QB 508 P4.5 +

 2
 38

QB 508.P45

Determination of the solar parallax from

31924012307157
ollo, ove1

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

DETERMINATION OF THE SOLAR PARALLAX

FROM PHOTOGRAPHS OF EROS MADE WITH THE CROSSLEY REFLECTOR
OF
THE LICK OBSERVATORY UNIVERSITY OF CALIFORNIA

BY
CHARLES D. PERRINE, Astronomer in the Lick Observatory with the assibtance of
Harold K. Palmer, Fellow in the Lick Observatory fredrica C. MOORE, Assistant
adelaide M. Hobe, Assistant

WASHINGTON, D. C.
Published by the Carnegie Institution of Washington
保

DETERMINATION OF THE SOLAR PARALLAX

FROM PHOTOGRAPHS OF EROS
MADE WITH THE CROSSLET REFLECTOR
of
THE LICK OBSERVATORY UNIVERSITY OF CALIFORNIA

BY
CHARLES D. PERRINE, Astronomer in the Lick Observatory
harold K. Palmer, Fellow in the Lick Observatory
FREDRICA C. MOORE, Assistant
adelaide m. Hebe, Assistant

WASHINGTON, DC.
Published by the Carnegie Institution of Washington
1910

CARNEGIE INSTITUTIÓN OF WASHINGTON
Publication No. 119

PREFACE

A few days following the untimely death of Director Keeler, in August, 1900, it became my duty, as astronomer in charge, to make provision for carrying out the requests and recommendations of the Conférence Astrographique Internationale as to securing coöperative observations of Eros, for the determination of the solar parallax. To Assistant Astronomer Perrine was assigned the securing of such observations as could be advantageously made with the Crossley reflector. Mr. H. K. Palmer, who had assisted Professor Keeler in the photography of nebulæ and star clusters, and who was therefore familiar with the peculiarities of the original reflector mounting, was asked to assist Dr. Perrine. The observations were secured in great numbers on all favorable nights throughout the advantageous part of the opposition, as published in Lick Observatory Bulletin, No. 13.

There remained the work of measuring, reducing, and discussing the photographic observations. It was arranged that these duties should be undertaken by another observatory, of great experience in dealing with photographic star positions. Unfortunately, the long-continued illness and final death of the director of the observatory delayed the utilization of the Crossley reflector photographs for several years. The plates were returned to Mount Hamilton in 1905, and the work of measurement and reduction began in Decermber, 1905, on the basis of a grant generously made by the Carnegie Institution of Washington for this purpose. This aid is herewith gratefully acknowledged.

The plates were measured and the more routine parts of the calculation carried through by Mrs. Moore and Miss Hobe, as explained in the text, under the supervision of Dr. Perrine. The critical parts of the reductions and the complete discussion of the results were made by Dr. Perrine personally. A detailed account of methods and formulæ employed is given in the following pages.

W. W. CAMPBELL.

TABLE OF CONTENTS

Preface iiiIntroduction
General plan of work 1
1
Star-places for reduction of the plates 1
Selection of plates 2
Measurement of the plates 2
Reduction 3
Refraction 4
Refraction terms of the second order 4
Spherical corrections and corrections for refraction 4
Aberration 4
Parallax corrections 5
Formulæ used in the reductions 5
Reductions to true place 8
Corrections to the Ephemeris of Eros 8
Derivation of the solar parallax 10
Systematic errors 10
Weights 13
The final value of the solar parallax 14
TABLES
I. Meridian plate measures 15
II. Meridian plate constants 28
III. Meridian mean places, reductions to apparent place, and parallax corrections 32
IV. Meridian true places and O-E 35
V. Parallax plate measures 38
VI. Parallax plate coustants 67
VII. Parallax mean places, reduction to apparent place, and parallax corrections 74
VIII. Parallax true places and $0-E$ 80
IX. Star positions used in parallax work 86
X. Selections of stars used in reductions 88
XI. Derivations of corrections to assumed parallax 89
XII. Positions of faint stars derived from Crossley plates 92
Appendix 95
Description of the Stackpole Measuring Engine 95
Table of Scale A of the Stackpole Measuring Engine 97
Table of Scale B of the Stackpole Measuring Engine 98

DETERMINATION OF THE SOLAR PARALLAX FROM PHOTOGRAPHS OF EROS MADE WITH THE CROSSLEY REFLECTOR OF THE LICK OBSERVATORY, UNIVERSITY OF CALIFORNIA.

By Charles D. Perrine.

INTRODUCTION.

Shortly after the lamented death of Director Keeler, I was asked by Director Campbell to take charge of all duties in connection with the Crossley reflecting telescope. Before any great amount of experience had been gained with the instrument I was under the necessity of making out a program for observing Eros for parallax. Fortunately, we still had the services of Mr. H. K. Palmer, who had assisted Professor Keeler in nearly all of his work with the reflector. His experience, enthusiasm, and ability throughout the trying conditions under which we worked on the Eros campaign made it possible to secure the observational material which was obtained.

The instability of the mounting of the telescope, which had given Keeler so much trouble in his work and about which he has written somewhat fully in his paper on the instrument, was the chief source of our difficulties. It was early recognized that the only feasible plan was to give exposures as short as would furnish sufficient comparisonstars within the region of good definition on the plates, make as many exposures as possible, and measure only the perfect images.

Observations were secured on every possible opportunity, even when the seeing was poor and the wind high. Round images were more desired than small ones. A complete account of the plates and of the conditions under which they were taken was printed in Lick Observatory Bulletin No. 13, and it seems unnecessary to repeat that account here.

All of the measurements and reductions of the Eros plates have been made by Mrs. Moore and Miss Hobe, Carnegie Institution of Washington assistants. It is a pleasure to testify to their ability and interest through the entire work.

GENERAL PLAN OF WORK.

Owing to the distance of Mount Hamilton from the other observatories taking part in the Eros solar parallax determination, it seemed advisable to plan so that the observations obtained there would be suitable for a determination of the parallax by themselves, rather than in combination with those of other stations. To this end the plan adopted embraced the taking of photographs at large hour-angles both east and west of the meridian. In addition to the plates for displacements of Eros, a series was secured on the meridian, for the determination of the errors of the ephemeris.

STAR-PLACES FOR REDUCTION OF THE PLATES.

Within the small fields of the Crossley plates there were not enough catalogue stars of any kind to furnish a basis for obtaining positions of Eros or of comparison-stars near Eros. It therefore became necessary to have recourse to star-places obtained from the
plates taken with the astrographic telescopes, which had much larger fields and for the reduction of which an especially planned list of stars was observed with meridian circles. In the preliminary investigations upon some of the Crossley plates it was necessary to have the places of sufficient stars for their reduction. On making a request to Director Loewy, the Paris Observatory measured and furnished the places of a list of stars for the purpose.

In his work of discussing star-places, Professor Hinks, of the Cambridge Observatory, kindly offered to include the stars required for the proper reduction of the Crossley plates. The Royal Observatory at Greenwich specially measured and reduced nearly roo star-positions for use by Professor Hinks in his list for the Crossley plates. Needless to say, these star-places were an essential feature of our work, and our indebtedness to these sources is proportionately great.

In the reduction of the meridian plates, after the plate constants had been derived, the positions of all the comparison-stars were computed from the plate measures. These places were compared with the catalogue places and in a few cases where the discordances were large and the weights of the catalogue places small, the Crossley places were adopted for the parallax solution.

SELECTION OF PLATES.

For the determination of the absolute places of Eros, 3 of the best plates on each of 44 nights, or 129 plates in all, taken close to the meridian, were selected. These three plates contain, on the average, ten images, which should furnish a strong place of the asteroid. Only those images were measured which appeared to be perfectly round. Star-places for some of the dates at the beginning of the meridian series and also at the end were difficult to obtain. As they were not necessary in the parallax work, these dates were dropped.

For the parallax work, only those dates were selected which contained both east-and-west observations on the same night. It was necessary to discard five of these because of poor images. These restrictions necessarily reduced the amount of material, but in such cases only the good observations really justify measurement and reduction, and I believed that the result from carefully selected data would be stronger than if a considerable number of poor plates were included. Observations for which the parallax factors would be small were excluded for the same reason. The results obtained in the following discussion are based upon 281 plates on 18 nights; 823 selected images of Eros were measured.

MEASUREMENT OF THE PLATES.

All of the plates have been measured on the Harkness-Stackpole Engine belonging to the Lick Observatory. A very brief description of this engine is given in Publications of the Lick Observatory, vol. I, p. 76. A more detailed account is desirable and is appended. A considerable amount of preliminary investigation of the engine was carried out before any of the final measurements were made. The slides were tested and found to be sensibly straight. Micrometers were attached to the microscopes for reading the glass scales more accurately. A number of plates were measured in this way. It was soon found, however, that there were errors in the positions of the starimages themselves larger than the errors of the scale divisions and of reading the scales by the glass-reticle microscopes. When several settings were taken and plates measured in direct and reversed positions, it was found that such errors were sufficiently reduced
to bring them well below the errors of the images themselves. The scale-micrometers, were, therefore, discontinued. All measures were referred directly to the glass scales. without the intervention of a reseau.

The sky had previously been used as a source of illumination for the negative and the scales. Considerable difficulty was experienced from changes of intensity on cloudy days and late in the afternoons of clear days. Experimental plates were measured, using Rochester kerosene lamps, the sky light being screened off. The resulting measures showed no indication of any systematic effect and the method was adopted for the Eros plates. All of them have been measured under these conditions.

The general stability of the engine had been found to be good. The error of runs of the scale microscopes was very carefully adjusted to zero before beginning the work. This adjustment was tested frequently throughout the measuring, but required no change. The measurements of all plates were completed the same day on which they were begun.

The plates were measured in each of two positions, 180° apart. Three settings were made on Eros, then two settings on each of the comparison-stars in turn, then three more on Eros. This was the program for each of the sets of exposures selected. A complete measure rests upon 12 settings on Eros and 4 settings on each star. Settings were recorded to 0.0001 inch and the means taken to 0.00001 inch. Before the measured plate was removed from the engine, the differences were taken, the direct and reversed coördinates compared, and any discrepancies looked up.

The inclination of the slides was carefully determined on a number of days. The value of the angle between the left end of the X-slide and the farther end of the Y-slide was found to be $89^{\circ} 48^{\prime} 30^{\prime \prime}$. The form of the correction for inclination to be applied to the X-coorrdinates is, therefore, $+Y \sin I$, where I is the deviation of the Y-slide from the true Y-axis.

The Y-coördinates theoretically require the small corrections introduced by the term $\cos I$. The coördinates are all less than $\mathrm{HOO}^{\prime \prime}$, for which the correction is negligible. No plates or images have been rejected since the completion of the measures. During the work of measurement, a number of rejections of stars, images, and plates were made, when it was found that they were so bad as to weaken the result.

REDUCTION.

As the method of using photography for determinations of the highest precision is still in its infancy and can not be said to be on the same well-defined footing as the visual methods, and because there is a distrust of photographic results by some astronomers, it seemed desirable to take unusual precautions against peculiar errors in this work. To this end a plan of reduction was adopted which promised detection of errors peculiar to photographic methods, should they exist.

As the apparent motion of the asteroid between evening and the following morning observations was only about 8^{\prime} to 10^{\prime}, it was possible to select the comparison-stars so that they would fulfill two conditions:
(I) The same stars would be used for both evening and morning reductions, thus eliminating to a great extent any errors of the star-places themselves. Such a selection of stars also permitted an investigation of the refractions and any possible distortion of the mirrors.

This procedure had the objection that if there were any optical distortion it would remain in part because the asteroid was eccentrically placed among the stars, in opposite
directions at the two elongations. To test this point, a different selection was adopted, so that -
(2) The stars would be as symmetrically placed about the asteroid as possible. This selection also had the advantage of reducing any effect on the scale value and orientation due to errors in the places of the comparison-stars.

The two different methods furnished in addition a valuable check on the numerical work. The measures of the images selected on each plate were combined and reduced as a whole. By using the center of gravity of the comparison-stars, as origin, it became possible to simplify the reduction of the individual plates. Instead of reducing each plate directly to the system of stars, a system of standard rectangular coördinates was first derived from all of the plates of a group (evening or morning) by taking their means after having corrected for refraction. The scale value and orientation corrections necessary to reduce each plate to the standard were then easily obtained, in rectangular coördinates. The constants necessary to reduce the standard coördinates to the star system were then obtained and the data necessary for the complete reduction of the group of plates were available. This plan was followed in all except a very few cases where it was necessary to reduce one or two plates directly to the star system on account of a change in the position of the optical axis.

The same plan of reduction was used for the meridian observations.

REFRACTION.

The ranges of temperature and air-pressure were both small during the observations, and it was found, upon investigation, that a constant value of each could be used in computing the refraction corrections, without introducing any appreciable error into the final result. The refractions were therefore computed for a temperature of $+55^{\circ} \mathrm{F}$. and an air-pressure of 26.00 inches.

REFRACTION TERMS OF THE SECOND ORDER.

According to the criterion developed by Rambaut,* the refraction terms of the second order for a zenith distance of 60° do not amount to $\mathrm{o}^{\prime \prime}$ or until the $\Delta \alpha$ or $\Delta \delta$ exceeds $950^{\prime \prime}$. As the greatest distances measured on the Eros plates are under this, and as the reductions are made to two decimal places, it is not necessary to consider refraction terms beyond the first order.

SPHERICAL CORRECTIONS AND CORRECTIONS FOR REFRACTION.

As it was desired to compare the east-and-west plate-measures as early as possible in the process of reduction, with the view of detecting optical distortions, etc., the refraction corrections were applied in the rectangular form as given by Turner. The spherical corrections were computed by Jacoby's expansions, but on account of the above method of correcting for refraction, it was necessary to use the apparent center of the plate, as origin, instead of the true center, in applying the spherical corrections.

ABERRATION.

An investigation has shown that the maximum effect of differential diurnal aberration which can occur under the conditions of the Eros parallax work, in the limited field of the Crossley reflector, is so small, when a number of stars are used, as to be insensible. Furthermore, any residuals of this kind become of an accidental order and are entirely eliminated in a series of sufficient length.

[^0]
PARALLAX CORRECTIONS.

The parallax corrections were computed with the value $8^{\prime \prime} .80$; the value of $\log \rho$ used was 9.9995455 , which is the value for the Crossley reflector including the altitude of the instrument above sea level.

FORMULE USED IN THE REDUCTIONS.

For convenience of reference the various formulæ used in the investigation are here collected.

The formulæ for parallax take the well-known form:

$$
\alpha-\alpha^{\prime}=\frac{8.80 \rho \cos \phi^{\prime}}{\Delta} \frac{\sin t}{\cos \delta}=\pi \quad \delta-\delta^{\prime}=\frac{8.80 \rho}{\Delta}\left(-\sin \delta \cos \phi^{\prime} \cos t+\cos \delta \sin \phi^{\prime}\right)
$$

where $\log \rho=9.9995455$ and the parallax factor $=15 \cos \delta \frac{\pi}{8.80}$.
The refraction terms (for each star) are as follows :

$$
M_{x}=k^{\prime}\left(\mathrm{I}+H^{2}\right) \sin \mathrm{I}^{\prime \prime} \quad N_{x}=M_{y}=k^{\prime} \cdot G \cdot H \sin \mathrm{I}^{\prime \prime} \quad N_{y}=k^{\prime}\left(\mathrm{I}+G^{2}\right) \sin \mathrm{I}^{\prime \prime}
$$

where

$$
\tan N=\cot \phi \cos t \quad G=\cot (\delta+N)
$$

$$
H=\operatorname{cosec}(\delta+N) \tan t \sin N \quad k^{\prime}=(\text { photo-visual }) \alpha^{\prime} B^{4} \gamma^{\lambda} \text { (Bessel's tables) }
$$

The rectangular coördinates, X_{0} and Y_{0}, of each comparison-star as referred to Eros are measured and the corrected values X and Y found by

$$
X=X_{0}+Y_{0} \sin I+M_{x} X_{0}+N_{x} Y_{0} \quad Y=Y_{0}+M_{y} X_{0}+N_{y} Y_{0}
$$

where I is the angle of inclination of the slides of the measuring engine.
From the values of X and Y thus secured the coördinates of the center of gravity of the group of comparison-stars are determined for each plate by :

$$
C=\frac{X_{a}+X_{b} \cdots X_{n}}{\nu} \quad K=\frac{Y_{a}+Y_{b} \cdots Y_{n}}{\nu}
$$

where $\nu=$ number of comparison-stars.
With these values of C and K new coördinates for the comparison-stars from the center of gravity were found for each star as follows:

$$
X_{a}-C=X_{a}^{\prime}, \cdots X_{n}-C=X_{n}^{\prime} \quad Y_{a}-K=Y_{a}^{\prime}, \cdots Y_{n}-K=Y_{n}^{\prime}
$$

For all "east" plates and for all "west" plates on a particular date these new coördinates were combined in a "standard" plate by

$$
\frac{X_{a_{1}}^{\prime}+X_{a_{2}}^{\prime}+\cdots X_{a_{n}}^{\prime}}{n}=X a_{s} \quad \frac{Y_{a_{1}}^{\prime}+Y_{a_{3}}^{\prime}+\cdots Y_{a_{n}}^{\prime}}{n}=Y_{a_{s}}
$$

(for comparison-star a)
and similarly for each comparison-star "east" or "west," giving a fictitious plate of stars whose coördinates are the means of those stars for the individual plates.

The polar coorrdinates of the stars (as furnished by Hinks) are reduced to the center of gravity of the system in the following manner: the mean of the "east" X and Y coördinates of some star near Eros are converted into α and δ by
whence

$$
\Delta \delta=s_{b} Y, \text { and } \Delta \alpha=\left(\frac{s_{a}}{I 5}\right) \times \sec \delta_{\mathrm{Erob}}
$$

$$
\delta_{\mathrm{Erog}}=\delta_{\mathrm{Btar}}+\Delta \delta, \text { and } \alpha_{\mathrm{Erog}}=\alpha_{\mathrm{Btar}}+\Delta \alpha
$$

In the above, s_{a} and s_{b} are the values of scale A and scale B respectively. From these values the apparent α and δ of Eros were obtained by

$$
\Delta \alpha^{\prime}=-\frac{1}{15} k^{\prime} \operatorname{cosec}(\delta+N) \cot N \sec \delta_{t} \quad \Delta \delta^{\prime}=-k^{\prime} \cot (\delta+N)
$$

and

$$
\alpha_{\text {app. }}=a_{t}-\Delta \alpha^{\prime} \quad \delta_{\text {app. }}=\delta_{t}-\Delta \delta^{\prime}
$$

If there is any appreciable spherical correction due to the chosen star not being close enough to Eros that also is applied.

Having the apparent α and δ of Eros, the differences $\Delta \alpha$ and $\Delta \delta$ between Eros and the individual stars are derived; with these values the curvature corrections $\left[A^{\prime \prime}\right]_{a}$, $\left[D^{\prime \prime}\right]_{a}$, etc., are taken from tables computed in accordance with the formulæ given in the Lick Observatory Bulletin 4, 78 (1906); these are applied to the individual stars giving places freed from curvature.
$\left[A^{\prime \prime}\right]_{a},\left[D^{\prime \prime}\right]_{a}$, etc., are the sums of all of the sensible terms of the curvature corrections, computed by the following formulae:

For $X \sec \delta$

$$
\begin{array}{ccc}
A_{1^{\prime \prime}}=A_{\mathrm{I}}(X \sec \delta) Y & A_{2^{\prime \prime}}=A_{2}(X \sec \delta) Y^{2} & A_{8^{\prime \prime}}=A_{8}(X \sec \delta)^{8} \\
A_{4}^{\prime \prime}=A_{4}(X \sec \delta)^{3} Y & A_{5}^{\prime \prime \prime}=A_{5}(X \sec \delta) Y^{3} & A_{8^{\prime \prime}}=A_{\mathrm{B}}(X \sec \delta)^{8} Y^{2} \\
A_{7}^{\prime \prime}=A_{7}(X \sec \delta)^{5} & A_{8}^{\prime \prime}=A_{8}(X \sec \delta) Y^{4}
\end{array}
$$

For Y

$$
\begin{array}{ccc}
D_{1}^{\prime \prime}=D_{\mathrm{I}}(X \sec \delta)^{2} & D_{2^{\prime \prime}}=D_{2}(X \sec \delta)^{2} Y & D_{8^{\prime \prime}}=D_{8} Y^{8} \\
D_{4}^{\prime \prime}=D_{4}(X \sec \delta)^{2} Y^{2} & D_{b^{\prime \prime}}=D_{5}(X \sec \delta)^{4} & D_{6}^{\prime \prime \prime}=D_{8}(X \sec \delta)^{4} Y \\
D_{7}^{\prime \prime}=D_{7}(X \sec \delta)^{2} Y^{8} & D_{8}^{\prime \prime}=D_{8} Y^{5}
\end{array}
$$

The auxiliary quantities A_{1}, etc., D_{1}, etc., are computed by the following formulae:

$A_{1}=\operatorname{sin~} \mathrm{I}^{\prime \prime} \tan \delta$	[$4.68557-10$]	$D_{1}=-\frac{1}{4}(15)^{2} \sin \mathrm{I}^{\prime \prime} \sin 2 \delta$	[$6.43570-10]$
$A_{2}=\sin ^{2} \mathrm{I}^{\prime \prime} \tan ^{2} \delta$	[9.37115-20]	$D_{2}=-\frac{1}{2}(15)^{2} \sin ^{2} \mathrm{I}^{\prime \prime}$	[n . $422230-10$]
$A_{3}=-\frac{1}{8}(15)^{2} \sin ^{2} \mathrm{I}^{\prime \prime}$	[nI.24621-10]	$D_{3}=-\frac{1}{8} \sin ^{2} \mathrm{I}^{\prime \prime}$	[n8.89403-20]
$A_{4}=-(15)^{2} \sin ^{8} \mathrm{I}^{\prime \prime} \tan \delta$	[$\mathrm{n} 6.40890-20$]	$D_{4}=-\frac{1}{2}(15)^{2} \sin ^{8} \mathrm{I}^{\prime \prime} \sin ^{2} \delta \tan \delta$	[$6.10787-20]$
$A_{5}=\sin ^{8} \mathrm{I}^{\prime \prime} \tan ^{3} \delta$	[$4.05672-20]$	$D_{5}=\frac{1}{8}(\mathrm{r} 5)^{4} \sin ^{3} \mathrm{I}^{\prime \prime}\left(3 \sin \delta \cos ^{3} \delta\right.$	
$A_{6}=-2(15)^{2} \sin ^{4} \mathrm{I}^{\prime \prime} \tan ^{2} \delta$	[01.3955 - 20]	$\left.+\sin ^{3} \delta \cos \delta\right)$	[$7.85799-20$]
$A_{7}=\frac{1}{5}(15)^{4} \sin ^{4} \mathrm{I}^{\prime \prime}$	[$2.74769-20$]	$D_{6}=\frac{2}{8}(15)^{4} \sin ^{4} \mathrm{I}^{\prime \prime}$	[$3.02069-20]$
$A_{8}=\sin ^{4} \mathrm{I}^{\prime \prime} \tan ^{4} \delta$	[8.74230-30]	$D_{7}=\frac{1}{2}(15)^{2} \sin ^{4} \mathrm{I}^{\prime \prime}\left(\mathrm{I}-\tan ^{2} \delta\right)$	[$0.79345-20]$
		$D_{3}=\frac{1}{5} \sin ^{4} \mathrm{I}^{\prime \prime}$	[8.04333-30]

The logarithms of the constant quantities are given in brackets.
The corrected star-places are now reduced to the center of gravity separately for "east" and "west" by

$$
\alpha_{c}=\frac{\alpha_{a}+\alpha_{b}+\cdots \alpha_{n}}{\nu} \quad \delta_{k}=\frac{\delta_{a}+\delta_{b}+\cdots \delta_{n}}{\nu}
$$

and, for each star,

$$
\alpha_{a}-\alpha_{c}=x \sec \delta \quad \delta_{a}-\delta_{k}=y
$$

The rectangular coördinates of the "standard" plates are next converted into polar coördinates by means of the adopted values for scale A and scale B; then a comparison is made of these plate coördinates with the star coördinates :

$$
n_{x}=X_{a_{0}} \frac{s_{a}}{15} \sec \delta_{t}-x \sec \delta \quad n_{y}=Y_{a_{t}} \cdot s_{b}-y
$$

Using the values

$$
\begin{array}{cc}
\pi=X_{a} \frac{s_{a}}{15} \sec \delta \cdot 15 \cos \delta & \rho=Y_{a_{s}} \cdot s_{b} \\
n_{x}^{\prime}=\left(X_{a_{s}} \cdot \frac{s_{a}}{15} \sec \delta-x \sec \delta\right) 15 \cos \delta & n_{y}=Y_{a_{a}} \cdot s_{b}-y
\end{array}
$$

the equations

$$
\pi p+\rho r+n_{x}^{\prime}=0 \quad \rho p-\pi r+n_{y}=0
$$

are formed, where p and r are the corrections to be found to the adopted values of the scale and the orientation.

Letting
$A=[\pi \pi] \quad E=\left[\rho n_{x}^{\prime}\right] \quad C=\left[\pi n_{x}^{\prime}\right] \quad C^{\prime}=\left[\rho n_{y}\right] \quad D=[\rho \rho] \quad E^{\prime}=-\left[\pi n_{y}\right]$
the corrections to scale value and orientation are derived for the "standard" plate,

$$
p_{s}=-\frac{C-C^{\prime}}{A+D} \quad r_{s}=-\frac{E+E^{\prime}}{A+D}
$$

Next are derived the values p^{\prime} and r^{\prime} of the individual plates reduced to the "standard"; this is done precisely as above, except that there is no reduction to polar coördinates, giving

$$
n_{x}^{\prime}=X_{\text {plate }}-X_{\text {etandard }} \quad n_{y}=Y_{\text {plate }}-Y_{\text {standard }} \quad \pi p_{p}+\rho r_{p}+u_{x}^{\prime}=0, \text { etc. }
$$

and for any plate

$$
p=p_{s}+p_{p} \quad r=r_{s}+r_{p}
$$

Applying these corrections to the center of gravity coördinates (transformed to polar) in the following form

$$
C+p C+\frac{1}{15} r K \sec \delta=\Delta \alpha_{\mathrm{Eros}} \quad K+\mathrm{I}_{5} r C \cos \delta_{1}^{1}+p K=\Delta \delta_{\mathrm{Eros}}
$$

gives the desired right ascension and declination of Eros:

$$
\Delta \alpha+\alpha_{\text {center of gravity }}=\alpha_{\text {Eros }} \quad \Delta \delta+\delta_{\text {center of gravity }}=\delta_{\text {Eros }}
$$

This is done independently for "east" and "west" plates. These coördinates must be reduced to apparent place to compare with the computed value. To make the α comparable the equations

$$
\alpha_{\mathrm{Eros}}+\Delta \alpha^{\prime}+\pi
$$

are formed for each plate, where $\Delta \alpha^{\prime}$ is composed of $\Delta \alpha$ from Circulaire 9, p. 191, and $+h^{\prime}=\frac{1}{15} \sec \delta \sin (H+\alpha) h$ (that part of the regular apparent place reduction omitted from $\Delta \alpha$).

For each plate a value of α is interpolated from Millosevich's ephemeris. This is corrected by terms due to the obliquity of the ecliptic and perturbations. For the "west" plates an additional correction is applied, due to the fact that the meridian plates afford a correction to Millosevich's ephemeris, and is obtained by multiplying the intervals between "east" and "west" plates by the correction to the ephemeris over those periods. Thus we derive for the α ephemeris

$$
\begin{aligned}
\alpha_{\text {ephemeris }}=\alpha_{\text {Milloserlch }} & +(\text { interval } \times \text { correction to ephemeris }) \\
& +(\text { obliquity correction })+(\text { perturbation correction })
\end{aligned}
$$

A comparison of these values with the observations gives a series of values of Obs.Eph. for "east" and "west" plates on each date. The "east" and "west" values are now combined and multiplied by the parallax factor, giving

$$
\frac{(E-W)^{\prime \prime} 15 \cos \delta}{\Sigma_{\pi f}}=\Delta \pi_{0}
$$

where
E and $W=$ differences $O b s .-E p h$. in seconds of arc.
$\Sigma \pi f=$ sum of parallax factors for the plates combined.
$\Delta \pi_{0}=$ the correction to the value $8.80^{\prime \prime}$.

From the extensive literature relating to formulæ and methods used in reducing photographic plates, the following titles, in addition to those quoted in the text, are given as bearing most closely upon the present research :
H. H. Turner. Preliminary note on the reduction of measures of photographic plates. Monthly Notices, 54, II.
H. Jacoby. Comparison of methods for the reduction of star-photographs. Astronomical Journal, 22, 81.

- On the reduction of stellar photographs, with special reference to the astro-photographic chart plates. Columbia Observatory Contributions, No. 10.
_- Tables for the reduction of astronomical photographs. Columbia Observatory Contributions, No. 23.
C. D. Perrine. How to obtain the position of a star from a photograph. Popular Astronomy, 15, 259.
- Preliminary note on some simplifications in the reduction of stellar photographs. Lick Observatory Bulletin, 4, 77 and 99.

REDUCTIONS TO TRUE PLACE.

In the reductions to true place the aberrations were computed with data derived from the American Ephemeris for 1900, the precessions and nutations being taken from Circular No. 9 of the "Conference Astrophotographique Internationale de Juillet, 1900."

To render the observations and ephemeris homogeneous, the reductions to Newcomb's value of the obliquity, as published by Witt in Circular 12 of the "Conference Astrophotographique Internationale de Juillet, 1900," have been applied.

CORRECTIONS TO THE EPHEMERIS OF EROS.

The deviations of Eros from the ephemeris in Circular No. 9 of the "Conference Astrophotographique Internationale de Juillet, 1900," were derived from the observations made near the meridian. Each final position used is the mean of from ten to twelve images.

An inspection of the charted residuals in right ascension showed some evidence of a periodic inequality. The residuals of the intervals

Oct. 5 to 10, inclusive Nov. 9 to 13, inclusive Nov. 23 to Dec. 12, inclusive can be represented much better by a curve whose double amplitude is $0^{8} .05$ and period about 9 days than by a straight line. The accompanying reproduction of the chart will make this clear.

It should be noticed, however, that the interval from Oct. 12 to Nov. 5 inclusive, over which observations are fairly well distributed, does not show any periodicity of this kind. In fact, these residuals are satisfactorily represented by a straight line. The first possibility examined in search for an explanation was that of a connection with the light period of $2^{\text {h }} 38^{\mathrm{m}}$ found by Oppolzer. 82 periods of $2^{\mathrm{h}} 38^{\mathrm{m}}$ very nearly equal 9 days, hence the relation might be to the shorter period, where daily observations only are used. Comparison over the entire period of 79 days covered by the observations showed a lack of synchronism. Comparison was then made with the period of $2^{\mathrm{h}} 38^{\mathrm{m}}$, using a separate epoch for each group. This comparison showed strong evidence of some relation to a period of about that length. The accompanying diagrams will make plain the apparent connection.

It seemed very desirable, if not absolutely essential, that the light variations of Eros during the period covered by these observations should be utilized in this connection,
before making further attempt to locate the cause of an apparent connection with a period approximating closely to that of the brightness variation. Efforts have been made to secure the unpublished photometric observations of Eros made in 1900 at other observatories, but they are not yet available.

A careful examination was made to see if there was any relation to the Moon. While the three maxima observed fall pretty close to maxima of the nutation term, the length of the Eros period appears to be 9 days instead of 14, as in the nutation. This length of period seems pretty well established from the interval Nov. 23 to Dec. 12, where two complete periods are well outlined. There does not appear to be any indication in these observations of an error in the assumed mass of the Moon.

It seems very unlikely that there should be any relation to the very small term in which $3 \mathbb{C}$ appears.

On the whole, it appears more probable that the inequality is connected with the variation of light in some way. This explanation has grave difficulties also, for the asteroid presented no sensible disk and the most ready explanation would be one of varying surface brightness.

Failing to find a satisfactory explanation, the reality of the periodic inequality may be questioned, although appearances certainly favor its genuineness, particularly in the first and last intervals. It is difficult to see how so many observations can be so well represented by a curve, simply on the doctrine of chance, to say nothing of the probable accuracy being greater than would be shown by the residuals on the assumption of a straight line.

The declination residuals were then plotted to see if they would throw any light on the matter. The residuals in the first interval from Oct. 5 to 10 require a curve similar to that found for the right ascensions of the same interval, to represent them. There are also some evidences of a similar periodicity throughout the other two intervals, although not nearly so well marked as in the right ascensions.

Comparison was also made with all of the available residuals published by other photographic observers of Eros, which showed that the Crossley residuals all fall inside the belt formed by such observations. The total of the observations fails to disclose any such periodicity. Various other possible sources were considered, such as the plateconstants, refraction, displacements in a secondary orbit, etc., but no reasonable explanation has been found. A similar systematic error in the star-places would be carried through the work, but that seems impossible. In view of these facts, the deviations have been treated as accidental, for the present, in deriving the corrections to the ephemeris.

The daily variations found in the ephemeris right ascensions during three intervals, covering our parallax dates, are:

$$
\begin{aligned}
& \text { Oct. } 6 \text { to } 29 \text { inclusive . } \\
& \text { Nov. } 3 \text {, } 10 \\
& \text { No } \\
& \text { Nov. } 28 \text { to Dec. } 24 \text { inclusive } \\
& \hline
\end{aligned} .
$$

These values were used in our parallax derivations. An examination of the parallax dates, with respect to the possible effect of any such periodic inequality in the motion of Eros if of 9-day period, shows that the observations are so numerous and so distributed that but little effect can enter, even if such a periodic inequality is real. If the connection should be with the short light period, it is also probable that the observations are numerous enough to eliminate any serious effect in the final result.

DERIVATION OF THE SOLAR PARALLAX.

The change in the ephemeris correction during the interval between evening and morning observations was applied before deriving the correction to the solar parallax. The parallax corrections were derived, as nearly as possible, from pairs of plates, one evening with one morning plate, with the view of showing the agreement between small groups of observations, and for check purposes. The details of the derivation will be evident from the table containing the data. In accordance with preliminary investigations made by us and other astronomers, it did not seem justifiable to include in the solution any other unknowns than that of the parallax.

Fig. 1. - Position inequality of Eros.
As the correction to the ephemeris has been carefully determined and made use of, it does not seem worth while to include terms depending upon uncertainties in any of the elements of the orbit of Eros. The derivation of the parallax has been based wholly upon the displacements in right ascension, as 0.97 of the total parallactic displacement is in this direction, and because of the smallness of the displacement in declination at this latitude. The inclusion of any declination results would not have strengthened the determination.

