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PKEFACE TO VOLUME I.

The present volume of the Collected Works of the late Professor

John Couch Adams contains all the original papers which were published

by him during his lifetime, extending from 1844 (when he was

25 years of age) to 1890. They consist of about 50 Astronomical Papers

which were for the most part printed in the Memoirs or Monthly Notices

of the Eoyal Astronomical Society and 11 Papers on Pure Mathematics.

Besides these there are many papers on various branches of Astronomy

which were left in an incomplete state among Professor Adams' manuscripts.

These are being prepared for publication by Professor Sampson.

There is also a great quantity of unpublished work in an incomplete

state on Legendre's and Laplace's Coefficients and on Terrestrial Magnetism

which was taken up from time to time extending over a period of 40

years, but no part of which has been published except a short paper

(No. 60) on Legendre's Coefficients. It is hoped that a considerable

portion of this unpublished work may shortly be brought into shape for

publication, and that it will form the continuation of these Collected

Works.

Since the Appendix to Paper 19 (p. 124 of this volume) was

printed, more exact expressions of the coefficients for Jupiter's Satellites

II, III and IV have been found among Professor Adams' unpublished

papers. Thus in forming the Tables for Satellite II, in addition to the

terms — 2^'5 sin(n — An) — P'5 sin (ll — Ajn) given on p. 118 of this volume,

another term +0^'127 sin (ll — Ajy) was employed in the calculation for the
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period 1890—1900. In place of the expressions given on p. 124 for this

period, 1890—1900, the more exact values of the coefficients are

For Satellite II +0^756 sin (5m- 2m„- 17° 7),

SatelHte III + 2-233 sin (5m- 2m„-17°-7),

Satellite IV +12-33 sin (5m-2m„-17°-7).

The full paper on the attraction of an indefinitely thin ellipsoidal

shell on an external point, which was given before the Cambridge Philo-

sophical Society, has been reproduced (see p. 414 of this volume) by the

aid of the notes taken by Professor Greenhill at Professor Adams' lectures

on the Figure of the Earth.

In 1876 a translation of the paper on the discovery of the planet

Neptune was published in Liouville's Journal de Mathematiques with the

addition of an Appendix by Professor Adams which forms the seventh

paper of this Volume. In March 1867, a paper " Sur les ^toiles filantes

de Novembre " was published in the Paris Acad. Sci. Compt. Rend.,

Lxiv. which was also communicated to, but not published by, the

Cambridge Philosophical Society. A paper on the lunar inequalities due

to the ellipticity of the Earth was overlooked when the papers on

Astronomy were being printed : these papers are printed at the end of

this Volume.

The biographical notice prefixed to this volume has been written by

Dr J. W. L. Glaisher.

My thanks are due to Mr W. H. "Wesley, the Assistant Secretary

of the Eoyal Astronomical Society, for kind help which he has given me.

W. GRYLLS ADAMS.

King's College,

London.

Oct. 8th, 1896.
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BIOGRAPHICAL NOTICE.

John Couch Adams was born on June 5, 1819, at the farmhouse of Lidcot, seven
miles from Launceston in Cornwall. His father, Thomas Adams, was a tenant farmer,

and his ancestors for at least four generations had been tenant farmers in or near
Laneast. His mother, whose maiden name was Tabitha Knill Grylls, possessed a small

estate which was bequeathed to her by her aunt, Grace Couch. She had also inherited

her uncle's library, and these books, which included some on astronomy, were Adams's
early companions. He was the eldest of seven children. His brother Thomas, born
April 28, 1821, was a missionary in Tonga and completed the translation of the

Bible into the Tongan language: he died in 1885. His brother George, bom
November 5, 1823, assisted his father at Lidcot and became a farmer. His
youngest brother, William Grylls Adams, bom February 16, 1836, is the editor

of this volume. He had three sisters who all died before him. From his mother,

who belonged to a musical family, he inherited a correct ear and a love of music.

At a village school in Laneast he made rapid progress, and with the schoolmaster,

Mr R. C. Sleep, as his fellow student he was learning algebra before he was ten

years old. At the age of twelve he went to a private school at Devonport, kept

by the Rev. John Couch Grylls, a first cousin of his mother.

He remained under Mr Grylls's tuition for several years, first at Devonport

and afterwards at Saltash and Landulph, and received the usual school training in

classics and mathematics. Astronomy had been his passion from very early boyhood,

and at fourteen years of age he made copious notes and drew tiny maps of the

constellations. He read with avidity all the astronomical books to which he could

obtain access, and in particular he studied the astronomical articles in Rees's Gyclo-

pwdia, which he met with in the library of the Devonport Mechanics' Institute, where

he used to spend his spare time in reading astronomy and mathematics. In the same

library he came across a copy of Vince's Fluodons, which was his first introduction

to the higher mathematics.

The intense interest which as a boy he felt in all astronomical questions is shown

by the number of carefully written out manuscripts, belongiiig to this period, which

exist among his papers, as well as by his letters to his parents and brothers. Some

A. C
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of the manuscripts are copies from books, others contain calculations of his own. On
October 17, 1835, he wrote from Landulph to his parents telling them that he had

watched for the comet three weeks before without success, and that at last he

had seen it: "you may conceive with what pleasure I viewed this, the first comet

I had ever had a sight of, which at its visit 380 years ago threw all Europe into

consternation, but which now affords the highest pleasure to astronomers by proving

the accuracy of their calculations and predictions." The annular eclipse of the sun of

May 15, 1836, interested him greatly and on May 13 he wrote from Stoke a long letter

to his brother Thomas at Lidcot in order to give him "a brief description of the

large eclipse of the sun which will take place next Sunday." He proceeds "As

the almanacs only give the time &c. to this eclipse for London and some other

remarkable places, I have taken some pains to calculate it, and I herewith send

you, what I believe has not been done for some time, a calculation of this eclipse

for the meridian and latitude of Litcott." He finds that it will begin at 1 h. 28 m. p.m.,

that the greatest eclipse will be at 3 h. m. and that it will end at 4 h. 22 m., the

digits eclipsed being 10. He also gives a diagram showing the eclipse as it will appear

from Lidcot. At the conclusion of the letter, he adds " There will also happen

next Thursday evening between 6 and 7 o'clock a remarkable conjunction of the

Moon and the planets Jupiter and Venus, which I wish you would observe. These

planets are now approaching each other and will then be very near, as also will the

moon." This early calculation of an eclipse (the manuscript of which still exists) is

especially interesting in connexion with the remarkable theoretical calculations which
he was to undertake and carry out so successfully only a few years later. On April

24, 1837, he wrote from Stoke "I observed the eclipse last Thursday with a small spy-

glass which I borrowed: the moon looked most delightful after the end of the eclipse.

At the request of Mr Bate, a young man of my acquaintance, who reports for the

Telegraph, I wrote next morning a few lines on the eclipse, which were inserted in

the paper the following day....Mr Richards, the editor of the Telegraph, tells me that

my article on the eclipse has been copied into several of the London papers."

He was also interested in practical astronomy, and there was long preserved in the
home at Lidcot a simple instrument constructed by him, when very young, in order "to

determine the elevation of the sun. It consisted of a vertical circular card with graduated
edge, from the centre of which a plumb bob was suspended. Two small square pieces
of card, with a pin-hole in each, projected from the circular disc at right angles to its

face at opposite ends of a diameter. The card was to be so placed that the sun shone
through the pin-holes, and the elevation was read off on the circle. It is also re-
membered that on the window sill at Lidcot he had made lines or notches to mark
the positions of shadows at noon.

He showed such signs of mathematical power that in 1837 the idea of his going
to Cambridge was entertained. He accordingly entered St John's College, Cambridge,
in October, 1839. During his undergraduate career he was invariably the first man of
his year in the college examinations, and in 1843 he graduated as Senior Wrangler, being
also first Smith's Prizeman. In the same year he was elected Fellow of his college.

His attention was drawn to the irregularities in the motion of Uranus by reading
Airy's report upon recent progress in astronomy in the Report of the British Asso-
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ciation for 1831-32', and on July 3, 1841, he made the following memorandum:

—

"Formed a design at the beginning of this week of investigating, as soon as possible after

taking my degree, the irregularities in the motion of Uranus which are yet unaccounted

for, in order to find whether they may be attributed to the action of an undiscovered

planet beyond it; and, if possible, thence to determine the elements of its orbit &c.

approximately, which would probably lead to its discovery." This memorandum was made
at the beginning of his second long vacation, when he had just entered upon his

twenty-third year^

In 1843, the year in which he took his B.A. degree, he attempted a first rough

solution of the problem on the assumption that the orbit was a circle with a radius

equal to twice the mean distance of Uranus from the Sun. The result showed that

a good general agreement between theory and observation might be obtained. In order

to make the data employed more complete, application was made through Professor

Challis, to Mr Airy, the Astronomer Royal, in February 1844, for the errors of the tabular

geocentric longitudes of Uranus for 1818—1826, with the factors for reducing them to

errors of heliocentric longitude. The Astronomer Royal at once supplied all the results

of the Greenwich observations of Uranus from 1764 to 1830. Adams now undertook a

new solution of the problem, taking into account the most important terms depending

on the first power of the eccentricity of the orbit of the supposed disturbing planet, but

retaining the same assumption as before with respect to the mean distance. In September,

1845, he gave to Professor Challis a paper containing numerical values of the mean longitude

at a given epoch, longitude of perihelion, eccentricity of orbit, mass, and geocentric longi-

tude for September 30, of the assumed planet. On September 22, 1845, Challis wrote

a letter of introduction to the Astronomer Royal beginning, "My friend Mr Adams,

who will probably deliver this note to you, has completed his calculations respecting the

perturbation of the orbit of Uranus by a supposed ulterior planet, and has arrived at

results which he would be glad to communicate to you, if you could spare him a few

moments of your valuable time." Adams called at the Royal Observatory, Greenwich,

in September, but the Astronomer Royal was absent in France. In the following month,

on October 21, 1845, Adams called again at the Royal Observatory, and not being suc-

cessful in seeing the Astronomer Royal, left a paper giving the following values of

the mass and orbit of the new planet:

—

Mean distance (assumed nearly in accordance with Bode's law) 38"4

Mean sidereal motion in 36525 days 1° 30' 9"

Mean longitude, 1st October, 1845 323° 34'

Longitude of perihelion 315° 55'

Eccentricity 01610

Mass (that of the Sun being unity) 0-0001656

The paper which he left on this occasion also contained a list of the residual

1 This report does not contain any reference to the elliptic orbit, and that Bouvard was therefore obliged

possibility of the irregularities being due to an undis- to reject the ancient observations entirely (Eeport, p. 154).

covered exterior planet. It is merely mentioned that it ^ Tj^g original memorandum, written by itself on a

seems impossible to unite all the observations in one slip of paper, is reproduced in facsimile facing p. liv.

C2
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errors of the mean longitude of Uranus, after taking account of the disturbing efifect

of the new planet, the errors being small except in the case of Flamsteed's observation

of 1690

^

On November 10, 1845, Le Verrier presented to the French Academy an elaborate

investigation of the perturbations of Uranus produced by Jupiter and Saturn, in which

he pointed out several small inequalities which had previously been neglected. After

taking these into account he still found that the theory was quite incapable of

explaining the observed irregularities of the motion of Uranus.

On June 1, 1846, Le Verrier presented to the French Academy his second memoir

on the theory of Uranus. After reducing afresh nearly all the existing observations,

he came to the conclusion that there was no other possible explanation of the

discordances except thab of a disturbing planet exterior to Uranus. He investigated

the elements of the orbit of such a planet, and assuming its mean distance to be

double that of Uranus, and its orbit to be in the plane of the ecliptic, he gave as

the most probable result that the value of the true longitude of the disturbing body

for January 1, 1847 was about 325°, and that it was not likely that this place was in

error by so much as 10°. Neither the elements of the orbit nor the mass of the

planet were given.

The position thus assigned by Le Verrier to the disturbing planet differed by only

1° from that given by Adams in the paper which he had left at the Royal Observatory

more than seven months before. As will be mentioned subsequently, Le Verrier's third

memoir, containing the elements of the orbit, was communicated to the French Academy
on August 31, 1846.

On July 9, 1846 the Astronomer Royal, who was then staying with Dean Peacock

at Ely, wrote a letter to Challis suggesting that search should be made for the new
planet with the Northumberland Equatorial at Cambridge, and offering to supply him
with an assistant if he were unable himself to make the examination ; and on July 13

he transmitted to Challis a paper of suggestions with respect to the proposed sweep for

the planet, which was to extend over a part of the heavens 30° long in the direction of

the ecliptic, and 10° broad, having the theoretical place of the planet as its centre. On*
July 18, Challis, who had been absent from Cambridge, replied to these communications,

stating that he had determined to sweep for the hypothetical planet himself, and that

he should therefore not require the services of an assistant. The actual search for the

planet was commenced by Challis with the Northumberland telescope on July 29; 1846,

three weeks before the planet was in opposition, and the observations were continued

steadily until September 29. The plan adopted was to make three sweeps over the

whole zone, completing one sweep before commencing the next, and mapping the positions

of the stars. When the observations were completed, a planet could be at once detected

by its motion in the interval. For the first few nights the telescope was directed to the
part of the zone in the immediate neighbourhood of the place indicated for the planet

by theory.

On September 2, in a letter to the Astronomer Royal, Challis said that he had lost

no opportunity of searching for the planet, and that the nights being pretty good he had

' A facBimile of this paper is given after p. liv.
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taken a considerable number of observations, but that his progress was slow as he

thought it right to include all stars to the 10-11 magnitude. He found that to scrutinise

thoroughly, according to his plan, the proposed part of the heavens would require more

observations than he could take in the year. On the same day Adams wrote to the

Astronomer Royal a letter, the opening paragraphs of which are as follows: "In the

investigation, the results of which I communicated to you last October, the mean distance

of the supposed disturbing planet is assumed to be twice that of Uranus. Some assumption

is necessary in the first instance, and Bode's law renders it probable that the above dis-

tance is not very remote from the truth : but the investigation could scarcely be considered

satisfactory while based on anything arbitrary; and I therefore determined to repeat the

calculation, making a different hypothesis as to the mean distance. The eccentricity also

resulting from my former calculations was far too large to be probable; and I found that

although the agreement between theory and observation continued very satisfactory down

to 1840, the difference in subsequent years was becoming very sensible, and I hoped

that these errors as well as the eccentricity might be diminished by taking a different

mean distance. Not to make too violent a change, I assumed this distance to be less

than the former value by about ^'^th part of the whole. The result is very satisfactory,

and appears to show that, by still further diminishing the distance, the agreement be-

tween the theory and the later observations may be rendered complete, and the eccentricity

reduced at the same time to a very small quantity. The mass and the elements of the

orbit of the supposed planet, which result from the two hypotheses, are as follows ;

—
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Academy his third paper on the motion of Uranus, in which he gave the following

elements of the disturbing planet

:

Semi-axis Major 36-154 for ^
Periodic Time ...

Eccentricity

Longitude of Perihelion

Mean Longitude, 1st January, 1847

Mass

... 217-387

0-10761

... 284° 45'

... 318° 47'

1

.^3^^
= 0-0001075

True Heliocentric Longitude, 1st January, 1847 326° 32'

Distance from the Sun 33-06

and also comparisons between theory and observation. The paper also contained a detailed

investigation, the object of which was to restrict as far as possible the limits within

which the planet should be sought. Le Verrier concluded that it would have a visible

disc and sufficient light to make it conspicuous in ordinary telescopes. The number of

the Comptes Rendus containing this paper could not reach this country until the third

or fourth week in September. Le Verrier communicated his principal conclusions to

Dr Galle, of the Berlin Observatory, in a letter which was received by him on Sep-

tember 23, 1846. The same evening Dr Galle examined the heavens, comparing the

stars with Bremiker's map (Hora XXI of the Berlin Academy's star maps). He soon

found a star of about the eighth magnitude, nearly in the place pointed out by Le Verrier,

which did not exist on the map. There could be little doubt that this was the new

planet, and the observations made on the following day showed that its motion was

nearly the same as that of the predicted planet. The discovery of the planet was due,

not to its disc, but to its absence as a star on Bremiker's map. The existence of this

map, which had been but lately published, was unknown to the English astronomers.

On October 1 Challis heard, of the discovery of the planet at Berlin. He then found

that he had actually observed it on August 4 and August 12, the third and fourth'

nights of his search, so that if the observations had been compared with each other as

the work proceeded, the planet might have been discovered by him before the middle

of August. When the search was discontinued, on October 1, Challis had recorded 3150

positions of stars and was making preparations for mapping them^.

Adams's researches, therefore, preceded Le Verrier's by a considerable interval ; and,

in spite of the delay in commencing the search, it had been carried on at Cambridge

1 Even as it was, the planet was nearly discovered by of July 30 included all those of August 12. After the

the middle of August. ChaUis used two methods of discovery of the planet, Challis, continuing this corn-

observation, one with telescope fixed and the other with parison, found that No. 49, a star of the 8th magnitude
telescope moving. On July 30, the second day of the in the series of August 12, was wanting in the series of

search, he observed by the second of these methods, and July 30. This was the planet, which had entered the

on August 12, the fourth day of the search, he observed zone between July 30 and August 12. The former oom-
the same zone by the first method. Shortly afterwards parison had not been continued beyond No. 39 "probably
he compared the observations of these days, in order to from the accidental circumstance that a line was there

verify the adequacy of his course of procedure, and as far drawn in the memorandum-book in consequence of the
as the comparison was carried, he found that the positions interruption of the observations by a cloud."
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for eight weeks before the planet was found at Berlin. Adams's first complete in-

vestigation may be regarded as having been finished on October 21, 1845, when he left

his paper at the Royal Observatory. This was three weeks before Le Verrier presented to

the French Academy his first memoir, in which it was shown that the irregularities in the

motion of Uranus could not be attributed to the known planets, and seven months before

the date of presentation of his second memoir in which he first investigated the orbit of

the supposed disturbing planet. As we know, Adams had resolved to undertake the work

in 1841, and his first rough solution was efifected, as soon as he had leisure, in 1843.

We may presume that Le Verrier did not attempt to determine the position or orbit

of the disturbing planet until after the completion of his memoir of November 10, 184.5.

The discovery of the actual planet by Dr Galle, in consequence of Le Terrier's pre-

diction, was received with the greatest enthusiasm by astronomers of all countries, and the

planet was at once called " Le Terrier's Planet." Adams's work was only known to the

Astronomer Royal, Challis, and a few other persons, chiefly private friends. The first public

mention of Adams's name occurred in a letter to the Athenceum from Sir J. Herschel,

which appeared under the heading "Le Verrier's Planet" in the number for October 3,

1846. In this letter, which is dated October 1, Herschel refers to the address he had

delivered on September 10, on the occasion of resigning the Presidential Chair of the

British Association at Southampton, in which, after referring to the astronomical events

of the year, which included the discovery of a new minor planet, he added: "It has

done more. It has given us the probable prospect of the discovery of another. We see

it as Columbus saw America from the shores of Spain. Its movements have been felt,

trembling along the far-reaching line of our analysis, with a certainty hardly inferior to

that of ocular demonstration."

To justify the confidence which these words express, Herschel first describes a

conversation with Bessel in 1842, in which the latter had said that it was highly

probable that the deviations of Uranus might be due to an unknown planet (being

systematic, and such as an exterior planet would produce), and then proceeds:

—

"The remarkable calculations of M. Le Verrier, which have pointed out, as now

appears, nearly the true situation of the new planet by resolving the inverse problem

of the perturbations—if uncorroborated by repetition of the numerical calculations by

another hand, or by independent investigation from another quarter—would hardly justify

so strong an assurance as that conveyed by my expressions above alluded to. But it

was known to me at that time (I will take the liberty to cite the Astronomer Royal as

my authority) that a similar investigation had been ind.ependently entered into, and a

conclusion as to the .situation of the new planet very nearly coincident with M. Le

Verrier's arrived at (in entire ignorance of his conclusions) by a young Cambridge mathe-

matician, Mr Adams, who will, I hope, pardon this mention of his name (the matter

being one of great historical moment), and who will doubtless in his own good time and

manner, place his calculations before the public."

This passage seems to have passed almost unnoticed by astronomers, in the

excitement produced by Le Verrier's discovery, and it was not till October 17, when a

letter from Challis appeared in the Athenceum, giving an account of the proceed-

ings at Cambridge in connexion ^vith the new planet, that general attention was

directed to Adams's calculations. It was then known for the first time that his
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conclusions had been in the hands of the Astronomer Royal and Challis since 1845,

and that the latter had actually been engaged in searching for the planet. There

was naturally a disinclination to give full credit to facts thus suddenly brought to light

at such a time. It was startling to realise that the Astronomer Royal had had in his

possession the data which would have enabled the planet to have been discovered nearly

a year before. On the other hand, it seemed extraordinary that a competent mathema-

tician, who had determined the orbit of the disturbing planet, should have been content

to refrain for so long from making public his results. No time was now lost in bringing

the evidence before the world. On November 13, 1846, the Astronomer Royal com-

municated to the Royal Astronomical Society an "Account of some Circumstances

historically connected with the Discovery of the Planet exterior to Uranus"; and

Challis also described the observations which he had undertaken in search of the planet.

At the same meeting Adams communicated a memoir containing an account of his

mathematical investigations in connexion with the determination of the mass, orbit,

and position of the new planet, by which he had obtained the elements communicated

to the Astronomer Royal on October 21, 1845, and September 2, 1846. All of these

papers are published in Vol. xvi. of the Memoirs of the Society; but as it was felt

that the immediate publication of Adams's memoir was a matter of national interest,

it was at once printed separately by Lieut. Stratford, superintendent of the Nautical

Almanac Office, as a special appendix to the Nautical Almanac for 1851, and widely

circulated at the beginning of 1847. This appendix was also issued as a supplement

to No. 593 (March 2, 1847) of the Astronomische Nachrichten.

Having thus given in chronological order an outline of the main facts relating

to the discovery of the new planet, it remains to describe in more detail some of the

incidents which, apart from their historical interest, are of importance in connexion

with the discussions which have taken place on the subject.

At the time of Adams's first visit to the Royal Observatory, in September, 1845,.

the Astronomer Royal was abroad. On the occasion of the second visit, on October 21,

1845, he was engaged, and was unable to see Adams, who therefore left at the Observatory

the paper containing the elements of the planet. Fifteen days afterwards, on November 5,

1845, the Astronomer Royal wrote to Adams, "I am very much obliged by the papef
of results which you left here a few days since, showing the perturbations on the place

of Uranus produced by a planet with certain assumed elements. The latter numbers
are all extremely satisfactory: I am not enough acquainted with Flamsteed's observations

about 1690 to say whether they bear such an error, but I think it extremely probable.

But I should be very glad to know whether this assumed perturbation will explain the
error of the radius vector of Uranus. This error is now very considerable, as you will be
able to ascertain by comparing the normal equations, given in the Greenwich observations
for each year, for the times before opposition with the times after opposition." Un-
fortunately Adams did not reply to this enquiry or communicate again with the
Astronomer Royal until September 2, 1846, when he forwarded to him the results

of his second investigation.

Le Verrier's memoir of June 1, 1846, reached the Astronomer Royal about the 23rd
or 24th of June, and on June 26th the latter addressed to Le Verrier the following letter,

containing the same question with respect to the radius vector which he had previously
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put to Adams: "I have read with very great interest the account of your investigation

on the probable place of a planet disturbing the motions of Uranus, which is contained

in the Compte Rendu de VAcademie of June 1 ; and I now beg leave to trouble you with

the following question. It appears, from all the later observations of Uranus made at

Greenwich (which are most completely reduced in the Greenwich observations of each

year so as to exhibit the effect of an error either in the tabular heliocentric longitude,

or the tabular radius vector), that the tabular radius vector is considerably too small.

And I wish to inquire of you whether this would be a consequence of the disturbance

produced by an exterior planet, now in the position which you have indicated ? I

imagine that it would not be so, because the principal term of the inequality would

probably be analogous to the moon's variation, or would depend on sin 2 (w — v') ; and in

that case the perturbation in radius vector would have the sign — for the present relative

position of the planet and Uranus. But this analogy is worth little until it is supported

by proper symbolical computations."

Le Verrier replied to the Astronomer Royal's enquiry on June 28. In this letter he

says, "Je compte avoir termini la rectification des ^l^ments de la planfete tronblante avant

I'opposition qui va arriver; et parvenir a connaitre ainsi les positions du nouvel astre

avec une grande precision. Si je pouvais esp^rer que vous aurez assez de confiance dans

mon travail pour chercher cette planete dans le ciel je m'empresserais, Monsieur, de vous

envoyer sa position exacte, des que je I'aurai obtenue." He then explains that the errors

in radius vector are well accounted for by the disturbing planet.

On June 29, before Le Verrier's reply had been received, a meeting of the Board

of Visitors of the Royal Observatory took place, at which Sir J. Herschel and Challis,

among others, were present. In the course of a discussion the Astronomer Royal referred

to the probability of shortly discovering a new planet, giving as his reason the very close

coincidence between the results of Adams's and Le Verrier's positions of the supposed

disturbing planet. It was in consequence of this opinion that Herschel felt justified in

speaking so confidently of the approaching discovery in his address at Southampton on

September 10.

When the planet was discovered at Berlin, the Astronomer Royal was on the con-

tinent, and on his return to Greenwich he wrote to Le Verrier, on October 14, 1846

:

"I was in Germany at the latter part of the month of September, when I received the

intelligence of the actual discovery of the new planet whose place had been so clearly

pointed out by you. And I beg you to accept my sincere congratulations on this suc-

cessful termination to your vast and skilfully directed labours. Not many days past, I

was in company with Professor Schumacher of Altona, and there I had the pleasure of

reading the manuscript paper which you have, transmitted to him. I was exceedingly

struck with the completeness of your investigations. May you enjoy the honours which

await you ! and may you undertake other work with the same skill and the same success,

and receive from all the enjoyment which you merit! I do not know whether you are

aware that collateral researches had been going on in England, and that they had led to

precisely the same result as yours. I think it probable that I shall be called on to give

an account of these. If in this I shall give praise to others, I beg that you will not

consider it as at all interfering with my acknowledgment of your claims. You are to be

recognised beyond doubt as the real predicter of the planet's place. I may add that the

A d
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English investigations, as I believe, were not quite so extensive as yours. They were

known to me earlier than yours." The rest of the letter relates to the name proposed

for the new planet.

Le Verrier's reply, of October 16, was written under a sense of injustice and irritation

produced by Herschel's letter in the Athencmm, which he considers "bien mauvaise et

bien injuste pour moi." He feels very much hurt that Herschel should have said that

he should not have felt justified in expressing himself so confidently at Southampton if

his results had not been independently corroborated by Adams's work. He gives a

succinct account in historical order of his own publications on the subject, and, in con-

nexion with the paper of June 1, 1846, refers to Airy's letter of June 26, 1846, which he

says shows that at that time Airy had no precise information with respect to the position

of the planet, and that he was even surprised that he (Le Verrier) had placed it where

he had, ''parce qu'ainsi situ^e elle ne lui paraissait pas rendre compte des inexactitudes

du rayon vecteur." With reference to Adams he writes, "Pourquoi Mr Adams aurait-il

gard6 le silence depuis quatre mois? Pourquoi n'aurait-il parl^ dfes le mois de juin s'il

eiit eu de bonnes raisons k donner ? Pourquoi attend-on que I'astre ait dte vu dans

les lunettes ? " He appeals to Airy to defend his rights, and states that he has documents

to prove that on September 28 and 29 Challis was still searching for the planet " sur mes
indications." The Astronomer Royal's reply to this letter contained a statement of the

facts with regard to Adams's work and the search for the planet.

The French astronomers were at first very unwilling to admit that Adams had any

rights whatever in connexion with the planet, either as an independent discoverer or

otherwise : and Arago, the secretary of the Academy, was especially violent in his de-

nunciations. Le Verrier, who had at first inclined to the name of Neptune for the planet,

delegated the right to name it to Arago, who insisted that it should be called Le Verrier.

It is unnecessary to enter further into the discussions which took place on this subject:

a very fair view of the whole matter was taken by Biot, and ultimately the name of

Neptune was adopted by general consent.

Strange as it may seem, the course of events in this country was somewhat similar,

it being contended by some English astronomers that the fact that Adams's results had
not been publicly announced deprived him of all claims in relation to the discovery.

The recognition of the merit of Adams's researches was mainly due to the warm and
generous advocacy of two Cambridge men, Sedgwick and Sheepshanks.

Adams's determination of the orbit of the new planet was completed by October
1845, and by this date his results were in the possession of Challis and the Astronomer
Royal, and yet no announcement whatever was made with respect to them until October 3,

1846. It is a most striking fact in the history of science that researches of such novelty
and importance could have been known to two official astronomers besides their author
for nearly a year without any steps being taken to make them public. The causes which
produced this result are necessarily peculiar, and require to be examined in some detail.

Adams, having completed his determination, took the results in person to the Royal
Observatory, in the hope that steps would forthwith be taken to find the planet. He
was disappointed at not seeing the Astronomer Royal, and probably had expected more
encouragement than the letter he received a fortnight afterwards with the enquiry relative

to the radius vector. Regarding this as a matter of trifling importance, he delayed to
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reply to it, and applied himself to his second calculation with a different mean distance.

With respect to Challis, he has explained in his report to the Cambridge Observatory

Syndicate^ that it might reasonably be supposed that the position of the planet was only

roughly determined, and that a search for it must necessarily be long and laborious. In

1845, when Adams had completed his calculations, the planet was considerably past opposition,

and Challis had no thought of commencing the search then. The succeeding interval

until June 1846 was occupied with observations of the planet Astrasa, Biela's double comet,

and several other comets, and during this period he had little communication with Adams
respecting the new planet. Attention was again called to the matter by Le Verrier's

paper of June 1, and, as has been stated, the search was commenced on July 29.

From the Astronomer Royal's "Account &c." we learn that he attached great importance

to the explanation of the error in radius vector. After giving the letter which he addressed

to Adams on this subject he states that he considered the establishment of the error of

the radius vector of Uranus to be a very important determination and proceeds, " I

therefore considered that the trial, whether the error of radius vector would be explained

by the same theory which explained the error of longitude, would be truly an experimentum

cruds. And I waited with much anxiety for Mr Adams's answer to my query. Had it

been in the affirmative I should have exerted all the influence which I might possess,

either directly, or indirectly through my friend Professor Challis, to procure the publication

of Mr Adams's theory. From some cause with which I am unacquainted, probably an

accidental one, I received no immediate answer to this enquiry. I regret this deeply for

many reasons. While I was expecting more complete information on Mr Adams's theory,

the results of a new and most important investigation reached me from another quarter."

This refers to Le Verrier's paper of June 1, 1846, after giving an account of which, the

Astronomer Royal proceeds :
" This memoir reached me about the 23rd or 24th of June.

I cannot sufficiently express the feeling of delight and satisfaction which I received from

it. The place which it assigned to the disturbing planet was the same, to one degree,

as that given by Mr Adams's calculations which I had perused seven months earlier.

To this time I had considered that there was still room for doubt of the accuracy of

Mr Adams's investigations...But now I felt no doubt of the accuracy of both calculations,

as applied to the perturbation in longitude. I was however still desirous, as before, of

learning whether the perturbation in radius vector was fully explained."

Le Verrier replied to this enquiry in a letter from which some passages have already been

quoted. With reference to Le Verrier's explanations regarding the error of radius vector

the Astronomer Royal writes :
" It is impossible, I think, to read this letter without being

struck with its clearness of explanation, with the writer's extraordinary command, not

only of the physical theories of perturbation, but also of the geometrical theories of the

deduction of orbits from observation, and with his perception that his theory ought to

explain all the phenomena, and his firm belief that it had done so. I had no longer

any doubt upon the reality and general exactness of the prediction of the planet's place."

After describing the contents of Le Verrier's third paper, of August 31, 1846, the

Astronomer Royal proceeds: "My analysis of this paper has necessarily been exceedingly

imperfect, as regards the astronomical and mathematical parts of it; but I am sensible

that in regard to another part it fails totally. I cannot attempt to convey to you the

1 This report, on account of its importance, is reprinted in extenso on pp. xlix—liv.

d2
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impression which was made on me by the author's undoubting confidence in the general

truth of his theory, by the calmness and clearness with which he limited the field of

observation, and by the firmness with which he proclaimed to observing astronomers,

'Look in the place which I have indicated, and you will see the planet well.'...It is

here, if I mistake not, that we see a character tar superior to that of the able, or

enterprising, or industrious mathematician: it is here that we see the philosopher."

Adams was not fortunate in the two astronomers to whom he communicated his

results: neither of them gave to a young and retiring man the kind of help or

advice that he should have received. Challis, a most conscientious and painstaking

astronomer, had obtained for him the places of Uranus that he required, and written him

a letter of introduction to the Astronomer Royal. Although quite appreciative of Adams's

calculations, he was occupied with his own observatory work, and seems to have left the

matter in the hands of Airy. He undertook the search for the planet when it was

suggested to him by Airy, after the publication of Le Verrier's paper, and carried it out

methodically and with scrupulous care, as was his practice in everything; and in course

of time the planet would have been discovered: but he does not seem to have been

alive to the importance of making known in a more public way than by communi-
cation to the Astronomer Eoyal the results which Adams had obtained. As professor

in the University he should not have allowed a young Senior Wrangler, through modesty
or diffidence or inexperience, to do such injustice to himself It is evident that even
if the planet had been discovered at Cambridge, the same difficulty would have had to

be encountered as that which actually occurred in bringing Adams's claims before the
world, as Le Verrier's work had been already published and his indications had been
used in the search. Airy states that he regarded the question of the radius vector as

an experimentum crucis, and waited with much anxiety for Adams's reply to his query.

When he found that Le Verrier assigned nearly the same position to the planet as

Adams, and when Le Verrier had explained to him that the error in radius vector was
corrected, any doubt with respect to the quality of Adams's work, which the absence of a
reply to his enquiry may have caused, must have been removed, and the time had clearly

come to take some notice of the paper which had been in his possession for sevfin

months. But though he mentioned the matter at the meeting of the Board of Visitors

on June 29 and suggested the search to Challis on July 9, he took no steps, either
directly or through Challis, to bring about the public announcement of Adams's results.

Of course Airy knew that Adams had Challis and possibly other Cambridge men to
advise him with respect to publication. Challis was a man of gentle and kindly nature,
but slow in action and wanting in initiative: Airy, however, was a man of vigorous
character, and it seems unaccountable that he should have taken no steps to secure the
publication of Adams's results, even after his correspondence with Le Verrier in June
1846'. The fact that no reply had been received to the radius vector question atfords
no adequate explanation; he could have written to Adams again or applied to Challis,
if he still considered an answer essential.

It is easy to understand the "delight and satisfaction" which Airy as a mathe-
matician may have received from Le Verrier's paper confirming Adams's place of the

1 Sedgwick's letter, from which the interview with out without more delay. Was Adams ever so much as
Adams is quoted on the next page, contains the following told that Le Verrier was at his heels? Our astronomers
passage :

"When it was found that Adams was confirmed ought to have got up a flare in an instant."

bj the fortunate Frenchman the facts ought to have been
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planet, but one would have thought that at the same time he would have felt some
regret that Adams's paper had remained so long untouched in his keeping, thus depriving

this country and his own University of the merit of the first announcement. It is

impossible not to contrast the admiration with which he received Le Verrier's published

writings with the indifference shown towards Adams's still unpublished work. Adams
was certainly as clearly convinced of the reality of the planet as Le Verrier, and what-

ever claims the latter has to the name of philosopher rather than mathematician apply

equally to the former. It is difficult also to see how Airy could have felt justified in

writing to Le Verrier, after the discovery of the planet, the words, "you are to be

recognised beyond doubt as the real predicter of the planet's place."

It has been said, and truly, that it was no part of the Astronomer Royal's duty

to search for a new planet, and that he had no telescope available for the purpose

even if he had desired to do so: but Adams (who possibly acted on Challis's advice)

cannot be much blamed for taking his paper to Greenwich, in hopes that the planet

might be found in this country. Adams himself seems to have been content to leave

the matter in the hands of the Astronomer Royal, and it is to be remarked that

at that time he was not only the official head of Astronomy, but was much looked up

to by Cambridge men as one who had recently given a great impulse to astronomical

studies in the University, as professor and director of the Observatory \

When it became known in Cambridge that Airy and Challis had been in possession

of results which would have enabled the planet to be discovered in 1845 a good deal of

indignation was naturally felt at the apathy and incredulity with which Adams's work

had been received. This led Sedgwick, an intimate friend of Airy, to write two letters

on the subject, which are now in the archives of the Royal. Observatory at Greenwich.

The second of these letters, dated December 6, 1846, contains the following interesting

"Adams, though a great philosopher in his way, has shown no worldly wisdom,

indeed has acted like a bashful boy rather than like a man who had made a great

discovery.

"Again, he was certainly wrong in not answering Airy's letter. How strange and

how unfortunate ! Surely he must have been ill advised on this point ; but I will

try to learn this from himself.

"Just as I had written so far, in came Adams, to return my call, and five minutes

after in came Sheepshanks, who, after chatting for half an hour with his surplice on,

went to drink tea at the Lodge. Adams remained and drank tea with me, and we

have had a very long chat....

"(1) He called at the Observatory soon after his calculations were finished— the

Astronomer Royal away—bad luck, but no blame anywhere—this was September 1845.

(2) Called again (October, the same Autumn) and the Astronomer out—left his card

—

heard that Airy would return soon, and therefore left word that he would call again.

(3) Did call again (I think in a little more than an hour) and was told that the

1 Adams did at last contemplate publication, for he British Association,'' and in his letter of November 18,

concludes his letter of September 2, 1846 to the Astronomer 1846 (p. xxviii) he states that he drew up such a paper but

Eoyal with the words, "I have been thinking of drawing arrived at the meeting too late to present it.

up a brief account of my investigation to present to the
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Astronomer was at dinner; had no message, and therefore went away. But he added

that he did not call by appointment. He only took his chance on his way back from

Devonshire to Cambridge, &c. &c. I collected that he had been mortified (I am not

using his own words) at receiving no message on the second call in October. 'I thought

'

(said he) 'that though he had been at dinner he would have sent me a message, or

perhaps spoken a word or two to me : but I am now convinced that in fact he never

knew of my second call—that the servant had not delivered my message along with my
card.' These were mainly his words. I asked him whether the circumstances just

mentioned had any influence in preventing his reply to Professor Airy's note. He said in

answer, that had these not happened he possibly might have replied more readily; but

assuredly had he considered the question about the radius vector as of great import-

ance (' as an experimentum critcis ') he should have answered the note instantly. ' But,'

said he, 'I could not look on the corrections of the radius vector as an eocperimentum

crucis; because any hypothesis (however wrong) which gave a correction in longitude

must give a correction in the radius vector of the same kind as the correction deduced

from the perturbations of the new planet' (I think I state this correctly). 'Again,' said

he, 'I wanted to send my papers in good order to the Astronomer Royal. I went over all

my calculations three times. I added a few terms, without changing my results. I was
much interrupted, so it was my vacation before I could finish my last revision,' &c. &c.
' I lament very much that I did not immediately answer the first note. I ought to have
answered it,' &c. &c. 'But,' he added, 'I did think that the Astronomer Royal would
have communicated my results among his correspondents. I took all that for granted,

and I thought it a publication,' &c. &c. He is anxious to have no misunderstanding
with Airy. He spoke very earnestly on this subject, and expressed himself grieved at
the ill-natured things that had been said."

The following letter from Adams to Airy was written five days after the meeting
of the Royal Astronomical Society at which Airy's 'Account &c.' was read.

" St John's Colleoe,

^ „ 18 November, 1846.
"Deak Sir, •

"Allow me to thank you for your able, interesting, and impartial
account of circumstances connected with the discovery of the new planet. I need scarcely
say how deeply I regret the neglect of which I was guilty in delaying to reply to the
question respecting the radius vector of Uranus, in your note of Nov. 5th 1845.

" In palliation, though not in excuse of this neglect, I may say that I was not aware
of the importance which you attached to my answer on this point, and I had not the
smallest notion that you felt any difficulty on it, such as you subsequently mentioned to
M. Le Verrier.

" For several years past, the observed place of Uranus has been falling rapidly more
and more behind its tabular place. In other words, the real angular motion of Uranus is
considerably slower than that given by the tables. This appeared to me to show clearly
that the tabular radius vector would be considerably increased by any theory which
represented the motion in longitudes, for the variation in the second member of the

diO I 7 r .

equation r^--^^ »Jfia{l—e^) is very small
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" Accordingly, I found that if I simply corrected the elliptic elements, so as to satisfy

the modern observations as nearly as possible, without taking into account any additional

perturbations, the corresponding increase in the radius vector would not be very different

from that given by my actual theory. Hence it was that I was led to defer writing to

you till I could find time to draw up an account of the method employed to obtain

the results which I had communicated to you. More than once I commenced writing

with this object, but unfortunately did not persevere. I was also much pained at not

having been able to see you when I called at the Royal Observatory the second time,

as I felt that the whole matter might be better explained by half-an-hour's conversation

than by several letters, in writing which I have always experienced a strange difficulty.

"I entertained, from the first, the strongest conviction that the observed anomalies

were due to the action of an exterior planet; no other hypothesis appeared to me to

possess the slightest claims to attention.

" Of the accuracy of my calculations I was quite sure, fi:om the care with which they

were made, and the number of times I had examined them. The only point which

appeared to admit of any doubt was the assumption as to the mean distance, and this

I soon proceeded to correct. The work however went on very slowly throughout, as I

had scarcely any time to give to these investigations except during the vacations.

"I could not expect however that practical astronomers, who were already fully

occupied with important labours, would feel as much confidence in the results of my
investigation as I myself did; and I therefore had our instruments put in order, wfth

the express purpose, if no one else took up the subject, of undertaking the search for

the planet myself, with the small means afforded by our Observatory at St John's.

"I remain, dear Sir,

" Yours very respectfully,

"J. C. ADAMS.

"I drew up a paper for the meeting of the British Association at Southampton, but

did not arrive there in sufficient time to present it, as Section A closed its sittings one

day earlier than I expected."

In connexion with Adams's researches on the new planet, and his omission to reply

to Airy's enquiry^ the following interesting extracts from a letter from Challis to Airy,

of December 19, 1846, should also find a place here.

"In the Athencevm of Dec. 5 there was an article on the new planet, ably and

fairly written in general, but so unjust with respect to Mr Adams's scientific merits, that

I wrote a letter to the Editor, which is in the Athenceum of to-day. . .There is one point

in the story which is in an unsatisfactory state. Why did not Adams answer your question ?

I know that he is extremely tardy about writing, and that he pleads guilty to this fault.

1 In 1883, when the present writer was preparing the the Astronomer Boyal's letter about the radius vector,

obituary notice of Challis for the Eoyal Astronomical Adams said, "I should have done so: but the enquiry

Society, in reply to a question why he had not answered seemed to me trivial."
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He experiences also a difficulty, which all young writers feel more or less, in putting

into shape and order what he has done, and well done, so as to convey an adequate idea

of it to others by writing. After receiving your questions it occurred to him that it

would be well for him to send you a full account of his methods of calculation, and

that he might send the answer at the same time. I believe that nothing but procrasti-

nation in fulfilling this intention was the reason of his not sending an answer at all. I

have always found him more ready to communicate orally than by writing. It will hardly

be believed that before I began my observations I had seen nothing of his in writing

respecting the new planet, except the elements which he gave me in September written

on a small piece of paper without date.

" I first got an idea of the nature and value of his researches by an abstract which

he drew up to produce at the meeting of the British Association at Southampton. The

public would hardly take such a reason as that I have mentioned to be the true reason

for his not answering your question, and I fear therefore a hiatus must remain in the

history."

As the Astronomer Royal laid so much stress upon the explanation of the error of

radius vector, regarding it as an experimentum crucis with respect to the value of

Adams's calculations, and as his views upon the matter have been much criticised, it

seems proper to quote the following explanatory passages which were written by him after

he had received Adams's letter of November 18, and when the matter was attracting

general attention. Writing to Sheepshanks on December 17, 1846, he says: "Concerning

the radius vector of Uranus, the error was certain as to sign. It was determined with

reasonable accuracy as to magnitude (perhaps the probable error might be ^ or ^ of the

whole). Now, suppose that Adams's elements which gave longitude-corrections had given

a wrong sign for the correction of the radius vector, what would his theory have been

worth ? The alternation of signs of errors H in longitude does not exclude any other

hypothesis than that of an exterior planet. If the law of force differed slightly from that

of inverse square of the distance (of which two years ago there was great probability)

and if tables were calculated strictly on the law of inverse square of distance (as was
done in existing tables), then the discordances in longitude would have the alternate

signs H Le Verrier evidently attached great importance to the radius vector...The
radius vector, as you say, was to be used as an indirect verification, but its error de-

manded explanation quite as imperatively as the other."

And writing to Challis, December 21, 1846, he says:

"I am sure that you cannot have a higher opinion of Adams's ability in the
scientific parts of this matter than I have....But with regard to one part of your own
published letter in the last Athenaeum, I must make one remarks There were two
things to be explained, which might have existed each independently of the other, and
of which one could be ascertained independently of the other : viz. error of longitude and
error of radius vector. And there is no a priori reason for thinking that a hypothesis

1 ChaUis had written: "Again, as to the error of the of the other. Mr Adams actually employed a method of
radius vector: it is quite impossible that its longitude calculation which required him to compute the coefficients
could be corrected during a period of at least 130 years of the expression for error of radius vector, Ufme com-
independently of correction of the radius vector....The puting the ooeffioients of the expression for error of
investigation of one correction necessarily involves that longitude." (Athenaum, December 19, 1846.)
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which will explain the error of longitude will also explain the error of radius vector. If,

after Adams had satisfactorily explained the error of longitude, he had (with the numerical
values of the elements of the two planets so found) converted his formulae for pertur-
bation of radius vector into numbers, and if these numbers had been discordant with the
observed numbers of discordance of radius vector, then the theory would have been false, not
from any error of Adams's, but from a failure in the law of gravitation. On this question

therefore turned the continuance or fall of the law of gravitation. This, it appears to

me, has been totally overlooked in your letter. It was a question of vast importance.

"The progress of science almost always depends on questions of this kind. Thus,
in Chemistry, the phlogistic theory explained the concurring facts of oxidation of metals

and vitiation of air, or gaseous formation in water. But did it also account for the

increased weight of the metal ? No. Then it was false. Laplace's notion of forces gave
an explanation of the course of extraordinary pencils of light. But did it or could it

give an explanation also of the separation of pencils and of their polarisation ? No. Then
it was false.

"The theory of gravitation might have been in the same predicament with regard

to Uranus. Adams's answer would have made this satisfactory What could be the

reason of Adams's silence, I could not guess. It was so far unfortunate that it inter-

posed an effectual barrier to all further communication. It was clearly impossible for

me to write to him again."

Looking back now upon Adams's achievement, which, as has been truly said, belongs

at once to the science and to the romance of astronomy, there are several points that

stand out as very remarkable : his extreme youth when he attacked, unaided, so difficult a

problem, and steadily carried it through to success; his complete faith in the Newtonian
law and in the results of his own mathematics ; and his extreme modesty. As soon as he

took his degree in 1843 he devoted his whole leisure, in term time at Cambridge, and
in vacations in Cornwall, to the new planet's orbit, without assistance or encouragement

from anyone. How quietly and unassumingly he pursued his investigations is shown

by the fact that at the time of the finding of the planet his name was only known
to Airy, Challis, Herschel, Earnshaw, and a few intimate university friends of his own
standing. He was perfectly convinced of the reality of the planet from the first, and

of the approximate accuracy of the place he had assigned to it; and in the paper

which he placed in the hands of Challis in September, 1845, he used the words "the

new planet."

Although containing no new facts it may be well to conclude the account of

Adams's researches on the new planet with the following extract from a letter written

by him at the time (November 26, 1846) to Professor James Thomson:

"On considering the subject it appeared to me that by far the most probable

hypothesis that could be formed to account for these irregularities was that of the existence

of an exterior undiscovered planet whose action on Uranus produced the disturbances in

question. None of the other hypotheses that had been thrown out seemed to possess the

slightest claims to attention, as they were all improbable in themselves, and incapable of

being tested by any exact calculation. Some had even supposed that, at the great distance

of Uranus from the Sun, the law of attraction became different from that of the inverse

square of the distance, but the law of gravitation was too firmly established for this to

A. e
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be admitted till every other hypothesis had failed to account for the observed irregularities

;

and I felt convinced that in this, as in all previous instances of the kind, the discrepancies

which had for a time thrown doubts on the truth of the law would eventually afford

it the most striking confirmation. In contrast with all these vague hypotheses, the sup-

position that the irregularities were caused by the action of an unknown planet appeared

to be thoroughly in accordance with the present state of our knowledge, could be tested

by calculation, and would probably lead to important practical results—viz. the approxi-

mate determination of the position of the disturbing body." After quoting the memorandum

of July 3, 1841, he proceeds:—"Accordingly, in 1843, I commenced my calculations, and

in the course of that year I arrived at a first solution of the problem, which, though

incomplete in itself, fully convinced me that the hypothesis which I had formed was

quite adequate to account for the observed irregularities, and that the place of the

disturbing body might be very approximately determined by a more extended investigation.

Having received from the Astronomer Royal, in February 1844, the whole of the Greenwich

observations of Uranus, I accordingly attacked the problem afresh, and in a much more

complete manner than before, and, after obtaining several solutions, difiPering little from

each other, by gradually taking into account more and more terms in the series expressing

the perturbations, I communicated my final results to Professor Challis in September

1845, and the same, slightly corrected, to the Astronomer Royal in the following month.

The near agreement of the several solutions which I had obtained gave me great confi-

dence in my results, which included a determination of the mass, position and elements

of the orbit of the supposed planet."

Adams took no part whatever in the controversies or discussions which arose with

regard to the discovery of the planet, either publicly or privately, and at no time in his

life did he ever criticise the conduct of anyone, or say an unkind word in connexion with

the matter. Fortunately all the facts relating to the calculations of Adams and Le Verrier

and the discovery of the planet are undisputed, and any discussions that may take place

in the future can have reference only to the conclusions to be drawn from them^.

On the discovery of the planet the Royal Society at once awarded their highest

honour, the Copley Medal, to Le Verrier (1846), and it was not till two years afterwai^s

that it was awarded to Adams. The Royal Astronomical Society was saved from expressing

a similar preference by the by-law requiring that the award of the medal should be
confii-med by a majority of three-quarters of the Council. A sufficient minority were of

opinion that "an award to M. Le Verrier, unaccompanied by another to Mr Adams,
would be drawing a greater distinction between the two than fairly represents the proper
inference from fe,cts, and would be an injustice to the latter I"

1 The principal contemporary publications relating these documents in writing the account in the text,
to the new planet are to be found in Vol. xyi. of the Challis's report to the Observatory Syndicate at Cam-
Memoirs of the Royal Astronomical Society, in the bridge, which contains an account of his own proceedings
Comptes Bendus, in the Athentnum, in the Astrono- relative to the new planet, is added as an appendix to this
mische Nachrichten, and in Vol. vii. (1847) of the North notice (pp. xlix—liv). Beferences to the discovery of the
British Review, which contains an article by Brewster. planet occur in the Ufe and Letters of Adam Sedgwick,
A number of letters bearing upon the subject are con- by Clark and Hughes, 1890, Vol. ii. pp. 107 and 287.
tained in the Archives of the Eoyal Observatory, and ^ i^ ^^ interesting letter to Schumacher, in the pos-
Sheepshanks's correspondence is in the possession of the session of the Eoyal Astronomical Society, Sheepshanks
Eoyal Astronomical Society. Free use has been made of wrote as follows, under date April 7, 1847:—"You will be
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The honours so freely and deservedly bestowed upon Le Verrier in France and other

countries form a striking contrast to the general want of appreciation with which Adams's
work was at first received. But there were conspicuous exceptions. In 1847, on the

occasion of the Queen's visit to Cambridge, the honour of knighthood was offered to

Adams, but this offer he felt obliged to decline. The members of St John's College, also,

were not slow in showing their sense of the honour he had conferred upon his college and

the University, for in a very short time a fund, producing about £80 per annum, was

raised for esta,blishing a prize to be connected with his name. This fund was offered to

the University, and accepted on April 7, 1848. The Adams Prize, which is biennial, is

awarded for the best essay on some subject of pure mathematics, astronomy, or other

branch of natural philosophy.

A French translation of Adams's memoir on the motion of Uranus was published in

Liouville's Journal de Mathematiques pures et appliquSes for 1875. The editor, M. R^sal,

stated that he had been led to undertake this republication by the pressing solicitations

of several eminent mathematicians. In introducing the memoir he writes :
—'' Le probleme

fut resolu simultan^ment, en Angleterre par M. Adams, et en France par M. Leverrier,

qui, ainsi que le reconnait M. Adams, a publie le premier les resultats de ses recherches.

...II est impossible de rencontrer, dans I'histoire des sciences, une d^couverte qui fasse

plus d'honneur au g^nie humain. Les lois de Newton recevaient ainsi la plus eclatante

des confirmations, et I'Astronomie, d^sormais indiscutable dans ses principes, etait arrivde

a r^tat de science parfaite. Le Mdmoire de M. Adams a valu, a juste titre, h son auteur

la plus glorieuse c^ldbritd: il est digne, en effet, de figurer a cot^ des plus beaux

m^moires de Laplace et Lagrange." This republication of the memoir, after an interval

of thirty years, in a purely mathematical journal, derives additional interest from the fact

that Adams added a few notes at the end, some of which relate to the objections made

by Professor Benjamin Peirce to the legitimacy of the methods pursued by himself and

Le Verrier. In Peirce's paper, which was published in 1847, it was contended that the

period of Neptune differed so considerably from that of the hypothetical planet that the

modes of procedure adopted were unreliable, so that the finding of the planet was partly

due to a happy accident. In reply to this, Adams points out that the objection would

be valid if the object in vicAv had been to represent the perturbations of Uranus during

surprised when I tell you that the strongest opponents to this was nothing at all, simply because the over-modest

Mr Adams's claims to consideration are to be found in man communicated his results to Airy and ChaUis, that

England, of course with the exception of France. All the planet might be looked for, instead of bringing his

acknowledge M. Le Yerrier's merits, and aU admit his investigation before the world as he ought to have done.

undoubted claim to independent discovery. All are agreed. Surely it is a greater honour to science that two men
too, that in making public Ms results and investigations in should independently have come to the same conclusion

the masterly and confident way he did, he deserves the from the same data than that one should have hit on it,

highest praise. As to national feeling (which, by the as it were, accidentally. Thanks to Struve and Biot, &c.

way, is too often national injustice) there is absolutely our anti-Adamites are calmer, and as there never was

none whatever, so far as I know, or among astronomers. any opposition to Le Verrier, we are quite satisfied at

In England at present the current runs the other way, present, and so I hope are the two discoverers. I think

and though I very much prefer this failing of the two, there is a hope that Mr Adams will continue his astro-

yet it is provoking too. I assure you that it was with nomical researches. In any other country there could be

difficulty that one could get a hearing, while pointing out no doubt of it, but in England there is no carriere for

the fact that Mr Adams had deduced the elements and men of science. The Law or the Church seizes on all

place of the planet in October, 1845. I have been told talent which is not independently rich or careless about

repeatedly by those who should have known better that wealth."

e2
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two or three synodic periods, but that the case is different when, as in this instance, it

was only required to represent the perturbations for a fraction of a synodic period.

Before leaving the subject of Neptune, it should be stated that Adams always ex-

pressed the warmest appreciation of Le Terrier's work. It was a great pleasure to him

when they met at Oxford in 1847. In the same year Le Verrier visited Adams at

Cambridge. The honorary degree of LL.D. was conferred upon Le Verrier in 1874 by

the University of Cambridge, and it cannot be doubted that this was owing to the action

of Adams. In 1876, when Adams was President of the Royal Astronomical Society

for the second time, the gold medal was awarded to Le Verrier for his planetary

researches. In delivering the medal Adams spoke of " the admiration we feel for the

skill and perseverance by which he has succeeded in binding all the principal planets

of our system from Mercury to Neptune in the chains of his Analysis."

In 1847 Adams communicated to the Royal Astronomical Society a paper on an im-

portant error in Bouvard's tables of Saturn. Having been engaged upon a comparison

of the theory of Saturn with the Greenwich observations, he was struck with the

magnitude of the tabular errors in heliocentric latitude, which could not be attributed

to imperfections in the theory. He found that the error was one of computation, two

terms of different arguments having been, in effect, united into one.

In 1848 he was occupied with the determination of the constants in Gauss's theory

of terrestrial magnetism. This investigation he afterwards resumed, and the calculations

connected with it, upon which he was engaged in the later years of his life, were left

unfinished at the time of his death. When failing health prevented him from any

longer giving his personal attention to the work, he placed the manuscripts in the hands

of his brother. Professor W. G. Adams, for completion.

In 1851 he was elected President of the Royal Astronomical Society, and held the

office for the usual term of two years. As president he delivered the addresses on the

presentation of the medal to Peters and to Hind. In 1852 he communicated to the

Society new tables of the Moon's parallax, to be substituted for those of Burckhardt.

Henderson had compared the parallaxes deduced from observation with those derived by
calculation from the tables both of Damoiseau and of Burckhardt, finding a diffference «f

no less than 1"'3, according as one set of tables or the other was employed. The parallax

in Damoiseau's tables is given at once in the form in which it is furnished by theory,

but that in Burckhardt's tables is adapted to his peculiar form of the arguments, and
requires transformation in order to be compared with the former. When this was done,

Adams found that several of the minor equations of parallax deduced from Burckhardt

differed completely from their theoretical values as given by Damoiseau. He discovered

that these errors were due to Burckhardt's transformations of Laplace's formula, and he

succeeded in tracing them to their sources. He also examined carefully the theories of

Damoiseau, Plana, and Pont^coulant, with respect to the same subject, and supplied a

number of defects and omissions. Burckhardt's value of the parallax having been em-
ployed in the Nautical Almanac, Adams gave, in addition to the new tables, a table of

corrections to be applied to the values in the Nautical Almanac for every day of the year

from 1840 to 1855 inclusive. This contribution to astronomy is very characteristic of

its author. It contains the results of a great amount of intricate and elaborate mathe-
matical investigation, carried out with great skill and accuracy in all its details, both-

analytical and numerical, but no part of the work itself is given. The method of pro-
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cedure is briefly sketched, and the final conclusions are stated in the fewest words and
simplest manner possible. No one unacquainted with the subject would imagine how
much careful research was represented by these few pages of results. The tables were
printed as a supplement to the Nautical Almanac for 1856.

As Adams had not taken holy orders, his Fellowship at St John's College came
to an end in 1852, but he continued to reside in the college until February 1853, when
he was elected to a Fellowship at Pembroke College, which he retained till his death.
In the autumn of 1858 he was appointed Professor of Mathematics in the University of St
Andrews, and shortly afterwards, in the same year, he was elected Lowndean Professor of

Astronomy and Geometry at Cambridge, in succession to Peacock. He continued his

lectures at St Andrews, however, until the end of the session in May 1859. In 1861
he succeeded Challis as Director of the Cambridge Observatory. In 1863 he married
Eliza, daughter of Haliday Bruce, Esq., of Dublin, who survives him.

In 1853 Adams communicated to the Royal Society his celebrated memoir on the

secular acceleration of the Moon's mean motion. Halley was the first to detect this

acceleration by comparing the Babylonian observations of eclipses with those of Albategnius
and of modern times, and Newton referred to his discovery in the second edition of the

Prindpia. The first numerical determination of the value of the acceleration is due to

Dunthome, who found it to be about 10" in a century. Tobias Mayer obtained the value 6"-7,

which he afterwards increased to 9". Lalande's value was nearly 10". The discrepancies

were due to the eclipses selected, the results derived from the different eclipses being in-

consistent with one another. The history of the theoretical investigations relating to the

acceleration may be summed up as follows:—In 1762 the French Academy proposed as the

subject of their prize the influence of a resisting medium upon the movements of the planets.

The pri2e was won by Bossut, who showed that the principal efifect of such a medium
would be an acceleration in their motions, which would be much more sensible in the case

of the Moon than in that of the planets. In 1770 the question proposed was whether

the theory of gravitation could alone explain the acceleration. Euler obtained the prize,

but he was unable to discover any term of a secular character, and concluded that

the force of gravitation would not account for this inequality. The subject was proposed

again in 1772, Euler and Lagrange sharing the prize between them. The former came to

the same conclusion as before, attributing the acceleration to a resisting medium ; the

latter did not carry the application of his formulae so far as to complete the investigation.

The prize was again offered for the same subject in 1774, the competitors being required

to examine whether the fact that the Moon appeared to have a secular acceleration,

while there was no sensible effect of this kind in the case of the Earth, could be ex-

plained by the theory of gravitation alone, taking into account not only the action of the

Sun and the Earth upon the Moon, but also the action of the other planets, and even

the non-spherical figure of the Moon and Earth. The prize was awarded to Lagrange, who,

after showing that none of the causes proposed would suffice to explain the secular variation

of the Moon, concluded that, if this variation is real, it must be produced in some other

manner, such as by a resisting medium. But as the existence of such a medium was not

confirmed by the motions of the other planets, and was even contradicted by the motion

of Saturn, which seemed to show a retardation, Lagrange expressed doubts with respect

to the reality of the lunar acceleration, resting as it does on observations of eclipses in
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very remote ages. The next investigation relating to the subject is by Laplace, who showed

that the acceleration could be accounted for by supposing that the transmission of the

force of gravitation was not instantaneous, but that the rate of propagation was about

eight million times that of light. Some years later, however, Laplace unexpectedly dis-

covered the true gravitational cause of the acceleration. While working at the theory

of Jupiter's satellites, he remarked that the secular variation of the eccentricity of Jupiter's

orbit produced secular terms in their mean motions. Applying this result to the Moon,

he found that the secular variation of the eccentricity of the Earth's orbit produced on

the Moon's motion a secular term which agreed very well with the value assigned to it

by observation; he found also that the same cause produced secular terms in the motion

of the Moon's node and perigee. This result was communicated to the French Academy

in November, 1787, and the memoir containing the details of the calculation was published

in the following year. The Stockholm Academy of Sciences had already proposed in

1787 the secular variations of the Moon, Jupiter and Saturn as the prize subject for 1791,

but no essays being sent in, the prize was adjudged to Laplace for his memoir published

in 1788.

Laplace's discovery was received with general satisfaction, and the complete ex-

planation of so intractable a variation by means of the Newtonian principles, after so

many years of fruitless attempt, was an important event in the history of astronomy.

The honour of the discovery might very easily have belonged to Lagrange, for the formula

given by him in a memoir published in 1783 would at once, if applied to the Moon, have

produced Laplace's result. But Lagrange had found that, in the case of Jupiter and Saturn,

these formulae gave nearly insensible values, so that he did not extend the investigation

to the other planets, or to the Moon, although the latter application would only have

involved easy numerical substitutions, much simpler than those required for the principal

planets.

In 1820, at the instigation of Laplace, the lunar theory was taken in hand afresh

by Plana and Damoiseau, the approximations being carried to an immense extent, especially

by the former. Damoiseau calculated the acceleration numerically, and found it to be
10"'72. Plana's process was algebraical, and he carried the series, of which Laplace h*i
only calculated the first term, as far as to quantities of the seventh order. By reducing to

numbers the twenty-eight terms of this series he found 10"'58 as the complete value of

the acceleration, the first term, which alone had been included by Laplace, giving
10"-18. Subsequently Hansen gave the values ll"-93 (1842), ll"-47 (1847); and in his

tables published in 1857 he used the value 12"18. It does not seem clear, however,

to what extent these values are to be regarded as theoretical determinations.

Thus when Adams published his memoir in the Philosophical Transactions for 1853
no suspicion had arisen that Laplace's discovery was not absolutely complete, and that

the question of the acceleration had not been finally set at rest. In this short paper of

only ten pages Adams showed that the condition of variability of the solar eccentricity

introduces into the solution of the differential equations a system of additional terms
which affect the value of the acceleration. He found that the second term of the series

on which the acceleration depends was really equal to m^m*, instead of ^^-m*, as found
by Plana. The former is more than three times as great as the latter, and the amount
of the acceleration is greatly decreased by the correction of this error. For some time
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the paper seems to have attracted no attention, but it then became the object of a
long and bitter controversy. Plana, who was the person most concerned in the matter,
published, in 1856, a memoir in which he admitted that his own theory was wrong upon
this point, and he deduced Adams's result from his own equations. But shortly after-

wards he retracted his admission, and, rejecting some of the new terms which he had
obtained, arrived at a result which differed both from his original value and from Adams's.
The question was in this state when Delaunay, by employing his own special method
of treating the Lunar Theory and extending the investigation only to the fourth order,

had the satisfaction of obtaining Adams's coefficient aJii, a result which he brought before

the French Academy in January, 1859. This caused Adams to communicate to the Academy,
in the same month, the values which he had obtained some time before for the terms
in m°, m", and m'; and he pointed out at the same time that, when these terms were
included, the value of the acceleration was reduced to 5"-78, and, inferring that the

remainder of the series would be nearly equal to 0"-08, he concluded that the total value

of the acceleration was about 5"-70. Soon afterwards Delaunay carried his approximation

as far as terms of the eighth order, and by reducing the forty-two terms in the ana-

lytical expression to numbers he obtained the value 6"'ll. Delaunay's result, which was
communicated to the Academy in April, 1859, confirmed the accuracy of Adams's values

of the terms in m^ m", and irJ, and also those of mV, and mV. which Adams had
communicated to him privately. A month after the publication of this paper Pont^coulant

made a vigorous attack on the new terms introduced by Adams, which he said had been

rightly ignored by Laplace, Damoiseau, Plana, and himself, as they had no real existence.

He also objected that if the result of Adams were admitted, it would '' call in question

what was regarded as settled, and would throw doubt on the merit of one of the most

beautiful discoveries of the illustrious author of the M4canique Gileste." Shortly after-

wards he communicated a paper to the Monthly Notices of the Royal Astronomical

Society on "the new terms introduced by Mr Adams into the expression for the co-

efficient of the secular equation of the Moon," in which he characterised the mathematical

process by which these terms had been obtained as " une veritable supercherie analytique\"

It would appear that Le Verrier did not accept Adams's value, for in presenting a note

by Hansen to the Academy in 1860 he states that Hansen's tables afford an irrefragable

proof of the accuracy of the value 12" which is there attributed to the acceleration.

Referring then to the fact that according to Delaunay the secular acceleration should

be reduced to 6" he proceeds: "Pour un astronome, la premiere condition est que ses

theories satisfassent aux observations. Or la th^orie de M. Hansen les reprdsente toutes,

et Ton prouve a M. Delaunay qu'avec ses formules on ne saurait y parvenir. Nous con-

servons done des doutes et plus que des doutes sur les formules de M. Delaunay. Trfes

certainement la v^rit6 est du cote de M. Hansen^."

' Hansen stated in 1866 (Monthly Notices, xxvi. p. m, and found the result to be 5"'70. Hansen says that

187) that he had never disputed the correctness of Adams's Adams's theory appeared too late to permit of his using

theory, but that he was not satisfied with '

' the develop- it ; " and it was well that it so happened, for I had already

ment of the divisors into series." If this refers to the found by my own theory a coefficient which represents

expansion of the acceleration-coefficient in powers of m, ancient eclipses as well as could be desired." It is there-

it should be noticed that Adams stated (Vol. xxi. p. 15) fore to be inferred that in this theory the new terms were

that he had calculated the value of the acceleration by omitted by Hansen, as they had been by Plana and

a method that did not require any expansion in powers of Damoiseau.



xxxviii BIOGRAPHICAL NOTICE.

In the Monthly Notices for April, 1860, Adams replied to his objectors, pointing out

simply and clearly the errors into which they had fallen. He mentions that before

publishing his memoir of 1853 he had obtained his result by two different methods, and

that he had subsequently confirmed and extended it by a third. In a series of letters

addressed to Lubbock in June, 1860, Plana began by objecting to Adams's value of the

term in m*, but he soon admitted its accuracy. Lubbock also was led to apply his own

formulae to the question, and he too arrived at Adams's result. Another calculation was

made by Cayley, who, by an entirely different method, also obtained the same result. As

Pontdcoulant still continued his reiterated attacks upon the accuracy of the new terms,

Cayley's calculation was printed in extenso in the Monthly Notices, where it occupies

fifty-six pages. Delaunay had also made another calculation, in which, by following the

method indicated by Poisson in 1833, he was led to the same vahie. The coefficient

of m* had also been verified in 1861 by Donkin, who used Delaunay's method of the

variation of the elements. Thus Adams's value of the term in m* was obtained by himself

in three ways, by Delaunay in two ways, and by Lubbock, Plana, Donkin, and Cayley.

Pont6coulant continued his attacks with no abatement of violence in the Comptes Rendus.

Ultimately he abandoned Plana's value and obtained one of his own, which differed both

from Adams's and Plana's.

The whole controversy forms a very extraordinary episode in the history of physical

astronomy; the indifference with which the memoir of 1853 was at first received, in

spite of the interest and importance of the subject, being followed by the violent

controversy which resulted in so many independent investigations by which Adams's

result was confirmed. It is not known why Laplace did not carry the calculation

beyond the term in m? ; but it may be supposed that he regarded the subsequent

terms as not likely to modify the value of the first term to any considerable extent.

Damoiseau's and Plana's theories passed under the review of Laplace, and may be

regarded as having received his sanction. Thus Adams's result not only unsettled a

matter which after years of difficulty and struggling had apparently received its full

and final explanation, but it detracted from the completeness of a discovery which had
long been regarded as one of the greatest triumphs of Laplace's genius. Although

the point in dispute relates entirely to the mathematical solution of differential

equations, in which observation in no way entered, there can be no doubt that the

fact that Plana's result agreed with observation, while Adams's did not, created in

the minds of many a presumption against the accuracy of the latter. This view was
certainly taken by Le Verrier in the passage quoted above, and it seems also to have
influenced Hansen. It is curious that it should have been possible for so much dif-

ference of opinion to exist upon a matter relating only to pure mathematics, and with
which all the combatants were fully qualified to deal, as is clearly shown by their

previous publications. The whole controversy illustrates the peculiar nature of the lunar
problem, and of the analysis by means of which the results are reached. The com-
plete solution being unattainable by any of the methods which have as yet been
applied, the skill of the mathematician is shown in selecting from a vast number of
terms those which will produce a sensible influence in that particular portion of the
complete solution which is under consideration.

A most admirable account of the whole discussion was given by Delaunay in the
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Additions to the Gonnaissance des Temps for 1864, in which the place occupied by
Adams's memoir in the history of gravitational astronomy is so well summed up that

it may be permissible to quote the passage in its entirety:

—

" L'apparition du m^moire de M. Adams a ^t6 un veritable dv^nement: c'dtait toute

une revolution qu'il opdrait dans cette partie de I'astronomie thdorique. Aussi le rdsultat

qu'il renfermait fut-il vivement attaqud; on ne voulait pas I'admettre, et on ne manquait
pas de raisons a donner pour cela. II est, disait-on, en disaccord complet avec les ob-

servations; il ne tend k rien moins qu'a enlever a Laplace I'honneur d'une de ses plus

belles ddcouvertes; il est basd d'ailleurs sur une analyse fautive et erronde. Mais parmi

toutes ces raisons il n'y en avait pas une bonne; et la persistance avec laquelle elles

ont 6t6 prdsentdes et soutenues a produit un effet diamdtralement oppos6 k celui qu'on

en attendait: les confirmations de ce rdsultat tant contests se sont accumuldes k un tel

point, qu'il serait difficile de trouver dans les sciences une vdritd mieux dtablie que ne
Test maintenant celle que M. Adams a mise en avant le premier dans son mdmoire de

1853. Toutes les objections qui avaient 6t4 formuldes sont tombdes d'elles-memes.

L'analyse ddclarde fautive et erron^e a et6 reconuaue exacte. L'accord ou le disaccord du
rdsultat thdorique avec les indications fournies par les observations n'a plus 6t6 regard^

comme un moyen de contr61er I'exactitude de ce resultat th6orique. Si le desaccord

annonod existe bien rdellement, on en conclut simplement que la cause assignee par

Laplace k I'accdldration s^culaire du moyen mouvement de la Lune ne produit pas seiile

la totality du phdnom^ne et on ne trouve dans ce disaccord rien qui soit de nature k

amoindrir la ddcouverte de I'illustre gdom^tre fran5ais."

These sentences derive additional interest from the fact that they were written by

one who was himself the author of the most comprehensive and elegant method by which

the lunar problem has ever been treated, and who was the first to recognise the accuracy

of Adams's result. In 1866 the Gold Medal of the Society was awarded to Adams for his con-

tributions to the development of the Lunar Theory, the address on the occasion being delivered

by Mr De la Rue. In the preparation of this very able address, which contains an excellent

history of the problem of the secular acceleration, Mr De la Eue had the invaluable assistance

of Delaunay. To complete the account of Adams's connexion with the secular acceleration,

it should be stated that in 1880, thirty-seven years after Adams's memoir. Airy com-

municated to the Society a paper on the theoretical value of the acceleration {Monthly

Notices, vol. xl. p. 368), in which he obtained the value of 10"1477. At the next meeting

of the Society Adams pointed out that in Airy's method of treatment certain terms were

omitted, the effect being that the expression for the coefficient was reduced to its first

term, so that the result necessarily agreed with Laplace's. Subsequently, taking into

account these terms. Airy obtained the value 5"'4773. Adams took the occasion of the

matter being thus again raised to communicate to the Society the investigation of the

acceleration which he had been in the habit of giving in his lectures.

In the Monthly Notices for April 1867 Adams published an account of the results

he had obtained with respect to the orbit of the November meteors. Professor H. A.

Newton had concluded that these meteors belong to a system of small bodies describing

an elliptic orbit about the Sun, and extending in the form of a stream along an arc

of that orbit of such a length that the whole stream occupies about one-tenth or

one-fifteenth of the periodic time in passing any particular point. He showed that the

A. /
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periodic time of this group must be either 180-0 days, 185 4 days, 354-6 days, 376-6 days,

or 33-25 years, and that the node of the orbit must have a mean motion of 52"
'4 with

respect to the fixed stars. Soon after the remarkable display of the November meteors

in 1866 Adams undertook the examination of this question. From the position of the

radiant-point observed by himself he calculated the elements of the orbit of the meteors,

starting with the supposition that the periodic time was 354-6 days, the value which

Professor Newton considered to be the most probable one. The orbit which corresponds

to this period is very nearly circular, and he found that the action of Venus would produce

an annual increase of about 5" in the longitude of the node, that of Jupiter about 6",

and that of the Earth about 10". Thus the three planets, which alone could sensibly

affect the motion of the node, would produce an increase of about 12' in 33-25 years.
^

The

observed motion of the node is about 29' in 33-25 years, which is therefore inconsistent

vrith a periodic time of the meteors about the Sun of 354-6 days. If the periodic time

were supposed to be about 377 days, the calculated motion of the node would differ very

little from that in the case already considered, while if the periodic time were a little

greater or a little less than half a year, the calculated motion of the node would be still

smaller. Hence, of the five possible periods indicated by Professor Newton, four were

incompatible with the observed motion of the node, and it only remained to examine

whether the fifth period of 33-25 years would give a motion in accordance with obser-

vation. In order to determine the secular motion of the node in this orbit the method

given by Gauss in his memoir DetermiTiatio Attractionis &c. was employed. By dividing

the orbit of the meteors into a number of small portions, and summing up the changes

corresponding to these portions, the total secular changes of the elements produced in a

complete period of the meteors was determined, the result being that during a period of

33-25 years, the longitude of the node is increased by 20' by the action of Jupiter, nearly

7' by the action of Saturn, and about 1' by that of Uranus. The other planets were

found to produce scarcely any sensible effects, so that the entire calculated increase of

the longitude of the node is about 28', agreeing very closely with the observed amount

of 29', and leaving no doubt as to the correctness of the period of 33-25 years. In order

to obtain a sufficient degree of approximation it was requisite to break up the orbit of

the meteors into a considerable number of portions, for each of which the attractions of

the elliptic rings corresponding to the several disturbing planets had to be determined.

These calculations were therefore of necessity very long, although a modification of Gauss's

formula was devised which greatly facilitated its application to the actual problem.

Subsequently certain parts of the orbit of the meteors were subdivided into still

smaller portions, with the view of obtaining a closer approximation. Unfortunately the

mathematical investigations which Adams carried out on this subject have not been

published. They exist among his papers, together with a great amount of numerical work

connected with the calculations.

In 1877 Mr G. W. Hill published a memoir on the motion of the Moon's perigee,

in which he calculated that part of c which depends only upon m to fifteen places

of decimals by a new method in which the expansion in powers of m was avoided, the

numerical value of c being obtained by means of an infinite determinant. The publication

of this memoir led Adams to communicate to the Royal Astronomical Society in

November 1877 a brief notice of his own work in the same field, in which, after con-
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gratulating Mr Hill upon his investigation, he mentions that his own researches had
followed in some respects a parallel course. In particular he remarks that the differential

equation for z, the Moon's coordinate perpendicular to the ecliptic, presents itself naturally

in the same form as that to which Mr Hill had so skilfully reduced his differential

equations. In solving this equation, which was therefore of Mr Hill's standard form, he

fell upon the same infinite determinant as that considered by Mr Hill, and developed it

in a similar manner in a series of powers and products of small quantities, the coefficient

of each such term being given in a finite form. This development was continued as far

as the terms of the fourth order in 1868; and in 1875, when he resumed the subject,

the approximation was extended to terms of the twelfth order, which is the same degree

of accuracy as that to which Mr Hill had carried his researches. On making the

reductions requisite in order to render the two results comparable, he found that they

were in agreement with the exception of one of the terms of the twelfth order, and that

this discrepancy was due to a simple error of transcription. He states that the calculations

by which he had found the value of the determinant were very different in detail from

those required by Mr Hill's method, but that he had not had time to copy them out

from his old papers and put them in order. In this communication, therefore, he confined

himself to making known the result which he had obtained for the motion of the Moon's

node. After giving an outline of the method pursued, including the equation derived

from the infinite determinant, he arrives at the formulae by means of which the value

of g, as dependent only upon m, was obtained to fifteen places of decimals.

It is difficult to appreciate too highly the mathematical ability shown by Adams
and Hill in devising methods which did not require expansion in powers of m, and

which yielded with such wonderful accuracy these values of g and c. Apart, however,

from the mathematical and astronomical interest of the researches themselves, the co-

incidence of methods and ideas is very striking. But for the publication of Hill's memoir

it is probable that no account of these results of Adams's would have been published

in his lifetime, and it is not unlikely that he would never have put into writing his

views on the mathematical treatment of the lunar problem which give additional interest

to this short paper. As far back as 1853, in his memoir upon the secular acceleration,

he mentioned that the new terms in the expression of the Moon's coordinates occurred

to him some time before, when he was engaged in thinking over a new method of

treating the lunar theory, and it is well known that the theory itself, or problems

connected with it, constantly occupied his attention. In this paper of 1877 he states

that he had long been conviiiced that the most advantageous mode of treatment is by

first determining with all possible accuracy the inequalities which are independent of

e, e', and 7, and then in succession finding the inequalities which are of one dimension,

two dimensions, and so on with respect to these quantities. Thus, the coefficient of

any inequality in the Moon's coordinates would be represented by a series arranged in

powers and products of e, e, and 7 ; and each term in this series would involve a numerical

coefficient which is a function of m alone, and which admits of calculation for any given

value of m without the necessity of developing it in powers of m. This method is

particularly advantageous when the results are to be compared with those of an analytical

lunar theory such as Delaunay's, in which the eccentricities and the inclination are left

indeterminate, since each numerical coefficient admits of a separate comparison with its

/2
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analytical development in powers of m. He mentions also that, many years before, he

had obtained the values of the inequalities independent of the eccentricities and inclination

to a great degree of approximation, the coefficients of the longitude and those of the

reciprocal of the radius vector, or of the logarithm of the radius vector, being found

to ten or eleven places of decimals. Adams always preferred to treat the lunar theory

as far as possible by means of its special problems; and this was also the method

which he followed in his Cambridge lectures.

In 1878 he published a short paper on a property of the analytical expression for

the constant term in the reciprocal of the Moon's radius vector. Plana had found that

the coefficients of e^ and 7^^ in this term vanished when account was taken of terms in-

volving m^ and m', and Pontdcoulant, who carried the development further, had found

that this destruction of the terms in the coefficients still continued when the terms

involving m* and m° were included. Thinking it probable that these cases in which

the coefficient had been observed to vanish were merely particular cases of some more

general property, Adams was led to consider the subject from a new point of view,

and, so far back as 1859, he succeeded in proving that not only did these coefficients

necessarily vanish identically, but that the same held good also for coefficients which

were much more general, so that the coefficients of eV^ eV^ &c. 'fe'^, 7V*, &c. were also

identically equal to zero. Further reflection on the subject led him in 1868 to obtain

a simpler and more elegant proof of the property in question. He also obtained subse-

quently, in 1877, some very simple relations connecting the coefficients of e^ e^, and 7*.

Of this theorem he says himself that it "is remarkable for a degree of simplicity and
generality of which the lunar theory affords very few examples." We thus see that a

striking result—and one moreover which admitted of being isolated from the rest of

the lunar theory—was obtained in 1859, but was not published till nearly twenty years

afterwards, although in the meantime he had obtained another and more satisfactory

proof This illustrates the disinclination that Adams seems always to have felt to prepare

his work for publication; a disinclination which was mainly due to his desire to obtain

a still higher degree of simplification or perfection. The discovery of the additional

relations in 1877 shows that his attention was at that time still occupied with the
theorem of 1859.

• It may be remarked that Adams's shorter papers deserve more attention than their

mere length might seem to entitle them to, not only because they frequently consist

wholly of results derived from laborious researches, but also because they affijrd glimpses
of the nature and extent of the work with which he was occupied. For forty-five

years his mind was constantly directed to mathematical research relating principally to
astronomy; and it is evident that what he had accomplished is very inadequately
represented by what has been published. It is also noticeable that so few of his
papers should have appeared quite spontaneously: it frequently happened that he was
incited to give an account of something which he had done himself—probably years
before—by the publication of a paper in which the same ground was partially covered by
another investigator, and in several cases he was called upon to correct misapprehensions
which were leading others astray.

As already stated, there can be no doubt that he constantly allowed himself to
postpone the immediate publication of his researches, with the intention of effecting
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improvements in the processes and mode of representing the subject, or of attaining

to an even more accurate result. A striking instance of this innate craving for per-

fection is afforded, even as early as 1845, by his calculation of the second orbit of

the new planet. No able mathematician who is engaged upon a fruitful research can
continually defer publication with impunity : the subject opens before him ; his views

expand ; the earlier results, so interesting at the moment of discovery, lose their charm
in comparison with the problems still unsolved and the novel vistas of thought opened
out by them

;
and the rearrangement and rewriting of the old work^always an irksome

task—become intolerable when later and still unfinished developments on the same
subject are exciting the mind. In Adams's case the difficulty of satisfying himself,

and reaching his own standard of completeness, also contributed to his apparent

reluctance to publish his work. Those who knew him will remember his words when
pressed, "I have still some finishing touches to put to it." It was well known that

he made important researches upon the motion of Jupiter's satellites, and their pub-

lication was anxiously awaited. It does not appear that he ever made any serious

attempt to put his longer investigations in order for the press, though occasionally, as

his manuscripts on the different subjects increased in bulk, the feeling would come over

him strongly that it was time for him to do so. Although there is no similarity

between the simple and easy style of Adams's writings and the cold severity of

Gauss's, there is a certain resemblance in their mode of work. Each had the same

dislike to early or incomplete publication, and "Pauca sed matura" might have been

the motto of both. In beginning a new research, Adams rarely put pen to paper

until he had carefully thought out the subject, and when he proceeded to write out

the investigation he developed it rapidly and without interruption. His accuracy and

power of mind enabled him to map out the course of the work beforehand in his

head, and his mathematical instinct, combined with perfect familiarity with astronomical

ideas and methods, guided him with ease and safety through the intricacies and dangers

of the analytical treatments He scarcely ever destroyed anything he wrote, or per-

formed rough calculations ; and the manuscripts which he has left are written so

carefully and clearly that it is difficult to believe that they are not finished work

which has been copied out fairly. The sheets are generally dated, and during many
years he kept a diary of the work he had done each day.

His contributions to pure mathematics show the same power and excellence, and,

as the subject affords greater opportunities for the display of elegance and style, they

indicate even more plainly the attention he bestowed upon the form of his results,

as well as upon the substance. A paper communicated to the Royal Society in 1878

may be specially noticed, in which an expression is given for the product of two

Legendrian coefficients, and for the integral of the product of three. The extent of

his mathematical interests is perhaps best seen by looking over the series of papers

which he set in the Smith Prize Examination. These questions, which cover a wide

^ This method of working characterised him from the wrote out rapidly the problems he had already solved ' in

first, for in his Tripos Examination it was noticed that his head'." It may be mentioned here that in this exami-

"in the problem papers, when everyone was writing hard, nation he received more than double the marks of the

Adams spent the first hour in looking over the questions, Second Wrangler. This affords striking evidence of

scarcely putting pen to paper the while. After that he Adams's mental powers, for he was not >a rapid writer.
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field of mathematics, clearly indicate the bent of his mind and his favourite subjects

of study: they are also noticeable for a high degree of finish, which is very unusual

in examination questions.

Like Euler and Gauss, he took very great pleasure in the numerical calculation

of exact mathematical constants. We owe to him the calculation of thirty-one

Bernoullian numbers, in addition to the first thirty-one which were previously known.

The first fifteen were calculated by Euler, and the next sixteen by Rothe, the whole

thirty-one being given in vol. xx. of Crelle's Journal. Making use of Staudt's very

curious theorem with respect to the fractional part of a Bernoullian number, Adams

calculated all the numbers from B,^ to -Bga- The results were communicated to the

British Association at the Plymouth meeting in 1877, and were also published in

vol. Ixxxv. of Crelle's Journal. A much fuller account of the work, which was very

considerable in amount, appeared in an appendix to vol. xxil. of the Cambridge

Observations, where the process of calculation of the first, ^32, and of the last, B^, is

given in detail. Adams proved that if w be a prime number other than 2 or 3,

then the numerator of the nth. Bernoullian number is divisible by n. This afforded

a good test of the accuracy of the work.

Having thus at his command the values of sixty-two Bernoullian numbers, he

was tempted to apply them to the calculation of Euler's constant. For this purpose,

not only the Bernoullian numbers, but also the values of certain logarithms and sums

of reciprocals were required. He accordingly calculated the values of the logarithms

of 2, 3, 5, and 7 to 263 (afterwards extended to 273) decimal places, and by their

means obtained the value of Euler's constant to 263 places. He also calculated the

value of the modulus of the common logarithms to 273 places. The papers containing

these results appeared in the Proceedings of the Royal Society for 1878 and 1887.

Anyone who has had experience of calculations extending to a great many decimal

places is aware of the difiiculty of manipulating with absolute accuracy the long lines

of figures ; but this was an enjoyment to Adams, and the work, as carried out with
consummate care and neatness, in his beautiful figures, is an interesting memorial of

the patience and skill that he devoted to any work upon which he was engaged. *

Some may think that the portion of his own time occupied by these calculations

might have been more advantageously spent : but there is a charm of its own in

carrying still further the determination of the historic constants of mathematics, which
has exercised its attraction over the greatest minds. Those who feel the least possible

interest in calculation for its own sake, and even dislike ordinary arithmetical com-
putations, have been unable to resist the fascination of doing their share towards the
calculation of the absolute numerical magnitudes which are so intimately connected
with the foundations of the sciences dealing with abstract quantity. There is a special

pleasure also in applying the resources of modern mathematics to obtain the values
of these incommensurable constants to such an incredible degree of accuracy, and in
verifying the distant figures by methods depending upon subtle principles and com-
plicated symbolic processes, of the absolute truth of which we thus obtain so striking an
assurance.

Adams had the greatest possible admiration for Newton, and perhaps no one has
ever devoted more careful and critical attention to Newton's mathematical writings,
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especially the Principia. When Lord Portsmouth presented to the University, in 1872,
the large mass of scientific papers which Newton left at his death, the arrangement and
cataloguing of the mathematical portion of the collection was willingly undertaken by
Adams. It was a difficult and laborious task, extending over years, but one which
intensely interested him, and upon which he spared no pains. He found that these
papers threw light upon the remarkable extent to which Newton had carried the lunar
theory, the method by which he had obtained his table of refractions (showing that the
formula known as Bradley's was really due to Newton), and the manner in which he had
determined the form of the solid of least resistance. In several instances he succeeded
in tracing the methods that Newton must have used in order to obtain the numerical
results which occurred in the papers. The solution of the enigmas presented by these

numbers written on stray papers, without any clue to the source from which they were
derived, was the kind of work in which all Adams's skill, patience, and industry found

full scope, and his enthusiasm for Newton was so great that he had no thought of time
when so employed. His mind bore naturally a great resemblance to Newton's in many
marked respects, and he was so penetrated with Newton's style of thought that he was
peculiarly fitted to be his interpreter. Only a few intimate friends were aware of the

immense amount of time he devoted to these manuscripts or the pleasure he derived

from them. In 1888 the Cambridge University Press published a catalogue of the

papers, the mathematical portion of which was wholly written by Adams'.

In 1887, on the occasion of the bicentenary of the publication of the Principia, he

was asked by Trinity College to deliver a commemorative address. Unfortunately the

state of his health prevented him from undertaking a task which he alone could have

adequately performed; but, with the kindness which all who sought his help invariably

received, he most freely placed all the stores of his knowledge at the disposal of the

present writer, who was appointed in his stead.

He was frequently asked to undertake calculations in connexion with eclipses or

other astronomical phenomena, and he never hesitated to lay aside his own work in

order to comply with such requests. Mr Downing has written :
" His readiness to help,

and his magnificent ability to help, will long be remembered at the Nautical Almanac

Office," and similar words rriight be used with reference to the invaluable assistance which

he so willingly gave in other quarters. For more than forty years he rendered constant

' After proving a general proposition from which it this point, and he referred to the matter in a communioa-

foUows that the disturbing action of the Sun necessarily tion on the lunar theory which he made to the Plymouth

produces a continual advance of the Moon's perigee, meeting of the British Association in 1877. His remarks

Newton gave a numerical example which has been on the subject were not put into writing by himself,

generally regarded as his calculation of the theoretical but a verbatim report appeared in the Athenceum for

amount of this advance in the case of the Moon {Lib. I. August 25, 1877. He also referred to Newton's ex-

Sect. IX. Prop. xlv. Cor. 2). The concluding words " Apsis planation of the motion of the perigee, and to his

lunse est duple velocior circiter, " which have been quoted theory of astronomical refraction, in a communication to

in support of the view that the motion of the lunar the Montreal meeting in 1884. The catalogue referred

apsides is the question considered in the corollary, were to in the text, which was published subsequently to the

however intended to have exactly the opposite meaning, dates of these communications, contains a brief statement

as can be shown by comparing the three editions of the of all the principal results which he derived from the

Principia. Adams found that some of the papers in the examination of the manuscripts.

Portsmouth Collection afforded further confirmation on
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service to the Royal Astronomical Society, both as a referee and as a contributor to the

annual reports. These references and notices often cost him much time and thought.

He was President of the Royal Astronomical Society for the second time in 1874-76,

when the medal was awarded to D'Arrest and to Le Verrier. In 1870, as Vice-President,

he delivered the address on the presentation of the medal to Delaunay, of whose general

method of treating the lunar theory he had the greatest possible admiration. In 1881

he was offered the position of Astronomer Royal, which he declined. In 1884 he was

one of the delegates for Great Britain to the International Prime Meridian Conference at

Washington. He was also present at the meetings of the British Association at Montreal

and of the American Association at Philadelphia in the same year. This visit to America

afforded him great enjoyment and gratification.

He received the honorary degree of D.C.L. from Oxford, of LL.D. from Dublin and

Edinburgh, and of Doctor in Science from Bologna and from his own university. He was

a correspondent of the French Academy, of the Academy of Sciences of St Petersburg,

and of numerous other societies.

As Lowndean Professor he lectured during one term in each year, generally on

the lunar theory, but sometimes on the theory of Jupiter's satellites, or the figure of the

Earth. His lectures on these subjects have been prepared for press by Professor

Sampson, who has also examined Adams's other mathematical manuscripts and arranged

for publication those which were sufficiently complete.

During Adams's tenure of the directorship of the Cambridge Observatory in 1870

a fine transit circle by Simms was added to its equipment. This instrument has been

employed in observing one of the zones of the " Astronomische Gesellschafb " programme.

The zone assigned to the observatory was that lying between 25° and 30° of north

declination.

Adams was a man of learning as well as a man of science, and his thoughts and

interests were far from being restricted to astronomy and mathematics. He was an

omnivorous reader, and his memory being exact and retentive, there were few subjects

upon which he was not possessed of accurate information. Botany, geology, history, and

divinity, all had their share of his eager attention. He derived great enjoyment also

from novels, and when engaged in severe mental work always had one on hand. Among
his more marked tastes may be mentioned his love of early printed books. His collection,

containing about eight hundred volumes, eighty of which belong to the fifteenth century,

was bequeathed by him to the University Library. The works relate principally to

mathematics or astronomy, theology, medicine, and the occult sciences; but he seems

always to have bought any fine old book that took his fancy. He was so little given

to talk about himself or his pursuits that probably but few of his friends were aware

of his affection for black-letter books. It may be mentioned that his other mathe-
matical books were bequeathed to the Libraries of St John's College and Pembroke
College.

No one who knew him superficially, or who judged only by his quiet manner, could

have imagined how deeply he was affected by great political questions or passing events.

In times of public excitement (such as during the Franco-German war) his interest was
so intense that he could scarcely work or sleep. His love of nature in all its forms was
a source of never-failing delight to him, and he was never happier than when wandering
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over the cliffs and moors of his native county. Strangers who first met him were in-
variably struck by his simple and unaffected manner. He was a delightful companion,
always cheerful and genial, showing in society but few traces of his really shy and
retiring disposition. His nature was s3Tnpathetic and generous, and in few men have
the moral and intellectual qualities been more perfectly balanced. An attempt to sketch
his character cannot be more fitly closed than in the words of Dr Donald MacAlister,
who knew him well, and attended him in his last illness:

—"His earnest devotion to

duty, his simplicity, his perfect self-lessness, were to all who knew his life at Cambridge
a perpetual lesson, more eloquent than speech. From the time of his first great dis-

covery scientific honours were showered upon him, but they left him as they found
him—modest, gentle, and sincere. Controversies raged for a time around his name, national

and scientific rivalries were stirred up concerning his work and its reception, but he took
no part in them, and would generously have yielded to others' claims more than his

greatest contemporaries would allow to be just. With a single mind for pure knowledge
he pursued his studies, here bringing a whole chaos into cosmic order, there vindicating

the supremacy of a natural law beyond the imagined limits of its operation; now tracing

and abolishing errors that had crept into the calculations of the acknowledged masters

of his craft, and now giving time and strength to resolving the self-made difficulties

of a mere beginner, and all the while with so little thought of winning recognition or

applause that much of his most perfect work remained for long, or still remains,

unpublished."
,

He was suddenly attacked by severe illness at the end of October 1889, but he

recovered sufficiently to resume his mathematical work in the usual way for several months.

In June of the following year he was again attacked by an illness from which he never

completely recovered, and he passed away on the early morning of January 21, 1892,

after being confined to his bed for ten weeks. The funeral service took place in Pembroke

College Chapel, and he was interred in St Giles's Cemetery, on the Huntingdon Road.

There were many who thought that his resting-place should have been in Westminster

Abbey, and a royal wish was expressed to this effect ; but it is perhaps more fitting

that he should lie in this quiet graveyard close to the Observatory where he passed

so many happy and peaceful years.

On February 20, 1892, a public meeting was held at St John's College, with the view

of taking steps to place a bust or other memorial of him in Westminster Abbey. The

proceedings on this representative occasion bore eloquent testimony to the admiration and

affection in which he was held by his friends, and to the widespread wish throughout

the country for such a memorial to one who was not only a great but a good man\

No suitable site for a bust could be found in the Abbey, but a medallion has been

placed in an admirable position close to the grave of Newton. This medallion, executed

by Mr Bruce Joy, was unveiled on May 9, 1895, after a ceremony in the Jerusalem

Chamber, at which addresses were delivered by leading members of the University and

others. A bust, also executed by Mr Bruce Joy, which represents Adams in the

later years of his life, was presented to St John's College by Mrs Adams in the same

1 A report of this meeting was published in a special number of the Cambridge University Reporter, March 10,

1892, p. 607.

A. 9
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year. In 1888 an excellent portrait was painted by Herkomer, which is now in the

Combination Room of Pembroke College; a replica is in the possession of Mrs Adams.

The portrait in the Combination Room of St John's College was painted by Mogford

in 1850—51. The Royal Astronomical Society also possesses a bust of Adams which

was executed when he was a young man.

J. W. L. G.
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PROFESSOR CHALLIS'S FIRST REPORT TO THE CAMBRIDGE

OBSERVATORY SYNDICATE UPON THE NEW PLANET^.

At a meeting of the Observatory Syndicate, held at the Observatory on December 4<,

for the despatch of ordinary business, a strong desire having been expressed by the

Vice-Chancellor and the members of the Syndicate generally, to receive from me a

Special Report of Observatory proceedings relating to the newly-discovered Planet, drawn

up in such a manner, and in such detail, as would enable them to lay complete information

on the subject before the members of the Senate, I considered it to be my duty at once

to comply with this request. A new body of the solar system has been discovered, by

means depending on the farthest advances hitherto made in theoretical and practical

astronomy, and confirming, in a most remarkable manner, the theory of universal

gravitation. It is, therefore, on every account desirable that the members of the Senate

should be made fully acquainted with the part which has been taken by the Cambridge

Observatory, relatively to this important extension of astronomical science. The obser-

vations I shall have to speak of, and the reasons for undertaking them, are so closely

connected with theoretical calculations performed by a member of this University, to

account for anomalies in the motion of the planet Uranus, that the history of the former

necessarily involves that of the latter. I hope that for this reason, and because of the

peculiar nature of the circumstances, I may be allowed to make a communication less

formal and restricted in its character, than a mere Report of Observatory proceedings.

The tables with which the observations of the planet Uranus have been uniformly

compared, were published by A. Bouvard in 1821. They are founded on a continued

series of observations extending from 1781, the year of its discovery, to 1821. Previous

to 1781, it had been accidentally observed seventeen times as a fixed star, the earliest

observation of this kind being one by Flamsteed in 1690. Bouvard met with a difficulty

in forming his Tables. On an attempt to found them upon the ancient, as well as

the modem, observations, it appeared that the theoretical did not agree with the observed

course of the planet. He thought this might be attributed to the imperfection of the

ancient observations, and consequently rejected all previous to 1781, in the formation of

the Tables finally published. These Tables represent well enough the observations in

the forty years from 1781 to 1821; but very soon after the latter year, new errors

began to show themselves, which have gone on increasing to the present time. It

1 This report, which is headed 'Special Beport of view to the discovery of the new planet." This preamble

ProceedingsintheObaervatoryrelative to the new Planet,' is signed by the syndics, H. Philpott (Viee-ChaneeUor),

is signed by Challis and dated December 12, 1846. It is John Graham, B. Chapman, W. Whewell, Joshua King,

preceded by the following introductory remarks. "The Geo. Peacock, James Cartmell, Chas. W. Goodwin,

syndicate appointed to visit the Observatory, conceiving W. C. Mathison, G. G. Stokes. Professor Challis issued

the subject at the present time to possess peculiar interest, a second report to the Syndicate, dated March 22, 1847,

beg leave to submit to the Senate the following statement relating to the subsequent observations of the new

of Professor Challis, describing the course of observations, planet. This second report was reprinted in the As-

founded on the theoretical calculations of Mr Adams, of tronomische Nachrichten (Vol. xxv. col. 309).

St John's College, and made at the Observatory with a

5-2
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was now evident that the ancient observations had been rejected on insuflScient grounds,

and that from some unknown cause the theory was in fault. Were the Tables cal-

culated inaccurately? The difference between observation and theory (amounting in

1841 to 96" of geocentric longitude) was too great, and Bouvard's calculations were

made with too much care to allow of this explanation. The effect of small terms

neglected in the calculation of the perturbations caused by Jupiter and Saturn, could

not be supposed to bear any considerable proportion to the observed amount of error.

This state of the theory suggested to several astronomers the idea of disturbances,

caused by an undiscovered planet more distant than Uranus. But there is no evidence

of this hypothesis having been put to the test of calculation previous to 1843. The

usual problem of perturbations is to find the disturbing action of one body on another,

by knowing the positions of both. Here an inverse problem, hitherto untried, was to

be solved; viz. from known disturbances of a planet in known positions, to find the

place of the disturbing body at a given time. Mr Adams, Fellow of St John's College,

showed me a memorandum made in 1841, recording his intention of attempting to solve

this problem as soon as he had taken his degree of B.A. Accordingly, after graduating

in January 1843, he obtained an approximate solution by supposing the disturbing body

to move in a circle at twice the distance of Uranus from the Sun. The result so far

satisfied the observed anomalies in the motion of Uranus, as to induce him to enter upon

an exact solution. For this purpose he required reduced observations made in the years

1818—1826, and requested my intervention to obtain them from Greenwich. The

Astronomer Royal, on my application, immediately supplied (February 15, 1844) all the

heliocentric errors of Uranus in longitude and latitude, from 17-54 to 1830, completely

reduced. Mr Adams was now furnished with ample data from observation, and his next

care was to ascertain whether Bouvard's theoretical calculations were correct enough for

his purpose. He tested the accuracy of the principal terms of the perturbations caused

by Jupiter and Saturn, and concluded that the small terms which Bouvard had not

taken into account would not sensibly affect the final results, the chief of them being

either of long period or of a period nearly equal to that of Uranus. Besides which he

introduced iato the theory several corrections which had been derived from observation

and calculation by different astronomers since 1821. The calculations were completed in

1845. In September of that year, Mr Adams placed in my hands a paper containing

numerical values of the mean longitude at a given epoch, longitude of perihelion, eccentricity

of orbit, mass, and geocentric longitude, September 30, of the supposed disturbing planet,

which he calls by anticipation "The New Planet," evidently showing the conviction in

his own mind of the reality of its existence. Towards the end of the next month, a

communication of results slightly different was made to the Astronomer Royal, with the

addition of what was far more important, viz. a list of the residual errors of the mean
longitude of Uranus, for a period extending from 1690 to 1840, after taking account of

the disturbing effect of the supposed planet. This comparison of observation with the

theory implied the determination of all the unknown quantities of the problem, both the

corrections of the elements of Uranus and the elements of the disturbing body. The
smallness of the residual errors proved that the new theory was adequate to the expla-

nation of the observed anomalies in the motion of Uranus, and that as the error of

longitude was corrected for a period of at least 130 years, the error of radius vector was
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also corrected. As the calculations rested on an assumption, made according to Bode's

law, that the mean distance of the disturbing planet was double that of Uranus, without

the above-mentioned numerical verification, no proof was given that the problem was

solved or that the elements of the supposed planet were not mere speculative results.

The earliest evidence of the complete solution of an inverse problem of perturbations is

to be dated from October 1845.

Although the comparison of the theory with observation proved synthetically that the

assumed mean distance was not very far from the truth, it was yet desirable to try the

effect of an alteration of the mean distance. Mr Adams accordingly went through the

same calculations as before, assuming a mean distance something less than the double of

that of Uranus, and obtained results which indicated a better accordance of the theory

with observation, and led him to the conclusion, which has since been confirmed by

observation, that the mean distance should be still farther diminished. This second

solution taken in conjunction with the first may be considered to relieve the question of

every kind of assumption. The new elements of the disturbing body, and the results of

comparing the observed with the theoretical mean longitudes of Uranus, were communi-

cated to the Astronomer Royal at the beginning of September 1846. These were

accompanied by numerical values of errors of the radius vector, the Astronomer Royal

having inquired, after the reception of the first solution, whether the error of radius

vector, known to exist from observation, was explained by this theory. It would be

wrong to infer that Mr Adams was not prepared to answer this question till he had gone

through the second solution. Errors of radius vector were as readily deducible from the

first solution as from the other.

The preceding details are intended to point out the circumstances which led

astronomers to suspect the existence of an additional body of the solar system, and the

theoretical reasons there were for undertaking to search for it. No one could have

anticipated that the place of the unknown body was indicated with any degree of exact-

ness by a theory of this kind. It might reasonably be supposed, without at all mistrusting

the evidence which the theory gave of the existence of the planet, that its position was

determined but roughly, and that a search for it must necessarily be long and laborious.

This was the view I took, and consequently I had no thought of commencing the search

in 1845, the planet being considerably past opposition at the time Mr Adams completed

his calculations. The succeeding interval to midsummer of 1846 was a period of great

astronomical activity, the planet Astrsea, Biela's double comet, and several other comets,

successively demanding attention. During this time I had little communication with

Mr Adams respecting the new planet. Attention was again called to the subject by the

publication of M. Le Verrier's first researches in the Comptes Bendus for June 1, 1846.

At a meeting of the Greenwich Board of Visitors held on June 29, at which I was

present, Mr Airy announced that M. Le Vender had obtained very nearly the same

longitude of the supposed planet as that given by Mr Adams. On July 9 I received a

letter from Mr Airy, in which he suggested employing the Northumberland Telescope in

a systematic search for the planet, offering at the same time to send an assistant from

Greenwich, in case I declined undertaking the observations. This letter was followed by

another dated July 13, containing suggestions respecting the mode of conducting the

observations, and an estimation of the amount of work they might be expected to require.
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In my answer, dated July 18, 1 signified the determination I had come to of undertaking

the search. Various reasons led me to this conclusion. I had already, as Mr Adams can

testify, entertained the idea of making these observations; the most convenient time for

commencing them was now approaching; and the confirmation of Mr Adams's theoretical

position by the calculations of M. Le Verrier appeared to add very greatly to the pro-

bability of success. I had no answer to make to Mr Airy's ofifer of sending an assistant,

as I understood the acceptance of it to imply the relinquishing on my part of the

undertaking.

