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ABSTRACT

This paper approaches the optimal slot utilization problem in a Naval Battle Group by

modelling ships capable of transmitting on a particular frequency as vertices in a graph, and the

relationships between them as edges in that graph. We then analyze the structure of the resultant

graph and find an upper bound on the chromatic number of its conflict graph to take into account all

possible patterns of interference in determining the minimum number of time slots required, thereby

allowing efficient and effective net throughput. Our results include the identification of specific types

of graphs in which an exact solution is possible based upon the maximum degree of all vertices in the

graph, as well as an algorithm for general graphs which will identify an upper bound on the chromatic

number of their conflict graph. Original results are proven, and analysis and examples of the

algorithm are provided.
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I. INTRODUCTION

A. STATEMENT OF PROBLEM

The Shared Adaptive Internetworking Technology (SAINT)

Project has been undertaken by the Naval Oceanographic Systems

Center (NOSC) to address advanced concepts in fleet

communication networking, focusing on the development of new

and improved protocols for Navy Communication Subnetworks,

multiband selection, and Military Enhanced OSI Protocols.

[Ref. 1: p. 3)

The specific area of interest for this thesis is that of

Communication Subnetworks and the concept of Improved Slot

Utilization. A slot, in this context, is a time unit in a

message transmission cycle on a specific frequency during

which a given ship is authorized to transmit messages to other

ships in the Battle Group. The current protocol allocates a

set of slots to each ship in the Battle Group without regard

to possible nonconflicting transmissions. It is therefore

desirable to enhance the current protocol to allow increased

utilization of slots, utilizing connectivity information to

allow users in separate parts of the network to share the same

slot, thus improving net throughput. [Ref. 1: p. 7]



An example of possible slot allocations for a Battle Group

is depicted in Figure 1.1.

8hWA stpB 3hpD 3SWE hP F SMPG

11121314161 617 1 Z 0. 10 Ill 121 131141 161161

Figure 1.1 Slot Assignments for a Battle Group

The basic premise of this thesis is that if two ships are

able to transmit simultaneously to different receiving ships

without conflicting in their transmissions, then the

assignment of a single time slot to both ships should be

possible.

The mathematical model we will be using to examine the

slot utilization problem for a given Battle Group is a graph,

where the ships are represented by vertices and the capability

of two ships to communicate between one another on a given

frequency is represented by an edge between their respective

vertices. Now, by analyzing certain characteristics of the

graph, we hope to be able to give specific results as to an

optimal slot utilization scheme.
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Figure 1.2 shows the graphical representation of the Battle

Group shown in Figure 1.1, and gives an example of slot

assignments which provide improved slot utilization.

Spip A

Ship Ship B

ShipC0
Ship

Ship E Ship D 0 * 0
Denote Ships Which

Can Transmit Simltaneous
Figure 1.2 Improved Slot Utilization

The remainder of Chapter I provides basic definitions in

Graph Theory to be used throughout this text as well as some

specific classes of graphs and their identifying

characteristics. To determine the interference relationships

between ships in the Battle Group, and hence vertices in the

graphical model, we will be using concepts in constructing

conflict graphs as introduced in Chapter II. We will then

identify the idea of graph coloring as the mathematical

technique to be used in selecting ships which may use the same

time slot in the transmission cycle without encountering any

interference. Chapter III continues with an introduction to

coloring algorithms and the theory used to analyze those

algorithms in terms of efficiency and running time.
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Finally, Chapter IV introduces a number of original

results developed for specific classes of graphs that have an

optimal upper bound on the number of slots required. We then

consider general graphs and introduce an original algorithm to

obtain appropriate results for the general graphs efficiently.

We complete the paper with a chapter on summary and

conclusions, and a discussion on how these results may be used

in the original slot optimization problem.

B. GRAPH THEORY

1. Background

Persons familiar with the fundamentals of graph theory

may wish to overlook this section and continue their reading

with Chapter II.

Graphs were first introduced by Euler irý 1736 in his

discussion of the now famous Konigsberg Bridge Problem. The

problem is explained that in the old city of Konigsberg in

East Prussia, the city was located along the banks and two

islands of the Pregel river with the four parts of the city

connected by 7 bridges as shown in Figure 1.3. On Sundays,

the citizens of Konigsberg would promenade about town, and the

problem arose is to whether it was possible to plan a

promenade so that starting at home one returns there after

having crossed each of the 7 bridges exactly once. [Ref. 2: p.

p. 415] Euler s.-udied the problem and deduced that indeed it

4



was impossible to complete the promenade with the city

arranged as such.

A

D

Figure 1.3 Konigsberg Bridge Problem

A
In doing so, he replaced the map

of Konigsberg with the graph

drawn in Figure 1.4, and

redefined the problem in present

terminology as whether there

exists a closed path which D
contains all the edges of the

graph. [Ref. 2: p. 416] Figure 1.4 Graphical

Representation of Konigsberg
Bridge Problem
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2. Definitions and Terminology

The initial definitions in basic graph theory have

been adopted from Fred S. Roberts (Ref. 3: p. 82-91].

A digraph D is a pair (V,A), where V is a set of p

vertices and A is a set of ordered pairs of elements of V.

The vertices are represented by points and there is a directed

arc heading from u to v if and only if (u,v) is in A.

In Figure 1.5, V is the set {a,b,c,d,e} and A is the set

{ (a,b), (a,d), (b,c), (b,d), (c,a), (c,d), (d,c), (d,e), (e,a) , (e,b) }.

a

e d

Figure 1.5 A Digraph

A graph G is a pair (V,E), where V is a set of p

vertices and E is a set of q unordered pairs of elements of V.