Before proceeding to a final discussion of the results, a short investigation of the possible sources of systematic error is pertinent.

SYSTEMATIC ERRORS.

The most probable sources of systematic error appeared to be the following :
r. Distortions in the figure of the great mirror of the telescope due to the extreme hour angles at which the displacement negatives were made.
2. Errors in the refraction constant.
3. Radial distortion (aberration) of the star-images.
4. The periodic light variation of Eros.
5. The suspected periodic inequality of position of Eros.
(I and 2) Sources r and 2 would, if present, probably reveal themselves in a similar manner, and they have been considered together.

As already explained, two methods of reduction, particularly adapted to testing some of these points, were adopted. These two systems of reduction give us three ways of investigating such systematic errors as the two mentioned.
(a) By a direct comparison of the measured coördinates east and west with each other and with the meridian group;
(b) By a comparison of the plate constants derived from each of the two solutions; and
(c) By an examination of the parallax results themselves.
(a) In the first solution the same stars are used both east and west, and their coördinates derived from the center of gravity of the group. After the rectangular measures of such groups and that of the meridian groups have been freed from the effects of refraction and referred to the same coördinate axes, they are suitable for investigating this question without further reduction. For this purpose the sums of the standard coördinates for each elongation and for the meridian have been obtained. As only the X coördinates have been used in the parallax determination, it is these alone with which we shall concern ourselves. If there are no systematic errors, such as in the assumed refraction, distortions, and the like, the sum of the east group should agree exactly with those of the west and meridian groups.

As a preliminary, these sums were

Fig. 2. - Comparison of position inequality of Eros with period of light variations $-2^{\mathrm{h}} 3^{8^{\mathrm{m}}}$. tabulated before any attempt was made to reduce them to a common scale value or orientation. The resulting comparison showed such small differences, with no indications of system, that it was not deemed necessary to go to the labor of a complete reduction. These unreduced results are given in the table on page 12 . The unit is one inch. The fifth (last) decimal place corresponds almost exactly to hundredths of seconds of arc. The column E-W, therefore, may be considered as such.

When we consider that each difference in the column E-W contains the errors of from 6 to 10 distances, as well as the effect of scale value and orientation, we must allow that they are small and do not show any evidence of distortion and refraction such as we have been seeking. All of these differences would probably be diminished by a complete reduction.
(b) As the plate constants rest upon measures made in both coördinates, this test contains the additional element of the declination measures. A comparison of these constants confirms the conclusion reached in (a), viz., that there is no evidence of distortion of the mirror or of errors in the refraction constant employed.

Sums of East, Meridian, and West Rectangular Coördinates.

Date.	East.	Meridian.	West.	E-W.
	in.	in.	in.	
Oct. 6	1.80276	1.80321	1.80365	-89
12	1.86327		1.86391	-64
13	2. 19286	2.19391	2.19339	-53
14	1.75576	1. 75548	1.75510	+66
15	2.29890	2.29965	2.29862	$+28$
16	1.80555	1.80538	1.80652	-97
21	2.08389	2.08479	2.08364	+ 25
24	2.66303	2.66541	2.66520	-217
26	I. 305 I 7	+.30484	+ 33
29	2.5893 I	2.59019	2.58891	$+40$
Nov. 3	1.79189	1.79309	-120
10	2.21430	2.21509	2.21370	+60
28	2.55749	2.55747	2.55823	- 74
29	3.21513	3.21237	3.21552	- 39
Dec. 5	1.84737	1.84762	1.84652	+ 85
	2.34865	2.34866	2.34918	-53
7	1.56439	I. 56393	1.56415	$+24$
24	2.11772		2.11698	+74

(c) The zenith distances at which the observations were made were larger in the evening than in the morning, at the beginning of the series. The zenith distances changed until, at the end of the series, they were larger in the morning than in the evening.

The values of the parallax derived from the first and second halves of the period should show a change if any errors of the nature of I and 2 exist.

An examination shows no greater difference than is to be expected.
(3) On account of the very limited field in the Crossley plates over which the starimages are round, it is perhaps a question whether even in the field used there may not be radial aberrations which can not be detected by the eye, but which would result in systematic error, and which might be detected in a long series of observations. A systematic effect of this sort should be revealed by a comparison of the plate constants for the two solutions. The following are the differences, without respect to sign, between the constants of the east and west groups of the entire 18 equations, in units of the sixth decimal place, for both solutions :

Solurion.	Scale Value.	Orientation.
First .	8267	16086
Second	6943	21195

The scale value is a little more accordant in the second solution, whereas the orientation is more accordant in the first solution. The absolute values of the constants given above are of little importance, as they are affected by a variety of conditions which are almost entirely eliminated in the solution. There appears, therefore, to be no indication of any systematic effect from radial aberration. This conclusion is confirmed by the close agreement of the parallax derived from the two independent solutions.
(4) By arranging the values of the parallax in the order of their derivation from the light period, any dependence upon that cause should be shown. Such arrangements showno relation.
(5) As has already been pointed out, there should be little effect on the derived parallax, even should a periodic inequality of position be confirmed.

WEIGHTS.

The only grounds upon which weights have been assigned are:
A. The number of images of Eros and of the comparison-stars concerned in an equation.
B. The sizes of the parallax factors (relative inverse distances of Eros at the times of observation).

The errors of observation remaining constant, their effect on the resulting parallax will vary as the inverse distance of the asteroid at the time of observation. It is well known, however, that the accuracy of a result is not directly proportional to the number of plates or images concerned. As an experiment, three systems have been used, namely, unweighted, square root of weights, full weights.

Solutions have been made also according to certain arbitrary but reasonable assumptions. The results of the various assumptions and combinations are here given in tabular form :

	Soldion I .	Solution 2.
Unweighted.	"	"
126 equations (all) . . .	+.0086	+.0070
r20 equations (rejecting $0^{\prime \prime}$.100 and over)	+.0093	
122 equations (rejecting $0^{\prime \prime}$ ', 100 and over)	...	+.0093
96 equations (rejecting 0 ", 050 and over)	$+.0057$
92 equations (rejecting 0.050 and over)		+.0056
18 dates	+.0034	+.0031
18 dates (rejecting large - value on Oct. 13)	+.0058	+.0050
Simple mean of above	+.0066	+.0060
Weighted - Square Root of Weights.		
	+.0109 +.0155	+.0095
	+.01r 5	+.....
96 equations (rejecting $0^{\prime \prime}, 050$ and over) .	$+.0067$
92 equations (rejecting 0.050 and over)	+.0065
18 dates (all)	+.0041	+.0039
18 dates (rejecting large - value on Oct. 13)	+.0062	+.0056
Simple mean of above	+.0077	+.0072
126 equations (all) .	+.0130	+.or18
I8 dates (all) . .	+. 0047	+. 0047
m dates (rejecting large - value on Oct. r_{3}) . .	+.0065	+.0061
Simple mean of above	+.0081	+.0075
General mean, all three weights .	+.0074	+.0069

An examination of the results of the different assumptions shows a systematic difference between the value derived from equations and dates. This difference is due to the excess of large positive corrections over large negative corrections on the dates giving large systematic values of the correction. It is also accentuated by a large negative correction on Oct. 13, an equation which we would probably be justified in rejecting altogether. Hence it seems certain that the equations (including these large values)
give too large a result, and that the dates (including the large negative value on Oct. 13) give too small a value of the parallax.

In my opinion, the square root of the product of parallax factors and of the number of images is the most reliable weight. The final value is based on such weights.

THE FINAL VALUE OF THE SOLAR PARALLAX.

The slight differences between the results of so many combinations seem to make it unnecessary to go into further refinements of weighting and selection. If we take the simple mean of the four values derived respectively from all equations, equations under o!. o50, all dates (Oct. 13 revised), weighted by the square root, we find values which differ but slightly from those based on any of the other reasonable assumptions. I therefore consider the following as the most probable values of the solar parallax from the two solutions:

	"	"
Solution I .	8.80	+.0070
Solution 2.	8.80	+.0064

As there seems to be no good reason why one of these values should be given greater weight than the other, the simple mean, +0.0067 , is adopted as the final result, making the value of the solar parallax

$$
\pi=8^{\prime \prime}!8067 \pm 0!0025
$$

The assigned probable error is not the result of any single assumption, but is estimated from the probable errors derived in several ways, as follows:

$$
\begin{aligned}
& \text { P.E., } 126 \text { equations } \pm 0 \text { ".0027 } \\
& 96 \text { equations } \pm .0018 \\
& \text { 18 daily means } \pm \text {. } 0052 \\
& 15 \text { daily means (omitting } 3 \text { largest values) } \pm .0034 \\
& 8 \text { results used in final combination } \pm . \infty 018
\end{aligned}
$$

After the reduction of the measures and the derivation of the parallax, the plates (20 in number) showing the largest discordances were completely remeasured and re-reduced. To test five of these results still farther, a third set of measures and another complete reduction of the five were made. The measures generally reproduced the original results very closely. The substitution of the twenty remeasured results would have changed the parallax by only o"'0005. This was considered a valuable check on the early measures of these plates and on the reliability of all the measures. Only the original measures have been used in the final discussion.

Table I. - Meridian Plate Measures.

* These times have been changed from the records as published in Lick Observatory Bulletin No. 13 by $+2^{m}$.

Tabie I. - Meridian Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y
122	a	13270	Oct. 9 -11617	$\begin{gathered} \mathrm{C} \\ +\mathrm{I} 7963 \end{gathered}$	131	a	$\begin{array}{lll}13 & 36\end{array}$	Oct. 10 -50186	H $+\quad 1500$
	b		- 9165	-25604		b		-40530	- 6296
	c		- 5167	+ 18448		c		-35170	+11224
	d		- 4648	- 6066		d		- 10733	-19313
	e		-6051	-66147		e		- 4674	+43108
	f		+ 1442	+ 1032		f		+25355	- 1772
	g		+ 5270	+34224		g		+39239	-26992
	h		+ 9007	- 6744		h		$+70482$	-32759
	u		+13820	-40660		x		+ 1288	+3625
	x_{1}		+ 7849	-31974					
	x_{2}		+ 9337	-28853					
	J		+20662	-25651					
	z		+22166	-33569					
			Oct. 9	C				Oct. 12	C
123	a	1330 II	- 11550	+ 17705	142*	a	$1345 \quad 23$	-41516	+ 25482
	b		- 9098	-25862		b		-20118	+ 26746
	c		-5071	+18204		c		- 11380	+ 263
	d		- 4559	- 6324		d		- 8018	-48759
	e		- 5996	-66417		e		+13732	+ 1501
	f		+ 1522	+ 764		f		$+19667$	-64355
	g		+ 5361	+33975		g		$+68942$	+12602
	h		+ 9082	- 7020					
	u		+ 13901	-40939					
	x_{1}		+ 7911	-32246					
	x_{2}		+ 9415	-29184					
	J		+20750	-25909					
	z		+22222	-33856					
			Oct. 9	H				Oct. 12	H
125		13 4047	- 11282	+16759	143*		13485	-41411	+ 25298
	b		- 8832	-26798		b		-20008	+26522
	d		- 4825	+17234		c		- 11272	+ 78
	d		- 4312	- 7278		d		- 7966	-4905
	e		- 5702	-67363		e		+ 13802	+ 1337
	,		+ 776	- 183		f		+ 19690	-64646
	g		+ 5593	+33046		g		$+69003$	+ 12378
	h		+ 9338	- 7957					
	u		+ 14182	-41882					
	x_{1}		+ 8206	-33188					
	x_{2}		+ 9697	-30030					
	z		+22506	-34795					
			Oct. 10	H				Oct. 12	C
129	a	132943	-50372	+ 2067	144*	a	135123	-41308	+25029
	b		-40726	- 5732		b		- I9901	+26241
	c		-35359	+ ri783		c		- III 75	- 230
	d		- 10890	- 18759		d		- 7836	-49268
	e		- 4853	$+43683$		e		+ 13912	+ 1036
	f		+25162	- 1187		f		+ 19813	-64868
	g		+39045	-26443		g		+69112	+ 12080
	h		+70294	-32220					
	x		+ 1089	+ 4208					
			Oct. ro	C				Oct. 13	H
130		1333 o	-50296	+ 1804	156		$13 \quad 743$	- 55474	-44566
	b		-40636	- 6003		b		-54683	+ 2145
	c		-35277	+ 11537		c		-12432	+24963
	d		- 10823	- $1903{ }^{2}$		d		+ 4170	- 59295
	e		- 4742	+43410		e		+ 11705	+ 54039
	f		+25260	- 1492		f		+ 2064 I	-32341
	g		+39128	-26736		g		+25243	+ 777
	h		+70377	-32501		h		$+{ }^{26} 364$	$+36854$
	x		+ 1287	+ 3936					

* These times have been changed from the records as published in Lick Observatory Bulletin No. I3 by $+\mathrm{r}^{\mathrm{m}}$.

Table I. Meridian Plate Measures - Continued.

$\begin{aligned} & \text { Plate }^{\text {No. }} \end{aligned}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
157	a	131115	Oct. 13 -55425	C -44876	204	a	1256 II	Oct. 15 -38691	C -33587
	b		-54576	+ 1860		b		-24299	-14974
	c		- 12297	+ 24659		c		- 6068	-20248
	d		+ 425 I	- 59634		d		- 5877	+ 16844
	e		+11827	+13716		e		+12360	+ 41894
	f		+20760	-32679		f		+18645	-46666
	g		+ 25386	+ 463		g		$+38807$	- 39620
	h		+ 26524	$+36527$		h		+ 42752	- 4079
						i		+ 52366	+ 5846
						x		+ 7586	-43109
160				C				Oct. 15	H
	a	132511	-54901	-46038	205	a	1259 o	-38559	-33834
	b		- 54062	+ 696		b		-24179	-15217
	c		- 11770	+ 23514		c		- 5921	-20474
	d		+ 4724	-60754		d		- 5770	+ 16625
			+12350	+ 12594		e		+12421	+41628
	f		+21224	-33807		f		+ 18803	-46885
	g		+ 25884	- 678		g		+38955	-39794
	h		+27041	+35394		h		+42879	- 4259
						i		+ 52498	+ 5686
						x		+ 7735	-43347
180									
		13 1 47	Oct. 14 -51882	C -34702	207		13 II O	Oct. 15 -38039	C -34782
	b	$13 \quad 147$	-51882 -27038	- 13495 -1495	207	b	13 IT	$\begin{array}{r}\text { - } \\ -23667 \\ \hline\end{array}$	-
	c		- 13498	-61629		c		- 5414	-21452
	d		- 12049	+ 876		d		- 5269	+ 15654
	e		- 6420	+42001		e		+ 12937	+40700
	f		- 1314	+ 18757		f		+ 19309	-47814
	g		+ 14240	-21154		g		+ 39436	-40726
	h		+ 17169	+44900		h		+ 43373	- 5232
	i		+ 38826	- 3233		,		+ 52986	+ 4687
						x		+8222	-44285
181			Oct. 14	H				Oct. 16	H
		I3 6 -	Oct. 14 -51752	H -35069	232		125147	-43086	H +38895
	b	13 -	-26875	- 13850		b		-21245	-36214
	c		- 13360	-61989		c		- 19560	- 13288
	d		- Ir 884	+ 500		d		- 9092	- 4536
	e		- 6257	+41660		e		+ 2367	+ 92
	f		- 1152	+ 18401		f		+ 4782	+ 45884
	g		+ 14405	-21520		g		+ 10124	- 2907
	h		+ r 7329	+44528		h		+22085	+ 8296
	i		+38992	- 3590		i		+47318	- 19424
						x		+ 1540	- 5929
182									
			Oct. 14						
	a	$\begin{array}{llll}13 & 8 & 54\end{array}$	-51624	-35316	235		1386	-42356 -20520	$+37635$
	b		- 26774	- 14069		b		-20520	-37464
	c		-13230	-62237		c		- 18835	- 14556
	d		- 11782	+ 272 $+\quad 18$		d		- 8361	- 5792
	e		- 6148	+41418		e		+ 3098	- 1169
	f		- 1045	+ 18161		f		+ 5500	+ 44626
				-21754		g		+ 10836	- 4171
	h		+17427	+44301		h		+22796	+ 7038
	i		+39088	-3815		i		$+48020$	-20670
						x		+ 2251	- 7187

Table I. - Meridian Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y
236			Oct. 16	H				Oct. 23	C
	a	13111	-42256	+37434	273	a	12302	- 51415	+ 1042
	b		-20386	-37724		b		-35950	-41276
	c		-18692	- 14789		c		-20942	+ 15082
	d		-8225	- 6037		d		-r8499	-30414
	e		+ 3223	- 1388		e		-17990	+13308
	f		+ 5634	+ 44405		f		+ 32881	+ 5186
	g		+ $\mathrm{ro989}$	- 4398		g		+ 56991	- 2287
	h		+22941	+ 6808		h		+57200	+42426
	i		+48179	-20896					
	-		+ 2397	- 744I					
258			Oct. 21	C				Oct. 24	H
	a	123124	-41816	+33853	286	a	12238	- 54839	-29285
	b		-24684	+ 11756		b		-36396	+30794
	c		- r 3563	- 12480		c		- 28675	-23739
	d		- 3458	+64820		d		-21942	-534r5
	e		+ 1821	-41920		e		+ 2728	+ 14393
	f		+27916	-38388				+ 4791	- 2265
	g		+ 40301	+ 413		g		+ 8390	$+34070$
	h		+ 49864	- 7753		h		+23064	+ 15395
	\mathbf{x}		-50635	+ 52016		i		+36204	-36606
	J		+64893	-91622		j		+44684	- 3015
259			Oct. 21	H				Oct. 24	C
	${ }^{\text {a }}$	12300	-41307	+33438	287	a	123223	-54232	-29815
	b		-24207	+ 11296 .		b		-35802	+30283
	c		-13139	- 12960		c		-28058	-24291
	d		- 2918	+64358		d		-21331	- 53950
	e		+ 2201	-42415		e		+ 3342	+ 13863
	f		$+28310$	-3^{8928}		f		+ 5375	- 2784
	g		+40742	- 130		g		+ 8979	
	h		$+50285$	- 8299		h		+23687	$+14892$
	y		+65191	-92276		i		+36816	-37139
						j		+45302	- 3519
260			Oct. 21						
		1242 II	-41131	+33195	288	a	123523	Oct. 24	${ }_{-29983}$
	b		-24036	+ r 1058		b		-35569	+30098
	c		- 12948	-13186		c		-27856	-24442
	d		- 2734	+64083		d		-21154	- 54122
	e		+ 2380	-4262		e		+ 3550	+ 13686
	f		+28474	-39135		f		$+558 \mathrm{r}$	- 2984
	g		+ 40935	- 381		g		+ 9202	+33354
	h		$+50470$	-8537		h		+ 23889	+14680
	y		+65420	-92470		i		+ 37008	-37329
						j		+45504	- 3738
272									
	a	122648	Oct. 23 -51594	H +1291	311		1238	Oct. 25 -36980	- 12649
	b		-36160	+41037		b		-27315	+12608
	c		-21150	+ 15244		c		-26250	+ 1156
	d		- 18704	-30199		d		- 3443	- 19909
	e		- 18186	+ 13547		e		+ 4617	+ 7066
	f			$+5356$		f		+ 13159	+ 1587
	g		$+56829$	- 2112				+21721	-36555
			+57018	+42612		$\xrightarrow{\text { h }}$		$+34079$	$\begin{array}{r} +26982 \\ -16198 \end{array}$
								+52712	-16198

Table I. - Meridian Plate Measures - Continued.

Table I. - Meridian Plate Measures - Continued.

$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
362	a	11458	Nov. 1 -30178	H $+\quad 7715$	411	a	II 236	Nov. 3 -36822	H -31501
	b		-33719	+ 21296		b		-33061	+ 9804
	c		- 5262	- 11874		c		-27119	- 7218
	d		- 2300	- 52379		d		- 15958	+ 12285
	e		+ 1523	+ 12919		e		+ 17763	+ 8463
	f		+ 23901	+ 9408		f		+ 35655	+ 888
	g		$+26236$	+ 35286		g		+36652	- 15910
	h		+ 33986	-3384		h		+ 40064	-37586
	x		-31245	析 $+\quad 23$		x		+22670	-15256
	y		+ 26079 +32848	+ 4228					
	2		$+32848$	$-2433 \mathrm{I}$					
384		II 2547	Nov. 2 -24485	H +11418	414		113615	Nov. 3 -35678	C -31832
	b		- 16413	+8978		b		-31964	a $+\quad 9485$
	c		- I3875	$+33076$		c		-26006	- 7524
	d		- 12786	+ 1656		d		- 14861	+ r r987
	e		-8134	+ 8062		e		+18831	+ 8179
	f		+11958	- r9646		f		+36734	+ 612
	g		+27094	-26439		g		+37729	- 16192
	h		+ 3 1010	- 14090		h		+41195	-37852
	x		+38897	-13462		x		+23769	- 15526
385			Nov. 2	C				Nov. 4	H
	a	II 29 II	-24199	+ 11323	439	a	1140	-31522	- 4859
	b		- 16144	+ 8911		b		- 18513	+ 18820
	c		- 13596	+32996		c		- 16294	-44266
	d		-12504	+ 1572		d		- 11125	-49507
	e		- 7853	+ 7993		e		+ 4553	- 16277
	f		+1223	-19702		f		+ 8909	- 7046
	g		+27348	-26518		g		+ 9285	+ 4144
	h		+31284 +	- 14161		h		+ 45833	- 6492
	x		+39142	- 13572		i		+ 47764	- 2920
386			Nov. 2	H					C
		113654	-23571	+ H rog 6	441	a	II II I	Nov. 46	- 4978
	b		- 15486	+ 8662		b		- 17919	+ r 8695
	c		- 12957	+32758		c		-15710	-44374
	d		- 11892	+ 1368		d		- IO542	-49636
	e		- 7228	+ 7766		e		+ 5159	- 16403
	f		+ 12851	-19932		f		+ 9501	- 7192
	g		+ 27963	-26709		g		+ 9912	+ 4013
	h		+31904	-14383		h		$\begin{array}{r} +46474 \end{array}$	- 6636
	x		+ 39745	-13767		i		+ 48374	- 3073
408									
			Nov. 3	C				Nov. 4	H
	${ }^{\text {a }}$	II IO 0	-37930	-31224	443	a	II 2423	-29807	- 5263
	b		-34179	+ 10111		b		- 16753	+ 18405
	c		-28224	-6928		c		- 14577	-44650
	d		- 17047	+ 12604		d		-9416	-49899
	e		+16680	+ 8785		f		+6265	- 16669
	f			+ 1204		f		+10677	- 7446
			+35565	-15620		g		+11039	+ $374{ }^{\circ}$
	h		$+38977$	-37297		h		$+47576$	- 6930
	x		$+21562$	- 14959		i		+49483	- 3358

Table I. - Meridian Plate Measures - Continued.

Plate No.	Star.	P. S. T.	\boldsymbol{x}	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
445*	a	10 590	Nov. 5 -79298	C -33103	466	a	IO 4848	Nov. 9 -49091	C $-\quad 5080$
	b		-75588	-23766		b		-22244	+ 10062
	c		-39471	- 13769		c	1	- 15650	- ı6696
	d		-22132	+ 424		d		- 8988	+24193
	e		+ 3169	-26845		e		+ 1444	-60878
	f		+ 3623	- 14514		f		+ 5390	+17120
	g		+31752	$+32310$		g		+ 9722	-28383
	h		+38342	-22540		h		+ 15380	+37007
	i		+ I3II3	-22694		i		+ 15391	$+39278$
	X		-24002	- 11988		j		+36967	-20088
	y		- IIII8	- 6670					
	z		-9613	$+4042$					
447	a	II 50	Nov. 5 -78824	$\begin{gathered} \mathbf{H} \\ -332 \mathbf{1 7} \end{gathered}$	467	a	II 254	Nov. 9 -47893	H -5050
	b		-75111	-23882		b		-21045	$+10096$
	c		-38977	- I3827		c		- I4440	-16647
	d		-21633	+ 332		d		- 7791	+ 24217
	e		+ 3689	-26938		e		+ 2662	-60790
	f		+4134	- 14596		f		+ 6566	+ 17203
	g		+32262	+32221		g		+ Io915	-28298
	h		+38871	-22621		h		$+16577$	+37094
	i		+13637	-22767		i		+ 16570	+39375
	x		-23499	- I2070		j		$+3^{8 \times 58}$	-20014
	y		- 10670	- 6730					
	z		- 9103	+ 3940					
450			Nov. 5					Nov. 10	C
	${ }^{\text {a }}$	11 2354	-77213	-33568	486	a	Io $30 \quad 0$	-44917	+12650
	b		-73482	-24I8I		b		-44459	- 7963
	c		-37372	-14187		c		-37158	-32769
	d		-20022	+ 52		d		- 17357	-10578
	e		+ 5275	-27256		e		- 13929	+22767
	f		+ 5699	-14892		f		$+24384$	+55084
	g		$+33838$	+ 31966		g		$+25596$	$+33870$
	h		+ 40451	-22932		h		+ 32110	+ I5809
	i		+ 15226	-23096		t		+ 21084	- 2278
	X		- 21896	- 12406		w		$+44854$	+ 16026
	J		- 9073	-7018		x		- I5929	+ 2063
	z		- 7502	+ 3680		y		- 14656	+ 1366
						z		- II574	+ I4I5
464			Nov. 9	$\begin{gathered} \mathrm{H} \\ -\quad 5007 \end{gathered}$	487		10 37 O	Nov. ${ }^{\text {Io }}$ -44336	H +12634
	a	10 4054	-49716	$\begin{array}{r} -5097 \\ +10068 \end{array}$	487	b	10 37 O	-44336	+12634 $-\quad 7910$
	b		- 22872	+10068 -16693		c		- -36585	-32731
	C		- I6304	- 16093		d		- 16753	-
	d		- 9616	+24202 -60851				- 13342	+22801
	e		+ 775	-60851		f		+ 13342 +24952	
	f		+ 4748	+ I7145		f		+24952	+ 5504 I
	g		+ 9066	-28369		g		+26177	$+33903$
	h		+ 14783	$+37022$		h		+ 32690	+ I5829
	i		+ 14761	+39299		t		+21651	- 2240
			+ 36320	-20096		w		+ 45407	+ 16003
						x		- I5354	+ 2 IOI
						y		- I4055	+ 1408
						2		- IO952	+ 1432

[^1]Table I. - Meridian Plate Measures - Continued.

Plate No.	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y
492	a	II 0	Nov. 10 -42388	$\begin{gathered} \mathbf{C} \\ +\mathbf{1 2 7 5 7} \end{gathered}$	539	a	10120	Nov. 13 -27527	$\underset{-\mathrm{I} 4048}{\mathrm{H}}$
	b		-41984	-7802		b		-25206	- 6591
	c		-34703	-32636		c		- 11578	+ 4534
	d		- 14814	- 10407		d		- 2280	- 1164
	e		- 11405	+22930		e		+ 1873	+ 19506
	f		+ 26882	+55169		f		+ 5176	-36914
	g		+28106	+34052		g		+ 12662	+ 12865
	h		+ 34642	+15981		h		+35514	+ 10706
	w		+ 47353	+ 16125		i		+45831	+ 14451
	\mathbf{x}		- 13395	+ 2229		u		+44202	+ 8662
	y		- 11097	+ 1568		v		-51798	- 13669
	2		- 9037	+ 1574		w		+33339	- 18479
			Nov. 12	H				Nov. 13	C
518	a	10 I 6 I	-26961	+ 718	540	a	10150	-2729°	- 13986
	b		- 11178	-15965		b		- 24972	- 6517
	c		- 7636	+ 18224		c		- 11360	+ 4597
	d		- 1493	+ 4903		d		- 204I	- 1078
	e		+ 18955	+51307		e		+2104	+19579
	f		+ 34230	-13121		f		+ 5429	-36839
	g		+ 48876	- 7712		g		+12887	+12938
	h		+ 48176	- 14698		h		+31732	+ 10780
	\mathbf{x}		-20113	-15576		i		+46064 +4450	+14529
	z		$+39085$	+ 12622		u		+44450	+ 8743
						∇		-51548	-13611
						w		$+33606$	- 18431
			Nov. 12	C				Nov. 23	H
519	a	101923	-26678	+ 662	571*	a	91136	-35081	+29216
	b		- 10888	- 15951		b		-35602	-26313
	c		- 7352	+ 18244		c		-21468	+ 14752
	d		- 1222	+ 4946		d		+2394	+ 17842
	e		+ 19230	+ 51366		e		+ 4890	- 4829
	f		+34530	-13107		f		+17559	+27591
	g		+49131	- 7698		g		+26192	+23104
	h		+ 48441	-14683		h		+52231	-33093
	\mathbf{x}		-19857 +3936	-15598					
	2		$+39346$	$+12625$					
			Nov. 12	H				Nov. 23	C
520	a	10226	-26447	+ 797	573*		91747	-34732	+29582
	b		- 1066I	-15854		b		-35260	-25962
	c		- 7129	$+18350$		c		-21128	+15104
	d		- 988	+ 5002 $+\quad 500$		d		+ 2761 $+\quad 5280$	+ 18212
	e		+ 19471	+51400		e		+ 5280	- 4542
	f		+ 34778	- 13023		f		+17926	+27991
	g		+ 49393	-7615		g		+26614	+ 23472
	h		+ 48802	- 14612		h		+ 52599	-32752
	x		- 19625	- 15498					
	z		+ 39602	+12703					
			Nov. 13	C				Nov. 23	H
538	,	10 923	-27744	- 14105	576*	a	93754	-33565	+30799
	b		+ 25449	-663I		b		-34102	-24756
	c		- 11797	+ 4488		c		- 19940	+16327
	d		- 2501	- 1211		d		+ 3918	+ 19420 $+\quad 3248$
	e		+ 1652 $+\quad 4974$	+ 19469		e		+6420	- 3248
	f		+ 4974	-36960		f		+19088	+29152
			+ 12452	+ 12804		g		+27737	+24661
	h		+31307	+10657		h		$+53765$	-31533
	i		+ 45644	+ 14499					
	t		-73553	-18542					
	u		+44002	+ 8623					
	v		-52026	-13715					
	w		+33165	-18533					

* These times have been changed from the records as published in Lick Observatory Bulletin No. 13 by -5^{m}.

Table I. - Meridian Plate Measures - Continued.

$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	P. S. T.	\boldsymbol{x}	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y
588	abcdefgb	93651	Nov. 24 -56529	C -r 0498	660	a	85054	Nov. 29 -74395	H $+\quad 8149$
			- 565494	$+\quad 7730$		b		-49432	-22982
			+ 587 I	+ 49910		c		-48190	-2776r
			+ r 69 r 6	- 50614		d		+ 168 I 8	+28070
			+21015	-50642		e		+22908	+ 15538
			+32222	+64096		f		+25598	-48426
			+39750	+40580		g		+35333	- 9318
			+40772	+ 25659		h		+ 40695	- 694
602	abcdfgh	$9 \bigcirc 53$	Nov. 27	H	661		85354	Nov. 29	C
			-53034	+ 7736				-74248	
			- $\times 5973$	- 14442		b		-49353	-22680
			- 9759	+41238		c		-48108	-27463
			+ 2382	-36472		d		+ 16953	+28288
			+24277	+ 9920		e		+ 23028	+ 15737
			+50302	- 2342		f		+ 25647	$-48 \mathrm{r} 89$
			-50523	-21660		g		+35412	- 9102
						h		+ 40774	- 509
606	abcdfgh	913 1	Nov. 27	H	666		$9 \quad 98$	Nov. 29	H
			-52508	+ 8593		a		-73764	+ 953x
			- 15478	- 35516		b		-48813	-21599
			+ 9268	+42089		c		-47572	-26360
			+ 2908	-35542		d		+ 17437	+29492
			+24738	+ 10797		e		+23527	+ 16950
			+50721	- 3425		f		+26220	-46988
			-49990	-20725		g		+35941	-7882
						h		+41319	+ 733
627	cdefgh	85543	Nov. 28	C	679		83823	Dec. 2	H
			-60420	+ 11550		a		-48778	+31482
			-45361	+26292		b		-24974	-34688
			- II185	- 16737		c		-.23198	-54541
			+ 9474	+27985		d		+ 3091	+ 53515
			+ x 6842	-43665		e		+ 7065	+36710
			+29099	-48810		f		+ 12638	-19634
			+38118	-24560		g		+26494	-21185
			+ 52912	+11920		h		+37531	+ 36442
						x		+ 1716	+ 55887
629	e	9 I 53	Nov. 28	H	680		84 I o	Dec. 2	C
			-60157	+12016		a		-48718	$+31652$
			-45103	+26771		b		- 24900	-34482
			- 10950	- 16278		c		-23109	-54354
			+ 9724	+28449		d		+ 3113	+ 13334
			+17059	-43207		e		+ 7120	+ 36954
			+29292	-4833		f		+ 12796	- 19392
			+38331	-24085		g		+26572	-20954
			+53130	+12375		h		+37560	+ 36677
						x		+ 1772	+ 56143
630	a	9454	Nov. 28	C	681		844 x	Dec. 2	H
			-60025	+12236		a		-48640	+ 35953
			-44998	+ 26984		b		-24856	-34207
	c		- 10831	-16048		c		-23091	- 54072
	d		+ 9858	+28673		d		+ 3208	+ 13599
	e		+ 17577	-42974		e		+ 7204	+37186
	f		+29406	-48150		f		+ 12741	- 19165
			+38464	-23860		g		+ 26607	-20711
	h		+ 53258	+12610		h		+37663 $+\quad 1870$	
						x		+ 1870	+ 56387

Table I. - Meridian Plate Measures - Continued.