I have now to speak of the observations. The plan of operations was formed mainly

on the suggestions contained in Mr Airy's note of July 13. It was recommended to

sweep over, three times at least, a zodiacal belt 30° long and 10° broad, having the

theoretical place of the planet at its centre; to complete one sweep before commencing

the next; and to map the positions of the stars. The three sweeps, it was calculated,

would take 300 hours of observing. This extent of work, which will serve to show the

idea entertained of the difi&culty of the undertaking before the planet was discovered,

did not appear to me greater than the case required. It will be seen that the plan did

not contemplate the use of hour xxi. of the Berlin Star Maps, the publication of which

was equally unknown at that time to Mr Airy and myself It may be proper here to

explain that the construction of a good star-map requires a great amount of time and

labour both in observing and calculating, and that precisely this sort of labour must be

gone through to conduct a search of the kind I had undertaken. The stars must first

be mapped before the search can properly be said to begin. With a map ready made, the

detection of a moving body, as it happened in this instance, might be effected on a com-

parison of the heavens with the map by mere inspection. Not having the advantage of

such a map, I proceeded as follows. I noted down very approximately the positions of

all the stars to the 11th magnitude that could be conveniently taken as they passed

through the field of view of the telescope, the breadth of the field with a magnifying

power of 166 being 9', and the telescope being in a fixed position. When the stars came
thickly, some were necessarily allowed to pass without recording their places. Wishing to

include all stars of the 11th magnitude, I proposed, in going over the same region ar

second time, to avail myself of an arrangement peculiar to the Northumberland Equatorial,

the merit of inventing which is due to Mr Airy. The Hour-circle, Telescope, and Polar

Frame are movable by clockwork, which may be regulated to sidereal time nearly.

While this motion is going on, the Telescope and Polar Frame are movable relatively

to the Hour-circle, by a tangent-screw apparatus, and a handle extending to the observer's

seat. This contrivance enables the observer to measure at his leisure differences of Eight
Ascension however small, and therefore meets the case of stars coming in groups. The
observations made by this method might include all the stars it was thought desirable to

take, and therefore might include all the stars taken in the first sweep. The discovery

of the planet would result from finding that any star in the first sweep was not in its

position in the second sweep. If two sweeps failed in detecting the planet among the
stars of the first sweep, it might be among the stars of the second, which would be
decided by taking a third sweep of the same kind as the second. It will appear that
this plan carried out would not only detect the planet if it were in the region explored,

but would also, in case of failure, enable the observer to pronounce that it was not in
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that region. The second mode of observing required the aid of my two assistants,

Mr Morgan and Mr Breen, in reading off and recording the observations.

I commenced observing July 29, employing on that day the first method, with

telescope fixed. The next day I observed according to the second method, with telescope

moving. On August 4, the telescope was fixed as to Eight Ascension, but was moved
in Declination in a zone of about 70' breadth, the intention of the observations of that

day being to record points of reference for the zones of 9' breadth. On August 12,

the fourth day of observing, I went over the same zone, telescope fixed, as on July 30

with telescope moving. Soon after August 12, I compared, to a certain extent, the

observations of that day, with the observations of July 30, taken with telescope moving;

and finding, as far as I carried the comparison, that the positions of July 30 included

all those of August 12, I felt convinced of the adequacy of the method of search I

had adopted. The observations were continued with diligence to September 29, chiefly

with telescope fixed, and were made early in Right Ascension for the purpose of exploring

as large a space as possible before I should be compelled to desist by the approach of

daylight. On October 1, I heard that the planet was discovered by Dr Galle, at Berlin,

on September 23. I had then recorded 3150 positions of stars, and was making pre-

parations for mapping them. The following results were obtained by a discussion of

the observations after the announcement of the discovery.

On continuing the comparison of the observations of July 30 and August 12, I

found that No. 49, a star of the 8th magnitude in the series of August 12, was

wanting in the series of Jiily 30. According to the principle of the search, this was the

planet. It had wandered into the zone in the interval between July 30 arid August 12.

I had not continued the former comparison beyond No. 39, probably from the accidental

circumstance that a line was there drawn in the memorandum-book in consequence of

the interruption of the observations by a cloud. After ascertaining the place of the

planet on August 12, I readily inferred that it was also among the reference stars taken

on August 4. Thus, after four days of observing, two positions of the planet were obtained.

This is entirely to be attributed to my having, on those days, directed the telescope

towards the planet's theoretical place, according to instructions given in a paper Mr Adams

had the kindness to draw up for me. I would also beg to call attention to the fact that,

after August 12, the planet was discoverable by a closet-comparison of the observations,

a method of observing, depending on novel and ingenious mechanism, having been adopted

by which I could say of each star, to No. 48, "This is not a planet," and of No. 49,

"This is a planet." I lost the opportunity of announcing the discovery by deferring the

discussion of the observations, being much occupied with reductions of comet observations,

and little suspecting that the indications of theory were accurate enough to give a chance

of discovery in so short a time. On September 29, I saw, for the first time, the com-

munication presented by M. Le Verrier to the Paris Academy on August 31. I was

much struck with the manner in which the author limits the field of observation; and

with his recommending the endeavour to detect the planet by its disk. Mr Adams had

already told me that, according to his estimation, the planet would not be less bright

than a star of the ninth magnitude. On the same evening I swept a considerable breadth

in Declination, between the limits of Eight Ascension marked out by M. Le Verrier, and

I paid particular attention to the physical appearance of the brighter stars. Out of
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300 stars, whose positions I recorded that night, I fixed on one which appeared to have

a disk, and which proved to be the planet. This was the third time it was observed

before the announcement of the discovery reached me. This last observation may be

regarded as a discovery of the planet, due to the good definition of the noble instru-

ment which we owe to the munificence of our Chancellor.

From the reduced places of the planet, on August 4 and August 12, and from

observations since its discovery extending to October 13, Mr Adams calculated, at my
request, values of its heliocentric longitude at a given epoch, its actual distance from

the Sun, longitude of the node, and inclination of the orbit, which were published as

early as October 17. I am now diligently observing the planet -with the meridian instru-

ments, and when daj^light prevents its being seen on the meridian, I propose carrying on

the observations as long as possible with the Northumberland Equatorial, for the purpose

of obtaining data for a further approximation to the elements df the orbit.

My report of proceedings relating to the planet here terminates. I beg permis-

sion to add a few remarks, which the facts I have stated seem to call for. It will

appear by the above account, that my success might have been complete, if I had trusted

more implicitly to the indications of the theory. It must, however, be remembered, that

I was in quite a novel position : the history of astronomy does not afiford a parallel instance

of observations undertaken entirely in reliance upon deductions from theoretical calcula-

tions, and those too of a kind before untried. As the case stands, a very prominent part

has been taken in the University of Cambridge, with reference to this extension of the

boundaries of astronomical science. We may certainly assert to be -facts, for which there

is documentary evidence, that the problem of determining, from perturbations, the unknown

place of the disturbing body, was first solved here ; that the planet was here first sought

for; that places of it were here first recorded; and that approximate elements of its orbit

were here first deduced from observation. And that all this may be said, is entirely due

to the talents and labours of one individual among us, who has at once done honour to

the University, and maintained the scientific reputation of the country. It is to be re-

gretted that Mr Adams was more intent upon bringing his calculations to perfection, than

on establishing his claims to priority by early publication. Some may be of opinion, that,

in placing before the first astronomer of the kingdom results which showed that he had

completed the solution of the problem, and by which he was, in a manner, pledged to

the production of his calculations, there was as much publication as was justifiable on the

part of a mathematician whose name was not yet before the world, the theory being one

by which it was possible the practical astronomer might be misled. Now that success has

attended a different course, this will probably not be the general opinion. I should

consider myself to be hardly doing justice to Mr Adams, if I did not take this opportunity

of stating, from the means I have had of judging, that it was impossible for any one to

have comprehended more fully and clearly all the parts of this intricate problem; that

he carefully considered all that was necessary for its exact solution; and that he had a

firm conviction, from the results of his calculations, that a planet was to be found.
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1.

RESULTS OF CALCULATIONS OF THE ELEMENTS OF AN EXTERIOR
PLANET, WHICH WILL ACCOUNT FOR THE OBSERVED IRREGU-

LARITIES IN THE MOTION OF URANUS.

[From the Monthly Notices of the Royal Astronomical Society, Vol. vii. (1846). Papers

delivered to the Astronomer Royal Oct. 21, 1845 and Sept. 2, 1846.]

I.

According to my calculations, the observed irregularities in the motion of

Uranus may be accounted for by supposing the existence of an exterior

planet, the mass and orbit of which are as follows :

—

Mean Distance (assumed nearly in accordance

with Bode's law) 38-4

Mean Sidereal Motion in 365-25 days r30'-9

Mean Longitude, 1st October, 1845 323° 34'

Longitude of Perihelion 315° 55'

Eccentricity O'lGlO

Mass (that of the Sun being unity) 0-0001656.

For the modern observations I have used the method of normal places,

taking the mean of the tabular errors, as given by observations near three

consecutive oppositions, to correspond with the mean of the times ; and

the Greenwich observations have been used down to 1830 : since which,

A. 1
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the Cambridge and Greenwich observations, and those given in the Astro-

nomische Nachrichten, have been made use of. The following are the

remaining errors of mean longitude :

—

Observation — Theory.

1780 +6'-27 1 801 -d-04 1822 +0-30

1783 -0-23 1804 +1-76 1825 +1'92

1786 -0-96 1807 -0-21 1828 +2-25

1789 +1-82 1810 +0-56 1831 -1-06

1792 -0-91 1813 -0-94 1834 -1-44

1795 +0-09 1816 -0-31 1837 -1-62

1798 -0-99 1819 -2-00 1840 +1-78

The error for 1780 is concluded from that for 1781 given by observation,

compared with those of four or five following years, and also with Lemon-

nier's observations in 1769 and 1771.

For the ancient observations, the following are the remaining errors :

—

Observation — Theory.
\

n If u

1690 +44-4 1750 —1-6 1763 — 5-1

1712 + 6-7 1753 +5-7 1769 + 0-6

1715 - 6-8 1756 -4-0 1771 +11-8

The errors are small, except for Flamsteed's observation of 1690. This'

being an isolated observation, very distant from the rest, I thought it

best not to use it in forming the equations of condition. It is not

improbable, however, that this
^
error might be destroyed by a small change

in the assumed mean motion of the planet.

II.

In the investigation, the results of which I communicated to you last

October, the mean distance of the supposed disturbing planet is assumed
to be twice that of Uranus. Some assumption is necessary in the first

instance, and Bode's law renders it probable that the above distance is

not very remote from the truth : but the investigation could scarcely be

considered satisfactory while based on anything arbitrary ; and I therefore
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determined to repeat the calculation, making a different hypothesis as to

the mean distance. The eccentricity also resulting from my former calcu-

lations was far too large to be probable ; and I found that, although the

agreement between theory and observation continued very satisfactory down
to 1840, the difference in subsequent years was becoming very sensible,

and I hoped that these errors, as well as the eccentricity, might be

diminished by taking a different mean distance. Not to make too violent

a change, I assumed this distance to be less than the former value by
about ;y5th part of the whole. The result is very satisfactory, and appears

to shew that, by stiU further diminishing the distance, the agreement

between the theory and the later observations may be rendered complete,

and the eccentricity reduced at the same time to a very small quantity.

The mass and the elements of the orbit of the supposed planet, which

result from the two hypotheses, are as follows :

—

Hypothesis I. Hypothesis H.

(.4=0-5) (^=0-515)

Mean longitude of Planet, 1st Oct. 1846... 325° 8' 323° 2'

Longitude of Perihelion 315° 57' 299° 11'

Eccentricity 0-16103 0-12062

Mass (that of Sun being 1) 0-00016563 0-00015003

The investigation has been conducted in the same manner in both

cases, so that the differences between the two sets of elements may be con-

sidered as wholly due to the variation of the fundamental hypothesis. The

foUo^ving table exhibits the differences between the theory and the obser-

vations which were used as the basis of calculation. The quantities given

are the errors of mean longitude, which I found it more convenient to

employ in my investigations than those of the ti^e longitude.

Ancient Observations.

Date.



4 RESULTS OF CALCULATIONS OF THE [l

Modern Observations.

„ , (Obs.- Theory.) rvftte
(Obs. - Theory.)

^^^- Hypoth. I. Hypotli. II.
"***• Hypoth. I. Hypoth. JI.

1780 +0-27 +0-54 18 13 -0-94 -TOO

1783 -0-23 -0-21 1816 -0-31 -0-46

1786 -0-96 -1-10 1819 -2-00 -2-19

1789 +1-82 +1-63 1822 +0-30 +0-14

1792 -0-91 -1-06 1825 +1-92 +1-87

1795 +0-09 +0-04 1828 +2-25 +2-35

1798 -0-99 -0-93 1831 -1-06 -0-82

1801 -0-04 +0-11 1834 -1-44 -1-17

1804 +1-76 +1-94 1837 -1-62 -1-53

1807 -0-21 -0-08 1840 +1-73 +1-31

1810 +0-56 +0-61

The greatest difference in the above table, viz. that for 1771, is

deduced from a single observation, whereas the difference immediately-

preceding, which is deduced from the mean of several observations, is much
smaller. The error of the tables for 1780 is found by interpolating between

the errors given by the observations of 1781, 1782, and 1783, and those

of 1769 and 1771. The, differences between the results of the two hypo-

theses are exceedingly small till we come to the last years of the series,

and become sensible precisely at the point where both sets of results

begin to diverge from the observations ; the errors corresponding to the

second hypothesis being, however, uniformly smaller. The errors given by
the Greenwich Observations of 1843 are very sensible, being for the first

hypothesis -I- 6""84, and for the second + 5"'50. By comparing these errors,

it may be inferred that the agreement of theory and observation, would
CL

be rendered very close by assuming — = 0*57, and the corresponding mean

longitude on the 1st October, 1846, would be about 315° 20', which I am
inclined to think is not far from the truth. It is plain also that the

eccentricity correspondmg to this value of — , would be very small. In
ct

consequence of the divergence of the results of the two hypotheses, still

later observations would be most valuable for correcting the distances, and
I should feel exceedingly obliged if you would kindly communicate to me
two normal places near the oppositions of 1844 and 1845.
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As Flamsteed's first observation of Uranus (in 1690) is a single one,

and the interval between it and the rest is so large, I thought it unsafe to

employ this observation in forming the equations of condition. On comparing

it with the theory, I find the difference to be rather large, and greater for

the second hypothesis than for the first, the errors being +44"* 5 and +50"'0

respectively. If the error be supposed to change in proportion to the change

of mean distance, its value corresponding to — = 0"57; will be about +70",

and the error in the time of transit will be between 4' and 5°. It would

be desirable to ascertain whether Flamsteed's manuscripts throw any light

on this point.

The corrections of the tabular radius vector of Uranus, given by the

theory for some late years, are as follows :

—

Date. Hypoth. I. Hypoth. II.

1834 +0-005051 +0-004923

1840 +0-007219 +0-006962

1846 +0-008676 +0-008250

The correction for 1834 is very nearly the same as that which you

have deduced from observation, in the Astronomische Nachrichten ; but the

increase in later years is more rapid than the observations appear to give

it : the second hypothesis, however, still having the advantage.

I am at present employed in discussing the errors in latitude, with

the view of obtaining an approximate value of the inclination and position

of the node of the new planet's orbit ; but the perturbations in latitude

are so very small that I am afraid the result will not have great weight.

According to a rough calculation made some time since, the inchnation

appeared to be rather large, and the longitude of the ascending node to

be about 300°; but I am now treating the subject much more completely,

and hope to obtain the result in a few days.

I have been thinking of drawing up a brief account of my investigation

to present to the British Association.

Note. The mass was found to be three times that of Uranus, and

it was thence inferred and stated to Professor Challis that the brightness

would not be below that of a star of the ninth magnitude.



2.

AN EXPLANATION OF THE OBSERVED IRREGULARITIES IN THE MOTION
OF URANUS, ON THE HYPOTHESIS OF DISTURBANCES CAUSED BY
A MORE DISTANT PLANET; WITH A DETERMINATION OF THE MASS,

ORBIT, AND POSITION OF THE DISTURBING BODY.

[From the Memoirs of the Royal Astronomical Society, Vol. xvi. (1847). Appendix to

Nautical Almanack (1851). Read November 13, 1846.]

1. The irregularities in the motions of Uranus have for a long time

engaged the attention of Astronomers. "When the path of the planet became

approximately known, it was found that, previously to its discovery by »

Sir W. Herschel in 1781, it had several times been observed as a fixed

star by Flamsteed, Bradley, Mayer, and Lemonnier. Although these obser-

vations are doubtless very far inferior in accuracy to the modern ones, they

must be considered valuable, in consequence of the great extension which
they give to the observed arc of the planet's orbit. Bouvard, however, to

whom we owe the tables of Uranus at present in use, found that it was
impossible to satisfy these observations without attributing much larger

errors to the modern observations than they admit of, and consequently

founded his Tables exclusively on the latter. But, in a very few years,

sensible errors began again to shew themselves, and, though the tables

were formed so recently as 1821, their error at the present time exceeds

two minutes of space, and is still rapidly increasing. There appeared,

therefore, no longer any sufficient reason for rejecting the ancient obser-
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vations, especially since, with the exception of Flamsteed's first observation,

which is more than twenty years anterior to any of the others, they are

mutually confirmatory of each other.

2. Now that the discovery of another planet has confirmed in the

most brilliant manner the conclusions of analysis, and enabled us with

certainty to refer these irregularities to their true cause, it is unnecessary

for me to enter at length upon the reasons which led me to reject the

various other hypotheses which had been formed to account for them. It

is sufficient to say, that they all appeared to be very improbable in them-

selves, and incapable of being tested by any exact calculation. Some had

even supposed that, at the great distance of Uranus from the sun, the

law of attraction becomes different from that of the inverse square of the

distance. But the law of gravitation was too firmly established for this

to be admitted till every other hypothesis had failed, and I felt convinced

that in this, as in every previous instance of the kind, the discrepancies

which had for a time thrown doubts on the truth of the law, would

eventually afford the most striking confirmation of it.

3. My attention was first directed to this subject several years since,

by reading Mr Airy's valuable Report on the recent progress of Astronomy.

I find among my papers the following memorandum, dated July 3, 1841 :

"Formed a design, in the beginning of this week, of investigating, as

soon as possible after taking my degree, the irregularities in the motion

of Uranus, which are yet unaccounted for, in order to find whether they

may be attributed to the action of an undiscovered planet beyond it, and,

if possible, thence to determine approximately the elements of its orbit, &c.,

which would probably lead to its discovery." Accordingly, in 1843, I at-

tempted a first solution of the problem, assuming the orbit to be a circle,

with a radius equal to twice the mean distance of Uranus from the sun.

Some assumption as to the mean distance was clearly necessary in the

first instance, and Bode's law appeared to render it probable that the above

would not be far from the truth. This investigation was founded exclusively

on the modern observations, and the errors of the tables were taken from

those given in the equations of condition of Bouvard's tables as far as

the year 1821, and subsequently from the observations given in the Astrono-

mische Nachrichten, and from the Cambridge and Greenwich Observations.

The result shewed that a good general agreement between theory and obser-

vation might be obtained ; but the larger differences occurring in years where

the observations used were deficient in number, and the Greenwich Planetary



8 ON THE PERTURBATIONS OF URANUS. [2

Observations being then in process of reduction, I applied to Mr Airy,

through the kind intervention of Professor Challis, for the observations of

some years in which the agreement appeared least satisfactory. The

Astronomer Eoyal, in the kindest possible manner, sent me in February

1844 the results of all the Greenwich Observations of Uranus.

4. Meanwhile the Royal Academy of Sciences of Gottingen had pro-

posed the theory of Uranus as the subject of their mathematical prize, and

although the little time which I could spare from important duties in my
college prevented me from attempting the complete examination of the

theory which a competition for the prize would have required, yet this

fact, together with the possession of such a valuable series of observations,

induced me to undertake a new solution of the problem. I now took into

account the most important terms depending on the first power of the

eccentricity of the disturbing planet, retaining the same assumption as

before with respect to the mean distance. For the modern observations, the

errors of the tables were taken exclusively from the Greenwich Observations

as far as the year 1830, with the exception of an observation by Bessel

in 1823; and subsequently from the Cambridge and Greenwich Observations,

and those given in various numbers of the Astronomische Nachrichten.

The errois of the tables for the ancient observations were taken from those

given in the equations of condition of Bouvard's tables. After obtaining

several solutions difiering little from each other, by gradually taking into

account more and more terms of the series expressing the perturbations,

I communicated to Professor Challis, in September 1845, the final values

which I had obtained for the mass, heliocentric longitude, and elements

of the orbit of the assumed planet. The same results, slightly corrected, *

I communicated in the following month to the Astronomer Royal. The
eccentricity coming out much larger than was probable, and later obser-

vations shewing that the theory founded on the first hypothesis as to

the mean distance was still sensibly in error, I afterwards repeated my
investigation, supposing the mean distance to be about -^th part less than
before. The result, which I communicated to Mr Airy in the beginning

of September of the present year, appeared more satisfactory than my
former one, the eccentricity being smaller, and the errors of theory, com-
pared with late observations, being less, and led me to infer that the

distance should be stUl further diminished.

5. In November 1845, M. Le Verrier presented to the Royal Academy
of Sciences, at Paris, a very complete and elaborate investigation of the
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Theory of Uranus, as disturbed by the action of Jupiter and Saturn, in

which he pointed out several small inequalities which had previously been
neglected; and in June, of the present year, he followed up this investi-

gation by a memoir, in which he attributed the residual disturbances to
the action of another planet at a distance from the sun equal to twice
that of Uranus, and found a longitude for the new planet agreeing very
nearly with the result which I had obtained on the same hypothesis. On
the 31st of August, he presented to the Academy a more complete investi-

gation, in which he determined the mass and the elements of the orbit

of the new planet, and also obtained limiting values of the mean distance

and heliocentric longitude. I mention these dates merely to shew that

my results were arrived at independently, and previously to the publication

of those of M. Le Verrier, and not with the intention of interfering with

his just claims to the honours of the discovery ; for there is no doubt

that his researches were first published to the world, and led to the actual

discovery of the planet by Dr Galle, so that the facts stated above cannot

detract, in the slightest degree, from the credit due to M. Le Verrier.

6. In order not to have an inconvenient number of equations of

condition, I divided the modern observations into groups, each including a

period of three years, and as Mr Airy had shewn that the error of the

tabular radius vector was sometimes considerable, I either selected those

observations which were made near opposition, or combined the others in

such a manner that the results should be nearly free from the effects of

this error. From the observations of each group, the error of the tables

in heliocentric longitude was found, corresponding to the time of mean

opposition in the middle year of the group. Thus were formed 21 normal

errors of the tables, corresponding to as many equidistant periods between

1780 and 1840. The error for 1780 was found by interpolating between

the errors of 1781, 1782, and 1783, and those given by the ancient

observations of 1769 and 1771 ; and though not entitled to the same

weight as the others, cannot, I think, be liable to much uncertainty. In

my last calculations I might have used more recent observations, but in

order to obtain the effect due to the change of mean distance, it was

necessary that the investigation should be founded on the same elements

as before, and the later observations might be used as a test of the theory.

7. In order to satisfy myself that there was no important error in

Bouvard's tables, I re-computed all the principal inequalities produced by the

action of Jupiter and Saturn, and found no difference of any consequence,

A. 2
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except in the equation depending on the mean longitude of Saturn minus

twice that of Uranus, the error of which had been already pointed out by

Bessel. The principal equation depending on the action of Jupiter also

required correction, in consequence of the increased value which has been

lately obtained for the mass of that planet. The corrections to be applied

to Bouvard's tables on these accounts are the following:

—

+ 1-9 1 8 sin {(^1 - 2<^,- 1 3 r5}

+ 1-085 sin{<^-^2}

<j>, <f>i> <^2 being the mean longitudes of Jupiter, Saturn, and Uranus, respec-

tively. In the reduction of the Greenwich Observations, the latter correction

was already taken into account. M. Hansen having also found some new

inequalities in the motion of Uranus, depending on the square of the

disturbing force, I re-computed the values of these, following the same

method as that given by M. Delaunay in the Conn, des Temps for 1845,

and my results agreed very closely with his, the terms to be added to

the longitude being

+ 32-00 sin {^^ - 6(j>, + 2(f>
+ 22° Is'-S}

- 8-35 sin {2^,-6</)i+ 2<^-l-39 10-5}

- 1 -49 sin {4^2- 6(^1 -h 2(^ + 34 48 -4}.

With respect to the inequalities of higher orders neglected by Bouvard,

I considered that the most important of them would be, either those of'*

long period, or those whose period was nearly equal to that of Uranus.

During three-fourths of a revolution of the planet, the effects of the former

class would be nearly confounded with those arising from a change in the

epoch and mean motion, and those of the latter class with the effects

produced by a constant change in the eccentricity and longitude of the

perihelion. The position of the planet to be determined would, therefore,

be little affected by these terms, and the others would probably be much
smaller than those which would necessarily be neglected in a first approxi-

mation to the perturbations produced by the new planet.

8. Taking into account the several corrections above-mentioned, the

residual differences between the theoretical and observed heliocentric longi-

tudes were the following :

—
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Ancient
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10. Let Sc, 8a, Se, and Set denote the corrections to be applied to

the tabular elements of Uranus, then the correction of the mean longitude

at any time t is

= Se+ 2e'St«7 + « 8n- 12 cos {nt + e- zt) +^ cos 2 (n« + e - w) I e Sw

+ l2sia{nt + e-zj) + - sin 2 (n« + e - rar) V Se.

If we include the small term 2e^SCT in the quantity Se, this correction

may be put under the following form :

—

S€+ tSn + cos nt Sx^ + sin nt Sy^ + cos 2nt Sx^ + sin 2nt hy^

in which expression

SaSj = -e {cos (e — w) ScCj + sin (e — ct) SyJ

Sy^= — - e {sin (e — ts) ScCi + cos (e — ot) S^/i} .

11. Also, adopting the notation of Pont^coulant's Theorie Analytique,

the perturbations of mean longitude

nryi'

= — tFi sin i {nt —n't + e - e')

+ m!e tGi sin {i {nt -n't + e- e') -{nt + e- m)}

+ m'e' %Hi sin {i {nt -n't + e- e') -{nt + e- m')}.

Where the accented letters belong to the disturbing planet, i takes all

integral values, positive and negative, except zero, and if we put i{n — n') = z,

the values of F^, Gi and H^ are the following :

—

f 3 in' in' ] . 2n' ^dA^
^'~

\z'{z'-nyz'-n'\''^'^z{z'-n')'' da'

„ r di{i-l)n' i{i+l)n^ in' Sin' ] .

I /-, ,„\2-/- o^\ -/„ r)„\ «a „2 - '~. — n){z — 2n)]y {z-nfz{z-2n) z{z-2n) z'-n' z{z-

3 {i-l)n' l {i-l)n' 1 n'

2 (z-w)' 2(2-271) 2z(z-2n) 2z'-n' z(z

2 in' 1
J c^^li

— n)(z — 2n)J c^a

n' , d'^,.

z (z — n) (z — 2n) c^a"
'
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(3 {i-l
)
{2i-l) n' 1 {i - 1) {2i - 1) n'

^' \2lz-nfz{z~L)^2 z{z-2n)' ^^"^'-^

+ 1^ {i-l)n' + ^
1 {i-l)n'

+
2 in'

2 {z-nfz {z-2n) 2z{z-2n) z{z-n){z^«'2 f'^i-1

da

z{z — n){z — 2n)
a'

da"

13

12. Now, if we assume -, or a = sm 30° = 0"5, the values of the funda-
a

mental quantities 6, a j- . a" -j— , will be

log 6„ = 0-33170

log 6, =9-74497

log 6, =9-32425

log 63 = 8-94670

dh
log a ^" = 9-53765

da

d\
'da

dh
loga^ =9-83868

dh
log a V^' =9-68012^ da

dh
log a^^ =9-46315
^ da

loga^^° =9-77848

log a^^ =9-70857
° da^

log a^"^^ = 9-87776

loga^^ = 9-86253
^ da^

Hence the principal inequalities of mean longitude, produced by the

m
action of a planet whose mass is , that of the Sun being unity, and

5000

e'

the eccentricity of whose orbit is — will be the following:

—

- 36-99 «i' sin {nt - n't + e - e}

+ 58-97 m sin 2 {nt -n't + e-e}

+ 5-80 m' sin 3 {«« - n'i; + e - e'}

+ 2-06 m' sin {n't + e'-Tsr}

- 4-30 mV sin {n't + e' - bt'}

+ 31-25 m' sin {nt - 2n't + e - 2e' + tst}

- 12-14mV sin {nt - 2n't + e - 2e + isr'}

+ 48-55 m' sin {2nt-3n't + 2€-3^ + nr}

-93-01 m'e' sin {2nt - Sn't + 2e - Be' + cr'}.
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To these may be added the following, which are of two dimensions in

terms of the eccentricities :

—

+ 6'57 m! sin 3 [nt -n't + e- e}

-1-08 m'e' sin {3 {nt -n't + e- ^) -iir + tst'}.

These expressions may be put under the following form :

—

h^ cos (n — n')t+ \ cos 2 {n— n')t + h, cos 3 ( n— n')t

+ ^1 sin (n — n')t +\ sin 2 (n — n')t + \sm3{ n— n') t

+^1 cos n't +p^ cos {n — 2n') t +p^ cos {2n — Zn') t

+ q^ sin n't + q^ sin {n — 2n') t + q^ sin {2n — 3n') t.

13. Let the time of the mean opposition in 1810 be taken as the

epoch from which t is reckoned ; this date, expressed in decimal parts of

a year, will be 1810"328. Also, let 3 synodic periods of Uranus, =3'0362

years, be taken for the unit of time ; then the change of the mean anomaly

in an unit of time will be 13° 0'"5
; also 7i=13° 0''6, ?i' = 4° 36'"0

.-. ri,-ri' = 8°24'-6, n-2TC' = 3° 48'-6, 2n-3n'=12° 13'-2.

Hence the equations of condition given by the modern observations will be

of the form

c= 8e+ 8X1 cos {13 0-5}« + Sx„cos{26 VOJt

+ tSn + 8y, sin {13 0-5} t + 8y, sin {26 VOjt

+ h,cos{ 8 24-6}«+ /i^cosfie 49-2} ^ + /i,3 cos {25 13-8} «

+ k,sin{ 824-6}«+ ^ sin {16 49-2} « + ^3 sin {25 13-8}

«

+ _piCOs{ 4 36'o}«+ j9,cos{ 3°48'-6}«+p3COs{l2 13'2}«

+ g'isin{ 4 36-0}«+ q,sin{ 3 48-6} « + ^3 sin {12 13-2}

«

in which t assumes all integral values from - 10 to +10 in succession,

and the several values of c" are contained in the table given in Article 9.

14. The final equations for the corrections of the elliptic elements will

be found by multiplying each equation successively by the coefficients of

Se, 8n, StCj, and 8y^, which occur in it, and adding the several results.

Let the equations be treated in a similar manner with reference to

the quantities h^, \, K, k„ h.„ \, p^, q^, p^, q^.
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It will be seen that, in consequence of the arrangement which has been

given to the equations of condition, the equations thus formed naturally-

separate themselves into two groups, one of which involves only Se, Sx^, Sx^,

with the quantities h and p, while the other involves Sn, Si/i, Sy^, with the

quantities k and q.

Also the coefficients in these equations are easily calculated by the

following formulae, putting ^ = 10 in their right-hand members:

—

t2 CO. mt =^^^{t + i)

Binfm

^^^ . (t+l)smmt — t sin m(t + I)
Z2t sin mt = ^ '-

^ . „^
^ '

2 sm -Jm

t2 cos mt cos nt = 1
\
^i-\—)it + i) + sin

fr +^) (^ + i)
|2 (^

sin.^{m — n) sm-J(m + n)
J

t2 sin mt sin nt = '-

f^(^-^)(^+^)
_ sin (m+ n) (^

+^)|2 [ sm.^[m — n) sin ^(m + n)
J

1 1 sin m (2^ + 1)

2 2 sm m

^ . ,
1 lsinm(2« + l)

2 2 smm

15. By performing the calculations, the equations of the first group

are found to be the following:

—

(e) 15i'-48= 21-0000 8e+ 6-0670 Sic^- 4-4358 Sa,

+ 13-6320 /j-i-f- 0-4043 h,- 4-5608 \
+ 18-6046^1+ 19-3384 p,+ 7-3721 p,

(x) 246-48= 6-0670 Se+ 8-2821 Sa;,+ 4-1762 Sx,

+ 7-4041^1+ 8-2523 K+ 4-6963 h^

+ 6-5389j9,+ 6-3978 p^+ 8-1831 p^

(h,) 209-74= 13-6320 Se-I- 7-4041 8a;,- 0-2337 Scc^

+ 10-7022/^1+ 4-5356 h,- 0-0018 h,

+ 12-7013^1+12-9883 p,+ 8-0038 p,

(h,) 242-68= 0-4043 Se+ 8-2523 Sa;i+ 7-5650 Sx,

+ 4-5356^1 + 10-2960 h,+ 8-1944 h,

+ l-7866pi+ 1-3667 p,+ 7-6671 p.
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(A3) 86-67 = - 4-5608 Se+ 4-6963 Sxi+ 10-5023 8x,

- 0-0018 /ii+ 8-1944 ^2+ 10-7071 h^

- 3-0812j?i- 3-5347 p^+ 3*8855 p,

(p,) 165-99= 19-3384Se+ 6-3978 Sx^- 8-4948 Scc^

+ 12-9883 /i-i + 1-3667 h,- 3-5347 h,

+ 17-2795^1 + 17-9106 p„+ 7-5423 p,

(p,) 242-56= 7-3721 Se+ 8-1831 Sa;i+ 3-4071 Sa;^

+ 8-0038/^1+ 7-6671 h,+ 3-8855 \
+ 7-6127 _pi+ 7-5423 p^+ 8-2019 p,.

16. By means of (e) eliminate he from each of the other equations,

and these latter become

{x) 202-72= 6-5294 Sx, + 5-4577 S£C,+ 3-4658 /ii + 8-1355/2.,

+ 6-0139 ^3+1-1640 ^i + 0-8109p, + 6-0533_p3

{\) 111-41= 3-4658 Sa;, + 2-6458 8a;, + 1-8531 A, + 4 2731 A3

+ 2-9588 A3+ -6243 J9i + 0-4349 j3.3 + 3-2183_2J,

(AJ 239-76= 8-1355S£Ci + 7-6504 8a;, + 4-273lAi +10-2882/13

+ 8-2822 A3+I-4284 p, + 0-9944p3+ 7-5252^3

(A3) 119-57= 6-0139 ScCi + 9-5389 8a;2 + 2-9588 A, + 8-2822A3

+ 9-7166 A3 + O-9593 p, + 0-6652_p3+ 5-4866^3

{p,) 26-50= 0-8109 Sa!i + 0-5900 8a;, + 0-4349 Ai + 0-9944 A3

+ 0-6652 A3 + O-I47O ^, + 0-1024^3+ 0-7535j93

{p.^ 189-38= 6-0533 Sa;, + 4-9643 8x3 + 3-2183 Aj + 7-5252h,

+ 5-4866 A3+ 1-0815 _pi + 0-7535p3 + 5-6139_293.

17. Again, by means of {x) eliminate 8x, from each of the other
equations, and we find

(A,) 3-807= -0-25128x3+ 0-0135 A1-O-O452A3-O-2334 A3

+ 0-0065 23^ + 0-0045 p, + 0-0052 j^^

(A,) -12-821= 0-8502 8x3-0-0452 A, + 0-1515A3+ 0-7890 A3

- 0-0219 pi-0-0160_p3- 0-0171^^3
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{h,) -67-149= 4:-5120 8x,- 0-233^ h, + 0-7890 h, + A-1775h,

-0-1128^j-0-0817j)3- 0-0888^3

{p,) 1-327= - 0-087 8 Bx, + 0-004:5 h,- 0-0160 h,- 0-0817 h,

+ 0-0024 jOi + 0-0017
J),,
+ 0-0018 JJ,

(p,) 1-448= -0-0955 80:3 + 0-0052 A, -0-0171 A,- 0-0888 7i,

+ 0-0024pi + 0-0018p,+ 0-0020
J?,

18. Similarly, the equations of the second group are found to be

(n) -171-27= 77-0000 S7i+ 9-393882/1- 1-2183 Sy,

+ 8-8463 k,+ 7-3034 k,- 0-5927 K
+ 5-7519 q^+ 4-8755 q,+ 9*5583 q,

{y) -166-33= 93-9380 8%+ 12-7179 82/1+ 1-8907 Sy,

+ 11-2022 ^,+ 11-0848 k+ 2-6731 k^

+ 7-0956 q,+ 5-9913 g,+ 12-7441 q,

(k,) -182-87= 88-4630 8n + 11-2022 8yi- 0-3210 82/,

+ 10-2978 k,+ 9-0964 k,+ 0-4061 k,

+ 6-6370 ^1+ 5-6163 q,+ ll-3346 q,

-89-07= 73*0340 8w+ 11-0848 82/1+ 4-8266 82/,ih)

ih)

(?.)

(^3)
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19. By means of (n) eliminate Sn from each of the other equations,

and we have

(y)

ih)

ih)

(?3)

42-61= 1

+ 3

13-90=

+ 1

73-38= 2

+ 5

111-62= 3

+ 10

1-42=

+
36-72= 1

+ 2

2578 8^1+ 3-3771 8i/, + 0-4100 A, + 2-1748 A;,

3962 k,+ 0-0785 g, + 0-0433 g,+ 1-0833 g,

4100S?/i+ 1-0787 82/2+ 0-1346 A;i + 0-7057 A;,

0871 k+ 0-0288 ^1 + 0-0150 g, + 0-3534^3

1748 Sy,+ 5-9822 8y,+ Q-7057 k, + 3-7767 k
9998 ^3+ 0-1298 g', + 0-0732 5,+ 1-8715 g-,

3962 82/1+ 10-3315 8?/,+ 1-0871 ^, + 5-9998 A;,

2473 k+ 0-1930 g; + 0-1110 g, + 2-9145 g,

0433 8y,+ 0-1100 82/2+ O-OI5O A;i + 0-0732 k,

1110 k+ 0-0055 gi + 0-0023 9-, + 0-0375 9-3

0833 Sy,+ 2-8969 8^/, + 0-3534 A;j + 1-8715 k,

9145 ^3+ 0-0684 g-^ + 0-0375 g',+ 0-9330 g-g

20. Again, ehminating S^/i by means of (y) we find

{k,) 0-009= -0-0221 8y,+ 0-0010A;i -0-0032 A;, -0-0200^:3

+ 0-0032 gi+ 0-0009 g, + 0-0003 q,

{k) -0-301= 0-1430 Sy,- 0-0032 All + 0-0162 A;, + 0-1274 A;,

-0-0059 g,-0-0017 g,-0-0016 g,

(k,) -3-443= 1-2129 82/,-0-0200A;, + 0-1274 4+ 1-0769 A;,

-0-0189 g,-0-0059 g^-O-OlOS g,

(^^) _ 0-045 = - 0-0062 8y, + 0-0009 k, - 0-0017 k - 0-0059 A;3

+ 0-0028 gi + 0-0008 g^ + 0-0002 g,

(g,) +0-017= -0-01 16 82/,+ 0-0003 All -0-0016 A;, -0-0105 A;,

+ 0-0008 gi + 0-0002 g^+ O'OOOO g3

21. From the equations remaining in the two groups after the elimi-

nation of 8e, Sn, 8x1, 83/1, it will be easy, when approximate values of the

mass and mean longitude of the disturbing planet have been found, to deduce

the final equations for detennining these quantities more accurately by the

method of least squares.

It may be observed, however, that the equations in each group are

very nearly identical with each other, and therefore two final equations may
be formed by simply adding together the several equations of each group,

after giving the unknown quantities the same sign in them all. Thus we find
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86-552 =- 5-7967 §«,+ 0-3018/^1 -1-0188/^, -5-3704 A,

+ 0-1460^1 + 0-1056^3, + 0-1149^3

3-725 = - 1-3958 8y, + 0-0254 \ - 0-1501 \ - 1-2407 h,

+ 0-0316
g'i + 0-0095 §2 + 0-0127 q^

22. If in the expressions before given for ^x^ and hy^ we substitute

6 = 0-046679 and e-CT = 50° 15'-8, we obtain

hx^= 0-007460 Sx, + 0-008974 S^/i

§2/2= -0-008974 ScCi + 0-007460 Sy^

Substituting these values in the equations (x) and [y), and in those just

found, it may be seen that by adding to the latter equations

0-006768 {x) + 0-040287 {y)

and -0-001869(!r) + 0-008187(2/) respectively,

Sxj and Syi will be eliminated, and we shall obtain the following equations :

(1) 89-641= 0-3252 /ii-0-9637 A,- 5-3297 /i3

+ 0-0165 A;, + 0-0876 4 + 0-1368 A;,

+ 0-1539_Pj + 0-1111^, + 0-1559_p,

+ 0-0032^1 + 0-0017 §2 + 0-0436 ga

(2) 3-695= -0-0065 ^, -0-0152 A, -0-01 12 /i^

+ 0-0288 /ti- 0-1323 \- 1-2129/^3

-0-0022j9,-0-0015j3,- 0-0113 j?3

+ 0-0323 §1 + 0-0099 §, + 0-0215 §3

23. These equations would be sufficient for determining the mass of

the disturbing planet and its longitude at the epoch, if the eccentricity of

the orbit were neglected. We will now proceed to find equations from the

ancient observations for determining the eccentricity and longitude of the

perihelion.

The equations of condition given' by the ancient observations are the

following :

—

62-6= 8e-0-8776Sa;i + 0-5402 8a;, + 0-8712/i,i + 0-5180 A,

-39-31 Sn-0-4795 8?/i + 0-8415 Si/2 + 0-4909 A;i + 0-8554^,

+ 0-0314 ^3- 0-9999 p^- 0-8640^,-0-5055^3

+ 0-9995 ^3 + 0-0145 §,-0-5035 §,-0-8628 §3

3—2
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84-5= Se+ 0-4975Sa;i-0-5050Sa;j + 0-0288^,-0-9984A,

- S2-S0 Sn - 0-S67 5 Sy,- 0-8631 Sy, + 0-9996 k, + 0-057 3 k,

-0-0860 ^,-0'8534 pj-0-5456j9, + 0-8220^3

-0-9963 A;3-0-5213 g-,- 0-8380 23-0-5695 5-3

67-2 = Se + 0-6732 Sx, - 0-0935 Sx, - 0-1120 \ - 0-9749 h,

-31-34Sn-0-7394S2/i-0-995GSy, + 0-9937 ^^-0-2227 h
+ 0-3305 ^3- 0-8105 ^,-0-4912^^+ 0-9206 p,

-0-9438 ^3-0-5857 2^-0-8711 ^2-0-3905 g-,

-51-8= S€-0-2616Sa;i-0-863l8a!2-0-9649Ai + 0-8618A2

- 19-59 Sn + 0-9652 8y, - 0-5050 Sy, - 0-2627 k, + 0-5073 k,

-0-6982 ^3-0-0023 ^, + 0-2650j93- 0-50905)3

-0-7159 ^3-1-0000
g-i - 0-9642 ^3+ 0-8607 ^3

-43-2= Se- 0-4741 S^i- 0-5505 Sec, -0-9154 ^1 + 0-6758 ^3

- 18-58 Sw + 0-8805 Syj- 0-8348 Sy,- 0-4025 A;, + 0-7371 k,

-0-3220 ^3+ 0-0787 Pi + 0-3291_p2-0-6814p3

-0-9467 ^3-0-9969 g, - 0-9443 g, + 0-7319 g,

-50-1= Se - 0-6430 SiCi- 0-1731 Sa;,- 0-8543 A, + 0-4599^,

- 17-68 Sn + 0-7659 Sy,- 0-9849 Sy,- 0-5198 A;i + 0-8879 4
+ 0-0686 A3+ O-I5IO ^1 + 0-3848^,-0-8085^3

-0-9976 ^3-0-9885 g^j - 0-9230 g, + 0-5885 g,

-37-8= §6-0-94928x1+ 0-8021 8a;,-0-6189^,-0-2340 A,

- 15-25 8to + 0-3145 82/, -0-5972 82/2-0-7355^, + 0-9722 ifc,

+ 0-9085 y^3+ 0-3396 j?, + 0-5287 ^9,-0-9939^^3

-0-4179 4-0-9406 2,-0-8488 g.+ O-llOOg,

-20-5= 8e-0-99858a;i + 0-99428a;,-0-4128 ^,-0-6591 h,

- 13-60 8n- 0-0538 8y, + 0-107A Sy,- 0-9108 k, + 0-7520 k
+ 0-9571 A3 + O-46O7 i9i + 0-6182^,-0-971 1^3

+ 0-2899 4-0-8875 2^-0-7860 3,-0-2385 g,

- 2-4= 8e -0-9633 8X1 + 0-8560 Sa;,- 0-2807^1- 0-8424 ^,

-12-64Sn-0-2684 82/i + 0-5170 8y,-0-9598 4 + 0-5388 4
+ 0-7536 A3 + 0-5279 ^, + 0-6670 p,-0-9023_p3

+ 0-6574 4-0-8493 g, - 0-7451 g,- 0-4310
g.
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24. From each of these equations eUminate 8e, Sn, 8x^, and Sy^, by
means of the equations (e), (n), (x), and (y), before found, and we have the

following :

—

-U2-0= 1-7265 8a;, + 0-8412 ^,+ 1

- 11-3691 S2/, + 3-6001 k-2
-1-6779^,-1

+ 2-6815^1 + 1

-105-2=- 0-4681 Sx,- 0-7311 ^1-1

- 9-6249 Sy, + 3-7087 K-2
-1-7765^9,-1

+ l-6997g,+ l

-126-1=- 0-2035 Sa:^- 0-9653 A,-

1

- 9-7719 S2/, + 3-5895 ^,-2

- 1-7649 j9,-l

+ 1-5629 g'l+l

-199-1=- 0-1917 Sx,- 1-3218 ^,+ 1

- 9-8232 83/2 + 0-8943 ^1-3

-0-7901_pi-0

+ 0-2540^1 +

_ 174-7= 0-2985 Sec,- 1-1595 Ai+1

- 9-5788 82/, + 0-7062 k,-2

-0-6712_pi-0

+ 0-1946^1 +

-166-7= 0-8171 Sa;,- 1-0088 ^1+1

- 9-1122 §2/,+ 0-5586 ^1-2

-0-5688_Pi-0

+ 0-1498 q, +

-114-2= 2-0482 Sec, -0-6027 ^1 + 1

- 6-678182/2+ 0-2576 k,-l

-0-3256^1-0

'9521^,+ 1-3230^3

8793 A;, -10-9578 k,

•6400j9,+ 0-2249J93

8369^2+ 0-2995 q,

2776 h,- 0-0609^3

1926 A;,- 9-5426^3

4924^2+ 0-2786^^3

1014 g,+ 0-7934^3

4730 ^,+ 0-1937 /i.3

5827 k- 9-5123^:3

4598 p,- 0-2133^3

0070 g,+ 0-8437^3

5284 /i,+ 0-0260^3

'4359 A;,- 9-9270 A;3

5885_p,- 0-3497 p,

1607^2+ 0-4028^3

6072 7i,+ 0-5979^3

9425 4- 9-5877 k
4970_p,- 0-3251j>3

1238 q,+ 0-3277 ^3

6018 h,+ 1-1442^3

4890 A;,- 9-0258 A;,

4203^2- 0-2956^3

0958 q,+ 0-2658 ^3

2894^2+ 2-2661 h,

3421 k- 6-4080^3

'2384_p,- 0-1971_p3

+ 0-0628^1 + 0-0419 ^2+ 0-1298^3
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- 72''4= 2-2815 8a;, -0-3786^1 + 0-9257 A, + 2-3601 A,

- 4-4181 S2/,+ 0-1283 ^1-0-7339 4- 4-1495^:3

-0-1957p,-0-1428_p,- 0-1286^,

+ 0-0283 91 + 0-0198 9-2+ 0-0671^3

- 42-0= 2-1139 Sa;, -0-2652^1 + 0-6985/1,+ 2-1241 /i,

- 3-1027 §2/, + 0-0772 ^1-0-4646^,- 2-8790 ^3

-0-1348^1- 0-0984 p,- 0-0924_p3

+ 0-015491 + 0-01149,+ 0-041293

25. The largest terms depending on the eccentricity of the disturbing

planet occur in p^, q,; it will be proper, therefore, to combine the above

equations in such a manner that these quantities may acquire the largest

coefficients possible. This will be done by multiplying each equation by a

quantity nearly proportional to the coefficient of each of the unknown quan-

tities p^ and 93, and adding together the several results. It was thought

unsafe to employ the first of the above equations, since it is derived from

the single observation of Flamsteed made in 1690, twenty-two years anterior

to any other observation.

Hence the equation for finding p^ may be formed by multiplying the

above equations, taken in order, by

-0-8, -0-6, +1-0, +1-0, +0-9, +0-6, +0-4, +0-3,

beginning with the second ; and the equation for 93 by multiplying the

same equations by

1-0, 1-0, 0-5, 0-4, 0-3, 0-2, 0-1, 0-1.

Hence we obtain

-474-1= 4-114 Sic,- 2-817 ^1 + 7-837/^,+ 4-528^3

-20-74583/, -2-789 ^1-6-551 A;, -20-666^:3

+ 0-193pi + 0-377i),- l-4:89p,

- 1-660 9i- 1-078 9,- 0-05493

-485-0= 0-446 8a;,-3-308 ^1-0-442 A, + 1-629 A,

-32-961 8?/,+ 8-267 A;i- 8-805 ^,-32-546 ii;3

-4-473_pi-3-643_p,+ 0-037^,

+ 3-53091+ 2-2789,+ 2-086 93
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26. Eliminate 8x^ and 8y^ from these equations by means of (x) and

{y) and they become

(3) - 476-7 =-2-930h, + 7-572h,+ 4.-S32h,

- 2-7 51k, - 6-348 k, - 20-350 k,

+ 0-155pi + 0-350_p2- l-686p,

-l-653g'i-l-074g,+ 0-047 g^

(4) -485-9= -3-463^1-0-805^,+ 1-360^3

+ 8-345 All -8-391^,- 31-900 yfcj

-4-525_Pi-3-679_p,- 0-233_p3

+ 3-545^1 + 2-286 g,+ 2-292^3

These equations, with (1) and (2) of Article 22, suffice for the solution

of our problem.

27. Eliminate the left-hand members from equations (2), (3), (4), by
means of equation (l), and we have

0= 0-4819Ai-0-5950A,- 5-0570 /!-3 + 0-2063_p, + 0-1475 j9, + 0-4300 jSg

-0-6812 ^1+3-2982 A;, + 29-5618 Ajj - 0-7804 g^- 0-2375 g,-0-4789 q,

= - 1 -2005 h, + 2-4466 h, - 24-0122 h, + 0-9735_Pi + 0-9412p, - 0-8575^93

-2-6633 ^1-5-8825^,- 19-6219^:3-1-6362 ^^-1-0648 ^, + 0-2791 q,

= - 1-7003 h, - 6-0294 h, - 27*5295 h, - 3-6908_Pi - 3-0772 ja, + 0-6118^3

+ 8-4344^,-7-9162^:2-31-1583^3 + 3-5621 ^i + 2'2954 ^^ + 2-5285 ^3

28. If now we put e— ^' — 6 and € — z^ = /3, it is easily seen that

K±,= - 36-99 sm

^,= -36-99 cos 6'

5-80 sin 3^

= 5-80 cos 3^

m'

m

K
m'

/Co

m

m' •

7 = 58-97 sin 2^

58-97 cos 26'

+ 0-007460-^. + 0-008974%m m

- 0-008974 ^, + 0-007460%

0-18 sin (^-i8) - 0-046247M cos 2^ --2? sin 2^1

m
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^=- 0-18 cos (6 -13) +0-046247 1^ sin 2^+% COS 2^

^= 24-91 sin (2^-/8) + 0-13055 |^^ cos ^ - % sin^

^;= 24-91 cos (2^-/8) + 0-13055 M sin ^+ -2? cos 4

29. Substituting these expressions in the equations of Article 27, and

putting for )8 its value 50° 15'-8, we obtain, after a slight reduction,

0= -(1-24782) sin ^+ (1-40248) cos ^-(1-57155) sin 2^+ (2-27388)cos2^

- (1-46746) sin ZB + (2-23430) cos 2,6 + (9-10380) ^ - (9-48254)%

+ (8-28455) j^ cos ^-^ sin ^l - (8-49138) fe sin ^+^ cos ^l

- (7-97958) [^ cos 2^-|^ sin 2^1 - (8-55742) fe sin 2^+^ cos 2^1

= (1-65083) sin Q + (1-99378) cos ^+ (2-14259) sin 2^- (2-58192) cos 26

-(2-14400)sin3(9-(2-05631)cos3^- (9-93475) ^-(8-91803) -%

+ (9-08947) fe cos ^ - -%- sin ^l - (9-14306) [^ sin ^ + -% cos d\
^ ' \m m ) ^ ' \m m

J

- (8-65341) ft cos ie - % sin 2^1 - (8-87892) [^ sin 2^ + -% cos 2^1 '

= (1 -79213) sin d - (2-49403) cos Q - (2-55700) sin 2^ - (2-56972) cos 2^

-(2-20337) sin 3^- (2-25714) cos 3^+ (9-83632) ^^+(0-31156)%

-(9-60395^008^--% sin4 + (9-47665) ft sin ^+-% cos4^ \m m! ] ^ ' \m! m
j

+ (9-23220) ft cos 2^-^ sin 2^1 + (9-21679) ft sin 26»+ -% cos 2^1

where the numbers enclosed within parentheses denote the logarithms of the

corresponding coefficients.
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30. These equations may be rapidly solved by approximation. The

coefficients of —) and —, in the first equation being smaU, we may find

from it an approximate value of 6, the substitution of which in the second

and third equations will give approximate values of ^ and 4 • By means

of these a more accurate value of 6 may be found from the first equation,

and the process being repeated, will enable us to satisfy aU the equations

as nearly as we please.

Thus we find ^=-51° 30', ^ = 271"-57, -%= -207"-24.m m
Now e is known and =217° 55' .'. e' = 269°25' the mean longitude of

the disturbing planet at the epoch 18 10"32 8. The sidereal motion in 36

synodic periods of Uranus = 55° 12\ precession = 30'; .'. mean longitude at the

time 1846762, or October 6, 1846, =325°/'.

Also, the analytical expressions for ^ and -^ are
J L mm^and^m m

^ = A8-55 sin {39 - 13)- 93-01 e' sin (36-^')
Yfh

-% = 48-55 cos (3(9-/8)- 93-01 e' cos (3^-j8')

m

m
where e — ot' = ;8'. Equating these to the values given above, we find

e' = 3-2206, ^' = 262° 28', and .-. Br' = 315°27'.

Hence longitude of perihelion in 1846 = 315° 57'.

Lastly, substituting the values just obtained in equation (1), we find

m' = 0-82816.

31. Hence the values of the mass and elements of the orbit of the

disturbing planet, resulting from the first hypothesis as to the mean

distance, are the following :

—

^, = 0-5
a

Mean Long, of the Planet, October 6, 1846 325° 7

Longitude of the Perihelion 315 57

Eccentricity of the Orbit 0-16103

Mass (that of the Sun being 1) 0-0001656

These are the results which I communicated to the Astronomer Royal

in October, 1845.

A. 4
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32. I next entered upon a similar investigation, founded on the as-

sumption that the mean distance was about ^th part less than before,

Gb

80 that —, or a = sin31° = 0'515. The method employed was, in principle,

exactly" the same as that given before ; but the numerical calculations were

somewhat shortened by a few alterations in the process, which had been

suggested by my previous solution.

33. Assuming then that a = sin 31°, the values of the quantities h,

db .d^h .,-. ,

"^' '^^'^^^^

log6„ = 0-33385 log a^-^^ 9-57333 log a^^"= 9-82911

dh d^h
log &, = 9-76106 log a T^ = 9-86149 log a^^' = 9-76573

log 62 = 9-35361 log a T-^ = 9-71359 log a"5^ = 9-92466

dh d'h
log63 = 8-98918 loga;T-2 = 9-50854 log a'^' = 9-91563

coa, da.

Hence, by means of the formulae given before, the principal inequalities

of the mean longitude of Uranus, produced by the action of a planet whose

mass is , that of the sun being unity, and the eccentricity of whose

e'
orbit is — , may be found to be the following :

—

,20

- 42-33 to' sin {nt -n't-^e-^}

+ 76-55 m' sin 2 {nt-n't + e-^}

+ 7-25 m' sin 3 {nt-n't + e-/^

+ 2-34 m' sin {n't + e'-Tsr}

- 4-74 mV sin {n't + ^-zj^

+ 41-72 m' sin {nt - 2n't + e - 2^+ tss}

- 16-47 mV sin {%« - 2«'« + e - 2e' + ct'}

+ 33-93 m' sin {2nt - Zn't + 2e - 3e' + ct}

-63-41 m'e' sin {2nt - Sn't + 2e- 36^+ ot'}.
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To these we may add the following, which are of two dimensions in

terms of the eccentricities :

—

+ 6'-40 m! sin 3 {nt -n't + e- e'|

- 074 m'e' sin {3 {nt - n'« + e - e') - ot + ra-'}.

34. Now, on our present assumption,

w=13°0'-6, n' = 4°48'-5, n-w' = 8° 12'-1, 7i-2w' = 3° 23'-6, 2w-3to'= 11° 35'-7.

Hence the equations of condition given by the modern observations will

be of the form

c= Se+ SiCi cos{l3

+ «Sw+ S2/i sin{l3

+ ^iCos{ 8 12

+ \&m.{ 8 12

+ PiCos{ 4 48

+ g-i sin{ 4 48

5}t + hx^coB{2& 1-0} t

5} « + 82/2 sin {26 1-0}

«

l]t+ ^,cos{l°6 24-2}i! + ^3COs{24 36-3}«

l}t+ \ sin {16 24-2} f+ k^ sin {24 36-3} t

5}t+ p,cos{ 3 23-6}«+j>3COs{ll357}«

5}f+ q^sa\.{ 3 23 -6} « + 2s sin {11 357}^.

35. Treating these equations of condition in the same manner as before,

the equations in the first group, derived from them, are found to be the

following :

—

(e) 151-48= 21-0000 Se+ 6-0670 S^i- 4-4358 Scc^

+ 13-9515 h^+ 0-9471 K- 4-5965 h^

+ 18-3916 _pi+ 19-6752 p^+ 8*4184 p,

{x) 246-48= 6-0670 8e+ 8*2821 Sa;,+ 4-1762 Sec,

+ 7-3540 h^+ 8-3027 K+ 5-0961 h^

+ 6-5793 p,+ 6-3319 p^+ 8-0850 p^

(h,) 207-58= 13-9515 Se+ 7-3540 Sx,- 0-4177 Ssc,

+ 10-9735 h,+ 4-6775 h,- 0-0005 h,

+ 12-8697 j?,+ 13-4050 p,+ 8-4781 p,

(h,) 245-17= 0-9471 Se+ 8-3027 Sa;i+ 7*2362 S«,

+ 4-6775 ^, + 10-0259 h,+ 8*3220 h,

+ 2*3661 p,+ 1*6727 p,+ 7*3073 p,

(h,) 103*48 = - 4*5965 Se + 5*0961 8a;i+ 10*5558 Sx^

- 0*0005 h,+ 8*3220 h,+ lO-97^9 h,

- 2*8935 p,- 3*7316 p,+ 3*5852 p,.

4—2
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36. Similarly the equations in the second group are

(w) -171-27= 77-0000 S«+ 9-3938 Sy,- 1-2183 Sy,

+ 8-7355 k,+ 7-6213 k- 0-0590 h,

+ 5-9764 q,+ 4-3875 q,+ 9-6152 q,

(y) -166-33= 93-9380 S?i + 12-7179 8y.+ 1-8907 Sy,

+ 11-0393 ^,+ 11-3717 k+ 3-3196 k,

+ 7-3747 q,+ 5-3825 g,+ 12-6816 q,

(h,) -181-31= 87-3550 Sji+ 11-0393 Sy,- 0-3758 Sy,

+ 10-0264 ^1+ 9-2740 k+ 0-9476 k,

+ 6-8054 q,+ 4-9866 9-,+ 11-1971 q^

(h) - 99-51^ 76-2130 8/1+ 11-3717 Sy,+ 4-4810 Sy^

+ 9-2740 ^1+10-9740 k,+ 5-6294 k,

+ 6-0523 q^+ 4-3916 ^,+ 11-0843 q,

(jfc,) 113-14=- 0-5900 S»+ 3-3196 Sy, + 10-2112 Sy,

+ 0-9476 k+ 5-6294 Z;,+ 10-0251 k,

+ 0-1746 q,+ 0-0454 q,+ 2-4791 q,.

37. The equations {p^), (p.^) of the first group, and {q^), (q^) of the

second, were not formed, as our previous solution shewed that when Se,

Sn, Sxj, and Sy^ were eliminated, the coefficients of the remaining unknown
quantities in these equations would be extremely small. It will be preferable

to combine the equations (h^), {h.^, (h,), and (k,), (k^), (k^) before, instead of

after, the elimination of Se, Sn, Sx^, and Sy^, from them. If then we change

the sign of the third equation in each group, and add it to the fourth

and fifth, we obtain

141-07= -17-6009 Se + 6-0448 Sa;,+ 18-2097 Sa;,

- 6-2965 A,+ 13-6704 ;i,+ 19-2974 h,

-13-3971 i?.- 15-4639 p,+ 2-4144 p,

194-94= -11-7320 Sn+ 3-6520 Sy,+ 15-0680 Sy,

+ 0-1951 k,-\- 7-3294 ^,+ 14-7069 k,

- 0-5785 q,- 0-5496 q,+ 2-3663 q,.
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(x)
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40. Again, the equations of condition given by the ancient observations

are

62-6= 8e - 0-8776 S«i + 0-5402 Sa;, + 0-7923 ^, + 0-2554 ^,

- 39-31 Sw- 0-4795 82/. + 0-8415 §2/, + 0-6101 A;, + 0-9668 4
-0-3875 ^3-0-9877 pi-0'6870p,-0-1009^3

+ 0-9219 A;3 + 0-1566 g^ - 0-7267 g^- 0-9949 g,

84-5= Se + 0-4975 Sic,- 0-5050 Sec, -0-0887^1- 0-9843 ^,

- 32-30 Sw- 0-8675 82/1-0-8631 §2/, + 0-9961 ^,-0-1767 \
+ 0-2634 ^3-0-9085 j?i-0-3355p, + 0-9681p3

-0-9647 ^3-0-4178 g,- 0-9420 g,- 0-2506 g,

67-2= Se + 0-6732 S«,- 0-0935 Sa;,- 0-2243 ^,- 0-8994 /i,

-31-34 8ft-0-739482/i-0-9956S2/, + 0-9745 ^,-0-4371 k,

+ 0-6277 ^3-0-8720 |)i-0-2815p,+ 0-9982p3

-0-7785 ^3-0-4895 g^ -0-9596 ^3- 0-0591 §3

-51-8= 8e -0-2616 8x1-0-8631 8a;, - 0-9436 ^i + 0-7809 A^

- 19-59 8w+ 0-9652 82/1- 0-5050 Sy,- 0-3310 ^^ + 0-6247 h
-0-5301 A3-O-O73I jp, + 0-3991p2-0-6801_p3

-0-8479 ^3-0-9973 g.- 0-9 169 7, + 0-7331 ^3

-43-2= 8e - 0-4741 SiCi- 0-5505 8a;, -0-8861 A, + 0-5704 A,

- 18-58 8« + 0-8805 hy^ - 0-8348 8y,- 0-4634 \ + 0-8213 \
-0-1248 7^3+ 0-0115 _29i+0-4532jp,- 0-8147^3

-0-9922 A;3-0-9999 ^^ -0-8914 ^, + 0-5798 g,

-50-1= 8e -0-64308x1-0-1731 8a;,-0-819lAi + 0-3420/i,

- 17-68 Sji + 0-7659 82/1 -0-9849 82/,- 0-5736 A;i + 0-9397 h
+ 0-2588 ^3+ 0-0871 Pi + -500 l_p,- 0-9063^^3

-0-9659 ^3-0-9962 ?i- 0-8660 g, + 0-4225 g^

-37-8= 8e -0-9492 8x1 + 0-8021 8x,- 0-5743 7^1-0-3404 A,

-15-25 8n + 0-3145 82/i-0-5972S2/,-0-8186A;i + 0-9403A;,

+ 0-9652 ^3 + 0-2872 pi + 0-6192|),-0-9984j)3

-0-2613 ^3- 0-9579 §1 -0-7852 ^,-0-0560 ?»
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-20'5= Se -0-9985 Sa;, + 0-9942 Sec, -0-3671 ^^-0

- 13-60 Sw - 0-0538 Zy^ + 0-1074 hy, - 0-9302 \ + Q

+ 0-9035 A3 + 0-4164
J9i + 0-6928 ^9^-0

+ 0-4286 A;^- 0-9092 c^^- 0-/212 q,-0

- 2-4= Se -0-9633 S£C, + 0-8560 Sx,- 0-2363 ^1-0

- 12-64 Sn- 0-2684 8y, + 0-5170 Si/, -0-9717 ^^ +

+ 0-6562 ^3 + 0-4882 js^ + 0-7327 p^-O

+ 0-7546 A;3-0-8727 ^1-0-6806 q,-0

41. The equation for finding p.^ may be formed as before, by multi-

plying the above equations taken in order by

-0-8, -0-6, +1-0, +1*0, +0-9, +0-6, +0-4, +0-3,

beginning with the second ; and the equation for q^ by multiplying the same

equations by
1-0, 1-0, 0-5, 0-4, 0-3, 0-2, 0-1, 0-1.

Thus we obtain

-7304 h.
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-146''69=- 0-7686 ScCi- 0-1963 8032- 3-9519^1- 1-5548^2

+ 10-6926 82/1-4-2508 82/,+ 11-5128 K+ 9-/013 k,

+ 1-7907 /i3-4-7913 p,- 3-1927 j9,- 0-7902_p3

- 2-8583 A;3 + 4-6536 q^+ 1-9595 2-, + 11-7796 ^g.

43. Substituting for Zx^, Sy^, their values in terms of Sx^, Sy^, we find

-4-1831 8a;i+ 7-1533 83/i+ 0-6179 Sa;^- 1-5388 8y,= -4-1647 8a;,+ 7-1473 Sy,

-0-7686 8£c,+ 10-6926 82/^-0-1963 8x,-4-2508 Sy,= -0-7319 8a;, + 10-6591 Sy,.

Hence, if to the equations just found we add

+ 0-60808 (a;) -5-5942 (2/)

and + 0-07306 (x)- 8-3110
(2/) respectively,

Sx^ and Sy^ will be eliminated, and we shall obtain the following equations :

—

(3) -476-84= -2-7630/^1+ 6-9793/1,+ 4-6473 /i,

-2-8290 ^1-5-1777 A;, -20*2242 k,

+ 0'0698^i + 0-3785 j>,- 2-5884^3

-1-7748 (/,- 0-8036?,- 0-2693^3

(4) -486-03= -3-7091 ^1-0-9682 ^,+ 2-2600^3

+ 8*3364^1-7-5348 ^,-31-0457 k

-4-6988^i-3-1454j),- 0-3772j>3

+ 3-9584^1 + 1-7118?,+ 3-8734^3.

44. Eliminate the left-hand members from equations (2), (3), and (4),

of Articles 39 and 43, by means of equation (l), and we have

0= 0-4200/^1 -0-4114 /i,- 4-2014 /i3+ 0-1980pi + 0-1069_p, + 0-4236j>3

-0-4964 A;i + 2-3306 4 + 23-3213 ^-0-1567 ?i-0-0409 g,-0-4531 q,

0= -1-0507/^1 + 2-6465/1,- 21-8182 /i3 + 0-9482pi + 0-8614p,- 1-4023^93

-2-747l4-4-7334A;,-19-4976 4-l-7569?i-0-7972g,-0-0655?3

0= -1-9638 /ii-5-3845 /i,-24-7l55 /i3-3-8034pi-2-6532p,+ 0-8317p3

+ 8-4199 4-7-0819 4-30-305lA;3 + 3-9767 2i+l-7183g,+ 4-0811?3.
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45. If, as before, we put e-e' = d, and €-ro- = y8, it may be seen that

3 = - 42-33 sin 6 \ = 76-55 sin 2d

3= -42-33 cos ^ ^=76-55 cos 2^
in ml

-^,=- 7-25 sin 3^ + 0-007460 ^' + 0-008974 %m m m

^= 7-25cos36'-0-008974^'+ 0-007460%m m m

^= 0-20 sin (
^ -/3)- 0-074738 1^ cos 2^-% sin 2^1

%=- 0-20cos( ^ - ;8) + 0-074738 fe sin 2^ +% cos 2^

^= 32-91 sin (2^-^) + 0-259765 1^5 cos ^-%sin ^l

%= 32-91 cos (2^-y8) + 0-259765 1^^ sin ^+%cos ^l

.

m ^ ' \m' m
j

46. Substituting these expressions in the above equations, and putting

for P its value, 50° 15' 8, we obtain

0= -(1-24872) sin (9+ (1-32231) cos ^-(1:48110) sin 2^ + (2-24265) cos 26*

- (1 -48373) sin 36'+ (2-22809) cos 3^+ (9-26254) ^

-

(9-50079) %m ^ ' m

+ (8-44376) te cos
^-J sin ^l- (8-02630) 1^5 sin ^ + ^, cos ^

- (8-17031) j^ cos 26-^ sin 2d\ - (8-06861) fe sin 26+% cos 26
^ ' ym m \

^ ' \m m

= (1-65190) sin ^+ (2-06584) cos 6' + (2-30220) sin 26'- (2-60306) cos 26

-(2-19916) sin 36*- (2-15032) cos 3^- (0-14305) ^- (9-60933)%

+ (9-34981) [^ cos 6-% sin ^ - (9-31615) fe sin ^ + %cos ^l
^ ' \m m j ^ ' \wl m J

- (8-85046) i^ cos 26*-% sin 26\ - (9'11828) 1^^ sin 26+% cos 2^
^ ' \m m J

^ ' ym m )

A. 5
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= (1-91407) sin ^- (2-55189) cos ^- (2-62790) sin 2^- (2-64230) cos 2d

-(2-25331) sin 3^- (2-34185) cos 3^+ (9-96344) ^+ (0-56029)%m ' m

- (9-83835) 1^5 cos d-'^,mxe\+ (9-64968) fe sin 6+^, cos ^l

+ (9-45371) Mcos 26-% sin 2^ +(9-47306) fe sin 2d +-% cos 2^ ,^ ' \m m ] ^ ' \m m
j

where the numbers enclosed within parentheses denote the logarithms of

the corresponding coefficients, as before.

47. From these equations we find, by the same method as before,

^--46° 55' ^J=138"-92 %=-109"-83m m

Hence, since e = 217°55', e' = 264°50', the mean longitude of the disturbing

planet at the epoch 1810-328. The sidereal motion in 36 synodic periods

of Uranus = 57° ^2', Precession = 30'. .-. mean longitude at the time 1846-762,

or October 6, 1846, =323° 2'.

Also, the expressions for —. and -^ are
^ m m

^ = 33'93 sin (36 -fi) - 63-41 e' sin {36-/3')

-^; = 33-93 cos (3^ -;8)- 63-41 e' cos (3^-/8');

where € — rs' = /3'.

Equating these to the values given above, we find e' = 2-4123, /8' = 279° 14',

and .-. «7' = 298°41'. Hence longitude of the perihelion in 1846 =299° 11'.

Lastly, substituting the values just obtained in equation (l) of Article

39, we find m' = 0-75017.

48. Hence the values of the mass and elements of the orbit of the
disturbing planet, resulting from the second hypothesis as to the mean
distance, are the following :

—

a
-, = 0-515
a
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Mean longitude of the Planet, October 6, 1846... 323° 2

Longitude of the Perihelion 299 11

Eccentricity of the Orbit 0-120615

Mass (that of the Sun being 1) 0-00015003.

49. From the values of m', 6, ^, and ^, , found above, the values

of the quantities h, k, p, and q, corresponding to each hypothesis, are im-

mediately determined. Thus we find,
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It will be seen that the corrections of the eccentricity and longitude

of perihelion vary very rapidly with a change in the assumed mean distance.

51. If these quantities be substituted in the expressions before given,

we obtain the following theoretical corrections of the mean longitude, each

of these corrections being divided into two parts, of which the first is due

to the changes in the elements of the orbit of Uranus, and the second to

the action of the disturbing planet.

Hypothesis I.

Ancient Observations.

1 7 1

2

- 288''o + 365'8 = + 77-%

1715 -283-1 +357-1 = +74-0

1750 +210-5 -260-7 = -50-2

1753 +218-1-267-0= -48-9

1 756 + 214-0 - 260-0 = - 46-0

1 764 + 154-0 - 186-7 = - 32-7

1769 + 79-6-100-7= -21-1

1771 + 27-6- 41-8= -14-2
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Hypothesis II.

Ancient Observations.

1 71

2

-133-7 + 211-9= +78

1715 -117-7 + 191-5= +73

1750 + 85-2-134-4= -49

^753 + 73-8-122-2= -48

1756 + 59-1-105-2= -46

1764 + 2-7- 36-4= -33

1769 - 43-1+ 20-8= -22

1771 - 69-9+ 54-7= -15

Modern Observations.

Year.

1780
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Ancient Observations. Modern Observations.

Year.
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For the observations of the last two years, I am indebted to the

kindness of the Astronomer Royal. The three years nearly agree in shewing

that the errors of the first hypothesis are to those of the second in the

ratio of 5 to 4, from which I inferred, in a letter to the Astronomer Royal,

dated September 2, 1846, that the assumption of -^ =sui35° = 0"574, would

probably satisfy all the observations very nearly.

54. The results which I have deduced from Professor ChaUis's obser-

vations of the planet, strongly confirm the inference that the mean distance

should be considerably diminished. It is of course impossible to determine

precisely, without actual calculation, the alteration in longitude which would

be produced by such a diminution in the distance. By comparing the values

of 6 given by the two hypotheses, it may be seen, however, that if we took

successively smaller and smaller values for the mean distance, the values

found for the mean longitude in 1810 would probably go on diminishing,

while at the same time the mean motion from 1810 to 1846 would rapidly

increase, so that the corresponding values of the mean longitude at the

present time would probably soon arrive at a minimum, and afterwards begin

again to increase. This I believe to be the reason why the longitude found

on the supposition of too large a value for the mean distance agrees so

nearly with observation. In consequence of not making sufficient allowance

for the increase in the mean motion, I hastUy inferred, in my letter to the

Astronomer Royal mentioned above, that the effect of a diminution in the

mean distance would be to diminish the mean longitude.

55. I have already mentioned, that I thought it unsafe to employ

Flamsteed's observation of 1690 in forming the equations of condition, as

the interval between it and all the others is so large. The difference between

it and the theory appears to be very considerable, and greater for the second

hypothesis than for the first, the errors being -|-44""5 and +50"'0 respec-

tively. These errors would probably be increased by diminishing the mean

distance. It would be desirable that Flamsteed's manuscripts should be

examined with reference to this point.

56. The corrections of the tabular radius vector of Uranus may be

easily deduced from those of the mean longitude by means of the following

formula

:
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^- i^sr_l^ 18« 1 e8e I ^,^,dA,

+^ tCiGosi{nt-n't + €-^

+ m'etDi cos {% {nt-n't + e — ^) — nt — e+ nr}

+ m'e'tEi cos {i {nt -n't + e-e')-nt-e+ ot'}

where 8^ denotes the whole correction of the mean longitude at the time t,

1 dr . , , 3e^ . ^ r i i- -T-- = e sin {«< + e — w} + —- sm 2{nt + e — w\ nearly,

4 i (yi - n') - w \ ' da J

Ai{n-n')-n ^
i

^
^ da

j

i assuming all integral values positive and negative not including zero.

57. By substituting in this formula the values of m', Sa, Se, &c., already

obtained, and putting a=19"191, we find the following results corresponding

to the two assumed values of the mean distance.

Hypothesis I.

-Sr= -j-8C--—5j- 0-000089
r r de 2 ndt

+ 0-000069 cos {nt-n't + e-e^

+ 0-000259 cos 2 {nt -n't + e-^
+ 0-000109 cos S{nt -n't + €-/}

+ 0-000016 cos {n't+ e'-Tsr}

-0-000168 cos {nt-in't + t-le' + Ts}

+ 0-000078 cos {nt-<2n't + e-2^ + z/\

-0-000049 cos {2n«-3n'« + 2c-3e'+ OT}

+ 0-000209 cos {2w«-3n'« + 2e-3e'+ OT'}.
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J Hypothesis II.

-Sr = -
-J- 8^ --—^-0-000144r r de 2 ndt

+ 0-000073 cos {nt-n't + e-e'}

+ 0-000266 oos2{nt-n't + e-e^

+ 0-0001 1 5 cos 3 {n« - w'« + e - e'}

+ 0-000016 cos {n't + ^-zs}

-0-000188 cos {nt-2n't + €-2e'+ z^}

+ -000068 cos {nt - 2n't + e - 2e'+ ot'}

-0-000053 cos {2nt-^n't + 2e-Z^+ w}

+ 0-000165 cos {2nt-^n't + 2e.-Z^ + Ts'}.

58, The values of ht, and —j,- for some recent years are the following:

—
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59. By far the most important part of these corrections arises from
1 jlSiT

the term — ^t —-t , and may therefore be immediately deduced from a com-

parison of the observed angular motion of Uranus with that given by the

tables. In fact, the corrections given by this term alone for the epochs

above mentioned are

Year.



THE SEARCH FOR THE PLANET NEPTUNE BY PROFESSOR CHALLIS.

[From the Astronomische Nachrichten. No. 583 (1846). Pp. 101—106.]

Cambeidge Observatoey,

October 21, 1846.

My more immediate purpose in writing to you at present, is to give

some account of observations which I undertook this summer in search of the

recently-discovered planet. Mr Adams, a young Cambridge mathematician,

had for a long time turned his attention to the perturbations of Uranus,

and in the autumn of last year communicated to me and to Mr Airy,

the Astronomer Royal, values which he had obtained of the heliocentric

longitude, mass, eccentricity of orbit, and longitude of perihelion of a sup-

posed disturbing planet, revolving at a mean distance from the Sun about

double that of Uranus. These results were deduced entirely from a con-

sideration of perturbations of Uranus not otherwise accounted for. M. Le
Verrier, by an investigation published in June last, obtained almost precisely

the same heliocentric longitude which Mr Adams had arrived at. This

coincidence from two independent sources very naturally inspired confidence

in the theoretical deductions, and accordingly Mr Airy shortly after suggested

to me the employing of the Northumberland telescope of this Observatory

in a systematic search after the planet. I commenced observing July 29.

6—2
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Unfortunately I was not then aware of the publication of hour XXI of

the Berlin star-maps, and consequently had to proceed on the principle of

comparison of observations made at intervals. On July 30 I recorded the

approximate places of stars in a zone 9' in breadth, in such a manner as

to be sure that none brighter than the 11th magnitude escaped me, which

a paculiar arrangement in the construction of the Northumberland Equatorial

enabled me to do. On August 4 I took the places of the brighter stars

in a zone 80' broad, and among these recorded a place of the planet. My
next observations were on August 12, on which day I met with a star

of the 8th magnitiide in the zone which I had taken on July 30, which

did not then contain this star. This again was the planet. So exactly

had theory indicated the proper place for making the search, that in four

days only of observing I had recorded two positions of the planet. Also

according to the principle of search I had adopted, the observations of two

of those days (July 30 and August 12) were sufficient to discover it. My
time, however, was so occupied with comet reductions, and so little expec-

tation had I of discovering the planet by a brief search, that I was only

just preparing to map the places of the stars to see what success I had

had, when the announcement of the discovery reached me. My observations

after August 12 were purposely made early in Right Ascension for the

sake of being able to carry them on during a longer portion of the year.

Accordingly I did not again meet with the planet till September 29, on

which day I saw for the first time the results of M. Le Verrier's last

investigations. By these I was induced to return again to the theoretical

position of the planet, and to endeavour to detect it by the appearance

of a disk. In fact on the night of September 29, out of a very large

number of stars whose approximate places I recorded, I fixed upon one*

which appeared to me to have a disk, and which proved to be the planet.

On October 1 I had intelligence of Dr Galle's discovery.

The foregoing account, while it shews that I cannot lay claim to any
discovery, may perhaps be regarded with some degree of interest. In

particular, the places which I have obtained for the planet on August 4

and August 12, though they cannot pretend to great accuracy, for the

present possess a value which they will lose when accurate, observations

have been continued for a longer period. I have, therefore, thought it worth
while to send them to you, and to describe in detail the manner in which
they have been deduced, that an opportunity may be given of judging of

the degree of confidence they deserve.
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My observations were all made with the large Northumberland Eefractor,

and with a magnifying power of 170. On August 4, the Hour Circle being

fixed, the telescope was moved in declination, and the transits were all

taken at the same part of the field, at the toothed edge of the comb of

a micrometer eye-piece. Differences of declination were measured by means

of a graduated sector-arc, which was read off by a microscope-micrometer,

one revolution of which is 10". The stars were accurately bisected by a

fixed wire equatorially adjusted, but to gain time the micrometer was read

off to integral revolutions, and by estimation to a fourth part of a revo-

lution. The error of reading off in this way could hardly be more than

3", and the error of comparison with a single star might possibly amount

to 6". On August 12, the telescope was absolutely fixed, and the zone,

which was 9' in breadth, was limited by the field of view. The transits

were taken at the toothed edge of the comb carefully adjusted, and the

differences of declination were measured by revolutions of the eye-piece

micrometer, read off in integral revolutions, and by estimation to a fourth

part of a revolution, by means of the teeth of the comb. Occasionally, as

it happened in the instance of the planet, the tenth part of a revolution

was estimated. The value of one revolution of this micrometer is 17", and

I should therefore estimate the error of comparison with a single star, so

far as it depended on error of reading off, to be at most 8". I now give

the places of the planet resulting from a comparison with every known
star that was taken in the same series on each of the two days.

August 4

star of Comparison and authority ^^^ ^ ^ ^^^ ^^^j ^ pj^^^^
for its place. "

h. m. s. o / //

. . [British Association Catalogue... 21 58 14-13 - 12 57 18-4

50 Capricorm
|-g^^^^^ 2. 127 2l''37°'13^ 15-21 21

British Association Catalogue 7599 14-89 32

38 Aquarii B. A. C. 7722 h. m. s.
14-86 41

Bessel Z. 127 and Z. 129 2159 10 14-48 33

127 and Z. 129 22 5 6 14-80 34

127 2145 34 14-69 28

127 2134 54 14-18 35

127 2132 30 14-94 30

127 2148 50 14-77 33

7

6

9

4

1

2

6

* There can be little doubt that there is an error of 10" in these from error in the

number of micrometer revolutions.
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August 12

Star of Comparison.

Bessel Z. 127

127 and 129

127 and 129

127 and 129

127 and 129

127

127

127

127 and 129

129

-— 127

75 Aquarii B. A. C. 7976

B. A. of Planet. Deol. of Planet.

h.

22
h. m.

51 21 57 26

22 5 6.

22 8 15.

22 10 53.

22 11 18.

22-18 20.

22 19 26.

22 24 45.

22 32 7.

22 27 31.

22 36 51.

25

26

26

26

25

26

26

26

25

25

26

14 -13 1 55

98.

27.

05.

10.

99.

32.

35.

21.

99.

84.

34.

64

59

61

61

62

60

54

57

65

62

57

Not knowing whether Bessel's place of 50 Capricorni or that of B. A. C
is preferable, I have adopted the mean of the two. The following are the

places of the planet given by the means of the above determinations.

Greenwich mean time. B. A. Deol.

August 4
h. m. s.

13 36 25
h. m. B.

21 58 14-70 -12 57 32-2

12 13 3 26 2157 26-13 -13 2 0-2

in which the errors of B,. A. are probably not greater than those incident

to results depending on single transits, and the errors of declination, ac-

cording to the estimate already given, may amount to 3 or 4 seconds.

From these places, compared with recent observations extending to

October 13, Mr Adams has obtained the following results :

—

Distance of the planet from the Sun 30-05

Inclination of the orbit 1° 45'

Longitude of the descending node 309-43

Heliocentric Longitude, August 4 326-39

The present distance from the Sun is therefore .about a tenth less than
theory had predicted. Guided by these results I have been seeking for

previous accidental observations of the planet, but without success. The
position at the date of the Histoire CMeste is now too near the Sun.



DETERMINATION OF THE ORBIT OF THE PLANET NEPTUNE
(PROFESSOR CHALLIS).

[From the Astronomische Nachrickten. No. 596 (1847). Pp. 309—314.]

In conformity with a wish expressed by the Vice-Chancellor and the

Observatory Syndicate at their ordinary terminal meeting, held on March

15, I propose in this Report to carry on, for the information of members

of the Senate, the account of proceedings in the Observatory relative to

the new planet, a first Report of which was made on December 12 of last

year. The theoretical grounds on which a search for the planet was insti-

tuted, the manner in which the search was conducted, and the degree of

success that attended it, were stated in the former Report, which brought

the history of proceedings down to the date at which the planet was dis-

covered. I have now to give an account of the subsequent observations

both of its position in the heavens, and of its physical appearance, and to

state the results respecting the orbit which have been deduced from the

observations by calculation.

A regular series of observations of the planet was commenced on October

3, 1846, and continued at all available opportunities, partly with the meridian

instruments, and partly with the Northumberland Equatorial, to December 4,

soon after which the planet became too faint to observe on the meridian

on account of daylight. The observations were subsequently carried on with

the Equatorial to January 15. The series was much interrupted by cloudy

weather, . particularly in the months of December and January. On the whole

I have obtained 28 positions of the planet with the meridian instruments,

and 25 positions with the Northumberland Equatorial by means of 92

differential observations of Right Ascension and as many of North Polar

Distance. The Equatorial measures were all referred to the same star,

No. 7648 of the British Association Catalogue, the exact place of which

was determined by 16 observations with the Transit, and 8 observations

with the Mural Circle. I have reason to think that the positions obtained

with the equatorial are entitled to very nearly the same weight as those
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obtained on the meridian. All the above observations I have completely

reduced, and have placed the results at the disposal of Mr Adams for

deducing elements of the planet's orbit.

On January 12, I had for the first tune a distinct impression that the

planet was surrounded by a ring. The appearance noticed was such as would

be presented by a ring like that of Saturn, situated with its plane very

oblique to the direction of vision. I felt convinced that the observed elon-

gation could not be attributed to atmospheric refraction, or to any irregular

action on the pencils of light, because when the object was seen most

steadily I distinctly perceived a symmetrical form. My assistant, Mr Morgan,

being requested to pay particular attention to the appearance of the planet,

gave the same direction of the axis of elongation as that in which it

appeared to me. I saw the ring again on the evening of January 14. In

my note-book I remark, "The ring is very apparent with a power of 215, in

a field considerably illumined by lamp-light. Its brightness seems equal to

that of the planet itself" On that evening, Mr Morgan, at my request,

made a drawing of the form, which on comparison coincided very closely

with a drawing made independently by myself The ratio of the diameter

of the ring to that of the planet, as measured from the drawings, is about

that of 3 to 2. The angle made by the axis of the ring with a parallel

of declination, in the south-preceding or north-following quarter, I estimated

at 60°. By a measurement taken with the position-circle on January 15,

under very unfavourable circumstances, this angle was found to be 65°. I

am unable to account entirely for my not having noticed the ring at an

earlier period of the observations. It may, however, be said that an ap-

pearance like this, which it is difficult to recognize except in a good state

'

of the atmosphere, might for a long time escape detection, if not expressly

and repeatedly looked for. To force itself on the attention, it would require

to be seen under extremely favourable circumstances. Previous to the

observations in January, the planet had been hid for more than three

weeks by clouds. The evenings of January 12 and 14 were particularly good,

and the planet was at first looked at in strong twilight. Under very

similar circumstances I have twice seen with the Northumberland telescope

the second division of Saturn's Ring.

I communicated to Mr Lassell of Liverpool, who was the first to suspect

the existence of a Ring, my observations upon it, accompanied with a

drawing ; and I have received from him in return a drawing of the

appearance presented in his twenty-feet reflector, closely resembling mine
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both as to the form and the position of the Ring. Mr Lassell writes, "T

cannot refuse to consider that your observation puts beyond reasonable

doubt the reahty of mine." In this conclusion I concur, and accordingly

in communications to the Royal Astronomical Society and to Schumacher's

Astranomische Nachrichten, containing my reduced observations, I have ven-

tured to express my conviction of the existence of a Ring.

By micrometer measures taken with the Northumberland telescope, I

find the apparent diameter of the body of the planet to be very nearly 3".

The above account includes all the observations on the planet I could

obtain before its disappearance in the solar rays. By the kindness of

Mr Adams I am able to add some particulars respecting its orbit, which

he has derived by calculation from the reduced places with which I fur-

nished him. As was stated in the former Report, Mr Adams calculated

first approximations to the elements, by employing the places I obtained on

August 4 and August 12 in the course of searching for the planet, with

observations since the discovery extending to October 13. For the sake of

comparison with the second approximations, I now give the first results.

Heliocentric Longitude 326 39 Aug. 4, 1846

Longitude of the Descending Node 309 43

Inclination of the Orbit 1 45

Distance of the Planet from the Sun 30*05.

In calculating the following second approximations Mr Adams used the

mean of the two places of August as a single place, and of the others

he selected nine which seemed to be the best determined, and which were

separated by convenient intervals. All the results are calculated for the

epoch of 1846, August 8'0, mean time at Greenwich.

Heliocentric Longitude of the Planet referred to the

mean Equinox of 1847-0 326 41 12-3

Heliocentric motion in Longitude in 100 days 36 5*52

Heliocentric Latitude South 30 34'4

Change of Heliocentric Latitude in 100 days 1 4 "44

Longitude of the Descending Node 310 3 44*0

Inclination of the Orbit 1 46 49*1

Distance of the Planet from the Sun 30 "008

Half the Latus Rectum of the Orbit 30-228.

A. r
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The first position on which the above results depend, that of August 4,

was obtained 16 days before the planet was in opposition, and the last

position, that of January 15, 32 days before it was in conjunction. The

great variation of the planet's elongation fi:om the Sun in this interval

is favourable to the correctness of the above determinations, which, although

they cannot pretend to extreme accuracy on account of the short period

over which the observations extend, are yet entitled to considerable weight.

Mr Adams has in fact calculated the probable errors of the above results

by supposing each observation of Right Ascension or of North Polar Distance

to be liable to an error of S", and he finds that there is little probability

of their receiving any great amount of correction by taking account of

future observations. It may be remarked that the first and second approxi-

mations do not differ by any large quantities. Hence it may be inferred

that the places of August are deserving of confidence, and that, on account

of the extension given to the period of observation by including those

places, this second approximation to the elements is more accurate than

it would have been if it depended solely on observations made since the

discovery of the planet.

The calculations give 59' 8" for the planet's heliocentric motion from

August 4 to January 15. This is so small an arc that it is not possible to

deduce with any degree of certainty those elements the determination of

which depends on change of the heliocentric distance.. Mr Adams has, how-
ever, discussed the observations with this object in view, and has obtained

certain limiting results, which, as possessing considerable interest, I here

subjoin.

The eccentricity of the orbit cannot exceed 0-18. The most probable
value is 0'06, which differs but little from the eccentricities of the orbits of
Jupiter, Saturn, and Uranus.

The most probable longitude of perihelion is 49° 58', and the probable
true anomaly 276° 43', according to which the planet is near the extremity
of the latus rectum and is descending towards perihelion. These results

are extremely uncertain.

The mean distance is 30-35, with a probable error of 0-25 ; and the
corresponding sidereal period is 167 years, with a probable error of about
2 years. It is remarkable that the periodic time is very nearly double
that of Uranus

; so that these two bodies will offer an instance of mutual
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perturbations of large amount, differing in character from those of the older

planets, but analogous to the mutual perturbations of the first and second,

and second and third satellites of Jupiter.

According to Bode's law of the planetary distances, the mean distance

of the new planet would be nearly 38. The actual mean distance differs

so much from this, that we are compelled to conclude that this singular

law fails in this instance.

Since the apparent diameter of the new planet is to that of Uranus
nearly in the ratio of 3 to 4, according to the foregoing determination of

the distance its bulk is to that of Uranus in the ratio of 8 to .5.

The above is the sum of the results derivable from the first series

of observations. For further and more exact information we must wait till

the planet emerges from the solar rays. Before concluding this Report, I

am desirous of saying a few words respecting the name of the planet. I

recently had the satisfaction of receiving from M. Struve the copy of a

communication read by him at the general annual meeting of the Imperial

Academy of Sciences of St Petersburg on December 29, in which he states

the reasons that have induced himself and the other Poulkova astronomers

to adhere to the name of Neptune, which name was first proposed by the

French Board of Longitude, shortly after the discovery of the planet. These

reasons are thus briefly expressed in a note addressed to me personally

:

" The Poulkova astronomers have resolved to maintain the name of Neptune,

in the opinion that the name of Leverrier would be against the accepted

analogy, and against historical truth, as it cannot be denied that Mr Adams
has been the first theoretical discoverer of that body, though not so happy

as to effect a direct result of his indications." M. Struve's communication

has been published in this country by the Astronomer Royal, who has

expressed his assent to the reasons therein contained, and his determination

to adopt the name of Neptune,. Professor Gauss and Professor Encke have

also, as I understand, adopted this name. I have only to add that it is

my intention (and I am permitted to say, the intention of Mr Adams also)

to follow the example set by these eminent astronomers.

7—2



OBSERVATIONS OF THE PLANET NEPTUNE, BY PROFESSOR CHALLIS.

[From the Monthly Notices of the Royal Astronomical
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1847



3.

CORRECTED ELEMENTS OF NEPTUNE.

[From the Monthly Notices of the Royal Astronomical Society (1847). Vol. vii.J

The following results respecting the orbit of the recently discovered

planet Neptune may, perhaps, not be uninteresting to the Society. They

are deduced from the early Cambridge observations of August 4 and August

12, combined with nine later ones made at the same observatory, those

being generally selected where the planet was observed with the equatorial

and meridian instruments on the same day. To each element found I have

annexed the probable error to which it is subject, in order that it may
be judged what reliance may be placed upon the value obtained. It will,

be seen that some tolerably definite information respecting the orbit is

already afforded by the observations, though they are, of course, insufficient

to determine, even roughly, all the elements.

Epoch 1846, Aug. 8-0, G. M. T.

True Long, of the Planet, M. Eq. 1847-0 326° 41' 12"-3± 2"-55

Motion in Longitude in 100 days 36'5"'52± 2"'82

Distance of Planet from the Sun 30"008±0'0312

Change of distance from the Sun in 100 days ... -0-01947 ±0-0365

Heliocentric Latitude, South 30'34"-35+ 2"-24

Increase of Heliocentric Latitude in 100 days 1' 4"-44± 2"-05
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Hence we find,

Inclination of the Orbit r46'49"-l± 3' 7"

Longitude of Descending Node 310° 3' 44"'0 + 30' 37"

Semi-latus Eectum 30-228 + 0-0922.

Also, if e be the eccentricity of the orbit and a the true anomaly,

ecosa= 0-00733 + 0-00235

esina= -0-06223 + 0-1167.

Hence the most probable values of the eccentricity and longitude of the

perihelion appear to be,

Eccentricity = 0-06266.

Longitude of Perihelion = 49° 58'.

These latter are merely given as the results of the calculation, the

magnitude of the probable error of e sin a shewing that no weight is to

be attached to them. It may be seen, however, that the eccentricity cannot

be large.

The most probable value of the mean distance = 30-35, with a probable

uncertainty of about 0-25: the corresponding periodic time =167-2 sidereal

years, which is very nearly double that of Uranus. Hence the mutual dis-

turbances of these two planets will present some remarkable peculiarities

analogous to those of thfe first and second, and of the second and third

satellites of Jupiter.

The probable errors given above have been found by considering the

probable error of each observation to be 3", the mean of the observations

on August 4 and August 12 (which, however, agree very well with each

other) being taken as a single observation.

This estimation appears to be quite high enough, as the remaining

differences between theory and observation only exceed that amount in two

instances.
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Note. Extraxit of a Letter from Professor Schumacher.

"I have received to-day a very interesting letter from M. Le Verrier.

The star observed by Lalande on May 10, 1795, is undoubtedly the planet

{Neptune). On consulting the original MSS. it appears that he observed

the planet on May 10, and also on May 8 ; but in printing the Histoire

Celeste, these two observations, supposed to be of the same fixed star, were

found discordant. Hence the observation of May 8 was not printed at all,

and to that of May 10 were affixed the two points, signifying doubt, which

are not in the MSS. The MSS. observations stand thus:"*

—

Middle Wire. Third Wire. Zenith Distance,

h. m. s. h. m. s. o / //

May 8 7-8 14 1124 59 54 40

Planet 11 36-5 60 8 17

lo Planet 11 23-5 60 7 19

7-8 14 1150-5 59 54 40.

Observations of Neptune since its Reappearance.

Cambridge. Northumberland Equatorial. (Prof Challis.)

Greenwich M. T. E. A. N. P. D.

h. m. s. h. m. 8.
<, ^ „

1847 May 6 15 13 49 22 9 53-40 101 55 53-1

II 15 24 11 2110 9-03 10154 38-0

"Neptune was compared with a star in Bessel's Zones 127, 129,

E. A. = 22'' 15" 11', and Bessel's place was employed. On May 6th, the ob-

servation was difficult from twiHght and unfavourable atmosphere."

Greenwich M. T. E. A. N. P. D.

h. m. s. h. m. 8. „ ,
„

1847 May 26 14 58 36 22 10 36-72 101 52 33-5

June I 14 5 4 22 10 39-86 101 52 27-0

" The planet was compared on May 26 three times with B. A. C. 7740
and twice with a star in Bessel's zones 127 and 129, R. A.-=2 2'' 15™ 11°. On
June 1 it was compared five times with the former star and four times

with the latter. The places of the stars are taken from the British

Association Catalogue and from Bessel."

* The mean places of the star for 1800, by Schumacher's Tables, are

R. A. 14 12 0-83 N. P. D. 101 8 19'4

11 59-81 8 17-8

There is probably an error of 1= in one of the observed R. Ascensions.
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NEW ELEMENTS OF NEPTUNE.

[From the Monthly Notices of the Royal Astronomical Society (May, 1847), Vol. Vll.]

The following elements of NeptuTie have been obtained by taking into

account Professor Challis's Observations made since the reappearance. * * *

The elements are now sufficiently correct to enable me to approximate to

the perturbations of Neptune by the action of Uranus, in order to compare

more accurately the ancient observations of 1795 with those .... made re-

cently. I have used the old observations, supposing the elements not to

have changed. I hope immediately to set about a new solution of the

perturbations of Uranus, starting with a very approximate value of the

mean distance. * * * I do not think with Professor Pierce, that the near

commensurability of the mean motions will interfere seriously with the results

obtained by the treatment of perturbations ; but it will be interesting to

see how nearly the real elements can be obtained by means of the pertur-

bations.

Elements of the Orbit of Neptune.

3 54-5'

M. Eq. 1847-0

Mean Longitude, Jan. 1, 1847, G. M. T 328 13 54-5'

Longitude of Perihelion (on the Orbit) 11 13 41*5

Ascending Node 130 5 39-0

Inclination to Ecliptic 1 47 1"5

Mean Daily Motion 21-3774

Semi-axis Major 30-2026

Eccentricity of Orbit 0-0083835
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EPHEMERIS OF NEPTUNE AND MERIDIAN OBSERVATIONS.

[From the Astronomische Naohrichten. xxvi. (1847). No. 604, pp. 51, 52.]

Communicated by Rev. R. Sheepshanks.

JEphemeris of Neptune for Mean Midnight Greenwich.

E. A. N. p. D.

1847 April 30
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Professor Challis' observations give the following equations for the

difference between Observation and Ephemeris.

Observation — Ephemeris.

E. A. N. p. D.

May 26 +0-18

June I +0-21

+ 1-5

+ 1-0

I am hard at work on the perturbations of Uranus, in order to obtain

a new theoretical determination of the place.... The general values of the

perturbations are enormous, far exceeding anything else of the same kind in

the system of the primary planets. A comparison of the numerical expres-

sions for the perturbations which I have now obtained with those, which

I used before, would justify some scepticism as to former conclusions. But

we shall soon see how this great apparent difference affects the result.

From the Astronomische Nachrichten, No. 616, pp. 24]—244.

Ephemeris of Neptune for Greenwich Mean Midnight.

Sept.
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E. A. N. P. D.

1847 h. m. s. ^ , „
Oct. 14 22 41-33 102 49 1*3

15 38-24 49 17-6

16 35-26 49 33-2

*I7 32-39 49 48-2

18 29-63 50 2-6

19 27-00 50 16-3

20 24-47 50 29-5

21 22-07 50 41-9

22 19-78 50 53-7

23 17-61 51 4-8

24 15-56 51 15-3

25 13-64 51 25-1

26 11-83 51 34-3

*27 10-15 51 42-8

28 8-59 51 50-6

29 7-15 51 57-8

30 5-85 52 4-2

31 4-66 52 10-0

Nov. I 3-61 52 15-1

2 2-68 52 19-5

3 1-88 52 23-2

4 1-21 52 26-2

5 0-67 52 28-4

*6 0-26 52 30-0

7 21 59 59-98 52 30-9

8 59 59-84 52 31-0

9 59 59-82 52 30-4

10 59 59-94 52 29-2

11 22 0-19 52 27-2

12 0-57 52 24-5

E. A. N. P. D.

1847 h. m. s. „ , „
13 22 1-09 102 52 21-1

14 1-74 52 17-0

15 2-52 52 12-2

*i6 3-43 52 6-6

17 4-47 52 0-3

18 5-65 51 53-3

19 6-96 51 45-7

20 8-41 51 37-2

21 9-99 51 28-1

22 11-69 51 18-3

23 13-53 51 7-8

24 15-49 50 56-5

25 17-60 50 44-6

*26 19-83 50 32-0

27 22-19 50 18-7

28 24-67 50 4-7

29 27-30 49 50-0

30 30-05 49 34-6

Dec. I 32-92 49 18-5

2 35-92 49 1-7

3 39-05 48 44-3

4 42-31 48 26-2

5 45-69 48 7-4

*6 49-20 47 47-9

7 52-83 47 27-8

8 56-59 47 7-0

9 1 0-47 46 45-5

10 1 4-47 46 23-4

11 1 8-59 46 0-6
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Meridian Observations of Neptune made at the Cambridge Observatory by

Professor Challis, and compared with the Ephemeris.

July



6.

THE MASS OF URANUS.

[From the Monthly Notices of the Royal Astronomical Society. Vol. ix. (1849.)]

The mass of Uranus is a very important element in the determination

of the orbit of Neptune. Two values of this mass have been given, differing

widely from each other. Bouvard, from the action of Uranus on Saturn,

found the mass to be xrirs' ^^^^ °^ ^^® ^"^ ^®^°S =^' ^^^® "^°^® ^®"

cently, from observations of the satellites, Lamont has obtained the value

g^i^^g. In order to throw light on this subject, Mr Lassell was kind enough

to make for me the observations of the satellites of Uranus, which are

given in the Monthly Notice for March last.

These I have carefully reduced, and the value of the mass which I

have found from the observations of the fourth satellite (which are more

to be depended on for this purpose than those of the second) is 20 8 6? '

which is almost exactly a mean between the results of Bouvard and

Lamont. In obtaining this result, I have rejected the first day's observa-

tions, which are discordant both for the second and fourth satellites.

I have also reduced aU Sir Wm. Herschel's measures of distance of

the satellites given in his paper in the Phil. Trans., 1815, and the value

of the mass obtained from the observations of the fourth satellite is aiies ' ,

which agrees very closely with that found from Mr LasseU's observations.

Although, therefore, more numerous observations will be requisite in order

to obtain a mass which may be used with confidence in the theory of

Neptune, I have no doubt that the value ^looo ^^ much nearer the truth

than either of those which have been previously given, and I shall ac-

cordingly employ it in my subsequent calculations respecting the orbit of

Neptune.

The most probable values of the periods of the second and fourth

satellites, given by the combination of the observations of Sir Wm. Herschel,

Sir J. Herschel, Lamont, and Mr Lassell, are 8^-7058435 and 13'^-463139

respectively ; but the remaining errors of the epochs are greater than can

with probability be ascribed to mere errors of observation, and seem to

indicate the existence of considerable perturbations.
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APPENDIX ON THE DISCOVERY OF NEPTUNE.

[From Liouville's Journal de MatMmatiques, New Series, Tome ll. (1876).]

Bessel a ins^r^ au no. 48 des Astronomische Nachrichten, t. ii., p. 441,

une Lettre qui est accompagnde d'une note explicative se rapportant k ses

Tables d'Uranus et ^manant de Bouvard lui-m§me.

II r^sulte ^videmment des remarques I, II, III de M. Le Verrier, aux

pages 92—94 de son M^moire sur les perturbations d'Uranus, qu'U n'avait

pas connaissance de ces Lettres de Bessel et Bouvard ; car elles auraient

fait disparaitre la plupart des doutes qu'U y exprime relativement aux

Tables de ce dernier. II aurait vu, par exemple, que la correction 2Se,

qu'il suppose pouvoir s'^lever k 100 secondes sexag^simales, n'dtait r^elle-

ment que d'environ 10 secondes cent^simales. Au haut de la page 90 de

son M^moire, M. Le Verrier remarque, avec beaucoup de justesse, qu'une

erreur dans I'indgalitd d'une longue p^riode n'a pas d'importance pour I'objet

en vue ; mais il aurait 6A aussi remarquer qu'une erreur dans une in^galit^,

dont la p^riode ^tait presque ^gale k celle d'Uranus, serait pareUlement

presque insignifiante, puisque I'effet de cette erreur, durant le temps pendant

lequel Uranus a 6t4 observ^, serait, a peu de chose prfes, repr^sent^ par

une correction constante appliqu^e ^ I'excentricit^ et k la longitude du

p^rihdlie, comme je I'ai dit k la fin du no. 7 de mon M^moire.

J'attache une trfes-grande importance ^ la remarque faite au no. 9,

relativement ^ I'avantage d'employer la correction de la longitude moyenne

au lieu de celle de la longitude vraie. M. Hansen a fortement insists sur

ce point dans sa Theorie de la Lune et dans ses autres ouvrages.
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Par suite de cela, les termes qui sont n^cessairement omis dans une

premiere approximation sont plus faibles que si Ton avait employ^ les

perturbations de la longitude vraie.

