dependency injection. One of the key features of ORES that allows scores to be
generated in an efficient and flexible way is a dependency injection framework.

Efficiency. For example, there are several features that go into the “damaging” prediction
model that are drawn from the diff of two versions of an articles text (words added, words
removed, badwords added, etc.) Because all of these features “depend” on the diff, the
dependency solver can make sure that only one diff is generated and that all subsequent
features make use of that shared data.

ORES can serve multiple scores in the same request. E.g. a user might want to gather a set
of scores: “edit type,” “damaging,” and “good-faith.” Again, all of these prediction models
depend on features related to the edit diff. ORES can safely combine all of the features
required for each of the requested models and extract them with their shared dependencies
together. Given that feature extraction tends to take the majority of time in a real-time
request (partially for fetching data [IO], partially for computation time [CPU]), this allows
the scoring for multiple, similar models to take roughly the same amount of time as scoring
a single model.

Flexibility. When developing a model, it’s common to experiment with different feature
sets. A natural progression in the life of a model in the wild involves the slow addition of new
features that prove useful during experimentation. By implementing a dependency system
and a dependency solver, a model can communicate to ORES which features it needs and
ORES can provide those features. At no point does a model developer need to teach ORES
how to gather new data. All of the information needed for the solver to solve any given
feature set is wrapped up in the dependencies.

5.3.2 Interrogability. The flexibility provided by the dependency injection framework
lets us implement a novel strategy for exploring how ORES’ models make predictions. By
exposing the features extracted to ORES users and allowing them to inject their own features,
we can allow users to ask how predictions would change if the world were different. Let’s
say you wanted to explore how ORES judges unregistered (anon) editors differently from
registered editors. Figure 4 demonstrates two prediction requests to ORES.

Figure 4a shows that ORES’ “damaging” model concludes that the edit identified by the
revision ID of 34234210 is not damaging with 93.9% confidence. We can ask ORES to make
a prediction about the exact same edit, but to assume that the editor was unregistered
(anon). Figure 4b shows the prediction if edit were saved by an anonymous editor. ORES
would still conclude that the edit was not damaging, but with less confidence (91.2%). By
following a pattern like this for a single edit or a set of edits, we can get to know how ORES
prediction models account for anonymity.
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"damaging": { "damaging": {
"score": { "score": {
"prediction": false, "prediction": false,
"probability": { "probability": {
"false": 0.938910157824447, "false": 0.9124151990561908,
"true": 0.06108984217555305 "true": 0.0875848009438092
} }
} }
} }
(a) Prediction with anon = false injected (b) Prediction with anon = true injected

Fig. 4. Two “damaging” predictions about the same edit are listed for ORES. In one case, ORES is
asked to make a prediction assuming the editor is unregistered (anon) and in the other, ORES is asked
to assume the editor is registered.

Interrogability is useful for checking to see where ORES’s biases originate and what effects
they have on predictions, as well as for creative new uses beyond bias. For example, Ross
uses our article quality prediction models (wp10) as a method for suggesting work to new
editors.?? This system asks ORES to score a student’s draft and then asking ORES to
reconsider the predicted quality level of the article with one more header, one more image,
or one more citation. In doing so, he built an intelligent user interface that can expose the
internal structure of a model in order to recommend the most productive development to
the article—the change that will most likely bring it to a higher quality level.

6 ADOPTION PATTERNS

When we designed and developed ORES, we were targeting a specific problem: expanding
the set values applied to the design of quality control tools to include recent a recent
understanding of the importance of newcomer socialization. We do not have any direct
control of how developers chose to use ORES. We hypothesize that, by making edit quality
predictions available to all developers, we would lower the barrier to experimentation in this
space. From our experiences, it is clear that we lowered barriers to experimentation. After
we deployed ORES, we implemented some basic tools to showcase ORES, but we observed a
steady adoption of our various prediction models by external developers in current tools and
through the development of new tools.??

6.1 Showcase tools

In order to showcase the utility of ORES, we developed a two simple tools to surface ORES
predictions within MediaWiki—the wiki that powers Wikipedia: ScoredRevisions and the
ORES Review Tool.

ScoredRevisions™ is a javascript-based “gadget” that runs on top of MediaWiki. When
certain pages load in the MediaWiki interface (E.g. Special:RecentChanges, Special:Watchlist,
etc.), the ScoredRevisions submits requests to the ORES service to score the edits present on
the page. The javascript then updates the page with highlighting based on ORES predictions.

24

22https://dashboard-testing.wikiedu.org
23See complete list: http://enwp.org/:mw:ORES/Applications
24https://github.com/he7d3r/mw-gadget-ScoredRevisions
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Edits that are likely to be “damaging” are highlighted in red. Edits that might be damaging
and are worth reviewing are highlighted in yellow. Other edits are left with the default
background.