$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y
698	abcdef	836 -	Dec. 3-64636-30304-10844-12161+27892+76046	$\begin{gathered} C \\ +8642 \\ -23967 \\ +69852 \\ -7697 \\ -66492 \\ -8839 \end{gathered}$	756*	a	815 -	Dec. 6	C
								-41213	-34605
								-39492	- 11782
						c		- 10373	-26491
						d		- 5594	- 7525
						e		+25689	- 50948
						f		+32241	+30422
						g		+36287	-49963
						h		+ 43996	-27465
699	$\begin{aligned} & \mathbf{a} \\ & \mathbf{b} \\ & \mathbf{c} \\ & \mathbf{d} \\ & \mathbf{e} \\ & \mathbf{f} \end{aligned}$	8390	Dec. 3	C	758*	a	82111	Dec. 6	H
			-64622	+ 8844				-41190	-33990
			-30299	-23750				-39475	- III79
			- 10857	+ 70091		c		- Io348	-25907
			-12135	- 7430		d		- 5580'	- 6938
			+27904	-66260		e		+25713	-50380
			+ 76059	- 8588		f		+32255	+30898
						g		+36307	-49398
						h		+44008	- 26884
700	a	842 o	Dec. 3	H	759*	a	824 ○	Dec. 6	C
			-64573	+ 9112				-41178	-33708
			-30201	-23472		b		-39450	- 10894
			- 10825	+70344		c		- IO338	-25622
			- 12064	- 7182		d		- 5582	- 6692
			+27995	-65955		e		+25714	-50098
			+76114	-83II		f		+32276	+31174
						g		+36304	-49140
						h		+43994	-26627
725	a	818 -	Dec. 5	H	787		8110		
				-33578		a		Dec. 7 -20412	H -49173
			- 13723	-52750		b		- 16192	- 19805
	c		- 1230	+ 8046		c		- 11993	-33871
	d		+ 4623	-14161		d		- 2058	- 15649
	e		$+\mathrm{I} 447 \mathrm{I}$	+20243		e		-3022	- 19789
	f		+22878	+51422		f		+ 11053	+ 20844
	g		+37448	-32754		g		+21301	- 542 I
	h		+64176	+ 14532		h		+60245	- 13227
726	b	82 III		C	790	b	820 0		
			-34843	-33265				-20455	-4842I
			- 13736	-52442				-16215	- 18987
	c		- 1206	+ 8363		c		- 12008	-33076
	d		+ 4646	-13876		d		- 2080	- 14796
	e		+ 14520	+20546		e		- 3045	- 18952
	f		+22928	+51718		f		+ 11027	+21692
	g		+37472	-3249I		g		+21269	- 4596
	b		+64215	+ 1477 I		h		+60201	- 12387
728		827 ○			791		8230		
			Dec. 5 -34813	H -32750				Dec. 7 -20482	$\underset{-4803 \mathrm{I}}{\text { H }}$
	b		- 13649	- 51938		a		- 20482 -16226	-48031 -18675
	c		- 1170	+ +8874		c		-	-18675 -32738
	d		+ 4703	-13351		d		- 2094	-14504
	e		+ 14553	+21067		e		- 3063	- 18667
	f		+22956	+ 52287		f		+ I1035	+ 21954
			+37530	-31955		g		+ 21269	- 4308
	h		+64227	+ 15348		h		+60171	- 12120

* These times have been changed from the records as published in Lick Observatory Bulletin No. 13 by $+\mathrm{I}^{\mathrm{m}}$.

Table I. - Meridian Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star,	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
821	abcdefdd	82055	Dec. 8	C	847	a	8447	Dec. 11	H
			- 50600	+26237				-40849	+ 26620
			-20863	-40874				-39407	- 6529
			- 9673	+ 15378		c		- 9182	+30838
			- 3299	+ 35177		d		+ 13391	-48054
			+ 10881	- 14589		e		+ 16189	- 4246
			+ 2945 I	- 10403		f		+ 16208	-11978
			+ 34182	- 4213		g		+ 45452	+31830
			+60515	+ 28174		h		+ 59731	+36588
						\mathbf{x}		+ 10764	+50132
823	abcdefgh	827 0	Dec. 8	C	848		880	Dec. 11	C
			-50632	C +2617		a		-40927	+26937
			- 20903	-40230		b		-39475	-6218
			- 9715	+ 15968		c		- 9256	+31169
			- 3335	+ 35785		d		+13312	-47740
			+ 10835	- 13978		e		+16125	- 3927
			+ 29387	- 9796				+ 16125	- 11669
			+34119	- 3603		g		+45377	+32152
			+60453	+ 28789		h		+ 59666	+36914
						\mathbf{x}		+ 10685	+50418
824		830 o	Dec. 8	H	849		81043	Dec. 11	H
	a		- 50668	+27123		a		-40971	+27224
	b		- 20940	-39990		b		-39526	- 5946
	c		- 9743	+ 16265		c		- 9315	+31430
	d		- 3380	$+36083$		d		+13257	-47454
	e		+ 10828	- 13724		e		+ 16058	- 3660
	f		+ 29382	- 9528		f		+ 16063	- 11389
	g		+34110	- 3340		g		+45323	+32426
	h		+60486	+ 29049		h		+59607	+37180
						x		+ 10651	+50721
827		$8 \quad 755$	Dec. 10	C	854		$8 \quad 536$	Dec. 12	C
	a		-53273	+ 16094		a			+ 55859
	b		- 14363	-58638		b		- 16645 -199	a +55859 -6761
	c		- 3596	+ 18964		c		- 7926	+23638
	d		- 3198	+39106		d		+ 402	+38776
	e		- 1560	+65899		e		+ 1015	+ 21458
	f		- 1015	-41402		f		+ 26085	-32349
	g		+ 9944	-15180		g		+39446	-49158
	h		+22359	+14317		h		+45351	-32381
832		82253	Dec. 10	H				Dec. 12	H
	a		-53535	+17580	855	a	8836	-45293	+ 56146
	b		-14684	-57202		b		-16711	+ 6466
	c		- 3840	+ 20443		c		-8028	+23944
	d		- 3410	+ 40572		d		+ 295	+39083
	e		- 1769	+67336		e		+ 928	+21752
	f			-39960		f		+26020	-32053
	g		+ 9663	- 13706		g		+ 39377	-48833
	h		+22114	+ 15786		h		+45291	-32050
833		82554	Dec. 10	C	856		8 Ir 54	Dec. 12	C
	a		-53556	+17869		a		-45360	+ ${ }^{\text {c }} 5$
	b		-14699	-56838		b		- 16802	$\underline{+6091}$
			- 3886	+ 20735		c		- 8088	+24295
	d		- 3475	+ 40874		d		a $+\quad 227$	+39432
	e		- 1817	+67654		${ }^{\text {e }}$			+22114
	f		- 1342	-39594		f		+25928	-31706
	g		($+\quad 9628$ +22048	$-1342 \mathrm{I}$		\mathbf{g}		+39289	-48499
	h		+22048	+ 16102		h		+45210	-3×612

Table I. Meridian Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	P. S. T.	x	y
878	abcdefgh	74036	Dec. 22 -20283 -4698	H +58426	903	$\begin{aligned} & \mathbf{a} \\ & \mathbf{b} \end{aligned}$	735 ○	$\begin{aligned} & \text { Dec. } 24 \\ & -48833 \end{aligned}$	$\begin{gathered} \mathrm{H} \\ +14515 \end{gathered}$
				+58426 +8852					
			+ $+\quad 598$	+ 18586		c		-30888	- 59953
			+ 7356	-3258x		e		+ 4874	-40352
			+18190	-91054		f		+ 12225	-48239
			+25730	-36343		g		+ 1438 x	- 53460
			$+25794$	- 15375		h		+ 15564	+ 24946
			$+26458$	+3123I		i		+ 43450	- 4753
						j		- 735 I	- 15376
880	b	74636	$\begin{aligned} & \text { Dec. } 22 \\ & -2073 \mathrm{I} \end{aligned}$	C	904	a	738 r	Dec. 24	C
				+59053				-49055	+ 14869
			- 5129	+ 9493				-29742	-59622
	c		+ 159	+ 19219		c		-31122	- 14777
	d		+6912	-31914		e		+ 4619	-40021
	e		+17730	-90383		f		+ 11950	-47898
	f		+25298	-35693		g		+ 14106	-53126
	g		$+25354$	- 1473 I		h		+ 1535 x	+25261
	h		$+26013$	+31889		i		+ 43175	- 4441
						j		- 7606	- 15034
881	a	74958	$\begin{aligned} & \text { Dec. } 22 \\ & -21036 \end{aligned}$	H	906	a	744 -	Dec. 24	H
				+ 59435				-49572	+ 15497
			- 5398	+ 9858				-30259	- 58985
	c		- 124	+ 19599		c		-31620	-14129
	d		+6690	-31536		e		+ 4134	-39371
	e		+ 17566	- 90006		f		+ 11458	-47241
	f		+25058	-35267		g		+ 13628	- 52474
	g		+25089 +25739	- 14340		h		+ 14782	+ 25975
	h		+ 25739	+32270		i		+82664 +8096	$\text { - } 3770$
						j		- 8096	-14383
889	${ }^{\text {a }}$	73536	Dec. 23	C -18882	920	b	736 -	Dec. 26 $-6 \mathrm{IgO2}$	C -12526
			+3737	+ 59920				-61902 +21924	+12526 +27536
	c		$+\quad 753$	-31279		c		+32370	+35082
	d		+ 15743	-34117		d	'	+ 16431	- 51250
	e		+29938	-38311		e		+60973	+ 15085
	f		$+26388$	- 10475		f		+68675	-11378
	g		$+28067$	$+23163$		g		+66062	-51335
890	a	73847	Dec. 23	H	92 I	a	7390	Dec. 26	H
				- 18502				-62162	-12169
			+ 3500	+60258				+21637	+27833
	c		+ 486	-30934		c		+32114	+ 35358
	d		+ 15467	-33788		d		+ 16128	-50927
			+29659	-37975				+60705	+ 15410
	f		+26124	- IoI 33		f		+68395	- 11090
	g		+27795	+23494		g		+65780	-51048
891	a	74136	Dec. 23	C	922		74136	Dec. 26	C
			-44701	-18209		a		-62389	- 11894
	b		+ 3288	+60545		b		+21395	+ 28130
	c		+ 282	-30628		c		+ 31870	+ 35687
	d		+ 15259	-33488		d		+ 15916	-50603
			+29463	-37643 $-\quad 838$		e		+60470	$\begin{array}{r} \\ +1575 \\ \hline\end{array}$
	f		+25921 +27611	- 9838 +23791		f		+68155	- 10775
	g		+2761x	+23791		g		+65545	-50716

Plate I. - Meridian Plate Measures - Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Plate No. \& Star. \& P. S. T. \& x \& y \& $$
\begin{aligned}
& \text { Plate } \\
& \text { No. }
\end{aligned}
$$ \& Star. \& P. S. T. \& \boldsymbol{x} \& y

\hline 930

931 \& $$
\begin{aligned}
& a \\
& b \\
& c \\
& d \\
& e \\
& \text { f } \\
& g \\
& \mathbf{h} \\
& \text { a } \\
& \text { b } \\
& \mathbf{c} \\
& \text { d } \\
& \text { e } \\
& \text { g } \\
& \text { b }
\end{aligned}
$$ \& 72611 \& Dec. 28

-69930
-47821
-21771
-18622
-10942
$+\quad 314$
+8987
+26858
Dec. 28
-70209
-48082
-22049
-18898
-11192
$+\quad 42$
+8749
+26549 \& H
$-\quad 4560$
-8858
-43130
-2214
-26940
+57993
-79493
+48944
C
-4293
-8577
-42784
-1930
-26673
+57375
-79083

+49235 \& 932 \& \[
$$
\begin{aligned}
& \mathbf{a} \\
& \mathbf{b} \\
& \mathbf{c} \\
& \mathbf{d} \\
& \mathbf{e} \\
& \mathbf{f} \\
& \mathbf{g} \\
& \mathbf{h}
\end{aligned}
$$

\] \& 73147 \& | Dec. 28 |
| :--- |
| -70519 |
| -48402 |
| -22350 |
| - 19195 |
| -11504 |
| - 266 |
| $+8400$ |
| $+26250$ | \& | | H |
| ---: | :--- |
| - | 3966 |
| - | 8251 |
| -42500 | |
| - | 1600 |
| -26336 | |
| + | 57675 |
| -78752 | |
| + | 49524 |

\hline
\end{tabular}

Table II. - Meridian Plate Constants.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date.} \& \multirow{2}{*}{\[
\begin{aligned}
\& \text { Plate } \\
\& \text { No. }
\end{aligned}
\]} \& \multicolumn{2}{|l|}{Plate Constants.} \& \multicolumn{2}{|l|}{Standard Constants.} \& \multicolumn{3}{|c|}{Refraction Constants.} \\
\hline \& \& \(p\) \& \(r\) \& \(p\) \& \(r\) \& \(M_{x}\) \& \(M_{y}, N_{x}\) \& \(N_{y}\) \\
\hline \multirow[t]{3}{*}{Oct. 5} \& 84 \& +.000023 \& -. 000082 \& \multirow[b]{3}{*}{-. 000462} \& \multirow[b]{3}{*}{+.000650} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
+.00025 \mathrm{I} \\
252 \\
6 / 4
\end{array}
\]} \& +.000003 \& \multirow[t]{3}{*}{\[
\begin{array}{r}
+.000257 \\
،
\end{array}
\]} \\
\hline \& 85
90 \& \(+\quad 53\)
\(+\quad 39\) \& \(-\quad 490\)
\(+\quad 525\) \& \& \& \& \(\begin{array}{r}1 \\ \hline\end{array}\) \& \\
\hline \& \& \& \& \& \& \& 3 \& \\
\hline \multirow[t]{3}{*}{Oct. 6} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
98 \\
\text { 100 } \\
\text { ro2 }
\end{array}
\]} \& \multirow[t]{3}{*}{\(\begin{array}{rr} \\ - \& 208 \\ -\quad 86 \\ + \& 256\end{array}\)} \& \multirow[t]{3}{*}{} \& \& \& 248 \& \(+\quad 2\) \& 254 \\
\hline \& \& \& \& \& \& 247 \& \begin{tabular}{ll}
+ \\
\(-\quad 1\) \\
\hline
\end{tabular} \& \\
\hline \& \& \& \& +.000027 \& +.000402 \& \& \& \\
\hline \multirow[t]{2}{*}{Oct. 7} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { IIO } \\
\& \text { II2 } \\
\& \text { II3 }
\end{aligned}
\]} \& \multirow[t]{2}{*}{\(\begin{array}{rr}- \& 272 \\ - \& 388 \\ - \& 77\end{array}\)} \& \multirow[t]{2}{*}{- 284
\(-\quad 272\)
\(-\quad 298\)} \& \& \& 247 \& - \& 254 \\
\hline \& \& \& \& \& \& " \& \(\begin{array}{ll}- \& \mathbf{I} \\ - \& \mathbf{I}\end{array}\) \& \\
\hline \multirow[t]{3}{*}{Oct. 8} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 117 \\
\& \text { In } 8 \\
\& \text { II9 }
\end{aligned}
\]} \& \multirow[t]{3}{*}{\(-\quad 825\)
\(-\quad 816\)
\(-\quad 871\)} \& \multirow[t]{3}{*}{\(+\quad 2036\)
\(+\quad 1802\)
\(+\quad 2288\)} \& \& \& 243 \& \(\bigcirc\) \& 251 \\
\hline \& \& \& \& \& \& \& \(\bigcirc\) \& " \\
\hline \& \& \& \& \& \& " \& - 2 \& " \\
\hline \multirow[t]{3}{*}{Oct. 9} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 122 \\
\& 123 \\
\& 125
\end{aligned}
\]} \& \multirow[t]{3}{*}{\begin{tabular}{rr}
133 \\
+ \& I33 \\
\hline- \& r3
\end{tabular}} \& \multirow[t]{3}{*}{\(\begin{array}{rr}\text { + } \& 58 \\ + \& 281 \\ +\quad 220\end{array}\)} \& \& \& 244 \& + \(\quad 1\) \& 252 \\
\hline \& \& \& \& \& \& " \& 1
\(+\quad 0\) \& \\
\hline \& \& \& \& -.000313 \& -. 004054 \& \& \& \\
\hline \multirow[t]{3}{*}{Oct. 10} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 129 \\
\& 130 \\
\& 131
\end{aligned}
\]} \& \& \multirow[t]{2}{*}{\(+\quad 951\)
\(+\quad 681\)} \& \& \& 244 \& \(\bigcirc\) \& 253 \\
\hline \& \& \multirow[t]{2}{*}{\(-\quad 917\)
\(-\quad 736\)} \& \& \& \& \& \(\bigcirc\) \& \\
\hline \& \& \& \(\begin{array}{r}+\quad 681 \\ \hline+\quad 1107\end{array}\) \& \& \& \& - \& \\
\hline \multirow[t]{3}{*}{Oct. 12} \& 142 \& + 334 \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(+\quad 477\) \\
\hline\(-\quad 388\)
\end{tabular}} \& \& \& 247 \& - 4 \& 256 \\
\hline \& 143
144 \& \begin{tabular}{l}
\(+\quad 440\) \\
\hline\(+\quad 124\)
\end{tabular} \& \& \& \& 248 \& \[
\begin{aligned}
\& -\quad 4 \\
\& -\quad 5
\end{aligned}
\] \& \\
\hline \& \& \& 1
\(-\quad 388\)
\(-\quad 87\) \& -.000230 \& -.001990 \& \& \& \\
\hline \multirow[t]{3}{*}{Oct. 13} \& \multirow[t]{2}{*}{156
157} \& \& \& \multirow[b]{3}{*}{-. 002018} \& \multirow[b]{3}{*}{-. 002934} \& \multirow[t]{2}{*}{245
\(" 6\)} \& + \& \multirow[t]{3}{*}{\({ }^{256}\)} \\
\hline \& \& \(+\quad 250\)
\(-\quad 203\) \& \begin{tabular}{l}
\(+\quad 42 \mathrm{I}\) \\
\hline\(-\quad 203\) \\
\hline
\end{tabular} \& \& \& \& + I \& \\
\hline \& 157
160 \& +
\(-\quad 203\)
\(-\quad 47\) \& - 224 \& \& \& \& \& \\
\hline \multirow[t]{4}{*}{Oct. 14} \& \multirow[t]{2}{*}{180

185} \& + 93 \& - 30 \& \& \& 246 \& \&

\hline \& \& - 67 \& - 99 \& \& \& " \& + $\quad 1$ \& "

\hline \& 182 \& - 17 \& + 92 \& \& \& " \& \bigcirc \& "

\hline \& \& \& \& -.000962 \& -. 000033 \& \& \&

\hline \multirow[t]{4}{*}{Oct. 15} \& \multirow[t]{2}{*}{204} \& - 12 I \& - 570 \& \& \& 247 \& + 2 \& 258

\hline \& \& - 76 \& + 348 \& \& \& \& + 2 \& "

\hline \& 205
207 \& + 209 \& + 219 \& \& \& 246 \& - \& "

\hline \& \& \& \& $-.000334$ \& -.000527 \& \& \&

\hline \multirow[t]{3}{*}{Oct. 16} \& 232 \& + 23 \& - 77 \& \& \& \& + 2 \& 256

\hline \& 235
236 \& 1
$+\quad 230$

$-\quad 264$ \& $\begin{array}{r}12 \\ \hline\end{array}$ \& \& \& "، \& $$
\begin{array}{r}
0 \\
-\quad \mathrm{I}
\end{array}
$$ \& "

\hline \& \& \& \& -.000391 \& +.00236 \& \& \&

\hline \multirow[t]{3}{*}{Oct. 21} \& 258
259 \& - 73 \& + 993 \& \& \& \& \&

\hline \& \[
$$
\begin{aligned}
& 259 \\
& 260
\end{aligned}
$$

\] \& | 111 |
| :--- |
| $+\quad 174$ | \& 1

$-\quad 42 \mathrm{I}$
$-\quad 495$ \& \& \& " \& + $\quad 1$ \& "

\hline \& \& \& \& -.000193 \& +.000258 \& \& \&

\hline \multirow[t]{2}{*}{Oct. 23} \& \multirow[t]{2}{*}{272
273} \& \multirow[t]{2}{*}{$-\quad 573$
$-\quad 343$} \& \multirow[t]{2}{*}{127
$+\quad 619$} \& \& \& 252 \& \bigcirc \& 270

\hline \& \& \& \& \& \& +.0002 52 \& \bigcirc \& +.000270

\hline
\end{tabular}

Table II. - Meridian Plate Constants - Continued.

Table II. - Meridian Plate Constants - Continued.

Table II.'- Meridian Plate Constants - Continued.

Table III. - Meridian Mean Places, Reduction to Apparent Place, and
Parallax Corrections.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date.} \& \multirow{2}{*}{$$
\begin{aligned}
& \text { Plate } \\
& \text { No. }
\end{aligned}
$$} \& \multirow{2}{*}{Berlin M. T.} \& \multicolumn{2}{|l|}{Mean Place 1900. o .} \& \multicolumn{2}{|l|}{Reduction to Apparent Place.} \& \multicolumn{2}{|l|}{Paraliax Δ.}

\hline \& \& \& α \& δ \& a \& δ \& \boldsymbol{a} \& δ

\hline Oct. 5 \& $$
\begin{aligned}
& 84 \\
& 85 \\
& 90
\end{aligned}
$$ \& $$
\begin{array}{rrr}
\hline h & m & s \\
22 & 28 & 22 \\
& 38 & 22 \\
23 & 8 & 35
\end{array}
$$ \& \& $\begin{array}{ccc}\circ & \prime \prime \\ 4635 & \\ 4.07 \\ & 13.08 \\ & 40.49\end{array}$ \& $$
\begin{gathered}
\mathrm{s} \\
+6.057
\end{gathered}
$$ \& $$
\begin{array}{r}
\prime \prime \\
+13.02
\end{array}
$$ \& 8
-.095
-.040
+.126 \& $$
\begin{array}{r}
\hline " \\
-2.64 \\
2.66 \\
2.62
\end{array}
$$

\hline Oct. 6 \& $$
\begin{array}{r}
98 \\
100 \\
\text { 102 }
\end{array}
$$ \& $\begin{array}{r}22 \quad 2750 \\ 3636 \\ 23 \\ \hline 0\end{array}$ \& 24337.268
37.144
36.936 \& 465643.03
50.88
$57 \quad 4.01$ \& 6.107 \& 13.19 \& -.077
-.028
+.051 \& $$
\begin{aligned}
& 2.78 \\
& 2.80 \\
& 2.79
\end{aligned}
$$

\hline Oct. 7 \& $$
\begin{aligned}
& 110 \\
& 112 \\
& 113
\end{aligned}
$$ \& 223122
4346
46 \& 24322.375
22.145
22.107 \& $47 \quad 1813.96$
24.99

27.93 \& 6.158 \& 13.39 \& -.034
+.037

+.055 \& $$
\begin{aligned}
& 2.93 \\
& 2.93 \\
& 2.93
\end{aligned}
$$

\hline Oct. 8 \& $$
\begin{aligned}
& 117 \\
& 118 \\
& 119
\end{aligned}
$$ \& $22 \quad 2935$

3429
43 \& $\begin{array}{rr}243 & 3.621 \\ 3.520 \\ & 3.312\end{array}$ \& 473927.25
3 I .5 I
39.34 \& 6.208 \& 13.57 \& -.021
+.008

+.065 \& $$
\begin{aligned}
& 3.07 \\
& 3.07 \\
& 3.06
\end{aligned}
$$

\hline Oct. 9 \& $$
\begin{aligned}
& 122 \\
& 123 \\
& 125
\end{aligned}
$$ \& $22 \quad 2035$

2346
3422 \& 24240.948
40.870

40.619 \& $\begin{array}{rr}48 & \circ 19.45 \\ & 22.00 \\ & 3 \mathrm{I} .28\end{array}$ \& $$
\begin{aligned}
& 6.257 \\
& 6.258 \\
& 6.258
\end{aligned}
$$ \& 13.78 \& -.049

-.030
+.033 \& 3.20
3.21
3.21

\hline Oct. 10 \& $$
\begin{aligned}
& 129 \\
& 130 \\
& 131
\end{aligned}
$$ \& $22 \quad 2318$

26
295
29 \& 24213.899
13.814
13.720 \& \& 6.308 \& 14.00 \& -.007
+.013

+.032 \& $$
\begin{aligned}
& 3.35 \\
& 3.35 \\
& 3.35
\end{aligned}
$$

\hline Oct. 12 \& $$
\begin{aligned}
& 1422 \\
& 143 \\
& 144
\end{aligned}
$$ \& \[

$$
\begin{array}{rrr}
22 & 38 & 5^{8} \\
4 \mathrm{I} & 40 \\
44 & 58
\end{array}
$$

\] \& | 241 |
| :--- |
| 6.734 |
| |
| 6.643 |
| |
| 6.538 | \& \[

$$
\begin{array}{rr}
49 & 155.90 \\
& 58.02 \\
& 2 \quad 0.68
\end{array}
$$

\] \& 6.406 \& 14.49 \& \[

$$
\begin{aligned}
& +.147 \\
& +.564 \\
& +.584
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.58 \\
& 3.57 \\
& 3.55
\end{aligned}
$$
\]

\hline Oct. 13 \& $$
\begin{aligned}
& 156 \\
& 157 \\
& 160
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
22 \quad 118 \\
4450 \\
1846
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
24028.113 \\
27.993 \\
27.486
\end{array}
$$
\] \& 492113.64

26.74 \& 6.453 \& 14.75 \& -.061
-.038

+.050 \& $$
\begin{aligned}
& 3.76 \\
& 3.77 \\
& 3.77
\end{aligned}
$$

\hline Oct. 14 \& $$
\begin{aligned}
& 180 \\
& 181 \\
& 182
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
2155 \quad 22 \\
5935 \\
22 \quad 2 \quad 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
23944.080 \\
43.924 \\
43.814
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
494036.77 \\
40.32 \\
42.65
\end{array}
$$
\] \& 6.500 \& 15.02 \& -.070

-.043
-.024 \& 3.90
3.91
3.91

\hline Oct. 15 \& $$
\begin{aligned}
& 204 \\
& 205 \\
& 207
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
21 \quad 4946 \\
5235 \\
22 \quad 435
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
23855.546 \\
55.429 \\
54.915
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
495936.79 \\
38.99 \\
48.43
\end{array}
$$
\] \& 6.546 \& 15.31 \& -.077

-.059
+.021 \& 4.04
4.05
4.06

\hline Oct. 16 \& $$
\begin{aligned}
& 232 \\
& 235 \\
& 236
\end{aligned}
$$ \& $\begin{array}{rrrr}21 & 45 & 22 \\ 22 & \text { I } & 41 \\ & 4 & 36\end{array}$ \& $\begin{array}{ll}238 & 2.464 \\ & 1.733 \\ & 1.593\end{array}$ \& \[

$$
\begin{array}{r}
501812.27 \\
24.66 \\
26.95
\end{array}
$$

\] \& 6.592 \& 15.64 \& \[

$$
\begin{aligned}
& -.076 \\
& +.034 \\
& +.053
\end{aligned}
$$
\] \& 4.19

4.20
4.20

\hline Oct. 21 \& $$
\begin{aligned}
& 258 \\
& 259 \\
& 260
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
21 \quad 24 \quad 59 \\
3235 \\
35 \quad 46
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
23228.960 \\
28.49 \mathrm{I} \\
28.297
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
514351.59 \\
56.35 \\
58.65
\end{array}
$$

\] \& 6.799 \& 17.38 \& \[

$$
\begin{aligned}
& -.047 \\
& +.008 \\
& +.032
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.90 \\
& 4.9 \mathrm{I} \\
& 4.9 \mathrm{I}
\end{aligned}
$$
\]

\hline Oct. 23 \& $$
\begin{aligned}
& 272 \\
& 273
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
21 \quad 20 \quad 23 \\
23 \quad 37
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
22944.270 \\
44.069
\end{array}
$$

\] \& \[

$$
\begin{array}{lll}
52 & 14 & 7.68 \\
& 9.69
\end{array}
$$

\] \& 6.869 \& 18.19 \& \[

$$
\begin{aligned}
& -.004 \\
& +.02 \mathrm{I}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.19 \\
& 5.18
\end{aligned}
$$
\]

\hline Oct. 24 \& $$
\begin{aligned}
& 286 \\
& 287 \\
& 288
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
21 \quad 1643 \\
25 \\
28 \\
28 \quad 58
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
228 \times 5.653 \\
15.003 \\
\\
14.782
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5228 \text { 16.26 } \\
2 \mathrm{I} .3 \mathrm{I} \\
23.22
\end{array}
$$

\] \& 6.901 \& 18.62 \& \[

$$
\begin{aligned}
& +.010 \\
& +.08 \mathbf{r} \\
& +.104
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 \cdot 32 \\
& 5 \cdot 3 \mathrm{I} \\
& 5 \cdot 30
\end{aligned}
$$
\]

\hline Oct. 25 \& $$
\begin{array}{r}
311 \\
312 \\
314
\end{array}
$$ \& \[

$$
\begin{array}{rrr}
20 & 56 & 43 \\
& 59 & 18 \\
21 \quad 11 & 33
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
22644.201 \\
44.020 \\
43.112
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
524133.10 \\
34.78 \\
41.37
\end{array}
$$

\] \& +6.93 ${ }^{\text {r }}$ \& +19.06 \& \[

$$
\begin{aligned}
& -.104 \\
& -.084 \\
& +.012
\end{aligned}
$$
\] \& 5.43

5.44
-5.45

\hline
\end{tabular}

Table III. - Meridian Mean Places, Reduction to Apparent Place, and Parallax Corrections - Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date.} \& \multirow{2}{*}{\[
\begin{aligned}
\& \text { Plate } \\
\& \text { No. }
\end{aligned}
\]} \& \multirow{2}{*}{Berlan M. T.} \& \multicolumn{2}{|l|}{Mean Place igoo. o.} \& \multicolumn{2}{|l|}{Reduction to Apparent Place.} \& \multicolumn{2}{|l|}{Parallax \(\Delta\).} \\
\hline \& \& \& \(\alpha\) \& \(\delta\) \& \(a\) \& \(\delta\) \& \(a\) \& \(\delta\) \\
\hline Oct. 26 \& \[
\begin{aligned}
\& 329 \\
\& 330 \\
\& 331
\end{aligned}
\] \& \(\begin{array}{rrrr}\text { h } \& \text { m } \& \text { s } \\ 20 \& 55 \& 46 \\ \& 58 \& 35 \\ 2 I \& I \& 4 \mathrm{I}\end{array}\) \& \begin{tabular}{ccc}
h \& m \& s \\
2 \& 25 \& 7.501 \\
\& \& 7.290 \\
\& \& 7.053
\end{tabular} \& \[
\begin{array}{ccc}
\circ \& \prime \prime \prime \\
52 \& 54 \& 17.19 \\
\& 18.49 \\
\& 19.96
\end{array}
\] \& \[
\stackrel{s}{\mathrm{~s}}+6.957
\] \& \[
\begin{array}{r}
\prime \prime \\
+19.60
\end{array}
\] \& s
-.069
-.047
-.022 \& \(\prime \prime\)
-5.57
5.58
5.58 \\
\hline Oct. 29 \& \[
\begin{array}{r}
353 \\
354 \\
355
\end{array}
\] \& \[
\begin{array}{r}
2045 \mathrm{II} \\
48 \mathrm{II} \\
5 \mathrm{I} \mathrm{I} 8
\end{array}
\] \& \[
\begin{array}{r}
21956.482 \\
56.230 \\
55.965
\end{array}
\] \& \[
\begin{array}{r}
532743.45 \\
44.89 \\
46.10
\end{array}
\] \& 7.02 I \& 20.92
20.92
20.93 \& -.019
+.005
+.031 \& 5.95
5.95
5.95 \\
\hline Nov. I \& \[
\begin{aligned}
\& 360 \\
\& 361 \\
\& 362
\end{aligned}
\] \& \[
\begin{array}{r}
203235 \\
35 \quad 58 \\
38 \quad 43
\end{array}
\] \& 21418.466
18.184
17.924 \& 535333.44
34.42

35.33 \& 7.058 \& 22.41 \& +.021
+.051
+.074 \& 6.28
6.27
6.27

\hline Nov. 2 \& $$
\begin{aligned}
& 384 \\
& 385 \\
& 386
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
20 \quad 1922 \\
2246 \\
30 \quad 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
21221.899 \\
21.594 \\
20.895
\end{array}
$$
\] \& $\begin{array}{rr}54 & 019.98 \\ \\ \\ \\ & 20.72 \\ \\ & 22.91\end{array}$ \& 7.064 \& 22.92 \& -.042

-.023
+.055 \& 6.37
6.38
6.37

\hline Nov. 3 \& $$
\begin{aligned}
& 408 \\
& 4 I I \\
& 4 I 4
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
335 \\
164 \mathrm{I} \\
2950
\end{array}
$$
\] \& $210 ~$

23.699
22.480
21.258 \& $\begin{array}{rrr}54 & 6 \\ & 10.57 \\ & 13.58 \\ & 16.53\end{array}$ \& 7.065 \& 23.44 \& -.130
-.014
+.101 \& 6.44
6.47
6.46

\hline Nov. 4 \& $$
\begin{aligned}
& 439 \\
& 44 I \\
& 443
\end{aligned}
$$ \& \[

$$
\begin{array}{rrr}
19 & 57 & 35 \\
20 & 436 \\
17 & 58
\end{array}
$$

\] \& $\begin{array}{rr}2823.140 \\ & 22.459 \\ & 21.194\end{array}$ \& $\begin{array}{rrr}54 & \text { II } \\ & 6.94 \\ & 8.23 \\ & 10.89\end{array}$ \& 7.064 \& \[

$$
\begin{aligned}
& 23.96 \\
& 23.96 \\
& 23.97
\end{aligned}
$$
\] \& -.132

-.069
+.050 \& 6.53
6.55
6.56

\hline Nov. 5 \& $$
\begin{aligned}
& 445 \\
& 447 \\
& 450
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
195235 \\
5835 \\
20 \quad 17 \quad 29
\end{array}
$$

\] \& $\begin{array}{rr}2621.240 \\ \\ & 20.666 \\ & 18.890\end{array}$ \& \[

$$
\begin{array}{ll}
5415 & 5.45 \\
& 6.26 \\
& 9.28
\end{array}
$$
\] \& 7.059 \& 24.48 \& -.124

-.071
+.100 \& 6.61
6.63
6.63

\hline Nov. 9 \& $$
\begin{aligned}
& 464 \\
& 466 \\
& 467
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
1934 \quad 29 \\
42 \quad 23 \\
56 \quad 29
\end{array}
$$

\] \& $\begin{array}{ll}158 & 8.638 \\ & 7.915 \\ & 6.573\end{array}$ \& \[

$$
\begin{array}{ll}
5421 & 0.98 \\
& 1.07 \\
& 0.44
\end{array}
$$
\] \& 7.004 \& 26.53 \& -.075

-.001
+.131 \& 6.90
6.91
6.89

\hline Nov. 10 \& $$
\begin{aligned}
& 486 \\
& 487 \\
& 492
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
1923 \quad 35 \\
3035 \\
53 \quad 35
\end{array}
$$
\] \& $\begin{array}{ll}\text { I } 56 & 6.830 \\ & 6.177 \\ & 4.019\end{array}$ \& 541957.49