Je vais maintenant faire un petit nombre de remarques, en r^ponse

aux objections de M. le professeur Pierce, contre la Idgitimit^ du proc^d^

suivi, tant par M. Le Verrier que par moi-m6me, pour la solution de

notre problfeme. Le professeur Pierce pretend que la p^riode de notre

planfete hypoth^tique difi'fere si consid^rablement de celle de Neptune, que

Ton pourrait iridiquer quelques p^riodes interm^diaires, lesquelles seraient

exactement commensurables avec la p^riode d'Uranus, et qu'il y aurait une

solution de continuity dans les perturbations d'Uranus, causae par deux

plan^tes hypothdtiques, dont I'une aurait une plus grande p^riode et I'autre

une pdriode plus petite que la p^riode commensurable dont il vient d'etre

question. De plus, la p^riode de Neptune lui-m6me est, k trfes-peu de chose

pres, double de celle d'Uranus, et cette circonstance donne naissance h, des

perturbations rdciproques trfes-consid^rables, d'un caractfere tout k fait different

de celles qui seraient caus^es par nos planfetes hypothdtiques.

Peu de mots, h, mon avis, suffiront pour aplanir cette difficult^. II est

vrai que, si nous voulions repr^senter les perturbations d'Uranus causees

par une planfete sup^rieure, pendant deux ou plusieurs p^riodes synodiques,

cela ne pourrait se faire qu'en adoptant une p^riode approximativement

vraie pour la planfete perturbatrice ; mais le cas est difif^rent lorsque, comme
ici, nous n'avons k repr^senter que les perturbations produites durant une

fraction d'une p^riode synodique.

Dans ce cas, si nous prenions pour quantit^s inconnues, non les cor-

rections applicables aux ^l^ments moyens de I'orbite d'Uranus, mais celles

qui seraient applicables aux ^l^ments adopt^s pour I'^poque de 1810, par

exemple, alors toutes les considerations relatives k une commensurabilit^

approximative dans les deux p^riodes, deviendraient ^trangferes k la question,

et les perturbations pour I'intervaUe limits requis pourraient 6tre representees

approximativement, pourvu que les forces perturbatrices de la planfete r^elle

et de la plan^te pr^sumde fussent approximativement les m^mes en grandeur

et en direction, durant le temps oh. ces forces perturbatrices agiraient avec

la plus grande intensity, c'est-k-dire lorsque les plan^tes ne seraient pas

fort eloigndes de leur conjonction. Sir John Herschel a montr^ dans ses

Outlines of Astronomy que ces conditions sont remplies d'une manifere satis-

faisante par les planfetes hypothetiques de M. Le Verrier et de moi-mlme,

quand leur action est comparde k celle de Neptune.
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On ne devait attacher aucune valeur h, la forte excentricitd ni h, la

longitude de I'apside de I'orbite de la plan^te pr^sumde, si ce n'est en tant
qu'elles fournissaient les moyens d'approcher de plus prfes de la distance

actuelle et du mouvement angulaire du corps perturbateur, dans I'intervalle

oti Taction perturbatrice se faisait le plus sentir,

Ainsi done, de la circonstance que le p^rihdlie de la planfete pr^sumde
sortit du premier calcul, non loin de la ligne de conjonction, on aurait pu
raisonnablement conclure, ce qu'a donn^ en effet le second calcul, que
rhypothfese d'une plus faible valeur de la distance moyenne conduirait k

une valeur plus faible de I'excentricit^.

On fera bien aussi de remarquer que les grands changements dans les

valeurs de Se et eSisr, qui se trouvent dans le no. 50, resultant de la

transition de ma premiere a ma seconde bypothese, sont des changements

dans les valeurs des ^l^ments moyens de I'orbite d'Uranus, lesquels sont

grandement afiect^s par I'indgalit^ de la longitude moyenne avec les co-

efficients ps et ^3, dont la p^riode ne difffere pas beaucoup de celle d'Uranus,

particuliferement pour le cas de la premiere hypoth^se. On verra que Sx^+p^

et S^/i+ ^a varient bien moins en passant d'une hypoth^se k I'autre que Sx^

et 83/1. Nous avons done

:

Premiere hypothSse. Seoonde hypoth^se.

8x,+p, = 9i',2l Sx^+p,= 105,98

8^1 + ^3 = 50,75 %i + g3= 41,59

Et les corrections des elements adopt^s, h, I'dpoque de 1810, seront

approximativement d^duites de ces quantit^s, absolument comme Se et eSar

ont ^t^ formes de Sx^ et S3/1.

L'observation de Flamsteed, en 1690, remonte k une ^poque trop ^loign^e

pour qu'elle puisse 6tre bien representee par les formules dont les r^sultats

s'accordent assez bien avec ceux des observations plus r^centes.

Ma seconde hypoth^se a donn^ une erreur plus forte que la premiere.

C'est done probablement pour avoir eu trop de confiance dans la possibility

d'appliquer ses formules h, cette observation ancienne, que M. Le Verrier

s'est trouve amene h. fixer une limite inf^rieure h, la distance moyenne de

sa planete perturbatrice, laquelle ne concorde pas avec la distance moyenne

de Neptune, telle qu'elle a et6 observ^e.

A. 9
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ELEMENTS OF THE COMET OF FAYE.

[From the Monthly Notices of the Royal Astronomical Society, Vol. VI. (1844).]

The observations used were made with the Northumberland telescope

of the Cambridge Observatory ; and the deduced places are as follows :

Greenwich Mean Apparent E. A. Apparent N. P. D.

Solar Time. of Comet. of Comet.

h. m. s. h. m. s. o / //

1843 Nov. 29 11 12 23 5 21 37-5 84 24 55

Dec. 8 9 59 18 5 17 287 85 47 53

16 11 55 45 5 13 33-0 86 35 55

At first I computed the orbit by the method of Olbers, on the sup-

position of its being a parabola, but found that the middle observation was

so badly represented, that this hypothesis could not be correct. I then

proceeded to determine the elements without making any hypothesis as to

the conic section, and the resulting elements are as follows :

Perihelion passage, 1843, October 26'^'33 Greenwich mean time.

o /

Longitude of Perihelion on the Orbit 54 27 "81 From the equinox

Longitude of ascending Node 207 38 'Oj of Dec. 5

Inclination to the Ecliptic 10 48'9

Perihelion Distance 1*687

Semi-axis Major 3'444

Eccentricity 0"510

Periodic Time 6-39 Sidereal years.

Motion direct.

I would suggest that the comet may not have been moving long

in its present orbit, and that, as in the case of the comet of 1770,

we are indebted to the action of Jupiter for its present apparition.

In fact, supposing the above elements to be correct, the aphehon distance

is very nearly equal to the distance of Jupiter from the Sun: also the

time of the comet's being in aphelion was 1843-8 -3-2 = 1840-6, at which
time its heliocentric longitude was 234° -5 nearly, and the longitude o£ Jupiter

was 231°-5
; and, therefore, since the inclination to the plane of Jupiter's

orbit is also small, the comet must have been very near Jupiter when in

aphelion, and must have suffered very great perturbations, which may have
materially changed the nature of its orbit.
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THE ORBIT OF THE NEW COMET.

[From the Times, October 15, 1844.J

Having obtained some results of an interesting nature respecting the

new comet, I am induced to communicate them to the world through the

medium of your widely-spread journal. My first investigations were founded

on three observations made by Prof. Challis with the Northumberland

equatorial on the 15th, 20th and 25th of September, and the orbit found

from them appeared to be an ellipse of moderate eccentricity and short

period. To test the accuracy of this result. Prof Challis kindly favoured

me with some more recent observations, which were made on the meridian,

and therefore entitled to more confidence. Availing myself of the extension

thus given to the arc described by the comet, I have re-calculated the

orbit from the observations on the 15th and 25th of September and the

5th of October. The following are the results which I have obtained

:

Perihelion passage, Sept. 2 "4 1 59 mean time at Greenwich.

Longitude of perihelion of the orbit... 342 28 25] From the mean equinox

Longitude of ascending node 63 47 7J of Sept. 25

Inclination to the Ecliptic 2 56 13

Log.
(-J^

axis major) 0"500660

Eccentricity -sin 38°40'22"

Longitude perihelion distance 0*074841

Period in sidereal years 5*636

Motion direct.

These elements compared with observations give the following errors :

—

Date Error in Long. Error in S. Lat.

Sept. 15 6 6

Sept. 25 +1-0 + 3-5

Oct. 2 +6-1 -28'9 {merid. obs.)

Oct. 5 +0-0 0-0 (merid. obs.)

Though the period found may require considerable correction, I think

there can be no doubt that the orbit is reially elliptic. If this be the case,

it is a remarkable fact that this is the second comet whose periodicity

has been discovered during the present year.

9—2
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THE RELATIVE POSITION OF THE TWO HEADS OF BIELA'S COMET.

[Communicated to the Royal Astronomical Society (March 14, 1846).]

The diagram shows the relative position of the two heads of Biela's»

Comet on Jan. 26-5, Feb. 11-5 and Feb. 27-5 mean Greenwich time,

projected on a plane parallel to the equator. The rectangular coordinates of

the smaller head, referred to the larger as origin, are as follows

Jan.
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The relative velocities on Feb. 11 "5, in the directions of the axes are

as follows

dx _... ^^8.1047^ ^ = 1-1415;
dt =

-'-^''^'
dt dt

the linear unit being the same as before, and the unit of time a mean
solar day.

1,1^
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ON THE APPLICATION OF GRAPHICAL METHODS TO THE SOLUTION
OF CERTAIN ASTRONOMICAL PROBLEMS, AND IN PARTICULAR TO
THE DETERMINATION OF THE PERTURBATIONS OF PLANETS AND
COMETS.

[From the Meport of the British Association (1849).]

After briefly pointing out the advantages of graphical methods, the

author proceeded to give some instances of their practical application. It

was shewn that the solutions of the transcendental equation which expresses

the relation between the mean and eccentric anomalies in an elliptic orbit

is obtained in the most simple manner by the intersection of a straight

line with the curve of sines. Attention was directed to Mr Waterston's

graphical method of finding the distance of a comet from the Earth, and
an analogous method was given for determining the distance of a planet,*

on the supposition that the orbit is a circle in the plane of the ecliptic.

The author then passed on to the more immediate object of his com-
munication, the graphical treatment of the problem of perturbations of

planets and comets. He first shewed how to obtain geometrical represen-

tations of the disturbing forces, and then gave simple constructions for

determining the changes produced by these forces in each of the elements

of the orbit, in a given small interval of time. Having obtained the total

changes of the elements in any number of such intervals, it was shewn
in the last place how to find their effect on the longitude, radius vector

and latitude of the disturbed body, and thus to effect the complete solution

of the problem of perturbations without calculation.
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ELEMENTS OF COMET 11. 1854.

[From the Monthly Notices of the Royal Astronomical Society, Vol. xiv. (1854).]

Probably you will have plenty of elements of the comet which is

now starring it, nevertheless I may mention the following, which I deduced

from Professor Challis's observations on March 30, April 1, 3. A comparison

of these elements with an observation on April 7, gave an error of only

10" in longitude, and nothing in latitude, so that they are probably not

far from the truth.

Perihehon Passage, March 24-01221, G. M. T.

Longitude of Perihelion 213° 51 32

Longitude of the Ascending Node 315 29 52

Inclination 82 34 28

Log. Perihelion Distance 9-4426170

Motion retrograde.
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OBSERVATIONS OF COMET II. 1861.

[From the Monthly Notices of the Royal Astronomical Society, Vol, xxii, (1862) and

Astronomische Nachrichten, lvii. (1862).]
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d.

Aug. 19
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Star.
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ON THE OEBIT OF 7 VIRGINIS.

[From ^des Hartwellianoe, Letter to Admiral Smythe, June, 1851.J

I HAVE great pleasure in sending you the results which I have obtained

respecting the orbit of y Virginis, and I feel the more indebted to you

for having called my attention to the subject, inasmuch as the problem of

determining the orbits of double stars is one with which I had previously

only a theoretical acquaintance. The orbit, given by Sir John Herschel in

the Results of his Cape Observations, was taken as the basis of the cal-

culations, and equations of condition for the correction of the elements were

formed by comparing certain selected angles of position deduced from ob-

servation with the values calculated by means of Sir John Herschel's elements.

The positions employed are those given by Bradley's observation in 1718,

Sir Wmiam Herschel's observations in 1781 and 1803, a normal position for

1825 deduced from the observations of 1822, 1825, and 1828, one for 1833

from the observations of 1832, 1833, and 1834, another for 1839 from the

observations of 1838, 1839, and 1840, and, lastly, a normal position for 184^

from the observations of 1846, 1847, 1848, 1849, and 1850. The number

of these positions being greater by one than that absolutely necessary for

the determination of the elements, I at first omitted the equation of con-

dition for 1718 and solved the remaining ones in such a manner as to

shew the effect which would be produced in each of the elements by a

small given change in any one of the observed angles of position. The
result proved that the elements would be greatly affected by small errors

in the observed positions for 1781 and 1803, and I therefore called in the

observation of 1718 to the rescue, and solved the equations anew, supposing

the positions for 1825, 1833, 1839, and 1848 to be correct, and distributing

the errors among the other three, according to the rules supplied by the

method of least squares, giving double weight to the observations of 1781

and 1803.
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The following are the resulting elements :

—

Inclination of the orbit to the plane of projection 25 27

Position of the node 34 45

Distance of perihelion from the node 284 53

Angle of eccentricity 61 36

Eccentricity 0-87964

Perihelion passage 1836"34

Period 174-137 yrs.

The following table shews the differences between the observed positions

and those calculated from the above elements :

Observed Calculated
Epoch. position. position. Differences.

1718-22 150 52 151 3 -11
1781-89 130 44 130 29 +15
1803-20 120 15 120 43 -28
1825-32 97 46 97 43 +3
1833-27 61 16 61 11 +5
1839-36 215 51 216 2 -11

1848-37 180 6 180 6 0.

A better agreement could scarcely be desired. The observations made

about the time of perihelion passage are liable to great errors in conse-

quence of the excessive closeness of the stars, and therefore I did not take

them into account in forming the equations of condition.

Sir John Herschel was obliged to admit large diflFerences between these

observations and the results of his theory, and these differences are con-

siderably increased by using my elements. I am inclined to ijhink that

these observations cannot be satisfied without materially increasing the errors

on both sides of the perihelion passage.

My elements agree very well with the latest observations which have

come to my knowledge, as is shewn by the following comparison

:

Observed Calculated

Observer. Epoch. position. position. Differences.

Lord Wrottesley, 185

1

-172 175 55 17°5 52 -1-3

Mr Dawes, 1851-217 176 35 175 49 +46

Mr Fletcher, 1851-401 175 58 175 34 +24
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ON THE TOTAL ECLIPSE OF THE SUN, 28 JULY 1851, AS SEEN AT
FKEDERIKSVAERN.

Latitude, 58° 59' 33"-9 N. Longitude, 40"° 15«'5 East.

[From the Memoirs of the Royal Astronomical Society. Vol. xxi. (1852).]

The approach of the total eclipse of July 28, 1851, produced in me a

strong desire to witness so rare and striking a phenomenon. Not that I

had much hope of being able to add anything of scientific importance to

the accounts of the many experienced astronomers who were preparing to

observe it ; for I was not unaware of the difi&culty which one not much

accustomed to astronomical observation would have in preserving the requisite

coolness and command of the attention amid circumstances so novel, where

the points of interest are so numerous, and the time allowed for observation

is so short. Certainly my experience has now shewn that I did not ex-

aggerate these difficulties ; but I have at least the satisfaction of having

formed a far more vivid idea of the phenomenon than I could have ob-

tained from any description ; and I think that if I should ever have another

opportunity of observing a total eclipse, I should be prepared to give a

much better account of it than I can of the present.

I left Hull, by steamer, on the evening of Saturday, July 19, together

with a large party of astronomers bound on the same errand with myself.

In the afternoon of Tuesday the 22nd, we arrived at Christiania, where I

landed with several other passengers, the remainder of the party going on

to Gottenburg. We had no trouble in getting our instruments on shore

;
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the Norwegian Government having, in the most hberal and enHghtened

spirit, ordered the custom-house officers to allow them to pass without

examination. This favour, I afterwards found, we owed to the kind offices

of Professor Hansteen, whose acquaintance, as well as that of several other

eminent Professors of the University, I had the happiness of making during

my short stay at Christiania.

On Thursday the 24th, in company with my firiend Mr Liveing, of

St John's College, Cambridge, I proceeded by steamer to Frederiksvsern, the

point selected for making the observation, as being one easily accessible,

and situated almost exactly on the central line of the path of the Moon's

shadow. Here is one of the royal dockyards, containing a small observatory

for giving time to the shipping. The officers of the dockyard shewed us

much attention, and were anxious to render us every assistance in preparing

for the observation. To Lieutenant Riis, in particular, we are under the

deepest obligations. On Friday the 25th we inspected the Observatory, and

examined the neighbourhood with the view of selecting a favourable spot for

the observation. It rained heavily during the whole of Saturday, so that

our prospects were not very encouraging, but on Sunday the weather im-

proved, and on the morning of the eventful day, Monday the 28th, the

sky was bright and clear, with the exception of a few light clouds, which,

however, became more numerous as the day advanced, and at length over-

spread the heavens, as fresh vapour was brought up by the wind, which

blew quite a gale from the south-west. I had intended to observe the

eclipse from the summit of a rocky island lying just off the dockyard, and

commanding an extensive prospect over the sea, though the view on the

land side is cut off by a lofty ridge of rocks rising behind the town. The

violence of the wind, however, made it necessary to choose some sheltered

position for the instrument, and I fixed upon one in an angle within the

ramparts of the dockyard. The telescope which I employed was one of

Dollond's, which was kindly lent me by the Master and Fellows of St John's

College. The aperture of the object-glass is 2f inches, and its focal length

42 inches. The astronomical eye-pieces belonging to the instrument giving

too small a field of view, I employed a terrestrial eye-piece, with a mag-

nifying power of about 20. The field was limited by a diaphragm having

small teeth of different sizes arranged at intervals of 45° around its cir-

cumference, in order to enable me to estimate the position and magnitude

of any small object that might be seen.

As the eastern limb of the Moon advanced over the Sun, I observed

A. U
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that it appeared uneven in several places, and two mountains were parti-

cularly noticed on the edge, about 5° apart and near the eastern extremity

of the Moon's horizontal diameter. The cusps, too, as they were approaching

each other, occasionally appeared to be somewhat blunted. I could see no

trace of the Moon's limb extending beyond the Sun's disc. As the crescent

became very narrow, it seemed to be in a state of violent agitation, and

at last, just before the totality, it broke up into several parts. These, how-

ever, were not like the "beads" described by Mr Baily, but were quite

irregular, being evidently occasioned by the inequalities on the Moon's limb.

As the totality approached, the gloom rapidly increased ; still, enough light

remained up to the moment of total obscuration to render the change which

then took place very marked and startling. For a few moments I felt

somewhat confused, and did not immediately remove the dark glass. I then

applied my eye to the finder, and saw the corona surrounding the dark

body of the Moon. The light of the corona was pale, not sensibly coloured,

and gradually faded away in receding from the Moon's edge. Its average

breadth was perhaps about a third of the Moon's diameter, but it extended

considerably farther in some directions than in others, its boundary being

very irregular. It did not appear to consist of rays, and there was no

marked annularity of structure, so that I could not decide whether it was
concentric with the Sun or the Moon.

I now quitted the telescope and looked first at the Moon and then

around on the sky. The appearance of the corona, shining with a cold

unearthly light, made an impression on my mind which can never be effaced,

and an involuntary feeling of loneliness and disquietude came upon me. I

had previously ascertained the position of the principal stars and planets, »

but none of them could be seen on account of the clouds. I did not

notice any pecuUarity in the colours of surrounding objects. The light

remaining was only just sufficient to enable me to read off the face of a

box chronometer which I had with me. A party of haymakers, who had
been laughing and chatting merrily at their work during the early part of

the eclipse, were now seated on the ground, in a group near the telescope,

watching what was taking place with the greatest interest, and preserving

a profound silence.

About forty or fifty seconds after the commencement of the totality,

I returned to the telescope, and cast my eye round the disc of the Moon,
The light of the corona did not seem to be uniformly diffused round it,

there being a patch brighter than the rest near the point where the Sun's
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last rays had disappeared. At the point nearly opposite, or about 105°

from the upper point of the Moon, measured towards the west, I noticed

a rosy-coloured prominence, about one minute in altitude. The upper or

northern boundary of this was well defined, and had nearly the form of a

quadrantal arc of a circle meeting the Moon's limb perpendicularly, the con-

cavity being turned downwards ; the southern boundary was also somewhat
concave downwards, but the illumination near it was less, and diminished

gradually, so that it was difficult to ascertain its exact form. The appearance

was somewhat like the enlightened portion of a hemispherical mountain

standing on the Moon's limb and illuminated on its northern side, whilst

more than half the hemisphere on the opposite side was invisible. After

watching this for a short time, I observed that its altitude was gradually

increasing, and my attention became in consequence entirely engrossed by

it. The southern boundary of this prominence soon became better defined

than at first, while the northern boundary remained perfectly even and well

defined throughout. The altitude continued to increase till the moment of

the Sun's reappearance, when it amounted to nearly three minutes. The

form of the prominence now resembled that of a sickle, and it projected

nearly perpendicularly from the Moon's limb, the part nearest the Moon
being nearly straight, but the curvature gradually increasing in approaching

the point, which was sharp and turned downwards. The breadth at the

base was, perhaps, two-thirds of a minute. There was no sensible, or at

any rate, no marked change of form in the several parts after they had

once been seen, but only a gradual lengthening by additions at the base,

of such a kind as would have been occasioned by the motion of the Moon

if the prominence had really belonged to the Sun\ My impression, how-

ever, is, that the increase of length was greater than can be accounted

for by the Moon's motion, and that it proceeded more rapidly towards the

end of the totality than at first, but I cannot feel certain on this point.

A little before the end of the totality, the corona seemed to become brighter

in the neighbourhood of the prominence, which was close to the point

^ "While the Sun is totally covered by the Moon, the latter appears surrounded by a

luminous ring, with rays proceeding from it, something in the manner of the glory which

is placed by painters round the heads of saints. The most extraordinary appearances how-

ever were certain rosy-coloured flame-like projections from the limb of the Moon, one, which

I noticed particularly, was very large. This was at the point of the limb at which the Sun

reappeared, and it appeared gradually to lengthen out as the Sun's limb was approaching the

Moon's as if it had reaUy been connected with the Sun and moved with it If these

rosy flames really belong to the Sun, they must be of enormous magnitude, the one I noticed

could not have been less than 50,000 miles in length." From Letter written Aug. 9, 1851.

11—2
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where the Sun was about to reappear. On account of the clouds, I felt

no inconvenience in observing the reappearance without the intervention of

a dark glass. As the first ray of the Sun appeared the corona vanished,

and at the same moment the prominence seemed suddenly to contract and

change its form, the point of it disappearing and the remaining part be-

coming detached from the limb of the Moon. In about a second more

the whole had vanished. I did not notice any interruption to the con-

tinuity of the Sun's limb in its reappearance, like that with which I had

been struck when it disappeared, the Moon's western limb being apparently

much more regular than the eastern.

The clouds now grew rapidly thicker, and completely hid the Sun from

view before the end of the eclipse.

At the small observatory the eclipse was observed by Lieutenants Smith

and Hjorth, two officers of the Norwegian Royal Navy, and also by the

well-known French traveller, M. D'Abbadie. Lieut. Smith, who was specially

charged by Professor Hansteen with the determination of the time, found

the following results

:

h. m. s.

Beginning of the Echpse ... 2 41 40 '3 Mean Time at the Observatory.

Beginning of the Totality... 3 44 52'3 „ ,, „

End of Totality 3 48 17-8

The end of the echpse could not be observed.

According to Professor Hansteen, the longitude of the Observatory is

2'"39°'3 west of Christiania, or 40"'15''"5 east of Greenwich, and its latitude'

58° 59' 3 3". 9 north.

Lieut. Hjorth compares the appearance of the prominence to that of

the flame of a candle acted on by the blowpipe.

Besides this prominence, which was the only one seen by me, Lieut.

Hjorth observed two much smaller ones to spring up a little before the

end of the totality, on the same side of the Moon as the former, one

being above and the other below it.

Mr Liveing, who observed the eclipse from the same spot with myself,

has kindly communicated the following observations, taken with the naked

eye.
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" The first appearance I noted was the formation of a halo round the

Sun soon after the eclipse commenced ; light clouds were at the same time

flitting across the sky. "When the totality approached, the passage of the

shadow was not so rapid but that I could see the clouds to the north-

west grow dark before the last direct beam of the Sun was extinguished.

And at the reappearance of the Sun it was still more remarkable ; the

clouds to the north-west lightened up, making it much lighter where I

stood ; and I had time to exclaim that the Sun was going to appear, and
to turn my eyes towards him, an appreciable interval before he actually

shewed himself. The first appearance was a single point of light, like a

very bright star, increasing in size, of course, very rapidly.

" I did not observe that the landscape was peculiarly livid ; it had a

cold appearance, but much such as it often has after sunset ; and the only

clear part of the sky, towards the south-east horizon, had quite an orange

hue, also such as is not unusual after sunset ; and it remained nearly the

same colour the whole time of darkness.

" I looked for colour in the corona, but could see none ; neither did

it appear to me divided by a dark ring, or to be regular or well-defined

on the outside ; in four points it certainly appeared to project to a greater

distance than at the intermediate points, and these four points were at

unequal intervals ; but I did not watch it long enough to observe how

far this might be due to the clouds which covered it, and which had now

become much thicker . than at first. As I did not expect to be able to

observe it, I had no means of exactly measuring the intensity of the light;

but I could not distinguish the features of people about four yards from

me ; and a candle at about the same distance threw a well-defined shadow.

" A crow was the only animal near me'; it seemed quite bewildered,

croaking and flying backwards and forwards near the ground in an uncertain

manner."

I have also been favoured with the following interesting account by

another friend, who observed the eclipse in company with several other

persons, from an elevated point about thirty-three miles west of Christiania,

which commands an extensive view of the surrounding country.

"We observed the eclipse from the Skuderud Sseters, about nine miles

north-east of Fossum, and nearly on the same parallel as Christiania. We
had smoked glasses, and also a small telescope smoked. The eclipse appeared
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to begin about 2'' 45"°. As the shadow increased the change in the appearance

of the country was most curious. The light became pale; our shadows

were sharply cut, as by moonlight, but the light was. more yellow. A deep

gray twUight seemed to come on. Perhaps two minutes before the totality

a dark, thick shade appeared over the west and north-west mountains,

which drew nearer, till, when the eclipse became total, it entirely surrounded

us, though it was paler or less dense towards the east. But on the instant

that we were in complete shade, a bright orange streak of light appeared

on the horizon to the north-west, spreading west and south. The corona

was orange. Bright, pale, and very irregular yellow rays streamed round

like the glories round the heads of saints. Many stars were visible, but

Venus was the only planet pointed out to me. The totality lasted 2" 50°

to the best of our reckoning; but before the Sun reappeared the clouds

thickened rapidly, and afterwards we only caught stray glimpses. For a

minute after the totality was passed the dark shade lingered over the

south and south-east.

" The following remarks are numbered with reference to the Suggestions

drawn up by a Committee of the British Association.

" 16. We noticed no variation of colour in the sky.

"18. The corona appeared to be formed instantaneously all round;

equally broad ; not divided into rings.

" 22. The corona cast no shadow. I read the word ' Observation ' at

three yards, the remainder of the title at two, the interior print at the

usual distance in my hand. I read the same at the same distances at

'

10'' 30"' the following evening, the book facing west; and at six, four, and

two yards distance by sunlight.

" 24. The outline of aU the mountains was perfectly distinct."

I cannot close this account without expressing my sense of the kind

hospitality which I met with during a subsequent tour of six weeks in

Norway. To Mr Crowe, Her Majesty's Consul-general at Christiania, whose
kindness is so well known to all English travellers in that country, I feel

particularly bound to return my warmest thanks.
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ON AN IMPORTANT ERROR IN BOUVARD'S TABLES OF SATURN.

[From the Memoirs of the Royal Astronomical Society (1849), Vol. xvii., and Monthly

Notices of the Royal Astronomical Society (1847), Vol. vii.].

Having lately entered upon a comparison of the theory of Saturn with

the Greenwich observations, I was immediately struck with the magnitude

of the tabular errors in heliocentric latitude, and the more so, since the

whole perturbation in latitude is so small, that it could not be imagined

that these errors arose from any imperfection in the theory. In order to

examine the nature of the errors, I treated them by the method of curves,

taking the times of observation as abscissae, and the corresponding tabular

errors as ordinates. After eliminating, by a graphical process, the effects of

a change in the node and inclination, a well-defined inequality became

apparent, the period of which was nearly twice that of Saturn. One of

the principal terms of the perturbation in latitude (viz. that depending on

the mean longitude of Jupiter minus twice that of Saturn) having nearly

the same period, I was next led to examine whether this term had

been correctly tabulated by Bouvard. The formula in the introduction ap-

peared to be accurate; but on inspecting the Table XLIL, which professes

to be constructed by means of this formula, I was surprised to find that

there was not the smallest correspondence between the numbers given by

the formula and those contained in the table, the latter following the simple

progression of sines, while the formula contained two terms. The origin of

this mistake is rather curious. Bouvard's formula for the terms in question

is

9"-67sin{<^-2<^'-60°-29}+ 28"-19sin{2(^-4f -^66°-12}

but in tabulating the last term he appears to have taken the simple

argument ^ — 2<f>'
instead of 2^ — 4^', so that the two parts may be united



88 ON AN IMPORTANT ERROR IN BOUYARD'S TABLES OF SATURN. [16

into a single term, 25"-85 gin{<^-2<^' + 43°-88}

which T find very closely to represent Bouvard's Table XLII.

After correcting the above error, and making a proper alteration in

the inclination and place of the node, the remaining errors of latitude are

in general very small. I subjoin a correct table, to be used instead of

Bouvard's. The constant added being 36"'0 instead of 26"'0, it will be

necessarj' to subtract 10""0 from the final result.
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ON NEW TABLES OF THE MOON'S PARALLAX.

[From the Monthly Notices of the Royal Astronomical Society (1853), Vol. Xlii., and

Nautical Almanac for 1856.]

The importance of an accurate knowledge of the Moon's Parallax is

very evident. No observation of the Moon's place can be compared with

the Tables, or turned to any practical use, without undergoing a preliminary

reduction of which the amount of the Parallax is the most important

element. Now the same theory by which the angular motion of the Moon
round the Earth is determined gives likewise the form of the orbit, and

therefore the proportion between the Parallaxes at different times ; hence,

as the theory is sufficiently perfect to represent the place of the Moon
within 10", it cannot be doubted that it would be competent to give the

variations of the Parallax within a small fraction of a second, provided the

mean Parallax were known. To determine this, however, by theory, it is

necessary to know, in addition to the elements furnished by observations

of the Moon's motion, the ratio of the Moon's mass to that of the Earth.

Hence, conversely, if the mean value of the Parallax be deduced from

corresponding observations of the Moon's declination, made at distant points

on the Earth's surface, one means is afforded of finding the ratio of the

masses.

The most recent determination of the Parallax by means of observations

of this kind is contained in a paper by Mr Henderson in the tenth volume

of the Memoirs of the Royal Astronomical Society, and is founded on his

own observations made at the Cape of Good Hope, combined with cor-

A. 12
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responding observations at Greenwich and Cambridge. In this paper Mr
Henderson compares the Parallaxes deduced from observation with those

calculated by means of the Tables both of Burckhardt and Damoiseau. It

is remarkable that he finds a difference of l"-3 in the value of the mean

Parallax, according as one set of Tables or the other is employed in the

comparison, and not knowing which value to prefer, he adopts the mean

of the two for his final result.

If we consider, however, that the only part of this process which

depends on the Tables consists in the reduction of the actual Parallaxes

at the times of observation to the mean value, it is plain that so large

a difference in the mean of thirty-four observations can only arise from

intolerable errors in the periodic terms of Parallax given by one of the two

sets of Tables.

The Parallax in Damoiseau's Tables is given at once in the form in

which it is furnished by theory, but that in Burckhardt's Tables is adapted

to his peculiar form of the arguments, and requires transformation in order

to be compared with the former. When this was done, I found that

several of the minor equations of Parallax deduced from Burckhardt differed

completely from their theoretical values given by Damoiseau,

On further inquiry, I discovered that the difference between Burckhardt's

equations of Parallax and those of Biirg and Damoiseau had been long since

remarked by Clausen in a comparative analysis of the three sets of Lunar

Tables given in the seventeenth volume of the Astronomische Nachrichten,

but no notice appears to have been taken of this remark.

With regard to the Parallax, Burckhardt professes to have followed

the theory of Laplace, but this agrees very closely with that of Damoiseau,

so that errors have evidently been committed by him in the transformation

of Laplace's formula.

These appear to have originated in the following manner

:

In the formation of Burckhardt's Arguments of Evection and Variation,

the mean longitude of the Sun is employed. Now four of the errors in

the coefficients of the minor equations may be accounted for, by supposing

him to have erroneously employed the true instead of the Tnean longitude

of the Sun in forming the above-mentioned arguments. In another of these

equations, the coefficient is taken with a wrong sign, and in another a
wrong argument is employed.
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A strange fatality seems to have attended all Burckhardt's calculations

respecting the Moon's Parallax. In the Connaissance des Temps for the

year xv of the Republic, he gives a comparison between the values furnished

by Mayer's and Laplace's theories, and he concludes that the error of the

former may sometimes amount to 7".

But this difference is caused almost wholly by an error in his own
transformation of Laplace's expression. In the formation of Mayer's Argu-

ments of Evection and Variation, the true longitude of the Sun is employed,

but Burckhardt appears to have inadvertently used the mean longitude

instead of it, an error which is the exact converse of the one above noticed

with respect to his own Tables.

After examining Burckhardt's Table of Parallax, I was naturally led to

scrutinize more closely the results of the theories of Damoiseau, Plana, and

Pont^coulant, with respect to the same subject. Although the differences

between these were very trifling when compared with the errors of Burck-

hardt, stUl they were greater than we had a right to expect, considering

the close agreement which existed with respect to the equations of longitude.

In the theories of Damoiseau and Plana, the expression for the projection

of the Moon's radius vector on the Ecliptic in terms of her true longitude

is required in order to find the relation between that longitude and the

tim,e, and therefore no pains have been spared to obtain it with accuracy;

but in the subsequent operations and transformations necessary in order to

deduce the expression for the Parallax in terms of the time, the same care

has not been employed. In Pont^coulant's theory the time is taken as

the independent variable, and consequently the analytical expression for the

Parallax in the form required is obtained immediately, and is developed

to as great an extent as the corresponding expression for the longitude,

yet in the conversion of his formula into numbers he neglects aU the

terms beyond the fifth order, so that several of the resulting coeflficients

are sensibly in error.

I have endeavoured to supply these defects and omissions.

In the seventeenth volume of the Astronomische Nachrichten, M. Hansen

gives the expression which he has obtained for the logarithm of the sine

of the horizontal Parallax, by means of his new method of treating the

Lunar Theory. I have transformed this expression with the care which its

great value deserves, so as to compare it with the results of the former

theories.

12—2
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The agreement thus found between the several theories is most satis-

factory, the difference of the separate values of each coefficient and the

general mean rarely amounting to a hundredth of a second. There are

only two instances in which this amount is much exceeded. One of these

relates to the constant of Parallax, the value of which, given by M. Hansen's

method, is 0"-06 less than the corresponding value found from the same

fundamental data by the other methods, and the second relates to the term

whose argument in Damoiseau's notation is t + z, the coefficient being 0"'146

according to Damoiseau and Plana, 0""140 according to Pont^coulant, and

0""181 according to Hansen.

The values of the constant of Parallax which I have deduced from

the theories of Damoiseau, Plana, and Pont^coulant agree perfectly with

one another, and from the particular examination which I have given to

this subject, I am induced to place considerable reliance on the result. It

is possible that M. Hansen's definitive value of the constant may differ

slightly from that which he has given in the paper above referred to.

From the value of the constant of Nutation found by M, Peters, it

follows that the ratio of the Moon's mass to that of the Earth is as 1

to 81 "5 nearly. Employing this ratio, together with the dimensions of the

Earth according to Bessel, and the length of the seconds' pendulum in

latitude 35J°, deduced from Mr Baily's Report on Foster's Pendulum experi-

ments, I find the value of the constant of Parallax to be 3422"*325.

Now Henderson, in the paper cited above, has found the value of the

constant, by comparison with Damoiseau's Tables, to be 3422"'46.

»

It should, however, be remarked that what the Table calls the Parallax

is more strictly the sine of the Parallax converted into seconds of arc. In

Henderson's calculations he has taken the tabular quantity to denote the

Parallax itself, so that the value found must be diminished by 0""15 in

order to obtain the constant of the sine of the Parallax. Thus the value

deduced in this manner is 3422"-31, a result admirably agreeing with that

just derived from theory.

I have carefully transformed the expression for the Parallax given by
theory, so as to make it depend on Burckhardt's Arguments of Longitude,

and from the resulting formula Mr Farley has calculated the Tables which
are appended to this paper. Constants are added to the several equations

so as to render them always positive.
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The Minor Equations of Equatorial Horizontal Parallax are comprised

in Table I.

Table II. contains the Equation depending on the Argument of Evection;

Table III. that depending on the Argument of Variation; and

Table IV. that depending on the Argument of Anomaly.

The formulae employed in their construction are the following, in which

E denotes Burckhardt's argument of Evection;

V that of Variation ; and

A that of Anomaly;

and the Arguments of the Minor Equations are denoted by their numbers

as in Burckhardt.

1

1

1

36

26

55' 50

•34-
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For the sake of comparison I will here give the formula on which

Burckhardt's own Tables are constructed, which is as follows

:

0-4- 0-4cos(Arg. 1)

0-8+ 0-8cos(Arg. 2)

0-3+ 0-3cos(Arg. 4)

0-8+ 0-8cos(Arg. 5)

1-1+ 0-8 cos(Arg. 6)

0-6- 0-6cos(Arg. 8)

1-8+ 1-8 cos 2 (Arg. 9)

07+ 0-7 cos (Arg. 12)

1-0+ 1-0 cos (Arg. 13)

43-0+ 37-4cos^+ 0"-4 cos 2^
30-0 - 1 -0 cos F+ 26"-3 cos 2 V+ 0"-3 cos 3 V

55' 40-0 + 187-0 cos A + 10"-2 cos 2A + 0"-3 cos 3A

The sum of the constants in this formula is 3420""5.

The errors of the coefficients of Equations 2 and 12 arise from the

mistake respecting the formation of the Argument of Variation before ex-

plained, and those of the coefficients of Equations 4 and 13 from the similar

mistake respecting the Argument of Evection.

Equation 6 is taken with a wrong sign, and in the Variation Equation

3 V appears to be wrongly substituted for 4 V, though I find that the

corresponding term, when reduced to Burckhardt's form, has a smaller co-

efficient.

In consequence of the way in which most of these errors originate,

their amount will be generally greatest in March and September, and least

about the beginning of January and July, when the Sun's mean and true

places coincide.

The total error of Burckhardt's Tables may amount to nearly 6", in-

dependently of the change in the value of the constant.

Looking at the accuracy of modern observations, it is easy to imagine

to what an extent the value of comparisons between observed and tabular

places may be diminished by their being liable to an error of this kind.

In determining differences of longitude by means of occultations, it is
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plain that the results may be considerably affected by such an error in

the Parallax. It has often been remarked that differences of longitude

obtained by means of different occultations are not so consistent with each

other as might be expected from the precise character of the observation,

and I have no doubt that a great part of the discrepancy is to be at-

tributed to the use of an erroneous Parallax.

Mr Maclear's observations at the Cape, combined with European obser-

vations, would doubtless furnish most valuable materials for a new deter-

mination of the constant of Parallax, care being of course taken to employ

correct Tables in the reductions ; and such a work would be a useful

contribution to Astronomy.

In order to facilitate these and similar objects, Mr Stratford has calculated

the Parallaxes from my Tables for each Greenwich mean noon in the years

1840—1855, and has thus obtained the corrections to be applied to the

corresponding quantities given in the Nautical Almanac.

These corrections are embodied in Tables which are appended to the

present paper. Subsequently to 1855, the Moon's Parallax given in the

Nautical Almanac is calculated from my Tables.
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TABLE I. Of the Moon's Eqxjatoeial Horizontal Parallax.
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TABLE II. Of the Moon's Equatorial Horizontal Parallax.

Argument :—The Argument of Evection from calculations of the Moon's Place by Burckhardt.

O
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TABLE in. Of the Moon's Equatorial Horizontal Parallax.

Argument:—The Argument of Variation from calculations of the Moon's Place by Burckhardt.

o
J

2

3
4
S
6

7
8

9
ID

II

12

13

H
IS
i6

17
ig

19
20
21

22

23
24
25
26

27
28

29
3°

diff.

51-74

5172
51-67

51-59
51-48

51-33
51-15

50-95
50-71

50-43
50-13

49'8o

49-43
49-04
48-61

48-16

47-68
47-18

46-65
46-09

45-50
44-89
44-26
43-61

42-93
42-23
41-51

40-78
40-02

39-25
38-46

0-05
0-08

0-15

0-18

0-20

0-24
0-28

0-30

0-33

0-37

0-39

0-43

0-45

0-48

0-50

0-S3
0-56

0-S9
0-61

0-63

0-65
0-68

0-70

0-72

0-73

0-76

0-77

0-79

XP

diff.

38-46

37-65
36-83
36-00

35-15
34-30

33-43

32-55
31-67

30-78
29-88
28-98
28-08

27-17
26-26

25-35

24-45

23-54
22-64

21-74
20-85

19-97

19-09
18-22

17-36

16-51

15-67

14-85

14-04

13-24

12-46

0-81

0-82

0-83

0-85

0-85

0-87

0-88

0-88

0-89

0-90

0-90

090
0-91

0-91

0-91

0-90

0-91

090
o-$o
0-89
0-88

0-88

0-87
0-86

0-85

0-84
0-82

0-81

0-80

0-78

IP
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TABLE IV. Of the Moon's Equatorial Horizontal Parallax.

Argument:—The Argument of Anomaly from calculations of the Moon's Place by Burckhardt.

o
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in

00
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00
l-H
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l-H

00
P-H
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CO

00
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00



18.

ON THE CORRECTIONS TO BE APPLIED TO BURCKHARDT'S AND PLANA'S

PARALLAX OF THE MOON, EXPRESSED IN TERMS OF THE MEAN
ARGUMENTS.

[From the Monthly Notices of the Royal Astronomical Society, Vol. xiii. (1853).]

In the Supplement to the Nautical Almanac for 1856, I have given new

tables of the Moon's parallax, adapted to Burckhardt's form of the argu-

ments. When the arguments have been already computed, these tables

supply the most convenient means of finding the parallax, and they have,

accordingly, been used in calculating the corrections to the Nautical Almanac

Parallaxes since 1840, given in the paper above referred to.

When, however, Burckhardt's arguments are not previously known, it

wUl be more simple to employ arguments increasing proportionably to the

time, in order to calculate either the parallax itself immediately, or the

correction to be applied to that found from Burckhardt's tables.

The following formulae may be used for this purpose, the arguments

being expressed in Damoiseau's notation.
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The Moon's equatorial horizontal parallax, or, more strictly, the sine of

that quantity converted into seconds of arc is equal to

3422"-32 + 186"-51 cos a;+ 10"-17 cos 2 a; + 0"-63 cos 3 a; + 0"-04 cos 4 x
- 0"-95 cos t + 28"-23 cos 2 < + 0"-26 cos 4 t

+ 34"-30 cos {2t-x) + 0"-37 cos (4 « - 2 a)

- 0"-40 cos 2 + l"-92 cos {2t-z) + 1"-45 cos (2 « - a; - z)

+ 1"-16 cos (x-z)- 0"-71 cos {2y-x)- 0"-95 cos (x+ z)

+ 0"-01 cos (x-t)- 0"-3 1 cos (2 a; - 2 1)

- 0"-31 cos {2t + z)- 0"-23 cos {2t-x + z)

- 0"-ll cos {2y-2t) + 0"-22 cos (2 < + a; -z) - 0"-12 cos {3x-2t)
+ 0"-14 cos {t + z) + 3"-09 cos {2t + x) + 0"-60 cos (At-x)
- 0"-l 1 cos {t + x) + 0"-28 cos {2t + 2x)

+ 0"-12 cos (2 x-z)- 0"-10 cos (2 a; + z) + 0"-09 cos {2t-2z)

-0"-09cos{2y + x-2t) + 0"-05Gos{2t-x-2z)

+ 0"-06cos{4:t-x-z).

Also, the correction to be applied to the equatorial horizontal parallax

found from Burckhardt's tables is

l"-79 + 0"-13 cos « + 0"-06 cos 2 « + 0"-14 cos 3 a;+ 0"-04 cos 4 x

+ 0"-06 cos t + 0"-05 cos 2 « - 0"-29 cos 3 « + 0"-17 cos 4 t

- 0"-18 cos {2t-x) + 0"-01 cos (4 « - 2 «)

+ 0"-05cosz + 0"-93cos(2«-z) + l"-15cos(2«-a;-z)

+ 0"-07 cos (x-z)- l"-50 cos {2y-x)
- 0"-05 cos {x-t) + 0"-02 cos (2 a; - 2 «)

-0"-90cos(2e+ z)-l"-l7cos(2i5-a;+ «)

- 0"-12 cos {2y-2t) + 0"-12 cos(2 < + a;-z) + 0"-10 cos {3x-2t)

+ 0"-14 cos {t + z) + 0"-09 cos {2t-2z)- 0"-06 cos (2 3/ + a; - 2 «)

+ 0"-05 cos (2 « - a; - 2 z) + 0"-07 cos (2 a;+ z - 2 «)

-0"-09cos(2« + a!-2 2/).

In both the above formulae, quantities less than 0""05 have been neg-

lected, except where they can be included in the same table with larger

terms.

When Burckhardt's parallax is known, it will be sufficient for ordinary

purposes to calculate the correction to be applied to it, taking into account

only the constant term, and the periodic terms depending on the arguments,

X, t, 2t-x, 2t-z, 2t + z, 2t — x— z, 2t-x + z, 2y — x, t + z.

If extreme accuracy be required, the parallax should be calculated afresh

by means of the first of the above formulae.
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These formulae, as well as my tables in the Supplement to the Nautical

Almanac for 1856, give the value of the sine of the parallax, converted

into seconds of arc, which is frequently more convenient for use than the

parallax itself.

To find this latter quantity, we must add

0"-16 + 0"-03 cos a;.

Plana's formula for the parallax, as given in the Introduction to the

Greenwich Lunar Reductions, also requires several corrections, partly in con-

sequence of the developements not having been carried far enough, and

partly from errors in the numerical conversion of the analytical expression.

The constant of parallax employed in the Lunar Reductions appears to

be Henderson's, or 342 1" "8 ; and the computed quantity is taken to be

the parallax itself

The correction to be applied to the parallax thus found, in order to

make it agree with my determination, is given by the following formula :

—

0"-68 - 0"-16 cos X - 0"-13 cos 2 a? + 0"-03 cos 3 a; + 0"-04 cos 4 x
- 0"-05 cos t + 0"-63 cos 2 « + 0"-16 cos 4 t

+ 0"-40 cos {2t-x) + 0"-07 cos (4 it - 2 x)

- 0"-28 cos (2 t-z)- 1"-91 cos {2y-x) + 0"-29 cos {2t + z)

+ 0"-0 1 cos {x -t)- 0"- 5 1 cos (2 a; - 2 «)

+ 0"-09 cos {2y-2t) + 0"-14 cos {t + z) + 0"-10 cos (4 « - «)
- 0"-l 1 cos \t+ x)- 0"-02 cos {2t + 2x)

+ 0"-12 cos {2x-z)- 0"-10 cos {2x + z) + 0"-09 cos (2 « - 2 «)

- 0"-09 coB{2y + x-2t) + 0"-05 cos (2 « - a; - 2 z)

-|-0"-06cos(4e-a;-z).

As before, quantities less than 0""05 have been neglected, except when
they unite with larger terms.

In the American Nautical Almanac for 1855, recently published, Plana's

formula for the parallax appears to have been employed ; the constant,

however, being slightly altered.

The following table, which Mr Farley has obligingly calculated at my
request, shows the corrections to be applied to the parallaxes given in that

work, in order to make them agree with those found from my tables.
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Differences of Moon's Horizontal Parallax, as given in the American Nautical

Almanac, from that obtained from my Tables.

1855. Greenwich Mean Noon of each Day.

""mV' J--
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The constant employed in the computations of the American Nautical

Almanac does not appear to be mentioned in the Preface. It may, how-

ever, be determined in the following manner :

—

The sum of the daUy corrections given in the above table is — 370"'4.

Now, I find that — 14""1 of this is due to the corrections applied to the

periodic terms, leaving — 356""3 as the effect caused by the difference of

the constants. This, divided by 365, gives — 0"'98 as the correction to be

applied to the constant of the American Nautical Almanac, in order to

make it agree with my own. Hence, this latter value being 3422"'32, it

foUows that the constant employed in the above work is 3423"'30.
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CONTINUATION OF TABLES I. AND III. OF DAMOISEAU'S TABLES OF
JUPITER'S SATELLITES.

[From the Nautical Almanac (1881).]

Damoiseau's Tables I. and III., the first containing the epochs of the

Mean Conjunctions of Jupiter's SateUites and of the Arguments of the

Inequalities, and the second containing the Inequalities due to the Perturb-

ations of Jupiter, do not extend beyond the year 1880.

Hence it has now become necessary, in order to meet the requirements

of the Nautical Almanac, that these Tables should be prolonged.

The perturbations of Jupiter employed by Damoiseau are those found

from Bouvard's Tables of the planet, but since Le Verrier's new Tables

are now used for computing the place of Jupiter given in the Nautical

Almanac, it has been thought desirable to use the same Tables in order

to form Table III. of Jupiter's Satellites.

The epochs of Mean Conjunction in Table I. are determined by the

condition that when corrected for Le Verrier's value of the great inequality

of Jupiter, they shall agree in the years 1750 and 1850 with the epochs

given by Damoiseau when similarly corrected for Bouvard's value of the

same inequality.

A. 15
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A further small correction has been applied to Damoiseau's epochs of

Mean Conjunction of the first three Satellites, so as to make them exactly

satisfy the theoretical relation known to exist between the mean longitudes

of these Satellites, viz.:

—

Ml -3m, + 2^3 = 180°.

The long inequalities of the Satellites depending on the quantities 11 —

A

which enter into Table III. have been re-computed, the values given by

Damoiseau being incorrect in consequence of his having omitted to take

into account the modification of these inequalities caused by the mutual

action of the first three Satellites.

Damoiseau's formulae for the values of the mean arguments are not

quite correctly derived from the fundamental data in p. iii of the Intro-

duction. Small corrections have been accordingly applied to the arguments

in order to make them consistent with the data and with each other.

These Tables have not been carried beyond the year 1890 as it is

probable that new Tables of Jupiter's Satellites, founded on more accurate

elements than those employed by Damoiseau, will appear before it becomes

necessary to make the computations for the Nautical Almanacs of subsequent

years.

FORMATION AND USE OF THE TABLES.

Table I.

Epochs of Mean Conjunction.

Le Verrier's value of the great inequality of Jupiter on January 1, 1750,

exceeds Bouvard's value by 0° '00400. Hence, in order that the times of

mean conjunction as affected by the great inequality may remain unaltered,

we must increase Damoiseau's value of the excess of the mean longitude

of each Satellite over the mean longitude of Jupiter by the above quantity.

If Ml, Mj, Mj represent these excesses for the first three Satellites at

any time, we know by the theory that

M,- 3^2+ 2^3 =180° exactly.
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But if u^, u^, u^ be derived for January 1, 1750, from the times given by
Damoiseau for the first mean conjunctions in 1750, we find that

u,-3u, + 2u,= l79''-9S903.

Hence the theoretical condition will be satisfied if we increase u^ and u.^

and diminish % by one-sixtb of the quantity 0"01097 or by 0'00183.

Therefore on the whole Damoiseau's values of u-^, u^, u^, u^ for January

1, 1750, are increased respectively by

0°-00583, 0°-00217, 0°-00583, and 0°-00400.

Hence the times of mean conjunction in January 1750 for the several Satel-

lites will be diminished by

2'-48, l'-85, 10''03, and 16'-09 respectively.

Similarly on January 1, 1850, Le Verrier's value of the great inequality

of Jupiter exceeds Bouvard's value by 0°'00435.

At the same time the value of u^ — 3u^+ 2Us derived from Damoiseau's

times for the first mean conjunctions in 1850 falls short of 180° by the

quantity 0°"00834, so that the theoretical condition will be satisfied by

increasing u^ and Wg and diminishing u^ by 0"00139.

Therefore, on the whole, Damoiseau's values of u^, u^, u^, and M4 for January

1, 1850, are increased by

0°-00574, 0°-00296, 0°-00574, and 0°-00435 respectively.

Hence the times of mean conjunction in January 1850 for the several

Satellites will be diminished by

2'-44, 2'-52, 9'-87, and l7''-48 respectively.

The corresponding corrections to Damoiseau's times of mean conjunction

in 1880 and 1890 will be as follows:

Sat. I. Sat. II. Sat. III. Sat. IV.

1880 -2-42 -2-72 -9-82 -17-89

1890 -2-42 -2-79 -9-80 -18-03

The mean anomaly of Jupiter, which forms Arg' 1 for each Satellite,

has been found from Le Verrier's Tables of the planet. Corrections have

been applied to Damoiseau's values of the other arguments so as to make

them consistent with the data in p. iii of the Introduction.

15—2
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These corrections for 1880 and 1890, expressed in decimals of a degree,

are given in the following Table

:

Sat. I.

Arg» 1 4 5 6 7 8 9 III.

i88o -•OOll --007 --002 -^224 ^005 -^027 -'027 '003

1890 -^0034 -^008 -•OOl --241 '005 -^029 -'029 ^003

Sat. II.

1880 -
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Let v„ denote the longitude and r^ the radius vector, calculated from
the mean longitude of Jupiter corrected by the secular term in Le Verrier's

Table V., and the term SX in Table IX., and the longitude of the Peri-

helion corrected only by the secular term in Table V., employing the constant

eccentricity

6 = 0-0480767, log 6 = 8-6819346,

and the constant value of the mean distance

a=5-2025605, loga = 0-7162171.

Also -E'=9916"-53, log ^=3-9963597,

log\/i^ = 0-0208955.

These constant logarithms may be used when v^ is found by passing

through the eccentric anomaly. If we employ series and call A the mean

anomaly we shall have

v„ = Z + SL+ 19827"-3 sin^ + 595"-4 sin 2^ + 24"-8 sin 3^ + l"-2 sin iA,

and then r„ = ^^

—

-.
—-—r

,

1 + e cos (v^ — nr)

where log a (1 -«') = 0-7152121.

Next, let V denote the longitude in the orbit and v the radius vector,

as calculated from Le Verrier's Tables, and we shall have

—

^ =v-v„

<l),^r-r,.

The value thus found for ^ is to be used instead of
<f>
+ 8E, and the

value found for <^i is to be used instead of (ji^ + Sr, in Damoiseau's formula

for Table III. of each Satellite. For J in the same formula, Le Verrier's

value of SL in his Table IX. is to be used.

It should be remarked that in forming the complete arguments given

in Table I. of each Satellite, wherever (j>, or
(f)

multiplied by a constant,

occurs in Damoiseau's formula, J+^ must be substituted instead of
<f).
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The following corrections are special to each Satellite

:

Satellite I.

Add to the formula for Table III.

—

- 4'-2 sin (n - A„) + 0'-5 sin (n - A„,).

Satellite II.

Instead of the term -9'-731 sin (n-An) in Table III.,

Substitute the terms

—

- 2'-5 sin (n - A„) - l'-5 sin (n - A,,,).

Satellite III.

Instead of the term — 5'775 sin(n — Aj„) in Table III,

Substitute the terms

—

- 0'-4 sin (n - Ajj) - 5'-7 sin (H - A,,,) + 0°-5 sin (n - A^^).

Satellite IV.

In Table III. instead of the term 16'-694 sin(n-A„),

Substitute the terms

—

2'-0 sin (n - A„i) + 16''-9 sin (n - A^^).

The terms which involve sin(5M-2 Wo-34°-542) in Damoiseau's formulse

for Table III. of each Satellite are sufficiently accurate as they stand.

Damoiseau states that the values of J, ^, <f)^,
SE and 8r which he

employs in the formation of the several Tables III., are taken from Bouvard's
Tables of Jupiter. Mr Godward, however, has found that the numbers in

these Tables do not accurately represent the results given by Damoiseau's
formulae. It may be remarked also that the value of Argument 1, or the
mean anomaly of Jupiter, employed by Damoiseau slightly differs from Bou-
vard's value, except at the Epoch 1750, when the two coincide.

In order to be strictly accurate in forming the complete Arguments,
the values of J and of J"+^ corresponding to the actual time should be
employed; whereas Table I. only includes the values of those quantities

corresponding to the beginning of the year.
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The following Table contains the yearly differences of the corrections

thus applied to the several mean Arguments, and the correction of any

Argument formed from Tables I. and II. will be found with sufficient

accuracy by multiplying the corresponding value of A taken from this Table

by the Fraction of the year.
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CONTINUATION OF TABLES I. AND III. OF DAMOISEAU'S TABLES OF

JUPITER'S SATELLITES FOR THE PERIOD 1890—1900.

[Appendix to the previous Paper*.]

On revising the above tables for 1880—1890, and continuing them for

the period 1890—1900, it was found that some additional corrections should

be applied to the terms which involve sin (5m — 2Wj— 34°"542) in Damoiseau's

formulae for Table III., and hence that the statement in the Introduction

to the Tables 1880—1890 (see p. 118) as to the sufficient accuracy of these

terms as they stand should be somewhat modified.

It appears that Damoiseau's values of these terms are sensibly erroneous

both in the Argument and in the Coefficients, and in these tables for

1890—1900, revised expressions have been used for the inequalities in

Table III. for Satellites II., III. and lY. depending on the terms referred

to. In the case of Satellite I., this inequality is insensible. The approxi-

mate values of the adopted expressions appear to be
s.

For Satellite II + 0-84 sin (5m-2m„- 16°-6),

Satellite III + 2-3 sin(5M-2M„- 16°-6),

Satellite IV + 12-6 sin(5M-2tt„- 16°-6),

where m„ is the mean longitude of Jupiter and u that of Saturn.

The above expressions give corrections to times of Conjunctions in seconds

of time. The corresponding corrections to the longitudes of the Satellites

in seconds of arc would have for their coefficients for

Satellite II - 3"-5

Satellite III - 4-8

Satellite IV -11-3

These agree closely with the expressions given by Souillart in his "Thdorie
des Satellites de Jupiter."

* [For this Appendix and the Tables, which were communicated to the Nautical Almambc
Office in Jan. 1890, I am indebted to the kindness of Dr Downing, Superintendent of the

Na/utical Almamac. Ed.]
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20.

ON PEOFESSOR CHALLIS'S NEW THEOREMS RELATING TO THE MOON'S

ORBIT.

[From the Philosophical Magazine, Vol. viii. (1854).]

In the June Number of your valuable Journal, Professor Challis calls

attention to some circumstances connected with his withdrawal of a paper,

relating to the Moon's motion, which he had communicated to the Cam-
bridge Philosophical Society, and of the principal results of which he had

given an account in your Number for April (p. 278).

Professor Challis mentions that one of the reporters, whose unfavourable

judgement led to this withdrawal, had of his own accord communicated to

him some of the reasons on which this judgement was based. Professor

Challis, however, thinks these reasons to be very unsatisfactory, and con-

sequently invites the reporter to discuss with him the questions on which

they are at issue, in the pages of the Philosophical Magazine.

As I am the reporter thus referred to, I beg that you will allow me
to state some reasons which appear to me sufficient to prove, beyond a

doubt, that the principal conclusions of Professor Challis's paper are erroneous,

in order that he may have the opportunity, which he desires, of replying

publicly to my objections*. At the same time, I must decline to enter

* It may be proper to mention that the opinion of the other reporter on the paper

perfectly agreed with my own.

A. 17
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into any prolonged controversy on the subject, submitting with confidence

what I have now to say to those who are competent to form a judgement

respecting it.

The principal results of Professor ChaUis's paper are embodied in two

theorems, which, as already stated, form the subject of an article in the

Philosophical Magazine for April last. As my main objections to the paper

relate to these theorems, I shall confine my observations almost entirely

to the article in question.

It wiU be convenient, however, to make a few preliminary remarks on

the nature of the process usually followed in the lunar theory. Professor

ChaUis objects to the logic of this process, on the ground that the intro-

duction of the quantities usually denoted by c and g into the first ap-

proximation to the Moon's motion is only suggested by observation. He
therefore considers the results of the ordinary process to be hypothetical,

until they are confirmed by observation.

But surely the sufficient and the only test of the correctness of any

solution is, that it should satisfy the differential equations of motion at the

same time that, it contains the proper number of arbitrary constants to

fiilfil any given initial conditions.

Any process which does this, no matter how it may be suggested to

us, must be logical ; and if the results obtained by it should not agree

with observation, the conclusion would be that the law of gravitation, which

was assumed in forming the original differential equations, is not really the

law of nature.

If we begin with the supposition that the Moon's orbit is an im-

ifnoveahle ellipse, the differential equations cannot be satisfied, without adding,

to the first approximate expressions for the Moon's coordinates, quantities

which are capable of indefinite increase; and this proves, as is stated by
Professor ChaUis, that an immoveable ellipse is not, or rather does not

continue to be, an approximation to the real orbit.

But if we introduce the quantities usually denoted by c and g, having

assigned values slightly differing fi?om unity, which amounts to supposing

the apse and node to have certain mean motions, we find that the differ-

ential equations are satisfied by adding to the first approximate expressions

for the Moon's coordinates, terms, which always remain small ; and we thus
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know that our first approximation was a good one, and that the true and
the only true solution of the differential equations has been obtained.

On the other hand, no solution can be a true one, which does not

contain the proper number of arbitrary constants ; and any person who
asserts that one of the constants usually considered arbitrary is not so, is

bound to show by what other really arbitrary constant the former is replaced.

I will now proceed to consider Professor Challis's two theorems, which

are thus enunciated by him.

Theorem I. All small quantities of the second order being taken into

account, the relation between the radius-vector and the time in the Moon's

orbit is the same as that in an orbit described by a body acted upon by

a force tending to a fixed centre.

Theorem II, The eccentricity of the Moon's orbit is a function of the

ratio of her periodic time to the Earth's periodic time, and the first ap-

proximation to its value is that ratio divided by the square root of 2.

I wiU. endeavour, in the first place, to show that these theorems cannot

possibly be true ; and secondly, to point out the fallacies in the argument

by which Professor Challis attempts to establish them.

The problem will be simplified by supposing the Moon to move in the

plane of the ecliptic, and the Earth's orbit to be a circle. On these sup-

positions. Professor ChaUis's fundamental equations become

d^x_ ijlx mix Sm'r

d\j_ i^y m'y 3mV o,77T7\
df r' 2a" 2a"

Multiply these equations by y and x respectively, and subtract the results ;

and again multiply by x and y, and add the results together ; thus we
obtain, after expressing x and y by means of polar coordinates,

d_f ,dd\ Sm'r'

di

f Ad\ SmV . . - ^-, j^ /,x

r5^)=-^-^^^('^^'-2^^+^)
(1)'

/d9y iL m'r Sm'r ,„„ ^—, >, ,^.cZV /d0y iJb . mV . Sm'r

df

17—2
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Now these equations, which are equivalent to the former, are satisfied

to terms of the second order inclusive by putting

r = a\l -^ + -e=-e cos (cw« + e-sr) -- e' cos 2 (cft« + e-ra-)

1^
6 2 ^

- 7ri' cos {2nt + e -2n't + e')

—^me cos {2nt + e - 2n't + ^ -cnt + e- 7!t)1

8 J

^ = n« + e+ 2e sin {cut + e - ct) + - e' sin 2 (cnt + e- ra-)

11
+— m^'sin {2nt + €- 2n't + e')

8

1 c

+ -—meam{2nt-\-e — 2n't+ ^ — cnt + e— ot),

a ,. m' n' _ 3
where w' = -4, w"' = -^, m=— , c = l--m'.

and a, e, e, and to- are the four arbitrary constants required by the complete

solution.

The fact that the differential equations are satisfied by these expressions

for r and 6, whatever be the value of e, is quite sufficient to shew that

Professor ChaUis is mistaken in restricting e to one particular value.

The terms of the second order in the value of r, which depend on

the arguments

2nt + e-2n't + ^ and 2nt + €-2n't + ^ — cnt + e-zj,

and which constitute the well-known inequalities called the "variation" and
" evection," prove the incorrectness of Professor Challis's Theorem I. ; since

in an orbit described by a body acted on by a force tending to a fixed

centre, and varying, as Professor ChaUis supposes, as some function of the

distance, the expression for the radius-vector in terms of the time cannot

possibly contain any terms dependent on the Sun's longitude.

I now come to consider the reasoning by which Professor Challis arrives

at his theorems. All this reasoning is based on his equation

[dry ¥ 2fi mV , .
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the truth of which, he says, cannot be contested. In speaking of the truth

of this equation, Professor Challis cannot mean that it is anything more
than an approximation to the truth, since in forming it he avowedly neglects

all quantities of orders superior to the second.

Now what I assert is, first, that the degree of approximation attained

by the equation (C) is not sufficient to justify Professor Challis in inferring

Theorem I. from it; and secondly, that Theorem II. does not follow from

that equation at all.

To prove the first of these assertions, I remark that the equation (C)

(drY
gives an approximate value of (-t-I in terms of r, but that it does not pro-

dr
fess to include terms of the third order. Now -jr is itself a quantity of

/drY
the first order, and consequently an error of the third order in i^j leads

to one of the second order in -^-. and therefore to one of the same order
dt

'

in the value of r expressed in terms of t. Hence Professor Challis is not

entitled to infer that the relation between the radius-vector and the time

in the Moon's orbit is the same, to quantities of the second order, as that

which would be given by the equation (C).

We may test the degree of accuracy to be attained by the use of

this equation in the following manner.

By differentiation, the constant C disappears, and the resulting equation

becomes divisible by -j-; dividing out, we obtain

c?V h^ [I m'r _
de~?'^ ?~2ar'~

This is a strict deduction from Professor Challis's equation ; we wUl

now obtain directly from the equations of motion given above, an expression

to be compared with it.

Integrating equation (1), and putting, with Professor Challis, nt + e for 6,

and a for r in the term of the second order, we find

dd , Zm' a^
r' ^- = A+ 7 -7i — cos (2«« + e - 27i'« + e').

dt 4.a'^ n ^
'
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The value of the constant h, expressed in terms of the system of constants

before used, is

h = na? (l

Hence

r* (^Y = h'+ l^,a' cos {2nt+ e- 2n't+ e'),

and

putting, as before, a for r in the small term. Substituting this value of

rl-T-l in equation (2), we find

The equation above deduced from Professor Challis's differs from this by

the omission of the last term, which gives rise to the variation inequality.

In order to find the evection, which is also an inequality of the second

order, it would be necessary to carry the approximation one step still further

than we have here done.

This shews how unfitted equation (C) is for giving any accurate infor-

mation respecting the Moon's orbit.

As a matter of fact, it may be observed that this equation would make
the Moon's apsidal distances to be constant. A simple inspection of the *

calculated values of the Moon's horizontal parallax, given in the Nautical

Almanac, is sufficient to shew how far this is from the truth.

I now proceed to make good my second assertion, viz. that Professor

ChaUis's Theorem II. cannot be inferred from his equation (C). The process

by which he attempts so to infer it is of the following nature. He first

finds that a method, apparently legitimate, of treating the equation (C) leads

to a difficulty. To get rid of this difficulty, he makes the strange suppo-

sition that the equation (C) contains the disturbing force as a factor, and
then tries to shew that, in order that this condition may be satisfied, the

arbitrary constants h and C must have a certain relation to each other, from
which it would immediately follow that the eccentricity must have the value

assigned to it in Theorem II.



20] RELATING TO THE MOON'S ORBIT. 135

Now it is remarkable that every one of the steps of this process is

unwarranted. The dificulty to which Professor Challis is led is purely

imaginary; the supposition that the equation (C) contains the disturbing

force as a factor is wholly unsupported by -any proof; and even if that

supposition were well founded, it would not follow that the constants h

and G must have the relation assigned to them by Professor Challis.

The supposed difficulty is founded on the inference at the bottom of

p. 280 of Professor Challis's paper, "Hence we must conclude that the

mean distance and mean periodic time in this approximation to the Moon's

orbit are the same as those in an elliptic orbit described by the action of

the central force —,." But this is not a correct conclusion: if h and C be

supposed to have the same values in equation (C) and in that obtained

from it by putting a for r in the small term, the values of the mean

distances in the two cases would not be the same, but would differ by a

quantity of the second order.

This may be readily shewn in the following manner.

At the apsides ;^ = 0, and therefore the equation (C) gives the follow-

ing equation for finding the apsidal distances,

rmf

Now if a be the mean distance, and e the eccentricity, the apsidal distances

are a{l + e) and a{l—e).

Substituting these values for r in the above equation, and developing

the small term to quantities of the fourth order, we obtain

and

whence it follows that

m'

and

h'-2fia+ Ca' (1 + e')---r, a' (1 + 6e=) =
Act



136 ON Professok CHALLIS'S NEW THEOREMS [20

These equations give the relations between the arbitrary constants h

and C, and the new constants a and e by which the former may be re-

placed.

From the second of them, we find

_ ju, m' a?

or, putting for a in the small term its first approximate value ^,

which agrees with Professor Challis's expression in p. 281.

Now apply a similar process to the equation

(dr\ h' 2ju, mV „

which differs from the equation (C) in having a put for r in the small

term. In this case, we find

h" - 2iLa + Co? (1 + e') -^^ a^ (1 + e') = 0,

and

from the latter of which equations it follows that

_ ju. m! (f

to the same degree of approximation as before.

Hence we see that the values of a, in the two cases supposed, differ

by a quantity of the second order. Consequently the difficulty into which
Professor Chalhs is led by the conclusion that these values are the same,
disappears, and the solution of the difficulty with it.
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But even if we were to suppose, with Professor Challis, that the equation

(C) contains the disturbing force as a factor (of which, as already remarked,

no proof whatever is given), it would not follow, as is inferred by him,

that h^C must be equal to /a". On the contrary, it is evident that the
required condition would be satisfied if h^C differed from fi^ by any quantity

involving the disturbing force as a factor; whence it would follow that e

must be some function, indeed, of the disturbing force, but it could not be
decided what function.

Professor Challis attempts to find the relation between r and t by
direct integration of the equation

7. -dr

-j-j is a small quantity of the second order

which vanishes twice in each revolution, and that the difference between the
/drY

complete value of (t-I and the approximate value

„ h' 2/A m'r'

r r za

which is used instead of it in the above equation, is a periodic quantity

of the third order.

Hence it follows that the quantity

„ h^ 2)u, m'r^

IT r 2a
/drY

may vanish for values of r different firom those which make (-j-l vanish,

and that it may even become negative for actual values of r, which l-j-
\dt

itself can never do.

Therefore the coefficient of dr in the above differential equation may
become infinite, or even imaginary, within the limits of integration, so that

it is not surprising that Professor Challis should have met with such

difficulties in performing the integration.

The relations between r, 6, and t, given in page 281 (which profess to

include all small quantities of the second order), are said to be derived from

the equations (B) and (C). It is easy to see, however, that they do not

A. 18
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satisfy the first of those equations, since the term of the second order

in the right-hand member of that equation involves the longitude of the

Sun, which does not occur at all in the relations in question.

The contradiction to Professor Challis's theory, which is presented by

the eccentricity of the orbit of Titan, is supposed by him to be occasioned

by the large inclination of that orbit to the plane of the orbit of Saturn.

But in page 280 it is remarked that the inclination of the orbit is taken

into account ; and even if this were not the case, no proof is offered that

the taking it into account would tend to reconcile the discrepancy.

At the bottom of page 282, Professor Challis attempts to shew, d,

priori, that the eccentricity, of the Moon's orbit must be a function of the

disturbing force in the following manner.

If there were no disturbing force, the value of the radius-vector drawn

from the Earth's centre in a given direction, would be constantly the same

in different revolutions. But if a disturbing force act in such a manner

as to cause the apsidal line to make complete revolutions, the value of the

above-mentioned radius-vector would fluctuate in different revolutions, between

the two apsidal distances. Hence it is argued that, since if there were no

disturbing force there would be no such fluctuation of distance, therefore

the total amount of such fluctuation, and consequently the eccentricity, must

be a function of the disturbing force.

But, on consideration, it will appear that this argument is fallacious.

No doubt it may be inferred that some of the circumstances of this fluc-

tuation of distance wLU. depend on the disturbing force which causes it,

but it cannot be asserted, without investigation, that the total amount of

such fluctuation must necessarily depend on the disturbing force.

As a simple example, we will suppose the principal force to vary in-

versely as the square of the distance, and a central disturbing force to be

introduced which varies inversely as the cube of that distance. In this

case we know, by Newton's 9th section, that the motion would be accurately

represented by supposing it to take place in a revolving ellipse, the angular

velocity of the orbit being always proportional to that of the body at the

same instant ; and the eccentricity of the orbit might be any whatever,

and would not at all depend on the disturbing force.



20] RELATING TO THE MOON'S ORBIT. 13»

Now, since the orbit would be fixed, were it not for the disturbing

force, it might be argued in exactly the same manner as is done by Pro-

fessor Challis in the passage above referred to, that the eccentricity of the

orbit must be a function of the force which causes the orbit to revolve,

but this we know to be a false conclusion.

What would depend on the disturbing force in this case, would be, not

the total amount of the fluctuation of distance in difierent revolutions, but

the number of revolutions of the body in which such fiuctuation would take

place, or the time of revolution of the apse. If the disturbing force were

increased, the total fluctuation in the value of the radius-vector in question

would be the same as before, but the change from one of the extreme

values to the other would occupy a shorter time.

The objection mentioned by Professor Challis at the top of page 283,

is alone quite fatal to the supposition that the eccentricity of the Moon's

orbit must have a particular value. Where is the proof that the eccen-

tricity would settle down to such a value, as Professor Challis imagines, if

it were initially different ?

In fact, it is easy to shew, by the method of variation of elements,

that, there would be no such settlement, but that the non-periodic part of

the eccentricity would remain constant.

18—2



21.

ON THE SECULAR VARIATION OF THE MOON'S MEAN MOTION.

[From the Philosophical TraThsactions of the Royal Society, Vol. CXLIII. (1853).

Abstract of same, Proceedings of the Royal Society, June 16, 1853 and

Monthly Notices of the Royal Astronomical Society, Vol. xiv. (1853).]

1. In treating a great problem of approximation, such, as that pre-

sented to us by the investigation of the Moon's motion, experience shows

that nothing is more easy than to neglect, as insignificant, considerations

which ultimately prove to be of the greatest importance. One instance of

this occurs with reference to the secular acceleration of the Moon's mean
motion. Although this acceleration, and the diminution of the eccentricity

of the Earth's orbit, on which it depends, had been made known by obser-

vation as separate facts, yet many of the first geometers altogether failed

to trace any connexion between them, and it was only after making repeated

attempts to explain the phenomenon by other means, that Laplace himself

succeeded in referring it to its true cause.

2. The accurate determination of the amount of the acceleration is a

matter of very great importance. The effect of an error in any of the

periodic inequalities upon the Moon's place, is always confined within certain

limits, and takes place alternately in opposite directions within very moderate

intervals of time, whereas the effect of an error in the acceleration goes

on increasing for ah almost indefinite period, so that the calculation of the

Moon's place for a very distant epoch, such as that of the eclipse of Thales,

may be seriously vitiated by it.
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In the Mecanique Celeste, the approximation to the value of the ac-

celeration is confined to the principal term, but in the theories of Damoiseau
and Plana the developments are carried to an immense extent, particularly

in the latter, where the multiplier of the change in the square of the

eccentricity of the Earth's orbit, which occurs in the expression of the

secular acceleration, is developed to terms of the seventh order.

As these theories agree in principle, and only differ slightly in the

numerical value which they assign to the acceleration, and as they passed

under the examination of Laplace, with especial reference to this subject,

it might be supposed that at most only some small numerical corrections

would be required in order to obtain a very exact determination of the

amount of this acceleration.

It has therefore not been without some surprise, that I have lately

found that Laplace's explanation of the phenomenon in question is essentially

incomplete, and that the numerical results of Damoiseau's and Plana's

theories, with reference to it, consequently require to be very sensibly altered.

3. Laplace's explanation may be briefly stated as follows. He shews

that the mean central disturbing force of the Sun, by which the Moon's

gravity towards the Earth is diminished, depends not only on the Sun's

mean distance, but also on the eccentricity of the Earth's orbit. Now this

eccentricity is at present, and for many ages has been, diminishing, while

the mean distance remains unaltered. In consequence of this the mean

disturbing force is also diminishing, and therefore the Moon's gravity towards

the Earth at a given distance is, on the whole, increasing. Also, the area

described in a given time by the Moon about the Earth is not affected by

this alteration of the central force ; whence it readily follows that the

Moon's mean distance from the Earth will be diminished in the same ratio

as the force at a given distance is increased, and that the mean angular

motion will be increased in double the same ratio.

4. This is the main principle of Laplace's analytical method, in which

he is followed by Damoiseau and Plana ; but it will be observed, that this

reasoning supposes that the area described by the Moon in a given time

is not permanently altered, or in other words, that the tangential disturbing

force produces no permanent effect. On examination, however, it will be

found that this is not strictly true, and I will endeavour briefly to point

out the manner in which the inequalities of the Moon's motion are modified

by a gradual change of the central disturbing force, so as to give rise to

such an alteration of the areal velocity.
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As an example, I will take the Variation, the most direct effect of

the disturbing force.

In the ordinary theory, the orbit of the Moon as affected by this

inequality only, would be symmetrical with respect to the line of conjunction

with the Sun, and the areal velocity generated while the Moon was moving

from quadrature to syzygy, would be exactly destroyed while it was moving

from syzygy to quadrature, so that no permanent alteration of areal velocity

would be produced.

In reality, however, the magnitude of the disturbing force by which

this inequality is caused, depends in some degree on the eccentricity of

the Earth's orbit, and as this is continually diminishing, the central dis-

turbing forces at equal angular distances on opposite sides of conjunction

will not be exactly equal. Hence the orbit will no longer be symmetrically

situated with respect to the line of conjunction. Now the change of areal

velocity produced by the tangential force at any point, depends partly on

the value of the radius vector at that point, and consequently the effects

of the tangential force before and after conjunction will no longer exactly

balance each other.

The other inequalities of the Moon's motion will be similarly modified,

especially those which depend, more directly, on the eccentricity of the

Earth's orbit, so that each of them gives rise to an uncompensated change

of the area! velocity.

Since the distortion in the form of the orbit just pointed out is due

to the alteration of the disturbing force consequent upon a change in the

eccentricity of the Earth's orbit, and it is by virtue of this distortion that

the tangential force produces a permanent change in the rate of description

of areas, it follows that this alteration of the areal velocity will be of

the order of the square of the disturbing force multiplied by the rate of

change of the Earth's eccentricity.

It is evident that the amount of the acceleration of the Moon's mean
motion will be directly affected by this alteration of areal velocity.

5. Having thus briefly indicated the way in which the effect now
treated of originates, I will proceed with the analytical investigation of its

amount.
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In the present communication, however, I shall confine my attention to the

principal term of the change thus produced in the acceleration of the Moon's

motion, deferring to another, though I hope not a distant, opportunity, the

fuller development of this subject, as well as the consideration of the secular

variations of the other elements of the Moon's orbit arising from the same

cause.

In what follows, the notation, except when otherwise explained, is the

same as that of Damoiseau's Theorie de la Lune.

6. If we suppose the Moon to move in the plane of the ecliptic,

and also neglect the terms depending on the Sun's parallax, the differential

equations of the Moon's motion become

dt 1 3 m' [u"dv . ,„ „ /x ,27 m" f fu"dv . ,„ „ „T

In the solution usually given of these equations, u is expressed by

means of a constant part and a series involving cosines of angles composed

of multiples of 2^ — 2mv, cv — nr, and. c'mv — Ts'; also t is expressed by means

of a part proportional to v and a series involving sines of the same angles

;

the coefl&cients of the periodic terms being functions of m, e and e'. Now
if e' be a constant quantity, this is the true form of the solution, but if

e' be variable, it is impossible to satisfy the differential equations without

adding to the expression for u a series of small supplementary terms de-

pending on the sines of the angles whose cosines are already involved in

it, and to that for t, similar terms depending on the cosines of the same

. . d^
angles, the coefficients of these new terms involving -^ as a factor.

fu'^dv
The quantity —— sin (2v — 2i/), which occurs in the above equations,

j vv

is proportional to the variable part of the square of the areal velocity,

and consists, in the ordinary theory, of a series of periodic terms involving

cosines of the angles above mentioned. In consequence, however, of the

existence of the new terms just described, there will be added to it a
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series of small terms involving sines of the same angles, together with a

non-periodic part of the form JHe'de' or ^He'^. The introduction of this

dt
term "will evidently change the relation between the non-periodic part of -j-

and e'", upon which the secular acceleration depends.

7. We must commence by finding the new terms to be added to the

ordinary expression for u.

For the sake of simplification we will neglect the eccentricity of the

Moon's orbit.

Let — denote the non-periodic part of u, and —I-Sm the complete value.

Then by substitution in the equation for u, making use of Damoiseau's

developments of the undisturbed values of the several functions of u, u',

and v — v' which occur in it, putting If — a^, and writing, for convenience,

mv instead of I mdv + \, and c'mv instead of c' I mdv -f X. — bt' (as in Plana,

vol. I. p. 322), we obtain

0= W + l-l-^^+St.
dir a a^ d\r

2 a" (
• 2 / 2 a 2^ ^^^ ~

2 oT ^ "^ ^ ^°^ ^^^^ ^^^

+ -. e' cos (2i/ - 2mv - c'mv) - -— e' cos (2v - 2mv + c'mv)
4 a^ 4 a^ ^ '

3m* r f/ 5 \ 7

— - e' sin {2v — 2mv+ c'mv) V
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9 TO^ r / 5 \ 7— - — \\^~'^^'j coa{2v-2mv) +- e' cos {2v — 2mv — c'mv)

— - e' cos {2v — 2mv+ c'mv) \ ahu

— - —
-^ ( 1 — - e'M sin (2v — 2mv) + x e' sin {2v — 2mv — c'mv)

— - e' sin (2v — 2mv+ c'mv) J-
—^

—

-
2 ^

'] dv

+ 12— I cZi' -^ ( 1 — - e'^j sin (2i' — 2mv) + ^e.' sin (2v— 2mv — c'mv)

— - e' sin (2V — 2mv+ c'mv) VaSu

-f{^ +-4/* {(i -
1
'') "^ (2" - 2»-)

7 . 1 . )+ - e' sin (2i' — 2mv — c'mv) — -zc' sin (2v — 2mv + c'mv) V

.

8. Also, assume

aSit = m^ ( 1 — - e'M cos {^v — 2mv) + a^ -—rr sin (2i' — 2mv)

— -mV cos c'mv+ a.^—j- sin c'mi'

7 cZe'

+ -mV cos (2v — 2mv— c'mv) + a^ —j- sin {2v — 2m,v— G'm,v)
Zi ThCLZ

1 de'— - mV cos (2v— 2mv+ c'mi') + a^ —j- sin (21/— 2mv+ c'mj/),

where the coefficients of the terms involving cosines are those given by

the ordinary theory, and a^, a^, 0^33, and a^i are numerical quantities to

be determined.

9. In developing the terms of the above equation, by the substitution

de' de'
of this value of aSu, the quantity -5- may be considered constant, and -f-

must be expressed in terms of it.

A. 19
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c?e' ndt de'
Thus

dv dv ndt

=—5- -! 1 m** cos (21/— 2mv) — -r- m^e' cos (2^— imv— c'mv)
ndt

(^
4 o

+ -^ mV cos {2v— 2mv+ c'rav) \

.

Also, integrating by parts, and putting 2 instead of 2 — 2m, 2 — Sw,

and 2 —m in the divisors introduced by integration, since we only want to

de'
find tbe terms of tbe lowest order wbich are multiplied by -r-, we obtain

Jc?!/
-{(1— -e'M sin(2j'— 2mi') + o^'sin(2i' — 2mi'— c'mi/)

— - e' sin (21/— 2,mv+ dmv) \

= -— ( 1 — - e'M cos (21/ — 2mi') + -j e'cos \^v — 2mv— cmv)

— 7 — e' cos (2i'— 2mv+ c mi/)
4 a, ^ '

15 m'

3 m

? {, ^de'ndt , , 21 m' T, de' ndt ,„ „ , ,

m" [ , de' ndt /^ „ , ,— dv—t: —7— cos (2v — 2mv+ cmv).

And a'8m'= 3mV sincW [ — e' sin c'mj/]

= — -mV",

retaining only the term which will be required.

10. When the proper substitutions are made, the terms involving cosines

destroy each other, as in the usual theory, and by equating to zero the

terms involving the sines, we obtain

20m^-3a3,+^m== 0,



21] ON THE SECULAR VARIATION OF THE MOON'S MEAN MOTION. 147

95 , 95 ,

or 3a3„=— m' •aao=j;2

21— 1 Arn'— 3a38——m'' = 0,
o

Q 133 , 133 ,or 3a^=—g-m' cCis= --^^^

3

o

19 , 19 ,
or 3a„ = -g-m' .-. a^ = —m\

11, In order to obtain the relation between a and a,, we must sub-

stitute the value just found for aSu, in the same equation, and equate to

zero the non-periodic part, observing that the terms

12— I cZv j ( 1 — - e'M sin {2v — 2mv) +-^e' sin {2v — 2mv — c'mv)

— - e' sin (2v — 2mv+ c'mv) Vahu

give

12m'2m' {j r95 ,e'cZe' 931 ,e'de' 19 ,e'de'^

^J^''i24™ 1^ -W^ ^^- 96^^^
m* ( , e'c?e' ,— \ndt—r- nearly,
a J ndt ''

285

4

8 a

Also the terms

15 m" f 7 e'de' ndt
'2

285 m'
,, ,, . . ,.

e * as then- non-periodic part.

m" f 7 e'de' ndt ,„ „ . 21m' fj de' ndt /r. r. / \—
I dv—7- ^j— cos I2v — 2mv)—: \dv—r- ^— cos (2v — 2mv— c'mv)

a, J ndt dv ^ ' A a^ } ndt dv ^
'

,
3 m" r 7 de' ndt ,^ „ , ^ \+ -— \dv—J- -^— cos {2v — 2mv+ c'mv)
4: a J ndt dv ^

19—2
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of Art. 9, similarly give

15m^r, / 11 ,e'de'\ 2lw? {, ( 77 „e'c?e'\ 3mV, /ll ^e!de'\

-f?^'^-^^?^'^-S?^'-earl,

— -— e'^ as their non-periodic part.

12. Hence we obtain

^ 1 1 1 mVi ,
3 ,A 9 m^ ,. 495 m'

,, ,
27 m*

,,

4 a^ ^ ' 16 a, 16 a^

+ 2^(l-^^) + -X^^+8^^-X-^^
9 m*

^ n m 441 m' „ 9 m' „

= - - - |l -^m^ - ? mVH 3m* -1-^^?^ m-'e'^l,
a a^ [ 2 4 64

J

or

m'
Now fi^=

Y\ v ^ Plana's notation, or (substituting tbe value of 'p given *

in Plana, Vol. ii. p. 855),

m =mM 1 — - m,^— -mV
|
nearly.

1 1 f_ 1 . ,13 , 3 , ,. 3201 ,

a a I 2 4 4 64

and a== a;/l+m=-??m' +|mV^-?^
'1^ 4 2 32

13. Again, by substitution in the equation for -r , we obtain
Ct/P
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civ Ja \ 2 ^ '8 8 8

Idv [ 1 — - e" ) sin (2v — 2mv) + - e' sin ( 2v — 2mv — c'mv)

— - e' sin {2v — 2mv + c'mv)

—aSu \dv\ (l — -e'M sin (2v — 2mi') +-e'sin (2v — 2™!/ — c'mi/)

— - e' sin (2v — 2mv + c'mv)

— 6m^ — Idvl
[ 1 — - e'M sin (2i' — 2mv) + ^ e' sin {2v — 2mv — c'mv)

— 3m'

— - e' sin (2^ — 2mi' + c'mv) ahu

— m*( —
j
\\dv (

1 —-e'^j sin(2v — 2?wv) + -e' sin (2v — 2mi' — c'mv)

— - e' sin (2v — 2mv + c'mi')

14. Develope this equation as before, retaining m^ only when it occurs

in the non-periodic part, and we have

^ = -^|l-2aS« + |m^+ |m^(l-5e'n + |^m^(l-5e'0'
dv ^a^y 2 4^ '' 64 ^

'

495

128
m*e'''

+ III ^V^ + L^ m^e'^ +A m'e''+^ m^e'^ +i^ ^V'^ +^ m'e'^
8 Id Id Id 2od 2od

3 / 5 \ 21— - m" 1 1 — - e'"
j
cos {2v — 2mv) ——mV cos (21/ — 2mi' — c'mv)

+ - m^e' cos {2v — 2mv+ c'mv)
8

15 , e'cZe'—-m —

^

8 «.c?«

21 , de'—-m

—

f-
16 «cZ«

—::r
«*'—jr sin (21/ — 2mi') + 7^ w-^ —77 sin (2»' — 2mi' — c'mv)

3 d^ 1— 7^ w"—5- sin (2v — 2mv + c'mv) V
16 na^

J
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dt a? f, 171 , ,
2391 , „

dv ^a, (. 64 64

11 / 5 \ 425 e'cZe'——mMl— -e") cos (2v— 2mj') — -^ m^ —-i- sin (2i/ — 2mj')

+ 3?wV cos c'oti'+ 6m'—j- sin c'mi'
not

*7*7 595 c?e'mV cos (2v — 2mi' — dmv) + -rpr w'-''
—

tt siii (Si' — 2mi'— c'mv)
8

^ '48 not ^
'

11 85 cZe'i . 1
+ —- mV cos (21- — 2'mv+ dmv) — -r^"^ ~Ti sin (2^ — 2mi'+ c'mi') \

.

15. Substitute tlie value before found for a^ in terms of a/;

c?« i f, . 2
197 , ,

3 , „ 3867 , „

ai» ' [ 64 2 64

——mMl— ^e'M cos (21/ — 2mz') —oT '"^^jT sin (21^ — 2mj')

de'
+ 3m°e' cos c'mv+ 6m'—^ sin c'mi'

77 595 c?e'——mV cos (2v— 2mv — dmv) + —5- m" —-j- sin (21/— 2mi' — dmv)

11 85 cZe' . )+ -—mV cos (21^ — 2mv+ dmv) — -rxm^—j- sin (2v — 2mv+ dmv) }-

.

8
^ '48 ndt ^ ']

16. Now, put - =a/|l+m^-^m*+|mV^-^^mv4,^ n ' y 64 2 64
J

multiply by n, and integrate

;

.-. \ndt = v—g-wi'(l ~2^'/ ^™(2i'-2mi/)+-2jm'^-^cos(2v-2mi')

dd
+ 3me' sin dmv + 3 —?- cos dmv

ndt

- T^ mV sin (2v - 2mi' - dmv) - —- m" -^n cos (2i'- 2mv- dmv)
16 '48 wai ^ '

11 59 dd
+ T^ mV sin (2v - 2mj' + dmv) +-rp:m' —y- cos i2v- 2mv+ dmv).

lo '48 ndt ^
'
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17. In the expression for - just found, a^ is absolutely constant, but

e' is variable, consequently n will vary, and therefore m likewise, which is

n'
connected with it by the equation m =—

.

Taking the variation of the equation for n, and observing that

8m_ hn

m n '

we have o =— (1 - m^) + (^|
m^ - ^^m'] S (e'%

n ^
\2 64 / ^ '

S« /3 , 3771 As //A
n \2 64 / ^ ^

Therefore, if iV be the initial value of n, and E' the corresponding value

of e',

n =N-(^m'~ ^1^ rA n (e" - E'%

and {ndt =m + e-(^m?-^ nA {{e"- E") ndt.

Hence the expression for the true longitude in terms of the mean, contains

the secular equation

^3 , 3771
-(^m?- ^^^^rA \{e"- E") ndt.

18. According to Plana, the corresponding terms in the expression for

the secular equation are

/3 , 2187 ,

-2^-128-^ \{{e"-E")ndt.

Hence we see that the terms now taken into consideration have the effect

of making the second term of the secular equation more than three times

as great as it would otherwise be. Of course, the succeeding terms wiU.

also be materially changed.

The priacipal term of the correction to be appHed to Plana's value of

the secular acceleration is therefore

A{e"-E")'^m'[(e'^-E")ndt.
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Now l{e" - E'') ndt=- 1270" (j^Y nearly,

where t is expressed in years ; therefore the numerical value of this term is

This result will serve to give an idea of the numerical importance of the

new terms to be added to the received value of the secular acceleration,

and probably will not difiPer widely from the complete correction; though in

order to obtain a value sufficiently accurate to be definitely used in the

calculation of ancient eclipses, the approximation must be carried considerably

further.

The new periodic terms added to the Moon's longitude are perfectly

insignificant, the coefficient of that involving cosc'mi', which is by far the

largest of them, only amounting to 0""003.

19. Transforming the expressions found above, so as to obtain the

Moon's longitude and radius vector in terms of the time, and writing for

convenience nt instead of jndt + e, mnt instead of mnt + ^, and c'mnt instead

of c'mnt + ^ — zs', we have

11 / 5 \ 74 e'de'
I' = n« +— mM 1 — - e'M sin (2 — 2m) nt —— m^ —j- cos (2 — 2m) nt

c. I I ^ de' ,— 3me sm cmnt — 3 —j- cos cmnt
ndt

77 . 215 de!
+ T^ ™^^' sin (2 — 2m — c^m) nt +—— im?—7- cos (2 — 2m — dm) nt

16 ^ '48 ndt ^
'

11 257 de'— rrmV sin (2 — 2m+ dm) nt——- m" —,- cos (2 — 2m+ dm) nt
16 ^ '^48 ndt ^

'

a
1 11 4 201 ,,,- = au=\ —-r-m*— -—r'md^

r 8 16

+ m= ^ - 1 dA cos (2 - 2m) nt+^m' ^^^ sin (2 - 2m) nt

— - m'd cos dmnt — 3m'—,- sin dmnt
2 ndt

7 fi 1 dp'
+ - m'd cos (2 - 2m - dm) nt---m^—j- sin (2 - 2m - dm) nt

2 ^ '24 ndt ^
'

1 91 dd— -mV cos (2 - 2m + dm) nt +— m^—j- sin (2 - 2m + dm) nt.
^ 24: nctt
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20. The existence of the new terms in the expressions for the Moon's

coordinates occurred to me some time since, when I was engaged in thinking

over a new method of treating the lunar theory, though I did not then

perceive their important bearing on the value of the secular equation.

My attention was first directed to this latter subject while endeavouring

to supply an omission in the theory of the Moon given by Pontecoulant

in his Theorie Analytique. In this valuable work, the author, following

the example originally set by Sir J. Lubbock in his Tracts on the Lunar

Theory, obtains directly the expressions for the Moon's coordinates in terms

of the time, which are found in Plana's theory by means of the reversion

of series. With respect to the secular acceleration of the mean motion,

however, Pontecoulant unfortunately adopts Plana's result without exami-

nation. On performing the calculation requisite to complete this part of

the theory, I was surprised to find that the second term of the expression

for the secular acceleration thus obtained, not only differed totally in mag-

nitude from the corresponding term given by Plana, but was even of a

contrary sign. My previous researches, however, immediately led me to

suspect what was the origin of this discordance, and when both processes

were corrected by taking into account the new terms whose existence I

had already recognized, I had the satisfaction of finding a perfect agree-

ment between the results.

A. 20
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[Abstract.']

The author remarks, that in treating a great problem of approximation,

such as that presented to us by the investigation of the Moon's motion,

experience shews that nothing is more easy than to neglect, on account of

their apparent insignificance, considerations which ultimately prove to be of

the greatest importance. One instance of this occurs with reference to the

secular acceleration of the Moon's mean motion. Although this acceleration

and the diminution of the eccentricity of the Earth's orbit, on which it

depends, had been made known by observation as separate facts, yet many
of the first geometers altogether failed to trace any connexion between

them, and it was not until he had made repeated attempts to explain

the phenomenon by other means, that Laplace himself succeeded in referring

it to its true cause.

The accurate determination of the amount of the acceleration is a matter

of very great importance. The effect on the Moon's place, of an error in

any of the periodic inequalities, is always confined within certain limits,

and takes place alternately in opposite directions within very moderate in-

tervals of time, whereas the effect of an error in the acceleration goes on

increasing for an almost indefinite period, so as to render it impossible to

connect observations made at very distant times.

In the Mecanique Gileste, the approximation to the value of the ac-

celeration is confined to the principal term, but in the theories of Damoiseau
and Plana, the developments are carried to an immense extent, particularly

in the latter, where the multiplier of the change in the square of the

eccentricity of the Earth's orbit, which occurs in the expression of the

secular acceleration, is given to terms of the seventh order.

As these theories agree in principle, and only differ slightly in the

numerical value which they assign to the acceleration, and as they passed

under the examination of Laplace, with especial reference to this subject,

it might be supposed that only some small numerical rectifications would
be required in order to obtain a very exact determination of this value.
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It has not been, therefore, without surprise, which he has no doubt

will be shared by the Society, that the author has lately found that

Laplace's explanation of the phenomenon in question is essentially incom-

plete, and that the numerical results of Damoiseau's and Plana's theories,,

with reference to it, consequently require to be very sensibly altered.

Laplace's explanation may be briefly stated as follows. He shews that

the mean central disturbing force of the Sun, by which the Moon's gravity

towards the Earth is diminished, depends not only on the Sun's mean
distance, but also on the eccentricity of the Earth's orbit. Now this eccen-

tricity is at present (and for many ages has been) diminishing, while the

mean distance remains unaltered. In consequence of this, the mean disturbing

force is also diminishing, and therefore the Moon's gravity towards the

Earth at a given distance, is, on the whole, increasing. Also the area

described in a given time by the Moon about the Earth is not affected

by this alteration of the central force ; whence it readily follows that the

Moon's mean distance from the Earth will be diminished in the same ratio

as the force at a given distance is increased, and the mean angular motion

will be increased in double the same ratio.

This, the author states, is the main principle of Laplace's analytical

method, in which he is followed by Damoiseau and Plana ; but it will be

observed that this reasoning supposes that the area described by the Moon
in a given time is not permanently altered, or, in other words, that the

tangential disturbing force produces no permanent effect. On examination,

however, he remarks it will be found that this is not strictly true, and he

proceeds briefly to point out the manner in which the inequalities of the

Moon's motion are modified by a gradual change of the disturbing force, so

as to give rise to such an alteration of the areal velocity.

As an example, he takes the case of the Variation, the most direct

effect of the disturbing force. In the ordinary theory, the orbit of the

Moon, as affected by this inequality only, would be symmetrical with respect

to the line of conjunction with the Sun, and the areal velocity generated

whUe the Moon was moving from quadrature to syzygy, would be exactly

destroyed while it was moving from syzygy to quadrature, so that no per-

manent alteration would be produced.

In reality, however, the magnitude of the disturbing force by which

this inequality is caused, depends in some degree on the eccentricity of the

20—2
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Earth's orbit; and as this is continually diminishing, the disturbing forces

at equal intervals before and after conjunction will not be exactly equal.

Hence the orbit will no longer be symmetrically situated with respect to

the line of conjunction, and therefore the effects of the tangential force

before and after conjunction no longer exactly balance each other.

The other inequalities of the Moon's motion will be similarly modified,

•especially those which depend, more directly, on the eccentricity of the

Earth's orbit, so that each of them will give rise to an uncompensated

change of the areal velocity, and all of these must be combined in order

to ascertain the total effect.

Since the distortion of the orbit just pointed out is due to the change

of the disturbing force consequent upon a change in the eccentricity of the

Earth's orbit, and the action of the tangential force, permanently to change

the rate of description of areas, is only brought into play by means of

this distortion, it follows that the alteration of the areal velocity will be

of the order of the square of the disturbing force multiplied by the rate

of change of the square of the eccentricity. It is evident that this altera-

tion of areal velocity will have a direct effect in changing the acceleration

of the Moon's mean motion.

Having thus briefly indicated the way in which the effect now treated

of originates, the author proceeds with the analytical investigation of its

amount. In the present communication, however, he proposes to confine his

attention to the principal term of the change thus produced in the accele-

ration of the Moon's mean motion, deferring to another, though he hopes

not a distant opportunity, the fuller treatment of this subject, as weU as

the determination of the secular variations of the other elements of the

Moon's motion, which, arising from the same cause, have also been hitherto

overlooked.

In the usual theory, the reciprocal of the Moon's radius vector is ex-

pressed by means of a series of cosines of angles formed by combinations

of multiples of the mean angular distance of the Moon from the Sun, of

the mean anomalies of the Moon and Sun, and of the Moon's mean distance

firom the node ; and the Moon's longitude is expressed by means of a series

of sines of the same angles, the coefficients of the periodic terms being

functions of the ratio of the Sun's mean motion to that of the Moon, of

the eccentricities of the two orbits and of their mutual inclination.
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Now, if the eccentricity of the Earth's orbit be supposed to remain

constant, this is the true form of the expressions for the Moon's coordinates

;

but if that eccentricity be variable, the author shews that the differential

equation cannot be satisfied without adding to the expression for the re-

ciprocal of the radius vector, a series of small supplementary terms depending

on the sines of the angles whose cosines are already involved in it, and

to the expression for the longitude, a series of similar terms depending on

the cosines of the same angles ; all the coefl&cients of these new terms

containing as a factor the differential coefficient of the eccentricity of the

Earth's orbit taken with respect to the time.

The author first determines as many of these terms as are necessary

in the order of approximation to which he restricts himself, and then takes

them into account in the investigation of the secular acceleration. The

expression which he thus obtains for the first two terms of this accele-

ration, is,

|^«_^m^j f{e''-JE")ndt

According to Plana, the corresponding expression is

It will be observed that the coefficient of the second term has been com-

pletely altered in consequence of the introduction of the new terms.

The numerical effect of this alteration is to diminish by l"'66 the

coefficient of the square of the time in the expression for the secular

acceleration; the time being, as usual, expressed in centuries.

It will, of course, be necessary to carry the approximation much further,

in order to obtain such a value of this coefficient as may be employed

with confidence in the calculation of ancient eclipses.
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ON THE SECULAR VARIATION OF THE ECCENTRICITY AND INCLINATION

OF THE MOON'S ORBIT.

[From the Monthly Notices of the Royal Astronomical Society (1859). Vol. xix.J

In a memoir read before the Royal Society in June, 1853, I shewed

that the secular variation of the Moon's mean motion is given by means of

the equation

ndt- dt \ ^"^^ 32 ™j'

in which the coefficient of m* is totally different from that in Plana's result.

I have since carried the approximation to the seventh order in m, and

find that

dn e'de' f „ , .
3771 , . 34047 . 306865 , 17053741

ndt dt

r ^ , ,
3771

, ,
34047 , 306865 , 17053741 J

(A-\This reduces the coefficient of (-j-t^) , in the expression for the acceleration

to 5"7, only about one-half of the value hitherto received*. M. Delaunay

has recently verified my coefficient of m*; and he informs me that he shall

very soon have carried the approximation to the eighth order in m, and

included the terms depending on e^ and y^

In my memoir above referred to I mentioned that other elements of

the Moon's orbit suffer secular changes which had been overlooked.

* The first part of this Paper was communicated to the French Institute in January, 1859,

and was published in the Comptes Rendus.
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I find the following expressions for the secular variation of the eccen-

tricity and inclination of the Moon's orbit, adopting Plana's definitions of e

and y

:

—
de ,de' (235 ,]

dy_ ,de' ( 221 , 779 , 199631

dt '' dt\ 64 256 4096

I am engaged in carrying on the approximation to the value of -j- to

the same extent as I have done in the case of ^, and in finding the

part of the secular variation of the mean motion which depends on e" and

y. These terms, however, can only very slightly affect the numerical value

of the secular acceleration.

Supplement to the foregoing.

Since I sent my result respecting the secular variations of the eccen-

tricity and inclination of the Moon's orbit to the Society the other day, I

have found the leading terms of the secular acceleration of the mean motion

which depend on the eccentricity and inclination of the orbit. The result

is one of remarkable simplicity, considering the nature of the calculations

which have led to it ; and I should be glad if you would let it appear

in the Monthly Notices as soon as you conveniently can, as a supplement

or a note to my former communication. The result is,

dn e'de' f ^ . ,

3771 . „ 27 , , 27 , ,

ndt dt \ 32 8 8 ^

[I have not written down the coefficients of higher powers of m, as

given in my former note.]

It is curious that the coefficients of e^ and y^ in this expression, are

equal and of contrary signs, although they are found by totally distinct

processes. The effect of the terms in e' and •/ on the magnitude of the

secular acceleration is, as I anticipated, very insignificant. The term in e'

increases the coefficient of the square of the number of centuries by 0"'036,

and that in y^ diminishes the same coefficient by 0"'097 ; so that, on the

whole, the coefficient 5"70, which I previously found, must be diminished

by 0""06, or reduced to 5"*64. This value I believe to be within one-tenth

of a second of the true theoretical value of the coefficient of the secular

acceleration. Whether ancient observations admit of such a small value of

the acceleration is a different question.
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EEPLY TO VARIOUS OBJECTIONS AGAINST THE THEORY OF THE

SECULAR ACCELERATION OF THE MOON'S MEAN MOTION (WITH

POSTSCRIPT.)

[From the Monthly Notices of the Royal Astronomical Society (1860). Vol. xx.]