While this interface was excellent for displaying ORES potential, it had limited utility.
First, it was severely limited by the performance of the ORES system. While ORES is
reasonably fast for scoring a single edit, scoring 50-500 edits (the ranges that commonly
appear on these pages) can take 30 seconds to 2 minutes. So a user is left waiting for the
highlighting to appear. Because ScoredRevisions is only able to score edits after they are
rendered, there was no way for a user to ask the system to filter edits ahead of time to only
show edits that are likely to be damaging. The user needed to visually filter the long lists
based on highlighted rows.

The ORES Review Tool”” is a MediaWiki extension implemented in PHP. It uses an
offline process to score all recent edits to Wikipedia and to store those scores in a table for
querying and quick access. This tool implemented similar functionality to ScoredRevisions
but because it had pre-cached ORES scores in a table, it rendered highlights for likely
damaging edits as soon as the page loaded. It enabled users to filter based on likely damaging
edits.

We released the ORES Review Tool as a “beta feature” on Wikimedia wikis were we were
able to train advanced edit quality models. The response was extremely positive. Over 26k
editors in Wikipedia had manually enabled the ORES Review Tool by April of 2017. For
reference, the total number of active editors across all languages of Wikipedia varies around
70k,%° so this means that about one-third of active editors consciously chose to enable the
feature.

6.2 Adoption in current tools

Many tools for counter-vandalism in Wikipedia were already available when we developed
ORES. Some of them made use of machine prediction (e.g. Huggle””, STiki, ClueBot NG),
but most did not. Soon after we deployed ORES, many developers that had not previously
included their own prediction models in their tools were quick to adopt ORES. For example,
RealTime Recent Changes®® includes ORES predictions along-side their realtime interface
and FastButtons,?” a Portuguese Wikipedia gadget, began displaying ORES predictions
next to their buttons for quick reviewing and reverting damaging edits.

Other tools that were not targeted at counter-vandalism also found ORES predictions—
specificly that of article quality (wpl0)—useful. For example, RATER,*" a gadget for
supporting the assessment of article quality began to include ORES predictions to help their
users assess the quality of articles and SuggestBot,*![5] a robot for suggesting articles to an
editor, began including ORES predictions in their tables of recommendations.

6.3 Development of new tools

Many new tools have been developed since ORES was released that may not have been
developed at all otherwise. For example, the Wikimedia Foundation product department

25http://enwp.org/:mw:ORES review_tool

26https:/ /stats.wikimedia.org/EN/TablesWikipediansEditsGt5.htm
2"Notably, Huggle adopted ORES prediction models soon after we deployed
28http://enwp.org/:m:RTRC
29http://enwp.org/:pt:Wikipdia:Scripts/FastButtons
30http://enwp.org/::en:WP:RATER

31http://enwp.org/User:SuggestBot
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Special page  RTRC Search Wikipedia Q
Recent changes @ Help
This is a list of recent changes to Wikipedia.

Other review tools v - Saved filters ~
Active filters
® Likely have problems >| @ Very likely have problems X | Human (not bot) X || Page edits X || Page creations X . i
Logged actions X
| Q Filter changes (use menu or search for filter name) | E Namespaces ‘ Tags

Filters £ Highlight results £¥ 500 changes, 7 days v

Contribution quality predictions  How do these work?
List of abbreviations (help):[hide]
T Edit flagged by ORES

0 Very likely good 2~ | FoMbs) ey page
Highly accurate at finding almost all problem-free edits m Minor edit
Position b Botedit
0 May have problems 2~ ’ D Edit made at Wikigata
Finds most flawed or damaging edits but with lower accuracy. W;’; (£123) Page size change in bytes
-right,
Likely have problems
With medium accuracy, finds an intermediate fraction of problem v lontribs)
edits. lion) (Tag: Visual edit)

in Magazine links)

. - Magazine links)
(talk | contribs) (per WP:ERRORS.)
Berialized titles)

User intent predictions  How do these work? (21

Very likely have problems
|:| Very highly accurate at finding the most obviously flawed or
damaging edits.

Fig. 5. A screenshot of the Edit Review Filters interface with ORES score-based filters

developed a complete redesign on MediaWiki’s Special:RecentChanges interface that imple-
ments a set of powerful filters and highlighting. They took the ORES Review Tool to it’s
logical conclusion with an initiative that they referred to as Edit Review Filters.?” In this
interface, ORES scores are prominently featured at the top of the list of available features,
and they have been highlighted as one of the main benefits of the new interface to the editing
community.

When we first developed ORES, English Wikipedia was the only wiki that we are aware of
that had a robot that used machine prediction to automatically revert obvious vandalism[4].
After we deployed ORES, several wikis developed bots of their own to use ORES predictions
to automatically revert vandalism. For example, PatruBOT in Spanish Wikipedia®* and
Dexbot in Persian Wikipedia®* now automatically revert edits that ORES predicts are
damaging with high confidence. These bots have been received with mixed acceptance.
Because of the lack of human oversight, concerns were raised about PatruBOT’s false
positive rate but after consulting with the developer, we were able to help them find an
acceptable threshold of confidence for auto-reverts.