6



The graph G is said to have order p and size q. Again, the

vertices are represented by points, while the edges between

two points u and v are drawn if and only if {u,v} is in E.

Figure 1.6 shows three simple examples of undirected graphs.

a 1 b

4 2 2
d 3 C 3 C 1 " 2

G1 G2  G3

Figure 1.6 Examples of Graphs

In Figure 1.6, graph G, consists of V={a,b,c,d} and

E={{a,b},{b,c},{c,d},{a,d},{b,d}}, while G2  consists of

V={a,b,c} and E={{a,b},{b,c},{a,c}}.

When there is an edge between vertex u and vertex v,

we say u is adjacent to v, and similarly v is adjacent to u.

Further, an edge which lies between two vertices, say u and v,

is said to be incident to vertex u and incident to vertex v.

In our examples above, in graph G,, a and b are adjacent

vertices and edge 1 is incident to vertex a and vertex b. The

neighborhood of a vertex is defined to be the set of vertices

which are adjacent to the vertex.

We will assume the following about the graphs used in

this study. There are no multiple edges, i.e., no more than

7



one edge from one vertex to another, and no loops, i.e., edges

from a vertex to itself.

The degree of a vertex is the number of edges incident

with it and is denoted deg(v). In G2 of Figure 1.6, deg(a)=2,

while in G,, deg(b)=3. The degree sequence of a graph is a

list of the degrees of the vertices in nonincreasing order.

The minimum degree among the vertices of a graph G is denoted

6(G), while the maximum degree is denoted A(G).

C. DISTANCE IN GRAPHS

There is much emphasis placed upon the concept of distance

in our graphs throughout this study. The basic definitions

used in this section have been adopted from F. Harary and F.

Buckley (Ref. 4: p. 2-15].

A walk in a graph G is an alternating sequence of vertices

and edges v0 ,e 1,v 1,e 2 1v2 1 ... ,V.0 1 ,e,,vn, such that every ei=vilvi is

an edge of G, :i:in. The vertices and edges need not be

distinct. A walk is a path if all of its vertices (and hence

its edges) are distinct.

The distance d(u,v) between two vertices u and v in G is

the minimum number of edges in a path joining them, if any.

A graph is connected is there is a path joining each pair of

vertices.

In a connected graph G, the eccentricity of a vertex v,

denoted e(v), is the distance to a vertex farthest from v.

Thus e(v) = max{d(u,v):veV}. The radius of a graph G, denoted

8



r(G), is the minimum eccentricity of any vertex in G and the

diameter of a graph G, denoted d(G), is the maximum such

eccentricity. [Ref. 4: p. 31-2]

D. TYPES OF GRAPHS

There are several types of graphs that will be used as

examples later in this paper, grouped according to specific

characteristics they have in common such as diameter, radius,

or degree sequences.

A regular or k-regular graph is a graph in which all

vertices have the same degree k. A graph with p vertices is

said to be complete, denoted K,, when every pair of its

vertices is adjacent. In Figure 1.7, graph G, is a 3-regular

graph and graph G2 is a complete graph K5.

a

b b

d d c

G1 G2

Figure 1.7 Examples of a Regular Graph and Complete Graph

A graph G is bipartite if the vertex set V can be

partitioned into two subsets V, and V21 such that every edge in

G joins a vertex in V, with a vertex in V2. If G is bipartite

9



and contains every possible edge joining V, and V2, then G is

a complete bipartite graph. If V, and V2 have m and n

vertices, we write G=Km... A tree is a special type of a

bipartite graph where every two vertices are joined by a

unique path and there are no cycles. In Figure 1.8, graph G,

is a bipartite graph in which V, = {a',b',c'} and V2 = {a,b},

G2 is a complete bipartite graph in which V, = {u',v',w',x'}

and V2 {= u,v,w}, and G3 is a tree where we may partition the

vertices as V, = {a,d,e,f} and V2 = {b,c,g,h,i,j}.

a! Ur

a U a

b C

b V b

d d

S"g h Ij

Figure 1.8 A Bipartite Graph, Complete Bipartite Graph,
and a Tree

A cycle is a closed walk in which all of the vertices

except the starting and ending vertices are distinct. We

denote a cycle of length p as CP. Given two graphs G, and G,

with distinct node sets V, and V2, and edge sets E, and E,,

respectively, a loin is denoted G, + G2, where V = V, U V2 and

10



E = E, U E2 U {{x,Y}I XEVI, yEV2}. A wheel, denoted Wm. is

formed by the join of a complete graph K. and a cycle C.. In

Figure 1.9, graph G, is a cycle C5 while G2 is a wheel W15 = K,

+ C5.

a a

e b el b

d cd C

Figure 1.9 A Cycle and a Wheel

A subgraph of a graph G is a graph having all of its nodes

and edges in G. It is called a spanning subgraph if it

contains all the nodes of G. For any set S of nodes in G, the

induced subgraph <S> is the maximal subgraph with node set S.

[Ref. 4: p. 9] A complete subgraph is called a clique. The

maximum order of a complete subgraph of G is called the clique

number of G and is denoted w(G). [Ref. 5: p. 244]

Suppose that G is a graph and ul, u2, ... I, ut 1, u,=u, is a

cycle in G. A chord in this cycle is an edge {ui,ul}, iij,

which appears as an edge in G. A triangular chord is a chord

(u,,u,) such that i and j differ by 2. [Ref. 6: p. 109]

11



An undirected graph G is called chordal (triangulated) if

every cycle of length strictly greater than three possesses a

chord, that is, an edge joining two nonconsecutive vertices of

of the cycle [Ref. 7,p. 81]. Figure 1.10 shows an example of

a chordal graph and a non-chordal graph.

