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At
THE CALCULATION OF e

z
WITH SOME APPLICATIONS

1

.

Introduction

Throughout this paper A will be an n x n matrix with real or complex

elements, having f(x) as its characteristic function and eigenvalues

a-., ou, ... a (not necessarily distinct). In this paper we calculate

At
the exponential matrix e , specify some properties of certain matrices

At
that must be determined in order to describe e' and finally indicate

some applications of this calculation.

At
2. An Initial Value Problem and e

In [3] e is obtained as the unique solution to the following

initial value problem. With f(x) as specified above and D = -rrwe wish

to obtain the solution to:

f(D)G(t) = 0, G(t) an n x n matrix with elements functions of t and

(n - ])
n-1

such that G(o) = I, G' (o) = A, ... G(o) = A
n

'.

At
If e

n
is defined by the equation

At r A
n
t
n

e = I

then

n=0
n

e
At

|

= I, D(e
At

)| = A, ... d""
1

(e
At

) |
= A

n " ]

t=0 t=0 t=0

and f(D)e = f(A)e = by the Cayley-Hamilton Theorem. Therefore,

At
e is the unique solution to this initial value problem. Suppose

a-,, a
2

, ... a are the distinct eigenvalues of A with multiplicities

y-j , y 25 ... u
s

» we may write

At s ^"l a
i^
t

(,) e = I < C
kl

+C
k2
t+ --- +C

k„* >

e
•



where the C. . are n x n matrices. From the initial conditions we have

1 =
I C

kl
k=l

K1

A =

j ]
^k C

kl
+ C

k2>

(2)

n 1
S n 1 n 9 (fl-1 ) ! a""P

k

A
n "'

= I (^"'C., + (n-l)aX + ... +-; u , m C. ),

k=l
k kl k k2 (n-u

k
)!(p

k
-l)! ku

k

"

from which the n C, . can be determined. We note from the system (2) that

a solution for a C. . will be a linear combination of the left side of (2)

and therefore, any C. . will be a polynomial in A of degree at most (n-1).

Being polynomials in A, the C, . commute.
KJ

3. Properties of the C . , when all roots of f(\) are distinct .

We will not use the system (2) to completely solve for the n C. .

,

At
rather will vie obtain another representation for e satisfying the initial

i
a
k
t

value problem and then equate coefficients of like terms "t e ". Before

proceeding to this representation let us consider the simple case in which

all roots of f(\) are distinct. This case will provide insights on how

to handle the more general case of multiple roots.

If all roots of f(x) are distinct, then (1) becomes:

At
n a

k
t

(1)' e
At

=
I C e

k
.

k=l
Kl

The inverse of (1
)

' is

(1)" e"
At

=
I C e

k
.

k=l
Kl



Multiplying (1)' and (1)" and using the commutative property for the C
kl

we obtain

n „ n n (a, -a .)t

(3) I - I C£, =
I I C C e

k=l
Kl

k=l j=l
K1 Jl

Equation (3) is true for all t, however, the left side of (3) is indepen^

dent of t which suggests that C.-, C, = for k f 3, i.e., the C,-, are

pairwise orthogonal. (This will be shown below.)

Applying the initial conditions to (1)' we obtain:

i LH L
21

*•• L
nl

A = ai Cn + a
2
C
21

+ ... + a
n
C
n]

(2)

A n-1 n-1 n n-1 n . n-1 rA =
0l

Cn +a
2

C
21

+ ... + a
n

C
n]

.

Since the a, are distinct, the coefficient matrix for the system (2)' is

a Vandermonde matrix and is non-singular. Therefore, the system (2)' has

unique solutions for the C, , . If we solve the system (2)' for C, , , then

the coefficient of A in this solution is:

(4) (-1)
n+k

. 1 1 ... 1

. a. , a, .-I ... a
k-1 k+1 r

n-2 n-2 n-2
a
k-l

a
k+l

'

n-2

.. 1

n-1 n-1 n-1

Both numerator and denominator of this coefficient are non-zero Vander-

monde determinants and, therefore, C,-, (k = 1, 2, ... n) is a polynomial



n 1

in A of degree precisely n-1 . Moreover, the coefficient of A in this

solution for C. , is

n

1/ n (a. - a.)
,

J-l
K J

which agrees with the expansion of (4).