If I have hitherto published no reply to the " Observations " of M. de

Pont^coulant, contained in the Monthly Notices of July last, it is not be-

cause the task presented any difficulty, for the fallacies which pervade M.

de Pont^coulant's communication were perfectly evident to me from the very

first. I thought that any competent person who chose to look into my
Memoir " On the Secular Acceleration," and into these observations upon it,

might be safely left to form his own judgment on the matter. Again, I

had some hopes that M. de Pont^coulant might be led to see and ac-

knowledge the errors into which he had fallen, and with that object in

view I sent to him, on more than one occasion, through a friend, com-

munications which appeared to me amply sufficient to expose the fallacies

contained not only in his printed " Observations," but also in several private

letters which he subsequently wrote upon the subject. I find, however,

that M. de Pont^coulant, in a letter which he has lately caused to be

circulated among the members of the French Institute, has ventured to

ignore these communications of mine altogether, and to speak as if his

observations had been admitted without dispute. Under these circumstances,

as my further silence might be misconstrued, I beg leave to offer to the

Society the following remarks.
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In order to give a more complete view of the subject, however, and

to obviate the necessity of my returning to it in a controversial manner,.

I shall not confine myself to the observations of M. de Pontdcoulant, but

shall likewise say a few words in reply to the objections of M. Plana and

those of M. Hansen. I shall also take the opportunity of making some

preliminary remarks which may tend to remove certain misapprehensions,

which I have reason to believe exist in some minds with respect to the

real nature of the matter in dispute.

First, then, I would call attention to the fact that the question is a

purely mathematical one, with the decision of which observation has nothing

whatever to do. It may be simply stated thus : if the eccentricity of the

Earth's orbit be supposed to change at a given uniform rate and very

slowly, what will be the corresponding rate of change, according to the

theory of gravitation, in the mean motion of the Moon? Now the solution

of this question is effected by means of a purely algebraical process, the

validity of each step of which admits of being placed beyond all possible

doubt.

What conclusion must be drawn, then, supposing that ancient obser-

vations should shew that the secular variation of the Moon's mean motion

is different from that which, according to theory, is due to the known
change of the eccentricity of the Earth's orbit ?

Why, simply this ; that the mean motion of the Moon is affected by

some other cause or causes, besides the variation of eccentricity which has

been taken iato account. This fact, if established, would be a most inte-

resting one, and might put us on the traces of an important physical

discovery. It is not difficult to imagine the existence of causes whick

may affect the mean motion of the Moon, but whether it were so or not,

any question respecting the validity of a mathematical process must be

decided on mathematical grounds alone, quite independently of the agree-

ment or disagreement of theory and observation.

In the case before us the mathematical question as stated above may
be greatly simplified, without its ceasing to involve the point which is in

dispute. The values of the secular acceleration given by M. Plana's theory

and mine, differ ia terms which are independent of the eccentricity and

inclination of the Moon's orbit; consequently in deciding which of the

theories is right, we may suppose the eccentricity and inclination to vanish.

A. 21
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In the next place I would remark that the error which I attribute

to M. Plana's theory on this point is not one of calculation which might

require long and complicated numerical processes to be gone through for

its correction, but that it is an error of principle, about which a mathe-

matician ought not to have much difficulty in making up his mind. I am
therefore inclined entirely to agree with M. de Pont^coulant's opinion, that

the prolonged discussion of this subject would not be creditable to science,

and indeed, considering the importance of the question, and the length of

time which has passed since the publication of my Memoir, I cannot but

think it strange that any controversy respecting it should stUl exist at all.

Some persons appear to be under the impression that the contest lies

between two values of the secular acceleration, that M. Delaunay and I

agree in one value, and that MM. Plana, de Pontecoulant, and Hansen,

agree in a larger value ; but this is by no means the true state of the

case. Between M. Delaunay's result and my own, indeed, there is a perfect

agreement. He has carried the approximation much further than I have

done, but all of the terms which I have calculated have been confirmed

hy him. Again, before publishing my Memoir in 1853, I had obtained my
result by two different methods, and I have since confirmed and extended

it by means of a third. M. Delaunay arrived at his result by an inde-

pendent method of his own, and he has lately found exactly the same

result by following the method given by Poisson.

On the other hand, among our opponents there is far from being the

same satisfactory agreement.

In his theory of the Moon, M. Plana obtained one value of the secular

acceleration. In 1856 he printed a paper in which he admitted that his

theory was wrong on this point, and actually deduced my result fi:om his

own equations. Soon afterwards, however, M. Plana retracted his admission

of the correctness of my result, and obtained a third result, differing both
from his former one and from my own.

Again, M. de Pontecoulant, in the last communication which I received

from him, gives two different values of the secular acceleration, one of which
he has obtained by using the time, and the other by using the Moon's
longitude as the independent variable. Strange to say, however, he does

not appear at all startled at obtaining two contradictory values, but seems
fully inclined to defend both. Indeed, judging from the last paragraph of
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his letter in the Monthly Notices, he appears to have expected that the

results of the two methods would differ from each other. One of the

values which M. de Pontecoulant thus obtains agrees with that given in

M. Plana's theory, as of course it must do, being found by means of the

same principles. But he seems to be quite unaware that this value has

been abandoned by M. Plana himself in his last paper above referred to,

which is contained in the eighteenth volume of the Turin Memoirs.

M. Hansen's value of the secular acceleration is not given in an

analytical form, like those of MM. Plana and de Pontecoulant, and therefore

we can only compare the final numerical results. This comparison, which

I shall presently give, shews that M. Hansen's value of the acceleration

considerably exceeds either of those found by M. Plana.

Here then we find nothing to inspire confidence ; certainly nothing like

the cumulative testimony which there is in support of M. Delaunay's result

and mine.

I may now be permitted to make some remarks on another point. In

the introduction to my Memoir of 1853, I gave some general reasoning to

shew that a change in the eccentricity of the Earth's orbit had a tendency

to produce a change in the mean areal velocity of the Moon, and that

M. Plana was therefore wrong in assuming this velocity to be constant, as

in his theory he does. Now this seems to have led some persons to

imagine that my analysis in the following part of the memoir depended

in some way or other on the validity of the general reasoning which had

gone before, and therefore that my conclusions could not be regarded as

established with mathematical strictness. But this is quite a mistaken view

of the case. I make no assumption respecting the variability of the mean
areal velocity. I prove mathematically that this velocity does vary by
finding the amount of its variation, and the general reasoning given in the

introduction is simply the translation, so to speak, of my analysis into

ordinary language, in order to make the nature of my correction to M.

Plana's theory more generally intelligible. It may be remarked too that

even if I had started with the assumption that the mean areal velocity

was variable, no error could have been caused thereby, for if this velocity

had been really constant I should have found its variation equal to zero.

In mathematics the terms " constant " and " variable " are not looked upon

as opposed to each other, but a constant is regarded as a particular case

of a variable quantity.

21—2
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It may be as well to guard against the idea that the extreme minute-

ness of the quantities which we have to deal with in this investigation,

gives rise to any uncertainty in the result. The present rate of approach

of the Moon to the Earth which accompanies the acceleration of its motion,

is less than one inch per annum, but the theory can determine this minute

quantity to within, say, a thousandth part of its true amount, just as

easUy and certainly as if the quantity to be found had been any number

of times greater.

I will now proceed briefly to explain the principles which I employ,

in determining the secular acceleration, and to point out the errors which

vitiate the several results of MM. Plana and de Pont^coulant which have

been already referred to.

The principle of my method is simply this, viz., that the differential

equations must be satisfied, and that quantities which really vary must be

treated as variable in all the differentiations and integrations which occur

throughout the investigation.

Now if e', the eccentricity of the Earth's orbit, be variable, the differ-

entiation or integration of any term which involves e' in its coefficient will

produce, in addition to the term which would result if e' were constant,

de' . .

another term involving -j- in its coefficient, supposing t to be the independent

variable.

In consequence of the existence of these supplementary terms, the

ordinary expressions for the Moon's coordinates when substituted in the

differential equations will not satisfy them, but will leave terms multiplied

de!
by -rr outstanding. In order to destroy these terms, it is necessary to

add terms of the same form to the usual expressions for the Moon's co-

ordinates. The values of these new terms may, if we please, be easUy

found by the method of indeterminate coefficients, each of the coefficients

being obtained by means of a simple equation.

If n, the Moon's mean motion, be variable, the double differentiation

of the Moon's coordinates wiU produce in the differential equations, terms

involving -tt of the same form as those already mentioned which involve -r-
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Thus the same system of simultaneous simple equations that gives the

values of the indeterminate coefficients, determines likewise the value of

ft VI

-^f- . which is what we want to find.
at

If the Moon's longitude v be taken as the independent variable, we
must proceed according to the same principles, but there is one additional

circumstance to be attended to.

In the former case, since e' is supposed to vary uniformly with the

de' . . cZV
time, -7— is considered constant, or -^ — 0. In the latter case the terms

which are introduced by the consideration of the variability of e' will

(IP dp
involve -y- instead of -7- as before ; and since the Moon's motion in longi-

d^ . d'e'
tude is not uniform, the value of -7- cannot be considered constant, or ^—

-

dv dv'

de'
cannot be neglected. To take this into account we must substitute for ^-^ dv

its value -^—5- • in which -j- is a known function of v, and then the
at dv av

remainder of the process will be exactly similar to that before described.

Let us now consider the method followed in M. Plana's theory, and

also by M. de Pontdcoulant.

d^
In this method the terms above described involving -7— are ignored,

and consequently the differential equations as developed by these astronomers

H/Yh

furnish no materials whatever for determining the value of -7- . Hence

they are forced to supply the lack of data by means of an assumption,

which is that one of the so-called constants introduced by integration is

absolutely constant.

The value of any one of the constants so employed can be expressed

in terms of n, e' and known quantities. If then this so-called constant were

Ci/fk

really so, we should be able by differentiating this relation to obtain -7-

de'
in terms of -r-- But if on the other hand this supposed constant be
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really variable, we must take its variation into account, in order to obtain

the true value of -j- in terms of -rr-
at at

In M. Plana's theory, in which v is taken as the independent variable,

the constant so employed is h', which is added to complete the integral

2 \7^ -j—dv, m the equation

'^{dt)=^-^^r^'^''

in which 2
j
r^ -j- dv is supposed to consist of a series of cosines of multiples

of y.

The quantity r^ -rr is equal to twice the area described in a unit of

time, or to twice the areal velocity, so that h^ is the non-periodic part

of the square of twice the areal velocity, the periodic part being supposed

developed in cosines of multiples of v.

In M. de Pont^coulant's theory, the constant h is introduced to complete

the integral I -y- dt in the equation

, dv , [dR ,

in which \--^dt is supposed to consist of a series of cosines of multiples ,

of t.

M. de Pont^coulant's h is not identical with M. Plana's h, but there

is a simple relation between these quantities,

M. de Pont^coulant, however, does not employ the constant h in finding

the value of the secular acceleration, but another constant -, which is
CL

introduced to complete the integral in the equation

2 df r + a-2j^^ +^^'

all the periodic terms of which are supposed to consist of cosines of multiples

of t.
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If we neglect the eccentricity and inclination of the Moon's orbit, and
also omit all powers of m above the fourth, the relations between these

several constants and the mean motion n will be expressed as follows

:

1 « r, 2 , 1253 , ,, r . 5593 Hi- = n^ |l+-m^-^g^m^ +
.-L ™-l9^^|'

the sum of the masses of the Earth and Moon being supposed to be unity.

From these relations we find by differentiation

dn
o <^h , d{e!') f 3 , ,

2187 J
^=-'h^ +-k-i-2™+T^^['
dm__ _ dh d{e") \ 3 , 297 ,\

ndt~ ^'hdt^~dr\ 2™ "M"*^]'

dr)^__^da_ d{e")
f 3 , 5337 A

ndt~ 2^ +~^t 2"* "^128™/'

n'
having taken care to observe that, since m = — and n! is constant, we have

dm dn
mdt ndt

'

If r-3- be neglected in the first of these expressions, we obtain the

value of —T7 found in M. Plana's theory, and one of those found by M.

de Pontdcoulant. If j-Jl ^® neglected in the second, the resulting value

of —5- is what would have been found by M. de Pont^coulant, if he had
ndt -'

taken his own h to be constant instead of M. Plana's h.

If in the third expression —j- be neglected, we obtain the value of —-7-

which M. de Pont^coulant communicated to me as the result which he had

found by using t as the independent variable.
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It is obvious that these several values of —^ contradict each other,

and the reason is that the quantities h, h, and a are reaUy variable, and

that therefore t—tTj iry- > ^iid ~~r have been wrongly neglected. In order to

find the true value of —r- "we must therefore determine the values of these
ndt

last-mentioned difierential coefficients, and substitute them in the several

„ dn . ,

expressions tor —-j- given above.

de'
Now the supplementary terms involving -5— which I have shewn to

exist in the expressions for the Moon's coordinates, will introduce into the

integral

^r-d^'^^'

besides periodic terms, a non-periodic one of the form

/
H^^ dt, or He'\

consequently, since in the equation

M. Plana considers h" to denote the whole of the non-periodic part of

r* f-^j , h^ must consist of an absolutely constant part together with the

variable quantity He'' just mentioned

A .
d{h') , ,

1 ^ rrdie'^)and .*. \ ' must be equal to H ^
'

.

Similarly -^ may be found by determining the non-periodic term which

is in the same way introduced into the integral

fdR

in the equation
f-
-j~dt
dv

.dv - (dR ,
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and —rr— may be similarly found by means of the non-periodic terms intro-

duced into the integral \d'R, in the equation

1 dHr") 1 1 „ Tt/t. dR
2 at raj dr

When all this has been done, and the proper substitutions made, th&

(77)

three expressions for —3- are found to agree in giving
thCtZ

dn die") f 3 , 377]

ndt dt \ 2 64
—mJ'V,

which is the result obtained by M. Delaunay and myself

de'
The supplementary terms in the Moon's coordinates which involve -rr are

of the order of the disturbing force, and therefore the terms which they

introduce into the integrals,

will be the order of the square of the disturbing force.

fT n (m h {m a
This is the reason why .—r-

,
^—j-

, and —j- are all of the order m*.
•' \\dt hdt adt

It may be well to mention, in order to prevent any misapprehension,

that in my Memoir of 1853, h has not the same signification as the h of

M. Plana's theory.

It is proved in Art. 11 of the Memoir that

^ I , dR ,

dv

contains the non-periodic terms

, , ,
285 , „ 495

hM-^mV^-F-g^'

64

22
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and the I? employed in the Memoir is the absolutely constant quantity added

to complete the integral, so that if for the sake of distinction V be written

for the U of the Memoir, we shall have

h^ =V+h4-^«iV^

or h^ =V-!l-^^m',v4

The following relation exists between the h of M. Plana and the h

of M. de Pont^coulant :

—

l=i+M"''+'"
1125

m'
128 -]

Now this relation at once shews that if e' be variable, h and h cannot

both be constant; and since no a-priori reason can be given why one of

these quantities should be constant rather than the other, we are not

justified in assuming that either of them is so.

This argument, however, does not appear convincing to M. de Pont^coulant.

In the two methods which, as I mentioned before, I employed previously

to the publication of my Memoir of 1853, the value of —77 was deduced from

those of r— J- and t-tt respectively. In the method which I now employ,

—J- is determined by direct substitution in the differential equations, without

introducing either the quantity h or h, that is, without taking into con-

sideration the mean areal velocity at all.

In M. Plana's Memoir, contained in the eighteenth volume of the Turin

Memoirs, he no longer maintains the constancy of his quantity h, but he

determines its variation incorrectly, only taking into account part of the

terms which produce this variation. M. Plana here recognises the reality

de!
of the supplementary terms involving -j-, which I have proved to exist

in the expressions for the Moon's coordinates; and he finds values for hu

and hnt in pp. 14 and 20 of the Memoir, which coincide with mine, except

in the terms with the argument c'mv, in which a mistake occurs in his

coeflScients, which, however, does not affect the coefficient of m* in the
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expression for the secular acceleration. It is very remarkable, however, that
although he finds these values of 8u and Snt, he does not substitute them
in his equations, but puts 8u = and Bnt = instead of them. It is only

by this strange process of suppressing part of the results which he himself
has found, that M. Plana arrives at a different value of the secular accele-

ration from mine. Indeed, in the first form of this Memoir, as I have
already mentioned, M. Plana did actually obtain a value coincident with

mine.

M. Plana is led to make this suppression of his own results by a

supposed ib-priori proof that a certain integral which is equivalent to

r -^j—dv
dv

can contain no such terms as those which would arise from the substitution

in it of the true values of hu and hnt. Now, even if this proof had been

ever so convincing, M. Plana was surely bound to shew in what manner

the terms thus arising from 8m and hnt were destroyed, as the difierent

parts of his investigation would otherwise contradict each other.

In fact, however, this proof is entirely fallacious, for it rests on the

assumption made at the top of p. 43 of the Memoir, that the terms multi-

plied by p, p^, &c., in the equation given on the preceding page, may be

neglected ; and these are precisely the terms which are equivalent to those

which M. Plana suppresses.

It may be as well to make another remark on this part of the in-

vestigation. In p. 42, M. Plana puts

e'" cos gr =XM cos {pv + q),

e'^ sin gT — tM sin {pv + q),

and he assumes that all the coefiicients p will be small quantities. But

this will not be the case when e^'cosgr and e'^'sin^rr are thus expressed

in terms of the Moon's longitude. If these functions were similarly expressed

in terms of the time, viz., if we were to put

e" cos gr =tM cos {pt + q),

e'^ sin gT =%M sin {pt + q),

all the coefficients p would be small.

22—2
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The result which M. Plana obtains in this Memoir is

dn die") f 3 ,351 ,

ndt dt \ 2 64

and the difference between this result and mine arises in the way I have

explained, viz., from his having neglected to take into account the term

which is shewn in Art. 11 of my Memoir to constitute part of the non-

periodic term of 2
j
r'^ —j- dv.

M. Hansen's value of the secular acceleration is not exhibited in an

analytical form, like those of MM. Plana and de Pontecoulant, and we can

therefore only compare his numerical result with theirs. These differ con-

siderably, and, in fact, much more than appears at first sight, on account

of a reason which I wUl explain.

where K is the coefficient found from theory, the secular equation to be

applied to the mean longitude will be

K{(e"-E")ndt,

E' being the eccentricity of the Earth's orbit at the epoch from which t

is reckoned.

Now I find that M. Hansen uses a smaller value of the integral

\{e''-E"')ndt
/'

than M. Plana does; that is, he supposes a slower change in the eccentricity

of the Earth's orbit : and yet his resulting value of the secular equation is

larger than those of M. Plana.

It may be inferred, either from the data in the Introduction to
M. Hansen's Solar Tables, or from other data in the Introduction to his Lunar

Tables, that the value of the integral Ue!''- E'^) ndt which he employs is

— 1212"-5<'', t being expressed, as usual, in centuries.
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Now M. Plana, in his Theory of the Moon, supposes the value of the

above integral to be — 12&4!'-If, and in his Memoir in vol. xviii. of the

Turin Memoirs he gives it the value —\297"'7f.

If, then, we reduce the coefficients of the secular equation given by
these authors, so as to make them correspond with the value —I270"f of

the above integral, which is that employed in my Memoir of 1853, they

will become

Coefficient according to M. Plana's theory 10 •60,

M. Plana's memoir (1856) 11-24,

M. Hansen's theory 1276.

The difference between M. Hansen's coefficient and either of M. Plana's

is much greater than could possibly have arisen if both values had been

found on correct principles, and they had differed merely in consequence of

the approximations not being carried far enough.

My value of the same coefficient, which was communicated to. the

French Institute in January, 1859, is 5"70. And M. Delaunay, while

perfectly agreeing with me in the terms which I have calculated, has added

a great number of others depending on the eccentricity and inclination of

the Moon's orbit, and thus increases the coefficient to 6"" 11.

As M. Hansen's method of obtaining his coefficient has not yet ap-

peared, it is, of course, impossible for me to point out the reason of the

difference between it and my own, as I have done in reference to the

results of MM. Plana and de Pontecoulant. I have very little doubt, how-

ever, that it arises from M. Hansen having tacitly assumed, like M. Plana,

that one of his constants introduced by integration is an absolutely constant

quantity.

M. Hansen has suggested that the difference between his result and

that obtained by M. Delaunay and myself may arise from want of con-

vergency in the series proceeding according to powers of m, by means of

which we determine the coefficient denoted above by K.

If we confine our attention to the terms of K which are independent of

the eccentricity and inclination of the Moon's orbit, and which are admitted

by all to constitute by far the largest part of that quantity, we find that

the terms involving the successive powers of m taken into account by me
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give rise to the following parts of the coefficient of the secular equation:

—

m' 10-66,

m' - 2-34,

m' - 1-58,

m" - 071,

m' - 0-25.

The sum of these is 5"-78. The convergence, although slow at starting,

becomes more rapid in the later terms; and I inferred, in my communi-

cation to the French Institute above mentioned, that the remainder of the

series would be very nearly equal to — 0""08.

Now M. Delaunay has since calculated the next term of the series,

and finds it = — 0"-06, which is in exact accordance with my anticipations.

Although I think that there can remain no doubt with respect to the

convergency of the series, yet, in order to remove all possible objection, I

have calculated the value of -fiT by a method which does not require any

expansion in powers of m, and the resulting coefficient of the secular equation

is 5"'70, exactly agreeing with that found by means of the series of powers

of m.

A very few words will now suffice in reply to the objections which

M. de Pont^coulant brings forward in his observations in the Monthly

Notices. In fact, almost all of them have been virtually answered in what

I have said before.

At the outset of his paper, M. de Pontecoulant rightly describes the

difference between my method of finding the secular acceleration and all

preceding ones, as arising from the consideration of the variability of the

eccentricity of the Earth's orbit in the differential equations of the Moon's

motion, in which this element had hitherto been considered as constant.

He then refers to the statement in my Memoir, that when this consideration

was introduced into the formulae, I found exactly the same result whether

the time or the Moon's longitude was taken as the independent variable.

But, adds M. de Pontecoulant, "il n'y a qu'une petite difficult^ dans cette

assertion, c'est qu'elle ^nonce un fait math^matiquement inadmissible."

Now I confess that I cannot see M. de Pont^coulant's "petite difficultd."^

I am far from looking upon the agreement between the results of different
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methods as a fact mathematically inadmissible. On the contrary, it appears

to me a palpable absurdity to suppose that the result of a mathematical

investigation can be different according as one independent variable or an-

other is employed in obtaining it, or that two methods of solving the same

problem may both be correct and yet lead to contradictory results.

In order, however, to shew this mathematical inadmissibility, M. de

Pontdcoulant goes on to say, " En effet, M. Adams convient quelque part,

je crois, et d'ailleurs, je le d^montrerais bient6t jusqu'a I'^vidence, que la

consideration de la variability de I'orbe terrestre, n'exerce aucune influence

sur la determination de I'inegalit^ seculaire, lorsqu'on emploie pour I'obtenir

les formules directes que j'ai adoptees dans ma th^orie."

In thus stating that I admit that one of the methods of determining

the secular acceleration is unaffected by the consideration of the variability

of the eccentricity of the Earth's orbit, M. de Pont^coulant overlooks " une

petite difficult^," viz., that instead of admitting this, I assert, in so many
words, the exact contrary. In the concluding sentence of my Memoir I

say, " when both processes were corrected by taking into account the new

terms whose existence I had already recognized, T had the satisfaction of

finding a perfect agreement between the results."

For M. de Pont^coulant's demonstration "jusqu'a I'^vidence," I am not

responsible, and indeed, I think his paper tends to shew that he has

peculiar ideas as to what constitutes demonstration.

In the next place M. de Pont^coulant offers " une reflexion tres simple,"

which he thinks ought to have struck me. " Qui est-ce apres tout que

le coefficient de 1'Equation seculaire ?—une certaine fonction des ^Idments des

orbites de I'astre trouble et de I'astre perturbateur, qui se d^duit des

formules diff^rentielles du mouvement ; cette fonction est la m^me, selon

M. Adams, par quelque mdthode qu'on I'obtienne, dans le cas oil Ton con-

sidfere comme variable I'excentricit^ de I'orbe terrestre; k plus forte raison elle

doit r^tre dans le cas ou Ton regarde cette excentricit^ comme constante."

I am at a loss to imagine what can be the meaning of this last clause,

since the secular equation in question is entirely due to the variability of

the eccentricity of the Earth's orbit, and would not exist at all if this

eccentricity were constant.

It must be admitted that my new determination of the secular accelera-

tion has, as M. de Pont^coulant says, " I'inconv^nient d'alt^rer profond^ment
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I'expression analytique admise jusqu'a present, du coefficient de cette Equa-

tion," but truth must not be sacrificed to convenience.

In the algebraical portion of his paper, M. de PontEcoulant is not

happier than in his introductory remarks. Indeed, throughout the paper

he expressly leaves out of consideration all the terms which give rise to

the difference between M. Plana's result and mine.

Thus, at the bottom of p. 311, having found from an assumed term

m ~^j—, that
dv

fdR , A , , ^^ ,. Ade' . , ^^ ,.

\-^dt=-je'cos{ft + l) + j.^sm{ft + l),

de'
he incorporates the term involving —j- with the preceding under the form

A , I ^ T de'
-jeco^[ft + l +^^

and then remarks :

—

" On voit done que la consideration de la variation de I'excentricitE de

I'orbite terrestre ne fait qu'alt^rer d'une mani^re insensible la partie con-

stante des angles des diverses indgalit^s lunaires multipli^es par e', elle ne

change en rien la forme des series qui d^terminent les coordonn^es du
mouvement trouble..."

Now these alterations of the constant part of the angles on which

the several lunar inequalities depend, which are neglected as insensible by

M. de Pontecoulant, actually give rise to the terms in the Moon's co-

de'
ordinates involving -^ , which I have been the first to take into account,

and thus do change the form of the expressions for those coordinates.

A de' .

The term -p -j-sva.{ft + l) is not destroyed by being incorporated with

A
the preceding term — 7re'cos(/i{ + ^), as M. de Pontecoulant seems to suppose.

Again, in order to shew that the integral I -,— dt can contain no non-

periodic term depending on e', M. de Pontecoulant assumes, at the foot

of p. 310, that —J- is made up of terms of the form

^e'sin(/j5 + ^).
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But
—J-

is a function of r and v; and since these quantities contain

terms depending on the disturbing force and multiplied by -j- , -j- wUl

contain, in addition to the terms of the form considered by M. de Pont^-

coulant, other terms of the order of the square of the disturbing force, and

of the form

among these there wdl be a term in which the angle ft + l vanishes

;

viz., one of the form

dp'
Ce'—

f d ff 1

and consequently I -y- dt will contain the non-periodic term - Ce'^

M. de Pontecoulant characterises the process which I have employed at

the bottom of p. 402 in my Memoir (see p. 147 above), in order to find the

non-periodic parts of certain integrals, as " une veritable supercherie analytique."

. . . de^
Now this "supercherie" only consists in taking account of the variability of -t— ,

de' dt
by putting for it the identical quantity -j- . -j-

.

M. Plana, in equation [10], p. 12, of his Memoir, finds, for the terms

thus objected to by M. de Pontdcoulant, exactly the same values as I have

done, though his process entirely differs from mine.

On this same point, in a note to p. 315, M. de Pontecoulant makes

the objection that in the last step of the integrations referred to I make

dv = ndt, contrary to the supposition I had previously employed. But my
object was simply to find the non-periodic parts of the integrals concerned;

and it is obvious that if I had put for dv its complete value ndt — <f>{y)dv,

where ^ {v) is a periodic function of v, this function would only introduce

periodic terms into the integrals, and would cause no change whatever in

the terms which I have found.

But one of the most remarkable objections in the whole course of M.

de Pont^coulant's communication occurs in p. 316, where he says he is going

A. 23
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to put his finger on tlie error I have committed. From an equation in

my Memoir he deduces the following :

—

r 11 77 1

e'=q+ q' \v m' sin {2p - 2mv) -— m'e' sin''(2i^

-

2mv - c'mv) + &c. V

^nd then adds the remark,

—

" C'est-k-dire, que I'excentricit^ de I'orbite terrestre, outre sa variation

s^culaire, serait soumise a toutes les indgalit^s du mouvement lunaire ; c'est-

a-dire, k des variations dont le pdriode serait d'un mois, d'une annee, &c.

•ce qui est contraire, quelque petitesse qu'on suppose au coefficient q', a tous

les principes de la thdorie."

Now it is astonishing that M. de Pont^coulant does not see that the

quantity enclosed within brackets, in the above equation, is simply the

expression of the Moon's mean longitude nt in terms of the true longitude

V, so that the equation is equivalent to

e' = q + q'nt

;

that is, the eccentricity of the Earth's orbit is made to vary uniformly with

the time, which agrees with the supposition with which we started.

On the other hand, M. de Pontdcoulant, by making

e'=q+q'v,
,

that is, by supposing the change in e' to be proportional to the Moon's

true motion in longitude, would evidently cause the eccentricity of the

Earth's orbit to be affected by all the inequalities of the lunar motion.

All attempts to express e' in terms of v, without introducing periodic

terms, lead to this absurdity.

I have already alluded to the strange notion expressed at the end of

M. de Pont^coulant's paper, that there may be two values of the secular

acceleration, one applicable to the true longitude and the other to the

mean longitude. The difference between the true and the mean longitudes

consists wholly of periodic quantities, and cannot contain any term increasing

continually with the time.

How M. de Pont^coulant could have so far deceived himself as to imagine

that this paper settled the question of the secular acceleration, " sans con-

testation possible d^sormais," is, I confess, beyond my comprehension.
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P.S.—In the Com/pte Rendu of April 9, 1860, whicli has appeared since

the foregoing paper was read, M. de Pont^coulant gives the value of the

secular acceleration of the Moon's mean motion, which he has obtained by

taking the time as the independent variable, and which he considers to be

"desormais k I'abri de toute objection."

This result, however, of M. de Pont^coulant's is the same as that which

he formerly communicated to me, the error of which I have already pointed

out.

M. de Pontecoulant thus describes his method, " En d^veloppant la

formule qui donne I'expression de la longitude vraie en fonction de la lon-

gitude moyenne, et en n'ayant ^gard qu'au premier terme de ce d^veloppe-

ment, c'est-k-dire £i sa partie non-p^riodique j'en ai conclu le rapport da
moyen mouvement de la lune dans son orbite troubl^e au moyen mouvement

relatif k son orbite elliptique, c'est-k-dire a 1'orbite que cet astre d^crirait

autour de la terre sans Taction du soleU... En differentiant ensuite cette

valeur par rapport a I'excentricitd e' de I'orbite terrestre qu'elle renferme,...

i'ai obtenu une expression de cette forme

:

Sri = Hh.e'\"
n

The value of H thus obtained is

^=-2™ +128"™

which, as I have shewn in p. 9 (see p. 167 above), is the result that would be

found by differentiating the relation between n and a, and then neglecting

the variation of a. The fallacy of M. de Pont^coulant's reasoning consists in

his treating the Moon's " orbite elliptique, c'est-k-dire, I'orbite que cet astre

d^crirait autour de la terre sans Taction du soleil," as if it were a real

elliptic orbit with an unalterable semi-axis major, whereas the semi-axis

major of the elliptic orbit spoken of by M. Pontecoulant, which is the same

quantity as that above denoted by the symbol a, is really variable, and its

variation must be found by means of the differential equations in the way
which I have before described.

The numerical value of the coefficient of the secular equation which

M. de Pontecoulant obtains in this paper, when reduced so as to correspond

with the value -1270"^' of the integral i{e"-E")ndt is 7"-96 which, as

23—2
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we see, differs widely from the similarly reduced values of the coefficient

according to the theories of M. Plana and M. Hansen, given in p. 14, (see

p. 173 above) as well as from the values obtained by M. Delaunay and myself.

After giving his formula for the secular equation, M. de Pont^coulant

remarks, " En comparant ce r^sultat a celui que M. Plana a d^duit de ses

formules, on voit qu'il en difffere d'une maniere notable, et que I'espfece de

compensation qui devait s'^tablir, selon ce g^omfetre, entre les quantites du

quatrifeme ordre et celles des ordres sup^rieurs, et qui serablait permettre

de s'en tenir, comme I'avait fait Laplace, aux termes r^sultans de la premiere

approximation, n'existe pas r^ellement. La consideration des puissances

supdrieures de la force perturbatrice altere sensiblement, au contraire, la

valeur du coefficient qu'on obtient en faisant abstraction des quantites qui

en dependent, et comme tous les termes de la formule, jusqu'aux termes

du septifeme ordre, sont affect^s d'un signe ndgatif, la grandeur du coefficient

qu'on s'dtait habitu^ k supposer h, I'^quation seculaire d'apres les indications

de Laplace, doit 6tre consid^rablement diminu^e."

It is needless for me to point out how totally inconsistent these remarks

of M. de Pontdcoulant are with the conclusion at which he arrives in his

paper in the Monthly Notices, " II r^sulte, je pense, sans contestation possible

desormais, de la discussion pr^cedente, que les formules employees jusqu'ici

pour determiner I'^quation seculaire de la lune, ont toute la correction

n^cessaire k cet important objet."



24.

ON THE MOTION OF THE MOON'S NODE IN THE CASE WHEN THE
ORBITS OF THE SUN AND MOON ARE SUPPOSED TO HAVE NO
ECCENTRICITIES, AND WHEN THEIR MUTUAL INCLINATION IS SUP-

POSED TO BE INDEFINITELY SMALL.

[From the Monthly Notices of the Royal Astronomical Society. Vol. xxxviii. (1877).]

A VERY able paper has recently been published by Mr G. W. Hill,

assistant in the office of the American Nautical Almanac, on the part of

the motion of the lunar perigee which is a function of the mean motions

of the Sun and Moon.

Assuming that the values of the Moon's coordinates in the case of no

eccentricities are already known, the author finds the differential equations

which determine the inequalities which involve the first power of the eccen-

tricity of the Moon's orbit, and, by a most ingenious and skilful process,

he makes the solution of those differential equations depend on the solution

of a single linear differential equation of the second order, which is of a

very simple form. This equation is equivalent to an infinite number of

algebraical linear equations, and the author, by a most elegant method,

shews how to develop the infinite determinant corresponding to these

equations in a series of powers and products of the small quantities forming

their coefficients. The value of the multiplier of each of such powers and

products as are required is obtained in a finite form. By equating this

determinant to zero, an equation is obtained which gives directly, and

without the need of successive approximations, the motion of the Moon

from the perigee during half of a synodic month. The small quantities
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which enter into the value of the above determinant are of the fourth,

eighth, twelfth, &c. orders, considering, as usual, the ratio of the mean
motion of the Sun to that of the Moon as a small quantity of the first

order; and the author has taken into account all the terms of lower orders

than the sixteenth. The ratio of the motion of the perigee to that of

the Moon thus obtained is true to twelve or thirteen significant figures.

The author compares his numerical result with that deduced from Delaunay's

analytical formula, which gives the ratio just mentioned developed in a

series of powers of m, the ratio of the mean motions of the Sun and

Moon. The numerical coefficients of the successive terms of this series

increase so rapidly that the convergence of the series is slow, so that the

terms calculated do not suffice to give the first four significant figures of

the result correctly, although by induction, a rough approximation may be

made to the sum of the remaining terms of the series.

I have been led to dwell thus particularly on Mr Hill's investigation

because my own researches in the Lunar Theory have followed, in some
respects, a parallel course, sed longo intervallo.

I have long been convinced that the most advantageous way of treating

the Lunar Theory is, first, to determine with all desirable accuracy the

inequalities which are independent of the eccentricities e and e', and the

inclination 2 sin"'y, and then, in succession, to find the inequalities which

are of one dimension, two dimensions, and so on, with respect to those

quantities.

Thus the coefficient of any inequality in the Moon's coordinates would

be represented by a series arranged in powers and products of e, e', and y,

and each term in this series would involve a numerical coefficient which
is a function of m alone and which may be calculated for any given value

of m without the necessity of developing it in powers of m. 'The variations

of these coefficients which would result from a very small change in m
might be found either independently or by making the calculation for two
values of m differing by a smaU quantity.

This method is particularly advantageous when we wish to compare

our results with those of an analytical theory such as Delaunay's, in which

the eccentricities and the inclination are left indeterminate, since each

numerical coefficient so obtained could be compared separately with its

analytical development in powers of m.
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It is to be remarked that it is only the series proceeding by powers

of m in Delaunay's Theory which have a slow rate of convergence, so that

it is probable that all the sensible corrections required by Delaunay's co-

efficients would be found among the terms of low order in e, e', and y.

The differential equations which would require solution in these suc-

cessive operations after the determination of the inequalities independent of

eccentricities and inclination would be all linear and of the same form.

It is many years since I obtained the values of these last-named

inequalities to a great degree of approximation, the coefficients of the

longitude expressed in circular measure, and those of the reciprocal of the

radius vector, or of the logarithm of the radius vector, being found to ten

or eleven places of decimals.

In the next place I proceeded to consider the inequalities of latitude,

or rather the disturbed value of the Moon's coordinate perpendicular to the

Ecliptic, omitting the eccentricities as before, and taking account only of

the first power of y.

In this case the differential equation for finding z presents itself natur-

ally in the form to which Mr Hill reduces, with so much skill, the equations

depending on the first power of the eccentricity of the Moon's orbit.

In solving this equation I fell upon the same infinite determinant as

that considered by Mr Hill, and I developed it in a similar manner in a

series of powers and products of small quantities, the coefficient of each

such term being given in a finite form.

The terms of the fourth order in the determinant were thus obtained

by me on the 26th December 1868. I then laid aside the further in-

vestigation of this subject for a considerable time, but resumed it in 187'4

and 1875, and on the 2nd of December in the latter year I carried the

approximation to the value of the determinant as far as terms of the

twelfth order, or to the same extent as that which has been attained by

Mr Hill. I have also succeeded in reducing the determination of the

inequalities of longitude and radius vector which involve the first power

of the lunar eccentricity to the solution of a differential equation of the

second order, but my method is much less elegant than that of Mr Hill.

Immediately after Mr Hill's paper reached me, I wrote to him expressing

my opinion of its merits, and telling him what I had done in the same

direction, and I received from him a very cordial and friendly letter in reply.
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The equation which I had obtained by equating the above-mentioned

determinant to zero differed in form from Mr Hill's, and on making the

reductions required to make the two results immediately comparable, I found

that there was an agreement between them except in one term of the

twelfth order. On examining my work I found that this arose from a

simple error of transcription in a portion of my work, and that when this

had been rectified my result was in entire accordance with Mr Hill's.

The calculations by which I have found the value of the determinant

are very dijfferent in detail from those required by Mr Hill's method, and

appear to be considerably more laborious. I have not yet had time to copy

out and arrange the details of the calculations from my old papers, but I

hope soon to do so, thinking that they may not be without interest for

the Society. Meantime I now make known the result which I have obtained

for the motion of the Moon's node on the suppositions stated in the title

of this paper.

If nt and n't represent the mean longitudes of the Moon and the Sun

at time t, omitting, for the sake of brevity in writing, the constants which

always accompany nt and n't, and if 6 and r represent the Moon's longitude

and radius vector, I find that, in the case of no eccentricities and inclination,

n'
if m, = — = 0'07'48013, which is the value used by Plana,

n

^ = n«-|-0-01021, 13629,5 sin 2{n-n')t

+ 0-00004,23732,7' sin 4:{n-n')t

+ 0-00000,02375,7 sin 6{n-n')t

+ 0-00000,00015,1 sin 8{n-n')t

+ 0-00000,00000,1 sin 10 {n-n')t;

1

r
1-00090,73880,5

+ 0-00718,64751,6 cos 2{n-n')t

+ 0-00004,58428,9 cos l{n-n')t

+ 0-00000,03268,6 cos 6{n-n')t

+ 0-00000,00024,3 cos 8{n-n')t

- 0-00000,00000,3 cos 10 {n-n') t;

supposing that is expressed in the circular measure, and that the unit

of distance is the mean distance in an undisturbed orbit which would be

described by the Moon about the Earth in the same periodic time. In
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this case, if ju, denote the sum of the masses of the Earth and Moon, we
shall have

The differential equation which determines z, the Moon's coordinate per-

pendicular to the Ecliptic, is

Now, the Sun's orbit being circular, we have ^ = TC'^ and the only

function of the Moon's coordinates which we require in order to form this

equation is -^.

I find that, with the above unit of distance,

\^ 1-00280,21783,115

+ 0-02159,98364,4 cos 2{n-n')t

+ 0-00021,53273,9 cos A{n-n')t

+ 0-00000,20644,8 cos 6{n-n')t

+ 0-00000,00192,9 cos 8{n-n')t

+ 0-00000,00000,3 cos 10 (w - n') t.

Let

(&+.^)' ""' (;^(^^+^'^)' =(r^(^'+™^)'(n — n'Y

= q^ + 2qi cos 2{n — n')t + 2q^ cos 4:{n — n')t + 2^3 cos 6{n — n')t + &c.

;

then we find, from the above value of -^ , that

3^=1-17804,44973,149, and g = 1-08537,75828,323^

(?, = 0-01261,68354,6,

g, = 0-00012,57764,3,

^3 = 0-00000,12059,0.

These are all the quantities necessary for finding the motion of the

Moon's node, to the order which we require.

If gTT denote the angular motion of the Moon from its node in half a

synodic period of the Moon, the equation so often referred to above gives

A. 24
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r 77V 15?*- 35^^+8
, ,cos gn = cos 9. |1 - 32^^^. -

256gMg-- l)'(g'-4) '^^^

I

3T^q.% tMl9l
32q' iq'

- 1 f {q' - 4) 1 6q' (q'-l) {(f
- 4)

f Trgi" 15^^-35^"+

8

,
Tr^g,"

^®"^^'^t4g(g^-l) + 64g^(g^- 1)^(9^-4)'^^" 384^3 (^_l)s

105g"-1155g° + 3815g°-47Q5g^+1652g°-288 ,
"•^

256g''(g^-l)=(g^-4)=(g^-9)
'^^^

^vq^^q, 35g°-280g^+497g''-108 ,

8g {q'-l) (?'- 4) 32$' (?'- 1)' (?'-4)^(5''- 9)
'^^' ^'

2^ 2
Trg/ 15g''-110g-+179g'-36

"^
4? (9^- 4)

"^
16?' (g^ - 1)^ {q' - 4)^ (g^ - 9) ^' *

, _5^ m'-7)n^q.q, 57rg,^g3
^|

'^mq'-9) mq'-l){q'-^){q'-9)^16q{q'-l){q^-4){q^-9)j-

Now, if the coefficients of cos^'tt and sinqn in this formula be con-

verted into numbers, employing the above values of q, q^, &c., we find

cosgir = cosg'7r[0-99999,97902,01654]

+ sin g'ir[0-00064,77652,0668l].

But, with the above value of q, we find, from Briggs' Tables,

co&qTT= -0-96424,37306,84295

smqTT= -0-26501,70331,05484.

Hence cosg7r= -0-96441,51972,00779.

Whence, by the same Tables, we find that

g = 1-08517,13927,46869,

and therefore the ratio of the Moon's motion from the node to its sidereal

motion is

g(l-7n) = 1-00399,91618,46592.

This is the quantity ordinarily denoted by g in the Lunar Theory.

Delaunay's value of g, which agrees with that of Plana, is

1,3, 9 , 273 , 9797 , 199273 . 6657733
^ '^4 32 128 2048 24576 ' 589824 '
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If this be converted into numbers by substituting the value of m = •0748013,

we find

c^ = 1-00399,91722,8,

which differs from the true value in the eighth place of decimals.

If we take m = _ and develop the value of g in powers of m, we

find

, 3 , 57 , 123 , 1925 . 25667 , 268309 ,

3=^ + 1^ -32"^ +128"^ -2048"^' + 24576'^ "589824"^ =

and substituting the value of

m = 0-08084,89030,52,

we find ^ = 1-00399,91591,1,

which is considerably nearer the truth than the value found from the series

in powers of m.

The numerical values of the successive terms of the series for g — l,

in terms of powers of m and of m respectively, are given in the following

comparative table

:



188 ON THE MOTION OF THE MOON'S NODE IN A PARTICULAR CASE. [24

In powers



25.

NOTE ON A REMARKABLE PROPERTY OF THE ANALYTICAL EXPRESSION

FOR THE CONSTANT TERM IN THE RECIPROCAL OF THE MOON'S

RADIUS VECTOR.

[From the Monthly Notices of the Royal Astronomical Society. Vol. xxxvili. (1878).]

Let nt + € denote the mean longitude of the Moon at the time t;

n't + ^ that of the Sun.

^=nt + e — n't — ^, the mean elongation of the Moon from the Sun.

<f),
the Moon's mean anomaly.

<!>', that of the Sun.

7/, the Moon's mean distance from the ascending node.

c=

—

% and q =—/-, so that (l — c)n denotes the mean motion of the
not ^ ndt ^ '

Moon's perigee, and (g—\)n denotes the mean retrograde motion of the

Moon's node, in a unit of time.

Also let e denote the mean eccentricity of the Moon's orbit,

e', the eccentricity of the Sun's orbit.

y, the sine of half the mean inclination of the Moon's orbit to the

ecliptic.

m = — , the ratio of the mean motion of the Sun to that of the Moon.
n

fju, the sum of the masses of the Earth and Moon.
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a = (^] , the mean distance in the purely elliptic orbit which the Moon

if undisturbed would describe about the Earth in its actual periodic time.

To fix the ideas, we will suppose the quantities e and y to be defined

as in Delaunay's Theory of the Moon.

If r denote the Moon's radius vector, and if we omit terms depending'

on the Sun's parallax, then, as is well known, the value of - may be

expanded in an infinite series involving cosines of angles of the form

where i, j, j', h denote any positive integers, including zero, and the co-

efficient of the term with this argument contains ePe'^'y'''' as a factor, the

remaining factor being a function of m, e^ e'^, and Y-

In particular, there is a constant term in -, corresponding to the case

in which i, j, j', and h are all zero, and this term has the form

A+Be'-\-C'/ + Ee'+ 2Fey +Gy'+ &c.,

where A=A, + A/' + A^e'^+ &c.

C=(7„ + (7/=+C/^ + &c.

&c. &c. &c.

and A„ A^ &c., B^, B^ &c., C„, Cj &c. are all functions of m.

Plana and, after him, Lubbock, Pont^coulant, and Delaunay have developed

the functions of m which occur in the coefficients of the several terms of -
r

and of the other coordinates of the Moon, in series of ascending powers of

m, and have severally determined, by different methods, the numerical co-

efficients of the leading terms in these developments.

With respect to the constant term in -, Plana shewed that the quan-

tities denoted above by B^ and C„ viz. the coefficients of e' and -f in the

above constant, both vanish when account is taken of the terms involving

m' and m*. Pont^coulant carried the development of the quantities B^ and

C„ two orders higher, viz. to terms involving to°, and found that these terms

likewise vanish.
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These investigations of Plana and Pont^coulant, however, whUe they

shew that the coefficients of the above mentioned powers of m vanish by
the mutual destruction of the parts of which each of the coefficients is

composed, supply no reason why this mutual destruction should take place,

and throw no light whatever on the values of the succeeding coefficients in

the series.

Thinking it probable that these cases in which the coefficients had been

found to vanish were merely particular cases of some more general property,

I was led to consider the subject from a new point of view, and on

February 22, 1859, I succeeded in proving, not only that the coefficients B„

and (7„ vanish identically, but that the same thing holds good of the more

general coefficients B and C, so that the coefficients of

e\ e'e'\ e'e'\ &c.

y, yV^ yV\ &c.

in the constant term of - are all identically equal to zero.

Further reflection on the subject led me, several years later, to a simpler

and more elegant proof of the property above mentioned.

This new proof was found on February 27, 1868, and I now venture to

lay it before the Society. The resulting theorem is remarkable for a degree

of simplicity and generality of which the lunar theoiy affijrds very few

examples.

There are also two remarkable relations between the coefficients of e*,

ey, and y* in the constant term of - , which we before denoted by E, F,

and G. These relations may be thus stated

:

If the terms of the quantity c or ~~ which involve e* and y be

denoted by
He'+ Kf,

and similarly if the terms of g or —4- which involve e' and y be denoted by

Me^+ N-/,

where H, K, M, and N are functions of m and e'^ then we shall have

EH ^_M^-^ and ^-^.
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These relations are established by means of the same principle which

was employed to prove the theorem above mentioned, viz. that B = Q and

C=0.

They were, however, arrived at much later, namely on August 14, 1877.

Analysis.

Let X, y, z denote the rectangular coordinates of an imaginary Moon
at any time t, the plane of xy being that of the ecliptic, and the axis of

X the origin of longitudes.

Also let xf, y' be the rectangular coordinates of the Sun, / its radius

vector, and /a' its mass.

Then if we neglect the terms which involve the Sun's parallax, the

equations of motion are

d'x ux ul'x dulx^ , , ,,

dt^r'^fj^ ^5 \^^ + yy )>

d\ {iz fi'z _
df 7^ r''^

Now let x„ 2/i, Zi be the rectangular coordinates, and r^ the radius

vector, of another imaginary Moon at the same time t as before, so that the *

same equations of motion hold good, and ju,, jj.', a/, y', and r' are unaltered.

Hence ^ + ffj + tfL-. _5^ ,^^ + ,y),

df '^
r^ ^ /»

-"•

Multiply the first set of equations by x^, y^, z, respectively, and subtract

their sum from the sum of the similar equations in a;,, y^, z^ multiplied by
X, y, z respectively.
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Thus we find

""-de -""^wj^yy w-y^df)^ ['w^-'^w^

+ fi {xx, + yy, + zz,) (^- - ^j = 0;

or

d
I

dxj^ dx\ d
I

dy^ dv\ d / dz^ dz

di r dt~ ^'dij^dt^'lu ~y' dij^di^~di~^'di,

+ /. {xx, + yy, + zz,) [—^-~^ = 0.

Hence the quantity

{xx, + yy, + zz,)(^^-^^

is a complete differential coefficient with respect to t, and therefore when,

developed in cosines of angles which increase proportionally to the time it

cannot contain any constant term*.

Now

x^i + VVx + 22i = 2 {2^n + (^- n)' - {a; - x^' -{y- y,y - (z - z,)"}

\r' 'tJ \ri rj \rr^ yr^ rj
)

Hence, if x — x^, y — y^ 2 — Zi, and therefore also r — r^, and ; be quantities

of the first order with respect to any symbol, then

will differ from 3/-;
)
by a quantity of the third order only.

* We may remark here that neither of the quantities

1 1^

can contain any constant term, but no use is made of this in what follows.

25
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Hence, in tKe case supposed, the quantity cannot contain any

constant term of lower order than the third.

More generally, the constant part of ^ cannot be of a lower order

than the constant part of the product of the quantity ; multiplied by
7"i

T

one or other of the quantities

(^~r) '
^'^ (^-'^O' + i^Z-yO' + C^-n^

Now, as the two systems x, y, z and x^, y^, z^ satisfy the same differ-

ential equations, the solutions can only differ from each other by involving

different values of the arbitrary constants.

By applying the principle just stated to four different cases of variation

of the arbitrary constants, we shall be able to prove the properties already

enunciated, viz. EH F M

Let x = ucos{nt + e) — v sin (nt + e),

y = u sin {nt + e) + v cos {nt + c)

;

and similarly

a;, = Uj^ cos {nt + e) — v^ sin {nt + e),

3/i
= Ml sin {nt + e) + v^ cos {nt + e),

where nt + e is supposed to retain the same value as before.

Then {x - x^f + {y- y.f = (tt- u^f+ {v- v,)\

Hence, in the statement of our principle, we may replace

{x - x,y + {y- y,f+ {z- z,y -{r- r,f

by {u - u,Y + {v- v,Y+ {z- z,y -{r- r,)\

For the sake of simplicity, we will take the quantity which was before

denoted by a as our unit of length, so that, instead of the quantity

formerly designated by -
; we shall write simply -

.
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Now it is known, a priori, that the values of r and u, as well as that of

- ; may be developed in an infinite series involving cosines of angles in the

form '^ii±j<l> +f<j>' ± 2^^,

where i, j, f, and k denote any positive integers whatever, including zero,

and that the value of v may be developed in a similar series involving

sines of the same angles.

Also we know that the coefficient of the term with the above argument

occurring in any of these series contains e^e'-'y^* as a factor, the remaining

factor being a function of m, e^ e'" and /.

Similarly we know that the value of z may be developed in an infinite

series involving sines of angles of the form

2^^±y<^±/<^'± (2^ +!)>?,

and that the coefficient of the term with this argument contains e'e'^'y^'"'^''-

as a factor, the remaining factor being a function of m, e", e'^ and y as

in the former case.

It is essential to observe that -; r, u, and v involve only even powers

of y, while z involves only odd powers of the same quantity.

Having made these preliminary observations, we are now in a position

to apply our principle to the four cases already alluded to.

Case I.

First, suppose that the values of x, y, z are those belonging to the

solution in which e and y vanish, therefore all the arguments in the values

of -, r, u, and v will be of the form 2i^ ±f<f)' and z will vanish.
r

Also let the values of x^, y^, Zi belong to the solution in which e has

a finite value, but y is still =0, while nt + e, and therefore also n, retains

the same value as before.

Hence Zj also vanishes, and therefore z — Zi
= 0.

25—2
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Then all the arguments which occur in the values of -
, r, u, and v

T^ill also occur in those of — , r^ u^, and v-^, but the coefficients of the

corresponding terms will differ by a quantity which contains e' as a factor.

Let the terms with these arguments be called terms of the first class.

Also there will be additional terms in the values of —
, r,, u,, and v,,

w^ith arguments of the form

where j does not vanish, and the coefficients of these terms will contain e

a,s a factor.

Let the terms with these arguments be called terms of the second class.

Now, in the formation of the quantities

l^^ - 1)' and (i -
J.)

{{u - u,y+{v- v,y -{r- r,)'}

terms with the argument zero can only arise by multiplying together three

terms of the first class, one term of the first and two of the second class,

or three terms of the second class, one of which at least involves e' as a

factor. Such a term formed in the first of these ways would be of the

order of e" at least, while one formed in the second or third of these ways
would be of the order of e* at least. Hence, by the principle before proved,

the value of can contain no constant term of the order of e^
ri r

Hence B = generally, and as this holds good for every value of e',

we must have

B, = 0, B, = 0, B, = 0, &c.

Case H.

In the next place, let the values x, y, z, as before, belong to the

solution in which e and y vanish, and let the values x^, y^, z^ belong to

the solution in which e is still equal to 0, but y has a finite value, while

nt + e, and therefore also n, retains the same value as before.
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Then all the arguments which occur in the values of - , r, u, and v

likewise occur in those of — , r,, u^, and v-^, but the coefficients of the

corresponding terms will differ by a quantity which contains '/ as a factor.

Also there will be additional terms in the value of - , r^^, u^, and v.^,

with arguments of the form

where k does not vanish, and these will also contain y^ as a factor in

every term.

Hence , r — r,, u — u,, and v — v-y will contain y as a factor in
r^ r

every term.

Also z = 0, and therefore (z — z^"^ = z^, which will also contain / as a

factor in every term.

/I IV .

Hence ( will be of the order of -/ at least, while
Vr, r)

{k
- -^ ^^^ - ''')' + (^ - ^^^^ + (' - '')' - (*- *'^)'^

will be of the order of y* at least.

Therefore, by the same principle as before, the value of can

contain no constant term of the order of y^

That is, (7=0 generally; and as this holds good for every value of e'

we must have

c„=o, c;=o, C,=0, &c.

Case IH.

Next, let the values x, y, z belong to the solution in which y vanishes

and e is finite, while x„ y^, Zj belong to the general case in which gj and

y are both finite, the value of e being now changed to Cj while nt + e,

and therefore also n, retains the same value as before.
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Then all the arguments which occur in the values of - , r, u, and v,

and which are of the form

will occur unchanged in the values of —
, r^ u^, and Vj, provided that (j),

and therefore also —^ or c, remains unchanged, but the coefficients of the

corresponding terms will differ by quantities which involve either e — e^ or y^

as a factor.

Let the terms with these arguments be called terms of the Jirst class.

Also there will be additional terms in the values of — , r^, u^, and v^,

the arguments of which are of the form

where k does not vanish. The coefficients of these terms will all contain

y as a factor.

Call the terms with these arguments terms of the second class.

And (z — Zi)^ = 2i^ which contains y^ as a factor in every term.

Now the condition that c remains unchanged gives us the following

relation between e', e^, and y^:

He' = He,' + Kf,

taking into account only the terms of lowest order in e^ e', and y^

Hence, ultimately,

y = f(^^-^.0-

If this value of -f be substituted for it, we see that every term in the

values of ; t — Tj, % — u,, v — v.,, and i^ — z^' will be divisible by e — e,.

Hence the constant part of -;
^

will be divisible by (e — e,)", and
' 1 ''

therefore also by {e' — eff, since this constant part involves only even powers

of e' and e'.
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That is, E{e,'-^) + 2Fe,y

is divisible by {e' — e^Y; or

is divisible by (e^ — e^Y.

Divide by e^— e^ and then put t^ = e^,

TT

therefore -2Ee'+ '2F^e' = Q,

E H

Case IV.

Lastly, let the values of x, y, z belong to the solution in which e

vanishes and y is finite, while ajj, i/i, ^i belong to the general case in which

e and y-^ are both finite, the value of y being changed to y.^ while nt + e,

and therefore also n, retains the same value as before.

Then all the arguments which occur in the values of -, r, u, and v,

and which are of the form

will occur unchanged in the values of — , r^, u^, and Vi, provided that t),

and therefore also —-r- or g, remains unchanged, but the coefficients of the
To C(/Z

corresponding terms will difier by quantities which involve either e" or

y^— yi as a factor.

Let the terms with these arguments be called terms of the Jirst class.

Also there will be additional terms in the values of — , r^, u^, and v,,
r,

the arguments of which are of the form

where j does not vanish. The coefficients of these terms will all involve e

as a factor.
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Call the terms with these arguments terms of the second class.

Moreover, all the arguments which occur in the value of z, and which

are of the form

2ii±f<f>'± {2k +1)7],

will occur unchanged in the value of Zj, but the coefficients of the cor-

responding terms will differ by quantities which involve either e' or y — yi

as a factor.

Let the terms with these arguments be called terms of the first class.

Also there will be additional terms in the value of Zj, the arguments

of which are of the form

2i^ + j<l>±f<l>'±{2k+l)ri,

where / does not vanish. The coefficients of these terms will all involve

eyi as a factor.

Call the terms with these arguments terms of the second class.

Now the condition that g remains unchanged gives us the following

relation between e^, •/, and y^^:

Nf^Me' + Ny,',

taking into account only the terms of lowest order in e^ y, and y/.

N
Hence, ultimately, ^^—l\/r{y^~yi)-

If this value of e^ be substituted for it, we see that every term of

the first class in the values of

, r — r^, u — u,, and v — v,
?\ r ^

will be divisible by / — y,^ and that every term of the second class in

the values of the same quantities will be divisible by e. Also every term

of the first class in the value of z — z^ will be divisible by y — y^; and every

term of the second class in the value of the same quantity will be divisible

by ey,.

Now in the formation of the quantities

ik
- -^ ' C^

-
^)

^^"^ - ^'^^ + ^^ - ^'^^ - (^ - ^^)^^' ^""^
C:

-
^) (^ - '^)''

terms with the argument zero can only arise by multiplying together either
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(1) Three terms of the first class;

(2) One term of the first and two of the second class

;

or (3) Three terms of the second class, one of which at least involves e"

as a factor.

Such a term formed in the first of these ways would be divisible by

{y — yiY and therefore by {y^ — yiY, since it can only involve even powers of

y and y^.

Such a term formed in the second of these ways would be divisible

by ^^(y — 7i) and therefore by e^{y^ — yi') or by (y^ — yiY-

Also such a term formed in the third of these ways would be divisible

by e' or by {-/-y')'.

Hence, by the same principle as before, the value of must be

divisible by {'/ — yiY-

That is 2FeY+G{yi-y')

is divisible by (y^ — yi^^ or

is divisible by {'f
— yiY-

Now divide by y^ — y^, and then put y^= y^

N
therefore 2F^'/-2G'f = 0,

F_M
°^ G~N'
which is the last of the relations announced above.

The results obtained in Cases III. and IV. may be rendered more
general in the following manner :

—

Let F denote the constant term in the reciprocal of the Moon's radius

vector, considered as a function of e" and y\

Then, taking e', e^, and / to be related as in Case III., we have, by

the same reasoning as before,

dP dP
= 7/ ax (^i''

— e") + 7/ 5.\ • y+ terms of higher dimensions in e^ — e' and y'.

A. 26
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Also

0= 7 . 2\ {^~^) + J / ,s .y+ terms of higher dimensions in e^ — ^ and /.

Hence, we have ultimately, when e^ — e?, and / = 0,

dP do

in which •/ is to be put =0 after the differentiations. The relation thus

deduced holds good for all values of e^ By equating the coefficients of e°

on the two sides of the equation

dP dc dP dc

d (e^)
'

d{'f) d {-/) ' d {^)

'

we find -^ = -^ , as before.

Also, by equating the coefficients of higher powers of e", we obtain

other relations between the coefficients of terms of higher orders in the

value of P.

Similarly, taking e^, /, and y^ to be related as in Case IV., we have,

by the same reasoning as before,

dP dP
= -T^-^ . e"+ , . . (7/ — -/) + terms of higher dimensions in e^ and y^ — -/

Also

^ ^ dW\ '

^^ "*"

di-A ^^~ '^^ "^ *erms of higher dimensions in ^ and y^ — /.

Hence, we have ultimately, when e^ = and y^=^'f,

dP dg

Limit o{t^=m=m.
e' dP dg '

dW) W)
in which e' is to be put =0 after the differentiations. The result thus
deduced holds good for all values of /. By equating the coefficients of /
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on the two sides of the equation

d{P) dg_dP dg

d{e') ' d{f)~ diy")' d{e')'

F M
we find

fi
= 1^ , as before.

Similarly, by equating the coefficients of higher powers of /, we obtain

other relations between the coefficients of terms of higher orders in the

value of P.

It may not be without interest to give here the result which I have

obtained for the development of the constant term in the reciprocal of the

Moon's radius vector.

The expression includes, besides the terms spoken of in the foregoing

paper, an additional term depending on the square of the Sun's parallax.

Reintroducing the symbol a to denote the length before defined, which in

the paper has been taken as the unit of length, I find

The constant term in -
r

, 1 , 179 , 97 , 757 , 4039 , 34751189 .

= ^ + 6^^-288™ -48^ -162'^ --432-^-1990656-^
31013527

995328
m

+ e'

+ e

.4

5

"[

[-

799 , 873 ,

192™-^^
287849 „ 268607

ni ^^^—m
2304 576 ]

, 5401 , 18527 ,

i6^-^8r'^-^2r™
3 .

,

5^5 ,

6^+128^^

+ e'
. 225

128

63
-m

+ y
, 9 =m + n TO

where e and y have the same significations as in Delaunay's Theory.

The method which I employed in obtaining this expression is closely

related to my first method, above alluded to, of proving the evanescence

of the coefficients B and C.

26—2
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The coefficients of & and y were found independently, and from each

of these, by means of the relations proved above, was derived a value of

the coefficient of e^'f. The perfect coincidence of these values supplied a

test of the correctness of the calculations.

The terms of c and g which are required for this verification are the

following

:

c = +e=^|m^ +^mA +/(6m^+^m'V

,
,/3 . 189 3\ ,/3 , 27 ,,

,^= +^(2^ +-32-^7-^(2'^ -16^7+-

I hope to lay the details of these calculations before the Society on

some fiiture occasion.



26.

NOTE ON SIR GEORGE AIRY'S INVESTIGATION OF THE THEORETICAL
VALUE OF THE ACCELERATION OF THE MOON'S MEAN MOTION.

[From the Monthly Notices of the Royal Astronomical Society (1880), Vol. XL.]

I LOSE no time in pointing out briefly the reason why the Astronomer

Royal, in the investigation which he communicated to the Society at the

last Meeting, has faUed to find my value of the coefficient of the Lunar

Acceleration.

It may be useful, in the first place, to recall to mind that, according

to my theory, the secular changes of

n, the Moon's mean motion,

and e', the eccentricity of the Earth's orbit,

are connected by the following relation :

—

dn
ndt

e'de' r „ , 3771 , 34047 , 1

where m denotes, as usual, the ratio of the Sun's mean motion to that of

the Moon.

If we stop at the first term of the series within the brackets the

result is identical with that found by Laplace.

We do not know why Laplace did not carry his investigations further

than this first term; but he probably thought that the succeeding terms

would prove to be inconsiderable.
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It is seen, however, that these terms have very large numerical co-

efficients and that their sign is contrary to that of the first term, and on

calculation it is found that the sum of the series is less than its first

term nearly in the ratio of 3 to 5.

Hence the secular acceleration wUl be diminished in the same ratio,

and its amount in a century, instead of being about 10", will be reduced

to nearly 6".

No investigation of the Moon's secular acceleration can be satisfactory

which does not take into account terms of the nature of those which

give rise to the terms involving m^ m°, &c., above referred to.

There is nothing to object to in the general principles of the method

adopted by the Astronomer Royal, but in the practical application of the

method I notice very grave defects.

In the first place, the only periodic terms which are included in the

Astronomer Royal's expressions for T - and P - and for the factors multiplying

r ' at {^t)' ^^' |(^^)' ^'•'

on the right-hand side of the equations, are those which involve the

angle 2D or F; whereas it will be seen by a reference to my paper in

the Philosophical Transactions for 1853, that a great part of the co-

efficient of to* in the value of —j- there obtained arises from the combination
nat

of terms involving the angles S, F—S and F+S in the expressions for

the Moon's coordinates with similar terms in

^(^)' ^^' ^^^

In the present investigation terms of the forms last mentioned are simply

ignored.

In the next place, it is to be noted that, although periodic terms

depending on the angle F are introduced into the assumed values of 8 -
r

and Sv, yet in Art. 12, the value of h which is the coefficient of f in

the value of Sv, is found equal to —Bh, quite independently of the values

of the coefficients e, f, g, k, and I, which occur in the terms thus introduced.
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The result of this is to reduce the secular acceleration practically to

its first term only; which . accounts for the coincidence of the Astronomer

Royal's value with that of Laplace.

It may also be remarked in reference to Art. 11, that although terms

involving the argument 2F or AD may be properly omitted, we must put

m\'F=\-\Gos2F,

and cos=i?'= - + ^ cos 2F,
It ^

and the constant terms in these latter quantities should be taken into

account.

After these general remarks, we will enter a Kttle more closely on the

consideration of one or two points in the investigation which are important.

Adopting the Astronomer Royal's notation, let

cr denote the Sun's mass,

A the semiaxis major of the Sun's (or Earth's) orbit,

E the eccentricity of the orbit,

R the radius vector at any time.

Then it may be shewn, as in the paper before us, that the mean value of

or .

1^(1^' =z^(^+l^^) ^"^"^y-

Hence if E receive the variation S^ in the time t, this quantity will be

increased in the ratio of 1 + 3^8^ to 1 nearly, or in the ratio of \-\-ht

to 1, calKng

3^ = 6.

Having arrived at this point, the Astronomer Royal assumes that the

variation of the disturbing forces due to the variation hE in the eccentricity

of the Sun's orbit will be represented by supposing

T to be replaced by r(l + 6«),

and similarly P to be replaced by' P (1 + ht),
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and therefore that the new forces, the effects of which are to be found by

the present method, are Tbt and Pht respectively.

On consideration, however, it will appear that this is only true for the

non-periodic term in P, and that the periodic terms, whether in P or T,

will be changed by any given variation of E in very different ratios.

For instance, the periodic terms in both T and P which depend on

5
the angle 2D or F will vary nearly in the same ratio as l — ~E^ does,

3
instead of in the ratio in which \ + -E'' varies as in the above case.

Hence these terms wiU be changed by the. above-mentioned variation

of E in the ratio of 1 -I- Vt to 1, where

b'= —5—-— nearly.

Again, the periodic terms in T and P which depend on the angles

S, E—S and E+S will vary nearly in the same ratio as E does, so that

these terms will be changed in the ratio of l + b"t to 1, where

6" = -^ nearly.

Hence we see that the values of b' and b" are quite different from

that of b which belongs to the non-periodic term, and that b" is much
larger than the other two quantities.

The correct way of finding ST and SP, the changes of the disturbing

forces T and P due to change in the eccentricity of the Sun's orbit, is

to express T and P in terms of the Moon's coordinates v and r, the

Sun's mean longitude L and its mean anomaly S, and the eccentricity E.

Hence ST and SP may be at once expressed in terms of 8v, Sr, and S^.

Thus calling V the Sun's longitude, and employing the other symbols

in the sense before explained, we have

^=2 p^+2P'''°^(2^-2n

T= _|^sin(2.-2F).



26] ACOELERATTON OF THE MOON'S MEAN MOTION. 209

•rr= -|^"sin(2--2r).

Now, by the formulae of elliptic motion, we may find

^3-^3|l+|^H3^cos>S

1

- = -[]

-^cos(2v-2F)

= ^j(l-|^^)cos(2i.-2X) + ^^cos(2i/-2X-^)-^^cos(2v-2Z + >S)l,

-^3sin(2i;-2F)

= -^3J(l-^^^)sin(2i'-2X) + ^J5^sin(2i'-2Z-^)-|^sin(2i/-2X+ ^)l,

neglecting terms involving 2>S, and powers of E above the second.

Substituting, and then taking the variation, we have

Z {Pr) =^r8r + 3 -J rSrcos (2v- 2F) -

3

^, r'Sv sin (2i/- 27)

+l^[3mE+3SEcosSli

+^^ -5^8^cos(2i'-2X) + ^8^cos(2i.-2i:->S)

-i8^cos(2v-2Z+ >S')l

5(7V)= -3-JrSrsin(2i'-2F)-3-Jr^Si'Cos(2v-2F)

-|^r-5j&S^sin(2j;-2i) + ^8^sin(2^-2i:-AS)

-^8^sin(2v-2Z + >S)l

in which — r'Sl-j may be written for rZr, and. the expressions given by

A. 27
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the ordinary lunar theory in the case of unvaried eccentricity are to be

substituted for v and r.

Hence, the expressions for sIT-j and 8(P^), which are employed

in the paper, are wholly incorrect, except in the case of the non-periodic

term, which gives rise to the principal term of the secular acceleration or

that found by Laplace.

The remark made near the close of the paper, viz. that the magnitudes

of the quantities A, B, C, and therefore also that of the secular accelera-

tion are proportional to the inverse cube of the Sun's distance, or to the

cube of the Sun's parallax, can only be the result of inadvertence, as the

Astronomer Royal himself wUl be the first to acknowledge.

In fact, the quantities A, B, C involve the factor -^ and this is equal

to »'^ where n' is the Sun's mean motion and is known. The Sun's mass

cr is determined by means of the parallax from this equation ; or conversely,

if the Sun's mass be known the parallax is thereby determined.

The values of ^, B, C are approximately as follows

A=\m\ B = \m\ C= ^m\

where m denotes, as before, the ratio of the Sun's mean motion to that

of the Moon.



27.

INVESTIGATION OF THE SECULAR ACCELERATION OF THE MOON'S
MEAN MOTION, CAUSED BY THE SECULAR CHANGE IN THE ECCEN-
TRICITY OF THE EARTH'S ORBIT.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XL. (1880).]

As the question of the Moon's secular acceleration has lately been

again brought before the Society, I have thought that it might not be

useless or without interest to communicate an investigation of the two

leading terms of that acceleration which I gave many years ago in my
lectures on the lunar theory.

1. Let r, 6 be the polar coordinates of the Moon at time t, u = -,

(JOH =7^
-J- ,

/x. the sum of the masses of the Earth and Moon ; also let w!

be the mass of the Sun, /, 6' its polar coordinates, a' the Sun's mean

distance, n' its mean motion, and e' the eccentricity of its orbit, \'= n^t+ ^

its mean longitude, and ^'= n't + ^ — m' its mean anomaly.

Then the equations to be satisfied are

+ ^^|-^(^-^'),

and -W^= - -or sin 2 (^ - &).
dd u*r"

27—2
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Also, by the formulae of elliptic motion

= n" Ul -
1 e"\ cos 2 (0 - \') + 1 e' cos {20 - 2\' - f

)

-^e'cos(20-2X' + «^')

and

+ ye''cos(2^-2X'-2<^')l,

= n" Ul -
1 e") sin 2 (^- \') + ^ e' sin (20 - 2\' - <^')

-^e'sin{26'-2\' + <^')

+ ye'^sin(2^-2X'-2<^')|-

The angles involved in these expressions are formed by combining the angle

2^ — 2X' with multiples of <ji'.

JFor our present purpose we may omit the terms which involve 2<^'.

Also, for the sake of brevity we may write

n't instead of n't + ^ — 01' or cf/,

20-2n't instead of 20 - 2 {n't + ^) or 2^-2X',

20-3n't instead of 20-2\'~(j>',

20- n't instead of 20-2\' +
(f,',

since no ambiguity can arise from this abbreviation.
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Hence our equations become

3 n"
j'/i_|g.2\(,o8(2^_2n'«) + |e'cos(2^-3TO'«)

-^e'co8(2^-w'«)l

- j/l - 1 e'^) sin [26 - 2n't) + ^ e' sin {26 - ^n't)

-^e'sin{2d-n't)\,

and

-^e'sin(2^-ri'«)l.

2. After these preliminaries, it will be convenient to begin by finding

the relations between the actual mean motion n of the Moon and the

constant parts of u and H'' when these quantities are developed in the

form we have adopted, carrying the approximation as far as terms involving

m^e'", on the supposition that e' and therefore also that n is constant.

For this purpose it is sufficient to take

nt + e=0+ Sme' sin 7i't -— m' (l - - e'"] sin (20- 2n't)

-^ m'e' sin {2d - 3n't) +^mV sin {26- n't),

M = -
j 1 - -mV cos n't +m^n-- e'"] cos {26- 2n't)

+ - m'e' cos (2(9 - Zn't) - \ rn^e' cos {26- n't) \ ,

which are readily derived from the equations of motion.
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Differentiate the first of these equations and put

n'— =in,
n

ndt h - Sm'e' cos n't -x *^' (^ ~ IM °^® ^^^~ ^^'^^ ~^^'^' ^'^^ ^^^ ~ ^"'*)

+^mV cos (29 -n't)\

= l-~m'(l-^ e") cos {2d- 2n't) -^ mV cos {26 - Zn't) +~mV cos {26 - n't),
4 \ ^ / o o

or "^= 1 + i
'^'^"+ ^*^'^' <^^^ ™'^ -X™V ~ ^ ^' / ^°^ (2^- 2n't)

-ymV cos {26- Zn't) +y ?«V cos (2^- n'i),

since the other terms only give rise to terms of higher orders than we
have here taken into account.

1 + 5m* ( 1 - 5e"=) +^ m'e" +^ m'e" + ^ m'e" + 6mV cos n'«
4 4 4

- 4m= /l - 1 e'M cos (2^- 2n't) - 14mV cos (2^ - Zn't) + 2mV cos {26 - n't)\

- 6mV cos «'« +^ „i» /i _
I
e'A cos {26 - 2n't) +^ m^e' cos (2^- Zn't)

-—mV cos {26- n't) \ ;

or, by actual multiplication,

i?» =nv|l + ^m*(l-5e'») + ^^mV''-18mV=-llm*(l-5e'0

539 n 9 / <! \

21 ^ ^

+—mV cos (2^ - Zn't) - ^ mV cos {26 - n't) V
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= «V Sl+^m*{l- 5e") +^^ m*e" +^m'(l-^e") cos {2d- 2n't)

+^mV cos (2^- ^n't) -
j
mV cos {2d- n't) \

.

Hence the constant part of H'' is

n being the actual mean motion.

Hence

- 1 m' [l - 1 e'^) cos {20- 2n't) -^mV cos {26 - 3n't) + 1 mV cos (2^ - n't)\

= Ji_ |l _1^ w^ (1 _ se''') _^ mV^ _ I ^^ fi _ I e"'') cos (2^ - 2n't)
ri'a^ ( 32 ^ ' 6A 2 \ 2 / ^

'

21 '^ 1-— toV cos (2^ - Sn't) + - mV cos {20- n't)
,

and therefore the constant part of -^ is

fi r 135 , 1881 , J
-r-T i 1—?rK- ™ TTT- m*e'^\ .

n^a'- (32 64 J

3. Also

^ " a {I
"*'*' ^^^ '^'^ ~ ^"*'

(^ ~ f ^") ^^^ ^^^ ~ ^"'^^

- 1m^e' sin (2^ - Znlt) + m^'e' sin (2^ - n'«)l

,

^ = - 1- 4m'' (^1 - ^ e'=) cos (2^ - 2w'<) - 1 4m=e' cos (2^ - S?/^

+ 2mVcos(26'-7j'«) ;

and



216 INVESTIGATION OP THE SECULAR ACCELERATION [27

also

^
=^ |l + 1 mV cos n't - 1 ™' (l -

1

A cos {20 - 2n't)

-^mV cos (2^ - ^n't) + ^ mV cos (2^- w'^l

,

IPtt»

and

Ĥ ^ ^^ / _ 2m= fl - 1 e'A sin (26 - 2n't) - Im'e' sin {20- Sw'i)
f"tt* do a \ \ 2 I ^

^

+ m'e' sa\.(2e -n't)\

.

Hence, substituting in the first differential equation and transposing,

we find the quantity which is to be equated to -^^ to be

<x I \2 4 / o o oZ oZ

q 1 4.7 ^
+ § m* ( 1 - be") +^ mV^ + ^ mV'

2 8 8

- 1 m" (l - ^ e'A cos (2^ - 2n't) -^mV cos {20 - Zn't) + 1mV cos (2^- n'ol

- ^ toM 1 - - e'M COS (2^ - 2to'«) -—mV cos (2^- ^n't)

{20-n't)\.+ - m^e' cos I

Comparing this with the former expression and observing that -^— is

nearly =1, we see that the periodic terms agree, and by equating the non-

periodic parts, we have

II r 135 ,.^ _ „> 3231 ,A
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which gives the relation between n and a.

4. In the above, e' is considered constant throughout ; if now we
consider e' to be variable, we may choose n and a so that the constant

(or rather the non-periodic) parts of u and of H' may have the same

forms as before, and in this case we shall find the same relation between

n and a as that which has just been found, and n wUl continue to signify

the actual mean motion at the time to which d belongs, but n and a wUl
now become variable quantities, and, in order to satisfy our equations, it

will be necessary to add certain periodic terms to u and H^ which would

not exist if e' were constant.

Suppose then that

u = -\l + Sv-lmV cos n't + m'(l-^ e") cos {20- 2n't) + \-mV cos (20 - 3n't)

--m'e' (ios{29-n't)V

,

and

{171 24-21 S / f) \

l + 2Zrj +^m'+ -^mV' + ^m' (l -^e'M cos{2e-2n't)

21 3 1

+— m'e" cos (20- 3n't) - -mV cos {20 - n't) V .

We will suppose e' to vary uniformly with the time, and very slowly,

or, in other words, we will suppose

-J-
to be constant, so that -^ = 0,

and we will neglect
\Tt)

'

fde'y

A.

'

28
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dd

de'We must therefore recollect that -jn is not constant, but is equal to

de' dt^ _ J\_ de'

dt' de~H^' a
de' ( 11 77

=-^ -^ 1 + 3mV cos n't --rm? cos (2(9- 2n't) - —mV cos {26- 3n't)

+ —mV cos (20- n't) I

.

fjfj

5. In consequence of the variability of e', -r^ will contain the additional

terms

1 1 f da 3 ^de' ,^ _ ^,de' ,„„ „ ,,
TT^, . - 1 n — ;rw TT- cos nt — omY -^- cos (2a— 2nt)
Hu* a \ adt 2 dt dt ^

'

.{2d- 3n't)

-

i m'— cos {26- n't) \
7 ,de'

1 d.^v
•"a- dd '

or

^f cos(2^-n7)}
^

1 ,de'

1 d.hv
^a' dd '

to the order of approximation required.

d^u
Therefore also -^^ will contain the additional terms

^ jlOm^e'^ sin (2^ - 2n't) - 7m'^ sin {26 - Zn't) + m= ^' sin (2^ - w7)

+ lOmV
J'

sin (2^- 2n't) - 7m'~ sin {26- 3n't) + m'~ sin (2^ - »'e)l

1 d\8v
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neglecting ^ , (^^j
and also m^^

in the coefficients of the periodic terms.

TT d'u
Hence -^+u

contains the additional terms

+~ UomV^ sin {20 - 2n't) - Urn'^ sin {20 - 3n't) + 2m'^ sin (2d - n't)\

.

Also ^ contains the additional term -j-^ [ — 2Sr;].

The other terms which enter into the first differential equation receive

no additional terms of the order to which we restrict ourselves.

6. Also differentiating the expression for H'^, and including terms of

de' .

the order mV-j- in the non-periodic part, but only those of the orders
dt

„de' , .,de'
rrr-j- and mV ^-

dt dt

in the periodic part, we have the following additional terms in V^- , viz.

, , 1 (2dn 4da
,
2421

,
,de' 15 ,e'de' ,^. „ ,,

^^H^\ndt^^^^^'^'dt- -2-™=^«««(2^-2-'0

,

21 Je'

+ nV 2

cos {2d- Zn't) -
J
m= ^' cos {20 - n't) \

d . Stj]

d0

Also the right-hand side of the second differential equation contains the

following additional quantity :

—

m'wV [4Sv] js sin {20 - 2n't) + ^e' sin {20- Zn't) -^e' sin {20 - n't)\
,

which, as we shall immediately find, contains non-periodic terms of the order

. ,de'

"^'dt-

28—2
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Hence, taking the periodic parts of this equation, we have

2—jTT^ = - -^
—- mV -^ cos (26 - 2n't)—- to' -^ cos (2^ - ^n't)

dd n \2 dt ^ ' 4. dt ^
'

+ |?n'^cos(2^-»i'«)l;

.
•
. 2 (Sr;) =^^ m'e'

J'
sin (2^ - 2n'«) -^ m=

J'
sin (2^- ZrJt)

+ |m='^sin(2^-n'«)L

7. Substitute this in the first equation, putting -(—5 = 1 in the co-
lb CI

efficients of the periodic terms, as these are only required to the order of

m', and we obtain

d' .Iv

de^

1 r de' dp'
\.h)=-~\ 20toV^ sin (26- 2n't)-Um'~ sin (26- 3n't)

dp' 1 fj ^^'
+ 2to'^ sin (2^ - n't) +^ toV^ sin (26- 2n't)

91 dp' ^ /7/»' >

-y m'^ sin {26 - Zn't) + 1 m'^ sin (2^- n't) I

= - ^{t ^^^'S ^^ (2^ - 2^'^) -^ '^^f «i" (2^- 3^'0

+ ^m'fsin(2^-n'0}.

••• ^^ = ^{?|-^^'f-M2^-2»'0-^-=|'sin(2^-3.'0

.(2^-n'f)l.
^19 ,de' .

Substitute this value of Su, and also the value of
^

viz

- |l + 3toV cos n't-^m' cos (2^ - 2n't) -^mV cos (26- Zn't)

+ -g-mVcos(2^-n'«)l,
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for that quantity in the second differential equation, and equate the non-

periodic parts which result from this substitution,

2dn Ada 2421
,
,de' 165 , ,de' 1617

,
,de' 33

,
,de'

-• ^ +^ + ^2-^^-^ + 16-"^^^--eT^^rf^-ei"^^^

95 ,,de' 931
,
,de' 19

,
,de'

=Y'^'di--8-'^'dt-Y'^'di'

2dn , da 963 ^ ,de' 285
,
,de'

ndt adt 16 dt 4 dt

dn „ da 2103 . ,de'
l_ 2 ^ fn &

ndt adt 32 dt
'

8. The substitution of the values of Su and S17 in the first differential

de!
equation introduces no non-periodic terms depending on -^; consequently

the value of -^-i remains of the same form as before.
na

Hence

1 ,/, . 3 „\ .
71 . .

1173 .,,,

ndt adt 2 dt 32 c^« \mdt)

/3 , ,
1173 A ,c?e' ,/tZ/i\

since

n' being constant.

Hence

m =— , and .-. —-j-

=

-j-,
n mdt ndt

I . r. ^\ dn „ da /„ „ 1173 A , de'

.

" 'di'

also from above

„ dn „ da 6309 , ,de'3—v-l-6—5-= mV-j-;
ndt adt 32 dt

/I o i\ <^^ (o . 3963 A ,cZe'
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, dn 1^ ,
3771 A ,de'

^da 1^ ,
3771 \ ,de' 2103

,
,de'

' ^Mt= [^'^-^^'^Tdt-^^'^'Tt

„ , 2937 A ,de'

or
da /3 , 2937 A ,

dt
'

9. These equations give the rate of variation of the quantities n and
a. We will now shew that n denotes the actual mean motion, as it did

when e' was constant.

From the values of u and H^ we find

dt

de
= -^, =M 1 - 2Sd - Si? + ^ mV^ + 3mV cos n't -^m^ A - 1 e'A cos (2^ - 2n't)

' cos (26' - 3ft'<) +y mV cos (2^

-

n't)i
,

77——rui'e'
o

or

ndt

de
= 1 + 1 mV'+ 3mV cos ri'« _H ^^ A _ |

^A
^^^g ^g^ - 2n't)

-Y«iV cos {26 - 3n't) +ymV cos (2^- n7)

85 .d^. .. ,
,

Divide by

9
l+-mV=+ 3mVcosn'«

and take into account mV in the non-periodic term.

.-. ^{1 -3mVcos7i'i} = 1 -^m= (l -^A coa{2e-2n't)
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11 11—-mV cos (2^ - 3w'«) +— m'e' cos (2^- n't)
O O

_^|l^V-^sm(2^-2«'0
24 not ^

'

+ -7^ m'—TT sin (2^ - ^n't) -—^m'—j- sin (26- n't),
48 wa« ^ ' 48 ndt ^ '

and therefore

Indt = 6+ Sme' sin n't -—m'U-^ e") sin {20- 2n't)

77 n-
Yg
mV sin (25 - Zn't) +—mV sin {26- n't)

„ c^e' . 295 , , de' . . „ , , 413 , rfe' ,^„ „ , ,+ 3 —TT cos n't +—— TO^'e' —j- cos (2<9 - 2m'«) --rTr'rre ~t: cos (25- 3n'«)
ndt 24 »a« ^ ' 48 ndt ^

'

+ t;^™ —77 cos (25- n't).

Hence 6 differs from \ndt by periodic terms only, which proves the

proposition.

rivi

The value of —
-j- above found agrees with that found in my paper

published in the Philosophical Transactions for 1853.



28.

NOTE ON THE CONSTANT OF LUNAR PAEALLAX.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XL. (1880).]

From the report of a discussion which took place at a late meeting

of the Society, I have reason to believe that an explanation of the ap-

parent discrepancy between the value of the constant of parallax given by

me in the Appendix to the Nautical Almanac for 1856, and in the Monthly

Notices, vol. xiii. p. 263, and the value of the constant found by Hansen

in the Introduction to his Lunar Tables, may not be unacceptable to some

of our members.

It will be proper to begin this explanation by recalling to mind that

my formula, in the article of the Monthly Notices above referred to, does

not represent the parallax itself, but rather the sine of that quantity

converted into seconds of arc by dividing by sin 1" or, which is the same

thing, by multiplying by the number of seconds in the arc equal to the

radius. The employment of the sine of the parallax instead of the parallax

itself appears to be desirable both on theoretical as well as practical grounds.

In the first place, the sine of the parallax, being proportional to the

reciprocal of the radius vector, is the quantity given directly by the lunar

theory, and, in the next place, it is the same quantity which is wanted

in the reduction of lunar observations.

What I have called the constant of parallax in the papers above

referred to is, then, the constant term in the expression for the converted

sine of the parallax, supposing the periodic terms to be expressed in cosines
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of angles which increase in proportion to the time. The value found for

this constant was 3422"'325.

This quantity may also be called very appropriately the mean sine of

the parallax, although I do not use the term in the papers referred to.

The value of the corresponding constant in. the expression of the parallax

itself is 0"'157 greater than this, or 3422"'48, which may appropriately be

called the mean parallax.

The formula in the Introduction to Hansen's Lunar Tables does not

give the sine of the parallax, but the logarithm of the sine of the parallax,

and the constant which Hansen calls C is a quantity such that the constant

term in his expression for the logarithm of the sine of the parallax is log sin C.

Now, it is plain that the constant term in the development of log sin

parallax is a different quantity from the logarithm of the constant term of

the sine of the parallax, and hence my constant of parallax differs from

Hansen's quantity -.—^7

.

We may readily express the relation between these two constants in

the case in which the orbit is supposed to be an undisturbed ellipse.

In this case, if the reciprocal of the radius vector, which is proportional

to the sine of the parallax, be developed in terms of cosines of multiples

of the mean anomaly,

then, « being the semi-axis major,

and e the eccentricity of the orbit,

the constant term in the development will be -

.

In the same case, the constant term in the development of the logarithm

of the reciprocal of the radius vector, expressed in terms of the same

form as before, will be

log - ( 1 — - e^
^ a\ 4

very nearly, instead of log - ; so that if c denote the constant term in the

former development, and logc' the constant term in the latter, we shall have

c' 1
— = 1 — - e^ very nearly.

29
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This relation will still be approximately though not exactly satisfied

when the Moon's perturbations are taken into account.

Hansen himself, in a paper in the 17th volume of the Astronomisclie

Nachrichten, p. 299, ia which he gives the results which he had obtained

in a preliminary investigation of the. lunar perturbations, finds that the

number corresponding to the constant term in the logarithm of the sine

of the parallax requires to be augmented by 2"" 71 in order to reduce it

to the constant term in the sine of the parallax itself.

Calling the parallax p, Hansen finds that the value of the constant

term in log (|^?/j is

log (3419"-35),

(Sin T) \-

—

~r, is 3422""06.
sm 1"/

By repeating Hansen's calculation and taking into account some small

terms omitted by him, I find the amount of the reduction to be slightly

81T1 '50

less than the above, viz. 2"
'67, so that the constant term in —.—^„ accordiner

sm 1" ^

to Hansen's preliminary theory would be 3422""02.

This value, however, is not immediately comparable with my own, being

founded on difierent elements.

Both values are purely theoretical, depending on the ratio of the Moon's
mass to that of the Earth, the ratio of the Earth's equatorial and polar »

axes, and the ratio of the Earth's radius to the length of the seconds'

pendulum in a given latitude.

If M denote the mass of the Earth,

m that of the Moon,

A the Earth's equatorial radius,

R the Earth's radius at a point of which the sine of the latitude is

P the length of the seconds' pendulum at the same point

;
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then the constant term of the sine of the horizontal parallax corresponding

to the latitude just specified may be represented by

\M+m ' PJ
^'

and therefore the constant term of the sine of the equatorial horizontal

parallax may be represented by

A ( M R\^ „_ / ir_ A' \* „
R \M+ m- P) \M+ on ' WP) '

where i'' is a factor which may be found by theory from elements which

may be considered as known with all desirable accuracy.

M
The values of — , A, R and P employed in finding my constant are

the following :

—

— = 81-5,m

which corresponds very nearly to Dr Peters' constant of Nutation;

^ = 20923505 English feet,

i2 = 20900320

P = 3-256989

R and P belong to a point the sine of the geographical latitude of

which is -^

.

A and R are the quantities found from Bessel's latest determination

of the figure and dimensions of the Earth as given in Astron. Nachr.,

Vol. XIX., p. 216, supposing that

1 Toise = 6-394564 English feet.

P is found thus : according to the formula given in p. 94 of Baily's

E-eport on Foster's Pendulum experiments, {Mem. of the Roy. Astr. Soc,

Vol. VII.), the square of the number of vibrations made in a mean solar

day, at a point the sine of whose geographical latitude is -t^, by a pendulum

which vibrates seconds in London is

7441625711 + J (38286335) =7454387823.

29—2
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Also Captain Eater's determination of the length of the seconds' pendulum

in London is

.39-13929 inches = 3-2616075 feet.

Hence as the square of the number of vibrations made at a given

place in a given time varies inversely as the length of the pendulum, we

derive the value above given for P.

The values of the fundamental elements employed by Hansen are the

following :

—

m
A = 6377157 metres,

i2, = 6370063 „

P, = 0-992666 „

and R^ and Pi belong to a point the sine of the geocentric latitude of

which is -j^.

The corresponding values of R and P for a point the sine of whose

geographical latitude is -jz are the following:

—

P = 6370126 metres,

P= 0-992651

And the constant term of the sine of the equatorial horizontal parallax »

may be represented either by

/ M A' \^ „ . ( M A' \^

\M+mR'Pl '

°'' ^ \M+mR,'Pj ''

In my calculation of the factor F, I took into account terms of the order

of the square of the Earth's compression. It would otherwise have been

useless to distinguish between R'P and R^P^^ or between F and P^.

At the time when Hansen's paper appeared in the Astron. Nadir. Bessel's

latest determination of the figure and dimensions of the Earth was not

available. Hansen employed an earlier determination given by Bessel in

Astron. Nachr., "Vol. xiv., p. 344, in which the results were affected by an

error in the calculation of the French arc of the meridian which was

discovered later.
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Hence the corrections to be applied to the logarithms employed by
Hansen in order to make them agree with those employed by me are the

following, expressed in units of the 7th decimal :

—

Correction.

log(
/ M
M+m, + 987

log(^) + 25

log If) -150

The correction to be applied to Hansen's value of the logarithm of the

constant term in the sine of the parallax is therefore

25 + -(987 -150) = 304 of. the same units.

And the corresponding correction of the constant term of the sine of the

parallax will be 0"'24, and therefore according to Hansen's preliminary theory,

employing my system of fundamental data, the value of this constant term

will be 3422"'26.

In my independent transformation of Hansen's expression I found the

rather more precise value 3422""264.

This is less than my own value of the same constant by 0"'06 nearly,

as stated in my paper in the Appendix to the Nautical Almanac for 1856.

I there intimated my belief that Hansen's definitive theory would pro-

bably be found to introduce a correction to his former value of the constant

term in question, and this turns out to be the case.

In Astron. Nachr., Vol. xvil., p. 298, the constant term in —w which

denotes the perturbations of the natural logarithm of the reciprocal of the

radius vector, divided by sin 1", is given as 1345""281, but in the Intro-

duction to Hansen's Lunar Tables this same quantity is given as 1348"*840.

Hence, the correction to the former value is 3"'559, and multiplying this

by sin 1" and by 3422" we find the corresponding correction of the constant

of parallax to be 0"'059, so that this constant becomes 3422""323, a result

which agrees perfectly with my own.

In this connection it may be worth mentioning that the only periodic

term in which I found any difference much exceeding 0"'01 between my
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coefficients of parallax and those obtained by a transformation of the results

of Hansen's preliminary theory was that which has the argument denoted

by t + z in Damoiseau's notation.

The corresponding term in -w is in Hansen's preliminary theory

10"-92cos(« + z),

Tvhereas in the Introduction to the Lunar Tables this term is

8"-73cos(^ + «);

the correction to the coefficient is -2"-19, and multiplying this as before

by sinl" and by 3422" we find the correction to the corresponding term

of the sine of the parallax to be

-0"-036cos(« + z),

and if this be applied to the value of this term in the preliminary theory,

viz. 0"-181 cos(!5 + z),

the result is 0"-14:5 cos (t + z),

vs^hich agrees perfectly with my own.

It should be remarked that, in the Introduction to his Lunar Tables,

Hansen still continues to use the same fundamental data as he had done

in his earlier paper, so that the value of the constant term in the sine

of the parallax according to the data adopted in the Tables is 3422"' 08.

Note added June 17, 1880.

In Professor Newcomb's valuable transformation of Hansen's Lunar Theory,

which I have just received, it is wrongly assumed that I employed the

same data as Hansen for the figure and dimensions of the Earth, and
that my value of P, viz. 3"256989 feet, relates, like Hansen's, to a point

the sine of whose geocentric latitude is -r^ , whereas it should be the geo-

graphical latitude, as that is the latitude which enters into Baily's formula

from which my value of P is deduced.

In consequence of this, Professor Newcomb finds a discrepancy of 0"-03

between Hansen's value of the constant of parallax and mine when both

are derived from the same system of fundamental data; but it has been
shewn above that no such discrepancy exists.

By a typographical error, the value of P which Professor Newcomb
quotes from me is printed as 3-256 89 feet, instead of 3-256989 feet.
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NOTE ON THE INEQUALITY IN THE MOON'S LATITUDE WHICH IS DUE
TO THE SECULAR CHANGE OF THE PLANE OF THE ECLIPTIC.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XLi. (1881).]

The first theoretical explanation of this inequality was given by Hansen

in the year 1849, in No. 685 of the Astronomische Nachrichten, just a year

after the Astronomer Royal had pointed out, in a letter published in the

same journal

—

Beilage zu No. 648—that such an inequality was clearly indi-

cated by the observations. In the same paper Hansen shews that there is

a small term in the Moon's longitude depending on the same cause, the

coefficient of which amounts to about 0""5, the inequality being proportional

to the cosine of the longitude of the Moon's node. The existence of this

inequality also had been indicated by the Astronomer Royal from the

observations, though he assigns to it a somewhat larger coefficient.

The calculation of both these inequalities is given by Hansen somewhat

more fully in p. 491, Art. 176 of his Darlegung.

In 1853 I communicated to Mr Godfray a simple theoretical explanation

of the inequality in latitude, which he inserted in his Elementary Treatise

on the Jjunar Theory. This explanation is there given in rather too

compendious a form, and I propose in the course of this paper to present

to the Society the same investigation, with some slight modification, together

with some additional remarks, which will, T hope, render it clearer than

before.
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At the Meeting of the Society in March last, the Astronomer Royal

gave an investigation of the inequality in latitude based upon the equations

supplied by the "Factorial Tables" of his "Numerical Lunar Theory." About

one portion of this investigation I wish to make a remark which seems

to hS important.

The Astronomer Royal forms his equations with reference to the Jixed

ecliptic, and, by integrating them, derives the value of the disturbed latitude

above the Jixed ecliptic, whence the latitude above the variable ecliptic is

immediately deduced.

The latitude so found contains not only the inequality in latitude

required, but also the small residual terms

Bt {-003 sin \nt-C\ + "005 sin \nt-2Nt + C\ },

vrhich the Astronomer Royal rejects, attributing them to accidental errors

in the last places of the decimals employed.

I shall presently attempt to shew that these terms must indeed be

rejected, though not for the reason here supposed, but because they are

•destroyed by other terms which would be found by a more complete in-

vestigation.

It should be remarked that if terms of the above form reaUy existed,

they would, notwithstanding the smallness of their numerical coefficients,

ultimately become much more important than the other terms in which (

does not occur in the coefficients.

I propose to prove that in the complete solution of the differential

equations no terms of the above-mentioned form can occur, supposing the

displacements of the plane of the ecliptic to be proportional to the first

power of t. The method which I employ for this purpose is the following.

Instead of solving the differential equations of motion with reference

to the Jixed ecliptic and then transforming the results so as to make them

apply to the variable ecliptic, I first transform the differential equations

of motion, so as to make them refer to the variable ecliptic, and when
this is done, it is found that the terms which contain t in their coefficients

disappear completely from the differential equations, so that the solution

may be effected by the ordinary methods without any difficulty.

Employing the same data and notation as the Astronomer Royal, and
taking into account only the terms which are independent of the Moon's
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eccentricity and inclination, I find

8s = - l"-424 cos {nt -C) + 0"-048 cos {-nt + 2Nt-C)- 0"-007 cos {3nt - 2Nt - C).

The reason why, in the result found by the Astronomer Royal, the

terms which are multiplied by t do not completely destroy each other, as

they ought to do, appears to be the following.

It is at once seen, from the form of the periodic terms to which the

Astronomer Royal confines his attention, that his investigation is only com-

plete with respect to the terms which are independent of the eccentricity

and inclination of the Moon's orbit. In order to take the eccentricity and

inclination into account, other periodic terms must be included, the argu-

ments of which involve the Moon's mean anomaly and its mean distance

from the node. From the combination of these terms with each other

will arise terms with the same arguments as those which are independent

of the eccentricity and inclination, while each of their coefficients contains

the square of one of these elements as a factor. Hence it is clear that

terms of this order are omitted in the investigation.

On the other hand, a slight examination shews that the coeJBficients in

the Astronomer Royal's expressions for

T
- cos I and v,
a

as well as in the quantities taken from his Factorial Table, include very

sensible portions depending on the squares of the eccentricity and incHnation.

In fact, it is plain that this must necessarily be the case since the

quantities in question are functions of the Moon's actual coordinates, in

which the numerical values of those elements are essentially involved.

Now, if terms depending on the squares of the eccentricity and incli-

nation were either wholly neglected, or completely taken into account, the

terms which are multiplied by t would be found identically to destroy each

other ; but if, as in the present case, such terms are taken into account

in one part of the investigation, and omitted in another part, it will follow

that some of the terms multiplied by t will remain outstanding.

A curious circumstance relating to this inequality of latitude remains

to be noticed.

In the Mecanique Celeste, tome iii. p. 185, Laplace proves that the

plane of the Earth's orbit in its secular motion carries the plane of the

A. 30
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Moon's orbit with it, so that the incHnation of the Moon's orbit to the

variable echptic is not liable to any secular variation.

In the same place he finds an analytical expression for the perturbation

of latitude in reference to the variable ecliptic which is caused by the

secular change in that plane.

Now the point to be noticed is that this analytical expression given

by Laplace requires only the very slightest possible development to furnish

for the inequality in question a result which is identical with the value

given by the formula of Hansen, in which displacements of the ecliptic

varying not only as the first but also as the second power of the time

are taken into account. It is true that Laplace imagined that this in-

equality would turn out to be insensible, but this was only because he had

not attempted to turn his formula into numbers.

Analysis.

I. Investigation of the inequality in the Moon's latitude which is due

to the secular motion of the plane of the ecliptic, making the same sup-

positions and employing the same data as the Astronomer Royal.

At the time t let x, y, z be the rectangular coordinates of the Moon,
and x', y' those of the Sun, referred to the Earth's centre as origin, the

variable plane of the ecliptic at the same time being taken as the plane

of xy.

Also at the time t let ^, iq, t, be the rectangular coordinates of the
Moon, and ^', rf', tf those of the Sun, taking the fixed plane of the ecliptic

corresponding to t — as the plane of ^-q.

For greater simplicity we will suppose, with the Astronomer Royal,

that the variable ecliptic intersects the fixed ecliptic in a fixed line, and
that the angle between these two planes is proportional to the time.

Let this fixed line be taken as the axis of x and also as the axis

of ^, and let oit be the angle between the variable and the fixed ecliptic,

then the relations between the coordinates belonging to the two systems
will be

77 =2/ cos (Dt — z sin at,

C =z cos (ot + y sin at,



29] DUE TO SECULAR CHANGE OF THE PLANE OF THE ECLIPTIC. 235

and similarly $' = x',

7)' = y' cos (tit,

If = y' sin (tit.

Let r be the Moon's radius vector at time t, r' that of the Sun, m' the

Sun's mass, ju, the sum of the masses of the Earth and Moon, and R the

disturbing function, then we have

ImV 3 m'{^e+ Vv' + Uy

and the equations of motion, with reference to the fixed ecliptic, will be

df
"*"

r^ d^'

d'f) iJLTf} _ dR

d^ lLi_dR
df'^ 7^ ~ dC

or, substituting the values of

dR dR , dR
dr d-q

^'^'^ dr

/9^ A , w_ '^'v
,
^^'v' (to

I
^^/

I rr'\

/o\ d% iit_ m% 3m'l,' ^^, , ,.

Now we have, firom the values of rj and £, above given,

d'v /A ^ dz ,\ ^ /dh
,
„ dy ,\. .

and

dX fd'z
,
„ dy ,^\ _^ , ,

(d'y ^ dz

30—2
^-i^=+2"^-'^^T"'"'+U^~^"^"'"^r"'"''
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and therefore

d\ d% . ^ d'y ^ dz

d% d'7) . , d'z dy

Now substitute for ^, -rj, C and ^', 77', C their values in terms of

X, y, z and x', y' respectively, in

(2) cos (at + (3) sin out,

(3) cos oit — (2) sin out,

bearing in mind that

since each of these quantities represents rr' cos (r, r'), and we have

d?x ax m'x Zm'x' , , ,,

d^y ^ dz „ ,
ay m'y

,
SmV , ,

,
«

d'z ^ dy
2 ,

MZ w'z

which are the equations of the Moon's motion, with reference to the variable

ecliptic.

The motion of the ecliptic is so slow (that is, w is so small) that

the terms involving w^ may be neglected.

We will now change the notation by writing for the Moon's coordinates

x+ hx, y + ^y, and z+ 8z, instead of x, y, z respectively, in which expressions

the new quantities x, y, z are taken so as to satisfy the equations of motion

d^x fix _ 'm'x 3m'a/, , ,.^ *^ ~ ~ ^/s" H pr- \^^ + yy )>

d^y fiy _ jm'y 3m'y' ^ ,

^^2 + ^ — ^3 T pF~ (** + yy ),

dh ijlz _ m'z
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which are those of the ordinary lunar theory, in which the motion of the

ecliptic is not taken into account, so that x, y, z may be supposed to be

known functions of t.

Hence the equations for determining the small increments Sx, Zy, Sz

of the coordinates, which are due to the motion of the ecliptic, are the

following :

dJ^hx
,

/u
, m'\

e,
Zulx , » » 5> , 3mV , .^ ,» ,

df ^Vr^^/V^ r'
V-^-Ty^y-r--;---^^

d'Sz

df
+ {^ + ^^Bz-^{xSx + ySy + zSz) +2.^ = 0.

We may remark that no terms involving arbitrary constants need be

added to the values of Sx, Sy, Sz, since these may be supposed to be already

included in the values of x, y, z.

Hence we may choose for Sx, by, Zz any particular values which satisfy

these differential equations, and we may consider these values to contain co

as a factor throughout.

If y denote the sine of the mean inclination of the Moon's orbit, the

dz
value of z, and therefore that of -^ , will contain y as a factor throughout.

Hence the form of the first two of these differential equations shews that

the values of Sx, Sy, found under the above conditions, will contain yco as

a factor throughout, and therefore that the term

-^(xSx + ySy + zSz),

which occurs in the third differential equation, wiU contain the factor y^w

throughout.

If, therefore, we neglect the square of y, the equation for Sz takes

the simple form

d^8z /a m'\ „ ^ dy ^
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Now let 6 be the Moon's longitude at time t measured from the axis

of X, that is from the line of intersection of the variable and of the fixed

ecliptic.