Gj G 2

Figure 1.10 A Chordal and Non-Chordal Graph

A diamond is a graph consisting of two triangles with

exactly one pair of vertices common to both, i.e., a complete

graph on four vertices with one edge deleted. If a graph G

contains no induced diamond, we call G diamond-free. Figure

12



1.11 shows an example of a diamond and diamond-free graph.

[Ref. 8: p. 2]

Figure 1.11 A Diamond and a Diamond-Free Graph

Thus, a diamond-free chordal graph is a diamond-free

graph in which every cycle of length strictly greater than

three possesses an edge joining two nonconsecutive vertices of

the cycle.

13



II. COMPETITION AND CONFLICT GRAPHS

A. COMPETITION GRAPHS

1. Background

Competition Graphs were first studied by Cohen in 1968

in his analysis of food web models of ecological systems.

Cohen introduced competition graphs as a means to understand

the relationships between predators and prey throughout the

species found in the system. Using the previously defined

terms of digraphs in modelling the food web, the vertices

represent species and there is an arc from species x to

species y if x preys on y. Figure 2.1 shows an example of a

food web. (Ref. 9: p. 1]

1 2
"1. Bear
2. Deer
3. Wolf
4. Insect

80 •5. Plant
6. Rabbit
7. Rodent
8. Snake

7 .4

6 5
Figure 2.1 A Food Web
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2. Definitions

For each digraph D=(VA) there is a corresponding

undirected graph , called its competition graph with vertex

set equal to the original vertex set V(D), but with an

undirected edge between two distinct vertices x and y of V(D)

if and only if there is a vertex a such that (y,a) and (x,a)

are both arcs in A(D), i.e., if and only if x and y are in

competition in the sense of preying on a common species.

Figure 2.2 shows a digraph D and its competition graph C(D).

[Ref. 10: p. 295)

2 2

8a/ \ . :3

7 

3 

• • * 47

S6 5

D

Figure 2.2 The Food Web from Figure 2.1 and Its

Competition Graph

We can generalize the use of competition graphs if it

is possible to partition the vertex set A into two sets B and

15



C, where B is the set of transmitting vertices and C is the

set of receiving N-ertices and B U C = A. We may then denote

the graph as G(D,B,C), where D is the digraph representing the

system and B and C are defined as above.

3. Applications

Raychaudhuri and Roberts continued the study of

generalized competition graphs in a number of applications.

One of the more relevant examples to this thesis is that of

radio or television transmitters, where we have a set B of

transmitting stations and a set C of receiving stations, and

define a digraph D by taking V(D) to be B U C and taking an

arc from x in B to a in C if a signal sent at x can be

received at a. Then the graph G(D,B,C) is a special form of

the competition graph called a conflict graph. Two

transmitting stations are said to conflict if and only if a

message sent by them can be received at the same place. [Ref.

10: p. 296]

B. CONFLICT GRAPHS

1. Definitions

A special form of a competition graph is the conflict

graph, denoted G,, which is obtained from a given undirected

graph G=(V,E) in which V(G,)=V(G) and in which the edge set

E(G,) consists of all edges in the original set E(G) together

with all edges {u,v}, where {u,a} and {v,a} are in E(G) for

some vertex a in V(G). That is, all vertices within distance

16



two of one another in the original graph G have an edge

between them in its conflict graph. For example, in Figure

2.3 the graph G consists of V(G)={a,b,c,d,e} and

E(G)={{a,b},{b,c}, {c,d},{d,e},{a,e}}, while in the conflict

graph G,, V(G,)=V(G)= {a,b,c,d,e} and E(Gj)={{a,b},{b,c},{c,d},

{d,e},{a,e},{a,c}, {a,d},{b,d},{b,e},{c,e}}.

a a

e b e b

d c d c

G Ge

Figure 2.3 A Graph and Its Conflict Graph

Conflict graphs have proven most useful in the study

of communication networks and the design of computer

networking schemes.

17



III. GRAPH COLORING AND NP-COMPLETENESS

A. GRAPH COLORING

1. Background

The problem of graph coloring was first introduced in

1852 by Francis Guthrie and Augustus De Morgan. While they

could not prove it, both mathematicians conjectured that any

map drawn in the plane could be colored with at most four

colors. (Ref. 5: p. 239] Figure 3.1 shows an example of a map

coloring with six countries. [Ref. 3: p. 100]

2 blue
1 6 red

3 green

Y4 5yellow
green

Figure 3.1 A Map and Its Coloring

In the map above, Country 1 was colored red. Given

that Country 2 shares a common boundary with Country 1, we

must color Country 2 with a new color, say blue. Now Country

18



3 shares boundaries with both Country 1 and Country 2, so we

must use another color, say green. Similarly, Country 4

shares boundaries with each of Countries 1, 2 and 3, so we may

introduce a fourth color, say yellow. Now Country 5 shares a

boundary with Countries 1, 2 and 4, but is not adjacent to

Country 3 and may therefore use the color green. And finally,

Country 6 shares a common boundary with Countries 2 and 3, but

is not adjacent to Country 1 and may therefore use the color

red.

While Guthrie and De Morgan's Four-Color conjecture

remained unproven for over 100 years, it was finally proven in

1977 by Appel and Haken. [Ref. 3: p. 100)

2. Definitions and Terminology

In properly coloring a graph, we assign a color to

each vertex of a graph G in sucl a way that if two vertices

are joined by an edge, they get a different color. If such an

assignment can be carried out using at most k colors, we call

it a k-coloring of G and say G is k-colorable. The smallest

number k such that G is k-colorable is called the chromatic

number of G and is denoted by X(G) [Ref. 3: p. 97-8]. Figure

3.2 shows two examples of graph colorings in graphs G, and G,.