One of the most noteworthy new applications of ORES is the suite of tools developed by
Sage Ross to support the Wiki Education Foundation’s®® activities. Their organization sup-
ports classroom activities that involve editing Wikipedia. They develop tools and dashboards
that help students contribute successfully and to help teachers monitor their students’ work.
Ross has recently published about how they interpret meaning from ORES’ article quality
models[46] and has integrated this prediction into their tools and dashboards to recommend

32http://enwp.org/:mw:Edit_Review_Improvements
33https:/ /es.wikipedia.org/wiki/Usuario:PatruBOT
34https:/ /fa.wikipedia.org/wiki/User:Dexbot
35https:/ /wikiedu.org/
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ways that students can bring their articles up to Wikipedia’s standards. See our discussion
of interrogation in Section 5.

7 CASE STUDIES IN REFLECTION

When we first deployed ORES, we reached out to several different wiki communities and
invited them to test the system for use in patrolling for vandalism. In these announcements,
we encouraged editors to install ScoredRevisions, the only tool that used ORES’s edit quality
models at the time. ScoredRevisions both highlights edits that are likely to be damaging (as
predicted by the model) and displays the likelihood of the prediction as a percentage.
Before long, our users began filing false-positive reports on wiki pages of their own design.
In this section, we describe three cases where our users independently developed these
false-positive reporting pages and how they used them to understand ORES, the roles of
automated quality control in their own spaces, and to communicate with us about ORES.

7.1 Report mistakes (Wikidata)

Improvements [edit]

Diffid ¢ | Damaging #+ | Old score #+ | Scorel + Score2 $ Score3 # 1stimprov. # | 2nd + 3rd ¢ Overall +

210649590  No 91% 30% 5% 0% +61% +25% | +5% | +91%
237999679 | No 84% 71% 63% 60% +13% +8% | +3% | +24%
243937491 | No 95% 46% 74% 71% +49% -28% |+3% | +24%
251530750 | No 91% 55% 56% 55% +36% -1% +1% | +36%
253584599  No 99% 89% 78% 70% +10% +11% | +8% | +29%
257856652 | No 91% 30% 4% 1% +61% +26% | +3% | +90%

Fig. 6. A slice of the ORES report mistakes table in Wikidata.

When we first deployed prediction models for Wikidata—a free and open knowledge base
that can be read and edited by both humans and machines’°—we were breaking new ground
by building a damage detection classifier based on a structured data wiki[48]. We created a
page called “Report mistakes” and invited users to tell us about mistakes that the prediction
model made on that page. We left the format and structure largely up to the users.

Within 20 minutes, we received our first report, from an editor who believed ORES was
reporting edits that couldn’t possibly be vandalism as potentially damaging. As reports
streamed in, we began to respond to them and make adjustments to the model building
process to address data extraction bugs and to increase the signal so that the model
differentiate damage from non-damaging edits. After a month of reports and bug fixes, we
decided to build a table to represent the progress that we made in iterations on the model
against the reported false-positives (Figure 6). Each row represents a mis-classified edit,
and each column describes the progress we made in not detecting those edits as damaging
in future iterations of the model. Through this process, we learned how Wikidata editors
understood and saw damage, as well as how our modeling and feature extraction process
captured signals in ways that differed from Wikidata editors’ understandings. Because of
this back-and-forth collaboration made possible through ORES’s various features, we were
able to publicly demonstrate improvements to this community.

36https://wikidata.org
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7.2 Patrolling/ORES (ltalian Wikipedia)

Ttalian Wikipedia was one of the first wikis where we deployed basic edit quality models.
Our local collaborator, who helped us develop the language specific features, User:Rotpunkt,
created a page for ORES®" with a section for reporting false-positives (“falsi positivi”).
Within several hours, Rotpunkt and a few other editors noticed some trends in their false
positive reports. First, Rotpunkt noticed that there were several counter-vandalism edits
that ORES was flagging as potentially damaging, so he made a section for collecting that
specific type of mistake (“annullamenti di vandalismo”). A few reports later, he added
a section for “corrections to the verb for have” (“correzioni verbo avere”). Through this
process, editors from Italian Wikipedia were effectively performing an inductive, grounded
theory-esque exploration ORES errors, trying to identify themes and patterns in the errors
that ORES was making.