Next, suppose we wish to eliminate C. -, from the second through the

n equation in (2)', which yields n-1 equations in the n-1 unknown

matrices C-,-,, C , , ... C, , -, , C, ,, ,, ... C ,. We do this in order:
11 21 ' k-1 ,1 k+1 ,1 nl

2
subtract a. times the first equation from the second, a. times the first

from the third, to finally a." times the first from the n . Deleting

the first of this new system of equations we obtain n-1 equations with

the unknown C, , missing. The left members of this new system will be

A - a, I, A - a, I, ..., A - a. I , each of which has a factor A - a. I,

as does any linear combination of these left members. Therefore, each

of the solutions for C,, , C01 , . . . C, , , C. .,,... C -, will have a
11 21 ' k-1 ,1 k+1 ,1 nl

factor A - a. I. From this we conclude further that:

n

(5) C., = a. n (A - a I)
, j = 1, 2, ... n

Jl J
n=l

l

for some scalar a.. We note from (5) that C-, is precisely a polynomial

of degree (n-1) in A with leading coefficient a. which must be

n

(6) a. = 1/ n (a. - a.) (from (4)) .

J £=1 J L

l?3

As an example using (5) and (6), let A be any 3x3 matrix with

distinct eigenvalues a,, a«, a,, then;



A
(A - o

2
I)(A - o

3
I)e

]

(A - a
]

I)(A - a
3
I)e

2
(A - a

]

I)(A - a
2
I)e '

(a, - 0(a.| - aT) (a« - a,

)

(a^ - a,) (a^ - a, ) (a- - a^)

3.1 Orthogonality and Idempotency of the C . .

A further conclusion to be made at this point occurs when, using (5),

we multiply C, and C, (i f j); this yields

n n

C--.C-. = a. a. n (A - a I) n (A - a I)

If] Jtfi

n

= a. a. f(A) n (A - a I) =
--

by the Cayley-Hamil ton Theorem. Therefore, as conjectured earlier, the

C.
-I

are pairwise orthogonal when the eigenvalues of A are distinct.

Using the first of the initial conditions in (2)' and this orthogon-
al

2
ality we have C-, = C, Y CM = C.-,, j = 1, 2, ... n, i.e., each C,

is idempotent.

We summarize section (3) in the Theorem I. Given A and f(x) with

distinct eigenvalues a,, aOJ ... a we have3 12' n

v At 5 r
a
k
l

a) e = I C
kl

e

k=l
Kl

b) C., = n
7

^-j k = 1, 2, ... n
kl

*=1
U

k
" V

n (A - a„I)

n
=1

ifk

( C, if i = j (Idempotent)
c) C C =Cj L.^.

}

( if i f j (Orthogonal)

d) All C,
i

are polynomials of degree n - 1 in A and they commute.

4 . Properties of the C . . when f(x) has multiple roots .

7



4.1 Minimal Polynomial for a given matrix .

First consider the example:

10 11
] ° ° | for which f(x) - (x - I)

4
.

10
1

According to (1

)

at 9 1 t
e = (C^ + C

12
t + C

]3
t^ + C

14
Oe\

Using the initial conditions we obtain:

C
11

= I, c
12

= (A - I), c
13

= \r (a - I)
2

, c
14

= jr (A - i)
3

.

However:

C
n , - (A - I)

2
- ° ° ° ° =0

'13

and, therefore, C,
3

= C,, = 0. For the given matrix (x - 1) = is the

characteristic equation and (A - I) = 0. But it is also true for this

matrix that (A - I)
3

= (A - I

)

2
= and A - I f 0. In this case A not

only satisfies its characteristic equation, it also satisfies the equations

3 2
(a - 1) =0 and (x - 1) =0. For a general square matrix A, the lowest

degree monic (leading coefficient equal to 1) polynomial that A satisfies

2
is called the minimal polynomial for A. In the example above (x -1) is

2 At
the minimal polynomial for the given A and for this matrix (D - 1) e ' = 0.

At
Our solution for e should then have been written

e
At

= (C^ + C
12

t)e
t

.

In general, if \\j{\) is the minimal polynomial for a given matrix A

fit

and the degree of ty{\) is m(<_n), then e satisfies the initial value

problem:



and

i^(D)e
At

=

D
k
(e

At
) t=Q

= A
k

k = 0, 1 , 2, ... m - 1 .

4.2 A Redefining of the C .

Let the distinct eigenvalues of A be a,, a«, ... a with
s y

k
\l>(\) = n (a - a. ) the minimal polynomial for A (written in factored

k=l
K

s

form), \x. >_ 1 , and \ y. = m(<_ n) the degree of ip(x) . Following the

k=l y
k

theory presented in [2] we define X. (x) = i'(\)/[\ - a. ) ; then X, (a)

y

V

k=l y
k

2a in [2] we define X
k
(x) = i<(\)/{\ - a.)

and (x - a. )
' are relatively prime. Therefore, there exist polynomials

p
k
(x), q

k
(x) (degree of p

k
(x) < y

k
) such that:

(7) p
k
(x)X

k
(x) + q

k
(x) (X - a

k
)

k
e 1 , k = 1, 2, ... s.