Also let nt and n't be the mean longitudes of the Moon and the

Sun, omitting, for the sake of brevity in writing, the constants which always

accompany nt and n't respectively.

For the sake of simplicity, we will now neglect the eccentricities of

the two orbits as well as their mutual inclination.

In this case we have, with abundant accuracy for our present purpose,

r = 0-99911,92 - 0-00717,34 cos 2 (nt-n't) - 0-00002,00 cos 4 (nt-n't),

e = nt +0-01021,14 sin 2 {nt- n't) + 0-00004,2i sin4.{nt-7i't),

where, as in my paper in the Monthly Notices, Vol. xxxviii. p. 46, the

angles are expressed in the circular measure, and the unit of distance is

the mean distance in an undisturbed orbit which would be described by

the Moon about the Earth in its actual periodic time.

Hence we have, as in the paper referred to

—

IX ^n\ and '^ = n".

Now choose the unit of time such that n — n'=^l;

therefore, since in the case of the Moon

n'— = 0-07480,13,
n

we have n' = 0-08084,89,

and «= 1-08084,89.

From the values of r and above given, it is readily found that

y=rsm0= - 0-00868,79 sin {-nt + 2n't)

+ 0'99909,31sinn«

+ 0-00151,43 sin {^nt - %n't)

+ 0-00000,59 sm.{bnt-^n't),
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and hence that

-1= +0-00798,55 cos {-nt + 2n't)

+ 1-07986,87 oosnt

+ 0-00466, 54 cos (3w« - 2n'«)

+ 0-00002,98 cos {5nt - in't),

and also, as in the paper referred to above,

^ + P"
= 1-17804,45 + 0-02523,37 cos 2 {nt-n't) + 0-00025,16 cos 4 {nt-n't).

Hence the equation to be solved becomes

~j^ + Sz [1-17804,45 + 0-02523,37 cos 2 (nt-n't) + 0-00025,16 cos 4 (nt - n't)']

+ o}[0-0l597,l cos{-nt + 2n't) + 2•^597S,7 Gosnt

+ 0-00933,1 cos {3nt - 2n't) + 0-00006,0 x cos {5nt - 4ra'«)] = 0.

Assume

Bz — w [c_3 cos ( — 3nt + 4.n't) + c_i cos {
— nt+ 2n't) + Cj cos nt

+ C3 cos {%nt — 2n't) + c^ cos (5nt — An't)],

then, by substituting for Sz and equating coefficients of similar terms, we
have

- 7-34339,8c_3 + 0-01261,7c_i + 0-00012,6c, = 0,

0-01261,7c_3+ 0-33320,6c_, + 0-01261,7c,+ 0-00012,6c3+ 0-01597,la> =0,

0-00012,6c_3 + 0-01261,7c_i + 0-00981, Oc,+ 0-01261,7c3 + 0-00012,6c5

+ 2-15973,7a> =0,

+ 0-00012,6c_, + 0-01261, 7cj -8-31358,50,+ 0-01261,7c5 + 0-00933,lw =0,

+ 0-00012,6Cj +0-01261,7c3-24-63698,lc, + 0-00006,0w =0.

If we find the values of c_.^, c.^, and Cg from these equations in terms

of the two remaining coefficients c_, and c^, which can be advantageously

done, since c_^ has a large coefficient in the first equation, c^ in the fourth

and Cj in the fifth equation, we find

c_3 = 0-0017l,8c_i+ 0-00001,72 c^,

C3 = 0-00001, 5c_, + 0-00151,76 0^ + 0-00112,20,

c, = +0-00000,589Ci + 0-00000,3(a,
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and substituting these values in the 2nd and 3rd equations, they become

0-33322,76c_i+ 0-01261,74 Ci+ 0-01597,l(u = 0,

0-01261,74c_, + 0-00982,925Ci + 2-15975,lca=0.

Whence again, we find

c_i= 8-694410),

c, = -230-8866 w,

from which by substitution we obtain

c_3= 0-01097ft),

C3 = - 0-34915(w,

c, =- 0-00136ft).

Hence the solution of the differential equation for Sz is

Sz = &) {0-01097 cos {-Znt + An't) + 8-69441 cos {-nt + 2n't)

-

230-8866 cos nt

- 0-34915 cos {3nt - 2n't) - 0-00136 cos {but - An't)}.

Here w is expressed in terms of the circular measure, and Sz in terms

of the unit of length defined before.

* If s denote the sine of the Moon's latitude,

r'

and if Ss be the change in s due to the secular change in the plane of

the ecliptic, we have

r

since Sr = 0,

according to the suppositions made above.

Also

- = 1-00090,74 + 0-00718,65 cos 2 (n«-n'«) + 0-00004,58 cos 4 (n«-n'«).

Hence by substitution

Sz = (u{0-0369 cos(-3n«+ 4w'«) + 7-8727 cos (-«« + 2%'«)- 231-0661 co&nt

- 1-1789 cos (3n« - 2n't) - 0-0079 cos {5nt - An't)].
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Also s being supposed very small, Ss is equal to the circular measure
of the change of the Moon's latitude due to the secular change in the

plane of the ecliptic, and if we divide Ss by sin 1" we shall find the change
of the latitude in seconds

= ^-^{0-0369 cos (

-

3nt + ^n't) + 7-8727 cos {-nt + 2n't)- 231-0661 cosnt

- 1-1789 cos {3nt - 2n't) - 0-0079 cos {5nt-in't)}.

Now, according to the data adopted by the Astronomer Eoyal, the

circular measure of the angular motion of the plane of the ecliptic in 1

year is 0-479 sin 1".

Also 1 year is represented in our notation by the time —j.

277
Hence -^0 = 0-479 sin 1",

n

and -r^, = 0-479 ^ = 0-00616,354.
Sm 1 ZTT

Therefore the inequality of latitude expressed in seconds is

0"-0002 cos ( - 3«,it + 4?i'«) + 0"-0485 cos ( - n« + 2n't) - l"-4242 cos nt

- 0"-0073 cos {3nt - 2n't).

In this expression the mean longitudes nt and n't are reckoned from

the node of the variable ecliptic upon the fixed ecliptic. If the mean
longitudes are reckoned from the equinox in the ordinary way, and if C
be the longitude of the above-mentioned node, we must replace nt and n!t

in the above by nt—C and n't — C respectively, and the expression for the

inequality in latitude becomes

0"-0002 cos {-3nt-\- 4.n't -C) + 0"-0485 cos {-nt + 2n't - C)

- 1"-4242 cos {nt -C)- 0"-0073 cos {3nt - 2n't - C).

In the above investigation the quantities w and C are supposed to

be constant. If these be subject to small secular variations, the differential

equations become a little less simple, but are easHy formed, and the above

solution will require the following modifications, viz.

—

(1) Instead of the constant value of w we must employ the variable

value which is of the form

(Uj + oi't;

A. 31
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(2) The coefficients of the above expression will be very slightly changed

by quantities which are proportional to

dC

(3) The expression for the inequality of latitude will contain extremely

small additional terms of the form

-^ {^_3 sin (

-

3to«+ 4w'« - G) +g.., sin {-nt + 2n't -C)+g, sin (nt - C)

+ 5I3 sin {3nt - 2n't - C)};

that is to say, these terms will involve the sines instead of the cosines of

the same arguments as before, and the coefficients of these new terms are

proportional to

d(o

~di'

II. Theoretical explanation of the same inequality, which was originally

given, in substance, in Godfray's Elementary Treatise on the Lunar Theory.

The general principle of this explanation may be very simply stated.

If, for a moment, we suppose the plane of the Moon's orbit to remain

fixed, and imagine the plane of the ecliptic to turn through a very small

given angle about a line in its own plane, this will give rise to cor-

responding small changes in the longitude of the Moon's node and in the

inclination of the orbit to the ecliptic, and the magnitude of these changes

wUl depend on the angular distance of the Moon's node from the line

about which the ecliptic is supposed to be turning.

If now the planes of both orbits be supposed to vary continuously,

the total changes in the longitude of the node and inclination of the orbit

produced in an indefinitely small time wiU be found by adding together

the changes respectively due to the motion of the plane of the ecliptic,

and to the motion of the plane of the Moon's orbit with respect to the

ecliptic when the latter is supposed to remain fixed during that smaU
time. The motion last mentioned is given by the formulse of the ordinary

Lunar Theory, in terms of the disturbing force of the Sun. In consequence

of the action of this force, the Moon's node gradually makes complete

revolutions with respect to the line about which the ecliptic is turning,

and the summation of all the momentary changes of node and inclination

due to the motion of the ecliptic will produce periodic changes in those
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elements, the magnitudes of which, at any given time, hke the momentary-
changes themselves, wUl depend on the angular distance, at that time,

between the Moon's node an4 the line about which the ecliptic is turning.

The combined effect of these periodic changes in the position of the

node and in the inclination is to produce the inequality in latitude which
is now under consideration.

The motion of the Moon's node is not uniform, but the principal in-

equalities by which that motion is affected have periods which are short

compared with the time of revolution of the node.

Hence the periodic changes of node and inclination above described,

will be accompanied by others which are due to the same cause, but which

in consequence of the shortness of their periods will be comparatively un-

important,, and the combined effect of these changes in the elements wUl

be to add other terms which are equally unimportant to the expression

of the inequality in latitude.

We proceed to find the analytical expressions for the changes in the

longitude of the Moon's node and in the inclination of the orbit, due to

the motion of the plane of the ecliptic, supposing the Moon's orbit itself

to remain fixed.

Take C the longitude of the instantaneous axis about which the ecliptic

is rotating at the time t,

oi the angular velocity of the ecliptic,

N the longitude of the Moon's node,

and i the inclination of the orbit, at the same instant.

Then, in the indefinitely small time ht, a point of the ecliptic situated

in any arbitrary longitude L will move through an angular space

<uS^ sin {L— C)

in a direction perpendicular to the ecliptic.

Hence the point of the ecliptic originally coincident with the node N
wiU move through the space

oiUsi.n{N-G)

perpendicular to the ecliptic.

31—2
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And if SN be the consequent increase of the longitude of the node

we have evidently from the figure,

8N= o)8t sin {N- C) cot i

or -7—= w sin {N— C) cot i.

Again, the point of the ecliptic 90° in advance of N wUl move through

the space
w8«sin(90° + iV^-(7),

or oiht cos(iV— C),

perpendicular to the ecliptic, and this quantity will measure the diminution

in the inclination of the Moon's orbit.

Hence we have
Si=-«w8«cos(iV^-C),

or T- = — ft) cos {N— C).

Thus we have found the rates of change of the longitude of the Moon's

node and of the inclination which are due to the motion of the ecliptic.

Now, suppose the formulae which give the rates of change of the same

two elements, with respect to a fixed ecliptic, which are due to the Sun's

disturbing force, to be represented by

^=-ccosi+ i^{^, ff),

and f=f(d, 6%

where — c cos i denotes the non-periodic term in -, , c being approximately

3 n'"
equal to - — , and F{d, 6'), f{6, 6') consist wholly of periodic terms which

involve the longitudes 6, 6' of the Moon and Sun respectively, as well as

the elements N and i.
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Hence by what has been before said if iV^', i' denote the longitude

of the node and the inclination at the time t, with respect to the variable

dN' di'
ecliptic, —,— and -7- will be given by the following formulBe :

—

^=-CGOsi'+ F{d, d') + CO sin (iV' - C) cot i',

^=f{d, 6') -co COS {N'-C),

in which F{6, 6'), f{d, 6') now involve the elements N' and i', instead of

N and i.

Now let N be the longitude of the node, and i the inclination at

the time t, on the supposition that the ecliptic remains fixed, all the other

circumstances of the Moon's motion remaining unaltered ; then we have as

before

'^^-ccosi + F{e, 6%

§t=
/(^'^')-

Let N' =N+ SN,

and i' = i+ Si,

where SN and Si are entirely due to the motion of the ecliptic and there-

fore vanish with <u*.

Then neglecting the square of co and supposing the value of 9, or the

Moon's longitude, to remain unchanged, we have

dSN . .^.
.
fdF\^^r

,

(dF
- = c sm*

dt

dSi

'dt

iSi+(^ BN + (^] Si+ co sin {N- C) cot i,

* It is hardly necessary to mention that %N and Si are here employed in a wholly

different sense from that in which the same symbols were used, for a temporary purpose,

in the earlier part of this investigation.
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are composed of periodic terms which have short periods compared with

the time of revolution of the Moon's node—that is, with the period of the

smiN-C) and cos (N-C).

Hence in integrating we may at first neglect the terms

Qa.., (f)s_a(f)ai.,(|)«,

leaving them to be taken into account, if necessary, in a subsequent

approximation.

For the same reason we may suppose cot* to be constant in integrating,

and we may take

dN
-Tr= — c cost,
at

omitting the periodic term F{6, 6'); and we may also suppose that ca and

C are constants.

With these simplifications, we have

doN . -rv. , • /TIT y^\
—Tj- = c sm 10*+ o) cot * sm (iV — C ),

dhi _ 0) ^.dN"
dt c cos i ' dt

'

From the latter of these equations

and substituting this value of S* in the former, we find

dm
dt

= 0) tan i sin {N—C) + (o cot i sin {N—C),

0)

sm I cos I
.sm{N-C),

= —
-•

r- sm (iV - C) -T-

,

c sin t cos I ^ ' dt

and therefore hN=—;

—

-. r-. cos(iV"— C)
c sm I cos * ^ '
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Now let NM be the Moon's orbit and M the place of the Moon as

found from formulse in which the plane of the ecliptic is supposed to be

L "^

fixed, and let N'M' be the Moon's orbit and M' the place of the Moon
at the same time taking into account the motion of the ecliptic.

Let NM=xjt, and N'M' = rp+ Sxlj.

Also let s denote the sine of the Moon's latitude, and fi the latitude

itself, in the case when the ecliptic is supposed fixed;

And let s + Ss denote the sine of the latitude, and P+ S/3 the latitude

itself, when the ecliptic is supposed to be variable.

Then s = sin i sin t/>,

and 8s = cos i sin rjjSi + sin i cos \jjSxjj.

Now let us assume that MM' is perpendicular to NM, in which case

we shall have
8\ji= — cos i 8N,

and therefore

Ss = cos i sin xjj Si — sin i cos i cos xp SN,

or substituting the values above found for 8^ and 8N,

8s = - sin xjt sin (N-C) . cos t/» cos {N- C).
C C COS &

But if 6 denote the Moon's longitude, we have

cos i sin ^ = cos /3 sin [6 — N),

and cos ^= cos jS cos {6 — N).

Hence

Ss= —^ cos )8 [sin (e-N) sin {N- C) -cos {0-N) cos {N- C)],
C COS o

or cos ^8/3=--^ cos 13 cos (9-0),
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and therefore 8/8= . cos id-G),
c cos I ^

'

which is the inequahty in latitude due to the motion of the ecliptic,

expressed in the circular measure.

This value of S^S agrees exactly with that found in my article inserted

in Godfray's Lunar Theory, since c cos i in this formula has the same signi-

fication as - in Godfray, viz. the mean angular velocity of the Moon's node.
c

The steps, however, by which this result is arrived at, are slightly

different in the two investigations. In the earlier one, the variation of

8iV
cos i was neglected, and St/» was taken =

= , whereas in the present
COS %

investigation the variation of cosi is taken into account, and Si/f is taken

= — cos i SN, on the assumption that MM' is perpendicular to NM.

It should be remarked that in both forms of this investigation, the

neglect to take account of any variation of the Moon's radius vector and

orbital longitude, due to the motion of the ecliptic, may produce errors in

the coefficient of the inequality in latitude which are of the order of the

small quantity - sin^ i, so that the investigation is incompetent to decide

such a question, for instance, as whether ; or - is the more correct^ c cos I c

value of this coefficient.

The coefficient above found, expressed in seconds, is

c cos i sin 1"

'

In order to evaluate this quantity numerically, we observe that
c cos I

is the ratio of two angular velocities : viz. the velocity of rotation of the

plane of the ecliptic, and the mean angular velocity of the Moon's node

;

and in comparing these it is indifferent what unit of time is employed.

According to the data adopted before, taking 1 year as the unit of time,

0) = 0-479 sinl", or ^-^ = 0-479.
sm 1"
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Also since the Moon's node takes about 18 "6 years to perform a com-

plete revolution

. 27r
T

c cos * = z-TTT. nearly.
18-6 •'

TT 0) 0-479 X 18-6 J . Jrlence ^-.—-r, = , expressed m seconds,
c cos I sm 1" 277

^

= l"-42,

wHcli agrees with the value of the coefficient of the principal term found

in the former investigation.

The form above found for 8/3 suggests a very simple geometrical inter-

pretation of this inequahty in latitude.

If we suppose a fictitious ecliptic to be inclined to the true ecHptic

at the angle 1"'42, the circular measure of which is = , and if we also° c cos I

suppose that the longitude of its ascending node on the true ecliptic is

90° + C, then the elevation of the fictitious above the true ecliptic cor-

responding to the longitude 6 will be

c cos* ^
'

COS (6-0),
c cost

= S/3.

Hence the latitude above the fictitious ecliptic will be equal to /3, that

is, the expression for the Moon's latitude with respect to the fictitious

ecHptic is the same as the expression found for the latitude in the case

when the ecliptic is taken to be a fixed plane.

This geometrical interpretation of the inequality was first given by

Hansen.

III. Note on the Mecanique Celeste, tome iii. p. 185 (edition of 1802).

At any arbitrary point whose longitude is \, Laplace takes the elevation

of the variable ecliptic above the fixed plane of reference to be represented by

'tk sin (X -^ i^ H- e),

A. 32
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and he shews that if Sj denotes the perturbation of the Moon's latitude with

respect to the variable ecliptic which is due to the motion of that plane.

Then s^-t^ s^-^

—

^—-^ '-,

where v denotes the Moon's longitude;

^ r 2U iki" "1
• / N

very nearly, neglecting i^ compared with i except when it is divided by

3
an additional power of -m\

Or, replacing iv by it

. ^ r iki 4fe' 1 , ., X

Si = sm v% s—i" + 75—i\2 cos \yt + e)

+ cos j/S -5—^ + 75—^2 sm (it + e).

Now, Hansen's expression for the elevation of the variable above the

fixed ecliptic at any point whose longitude is \ is of the form

—'p cos X+ 2 sin \,

where 'p and g- are functions of t, expressed in series of powers of t.

Comparing this with Laplace's expression for the same quantity, we have

—p = tk sin {it + e),

hence ~ 7^ ~ ^^* ^^^ (*^ • ^)'

and -^ = Xki^ sin {it + e)

;

similarly q = tk cos {it + e),

— -ji — SA;i sin (lY + c),

— -j^ — S«t' cos (^^ + e).
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Hence, by substituting for h sin (it + e), h cos [it + e), &c. in Laplace's

expression for s^, their values in terms of p, q and their differential co-

efficients, we find

Si = sm V

+ cosv

1 dp _ 1 d^ql

'frr^dt~{§myd¥J

1 dq 1 d^pl

'fm'di'^i^nffdf]'

which exactly agrees with Hansen's expression in his Darlegung, p. 490*,

except that Hansen's argument /+ co — 6^ represents the longitude on the

orbit, whereas Laplace's argument v is the longitude on the ecliptic ; but

these two longitudes may be employed indifferently in terms of the order

of small quantities to which the approximation is restricted.

3
Laplace remarks that -m" is at least 4,000 times greater than 2i, and

he therefore infers that the above value of Sj may be neglected as in-

sensible. If, however, the numerical values of the quantities denoted by k

had been known to Laplace, he would have seen that some of those values

are very considerable, exceeding one degree, and therefore that ^ ^^ ^ of this

amount is by no means to be neglected.

Finally, we will reduce Laplace's transformed expression to a form

immediately comparable with our former results.

The velocity perpendicular to the ecliptic of a point in any arbitrary

longitude L is represented in one system by

dp
J.

dq .

J.—T- cos L + -^ sm L,
at dt

and in the other system by

ft) sin (L— C).

Hence -^ = w sin C,
dt

* In this expression -j- is equivalent to 6 + b't in Hansen, and ^ is equivalent to c + c't.

Oft d/t

Also Hansen's expression w (a + rf), which denotes the mean motion of the Moon's node,

is equivalent to fm^ in Laplace, as the latter takes n, the Moon's mean motion, to be equal

to unity.

32—2



252 NOTE ON THE INEQUALITY IN THE MOON'S LATITUDE, ETC. [29

and
dq_
dt
= 0) cos C;

and

d^p dm . ^ , dC ^^=^smC+.^cosa

d'^q dcj ^ dC . ^

or

Hence, putting c for -m^, and denoting the Moon's longitude by 6 as

before, instead of Laplace's v, we have

. ^ r 1 . /-, 1 (do) ^ dC . ^
Si= sm^ — wsmC—j (-j-cos C — <u ^r-sm G

/I r A ^1 /c?<" • /-» .
dC ^+ cos — 0) cos C+ -2 ( -17 sm C+ ft) -TT cos C

.,= -%os(^-a)-i§sin(^-C7)+^,^cos(^-C),

/ft) ft)(^C\ --, ^> 1 C?ft) . ,n ri\

which is in accordance with the remark made at the close of investigation I.
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NOTE ON DELAUNAY'S EXPRESSION FOR THE MOON'S PARALLAX.

[From the Monthly Notices of the Royal Astronomical Society. Vol. XLiii. (1883).]

The process employed in Delaunay's Theory of the Moon consists in

making a great number of successive changes from one system of elements

to another, these changes being so conducted that the equations which give

the variations of the elements always retain their canonical form, until at

length all the sensible periodic terms in the disturbing function are got

rid of, and the elements are thus reduced to three constants and three

angles which vary in proportion to the time.

After each such change of elements, the expressions for the three co-

ordinates of the Moon, which are supposed to be known in terms of the

old system of elements, must be transformed so as to be expressed in terms

of the new.

These transformations being made independently, we may, if we choose,

find some of the coordinates with a greater degree of precision than others.

Delaunay has, as is well known, followed the example of Plana in

developing his coefiicients in series of ascending powers of the small quantities

m, e, e' and y.

Now, two of the Moon's coordinates, viz. the longitude and latitude,

can be directly compared with observation, whereas the third coordinate, viz.
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the radius vector, can only be indirectly inferred from observation through

the parallax, to the sine of which it is inversely proportional.

Hence the accuracy of the theoretical values of the longitude and

latitude can be much more severely tested by observation than that of the

radius vector.

Delaunay has, on account of this circumstance, found the analytical

expressions for the longitude and latitude with a much greater degree of

accuracy than that for the reciprocal of the radius vector.

In the two former coordinates he has taken into account generally the

terms of the 7th. order, and in cases where the convergence of the series

is found to be slow, he has included terms of the 8th and 9th orders.

In the reciprocal of the radius vector, however, he has- confined his attention

to terms of the 5th order. Consequently, while the coefficients of the

inequalities in longitude and latitude as found by him are generally only

a small fraction of a second in error, the inequalities in the reciprocal of

the radius vector are not found with sufficient precision to give even the

parallax itself with all the accuracy which is desirable.

The coefficients of the inequalities of the parallax given by me in

Vol. XIII. of the Monthly Notices, p. 263 {see p. 109 above), are considerably

more accurate than those of Delaunay.

In the paper just referred to, I have given the coefficients to hun-

dredths of a second only, and, as I have there stated, terms with coefficients

less than 0"'05 have been omitted except when they can be included in

the same table with larger terms.

It may be worth whUe to give here a more complete view of the

values of the coefficients of parallax which I obtained in 1853. These

results are exhibited to thousandths of a second, as the calculation gave

them, although the figures in the last place of decimals are not to be

depended upon.

I add, for the sake of comparison, Delaunay's coefficients of the cor-

responding terms as given in the Connaissance des Temps for 1869, and

also the coefficients of Hansen's theory as transformed by Professor Newcomb.
The several arguments are expressed in Delaunay's notation*.

* In the folio-wing table the arguments are also given in Damoiseau's notation, which

has been employed in paper 18 (see p. 109 above).
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sin . Parallax
Table of Comparative Values of the Coefficients of

sin .
1'

Hansen
Argument. Delannay. Adams. transformed by

Delaunay. Damoiseau. Newcomb.

34227 3422-324 3422-09

I' z -0-4273 -0-400 -0-393

1 X +186-5870 186-513 186-483

21 2x 10-1984 10-170 10-161

3Z 3cc 0-6314 0-628 0-620

4^ Ax -0414 -041 -040

l-V {x-z) 1-0523 1-157 1-144

l + V \x-\-z) -0-9118 -0-948 -0-961

2l-l' {2x-z) 0-1030 0-123 0-149

2l+ l' (2a;+ z) -0-0917 -O'lOO -0-122

2F-1 {2y-x) -0-7079 -0-710 -0-709

2D 2t 28-1788 28-232 28-225

2D-V {2t-z) 1-8764 1-915 1-920

2D + 1' {2t + z) -0-3276 -0-306 -0-301

2D -21' {2t-2z) 0-0760 0-089 0-092

2D + 1 {2t + x) 3-0636 3-090 3-084

2D+ 1-1' {2t + x-z) 0-1967 0-222 0*229

2D+ 1+ 1' {2t + x + z) -0-0401 -0-047 -0-049

2D -I {2t-x) 34-1662 34-304 34-309

2D -I -I' {2t-x-z) 1-4523 1-449 1-447

2D -I -21' {2t-x-2z) 0-0454 0-050 0-049

2D-1+ 1' {2t-x + z) -0-3789 -0-231 -0-227

2D+ 21 {2t + 2x) 0-2707 0-281 0-283

2D -21 {2t-2x) -0-2770 -0-307 -0-302

2D-31 {2t-3x) -0-1012 -0-116 -0-121

2D-2F {2t-2y) -0-1092 -0-106 -0-105

2D-2F+1 {2t-2y + x) -0-0501 -0-048 -0-048

2D-2F-1 {2t-2y-x) -0-0816 -0-086 -0-083

AD At 0-1960 0-260 0-261

AD-l {At-x) 0-4991 0-600 0-599

AD -21 {At-2x) 0-3104 0-372 0-372

4^2)^1-1' (^u-x-z) 0-0297 0-063 0-069

D t -0-9378 -0-949 -0-953

D + V {t + z) 0-1507 0-145 0-146
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of the radius vector to the same order of accuracy as that which Delaunay

has already attained in the case of the corresponding expressions for the

longitude and latitude. The work would be one of simple substitution,

not requiring the solution of any new equations, and consequently its only

difficulty would consist in its great length.

The fact that Delaunay's determination of the value of the reciprocal

of the radius vector is a comparatively rough one, affords a ready explanation

of a difficulty which Sir George Airy has recently met with in his Numerical

Lunar Theory.

The first operation required in this method is the substitution in the

differential equations of motion of the numerical values of the Moon's

coordinates as obtained in Delaunay's theory. If the theory were exact,

the result of the substitution in each equation would be identically zero,

so that the coefficient of each separate term in the result of the substi-

tution would vanish. In consequence of errors in the coefficients obtained

by Delaunay, however, this mutual destruction of terms will not take place,,

and the result of the substitution will consist of a number of terms the

coefficients of which will depend on the errors of the assumed coefficients.

If, as is actually the case, these latter errors be so small that their

squares and products may be neglected, each of the residual coefficients

may be represented by a linear function of the errors of the assumed

coefficients, and the formation of the corresponding linear equations constitutes

the second operation in Sir George Airy's method. The solution of these

linear equations by successive approximations will finally give the corrections

which must be applied to Delaunay's coefficients in order to satisfy the

differential equations.

Now, since the proportionate errors of Delaunay's coefficients of parallax

are considerable, and much greater than the errors affecting his coefficients

of longitude and latitude, it will be readUy understood that the result of

the substitutions wUl be to leave considerable residual coefficients in the

two equations which relate to motion parallel to the ecliptic, and much
smaller residual coefficients in the third equation which relates to motion

normal to the ecliptic, since in this last equation every error in the co-

efficients of the radius vector or of its reciprocal will be multiplied by the

sine of the inclination of the Moon's orbit. This result, which might thus

have been anticipated, is exactly what Sir George Airy has found to take

place, according to a memorandum which he has recently addressed to the

Board of Visitors of the Eoyal Observatory.

A. 33
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Since the errors affecting Delaunay's coefficients of parallax are com-

paratively large, it wiU be necessary to determine the factors by which

these errors are multiplied in the equations of condition with a much
greater degree of accuracy than is required in the case of the factors by
which the errors of the coefficients of longitude and latitude are multiplied

in the same equations. Otherwise, it wUl not be possible to deduce these

last-mentioned errors from the equations with the requisite degree of pre-

cision. It will be necessary to take special precautions in order to determine

with accuracy the corrections of the assumed coefficients in the inequalities

of longitude which have long periods.



31.

REMARKS ON MR STONE'S EXPLANATION OF THE LARGE AND IN-

CREASING ERRORS OF HANSEN'S LUNAR TABLES BY MEANS OF A
SUPPOSED CHANGE IN THE UNIT OF MEAN SOLAR TIME.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XLiv. (1883).]

In some recent communications to the Royal Astronomical Society Mr
Stone contends that the mean solar day in use before 1864—^when Le
Terrier's Solar Tables were substituted for Bessel's in calculating the sidereal

time at mean noon given in the Nautical Almanac—differs from the mean
solar day adopted since that time.

In the Monthly Notices, Vol. xliii. p. 403, Mr Stone states that the

consequent error in our present reckoning in time is increasing at about

the rate of 1^*46 per annum, and in the same volume, p. 335, he adduces

this supposed error in explanation of the increasing errors of Hansen's Lunar

Tables.

That this view of Mr Stone's is erroneous may, I think, be shewn by

very simple considerations.

The only mean Sun known to astronomers is an imaginary body which

moves uniformly in the equator at such a rate that the difference between

its Right Ascension and that of the true Sun consists wholly of periodic

quantities.

These periodic terms are due to the obliquity of the ecliptic, the

eccentricity of the Earth's orbit, and also to the small perturbations of the

Earth's motion about the Sun.

33—2
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The difference between the Eight Ascensions of the two bodies at any

moment is called the Equation of Time.

The instant of Mean Noon is determined by the transit of this imaginary

Mean Sun over the meridian of a given place just as the instant of

Apparent Noon is determined by the transit of the true Sun over the

same meridian.

Hence, the mean time, according to the definition of it above given,

may be determined by observation of the transit of the true Sun over the

meridian, subject only to the small error to which all transit observations

are liable, and also to the extremely small error which is possible in the

theoretical expression for the equation of time. When this mode of deter-

mining the mean time is employed, no accumulation of error in proportion

to the interval of time from a given epoch is possible.

If, as it is frequently convenient to do, we wish to determine the mean
solar time by means of the sidereal time supposed to be known, without

having to make a transit observation of the Sun, we must employ the

sidereal time at mean noon calculated from the proper formula or from

the Solar Tables. This sidereal time at mean noon is equal to the Sun's

mean longitude at mean noon corrected by the equation of the equinoxes

in Right Ascension.

In order to find the mean time correctly in this way it is necessary to

employ the correct value of the Sun's mean longitude, and any error in

the assumed value of this quantity will produce an equivalent error in the

mean time deduced.

Any such error can be at once checked and corrected by observation

of the Sun's transit over the meridian.

If we wilfiiUy refuse to check our results by solar observations, the

error in the determination of the mean time by means of the sidereal time

would, no doubt, increase in proportion to the interval of time from a

certain epoch. Practically, however, it would be intolerable to use Solar

Tables which were grossly erroneous, and long before the error of time

became important the tables would be replaced by more accurate ones.

For many years previously to 1864 Bessel's formula had been employed

in the Naiitical Almanac for the calculation of the sidereal time at Green-

wich mean noon.
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In 1864 the error of Bessel's formula amounted to rather more than

half a second of time, and accordingly in that and subsequent years the

sidereal time at mean noon was deduced from Le Verrier's Sol,aa;:_ Tables,

which gave much more accurate results.

Now it is contended by Mr Stone that by the change thus introduced

into the Nautical Almanac the unit of mean solar time was practically

altered to such a degree that at the end of 1881 the difference in the

count of mean solar time amounted to nearly 27 seconds, and that the

difference is increasing at the rate of about 1*46 seconds per annum.

It is clear, therefore, that if no such change had been made in the

Nautical Almanac—that is, if Bessel's formula had continued to be employed

—no such change of the unit of time would have taken place.

Let us see then, what difference this would have made in the count

of mean solar time as derived from sidereal time when compared with the

count found by means of our present Nautical Almanac.

Bessel's formula for the sidereal time at Greenwich mean noon of Jan. 1

in any year is given in the prefaces to the Nautical Almanacs from 1834

to 1863 inclusive. In 1864 and subsequent years the sidereal time at

Greenwich mean noon is derived from Le Verrier's tables.

The following little table shews the sidereal time at Greenwich mean
noon of Jan. 1 as calculated for every fifth year from 1860 to 1885 by
Bessel's, formula, and as taken from the several Nautical Alm,anacs

:

—
Diff.

s.

Bessel's formulae employed O'OO

Le Verrier's Tables employed 0"56

0-57

0-59

0-61

0-64

Hence we see that the difference of sidereal times at mean noon in

consequence of the change from Bessel's formula to Le Verrier's Tables,

which amounted to 0°-56 in 1865, had increased to 0°-64 in 1885. That

is, the difference increases at the rate of 0°"08 in twenty years, or of

0''02 in five years.

i860
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But according to Mr Stone's theory as shewn in his tabular comparisons

of mean solar times computed from sidereal times by means of the Nautical

Almanac and of those sidereal times "corrected to agree with Bessel's

sidereal times," the differences would be as follows:

—

s s

1865 2-0 1875 16-6

1870 9-3 1880 23-9

and at the end of 1881 the difference would have increased to 26'"8
; so

that the increase in five years would be 7''3 instead of 0*'02 as above.

In fact the difference according to Mr Stone's theory is just 365 times as

great as it should be.

The origin of this enormous discrepancy between Mr Stone's theory and

the fact is readily seen by considering that mean solar time is measured,

not by the Sun's mean motion in longitude, as Mr Stone's theory supposes,

but by the motion of the mean Sun in hour angle, which is about 365

times greater in amount. Hence any small error in the determination of

the Sun's mean motion in longitude causes a proportionate error of only

about a 365th part of the amount in the interval of mean solar time as

inferred from the interval of sidereal time. In fact, if n denote the Sun's

mean motion in longitude in a mean solar day, then the length of the

mean solar day will be to the sidereal day in the ratio of

360° + % :
360°.

If now n + dn denote another slightly different determination of the Sun's

mean motion in longitude in a mean solar day, the ratio of the length

of a mean solar to that of a sidereal day will become

360° + TO + c?TO : 360°.

Hence the measure of a mean solar day when expressed in sidereal time

will be increased in the ratio of

360° + w + c^w : 360° + n,

1 + ^^
. 1

Since 360° is nearly 365 times n, this ratio will be

1 dn

366 Ih

1 dn _. ,

1 + QR«^=1 ^^^%-
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Whereas, according to Mr Stone's theory, this ratio should be

l+*^:l.
n

It has been already remarked that it is convenient practically to deter-

mine the mean solar time from the sidereal time, but in order to do this

correctly, it is of course necessary to employ the correct value of the Sun's

mean longitude. At the present time Bessel's value of the Sun's mean
longitude is about 0'"6 in error, and therefore the mean solar time

inferred by means of it from the sidereal time would be in error to the

same amount. The mean longitude found from Le Verrier's Tables is much
nearer to the truth, and therefore the mean solar time found from the

sidereal time by using this value would be much more nearly correct.

It must not be forgotten however that, as we have already stated,

the mean solar time may be derived from observations of the transit of

the Sun over the meridian, without employing the sidereal time at all.

Apparent solar time, which is found directly from observation of the Sun

is converted into mean solar time by applying the equation of time, which

is known from the solar theory, without reference to the sidereal time.
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REMARKS ON SIR GEORGE AIRY'S NUMERICAL LUNAR THEORY.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XLViii. (1888).]

In the Report of the Council on the subject of Sir George Airy's

Numerical Lunar Theory, it has been explained that the large discordances

which have been found by the author to result from the substitution of

the values of the Moon's coordinates, as found by Delaunay, in the differ-

ential equations of motion, are caused by the large errors of Delaunay's

coefficients of parallax, which Sir George has employed. It may be useful

and not uninteresting to give on this subject some additional details. In

the first place it will be well to prevent a possible misapprehension. In

speaking of the errors of Delaunay's coefficients it is not intended to imply

that there is any mistake in Delaunay's theory. The terms of the analytical

expression for the Moon's parallax which Delaunay gives are all correct,

but they only extend to the fifth order of small quantities, and are therefore

not nearly precise enough to be used for the purpose to which the ex-

pression for the parallax is appHed by Sir George Airy. Delaunay intended

this value of the parallax to be employed merely in reducing the apparent

place of the Moon to its place as seen from the Earth's centre, and for

this purpose the value is perhaps sufficiently accurate.

If the several transformations of the elements given by Delaunay in

his great work had been applied to the analytical expression for the reciprocal

of the radius vector, and if Delaunay had carried the developments to the

same extent as he had done in the case of the Moon's longitude and
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latitude, the theory would have been quite competent to give the third

coordinate with the same degree of precision as had been attained in the

case of the two other coordinates.

The following table, which is reduced from the table given in pp. 398,

399, of Vol. XLiii. of the Monthly Notices, R. A. S., shews the proportional

values of the coefficients of parallax as found by me, mainly after Pont^-

coulant, when compared with those employed by Sir George Airy after

Delaunay.
Argt. My Coefficient. Delaunay's.

10000000, 10000000,



266 REMARKS ON SIR GEORGE AIRY'S NUMERICAL LUNAR THEORY. [32

Argt.
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value of M to be 1-0027259, which agrees very closely with the value found
by Sir George Airy by comparing the constant terms on the two sides of his

equation (10).

The other two ways of finding M proposed by Sir George in p. 76

of his Theory, viz. by comparing the quantities on the two sides of the

equations (10) and (12), corresponding to the arguments 2 and 301 respec-

tively, are not satisfactory, as the results will be affected by errors in the

theoretical determinations of the mean motions of the Moon's perigee and
node respectively.

The multiplier M, representing the sum of the masses of the Earth

and Moon, must be employed wherever the mutual attraction of these two

bodies comes in question. In Sir George Airy's note at p. 254 of the

March number of the Monthly Notices, he calls M the coefficient of the

solar term, but this is plainly a mistake. I should mention that I have

already communicated the substance of this paper to Sir George Airy himself

34—2
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ON THE METEORIC SHOWER OF NOVEMBER, 1866.

[From the Proceedings of the Cambridge Philosophical Society. Vol. ii.]

The author described the instrument used in the observation of the

Meteors, and mentioned the various hypotheses which have been advanced

concerning the orbit of these bodies ; he explained the calculations which

he had made to determine this, and shewed that the attractions of the

Earth, Jupiter, Saturn and IJranus were nearly sufficient to account for a

hitherto unexplained change of about 29 minutes in the position of the

nodes of the orbit in each period of 33 years. He called attention to the

fact that the orbit calculated appeared to coincide very nearly with those

of certain comets ; and held that the latter were elongated ellipses with a

periodic time of 33 years.

[The instrument consists of an axle which is mounted in all respects as the

axle of a theodolite. To one end of the axle is fixed a graduated circle, as in the

theodolite, which marks 0° when the line of sight of the instrument is horizontal.

To the other end of the axle and at right angles to it is a bar to which are

attached a V-shaped piece of metal, a, and an eyepiece.

^!:x.

On the eyepiece, about 3 in. from the eye towards the V is a thin bar, h, with

a notch at its middle point, which can turn about the line in which the instrument

is pointing.

Attached to the thin bar is a circle divided to degrees, which marks 0° when

the bar is exactly parallel to the upper edge of the V with the notch downwards.

The circle is provided with a vernier of 12 divisions, so that angles can be read

to 5'. The point of the V is on the axis or line of sight about which the thin

bar turns.

The altitude and azimuth of any point in the line of sight can be read off on

the vertical and horizontal circles of the instrument.

When the instrument is directed to a meteor, the thin bar can be readily turned

with its circle so as to coincide in direction with the apparent path of the meteor

across the field of view.]
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ON THE ORBIT OF THE NOVEMBER METEORS.

[From the Monthly Notices of the Royal Astronomical Society. Vol. xxvii. (1867.)]

It is known to the President and to several members of the Society

that I have been for some time past engaged in researches respecting the

November meteors, and allusion is made to some of my earlier results in

the last Annual Report. As my investigations are now in some measure

complete, and the results which I have obtained appear to me important,

I have thought that they may not be without interest for the Society.

In a memoir on the November Star Showers, by Professor H. A. Newton,

contained in Nos. Ill and 112 of The American Journal of Science and

Arts, the author has collected and discussed the original accounts of 13

displays of the above phenomenon in years ranging from a.d. 902 to 1833.

The foUowing table exhibits the dates of these displays, and the Earth's

longitude at each date, together with the same particulars for the shower

of November last, which have been added for the sake of completeness.

No.
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From these data Professor Newton infers that these displays recur in

cycles of 33 "25 years, and that during a period of two or three years at

the end of each cycle a meteoric shower may be expected. He concludes

that the most natural explanation of these phenomena is, that the November

Meteors belong to a system of small bodies describing an elliptic orbit about

the Sun, and extending in the form of a stream along an arc of that

orbit which is of such a length that the whole stream occupies about

one-tenth or one-fifteenth of the periodic time in passing any particular

point. He shews that in one year the group must describe either1,1 1
or H- zTT—— , or-33-25' -^33-25' 33-25

revolutions, or, in other words-, that the periodic time must be either ISO'O

days, 185-4 days, 354-6 days, 376'6 days, or 33-25 years.

It is seen that the time of the year at which the meteoric shower

takes place becomes gradually later and later, and that accordingly the

Earth's longitude at that time, or the longitude of the node of the orbit

of the meteors, is gradually increasing. Professor Newton finds that the

node has a mean motion of 102"-6 annually with respect to the Equinox,

or of 52"-4 with respect to the fixed stars; and he remarks that since

the periodic time is limited to five possible values, each capable of an

accurate determination, and since therefore from the position of the radiant

point the other elements of the orbit can be found, it seems possible to

compute the secular motion of the node for each periodic time with con-

siderable accuracy, and the actual motion of the node being known, we
have thus an apparently simple method of deciding which of the five periods

is the correct one.

Soon after the remarkable display of these meteors in November last,

T undertook the examination of this question. From the position of the

radiant point as observed by myself, I calculated the elements of the orbit

of the meteors, starting with the supposition that the periodic time was
354-6 days, the value which Professor Newton considered to be the most

probable one. The orbit which corresponds to this period is very nearly

circular, and it readily follows from the ordinary theory that the action

of Venus would produce an annual increase of about 5" in the longitude

of the node, and that of Jupiter an annual increase of about 6". The
calculation of the motion of the node due to the Earth's action, presented

greater difficulty in consequence of the two orbits nearly intersecting each

other. I succeeded, however, iu obtaining an approximate solution, applicable



34] ON THE ORBIT OF THE NOVEMBER METEORS. 271

to this case, from which it followed that the Earth's action would produce

an annual increase of nearly 10" in the longitude of the node. Thus the

three planets above mentioned which alone, in the case supposed, sensibly

ajBFect the motion of the node, would cause a motion of about 21" annually,

or nearly 12' in 33'25 years. It has been already mentioned that the

observed motion of the node is 52""4 annually, or about 29' in 33 "25 years.

Hence the observed motion of the node is totally irreconcilable with the

supposition that the periodic time of the meteors about the Sun is 354*6

days. If the periodic time were supposed to be about 377 days, the calcu-

lated motion of the node would differ very little from that in the case

already considered, while, if the periodic time were a little greater or a

little less than half a year, the calculated motion of the node would be

stUl smaller. Hence, of the five possible periods indicated by Professor

Newton, four are entirely incompatible with the observed motion of the node,

and it only remains to examine whether the fifth period, viz. one of 33'25

years, will give a motion of the node in accordance with observation.

, The calculations which have been above described were entirely founded

on my own determination of the radiant point. In order to have as secure

a basis as possible for the subsequent calculations, I adopted for the position

of the radiant point the mean of my own and five other determinations,

partly taken from published documents and partly privately communicated

to me. These determinations are as follows, the several authorities being

placed in alphabetical order :

—

B. A. Decl.

Adams
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Period 33'25 years (assumed)

Mean distance 10-3402

Eccentricity 0-9047

Perihelion distance 0-9855

Inclination 16° 46'

Longitude of Node 51 28

Distance of Perihelion from Node 6 51

Motion Retrograde

In order to determine the secular motion of the node in this orbit, I

employed the method given by Gauss in his beautiful investigation " Deter-

minatio attractionis, <&c."

It may be proved that if two planets revolve about the Sun in periodic

times which are incommensurable with each other, the secular variations

which either of these bodies produces in the elements of the orbit of the

other would be the same as if the whole mass of the disturbing body had

been distributed over its orbit in such a manner that the portion of the

mass distributed over any given arc should be always proportional to the

time which the body takes to describe that arc. In the memoir just

referred to. Gauss shews how to determine the attraction of such an elliptic

ring on a point in any given position. When this attraction has been

calculated for any point in the orbit of the meteors, we can at once deduce

the changes which it would produce in the elements of the orbit, while

the meteors are describing any given small arc contiguous to the given

point. Hence, by dividing the orbit of the meteors into a number of small

portions, and summing up the changes corresponding to these portions, we
may find the total secular changes of the elements produced in a complete

period of the meteors.

In this manner I have found that during a period of 33-25 years, the

longitude of the node is increased 20' by the action of Jupiter, nearly 7'

by the action of Saturn, and about 1' by that of Uranus. The other

planets produce scarcely any sensible effects, so that the entire calculated

increase of the longitude of the node in the above-mentioned period is about
28'.

As already stated, the observed increase of longitude in the same time

is 29'. This remarkable accordance between the results of theory and obser-

vation appears to me to leave no doubt as to the correctness of the period

of 33-25 years.
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Tn order to attain a sufficient degree of approximation it is requisite-

to break up the orbit of the meteors into a considerable number of portions^

for each of which the attractions of the eUiptic rings corresponding to the

several disturbing planets have to be determined; hence the calculations are

necessarily very long, although I have devised a modification of Gauss's

formulae which greatly facilitates their application to the present problem..

In these numerical calculations I have been greatly aided by my assistants,^

more especially by Mr Graham. I am now engaged in obtaining a closer

approximation by subdividing certain parts of the orbit of the meteors into

still smaller portions, but the results which have been given above cannot

be materially changed.

Since I entered upon the foregoing investigation other astronomers have-

been led, on totally independent grounds, to conclusions which strongly

confirm, and are confirmed by, those at which I have myself arrived.

In the Bullettino Meteorologico dell' Osservatorio del Collegio Romano^
Vol. V. Nos. 8, 10, 11, 12, are published four letters from Sig. SchiaparelH,

Director of the Observatory of MUan, "Intorno al corso ed alV origine pro-

babile delle Stelle Meteoriche." In these letters the author arrives at the

conclusion that the orbits which the Meteors describe about the Sun are

very elongated, like those of comets, and that probably both these classes

of bodies originally come into our system from very distant regions of space.

In his last letter, dated 31st Dec. 1866, Sig. Schiaparelli shews that if the

August Meteors be supposed to describe a parabola, or a very elongated

ellipse, the elements of their orbit calculated from the observed position

of their radiant point, agree very closely with those of the orbit of Comet
II. 1862, calculated by Dr Oppolzer, The following table exhibits this

agreement :

—

August Meteors. Comet II. 1862.

Perihelion distance 0-9643 0-9626

Inclination 64° 3' 66° 25'

Longitude of Perihelion 343 28 344 41

Longitude of Node 138 16 137 27

Direction of Motion ... Retrograde Retrograde

Hence it appears probable that the great Comet of 1862 is a part of the

same current of matter as that to which the August Meteors belong.

In the letter which has just been referred to, Sig. Schiaparelli likewise

gives approximate elements of the orbit of the November Meteors, calculated

on the supposition that the period is 33*25 years; but as the calculations

A. 35
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were founded on an imperfect determination of the radiant point, these

elements were not sufficiently accurate, and Sig. SchiapareUi failed to find

any cometary orbit which could be identified with that of the meteors.

Soon after this, on the 21st January, 1867, M. Le Verrier communicated

to the Academy of Sciences a theory of the origin and nature of shooting

stars, very similar in its main features to that of Sig. SchiapareUi, and at

the same time gave more accurate elements of the orbit of the November

Meteors, his calculations being based on a better determination of the

radiant point than that employed by the astronomer of Milan.

In the Astronomische Nachrichten, of the 29th January, Mr C. F. W.
Peters of Altona pointed out that the elements given by M. Le Verrier

•closely agreed with those of Tempel's Comet (I. 1866), calculated by Dr
Oppolzer, and on the 2nd February, Sig. SchiapareUi, having recalculated

the elements of the orbit of the meteors on better data than before, himself

noticed the same agreement.

Dr Oppolzer's elements of Tempel's comet are as foUows :

—

Period 33*18 years

Mean distance 10-3248

Eccentricity 0-9054

Perihelion distance 0-9765

Inclination 17° 18'

Longitude of Node 51 26

Distance of Perihelion from Node 9 2

Direction of Motion Retrograde

If these elements be compared with those of the November Meteors

which I have given in a former part of this communication, it wiU be

seen that their agreement is remarkably close.

The curious and unexpected resemblance which is thus shewn to exist

between the orbits of known comets and those of the meteors, both of

August and November, opens a wide field for speculation. It is difficult

to believe that the coincidences which have been noticed are merely acci-

dental; but whether or not we are disposed to adopt the ideas of Sig.

SchiapareUi as to the intimate relations between meteors and comets, I

cannot help thinking that niy researches respecting the motion of the node

of the November Meteors have settled the question as to the periodic time

of these bodies beyond a doubt.



35.

NOTE ON THE ELLIPTICITY OF MARS, AND ITS EFFECT ON THE
MOTION OF THE SATELLITES.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XL. (1879).]

One of the results of Professor Asaph Hall's able discussion of his

observations of the satellites of Mars is to shew that the orbits of both

the satellites are at present inclined at small angles to the plane of the

planet's equator. It becomes an interesting question to inquire whether

this state of things is a permanent one. The plane of Mars' orbit is

inclined to its equator at an angle of 27° or 28°. If then the planes of

the orbits of the satellites retain constant inclinations to the orbit of the

planet, as they would do if the Sun's disturbing force were the only force

tending to alter those planes, their inclinations to the plane of Mars'

equator, and still more their inclinations to each other, would in time

become considerable.

In No. 2280 of the Astronomische Nachrichten, Mr Marth has found

the motions of the nodes of the orbits of the satellites on the orbit of

the planet due to the Sun's action, and he concludes that, if there is no

force depending on the internal structure of Mars which counteracts or

greatly modifies the Sun's action, the nodes of the orbits will be in

opposition to each other a thousand years hence, when the mutual inclination

of the satellites' orbits will amount to about 49°.

In this case the near approach to coincidence between the planet's

equator and the planes of the orbits of the satellites, which is observed

35—2
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to exist at the present time, would be merely fortuitous; but this appears

a priori to be very improbable.

It is well known that, if there were no external disturbing force, the

ellipticity of a planet would cause the nodes of a satellite's orbit to retro-

grade on the plane of the planet's equator, while the orbit would preserve

a constant inclination to that plane. Laplace has shewn that, when both

the action of the Sun and the ellipticity of the planet are taken into

account, the orbit of the satellite wiU move so as to preserve a nearly

constant incHnation to a fixed plane passing through the intersection of

the planet's equator with the plane of the planet's orbit, and lying between

those planes, and that the nodes of the satellite's orbit wiU have a nearly

uniform retrograde motion on the fixed plane. The angles which this fixed

plane makes with the planes of the planet's equator and its orbit respec-

tively will depend on the ratio between the rates of the above-mentioned

retrogradations of the. nodes produced by the Sun's action and by the

ellipticity of the planet. If the latter of these causes would produce a much
slower motion of the nodes than the former, as in the case of our Moon,

the fixed plane wiU nearly coincide with the planet's orbit; but if, as in

the case of the inner satellites of Jupiter, the ellipticity of the planet

would produce a much more rapid motion of the nodes than the Sun's

action, then the fixed plane will nearly coincide with the planet's equator.

The ratio of the motion of a satellite's node to that of the satellite

itself, when the Sun's action is the disturbing force, varies, ceteris paribus,

as the square of the satellite's periodic time, that is as the cube of its

mean distance from the planet. On the other hand, the ratio of the same
two motions, when the ellipticity of the planet is the disturbing cause,

varies inversely as the square of the mean distance. Hence, for different

satellites of the same planet, the motion of the nodes caused by the ellip-

ticity will bear to the motion caused by the Sun's action the ratio' of the

inverse fifth powers of the mean distances.

Now, the distance of the inner satellite of Mars from the planet's

centre is only about 2f radii of the planet, a greater comparative proximity

than is known to exist elsewhere in the Solar System, and the distance

of the outer satellite from the same centre is only about 7 radii of the
planet, while the periodic times of both are very small compared with the

periodic time of Mars. Hence the effect of a given small ellipticity of

Mars on the motion of the nodes of the satellites will be greatly magnified.

It is true that the ellipticity of Mars is still unknown, and is pro-

bably too small to be ever directly measureable; but we are not without
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means of determining, within not very wide limits, its probable amount,
and we shall presently see that, in all probability, in the case of both the
satellites the motion of the nodes produced by the ellipticity greatly

exceeds the motion caused by the Sun's action, so that the fixed planes

for both satellites are only slightly inclined to the planet's equator.

From measures of the planet's diameter and of the greatest elongations

of the satellites, combined with the known time of rotation of Mars and
the periodic times of the satellites, it is found that the ratio of the centri-

fugal force to gravity at Mars' equator is about -j^. Hence it follows

that if the planet were homogeneous its ellipticity would be about xtT-
If, instead of the planet being homogeneous, its internal density varied

according to the same law as that of the Earth, so that the ellipticity

would bear the same ratio to the above-mentioned ratio of centrifugal force

to gravity at the equator as in the case of the Earth, then the ellipticity

would be about ^-li"- ^^ ^^^ probability the actual ellipticity of Mars lies

between these limits.

The following Table shews the annual motions of the nodes of the

two satellites, caused by the Sun's action and by the planet's ellipticity

respectively, for the above values of that ellipticity, and also for the ellip-

ticity xi^> which has been deduced from Professor Kaiser's observations,

although I have no doubt that this value is too great. The Table like-

wise contains the corresponding inclinations of the fixed planes, so often

mentioned above, to the planet's equator.

Satellite I.

Annual motion of the node due to the

Sun's action, 0°"06.

Supposing ellipticity =

1 1 1

118 176 228

the annual motion of the node due to

that ellipticity will be

333° 182° 113°

Corresponding inclinations of fixed

plane to planet's equator :

17" 31' 50"

Satellite II.

Annual motion of the node due to the

Sun's action, 0°"24.

Supposing ellipticity =

_1_ J_ _1_
US 176 228

the annual motion of the node due to

that ellipticity wiU be

13°-4 7°-3 4° -5

Corresponding inclinations of fixed

plane to planet's equator

:

27' 50' 1° 19'
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From this it may be inferred that the orbit of the 1st satellite pre-

serves a constant inclination to a plane which is inclined less than 1' to

the plane of Mars' equator, and that the orbit of the 2nd satellite preserves

a constant inclination to a plane which is inclined about 1° to the plane

of the same equator.

The ellipticity will also cause rapid motions in the apses of the orbits

of the satellites, particularly in that of the first ; and as this orbit appears

from Professor Hall's determination to have a sensible eccentricity, it will

be possible, by future observations, to determine the motion of the apse,

and therefore the ellipticity of the planet. If further observations shew

that the orbits of the satellites are sensibly inclined to their fixed planes,

the motion of their nodes will supply another means of determining the

ellipticity of the planet.



36.

NOTE ON WILLIAM BALL'S OBSERVATIONS OF SATURN.

[From the Monthly Notices of the Royal Astronomical Society, Vol. xliii. (1883).]

In No. 9 of Vol. i. of the Philosophical Transactions, a brief account

is given of an observation of Saturn made on Oct. 13, 1665, at 6 o'clock,

by William Ball, at Mamhead, near Exeter, and it is suggested that the

appearance presented by the planet may perhaps be caused by its being

surrounded by two rings instead of one.

This account has recently given rise to considerable discussion; and

there are some difficulties connected with it which do not appear to have

been satisfactorily cleared up. In a few copies of the volume this account

is illustrated by a figure, in which the external boundary of the ring,

instead of being of a regular elliptical form, has two blunt notches or

indentations at the extremities of the minor axis. The plate containing

this figure, however, is wanting in by far the larger number of the copies.

Now, I think, it may be safely asserted that no telescope, capable of

shewing Saturn's ring at all, ever exhibited it in this extraordinary form,

and therefore if the above figure faithfully represents William Ball's drawing,

he was either a very inaccurate and careless observer, or he must have

been provided with very inadequate instrumental means.

On the other hand, we have ample proof that he was a careful and

assiduous observer, that in particular he made a long series of observa-

tions of Saturn, and that these were made with instruments not much

inferior to those employed by Huyghens himself in similar observations.
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It is well known that Huyghens's discovery of the true nature of the

appendage to Saturn, which had so puzzled Galileo and others, was con-

tested by Father Fabri at Rome, who wrote under the name of "Eustacius

de Divinis."

Huyghens replied to Fabri's objections in a tract which appeared in

1660, entitled Brevis Assertio Systematis Saturnii sui, and which is contained

in the third volume of his collected works.

In this tract he repeatedly appeals to Ball's observations in England

in confirmation of his own. It is clear that Huyghens was in possession

of drawings by Ball which represented the various appearances presented

by the planet during the four years from 1656 to 1659 inclusive, and that

he had carefully compared them with those which he had himself taken

during the same interval. After mentioning the dark band which he had

observed on the disk of Saturn at times when the remainder of the ring

was invisible, he quotes a letter from Dr Wallis, dated Dec. 22, 1658, in

which reference is made to an earlier letter dated May 29, 1656, wherein

Dr WaUis had mentioned this band as having been observed by BaU, and

had inquired whether his correspondent had likewise perceived it. Huyghens

goes on to say that from Feb. 5, 1656, to July 2, when the planet

appeared round and without ansae, this band or dark shading was observed

by BaU to cross the centre of the disk, as shewn in his drawing, exactly

as in Huyghens's own figure.

Afterwards, when the ansae had re-appeared, the band was seen with

more difficulty, and its position was less accurately laid down in Ball's

drawing. From Nov. 5, 1656, to July 9, 1657, when the oblong arms of

Saturn were seen apparently united to the disk, Ball gives a figure quite

similar to that of Huyghens, except that he makes the arms a little thicker.

Again, from Nov. 9, 1657, to June 7, 1658, when the arms were more

open, Ball's figure is exactly similar to Huyghens's, except a slight difference

in the position of the obscure zone or belt.

Also, finally, the same remark applies to the figure of the planet from

Jan. 3, 1659, to June 17 of the same year, when the ansae were a little

more widely opened.

Having made these comparisons between Ball's drawings of the planet

and his own, Huyghens remarks that Ball was unacquainted with his hypo-

thesis* (respecting the ring), and therefore could not be supposed to be

* Huyghens's Systema Satmmiwm only appeared in 1659.
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biased by it, while he himself would not dare to represent the phenomena

otherwise than they really were, since, if he did, he might at once be

contradicted by the English observer.

This judgment of so competent an authority as Huyghens, made while

he had before him all the materials for forming it, left no doubt on my
mind as to the merit of Ball's observations.

In order to see whether any further light could be thrown on the

subject, I have recently taken an opportunity of consulting the MSS. pre-

served in the archives of the Royal Society.

Among them I find there is a letter in William Ball's own hand,

dated April 14, 1666, in which he makes reference to his observations of

Saturn, although the greater part of the letter relates to other subjects.

He mentions that the observations were made partly with a telescope thirty-

eight feet in length, having a double eye-glass, and partly with another

telescope twelve feet in length. In the postscript to this letter he gives

a small sketch of Saturn as it appeared at that time (1666), and he men-

tions that the same appearance was presented by the planet in 1664. In

this figure the external boundary of the ring has the form of a regular

oval, without any notches or other irregularities.

No allusion is made to the very different appearance which, if the

figure in the Philosophical Transactions is authentic, the planet must have

presented in 1665.

It should be understood that the paper in the Philosophical Transactions

which is now in question was not written by Ball himself. It contains,

however, a quotation from a letter of Ball to a friend (probably Sir B.

Moray), and in what appears to be the last clause of this quotation, the

figure is said to be "a little hollow above and below." I cannot help

thinking that this clause has been added or altered in some way to correspond

with the given figure. The letter of Ball on which this paper was founded

is not in the archives; but there is preserved, not a drawing, but a paper-

cutting, representing the planet and its ring, which is no doubt the original

of the figure engraved in the Transactions.

The defect in the paper-cutting probably originated in the following

way. In order to make the cutting, the paper was first folded twice in

directions at right angles to each other, so that only a quadrant of the

ellipse had to be cut.

The cut started rightly in a direction perpendicular to the major axis,

but through want of care, when the cut reached the minor axis, its direction

A. 36



-282 NOTE ON WILLIAM BALL'S OBSERVATIONS OF SATURN. [36

formed a slightly obtuse angle with that axis instead of being perpendicular

i;o it.

Consequently, when the paper was unfolded, shallow notches or depres-

sions appeared at the extremities of the minor axis.

I imagine that the account in the Philosophical Transactions was written

by some one inexperienced in astronomical observations, who took for granted

that the figure was correct. The mistake being soon discovered, the plate

which contained the erroneous figure of Saturn, together with two other

figures relating to different subjects, was cancelled, and thus its appearance

in only a few of the copies is accounted for. The other figures on the

cancelled plate were repeated in a new plate which accompanied No. 24

in the same volume of the Transactions.

In Lowthorp's abridged edition of the Transactions the figure of Saturn

has been corrected.

I find no evidence that Ball, any more than Huyghens, had noticed

^ny indication of a division in the ring.

It may be interesting to give the original text of the passages of

Huyghens's Brevis Assertio Systematis Saturnii sui, in which reference is

made to Ball's observations.

The citations are taken from the third volume of Huyghens's Opera
Varia, edited by 'S Gravesande, and published at Leyden in 1724.

"Credo et fasciam nigricantem in Saturni disco, liquido sibi conspici

dixisset Eustacius, ni Fabrio visum fuisset earn nimium hypothesi meae
annulari favere. Cum autem ne optimis quidem suis perspicillis earn cerni

affirmet, hinc quoque quanto iUa meis deteriora sint perspicuum sit. Nam
ne mihi phenomenon illud confictum credatur, idem et in Anglia pridem
observari coepisse sciendum est; et liquet ex Uteris viri clar. Joh. Wallisii,

Oxonia ad me datis 22 Dec. 1658, quibus inter alia haec scribit. Monebam
^tiam iisdem Uteris (nempe datis 29 Maji 1656) de Saturni fascia quam jam
ante ohservaverat D. Ball, et sciscitahar num tu eandem conspexeras, &c.

Eam porro fasciam k 5 Feb. 1656 ad 2 Jul., quo tempore rotundus Saturnus
absque ansis apparuit, medium planetse discum secare D. Ball adnotavit, ut
in schemate ad me misso expressa est. Atque ita mihi quoque fuerat eo

tempore observata, ut cernitur pag. 544 Systematis Saturnii, quam figuram
hie repeto. Postmodum tamen renatis Saturni ansis cum difficillimfe conspici

eadem fascia ccepisset, minus rect^ quoque a D. Ball, quantum ad situm
attinet, depicta est. At in mearum observationum adversariis, die 26 Nov.
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1656, et alias adscriptum invenio, lineam obscuram fuisse evidentissimam, ea

nempe positu, qui pag. 545 System. Saturnii. memoratur."—Pp. 624, 625.

"Non segre nunc fidem habitum iri spero, turn mihi turn Anglis simul

observatoribus, qui anno 1657 oblonga Saturni brachia disco utrinque con-

juncta spectavimus, qualia exhibet figura Systematis mei pag. 545, quam hie

repono; non autem binorum orbiculorum formi a medio disco disjunctorum,

ut Eustacius se ilia eodem tempore vidisse dejerat. Adderem hie schema

quod mihi ^ D. Ball, supra memorato, advenit, nisi planfe simile esset huic

nostro, hoc uno tantillum duntaxat abludens, quod brachia ilia ubique paulo

crassiora Ule referat.

"Eam vero formam a 5 Nov. 1656 ad 9 Jul. 1657 sibi apparuisse

scribit. Apertis autem brachiis, qualis pag. 547 Systematis mei et hie repre-

sentatur, talem a 9 Nov. 1657 ad 7 Jun. 1658, idem observator depingit,

simillima prorsus figura, nisi quod ad positum zonae obscurse attinet, de quo

dixi suprk. Ac denique ^ 3 Jan. 1659 ad 17 Jun. ejusdem anni, ansis

paulo latius adhue apertis. Et haec quidem ille, ignarus adhuc mese hypo-

theseos, ne ob praeconceptam opinionem aliquid indulsisse sibi existimetur.

Neque ego alitor quam se revera habent referre auderem, cum redarguere

me, si fallam, autori observationum in promptu sit."—P. 626.

The following extract comprises all that is material in the Paper in

the Philosophical Transactions:—
"This observation was made by Mr William Ball, accompanied by his

brother, Dr Ball, October 13, 1665 at six of the Clock, at Mainhead [Mamhead]

near Exeter in Devonshire, with a very good Telescope near 38 foot long,

and a double Eye-glass as the observer himself takes notice, adding, that

he never saw that planet more distinct. The observation is represented by

Fig. 3 concerning which, the Author saith in his letter to a friend, as

follows. This appear'd to me the present figure of Saturn, somewhat other-

wise, than I expected, thinking it would have been decreasing, but I found

it full as ever, and a little hollow above and below. Whereupon the

Person, to whom notice was sent hereof, examining this shape, hath by

letters desii-ed the worthy Author of the System of this Planet, that he

would now attentively consider the present Figure of his Anses, or Ring,

to see whether the appearance be to him, as in this Figure, and conse-

quently whether he there meets with nothing that may make him think,

that it is not one body of a circular Figure, that embraces his Disk, but

two."
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From this it is clear that the suggestion of two rings was made, not

hy Ball himself, but by his anonymous correspondent.

By the kind permission of the President and Council of the Eoyal

Society, I am enabled to make the following extracts from two letters in

William Ball's own hand, and likewise to give exact representations of the

form of the paper-cutting, and of Ball's small sketch of Saturn, referred

to in the foregoing Paper, both of which have been kindly copied for me

by our Assistant-Secretary, Mr Wesley.

The annexed figure shews the form of the paper-cutting.

» X x*^

\ I £/$-• I /

B_

The writing on the cutting appears to be in Oldenburg's hand.

The first letter is dated Mamhead, April 14, 1666, and is probably

addressed to Oldenburg.

"I have seen i? two mornings this year (with a 12 foot glasse the

longest I can use at this time with convenience) and find the figure the

same as it was in -64. What his figure was last autumne (by mee

observed with 38 foot glasse much better than that at Gresham Colledge)

I suppose S'. R. Moray hath communicated. I could not have a second

sight, straining very much for that one, for the shadow of the body on

his ring I doe not well understand the meaning but I suppose I saw the

same thing; for I never had a clearer sight of him in any glasse I ever

looked in, one thing I can boast of, sc. I am not prejudiced with any

conceit of hypothesis which doth commonly send all observations to favour

one side and soe there must bee a little added or diminished as the designe

requires," &c. &c.
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In a postscript is the following, with the little sketch :

—

"I saw I? this morn, at 4 a clock with 12 foot glasse and judge him

the same figure as in -64—^that is just ovall with two black spotts and

I thinke a faint shadow of a belt which I have alwaies seene, but will

not be peremptory in itt."

The second letter is dated "Mamhead i? September 15, -66," and is

addressed "For Sir Robert Moray K* at Whitehall, These."

" I designe to send you all the figures of i? . I promised them my
L*^ Brounker and hee was pleased most kindly to accept itt but I (like

any thing you please to call mee bad enough) have hitherto shamfully failed,

as alsoe of an account of husbandry to Mr Oldenburg. I am still gazing

at the Starrs though to very little purpose more then to keep my eyes

in use," &c. &c.

It will be noticed that the passage in Ball's first letter in which he

claims to be unbiased by any hypothesis, agrees with the statement of

Huyghens respecting him.

The passage in the same letter, "for the shadow of the body on his

ring I doe not well understand the meaning but I suppose I saw the

same thing," I conjecture to refer to an attempted explanation by Huyghens,

or some other astronomer, of the phenomenon observed by Ball, by attri-

buting it to the shadow of the body of the planet cast on his ring.

It is plain that such an explanation would not be applicable, if similar

depressions had been observed at the two extremities of the minor axis

of the ring.
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ON THE CHANGE IN THE ADOPTED UNIT OF TIME.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XLiv. (1884).]

The December number of the Monthly Notices contains a paper by

Major-General Tennant in which the author arrives at conclusions which

appear to him to confirm Mr Stone's views respecting a change in the

unit of mean solar time. In reality, however, those conclusions are quite

consistent with my own as given in the same number of the Monthly Notices,

(see p. 259 above) and not at all with Mr Stone's.

According to Major-General Tennant {Monthly Notices, p. 43), the factor

by which the tabular mean motions should be multiplied in consequence

of the change from Bessel's to Le Verrier's determination of the ratio of

the mean solar to the sidereal day is what he calls

Sidereal Seconds in Le Verrian Mean Day
Sidereal Seconds in Besselian Mean Day

Now, if n be the Sun's mean motion in a mean solar day as deter-

mined by Bessel, the sidereal seconds in a mean solar day will be

zm°+n
86400 X-

360°

But if n+ Zn be the Sun's mean motion in a mean solar day as determined

by Le Verrier, the sidereal seconds in a mean solar day wUl be

86400 X?50:±i±i5.
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and therefore the factor above referred to by Major-General Tennant will be

360° + n + 8n_ Sn

360° + ?i 360°+n'

whereas, according to Mr Stone's views, this factor should be

n + 8n _ Sn

n n

where the difference from 1 is nearly 366 times greater than it should be.

The same thing may be otherwise shewn thus :

—

If N denote the number of mean solar days in a mean tropical year,

according to Bessel's determination, then iV+ 1 wUl be the corresponding

number of sidereal days in the same interval.

Consequently, the ratio of the length of a mean solar to that of a

sidereal day will be

N ^^N-

But if iV + SiV denote the number of mean solar days in a mean

tropical year, according to Le Verrier's determination, then iV+SiV+1 wHl

be the corresponding number of sidereal days in the same interval.

And consequently the above-mentioned ratio will become

Hence the ratio of the length of a mean solar to that of a sidereal day

will be changed in the ratio of

1

1 +

whereas, according to Mr Stone, the ratio which measures this change would

be
N , SN

^^;^-g^^l-^, nearly,

where, as before, the difference from 1 is nearly 366 times too great.
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Mr Stone's error appears to arise from his equating two things which

are really different, and which are inconsistent with each other,—viz. Bessel's

and Le Verrier's determinations of the Sun's mean motion in longitude in

the same interval of timie.

Major-General Tennant is wrong in supposing that solar observations

are no longer employed in Observatories for the determination of mean solar

time. If this were the case, it would only shew that the Observatories

had taken a very retrograde step, since the final test whether the mean
solar times have been correctly found can only be supplied by solar obser-

vations. Whenever the mean solar times are deduced from the observed

sidereal times, it is tacitly assumed that the tabular mean longitudes of

the Sun which have been employed are correct; and if this is not the

case, the mean solar times deduced wUl require a corresponding correction,

which can only be found by solar observations.

Thus mean solar time may be determined with reference to a natural

phenomenon,—viz. the transit of the true Sun over the meridian of a given

place; and the mean solar day is the average of all the apparent solar

days defined as the intervals between two successive transits, and therefore

has nothing arbitrary about it. To speak of Besselian mean time and Le
Verrian mean time, or of the Besselian mean solar day and the Le Verrian

mean solar day, can produce nothing but confusion in our ideas of the

measure of time.



38.

ON NEWTON'S SOLUTION OF KEPLER'S PROBLEM.

[From the Monthly Notices of the Royal Astronomical Society, Vol. XLiil. (1882).]

Of all the methods which have been proposed for the solution of this

problem, that which leads most rapidly to a result having any required

degree of precision may be briefly explained as follows :

—

The equation to be solved by successive approximations is

x — e sin x = z,

where z is the known mean anomaly, e the eccentricity, and x the eccentric

anomaly to be determined.

Suppose cCo to be an approximate value of x, found whether by esti-

mation, by graphical construction, or by a previous rough calculation, and let

Then if S»„= "^ ^'

1 — e cos as,

'

and a3' = a3„ + 8a5o,

x' will be a much more approximate value of x than x^.

Similarly, if we put
x' — e sin x' = z',

and if Sx' =
1 — e cos x'

A. 37
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and a;" = a/ + Sa/,

a/' win be a much more approximate value of x than a/; and so on, to

any required degree of approximation.

If the error of the assumed value x„ be supposed to be of the order

i, when e is taken as a small quantity of the first order, then the error

of the value a;' will be of the order 2i+l= i' suppose, similarly the error

of the value a/' will be of the order 2^' + 1 = 4^ + 3, and so on, so that

the order of the error is more than doubled at each successive approximation.

The above explains the immense advantage of this process over the

use of series proceeding according to powers of e, when great precision is

required in the result; since, in this latter method, the addition of a new
term only increases the order of the error by unity.

The degree of rapidity of the approximation may be still further increased

by the following slight modification of the above process.

Starting, as before, with the value x„, and calling z — z„ = Sz„, we should

obtain a much more accurate value than before of the correction Sx, to

be applied to x^, by putting

° 1— ecos(a;(, + -jSa;„) 1 — e cos (a;o + -|Sa;„)'

Now, e being supposed to be small, Sz„ is an approximate value of Sa3„,

and may be written for it in the small term in the denominator.

Hence, if we put

Sx„= -.

^'"

xl will be a nearer approximation to the true value of x than was obtained

before by the corresponding operation.

Similarly, if x' — e sin a;' = z',

and z — z' = hz',

Sz'
and if Sa!' = - y-.—=-»-»,

l-ecos(a/ + -|-Sz')'

then a;" = a/ + 8a/

will be the next approximate value of x, and the process may be continued

as far as we please.
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If the error of x„ be of the order i, that of x' will now be of the

order 2i + 2, that of x" will be of the order 2 {2i + 2) + 2 = 4z + 6, and so

on, so that the degree of rapidity of the approximation is still greater than
before.

If we chose to take the mean anomaly itself as the first approximate

value of the eccentric anomaly—that is, if we put

x„ = z,

we should have z^ = z — esinz,

and the value of Sa;,, given by the first method would be

-. e sin z

1 — e cos z

whUe that given by the second and more accurate method would be

^ e sin z
ox. = -

1—e cos (z + ^e sin z)

'

and the error of cc' = a;„ + Sx„ would be of the 3rd order in the former case,

and of the 4th order in the latter.

In practice, however, a much nearer first approximate value of x may
be always found by inspection, and of course the smaller the error of this

value is, the more rapid will be the rate of the subsequent approximations.

The methods above explained have been long known. The first method

is given at p. 41 of Thomas Simpson's Essays on Several Subjects in

Speculative and Mixed Mathematics, published in 1740 ; and Gauss' method

given at pp. 10—12 of the Theoria Motus, published in 1809, is essentially

the same.

The second method, or rather the modification of the first, is given by

Cagnoli in his Trigonometrie, at pp. 3/7, 378 of the first edition, published

in 1786, and at pp. 418—420 of the second edition, published in 1808.

Now, my object in the present note is to point out that the first

method explained above is exactly equivalent to that given by Newton in

the Frincipia, at pp. 101, 102 of the second edition, and at pp. 109, 110

of the third edition, when Newton's expressions are put into the modem

analytical form.
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None of the subsequent authors, however, mentions this method as being

Newton's, the imusual form in which Newton's solution is given having, no

doubt, caused them to overlook it.

In the first edition of the Principia a modification of the method is

given which was, I have no doubt, intended by Newton to be equivalent to

the second method given above; but by some inadvertence, instead of the

denominator of Sa/ being

l—e cos(a;'+-Sz'

when expressed in the above notation, he takes it to be what is equiva-

lent to

1 — ecos (a;'+-esina;'j,

which is only true for the first approximation when a;„ is taken =z.

In the second and third editions this error is corrected, but Newton

contents himself with the more simple expression given by the first method.

We need not be surprised that Newton should have employed this

method of solving the transcendental equation

X — e sin x = z,

since the method is identical in principle with his well-known method of

approximation to the roots of algebraic equations.

For convenience of calculation, the approximate values x„, x', x", &c,,

should be so chosen that their sines may be taken directly from the tables

without interpolation ; and, since each approximation is independent of the

preceding ones, this may always be done if a;' be taken equal, not to

x„ + Sajj itself, but to the angle nearest to x^ + S^o which is contained in

the tables, and if similarly x" be taken equal to the tabular angle which
is nearest to af + Saf, and so on. In the first approximation it will be
amply sufficient to use 5-figure logarithms, but in the subsequent ones tables

with a larger number of decimal places should be employed.

A first approximate value of the eccentric anomaly corresponding to

any given mean anomaly may be found by a very simple graphical con-

struction, provided we have traced, once for all, a curve in which the

ordinates are proportional to the sines of the angles represented on any
given scale by the abscissae.
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This curve is commonly called "the curve of sines." It will be suf-

ficient to trace the portion of the curve for which the ordinates are positive.

Let AOB be the line of abscissae, and let AO be taken equal to OB,

and let each of them be divided into 90 equal parts representing degrees

of angle. Let AN be any abscissa representing the angle x, and let the

corresponding ordinate NP — c sin x ; then the greatest ordinate will be

OC=c, corresponding to the abscissa AO.

Suppose the curve line APCB to be divided into 180 parts which

correspond to equal divisions on the line of abscissse ANOB.

Then if E be taken in AO so that EO = ex 57-296 divisions, or if

A]^=90 — ex 57'296 divisions, and if CE be joined and PM be drawn

parallel to it through P meeting the line of abscissae in M, then AM will

represent the mean anomaly corresponding to the eccentric anomaly repre-

sented by AN.

For, since the triangles PMN, CEO are similar.

MN
EO

''

PN
CO

sni X,

and therefore MN = EO sin x = 57 -296 (e sin x).

Hence MN represents the number of degrees in x — z, and therefore AM
represents the mean anomaly z.

Conversely, if AM represents any given mean anomaly, then if MP be

drawn parallel to EC, it will cut the curve in the point P corresponding

to the eccentric anomaly.

By the employment of a parallel ruler we may find the eccentric anomaly

corresponding to any given mean anomaly, or conversely, without actually
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drawing a line. For if we lay an edge of the ruler across the points EC
and then make a parallel edge to pass through the point M it will cut

the curve in the point P required.

Thus we may always find a first approximate value of the eccentric

anomaly, without making repeated trials, whether the eccentricity be large

or small.

I described this graphical method of solving Kepler's problem at the

Birmingham meeting of the British Association in 1849. It is referred to

in a paper by Mr Proctor in Vol. xxxiii. of the Monthly Notices, p. 390.

The construction is so simple that it has probably been proposed before,

though I have nowhere met with it.

Note on Professor Zenger's solution of the same problem given in Number 9 of

Vol. XLii. of the " Monthly Notices."

The only peculiarity in this solution is in the mode of obtaining the
first approximate value employed. The subsequent approximations are carried

on by means of the first method given above. Professor Zenger's process

may be represented in a slightly different form as follows:

—

We have x — z= esm.x,

and therefore

sin {x-z) = sm (e sin as) = e sin a;
j
1 - - e= sin' a;+—- e* sin' a; - etc. I

,

01" sin (a; - z) =/ sin a;

;

where /=e jl -- e=sin^a; +^ e' sin' a; - etc. I

.

Hence tan (x-z) = ^^j^^
.

1 —/ cos z

^

Now, an approximate value of / is e, and the error in the determi-
nation of tan (a; — 2) if we were to put

. / V e sia z
tan {x — z)= ,

1 — e cos z

would be of the 3rd order in e.
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If we determine f so that the error in the determination of x shall

vanish when

we shall have

TT

^=2'

f=^y—^^^-^^^^'-^^\ = ^'^^^^

and the approximate equation for finding x — z becomes

sin e sin z
tan (a; — z) = —

sm e cos z

The error still remains in general of the 3rd order in e, but the maximum
error will be smaller than when f is taken = e.

The value of x given by this equation is readily seen to be equivalent

to that given by Professor Zenger's equation,

e cosec z
cot X = cot z •

1 3
1 +- sin'e + TTT sin'e + etc.

6 40

where we may remark that the quantity

1

is equivalent to

1 3
1 + - sin" e + 77" sin*e + etc.

b 4U

sine
. 1 1 .

,
1 4 J.__,orto l--e- +— e^-etc,

a series which converges much more rapidly than the series for its reciprocal,

employed by Professor Zenger.

A still more advantageous result may, however, be obtained by deter-

mining / so that the error may vanish both when

IT

and when

that is when

X--
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SO that /=^{l-^^'+6i0^'~' ^*''-}-

The order of accuracy of the approximation will not be altered by confining

ourselves to the first two terms of this value of/ so that we may take

e[l— -e^j sinz

tan(a;-2) = ^-r p-r , nearly.

1 — e ( 1 — -eN cosz

The error is still of the 3rd order, but its maximum amount is less than

before.

If/ be taken =e |l - ^e'^ sin^zl

,

1 X / \
/sinz

and tan (a; — z) = , „ ;

^ ' 1 —/ cos z

the error in the determination of tan(a; — z), and therefore in the determi-

nation of X, will be only of the 4th order.

There are several misprints and some errors of calculation in Professor

Zenger's paper, on which I need not dwell. True anomaly in line 8 of the

paper should be eccentric anomaly, and the same error occurs on p. 448.



39.

NOTE ON DR MORRISON'S PAPER (ON KEPLER'S PROBLEM).

[From the Monthly Notices of the Royal Astronomical Society, Vol. XLiii. (1883).]

The reference to Hansen's paper should be made to Ahhandlungen der

Scichsischen Gesellschaft der Wissenschaften, Band iv. p. 249, instead of to

Band ii. as stated by Dr Morrison.

In this paper Hansen's object is not merely to express the coefficients

of the series which gives the eccentric anomaly in powers of e, otherwise

this might have been done much more simply in the following manner.

Calling g the mean, and x the eccentric anomaly, we have

g = x — e sin x,

or x=g + e sinx,

which is in the proper form for the application of Lagrange's theorem for

developing x or any function of x in terms of g and ascending powers of e.

Hence we have

a==^+ esin^ + ^|(sin=^) + 3-^|,(sin^^)

whence by substituting for the powers of sin^ their expressions in sines

or cosines of multiples of g, and differentiating, we may readily obtain the

function of g which multiplies any given power of e.

A. 38
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The numerical coefficient of the term in (x—g) which involves

e™ sin (m — 2n) g

^^
^ ^ \ 2 / (1 .2...n){l.2...m-n)

where m is a positive integer, and n is either zero or a positive integer

less than -, and (1 . 2...n) is to be put =1, when n = 0.

The expressions for x and for the sines of multiples of x are developed

to the 12th power of e by Schubert in the appendix to Bode's Jahrbuch

for 1820. In the same appendix Schubert likewise gives the development

of the true anomaly in terms of the mean to the 13th power of e.

Oriani had already given this last-mentioned development to the 11th

power of e in the appendix to the Milan Ephemeris for 1805.

The numerical coefficients which he finds differ in four cases from those

given by Schubert, but I have recomputed the coefficients in these cases,

and find that Schubert's results are correct.

There is a misprint, however, in Schubert's expression for the true

anomaly at the foot of p. 230, where the coefficient of e'^ sin 12^ should be

7218065 . , , . 7218065
instead oi

2^^3.7.ll 2'^3^ll

Delambre's formula is copied from Oriani's, and is therefore affected by
the same errors, together with some additional typographical ones.

I have verified Schubert's result for {y), the true anomaly in terms
of the mean, by the consideration that when g — 0, the value of

dv , (l+ef
-J- becomes t ts
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By comparing Schubert's result with that of Dr Morrison, we see that

there are the following errata in the latter : viz. the coefficient of e" sin 8M
in the equation of the centre should be

4745483 . , , . 1182827
instead oi —;;:=-

2\S\5.7
"""''""'" " 2'. 3\5.7'

and the coefficient of e'^sinlOilf should be

76972457 • , , ^ 769805651
instead ot —

;

2".3^7.ll "^"^"-"^ "^ 2'^3^5.7.ll

In Schubert's expression for - in p. 231, which is also carried as far as

e", there are the following errata, which are evidently merely typographical

:

viz. in the coefficient of — cos Sg, instead of

3M1 ,,,,,, ,
3M1 ,,

e'' should be + _,„ _ ^ e".
2". 5. 7 2". 5. 7

and in the coefficient of — cosl2g', instead of

e^^ should be , ' ,

,

e^''

5^7.11 5\7.11

Oriani's formula for the radius vector has been examined and found

correct.

A very good investigation of the general term of the expansion of the

true anomaly in terms of the mean is likewise given in a paper by

Mr Greatheed, in the first volume of the Cambridge Mathematical Journal,

p. 208 (p. 228 in the second edition).

The approximate expression for the eccentric anomaly in terms of the

mean given by Dr Morrison in the latter part of his paper coincides with

the first two terms of the series found in Keill's Astronomical Lectures,

p. 291 (5th edition, 1760), and the method of correcting an approximately

known value which Dr Morrison quotes from Encke is identical with Newton's

method for the same purpose, which is also explained in Keill's Lectures,

p. 296 et seq.

On this subject reference may also be made to my paper in the Monthly

Notices for December 1882, p. 43 {see p. 289 above).

38—2
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In addition to the errata already specified, the following may be noticed :

—

In Oriani's formula for the equation of the centre, in the Milan

Ephemeris 1805, pp. 14 and 15,

In the coefficient of sin Ag,

. ^ , „ 1367 ,„ , 1619 ,„

mstead of - Y^Tl ~
2' . 3^ 7

In the coefficient of sin 5g,

. , , „ 3649663 „ , 4305913
,,

mstead of -
^,, ^, ^ e" read -

^,,^ -^.7

In the coefficient of sin 6g,

. ^ , . ,
7751 ,„ , ^7751 „

mstead of + ^ir"g ^ ^^^d +^^ e"

In the coefficient of sin 11^,

. , , „ 63039512101 „ , 62929017101
mstead of ^„ „^

—^r7—;z—tt e read
2^'.3\5\7.11 2''.3\5\7.11 '

As Delambre's formula is copied from Oriani, it is affected with the

same errors, and in addition to these the following errata occur :

—

In the Introduction to Delambre's Solar Tables, 1806,

In the coefficient of sing,

. ^ , „ 565879 „ , 565879 ,,

mstead 0^2'°. 3\ 5^ 2^\3V5=

In the coefficient of sin 6g,

. ^ , „ 7913 g , 7913 3

mstead of — -—z

—

zr & read — —.—~—= el
2z . 5 . 7 2'

. 5 . 7

In the coefficient of sin 7g,

. , , „ 1173271 , , 1773271
,mstead of -

^,4 32 g
e read -

^,, g,
^
e\

And in his Astronomy, 1814, vol. 11. p. 52, •

In the coefficient of sin 2gr,

instead of + „„ „.—- e^° read '

2\ 3'
. 5 2' . 3= . 5
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Also in Delambre's expression for - the following errata occur :—

In the Introduction to his Solar Tables, 1806,

In the coefficient of — cos g,

3 3
instead of — — e? read —— e^

2' 2

In the coefficient of — cos bg,

instead of +2^-9^' read +^r^&'-

And in his Astronomy, 1814, vol. 11. p. 51,

In the coefficient of —cos bg,

53 5'
instead of -^—- ^ read —^—- e\

Also in Delambre's formula for the hyperbolic logarithm of the radius

vector, the following errata occur :

—

In the Introduction to his Solar Tables, 1806,

In the coefficient of — cos 2g,

9 9
instead of — —-r- e^ read — -—— e^

240 640

In the coefficient of — cos 8g,

. ^ , „ 47529 3 , 47259 ,

mstead ot
^.^ ^ ^

e' read
^,0 ^ ^

e\

And in his Astronomy, 1814, vol. 11. p. 50,

In the coefficient of — cos 7g,

. , , „ 355081 , , 355081 ,

mstead of ^1032 y « i^ead
2^\s\5.7



40.

ON NEWTON'S THEORY OF ASTRONOMICAL REFRACTION, AND ON HIS

EXPLANATION OF THE MOTION OF THE MOON'S APOGEE.

[British Associaticm Report (1884), p. 645.]



41.

ON THE GENEEAL VALUES OF THE OBLIQUITY OF THE ECLIPTIC, AND
OF THE PRECESSION AND INCLINATION OF THE EQUATOR TO THE
INVARIABLE PLANE, TAKING INTO ACCOUNT TERMS OF THE SECOND
ORDER*.

[From Th^ Observatory, No. 109 (1886).]

If we adopt the values of the precession and nutation employed by

Peters in his classical work Numerus Constans Nutationis, I find that

the ratio of the sum of the masses of the Earth and Moon to the

mass of the Moon is that of 82*834 to 1, a result which differs slightly

from that found by Peters from the same data.

The amount of precession caused by the Sun's action depends in a

slight degree on the eccentricity of the Earth's orbit. In order to find

the precession for an indefinite period, it will be proper to employ the

mean value, of the square of this eccentricity instead of the value of this

quantity at the present time.

Taking this circumstance into account, and also introducing the small

correction of the coeflBcient of precession which depends on the square of

the coefficient of nutation, I find that if a be the obliquity of the

* Abstract of a paper read Sept. 11, 1884, at the Philadelphia meeting of the American

Association for the Advancement of Science.
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ecliptic at any time, the rate of the luni-solar precession at that time

during a Julian year wOJ be represented by ccosw, where c = 54"-94625

nearly.

Now let ON'N be the fixed plane of reference, which may be either

the ecliptic at a given epoch, or, better stUl, the invariable plane of the

system, or any other arbitrary fixed plane.

Also let N'lJ be the position of the ecliptic 1

and N£! that of the equator
J

^ '

so that the point U is the autumnal equinox at that time. 0N=^,
ON' = (j)', being a fixed point, and 6' the inclination of the equator

and ecliptic respectively to the fixed plane, and co the angle N'EN, or

the obliquity of the ecliptic at time t. Also let NE= \. Then the

quantities jp = tan ^' sin ^' and g = tan ^' cos <^' are known in terms of t

from the theory of the secular variations of the plane of the Earth's

orbit, and ^ may be considered as a small quantity of the first order,

the square of which we propose to take into account.

In the triangle N'EN we have

cos ft) = cos ^ cos 6' + sin 9 sin 6' cos {^ — <j>'),

sin ft) cos A, = sin cos 6' - cos 6 sin 0' cos (^ - ^'),

sin ft) sin \ = sin 0' sin (^ — ^'),

which give w and \ when and <j) are known.

From the instantaneous motion of the equator with reference to the
ecliptic at time t, supposed for an instant to be fixed, it is easily seen
that we have

d6 1
-jT = — c -;

—

-Q cos ft) sin ft) cos \,
at sm '

d0

dt
c cos ft) sin ft) sin X,
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or, substituting from above for cos tu, sin oi cos X and sin at sin X,

-^ = — c ~—^ {cos ^+ sin ^ tan 6' cos ((^ — ^')} {sin 6 — cos 6 tan ff cos ((^ — e^')},

dt
= c cos^ ^' {cos ^ + sin ^ tan 6' cos (<^ — (f)')}

tan ^' sin {<j) — ^'),

which are the differential equations for determining 6 and
<f),

6' and
<f>'

being supposed to be already known in terms of t.

From the above we may deduce the following :

—

The integration of these equations may be readily effected by the method

of indeterminate coefficients.

Suppose the values of p and q to be

q = %yi cos (git + ^,),

where i takes the successive integral values 0, 1, 2, &c., equal in number

to the number of planets considered, and the quantities y^, gi, and /8,- are

known constants.

Then we may find that

^ = A + -J
tan htai (a^- 1) y/+ ^ cot ht (cii - -J) y/

+ Sa^yi cos {{h -g,)t + a- ^j}

+ S% {yiY cos 2 {(^ - gr^.) « + a - A}

+ Sa^^y^y,. cos {(2^ -g,-gj)t + {2a-^ - A)}

+ ^co'ijYiyi cos {(s'i
-

p[,)
t + A- - ^,.}.

And

(f>
= kt + a + tbiji sin {(^ -c/i) t + a- A}

+ S6« (y,-)' sin 2 {(A; - ^,) « + a - A}

+ t\y]y^ sin {(2^ - gr, - g-,-) « + ( 2a -A - A)}

+ tb'ifYiy^ sin {(gr,. -
g^) « +A - Al'

in which i and y are supposed to be different integers.

A. 39
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Also

a, = 7 , and therefore a,— 1 = y

—

*—
;

9i'
' 1^-9

{(a/ + a/ - 2) tan h + («»• + a,) cot h}

;

h Tc

a' „ = I {a/— 2aj. — a/ + 2a,} tan A + ^ _ ,
(a^ — a,) cot h.

9i~ 9i 9i 9i

Also

&j. = — ttf (ttj — 1) tan ^ — «; cot A ;

^u = !«/ (<*i
- 1)' tan' ^+ la^ (a/ + «»• - 1) + Ja/ cot' A

;

h = - 9i_n -n. ^y tan A -
-I- kttz „ —, K («—!) + «,- (% - 1 )} tan' h^k-gi-gj

^^2]c-g,-gj

^k-gi-gj

{a/+ a^ — 1 + a/ + a,- — 1 — ttj-a,}

yfc

^k-gi-g
{tti+ a,) cot' /i

;

k k
^'ij = -

;7Z7; ^'^J
tan ^i + 1- -—- {a^ (««-!) + «, («,- - 1 )} tan' h

k—^—^j^ {a/+ a/+ a^aj — oa^ — 5a;+ 6}

;

or the value of this last coeflScient may be otherwise expressed thus

—

k
^ *=-i ^Z:^. i(^«- 1) («j - 1 ) («i+ «i) tan' A + (a,+ coj -2){a,+ aj - 3)}.

Also the value of w, the obliquity of the ecliptic, is thus expressed

in terms of the same quantities

:

Q} = h + t{ai-l)yiCos{{k-gi)t + a- 13,}

+ t[-iai{a,-lYtsinh-i{ai-lYcoth']y?cos2{{k-gi)t + a-^,}

+ t 1
2",2;^_-^/«/ + <-2)tan^-i^^-|_^(a, + a,)cot^

+ 1 {a? + a/ - Ui- aj) tan A + ^ (a^+ «,• - 1 ) cot h

X y,yj cos {(2^ - g,- ^r,.) ^ + 2a -^ - Al
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+ t
k k

I" —^— (a,- — aj) (a,-+ a,- — 2) tan h + ^ (a^ — ctj) cot h
- 9i 9i 9i~9i

—
-^ («/+ «/ — aj — a,-) tan A- — !•(«,•+ a,— l) cot^

X y^7i cos {{g^ - gj) < +A - A)-

Also the value of k in terms of the constant c which, as stated

before, is known from the theory of precession is

k= -ccosh{l -t i{a,-l) {3ai- 5) yf}

;

h and a are the arbitrary constants which enter into the complete

integrals of our equations, and they are determined so as to make
the initial values of 6 and ^, or those of w and ^, equal to the ob-

served values.

It is to be remarked that one of the values of g is 0, and if the

invariable plane of the system be taken as the fixed plane of reference,

the corresponding value of y will be also zero, so that the expressions

for 6,
<f>,

and w will he. considerably simplified by this choice of the

fixed plane.

According to Stockwell's determination, in Vol. 18 of the Smithsonian

Contributions, the longitude of the ascending node of the invariable plane

on the ecliptic of 1850 is 106° 14' 18", and the inclination of this plane

to the same ecliptic is 1° 35' 20".

Also, as already mentioned, if we make the invariable plane of the

system our plane of reference, we have for g„= 0, y^-= ; and the re-

maining values of gi and those of /S^ and log y,- which correspond to

them, according to Stockwell's determination, will be the following :

—

i=l
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where the quantities Qi are expressed in seconds and have reference to a

Julian year as the unit of time, and the quantities y^ are expressed in

circular measure.

Now in the figure before given the point N' is the descending node

of the invariable plane on the ecliptic of 1850, so that the longitude of

N' is 286° 14' 18".

Also the longitude of the point E, which is the autumnal equinox,

is 180°. Hence iV'^ = 253° 45' 42".

Whence we may find for 1850:

e= 23° 3' 43"

<ji-<j>' = 257 20 31

or <^ = 183 34 49

Also, according to Stockwell, the obliquity of the ecliptic in 1850
was

ft) = 23° 27' 3l"-0.

Hence by repeated approximation we may find

:

h= 23° 18' 54" nearly

a=177 25 52

also ^=-50"-4607

whence by substitution all the terms in 0, (ft, and <o may be found
numerically.

Addition.—If we wish to take into account the variability of the
eccentricity of the Earth's orbit, the value of — ^ should be taken

= 50"-4548 + 24"-034 {e'-e,%

and the quantity —kt in the above formulae should be replaced by

50"-4548 t+
I

24"-034 (e^-e/) dt.

Where e is the eccentricity of the Earth's orbit at time t, and e/ the
mean value of the square of the eccentricity, which, according to Stockwell's
determination, is

= 0009864.



42.

ADDRESS ON PRESENTING THE GOLD MEDAL OF THE ROYAL ASTRO-

NOMICAL SOCIETY TO M. PETERS.

[From the Memoirs of the Royal Astronomical Society. Vol. xxi. (1852).]

It has already been announced to you that the medal of the Society

has been awarded to M. Peters, for his two papers, entitled, "Numerus
Constans Nutationis ex Ascensionibus Rectis Stellse Polaris in Specula

Dorpatensi Annis 1822 ad 1838 observatis deductus," and "Eecherches

sur la Parallaxe des Etoiles Fixes," which are published respectively in the

third and fifth volumes of the sixth series of the Mathematical and
Physical Transactions of the Imperial Academy of Sciences of St Petersburg;

and it is now my duty to explain to you the grounds of this award,

which (unless their effect be marred by my very imperfect statement of

them) wUl, I doubt not, secure your approval.

These papers form part of a series emanating from the astronomers

of the Pulkowa Observatory, and having for their object the advancement

of sidereal astronomy; first, by a new and more accurate determination of

the elements which affect the apparent places of all the stars, such as

precession, nutation, and aberration; and, secondly, by an examination of

the peculiarities affecting individual stars, such as annual parallax and

proper motion, by which alone we can gain a knowledge of the scale on

which the visible universe is constructed, and of the arrangement in space

and of the relative motions of the bodies of which it is composed.
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These important objects have been steadily pursued at the Pulkowa

Observatory, under the guiding mind of its illustrious director, with an

energy and success which have placed that establishment in a position

with respect to sidereal astronomy, similar to that which our own obser-

vatory of Greenwich occupies with respect to the observation of the Moon.

The order of date, as well as the nature of the subjects treated of,

leads me first to speak of M. Peters' paper on the constant of nutation.

But before proceeding to give an account of the paper itself, it may not

be out of place to advert rapidly to former researches respecting nutation.

When Newton traced the precession of the equinoxes to its cause in

the attraction of the Sun and Moon on the protuberant equatoreal zone

of the terrestrial spheroid, he perceived that the Sun's action would likewise

cause a nutation of the Earth's axis, the period of which is half a year.

He contents himself with remarking that this nutation can be scarcely

sensible.

In the same way, of course, the Moon's action produces a small

nutation, of which the period is half a month. Abstracting these nutations,

the tendency of the Sun's action is to make the pole of the equator move
in a circular arc about the pole of the ecliptic; and in a similar manner
the Moon's action tends to make the pole of the equator describe a circular

arc about the pole of the Moon's orbit for the time being. Now, as this

latter pole moves in a circle about the pole of the ecliptic in a period

of about nineteen years, it is easy to see that this will give rise to an
inequality in the rate of precession, and to a change of the obliquity of

the ecliptic, having the same period.

It is curious, however, that Newton does not allude at all to this,

which constitutes by far the most important part of nutation ; and this

is the more remarkable, since the principles which he lays down in treating

of precession are quite sufficient to obtain, by means of very simple

geometrical reasoning, not only the law, but very approximately, the co-

efficients of the inequalities in the precession and obliquity due to this cause.

The state of practical astronomy, however, in Newton's time, was not

sufficiently advanced to induce him to enter more fully into this subject;

and it was, consequently, reserve^ for the immortal discoverer of aberration

to detect these motions of the Earth's axis by means of his observations,

and then to trace them to their true cause. While discussing the obser-

vations which led him to the discovery of aberration, Bradley noticed that

the annual changes of declination of the stars did not exactly correspond
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with those which would be occasioned by precession, and he made allowance

for this by employing in the reduction of his observations the changes

deduced from the observations themselves.

No sooner, therefore, had Bradley determined the law and the cause

of aberration, than a new subject of investigation presented itself, requiring

a much longer course of observations for its complete examination. Com-
paring his observations of different stars, he found that their changes of

declination were such as might be attributed to a real motion of the

Earth's axis, and he was not slow in perceiving that the varying action

of the Moon upon the equatoreal parts of the Earth, according to the

different positions of the nodes of the lunar orbit, was the probable cause

of this motion. During the course of the observations, Bradley communi-

cated what he had observed to Machin, who was then "employed in

considering the theory of gravity and its consequences with regard to the

celestial motions," mentioning at the same time what he suspected to be

the cause of these phenomena.

Machin confirmed this supposition, and shewed that the observed

motions might be very nearly accounted for, by supposing that the pole

of the equator described a small circle about its mean position as centre,

during a period of the Moon's nodes.

Bradley remarked that his observations would be more completely

represented by supposing the true pole to move about the mean pole in

an ellipse instead of in a circle, the major axis being in the solstitial

colure; and this conclusion is perfectly true, the minor axis being, however,,

a little smaller than he made it.

Bradley continued the observations during an entire revolution of thu

Moon's nodes, and then published an account of his discovery in the

Philosophical Transactions for 1748, in a paper which is a perfect model

of lucid statement and strict inductive reasoning.

In the following year, D'Alembert succeeded in determining the true

motion of the Earth's axis by means of analysis, in his "Recherches sur

la Precession des Equinoxes et sur la Nutation de I'Axe de la Terre,"

and since that time the subject has been repeatedly treated of by physical

astronomers. The most complete and elegant theoretical investigation, how-

ever, of the motion of the Earth about its centre of gravity is that given

by Poisson in the seventh volume of the Memoires de VInstitut. The

theoretical investigations with respect to nutation leave nothing to be

determined by observation, except the value of one constant. This is
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generally chosen to be the coefficient of the principal inequality in the

obHquity of the ecliptic. The accurate determination of this constant is

important, not only from its being required for the reduction of star

observations, but also from its affording one of the best means we have

of determining the mass of the Moon.

In precession we see the effect of the joint action of the Sun and

Moon, but by means of the observed quantity of nutation, we can ascertain

what part of this is due to the Moon's action, and having thus obtained

the ratio between the actions of the Sun and Moon, the Moon's mass

easUy follows.

The most trustworthy determinations of the constant of nutation,

previous to this of M. Peters, are those of MM. Von Lindenau, Brinkley,

Robinson, and Busch; and M. Peters begins his memoir with a critical

examination of their labours.

The results of the three latter astronomers present an admirable

agreement, while that of Von Lindenau differs from them by about a

quarter of a second. Von Lindenau employed about 800 observations of

right ascension of Polaris, made at different observatories, and therefore

his result is liable to be vitiated by the different personal equations of

the several observers. We shall find in the sequel that this remark is

important.

Brinkley deduced his value of the constant from 1618 observations

of ten stars, made about the times of two opposite maxima of nutation

in declination with the Dublin meridian circle, the proper motions of the

stars being determined by the comparison of his own declinations with,

those in the Fundamenta, As these observations embrace only half a

period of the Moon's nodes, the result is liable to be affected by errors in

the supposed proper motions.

Dr Robinson's investigation is contained in the eleventh volume of the

Memoirs of the Royal Astronomical Society. He employs the declinations

of the polar star, and of fourteen others observed at Greenwich between

the years 1812 and 1835 with Troughton's mural circle. There can be no

doubt of the high value of this investigation, but M. Peters thinks that,

in consequence of the way in which the error of collimation is determined,

errors of observation may exist with a yearly period, and that these may
slightly affect the resulting value of nutation. Baily's coefficient of aber-

ration is employed, the annual parallaxes of the stars are neglected, and

the equations of condition are not treated by the method of least squares.
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M. Busch has deduced the constant of nutation from Bradley's obser-

vations at Kew and Wansted. The reductions are made in the most
strict manner, except that the annual parallaxes are neglected, and M. Peters

regards the result as worthy of the highest confidence.

M. Peters then enters upon his own investigations, which are based

on 603 right ascensions of Polaris, observed at Dorpat between 1822 and

1838, with Beichenbach and Ertel's meridian circle. Of these observations,

the first 249 were made by M. Struve, and the remaining 354 by M. Preuss.

These are compared with the right ascensions deduced firom the Tahulce

Hegiomontance, and the equations of condition thence arising are treated

by the method of least squares, taking as the unknown quantities the

correction of the constant of nutation, the correction of the constant of

aberration, the annual parallax, the corrections for the position of the axis

of the transit-circle (illuminated pivot east or west), the correction of the

star's right ascension, and the personal equation of the two observers.

The equations are first solved, giving equal weight to all the obser-

vations. The observations are then divided into two groups (one for each

observer), and the equations of each group are solved separately. There

is a surprising agreement between the results found from the four years'

observations of M. Struve, and the twelve years' observations of M. Preuss,

the coefficients of nutation deduced differing by less than three-hundredths

of a second. This investigation supplies a measure of the precision of the

separate observations, and it is found that M. Struve's observations are

entitled to greater weight than those of M. Preuss,

The whole of the observations are then combined, giving the proper

relative weights just obtained, and the equations are re-solved. The values

found for the unknown quantities differ extremely little fi:'om the results

given by the supposition of equaK weights.

One of the most striking results is the constant difference between

the right ascension given by the two observers, or the personal equation,

which amounts, for Polaris, to more than 0-8 of a second of time. The

magnitude of this shews that the personal equation changes with the

declination of the stars. Hence, also, we may easUy understand that

M. Lindenau's results may be vitiated by the omission of the consideration

of personal equation, especially as the observations which he employed were

made with different instruments, as well as by different observers.