Once there were several of these mistake-type sections and several reports within each
section, Rotpunkt reached out to us to let us know what he had found. He explained to
us (via our IRC channel) that many of ORES’s mistakes were understandable, but there
were some general trends in mistakes around the Italian verb for have: “ha”. We knew
immediately what was likely to be the issue. A common type of vandalism in English and
other languages is to add the word “ha” repeatedly to indicate laughing, and so a common
feature in the damage model was “informal words” that are not blatantly offensive, but
generally likely to not be constructive additions to encyclopedia articles. However, the word
“ha” in Italian translates to “have” and is perfectly acceptable in articles in that language.

Because of the work of Rotpunkt and his collaborators in Italian Wikipedia, we were able
to recognize the source of this issue (a set of features intended to detect the use of informal
language in articles) and to remove “ha” from that list for Italian Wikipedia. This is just
one example of many issues we were able to address because of the grounded theory and
thematic analysis performed by Italian Wikipedians.

7.3 PatruBOT (Spanish Wikipedia)

Soon after we released support for Spanish Wikipedia, a volunteer developer made a software
bot to automatically revert damaging edits using ORES’s predictions for the “damaging”
model (PatruBOT). This bot was not running for long before our discussion pages were
bombarded with confused Spanish-speaking editors asking us questions about why ORES did
not like their work. We struggled to understand the origin of the complaints until someone
reached out about PatruBOT and its activities.

When we examined the case, we found it was one of tradeoffs between precision/recall
and false positives/negatives — a common issue with machine learning applications. We
concluded that PatruBOT’s thresholds for reverting were too sensitive for many in the
Spanish Wikipedia community, meaning it was likely reverting edits that the model did
not have enough confidence about. ORES reports a classification and a probability score,
but it is up to the developers to decide if, for example, the bot will only auto-revert edits
classified as damage with a .90, .95, .99, or higher likelihood estimate. A higher threshold
will minimize the chance a good edit will be mistakenly auto-reverted, but also increase the
chance that a bad edit will not be auto-reverted.

We have our own views about where the presumption should be, and have our own
recommendations about where to set thresholds. We recommend that bot developers who are
interested in running an automated counter-vandalism bot use a threshold that maximizes

3Thttps://it.wikipedia.org/wiki/Progetto:Patrolling/ORES
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recall at high precision (90% is a good starting point). According to our queries,*® the
Spanish Wikipedia damaging model can be expected to have 90% precision and catch 17%
of damage if the bot only reverted edits where the likelihood estimate is above 0.959. Yet
ultimately, deciding whether false positives are worse than false negatives and determining
how high the thresholds should be set is a decision for that volunteer editing community.

Because ORES decouples the classification and scoring process from the bot or tool
that takes actions based on scored classifications, volunteers from the Spanish Wikipedian
community could actively investigate and discuss this issue. The Spanish Wikipedians who
were concerned with these issues began a discussion about PatruBOT, which was stopped
from auto-reverting until the issue was sorted. They organized an informal crowdsourced
evaluation of the fitness of PatruBOT’s behavior®® where they randomly sampled 1000
reverts performed by PatruBOT and reviewed their appropriateness. This informal evaluation
and discussion is ongoing, * but it shows how stakeholders do not need to have Ph.Ds in
machine learning to meaningfully participate in a sophisticated discussion about how, when,
why, and under what conditions such classifiers should be used.

7.4 Bias against anonymous editors

Shortly after we deployed ORES, we received reports that ORES’s damage detection models
were overly biased against anonymous editors. At the time, we were using Linear SVM*'
estimators to build classifiers, and we were considering making the transition towards
ensemble strategies like GradientBoosting and RandomForest estimators.*> We took the
opportunity to look for bias in the error of estimation between anonymous editors and
newly registered editors. By using our feature injection/interrogation strategy (described
in Section 5), we could ask our current prediction models how they would change their
predictions if the exact same edit were made by a different editor.

Figure 7 shows the probability density of the likelihood of “damaging” given three different
passes over the exact same test set, using two of our modeling strategies. Figure 7a shows
that, when we leave the features to their natural values, it appears that both models are
able to differentiate effectively between damaging edits (high-damaging probability) and
non-damaging edits (low-damaging probability) with the odd exception of a large amount of
non-damaging edits with a relatively high-damaging probability around 0.8 in the case of the
Linear SVM model. Figures 7b and 7c show a stark difference. For the scores that go into
these plots, characteristics of anonymous editors and newly registered editors were injected
for all of the test edits. We can see that the GradientBoosting model can still differentiate
damage from non-damage while the Linear SVM model flags nearly all edits as damage in
both case.