Clearly, if a graph G has n vertices each vertex could be

colored distinctly, but the challenge lies in finding the

chromatic number or bounds upon the value of the chromatic

number.

19



There are several algorithms available for obtaining

bounds on the chromatic number of a graph, however none are

able to guarantee the exact calculation of its value.

red blue red blue gmen

red < red

blue red bWle gmen blue

Figure 3.2 Examples of Graph Colorings

3. Applications

The four-color problem provided a stepping stone to

theories in graph coloring. Some interesting applications are

the scheduled meeting problem, channel assignment problem, and

the scheduling of garbage collection tours [Ref. 11: p. 2-4],

as discussed below.

In the scheduled meetings problem, the New York State

Assembly used graph coloring to solve the problem of assigning

a meeting time to each legislative committee. If two

committees have a member in common, they must yet a different

meeting time. A graph is constructed in which the vertices

20



represent committees and an edge between vertices x and y

exists if and only if committees x and y have a member in

common. The colors used in the graph then represent meeting

time blocks, and the chromatic number is the distinct smallest

number of such meeting blocks required.

The channel assignment problem is used in radio and

television applications where we wish to assign a channel to

each television or radio transmitter. In a simplified

version, transmitters interfere if and only if they are within

a certain distance of each other, and hence those transmitters

which interfere must get different channels. We can model

this interference by constructing the conflict graph, where

the vertices represent transmitters and an edge between

vertices x and y exists if and only if the corresponding

transmitters interfere. The colors of the graph are channels,

and hence the chromatic number of the graph represents the

smallest spectrum of channels required in the system.

The garbage collection problem deals with a tour of a

garbage truck, or the schedule of sites it visits on a given

day, with the constraint that if two tours visit the same site

they must do so on different days. We wish to assign to each

tour a day of the week on which it will be scheduled so that

if two tours visit a given site, they get a different day.

In the graph for this problem, the vertices represent the

tours and an edge exists between vertices x and y if and only

if tours x and y visit a common site. The colors used in the
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graph then designate all tours that can be executed on the

same day. Hence in order to hold to a six-day work week, we

wish to find whether the graph is 6-colorable.

B. THEORY OF NP-COMPLETENESS

To appreciate the difficulties in graph coloring it is

important to understand the algorithms used to construct the

coloring and to analyze the behavior of the algorithms without

having to implement them in every situation possible. This

analysis leads to the study of the complexity of algorithms

and to the issue of NP-Completeness. Readers are referred to

Manber for a more complete background on the analysis of

algorithms. (Ref. 12: p. 37-40]

In analyzing the behavior of an algorithm it is important

to understand that different algorithms accomplish different

tasks. Thus we need a method to compare competing algorithms

or a way to determine the feasibility of performing the

required calculations using a specific algorithm. It is

important also to relate computational effort in the algorithm

to the size of the problem, usually measured in terms of hte

input parameters. For instance, in algorithms dealing with

graphs the computational effort could be related to the number

of vertices or the number of edges in the graph. It is common

in practice to use worst-case scenarios in approximating these

input sizes.
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The complexity function of an algorithm is based upon the

input size n and the number of primary steps in the algorithm

as a function of n. We will use the notation that a function

g(n) is O(f(n)) for a complexity function f(n) if there exist

positive constants c and N such that for all nŽN, we have

Ig(n)l : clf(n)j. The 0 notation hence bounds g(n) only from

above. For example, 6n 2+l0 = O(n 2 ), since 6n 2+10 • 7n 2 for n24.

A polynomial time algorithm is defined to be one whose time

complexity function is O(p(n)) for some polynomial function p.

Any algorithm whose time complexity function cannot be bounded

by a polynomial is called an exponential time algorithm.

The theory of NP-Completeness, as discussed by Garey and

Johnson [Ref.14: p. 6-8] is based upon the distinction between

polynomial time algorithms and exponential time algorithms.

The distinction between these two types of algorithms has

particular significance when considering the solution of

problems with large input size n. Table 1 illustrates the

differences in growth rates among several typical complexity

functions of each type, where the functions express running

time. Notice the explosive growth rates for the exponential

complexity functions.

The table below indicates one of the primary reasons why

polynomial time algorithms are generally regarded as being

more desirable than exponential time algorithms, and indeed it

has been proven that polynomial time algorithms are always

23



preferable to exponential time algorithms. The reader is

referred to Garey and Johnson for the proof and a more

complete discussion on NP-Completeness.

TABLE 1. COMPARISON OF POLYNOMIAL AND EXPONENTIAL TIME
COMPLEXITY FUNCTIONS [Ref. 13: p. 7]

Time Complexity Size n
Function 10 20 30 40 50

n .O0001sec .00002sec .00003sec .00004sec .00005sec
n2  .0001sec .004sec .009sec .0016sec .0025sec
n5 .lsec 3.2sec 24.3sec 1.7min 5.2min
2n .001sec 1.0sec 17.9min 12.7days 35.7yrs
3n .059sec 58min 6.5yrs 3855cent 2xl08cent

For our purposes, it is enough to say that an NP-Complete

problem is intractable for all but small problem sizes.

C. COLORING ALGORITHMS

While the general question of determining the chromatic

number of a graph is known to be NP-Complete, there are a

number of known polynomial-time algorithms which give

approximate colorings of graphs and which will guarantee

optimality in specific instances. For example, the Brelaz

Color-Degree Algorithm described below determines the

chromatic number for a given graph G.
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Brelaz Color-Degree Algorithm

Input: A graph G=(V,E)

Output: A proper coloring of the vertices of G using colors1, 2, ... , Ivl
Method: Break the ties based on the smallest color-degree

(The color-degree of a vertex v is defined to be the
number of colors needed to color the vertices
adjacent to v.)