57.10

55.83 \& 6.983 \& 27.04 \& -.122
-.056
+.160 \& 6.93
6.95
6.91

\hline Nov. 12 \& $$
\begin{aligned}
& 518 \\
& 519 \\
& 520
\end{aligned}
$$ \& $\begin{array}{rrr}9 & 9 & 36 \\ 12 & 58 \\ 15 & 41\end{array}$ \& $\begin{array}{ll}\text { I } 526.110 \\ & 5.798 \\ & 5.523\end{array}$ \& $541445 \cdot 44$

$45 \cdot 32$

44.5 I \& $$
\begin{aligned}
& 6.932 \\
& 6.93 \mathrm{I} \\
& 6.93 \mathrm{I}
\end{aligned}
$$ \& 28.03 \& -.144

-.112
-.086 \& 6.99
7.01
7.02

\hline Nov. 13 \& $$
\begin{gathered}
538 \\
539 \\
540
\end{gathered}
$$ \& \[

$$
\begin{array}{lll}
19 & 2 & 58 \\
& 5 & 35 \\
& 8 & 35
\end{array}
$$
\] \& $\begin{array}{ll}150 & 8.314 \\ & 8.072 \\ & 7.8 \mathrm{II}\end{array}$ \& 541036.62

36.25
35.55 \& 6.901 \& 28.50 \& -.152
-.127
-.098 \& 7.02
7.03
7.04

\hline Nov. 23 \& $$
\begin{aligned}
& 571 \\
& 573 \\
& 576
\end{aligned}
$$ \& \[

$$
\begin{array}{rrr}
18 & 15 & 11 \\
11 & 22 \\
& 31 & 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
13342.968 \\
42.572 \\
4 \mathrm{I} .322
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
5235 & 5.52 \\
& 1.97 \\
34 & 50.03
\end{array}
$$
\] \& 6.501 \& 32.49 \& -.176

-.115
+.083 \& 6.83
6.85
6.82

\hline Nov. 24 \& 588 \& 183026 \& I 3229.56 x \& 522016.01 \& 6.456 \& 32.80 \& +.123 \& 6.74

\hline Nov. 27 \& $$
\begin{aligned}
& 601 \\
& 602 \\
& 606
\end{aligned}
$$ \& \[

$$
\begin{array}{rrr}
17 \quad 5129 \\
5428 \\
18 \quad 6 \quad 36
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
12932.819 \\
32.678 \\
32.156
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
513224.60 \\
22.65 \\
13.78
\end{array}
$$

\] \& 6.325 \& 33.56 \& \[

$$
\begin{array}{r}
-.115 \\
-.086 \\
+.033
\end{array}
$$
\] \& 6.49

6.50
6.51

\hline Nov. 28 \& $$
\begin{aligned}
& 627 \\
& 629 \\
& 630
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
17 \quad 49 \quad 18 \\
5528 \\
58 \quad 29
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { I } 2846.100 \\
45.857 \\
45.715
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
511455.78 \\
51.17 \\
48.98
\end{array}
$$

\] \& +6.283 \& +33.78 \& \[

$$
\begin{array}{r}
-.090 \\
-.030 \\
.000
\end{array}
$$
\] \& 6.40

6.41
-6.41

\hline
\end{tabular}

Table III. - Meridian Mean Places, Reduction to Apparent Place, and Parallax Corrections - Continued.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Berlin M. T.	Mean Place ${ }^{\text {a }}$ 1900. 0.		Reduction to Apparent Place.		Parallax $\Delta_{\text {a }}$	
			a	δ	α	δ	\boldsymbol{a}	δ
Nov. 29		h m s	h m s	' "	${ }^{\text {s }}$	"	s	"
	660	174429	I 286.042	505650.04	+6.24	+33.97	-. 092	-6.29
	66 I	4729	5.937	47.68			$-.063$	6.30
	666	$18 \quad 243$	5.401	36.14			+. 086	6.29
Dec. 2	679	173158	I 2645.908	495858.16	6.122	34.44	-. 085	5.93
	680	3435	45.836	56.09			-. 060	5.94
		3736	45.782	53.57			-.03I	5.94
Dec. 3	698	172935	I 2632.552	493834.61	6.085	34.54	-. 068	5.80
	699	3235	32.543	32.31			-. 039	5.8 I
	700	3535	32.472	29.66			-. 010	5.8土
Dec. 5	725	171135	I 26 26.19	485633.87	6.014	34.72	-. 163	$5 \cdot 48$
	726	1446	26.163	30.94			-. 133	5.49
	728	2035	26.120	25.80			-. 077	5.51
Dec. 6	756	17835	I 2632.899	483449.01	5.98I	34.77	-. 155	5.33
	758	1446	32.867	43.46			-. 096	$5 \cdot 36$
	759	1735	32.854	40.80			-. 070	5.36
Dec. 7	787	17 435	I 2646.173	481240.17	5.949	34.82	-. 157	5.18
	790	1335	46.208	31.62			-. 072	5.2 I
	791	1635	46.202	29.10			-. 043	5.22
Dec. 8	821	17 1430	1276.125	$474955 \cdot 39$	5.919	34.84	-. 029	5.06
	823	2035	6.166	49.41			+. 029	5.06
	824	2335	6.187	46.74			+. 057	5.05
Dec. 10	827	$17 \begin{array}{ll}1729\end{array}$	1285.223	$47 \quad 354.55$	5.862	34.80	-. 086	4.71
	832	1628	5.474	40.22			+. 054	4.72
	833	1929	5.511	37.06			+.083	4.75
Dec. II	847	165822	I 2844.370	464022.84	5.837	34.76	$-.084$	4.54
	848	17135	44.441	19.74			-. 054	4.54
	849	418	44.493	17.02			-. 029	4.55
Dec. 12	854	${ }^{16} 59$ II	I 2929.896	461630.24	5.8 I 2	34.71	-. 046	4.37
	855	17211	29.975	27.24			-. 019	$4 \cdot 37$
	856	529	30.039	23.54			+.012	$4 \cdot 37$
Dec. 22	878	163411	14231.998	$42 \quad 727.14$	5.643	33.25	-. 032	2.42
	880	40 II	32.382	20.78			+. 020	2.42
	881	4333	32.612	17.05			+.050	2.42
Dec. 23	889	162911	14420.521	414155.63	5.633	33.04	-. 057	2.21
	890	3222	20.746	52.27			-. 029	2.21
	891	3511	20.922	49.23			-. 005	2.21
Dec. 24	903	162835	I 4614.490	411615.80	5.623	32.80	-. 044	2.00
	904	3136	14.702	12.59			-. 018	2.01
	906	3735	15.155	6.06			+. 033	2.01
Dec. 28	930	I6 1946	15438.159	393319.88	+5.596	+31.68	-. 055	1.17
	931	2227	38.375	17.06			-. 033	1.17
	932	2522	38.643	13.88			-. 0008	-1.18

Table IV. - Meridian True Places and Corrections to Ephemeris.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Berlin M. T.	Observed.		O-E	
			α	δ	α	δ
Oct. 5		h m s	$b \mathrm{~m}$ s	- , "	s	"
	84	222822	24354.229	463514.45	-. 055	+. 46
	85	3822	54.148	23.44	70	32
	90	${ }^{23} 835$	53.954	50.89	75	36
Oct. 6	98	222750	24343.298	465653.44	50	42
	100	$3^{6} 3^{6}$	43.223	$57 \quad 1.27$	46	36
	102	504 I	43.094	14.41	49	82
Oct. 7	110	223122	24328.499	471824.42	35	62
	112	4346	28.340	35.45	50	64
	113	4659	28.320	38.39	33	75
Oct. 8	117	222935	$243 \quad 9.786$	473937.75	43	91
	118	3429	9.736	42.01	24	86
	119	4335	9.581	49.85	49	71
Oct. 9	122	222035	24247.156	$48 \quad 030.03$	68	64
	123	2346	47.098	32.57	71	43
	125	3422	46.910	41.85	78	56
Oct. ro	129	222318	24220.200	482117.09	97	54
	130	2635	20.135	19.78	95	39
	131	2943	20.060	22.56	103	46
Oct. 12	142	$2238{ }^{58}$	24113.287	4926.81	67	31
	143	4 4 40	13.213	8.94	69	16 $+\quad 8$
	144	4458	13.128	1 7.62	67	+ 08
Oct. r_{3}	156	$22 \quad 1 \begin{array}{ll}18\end{array}$	24034.505	492124.63	93	- Or
	157	450	34.408	27.72	89	+ 26
	160	1846	33.989	38.87	97	-15
Oct. 14	180	215522	23950.510	494047.89	82	+ 16
	181	5935	50.38 r	51.43	72	37
	182	$22 \quad 29$	50.290	53.76	70	39
Oct. 15		214946	$238 \quad 2.015$	495948.06	89	49
	205	5235	1.916	50.25	92	53
	207	$22 \quad 435$	1.482	59.68	97	45
Oct. 16	232	214522	2388.980	501823.70	89	$4{ }^{2}$
		22141	8.359	36.08		19
	236	43^{6}	8.238	38.37	85	27
Oct. 21				51 444.06	142	62
	259	3235	35.298	8.8 r	150	+44
	260	3546	35.128	11.11	148	+ 66
Oct. 23	272	212023	22951.135	521420.68	143	- 03
	273	2337	50.959	22.70	122	04
Oct. 24	286		22822.564	522829.56	157	+36
	287	2558	21.985	34.62	154	11
	288 288	2858	21.787	36.54	16I	29
Oct. 25		205643	22651.028	524 4 4.73	156	12
	312	5918	50.867	48.40	146	37
	314	211133	50.055	54.98	-153	+ 26

Table IV.-Meridian True Places and Corrections to Ephemeris - Continued.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Berun M. T.	Observed.		O-E	
			u	δ	a	δ
Oct. 26			$\begin{array}{lcc} \hline \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 2 & 25 & \mathrm{I} 4.38 \mathrm{~g} \end{array}$	\circ 52 52	$\stackrel{\text { s }}{\substack{\text { ¢ } \\-14 \mathrm{I}}}$	$\prime \prime$ $+\quad .25$
	320	205845 58	$\begin{array}{r}2514.389 \\ \\ \hline 4.200\end{array}$	$\begin{array}{r}525431.22 \\ 32.5 \\ \hline\end{array}$	T43	+12 +1
	331	2 I 4 I	13.987	33.98	149	+ 4
Oct. 29	353	2045 Ix	2203.484	532758.45	173	-17
	354	4811	3.254	59.88	174	0
	355	5118	3.018	28 1.08	171	- II
Nov. r	360	203235	21425.545	535349.57	233	42
	361	3558	25.293	50.56	205	47
	362	3843	25.056	51.47	220	40
Nov. 2	384	201922	21228.92 I	$54 \bigcirc 36.53$	210	27
	385	2246	28.645	37.26	215	52
	386	3029	28.014	39.46	203	39
Nov. 3	408	20335	21030.634	$54 \quad 627.57$	251	37
	4 II	164 I	29.53 I	30.55	258	37
	414	2950	28.424	33.51	257	40
Nov. 4	439	195735	2830.072	54 II 24.37	210	27
	44 I	$20 \quad 436$	29.454	25.64	231	31
	443	1758	28.308	28.30	257	12
Nov. 5	445	19 5235	2628.175	541523.32	218	
	447	5835	27.654	24.11 27.13	236 232	28 I
	450	201729	26.049	27.13		I
Nov. 9			1 5815.567	542120.61		63
	466	4223	+4.918	20.69	225	58
	467	5629	13.708	20.08	229	66
Nov. 10			I 5613.691	542017.60	210	65
	487	3035	13.104	17.19	198	70
	492	5335	11.162	15.96	r95	42
Nov. 12			15212.898	54156.48	${ }^{165}$	72
	519	12 58	12.617	6.34	160	34
	520	154 I	12.368	5.52	r94	76
Nov. 13	538	19258	15015.063	54 10 58.10	219	88
	539	535	14.846	57.72	225	76
	540	835	14.614	57.01	210	88
Nov. 23	571	185 II	I 3349.293	523531.18	204	1.14
	573	1122	48.958	27.61	214	r.12
	576	3129	47.906	15.70	207	1.32
Nov. 24	588	183026	I 3236.140	522042.07	200	1.48
Nov. 27				513251.67		
	602	5428	38.917	49.71	143	1.62
	606	$18 \quad 636$	38.514	40.83	129	r. 82
Nov. 28	627	1749×8	1 2852.293	515523.16	113	1. 86
	629	5528	52.110	$\begin{array}{r}18.54 \\ \\ \hline 6.35\end{array}$	109	1.88
	630	5829	51.998	16.35	-129	-r.82

Table IV. - Meridian True Places and Corrections to Ephemeris - Continued.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date.} \& \multirow{2}{*}{\[
\begin{aligned}
\& \mathrm{P}_{\text {LATE }} \\
\& \text { No. }
\end{aligned}
\]} \& \multirow{2}{*}{Bericin M. T.} \& \multicolumn{2}{|c|}{Observed.} \& \multicolumn{2}{|c|}{O-E} \\
\hline \& \& \& \(\boldsymbol{a}\) \& \(\delta\) \& \(u\) \& \(\delta\) \\
\hline Nov. 29 \& \[
\begin{aligned}
\& 660 \\
\& 661 \\
\& 666
\end{aligned}
\] \& \[
\begin{array}{ccc}
\hline \mathrm{h} \& \mathrm{~m} \& \mathrm{~s} \\
\text { 17 } \& 44 \& 29 \\
\& 47 \& 29 \\
\mathrm{I} 8 \& 2 \& 43
\end{array}
\] \& \begin{tabular}{cc}
b m \& \\
I \& \\
\& 28 \\
\& 12.191 \\
\& 12.115 \\
\& \\
\& 11.728
\end{tabular} \& \(\begin{array}{cc}\circ \& \prime \prime \\ 50 \& \\ 57 \& 17.72 \\ \& 15.35 \\ \& 3.82\end{array}\) \& 8
-.124
123
119 \& \(1 \prime\)
-1.80
1.85
1.63 \\
\hline Dec. 2 \& \[
\begin{aligned}
\& 679 \\
\& 680 \\
\& 68 \mathrm{I}
\end{aligned}
\] \& \[
\begin{array}{r}
1731 \quad 58 \\
3435 \\
3736
\end{array}
\] \& \[
\begin{array}{r}
1265 \mathrm{I} .945 \\
5 \mathrm{I} .898 \\
5 \mathrm{I} .873
\end{array}
\] \& \[
\begin{array}{r}
495926.67 \\
24.59 \\
22.07
\end{array}
\] \& \[
\begin{aligned}
\& 112 \\
\& 129 \\
\& 119
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.79 \\
\& 1.69 \\
\& 1.67
\end{aligned}
\] \\
\hline Dec. 3 \& \[
\begin{aligned}
\& 698 \\
\& 699 \\
\& 700
\end{aligned}
\] \& \[
\begin{array}{r}
172935 \\
3235 \\
35 \quad 35
\end{array}
\] \& \[
\begin{array}{r}
12638.569 \\
38.589 \\
38.547
\end{array}
\] \& \[
\begin{array}{rr}
4939 \& 3.35 \\
\& \mathbf{I} .04 \\
38 \& 58.39
\end{array}
\] \& 149
108
129 \& \[
\begin{aligned}
\& 1.95 \\
\& 1.62 \\
\& 1.70
\end{aligned}
\] \\
\hline Dec. 5 \& \[
\begin{aligned}
\& 725 \\
\& 726 \\
\& 728
\end{aligned}
\] \& \[
\begin{array}{rll}
17 \& 11 \& 35 \\
1446 \\
20 \& 35
\end{array}
\] \& \[
\begin{array}{r}
12632.042 \\
32.044 \\
32.057
\end{array}
\] \& \[
\begin{array}{rr}
48 \quad 57 \& 3.11 \\
\& 0.17 \\
56 \& 55.01
\end{array}
\] \& \[
\begin{aligned}
\& 132 \\
\& 137 \\
\& 138
\end{aligned}
\] \& 1.70
1.79
1.70 \\
\hline Dec. 6 \& \[
\begin{aligned}
\& 756 \\
\& 758 \\
\& 759
\end{aligned}
\] \& \(\begin{array}{rr}17 \& 835 \\ 1446 \\ 17 \& 35\end{array}\) \& \[
\begin{array}{r}
\text { I } 2638.725 \\
38.752 \\
38.765
\end{array}
\] \& \[
\begin{array}{r}
483518.45 \\
12.87 \\
10.21
\end{array}
\] \& 109
125
131 \& 1.29
1.20
1.34 \\
\hline Dec. 7 \& \[
\begin{aligned}
\& 787 \\
\& 790 \\
\& 791
\end{aligned}
\] \& \[
\begin{array}{rr}
17 \quad 435 \\
1335 \\
\& 1635
\end{array}
\] \& \[
\begin{array}{r}
\text { I } 265 \mathrm{5} .965 \\
52.085 \\
52.108
\end{array}
\] \& \[
\begin{array}{rr}
48 \mathrm{I} 3 \& 9.8 \mathrm{I} \\
\& 1.23 \\
12 \& 58.70
\end{array}
\] \& \[
\begin{aligned}
\& 118 \\
\& 101 \\
\& 112
\end{aligned}
\] \& 1.32
1.57
1.27 \\
\hline Dec. 8 \& \[
\begin{aligned}
\& 821 \\
\& 823 \\
\& 824
\end{aligned}
\] \& \[
\begin{array}{r}
171430 \\
2035 \\
2335
\end{array}
\] \& \[
\begin{array}{r}
12712.015 \\
12.114 \\
12.163
\end{array}
\] \& 475025.17
19.19
16.53 \& 92
93
93 \& \[
\begin{aligned}
\& 1.59 \\
\& \mathrm{I} .70 \\
\& \mathrm{I} .48
\end{aligned}
\] \\
\hline Dec. so \& \[
\begin{aligned}
\& 827 \\
\& 832 \\
\& 833
\end{aligned}
\] \& \[
\begin{array}{r}
1729 \\
1628 \\
1929
\end{array}
\] \& \[
\begin{array}{r}
12810.999 \\
11.390 \\
11.456
\end{array}
\] \& \(\begin{array}{rr}47 \& 424.64 \\ \& 10.30 \\ \& 7.15\end{array}\) \& 105
92
99 \& 1.75
1.33
1.67 \\
\hline Dec. 11 \& \[
\begin{aligned}
\& 847 \\
\& 848 \\
\& 849
\end{aligned}
\] \& \(\begin{array}{rrrr}16 \& 58 \& 22 \\ 17 \& 1 \& 35 \\ \& 4 \& 18\end{array}\) \& \[
\begin{array}{r}
\text { I } 2849.123 \\
50.224 \\
50.301
\end{array}
\] \& 464053.06
49.96
47.23 \& 110
106
109 \& 1.78
1.61
1.63 \\
\hline Dec. 12 \& \[
\begin{aligned}
\& 854 \\
\& 855 \\
\& 856
\end{aligned}
\] \& \(\begin{array}{rrr}16 \& 59 \\ 11 \\ 17 \& 211 \\ \& 5 \& 29\end{array}\) \& 1 \(29 \begin{array}{r}35.662 \\ 35.768 \\ 35.863\end{array}\) \& \(\begin{array}{rrr}4617 \& 0.58 \\ 16 \& 57.58 \\ \& 53.88\end{array}\) \& 132
149
145 \& 1.77
1.75
2.14 \\
\hline Dec. 22 \& \[
\begin{aligned}
\& 878 \\
\& 880 \\
\& 88 \mathrm{I}
\end{aligned}
\] \& \[
\begin{array}{r}
16 \begin{array}{ll}
36 \mathrm{II} \\
40 \mathrm{II} \\
43 \mathrm{3n}
\end{array}
\end{array}
\] \& \[
\begin{array}{r}
1237.609 \\
38.045 \\
38.305
\end{array}
\] \& \(42 \quad 757.97\)

47.6 I
47.88 \& 70
81

66 \& $$
\begin{aligned}
& 1.77 \\
& 1.68 \\
& \mathrm{r} .88
\end{aligned}
$$

\hline Dec. 23 \& $$
\begin{aligned}
& 889 \\
& 890 \\
& 891
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
1629 \mathrm{II} \\
32 \mathrm{I2} \\
35 \mathrm{nI}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { I } 4426.097 \\
26.350 \\
26.550
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
4 \mathrm{I} 42 & 26.46 \\
23.10 \\
20.06
\end{array}
$$
\] \& 96

88
I 1 \& 1.40
I. 37
I .34

\hline Dec. 24 \& $$
\begin{aligned}
& 903 \\
& 904 \\
& 906
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
162835 \\
3136 \\
3735
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
14620.069 \\
20.307 \\
20.8 \mathrm{II}
\end{array}
$$
\] \& 411646.59

43.38
36.85 \& 64
70
45 \& 1.03
1.00
1.23

\hline Dec. 28 \& $$
\begin{aligned}
& 930 \\
& 931 \\
& 932
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
16 \quad 1946 \\
22 \quad 27 \\
25 \quad 22
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\text { I } 5443.700 \\
43.93^{8} \\
44.23 \mathrm{I}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
393350.43 \\
47.55 \\
44.36
\end{array}
$$
\] \& 57

$-\quad 76$
$-\quad 55$ \& 1.69
1.62
-1.72

\hline
\end{tabular}

Table V. - Parallax Plate Measures.

Table V. - Parallax Plate Measures - Continued.

Table V.-Parallax Plate Measures - Continued.

Table V. - Parallax Plate Measures - Continued.

Table V. - Parallax Plate Measures - Continued.

Table V. - Parallax Plate Measures - Continued.

Plate No.	Star.	P. S. T.	\boldsymbol{x}	y	Plate No.	Star.	P. S. T.	\boldsymbol{x}	y
252 E.			1900 $\text { Oct. } 21$	C				1900 $\text { Oct. } 2 I$	H
	a	72923	-58728	+ 55180	266 W.	a	16 4525	-27184	H +17682
	b		-41636	+33045		b		- 10076	- 4465
	c		-30572	+ 8793		c		+ 1022	-28715
	d		-20333	+86109		d		+ III66	+ 48635
	e		- 15267	-20630		e		+ 16363	$-58 \mathrm{rr8}$
	f		+ 10833	- 17133		f		+ 42420	-54620
	g		+23287	+21622		g		+ 54860	- 15852
	b		+ 32835	+ 13446		h		+64378	-24040
	1		+41891	-20102		n		-38098	+65254
	m		+44301	-35934		0		+24177	+61574
						z		-35976	+ 35801
253 E.			Oct. 21	H				Oct. 21	C
	a	$73^{6} 51$	-58331	+5463I	267 W.	a	I6 $54 \quad 0$	-26712	+ I7149
	b		-41240	+32480		b		- 9584	- 5012
	c		-30155	+ 8230		c		+ 150I	- 29236
	d		- 19955	+85566		d		+ 11651	+ 48092
	e		- 14826	-21183		e		+ 16846	- 58660
	f		+11274	- 17664		f		+42932	- 55145
	g		+23666	+21113		g		+ 55325	-16376
	h		+33222	+ 12920		h		+64857	-24561
	1		+ 42290	-20624		n		-37612	+64715
	m		+44726	-36438		0		+24673	+61040
						X		-35518	+ 35294
254 E.			Oct. 21	C				Oct. 21	H
	a	740 I	$-58 \mathrm{r} 66$	+ 54397	268 W.	a	$16 \quad 56 \quad 15$	-26530	+ I6998
	b		-41081	+ 32247		b		- 9454	- 5I54
	c		- 29997	$+8022$		c		+ 1638	- 29396
	d		- 19799	$+85317$		d		+ 11788	+ 47961
	e		-14684	-2141I		e		+17000	-58804
	f		+ 11410	- 17888		f		+ 43042	-55289
	g		$+23834$	+20873		g		+ 55412	- 16512
	h		+ 33387	+ 12684		h		+65010	-24706
	1		+ 4247 I	- 20868		n		-37475	+64544
	m		+ 44895	-36687		0		+24768	+6090I
						\mathbf{x}		-35348	+ 35111
264 W.			Oct. 21	H				Oct. 21	C
	a	16 3936	-27494	+18036	269 W.	a	$\begin{array}{lll}17 & 5 & 8\end{array}$	-26105	+ 16457
	b		- 10380	- 4116		b		- 8975	- 5691
	c		+ 705	-28342		c		+ 2132	-2992I
	d		+ 10845	$+48970$		d		+ 12264	+ 4744 I
	e		+16037	-57778		e		+ 17480	- 59346
	f		+ 42116	-54272		f		+ 43561	-55854
	g		+ 54568	- 15457		g		+ 55965	- 17061
	h		+64053	-23672		h		+65501	-2526I
	n		-38423	+65603		n		-37007	$+64067$
	0		+ 23869	+61911		0		+25300	+6040I
265 W.			Oct. 21	C				Oct. 21	H
	a	164225	-27326	+ 17836	270 W	a	$17 \quad 755$	-25948	+ 16267
	b		- 10218	- 4298		b	175	- 8844	- 5870
	c		+ 836	-28540		c		+ 2283	-30124
	d		+11014	+ 48744		d		+12421	+47253
	e		+16164	-57974		e		+17610	- 59545
	f		+ 42236	-54467		f		+ 43682	-56040
	g		$+54632$	- 55691		g		+56082	- 17246
	h		+64200	-23868		h		+65624	- 25442
	n		-38244	+65426		n		-36870	$+63848$
	0		+24047	+61736		0		+ 25429	+60158

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { PiATE } \\ & \text { No. } \end{aligned}$	Star.	P.S.T.	x	y
271 W.			${ }_{1900}$					1900	
	a	17 1448	Oct. 21 -25569	$\begin{gathered} \mathrm{C} \\ +15870 \end{gathered}$	278 E.	a	72124	Oct. 24 -74013	H -10498
	b		- 8446	-6288		b		- 55584	+49534
	c		+ 2646	-30528		c		-47860	- 4956
	d		+ 12784	+ 46840		d		-41196	-34616
	e		+ 18002	- 59948		e		- 16460	+33136
	f		+ 44068	- 56428		f		- 14452	+ 16506
	g		+56476	- 17646		g		- 10860	+ 52787
	h		+66006	-25842		h		+ 3790	+34142
	n		-36453	+63445		i		+ 16914	- 17795
	0		+ 25793	$+59780$		j		+ 25397	+ 15731
						1		+ 45392	-53942
						m		+40091	-23692
275 E.			Oct. 24	C				Oct. 24	C
	a	$7 \quad 720$	-74765	-9598	29 I W.	a	162853	-38916	-42962
	b		-56412	+ 50404		b		-20459	+17130
	c		-48705	- 4060		c		- 12754	-37427
	d		-42018	-33700		d		- 6035	-67086
	e		-17358	+34084		e		+ 18677	+ 74I
	f		-15322	+ 17404		f		+ 20691	-15932
	g		-11735	$+53697$		g		+24323	+20420
	h		+ 2980	+ 35062		h		+ 39000	+ 1750
	i		+16088	- 16945		i		+52117	-50303
	j		+24578	+ 16627		j		+60617	- 16671
	1		+ 44525	-53038		n		-47453	+31040
	m		+39302	-22810		0		-16259	+51135
276 E.		$7 \quad 958$	Oct. 24 -74702	H $-\quad 9744$	292 W.		163146	Oct. 24 -38706	H $-43 \mathrm{II2}$
	b	79	- 56225	+50278		b		-20290	+ 16964
	c		-48552	- 4206		c		-12527	-37563
	d		-41867	-33857		d		- 5796	-67242
	e		-17144	+33914		e		+18848	+ 576
	f		-15118	+ 17238		f		+ 20890	-16073
	g		- 11550	+ 53519		g		+24512	$+20260$
	h		+ 3094	+ 34867		h		+ 39207	+ 1607
	i		+16230	- 17100		i		+ 52302	-50402
	j		$+24700$	+ 16469		j		+60804	-16819
	1		+ 44675	- 53212		n		-47278	+30862
	m		+39398	- 22964		0		-16079	$+50970$
277 E.			Oct. 24	C				Oct. 24	C
	a	71258	-74496	- 9918	293 W.		163453	-38543	-43276
	b		-56093	+50073		b		-20088	+ 16800
	c		-48388	- 4390		c		- 12364	-37726
	d		-41700	-34028		d		- 5648	-67399
	e		-17004	+33689		e		+ 19035	+ 402 $+\quad 16239$
	f		- 14942	+ 17076		f		+21077	-16239
	g		- 11366	+ 53344		g		+24685	+20067
	h		+ 3270	+ 34684		h		+ 39376	+ 1403
	,		+ 16392	- 17256		i		+ 52493	-50590
	j		+ 24869	+16302		j		+60964	-17021
	1		+ 44866	-53399		n		-47073 -45886	$+30703$
	m		+ 39584	-2314I		0		- 15886	+ 50765

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P.S.T.	x	y
294 W.			1900					1900	
			Oct. 24	H				Oct. 24	H
	a	1644 I	-37950	-4378x	298 W.	a	$17 \quad 515$	-36630	-44889
	b		-19525	+16316		b		-18200	+ 15207
	c		-11780	-38228		c		- 10449	-39355
	d		- 5057	-67902		d		- 3740	-69016
	e		+ 19601	- 81		e		+20918	- 1202
	f		+21629	-16732		f		+22953	-17838
	g		+25265	+ 19588		g		+ 26551	$+18467$
	h		+39932	+ 920		h		+41246	- 212
	i		+53060	-51091		i		+ 54383	-5220I
	j		+61554	-17488		j		+62847	- 18622
	n		-46509	+30215		n		-45192	+29111
	0		- 15322	+ 50277		0		- 14025	+49167
295 W.			Oct. 24	C				Oct. 26	C
	a	164643	-37800	-43913	319 E .	a	6528	-60538	+23180 +35056
	b		-19372	+ 16153		b		-31790	+35056
	c		- 11620	-38346		c		-29135	+21255
	d		- 4899	-68031		${ }^{\text {d }}$		-28891	-22051
	e		+ 19756	- 209		f		- 1046	+33593
	f		+21789	- 16857		g		+ 1621	+ 2480
	g		+25403	+19430		h		+ 888	-34801
	h		+ 40080	+ 779		1		+27327	-30473
	i		+5322I	-51209		m		+ 34709	-11747
	j		+61672 +46344	$\begin{aligned} & -17636 \\ & +30066 \end{aligned}$					
	-		-15186	+50124					
296 W.			Oct. 24					Oct. 26	H
	a	16558	-37230	-44368	320 E.	a	65448	-60407	+23010
	b		-18804	+ 15734		b		-31662	+34874
	c		- 11068	-38813		c		-28994	+21114
	d		- 4345	-68476		d		-28711	-22188
	e		+20300	- 657		f		- 898	+33448
	f		+22338	- 17291		g		+ 1794	+ 2362
	g		+25933	+19004		h		+ 1065	-34948
	h		+40618	+ 353		1		+27490	
	i		+ 53772	-51635				+ 34854	-11879
	j		+62232	- 18053					
	n		-45807	$+296 \mathrm{ro}$					
	0		-14631	+49699					
297 W.			Oct. 24	C				Oct. 26	C
	a	16588	- 37080	-44518	32 IE .		65715	-60234	+22860
	b		- 18666	+ 15555		b		-31504	+34730
	c		- 10904	-38950		c		-28781	+20933
	d		- 4172	-68635		d		-28566	-22357
	e		+20455	- 792		f		- 718	+33298
	f		+22496	-17418				+ 1932	+ 2216
	g		+26136 +20807	+18847		h		+1209	-35080
	h		+40807 +5980	$\begin{array}{r}193 \\ +\quad 193 \\ \hline-8820\end{array}$		1		+ 27636	-30770
	i		+53970 +62433	-51810		m		+35039	- 12044
	n		+53270 +62433 -45654	-18213 +29455					
	-		- 14463	+49523					

Table V. - Parallax Plate Measures - Continued.

Table V.-Parallax Plate Measures - Continued.

Table V. - Parallax Plate Measores - Continued.

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y
670 W.	a$b$$c$$d$$efgh$$n$0	$14 \quad 3 \quad 58$	1900		675 W.	a	141953	1900	
			Nov. 29 -64703	$\begin{gathered} \mathrm{C} \\ +33890 \end{gathered}$				Nov. 29 -64268	H +35249
			-39680	+ 2755 $+\quad 1$				-39280	+35249 $+\quad 4149$
			-38466	- 2018		c		-38039	+ 627
			+26522	+53870		d		+ 26957	+55247
			+32667	+41332		e		+33075	+42701
			+35434	-22585		f		+35839	-21219
			+ 45100	+ 16500		g		+ 45525	+17883
			$+50467$	+25142		h		$+50876$	+26492
			-25116	-64418		n		-24717	-63041
			-43570	-56255		-		-43146	-54851
67 I W.	a	$14 \quad 646$	Nov. 29	H	676 W.	b	142254	Nov. 29	C
			-64638	+34124				-64172	+35529
			-39637	+ 2999 $+\quad 1$				-39211	+ 4420
	c		-38402	- 1743		c		-37958	- 356
	d		+26616	+ 54138		d		+27065	+ 55472
	e		+32736	+ 41564		e		+33186	+ 42912
	f		+35476	-22338		f		+35886	-21016
	g		+45193	+ 16754		g		+45610	+18107
	h		+ 50544	+25381		h		+ 50972	+26717
	n		- 25070	-64168		7		-24673	-62790
	0		-43520	-55966		0		-43111	- 54595
672 W.	a	14101	Nov. 29	C	677 W.	b	14268	Nov. 29	H
			-64496	+34388				-64105	+35805
			-39515	+ 3276				-39106	+ 4685
	c		-38257	- 1456		c		-37891	- 76
	d		+26707	$+54350$		d		+27115	+ 55766
	e		+32821	+41820		e		+ 33247	+ 43259
	f		+35569	-22076		f		+35984	-20703
	g		+ 45263	+17010		g		+ 45688	+18394
	h		+ 50615	+25609		h		+51042	+27030
	n		-24978	-63893		n		-24572	-62492
	0		-43433	-55703		0		-43022	-54283
673 W.	a	14138			678 W.	a	14291	Nov. 29	H
			Nov. 29 -64422	H +34674				-64020	+36066
	b		-39412	+ 3575		b		-39029	+ 4961
	c		-38189	- 1186		c		-37801	+ 173
	d		+ 26788	+ 54647		d		+27201	+56001
	e		+ 32917	+ 42104		e		+33318	+ 4347 I
	f		+35600	-21833		f		+36044	-20439
	g		+ $4535{ }^{2}$	+17263		g		+ 45733	+ 18637
	h		+50702	+25860		h		+51109	+27262
	n		- 24902	-63618		n		- 24499	-62238
	0		-43337	-554II		0		-42938	- 54034
674 W.		141636		C	$713 \mathrm{E}$.		$544 \bigcirc$	Dec. 5	H
			Nov. 29 -64378					-35812	-47175
			-39361	a +38974 $+\quad 384$		b		- 14670	-66344
			-38134	- 915		c		- 2198	- 5582
			+ 26875	+54957		d		+ 3658	-27796
			+ $\mathbf{+} 2989$	+ 42412		e		+ 13518	+ 6658
			+35756	-21522		f		+ 21928	+37846
			+ 45438	+17578		g		+ 36488	-46404
			+45438 +50785	+26203 +2		h		+63228	$+\quad 954$ +74066
			- 24808	-63340		1		+ 23224	+ 74066
			-43259	-55148		m		+ 51597	+ 46182

Table V. - Parallax Plate Measures - Continued.