Through the reporting of this issue and our subsequent analysis, we were able to identify
the issue and show that an improvement to our modeling strategy mitigates the problem.
Without such a tight feedback loop, we most likely would not have noticed how poorly ORES’s
damage detection models were performing in practice. Worse, it might have caused vandal

38https://ores.wikimedia.org/v3/scores/eswiki?models=damaging&model_info=statistics.thresholds.true.
%27maximum%20recall%20@%20precision%20%3E="%200.9%27
3%ttps://es.wikipedia.org/wiki/Wikipedia:Mantenimiento/Revisi%C3%B3n_de_errores_de_PatruBOT%
2FAn%C3%A1lisis
Ohttps://es.wikipedia.org/wiki/Wikipedia:Caf%C3%A9%2FArchivo%2F Miscel % C3% A 1nea%2FActual #
Parada_de_PatruBOT

http://scikit-learn.org/stable/modules/generated /sklearn.svm.LinearSVC.html

42http:/ /scikit-learn.org/stable/modules/ensemble.html
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Fig. 7. The distributions of the probability of a single edit being scored as “damaging” based on
injected features for the target user-class is presented. Note that when injecting user-class features (anon,
newcomer), all other features are held constant.

fighters to be increasingly (and inappropriately) skeptical of contributions by anonymous
editors and newly registered editors—two groups of contributors that are already met with
unnecessary hostility'*[24].

7.5 Discussion

These case studies in responses to ORES provide a window into how our team has been
able to work with editors, developers, and other stakeholders in various wiki communities
around machine learning. ORES as a socio-technical system has helped us 1) refine our
understandings of volunteers’ needs across wiki communities, 2) identify and adress biases
in ORES’s models, and 3) reflect on how people think about what types of automation they
find acceptable in their spaces.

Refining our understandings and iterating our models. The information divide
between us researchers/engineers and the members of a community (or users of a platform)
is often wider than we realize. Through iteration with the Wikidata and Italian models,
we learned about incorrect assumptions we would made about how edits take place (e.g.
client edits in Wikidata) and how language works (e.g. “ha” does not signify laugher in
Italian). It is quite likely we would never be able to fully understand the context in which
damage detection models should operate before deploying the models. Yet with a tight
communication loop, many surprising and wrong assumptions that were baked into our
modeling process could be identified and addressed quickly. It seems that many of the
relevant issues in feature engineering and model tuning become apparent when the model is
used in context to try to address a real problem (in these cases, counter-vandalism).

Methods for recognizing and addressing bias. The Italian Wikipedians showed us
something surprising and interesting about collaborative evaluation of machine prediction:
thematic analysis is very powerful. Through the collection of ORES mistakes and iteration,
our Italian collaborators helped us understand general trends in the types of mistakes that
ORES made. It strikes us that this a somewhat general strategy for bias detection. While our

http://enwp.org/:en:Wikipedia:TPs_are_human _too
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users certainly brought their own biases to their audit of ORES, they were quick to discover
and come to consensus about trends in ORES’s issues. Before they had performed this
process and shared their results with us, we had no idea that any issues were present. When
we applied the kinds of standard fitness metrics that are expected in academic machine
learning research, the damage detection model looked good enough to publish. Their use of
thematic analysis is powerful tool that developers should investigate and potentially support
through new user interfaces when creating any crowd-based auditing support technologies.

How people think about “acceptable” automation. Our third case shows how ORES
made possible a potentially problematic bot, but also supports Spanish Wikipedians in the
process of coming to agreements about what roles are acceptable for automated agents.
Through observation of PatruBOT’s behavior, they have decided that the false discovery
rate (i.e., 1 — precision) was too high by watching the bot work in practice and they started
their own independent analysis to find quantitative answers about what the ideal rate is.
Eventually they may come to a conclusion about an acceptable false discovery rate, or they
may decide that no revert is acceptable without human intervention.

8 CONCLUSION AND FUTURE WORK
8.1 Participatory machine learning

In a world dominated by for-profit social computing and user-generated content platforms—
often marketed by their corporate owners as “communities” [18]—Wikipedia is an anomaly.
While the non-profit Wikimedia Foundation has only a fraction of the resources as Facebook
or Google, the unique principles and practices in the broad Wikipedia/Wikimedia movement
are a generative constraint. ORES emerged out of this context, operating at the intersection
of a pressing need to deploy efficient machine learning at scale for content moderation, but
to do so in ways that enable volunteers to develop and deploy advanced technologies on their
own terms. Our approach is in stark contrast to the norm in machine learning research and
practice, which involves a more top-down mode of developing the most precise classifiers for
a known ground truth, then deploying a complete technology for end-users, who must treat
them as black boxes.