1. Order the vertices in decreasing order of degrees.

2. Color a vertex of largest degree with color 1.

3. Select from the uncolored vertices a vertex with maximum
color-degree. If there is a tie, choose any vertex of
largest degree in the uncolored subgraph.

4. Color the vertex selected in Step 3 with the lowest
possible color number.

5. If all vertices are colored, then stop; else go to Step
3.

Another well-known algorithm discussed by Golumbic [Ref.

7: p. 98-9] correctly calculates the chromatic number of a

triangulated graph G. A triangulated graph is defined to be

one in which its maximal complete subgraph is a triangle.

[Ref. 7: p. 98-9]. The details of that algorithm may be found

in the reference above.

Although the above algorithms can guarantee optimal

colorings, the graphs that best model the battle groups

introduced in Chapter I can not be categorized into the

required bipartite or triangulated form. It should prove

beneficial, then, to instead discuss those algorithms or
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heuristics which may provide near-optimal results for the

types of graphs more often encountered.

A heuristic is defined to be a technique that improves the

efficiency of a search, while possibly sacrificing claims of

completeness, or, in this case, optimality. The technique we

most often use is the nearest neighbor algorithm following the

best-first search process in which we examine all unvisited

neighbors of some starting vertex and next visit the neighbor

that most satisfies some test criterion. This is done in the

hope that the test criterion will point us more rapidly toward

our desired solution, rather than making it necessary to

enumerate all possible solutions. [Ref. 5: p. 58]

The first heuristic normally encountered in graph coloring

literature is that of the greedy graph coloring method. The

idea is to color the vertices as they are encountered using

any color available, that is, any color not already assigned

to a neighboring vertex. This approach can lead to a very

poor upper bound on the chromatic number. For example, in

Figure 3.3, the graph G has been colored starting at vertex v,

and continuing through the consecutively ordered vertices,

resulting in a coloring number of 4, while the chromatic

number of the graph can be shown to be 3.

It has been found that the "best" approximating algorithms

are motivated by a small number of heuristics based upon the
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following three ideas, first described by B. Manvel. [Ref. 5:

p. 229]

V1  V2

Greedy Coloring Optimal Coloring
v1:red v1:red
vi:blue v2 :green
v3:red v3 :red

V V3 v4 :blue v4 :blue
v5 :green v. :green
vanyellow v8 :blue

VS V4

Figure 3.3 A Greedy Graph Coloring and An Optimal
Coloring

1. A vertex of high degree is harder to color than a vertex
of low degree.

2. Vertices with the same neighborhood should be colored
alike.

3. Coloring many vertices with the same color is a good
idea.

One such algorithm is the Welsh-Powell Coloring Algorithm

which specifies that vertices of higher degree are colored
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first, then multiple vertices are colored with the same color,

if possible.

Welsh-Powell Algorithm

Input: A graph G=(V,E)

Output: An approximate coloring of the vertices of G

Method: Color first ý,icolored vertex and uncolored vertices
not adjacent to it.

1. Order the vertices in decreasing order by degree.

2. Assign an unused color to the first uncolored vertex in
the list. Go through the list in order, assigning the
same color to any vertex not adjacent to any other vertex
with this color.

3. If some vertices are not colored, go to Step 2.

4. Done.
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IV. COLORING CONFLICT GRAPHS

A. SPECIAL TYPES OF CONFLICT GRAPHS

In general, a closed form expression for the chromatic

number of the conflict graph of a graph G in terms of one or

more parameters of G is not obtainable. There are, however,

classes of graphs whose members do allow that. For example,

a tree like that pictured below in Figure 4.1, is a type of

graph whose structure is so defined.

a

Figure 4.1 A Tree
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Theorem 1: Let graph T be a tree. Then (T,) =AT+l.

Proof: First, we will show that X (T) !5 AT+l.

Let T be a tree and let v be the vertex of maximum degree d,

i. e. , deg (v) =d=AT. We may color the vertices v,, V 2 1 .. . I Vd

adjacent to v such that color(vi)=i+l, coloring vertex v with

color 1.

We must show that these d+1 colors are sufficient to color

T,.

Suppose, by way of contradiction, that there is some

vertex u in T which requires some color d+2. This implies

that u is within distance 2 of d+1 vertices. Let deg(u)=d',

where d'<-d. But that means there are at least (d+l)-d'l>-

vertices of distance exactly 2 from u. Let w be one of those

vertices. Now w must also be within distance 2 of those

vertices immediately adjacent to u, else we could duplicate

the colors used on them. Let U2 be one such vertex. But as

pictured in Figure 4.2, this implies

that there is a path of length 2 from u

to w via some vertex u,, a path of

length 2 f rom w to U2 and a path of U

length 1 from u to U2. But this means

there is a cycle, which contradicts the U

assumption that T is a tree. Therefore U

there cannot be a vertex which requires Figure 4.2 A Cycle
in T; T cannot be a

d+2 colors, and hence (T,) !ý AT+l. tree.
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Now we must show that X(TJ) Ž AT+l. Let v be a vertex in

T of maximum degree, i.e., deg(v)=AT. Then clearly we must

have at least AT+I colors to distinctly color v and its

adjacent vertices, hence X(TJ) Ž AT+I.

But now this implies that X(TJ) = AT+1. U

Another specific type of graph that has a closed form

chromatic number for its conflict graph is a wheel W,,, as

pictured in Figure 4.3.