Table V. - Parallax Plate Measures - Continued.

$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y
733 W.	abcdefghop	13215	1900		$73^{8} \mathrm{~W}$.	a	133536	1900	
			Dec. 5	H				Dec. 5	C
			-33524	- 4683				-33522	- 3219
			-12361	-23852				-12378	-224II
			$+\quad 67$	+ 36932		c		$+\quad 64$	+ 38381
			+ 5957	+14754		d		+ 5969	+ +16194
			+15778	+49126		e		+ r 5775	+ +50562
			+24151	$+80293$		f		+24138	+ 81729
			+38779	- 3855		g		+38776	- 2429
			+65457	+43390		b		+65460	+ 44861
			+ 20371	-43555		0		+20346	-42105
			+43918	-46512		p		+ 43892	-45066
734 W.	b	1332354	Dec. 5	C	739 W.	a	13398		
			-33502	- 4412				Dec. 5 -33528	H $-\quad 2911$
			- 12374	- 23586				-12380	- 22011
	c		+ 58	+37198		c		+ 42	+ 38695
	d		+ 5963	+ r 5027		d		+ 5955	+ 16539
	e		+ 15778	+ 49409		e		+ 15760	+ 50917
			+24152	+80582		f		+24095	+82069
	g		+ 38794	- 3589		g		+38768	- 2050
	h		+65471	+ 43720		h		+65439	+45209
	0		+20366	-43268		0		+20362	-41774
	p		+43927	-46218		p		+43905	-44724
735 W.		1327 I	Dec. 5	H	740 W.	a	13420	Dec. 5	
	a		-33504	- 4086				-33540	- 2619
	b		- 12369	-23265				-12391	-21807
	c		+ 69 $+\quad 5059$	+37524		c		+ 81	+39010
	d		+ 5959	+15329		d		+ 5974	+ 16812
	e		+ 15780	+ 49722		e		+ 15782	+51191
	f		+24135	+80854		f		+24160	+8234
	g		+38760	- 3269		g		+38778	- 1805
	\%		+65450	+ 43994		h		+65454	+45442
	0		+20368	-42948		0		+20323	-41513
	p		+43904	-45895		p		+ 43872	-44452
736 W.		13301	Dec. 5		741 W.		13458	Dec. 5	C
	a		-33502	- 3802		a		-33519	- 2326
	b		- 12340	-22975		b		- 12364	-21498
	c		$+\quad 47$ $+\quad 5947$	+37816		c		+ 22	+39303
	d		+ 5947	+ 15624		d		+ 5935	+17105
	e		+15793	+50062		e		+15749	+51494
	f		+24153	+81218 $+\quad 2066$		f		+24125	+82646
	g		+ 38777	- 2966		g		+ 38740	- 1482
	h		+65490	+44379		h		+65419	+ 45771
	0		+20375	-42668		0		+20350	-41171
	p		+43919	-45607		p		+43879	-44126
737 W.			Dec. 5	H				Dec. 5	H
	a	133236	-33538	- 3544	742 W	${ }^{\mathbf{a}}$	13 3754	-33562	- 2032
	b		-12387	-22735		b	13	-12391	-21200
	c		+ 28	$+38062$		c		+ 8	+39587
	d		$+5940$	+ 15870		d		+ 5922	+ 17399
	e		$+15753$	+ 50267		e		+ 15730	+51797
	f		+24122	+81399		f		+24090	+82929
	g		+ 38758	- 2725		g		$+38746$	- 1188
	h		+65425	+ 44518		b		+65404	+46064
	0		+20347	-42417		\bigcirc		+20338	-40905
	p		$+43896$	-45362		p		+ 43866	-43838

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	P. S. T.	x	y
743 W.	abcdefghdp	13510	1900		748 E.		55236	1900	C
			- 33538	- 1705		a		-4I444	- ${ }_{-}^{\text {C }}$
			-12423	-20900		b		-39721	-24595
			+ 58	+ 39885		c		- 10601	-39316
			+ 5949	+ 17689		d		- 5829	-20352
			+ 15786	+ 52075		e		+25460	-63799
			+24162	+83215		f		+32002	+ 17532
			+ 38757	- 920		g		+36050	-62819
			+6545I	+46325		h		+43725	- 40260
			+20314	-40603		1		+ 11677	+ 47476
			+ 43866	-43572		m		+ 35249	+ 44508
744 E.		5410	Dec. 6	H	749 E.		55543	Dec. 6	H
	a		-41428	-48430		a		-41428	-47085
	b		-39710	-25616		b		-39687	-24278
	c		- 10602	-40339		c		- 10575	-39017
	d		- 5834	-21374		d		- 5819	-20053
	e		+ 25462	-64832		e		+25479	-63492
	1		+31984	+ 16485		f		+3202I	+ 17789
	g		+36049	-63847		g		$+36070$	-62512
	h		+43718	-41306		h		+ 43722	-39991
	1		+11683	+46399		1		+11708	+47700
	m		+35256	+ 43474		m		+35286	$+44783$
745 E.		54351	Dec. 6	C	750 E .		5598	Dec. 6	C
	a		-41444	-48253		a		-41427	-46812
	b		-39737	-25432		b		-39703	- 23987
	c		- 10607	-40154		c		- 10593	-38713
	d		- 5862	-21168		d		- 5825	-19753
	e		+ 25480	-64598		e		+25489	-63190
	f		+31999	+ 16786		f		+32014	+18109
	g		+36082	-63601		g		+36064	-62215
	h		+ 43724	-41050		h		+ 43740	-39684
	1		+ 11659	+ 46678		1		+ 11693	+ 48005
	m		+35227	+43763		m		$+35265$	+45079
746 E .		54654	Dec. 6	C	751 E.		620	Dec. 6	H
	a		-41444	-47880		a		Dec. 6 -41428	${ }_{-46544}$
	b		-39708	-25060		b		-39703	-23748
	c		- 10602	-39798		c		- 10594	-38455
	d		-5828	-20843		d		- 5813	-19497
	e		+ 25467	-64278		e		+25473	-62936
	f		+32002	+17017		f		+32009	+18349
	g		+ 36060	-63289		g		+ 36069	-61955
	h		+ 43716	-40773		h		+ 43735	-39415
	1		+ 11685	+46940		1		+ 11701	+48257
	m		+35261	+44006		m		+35262	+45343
747 E.		54936	Dec. 6	H	752 E .		656	Dec. 6	
	a		-41444	-47695		a		-41404	-46308
	b		-39729	- 24879		b		-39681	-23493
	c		- 10627	-39602		c		- 10566	-38216
	d		- 5848	-20639		d		- 5808	-19243
	e		+ 25457	-64108		e		+25518	-62664
	f		+32037	+ 17251		f		+32023	+ 18666
			+36050	-63105				+36116	-61664
	${ }_{1}$		+ + +13710 +1575	-40547 +47166		h		+ 43763	-39127
	1		+11715	+47166		1		+11686	+48566
			+ 35277	+ 44252		m		+35256	+45666

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
753 E.	a	68 -	1900		767 W.	a	13246	1900 Dec. 6 -41363	$\begin{gathered} C \\ -\quad 4503 \end{gathered}$
			Dec. 6	H					
			-41442	-46027					
			-39701	-23215				-39650	+ 18342
	c		-10578	-37930		c		- 10529	
	d		- 582 I	- 18973				- 5776	+22583
	f		+25475	-62407		e		+2556I	-20816
	f		+32008	+ 18864		f		+32017	+60526
	g		+36069	-61419		g		+ ${ }^{66176}$	- 19827
	1		+ 43728	-38891		h		+ 43780	+ 2745
	m		+ 11680	+ 48777		-		+47043	-21398
			+35243	+ 45864		p		-10264	-35277
754 E.	a	6 II 0	Dec. 6	C	768 W.	a	13276		
			-41390	-45784				Dec. 6	H $-\quad 4 \mathrm{I} 66$
			-39670	-22954				-39660	+ ${ }^{41665}$
	c		-10568	-37688		c		- 10549	+18651 $+\quad 3936$
	d		- 5797	-18731		d		- 5780	+ +22908
	e		+25527	-62147		e		+25535	-20502
	f		+32017	+19172		f		+ 31998	+60798
	g		+36117	-61139		g		+36154	-19513
	h		+43774	-38617		h		+43753	+ 3040
	1		+11683	+49075		0		+ 47040	-21102
	m		$+35250$	+46161		p		-10293	-34966
764 W.	a	131436	Dec. 6		769 W.	b	13300		
			-41319	- 5408				Dec. 6 -41404	C -3903
	b		-39586	+ 17439				- 39684	
	c		- 10474	$+\quad 2684$		c		-10576	+ + +4200
	d		- 5704	+21641		d		- 5812	+ 23192
	e		+ 25596	-21785		e		+25524	-20230
	f		+32128	+ 59535		f		+31962	+61088
	g		+36201	-20807		g		+36144	-19238
	h		+43834	+ 1753		h		+ 43744	+ 3326
	0		+47074	-22400		0		+47009	-20818
	p		-10220	-36214		p		- 10306	-34677
765 W.	a	13180	Dec. 6		770 W.	b	$13 \quad 3236$	Dec. 6	
			-41337	-5073				-41428	-3622
	b		-39604	+17761		b		-39692	+19233
	c		- 10504	+ 3008		c		- 10585	+ 4475
	d		- 5735	+21980		d		- 5810	+23444
	e		+25579	- 21454		e		+25491	- 19975
	f		+32076	+ 59868		f		+31977	+61324
	g		+ 36199	-20476		g		+36105	-18993
	h		+ 43822	+ 2077		h		+43724	+ 3549
	0		+ 47077	-22048		-		+46945	-20561
	p		-10252	-35882		p		-10379	-34430
766 W.		13215	Dec. 6	H	771 W.		$13 \quad 3612$	Dec. 6	C
	a		-41347	- 4754		a		-41444	-3271
	b		-3961x	+18082		b		-39729	+ +19583
	c		- 10516	+ 3343		c		- ro60r	+ +4838 +
	d		- 5746	+22311		d		-5836	+23825
	e		+25554	-21117		e		+ 25463	-19626
	f		+32055	+60199		f		+31972	+61715
	g		+36182	-20150		g		+36099	-18641
	h		+43787	+ 2425		h		+43710	+ 3939
	0		+ 47058	-21714		0		+ 46959	-20217
	p		-10265	-35547		p		-10365	-34075

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
772 W.	abc	$13 \quad 3853$	1900 Dec. 6	H	777 E.	a	54847	1900 Dec. 7	C
			-41448	- 298 r				- 19980	-62232
			-39703	$+19881$				-15764	-32934
			- 10615	+ 5108		c		- 11553	-46966
	d		- 5845	+ 24103		d		- 2589	-32914
	e		+ 25446	- 19364		e		- 1628	- 28740
	f		+31933	+61957		f		+ 11498	+ 7720
	g		+36054	- 18361		g		+21743	- 18554
	h		+43690	+4194		h		+60660	-26334
	0		+46923	- 19937		1		+ 12149	+ 71085
	p		- 1039 ${ }^{2}$	-33775		m		$+22756$	+ 72024
773 W.	a	13428	Dec. 6	C	778 E.		55136	Dec. 7	H
			-41479	- 2675		a		-20039	-62012
			-39733	+20202		b		-15794	-32690
	c		- 10646	+ 5439		c		- 11610	-46743
	d		- 5891	+ 24424		d		- 2637	-32659
	e		+25411	- 19024		e		- 1663	-28518
	f		+31909	+62338		f		+11476	+ 7966
	g		+36038	-18028		g		+21702	- 18310
	h		+ 43686	+ 4548		h		+60620	-26129
	0		+46895	-19616		1		+12178	+71338
	p		- I0393	- 33498		m		+22766	+72288
774 W.		13458	Dec. 6 -41506	H $-\quad 2377$	779 E.		55436	Dec. 7 -20063	C -61736
	b		-39771	+ 20500		b		-15828	-32408
	c		- 10670	+ 5718		c		- 11633	-46469
	d		- 5902	+ 24713		d		- 2654	-32390
	e		+ 25422	- 18743		e		- 1691	-28234
	f		+31910	+62614		f		+11457	+ 8241
	g		+36017	- 17762		g		+21682 +6058	- 18024
	h		+ 43660	+ 4817		h		+60589	-25837
	0		+ 46902	- 19364		1		+12148	+75595
	p		- 10424	-33195		m		+22750	$+72532$
775 E.		54243	Dec. 7 -19962	C -62798	780 E .	a	5598	Dec. 7 -20090	$\underset{-6 \mathrm{I} 285}{\mathrm{H}}$
	b		- 15735	-33463		b		- 15829	-31989
	c		- 11533	-47512		c		- 11644	-46005
	d		- 2565	-3344I		d		- 2667	-31954
	e		- 1607	- 29262		e		- 1698	-27791
	f		+11531	$+\quad 7170$		f		+11461	+ 8651
	g		+21757	-19083		g		+21658	- 17609
	h		+60691	-26875		h		+60589	-25420
	1		+ 12217	+ 70556		1		+12151	+7202I
	m		+22815	+75512		m		+22737	+ 72972
776 E.	abcdefghlm	546 -	Dec. 7 - 19991	H -62505	78i E.	a	6 I 53	Dec. 7 -20071	C -61075
			- 15756	-33182		b		- 15829	-31759
			- 11564	-47231		c		- 11635	-45798
			- 2592	-33156		d		- 2667	-31726
			- 1619	-28994		e		- 1699	- 27547
			+ 11504	+ 7467		f		+ 11424	+ 8902
				- 18800				+21652 +60569	-17362 -25150
			+60656	-26606		h		+60569	-25159
			+ 12196	$+70853$		1		+12085	$+72263$
			+22789	+71793		m		+22666	+73206

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
782 E .	abcdefghlm	$6 \quad 446$	1900 Dec. 7 -20097	H -60785	797 W.	a	13	1900 Dec. 7 -21885	C -19965
			- 15854	-31491				- 17711	+ 9416
			- Ir666	-45544		,		- 13498	- 4670
			- 2698	-31461		d		- 4537	+ 9432
			- 1710	-27294		e		- 3563	+ 13603
			+ 1143 I	+ 9166		f		+ 9542	+50091
			+21640	- 17097		g		+ 19778	+ 23824
			+ 60560	-24894		h		+ 5^{8715}	+ 16023
			+12124	+ 72538		0		+ 70797	-23600
			+22707	+ 73480		p		$+3807 \mathrm{I}$	-35224
7_{83} E.	b	$6 \quad 754$	Dec. 7 -20152	C -60508	798 W.	a	13 10 8	Dec. 7 -21939	H -19639
			- 15871	-31186				-17751	+ 9737
	c		- 11676	-45230		c		-13531	- 4350
	d		- 2699	-31170		d		- 4564	+ 9754
	e		- 1729	- 27008		e		- 3590	+13899
	f		+ 11427	+ 9450		f		+ 9528	+50371
	g		+21642	- 16807		g		+ 19752	+24118
	h		+60544	-24622		h		+ 58693	+16328
	1		+ 12119	+72797		-		+ 70733	-23270
	m		+22712	+ 73752		p		+ 37984	-34901
784 E.		6118	Dec. 7 -20082	$\begin{gathered} C \\ -60205 \end{gathered}$	799 W.		131246	Dec. 7 -21967	C -19384
	b		-15852	-30912		b		- 17774	+ 9982
	c		- 11662	-44945		c		- 13562	- 4104
	d		- 2693	-30876		d		- 4600	+ 10007
	e		-1732	-26721		e		- 3626	+14150
	f		+ 11402	+ 9753		f		+ 9450	+ 50638
	g		+21626	- 16509		g		+ 19716	+24389
	h		+60554	- 24301		h		+ 58631	+ 16598
	1		+ 12068	+ 73 III		0		+ 70707	-22992
	m		+22648	+ $74{ }^{\text {c } 63}$		p		$+37987$	-34630
785 E.		614 -		H	800 W.		13165	Dec. 7	H
			Dec. 7 -20108					-21984	- 19019
	b		- 58874	-30657		b		-17797	+ 10338
	c		- ix668	-44703		c		-13582	- 3746
	d		- 2715	-30624		d		- 4615	+ 10357
	e		- 1756	-26474		e		- 3640	+14516
	f		+ 11405	+ 10017		f		+ 9465	+ 50993
			+ 21606	-16290		g		+ 19702	+24724
	h		+60516	-24059		h		+58621	+ 16926
	1		+ 12074	+73389		0		+ 70676	-22693
	m		+22664	+74320		p		+37939	-34300
796 W.					801 W.				
			$\begin{gathered} \text { Dec. } 7 \\ -21880 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ -20226 \end{gathered}$			13195	Dec. 7 -22029	C -18717
	a	13411	-21880 -17693	$\begin{aligned} & -20226 \\ & +\quad 9130 \end{aligned}$		b	13195	- 17840	+ 10671 +1851
	b		-17693 -13480	$+\quad 9130$ -4929		c		- 13628	- 3427
	d		1 $-\quad 4502$	a $+\quad 9166$		d		- 4661	+ 10658
	e		- 3545	+ +13299		e		- 3694	+ 14832
	f		a $+\quad 9564$	+ 49774		f		+ 9416	+ 51332
	g		+	+ 23506		g		+ 19654	+ 25032
	h		+198735 $+5^{8} 735$	+ +15724		h		+ 58604	+ 17200
	0		+ +70780	- 23879		0		+ 70621	-22382
	p		+38064	-3549		p		+37906	-34005

Table V. - Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	\boldsymbol{x}	y	Plate No.	Star.	P. S. T.	\boldsymbol{x}	y
802 W.	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \\ & \mathrm{c} \\ & \mathrm{~d} \\ & \mathrm{e} \\ & \mathrm{f} \\ & \mathrm{~g} \\ & \mathrm{~h} \\ & \mathbf{o} \\ & \mathrm{p} \end{aligned}$	132150	1900 Dec. 7 - 22074 - 1786 r - I 3654 -4692 - 372 I $+9401$ $+19640$ $+58553$ $+70587$ $+37867$	$\begin{gathered} \mathrm{H} \\ -1842 \mathrm{I} \\ +10939 \\ -3142 \\ +10945 \\ +15101 \\ +51580 \\ +25313 \\ +17474 \\ -22120 \\ -33727 \end{gathered}$	806 W.	$\begin{aligned} & \mathbf{a} \\ & \mathbf{b} \\ & \mathbf{c} \\ & \mathbf{d} \\ & \mathbf{e} \\ & \mathbf{f} \\ & \mathbf{g} \\ & \mathbf{h} \\ & \mathbf{o} \\ & \mathbf{p} \end{aligned}$	133410	1900 Dec. 7 - 22233 -18003 - 13799 - 4803 - 3839 $+9241$ $+19498$ $+58427$ $+70478$ $+37768$	$\begin{gathered} \mathrm{H} \\ -\mathrm{I} 798 \\ +\mathrm{r} 2167 \\ -1892 \\ +12193 \\ +16342 \\ +52842 \\ +26563 \\ +18743 \\ -20809 \\ -32442 \end{gathered}$
803 W.	$\begin{aligned} & \mathbf{a} \\ & \mathbf{b} \\ & \mathbf{c} \\ & \mathbf{d} \\ & \mathbf{e} \\ & \mathbf{f} \\ & \mathbf{g} \\ & \mathbf{h} \\ & \mathbf{o} \\ & \mathbf{p} \end{aligned}$	$13 \quad 25 \quad 5$	$\begin{aligned} & \text { Dec. } 7 \\ & -22074 \\ & -17892 \\ & -13693 \\ & -47 \mathrm{rr} \\ & -3738 \\ & +9364 \\ & +19603 \\ & +58504 \\ & +70552 \\ & +37835 \end{aligned}$	$\begin{gathered} C \\ -18107 \\ +1124 \mathrm{I} \\ -28 \mathrm{r} 4 \\ +11264 \\ +15425 \\ +51901 \\ +25634 \\ +17829 \\ -2177 \mathrm{I} \\ -3337 \mathrm{I} \end{gathered}$	895 E.		54725	$\begin{aligned} & \text { Dec. } 24 \\ & -39858 \\ & -20551 \\ & -21934 \\ & -18607 \\ & +13838 \\ & +21166 \\ & +23320 \\ & +24588 \\ & +5243 x \\ & +1614 \\ & -14556 \\ & -35701 \end{aligned}$	$\begin{gathered} C \\ +3098 \\ -71579 \\ -26632 \\ +22233 \\ -51904 \\ -59820 \\ -64995 \\ +r 3464 \\ -16325 \\ -26864 \\ +48040 \\ +35458 \end{gathered}$
804 W.	a b c d e f g h \mathbf{o} p	13280	$\begin{gathered} \text { Dec. } 7 \\ -22097 \\ -17923 \\ -13701 \\ -4739 \\ -3781 \\ +9312 \\ +19573 \\ +58498 \\ +70532 \\ +37815 \end{gathered}$	$\begin{gathered} \mathrm{H} \\ -\mathrm{I} 7804 \\ +\mathrm{Ir} 553 \\ -2524 \\ +\mathrm{II} 570 \\ +15742 \\ +52201 \\ +25932 \\ +\mathrm{I} 8 \mathrm{I} 32 \\ -21456 \\ -33087 \end{gathered}$	896 E.	a b c d e f g h i j m	55112	$\begin{array}{r} \text { Dec. } 24 \\ -40170 \\ -20829 \\ -22227 \\ -18918 \\ +13536 \\ +20866 \\ +23022 \\ +24250 \\ +52124 \\ +\quad 1306 \\ -14878 \\ -36038 \end{array}$	$\begin{gathered} \mathrm{H} \\ +\quad 3490 \\ -71127 \\ -26220 \\ +22606 \\ -51487 \\ -59392 \\ -64543 \\ +13874 \\ -15868 \\ -26460 \\ +48426 \\ +35832 \end{gathered}$
805 W.	a b c d e f g h o p	13 3x 5	$\begin{gathered} \text { Dec. } 7 \\ -22142 \\ -17957 \\ -13741 \\ -4793 \\ -3817 \\ +9268 \\ +19522 \\ +58454 \\ +70493 \\ +37791 \end{gathered}$	$\begin{gathered} C \\ -17492 \\ +11864 \\ -2218 \\ +11891 \\ +16033 \\ +52495 \\ +26248 \\ +18464 \\ -21122 \\ -32743 \end{gathered}$	897 E.	a b c d e \mathbf{f} \mathbf{g} \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{l} m	55325	$\begin{aligned} & \text { Dec. } 24 \\ & -40378 \\ & -20976 \\ & -22409 \\ & -19122 \\ & +13388 \\ & +20720 \\ & +22885 \\ & +24035 \\ & +51945 \\ & +1132 \\ & -15102 \\ & -36262 \end{aligned}$	$\begin{gathered} C \\ +\quad 3689 \\ -70892 \\ -26003 \\ +22833 \\ -51244 \\ -59132 \\ -64308 \\ +14130 \\ -15613 \\ -26197 \\ +48628 \\ +36014 \end{gathered}$

Table V. - Parallax Plate Measures - Continued.

Plate No.	Star.	P. S. T.	x	y	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	P. S. T.	x	y
8 g 8 E .	abc$d$$e$fdbijlm	55646	1900 Dec. 24 - 40666	H $+\quad 4080$	908 W.	a	12350	1900 Dec. 24 -74702	$\begin{gathered} \mathrm{H} \\ +4^{8} 382 \end{gathered}$
			- 21270	-70532				- 55309	
			-22705	-25625		c		-56767	+ 18698
			- 19433	+23205		d		- 53484	+67505
			+ 13089	- 50869		e		-20998	- 6558
			+20414	-58789		f		- 13661	- 14472
			+22575	-63942		g		- 11469	-19653
			+ ${ }^{2} 3762$	+ 14478		h		- 10340	+ $5^{8} 797$
			$+51655$	-15256		i		+17521	+ 29091
			+ 825	-25847		j		-33248	+ 18467
			- 15376	+ 49014		0		+ 14243	-68714
			-36538	+36419		p		+25195	-41012
899 E.	b	55954	Dec. 24 -40928	C $+\quad 4403$	909 W.	a	1238 o	Dec. 24 -74968	$\begin{gathered} \text { C } \\ +48740 \end{gathered}$
			-40928 -21556	+ 4403 +70207				-74968 -55578	C +48740 -25824
	c		-22980	- 25300		c		- 57023	+19064
	d		- 19669	+23543		d		- 53735	+67862
	e		+12807	- 50555		e		-21275	- 6198
	f		+20154	- 58466		f		- 13932	-14106
	g		+22310	-63654		g		-11751	-19287
	b		+23513	+ 14822		h		- 10618	+ 59120
	i		+51373	- 14934		i		+17249	+29411
	j		+ 578	-25528		j		-33514	+ 18823
	1		- 15634			0		+13958	-68378
	m		-36805	$+3674 \mathrm{I}$		p		+24880	-40668
900 E .		6315	Dec. 24	H	910 W.		124036	Dec. 24	H
	a		-41196	+ 4757		a		-75174	+ 49057
	b		-21822	-69845		b		-55826	-25528
	c		- 23259	-24940		c		- 57233	+19388
	d		-19956	+23893		d		- 53970	+68163
	e		+ 12527	- 50178		e		-21501	- 5893
	f		+ 19879	-58084		f		-14188	-13820
	g		+22036	-63276		g		- 11956	-19032
	b		+23235	+15181		h		-10816	+ 59371
	i		+5112I	-14577		i		+17019	+ 29692
	j		+ +	-25147		j		-33738	+19156
	1		-15898	+49691		0		+ 13698	-68040
	m		-37071	+37082		p		+24623	-40337
901 E .		$6 \quad 55^{8}$	Dec. 24	C	9 rr W.		124447	Dec. 24	C
			-41416	+ 5060				-75573	+ 49542
	b		- 22084	-69554		b		-56224	-25055
	c		-23472	-24641		c		-57653	+ 19844
	d		-20160	+24186		d		- 54340	+ 68668
	e		+12276	-49910		e		-21886	- 5410
			+19622	-57834		f		- 14549	- 13337
	g		+ 21770	-63017		g		-12381	-18548
	h		+ 23028	+15449		h		-11215	+ 59923
	i		+ 5088 I	-14332		i		+16652	+30195
	j		+ $+\quad 63$	-24880		j		-34129	+ 19610
	1		-16094	+49990		0		+13329	-67594
	m		-37254	+37400		p		+24255	-39910

Table V.-Parallax Plate Measures - Continued.

$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	P. S. T.	x	y
912 W.		1248 II	1900		914 W.		1254 II	1900	
			Dec. 24	H				Dec. 24	H
	a		-75902	+ 49895		a		-76476	+50602
	b		-56512	-24679		b		-57068	-23972
	c		- 57961	+20214		c		-58514	+20914
	d		- 54688	+69025		d		-55256	+69722
	e		-22206	- 5026		e		- 22748	- 4325
	f		- 14862	- 12944		f		- 15433	-12238
	g		- 12689	- 18147		g		- 13242	-17439
	h		- 1158 r	+60352		h		- 12094	+60989
	i		+ 16355	+30590		i		+ 15770	+ 31280
	j		-34448	+ 19976		j		-35006	+ 20687
	0		+ 13056	-67193		0		+12486	-66492
	p		+23963	-39468		p		+23404	-38791
913 W.		12518	Dec. 24	C					
	a		-76155	+ 50245					
	b		-56770	-24330					
	c		-58217						
	d		-54937	+69358					
	e		-22465	- 4675					
	f		-15122	- 12599					
	g		- 12942	- 17762					
	h		-11837	+60717					
	i		+16053	+30919					
	j		-34704	$+20333$					
	0		+12761	-66866					
	p		+23674	-39136					

Table VI. - Parallax Plate Constants.

Table VI. - Parallax Plate Constants - Continued.

* Indicates that plates were reduced direct and not through the standard.

Table VI. - Parallax Plate Constants - Continued.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Plate Constants.		Standard Constants.		Refraction Constants.		
		p	r	p	r	M_{x}	M_{y}, N_{x}	N_{y}
Oct. $21 . \mathrm{E}$. .	247	- 39	- 334			+.000786	-.000212	+.000326
	248	+ 122	+ 316			775	204	322
	250	- 20	+ 199			719	166	302
	251	- 68	- 221			694	149	294
	252	107	- 283			679	138	289
	253	- 30	+ 235			647	116	278
	254	+ 109	$+105$			634	108	273
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	-.000100 $-\quad 67$	$\begin{aligned} & +.000554 \\ & +\quad 585 \end{aligned}$			
	264	+ 19	+ 26			475	+ 23	248
	265	+ 450	- 328			483	27	249
	266	- 16	- 92			491	31	250
	267	+ 34	+ 71			514	42	253
	268	+ 204	+ 10			520	45	254
	269	- 346	+ 147			543	55	257
	270	- 197	+ 34			550	59	258
			+ 147			568	68	260
			$\begin{array}{r} \mathbf{I} \\ \mathbf{I I} \end{array}$	-.000057 $-\quad 59$	-.000242 $-\quad 252$			
Oct. 24 E.	275	- 6	+ 262			708	- 147	296
	276	- 29	- 233			698	139	293
	277	+ 176	- 32			687	131	290
	278	- 118	$+\quad 19$			656	III	280
			$\begin{array}{rr} \mathrm{I} \\ \mathrm{II} \end{array}$	+.000099 $+\quad 266$	-.002253 $-\quad 2211$			
W.			- 277			485	+ 25	248
	291 292	- $\quad 36$	104 $+\quad 1$			494	29	250
	293	+ 42	- 278			504	33	251
	294	- 63	- 39			532	47	256
	295	+ 227	+ 30			541	51	257
	296	+ 188	+ 270			568	62	261
	297	- 126	+ 246			577	66	263
	298	+ 66	$-\quad{ }^{39} \mathrm{I}$			600	76	267
			$\begin{gathered} \mathrm{I} \\ \mathrm{II} \end{gathered}$	-.000892 $-\quad 715$	$\begin{array}{r} -.003314 \\ -\quad 3189 \end{array}$			
Oct. 26 E.							- 155	298
	320	- 100	+ 495			708	148	295
	321	137 $+\quad 1$	$+\quad 267$			699	143	293
	322	- III	- IrI			675	130	286
	322 323	163 $+\quad 1$	- 191			663	123	283
	323 324	+	$+\quad 213$ $+\quad 1$			642	109	277
	325	- 19	- 86			63 I	102	274
	326	151 $+\quad 25$	+ 99			606	86	267
	327	$+\quad 236$ $-\quad 251$	- 480			593	75	264
	327		$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	- $-\quad 000579$ $-\quad 700$	-.001986 $-\quad 2255$			
		122	+ 180			549	$+\quad 49$	257
		- 115	$+\quad 370$			559	55	259
	337 338	- 115	$+\quad 370$ $-\quad 273$			569	6 r	261
	338	$-\quad 13$ $-\quad 16$	- 273			594	76	266
	339 340		$\begin{array}{r}+\quad 240 \\ \hline+\quad 99\end{array}$			604	82	268
	340	7666 $+\quad 583$	$+\quad 99$ $+\quad 310$			629	96	274
	341	$+\quad 583$ $-\quad 39$	- 310			639	IOI	276
	342	$+\quad 39$ $+\quad 88$	$-\quad 30$ $-\quad 36$			666	117	282
	343	+rr88	-			+.000677	+.000122	$+.000284$
			+.00242	+.000027	-. 002976			
				- 392	- 3326			

Table VI. - Parallax Plate Constants - Continued.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Plate Constants.		Standard Constants.		Refraction Constants.		
		p	r	p	r	M_{*}	M_{y}, N_{x}	$N y$
Oct. 29 E.	345	+.000007	+.000340			+.000648	-.000116	+.000286
	346	+ 217	+ 971			642	III	284
	347	- 263	- 1044			635	105	281
	348	- 69	+ 782			620	9 I	276
	349	+ 279	- 1229			6 I 3	84	273
	350	- 180	+ 1438			598	7 I	268
	351	+ 18	- 1257			592	65	266
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	$\begin{array}{r} -.000022 \\ -\quad 219 \end{array}$	$\begin{aligned} & +.000864 \\ & +\quad 1016 \end{aligned}$			
W.	357	+ 4	+ 397			655	+ 103	279
	358	+ 36	- 1248			668	110	282
	359	- 50	+ 838			680	r18	286
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	$\begin{array}{r} +.000199 \\ -\quad 27 \end{array}$	$\begin{array}{r} -.000373 \\ -\quad 197 \end{array}$			
Nov. 3 E.'	396	- 117	+ 516			619	- 90	264
	397		+ 660			610	85	263
	398	- 205	- 329			601	80	261
	399	- 241	- 1256			583	7 I	258
	400	+ 309	+ 210			57 I	64	256
	401	- 39	- 277			553	55	253
	402	+ 198	- 199			544	50	252
	404	+ 94	- 312			516	34	247
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	$\begin{aligned} & -.000024 \\ & +\quad 115 \end{aligned}$	$\begin{array}{r} +.002442 \\ +\quad 2803 \end{array}$			
W.	417	- 92	+ 23			751	+ 179	307
	419	+ $+\quad 87$	+ 273			781	203	322
	420	+ 158	- 184			806	224	334
	42 I	- 229	- 394			826	240	344
	422	$+\quad 174$ $+\quad 15$	- 138			851	261	357
	423	+ 21	- 271			866	273	364
	424	+ 50	+ 148			891	294	377
	425	- 22 I	+ 298			906	306	384
	426	+ 45	+ 267			921	318	393
			$\begin{array}{r} \mathrm{I} \\ \mathbf{I I} \end{array}$	$\begin{aligned} & -.00051 \mathrm{Ir} \\ & -\quad 460 \end{aligned}$	$\begin{aligned} & +.000423 \\ & +\quad 908 \end{aligned}$			
Nov. 10 E.	472	- 237	+ 153			531	- 39	250
	473	+ 208	- 356			524	36	250
	474	- 256	- 110			517	33	250
	475	$+\quad 147$ $+\quad 153$	$+\quad 318$			499	25	248
	476	- 153	- 15			492	23	248
	477	$+\quad 47$	$+\quad 39$			475	16	246
	478	$+\quad 234$	$+\quad 7$			470	12	245
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	$\begin{array}{r} -.00043 \mathrm{I} \\ -\quad 722 \end{array}$	$\begin{array}{r} -.003298 \\ -\quad 3472 \end{array}$			
W.	495	+ 86	+ 127			679	+ 126	281
	496	- 143	- 235			696	139	288
	498	+ 272	+ 106			730	166	303
	501	-. 000226	+.000011			+.000786	+.000212	+.000328
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	-.000535 $-\quad 743$	-.005173 $-\quad 5356$			

Table VI. - Parallax Plate Constants - Continued.