A. 40
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While M, Peters was employed in these investigations, M. Lundahl

"was likewise engaged in discussing the observations of declination of the

same star, made also at Dorpat within the same space of time. The value

-of the constant of nutation which he deduces agrees admirably with those

found by MM. Peters and Busch.

Finally, M. Peters takes the mean of the three results, giving the

proper relative weights to the several determinations, and he finds the

most probable value of the constant to be 9"'2231, with the probable error

0"'0154. This value differs very little from Brinkley's, which has generally

Taeen employed by English astronomers, but M. Peters' determination un-

doubtedly possesses much greater weight.

M. Peters next enters upon a theoretical investigation of nutation, far

more complete than any that had before appeared. Starting from the

equations of Poisson's theory, he develops them, taking into account the

ellipticities of the orbits of the Earth and Moon, and also the principal

lunar inequalities. He thus obtains a great number of small terms which

had previously been neglected. Most of these may be safely omitted; but

there are two terms which should be taken into account in delicate

investigations, as they have an annual period, and are therefore mixed up
with the effect of aberration and parallax. M. Peters takes care to apply

the requisite corrections to the coefficients of aberration, and to the parallax

of Polaris given by his investigations. Although most of the new terms

found by M. Peters are very small, yet these researches are not the less

valuable, since it is always satisfactory to know what we really neglect.

M. Peters takes into account the effect of a possible difference between

»

the ellipticities of the two hemispheres, which he determines by means of

the pendulum experiments collected by Mr Baily in his "Eeport on the

Experiments made by Foster," in the seventh volume of the Memoirs of

the Koyal Astronomical Society. It fortunately happens that this effect is

insensible, as this difference of the two hemispheres is extremely doubtful.

The last part of M. Peters' paper contains researches on the obliquity

of the ecliptic and the precession of the equinoxes, so that he treats of

aU the elements which relate to the apparent changes in the places of

the stars, due to the motion of the pole of the Earth. He deduces
the secular diminution of the obhquity of the ecliptic by comparing the
obHquity for 1757, given by Bradley's observations, with that for 1825
given by the observations at Dorpat, both being reduced to the mean by
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the new value of nutation. The rate of the diminution so found agrees

very well with that found by M. Le Verrier from theory, the difference

not amounting to one second in a century. The true value of the obliquity

of the ecliptic at a given epoch cannot, however, be considered as definitively

settled, in consequence of the puzzling constant differences between the

declinations determined at different observatories. For instance, the obliquity

given by the mean of several years' observations at Greenwich exceeds by

rather more than one second the obliquity for the same epoch given by

M. Peters' investigations.

M. Peters' researches respecting precession are based on the results of

M. Otto Struve's paper, which obtained our medal on a former occasion,

combined with M. Le Verrier's determination of the secular change in the

position of the ecliptic.

M. Otto Struve determines, independently, by observation, the values

of two constants on which the precessions in right ascension and declination

depend. Now, theory establishes a relation between these constants, and

M. Peters is thereby enabled to find the most probable values which result

from the combination of the observed values, and thence to derive complete

formulae for precession applicable to any given epoch.

I have no hesitation in regarding M. Peters' results, with respect both

to precession and nutation, as definitive for the present state of astronomy.

I now come to M. Peters' second paper, which relates to the delicate

subject of the parallax of the fixed stars.

The first part of this important paper contains an historical and critical

review of the researches of astronomers respecting parallax from the time

of Tycho to the year 1842. The second treats of the parallaxes of several

stars as determined by M. Peters' own observations, made at Pulkowa by

means of the great vertical circle of Ertel. In the third part, the results

of the two former are applied to determine the mean parallax of stars of

the second magnitude.

The historical part is drawn up with great care, and contains many

curious and interesting discussions on particular points. For instance,

M. Peters shews that the coefficient of aberration may be obtained with

great accuracy from Flamsteed's observations of the zenith distance of the

pole-star. The probable error of a single observation is found to be only

6", which gives a far higher idea of the accuracy of Flamsteed's observations

40—2
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than has been generally entertained, Bradley himself remarked, that Flam-

steed's observations of the pole-star agreed with his theory of aberration.

The celebrated controversy between Brinkley and Pond is discussed at

considerable length, and the labours of the latter astronomer are criticised

with great severity. M. Peters considers that Brinkley was far superior

to his opponent in his knowledge of the theory of his instruments, and

in the use of precautions' to avoid error, though it is certain that Pond

was the more correct in his conclusions respecting parallax.

The parallaxes determined by M. Struve at Dorpat, from 1818 to 1821,

by means of observed differences of right ascension of circumpolar stars

having nearly opposite right ascension, deservedly occupy a good deal of

attention. The < parallaxes thus found, though small, were almost all positive,

and M. Peters confirms their reality by the following ingenious consideration.

He shews that any diurnal variation of the instrument due to temperature

wiU affect the coefficients of aberration and parallax in the same direction,

and the former probably more than the latter. Now, the coefficient of

aberration found from these observations is about 0"'08 less than the

definitive value given by the Pulkowa observations, and it is therefore

probable that M. Struve's parallaxes should be increased by a few hundredths

of a second.

Tt is unnecessary for me to follow M. Peters in his account of Struve's

micrometrical measurements of the parallax of a I/yrce, of Bessel's well-

known observations of 61 Cygni with the heliometer, and of the parallaxes

of a Centauri and Sirius, as determined by MM. Henderson and Maclear »

at the Cape, as these have been fully discussed by Mr Main in an able

paper in the twelfth volume of our Memoirs. The Council is also indebted

to Mr Main for a carefiil report on M. Peters' paper, from which I have

derived considerable assistance in drawing up my account of it.

The second and most important part of M. Peters' paper consists of

an investigation of the parallaxes of eight stars, by means of observations

of zenith distance made by M. Peters at Pulkowa, in 1842 and 1843, with

Ertel's great vertical circle. The stars selected are Polaris, Capella, t Urscs

Majoris, Groombridge 1830, Arcturus, a LyrcB, a Cygni, and 61 Cygni.

The utmost care is taken in the instrumental adjustments, in the

equalisation of the interior and exterior temperatures, and in eliminating

every imaginable source of error.
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It would be impossible for me to convey an adequate idea to any
one, unacquainted with M. Peters' paper, of the numerous precautions used

by him for this purpose. For instance^ the observations are made by
placing the wire very near the star, and then waiting for the time when
the star is exactly bisected by it. The large motions of the instrument

are always made without touching either the telescope or the divided

circle, or the pieces carrying the microscopes. In making the double

observation (face East and face West) the micrometer-screw is always

turned finally in the same direction, the reading of the levels is always

commenced at the same end of the scale (though they are protected from

heat by glasses). The effect of flexure of the telescope-tube is eliminated

by an important arrangement, by which the eye-piece and object-glass are

capable of being fixed at pleasure at either end of the tube. This trans-

position was made after every eight complete observations of the Sun.

At every observation the readings of the microscopes are taken for

coincidence with both the preceding and succeeding divisions on the limb,

and the utmost pains are employed to correct for any inequality in the

micrometer-screw and for errors of division.

Again, in the reduction of the observations and the elimination of the

unknown quantities, the same attention to minute accuracy is observable.

Thus, small terms are introduced into the expressions for aberration and

nutation which had hitherto been neglected, and an elaborate investigation

is entered into respecting the proper motions of the stars observed. The

unknown quantities to be determined are the correction to the assumed

latitude, the flexure of the telescope-tube, the correction of the thermo-

metrical coefficient of refraction, the correction of the assumed mean decli-

nation, the annual parallax, and the correction of the coefficient of aberration.

Of these, the first three are found by means of the observations of the

pole-star. All the equations are solved by the method of least squares,

and the greatest care is used in estimating the probable errors of all the

results, whether arising from probable errors of observation or uncertainty

in the elements employed in the calculation.

There are also discussions on some curious points, such as the effect

of clouds on refraction, the possible variability of latitude, &c. The resulting

values for parallax are all positive, with the exception of that of a Cygni,

which comes out a minute negative quantity; this, of course, only indicates

that the real parallax of that star is probably extremely small.
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The constant of aberration obtained by taking the mean of the several

results for the different stars is 20"-481, which differs only 0"-036 from

the definitive value found by M. Struve. The smallness of this difference

gives great confidence as to the accuracy of the results for parallax, as

there is no reason why the aberration should be found more accurately

than the parallax.

Another strong confirmation is afforded by the fact, that the parallax

of 61 Cygni determined by M. Peters is absolutely identical with that

found by Bessel by means of the heliometer.

The last part of M. Peters' paper treats of the mean value of the

parallax of stars of the second magnitude. M. Peters finds that there are

thirty-five stars whose parallaxes are determined with sufficient accuracy to

serve as a basis in this research. Of these, however, he excludes two stars

which have very large proper motions, 61 Cygni and 1830 Groombridge, as

exceptional, and therefore not properly to be included when an average is

the quantity sought. Struve's scale of relative distances of stars of different

magnitudes is employed in combining the observed parallaxes for different

stars, although the final result is nearly independent of the assumed scale,

inasmuch as the second magnitude is nearly the mean of aU the magnitudes

of the stars employed.

M. Peters shews his usual skill in estimating the probable errors which

may arise from the defects of the hypotheses employed, such as that of

the same absolute brightness of the stars, as well as from the errors of *

the observed parallaxes ; and he finally arrives at the result, that the most

probable value of the mean parallax of stars of the second magnitude is

0"'116, and that the probable error of this determination is only 0""014.

M. Peters closes his paper with a most interesting result, deduced by
combining his own researches with those of M. Otto Struve respecting the

solar motion. M. Otto Struve finds that the annual apparent motion of

the Sun, as seen at right angles from a point at the mean distance of

stars of the first magnitude, is 0"'339. Now, according to M. Peters, the

mean parallax of a star of the first magnitude is 0""209 ; so that we are

able to turn the former result into absolute measure. Thus the annual

motion of the Sun with respect to the great body of the surrounding

stars is equal to 1'623 times the radius of the Earth's orbit.
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I cannot but regard this work of M. Peters as a perfect model of
excellence, evincing consummate skill in the observer, as well as admirable
power of turning the observations to the best account. It shews that it

is possible by meridional observations to obtain absolute parallaxes almost
as small as the relative parallaxes that can be measured by the heliometer,

or by similar means ; though to do so requires a most rare union of instru-

mental advantages, care and judgment in the observer, and analytical skill

in combining in the best manner the results of observation.

No one can read the papers of M. Peters, or those of the Russian

and German astronomers generally, without being struck with the constant

employment of the method of least squares. It is to be wished that this

method were more in use among English astronomers, as I believe not a

little of the precision of modern determinations is due to it. We seem

to entertain a distrust respecting the results of the calculus of probabilities,

more particularly with regard to the estimation which it affords of the

probable amount of error in any determination.

It should be borne in mind, that when we speak of the probable error

being of a certain amount, it is not meant that it is improbable that the

error should exceed that amount, but only that it is as probable d priori

that the error falls short of, as that it exceeds it. If we know by inde-

pendent means that the error of any determination is much greater than

the probable error given by the observations, we may infer, with great

probability, that some constant cause of error has occurred in the obser-

vations employed. In the estimation of probable error, only fortuitous causes

of error are taken into account. The employment of the method of least

squares does not render it less necessary to avoid all sources of constant

error: it is not a substitute for, but an auxiliary to good observations,

and enables us to obtain from them all that they are capable of yielding.

I cannot conclude without congratulating the Society on the improved

prospects of that very delicate branch of astronomy which relates to the

research of stellar parallax, especially as there is every reason to believe

that this country will contribute its fuU share to the advancement of it.

We may hope that the beautiful reflex zenith telescope of the Astronomer

Royal, the magnificent heliometer which is in the able hands of Mr Johnson,

and the improved method of recording star transits by means of galvanism,

will enable us ere long to take many firm, though long-reaching, steps

into regions of space hitherto untrodden.
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{The President then, delivering the Medal to Mr Hind, Foreign Secretary,

addressed him in the following terms):—
In transmitting this medal to M. Peters, you wUl assure him of our

high appreciation of the importance of the results at which he has arrived,

and of the admirable science and skUl which he has shewn in obtaining

them; and you wiU express our confident hope, that in his new sphere

at Konigsberg he wUl confirm and add to the reputation which he has so

deservedly acquired at the Observatory of Pulkowa.



43.

ADDRESS ON PRESENTING THE GOLD MEDAL OF THE ROYAL ASTRO-
NOMICAL SOCIETY TO MR HIND.

[From the Memoirs of the Royal Astronomical Society. Vol. xxii. (1853).]

Gentlemen,—You have heard from the Eeport which has just been read

how much reason we have to congratulate ourselves on the present state

and future prospects of our science. Never was there a time when greater

vigour and activity were exhibited in the promotion of it. Nor is this

activity confined to one country, or devoted merely to one department of

astronomy. Whether we regard the introduction of improved instruments

and methods of observation, or the more rigorous discussion to which the

observations are submitted, the formation of extensive catalogues of stars,

the discovery of new members of our planetary system, or the closer and

more systematic scrutiny and examination of those which are already known,

in every direction we find the most satisfactory evidences of progress.

One of the most prominent features of astronomical discovery for several

years past, has been the continual addition of new members to the remark-

able group of small planets between the orbits of Mars and Jupiter, and

the year just ended has been distinguished beyond all precedent in this

respect.

Since our last anniversary meeting no fewer than eight of these bodies

have been brought to light, and the supply seems to be inexhaustible.

New discoverers have made their appearance on the field, whUe those who

A. 41
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have already distinguished themselves seem to have acquired a new aptitude

in the search.

It is gratifying to find that one of our own body has been the very

foremost in this noble career of discovery; and to him, in testimony of

our appreciation of his well-directed and successful labours, the Council has

awarded the medal, which it is my pleasing duty this day to present.

Skilfully using the excellent instrumental means placed at his disposal

by the enlightened liberality and scientific zeal of Mr Bishop, and in spite

of the interruptions occasioned by a climate, the disadvantages of which

are peculiarly felt in researches of this nature, Mr Hind has added no

fewer than eight planets to our system, four of which have been found

in the course of the past year. After this, I feel that it is unnecessary to

add another word in justification of the award of your medal. Mr Hind's

discoveries are of a nature to be understood and appreciated by all; and

I shall, therefore, confine myself to a very brief notice of some circumstances

connected with them, and to a few remarks on the conclusions to which

they seem to point, respecting the constitution of our planetary system.

The first five of Mr Hind's planets were found by comparing the

beavens with the excellent and well-known star-maps of the Berlin Academy.
These, however, are limited to 15° on each side of the equator, and there-

fore do not include the whole of the region about the ecliptic, which it

is so desirable to examine ; neither do they contain stars smaller than

between the ninth and tenth magnitudes.

Mr Bishop, therefore, very soon determined to intrust to Mr Hind the

formation of a series of ecliptic charts, which should contain all stars down
to the eleventh magnitude, which were situate within 3° on each side of

the ecliptic. Mr Hind has already begun to reap the fruits of these labours,

the planet Fortuna having been detected in the course of preparing one
of the charts, while Calliope and Thalia were found by the comparison of

two of the completed charts with the heavens.

Eight of these valuable charts have now been published, and I under-

stand that most of the remaining ones are considerably advanced. Other
astronomers, particularly Mr Cooper of Markree, are engaged in the prepar-

ation of charts on a similar plan, and the path of future discoverers cannot
fail to be singularly facilitated by their means.
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The existence of such a numerous group of small planets in the same
part of our system has naturally given rise to much speculation respecting

their origin and mutual relations. When, instead of the single planet which

was expected to fill up the gap between the orbits of Mars and Jupiter,

Ceres and Pallas were found at very nearly the same mean distance from

the sun, Olbers threw out the conjecture that they were fragments of a

larger planet which had been rent asunder by some internal convulsion,

and that many more such fragments probably existed. If this were the

case, he reasoned, they would all, after longer or shorter periods, again pass

through the point where the explosion took place, and though the pertur-

bations which they would suffer, would, in the course of time, prevent them

from continuing to pass exactly through the same point, yet it might be

expected that they would not stray far from it, and that, therefore, the

remaining fragments might be found by carefully watching the parts of the

heavens corresponding to the two points in which the orbits of Ceres and

Pallas approached towards intersecting.

Although the finding of Juno and Vesta appeared to give some counte-

nance to this hypothesis, later discoveries have deprived it of much of

its plausibility. Several of the orbits are everywhere far distant from each

other, and where the contrary is the case, the points of nearest approach

occur in various parts of the heavens. Probably one reason why Olbers

did not discover more of these bodies, though he continued his examination

for many years after detecting Vesta, was, that he was induced by his

theory to confine the search within too narrow limits.

Several astronomers have endeavoured to find some general relations

between the orbits of this group, similar to that imagined by Olbers; but

it appears to me that they have only succeeded in shewing a kind of

general resemblance, indicating rather that similar causes have operated in

determining the orbits of these bodies than that they were originally identical.

If we allow ourselves to speculate on the formation of our planetarj

system, and adopt the nebular theory, it seems at least as easy to imagine

that the nebulous matter, circulating in any particular region about the

Sun, would, in cooling, collect into many small masses, as that it would all

coalesce into one.

Although, as has been stated, there is no single point through which

all the orbits nearly pass, yet many of them, taken two and two, approach

very closely to each other. In the case of Astrcea, and Hygeia, in particular,

41—2
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the shortest distance between the two orbits is less than xs^^^ P^^ of

the Earth's mean distance from the Sun; so that, as M. D'Arrest remarks,

the time of their actual intersection cannot be very distant from the present.

One of the most curious circumstances connected with this group is,

that there are several cases in which the mean distances are nearly identical

with each other. Thus the mean distances of Ceres and Pallas are so

nearly equal that their order of magnitude is sometimes changed by per-

turbation. The same remark applies to Iris and Metis, and also to the

three planets, Astrcea, Egeria, and Irene.

It should be noticed that this identity of mean distance would not

be at all explained by supposing the planets in which it occurs to have

been originally one.

There are also some remarkable cases in which the mean motions are

nearly commensurable. Thus the mean motions of Juno and Vesta are very

nearly in the ratio of 5 to 6, while those of Juno and Flora are as 3 to 4,

and consequently those of Vesta and Flora as 9 to 1.0*.

The extreme smallness of the apparent diameters of these bodies makes
it very difficult to determine their real diameters by direct measurement.

According to Sir W. Herschel's observations, the diameters of Ceres and
Pallas would not be far from 140 English miles, while Schroter's obser-

vations would make them much larger. Stampfer has attempted to determine

their diameter by means of their apparent brightness, supposing the reflective

power of their surfaces to be the same as that which obtains in the case

of Jupiter, Saturn, Uranus, and Neptune. This supposition is obviously

rather precarious, especially as the reflective power of Mars is found to

be much less than that of the other planets; but Stampfer's result agrees

very closely with the above-mentioned determination of Sir W. Herschel.

Several of the more recently-discovered planets appear to be much smaller

than these; and it is not improbable that there are many more which, by
their excessive minuteness, elude our telescopes altogether. In this point of

view, these asteroids would seem to form a connecting link between the

larger planets and the aerolites, the cosmical nature of which appears to be

pretty weU established.

* The mean daily sidereal motion of Juno is 814"-24:; that of Vesta, 977"-20; and that

of Flora, 1086"-08. Also | x 814-24 = 977-08, and | x 814-24 = 1085-65.
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To the physical astronomer these bodies offer problems of great interest

and difficulty. On account of the large eccentricities and inclinations of

some of the orbits, methods of approximation which succeed in determining

the perturbations of the older planets become quite inadequate to deal

with these, and, consequently, astronomers have hitherto been compelled to

have recourse to the method of mechanical quadratures in order to calculate

their motions. But although this method may be employed in all cases,

and the use of it becomes much simplified by applying it directly to the

differential equations of motion, in the elegant manner which has been recently

devised by Mr Bond and Professor Encke, yet it only enables us to follow

the disturbed planet, as it were, step by step, and it is, therefore, very

desirable to have a method by which the course of the planet might be

traced through an indefinite number of revolutions, and the results of which

might be embodied in tables.

Professor Hansen has attacked this very difficult problem with his

characteristic originality and skill, and Sir J. Lubbock has also treated the

same subject very ably in his tracts on the perturbations of the planets.

Much, however, remains to be done before the application of the method

of quadratures to these cases can be superseded. It will be quite indis-

pensable to take into account the square and higher powers of the disturbing

force.

It may be remarked, however, that the eccentricities and inclinations of

the orbits of several of these new planets are so moderate, that there will

be little difficulty in calculating their perturbations by the ordinary methods.

The disturbances which these bodies suffer from the action of Jupiter

are so large as to afford an excellent means of determining the mass of

that planet. It was thus that Nicolai found that the value of this mass

which had been employed by Laplace and Bouvard was considerably too

small,—a result which Mr Airy afterwards confirmed by direct measures of

the elongations of the satellites. Considering the great degree of proximity

to each other, to which these bodies sometimes attain, it does not seem

improbable, notwithstanding their minuteness, that they may occasionally

produce a sensible effect on each other's motions ; in which case the astro-

nomer would be able to weigh these minute atoms in the same balance

which he has already applied to the larger bodies of our system.

In examining the heavens in search of small planets, Mr Hind has

jiaturally been led to pay great attention to the variable stars, and he
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has consequently detected a considerable number of these objects among

the smaller stars. Two of these I will mention, which are at opposite

extremities of the scale, and which seem to imply the operation of totally

diflferent causes.

The first is that remarkable new star in Ophiuchus which Mr Hind

noticed on the 27'th of April, 1848, as being of the 6th magnitude, and

occurring in a spot where he was certain no star even of the 9—10th

magnitude had been visible three weeks before. After attaining to the

4—5th magnitude, so as to be conspicuous to the naked eye, it gradually

faded away, and at present it is only of the 11th magnitude.

The other star to which I wUl refer appears to vary in a similar way
to Algol. Its period, according to Argelander, is about 9*^ H^'', but for

9 days of this time it shines as a star of the 8th magnitude, then suddenly

descends to the 10—11th, and as quickly returns again to the 8th.

Variations of this latter kind appear to be most naturally accounted

for by the periodical interposition of an opaque body in its revolution about

the star, but those of the kind first mentioned seem to mock all our

attempts at explanation.

In recording these discoveries, it is doubly gratifying to recollect that

they emanate from an observatory founded and maintained by a private

individual out of pure love of the science and zeal for its advancement.

Of the judgment which Mr Bishop has shewn in the selection of his

observers, and the choice of objects of observation, there can be no better
,

proof than is afforded by the admirable double-star observations of Mr Dawes
and the planetary discoveries of which we have just been speaking.

Mr Bishop may well feel proud in the consciousness that his observatory

has been the means of contributing so largely to science, and has thus

become known wherever astronomy is cultivated.

Another subject of congratulation is the manner in which Mr Hind's

services to science have been recognised by the Government of the country.

It is sometimes asked, whether the progress of science is best promoted
by private or by public means; but the truth is, that there is no such

opposition between these modes of advancing it as is implied in the form

of the question. In a country where the dignity of science, and the benefits

which it confers, are properly estimated, both Government and people will

harmoniously co-operate in its support, and each will easily find its appro-
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priate sphere of action. Surely few objects can be mentioned more truly

national in their character than the encouragement and reward of scientific

discoveries, which at the same time reflect honour on the country, and give

so powerful an impulse to the intellectual advancement of the people.

{The President then, delivering the Medal to Mr Hind, addressed him in the

following terms):—
Mr Hind,—It is with peculiar pleasure that I present you with this

Medal, in testimony of our appreciation of your eminent services to astronomy.

The whole world will acknowledge how nobly it has been earned, and wUl

join with us in the wish that your health may long be spared, and that

thus you may be able to make many more additions to our knowledge in

that field of science to which you have devoted yourself with so much
energy and success.



44.

ADDRESS ON PRESENTING THE GOLD MEDAL OF THE ROYAL ASTRO-

NOMICAL SOCIETY TO M. CHARLES DELAUNAY.

[From the Monthly Notices of the Royal Astronomical Society. Vol. xxx. (1870).]

Gentlemen,—It has been announced to jou that the Society's Medal

has been awarded to M. Ch. Delaunay for his great work on the Theory of

the Moon.

The illness of our excellent President having made it impossible for

him to be present on this occasion, the Council have done me the honour

to request that I would occupy the chair, and in his stead lay before you

the grounds of their award. I have acceded to their wishes with the more

readiness because I have given some attention to special branches of the

Lunar Theory, and my study of M. Delaunay's work has led me to form the

highest opinion of its merits.

Of all the problems presented to us by physical astronomy none has

so much engaged the attention of mathematicians as that of the deter-

mination of the motion of our satellite. The theoretical interest as well

as the great practical importance of the results, has proved an irresistible

attraction, and the mathematical difl&culties have merely acted as a stimulus

to the invention of various methods of surmounting them. It is fortunate

that this has been the case, as the excessive labour involved in any theory

of the Moon approaching to completeness, might otherwise have proved too

great for human perseverance. The foundations of the theory were laid by
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Newton in his Principia ; and although his investigations are only fragmentary,

being simply intended to shew how some of the leading lunar inequalities

may be deduced from theory, yet they form one of the most admirable

portions of that immortal work. Towards the middle of the eighteenth

century the theory was more systematically entered upon by Clairaut,

D'Alembert, and Euler, who severally shewed that the theory was competent
to give very approximate values of all the inequalities which were then
recognised by observation.

Still the theory was far from being sufficiently perfect to serve as a

foundation for lunar tables accurate enough for the uses of navigation.

This degree of accuracy was first attained by the tables of Mayer, who
not only carried the approximations to the values of the coefficients of the

various lunar inequalities further than his predecessors had done, but also

corrected the theoretical coefficients thus obtained by comparison with his

own observations. The theory was greatly advanced by Laplace, not only

by his more accurate theoretical determination of the coefficients, but also

by several important discoveries, especially that of the cause of the Moon's

secular acceleration.

The improvements in the lunar tables, however, which were made
successively by Biirg and Burckhardt, were founded, not on theory, but on

comparison of the former tables with observations ; and the empirical tables

thus produced were far more accurate than any that could have been

formed at that time by theory alone. Dissatisfied with this state of things,

and wishing to see astronomy founded exclusively on the law of attraction,

only borrowing from observation the necessary data, Laplace induced the

Academy of Sciences to propose for the subject of the mathematical prize

which it was to award in 1820 the formation, by theory alone, of lunar

tables as exact as those which had been constructed by theory and obser-

vation combined. The prize was divided between two memoirs—one by

M. Damoiseau, the other being the joint production of MM. Plana and

Carlini. Damoiseau's memoir is printed in the third volume of the Recueil

des Savants Strangers. Plana's great work on the lunar theory, which

appeared in 1832, is the development of the joint memoir by himself and

Carlini. By these important works an immense advance was made in the

theory, the approximations being carried to such an extent that the resulting

coefficients were comparable in accuracy with those given by observation.

In 1824 Damoiseau published tables founded entirely on his theory, which

were found to be quite as exact as those of Burckhardt.

A. 42
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Both Damoiseau and Plana, following the example of Laplace, start

from differential equations in which the Moon's longitude is taken as the

independent variable ; and after the equations have been integrated, they

obtain the values of the Moon's coordinates in terms of the time by

reversion of series. An important innovation, however, was introduced by

Plana in the mode of conducting the investigation and exhibiting the results.

The values of the Moon's coordinates being developed in series of sines and

cosines of angles which vary uniformly with the tim.e, the coefficients of

the several terms of these series will depend on the eccentricities of the

orbits of the Sun and Moon, the inclination of the Moon's orbit to the

plane of the ecliptic, the ratio of the mean motions of the Sun and Moon,

and the ratio of their mean distances from the Earth. Now Damoiseau,

in common with all previous writers, having assumed certain values of the

quantities just mentioned as given by observation, contented himself with

determining the numerical values of the coefficients. Although this is all

that is required for the construction of tables, yet, from a theoretical point

of view, it leaves the mind unsatisfied, inasmuch as any coefficient in its

numerical form shews no trace of its composition, that is of the manner
in which its value depends on the value of the assumed elements. The
several coefficients are far too complicated functions of the elements to be

represented analytically, except in the form of infinite series, and Plana,

accordingly, developes these coefficients in such series, proceeding by powers

and products of the eccentricities, the tangent of the inclination, the ratio

of the Sun's mean motion to that of the Moon, and the ratio of the

Moon's mean distance to that of the Sun, all these quantities being assumed
to be small, and the last mentioned ratio, which is much smaller than the

,

others, being considered as a quantity of the second order.

In this mode of development, the numerical factor which enters into

any term of the coefficient of any of the lunar inequalities is an ordinary

fraction which admits of being determined not merely approximately, but

with absolute accuracy. It is easy to see what great facilities are afforded

by this circumstance for the verification of the work by a comparison of

the results obtained by different methods. The greater or less degree of

approximation will thus depend on the greater or less number of terms

taken into account in the several series.

The numerical values of the several elements are not substituted in

the formulae until the work is completed, and this is attended with the

important advantage that when a comparison of the theory with observation
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has supplied more accurate values of the elements, their corrected values

can be at once substituted in the same formulse, vsdthout requiring any-

additional work.

On the other hand, if the numerical values of the elements be intro-

duced into the calculations from the first, then if it is desired to introduce

corrected values of the elements, much additional investigation will be

required for the purpose.

No doubt the labour required in order to obtain a given amount of

numerical accuracy by this method is very much greater than is required

when each coefiicient, instead of consisting of a series of terms, is reduced

to a simple numerical quantity, but the great theoretical advantage of

knowing the composition of every coefficient in terms of the elements well

repays the additional labour.

The degree of convergence of the series obtained for the several co-

efficients is in general sufficiently rapid, but in some few of the coefficients,

on the contrary, the convergence is so slow, at least in the leading terms,

that it is necessary to take into account terms which are analytically of

a higher order than those to which the approximation is in general limited.

Thus Plana, who proposed to himself to determine the lunar inequalities

completely to the fifth order, found it necessary in special cases to carry

the approximation to the seventh and even to the eighth order, and in

several cases he also added an estimated value of the remainder of the

series founded on the observed law of diminution of the calculated terms.

Soon after the publication of Plana's great work. Sir John Lubbock

formed the plan, which he partly carried out in his various tracts on the

theory of the Moon, of verifying Plana's results by a totally difierent

method, starting from difierential equations in which the time is taken as

the independent variable, and thus avoiding the necessity of reversion of

series.

Later, M. de Pont^coulant undertook the same work on a similar plan,

and carried it out more completely in the fourth volume of his Theorie

Analytique de Systbme du Monde.

These works, while they corrected some errors which had crept into

Plana's computations, confirmed their wonderful general accuracy, and with

some few exceptions they do not extend the approximation beyond the

order to which Plana restricts himself.

42—2
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Meantime, M. Hansen had undertaken a completely new investigation of

the lunar theory, by a remarkable method peculiar to himself and explained

in his Fundamenta nova investigationis orbitcB verce quomi Luna perlustrat,

which appeared in 1838.

In applying the method described in this work to the case of the

Moon, M. Hansen throughout employs numerical values of the elements of

the Moon's orbit, and consequently the coefficients of the lunar inequalities

as obtained by him are also purely numerical. The process is one of

successive approximations, which are repeated again and again untU the

values of the inequalities which are found from the last approximation

sensibly coincide with those which were assumed in entering upon that

approximation.

The numerical values of the coefficients thus finally obtained are un-

doubtedly very exact. The slight corrections which these coefficients still

require are probably chiefly due to the small corrections required by the

numerical elements on which the calculations are based, and in the method

employed no provision is made for taking into account the effect of these

corrections.

From his formulae, M. Hansen constructed tables of the Moon, which

were published in 1857, at the expense of the British Government; and

these tables, having been found far superior in accuracy to all others, are

now exclusively employed in the calculation of ephemerides.

A detailed account of the calculations leading to M. Hansen's last

approximation, was given by him in the two parts of his Darlegung der

Theoretischen Berechnung der in den Mondtafeln angewandten Stonmgen,

which severally appeared in 1862 and 1864.

After the great works, to which we have thus briefly referred, had
been either completed or were in progress, it might have been supposed

that the matter was exhausted.

Our Associate M. Delaunay, however, was not of this opinion. Having
devised, so long ago as 1846, a perfectly original and singularly beautiful

method of integrating the differential equations of the Moon's motion, he

determined to apply this method to the complete re-investigation of the

theory, and to carry on the approximation to a much greater extent than

had been done by his predecessors. The principal fruits of his labours, to

which he has devoted himself with almost unexampled perseverance for so

many years, are contained in the magnificent volumes which the Imperial
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Academy of Sciences have done both M. Delaunay and themselves the
honour of publishing among the volumes of their Memoirs. It is for this

great work that your Council have awarded to M. Delaunay the Society's

medal.

Strongly impressed with the advantages of determining the coefficients

of the lunar inequalities in the analytical form, both as affording a solution

more complete in itself and more satisfactory to the mind, as well as one

offering facilities for the comparison of the results of different investigations,

M. Delaunay did not hesitate to follow the example set in this respect

by M. Plana, notwithstanding the immense length of the necessary calcu-

lations. M. Delaunay's results are thus obtained in a form which makes
them directly comparable with those of M. Plana, while the methods employed
in obtaining them are wholly different.

M. Delaunay chooses the time as the independent variable, and takes

as his starting-point the differential equations furnished by the theory of

the variation of the arbitrary constants. In an able Memoir which appeared

in 1833, Poisson had advocated the employment of these equations in

the theory of the Moon's motion, and he applied them to the discussion

of some special points of that theory. These equations had been long used,

almost exclusively, for the determination of the perturbations of the planets,

and they offer peculiar advantages in the treatment of the secular in-

equalities and those of long period. In the case of the Moon, however,

in consequence of the large perturbations caused by the disturbing force of

the Sun, the ordinary mode of integrating these equations by successive

approximations soon leads to calculations of inextricable complexity. In

fact, these equations give the differential coefficients of the several elliptic

elements taken with respect to the time, in terms of the elements them-

selves. In the case of the planets, where the disturbing forces are so small

compared with the predominant central force of the Sun, very approximate

values of the disturbed elements may be found by substituting in the

values of the differential coefficients, the undisturbed instead of the disturbed

values of the elements, and then integrating.

The perturbations of the elements thus found are said to be due to

the first power of the disturbing force. If now the approximate values of

the disturbed elements be substituted in the differential equations, and these

be again integrated, we shall obtain a second approximation to the values

of the disturbed elements, and the additional terms thus found are said

to depend on the square of the disturbing force. In the theories of the
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planets it is only in special cases that terms depending on the square of

the disturbing force need be taken into account, and it is scarcely ever

necessary to consider terms of the next order of approximation.

In the case of the Moon, however, it would be necessary to repeat the

process of approximation at least four or five times, in order to obtain

results of the accuracy required in the present state of the theory. If we
consider that the disturbing function consists of a great number of terms,

and that each term gives rise to a corresponding term in the value of

each of the disturbed elements, whUe powers and products of the corrections

of all the elements in every possible combination, up to a certain order,

have to be taken into account, it may be readily imagined how impracticable

it would be by such a process to carry on the approximation to a greater

extent than has been already done by Plana. Every process in which the

approximations require to be repeated several times, is subject to the

inconveniences that have been described, and these inconveniences are much
greater when, as in the present case, we have to make successive approxi-

mations to the values of the six elements of the orbit, instead of to the

values of the three coordinates of the Moon.

It was with the view of avoiding this excessive complication of the

method of successive approximations that M. Delaunay devised his method

of integrating the differential equations of the Moon's motion. The funda-

mental idea of this method consists in attacking the difficulty by smaU

portions at a time, and in replacing these extremely complicated successive

approximations by a much greater number of distinct operations, each of

which is comparatively simple, so that it may be carried out to any degree
^

of exactness that may be desirable, while the mind is relieved by being able

readily to embrace the whole of each operation in one view.

It is difficult, without the use of algebraical symbols to give an idea

of M. Delaunay's beautiful method, but I must endeavour, in some measure,

to fulfil this task, and I must crave your indulgence should I fail in the

attempt.

The theory of the variation of the arbitrary constants gives, as is well

known, the differential coefficients of the elliptic elements with respect to the

time, in terras of the elements themselves and the partial differential

coefficients of a certain function, called the Disturbing Function, taken with

respect to those elements. By a proper choice of elements, the differential

equations may be reduced to their simplest, or to what is called their

canonical form. In this form the six elements are divided into three pairs.
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the elements of each pair being conjugate to each other. Then the differ-

ential coefficient of any element with respect to the time is simply equal

to the partial differential coefficient of the disturbing function taken with

respect to the element which is conjugate to the former, the partial

differential coefficients which occur in the two equations corresponding to a

pair of conjugate elements being affected with opposite signs.

The disturbing function may be readily developed in a series of periodic

terms involving cosines of angles, each of which is formed by the combination

of multiples of the Moon's mean longitude, the distance of the Moon's

perigee from its node, and the longitude of the node, together with angles

which depend on the position of the disturbing bodies. The disturbing

function likewise contains a non-periodic term, which, as well as the co-

efficients of the periodic terms, are all functions of the major semi-axis,

the eccentricity and the inclination of the Moon's orbit.

Since the mean longitude of the Moon involves the time multiplied

by the mean motion which is a function of one of the elements, it is

obvious that the differentiation with respect to this element will give rise

to terms in which the time occurs without its being included under a sine

or a cosine. Such terms would render the equations very inconvenient for

the determination of the lunar inequalities ; and M. Delaunay accordingly

avoids the introduction of them by taking the mean longitude itself instead

of the epoch of mean longitude, as one of his elements, while by the simple

yet novel expedient of adding to the disturbing function a non-periodic

term which is a function of the major semi-axis alone and is independent

of the disturbing forces, he preserves to the differential equations the same

very simple form which they had at first. After this modification of the

disturbing function, the time no longer enters into it explicitly except in

so far as it is introduced by the values of the coordinates of the disturbing

bodies, and consequently the difficulty which was before met with completely

disappears.

The six elements employed by M. Delaunay are thus,—^the Moon's mean

longitude, the distance of the perigee of its orbit from the node, and the

longitude of the node, which for distinction may be called the three angular

elements, and three other elements which are respectively conjugate to the

former, and which are determinate functions of the major semi-axis, the

eccentricity and the inclination of the orbit.

The three coordinates of the Moon at any time are given in terms of

the three angular elements and of the quantities last mentioned.
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Now let us imagine, for a moment, that the disturbing function con-

tained no periodic terms, but was reduced simply to its non-periodic part.

Consequently the partial differential coeflBcients taken with respect to the

angular elements would all vanish, and therefore the three conjugate elements

would be all constant, as well as the major semi-axis, the eccentricity and

inclination, of which those elements are functions. Hence, again, the partial

differential coefficients taken with respect to the conjugate elements would

be functions of those elements, and would therefore be constant. Hence

each of the angular elements would consist of an arbitrary constant and a

term proportional to the time, the multiplier of the time in each case being

a known function of the three constant elements.

The object of M. Delaunay's method is, by means of a series of changes

of the variables, to cause aU the more important periodic terms to disappear

from the disturbing function, one by one, while the differential equations

continue to retain their canonical form, so that after each transformation

we approach more nearly to the conditions of the ideal case which has

just been considered.

In order to effect any one of these transformations, M. Delaunay

supposes, for the moment, that the disturbing function is reduced to its

non-periodic part, together with one of the periodic terms selected from

among those which have the greatest influence in producing the lunar

inequalities. With this simplified form of the disturbing function, the

equations admit of being easily integrated. The elements with which we

start may thus be expressed in terms of three new angular elements which

vary uniformly with the time, and three new constant elements. M. Delaunay

shews how the constant elements may be so chosen that they may be

considered as respectively conjugate to the three new angular elements, so

that, in fact, the quantities which are multiplied by the time in the

expressions of these angular elements are respectively equal to the partial

differential coefficients of a function of the new constant elements taken

with respect to these elements.

Having thus found the relations between the old set of elements and

the new ones by means of the simplified form of the disturbing function,

M. Delaunay now restores the complete value of that function, and chooses

new elements which are connected with the old ones by exactly the same

relations as in the case just considered. Of course the three new angular

elements wiU. no longer vary uniformly with the time, and the three elements

respectively conjugate to these will no longer be constant.
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When, by means of the proper formulae of transformation, the new
variables have been substituted for the old ones in the disturbing function

and in the expressions of the Moon's coordinates, M. Delaunay shews that

—

1st. One of the important terms of the disturbing function disappears,,

viz., the periodic term which was selected in the preliminary investigation.

2nd. Various inequalities corresponding to this term are introduced into

the values of the three coordinates of the Moon.

3rd. The values of the six new variables in terms of the time are

determined by diiferential equations of exactly the same form as those which

determined the values of the six variables for which they have been sub-

stituted.

One of the periodic terms having been in this manner caused to dis-

appear from the disturbing function, a new operation of exactly the same

kind causes another term of this function to disappear; similarly a third

term may be taken away by means of a third operation, and so on to any

number of terms.

In this way, after a suitable number of operations of this kind have

been effected, the disturbing function wUl have been simplified by the

removal from it of its most important periodic terms, after which the

further process of integration becomes simple enough to be treated in the

same manner as if we were concerned with the perturba,tions of a planet

or of the Sun.

The whole difficulty in the determination of the lunar inequalities is

caused by the great magnitude of the disturbing force of the Sun. M. De-

launay has therefore at first confined his attention to the investigation

of the irregularities which are produced by this disturbing force, and the

two magnificent volumes before us are entirely occupied with this investi-

gation. Thus he has provisionally left out of consideration the very small

inequalities due to some secondary causes, such as the attraction of the

planets and the figure of the Earth; and, besides, he has omitted to consider

the perturbations of the Sun's apparent motion about the Earth, intending

in a supplementary volume to take into account the effects due to these

several causes.

By means of repeated applications of the beautiful method of trans-

formation which I have above attempted to describe, M. Delaunay proceeds

to get rid of all the periodic terms of the disturbing function due to the

Sun's disturbing force, which are capable of producing inequalities in the

A. 43
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coordinates of the Moon of an order inferior to tlie fourth. For this pur-

pose fifty-seven such operations are required to be performed. When these

have been effected, the periodic terms which remain in the disturbing

function are so small that their powers and products may be neglected,

and consequently the differential equations which determine the six elements

last introduced in terms of the time, may be integrated at once. Since

the values of the Moon's coordinates are known in terms of the elements

just mentioned and the time, we have only to substitute the values of the

elements that have been found, in order to determine the Moon's coordinates

in terms of the time.

The values of the elements, however, that would be found in this way
are very complicated, and therefore the substitutions which would be required

in order to find the Moon's coordinates would be excessively long. M. De-

launay, accordingly, prefers to get rid of the remaining periodic terms

in the disturbing function, one by one, by means of transformations exactly

similar to those which have been already effected. In order to carry on

the approximation to the extent which he desires, M. Delaunay finds it

necessary to perform no less than 448 of these secondary operations, but

each such operation becomes very simple, since the squares of the coefficients

of the periodic terms under consideration may be neglected.

Thus, at length, by means of 505 transformations, all the periodic terms

of the disturbing function are removed, and the problem is reduced to the

ideal case which was considered at the outset of our account of M. Delaunay's

method.

After each transformation, by making the proper substitutions in the

expressions for the Moon's coordinates, those coordinates are obtained in

terms of the system of elements last introduced, so that finally the three

coordinates are known in terms of the three final constants and angles

which vary uniformly with the time.

It has been already mentioned that Plana, in his great work on the
Lunar Theory, determined the analytical values of the coefficients of the
lunar inequalities as far as terms of the fifth order inclusive, and that he
only carried on the development to a greater extent in cases where the
slowness of the convergence of the series appeared to him to render it'

necessary to take into account terms of higher orders than the fifth.

M. Delaunay has proposed to himself to carry on the approximation so

as to include all terms of the seventh order, and in cases where the series



44] KOYAL ASTRONOMICAL SOCIETY TO M. CHARLES DELAUNAY. 339^

converge slowly to take into account terms of the eighth, and even of the

ninth order.

Those who have had any experience in calculations of this nature will

readily understand how enormously the labour required has been increased

by thus adding two orders more to those which Plana has considered. It

is not merely that the terms of higher orders are far more numerous than

those of the lower, but also that each of the terms of the former kind i&

much more difficult to calculate, since it arises from a much greater number
of combinations of terms of the inferior orders.

This enormous labour, which has occupied M. Delaunay for nearly twenty

years, has been performed by him without assistance from any one. Indeed,

from the nature of the calculations which are required, it would not have

been easy to obtain any effective assistance. In order to insure accuracy,

M. Delaunay has omitted no means of verification, and he has performed

aU the calculations, without exception, at two separate times, with a suf-

ficient interval between them to prevent any special risk of committing the

same error twice in succession.

The volumes before us are perfect models of orderly arrangement. Not-

withstanding the great length and complication of the calculations, the

whole work is so disposed that any part of it may be specially examined

with the utmost readiness by any one who may wish to test its accuracy.

Finally, the analytical expressions which have been obtained for the-

Moon's coordinates are converted into numbers, by substituting for the

elements the most accurate numerical values which the comparison of theory

with observation has made known.

Such is an imperfect sketch of M. Delaunay's labours on the Theory

of the Moon contained in these two magnificent volumes, the former of

which appeared in 1860, and the latter in 1867. As I have already stated,

they do not include a complete theory of the Moon, but only that which

is by far the most difficult and complicated part of that theory, viz., the

investigation of the perturbations due to the direct action of the Sun

supposing its apparent motion about the Earth to be purely elliptic. Of

the investigations which are required to take into account the remaining

very small causes of disturbance, and which are intended by M. Delaunay

to be included in a supplementary volume, some of the most important

have been already completed by him, particularly the calculation of the

43—2
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Secular Variation of the Moon's Mean Motion, and the investigation of

the long inequalities due to the action of Venus.

I understand also that M. Delaunay is engaged in the construction of

new Lunar Tables founded upon his theory.

Your Council, however, has decided that we ought not to await the

appearance of M, Delaunay's supplementary researches before we mark em-

phatically our sense of the value of his labours.

The present work is complete in itself; in it the very difficult and

complicated problem of determining the Moon's motion is attacked by a

perfectly original method, and that one as powerful and beautiful as it is

new. The work has been planned with admirable skUl and has been carried

out with matchless perseverance. The result is an enduring scientific monu-

ment of which our age may well be proud, and which we are happy to

distinguish, on this occasion of our fiftieth anniversary, with the highest

marks of our approval which it is in our power to bestow.

{The Chairman, then delivering thfi, Medal to M. Delaunay, addressed him

in the following terms)

:

—
M. Delaunay, U ne me reste plus maintenant qu'k vous presenter cette

m^daille au nom de la Soci^t^ Royale Astronomique, qui desire par ce tribut

vous exprimer la haute appreciation qu'elle a de vos travaux. Notre

President regrette vivement que I'^tat de sa sant^ I'empSche de remplir

<3ette t^che agr^able, II m'a pri^ de le remplacer dans cette circonstance,

et je le fais avec d'autant plus de plaisir que depuis bien long-temps j'ai

la plus grande estime pour vos hauts talents, et que j'ai ^tudi^ vos belles

recherches avec la plus grande admiration, aussi je suis heureux de vous

exprimer que notre Soci^t^ vous a suivi dans votre immense travail avec

le plus vif int^r^t; et quoique ce travail ne soit pas entiferement termini,

elle sent qu'elle ne pent tarder plus long-temps k reconnaltre la haute

valeur de vos recherches. Nous sommes heureux de vous voir au milieu

de nous ^ cette occasion, et nous faisons des voeux pour que votre santd

et vos forces puissent durer de longues ann^es afin d'enrichir la science

de plus en plus du fruit de vos grands talents.
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ADDEESS ON PRESENTING THE GOLD MEDAL OF THE ROYAL ASTRO-
NOMICAL SOCIETY TO PROFESSOR H. D'ARREST.

[From the Monthly Notices of the Royal Astronomical Society, Vol. xxxv. (1875).]

It has been already announced to you that the Council have awarded

the Society's Medal to Professor H. L. D'Arrest, Director of the Observatory

of Copenhagen, for his Observations of Nebulae contained in his Eesultate

aus Beohachtungen der Nebelflecken und Sternhaufen and in his later and

much more extensive work, Siderum Nebulosorum Ohservationes Havnienses, as

well as for his other recent astronomical labours. It now becomes my duty

to lay before you the grounds of this award ; and I feel confident that a

plain statement of the nature and extent of the work accomplished by

Professor D'Arrest will be sufiicient to convince you that he richly deserves

our medal.

Professor D'Arrest has been long well known for his contributions to

our science. No reader of the Astronomische Nachrichten can fail to have

been struck by the untiring activity shewn by his numerous communications

to that periodical, so indispensable to the astronomers of all countries.

Among his discoveries I may refer to that of the interesting periodical

comet which bears his name, and likewise to that of the minor planet

Freia, the 76th member of the group of small planets between Mars and

Jupiter, the known number of which now amounts to 142, and is yearly

increasing at a rate which shews no signs of slackening.

But of all the labours of Professor D'Arrest, unquestionably the most

important are his observations of nebulae contained in the two works men-

tioned at the commencement of this address.
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These works would, in the opinion of your Council, even if they stood

alone, amply justify the award of your medal.

Nearly forty years have elapsed since the Society's medal was awarded

to Sir John Herschel for his Catalogue of Nebulae and Clusters of Stars,

printed in the Philosophical Transactions for 1833, In his address on that

occasion, the Astronomer Royal gave an able sketch of the history of our

knowledge of the nebulae up to that time, which makes it quite unnecessary

for me to go over the same ground, necessarily much more feebly. I may

merely recall that the three catalogues of Sir William Herschel, published

in the Philosophical Transactions for IT'SS, 1789, and 1802, contain the

places and descriptions of 2500 nebulae and star-clusters. Sir John Herschel's

catalogue contains the results of his observations made at Slough, with

his 20-foot reflector, between the years 1825 and 1833. These observations

were undertaken for the purpose of reviewing the nebulae and star-clusters

discovered by his father. The catalogue comprises 2307 of these objects,

about 500 of which are new.

Not content with having made this survey of the heavens visible in

this latitude, Sir John Herschel resolved to undertake a similar survey of

the southern heavens; and for this purpose he transported to the Cape of

Good Hope the same instrument which he had employed in the northern

hemisphere, "so as to give a unity to the results of both portions of the

survey, and to render them comparable with each other."

The observations required in order to carry out this grand plan were

made in the years 1834, 1835, 1836, 1837, and 1838, and the fruits of
'

these prolonged labours appeared in 1847, in the magnificent work. Results

of Astronomical Observations made at the Cape of Good Hope. The survey

included the double-stars of the southern hemisphere, as well as the nebulae

and star-clusters. The work contains a catalogue of 1708 of these latter

objects, entirely similar in its arrangement and construction to the Catalogue

of Northern Nebulae in the Philosophical Transactions for 1833, and reduced

to the same epoch (1830), in order to facUitate the union of the two

catalogues into one general one. Of these objects 89 are common to the

two catalogues, so that the number of distinct nebulae and clusters which

they contain is 3926. Both of these works of Sir John Herschel contain

engraved representations of some of the most remarkable nebulae, whether

of typical or of exceptional form, by means of which future observers may
be able to ascertain whether any secular changes are perceptible in them.
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The latter work also comprises valuable chapters on the apparent distri-

bution of the nebulae over the heavens, and on their classification, together

with many general remarks on the phenomena presented by them, which

have been suggested by the author's long experience.

By these labours of Sir William and Sir John Herschel, and by them
almost exclusively, astronomers had now obtained a considerable amount of

knowledge respecting the apparent distribution of the nebulae over the

heavens, and respecting their forms and physical structure as seen through

powerful telescopes.

Their distances from us, however, and therefore their real distribution

in space and their actual magnitudes remained matter of speculation only.

Sir William Herschel, having found that many nebulae, which in inferior

instruments shewed no traces of stellar composition, were, when viewed by

his powerful telescopes, resolved entirely into stars, was at first inclined to

believe that all nebulae were so resolvable. Hence he was inclined to

regard them as so many galaxies, similar in their nature to our Milky Way,
and owing their nebulous appearance to the enormously greater distances

firom us at which they were situated. Longer experience, however, induced

him completely to change his views.

Already in 1791, in a paper on Nebulous Stars, he had arrived at the

conclusion that there exists a diffused self-luminous matter "in a state of

modification very difierent from the construction of a sun or star," and that

a nebulous star is one "which is involved in a shining fluid of a nature

totally unknown to us," and "which seems more fit to produce a star by

its condensation than to depend on the star for its existence."

Again, in his paper on the Construction of the Heavens, in the Philo-

sophical Transactions for 1811, he shews that although the appearances

presented by diffused nebulous matter and by a star are so totally dissimilar,

yet that these extremes may be connected by a series of such nearly allied

intermediate steps as to make it highly probable that every succeeding

state of the nebulous matter is the result of the action of gravitation upon

it while in a foregoing one, and that by such steps the successive conden-

sation of it has been brought up to the condition of planetary nebulae,

and from this again to a stellar form.

From the appearances presented by the planetary nebulae he infers that

the nebulous matter is partially opaque, since the superficial lustre which
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these objects exhibit could not result "if the nebulous matter had no other

quality than that of shining, or had so little solidity as to be perfectly

transparent."

He also suggests that comets may be composed of nebulous matter in

a highly condensed state, and that the faint nebulous branches which are

often seen appended to a nucleus may be similar to the Zodiacal Light

in relation to our Sun.

In the same paper he finds reason to conclude that the distance of

the faintest part of the great nebula in Orion probably does not exceed

that of stars of the 7th or 8th magnitude, but may be much less, perhaps

even not exceeding the distance of stars of the 2nd or 3rd order, and

consequently that "the most luminous appearance of this nebula must be

supposed to be stUl nearer to us."

These views of Sir William Herschel respecting the gradual formation

and growth of stars by the condensation of nebulous matter were still

further confirmed and developed in his paper in the Philosophical Trans-

actions for 1814.

Sir John Herschel's graphic description of the two Nubeculae, or Magel-

lanic clouds, likewise clearly shews that irresolvable nebulae, resolvable nebulae,

and clusters of stars represent luminous matter in different conditions, but

not necessarily at very different distances from us.

The direct measurement of the distance of a nebula by determining

its annual parallax must be regarded as nearly hopeless. The nearest

known fixed star has a parallax of scarcely one second. Now the error to

which we are liable in the determination of the place of a nebula, although,

as we shall see, it may under favourable circumstances be made much smaller

than has been commonly supposed, still considerably exceeds one second.

Hence, unless a nebula were much nearer to us than the nearest fixed

star, there would be no chance of our being able to determine its parallax.

There is one method, however, by which we may expect ultimately to

throw great light on the mutual relations of the nebular and sidereal

systems, and on their relative distances from us : I mean by the study of

their proper motions. Of course, no definite conclusion respecting the distance

of an individual nebula could be drawn from the observation of its proper

motion. For a nebula comparatively near to us might still have a very

small proper motion, simply because its motion in space was nearly equal
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and parallel to our own. If a large number of instances, however, were
taken, it might be asserted with a high degree of probability that those

bodies which had a large proper motion were on an average nearer to us

than those whose proper motion was small.

Now we know, at least approximately, the proper motions of many of

the fixed stars, and materials are gradually accumulating which will give

us a much more accurate and extensive knowledge respecting them ; but

of the proper motions of the nebulae we know little or nothing.

Unfortunately for this object, the instruments of Sir William Herschel

were not well adapted for the very accurate determination of the places

of nebulae. He himself estimates that after 1785 the uncertainty of his

places might amount to l^ minute of space in R. A., and from 1-J to 2

minutes in Declination, and that his earlier observations were liable to

much greater errors. Hence these observations can scarcely be employed

in such a delicate research as that of the determination of proper motions.

The degree of accuracy attained in Sir John Herschel's two catalogues

is much greater. The author considers the probable error of a single obser-

vation in his northern catalogue not to exceed 1^ seconds of time in R. A.,

and 30" in Declination. In his Cape Observations he estimates that the

error of a single observation will seldom exceed 30" of space in the direction

of the parallel, or 45" in that of the meridian.

Both of these catalogues give the results of the separate determinations

of the place of a nebula, and therefore afford the means of calculating the

probable errors of the observed places.

Professor D'Arrest has thus found that the probable error of a single

position is nearly 15" in R. A. and 19"'5 in Declination.

Considering the comparatively recent, date of these observations, however,

it is plain that a considerable time must elapse before the comparison of

Sir John Herschel's observations with later ones of a similar degree of

accuracy can be expected to yield trustworthy results respecting the proper

motions of the nebulae.

M. Laugier was the first who attempted to determine the places of

certain selected nebulae with much greater precision than is attained in

Sir John Herschel's catalogues, in order that they might furnish a secure

foundation to fiiture investigations respecting proper motion. In the Comptes

A. 44
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Rendus of December 12, 1853 (tome xxxvii. p. 874), he gives a catalogue

of the places of 53 nebulae for the beginning of 1850, selecting such as

had well-defined centres or points of greatest brilliancy. It is to be regretted

that no details are given respecting either the number of observations on

which the places in the catalogue are founded, the mode of observation, or

the telescope employed, so that the catalogue itself affords us no means of

judging of the degree of accuracy of the places contained in it.

Professor D'Arrest's first series of observations on the nebulae began in

May 1855, and, like M. Laugier's, had for their object the accurate determi-

nation of positions for the express purpose of affording means in due time

of studying the proper motions of the nebulae, and thence arriving at more

certain conclusions respecting the relations between the nebular and sidereal

systems than could be attained by the mere contemplation and examination

of the objects themselves, even with the aid of the most powerful telescopes.

The results of these observations were published in the Transactions of the

Eoyal Saxon Society of Sciences for 1856. The number of nebulae observed

amounts to 230. The observations were made at the Leipzig Observatory,

of which Professor D'Arrest was then the Director, with the Fraunhofer

refractor of 4|^ French inches in aperture and 6 feet focal length, by means

of a Fraunhofer's double ring-micrometer. The magnifying power usually

employed was 42 times. The nebulae were thus directly compared with neigh-

bouring stars out of Bessel's and Argelander's Zones. In one night usually

three and sometimes four transits of a nebula and its comparison-star were

observed, the transits being taken alternately in the northern and southern

halves of the ring-micrometer. In order to guard against the uncertainty

»

which may stUl remain in the places of the stars of comparison. Professor

D'Arrest often gives, in his description, the observed differences of right

ascension and declination. He also often gives the position of the nebula

with respect to the nearest stars, frequently those of the 10th and 11th

magnitude, which must ultimately prove most useful for the determination of

the nebula's proper motion. In this last point he followed the excellent

practice of Sir John Herschel; but he was able to make more repeated

measures of this kind, since, on account of the comparatively small power of

the instrument, the description of the objects was of secondary importance.

It should be remarked that all these measures were taken with the ring-

micrometer, no mere estimations being admitted except when they are

expressly- mentioned. The results derived from each night's observations are

given separately. The places given in the catalogues of Sir William and
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Sir John Herschel and in the small catalogue of Laugier are likewise reduced

to the same epoch (1850) for the sake of comparison.

We are so much accustomed to think of the observations of nebulae in

connection with the most powerful instruments, that it will be no doubt a

matter of surprise that a refractor of scarcely 4^ inches aperture should have

been found suitable for such work. Professor D'Arrest, however, from his

experience with such an instrument, estimates that it is capable of shewing

nearly a thousand nebulae, that is about a third part of all that have been

observed in our latitudes with the most powerful telescopes. He remarks

also that the small nebulae of Herschel, mostly round or elliptical in form,

can have their places determined more accurately than the majority of tele-

scopic comets. Besides, in observing nebulae, there is the immense advantage

of being able to repeat the observation of one and the same place on

different nights. The prevailing central condensation in nebulae, which some-

times attains a degree of concentration almost stellar, and which very

frequently offers a well-defined nucleus, gives a great degree of definiteness

to the observation. Those nebulae which, for various reasons, cannot be

observed accurately are, according to Professor D'Arrest, comparatively less

numerous. Of the 53 nebulae observed by Laugier, 31 have been re-observed

by Professor D'Arrest. Excluding one of Laugier's right ascensions, which

is evidently affected with a large error, and three of the declinations, which

appear to be about 1' in error, perhaps through mistakes in copying, and

assuming the probable error of one of Laugier's positions to be equal to that

of the mean of three of his own single positions, Professor D'Arrest finds

each of these probable errors to be about 6" both in right ascension and

declination. By a provisional calculation of the probable error of his obser-

vations, founded on a comparison of the several determinations with their

mean. Professor D'Arrest finds that the probable error of a definitive position,

that is of the mean of the observations of three nights, generally depending

on 9 transits, does not exceed 4 or 5 seconds of space in each coordinate.

Professor D'Arrest makes an interesting use of his comparisons of his

own places with those of Sir John Herschel, The mean epoch of Sir John

Herschel's observations is nearly 25 years earlier than that of his own.

Hence the difference between the places of a nebula as given by the two

authorities, and reduced to the same epoch, will include not merely the

errors of the observations, but also the proper motion for 25 years and the

difference of the star-places used in the reductions. Now, from the probable

errors of Sir John Herschel's and Professor D'Arrest's places which have been

44—2
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already ascertained, we can at once obtain the value of the mean of the

squares of the differences between those places, supposing the differences to

be entirely due to casual errors of observation. The actual mean of the

squares of the differences is found to be greater than the above-mentioned

mean, and the excess is due partly to the proper motions of the nebulae in

the interval, partly to the differences in the star-places employed, and, very

probably also partly to constant differences in the mode of observing the

same nebula by the two observers. Hence Professor D'Arrest concludes that

the probable amount of the annual relative motion of the nebulae with

respect to the sidereal system is less than 0""4 measured in arc of a great

circle.

I may appropriately conclude my remarks on Professor D'Arrest's Resultate

a,us Beohachtungen der Nebelflecken und Sternhaufen by a quotation from

one who has himself done much in the same line of research. Speaking of

Laugier's and D'Arrest's observations, Dr Schultz says :
" These works have

the high merit of having originated a new and important branch in the

study of the nebulae; and D'Arrest has done especial service to this study

by shewing that, when what is required is simply good determinations of

positions, a much greater number of nebulae than has been usually supposed

may be advantageously observed with instruments of but very moderate

dimensions. But his series of observations is chiefly and especially important

as proving beyond the possibility of a doubt that the positions of nebulae

in general are determinable with far greater accuracy than it had been

previously usual to suppose; and D'Arrest's work thus made an epoch in the

study of nebulae, by freeing it from the deterring prestige which had before ,

that period been attached to it."

Many other observers have since followed up the work thus begun by
Professor D'Arrest. Very accurate positions of nebulae have been observed

by Auwers, Schmidt, Schonfeld, Yogel, Etimker, Stephan, Schultz, and others.

I may particularly mention Schonfeld's Mannheim Observations of 235 Nebulae,

which appear to be extremely accurate and are published in a form that

leaves nothing to be desired. This work also enjoys the immense advantage

that the places of all the stars of comparison have been newly determined

by the meridian observations of Professor Argelander. But a still more
extensive work in the same field, and which promises to attain even a

greater degree of accuracy, is that by Dr Schultz, from whom I have quoted

above. This work consists of micrometrical observations of 500 nebulae made
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at the University Observatory of Upsala, with the Steinheil 13-foot refractor,

employing a parallel wire-micrometer with bright spider-lines on a dark field.

By means of the various series of observations to which I have referred,

future astronomers will be provided with a rich store of materials for the

study of the proper motions of the nebulae, and we may hope that even in

our own time some valuable results may be arrived at respecting them.

Professor D'Arrest's observations of nebulae were interrupted for a time

by his appointment as Director of the Observatory of Copenhagen. In no

long time, however, his new position gave him the opportunity of resuming

his observations with the aid of greatly increased optical power. In the year

1861, the Observatory acquired a magnificent refractor, by Merz, of 15 feet

focal length and 10-|- French inches in aperture, of which Professor D'Arrest

has given an elaborate description in a separate publication, De Instrumento

magno cequatorio. He considers this instrument to be intermediate, as regards

optical power, between Sir John Herschel's 20-foot reflector in its best con-

dition, and the excellent telescope with which Mr Lassell made his observations

at Valletta. Finding that with this instrument he could not only perceive

the very faintest of the nebulae discovered by the two Herschels, but could

make sufficiently precise observations of them, he resolved no longer to

continue the work begun in Leipzig, where he confined his attention to

selected nebulae, but to enlarge his plan of operations and make a survey

of the nebulae of the whole of the northern heavens. At first, indeed, it

was his intention to observe all the nebulae he should meet with, whether

previously known or not, with the utmost attainable precision, and that not

once or twice only but repeatedly. He soon found, however, that to carry

out such a plan, especially in such a climate, was beyond human powers,

the number of the nebulae far exceeding all expectation. After labouring

assiduously and perseveringly at these observations for more than six years,

Professor D'Arrest was at length compelled by failing health to bring his

work to a close. He estimates that in those six years he had not been able

to make more than about one-eighth of the total number of observations

which would be required in order to form a catalogue of the approximate

positions of those nebulae which could be accurately observed with the Copen-

hagen refi^actor.

The results of these prolonged labours have been published in the great

work, Siderum Nebulosorum Observationes Havnienses, 1867. This volume

contains about 4800 single positions of 1942 different nebulae. Of these
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about 390 have either not been previously observed, or have not had their

places determined. Sir John Herschel's Northern Catalogue of Nebulae and

Clusters of Stars contains a larger number of objects, viz., about 2300. The

difference between these numbers partly arises from the fact that D'Arrest

has designedly omitted those objects in Herschel's catalogue which, in his

judgment, should not be classed with the nebulae, viz., clusters and collections

of stars belonging to Sir William Herschel's sixth, seventh, and eighth classes.

These clusters appear to have no necessary connection with true nebulae, and

they are distributed over the sphere in a totally different manner. The

number of such clusters, especially near the MUky Way, might be easily

greatly increased; and in making his sweeps, Professor D'Arrest has often

been surprised to find certain clusters inserted in Herschel's catalogue, while

several others in the same neighbourhood were omitted. The selection appears

to him arbitrary and by no means natural. He thinks too that the intro-

duction of these objects would tend to vitiate any inquiries into the law of

distribution of the nebulae.

By far the greater number of the nebulae cannot be observed at all with

bright wires, or at any rate can only be so observed by great expenditure

of time and trouble. Hence Professor D'Arrest did not attempt to define

their places with all the precision of which his instrument was capable, but

brought each nebula into the centre of the ring-micrometer, the smallest

radius of which was 3' 40". The power employed in determining all these

approximate positions was 123. The hour circle was read off to integral

seconds of time, and the declination circle to tenths of a minute of arc.

In fact, nearly the same method was followed which astronomers are,

accustomed to employ in finding the places of very faint comets. Thus
everything was scrupulously avoided which would interfere with the keen-

ness of vision, and the more precise definition of place was generally lefb to

micrometrical observations and comparisons with minute stars situated in the

immediate neighbourhood of the nebula.

The nebulae were generally observed in zones of about 4° or 5° in

breadth, and in each zone 4 or 5, or even sometimes 7 fixed stars of the

7th or 8th magnitude were included, whose places were taken from Bessel's

or Argelander's zones, or sometimes from those of Lalande.

The work contains about 4000 micrometrical measures, chiefly made with
the ring-micrometer. More rarely nebulae were compared with the stars and
with each other by means of the wire-micrometer. Bright and small nebulae,
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having stellar nuclei, or at least an entirely regular form, were observed

with all possible precision, and the differential determinations of their positions

referred to neighbouring stars will, without doubt, be found of the greatest

importance in the future study of their proper motions.

Excluding a few nebulae, whose places do not admit of any accurate

determination, Professor D'Arrest finds, from 1627 observations of declination

of 525 nebulae, that the probable error of a single observation of declination

is 17"'58, while from 1552 right ascension observations of 497 nebulae, he

finds the probable error of a single observation of right ascension to be
0'-809 sec 8.

These probable errors are slightly less than the corresponding probable

errors of Sir John Herschel's catalogues.

Following the excellent example set by Sir John Herschel, Professor

D'Arrest gives the results of each night's observations of a nebula separately,

both as regards its place and its description.

The use of an equatorially-mounted telescope has no doubt rendered

this catalogue comparatively free from incidental errors and mistakes in the

identification of nebulae, which will occasionally happen, in spite of the

greatest care, when the observations are made with an instrument not so

mounted.

Lord E.osse's valuable selection from the observations of nebulae made

with his gigantic reflector of 6-feet aperture appeared in the Philosophical

Transactions for 1861, but, curiously enough, did not reach Professor D'Arrest's

hands till 1864, when his own work was considerably advanced. This work

contains sometimes brief and sometimes full descriptions of about 800 nebulae,

many of them being illustrated by figures. Professor D'Arrest found that

not a few of the nebulae which he had detected in the interval between

1861 and 1864 had been already observed by Lord Rosse and his assistants,

and that his descriptions were generally confirmed by theirs. Very many

"new" nebulae, however, still remained which had not been observed by

Lord Rosse; while, on the other hand, many which occur in Lord Rosse's

work had escaped the notice of Professor D'Arrest. After this period he

derived the greatest assistance from Lord Rosse's work. It is not surprising

to find occasional differences and discrepancies in the descriptions of nebulae

given in these two works. Professor D'Arrest mentions that he has found

and observed by far the greater part of those nebulae which had been
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observed by Herschel, but had been inserted by Lord Rosse in a list of

"nebulae not found."

He also succeeded in verifying the existence and determining the places

of many very faint nebulae, which had been first discovered by means of

Lord Rosse's telescope.

In the Philosophical Transactions for 1864, Sir John Herschel published

his General Catalogue of Nehulce and Clusters of Stars, and thereby laid

astronomers under another very heavy obligation. This excellent catalogue

contains all the nebulae and clusters of stars, both northern and southern,

actually known at that date, 5063 in number, arranged in order of right

ascension, and reduced to the common epoch 1860. A short description of

each nebula or cluster is given in abbreviated words, made out from an

assemblage and comparison of all the descriptions of each object given in

his father's and in his own observations.

It is not easy to over-estimate the boon which such a catalogue offers

to an observer of nebulae, by enabling him "at once to turn his instrument

on any one of them, as well as to put it in his power immediately to

ascertain whether any object of this nature which he may encounter in his

observations is new, or should be set down as one previously observed." As
Sir John Herschel remarks, "For want of such a general catalogue, a great

many nebulae have been from time to time, in the Astronomische Nachrichten

and elsewhere, introduced to the world as new discoveries, which have since

been identified with nebulae already described and well known. Many a sup-

posed comet, too, would have been recognised at once as a nebula, had such

a general catalogue been at hand, and much valuable time been thus saved

to their observers in looking out for them again."

While Sir John Herschel was engaged in the preparation of this

catalogue, ah important work by Dr Auwers appeared, entitled, William

HerscheVs Verzeichnisse von Nebelfecken und Sternhaufen, bearbeitet von

Arthur Auwers, Konigsberg, 1862. This contains a complete and most
elaborate reduction to 1830, from the observed differences in right ascension

and polar distance with known stars, recorded in the Philosophical Trans-

actions, of all the nebulae and clusters in Sir William Herschel's three

catalogues; together with a separate catalogue of aU those collected by
Messier from his own observations or those of M^chain and others (101

in number), similarly reduced; another of Lacaille's southern nebulae; and
one of fifty "new nebulae, comprising nearly all those observed by other
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astronomers (Lord Kosse excepted) in this hemisphere, all brought up to the

same epoch."

Sir John Herschel states that a comparison with Dr Auwers' results led

him to the detection of several grave errors in his own work which would

otherwise have escaped notice, and whose rectification has added materially

to its value.

Sir John Herschel's general catalogue contains the places and descriptions

of 125 of the new nebulae discovered by Professor D'Arrest, and reduced by
him to the epoch of that catalogue.

At the end of his own work Professor D'Arrest gives a catalogue of

the mean places of his 1942 nebulae, reduced to the epoch 1860 for com-

parison with Herschel's general catalogue. He also gives a comparison of his

own positions with the places of 223 nebulae contained in the very accurate

special catalogue by Schonfeld, which has been already mentioned.

In the above rapid sketch I have omitted to mention the many excellent

descriptions and delineations of particular nebulae which we owe to Mr Lassell,

Professors W. C. Bond and G. P. Bond, Mr Magon, Otto von Struve, Padre

Secchi, and others.

I must not terminate this very imperfect account of the principal

additions to our knowledge of the Nebulae which have been made in recent

years, without referring to the entirely new mode of investigation to which

they have been subjected by means of the spectroscope. By observations of

this kind, Mr Huggins and others have thrown much additional light on the

nature and constitution of these mysterious bodies. Already the spectra of

about 140 nebulae have been examined, and the light from many of them

has been proved to emanate from glowing gas. This entirely confirms the

mature view of Sir William Herschel, viz., that the condition of the luminous

matter in many of the nebulae is widely different from its condition in the

fixed stars.

Professor D'Arrest has himself contributed to the spectroscopic obser-

vations of the nebulae, and he has made the suggestive remark, that almost

all the gaseous nebulae are found either within or near the borders of the

Milky Way, and that there is an entire absence of them in the regions near

the poles of the galaxy, in which the other nebulae so abound. I believe

that a similar remark was made about the same time by Mr Proctor.

45
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It is worth mentioning that one of the most remarkable of these gaseous

nebulae, viz. the planetary nebula numbered 4373 in Sir John Herschel's

General Catalogue was observed as a fixed star by Lalande in 1790, and

that by comparing its place so determined with the very accurate modern

determinations of Schonfeld, D'Arrest, and others, it has been shewn that

the proper motion of this nebula is quite insensible.

I trust that the statement, however bald and imperfect, which I have

just laid before you respecting the labours of Professor D'Arrest, will have

convinced you that your Council have been fully justified in awarding to him

the Society's medal.

{The President then, delivering the Medal to the Foreign Secretary, addressed

him in the following terms):—
Mr Huggins—In transmitting this medal to Professor D'Arrest, you will

express to him the admiration we feel for the skUl and perseverance which

he has shewn in his observations of the nebulae, and our high appreciation

of the value of his labours. You may assure him of our ardent wishes that

health and strength may long be spared to him, so that he may be able to

make many further contributions to the progress of Astronomy,
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ADDRESS ON PRESENTING THE GOLD MEDAL OF THE ROYAL ASTRO-
NOMICAL SOCIETY TO M. LE VERRIER.

[From the Monthly Notices of the Royal Astronomical Society, Vol. xxxvi. (1876).]

It has been already announced to you that the Council have awarded

the Society's medal to M. Le Verrier for his theories of the four great

planets, Jupiter, Saturn, Uranus, and Neptune, and for his tables of Jupiter

and Saturn founded thereupon. It now becomes my pleasing duty to explain

to you the grounds of this award.

I need not, on the present occasion, enter into any detail respecting the

previous achievements of our distinguished Associate, and the numerous and

valuable researches with which he has enriched our science. These will be

fresh in your recollection, and they have already been eloquently described

to you from this chair.

It is not many years since our medal was awarded to M. Le Verrier for

his theories and tables of the four planets nearest the Sun, viz. Mercury,

Venus, the Earth, and Mars. Long before this he had been occupied with

the larger planets, but before proceeding further with their theories he found

it necessary to establish on solid foundations the theory of the motion of

the Earth, on which all the rest depend, and this again naturally led him

to investigate the theories of the three nearer planets which, with the Earth,

constitute the inferior portion of the planetary system.

45—2
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By the comparison of these theories with observation, M. Le Verrier

was led to two interesting results. He found that in order to bring the

theories of Mercury and Mars into accordance with observation, it was

necessary and sufficient to increase the secular motion of the perihelion of

Mercury, and also the secular motion of the perihelion of Mars.

Hence M. Le Verrier inferred that there existed, on the one hand, in

the neighbourhood of Mercury, and on the other, in the neighbourhood of

Mars, sensible quantities of matter, the action of which had not been taken

into account.

This conclusion has been verified with respect to Mars. The matter

which had not been considered turns out to belong to the Earth itself, the

mass of which had been taken too small, having been derived from too small

a value of the solar parallax. A similar increase of the mass of the Earth

is indicated by the theory of Venus, and a corresponding increase of the

solar parallax is likewise derived from the lunar equation in the motion of

the Sun.

With respect to Mercury, a similar verification has not yet taken place,

but the theory of the planet has been established with so much care, and

the transits of the planet across the Sun furnish such accurate observations,

as to leave no doubt of the reality of the phenomenon in question; and the

only way of accounting for it appears to be to suppose, with M. Le Verrier,

the existence of several minute planets, or of a certain quantity of diffused

matter circulating about the Sun within the orbit of Mercury.

The results which M. Le Verrier had thus obtained from his researches

on the motions of the interior planets added to the interest with which he
now entered upon similar researches on the system of the four great planets

which are the most distant from the Sun. Such researches might furnish

information respecting matter, hitherto unknown, existing in the neighbourhood
of these planets. Possibly they might afibrd indications of the existence of

a planet beyond Neptune, and at any rate they would provide materials

which would facilitate future discoveries.

As I shall have occasion to explain later on, the theories of the mutual
disturbances of the larger planets are far longer and more complicated than
those of the smaller, so that all that M. Le Verrier had yet done might be
almost regarded as merely a prelude to what still remained to be done.

Increased difficulties, however, far from deterring, seemed rather to stimulate
him to greater exertions.
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On the 20tli of May, 1872, M. Le Verrier presented to the Academy an

elaborate memoir, containing the first part of his researches on the theories

of the four superior planets, Jupiter, Saturn, Uranus, and Neptune. This

memoir contains an investigation of the disturbances which each of these

planets suffers from the action of the remaining three. Throughout this

investigation the development of the disturbing function, as well as that of

the inequalities of the elements is given in an algebraical form, in which

everything which varies with the time is represented by a general symbol,,

so that the expressions obtained hold good for any time whatever. Thus-

the eccentricities and inclinations, the longitudes of the jterihelia and of the

nodes are all left in the condition of variables. The mean parts of the

major axes, which suffer no secular variations, are alone treated as given

numbers.

At the end of the resume of the contents of this memoir, given in the

Comptes Rendus, M. Le Verrier lays down the' following almost appalling

programme of the work still remaining to be done.

It would be necessary, he says,

1. To calculate the formulae, and to reduce them into provisional tables.

2. To collect all the exact observations of the four planets, and to

discuss them afresh, in order to refer their positions to one and

the same system of coordinates.

3. By means of the provisional tables, to calculate the apparent positions

of the planets for the epochs of the observations.

4. To compare the observed with the calculated positions, to deduce

the corrections of the elliptic elements of the four planets, and to

examine whether the agreement is then perfect.

5. In the contrary case, to find the causes of the discrepancy between

theory and observation.

Extensive as is this programme, it has already been completely carried out

as regards the planets Jupiter and Saturn, and partly so as regards Uranus

and Neptune.

Having received from the Academy the most effectual encouragement to

pursue his researches, M. Le Verrier lost no time in bringing them gradually

to completion, so that they might become available for practical use.
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Accordingly, on the 26th of August, 1872, he presented to the Academy

a memoir containing a complete determination of the mutual disturbances of

Jupiter and Saturn, and thus serving as a base for the theories of both

these planets, which are closely connected with each other.

Again, on the 11th of November, 1872, he presented his determination

of the secular variations of the elements of the orbits of the four planets,

Jupiter, Saturn, Uranus, and Neptune. These variations are mutually depen-

dent on each other, and must be treated simultaneously. Their determination

consequently involves the solution of sixteen differential equations, which are

very complicated in form, and can only be integrated by repeated approxi-

mations.

This part of the work forms a necessary preliminary to the treatment

of the theory of any one of these planets in particular.

On March 17, 1873, M. Le Verrier presented to the Academy the com-

plete theory of Jupiter; and on July 14 in the same year he followed it up

by the complete theory of Saturn,

On January 12, 1874, he presented his tables of Jupiter, founded on the

theory which has just been mentioned, as compared with observations made
at Greenwich from 1750 to 1830 and from 1836 to 1869, and with obser-

vations made at Paris from 1837 to 1867.

Again, on November 9, 1874, he presented to the Academy a complete

theory of Uranus. Already in 1846, in his researches which led to the dis-

covery of Neptune, M. Le Verrier had given a very full investigation of the

perturbations of Uranus by the action of Jupiter and Saturn. In the memoir

'

just mentioned he gives a fresh investigation, including a full treatment of

the perturbations of Uranus by the action of Neptune.

On December 14, 1874, he presented a new theory of the .planet Neptune,
thus completing the theoretical part of the immense labours which he had
undertaken with respect to the planetary system.

Finally, on August 23, 1875, he presented to the Academy the com-
parison of the theory of Saturn with observations.

Such is a bare enumeration of the various labours for which our science

is already indebted to our Ulustrious Associate.

That any one man should have had the power and perseverance required

thus to traverse the entire solar system with a firm step, and to determine
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with the utmost accuracy the mutual disturbances of all the primary planets

which appear to have any sensible influence on each other's motions, might
well have appeared incredible if we had not seen it actually accomplished.

I will now proceed to give a brief outline of the investigations relating

to the motions of the four larger planets, with which we are now more
particularly concerned. The most important parts of these investigations are

printed in full detail in the volumes of Memoirs which form part of the

Annals of the Observatory of Paris.

As in his former researches, M. Le Verrier here also exclusively employs

the method of variation of elements, and the investigations are based on

the development of the disturbing function given by him, in the first volume

of the Annals of the Paris Observatory, with greater accuracy and to a far

greater extent than had ever been done before.

The 18th Chapter of M. Le Verrier's researches, which forms nearly the

whole of the 10th Volume of the Memoirs, is devoted to the determination

of the mutual action of Jupiter and Saturn, which forms the foundation of

the theories of these two planets.

These theories are extremely complicated, and I shall endeavour briefly

to point out, and to explain as far as I can without the introduction of

algebraical symbols, the nature of the peculiar difficulties which M. Le Yerrier

has had to encounter in their treatment, and which he has so successfully

overcome. These difficulties either do not present themselves at all, or do

so in a very minor degree in the theories of the smaller planets.

First, then, the masses of Jupiter and Saturn are far larger than those

of the interior planets, the mass of Jupiter being more than 300 times and

that of Saturn being nearly 100 times greater than the mass of the Earth.

For this reason it is necessary to develop the infinite series in which the

perturbations are expressed to a much greater extent when we are dealing

with Jupiter and Saturn, than when we are concerned with the mutual

disturbances of the interior planets. Also Jupiter and Saturn are so far

removed from these latter planets that the disturbances which they produce

in the motion of these planets are extremely small, in spite of the large

masses of the disturbing bodies.

But the great magnitude of the disturbing masses is far from being the

only reason why the theory of the mutual disturbances of Jupiter and

Saturn is so complicated.
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Another cause which aggravates the effect of the former is the near

approach to commensurability ia the mean motions.

Twice the mean motion of Jupiter differs very little from five times

that of Saturn. In other words, five periods of Jupiter occupy nearly the

same time as two of Saturn, so that if at a given time the planets were in

conjunction at certain points in their orbits, then after three synodic periods

they would be again ia conjunction at points not far removed from their

positions at starting. Hence, whatever uncompensated perturbations may
have been produced in the motions of the two planets during these three

synodic periods will be very nearly repeated in the next three synodic periods,

and again in the next three, and so on.

Hence the disturbances will go on accumulating in the same direction

during many revolutions of the two planets, and will become very important.

The inequalities of long period thus arising will affect all the elements of

the orbits of the two planets; but the most important are those which affect

the mean longitudes of the bodies, since these are proportional to the square

of the period of the inequalities, whereas the inequalities affecting the other

elements are proportional to the period itself

The principal terms of the inequalities of mean longitude are of the

third order, if we consider the eccentricities of the orbits and their mutual
incHnation to be small quantities of the first order.

Terms of the same period, however, and those far more numerous and
more complicated in expression, occur among those of the fifth and of the
seventh order of smaU quantities, and M. Le Verrier has included thesQ
terms also in his approximations.

But the circumstance which contributes in the highest degree to cause
the superior complexity of the theories of the larger planets is the necessity,

in their case, of taking into account the terms which depend on the squares
and higher powers of the disturbing forces.

I will endeavour to point out the nature of these terms and the manner
in which they arise.

By the theory of the variation of elements we are able to express at
any given time the rate of variation of any one of the elements in terms
of the mean longitudes and the elements of the orbits of the disturbed and
the several disturbing bodies. If this rate of variation were given in terms
of the time and known quantities, we should at once find the value of the
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element for any given time by a simple integration. But this is not the

case.

The method of variation of elements gives us, not a solution, but merely

a transformation of our original diflFerential equations of motion. The rates

of variation are given in terms of the unknown elements themselves; and in

order to find the elements from the equations so formed, we must employ

repeated approximations.

Let us consider this matter a little more particularly.

The terms which express the rate of variation of any element may be

divided into two classes:

1. Those which involve the mean longitudes of one or both of the

planets concerned, as well as the elements of their orbits.

2. Those which involve the elements only.

The first are called periodic terms, since they pass from positive to

negative, and vice versd, in periods comparable with those of the planets

themselves.

The second are called secular terms, and vary very slowly, since the

elements on which they depend do so.

Each of the terms in the expression of the rate of variation of any

element will involve the mass of one of the disturbing bodies as a factor.

Hence, if aU these masses be very small, all the periodic inequalities of

the elements wUl be likewise very small, and we shall obtain a value of the

rate of variation which is very near the truth if we substitute for the com-

plete value of any element its value when cleared of periodic inequalities.

Then the periodic inequalities in the element under consideration may

be found by direct integration, supposing the elements to be constant in the

terms to be integrated, and the mean longitudes only to vary.

Also the secular variation of the element considered, that is the rate of

variation of the element when cleared of periodic inequalities, wiU be given

by the secular terms taken alone.

If the disturbing masses, however, are not very small, this process is

not sufficiently accurate, and the periodic inequalities thus found can only be

regarded as a first approximation to the true values.

A. 46
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In order to find more correct values, we must substitute for the elements

in the second member of the equation their secular parts augmented by the

approximate periodic inequalities before found.

Now, if in any periodic term we increase any element by a periodic

inequality depending on a different argument, that is involving different

multiples of the mean longitudes, the result will evidently be to introduce

new periodic terms which will involve the square of one of the masses or

the product of two of them as a factor.

Similarly, if in any periodic term any element be increased by a periodic

inequality depending on the same argument, the result will also introduce

new terms of the second order which do not involve the mean longitudes,

and which therefore constitute new secular terms.

These wUl be particularly important if the inequality in question be one

of long period.

Alan in the secular terms the result of increasing any element by a

periodic iuequality will be to introduce a new periodic term depending on

the same argument.

Lastly, it should be remarked that in finding the periodic inequalities of

any element by integration of the corresponding differential equation, we

must take into account the secular variations of the elements which were

neglected in the first approximation. The new terms thus introduced, like

the others which we have just described, will evidently be of the second

order with respect to the masses.

If the disturbing masses be large, as in the case of the mutual disturb-

ances of Jupiter and Saturn, it may be necessary to proceed to a further

approximation, and thus to obtain new terms, both periodic and secular,

which involve the cubes and products of three dimensions of the masses.

The number of combinations of terms which give rise to these terms of

the second and third orders is practically unlimited, and the art of the

calculator consists in selecting those combinations only which lead to sensible

results.

This is the chief cause of the great complexity of the theories of the

larger planets, and more especially of those of Jupiter and Saturn.

M. Le Verrier lays it down as the indispensable condition of all progress

that we should be able to compare the whole of the observations of a planet
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with one and the same theory, however great may be the length of time

over which the observations extend. In order to satisfy this condition, he

develops the whole of his formulae algebraically, leaving in a general

symbolical form all the elements which vary with the time, such as the

eccentricities, the inclinations, and the longitudes of the perihelia and nodes.

He treats in the same way the masses which are not yet sufficiently known.

All the work is given in full detail, and is divided as far as possible

into parts independent of each other, so that any part may be readily

verified.

All the terms which are taken into account are clearly defined, so that

if it should ever be necessary to carry on the approximations still further,

it will be easy to do so without having to begin the investigation afresh.

The whole work is presented with such clearness and method as to

make it an admirable model for all similar researches.

After the development of the disturbing functions, and the formation of

the differential equations on which the variations of the elements depend,

the first step to be taken is to determine by integration of these equations

the periodic inequalities of the elements of the orbits of Jupiter and Saturn

which are of the first order with respect to the masses. As we have already

said, the expressions of these periodic variations of the elements are given

with such generality that, in order to obtain their numerical values at any

epoch whatever, it is sufficient to substitute the secular values of the elements

at that epoch. The calculation of the various terms under this general form

is very laborious, and it requires great and sustained attention in order to

avoid any error or omission of importance. On the other hand, by substi-

tuting from the beginning the numerical values of the elements at a given

epoch, the calculation is rendered much shorter and admits much more readily

of verification; but the result thus obtained only holds good for the given

epoch, and is thus entirely wanting in generality.

In the determination of the long inequalities of Jupiter and Saturn, the

approximation is carried to terms which are of the seventh degree with

respect to the eccentricities and the mutual inclination of the orbits.

In the next place the terms of the first order in the secular variations

of the elements of the orbits are determined.

After this the periodic inequalities of the second order with respect to

the masses are considered. These are determined in the same form as the

46—2
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terms of the first order, in order that their expressions may hold good for

any epoch whatever. The formulae relating to these terms are necessarily

very complicated. The coefficient belonging to a given argument depends, in

general, on a great number of terms which are classed methodically.

Next are determined the terms of the second order in the secular

variations of the elements of the orbits.

Afterwards, M. Le Verrier takes into account the influence of the secular

inequalities on the values of the integrals on which the periodic inequalities

depend.

The last part of this chapter is devoted to the completion of the

differential expressions of the secular inequalities by the determination of

certain secular terms in the rates of variation of the eccentricities and the

longitudes of the perihelia, which are of the third and fourth orders with

respect to the masses.

The 19th Chapter of M. Le Verrier's researches, which forms the first

part of the 11th Volume of the Annals of the Paris Observatory, contains

the determination of the secular variations of the elements of the orbits of

the four planets, Jupiter, Saturn, Uranus, and Neptune.

In the first place are collected the differential formulae which are esta-

blished in the previous chapter, and which give the rates of secular change

of the various elements at any epoch in terms of the elements themselves,

which by the previous operations have been cleared of all periodic in-

equalities.
^

The terms of different orders which enter into these formulae are carefully

distinguished.

If we were to confine our attention to the terms of the first degree with
respect to the eccentricities and inclinations of the orbits, and of the first

order with respect to the masses, the differential equations which determine

the secular variations would become linear, and their general integrals might
be found, so as to give the values of the several elements for an indefinite

period.

In the present case, however, the terms of higher orders are far too

important to be neglected, and when these are taken into account the
equations become so complicated as to render it hopeless to attempt to

determine their general integrals.
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Fortunately, however, these are not needed for the actual requirements

of Astronomy, and for any definite period the simultaneous integrals may be

determined with any degree of accuracy that may be desired by the method

of quadratures.

In this way M. Le Verrier has determined the values of the elements

for a period of 2000 years, starting from 1850, at successive intervals of 500

years. The first steps in this integration were attended with some difificulties,

because the determination of the numerical values of the rates of change of

the several elements at the various epochs depends on the elements them-

selves which are to be determined. Hence several approximations were

necessary in order to obtain the requisite precision.

After this work of M. Le Verrier, however, the extension of the investi-

gation to other epochs, past or future, is no longer attended with the same

difficulties. In fact, from his results we may at once find, by the method

of differences, very approximate values of the elements at an epoch 500

years earlier or later than those which he has considered. His general

formulae will then give the rates of change of the several elements at the

epoch in question, and having these we can determine by a direct calculation

the small corrections which should be applied to the approximate values of

the elements first found.

This process may evidently be repeated as often as we choose.

It is important to remark that in the formulae which give the rates of

change of each of the elements at the five principal epochs considered, as

well as in those which give the total variations of the elements at the same

epochs, the masses of the several planets appear in an indeterminate form,

so that it may be at once seen what part of the variation of any element

is due to the action of each of the planets, and what changes would be

produced in the value of any element at any epoch by any changes in the

assimied values of the masses.

Consequently, when the astronomer of the future, say of 2000 years

hence, has determined the values of the elements of the planetary orbits

corresponding to that epoch, it will be easy for him, by comparing those

values with the general expressions given by M. Le Verrier, to determine

with the greatest precision the actual values of the masses, provided that

-all the disturbing bodies are known; and should there be any unknown

disturbing causes, their existence would be indicated by the inconsistency of
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the values of the masses which would be found from the different equations

of condition.

By means of the work which has just been described everything has

been prepared which is required for the treatment of the theories of the

several planets.

The remainder of the 11th Volume of the Annals is accordingly occupied

by the complete theories of Jupiter and Saturn, the former theory being

given in Chapter 20 and the latter in Chapter 21 of M. Le Terrier's

researches.

The coefficients of the periodic inequalities of the mean longitudes and

of the elements of the orbits are not only exhibited in a general form, but

are also calculated numerically for the five principal epochs considered in

Chapter 19 of these researches, viz. for 1850, 2350, 2850, 3350, and 3850.

The long inequalities of the second order with respect to the masses,

depending on twice the mean motion of Jupiter plus three times the mean

motion of Uranus minus six times the mean motion of Saturn, are also

determined in a similar form.

Chapter 22 of M. Le Terrier's researches, forming the first part of the

12th Volume of the Annals, contains the comparison of the theory of Jupiter

with the observations, the deduction of the definitive corrections of the

elements therefrom, and finally the resulting tables of the motion of Jupiter.

The observations employed are the Greenwich observations from 1750 to»

1830 and from 1836 to 1869, together with the Paris observations from 1837

to 1867.

To the results given in the Astronomer Royal's "Reduction of the

Greenwich Observations of Planets from 1750 to 1830" M. Le Verrier has

applied the corrections which he has found to be required by his own
reduction of Bradley's observations of stars and his redetermination of the

Right Ascensions of the fundamental stars, published in the 2nd Volume of

the Annals (Chapter 10).

The equations of condition in longitude, for finding the corrections of

the elements and of the assumed mass of Saturn, are divided into two series

corresponding to the observations made from 1750 to 1830, and into two
other series corresponding to the observations made from 1836 to 1869.
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Moreover, in each of these series the equations are subdivided into eight

groups, corresponding to the distances of the planet from its periheHon, 0°

to 45°, 45° to 90°, and so on.

From these are formed four final equations, the solution of which gives

the corrections of the epoch, of the mean motion, of the eccentricity, and of

the longitude of the perihelion, in terms of the correction required by the

mass of Saturn, which is left in an indeterminate form.

The substitution of these expressions in the thirty-two normal equations

corresponding to the several groups above mentioned gives the residual differ-

ences between theory and observation in terms of the correction of the mass

of Saturn.

No conclusion can be drawn from the ancient observations; but from the

modern observations M, Le Verrier finds that the mass of Saturn assumed

—

which is that of Bouvard—should be diminished by about its ^-Jo^th part.

This correction is very small, but M. Le Verrier regards it as well established.

On the other hand, Bessel's value of the mass of Saturn, founded on

his observations of the Huyghenian satellite, exceeds Bouvard's by about its

gJ^th part.

The equations of condition in latitude are treated in a similar manner,

being grouped according to the distances of the planet from its ascending

node.

From these equations the corrections of the incUnation of the orbit and

longitude of the node are found separately from the ancient and from the

modern observations. The results difier very little, but the second solution

is employed in the construction of the tables.

After the application of these corrections to the elements, the agreement

between theory and observation may be considered perfect; so that the action

of the minor planets on Jupiter appears to be insensible, and there is no

indication of any unknown disturbing causes.

There are some peculiarities in the mode of tabulating the perturbations

caused by the action of Saturn. The perturbations of longitude and of

radius vector are not, as usual, exhibited directly, but instead of them

M. Le Verrier gives the perturbations, both secular and periodic, of the mean

longitude, of the longitude of the periheHon, of the eccentricity, and of the

semi-axis major of the orbit, and then from the elements corrected by these
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perturbations he derives tlie disturbed longitude and radius vector by the

ordinary formulae of elliptic motion.

Where the perturbations are large, M. Le Verrier considers this prefer-

able to the ordinary method of proceeding.

The perturbations of latitude being small, he applies to the inclination

and longitude of the node their secular variations alone, and then determines

directly the periodic inequalities of latitude.

All these perturbations, whether of the elements or of the latitude, are

developed in a series of sines and cosines of multiples of the mean longitude

of Saturn, including a constant term, the coefficients multiplying these several

terms being functions of the mean elongation of Saturn from Jupiter, which

for a given elongation are developed in powers of the time reckoned from

the epoch 1850.

These coefficients only are tabulated with the mean elongation as the

argument, and the perturbations are thence calculated by means of the

ordinary trigonometrical tables.

The intervals of the argument are so small, that the requisite interpo-

lations are very simple, and the coefficients which relate to the four elements,

and depend on the same argument, are given at the same opening of the

tables.

The tables have been calculated specially for the 500 yeai's included

between the years 1850 and 2350. Nevertheless they may be applied to

epochs anterior to 1850, by simply changing the sign of the time reckoned*
from 1850. For one or two centuries before 1850 this extension wUl have
all the rigour of modern observations, while for still earlier times the accuracy
of the tables will greatly surpass that of the observations which we have to
compare with them.

M. Le Yerrier's Tables of Jupiter are now employed in the computations
of the Nautical Almanac, beginning with the year 1878.

The 13th Volume of the Annals is devoted to the theories of Uranus
and Neptune. These theories are not unattended with difficulties.

In the first place, these planets are disturbed by the actions of the two
great masses, Jupiter and Saturn, interior to their orbits, and these actions

are modified by the great inequalities of Jupiter and Saturn depending on
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five times the mean motion of Saturn minus twice the mean motion of

Jupiter.

In the next place, twice the mean motion of Neptune differs very httle

from the mean motion of Uranus, and thus arise inequaHties of long period

in the elements of their orbits which are large enough to produce very-

sensible terms of the second order.

Lastly, the mean elliptic elements of the two planets are not yet suf-

ficiently well known.

In a preliminary chapter, the 24th, M. Le Verrier investigates formulae

which are specially applicable to the case of a planet disturbed by another

which is considerably nearer to the Sun.

In this case it is easily seen that, by the direct action of the disturbing

planet on the Sun, perturbations of large amount may be produced in the

elements of the orbit of the disturbed planet, while the corresponding pertur-

bations of the coordinates of the planet are comparatively small. Hence

arises the advantage of considering this case apart.

We have seen how closely the theories of Jupiter and Saturn are related

to each other. In a similar manner the theories of Uranus and Neptune are

also closely related in consequence of the great perturbations introduced into

the elements of their oi'bits by the near approach to commensurability in

their mean motions.

Hence, before entering upon the separate theories, M. Le Verrier devotes

Chapter 25 of his researches to the determination of the mutual actions of

Uranus and Neptune, and this forms the base of the theories of both planets.

The method employed is similar to that adopted in the case of Jupiter

and Saturn, and the results are exhibited in the same general form.

It is important to remark that the elements of Uranus and Neptune as

determined from observations severally differ from their mean elliptic values

by the amount of their perturbations of long period corresponding to the

mean epoch of the observations.

The apparent elements of Uranus and Neptune for the epoch 1850

have been carefuUy determined by Professor Newcomb in his excellent work

on the theory of those planets which obtained the Society's Medal in 1874.

A. 47
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By the application of his own general formulae, M. Le Verrier deduces

from these elements the values of the mean elliptic elements corresponding

to the same epoch.

It may be remarked that the mean elements thus determined will depend

on the assumed masses of the two planets, and will therefore require small

corrections when more accurate values of the masses have been obtained.

When the secular variations of Uranus and Neptune given in Chapter 19

were found, the elements were less accurately known, and M. Le Verrier has

therefore recalculated the values of the eccentricities and longitudes of the

perihelia of the two planets for the same five epochs as before, starting from

the mean elliptic values of the elements above referred to.

Chapter 26 contains the completion of the theory of Uranus. The last

chapter, which contains the completion of the theory of Neptune, is not yet

printed.

The 23rd Chapter also, which contains the comparison of the theory of

Eaturn with observations, together with the tables of the planet, and which

will form the latter part of the 12th Volume of the Annals, is not yet

printed. The results of this comparison of the theory with observations

have, however, been fully published in the Comptes Rendus, and I under-

stand that the tables will be used for computing the place of Saturn in the

forthcoming volume of the Nautical Almanac.

Although the comparison of the theory of Saturn with observations shews

in general a satisfactory accordance, there occur some discrepancies in indi-'

vidual years which are larger than might be desired.

During the thirty-two years over which the modern observations extend,

viz. from 1837 to 1869, the discrepancy between theory and observation,

however, remains constantly less than 2"-5 of arc, excepting in two instances,

viz. in the years 1839 and 1844, when the differences amount to 4"'5 of arc.

In the ancient observations only, made in the time of Maskelyne, rather

larger difi"erences occur, amounting in two instances to nearly 9" of arc.

In order to test whether these discrepancies could be due to any imper-
fections in the theory, M. Le Verrier has not shrunk from the immense
labour of forming a second theory of the planet independent of the former,

employing methods of interpolation instead of the analytical developments.
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I learn directly from M. Le Verrier that this second investigation entirely

confirms the accuracy of the first as regards the periodic inequalities, but
that the secular variations of the eccentricity and longitude of the perihelion

are slightly changed.

The effect of these changes is to bring the theory into very satisfactory

accordance with the observations of Bradley, but the discrepancies above

mentioned in the time of Maskelyne and in the modern observations still

I'emain unafiected.

The character of the discrepancies shewn by the modern observations

makes it very improbable that they can be due to any errors in the theory.

In fact, the error appears to change almost suddenly from a positive one

of 4"'4 in 1839 to a negative one of 5""0 in 1844, a variation of nearly 9""5

in five years. Now no terms or group of terms due to the action of the

planets could thus suddenly disturb the motion in five years, at a given

epoch, and then leave the motion unaffected during the following twenty-five

years.

M. Le Verrier is therefore inclined to think that the discrepancies arise

from errors in the observations, notwithstanding that the Greenwich and

Paris observations are mutually confirmatory of each other.

He suggests that it is possible that the varying aspects presented at

different times by the ring may affect the accuracy of the observations of

the planet, and may cause changes in the personal equations of the observers,

which, from being rather large in the case of the ancient observations, have

gone on diminishing as the system of observation has become more perfect.

One unlooked-for result follows from M. Le Verrier's comparison of his

theory of Saturn with the observations. Considering that the influence of

Jupiter on the longitude of Saturn may amount to 3800", it might have

been expected that from observations of the planet extending over 120 years

the mass of Jupiter could have been determined with great precision. M.

Le Verrier has found, however, that this is not the case.

The equations of condition furnished by the comparison of the heliocentric

longitudes of Saturn as deduced from theory and observation contain five

unknown quantities, viz. the corrections of the assumed values of four

elements and the correction of the assumed mass of Jup)iter.

47—2
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On solving the equations with respect to the first four unknown quan-

tities, the corrections to be appHed to the elements are found to be greatly

influenced by the indeterminate correction of the mass of Jupiter, and after

they have been substituted in the equations of condition, the coefficients of

the correction of the mass of Jupiter in great part destroy each other,

nowhere amounting in the resulting equations to one-tenth part of their

values in the primitive equations. Hence these equations are insufficient to

determine the mass of Jupiter with any precision.

Consequently, in the formation of the Tables of Saturn, M. Le Verrier

has employed the value of the mass of Jupiter determined by the Astronomer

E-oyal from his observations of the 4th satellite.

The result which has just been noticed will appear to be less paradoxical

if we consider that by far the larger part of the disturbances which Jupiter

produces in the motion of Saturn is represented by the inequalities of long

period which affect the mean longitude and the elements of the orbit. Now
in the course of 120 years these inequalities have run through only a small

part of their whole period, and therefore, during this interval, the greater

part of their effects may be represented by applying changes to the several

mean elements equal to the mean value of the corresponding long inequalities

during the interval. It is only from the residual disturbances, which are

comparatively small in amount, that any data can be obtained for the cor-

rection of the mass of Jupiter.

In the course of a few centuries, when these long inequalities, as well

as the secular variations of the elements of Saturn, shall have had time to'

develop themselves, it will be possible to determine the mass of Jupiter from
them with all desirable precision.

I trust that the review which I have just given, however hasty and
imperfect, of the work of our distinguished Associate has been sufficient to

convince you that your Council have done well in according him your Medal.

In conclusion, I may be allowed to express the great satisfaction I have
felt in becoming the mouthpiece of the Council on this occasion, and in thus
joining in doing honour to the eminent Astronomer whose untiring labours
have added so greatly to our knowledge of the motions of the principal
members of our Solar System.
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{The President then, delivering the Medal to the Foreign Secretary, addressed

him in the following terms)

:

—
Dr Huggins—In transmitting this Medal to M. Le Verrier, you will

express to him the interest with which we have followed his unwearied

researches, and the admiration which we feel for the skill and perseverance

by which he has succeeded in binding all the principal planets of our system,

from Mercury to Neptune, in the chains of his Analysis. You can tell him

how sorry we are not to see him among us on the present occasion, and

how glad we shall be to welcome him if he is able to visit us later in the

session. We hope that he will then have finished the printing of his "Tables

of Saturn " and his " Theory of Neptune," and thus be able to rest awhile

and re-establish his health—shaken, we fear, by his too arduous labours—

until he goes forth again, with fresh vigour, to win new triumphs in the

fields of Physical Astronomy.



47.

ASTRONOMICAL OBSERVATIONS MADE AT THE OBSERVATORY OF
CAMBRIDGE, UNDER THE SUPERINTENDENCE OF PROFESSOR ADAMS.

[Extracts from the Introduction to Vol. XXI. (1861—1865).]

Corrections for Collimation, Level, and Azimuth.

Up to the end of 1863 the corrections for Collimation, Level, and

Azimuth were applied in the usual way, by the aid of Professor Challis's

calculating machine : thence forward, they were thrown into the form

m+ n cotan N.P.D. + c cosec N.P.D.

where c denotes the collimation error, considered positive when the angle

between the line of sight and the eastern half of the axis is

less than a right angle

;

n, the elevation of the west end of the axis above the plane

of the equator

;

• *

and m, the deviation of the west end of the axis southward in the

plane of the equator.

m, n, and c are expressed in seconds of time.