The more wiki-inspired approach to what we call “participatory machine learning” ORES
supports imagines classifiers to be just as provisional and open to skeptical reinterpretation as
the content of Wikipedia’s encyclopedia articles. And like Wikipedia articles, we suspect some
classifiers will be far better than others based on how volunteers develop and curate them, for
various definitions of “better” that are already being actively debated. Our case studies briefly
indicate how volunteers have collectively engaged in sophisticated discussions about how
they ought to use machine learning. ORES’ fully open, reproducible, and auditable code and
data pipeline—from training data to models to scored predictions—enables a wide and rich
range of new collaborative practices. We see ORES as a more socio-technical and specifically
CSCW approach to issues around fairness, accountability, and transparency in machine
learning, where much attention is placed on technical solutions, like interactive visualizations
for model interpretability or mathematical guarentees of different operationalized definitions
of fairness. Our approach is specific to the particular genre ecology, work practices, and
values of Wikipedia, and we have shown how ORES has been developed to fit into this
complex socio-technical system.
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8.2 “Hearing to speech”: lowering barriers to participation

Our goal to design for empowerment led us in new directions — both from traditional machine
learning work more generally and in specific responses to the problems around automation in
Wikipedia. Rather than making our own “intervention” based on our own ideas about how to
tackle these problems (e.g. [25]), our approach focused on reducing barriers and encouraging
a stalled “conversation.” As Bowker and Star discuss when considering participatory design
for margins[3], we see our work on ORES as closer to Nell Morten’s concept of “hearing to
speech” in contrast to “speaking to be heard[40]”. If we were to build the exact technology or
process we think is right for Wikipedia, we would be “speaking to be heard” and forcing our
own solution-focused ideas into the conversation about how quality is enacted in Wikipedia.
We instead stepped back and asked “What is preventing others from getting involved in this
conversation?” then sought to lower those barriers.

ORES does enact our own alternative vision of how quality control should operate in
Wikipedia, but only at an indirect meta-level by reflecting a different way of how algorithms
should be made available to the populations they govern. Prior ML-based automated tools
and bots in Wikipedia often involved a single developer producing both a classifier and an
interface or bot that acted on that classifier, coupling these distinct aspects and requiring
far more skills and resources if a volunteer wanted to modify or fork an existing tool or bot.
There are still many barriers that remain, as creating an ORES classifier remains a complex
technical task, and classifiers are not yet as radically open to live editing and discussion as a
standard Wikipedia article. However, we have seen firsthand how ORES has supported new
kinds of complex conversations and collaborations between volunteer tool developers and
Wikimedia Foundation technical staff (or volunteer tool developers and their community of
editors).

In taking such a decentralized approach, we run the risk that the conversation (and the
processes adaptations) will not go in the directions that we value. Like with Wikipedia’s
articles, ORES’s classifiers are used by self-selected individuals who have the means and
motivation to participate, and research has repeatedly showed the deep demographic inequal-
ities in participation[19, 34]. Yet in this existing situation, we make a conscious choice to
design for lowered technical barriers, as well as to foster more legitimate modes of peripheral
participation. This more decentralized approach is also a necessity when working within
the unique community governance model behind Wikipedia. These generative constraints
demanded that ORES would be built as a meta-algorithmic system, encouraging experi-
mentation, discussion, and re-use, as well providing tools for interrogation of the classifiers
themselves.

We also note that any system which expands participation brings with it the potential for
expanded abuse and harassment, and while we have no firm solutions, we are mindful of
such issues and recommend that future work in participatory machine learning be mindful as
well. We also do not pretend to be completely value-neutral, as we acknowledge we want to
help Wikipedia’s social processes form in ways that align with our values, which include the
more complete balance of efficient quality control and newcomer support. We want to see
Wikipedia work better, and for us, “better” means that more people who want to contribute
will feel welcome to do so and will find their place in Wikipedia. On this goal, this paper
provides no direct evaluation of newcomer retention, nor do we look for evidence of improved
newcomer socialization. Instead, we target the early precursors of social change: ecological
health and critical reflection.
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8.3 Ecological health

In section 6, we show clear evidence of a boom in the ecosystem of quality control technologies.
Through the adoption of ORES, new tools have quickly gained relevance. Many of these
tools re-mediate the way that quality control happens in Wikipedia. For example, consider
Sage Ross’s use of ORES’ interrogability to support newcomers in developing articles that
Wikipedians would find acceptable. By using a quality model to direct newcomers behavior,
socialization may be improved at no cost to efficiency—maybe even an improvement from
a reviewer’s point of view since the system would result in more structurally complete
drafts. This addition to the technological conversation around quality control represents
a substantial shift from the focus on the post-edit boundary[14] to a focus on pre-review
training for newcomers. While Sage’s interface has yet to be widely adopted, it represents a
key example of a new concept in the technological conversation in Wikipedia.

While ORES has been live for 3 years at the time of writing, the ecological intervention is
still young. "ORES” has only recently become commonly known by Wikimedia contributors
and we are still building out basic support for the hundreds of different Wikimedia lan-
guage/project communities. In order to see a fundimental shift in the Wikimedia’s technical
ecology, we’ll likely need to continue observing for 1-2 more years. But the early signs of
ecological health (heavy adoption and increased diversity of quality management technolo-
gies) are what we hope will lead toward long term and continual re-mediation of quality and
community management policies, processes, and technologies.