Table VI. - Parallax Plate Constants - Continued.

Date.	$\begin{aligned} & \text { Plate }^{\text {No. }} \end{aligned}$	Plate Constants.		Standard Constants.		Repraction Constants.		
		p	r	p	r	M_{x}	M_{y}, N_{x}	N^{y}
Dec. 5 E. ${ }^{\text {E }}$ (713	-.000195	+.000232			+.000346	+.000008	+.000245
	714	- 70	+ 123			342	8	
	715	+ 229	+ 269			338	9	"
	716	+ 429	- 352			334	9	"
	717	- 505	- 365			330	10	246
	718	+ 124	+ 145			328	10	"
	719	$+3$	+ 144			325	11	"
	720	+ 274	$+\quad 4$			320	11	247
	721	- 208	- 18			316	12	
	722	+ 278	+ 28			314	13	"
	723	- 355	- 233			311	13	،
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	-.000818 $-\quad 618$	$\begin{array}{r} -.001918 \\ -\quad 1818 \end{array}$			
	733	+ 78	- 83			609	101	274
	734	- 152	+ 155			621	108	278
	735	+ 241	- 35			633	116	282
	736	- 399	+ 395			645	124	285
		+ 119	- 52			657	132	289
	738	+ 2	- 97			669	140	293
	739	+ 47	+ 320			68 I	147	296
	740	- 106	- 325			693	155	300
	741	$+\quad 149$	151 $+\quad 15$			705	163	304
	742	+ 55	+ 168			717	171	307
	743	$+\quad 4$	- 613			730	178	310
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	-.000648 $-\quad 365$	-.001038 $-\quad 957$			
Dec. 6 E.	744	+ 106	- 140			+.000344	+.000007	+.000245
	745	- 459	+ 636			341	7	245
	746	+ 113	- 264			338	8	245
	747	- 255	- 237			334	8	245
	748	- 72	- 95			331	9	246
	749	+ 228	- 371			328	10	246
	750	+ 18	- 132			324	10	- 246
	751	+ 158	- 125			321	11	246
	752	- 82	+ 455			318	11	247
	753	+ 209	- 110			314	12	247
	754	+ 25	$+37 \mathrm{I}$			311	12	247
			$\begin{array}{r} \mathrm{I} \\ \mathrm{II} \end{array}$	$\begin{array}{r} -.000541 \\ -\quad 807 \end{array}$	$\begin{aligned} & +.000226 \\ & +\quad 414 \end{aligned}$			
W.	764	+ 8	- 459			599	98	272
	765	- 23	- 266			611	105	278
	766	+ 120	- 166			624	113	282
	767	- 51	+ 586			636	121	285
	768	+ 193	+ 315			649	129	289
	769	+ 15	+ 466			66I	137	293
	770	+ 107	- 150			674 686	144	296
	771	- 193	- 7			686	152	300
	772	+ 222	- 275			699	160	304
	773	- 97	+ 71			711	168	307
	774	-.000284	-.000158			+.000724	+.000175	$+.000310$
			1	-.000876	+.001243			
			II	- 781	+ 1323			

Table VI. - Parallax Plate Constants - Continued.

Table VII. - Parallax Mean Places, Reduction to Apparent Place, and Parallax
Corrections.

Date.	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Berlin } \\ & \text { M. T. } \end{aligned}$	Mean a 1900. 0.		Mean δ 1900. 0.		Reduction to Apparent Place.		Parallax Δ.		$\boldsymbol{\pi}$ f.
			First Determination.	$\begin{array}{\|c\|} \hline \text { Second } \\ \text { Deter- } \\ \text { MITA- } \\ \text { TION. } \end{array}$	First Determination.	Second Deter-mination.	a	δ	a	δ	
Oct. 6 E.		h m	h m		- ' "	"					
	92	I7 2141	24341.1056	41.1015	465259.930	59.963	+6.096x	+13.162	-1.2563	+5.149	1.46
	93	2435	. 0685	. 0690	$\begin{array}{ll}55 & 2.637\end{array}$	2.669	6.0962	13.162	1.2534	5.028	1.46
	94	2722	. 0404	. 0402	5.333	$5 \cdot 335$	6.0964	13.162	1.2506	4.916	1.46
	95	3635	40.9633	40.9595	14.117	14.100	6.0965	13.16 I	1.2397	4.539	I. 44
	96	3936	.9234	.9135	16.740	16.746	6.0966	13.161	1.2357	4.418	1.44
W.	104	253450	243 34.6084	34.6084	$46 \quad 5928.458$	28.393	+6.1138	+ 13.222	+0.8823	-0.184	1.03
	105	3947	. 5509	. 5489	32.765	32.758	6.1140	13.223	0.9024	0.040	1.05
	106	4425	.4719	. 4750	36.602	36.557	6.1142	$1{ }^{1} 223$	0.9207	+0.098	1.07
	107	5310	.3565	. 3590	44.482	44.458	6.1144	13.224	0.9542	0.365	I.ti
	108	5647	.3313	. 3276	47.805	47.8II	6.1146	13.225	0.9679	0.480	1.13
Oct. 12 E.	134	161946	24118.0924	18.1048	488629.784	29.951	+6.393	+14.422	-1.4225	+6.830	1.59
	135	2233	.0236	. 0294	32.018	32.089	6.3932	14.423	1.4222	6.701	I. 59
	136	2610	17.8602	17.8698	35.186	35.216	6.3933	14.423	1.4216	6.535	1.59
	137	3343	.7153	. 7224	4 I .933	4 r .959	6.3935	14.424	1.4189	6.186	1. 59
	138	3743	. 6047	.6032	45.326	45.399	6.3936	14.425	1.4169	6.002	1.59
	139	470	. 3888	. 383 z	53.772	53.663	6.3940	14.427	1.4106	5.577	1.58
	140	5040	.2625	. 2722	56.592	56.616	6.3941	14.428	1.4075	5.410	1.58
W.	145	253335	2411.1868	1.1815	$49 \quad 417.640$	17.724	+6.4120	+14.522	+1.0925	+0.107	1.22
	146	3718	1.0570	1.0483	20.697	20.75 I	6.4120	14.523	1.1075	0.240	1.24
	147	4522	0.8157	0.8043	27.049	27.120	6.4123	14.524	1.1391	0.534	1.27
	148	5122	0.6330	0.6255	31.955	31.947	6.4125	14.526	1.1655	0.758	1.30
Oct. 13 E.	150	$16 \quad 844$	24039.5839	39.6007	49 I6 13.246	13.057	+6.44II	+14.665	-1.4154	+7.165	1.61
	151	1258	. 5127	. 5288	17.191	17.049	6.4412	14.666	1.4157	6.966	1.6x
	152	1533	. 4309	. 4501	19.752	19.615	6.4412	14.667	1.4556	6.844	1.61
	153	2844	. 0330	. 0565	30.675	30.560	6.4414	14.668	1.4122	6.372	r.61
W.	163	254033	24020.4728	20.4651	49248.443	8.563	+6.4604	+r4.787	+1.1590	+0.427	I. 29
	164	43 10	. 3648	. 3683	10.563	10.697	6.4604	14.787	1.169r	0.55 I	1.30
	165	4655	. 2608	. 2620	13.553	13.739	6.4606	14.788	1.1833	0.695	1.3I
	166	5435	19.9894	19.9902	19.443	19.541	6.4607	14.789	1.2114	0.991	1.34
	167	5733	. 8684	. 8734	21.477	2 L .62 I	6.4609	14.790	1.2220	I. 109	I. 36
	168	$26 \quad 535$. 6277	. 6347	27.880	27.989	6.4611	14.79 I	1.2494	1.430	1. 38
	169	833	. 5282	. 5323	30.394	30.503	6.4613	14.792	1.259 I	1.551	1.40
Oct. 14 E.	170	1623 10	23956.1013	56.0907	493559.535	59.292	+6.4893	+14.952	-1.475 8	+6.290	ז. 63
	${ }^{171}$	2610	55.9914	55.9808	$36 \quad 1.902$	1.604	6.4893	14.952	1.4704	6.147	1. 62
	172	3022	. 8638	. 8494	5.567	5.378	6.4894	14.953	1.4680	5.947	1. 62
	173	4343	. 4593	. 4344	17.246	16.917	6.4896	14.954	1.4575	5.315	ェ. 61
	174	4635	. 3214	.3181	19.579	19.328	6.4898	14.955	1.4541	5.179	т. 61
	175	5535	. 0379	. 0274	27.302	27.079	6.4900	14.956	1.4431	4.756	I. 59
	± 76	5850	54.9495	54.9355	30.110	29.807	6.4901	14.957	${ }^{1.4387}$	4.605	I. 59
	177	17886	. 6274	. 6138	38.060	37.836	6.4905	14.960	1.4238	4.160	I. 57
	178	1126	.4963	. 4968	40.577	40.218	6.4907	14.963	1.4186	4.02 I	1.57
W.	187	253118	23935.8295	35.8170	494325.957	25.935	+6.5073	+ 55.063	+1.1616	+0.206	1. 28
	188	3423	.7168	. 7140	28.190	28.268	6.5073	15.064	1.1740	0.322	I. 29
	189	3920	. 5386	. 5334	3 I .979	31.984	6.5075	15.065	1.1935	0.511	1.32
	190	4950	.1679	.1617	40.028	40.123	6.5078	15.068	1.2332	0.924	I. 36
	191	5250	. 0561	. 0489	42.477	42.566	6.5079	15.068	I. 2439	1.044	1.37
	192	26 I O	34.7483	34.7376	48.695	48.725	6.508 I	15.070	I. 2723	1.377	1.40
	193	4 II	. 6438	.635	50.782	50.859	6.5082	15.071	1.2830	1.508	1.41

Table VII. - Parallax Mean Places, Reduction to Apparent Place, and Parallax Corrections - Continued.

Table VII. - Parallax Mean Places, Reduction to Apparent Place, and Parallax Corrections - Continued.

Date.	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Berlin M. T.	Mean a 1900. 0.		Mean δ 1900. 0.		Reduction to Apparent Place.		Parallax Δ.		π f.
			First Determination.	Second Deter-minaTION.	First Determination.	SECOND Deter-MINATION.	\boldsymbol{a}	δ	a	δ	
Oct. 24 W.		h m	m	${ }^{\mathbf{s}}$	- ' "	"					
	291	2522272	22758.5423 5	58.5289	523030.002	30.102	+6.906I	+18.698	+1.5543	+1.422	1.60
	292	2520	. 3330	. 3214	31.548	31.624	6.906 I	18.700	1.5647	I. 565	1.62
	293	2827	. 1372	. 1256	33.243	33.367	6.9062	18.701	1.5756	1.720	1. 63
	294	3735	57.5262	57.5157	38.053	38.157	6.9065	18.703	1.6059	2.182	1. 67
	295	4017	. 3605	. 3497	39.454	39.480	6.9065	18.704	I. 6143	2.319	1.67
	296	4842	$56.7736{ }^{5}$	56.7604	43.750	43.829	6.9067	18.706	1. 6393	2.753	1.70
	297	5142	.5928	.5836	45.189	45.344	6.9067	18.707	$\underline{1.6477}$	2.910	1.71
	298	5849	. 1087	. 1013	49.027	49.078	6.9069	18.710	1.6664	3.284	1.73
Oct. 26 E.	319	$154543{ }^{2}$	22530.31053	30.3138	525125.561	25.6 rr	+6.9520	+19.404	-1.7767	+5.205	1. 83
	320	4823	. 1357	. 1440	26.884	26.966	6.9520	19.406	1.7732	5.064	1.82
	32 I	5050	29.9666	29.9676	28.409	28.512	6.952 I	19.407	1.7695	4.927	1.82
	322	- 5726	. 5160	.5179	32.284	32.368	6.952 I	19.408	1.7587	4.558	1.81
	323	$16 \quad 037$. 2974	.3023	34.105	34.209	6.9523	19.409	1.7529	4.382	1.80
	324	633	28.8793	28.8848	37.409	37.515	6.9524	19.411	1.7414	4.149	1.79
	325	$\begin{array}{r}926 \\ \hline 168\end{array}$. 6641	. 6712	39.183	39.234	6.9525	19.412	1.7353	3.896	I. 78
	326	1626	. 1724	.1759	43.298	43.375	6.9526	19.414	1.7195	3.514	1.77
	327	20	27.9110	27.9183	$45 \cdot 39 \mathrm{I}$	45.414	6.9527	19.415	1.7103	3.311	1.76
	336	2532332	22446.69034	46.6943	525630.730	30.643	+6.9625	+19.595	+1.6746	+2.436	1.72
	337	3543	. 4599	.4625	32.281	32.18 I	6.9625	19.596	1.6842	2.603	1.73
	338	3850	. 2510	. 2494	33.739	33.65 I	6.9625	19.598	1. 6934	2.770	1.74
	339	4622	45.7044	45.7126	37.057	36.993	6.9627	19.599	I. 7142	3.175	1 76
	340	492 I	.4975	. 5034	38.241	38.177	6.9627	19.601	1.7219	3.338	1.77
	341	5650	44.9476	44.9642	4 I .884	41.877	6.9629	19.602	1.7400	3.747	1.79
	342	5943	.7313	.7410	42.964	42.899	6.9629	19.603	1.7465	3.905	1. 79
	343	26	. 1419	. 1504	46.86 I	46.746	6.963 I	19.605	1.7635	4.364	1.81
	344	1110	43.9282	43.9408	48.205	48.180	6.963 I	19.608	1.7694	4.543	1.82
Oct. 29 E.	345	154250	$22021.0614{ }^{2}$	21.0618	$\begin{array}{lll}53 & 25 \quad 26.783\end{array}$	26.818	+7.0174	+20.817	-r. 8320	+4.44 ${ }^{\text {I }}$	I. 86
	346	4522	20.8674	20.8659	27.968	28.014	7.0174	20.818	1.8270	4.296	I. 86
	347	4835	. 6167	.6117	29.640	29.656	7.0174	20.820	1.8204	4.115	I. 85
	348	5521	. 096 I	. 0902	32.65 I	32.678	7.0176	20.82 I	1.8052	3.725	1.83
	349	5843	19.8560	19.8463	34.419	34.478	7.0176	20.822	1.7972	3.534	1.83
	350	$16 \quad 518$.3185	.3552	37.530	37.595	7.0176	20.824	1.7801	3.163	I.81
	351	8 II	. 1073	. 0990	38.944	39.004	7.0176	20.826	1.7723	3.003	1.80
	357	2546292	$21931.752 \mathrm{~L} / 3$	31.7677	532937.119	37.156	+7.0244	+21.03I	+r.8309	+4.115	1.86
	358	49 II	. 5609	. 5717	38.102	38.098	7.0244	21.029	1.8366	4.270	I. 86
	359	53 -	. 2575	. 2684	39.556	39.540	7.0244	21.028	I. 8442	4.492	1.87
Nov. 3 E.	396	152143	21049.06544	49.0714	$54 \quad 455.447$	55.270	+7.0653	+23.336	- 1.9332	+4.016	1.93
	397	2436	48.8204	48.8230	56.189	56.076	7.0653	23.336	1.9263	3.842	1.93
	398	2733	.5631	. 5591	57.044	56.869	7.0653	23.337	1.9190	3.666	1.92
	399	34 -	. 0147	. 0277	58.976	58.819	7.0653	23.339	1.9018	3.281	1.90
	400	3710	47.72054	47.7235	50.013	59.850	7.0654	23.340	1.8898	3.035	1.89
	401	4323	. 2099	. 2092	1.768	1.670	7.0654	23.341	1.8739	2.727	1.87
	402	4633	46.9032	46.9124	2.763	2.619	7.0654	23.343	1.8639	2.543	1.87
	404	5647	. 0275	. 0303	5.725	5.606	7.0654	23.345	1.8287	1.953	1.83
	417	254922	2952.60335	52.6161	$54 \quad 714.649$	14.584	+7.0650	+23.566	+2.0018	+6.148	2.00
	419	5546	. 0495	. 0681	15.753	15.736	7.0650	23.569	2.0079	6.549	2.01
	420	$26 \quad 028$	51.6625	51.6780	16.424	16.462	7.0649	23.569	2.0114	6.844	2.01
	421	410	. 3486	.346r	16.816	16.926	7.0650	23.570	2.0135	7.076	2.01
	422	933	50.9220	50.9343	17.87 x	17.83 I	7.0649	23.571	2.0157	7.415	2.01
	423	1222	. 6762	. 6896	18.222	18.269	7.0649	23.572	2.0163	7.593	2.01
	424	1743	. 2138	. 2105	I9.101	19.116	7.0649	23.574	2.0168	7.929	2.01
	425	2033	49.9753	49.9877	19.162	19.344	7.0648	23.575	2.0165	8.107	2.01
	426	2333	.7364	. 7458	19.977	20.049	7.0648	${ }^{23.576}$	2.0160	8.297	2.01

Table VII. - Parallax Mean Places, Reduction to Apparent Place, and Parallax Corrections - Continued.

Table VII. - Parallax Mean Places, Reduction to Apparent Place, and Parallax Corrections - Continued.

Date.	$\begin{gathered} \text { Plate }^{\text {No. }} \end{gathered}$	$\begin{aligned} & \text { Berlin } \\ & \text { M. T. } \end{aligned}$	Mean a 1900. 0.		Mean $\delta 1900.0$.		Reduction to Apparent Place.		Parallax Δ.		π f.
			First Determination.	$\begin{gathered} \text { SECOND } \\ \text { DETER- } \\ \text { MINA- } \\ \text { TTON. } \end{gathered}$	First Determination.	$\begin{array}{\|c\|} \text { Second } \\ \text { Deter- } \\ \text { MINA- } \\ \text { TION. } \end{array}$	$\boldsymbol{\alpha}$	δ	α	δ	
Dec. 5 E.			h m s			47.647	$+6.0180$	+34.709	- 1.4888	-1.198	
	713	143735			$\begin{array}{ccc} \circ & \prime & \prime \prime \\ 48 & 58 & 47.6_{3} 8 \end{array}$						
	714	4018		$\begin{array}{\|r\|r\|} 3 & 27.1662 \\ 4 & .1809 \end{array}$	45.792 42.912	45.83 I	6.0180	34.710	1.4697	$\text { I. } 328$	$\text { . } 64$
	715	4335	. 1565	. 1665		42.945	6.0179	34.710	1.4462	1. 483	1.62
	716	4635	. 1388	. 1478	40.303	40.314	6.0178	34.71	1.4245	I. 623	1.60
	717	49 II	. 1468	. 1533	38.422	38.557	6.0178	34.710	1.4055	1.743	1.57
	758	520	.1128	. 1285	35.766	35.863	6.0177	34.710	I. 3848	1.870	1.55
	719	55 O	. 0957	. 1073	33.215	33.24 I	6.0177	34.710	${ }^{1} .3623$	2.004	1.52
	720	5828	. 0809	. 0911	30.318	30.316	6.0177	34.711	${ }_{\text {I }}$. 3363	2.155	I. 49
	721	15 I 43	. 0640	. 0764	27.367	27.418	6.0176	34.710	I. 3114	2.295	1. 47
	722	429	. 0423	. 0502	25.204	25.208	6.0175	34.710	1.2902	2.41 I	1. 44
	723	743	. 0433	. 053 I	22.479	22.546	6.0174	34.71 1	1.2652	2.545	1.42
	733	221436	I 2624.8148	24.8134	485149.771	49.672	+6.0065	+34.730	+2.0740	+5.64	2.32
	734	1729	. 8064	.8136	47.097	46.980	6.0064	34.730	2.0825	5.837	2.33
	735	2036	.8129	.8125	43.959	43.83 I	6.0063	34.73 I	2.0912	6.048	2.34
	736	2336	.798I	.8120	4 I .034	40.952	6.0063	34.732	2.0994	6.252	2.36
	737	26 II	. 8345	. 8333	38.692	38.448	6.0062	34.73 I	2.1061	6.430	2.36
	738	29 II	.8140	.8178	35.577	35.464	6.006 I	34.73 I	2.1134	6.635	2.37
	739	3243	.8177	. 8279	32.26 I	32.175	6.0060	34.73 I	2.1217	6.879	2.38
	740	3535	.8168	. 8223	29.549	29.394	6.0059	34.73 I	2.1281	7.077	2.39
	741	3843	. 8243	. 8314	26.515	26.391	6.0058	34.730	2.1346	7.295	2.39
	742	4129	. 8432	. 8474	23.663	23.554	6.0057	34.73 I	2.1401	7.487	2.40
	743	4435	.8324	. 8336	20.738	20.599	6.0057	34.73 I	2.1458	7.704	2.41
Dec. 6 E .	744	143435	12633.1734	33.1761	$48 \quad 37 \quad 5.569$	5.294	+5.9846	+34.764	-r.4769	- 1.098	т. 66
	745	3726	. 2027	. 1925	3.107	2.982	5.9846	34.764	1.4567	1.234	1. 64
	746	4029	.r639	. 1706	-.118	59.981	5.9845	34.765	1.4350	1. 378	I. 62
	747	43 II	. 1726	. 1668	3658.04 r	57.900	5.9844	34.765	1.4156	1.502	1. 59
	748	46 II	. 1716	. 1736	55.264	55.115	5.9844	34.766	I. 3936	1. 640	1.57
	749	4918	. 1418	. 1477	52.460	52.333	5.9843	34.766	1.3708	1. 779	1. 54
	750	5243	. 5159	. 1586	49.426	49.373	5.9843	34.765	1.3453	1.930	I. 52
	751	5535	. 5536	.1570	46.966	46.877	5.9842	34.766	1.3237	2.054	I. 49
	752	584 4	. 1473	. 1467	44.263	44.149	5.984 I	34.766	I. 3000	2.187	I. 46
	753	15 I 35	. 5440	.1610	41.818	4 T .75 I	5.9840	34.766	1.2778	2.308	I. 44
	754	435	. 360	. 1414	39.187	39.078	5.9839	34.766	1.2545	2.43 I	1.41
W.	764	228 II	I 2632.8915	32.8960	$4830 \quad 2.178$	2.183	+5.9745	+34.781	+2.0575	+5.589	2.32
	765	II 35	.9109	.9101	2958.953	58.918	5.9744	34.781	2.0678	5.818	2.33
	766	1450	. 9249	. 9253	55.700	55.691	5.9743	34.782	2.0772	6.037	2.35
	767	1741	.9364	. 9416	52.892	52.890	5.974 I	34.78 I	2.085 I	6.23 I	2.36
	768	204 T	. 9546	. 9545	49.792	49.789	5.9740	34.783	2.0930	6.435	2.36
	769	2335	. 9726	. 9743	47.066	47.058	5.9739	34.782	2.1004	6.633	2.37
	770	26 II	. 9908	. 9949	44.508	44.468	5.9738	34.783	2.1066	6.812	2.38
	771	2947	33.0075	33.0119	40.945	43.384	5.9736	34.782	2.1149	7.060	2.39
	772	3228	. 0212	. 0219	38.217	38.195	5.9735	34.782	2.1208	7.245	2.40
	773	3543	. 0450	. 0496	34.976	34.988	5.9734	34.782	2.1274	7.469	2.40
	774	$3^{8} 43$.0625	. 06648	32.207	32.225	5.9733	34.782	2.133 I	7.678	2.41
Dec. 7 E.	775	143618	I 2645.7689	45.7678	481454.057	53.924	+5.9526	+34.808	-I.4318	- I .204	
	776	3935	. 7909	. 7903	49.295	51.370	5.9525	34.809	1.4083	I. 356	1.60
	777	4222	.7903	.797x	48.804	48.689	5.9524	34.809	I. 388 I	1.483	1.58
	778	45 II	. 8203	. 8212	48.379	46.272	5.9524	34.809	1.3675	1.609	1.55
	779	48 II	. 8472	. 8437	43.68 I	43.612	5.9523	34.808	1.3453	I.741	1. 53
	780	5243	. 8446	. 8505	39.461	39.348	5.9523	34.808	1.3112	1.937	т. 49
	78 y	5528	. 8659	. 8697	37.184	37.070	5.9522	34.809	1.2904	2.054	1. 46
	782	- 58 21	. 8757	. 8730	34.553	34.43 I	5.952 I	34.808	1.2682	2.174	1.44
	783	$\begin{array}{llll}15 & 1 & 29 \\ & 4 & 43\end{array}$.8779	. 8774	31.662	31.618	5.9520	34.808	1.2440	2.30 r	1.41
	784 785	443	. 8877	. 8894	28.822	28.707	5.9519	34.808	1.2186	2.432	1. 3^{8}
	785	735	.9008	.898I	26.414	26.248	5.9519	34.808	I.1962	2.543	I. 36

Table VII. - Parallax Mean Places, Reduction to Apparent Place, and Parallax Corrections - Continued.

Date.	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	BerlinM. T.	Mean a 1900. 0.		mean δ 1900. 0.		Redoction to Apparent Place.		Parallax Δ.		$\boldsymbol{\pi}$ f.
			First Determination.	SECOND Deter- mTNA- tion.	First Deter mination.	Second Deter- mina- tion.	u	δ	$\boldsymbol{\alpha}$	δ	
Dec. 7 W.		b m s	h m	s	- ,	"					
	796	215746	1 2647.5192	47.5161	$48 \quad 755.095$	55.105	+5.9426	+34.820	+2.0270	+5.267	2.31
	797	$22 \bigcirc 43$. 5346	. 5304	52.298	52.328	5.9425	34.820	2.0368	5.464	2.32
	798	343	.567x	. 5684	49.259	49.263	5.9425	34.820	2.0463	5.662	2.33
	799	621	. 5996	. 5972	46.706	46.729	5.9424	34.82 I	2.0542	5.839	2.33
	800	940	.6157	.6143	43.245	43.278	5.9423	34.82 I	2.0640	6.062	2.34
	801	1240	. 6616	. 6599	40.212	40.22 I	5.9423	34.820	2.0724	6.265	2.35
	802	1525	. 6908	.6830	37.443	37.450	5.9422	34.820	2.0798	6.452	2.37
	803	1840	.7098	. 7075	34.263	34.27 I	5.9422	34.82 I	2.0882	6.672	2.38
	804	2135	. 7337	.7331	31.295	31.32 I	5.9422	34.822	2.0954	6.872	2.38
	805	2440	. 7722	.7519	28.227	28.246	5.942 I	34.822	2.1026	7.083	2.39
	806	2745	.8165	.8119	25.25 I	25.219	5.9420	34.822	2.1094	7.295	2.40
Dec. 24 E.	895	14410	$1{ }^{1} 66.6864$	6.6849	41888.717	8.588	+5.6240	$+32.808$	-0.9334	-0.279	1.20
	896	4447	6.9589	6.9580	4.726	4.608	5.6240	32.808	. 9045	. 392	1.16
	897	47 ○	7.1258	7.1274	2.355	2.342	5.6239	32.807	. 8875	. 455	1.14
	898	502 I	7.382 I	7.3795	1758.749	58.677	5.6239	32.807	.8617	. 550	1.10
	899	5329	7.6065	7.6073	55.596	55.477	5.6239	32.805	.8372	. 636	1.07
	900	5650	7.8460	7.8432	52.014	51.968	5.6238	32.804	.8108	. 726	1.04
	901	5934	8.0375	8.0341	49.303	49.159	5.6238	32.804	.7895	$\cdot 795$	1.01
	908	2 2 2835	14636.9425	36.9477	411043.025	43.081	+5.621I	+32.734	+r.8926	+8.605	2.43
	909	3135	37.1855	37.1902	39.510	39.64 r	5.6212	32.734	r. 8996	8.790	2.44
	910	34 II	$37.3^{81} 3$	37.3896	36.708	36.724	5.621 I	32.734	1.9054	8.951	2.44
	911	3822	37.7132	37.7201	32.03 I	32.076	5.6210	32.733	1.9143	9.211	2.46
	912	$4^{11} 46$	37.9905	37.9963	28.110	28.153	5.6210	32.732	I. 9210	9.422	2.46
	913	4443	38.2190	38.2249	24.660	24.702	5.6210	32.732	1.9264	9.608	2.47
	914	4746	38.4720	38.4764	21.186	21.267	5.6210	32.731	1.9318	9.799	2.48

Table VIII. - Parallax True Places and Corrections to Ephemeris.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Observed a.		Ephemeris a.	$\begin{gathered} \text { InTER- } \\ \text { val. } \end{gathered}$	Interval CorrecTIONS TO EphemeRIS.	Obliqutity Ecliptic Corrections to EphemeRIS.	Pertur- batton Correc- tions to Epheme- RIS.	O-E	
		First Determithation.	Second Determination.						First Determination.	Second Determi natton.
Oct.O		h m s	h m s	h m s	h	s	s	s	3	s
	92	24345.9454	24345.9413	24346.0058			-. 0180	+.0026	-. 0450	-. 049 r
	93	45.9113	45.9118	45.98 r 6			"	،	549	544
	94	45.8862	45.8860	45.9582			"	"	566	568
	95	45.8201	45.8163	45.88 I 3			"	25	457	495
	96	45.7843	45.7744	45.8558			"		560	659
W.	104	24341.6045	2434 x .6045	24341.6644	8.2	-. 0024	-..0180	+.0019	-. 0414	-. 0414
	105	4 4 .5673	41.5653	. 6 ± 85	8.2		"	"	327	347
	106	41.5068	41.5099	. 5755	8.3		"	"	502	471
	107	41.4251	41.4276	. 4942	8.3		"	"	506	48 T
	108	41.4138	4 I .410 I	.4606	8.3		"	18	282	319
Oct. 12 E.	134	24123.0630	24123.0754	24123.1483			-. 0210	-. 0123	-. 0520	-. 0396
	135	22.9946	23.0004	23.0777				124	497	439
	136	22.8319	22.8415	22.9860			"	،	1207	1111
	137	22.6899	22.6970	22.7942			"	"	709	638
	${ }^{1} 38$	22.5814	22.5799	22.6928			"	"	780	795
	139	22.3722	22.3665	22.4572			"	"	516	573
	140	22.249 I	22.2588	22.3641			"	"	816	719
W.	145	2418.6913	2418.6860	24188.7879	9.2	-. 0027	-.0210	-.013I	-. 0598	$-.0651$
	146	8.5765	8.5678	8.6894	9.2		،		761	848
	147	8.3671	8.3557	8.4753	9.2		"	"	714	828
	148	8.2070	8.1995	8.3163	9.0		"	،	725	800
Oct. 13 E.	150	24044.6096	24044.6264	24044.7696			-. 0212	-. 0143	-. 1245	-.ro77
	151	44.5382	44.5543	44.6495			،		758	597
	152	44.4565	44.4757	44.576 I			"	"	841	649
	153	44.0622	44.0857	44.2014			"	144	1036	801
W.	163	24028.0922	24028.0845	24028.1909	9.5	-.0028	$-.0216$	-.0151	-. 0592	-. 0669
	164	27.9943	27.9978	28.1140	9.5		،	"	802	767
	165	27.9047	27.9059	28.0027	9.5		"	"	585	573
	166	27.6615	27.6623	27.7755	9.5		"	"	745	737
	167	27.5513	27.5563	27.6877	9.6		"	[969	919
	168	27.3382	27.3452	27.4494	9.8	29	"	15	715	645
	169	27.2486	27.2527	27.3614	9.7		"	"	73 I	690
Oct. 14 E.	170	2401.1188	240 1.1082	2401.2188			-. 0220	-.0163	-.06I7	-. 0723
	175	1.0103	0.9997	1.1241			"	164	754	860
	172	0.8852	0.8708	0.9917			"	"	681	825
	173	0.4918	0.4669	0.5705			"	"	403	652
	174	0.3571	0.3538	0.4799			" ${ }^{\prime \prime}$	"	844	877
	175	0.0848	0.0743	0.1958			"	"	726	83 I
	176	0.0009	3959.9869	$0.093{ }^{\circ}$			"	"	537	677
	177 178	3959.694 I	59.6805	3959.7898			"،	"،	573	709
	178	59.5684	59.5689	59.6949				"	88 I	876
W.	187	23943.4984	23943.4859	23943.6178	9.1	. 0027	-. 0220	-.017x	$-.0776$	-. 0901
	188	43.398 I	43.3953	43.5168	8.8	26	"	،	770	798
	189	43.2396	43.2344	43.3549	8.9		"	"	736	788
	190	42.9089	42.9027	43.0112	8.9		"	"	606	668
	191	42.8079	42.8007	42.9129	8.9		،	"	633	705
	192	42.5287	42.5180	42.6455	8.9			172	750	857
	193	42.4350	42.4263	42.5414	8.9				646	733

Table VIII. - Parallax True Places and Corrections to Ephemeris - Continued.