VI,

V2

VV 2

Figure 4.3 A Wheel

Theorem 2: Let G be a wheel W1,,. Then X (W,) = n+l.

Proof: Let W be a wheel. By the definition of a wheel,

we know that there is some vertex v+,1 which is adjacent to

each of the other n vertices in the graph.

But this implies that each vertex in W is of distance at

most two from every other vertex via v,÷,, and hence all

vertices would be adjacent in the conflict graph of W.

Therefore, X (WJ) = n+l. U
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Similarly, we may show that the conflict graph of a

complete bipartite graph Kmn is a complete graph Km,,, and

hence I[(Km.)c] m+n.

Theorem 3: Let G be a complete bipartite graph Kmn, Then

X (Km. 1 c) = m+n.

Proof: Let G=(V,E) be the complete bipartite graph Km..

We may then partition V into two subsets V, and V2 of sizes m

and n, respectively, where the edge set E contains only those

edges joining each vertex in V, to every vertex in V2. But

that implies that every vertex in V1 is distance exactly two

from every other vertex in V,, and similarly every vertex in

V2 is distance exactly two from every other vertex in V2.

Hence, in the conflict graph G,, every vertex in V, is adjacent

to every other vertex in V and every vertex in V2 is adjacent

to every other vertex in V, so the chromatic number is

(G) = IVI = m+n. U

We can generalize the above to any graph G of diameter at

most two. Indeed, since the diameter is the maximum distance

between any two vertices in the graph, it follows that in any

graph G=(V,E) whose diameter does not exceed two, all vertices

in its conflict graph G, must be adjacent to one another.

Hence the chromatic number is ii,(G,) = IVI.
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We now consider chordal graphs. In the general case, we

have counterexample to the proposition that the chromatic

number is bounded by AG+1 or AG+2 as shown in Figure 4.4.

X(C-) -8

G 2 -:G-6
X(%) - 9

Figure 4.4 Counterexamples to the conjectures of the
chromatic number of the conflict graph being max degree +
1 or max degree + 2.

We can, however, obtain such results in the case of graphs

that are both chordal and diamond-free. As previously

discussed, diamond-free chordal graphs are diamond-free graphs

in which every cycle of length strictly greater than three

possesses an edge joining two nonconsecutive vertices of the

cycle.
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We now propose that for a graph G which is both diamond-

free and chordal, X(G,)=AG+l.

Before going into the required proofs, we will first

define an additional term and introduce a theorem.

Definition: A perfect graph G=(V,E) is one in which

X(GA)=w(GA), for every subset A of V. [Ref. 7: p. 523

Theorem 4: Every chordal graph is perfect. [Ref. 7: p.

95]

We propose the following two lemmas.

Lemma 1: If G is a chordal graph, then G, must also be a

chordal graph.

Proof: Let G be a chordal graph and assume, by way of

contradiction, that G. contains an induced n-cycle, nŽ4.

Because G. contains G, we know that either G contained the

induced n-cycle or the induced n-cycle was constucted from G

in its conflict graph.

Consider the first case. But G is given to be a chordal

graph, hence cannot contain an induced n-cycle where nŽ4.

But this implies that the second case must hold, that is

that the induced n-cycle must have been constructed from G in

its conflict graph. Consider the n-cycle, x1, x-, ... , xi, x1+ 1,

.. , x., x,, given in Figure 4.5.
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Now, for it to have been

constructed from G, there X

must have been at least one

edge {xj,xj~j} in E(G.) that was

not in E(G). But this xXn Denote edges

implies that there was some Xrl InE(G)

vertex y not in the given n-
Figure 4.5 The (n+l) -cycle in

cycle such that {xi,y} and G; A Contradiction

{xj+j,y} were in E(G). But

this means that there was an induced cycle of length at least

n+l in G, a contradiction. Therefore, given that G is a

chordal graph, G, cannot contain an induced n-cycle and must

therefore also be a chordal graph. U

Lemma 2: If G is a diamond-free chordal graph with

maximum degree AG, then w(G,)=AG+l.

Proof: We must first show that w(Gj)ŽAG+I, then show

iw(G,):5AG+I.

Now, since AG is the maximum degree of G, we know that for

some vertex v such that deg(v)=AG, there exists a clique of

size AG+1 in G, centered at v. Therefore we know that

w (G,) ŽAG+1.

We now show that w(G,)5AG+I. Suppose, by way of

contradiction, there is a clique of size AG+2 in G, and let u

be a vertex in that clique with degree d5AG. Then there is at

least one vertex, say w, of distance exactly two from u.
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Now w must be adjacent to exactly one of those vertices,

say x, which is also adjacent to u, otherwise we would create

either a diamond or a cycle of length four or greater.

Consider w. Now every vertex in the clique that is

adjacent to w must also be adjacent to x, else it would be in

a cycle of length greater than three or would not be within

distance two of u. Similarly, every vertex in the clique that

is adjacent to u must also be adjacent to x, else it would be

in a cycle of length greater than three or would not be within

distance two of w. But this implies that every vertex in the

clique must be adjacent to x, which in turn implies that

deg(x)=AG+l, a contradiction. Therefore, there cannot exist

a clique of size AG+2 and w(G,)=AG+l. U

We can now combine the preceding results to prove the

following theorem.

Theorem 5: If G is a diamond-free chordal graph, then

X (GJ) =w (GJ) =AS+1.

Proof: Let G be a diamond-free chordal graph with maximum

degree AG. Then by Lemma 1, we know that G, is a chordal

graph and hence is perfect. But this implies that

(G,')=w(G,') for every subgraph G,' of G,, and indeed G, itself.