Then define:

E. (x) = p. (x)X (x) and

(8)
K k K

E
k
(A) = E

k
= p

k
(A)X

k
(A) k = 1, 2, ... s.

We note from (8) that for k t i E, (x)E (x) is a polynomial multiple
K As

of ij;(x) and, therefore, E, • E =0 for k f i (i.e. the E. are pairwise
K L K

orthogonal )

.

From (7) we form the product:

s p. s s

n q.(x)(x - a. ) = *(x) n q (x) = n (1 - E.(x)).
k=l

K K
k=l

K
k=l

Replacing X by A in this last equation we obtain

s s s

-HA) n q. (A) = = n (I - E.) = I -
I E

k=l
K

k=l k=l
K

which follows from the definition of ;(x) and the orthogonality of the

E, . From this we have
k

(9) 1=1 E
k

.

k=l
K



Multiplying through (9) by E , using the orthogonality, we have

E,-^ 1-1,2, ...S

i.e., the E are idempotent.

Next, define:

N. (x) = (x - a. )E(x) and

(10)
k k

N
k
(A) = N

k
= (A - a

k
I)E

k
(for

Wfc
> 1 )

.

If u. = 1 , then a. is a simple root of \p{\) and for such roots

N
k
(A) = *(A) = 0. We note from (10) that N. = (A - a]< I) E

k
= ^(A) =

V 1

and N
k

f 0. The N. are said to be nil potent of index y, .

Additional conclusions from definitions (8) and (10) are:

(a) All E. , N. are polynomials in A and, therefore, commute.

(b) E
k
N
k
=N

k
. E

k
N. =N

k
N. (M j).

(c) We have the identity:

(ID A =
I E (a I + M )

k= 1
K K K

which can be seen as follows:

X
E
k
(a

k
T + V =

j, K E
k

+ AE
k

- \ E^

=
l AE = A I E = AI = A.

k=l
K

k=l
K

If we replace A in e by the identity (11), we have:

( I E (a I + N ))t
I Eat

J N.t
At _ k=l

K k k
k = l

k k
k=l

k

e - e = e • e

(12)
2

y
k
-l

s a. t (N.t)'' (N.t)

I, e {E
k

+ V + 4r + --- + T~n7T> -

and this must be identical with (1) i.e.

"
J,

e {C
kl

+ C
k2
t+ ••• ^ku/""

1

'

10



Rewriting (12) using the definition (10) we have:

At
S V < A " a

k
!

)
l

(13) e
At

= ^ E
k
e

k
{I + (A - a.Dt + ... +^ } .

In (13) we observe that we have only the E. (k = 1 , 2,. . .. s) to determine,

These can be calculated from the definition (8) or from (2) calculating

only the C.
1

= E
k
(k = 1 , 2, ... s).

4.3 Summary of section 4 and examples .

We summarize this section in:

s u
k

Theorem 2. Given A with minimal polynomial ^(x) = n (x - a. ) , m : n,

k=l
k

we have:

u
k
-l u

k
-l

.. S a. t (A - a. I) t

e -j, E
k
e {It

< A -°k I)t + -- +
TvT7r- >•

in which the E, satisfy the following:

(a) I - f E.

k=l
K

( if i f j

(b) E
k
E =

K J
! E

k
if k = j

(c) (A - a. I)E. = N, are nil potent of index u,

(d) all E
k

and N. are polynomials in A.

Up to this point we have determined e ' for any A(3 x 3) with distinct

eigenvalues. Now let us complete this calculation for any 3x3 matrix

A. To this end we have the following cases and calculations:

(i) All eigenvalues of A are equal to a, and i^(x) = f(x) = (x - a) .

In this case: «

At t l
^

e = e
U
(E, + r^t + -yp-) in which E

]

= I and N, = (A - al)

.

11



2
(ii) Again all eigenvalues equal a, but 4>(x) = (X - a) . In this

case E
]

= I and e
At

= e
at

(I + (A - al)t).

At at
(iii) \\){x) - (X - a). In this case E, = I and e = e I a scalar

matrix.

(iv) i|)(x) = f(x) = (a - a
}

)

2
{\ - o

2
), o

1
^ a

2
.