It is easy to see that, if a and h denote the deviations of the axis

horizontally and vertically, or the azimuthal and level errors, expressed

in seconds of time, and j> the latitude,

m= a sin
(f)
+ h cos

(f)
= b sec

(f>
— ntsincl),

n— —a cos (^ + 6 sin <^,

consequently

a= TO sin (^ - n cos (^ = 6 tan eft -n sec <^.
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The collimation and level errors were found by observing the reflec-

tion of the wires in a trough of mercury, with a Bohnenberger's eye-

piece, before and after reversing the Instrument. The deviation of the

line of sight from the vertical, in one position of the Instrument, which

was assumed to be illumination West, being b + c, in the other position,

illumination East, it will be h — c. The value of c thus obtained at any

reversal of the Instrument was, up to the end of 1863, in most cases

supposed constant till the next reversal and used for finding b by means

of intermediate observations of the reflection of the wires. Subsequently

mean values of c were generally taken.

This method assumes that the position of the Y's is unaltered during

the process of reversal, a supposition which was by no means borne out

by the examination of the pivots in May, 1864, and it was thought

better to adopt some mode of determining the errors independently for

each position of the Instrument.

In default of Collimating Telescopes, a star near the pole, usually

Polaris, was observed both directly and by reflection at the same cul-

mination ; from the times of transit reduced to the centre wire and

corrected for irregularity of Pivots, the level error was easily found thus,

if a be the star's Right Ascension, 8 its Declination,

T the time of the direct observation, reduced to the centre wire

and corrected for irregularity of Pivots,

T' the time of the reflected observation,

E the Clock correction,

a, b, c the Azimuth and Level errors, and the Collimation error

of the centre wire,

, = T+i: +a'^^^^Kb'^^i^+'
cos cos COS

= T' +i:i.a'^^^-b'^^^^+^,
COS O COS O COS o

whence T- r + 2& ^-^-l^^Lo,
COS o
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The observation of the reflection of the wires gave b + c or b — c;

thence c was obtained. This mode was adopted almost exclusively from

September 24, 1864, till the Instrument was finally dismounted.

The coefficient for diurnal aberration, —0",19= —0^013, is, in every

case, incorporated with the CoUimation error.

Correction for Curvature of Star's path.

When the object is not bisected precisely on the meridian a small

correction is necessary for curvature of path.

For stars near the pole the correction (C) may be calculated from

the formula

1 a

C= -~.—-,, sin 2A sin^ - ,sm 1 2

where A is the North Polar Distance, and d the hour angle.

Differentiating, and expressing dA in seconds of arc, we have
a

dC= 2 COS 2A sin' -dA.
2

So that, for the Polar Distance

A + n", C= -^--j-, sin 2A sin' - + 2 cos 2A sin' ^. n".sm 1 2 2

For Polaris,

A = V25'+ n", C=[4-00842]sin^|+ [0-30050] sin' ^.n".
Z 2

For 51 Cephei,

A = 2°46' +< C=[4-29861] sin' ^+[0-29900] sin'- -.w".
z 2

For S Urs. Min.,

A = 3° 25'+< C= [4-38991] sin' I +[0-29793] sin' |. ri".

For X Urs. Min.,

A= r 6' +n", C=[3-89862] sin^ ^+ [0-30071] sin' | . n".
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For convenience of calculation these quantities are given in Tables I,

II, III, at the end of this Introduction, for values of the hour angle

taken at intervals of 10* and extending to a sufficient distance from the

meridian.

When the star is not very near the pole, since 6 is very small, we
may write

which gives

r sin"" 6 for sin^ -
4 2

correction = -—.—-j, sin A cos A sin^ 6.
2sm 1

But if E be the equatorial interval corresponding to the apparent

distance from the meridian of the point at which the bisection was
made, then

sin A sin 6 = sinE

;

therefore sin^ 6 = . „ ^ ,

sm' A

and correction = ——.—-j. cot A sin^E

;

2 sin 1

or, if E be expressed in seconds of time,

correction — ^r—.—-y, E^ cot A
2 sm 1

= ^^sinl".^^cotA.

In the Mural Circle, one equatorial interval of the wires =16''6.

Hence, if / be the number of intervals in the distance of the point

of bisection from the meridian,

225
correction =-— sin l"(16-6)'Pcot A

= [9"-] 7694] P cot A

= 0"-15037'cotA.

In practice, the middle wire is always so nearly in the meridian

that / may be taken to be the number of intervals in the distance of

the point of bisection from the middle wire.

48
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The values of the correction for different values of I and A are given

in Table IV. at the end of this Introduction,

Correction for Change of Declination.

In the case of the Sun and Planets a small correction is required

for the motion in Declination in the interval between the time of crossing

the meridian and the time of observation.

This interval is 16'-6/cosec A,

where / has the same signification as before, and therefore the correction will be

xo_o
J ^ ^ Ybx. of Decl". in 1 hour of longitude.

3600

The last factor is obtained from an Ephemeris.

The multiplier of / in this expression, or the value of the correction

for one interval, is given by means of Table V. at the end of this

Introduction, so that the correction may be deduced by multiplying the

number taken from the Table by /, the number of intervals stated in

the eleventh column. The sign to be given to the correction is stated

in the precept at the foot of the Table.

The Micrometer-wire was always so nearly adjusted equatorially that

no correction for error of its position has been thought necessary.

The Pointer, which is used for setting the Telescope to observe an

object either directly or by reflection, the setting angle to the nearest

minute having been previously computed, is placed below Microscope A a^

an interval of 10° 45' nearly from the zero of its reading. The graduation

proceeding in the direction from the microscope downwards, the Pointer

reading is the number of degrees and minutes of that division which in

the order of graduation comes next before the position of the Pointer.

It is unnecessary to place the Pointer reading in a separate column,

as it may be at once inferred from the concluded Circle reading, the

minutes being always an integral number of 5'.

The concluded Circle reading in the twelfth column is the Pointer

reading added to the mean of the Microscope readings with all the above-

mentioned corrections applied. It is therefore the reading which would
have been given by the Circle, if the microscopes had been in accurate

adjustment for runs, and the object had been bisected by the fixed wire
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at the middle vertical wire. For the Polar stars the concluded reading

applies to the time of meridian passage.

The Circle reading corresponding to the position of the Telescope when
directed exactly to the zenith is called the Zenith Point.

The adopted Zenith point is obtained by means of the coUimating

eye-piece, and is therefore more strictly the Circle reading corresponding

to the Nadir point increased by 180°.

The CoUimating eye-piece employed is of the same form as that used

by Professor Challis, and consists of a common inverting microscope of

three lenses, to which is attached, beyond the third lens, a piece of plate-

glass, inclined at an angle of 45° to the axis of the microscope. The
eye-piece of the Telescope being removed, this apparatus is put in its

place, so that the plate-glass is between the wires and the microscope

;

and when the Telescope is directed vertically to a trough of mercury,

the wires and their images by reflection become visible as dark lines on

a bright ground, by throwing the light of a lamp on the plate-glass.

The Micrometer reading for coincidence of the micrometer-wire with

its image is deduced from at least six readings for coincidence, or for

alternate contact.

The Microscope readings for the determination of the Zenith point

are inserted among those for the observations of the celestial objects

named in the second column. The concluded Circle reading obtained by

reducing an observation of Nadir point in the same manner as the other

observations are reduced, and then increasing the result by 180°, is in

general the adopted Zenith point. The limits within which any value is

used are indicated by bars across the column of " concluded circle readings."

If two observations of Zenith point occur within the same limits, the

value used is the mean between the two results.

The temperature of the Circle room at the times of taking the

Zenith point is given in the Table of observations of Runs.

The apparent Zenith distance in the direct observation of any object

is the algebraic excess of the concluded Circle reading above the adopted

Zenith point, and for a reflection observation it is the algebraic excess

of the Nadir point above the concluded Circle reading. The object is

South or North of the zenith according as the excess is in either case

48—2
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positive or negative. The apparent Zenith distance thus obtained is used

with the data in the three next columns for the calculation of refraction.

The thirteenth column contains the height of the barometer, as shewn

by a cistern-barometer constructed by DoUond and attached to the Circle

pier. The lower surface of the mercury is raised by a screw pressing the

bag till the light seen below a brass edge is excluded ; and a brass

slider is brought to the upper surface to shut out the light in the

same way.

Before calculating the refraction, a correction of -|-0'01in. was applied

to these Barometer-readings [see Introduction to Vol. xx., p. cxvi.] for

Index-error ; but a comparison with a very fine Standard Barometer by

Adie, which was mounted in the Transit Room in July, 1872, seems to

shew that this correction is too small. A large number of comparisons

made between August, 1872, and the end of the year, shew that the

reading of Adie's Barometer exceeds that of DoUond's by 0"055 in., and

the correction of Adie's Barometer, by comparisons with the Standard

Barometer at Kew, is only — O'OOl in. Probably the error of the old

Barometer had been gradually increasing.

The fourteenth column contains the reading of the thermometer whose
bulb is plunged in the cistern of the barometer.

The fifteenth column contains the reading of an external thermometer,

which is fixed to a stage near the north shutter-opening at a distance

of four feet from the wall of the building and nine feet from the ground.

It is protected from radiation and from the weather, and contiguous
parts of the building prevent the direct rays of the Sun from falling'

upon it.

The refraction is calculated by Bessel's Tables, using the convenient
form in which they are given in the Appendix to the Greenwich Obser-
vations for 1836. In this mode of calculation the reading of the attached
is supposed to be the same as that of the external thermometer. The
former reading, though not made use of, is inserted in the printed
columns, to allow of correcting for the error of this supposition, if it is

thought necessary.

By adding the refraction to the apparent Zenith distance North or

South, the true Zenith distance is found, and by adding algebraically

the true Zenith distance, considered negative when north of the Zenith
to the assumed co-latitude of the Observatory, viz. 37° 47' 8"'00 the
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Apparent N.P.D. from the observation, given in the seventeenth column,

is obtained. Accordingly, when a circumpolar star is observed below the

pole, in which case S.P. is appended to the name of the star in the

second column, this apparent N.P.D. is affected with the negative sign.

Occultations of Fixed Stars by the Moon.

The following are the formulae employed in obtaining the Equations

of Condition given in this volume.

Let 7"= mean local time of observation.

Z= assumed longitude of place of observation, + when West.

2'+Z = ^ = approximate time on first meridian.

a, 8, the Moon's Right Ascension and Declination.

77, cr, the horizontal equatorial parallax and semi-diameter, all

calculated from the Ephemeris for the time t.

Up to the end of 1861 the quantities given in the Nautical Almanac are

sin IT , sin cr
—; —t; , and. —

; —7.

;

sin 1" sm 1"

1 11 , • , • • J sin cr

subsequently the quantities given are tt ana —.—-j,

,

Sin TT

Hansen gives £r = [4-750519]sin77 = [9-436094] ^r^^,.

/D = radius vector of place of observation, taking the Earth's equatorial

radius to be unity.

<f)'
= geocentric latitude.

^ = sidereal time corresponding to time T.

a', S', the Right Ascension and Declination of the star occulted.

-r,- 1 sin (a -a') -,

Find X = > .„ cos 8,
sm 1

sin(8-S) • s/i I / A
y =—.^ ,,.

' + X sm tan i^ (a — a ),y sm 1 ^ \ /

^ = -.—-y, . p cos d)' sin (6 — a'),
sin 1" f^ ^ ^

''
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7) = -.—-„ p {sin 4)' cos S' — cos </>' sin 8' cos (d — a')\,
sm 1'"^ >- ^ ^ \ I)

COS X sin X

'

Also let AZ be the correction of the assumed longitude in seconds of

time

;

AT the correction of T in seconds of time

;

Aa, AS, &c. the corrections of a, S, &c. in seconds of arc
;

-J- and -T7, the changes of a and S in a second of time,

estimated in seconds of arc

;

sin IT ,. > , sin cr,, \,i • p , ^ ,
-.—77,(1 +?3) and -.—777(1+5), the smes 01 the true horizontal
sm 1' ^ ' ' sm 1 ^ '

equatorial parallax and semi-diameter, each divided by sin I".

Calculate the following quantities

:

(a) = cos 8 [cos X + sin X sin 8' sin (a — a')],

(8) = sin X — cos X sin 8 sin (a — a'),

m = /3 sin IT cos
(f)'

[cos x cos {6 - a') + sin x sin 8' sin (^ - a')],

{a')=m-{a),

(8') = /3 sin IT sin x [sin <^' sin 8' + cos ^' cos 8' cos {6 - a')] - sin x,

(T) = (Z)- (1-00274) 15OT,

{(j)') = -psinv [sin x cos ^' cos 8' + sin x sin cj)' sin 8' cos (^ - a')

.
- cos X sin ^' sin ((9 -a')],

{P)= -fcosx-i7smx,

, , _ sin a-

Then the final equation of condition will be

^^-S={a) Aa + (8) A8 + (a0 Aa'+(8') AS'+(r) ^T+{1) AZ + (f) A</.'

+ {p)p+{s)s.
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Correction for Refraction.

The seventh and eighth columns contain the excess of the Comet's

refraction above that of the Star, in Riofht Ascension and North Polar

Distance respectively.

If the Transits of the two objects be observed across a wire placed

accurately in the apparent circle of declination, which is usually the case

in these observations, we shall have

Excess of Comet's refraction in R.A. in seconds of time

= AS X ^ setf (8' - PQ) ^^^^ cos (28' - PQ) cosetf 8',

Excess of Comet's refraction in N.P.D. = aS x ^ sec^ (8' — P0.

Where the symbols have the following significations :

a8 is the excess of the Comet's N.P.D. in seconds of arc,

PZM being the spherical triangle formed by the pole, the zenith and

the middle point between the true places of the Comet and the Star,

ZQ is the perpendicular from Z upon PM.

8' is the N.P.D. of the point M, or the mean of the N.P.D. of the

two bodies.

^ is a quantity depending on the zenith distance of M, and on the

state of the barometer and thermometer.

PQ and ZQ are found from the hour angle {h) by means of the

equations

tan PQ = cot cos h

„^ cos (/) cos h sin 6
cos ZQ =—---rtrr = vn

'

sm PQ cos PQ
where ^ is the latitude of the Observatory.

Also C, the zenith distance of M, is given by the equation

cos £, = cos ZQ cos (8' — PQ).

These formulae are equivalent to those of Bessel in his Untersuchmgen,

Band i. p. 168, PQ being the quantity there denoted by N, and ZQ
being the complement of n.
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Professor Challis has constructed Tables similar to Bessel's, and specially

adapted to facilitate the calculation of refraction for this Observatory.

These tables, together with the precepts for their use, are printed at

the end of this Introduction. By their means the total refractions in

K.A. and N.P.D. may be found if required, as well as the differential

refractions spoken of above.

When the Comet is compared with a Star in N.P.D. only, with the

Clock going, it is usual to bisect the two objects alternately, beginning

and ending with the Star.

The micrometer readings for the Star will vary in consequence of the

variation of the refraction in N.P.D. From two consecutive readings, the

reading corresponding to the intermediate time of bisection of the Comet
may be deduced on the supposition that the readings vary proportionally

to the time, and the result may be treated as if the bisections of the

Comet and the Star had been simultaneous.

In this case, if Aa and AS denote the approximate excesses of the

Comet's R.A. and N.P.D. respectively, we have

Excess of the Comet's refraction in N.P.D.

15k . . h= ^ sin ^cos ^ sin h x AaH rs-[l — oos' (ft sm' h] x AS,
cos 4 cos 4

where the other symbols have the same signification as before.

For the observations of Mars made in 1862, for the purpose of de-

termining the Sun's Parallax, the micrometer-wire was adjusted so as to

be at right angles to the apparent diurnal path of a star across the

field of view.

In this case, we have

True excess of the planet's R.A. above that of the star

= apparent excess of planet's R.A. ^-p^,—^^ . ^^ ^
^

.

^^"
^

.

~
. ^r x AS,

cos'(8'-i'^) 15 smS'
employing the same notation as before.

The ninth and tenth columns respectively contain the excesses of the

Comet's RA. and N.P.D. above the R.A. and N.P.D. of the Star, as

given by the observations when cleared from the effects of refraction.

In the same columns are placed the coefficients for finding the Comet's
Parallax in R.A. and N.P.D. respectively. From the nature of the case,

no confusion can arise from placing two such different quantities in the
same column, half of the space in which would otherwise be wasted.
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In cases in which each comparison with a Star is complete in itself,

the differences of R.A. and N.P.D. are placed opposite to the name of

the Star, and the coefficients of Parallax opposite to that of the Comet

;

but in the cases in which the observations are made with the clock

going, and each bisection of the Comet is compared with the result

obtained from combining the two bisections of the Star which immediately

precede and follow it, the differences of R.A. and N.P.D. are placed

opposite to the Comet and the coefficients of Parallax opposite to the

Star, and usually in the line above the former quantities.

These coefficients represent respectively

Comet's Parallax in R.A. x A

and Comet's Parallax in N.P.D. x A,

where A is the distance of the Comet from the Earth, considering the

Earth's mean distance from the Sun to be unity.

Hence, to find the Parallax in R.A. and in N.P.D. respectively, these

coefficients must be divided by A.

If PZ'C be the spherical triangle formed by the pole, the geocentric

zenith and the apparent place of the Comet, and if Z'Q' be a perpen-

dicular from Z' upon PC, then the values of these coefficients will be as

follows :

-n -r. A ^ jy, .. OTT COS <i> sink OTT SIR Z'Q'
For R.A. Coefficient = ^

., ^ T ^— = ^
., ^ . g ,15smo 15 sin 6

For N.P.D. Coefficient = - P^ ^^^ '^^ sin (8 - PQO =_ ^os Z'Q' sin (8 - PQ'),
cos jPy

where tt denotes the Sun's mean equatorial horizontal parallax,

p the distance of the point of observation from the Earth's centre,

considering the equatorial radius to be unity,

^' the reduced or geocentric latitude,

h the hour angle,

and 8 the N.P.D. of the Comet or Planet.

The quantities PQ' and Z'Q' axe given by the equations

tan PQ' — cot
(f)'

cos h,

sin Z'Q' = cos </>' sin h, or cos Z'Q' =—4^

.
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48.

ON THE MEAN PLACES OF 84 FUNDAMENTAL STARS, AS DERIVED FROM
THE PLACES GIVEN IN THE GREENWICH CATALOGUES FOR 1840 AND
1845, "WHEN COMPARED WITH THOSE RESULTING FROM BRADLEY'S

OBSERVATIONS.

'{From Appendix II. to Astronomical Observations made at the Cambridge Observatory.

Vol. XXII. (1866—1869.)]

Introduction.

The present Appendix contains the formulae and instructions which I

drew up, many years ago, for the formation of a proposed New Fiindamental

Catalogue, to be used in the computation of the Star places given in the

Nautical Almanac. The proposed plan was eagerly accepted by my friend,

the late Lieutenant Stratford, who was then the superintendent, and my
instructions were ably carried out by Mr E. Farley, then the principal

assistant in the Nautical Almanac Office. The mean places were thus
calculated for the beginning of each of Bessel's so called fictitious years

from 1830 to 1870. The results for the years from 1857 to 1870 inclusive

have already appeared in the several volumes of the Nautical Almanac. It

has been, thought desirable to collect together these results as well as

those for the previous years, so as to exhibit at one view a set of mean
places of each star, for the beginning of each year from 1830 to 1870,
founded on consistent elements. It should be remarked that in all these
calculations the actual proper motion of each star is supposed to be uniform
and to take place in a fixed great circle. Hence no attempt is made
to take into account the variability in the observed proper motions of
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Sirius
^

and Procyon. Indeed one of the principal objects which I had in
view in the formation of this Catalogue was to test how far the observed
proper motions of those stars which had been long and carefully observed,
could be reconciled with the hypothesis that the proper motion, when
referred to the equator or ecliptic of a given date, was really uniform.

The rule laid down in my instructions to Mr Farley embodies a very
simple mode of representing the apparent variability of proper motion arising
from the change of position of the great circles to which the star is referred,
whenever the star is not very near to the pole.

When the star is very near the pole, the Eight Ascension and DecU-
nation for the time 1800 + i5 when referred to the Equator and Equinox
of 1800 is first found by adding the proper motions in R.A. and Decl.
for t years to the Eight Ascension and Declination for 1800, and then
this Eight Ascension and Declination is converted into the corresponding
Eight Ascension and Declination referred to the Equator and Equinox of
1800 + « by the proper Trigonometrical formulae . given below. These formulae
are founded upon the elements of precession given by Dr Peters in his
classical work Numerus Constans Nutationis. It should be noticed that
the corresponding formulae given by Mr Carrington at p. xxx of the Intro-

duction to his valuable Catalogue of Circumpolar Stars are not suflSciently

accurate. The quantities which he denotes by z + v, z' — i/ and 6, and which
he employs in reducing the place of a star from one epoch 1800 + ^ to
another 1800 + «', ought to vanish identically when t = t', whereas, according
to Mr Carrington's Table of Precession Constants, when t = t' = 55, the value

oi z + v is -0"-73 and that of z' -v' is +0"-73.

In the rule which I gave to Mr Farley for forming the value of the
secular variation of the Precession to be employed in reducing the observed

Eight Ascension and Declination from 1840 to 1845, it is not taken into

account that different Elements of Precession are employed by Argelander

and Bessel from those which are employed in the Nautical Almanac. The
slight inaccuracy thence arising will, however, scarcely be appreciable.

It should be remarked that the Polar Star 51 Cephei was not observed

by Bradley, and consequently that this star, although included among the

84 Stars to which Mr Farley's calculations refer, does not, properly speaking,

fall within the scope of my plan. The coordinates of this star for 1800,

which I gave to Mr Farley as part of his fundamental data, were the

means of two discordant determinations of those elements by Piazzi. Hence

it is not surprising that the predicted places of this star when tested by
49—2
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comparison with more recent observations, should prove to be sensibly in

error.

The following Table gives the places and the proper motions for 1800

of the remaining 83 stars embraced in the calculations.

Mean Places and Annual Proper Motions eoe 1800, deduced from
Places for 1755 and 1845 and Precessions for 1755, 1800 and 1845,

Name of Star
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Mean Places and Annual Peopeb, Motions for 1800, deduced from

Places for 1755 and 1845 and Precessions for 1755, 1800 and 1845.

Name of Star
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On a Proposed New Fundamental Catalogue.

I have frequently felt great inconvenience from the changes which have

been made from time to time, in the Fundamental places of the Standard

Stars in the Naiitical Almanac. At present, also, different astronomers use

different Fundamental places, so that it is impossiblq accura;tely to compare

the observations made at different observatories, or at the same observatory

in different years, without a troublesome preliminary investigation of the mean

differences of the several catalogues employed to detertnine the Clock error.

The appearance of the Greenwich Twelve-year Catalogae seems to me
to afford an excellent opportunity for the formation of such a catalogue as

astronomers in general would be likely to employ in the reduction of their

observations. By comparing the places in the Greenwich Catalogue with

those of Bradley given in Bessel's Funda/menta, places would be obtained,

which for many years to come, might be more depended on, than those

given by a year or two's observations, however near these might be to the

time for which the places were wanted. In order, however, to ensure this

general assent of astronomers and to do justice to' the excellence of the

materials, the most scrupulous accuracy should be attended to in the

reduction of the places to the proposed epoch, and in the calculation of

the coefficients of the 1st and 2nd powers of the time which are required

and wanted in order to find the places for any other epoch.

A short Appendix should be added to the Nautical Almanac in which

the proposed Catalogue is given, fully explaining the method employed in

its formation, in order that astronomers might use it with confidence.

I proceed to point out the method which it appears to me most

desirable to adopt for this purpose.

The KA. for 1840 and 1845 given in the Greenwich Catalogue are not

referred to the same Fundamental position of the Equinox.

The mean corrections of the E.A. of the Fundamental Catalogue in

the Nautical Almanac for 1834, given by the observations of the first 6

years and of the last 6 years, differ by 0°"067. Part of this difference,

however, arises from the proper motions having been omitted, except in a

few cases, in the Nautical Alm,anac Catalogue, so that the mean corrections

would vary with the time. By the comparison of the KA. for 1840 and

1845, of the 30 stars common to the Greenwich Clock List and the Tabulce

RegiomontancB, using as a basis Bradley's places for 1755, I find that in
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order to refer the R.A. to the most probable position of the Equinox as

determined from the observations of the whole 12 years, the E,.A. for 1840

must be increased by 0°"028 and those for 1845 diminished by the same

quantity.

The mean epoch of the observations on vrhich the Catalogue for 1840

depends is the beginning of 1839, and the observations may be looked upon

as giving the places for that time, independently of any assumed proper

motion. The proper motions for 1 year should therefore be added to the

places for 1840 of those stars whose proper motions have not been taken

into account, and to the places of the other stars should be added, for the

sake of uniformity.

Adopted proper motion for 1 year -Proper motion employed in the reductions.

The proper motions employed may be those given in the Fundamental

Catalogue in the Nautical Almanac for 1848, which are those of Argelander

as far as he gives them, the rest being taken from the B.A. Catalogue.

The proper motions used by the Astronomer Royal in his reductions

are those given in the Nautical AlTnanac for 1834. For two stars, proper

motions are mentioned in the notes to the Catalogue of 1439 stars, which

are not given in the Nautical Almanac, viz. for a Aquilce, a proper motion

of — 0""32 in N.P.D., and for l Piscium, a proper motion of + 0°'025 in

B,.A., both being taken from Baily. These however are not included in

the Annual Precessions of that Catalogue, and I am not quite certain that

they have been used in obtaining the places for 1840. The Astronomer

Royal should be consulted on this point.

The R.A. for 1755 given in the Fundamenta should be diminished by
0°'020 in consequence of Bessel having employed too large a value of the

coefficient of nutation in his reductions.

The next step is to reduce the places for 1840 to the epoch 1845.

If a denote the R.A. for 1755, a^ that for 1840, and half the secular

variation of the precession in R.A. be denoted by p, as in the Nautical

Almanac Catalogue, then the R.A. for 1845 will be

a, — a 9

and similarly for the Declination.

The value of p may be taken at once from the Nautical Almanac for

1848. The value there given, however, does not include the small terms
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due to proper motion, and they are only partially included in the secular

variations of precession given by Argelander and Bessel.

To be rigorously exact, we should take for the value of p

Secular Variation of Precession from Argelander or Bessel — Value of p given in Nautical Almanac.

Argelander gives the secular variation in his Catalogue; and for stars

not in that Catalogue, it may be deduced from the change of precession

for 45 years, given in the Fundamenta, bearing in mind that Bessel's

precessions in R.A. are expressed in arc.

From the places thus reduced to 1845 and those given for the same

epoch in the Greenwich Catalogue, the final places are to be deduced,

giving to each determination a weight proportionate to the number of

observations on which it depends.

The precessions should be calculated for 3 epochs, viz., 1755, 1800 and
1845, M. Peters' elements of precession should be employed; these are given

by M. Struve in the Astron. Nachr. No. 486, and are founded on Otto

Struve's investigations respecting precession combined with Le Verrier's

determination of the changes of the plane of the Ecliptic,

The constants to be employed are

:

For 1755.

m =46"-0495 log n =1-302430,

— = 3-06997 log— = 0-126339.
15 ° 15

For 1800.

wi=46"-0623 log w =1-302346

Tfi n— = 3-07082 log— = 0-126255
15 ° 15

For 1845.

m = 46"-0751 log n = 1-302262,

y^ = 3-07l67 log y| = 0-126171.
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If a denote the E.A. in 1755 and a' the R.A. finally adopted for

1845, the R.A. for 1800 will be

^(a + a')-20-25p,

p having the same signification as before.

Similarly, the Declination for 1800 may be found.

Hence the precession in R.A. for 1800 may be calculated. Let this=c.

Then the proper motion in R.A. for the same epoch will be

a'— a

and similar formulae hold for the Declination.

In consequence of the change of the plane to which the stars are

referred, the proper motions in R.A. and Declination will not be strictly

uniform, even if the actual proper motions be so. This variability of the

proper motion may be very conveniently taken into account in the following

manner.

To the R.A. and Declination for 1845 add the proper motions for

45 years just found, and with the places thus obtained calculate the

precessions. These combined with the proper motions found for 1800 will

give very approximately the annual variations for 1845.

Similarly, from the R.A. and Declination for 1755 subtract the proper

motions for 45 years, and with the places thus obtained calculate the

precessions. These combined with the proper motions for 1800 will give

very approximately the annual variations for 1755.

Now let c^ be the annual precession calculated in this way for 1755,

c that for 1800, and c' that for 1845, and let the differences of these

quantities be taken according to the following scheme,

—

Ac,

Ac
c'.

50



394 ON THE MEAN PLACES OF 84 FUNDAMENTAL STARS. [48

Then one-half the secular variation of precession for 1850,

Annual rate of variation for 1850,

, a'-a
,

127 .,

a' and a being as before the E.A. for 1845 and 1755 respectively.

Also, K.A. for 1850,

Similar formulae, of course, hold for the Declination.

If the difference between the determinations for 1845 exceed 0°"05 for

R.A. or 1" for Declination, it should be ascertained whether the places

have been rightly derived from those given in the several volumes of the

Greenwich Observations. I found, for instance, a discrepancy in the E,.A.

of a Ceti, and on examination it appeared that the R.A. for 1840 should

be 2'' SS"" 55'-23 instead of 2>' 53"" 55'-32 ; the correction -0'-09 mentioned

in the Introduction to the Catalogue having apparently been omitted.

The calculation of the Fundamental places should be carried to 3 places

of decimals in II.A., and 2 in Declination, and the calculation of tl^

Precessions and Secular Variations should be carried to 5 places in II.A.

and 4 in Declination.

I may mention here that the Secular Variations of Precession given in

the British Association Catalogue do not include the terms which depend

on the variation of m and n. Also that for Bradley's Stars the proper

motions are calculated by using Bessel's old values of the precession given

in the Funaamenta, and therefore ought not to be combined with the

annual precessions given in the same Catalogue, which are founded on his

later elements. Consequently, with the Precessions, Secular Variations, and

proper motions of the Catalogue, we cannot reproduce the places for 1755,

which were taken as the basis of calculation.
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Example of the Application op the Method just explained to

FIND THE Place &c. of a Canis Majoris fob 1850.

E.A.

Prop, motion (Arg.)

Do. employed by Airy
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Calculation of Peecession for 1800.

n

15
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Calculation of Precession foe 1845.

Correction

Place to be iised in 1

calculating Precession/

6 38 19-160

-1-534

6 38 17-626

n

Is

sin a

tan 8

or 99° 34' 24"-39

0-126171

9-993909

-9-472258

-9-592338

-0-39115

3-07167

n

cos a

16° 30' 29-30

-55-23

-16 31 24-53

1-302262

-9-220923

-0-523185

Precession
\

in Decl.
J

- -3-3357

Precession in R.A. 2-68052

Collecting and Differencing the Eesults.

E.A.

1755 2-68113 _
i8oo 2-68084 _^^-^
1845 2-68052

Deol.

-2-9982

-XT, = ^'
-3-3357
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Calculation of Place foe, 1850 and Annual Variations &c.

fob. same time.

10, .

a —a

- 0-00034

90

162

h

5k

1

-IP
'

- 0-00038
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Bessel's Fictitious Year.

The value of the precession given by Dr Peters refers to the tropical

year as the unit of time, and the places of the Stars given by him and

all the other German Astronomers correspond to the beginning of Bessel's

fictitious year, viz. to the instant when the Mean Longitude of the Sun
= 280°. It seems desirable for the sake of uniformity to adopt the same

usage, and therefore the places of the Stars found from Airy will require a

small correction.

Greenwich Times at the oommeneement of the Fictitious Years
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The same corrections were subsequently publislied in the Monthly Notices

for January, 1853, and Mr Farley made the modifications which were required

in order that the resiilts might coincide with those which would have been

found if the above mentioned small corrections to the places for 1755, 1840,

and 1845 had been first applied, and the calculations before described had

been made with the places so corrected.

These modifications are as follows

:

As explained before, in the preliminary calculations Mr Farley applied

the constant correction — 0''02 to the Eight Ascensions for 1755 given in

the TahulcB RegiomontancB. Hence the correction to be further applied to

the Right Ascension for 1755 will be =Le Verrier's correction+ 0°'02.

The corrections of Declination for 1755 will be 0, as well as the

corrections of Eight Ascension for the same date of Stars not included in

Le Verrier's list.

Again the correction of the place for 1845 as deduced from that for

1840

correction for 1840 — correction for 1755= correction for 1840 +-
17

and the mean of this value and of the correction for 1845 derived

independently, as before mentioned, is to be taken according to the number
of observations on which they respectively depend, and we shall have the

adopted correction for 1845.

Also,

Adopted correction for 1845

+^ (adopted correction for 1845 — correction for 1755)

= correction for 1857 to be applied to former results.

The correction of the Proper Motion before found will be

=^ (adopted correction for 1845 -correction for 1755).

[Here follows a table shewing the results of calculations made in

conformity with the above.]
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Polar Stars.

Adopted places and proper motions of the 4 Polar Stars for the beginning

of 1800, to be employed in obtaining the places for every 5th year from
1830 to 1870.

Polaris

51 Cephei

8 Ursse Min.

X. Ursee Min.

E. A. 1800

13° 6 20'631

90 41 51-950

279 9 41-220

312 53 29-762

Annual Proper
Motion in B. A.

+ 1-32332

-1-90675

+ 0-48557

-0-79394

Decl. 1800

88° 14 2^-4:93

87 16 34-340

86 33 43-415

88 41 16-413

Annual Proper
Motion in Decl.

+ 0-00549

-0-09101

+ 0-02306

+ 0-01234

Constants and formnlcB to be employed in reducing the above places to other

epochs.

If 6 denote the inclination of the Equator of 1800 + i to the fixed

Equator of 1800, and if 90°— z denote the Bight Ascension of the inter-

section of the Equator of 1800 + « with that of 1800, reckoned upon the

latter, and 90° + z' denote the Eight Ascension of the same intersection

reckoned on the Equator of 1800 + i, then

^ = 33'26"-077
l'^)

- 0"-430758
(x^J"^""^^^^^^^^ (hoJ'

z = 38'23"-1165 4) + 0"-8105775(jlj;

t

z'-38' 23"-1165 L^ + 1"-1156955

and the values of 6, z and z' for the several Epochs mentioned will be

as follows :

1755
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The following is the process to be employed in reducing the above star

places from 1800 to 1800 + «.

First to the above places for 1800 apply the proper motion for t years.

Let the resulting Right Ascension and Declination be called a and 8

respectively. Take out from the above table the values of 6, z and z' for

the year 1800 + «.

Then if a' and 8' be the Right Ascension and Declination for the year

1800 + i, these quantities will be obtained from the following Equations.

Assume
, ,

cos(a + z)

tan 8

Then

and

tan (a' — z') = —.—
, , n\ ^^'^ («•+ 2),

5, cos(a'-z')
^^^^^

tan(<^-^)
-

As a check the following formula may be employed,

sin (a + z) cos 8 = sin (a' — z') cos 8'.

But as a more severe rcheck, and in order to find still more accurately

the places for 1800 + ^, we may employ the following.

Let a+ z = A, a'-z'= A'.

Then
sin ^ (^' - .4) = sin ^ (^' + ^) tan ^ (8' + 8) tan ^ ^,

tan ^ (8' - 8) = ^^^ij4^±4x tan i ^.^^ ' cos-^(^'-^) ^

The differences A' —A and 8' — 8 may be more accurately found from

the logarithmic tables by these formulae than A' and 8' themselves can be

by the formulae given before.

The above was the process followed by Mr Farley, except that he calcu-

lated the values of 6, z and z' for each 4th year, differenced the results

and interpolated the places for every year.

[Here follow the star places thus found for every year from 1830 to 1870.]
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49.

ACCOUNT OF SOME TRIGONOMETRICAL OPERATIONS TO ASCERTAIN^

THE DIFFERENCE OF GEOGRAPHICAL POSITION BETWEEN THE
OBSERVATORY OF. ST JOHN'S COLLEGE AND THE CAMBRIDGE OB-

SERVATORY.

[From the Cambridge Philosophical Society's Proceedings. Vol. i. (1852).]

The observations, especially those of eclipses and occultations, which

were made during many years by the late Mr Catton at the Observatory

of St John's College, and which have recently been reduced under the

superintendence of the Astronomer Royal, render it a matter of some

importance to determine the exact geographical position of that Observatory.

The simplest and most accurate means of doing this appeared to be, to

connect it trigonometrically with the Cambridge Observatory. For this

purpose, a base was measured along the ridge of the roof of King's College

Chapel, by means of two deal rods terminated by brass studs, the exact

lengths of which were determined by comparison with a standard belonging

to Professor Miller. The extremities of the base were then connected by

a triangle, with a station on the roof of the Observatory at St John's,

from which, as well as from the two former points, a signal post on the roof

of the Cambridge Observatory could be seen. The angles at the extremities

51—2
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of the base, combined with the corresponding ones at the station at St John's,

furnished two determinations of the distance of the Cambridge Observatory,

which served to check one another. The meridian line of the transit instru-

ment at St John's passes through King's College Chapel, so that by observing

the point at which it intersected the base, the azimuths of the sides of

the triangles could be immediately found.

The result thus obtained is, that the transit instrument of the Cam-
bridge Observatory is 2313 feet to the north, and 4770 feet to the west

of that at St John's College. Hence it foUows that the difiPerence of latitude

is 22""8, and the difference of longitude 5"'10; and the latitude of the

Cambridge Observatory being 52° 12' 5l""8, and its longitude 23""54 east of

Greenwich, we have finally for the geographical coordinates of the Observatory

of St John's College,

Latitude 52° 12' 29"-0

Longitude 0° 0' 28"-64 E. of Greenwich.

These operations, of course, furnish incidentally a very exact determi-

nation of the orientation of King's CoUege Chapel. The line of the ridge

of the roof points 6° 20''3 to the north of east.



50.

PROOF OF THE PRINCIPLE OF AMSLER'S PLANIMETER.

[From the Cambridge Philosophical Society's Proceedings. Vol. I. (1857).]

Let be the fixed point,

P the tracer,

Q the hinge,

W the centre of wheel,

M the middle point of PQ,

OQ = a, PQ^h, MW=c.

The area of any closed figure whose boundary is traced out by P, is

the algebraical sum of the elementary areas swept out by the broken line

OQP in its successive positions.

Let
<f>

and xjj be the angles which OQ, QP at any time make respec-

tively with their initial positions.

s the arc which the wheel has turned through at the same time.

If now OQP take up a consecutive position, and ^, ^, s receive the

small increments S<f), 8i/», Ss, we see that Ss = motion of W in direction

perpendicular to PQ.
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Hence motion of M in the same direction =Ss + cSi/f, and therefore the

elementary area traced out by ^P = 6 (Ss + cSt/f). Also elementary area traced

out by OQ = ^a^h<j>.

Hence the whole area swept out by OQP in moving from its initial

to any other position is

^a'^* + ^^^ + '^^•

If OQP returns to its initial position without performing a complete

revolution about 0, the limits of <^ and t/» are 0, and the area of the

figure traced out by P is hs.

If OQP has performed a complete revolution, the limits of ^ and i/f

are ^ir, and the area traced out is

TT (a' + 2bc) + hs.



51.

NOTE ON THE RESOLUTION OF a!» + 4-2cosM INTO FACTORS.

[From the Cambridge Philosophical Society's Transactions. Vol. xi., Part 2 (1868).]

The relation between successive values of a;™ + -^ corresponding to

successive integral values of m is

when m = 1 this becomes

x' + -,=(x + -)(x + -)-2.
of \ xj \ xj

An exactly similar relation holds good between the successive values

of 2 cos md, thus

2 cos (m + 1) ^ = (2 cos d) (2 cos mQ) - 2 cos (m - 1) ^,

when m = 1 this becomes

2 cos IQ = (2 cos &) (2 cos d) - 2.

Now let Vo, Vi, v^ &c. ?;„ be a series of quantities, the successive terms

of which are connected by the same relation as that which we have seen

to exist between the successive values of a;'" + -- and of 2 cos rri,Q, viz.
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Also as in those cases let v„ = 2, but let v^ be any quantity whatever,

thus we have

&c. &c.

Then it is evident

(1) that Vn is a definite integral function of v^ of n dimensions, and

that the coefficient of Vj" in it is unity.

(2) that if v^ = x + -, then v„ = a;" + ^.
Ji/ Ju

(3) that if Vi = 2 cos d, then v„ = 2 cos n0.

Hence v^ — 2 cos na will vanish when v-^ is equal to any one of the n
quantities,

27r'

and therefore

v„ — 2 cos na= [v^ — 2 cos a]

for all values whatever of v.^.

277
2 cos a, 2 cos ( a H j , 2 cos (a+2— j, 2 cos la+n—l 2tt

I
27r\

Vi — 2 cos (a-l )

X

, 27r'
v, — 2 cos a+ 2—

277
Vi — 2 cos ( a + 71 — 1

%

Now, put v, = x + - :

X

.'. 33" + —r — 2 cos na
a;"

x-\ 2 cos a
X

1 « / 27r'
icH 2cosaH

X \ n
x-\ 2 cos

X

X

which is the required resolution

Similarly, if we put Vj = 2 cos 6, we have

2 cos n6— 2 cos na

= [2 cos ^ — 2 cos a] 2 cos ^— 2 cos -?)][2 cos ^-2 cos (a+ 2

X 2cos^-2cos(a+n-l—\1
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Hence we see that the two equations just found are particular cases

of the general equation from which they have been derived, v-^ being in

one case numerically not less than 2, and in the other not greater than 2.

If' either a; = 1 or ^ = 0, v^ becomes = 2, and either of the equations gives

.27r\
2 — 2 cos na = [_2 — 2 cos a] 2 - 2 cos ( a + —

j

2 - 2 cos a + 2

2 — 2 cos a + n — 1

n

2tt'

n

Similarly, if either x= —I or 9 = tt, Vj= —2, and either of the equations

gives

2(-l)"-2cos%a = [-2-2cosa] . ^ ,

277'

— 2 — 2 cos {a-\

[- 27r'
2 cos ( a + 2— 277— 2 — 2 cos {a+ n — l —

n

52



52.

ON A SIMPLE PROOF OF LAMBERT'S THEOREM.

[From the British Association Report (1877).]

The following proof of Lambert's Theorem, which I find among my old

papers, appears to be as simple and direct as can be desired.

Let a denote the semiaxis major and e the eccentricity of an elliptic

orbit, n the mean motion, and /a the absolute force.

Also let r, / denote the radii vectores, and u, u' the eccentric anomalies

at the extremities of any arc, k the chord, and t the time of describing the

arc.

Then r — a{l—eGosu), r' = a{l—ecosu'),

¥ — a? (cos u — cos u'Y + a' ( 1 — e') (sin u — sin u'f,

and nt = (—A t — u — u' — e{sm.u — sm.u').

r +Z / u + u'\
Or __=i_(ecos-2-]cos-

— = sm'' --- sm=--—+ {l-e) cos' —— sm'^—
4a' 2 2

,
u+ u'= sm'^^^-ll-e'cos'

J . / r. /
u + u'\ . u — u

and nt = u — u' — 2[etios,—-—
) sin———
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Hence we see that if a, and therefore also n, be given, then r + r', h,

and t are functions of th'e two quantities

, , u + u'
u — u and e cos—;-—

.

u ~\~ u
Let u — u' = 2a and e cos—-— = cos yS.

Zi

Then —— = 1 — cos a cos ^S,
ZiQj

k— = sin a sin /3

;

Zi(X

therefore -— = 1 — cos (j8 + a),

and —2^— = l-cos(^-a);

also ni5 = 2a — 2 sin a cos /8,

-[y8+ a-sin(/8+ a)]-[y8-a-sin(^-a)].

The first two of these equations give y8 + a and ;8 — a in terms of

r+ / + ^ and r-^r' — h, and the third equation is the expression of Lambert's

Theorem.

An exactly similar proof may be given in the case of an hyperbolic

orbit.

Let o(e" + e"") be denoted by csh(M),

and ^(e^-e"") by snh (m),

which quantities may be called the hyperbolic cosine and hyperbolic sine of

Then we have

csh'' (m) — snh^ (v) = \,

csh (v) + csh {v!) = 2 csh — -— csh —=—

,

it Zi

csh (u) — csh (yl) = 2 snh —-— snh —^—

,

, , , , / A ^ , u + u' , u — u'
snh (u) - snh (?/) = 2 csh —^— snh—-—

.

52—2

u
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The coordinates of any point in the hyperbola referred to its axes

may be represented by
x= a csh (u),

y = aje^ — 1 snh {u).

If u, v! denote the values of u corresponding to the two extremities

of the arc, we have

r = a (e csh {u) — 1), r' — a{e csh {u') — 1),

le = a' [csh (u) - csh {u')J + a'{e'-l) [snh (u) - snh {u')J ;

or
r + r' I , u + u'\ -, u — v!

la
=

I
e csh -

—-^ = snh'—-

—

4a' 2

csh

e' csh'

-1,

tt + M -1

Also twice the area of the sector limited by v and r'

= aVe' — 1 [(e snh u — u) — {e snh v^ — li')]

= aVe'-l 2 e csh—-— snh
u — u

2 / 2

and twice the area described in a unit of time is

N//A(x(e'— 1).

--(u-'i^) L

Hence ^=( '̂^*'"r,/ .U-\-vl\ ,U-V! ,
,'

2 ( e csh—-—
)
snh — (u — u)

and therefore if a be given, then r-^r', h, and t are functions of the two

quantities e csh —-— and u — u'. *

Let u — u' = 2a, and e csh —-—= csh (/S), which is always possible since e

is greater than 1.

Then ^^ = csh (^) csh (a) - 1

,

— snh (/S) snh (a)
;

therefore ;::
= csh (/8 + a) — 1

,

and
'2a

"^ = csh(^-a)-l.

2a
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Also *^i~) [2 csh (y8) snh (a) - 2a],

= (-) [snh(/8 + a)-(^ + a)-snh(^-a) + (;8-a)].

As before, the first two of these equations give ^ + a and ^ — a in

terms of r + 1^+h and r + 7^ — k, and the last equation is the expression

of Lambert's theorem in the case of the hyperbola.

When the orbit is parabolic, a becomes infinite ; and since r +/ and

Ic are finite, the quantities a and ;S become indefinitely small.

Hence

Z±^A]^ = 1 - cos (/8 + a) = ^ (/8 + a)^ ultimately,
2ct 2i

-— =l—G08{/3 — a) = -{/3 — af ultimately

;

2(X ^

also ^"(~) {/S + '^-sin(^ + a)-(;8-a) + sin(^-a)}

= (-)* {I il^ + ^y-l{^- <")'} ultimately

1 /a^\^ ( /r + r' + k\^ (r-\-r' — lc\^

6\/a/ \\ a J \ a

^

—

j={{r + r' + hf -{r + r' -hf},

which is Lambert's theorem in the case of the parabola.



53.

ON THE ATTRACTION OF AN INDEFINITELY THIN SHELL BOUNDED BY
TWO SIMILAR AND SIMILARLY SITUATED CONCENTRIC ELLIPSOIDS

ON AN EXTERNAL POINT.

[Ahstract.2

[From the Cambridge Philosophical Society's Proceedings. Vol. ii. (1871).]

No problem has more engaged the attention of mathematicians, or has

received a greater variety of elegant solutions, than that of the determi-

nation of the attraction of a homogeneous ellipsoid on an external point.

Poisson's solution, which was presented to the Academy of Sciences in

1833, is founded on the decomposition of the ellipsoid into infinitely thin

shells bounded by similar surfaces. By a theorem of Newton's, it is known
that such a sheU exerts no attraction on an internal point, and Poissbn

proves that its attraction on an external point is in the direction of the

axis of the cone which envelopes the shell and has the attracted point

for vertex, and that the intensity of the force can be expressed in a finite

form, as a function of the coordinates of the attracted point.

In 1834, Steiner gave, in the 12th volume of Crelle's Journal, a very

elegant geometrical proof of Poisson's theorem respecting the direction of

the attraction of a shell on an external point. He shews that if the

shell be supposed to be divided into pairs of opposite elements with respect

to the point in which the axis of the enveloping cone meets the plane

of contact, then the resultant of the attraction of each pair of such elements

acts in the direction of the axis of the cone, and consequently the attraction

of the whole shell acts in the same direction.
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About three years later, M. Chasles shewed that Poisson's solution

might be greatly simplified by the consideration that the axis of the
enveloping cone is identical with the normal to the ellipsoid which passes

through the attracted point and is confocal with the exterior surface of the
shell.

This mode of enunciating the direction of the attraction has the
advantage of making known the level surfaces with respect to the attrac-

tion of the shell on external points.

In 1838, M. Chasles presented to the Academy of Sciences a very
simple and elegant investigation, in which he arrives at Poisson's results

respecting the attraction of a shell on an external point, by a purely

synthetical method.

M. Chasles' method is founded on Ivory's well-known property of cor-

responding points on two confocal ellipsoids, and on some elementary

propositions in the theory of the Potential.

Struck by the simplicity and beauty of Steiner's method of finding

the direction of the attraction of a shell on an external point, the author

of the present paper was induced to think that by means of the same

method of decomposing the shell into pairs of elements employed by Steiner,

a correspondingly simple mode of determining the intensity of the attraction

might probably be found. The author has been fortunate enough to succeed

in realizing this idea, and the result is the method contained in the first

part of the present paper.

This method is throughout quite elementary. It requires the knowledge

of only the most simple properties of ellipsoids, including Ivory's well-known

property respecting corresponding points on two confocal ellipsoids.

The proof of the theorem respecting the direction of the attraction

diflFers from that given by Steiner, and harmonizes better with the method

employed for determining the intensity of the force. No use is made in

this method of the properties of the Potential.

The second part of the present paper is devoted to what the author

considers to be an improvement on M. Chasles' method of determining the

attraction of a shell on an external point. Its novelty consists in the mode

in which the intensity of the attraction of the shell is found. M. Chasles

first compares the attractions of two confocal shells on the same external

point. He then takes the outer surface of one of these shells to pass
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through the attracted point, and having, found the attraction of this shell

by a method applicable to this particular case, he deduces from it the

attraction of the general confocal shell. Now it may be remarked on this

that the method of finding the attraction of the shell contiguous to the

attracted point does not seem free from objection, and also that it may
be doubted whether it is legitimate to include this limiting case under the

general one without a special examination. If, in order to remove these

objections, special considerations are introduced, the proof is thereby deprived

of its simple and elementary character. Whether these criticisms on M.

Ohasles' method are well founded or not, the author thinks that mathema-

ticians will not be displeased to see a direct determination of the attraction

of a shell on an external point without the intervention of another shell

whose outer surface passes through that point. In order to make the paper

more complete, the author briefly shews how from the expression for the

attraction of a shell, we may pass to the expression the integral of which

^ives the attraction of a homogeneous ellipsoid on an external point.



ON THE ATTRACTION OF AN INDEFINITELY THIN SHELL BOUNDED BY
TWO SIMILAR AND SIMILARLY SITUATED CONCENTRIC ELLIPSOIDS.

We shall find it convenient to consider the relations between two

systems of points.

A system of points is said to be related to another system of points

when if x, y, z and x', y', z' be corresponding points, then

X y -, z— = a: — = : - = c :

x^
3/1 Zi

where a, h, and c are constants.

If a = b = c, the systems are similar.

Volumes bounded by corresponding surfaces are in the ratio of abc : 1
;

for the ultimate corresponding elements are in this ratio, and therefore,

by Newton's fourth Lemma, the whole voltimes are in the same ratio.

The shells will be supposed to be contained between two similar and

similarly situated concentric surfaces ; the ratio of similitude between the

inner and outer surfaces being 1 : 1 +t, where t is indefinitely small.

We may without ambiguity designate any shell by the same symbols

which denote its inner bounding surface.

If the principal sections of two ellipsoids be confocal the ellipsoids

themselves will be said to be confocal.

A. 53
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Let E be an ellipsoid whose principal semi-axes are a, b, c; and let

JE^ be a confocal ellipsoid whose principal semi-axes are «„ b^, c,.

Then a'-b' = a,'-\'; &c.

or a,'-a' = b,'-b' = c,'-c'.

First Solution.

Let a, b, c be the semi-axes of E the interior surface of the attracting

shell, and let l+t be the ratio of similitude between the inner and outer

surfaces.

Let Jfj (whose coordinates are x^, y^, «,) be the attracted point, a„ b,, c,

the semi-axes of a confocal ellipsoid through M^, then

a b G

will be the coordinates of a point (M' suppose) on the ellipsoid E.

The equations to the normal to the ellipsoid E^ at M^ are

^(a.-X) = |(2/.-r)=|(..-Z),

or a^ — = 6/—'— = c^—-—
,

Xj y^ Zi

Take X, Y, Z the coordinates of a point M on this normal such that

^-^' ^—bl' ^=^-
we see that the relation of M to M' is such that itf is a correspondilig

point to M' in the system of points whose relation is

/a b g\

M is the point in which the normal to the external ellipsoid at M^
meets the plane of contact of the cone of which M-^ is the vertex and
which envelopes the attracting shell E.

Let the attracting shell be divided into, pairs of elements by means
of double cones of indefinitely small solid angle having their vertices at

the point M.

Let one of these cones of solid angle Sw intercept a, pair of elements

of the shell E at P and Q.
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Let P' be the point on the eUipsoid E^ which corresponds to P on E.

Join P'M' and produce it to Q, so that

M'Q' : P'M' :: MQ : PM.

Then since M and M' correspond in the above system of points so

also do P and P', and the hnes joining them both are divided in the

same ratio, therefore Q and Q' will be corresponding points in the same

system and therefore Q' is also on the ellipsoid E^.

Now by the property of corresponding points on confocal ellipsoids

we have
PM.^P'M' and QM,= Q'M'.

Since the portions of the line PQ intercepted by the shell at P and

Q are equal,

the volumes of elements at P and Q are in the ratio of MP^ to MQ^,

i.e. are as M'P" to M'Q" or as M.P" to M,Q';

therefore the masses of these elements have attractions so that the attraction

of the element P on M' = ihe attraction of the element Q on M',

and therefore the resultant attraction of these elements will bisect the

angle between M^P and M^Q, i.e. will be in the direction M^M,

for since MP : MQ :: M,P : M,Q,

the angle PM^Q is bisected by MM,.

Hence the attraction of every such pair of elements will be in the

direction M,M, and therefore the resultant attraction of the shell E on M,

is in this direction.

We have now to find the magnitude of this attraction.

Let p he the perpendicular on the tangent plane at P, then the

thickness of the shell at P is pt.

Hence if PN be the normal to the surface at P drawn inwards, the

elementary surface intercepted by a cone whose solid angle is Sw will be

8a>. MP" sec MPN,

therefore the volume of the element is

pa.MP^se.MPN=^p^^^^p^.

53—2
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Hence if /o = 1, the attraction of the element on M-^ resolved in the

direction

,^^^ pt.Say.Mr cos PM,M_ pt.S(o. MP' M,P cos PM,N
' ~MP cos MPN • M,P' ~ M.P" MP cosMPN '

Let X, y, z be the coordinates of P, then the direction cosines of PN
are ^, ^ , ^ and the projection of MP upon the normal PN will be

px f a? \ py ( Tf \ pz ( c^ \

or MPcosMPN=p\l-l^: + y^ + ^-^}j .

Similarly MJP cos PM,M is the projection of M.,P upon M^M.

The direction cosines of M,M are =^-V >
^^4-^

j —i^
, where p, is the per-

«!'' 6/ Ci^
-^ ^

pendicular from origin on the tangent plane at M.^.

The projection of M^P upon M^M is

Hence attraction of element at P on M^ resolved in the direction M-M is

MP^ MP'
t.Soi.p, -^^-p^ = t.S(o.p, j^j^^ (since M,P = M'P').

Let S<u' be the solid angle of a cone whose vertex is M' and base
the element of E' which corresponds to the element Fj at P.

Then the volume of this cone is ultimately - Sw' . M'P'\

But the volume of the corresponding cone will be - Sw . MP", and

these volumes are as afi^c.^ : abc respectively

;

therefore
S.'

.
M'P"

^

S.. MP-
a^OjCi abc

jr Boi . MP' .
, abcHence -^^ = Sco'.^^-,
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therefore the resolved part of the attraction of the element E &t P along

M^M is p-J:, -^— . Sft)', therefore the attraction of the whole shell on M^ along

MM will be AiTtp, . -^ .

Hence if the shell be of uniform density p, the attraction of the

whole shell on M^ in the direction of the normal will be Awptp^ .
—^— ,

where p^ is the perpendicular from the origin on the tangent plane at M^.

Hence the attraction of the shell has been determined in direction and

magnitude.

Second Solution.

Imagine a shell of which £! is the inner boundary to be composed

of matter of uniform density, and another shell of which ^j is the inner

boundary to contain the same quantity of matter, also of uniform density.

The quantity of matter contained in any portion of JE will be equal to

that in the corresponding part of £',,

also since vol. of JE : vol. of ^i :: ahc : a^\c^;

therefore density of E : density of ^i :: ai^iCj : ahc.

Now let M' and ikTi be two fixed corresponding points on E and E^,

and let P and P^ be any two corresponding points ; then by the property

of corresponding points on confocal ellipsoids, M'Pj^ — M^P.

Also the same quantity of matter is contained in corresponding elements

of the two shells at P and P^, and since the same is true for all cor-

responding elements, therefore the potential of shell E^^ at the point M'

= the potential of shell E at the point M.^.

But since, by Newton's Theorem, the shell E.^ exerts no attraction on

an internal point, its potential is constant at all internal points and is

therefore the same at M' as at 0, the common centre of E and E^.

Hence the potential of the shell E at any point M-^ on the surface

of E-y is constant and equal to the potential of the shell E^ at its centre

0; therefore by the theory of the Potential the attraction of the shell E
at ifcfi is in the direction of the normal to the surface -S,.

We now proceed to find the magnitude of this attraction.
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Let E' be another ellipsoid contiguous to E^ and inside it and confocal

with both E and E,^; let its principal semi-axes be a', b', c', and let

a' + Sa' = «!, h' +W — 61, c' + he' = Cj

;

then since aj' — a" = &i^
— 6" = Cj' — c",

we have ultimately a'Sa' = h'8b' = c'8(/.

Imagine a shell of which E' is the inner boundary and containing

the same quantity of matter as E or E-^, and let this matter be of uniform

density, then the potential of the shell E at any point on the surface of

E' is constant and equal to the potential of shell E' at the common
centre.

Now let S be the sphere whose centre is at O and radius unity.

Imagine a shell of which the inner boundary is S ; let I, m, n be the co-

ordinates of any point p on S, and let Scr be an element of the surface at

jp ; then if a cone be described with base Scr and vertex 0, the element

of the shell S intercepted : whole volume of shell :: Scr : Att.

At the points P^ on E^^ and P' on E', which correspond, take elements

of the respective shells which correspond to the element at p on this spherical

shell.

The volumes of these corresponding elements will be proportional to the

whole volumes of the shells to which they belong, hence if M denote the

mass of each of the shells E, E^^ and E', the mass of the element at P^

M ">

and also at P' will be ~ . Scr ; also the coordinates of Pi are a^l, \m, cji

and those of P' are a'l, h'm, c'n
;

therefore OP,' - OP" = I' {a,' - a") + m' {b,' - b") + n' (c,' - c'')

= {a,"- a") {I'+ m^ + n') = a/ - a'\

Let OP,=r, and OP' = r' and let ri = r' + Sr'; then we have

/S/ = a'ha'.

Now if F be the potential of the shell E, at 0, and F'=F-|-SF be

the potential of the shell E' at the same point, then

F=^[^and r=^{^^;
477 I r, 477 r
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therefore SV =^ (d. (^-1) =M L.%
477 I \r rj 477 I r'

Now the volume of the cone whose base is So- and vertex and

radius unity is -So-; hence the volume of the corresponding cone enveloping

the element at Pj or P' is -a'b'c'Scr; therefore if Sw be the solid angle
o

of the cone

-r''S(o = -a'h'c'Sa;
o o

8cr 8(0

and we have bV = -- aba ,,, ,
= -y^-, -

.

477 Ja'b'c b'c

Hence it follows that the attraction of shell £! at Pj in the direction

ot I'.r , 1. e. p p, , IS
^,^, pp, - ^,^,^ . pp,

.

Now if a; = aj, y = \m, % = Cj7i be the coordinates of Pj, those of P' will

be a'l, b'm, c'n and the projections of P^P' on the axes will be ISa', mW,
nSc'.

Putting for I the value — =-7j. of and so for m and n, we get

lSa'= ^,.a'Sa', mhb' = ^,.b'8b', nhc' = ^,.g'8c';
a b c

but the direction cosines of the normal are as -ti'-^'-^h-

Hence P^^P' is ultimately in the direction of the normal at Pj.

Hence attraction of shell E at Pj which has been shewn to act in

the direction of this normal = 7,^7 , where p^ is the perpendicular from

on the tangent plane at Pj.

If we call p the density of shell E, the volume of the shell is 477to&c,

and we have M= 4:Trptabc,

therefore the attraction of the shell =—7
. t.p^.
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We may regard a homogeneous ellipsoid as made up of indefinitely

thin shells.

Let X, Y, Z be the components in the direction of the axes of the

attraction of an ellipsoid whose semi-axes are a, b, c on the point Pj,

and let X+SX, Y+SY, Z+SZ be the attractions of a similar ellipsoid whose

semi-axes are a + Sa, b + Sh, c-frSc, where

8a = at, 8b = bt, 8c = ct,

then 8X^^:^ .tp,.^=^^ .P\.x.8a.
a-^b^c^ ' cti Ot^c^ a^

Let u =— , then Sw = — . 8a^ ultimately,
a.1 a{

and

hence

hence

8u = —^.p^ .8a;
a.

be
8X = iirpX . r— . 8u,

J)C ct
^

8Z = Attoz .

,

—
. —..8u.

^ o,c, c^

be a/
We have now to substitute for the quantities t— , -^ , kc

Since a/ -a^ = b^ - 6' = c^ - c\

the equation to the ellipsoidal shell through the attracted point is

r

and so we get

X

a/
*

a,'+{b'-a')
"^

a,'+ {c'-a')
= 1,

-+-
u' u" \a°

b'
+
1 (^

= a',

b c
where - and - are constants; and so a^ is known in terms of u\

a a

Also &/ = a'

"
1 /b'

,-+ -2-1 and c^ = o^

" 1 [& ^

^+ -1-1
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Hence SJl = 4:TTpX • -J

7
r /&' M



54.

ON THE CALCULATION OF THE BERNOULLIAN NUMBERS FROM 5„, TO B,,.

[From Appendix I. to the Gambridge Observations, Vol. xxii.]

In the year 1877 I communicated to the meeting of the British

Association at Plymouth the values of 31 of Bernoulli's numbers which I

had obtained in addition to the 31 of those numbers already known, and

I stated that it was my intention to publish some of the steps of the

calculation in an Appendix to the Cambridge Observations.

The following Tables accordingly contain some of the principal steps of

the calculations, together with more detailed specimens of the work in the

cases of the 32nd and the 62nd Bernoulli's numbers, the first and last of

those which I have calculated.

In order to render the Tables intelligible, the substance of my com-

munication to the British Association is here reproduced.

A remarkable theorem, due to Staudt, gives at once the fractional part

of any one of Bernoulli's numbers, and thus greatly facilitates the finding

of those numbers by reducing all the requisite calculations to operations

with integers only.

The theorem may be thus stated :

—

If 1, 2, a, a'...2n be all the divisors of 2n, and if unity be added to

each of these divisors so as to form the series 2, 3, a+1, a'+l...2n+l,
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and if from this series only the prime numbers 2, Z, p, p'... be selected,

then the fractional part of the wth number of Bernoulli will be

(_i)« (1 + 1 + 1 + 2,+ ...).

Having found, several years ago, a simple and elementary proof of this

theorem, I was induced to apply the theorem to the calculation of several

additional numbers of Bernoulli, and I ultimately obtained the values of

the thirty-one numbers which are given in the present paper.

The method which has been employed affords numerous tests, throughout

the course of the work, of the correctness with which the requisite operations

have been performed, so that I feel entire confidence in the accuracy of

the results.

In making these calculations I have received very efficient aid from

my Assistants, Mr Graham and Mr Tpdd.

The following is an outline of the method employed :

—

Bernoulli's numbers B^, B^, &c. are defined by the equation

or

e="-l 2 1.2 1.2.3.4 ^ ' \2n

where n takes all positive integer values from 1 to oo

.

If we multiply by e*— 1, and equate to zero the coefficient of af""^' on

the right-hand side of the resulting equation, we shall find

(-ira„»5,+(-ir-^c:_,5„_,-i-&c.-i-(-i)a,"A+«-i=o,

in which C/ denotes the coefficient of x^ in the expansion of {l+x)^'^\

This equation gives -B„ when B^, J^^, ...j5„_, are known.

Now let 5„ = /„-^(-l)»(/„-l),

where (-1)V» is the fractional part of B^ given by Staudt's Theorem, so

that /„ is an integer.

54—2
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Substituting in the above equation, and writing for simplicity C, instead

of C/, as we may do without ambiguity, we have

(-l)»a7„ + (-ir-C„_,J„_, + &c.+(-l)(7,/,

-a-c;-&c.-c„+n-i=o.

Now by Staudt's Theorem the fraction ^ occurs in each of the fractions

fn ; hence the quantity arising from this fraction in Cj/i + C^f^ + &c. + C^f^

will be

i(a+a+...+a)=i(2^"-i).

Also, by the same Theorem, if 2r+l=^ be an odd prime number, the

fraction — will occur in each of the fractions fr, f^r, fsn &c.

Hence the part of C-^f^^+ C^f^+ &c. which contains — will be
P

-{Cr+C^+C^r+ kc.}.

p

Also (7„ = 2w + 1 ; hence by substitution and transposition, we find

( - \f-' {2n+!)/„=- {CJ, + CJ,+ &c.} + {CJ,+ CA + &c.}

+i(c,+a4&c.+a)

+ J(a+Cl+Cl + &c.)

+^(C3+a+a+&c.)

+^((7,+a„+c„+&c.)

+ &C.

+ &C.,

which gives /„ when I^, I^...I^_^ are known.
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In the above expression p is supposed to include every odd prime number
not exceeding 2n+l.

It may be easily shewn that all the quantities

|(c,+a+&c.+a)

^(a+a,+a+&c.)

^(a+a+a+&c.)

&c.

are integers. Hence the right-hand side of the above equation is an integer

which must be divisible by 2n+l; and this supplies a test of the correctness

of the work.

If F^=t-{c:+ci+ci+kG.) -2-^-^+71

where, as before mentioned, p = 2r+l is an odd prime number, the above

equation for /„ may be written

( - 1)"-^ (2n + 1) /„ = - {Ci"/. + (73»/3 + &c.} + {ci.

+

c:'i. + &c.}

+

F^

.

The reason why we assume

5„=4+(-i)«(/„-i),

instead of taking the simpler form

5„=/„+(-ir/n.

is that with the above assumption the quantities /„ I^, I^, I^, I^, I^ all vanish,

so that we have fewer quantities to calculate.

The numbers CJ^I^, which are required in order to find the value of

(2«. + !)/„, can be readily derived from the numbers (7/"^/^, which have been

already employed in finding the value of the similar quantity (2n — l)/„_i

which immediately precedes it. For since

we have

pn_ {2n+l)2n ^„., ^ n{2n+l) ^,_,
' {2n-2r+l){2n-2r) ' {n-r){2n-2r+l) ' '

nnT _ n{2n+l) ^^_,j
^'•^'•-(n_r)(2w-2r+l) " "
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whicli may be written

P" =
n{2n+l)

{n-r){2n-2r+l) ''
'

and a test of the correctness of the work is supplied by the divisions by

n — r and 2n — 2r+l being performed without leaving any remainder.

I have proved that if n. be a prime number, other than 2 or 3, then

the numerator of the nth. number of Bernoulli will be divisible by n.

This forms another excellent test of the correctness of the work.

I have also observed that if g' be a prime factor of n, which is not

likewise a factor of the denominator of 5„, then the numerator of B^ wUl

be divisible by q. I have not succeeded, however, in obtaining a general

proof of this proposition, though I have no doubt of its truth.

Table I.

Formation of the quantities f„.

/«
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Table I,

—

[continued).

I I

I I I I I

I I I I

I I I I

/»

.5
"6

. 15541

13530

1805
' 1806

.743
"690

19
I I I

2"^3^83^

1 I I I I I I
- + - + -+- +—+—+ — :

2 3 5 7 13 29 43

1 I
- + -
2 3

In

421

'498

4462547
"
3404310

.5
"6

66817III I I

2 '''3
5
* 23

"*"

89 ~ 61410

41

42

43

44

III
2

3'''47'

I I I I I I

1 1 I

2 + i
+ II^

I I I I

2^3^-^ 53^

I I I I

2^ + 7-^1^^

1 I I I
- + -+-+— :

2 3 S 29

III
2^3^55^

1 I I I I I I I_ + _ + _ + _ + _ + _ + _+_:
2 3 5 7 II 13 31 61

I I

2^^

1 I I I

2 +3^ + 17^

III I.I
- + - + - + — + 7Z-2 3 7 23 67

III
2n-^r

1 I I I

2 + 3
+ 77 + ^^

IIIII I I I
- + _ + -. + - + _ +— + — +— :235 7 13 19 37 73

1 I
- + - =

2 3

III_ + - + -:23s
1 I I I

2
"^

3
"*"

7
"*"

79

^rhn+i^+i^

241
^282

_ 60887
' 46410

61

'66

.1673
"1590

821

'798

.929
'870

301

"354

. 79085411
" 56786730

.5
'6

.557
510

66961
'
64722

-3i
"30

4397
"4686

188641729
" 140100870

.11
'30

3281

"3318

277727

230010

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1 I I I I I
- + - + - + — +— + — =

2 3 7 II 19 31

2 3 5 47

I I

2+r
iiiii^ I I

2
"*"

3
"*"

S
"*"

7 73'^l7'''57'

1 I
- + -:
2 -3

1 I I I I

2 3 5 II lOI

III I-+- + - +
2 3 7 103

I I I I

2 + 3-'s-^53
=

III
2 3 107

IIIII I I I
- + -+- + - +—+—+ — +
2 3 5 7 13 19 37 109

1 I I I
- + - +— + —
2 3 II 23

2"'"3"'"s 17 29 II3'

III
2^3+r

._
313477

"2721 18

^
1487

" 1410

.5
'6

. 5952449
"

4501770

5
"6

37801
' 33330

. 4265
'4326

.1673
"1590

= 5li
"642

280724077

'209191710

1469

1518

1897709
' 1671270

-ii
"42

I I I I

2n^5-'5^
.
1859

1770

I I

2-^r

1 1

1

2+i-^r

5
"6

.31
'30

45

46

47

48

49

50

51

52

53

54

55

56

57

=^ 58

59

3299288581 g^
'
2328255930

61

62
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Table II.

Values of /„, or the Integral parts of Bernoulli's numbers.

The values of /j to I„ are zero.

I 7

7 8

55 9
529 10

6192 II

86580 12

14 25517 13
272 98231 14

6015 80874 15
1 S1163 15767 16

42 96146 43061 17
I 37 I 16552 05088 18

48833 23189 73593 19
19 29657 93419 40068 20

841 69304 75736 82615 21

40338 07185 40594 55413 22
21 15074 86380 81991 60560 23

1208 66265 22296 52593 46027 24
75008 66746 07696 43668 55720 25

50 38778 10148 10689 14137 89303 26
3652 87764 84818 12333 51104 30843 27

2 84987 69302 45088 22262 69146 43291 28
238 65427 49968 36276 44645 98191 92192 29

21399 94925 72253 33665 81074 47651 9'097 30
20 50097 57234 78097 56992 17330 95672 31025 31

2093 80059 I 1346 37840 90951 85290 02797 01847 32
2 27526 96488 46351 55596 49260 35276 92645 81470 33

262 57710 28623 95760 47303 04973 61582 02081 44900 34
32125 08210 27180 32518 20479 23042 64985 24352 19411 35

41 59827 81667 94710 91391 70744 95262 35893 66896 030U 36
5692 06954 82035 28002 38834 56219 12105 86444 80512 97181 37

8 21836 29419 78457 56922 90653 46861 73330 14550 89276 28860 38
1250 29043 27166 99301 67323 39829 70289 55241 77196 36444 84775 39

2 00155 83233 24837 02749 25329 19881 32987 68724 22013 28259 15915 40
336 74982 91536 43742 33396 67690 33387 53016 21959 89471 93843 67232 41

59470 97050 31354 47718 66049 68440 51540 84057 90715 6510& 90499 04704 42no 11910 32362 79775 59564 13079 04376 91604 63051 14442 23148 86269 99497 43
2I3S5 25954 52535 01188 65838 50190 41065 67897 32987 39163 46921 18045 90304 44

43 32889 69866 41192 41961 66130 59379 20621 84513 68511 80910 91449 86557 88033 45
9188 55282 41669 32822 62005 55215 50189 71389 60388 91627 19959 59100 44871 13437 46

20 34689 67763 29074 49345 50279 90220 02006 59751 40253 37827 70239 36918 42141 08241 47
4700 38339 S8035 73107 85752 55535 00606 06545 96737 36975 90579 15139 76356 41204 83354 48

II 31804 34454 84249 27067 51862 S7733 93426 78903 65954 75o74 79i8i 78993 S4166 S49ii 76373 49
2838 22495 70693 70695 92641 56336 48176 47382 84680 92801 28821 28228 53i7i ij648 6]iii 07028 50

1& fSJl ^!!l °^??I
50827 14092 09841 76879 73178 80887 06673 "610 03487 48532 84412 10855 51

5 17

17^ 89218

6 1160S 19994 95218 52558 2452s 26426 41677 80767 72684 67832 0S7T6 84324 071^7 35747 50^63 44103 ^895 2^605 gSsei 82633 592212 27769 12707 83494 22883 23456 71293 24455 7318S 05498 77801 S0566 55269 30277 3663s 00257 26591 02528 0313I iiS49 S6836 60
8 27227 76798 77096 98542 21062 45998 45957 31204 65051 84335 66283 84885 29885 84472 02350 07188 8,721 85613 01633 96614 iwos 61
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Table III.

Formation of the quantities 2 - (C;+Q+ Cl+ kc.) for the several values of n.

B=3i, 2n+i = 63
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Table III.

—

continued.

71=40, 2n + i = 8i n=4i, 2»H-I=83

4029 75273
1208 92581

575 67896
226 98241

141 76943
52 94048
69 78059
68 90498

I 71499

4 S49S2
35 20983
51 80299

47 04148
21 69264
I 53373

1616

223

20487
96157
17212

27456
58308
29982
51623

33065
19492

47470
63937
76644
18215
66588

26375
94301

54458
12155

17

63915
28686

51987
80596
47224
14478
76241

47086
05921

69994
92297
86795
71619
51721
01230
25306
04209
25678
07629
35738

68725

33395
95532
49567
55020
06223
31890
33520
89432
82928

95070
32061
22800
20720
96240
95200
10320
77880
46120
05950
1080

16119

483s
2302

89s
552
237
226

316

5
II

no
195

195
no
II

01092
70327
74189
26860

56703
79729
02262

39806
27201

28345
84095
22214
22214
84095
22428
18341
3006

3

81950
84563
90252
35488
26238
89500
92052
70248
22882
04317
58302

95595
95595
58259
42267

52357
80714
04149

745
22

55662
17675

77359
24264
03053
47040
24854
92075
99685

73975
97205
22219
22219

34545
02556
21398
29737
55035
00808
11211

3

74901

5691S
52586
03267
36700
52495
53175
74305
82328
79328
39990
8i86i

79620
44760
91408
52552
46320
91365
41620
20870
67524

6538 29904 13950 88360 49673 26125 62920 85503 12590 23891

1=42, 2n+ 1 = 85 n=43, 271+1 = 87

64476
19342
9210
3516
2228
1117

733
1377
23
27

336
703
771

534
75
I

04371
81311

94154
87500
32141
20270

36454
41466
31422
68771
48147
98290
80849
01 108

89146
86550
35781

63

27802
38296
39608
60249
19003
21381
62045
64740
25211
06277
32426
29570
82585
27241
72146
53889
00500
49788
25330
1012

22650
68748
40030
60409
23160

48307
71240
74261

55900
76233
91174
64982
76217

38093
36606
61232

13875
85837
27486
05436

624

99605
78771
39887
353IO
11921
10031

08370
26650
40425
60744
51900
41697
79895
45200
40770
86640
81208

49550
15080
09050
79080
1 190

I 04478 37801 39109 42509 92974

71= 44, 271+1 =

10 31616

3 09485
I 47373
55040
38738
24298
9106
22571

958
217
2805
8112

10565
10565
2805

144
36

69940
00982
1 1079
08418
58806
88226

03076
86365
80431
13966
64150
58924
23250
23250
64129

75977
78322
17508

159
10

44835
13626

28532
38412
16065
22690
89093
74402
79852
91956
2891

1

75574
84466
84466
80453
94637
26506

53706
56413
38259

46

62415
60910

34908
01 106

67132
02645

28574
44302
81358
71022
83105

37239
93118
93108

37554
80681

32796
50690
23245
76512
22743
830

93685
82547
53892
33185
80456
66543
66705

47263
87972
97744
85971
62197
50014
84720
04356
98496
24208
09460
72580

5643s
82376
15284

2 57904
77371
36843
13857
9232
5267
2476
5706
141

70
987
2436
2916
2436

477
17

3

17485

25245

4535S
40525
15088

91263
02233
32862

50675

75337
27623
26275
50059
26275
15962
18929
81358
1131

1 1 208

53450
01601

25853
46612
99989
35946
79462
07117

53558
50780
66719
79649
66719
83192

96554
23279
16952
96768
36058

90603
63274
27229

97563
49587
70454
23361

29356
85610
92805
15869

53385
83465
51960
53016
28502
25667
94847
81071
05108
64926

4

98421
21747
14060

75705
7581S
09039
14089
38680
51623
23984
38688
70137
46485
49260
08606
84040
84328

95555
25105
71010
17730
45179

4 18145 43696 31477 87672 59286

41 26466
12 37940

5 89493
2 20630
I 62213
I 08277
37462
85510
6422
961

7736
26055
36789
43701
15504
1 122

323
2

71=45, 271+1=91

79761 79342 49663
03928 53450 90527
14657 92002 13642
12287 04558 50794
29752 88085 98248
69370 36146 90754
25916 39891 87356
48319 92768 37134
80070 93125 63558
33966 71106 06982
77333 34621 36509
72781 86366 96212
64891 334" 65386
64355 76658 66950
85980 49873 91746
71078 95912 53584
92967 04394 43657
38991 53093 81919
31 I I 50058 03291
248 63589 I I 22

I

2426 94050
94429

16 74442 26979 22910 86006 56090

74741
03539
17917
81101
78116
98767
06005
47486
81296

74309
50687
20581

34480
23160
03020
71290
22864
79129
65310

93575
74740
88555
1365

67 06615 69773 00887 27623 92033
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Table III.

—

continued.

«=46. 2re+i = 93 n=47, 2?i+i = 95

i6s 05867

49 51760

23 57981
8 90369
6 70564
4 63925
I 69682
3 11125

40919
5874

20738

I 23440
I 72946

8072
2624

29

19047
15714
02721

77988
32843
85063
61924
13732
58249
02986
12959
98810
09258
92982
98810
19623

56653
12836
52612

5065

17369
14507
02481

61544
34174
06490
61491

78697
34213
26061

07875
51892

92343
39542
45561
17166

43559
94972
64617
06829
98880

73

98654
30852
42664
18866

44613
32488
41683
65961

63953
66881

86518

49346
39345
81973

7303s
09807
46904
53142
64749
62892

49039
44928

5

98965
31923
99852
67976
08710
70159
50961

33429
09380
74584
47431
42181

65723
25699
99658
39796
59114
07162
77060
57685
02264
18878

83947
268 57701 29884 00347 68309 72537

n=48, 2re+i = 97

2640 93875
792 28162

377 27753
145 35370
108 37153
75 70844
38 98331
36 89710
13 95226
2 74144
I 37716
7 09528

12 54050
23 97892
18 81075

3 40042
I 37689

3207
103

13

04754
51426
41139
87283

23049
36360
48805

59446
33260
94233
87279

53534
43294
91849
64941
89785
50126
53662
87145
87324
883

77919
46190

47394
90942
46940
72332
90928
81610

05743
12122

44213
91006
26386

23159
23320

53571
27429
06535
35487
20835
91403
86439

78479
68520
77289
28670

95462
41153
36984
89003
38174
46552
57261
40803
36622
43800
28471
18151

64235
06333
73538
69068
07628
56766
60578

83445
66099
87875
39798
69225

59503
12732
60540
84136
60144
99972
S2586
12744
10520
03856
32640
04528
241 12
18608

45636
27760
01648
00980

4301 I 1894 89589 01915 63549 89088

n= 50, 2Ji + 1 =

42255
12676
6036
2332
1650
1077

847
387
382
109
8

55
112

287
362
112

55
2

02000
50600
42630
40675
55774
80364
23245
69809
18490
36921

35049
51258
50057
06270
48989
50057
51258
50117
13478
2384

4

76076
22822

18154
80026

27959
70990
74107
84777
75383
78929
02617
72040
92849
08615
01 185
92663
09166
10192

44762
88513
07561
1963

46716
82755
66017
76219
74112
16504
40633
64144
05882
24186
48321
54203
50087
98253
99829
54749
76687
66943
37287
89017
23027
92871
9169

55677
96796
70390
30376
30704
89535
42330
31298
81257
20447
32155
56059
71857
25307
49201
34186
79000
72529
84312
82612
1295

1

9785s
62196

8

35125

3627s
50000
28267
43270
42415
51665

43990
01390
07920

S343S
39490
59350
52180
96300
89200
41720
57410
67760
40300
47600
47900
73100
16585

660 23468
198 07040

94 31943
36 01280
27 21489
19 10138
8 09432
10 90183
2 45931
40278
54119

2 43214

3 99970
6 56639

3 99970
54117
19695
320

7

76188
62856
10085
10129

31383
38551
93570
09753
22208

38824

41554
67806
98215
49121
98215
65191

27659
34031
83051

89389
32

69479
62251
12489

91093
23348
08342
24179
51631

25376
55964
34542
51991
59908
08468
59726
38358
81500

97173
55059
44641

46333
4204

94619
35874
68876

31574
79466
38240
80247
01527
36023
39178
83174
41425
19665

27389
60692
30015
88956
28274
32025

47491
74700
50055
1 241

95861
34291
62822

44388
93346
73487
1022

1

39355
35540
70344
01615
57861

45535
98895

93990
06290
30158
26055

75243
52425
26535

93465
58255

1075 09243 47821 06065 90738 25977

re=49, 2»+i = 99

10563
3169
1509

583
424
289
184
121

74
17

3
20

38
84
84
20

9

75500
12650

10785
82981
86750
86148

54457
08374
931 1

1

80340
42381
1 1 644
11653

41348
41348
1 1644
01392
29469
1241

191

19019

05705

7414s
17671

38753
74931
78596
64846

34372
09554
24335
04748
28964
72830
72830
02133
40300
24270
08478

73S32
20418

66

1 1679
67874
58811
80971
08304
92631
26980
8991

1

18060

71787
38721
25270
87513
64039
64039
69968
34630
22540
1 1 948
00780
41411

50134
141

13919
24222

30559
16015

66471
73108
02288

76890
80202

07391
18019
68663

29567
53318
50150
05063
49263
89436
28654

44305
06213

87293
62980

33781
38003
90540
20138
82105

59023
77522

37535
1 1496
82844
20820

72032
24728

79376
51752
43408
65279
53368
07636
21256
72018

46436
1617

17198 83414 90506 38151 84000 91699

m=5i, 2n+i = i03

I 69020
50706

2414S
9280
6406

3923
3751
1225

1857

635
20

149
322

944
1493
596
322

19
I

08003
02400
71033
96457
10079
60246
26391
38382
11456
71623
25925
31277
93199
82479
45834
93489
93199
72770
34095
26941

71

04305
91291
51046

79446
41121
19656

25299
04060

43367
53966
34400
13811

12194

17455
72886
18042
06481

47510
23743
50889

36397
49126

4

86866

98577
33298
49859
18390
42730
20662

70387
1 1227

52292

09747
78700
11427

99171
31297
03533
75682
64948
83471
17227
14205

27411

58743

22709
86626

33411
14416
88586

74075
00059
72538
50681

03250
61 103

65674
69940
86172
50712
62912
12723

03149
66656
18414
03780
92070
08756
2042

40501
50675
12161

04892
55300
78895
62105
64195
68146
10920

75445
81490
87170
69300
08756
87240
35720
92905

2413s
95260
34476
62470
45660
62905
1751

I

68751 79439 41361 97624 09049 22648 2 74823 95356 96505 59860 50467 12474

55—2
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Table III.

—

continued.

n=56, 2n+i = n3
1730 76561
519 22968
247 25219
94 02296

6s 88250
29 82642

37 27607
9 02333

26 70098
20 23381

30554
15008

43425
2 36548
10 28272
12 67163
10 28272
2 36548
43423
14920
241
6

n=57, 271+1 = 115

95 1 16

58534
39768
00824
79051
34192
22031

46348
80697
43671
71855
27461

49159
68984
31618
86438
31618
68976
72089

70775
36078
87718

871

09209
82770
27527
42074
91915

4105

1

71041
09858
16553
21946

94451
72479
35027
47720
93150
47720
88010

37638
00261

29364
38544
36102

652

51016
05880

97569
54503
76250
27229
89638

47755
43818
12549
50609
74918
20287
19128
12772
05625
12761

49170
09594
49187
74285
17014
47471
1 1800
38012

564

54430
90367
95480
71544
78660

59659
98004
48453
91752
33027
92436
85874
51794
07988

69454
19692
43029
80071

49780
15049
71685
1S145

35482
34514
96492
44151
3609

12

73365
14803

45372
45401
19116

45615
53826
26400

43757
50704
90702

79703
37840
95840
50226
46688
13296
95480
04520
99270
17496

48356
72635
62356
23256
37368
87748

6923
2076
989
377
268
125

135

44
102

34
52

45
13
2

I

06247
91874
00881

62158
82951

45289
59805
03434
29421

31474
16071

36209
08336
60944
51267
04423
38939
18517
87517
083 II

2375
85

80464
34139
32892
96919
56468
96465
29162
20285

74735
09963
1 1886

8385s
41115
87040

29779
01445
41588
56924
66712

44994
55545
37867
16272

36838 04066
31037 00067
83899 57140
80460 14312
33201 44962
61707 74050
82285 56224
79570 22979
87144 2I20I
89906 69240
10502 62595
54918 57461
33823 47381
71023 48314
37432 39259
6II52 01674
63168 6441

I

70160 52138
99209 81709
62031 09547
36765 59974
45562 56681

85332 54059
24997 85679

23 73095
47434

6

17722

97241
79931
76549
82169
50221

52331
61971
61941
10236

97502
69645
78434
22970
12278

91594
56603
26421

02331

91974
28523
74141
06232
89731
09610
79632
57206
4019

2819 65747 03883 19929 99419 40647 80228

93461
02451

46597
04698
68996
64751
42361
83291

77525
03804
85510
18231

31590
47500
63690
06040

34448
48275
51140
19950
00580
98905
70580
17675
92796
42860
79090
61340
2185

11291 46539 06528 22156 05672 89171 60320

n= 58, 2K+i = ii7 re=59, 2n+i = ii9

27692 24991
8307 67497
3956 03570
15 15 49252
109 I 16739
540 691 I

I

485 15774
218 95202

379 33043
379 75523
14 69761

91570
2 65186
18 04898

112 59759
206 41270
192 99024
70 17615
18 04898

7 42425
21755

973
2

21857 47352
36557 24176
17408 21050
86452 11467
64229 52861

85293 '5933
28013 03401
78106 05354
5 1955 65173
24136 66131

42173 29659
34395 47784
21340 801 16

18359 82892

55905 20874
93869 03552
35852 41517
86267 47066
13981 83568
75690 39740
08678 63011

74737 06533
71989 11986

8 07787
1184

30

16264 70891 73845
82575 65115 80979
30894 95841 67692
23346 87475 82993
61660 74961 61410
88023 92323 80687
85137 61203 49077
40258 45696 27180
29082 I I 780 60486
42396 56709 82304
52645 21410 39037
68210 31527 91311
13206 56033 52003
12601 48864 80732
30499 99914 34977
06642 88695 08703
80637 14730 76168
116 I 5 89095 04466
75002 24996 88840
41810 28623 14930
28185 55947 52680
74524 86937 03814
74987 18460 93980
88684 68170 3115s
10465 60439 39071
65643 12244 38552
810 87368 78268

7 57697 12590
14 82741

I 10768

33230
15824
6071

4393
2348
1726

1078

1363
1558

95
2

6

48

357
791
791

357
107

48

99964 87429
69989 46228
14381 62765
25206 40499
30863 08378
32141 33172
49475 09181

31781 94381
72509 50719
30552 88619
23921 32150
79406 94693
39335 77979
21990 92125
55211 15518
92548 22980
92548 22980
55211 15518
75671 63236
21990 04553
86271 2979s
10265 28571

41 06743
224

89408 65058
96880 24125
76468 28826

81747 88410
40276 48576
63673 10119

95153 57885
86723 02780
56412 91686

49099 97920
40527 83982
89394 28641

76304 07197
78826 08430
07880 13131
60021 34338
60021 34338
07802 03305
79282 47781
45067 04486
92929 52427

97557 69578
24858 00182
16912 06937
48617 53678
1582 63826

72989
967

83566 95381
17373 S0963
29627 28702

47263 40323
91485 63926
10778 18127
26004 92901
58227 37368
59494 48932
90071 21304
31394 28815

73123 63231

8625s 16407
35042 80662
60500 88819
63895 24089
63895 19448
63887 01637
28999 28015

60465 43130
82082 42154
24001 41859
84546 79212

35271 7683s
41198 60921
19616 40247
02772 09226
23482 19898

4957 29741

45210 69849 27257 80209 35823 13172 90671 I 80973 11279 28451 63429 oi6n 99280 92273
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Table III.

—

continued.

n=6o, 2n+i = i2i i=6l, 2m+i = i23

4 4307s
I 32922
63296
24273
I7S37
10137
6204
5183
4760
6182

587
12

15
126

1 106

2943
3141
1748
613
297
14
I

99859
79957
57425
81412
60713
05071

23779
30430
34096
13082

53139
41976
38862

15384
491 18

8704s
73715
03254
57942
68407

97596
00574
564

49719
84915
57930
00370
24716
52329
06828
01421

29195
39396
92560
91981
24844
21 104
92012
64689
92808

53643
00077
93416
48193
86413
67719
5424

16

57634
87405
13606

26578
69781

47854
94196
41639
28268

3932^
62591
71 104
64897
75154
50819

28281

93698
73796
71077
18569
68783
66797
89272
80777
67192

50

6023s
67285
10058

31642

1541S
56603
96000
04478
48740
38734
55473
62393
87591
04676
86169
18432

39507
82827
69719
16473
59718
90199
52514
07883
70025
71217
46669
90027

9

34267
64887
72248

67473
48645
27665
75526

S4S4S
95473
86709
89583
62737
35153
88336
56844
42163
38731
56780

34537
42669
69234
76046
12^18

93576
looog

45117
91670
241 12

99721

81525

191SS
56875
53817
77625

37487
57365
85975
39656
07479
90507
44663
41070
73152
83215
29526

75517
96892
07756
24425
08680
28740
39165
79407
06126

43820
37912
36660

64435

17 72303

S 31691
2 53186
96908
69521
43087
22914
24160
16158

23750
3456

77
38
323

3340
10619
12069
8217

3340
1751
113

9

99437
19831

28491
22257
24129
87536
64302
92864
27469
41878
63969
71763

49230
84643
16347
86887
72442
84643
78325
49966
20260
7120

I

98878
39663
14125

13794
43529
32518

15945

33451
28051
23710

65595
91 169

95584
88336
56448
83109
15228

84893
56446
27847
06458
00685
62690
15962
498
24

30538
48930
47219
41643
60542
60993
60828
62038

77738
79199
28115
06828

53414
48107
32271
36800
13412

77144
49344
51444
05280
24372
19969

87773
45356
00699
2784
64

7 24182 73411 81733 68035 40727 96988 28627

40941
93852
77277
91001
32025
25317
59575
48569
72920

97963
S377I
61040
30520
71201

46499
73364
85572
30360
42601
68000
49261

70327
46409
24083
06712
61640
20326
33089
1363

37071
31907
33867
02179
95149
26629
36644
69036

43387
29403
86303
82569
41284
80821

64905
76316
92731
42686
05102
09448
96831
80823
21219
10560

75090
64838
36050
43000
80209

26101

6843s
32300
40292
36725
31215
72261

83900
46656
90604
75827
55063
73841
19420
48791
34069
41617
47231
82506
89381
66996
52971
31521
35871
85626
75626
40101
82476
04651

28 97042 79681 94647 52859 15592 96072 72074

m=62, 2rH-i = i25

70 89215
21 26764
10 12745
3 86684

2 74514
I 79389
88326

I 08964
53416
88493
19438
556
118

813
9852
37222

44971
37222

17435
9852
813
78

97751
79325
11239
50786
07044
57698
29369
57287
87275
42679
93661

33273
47201
74880
19173
30527
86718
30527

39385
19173
71172
98134
82860

95513
58653
41912
22868

94746
25603
48517
53990
74718
27412
66785

6863s
08489
81117

37381
22341
95681
22341
60579
37313
06336
05659

22 13577
12876

73S
I

22153
96184
97668
24914
36352
72166
19801

41133
42927
4S70I
70819
58511

43336
96046
17857

74674
74975
74674
34289
66978
64129
62224
35981

09957
71698
39217
26184
3665

63765
92269

67454
40706
19313
99699
79218
75824
19308

65763
10300

83442
29635
51541
24498
66591

78456
66565
09197
42525
341 16

19756
00107

1833s
40079
49861
65083

91493
35505

48285
46058
86433
84138
79031
04739
73622
81250
21871
91256
64844
97916
40502
36028
00057
26240

34669

4043s
93054
79412
93668
19894
14391

39847
75890
59009
25414
97693

04405
12531
65000

33440
90650
16175
89925
50100
00000
30000
85875
61575
25125
20375
40750
46625
41450
87750
61900

37375
99000
16750

4337S
08375
12005

75500
40250
64625
72375

115 86892 47169 98580 24228 40420 37749 33281
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Table IV.

Values of odd powers of 2.

Power Index

2

8

32



440 ON THE CALCULATION OF THE [54

Table V.

Values of F^ = % -{C; + (7^ + C,^ + &c.) - 2^"^+ n.

197 93228 99666 11337 31

814 19505 34163 85807 32
3316 86845 51567 30959 33
13383 28684 34869 42259 34
53472 15732 80850 01S14 35

2 I 1585 84869 23594 53860 35
8 30204 96439 84139 44995 37
32 39222 05336 71210 65438 38
126 21736 96201 37492 94582 39
493 66994 33219 42486 96625 40
1947 11281 62577 29096 I 1580 41

7764 31244 47406 08533 43608 42
31289 17468 64664 51766 61697 43

I 27017 22068 55657 42382 65606 44
5 16915 50130 31873 53128 29966 45

20 98900 51313 24292 70327 2413s 46
84 74040 33538 01845 98808 32232 47
339 71082 32456 85035 95830 13968 48
1353 20164 61977 70633 13121 91076 49
5369 26438 27247 27549 25533 20010 so

21293 83352 40046 79561 16403 01773 5'

84695 79078 07200 21679 42563 67028 52

3 38679 58879 39076 64266 70295 35014 53
13 62604 88953 12876 87396 03759 76372 54
55 10477 29438 03576 06856 27545 65366 55

223 50904 11209 06115 72894 59001 70236 56
906 87167 35831 66898 99573 62587 20185 57
3672 32362 44471 59181 I 1426 06835 29961 58
14819 61331 97306 79316 04023 73930 49260 59
59568 73622 57154 31583 50374 95586 56399 60

2 38586 80524 96330 07051 54180 90465 82983 61

9 53068 50542 05310 40997 94772 15321 76735 62
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CALCULATION OF BERNOULLI'S NUMBER FOR n = 32.

ToMe of the values of the alternate binomial coefficientsfor the index 2w + 1 = 65,

or of the values of C^ for n = 32.

n= 32, 2»+i = 65

C^ r

2o8o I

6 77040 2

825 98880 3
50473 81560 4

17 90137 99328 5
402 78104 84880 6
6099 25587 71040 7

64804 59369 42300 8

4 98105 89663 01600 9
28 33960 39082 73840 10

121 45544 5321 1 73600 II

397 37053 30616 65800 12

1002 59642 18786 64480 13

1965 40727 14605 56560 14

3009 10630 52706 45216 IS

3609 71421 70081 32870 16

3397 37808 65958 89760 17

2507 58858 77255 37680 18

1448 19483 16025 15360 19

651 68767 42211 31912 20
227 06887 60352 37600 21

60 72772 26605 86800 22

12 32156 69166 40800 23
I 86789 71123 63100 24

20737 46998 21536 25
1642 10735 15280 26

89 50689 96640 27

3 19667 49880 28

6961 90560 29
82 59888 30

43680 31

6s 32

18446 74407 37095 51615 Sum=2'*-i

56
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Formation of the several values of - {C^+C^+C^+ &c.), when n= S2.

ji=32, 2Ji+i=6s

r=i, ^=2r+i=3

3 ) 18446 744oy 3709s 5161S
6148 91469 12365 17205

r=2, 2'= 2r-f 1 = 5

402
64804

28 33960
397 37053
1965 40727
3609 71421

2507 58858
651 68767
60 72772
I 86789

1642

3

6

S°473
78104

59369
39082
30616
14605
70081

77255
422 1

1

26605
71123
I073S
19667

82

77040
81560
84880
42300
73840
65800
56560
32870
37680
31912
86800
63100
15280
49880
59888

65

5 ) 9223 37203 90022 59455

1844 67440 78004 51891

r=3, p=2r+i =

825
402 78104

4 98105 89663

397 37053 30616
3009 10630 52706
2507 58858 77255
227 06887 60352

I 86789 71 123

89 50689
82

7

98880
84880
01600
65800
45216
37680
37600
63100
96640
59888

7 ) 6147 98818 1 1420 91284

878 28402 58774 41612

r=5, p=2r+i = ii

17 90137 99328
28 33960 39082,73840

3009 10630 52706 45216
651 68767 42211 31912

20737 46998 21536
82 59888

II ) 3689 34113 71219 31720

335 39464 88292 66520

r=6, p=2r+i = i3

402 78104 84880

397 37053 30616 65800

2507 58858 7725s 37680
I 86789 71123 63100

82 59888

13 ) 2906 83104 57183 1 1348

223 60238 81321 77796

r=8, p=2r+i = i'j

64804 59369 42300
3609 71421 70081 32870

I 86789 71123 63100
65

17 ) 3612 23016 00574 38335
212 48412 70622 02255

?-=9, p=zr+i = ig

4 98105 89663 01600

2507 58858 77255 37680

89 50689 96640

19 ) 2512 57054 17608 35920

132 24055 48295 17680

r=ii, p= 2r+i = 23

121 45544 5321

I

73600
60 72772 26605 86800

23 ) 182 18316 79817 60400

7 92100 73035 54800

r=i4, j)=2r+i = 29

1965 40727 14605 56560
3 19667 49880

29 ) 1965 40730 34273 06440

67 77266 56354 24360

r=i5, p= 2r+i = 3i

3009 10630 52706 45216
82 59888

31 ) 3609 10630 52789 05104

97 06794 5331S 77584

r=i8, p=2r+i = 27

37 ) 2507 58858 77255 37680

67 77266 45331 22640

r=20, p=2r+i=4l

41 ) 651 68767 42211 31912

15 89482 13224 66632

j-=2i, 2'=2r+i=43

43 ) 227 06887 60352 37600

S 28067 15357 03200

r=23, 2'=2J'+i=47

47 ) 12 32156 69166 40800

26216 09982 26400

r=26, p=2r+i=S3

53 ) 1642 10735 15280

30 9831S 75760

r=29, ^=2r+i = S9

59 ) 6961 90560

117 99840

r=30, p=2r+ i=6i

61 ) 82 59888

I 35408
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The following extract from the calculations for B,^ supplies the further data

which are required in making the similar calculations for B^.

Table of the products Pj"for w = 31, and calculation of the quantities I^^ and B^.

3738 726SS 9282s 7
142 37926 00199 33475 9

3 26491 85674 90972 87920 II

S091 S8999 25656 79046 97257 13
51 7827s 84925 36404 I 1409 58306 15

32629 66196 71881 10212 66003 86655 17

119 34005 74495 92280 86701 49365 99931 19

23247 0867s 60794 03855 76884 80981 36525 21

21 42517 90194 62108 5613I 24755 35639 47600 23

785 22331 2193s I1816 58235 15793 23718 18520 25

8645 SI75I "6414 13997 85806 97596 31329 64045 27
16774 6438i^ 84868 7671 1 91869 76074 95811 62624 29

13s
I 71790

1385 12625
6 71133 42236

1813 75138 15056
2 47319 34636 79761

147 61606 58640 58443
3102 83046 11851 35783
15767 53321 46412 01553
8498 13384 95367 52252

Ft
2

7135
63249
03065

98357
IOI39

43708
76272
98042

30953

03010

56476
44902
71972
28992
65576
93686
74010
79085
19219

48845

44735
48537

64196

05779
73079
64048

54645
00391
68787

95545
20139
79801

33372
05036

6779s 8

29205 10

18500 12

33947 14

74789 16

90688 18

86060 20

35175 22

57165 24
64369 26
18261 28

52967 30

26227 04351 8877s 49492 30619 77419 37134 85683 Sum 27518 60498 94566 69639 20928 76040 64824 28921 Sum
197 93228 99666 1 1337 =^31

27518 60498 94566 69639 21126 69269 64490 40258
26227 04351 88775 49492 30619 77419 37134 85683

63 ) 1291 56147 05791 20146 90506 91850 27355 54575 -Psi

20 50097 57234 78097 56992 17330 95672 31025 =131

Also B^ = I^ + 1-^

Hence the numerator of -Bji is 123 00585 43408 68585 41953 03985 74033 86151

and the denominator is 6

As a test, this numerator should be divisible by 31.

By actual division we find the quotient to be 3 96793 07851 89309 20708 16257 60452 70521

without any remainder. Hence the test is satisfied.

Table of the factors by

in order to

which the quantities P/ for n =

find the corresponding quantities

r= 7, Factor:

j'=io, Factor:

r=i3, Factor:

r=i6, Factor:

)'=i9, Factor:

r=22, Factor:

?-=2S, Factor:

r=28, Factor:

r= 3i, Factor

.
65- 64 _

"51- so"

. 65 64
"45-44"

. 65. 64

"39- 38"

_ 65- 64
33-32"

^
65. 64

^

'27 .
26"

_ 65- 64
^

"21
.
20"

_ 65-64
'15-14"

65-64
- 9-8

65- 64
.

" 3- 2

'3- 32

51 -5

13-16

9. II

5-32
3-19

65^2
"33

.
5-32
27

13-16
21

13- 32

3-7
65.8

9

.
65-32

3

r= 8, Factor=55j_64 =
49-48

r=ii, Factor=^^-^

—

- =
43- 42

r=i4, Factor=-2-^ =
37 - 36

r=i7, Factor =-^i-^—^ =
31 - 30

r=20, Factor=-i^

—

- =

25 . 24

r=23, Faetor=-2-^—1 =^
19 . 18

r=26, Faetor=-2-:—3 =

13. 12

n i 65 . 64
r=29, Factor= -^

—

~ =

7 • 6

65-4
49- 3

65-32
43-21

65- 16

37- 9

13-32

31-3

13-8

5- 3

.
65-32
19. 9

.
5-16

3

.
65- 32

7-3

31 must be multiplied

for n = S2.

r= 9, Faotor=-5-;—

^

^
47 - 46

»-=i2, Factor =-5-:

—

-

41 . 40

r=i^, Faotor=-5-:—

2

35-34

r=i8, Factor=^S-^
29 . 28

„ 61; . 64
r=2l, Factor=-^^

23 . 22

61; . 64
j-=24, Factor=ji-^

n i 65 . 64
r=27, Factor=-^:!

—

-
'

II . lO

•n i 65 . 64
r=30, Factor=-:i

—

-

.
65-32
47- 23

.
13-8

41

.
13-32

7. 17

65. 16
" 29. 7

.
65.32
"23 . II

. 65-4
17

. 13-32
II

= 13-16

56—2
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The general equation for finding /„ is

(-l)»-(2n+l)4= -(C,»/, + C3»/3 + &c.)

Hence putting n= 32, the equation for finding I^ is

P,= 654= {C^I. + Gtl. + &c. + (71:4)

- (C-7,+ Cf/,+ &c. + ClI^) - F,,.

Tahle of the products P^" = Cj'Ir for n = 32, and calculation of the quantities

/j, and B^.

6099 25587 71040 7

273 95824 31465 88000 9

7 52052 I 1742 87069 31200 II

14292 18243 52720 81535 36160 13

i8i 02208 01083 62555 55851 98784 15

I 45956 33740 16156 32779 Z1049 55360 17

707 20034 04420 28331 06379 22168 88480 19

I 91122 29427 92298 81501 97313 85143 24000 21

260 61036 4681 I 76525 19023 36205 50468 48000 23

I5S54 89989 86905 19795 15515 50951 74607 85920 25

3 26957 75316 75298 38464 45063 81824 21 193 67520 27

16 61488 53356 44144 55275 75671 54091 08961 07520 29
8 95482 61960 15233 01854 18130 16189 66511 72000 31

28 99746 33490 63992 38881 71047 04677 31614 73984 Sum

4 53632 15585 96100 8

14991 65046 74768 61360 10

344 04340 75247 90249 64000 12

5 36521 41705 40998 03634 45360 14

5456 55799 32924 09847 00119 61290 16

34 38319 oiiii 06135 63711 54717 15840 18

12575 34291 17724 63047 26474 10262 50016 20

24 49639 24021 61449 84035 26184 70163 48400 22

2257 65747 79208 93849 11233 52764 25664 03700 24
82742 14563 16036 20888 25426 35887 94710 49840 26

9 11013 03017 92694 23112 48336 95819 28170 55080 28

17 6761 I 84070 36444 68422 26180 95706 47598 17136 30

27 63649 29648 26477 79222 58362 41320 15644 68122 Sum
814 19505 34163 85807 Fs2

27 63649 29648 26477 79222 59176 60825 49808 53929
28 99746 33490 63992 38881 71047 04677 31614 73984

65 ) I 36097 03842 37514 59659 11870 43851 81806 Z0055 P32

2093 80059 II346 37840 90951 85290 02797 01847 -^32

Also P3,=4-i+|^
— T I

* 7.~ -^32~ sTrTy*

Hence the numerator of B^ is 10 67838 30147 86652 98863 85444 97914 26479 42017

and the denominator is 510
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CALCULATION OF BEKNOULLl'S NUMBER FOR n = 62.