Now, by Lemma 2, w(G,)=AG+I, and therefore we have that for a

diamond-free chordal graph G, A' (G,)=w(G,)=AG+I. U
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B. GENERAL GRAPHS AND THEIR CONFLICT GRAPHS

It was previously believed that it would be possible to

find a closed form upper bound on the chromatic number of a

conflict graph for a general graph G. Indeed it was believed

that this upper bound would be of the form AG + c, where AG is

defined to be the maximum degree of all vertices in G and c is

a fixed positive integer. Although counterexamples have not

been found for every possible value of c between 0 and IVI- AG,

for specific values of c, counterexamples have been found.

For example, given the conjecture that X(G') 5 AG+2, the 4-

regular graph on 17 vertices in Figure 4.6 provides a

counterexample. Indeed, while AG = 4 and X(G) = 5, it can be

shown that X(G,)=9.

In attempting to analyze the characteristics of graphs

that lend some degree of understanding to how the chromatic

numbers of their conflict graphs may be inferred, degree

sequences, maximum degrees, eccentricities of vertices,

diameters and radii, and subgraphs of numerous graphs were

observed.

One case of interest was the example of two similar 3-

regular graphs on 10 vertices as displayed in Figure 4.7.

In both G, and G2, their respective diameters and radii

were 3. While these characteristics are identical, and given

AGI = AG2 = 3, we find, however, that ;4(GI),] 6 and
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6 7
10 3

14 13 12

X4

Figure 4.6 A counterexample to an upper bound of max
degree + 2

Gi G2
Figure 4.7 Two Similar 3-Regular Graphs
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(G2)] = 5. An indication of why this disparity exists might

be that the minimum length cycle in G, is 5, while the minimum

length cycle in G2 is 4.

This leads us to consider whether a proper subgraph of a

graph G can determine the chromatic number of its conflict

graph G,. An immediate class of counterexamples is the class

of graphs with diameter at most two, where the conflict graph

is a complete graph and hence requires all IVi vertices in

order to create a full chromatic number coloring. An example

of such a graph is shown in Figure 4.8, where the graph G has

5 vertices and diameter 2, and its conflict graph G, is the

complete graph K5 with chromatic number X(Gj) = 5. Thus, by

definition, every proper subgraph has at most 4 vertices and

cannot yield the full chromatic number coloring of 5.

d h°0 b

dd,

Figure 4.8 A Graph G and Its Proper
Subgraphs

C. AN ALGORITHM FOR THE CHROMATIC NUMBER OF A CONFLICT GRAPH

Since we have shown that there is no general solution by

which to define the relationship between the structure of a
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general graph and the chromatic number of its conflict graph,

and since generally acceptable coloring algorithms cannot

guarantee optimal solutions in polynomial time, we must accept

that less than optimal results may instead be obtainable and

more cost beneficial. We have therefore developed an

algorithm which runs in polynomial time to find an upper bound

on the desired chromatic number. In the algorithm, starting

vertices are scanned in degree order and the vertices within

distance two and three are "colored" according to the lowest

possible coloring for that particular subgraph centered at the

starting vertex. We then "mark" those vertices that were

central in the subgraph, i.e., within distance two of the

starting vertex, and continue with the next unmarked starting

vertex. This procedure is followed until all vertices are

marked. The assumption of this algorithm is that the

chromatic number is a function of the largest area of

influence from some central vertex, and not necessarily a

direct function of the largest induced clique size of the

conflict graph.
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Algorithm

Input: A graph G=(V,E)

Output: An upper bound on the chromatic number of the
conflict graph G,=(V,E,)

Step 1: (label vertices by degree) Label the vertices
V 1 , v 2 1 ... , v, such that deg(vl) >= deg(v 2 ) >= ... >=
deg(v,). (Ties can be broken arbitrarily.)

Step 2: Assign color 1 to the first unmarked vertex in
the list. This will be the starting vertex. Assign to
Set Q the starting vertex and all those vertices adjacent
to the starting vertex, and color each uncolored vertex in
Q with a consecutive color number.

Step 3: Assign to Set I all those vertices within
distance one of some member of the Set Q. Scan each
member vi of I in the given order and assign to it the
lowest possible used color j if there is a vertex in Q or
I assigned the color j which is of distance three or
greater from vi, and such that no two vertices in I have
the same color number if they have an adjacent vertex in
common. If there exists no such vertex in Q or I which
will allow the duplicate coloring of vi, then assign to vi
the next available color number. Continue until all
members of I are colored.

Step 4: Assign to Set J all those vertices within
distance one of some member of the Set I. Scan each
member V, of J in the given order and assign to it the
color 1 if there is no other element of J which has been
assigned the color 1 and is within distance two of v,. If
there is such an element already assigned the color 1,
then if there is a vertex in Q or I assigned the color j
which is of distance three or greater from v,, such that
no adjacent vertex in I has that same color, and finally
that no two vertices in J have the same color number if
they have an adjacent vertex in common, then color v, with
that color. If there exists no such vertex in Q or I
which will allow the duplicate coloring of vj, then assign
to v, the next available color number. Continue until all
members of J are colored.

Step 5: Mark all vertices in Set Q and Set I. Denote the
starting vertex and the last color number attained in
Steps 2, 3 and 4.
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Step 6: If any unmarked vertices remain, reinitialize the
sets Q and I to the empty set. Go to Step 2.

Step 7: Select the highest coloring number obtained and
the starting vertex associated with it. This is the upper
bound on the chromatic number for the conflict graph
associated with the given graph.