Date.	$\begin{gathered} P_{\text {LATE }} \\ \text { No. } \end{gathered}$	Observed a.		Efiemeris a.	$\begin{gathered} \mathrm{I}_{\text {nter }} \text { val. } \\ \text { vad } \end{gathered}$	Interval Corrections to EphemeRIS.	Obliquity Ecliptic Correc- tions to EphemeRIS.	Pertur- bation CorrecTIONS TO EphemeRIS.	O-E	
		First Determination.	Secono Determination.						First Determi nation.	Second Determination.
$\begin{gathered} 1900 \\ \text { Oct. } 15 \mathrm{E} . \end{gathered}$		h m s	h m s		h					
	195 196	2 39 13.4575 13.3024	$\begin{array}{llll}2 & 39 & 13.4537\end{array}$	${ }^{2} 3913.5867$	h	s	$\stackrel{\text { s }}{-.0222}$	$\xrightarrow{\text { s }}$	- ${ }_{-}^{\text {s }} 0885$	- ${ }_{\text {s }}$
	196	${ }^{1} 3.3024$	13.2959	13.4289			،	. 18	-.0885 858	-.0923 923
	197 198	12.9573	12.9511	13.0724			"	186	743	805
	199	12.8440	12.843 I	12.9708			"	،	860	869
	201	12.2365	12.5935 12.2324	12.7253			"	"	837	910
	202	12.1179	12.2324 12.1166	12.3617 12.2550			\%	${ }_{68}^{18}$	843	884
									962	975
W.	213	$23^{8} 54.1614$	${ }^{2} 3^{8} 54.1561$	$23^{8} 54.284 \mathrm{I}$	9.1	-. 0027	-. 0226			
	214	54.0577	54.0553	54.1766	9.1	"	. ${ }^{\text {a }}$	${ }_{6} .01$	$\begin{array}{r}-.0777 \\ \hline 739\end{array}$	$-.0830$
	215	53.9557	53.9538	54.0780	9.1	"	"	"	739	763 702
	216	53.6059	53.6012	53.7307	9.1	"	"	"	798	792 845
	217	53.5347	53.5263	53.6459	9.0	"	"	"	662	746
	218	53.2750	53.2458	53.377 I	9.0	"	"	"	57 I	863
	219	53.1161	53.1134	53.2509	9.0	"	"	"	898	925
	220	52.8659	52.8687	52.998 I	9.0	"	"	"	872	844
	221	52.7639	52.7764	52.8975	9.1	"	"	"	886	761
Oct. 16 E.	222	$23^{8} 21.7788$	23821.7661	23821.8622			-. 0230			
	223	21.5883	21.5769	21.7048			. 6	. ${ }^{\text {a }}$	$\begin{array}{r}722 \\ \hline .0391\end{array}$	-.0518 836
	224	21.4140	21.4040	21.5160			"	214	576	676
	225	21.0770	21.0665	21.1944			"	"	730	835
	226	20.9002	20.8836	21.0160			"	"	714	880
	227	20.6424	20.6320	20.7511			"	"	643	747
	228	20.5304	20.515 I	20.6439			"	"	69 x	844
	230	20.1281	20.1134	20.2296			"	"	571	718
W.	239	23759.6642	23759.6651	23759.793 I		-.0028	-. 0230	-. 022 I	-.0810	-. 0801
	240	59.5071	59.5037	59.6300		"	،	"	750	.0881 784
	241	59.3107	59.3124	59.4423	"	"	"	"	837	820
	242	59.0792	59.0786	59.2029	"	"	"	222	757	763
	243	58.9589	58.9603	59.0855	"	"	"	،	786	772
	244	58.7286	58.7325	58.8564	"	"	"	"	798	759
Oct. 21 E.	247	23253.3685	23253.3682	${ }^{2} 3253.5497$			$-.025^{2}$	$-.0313$	-. 1247	-. 1250
	248	53.2201	53.2184	53.4105			"		1339	1356
	250	52.5049	52.5074	52.7002			"	"	1388	1363
	251	52.2020	52.2043	52.3867			"	"	1282	1259
	252	52.0102	52.0115	52.1896			"	314	1228	1215
	253	51.5859	51.5937	51.7902			"		1477	1399
	254	51.4318	51.4313	51.6209			"	"	1325	1330
W.	264	23222.195°	23222.2008	23222.3915				$-.0321$	-.1360	-. 1302
	265	22.0483	22.0459	22.2373	"	"	"	"	1285	1309
	266	21.8844	21.8888	22.0731	"	"	"	"	1282	1238
	267	21.4045	21.4024	21.6029	"	"	"	"	1379	1400
	268	21.2631	21.2629	21.4799	"	"	"	"	1563	1565
	269	20.7875	20.7833	20.9933	"	"	"	/	1453	1495
	270	20.6479	20.645 I	20.8407	"	"	"	322	1322	1350
	271	20.2650	20.2602	20.4635		"	"		1379	1427
Oct. 24 E.	275	22842.3843	22842.3892	22842.6110			-. 0270	-. 0373	-. 1624	-. 1575
	276	42.2296	42.2344	42.4465			،		1526	1478
	277	42.0561	42.0579	42.2593			"	"	1389	1371
	278	41.5113	41.5162	41.7322			"		1566	1517

Table VIII. - Parallax True Places and Corrections to Ephemeris - Continued.

Date.	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Observed a.		Ephemerts a.	$\begin{gathered} \text { InTER- } \\ \text { VAL. } \end{gathered}$	Interval Corrections to EphemeRTs.	Obliqutty Ecliptic Corrections to Epaemeris.	Perturnation Corrections to EphemeRIS.	O-E	
		First Determination.	Second Determination.						First Determa nation.	Second DetermiNATION.
1900		h m	b m s	h m	b	s	s	s	s	s
Oct. 24 W.	291	$228 \quad 7.0027$	$2 \begin{array}{lll}28 & 6.9893\end{array}$	$2 \begin{array}{ll}28 & 7.2247\end{array}$	9.6	-. 0028	-. 0270	-.0381	-.154I	$-.1675$
	292	6.8038	6.7922	7.0415		"	"	، ${ }^{\prime}$	r698	1814
	293	6.6190	6.6074	6.8436	"	"	"	"	1567	1683
	294	6.0386	6.028 I	6.2624	"	"	"	"	1559	1664
	295	5.8813	5.8705	6.0908	"	"	"	"	1416	1524
	296	5.3196	5.3064	5.5553	"	"	"	"	1678	1810
	297	5.1472	5.1380	5.3645	"	"	"	"	1494	1586
	298	4.6820	4.6746	4.9117	"	"	"	382	1617	1691
Oct. 26 E.	319	22535.4858	22535.489 I	22535.734 I			-. 0280	-.0412	-.1791	-.1758
	320	35.3145	35.3228	35.5642			"	،	1805	11722
	32 I	35.1492	35.1502	35.3979			"	"	1795	1785
	322	34.7094	34.7113	34.9495			"	"	1709	1690
	323	34.4968	34.5017	34.733 I			"	"	1671	1622
	324	34.0903	34.0958	34.3300			"	"	1705	1650
	325	33.8813	33.8884	34.134I			"	"	1836	1765
	326	33.4055	33.4090	33.6583			"	"	1836	1801
	327	33.1534	33.1607	33.4046			"	"	1820	1747
W.	336	22455.3274	22455.3314	22455.5779	9.8	-. 0029	-. 0280	-.0416	-. 1780	-. 1740
	337	55.1066	55.1092	55.3594					1803	1777
	338	54.9069	54.9053	55.1444	"	"	"	،	1650	1666
	339	54.3813	54.3895	54.6248	"	"	"	،	1710	1628
	340	54.182 I	54.1880	54.4190	"	"	"	"	1644	1585
	341	53.6505	53.667 I	53.9026	"	"	"	"	1796	1630
	342	53.4407	53.4504	53.7035	"	"	"	"	1903	1806
	343	52.8685	52.8770	53.1329	"	"	"	"	1919	1834
	344	52.6607	52.6733	52.913 I	"	"	"	،	1799	1673
Oct. 29 E.	345	22026.2468	22026.2472	22026.5088			-. 0292	-. 0462	-. 1866	-. 1862
	346	26.0578	26.0563	26.3184			"	"	1852	1867
	347	25.8137	25.8087	26.0767			"	"	1876	1926
	348	25.3085	25.3026	25.5686			"	"	1847	1906
	349	25.0764	25.0667	25.3154			"	،	1636	1733
	350	24.5560	24.5527	24.8208			"	"	1894	1927
	351	24.3526	24.3443	24.6040			"	"	1760	1843
W.	357	21940.6074	21940.6230	21940.8983		-.0029	-. 0296	-. 0466	-.2118	$-.1962$
	358	40.4219	40.4327	40.693 I	"	"	"	"	1921	1813
	359	40.1261	40.1370	40.4029	6	"	"	"	1977	1868
Nov. 3 E.	396	2 10 54.1975	21054.2035	2 10 54.4987			-. 0320	-.0531	-.2161	-.2101
	397	53.9594	53.9620	54.2583			"	${ }^{\prime}$	2138	2112
	398	53.7094	53.7054	54.0125			"	"	2180	2220
	399	53.1782	53.1912	53.4747			"	"	2114	1984
	400	52.8961	52.899 I	53.2105			"	"	2293	2263
	401	52.4014	52.4007	52.692 I			"	532	2055	2062
	402	52.1047	52.1139	52.4280			"	6	${ }_{23} 8$ I	2289
	404	51.2642	51.2670	51.5744			"	"	2250	2222
	417	2 10 1.6701	2 10 1.6829	$210 \quad 2.0147$. 0000	$-.0320$	$-.0536$	-. 2590	-. 2462
	419	1.1224	1.1410	1.4779	"	"	"		2699	2513
	420	0.7388	0.7543	1.0837	"	"	"	"	2593	2438
	42 I	0.4271	0.4246	0.7734	"	"	"	"	2607	2632
	422	0.0026	0.0149	0.3219	"	"	"	"	2337	2214
	423	959.7574	959.7708	0.0856	"	"	"	"	2426	2292
	424	59.2955	59.2922	959.637 I	"	"	"	"	2560	2593
	425	59.0566	59.0690	59.3998	"	"	"	"	2576	2452
	426	58.8172	58.8266	59.1480			"	"	2452	2358

Table VIII. - Parallax True Places and Corrections to Ephemeris - Continued.

Date.	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Observed a.		Ephemeris a.	$\begin{array}{\|c\|} \hline \text { Inter- } \\ \text { val. } \end{array}$	Interval CorrecTIONS TO EphemeRIS.	Obliquity Ecliptic Correc- tions to Epheae- RIS.	Perturbation CorrecTIONS TO EphemeRIS.	O-E	
		First Determination.	Second Determination.						First Determy NATION.	SECOND Determi- nation.
1900Nov. 10.		b m s	h m s	h m s	h	9	s	s	s	s
	472	I 5635.2403	I 5635.2324	I 5635.5503			-. 0360	-.0610	-. 2130	-. 2209
	473	34.9566	34.9592	35.2962				"	2426	2400
	474	34.7386	34.7301	35.0380			"	"	2024	2109
	475	34.1045	34.0870	34.4180			"	"	2165	2340
	476	33.9085	33.9010	34.2035			"	"	1980	2055
	477	33.3702	33.3632	33.677^{8}			"	"	2106	2176
	478	33.1066	33.0946	33.4243			"	"	2207	2327
W.	495	I 5546.0422	I 5546.0340	I 5546.3127	9.6	. 0000	-. 0360	-.0610	-. 1735	-. 1817
	496	45.745°	45.7355	46.0216		6	'	،	1796	1891
	498	44.99 I 6	44.988 I	45.2910	"	،	"	"	2024	2059
	501	43.9649	43.9585	44.2409	"	"	"	"	1790	1854
Nov. 28 E.	615	I 2857.7363	I 2857.7403	I 2858.0156			-. 0430	-.1112	-. 1251	-.1211
	616	57.6554	57.6543	57.9230			"	"	1134	1145
	617	57.5689	57.5677	57.8399			"	"	1168	1180
	618	57.4723	57.4748	57.7420			"	"	1155	1130
	619	57.3717	57.3776	57.6553			"	"	1294	1235
	620	57.2721	57.2739	57.5467			"	"	1204	1186
	62 I	57.1768	57.1787	57.4549			"	"	1239	1220
	622	57.1112	57.1121	57.3730			"	I113	1075	1066
	623	57.0135	57.0140	57.2832			"	،	1154	1149
	624	56.9149	56.9139	57.1832			"	"	${ }^{1140}$	1150
	625	56.8341	56.8304	57.0967			،	"	1083	1120
W.	635	12843.1239	I 2843.1239	I 2843.3897		$\underline{+.0014}$	$-.0430$	-1119	-. 1123 128 I	-.1123
	637	$42.933{ }^{\circ}$		43.2146	"	"	"	"،	1281	- 1200
	637		42.9496	43.2231	"	"	،	،	1489	1200
	639	42.7127	42.7314	43.0151	"	"	"	"	1489 1281 181	1302 1178
	640	42.6737	42.6840	42.9553	"	"	"	"	1281	1178 1209
	643	42.0253	42.0357	42.3101	،	،	"	"	$\begin{array}{r}1313 \\ \hline 1223\end{array}$	1209
	644	41.9466		42.2224	"	"	"	"	1223	ㄷ.. 28.
	644		41.9240 41.6645	42.2056 41.9593	"	"	"	"	1459	1413
	647	41.6599	41.6645						1459	141
Nov. 29 E.	648	I 2816.9249	12816.9263	1 2817.2175			-.0430	-.1132 ${ }_{6}$	-. 1364	-. 1350
	649	16.8744	16.8704	17.1485					1179	1219
	650	16.7743	16.7707	17.0576			"	"	1275	1307
	651	16.7170	16.7197	16.9916			"	"	1184	1157
	652	16.6278	16.6301	16.9035			"		1195	1172
	653	16.5363	r6.5338	16.8220			"	"	1295	1320
	654	16.4453	16.4494	16.7405			"	"	1390	1349
	655	16.3815	16.3817	16.6682			"	"	1305	1303
	656	16.3104	16.3114	16.5836			"	"	1170	1160
	657	16.2314	16.2329	16.5108			"	"	1232	1217
	658	r6.1577	16.1585	16.4374			"	1133	1234	1226
W.		1 284.4723	I 28 4.4751	$\begin{array}{lll}128 & 4.7618\end{array}$	8.2	+.0014	-. 043°	-.1139	$-.1340$	-.1312
	669	$\begin{aligned} & 4.4723 \\ & 4.3922 \end{aligned}$	I 4.3986	- 4.6920	'6				1443	1379
	66	4.3926 4.3286	4.3301	4.6092	"	"	"	"	1251	1236
	671	4.2668	4.2702	4.5403	"	"	"	"	1180	1146
				4.4602	"	"	"	"	1369	1292
	672	4.1678	4.0999	4.3834	"	"	"	"	128I	1280
	673	4.0998	4.0999 4.0197	4.3834 4.2987	"	"	"	"	1266	1235
	674	4.0166	4.0197	4.2987	"	"	"	"	1350	1319
	675	3.927 T	3.9302	4.2176	"	"	"	"	1317	1302
	676	3.8565	3.8580	4.1437 4.0642	"	"	"	"	I 352	1298
	677 678	3.7735 3.7047	3.7789 3.7078	4.0642 3.9934	"	،	"	"	1332	1301
	678	$3 \cdot 7047$								

Table VIII. - Parallax True Places and Corrections to Ephemeris - Continued.

Date.	$\left\|\begin{array}{c} \text { Plate } \\ \text { No. } \end{array}\right\|$	Observed a.		Ephemeris a.	Interval.	Interval Corrections to EphemeRIS.	Obliqutity Ecliptic Corrections to EfhemeRIS.	Perturbation CorrecTIONS TO EphemeRIS.	O-E	
		First Determination.	Second Determination.						First Determi nation.	Second Determanatton.
1900 Dec. 5 E. W.		h m	h m	h m	b	s	s	s	${ }^{5}$	s
	713	I 263 3. 6945	1 2631.6954	12632.0194			-. 0430	-.1231	-. 5588	-. 1579
	714	31.7277	31.7292	32.0242				"	1304	1289
	715	31.7282	31.7382	32.0300			\%	"	1357	1257
	716	3 I .732 I	31.7411	32.0358			\%	"	r376	1286
	717	31.7591	31.7656	32.0408			"	"	1156	1091
	718	31.7457	31.7614	32.0462			"	"	1344	1187
	719	3 I .751 I	31.7627	32.0515			"	"	1343	1227
	720	31.7623	31.7725	32.0582			"	"	1298	1196
	721	31.7702	31.7826	32.0646			"	"	1283	1159
	722	31.7696	31.7775	32.0700			"	"	1343	1264
	733	31.7955	3 3 .8053	32.0763			"	"	1147	1049
	733	I 2632.8953	I 2632.8939	I 2633.1924	8. 6	+.0015	-. 0430	-. 1234	-.1322	-. 1336
	734	32.8953	32.9025	33.2020	"	،	"	،	1418	1346
	735	32.9104	32.9100	33.2121	"	،	"	"	1368	1372
	736	32.9038	32.9177	33.222 I	"	"	"	"	1534	1395
	737	32.9468	32.9456	33.2309	"	"	"	"	1192	1204
	738	32.9335	32.9373	33.2409	"	"	"	"	1425	$\mathrm{r}_{3} 87$
	739	32.9454	32.9556	33.2525	"	"	"	"	1422	1320
	740	32.9508	32.9563	33.2622	"	"	"	"	1465	1410
	741	32.9647	32.9718	33.273 I	"	"	"	"	1435	1364
	742	32.9890	32.9932	33.2824	"	"	"	"	1285	1243
	743	32.9839	32.9851	33.2928	"	"	"	"	1440	1428
Dec. 6 E.	744	12637.6811	I 2637.6838	I 2637.9703			-. 0430	-.124I	-. 122 I	-.ri94
	745	37.7306	37.7204	37.9889					0912	1014
	746	37.7134	37.7201	38.0084			"	"	1279	1212
	747	37.7414	37.7356	38.0260			"	"	1175	1233
	748	37.7624	37.7644	38.0452			"	"	1157	1137
	749	37.7553	37.7612	38.0652			"	"	1428	1369
	750	37.7919	37.7976	38.0875			"	"	1285	1228
	751	37.814 I	37.8175	38.1062			"	"	1250	1216
	752	37.8314	37.8308	38.1263			"	"	1278	1284
	753	37.8602	37.8672	38.1455			"	"	1182	1112
	754	37.8654	37.8708	38.1651			"	"	1326	1272
	764	I 2640.9235	12640.9280	I 2641.2225	8.6	+.0015	-. 0430	-. 1244	-. 1331	-. 1286
	765	40.953 I	40.9523	41.2490	"	"	"	،	1300	1308
	766	40.9764	40.9768	41.2748	"	"	"	"	1325	1321
	767	40.9956	41.0008	41.2980	"	"	"	"	1365	${ }_{13} 13$
	768	41.0216	41.0215	41.3215	"	"	"	"	1340	1341
	769	41.0469	41.0486	41.344 I	"	"	"	"	1313	1296
	770	41.0712	41.0753	41.3649	"	"	"	"	1278	1237
	771	41.0960	41.1004	41.3935	"	"	"	"	1316	1272
	772	41.1155	41.1162	41.4148	"	"	"	"	1334	1327
	773	41.1458	41.1504	41.4410	"	"	"	"	1293	1247
	774	41.1689	41.1712	41.4650	"	"	"	"	1302	1279
Dec. 7 E.	775	I 2650.2897	I 2650.2886	I 2650.5778			$-.0430$	-.1251	-. 1200	-.I2II
	776	50.335 I	50.3345	50.6143			،	"	1111	1117
	777	50.3546	50.3614	50.6454			"	"	1227	1159
	778	50.4052	50.4061	50.6766			"	"	1033	1024
	779	50.4542	50.4507	50.7098			"	"	0875	0910
	780	50.4857	50.4916	50.7597			"	"	1059	1000
	781	50.5277	50.5315	50.7903			"	"	0945	0907
	782	50.5596	50.5569	50.8224			"	"	0947	0974
	783	50.5859	50.5854	50.8572			"	"	1032	1037
	784	50.6210 50.6565	50.6227 50.6538	50.8932			"	،	1041	1024
	785	50.6565	50.6538	50.925 I					1005	1032

Table VIII. - Parallax True Places and Corrections to Ephemeris - Continued.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Observed a.		Ephemeris a.	$\begin{array}{\|c\|} \hline \text { Inter- } \\ \text { val. } \end{array}$	Interval Corrections to EphemeRIS.	Obliqutity Ecuptic Corrections to EphemeRIS.	Perturbation Corrections to EphemeRIS.	O-E	
		First Determination.	Second Determination.						First Determi nation.	Second Determa nation
$\begin{gathered} 1900 \\ \text { Dec. } 7 \text { W. } \end{gathered}$		h m s	h m s	b m s	b	s	s	s	,	,
	796	I 2655.4888	I 2655.4857	I 2655.7611	7.4	+.0013	-. 0430	-. 1254	-.1052	-.r083
	797	55.5139	55.5097	55.7977		"	"	"	1167	1209
	798	55.5559	55.5572	55.8355	"	"	"	"	1125	III2
	799	55.5962	55.5938	55.8680	"	"	"	"	1047	107 1
	800	55.6220	55.6206	55.9092	"	"	"	"	1201	1215
	801	55.6763	55.6746	55.9468	"	"	"	"	1034	1051
	802	55.7128	55.7050	55.98 IO	"	"	"	"	IOII	1089
	803	55.7402	55.7379	56.0218	"	"	"	"	1145	1168
	804	55.7713	55.7707	56.0582	"	"	"	"	1198	1204
	805	55.8169	55.7966	56.0968	"	"	"	"	1128	1331
	806	55.8679	55.8633	56.1354	"	"	"	"	1004	1050
Dec. 24 E.	895	14611.3770	14611.3755	146 11.6016			-. 0360	-.1219	-. 0667	-. 0682
	896	11.6784	1 t .6775	Ir.9066				"	703	712
	897	11.8622	11.8638	12.0854			"	"	653	637
	898	12.1443	12.1417	12.3557			"	"	535	561
	899	12.3932	12.3940	I 2.6085			"	"	574	566
	900	12.6590	12.6562	12.8787			"	"	618	646
	901	12.8718	12.8684	13.0992			"	"	695	729
W.	908	14644.4562	I 4644.4614	I 4644.6684	6.8	+.0012	$-.0360$	$-.1216$	-. 0558	-. 0506
	909	44.7063	44.7110	44.913 I	"		"	"	504	457
	910	44.9078	44.9161	45.1254	"	"	"	"	612	529
	911	45.2485	45.2554	45.4668	"	"	"	"	619	550
	912	45.5325	45.5383	45.7447	"	"	"	"	558	500
	913	45.7664	45.7723	45.9857	"	"	"	"	629	570
	914	46.0248	46.0292	46.2346	"		"	"	534	490

Table IX. - Star Positions used in Parallax Work.

Date.	Star.	a 1900 . 0.	$\delta 1900.0$.	Authority.	Date.	Star.	a 1900 . 0.	$\delta 1900.0$.	Authority.
Oct. 6		b m s	- '"				h m s	- ' "	
	a	24318.309	465022.46	A. R. Hinks	Oct. 15	a	23816.158	49545.66	A. R. H.
	b	4317.367	47 I 15.55	Crossley		b	3830.805	579.06	
	c	4320.313	465754.98			f	3914.377	5157.83	"
	d	4334.583	59 53.10	A. R. H.		g	34.881	$53 \quad 7.32$	"
	e	4342.884	$\begin{array}{lll}52 & 3.37\end{array}$			b	39.059	5856.52	"
	f	4348.042	4710.04	"		i	48.887	50 ○ 33.83	"
	g	4354.418	$47 \quad 331.10$	"		n	3959.657	495316.32	"
	h	4411.017	465132.13	"		0	3827.981	$50 \quad 730.26$	"
	i	4428.897	5724.77	"					
	1	4357.585	4212.97	"					
	m	438.890	4522.37	"					
	n	4338.445	471059.10	"،					
	0	434.018	104.25	"					
Oct. 12	a	24025.259	$49 \quad 6 \quad 4.83$	A. R. H.	Oct. 16	a	23718.440	$502435 \cdot 32$	A. R. H.
	b	4046.648	617.80			b	40.523	1216.20	
	c	4055.416	1 57.98	"		c	42.353	$16 \quad 1.70$	"
	d	4058.831	485355.59	"		d	3753.126	1727.92	"
	e	4120.447	$49 \quad 211.39$	"		e	384.868	1813.28	"
	f	4126.331	485122.98	"		f	7.661	2543.50	"
	g	4215.629	49840.13	"		g	12.844	1743.40	"
	m	4125.409	48486.34	"		h	25.133	1933.28	"
	n	4158.921	467.19	"		,	50.890	1459.57	
	0	408.385	$\begin{array}{llll}49 & 8 & 23.94\end{array}$	"		1	49.78 I	118808	A. R. H.
	p	4157.534	1253.17	"		m	3827.981	730.26	
						n	3721.625	$27 \quad 1.16$	"
						0	3756.528	2942.10	"
Oct. 13	b	23933.24 I	492 3 3.44	Crossley	Oct. 21	a	23144.838	514924.71	Crossley
	c	4015.60	2518.6	A. R. H.		b	$32 \quad 2.918$	4547.04	A. R. H.
	e	4039.87	2331.5			c	14.579	4 I 48.94	"
	f	4048.788	1556.47			d	25.609	5429.59	"
	g	4053.454	2 I 21.82	Crossley		e	30.685	3659.21	"
	h	4054.71	2715.8	A. R. H.		f	3258.21 I	3733.41	"
	m	408.366	823.49	Crossley		g	33 If.54I	4354.78	"
	0	3930.284	3030.85	A. R. H.		h	21.596	4233.83	"
						1	30.965	$\begin{array}{ll}37 & 3.48\end{array}$	"
						m	3333.41 I	3427.55	"
						n	3133.302	5712.78	"
						0	3239.465	5636.85	"
Oct. 14		${ }^{2} 3851.599$	493454.85	A. R. H.	Oct. 24		227 16.861	522326.00	A. R. H.
	b	3916.705	3824.00	Crossley		b	36.495	3317.66	
	c	30.284	3030.85	A. R. H.		c	44.893	2421.73	Crossley
	d	3 I .890	4045.3 x			d	2752.139	1930.16	A. R. H.
	e	37.704	4729.68	"		e	2818.595	3038.02	"
	f	42.818	4341.2 I	"		f	20.788	2754.33	"
	g	3958.380	$\begin{array}{ll}37 & 8.87\end{array}$	"		g	24.692	3351.33	"
	h	$40 \begin{array}{ll}40 & 1.623\end{array}$	4758.01	"		h	40.461	3047.99	"
	i	23.334	$40 \quad 4.66$	"		i	2854.428	2216.70	"
	m	4053.14	3733.1	"		j	293.641	2747.12	"
	0	3959.43 I	5117.06			1	24.847	1620.87	"
						m	$\begin{array}{ll}29 & 19.304\end{array}$	2118.78	"
						n	$27 \quad 7.387$ 27	3533.15	"
						0	2740.966	3851.82	

Table IX. - Star Positions used in Parallax Work - Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date. \& Star. \& a 1900. 0. \& \(\delta\) 1900. 0. \& Authority. \& Date. \& Star. \& a 1800.0. \& \(\delta\) 1900. 0. \& Authority. \\
\hline \multirow{12}{*}{Oct. 26} \& \multirow{12}{*}{\[
\begin{aligned}
\& \mathbf{a} \\
\& \mathbf{b} \\
\& \mathbf{c} \\
\& \mathbf{d} \\
\& \mathbf{f} \\
\& \mathbf{g} \\
\& \mathbf{h} \\
\& \mathbf{1} \\
\& \mathbf{m} \\
\& \mathbf{n} \\
\& \mathbf{o}
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\left|\begin{array}{ccc}
\mathrm{b} \& \mathrm{~m} \& \mathrm{~s} \\
2 \& 24 \& 24.576 \\
\& \& 55.838 \\
\& \& 58.712
\end{array}\right|
\]} \& \multirow[t]{2}{*}{} \& \multirow{3}{*}{A. R. H.} \& \multirow[b]{2}{*}{Nov. 29} \& \multirow[b]{2}{*}{a} \& \multirow[t]{2}{*}{\[
\begin{array}{lll}
\mathbf{h} \& \mathrm{m} \& \mathrm{~s} \\
\text { I } \& 26 \& 48.65 \mathrm{I}
\end{array}
\]} \& \& \multirow[b]{2}{*}{A. R. H.} \\
\hline \& \& \& \& \& \& \& \& \[
5058 \quad 5.12
\] \& \\
\hline \& \& \& \begin{tabular}{l}
57 \\
54 \\
54 \\
\hline
\end{tabular} \& \& \& b \& 2714.732 \& 531.02 \& A. R. H . \\
\hline \& \& 5458.963 \& 5453.96
4747.91 \& Crossley \& \& c \& 2716.032 \& \(5^{2} 1213.88\) \& " \\
\hline \& \& \(25 \quad 29.245\) \& 5645.78 \& A. R. H. \& \& d \& 2823.488 \& 515126.91 \& " \\
\hline \& \& 32.083 \& 5150.15 \& Crossley \& \& \({ }_{\text {f }}\) \& 29.882
32.652 \& 505923.74 \& Crossley \\
\hline \& \& 31.215 \& 4543.48 \& " \& \& \(\mathrm{f}_{1}\)
\(\mathrm{f}_{2}\) \& 32.652
32.660 \& 4854.39
4854.70 \& \begin{tabular}{l}
Crossley \\
A. R. H
\end{tabular} \\
\hline \& \& 25
269.857
26886 \& 4626.08 \& A. R. H. \& \& g \& 42.774 \& 5519.67 \& Crossley \\
\hline \& \& 267.886 \& 4930.40
53 \& * \& \& h \& 48.374 \& 5644.66 \& A. R. H. \\
\hline \& \& 23575.127 \& \(\begin{array}{lll}53 \& 3 \& 22.93 \\ \& 0 \& 46.23\end{array}\) \& " \& \& 1 \& 28 18.361 \& 51 542.97 \& \\
\hline \& \& 2357.37 \& \& \& \& m \& 2736.907 \& 921.30 \& " \\
\hline \& \& \& \& \& \& n \& 30.022 \& 50420.70 \& " \\
\hline \multirow[t]{12}{*}{Oct. 29} \& \multirow[b]{2}{*}{a} \& 2193.966 \& \multirow[t]{2}{*}{532653.95} \& A. R. H. \& \multirow[t]{2}{*}{Dec. 5} \& \& \multirow[t]{2}{*}{125 51.471} \& \multirow[t]{2}{*}{\(48{ }_{51} \quad 2.88\)} \& \multirow[b]{2}{*}{A. R. H.} \\
\hline \& \& 14.044 \& \& A. R. \(\mathbf{H}\). \& \& a \& \& \& \\
\hline \& c \& 17.214 \& 3018.25 \& " \& \& c \& 2612.465
24.964
30.78 \& 4754.65
5753.26 \& ، \\
\hline \& d \& 19 41.747 \& 2841.11 \& " \& \& d \& 30.780 \& 54 14.85 \& " \\
\hline \& e \& 204.053 \& 3143.54 \& " \& \& e \& 40.665 \& 5953.03 \& " \\
\hline \& f \& 18.659 \& 2837.59 \& " \& \& f \& 2649.138 \& \(49 \quad 459.76\) \& " \\
\hline \& g \& 17.698 \& 2719.21 \& " \& \& g \& 273.377 \& 485111.90 \& Crossley \\
\hline \& h \& 36.315 \& 2813.95 \& " \& \& h \& 2730.167 \& \(5_{58} 5_{56} 58\) \& A. R. H. \\
\hline \& i \& 39.714 \& 23 34.51 \& " \& \& \& 2650.532 \& 49 10 55.87 \& " \\
\hline \& 1 \& 2031.617 \& \(17 \quad 3.80\) \& " \& \& 0 \& 2644.949 \& 4844 41.3I \& " \\
\hline \& m \& 2121.501
1834.133 \& 2458.65 \& " \& \& p \& 278.327 \& 44 12.21 \& " \\
\hline \& \& 1845.287 \& \(27 \quad 7.74\) \& \& \& \& \& \& \\
\hline \multirow[t]{11}{*}{Nov. 3} \& a \& 2941.252 \& \(\begin{array}{lll}54 \& 1 \& 3.75\end{array}\) \& A. R. H. \& Dec. 6 \& \(a\) \& 12552.056 \& \(48 \quad 298.45\) \& A. R. H. \\
\hline \& b \& 945.60 T \& 750.3 I \& \& \& b \& 53.842 \& 3253.38 \& "، \\
\hline \& d \& 10 4.731 \& 814.72 \& " \& \& , \& 2622.548 \& 3028.64 \& " \\
\hline \& \({ }^{\text {e }}\) \& 1042.388 \& 736.29 \& " \& \& d \& 27.341 \& 33 35.32 \& " \\
\hline \& \& 112.288 \& 621.36 \& " \& \& e \& 58.064 \& 2627.72 \& " \\
\hline \& h \& 116.889 \& - 3.10 \& " \& \& f \& \(27 \quad 4.93 \mathrm{I}\) \& 3947.14 \& " \\
\hline \& 1 \& II 54.635 \& 211.30 \& " \& \& g \& 8.541 \& 2636.90 \& " \\
\hline \& m \& 126.458 \& 544.66 \& " \& \& h \& 16.197 \& 3018.69 \& " \\
\hline \& 0 \& 916.540 \& 10 38.08 \& " \& \& 1 \& 2644.949 \& 44 41.3I \& " \\
\hline \& p \& 833.545 \& 1147.76 \& " \& \& m \& 278.327 \& 44 I2.2I \& " \\
\hline \& \& \& \& \& \& 0 \& 27 19.26I \& 2621.16 \& " \\
\hline \multirow[t]{11}{*}{Nov. 10} \& \(a\) \& 15516.378 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Crossley \\
A. R. H.
\end{tabular}} \& Dec. 7 \& a \& 12625.959 \& \(48 \quad 436.11\) \& \multirow[t]{2}{*}{A. R. H.} \\
\hline \& b \& 16.978 \& \& \& \& b \& \(\begin{array}{r}10.209 \\ \hline 30.959 \\ \hline\end{array}\) \& 48
4
9
9 \& \\
\hline \& c \& 25.248 \& 1433.59 \& " \& \& c \& 34.284 \& 76.50 \& ، \\
\hline \& d \& 47.394 \& 1812.56 \& " \& \& d \& 43.127 \& 925.10 \& " \\
\hline \& e \& 55 51.131 \& 2340.71 \& " \& \& e \& 2644.108 \& 105.97 \& " \\
\hline \& f \& 5634.218 \& 2859.22 \& Crossley \& \& f \& \(27 \quad 7.068\) \& 1146.14 \& " \\
\hline \& g \& 35.581 \& 2531.23 \& A. R. H. \& \& g \& 2657.140 \& 164.51 \& " \\
\hline \& b \& 5642.92 I \& 2233.93 \& \& \& h \& 2745.245 \& 1028.54 \& " \\
\hline \& 1 \& 5712.806 \& 2010.09 \& " \& \& 1 \& 2658.064 \& 2627.72 \& " \\
\hline \& m \& 5742.971 \& 2239.69 \& " \& \& m \& 278.541 \& 2636.90 \& " \\
\hline \& p \& \(55 \quad 0.636\) \& 213.05 \& " \& \& p \& 2724.625 \& 25.53 \& (*) \\
\hline \multirow[t]{12}{*}{Nov. 28} \& a \& 1 2742.885 \& 511647.67 \& \multirow[t]{2}{*}{} \& \& a \& \& \& \multirow[t]{2}{*}{} \\
\hline \& c \& \multirow[t]{2}{*}{\[
\begin{array}{r}
28 \quad 34.347 \\
29 \quad 3.560
\end{array}
\]} \& 1210.95 \& \& Dec. 24 \& b \& I 4531.946
48.725

47 \& $$
\left|\begin{array}{r}
41 \\
48 \\
\\
637.87 \\
24.92
\end{array}\right|
$$ \&

\hline \& e \& \& 746.25 \& A. R. H. \& \& d \& 47.579 \& I 346.44 \&

\hline \& f \& 2916.310 \& 655.65 \& , \& \& d \& 50.488 \& 2146.48 \& "

\hline \& g \& 2925.865 \& 1054.25 \& \multirow[t]{2}{*}{"} \& \& e \& 4618.675 \& 938.34 \& "

\hline \& h \& 2941.498 \& 1652.75 \& \& \& f \& 25.027 \& 820.77 \& (*)

\hline \& m \& 2839.500 \& 2849.68 \& " \& \& g \& 26.888 \& 729.69 \& Crossley

\hline \& n \& 2818.361 \& 542.97 \& " \& \& i \& 52.327 \& 1529.08 \& "

\hline \& \multirow[t]{4}{*}{0} \& \multirow[t]{4}{*}{2736.907} \& \multirow[t]{4}{*}{921.30} \& \multirow[t]{4}{*}{} \& \& j \& 8.058 \& 1344.52 \& \multirow[t]{2}{*}{A. R. H.}

\hline \& \& \& \& \& \& 1 \& 4554.028 \& $26 \quad 0.27$ \&

\hline \& \& \& \& \& \& m \& 4535.559 \& $$
2355.83
$$ \& "

\hline \& \& \& \& \& \& p \& 4658.670 \& $$
359.68
$$ \&

\hline
\end{tabular}

*Conference Astrophotographique Internationale Circulaire ir, 12.