In this case:

At a
l
t a

?
t

e
At

= e ' (E
1

+ l^t) + e ^ E
2

.

We can solve for E, and E„ (N, = (A - a, I)E,) using the initial

conditions (2) or definitions (7) and (8). In view of (7) we have

(replacing A by A)

:

E
]

+ q
1

(A)(A - c^I)
2

= I.

However, we know that E, + E~ = I and, therefore, E~ = q,(A)(A - a, I)

which means we obtain both E, and E« simultaneously by using (7) and

(8). Accordingly using (7) and (8): (ax + b)(x - aJ + c(a - a,) = 1

which must hold for all A and, therefore, we have:

- -1
h ._

" (a
2 " 2a

1
}

. 1

a - o s d -
2 » c - o •

(c*2 - a-.) (a2 - a-,) (a2 - a-.)

Therefore:

E
]

= 2" (A " a
2
I)(A + (a

2
" 2al^^

(«2 " a
l

'

E2 = 2 ( A " a
i^)

anc*

(c*2 " a
]

'

- (A - .I)

N
]

= y- (A - a
2
I)(A - 20,1 + a

2
I) .

(a
2

- a-j )

Accordingly:

At a
l
t a ? t

e
A

= e ' (E
1

+ Njt) + e ^ E
2

.

12



2
(v) The last case is that in which f{\) = (x - a,) (X - a

?
) as in (iv)

but 'jj(x) s (X - a,)(X - aj.

In this case a, and a 9 are simple roots of if»(x) and therefore,

a-, t apt

g
At

n
_e

(A _ r) +
_e

(A _ ,j

a, - a 9 £ a« - a, I

by virtue of the results in section 3.

In view of the example in section 3 and the 5 cases above we have

At
obtained e for any 3x3 matrix.

It is of interest to note that for any A(n x n ) in which either

(a) A has n equal eigenvalues or the opposite extreme (b) A has n

At
distinct eigenvalues we have that e can be written immediately as:

(., e
At

- e
at V <*-? >

k
t
k

.

k=0
K '

If in this case ifj(x) = (X - a) , m < n, then the summation would

extend only to m - 1 since (A - al) = 0.

At
n

v
a
k
t

J
(A - a

j
J )

k=l j=l
la

k V
At

5. Other representations for e .

In [4] and [6] e ' is obtained by use of the Lagrange-Syl vester

interpolation polynomial. By using the eigenvalues of A as the

At
interpolation points we obtain the form of e'' in equation (12). In

At
[5] and [7] representations of e" are obtained in one case in powers of

A and in others in powers of A - a. I (a. - eigenvalues of A). In any

case, if all these representations were given in powers of the same

ame(A - B-I) then they would, of course, all be the s

At
Another representation for e , which has applications to solutions

of first order linear systems of simultaneous differential equations

13



with constant coefficients, is obtained as follows. Suppose we have

given:

(14) x '(t) = Ax (t)

A an n x n matrix with constant elements, x(t) an n x 1 vector function

of t. Suppose we have found a fundamental set of solutions for (14)

namely x-,(t), x
2
(t)» ••• x

n
(t). Then define:

(15) X(t) =
( x -,(t), x2

(t). ... x
n
(t))

,

which is an n x n matrix whose columns are the elements of the fundamental

set. X(0) is nonsingular and we define

(16) G(t) = X(t)(x(0))"
1

;

then

6(t) = e
At

.

This equation follows from differentiating (16), which yields

G'(t) =
( x ](t), xj(t). ... x;(t))(X(0))-

]

.

By (14) G'(t) can be written:

G'(t) = (AX] (t), Ax
2
(t), ... Ax

n
(t))(X(0))

_1

= AX(t)(X(0))"
]

= AG(t) .

From this last equation it follows that:

G
(k)

(t) = A
k
G(t) k=0, 1, ...,

which in turn yields :

G
(k)

(0) = A
k

k=0, 1, ... .

Moreover,

f(D)G(t) = f(A)G(t) =

by the Cayley-Hamilton theorem.

Therefore, G(t) satisfies the initial value problem which is also satisfied

At
by e . By uniqueness of such solutions we conclude:

G(t) = X(t)(X(0))
-1

= e
At

.

14



At
6. Some applications of e

From the last remarks in section 5, and since (X(0))~ is nonsingular,

-1 At
X(t)(X(0))~ = e

n
has columns that are linear combinations of the

columns of X(t) and form another fundamental set for the differential

equation (14)

:

x'(t) = A x (t)
f

Let us use this fact to solve the system

x(t),

\2/,

e
At

= e
l

The given matrix has characteristic polynomial f(x) = ^{\) - (x - 1) (x + 1)

Using case (iv) in section 4 with a, = 1 and a
?