D. EXAMPLES

1. Example 1.

Using the graph from Figure 4.6, we will use the above

algorithm to find the upper bound on the chromatic number of

its conflict graph. Figure 4.9 shows the graph with its

vertices numbered consecutively.
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Step 1: (4-regular graph - present numbering

satisfactory)

Step 2: v, - color l;Q={vl,v 2 ,v 3,v 4,v 5 }

V 2 - color 2; v 3 - color 3; V4 - color 4;

v, - color 5

Step 3: I={v6 ,v 71 ... ,V 1 61 V17}

V6,VIV14 -- color 6; v71v 91V, 7 - color 7;

V81vI1V,6 - color 8; v111vI31vI5 - color 9

Step 4: J={}

Step 5: Marked = {V1 ,V2 ,.. .,V 1 61 V1 7}

Starting vertex v, gave upper bound of 9

Step 6: No unmarked vertices remain.

Step 7: X(GJ)<9

2. Example 2.

Using graph G, originally shown in Figure 4.7, we will

use the algorithm to find the upper bound on the chromatic

number of its conflict graph. Figure 4.10 shows the graph

with its vertices numbered consecutively.

Step 1: (3-regular graph - present numbering

satisfactory)

Step 2: v, - color l;Q={v,1 V2 ,v5 ,v 6}

V 2 - color 2; v, - color 3; v6 - color 4

Step 3: I={v 3,v 4 ,v 7 ,v1 0};v 3 - color 4; V 4 - color 5;

V7 - color 2; v10 - color 6

Step 4: J={v8 ,Vg}; v 8 - color 1; v 9 - color 3
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Step 5: Marked={vIv 2 , ... ,V6,V71vIO

Starting vertex v, gave upper bound of 6

SvV

Gi

Figure 4.10 Example 2

Step 6: v8 and v9 remain unmarked; go to Step 2

Step 2: v8 - color 1; Q={v 31v 7 Iv8 Iv 9}

v3 - color 2; v7 - color 3; v9 - color 4

Step 3: I={v 2 ,v 4,v 6 ,vl 0}; v 2 - color 3; v4 - color 4;

v6 - color 2;v,0 - color 5

Step 4: J={v,,v 5 }; v, - color 1; v5 - color 6

Step 5: Marked={v,,v 2, ... Vg, Vio0}

Starting vertex v8 gave upper bound 6

Step 6: No unmarked vertices remain.

Step 7: X(G,)<6
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E. PROOF AND ANALYSIS OF THE ALGORITHM

Proof: Given a connected undirected graph G=(V,E),

suppose that the algorithm produced an upper bound of B for

the chromatic number of the conflict graph G, around the

vertex v,. Now, by way of contradiction, suppose that the

algorithm did not work, i,e., that there is some vertex vm

that was marked during the coloring, but whose neighborhood

required B+1 colors.

Now, since vm was marked in error, either vm was adjacent

to v, or vm was distance two from v,.

case i: v. was adjacent to v,.

Since vm requires B+1 colors, this means that vm

is within distance two of B other vertices. But the

algorithm already scanned distance three from v,, and

this would have encompassed everything within distance

two of vy, hence the additional color would have been

picked up had v. been adjacent to v,.

case ii: vm was distance two from v,.

Again, since v. requires B+1 colors, this means

that v, is within distance two of B other vertices,

all of which must be within two of each other else

some color could be repeated among them.
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Now, since v, is within distance two of v,,,, by

assumption, this implies that v, is within 'iistir~.ce

two of the B-i other vertices near vm, as well as vm

itself, all of which are colored distinctly. But this

further implies that the coloring around v, must also

be B+1, a contradiction.

Therefore, since we have shown that the cases under which

vm could have been overlooked could not have occurred, the

algorithm must have worked, and we are done. U

In analyzing the algorithm we first look at the

requirements for Step 1, the sorting of vertices in descending

degree order. Such a sort can be done in 0(nlogn) time.

Steps 2 through 6 are then conducted at most n times, during

which each vertex in the graph will be scanned and possibly

marked at most once. This implies that there are at most

nlogn+n2 operations during the entire algorithm, thus the

algorithm is polynomial of O(n 2 ).
4
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V. SUMMARY AND CONCLUSIONS

We have found that Naval Communication Networks can be

easily modelled in graphical form with ships in the network

represented by vertices and their capabilities to communicate

between ships represented by edges between the vertices. By

doing so, we were then able to look at optimal transmission

time slot utilization by assigning ships capable of

conflicting transmissions different time slots (or colors).

This optimization problem became one of analyzing the

structure of the graph representing the given network and

finding the chromatic number of its conflict graph. While an

optimal solution is nearly impossible to find in all cases, an

upper bound on the desired value can be found in most cases,

and indeed in specific types of graphs an exact solution is

possible.

This research has been directed towards finding those

graphs in which an exact solution is possible, while providing

an algorithm by which to find an upper bound on the solution

when a general graph is encountered. This is not an

exhaustive review of all possible types of graphs, but merely

a sampling of the more obvious forms.

In using these results to solve the slot utilization

problem, the analyst is able to model the Battle Group as a

graph, determine if possible the class of graph it most
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closely resembles, and in some cases obtain an immediate

result for the number of time slots needed in an optimal

transmission cycle. If desired, further analysis of the

graph, possibly by running a coloring algorithm on the

conflict graph, could then provide specific slot assignments.

In less than desirable situations where the graphical

model is of a general form, the algorithm described in Chapter

IV could be used to find an upper bound on the number of slots

needed in the transmission cycle. While this may not be

optimal, it should mark some improvement over the current

practice of assigning one slot series per ship. If desired,

specific slot assignments could also be made using a coloring

algorithm on the conflict graph.
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