8.4 Ciritical reflection

In section 7, we show evidence of critical reflection on the current processes and the role
of algorithms in quality control. We believe that the case studies that we describe both
show that this reflection is taking place and that the wide proliferation of tools that provide
surprising alternative uses of ORES suggest that Wikipedians feel a renewed power over
their quality control processes. Even if we are wrong about the direction of change that
Wikipedia needs for quality control and newcomer socialization, we are inspired by much
of the concern that has surfaced for looking into biases in ORES’ prediction models (e.g.
anons and the Ttalian “ha”) and over what role algorithmis should have in directly reverting
human actions (e.g. PatruBOT and DexBot).

Eliciting this type of critical reflection and empowering users to engage in their own
choices about the roles of algorithmic systems in their social spaces has typically been more
of a focus from the Critical Algorithms Studies literature (e.g. [2, 32]. This literature also
emphasizes a need to see algorithmic systems as dynamic and constantly under revision by
developers [49]—work that is invisible in most platforms, but foregrounded in ORES. In
these case studies, we see that given ORES’ open API and Wikipedia’s collaborative wiki
pages, Wikipedians will audit ORES’ predictions and collaborate with each other to build
information about trends in ORES’ mistakes and how they expected their own processes to
function.

8.5 Future work

Observing ORES in practice suggests avenues of future work toward crowd-based auditing
tools. As our case studies suggest, auditing of ORES’ predictions and mistakes has become
a very popular activity. Even though we did not design interfaces for discussion and
auditing, some Wikipedians have used unintended affordances of wiki pages and MediaWiki’s
template system to organize similar processes for flagging false positives and calling them
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to our attention. To better facilitate this process, future system builders should implement
structured means to refute, support, discuss, and critique the predictions of machine models.
With a structured way to report false positives and other real-human judgments, we can
make it easy for tools that use ORES to also allow for reporting mistakes. We can also
make it easier to query a database of ORES mistakes in order to build the kind of thematic
analyses that Italian Wikipedians showed us. By supporting such an activity, we are working
to transfer more power from ourselves and to our users. Should one of our models develop a
nasty bias, our users will be more empowered to coordinate with each other, show that the
bias exists and where it causes problems, and either get the model’s predictions turned off
or even shut down ORES.

We also look forward to what future work in the space of critical algorithm studies will
do with ORES. As of writing, most of the studies and critiques of subjective algorithms[55]
focus on large for-profit organizations like Google and Facebook—organizations that can’t
afford to open up their proprietary algorithms due to competition. Wikipedia is one of the
largest and most important information resources in the world. The algorithms that ORES
makes available are part of the decision process that leads to some people’s contributions
remaining and others being removed. This is a context where algorithms matter to humanity,
and we are openly experimenting with the kind of transparent and open processes that
fairness and transparency in machine learning researchers are advocating. Yet, we have
new problems and new opportunities. There is a large body of work exploring how biases
manifest and how unfairness can play out in algorithmically mediated social contexts. ORES
would be an excellent place to expand the literature within a real and important field site.

Finally, we also see potential in allowing Wikipedians, the denizens of Wikipedia, to freely
train, test, and use their own prediction models without our engineering team involved in
the process. Currently, ORES is only suited to deploy models that are trained and tested by
someone with a strong modeling and programming background. That doesn’t need to be the
case. We have been experimenting with demonstrating ORES model building processes using
Jupyter Notebooks***® and have found that beginning programmers can understand the
work involved. This is still not the holy grail of crowd developed machine prediction—where
all of the incidental complexities involved in programming are removed from the process of
model development and evaluation. Future work exploring strategies for allowing end-users
to build models that are deployed by ORES would surface the relevant HCI issues involved
and the changes the the technological conversations that such a margin-opening intervention
might provide.
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A APPENDIX
A.1 ORES system details

In this section, we describe some of the details of the ORES system.

A.1.1 Score documents. The predictions made by through ORES are human- and machine-
readable. In general, our classifiers will report a specific prediction along with a set of
probability (likelihood) for each class. By providing detailed information about a prediction,
we allow users to re-purpose the prediction for their on use. Consider article quality (wpl0)
prediction output in Figure 9.

"wpl0": {
"score": {
"prediction": "Start",
"probability": {
"FA": 0.0032931301528326693, "GA": 0.005852955431273448,
"B": 0.060623380484537165, "C": 0.01991363271632328,
"Start": 0.7543301344435299, "Stub": 0.15598676677150375
}
}
}

Fig. 8. Result of https://ores.wikimedia.org/v3/scores/enwiki/34234210/wp10
A developer making use of a prediction like this may choose to present the raw prediction
“Start” (one of the lower quality classes) to users or to implement some visualization of the

probability distribution across predicted classed (75% Start, 16% Stub, etc.). They might
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even choose to build an aggregate metric that weights the quality classes by their prediction
weight (e.g. Ross’s student support interface[46] or the weighted sum metric from [23]).