Table X. - Selections of Stars used in Reductions.

Date.	Frist Solution.		Second Solution.
$\begin{array}{rr}\text { Oct. } & 6 \\ & 12\end{array}$	$a b c d e f g h i$	East West	$a b c d e f g h i l m$ $a b c d e f g h i n o$
	$a b c d e f g$	$\begin{aligned} & \text { E. } \\ & \text { W. } \end{aligned}$	$a b c d e f g m n$ $a b c d e g o p$
13	$b c e f g h$	$\begin{aligned} & \mathbf{E .} \\ & \text { W. } \end{aligned}$	$b c$ efghm bcefgho
14	$a b c d e f g h i$	E. W.	$b c d g i m$ bdefho
15	$a b f g h i$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	$\begin{aligned} & \text { abfghin } \\ & \text { abhio } \end{aligned}$
16	$a b c d e f g h i$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	bdegilm $a b c e f g h n o$
2 I	$a b c d e f g h$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	$b c e f g h l m$ abcdefhno
24	$a b c d e f g h i j$	$\begin{aligned} & \text { E. } \\ & \text { W. } \end{aligned}$	bdeghijlm bcefghno
26	$a b c d e f g h$	$\begin{aligned} & \mathbf{E .} \\ & \text { W. } \end{aligned}$	$b c d f g h l m$ $a b c f g n o$
29	$a b c d e f g h i$	$\begin{aligned} & \text { E. } \\ & \text { W. } \end{aligned}$	cdefghilm $a b c d e f g i o p$
Nov. 3	$a b c d e f h$	E. W.	$a b d e f h l m$ abdeop
Io	$a b c d e f g h$	E. W.	adeghlm $a b c e f g p$
28	$a c e f g h$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	acefghm acefgno
29	$a b c d e f g h$	E. W.	$a b c d e f g h l m$ $a b c d e f g h n o$
Dec. 5	$a b c d e f g h$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	$\begin{aligned} & a b c d e f l \\ & a b c d e g o p \end{aligned}$
6	$a b c d e f g h$	$\begin{aligned} & \mathrm{E} . \\ & \mathrm{W} . \end{aligned}$	$\begin{aligned} & \text { abcdflm } \\ & a b c d e g h o \end{aligned}$
7	$a b c d e f g h$	$\begin{aligned} & \text { E. } \\ & \text { W. } \end{aligned}$	$\begin{aligned} & a b c d e f g l m \\ & a b c d e f g p \end{aligned}$
24	$a b c d e f g i j$	$\begin{aligned} & \text { E. } \\ & \text { W. } \end{aligned}$	acdehijlm efgijp

Table XI. - Derivations of Corrections to Assumed Parallax.

Table XI. - Derivations of Corrections to Assumed Parallax - Continued.

Date.	Nos. Plates Combined.		(E-W) ${ }^{\text {s }}$.		$15 \cos \delta$	(E-W)'.		$\Sigma \pi \mathrm{f}$.	Δx.		Weiget.
	East.	West.	First Determination.	SECOND DetermiNATION.		First Determination.	Second Determanation.		First Deter minaTION.	Second Deter-minaTION.	
Oct. 26			s	s		"	"		"	"	
	319	336	-.0011	-. 0018	9.05	-. 0100	$-.0163$	3.55	-. 003	-. 005	21.3
	320	337	- 2	+ 55		- 18	+ 498	3.55	-	+ 14	17.8
	32 I	338	- 145	- 119		-.1312	-. 1077	3.56	- 37	- 30	14.2
	322	339	+ $\quad 1$	- 62		+ 9	- 561	3.57	-	- 16	25.0
	323	340	- 27	- $\quad 37$		- 244	- 335	3.57	- 7	- 9	14.3
	324	34 I	+. 91	- 20		+ 824	- 18 I	3.58	+ 23	- 5	21.5
	325	342	$+\quad 67$ $+\quad 83$	+ 41		+ 606	+ 371	3.57	+ 17	+ 10	2 I .4
	326	343	+ 83	+ 33		+ 751	+ 299	3.58	+ 21	+ 8	17.9
	327	344	- 21	- 74		- 190	- 670	3.58	$\begin{array}{rr} - \\ +.001 \end{array}$	$\begin{array}{r} 19 \\ -.006 \end{array}$	14.3
Oct. 29	345, 6	357	+. 0259	+.0098	8.93	+.2313	+.0875	3.72	+. 062	+. 024	40.9
	347, 8	358	+ 59	- 103		+ 527	- 920	3.70	+ 14	- 25	33.3
	349, 50, 51	359	+ 214	+ 34		+.1911	$+304$	3.68	$\begin{array}{r} +\quad 5^{2} \\ +.043 \end{array}$	$\left\|\begin{array}{r} 8 \\ + \\ +.002 \end{array}\right\|$	40.5
Nov. 3	396	417	+. 0429	+.0361	8.80	+.3775	+.3177	3.93	+. 096	+.081	27.5
	397	419	$+561$	+401 $+\quad 218$		+.4937	+.3529	3.94	+. 125	+ 90	27.6
	398	420	+ 413	+ 218		+.3634	+.1918	3.93	+ 92	+ 49	19.6
	399	42I, 2	+ 358	+ 439		+.3150	+.3863	3.93	+ 80	+ 98	27.5
	400	423	+ 133	+ 29		+.1170	+ 255	3.90	+ 30	+ 7	19.5
	401	424	+ 505	+ 531		+. 4444	+. 4673	3.88	+.115	+120	19.4
	402	425	+ 195	+ 163		+.1716	+.1434	3.88	+ 44	+ 37	19.4
	404	426	+ 202	+ 136		+.1778	+.1197	3.84	$\begin{aligned} & +\quad 46 \\ & +.078 \end{aligned}$	$\begin{array}{r} 3 \mathrm{I} \\ +\quad 3 \\ +.064 \end{array}$	19.2
Nov. 10	472, 3	495	-. 0543	-. 0487	8.75	-.475	-.426I	4.05	-.117	-. 105	24.3
	474	496	- 228	- 218		-. 1995	-. 1908	4.04	- 49	- 47	20.2
	475	498	- 14 I	- 28I		-. 1234	-. 2459	4.02	- 31	-61	24.1
	$47^{6}, 7,8$	501	- 308	- 332		-. 2695	-. 2905	4.00	$\begin{array}{r} 67 \\ -\quad .066 \end{array}$	- 73	28.0
Nov. 28	615	635	-. 0128	-. 0088	9.39	-. 1202	-. 0826	4.05	-. 030	-. 020	28.4
	616	637	+ 147	+ 55		+.1380	+ 516	4.04	+ 34	+ 13	32.3
	617	639	+ 321	+ 122		+.3014	+.1146	4.04	+ 75	+ 28	16.2
	618	640	+ 126	+ 48		+.1583	+ 45 I	4.02	+ 29	+ II	28.1
	619, 20	643	$+\quad 64$ $+\quad 66$	- 1		+ 601 $+\quad 620$	- 9	4.02	+ 15	+ 0	44.2
	62I, 2	644	+ 66	138 $+\quad 18$		+620	+. 1296	3.98	+ 16	$+33$	47.8
	623, 4, 5	647	+ 333	+ 273		+.3127	+.2563	3.92	$\begin{aligned} & +80 \\ & +.03 I \end{aligned}$	$\left\|\begin{array}{r} 00 \\ +\quad 65 \\ +.019 \end{array}\right\|$	54.9
Nov. 29	648	668	-. 0024	-. 0038	9.45	-. 0227	-. 0359	4.10	-. 006	-. 009	24.6
	649	669	+ 264	+ 160		+. 2495	+.1512	4.09	+6I	$\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$	20.4
	650	670	- 20	- 71		- 189	-671	4.07	- 5	- 16	16.3
	651	671	- 4	- 11		- 3^{8}	- 104	4.05	- I	- 3	16.2
	652	672	+ 174	+ 120		+.1644	+.1134	4.04	$+41$	+ 28	20.2
	653	673	- 14	- 40		- 132	- 378	4.03	- 3	- 9	24.2
	654	674	- 124	- 114		-.1172	-. 1077	4.00	-29	- 27	28.0
	655	675	+ 45	+ 16		+ 425	+ 151	3.99	+ 11	+ 4	27.9
	656	676	+ 147	+ 142		+.1389	+ 1342	3.98	$+35$	+ 34	35.8
	657	677	$+120$	$+8 \mathrm{I}$		+.1134	+ 765	3.96	+ 29	+ 19	27.7
	658	678	+ 98	+ 75		+ 926	+ 709	3.93	$\begin{array}{r} 2 \\ +\quad 24 \\ +.014 \end{array}$	$\begin{array}{r} 18 \\ +\quad 1807 \\ +.007 \end{array}$	19.7

Table XI. - Derivations of Corrections to Assumed Parallax - Continued.

Date.	Nos. Plates Combined.		$(\mathrm{E}-\mathrm{W})^{\text {s }}$.		$15 \cos \delta$	(E-W) ${ }^{\prime \prime}$.		$\boldsymbol{\Sigma} \boldsymbol{\pi} \mathrm{f}$.	$\Delta \pi$.		Weight.
	East.	West.	First Determination.	$\begin{gathered} \text { SECOND } \\ \text { DETERMI- } \\ \text { NATION. } \end{gathered}$		First Determination.	Second Determination.		First Deter-minaTION.	Second Deter- mina- TION.	
Dec. 5	713		s	-. 0243	9.86	- 2623	"		"	"	
	714	733 734	-.0266 $+\quad 114$	-.0243 $+\quad 57$		-.2623 +.1124	-.2396 $+\quad 562$	3.98	-. 066	-. 060	27.0
	715	735	114 $+\quad 11$	a		+11124 $+\quad 108$	+562 $+\quad .1134$	3.97 3.96	$+\quad 28$ $+\quad 3$	$+\quad 14$ $+\quad 29$	27.8 27.7
	716	736	+ 158	+ 109		+.1558	+.1075	3.96	+ 39 $+\quad$	+ 27	3 I .7
	717	737	+ 36	+ 113		+ 355	+.1114	3.93	a	+ 28	23.6
	718	738	+ 81	+ 200		+ 799	+.1972	3.92	+ 20	+ 50	19.6
	719	739	+ 79	+ 93		+ 779	+ 917	3.90	+ 20	+ 24	19.5
	720	740	+ 167	+ 214		+.1647	+.2110	3.88	+ 42	+ 54	31.0
	721	741	+ 152	+ 205		+. 5499	+.2021	3.86	+ 39	+ 52	23.2
	722	742	- 58	- 2 I		- 572	- 207	3.84	- 15	- 5	30.7
	723	743	+ 293	+379		+ 2889	$+.3737$	3.83	$\begin{array}{r} +75 \\ +.018 \end{array}$	$\begin{array}{r} 9 \\ +\quad 98 \\ +.028 \end{array}$	30.6
Dec. 6	744	764	+.0110	+.0092	9.93	+.1092	+.0914	3.98	+. 027	+. 023	27.9
	745	765	+ 388	+ 294		$+.3853$	+. 2919	3.97	+ 97	+ 74	31.8
	746	766	+ 46	109 $+\quad 80$		+ 457	+.1082	3.97	+ 12	+ 27	${ }^{37} 8$
	747	767	+ 190	+ 80		+.1887	+ 794	3.95	+ 48	+ 20	27.7
	748	768	+ 183	+ 204		+.1817	+. 2026	3.93	+ 46	+ 5^{2}	27.5
	749	769	- 115	-73		-.1142	- 725	3.91	- 29	- 19	31.3
	750	770	$\begin{array}{r} \\ \hline+\quad 66 \\ \hline\end{array}$	+ + +		$\begin{array}{r}70 \\ \hline+\quad 655\end{array}$	$+\quad 89$ $+\quad 56$	3.90	- 2	+ $\quad 2$	23.4
	751	771	$+\quad 66$ $+\quad 56$	$+\quad 56$ $+\quad 43$		+ 655	+ 556	3.88	+ 17	+ 14	27.2
	752	772	+ 56	+ 43		+ 556	+ 427	3.86	+ 14	+ 11	27.0
	753	773	+ 1 rit	+ 135		+.1102	+ 1341	3.84		+ 35	30.7
	754	774	- 24	+ 7		- 238	+ 70	3.82	$\left\lvert\, \begin{array}{rr} -\quad 6 \\ +.023 \end{array}\right.$	$\begin{array}{r} 33 \\ +\quad 2 \\ +.022 \end{array}$	30.6
Dec. 7	775	796	-. 0148	-. 0128	10.00	-. 1480	-. 1280	3.94	$-.038$	-. 032	27.6
	776	797	+ 5^{6}	+ 92		+ 560	+ 920	3.92	+ 14	+ 23	3 I .4
	777	798	- 102	- 47		-. 1020	- 470	3.91	- 26	- 12	27.4
	778	799	+ 14	+ 47		+ 140	+ 470	3.88	+ 4	+ 12	19.4
	779	800	+ 326	+ 305		+.3260	+.3050	3.87	+ 84	$+\quad 79$ $+\quad 13$	27.1
	780	801	- 25	+ 5I		- 250	+ 510	3.84	- 7	+ 13	26.9
	781	802	+ 66	+ 182		+ 660	+.1820	3.83	+ 17	+ 48	23.0
	782	803	+ 198	+ 194		+.1980	+.1940	3.82	+ 5^{2}	+ 5	22.9
	783	804	+ 166	1 $+\quad 167$ $+\quad 307$		+.1660	+.1670	3.79	+ 44	+ 44	26.5
	784	805	+ 87	+ 307		+ 870	$+.3070$				26.4
	785	806	-	+ 18		- 10	+ 180	3.76	$\begin{array}{r} 0 \\ +.015 \end{array}$	$\begin{array}{r} + \\ +.028 \end{array}$	30.1
Dec. 24	895	908	-.oro9	-.0176	11. 28	-. 1230	-.1985	3.63	-. 034	-. 055	25.4
	896	909	- 199	- 255		-. 2245	-. 2876	3.60	- 62	- 80	25.2
	897	910	- 41	- 108		- 462	-.1218	3.58	- 13	- 34	14.3
	898	911	+ 84	- 11		+ 948	124	3.56	+ 27	- 3	2 I .4
	899	912	- 16	- 66		- 180	- 744	3.53	- 5	- 2 I	28.2
	900	9 I 3	+ 11	- 76		+ 124	-857	3.5I	+ 4	- 24	21.1
	gor	9 I 4	- 161	- 239		-.1816	-. 2696	3.49	$\begin{aligned} & -\quad 52 \\ & -.019 \end{aligned}$	$\begin{aligned} & -\quad 77 \\ & -.042 \end{aligned}$	17.4

Table XII.—Positions of Faint Stars Derived from Crossley Plates.

Date.	$\begin{aligned} & \text { Plate } \\ & \text { No. } \end{aligned}$	Star.	$\alpha 1900.0$.	$\delta 1900.0$.	No. or Images.	Remaris.
$\begin{gathered} 1900 \\ \text { Oct. } 9 \end{gathered}$			$h \mathrm{~m}$ s	- " 1		
	122	u	24254.470	+475339.89	5	
	123		. 482	. 85	4	
	125		.488	.75	4	
	122	\mathbf{x}_{1}	24248.637	47555.16	5	
	123		. 628	. 13	4	
	125			. 10		Faint.
	122	x_{2}	24250.090	475535.92	5	
	122	y	2431.157	$4756 \quad 7 \cdot 79$	5	
	123		. 169	. 94	4	
	122	z	2432.621	475449.92	5	
	123		. 604	.82	4	
	125		. 617	. 71		Faint.
Oct. 10	129	x	24214.987	482147.79	3	
	130		. 999	. 79	5	
	131	-	15.005	. 53	3	
Oct. 15	204	x	2393.154	495232.85	4	
	205		. 136	. 62	5	
	207		. 133	. 70	5	Very faint.
Oct. 16	232	x	$238 \quad 4.007$	501713.90	4	Very faint.
	235		3.998	. 89	4	
	236		4.002	. 69	3	Very faint.
Oct. 21	258	x	23135.526	515233.19	2	Faint.
	266		. 534	22.83	2	Very faint.
	267		. 513	23.19	4	
	268		. 537	22.86	1	Very faint.
	258	y	23336.723	512848.20	2	Faint.
	248		.739 .718	. 15	3	
	250		-718	. 22	3	
Oct. 26	329	x	2254.230	525721.05	4	
	331		. 249	20.71	3	Image I very faint.
Oct. 29	353	x	22015.254	5323 21.51	3	
	354		. 214	.46	3	Faint.
	355		. 207	.70	3	Faint.
	353	y	22016.376	532344.27	3	
	354		. 378	. 68	3	Faint.
	355		.365	.76	3	Faint.
	354	z	21843.359	53345.05	3	
	355		. 370	. 43	3	
Nov. 1	360	x	21343.196	535336.14	5	Images of plate generally distorted.
	361		219	. 13	3	
	362		.208	$\text { . } 6$	3	
	360	y	21446.894	535416.04	5	Very faint and distorted.
	36 I		. 874	. 14	3	Faint.
	360	z	214 54.137	534934.70	5	Faint and distorted.
	361		${ }^{.179}$	$.50$	3	
	362		. 189	$.58$	3	

Table XII. - Positions of Faint Stars Derived from Crossley Plates-Continued.

Date.	$\begin{gathered} \text { Plate } \\ \text { No. } \end{gathered}$	Star.	a 1900. 0.	$\delta 1900.0$.	No. of Images.	Remaris.
Nov. 2	$\begin{aligned} & 384 \\ & 385 \\ & 386 \end{aligned}$	x	$\begin{array}{cccc}\mathrm{h} & \mathrm{m} & \mathrm{s} \\ 2 \mathrm{I} & \\ & 13 & 5.086 \\ & & & .125 \\ & & & .178\end{array}$	\circ	4 4 4	$\underset{\text { Very poor images }}{\text { - faint }}$ and distorted.
Nov. 3	408 411 414	x	21047.656 .685 .684	$\begin{array}{rr}54 & 342.91 \\ & .92 \\ & 43.00\end{array}$	5 4 3	
Nov. 5	$\begin{aligned} & 445 \\ & 447 \\ & 450 \end{aligned}$	y	$\begin{array}{llr}26 & 6.760 \\ & & .691 \\ & & .705\end{array}$	$\begin{array}{rrr}5413 & 59.79 \\ 14 & 0.01 \\ & 0.21\end{array}$	5 5 4	Image I poor.
Nov. 10	$\begin{aligned} & 486 \\ & 487 \end{aligned}$	t	I 5630.48 I	541935.79 .76	5	
	486 487 492	W		$\begin{array}{r}542236.14 \\ 35.58 \\ \\ \hline .55\end{array}$	5 5 5	
	486 487 492	x	$\begin{array}{r} 15548.955 \\ .941 \\ .985 \end{array}$	542017.09 .08 .12	5 5 5	
	486 487 492	y	15550.385 .356 .444	542010.29 .30 .66	5 5 5	Faint and distorted.
	486 487 492	z	$\begin{array}{r} \text { I } 5553.842 \\ .883 \\ .877 \end{array}$	542010.92 .70 .88	5 5 5	
Nov. 12	518 519 520	x	15143.617 593 .583	541211.29 11.00 11.26	3 3 4	
	518 519 520	2	$\begin{array}{r} 15249.954 \\ .930 \\ .920 \end{array}$	541440.58 .66 .74	3 3 4	
Nov. 13	538	t	14846.13 I	$54 \quad 732.96$	3	
	538 539 540	\mathbf{u}	$\begin{array}{r} 15057.556 \\ .570 \\ .58 \mathrm{I} \end{array}$	$\begin{array}{rr}5412 & 0.55 \\ & .86 \\ & .83\end{array}$	3 5 5	
	538 539 540	∇	$\begin{array}{r} 149 \begin{array}{r} 10.162 \\ .151 \\ .164 \end{array} \end{array}$	54 8 21.19 .2094 .92	3 5 5	
	538 539 540	w	$\begin{array}{r} 15045.256 \\ .239 \\ .276 \end{array}$	$\begin{array}{rr}54 & 733.95 \\ & 34.21 \\ & 33.88\end{array}$	3 5 5	
Dec. 2	$\begin{aligned} & 679 \\ & 681 \end{aligned}$	x	$\begin{array}{r} 12648.030 \\ .05 \mathrm{I} \end{array}$	$\begin{array}{ccc}50 & 8 & 7.94 \\ & & 8.33\end{array}$	3 3	
Dec. 11	848	x	r 2884.835	464835.43	5	

APPENDIX.

DESCRIPTION OF THE MEASURING-ENGINE.

This engine was constructed by the firm of Stackpole \& Brother, New York, from designs by Professor William Harkness, of the U. S. Naval Observatory. As no account other than the paragraph on page 76, vol. 1, Lick Observatory Publications, has been published, it seems desirable to include a short description here.

The engine is intended for the measurement of plates 6×6 inches or smaller, at one setting, either by rectangular or by polar coördinates, with the plates in a horizontal position only. The accompanying illustration will make plain its general features as used in the Eros work. It is of brass throughout (excepting the screws) and is very solidly built.

A micrometer-microscope and a small transit telescope are provided with the engine. The transit telescope is used to test the straightness of the slides. A spirit-level, extra microscope-objectives, and eye-pieces are also provided.

The machine is provided with a circle 12 inches in diameter, divided on silver to 5^{\prime} and read by verniers to $5^{\prime \prime}$. On this circle is fastened a glass stage to carry the negative to be measured. Two slides and scales, approximately parallel to the X and Y axes, respectively, permit of the determination of both rectangular coördinates simultaneously.

The setting-telescope containing a fixed glass reticle is attached rigidly to the carriage moving along the X -axis. This carriage and its ways are in turn attached to a larger one which moves along the Y-axis. Clamps and slow-motions are provided in both cases.

The scales are of glass and read by microscopes rigidly fixed to the telescope carriages. The divisions of the glass scales are 0.02 inch apart and are identified by means of auxiliary silver scales. The microscopes for reading the glass scales have glass reticles which enable readings to be made directly to 0.001 inch and by estimation to 0.000 inch.

Scale A is used to measure X-coördinates; scale B, to measure Y-coördinates.
The errors of scale A were investigated in the Department of Weights and Measures, U. S. Coast and Geodetic Survey. The results of the investigation are printed in vol. III, part iII, of the Lick Observatory Publications.

Using scale A as a standard, the errors of divisions 100 to 260 , inclusive, of scale B were determined by Dr. H. K. Palmer. These results have not been printed heretofore. They are given at the end of this paper. For the sake of convenience, the numerical results for scale A are also given.

The errors of both scales have been found to be so small, in the portions used in the Eros work, as to be negligible.

This measuring-engine had been in use for a number of years prior to the commencement of the Eros measurements. During this time several difficulties had become apparent. The one which gave most trouble was the illumination. This defect could not be remedied without reconstructing the entire stage for carrying the negatives. As the stage provided with the engine was of weak design, an entirely new one, with more convenient illumination, was made in the Lick Observatory shops and attached.

The clamps and slow-motions for the circle and its vernier were badly placed. The slow-motion screw for the vernier was in front where it was occasionally displaced accidentally by the observer. This was remedied. The clamp and slow-motion for the circle (and attached negative) were changed to a more convenient position.

The slides of this engine are not exactly at right angles. The deviation amounts to $11^{\prime} 30^{\prime \prime}$. If we face the A scale of the engine, looking along the longer slides (Y-axis) and across the shorter slides (X-axis) the inclination is such as to cause the upper lefthand and lower right-hand angles to be less than 90°, by $\mathrm{II}^{\prime} 30^{\prime \prime}$. A negative made in the ordinary way, where proper orientation in the sky is secured by looking through the negative with the film side away, when placed on the engine film side $u p$ and measured, requires corrections as follows:

The X-measures are to be corrected by $+\mathrm{Y} \sin \mathrm{I}$.
The Y-measures are to be multiplied by cos I, where I is the defect of inclination ($\mathrm{II}^{\prime} 3 \mathrm{O}^{\prime \prime}$).

The division-errors of the circle have not been determined, so far as I know, but are doubtless small. In determining the inclination of the slides, different parts of the circle were used to eliminate any such errors. No noticeable errors were found, however.

Table of Scale A of the L. O. Measuring-Engine (Stackpole).
The table gives the distance from o division to any division-mark on the scale at $16^{\circ} .67 \mathrm{C}$. Let S_{0} be any such distance at $16^{\circ} .8 \mathrm{C}$. and S_{t} be the same distance at t degrees.

$$
S_{t}=S_{0}\left(\mathrm{I}+0.000008\left(t-16^{\circ} .8\right)\right)
$$

Scale.	Incr.	Scale.	Ince.	Scale.	Inch.	Scale.	Incr.	Scale.	Ince.	Scale.	Inch.
\bigcirc	0.00000	51	1.0194I	ror	2.01847	151	3.01741	201	4.01636		
1	. 01995	52	. 03938	102	. 03846	I52	. .03741	202	4.01636 .03638	251 252	5.01545 .03543
2	. 03994	53	. 05934	103	. 05844	153	. 05741	203	. 05641	252 253	. 03543
3	. 05997	54	. 07928	104	. 07845	${ }^{\text {I }} 54$. 07737	204	. 0.07641	253 254 254	. 055542
4	. 07997	55	. 09926	105	. 09845	${ }^{1} 55$. 09732	205	. 09643	254 255	. 09540
5	. 09998	56	. 11924	106	.11843	${ }^{1} 56$. 11728	206	. 11640	256	.11537
6	. 11994	57	. 13918	107	.13839	157	. 13724	207	. 13639	257	. 13534
8	.13992 .15991	58 59	.15919 .17915	108	. 58838	158	. 15725	208	. 1564 L	258	. 55531
9	.15991 .17989	59 60	.17915 $\mathbf{8 . 1 9 9 1 6}$	109 110	.17835 2.19836	159 160	. 17724	209	- 76637	259	. 17532
10	-.19988	60	1.19916	110	2.19836	160	3.19723	210	4.19639	260	5.19532
II	0.21991	61	1.21918	III	2.21831	161	3.21715	11	4.21632	261	
12	. 23995	62	. 23918	112	. 23825	162	. 23713	212	. 23628	262	. 23530
13	. 25999	63	. 25917	113	. 25827	163	. 25711	213	. 25623	263	. 25528
14	. 27996	64	. 27912	114	. 27823	164	.27713	214	. 27619	264	. 27526
15	. 29990	65	. 29912	115	. 29818	165	. 29713	215	. 29619	265	. 29523
16	-31988	66	.31911	116	. 31813	166	. 31712	216	. 31617	266	+. 31519
17	$\cdot 33987$	67 68	-33910	117 118	. 33812	167	- 33705	217	.33615	267	. 33516
18	.35984 .3798 I		-35908	118	-35813	168	. 35705	218	-35617	268	-35515
20	.37981 0.39978	70	r 1 37904 1.39905	119 120	-37810 2.39805	168 170	.37704 3.39704	219	. 37610	269	-37512
						170	3.39704	220	$4 \cdot 39606$	270	5.395I3
21	0.41980	71	1.41903	121	2.41801	171	3.41699	22	4.41603	271	5.41512
22	. 43978	72	. 43898	122	.43800	172	. 43702	222	. 43600	272	. 43514
23	. 45977	73	. 45889	123	. 45790	173	.45701	223	. 45596	273	. 45510
24	. 47979	74	. 47895	124	.47791	174	.47701	224	. 47596	274	-47506
25	-49976	75	-49888	125	-49788	175	. 49695	225	. 49593	275	- 49506
26	. 51974	76	. 51888	126	. 51784	176	. 51694	226	. 51593	276	.51507
27	. 53973	77	. 53887	127	. 53782	177	-53692	227	. 53587	277	. 53504
28	-55975	78	. 55888	128	. 55780	178	-55691	228	. 55591	278	-55509
29	. 57973	79	. 57887	129	. 57778	179	- 57693	229	. 57585	279	. 57510
30	0.59969	80	1.59882	130	2.59777	180	3.59689	230	4.59581	280	5.59512
31	0.61968	81	т.61881	131	2.61775	181	3.61690	231	4.61583	281	5.61515
32	. 63964	82	. 63878	132	. 63774	182	. 63688	232	. 63580	282	. 63517
33	. 65962	83	. 65878	133	. 65774	183	. 65690	233	. 65576	283	. 65515
34	. 67959	84	. 67877	134	. 67772	184	. 67689	234	. 67570	284	. 67514
35	. 69955	85	. 69879	135	. 69767	185	. 69683	235	. 69571	285	. 69521
36	. 71958	86	. 71875	136	. 71763	186	. 71682	236	. 71568	286	.71519
37	. 73956	87	. 73876	137	. 73758	187	. 73677	237	. 73568	287	. 73520
38	-75955	88	. 75872	138	. 75757	188	. 75673	238	. 75568	288	. 75519
39	.77956	89	. 77867	I 39	. 77757	189	. 77669	239	. 77568	289	. 77514
40	0.79951	90	r. 79867	140	2.79756	190	3.79668	240	4.79570	290	5.79514
41	0.81952	91	r. 8 r 867	141	2.81756	191	3.81665	24 T	4.81564	291	5.81516
42	. 83948	92	. 83862	142	. 83754	192	. 83664	242	. 83564	292	. 83517
43	. 85946	93	. 85863	143	. 85752	193	. 85658	243	.85558	293	. 85517
44	. 87947	94	. 87859	144	. 87750	194	. 87656	244	. 87562	294	. 87523
45	. 89947	95	. 89861	145	. 89745	195	. 89654	245	. 89558	295	. 89524
46	. 91947	96	.91858	146	. 91745	196	.91652	246	. 91553	296	. 91520
47	. 93948	97	. 93854	147	. 93741	197	. 93647	247	.93551	297	. 93517
48	. 95946	98	. 95854	148	. 95739	198	. 95644	248	. 95549	298	. 95518
49	. 97944	99	. 97851	149	. 97739	199	. 97645	249	. 9755^{2}	299	.97516
50	$\begin{gathered} 0.99943 \\ \pm \quad 1 \end{gathered}$	roo	$\begin{array}{r} 1.99848 \\ \pm \quad 3 \end{array}$	150	$\begin{array}{r} 2.99741 \\ \pm \quad 3 \end{array}$	200	$\begin{array}{r} 3.99641 \\ \pm \quad 4 \end{array}$	250	$\begin{array}{r} 4.99547 \\ \pm \quad 5 \end{array}$	300	$\begin{array}{r} 5.99515 \\ \pm \quad 5 \end{array}$

H

Table of Scale B of the L. O. Measuring-Engine (Stackpole) - Continued.

Scale.	Incer.	Scale.	Ince.	Scale.	Lnch.	Scale.	Ince.
100	2.00000	141	2.82053	181	3.62124	221	4.42187
101	. 02007	142	. 84063	182	.64124	222	.44193
102	. 04006	143	. 86064	183	.66127	223	.46196
103	. 06006	I44	.88064	184	.68130	224	. 48202
104	.08007	145	.90070	185	.70129	225	. 50205
105	.10009	146	. 92069	186	.72127	226	. 52205
106	.12014	147	.94075	187	.74133	227	. 54202
107	.14016	148	. 96074	188	.76133	228	. 56203
108	.16019	149	.98071	189	.78137	229	. 58208
109	.18021	I50	3.00078	190	3.80136	230	4.60208
110	2.20022						
III	2.22022	151	3.02071	I9 I	3.82140	231	4.62209
112	. 24020	152	.04081	192	.84141	232	. 64212
II3	. 26024	153	. 06082	193	. 86146	233	. 66215
114	. 28031	154	. 08080	194	.88150	234	. 68214
115	. 30028	155	. 10085	195	.90145	235	. 70212
116	. 32036	156	. 12085	196	.92146	236	.72217
117	. 34036	157	. 14095	197	.94146	237	.74222
118	. 36035	158	.16093	198	.96I49	238	.76221
119	.38039	159	.18091	199	.98158	239	. 78228
120	2.40037	160	3.20097	200	4.00155	240	4.80232
121	2.42036	161	3.22095	201	4.02157	241	4.82235
122	. 4404 I	162	. 24102	202	.04165	242	. 84236
123	. 41042	163	. 26099	203	. 06170	243	. 86237
124	. 48043	164	. 28099	204	.08172	244	. 88239
125	. 50042	165	. 30100	205	.10174	245	. 90238
126	. 52037	166	. 32101	206	.12169	246	.92237
127	. 54046	167	. 34105	207	.14174	247	. 94239
128	. 56048	168	.36107	208	.16I74	248	. 96234
129	. 58048	169	.38105	209	.18176	249	. 98239
130	2.60049	170	3.40113	210	4.20176	250	5.00238
131	2.62051	171	3.42116	211	4.22177	251	5.02242
132	. 64056	172	.44123	212	.24175	252	. 04251
133	. 66050	173	.46120	213	. 26172	253	. 06256
134	.68050	174	.48120	214	.28179	254	. 08254
135	. 70055	175	. 50122	215	. 30180	255	.10256
136	. 72056	176	.52120	216	. 32179	256	. 12258
137	. 74059	177	-54127	217	. 34180	257	.14263
138	. 76061	178	.56120	218	. 36185	258	.16264
139	.78063	179	.58123	219	.38190	259	. 18265
140	2.80060	180	3.60118	220	4.40191	260	5.20261

.
.

[^0]: * Astr. Nach., 3125, c. 65.

[^1]: *The time for this plate has been changed from the records as published in Lick Observatory Bulletin No. 13 by $+1^{\text {mm }}$.