= -1 we have:

2 -1

2 -1

e
t
(2 + t) - e

_t
-e

t
(2 + t) + 2e

_t
e
t
(l + t) - e

_t

t -t t „ -t t -te-e -e+2e e-e
-te

t
te* e

t
(l - t)

The columns of the latter matrix constitute a fundamental set for

the differential equation and its general solution is:

x(t) = e
At

x (0) ,

where x(0) forms the initial conditions for x(t) (given at t = 0).

At
As a matter of fact, having obtained e ' for all 3x3 matrices A we

have therefore obtained fundamental sets for all systems of differential

equations x'(t) = Ax(t) with A a 3 x 3 matrix of constants and x(t) a

3 x 1 vector function of t.

15



At -At
Knowing e and e we define

cosh At = l/2(e
At

+ e"
At

) and

sinh At = l/2(e
At

- e"
At

).

i j\f -iAt /

Equally well we know e and e (i = AT) and define:

cos At = l/2(e
iAt

+ e'
1At

)

sin At . ^(e 1" - e
" 1At

).

As an example, we indicate the expansion of cosh At:

2 2 3 3
s IT.r s !T,r

cosh At =
I cosh a. t(E, + -^— +...)+ J sinh a. t(N. t + -~-y

—

k=l
K K '• k=l

K K J -

with each of these two sums terminating with the term containing either

t or t , depending upon whether \x. is even or odd.

In [1] T. M. Apostol considers the system of differential equations

Y"(t) = AY(t)

and writes the solution in terms of two matrix functions

°°
t
2k

A
k

°° t
2k + ]

A
k

C(t) =
l
Q
T2kTT '

S(t) =

k
I
Q

(2k + 1)!
•

C(t) is precisely cosh 7K t and S(t) is (/K)~ sinh /K t provided that JK

is defined and nonsingular. Clearly one would define /A to be that

matrix B such that B = A. It turns out that B is not unique (as one

would suspect), in fact, there may be as many as 2 matrices B such that

2
B = A. However, these B- matrices may be calculated as follows. If

A is similar to a diagonal matrix so that

A = T" Diag {a, , a«, ... a^} T
,

then

/7\ = T"
1

Diag {+*a]
/2

,
+ J/ 2

, ... j_ ay
2

} T.
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If A is not similar to a diagonal matrix and is nonsingular, then /K

can be obtained as follows: From (11)

A =

j,
E
k
(a

k
! + \> j W§ •

then

N.

k=l
~ K K a

k

' i "I/O

If (I + —)
' is expanded by the binomial theorem then this expansion

a
k

would terminate with the term N. since N, is nil potent of index u. .

Knowing how to compute /K in some cases we then have for these

cases the solutions to

(a) Y"(t) + AY(t) =

given by

Y(t) = (cos /K t)Y
1

+ (sin JK t)Y
2

;

or

(b) Y"(t) - AY(t) =

given by

Y(t) = (cosh /K t)Y
]

+ (sinh /A t)Y 2<

In (a) and (b)

Y(0) = Y
1

and Y'(0) = /k Y 2<

As a last application we will consider: let A be a 3 x 3 matrix with

2
characteristic function f(x) = \i>(\) = (x - a,) (x - a

?
) (case (iv) in

section 4), and suppose we are qiven the nonhomoqeneous system

(17) x'(t) = Ax (t) + a^^
,

in which x(t) is a 3 x 1 vector function of t to be determined and a, is

-At
a 3 x 1 constant vector. Multiplying through (17) by e ' yields

17



e~
At

x '(t) - Ae"
At

x (t) = D(e"
At

x (t)) = e^e" 1

.

Integrating this last equation we obtain

no\ t + \ ^ ft -At V, At
(18) x (t) = e / e a^ dx + e a

2
,

in which a
2

is a 3 x 1 vector whose elements are arbitrary constants.

From case (iv)

At ct
l
t °? t

(19) e
At

= e ' (E
1

+ ^t) + e
L

Eg.

Substituting (19) into (18), using the orthogonality, idempotentcy and

nilpotentcy of E, , E« and N, and integrating we obtain

a, t N, t E
?

cut out

x(t) = e {(E, + -|-)t spr^ + fe (E, + N,t) + e E
2
)a

2

as the complete solution to (17).

18
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