A.1.2 Model information. In order to use a model effectively in practice, a user needs to
know what to expect from model performance. E.g. how often is it that when an edit is
predicted to be “damaging” it actually is? (precision) or what proportion of damaging edits
should T expect will be caught by the model? (recall) The target metric of an operational
concern depends strongly on the intended use of the model. Given that our goal with ORES
is to allow people to experiment with the use and reflection of prediction models in novel
ways, we sought to build an general model information strategy.

"damaging": {
"type": "GradientBoosting",

"version": "0.4.0",
"environment": {"machine": "x86_64", ...},
"params": {center": true, "init": null, "label_weights": {"true": 10},
"labels": [true, false], "learning_ rate": 0.01, "min_samples_leaf": 1,
N

"statistics": {
"counts": {"labels": {"false": 18702, "true": 743},
"n": 19445,
"predictions": {"false": {"false": 17989, "true": 713},
"true": {"false": 331, "true": 412}}},
"precision": {"labels": {"false": 0.984, "true": 0.34},
"macro": 0.662, "micro": 0.962},
"recall": {"labels": {"false": 0.962, "true": 0.555},
"macro": 0.758, "micro": 0.948},
"pr_auc": {"labels": {"false": 0.997, "true": 0.445},
"macro": 0.721, "micro": 0.978},
"roc_auc": {"labels": {"false": 0.923, "true": 0.923},
"macro": 0.923, "micro": 0.923},

Fig. 9. Result of https://ores.wikimedia.org/v3/scores/enwiki/?model_info&models=damaging

The output captured in Figure 9 shows a heavily trimmed JSON (human- and machine-
readable) output of model_info for the “damaging” model in English Wikipedia. Note that
many fields have been trimmed in the interest of space with an ellipsis (“...”). What remains
gives a taste of what information is available. Specifically, there is structured data about
what kind of model is being used, how it is parameterized, the computing environment used
for training, the size of the train/test set, the basic set of fitness metrics, and a version
number so that secondary caches know when to invalidate old scores. A developer using an
ORES model in their tools can use these fitness metrics to make decisions about whether or
not a model is appropriate and to report to users what fitness they might expect at a given
confidence threshold.
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A.1.3 Explicit pipelines. We have designed the process of training and deploying ORES
prediction models is to be repeatable and reviewable. Consider the following code that
represents a common pattern from our model-building Makefiles:

datasets/enwiki.human_labeled_revisions.20k_2015. json:
./utility fetch_labels \
https://labels.wmflabs.org/campaigns/enwiki/4/ > $@

datasets/enwiki.labeled_revisions.w_cache.20k_2015.json: \

datasets/enwiki.labeled_revisions.20k_2015.json

cat $< | \

revscoring extract \
editquality.feature_lists.enwiki.damaging \
--host https://en.wikipedia.org \
-—extractor $(max_extractors) \
--verbose > $Q

models/enwiki.damaging.gradient_boosting.model: \
datasets/enwiki.labeled_revisions.w_cache.20k_2015. json
cat $~ | \
revscoring cv_train \
revscoring.scoring.models.GradientBoosting \
editquality.feature_lists.enwiki.damaging \

damaging \
--version=$(damaging major_minor).0 \
(... model parameters ...)

--center --scale > $0

Fig. 10. Makefile rules for the English damage detection model from https://github.com/wiki-ai/
editquality

Essentially, this code helps someone determine where the labeled data comes from (man-
ually labeled via the Wiki Labels system). It makes it clear how features are extracted
(using the revscoring extract utility and the feature_ lists.enwiki.damaging feature
set). Finally, this dataset of extracted features is used to cross-validate and train a model
predicting the “damaging” label and a serialized version of that model is written to a file. A
user could clone this repository, install the set of requirements, and run make enwiki models
and expect that all of the data-pipeline would be reproduced, and an exactly equivalent
model obtained.

By explicitly using public resources and releasing our utilities and Makefile source code
under an open license (MIT), we have essential implemented a turn-key process for replicating
our model building and evaluation pipeline. A developer can review this pipeline for issues
knowing that they are not missing a step of the process because all steps are captured in the
Makefile. They can also build on the process (e.g. add new features) incrementally and restart
the pipeline. In our own experience, this explicit pipeline is extremely useful for identifying
the origin of our own model building bugs and for making incremental improvements to
ORES’ models.

At the very base of our Makefile, a user can run make models to rebuild all of the models
of a certain type. We regularly perform this process ourselves to ensure that the Makefile is
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an accurate representation of the data flow pipeline. Performing complete rebuild is essential
when a breaking change is made to one of our libraries. The resulting serialized models are
saved to the source code repository so that a developer can review the history of any specific
model and even experiment with generating scores using old model versions.
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