Table of the values of the alternate binomial coefficientsfor the Index 2n4- 1 = 125,

or of the several values of the quantities C/ when n = 62.

J!=62, 2)1+1 = 125

C, r

7750 I

96 9137s 2

46906 25500 3
117 61743 44125 4

17736 70910 94050 5
17 61577 70018 40875 6

1224 97403 15 126 27000 7
62320 55385 32048 98625 8

23 97508 36588 21 178 64750 9
715 59315 48903 94232 '5775 10

16914 02002 46820 4S487 36500 II

3 21917 92460 01984 96178 00125 12

50 02109 28994 15458 63688 94250 13

641 93735 88758 31719 17341 42875 14

6870 94331 70709 71228 66992 39600 15

61852 34256 19392 87370 99034 37125 16

4 71665 45718 35584 15994 82476 00750 17

30 65825 47169 31297 03966 36094 0487s i8

170 77912 58485 10610 53673 21400 13500 19

819 08296 12811 25889 76655 76099 87825 20

3396 19764 43363 75640 49548 27731 20250 21

12216 97736 I 1804 29497 46947 97853 36375 22

38244 45086 97822 14079 034S9 32410 53000 23

1 04460 24213 63466 32604 17243 44642 59125 24
2 49510 74978 85308 13877 39472 91774 87510 25

5 22166 16188 77624 49856 53874 31881 80875 26

9 58946 66208 31863 85900 05857 23959 04500 27

15 47391 20472 51416 68156 91269 63661 18625 28

21 96116 01106 18163 05805 27355 45522 77250 29

27 43283 89856 36586 73522 85866 05169 9717s 30

30 17467 21788 07033 53213 93231 82841 64000 31

29 23171 36732 19313 73425 99693 33377 83875 32

24 93894 45323 96897 03202 59878 22881 79250 33
18 73157 77414 09609 66716 26273 77063 54125 34
12 37912 96378 01133 34525 53015 70928 94900 35

7 19209 99656 23897 89425 04392 92969 28375 36

3 66927 57321 84276 67466 75695 46727 75750 37
I 64151 80907 14018 51235 12811 13009 78625 38

64283 22593 00594 66217 95226 73626 21000 39
21990 55925 01247 73095 44506 36136 05475 40

6555 45126 69748 64608 39825 74457 90250 41

1698 09882 21681 87820 24774 13865 60125 42

380 96881 92005 23669 65886 40046 45500 43

73 74SS3 16164 02309 09540 70604 60375 44
12 26330 18867 72518 81586 54437 61950 45
I 74311 14722 00107 18954 60915 04625 46
21056 11661 68303 95700 76267 02000 47
2147 16978 65846 78508 95935 12375 48

183 41067 39645 23348 33526 12250 49
13 00548 41538 48019 24559 12505 50

75745 39402 35761 16747 76500 51

3577 96577 44519 71 160 78875 52

135 01757 63944 14006 06750 53

3 99584 72764 70196 44125 54
9064 80783 31934 39800 55

153 12175 39390 78375 56
I 85429 23159 83250 57

1529 02664 73625 58

7 97406 33500 59
2345 3127s 60

3 17750 61

125 62

212 67647 9325s 86539 66460 91296 44855 13215 Sum= 2124 - I



446 ON THE CALCULATION OF THE [54

Formation of the several values 0/ — ((7"+ C^ + (7^ + &c.) when n = 62.

m=62, 2n+i = i25

r=i, p= 2r+i = 3

3 ) 212 67647 93255 86539 66460 91296 44855 1321S

70 8921S 97751 95513 22153 63765 48285 04405

r=5, ^=2r+i = ii

r=2, ^=2r+i = 5

30
819

12216
I 04460
5 22166

15 47391
27 43283
29 23171
18 73157
7 19209
I 64151
21990
1698

73
I

3
641

61852
65825
08296

97736
24213
16188

20472
89856
36732
77414
99656
80907

55925
09882

74553
743"
2147

13

715
21917

93735
34256
47169
12811
1 1804
63466
77624
51416
36586
19313
09609
23897
14018

01247
21681

16164
14722
16978
00548

3577
3

17
62320

5931S
92460
88758
19392
31297
25889
29497
32604
49856
68156

73522
73425
66716
89425
51235
73095
87820
02309
00107
65846
41538
96577
99584

153

117

61577
55385
48903
01984
31719
87370
03966
76655
46947
17243

53874
91269
85866

99693
26273
04392
1281

1

44506
24774
09540
18954
78508
48019
44519
72764
12175

1529

96
61743
70018
32048
94232
96178
1 7341

99034
36094
76099
97853
44642
31881
63661
05169

33377
77063
92969
13009
36136
13865
70604
60915

95935
245S9
71160
70196

39390
02664

2345

9«37S
44125

4087s
98625
15775
00125
42875
37125
04875
87825

3637s
59125

8087s
18625

97175
8387s
54125

2837s
78625

05475
60125

60375
04625
12375
12505

7887s
44125

7837s
7362S
31275

125

5 ) 106 33823 96627 93269 80924 61347 30290

21 26764 79325 58653 96184 92269 46058

62655

r= 3, j)=2r+i=7

30
3396

I 04460

9 58946
27 43283
24 93894
7 19209
64283
1698

12

3
6870

65825
19764
24213
66208
89856

45323
99656
22593
09882
26330
2147

23
21917

94331
47169
43363
63466
31863
36586
96897
23897
00594
21681

18867
16978

75745
3

17

97508
92460
70709
31297
75640
32604
85900
73522
03202

89425
66217
87820
72518
65846
39402
99584

61577
36588
01984
71228
03966
49548
17243
05857
85866
59878
04392
95226
24774
81586
78508
35761
72764
85429

46906
70018
21178
96178
66992
36094
27731
44642
23959
05169
22881

92969
73626
13865

54437
95935
16747
70196

23159
2345

12531

25500
40875
64750
00125
39600

0487s
20250

59125
04500
97175
79250
28375
21000
60125
61950
12375
76500
44125
83250
31275

17736 70910 94050
715 5931S 48903 94232 15775

6870 94331 70709 71228 66992 39600
819 08296 12811 25889 76655 76099 87825

2 49510 74978 85308 13877 39472 91774 87516
27 43283 89856 36586 73522 85866 05169 9717s
12 37912 96378 01133 34525 53015 70928 94900

21990 55925 01247 73095 44506 36136 05475
12 26330 18867 72518 81586 54437 61950

13 00548 41538 48019 24559 1250S
9064 8o7«3 31934 39800

2345 31275

II ) 42 53529 58648 51550 74058 47775 25521 67840

3 86684 50786 22868 24914 40706 84138 33440

)'=6, p=2r+i = i2

17 61577 70018 40875
3 21917 92460 01984 96178 00125

30 65825 47169 31297 03966 36094 04875
1 04460 24213 63466 32604 17243 44642 59125

27 43283 89856 36586 73522 85866 05169 97175
7 19209 99656 23897 89425 04392 92969 28375

1698 09882 21681 87820 24774 13865 60125
2147 16978 65846 78508 95935 1237s

3 99584 72764 70196 44125
2345 3'27S

13 ) 35 68682 91584 31702 72578 51079 27414 78450

2 74514 07044 94746 36352 19313 79031 90650

r=8, p= 2r+i = i7

62320 55385 32048 98625
61852 34256 19392 87370 99034 37125

I 04460 24213 63466 32604 17243 44642 59125
29 23171 36732 19313 73425 99693 33377 83875

21990 55925 01247 73095 44506 36136 05475
2147 16978 65846 78508 95935 12375

153 12175 39390 78375

17 ) 30 49622 80870 35263 26838 94883 80565

I 79389 57698 25603 72166 99699 04739

74975

16175
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n=62, 271+1 = 125

r=i4, p=2r+i=2g
641 9373S 88758 31719 17341 4287s

IS 47391 20472 51416 68156 91269 63661 18625
1698 09882 21681 87820 24774 13865 60125

153 i2'75 39390 7837s

29 ) 15 49089 30996 66834 44888 59938 34259 00000

53416 87275 74718 42927 19308 21871 00000

r=i5, jj = 2r+i = 3i

6870 94331 70709 71228 66992 39600
27 43283 89856 36586 73522 85866 05169 97175

12 26330 18867 72518 81586 54437 61950

234s 3127s

31 ) 27 43296 23057 49786 16751 38681 28945 30000

88493 42679 27412 45701 65763 91256 30000

r=i8, y= 2r+i = 37

30 65825 47169 31297 03966 36094 04875
7 19209 99656 23897 89425 04392 92969 28375

3 99584 72764 70196 44125

37 ) 7 19240 65481 71071 20306 81123 99259 77375

19438 93661 66785 70819 10300 64844 85875

'=30. p=2r+ i = 6i

27 43283 89856 36586 73522 85866 05169 97175
2345 31275

61 ) 27 43283 89856 36586 73522 85866 07515 28450

44971 86718 95681 74975 78456 82090 41450

'•=33. i)= 2j-+i=67

67 ) 24 93894 45323 96897 03202 59878 22881 79250

37222 30527 22341 74674 66565 34669 87750

?'= 35, p= 2r+i = 7i

71 ) 12 37912 96378 01133 34525 S3015 70928 94900

«743S 39385 60579 34289 09197 4043s 61900

r=36, 2'= 2r+i=73

73 ) 7 19209 99656 23897 89425 04392 92969 28375

9852 19173 37313 66978 42525 93054 37375

r=39, y=2r+i=79

79 ) 64283 22593 00594 66217 95226 73626 21000

813 71172 06336 64129 34116 79412 99000

r=20, p = 2r+i = 4i

819 08296 12811 25889 76655 76099 87825

21990 55925 01247 73095 44506 36136 05475
2345 3 '27s

41 ) 22809 64221 14058 98985 21 162 14581 24575

556 33273 68635 58511 83442 97916 61575

r=2i, j) =2r+i=43

3396 19764 43363 75640 4954S 27731 20250

1698 09882 21681 87820 247.74 13865 60125

43 ) 5094 29646 65045 63460 74322 41596 80375

118 47201 08489 43336 29635 40502 25125

r=23, i)=2r+i=47

38244 45086 97822 14079 03489 32410 53000.

I 74311 14722 00107 18954 60915 04625

47 ) .38246 19398 12544 14186 22443 93325 57625

813 74880 81117 96046 51541 36028 20375

?-=4i, p= 2)'+i=83

83 ) 6555 45126 69748 64608 39825 74457 90250

78 98134 05659 62224 19756 93668 16750

r=44, p=2r + i = 8g

89 ) 73 74553 '6164 02309 09540 70604 60375

82860 14788 35981 00107 19894 43375

r=48, p= 2r+i — gj

97 ) 2147 16978 65846 78508 95935 12375

22 13577 09957 18335 14391 08375

'=50, p=2r+i = ioi

loi ) 13 00548 41538 48019 24559 12505

12876 71698 40079 39847 12005

r=5i, ^= 2r + i = io3

103 ) 75745 39402 35761 16747 76500

735 39217 49861 75890 75500

r=26, p= 2r+i = 53

5 22166 16188 77624 49856 53874 31881 80875

3577 96577 44519 71 160 78875

53 ) 5 22166 16188 81202 46433 98394 03042 59750

9852 19173 37381 17857 24498 00057 40750

r=2g, p=2r+i = S9

21 96116 01106 18163 05805 2735s 4S522 77250
1529 02664 73625

59 ) 21 96116 01106 18163 05805 28884 48187 5087s

37222 30527 22341 74674 66591 26240 46625

'=53. i'=2r+ 1 = 107

107 ) 13s OI7S7 63944 14006 06750

I 26184 65083 59009 40250

r=S4, ^=2r+i = io9

109 ) 3 99584 72764 70196 44125

3665 91493 25414 6462s

r=s6, p=2r+i = ii3

113 ) 153 I2I7S 39390 78375

I 35505 97693 72375
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Table of the Factors hy which the quantities Vj" for n = &l must he multiplied

in order to find the corresponding qvnntities for n = 62.

r= 7, Factor

=

r=io, Factor

=

r= i3, Factors

r=i6, Factors

r=i9, Factor

=

r=22, Factor

=

r=25, Factor

=

r=28, Factor

=

r=3i, Faotor=

r= 34, Factor

=

'=37J Factor

=

r=4o, Factor

=

r=43, Factor=

r=46, Factor

=

r=49, Factor=

r=S2, Factor

=

?-=55, Factor=

r=s8, Factor

=

r=6i, Faotor=

I2S
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The following extract from the calculations for B,^ supplies the further data

which are required in making the similar calculations for B^^.

Table of the products P^ for to = 61, and calculation of the quantities

/ji and B^^.

n = 61

Pr r
964 96341 4SOI2 37140 7

964 89657 65941 44480 78045 9
709 87762 29656 03133 39385 12416 U

446 32904 46564 67643 64169 13414 48289 13
238 13879 23030 96548 04209 62125 83207 39024 15

107 06939 54705 19032 58969 74701 13695 04939 02335 17
40 25652 28249 10002 12635 23598 54178 27001 58963 45042 19

12 55182 69448 74874 88060 27995 I 1438 03444 "435 2175s 26595 21

3 21576 40020 43518 49711 48609 93756 17416 30520 44444 26034 94720 23
67013 45301 04531 62370 59301 99455 73390 66066 99036 42526 75425 75320 25

11231 92690 01350 11344 I 1384 88426 101 11 02042 63460 59712 86463 90646 44690 27
1495 24216 89836 15461 98946 23048 42766 90639 91405 60304 98194 27552 08337 44768 29

155 88977 58940 11502 64044 87592 68543 79442 43154 07109 74300 17982 62640 39210 01200 31
12 52735 11130 65823 80947 92554 38160 79807 93537 05108 42554 57225 79654 88308 53904 41190 33

76200 72588 67366 51664 72332 20669 16734 05384 05765 11897 06029 79475 60838 23923 30496 01586 35
3436 04646 97275 63168 89528 79432 S5080 48564 67069 85420 40166 55083 75038 77057 44549 30465 42575 37

112 10695 64594 13504 42139 70913 71749 31071 09518 52483 41211 65312 62173 47670 44666 56845 56543 86100 39
2 57214 84207 01260 94423 04144 67701 47558 15044 83117 16659 84555 02098 71789 07406 75788 13556 63504 40576 41

4011 14723 17325 72699 40249 05126 47523 41384 39220 48875 47894 38625 57212 13956 40395 37641 30013 25696 79394 43
40 79437 80361 27635 97401 30647 51948 92803 78672 37883 93735 67400 74226 47306 81895 83279 14464 97593 68619 21663 45

25705 59787 87797 26191 94794 17115 04630 03419 37495 12225 69774 98915 60970 10378 11301 69297 37355 62468 49910 70920 47
94 01591 50554 71453 90027 46633 07601 64638 39147 39457 95157 51563 74099 01857 13757 96469 23049 28627 81245 98033 10917 49

18314 01945 38397 81142 51756 35540 10858 11425 38938 64976 87217 55946 03250 40950 35753 00762 30167 14245 14457 60953 83690 51
i6 87872 33205 42521 24918 73620 52220 43451 02967 59560 37380 91077 17414 07192 86078 91797 33570 62616 16951 13720 73193 08800 53

6i8 59772 65027 85766 57268 29020 42958 36182 03055 01314 74215 62227 37323 11466 33589 83982 33494 20456 03407 40119 24748 31132 55
6810 92549 60879 33598 99438 14748 05752 18187 49591 64300 62439 20770 82079 77657 98879 69766 67926 76502 85769 43176 51024 62060 57
13215 03881 30741 91631 57225 17932 37777 1 1664 03691 29995 67059 46701 18170 63553 01 176 06592 67910 7405s 83529 45784 76509 00402 59

20661 62484 19137 85710 31655 46598 32491 46638 75498 17026 16147 84648 68636 76909 76794 00194 28931 54031 89899 63234 14415 30589 Sum

A. ^1
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P, r
3 31320 18836 89997 72019 8

2 66693 72038 65962 93743 29234 10

I 81615 29323 22841 13916 65975 29500 12

1 05278 19363 60383 00590 50922 84521 85704 14
51610 87066 84400 26912 81306 11708 43921 18731 16

21241 16304 99659 31737 15459 55819 22481 50881 09376 18

7280 72679 73513 70244 59338 72132 63345 64463 36534 23148 20
2060 26085 99438 35927 83133 80731 79420 81422 03431 02817 20660 22

476 68199 69471 46106 12987 81829 82540 47419 26264 52866 50466 79083 24
89 21905 44597 87914 19855 84927 97629 57046 17662 79931 87388 03I4I 65854 26

13 349" 68626 82125 54426 67263 91301 27021 31250 59921 40779 48817 63530 01597 28

I S7559 69464 90906 02362 51676 66589 32518 95763 16754 35575 45346 98938 05686 49552 30
14452 36699 93578 17658 78109 10421 03333 08814 631 16 74540 96649 31618 72384 39026 45205 32

1012 89026 20578 31483 39325 62887 20505 88928 48887 08759 34066 15643 40587 25845 19619 98600 34

S3 I9S95 19372 08958 57180 51919 28203 98358 57851 14947 21065 36321 97658 24055 41400 85654 11943 36
2 04708 84567 33692 181 14 19357 71372 08907 73807 56096 74038 6431 I 32708 35093 50374 72353 40000 91 120 38

5622 61071 38888 61163 17544 00695 22634 93248 12401 70831 89557 90085 04790 54505 86023 95045 20787 48165 40
106 85138 02205 80828 46327 85065 45356 25477 14586 95071 39929 55833 42462 87931 96338 41268 67903 68058 56640 42

I 35335 92369 91826 49507 34982 43435 24030 17278 74067 66018 60929 96796 89030 65303 15111 96691 82485 08229 42176 44
1091 20035 25033 87814 43607 29215 15664 30791 00522 59675 08269 86975 14649 40960 64551 39142 55673 78451 76458 52536 46

5 28717 88547 23215 68582 24341 28297 28291 56152 30058 71218 77129 87692 21121 55475 27071 50118 75363 73234 51919 59398 48
1428 87056 91956 77753 33416 02807 48407 75074 49519 52390 64650 96383 18658 97527 67379 12344 56280 09008 07936 35403 32328 50

I 94837 80347 27439 30797 92842 05773 52990 57895 78308 19504 95599 03524 06683 41684 70820 08271 58896 19768 45591 52241 61715 52
116 29171 13142 05062 45676 86666 84610 98972 68332 81333 06936 16842 53516 90349 91744 44337 00067 76452 46815 30223 10462 17076 54

2444 40510 00611 34277 34348 19912 07637 33051 80859 05140 55988 60047 79577 24735 84269 57353 60541 04881 16412 80092 85863 28123 56
12421 63859 33413 08160 25365 40853 53199 76473 81555 06485 50749 40725 16944 15022 61000 66767 25271 99148 83192 35078 83636 21782 58
6694 81687 21005 57718 07023 47327 93924 32961 18028 34525 45701 69446 00742 51674 66882 21113 S4067 02661 35387 62270 41926 67156 60

21679 "499 65386 68639 52347 37280 90301 99388 13670 18402- 89434 37562 09528 52868 66850 50666 32631 09490 13249 10031 07505 18421 Sum
2 38586 80524 96330 07051 54180 90465 82983 F51

21679 I 1499 65386 68639 52347 37280 90301 99388 13670 18402 89434 37562 09528 52868 66852 89253 13156 05820 20300 64211 97971 01404
20661 62484 19137 85710 31655 46598 32491 46638 75498 17026 16147 84648 68636 76909 76794 00194 28931 54031 89899 63234 14415 30589

123)1017 49015 46248 82929 20691 90682 57810 52749 38172 01376 73286 52913 40891 75958 90058 89058 84224 51788 30401 00977 83555 70815 Pel
8 27227 76798 77096 98542 21062 45998 45957 31204 65051 84335 66283 84885 29885 84472 02350 07188 81721 85613 01633 96614 27405 Ifi

Also P„ =4 + l-i =4 + ^.

Hence the numerator of Bg^ is
'

49 63366 60792 62581 91253 26374 75990 75743 87227 90311 06013 97703 09311 79315 06832 14100 43132 90331 13678 09803 79685 64431

and the denominator is 6.

The numerator should be divisible by 61.

By actual division we find the quotient to be

81366 66570 37091 50676 28301 22557 22553 17823 40824 77147 77011 52611 66874 01751 34657 38412 01480 83830 78849 24257 14171

without any remainder. Hence the test is satisfied.



54] BERNOULLIAN NUMBERS PROM B^„ TO 5„. 45162
•

Putting n = 62 in the general formula for /„, the equation for finding I^^ is

- (c-/,

+

cn,

+

&c. + a:4) - i^,.

Table of the products P/ or Cj^I^ for n = 62, and calculation of the quantities

/e2 and Pjj.

n = 62

Pr r
1224 97403 15126 27000 7

1318 62960 12351 64825 61250 9
1047 3I6II 99283 12256 57764 08000 II

713 05918 28669 60263 49682 70245 77250 13
413 34280 85888 01399 I772I 06713 37034 10400 15

202 63438 70321 17827 24545 91925 22866 08858 95750
'

17
83 39696 65578 86264 76322 66209 22l8l 66068 51635 05500 19

28 58555 94542 40458 51444 95140 21053 41372 87282 67294 53750 21
8 08898 76714 82398 03720 87545 28273 40141 63107 25233 04696 80000 23

I 87154 68858 77520 75089 04356 92173 67127 07033 93705 33182 82720 57200 2S
35029 14828 00991 29946 43152 05353 03163 14217 47211 11780 56376 36824 93500 27

5241 12474 42890 18466 94632 87483 18156 27525 70508 10657 44462 06932 90192 32000 29
618 61022 18016 32946 98590 77748 75173 78739 80770 12340 25000 71359 62858 69881 00000 31

56 74282 35688 25327 01546 7x125 92487 54244 00883 77901 98596 10461 67343 85967 95884 97500 33
3 97680 55597 45515 49091 99040 13593 29756 84664 27393 71853 34498 92886 17169 26199 06629 03900 35

20885 77265 91283 25144 26547 57336 93626 48138 19444 21182 83365 30901 22784 68388 39417 34201 60750 37
803 72702 36451 93949 36709 29307 41033 44866 77861 76453 69463 74812 96803 37137 79986 96163 85952 75000 39

22 07547 09417 88230 69522 22725 63329 38621 99997 1667s 57158 14287 27868 28754 51165 41924 75153 84450 88000 41
41951 94473 13460 70742 73859 84791 07026 25815 16813 47887 93767 19768 12947 47857 12637 20270 00813 41633 13500 43

53" 35534 41680 49039 99764 91627 35469 23074 53295 69076 49498 27488 65975 06937 55786 05736 75804 30842 13107 44350 45
4 28426 63131 29954 36532 46569 51917 43833 90322 91585 37094 96249 81926 82835 06301 88361 S4956 22593 74474 98511 82000 47

2075 84997 62960 22130 27671 97738 85791 33753 65790 05125 71141 72703 68283 17358 45083 26599 81857 46055 68821 50303 69250 49
5 61002 57220 26019 91519 80678 87098 18776 22714 49701 72216 44016 14947 63599 50060 35912 28884 73499 42291 97812 14989 07500 51

764 97137 85625 99647 25849 15549 98294 54651 92975 82414 60245 95602 92158 23068 25214 11867 55393 87574 93399 49331 41792 00000 S3
45658 40362 28246 63723 22183 32460 27879 08673 68346 20850 01629 26306 11944 17753 36392 93934 24572 24135 84831 99277 79042 02600 ss

9 59721 31990 32997 34403 75375 32680 83261 99147 15186 05997 07342 90433 83968 51807 S1230 12577 53316 89039 03874 47599 17105 63000 57
48 76978 60958 69040 54508 80720 94091 79650 18870 76551 17449 86231 87340 86782 15992 43548 13964 90868 S3939 21585 63425 21180 05500 59
26 28516 23278 09475 57117 87425 96660 10529 35902 77702 23226 56866 92973 03712 27159 85467 35342 46671 19785 35941 92741 85579 38750 61

85 11645 16809 96562 49020 79663 81837 01215 24471 83370 44978 75762 49844 39975 60548 91277 44873 82476 22450 02809 87250 27463 53200 Sum

57—2



452 ON THE CALCULATION OF THE [54

P, r
4 36243, 87697 24342 90375 8

3 78548 77893 7018s 4881 I 4497S 10

2 78716 53911 88518 57990 91348 22500 12

I 75237 S43IO 12235 45871 22992 27887 54125 14

93497 95410 94928 02378 28453 11066 01306 49875 16

42037 54178 68324 74709 63945 75484 93164 37520 04000 r8

15805 49934 99924 70418 93522 43425 18467 43582 93596 72100 20

4928 09310 63471 38407 62125 61935 61886 20685 42157 55195 47875 22

1262 57193 31306 84320 74728 50027 73304 40020 26162 02910 25672 46375 24
263 10794 21854 47616 07261 35156 70330 73480 92422 63878 24298 71041 80125 26

44 09874 49641 03355 91 136 70628 86864 80995 38445 07413 00528 99973 00663 94875 28

5 87061 36227 42558 50148 80045 26955 41837 46232 95599 16206 61749 59985 54841 50975 30
61205 37936 88650 74784 45544 02056 28869 63559 23035 39722 67230 71062 90152 47243 17125 32

4918 48341 53810 73932 51737 85949 77393 88593 85259 98048 17677 13807 26535 87280 87127 12500 34
299 17897 49734 17582 67887 53537 32642 14280 82979 97707 46194 89474 10632 33983 64192 04513 37125 36

13 49059 14453 "321 77198 12944 11678 30812 04939 28358 62074 39126 51776 97257 35887 84641 87931 17500 38

44015 38690 16552 26277 38349 54937 37798 71386 82942 66613 32397 70867 79925 98404 46147 08687 23336 34625 40
1009 87584 96457 33439 74440 05191 78671 92009 61035 20491 88358 63059 80594 28625 26369 14429 58845 76163 28000 42

15 74854 96797 09692 69792 73444 24359 02753 51216 57694 24390 72383 26089 93975 31680 81257 87329 79368 45012 04000 44
16016 67184 07220 74927 80220 67078 53027 24678 58049 47882 36915 70184 44191 14479 17184 24914 42181 49623 43851 46125 46

100 92521 21283 37245 23429 52327 44590 99'6i 58079 62943 39767 18612 18262 65251 35303 81290 97094 43519 52136 75805 05750 48

36912 48970 42216 75294 46580 72526 67200 22757 79254 36758 36816 56565 65356 86131 57294 02234 53902 32708 71689 14585 85140 so

71 90442 74720 84069 69923 54885 46404 07985 65201 51850 05540 04250 11007 22840 38364 23122 10022 92597 77169 20639 51773 96625 52
6626 91737 26844 79662 05850 85794 53935 07634 52788 99494 76141 95070 93794 13322 50142 91262 90626 28725 20724 94331 32954 58375 54

2 42873 58365 99203 92941 17930 04084 51145 01942 52021 13324 86046 84236 11841 88497 19092 24236 43501 64474 64092 39995 56928 58375 56

26 74102 75273 31982 84499 05053 22635 36060 46446 40326 46185 64108 50557 31032 34034 09865 95728 01609 27873 53908 85027 27241 33625 58

SI 88483 07587 79322 31504 43191 79152 9135s 44914 71967 57229 18813 20655 75450 47868 33713 62994 01945 62549 25407 59574 93170 45900 60

81 12158 60420 69598 79225 90120 85689 41029 32563 98786 56239 85421 01781 36936 61135 01499 75370 26254 19489 19026 62190 99866 38965 Sum
9 5306S 50542 05310 40997 94772 15321 76735 fjj

81 12158 60420 69598 79225 90120 85689 41029 32563 98786 56239 85421 01781 36936 61135 01509 28438 76796 24799 60024 56963 15188 15700

85 11645 16809 96562 49020 79663 81837 01215 24471 83370 44978 75762 49844 39975 60548 91277 44873 82476 22450 02809 87250 27463 53200

125)3 99486 56389 26963 69794 89542 96147 60185 91907 84583 88738 90341 48063 03038 99413 89768 16435 05679 97650 42785 30287 12275 37500 Pjj

3195 89251 11415 70958 35916 34369 18081 48735 26276 67109 9II22 73184 50424 31195 31118 14531 48045 43981 20342 28242 29698 20300 Ij2

Also A. =4- 1+1^ =4 + sV-

Hence the numerator of -B^ is

95876 77533 42471 28750 77490 31075 42444 62057 88300 13297 33681 95535 12729 35859 33544 35944 41363 19436 10268 47268 90946 09001

and the denominator is 30.

This numerator should be divisible by 31.

By actual division we find the quotient to be

3092 79920 43305 52540 34757 75195 98143 37485 73816 13332 17215 54694 68152 55995 46243 36643 36818 16756 00331 24105 44869 22871

without any remainder. Hence the test is satisfied.



54] BERNOULLIAN NUMBERS PROM B TO B . 453

Tahh of Bernoulli's Numbers expressed as Vulgar Fractions.

Numerator Denominator n

I 30 2

I 42 3
I 30 4
S 66 5

691 2730 6

7 67
3617 510 8

43867 798 9
I 7461

I

330 10

8 54513 138 II

2363 64091 2730 12

85 53103 6 13
2 37494 61029 870 14

86i 58412 76005 14322 15

770 93210 41217 510 16

257 76878 58367 6 17
26315 27155 30534 77373 19 19190 18

2 92999 39138 41559 6 19
2 61082 71849 64491 22051 13530 20

15 20097 64391 80708 02691 1806 21

278 33269 57930 10242 35023 690 22

5964 51U1 59391 21632 77961 282 23
560 94033 68997 81768 62491 27547 46410 24
49 50572 05241 07964 82124 77525 66 25

801 16 57181 35489 95734 79249 91853 1590 26
29 14996 36348 84862 42141 81238 12691 798 27

2479 39292 93132 26753 68541 57396 63229 870 28
84483 61334 88800 41862 04677 59940 36021 354 29

121 52331 40483 75557 20403 04994 07982 02460 41491 567 86730 30
123 00585 43408 68585 41953 03985 74033 86151 6 31

10 67838 30147 86652 98863 85444 97914 26479 42017 510 32
I 47260 00221 26335 65405 16194 28551 93234 22418 99101 64722 33

7877 31308 S8718 72814 19091 49208 47460 62443 47001 30 34
1505 38134 73333 67003 80307 65673 77857 20851 14381 60235 4686 35

58279 54961 66994 41104 38277 24464 10673 65282 48830 18442 60429 1401 00870 36
34152 41728 92211 68014 33007 37314 72635 18668 83077 83087 6 37

246 55088 82593 53727 07687 19604 05851 99904 36526 78288 65801 30 38
41 48463 65575 40082 82951 79035 54954 20734 92199 37537 24004 83487 3318 39

4 60378 42994 79457 64693 55749 69019 04684 97942 57872 75128 89196 56867 2 30010 40
1 67701 41491 85145 83682 31545 09786 26990 02077 36027VS70Z5 34148 81613 498 41

20 24576 19593 52903 60231 13116 01117 31009 98991 73911 98090 87728 10839 32477 34 04310 42
660 71461 94176 78653 57384 78474 26261 49627 78306 86653 38893 17619 96983 6 43

13114 26488 67401 75079 95511 42401 93118 43345 75027 55720 28644 29691 98905 74047 61410 44
117 90572 79021 08279 98841 23351 24921 50837 75254 94966 96471 16231 54521 57279 22535 2 72118 45
129 55859 48207 53752 79894 27828 53857 67496 59341 48371 94351 43023 31632 68299 46247 1410 46
122 08138 06579 74446 96073 01679 41320 12039 58508 41520 26966 21436 21510 52846 49447 6 47

2 11600 44959 72665 13097 59772 81098 24233 67304 39543 89060 23415 06387 33420 05066 83499 87259 45 01770 48
67 90826 06729 05495 62405 11175 46403 60560 73421 95728 50448 75090 73961 24999 29470 58239 6 49

945 98037 81912 21252 95227 43306 94937 21872 70284 15330 66936 13338 56962 04311 39541 51972 47711 33330 so
32040 19410 86090 70782 43020 78211 62417 75491 81719 71527 17450 67900 25010 86861 53083 66781 58791 4326 51

31 95336 31363 83001 12871 03352 79617 42746 71189 60607 82727 38327 10347 01628 49568 36554 97212 24053 1590 52
3637 39031 72617 41440 81518 20151 59342 71692 31298 64058 16900 38930 81637 82818 79873 38620 23465 72901 642 53

346934224784 78287 89552 08865 93238 52541 39976 67857 60491 14687 00058 91371 50126 63197 24897 59230 65973 38057 2091 91710 54
764599294 04847 42892 24813 42467 24347 50052 87524 13412 30790 66835 93870 75979 76062 69585 77997 79302 17515 1518 55

265087960215509 97133 52597 21468 51620 14443 15149 91925 09896 45178 84276 80966 75651 48755 15366 78120 35526 00109 16 71270 56
217 37832 31936 91633 33310 76108 66529 91475 72115 66790 90831 36080 61101 14933 60548 42345 93650 90418 86185 62649 42 57

30955391657184297 69125 13458 03384 14168 69004 12806 43298 44245 50404 57210 08957 52457 19682 71388 19959 57547 52259 1770 58
3669631 19969 71311 15349 47151 58558 50066 84606 36108 06992 04301 05944 06764 14485 04580 64618 89371 77635 45170 95799 6 59

)iS07486 53507 910906184399685 78499 83274 09517 03532 62675 21309 28691 67199 29747 49229 85358 81132 93670 77682 67780 32820 70131 23282 55930 60
4963366607926258191253 26374 75990 75743 87227 90311 06013 97703 09311 79315 06832 14100 43132 90331 13678 09803 79685 64431 6 61

958767753342471 2875077490 31075 42444 62057 88300 13297 33681 9553S 12729 35859 33544 35944 41363 19436 10268 47268 90946 09001 30 62
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ON SOME PROPERTIES OF BERNOULLFS NUMBERS.

[In 1872 a paper on this subject was communicated to the Cambridge

Philosophical Society. The paper contained a comparatively simple proof of

the theorem given above as Staudt's theorem, which was there attributed

to Clausen : another property of Bernoulli's numbers was also established,

viz.: "That if ra be a prime number other than 2 or 3, then the numerator

of the nth number of Bernoulli will be divisible by w."]

ON THE CALCULATION OF BERNOULLI'S NUMBERS.

[A table of the values of the first sixty-two numbers of Bernoulli, as

given above, was printed in Vol. 85 of Crelle's Journal. A paper on

this subject was also pubHshed in the Report of the British Association

in 1877, of which the greater part is contained in the above paper, and

the remainder is given below. J

Thirty-one of the numbers of Bernoulli are at present known to Mathe-

maticians, and are to be found in a communication by Ohm in Crelle's

Journal, Vol. xx. p. 11. Of these numbers the first fifteen are given in

Euler's Institutiones Calculi Differentialis, Part 2, Chap. 5, and Ohm states

that the sixteen following numbers were calculated and communicated to him

by Professor Rothe of Erlangen. I find, however, that the first two of

these had been already given by Euler in a memoir contained in the

Acta Petropolitana for 1781.

It may be sometimes useful to have the values of Bernoulli's numbers
expressed in integers and repeating decimals.
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It readily follows from Staudt's theorem that if the fractional part of

the nth number of Bernoulli be converted into a repeating decimal, then

the number of figures in the repeating part will be either 2n or a divisor

of 2n, and the first figure of the repeating part will occupy the second place

of decimals.

Table of Bernoulli's Numbers expressed in Integers and Repeating Decimals.

No. No.

1 -16 I

2 -OS 2

3 -02380 95 3

4 -OS 4

5 -0:^5 5

6 -25311 35 6

7 1 -16 7

8 7 -05215 68627 45098 03 8

9 54 -97117 79448 62155 3884 9

10 529 -124 lO

11 6192 -12318 84057 97101 44927 536 n
12 86580 -25311 35 12

13 14 25517 -16 13

14 272 98231 -06781 60919 54022 98850 57471 2643 14

15 6015 80873 "90064 23683 84303 86817 48359 16771 4 15

16 1 51163 15767 -0^215 68627 45098 03 16

17 42 96146 43061 -16 17

18 1371 16552 05088 -33277 21590 87948 5616 18

19 48833 23189 73593 -16 19

20 19 29657 93419 40068 -14863 26681 4 20

21 841 69304 75736 82615 -00055 37098 56035 43743 07862 67995 21

57032 11517 165

22 40338 07185 40594 55413 -07681 15942 02898 55072 463 22

23 21 15074 86380 81991 60560 -li539 00709 21985 81560 28368 23

79432 62411 34751 77304 96

24 1208 66265 22296 52593 46027 -31193 70825 25317 81943 54664 24

94290 02370 17884 07670 7606

25 75008 66746 07696 43668 55720 -075 25

26 50 38778 10148 10689 14137 89303 -05220 12578 6163 26

27 3652 87764 84818 12333 51104 30842 -97117 79448 62155 3884 27

28 2 84987 69302 45088 22262 69146 43291 -06781 60919 54022 28

98850 57471 264S
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No. No.

29 238 65427 49968 36276 44645 98191 92192 -14971 75141 24293 29

78531 07344 63276 83615 81920 90395 48022 59887 0056

30 21399 94925 72253 33665 81074 47651 91097 -39267 41511 61723 30

87457 42183 07692 65988 72659 15822 23522 99560 12610 6

31 20 50097 57234 78097 56992 17330 95672 31025 -16 31

32 2093 80059 11346 37840 90951 85290 02797 01847 -09215 68627 32

45098 03

33 2 27526 96488 46351 55596 49260 35276 92645 81469 -96540 33

58898 05630 23392 35499 52102 83983 80766 97259 04638

29918 72933 46929 94

34 262 57710 28623 95760 47303 04973 61582 02081 44900 "OS 34

35 32125 08210 27180 32518 20479 23042 64985 24352 19411 -06167 35

30687 15322 23644 89970 12377 29406 74349 12505 33504

05463 08151 94195 47588 5

36 41 59827 81667 94710 91391 70744 95262 35893 66896 03011 36

-34647 07892 24934 86300 26351 72786 57869 86190 73528

95096 22602 62909 14538 93184 246

37 5692 06954 82035 28002 38834 56219 12105 86444 80512 97181 37
-16

38 8 21836 29419 78457 56922 90653 46861 73330 14550 89276 38

28860 -OS

39 1250 29043 27166 99301 67323 39829 70289 55241 77196 36444 39
84775 -01115 12959 61422 54370 10247 13682 94153 10427

96865 58167 57082 57986 73899 93972 27245 3285

40 2 00155 83233 24837 02749 25329 19881 32987 68724 22013 40
28259 15915 '20745 61975 56627 97269 68392 67857 91922 ,

09034 38980 91387 33098 56093 21333 85504 97804 44328 5

41 336 74982 91536 43742 33396 67690 33387 53016 21959 89471 41

93843 67232 -15461 84738 95582 32931 72690 76305 22088
35341 36

42 59470 97050 31354 47718 66049 68440 51540 84057 90715 65106 42
90499 04704 -3l085 21256 87731 14081 85506 02030 95487
77872 75541 88660 84463 51830 47372 30158 24058 32606
31376

43 110 11910 32362 79775 59564 13079 04376 91604 63051 14442 43
23148 86269 99497 "16

44 21355 25954 52535 01188 65838 50190 41065 67897 32987 39163 44
46921 18045 90304 -0^804 75492 59078 32600 55365 57563
91467 18775 44373
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No. No.

45 43 32889 69866 41192 41961 66130 59379 20621 84513 68511 45.

80910 91449 86557 88032 '84801 07894 36935 44712 22043

37824 03222 13157 52724 92080 64148 64139 82169 49999
63251 23659 58885 48350 3

46 9188 55282 41669 32822 62005 55215 50189 71389 60388 91627 46
19959 59100 44871 13437 -05460 99290 78014 18439 71631

20567 37588 65248 22695 0§

47 20 34689 67763 29074 49345 50279 90220 02006 59751 40253 47
37827 70239 36918 42141 08241 -16

48 4700 38339 58035 73107 85752 55535 00606 06545 96737 36975 48
90579 15139 76356 41204 83354 '32224 63608 75833 28335

29922 67485 89999 04482 01485 19360 16278 04174 80235

55179 40721 09414 74131 28613 85632 76

49 11 31804 34454 84249 27067 51862 57733 93426 78903 65954 49
75074 79181 78993 54166 54911 76373 -16

50 2838 22495 70693 70695 92641 56336 48176 47382 84680 92801 5a
28821 28228 53171 44648 65111 07028 -15414

51 7 40642 48979 67885 06297 50827 14092 09841 76879 73178 51

80887 06673 11610 03487 48532 84412 10855 -01410 07859

45446 13962 08969 02450 30050 85529 35737 40175 68192

32547 38788 71937 12436 43088 30328 24780 39759 59315

765

52 2009 64548 02756 60448 34656 19672 71536 31868 67270 82253 52

28766 24346 13019 89213 56500 97796 98883 -05220 12578

616S

53 5 66571 70050 80594 14457 19346 03051 93569 61419 46828 53

75104 20621 38756 44521 52460 86197 22777 98400 -15732

08722 74143 30218 06853 58255 45171 33956 38629 28348

9096

54 1658 45111 54136 21691 58237 13374 31991 23014 94962 61472 54

54647 27402 46681 55898 78137 71265 07431 49939 '34194

64710 14554 06621 99281 22390 70085 52107 53810 46409

53506 23597 84716 13430 57045 61619 57851 96268 05479

05077 11801 7726

55 5 03688 59950 49237 74192 89421 91518 01548 12442 37426 55

49032 14141 52565 13225 28310 97674 29893 27917 85387

•OS227 93148 88010 54018 445

A. 58
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No. No.

56 1586 14682 37658 18636 93634 01572 96643 87827 40978 41277 56

89638 80472 86451 42973 11365 09885 00683 12009 45121

•13548 91788 87911 58819 34098 02126 52653 37138 82257

20559 81379 43001 43005 02013 43888 18084 45074 70366

84676 92234 04955 51287 344

57 5 17567 43617 54562 69840 73240 68250 71225 61240 84923 57

59305 50859 06216 69403 18108 29579 66515 49771 87766

32444 -0^380 95

58 1748 89218 40217 11733 96900 25877 61815 91451 41476 16182 58

65448 72627 34721 58762 12289 52384 00153 32666 64382

79521 -05028 24858 75706 21468 92655 36723 16384 18079

09604 51977 40112 9943

59 6 11605 19994 95218 52558 24525 26426 41677 80767 72684 59

67832 00716 84324 01127 35747 50763 44103 14895 29605

90861 82633 '16

60 2212 27769 12707 83494 22883 23456 71293 24455 73185 05498 60

77801 50566 55269 30277 36635 00257 26591 02528 03139

11549 56836 -41706 43950 64162 89896 44622 10131 68427

75098 18261 25962 01999 15049 7

61 8 27227 76798 77096 98542 21062 45998 45957 31204 65051 61

84335 66283 84885 29885 84472 02350 07188 81721 85613

01633 96614 27405 -16

62 3195 89251 11415 70958 35916 34369 18081 48735 26276 67109 62

91122 73184 50424 31195 31118 14531 48045 43981 20342

28242 29698 20300 -OS



56.

NOTE ON THE VALUE OF EULER'S CONSTANT; LIKEWISE ON THE
VALUES OF THE NAPIERIAN LOGARITHMS OF 2, 3, 5, 7 AND 10, AND
OF THE MODULUS OF COMMON LOGARITHMS, ALL CARRIED TO 260

PLACES OF DECIMALS.

[From the Proceedings of the Royal Society, Vol. xxvii. (1878).]

In the Proceedings of the Royal Society, Vol. xix., pp. 521, 522,

Mr Glaisher has given the values of the logarithms of 2, 3, 5, and 10,

and of Euler's constant to 100 places of decimals, in correction of some

previous results given by Mr Shanks.

In Vol. XX., pp. 28 and 31, Mr Shanks gives the results of his re-

calculation of the above-mentioned logarithms and of the modulus of common
logarithms to 205 places, and of Euler's constant to 110 places of decimals.

Having calculated the value of 31 Bernoulli's numbers, in addition to

the 81 previously known, I was induced to carry the approximation to

Euler's constant to a much greater extent than had been before practicable.

For this purpose I likewise re-calculated the values of the above-mentioned

logarithms, and found the sum of the reciprocals of the first 500 and of

the first 1000 integers, all to upwards of 260 places of decimals. I also

found two independent relations between the logarithms just mentioned and

the logarithm of 7, which furnished a test of the accuracy of the work.

On comparing my results with those of Mr Shanks, I found that the

latter were all affected by an error in the 103rd and 104th places of

decimals, in consequence of an error in the 104th place in the determination

81
of log — . With this exception, the logarithms given by Mr Shanks were

80

found to be correct to 202 places of decimals.

58—2
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The error in the determination of log^lO, of course entirely vitiated

Mr Shanks' value of the modulus from the 103rd place onwards. As he

^ves the complete remainder, however, after the division by his value of

log, 10, I was enabled readily to find the correction to be applied to the

erroneous value of the modulus. Afterwards I tested the accuracy of the

entire work by multiplying the corrected modulus by my value of log, 10.

Mr Shanks' values of the sum of the reciprocals of the first 500 and

of the first 1000 integers, as well as his value of Euler's constant, were

found to be incorrect fi:om the 102nd place onwards.

Let S^, or S simply, when we are concerned with a given value of n,

denote the sum of the harmonic series,

, 1 1 1

1 + 2 + 3
+

+n-

Also let i2„, or R simply, denote the value of the semi-convergent

series,

2n^ An* 6n' '"

where B^, B^; B^, &c., are the successive Bernoulli's numbers.

Then if Euler's constant be denoted by E, we shall have

and the error committed by stopping at any term in the convergent part

of i2„ will be less than the value of the next term of the series.

I have calculated accurately the values of the Bernoulli's numbers as

far as B^, and approximately as far as B^^, retaining a number of significant ,

figures varying firom 35 to 20.

When n = 1000, the employment of the numbers up to B^ suffices to

give the value of R,^ to 265 places of decimals. When n=500, it is

necessary to employ the approximate values up to B,„ in order to determine
iJjoo with an equal degree of exactness.

In order to reduce as much as possible the number of quantities which
must be added together to find S^ and S^^, I have resolved the reciprocal

of every integer up to 1000 into fractions whose denominators are primes
or powers of primes.

Thus S^ and S^ may be expressed by means of such fractions, and
by adding or subtracting one or more integers, each of these fractions may
be reduced to a positive proper fraction, the value of which in decimals
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may be taken from Gauss' Table, in the second volume of his collected

works, or calculated independently.

Thus I have found that :

—

S =?^4-A+^ 120 J_ 86^ 205 58^ _^ 3^ 21 30 11
^°» 256

"^
81

"^
5

"^
343

"^
121 ^ 169

"^
289

"^
361

"^
23

"^
29

"^
31 ^ 37

"^
41

+ 1^ + ?^ + ^ + ?!. 33 27 67 28 38 73 72 33 61_

43 47 53
*

59
"*

61
"^

67 71 73
"*"

79
"*"

83 89 ^ 97
"*"

101

^ 45 11 102 68 23
, 111

,
116

,
25 , 126 27 28

+ T7T^ + TTv? +T7T7; + TT5 + TF^ + TTTT + TTTi:; + TTT^ + T77T + r;^ +103 107 109 113 127 131 137 139 149 151 157

29_85_88^9]_92^_97^98^]^101107 113

163 167 173 179 181 191 193 197 199 211
"^

223

115 ne 118 121 122

227 229 233 239
"^

241

+ (the sum of the reciprocals of the primes from 251 to 499) — 19.

Similarly I have found that :

—

Q _249 3]^ m _75_ 62^ 35_ m 21 300 726 ^ 34
"°° ~ 512 729 625 343 121 169 289 361 529 841

"*"

961
"*"

37

41 43 47 53 59 61 67 71 73 79 83 89
"*

97

"^ lOl
"*"

103 107 109 113 127 131 137 139
"^

149
"*"

151

•
157

'*'

163 167 173 179 181 191 193 197
"*"

l99 ^ 211

95 ^ 212 138 ^223 211 216 221 226 47
"*

223
"*"

227
"*"

229
"*"

233
"^
239 241

"^
251

*"
257

"*"

263
"*
269

'
271

48 236 i^,^,_^,26154266 57_ 170 175
"^
277

"*"

281
"*"

283 293 307 311 313 317
"*"

331
"^
337

"*"

347

176 178 181 185 188 191 193 196 200 202 206
*
349

"*"

353
"*"

359
"^

367
'*'

373 379 383
"*"

389
"*

397
"*"

401
"^

409

211 212 217 218 221 223 226 230 232 233 235
*"

419
"*

421
"*"

431 433 439 443 449 457
"*"

461
"^
463

"*"

467

241 245 247 251
"•^ 479 '*'

487
"*"

491 499

+ (the sum of the reciprocals of the primes from 503 to 997) — 43.
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This mode of finding S^oo and Si^k, is attended with the advantage that

if an error were made in the calculation of the former of these quantities,

it would not affect the latter.

The logarithms required have been found in the following manner

25 , 1 81 1 50 , , , 126- = b, loggo = c, log- = d, and log—T + 1
10 , 25 , , 81 1 50 , J 1 126

Let log-^ = a, log^ = 6, ^og— = c, log— = rf, and log—- = e.

Then we have

log2 = 7a-2& + 3c, log 3 = 11a- 36 + 5c, log 5 = 16a -46 + 7c.

Also log 7 = ^ (39a- 106+ 17c- c?);

or again, log7 = 19a — 46 + 8c + e,

and we have the equation of condition

a-26 + c = c?+2e,

which supplies a sufficient test of the accuracy of the calculations by which

a, 6, c, d, and e have been found.

Since log -^ = — log ( 1
—

9 "
V 10,

logg=-log(l-j;^)

logfJ= log(l+^

%S=-log(l-l|o)

H~- log(l+i^).

If we have settled beforehand on the number of decimal places which we
wish to retain, and have already formed the decimal values of the reciprocals

of the successive integers to the extent required, then the formation of

the values of a, 6, c, d, and e, wUl only involve operations which, though
numerous, are of extreme simplicity.

In this way have been found the following results:

—
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Log 10^ 9 =
•10536 05156 57826 30122 75009 80839 31279 83061 20372 98327

40725 63939 23369 25840 23240 13454 64887 65695 46213 41207

66027 72591 03705 17148 67351 70132 21767 11456 06836 27564

22686 82765 81669 95879 19464 85052 49713 75112 78720 90836

46753 73554 69033 76623 27864 87959 35883 39553 19538 32230

68063 73738 05700 33668 65

Log 25 -H 24 =
•04082 19945 20255 12955 45770 65155 31987 01772 11747 63352

02297 28561 42083 06828 16287 62241 55690 62020 38337 10701

85958 13391 57612 02856 02344 55254 44440 90711 64191 09254

90615 87090 13793 32587 08185 56690 89768 86470 69797 42768

97243 12354 16791 64980 33118 36535' 36811 73829 09383 64151

16223 48133 67972 69296

Log 81^80 =
•01242 25199 98557 15331 12931 28631 20890 67623 60339 58145

90685 43409 40510 22236 97287 99924 04408 75833 17607 39941

83907 88915 98331 57135 00593 07313 64880 85644 69078 59065

10006 71375 61155 92285 64823 02773 78467 95356 20673 20672

56121 24774 48623 61600 82118 41837 57253 45313 78157 48027

60627 91715 42041 36587 2

Log 50 H- 49 =
•02020 27073 17519 44840 80453 01024 19238 78525 33383 73356

83210 27195 49256 65918 71880 87170 92908 14086 00703 48551

55810 69865 22995 29709 68602 61790 51909 27000 19877 96234

68586 52194 37909 61418 83597 32774 05301 16399 74760 65371

30928 59153 97434 74168 79079 46094 49807 56880 62620 29129

95963 65850 08854 45

Log 126 -125-
•00796 81696 49176 87351 07973 39067 84478 84307 61916 78206

21803 11515 15228 34251 08036 00862 32503 51700 93221 55597

11104 32429 31908 69430 97326 52573 22928 44338 63827 35942

41437 63883 38664 80785 92159 70835 21671 40563 92519 30299

88730 07233 43319 67047 32333 55315 84852 90164 08154 11413

00140 51668 01463 4832

All these are Napierian logarithms.

The above-mentioned equation of condition is satisfied to 263 places

of decimals.
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Whence have been deduced the following :

—

Log, 2= -69314 71805 59945 30941 72321 21458 17656 80755 00134 36025

52541 20680 00949 33936 21969 69471 56058 63326 99641 86875

42001 48102 05706 85733 68552 02357 58130 55703 26707 51635

07596 19307 27570 82837 14351 90307 03862 38916 73471 12335

01153 64497 95523 91204 75172 68157 49320 65155 52473 41395

25882 95045 30081 06850 15

Log. 3 = 1-09861 22886 68109 69139 52452 36922 52570 46474 90557 82274

94517 34694 33363 74942 93218 60896 68736 15754 81373 20887

87970 02906 59578 65742 36800 42259 30519 82105 28018 70767

27741 06031 62769 18338 13671 79373 69884 43609 59903 74257

03167 95911 521.14 55919 17750 67134 70549 40166 77558 02222

03170 25294 68992 45403 15

Log,5 = 1-60943 79124 34100 37460 07593 33226 18763 95256 01354 26851

77219 12647 89147 41789 87707 65776 46301 33878 09317 96107

99966 30302 17155 62899 72400 52293 24676 19963 36166 17463

70572 75521 79637 49718 32456 53492 85620 23415 25057 27015

51936 00879 77738 97256 88193 54071 27661 54731 22180 95279

48521 29282 13604 17624 80

Log.7 = 1-94591 01490 55313 30510 53527 43443 17972 96370 84729 58186

11884 59390 14993 75798 62752 06926 772,7Q 58498 58787 15269

93061 69420 58511 40911 72375 22576 777%Q 84314 89580 95163
90077 59078 24468 10427 47833 82259 34900 84673 74412 50497
37048 53551 76783 55774 86240 15102 77418 08868 67107 51412
13480 93879 74210 03537 95

Log.l0=2-30258 50929 94045 68401 79914 54684 36420 76011 01488 62877
29760 33327 90096 75726 09677 35248 02359 97205 08959 82983
41967 78404 22862 48633 40952 54650 82806 75666 62873 69098
78168 94829 07208 32555 46808 43799 89482 62331 98528 39350
53089 65377 73262 88461 63366 22228 76982 19886 74654 36674
74404 24327 43685 24474 95

M= -43429 44819 03251 82765 11289 18916 60508 22943 97005 80366
65661 14453 78316 58646 49208 87077 47292 24949 33843 17483
18706 10674 47663 03733 64167 92871 58963 90656 92210 64662
81226 58521 27086 56867 03295 93370 86965 88266 88331 16360
77384 90514 28443 48666 76864 65860 85135 56148 21234 87653
43543 43573 17247 48049 05993 55353 05

where M denotes the modulus of common logarithms.
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50In these calculations the value of log — has been determined with less

126
accuracy than that of log— , and therefore the value of log 7 found by

means of the latter quantity has been preferred.

If now in the formula which gives Euler's constant we take n = 500,,

we find the following results:

—

1 = '-'''

R^= -00000 03333 33200 00025 39671 87309 34479 09501 49853 06920
81561 41982 03143 98353 10049 47690 35814 25947 82825 73530
80967 33251 23444 83365 27221 32891 79715 39888 78668 70158
11997 43277 84264 18919 84678 56672 58294 26067 37401 94207
08483 64907 04495 03811 66583 11699 18899 16275 81704 82573

08004 99446 91635

^^ = 6-79282 34299 90524 60298 92871 45367 97369 48198 13814 39677
91166 43088 89685 43566 23790 55049 24576 49403 73586 56039

17565 98584 37506 59282 23134 68847 97117 15030 24984 83148

07266 84437 10123 70203 14772 22094 00570 47964 42959 21001

09719 01932 14586 27077 01576 02007 28842 06850 09735 01135

74118 52998 6631

Log, 500 =

6-21460 80984 22191 74263 67422 42594 91605 47278 04331 52606

36739 79303 69340 93242 07062 36272 51021 28288 27237 62074

83901 87110 62880 60166 54305 61594 90289 71296 61913 55661

26910 65179 94054 14829 26073 41092 64585 48079 22114 05716

58115 31635 24264 74180 14925 98528 81625 94504 71489 68628

97329 77937 00975

£!= -57721 56649 01532 86060 65120 90082 40243 10421 59335 93992

35988 05767 23488 48677 26777 66467 09369 47063 29174 67495

14631 44724 98070 82480 96050 40144 86542 83622 41739 97644

92353 62535 00333 74293 73377 37673 94279 25952 58247 09491

60087 35203 94816 56708 53233 15177 66115 28621 19950 15079

84793 74508 5697

A. 59
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Again, if in the same formula we take /i.= 1000, we find the following:

—

^ = 0-0005

-^1000= -00000 00833 33325 00000 39682 49801 59487 73237 84632 11743

88611 32124 18782 98862 06644 51967 06850 04241 14869 65631

43736 78499 44114 24665 37423 82138 50259 70190 89962 61572

33894 07843 88131 36054 55889 69002 08034 44545 27898 47738

31546 74821 27649 54293 18527 10448 88349 55931 43201 82238

86978 52223 81562

'Smoo = 7-48547 08605 50344 91265 65182 04333 90017 65216 79169 70880

36657 73626 74995 76993 49165 20244 09599 34437 41184 50813

96798 01438 22544 03715 81484 21958 84703 40431 40398 43368

92966 39178 33827 35905 57913 00071 54692 68403 25933 79804

87809 56515 86955 67800 24804 71415 08712 32350 00711 42865

21027 95267 06455

Log, 1000 =

6-90775 52789 82137 05205 39743 64053 09262 28033 04465 88631

89280 99983 70290 27178 29032 05744 07079 91615 26879 48950
25903 35212 68587 45900 22857 63952 48420 26999 88621 07296
34506 84487 21624 97666 40425 31399 68447 86995 95585 18051
59268 96133 19788 65384 90098 66686 30946 59660 23963 10024
23212 72982 31056

E= -57721 56649 01532 86060 65120 90082 40243 10421 59335 93992,

35988 05767 23488 48677 26777 66467 09369 47063 29174 67495
14631 44724 98070 82480 96050 40144 86542 83622 41739 97644
92353 62535 00333 74293 73377 37673 94279 25952 58247 09491
60087 35203 94816 56708 53233 15177 66115 28621 19950 15079
84793 74508 56961

It will be seen that the two values found for E agree to 263 places
of decimals, which supplies another independent verification of the value
obtained for log, 2.
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SUPPLEMENTARY NOTE ON THE VALUES OF THE NAPIERIAN LOGARITHMS
OF 2, 3, 5, 7, AND 10, AND OF THE MODULUS OF COMMON LOGARITHMS.

[From the Proceedings of the Royal Society. Vol. XLii. (1886).]

In Vol. XXVII. of the Proceedings of the Royal Society, pp. 88—94, I

have given the values of the logarithms referred to, and of the Modulus, all

carried to 260 places of decimals.

These logarithms were derived from the five quantities a, h, c, d, e,

which were calculated independently, where

1 10 , , 25 , 81 , , 50 , ,126
a = logy, b = log— , c = log— , c? = log— , and e = log—

,

and a complete test of the accuracy of these latter calculations is afforded

by the equation of condition

a-2b + c = d + 2e.

In the actual case the values found for a, b, c, d, e satisfied this

equation to 263 places of decimals.

Although this proved that the values of the logarithms found in the

above paper had been determined with a greater degree of accuracy than

was there claimed for them, yet I was not entirely satisfied with the

result, since the calculation of the fundamental quantities had been carried

to 269 places of decimals, and therefore the above-cited equation of con-

dition shewed that some errors, which I had not succeeded in tracing, had

crept into the calculations so as to vitiate the results beyond the 263rd

place of decimals.

59—2
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Of course in working with such a large number of interminable decimals,

the necessary neglect of decimals of higher orders causes an uncertainty in

a few of the last decimal places, but when due care is taken, this uncer-

tainty ought not to affect more than two or three of the last figures.

The Napierian logarithm of 10 is equal to 23a — Gb+10c, and the Modulus

of common logarithms is the reciprocal of this quantity.

Since the value found for the logarithm of 10 cannot be depended

upon beyond 262 places of decimals, a corresponding uncertainty wUl affect

the value of the Modulus found fi^om it.

In the operation of dividing unity by the assumed value of log 10,

however, the quotient was carried to 282 places of decimals.

This was done for the purpose of supplying the means of correcting

the value found for the Modulus, without the necessity of repeating the

division, when I should have succeeded in tracing the errors of calculation

alluded to above, and thus finding a value of log 10 which might be

depended upon to a larger number of decimal places.

Through inadvertence, the values of the logarithms concerned, and the

resulting value of the Modulus, were printed in my paper in the Pro-
ceedings above referred to exactly as they resulted fi^om the calculations,

without the suppression of the decimals of higher orders, which in the

case of the logarithms were uncertain, and in the case of the Modulus
were known to be incorrect.

Although it was unlikely that this oversight would lead to any mis-

apprehension as to the degree of accuracy claimed for my results in the
mind of a reader of the paper itself, there might be a danger of such
misapprehension if my printed results were quoted in fiiU unaccompanied
by the statement that the later decimal places were not to be depended on.

My attention has been recalled to this subject by the circumstance

that in the excellent article on Logarithms which Mr Glaisher has con-

tributed to the new edition of the Encyclopcedia Britannica, he has quoted
my value of the Modulus, and has given the whole of the 282 decimals

as printed in the Proceedings of the Royal Society, without expressly stating

that this value does not claim to be accurate beyond 262 or 263 places of

decimals.
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I have now succeeded in tracing and correcting the errors which vitiated
the later decimals in my former calculations, and have extended the com-
putations to a few more decimal places. The computations of the fundamental
logarithms a, h, c, d, e have now been carried to 276 decimal places, of
which only the last two or three are uncertain.

The equation of condition, a-2b + G = d + 2e, by which the accuracy of
all this work is tested, is now satisfied to 274 places of decimals.

The parts of the several logarithms concerned which immediately follow
the first 260 decimal places as already given in my paper in the Proceedings,
are as follows :

—

a 05700 33668 72127 8

b 67972 72775 92889 4

c 42038 01732 39184 3

d 08865 93150 99834 1

e 01463 48349 12851 7

Whence a -26+ c = 11792 89849 25533 3

and c^+ 2e = 11792 89849 25537 5

Difierence = 4 2

Also the corresponding parts of the logarithms which are derived from
the above are

—

log 2 30070 95326 36668 7

log 3 68975 60690 10659 1

log 5 13580 59722 56777 3

log 7 74183 10810 25196 7

Whence log 10 43651 55048 93446

And the correction to the value of log 10 which was formerly employed

in finding the Modulus is

-(263) 33 69426 01554

where the number within brackets denotes the number of cyphers which

precede the first significant figure.

The corresponding correction of M, the Modulus of common logarithms,

will be found by changing the sign of this and multiplying by M^, the

approximate value of which is

0-18861 16970 1161
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Hence this correction is

(264) 6 35513 15874 7

And finally the corrected value of the Modulus is

if=-43429 44819 03251 82765 11289 18916 60508 22943 97005 80366

65661 14453 78316 58646 49208 87077 47292 24949 33843 17483

18706 10674 47663 03733 64167 92871 58963 90656 92210 64662

81226 58521 27086 56867 03295 93370 86965 88266 88331 16360

77384 90514 28443 48666 76864 65860 85135 56148 21234 87653

43543 43573 17253 83562 21868 25

which is true, certainly to 272 and probably to 273 places of decimals.
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NOTE ON SIR WILLIAM THOMSON'S CORRECTION OF THE ORDINARY
EQUILIBRIUM THEORY OF THE TIDES.

[From the Report of the British Association, 1886, p. 541.]

In Art. 806 of Thomson and Tait's Treatise on Natural Philosophy it

is pointed out that if the Earth's surface is supposed to be only partially

covered by the Ocean, the rise and fall of the water at any place, according

to the equilibrium theory, would be falsely estimated, if, as is usually done,

it were taken to be the same as the rise and fall of the spheroidal surface

that would bound the water were there no dry land.

In the articles which immediately follow the above, it is shewn that

in order to satisfy the condition that the volume of the water remains

unchanged, the expression for the radius vector of the spheroid bounding

the water must contain, in addition to the terms which would be sufficient

if there were no land, a quantity a which depends on the positions of the

Sun and Moon at the time considered, and which is the same for all

points of the sea at the same time.

This quantity a contains five constant coefficients which depend merely

on the configuration of land and water. The values of these coefficients

in the case of the actual oceans of our globe have been carefully deter-

mined very recently by Mr H. H. Turner of Trinity College, in a joint paper

by Professor G. H. Darwin and himself, which is published in Vol. XL. of

the Proceedings of the Royal Society.
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It should be remarked that every inland sea or detached sheet of

water on the globe has in the same way a set of five constants, peculiar

to itself, which enter into the expression of the height of the tide at any

time in that sheet of water.

By taking such constants into account the formulae which apply to the

Oceanic tides are rendered equally applicable to the tides of such a sea

as the Caspian, which are thus theoretically shewn to be very smaU, as

they are known to be practically.

In the work above cited reference is made to a passage in a memoir

by Sir WilHam Thomson on the Kigidity of the Earth, published in the

Philosophical Transactions for 1862, as being the only one known to the

writers in which any consciousness is shewn that such a correction of the

ordinary equiUbrium theory as that above mentioned is required.

However just this remark may be in reference to modern writers on

the equilibrium theory, it is only fair to Bernoulli, the originator of the

equilibrium theory, to point out that in his prize essay on the Tides he

distinctly recognises the fact that when the sea is supposed to have only

a limited extent the rise and fall of its surface cannot be the same as

if the Earth were entirely covered by it. In particular, he shews that the

Tides are so much the smaller as the sea has less extent in longitude,

and thus explains why they are altogether insensible in the Caspian and

in the Black Sea and very small in the Mediterranean, of which the com-

munication with the Ocean is almost entirely cut off at the Straits of

Gibraltar (see Bernoulli, Traite sur le Flux et Reflux de la Mer, Chap, xi,

sect. ii.). It may be as well to mention that this treatise of Bernoulli, as

well as the dissertations of Maclaurin and Euler on the same subject, is

published in the 3rd volume of the Jesuit's edition of Newton's Principia

and also appears in the Glasgow reprint of that edition.
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ON CERTAIN APPROXIMATE FORMULAE FOR CALCULATING THE
TRAJECTORIES OF SHOT.

[From the Proceedings of the Royal Society, Vol. xxvi. (1877) and Nature, Vol. XLi. (1890).}

In the postscript to a paper by Mr W. D. Niven, "On the Calculation

of the Trajectories of Shot," which is published in the Proceedings of the

Royal Society, Vol. xxvi. pp. 268—287, I have given, without demonstration,

some convenient and not inelegant formulae applicable to a Hmited arc of

a trajectory when the resistance is supposed to vary as the nth. power of

the velocity.

In these formulae, the angle between the chord of the arc and the

tangent at any point is supposed to be always small. The index n is

not restricted to integral values, but may take any value whatever.

As the proof of these formulae is not altogether obvious, and a similar

method of treatment may be found useful in other problems, I think it

may not be unacceptable to your readers if I shew here how the formulae

may be demonstrated.

Analysis.

Investigation of formulae applicable to a small arc of a trajectory, when

the resistance varies as the nth. power of the velocity.

Let X and y denote the horizontal and vertical coordinates at time t,

u the horizontal velocity, and ^ the angle which the direction of motion

makes with the horizon at the same time.

60
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Hence the velocity at time t is u sec
<f),

and we may denote the

resistance by ifctt" (sec <^)", where h is constant throughout the small arc in

question.

Also let p and q denote the values of u at the beginning and end

of the arc, a and fi the corresponding values of (j), g the force of gravity,

T the time taken to describe the arc, X and Y the corresponding total

horizontal and vertical motion.

Making ^ the independent variable, the fundamental formulae are

From the first of these equations

and therefore, by integration between the limits <^ = a and ^ = )S,

Also, we have

and

1 ("X= - w'{BeG<l>fd(l>;

1 f"Y=-
I

u'{seo<f)Yta,n<f)d(f);

1 f"T=- u (sec <l>f d^;

and we wish to compare the two former of these definite integrals with
the following known one, viz. :

—
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and the last with

This may be done by means of the following lemma, which follows

immediately from Taylor's theorem :

—

Lemma.

If -F(<^) be any function either of j> only, or of ^ and u, where u
is a function of ^ given by the above differential equation (1), and if a

and ^ be the limiting values of <^ in the integral and 7 = r(a + yS), then,

putting for a moment ^ = 'y + co,

F(<f>)d6= F(y + (o)do)

J 13 J -iia-P)

and F{y), F'{y), F"{y), &c., are what F{(f>), F'{<^), F"(^), &c., become when

y is substituted for ^, and the corresponding value of u {u^ suppose) is

put for u.

In what follows, the last of the terms above written, which is of the

5th order in (a — /8), is neglected, together with all terms of the same

order of small quantities.

All the definite integrals with which we are here concerned are included

in the two forms

|"w'(sec<^)'"c^<^, and ) w' (sec <^)™ tan <^ c?<^.

In the first place, we will apply the above formula to the case in

which F{^) is a function of (^ only, viz. when i^ (^) = (sec <^)"+\

60—2
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Hence

F'{<j)) =(n+l)(sec<^)»+Han<^;

F"{<l>) = {n+ l)l{n+ 1) (sec <^)»+> (tan <^)'+ (sec <^)"+']

= {n+ 1) [w+ 2 (sec <^)»+'- w+l (sec «^)"+>]

;

and therefore,

f" (sec (^)»+> d<f> = {a- /8) (sec
y)"+' jl +^ (a

-

^f [^i:+2 (sec y)^- ^i^]!

,

to the 4th order inclusive.

Hence

^«-^ = 7(«-^)(«ecrr'{l+^(a-/3n^T2(secy)»-^H:-l]|,

which gives q when p is known.

In the next place, let i''(<^) = it*(sec^)'".

Hence

F'{4,) =^ = lu'-'^ (sec cf>)'"+ mu' (sec ,^)'» tan «^

=^Wg^+ mtan,^],

i?^'(«^) = i^(<^) T-tt" (sec ,^)»+^+m tan <^1 ;

F"{<l>) = F'{4>) [- tt» (sec <^)»+^+m tan <^1

+^W[y^""^^(sec«^r^+|(n+l)t*»(sec.^rUan<^ + m(sec<^)'],

or

F"{^) = F{4>)\'^u^ (sec ^r*'+ 2 '^ u» (sec «^)»+" tan <^ + m= (sec <^)= - w'

rp7« Z.7 -1

+ i^(<^) -^ u^ (sec <^)-+''+- (71+ 1) «» (sec <^)»+' tan «^ +m (sec <^)»

+ - (2to+w+ 1) M" (sec <^)''+^ tan «^+m (m+ 1) (sec <lif-m?V .

-hi
or

and
-kl
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Since - = -«»+' (sec <^)"+\

this last expression may be put under the form

i?'"(<^) = i^(<^)|z(Z +«)(^J + Z(2m+ ri + l)(^)tan.^+ m(m + l)(sec^)"-m4.

Also i^(7) = M„'(secy)'".

Hence, by the above lemma,

J^"

u^ (sec 4>r# = (a - )8) u: (sec y)- {l +^ (a - P)^ [z (Z+ n)
(^)]

+ l{2m+ n + l)(-^j\ tany+ m(m+l)(secy)'-wi' I

where (

—

^r ) denotes what —rr becomes when w = 0, or when v is sub-
\udf/„ ud(f>

"

stituted for ^, and «„ for u, that is

f-i) =-?*o«(secyr\

The factor u^ may be eliminated from this expression, and the expression

itself simplified, by means of the formula

for, putting m = n+l in the above expression, we have

j"^ u' (sec ,^)»- d4> = {a- /3)< (sec y)"- {l +^ («" ^^ [^ (^+ »)
(^)[

+ 3Z(w+l)(-^j tany+n+l?i + 2 (secy)'- (%+!)=' I.

Hence
( u^ (sec ^)™ cZ<^ h- I m' (sec ^)"+' cZ^

= |\^(sec<Arc^,^-.^ (A-. -^) = (secy)—

|l+— (a-^)" 2Z(w-n-l) (-^j tany +m-n-lm+ w + 2(secy)'

—m — n — lm + TO+1 >.
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It will be noticed that the term involving i

—j-r \ has disappeared by this

division.

Now make m = 2, and this formula becomes

|l-^(a-^)^[2Z(7i-l)(^)^tany+ /i-ln + 4(secy)^-^^^n:7irr3

Divide throughout by g, and put 1= 2, then, from before.

Similarly, divide throughout by g, and put ^ = 1, then

^=k

{l-^(a-^)-[2(*i)_tany+(«+4)(sec^)--ST-3

Lastly, let

i^((^) = m' (sec cl>y ta.n <^ =/(^) tan ^ suppose,

so that

/(<^) = «'(sec«^r;

then F'{cl>) =/' {<f>)
tan (j> +f{^) (sec <^)^

and F"{,l>) =/"{<!>) tan <^ + 2/'(<^) (sec <^)^+ 2/(</.) (sec
<f>y tan «^.

Hence i'^ F{<l>)d^ = {a- /3) |i^ (y) +^ (« - ^YF" (r) 1 approximately,

= (a - ^) {/(r) tan y+^ (a - ^)t/' (y)tany+ 2/ (y) (secy)^ + 2/(y) (secy)Hany]|

;

also

jy{<j,)d<j> = {a-^) |/(y) + ^(a-^)y"(y)| approximately;
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and therefore

|>(,^)#^|V(<^)# = tany+ ^(a-^)=[-^(secy)» + (8ecy)Hany

in which the term involving f"{y) has disappeared.

Now, since f{4>) = u' (sec ^)*', we have, as before

479

U—rr) +in tan (j)

and therefore

Hence

\ud(l)/„

fa fa 1 r / (Hy, \

J
i^(<^)#^J^/(<^)d<^

= tany + -(a-^r(secy)»[z(^j^ + m+ltany

and in the particular case where 1 = 2, and m = 2, we have

|=tany + l(«-W(aecy)-[2(^^)^ + 8tany]

Hence the angle which the chord of the arc makes with the axis of x is

r+ ^(a-^)^[2(^"^)/3tany]=y, suppose.

Multiplying by the value of X found above, we have

+ tan y r*i^ w + 4 (sec y)" - 6 (sec y)' - n - 1 *i + 3

or

Y - ^- (^ —] (cos yY-' jtan y -^ (a - )8)=

r/^\ r4/^_2)(secy)=-4(«-l)1+tanyr^^^^T5(secy)^-^^n + 3

\\ud<l>J,l J L
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Considering -^^ ^z^ , -^^rj ^^=1 , and a— /8 to be small quantities of

the first order, the above expressions for -^ s > -^> ^> ^^^ ^ are true to

the fourth order.

The quantity ("~jt) "^l^ich occurs as a factor in some of the terms

of the third order may be put under a very convenient form in the following

manner.

We have, by Taylor's theorem,

/du\ (dj'uX (o^ „
U--

In this make w= - (a — /8) and —-{a — p) successively ; therefore

and

Hence we have to the first order of small quantities

p — q_ /du \

and -^{P + <2) = i^o;

and therefore (—7-7 ) = -.—
,

-\ ,
^'

„, to the first order.

Making this substitution for (-4^) the expressions for X, Y, and T
become
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—^ (a — fif tan y [ri — 2 tz. + 5 (sec yf — n—ln + Z\\;

and these values are still true to the fourth order, considering; ——- and

a — y8 to be small quantities of the first order as before.

The angle which the chord of the arc makes with the axis of x becomes,

in like manner,

which is true to the third order.

The above expressions for X and Y may be transformed by introducing

this angle y into them instead of y, thus

(cos7r- = (cosyr--(7i-l)(cosyr-siny[^^(a-^)+j(a-^)Hany

= (cos yf- |l - !izl£^ (a _ ^) tan y -^ (a - ^)^ (tan y)j

.

Hence we find

and

|l -^ (a

-

^r \n^ (sec yf - ^^^]} ;

61
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or putting g for 1 -^^{a-^y [^^^ (sec yf- ^n^S],

we have

Similarly, if

'^=y+-6^qi''-^)+l(--^y''^'''y'

we have

(cos y'y-' = (cos y)»-^ - (ri - 1) (cos y)""^ sin y f^ ^-^^ (a - ^) + ^ (a - /Sf tan y ;

= (co8y)-{l-^^(a-^)tany-^(a-^)Mtany)j;

and therefore

where Q has the same value as hefore.

Hence the values of X, Y, and T are as stated in my postscript to

Mr Niven's paper.
'

Although the method of finding the expressions for X and T given

above, is perhaps the plainest and most straightforward that can be taken,

the following leads to simpler operations.

Let f{cf>) = u'{sec<f>Y'-\

Then lf{<l>)d({> = iu' (sec (/))"+^cZ<^ =| U'""^^d4> by equation (l)

Hence |V(,^) dj, =^L (y-» _ ^.-«).
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Now let

then

and

CALCULATING THE TRAJECTORIES OF SHOT.

F{(f>) =/{(!>) (sec c^)"" = u' (sec <^)'"+"+S

F' (</)) =/ {<j)) (sec <^)™ + m/((^) (sec <^)'" tan </.,

F" (<^) =/' (<^) (sec <^)™ + 2m/' (<^) (sec <^)"' tan <^

+ m/(<^) [m (sec <^)™ (tan c^)'+ (sec (^)'"+']

= /"
(</)) (sec <^)™ + 2to/ (<^) (sec <^)™ tan <^

+ mf{<f,) [m+1 (sec ^)"^+' -m (sec (^)"'].
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Hence, by the lemma,

j''F{<l>)d<l> = {a-fi){F{y)+^{a-/3fF"{y)

(a - /3) \f{y) (sec yf +^ (a - ^)^ (sec yf /" (y) + 2m/(y) tan y

+W(y) [^+ 1 (sec y)^ — m]

= (a - ;Q) (sec yf |/(y) +^ (a " ^)^ [/" (t) + 2mf{y) tan y

+ ''^/{y) [™ + 1 (sec y)^— m]

But from above

j^(p-"-3'-) =/>)#
= (.-/S)[/(r)+i(.-«-/"(r)}.

Hence, by division,

= (secyY jl +^ (« - /S)' 2m ^^^ tan y+m [m + 1 (sec yf - m]

It will be noticed that in this division the quantity /" (y) has disappeared.

61—2
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Now, from above,

and therefore

f(4.) =u' (sec •!,)•".

Hence

J/W''**3r(fcr)<p"""-«'"")

= (sec yf jl +^ (a - PY W'^ (^) *an y + 2m (n + 1) (tan y)'

+ m [m + 1 (sec yf — m\ \

= (sec jY {l +^ (« - ^)' 2?m (^) tan y +m (m + 2»i + 3) (sec yf

—m {in+ 2n + 2) V .

Now make m + n + l=2, or m= —{n — l), and we have

= (cos y)»- jl - Jj (a - ^)^ [2? (n - 1) (^)^
tan y+ (n - 1 )

(.i + 4) (sec yf

-{n-l){n + S)
}

In this make 1 = 2, and 1 = 1, successively, and we obtain the same

expressions for X and T as before.

The case thus treated is not one of mere curiosity, but is practically

important. From theoretical considerations, Newton concluded that the

resistance of the air to the motion of projectiles is proportional to the

square of the velocity, and very little progress has been made in the

theory of the subject since his time. Experiments have shewn that the

relation between the velocity of a projectile and the resistance offered by

the air to its motion is far from being so simple as that given by
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tlie theory. The most extensive and accurate series of such experiments

which we have are those made by Mr Bashforth by means of his chrono-

graph, which measures with the greatest precision the times taken by the

same projectile in passing over several successive arcs in the course of its

flight. In a summary of his results for ogival-headed shot, struck with a

radius of l-J diameters, given in Nature (Vol. xxxiii. pp. 605, 606), Mr
Bashforth concludes that the resistance may be approximately represented

by supposing it to vary, as one power of the velocity when that velocity

lies between certain limits, as another power when the velocity lies between

certain other limits, and so on.

Thus, if V denote the velocity expressed in feet per second,

d the diameter of the shot in inches,

and w its weight in pounds,

d?
and if — = c,w

then, when v lies between 430 fs. and 850 £s.,

the resistance is nearly = 61 'Sc (—-rj ;

when V lies between 850 £s. and 1040 f.s.,

the resistance is nearly = 74-4c (-—rj ;

when V lies between 1040 f.s. and 1100 fs.,

the resistance is nearly = 79 '20 (--r^j ;

when V lies between 1100 f.s. and 1300 f.s.,

the resistance is nearly = 108 'Sc (—:

and lastly, when v lies between 1300 f.s. and 2700 fs.

the resistance is nearly = 141 "Sc (tqqq

Hence the resistance varies nearly as the square of the velocity both when

the velocity is less than 850 f.s., and when it is greater than 1300 f.s.,

but the coefficient increases from 61-3 in the former case, to 141-5 in the
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latter. Also, the resistance varies nearly as the cube of the velocity, both

when V lies between 850 f.s. and 1040 f.s., and also when it lies between

1100 f.s. and 1300 fs., but the coefficient increases from 74*4 in the former

to 108 '8 in the latter case. Again, for velocities which are nearly equal

to that of sound in air, the proportionate increase of the resistance is much

greater than that of the velocity.

Mr Bashforth remarks that the points of transition from one law of

resistance to another, as stated above, are somewhat arbitrary, but that, if

they were changed a little in either direction, the practical error would

not be large.

Of course, if we had at our disposal much more numerous and stiU

more accurate observations, it would be possible to represent the experi-

mental results with any degree of exactness that might be desired, by

subdividing the observations into a larger number of groups, so that the

limiting velocities in any one group should be closer together, and that

the change of the index of the power of the velocity in passing from one

group to the next should be less abrupt.



60.

ON THE EXPRESSION OF THE PRODUCT OF ANY TWO LEGENDRE'S

COEFFICIENTS BY MEANS OF A SERIES OF LEGENDRE'S COEFFICIENTS.

[From the Proceedings of the Royal Society, No. 185, 1878.]

The expression for the product of two Legendre's coefficients which

is the subject of the present paper, was found by induction on the -13th

of February, 1873, and on the following day I succeeded in proving that

the observed law of formation of this product held good generally. Having

considerably simplified this proof, I now venture to offer it to the Eoyal

Society ; and, for the sake of completeness, I have prefixed to it the whole

of the inductive process by which the theorem was originally arrived at,

although for the proof itself only the first two steps of this process are

required. The theorem seems to deserve attention, both on account of its

elegance, and because it appears to be capable of useful applications.

As usual let Legendre's nth. coefficient be denoted by P„, then P„

may be defined by the equation

It is well known that the following relation holds good between three

consecutive values of the functions P, viz.

{n+l) Pn+. = {'^n+l) iLP^-nP^_,.



p.
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Substitute for [iPn+i, /a-P„ and /u,P„_2 their equivalents as before,

. pp _5 {n + l){n + 2){n + S)

' " " 2{2n+l){2n+ 3){2n + 5) "

«+8

f5 {n + l){n + 2) n+ 2 5 n{n + l) n + 1 2 n + l \

\2{2n+l){2n + 3)2n+ 5 3{2n-l){27), + 3)~2n + l 32n+l) "+'

(5 n{n+l) n 5 {n — l)n n — 1 2 '^ 1 p
\s {2n-l) {2n + 3) 2n+ l"^ 2 {2n-l) {2n+l) 2n-3~ 3 2n+lj ""'

5 {n — 2){n—l)n „^
2 (2w-3)(2»-l)(2n + l) "-=•

By reduction the coefficient of P„+i in this expression becomes

3 n{n+l){n + 2)

2 (2TO-l)(2n+l)(2w+ 5)"

and similarly the coefficient of P„_i becomes

3 {n-l)n{n+l)
2 {2n-3){2n+l){2n + 3)'

Hence we have

5 {n+l){n + 2){n + 3) „
= " 2 (2n + l)(2m + 3)(2n + 5) '

71+3

3 n{n+l){n+2) p
^2 (27i-l)(2TO+l)(2ri + 5)

"*'

3 (n-l)n(^^+l) „
•"2 (2n-3)(2n+l)(2n + 3) '

57-1

5 {n-2){n-l)n
'^2{2n-3){2n-l){2n+l) "-'"

Again, since -^4 = j /*-fs —
j

-Psj

we

A.

have P.Pn = ll^{PsPn)-l{PM-

62
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Whence by substituting the values found above for P^Pn and P^Pn

and again for /u-P„+3, ju,P„+i, &c., we obtain

„ 5.7 (n + l)(9^ + 2)(7^ + 3) fn + 4 .^Hllp I

7 ^rt(TO+l)(rt + 2) f
w + 2 p

w + 1 p V
^(2%-l)(2n+l)(2n + 5)\27i + 3 ™+^"^2n + 3 "j

3^
'2"

3.7 (w-l)ft(w+l) f
n p j.Jl^ p 1

"'2.4(2ri--3)(27i+l)(2% + 3) t2«-l ""^2w-l ""'J

. 5.7 (^-2)(n-l)yt [w-2 p
I

^-3 p I
+ 274(27i-3)(2w-l)(2n + l)l2n-5^»-^'^2ri-5 ™-^j

3.3 (w+l)(w + 2) p 3 w(?t+l) p
2.4(2w + l)(2n + 3) "+" 4 (2^1 - 1) (2^ + 3) "

3. 3 (n-l)ii p
~2T4(2»-l)(2w+l) "-'

By reduction, the coefficient of P„+2 in this expression becomes

5 n{n+l){n + 2){n + Z)

2 (2w-l)(2w+l)(2%+ 3)(2w+ 7)'

Similarly, the coefficient of P„_2 becomes

5 {n-2){n-l)n{n + l)

2 (2w-5)(2w-l)(2w+l)(2n+ 3)'

and finally, the coefficient of P„ becomes

/Sy {n-l)n{n+l){n+ 2)

\2/ (2n-3)(2ft-l)(2/i + 3)(2n + 5)*

Hence, collecting the terms, we have

^ 1.3.5.7 {n+l){n + 2){n+ 2)(n+ A) p^ ™~1. 2.3.4 (2re+l)(2re + 3)(2w+5)(2ri+ 7)

1.3.5 1 rt(w+l)(n+ 2)(w+ 3) p"^1.2.3' 1 (2»-l)(2n+l)(2n + 3)(2«, + 7) '

1. 3 1_^ (n-l)n{n+l){n+ 2)

TT2 ' 1T2 {2n- 3) {2n - 1) {2n + 3) (2%+ 5)

1 1.3.5 {n-2){n-l)n{n+l) p^1 '

1. 2. 3 (2?i-5)(2?i-l)(2ri+l)(2TO + 3) '

1.3.5.7 {n-S){n-2){n-l)n p
"^1.2.3.4 (2«-5){2w-3)(2n-l)(2»+l) '

»+4

M+2

+

«-2

n-i!
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where the law of the terms is obvious, except perhaps as regards the
succession of the factors in the several denominators.

With respect to this it may be observed that the factors in the
denominator of any term P^ are obtained by omitting the factor 2p+l
from the regular succession of five factors

{n+p-2,){n+p-\){n+p+l){n+p + ^){n+p + b).

For instance, where p = n+ A, 2p + l=2n+9, so that the factor 2^ + 9
is to be omitted, and we have 2w + l, 2n + Z, 2n+5 and 2n + 7, as the
remaining factors, and so of the rest.

Hence by induction we may write, supposing to fix the ideas that m
is not greater than n,

p p _ 1. 3. 5. ..(2^-1) {n + l){n + 2)...{n + m)
"* " 1.2. 3. ..m (2n+l){2« + 3)...(2w + 2m+l)

x[(2n + 2m+l)P„^J

1.3.5...(2w-3) 1 n{n + l)...{n +m-l)
1.2.3...( m-1) 1 {2n-l){2n+l)...{2n + 2m-l)

x[(27i+ 2m-3)P„+^_J

+ &c., &c.

1.3.5...(2m-2r-l) 1 . 3. 5...(2r- 1)
"''

1.2.3...(m-r) 1.2.3...r

X
{n — r+\){n — r-\-2)...{n — r + m)

(2n - 2r + 1) {2n -2r + 3)...{2n-2r + 2m + l)

x[(2w + 2w^-4r+l)P„^^_J

+ &c., &c.

1 1.3. 5...(2m-3) {n-m+ 2){n-m + S)...{n+l)
"*"

1
' 1.2. 3...( m-1) ' (2TO-2m + 3)(2ft-2m+ 5)...(2w + 3)

x[(2w-2w + 5)P„_^J

1 .3. 5...(2m-l) {n-m + l){n-m+ 2)...n

"^ 1.2. 3. ..TO {2n-2'm + l){2n-2m + S)...{2n + l)

x[(2n-2w+l)P„_4
62—2
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And it remains to verify this observed law by proving tbat if it holds

good for two consecutive values of m, it likewise holds good for the next

higher value.

If the function —'

,
' '") be denoted by A (m), the general

1.2. 3...m J
\ I' &

term of the above expression for PmPn ^a^'J t)e very conveniently represented

by

A{m — r)A (r) A{n — r) /2n + 2m — 4r+ 1\ „
A{n+m-r) V2n + 2m-2r+l/ »+'»-=^'

r being an integer which varies from to m.

The fundamental property of the function A is that

A(m+1)=——-Aim),
^ ' m+1 ^ '

or A(m)=-—— ^(m+1).
^ ' 2m + 1 ^

'

We may interpret A (m) when m is zero or a negative integer, by
supposing this relation to hold good generally, so that putting m = 0, we
have

^(0) = ^(1) = 1.

Similarly ^ (_i) = A.^ (0)^0;

and hence the value of A (m) when m is a negative integer will be always
zero.

We will now proceed to the general proof of the theorem stated above.

Let Q^ denote the quantity of which the general term is

A{m-r)A{r)A {n-r) /2w + 2m-4r + l\
-*^ n.A{n+m-r) \2n + 2m-2r+l/ "+»»-=»

In this expression r is supposed to vary from to m, but it may be
remarked that if r be taken beyond those limits, for instance if r=-l,
or r = m+l, then in consequence of the property of the function A above
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stated, the coefficient of the corresponding term will vanish. Hence prac-

tically we may consider r to be unrestricted in value.

Similarly, let Qm,_i denote the quantity of which the general term is

A{m-r)A{r-l)A{n-r+l) /2w + 2m - 4r+ 3\ „
A{n + in-o^) \2n + 2m-2r+lj "ii+m-2r+l>

writing m — 1 for m and r — 1 for r in the general term given above.

Also let Qm+i denote the quantity of which the general term is

A {m-r + l)A (r) A (n-r) /2w + 2m-4r+ 3\ „
A{n +m-r+l) \2n + 2m-2r+3/ ''

»+m-2)-+i3

writing m + 1 for m in the general term first given. In consequence of

the evanescence of A (m) when m is negative, we may in all these general

terms suppose r to vary from to m+1.

Let us assume that Qm-i = Pm-iPn> and also that Qm=PmPn> then we

have to prove that Qm+i = Pm+iPn-

As before, (m+ l)P^+i +mP^_i-(2m+ 1)/«,P^ = 0,

.-. (m + l)P™+,P„ + wP^_,P,-(2m+l))ttP^P„ = 0.

Hence our theorem will be established if we prove that

Now Qr^=

A{m-r+l)A{r-\)A{n-o''+l) /2w+ 2m-4r + 5 \ „
+ A{n +m-r+l) \2»i + 2m-2r+ 3/

"+'"-^+''

A{m — r)A (r) A{n — r) /2n + 2m — 4r + 1\ „
"''

Ain + m-r) [2n + ~2m-2r + l)
^»+'»-=»-

+

Multiplying by /u, and substituting for /iP^+m-ar+a and iiPn+m-w> &c., in

terms of P^+m-^'+iy &c., we find the coefficient of Pn+m-^+i in fx-Qm to be

A (m-r +1) A {r -I) A {n~r +\) /n + 2m,-2r+ 2,

A{n +m — r+l) \2w-|-m — 2r + 3

A{m-r)A (r) A (n-r) / n +m-2r+l \
"^

A(n + m-r) \2TO + 2m-2r-|-l/



494 THE PRODUCT OF ANY TWO LEGENDRE'S COEFFICIENTS [60

Hence the coefficient of Pn+m-^+i in (m'+ 1) ^mH.i + «*Qm-i-(2m+ 1) ju,^^ will

be

A {m-r+ l)A{r)A{n-r) , , /2w+ 2m-4r + 3 \

A{n +m-r+l) ^™ ' \2n + 2m-2r+ZJ

n +m — 2r+ 2

2r+ 3
_ A{m-r+l)A{r-l)A{n-r+l ) ,^^ / n +m-2

A{n+m-r+l) ^ ''\2n + 2m-

A{m-r)A{r)A{n-r)
^

^. /

A{n +m — r)
^ ' \

n +m—2r+l
\2n + 2m — 2r+

1

A{m-r)A{r-l) A{n-r+l) /2n + 2w - 4r + 3\

A{n + in — r) \2n + 2m — 2r-+ 1/

'

The sum of the first two lines of this expression is

A{m-r+l)A{r-l)A{n-r)
^(w+m-r+l)(2w + 2m-2r+3)

{o*- 1 2n 2t 4-

1

1
(m+l)(2n + 2m-4r + 3) _ ^

{2in+ 1) {n +m - 2r+ 2)V .

Suppose for a moment that n —r+l = q, then the quantity within the

brackets becomes

2r--l
(m+l)(2m+l + 2g'-2r)--^^ (2m+ 1) (m+ 1 + g-r).

Now this quantity evidently vanishes when q = r, and therefore it is

divisible by q — r. It also vanishes when m + 1 = r, and therefore it is

likewise divisible by m — r + 1.

Hence it is readily found that this quantity

= -~~{m-r+l){2m + 2q+l),

/n 27* -t- 1

or = 7 —r^(m-r + l){2n+ 2in-2r+3).

So that the sum of the first two lines of the expression for the coefficient

A{m-r+l)A{r-l)A{n-r)
f
{m-r + l) {n-2r + iy

\

A{n +m-r+l) \ r{n-r+l) J"
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Again, the sum of the other two lines of the expression for the co-
efficient of P™+^_,,+, is

A{m-r)A{r-l)A{n-r)
A (n +m-r) {2n+ 2m-2r+l)

f 2t — 1 , 2n — 2r+l 1X i
— {2m+l).{n + m-2r+l) + ~-m(2n+ 2m- 4r + 3)[ .

As before suppose n-r + l=q, and the quantity within the brackets
becomes

2r — 1 2o— 1{2m+l){m + q-r)-{—^ m {2m + 1 + 2q - 2r).

Now this quantity evidently vanishes when q = r, so that it is divisible

by q — r. It also vanishes when m— —q, and therefore it is likewise divisible

by m+ q.

Hence it is readily found that this quantity

= ~
(g' + m)(2m. — 2r+-l),

^ — S'T' —I— 1

or = -, -<,{n-\-m — r + l)(2m — 2r+l),
r (n — r + \)^ ' ^ '

and therefore the sum of the last two lines of the expression for the

coefficient of Pn+m-w+i is

A{m — r)A{r-\)A{n-r) \{n-2r + \) {n +m — r+l){2m-2r + l)
\

A[n +m — r) \r{n — r+l) 2n + 2m — 2r+l )'

Hence the whole coefficient of -P„+m-2r+i is

A (m — r) A(r—l)A (n — r) {n — 2r + l)

A(n + 7n — r + l) r{n — r+l)
X {(2m - 2r + 1) - (2m - 2r+ 1)} = 0.

And the same holds good for the coefficient of every term. Hence we finally

obtain

(m + 1) Q^^, + mQ^_, - (2m + 1) fiQ^ = 0,

which establishes the theorem above enunciated.

The principle of the process employed in the above proof may be thus

stated

:

Every term in the value of Q^ gives rise to two terms in the value

of ixQm or in that of {2m+l) fjuQ^nl one of these terms is to be subtracted

from the corresponding term in (m+l)^^+i, and the other from the cor-

responding term in mQ^_^, and it will be found that the two series of

terms thus formed identically destroy each other.
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- Hence we can find at once the value of the definite integral

for ifp = n +m — 2r we have

- (m+p — n\ . /n+ m—p\ . (n+p — m\

pp= ,

^\^~l ^ l~2—j
^ V^2^) 2p + l

™ ™ . /n +m+p \ n +m+ p + 1 *

+ &C.

Hence I P^P^P^dfi

. fm+p — n\ . (n +m—p\ . (n+p — mX

. n+ m-\-p\ n+m+p+1 ]_^^ ^' '^

. (m+ p — n\ . fn+ 7n — p\ . 'n+p —m

n+m+p+1 J /n +m+p\

.p n + vn+ p
or if ^— =^'

rpppdu.- ^ A(s-m)A{s-n)A{s-p)

where as above

., > 1. 3. 5...(2m-l) „„

^ ' 1.2. 3...m

13 5/ 1

2-2-2-r-2
1.2. 8...WI

It is clear that, in order that this integral may be finite, no one of

the quantities m, n, and p must be greater than the sum of the other

two, and that m,+n+p must' be an even integer.

I learn from Mr Ferrers that, in the course of the year 1874, he
likewise obtained the expression for the product of two Legendre's co-

eflficients, by a method very similar to mine. In his work on "Spherical
Harmonics," recently published, he gives, without proof, the above result for

the value of the definite integral I P^P^P^dfj..



61.

SUE LES ^TOILES FILANTES DE NOVEMBRE.

(LETTRE A M. DELAUNAY.)

[Paris Academy of Sciences, Compt Rend. XLiv., 1867.]

Observatoire de Cambridge, 23 Mars, 1867.

Je me suis occupe des m^tdores de Novembre et j'ai obtenu quelques
r^sultats qui me paraissent importants. Si vous pensez qu'ils puissent

int^resser I'Acad^mie, je vous serai oblig^ de las lui communiquer 'k sa

prochaine stance. Je les ai fait connalfcre verbalement ^ la seance de la

Soci^t^ philosophique de Cambridge de lundi dernier, mais ils n'ont pas

encore et^ imprimis.

Adoptant la position suivante du point radiant

:

iR=149°12'

Decl.= 23°1'N.

qui est la moyenne de ma propre determination et de cinq autres, et tenant

compte de raction de la Terre sur les mdt^ores lorsqu'ils se sont approchds

de nous, je trouve les elements suivants de I'orbite

:

Pdriode 33*25 ann^es (admise)

Moyenne distance 10'3402

Excentricite 0-9047

Distance p^rihdlie 0*9855

Inclinaison 16° 46'

Longitude du noeud 5 1° 28'

Distance du pdrihdlie au nceud 6° 51'

Mouvement retrograde

A. 63
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L'accord de ces ^l^ments avec ceux de la comfete de Tempel (i., 1866)

est encore plus grand que celui que pr^sentent les dl^ments calculus il y
a quelque temps par M. Le Verrier.

Avec les ^Idments, j'ai calculi la variation sdculaire du ncBud de I'orbite

des m^t^ores due k Taction des planfetes Jupiter, Saturne et Uranus.

J'ai employ^ la m^thode de Gauss donnde dans sa Determinatio Attrac-

tionis etc., et j'ai trouve que, dans une pdriode totale des m^tdores, c'est-

£b-dire en 33 "25 anndes, le mouvement du noeud est

Par Taction de Jupiter, de 20'

„ „ Saturne, de 7'f

„ ,, Uranus, de l'^

De sorte que le mouvement totale du noeud en 33 "25 ann^es serait

de 29 minutes, ce qui s'accorde presque exactement avec la determination

du moyen mouvement du noeud d'apr^s Tobservation faite par le pro-

fesseur Newton dans son Mdmoire sur les pluies d'^toUes de Novembre,
ias4r6 dans les nos. Ill et 112 du Journal Americain de Science et Arts.

Cela me parait mettre hors de doute Texactitude de la pdriode de

33 "25 anndes.
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THE LUNAR INEQUALITIES DUE TO THE ELLIPTIOITY OF THE EARTH.

[From the Observatory, No. 108 (1886).]

It is well known that M. Delaunay was unfortunately prevented by a

premature death from completely carrying out his purpose of determining

all the sensible inequalities of the Moon's motion by means of his very

original and beautiful method of treating that subject. Happily the two

magnificent volumes in which he determines the inequalities which are

caused by the disturbing force of the Sun, on the supposition that the

motion of the Earth about the Sun is purely elliptic, are complete in

themselves. The small effects due to the action of the planets and the

spheroidal figure of the Earth, as well as those which arise from the

disturbances of the Earth's motion, remained to be determined.

Mr G. W. Hill, who is already well known for his skilful treatment

of special portions of the lunar theory, has, in the paper now to be noticed,

produced a valuable supplement to Delaunay's work by applying the same

method to the determination of the lunar inequalities which are due to

the ellipticity of the Earth. This paper forms part 2 of vol. iii. of the

valuable series of astronomical papers prepared for the use of the American

Ephemeris and Nautical Almanac.

The author begins by developing the terms of the disturbing function

which are introduced by the ellipticity of the Earth, by substituting for

the Moon's coordinates their disturbed values as already given by Delaunay's

work. Some idea of the length and complexity of this substitution may
63—2
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be formed when it is stated that the development so obtained contains

one constant term accompanied by 121 periodic terms.

The next process is by a series of transformations of the variables

involved gradually to remove thesfe periodic terms from the disturbing

function, so that it is at length reduced to the form of a constant term.

The number of such operations required to effect this reduction amounts

to 103, although each operation is individually sufficiently simple.

By the essential principle of Delaunay's method the differential equa-

tions throughout these transformations always preserve their canonical form,

and therefore when the disturbing function has been reduced to the above-

mentioned simple form, the integrals are at once obtained.

In the next place the transformations indicated in the 103 operations

above mentioned are also made in Delaunay's expressions for the three

coordinates of the Moon, so that finally the values of these coordinates '

are found in terms of three arbitrary constants and three angles, each of

which consists of a term proportional to the time joined to an arbitrary

constant.

The coordinates thus expressed are the longitude, the latitude, and the

reciprocal of the radius vector. As this last quantity is only intended to

be employed in finding the Moon's parallax, it is given by Delaunay with
much less precision than the other two coordinates, a circumstance which
is to be regretted as an imperfection from a theoretical point of view.

The expressions thus found are purely analytical, that is the coefficients

are expressed in series of powers and products of Delaunay's constants
*

m, e, e', y, each term also involving as a factor a constant quantity which
depends on the figure of the Earth.

In order to make his work more complete, Mr Hill determines the
numerical value of this last-mentioned factor by a very elaborate discussion

of the results of numerous pendulum experiments.

Finally, by the substitution of the known values of the constants
employed, the numerical expressions for the perturbations of the Moon's
coordinates produced by the figure of the Earth are obtained.

It wUl be remarked that comparatively few of the coefficients so found
amount to an appreciable quantity, by far the larger number being utterly

insensible.
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The quantity m denoting, as in Delaunay, the ratio of the mean
motion of the Moon to that of the Sun, it is found that the analytical

expressions of most of the coefficients involve negative powers of m. This
circumstance, vrhich never happens in the case of the perturbations due to

the Sun's action, has given rise to a difficulty in some minds as to the

admissibility of Mr Hill's results. Mr Stockwell, in particular, in an article

in the twenty-ninth volume of the American Journal of Science, asserts

that the value given to the coefficient of the principal equation of latitude

leads to a manifest absurdity, and "justifies the suspicion that the entire

solution is erroneous."

The difficulty thus noticed by Mr Stockwell, however, admits of an

easy explanation. He applies Mr Hill's formulae to a case in which they

are not applicable, and for which they were not intended. The form of

development in series adopted by Mr Hill is founded on the supposition

that the perturbations due to the Earth's figure which he wishes to deter-

mine are very small compared with those due to the action of the Sun,

and therefore he expressly neglects quantities which are proportional to the

square of the first-named perturbations. Now, in the case of our Moon,

which is that treated by Mr Hill, the above-mentioned supposition certainly

holds good, and consequently his formulae are sufficiently accurate.

If, however, the Sun's distance from the Earth were very much greater

than it is, or if the Moon's distance were very much less than it actually

is, then the perturbations arising from the Earth's figure might be much

greater than those which arise from the Sun's action, and a different form

of development would have to be adopted.

In this latter case it would be better to refer the motion of the

Moon, not to the ecliptic, but to a fundamental plane passing through the

line of intersection of the equator and ecliptic, and occupying a definite

intermediate position between those two planes. If the perturbations due

to the action of the Sun are much greater than those due to the Earth's

figure, this fundamental plane nearly coincides with the ecliptic, whereas

if the latter perturbations are much greater than the former, the funda-

mental plane nearly coincides with the equator. In Mr Hill's formula, the

principal term in the expression for the latitude nearly represents the dis-

tance of the fundamental plane from the ecliptic corresponding to the actual

longitude of the Moon at the time.

A simple analytical illustration of the change of form of the coefficient

of this term of the latitude in different circumstances may be given.
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If m have its usual meaning as before stated, and if c be a small

positive constant depending on the eUipticity of the Earth, then the value

of the coefficient in question is approximately proportional to

—

m +c

Now, if, as in the case of our Moon, c is very much smaller than

Tin?, so that we may neglect the square of c compared with that of m^

the quantity just mentioned becomes approximately = —j; whereas if m?

is small compared with c, the same quantity becomes nearly = 1, and the

coefficient becomes nearly independent of the eUipticity of the Earth, as it

should do, since in this case the coefficient of this term is approximately

equal to the sine of the obliquity of the ecliptic.

Mr Stockwell's second objection, that Mr Hill has omitted to take

into account the modification of the Sun's disturbing force which is caused

by the alterations of the Moon's coordinates due to the eUipticity of the

Earth, seems to arise from a misapprehension on his part of the spirit of

Delaunay's method. These alterations of the Moon's coordinates are implicitly

involved in the variables a, e, y, I, g, h, throughout the series of operations

by which Delaunay gradually removes from R the periodic terms arising from

the action of the Sun.
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